diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..79ace35d542ecc6e20d6df974bb3c4ecf2aef87d 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +huggan/assets/cyclegan.png filter=lfs diff=lfs merge=lfs -text +huggan/assets/lightweight_gan_wandb.png filter=lfs diff=lfs merge=lfs -text +huggan/assets/pix2pix_maps.png filter=lfs diff=lfs merge=lfs -text +huggan/assets/wandb.png filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..b5a276da1d4bb9cc5fab31914aaaebcac1422a8c --- /dev/null +++ b/.gitignore @@ -0,0 +1,166 @@ +# Initially taken from Github's Python gitignore file + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# tests and logs +tests/fixtures/cached_*_text.txt +logs/ +lightning_logs/ +lang_code_data/ + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# vscode +.vs +.vscode + +# Pycharm +.idea + +# TF code +tensorflow_code + +# Models +proc_data + +# examples +runs +/runs_old +/wandb +/examples/runs +/examples/**/*.args +/examples/rag/sweep + +# data +/data +serialization_dir + +# emacs +*.*~ +debug.env + +# vim +.*.swp + +#ctags +tags + +# pre-commit +.pre-commit* + +# .lock +*.lock + +# DS_Store (MacOS) +.DS_Store diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..28efb1a78cb9a972d83a99a0e5d8198888f5d478 --- /dev/null +++ b/README.md @@ -0,0 +1,16 @@ +# Community Events @ 🤗 + +A central repository for all community events organized by 🤗 HuggingFace. Come one, come all! +We're constantly finding ways to democratise the use of ML across modalities and languages. This repo contains information about all past, present and upcoming events. + +## Hugging Events + +| **Event Name** | **Dates** | **Status** | +|-------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------| +| [Open Source AI Game Jam 🎮 (First Edition)](/open-source-ai-game-jam) | July 7th - 9th, 2023 | Finished | +| [Whisper Fine Tuning Event](/whisper-fine-tuning-event) | Dec 5th - 19th, 2022 | Finished | +| [Computer Vision Study Group](/computer-vision-study-group) | Ongoing | Monthly | +| [ML for Audio Study Group](https://github.com/Vaibhavs10/ml-with-audio) | Ongoing | Monthly | +| [Gradio Blocks](/gradio-blocks) | May 16th - 31st, 2022 | Finished | +| [HugGAN](/huggan) | Apr 4th - 17th, 2022 | Finished | +| [Keras Sprint](keras-sprint) | June, 2022 | Finished | diff --git a/added_tokens.json b/added_tokens.json new file mode 100644 index 0000000000000000000000000000000000000000..e3d256c988462aa153dcabe2aa38b8e9b436c06f --- /dev/null +++ b/added_tokens.json @@ -0,0 +1,1609 @@ +{ + "<|0.00|>": 50364, + "<|0.02|>": 50365, + "<|0.04|>": 50366, + "<|0.06|>": 50367, + "<|0.08|>": 50368, + "<|0.10|>": 50369, + "<|0.12|>": 50370, + "<|0.14|>": 50371, + "<|0.16|>": 50372, + "<|0.18|>": 50373, + "<|0.20|>": 50374, + "<|0.22|>": 50375, + "<|0.24|>": 50376, + "<|0.26|>": 50377, + "<|0.28|>": 50378, + "<|0.30|>": 50379, + "<|0.32|>": 50380, + "<|0.34|>": 50381, + "<|0.36|>": 50382, + "<|0.38|>": 50383, + "<|0.40|>": 50384, + "<|0.42|>": 50385, + "<|0.44|>": 50386, + "<|0.46|>": 50387, + "<|0.48|>": 50388, + "<|0.50|>": 50389, + "<|0.52|>": 50390, + "<|0.54|>": 50391, + "<|0.56|>": 50392, + "<|0.58|>": 50393, + "<|0.60|>": 50394, + "<|0.62|>": 50395, + "<|0.64|>": 50396, + "<|0.66|>": 50397, + "<|0.68|>": 50398, + "<|0.70|>": 50399, + "<|0.72|>": 50400, + "<|0.74|>": 50401, + "<|0.76|>": 50402, + "<|0.78|>": 50403, + "<|0.80|>": 50404, + "<|0.82|>": 50405, + "<|0.84|>": 50406, + "<|0.86|>": 50407, + "<|0.88|>": 50408, + "<|0.90|>": 50409, + "<|0.92|>": 50410, + "<|0.94|>": 50411, + "<|0.96|>": 50412, + "<|0.98|>": 50413, + "<|1.00|>": 50414, + "<|1.02|>": 50415, + "<|1.04|>": 50416, + "<|1.06|>": 50417, + "<|1.08|>": 50418, + "<|1.10|>": 50419, + "<|1.12|>": 50420, + "<|1.14|>": 50421, + "<|1.16|>": 50422, + "<|1.18|>": 50423, + "<|1.20|>": 50424, + "<|1.22|>": 50425, + "<|1.24|>": 50426, + "<|1.26|>": 50427, + "<|1.28|>": 50428, + "<|1.30|>": 50429, + "<|1.32|>": 50430, + "<|1.34|>": 50431, + "<|1.36|>": 50432, + "<|1.38|>": 50433, + "<|1.40|>": 50434, + "<|1.42|>": 50435, + "<|1.44|>": 50436, + "<|1.46|>": 50437, + "<|1.48|>": 50438, + "<|1.50|>": 50439, + "<|1.52|>": 50440, + "<|1.54|>": 50441, + "<|1.56|>": 50442, + "<|1.58|>": 50443, + "<|1.60|>": 50444, + "<|1.62|>": 50445, + "<|1.64|>": 50446, + "<|1.66|>": 50447, + "<|1.68|>": 50448, + "<|1.70|>": 50449, + "<|1.72|>": 50450, + "<|1.74|>": 50451, + "<|1.76|>": 50452, + "<|1.78|>": 50453, + "<|1.80|>": 50454, + "<|1.82|>": 50455, + "<|1.84|>": 50456, + "<|1.86|>": 50457, + "<|1.88|>": 50458, + "<|1.90|>": 50459, + "<|1.92|>": 50460, + "<|1.94|>": 50461, + "<|1.96|>": 50462, + "<|1.98|>": 50463, + "<|10.00|>": 50864, + "<|10.02|>": 50865, + "<|10.04|>": 50866, + "<|10.06|>": 50867, + "<|10.08|>": 50868, + "<|10.10|>": 50869, + "<|10.12|>": 50870, + "<|10.14|>": 50871, + "<|10.16|>": 50872, + "<|10.18|>": 50873, + "<|10.20|>": 50874, + "<|10.22|>": 50875, + "<|10.24|>": 50876, + "<|10.26|>": 50877, + "<|10.28|>": 50878, + "<|10.30|>": 50879, + "<|10.32|>": 50880, + "<|10.34|>": 50881, + "<|10.36|>": 50882, + "<|10.38|>": 50883, + "<|10.40|>": 50884, + "<|10.42|>": 50885, + "<|10.44|>": 50886, + "<|10.46|>": 50887, + "<|10.48|>": 50888, + "<|10.50|>": 50889, + "<|10.52|>": 50890, + "<|10.54|>": 50891, + "<|10.56|>": 50892, + "<|10.58|>": 50893, + "<|10.60|>": 50894, + "<|10.62|>": 50895, + "<|10.64|>": 50896, + "<|10.66|>": 50897, + "<|10.68|>": 50898, + "<|10.70|>": 50899, + "<|10.72|>": 50900, + "<|10.74|>": 50901, + "<|10.76|>": 50902, + "<|10.78|>": 50903, + "<|10.80|>": 50904, + "<|10.82|>": 50905, + "<|10.84|>": 50906, + "<|10.86|>": 50907, + "<|10.88|>": 50908, + "<|10.90|>": 50909, + "<|10.92|>": 50910, + "<|10.94|>": 50911, + "<|10.96|>": 50912, + "<|10.98|>": 50913, + "<|11.00|>": 50914, + "<|11.02|>": 50915, + "<|11.04|>": 50916, + "<|11.06|>": 50917, + "<|11.08|>": 50918, + "<|11.10|>": 50919, + "<|11.12|>": 50920, + "<|11.14|>": 50921, + "<|11.16|>": 50922, + "<|11.18|>": 50923, + "<|11.20|>": 50924, + "<|11.22|>": 50925, + "<|11.24|>": 50926, + "<|11.26|>": 50927, + "<|11.28|>": 50928, + "<|11.30|>": 50929, + "<|11.32|>": 50930, + "<|11.34|>": 50931, + "<|11.36|>": 50932, + "<|11.38|>": 50933, + "<|11.40|>": 50934, + "<|11.42|>": 50935, + "<|11.44|>": 50936, + "<|11.46|>": 50937, + "<|11.48|>": 50938, + "<|11.50|>": 50939, + "<|11.52|>": 50940, + "<|11.54|>": 50941, + "<|11.56|>": 50942, + "<|11.58|>": 50943, + "<|11.60|>": 50944, + "<|11.62|>": 50945, + "<|11.64|>": 50946, + "<|11.66|>": 50947, + "<|11.68|>": 50948, + "<|11.70|>": 50949, + "<|11.72|>": 50950, + "<|11.74|>": 50951, + "<|11.76|>": 50952, + "<|11.78|>": 50953, + "<|11.80|>": 50954, + "<|11.82|>": 50955, + "<|11.84|>": 50956, + "<|11.86|>": 50957, + "<|11.88|>": 50958, + "<|11.90|>": 50959, + "<|11.92|>": 50960, + "<|11.94|>": 50961, + "<|11.96|>": 50962, + "<|11.98|>": 50963, + "<|12.00|>": 50964, + "<|12.02|>": 50965, + "<|12.04|>": 50966, + "<|12.06|>": 50967, + "<|12.08|>": 50968, + "<|12.10|>": 50969, + "<|12.12|>": 50970, + "<|12.14|>": 50971, + "<|12.16|>": 50972, + "<|12.18|>": 50973, + "<|12.20|>": 50974, + "<|12.22|>": 50975, + "<|12.24|>": 50976, + "<|12.26|>": 50977, + "<|12.28|>": 50978, + "<|12.30|>": 50979, + "<|12.32|>": 50980, + "<|12.34|>": 50981, + "<|12.36|>": 50982, + "<|12.38|>": 50983, + "<|12.40|>": 50984, + "<|12.42|>": 50985, + "<|12.44|>": 50986, + "<|12.46|>": 50987, + "<|12.48|>": 50988, + "<|12.50|>": 50989, + "<|12.52|>": 50990, + "<|12.54|>": 50991, + "<|12.56|>": 50992, + "<|12.58|>": 50993, + "<|12.60|>": 50994, + "<|12.62|>": 50995, + "<|12.64|>": 50996, + "<|12.66|>": 50997, + "<|12.68|>": 50998, + "<|12.70|>": 50999, + "<|12.72|>": 51000, + "<|12.74|>": 51001, + "<|12.76|>": 51002, + "<|12.78|>": 51003, + "<|12.80|>": 51004, + "<|12.82|>": 51005, + "<|12.84|>": 51006, + "<|12.86|>": 51007, + "<|12.88|>": 51008, + "<|12.90|>": 51009, + "<|12.92|>": 51010, + "<|12.94|>": 51011, + "<|12.96|>": 51012, + "<|12.98|>": 51013, + "<|13.00|>": 51014, + "<|13.02|>": 51015, + "<|13.04|>": 51016, + "<|13.06|>": 51017, + "<|13.08|>": 51018, + "<|13.10|>": 51019, + "<|13.12|>": 51020, + "<|13.14|>": 51021, + "<|13.16|>": 51022, + "<|13.18|>": 51023, + "<|13.20|>": 51024, + "<|13.22|>": 51025, + "<|13.24|>": 51026, + "<|13.26|>": 51027, + "<|13.28|>": 51028, + "<|13.30|>": 51029, + "<|13.32|>": 51030, + "<|13.34|>": 51031, + "<|13.36|>": 51032, + "<|13.38|>": 51033, + "<|13.40|>": 51034, + "<|13.42|>": 51035, + "<|13.44|>": 51036, + "<|13.46|>": 51037, + "<|13.48|>": 51038, + "<|13.50|>": 51039, + "<|13.52|>": 51040, + "<|13.54|>": 51041, + "<|13.56|>": 51042, + "<|13.58|>": 51043, + "<|13.60|>": 51044, + "<|13.62|>": 51045, + "<|13.64|>": 51046, + "<|13.66|>": 51047, + "<|13.68|>": 51048, + "<|13.70|>": 51049, + "<|13.72|>": 51050, + "<|13.74|>": 51051, + "<|13.76|>": 51052, + "<|13.78|>": 51053, + "<|13.80|>": 51054, + "<|13.82|>": 51055, + "<|13.84|>": 51056, + "<|13.86|>": 51057, + "<|13.88|>": 51058, + "<|13.90|>": 51059, + "<|13.92|>": 51060, + "<|13.94|>": 51061, + "<|13.96|>": 51062, + "<|13.98|>": 51063, + "<|14.00|>": 51064, + "<|14.02|>": 51065, + "<|14.04|>": 51066, + "<|14.06|>": 51067, + "<|14.08|>": 51068, + "<|14.10|>": 51069, + "<|14.12|>": 51070, + "<|14.14|>": 51071, + "<|14.16|>": 51072, + "<|14.18|>": 51073, + "<|14.20|>": 51074, + "<|14.22|>": 51075, + "<|14.24|>": 51076, + "<|14.26|>": 51077, + "<|14.28|>": 51078, + "<|14.30|>": 51079, + "<|14.32|>": 51080, + "<|14.34|>": 51081, + "<|14.36|>": 51082, + "<|14.38|>": 51083, + "<|14.40|>": 51084, + "<|14.42|>": 51085, + "<|14.44|>": 51086, + "<|14.46|>": 51087, + "<|14.48|>": 51088, + "<|14.50|>": 51089, + "<|14.52|>": 51090, + "<|14.54|>": 51091, + "<|14.56|>": 51092, + "<|14.58|>": 51093, + "<|14.60|>": 51094, + "<|14.62|>": 51095, + "<|14.64|>": 51096, + "<|14.66|>": 51097, + "<|14.68|>": 51098, + "<|14.70|>": 51099, + "<|14.72|>": 51100, + "<|14.74|>": 51101, + "<|14.76|>": 51102, + "<|14.78|>": 51103, + "<|14.80|>": 51104, + "<|14.82|>": 51105, + "<|14.84|>": 51106, + "<|14.86|>": 51107, + "<|14.88|>": 51108, + "<|14.90|>": 51109, + "<|14.92|>": 51110, + "<|14.94|>": 51111, + "<|14.96|>": 51112, + "<|14.98|>": 51113, + "<|15.00|>": 51114, + "<|15.02|>": 51115, + "<|15.04|>": 51116, + "<|15.06|>": 51117, + "<|15.08|>": 51118, + "<|15.10|>": 51119, + "<|15.12|>": 51120, + "<|15.14|>": 51121, + "<|15.16|>": 51122, + "<|15.18|>": 51123, + "<|15.20|>": 51124, + "<|15.22|>": 51125, + "<|15.24|>": 51126, + "<|15.26|>": 51127, + "<|15.28|>": 51128, + "<|15.30|>": 51129, + "<|15.32|>": 51130, + "<|15.34|>": 51131, + "<|15.36|>": 51132, + "<|15.38|>": 51133, + "<|15.40|>": 51134, + "<|15.42|>": 51135, + "<|15.44|>": 51136, + "<|15.46|>": 51137, + "<|15.48|>": 51138, + "<|15.50|>": 51139, + "<|15.52|>": 51140, + "<|15.54|>": 51141, + "<|15.56|>": 51142, + "<|15.58|>": 51143, + "<|15.60|>": 51144, + "<|15.62|>": 51145, + "<|15.64|>": 51146, + "<|15.66|>": 51147, + "<|15.68|>": 51148, + "<|15.70|>": 51149, + "<|15.72|>": 51150, + "<|15.74|>": 51151, + "<|15.76|>": 51152, + "<|15.78|>": 51153, + "<|15.80|>": 51154, + "<|15.82|>": 51155, + "<|15.84|>": 51156, + "<|15.86|>": 51157, + "<|15.88|>": 51158, + "<|15.90|>": 51159, + "<|15.92|>": 51160, + "<|15.94|>": 51161, + "<|15.96|>": 51162, + "<|15.98|>": 51163, + "<|16.00|>": 51164, + "<|16.02|>": 51165, + "<|16.04|>": 51166, + "<|16.06|>": 51167, + "<|16.08|>": 51168, + "<|16.10|>": 51169, + "<|16.12|>": 51170, + "<|16.14|>": 51171, + "<|16.16|>": 51172, + "<|16.18|>": 51173, + "<|16.20|>": 51174, + "<|16.22|>": 51175, + "<|16.24|>": 51176, + "<|16.26|>": 51177, + "<|16.28|>": 51178, + "<|16.30|>": 51179, + "<|16.32|>": 51180, + "<|16.34|>": 51181, + "<|16.36|>": 51182, + "<|16.38|>": 51183, + "<|16.40|>": 51184, + "<|16.42|>": 51185, + "<|16.44|>": 51186, + "<|16.46|>": 51187, + "<|16.48|>": 51188, + "<|16.50|>": 51189, + "<|16.52|>": 51190, + "<|16.54|>": 51191, + "<|16.56|>": 51192, + "<|16.58|>": 51193, + "<|16.60|>": 51194, + "<|16.62|>": 51195, + "<|16.64|>": 51196, + "<|16.66|>": 51197, + "<|16.68|>": 51198, + "<|16.70|>": 51199, + "<|16.72|>": 51200, + "<|16.74|>": 51201, + "<|16.76|>": 51202, + "<|16.78|>": 51203, + "<|16.80|>": 51204, + "<|16.82|>": 51205, + "<|16.84|>": 51206, + "<|16.86|>": 51207, + "<|16.88|>": 51208, + "<|16.90|>": 51209, + "<|16.92|>": 51210, + "<|16.94|>": 51211, + "<|16.96|>": 51212, + "<|16.98|>": 51213, + "<|17.00|>": 51214, + "<|17.02|>": 51215, + "<|17.04|>": 51216, + "<|17.06|>": 51217, + "<|17.08|>": 51218, + "<|17.10|>": 51219, + "<|17.12|>": 51220, + "<|17.14|>": 51221, + "<|17.16|>": 51222, + "<|17.18|>": 51223, + "<|17.20|>": 51224, + "<|17.22|>": 51225, + "<|17.24|>": 51226, + "<|17.26|>": 51227, + "<|17.28|>": 51228, + "<|17.30|>": 51229, + "<|17.32|>": 51230, + "<|17.34|>": 51231, + "<|17.36|>": 51232, + "<|17.38|>": 51233, + "<|17.40|>": 51234, + "<|17.42|>": 51235, + "<|17.44|>": 51236, + "<|17.46|>": 51237, + "<|17.48|>": 51238, + "<|17.50|>": 51239, + "<|17.52|>": 51240, + "<|17.54|>": 51241, + "<|17.56|>": 51242, + "<|17.58|>": 51243, + "<|17.60|>": 51244, + "<|17.62|>": 51245, + "<|17.64|>": 51246, + "<|17.66|>": 51247, + "<|17.68|>": 51248, + "<|17.70|>": 51249, + "<|17.72|>": 51250, + "<|17.74|>": 51251, + "<|17.76|>": 51252, + "<|17.78|>": 51253, + "<|17.80|>": 51254, + "<|17.82|>": 51255, + "<|17.84|>": 51256, + "<|17.86|>": 51257, + "<|17.88|>": 51258, + "<|17.90|>": 51259, + "<|17.92|>": 51260, + "<|17.94|>": 51261, + "<|17.96|>": 51262, + "<|17.98|>": 51263, + "<|18.00|>": 51264, + "<|18.02|>": 51265, + "<|18.04|>": 51266, + "<|18.06|>": 51267, + "<|18.08|>": 51268, + "<|18.10|>": 51269, + "<|18.12|>": 51270, + "<|18.14|>": 51271, + "<|18.16|>": 51272, + "<|18.18|>": 51273, + "<|18.20|>": 51274, + "<|18.22|>": 51275, + "<|18.24|>": 51276, + "<|18.26|>": 51277, + "<|18.28|>": 51278, + "<|18.30|>": 51279, + "<|18.32|>": 51280, + "<|18.34|>": 51281, + "<|18.36|>": 51282, + "<|18.38|>": 51283, + "<|18.40|>": 51284, + "<|18.42|>": 51285, + "<|18.44|>": 51286, + "<|18.46|>": 51287, + "<|18.48|>": 51288, + "<|18.50|>": 51289, + "<|18.52|>": 51290, + "<|18.54|>": 51291, + "<|18.56|>": 51292, + "<|18.58|>": 51293, + "<|18.60|>": 51294, + "<|18.62|>": 51295, + "<|18.64|>": 51296, + "<|18.66|>": 51297, + "<|18.68|>": 51298, + "<|18.70|>": 51299, + "<|18.72|>": 51300, + "<|18.74|>": 51301, + "<|18.76|>": 51302, + "<|18.78|>": 51303, + "<|18.80|>": 51304, + "<|18.82|>": 51305, + "<|18.84|>": 51306, + "<|18.86|>": 51307, + "<|18.88|>": 51308, + "<|18.90|>": 51309, + "<|18.92|>": 51310, + "<|18.94|>": 51311, + "<|18.96|>": 51312, + "<|18.98|>": 51313, + "<|19.00|>": 51314, + "<|19.02|>": 51315, + "<|19.04|>": 51316, + "<|19.06|>": 51317, + "<|19.08|>": 51318, + "<|19.10|>": 51319, + "<|19.12|>": 51320, + "<|19.14|>": 51321, + "<|19.16|>": 51322, + "<|19.18|>": 51323, + "<|19.20|>": 51324, + "<|19.22|>": 51325, + "<|19.24|>": 51326, + "<|19.26|>": 51327, + "<|19.28|>": 51328, + "<|19.30|>": 51329, + "<|19.32|>": 51330, + "<|19.34|>": 51331, + "<|19.36|>": 51332, + "<|19.38|>": 51333, + "<|19.40|>": 51334, + "<|19.42|>": 51335, + "<|19.44|>": 51336, + "<|19.46|>": 51337, + "<|19.48|>": 51338, + "<|19.50|>": 51339, + "<|19.52|>": 51340, + "<|19.54|>": 51341, + "<|19.56|>": 51342, + "<|19.58|>": 51343, + "<|19.60|>": 51344, + "<|19.62|>": 51345, + "<|19.64|>": 51346, + "<|19.66|>": 51347, + "<|19.68|>": 51348, + "<|19.70|>": 51349, + "<|19.72|>": 51350, + "<|19.74|>": 51351, + "<|19.76|>": 51352, + "<|19.78|>": 51353, + "<|19.80|>": 51354, + "<|19.82|>": 51355, + "<|19.84|>": 51356, + "<|19.86|>": 51357, + "<|19.88|>": 51358, + "<|19.90|>": 51359, + "<|19.92|>": 51360, + "<|19.94|>": 51361, + "<|19.96|>": 51362, + "<|19.98|>": 51363, + "<|2.00|>": 50464, + "<|2.02|>": 50465, + "<|2.04|>": 50466, + "<|2.06|>": 50467, + "<|2.08|>": 50468, + "<|2.10|>": 50469, + "<|2.12|>": 50470, + "<|2.14|>": 50471, + "<|2.16|>": 50472, + "<|2.18|>": 50473, + "<|2.20|>": 50474, + "<|2.22|>": 50475, + "<|2.24|>": 50476, + "<|2.26|>": 50477, + "<|2.28|>": 50478, + "<|2.30|>": 50479, + "<|2.32|>": 50480, + "<|2.34|>": 50481, + "<|2.36|>": 50482, + "<|2.38|>": 50483, + "<|2.40|>": 50484, + "<|2.42|>": 50485, + "<|2.44|>": 50486, + "<|2.46|>": 50487, + "<|2.48|>": 50488, + "<|2.50|>": 50489, + "<|2.52|>": 50490, + "<|2.54|>": 50491, + "<|2.56|>": 50492, + "<|2.58|>": 50493, + "<|2.60|>": 50494, + "<|2.62|>": 50495, + "<|2.64|>": 50496, + "<|2.66|>": 50497, + "<|2.68|>": 50498, + "<|2.70|>": 50499, + "<|2.72|>": 50500, + "<|2.74|>": 50501, + "<|2.76|>": 50502, + "<|2.78|>": 50503, + "<|2.80|>": 50504, + "<|2.82|>": 50505, + "<|2.84|>": 50506, + "<|2.86|>": 50507, + "<|2.88|>": 50508, + "<|2.90|>": 50509, + "<|2.92|>": 50510, + "<|2.94|>": 50511, + "<|2.96|>": 50512, + "<|2.98|>": 50513, + "<|20.00|>": 51364, + "<|20.02|>": 51365, + "<|20.04|>": 51366, + "<|20.06|>": 51367, + "<|20.08|>": 51368, + "<|20.10|>": 51369, + "<|20.12|>": 51370, + "<|20.14|>": 51371, + "<|20.16|>": 51372, + "<|20.18|>": 51373, + "<|20.20|>": 51374, + "<|20.22|>": 51375, + "<|20.24|>": 51376, + "<|20.26|>": 51377, + "<|20.28|>": 51378, + "<|20.30|>": 51379, + "<|20.32|>": 51380, + "<|20.34|>": 51381, + "<|20.36|>": 51382, + "<|20.38|>": 51383, + "<|20.40|>": 51384, + "<|20.42|>": 51385, + "<|20.44|>": 51386, + "<|20.46|>": 51387, + "<|20.48|>": 51388, + "<|20.50|>": 51389, + "<|20.52|>": 51390, + "<|20.54|>": 51391, + "<|20.56|>": 51392, + "<|20.58|>": 51393, + "<|20.60|>": 51394, + "<|20.62|>": 51395, + "<|20.64|>": 51396, + "<|20.66|>": 51397, + "<|20.68|>": 51398, + "<|20.70|>": 51399, + "<|20.72|>": 51400, + "<|20.74|>": 51401, + "<|20.76|>": 51402, + "<|20.78|>": 51403, + "<|20.80|>": 51404, + "<|20.82|>": 51405, + "<|20.84|>": 51406, + "<|20.86|>": 51407, + "<|20.88|>": 51408, + "<|20.90|>": 51409, + "<|20.92|>": 51410, + "<|20.94|>": 51411, + "<|20.96|>": 51412, + "<|20.98|>": 51413, + "<|21.00|>": 51414, + "<|21.02|>": 51415, + "<|21.04|>": 51416, + "<|21.06|>": 51417, + "<|21.08|>": 51418, + "<|21.10|>": 51419, + "<|21.12|>": 51420, + "<|21.14|>": 51421, + "<|21.16|>": 51422, + "<|21.18|>": 51423, + "<|21.20|>": 51424, + "<|21.22|>": 51425, + "<|21.24|>": 51426, + "<|21.26|>": 51427, + "<|21.28|>": 51428, + "<|21.30|>": 51429, + "<|21.32|>": 51430, + "<|21.34|>": 51431, + "<|21.36|>": 51432, + "<|21.38|>": 51433, + "<|21.40|>": 51434, + "<|21.42|>": 51435, + "<|21.44|>": 51436, + "<|21.46|>": 51437, + "<|21.48|>": 51438, + "<|21.50|>": 51439, + "<|21.52|>": 51440, + "<|21.54|>": 51441, + "<|21.56|>": 51442, + "<|21.58|>": 51443, + "<|21.60|>": 51444, + "<|21.62|>": 51445, + "<|21.64|>": 51446, + "<|21.66|>": 51447, + "<|21.68|>": 51448, + "<|21.70|>": 51449, + "<|21.72|>": 51450, + "<|21.74|>": 51451, + "<|21.76|>": 51452, + "<|21.78|>": 51453, + "<|21.80|>": 51454, + "<|21.82|>": 51455, + "<|21.84|>": 51456, + "<|21.86|>": 51457, + "<|21.88|>": 51458, + "<|21.90|>": 51459, + "<|21.92|>": 51460, + "<|21.94|>": 51461, + "<|21.96|>": 51462, + "<|21.98|>": 51463, + "<|22.00|>": 51464, + "<|22.02|>": 51465, + "<|22.04|>": 51466, + "<|22.06|>": 51467, + "<|22.08|>": 51468, + "<|22.10|>": 51469, + "<|22.12|>": 51470, + "<|22.14|>": 51471, + "<|22.16|>": 51472, + "<|22.18|>": 51473, + "<|22.20|>": 51474, + "<|22.22|>": 51475, + "<|22.24|>": 51476, + "<|22.26|>": 51477, + "<|22.28|>": 51478, + "<|22.30|>": 51479, + "<|22.32|>": 51480, + "<|22.34|>": 51481, + "<|22.36|>": 51482, + "<|22.38|>": 51483, + "<|22.40|>": 51484, + "<|22.42|>": 51485, + "<|22.44|>": 51486, + "<|22.46|>": 51487, + "<|22.48|>": 51488, + "<|22.50|>": 51489, + "<|22.52|>": 51490, + "<|22.54|>": 51491, + "<|22.56|>": 51492, + "<|22.58|>": 51493, + "<|22.60|>": 51494, + "<|22.62|>": 51495, + "<|22.64|>": 51496, + "<|22.66|>": 51497, + "<|22.68|>": 51498, + "<|22.70|>": 51499, + "<|22.72|>": 51500, + "<|22.74|>": 51501, + "<|22.76|>": 51502, + "<|22.78|>": 51503, + "<|22.80|>": 51504, + "<|22.82|>": 51505, + "<|22.84|>": 51506, + "<|22.86|>": 51507, + "<|22.88|>": 51508, + "<|22.90|>": 51509, + "<|22.92|>": 51510, + "<|22.94|>": 51511, + "<|22.96|>": 51512, + "<|22.98|>": 51513, + "<|23.00|>": 51514, + "<|23.02|>": 51515, + "<|23.04|>": 51516, + "<|23.06|>": 51517, + "<|23.08|>": 51518, + "<|23.10|>": 51519, + "<|23.12|>": 51520, + "<|23.14|>": 51521, + "<|23.16|>": 51522, + "<|23.18|>": 51523, + "<|23.20|>": 51524, + "<|23.22|>": 51525, + "<|23.24|>": 51526, + "<|23.26|>": 51527, + "<|23.28|>": 51528, + "<|23.30|>": 51529, + "<|23.32|>": 51530, + "<|23.34|>": 51531, + "<|23.36|>": 51532, + "<|23.38|>": 51533, + "<|23.40|>": 51534, + "<|23.42|>": 51535, + "<|23.44|>": 51536, + "<|23.46|>": 51537, + "<|23.48|>": 51538, + "<|23.50|>": 51539, + "<|23.52|>": 51540, + "<|23.54|>": 51541, + "<|23.56|>": 51542, + "<|23.58|>": 51543, + "<|23.60|>": 51544, + "<|23.62|>": 51545, + "<|23.64|>": 51546, + "<|23.66|>": 51547, + "<|23.68|>": 51548, + "<|23.70|>": 51549, + "<|23.72|>": 51550, + "<|23.74|>": 51551, + "<|23.76|>": 51552, + "<|23.78|>": 51553, + "<|23.80|>": 51554, + "<|23.82|>": 51555, + "<|23.84|>": 51556, + "<|23.86|>": 51557, + "<|23.88|>": 51558, + "<|23.90|>": 51559, + "<|23.92|>": 51560, + "<|23.94|>": 51561, + "<|23.96|>": 51562, + "<|23.98|>": 51563, + "<|24.00|>": 51564, + "<|24.02|>": 51565, + "<|24.04|>": 51566, + "<|24.06|>": 51567, + "<|24.08|>": 51568, + "<|24.10|>": 51569, + "<|24.12|>": 51570, + "<|24.14|>": 51571, + "<|24.16|>": 51572, + "<|24.18|>": 51573, + "<|24.20|>": 51574, + "<|24.22|>": 51575, + "<|24.24|>": 51576, + "<|24.26|>": 51577, + "<|24.28|>": 51578, + "<|24.30|>": 51579, + "<|24.32|>": 51580, + "<|24.34|>": 51581, + "<|24.36|>": 51582, + "<|24.38|>": 51583, + "<|24.40|>": 51584, + "<|24.42|>": 51585, + "<|24.44|>": 51586, + "<|24.46|>": 51587, + "<|24.48|>": 51588, + "<|24.50|>": 51589, + "<|24.52|>": 51590, + "<|24.54|>": 51591, + "<|24.56|>": 51592, + "<|24.58|>": 51593, + "<|24.60|>": 51594, + "<|24.62|>": 51595, + "<|24.64|>": 51596, + "<|24.66|>": 51597, + "<|24.68|>": 51598, + "<|24.70|>": 51599, + "<|24.72|>": 51600, + "<|24.74|>": 51601, + "<|24.76|>": 51602, + "<|24.78|>": 51603, + "<|24.80|>": 51604, + "<|24.82|>": 51605, + "<|24.84|>": 51606, + "<|24.86|>": 51607, + "<|24.88|>": 51608, + "<|24.90|>": 51609, + "<|24.92|>": 51610, + "<|24.94|>": 51611, + "<|24.96|>": 51612, + "<|24.98|>": 51613, + "<|25.00|>": 51614, + "<|25.02|>": 51615, + "<|25.04|>": 51616, + "<|25.06|>": 51617, + "<|25.08|>": 51618, + "<|25.10|>": 51619, + "<|25.12|>": 51620, + "<|25.14|>": 51621, + "<|25.16|>": 51622, + "<|25.18|>": 51623, + "<|25.20|>": 51624, + "<|25.22|>": 51625, + "<|25.24|>": 51626, + "<|25.26|>": 51627, + "<|25.28|>": 51628, + "<|25.30|>": 51629, + "<|25.32|>": 51630, + "<|25.34|>": 51631, + "<|25.36|>": 51632, + "<|25.38|>": 51633, + "<|25.40|>": 51634, + "<|25.42|>": 51635, + "<|25.44|>": 51636, + "<|25.46|>": 51637, + "<|25.48|>": 51638, + "<|25.50|>": 51639, + "<|25.52|>": 51640, + "<|25.54|>": 51641, + "<|25.56|>": 51642, + "<|25.58|>": 51643, + "<|25.60|>": 51644, + "<|25.62|>": 51645, + "<|25.64|>": 51646, + "<|25.66|>": 51647, + "<|25.68|>": 51648, + "<|25.70|>": 51649, + "<|25.72|>": 51650, + "<|25.74|>": 51651, + "<|25.76|>": 51652, + "<|25.78|>": 51653, + "<|25.80|>": 51654, + "<|25.82|>": 51655, + "<|25.84|>": 51656, + "<|25.86|>": 51657, + "<|25.88|>": 51658, + "<|25.90|>": 51659, + "<|25.92|>": 51660, + "<|25.94|>": 51661, + "<|25.96|>": 51662, + "<|25.98|>": 51663, + "<|26.00|>": 51664, + "<|26.02|>": 51665, + "<|26.04|>": 51666, + "<|26.06|>": 51667, + "<|26.08|>": 51668, + "<|26.10|>": 51669, + "<|26.12|>": 51670, + "<|26.14|>": 51671, + "<|26.16|>": 51672, + "<|26.18|>": 51673, + "<|26.20|>": 51674, + "<|26.22|>": 51675, + "<|26.24|>": 51676, + "<|26.26|>": 51677, + "<|26.28|>": 51678, + "<|26.30|>": 51679, + "<|26.32|>": 51680, + "<|26.34|>": 51681, + "<|26.36|>": 51682, + "<|26.38|>": 51683, + "<|26.40|>": 51684, + "<|26.42|>": 51685, + "<|26.44|>": 51686, + "<|26.46|>": 51687, + "<|26.48|>": 51688, + "<|26.50|>": 51689, + "<|26.52|>": 51690, + "<|26.54|>": 51691, + "<|26.56|>": 51692, + "<|26.58|>": 51693, + "<|26.60|>": 51694, + "<|26.62|>": 51695, + "<|26.64|>": 51696, + "<|26.66|>": 51697, + "<|26.68|>": 51698, + "<|26.70|>": 51699, + "<|26.72|>": 51700, + "<|26.74|>": 51701, + "<|26.76|>": 51702, + "<|26.78|>": 51703, + "<|26.80|>": 51704, + "<|26.82|>": 51705, + "<|26.84|>": 51706, + "<|26.86|>": 51707, + "<|26.88|>": 51708, + "<|26.90|>": 51709, + "<|26.92|>": 51710, + "<|26.94|>": 51711, + "<|26.96|>": 51712, + "<|26.98|>": 51713, + "<|27.00|>": 51714, + "<|27.02|>": 51715, + "<|27.04|>": 51716, + "<|27.06|>": 51717, + "<|27.08|>": 51718, + "<|27.10|>": 51719, + "<|27.12|>": 51720, + "<|27.14|>": 51721, + "<|27.16|>": 51722, + "<|27.18|>": 51723, + "<|27.20|>": 51724, + "<|27.22|>": 51725, + "<|27.24|>": 51726, + "<|27.26|>": 51727, + "<|27.28|>": 51728, + "<|27.30|>": 51729, + "<|27.32|>": 51730, + "<|27.34|>": 51731, + "<|27.36|>": 51732, + "<|27.38|>": 51733, + "<|27.40|>": 51734, + "<|27.42|>": 51735, + "<|27.44|>": 51736, + "<|27.46|>": 51737, + "<|27.48|>": 51738, + "<|27.50|>": 51739, + "<|27.52|>": 51740, + "<|27.54|>": 51741, + "<|27.56|>": 51742, + "<|27.58|>": 51743, + "<|27.60|>": 51744, + "<|27.62|>": 51745, + "<|27.64|>": 51746, + "<|27.66|>": 51747, + "<|27.68|>": 51748, + "<|27.70|>": 51749, + "<|27.72|>": 51750, + "<|27.74|>": 51751, + "<|27.76|>": 51752, + "<|27.78|>": 51753, + "<|27.80|>": 51754, + "<|27.82|>": 51755, + "<|27.84|>": 51756, + "<|27.86|>": 51757, + "<|27.88|>": 51758, + "<|27.90|>": 51759, + "<|27.92|>": 51760, + "<|27.94|>": 51761, + "<|27.96|>": 51762, + "<|27.98|>": 51763, + "<|28.00|>": 51764, + "<|28.02|>": 51765, + "<|28.04|>": 51766, + "<|28.06|>": 51767, + "<|28.08|>": 51768, + "<|28.10|>": 51769, + "<|28.12|>": 51770, + "<|28.14|>": 51771, + "<|28.16|>": 51772, + "<|28.18|>": 51773, + "<|28.20|>": 51774, + "<|28.22|>": 51775, + "<|28.24|>": 51776, + "<|28.26|>": 51777, + "<|28.28|>": 51778, + "<|28.30|>": 51779, + "<|28.32|>": 51780, + "<|28.34|>": 51781, + "<|28.36|>": 51782, + "<|28.38|>": 51783, + "<|28.40|>": 51784, + "<|28.42|>": 51785, + "<|28.44|>": 51786, + "<|28.46|>": 51787, + "<|28.48|>": 51788, + "<|28.50|>": 51789, + "<|28.52|>": 51790, + "<|28.54|>": 51791, + "<|28.56|>": 51792, + "<|28.58|>": 51793, + "<|28.60|>": 51794, + "<|28.62|>": 51795, + "<|28.64|>": 51796, + "<|28.66|>": 51797, + "<|28.68|>": 51798, + "<|28.70|>": 51799, + "<|28.72|>": 51800, + "<|28.74|>": 51801, + "<|28.76|>": 51802, + "<|28.78|>": 51803, + "<|28.80|>": 51804, + "<|28.82|>": 51805, + "<|28.84|>": 51806, + "<|28.86|>": 51807, + "<|28.88|>": 51808, + "<|28.90|>": 51809, + "<|28.92|>": 51810, + "<|28.94|>": 51811, + "<|28.96|>": 51812, + "<|28.98|>": 51813, + "<|29.00|>": 51814, + "<|29.02|>": 51815, + "<|29.04|>": 51816, + "<|29.06|>": 51817, + "<|29.08|>": 51818, + "<|29.10|>": 51819, + "<|29.12|>": 51820, + "<|29.14|>": 51821, + "<|29.16|>": 51822, + "<|29.18|>": 51823, + "<|29.20|>": 51824, + "<|29.22|>": 51825, + "<|29.24|>": 51826, + "<|29.26|>": 51827, + "<|29.28|>": 51828, + "<|29.30|>": 51829, + "<|29.32|>": 51830, + "<|29.34|>": 51831, + "<|29.36|>": 51832, + "<|29.38|>": 51833, + "<|29.40|>": 51834, + "<|29.42|>": 51835, + "<|29.44|>": 51836, + "<|29.46|>": 51837, + "<|29.48|>": 51838, + "<|29.50|>": 51839, + "<|29.52|>": 51840, + "<|29.54|>": 51841, + "<|29.56|>": 51842, + "<|29.58|>": 51843, + "<|29.60|>": 51844, + "<|29.62|>": 51845, + "<|29.64|>": 51846, + "<|29.66|>": 51847, + "<|29.68|>": 51848, + "<|29.70|>": 51849, + "<|29.72|>": 51850, + "<|29.74|>": 51851, + "<|29.76|>": 51852, + "<|29.78|>": 51853, + "<|29.80|>": 51854, + "<|29.82|>": 51855, + "<|29.84|>": 51856, + "<|29.86|>": 51857, + "<|29.88|>": 51858, + "<|29.90|>": 51859, + "<|29.92|>": 51860, + "<|29.94|>": 51861, + "<|29.96|>": 51862, + "<|29.98|>": 51863, + "<|3.00|>": 50514, + "<|3.02|>": 50515, + "<|3.04|>": 50516, + "<|3.06|>": 50517, + "<|3.08|>": 50518, + "<|3.10|>": 50519, + "<|3.12|>": 50520, + "<|3.14|>": 50521, + "<|3.16|>": 50522, + "<|3.18|>": 50523, + "<|3.20|>": 50524, + "<|3.22|>": 50525, + "<|3.24|>": 50526, + "<|3.26|>": 50527, + "<|3.28|>": 50528, + "<|3.30|>": 50529, + "<|3.32|>": 50530, + "<|3.34|>": 50531, + "<|3.36|>": 50532, + "<|3.38|>": 50533, + "<|3.40|>": 50534, + "<|3.42|>": 50535, + "<|3.44|>": 50536, + "<|3.46|>": 50537, + "<|3.48|>": 50538, + "<|3.50|>": 50539, + "<|3.52|>": 50540, + "<|3.54|>": 50541, + "<|3.56|>": 50542, + "<|3.58|>": 50543, + "<|3.60|>": 50544, + "<|3.62|>": 50545, + "<|3.64|>": 50546, + "<|3.66|>": 50547, + "<|3.68|>": 50548, + "<|3.70|>": 50549, + "<|3.72|>": 50550, + "<|3.74|>": 50551, + "<|3.76|>": 50552, + "<|3.78|>": 50553, + "<|3.80|>": 50554, + "<|3.82|>": 50555, + "<|3.84|>": 50556, + "<|3.86|>": 50557, + "<|3.88|>": 50558, + "<|3.90|>": 50559, + "<|3.92|>": 50560, + "<|3.94|>": 50561, + "<|3.96|>": 50562, + "<|3.98|>": 50563, + "<|30.00|>": 51864, + "<|4.00|>": 50564, + "<|4.02|>": 50565, + "<|4.04|>": 50566, + "<|4.06|>": 50567, + "<|4.08|>": 50568, + "<|4.10|>": 50569, + "<|4.12|>": 50570, + "<|4.14|>": 50571, + "<|4.16|>": 50572, + "<|4.18|>": 50573, + "<|4.20|>": 50574, + "<|4.22|>": 50575, + "<|4.24|>": 50576, + "<|4.26|>": 50577, + "<|4.28|>": 50578, + "<|4.30|>": 50579, + "<|4.32|>": 50580, + "<|4.34|>": 50581, + "<|4.36|>": 50582, + "<|4.38|>": 50583, + "<|4.40|>": 50584, + "<|4.42|>": 50585, + "<|4.44|>": 50586, + "<|4.46|>": 50587, + "<|4.48|>": 50588, + "<|4.50|>": 50589, + "<|4.52|>": 50590, + "<|4.54|>": 50591, + "<|4.56|>": 50592, + "<|4.58|>": 50593, + "<|4.60|>": 50594, + "<|4.62|>": 50595, + "<|4.64|>": 50596, + "<|4.66|>": 50597, + "<|4.68|>": 50598, + "<|4.70|>": 50599, + "<|4.72|>": 50600, + "<|4.74|>": 50601, + "<|4.76|>": 50602, + "<|4.78|>": 50603, + "<|4.80|>": 50604, + "<|4.82|>": 50605, + "<|4.84|>": 50606, + "<|4.86|>": 50607, + "<|4.88|>": 50608, + "<|4.90|>": 50609, + "<|4.92|>": 50610, + "<|4.94|>": 50611, + "<|4.96|>": 50612, + "<|4.98|>": 50613, + "<|5.00|>": 50614, + "<|5.02|>": 50615, + "<|5.04|>": 50616, + "<|5.06|>": 50617, + "<|5.08|>": 50618, + "<|5.10|>": 50619, + "<|5.12|>": 50620, + "<|5.14|>": 50621, + "<|5.16|>": 50622, + "<|5.18|>": 50623, + "<|5.20|>": 50624, + "<|5.22|>": 50625, + "<|5.24|>": 50626, + "<|5.26|>": 50627, + "<|5.28|>": 50628, + "<|5.30|>": 50629, + "<|5.32|>": 50630, + "<|5.34|>": 50631, + "<|5.36|>": 50632, + "<|5.38|>": 50633, + "<|5.40|>": 50634, + "<|5.42|>": 50635, + "<|5.44|>": 50636, + "<|5.46|>": 50637, + "<|5.48|>": 50638, + "<|5.50|>": 50639, + "<|5.52|>": 50640, + "<|5.54|>": 50641, + "<|5.56|>": 50642, + "<|5.58|>": 50643, + "<|5.60|>": 50644, + "<|5.62|>": 50645, + "<|5.64|>": 50646, + "<|5.66|>": 50647, + "<|5.68|>": 50648, + "<|5.70|>": 50649, + "<|5.72|>": 50650, + "<|5.74|>": 50651, + "<|5.76|>": 50652, + "<|5.78|>": 50653, + "<|5.80|>": 50654, + "<|5.82|>": 50655, + "<|5.84|>": 50656, + "<|5.86|>": 50657, + "<|5.88|>": 50658, + "<|5.90|>": 50659, + "<|5.92|>": 50660, + "<|5.94|>": 50661, + "<|5.96|>": 50662, + "<|5.98|>": 50663, + "<|6.00|>": 50664, + "<|6.02|>": 50665, + "<|6.04|>": 50666, + "<|6.06|>": 50667, + "<|6.08|>": 50668, + "<|6.10|>": 50669, + "<|6.12|>": 50670, + "<|6.14|>": 50671, + "<|6.16|>": 50672, + "<|6.18|>": 50673, + "<|6.20|>": 50674, + "<|6.22|>": 50675, + "<|6.24|>": 50676, + "<|6.26|>": 50677, + "<|6.28|>": 50678, + "<|6.30|>": 50679, + "<|6.32|>": 50680, + "<|6.34|>": 50681, + "<|6.36|>": 50682, + "<|6.38|>": 50683, + "<|6.40|>": 50684, + "<|6.42|>": 50685, + "<|6.44|>": 50686, + "<|6.46|>": 50687, + "<|6.48|>": 50688, + "<|6.50|>": 50689, + "<|6.52|>": 50690, + "<|6.54|>": 50691, + "<|6.56|>": 50692, + "<|6.58|>": 50693, + "<|6.60|>": 50694, + "<|6.62|>": 50695, + "<|6.64|>": 50696, + "<|6.66|>": 50697, + "<|6.68|>": 50698, + "<|6.70|>": 50699, + "<|6.72|>": 50700, + "<|6.74|>": 50701, + "<|6.76|>": 50702, + "<|6.78|>": 50703, + "<|6.80|>": 50704, + "<|6.82|>": 50705, + "<|6.84|>": 50706, + "<|6.86|>": 50707, + "<|6.88|>": 50708, + "<|6.90|>": 50709, + "<|6.92|>": 50710, + "<|6.94|>": 50711, + "<|6.96|>": 50712, + "<|6.98|>": 50713, + "<|7.00|>": 50714, + "<|7.02|>": 50715, + "<|7.04|>": 50716, + "<|7.06|>": 50717, + "<|7.08|>": 50718, + "<|7.10|>": 50719, + "<|7.12|>": 50720, + "<|7.14|>": 50721, + "<|7.16|>": 50722, + "<|7.18|>": 50723, + "<|7.20|>": 50724, + "<|7.22|>": 50725, + "<|7.24|>": 50726, + "<|7.26|>": 50727, + "<|7.28|>": 50728, + "<|7.30|>": 50729, + "<|7.32|>": 50730, + "<|7.34|>": 50731, + "<|7.36|>": 50732, + "<|7.38|>": 50733, + "<|7.40|>": 50734, + "<|7.42|>": 50735, + "<|7.44|>": 50736, + "<|7.46|>": 50737, + "<|7.48|>": 50738, + "<|7.50|>": 50739, + "<|7.52|>": 50740, + "<|7.54|>": 50741, + "<|7.56|>": 50742, + "<|7.58|>": 50743, + "<|7.60|>": 50744, + "<|7.62|>": 50745, + "<|7.64|>": 50746, + "<|7.66|>": 50747, + "<|7.68|>": 50748, + "<|7.70|>": 50749, + "<|7.72|>": 50750, + "<|7.74|>": 50751, + "<|7.76|>": 50752, + "<|7.78|>": 50753, + "<|7.80|>": 50754, + "<|7.82|>": 50755, + "<|7.84|>": 50756, + "<|7.86|>": 50757, + "<|7.88|>": 50758, + "<|7.90|>": 50759, + "<|7.92|>": 50760, + "<|7.94|>": 50761, + "<|7.96|>": 50762, + "<|7.98|>": 50763, + "<|8.00|>": 50764, + "<|8.02|>": 50765, + "<|8.04|>": 50766, + "<|8.06|>": 50767, + "<|8.08|>": 50768, + "<|8.10|>": 50769, + "<|8.12|>": 50770, + "<|8.14|>": 50771, + "<|8.16|>": 50772, + "<|8.18|>": 50773, + "<|8.20|>": 50774, + "<|8.22|>": 50775, + "<|8.24|>": 50776, + "<|8.26|>": 50777, + "<|8.28|>": 50778, + "<|8.30|>": 50779, + "<|8.32|>": 50780, + "<|8.34|>": 50781, + "<|8.36|>": 50782, + "<|8.38|>": 50783, + "<|8.40|>": 50784, + "<|8.42|>": 50785, + "<|8.44|>": 50786, + "<|8.46|>": 50787, + "<|8.48|>": 50788, + "<|8.50|>": 50789, + "<|8.52|>": 50790, + "<|8.54|>": 50791, + "<|8.56|>": 50792, + "<|8.58|>": 50793, + "<|8.60|>": 50794, + "<|8.62|>": 50795, + "<|8.64|>": 50796, + "<|8.66|>": 50797, + "<|8.68|>": 50798, + "<|8.70|>": 50799, + "<|8.72|>": 50800, + "<|8.74|>": 50801, + "<|8.76|>": 50802, + "<|8.78|>": 50803, + "<|8.80|>": 50804, + "<|8.82|>": 50805, + "<|8.84|>": 50806, + "<|8.86|>": 50807, + "<|8.88|>": 50808, + "<|8.90|>": 50809, + "<|8.92|>": 50810, + "<|8.94|>": 50811, + "<|8.96|>": 50812, + "<|8.98|>": 50813, + "<|9.00|>": 50814, + "<|9.02|>": 50815, + "<|9.04|>": 50816, + "<|9.06|>": 50817, + "<|9.08|>": 50818, + "<|9.10|>": 50819, + "<|9.12|>": 50820, + "<|9.14|>": 50821, + "<|9.16|>": 50822, + "<|9.18|>": 50823, + "<|9.20|>": 50824, + "<|9.22|>": 50825, + "<|9.24|>": 50826, + "<|9.26|>": 50827, + "<|9.28|>": 50828, + "<|9.30|>": 50829, + "<|9.32|>": 50830, + "<|9.34|>": 50831, + "<|9.36|>": 50832, + "<|9.38|>": 50833, + "<|9.40|>": 50834, + "<|9.42|>": 50835, + "<|9.44|>": 50836, + "<|9.46|>": 50837, + "<|9.48|>": 50838, + "<|9.50|>": 50839, + "<|9.52|>": 50840, + "<|9.54|>": 50841, + "<|9.56|>": 50842, + "<|9.58|>": 50843, + "<|9.60|>": 50844, + "<|9.62|>": 50845, + "<|9.64|>": 50846, + "<|9.66|>": 50847, + "<|9.68|>": 50848, + "<|9.70|>": 50849, + "<|9.72|>": 50850, + "<|9.74|>": 50851, + "<|9.76|>": 50852, + "<|9.78|>": 50853, + "<|9.80|>": 50854, + "<|9.82|>": 50855, + "<|9.84|>": 50856, + "<|9.86|>": 50857, + "<|9.88|>": 50858, + "<|9.90|>": 50859, + "<|9.92|>": 50860, + "<|9.94|>": 50861, + "<|9.96|>": 50862, + "<|9.98|>": 50863, + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|nocaptions|>": 50362, + "<|notimestamps|>": 50363, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|startoflm|>": 50360, + "<|startofprev|>": 50361, + "<|startoftranscript|>": 50258, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|transcribe|>": 50359, + "<|translate|>": 50358, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 +} diff --git a/computer-vision-study-group/Notebooks/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb b/computer-vision-study-group/Notebooks/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb new file mode 100644 index 0000000000000000000000000000000000000000..d5c70472d4a23547a0590fa9d7bca8c4a094629a --- /dev/null +++ b/computer-vision-study-group/Notebooks/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb @@ -0,0 +1,24097 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "nvpX6LUMayKp" + }, + "source": [ + "# HuggingFace vision ecosystem: overview (June 2022)\n", + "\n", + "In this notebook, we'll go over the tools HuggingFace has available for computer vision and multi-modal models that involve vision.\n", + "\n", + "## Set-up environment\n", + "\n", + "We'll first install the required libraries: 🤗 [Transformers](https://github.com/huggingface/transformers) and 🤗 [Datasets](https://github.com/huggingface/datasets)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g58FC0VGauCi", + "outputId": "9f9116b3-93a8-4cb6-fcf1-22b76fd34e67" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[K |████████████████████████████████| 4.2 MB 5.0 MB/s \n", + "\u001b[K |████████████████████████████████| 346 kB 44.6 MB/s \n", + "\u001b[K |████████████████████████████████| 6.6 MB 30.9 MB/s \n", + "\u001b[K |████████████████████████████████| 596 kB 69.1 MB/s \n", + "\u001b[K |████████████████████████████████| 86 kB 5.2 MB/s \n", + "\u001b[K |████████████████████████████████| 212 kB 51.2 MB/s \n", + "\u001b[K |████████████████████████████████| 140 kB 67.2 MB/s \n", + "\u001b[K |████████████████████████████████| 86 kB 4.7 MB/s \n", + "\u001b[K |████████████████████████████████| 127 kB 72.5 MB/s \n", + "\u001b[K |████████████████████████████████| 112 kB 52.8 MB/s \n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.\u001b[0m\n", + "\u001b[?25h" + ] + } + ], + "source": [ + "!pip install -q transformers datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0IM9MGmT2e4R" + }, + "source": [ + "We'll also install [timm](https://github.com/rwightman/pytorch-image-models) as we'll showcase [DETR](https://huggingface.co/docs/transformers/model_doc/detr) (a Transformer-based object detection model)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "887fBd5r2g-T", + "outputId": "45f55b11-0830-4277-89b5-419f5b1e9020" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[?25l\r\u001b[K |▊ | 10 kB 19.9 MB/s eta 0:00:01\r\u001b[K |█▌ | 20 kB 12.9 MB/s eta 0:00:01\r\u001b[K |██▎ | 30 kB 8.0 MB/s eta 0:00:01\r\u001b[K |███ | 40 kB 7.3 MB/s eta 0:00:01\r\u001b[K |███▉ | 51 kB 3.5 MB/s eta 0:00:01\r\u001b[K |████▋ | 61 kB 4.1 MB/s eta 0:00:01\r\u001b[K |█████▎ | 71 kB 4.7 MB/s eta 0:00:01\r\u001b[K |██████ | 81 kB 5.1 MB/s eta 0:00:01\r\u001b[K |██████▉ | 92 kB 5.7 MB/s eta 0:00:01\r\u001b[K |███████▋ | 102 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████▍ | 112 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████▏ | 122 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████▉ | 133 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████▋ | 143 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████▍ | 153 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████▏ | 163 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████ | 174 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████▊ | 184 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████████▍ | 194 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████████▏ | 204 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████ | 215 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████▊ | 225 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████████▌ | 235 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████████████▎ | 245 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████████████ | 256 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████████████▊ | 266 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████████▌ | 276 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████████████▎ | 286 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████████████████ | 296 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████████████████▉ | 307 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████████████████▌ | 317 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 327 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████████████████ | 337 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▉ | 348 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▋ | 358 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▍ | 368 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████████████████ | 378 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▉ | 389 kB 3.7 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▋ | 399 kB 3.7 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▍ | 409 kB 3.7 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▏| 419 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 430 kB 3.7 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 431 kB 3.7 MB/s \n", + "\u001b[?25h" + ] + } + ], + "source": [ + "!pip install -q timm" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "myjaD2FKa09o" + }, + "source": [ + "## Models\n", + "\n", + "First of all, 🤗 Transformers currently includes a large amount of vision models, for various tasks. Let's first load a Vision Transformer (ViT). In 2020, [Google showed](https://arxiv.org/abs/2010.11929) that a Transformer encoder (BERT-like) can obtain state-of-the-art performance on ImageNet.\n", + "\n", + "In 2022, it was [shown](https://arxiv.org/abs/2205.01580) that, with a few improvements, ViTs can obtain the same performance on ImageNet as a ResNet-50 given the same training time and compute.\n", + "\n", + "### Load a model\n", + "\n", + "Instantiating a model without pre-trained weights can be done by 1) instantiating a configuration, defining the model architecture 2) creating a model based on that configuration." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "0Shm7J7XaxyR" + }, + "outputs": [], + "source": [ + "from transformers import ViTConfig, ViTForImageClassification\n", + "\n", + "# option 1: load with randomly initialized weights (train from scratch)\n", + "\n", + "config = ViTConfig(num_hidden_layers=12, hidden_size=768)\n", + "model = ViTForImageClassification(config)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iX4yDa2ccM_p" + }, + "source": [ + "The configuration just stores the hyperparameters related to the architecture of the model." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yCPXyQc7vnWc", + "outputId": "a9f3bae5-4144-49be-d7e2-67e72d505cee" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ViTConfig {\n", + " \"attention_probs_dropout_prob\": 0.0,\n", + " \"encoder_stride\": 16,\n", + " \"hidden_act\": \"gelu\",\n", + " \"hidden_dropout_prob\": 0.0,\n", + " \"hidden_size\": 768,\n", + " \"image_size\": 224,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 3072,\n", + " \"layer_norm_eps\": 1e-12,\n", + " \"model_type\": \"vit\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_channels\": 3,\n", + " \"num_hidden_layers\": 12,\n", + " \"patch_size\": 16,\n", + " \"qkv_bias\": true,\n", + " \"transformers_version\": \"4.19.2\"\n", + "}\n", + "\n" + ] + } + ], + "source": [ + "print(config)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w8xWxsk_cRxw" + }, + "source": [ + "Alternatively, (and this is what most people use), is to equip a model with pre-trained weights, such that it can be easily fine-tuned on a custom dataset. This is the power of transfer learning: typically one pre-trains a model (like ViT) on a huge amount of data (like ImageNet), after which one can just place a linear layer on top of the model for fine-tuning it on a custom dataset. \n", + "\n", + "Let's load the weights of this model: https://huggingface.co/google/vit-base-patch16-224" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "id": "ypogFy89a6TG" + }, + "outputs": [], + "source": [ + "# option 2: load with pretrained weights (fine-tune)\n", + "# choose any repo from the hub!\n", + "\n", + "model = ViTForImageClassification.from_pretrained(\"google/vit-base-patch16-224\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "16fezyb2zyFi" + }, + "source": [ + "Note that ANY model (and any dataset, Space) on the hub has its own Git repo with its own Git history. This means that you can always refer to a specific **revision** (like a branch or commit hash).\n", + "\n", + "Simply go to the \"commit history\" of [this model](https://huggingface.co/google/vit-base-patch16-224) for instance (\"files and version\" -> \"history\"), and copy-paste a commit hash." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 81, + "referenced_widgets": [ + "243d4938860942b2ba1024ed10f8b907", + "905ff301192d4bb4a401ef06d70a9189", + "cd19543310b443b99946a64ace409659", + "76ef27ff545f443c90abbf5e17008240", + "e2ce97d00cb44a7da48bb439f95791c2", + "46d657c2bbb94a858ec54036ae2d93b7", + "17bd99f8e19e47c3af0b308027afad2c", + "b5ba4d7eedc7407c8f70ecd4a4ad41e0", + "7e32c676253f4882b76e3172ae39bbac", + "d25c2d1b17584164a3859e4d0e23880c", + "81575bd8d7a14f2c9343e3cf61c3805f", + "59b004c7072546fb8057b87f10dff707", + "25b22f473af346d8a055fd180156b747", + "b0e67980e60b468ca10ba9cae670a01d", + "ef20339664d5460fa951b1e3567cf6f2", + "97882337019149d09b76780e30f20525", + "5b8ccd69d5c24be893b396cc16b6edee", + "cefbb2bedb574363addf54a368287489", + "866b6114ad06416890378ce87082286b", + "0c709e38072a4308b7e7d6bef5663d01", + "fd54fad2ef214c46900f15dca5742bfb", + "80ecdaabd84a445dbd549fe87cb4dc30" + ] + }, + "id": "9dK6-UVR0JYq", + "outputId": "94637c0d-7572-4dd3-8a61-0916dc6d71e3" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "243d4938860942b2ba1024ed10f8b907", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/68.0k [00:00 main\n", + "\n" + ] + }, + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'https://huggingface.co/nielsr/vit-demo/commit/e82e16fbca2637e6bd22468e1d5f5de5db03268b'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.push_to_hub(\"niels/vit-demo\")" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": { + "id": "jYcSlheG0NqN" + }, + "outputs": [], + "source": [ + "# reload back again\n", + "model = ViTForImageClassification.from_pretrained(\"niels/vit-demo\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WlxKE83abc2H" + }, + "source": [ + "### Load a feature extractor\n", + "\n", + "A feature extractor can be used to prepare images for the model.\n", + "\n", + "It's a minimal object to prepare images for inference.\n", + "\n", + "It typically does some very simple image transformations (like resizing to fixed size + normalizing)." + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "id": "eXAfeDMubefP" + }, + "outputs": [], + "source": [ + "from transformers import ViTFeatureExtractor\n", + "\n", + "feature_extractor = ViTFeatureExtractor()\n", + "\n", + "# or, to load one that corresponds to a checkpoint on the hub:\n", + "feature_extractor = ViTFeatureExtractor.from_pretrained(\"google/vit-base-patch16-224\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wTj-RYgtbaLC" + }, + "source": [ + "### Predict on image\n", + "\n", + "Let's load a cats image of the COCO dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 497 + }, + "id": "-bGDZaKcbbVi", + "outputId": "42c7b80f-30ab-40a3-d7ac-c5812f8912e9" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAEAAElEQVR4nDT8ya6t29amB7WkZ182sjnnSvbeJ/szBxEBhrAAWxQochMUuAPqFmVAlhE3YlwFUQAJCxSILOxwhCPi/0++915rzWyM8WU9743CgVto0tsKb/Lgf/r5P1QwkJiSAwn29siM6/6W8s+n6XtSAxGFHRF7Y/G2/OnxcAAVQiq1dswc4tWqo8UPt/w6dofq8enBRf+t+KlV7g9LAgqxYtNWG5aWS6ialHMWBJBjTLWI1jrFeBjGFGKEPHSXbc3aCNJKnFuDFLHXjzG/aN2FeD1MD+tM1jWEHmgtsWc2Sm+53p22y7IohYKqgdjexZxKSdnvg3UEuMStcxcmu6zXw3Sq2cWSrcNEPw71oyo2y+7O3XXOnMrBtSws6Jq6EhxUM8S5lkOEm+5P8/Itteeht739tM2xdyrnPFDZvHLD422f2WatSSqngOcjPX+7Pz2eQghjd9jCT0a3Gi9gIedq0Ea/GycgRDQuW3HdKM2neH98OOactn1pkJWW0iYf3seTReSw4MPp8+7XHLfeubF7jGlZ1tfj8fO2VbLVOpCtGCe3m0yHhwzPfs+fnv7udn/zYTtdLts9KBkOfXe9/9Rf9F6DWo9i8Z6uHz6e/PWdG4AyW84H+WXmF+FNtUG1HrCRAlC8pG+D+hS3+/k0cjvc9+duSve5nO1TKrvpVU5Ys+qdyfE2r1+nxyPVviRBGRkfycb37V/2R6zbSMq3PI7juNzvTg/nE9zfa5RldLgjQ3TSFPdjXa/Ybwy4ruswdEqp1e/GGCJa13Xq/kYap3itcD0MFwXHELeQv4L6yMwx3sZxCMnH6pEMa4LmdTpZxa01onHev2g7d2aC9iQiSlOub1VWlg81uwpvH07fvb1d+/FEir332iBRm+/v2vB0uMzb1wqi6SMzDn1b19BaySk4Y0jY2XHbNjvwur2d+x+WbckS+6m/r7NS+nabx+GQcGVyLCxQAaQhEgxaT6k+p4gaj0ZRLt/QzIgYPXOajg/mZb5pfbKmW+cvljTkDo4hpLtil1M/jZf78jOxCBgDCoFzgul4itGnuguEUnej/jaWux1g229EBJU1aKN74a+IGEs1tssJcsBa6HJ8fNn/KCJD70gAgObbYk3fdV1Gb+lhWf9o9FCLsrbzq50uxcfXHIDYCSvdq+vb89N0kpjvOfZj7/1mOxdLbQKkXIy5ueCA930vzLVW1SCloqZ+zXEqWlW1Y25cHdRU4pzT4TR6H6SS0R0gV5DSasyZpBCzECKiMnrb787oEMJoj4h12xelGJGksVNDKTDiwsZutURBEGLUBnWKcdNBRBgl59x34/t97vph9/GjMbbvZr+x1rkWo1khpRCzQM9aV0Cmaji1CqV2rGsBUpShhBqrNEVs2KBA8S1ZJBAbMgF6RztI2aM2zZpDivB/i3+ohr9r+oM5/n/a/tswFwQAUkIFGmhhkIdMTwinbvyQzG9lnxV8jJWM+xOHh6Z1hR5Vr5QCaaUaRMcaCxOBMQagldJERJEFgG1/toePexbM0ZmqLHkvqvXmEFOIqtKoRgW2xaxV6wedN9TWNhDS6r68K03O6fvtnWyvrSmlmoYuy6kfSstbCYMbWJdtTYBW2VbEbJuwbSygtMStSHPTMKZ06yytq0eDRNB1NsZcC5EeU2Kt+pT3UvI4mWV7bpKNc8DjvITJRtQmNWhFHLkSyzgeQk5v6Xa0g21soHuf1+F8jHX1YR47Lth8CH3XQW41VUFth55BLdsmVI3T+75b20ETAtJw8vJTw2jowUDX5FZoQ1Z9mpKTgJVyYw/MelZp1VW/r5+fvvsS/SUpEby7NlXMNeF/8uE/UirUJFP3AzUSmGPyQ/+RIS330k9jyhsCKz2mvHRj6vCw+R3ZiuhSY2nr2PfbWsx4SRERY/DL4+UX19vXYVJ+5wc7skahmPMdW3R2EBpW3yylEFLXjzFmZywitZIVccBXRaNfkckyo7FUcyilGHXSfMr1JlBIbam8l3gYxwMyx1hESpPQ6QPTWKpvcBu66eXtFbXqhv5+v6PAYF1JuYKxXQPh6O3gXJYvMa3T+Kig7CELaGxmsKeSMqjXjF8G9bcCNpZo1BEquF72OBe49/JPs/zYajZ6bNXvKw72hOoquitV+xK2+PVwtDVLy+As1/QEFIhTLq/WtLQ9dPqR7fvb2hSCwvHp8vTy9rvL5fH9mo/H6WX5f07DB2xWM+77ayqhcyelj/s+p1QeHz/c5qtROmzhMJ39FowdjZpaTSKISKH9SahB+rU2izZtXn8ax4PkXtNYa2ySCnaaD03i6FLcVs3n/nT6w8//7oen6b6XSv3Un27Pz8xxOtPb8u2k/nHGn/aw9PqzwtaP27q2sH/WY2FxDJh8sGZkQ1u49cMx7S9971ItMUhOwIBdx5rLffP9iFRPrRplduO61/eZ7F23UeFjU7eQ7tYaBTZ7p/Vdobomc4R8x93wg9r3MLUP6ofX9zfb25SC0thaqpC1ZiIAiiklpVEzpYg5WKu1dbC1RSGUcFqW5W//9h/9+PNXNlup0uKht+JMCf7GTmozhiao3OhbXn/NzBW/iVTjBDCAOCOHijlmTwoRse+OcW/W9sv643jC1kzYqSFoPhnqAO/FR9aFCKQ6kXOphLb69G5FCbbX+dvpcni9vj59eNhWfzwer7e1FmW4Z9ateOFIKueaff6jkl+d+t+sy6tz+n7bu8mR8hKsshLq3bjinPMbQu6cHtfyrpSS2kmZGhagFalaffDpz4ptjipFQdC2c+PkfFiFUwyKqQtlsW5pbceqWulYPlSopfqQ935QWglSLTEmdABACCHsnbUETMgx5oZOqR1gJ7lorYVvKZXb7J8eTnHPzFawgZbNb6MbqGJThxDXCqXU3fb69f1dW5Nz7ti+5F0p9WSGdd1Sp5BJ+9JsS0KTOXAobOFbeDfGdE297DcQMsoyq9JqkQqIDZsuvVIqt9pASmspx7E3iNhSMJZ88s7Zfd+dGhCVVt26Z8MKW2UmoeJrDFi3HE/KGGNKKYwSUsm1sTYNUJXNdK6URqhijEoZhQwACtqorMQsImbsU8k1poPrl1orSsHaQGrNrQGjUkhb3bXWiJhzrCkDQFGQGT4k+61Tf5D4z+dv//1u+jWNmdV/Nv8ZAAoCCCmgAg24aYQPVX1U6hP3txgWjVabrmLLaeYKjR2pgbRGgFq4wajUoGzNjZkBGwkQkSItgq3CNhbzVkc1fW1z6TKl+Oge110UMUDC5ntFg+lJOOcM0hxapW2uzfTd/X4/Ho8ALSbfWhZFACipdKiM4saylzQojLsl5Uv1l/Nfb34WTtIOVV47fspZBFerzb5K50wsL7GeCNAZI7UIVMRWWxQUMm5b4+COAHBb3o6X8e326vretY6dnvet74ew+MENITUgHF2ci0el8pon6ghARn6L1x4fK/gCW4rL0/GcdlDquG5Nqc32w7LurLSxOueIULTi2GiO32pro/vsqE9liXlv6JKhockBuTUIhDGXHmFo8KzChYYokpFba1zraMxb2fB/9eEfH4dz2FPvOilCpJZlOV+m5l3JiAqJo3NuXarr2PSpzo9d3397+3E4tVzWbjhta3La9a0xXtbtRZlMMJDVwEmAMUypCShGya3tTgEqjqkMncSQkc267sa4qR+gCSKuu1W6Cu6KGiJqrbdtEShWfYy7Nl1yzq37N2WC4U+11qa/1fBYa5/L3I8IYq0+xVCJXmLOpDRb9/ryrpQeu9EZ+3b9se9dqTHFTWvt1DFFGPrRpmmuEXvLknS+E+xkjnPqejmyC7msts8+3Ds3+XQlUlr/qhbK5dk61cIkUFhvLas5PoOM1ozOOWw2LIkptvq6hsPDp7Sus8IDoYLCiIj6vXIn1TltS85a2W/PP374/FAy5dpQUso7NtPZBwSNnPbwojhoPjawAFLaXWrozBHEZumEvxLw4A4hvZakgXTBP4FyBn+jubZyxToatOv2cpwe3vYynQyIsu28z0s37GDKFsGWk51wSV+rrJYJm83B2P4EbcmSYvWWey0np4bQXoP8lNPj5dQnL2FPw+AEeE/gerXOX4+HxxiESRurvN+gIVTq3acGaynPAEByAupiWQ7HbnkBN4mvf45RHY+HLfxE8tCS6d1Q8p3NMfqd3QtS5+r3gtDoy+FwvL4v1vQpQkjVmB6BpdlukN1fc2rOOYFSYuq6oeivNY0gCdKh7w8+PiONqb4SPFkzU6UQgp0S0QD5mNPN2UOIM6smkKQphRcRJuVr2YiBmJfdX86PMRbJrLUtHtl6Jrv7xDo516dYkG8tLsPwULIuDbLkitBI5QLiSRuukELdtaaYPBHlVG3fKV1LXlqR3p5aMTGBVjbsapgCcsgRjVUxrU2U1d+VMm+LDF2n9ZpyZH4QoCx3aQnVEuJdmum6znY6J4q7Flqc7bV2fo9Kk0jRRt7fnu3opJlatTRjtGs1a4acI6iaUur6Yd+D1rzt82HqEKHIWURazd7vXWedMdBkWRbrpungljnUFvpu3EOuOJMWVQbI0rsOSALE1HLJIpUSLcwcQmigYqqXh0/bmktu7ILUGmNkaxCRAGutZPUye7INmj9bXvwSlC3JXfjxPX9hZmNMay3GWKGSwoZNRbbONRA2OuVcaoJWBapTow/LOPb3++10Om1bUKZPsYrbpEKLVbEF4r1JUaoAnEq21rbWACDmCkRMuoIkmQnRCCvhloG1qVWU0c1VibkjpZRKpQiCRqq5gKhaayVABmnYalXIRumZIvmacvEGjdKHKrGFN4yHZF41/B/qM0X5lXX/A/3h/57f/1VckbE0ASEFWECA2iDwkc1H5T4V81+WV6u7j+ySY5y3QZuFDNaKtTGSZepYOwHTkKA556S2UoozRpEWEUKlUn5RuIM8Gbe/faXJeiHMWhd/OoyMVHwlYAZkVazjszt//fpVm964DgSXZdHaOmdqWYoIKC6pdlbXWsVwbOmIg9bUSuu67j7fACkXGMc+bV2q1+OZl/VVRIyepA7nww8/3f+euJIkqwWFWlYoY6ssbvN76btzzhmgVck+eWutRRHV1rj1g13u8/Fwud820BpkGJgMgO7d87aBZki5kzZTHMZp27zVTmKenIslFKnG5dt7PJ2+z5HXfesGYPYx34Z2BI3aDAr6kmJKM5JW5nLfZ20pZT8eTu+3m9UmxnAY3Sah+TzZaUVprZmY9WDvfsH/5PM/OfbfRR+JkpSq+eRT7MdWPU7jRaSGtDgzvb2kaZpyvTHKafyrmCGUt6ePh9f327q9Vro+df8huj+USJi/B9pBvdamES9n7ddYUXVa61Y8SjBaipQWaJyOKdVchVkrVMz8/vpmRjTMWjspY0lGK1r9z7aLyjzm9iLNpBSm4bNfO8EFAHP949A9gahUA4gpxU7TMZe5pLfhcJi33cfqutHZ3vuotV22/7fhDyyDdazIovTL/c31pW1Ds6sdHJSxbJHwzgPEwoaZeG/+xBZLIVaXXH5qWUFvGmwlZmeGUoIxLpcQ69XJRfdx3V+IxtF+jltjVE6b+z4Po/HxVfMj1ydUS27fajFqXCU/AkbGen/np4/9En80/KjYpggKNUCzHYR4R5RaK6MrGRHt6vfLuVu3qzNWGoEet/X9PP5i294envyXH/3j+W+2+g9rXFnMx8dfLa80jWPBPxHn0f7tz69v/TSiJGiz5ApFl6bOT+dt+71SI0CveIjeT5OK+apMjduHNb0rwym28zDEuBhzKLkL+3I4QS0qp2a6kIpOydkBLNoK87q9EtrefgLRFZYG956mlg+lrawDIpcSRLCzf5XjddnfLk8/3Pc/AGNnPi/bs6LBdg43XFW0LeQY7UOv57pk07ncWosxnU6XdV2ZtHV63/fD4RDSay4R27EWHEZdC843OF6OqT3n3Z4ucn19ceapwhvJKTc9dKJpyEkSrClXg87aSgQpFU1PRCT4s0hujUjtrQlSL9UZe9hWPwx62981VwJWdGwScs2KTqyglFvNBjnYXlJZUgGiIZbcaGm0tOU3rrfLcteOAYCZhbC1hqblrbP8YLjG8pV1Yur3BbUtSkPOd+IK4ABGH5MyNdVVtd4pV/Nea2Y7JEmh3Ww5a5usNeudhv7k81XpnHMFfCilMBERaW61eVYtZZ9q0lqnWBA6aF2rqh9MaynIb5mcsef3t82aySrjjH1++Tac+lqzoCAKE9SaURoKAKEIZH/89H3//HLP8UF1t0bl1J2LjyyQy76kVR+GXIRVj0peXr4pQ02KMSaVllIe+ilhG0Ut27xAds65DCHF5CjS24WOZSHpxtkvp8FGvyQCqzUIAUAppZSCihthzvnR2Qqye6+Mzq1qrVpJImLsucSgDdZaiBhZ73sSQGfOsZU5rJUEURBarxQ1aS0DALNOKdnOpVKZ9R68Grj6OJA2DQ0bY8waPGjG6HvXtVxaa7p3ewje+67rCqlSawVBRAAkAUXasJpjJkEhkxVCKyqlCjmZlhB+t9/+i7b8MzNe2I1o//f+JwNqh1qrIBAhVSkM8IDwyfSP5GqD36d7z/qAHLkdK31n+hlVjLGUQgqNMQrJ1KYaQCmn0wkFckialSJCIWfsdd8H7kRkLbueVPShZSB2I/fWtVzeU9ysmSydpfYEncZvf7k/Kr0sy9PT077vzIw1lVaBVGuNmUvLwCgIE51TeSdx0Mi41BqBDCG9Pz18DPH+frsbftRap3btexe8VCEmW5M4YwFbLpt2UmvKibqui9EDZje4+30bx8f5Hidt9rqzw5BXFGDWMYmw/tiZ6/6eOYcUj9Op5YqKN78BIpsJwVExjlQIN2Mr6pzDRztISO+lLqyV39th/Ow3QFiRXRVda2RcWScBDskMZmrBD9bcsodpuG/r0VqbsyB8g/CBxyYI2KS2zbR+TUrTx3W7MSoNl0aSZbWOSc5oFh/DOPbrdRPRw3TItSijDY+x5HW/qm758ecfjfkwjt8Rf4xSyj61yL1uTjO072IAZWLIPSKAQIxBSjTocu5Cksu5MtmY11ahltoUD0oP45F4AllK2Wv1pXZMR5LJqkfQ6/1+deZknd7WiG3qx+l+vxOQY5ur9EZv3pNgyzOSb9hEGhGUErQ5xBp83rew/XD5n1zn367+RWAg9iBfK9Ew/N2tPTtdVd6l6dYz6AFq6dAAH2t+pzbUuLtDX1thziXOE36n2CFNjMqXogWTsEU3mF9c598a/DSafzTfKrlXPfo//fSn7z/9yq9dZ3WWr1k2lonpkZTKYWPlRShm8+Hz+f367eOnXz2//Kz5BKLIUcqxhBT9qpRSyrA+5rYCR0klVGJ9vu/vzoFCOh4/35bfP5wu8+vleJyX8K979U+Pp7itb1ga67VA9v4Mil+3/+bx8DchJ6Wl1qIVNSGtTMx133utUekY04qIazAtcfHGjItESWmAqhGGkjNirOKfTt99ffk3jw+f2HCRiFi2dXl8ekw++EUOw6+bxNpuSkPeM6DxJfWHP1MjvzfEZs1BKZ3bf5WzGQcXFt93jz6GkKrVphTvVPeNZrv70rsozrzDm1kPHbd6iTESjSkpkY7Y5NyYh7AvykCI1SnsO5fCsszhfPhNQt/SSfjn5d6fT598fMvb2A+1yCwwZrmLzdisUSJtbjIl+VrqifWVSLd8EVwFg5JfF3qvhVx3nO9719ndb8aSQCk5dVblwk5zyXXbZ+saqladXbPL8bEWPx5bCd+IBsonOwlAQE6EThqmkAhVrbL723GqImuszfU2Z1i2L2yE5J/55b0/yB5/NqZu29qPJ5/W4A8PZ8rxhtiGqVvT1Rd23Q9cDBZgY41dyS4lvmP+BPkX+vzHvOyxQOemmBuiy6FYPQA2zUOjgLgV9QotVbyU6lh/3LeYohwOH1otMa61rtORSmutNWRSSpeScs6M0HUdQY/6/X799vr8hDAalwouh/HX6/LKjZQ2WjvGJEyb3yUWtkKWjDOv16tuehimBhTLRgVeqOleH5Jk77dOg2b/7Y0/9TG3Yepf9vfu6MK+uW5KKVeI0BoAAiIqrbRpQK1qQCetEihozK1p0KklgvZ+vRmthLRmPa+r7ZzPcRgmj+/oUHMkKQpEiziAkmM1D0VaI6wEqTVBKC0DNNPG2sCxNiCWmbAxlyblYTj4ELquQ8XzughCdz7sOYIUVAwIpTSRpoiq1JhKD+QtNWimSkl5g9SwmAYb8b8syyMDIP4H8vCf55+iQFJNqiAAQWsE2KAXmMj0zFb0v9GrEW1Q3aFQTGo6tdyMZAZBq5vm1PIWU0GeXJ9LilIJqIIQAbRG0KqwIm2VqiVJTi2BQQVaAdkiW0tQihZ4KNJJlVzeBHJPo0A9Hw9v7y9utGu8seGQvOIOiWqtSplcIiJJKkbxkq+WL66vIdyi7wGzdjfFgw9r9GrqH0j7mO8M075Co8iFldlAbaKggcRSS5tKY25VKXW97seHQym566y0gtKYLNdsjNmDd1bnVI12oNW+KK2fTE+13HKwOWQ3uM5MrRRsUCUJeFbOKEBwLduK8zyXaTqFHUnM0FEIq3GawZRqpSFq0EzEtlbWhjaIyaRdlZLTRTrH2gr4HBMq5cwePDMzM6F4v09s8T/99D9uOVljGIwIAhZiTql1ro9BWEkp8ziOrWqkArSu68p4HO1TjPF8nt5u1+HQlbqrZlv1DHHQD5Q7VG85LZP7u9fyJyQNpDQSS62lNFSsHNYWQjKuM7YTQSLa1rnrOgQupaVYNVkiNlZiebGu3dfcdw8hvVt9rrUaK9GrYVR5+9LpH3I0aLc9fFPKIDhCFdraWrOdS7k0oM3vzLrW2rMrNUljJK0UKY27nxHR9YcBFCcRpo030KTyYZLPS3tRsIzGbPnOw7h5cQR1b+KUpE6pRJhrsqqTkK8pm6f+0tRzSEuVk48V9QokOU8H1+/7+vTwy2W9p/rcKjv9ESlzoy3/sXO/zGHQ3W1fxaiT6D93esiwIiW/J6POTg+tppQXwA9IoWEoTfxGx8Pl/e3r5bFrDbCx0tecwrn7J9fru+19bQPnS643RnCH4PMLqb8i/Ojbj66y6RuQXt9xdF0uzw0z62MI4TgcWqnzujx9/rStM5YyGL3HmqtJvA7jLkla+CAV7LRs760f+Hicvrx8KXX78PHztqdtv3+4/Ob12Z+mDz68h/JlOOgYlaYHxwvjoZYxRo/qDpA6d6iRY3tVumPGsD9VaXZ8f/12u1yOBW2oXw72IUULmHNo5NB2z5IOSplWOYZqzVBKySmdz+d1e4GWiGEcx229Gl2lMeN0F5/CPOhfKxZNNnoWelPmEOXf9upTLXuRUttROyn5VaIl+OsKV9snalSLUtyQquJhX8zpMm77LYvXDMa4t5e3y/ESsoyTCRs47Rq+rtvduCHXe9Lfx+ixScl4HJ/mt7s13OoO/X1fvTMOgfvusCxr3x1iTqE1gHUYBAX9qhgnY1xI3h5ftm3r+LOkz4Su0KsdyrbtJJdcXg3hof8Qc1r8M7ke8ajbXvHnKivTR2yXXPYir8oW4qmURkS97UMISqlt2wBAq4+KIKaFVBAIwKokEwIpwm7oAUCk3uf3vlOKmmKo5SiIuRYgrDVrxQSiGVOUUrdpfNCGg09Cwi4s68a6w4JSqFG7hYU7k0pGUBmWbVuIaBimHIqz47rEx4cPL+9/YGu01tEnZmajEXFdlqpfUxtG9Rm9Jgsv6WVwbcS2RkFEqywI5SYCLMi5NCNRCLUyiFhrZcSUIiPtTRil71wpiYhSq0AIrL6F10F1nEEVVECKHSi9xwB2R+Bcm2Kz7/s0jjXlrutaIAUyaC05IbUkuWCpCLYaURRrKa0iYqwlQcPess9aWyJqVQAAEZvUlNKT1TfIviSXhIhWhx4KxfL/iOnn5v87ZjiJPtbhP4OvhYRLqwTcAAEKISM8CH1mc7ZWMv1LXD82Y5F3Kjqkh+NB3ffJ9VKbYiatfCshRQLsjYXarLZSGwv12mqkVqoiOEW3TpQoHxrtrzdzeQhIOWRuH4A2UAuQLyW1RpqNYm15TDEQ1nHsc9xj8iml6TSVpDVQy80YE3IyRnEtHeugrGG9bzdnFDQ8nQ7LMu8+1fb1dPhuW9Xl9N08z8v+/vn7o4+vzTejB4EeweVKsZWGLdd86NbooYqxpkOqAimmlQScmooUsRRjAAApFbRirbcQB6XE79xZz6y7PtyunHNtZjgdtj1ordPmu67LrQpLTtBqVoqdM7tfS5XD6fL29vbUtZyssDZOWilpl4ZGdTpt13o2X/3t+9MHfF6+v3z80/35qpOubtA2zXPqFDMeGq0pmN7i//rpn3XqUVoDWqQ2pS4l1wr3afoo1Xjv+5EZ1Xz3/cA+fXH2c9/pbdkNOVbo05YTjuNHHH7M/vxwcu/X3w/28v7qrQPXmX3LGkdqfUed5baHa0Q/XEad3eYDKWZlaq3GmBT94TDt/p3I5ND6/i+yh5aYqSu0Ku4q3J05Xm9vri85EaldtwuIJmqCoRYm6GsLSi8A/ep3IlBGA7TSSkMopWgkgoFVXcKPWnXW/LJml/Li7DcpqNAYe5hnITZsNtb3lo4DDpPTW5Ck0Ze3wYLBeYf/lg/Plk5SRbtNmzEmnduqys8oh95+MHa4z9cKOaZdsGAzpl8Pw3fL1TXYc33vegtQy0Kq3+/3cjr9IpUlR7ocn4o8Z6+bsBDVtguEoeuyt1wnMa8CeTjYby8vfT+mKNYMVhmfd6zG0gVxMf3dr9bpj1t6QTiZ7h2bWPqwhJ/V9J7KoOTfk/3H4fiUwefyTbMqe19AmR5T8ZiQKtlhjK00icdOpeUW82b6Dw1HY3Fb/qRVgtYN7uO8bgCmND9NA6nufr8JZK16qjaWl+kAIshwVmp8vX3Jcv8w/jIGwzq4QVE9vr1/tTpCm6i/DvY3i39hRgKMYdc8KvPytstJzvDAsCwKH2fyLt1W7MAX51ytOeX9fBqW7VXpOh2651d1Hj9FnxU3lOr0YVtKZ4Yr/9fF69Nx6s2HLz8/TwdH2Ansfr9dDt8R2pjktgRUVVGeOpfUt9I23X5R0wH5i3EZywnExpC7UZOK8/J6PB7iXuPWjB5q/64Yyz4a7ln7EFJrrsm+qW81dYBHACDOYZ87c5RkTp/0tuxS6tiPr88v/Ti0Csrotfy2519JvMS0sntGtQA4w49LuUM8t6xsH0E8qzGlUmQ/jvz+fhu7i7XTtvlGkY3klqkopQyCAeRYXmJ+ZbyM3T8K/lpr1U41KaUkYwkAtFbLtiLEJoHISO2cO29+TzVcDseU0rpt43iouTBR8qGzDjgBc0xFEGqRvrMglQR8njWcxhE2/1pKU2qsBfV4v+6BwIhYNN2S19SitNZiVuZjSvvh4O7zq+tISgEAEbnn/GSG1uA57MNhsqGBUO519qlogJZPhpewJKNqpAufYgsilRUhYs65tiZEtYGxueSqlIoxk4AiZhRnzT0qRbyv8zj2MQbduzX4Ki1XcIqxVi0VqTUWdpQlY9StSWnQdUPc42mYUvSn6bDPXmutmVOKjdCXxFblWj7yOPsNtdJK1S0wM3ZmSaG2TKiEEJEQ4S9VrNwyVQRLAK3klGrZGTxzAPg/+etfFfrvnj6ovfwf2/UVCKT2VXauugIBRhSl4Hsw35MZlf7Rx12JE+pQ1VoJWu9s3vxxGFUD25CRkAkQW62tVOoYqmBFS8YprYGoVUIs2k7ePw3DSwtJKQk4mcN1mQ+nadnmCsKspaGxqFVJaQ6xV4RWqxL8dBj2fe+7sdaaUrKoSaAiJarM7BANwOuSld17fY4+n88QvCh9AloHfVn3n3NJms4552GiUnGb2bhBMyhTc1oBM2uVc85VBjfc7rEfLt57Y6HUTXGrOXI9NqUKIKGC1kopqBCJSlyrYdQqLfGkRu+9jAiTrm8vyo2khm3Nxthln+3EBdJAFcFANbWgUgq43LfXblCa+9W3XIO2zapByiHVkuCqKgyEmJLu+nuV5uzmV6zF2uEMZk07aEQUqrVHtVDF/813/yPNZVvX4/QBRErz+74/Pv2w+JcUzNCfRST7ZvQRKVu3V1Qp3KGaQ/857JvQzXQW6kEnYEZpTumWym3ov5vnZKf9uvgPD49USlxvjmvDvLYq1ulohmHYQzDW+hQVITOmlAhz5y7Rk3Mml1vKd2Nc5w7r7OxwK6UINE3nkmyovyUVQY4ljsfxMeZ35lwytkpW876vx9Mh55hqKjWQolrzMPUQT+v+oiw0IdK0+2sDtPrwxObrTUDbx0cX51tHx4Dw5r99uBQdjZJrlVNxIyjhcML0XixWT+OgY1xAqGEFpZkO0r+X9fv1HpT5OhwqtePz8/PlCe63y8PlY2o/r9uL4e9accMkFXxcvnTm05J+Gk99Wr9zHRO/7otx+Ms9voKa7YAEoEjtczDGMCrFtgGu4UpcW8Wh+1xTD4S5frWWrRr2fQUsthtut5s9M+XvFJaa7pYeBWFOf2/6eFR/83p/EzaPl+/n96vStRvVvPtS8WE6f/vx5+9+8cN1uxtLaZ475NYMqYfCObY/YE26PWnsCy7SBZJLxbDv+9T/Qhu8zT8fxu9S/qOCY4u2tK07CCnc1g7k1LmXmLZaldJN2XVbwrH7BVSF9GGNP2nVE4Wag1R4eNT7HQVMhGoC8qiBV0jwdcGjOWuda62tAREMfff2/uV0HvZljkYxnqXU0zHP8zeotkY8HbtQzsgJpdS65RIP4+MeAoKd9KnAcwjB9bYpj3Cq+2mweilzKbMyQSqj9H3XWmvVP5C+lVaZuZSWcx66gYSgyQx3bherDUiUQqm9l7ZZ+3idn5XuQDkh2cJVpHS9rUUgn7d9+Xh5tJrn+cYKhaCUUiNYK1ojCpWkkToBKDXOZe1dN3R2W9/cEG7zF4UPmj5Jvvb9Q4X4cvvj0+NHZz9++fn18jjkBLnelaKwmW64LOuztg2BjZYQwjAdYswlQ0xVq24Ypi3/ieqk8NBaieU+HOzqAytb45vrbUqRGKQ2o2yJ2WrXWmvEuQgZm3M1TFCbYcUWtnnphl3Bp+v7frrwfFW24xv9oVW7e2za+Rpj2SZroWRSl1ISoRjLpRRsEHyx1jbxu5S+Hzm1XGUrxdqOUvWuH2oW2RdahGvXTI1mS/Q4XUJcm2SiJlAEQUgaSBObUur7sYTirOUGNUeEthOTAEitOdre3ra5G4c9hkewoDkiiNZZWg5Zo0IBp9d9D4otk3ZKK6QcojOqlKSUSaXFUtnaUKodxnXfDLa9JCLqlbENWbBA20o6WJNzFREhbCKlpgoVGbJ+dLnk4ldKwFyFv8X8h7w9u/wphP/g/N2/uz//vyiponpQs0oAzRQgoEBNMfyGuu9BW8Z/4de/UoeraoOwDjEaZQiJKKby0I0TaEoFmvylcd1yzTbX3BTpniwJ6NaM0loRxcajjmWzDbV0GbXP0Pf9Fv9YWxuGiajf1qap66yLfqe+tpJzSoNx1nbLvFo7KDZSFyWomJcQk5Zci1WsSxXDCvoU79aRVcda4x5nZ87//1C+aVvnee7tB2kqpj3bDpsY4rjtCmCcupp9k1L5ZIwJaRMu6/Y29m7oDst1BdyATUXNZJ1263J3vfXFX8s+KoO+HYaHWKVSW/1tOhgKp9jCnO7D1ANRTOILgzKPGlJYat26nvZ9V7onHmpjFbRxXaF181+h6t59Al09/LTUcUCCPTyMl/d5U92wx73rXQxJI20OHrJAK18l/NAd3m9X/N8e/6cy/gHkRbmH19vtMGKAwZRfkvqp+oHp5ixo/OG23eyEJV2e3J5TNSbP68/OToSfQsxL+Pr58/et9Pfb9vThdL/fOzemvCnre/Uxen2fw+VzEZHkwcDZGNni70CMAgsNCSsyIGJrjSq7/lhkb8IspxR8x3XsLksLKVRjZyKv4CNKX2EeD+NPby8mVnMcb+vysT/e1k0dJh1ljX8eDydphypljz8zdC0NxooGVQliDqZ3ArWUFNbNGauOnsonyZGVV3IsWZLcu55MOS/z9enxu2V9b5BJE7lWGyRPx+FD8ItP72aw0dPUqxRenLFGH4nG+7KnVpBJxGo75ppMv17nP9RaT9MvWzKjs3t4U65fXvppFOZ9v9npJLH+NA1/E0pelmXsxxwyiPpLT4RIMaBPX1J91oYaaIKu70eRGhfqx9ZKt8zhcOJlTVY9uKHE5dr1FkC890oTKxVCMsaEsD9+/LBsqkYR+fl00verRvze2r+Hoqh9bPha0LcyFUrMRzAh7oiw94YJjsv6djw5aNP66o/TZ1DflMb7dhUAVj+k8lJqPNgPtS6skOQ77zfmeNCPs5lV3dp+MJ3e4SbUlbL3rLHsPrTj8fO83kH7aTrf39RgPpT6xypz5z52/fnl/d9WqK53urun9y5VT2wPhx9Cyrfb6/FwKImdK0x6XVfiJpDZqJLF2bGmbwq+9+nt4Wm8X814TGv5rdMfther9Up6TT5rPmszxroZ28QMxSfNDqIxqpealImx3oSecl6aYGnHh8eP19tXVZNpqpiN4ZhKBvOu5HOpdq3/UspkpCmagLDK2oQYLoAWuSR1m+/vRqMhTnvpu2MphZn38rXvTkzGb5ti5+wU4p11EP6Qi7dWlZpqkRTFmqkWagRD18ewQ4sMUbHUkLpuuPtge7OElWhsRY/OGuVjegbRxg5ZOJUSkjdan8bLvoYg28Snt/Q1qXiEhxAC6PbR/OLL/vuuZxDlF+rNsdVyOvTbslOfKybmLmVvjK2JGSBHAarEwoZjSqLtdbsXVX1aSEytVVuzLes0TZZVy6Xm9pb+4XL4LMGi4PF8/OnrFzscN18cRdAYWmLrWoPk86BGbMp0+zzPzvUpV61NKa1VcH13X++D6d93b/pBtSotNkwWajLasF3XlYhQATD4FLpxyPdE2pSSTEeAad28oompn5BDXoWkgAAaYisiSilaXgvRx4fH+/WGVucUOmWo0ysaF4plKrq1FLqYGGXBvBY9mF4zL8vC1lSoTilo5ZapJ1JKJW6lFE6VWTerfFO+edXqvexnsQcc/nf2/f22/A3gL0+f32L4F/5lUwiNuFUhEkGBCpqOqf3gxkOQs+n/r/D6i9wppWqtDOishVqkZGdUAmipPAxDB6wapBCt60VkGi9vb2+gRGsGAKe0EpTaiCuDUqKd6gbX5eSVhvn29t3x31/9e1MhpffzcVzmG2rbhDU2rTpE9nvqx9MWY6hZGZ3We297owe/JWUiqaCVi972RrfWtNb35c6M2rHSGKOHnMZxjCGnUof+cN92Vq5I0wiaMMbFKO77g/e1FmNsn6W2WrdtOU42l30YhnVPCKZhEEEhREqprkgC2IHoowqltD1l1FaTTr5kRDCGVCeZjTIh3smkFHclatKnqv287SFn001VCEBZZbdlnT7afJ8dUJLcOt5C7JUxGVc5EoJUby2yavvmBWzfnW7lnQWMKK3NuodhdCgh7lf8X/7qr4f8cK3jCQYfrvpDG6L3Csush6FPIRKQMQZQIxkRMRTj1pOMruNcb8TsUx2Hafd3waCV/UtGu8dnYwjEDSaWcCatpE3sXnOwSnvD5jpfj4eLQtVKFUgCMZekNQ/qgy8vrh9yDSlfIV1G9b2010BiXdBqiouRVoh1TAvq96XdTnjC7nEPZqhuz54GOhp+eV1Zp26qwavOfB/iN1ZbiaPTZtk3Nmx7t6x3TeisbaVa8hmmPV7IieqeOQruE6VsHyWEMNlfv17/oF3rhiNweHkuT09Iopab16a3Q79usyXD1arD63JPl/OnP//5z7/69fevr8/j4RJCnvfr4fixNYr5xjrE3XfmI5RDwUgqNt9DJdOvxpiwY6OF5YPWpdZXwS2l5XB8YOw3XwZzSCkog02yUmbf8vVafvHD39Rw1UZyQm37t/ev43CSRg2LhPLw9Hi/3wSqtdp7fzpdXt/fHfdminv97WH8RP6v5/ubHu4+VccjiuTUnHlKeVHdtntQ/NHpedlenLHQbMMslJXpQpCT+1TyGvN8GL7zaWt8zbkjuXRjvD/n0+EkFFLd2JXio8PLXf2e9x+smpv0oD4meGXpqVCF308HtWwNsCMVw86j+U7bFvxNWb+uiwAz2Sb9vhVjgaX17leklBnnt/cXhgdrKMvPWv4SQ2LfjYhYa5Omh/6Q63OJVmtdSmPqq0TtUk7Nh9tgP1o+pHwv8gpYiB4NfbrH31ltGZXUhFA6NyB1MbTU5nGU2/u9Hz83YcA4Or1e94bf0fD3gG15v7CxPq4Craqvtp5qUdZq47L3EfEwDIfb/RvTxfWwrs+s6tAfQwBBU0qrNVv1kdCD/rG27OgXy7K48Z7zE5IAJm1g22ZiqLUyaeFN01MJ3djbVl4Q/b7VwT5GeBWkUlHZg1TXijAUxpJK9fl2PLkUa0y2c8d9n5ETl8HryEU6baKqRnQv3VuYD+OvYsw+Ph/OIWVv8JzC3g01FZbqiG4lOUVaq2T4E1G4l6VmPU5Pv//Tb/VYt7Ka7pAKxzwbY5RSKcWai9E6+WCMSaKZCkMuuU3jJdWypRuoaNqnXGNsIbdE3KzSBKyIYgIiKqU450jxui5a61JKT2nVpBJrMjcEDPnCbsVsLMfdd10vIkVqzEFZ5eNu+UHZFtMCACKcorAmRGDAEFbXWwDIsXWmV8S1FmN7u7eocW/5ox58jcURLQEoKMAmsLdWkaztRNFWcgvX3nSOjQ+JratVCARKNbq7Y2oiQ5Vc5Q6ZiM9k794z47WFztqTmP8cvtyXMJL7K2XA2Z+25ccammIWLLUIAggBtb6hRvme3Pdm+rf+Fa0ZIg79UGvd496RGZzFVqXmKtxp1WklISvAThujXc6ZqhICwQbQuq5rtYZt72x/nA5hC5LLoR8JWsmeSIhbBzo1DLF0ZtTMjLT5ubEcx6f1PhtjQvSkyXZqS5uQ9NS3qpBqLnNnjlKOgDmUn5UMAFBK62wPAAjNGJNzZB62bTscB++32iJrBoZcE+ORkUpMrRZrdZHoU9CaQYsxruVSamwtDcOQmwRfVR1ZB5/uzk63u4zjhxg9YHzo+m9+FqAOuLMuoCz71hkLMAe/DsNQQb/NwTlnTal57tV312WeLqd599qYWoomLqU03VxFJU0587YvYJRtNGn3njdsDJWIgKmVGoFQsYlC2cdOm6k7bDHVlhUXxRX/F9P/sPbmGNkeP7bEhwLP8tOBZzIuh4vQ7Xhy6603Khm7tXRuqoSwKlTT+BhDTrLl6i+XB0mQ66wUtWKZ2cf30+mE0l9/Xj58unz7Go4XLNXN+2+/e/xH729LzPJwOqfokZrSjTjf7i/KopbR2jO08T7v54tCfk1rO9p/dA+96H+jiBg+WFMa32KMrM28bw/d6FtJUjmUJNlDfujG1mxNQ6pvwrOUo8JRmd3aWrzRzsaSfQquMzl4EJmm4T6fSP1W0trzZ8OXhk4NvMufLJXre3DDDevj0D2mOmt+2Muf8mofHmyJDfkxZ/TxjYk6OXnzjckYZZkkxwWk5BiNdnMMnfvMdImhsE65rEjQSjO9I3NbXg3B5A4vOaIxnxf/u679oDTmNB8PJuVNoCDK5tfz9Ot1iYfptPnXLX49nadWdQr0cFb3a3XmTNAJ2tv8kxsCsQzqB2PVz9++XC6nJuX17e3x8cOyLKNxRT23ZlmO1m3rfD+ff3ldZoF56n5T8tXvhbgeH3Xaj8v+dpQxlevp/HkPcctfjD2jOhZ8r/ktJ1X9MI4Uy32azpuPKAPLE6t7iVvXT3v2Kcvx2G3bn0U/YY6juez73h+HbQ/WqOx3lHEcP4T8s8+zxu8QApmrM+cUmIhL9UqZlp11JubXUiPRZS9/OkzHuJ2IVK5/ttbW/WSV93tm3RtjiOu+z6SYmRkecvEkOucsGLRGq3WI90TeKFtT0ywCRQSsPmxeTLc689hi16qE9N5NuhYslYZev7387vOHS/QkrFlLzpnE3ePNmJNPXwAOMYEbMUdt+sUvxeqDD4vgZo2S6pRSTXza2uEw+rinWvph2sJGVmLZbf0bYyHmF1C3nLbD+NHvzZquJcWsSynWdLVWIooxMjPSsZZ7SC/jZIP3IApaORz6fWVkpa3b4yYUCauISBFyJgfEgtZgxS3mKjDmYqc+7nzX0VqxM72pZk7mYaFbix+BF8Mmh6HWejy1Pbww2ZxA6ajqUbFvpRIchGeBw1zFdu357Ys2wxaQrROVQnoTMCKCBLVWImCUkqJSqohBKlIiiDZqYmUXf1MWkEIpRWvrfQRh2x1iEELdJCql9rB1vW2t5hzZ6FKSbdNZ2xvsS94enL1tt2LxwiaGnogQMaVkrd3jDgRK0eK160tpC1TFcEbU2hTgdfHNaFQkJRWD1oBqKTqjs6Q6GFmjE9osYkgnY2+SWjqTZRLBEpFaVbVCoVYLNUZFlXISMq41UEga1Fo2Z0wV2UsSBGNcrrLHtLb1H+mHn+pWUv2vev9vwv1vMsnQn5v6KunHuIuAQRaE1CogABFVOQIOxnwCR5b/y+Xtr+1kCEturVbNympuKSqAse8lIBG0VrQiDWSIFaDVjgozc5Eco/+LL11KG8ex5hmbMBrHpobm7FBzQ8RRYQEU4FrK6GypXjAXSEYdiWi9r+fzw/V+Tyl9+u7z89vrOGAMWZpCZOtYapGmS+YMr8506+KfLk8lNWjSmS6E4HFHxN723kdjDAhuwWuto/xZYUcwpsidm5wzPq3O6cUHEK3I1loRpdRErAFoYpVSMo7n7d6NKqVo+27f4pbo0o2+hNZxzQXumxlsdGzuYHRu7DPKGlj3DyUWQoESGwgb9iUap71fnLUlRm1HI+K0iSUvJYaae3YWVNGlRMLqCI1WwEZqC3vcS6uXw4QFUqy6G1e/lrQdDo7McD6QRLcrvDH/9K7+m6756fDfzskql4rY3Q9uoFTK9bUy7iVeBIlsWMKLcCktIvP1Gtc55/2yXDtmjjFq/Lxeh/stjOMFUdneaz7k+vb58/d7fVf2NPWTQE0pEEEtgqCJDaFyI7QGupu76XldIuZfAckC/9wc/y3BU20a7N9X3NL+Wcr3TBcpU0nW+xzyzjqZDoBLa1kAubsZMx37f6x0VfYGognPomjzOxFprWutIqI1z/N8NFtHHQ+Uez9DuMY/lPZ79rY0OA5/Ndi/g/KUopQcoIzpfmY8t9yHCCmlKs3YXiT7+sXSI7VR0ZSS3r2eZ6l1UPrU02cpe4PfZfxXon6yXVWKkJSiNc6EGF2/tdzteyS1Wn3pD1vDd8B0n0Mrnd+YcToMnwTXfoTb/K3Wej5830rPOPXdJW8Hqz6kciv0B9tdh4PEmC3/Unc071dWFVVZtqvu6L69KgfWjFw/jMMlpVT8eXCfcyud/TC4j+sd9t1J08fD4/UbVM+TGWNt2vwg7VRFAEyJYwlak0HdO/t0GP6JcR9AOiiXWhSCXfPvlN2nw3nfapFddXyflda/wnZEVRu6XJu0lRoS5AY72cXnVVlVq7QM43AC0ftCMPwxwz3WfY/zss6bf62yQ+ugewa5zLNC/bzFP4zdr9MyKbeie1bDrTuELO+5rQUjqrb5tbh/Hfm3Wf99tb8X9S64NfINiPBDgbrmHwuuSL3Cs7I61p8MXlrsSjIoJ61+WfOjyGjdIUSDOKbwF1ZS9/q+7BHue0NT5/2t1mndYjduu59F7LbvW9wbi+2dsqofO2v1PM8x+Wn8x8vqlBmVUbtfOjdxO+j6kRFSupUcoZwIPoQdoY66/QLoOZWfS32bl5+Zc85La2uMV1Z/BFg7+6nTf9XbvyJ8aHJe9gNSRkStbM651CBUBXSVUfBgnM5wB/IktmZDWoMKc4WpnhBGcKcf+l+rNn6NoeMJ4Z2lzffn0yUAXplO+/xY21OpqeWxiUdwsfAit69r+Wn7trWX3/7596Hqe8xiU+X77f4s1VmtpVYRCWG3VteaXWeV5tJmrW2rg1a9QNrDu1adlGOOHcFB09Sr0RBLjkgBdUDVYtnZcMx5j8F0fQiJlO44vqYXgjgxvac9gxnxMuc+Q1GdDiU3wtgSa845suGGObcKogENIkLLOYWScu967yMA924oqYpI3/cisjfVlVGZk/Rn7Y2CPlB30g9H8AY9c56stcbdC74XDe6J0GKjkkEEa63tL6stklAilUqtJSkJGgoAwC7lOIz/NS+hSG7wr+tiMpxN/z3oH/36Je6NgAiatCQVEJQAYBuQAOEJrNb679PcAeRWQ06gQGldpeWctdZ/cR0ssEZqrZFi0P+/kTRJA5EYdkNqsF3NBYWY+Xadw+ZqGjSPrUGRRCo1WirOrR4Bejac25LbXKrX2jlzVngJu7bugqyUpsvjEMIryl0KaqWs7bUaW2sF7sjBmpFEKdZd18WSQ0kZxUNeSszoh4P1aSMCa1wpzelesXsYfzWYp6k/O61AfCr3fX/bthfmTBIIitVslGIQhGIM1fYsskQfDOsUooikHbBMZy13urWplfub2hf3oVtht/uO9s+go5SxhlEphXjP7YVocX1XoWqrAVqM/unpads27VwOsTW4zyuwSrGdpwcE1QBDSCI4DH3X2yq1lNJAGz0Zo/Z9V4rYqNWvsVQ7TMueVdq/EWOWtuSlSQzgdSkSnwXUts/OPe1ZlrA45OHwNO8vZO5MWporqYHdUC1M5xSmBs9KUS0zss11VtakkpuE4uqSVCPjowvBFFFreNbMhodcgra169Xt6kW0NZN1GPfP7H5bABkPsb2TkRKsogcfX4YRQEoOXW5C6g+g76FqOxJDr0SlMjpz8s0rWptAo5DS1tsh59h1gw/L4EYkTuWecgLEhqK1Jt2ApNa8xT+V3HH3SXWdHmKjZ6RHlg/77aqH33J7IPVF8QOF37jpp1MLzebiH+KqugOiuddaRHAaHqXR/X5XjDHkaXqYZ6ud2WKlxgQHBoGKYa+ExehBUbfd/1TTg7YNYO3052xSjldHn2/XV21kPNm4b9qytedWnGQV+Zux4DphtsxDjbXUQuzDLqfDRynK+/eU75fLpbUSY2zSUizH0yXGUBoej8dcW621ZAAGgex6a2nIRW7X537UzUfhL5omZ7pxVLfbNbafTfzUugmt+7b+LOCt/ZCjb+VKfppDLeUPPfPR9g1orz8KXw/HD/tLAShExKyFOhEn4oAY6Y9QnhL+SZjK/r1mz+IUGZSD4Ja2h57OVf27JMrZy5z/XL22dCrlpvR++mBA/HyPHf8qbh3x+ng+/vRTsKYv9Ud3aCVxS79JqRCOPt7Y5NgSkmS9p/qwrTwdxfuXy+HzMn/VY5Rodl9Op+9Vd7EW9+0awvpx+P4w/qaVXPFP4LYEZO1D9CCQBdqWP0znY66+tLptM/dm2T00sOEs+Octvp3P33k/GCaf/0Gp0+Hc9n0buj7H+vwyH/rHvjtqW7iPNdV1x6771Foczbjub1rtTOV+B2Me+54R2/vzopmbuVr+tSAKY5SIYqUVImIFBv6uyNIgvN/+IJxLLdYdmYjaUwyilbXcgy6prE2KcrTHIGU7DEMOEYGGsZu3FbXqhg693fe3VIMzT0zGmKDVqJvrrHWH7v723nd9zvfDI359/v3DdBTBPdfQyl5r4bayVGq2RHfqt32fxkMsYVuXaZw0a8lFExFyUxpKzbFoYqWUxU+YnabcqmedAValoNXYsmLEsARmhKpyKqbvkHkvs0BTpBAYRSGQNGgZQm1mGPy2NynKOUK83rfucEw15n1BRmPMsixakSi4LzfTmVYJm1XMilKTLKVqdBBx5K7uNRJ0/SQV1hhOxwlu677vjRi5YQM39FvagaoxUKnVmlMtwEqBEHGPNGdFgAqRNDWW3ErJPkP+1I3XFmMrnWAp5Wu5AfFB2RrTQmko+p+bzQT5hRkb0Jft9g2kIgChrhiggQJoaKqUClnqEc0o/K34e8mPQFGqFoFaFQMDogAKMCKUiiDW2Iotl1axOttLxZDLaDoRUUjCDNooo0uTzHmcSvCJNUsBY4fdA8jkXL9sP7vBbX43Vgdfp+GSg2LtdvlDY+j6Y25FGkkZ/K5H9Sh1V7oTioneUyxUL8gA5kfLo2TqnFvjVrE1zAw5mTSoy7ZBKeyMXtZ3wDpMXco+LlNMfhhF60IMio3YceinJfxo7ADipVBpueu5tlJLMOYkOBNtxDblMSch1bjbvORHNO+v99JpZkXX+NEdrxCd++v7dRl7pY1P+VYTH9ypBJPId72al3fSVGvdV9+5SZqyhkNK3djf1u14PIYQh67b11VpSeGaWmQWNAVYtaIa6IIiNc1+ATKmd/vqt5xd1ylIJY6XY2u72Zinh/ybdzfP4fej/V7xoUjwwR/Hh5r9nu/98Ci4M3MMzdkhJE/qiIz9Yef9F6wDItQ4QukKF2s6aA9FFqtZtxPga99N6/6ld09NEEqJ8a4UAHYAJMJMnEq8x391Vn/nF1Xqi+uEiEpxfXee0z/3vLc4aT65LrQ6lfgQ01vXKwbdWYx1a5L8vlaGLEiHWPZhb29ap7qdUZ5q8w1DkWK7LqUMAIdxTKn6sLjeGfebsH/tqcdd2x5L/rytQ4afPx5/uYdK8kmBUqyWtNX3SHLe49XZa3f0wCTlo6QTtqvQWw1GcL3N83Q473EeD8Put1qzVTOwatAh2JK4YGDzc4JnasdhwNJoXUL3GKehv92SmYqxPSLEKBW6ZU1jZ0K8HsdDXE/X/fXhcQghrOv9eH4Iyd+2b+fusJdXxQeCIe2tHTvjeNt/lPi5VY3gpMI49NuWx/E8++UW/93xaZjng+Iuqd8lujc6xFIcni4Px9dv5R5u6xYMf6/Mgm3aWtLm3eOPmh4amsp/Atg0f3w4/uOcNmq21YwyltAA7Dwno38ZwuLz29Cf1tjvvh6PsPmfRnuuXEu1zFDbbpWuLTT2yuR5eT+YrgHUWmM2PiltfnO/vxfFJE9O1ZKXBkBEDW4CSRNu63wY2Pvd6tP1dlOKyHxLOUHrGkdSFMPGdWTjsvykzGOqXttaKhL3+3bFdh4PVGp6v96mUfU96M5kCO/X9dA9mI7I2OAryweNlMt7TM/a5VDvvaF529n0wNXn22G0tVzDPo3TQ5Xr4H5zW27uEDAdtv0LFCfChFaphqBLTarxy+v7eODX9587MyHUdd9qkt4dc1mHno11yTdRCdS7HVwMUhGMcU2Arb5v7395rkPX3fd/hZyIWcQofGwgqSwVnhUTGRNhAGpSB5ZDyzoEBvNjZ6ZaTGtIHAW3zmnEoWzPdz5PJ+yULHVFTAeMX96/fOx/Jbjs+/r08Hf39f66/1jZH54OEijj4mtfcAtUSukivVYZIClUEUzc83x9Dx8vH+73b8eRJXfWmj2GoZ9KKZ2bci7SsHPHZXu2Xdn33UDf2+98WJQuxhRpGHPoVI/aSS0tuRIqqKK1DsE71zNj2BfrTK01uxPffTU9Omy3hXolU8N8A2ZBYqW2GNzgSklGaWgKCHIWEIFWWTWCUisa5Zyyz29346zWXfCFiLSxcwgHizPmXkBLW6aqeuyvJdrm29AQSttrSk7no8JSt/39RuaBiEXqX9bSQq1gZZQNSUQIpGrMBai0KpI0rjn8Te3/Qfs/1eWDmM/u8Pf+9QsKMENrumCVBgQAAEgNai8QCT5yH0m+xvWpc9GHEVkx+Bhc0103cJUSgkJ01iih0qq0JiKCGGNWjYQogRhnQ4o1hr7vFVKu8TAOwYNULbWrOTJJw6CMhHoFxlCxiNWtd84gYa63NQem3lqzLlEIBesW37QxqFvz0jDFFitCrZXZN0Eoyii376tVKAiooeRUoXDHYbu3LJ3pcokC6Ky73xfXW6ulSkNKiqQ2ChFy6hL2Gh8lc03EzCgkiUstTXBrdd+l7/vkg3Po03UwWiSP5fg1edUfpoJUOWhafP3h/P23EhvnRrYlY/ApJy8QrLvvle/3ZTpO67oCYKIUY51GBxJ15zI023frumql/DaLNAbbakkpAWYiUMQpCwDpzszrYrQyBm/rzKyGYbjfrqod35x3z1ob/876a3DzIXd30tZN7/d/ZeDToTuJ/EQ0Yv1Q9U3lMwFCmwGA2gGyEUgFb3v8SUlGxFqzqBrKxsIxkHWjn83TU5yvmfSfbPuF3xejzkCs2BGlnKq1HSsrVEqJx8shhW/dQVxRJX6KIY6Xbb6nwfxHrfwppWbsGSWl+l7K0Mq4zxmgyCCIvklDStr0uqg9ENnIKh37765BtFtDeSmhN6bfN6+1Hrvhfr8TNWNMKVnv3idOg7v624HIdJOuquN8nZ9Rgxn/3fwSBvzsjoL1kuXnmu+tfY/5g/e+P8zWzX6R92f99KnHtjG3Zb/nBDUXaxQrqvE3FdbcVmC0bEoeGFxY1g/nS5FUIjP3W7grtoRdKbnxK6KqRQ/D2IoK+R7rNdRX3T0kzPftCkLHy2Ntssz8+PDva2gxzbnG6dTd5xfiwc+D0aOW2mr0+521EoSU9xBIoCqDpbjGbwlubT9op7tDkKb88mzCxwT7+KgBKK2wbc2Yr1in5JPTB0U2pJuAIbDNtuRnjU7USyhX0prhpPXjnn60/dFf7Wl4Cn6p4h+edIivmibOT838vdQT4Mb6DvVS1BzhCvmoZGL3vq/PTJ118B7+zcC/fPxUY/wd4xHb+PJ6c7bv+0ODu9Xg14ja5bQfpqPfgNokFTF1BiI2JBEGYdS1gNa2Lg+T+27d3g5jl/Y29MO8vnZ2W9YwTl1/2IgxJI4ZOxfNCCHc0RoIRqqV6rQqhOKcWUNqUN+2uTanjfvp5999eHrKezCu9Z1p4azY3OO/ZD7E22egZ60HN57DvsecrdO5RFaNtLT5zvLQ6TPWc8slihBWUDpvB3doQsovrjRBa5w7zNsk5ktpf2FWWiTWqmM2jE7zqzJ63xfknPGLHjkn7PXTfQ7T4HLKUAGgKMdC877fRzmPg73Pr8CK6Jj2OkyU6zuVMzlNQj7Ge1460J0+d9yW8K7Z9FP35v9FBNlTp933W0k1fkvVFf4p5a4i5foj1APiu7IWcWj1mGN8+mBSfH06n/ZbEpUV6VIrax1K08bWEqEh4ZJxQRFRNeSsnUrVIBGyKZLBqB2BKIPLsW61RrZjaVIapJqQKLS9owrQcvlxPRgTWe6Yh1FX7FbEy7jdvnVdt4Zt89vlcC6plZA7a5w6kg4oudZcq8amc8ognnU9Tn0lyDUZbQAoBa8NLVlP1QaNO5Od0xLazv3owdGMTSrQpmFBIjQBzFtbf8CklS1SmoCvWRALgADdQpiQkfVKkg04MLXWW81nNf4u3v4vev5Q4Ff94af99gUTW1ULUysNagUAASoAUAPCQejETmv9Nc4AMICqyIiYc7DGWqVjjJzzwble6RqTWNjCRkSWFQHWVFkpIP22LL01HbFShgFbSSV4ghbSMnRTrrEJtMKKe8Tmw31w5yrEbHKT3kgoq6gdyn44HN/e31Cx93Eaj+Nwvt/WlOpgoOHaGml9AfVOduUyWPqNL99ESQi7sigAAkSioECRMIwTCUjTzjgklVLshmNpitkUAJFaWihtByMe12P/sK07qkaqGoub31CRYpvkmz0eg4dhfNjW59P5XBIw9InTQHK7r3A+TM7ZORgNz+FtS8XpXNs1SGTVVwCf4qgUcz8MUHI+Hsaca8rpMP6FiRRTq7rrU0pGcSuh66xUuG/R6GkYpn2dfYwqUy4yTi6n29Ploebgl0WT6pzLIXAD/I8//tM9ykiDcoMUgJDBRY1blR7appoxpFm1cXzaNlIWSG7YppJjw/d+0Dn1Sp3u9+vD2bXSbZtXJrfWOnsihlSuMcbL8DdxM73zTYpRCpnn9UfI37u+KlNLlNYskkFdkNMWeqM2ain5/enDZZs1wCWUVZvfHbt/UlNN9T1lBsDhCMjNh2eXVTVDbGqQzlfJCnVqu77X3I7dZylxT3/MOY/9Q4bZ773WWgr0tis11xpLDYfjsAbP7fHp0n399u8O3fdMLrSv2sYWv4t5Oz2a2+ydOdVUWpHxwH4jVqtmnBfW1vnyyrD3pmP1y8W/2wEYVInQkcOaU5ilVwjHlIhURnuvZR26x9ev++XRfnt+NW54fPzw8vpFk3Z6ijGxMqbTMW2lpKmfsq+9OUrFObxo7ZRSbHLMNxHp7ceaLTXJ7e0wPf75Tz//8JvTMqccOtZpcEtrLZViXDev2/Hw4GNCoFE9fbn9y/EwsDy1QkSwxXW8dLJ2x+Px+fr3Ye+GYWzypvkEkHrBEIH1Uew871+c/k2OhrufTPq10JXs71W7IF62/Tp0v45pXtKX7y6/if55Xa7Wfu8mK2rzSzMUYyNw71TMiJ+hpcJtk7XN7odffH6//hRjvJx+2dCFnJY1mGbN+LWBJ5ikkdEf/R5j+4OhS2cRoUYfBGrX2QZCrP26GWOQYfOLdjoXQeibWMhfjodL8gBilCJWbd3fjJU9933nQtgVKuOmVjSgCalRy9pQiIuxoIGkteLzaTosUQRXQckybLFo05zCOCc7jDHPpPaWj4BROa/wcfPPrC6MfS6xH1vYbznh8TQ8v/7h3D/uYSHLFSnEdj5+jDHVXDQtoCzSZNy4+3tMy3n4iOWU5du2rUoRYFNKtdas6WKMxZthotv6Ng5nv7Pt+uvtaz+KwKNSKWzvx2FsFYVa4Vts7659QDBEfUhRaWFo+zpbbSLC5OJbyJX5oWulmFSGI7YVTEmLQBZwoVQ1mJf5taHquSYpjbpQo1KqxTYYMGhTNlVywUqKcxJHxC2PTn2Z38/nh1Cq0m5bfSrCrA2bUHeldEppmHhev/XO1kgoPesUaxNFa4gCOHU9lGaIfZHdr+Ohr80byzFuPu9ac5YJfTX9we9xJF0hg66j0XtSzLqCaK2T363imlNJWfED4KzsXotoPmmedr8QZ2oVSLpuSAVyap3pBHLJARuiszlERRxJmtROqSClQa/3jAy7aXvyrgFZ3pTodRv7SQSF1ZZSY/beMyApt7fYEHqkhrDVVBp0wEHKfwGva5ZfWPdZ+t+F+wbNa4RMClqFJgqoQdcgAyRHNrT/nrksBv6wvp+NS60cVedjPHTa++iU7tlQyabJZJ1Tes8VpPbW1dwUEoF2rgs+kXMtxXPf29aSXzQrbTUqDlUIdFjz0B1y8MhB29LEt3xgwyHso3Nlj4fuWCp0w3F5v9nOgBLk5vO+3ueHh3P0aVK2VIgtmp58aJJ7DeY46Tf/7oxdt/kwDLUUhaSUXu6rPTwisl+3YRi835CK7likYCqkbEMnYFJpgMUZzMU77HLOSvHub+PR+RS1GXysTEfiJi213GpuvTWAW4hXaIfWsWhuNTGIQE3BIyKSw2IGM1Vs78s3PVlpVDIeh8O2zTluD4+n23IzxqRUahNUXARCyc71Zd8Ha6RVIojiUZxWo1+CHUw3qLfbS6117C4aa4kbk67IyvQlFoSG//On39Q9f3/5eH+bx+kMqGrB3g1qrWUost+PbnwvlYo5uekmSbeGvHW9gqYYuhhyZ7UxLlfw6xa9P06DiCTJvgRtzNPh0/XuBVjpuoc35wzDoOFQzZJTVcoSqlzidHB//vEfLg8HTt+YBq0u2I4lYz/SFn5ivbfl3xP+imAgHZSJtqsIsO3XOn1Y7+l0dK29Q6O42ON0yfWGh0tbtxEO7/fn0r+rburwrGV/X8QQYmtsGlrZYsgFO3M49tM6v0VfT9MTUt6T110n1CQEo4cY6+HY7eFFafB7TFGMHomUVm1ev07DUeElhMSqVGUgKebZKp32s3YqyTdWfQ031g7Jvb3elNFucLuPIvJ0fEiJ9hy1gb9w7VN4qfm5P06deVpnGcfDut2IqCRbsz6fTSyvKT0jsOVHlL7VDXhGPN7n92n45Xg8pPZj2luvf7i/X93jrlV/fw2H8UFrXtZX1iSoSxGAqh3EtCri3vbX5/vD5WNc/kEPZ1Hnm68Rrtp5yazhUclzaxeAfjjot9vboT8LlNbms4X7PSJ2zo3LFkDUX1h0nlrX47J87eyg6QmgzzXWWo+lF4pgYCslww46Qu5YHjvXattynZ1z2zUe+2PJabB0rV8fxh/m92ZYNdi2uJ9O313n6k64rfOHR/vy7R8MHTv9S2n4dvu9PXxCXoHXFBajh5yIURmjfIHBmlYkFzC6C94fnGVIGWJKpVVApvEwee9zbcz6oE1pZt0CYB4mQJX//OXn/nQ5S/fz7fn04WHbNiplmqZv86s7j+wZmzJciDarD5t3wrS3bwanVgZCi9KUpuhT51pr9z3HsRtrEqhkratIWVrM6di129Ufj1NpS0xF83lbo3ECcqn8zfW2pYecgjEvJL7GoapHAN8kdp1d1lujRjwRHskvqXI3CZg3qTbcDr2emO8RU0396WLn26ukk+sQ8J2x96xr4eSrUsmYkhOgJDIvwr9Z97lSyZBnv1k3lYwlyuVCz6+LcwZVTCUzHqoQUlKEftsP0yDYUsnOuZZa3dLD+eHm1wRNOwO11ZorSCpRmUtMPhdvtbaaS6o5FU2aXHsP3ml3KgoIX1oQp1SqpHVrtZZEIIpoX7dxHBWqa9k1M1YZuq4WaYxriFnaRF1KAQlaK9ZaRI4hHQ6HfXsVNFr1OUfFtTeqJsHCW1mH/lizWKtj8aDx7XqdjifLtG2bNR0iojbrvlUE23fXbUGpBDh0fY1FKVXKX0xQQK0a4+4jKi6lDK5LKbkCnqVSk5i1NSvKfY+P54f/89uPdx2PjX9ZOVrz92UVAWrcuDIgVGkAogAAoEAH/BvQ3Ltv+020biCcmwM6KLeUqBEUiCJtlBvYuSbcCmJVyjhj4x6J1DSMKeVSykceK7UtBtBMhL0ylKsCupXYOUstQ0nWKEHIAqx0DKKdFalhX4fOsQhLA6m5TRqUAmk12Un56EFYs+syB/GiKiuUVJgIoMXstTk3ydu2HI9HVub9fmdrWKuD8Opb484YhS0yRISWS2vY9YYMxfV2e7w8bmtGINbqx3w7jG5fcqcPteYkizLa8BlDc4Nd033PKyusoWhQh+Hwdv/mhjNo3pbrsTtJMcsaUKFTOhswmmjb0PA7RoKmlmjMCXW77tfGxk0P8x5Mp1PdHKnkU6cHEB1D1lqjSA2pUBSnmcG0llE2KdjkhAZr2aqoYUw5GigthwaQpeL/rP9bI3i0fQ1lmqZUqtWGgUuaD92xNojRH0e3+H2cPpaAnZFaFEDVOktTLR+kFTbbwj8SsEFbsmjVl4oFOKT0UT3oHny63m7zr375t8u8+309X8ac+nW9H06WWW7392k8+r0w64G04q5WQQpVFlbIOELrM/y5ZguYndFSjsQAsNUCL6sM/UFxyPWZoIz9k+L/L0v/0aRL063nYWut9GUe093bve5zx8IQIABJA0ZIIylCERpJoQhN9C/1AzgiGSREQiAAHpzvnM+8du/d3Y8pm3YtDTYmNalJjbIyV97XdUuqz0v6dU/JcDX28Lqv/sxt3205b/SzkdCSQ7DK24qttWqVmfPnc/+7tF2B78G8rbWC2owdtE21ck7CNRzH9zFu0/zD+dGifBC8p7zuK5yOb1OaSm7Hw/t7/c9QKHR1u99Pw18C2QZxWYD5dn44bNtGyu8rkA5dF7Th++0PoHdjD8t98PahtXXwvkblJQkiEm2y6ND2NpvOVG5mY5I3zgaB122/a+iDP6LKJWml9OnhNK9big2wahWFswvvBfK6fNS6cjOtBobdj1nD19O0lMq//vWvp9vdGdVq3pfVHZ5KVaDkev/eGANFO6ravJZ26IZjzjolsI6MaSntwLjHGgYyxk1z6XpX5cJ1PZ0et6m2PHbjRDrdXwZjUIc1b6e3j3C/UYOQ2xQ6VQuANKKsQHHDPZVhdHG/KoJjeMxRzflt30GJV6s0CpGqym9L+lzrW8DsHdecyk5D99YotecX8H6ZbqfTYZmT0b1CPS/X48lveyh5GgatjbnP0evxw/mb28uV+s+Eweg+5h0ps1RSfS2qbuvpsb/cXpjB6VEQKsYMy8oPJweS7lr5Lata+Wm0bb9E0yNLbRspQfCAQZAbrlKa4BxCyJsyxpTyqpRKu7ZuKKlCA2dsPw7TOjXi2hrCJdh3rWpjqQlyMz7Qsn109Nsir2v5SWsw6lHVkybell9g2BQ/Gt3v6WVLy/H4fs9R1Hw2h8v0ufO/suo3Mc3r/r+NXa/LV+CFlKzrn0MP+wpDfwZWJWl0LUYwPjbYkQ4C+TZ/tvRuLT8rHaY1axMKNxvU7fp5PARn3yzbs3GaICz7Rqq0JszhiK3vuib1ts9FQREQkYfxXEWWbc21OqUco2ZWiIJ4ZeW8IpRaC5faWlPKdr7f9tcVuPN931RK6QrZdr5Hfd03pYlLds4JcyvVWqtRVwKuTRGllAiVcbZyExGPVkQaFyJUSrXGRGS0m5aPx8PTuldjFLc97dt5OOW9YadR1LZGqzUZdF5d56nrhpTSF3HEtm3aOEFItWz73h8fUQAaEyhnTC0tt4qIGTZAbARFwBiTUvLGl1LQEu1JEDYlpZRR+arMH9aXf4C0aH4g+6vmZgd/qkutggxCAAwIAAiiABoYgYHMgzai6LIvROStpcKe0QheNDtDFpEYqaFHc9C2I1ApK6Wc8SU3RTSEoZTCtWHLgqCd3fb9MPY15SF0VukUm9EENXMuzjkRKExACnFOJTvbK2XjWoyywfq4pdA7AwYb15qVg8RJAXkb2q5Ec4Fira17ddoVboKth+ac3de7saS1jgWQhrgLqojOpFb74bhcbsHpWjbteE7+MHbrfB/CMUUYhqfrfXHBq/ijQHOhX/YsFgrVJRftDqe4plL68SxAMUZrFHITrjF3hyf9y+svg3vgVpWaq3BpnRJdDRqENi9MuBjxvusKfE7ZuFrrokkFM6alDb7nUpnckjdwgFCQkzWQMUfO3N5YrQq2xHlkdcxYhBcjSlTK4nx335ZudFZT3vYhjPj/Pv5qMB5L1kBdH+bb9TD2dU9Nmb84/O51a5nKGUumsoHr89g5qnzJOff+axDjfE1pR/AprYfDYV2WIYSX68v79++XuCilqDKh3VJiyD4orfUyJ+9GLpqUKM3MlYiM8SWLImuk39Nrk+nx8RHBvHz+2I/QH2S6Hyx8tafLwxv9+jkdD2+X7aPRlbpfFJ9KdCBB09gq1TrZELOqrjxaNbG57+UhFmXdDilmPh06rzHHfN/rUhsS9l4fNmxAv5jW6/oIcjsMzujDzz9/f374l/f558OZclq5wdgf9njPZe2Gv97TZ8CmaSSiJX42FkGs0NWrN8SybxOCcl1Z0zOzeTj/bYqcEwtvLtRlvZ4Pb1IETb0gbGltUJVSQxhr3vb93p9PJSUf7Hpd+3DKew7OIrWEczC/zntN7efOawWPJe+gX4ZheP5YHp6OqUhaD8ZV0M/clNSD0OvYu3Uy59NX1/tPti/MtdZ6Pr378/e/DOE0DMM631Kc3rw9fdpzyyW4gUt2BqVWwt7Skc28rK/WHaSO1qmUPzqj8m6bQoGh7/vr/KPzaJRfpmfjdw/fcTl1XYzpk8IjqLiVi+KvdJda8drpy/373jslo6NQchy79wy079scP4e+1bbWVPruLJ1VBC1GS4YL9MFO+6dUboP5dZEltuLtQ6vKGfSmbusk6shca2VFzii3b6kf7B7vbOY3D++m65aT8v0Dc8371HtUatz2qzaAYBQOOTVluMIOnF2nU8nQLLVhnWs49OQl6ZaXnw++1kJVjsEd6vrJ05TUdwz7uu9K97WgD6rViKCCxcvl5f2Hx3W77ftuzdiF48vLpesPX0jNfV1dsKntyqhPL59OxzeELpc11lcEbehR0YDIaH5y5pv7vSgflYa6+T6MOd+U9qm8SmOtR4HacI4ZBv9ti4vzJIAxkjGG5apwU0jrvoiIt2+Zex/svLza0Nb0Q6ceyO/31570t+BvU/4F1ZBK1oDzPI2nvnLJOStlguuWZQPdM6zWau/O67r2A9VagfuZJyjNa2WMiTEqwE77NK/VatBKNAJAyyWnhES2D9ucnTMsNedERMZYQo2ouEybMJIOyuacEzKAWMZVmrE6pWStznsk0gCIoLyxIuKCv9/vzjmtNbDUlI3SWutc4hfssBbuuq6Upn0qGRgUIlqNmlQpTSoXDQqNCEpt2ghgjXsOod9qMUYbpadp0lq7YFMty7L0B0OArUmJeRzHZYuVm1KGgSq31BoTKmNzqs5aaJzy2h3GeZ41oHPuFuMGkkT+Y1sXVQ9C32J4bvuzYhFAwS9mbABQhlplJTAgHrWfgQE4l6IRDz5gaR0SsSRBp5QlwcZYyaEaFfVaISkU0NpCY0UUbJDG8GUIBrDcJ+cctxJCiOtGRGevUABBOJUujLWCgOIGxrRas/VujXvfh3meO++JyAA56iQDIBfJDQpL663fY9NBxZaDH8rWvBlTSjoYkWelKW7RmYPRh7hnULW2NShmGQuEUlLvIvOGoFvVYpCUcC1KKQENRm1lbVLPHvfbG2+PYVx//OnPTw9/s+ct8vdve/t62cbhfUk25zaOo3AibJl4mjkcwnX68xistC5xVj7V6MAoqzTHzKR2BUZZk2FKvxhjlDJadyhmm6eu0ylP4fDU9kTc9to2pVi5FsVUrcfSZ+GcVsulM0qAKrMIh0ZTNRmrVatrlfhdONFlw/+H/9XBBsg1GD2M/b7M52HgXJayfnP6dlrABUtpIUdzzI7D6dhKxhqb84bQKnK5RJa9oyMAAgsAcQMgZbQ1xoC+3aeK4LrBPF/++PB05OrSbq2ane1zkhTleDwy18apcRYpzhsiaW3Xmkomb55yNGB+8d7WbIzul/V2HH6VE+b2i2SFVLQp6/56OB25oTFmj4u3v4G2EF5z04Lv78v9eMS0ZzKDYqIGqJtyLFRazZIr9C4tHbZ8OoHG7v6aWPLxIdy3+xieWjGtMGB6ejq8fn7Wym10GYandV1L3cbjw3QvjSOaTedvnY+1fSTAlkerj+s+nc79zrynF6PZm256bYf+qeRtPNhpzt4f9zKbULdtPw7f5ZgQJ9XWxlFb1dgzH4w7lJZCT9P155b7zo+kSk67d30XcE/PRh2RH7X1W3y1Afb8S8rLuze/ma7x6eHbf/zD3739YLdt2+fh8fxXy7KQ+2Nt8vTwjhvGGKWVYehj2qa4KLSOngb/dFt/rvbT3uaufx9K9/r6PA6PGjtNHPN16Pp9EzZ/Km324YHzEzY7DjZtpeUe/YYkCsK234+Puda8rUopt+zZdcX3NN13TcpZo6VraSjtGjpa43Q4vhXpbtd9PI6fP/88HrNSpm7chUfOthvGdb1n3k/qacp/EJ8FO2e7nBaHtmxW2XGPkw+w7bMm5d0obFLKvj/G9WY1hKF/uS79cOptt8xzOCxxZWGjDfWD3rZF2FozknLPrzejXavT0DXBGGtDHZ7o/c/3H7CT4DrLI2e551fsm8tjgakyAZxE0LlY06qksw5qNs6q2/STMcaaN3sSF1hbySmRSG25lJTSPp6OQJDrDG1AMqSaMa4Vm1KyfZsvH0/nN6WigK3Vpj13g/I+xYWMDo1TaTdtyepjTApAcdyJej9g5h9iLKP7znu+L//r0f0f5vynL1fmqd2ce7PN1g+wXFbdpdf5Z62PAO+WtNqhxVzzXofBV14By74uD+d361QAdNNZ08jM3rVpmvruIaXEMI/dg9H6+eWlovTHQ5YmuXGpZ9ftrawpktGhD7XW+74W4Xfdg0CLOeWcrLWodM41pXLuTeaWGnsfci1EmPZIteqh/2LC+vK01iEoRFWXVVsjSpdWtSZo1SDFdSXriehL79CeEyKG0KeUrEm1wOn0sO6x5myMzrkcj8eP91eD1vshx91oyGWHxs6FFZVCsVrVnJir1poRiCiVjAIiWKoYY/ZSBQGIFBRBiLU2BEDVmmhSrXBn+M5ZAAcyyxZfNfPo93n/Q4sb1l7oA/mf27YhICAAaDK1VUFGImjsAB6060l/XzaNZLSWkoMxkGtnjCISMQpZQ1OAiEoDBRQDfFZ9aw1YUMggGVIKSSk1w+aN9trUmEQk5ayssd7Z6JDFGsW19T6U0hB0rWyAyJAAr/vUjd26r6Sg6zqMpdMDsDbW73kTyiUnjQRYldOZk1NesSXQuRQdTJ0OZF9K+2St1fCmbBapAe3aDAV2Jrjd5nfnD3mPxrVU7x1+E9M2dGHbttB38z7ZAMt2Y/3w+HD6/Pnl1J+25d71OseicAC0zKy1TjVq07RK8/rZWGB5qlhTqcEfS8wiTM5m0cg7ImoEESGjC1HJtcb06A+5bRXWRrkypISH8U0t2NWwYooqcU1BSIHZANl7l5eZauUyAHnSkWsTHnRQCe6aojf7fX6nfUD6uC34cML/u3/n0WjQhnTnAzbutQtKLXFvmka0Hn01GnIdjImUDWCrmtAIN2ttq0BfNl6aSynOuVKKdXqeZ28sIh7021I3bTiXhmgAtUhVunklpbBWXUkgIiy1H/zl8rkbHgiNtfZ2eVZarNWaHDdl4FDhY98dl6n1B65t78Kw7pdj96uPH38KIWgzaOpfb/cQAgtYIO2e9309HL7ekiA55lrqhTFa8N72SputxJyzAeWNn7f1fA4i5X6tSvfdkRvktPZCPznzsM8cQhBOzkKM+dg/rOb7mg0zNmg1mxLDeBzn9WPngIsGHuKSz4++1K21Yp1eGy73+PjwNu83Hzbh3eoA7JgfKl0BSy2dIg9YFViu3Tn40qYiE5DM62Y6c99+9h0f7DfBnNLa1wzGT7n9GPfm9dfKJCKw9iGmJbfPAtrrD9taffcc011RB3JOKb1930/3bQjfcEPAVsu2rLfj8dwqIHhFLgO3XIyOxqX7LVYYKuZwivF1O/YfRCDut+C01Z0wNk6MnbePKa3aLds+awg5rV2XG43A0ZknFKj4Q6kwhK+ndQ5kSl2AbPDvKxPplNIa/Kmkz9rIst/jzsPwXttx3ZbDucsfwQ/bvP4yju9SPJDtG71k+HnIb5f0Ek7nlEIDZL4g59GfqyzbtjnnWhNFlmAE7nJCHXbhteTVB8uE2rhaSufs63MejyC4r0seu29LBsGt73mNUir2w2m53zRWZz1jKM0ccbtsUR/GzlvJa9y31Jo7nHjbM0/GH0rujFGoJslZtR7Ctu9XbwYuQ4yxO8AWN2MP63Z1xlhrD/1xnudcG6EWEcb70L2735bhFIxx19cYgivt1jZnPCHVKhmV5mpElHOqpO9zNMfj+8vl1Qd7Oh0+ff6563VMcx+ectS1gA8KIOUEnTvZUC/37wnPAl2D1XX99XYnd2Py22SPp/G+fVKk+/746flj3x33dkU0Yzhdr/eu62qNRmNtsZTkzENKxTrZ9/0wvmk1N5lKw6Ebp2mqAGYIqRSFaIBWqKQ1M2Nj1URyBRTXd9ueSQEAMAAiVm7MoLXGloh0ahWdLaVYIi5ZKQVAzExEOWetNQIRaWYw2FwIl+nuQ9+4SGuDd5xTJdtac6HLOedUXfBfnPPeSq1135PR1ipbuBFBLqkpbBWs9THGPhjhgqAI6M4gXDUhcOFWEJEZrLUVWilNG2uMu8+LKEKjKxdI0XehiDSEyoJCIpK2/Xjq6rKL0Z9qXGoZ+sOV0z9udwEsJCPqJ9P9EqesESowihFdgIEERJTAQamDclDrBUCgOWNrjgqpcXOaAOAtHUkqQgVEIIWIhkQDP+AAjbk2q7RGQmlGaY1U0GFjaqIEhmEorRVpudUeA3M1VgkXQ9hqNYqY2RoBIQAwPrxe7n1/FjSVxavZgkfWxpi97kpLK5WaOGUbNaAGtY1hLPFLQA/XDYZhqLWmWDVaa4D0nvMNxDr/LhXTaiS8a1WFrdLHxrdWqlXWqq5E1mSUwtpSzoTKsImVbo3qFvXh8N28JAPROlVbBC5a61w5J9HaEjFjbQJdOO/LzlxU8EU0QjVVuOUCWZQYo1trqRYfKEUhdAiaiKQkayHv29b1OhcHrUgphgSNKfqo+0/LtXQGgF1phiGRCJJHnXEhUaVw1/dzmltrD4fH9b5rbXOryequct0rG6Rl31UIGsMOMZd19GaKZVBBM7ig5ykjLs4FTo6hMN2s64EPeWNvei4FmfMee2cUVuEW66q1qZWtdSKNCJYtOXdIuWqNykrDJCJcpIkL/YOy5X5/CTJYPxIErtsGHw/nptNva9TL9tz1b1s8VLzOazT0u0+/bKihmUvmT3GT0+M7Yw7Xl9aH1tgr3VWu2kXiUWAQ83zof7dN95SiwZ100yAc1TrX87G7vr4adbBOZ/xY6zeAD5X+rMq3e5l1iMrmnHhPuh/CHF/36Vtl9tI2aUPf92v9nOLSd31exTlH4pO9L+1P2kCuh7w5cnh65Gn+/Xl8V9KD067mbdsvD49/DdWu+4uxILw6p1JaEF8vcMxtAymqKWutZvXk3hsFy0qX9AdNY1Af0sLKYTe4vOV9eduP0+vt51bL41u/77DHpdD1jH9rXGrqc8OX05vHX37Ynp6enm//WzAPPqhp+/nNuxPAa1rqtkGrZD+YJX8eHbV9cf0I+zL6Q92YCBoLIboAOc9aBUAFxCusGz8nSAfzdkvsw90dTW1niVWr85aiUYL4prWUipTsfbgZYxs0tB/zUgw+NgG0E69vGzvdyrtH2utLrh+dV58+vnzjf6d1l0xPilldSrsAFWEE3RR3JWlEk7dtPJym6TN3WHdPOCxzfng8alOeX78fjpb1buw/SZtoDJxtBWm1lhZZZtcBqNBqQNLkEvPODYSO0zR3o9rri+tUi3qay+FhUGb/iDcU7aCWkgrNNJRxp7BuNyecjVI6ykaCUhJXVlD2/XnsD3WX2rbjaSxtn6bb41vlvA7B73u6Lre4xcP4QGRaFVJekTchLttnAAA8lGZq0+GwcnqHMiB8RJyVkVY1knA5jUf98vrpcPjGWPrx4++fzg/7ik6Npc6od6uGbZ9CT30/SLWv06WIMQYEigvj5XZX3syrcLdGbCp9s69Z+08mO85W/GdnH9dp3mQ5n4/X69V735BA6d701olgQ+kV6tpWhlyKmWjf1nvXd4O12xqN0GB9njff+1orsxCiMZoVJa5LTTElIlJKWatJKyysDPrgUhIlCKXuORERARISKzFgimRrLQAH61oTEWABQRZhaUwotbGIFGBRKMIsTaQxMxAiYq0VFKx7UyTDOJZUYsxEVLCG4Ja4ACqtSRnK3FpjBAZRjTQiVG6EQMp477dtjylTx7VmQkBn030lY0irXKJCw0S55CySS/HOISEYnLdVjFqxvpYozs0Sf96mQoAMIMAME8QIAE00IAMw1C/wLwI4JKNsAY6cNZnIrZRSRSo0a3VFlNr8lxJTVNy4MCOiNhiMKSyKFGjS1nwp/SWFzKLave97KGKtXZYXVCqWZLwTGRkkNSaiXJNTRJoMUalIIF3XxRgfHh5iKtqYEouyrlSBWmOuhaMn44xXShN3pWzaIXNG6VtZ0ZhWGjsboWvI2Vyq+VyVYB0EvzUtxrIJMirUcEAGhlTafYcBVUvCvTY7R68VMiuyG8xdd1c0LNevD6dB93+cbv/hPP7VnLtYEnMhzDGugNqPx8ZaQbtf8OnpaZl+UiTSXE5R3Mbl5IAUUNNqrzshA4C2yKuXmtE2MRkdZWix2D35kxk22YtlJcqVorgWyHdddmjfcmeQPvF0VeyMJaGpNp892WA0bmuyOGit76/lcHiL/zfzTokONhBarbUFslwfun5Ou/Mmz9vb0+F2uz2dnuKa+vGc5BX5SCiCLwQFaqchIDXLCKh8N376fDuMj5LhYXyIW1q7X8rupJh3b8+fn//xeArLUp15WrfYDw6wpDx3XSiZSxFnu639R02jgkBEKGxNz3FopQ/9vRRZ0/NXX3318ilpz1u8HMd3qr0p/AqKNR1zaky7UgrYHTCs+aNydpmgDxpx1drHXWvdpGqjO9Cw5jur1FmyhPfb1vVnVNu2RqXeoNpSmUb/27X859Pp1CpsixrCexG1bhfrW5q+2fNP41EBEEsUmrWRluA218NDInRchnXejuP7UpLpP9+ute+eSAYCpUyd5k/joUPE13k5Dm9iXI9HeP708jj+Kpc0HBvH15QwN8toVQhbbkr1pZErqTveEVLZD1iHJpPSewh+iraW+2EMGrU0yhGtG5QGSiOr+335fDi83xOUOp9OmPIi8RulMO7T05uH+/2qlRdQ2rpNvU7T9HD4bn7GYdCl/qHr6u26d8c3aS3B275X1+uLUta7sTHocLxN0TgSXHLN3hyUUsvyMlprHa7zJCJdN4LQum+kWsvHvg/GpFRfl6kcwq+FjXVQ4KVEOPYPy3oLAY1T1/tmTa/EgRhhRbY1mQAI+ajoAWUtHGP5bMNSuY3dt7cXRTRQ+F/SprruLYixVu9pz7l4NwjauF6GAI1zaWLdgKBLzmM4r/vHRrsi7837Zcmoou9qTpjbMm3Xx+Nbh+eStaBJnKuvHfnbx+fj4wEtx/X21fC4frzND9SS7nyf9htDVBj2xM4FNAvU3ivXyqsxpuaeCRveSQkzxxiP46HWlmKThn3fF7zkaA/Hd+t2Y+ZxOE3bC+mtJm2g0yogmi2mWosNSdm1rU8Eh/E0vFz/AakM3QcpVMqccnd61Hv+pZY7YbD6WOoeOvx43aztYplcCNdrVlaTaUqZae+MhSZ/4pZM+62CIOoZJAsPSNU4nqbL8Xyal1rFaz3U/YfQ6ZwE8ICg0OzaIFfTYbXaxZynPbKzFSSX2IdOrgkNUnBAkvK+t1yVFAVv1LnWWkpRGokg51RaNUah965BTmWFGkLwhWvNCxXVTM3JOaOInLFE1HLR2sYSibQS3QCZGRQULgwcmhARkBZGUAQApVUiAuPX5fZ0OizTYsidT4+fLz/7Dre4AWofjnvNuebWmjCIoHI9SgVuWgEi9n2/zHtprMiklLVxWttpX4WELMYSDaGyZtrXKlxr9d4qolprreWHunPnLdrXdXmBKhpshaZUE3YMAJIIQMAIFgJkEQIAIIGRjCVVas3SNKnEFRUAQGtwCF41IZZeOwXNAihQwoiClsgbNImM1tK4s8YAQS1Gk9TWqa5WJqNTzufzeYtRCHPOg/GllVpr6Fzat8EHg2CJls1okq53t8vnr75+9/nzZ9IGCMkGLqxAas0MzSl9sGeslFDFvFpHxOzI5VjQUoEyYkuZGhsi0qYxby0XYyxYtexMqgeuvZdaN0S3JTCdyXXRpglUAuTCWhNzrSbXeLTy1dCd5vvraVTL8n0f8s/ZGiKrNAoQGhaVCggZaNmFer1eH/pvtmVCPaPXWzaV1IPyStpuZc1bh7q1VjSeCGPG0vRSdh2wSlbaKmWgzmVJnem06ZMoVF5VpYSu+GnoAkNb4941PLLNwBfFosuItk3RH8NzngvK2R/wXvD/ap6cdpq00hoAqBUHfPLustcP7k0WAooPUMip20ZP6kMkINW4ZmsI2uKdguJQjpn+4Lu+gW6MJbHT4UsMj3o73S6WcOj6fY1aa+aqLBr3uK3J2g4ARJrSnMsS0zyY3yGVdbuNQ2itCFdNBbA0dqVmq4/G6cYpbUejR9tN2zqBujnnSuyH8bSszz5Yq8+hrTmdxJQGt7bz+TDGNDP33LIwGmOYeK+RtPc0SFLSva7r5FxHgMBJQSgRkbLu/LJEBG2dWrdr6Lvp2o6H984vIsp5vF1/BDFBvxdRpU5gbUrJ6fc576r7AbgpeY+IVV6EjdVHYYdggNqersezuyzXYSBCxNqlrQWnWi2tUrVK2KatdYNSZk95QlQpgtO2cWytSCOtXOecQIvbWkNu++OxP27zi7ehGzCWlfND56ZUkJT2Bx/jklJBMFLZ+45AeRu2eStcus6/XD71h6Cr28t0eEPX5UXwiO0pdH5eP6rig2eEykUDNKAV0BE+cowmYOjDjz/9/Pj4KML7noMdcjuw+n3QD1z9vH/fubcpW+p+KHhGmLQiSEG14AxLS0Qa1NN0//zh7Wm+b9b0hBqppjpjd45p6jqqeQUWha5sunOHe/mT0++4gqLdOs3cF+a9TJzwfH6Ica2wuFBjWrv+HHcRICUwmG6aVmNH41xruZTFki9tcZ0uGfYozHoYXeW1JYNKgwKuK8vU9+G+FNTjG9X/Mn3CHgFFVTIIqa5mNOumsIyD61EuuawhPC07hMFT0wiLpnJ/uZ2Pxz3vp9P7fbfL/uN46FsrIoIstVZNRmtbFOxbRWQwe6mJa1BKASYunQ2Z2HXuq5hf1/SHcXi7TW+Ffgx+XDd27siQpunHb795mu9L1Svxqaaus31Mcyq3XOfDoZ+gbDMNR7usU6tnZXkvnwhDlkLEnfsqb1a71YY4T0nLYMyMoEIY77cvAttONL3eXk9dDv5dLdiwAKqcUFnFMEGRmur5eGaG+7o55xwQcrsj7mkHYKeVBjEKGvGWk3OPrbVSEnNFEq5VoBmjXnJ+Y7pg/bVG5xytsUFLDo79Q9o2gaYJWylG6XVevO+UtjXXh+PTy/MVtXK9n9IqSs6leN+lVIx1pG2MUYiZeWraG/ZWtVShaq115bXCbh1tW21oU2uiwDjHLLUAAHHNIsVZ00rVxsaYjXFaSU6VtGmtaWv2uoGB0jJLIK2WuCuvS8sKqZRSc7oYcaH7cZruKNoH2ZOAJBQQAMJOVJWavYFUrEAmQAEgEAHFcCADIlGYjbZcs7ByRkRyrKO2pkpQhgioFS/QmxB0+CJ9xpZtN2qlWs5eG42ArXbG1ZpVE9IqtYrWsohSKudKRAetcqu5tMPhNN+nU+glFRRwB1typibHYVzXqMg10YR24jtwG4KvNbI0xXi0j7LTEqZco7HKkeYEXBAtVZS+HVHfCtxKUU5/bfUx50vjZ+vOtUkqdez7+XrtvGvCynldofAO0EgrwCDghDUIEb/W4recx0eX6t4qORtq23OznQ+cy3y7PzwOTOnnl+/ffnhoNacdrOlbyp56EBeZE6RVlxNrznl3tNdyUKHktmspsGuyTrtaYu+RY6aqO31iNd/nRTlrnK61iGqF973EB/N15Aq1eFDi9ARcax3AcsnQhyXHzllKUQNuDEkp/D/TIznlgpVUdC6dsspY7V0fR6fAECMYAW/IGaokqZqJgCFRZx+RqrLtemdrf63plblKS86aVhmVBtHGdXW+CDawrXINfiAMGrsaYS0/WGvHbkx709Tfpnt/tI03wp6EuXBnAojathVssYGG9rBhDj2l60U7vwB1+pA+rebN3cjvUvs5DOHlozw8PO0pVr6Nw0uJI8lxXbfj8ezd+PLyMh5skxm4a3U6PYR1CTFbVvta7t+O719efjTaeXdel+1wDKVxK3ocYNlfVFClqFIaQj4fXNpja0curFXyIy91FRpzYWNoi1etNYoH7nOeWdZ3b/7i+tmejj/V1KHNlW81+6APSGspsTe/sWNc4871qLFr5TrfPn14/PbH/Zfj8cP1PomsTw/n6R4LlULLO3hfqwVdCzxvKT10f11jr8iI/8M2p2CGVsA4DbpVitN2efA+JkWqk1aHQDUXgDEnO3SH0u5hwNfXqzJd3/ut/LLnXwQeT+Fhn7/oGpGlxNty9uNdc6dPtcQ1/szAx+Hr3g5x+1zbqsiDGGf7BpLyqnQFbKK0bF8bK1V+3NM+HA/X6bPWg9KDglKX5dS/ITlmru5QP93+4Q2977q3pRRyqyF1feU+dPf556evv/78aR7GN4i4bhfhdeh6q916/cmYA0tQRrGsItGpHjgksVU2xtVY3PfdqgHZIatGV2OVUmqPMfhTzpUhM85CzG1sovf8KhhPhw8Ph+/++Pvvn558ipMS3fnHxjHzTZTNcXSijMPSFm2ktFhKKaWNw3GLcjqauN+8HUqy1vS3+yfjG+n7Nqvj8ZucKlAibMSGi+F+q60423HG2nalY6vs7XnFxLvjsgTHwtaYvjas0oH+1Bob49ZlPwzHfd+tdyLS4CeCYb2bzr9RoASX8SSv1++bnMJB5rnlDL7PpF1r4TJ/v2Y6n8/LMomItRYaLMt6Pp8NEZQCzAXdjj41IYlakj0Oy/VuEJzRNRcgIm1Tyc65yxZ7P55UQOGo67S+qpzt+c28zdN2fzyPdds6E2LM1vjSowaJ6zaELqVUUJrWey5jpQygvd/3ZIGejo81p1JKLC+IilgF15XM1vrSahNJslrr416Ox/P9fvfeB2eYeU9JFBQCBuHKjlUHNih3L/eGAJpAKwCiJprJAD3zFIzlVA1SH7r75X56eJjneXMigtY7AN7jIiJauVagEwWqZaxVsKFlQIHYOFJUzSrW1AiYudTapDaQC7dRhwE05laZN02TaouUTec1pqUJai0IUKo2quUmZEAKAoCAgHa2y3lXUCqQ1l86W5vTptZiUX/5Qd7TTqhA6b0mTdpa23IpUA7W90y+wqCsRUOgrPX7dvPWaBCnVUBNoIxyrYll4wOtcfO6R+AU58EHYpXj3fT93hopgwJQi7FqjavXHdR1dEaBKVVb1+W0KcoJsQkrY0smR11v/Xq99p2eUxq6oIiJ27quthsbY8z1OPacY8lbP/ZAat0ygaam/NAn/qzddr3FoL4iHsaB5uVnVLPx5z3pPTbtTBeoxmVbZ9N9q2mtaT50j/u+q8CXJQocT72abi0EB/rmvb2+VO8DUFpTdM7FmJ0NxrjW2rKtx+Nx2i8E5FzIe0TEvnM57dJK1WSMS6kQKgCIORGhc+5eVteU9f0u4Eib1IDwNS/joWyv0HenRinXWVfXd+fLMj28P788X4JztbCxCliYq0jD/5M5W2ZPWlolrbx1uqERHM2DgqSoWK0FvLA2SI50YzIaEFNN2eqjoNdaV9lq2ZxzClCaiChr+tZMyYLh7xT6c/f+fkl9d7pOdz/6NW8HNwDXxolbBOBS4TC+02ZssnCpNWWnnUbbpIGute2ehhqTUqoSMKEwB21FhH2My0G4HoYjt6txXLdjk6XlvvLNB03olGbGCUTFpQuD1Tqp9lRTl+VP1K1bqnO6/vbN30g97hsjZSKladzj4ru8xr+T/Dcav4nyivZjLbs3nTQA1FwmaEarN8pZ8GuTvM3c+KLIEula2GmnNDaZXCh5gXH8AEDTfUcwXVeO4+n+csjmP2tNArZkQorO57SKpIcaNm31ukcAHWyY5zsFt5f0wfatdNyUsi2W51JnG5LvGOrv1mk15JEBEckiWhZqKlGtPeJglDZqW9af+9HpEOb7n3w4tWJjkr4f95T3tR7Gx2v+hzfH83rbDqeHKaau8y8fPx6D+5yvx+5cc+s6XxsidEGFebqF7kAElXeBJJCZq9LAzFnVYMa4lOMY9u1uTV+LQmKAWlMlsefTuz3l59tnf9BguE9eQCNigz2l9Pbxm3mercHCgmC0szEuMa29D9C8VGOefgA+lDymVLVppU2dNzWXzmDcYJ35V7/61fX2WRu5T9ehP+RNnHPcFGlfeVG6pmSwPTK9FHgBJcJHYaNNEREpoRuw5Emp4ozNUZei0EmD2SO0Cilz352UMqXVfd+7zu+paTTn42merr6TaX7th7GySGlWn3M21vjSFkXMGRSEzf2+pSdNRzJLTq8gzplDzqmy8mGWag2OVV5EMEVvLFWVWQphba1Z0yscrH7garb0c5O457v3GhERnLPH6R67Mb/GWwRt0Kqa9iVW7RdeDt0JkGvN1tovtYbrnlprD+NbaAvzWrBlcsxei7aiI70AN2m1M05rXYVjyqB0l48bZtereHsN4/DKuYEKKviMVUsssR/Ccps673Ot2hrhYy1JIdeWWDJoAa0aNL0X0/nEoJRpW5FS+77PORqrSilfyohijE3kC4arHW1rVEozgyaFKABQUpxEjcFbQslJhK21DSHXovuOU4FclQAiMqlK0BAAW4npOB7jslptRDDXorUuVuZpUcpYb5A450xoRJQ0RqoMrQiyWCBkTEViBaeILCpThZn3VmasG9VT0coaRphbnVu9SZ5a3gAIQBmdK4PSrVZUAI2tombCaXCckzQolbTWvaPzsfvDT58f37z55ZdffBea8L5vAAAIvsFh6Nd1FwCtdSyZAYJzNuWgTDBWM0sDpZRSWoCOqDQg1GIQLCktymrHLJT3w/Ah1WL0RoAthaHzAAuxgDZLTM4FZMlpd8EWLrUmxWZwI0gDqjFtvR+p2i1ftbMs4N2hFvE2bPtkNZKhknZg6axNMRdgUsaGLpfmifI2O2+11pzFqS4t+fju6fX2nMs6HgcEM93vUsvD42mb0xy30/mcIZWSl2l5OLyDZhz4XW7VL6kWqx/LqnqDBrcdDHNDlUvdWyUFh9A5peu0Tr7r931HUFpbQdi2peu6kjIRiQgQAnADQUTmWuqXqS2U2vq+b60pRfO2GmN2BYAqNCWZi0aGBrmO5ukmP/sOh3xKEVY9K818z9T3KRXvfWsNEWvNWpPRShcqHehBq4KQNFSNGig0BXqrRaC5RqOgbdyAilYFijL2Q8zJ9tu2XSydVA3QqtQn0JoUVN5IMVJUuMeyPcJvGsB9K8m2LBd3Rodb0LxtDakw56F704rXUHNeqrwIn+FL04tSKKhIMcq+ZX2sj+NxnvbotO8DblvcbuOH07b+qtIPxqR5UYYgrVvvRuembPeAoSQFCDnxutLxeKhtyfLjOqveYC3J2rfYkuL4JvyT2/JT6OrOF2litKOmSgNMg6G/VMft5frfnx++QTP+8c9/ev/mQ+jfvlz/UYH69pvT55c/rxksnaWqPnRGcaukTE7l2vtDWg6Qn4gKtlPaqx+T8Qrq0Vi+Tr9otyr1eJs/DkFb0wt3tWVweWv7O3m7LlMnjgh4nV3dRmc2hGw+5dpylgO+O/jHLfZOjXVz5K/aaauVJhVjbK3VtRnvvCsFLqleSVtF3GDPxYo20h6XNQvcnQ/zdtUq9Cd7nf4sLmxlQbemxFjHfQXjXXHrwb7PabNaczOlRGOne/wUupBkVSiZ19YSABE6aIecQNR42344hIf5oh4ej5fPz6fjY63XvWPyY40qEW759s27M+fSokRR2kMqsWQxtp/S3XZ2njPRbHQotbDUYRhJqFYxRrXlad8aYVHEx7FbpmLzUSJO03R+6A593ecJSqft0PdDktn1n1EekJxxW1m55QF4E/33LTtNvbVuSWs/hlr0sl27oZLqpI6tQMUkWJUOwgYAGFgrj0ZpHFotKEmpDNgQpxAe1m3a4i6kRPwyUzc8Zv6j8W2LqwJDJpUSARBVqPl8PNlleZZmg/82pSTCSikCsXTMKjIWaEdSs/XT4J7uWRQGRUZbm8sGVNf8D+s6jcM30jCYgwjHkmuLc2EmWOs+T3nstag6s65dH4w+JkfGlJorV66ttaY1glGo1GX75EgZa5GMRt2QpW25RpRRaz1NF3B6HEej1bRO1vjPsFKniypJohOnaiY2o2mANqfcdYf7Zeq6w56jG7ppWwP+kGs+nc5l3RVaJN8KKEFn19JaKVV7Y4zJzIwASgNb67oKbS45thqcVUA554KmiBzH4zzPDMKlkELjnS0TfhnXAiBoFiegWquqVmkNRJTSyuiGUrk2aQ5NFkDEhrBxsdYvMXdWc2tfjNvcKojkHI1T2phFMiGLMAoJNAGsIBVQAzaRBQoAizADK8BODGHbarxCfua8ACSESiACzro9JQRypBTKw/lkjKq1Wt+t9xtk/u2vflsqK+Ih0Da//PPHrz589fVLd3xd7s/3Kyi9l6q8Tq1elvXYBxSIMQLAOIR52Vnh2rJrudPKoxq1NiB520romVCgiAAICwihbiJB9RVvMa85H4bQ2S42qvsECjdl3NgNac8IcBzGaZ9jTQf/Hmh9nX84P7yN0Ro71rZLfe66QynFEK33i3H958v9+HjY66ZKKa1ZNHspQtAaC7U9zYf6hpCdpTXe720ip6yO45vhevlU22I91JL3tXj3GEa1rdcGewihVZsijuNTtc+1luDU6/YTMw+OuC2d6Tfx2nnRZXm5h9ARuEN/XrbX0JW8Q9p753avTNNfZhVMCEJSuFjoEGQvm+1sFVm26HwvaFyAddmVUqAItdq21TlXaztRJ8CVxQPmlAkNA3tlPuU1FM+pXPqNFQwcVC3zMUmCoesREQAAWKQhkSDjvyEzoDlq31orJEZbJ/oAzjoiyRqbNgBohK2R4DAEwpI7ZccCF9+Vy8eXb9/8tmw1KUABTQAs2vwX8K61di2vnba68Kk7tAqm7697SiJH6AmxlOQ9s+xNGGUQ6bRnaQWFNZm8Z6V0N4ZcNmGlkyBidrTl3StQyLHtpT5YU4be5GU0dk3lByVPJe26b8f+Ny+fF9LFGJ2T+KBdKHH1OWrj7iyfe/91TNDgEvqwx9lYSjsoeJQmZKYuYFyLhr9UVoGL1+WXVKpRJ8Jgrd3KL6M75TwDLQIqb4eH49fz5dqdXvPaWz2i2o2P98v9qw/fvr6+Uihe/erl9Zfjk8bma4FWI7Hxp/H6+vEw9JbGUm1sO9u45Uuo4w4/KG8d/QoZ1/iD7cZ1OVPThzFZ2vKatG6xbb57V8pjqj8RircuOBu3HZXKqdrQacEtrkwNKRsq0LiyQt0rHn1X1/2zkLL6bNSwrFOTVOwnVU6OH7Dlpq4FE6kD81EQDO15j4fhXYN8uf/hMPq8CdF3WkOTjbB+OY4Q6Zyrt3+1l787HLq6emeJdEr7Yp0EGJ4v0944jIci5Xg8rvMCLKM+NzUj0bag7zuQGRGXm7ju2ajDstDp+C7ueRz0ur4OvYmLeG9Dp3OZhct030f/DmXYzY8WBgUBOKMpc54ZvfVPt0/PjX7uBoE2Ane5rN57ro703OKDtef79tOHb0/3+7SnZixSUzX5sTui2vZ0qU1rfTDGtj36QIKr4JbSrk2oRQlrTUakiMjD+cPlEvvhad/3mFZjZmsDN6gtB4/rNlvthFVWSUSAA6HP9ard5uzh/mLHfm/x10lW1b1w7S08EtyNmQXdljfEpoza92iMU+RaaX7M9ymKhMaqIYiqW74Ilp7tSyI8ouIEdzt4u6t1U4PeS9eFGLdUk/FaREprh8NhXydExU21SgBgtFhTNNZp4cNxWJbFGMXMovSybw+Pb+rttfkQE7umUKviZU3TqJRrh0awxKy0jvs+jkOue5bSMTI0P/apRERERGlQcxm8u0yzso7QaDLWmJyzNgYziMaGba9bbnUInQaMWyJvSylWG2QhBUbpkhMA9HiKLe2YG1VBUa05REvKgk9ckzTWRETcKuckJZPplNGlCSoqrVVuRCQIwgWBrLXbvgK13KrzAzfcJCsEEqAGAtQIMtQkTSdJGnbijIIsKEQCAHDHtNR8b7wCNAQkUEjEkkVIKacMtvqv/sW/fH75pLVCreJ287r77sN3757eff/jz0azxgot/ovf/dfLur/crh8vL1NJ//H3f49WNWbRAVqlUhRIcK6JROZcG2tAAUvokExrgWkk77SJXL02xM0TGQQtyijLzLakcXhoVYR3YMSmvXWEDJyt9cKY1kiAw9Cxgb0lSkop5YJf4o4atml6fzir3LIDFAGRIfT3edfGxLZXyb1R0iDYoRZWyrRWyGLMu3ZPZd++ff9U9nWPK4Far/evH99N7SJ8UHhYtl+6835ffkTpND5aCq4L83yvEk+nQ2s433MXjjNHAwfLWmNMeWliCxvQypBh+pTrvfcf4qZCR7lsCIaoWOO3UlKupJVISzVpTU5OIqXwbjyV1ra9aBtIOaW3fd+V0iKCRPO8dl1XSjHjkXJuwuxVTblnAqLsFayr0GMtEuzeZEEduIAFLkIhhG3bmJk0lpKUhtYa/h+7A4NoUljZkx5t4AYi2Elx2BvphbUQWo2GhLgMqmO9zek+ju/SJprz4zjqpiauwPKlfpIAv9SlISLyJ8EO9OOyoSLfcjx40lRBPig7N36ptRIcha0LuvK8rGyUHMZ+7Id9K/uetKaU91E9shWGHfOuersjYMWuqsQV2JFZmA8hjJV+zAn3xVi9j0c9T6tRR0RjjImr7d13s/z3XeBSWtpj6EyLT1afC/xo+MnoPvOGekZEqgdvx2V+aSI+9EISW75PuzG9H9y8fiSHhgqxJTgsW9Q2eU0WBlY7iCLotQrCayqXd2+/uTyz6T/t6wmwxvzZ6MMYjtN86dyh8SaixmDX/bnCUkkDHtedvgtdzLZIEro6q/aFUZO45Za6PnBv/PScgyP0e0UpdZAqWiFgI5CWm/dda+xCn9a5oem6h23ZpZZxCGu8kVMtU2sgAKST4CzQ7tf6eP5u46vVChsfwjjdFhP81hKrphSm5eU8ntLslPOV70RkZCQDCtQXJhKplbwCltqipbep3VyXUwpQn/oj3udfFI5dP77eP3ajXad9sA9erOHc8gz+zeFEP/780+Pjr2utqV76vr9fWtevJQNSt29srUWIXQcxXlXXGx32NaVUrNWd8yLy+vr69u2BAO+vW+ff1eptr173P6luThuW7Sm4N03uImspLQTDsHT2uG1bq7brH4cDfnz9T6SN1x9U1lv+0XeicGhVE0GuqQp3/pO0vuyjoUcR5TwUvtS2BPoLpJbK3kBOx4fWWsorUkMJ+773Q6h5QWIAUGRagy2XEEIql3V/Hca3Ck7T8skPs27vIv4d6dGpfzqvL9ZOyJi3dujez+tEhkhjKaU16XxPQvd1rZxtp3LbMzcBnQoM47G2ta0GeLIdzsXYANvy8RzeT1Meho6RSyvGqphzay30ncSuQWNJtUWC5sgq8grNnK/OuVxi13V7SsroeduNtY/KTtzWvRzNkGvhAEVyEC6sUJvcOGi73O7O6IrNOKO5R5Q178roUoozziidU7V6X3O2IbQqUpsxrpRERvdaz+vciLU3RLplJjEKdYRCRLUkrcko9UXnVEp5CHovOYIUJAFDTRnWFl2vtr3VnWtDEUQC0QgGoVbtujCtiw4uc4sxdl2Xc0YtwgCMqe7Gmya1ikq5NdUMKGJClgatEiSR1HiXygiIKCKNYYc2YU3IO0phaY1Zvrz9cvQBIP7qq3d5j3/5m9+UtCPKPM9a63HAr56+gUK1ICI+PT3O15dgdHV0OJ3/9P2f+/H43/2P/2NlbkillGUqFtChHLqwbZsfxuf5ZmxnhZAk1wQkSqkaMwD0rgu1eesMiEWlmYnFasMMpqTeHxSSQUYhKWS0NhYkFufcusd3D08a8Hq9+jFsNQe2IhJzRqtTie8f39RppsTwdpxur0ZryU0adN0gUowlrnnfilUeQCvSKUfjNKI89Gq+T0qZ1LgoTaZLkYdw7KVeL/Pp9KjIANC6rseHcymlVaktA7CxVGvMtaF0xg15//fozMbKhCHl6dxpk21Pby685bLmJAiO4W7DpihAfUNwZ8TUoDGQVl/Sf8YqocC1OiutJmYG1KUqa8Nt+xxCQMSYUinNORdCmKblwR/bHslSpKaE1ZbR2F1DroWCqgU9HRrvYre8c2iPTS8hhGVZEFFrAmBSWGvG/x05VqiMglx9w0G5CiiKjmCCsRakcUJibzoLAxVDkMglbd2+m8GFki6P43m7YHOu804aI9RWttCr2vbW8iJ9B+5oR12QiLYWE5UE2dQY3IOlkQsq3apEULzvqe/ONW+NkzO2ZAHGvu+RxLXDD/dfhh4PBua4rMqc+zf63rpDSDtu8veEB5RvCl4Bs+8H3I+1RVLNWJiX536wKTVCV9vqnCubVni0Tqpcu3Co2dX4qesfY5KYyzB0JW+tLiDxdPruTz//u6e3Z+bD7Z7CQPfldj5+lXmyBj/9/POHD18V4FLyw3jcpr2Wo++XJpvUoWbbhbBO4M17VJFpE7oKq95/8/n59w8PwNWJfFLy5PTbZd9Kiw2rmAXdfBhCSd8sW9rL98fuVJcnIfHHa6sUt6Saq4keHo++a5fppQlqMUoplppzBBZrfWvNWg9tYlI29PtSpZrz4eE+74wUOnW7TePYC257vHa937esqAOQL+pZg1RjRK0qQSUgIket7QkqKee3dP/q/dfbnBmvJIar8e5IoFJatWoCpUQL5BpOsRVnvso8G78vd3qCAe1OXZn3nLJ7ePpQ87xsn7/ufrvtt37sakNGsI6ul3vnDsF38/piAizLNI7H6To9PTxu61wadcETkVEmxVJZrPHKaNCX+6XF1Q3Ho1CattdU8jCeWQLptXEkdNt+d7YKK5QjCmsjcV/Pp6dl21PatBNrTQ/v7sufnSeUQRC1qeu6xegeTocYN4E6DENJWVgLK2N86C+X56LNqfAOagJMx/79tiiwtG9T8KQ07+s2jMecCwBp28W9WWtzuQMl37kUi4gg+Fyadt56c70sJEetpMLngbotFuNHVCq3fd+uRFvjldt32jTT8Z7vMe+1mVbt4fAW51sN/t7unjBUOnTmkm/c9273Ke/aGZGWa/kSxVr3vaOuoRZlNKGCBrXU1iqTUpqZSyshuFiycyGXWmv1vlvaTqoelZJcp1J6c7AJlz5tce/7rsTUWz/f7r7vizDqQkTzvHdhyEkUea19TtXZBbTOpVlroTGXqqyatuXYj9s+E4EyZJTNmQkCN4ywe2+RpbbsnJumaRyO3FpKaI3SwI0TgIDBJC2VMpgALKrSly7dQswGQaPPtoJUbEmaIHBtComZCzVmkNrIECqJrey5KeMLR0QtjMzcsGSUwiozgIEkbW8ltZa4FoAEnBGQTGsNARQgEzIhWI1W/6u//MvPn34BkODtvswP5/NXX331xz/+sdfFU/frb35njCstPzycfv+f/v7br3+d9XS53PZ9dzY8P79+9+vf/N3f/f3z83PnH42SWmKr+f1XH1hUqvL45sP/93/5t1/WARTWRF/Ya02ahJ21msWhsiLEEJxDAQde+I6Ne/Pm0PUKtpxSy+H90d/XWRnXWtOARulac38cy6QF7o8P/vl1BhkVWq+KxS368fPzz9988/Xl08tX775ZbotRUktSRkNDaz0ACcMXiUrlthIdupDmKTilNNRcDs7Nt3s2cu5/1ZLb4lWbiws1F6rZiooKQtDHZYkhmCXerdeMbPgJ9NRIWj0yI+FKXKl2t5hcKKGHFJmbASzatJiWoH1lqkAsShmdcyZsSmFiFK6dN3nfmMFZv8eqjJ3SbK1tXIiIBZ1zRHpddq/8XXbtScdstNq4ovaUmBUGKantuzbA4dCMktp6VXP0vispf/HAaFIAjCT4X6HvrOldqDnWXJzSFo0zFqU66CwHFEIq3oAjrZnWdhv7d61YZ0wrr53nshHUUcKtcwMXCrZf59j3fc5ZKUTJLDlz0poUaKuPUL0Sn3F2rpU6GbKteKSOFFSOnQ2IrdQNEYFJWHkbALlUVgpbzURQgZsgVjr7cYovir9SJqMRwH3ZXqGdxuNY6nNae++ODEvjZPVRKYVqqYVKDAKtC4daVIWPpJKBX2O5ol/BwLaB9aa2a81VtZPt276ElIsJUyw3Y95wO1Ymi5tUMx4065d53xDeGBnOBzfPs9KAKCRWa600x3zvPKVW5zuPx5MwIZh1+xkFB/3X2HKsK3Uz2XXdWquPCOS6tF9W1S3K9bK/HYLP5fepTMBnP4yAvuSGVJTGknHfatd1rb6ioi9lLNZa5tpasc5QPlVYt3pxHpCbVj4XKAIA6L0pNc3T/nD6yuh+uk6kIOhh46vYuC9xME85NjdKUUtLjxZUZwRhyy0p61E0cy6xV5qYq9FA0BrvRotAy9Vbe5qWe3+iebl0na95R8TR/tWyvQrE03FMazHGl1KcVapoAWuc3svsgl/m7GwoefF6tL59uvz57duneYrBHPY19qFL+8ISta7eO0B9vUdEB2iy3LUDO9Dz9QZoW8ax63OKW1mD71kqEWH1XTg3uaN5Xa7j+fABJNV6aRUVnhkZaNLt3BjPp8dUlmn+BLoBd8G+a7AjFqWr8zAvVxJQymnlUv5IcBYejFciV4GaVo3l2LqO69raYg3Vyt71uYgIKgiuv8X8mlM/dG8Y1mW/BD+kglqGKi9K17ydgXSji7LGcqtc9hpFUatozQjNEhsallLKvu+ttRACES7L0lrTbrAWpMCeC6isjNNotvV2enw/TZM21FptrQFgCGFb4+OhLbuJLRA6h01kFyziiNdorVZKNanrugop51zwfX2uMuhKxWsqwpeSlfa20GBdKtualtOhS8sW/DilDMqyalyLguaMZilNqiBUZocnAYgld85boFaztvq+TWiOCM1rKHEhIkGjVFi31HWamXOODHI4HLgBM9RaY529NpoUNABAIVsEY222K4pJiyYhZk41RShMctKHJe46uGlbrTfCjJVRYGm7NV0r1Tgd656B11R8d1jbIqhzgyilQCwojU1t2htZpFw4RRYQAAEFhICCioUFGABIozEmDGEYhg7tljZBPj+e+74fuv7HP/15W7Z/88/+WjIs0/rP/6u/fr78Ekt8Or6xahjN9m//7f/8l3/x13/6059/97u//Md/+OO67gB4Pj3O2308dg9vz0/v3//44zOC/8Mfv//9pz8HbQ/B1y2utynY0HVdjOn79e5IY6uetEOypILRzCycPZ48aQ2LQ2VkQBbjSlfsFLeHr968vLwowPdPb14/vvR9bzolEaSCMybVxXtXM1DV46Hbylq5iNIoujO+bnsf3Mv1xTlnrSWiUpoiww1zrgaHQ+eW9SqqFkoN0sP5UFJMqbRcnAlBjSmy1tZYKHUrBfuug1avl+c3b8+pcWO1ZxGdDGEwFgoQ6sS5ai6tSq6aDs72e7rVtiOSdwM3ALk2VEg+VTTatloUAbRasRGgJmpVRKQRZG61ifc+l5hrtU47G9Z1R9KI2BU1YQLVXGsEWI0CZXlvp8HfSVeOuF9AXJSjNzDg9dY0CRGRAp1TMsZwqUSA/1T1g+BJmcIta7HW+oKhYTZVi7WiLYlSTQN77B2GiB7BU2tWRwLU0AuX8xlf7kWjzrG8e3p3v968U7lsp/O4ZcTGp65b77eud7fpJRx9gWKAtArr1Mb+7b5l63ThFalS9aFTjWMpRSqBGGc8ID+nz78a39eCSdt5W9/4vqUNg54X5d1gTKolD73khFoeXf/D67W3vimF87yeTqd5nglGq97m+ucKq/MklPctHfu/yEmBugQ8TVM+vX0b67ynDVFZgyXfQvBL/nmP90P3a4J3seT79iff5y4/Luv1eDxvEcVY0rnlYjEcBrXcdbBO+8n6+umX+f3jX7y8XP25kpyW+Gz8vtzh8fxOqa1x4lxyPpM7Vpqu86fT+KhQcnkVAKHO+4ecwIFGTohJaC97Cf799X6zYyHVSlYts7O1M+fWRGmbUrLebftUa+p6C9Ghpdv9/vbt+7SndV6GczBer0sU9go7oF3ZNearNUNJKrBuKiwVSFXiyWlJFVGPhWOvDvt0G4Y6LXvXfefMSamyxOg8ASeBIo25kSZfsuCwbQuP3bdbvJB+pnaoazeOzdswTcvpdLhcP/UH8/n6+vTum5TwrKjzby/zFcwWYzTqPPQHxml5fX3z9jRv87aWw/CuZeGWatmSFe86he5+20I4FaiuUy+3n892iYUaevL9uq6EtdcqWHPd7p0dFPl13Yc+iBQQV4tmmBXSsX94fX758GFc1tdcrMEPxm/TvHaDKnBvlYJ9V0pRZt9WY50mAhGJWzqMDyK0zLHzel120GAdNt6cAqtVSTmHo1Z1316E22E8b2sh5Wpl5OZst8ZZG7Gm3zcFAKgit3M33Pf1ZrCz3jfh1/tN9wUiad/dl6yNLdweTsd1ubRalpRCCLUyl2qsQgQR0QpRh3v8TPZE7J3alns+nr+77r8QIhEhSs6567oSCyIiqF7tc5GM2jtjiUvKmYlVGLgBQClJELquA4AUS2utqiU8Pn1+vh/10FpDjzXvJ609PhYoW7o5r263m+uPiRW6HvW+TfMx9JwakS4CopT2gbd5r7nrOi6VY9QKGJrr3K0+IKfBiOQFUWKp2obMGAiUUqUkVJRKHofj7Tb149GVnFrNisEoFoHanFDQ/nl/rYCVFClHRErYAhiErUqsGbRaU+yHkPbYa9tyWoW7btjmTWtKHO3QXaa1AkWTiui18cYpQS4ELFqaXWADBAAgJIWaQRogABMTQwOFoIBALMDZhYd+3NiueUOvDg/HlNJpGP/4+z/+87/9Z//mn/6TP//jn/7yd7/d8uU6//KXf/Pb/+l/+He/+/av//z7//n9+/e36xRLdbZ7fr28eXqXcx4y/7N/+U9f18uHb999fHn9d//+P29LC2H8cDq+PD+3XHKKqbU3X31dtfp3/+F/vaeqkbA0T9oTGUSDVErSKjgtmkFyG9ANnTEAWnVdbmzVraxktAHC0k5hlMY7ArWopQz+wOLXPY5DIMh4bzqY1+3ePz7k1Kx2Zd0HayukXCIiHI/HGGMtCKL6/ljwOa+pM0FYCxpCl7bSGV+65xq5cz1HDC7M82SsNM796LeZLQzBDqluQoVV2et+pCz4VZIh4muGixbjqteAHGLcNAAoXUthLqPW2riYyyspS2bY9ma0BRFLkPbNGWWMy6lqbSvAUnY2uJd9tD0zs9QYt348TtPifUeo0Ciqba9LtdJyOeshs5qE1Z4QxIchAhidoVwduVSCWEkped0543JMfQhx2wEA/6kORtCDMqS+mGIAmARI/KB1b2xpeSvJkD3argPlFOaYBh9arJqU1dq7wAiqMVBqvHFDhQdrAlAqdbFuUORSqt6M25rePDxeLpfgPZYsrI1xpRTnTK38X0j8HhVvig3yqREs+/eHwbWsDTyldgnu3ZJ+eHg4cw6tfubqVPdU05Tj5yb49PQ3a4opf3KWEX5FiHH/YQgPKV60W3v36/nWWp7D+bDkXYNI2jtvG7V7nBVU582+VWtPrRXnQZthuSvA2+C/EpHSLvM6GX9G1dCtuJnj4Vfrut6Wlzdv3uzxkst+Pn6T48u6FiCLUqxuSGx8FwvU/Ger39R49gHX+FPn37bcGb+t9XMtpJTqg9r21Zlza12MJYRkg9ninlMzgWrNpbjefSPtZ6VB4djSU6mg3UJub61O8dO78B2UsJddOnydXr46H9Lt08G9FU2pIpPKchG4HfvH14/ZDr22PufMgApJWlFIyFIkA+ba9tPDuSSKG7ZKIfTayB5nRO47m7eVQJEQgb51DAs4qZWZ3bjmzx8eAtxtVhepR5TROfOFmu26bp7nR3NKMq3lZpwbhzfrUkCppcSTe6fNGuNFQzBquC9zbts49ifUa2LRfoobGpayGRJLeNvfOQ/G5Vxv2z4RaU09NxWg7MmhObJBhpXb9ng4318WCJvVI2BN+QJVjv3X+561qmu8P5zflShDOEljkQacXy+f+3cfgPByuRgLx4O73z73oSuplKYOfTe/3N+e3+cCTdiM5rp87ttASmnnUkpDf6jY5hKvcflgu9ttCqFrLWuPe9pyLdb3IAvpUKuuTCAKgKQVpOrNIaUVsIm0UorTwetQSvtc/sR8PhzeT/Fz6ClORZr0HYLqS96BE1IjIgaNZICsLy2lvUpVRufShuMp5ZZKy6qyKkeL+Tq74dxiG4yZeV9ArBok99isNtRkrvJKNlv79bxNLNEakVp6ZfOWxnCcKxpjlFLrOiulAFhrXWoirUjraVus96UUANBaS2tD3Nl6cV2r2HIVqBFzNeyzM50vwti409YLQWlKqedy/y93poBAKCJNWhU++5BbVUpp4+Z1sdbmlmutkrnv+xhj6Ptt21wYUyzjeLhdfrAuMAtpWyorb9cUS6tiueXiSEtrgpg4g9WJq90pA+hjfy/5UvYIbUo7WV1rdv1w37coDEq1JtKYiLSYJuXLpyptvuTLUk6iGQCO40mhTikZp5vIvE5vn/7i9dMvv/31h3n67L0+Ph7Gw+Fv/snf/uf/+A/z8+3/9f/8v/y7//Bvj4/flbr83b//T2/dPxu6+b78+afv59PDI6E5HccwxMvr/q9//S/enu3t0/yHH35WD+qe/Ou9/Povxvv60z/88afL7frf/Kv/5uWHv//u66d9f/yHj//hdl15JQG7UquSJDVFeqo8OnNK8Nb7e5y8dSfTEUsWUKiVgAUK2nptACC3ysze+NZardUZewh9WjeHaltW+3BEMFipln0c9LZP3MDZ4Va24AKKDtqjNK7FOJ3ylgBUZYPq0A+fL5/fv387z3en1LwnQudsKDUKRq0BGvXd4bWu+b4FtMN4jFJbS2WZ3/djUgbVmQFvtz95DxpCA8MKWt2cMWXbD4dDKTU1LohN8Ni5ZVms0gpp33ffBTL6crnowW4to9HAwqmOYSipKm2nEgf0CO5et6FTsE6EAM4QGVF6TRkAlFQNWLIY1zHDbrYBFVbzWrfOJll3GB9MTVmMpwG4VZun+yWo0J/f4N/azgh6IUWEiAyNAFFgqLYqAI0GyVfwYECpzO2syGkDIl4ZxeScizF679eirCWlsVWRikRaEwLWDvW2z6FTINyFcZ9rzca7UeRH57qY0LtDbQuq3ehO2rjmYhVg5nF4vG835YpwcWSYZ99nlDeXy+18eiSgnD8TnCqNRt84UanW9ToX1SpZd98yezNymXv7jUIWetX4thbc0/fkdMPUaupNgIomjNOegzWlFFItty1uNHZf7flOZuo7v83cWnGhWhfW3W57ybyeg2u8ET4yaO0v+75rOgZf11kJmtAdpFWrai2pAS57HQYrItKs9TKtfwruDdS3rRWlWeiVIe2zfTx/t8VXhpUbAFen31UGUJMNqsYhJqU0bOsn3w/OmZjTtkWtdd8p0ikunTaT1SrufapqOMH18sc3h9NWNme/e7nsT1/755efj/3XUE1rydtJK7+nKowAAFysQaNwqV+ouARipls8nc5aq3WbUR1LyiGEtK/OAre172nbp/Qw2C2oNFi77fRTy8cT/I5iztZU+aTsak1Y5uJ9VwuWROcDNmQGLLEdh8eSoqh9ii+H/pzSZyVHr37LsmP4kbEtt34wJhbQfky5oKaaI9dGoFg9u8ApbyidVW/mqTw+dZf7n52xTg0tK9IqcaqGi8WCcrq9DaEBVK39tszaxZbL6fC+GLstK0vmVkspvXe11uPxuDaY5pVIe2/vtxdnjDQGRnPcNIQS5diHZb2Nx6dlMa2NXX+JqVjr1nlxZMnQfV/Jac2xD+O6pHEcp/XKAKQcKlu2V+NCyqydKyU7j9x27+18AzRYuO2cS6vD+SiMt+n+nX2byraUnVVhXZ1zedOGzlZVgdLKFjpdW2agPWYh6pTJORNhCO6L26gW8d5f9s9j7qoftrY+WriVZXWhSz7JToCaQGuNIrkmlqqsssPD9PLaERG3sTtd162SRRsMbwIVqQjUENw87cwY/LjF4r3fcyrcci193yuluLYBuFoz5QJAtohl7rxjadNetHcVm9SmkZBFBLWzGSo0BmQiBOAqtUkFlKAOX7DgUko/DlWYmWutPR2JQKA2Tg34i+VAa81MSiluAqSKgCCsadtSfAxdJVilRmh7zVYbC6QYZqMu67phu5d0h4bOxFLA0JnNcBhfXl8LQAMhpQCgteY7l3P+q7/6q67r7vf7L58/xRi5tYfT0SgbYy4pA7P3NgzBWvucZs0QlD37/nw4fPP+zcvrp59//v5f/+//61+9/dtOH355+cP57fAf/9MfpFTOL2588z/9D7/vD+X9h8dgutvnrddvv/5a/bO/+cv/9v/3/+nf/GZ59jZtTjapTQ/w4+t8/Szf/ep4Pnb/8Pcf//W/+Sd//OMfY/R5mcy744+fXgYYfvjlPjtY0+VNp98m/RH2e2t/8eYsl8kpXQs7VF47iyoo45SmL7sNrbTWUIGIiAiYS8qOdO/8YRgvLzH0IhhTrFYfGTDz2njpuydhUKCISJjzviHx8The1vkU+n1ZobHrQoyb1Qq4zWiHvpUyj/ZE+VxWPPSUy+tEjQGcDTlXI2IQSo2IwjygEyS9raVzgGrfiwgfHFURyTkisda6P4zztq7rej4+zvfJGNP7kFKqwsaY0mqufq/ROKxlP3W+5K0bwpbi3pzhVEpiP0AJD/oosia1cqupClkb43Yc+rRt2gYWBYBEadlW507YpMiiralRiVEDtxX3tbQnfQZrV9pom/AvrLdADpQSFhFEVIgK4ch+48SEXptelBctqCK3INJ5J6V6Y4N1CvB+vx8OByrKmsEqy7VxS4hilSc07F64KWFbMmo02oBg9F4rTSV/kVDW6Z5O47fTfPF9Bhklw+AdqdKgVRYC1NQo/m5PWwg9mF8aR6wPVrMx+rrHoB5IVqC9sCGfEe8kg7Jvlnu0RhQ/xHhB+/F4eMNcsekiwIBcm9eY0oy2bXkJ+qsUyRgjuKS0df0p52x9s9jvKxndMVSkdpnurpd+FNkwJdTWVckiLZfVWy2slOsZNDeM2xoMgTQ0tooizLnMCk8Ku738ZB1qOsQYSW/Y3iscUa3r/omIrNOkE68nIhQSgcIYGfYmgmDH8ZyS7G0uckGwvfoGqtq3zz4k47+NhZSd0/Y8uNNt2k5PY7ttIqoKCYL1ssyXY//QstmLds4IgXUEAHmPCrVS5pr//nx+XOaE4pGNsaq02epG3s5Trkl9ePObdd2BU+X5eOpul+z0JLEL3Tc3/oh+04JapKPR6Kf7fX58Y+fl8v+n609/tc2y8z5srbXHe3qGc8573vmtubqrqqur54FNdnMyB4m0JDqEICmSLMeKZARGDCTIAARBEtjOBweQ7QQRYkWII1uSTVEDKdKcQjab3SR7ZFd3Dd1dc9Vb73iGZ7inPa98OJTiD87+Ax4898aN+9prr2v9LuTams65fbdYj9MktCqeD5rVNGwZJ9ApOR3TaM0CuZmnYhsiHTfbh2rB3iVCE3wSQiFIQiuVHeZRWzO73ljIMPf9eLi+2Q8Q1L4iaqSeN+Px+trFbBWpjEmj8PM8r5aXmaM0LkavVbc9O2o6CPmhtmme+5IN8aJk4/iEiKSwWpvgi0CZfF60y304CXE+Pj4ah1TbtXdjwW2I9yMft4vu7OT8qFvLAsN+361XLoc5nrXNOifkQqWUmLlu1iEWTFskJ7Xd77O1dnT3jJUK6xzz7EImqBdLH10sMeckBGrqQhmtacaeKkXj8N7h4gB8M0JCzD5Mi2U1z6PQ4k/bVLSUUgrgFCOnbJQOIUgSo52JSBYwrIUyITooQVbSRUjRCwFKY8ox+AgkSGqzR7usJw59nDNDWy1EktNu1l3MCUomItV13W53nnlu22pymRGQiJR0wSPiRUiatGYYBoUALnbSNE2zmwaPxbJiSflffXxKKREZtKQIOQXmLBUicsgucSGCLi6FEDnn2buu60IITKiUKihzzog5l1CwMDMR5Jx13cWYgk+zd6glEhXBIcXZe6kVCOlK8syJYAiuD+5OS3GOwAACBYgSkwABwMeXLj88uWeUSSkVzsvV8my7O758idh96IWP3Lp1a7vZf+UrX/ngs8986Ut/dO3aMWWUUt69e1cpdbg+ODpY3b97t6nt+dnDrjEvfPhj05iW69Wb771xfP24XVZGZijz5dWz42AS7Yd5uv3WCZd+ntyde3cProCf8qpubl62+7u7n/zRT3//zuk0jatLh/cevikkd+rG5m7/gSeW33zlLO7iF374+Ve+//atD9xAk77+pbfWrf7g4vIUt2fjfb1a3Xkw3H2wX67W/Tzd92NbmavLVbx/jsCxVgm5AlFnyTlroIqUERIKI6IQQgKmlLSQF+eqRd1Mw1hbqyNrbZk5lVIgK6sSQMwshtnWjTBmu99ro7q66vfnULJZtOAjJG7retf3QomDxXK3OV9Wybsa8SCzc3AGqiCscl5WachGU10P210HUgNkmfvkRAHQiYXAogQlIdwwe4BljSrnJCqK2Ts3KS28923d+MBEVNtKoAwhpJJjKs65brUUAveb7Xqx9MOklEqIgw9qYWmUMVOyxc0PDiqBjFuXVlWVgKYQm6Zx81BbPfsIQihV2eg2cWbRLbLq856bSg6isvK+O1lI2cr69jC0plkrfG+8hzeFNogVoGAAKESk/1VUJPlkmITSCRhRtKhqVpEYChuSOYV1t0g+lByttUJH4hqzQU6SnJRAbLnYMnVtawtMUqcQ+6qW09wLIUpspZSbM3+wuuriubGTEks/HNjO+57XXePiA1TSuUqAFMKVfKJ0ykljWRtjYjyLeXe4vrkZR8lSpEZrO+edrQ0XzSlPvCdQSqQ0L5qqnuP7nOvFajn2I2NOeWy7mhMit94rZJvlPUR2c26bAx/PE58raXNoqZgCWapYYJRahATMmHKpSWl95PK0G04rc0TkCMeSDBiTucRUcoirtikxpQIJkHMGsRN8WFLLtCW1F6RTKoouTfMmcWrq1X7oF50G8vM8SiUYnJIWShtDRuW1tgjLNEDgkFSfxTbnaLmuhJEYsrs8iP3IgyHbooHks8TzaWpNK012zkvdcp4LbyRKCWuZF0g+pD3prEikiEYvrOnO3Unf91rb9eLQzdHNY90ohsBscgJJFRaSinKZpM6FXV+44prKvq4xTCtNjSiTJT2DmuaNEBJQhHzedVxSZ+lJbeP5cGor4ab9ql34IRQAoesSpZAA1M9uX3Jn5OUMIfOmlw84gRGGmAQSo/BRkajkfBsElsJte7Tf5qppE8y2YtdLX2ZZ4+lmvHL5sTznEnZWJafG2h5PY0QsIeQQpBCi0GTZrQ6Xfd9rZcc5paCa6tjNmcXrTdOkVAh1XS3PT7bGGKVU5IFRzi4RQclRC93qBWfp5EAkc84VaY4JGUIKsjJz7lPkRb3e74e6rknKlEVMDPhaCau6Wu6mB4tuvTvHqmqYNns3aG2NqUosJSRIXgsgzIUFY5kSVfWxzynTXmicRt/Jhjn7MFaV9d4rpULKWttUotY6pdT3vZKirq33Puc4oeKK5OhabgLVqgCFLSwZYeFcIBKEMoSQMQkFGTK5tu2sm/dVLfppx4JYUkbQ6XJhzzjFNFVVVbIQ2AIrXx5675XWurIu+FJKP45t2y4GLJXYhL3srFIq+9iQnnaj7aqYU05MiFLKwuwwJQF1liE45KK1RmQXQ+ZCUqeIdW1DCEqLmNJFGaq1pbDjAgCgtXU+a1UxqpjYlX3mIoTyKQqjQwkJePKzszqHnHPehQmV2eUwII85ZgBtjPf+ws8ohKps470HTFzSteNLrh/atnXBr4+PbF2vFV25cq0f5zfffLtt23GYXPDOOZ/L2XZ76fKlUtKya4fNThFyDNsgblxbPfn45Xk4w8JPPvYhScu772+qK4dvvvWNWzefePTR57/3+jdefPXrV688frC6+t2vfun4htXm5g++994j127pMq3q7Wc+8iMv3g6XuwzjxtraEXztpVe1ODDYnPHrt9bXO7mT8vjWRy+/efuVt7/Fj17Cg0ou1fGbb535pllcWg4PT0Iq33jztUcOjy7rNs7hLM3nvu+kkT6nEkTd5RBlgVpqQ1IwAIBAwhyYWQpBRFi4qWrIxRoj/cjZUlFVbea4EwJTlojVUvAcfAJ02UtJ1ijMUSBHlJiLRgkFGaGqKjeNtTZK3ej795u2eBfDRHXVJhxI9eyqLBC0TiFpQMwJFGYEKpygKoBCuRS8Fu3snTS5wuUcZpCYqaSUoDCn3FZ1771SCnIJIRJKa2uhFSLGPOecMbMqQqPysZCtt86R9SYXZfUuRi6iilhZtY39UpnBBZCKmQlSzgmUcBd0SL8zy7afuCoUcQ6COlolPl/Yg9FlIBbkfJz72R8tLuMlFA1JiyhLAgBFQpMQKFEAhGRBkFCBMxfshG5ACtt652pjS46V1FSKJKGEQLmDZClpiVmpqIi4yJKNtj6lEkMWZIltCkqrZdssUW39lG0lXNjkKC1dGcde14PpIM8kAYR1/eCUueKnXFvEDAStNqXw+TjOjb1q1MFmd7dedJCy4spavQ93hM4ICjlm6oZ+s1oBlXWKEPJppa8iCSJZEqdYtNY+OqTk3I6IpVkX2M5uv25vpnDRtsw5ZyUnBh1mDdARWmXF7IZx7BctCB18kv0Ym65ooYl1Sqd7Z7VVxhhOWaPq+5EkmqbOw7pe7nJmP4PQY4E5h0qKtiRVRA/SzS517WqeZ2QC1qwxOaklkZxjjAw1CnblZIWLACMZQdS6OXJwrTXLar3d8Xl42F1r/OCEY0NC1tVJP7LYKFojqFR6LQ2HRlHF4NhHKQVDriojhLiYEGekSFrJkss0z+N6ebjZ7IyutNZumqQkRRjibJVGZCYRY1zoOfuVkDDzlmXlUkIhBazrPBi9msNomiJI78/LamEH926rryUuwtLDk3td02myLtLo83pJzu8KJx9ZabaViF5n3wXtSywGFQEzZCC8SHdedM4n75zrukvDlOvaznFD0nWhDTBNeVS6nke8tDp2/VlX48DRqqMcMeckpJlmrNsq4yQmn6KQaqlV4+K+0OkY3m+6DPMtHyYjhTFVyTgOvltU09xDYa2qmMC21rlJo6KiUsCmpZgTI5WUSsptU+/Hve2qGHNOgExCiFxC23Xnux2hBh6FLCmxUauYESDNPkhR7elMSl3ZduonTRimqbFCIAyoECn4oW0hzcHyulZt8GMwY2FkZhAyJygFEIRSmqOIJTNjLkVXunDycdJapXJygAdTtFmSCGOpy3n2DdcGKOdCILhgKllogQKcm0FqQpaQoESlse939bKLJTOX4LMgG0JBRKXQVmKctinXzExEOeeQU9O1F2Lm5iC5HLStG0eXo6yrmbnqFuDGkDMXlH9aA0AWnLA0pEIIyKC1QRQhcioohcY8AJQQfVdXIVwkBINzgWyJIbVtO01O6XpyUdfdOPlIjplJaRcDSxrClDDPMYBtxxzO0rzLMckLzDsYktbWw7SvTOX93C66eZ5dTF27DHn/mU9/+vWXX37qice3m03bdaqu333vvauHl/p+fPutd61tpFKlQFWZ7XYbiK21l68ef//7rz/5+CPb05MnHnn0zu339SEvm+Npw4vq0qX16onHj7/9nS8eX2m89/N+8e/8u3/jv/5Hf895ZfTxEx/44PdeezMMD6/evPXid9/uLiUlyumds49/ZH3lsn7zbVcvm+TcobkkB1VyePPh7W0qvTq5Xt9YqXTjsaP3TrYHl5a3X371009//uzBXVx1Gfjqqpv8cHc7zBu9SKvd9q39OEDdvHt64sb+RnXgc5gqmkanSWjxpw4szEULqbUWkAXgBa/MSJVjssbEGC0YQVFR6uqDNCGy9GFgcAf1QeICUgDhftgh5HXXBjeDqKP3R8vD7XbfLZfzPEtgCRgZBBhOXFfCx13KU7dc9aMHsDIjlCK1njkBsizFkiw4hawTgZApzM7KzqdZ1zHMoK3xOQXOCEqiqGQdfWCTSgZgFiQRxTRNIWallK4OvJ8bK9k7CVywBCoeMmRopULkU++saaVnJdDLZDKMLpE0zCyw5BJRSZcyh2rC/WHXhTElg1gmWUDU6+y26+poN/iEuTUoDZwPY4UNLoBqKWsAWYoAlkIokFS4IuU4ZUkWlImsmIEwQlroQ05ZSrJKx9ktqoYKCyQKsyFryEgggYUhAwtgGYyrTRc8LttV8AkxxjRqg/vdvOhqKIqLquu8H+6u2quQLnvaZFcEEoniIiPWAFIJymnf1FXKU547YwXIBwAwB88qqrCyWiil9nuZIRoTFK6LUEJFF97lUFdVPfsHnNvFetXvB06zteCjk6ZhrjUsKFWlvtvvohBKG8wJKnMU3GiqBDyi9CE7gqofnRIExVh9wJk2w7m0BoQunKBwY6Rzm6a7shs28zwSiMPFITP7ElyaTb7UrXKMJThEMQOW6ElpnOad1semqQLcm8MuucaqK5Wqk30wD1NJWYDgYgG6BDC6/sb68nZ4L+Wo9QERFT5hniFLZsN4oOsGxPnu/I6V60uHj5zttlB6rUwuSSv0LlZ2kWMBALs8L8nMIyHURJRyD3ICGaN7KsS+bjnEmUjOU1otj/p+kGbQQibn2rrJkZVop7kY2wqLPt+x8qA/o8USZ3dfCRayNNXRME8Ii5MHxVYa5YO6iVbZOIWCFVPl5mStJsFzDHMKq5rONkPTdAXiPPvaNgApxb2tryXPnDNyKRy1VT4XqU3jD4UQw7jRdWLst7vTxeqo3we3FBJKDbiuFtuH+8Y2LjpS2NYHIeyj88TWVHqKZyAKgxVCEKrgQQrjYxICAbOUxGk5TedVTVqoGLiu2+1wUjVUi+U091Vlhj5K0RAxqQHEFnZr0sqlIKUUiIApYc7EmKWWxrtQGZ2Ln8MspE6pCLrCtIESCToQEMuJCzNwd6mup3kuJAIXW1Xbfie1sNbG/UZSqyrp8iazcHPVdF0RO787RSSpayQFLENIAChJhbRlQGvrkIqUFIsP2UlFcc6NrBGVFCYFL4ycSiwxKTJSsRQ55ZmZSVQ5yWEMtZ1BiTlHn4uWlUVVgQm9S+1imrfaFMDAUEoWWjVuzqASlHIx6ZhzVkbHGFGIlJK1dvYOpMhc0Jcj0wiXzkwsREJpzpBnL4GFooIsUcQYkUFKjaBShsyKhJzFJudIgiVC4RR9Wq8Oh2EQ0VZV1Q+b9cHizoO7q6OD036DgkA1seSYyhCC5zyXUBRlLKchoJK7GEFSyuXCRdUtFv0w1F077faH6+7qpaNhu7O6crO/9eQVIVAr4aa5bRYh5fsPTrtuee7G8/MtsNjt+gK0Wi18mEspOcRHbt56683Xr14+ZubHHrk1jvP9+/c7deDDCJBsJZq2CincunVrnudLC3l09GFpZNfou+/vj68t37r38mNPfeQPf/P3q3rxYPfaI489/mv/8itPPrl67MYz/f4Onp0tFo8e3lgfXKpKaN55/eE3vvnVj3/8ecfpxhWaH16W5vbyaP3wfXjs5uTuLelojxoYQEH14M7u8z/8Y++/9YP92b13drFaHcyDv/faHRLy7d3DGbM1SiRUJKQQlFkWEIACEBGNEpIEpEyAtbHTMGqt+7lf2NoaJRllIVGo0TUz5xRiyG3bKi2IaBj2UmBd1w/v3evWl6JPbdUopVwIwc2XD4/2m3ODsWQgEiiUyzERkal8SarsOqHz7EmrgSNppVPRoWRezrAXWjE02RWlfOYJSefilNY+JWBC0sGV1nYhpCwmZs4pAV+4CBUKUkq5yDEnEqAQp33fdcvzYU/WGswNNPu9n5QjPXWS3ZjZdjXKAsqHXNetG/bW6rlEFhJc45tJzK6iOlQQp/OlMLsi17J6f3iwkHJpF/fn0Oq6Jbgz3UcC0UpqEGVJkkihEEwQ80KaAKUIqYFsKlYQELsULButtUCSSCWmpa1LKEYqB8IIMgIVCCgKmEBklEgTLVf1bnO/qfU09KvuKAcUVGXyRNIa6MeH6+WBmyj5ZCtRqMlxrKTOGaU1+2lb13UKrG0Yt9LY0cgKUbk5Ltonxvm+K07TvparkmyACVhrbQSd7GeWCpj3q+opKFXMW8Au55hxT4UbW+36LStEKahkSqU6qMZtTdgQzSHttKrmKVotIQkmL6SWap3LHOP9zJNEK/B4P2bZRJYluVUM+6aZIanoQFkwjfQuQoSYChrwZZaFtKYSO0F2nE/rallKSXDP4FNTfieLuamvnp651aIRCN4VVDWXuwizgBZYCh1BUM5mDnOOsxCkZV2yKIxMXBgrsVbqdLd/UNfXXFRS8aI225Oe24N+end1UO02YbFod8PtxaKdBmoJtKhylAItErk0Zfa5eO9rW9FFDLiydhodEjPmwrKpak1id3a6WiyQWEqY3NT4g6k8kA1u+8364PKwO8hkoLljh9S1txKLIremnqfeNfJg3Mcs5pzNHLBrW4U5hn2EJLUVrKdZLZYqlLvDni0+IrBH+walS4WJ0GitE0SpeJwmIcTsxqqmXLzABfHibNNfud5M/j6NC2SqTSWESBD3fs7KzgmPy1KrICFLqmL0aHzm0i2uvPH6O9duHMxuW7ci+JQiark8PekPj64xjyQip4xgScn7J+8dHTeQJ2RLrCsjQ5xI18OoY6gPGt9PY9XV0c9SAJSw2Z+b1gqhpDACRApRadrszheLtY8ZUIRhUTdmdK8eXFqfPxRVY4u62w1r29RjmPbjgFraepEyhxAmNWih59F31TpNsF6tzs/fRzFmoAIEKLWtc2YA4ByFEDMzZ6irzk9eEBEkwJiCj6qa1XyAvML2PFINdVXCBvvRR20EYSwpMnMBkYLIGemQ0ziXKa7bVfCZdLX3wTStYkwpIQoAsFY7PwImpWhKAQFKTG1VxxhTSjlnIWVZSHS5AsMJUSihaJ4GTCVTyUKw0SGV7EIlhSIM0YGuOGWGTASIIrPgQoAihEFrIsiFE5TsRnd4eCnnMiQZk68b8+Ds3vLo4GR/Jmu9n8dYFKBIgFnQkMPEaUg+MM8KgRkTCICu6RiBtDJNHU72i64Kcb5y9YCRP/7pT/3hH//Ro48/Afvd7Mbrj9x68+23bt54TKvqjdff+9SnPvubX/7t09PzoZ+1rbqu2+02UtLsptXy0I3Dqu0+/MyzL7744mNPPP7We+8lhofDeWPsRz703Fuvvro09VHTpnl+4fkPP6BNhPDchz95+/U9Jkqw/dGf/alvv3q/POxCPtmPP9ieh6ODpap2f/D732rqxQeOD2udl13i2m5S/eL3v/bDn/pYE2+EzVwtzl75NhwcChLnVw+fPz15VYqmfeQpcmem41fef/OTH/ucOAXN6v3Ng7h9/9ojT/7Kr//WB5/72O1+9/XvvXQo7WrmnSxERAyYiyJhlabMMcbMuVbWCAkx55wkUNd11trt7p5VK4wqhbGu2CiUWCPX0oAf5xJia00ldUoJBAklz3bbw8XBOAxVXRfgkqNibq2ZLfpx35kqTkkUW9l2nmdj1RydUTKEgIiMQAQSKU5OqeVYzqnSKTaUSQjHOIWQlstuv9+XmJTQdd3MLmQWOZcMs7X24nR4Af2+yFORFl3wum7inBrTxQBK1z4krfcyzy6MuW65tC20KbtcZUxTLlLLzs++ruw49qRlRhLYgprdsGv1khFKGhUI70VppfGzl5yEXOau934Ubi0AAaUiaAk1FEWoSIiMHIqWyhQ0KJk5YjGaOiFVLs65pmmUUuO2X7ULwUSx1NYWrhAmyZFYSmgILaqIMigUCAIKatS1sfvdtrKauEylUVJM08DZX7t+ybvBTQjZoqiV8NmHRXs8xDHhGVIuQVtbp2CQttlVldEuP+i6m8P0UFmWwFoUN4Gkm4BK6cm7bSHZtvVmc6/Tj0tqHN9jZpDTPNmFVZWEObkx+rY79EOmSFkqoWYf5ra+HF1OZVAmpZhruAmy11Y7LwFKjCdKC8HLzXhPd5wB9mO0VkefNOGii2l/OcGMmqMLRrbK6ADzndP3j1fXUvaCtK354cmddfc0lrZ3b627ZYwqFBp8ry2lkCURQkq+rq2qbSaa5ik5pxkBdBghaVFZVQD2bo4pL4vUAfatAJPtUXe4nU774piqss9XFwdO5P1+kqoYC94Vgg5QAPmUJ6Ox5D1gIJK5WBQL5irmB1VV+5BKFpMLplakggs7T1lxlSZZ01KSBOBYhroxMqg5sK5xGIaj1XUfTzxsQXTlnExHiaOPQUqpFUpEzCWIa0Kqfth2DXHYQEqEhtQiZhZCoHD9dKep0KrluPFt3UrUPkDIAkiHNBsr/TwppZSqSglSZMCQc0CUwDpFbjpfin64HXQrBQaFoHIjUjPITaUWcZ6E8NPkji899fCsF4YXUhIJLgILOz8ZSwzOWNEPNuZ9UwtFqmQ1zr5qRcYxOKEIs8tUZLs4vHfy8Ojm0b2z25fsrcI8zENtZaPl5uR+t65JomMPmSSZnHMIoW3baQ5a1YJsTKckwPVY1/VufGiqmnA9w66q7DBupZRhDpVu/BSbqnNJojoTIganBDba4DCNWi6JXCp5mJytK+9na1QIs1EidfXZw3OjaoumUgr8LIgRElgTdk6aWlgKYx8IuOp4pgQPrVlQNiWRREocAKOx0u1zEWBae747B0FSSgFIiOPgrdUhjs4Ph4drH1xOpW3b7Ri6tg2zE4DJB6211jqEkMPOqpbQBNITlIxFCzDMwqUZ2AkZgQGgM5Yg9bstmiVDBg4ABQkYITMwY0py0dXnm4dNpZGhlCJQEMpZpgsm5TBNsqnmAq4Ul1KmWACnELOSfQxB4j4GIKCCBblZLcd5/NhHPtafnjYg5/Pd+rFH33vr9dqKn/vJH3v8ketf/r3fe/+9Oz/+4z/+4ve++8LHP/bVP/nmvdPTn/nZn2/qleDqW9948d6D19588+3jS1fbduGC937uFvX5+amXdlXXf/0v/ZX/5D/6j1944YVQyuu335tjaqvpC1/4ie/+ySv3bj/43Kc+22/OmP3RweJrX3/505//VN0s7tx5vVL+x3/0F1eXnvn2G9/60Ec+/eXf/93i6JFbrQT64u9+4+3bL/7Zn/uZs3nzvRcf+PHhZz/87Pnbu8cev9ZeLyduuAbV73/ltRtPX//eq29+4NEPlnJatc3BlePpzdt6dfje3bs/+5M/yuBCySKa7Xu75oh3J/3p4KOs/uCLf1SRZivupwFmX5lKkYghQM5WGUOSmZmZGKzSBghS6ZpmHEciUqCkYsJcErfNehpd4qA0c9aNMrpwGuZl3Uqt+mlsl4s5zPM4Hq4PZu9CDgK4UdpKcXI+G6VzjNZqY0UoqQicYzzk2lN2kCXCQpg0zsLqKYWmXm+nQFaHOCq0kivGqXe3FS4k4LKp+90eEVEQSCWULCWllC5MTimllCMDIKLEJhPv3WArzSEgABHNzq2WizwEW1WTzLHMeT8YUw2FsYzKtCUrLTTmzMwuBWmrWISct6wRRF3PYDu5m8MaDk/wPVmvZLHjvhetkAiS1RAAERGYCUAjNEI1KCyTyDkhS0kCGLgoJMlSgbHKFJimaWqqBgsLQCNN9GGxWHTeMRKjQEQBKAgUgkCS5QjYl+StQj+Hw9Xl5IhYl/o8xhiDa5sFAJIwPhYhFEIPuaqUcHNfyQMhMLIz6nDvXpeiNWqVY5rdViqWiuYptsvLOarRDe1SzkPE3FjDUm9mV0vRWXswTUPMOyLXVMbPoQZOQgVSktFgzHGacS5aNPHyNG8Pjs0wD1I083hujLHi+kxFQldikqoHmmaXM0vmEkE7N9VWdsaGYXIu6mZhusU0boVkInJz0qoRpIQE54eJk9A7TU3oTWUVF5dcQSitXc15N/HGQylpbdWxljPA3W2CQ6o45z2AtBX20epqF0MtF5t4ByqngUo/HiyWU9a+LLI/IwWoSOpqnkqtTClTdJvGrEiJ/ZixLKSOCKeGdHELd5Cn3bisOlmg3w/Lo3Xv570fDuRhKr2kCIXraj0MKTEw56NunGcF0sxlQtnmtBACJn//KtWs2UMgwIpUmLOHqBZVTcvzzc7UlbEUQy9yEQk4wIlKjy+v7yc/+elY6SkOYtXyfjoLU7doIJemaebZe++BJCNExJymw+UyjIEyE2RBUsnGD7FqdB+GOTnbNrFk7/2ircOoWxdsG7kSeWcmYNnyKsuZtps9NqsbMTqFe0i9LlVbXxpGJ6w8H3eqtePYN1UlC6TZUznR9SVVHW3HualtmGaY50ur5Zadn7jWixhc08pp3s3eKWOrdn3y8PTy8fF2d9I2lgvEgIvucHv/vuhIaUi9s3a1T2GxXvphA6XxMRVmYVAq5uxTCDkXo7sphZTSUtoYHGiJxK3Qm5gFYIheyByLM5WOGZGMhe58vquaanOaj9ar5B5oKVKwWUyMIpYQ875rl35ETlILClQthKoJfPE9hoJgWNqCIUiqm12a+7BRKhBHSFKbZWIvSWBhLWRwk9Y6pMTMpEVmmGffLRfzPFdVlXMMwRMdpDIWHo0xxtQxsPMDYBSwFAgckyT03murEpfMyfGslMmZjTSlFEKMMSglKrGcw+D9ZOra+UxCM6HWqp8nbc08TutuMWx2zaI+GTZZIGgKOY2Tq7rVbh6n6FFJIMyJIsXTMI4AorLeJVM1OcZE/KmnP/DG+29IBZ/+4HPv3L+HVXPLrBbXD7/2tZd+7kd/7vpaZXz7V373X372s1944+WXPvepn0vh1v/7H//D539o9akf+cSfvLh/+62H0gxV8FNa/fmf+gt/71/+PT0Ps24eW1/fx+0Ti+Wnf+QDX/vOH2wdfeRjf/all99+8RtfXtTx0Wc+crVp/9Ev//JnPvesDXE3ubOJYZJcP3z2yY+89723bl5ZHd44bG5cr6r1I1dv+XLv9m2169956uaV3Wnz9e/+7qVL7i/+9L/7N/+D/9X1y5cfvXa1a6u33379Rz772ffeeOPmlcv76fXx8Ob79/x6yGU+g+O6q2+s+9WeXuy9O7528xMvfOL2K298+IMfevW11yPyY8eHb7315jPPfPyrX3vjtXfe2cz3h5zefzigCo8cXkrbwqxmOZzOQ6MA/GqJfRZ4KCsn+CDJHtMB6ELo5kEIYZWpdCVAcCjIKKUEdnOOsrE+FyxIqaxMJ1IZSHVgSgozeGtJhVRV3bn3jRVu8ookgpjCJJFqo0QqGeIM3hqlp0KkZLf03rMLDnWlyA375WIR54TCpJJNpZ3vhRBS0hw8EJYMLqaD9WGZ+5xY2tr5GHKSUuYcq9qO8SEUlIwaDQAmwEJIUvlx1KZJQG4alm2dow8lZy7adi44KamEGXIxuomFM2IlLqYB8wVUgwsSKU1aVWqz2zCzlkIxtrYCFGfbDQIhMAODQtAANUqLpIAUkiAoJVBhQ1IwiaIUSWVKCtEqzYkFYCV1TslqE4qXJDUqhSSBDBAhE2CvW5FSrYRihsika5+wsFhJh8iEmIMvSIRS6QqlokCFz0pCBfWia/p9WK8unfdvC3UApQA5kgHQp4iSF5U+Hn0PTCQxl1jZpZ9yVdMw3AOilL22hotUYiFQWc3ObVFTciXGSETSyAKIxUhRUZpCjlIuQ+yVHbU4xmKm+AaAlViXUqwmQZULOcJ5xvuqemqOoe93tbUpxIPDS/tpPuv7JQ1NddQ0l1IKKFyIE2QdHEndQ3zUhcnj+9qqWFyzMJw6nJj0GKHMXqdCbZuRYRqwhrUGLOxmMScTBcUQ50JJigr8gnInpfTJkxRCjjHdL8EAIQiDZIIHrQTAFMNWwhWUO5+80ccCqjCfWp2tMnJOnjBIsXeTEGph67TvV6a+B1RVHMKQcy5Z1HYdcyqQl3o1DkkZKnLv/SzIWJP30ztXmx+a0xwpIgNFTCFHLpGyVAoj61wqg8bCftpt3NgeHCZP1tR5jp3WkV3OsZSi646E3pydL5fL/WartV4eHN5/cKK1PZINQr3tz8zCuzyxaoWRnjc1X84JQ8jLZdtvH1qpssdGr8TCu+muTo1RB17POQvJluGsLs1unsHaVFgpBSWDyBlKlS/ug21IwEhaCgEper/q1v3UM6n9mJTMQowai5HNDCbHwRqJrPab3LYdKj/7s9o8WuAM5c65SeCKcieoLqXopa6iG8ZNrDUXYaPIEDc8XklHLCgBO3Yeh4QplpgKt3ql50SAoZISSU0RoXgrpnmntb3gPJSSSOg5oI/YLJvd7p5GoUtXazOlU0dZVCvYjVWTUo4paCVNVWcugvjgNL1XZaO5yqBnyJmcAldj2bHtZJN8GsvILbEgGEsVzInaG6mQIcekJTFzQRBCgMu6qkMIShpGYM7MjMSIPIybprXepZgkgp1md/n4MKRQcsaSlZQARSjpohvdXDcVMIaQBEoAuJjdFEjW1ql4hhRziRkABUqRc9QsWFBIRSiZUpJa9HEKkGbvhDKxcCjsSorAwqhxnrBqz+atsbpPISYwuvnUJz/+6svfvf7sE4fd8g+/8bWbly//zGc//623vlckfeb6U3/8nS9//qOfPTu99/Ef+sKXfv1LN9YRanF3Ov5rP/9vfe1PvvTtl7/x8c9+/o23bn//jVdJpb/8V37x1/7lv/ibf+t/+Z/8n//Tid1zjz2n6gXE7eoo6sUTd95+1W8fPHLtMa0u9TN/8Su/9SOf/ySafPds26Zqf+9s4LmW4ni5/sb3XuqWTx+pcnZ+P7a2PsBHL9sPPvFMtXxENea7f/SabOKHPvPhb3/57e2bt3/hF3/u//XPvvTa1770M3/+Zy/dOPqNf/5PPvaBJx7eeRtr8fRHnxneyq+N57Kppnfev3VpzTWaSnM/v3Xv/Nr66ENPP7vf7z/yyU995zsvHy+PrnSH9+PdSh1PO9/vT2bXP3jQ33v44HTzfruue4enZ5trV9bn9x5YvT4Zd9nGQ6qpcEpJJZYkFrYe56mtG/azllIJLQChIGUkQAA0ikJOLEgomUJWQJaUYIhcWlnpyt53mxxHG3KjW9A6FOacrVCkZEhRIFVSK8Y7cVMxA5aAWDK2bI2WE0aa46Kt3Ny3dR1dkcqOwWXItaoKcCnpAtuSSwkhaW1biSHExAKASEki8n4sKZmmveDwEFxMkSdEJCGCi8o2IbHVUkABKOM8sZBSmslNq1W73206W/s5kLJDDCvUzKVA/tNfIClRIcMmTLq2gIVT1gAX3m9lNALQBbsU+CJpGgyREXLBEoBLjgTlYgsoI4GQiuiiIZ+LBrBCIQAUDqJVIA0KBUKBBICLcLql4dE709SzD0ZZiNzpRiG54IVArdDPo7UWSEqp3RxquJTwjlGy0uvdtteqEwLJnGz7fVtf4dRxksaKVPY+bkmkyqrCfvZOYKNkIySX7MZxXLY3J78nkYC1pK5EAkzRD9w9Lr0TeSIbuOE5JpypLnWAu0g1QWPMwTyVkoOWBVEoMQCQsSBV3m2nmGy7NBHPwqCE1TMXkmq73TZNkzgx4RqOCs+F3dAH4IpQdUupTX5nfyJFVUKsTNQEfsfrxbF355MZiFcCu5iHgltShNzOI1RtjCmLQqqowiSbrt/2S1mdITeg2Z9nPUQNs6+X+pDHQSkVecpijjkCaolWyyrG6ENftzUXmRMBO8TRCiWgvc/DQtgV2tJ7a+uhxAeuFwsrYtGKYxq11jkhoYkxCq2Sm41uQnAAwSotWcYwGuMzHY9hFAqUUhhQS02SBj9KTFXT+lB202Cr6sLPVVdL8g96Kl1WC23PSxQsywC0PlC4zTkrwrEfqqohoYSQLqR788l6JUTkA3stDYHKaIXBtNiKByi9tDzNISYthDGV9GFfQabqahsX8y6fYmpb6sCd+rHDEeCIccGcgDaJJ2VXs6u61IQ41q0IsQdMxtbeZy6ga9xvsW3WJHzOmUoDmcbpXC57o9scMMyh67q+75Uytq7n8YHAtmSJMhUYpMoxQAzA1JEqKY6rppuGOQECpqYy/XhHyYZRp8iIysqKsM4BWZxFLkIIzKVpmv00lgIKyMFIKJnBewdYgJQQdcwQSqorOe37ZXVohNwMJ/awOx1mLWJlmhwyluy9t1WXSs6QrUaMWWQmIT1xKKwYK5JT2GHTTjHG2S2F0UL7ooK0Ip4bqQBgHqe6rl2chRBCCMcyxmiMVUo55zKXpqmHYehqWVV6cPsQWYoKyTLIceqZIjJYbZhzKSWVmJB9DI1uU0o58QWVupTCOQMAKdwNG6kJpUBS+36URkqFbdAzlyBgjF4o6VLMVKY4c8ECyEIGYFZiO/aoZMxxFDKlEBmkVinkL/zI58O87So9tXg0qnEqvms/+fwL3/rS73/u85/s/ebO6esfeeIzl9vFi6/8tyPsb1z7SzU+YsTrjzzzoW9+49vnm92D05NhDJ//kR+vmvT+/ZeihtdePr1/On/m4y88+sGbf/Q7X1ysVrfffOPHPvkT293pnOai8cf+7J/93/0f/o8f/egL146Pb7975/jWY7BNb3735adeeKwSYTi7y7Vwb8Uvvnty+UMv3P3et59aN5cvHx7eqK7e1Mo/O+/SRz/8yX3I33ztFWhh0eG3vvzltut++nNf+Dv/p//wZ37mp7768jerg+7m1SsPbr+/z1dt2B6Z0od50NYs68cWKt59/UTWj129DM7fuHH9fNy33erpWx84ee8ewjTvu+s3b573b52N53fuRVb6jdvfuXrw5PbBtjjn07if+O7ZoBXWlTsfyoGuZ0631OIkTessdxBF5oUUSimBmGOhzJKERFlKqbRJKZVSuroJLmghuRQiKg1iHzpR9aGvG1UJtXduk1MDFqEoQiJKXBCURalJuzTXAlMJ0NicUE25MrpPM0lhtJjHXWXqGApJ5VIEUSCxECJzvsCEAoAgmbjoEoVQmUmQKsAlZYFcSgZcMHOBXCAxRCgZgYkAUOdCPqWqqiAFgeBzlNoSU8hBKErRQy5CKCAZESVrEFBKjDkgsZaKmHLmFKKqbIFcctQkIJdYspBaAgAwACNAYQTPUBhiyXSRJchFEgBCEkSIAiDmpIi4FA1kBHnIRlDhbGiLjAAyMWSkjMACC2EKgn3uTFUVZVmPxbk8DJhtqUFQLsyIBUATcIo5+uoQTh7WypTT3Z2uuZmLD7BlLzr7ASUhwCbkHWehZGvxgErt3R2pwchGisNx8KnskXjR3uJCSiyFELGMLHcFvKIGyULzXhEuuLnkxBPEDBZrXUsMl2LmmMem6zqq5/hAyiG7jkXOsRk3XpgJdSJFU5A+1JdU2vZDQswcDtu1BGbEaRpG8z6wNKpqV1Zp9H7nAaeRL5sbCd9NmASuM4coXZAimobl4CcyIIQEiegmlpKs1c1URsYCIJiiwG0ee+mKAA2eIBdVcmy0qbI4B7wHF8iODIJtypXSliEzBcYRJCNWgDrzWMqsRMygBKpjxt7vzzvou8DFi1JqK6pURkjeJyllTmxtdUF+h5wibSpTOHsCyaBR1iUIIWTRwUgEKICxECQuHHMO40H7yG4zJYXKNolDdoNgqFCBXnDJbWWDG60RAKh0M3LenKdLl472u03bXEYU52eby1ePo98/Zx6dN1FZNZ7vRa29ODjLEc1wVHJwFvNSRD68tLx3ekpwuOw+lYeXw9jNchKLvYpxGANT11TP7sNbxtgSYysNhEN0TSM6Kt6pN1Eo5ysrV+PojGx82KIskI2wG1ReYR3DjsU7uraV6TKUnHjo/eXLl0/O3teaClBKRZqp359V1WHmmnlNRfXTvaYVyGqfZwaKLlbW7tOcM4dhguYwMJbAXIIUDIA5hRQy6Zw1xhJ0LCkZhyVxWZFJuQEmpZE0CJVidEVmRFjkep6n5mj9cLNt64Yam3yoAbQQNIuKdW05oi6liRCKmhMIEAxYIsXCACAKqMBm0LuWcwOUSCbgyEVKWmgxkQkARACNmQVnVFlizlkUUdf1PM8pRWNMzGkYhoKw3zBn6sfSLesMfHJ6u+26QgmLYgCAckE/8NEJq4FIKJWZETillKFcBDTlnHPIUhlSODvPAkxbg4B+3CkhZ46exL4EKmWODiX6HIWpfUiJU5ZUCHooOXoimFOQSkDMKeTlYr3dnQpyC9MND+NnnvnIqy+/9NgTtzb7t3/o48/dWB1/583tX//Jv/b2sP3ii1/1D9c3Vx/7yFPPnsz379xz4vRNs8ovffU7XX31z/6Zn66a9NKLr1l1/b333wnbePnq6uPPPfba2e0Ht2/fP+k//OSnD26srz554x/8o3/87/0H/7M//OpXWiP++p//xb/zH/+nH/s3PvH01ZtnB0PMN6RLY8HSPv309Sf+2dv/1c/8xAvf+vrrP/LJn9hN+ztnb272D8A/+vRzrXpc3G52/MB/6Obq3XdPHjl43l+djz9w9T/7L/7LX/xb/968P1/Wi1vXrr7+/mvZYsUPHz58DQ6bu30s8/oZvrI8uP6t4cFzTz56tjlfH69ev3OvAvzCJ37srdv3H8bcqONJvS2Wh9rd3NzeHbRTXbVZf1x20EDa3B3X7a275282B9Jgka5FNZ27cdm0UwrezU5UaGUM0SOknAEASyFEhZgoAQFC5pKBOaUEmCOXwkWilEMSmbwpPWFQkHNUSEtQWFkJXLIvkAkJAbkIJN0YsYN5irnxEYAGDRNFXYqRq+x9cMLqigidT6kUq2pli5QXKBgupWQuUsowTQ5irStgKAjR5+Dmpq201PPoi+AikLEwAxAIBsggjJhjJCEmN1kpgvfaVqmwLBERvfdC4jz7ptEMLATFhFBKLDlzxsKcAJlyzmvb7qceBQiJfnJGaSlpt98iAl1I8AUFGgAQkQANIyExZALWUkoAZJQkXCnEAJwrqTURFjYkCYrlIIEqEAaFBEQQQFiIruhmmOesTGQQQBapQaqEkNwpJQoHLtF7b6QSKKVU/bg7Pnx6uzttlnIYppgGIcuyfSSNZ845Y6qmXnAuIQSGBJiqpu6HUyXrHNorV67sh3ullBgNQhGkhRKz2wgVmbORHbCJeZNAZlBGmppECsHHmIUA3y8WrZALhuDjeZ67ZXOt8MN9uts1Tww7QMnrS+08+11/LlTA/Uh1C7ba7weNilJqrColbbPIGRQaYNYGQ/KMghkWxg5jljonHkuJHh4YY9g9QhZyHKyuKVmk4tKpMhXCqk8+C4QUu8woyr35VFDpUmnlY06cQROjL62pIMXJkw+tUREgCZNjccroGICzjYFIq5gciaSNwEx+jALT6qC6e/4uJFh1S1EIhZpTKAixZA0tEQHAOE91bZGBiEJIUlnne62lte3J2XldV9rAOI61XClNXFIuoMgQAMcgiDfxpFZdgzbMQYI0TTcHnAJLpXRJUcS57DoFSRSsGr+ZVFMRcvCurWwpJWdIhVIstoUwFy3kNJ23VQ0sfZilYs+Xl50scc+BNTWVqUPqC45zqmsh5rQcva/Viap0gIp9n2RB4mkYj7sDU1Ry3lRmP/e+XK00R79ZdHqcdtpUoUAoaGSjYEUlM54GP5RitaltzbtdkToipRQZWOdcFp3a7R8cLJ452z1QBl2ahNREFOJc1SrwgRwDcswahGQbUgx5pGLgIuaPQWShCTUBypQx+akj5ZwLRpBQJrLzEZc1BEopCSEKe6GSd4NSSpBqpB1jnkpOnGpjx+3QdV3huEuyxH0ljOaVUiryJiuIWVrcSrTIdYoiFEZkEllQ3OZYAVokiSJyiakwoZEq5BJjFFIqq+Z5NsYwwjRNXbOIzucSl91iu92ayqJQ/TjIVLVtDSKfbU9R5nbR5VTmEFtVe++JIKQohEglC61CjLHki4g6Zm7bNqVCRAgixjK5oUCu2sal7EMM2RGVDBgFBKI5BQCAXIggA/e5gJQuJsc5cWFJPmUAYIRLR4fn5+dtu3jiiafaTt945NJu/3AFOHXNurm6mA0rsTeO8vBo3V574dHv/NoPOpvy0f0gmz/3k//Tf/D3/+5jH1Tt8hNvvfnu6YOHV69cev75p77x1a9Vei2weeu1/RNPCD7amVn+49/45jOXnzl++vIj17vjR2/+8n/1T3/2Cz/Tb85/+Vd/6X/xv/1f//pvfikX/W/88I+0ZF56/Qe//8e//9wjjxxcP96GUGX9uT/z01/83V9panX9yvV/8l//0smdB89/7FO3PvjCuXrw/NVVB4dqdelf/OZ/83/53/+nv/3ffunmrdV//iv/2aJd/NW/+G//+i//6tKuvvylr3z0U5/+k1e+e3bv/HBRNYf13d39mstnHn/y2y9/1T5xcL187P7m/sFxl/zw8Q9+6PnnPvLVb393ffWazMP1y8e7883b3/9+V1vO3rvcj+nmk9fevXfvvfc3R4c3X3rxazceOXjj9p2Tc65audlun7v+6N2HD45UnSo17Xs0SuaSc8bCkoRARgZElCQMAsesSUhGrVSMUQghlRpLPBC1yXKKjiGy93a57KWoYiYuOQXmIpQi1KpIBVoDncW9MGBQAFAUIrnZxNxVB7kE7/1yuUJQwzzFHLSWgpCInHNCCEBkyEqpYRiURSDh5iSlFoA5Jq0wxigUAWEmyMzMiIUFAzIwQigoteGclIQcIpCcY7bACVhWKoSgSKQYVVX7EJa0SCmkEpAyQCkFkEGAqLvF7BxqIihuGrVSurKDn1H8a+G90F7EC6sbAhASMzMwEWABApBIHgsUkIiKBCFzLgSghExJWxKd0AuSHUvDUjAIoFTvKXIjbCtsjklrHZIHwiW1RJiTM0alEIy0mEFJ0/ttU3fetT75w8tpnPo4N0pVl2rTD+ckWEsdfCGS1lqAsh9TZUxbrXYbV1fapb0UWqtucg+kzgVCPzqtlpy1JColHtaH+1R2rqgCSy20SA6cE3mFtya/j2lA4awFzChQTHMfKEvdaWOExH4o0Uttc8j3hGwSwRwTkbCoFXOOUQiKKIhmLYkTCGx9ZKFzESNQ40bdWJPzmSaAKDkhMgxZCxWaxrgxCLLMbKx0bpjTRirLmSSoYuz7+62prMj5poRtEMVa7/oaREPdkKaoxtamwjZH60ORCnKZQCQiSFzlqKRAkjNBiZ5SyFUt55yV0m4Okw9N0zAAYGmaJg0bIYx3CSUCRquldxGAEA99PNVGKFnv9ntVF23lOLu1WFkjSkwhF1I6hQTBd0aeUEWAJWVFZdEq56d+P67XlxBSE8WZG2RXNz4XZWaS1SxoWY3DnnMwikop1lZD76ytx/nh+tC6MVb6akoc8r4ASVoD+v1mbE276rSPJ3PaIkmXoK0uh22/ydku7WUJgx96Tgeqzt4XrIY5r9YLhCmEWehujojynkILQWvRchEheVOr2c/M3DQi+ahpJZBT6WNARYdjOulWi+32XGsJAFbLfr/RWmYcidazl4wgNKcUarOaB84wa1TIIDTM06atbUpF2TbhDIxYsJQScigFmA2CSbwxSl9c++ecBZF3UdXW6ORdDolzzgKZma1qjKoGPJtHWLXL4nsOpV4cvHf6QHR8TFcRsgSch8kYA5BZwuRDQadNTahT5FgyEaFAZsaEI08JoyXZZAmFZxGdSsvYxhhJCFtXfb+z1jLzNE3F6Latx35oKuOcI6ldCtrWCvLswjx7kmjqCph8YC66tjGldCG0mbmUIrViZs8RsDBzKYWkjDHnzIhYstBWxhJj4XEO1aL1cR6mbRBYFCXAXIBzIUQgZoCzFBKgKxmRIpcLb+nR0UFhnMbdozdv/eRP/uSTTz799//B3790fe3y+IjAmx/75NvfuxfvuY//2A9/7+73Hr79yo9/6iO2Fuf7fOOxz/7ar/13n/noU506eLg7ycs3P/L0X/3S7/7BY48fnO9ejYGvHD3/5S9/6eZjdTyvL12GGcfXv3v3nXvjX/3L/6OH/TtCuDdevPvs08+tF4e/+t/9+o/+7E/ug3/1B2/9mz//bx3ggxdfe288LS8896l3Nidd0/6LX/rlv/P3/u7//R/+g47sc8ddK/b/5a//s3RwM03xp557TsRy/OjBvR38zhe/+pf+ys/szjf10cHXX/8DHpa3Dq++/703P/OZz/zf/v5/8bkf+dzDO+995be+9PjHnx7e33Td6t3TO7duHVy2pt/unNZWLVuiszvvfejDzx1cP+7WB2EMR93R1YO639Ql+Fde//XFSjGv5ujeP/mTq+unzx5IYy6fnN8GHeZY3nzzzsHB0f3799eXLy0S3Zv3Ty+Of3B2t0noiS+YoxcCTIg5R2IgooqIGIyQHHNjqxiCvFgxWbRzLs5QZYwa5kaZ/eRUS1SYABnoT3uoBSCyQAXT1C4qJzikUhXpw5wtiZykpBijEEqQzgwAiSH1+1DZhogAMOfMzMYYKeUYd8wYEyiplZTMjKXE4NBEIOSCiYELSZRCKGRI2YFUIWYliWPQWvtQMohaMAsKJQshUowCUCnlc+rIxhISJyIowCkWZJJSU2TSMmQfolN/qrlMRv2p4v5r/b3wQQAC8kUX91/Vxv+9MhkAtJYpJmYgJOCCgAmZEKygGkUNWLPQICXjGnXmhEJIIgjp0C6qQpZUQF9KYc7WaKuMJlsCl8Qx7+vWAqxCZF8eLhcHJw/8pcPDNHkSXskIAFwkgoaCKSXV9EosRTZu3huDUsrgY1Vb54BEYmQfoTIHKSIiK1lSuctClSxLRqssonCefeDVys5TBOGsWYexAjgvvK/F41Ttd0MvdDYW9n204qitm4dnb9huPQY3BWeMqbWJPoaYTVUDTByN4iZHL1VMEEnVOZtGDrkMLkofsqpVTGulllndljsWsrWd3Y33lKw5NrWVk7t9IktbjMwChQSi7ANAQQGVjT5UGSrmFLxvVCdlYtoxSom1cynnCBiZAhesqm5KW4NXCW0/vwu0t2bpJlkyFWFsXU05Jy5MKIBLDJKwpqFk6SNUjWVwXGJ0weiGi1bGc0nFW20XhacCDFjP4z2FIAhJGpAKACqCTskHcyBjXcm9n7VREojH0upWmIeYRAikdS2YCPU05mW9mmALHEt2SgDnBEBSKqmqkp1Rhw8fPtQ2CA2Fq1Qii/1Sr8M8dc0iReWCCUWJzp5uHx7ZLeGRwwAFmnyMMAZxV0pFY4VVHHlv22UYCVgJFSPspbteOCAlgZkhlwxK2JwKiAVR2/d9XRclE4GAnIhC0nx2Ni3a44KeyMUw1nrpJnR+sK0Z3ayrVUkGOGoz+PBwpZ44TwkLNjmyCKmV4xSqqPdMRmktALNDdkqAQFkyTjF6Q0RURUgpTZIBSscyiomEARZEEkpWpHIETvggvL9qr3HMViRIWan1LrnT6c7V7qqW65Sdi/e1lpIOkIlx5FmAZJAZICEzF5lBZyZSkpKj4AIUr6wwWnFgNwZRCyEKcOKSc0ZkyAWYEbQAQChNVe92O5JCGBticm67Pjh2cywcAVNmVLId+0J6voAJCyHmeb4YwZRS9mFE5JyzlARCAkCKRQg1JZc5gSAQ0oUcGZgyY5pyzsAZMKdCRJlLgOJLDFK6mBhASI2IKfrK6ueffe7e2Rlh/pt/46+31rz77u39NH7/rdc+/LHnz186/+Azj/7Wr/yjn/3Fn/Wd/Pqvf+XZax/6wGd+SNcPTvbi/Xfegnn/xLMfefPsze3JvWq7ePYzP/Hw/Ntu3n7/5bOrVx4N/OD2nXd3GxZisz44Hk7Se3c3P/a5F/R6PH94YvXVefYfev6ZV199+aOf+sR7t++IBD//Ez9158133tmebXz4hZ/5C1/8nf/PEx/94D/9pX/4l//CL9w+f2irZ0/vvNQszJ98/60PPfPsr/3S//Njn3n+5gsfrv1iouHV77wSz8dnP/rsy+8+eOr6h2+YxTdf+p3X773/N/72v//GD968+9btZ5546v/6//i7P/0LP/ftL35xuT5+sN3GNF+yQoy9XraT0a2shE8LpYnguU981HNubLOq21EsjPabuw9LLyhNdbV/6bt/sm5vyht4IK7b3N0+e/+94fSt+6f7B5tPPvPUq2+8d3ztyttvvmXrqtb2/Pz8eLne7/dZQU7MKRMiIhIDFAaAikFrDUCcS22sYIRUJNKEw6KYWtSJ0GiBs0OSO8gWI2VQQgNLHwMRWAEcI6wv4TRBCSOnlKAiI6wMFTWDk5JCCDmzFAaZpALA7HysqlrJKsacYr4I5losu6E/YyClDBdiZhLIOSmB+zgKFAKxZAAgIQSjYATMgUlMs5eSJLCS0kW2VYspkFabfrdYLPrNbtl1AJCZY5kYoSAXyKkAMxFqIrFkwxJ89CVHKwUA+BAKAoIE4H9dAv+rhYiFES/2kP40prAwESFHRGzbtt+PmYsxxvtIRIURoADki3RMiaCJFImlV1JgazWlJCO00mrWAsRliwUyEUUfjLKSVa1qKELgVuv1djoFwpJXSiklS3DCKirsc3Fam0ot5ykw5+WqnuezOHaL5mAe71+7tt5uppzY1uCCE1QjmshBmjROGwJRV8vNBGttiOOcBieT0JXh1mR7Gl4WVCs6tKYZ5/OjxeWh30m7ncb7y+bJcVRMcbWyKZbkZqljnGrSBArOz0/btp0mD7pKDFJnTlEAl4R1tSyMsfje7VnLrjqYJ08gm6aa3ftS0ripDuo6wKBa209ZKRX8vrVVnvnczq1DVaSTFEruhNyP29KoOJfaBMGxag9P555EWVDLWznQSVNdxtQqqQvMmftp3mqtGQyCRYrDfBdQWHUlpCLNDC4zM0qhjD4/P7eNNUYPw75uFoA2sxqm3tiCGK2ykKmkiuHcCFnmSos68yCUjE7LRodpkiTQ6DFkZm4UmpxqVY37vm0apXCYt1EkUJaFzEn3nA7tYt6eiZXUPKfdVh8s8nQ5F9/Uys97JQkASgFgMZVeSmrr5bxPbb2MaZ6dq6vluTpTrFM/d8bO015ZMSdX1TVOi77dcJxrtqAM9JKcSKuUY8ySxui1lhjjQlsOaRrm5dFBioURhdTDfly03TyM1pigNgXkOMa2XeYYtcgSsDgekEhkoaDfz5VdGdmk4AUlbYTzYU5BWTlOu8Z0biyr9tI+nvLE69XhLvam5rnfM6qsm8bPRlkA8DGwBKGrmOR+DHUdZGKl1JgDQ+Y5WKuzojh4a+uQMkPi7JaLGlKOPpGSMbdzzkX0nW7YV1ZJn04hLlQVp9ALkoiIEOKcO3vIqo8ZGbUgQ1BimgO7IoqaWqqQdfEh5yQrUzPF3bSpcmUbm0oehqFpGu9nZGjrerggZOQkBCFizLmQcDFoVc+zN9a6sNWmVLXanA9atUVSSukimCGEoJTOMQFAEYCI3s9Ki1yASHoXSKpd3pAS2pr96FLGCCyN8HFCVDEVRoo5al25khymfUwMAAjSVCl4FBJzunJ06YVnn/3tb3713/9b/5NGY3H++pWbv/17vxe5XH/0xuWm3cV47/V7n/rkD/3OS1/94Y8+P9253d1Yn9/162a12cXmcnP3/refvnH1i7/ztYOrtxje3/cbN9pXXtw8/vjjHh7u9u7BXdTdZFuzzGZT8icfu7KDe/EknG+qW08exGn7yRc+OOz73eyf+NAz5+P57TtvP/70546MWV5d/OFXv/hTn/n0w9PNnOShOvrQk5/7ja//7ru7tz76kadff/n1zfn0l/7SX/zN3/wXtn7s9O59VdXff+uNS+vVI5eOmdPBjeOv/vqX/9q//e9khLvnJyPPD84f3H3n9anvb98/febqY/2909t371RHq4TluFmuUI/pLJS8Orr07JNPk083b94slcDWjv1rEKv9mX/q0SfuvX/n5OTMxdD3uxvLA7R+8LGubn39G9/djac3Hr1K0sz7cHb/4d15d2t16ay4Zy/deLA5e/jOba4kApRSOLIQQklJjCklk8DUVQhBCq2FblQVxxkZqoXjIWnV7MLcGN0BQYIkhRAeElnVMtM4TUpTZyUkPydTVOHol8IC0xY4S572u2W1JoE5ZyW1QOucE1SEgCLHGDIzccGuWSFi3/dVVSkIMWclzRxiikVLSikYLadESkpNBIWZuQCHkmNOlcBQmJGQy3pRj8OcWZh6Me3OQEqfk9ZaFsDCWmvnZ0VeaAXEPqdciFARaWDkTC57bZWSGOdJkpBajdOE/33N/dPy96LGBchIGQogACAWBiBCKiJdSSLX1VTy4GcAOGS5h1QAtBCaRIzBGDt4VwhICBUzAVhUVklVmFOWCNaY4qOWykqztk2efS20QWmV5nHsqloDCAZE9CUUQts2YrMlqTKJUCADEpFEAgAFqgAwAinZ970x5iKpoxb7bMw0Zhu0Vs2IDAANSsxbBjnHjNL6kpSRhT1K1P6IIZKIwfdGyZQKsEAms7o6Tpt5Htbro6F36/V6s73P6Ao0UeZQDEpO+b6SorYHw7hblkViGYuvNCYXNTEQmPpwOn1gFzphiFDmKVVmQVkAgBU25hRLypQKxgsPHiKsRDNVqn+4NWinWihm7eOkuBWGCVnQ5BOiCPNUa6orHAbZ2Ma5U6VYiXbb9+vDy+PIUUzjtLNGShbIWGKxRrq5D9QCcdXY0Q/MOaZZSqGNtP448RR5EkqGWLSyIQzacA2Ni6HIC5T4JAq02ioSU4GQYlWbiyfIiZuuy0hDP7WtLDAaRSWCkXWK4GcnJCLJyYWqap2Pbb1MMVtlKb0XmEHpjGKaXFs37GOlTYamQEbM/bBvmsrPzliFIMZQDqtqnHYTBlJSBoFktjkb6I2qFFrIpXAUAi8E6HyaiKgxdQ55GufD48splmEa2yow0Og9SCOkvnBsllLitFsu11Lozb5vmkZKWSCP42ilIyFRqjlkHxOgyJCJCLIjNMGjko33XstSGQCMZT40rdnPG4Elunm9OPAuMyqCfVUvRu9jgspq70aRwuXjw7cmQWm3EKEMQ1evpwylMmNyC92db07rrvbTuGi7zdm2q+pKV1u/51LaquYLPSvFWutjXHbddrshosk7W9UFZGEUSmEJs59Qyyxwmv2iXuGUqyL3emN0lXxMqVRVwwW9D0RUddK7zEipFKTswlzVbQhJJlZCIJecYyYgoQRKzCURlfKnV8qJUyo+ExOBy+Liv7ngq6raD0PTNKnkObmUGZUmoBIiAQLBFGdRmZR5TsHnBABKKAmIhU9lZIS986QIUFxgJi+i7ohAKvABSOATjz3+1M2bJ7fvwHH953/+3/zjP/7dz//wR+OQvv4Hr107erTfnn7iC8/8xm/+6k/99C+8+drZ57/w2e+/8eX79+9LuHRpYe7fP4mKnHSnt994ZHn0zRd/YG8+ms4mhcObd96lrlkvrm7fPz3f7Y+eePyRMm/7oJd10VFVdjfElOfJn16u9fNPPTt7tx0t5PmFR5/88u+//kN/7hOvvvaVJ29de/DOvY9/+POroyvfe+vl9fHqxvVHd/fu9254+sOPv/sOfO+Vh5/9zKfeeetbmA5fff33bK3q9uq9s42sxJzmqzfW3/rG9//a//wv3r/z1kJeO70zXrpSbR5uvv3Vb7/7zouf/KGPvfmDXVOvHp5svctXb/ATjx299crerAbyFffikx/54BNPH7LRga6b6rH7t1+Uip966uZL3/jjhaHh/OzsZHznvQdPPHfjcHX8zAeeunN78xu/+RWwU8DBVsePHxz9wTdejIg3rl197PrN7Wb+8ne+m6zm/cNl13EqISQpZUEIJacSD0FEKFLKVioY5qsHl7a73nGWaCpjU3BKYmWs9zMAQS6W9BJUFuhSPDRNH51T2JHOaZyA2ZoLFoFFklKO2XEhBE5xrowsJSmlXAw5ZyWWRJhKFgKnadJWARYAaAJHiVEgabMfJiIiJoOCa1lSdi4oElC4qSrOCRHHGBm1kFVIzlrAGCuykOSGR1O4kcql6ASTFMKXtW4HMex2u7ZtnQtN0yHIzaY3urLsMkFBKCm3dRe9T8AXWZv/w0sC5Atz9L8qiAFACl1hqguJghvMnviAjEYRc0JkKWWKsZRCQmTgmJNSyhEC55yzFqKkTMjMoJSUIWNhLZVBRZmpsBUKGRfKKqUEswCsUepSDFNn613ekVRAohTggpIvrF5FsCQllVIXn05FQkmRc44+WKmYM0vigpKlFHaOyeqQCwJpELIghOBAJCmwzGbRttO8b2s9TaNAgSi0tuCWBXoUI4k0jh6xksI2TRvdDtWVnTsNZVvpVYw7kh75aEhnC53Q21hw0hvbHPBUlfFcq4op+xKMrQsIq2o/h5Ji5PtKtkovGWofSogTQ5AKOoQHbqzJ1rp+GEeDeNwu7vanGiwTp5KkVIIMYCk5KMGFl7O739hFdMXUUcp2GCQIh8Tez1IhAHAhAJBSxDRXjd32e2YEJik1pyJQNlUdIvrQK4sxRi2bkjNCFhgbu/YxFEIU5NzMuVipBNIYQ9XUIXgo3FV1Kbzrx4KEste00KoLfu5aimGudTcOqa51YpjmWUrpYqhNnXOWUpKcBYNCo1FN8yysdiWxBLdPSqmqViH4nKMQQhDtdrt1u+6zzynUgKayXonZJ5OoaCdAYZE5llIiYCrAJcPisDs/O6t01dTdPPuUckhJGZvdlqSaYxLSmLpCEDln5yfFiYgyQ1N3KaUCHKKrqip7lUqOmX10mYqUhFQASvAsFQJlW6kUPRQUQMlzo0woIWFSkhQCZEyp2KrOPmVmqU0IwVo7Db3VUinpoHPuXFHkkrpqGTwXLD46o7sQgjaSOSshS0qUUQkZrYg+SBKYizHmwsAxzbO2fLFdOecMXBilsqaudv0+u2C1UUoF5hBZkuxs68aTUlhrXYCmyQkhjKlSShmjd7mt2xijIEbOwCRQ7chLQOCcOUUuSFKgvIDpIxIiAnDmlCGnEhPnnIiZhZI+BqHU7J2yppTCIo+zLySMUlCQuGQCl7xnzMAZOHEBREQqpZSc95BIChQ0+pgBGEApxcwpk+B09WApBa3WR488+uiDh/fmcbx0q33y8eeZcX3Qfufb3/n8D/3EP/un/82P/fjHZgR24ebh0ZX1FSmar7740r3tncefv/nOH53MatBL8c0//ONHj25p1XzntVd0Z6yAsMfl4cqhC2MZ7/sbN69cf+7gpd/7xuc+/4WXvvcK1TS7sN2Gq1eOlJ2v0ZWbTx9+/7V3wYenn7p89+65sQsf+rt9fOTaUYoPPvGJD3735dsfePLzPvSTf+v5Jz9eZLh86+mXXn370urH/uir/+wnf/KHX/7Oy+/ee/3BXfnTP/eFP/rjP37jndeWq/poeYv0w+XlG27oP/Doh1fr6zHHl1/+3je//q2//Tf/2pd//58+98KPf+ul77z+xrc+9fzH4pBef+uNy1eP796tXf7uz/74zxwfXNqef+/m5Wc++PgPv/b2lyfaHy0/fvf9d7I/uXnp+je/9gd37v2gbY9vXque/tCzqr71tRdfvvPgnTtv9v1Z/NBzR5t4R9ULl+CxKzePTPuVL/7hVHDjPcz9lVs37+22J7s+Z2ikECmvbDu6UdvKuVkAHOhKk8gIAUqdjVYizLPgIgWmVKy1xhjhCgPUUhNgAb6Y4i0Ih5L6GCOiKESpCCUnwds4HtiKU9RKzeNY143zUWvtY6qzLKVIKYG4lFJKIqJYMlqhXJYZVVv7kBBgzGEWpHIWSFJqyAUZkFkgIKKDubASZEN0RhHnVKsWsoppdpxBYcmpRqlAjD5kLWqqAEtKDjAbK9JF75PZj0FpK5SUJERmLAiClLkYQ/ofWhcv90Xf91+rNCKvQKDRdo49F4lixcILqCIopQloyEEIVXLR2oQEKhFIWQr5xMhUSpFa5xwhFbAmOJ8FjjkZrVKMQXOJ0TGVGEJOiFgL0RXRZlrk7IQTOSlSAqUEgVAEEDHOMVoSioqf5sZWlIsColi8JFGElAunlZtHVbI2YVs2hOtYslICkYQQMfaaARF0J06HEynlST9WVSWE6Ie95CTLhJSjC1obtAtmTBjHsjWiZuyJKAeNxuUQuVQoZpvOZzzyZkZIODU5+yjntDysKIeUsAjQNWQ5+RRTlFSAn3DsXPIMu0y5EACbnAzRNPq56qpIOZcYGLLkArlIzeC9mxly5GhMFXIuKIrYzbFSNmc5lbDujB35tuQDW4rWKrEvQJ4jSVnYgeDiZiIqBUphTrmpmuySHycnS2DPRaSclWBE1KSIZD+7nLMQQkqUoEAACg1EhhARQQgi3uz2bdtWbRMB5ilInV3aCmqmfaXEItAs9eSCBgApNUq0wjJmhpRyBJQKZEkFtWCUMTELiilncL1jwgABAABJREFUBK1pcLNzM2Cx1pYYyeoxuiG6uq458uxSQkwlVFLv3SwgcyFgEhJJGWaOmE9OTpg5crp/9qAAVk0jtN4OO0mysY0QefZx2A6IaLVEkj57iQKQ5hJn55SWBWlwM1AqgjOWIgpDiZg4p1KSkFcCRoY5xQQZoaCVdSIGFXLMpq7HYS+rupRUqMx5FKLOOZYwtU2967emMonBpVQJT1BcKVLqkblAhpg0UI5ZEBFgygBYlNDMOca4i67SBknGFKLzMUZEJKJYWobs5ygkMnMuwCjTIELJTVNbJj85kiqFUCw+HDdAAITOj8ysrWXkbeqllJFLlExauOw0gULhJt9VFqTIhUvmVCAwlxKNJBLKzeHCRc/MjMwEEcDnVEGFSqAgAVyAZWUy5Ai5tkZwLoUTlZRiSikhZ4SRLyyhCEgFIUL2kCIUQnIpQ8qkNedcgDOXkrMy66US144OV3WzPjw82/fbzf7qzauPHFy/fnATdfn9r/zGj/7oj371619uD+onnn3it//BS499qF1ea//opT/p2uONO1uao80r8gevv3bpuWu/8ztf+vC1G8vm4A9f/O7B9eth2AHK51+42rTrX/utb5acP3rz0sc+8dj333vn2Y8+tenP5+BKiDnhM4898/D+nSev33zEfvDNe18X2hw2+d6dVz0e+rTd3dmvrz99+/brzz175f33z1fL43fe/hMs8wvPPyn13XG8cml5/fKyfekHv/qpzz3ny/1v/snrmzn97M9/5KMf/5F/+s9/6yPPffru7bf63fcUXF7pB09cfnR6+FZN8/GtJ15+5cv/4X/0v/nW17/7mS/8j68dLL/z9a/+5V/4C3fP7/76H371uDmC/aaL/s/9mZ9/sLt753TuusevP/m51999/3QblbpSVm+8+tof/uKf+du/8au/HObcLW+APmVoCS/v+mFyZ8FnofnxpxaA4eYjj0yeq0BWrt55697jjz0TgV556+1rVz8RoMTx9ZLTtcODOO2shlrR3qk5Jl23fppGwpnzFLxuDIQ5k0bBxhqJVFwMJZeYNJQeEhdeKnuenSbSjD1E2ZegZbIyMUMM1icrxTFZjkEpxSlbocPotaowkUZFMqWQixClFCFFmAMxpJQPpdlQDhw7N6eUopZIeJRpm2MhUCRSYSlE9J4kFS4sogSQKAiLAGakBIUxj2pvUFiiLEqk6LkUzpbknGZjVIJAKGdfiKRAhUSrg8Z5P4f5okqplJ7neR77/78CzAgICPz/c14RgEIwqUhDIJVNSTBhybJkw2RjYWIAIUgACQlUUEpGHaAAAdiUi1QaCgCqlFIuOgCIIgoyFZEIqVBiMgAhJSgpE4yQZ8AtkYZYuSCEIooCpfrXrC7GlEHHAhGSn2tKCkglElyQj2bIUHYhRJ/nnGQSS4QVZhaMlAoii5w6IAlFFzyZz7WpUsiIkpgePjhdLuqc465Mje32oXSq9j6QhJhGq1QEObhTqQ9c4BR2Gbg2635+YPQlTlFEK1TlVD8n1qXrJPVzn7gwiOxKij6lhBhIUVa7EELwoQAKFIKMQAEFxpKrpvGcJzcIQSnHk/6cFDkoClFqwRxzTsVzZMhaeBd0C6MXjV6nPO1HJ6nLvA+shKYUCwOUUgggZyZitxdVUwuJgXwIjskHnEJ23fLYZIoxK6NGN2plh8kbJZRSSIjMWJgYEhcXHQDk5NkXqbWUMnGY/YxGuxxJZaQ6eFBa+7gHkiWipKUPoxBCSMkMRMAMgiRAkUkXwfuSBnaZIsZSseDZg9Wn5ydd19Zdtd/vR+/quh76fRZYoVSgthB9dEsokso5DADMwIUhQ6YClDmXEiO3tnbOQQFPSELtg0chPQJouYthGAZgaiojpSzIKYZYipbFGLPZD8ycM2qjdrsdyC1JlRkARSkABSttjZSBTyAjF0hRAhCUlHECEX3pIqOAOsTkpeUUQ45Q2ChCEpBS5hSjF0ZHEBmxxH3GgkBc5Dx7zkUJlFZiphCCJD25nto2xKBIBM4oIWEOPpRSKmMEiZRSgcJwcUTzpaBSIs6zlDrMwefUkBq8c95rSWBICPTeN8oQUQ6hANS1zqXMMWoJVsiiSTMDoEEQiEDSSHV/3mgSRipjLJc0ezcFHzEmRGTOOaeUgBC1SFwiM6UkEQtwIeGzJylGF1LO09bHkiMRppRSylxACtSyZCaGi5c2AQcGhxAJFBIXyFwEl1wyIHIuxhjvNrce/+AHP/DEpfXqhY996p/881+5devWY4899onnnn3z7fcCT1bR22++9vTjj3/y4x/7jd/+ZTw6j7R6943gT3TanG12r9mqeeXlc1/Gd77xoDi1XN587+7bh0ft+ek5J/OBx9t5l+7cfqfu4vHq4Md//Md3m/uZxjmYhw/PbNf1/ZkQ0ip5dLDWir79zi8dPnZULz5w742Hw9A1q8XVR1e73fbB/Vc+9NxTm9OgRfPw9Pb6MD9+/fCwWn/rqy/+7M99/JXvfq2P4cb/l63/DrYtve7DwLXWF3Y68ebwcn6v0+vcQCMQIECQBEExQZQsyZTkkceWPGV7LI3HHtujmZHj1MzYHltlyZJljWiJpEkxABBJEDk10OicXr+c7ns333viDl9Ya/44DZKamlO7bu3ate9XdW/ts9e3fusXVs+srqz9i9//0ic+/dy1jY3PfOaXf/03fvXoyUU00F9c6GQnPe/t3H1wcX3x7uGb+bHWV3//f/nMp87u7H6NaLCkX/jyt3/18U8+sjJ/7ltf/YEZNatHVksYffJT8908eedN+fiPf3xuqd+E3a3pq4N688998n/3jW9/5dzpC9fvfnV+OcFw8b1rr5XT0aVHPj4YT4jcSja3N5rOt5Uqyt1RstAYX05Xlo7vb0+PHT/X7mW3N7e6E798Iuzt7Cv/8IVTJ5VKbg33j589c+fu/azd8t5LhHari8KuqZRSvvbeWB+qGHwktmiAIARWIbBSDDAJzcyrWSszjS4g7xU6ekeTOmNq68wYVSNPoiucaETvGVF5741FzxGRMaEYYAYjC8eIAIRo9AggDQYQdig4cPN1bOtELCY6CSE452AGEhrDECNz8CQgCB4BJAILN650LBVqpRIMWoC9kgbYgGiwDe1HiUlqvWPvpVW0JpMyTfI6Vk0MRBSZZ16VbEC00n8ag0ZAAJgxnwUBBAhAQAnwbCrcQUXC2vNAhzSQAcUWWw6VJiOKQZIkC8JKKQgxsRlGbkhARBsTmtJa6xuXGRsZdUChjEVQqdo1qEx0MQrlVgWRDs6c48UBRyU1BScEEEGigBf+QGemAAW1lsb52mhlojOIEmJqk/kwCNY2FaacKmWnUiVhdy5NXEVKafGVURpZ0lSFEIUDR++9WJMR0HQyme91x5PD+fk5XyUMSqSs3b4P3kAanY7YGstO7XSWTQINibuoPKvDJgoYhcLMOvpoM2OUQF1N9geqkyIjszRNI6CYg0AcVdNQGyFE0rP/PEuDQAgwYd9Ks2ntmDkhQ1odTKftPBvV09RIqlUIUSeJ8xyRvHeBQ6Kscy61IiJN0+jEOt84ABspcDRECsgIkpABhYnlyJ5ZSJzEw3rqg0tyOzrcI1SCidJGFGGqSBm2SQweBVjEixeUCByEUREqj4qaUJZN6LbbVVWWk7GyicHEu6CtqsJ+mlM5neRp3wfSmklhAO8bH1mItNWJUsYrjiANBuTIEGP0QLoJlbiorA4S6nGZZNm0KkdlBaSDkRjpsJ4GpaJSFUfSsl+OeyYDlIgyG0kAI0cIAdK0mIQKoiejtdajydgYQ0YPJod5kmGqrDZeeFyNlCJjlGg9qGvLwgoUmml0zkvUSlEflUZmUCQhuKYWAeXZ+wlQAmKsMcgIbMRjCFwBj2s3DRNN1kflo2tCLNr5uPSGOEuTnYPDoijGVWOSVmCacmnRJmwxCobAWhrChsGSqSFK9A2ikRgkNBJYMQOAgGcvIhKBiH7EbZzMvHCZAyB5cVYpMpyJ9SxD1+giDQbYR2mqltaRwTmXZCkoKstSAJLUhBjJNYrMtK5AgSiUCFFT5AoAonATPEpsYnAhEIAmFRAAOESO+IFGIioU0J7JQxQGRqiiT1BX0QNhaECU8SAxRESF2gSiEMVzIABgYYYA4lEiMAD4yFprEonBA0BitGt8DO7i6eX1o93Hnr3Q6S9ul8NjZ08+duZiPRq99OoXLpx7tq7t1v3pM49ezHT28je+zaMDAjXcyw98qBo/GB2gXrh5Y/Phw53WfF4dTE8dP7V5eHDz4VbH0NEjp2q0C510697WmbPHy7v75x450qjJvf2tnXE9HI477cUkse1ekWp76sypyXBnd+/G+rGzT5x/9NW33nJYLqz1zx89sfkgklp57LJ+4+UbR5ZOVbTr3ChXJ/rZkdd++NLi0qX33rpKhUs79qM//skv/v7XPv3JP7O9t7saR/cfXkkLf3/r9p/9/F+aTqtqUv4Pf/83/49/7fN3rr2XF+r+7c2E58ut/KUrDy6efO67179wbD35zNNP/eb/+vIr79z8y3/5X29x8s7LXz/z4ee/9MXffv7Fnw7VdjfbGh1MW83i8899aFodlPXuytLpppTjJwYPtq44GXz8xb9alreXliGlhRtXdnu9ZGH56Ovv3GmCu333xvqx5ZWltGWK9fWlwXir25HlhaLeD6ZpP//4R5956umvf+OrLzz13GgyPHV0/fbulivdXHe+npaddrsCmkwH/aIziDUDI0iKGIIzJnHCGtkrzKKexNq5acHkFU9inRLlI6HMxEJXHMa+As8WlVV6jDjxQVs7raZJYco4NVY1TdV3hePIwadpGmPQ1gCAVmpUVpyZjNKl0knEOsORRihLm+aIWLkmSZLaO6WUc15EknQOgTFETYCIoimEUoJvAXqqtmMwSDnZFNAnMsIy8X2tNCIA1UCNqFrUJGClII8xKqMrCcqqSlgl1knU/z/V90/KsAiIABCDICFFyYG6pFqJdSHUwm3ADFTQlEUCEo06hGCVRu8xini2mRLBoGQmZ9RkDGiCkCmDiQ7Oz+QN1qYU2FgbOAojqGgZZn6WIQRHwkiemUnHmcQeOAIwigCCIoyRA8cYrbXOB4/onXMILmKl6iqO24SJzg6aSFVacgbuwFrLDAlYiNzSSQwVMGeUJdbsT0ZpmhurRm6atLJBNULGasypKmLVtLM2AluFGJrKc5YKhQAu5jlJ0PV4mpJQHJWxiGaSYuiGtrgxm1J0x8eglLLWNHVkgUBBMIToJa4K1kxjoKmiSIAQKXqpjJJy6lG0TVzjdJp4orIOSMrHGIW9c0WeOmAEcc5jwpMyB6orv0uxpwzU/tCHhFLlmQFICAlBvJAACLAas0hArP3MBzCJaMpAuZpExizN6tqRpVE1ClFCPe0prZT6IA6FgIUBQKOmxNS+AUIR9BxcDForUig+i3oqMtCJDpBFsg0HVE2MjUIbQQJCHZxREAANm30sMbBF0JEVQYAwQaltbBmqq8qaxDehKkcC1Grl+4cHGvTARO9Dl3JC2Q6lFavAjL1DhSw8A4IJCDUx4IPDgyRJnMS6nCqvSSlQqq6qrMiqEFzlWlmeJglYXXtXVrVNMwdclpN2u1uHgEo532ijEVpN8MNyohJEiqxdkiEgFvk6ANR1iZqrqk5MyiZNbDas9sliHaep1SWD0igUaqlK59tFVjPXAonSqMHPhASkWEiQQDhJjKdQE5TOJYoZJPiYZKYMTmsq61ob8t4nlDBxFCmrsSZCxIQsYBpnTaSQsAFq1RFcYIOEpDBLgzJlVRsEDJwSHmJQRgkGDiwaAKCKngEsB6WolNpqE4QjSAASxy2thMUH9mHm8gxWExrlfCmzuDj6wNkgADICZOS9ZxEOXHOM0TcihrRKDOvZ1ClaY1Ar5/zUe4RARIgoKCzCgMA4G4mFEJTWIJAkxiBlRdpttRMLjzx68c7GfXMwSvO2TvTiQuud2+9cuPQIgfr9P/rdH//UR86dPzHaae7f4F62FjelOILfvfaHSX+uZnXz9fv9pN2mzKr+0XndLeDG7n2T5y3TPn38yDAOD+4cfvTFy1fvX5+WfjSuxt3dBwcbyi4bs/PIpUdf+t53L1448uwzz7zz5vt5iqWfHll6tNnlE/1jy/35K++9+uixo5PNW08+sv6Nl97Oi/Tk2e7m/UE7X61GJTCltscyNLTc7ftjZx/73vd/9/ITn7x+612tF15/9cuXHlv/tV/7Z3/9b/zNn/jMz3zpi3/43sOXf+qn/2IMK3fu3i1SaXesSZO6PDx9Ynl7+829/Z1P/dV//Xe+8sbr1976j/6df+vypcu/+/u//sxnj7/2ypXj60eE7mZpniYrD6dy/sJHWp31q7d+8+Ijp26/zwvz8zuHr8zNnTpz8mjFt5IobtK7urmZrSYrl55497U7GOj8+tq9KXdWVtDodrvFrlno5DrK/mSK6lp/qffcRz/5zrUbH//cRw42B9M3Rn1qvTM4OLq0PN/pHypVdHt7+/tGF3la3D4YGoS2TdEmVTMRFWsOmqFyrsd6yp5itJQFDhPFVtlNI0aCGpdGME8MmGQa3DTWHchZYObvMXMj966KoakkYWEBYcIYGIFijFG4UtKqAhrc18Ekus1KfNz1dVvpWWgSKmqcI2HPwRhTNoLggq+JCAS11Y59jF7svCGlXSCkgDoKo0YSqMKglbaGo4nWGrWZVCFr9Z1zaVo0IgEk+phlSfDeBTdtav0vlV78U/2wCP0JHE0InAP1xSSotiBYoNQYK6Q8A2EaKWrQSIrBoA7OIypiEMC5oKIQN9JWGURQlBlPRukRBGSxSmHgQlsFirTxHJWgF1FktFKEmAgQ6MhRiQ4SAVlQmIBBoiASYYzMGLXFSE5QWEAVGNEpR7WQt96m0RG6SkF9GB6wQuUiIlJ0gGKnNUgkgQxIhdDpt3b397VWMTgTTJ6kk+mWhGx1+Uw9obp2RA1LkyVpjK0oB+gzgZaTWlhPG2uL6QQSBTsdP+852Uv3S3YdnuumvLE70ppsalwAUjZIJI0RUSU3g1d1Q+xSQ9poBVx6rh2R1E7laSMxjeJDjEpHT8aw51A5Fzxw7ZRSEj2wa2InynZhuqUDY3dJEucKUePCtOtyTASRQQB9jEaR59DwLMjBVk2NpA2iUso5N4KGGDBIE9lEIAiWiJgIDSoVYmhCDZE5RuCYzjg7TV20sjTL66pGVKSSsnK52UfOplXe67dqNwATpr4xulM7nyAFFtK6IQYrpZ8Sw5ij+NBOLHqvDQUQYAhEu5PDVp5Xsakgplla+bA9PKij19FHMKhwGqYiUrIv61goAxgFJcQY0IsEBQqEmEGlhlPjmqha1scYQoO+BuCmbBJjyVjH6GsfQkySNEuT8WSgjGbBqW+A0RjlWAKHmndBY8y8LfLINDyYTpro2QmMEkgaqLpZe1IPu6oxcWQNNoE6vVZTOs+1EhDSaPWgqhICtDKta8zssCnbebuZ1ArJkpKAbCjoACk0rhGxWoxnN3Pmm4UxRDCevYDOs5bnWAdPRoMxNkmD89PGZTnM5I9a69JHk5thOY4SILZtw1ZbVzvxUWepsRhBoPFZmpRl6Zum3eoiYllXVuvcFMzQNpqIqqY0yroAhOnQ7SYmTWyiFGrhyKH2riwrMAgMIITaAEjjfZQAhB5lWk9nRhwMEhusg49IwTsO2EQfQISBAjUcGIVFEFgQGVAACAARlQgoFWNUBAwQGn/i+NHlxcVetzt2g6tX7uzvHy4urI7L6b/2K//Kl//gt/otPd5cef/aDz78sRcuf+j8vVs3VxfO393avfzYRdM1ZHaSMDe40plMeaG1Mo4H0aSdhruLixtbdxHiwsLy6sJC2Qyqw4cvfOTy/Zv7V9/btV1TTsbvv80mLmwf3H/6icebyeD08bVnnn7ype9+D8Ro0zp76VI9zac4uvz0U//wH/xPH//oU9c3b5154uQfffv3FxbWsmT81OWLr5W8sbGR5M243hhMx0tH+vvDqyOXq1zIP3r75p1nnv7473zxfz5/4cThzsKnP/WTP/+zf+a1V95IMXnu0i/ce/Ddl77/tTPnV/Z3D85fuvjKW985fnx9MB3e2Xzn2CPP3ru6d+Pl9//8z33uuY8+85/95/+XfkfCKF9K1weDZOTSpQuPvnWl7M6vrp5TN258u5Ue29t7r5jnaV2eP/XJmzev572wtHys2p2yrO4N7l146gj7ViNx5WR7e3ufMc+TthIYjAYnjz7CsD8ejA2q1ZVnzz5ycWdv3OsfPXP2kW/e/6pYvvfg9sm17gvPPHn/9sNe79jt7d19qS8cv7Bx765HBQgNwNQ1U/ESVRAWpLGrHQSjtEHYp8AxgqIB+IOyaqeZSRBisCDWuYx1YbIylEoZ3/isaDdNkxhTNy5DGwCJlFYqCgeQGBoRiT72VT4CNwaBEAVgH0IOqg+25jjz/fDCjOCDB0JRFGOJFJxuCA1HleHMcoMOeG8eCxsDKD0RmcY6F1MweJm4CFEcMBqdNnVIkpRZbw8GZDQZoxVFz+IZI/WyQv//r74AioAYA8ycrAUBNIAVwSZUFNpgkiShJmgXfar6rCcACkkJtJKs8qysAcLAXJBhgCq4Ii+m06nWtiorsdhJc47RGOO9NzoREaOMi66gZAJ1UJqtiiFoURrIxCBakaBIBAUiMTAoEQjSSnIXAxk7bWpAxYhJVjjn2npBplNPLmYqssu4lelk4KuJijEyanI+GqVGTZ3ZRCvcDyG1tL37kCCKi3maMVf7VWny1nAwnU7ui29iqBb7veFBZbwsdfL9gU6K2uZqb5ogSjBlLTabTnW67KweDg8VtzXKVGRzL672e2U1mrrSx5DZrkcJIU6rkW0ybZSyGlRwsQmMWhGZDEwwxoBW06ouVOoCe5BCmao6IKMDA1nrRFJS0deKeOJHFltBRTE1sG2aqbZGYiohVmVtEyOKEI1nplQzg5ee87UlxVorhKo8TIzuFGYQLEBahqAIq3KcF8Z7n5osBNAKHXMzMyslNKistZS0bMGD4UFThiJJi6KYNk2aFOynLkyQzHTSaNsbj4c6CSE8bKATGaum0qLrUEoKDmoEaFN3LBOvaRKiEdaApkYDGBIzcSWXEREno9oLMCmyZup9Vnsi3PGVSZOOzUaTes84i15ABYYoQWkwBCgCCkfloKO79Wy2JIEMggADICulUw7CAMDEoirPZaiQUEDI6Mb7LCvKcgoAwJoSXwfenYxxGojaiTpx4til+fZiUnQ67UXndLvduXnj3cn07oPNN6bDrTnTrhzWDbdSrZSaThqd2hgTm3nPTSRumsaQqVxlFPi6THRS+egM1+A8QtlMWrpTQFFTZObEpk1VKaWCq5WmWR8JpLTNSau6mdTIJIoUTRvSOhMdKUkODvfbNh83Vd5uY5YNdwdzYBJWmVGu8SVJotWBNFMHOtWO1KgcGGNsaqsQPKrKNTMcb9q4VitpRLIkQdJMOA3ON9GjgEIgICBCCRABRAkFjk3TMIgyuiGowKcqFQGltCjFgAgExNpqFsEYAWPVOAegjaljFAIGnvFAWYAECSgya629c1YRoXzus5/1VfnO228fRL+7/fBDjz+T6mTp9NzGjZvXb7x14uScNfrcuTPPPvPCN77xtccvP/29V1/rH5mfqoOPX376t7549cFDoBzydR29TkYmsXqtbTYnk9FYjh87UsvhznQ8HuEvf+Jzg3q7rHfXj6ze2h227FEjk62dW6ltZRqGk8na8sIffPGLR4+cONirFuZXlJl85+0v/mt/8y9/5avviul6bF/48HO//s//PqQVtTZfuPy5wXYRGtLanTq5rpLQXgye3rtxHU+dfeJgM9PF/vLShc2t91HyX/6lv/ZHX/uNT3z8Z7cfTLW0L546cvXKy++8dP1X/uLnvvnNL/3CL/7iw4d7l5++nOWtb3/zu2mnU5jhvc2XfvFf/fizz734H/ytvz2tdp99/MXbN/jk6RXEB6cvfPTdq/dXFvXJo+eGN9TgvVG+eiywN7pVLOTT8La2Zil9LE/KUVvv8ZVWV5bzM7fu3jx28tjDrfHbDzaO5KUbpGWmLpy7PKxvl2FLz+Ur5+dOnjv6cHunnbfX+nOFIu+b+WMru374c5/8pJvGuLp0OPXv3r22fPzkgJsdX4E2qFWSZq00pQG22+3hcNh4h6SHxMtpooMcSuN902W7j6FtEoOKvAMfMCGnsMZQEkaqoi9NktRharN0WtXaWA+QAEZhrVQTGoUYQtSGIPI4FS5jyoigVCTfNCFVLk+Jo/NeawqN11o3MSTGMIKPY1Ig2otSoVERNQITqkJiJBoSpkq1yFhWEXkITWEWQ6Si3amqilFEuWG5RURCVitsmrqwqSUwiamqSjWimWYpDKAEFCkgiSCRmREEIANqhCIFQ7CoElQyUXyg3AmdFxMfIPRN1vgGVVjMsqqqNEk52S/ynGMMzlvEcWq899ao8XCUatPWppWAIho2E4XQeNdrL7E3SAhxCtiMICGTiauknKzOzXvn2MUkTYehVIQERiGCUCQJHANLROdCk6Y2TdqaySiMbphRVI1NWymgapqm8Zi180kzNdgs2cJ7E8Ko1bb1ULJ2b8Jl5U0L2gfNQUtnpnJmQR0MJ5m0WAUuVa6yuqxQkajs/sBHZRXK7XIbdMDKWxGrVIZaCZL3O1k65v3qYDJv7HyGQ1dV07pftB+UQ+ejttm4qRIfynKUZiYaHmuEUKWijEh0dWrS0aRMdFYCTLW2Tsom1lSnmS3LSSmjQvU0YoAhSWm0dk2tMfW1KhKH5DmQEoOBU7IcgVVoBruFTVwMlGfb+3tFu+VYqqrKiRJS4ppMq0k5FUTn2WudlU4KOJBxktvGVZaMSsykrtsEo3IKiQmNW2p1ufGY2kFT2brW1hRJhwimddnEMQKnxu4KM4LWwjxJwWMKLNrXSiV1iBQlxgCVi2FUKpQ0TQ/j0BMHj6BMwxy1riGISPCRrB40026Rcx2RFKRmHL0FnOqOgA84gsZ51a6ZWxlVQx3bPKwO+rbwXtVKW6VbgUmbMTbDeNhz7cKpXqu10+xMVNlKjoylHEz31+ZWpPFKoyC5CGQrmmaU8EHg1N9eyU8zyPXDwzg9XM+e/6VP/MXF48dbK3Nnn7g8sZCtF8o0eWF9VWLgTzW/uHf3YPvuQTlwr3zn7738vV9dS9edLDo+1JZHzaTucKgIQgCWdt7yzk+8B5asSEtvJHFNnIj4ugSlC0cmkLBXESjUQYlmzz5iUIq1mZbDxmASQQmGRAVf2SAh1dA0ZQAmnNaaydXNVCkVg6j9CSnZl6HWoBkEIABF1kYMe/AhIKk8NUbhbMgDvkm0OD8NKMpSEyqyFOSglGBDzFWazL5iLEHrqUAWtEdVQfCuAhHSJISMMKgqoxKyaXA+AA6rkpLEEzQxQhNnYgtGYEXM3HgfAYzSHDwSCTMIoKIYo4hW2obATQw/89nPpJ3u937w9pOXP3H12h+sHz99/uzZ2w+2+2vLX//KF1AtjOPKp597EcZHtMuPnzt5sD9tNa1+y3QXO998ePjVH7y7sobHjqxtPtwZSlw58UQzfHBlf6PdWrHWem6M9HbeP/iZz74wVTu3rr9cT1rb4+FjF85rl10dP2w9fgw2qVJHRvb25vYh6eVOjjQ3fOZDp//RP//11VNPlweyeeP946dXHv/Q6nuvv7Z3BZ59/uybm9fmsurO1sE1PzaJBpXvbO6dP37U7bPVo5h0bm9f7/fjRz5+/Kvf2vjxn/5Lt8ZX/W544qOP/O7LXzx3/tRckva7c2Etfxj46U/8RbuyPhluYpJcu3Jjb3P7l375F65sHbzwoY+uHD36z/7X33BQ/rv/zt/5n/7h/3j+wgruhLxX8uTqiWzeZA8R3zjYa98vXz6d+VbaXkhfuHHz1+fSM0Z2j5/Qtzf3Fqy6ek/hdC1OJHhc7h+/d+07m4e3jq71NyeHC2Eu0/nkcDehPiVFb25Q7h8cW1/A1kE/uzweujNnu1ffH3z42Q+1s8VXrrzR6c8/uP3ui089vrB+9DvfezVTxdHj/fWlC+3kKIq6v/3qJN6hVlvq7pyi7e0HjdLbk/2ZCsdrXTdcYqWlYYYI3CHL0SkR8nVbEqNVU/lEhVhPet0u+1BV1b4+7NhMGuOcTtKIia5qTmzmmhAEvPdEkGc5JunhZIKIrDWQEFcEorkhC5F9dDBRVqPWCglQm+B4gAAYwTecKsqMFZFI4EXKqtHG3GsGVpuEtUYmLxpRoUUU4InGFJXUYVITIijKdNlUGkQQQAFqAAKRKBGYBDRAAHDAUQAizom1QgEFRKyQZjaKDCWZTSCyFoSxS42duFoXBeZ5szeazzrkYhUgBZ0oy4kxSmmtA4tC6uo2IEfn2NUxOE3GpkpxTiPJWolktnIaGEklbKVG7KRp9IwiCEpAmDHVibG2GY7nW63JdNSZ7x/sD63OjCq0wtroupmqWcKDzUIES0WetAj9tNL99rHpaDyXLk3Gu3PdYui9y+rT08WJ7MZ5UmW6TnrIg0QtKmgCcGAhjAKEGA0wIbajeB8TY6p6Qlk2mk6SJImBO8pEV6NwCHFvOhqxa0BqNy0oqcSHqg4Sax+jgcpX3tcmsxx96VmhIKFSvtYQoVQ6MjNUkCQZSxAnjutWqxi7Sgk26BUCRK/AZIYEMGIAQGCgKBgZWAKKBOi2cyKSCONqnOYZuJAbY8HUioNEAGYXMDGzMduwLjMtqqxaqKUKUmT71aRnWgXo0oA2CYdotRm4ylgD7DWgUgjAoKDiEDU5iQrBiS8EI2DkGFjGTdX4D1JurBjnfRAQVKaVeBEvsXYVIjbsQ4QYmZmNmJmZewwSwLfb3aoqC5OkaX57f6PXXUxk38m4IbF9MxqVVbnT688NxocmySdlY+1CoHzHDZfS9ni6rTMaY92Ubn5+cXrgPSfnzjz15mtfzTvrdqRVlocEB02pVaawQ0odjrbHITmdtuvxPQOFSo6+tn9TQXrk6Kf+7Of/9qkXj526vCixRAqUhfU4WTHD0QTyblFH5ziSMfPHkxP1cghw8rG/ffrsqS/80/93ntxu+IAQtO3pAXdSTQCAYjzEAMAsIsQ+Is8mnQQKUDiyl4q5arIkiggwzfiRJB6ji5xkOo/kE3AEWcCIMkqgEPAKnUQg5WMNmlyoIjCEUIAOwiFGQUIkVASAjEKJFpHAMfqIwEFpPbOC1xRjnHlrEJFEjpEjAAgzGQ8cAJzGIOg5Bo6VcCSIKJGABCNIYPYckSgiVMGBMM8KP0dhYBEAiH+iefyRABLAew8IMqNwuqhQI1GQ2NRlQeonP/2Z3Z3tP/j933vi+edu7r2/YD+cL/ndcPvY8tLNd98NWXPu3NEzS2d7R3oyWbv38KDdvTiuD06ennvn7e+eu3ThS7/9D84+cexzH3362lv39uen6XgSpgf3Rpsn5xcXFo89uHd3aXH93bfvzi8uZV39ztU3lXri4db1C4+cxHY8nIxWcrNo1fB42u3ffO/K6JmnX3z9+18YjpZ67fVqgrfenTz20+v3ru8u99WjF5LxaO97777eeuLUd/fGF/pP7fjelYOHw/H9zz//2N33Hmb56p2rh4CF8Y3bfD9trz3/5F+8fV+N6jfWj779B79647kXHr1y590TyydOr50j7//Z7/zTn/v5P3v24vHv/fBb62qpO13qtU7eN4NzH3oek/mnn1hfW7zwg2+9dO/2/v/1P/x73/n2t0fDAYfj6vTCCco7xcr3rr+0YpJ3q/K9d94+3z3eUaMA0/fe+00/zS48/hwfbt8d3N8or1089rEW6aWnlu4e3OkWtLicv7897mUrASY7D/DYo93DyZ0s7Y+Gk6V5Mx6rpZUFQcrhyW47fOvrX3vx+Z97cOefEU82bt+7fOH44YH/1DMfT9pz79++ppqDZx9fp3aH7C3VfrC3WYHFtlnKBDJPB5sPur18NKyU7sYYWeomlMpCdBiCaG0J4bAqLSoSNpoOQ9nOEjAMwaHIbhmZOUksSaeatDPjbVbXDi0Gk/LupKYsBUNE5L2bVlMiYk3GKAKFLCIUOYowCitABMHoOYZA9IEaXT6AilWiqlAHz4mxCFxHL4RZu9V3ClmIhVhZUkahRPbeR2sagJkrNXgkCamltk40CigAi6iIUFhAQCACJIATwiAIwgljH22KagTes8+IctRK4WxULEgIwKmpptN+0RUXEhZri/G06c31i7IGBEtmhiZhYBHxEhPQiFG0AYhaI7ND1uyjS2YaX8hshl5SJnERAEIaEyQkQkYWYSICpAidrO9DWcWapwfzuUVGDbapnSqCUZIY09Qx1ZmAjjoyByM6zXSEg6zfNNNyvqWFOTUdj5IVgeu0kBbEKadZXUkfxVPPScPAMstCl1m0pCr8NCAbZcc6UaQjEiCxEk1MwIkxVtnaNaLIWitRYhCrtUTWysTojdHMlCRJVbnEGCAOwhHFN41YEziqWudZK0IcVx7AKo06aU0brvxEaZwRXJ1zwK6O0PimExUjIKIhlaAiTUYREx5MS6UURA7Bz3V6LjgPBEZqiJGjQvTssiQLkRGpCl5ZbVFr1EFiajPvPSsUUGNfd3Wakg5EJUSwpDxbBlIcggetnGtQq9p70op9qMiJCDAaUjEEYFQCqbb7rkKl0yxrQvAorq7yJDWJoig6RkQMIjHO5jGIIHX0RatzODxIjHUsg/1di0nt6lj1sk6yPzmopkEnGcg0NA0glNFo0r5xjVVFq9+4Ks2TXbdP9XIOPqtU4/cfuXB6f3A7B+iI3mzdsZglqKrRZLGdtdrd9x5cP3J2Qe5M9nnQZD2nBtX+4bm1H/vlv/KffvgXP5zOxbOrOBneub29kxdF3D8ciL0VW+2Qz1Ob0AJwDqqrU9shYCk+lprWT//el/7n8fCuKFszr2Tcd36PGQAU0UyDEyVqIgA3i0YAACJCJDA8q3+5V0Q4sxQwQKhIAH3kKTcgygkwAUbyHJ0CjWABYxSjiD2bRDOzQT0D0VkwsAhHIAARxxICzAIMEBEJiSgSCkRgcaRACAU0ICEh4swXehZ3VnLwEhnJI/sQGMQDBRZPwrMFBYKw48iGEKRpaiJiZlDkgxcE/EAxDADAACIz+1uAmcMGQvAeGIssr6sSAbMU6zo+//EPH7106ru//fIv/5U/9/Bwy6xBZ2lv+334+Of/wpBuv3L7h8+ceXFvcL9ubbfw8p3p924+/P4Jvbq0fnJrMDj24cWr+9+ufPylD70Y0V/Zun3h+KnrD5urB3st7D7xY+e+9ZWNhdWTkZGk/PiLp2wYJpPuzkGJK729cvzkiUs//MErn/6xTyduEsuRjeHcaevD3cWV5U7rXF2OXnnp5UdOnzRxOD1cWJi7bNTc7//W1b49sjqPr92+82d+5nPvbb5VTTZX7RmZLJVmZ0f253PrBF55cPvZS5cfPbOwtCy/++tfvnD5ozfeX57PdhaPzN25eev00qXJdvmFr/32z/7Sz/+Fz//V/+S/+s8eP7368N5VfbpwJu5/4+Zjj146euYI+fat9/a67eLJy+v3H7x17da3H3tmftrsrNqaByec623d3wmx1eiq7O7I8gntjo4Ox8PhV85fOFHDjcXFx9+5NTl39vmtra2Fo/2ic/zVd9/4mY99/O6DOuD+6fPH3Hi7e9woi+++u3nxTDI/b9gxV2CS3W77YiKP/95v/9cf+fjj2/fvLi+03nj9ypOPfWpv8kDlk7nlZDDavLt1t790cVia3EQ/aUaDSWJ6ITSRp+1erzyo59rrTLGs7lXNOCqQCBI1R600C3PR6pg0GewfoMKqmtYhQqIOmwYEtKIQpNAggmU1yVUe4MFi0tdsQA/aZpnjysnTC29sviISjSLH4FytUZNChWB9VIgogggUQSFqUgopIZyxFgQAgJjwg/0iB611jDzxtYYoChipgTD1TiMpJEJ2whgRETHRVVNbDVbpTFuM7OsGfURErQA0kUJQCITEzASiBQIIABIRx6gEUqM1EDA0EHOymTICLN45J46CQg0KWq0WVk1bpYphXPssSxxwPmuRYoTIAMBKlPxo28usDZICrahqGgDiSMfb3XE5jjF2+x3vPSN5y1ob7WKSpEQUnWcGrTUIee+DFhe4P788raeAlpCmvkqzJIagUKeotQIDMEuFDNEniBFTLwTMhowBD1iSVlrwIJ3MYasobShkFMIidhSWVtdWvMeIimYOAwSilGoCgklDiEnWrqNPi24TQ2YMEaVgyegWmFxMS4FSVjMTESpmbRnZoSfUiEprO2lGqUqB0MUAiJNYW5XVsWnnGKMLwGApy7Ld4V5LtZRW02gkitFWiakiA4COCJEhLUQ4gDBDBEEJIUpkMEFExMVojBk2VYhhVDYiolADzua/KMF5F5VSpNS0qpuMdn1tWDoTZQBHTVUBGsdlBLTptCoxMb6sUm0mwWkVfYzCUIdIoBxH9MLMbGAW76pSW4IHrQKzMlIE40Oox+MYozEaYnRV3XAo0iwIKxEhBEWgMDBzCJLbg2oEVkejBnUlCmxmmdnlWIf9LE+gNlUdWu0s+EDQnsZR1zDg1OnSN3Rh7cydO3f03PyED5e73UlVBW3yo8s33r92AHWvndABjoLodP7YpWdzazpp8uxycfvONV24STlNu8uRFj/7M3/n3/tbP3dsFfa278pwvN2Yjbvbk10u82w3Wir6irp+lYzNMkUt5Iwgid4Gj8GNu/ePPLJw8cNPvfR7txfseummo3q0SBJm7sXGOO+NMRGENDGzDrUwiigWJiKkGRdEovdgUESEOYoYBSishFH0xKD1kgSsLKJQ5qS2MgHnxRuWBgMCMAGKoEAGFAEBKDJHjsCzDAqGVM+IIAowgvjoOUSWEGKgKCSgARExIngUD9wmHVgmoSmDA60EIcx8Wgg9xyoEZlaIMxujqDDMRETAGiAAa0Q322cA/XHz+6PKKwCglJoZ6ANAjL4MzgAtLy/tbu+ePn764iPPvPfejbNLjx2rVi7o/vtvv/x2fevzf/6vHbnU/9J/94+WunO19UHPn5v7xKZP3ty43Z67XB/GrLd4dGX59VffGt3p/Mrn/+255fn/4b/5z6wlaifddo8GGx/+1Gdgf2v8cOvRp87c27p1/MylCSa7461re/fnsX043nvisRfv3729tpBgsj/ym0aP/Picr3YG+zA6KE6tx6XV5Nr1jVNHj86J3Nq9ff7F9Tdu/laytLpxr9zY4ccv/uyV90cZXnjxyOMHg7ub5f18/fThYany5vVXHp5YO7dOc6da669/712M9mNPPvIvvvQ7zzz34uHB3uOPXNq4sXvv7uaxo2efe/bFP/rK78P4h0dP/G9efm1yvN+9f/9qSFvHzpzav/sqtJYuPPZT9+/InXsDHenU8Y+88s6XPv3pj33tW7/95IdPfPv7v7Ywh25IxxeXGtlx8P57OxsJnTj32JPT6eZcf1KVL6/Pd8NkfGR5Pus9cfDw/s9/+vM3Hl5/uHvtJ575sX/+rX/at93BONy8vbfchTo+kNHKg3u7y8essaeQ1N0H3zh+5Mle6/FvXv+1fq+dqvQwXr9z963zp05NJsY3regtJbutJZbR/PL8+Tybu371wejgQasvKvi2UhMY+Ib7vfnxRg1IOjEh1hCDIpumebtduMg8U8sikNbRBa10jFGT6fYL733tfK83J5LM904VOa0tz88Xc3Pdnoi89N3XTb83GByGpgnB+xiURBARgRRRE2lSJKAAlSgtYBBR3MyGGQA+aItnZCmJACoq9OxDZCLNLGEyKYI2mjQSCMUYAUQp0loHnSmlJEoITCxIWiVaAeoPVsNZCBISICApwjJGBrEIEZiJxCgOgiyRVEGGONYQNSEKMqkA2Jq6JEmcgtqyITKkLSE2jVcaWDhEDWhIaVSkKAobnVY1++A1otIMEJVSNs0jV9FXESRE53wjqFgwRlGITdMwc4yRhEIICAoBOFSpTSBSL+9MJ02rlR+6rTTHpMrqukQOvaxgzzFUPlTzraRpCIEEhBBIKw0chVAwmqpVFjnJRI8wWSnKfauqfZUWMaUYNQuhQkGECMAaENQIUZooCjUJa7QViwgUjEplzFKwTnTWIEcfjWhljAtNEGDmzCTCKEBxGhbyNiKGEDIwWZZXKtGkB853W0lAnvkUEimiXInWoOeLvK6dAsWBk6hNoo0xHg0rE4QDR0AhjiDoRTywpMqHaBOTpWmsnUFlrKmriglFgH201rjGM3MIIUuyRqNoiqKR2SniEL3CBhEQDjHsx2kZp2mpEBCNriXoiADgQlBkoq8NaQ4OEUsfBKIPQQWo2YvSXiJGsbaIAk3TQEIhhiQxTWBFettPmxi0eAYUBEPCEkUiu6bxvpW0QvQNMCny3jtXT9Q4AVhIuJu2ZBKbelr6+sjSirioXJkX3RgCk03M3NKSLq1M/HVWGelu4Nrka5t7Pzh+Yp2lbGR1eX75+PqZE0dWe4vwcHLz3gQm8Wh/OHn8haes/vFf+os//+iLbZVef+XVh20QWF5rhjKRwvRbUz9n057tQ2eu1oA5gJFoDUUVaqwdNaxdMcVsob90dnEAYREHRnDcCCuLFGaarpn19KzpZ2amCDgbsgAHj8hKiUJsgGfVOEpQDFqiIDjFXVF+JiD/UfmKEF2UtjGiFTFkWtUhKGtC1SSoBlAjokIBAEYAEiVKEwUCZpbAs/4bEVEhokYG1IoABcAJN8gOJRBA7ZhwHJsShCIDIQsbFgXoQRqRCGAEtAASRcImeERkAJwR8oUFARBAfvTy+VNyDJglqQIAgNaklfKNX16Ynw4Pnj259tSLT+9sXD12ZOlWM+2uzd19740H0+1Ljzz3Mz/7if/q//6fHjl6dOthtbq2fvrJteFg+upbX/2xz3zyB998ZdqkSy9e+Nq7Lx8qOvbMKVOoX/+d3zCdleeeuDRp9o8sLPBjq6tz/Pq9B9wvbm5XSHM2hzydbFzbeWztxWv7f3AyM6aJtwaHndxOdnZ3R2Hl2LndB7t5tr4zOFw/OtfwpPL9pqG0cN/eGGdF/8Zm+uBef35l4e0b3778wlNbxc3d8c7l5WJjY7KxK08/emow3G2zeni3KsuxRFVXbv3UpZ1q99Jnnvt7X/vnvaPBw+jckVPeub3RQ8poLl/ZvLX56lvf/fTn/tyd2wcnFs/63Xt7N25dPvfYjRvlkaVHczu3ubX/yhtvJtnkl/786f/w//SPf/HPfv43//lvXJr/0M3X71w42b3xxo3OItrO9uBBa3/PL7Xr5WPTw23h6kQKz+yMf6vf+dDW7tGUCuq4k0cfvXf3G1s7Vy+cfu773/2aG5Es2gebO7i8vzh/cmMDFL5PSVxZ+pkxvjEZrV5/cOcjH/6Vr7z8a+n6u9V4NU3tD7585ZFL65dOnN7Z2peJu3Ts1JXbUU9kaT5LWvWtWy/38sUnLr14687bawv9nbhXj8P6saPTOj7Y2p5RA0gAFQTvFhfm5uc6B4Nhp5WWZUkKE6NdFAmhU7Q67Z73nhXMz3eQdLtlV44eWVpfne/PLXZXfVO+d+3Nabtp0/ywrBo/CiICFJkBABHGIkqiAiAAiggSCIkQBZxG0qQ1oAbUomadMYEaNw0AGGsFsaobEbHWVimNo5PICpAQASVGJ0HaKtFaiYQQGFFIk0Nx0WuZIU0RARGFCVABgQCRAokKkQEUitZavGMEUZQKSeW8iamyFoyiADUzYFO7oihi8Bx9Oy8Gg0GaJAxaKcLIBpUmNUO52EcwQqiiCALO3j6ATKBKDKqTpUoTEjKlSmnSEhjyrK5rVFRkBQFGFxHAmrQpBzma0bBKW+1WVnBwNuuAa4St0RlDNAxNiKlRBlWmSbyxSmoYo24U5IZM2QQEw1wXEhsRNLZdTRujS4R+1MqUBoRBo5IIAuwQvFEIKo0xGmWFMbd54Jgo671fUdlYYg2QoSGiKJ6RCcnFSkCUUoJIqBiFSKkElEZmVkppJA0qV0ZYOiaNjW23WhM/SjAtp9PF7mpVNRIlUYTImiiKGGt0mgBiojRNvCAAakJUChGRiR1KzVzHOk9SiRCUdiLtdiuKdG3RBN80VaKtYyBDvvEqijPEkzJHyyi1kZ1m2FJFrpJRbMTaMbs0t1VZ50k6cmWlRUdApTx7oyBElyjLIIbUOAZCQQIdPAJYRiMKAjxoDq3SQQIR1cFn0SmBxNgpgYsMGCJDFDESBZmQ04jWppGpDpIW/Ri9dw2IqYJq561ue3Fl7shcU20OHy7myYsf+sj12+/v3HvQ7y21Y9rvrludnX2s99Kb3znZ+XGEMHCbTz9zQZrB+WNr5889Np248ejls48ev3j5pG3HstyZ7y2/943bl+af/+znP31jZ/r5v/STz17W27dvX3nnPpiiNP1YlcN7flrH7GjQC9P13iJrGGfN6aalEbSCIgGjlfMSo268kt1m+Xx2ONpzCEN3IKCjhl0VO0wCAiEysmcvKF6CgDjxioBIiZIYGVCIQBFowogEiEwIIMAihFFwJN7WUgEHjZ2AHnioJWfZYKeBiQWUGktjAQSaguwksgVlgBg5iiAqRaIBR3U5A3+VMkT0QTQ4oTSNIjVDnpsYGogOQQi8ALDyCIIQFSIoEAwALrioMBCIQJy1sxwDCjMgzlJdUGZRVwAAKPinOl+ZzXlmkeRojBaJIbAEzlN9eLj71OXHHvuJF196+aWf+cmf+s7Xv3Pu4oVhKF+5d3WXh3/5Z3/2C7/2q11qzR95QeeDT3705Je/8tucrs4/cvLu/pWX3/nCf/y3/s9sJnPZwsrJ+Zbef+PB946tpD/91/+9b33768NXrq2u5Yun1PFl//D2qRvNV37+Fz/10g/fE0Xv3xlPVe8Bb+3fOv7hD7+4P2nq8f3jc9q0lcL27oNDx7y/t4P2gCz2ek/+0R/90dw8vvH2w329d/G0/sGVd1t59tr73754/sxqur57+/pK9ySWKw/33lo63/EwqnbcOLZGaZzTIcWs11kfbd8b3ftBWzbPdM/o9NTCXC3sv/n1r2X99Oixs3sbDgAWlorBIcfx5PRjl9+4AQsnntu88bU8DQtPzT8cXquG6dETc5//pV/5J7/6D55//kN7u4Ol5bmtVjxt13VQ+3uDj3zoyDs3vzHZPXlcz8eVuHXz7eFYVtcWB2Vre3KNimO633Y4KA57d+vX7m8f7F7dXM5vfv2lN/pJnJb7hemR6ly9c2t9cSGl7tH19e3R3RtX5cQqNnVy8867167vPvb4x2uYuur6mUcW8n4yqGsqOirCaPdhgCn72NZL3NTHl1bb3fnx9OZCv1ZurCs8sXTi4iOPfP1730xS1ziIHlC0pizrxDS1dV3XdW2MIUCF5J3DVLezrjGmFmeKjCuehNDqZEsLeZIfjKZmff3saDJ4+42rkdL5o2t33rg+LschRkIE0iBRJGptfPRRIEb+YwwGJCKgIGgEi6IFCEQBmxiVUsJhNmQxEQiBNCqggGKFFShF6oM+TwRIIWLjGk00Y28Aogdugp/UpY6Is+hfFolEBMQAJNAR3JPoMQpAC3QnIjE4LVE4AUgEKwErlAhabSxFId3O83Iw6mWZcBiPRiZNKg4tyTQpBplV38gsCB6YmtqaREKiFcQwSUlTZPbcaoS0UkY3ISKrGhAtepbcexDSRARqtmchFmBGr7WoTm4jTxTm0/Eoy43Wed2wMYp0WjUOMLEmYW29d1ZxCNRL10aDwVzv2Giyn2eJi9jiHhQjcaorieVxTDP07Z5UFec0M48ixRIDlARagSQIogwAiSIAMAiB0JCklExCkxqTK9s0XgPO8qrGbmJtCmRImaZpSBMC6EQz+yiAmoh0cGHmm9bKUiBwzUBTnRnQGCUOFdfdbrcaSQaYGu0oREFAcZ4BtUpIlBZCAhaOkaPDEEBWdM65DoAhRI+qIYiNx8hdlQTQDVLkmNtMKeUxBO+zNI8ctCiVaqfjnGnlKs1A19BoJh11luXTCNpaE71CJBZgyowWQUeAAYxSSqmj3CcCoVCFKiI4YdbaxdA1hecoEjBwL80ybTnG6HyuE6MVadVEdtGpSIiotMEQo4NWVkgjWdIvisJNx9i46HfKsrr0kQ+tHT99a/Og49TZY6fPrC/3Fxbfn7vazntz+ZJS7d766tbBvTPnT3bbK6++++rKuZVkyRbt1qPzL/TmLi7Q/IMkXHzmUxZGK3PN2zfuvvXq6MTxj/1H/8V/cO3mq2/c/9ILT/7Zd75+Y9tv7irbyRb4QNc3x69vTA4pu5h1zq7ncXnQ4WJ91IqJs1ZlmosECYLxrgm+noyDqZNk8PDGDZNlBz5YcCw4Yc5jyswMbMlwlBmrSWvdeGCMQA0iEqOIIBEwMkAMUVBQAASZRThGkBo5Q2o0RAXI0QHXSgSwcsFESJViz4IUY9SoFahKxQjsRYTFkwiIFlRRgLSgKEBRFARc8I5DBGhpiwiAEAECYhRFIghYYQSIqGhWU4kAFfkQIggIgSJkiSww0/P+qL4SUYxxNgZGRBCQGQII/1INnp374OlHTfHCXCtPkn/jf/tX3nx18jf//H/y8kvfONe79Onnf+af/uZv+DqZmz9B4zv3t/Hys5/duPW9TO198637b9y6fbS3PZcce/sHb33y6eccbX/hG//40fOfO7H2/N/7+//5x548uf6Zx7c3dr7/h1/pr6RPHzs9t+9cMv/dH379o59+2qTZ5oPB4iqSj5lvF0G300l+Ngy3D48OqNe2C0eO3X313uG9u9BPJcKjFx71Dq7evM7JkO2cTS69QGF0bdx1q9M4OX72MaK5b/7w5U989Ml0sHkw3dsePizGx969f6Pd1aFwbjLdXz45eLD9zBP46qs/xK6VRXt0ubj/3lvN3Mq33/n28rHlLGbNsDp2/vg7V14j3xy+Vz792edrM1qNFh62v/7DnX/tl3/q4Vuvuv6TUnYef/z87/7z/0WBP3tq/dXX37p48rm33v3W6sVTV968/+jjZ+9tHYJ99Nrue3Z1lzcXllSXQtrO525cf2/t6Au+mdhWs7e7x8mo5O7rr796tNcdD/TyWnu8E6a1rWnnYCSZWsKkdzAcwM7o8Mo1lXV7aeUr63h74q5UzRLH6cljK7C2B4Kv3XjT2u7C4hG74FohBKkVm6oaB6B+Z2403BUXVlaXFlvFMGxjnEwGZduuKAhNU3Y6JjSTvL1UOX9/a9f7CAASYqsoRGLAaDM7118Yj8fj8RQIl5aWlNHrS+evb+ysnc/L5mG1TcdWFw+q+w9u7hwODwTBGBOiJ0ERmcHCgDM05kePIn3AiJAYAwtzBBaEGU4DGEEBaKUVYfSVBmylmUVVNfUhVJpUqo0BQmbhYJW21gqqoDg4TywzsFlZlSSpRkRAYAEhhaQAAVmEuSV6HyCgIEAh1BVdcdOQAEthTMtQZZwR0hFS0rm2XV1ULqgsHykMAC2TY1Wvt7uNE0sqSFRCESECoNGEQi7kJmMikBgcJ4XRZBRFW+RN45kRRHWSwrmgoxZII5Z5YQNDVVUQIUvSxGgOnPbmg3JVrEnxNNadxd7O3n5H95QBF7zVRpvMZJlzniMjQcJNK1Vls9NvS6jud1rp0Lk06Wl0URZSGkUYV0mRNdAO5ThpYzMEVKQASUQCxIjgEYRrNMY0zuWt9ng6TfPEN6WxaqLUwLvM2EJbPykJuZPkKjibZKSSqgm5SUvAzNqynKjou51iOqlCZAQKKMakEz9OgFQsLPiis3iwv1sUhYTYSVrKK6OIVDAKyiCBWSJzAJskWhhRIdGMUBtBtFBAGYSyXbTq4aSdtpIQ11q9qqpYd3wVjEark/F0bBKthNIkK13sczK1dr8ue0lBk/FCa6F0vnJhvdUnF4FjM4mEqq79HCapKIVKELW1U1ezgdo11iRE1HgiQmsMek+IEcBgEiiCaKYIJq3c1LKGKqRJItq4JjAYY9JAsY5KASpCo/WQZW15xU3lsUcuZd1u7ZrHz5196+UfNrcnwbSe+9DHYDHNLh4z1O/rZCWLae/RhZNHd3furBYdY9q7PEpBnTBHsX547mx/f+xDlWVZ22rXyQ92yo2njpxXw+z4+bXdyTcHrr707Ef/6t/4c8mx7/w/f/Gv/93f+NK7t66++fDGYLy3cvYjgeP8cue67d+4//bG9d2s98KlM093DqZznUAdo73KDGmKKniUCIAGE4y2aQ/Ho2u3r74+KkUb7hnDLmliuZG4GJkjWMPRMyJIBAuUGyUSReLMiU4EkBFZIcksmkITGURCCcyCkDJOrDIM0vC+4hhAAxwaAEIbhZUqXeMNRh8yBmauNAdhwxBFZlS3EIWYc5OFEDwzgLCIY2FUQDiNXvCDVLQZC5QAVJRaQYyghIUxMiNEpSh8wKaaMaoEZDatQwH4gHsFH6wz+yn8x4yrP4U+zxYhEgZSEJkfeeTUudMnPvTc04eH++eeeQQ6fg8ffvYXPnP1/e+tLLryvduLJvnh29/f23i4tyK//ft/8K/8hV/5w3/xO6fPzWE6vfnwblHkVVX9/X/86/PHTn36w3/pm7//7Ucuri31nrz76r2sry9/5PLJxeLhrZ2Pfern/+v/8lfXsvX5lF/73h+eWD/SX1YL86vvv7t5f/ed80+fTnt+95VrNpkb6969r75nvA5F4/3Co5eOHQ6HW9v3jxxba7WPTyZy7FT1/dffSbC9vrK6c2/rsaef/KNvvXLikbM7oeJBbzVtL63nLeOWz8394J3rq0sXuxvDnXrr9Mn5ab2psL546skCut/+5iuPPvn8vat3dsuHx+ePhFvuzOlTVyYbO9OHS8F0nsyWjxTvXbm+fuTM7/3mSz/x+L9/9fXr6cLKzuYbn3rxr/1P//C/efb5tXrEzWRvdUXduv7+oh6VxWioy+0HXzvz2PGb37m/YGQnjtbX+nY57NzcfvmVnaV2Z+tGs7RqVXPs6PzSnYPq7s23V/v60Q9ffPlb7/Vx7c5kuna0NT6002lcOm4ebjXsIG81D3bH586crKtBXhy8/Oq31tbmI286Pzq+dmRjZ8553Hhn79JjZ8YPZCG9UMXUuXBv783FY3T+4qnbN+7MtS89GN5X3Dl6srU/LLYODtZX5xdJb+7uDwZ+cW75YFtv7x/MkLD+4sJ4MAzi06KjEEaDHQvEZelGk17RXlhY6M8tBI5b24Ozl5a6K3PNpGkVZv/+5L03d6nVPnnmFAnUdX2wvx9CIIGqqhSSIogfjIOCIBARACOCBRNnVRoBkIBEABgkCNUcIEJidYwSmyoBQgCtFUd2zhGRJaVQQWDPVQ0xoDEKs8QCi3OOGAm1ZmGLkBsDIVqlXF0bpVNjGldaBdygt7QaWn1vsN3rjmJd1AIawLRdlRSZsW0zHnMRKlQgvgdInjOblk3DJp147iRZbMCY1CY4Gg16rf50Ml0obGOyZlLP9frT0W6vMJNmKqZt8s64maQWop+gMlWM7e5ccNPoS+DJZJSaZFGi5JloqMEjBYOKxEMmeWaSaT31lVvorIRovHCecKZdXe4hKIgq03NWzbmGy/JATAKmAJVWJefCGDeUXXEhMKVIaS+xo2bERH2DI+ik0A2uIjzINXhuCbQ87heyGNnlRY1h0gGhSrTuOEFVFWdaxaTcZax77dwzoeLK+FTyGqSr8xBDDpiUzFkbI9cjIxCV8k10rfb8dBy6xUKMqNWO82VVj3TqSeuIiCqpSrYZKmVDiE1llhaPjyZDbZ2y0TepItVMqzQxCnQrsxyjc67IbFM7pZLoGmVNiLXSwo1r6cUo46YZdtPE2m5V+hBGiz1yZZUgr2ZYTw4MG/DQYt0xeugdJcaTpAR5JImsUtvE4CQJ7EPjMqIksY14g9G72uhoKPF1zElnWV6HpmymaWbBTZQyIXDLFjGyzVMfPVNITbpjG/CjlosqTxrRbds/GE3X+kvLi0+sPnO+t1CcWDumQtbqmXxuPvnyxpXddHF1regnHYYEVFfLBLnf6ib1DlXnspa1mT2B5uHW1xJ15CC04s5v9fNlk+gNN2hnc4OdvdW5hd2kWjwZfLGxefegmz77H/xbf/P6tX/yP/7Hv/7EC/9mXq/duf3NeJhiXLj99ivHHz++lVaPrs7bT3z8yundrb3t3SrO617Q3gK3EjWmMYLtu1Q1+5DIqK4GYXMuLr7z7uatTQAkoXSvqa1uILBvABGN1s55AAAkQK4YamBhQSKFFCQg4syVfobnfrBZnu3EiQBgKKyiMLMgQARAiFpHEYoxIJSuAVDgQZAdyhAYAzr8gMmJDAQAgJFwENxMa6RFWVIaEUUoSq3UTDY0iySdFVEiCgyAEHnGGsEIEkQAgWb8lPBBLxEBcDZvFgFCAFBIGFl/8IcgaBNCQPyT3BetKMQAHNIWNBO4fP7sc5dPZMXi/OKjjuOjx+Zf+v7rS3nv+o33Jo2dKn33YPTEk59/493b2RS+9c33lzsn33/t9WbU0Ga+g9Pd0YAmpqcO1jv5n//Ypx5e/fKD+9/tZHZj99pK7+nHHlt75uLx3/jCP3nq+U+9/Mb3bt195fmf+tiQi1MXV9cWz2ftfHtwy2NZdBY/9qlf+MZXv75Z9i+uHXuku/Ja76174935KtssDye764OJe+TJD33/+y8//vjj924/3LmXVbf86c+0SqMLOlfj5IVnVu9cuTmvju4VgzEvfuhDH7393nURe2rhBNtwM/N2zk5lv5akZbOtvQPebNZN97x3v/rutz73ix/96tdee/bpn/N0UN25e27h0n69cXZ9+cb9d4Lp3N8cnzxlluZ2dzdGB/fvP3n2xS/87v/w9HOPvPbKl3/sw+em+/dG0+T2wZvPr/bLjcm9u1ePnDp15ero9vb2qfW5eUsnFk68+8PrdRmE4K2dzfZiru351ZU4vufj/vbCnCrytZtv3N+4Myyn+5efLnbuulIGj6yfqUf13YOHZ48fv3P3QSi4jA/27emuLNe7zjuVlaaH/St37le9pzY3Hhy/tJYv7nX6xZW3Xz16ZGXjvXFrYfXU8fWdhw/KydCRT606fepEq0Atgzdu3Z8/cvbwYdPX09ZCs740p4f1I5ce39ne4NikrWyjGbaWFzp58fDuvTY7aYbU7SwcPV6XbnVpdefBnfm5rlpcWeqf7Vh3qDYOBuIK+djPvXA4sIOtqxsP7h3sDaqmsdaUzrXn54xNCUxZTlw5hdCAxBgizB5sRYiitfVNo7XxrtakiDkAIwIpFaKISA0wAUZE4aCIUIRiUDEaUlZrAqwgdJyfB+3YTYlrCglAG63WAgmRimJIY+RMGSVggUxeTNjVUUBEIQXgKKitgVqUrVNFWuYSShMK0QhAZy5XrgSDZJUOzhc219YwADecZDUA+MYWWWdabnX63WoiSToEyuq6TpL5EOtOqzOdDh0PlCKDLYlpXqSHk/3xZAciZbpb05oyVccAAWFUOu2PgpNMiR+gkDGpd5zopGycKUQhc7LH0QyHVKRHlNZFLuX0wPt9U6R+FLrFidF00oTtVovr0swVlw/GV2yaAKmyrBlEq0Qp9D4USSvyKIbKUFsTMdZeWMV+v9uuY+kRmBVqMpQ2iD64PB5GF8k6r/SU2WIq09hX8wc8bJt0CI0a+/lubyLellXspBB2DUEUTkhhqAx6iSVKIImt1ADa3KTTqlFaMIY8k8CGFGqtO0UruDpL0ygUpSlMN8bIiJktYoy+DjEyYhoap0i38rYgROEYPQpYa7V2zVQUzhutmnporLTyFgc0iib1iBhynbOi6IJjl2dJKhqAELUlTSgRo9aWlAnl1CBwZAJFPhoxhjWBzq3EKIm2SmkURNQ6zQmBSRMSYNRoESNFxCjIOMZRIXmnWGsgaCbjfS+zvfV0ZW713CcuLx05uZCrEOM45ZiFc6sLdfho88N9ZWK/a+bZjEPFLe4mSfmgyrRdXSym/u7BYNLtnMva/XoU55L5s8s//97Nbx5Mv3X29E9maZvgcHH5HDhJFDy8fWX/3vDf/Xc+9Tvf/H999Q+v/41/4zfyi+HVa1eOHF/1k3cGD/HebXr1vX/xmc/+peVH9WPnjvT67Z2D3t7ezm6rt77QS4QagKxJgScl2U5rvty/0UzHO9v5Yx+Z/3/8l/83LTHL0iaysta5Ws0IkSIIPDN8VQgBAIWFAQEgMoMgAApIZAJEmrmzCyLgjLAhLAI0K90i9KPbUQDjbJUPXKRQAAV+dEXwA0XjDOriWdPJOGOjfDDr9fDHZrQKAKLIB3ohEAFgjjNFAM7yWv6k8UUB+JcgZfhRYUUA+VNUsT9ueEOY2eH98a+gIokAivyEjiz0/8q/+Sv/6B/894+eOzue3BiKfrDX2hy85KaTZHrp4b337rz98JlzH2e+V5UbDzbvrs6fXj/36Fe+8Yer2dz1uGU6YX9yvzwYH3ny+QsXH/ndr/3BoBqdO/voYL98+olPrq0XxZz68m//IDb1grhvvX7zsz/3qdNPrty76deOXhpNVP/EmX/0X/z2amvp8UfOTO7cObxz7dzqyqUL6wf1dK+eimq/Mtp//uSRKze+8fO/8CvvXb3VmVdHjqy9/8724nzafn7tyLFzm3fvlYfJ2cuPl/H+yxuD3vkzvTA+cqS3P7q2MbiqpXX5ief+P//0fz52Ys1P8dTZMzfuXG3n6ZPdo4qb9rx59e7Lp859+oc/bFpLXem/dW+/1V08XSx09+5uAcnG2xsvXP70b/zul88++cz8gv3GD744l0y/9a1vnTh1ZDq+1ZtLy2r+vXcfYKotZxvj3v71nccv/MTGze3h+F4rrYKe5otPbk7rvbo2ylZVNZ76LMG9qw/WTff6tZuPPHHu2ubmeJy++/6rRR/anRy4szV86fTxk7fuvV9kvSPzK++9ez1v5Uvz3Va9Px97h7uH+4Pp8nLn3YPvLS2uB169mJmDbHBYtR5bePr621/phcRNQ+cEr2Tt7Xt3s6JjdARSC8srkrZrSu6+f/UMXUiK+Lq+sz63xiM+vUAd/XjejDzkp5/52O7hZivL5+e7L79zO8ydgckgaedzq+v379/utjpbB3tHLjwlqNcKUGG6uTVoLSz1rTnTW+gkxUvfeX13e3MWELy0sDiajJeXl4PnJE2DiwSzMSwQEhGICCoCUUECANg0TY2NMUYO9KMxSYzxT55bRACQWQyJzLKDIMbYRA8gDILKjMFVPkaA1FIXVFVXlALkqG2EgowJkqJSLEaQfYjOBwgAkChy7OumbLxTwko415gbZYSthNyohAAmVUvZWAffsAKjkfx0mhOSNIksFeoIQUi0srKawboisOgN+dRS7TyQFa87Wb+TdFJYIdDdNnCs+601X7c77fkkbzJ/OJ+rsp5CljYaJs0oSysdHiKJMhpBMSijc601iuhZaCOC1oiKGYOHEFBAm2kc6dQ2fqSTSZIY7+dRz+9VDzrdBJFJOMsya5MYBVG1Wi0O+6Hy0QFCSSqiFEo62lDwdZHYelhZzFPVqqvYzTskwEWPJenp3jLkvSamsQo4doUrshYJ5WnWynMCVsJFZpVEa2KeKIO6sC0rOjcqUU2my1ZaJJDkKscA3TRPwRQ600wSohIggHaW+salylhS4iWlSaamqa2sLq0uNU2MmlpdZrawylAkxWTQWLKajCYVvNFamyTkqbFUFHpei0F2IEm/vbjQnk9J56gX+p1up8XsC5PkqFPShpRBRaLYAzD1MzOXpR1jOzZLRLUoyzApVNHSWSI6J5OTUQFTUR2VpaILnaeYFSovVJrrNEGTsM7Azucnj8JiKxhJlSbst+bqmJh0de3s4/NLR8Aonaf5Srd3Yj6bzzu9ubWlx5995CPdlWOuV0Bi8qLdbnc6XqcWe/lK2y5JZXI9z77X1N2i11dxsLxysDy3htXycLyRJqtHV39WbFg9syaZfenVH5569PReuPG3/+5/+X/4b//bk5+Lfvj+/AW+uX8n872+zs8+e3rX3/3K7/03xphezo8cax1bSph5Z1DWLuYkmEj0YsVq7Yd+NA44Gvle3t57cOu3fu1XuwaorpPo2NUKCRENkBLQQYyAFUiErIBmsAApoAHQIAmRUahQjEIDpGfQE6BFZVHNriSKLP3ofoAUMBVIREBmSg2ZPS0KRAkoATXjVBIoFPUB3iuKZimOMsubjMgeOaA4FB9nCSgfTGrlR+8aFAAWFJlZ3iN8gJh/UN7/5Q8QKlKKlFKKiIAQEIE+0DGIRAAmAjVTYgoqZTLmorf+2V/+C1dfv3lq8bm59adGnLfx9NW94dFTv9Dpf+TgQDYfDqZh59DfvL6x/+D2ba/CE+fPvPLmD0kj+YBG3HTYOpx7bG2xo3evvfEmDeZ64fjt16+dnO9csPn2g2vv39zK2D559sldf3c/xV/4y38Lh5dOLD2ydWfzk89//Gu/+4XnHzvxzCOnziw+ukVl05+fW13bqTa2mo1cErlXL3U6w+Fwrnup1em8f/3lz3z6l771vW+cuZT/+E989Iml50fB+3R9bk6vrqUP3LB7cvvRJR5P9qeH4zAOh7tb5y8f+e5rf3iwu3+0e+JE/9j2g+HdrcnBKAjTeLT/cO/GPm+vzTUHG9/vU+Y2yQ8enjoqu/dfCaOr41FYPPLoyzfeP3Jm9WNPvnD3lTf37txKdGGg389Pvv7SWy+88MLvffVLdw7fEj1ay8/eu/3wyWeff+fOWwe0e+XBltIX5rJzzWD3tbe+wmb7oL65N9lQSVJOYjOJt957b3UurYt8ete/fuVBvthbSqhpq+FmeezkWWgiKVNKCHXT7XWmUs132wdkbL54Y+uhdGln4+DIwgu7W+axU2dcvduMasvh2luvSqnr0gUcrRxZvX7rfoj5zp5HMofT+x5uD8ZvBb4/bbonLqjh/u5qcXqhNXrq3Jlzi5c/+mx/8Yh79Nms3X9w+lSyWKTnV84/c+bJFV2UzcPFvtm9e3M9b6220kw1nXY1qK+PphvT8kE1CpMtk2Fn4/bDL37xi8oeHj92JM+yfrfdbrfX19e9i8Ph8OHDrdFgbzw4DE3pfT3Lm1FGa61RQKOegUOolTFGBKMw/MufWfWdbWdnX5UIEAE8QAPcgDhlhhKHHAMRENQetoK7p4Ws1orIIEmMBAgsH8yBmWfgUkKqbazOjFIKFGjrNbZIUo2lxGFstMHcqKqdZOJDO2/3unOoTJIk/X4PgVMVEbdJ71mtg2/681w1G5nR2ncsZtYCqAmpBsTnupVTF7GioMTnzTQYE5PMZ7l2DfaTClyVqH5VoQulstPQHFogY1SSJM6xVrmwym0efQPsMVqFJm/pJhw0cTiaDJROje0gH9W2rP11CBH9fGhAp5GVc1OfKJMlOXiOtbOKNMXx6LBITbe10G3Np6nRJARGgVEUg5+MhgfdooUBvOM8zZq67OWmyyqDRJs0aOsTZHS9RLdjUBHHwG02QFT7Rk/KRrMKTkJbQoGSQ9QICURNkirJU+kVtnDVoN3i4Pd7nQS8GCksKY2kBBShQdCAGEAxSU1WshQKrgmjTXW7SOY0FEZZDVYxgWcMolGrGaMmUrtoETPEkJksocxXrjBa2NfTkS8nJkQMTT2cNJMSAHISLdEKWAEtqIQheORoQKekjaBF0CyGkISRPbFYVBpIMSWoDGjDkIHKKElRZ8pkyhTGJIiFNR1rYbxfNBPrD+fVdIVHFxaLc8u9n7z46LHLjy12OotFKqmCdpqyzFGWJl0Bd+zierEgXu0NeUfnrp2wL3ez1rzOFCVbym7NLdbdXpkmSTtbW1s8Gqd0ZPHokbUTc72T2uLiUZv39ZLZfnjlK0u2fyx/4nf/4e/9V//+v3m2s3f7O1/i/XT6vTeGL7955549+/zFkwvVydbT10fqzfeuItc5TVsmjKeTrf2xD0TMJoaKy2kFeYRyvLE1oe0BXTgy/rv//d8bDWI7TXKlcqYOYD+xbUUtawutc6NzpdrGtowpSLUAW8q2bNpSNkGVKZOgUgwWVYKYEmVEKVGCaAFmVyxAhpgT5USpolRRrlShdMvottZtrVtadbRqa93VpqtNgpSg0oIWlQVMAS2SRVUAFaQSVEaQANTMCAVnzM8PyjYp0ApnByAjCaIQwowqNWvN/9hH44O2+0fnMc7SaCIxKxZkgSgQxJKKISilmDlyFBDvfYyxIvjUC0/1dX7+mecu/9hHq93psd5JPT+3oHl/45U7175+/coP97d2esnK1u2DndvXVOx2zML12/fLcZkXqc311uaNst5aP+qWVzpvvX+DTZw7RnvTaw2OIKHXdrYm+5FH+zf2Xls/9fHyXvrnfvyXNrf3J4v7Nwc7R048E1EFTJ7+2L9ado78cHhvY6M8e+GJG1sHDnoL/eM/fPu1znry2KWT77z//k/9mWeuvP/2pUsfunP3/ic+/guXH/05hd2tB7c+/shPLC337emT39sYvPHm9WP5E7u3988cW3T7h3Oqc3T+6NaDh2+8+c6x5f5a0dudDPf2h9Mxt4rFg9H01Xfe3D3ctkqG46/luuyn441bL9+7uhHr8u7Vdx4/8tOwHfNQpEnMW+XGxpV7G7dbS0vXt8Mjz8WrN37vF3/uF1/5/t6kXk576xxp8+69C4/137ryFqZFa6WVzDXPfeTSZDzMKTvV/vG0OS1VvyrTh9sTNsn2+MFudXvt/PLovT2/tO7Hw9V+dwMo3i3HMkTpDkaSpHN1He5tPzgYbi0t5lkvFqcuvHVz0y7OLZ5cPbK4rsbFgl1y9x6+du16OXCnF+cmh3eu3LnxoBqunD56/d37sa9bxxb3/XR3OBRPNmQ0wWZzaI8fbtrurvJZFjp0QfW6sXVn5+q9Yu7ZfnI+K9sLduETP/aT6ydOPH72WM/tv/jUR8e7dcvOoxSH++7woLx29XZmsnuD7PbDrXaBfnx7+/Z3USbzq+ev7XilMEafpun+/n41rfc3N7XWnVZbESqjANFoQwQMEkJovA8haK0VKO+Cc04n1lg7EysBEJHWWhtjlFJ/uhjPmFVCCJpEK1GEsz0xgAVqsTHCzBAlEAMEDkIQYlBKsYSZSJAANSlBocbbEEkrq8gqDWGOZA58l2IfQw9DR8u8ksVyWmltfZTD4dCmSeX84XDYeJeqecUdP00MzinuK+7FMtWxo2KW6KKp6l7RVgLtouVd6aphqilNqakmRZ41ddlrZ005hRgqXEuzo6rRPVBLNuOSi+7JCtZFZKaZEBHPMYQgIgSC6GdQWd1gjIq0JcU+TEH26mHWMhctAdJOYjlUsd22XCtwWou2Shsio5jAx2Y8HRmOFZLzTVJN0cd9gQPwQkaK3CqWwqZJYgOHxCBHx7JLahxD5ZrKoJFg8mRZXFtcKJKUGx+9L9Iss4lvXJ6kRPMsmbYmSK1siMJKFYjdEJxvqiJLXV1miZmOh9YohZDaTJMhFPGulSYSGQInlCSkCRBFmHn24lNIBFiWJQAkxhpllYBi1KCAsdP2Fo24gp3hMIqyaxS0krUshVZGRUZJgqlWidV5WnTzrgZW0WtkjWCJUqMSjYkBDgSsUUiL0gSJIWOBVAQf0yRRSCCSJkmiDUZJjbUIGsQgg3gNbIEzUpnSc6kGazBdsHBkZeWp/Nxj9rEz7UePLM3pvFX2e1LkIG6ilLM5OhRsL9HyGjnTrwvtCx36qukNqZP02Osx5ZBlp4mX53v5sbVC4wijXl89VzYPl5eNK+XpZy9N3X3h9a3dWzXvjXhwc//doyeehNHRd7/+ar7RB371t//X/7qc7M4vmiNn8wf771947OLlpz/y5S9/pyzLdq5Wl3t3bl8fjSZJoiVyqBpSMpzulnXTVOre3Qetwr/zzu/83b/7T4o09zX20o4VmEvyPMQ8RBPFMmgGI2gELVAGKkWdCqSICUAKYEUSFgtiRVKgQpmWtjnpFCgFykm3tE0ZZuc56UTQMiRImdI5UyZYCOVAuVAhlAkWTLOabUVSxFypTKucKEOct2lP2zZQJpADZogWQQtkSufapEpbVJbRMioGDKwAFSARKaWUUlorQ2SIEIBEtIgCUSBaRMkH9FFCMIApqRxVG6gD1AFKjFYANHtkEQGg1WoR0VySHH1i9cKLjy1k1sK9ZH2SHeG7V377tTe/cmvj8O5056q/t2l61yu3R8NKL0ybcHxutSRIdL44t3Zrazt19MxzT/eT1sEDM3jQXV88P9oZDDbrEytPX7+yj7ABWffNNx+0ygDh4X4xkvm50c39JXV8//61jz3zlD/AkyuPLM317j28/uwzP0OqvbI+P3f8eJpe+sI//sFP/tLPXvrU069947Wja5chLHzvu1fef//+X//r//vD4eiFF5/ZG9z/0Od+wrQWzqyfuPvW2wtpZ33l6K2tW1Nbtjv9o6dXp+5g/3C0uRmqCTx6+fHrG99/d+fGwvrSYm/R6OLGgx2vk7qUsNt87TsHrc6zt+5XXsdiefHNa1tHzp+s7U24MH9/8jBUw3K4W/uq15ubl86njz17/UqzuLa0tb956/7W4voyqiRIU8xv2KXHvvXqDx67cKp+UP7UC58oJzdjvjfQnk25uXd7ONl6uHvr0uUTe8P7dRgeO7m0ezDWKfk4uPTI2TzrHu6FdndxWB6ii1OFeZ77cZ0vLeg0bVMiJtl448rppc5Kv+sr2Bk83Amv1sX2e/e3mobSbrx++87dB5OhPzz3xOPf/O77kAebrN5/sK9tNq2l1T46HqvgsSrHFy6e3tx6gxvrm260gykNDkqTz3XW8nik1V/JjhSq58PE43h3Mv6zf+nffuaJF22rkB68u//ulcEV7lG0ydZ22ZmXzkJrc2eEtNDunRyMa7BOZ+PrN2803rnAxiRReHl9vdvtIspkMoneg0jg6CP7wDEwh8gzZhaC0hoIlVJktDbmT+E76k+QntnYRX5kK8MiIgpREXWZC0TQWGMYgddKtxUlUShK/KBxBlEaBQAUscIQmQAAIQEogBCFvWPvQKbabpJ+aExTZJzlOzbbMrbp9pY5qsymrTTlEBGxaPddJJOO0zQN0ZEZtHquqaZ5ZrXaB2QSSMQaTi0XUItW0SSNVhmH0iZVlrKlTHzGDloZGMHpdLvVZ4d1xFYrW/NlnSclRmYfsiwTiERU143RidZpqI2SxPsmzVCwzhIVHYDTFBKjmL3Tajm1XaADrcZhYFqtJR+Mc4EIyYhItNb2enPO1ZENiwFgpSFPik6r1W7pJE3LskwTE2LNEPNuNpqOIIbKarQ5eLI15ExKYlRuCK7VznsRG80dk6agsd3uUxZAaWJSURknVJF2jA5RBCHKSIinZTQ0V1XWJm3PFavRDBVRgCE4rZWEqEAp1HkLgSqmRpmgEw5hEnhK5JQhQY4xSmSFlGhjtU21taSacmQVZwbYO/CcJTaGEpxLjDKanKudaxKdpCoRN9uQUaK0BjRIidIKQYNo0BZVphMDlCitCGaoqTAbIE2oQKzShlADzhxcCUURAsdZ4roSVIwN6s3QBKsTo05cOr949vTy+Yu+t4CI4zYdFmQop5LSbq9qZQPHCg7TrtetKm37KY5cHGFzQDyAsITcbrzPWq20VUTVgCQ6tj0NN/a/wegSe+zIkZXd3d2dB01Z7dw7OHLIj8vCue/c/eY3rn7nrQdXHrg/cO1/8Xtf/PVvP6B7cO75Z87LIb23kcVu9ezq2nTivvmN7871ekVKJtbLnSQR5lA7lkwg1fWBc3c2Ghg+PD43/jv/xX9XVQ2x1WKaylky0ngbIYmMPihmzaJZMEYdWQNYIgtoAieAGVAmmCK1yRSo8j91pIKpYAaUo0qFctSzIwEyAobBMKQR0oiWOYlsmBOWhNEIFKAzplQoA5WjLkCnoFJQljFhTBkzoRxUC00XbQuVBbAAyR8f9EG3bUSMiIY/OWZ3ZgQZYUZUEBVEGVGmKFeUasyMyozOjC60LoxpadPSJjZNK0mRxWjSpEDAWivMF194+oUnLjV7e+/cv3H34P7J3lLcqt54/+p7X7ujJvv7N62tHmO/NTnc0OWRwcbDoqUPDh7sDrZNqt9/73YV0ounnhwN2I1DKOt+W23de6vZ2zzeW3TDA6MOURe0f7PfPMCUD2hzffWcD3qvu7G3r5LWxX0prsYrix/uvL51/8//tb9h2smJk/nZk0+cOvfCK2+/9vGPf+LTP/GvX73jnXOPP73+3e+/xKr8j//2/5eq/wqWLcvv88Dlt0/vjzf3XG/qlvfdVdUe7dBsAARACrQgRwIBajQQ9TR6YMSIZEijCYFBJyroMIIHG7bRvst19a26dauuP96fk97s3H65eTgNhiaf8iFj51PmWn/z+77/x9bm5OK5F3O52u52/MKLF//s3d+aRMGr1xfNLIZu4yg6rlVnJnLq1Orf/eC+XZ3bPjxpLC300/i9rU1FtOHYk/E0jNLxNHKLteOj4fbjtuPwautIZqf13AoCwfxCXiclSywc3/q+6G/rOK4V5jAgHMLq2sJmukst260U9vp7ETyZpg+P9veOD3Cx9OLW3U3XcPaOtjMYnHSnpyfEogtFt9Tmp0fT01CJ11//bOIjSzUqxo3Jwcyoncb1DPW3Fi+uRdL6/LVnf3T8kCk7jNrI4vsHm5bJiOVI7Uy6amNzMFdYufvR9t7m/uHulpEvBrEZRWi7e5AjChrWCKOhxpXS5W994007Z0xQerKxUzQMisU06HbGB0N+nNrdAdp4/N499XjyTGvJzaGHx4+77cMsSe3WBR57ys7FLkaOangUDffOzSi7cGSKky998uaN1bmq46w0Z/KUNHOsZHAw4S4t4pzZFr0fb98fp75MAuSLUq1u5/JJliYpD8OQEKIlF1kMFECEUMumhmVYXq5Q8So1p1RHmKQ8AwA4rosgyTKhhaSUIkggwGd8eyHU2TD4bLwC8dnJCQiATEEqAeM6BUppaWhNAGAEKKQAhBRjArRGACENCKYIQEbp2QFOMMFQQYzziJZMy6caa0AA1KpqQZtyTbBtEAPJCEgMlaOxdK28yCKtuGWZCptxJihztPIAjSHBIi1YJKf1ISOEgpkU+xAoRpTksYFYlgg372pkhLyXxKLo1LKEY5amfIoUpaCRpofMNEOpFTO4ApBnFuZQhBIYWikMFUIAQg0JJsRQCmLoQIgJoppKlWWCp0Bik1qAAg1Zp9e2YIAQEUmxVMiHYTsRdUiJxNk4GEOoHccD1AkmEXWk0jTJMkACTBDIioprgMcCFAm1gyBilgsRnIaxYdpZHJSQyyGbAs4dmpIUMZRGI08hhkzJM4yAY1hREEibEUB4JokMENSaawIsxSnSUimlgYTE5klqWF6UCdcrcJEw00nSEGuklKIEao15liGIqWlnWaaUDTTDSAMAEaBaUaQZBAA5kiepUJxgzDBBAAOtGUYy5khlpgExhowYCFIIQMKHDq0kyUQSTZmNGeScK6VMZgDNIMAIUS00BJBiLLRUSgPNCUCEYp5lQGvBJaYESUygQkIwjRUCUAqiNMaYKCUBoQgDClWWYUQgxgZmWiptJY6l625i6cw2BgWdQ7hi2mx6eRHMmtjMpUdABd24HwCLUGKYwCmzArWdGIgo86UFFZA2z5BcN7CaSukUKtSiER9O+FEKRtEUT2Naqa46uWrPD7udUwn32/3HhNg66Mqez4fWSPRH8N07t9F3j/ReSD/93F994ebqkXx7uB09ubRE0cCtquXZxQ/f/wj88pd5HJ6bKc94BGe+4hGEVhiFgZB+MNlZ//j6gvGtP/7TN3/YW8lVkyxDhEyiiWd7URS6hq2UQloBAAghnHOtNT7beyYYCfGTjOyZYBwiTPAZVRtqCDRQShONAABII6QRBoBpLSEAACAIOYQEAgk0owyc5W+hQgCesfSARkQr8X+5sEulzoizkEuMIEAIKK0hJAhrAKgGUp4xopEGWiFw1mrTWgshNAT/JUZ09jgEoEAIQ4gAhPonK10aAql1Ks92FzTQUv5l3ldBwBCiCCKlOdBKa8bYeDiihD5z4+ZOb7r5eDvp90EatHFm50T3fgys/t50qryTymxh40c8nKDWOUZLNSxhrKcGNgZJGiuOQjmMAzwaC1YOpGoPkxooegY6nZzM0lKhdgEA0IE6KRcvOBeMcFprzm3t9c8Vrz7sPfDyfQz8qC2feeGVUzZcqlR/70/vzOfqeGKVFHnmmavNZv2wP7189UU/GTz39Gf/3W/9b//0n/6v47GYXxZJhu/evX/z+aY/LpSD55cq5UO7cPHqC+3ot8mUxar75PmXbr19v1icL+Urg6NvP/v8U4d7x35o3LywKLkeh6lXqKB0FAXTHHO6UVxAsHdw3CpZfm/PyNmb27+lk2Y/+JK2onyrPElVpz82IRHDgVtxQtUlQuyfkkk240e+62AEJoIMT+O94fEDEMrDvWl1xovUCCXWaze/cLK3P5zsYOKeXzsvZZyIbrFlczAciRhm5nyMnfkCTKbXlhb+4offLiF3qjDWUTyJCpVymuhxd+zahf2j40vVtaNBMFAkbxLMRYbNeFLtb3WoKz3LjbStjcgqsuNebNplofj249MvvnQhzsJHHzwo1uoCZoORf3TsLswsnRzzZ597fWd39/t37yxeXDZsKWQU+j2Bc9Wa098/uVw5f7I99NBirVI/Pj1dKNmDcUph40b+5urq2tbOem/npDxTHI5PwzDEXv50OJ76Sa1kQT2pleyNg6FSipiW1Ekcp+PjQ4wRgMqwHUKIloJLoQHE1ESEZlwalpUJzgxmmuZ4PM7SFGmAEfrLMhdpILXWAJz9TDTE5IwyQyCyEGUIA6UVEBEBRMicgCZiKdRTzhVQNjEQBpBiAjUwKYFKE4SVkFoqQojWWksJuYRSCSGAEBRhyx44DFCUYnhisDYDKVYJxqeSI55ImWYmIjpJKEQE0owjridxKCE0uBonvGcZXpYI00wpKzJmZuk453JG4kLOFZkRRx7UtmWZzOSmAUVGC848BhZGIjFyqSo6oGZzCqYjE4MwsRS+dDYhj+IAYyhkZpqmUCBNZb7MAUyBcvi0QGErixDGKTGGWZYlYuyWbImNVFPTM7TWNqsIpAIepZBbBdvMO6lUk4AHMTCYq/BE6BGEjkGLzNSYCKQLUlOEDUJNQoiGKNNSI4yp6aNRpEeaxy5AjCOXFcLUUHZDBiHKWzlNFALIND1pTIAueWWTItewTVTImbMGqnlW06SeY7pZ5hJaNG3L9ogEsdJaAcsyWmf/m5RS06Ccc0qpbdsIoTgda5xRQ0gYSxgzQ5sWxESkPJVAmabheR6lNE1TnqYUY6mHru1QnY8DQQ0B0TjjIVQOyKiB85TYXGEFoGFbjNA0iaSCWiEIDKAJQsygJiMGpQZF3CDaNYhJsEkMBplDPdco2phAqRiCBiGQSwKgzQz6k2sfpcQghFFqMWYzahNstWCxzMvpkTFJ59bxrL96c3Lz+tYbV05ueCct2a9kW2SYmlG4+xCebGI48JarDkMym2IZl7LExVnqRSSXMk6MrOoazWKpwhEwnKrl1Q87xxxNEsERFVY+xCw8PepHYxT6utfru2S2aOUyPw4n0zt3j7/1w/BHG+1z5dlrs43h4W3Rs3tbIgcLcduZq+dzpl3KlzKuGNJVl8K472CueAQmfi8cb7TD3mEnHd8p1Z1/9I9+o4rKIJzYUGWxzwiK04iZZsy51Aj/RG8AIQBSCs4551wJSSFCSp+1Gc4+wwAiCjCEsQZI/eQeTCEiAGINCEBYQ6wAgYgSYhCKMcYQaam0UloJpZTUSmohlZJaMYjPNuMMRChAZ91vAxOMMSOUMcYIJRBBpaFUZ7EIC1MDE4awCbEBEAWIaOgRwzl7DsQGxBYkDqIOolgDpABRgGlIFaAaIgUIgA6mBsQUIgCABJojkGEgCPRMO4ljBQBQwKBseXHJdd3PfurTV5569r0fPPjet/7i0e6H/Wm/vf8wnDxIeDfiZjyp1syrx3fbNZRbKuXiyamKYTaFPkdEoFE4pQ6drxdiOp76e7axpmEYJ5sGjkGMYYarJev09AHoGWWwUCk6fgpt8yIMPeYiY/GJdza7y9c/sb6x3yiDhRqseMbtDz+88MSV0rkv3h8fzZ+vT6c4o06Zteez9t/62t89HT584403NJomqu26ZcZMDvyZ5nLn+M4Tr7U4SldmcoinWwfJyvWrfOIYkzKK9ZXVenfn/s3Z8zVdUWNNNHQ4e/DR4+byUsiz4/3DQac7CQMfQ6M0vz86PR7CQVC/s3E0yYraKpLZRy6ouJEKHu/UXXr/6P2sgY6iyVG3bTseIPmPN9+HVtAoXzTV4v7eyUH3+KRP8jWrXspKiJSA+9k3ngvBwYPTD3Cori5drbvN9kFXA7DdPtjs9d5+tJPoQZJCRvPNmuNPD3f3Dmv15TCLMm05KkeoezgYFGwX6NRrukWPnHQeSXcsYXj50o3No42dznsSDsqNq3b+YhqOs8HIH4wCfGLPlodderl1KaMzdx+JVJzPoplJT5fMMp6y8Rb3Zucey95/fOtbFy6/kCXW1tFIapm1P146T3lwkst0d39nIPfL15wOP8WEdcKe4WlC/F/8mU+0KujK1YXaXBN6OUDqo74+2n7AJ4/LNt/duLu3f6hhszPox1xwoRTQZ6BfRjECmlGTEgMRCiHG1LLdvJcrOrmc5diu61quizHOkgRIheGZH0yfgWXOXj9ZgdZAa6XP1GEAmoQ61HAQNQFeZMVzTmPWqhjYABAXrdySWV7VBeRpnYcwDyFO0jw1mQQ55liQYQwFVACAku0ljuFqCpExhpAn3IEEY4+z2dHYTaAlCMYJ1GCKGDcKJAIhMAwIYd6CBcxtQybB1IGuC4sedRHmpuv4CabWsD/pGu6snxQS7YUq5Wis0GnRqmFthYlOgcRMxmnfyxMhY8dmlk2n/AjY43w5x0xGSEyhkmDCaOqawiEB1ROPAphlrmH5HGWpthEwscpEauZrStfCXi4GhgIu5qyIjIKWjk6TpBvwDoScQgRTrCODSAdBAzMITB7rMBM8n28msUYEKpZFIBXUcioAYjzl3KeRYGmRuh52JZIUUW1Sq5QHQuJIynGwkPdqglMH6Bgzt9nzx5KmIoctDJO0S6DSBHIkgsmJ6O3m4qGTJjLgptjR8UE66YpJigLoaoukMo0mYdyXMB4F48FkDJCOk2DQ3dd8rJk1DVKdqDygRpqheDId7BssqCNZJRpEU5nGUTw1HIIYVzhCpBhyQxkmNDHUHuYLebbgUCiNttYjg1CYEZeVZCKZUjXLRtAkSBowMBlIeeCnPYw4iaBmRhgkKpW26WgMBFUSZhRxAauW15LAIbSAPdLPdod6EBpegcZVz23kLpbsuq3sIs3z5LhebGl7lXmR2yysPfmLv/Dr/4T81PzkDXe6YCjN8yY7inbUIj4wZJqb67dxSc8USjM96AOHIoDNXAZknyZGhluCNvsgFUXI7ZjRzNIchKkOvcMHfVc5GFgcFofxbqnS4xqcZuKos7vbfjAOMaJNN7d82s4OT45LpdVqg/g8giQ8uts7V1nj9v3U6UeoP1uKV/NrIEH+9NSIuGeUt6cnosKPwWS4v4kPjk531j/x+mu/9su/ljK7Sq1QqyDLbCtnQssltk4yAwGKJEKAAI3SzNa4SO2iYbvMQgoQiQDBHAgsuY0hJDDTEgkFqNYqswkhCGqKlUG4EERDZqBEZIlSEmIICBIAJ8LDyNDSASiHjSK0XM0MRRCECCEkFIYyTCdCJme1qWEYWgkTGhTQOI4pxAbEJoR5SiqmyUwlZIgRp0QTqgHkGQ8NE6VaRiIlzKCGRQhJZKKwkkQUqF3AhgMIBCqFIgOKIZyDRp4DTyEqVM60PExLEOe4clLhmCUFTA4MCaxPf+qLRbf0qVde+fpXvnDy+MH2gx+70Gg6DeH7DJDeUTQ69ZE/sFHS6ZxOgrA6k1cwFkr2xqecgfzM3JB5GFQ9XeA4s7BHwI2YnJz2TpcWnsWg7If7N67NT06GNer88PH/8ejgW2F/YkA/zLp3dn702qfe2N36XovgGac+6g0qpSd29kTfH86srjz52rXvvf8vPvHsy+v332/m2ROzl7cPB9XLN+abtYNYtJavbd7bmys6WO1bZqiyUTmfHR13i46+9c4fnrt87sHDDy+3wC99/jWL2R9v3VIiLldqAwS7VHXDfibGdlnLJBDT7lLF8fuHmRJjrq36IvSq23sPttb9MAxPTn/sQS86oGYihnu301r64cPjyKjT3NXj2xNxMBhtD+ghb87cfPd7by27zbXaIuejx7uPscyHR/Hcwvkw4WGKVy+/UptfjmVnffNO0ZmLkfBy5sHOQ6TiiT+CgIIUVY0CHxmdw3Rt9RrIlf/z2+8sXWtlcqNpxPVcuVguTU46K8ViPocQzJgGMcCd0SRLmWaV7XvH9iFcq18zZ+YWnlhe33lH5uQJQNt+Sjx6erxOiTQc9qhz2Ek6qe4end5lTABCtzuD7dGkNAM++PGbL7/85Ch4GEePq5Y+Pe6YtYWN452N+yf5XO14Ml0997ocFxGAPp0a+Px0ZJRnWv1JL8uD0Op/+sbqM60LqzUC9bRaatTsGskohEXHXfzoRw+n0ZgZvuPEzNACxAkfQZQRjqfxiQCZYRe9QpWaWqiJFpkINKNukgGtjSDWgHoAMMMtAGpZeQ+ZhsJQQqQBQJgahkEpAwgQDQkAGYSplo6AdUWqhNW1W8AWlMpGsCzQilF0NTMMmzBECEQAa6C10EIIQZBGAFCIGcRASx7F2FRQA4tSlEWenRdZyjQSPPRskiZ9J2cYTMUZB9AJo7HrupEPqGUlWWAZ9cFovVBuEkQxk340UirL58uxFCor2aYdRQlEilIsVcp5Vi4Xg0lPqoQyMpmGBs0BiUxsZylQKYQoYrAcjrlbyOI0hoxEZJMDC4IGUpirWEmohKdlJNVoUVemaqxUYLk6S3wtUAITUmE4NqVQTq4UBrFhOuMoM5yGyFKkU8M1KIIZT3kSWIwBETtA6DS2qcWgtDGScWQaUGopYj8WiSBlr7qYDjtK+KRspbHwwqooSRIMU3UqDNcrt1iggonvYz/PZ6I4iHGfgBzK6r4PuMSERYBW4wkC1DHylDF1OOhKyexCLZ/OUGoKgJWEnu1FUZTxzCnYCBgIMpBKlSmAESIxhT5haeSjQpFSiKBWSEtkcAayiGepNgCAoYqTGCdpBKCZJiwJFKJTk0AjzWwkpzCcmHFfKENEFBgYkjSKCNY8iyglPEo4wVKmlEKtFRcZoVAhmGWx4tJz3RhFscgAUoFKeSYRBybAgA04t5VW42DqFHLV+g3MqIYyX7qUa8WxUIYqK+WjrJAcE9Jiy1m0ffjakz/7t5//lef3ikdVp9XvPi7ZcYjN/SFvlZank4PyZXr63mhurnoSHlZyC9Ln0hC5cjkuB5N4XMZwpeDs996yWNEy5mzhJAIRjXGWI6KSSB7w3iLeLQ2iNbQQYjtmbRjvm4T506RWxZgk/X632apKzhYXFycGqZQOCt5LB6p7MO3ZXb6aXw134nawXfPgSW9zPGwjAZN+VNDzoiNPNj7e3xswoJ545soP/+CPv3t75xyifZaYmOmfCBaB1opgAiGAUCshETwDrAGkgVYaaYAh0hTmBY0Eh649jaI8tLMs05YJeWZTK0sTQqhWKk0Tm5lISE1RwWRQ4VRIgQA1TaYl4WKKkUIQAwAhJABBCBmCCiAJOATYwMRgBgQUCg2EVGkqKEIAmZgppRihQErJtZDS0NCGnkqBApprJQB2EOOBLFsskgBzKRVAiGDAkMBKSw45hRBBSCCmEEoNodJaS7uYT9IUp1qnHEpJEMbU5ED1xgcSAEyAguAXfumnfvc3/9Prn3zq1p3vpqE1P7Oyvrm5u9uZnyu3R9Fe+3FCSKL16XiwcbBz5eqNzmDYHY4Knrm0sBz1NmfcxcOde1Aa1eaF0fh+ZHSQWT7e2FubecIfD/f39oBUmThaWFvrT3X/OH/l/Hy5YkpOHm/szZ+7IDmKR9nnP/PZaXo8e6543O9ebV1Wg95zV67/L//Tv1lduFap1E5O2l/58tf3jnYq9XK9Up36g2auXHTZw6OD2Zk5zbRC1rUnPvHgo8dmsfbOg3fcpZKfjoOod+XFT29t376z8Z3/56/8xo8+eG/E09rCfLK9P4jCUr02vzK/sz0ozM8XWhVisPbBqF5sOSECYXCKyJyn5GBoJm6PB7Doy07PznAnfQvC4+du/sq3vvcf9ztvXb32GkpGWYqFFedrXr18zrNzf/TN33c8DYxo7dqz+4eJ0GC25eVY/J23v//Jzz4LiXfQG+I4jniAS04RVaK9TjCZFOssROOdgH/6mbVcLvf292/Xcp5r1XaS0J2pxUEmedpoNFozjU6v3el1L1259tHD+61iq8Zyp8dHw2C8sjo3Ojz+xBd+am80JaLid0d+/6Tp5avWTHs8GCu80CydfjDa2WgvNOZcDzsOHQx6BIO18xdvf/yRk6sWiudk5ofByTTiWdh5tLVx5dLTpblAoWB28Qqw2Ki7h7LYAVgYkyJs70dW071C2/uzXk4ZrgWhads356EJzP7Eqi2ybndjGp+YxZOXvEvjQPb8OIqzMp2xbHLc2zNsZaBCNI0oNAhF43GEEJJy4ro5BVixWMSEUkqZQeMwUEqYpqmUoJRCSqSUIk20ElkGlFKAnFXDUAOdacmBgoQ6lLqEKCCxaUVJTCyTaW1SQhEkVIGfTGsw0gAgqG0CCUApQEgBiqABgAdpqMTZ5E6LkLGcjONyrZZNM8+cTSNtItOhNAVtyS2sa5AcKaCzDBpWm1kFSJnvDyzLgEQUXVcrmcVRFA8q1aKUSgiRJLFrlxk2h11hM9ezEddhzrXiODYtmvIBZNLGKaZUCYuSXJYGGLlSYSUjkPUgDRF2FbQ1A5kFUpgmWMbpBOZzHDAskAjdeikXIj8WiU0SJRHg0qRWEimiHRyZBqfCk2mWZWdmJMFstyI5tx2cqr7BXJFBgo04CrmmHDgCIRKzGOjJoN8qNiXND6MQQcuxKrZAsDyfQqGgS82mrucpki0TaLtQdq0olEIaxUpZQIEIYSyXxoRYHFsq0ziUZtHOY0tnamxJAxlUA5DxxHPcLMsUBohREEuMgdCpEhxhSIDUKiVYDAPtOE4WxVoCABRAmprGZDq2M4YhSqJIS8XjwDVwPB1naTQ5fXt4NFCD9qwNoM1TmiqFm/mKH6RAQ60E1hpoICXMAABcKi0hUlpyDDEzKFdZJrXjmp0ozDGDAaU5z0MM87lMaj/meWylqUkMp1TG9dkFw60Cwu18ZpRalXqjPz00mC0zLNMUlbvN2boaRflr1z/zt5+/N30TOFWpnLpTH2cjwuMy9XgYWhhxNi2es6ePeo5kY76roYSc5oELaanjJz7PfMUlmIeIaaAU6hm5fsL7Pt3kpY4dDhNQd6xLguNcWaTRji1P51EBVW7y8lDDbNghnlVy3KTb6w/9zoXygp42E6ZsKoLwNNdc2Oh/Z5E9hY/8i9cL3fUHftr3JxA4EObn3/7Bnd7ucbk8J4tJ9/7DX/8n/8ualbNJNswiGxKlleICY6y1ZgQpJZAGBKIzrQpUUGsNpAJQY62h1EADChCBWGCGAaaIQsK0BARCDTBBGAENEbEQ0UiShAtDp0hyLpjQNsQK6UQLjZCUEmoFgEYAYgCABlhrdJYbFxgqDYGmGjIAICIJEBRTz7ajacAQ4lxoDUxqDBCnBKVBZGBkYWoqZBErSSKeRAbCGAKFITYYylAquFQAoZ+IXRBC9ExiCAACcBj4QgibMEMjgLEGMMMw4TxVwHXtfhD9/C/+VYIcAKz1jaMkxdTI7tx7hxo2Y2wUjatOsTsccTadCmM6HjcXl6ZpGkSx4xWVFlzgucqr+zv7IgKlQqVYFmmaN+FFPxjnWJIz8rioEUmVsGIdsqIz3J3UG6Xz51/tDXoPtm8pDZ+sv/bNb3y/UWy0ZvI9f7x8/sKf/9l7W/tyvlnu7G3KYeerf+cf/Pkff/PFV56vNOoP9x61Zme0MJMgtAYpb29cmKdFC7rEas03gUqC9sbC8kUS+sQ7v//R6OnZlXxj7nf+8I+/+urPFeaWu++83ahXV6Js450PBQKvvPFKf9wbnuw/+/wqVD2gA9dBpZK9d3j/qWfWBrc2Ram+lYrNo4+vPXWDT/neUf/GhbVBj1y9+MrHt+8Skn36cz9v5mq/98//8T/6B7+ytR4uLDbOX5z51//2G25juX366ML5Ob+9kxNuouMnXnrm3//7bz757KcOTjrhYECD0SjrmeY5oYycWzglHYAzZlQYyRWbdhLQ/Z1dA0Oqi4ZyosmQ6jJi4OL5y52j40GvPx6OWo3m460NTTAjcYngSLM2MJNmtVwtARQXJ33fyAxaDSdHN67NQY2yePjil175wbsfjNqdudkqxZnN6GQclfPlxYWZQS8IFFteu5Slen3vocVwkiUykavu3ION9qUVs8TSWhVOxptE5rVTHqT3yoWVuOvl1GHa/55ZKPpZUiEgmMKVXNUqz2y1j3L1UYQ7Dbpqn/Kly0vTkbmnEuDGc56Ytod+l9u5VkSSXJZpHRE4xpBRJDnPHJd6uVQqJ0nSomMH4VRrGYXTXMGLg0BJqbXGGJ9hPfTZ3gYAQGkIkQIAQJBKESFRIqZrmnoaFnJFjexeIAggZdeFUoRRQMgZNwf/RLWNgbYwMTTiWnPBNQYF6nmGFYRRxjlCSEYuop5reZJD17CEkAajaRR7juZi6lhulmW27arENLDH0yEhOIpiRCHEmZaZBkYURJ7r+RGk2Jv6PQiBbblJGgKdOJ6dRYMkzEzH5IIXCsXJODaoRRDSsJ+EhuXAadKzrUacTBwXxYnn0RTTMZCRjhtIIMv0iUhEXLYMlIiU4IgZVHsqTeNEME3zgClAZKhS2yUajgou1Dw0eCaz5mQ6MS0LM5rRNEzEYDykBqPICyMTAIdZ8xhQxWw3V6Nm3pfFBY/na/kAeZkmJcJLtUIEKbVK3GQ2RAxLYEhVIARhV5IJO7Ysw4M2BDnAVCL7kJhIVV3St0wu1KTg5icxE8DIxKRaKOPMDdPQMIkLHKClSqVhO6MoMmEVYEEgV1ogbSBFgYJAwwrhGMAs4RBCDZAEGlNCpURcIYRokiAAVZIwDLA/4nFUm36ie/zx5P4Pks1HwYmycg6jUozHwMhLzk2G4ygwTDuIY0TMVCiphIoSDDWGTCQ8yAKCEDZYlVNM0CTzJzyQWucIZpJ5mgnUt3Ml5tUaa15+Fpj5qVKWl5tDZpb36tBLHTvHo8wPdmasQqlUDcr989daP/jO72YKrV5p5uc4K0aDaBwZlFCZJIJi03BgYSmdHg7JoFS5r6yZcubYU0fyOILpCAOtNPRgU8Ajj/G8rCI1d3DAkqNhGeeO/YeEA7+4WbrWPNo+dniW9caVmetxtkuBPQ0ntZoAxNnaCTDl0HrMbXOoc3v7jxfyl564mtvYf4zSRo4CaHndyZFOR+1h2xMNB1kn6x/ffffNl5585U5n5+XK/K/+r/+sgmyZgJBoD6qzNSWlFCFEK4EAUloCjTDEGCIMIURnrCiINBJA2VKHQFDTYhmwmTPMEkyJmUmFMc+4aVtScgahbdtnDFthU8KVIaCEJGE6hopKVdQswPAsiYsB/onXSGt9Jt9VCiuAhUJQo7NxMsYSAJ1lGgAsJVECYcA5Z9SoQCIUR1RhDDOdciVinUEDQwUowUKrjEskgIBaEUCpibjAZ5grBTDEAAKCEAJQS4E1cA0LCQ2V9mUaCD2S3EMlP4ifuvnytesvBgGo1pZ7vaGUaOfodqVZjkIxjcJioTadhkkclopWlOAoSgxH+75fL1f6vZ5puqO+b7TScRQvX5ivVxoOK037QdkTFmS6UDv/xMqjrUdurjrbWrm3fm9r/zgW6MbzL+8frcepEcfNv/L1Lx+efNzt737mU/+gG9y/cP6pg8NTCsNW3djfPnp353jl0oLigYbDpZWVwbhXKForSytxz7lz66NXP/Xl7f2PC7OLPvS4yMpEHe8elGernksX3EI31YVquYnA0ckWwfHzT3554907SsiYyJ3ewVH/5OaLzzYqZdXpznkM+NORDg3bMXNkrAbl882N8UlCoaSFZJK5wD69+8guVGDO3eHxSmXp6Bj4+qDeukDI4qOH6xeWPoHp/J2Db3z5U6//wW/+J0+EC/OFmersNIq39/oXF6qt0sr+zu7NSwu1PNzpjYJYQavW7x9kPDJUNj/T/N6Pdv2YX209u3lnPY9IP5kWzxczkT7//Ce/8xd/cm2hEfXjtWee315/DIT0e4PlhfkH21uM0LmVZRzpj4ZdCJLnlqpGOMLlcuraf/6t+5/59Es7G75VdOpz+W/83p9+7cuv03S09+H9G88+e3SwkfMchKFSpkb2/lEv75nIY6Wy9/bb7wym+2vLC92TXtkt7B8ftbzYJC9IWd07aVMrMyw47g8KXpFLl9O94CAr6Uu9MLQr+fEhVNjNdC8j5drCfMmvZSmOHN9cTUjsoPHdZ8/NcdY87bft1ZpapKfj9sn4KJrYEFqlWmEyngKbJik3meUPw2l0TAgRWep5zulJz3atNE24SB3LlVIirc5YWP8lgwSVVkApBIEGSqtA81RLBKDDTJlmWtH52nwSxSjT4dTPey6xMQEAaYAEhEAqoCSWmmqpAJAACKkdw8IKAULimCuoKVOMCaq1kLFSAEiAqUUMlMQdolu2I6ZRj6pzAsZGbpoFeQ0jqLRhEq05higOYsWV5VIJ0tGgT5Dl2oU4jlUW1urF0bjHDIKxlaRJIVeMoyznOVEUMcOAuoKYPQ6Gbt6cjno5186i0IZVhFyl4kxFmepKogSLI4RVRjEOdQaJtGVCmWFG2dRyJIYTI2IcSIKA8IXmxiSDUNkyM5xKTkuKS60MONosIKvculguVusjwyIEWTnLLhnQUQlJzbJLTDZJzKKXYAcAYbj5UjjuOFWXYNJDCfYz2zJwwU6yEfIHJiSKsIKYU2zAbDH2R8NJViwzRvlkuO6Wcql2xx2o/axYlobyUQApb4YsjJWMeWpAiKRWUtuGWTQtDQdKQqmw4kRJTZhgTEGchVMVC8E8pjU6w7GEWURMw/a0UhxYCmMClQkBILkilrloaKn8xVI9F1glFXw79dtWrsBlLpUcKU61ElBBxTPNbWJJiJGESqQUUYBoxjMIKSI0TtKUIBVlWqQzuWLKeZhkfc3tYrkAn5u7gIUzrJ9rQqPulopcTwWOHbISa5+5ppt3ee4oaQNK1zjI5urnur02I8ak1+us/7jOZ4EbzpaGjxXuR8p0Ghh5oY4h1eZsKRpF3JujBKtwRMYhy/wUaU7dlBhRugmUZ6ErmtQz1TmKdnp8Wp99AecnH3z/u9CoX7lamMvNJNMQet0PT+9cLs2Pg0dRnJW985lw5+q5467TP5D+ORlvHFgkKS1ljlHxT7+/NP/XwTL29tTDxz/uhwe5YsEuu/VG8S/+4nuO7W62HyW9nVt76+sPduZz+cBPKMpVVdRXCiGIEEIYKKnOoI0QQi21Otuc1OAnixxaIwUZIonSGGOYKaARUFoDKbmAlsG1QkpCpQiCCGitNQeyIHCCUUghVsAVECksEAwNaPMzzDPQEGsIFARn5nEoNQTKRIQggiDRCGmtNECeYaVRCOLMJoQRiDAbZnEmYpRiAJQDXCUxoJgZME1TgImUilADSUmh1koioJWSQCgKyJnfF/4EvAUBhgDBipmLghBIxbkAmAhCEigFohkfVWulr/3Mp9ycOj653+lvHh+dYowBrgVxL4pSBksq8dKIw9CKJ0kMpMFMkxk8yjBC1UIJSJXzHNslzCxmaWjZZHdn/8oTzz39xJVv/smfmuVmfW3+/slpvrliFD2vOGMKzNQEE3N3r0tN49mXzmUyHPetV57/bLUWPT4N0nhwvH68WGk8fv8DrgyjUJ65cu7Ordu1UtFi8J233puZL5fy5g/eub244F1atT98z39q8bXe6GA2D/Goz08GFWqM1Oho562ZG61HvUNuXe5MNsqN7nG8rQp5YmlDJOLwxFPgyvzcNB7HTHor8/v90aef+vT9jz+KAtlwzLzKb22NeOwaJTiYDDs+LC5WY5o8ObPKj3VPjgt1STJlUXzc/xBTfn5x5u13f+/J+fnT7YPecJJfLuA6ZWP34Pbtn3rplZM4Vpo9+Gj3tddee/Tw41LZY9hEutQNR5imjucTaxrF8NWXvzYaHeUrATWXI3FCrdXnXnzj1u23m3OtrQfbr7/2zH5/ghQYDYYrS8tSCyLBufPn+uPx6WjfIOZScxW4xTZI1s4tfff3/+BLF1dd1nxz/85f+zs//Tu//R9bi+eee/4L3/v27y22Sq3GpTgSjKa7e48r+aIKkoWFKqTxpQsL2xv3t9Z3PKs+7HGMzDibephUqxd3Th/my6zoXChbryZ8DMyPYh6pIAQTHJqMWb2mSIhq7k+60NlzQY6j0HEsyWOQKdOJbUuGQZ8u1okpu6cHjbkFw3a6w+PFenUuKY8GCYLW4vz54/bpeNo3HGfvsD8eCSEeE4LjYBIMugBjmWWWbVTLrXFvpAXn6v/iz4ZQSokAkECDv9RbR4pPeZKPcdEqSgGxJhbxECVSRFgxA5vEJkwpACERUCutFZAGokQDzSNAMFAScC1ThaghEeWCYyYIhTzkuWIxHEaUODwlBnWDkFtWwUCZwEKmCUIc6YRQzYhtMxpEPsLAtfM8ST3PTMMgkyPXLUNtKAE8u4wAy2KURch0PcUzhok/nBBqpNxnVCfx1HMuSzgyzRxPlVfIVJpYqIyRiNGcUjOYcWaMJc4QmIFCawBTHVEDKj4d+2MHlKQgJimJSI+VZ+ZcYFpWsUyobRaqkLnMysly2cOwPFcXRMK8AUwsDa0QLDuEEGRYjAOhCFIQTAhWmFRxOlEIIcIS5cen7kWnPejJgSrmXGalliV7Yz6JWRIXCqaBksyNpVkot/1gHMamxbJA+f607BU4sB7vHBfyNYfQcbcX94fN+mqSih/11pcXFpNpLKZRyfY82wkDoTGyYQUCiZDEQAktkEZIaSAloC7CilpWmqZSKcZMijKIKdZcSK4F4BpLoLkEClkIQ68OlGW5jfN5hyLqb/3wP/fSNjSqWEuCgc8TSvEkiTSAmRRQQY0hhBhhAhVBFHgWgRBOxkkNOWMtB1pyzWPFLcsqW069XrVLrepKOdBxrnVVYogdqLMqEmVgRX48ZgaIIYBoFpoezXthPKFuC+oDyEeF0mQw2OeyW5i7Ntnj5kKvUpwPsszM++N0Kt0yYllhVsFOTKFECvaDlIsE2K4jq1ZgZoaViEMCD7EiVNuM5/JkutLMB0voT/+4vXs6d7rtaZWEbFpbnQ03dnq9TdeuYsdMs8envUmxeIkpWC3iwQa/9+bur/43XzDTAER8ay964SuVyAirThMY/L0fv986p13Wfv/Rne/feeuZa1fv3D35uy++/KW/899XkTVNA2xYjFkiCCXUGiBEIQAKYnSW6UeQnOFjtNZKay211lprCZSKCLQEklGWGFjLOAexVjIzIdDKtFgUBTYhBBCdZK5hTdN0JLmjqccBlyIkADNKFDYiAfEZmApACMTZt2gFNHIokyoFUp1ZEhRCUgOICeLKwhQAzBibxolEgEMLYFtYpVKl3ppZiBIeRREhWPKYUTg42dVSZDygQEieUqwzIaFUCEsJEUQQQwQ1AFpJITlWBodKijADQilIUQzANEkUgRDpr//MVy5dXv1n//M/u3712sP7H9WbM1JKRK3jTrdWqbrUmEwmMsuyLCnlC9Ne180XZuqNjdHIttnC+ZW9nX0IEQhanhMyt1Spzez3uq995WcZbm32/+jVKxcyZFnFWbu44hStS5dn/FFkuLFWXsp3BZyqdCkMJssr1upa88P32xqSe3dvXZpfO9raHPeHT738zCDVD9aP4pOj55++ufXwcTLpld35/e2PKTtdXnHf33jrUe9Hz7eu7+3dfuPaf/PNP3z79PT49c9c+7P/9AfPNqudnYP9ESsvL24/fH9ttZiNIQ8O4t7+YcRw3b3w9NVr1659fPvW0+cvvP2D755rtGTIx4Ox4TGUI3vjDq5UilpHGk/CqGqbcBDWF+sHpz3Hza2VSpNk4tLK+7e+89TLrxvIGvTup1C3s/6cZ19YmqsUvWZz+T+89cef+eKXtg7fNjNnHIhPfe6vrO+2rUI5DoYrCwsfvPNRo4Bjnhaacz/+6HC5eWG+VFuf7j37qRf+/e9+8xe+9tPEERjEczNr5TrWbnXsOrrrD4fDlXOr83Mzb775g+Xl5WGn5/t+vrBkGbAvJnfW711bWZWPdl678VJj7fytP3rzf/zV//7P3/mL9nHyX//9n/nxvXsPD4af/sovHh0dYSKO20caqmqjOOh2Jn58/dqVO+9sHR33mpX5Xn9YLpUG/cg0vCA0v3v7wdr5+WIV1t2k4aS3Hh2BnNdqXp72MLSU9m8lfLodcEsF+0cPLWd54k1bDHEBJrnIR+0qmJOTnGBdG5VV2F2ptoREBzu7y6vNZBiX8nM79M5MY77f6Z1fKfVGUZimV843Dw58L6hDiA8PjpGVG44nFBrj4YjzNJxO/v9QlAj9l3fgL49frQEHaqqyKCMhSizmWMzwx0MDEZtZZolAqImBsZACAcQAFkBJpAxqEqWoSBHgBGFDYRtZSqUQEKyJEg2RVIuWmaZZIZcPo8C2iOJ+3jUgPRXcprooSQaUoZMSxj7myrAtaEihFdGm0oACgrH2nOthGCqlPM/MeKjFBCpWzFOlfIKAELKQKwa+LBaqUilFVTzmzLbjTBFDcxFaNlGpz0wwjbtA5GzACAhYIlBGaYYZFYAtpcTMDK+x1ixUm74QtJLHRScsrOSLLseJWTK0i42SE2lheE4UjQACoYU10ZBKbEJNVcqTXJrHMMMgYUpIDR3CxnFsuQ6OOYWUMoPH42q+/ujxwebm7itPPLl3u1NeKlIP7B6cwmJ1aOCDqB3t71zKtVBUPQ3C+lIJ58EH797yD4ZvPPeJ+5unicMrF+zeaf/h2+s1u4ry4IOtd2sLyyYr7R+3/ePTLF8orC45BsQEB9yFKKEGJ0ioTCqNBaAZpzbJIIE6mxCZEgCoyiiGSsXIsqjCyFRcpFhroCVQCkiV+oWSLYXuxE1qXn+l1o8O7//FiG822JxWQCklMU4BhAAYWoos4xhQkEElMSAAwYSnUguNyFBMNCEGZERgFCduwcElZ2RmrRXMaqRkN5xmThMqFYdZapuhTAdUCqSRFL7OCpgybB85ttPmt6CWZaOuuElJ0D+5FyUTx1sNjhk0MGfjPm9r1zmcyrpD7Ao92pissFK9WIbBMPKn2BQ679GCheST7ZNYpprlqGeZmS1TE7JitWJeaTbm3v3ondXVhmfp81cu7W3u8k7G8NJgGo38iYYYW7ksPTasYL517dtvvZmVwFa8vsYWHt39Jkrm81kT9x7oi1eB0Wy0+3snH6pk/Rt/8m1twzuTky/+9M/9D//v31ACTAxYEXhsczrtnQBOIdJaQQ0zqTCAQimCqNZnoMez6a+UWigBMIRa64RnUCOAkJQSAIUgQhhqojVXCCJK0BmsAwCEMOMEUik1woJCJHBOQyoRhzqjZ91tCCHUCmKtkdYmwhBgk5CMZwphKbUASiEsIQAIyygkhGBMEwECiSkrNxbmieVduHxTQpZow0Ks5TnUJoPJcad7tDZ7yR91Bu2DNBxGoxOkBKIGMzCIMwihOoNkSa0BFFoJJTnnimCBYaJgxlOuAQCwWW78zZ/9hadefOat77+7+ehoee5SltBgJN1cURNoOzRTvp9olWb1SrXilXf2dqrVumWyfr9LDVKs5ATk5WY5TdOnn5453PG9gtw9fvzz/9X/vdCa3d9/6NaN+bnmoO23Zhr1VskmXsEjttkJItEb7NQqq1rqlcWFdn8vX5pff3SgAH3ze39y4/KzIkkUCJcWajmD7G7tOsqNQV/L6HDr45pXMRQhDPO0u7nR37gdv3DlymRv62rrwtGH3UfvbPzsf/X53//9f3X68VZWf7nXtqrO0ke3P3A8pkduluh70/vHp9trK+evnbt0P3gIE50K2dapnPdOx0MSH6RgcrG5VrDd9d1HJRd1/dC3HVWxj0d7Ty1eD7qJpnLphdL25rfWrn96f33HwrrgLY26/Upp1o+95fl4Z7OXKHv24nMffvzeU5+4tLO1c272+cxzbhTymw9+fLR5/8tf/KmezI9TPcR0uep+cGdnZxdnqfzCZz+5t/vo6aeffbS+88yTN1RCPcva3X20uPjag93dc5eX+sPQsu3nXnohCKb3t9YrrUYUJYVCYeoHM57V7/d7U9+rNZFRtgrly0uLP/7g1l/5xa8iJk/3B7/+9//Rd9/8zzeevPnMi68WWws/evcbx0enQRC++vLznfY+1GJt5dLxbpgl1pe++PXHW+uQqvbwiDJjHMi9/c7lct0fpSc51WxEh5MHzCot1K6lncNUPQbYLkDnaGuHXbDubvbcrr2V/HDupWso2Z4hV+PjHNZ0DOPyXEWyWTVuO/nqeJoRy6nOepniMQ1kPWiEdZFNCzmQxm0C4pJndPqD5eU81FdOT9pM6W5vECEUTqfMMMJpyBiTUv4kTC/lf1FtKqDPhCgUwAwCgIDAUGNEKMrSEEFuIsoIBiJDANieSzBESgMstUIAKSAVUApIqS3KVBxSYhjYyFuemo4AQARRiTtWvqjSBGOWJEneczOgZJrm3cZg0hFSASS8nJemKYERQJxkZhpGhBHFJVTYYk4U+jmXjUajYjGXZqGUU0axka/HkSCYESriJGQImMTjRhIFU4CVAjxfmJrGnIfoYDw16GIQBAjGqe+UBeHCBbDGmatyBZCvmMUaq1Ywxu5sJSpQu+gVHS8HZZCjvo3KRgy1srA58QezC/P9YCI1GIqBnYMUYymUiY3Yj/VEGtS0WX5jHGCVGVhUHBdKSKkZtCd2o0At6EVcyFGaBwOC/vW/+84//PW//c//5N/tv7/9hZffuHzhYgBoMUeNdi8+HkxPY3XVEEShnAau2DkeDcfmTGUFgKhiOIHpPt44iPpDLvX88rxgRuJ6UwQ32t3j0bhVrRfLBatgY0sBEltGIIGmxNSAIY0gxIScjf5dAHXGE9NxEQZJnGGMhMikjyilGFEoUqAFBEgLnqVc2H1LWINRFbm54lVP7OcO7gJLzUjJUyEYMSIuDNPKopAZJE0TSBCEAEiBCQQQjcORVKpcaLJEBpKnSgFkCkasvFdslM2CjT3XqcyVZ2ahzRBxtISCHzG7g0/m8sUI6KZhpQk+NKHB07LlzUrZw0QE0WYmY0ryRas1HWzS5KQWvd63Biw/cgqFUd9Xtg/NQm80vTJjRUn/OFUFxBgq0IzJmKaWYcD9ODm07WouV3JslcrTJDkgeOiev/D6G58Mf2ty653bCy07OR33xpG74OaMcDxAJqv64YCrtNPr1OvV/vBR7EfzpcXBwdH7xXuTfnlx7truo/e8+WC2dl532MXVi7Fo37r1Ts+n5YUZUyUfvfnWOw8OZ8uNcNDtO15hOgkpwGZTRQOgOERICQkolUoiRIDUUimMIUJInSm+IUSEEIRQmiUUWJaFxlObsamMTMZIlCpoC8k920KpIFKbzA4TaTImodBpSiAyDENDkKSp1tokxlQnCCKkIVIQSoU1xAhhADTIoFCEQIQwAIRrkHKphSp4phRKKp1JnC/Wa4uXLj71skRsjPqU5mBKTORBCGUcz7jFGiPAmDH8gdlsJZNTuYUnk04Sj2HKm4gKhDQEUIG/5EtCACEHSlOcQDVJEw50zvBa5ZmXXnp5dmZh0BneufNxqzV7+9ZtilkcZ8xU+WITwc1yqXh6cqg5MvP1aRyxfM0CmDFSLHmZiLd3t2fn58vlyiefex3jWa8++T//07/6H/7H/3Z9d+PipU/84E82nrv8yUl3e+7cldPpaSbal85dPj3aQ+YYC1kuz3ieEY4DlRpB1/YZwpbc2XngkKCWq0qud48/XlwsnOyyCvaOT7aay6LdfsjoVHOW+twfTT66fX9ludFqmiZBuxu9J29cvHPvW5eeTf74B//bIJX5YuOBv5s6zG/v7JxsLl9chNwYtt983PsYcH358uXf/+b3a83Wj299SBkbDcf1vgmJuZCrdrB74eLz3/zed5VbbidD06gg2SVxe8auuE75ILt3ZW3h9rvv3bww2z5uF2y7Xr7w8b0fPf/cpd6+61XV+qZgBNYaqF7xDOoaFulOHp2/NJeGx9yig/HgytPPhdLmEk2n/RefXbxz9xCJApqqL3z+jfJ8eZBNjk4COHaMNJ2Z87KxrlcuugWytjS3uf5orUFl9dqDxw9ufXzn/MW192+9d355zR9Mzp871zuebBy3X/zEC26c6KOBws5JlCw9/7wx1/rd3/mNL37tpT/9vd9+45XnKrXl1sqlf/+H/3rSC11aas4v7W3vIThaXGwBNVlenCk3jI8+/hFk7klnjA0jjsNeZ9xq5cf4EYMLJH6+FLzA1WYx3yesEWinRp9gqPDe8Jsbo5OljZrBVX6hSNNrZCscWUW7FS2WWLvjw5wpwhNwzKVMJykhRRPhPk2zuC8KtXIM4rBXyhfMqd9RipW81f3j02Z9NckiHgflgifTTGY8XywNJmM/iZhlhpPxGUzmv7Anz/xgP9GZaYDPimAMESWMGhACx7VgyilUPPFzXiGOU5GkxFXmqcoIkkiqGKkcIzVmjPyJJCmgOhaJZaC+EaNY6igAMLGZodMJSDGgjk3MOBgwTwAyGk0YYYhiU3AUh+OyVxWhJCDjZgxklqaYoTxDAOOUuV4WeYv5QgCHzECWKuiMBngi1GSxtPQgWndIvgoXJ/0d4gqz3BxN2iAjXVmiURpPxiY0DMOEXiu1GkZ5llSQ6dXMWlU6iuYct9TgFkRuFpiOZn0qtJUrd+OOlyun07Ra5rrHbMO5336Qb9baI59ISZiBsiLmfV2RVBvJMNGm0oJyYN46vsdHeW8R+NPj4xM8Q2ujaX9mZVEr0gXZcgXpkKA0/eh4a/HK5+89fvThOwcmLz7z3NOe8BM0+6PDE6JQQS68+tITzabZjVS/d7D1eBy0aTk/f/VmHSKN8pmehJMIa1Z55bVLtQKLSfIJmu9G6YmK6xdmLxcqVZdGNk8pqnB3kCWGhiRFSEuCgYZSAcUYSQSHEGKTRjxVqaKYCq6zOCu0HAhhHKZKC4MyxbNUaubaKONRLBzbS9MwCnnp/NND45ta9AGZRyoEPMFaTKPYsJyOHxFEiJIpKComwnSEpeexcsD7kzh1hM6gRSwwzk5bC7Mg7wwAIVQ6ebMTD7XvLpTPh+mE5rGSzQycJ7VIojDlQ8sqQ3BFZidAjRPZtSrzxD/CpGGQOCf4/kSPuM5GExn9Thx5drPhu2O8UKPaGZ30WpAAa9HhfVOmkk2Nah5PbQNRhgOQpjnjJkyxUBNQKBC0kh76TlIrOntrNy6/Ft/fWB//8d22be4u58ueyHdTa2l1xiv7p+Mtz7BLbs4l5Z3tQ8/D2gvWjwltVypV882P/ygk/tcu/erxxkA6J+cvXzeLamP9UQVz3Y1n5mv3dwMTgNGwjQHA4TQgBtWIBwOEEEAMAkQp0FoTCJFChGBMYRzHiGBKKU+VUBIABBHMTAvEKZCJwxihNG/k4yRLkeNhIhTmU0ENNgCZljFHimJmSSkokFAKkGilAQIQYoEARgbQqQJKQ4AxUQBJqCVIY6WoxQAAURA7hBkY2p45DqcyjVNV8tWwsXbx5qv/NXRROHqUD/JVa24CpAZ7Da/VHU1g3U1GXiWg/qDXXOMzXqnjz5LSHF9/dNje2Ake5SGGGiAFMikhEIQZFDDIGaVhyM0I+AJqDe1XvvazlMRPP311EIz7x6PNk73pZMDTrFRs2FYO5mvZeJI3XQGJn6jrl6/YEAmpz61eONy+XWrcZNyHyUDhSn7qPrnSWK3m+z02EfSLP/M1x1hD06S3d6s2w92Ge3BQulFY6B73zj1x7niybthGRS0F3aNCw+ocvGPmGtJzcA70pvseKUfd0Y3iJw7bj7e7G9nIVo6fltqRocfmtJ4aSvuWvuC5+c3NHx/33l1dhmA6qxwVRKdPn/+5vY22W6HrG4FLV0r8OBYftuBn3vzwbWjoi625wc7eFtX16rXpce3KS/XvfPhhHJnNpfL68X2vttDrBPPFxcPx3Wp3/fpC4SP/pIvcVU0MSw873eb5hu7lqzSO/Z5hz+2fBnlzKYoNg3RJJf+w+/Hy0quKkzSg0cnezNoKP9HNxeW9g11Cxc6P73/xhdfffPzx85evPtr//nxDPX/p4h+9efviheXl+ZUAmkV9ULhaWrr8zNLypffefpsp18FY5HZTIudvXHi8/s7FWVWrL7aPg1atVbCKxUT87g+/8cnPfvXP/+J3nrp0wQTIbcxyVrr30b2//otft7T6w9//3Zc/+RwuxXG8fXH+yeMfbf+d5/7Ff/jO3/vkZ567dK7KpfjR298tJqPVBVdnrX5/gDU2rIYAxG2aB0fd7btH9UbJn3aLRWv7oG1is+oUzAQfpCbA+rnrvSC3L1Ov7Kwl6SbJcYpbo+QjEXQbFVtb2RMrz69v/fCkk5aR4dKuoBmbbRTz6XgcRkCDCpdgxpYZiSxmPZnpo2qlx6GaRmtOK4mycXlpGcDeyWF37cKzhqXDKJLI7x8euI2FZAveXLzx3u07A51Egw4StTgJleIQaSkyAIBWCgJoQC/VkaYyBtAQOS/DZQ2pA7wIUmW6Xmk8PoKIQugxrCHokhRJRbFGWEGoIcyEyqRQGALlahEZFqA0nkyPhczybrnnTw1IbFT3rNIoCTVMHdNSEGPtEVNz4ToeSbOYolYU+JbBGfSAdjHQbg6nIhQigcoVQphOcqwe1W3QHU6wZYNYVhukb7LNwaRWcEMVDt113Fg+bQ/T06PZ/CUsYeIte42FarmqXBuVbFo2naKtLQO0CNGcGKZdzk0o6IiJhbFHPDSI7ZIXCxSlqeMaaThhzI3SlGrznfFu4BM+nJZn4nyu0rTzY7IvaSmcRgJiWiAyG7r1tT9/c6sbqmefKB77vXt3TpvAhSW4sDYLHMPXsYrS3aliQlYqM54XNC4Gx73xFz/3Dz+7EhVnbJmdzg0owMtT1Kst2KWCpeTIcdE8LStBjSXVqha0zChTaJDWMW0xCzM8bxCMBEHQBiVl6iVk54kDoFSm9Ci0ABZRylwDSQ2EBgAiCBTWZ6pYC9EkibWGlmFKKbOMa6mpaaBYYohsTSFCBBKulZZIC86g9nVqEAoCUc4Vgqnj1KvdRwcmC6GKEBYQE4kQZ1gKhCgDcQDwZBoIrTXBo5CjTJupmHIrwbwGk6Jje9L1fDstlty85YhpVJtfhNTMSJBkUgS2zVCW7Tt5L5MjR5WRzGPc8yCm8nwWA5/ta+kRBkejDsTdCN/RyPMnaRZJC5i99Q13lalhNjotDeLAnQGJaHlVqSTEIxM7OrFGEkgnWonzMSvHjooYV9CXNu5BMJhMw+bsouNXKsuN67l1Z/yHg0Cdtnv+6QFvBEVmTaXtNp8SHT8NhsRKh8Y4OnV9v1esxnm3sLcphIJaiz//7r8JBodf+fIvHwUnObd4bvnJ0Xhz494RJfPrW3ekAjnPFUkGlFZAZ4JjiJRShmFgBDOeAqVNRpVGCc8YwBAjDYFQEhCEAYYAcq0UFwxjg1CtRJqmCkOgNcHorMN1xqejmHApGIRIaiiVgZCGEGgFAMYYQw2ABmVFhdZCZ5mSAkgFAUcaIE0hSqYhNQ2KIISac5EpSSnmsjIS/tLTryzdeFmQ2IqyTNGsZUQc51OrkF4ikttGYo4xgFFWxbhcbR8/ntc51yB0YXVgW/Qev7qdbofbOSenhMCUQIAkBForRRBXxlCMNM0bTLz42pMvv/hU0BWzldnb976hIE2jeDTwL164mCQCEogJCBSYvfRMv7P//PIFlsZDkS1cXd7bvDdvVYq2Ua69dLrbnW8V3tv7aO2nzn+8c3t59etWYjdra0fdbOXc5ZwtK1ZZTejL1y883NicQmQUKv0P7lyoLz7Y2y4uzdPAN3g5Hk3nG+jowWTqx0nQv3qBvXPrHThQiT9l0BGZPemcjOikHSS5/GXFE6TDk+4DRT2TLboAhUNULBHmXb/b/xG23eHWRCSJ12p86/a9n33js9/+3o8uXGtIJW6/uz4/O4dM0TnZnZ9rMQ5PNx4/98oXPnp4d+2JC+PD4ZqV27j/QevKpYlp+YPTcjL53I3ym9+/lZtfdfJ2rpzr9YbF8gXPLR6H9wAxR110/RLc7XXGadEuhhTuDPaSaq1kuM1qrtHN5wHF7EEf9CaiZgU5daFaJFbmoGajUj8ddK5cbawunxOxgzhuPXHVAYuvvfiVf/Wb/3NhLg+lq5LM359+6ms/Pe3u1lg8X6pxCKUzvXJlcff9oz8ctn/m7/7V/bt3rs9enDt/eZDGOZB+8z//7l/9/Ovnmyv/9t/875/9/E8hQ05G4fnSrN9uLy/Mro//5VPXXryy+vQoi+PA58E3F1aurZ/8UEQ+NPhMNV9wvbxjbr9/mAal4kzeLdTae9nG3rZdZhpmg0HQCzSGtPVEcWX5Ih9HpnmkM9PFM6Px1KNpd5gSFYXdyY2bT/cfb8cD7DpVZYH6Wq2YK/JRKekdAz4qFJo594rl6CkKBSkJ3Z+esJS4SJkld4yw8MwCpbLfmywv1THqu/kc8PdHQT6fd7CBF596hoZIXVx7OD7skZjZhujJaJoCoADBmECllFIqhVMgEQGWkjEgE8diHrcLqRfrMaYsygTnfGXhwvA0FRnJFetEcWFZBgUkiSKItIUpw4QCBHFiIBYLCZCVK9SmohNM+7Ecm/KCTaFKTwp5F2R2EAS2SaAZywTmTFeLzMKYp4ltYIyU4ErAXQPPxiEnVmDYsUhZodCUUhkaRz3tghWFuCwPOkkOqUbL6fJp2YHWpC/Szszq+S/kL+WjgmfP5grEscsurVuJlSQswY6BscUzYCjsUppFgR+2Sc6oGBAEAU0Dr1478nu9EFAJbTW2MC1Xah/tHh8FJ09Ulh7wg/UofnI4lzPpxGgLSn78aFiUjFrCyk1Xq2y3vzGCYaXasPJkciSX5p7ZfvfdleaMWam99+huqVIWQuSVaamc4OMrNdZYnQ2W6ssqs+bL3R5wrTpviSUOaGTmCl7bTD1hoSyyrUoWq1Ip0mo48kXOsuu5olfGwygCpqZKa0pjX3isuuAoFIuCQVIAA50GfgCoiSDSCCqpMi2hBhADpaHSGihtIWYyA+Czrgi0DUNRnaVCMiwBkAhChTMoJQXColIiK02IZ479wKJ4NBpR16W1ClpnUTqGMsuIIpDEUhOOAdcCASqF5QiRYkosiEMeKUzKDAf9GDkUVmoWzNswB6GnTv1hbeZi0ViGELgl87Qj40wutIJR/1HBRt3JfLlci+IDaoywmHPdSqeznXeaAJiodCgDaBeyuFcuWl8Os49DPcr8Dug9auU8LiQRXWD2pVcXfuM0O81kwZSmhZiMAKI1120SaebwibTLJHZ1rKMAY5KLwWTA71rOTVp6bNdx2Sz+zFe/chqZv/ejP9u+d/dwE5XmDdfBFCRHyWGlWTzuHGCuG/NZGNpxkFk4IhC6bql7mn3nt//gb/zs5//iO/9qaXUeiOu/8Fd/9jf+xT9GSJ2cdEcj37Yt03YjMdFcaA0U0sygIuVSK63O6MdAQgDP4vlcIYLPoMqEEIgQF1JKSRAlECMA1U9UKhhhSAhRQkqtGKFSSoMQnQlMsVaAQooR1vAncQiCENRQchEQhZBCCBkY24BAjSDUCKgUIgmESSjCVGuplEhEKgF0s3b+4ivLn/577ojb48PYEEZ+LRjBIT31Gl7mT4KgkM8vJ3ISJ75rmjqMCvklbEPt960E2Waxce2Z8QDCcB9kQPGMGQbQSiqglUYQpAxlEDge1Znz137uv3vv1vpXvvCpb/x///HH61sXLl/lqVpaWKPEHqf9XMXIROpV8hadGiVyfJwxi1mWyjqj5dI15KDFHF84V9qdLG3d+fgzL//ceOANqJhpb6+uPVlZntuBozRpgzIOzHh+aancaN27++HPfO0rD9e3arOL796+9/zTz550O83W0vBkPY5Oup1xq3rTH99tNXNBp2vrJYLW+6F6ON4DM5XcNAGdhp12q7bdj6cjPmKOCDrT3vGEngdjY/cqfDmHwumRTxztEWsaF+++d+vvf+2v/Nl3/9DJLQVjee3qzOHGZqkymF9d++5372Wa0zB35dKl4d7jagyb2Drlg7mL5w7f9l+dX7q/8wA71CX5KAh70/71xtX8rN2fhCuNsgGjcW9E0xBkhkXjQXu5PzlR9uMGKctR1aowzYkvhgS05pzi++//OMSio+Jf/7v/t//XP/mfXv/pL25+vDFsb9Senjs+8l985rMcGFNNUUTz4OgzX3/jj37w+48P1//bz/7Dwen67Y++de7Zy4uVSw83Nr1iwy08sfnhR2+szT589CiOzU9dW2yf+IY396Wf/vzO3qM8NTrHe7/6C7/85Os3/tX/55/euDDDxtbMwvL2+G4UcgDrk9HYtPjyBUtOZJIGw+k7z175G9985xst01TYyOWLhsNMM7e1v92YW5ibvXjSOdzdOumfDJrVRijHfhwJqAu10hxmz12eOdq81aos+v7UqgFl6cjv12uL3R572BlcWX6+f5raQLaKtsoJ3vZraLnoNSVEwVAxMlOpnUOAFMwBDxvzs/NHDx/P1SbvryeLF6pYZfdOdq+ufgnipNSqDsa9Wq0Wi0qio5VqDdqN4bBf9CqOZUiBJsn0xtMrO6eT00Ku2+0YtqG11hD0ej3f913XoynPEcOfwly+7kJzPl8yxskUTSgEnAvXK4VhrBRAlCgNCcwyBImUKRAZBghDaGDlAiLlNOOp1Mgw7YJT6oYjqTLTwCYW0SSqukUBscKx54FpEJScUizGFIfTQDFmajky7DxQxVgOLLscpz3LVVE6hdKzWC0II8vRZqSTwrTi0uGxTxxsWJMsiDtZTWmiGteKT3+FXfbsFYoKXiQHvFDDLPQlhtiSyhaaozQjnDMEoUX2p8fEMyBgSRCBLEGaKLM86RzfO+0OYtIqFFGvd35ubjxKHz46feL6srmUG98d9h/wzYXcytM5wy38u//99sPt0WrFEOH0pacvpY5VdI3lGuwNpvcfHvkTbAN186nLTzz3xJ+9+z4sFiZCR+Pe0Zi2SFpsFGPoNAyqHatsdgZt7euchpaVBrYTgBzLQuIF/Vh6rlNSGaZQ8kAigj3PSRMeJOPRkBTydhQHCWGZyvK1fDpUTqZOUdTHWV5CQynP8zJC01RRRBGG6IyBj6A6y3cirbJMQwAVlEAABSBCGgAJpSJYKQk0FFoJISHSiiIOJNISE5LPuyqRiBSzICk2W3dVWtSEUsgBADITAFhIAqCATidAjpMkS5VNpcOA1kRkXABEjAU6I3lNE4NgYh3t7yxdPd8FvgPGIsajvSOBp4x43ZPFdOSFAGFPjtu7s7OtOEmosz8NUlrInfgHObOi1KoEQ89b0OnYLssILSmhO6RHelrHia+mlmvEqJa/0NzpbqSOLOFmHGTTXMEtLBnSjv1tu0VguoTdLAVjXxctaRgosv2xd2jppThKp4VmwY/i2eU5D4hP5y79n73b/YHd3j+ZrYBWy5zmUqhVby+9svL8Ybgn06llattSFBZ4Yt29+/71pwtHh/fevXX705/6+rUnO1N5692379y88vT21jElDEHCpRAACik4gFApKDIDYp6lSCtGKYZACIE0oBTDTFKIhZZKawQgEEpyAQCwDAY5V0pBiAlGACEgFdYqO8vWKoUAIACahCKIgAYEYqXVmSAcnensAUQIhYpjoAjSRCOkFdaQQoQRIIZJCMlEGmcxAABRQg1DcDEonPupp34BH/saDWKvkBCUjrbOFTxMgJyel/jYqjopHIvk1NSLanrU1LVjgU/DNs1NSsRFGeX1mfgmbiUbg2EbQMyVhBBKpSCGEMAgHbv2nEbgp776wtK52u7Jznja/eDHwU//0pe+9d03TcNZXrqwvb1tWF7Cs7lWzXGFNS0dd6ZeFZRnKkVd5/1pmoxInRjLa1de/Pk762NjVn/i9af2Rw8rbJFVGrRcQ24xlTGGFcTlQnnp0vzarn9y6cI5GcQLzbkf3P6R4ZlSJQSKwoK59+3txpJ7PDkioiWdaP1kz/DzIpdQDA52OjOz8/4xv3R19d1vbt54Zr6NBhwORTB07HKYkmJjkYRHs0llgHh3sC2EQ6lzOgjt+nxzxWz376hMO15SKJBBd7dSqs40zr9/6+E0TV9YbWWGldBJCPsXr9w42N2+uroQTobNC0uhbFvWaDpVXvFmp7//xI3n1hYqb3/4ESUzk3Bgz7pH/XZ5oRpOYb6A2tMoii2ZJjBXngZxdSbZ3ukaBfdmc/b7uw9CG48fHv3qL/7yP/3Nf3v51ZfeuPbsb/3Lt774yU9sb/VXL75i4mqQnkAHwAl/+VMvUp7bf3/jb/6Vr928/uq3j0XYtX/ml77+rW/9S5LNfe61n9s9uO/MuCeaOXNPsGQadzfrKxcbz8wd7x8gio1EXjl/deWJm+//6Ydz1auLK6ul8tX3bv2QOGE82rsx+4lhQK7OnB9EIS6u2534wlOvvPtOkCOV2afPvf/B99bO1+6+/5iB2bX5p5pNI4p2jcy6vrJUccju4fF4P8PQhiDOmwDn1Dt3Hz57rdntDRcbT88VFsejjZWy0z3eO1x/7+pSNU32q/NLx4d+P+aOVzt3ruXkJun4zkzl6ea5Z/aHj4+nD7VdCqPs0uXnTnaDQp2eHgf1WZPlCtv7Hz/VetUEk4l/QkDuwkx1EpxCzS5VvzAS2yjHzMpsoOE4Sgxn7cJMM0vjp722OleXArleqdcP0gSMxhHQEJOEaj0dT+JMEzsn4rieo4PDLTaZTxWAWQYBDPu9slcAUEZJRFzXTVUCNbKYBQ1qcEANg1qmEWCVHRkUeI6MwnYcjhl1sLZ5xHK1Fo8lJCZQECjpOaU0EJZlpmmCAVNceK49DaeO5SJqxaFpO4UkSkzWFGDiR9uOU40il0XcyZ8Pu5vInXTsalVbJEtSo+K98Svzn5qdLqNRrj+UDEckb1ey9CRjHKfElC7UVFOcac2hNLycGshGqdT1RwqYNqmdHG9G07DgFWMjALikkN476GWHnZniLIRRqTBj5WfX97YHE+nlm5eeKmo7Pjhh335r44tf+uyHH/5W987j1y/eTMMqYsEMgF651OdkDPqry96V+apUAhIP45wUyXgwOxwbr16zKsyg0L7i369FmSi5h5PTqa4J5ESJJiR3huc2AJPKECGBMCiUrdHQNSwmQIISbRehUcgnfiBFlkgESRIPOyVvLhRG4Ms4CGIJ7RQ6jiOIopaJpSYQYUwg0lJriYDWCGmALRLHIQDQNAypVZYJrZVhMBylDGMIkdRaaKAFEELJhBv5nI6TYBoO4wwo6ClSLJQCCoBQDsFUKyUV1OBsLqHOlDi6YLs6zcIscSzLsXJ2o7Jk1u2UTQLBO0N9tLdbnTH9ZHx61G3Dx2mIDcLqtfzsLMcF7E8jCKHtz1kG6vK25Wg5DoCGkYhMCrk2uMw55jwmKDcD0qTTkA1EWRwioYWMZJT10rZRyLv+w/1iMfaj0mZ2JKBj4rWUe+U8cT03jeyqDk1cG6YptMYKm4livpAn2SO7M8mVXtI8k+gOm2/q7mnLWGzVzp9sv9ueKkEaobBRWA0zv94wA3ObxKxWq520d1KBGIOGQdNh0u+MTzo9rFp7B3er8/JP/48fzDZuADKMkoFtmkJkQlPbdQItFBcAwEgIGxOtNQQaaoUBgloRSCjEkEAMIYYYYIwAEkoQABljDEGpAQJAIwSA5JxrITEliDCAgeDCJFQJaVAmhAAACKiF4ApoQhCAUCqhAWYGaQBT6ixTqZAqBSJDABEAMMDTgFhGmqYQQUSJADBTIMiypz91GRb7CptpDDCWrgkblRV/HOfBhQbW46QN81dgVlC9QepPyFxVMYVHuBLZEzEaeXGt3pKxT5eqcHj54bsnlEigBUZEAIAB0DBjAOSLePdk77XXPx0GuaWVlx7uvrX0BB1NphqQv/bX/yaCdP/g+Lh7slarU2YyWoYlv/Ph8WeffK2+1PzzD/+iH/RvLj3VCWAnNYfRA6L3Lt14qpqvP/zg+2at4M1wak0ESNyCiPpTrYCXE1zuzuerx+7ow527z73ykp5MLqxd2Nl4uPjExV4nMOTVufL5KBwDGfJMR0J5poHCzc1Dv7HmeWZnvv7Je/tv6uJRnl2OH56EeNQVYx4TkNEoOF0fbL706t/rnHzkFq7tBm/l+PhC7TP+5FEKThND6yztHB1BmW82Gr7vT4L0wfrhJz7/RjAZs5RaKS9i0lieeXy0dalUevSt9zAYdsPi/fXO9fOXt3c/olien6+9d/dhw7h46cL577154IiZtXp1MLhXIrk8rUdLbP3Nj1r5C5R1nJn6u/ePK0X3+mpj2z+0x1PYHl755EtDii/lF3/29a/9pz//gyeeKUDhFvOr16+8GA4OB4NBc2Vx+VIhP+esf7i7unLjq1/9eq83+v5bf/Q3/tbfePudR4PU+NpPvX4UbBIH2nQxCz0e9G0Wt574nMzCx3d/DIP40tyCYVjFWuH9j94fevL5578enfY277xVxNEPf/zw0597cih35la9NBs0C18+md6puddptqr0HxEyvb+xXirN/fC7h8tLrVyxR524MfeFZHqp3uq8+cPvrm88OmwPCcsLoR07rwXu3++t3ny2jNaqdVSbK+yNH+aLre2DbJTst+bLOGlVyoZQYSfev1qfOIR7pSvMzpBnS4cdH5zwxJ/xEI/HeftCd+tjw/OOoz6otFqGE45HraKbm4lOj32tW6bLDkYjiJ18+UQ1BNv13GLOEIpSI2aBS6iIIj+eEn4RYwggd3K0UukgnCYiJBTorMHc0iAKLTubDtfToN/tjBX28sN8OB5ZeScdBrmSKRSHSptmnkzigJsYEsCjVAJOTZdjMPTHCmgTM4GIFpiaJsVU8ihVse0tx+kwZ+KAhyohnpcfTE9zhs5wRnWZIC5VFEZEQ5SoidIFCcEo3LVdwDMXAs+xrCAYAJQWKqWdg7cXG61AlZIIA3XVN+bO/doviDcKvUhq1J+BLQGiAG1nvDHJCiqQYBKWUWKzBGMKGMkUjjiExThLC9vrB61L5ojoP7l7UkLe1aWuggggb6FV2B37UtmIutQgBcd672RXbk0dq7HyVPPClQJIp8Pe+JWXnh0NAydflhkEHNk5m1BiaNJTaV7PL85VlubypsiOj8f1ai5BOPLTckM+u+peuMLXM33VZka0x2afnQS/h3feivq/bN98DtXHCJK0G1kumVhOHiEec6OgT0aHaVYJfI5030I2TEjHF/E48GwqlGXADGshlfzO/v1F26u7bns6GidyRVo5k2hDRqmCCCIIgJYKaimh1lBrgExCLIoBBFBDpYlBoNCZ4IoSTLHSWmqlMARAAwiJJv3ptAKxEtzOu+Ohz6iltY604DrTiplaIaGgRjEXMksFlZorwG3M4ERDjUxSLRSXypXVK8QepVOTtycHRw8SM1t+6sWj3e2CWTBn9EnvUdluRoE9HWWEjXsTjtH8NN+ZKSwPxOn08PjG8ieP97sETZv1WggSmJ8Qu26ZMFbMhOdMfGIU8pVBPbZVGtF8tz2NDl0ZlSy73TG2yOmY2YcQgYOD+RmRVVtT5VSh2XYiagMZTuzMJj4wk0HZmYTDLT1kU9ShVnbu/AWQmylLaUTWQuNi8mztne/9eZjIaalXLDh9v7u2tJb3yq45nEwzDajt1JIsBXpYyhfDaQbYIO9ZCRd/9Nt7B4fy1U/Rux/uG6SIqeIEE0zOTjWpz4SeSEvFCINAASUk0CamCGAtFdBaCXnmtEcaAAAJJgwTyTMENcZYAcCVUkohpCmlCGKtoQYCQqiVOquGAQCEYakR0hJjqLUSMkOQEIhSpQCEEGFCCNEEAKSA1EJmSiiBMy1NZiFK0iieiIyaXn3tqynz/VOv6a0F9seBc/h4T10s3uzz9xLu0LRSznYHp4cwq1gzZKRI4oyFsPHIysGFXhiOu3uuofP1uphbs+xbURxpoIiSUkEBodb84vLaR3vbzz73umV61Tm/m/WxUb105bXt3bsvv/raxStP3v7wLmIGM5xydaY/nD517dz6x6NGfSExfGhVLi89Qy5a7eOdTu/W2vmfP7iz97nP/a37O9sPH7599cKVibMSn45FXVabhdO4h7jZ7gwK5dkBD+bzLBwPqrZ7srVx84mLnf0jxzSwEI/ufP/aWvlk887a1csPbn9A7DgadGEhDzswDdnyU3Prd98bbdyJeLdqu4NTfjcd5XPMhjN8QtZ3NykbvPDsWlVzUbhGTSonurxkarw/8dtPn7/0/gfvTodjrnm5uPSD77/1wiuXAM4KBRb4g1K5cPDwKE/U2upczWTD435/cTmxCeCO3xdlOnuwcTxzsRzFvfDwoFmbufTEEyiTXqO1/Oza9777g2KjdXC49+wLz/2L//CtQr7SOX24fO7SH//Zj5587gYl5GTr8cKlehL751YWz129fOejh59541Ptw4OSZTculMU0+PrXXjvpRkfHk+XFy4VCZb64eDrZ9cHpz/3alzIoP/74nb/5S58LstPNaOenV36eD1hkGuXKYoE1Ezoa6F7twvkmrDzeOqSBfObmTUxBGMb7Dx9fLixcuUoHg85O/xEv8zd/8P6Lr34x6PbIJIPOfAyva7Xn4dgpt967/TvR8A60FvGREetTzwwX5s75sSw3z7NC4dHhR1v7d289uAuUY9YaEQ+xFkrh05PJpXPmylOs1Cw5pnG6f9hqFPsHe2H3Ub4472qYjRJmT3qTvq57uoibradieOQYq+kIB90TQ4S50kxCQMT6cjhsFfLRcK+euwhxGJ9MikXlecvZoZ0HkJlmd7gxP7tkspVUjsZbitZF7CQgAETqxYVa5/QQOLo40zC4llrxDBPGHLthmmYmUqVUhRSnIHOaZNLZmWG2ZjPF3OJqpdbt3338sJNwnHNrtsYuUOOjYTjFxAQIYUoR8SORSGVhalNrwAehHCsgMwlBaubrNSeY6GTATKnME0wXwgihHFN0GKY9gKWUdiSTnAm1gACiMI5yRS9KueDSzB8aWk9DbhLGWJxxATGb+rGGx5XFpV5iWnqyFiW6dq7+a3+r/9UB7+9ZlkFVPIjGxHHHmJ509yzXmgzgZK+9VppZnGsCqDAVFgixjhUgcSybjVlK1aOHDzzPe/7KzXTwiJXnp6dhggcym5iOjV2rUIKzgIFB4l9cu7xgX8qDUZxmyFZZP0smh92pmMB4RHGFaiNUFpwmvFY2BgeRVCnKMhHrcjEXkkGUZPnyLM7TtYpKxkOvVmInx24URsO7rP29/QPYyxUbnjFLnN4oPBWJwxGZSJ71as3ZwSjaOJx4VcsQSE+ymmmIGL91+8ELL1/LMv/wYBSd7D1/bflb3143r1Xr9Vks5Qdvv+9ha/58xS45feVjaiEINJAQYwgBgloLBBQMk9BgTAMdJzFQipk2xCAJEppzsEW14ImQEAECCZCaUJYHWMrMLXr9UZwz3CjoO5ViOe+Oh6nGGiiIiKkViiEV1DKKeaaBZlZGsIVLhUq1MVt3q07qRKlIqWFwkOar8vWXX3accsks40Rs9T9Saet0ahBDRZ0BG03rM+4k+V6BnZuCE5l65eaT2/46LZYd+/qIhEbmA95IUp/RKmfKqwVoXDVYbNjN8lq9P+jmM/t4x+x20vlz59a//88vr9046Ke4VI5g2JuesLHnuLSb7RdkGQiXal+T7VESa8NsLt7sBn64qxrGQZqBcq1i6CyiyT7efvm6k1b9Wz9OQcAOR/qkSCHNlYZZTgSXLr3x+PAex3DvtMMwW5itcjVgMsyX637AhTC6462F5eVeW7aqT2alvaBvMtsKs2QSRkmaKgUyqQxCBYAaAQqRhghoILXSQAMFFdAIQIAx+ktQJUJIKQWlwoRAjAXPpFaEUayVBkpLhQBghJ4FHoSSGgIFNNWAIAgRRghJKRAAECgt+JQLACXB2tCEIAgVUEJJwZnncS2RwJM4QCnlGgqAL128hlSVTgelItyXvRz3co9nlfTeZ/1KnM8WR3wARddn2u1aGucfkrgS9g3kgRMKs3HKRM+yDbuxuteZzFXn1hbW7j88pRgBjQBkhBJMDD/LGgvNm8/esJxSErjdk/Zcq3nn8M16a2lmYTWVcjAalquVQrXa649WL16LOj1D9L2iCl03Yfkc4yvLFxPl/rVLX90YdGrny4zLPIw2gsfNS1+lw76qkNjI9ttHPIrHR3tra7kC0hkwto+PbUx5b1jKu/uDbqy5TsFw58REufH4sWma8UQqTnon3YjDxGIbnXZtaeXBrX01Xg39DqJm/uml7x/cKcRHsNjYOAhM6i7W1/qjHVJsTotMJ629w28FoeVntBfcHROzd/v+9sN1vx2sXPW64X3sZqXy3HtvP6ras+fnqudbF37z7rq3suo77M2P3r10/ooOKOLctBvjg95oMsxXvO5er1jL1ZdLC/litcQ/fvve5155Y4rGRU+pEV2otNJg7EAAUgsSxzLPu2wzjdaDYNGKc3FvMImnN1985fGHH600Zz5+eKuYs4s4YfTpxRcMN6/at3fXrq2N/cdzlSIA41CAJ889MQ9z9zZuXX/yQqdtDre3r7f66tJge2vwuTc+F0XRYLyp0fDGcrNsLj7eXpeWsfKJ19vJoH/ysGSR+UuzIjb2j0bD7mg2X377re/cXFsO/N7Ub5evLE0mp/bslks+Gw8/2RbrTM1X7cr+5H6EkuHo4NrF6wTac6VVJ833H52YwVQD3Jpf6naDWHLHtLSIgtPJcqX6xZufXCrxEhsG4Qkl9USag6kmzkzAjP4QGwa13PLkuFspOivnSpD318jswekQOmWz1Bx2DyZRAAjl2pkif3ahxcZV3z9VKSOlaU8XkyTBU4qKWxLEhbkXTgOr7A6iJIZ0pQS24jgomxWWAMAzC8ByvrwzGMgcsSzH8RwhFJCCa00MUyl12jmxC55FMDaapca5yYkveBIJOeXJyrULjuHRzNp78CBHoJM3uTJI03Q7cUQgqFA70oKEmYlVzXD70FHhsWFANw+iqD0ad5TEUHuCO9BkZs6cSp2lTrmQT4O2kAmwnEFwnDMaIqFOgXOZCeEqwNPY04JQpKTiIqMUFxGOzWYW9ZwCrQA8VHruxHmi9t/9dPRZsLBR7FkuBRlUZcMV9w9Pjjt4bqZlhnx7o9Peai8+Vc1XqK+jMEuIthlw7BiSXD+iyemRu2Bd+OSnYd5RW9n/j6f/fNo1uQ87v05XTnfOTw4nxzmTMTPAIJKIBEiKNLmUKKpkyXSpnPRibZfLtdJ6t1ZOq5K31ipytaIkiktRhJgAEhkDTDznzMnxyeHO8cqpg1+M7f4X+lX/uvv7aacYYQT8Wc/UQLOzXW3qjM86HTOj+KU2V+z8eJFYkjQfh9Bqty8oqfbw+fdnX/rWb2681Cw43vGY9VIlGAQ1w5iFEc7rMkAA5FvrzmzqarlSZtIB763Ath36R8Jatwo4v9cdf2uy8YtrV2ypNJvPjMd9IdWAcKdiJhQRW3b8o588PvPyy2YdTE56zz/cf+vyZU8c620zL8RZOH3Y360B7ItcW1pmUfjukydUAj4Vr5y5rNoFTxGRgswMc8GhAAwCQKAAkAsIAECYZJxJEMiy/AlUKQDQNCUPI4lIkAPAkYQh4CJNGOccMJxAESeRiZU8A9hxYpbzJKGApoxhBhFUGSICEKFpSq3NlLTSKclKQ0a2TGIEhQwVFo2LljxczFwpeOXttzRasvNaCEesMDJ6lz2w6zRxjJPT0UKTYZTpeRyo0TAvF7Gc60XsZkVg1JSasojmUpzESRdwOwp7xbVVllq6JMcpMQrjaTpqrVe0yNa4tHZGHY4XK7Wv2splT3yoylICyjl24MJKE8EbpSSIAM8g1FLhzEOhSKXt5kp8/+5Q3aczN5YuJua4xPaxXA+LZTXN35Supm/jj+/fLspwMR/HUzcUQqkvJflRp1188M4uJoXVzer+zgeOVs38qrGs7x7sV6prjRV28vy04OBiAbC4WSmJar02nM8SOlBVnVKaZTSljMokZylHWJMIZCJNMwKgLKkMcAEhQYgJgBggkoQQiqJIlzFB5JMiBwNCllWe0SCJNcXmAMiSlOc5wjjPc0QwZ4xmCSEEfjITAVCRJAQgQmiZOBlLExYzyhlmAhMuIyaRKAw4grKhRV7GIVJUPYzSUrVhqp6c1DkLS52xRIzJWO1UDcWellFlnilTanOzI8syOxjjEWRAt+3GyfhexSjRODD4xCdmPwMsrnArKrab4WNOIAccYMRVGWGNFOqlz731jbOXtjgMPvjgZq21ksYzhdXHc68SxE/3jg5PjiuVCpG1qRevrW7S2WGqVIiQN81SdnTc3tjETbOjVs6ev7z4q59omnb3YD492d9eL0VzUinV3GiSDJMiqkeTBRBsNBvkcinIkCWTw6mnyMCLfZJQMXJz0xrwIAzC8dGRVS71wncR9n2WbF25uHP/O0vF5v6TXqItWJG0l6sdxXz/1ndZ8axT2Ng/dRvNZcRnkdcvVAqMsd7JQ8kfOnIra00ata3vfe+J7w+X1s6XV1aPnn6gGeung0DWSj9//3vD7uDrX/7VtbXi9x8/gLJQfQriXLPIKBRJxAaDgSkFpqw+RvEig79Sv3D96gvvTg8fHQczdsSQX6iW//q7NyvVcx/def/v/4Nv/tn33t+oVXuT3e3LF3ruzeV2/fjesN04tpfsOx/MmltnxtNJyTZ7RzuT2emVK688u727tlpc27r47OHz5Zbp88eNlt0qt9+/tVcx3XaHjweuQ/SKQtPwuLG6kfHaz975H37jt//3+71jXfajyWRzaUkj5sniCVTtlm4gHqEk6zQvpZkfZF4mLTqaWqtd3Du9+/KntsdemLtLhtwK/MNM2qz72xO6KDSsBtOpYx+R91bks+P9YH1dqhY0f35YWl3WdFtRVkKB17DtDm5Fir8YTIFswpRdW1t+7cp2oTUuOVfjqdWuX7T0i+9//G1CiGM3JsM+HYvNS87+zo7N5aKupTOtWK+O2STTDVllYfwc5XnZvDGLZ6Pg/RdX3+SxmETP0wU0VEtVtr3JUcuEoWVhci5Gu3k+OX/u9YRyVYEz77FMHO6UTkZR2S5ziWC76Ea8UGxZFstzlqW5SKmJZUmSkjSeTyaB4tUa53ceTJaWVk7Tg6A1GklH0+m8WFu/fuNcHMQHT44vv3SlLqXTJ92dm6dkkAMumWmaUgJjACqqmrDUR8yNPV+m9azgJKopqRWz2U12SEyXLE2Xk9yfKMSAEsuCaUW1Il6WcgMQgRGKcmqKJc8dlUq5LKXTQPfzkWkbklSazyJV8gBkMqvWrMJMoJSJ+Vw3/3ffOPf14u3jEWjkMNZcN9FUafDkdPYYXHijMLXnR/Mo4OrFF8+febHtkijPCAwUzSRUniYS0h2tSLClaQgIRxMwZOslx9UHYoukw5V2QVlpsCyOUqkE6LwsF7UoCLKk1bDG06EuyRfBXC/FMn/99d999ZUXNKsZ3znEP/jxoZWLNdvpE3d1tZ4zGlG30aw+fjLQjYYPpAlblA+KvAxiLMsFsT+5IfPXD84Rx0YwXRi49J/27lqrDcoixWz8+ffee3tl80DzGmdMTZ0ePFycDlzFLkqSYYpmm8Pdj8KRjyCrbl/ZLLeti9J4P1DTKNWQ/sKnPlO2ZUURXAA9sLDqS5KCAKEZZSklAGNMIAIMiU9iaAyCnFGOuIIQzVJCHAiVXKJhzlSZsDiTMFAJOWJZVZVxTDiSc04wk2TdGWbUFEDGcpAnPo4ZzmVFP7vdtg1JMdc2G07TgVjjpz6dBrQ/7gfT4cbmejwT26Xz2YjrJWq2cimp9UewtVJtXl8tKHzcHd649DkQIymO9ke793b8Um9sNYKhBBTZvtQ4jWdHgFqxpflTLUBBsaBmXR3q0Ygc63pHyytrBoUkcOGitGQDKukYiKo2ybpvLb0QR6m/8GLf9azQIhiMxRS74eRee3WVJI38dLeqttLaCDZGYrHenbuy9n2Fap76dvHsRFJhvfBiRc6WGpXN7a98cPuDStUJg+z0dPLu7vAXW03bVjZXS+Pp/Hh3v1w8P5tN9GIeeLRas7noBQsu4KmsLhFSm/uuVcw0p6hEVCRx0bK7w5GkkJxlJEcAECIg4wwDKEEFISw41CHBCCEgBBCYcM5SShkUWS6A4ETCsgIZhphQRjlwCuU4zjmnOaUip5pqsZSZshFFkU0QEAAJjIlEIUuylAEOoZjSiYAAKpgIQpiQARcAxzlFigIgpbEoK4AL6GZ+CKJS4wY3iEfGKoAkK2RRVr2AgnReQasFmS6TumeMOJakNPeKs2L7OkpDyYwSWmTcEqIym5ZfWep4fNRv9WzJZkyTgSEJP0BcsU0ZBlZRf/3Tr3/tG59+9PhwPpZWOut+6D148mhEXTUb7O5NgCTZTlIwK/3e6PWXLkXZvbGfqsQpFppHXbdS1lVDCnsnl5c2FMZrq3LsZfn8qNFuTBaz82swJQS6NJD84/4xoH1SicehtgbKi9ndaebaBkeyMnbjhOaj+LSlLSUDT9FGGY0h03RqzBeDtVLx9NauDM7v9kZQoSSRWyVz63zj1u33Jb70euHiv333O299+lXP82KvuJgmly+eCefx8eGtL37zm/efvdeqrDx/dECH2ZsvXhKa+mffexrhAAlEANXs1cNH3S986nW9OPzendFkwVdW39iqFHb2b+ekeDS5v1mtIAk5FRsLZ8n1tpeLeFm+1R0OTgPDAjfvPv5bv/X3fvbwdkFm4+OdG5/azLNF2yHCt6orb6WCm8XVJJnIWiHmdn9hjxM3GbNaM4sme/dvfv/FT719/9ZRqXipvi6Pu7eFyFSthXn1+rlP3bt3k4GYFSvxXA2jcKXeOpz085a0bMAf/+TBL3zxbxl4AefDeZYubTbtcmfWz2qa/SB+urFUDUeHRb1BQOPEz+qtzmgUa+lDaKqb19aOdhGJ+9NoZ9Y/uVJekZzeYDE5f+1TDEUng+MIgeXapYOjB80LmpoYcBqfXVkpNirDYEJkealdJPv0yvbld+78jarFMjaLhbU4OZXx6MLyi6ZeHQo3MNOdwR+dJItWc2kIThIVnl0/656GSMHUXqjlYrvcOh3tVFjRJLmkyb1BpiggSO/NvUwlG7vz3uL01HK8tdarnKLZ/GOstZ55o5rKIEI5KFvaKktnFlbzsUp8oujO86Nn1nIVqWo6882iFcZRB5jDcIYwy5Miz6CpIYIxBylDle3Oud7RTqUgy9lMdVk8gfq84JBW5Y1zcjHRvIqCVsfzHmUeNECQHxHOEyiIqUkpyyRCJEYVrALBZczKmYXlKCTIiPJZOhgiWZJzzlLMVglu5zBVNChRFMUzZMyhSBRZ54BIUixrkprTOEIBVSh0V5prs7mvytDUkASJEJKgPFdHWKmk/XW+9Zm3/v7Ko12wscnle6b3cFJiQ6vG/vI7967+2pvF1drwadQJ6udelpZLlqWIaRQwDm3b1E0wSxKGCqPJrFgw8hAvJrFQSZzOV9YbZt7I6axYdjSMs2ihyHoIAENxosY+KBTPKx99PL17u3f1/NlCFkua+sKm37DKVQcHCfm93/t3/WF0abn49OOdt1/87LiHi8VqrV09OAqPR/03vtC+e+/J6Mno4tYKzR1dWIqsHRqActmy5CT3JJmFaVRUC25PmizIcdJvVGtLFxRuG+mYzQfIn8qNWnu5glt1OE7V3EvzSVi3ta31VYxolM3MFX3dT1qNkq6bJVtNghlBAmKJY4qhwnJGhYACfJLNBwAwJhhj4JO2MIJCCM45B0AIEbMEZEDCyAJEgyolIBUsZWzZsMNg4edU1hDFnOTR9OSgo8knHMURrUnWWms5Z2Bpa92ul+fB7NOvn0vjIM2i2E0Onh4woOzs9RTZ9idJvUmTZF+zQu5b6aFPwTynasU0ZalEoHLl8gZVqYCRodTCvbneGE/nw9l0vGEtmbJx6LqWXZJyNa76QfykXmkhLHnJR8E0LxSKuO6bvK5LtfE0U03HF24usvJaazFPtyHN8mQaUbtS9RQAYmvmpvX2dD6SAW+LUjB3H5j2mpdPF+PqUvGXgHjg0ObRvtNLk0R89EbpQuLqqMRZJl27eHUezd967TO2bf7xH/9pngbuAty+//H6xpKqKkkUBG5SLTZKTi2jabe/Vy41PI9JqKaqWhyKKOxSntrmZhzyyXher9dTSnvDQZ5lEIJMgkhAKIAEIYAIEQQEBAJghIUQlHH4CdCABYYEEQQY4xBygLGkSkjCECHIIYcszS3DwBBwTAFlMoKCUQxRBnKEEKd5HkdQAFmWJUwEEyaUM8GyDMgyzgVNIcwFpzISjEIMMCIUYEAkjJAN8mLR0qCa4wJkXBVGxqgGCEZMlqxFOAtZqJfLMaUxZp2N7el4VLUKk8N0q3PVW/Ry/UR7qXhEUiTVzIQIkhltOzWAoEBO9SVc6k2mX/mf/cMvf/nX3CDcOnf21oe3jk8OVMVoVjoAKrrS0oQ+6PY0wZBKuGbNZwrJa16WcSOYx/dKjl1aebk/55NF98yL6767p8gNLpLmihrOMl2uKwAdn/RqujkPjmPPtGgtXYSKXF24B5QGBmkUi/rRsz83wVKukqHcNwqr/vT59DDKMpkWesSe5QGhcjFMj1bPgHc+evalt64f7H6oG9XBMe0+jc6stz7Ye5pk43ancvfP39d1++yFC+PJ6aAvTPNypdzGea17vH86/chepUbr2g9+eCeM4+tnr/SP4frWy0eHJ2fO2tdfW7l1eyq81rnW03bbffbuT86uvfknP/no8uUlFAXUM8kKK2hjbGoHJ+5svG9Ud4yGcbIz1UurVS+K5PYDkL1wVltrlB8ePIvChy+99la/i+xSLWP9n/z0/trSy+OpF6b+3t7J1z974aff+xOnVhNGfXw6Tnn37FvfePz+j4tVU3OsCCWFauv50V6YzhotZTx7bJVWdCgDjI57oxuvvPr06fOtM2eWNpc+vPknltaytGJnuXp89NzQl58dPzpTr6cLV5KqYR4Ppn9VKLT8gTw7emqdO6vMgD7KMIUJp0Xfso1zk+WyyvKqk48GT3oHXqvTMSpkb3g/khYs1LvBA8uOi/KK6YvtUhVg3h9GuSGMaasYlqnsSlhh4wef/vxa+/yZhVBDtg9tK1jURkcjBbrecN4qXRDe/kTLfTi1MQLBRaPUOjo9koQ5VMZFa3M6QCRcRzCNQLA3OA3w5HqyjuRYk1/2AcuzmGWdLL2nxLaUYhZa5epyQSr73lE/mi9Gjl3U7wWeCparSbkAyGph7WR/2thq7sd322mL0TxhIccuATWUtQniZnEQRgniGhBaf7YfJ0PJ0CBQ2qvVtbV6MKnKJkTy/gRgCNb68s5zuIc0CRPACWc4z1TGZC5UgiEUMKNjnOScGoikRQVripPBFHBTM/M00RWgKILTTJVMW1lW4bqmyCwHqqSXCnaSuQJnuuEoUkORvczDFl72F3MZewQJAhSVKF5MOUqBeOnGf/6VQzFTKmC+Mx/++d0Sr1jFyf/wX/3DNqs7yzbMkzdb7eUVq91ihhwnXqBLhipJSeb7UcKhnGXTgl3qdtmj3RM3jcYLr9tbPN/p84RoyPRnnuenUSSFPuAUAFEkuFrf0D54cvT/+JcPe7HyZ3/z10/vjW3WqEqyzNJgmqchyILa5XOvqki+//4DW9JVZMdJkHB6OkqIWU8Bf/B0b6dnNpSmA9UIpD4fK1XtkLpdMHk2Hs9i2Z2jilHUGDMgWlsqffqz2+WlpmaotYq+vGRev9x+4UprbbWeAVCsGLWqdvV866WL9aJMCQ9UDUGZlCSrqhccooazBDMlCQCnMuMqAFh8otsABADIOcsYpYIKCMT/n8T6/y1CiGHrEkYqACoFKMlFLgQECRDDYMawZJllkWW2nGE2JRIfeZkGZFsxK61WfW25c2adyHIym7918aomGxkMIpIBUl+qvF5R169dvnLx+ubqNqOMzN3JZKDuPY+fPN1//52wf6L2+QnQF1QLJduyRAt5jXCuteROsfHC6rlPnX/5ei+674Hbk+jeLNyd+Pef79ycT0eYd4KJc3BwsLf7eNRN+wfxUPBeluNihUI5CAIVJSA5NUS/oNKCxhuVsGBPBT11SkOn6A1ORc4jCGZpvy5oJNnieL5nlINGtdUpvOTDUmXzosQLMJ5/cOuv/PQERD4APU3z2kv69Rc2iiVy/kL90uUaJsPbjx6GaQoxsXWz5DgSJoupNxuHjfI6z3DgxQQiCOFoOvO9xHGqslx6+uxQM+z1rc3T3qmuS1AAVSY+FBEQkWAp45QzyhhlWcpSjDH6/24XQABDgSDEElIIVCGXslwAKGWUR3HKcpr4sYKJDDFknAAIuNBVjQABeAZkAmWEJSxJkqIomqJoRFEBcSXuChbyPAccC6BRaDNcgQqklFMqIIgzGOYsShNMdEUlCU05ljNJSTUtVpQYyjGEGaJI0nHFdFMZKUasSYIYq61STuPW2Q52+21JKS+dk+obmgJ1FCYiCSMJ+ZkTZnpGkOP4FjCKpesXX556XFLKw/EsSDwJ85WlVr1UK+qlllaWVOLiMFfYtPtcuPuQh1SrWFhbLb9gi8s8MJLgyJvdVXgcdvH9e0/m/i6WCOXGZHFIADt5OuX+GNLJbDdR4mUR+vHkQ52N3K6reMX1i2jv6FZ36nV9nsyg1oVtXgxCFIVpezVLgwh6a41yczg4unjm84d7+mu/cDEsgoWk7j+dGVLz+cItvbS+69/7xrd+kTLY7Yal0uqznedGgXjpcH279nz/50nUjV2fZma5c+7O/tNZcrC8gixQW1olqpr484erzcZ81ln4Qa00KdIthS3X2pu98RMIjusF9vTJe2evVpMcXTr7qd3dxUkvDBdw7/lU1Rs0pm+fuRTX7Xc+/PjL597OqeFi63BnvLx8OUiadrWeZZlGlhBrv/X2Z57tPXn/w+e//OlXb98Lun4+6h7rBB8GYf3sxY9v/vPDRx+XjKXJQIdKdRLuLtLbxXI26Y9LRtmN06pVvHP/7tp6yx8fAC0olujg2a0mOVODhRfWi/7Tbo2V4u6pTsE0eO7Oh/E49k88KdSUrOb7uLrU1gKcgGSg5orSbMGKWMnIlWiDzHNBg8Fq/zAyyhkwm8+P6GLo0qP04e7Pp0GYIsWDQSxDLrfmQWzWp4508tx9hzXzcqXqucH1z79m1NaXyZVmQQMhKuutQb8/9+bPdk+Ox6NxfqprbWQpzKpAe1l2eExHixjmaivwwNjtn8ZPumK3y2ePT0+ZYIC6s/Beq/JqnPVPDhc6WZcwW/QrBbsoJNOp1KGSJyyeTjN3wSuNcqmpGWNTdfRYimQIh72usmyOw0gdFiNplGHKpRrXliIrm1lPFqaX6mcdddMpmMRMRwtX4NogSKCFkaM8Z0OkuK7hDVWpYnQGo8V3791X4CZCCEgy9qKFKmtxFBWtAmOAC5QYuoC5S/FMLJQ00XJDV9kaKpF8ueSUBU/yhOkyxtKIgxNDRyBxZFCgIaYpkYBJgJYkkVWSCtJrQbKjOk8svSjl2xLUVT1DkrDt8yCsqufb2hfSyYxAKxw8Qo1qCYB77sen7z/E42q1Y9ASmQz0JC1wN8oG4yBKcc4gxKmqCRkjlqKlgkAM9CceKhUDBf/4o/snh2HT7HA5Hk8m/fF0v396MjmIk1MJJQhgEyEVwz/6V4OLNzbWLqIP3nt3/043G/ZnoyyjPMeRl4ClVef6lc7Tjz+qGZXpKFQ1rBsYIq7pimN0bv98yIPmW29eFAWPOMKOpbooPui690ZxTS49DoYPnnd5pho23tokb1wqXlm1bCv3IiAYqDlStZxWyrEiEpGynKrCpQXVIoTEPHfTQNUMIjThYZYnmiwgSGWJq6pKZDnJqWaonAooEMYYS0R8Mm0GAksEAAQh5gABgBAkEGABMZZkAplgKROUApELLhCWVE1RFLNUyATERDM0XWQeguGP3/khhcBWYKWslxom1TKPL7DBGsulStXo+vc5a211vmUYK52tzuuf+8wbb7556crS1sUt2WHdftKfDPruYQ6S7WuF9bOtpbUvmvK6JGmTxQFPdvPs3nD2l1nyN5ATM7eywF7o9edJdni8yBesP9uXoCrDTcEJ5T7My4gWQjebHtfScYKjKJgczSa9JBKLkGVyFir9hC84EJRhmulFc1MwGgSnLM0jn4SeiZVSntXd8LnnP8mDSslex1aFOVektcbGy+Ucih/+fPiXP3nn3t7fxHFcLFfr9TVVqWpq46UXP/+Zt7566cKLSY4ePz1IE5FlVFMkloVx5BWK9nze7fe79dpy0VlOIry5cTahfg7c5/uHY9ctNmof3blJgShXq06hECc8hyJDIgM8B/yTeCzGEGPIeMYEhVAQgjCBAHDAKOcUQwgA4pwDhACCCApDU3SVSJLEGMvzPM8Z5xxCKKAgBGMOeM4F4zKRMMZZSpM0ZwCWgOog2SIKyDkTImBZCOgsjw1NxRhjmQCsc4RSmttOzbQNACWALaRUmOxIdpXJBayUIFaLJZOSWIKKyqBlORDIigSETkIvi0ooW9IyCOPJwtYkWfAmLJRYU8YmsW3FspYqVRqNr7+ynTmgUC7FNDvu9eq1ZhwnBMNa1VlfaTGpFPpz4Hs4kQeTRGhyqWqRGFy+0Dk+/piQABMw6M6yABKq7j96zHNRq9QWwejo5Nibkcn4kGU7y+XOztEd0/JzcvOkf6jJUkBvT8KnhuWdPjpezG9nSmxskgjEDakdnP6wVT5tNOTZeGFrlmPqtbKRg7s5+Xg6DSZ7nO8EpaCwvLz8ZO/bv/bm2YvG6lJro7m8/Rff/ZuL169LquKGUWu1M3SPkR1Lml4u1072hoKZoylfuHxj6bwcqzVHbTfO9YaPv/j2K8cnHyBjRsCKJsB00geq7gP0wzs3q+2lXs+FUlkpNV555ZWK3ep1B9dubPjuadmqe1OhQuP852/8+b/+s1pDP5SeHc+e3n/yN761O+L9h0c/Phk+ZcIdTh/+g9/9zd290WzBX3jpaqX+2sc/fWDqtJ8mD/qjsxc2nj06/v3/8EM/8xfhJKfB8e6uCUw1Ndx+mAa5ijcMqe7HC867Ehyk/klB4MxlKe9oNaQ4zt4e5NCMaUixBvRSEtoKqSfJYRw9WW6sG1pJd1RBKkQS2Kk1jUpTD0mZOtK6OT9z6JumNvb4eyGAsnEhSPaT+KGUa4shu1zdqoViJbE7YgukpZCGssyNSNGii0uKXRJG6EmXL65cqFrrikzwkzQOZF493JnN53vdwYMsk4lcZsTP6WSJsMvOuXbxtXb9ChvH5Vz1JiNDNeZjnMTNhLV6bnw8OQUAklSLZaMf7vLcbNmd7v7N4cm80XphnMVRmR7R0xkejZIxUhsbq69iXpkPc93ZmR1/GIXhMcVu0cjRIp/1mqUOjOsEBBI54Pko9xQWOgaR68UspolmFicTvLr8ql1slKqmrpdYvKzt2Y+6H86P9hd3/e8+eP+9ve9bukDX20Rw5AZxwal4rl9yaoGfNsvV0J8KxCQIFEmSMAY0p3HKUY6ESrQJ4yaBSsGo+UGcJZEqw9kkLdmy53mqqmqSHsXYNgo5jxburqboJWfdnyXNdnkw6EFiQKCmeaTJKF9stv/RUm7KZYVEEV3qNEJ5Fu/s/Px9//P/8J9d+d1taIKsm7ljWlqhB549fnK80VQKcmppTBYcMCQBmWaU5bTTMQehf3Lk2kbnzMaSbIKTqXzzzujahUsH/dPxwehL1xuqQwAkITsK4qUbL70Amv7B04FuiuHkSaX0qRnlCCqKhmACSgXzT/7Dnyp69WQe1pcbSA4YIHlCiw5IQpZC9aufe8GuAzb1iFwKXUxscPv5M9ZuZxb6g+/+1YvZ8pVf7sBSZhWkVmYsRhRVrUh4pqxKwAjjjGCiYghBDiTKIpznLAccUoYQ4RwgQVjO7JK98KKFNy/YxdANbNuO4xBSigAXEAKEP2l/Y4wRQhjjLM8/cVgBEwAjIQQXXEAI81wAyCWcQwIhplmOGUOUkzTXZcVPkpS7spKePn06H0xrahUWVKKSaW8QTqdWqbyQ5RjR/gO/3Tq32bbD4OnqyppPsZBTW+bJqeZ6NEijzpY6nvQa1ZUXX/wiR8g262rggghImhaLxcPj+4NgsOAQ+oDg/9gqnctwcjI8iuO4wIyf7c5f/cwZ23wxy+KBe9M0M92ucuhkvCsr8OikP5woCBMhlEKxnVPSD3xZlV2lwUTPcEA8P0zBQuOrVePC494PI6+6denKgPYss6rhmZhBpebF4GRMgloTcJgR83x5rQg/cncf7/iIyby+euYCUXRFkhxoM6B1iPl078Qwj/YO+oakOIYpQX50tNtpr3m+j3lna8OI6Wzv+MHW+ZXDg11DL3Ua125+/OMrV69GaXRw0q/WKtNFELqxLJsA5QhgDDAQQkCMCZERRAJEYQAhlBCGCEOIABSUC8yhTDBBADBAEKeMCpADIXGecwgywYgsCcoEFFESIwlLqkJS9gk0+AnJ8glDJDCUqYACqooSBIEqy4wxIstpHEFIAOdQ5AQpgGQ8Y7XGplMqZ5NjRDRGVAo9TTdFThVZYJBGuVywJZ4KHUC9XBn3pos4lIsVTWRBUhn4gaIzrCI3RHIui3Q8l3Co5MBAlmwUC6Yq9KsbW3XV5DjKafD222/vPX3uzwKJKBDlAkUTd8cL+opGCQSWrxTssmNjkJ087Y244w2jkAinXTp3sNutV3NgTAy57rlRzqjvBkXLEIk7HR2akrmICAlaQR4QM6V4Gsf1Vu0VN/KlWa8otXGimC46TfpRUdRWVtVn7SQastTRm8VCST3am1vS5f4hk+WsRRypob//9PlFxzw9PLryq6/99Nat17cvPHran/rzV9+4OOh3L17fni7i7XOvLXwSoVvjPlRUCJUJFP6VMy/ce+fdv/vrX7h16+dpLp1f+rWDpx/U2xcBXcr5z0fd+asvLwdwf//02fntL9hWe9B79/LFLVxrsDB+cHynVSuXzMpML6x2lpaW13uJNBjvCOC98enXP/j4nULR9jyBxfpS8wuSynfuPROaxLJcUvF7N3/45tvnLl8rDSaPPv3lS4+eDmWDtJa2K+Vf+OH3/19MNNaufZZL7cmkd3a1MXt6aBrp1B2fOX95QW81tOWpJ7Wdl9yduV52Giqci7HTVib9BiOxXVkooriYhxwEiBhNVDg4fg4MsfnSZ2V19ejkoV4Y2rI6m9ZXAnchqftGCwbQiJ4Pk0Od60fhjGrx2gYc9SPYrcpx+5Tty9sQLMycGPM0J+lCMrI49styjWbmyFmcwqNZ5lWqDUMRYYraG5e6JAWxRFB2MNlbLFwJouUVa7lZI1yGbUO3S8VKPk4GedYC4YVa2RRjcvvB+1kyBMIzNG18OlWxw7hslaVybVuSyXwaYbKnWKrGS5n8OPelxVCSlXbM+crSUp4seoMPMDIpTcbotFS5XFAqNBzrphwsuFVtTvM5UIZZoqaeyeWZWloY+hLjiHs51hWIZKemtFtq5NW0SZnSMJjts9idMZ8RvBgHkE7Orp5bv/TpGR8SToWimlHOVduZukGz1GYcyKqueVOGJAsnZWEgS8HmqZgbJ8hN4rFiV+PAFWSiFxCLeMpi2fSTzCpVTCiEt/BVuaBJ+txzVQIRV3Sd0Ix7szngWCYkTlNN0yD2uFZUr6+HHvR7E3O5VtzMTiXVBZ+68Pm3a4UCLiQfdKNWxpcMJ7LF448G891Bs1ytKLKi8MwPWBIR2Q6FLiASATMTcKbmGBtOe1k/7nYHE6VQ15uryoHPvQTxnGhqIhFBaS1ELtdPj582dHAjHP33pQtvzTgQItalQjRPFRm0K0uvvmz548H1q1/ZulydLfoENxSkLzWBF4TLa0WAk8lcXVJXaMaonfUgNR0eEPbvbt7X0u1XXnjFsEiuiiRBo2kMGeCMIzmniWCZQiFRNSIBkKUhlxg3hBBCk/TYz3maLcLAKDqSQgYeeP78uFItRuNFNPfLpcwpWrEfOIbOOeecAsAhhAgBxnJKs09OxZyyT2bQnwCzECMFI4YAQ5ACCASnLOMMQsYFAXkaKJiWVXK62/v3v/8/YkwSkMsBjKmgWaYKaT72gu6kVK0IwVqNjelwWJQtVE6KdRIjNxhhhb+oq++0K1f3Dm+LtN2sXMhyT5E6aeal4WK10fbDEeTRSffp0WCgOfWi3kzD5sSUjk52Tp4dXbp+llSKkVU4mlCbfocQFALN84sy5CouY1I0dHMYHQ77YbnQYKmP2CEBbNCdnt2+OKvuYhDTQAReXnaWI9dncNBoopl+MAlnplrWyBqP6ivlr4bhzak3LDRXIOe2Ug+m+cuv1p4/vbwcn7v54E9uh1gvFZdLFdNyknyxvNq58/GpquHPf/atu7duP3j0bHOlIcsUAGoaEhSCITSbD096J+cvXto/2o+jrFWvTCb7V65cMEzl4aNnREJBGDfrnZP4VDfUJM4QQhzjJGc5zTPGdIgJEEIAggCHgHEuIJcgwgQBAFKeIoQIRpBRxKkAIMsSxnNJlbIsJwRBggmUKMsEEwBxkQlFUwEGaZ5RAGRZ+qRC5fKUA6BCARCUMNGRpEgazlhMKaUZQhAxCSJKBajXNoGkZbSsKhWEVEy4rJgpY1RwBkJF84mkkbIOaD7o9RBCdrU18gMI85ZeSBXtw+7hMI1xlDYITOO5Vc2ToHumVVtq1SO10mm+vLS+Wi21J/FsudNoNxrvfP8nlUq9VKmmPAnSOBiEa+c/7+fBx7d/KGfFLfMzSlYazB8vZmGxsEKgnlI6G3sIx2WnFi9iCOaKCvf3pzKUbCvZPZie3zrvhjsVXEXhd7IUy5nmZGes5laU3pR5PzO1k+MnFy9eHHd7NlctJLIQ3x993KmtVttiMj5MWDPITnVDYkguWd7yK+t/+PvfKXTKfqcA0s8CcL4/ude6fGH60/65M+chxBhJncaKZhT3j54zZKMcYyksVAlEzsrK0vB09/LFFUkx7VJbQaVS5eQvvvOz//K3/2svZrsPet/46rYt2f1BXiRV28yDZHe5VayXwf2jnzRrZ04n86X2xZcuvfzs/o7tNL3+eHXbbsfXA/axRJfb0YYr9Ucj73f+1j/mUP7Dv/y3X3zr+n/8w3/167/2d548mpQKrRvXziXx+KVrL/7en/6ryvJGu3B2ZXXr3fvvUAX+9q/+zoUbV957Z+8Lb31r5+N3QTSfD44666uzmatXViS5SJE7X+zUqgWtYvbu7F989bXD/Wcy6VYqLYlVQeTRcL9abwNZi+eg2ioXqzUkFZ8fvCtwHkWFeE6y/GGXydVMuRzOh0p8gNUor1KDzEa7TobdJw0J4MKSq6Da4FFj9vynvhdqRiuFBmTpplXGmSbSfBEcjB4dDQ79UqWqhdF2tV2vFQGLCpk9zfF4fphFAWCg1WoVilCxsKCmuugyjO3apg6dkCj2mQ2RBU13dvGCNBvUD3fkJ3sTLkl2iSXuCQ3SoBfapbP2UuhykHpMRXvuaWyZldVqOhsfkpKIRgwBRwbl8ThUNF0xXykurdEsWiLGbOZORR4R0cZqL+GOAtSSkgjDowwGriJxUy6l0sDzcLW+5AaBaQBHRDopTEewbx28ab94GM4ibfYt9bWMqlO+2PIaRCVKDhgDIqIZAwxCIUtYwpDpuhFFIc8mebQeYZlISUFXglSCrcAlRFhCSHFAVVFWocKzmLPD2OeOqREQpNEcwVxGKkKmYrhZYDvq+tzb1YycAE1Cqm3oR8MIdgzUwDzMV7ZqCQCnoW+sltEZxeA+Rn4QwRIIwkLyEPDBPknD0fnt9sZyBWGeJ0IjTqqICFCe546lFTTTljW7JAE1lVXge5ks9LPLZxaTIIwIF+U8VeIopRIBRBWRtlbLvBPcPbndbLz+9me+bNWTXDZDGRDEFRyc7YALq22EKraqaUocpraM9DSOKeAMJ1Th3b5v8+YRCvNovlkupXF2ptF+MgSzA/V/89XffP08zha5lGFkSLSSmwpiYSApBYlyokgZZON4YQqMoUQkmyUTDvWd0zHPgU6QBEU0HNXr1fc+fsx4cu7a2ZOd3cl0LLLE1JqWjjjmCAHOIeMM8k/6hIIzhlQJIfQJMfsJksWBwBCGPEccA0ZhRlVVzRHhkCOZcJBLmIFo0bv/+I//5b8MTvtEloEh2Vy6cPHcfnd/5M9kSSZQVihcrS8lw1N79VWCRZzu2KCuZcuyArvgYwrejbO5Cupr7fLGcksIg/J5UT1LSg1U0MP5HMbYdM420mrBtsqtSqyMHuw/bJ1ZsfStcrMAC7RtNbPgYD4FllEx1XORB6HlletpwTRyutjAl4EFTnrHWGdj9wRgDkrqDPqoKwSnppFEXoJjqptAc5zIv15RwcmJn3jH5krKoM4Kk9h3xtOjSuntXDry3X5JvYjRcOONhsLLT+988Pz+8FNvOo7eBkRd7VQdW7/90YdrS+sA8Xu33hMQ9KezZs3ZOntuNpq3653jWTSeLtY21mfuJM/TS+cvJDEDHDuynoS05lS7x2PNUMuO3Xrx8u7u89ijXEGcSKngnNKYwgzkMkA2VgiREISM5kJwiSAAEec8oZmMiY5kwZiKZUWTmKAQqjlnGHLOqIIUKICpmnHo84xRgSAXn3wmBlBAIABnIMsqQqUY8hwQWc8p47IU0DBCmYJkVVURApASISgBoNHcygHBBUUvOGGSSiqIYSBULaccS0iFtiqXetnk7rOna52GDOn+k9OLqytors5K0cPeXncYq6VyHwyOhos2K6LgWeT57TNnZJhVC80r2y/MgtHjaHiu0sQCP3l8v1J1VEkN4gwqxnQBVl44R9JMieLVajuucFCIT3tPpBlfc16czBaSjsPIUwy4sbI87O4vNav7xx/PZ+fzNCLYy/wq4ORk+KRUrLTtwqBrFO1qGO9leaI1z4eh7U8GC8VtN1/qjSqJQFl6QE93NNFSio0zW9ef7T8X2IgoEMAy7Nlg9PTVy98Y9v3VtUtrZxsSjV+6uvXBO+995Rd/7fj4mS7TWmUF5yBf4LdeeevP/urb81EXpK2K8pWY3F596dzHN+8dPxswPv/C139rdydHTh673b/+i5Mbn3r17LWX/9k//b9du14qlqphlkmoQ9P96tnQQgoOlrx5IMJRpVjqNaUvfOFlxFxWCM9cbfcf3V+w3n+89a9WSRrqn+IAAQAASURBVFBQ82M4zSfdL73yulZQ/+iP/tML17Z6J5PA9yN+cNDbvXD5xmi4s9Lxh9G1vNv53C++OceHT07+yKTy3/rsbxZXjacPb771uZcW8f1Tf++VMy/feS+rxw1OSFmpz71YZIDoZmOlffPuB2995TP3HtyRlLBYeaEfnCB+JFzdKXe0khIzOfIOFAXlAcjj1OZNrFnTMBUwEWGhkOdMNT2nwWZTKp7l0HUPg6eHR9c3lmP+EDpFF5U4eo6Ug+H903ytvch6nIkiu3I80HUtXARHH9977E5JWdUBzpqvL3tJdMYuJW52kj3PZ4AzCWV6s2FnuWtYxVzCRoFbQVtxqiG0oS4gOSwW6nnUMW0HPmu018N6dZTcujdepKNh4CDV0XgoycPpO266kudGzh+ut7dgXjNV8uzZabHWjGhfTrlIl3KapHk4j9yycVWPfczxva6PFaVeVnREaRwsa+tZeBQtTjhSzVIRmwTzAIa50mgAa5rDESb2eBrZpjQL+zEHS2CVAaIztG4shRBistCSiWdrRBKCpgmVEOVM1xSJIBnCNAynLHfVrJRZimAxyHiq6vnEYzKAOZI8CZM4NzESkhQG4TFXNB1uQCaJTJfRtFhhOct8H9pOO09swU+T+LhdWZ/NkyDwVUvyvVyT1o3z57GdiIRP5QynGSm3SJxJPEkzwhQAcsmBXMfbz3p+nfprN1bXnaKjAD8FGUUAIg5z2ZTNhMym3dpKxfclN+QGkkLPVykoV7O5N3TnXuRTiPLWkqaajMimnYC4T8/X7eU3tF5/Wvjsb11YHs+S0l88PBHu4PrZQkGdLBWWCjpKQ8Gz8TCjnBbznOp2rit2go07z56ddssbq6eDvXnbrh3NaKdeedsGF1Hor1Y6Jhx7A9MqikjKssyzgkmQN2g9SEPAMSTSPIx7k8lyoYo5HY+71zr1+0eDg3m2fHb95t2nTRWZWUAWqeuVKlWj3wXHe3lv12u9sL3oidX1ipfPP3npSqkQDCCAJIUIARNOP5EpOedYIMYYEAIKmGCuQyIzogpgIMUV+SKPcig0dx4l0w/e+5s77/78wYPbTaN8bmv7wrkz1c0ldzJw41NLK/hhCmRJUznDSRUt82waAcsCF5JhIOlPu8NjpdCge5sFnMsVb339crWwNJqNlptnVRMB7k9n6XL1AkpTWDCkiiACz1VKpuUXmtdTjKsvbOsmNfKJkimotOpaMIoipeABSCtlu+g0VVxaHC+oASCaZ+rcUBGM5PXOmclwGo4Wlspms/0JT4p2gdi2O1NDnxc6k8g9UReHBn81nPlqVQZWYXQEl6vnu+DZMpfnvWP1zFkGKs1muV7Qr33m7e//yb8fD05UiWKd2rZ2fPSg3ZJPuyeNRltRhBAszXOE5cOj7vbKlgSVk+6tWn1JU0oHB9NWY6vfW2Sp12nVQKovNTunh7dVrLz+8uv97kGSZ2k0E0wgpApFAhgJBASDEGIJIpBBiBUIOBcMcEAR4oCznEq6QgCGHOZZiiFgSArjBEgY8liRVEkgGcEoiE1JyThSFCVXFcpyRhPwSegsZxLGiqxGjHME0jwzdSMPMh0oPE1NiCPGJYIgpJBRzimBwLLLlOKiRQs6C92h4Ikf+KraAABZOiby0t7+5IPh7QDLFQye3HlvtXwm6A9K5VzR1/qxaZ69GHZn9iJUC+Sj3b9W58wpLC83V+/e+v76uVeRqnr7w42oCegy5mQxn9gFJfIiL5QNUlC1djzppaArG3qJbPN4vrKC3al2nFwcxh8bDf140i00SlHG+qFCdJLKkm1Vbcebj7PMU3OQaTrwvGxzuzOKYX3zlXF40u2rxXZ1L9yF5vl5NOjEs6PBh9df/Tv7p48m0hiurXWF24ZXu5OHD5/eufHSq0hNuvOPLxSviah6+WL9P7yTXjx32Z1EV69fPXz+0atXO8368vdv/vWXPntjMZnduf3xZ964cfuj75uSVNK2337pd/cef3djoxrlTJLxbDI9f6nz3sM/65zd3vlpGp3kVy9dPvPateE04ZS9cPVtBK3T8GFjdV07eXbm0oWPnj8v1VtP9z66dO3tduELonHM80gDnZff/EYqgsl4qJkXZ5OP3/z8r/WSeHbaPX/t2owk/+9/+1+cP/+2oNLu7gdOQRkPYsfeOD4awDj47I2Xfvrw3er20CrZx/eAmVa3X1yfz++WvBfOtq5d3P7Uv/i9P/zar/zGv/nv/uu2A+vrCkBiNnwgV6o6g7hYPh4vrl9+9dD3+q73ZvtMznk48jqNFgW8JGnMpd54YUrQ0jtM8QJloEvb8VzS0SwPx4AGQDOFxKjizuVRTqhFjGej3Y6zHnKDSGHRjJq0PO5L3lQrvnwjWKhVA+lJGA73dv0CkK3ZNKBClqFVWUspTYruoqxKe/cHp4tEbx0leW1j+fyyXommM8EtiSVbzUaSzJiYNpXNRAyFI9twDU00aOCprbQv1PPQKwfWWmf5+clgOPHH/ZE3np2OnylyOVkElioU2oblnGsPesHSELoRr5hQSRJfBQNJSjzXSxPQRv3RwghnEY4m5eUi1ltZZIFBPJSf6FDVSdOoMGqJIIMswwbJqBdDUUo5dIqKUWS+l6SpvAhHme57LMqB4pCqNx+uNdYkqekmM7IgXgWASMYC4CwRVowZZBWoaDjUE5gDXyAuSxYzJmrIoiSJQVo0av5CyiUsk3lCOVOqpsSBFNMUeHRAJLwIY1nOBRQM7udZRrCViVrCTaTmEkQ5EVjVs904LAS2qspekAqgwKKWAJwjPZczwCFLoBw2KqvePL24rAjKseQAnE3zXNWNgozy1M0zBH0l5JSYOKLEnTMQRTSXhvPQx7xm6c/SialpS7n8mW8YViHJoOmzMfeRDcuaRCrlfNlqRTRM5cb3H3b/+sPoig5+cvQ4D4Pf+uY6WJmMxKwutktOeDxnRJN4AiwTPH82f/bMLm+qeWKCOH/f71+vVTd8PSG83FArULh7sVEzOGCKiW2ZPxyBgm+lxjwPEzmDZrvxcOfENE1JNUZHI+8w6Ak8H0y2WuuLgV82C0/uP1xfXVJyc2tZghiOBj03C1YvrZdWbJNAwTKIoQTkJM6hgAJQBEWapqZmUZSHUSI4xoQIkUsYYA6RwAHNY5R6NIWABpk/n884zefTmXs0+ehnf/jg7ju+r8hw5Zu/8MuvvHBOLmghghpRty9OP7j9gS8zP0qWio5QpV3iWwE4v7Y093yJRNli1Kx0Hj8+ZcUI6iWRlQ+EN/Yem6p1MtkpR1KuW95Bt3iRKLVKdX+VlbKZdMKGi6f9brnkNKuFujxqWOs807I0ytPCsqVp7VnkreeC41Rn3D7JfiRKRbSQw9wt2y+5I64YPcGDgqnnPsyViOiNyWiPSCU4NZpNmHkMzpcAaDSKjomtkMZaPIQwhvKdgXzmEvsyo0/lCI5PP4C12rrRMOfFjdffcD3pdPDcwTLPdURSThxV2Sbs572TCVGxZBh5zEb90ytnN2+8fPFP/uLfbJ9ZS1J+1N8nlvx0eKxpigQA0owJnS687IgOqxc7j/YeR5O5RuR2cyus5FmWKYo0Ho3iJMkZ8CQlVZSEBiUZGBCnzNckLQeC5pwgZKUKYwwQZEk64QAkuQIlROSUEQBgwnIKANTkWRIrEsnzVBG5QpBHM1M3kUAYS0zAKEsVmui6YkskSSMZo5wzQuSMJpiRGLIcSNiISW4iGmt2EZRVHC//m7981+yYAXc1Ypvzo2VdqbNVdSPbd3ddXru20Yom/skQzQff/sF0+r/62//Md9l258zu7HRv8gF108KEhw/2uSJf2uo8P3n6yhe+dunqCzuPd4udDVmqBlIYQWK2z+0/3psfdV+90Un5oNUI7/WIqWOnVuO5mfQz22kHbC6kx2JMj/pHy6vXQMJ1zY88yjPsgRMYS5KiRG4MdD7TitOhbjMQ78b2EjbazSfvHRSg/NHHj658+fPHB3+5pMf9aajU1j0+82LuLqhGDkIvVc6cz+KiH8vLm/X3fnwvjOOc4PaFc8+6VUh35/OD669dOTnalfUNUDR++vjPXthUZvPgzqODlfUrnsuq9cbd3Z9efG3l+cm3W6Kjqfrd43sKywnGAJgi0PK94sOHH9WXivVzHSMLh7s3tboOrNrRrR+0X3tjMnzUqsskkcVpiJvpxddeX9/aFhCc/OQPvvjaV/2Jw3vHg1iqtDYW3WclkVYN+eG7OyVH9+neu9/u/urbv/X46OZbX/27P//hu6tbb91++OHrr3z14Z07Fy6Xc3W9/+w/vPqLX5Uq0u0HH964uhEEPuSVitmsnIE//fCnr95oTh/dNHh8/a2Xhx4Z759ceOMG4CjX+wowilobp/nog53ra81Yw+nCXbFtmBybNbDwUZ4hTBK7UpMkGMVGCcg0HHIuAkHlWiPBZU1fsCxnuV7QltTmarZ4tFx5DtVGkg7KhkUJPuDTXp4eTrKqvRyoj8MguLJ9vdvvetPhbK65i6zaTJxi4WhPrlf0sFB79Dw2nJRrJyYrbzT0ZH4PScuNCmBRk6gLJAqWuqpviBgSgJAOiIIipvOEUQUnEGjAFFq5g6lxqXNmIxmPx+MwQC97L+7vDnb3bj9+fufM1vXjk1BIlOAFEYYgpw93nrx+5oadG31ODrPszFq5gJ14lLhBVFuthwaGFFKaTeHMJnycpk79qFKTvR4sqp2EoSSHRgQZCM1SWaIWFHg82lclJCEogU4tN9zFSGtIfKW9cNR44hZ0m6iZrjG8SCJi6imloFSc8WTEIMIyRgBBkedMCJhGKRBYVZUiKtIFLxAguEey2NCs2ZxJuRZLE0wiS97ww74sE8FNWR0lsSRJKpcnIkupWGYMQSQwzgmmHDhErWEZQKQSWeQp45hyENmWyiOIhI4A8Ge5qgEJwyDgAQZKGtkIChp7XKbINFQkx3loS1JWmh6NJ2nqrDbuPjj1dv0v3rgiODzbNkWv9/JGUy3k0HfnuQqsslml2TAnWJJVKeJ5LkspAIfeqLHdfOWs8a//6X9ac7aqqhJHebm4zQLWm+95UStKDYCCZLGAHEXTUXUdTuPxHgjzRXpj+7KosVGVL03B7G92Vi/L7rNk2CgaauvjZ5yaRED349M5E1Rvbt+8ddBd+J+5soW07Kd3f7BinhsHFQlVnwVZ/3QQh4lZql6orpeL0jFzXT9Qy0pj+UKxoEsYBKEr26YSyp/c/woksCRxJChEPkgZZ1DJEGJ5BlmqESExFibxPMnUwB1CNh8ePwtnE2/sdff6/eMRoN3jySR1lc3W5a//+tevfmq7WCc8XCiJmcmyKYCNAMbIsitaro/2/d3T5ItfuuCm94taU5Zbk6k+cydhGtUa6w8OTkanM0PVnkQnGoqvrG+CSvNw4LbMK0yG/en7XCgqMJ20kYY7dNAlvK0XdCHmOeDzGAkJc12ptc5M3fdlu3t8cLeYF13XyulEArqv8pXaursYm02zZJ0paE6Uuwswr6kVlXFTgkbRi0Ov3zdMWWZxWixLEzVcyMMs1W1Z3PnZrSuf+rUPe8cL86i03Jke3y9EgTxvieoKVZSyjt/84qd3H0puNLMLFORmUZd9JTx6dIRL6lJjfdAfM5LHPr185cr+6cNyeYnIlf39x3Gea5aNBKWp2FrbPnh2fLZdbjTqe+JgsHPSbrR1p1SsVWRTD3YOsiwLgiBOEgGAgCDNszTPfBm4mV+UZIwwJlCF2ECyzECiMM4ph4hDJDKGMU6EIAqGXoYxgFwgLACEAAKBBOQiZxQjghBiggMOGMsAQkIIiKUkzSESAGKBIKVcICGpCsxhkoVpTBHmjOFatdaqtSIK//C730a6VSxskaS8iEZzz3twb//Xv1qyx4Vz52+UBjsnvUfTMWnUyXu3Hv7Kld9ZarQDGsieH+apWWgm8ny+mNjNVQul7oKUipu/8Sv/+d1779Qb5e7Rnu85mhkrWiYiLNzZhevXZxyWatvj+w8rqhTKiUWs6TCwl2pQ4mrspmBq6DbF81qTnBxEBdtOyMnRce9i9VKC8sPeKUuxZRDhDxwbRm7/NMkv+UuTo2F7Obn7s8cx0oYzV1OLODV8qC2bTs9DO3NFZ+TJ0d7a1Quqfvzg4ZDC+dyf7x26nfplQ916tPv9KHOVBYJVuXv/VlWqpIY66odrZL1YsX4+7BOkXDqzdmf/CdR0rWiUi537O+Mzv7TcfTwyzWVkTpfkpTXU8PPR/pPvnFv9xauvrDKvGKH48eEt2y7v9/98aXl5eHTL0M+sXHn5b376p1EkvvzyN4K5v//kzoNnt5urlu2sTk+scGGfP1+5f/dDyuc3XurMpgtVF1AKf/ruj770xt/ZPb1VaGFo6VEU9no7n//Kb/iLdHPJqJulWx/9LEDW6698+bt/9hfblRoOtE5hkxjZ2P05B9dokhMBF5N4qXKtDDqjxV7zUqNslrMsYqCYZDyVxGCxQC0zK+taplEaG7IMeMMfUy6IoYsMDfK0EnpzCcuYaSyJIVo4BclLCSZBEnPAWc4ixJ0sCSxNXm5cPHSfNqpNR29kGV0EI0T42Yud8XBWRMuM525f1+h6mk3KWlJQRb2h4UhUL28gPcUQbC7XaOb3fMpLSrDQzl6sWnLdHWDFDErFTZDZWEZC9jVTzgCWlaLvpQoBOc8QAhCd6KoRpq5j6pKJYo8uOe0gTNzF6oUtff/g+vHJ7v7+zknvEVEjAdxO8/yzg6PzS2unO8cn1XBGKaHUljsM4YwvTF0zeKnAde6GKI7sFPi+cFqqAqTRkVJ1lmaLUyKThLFcHdvGcorYYHBPI6JdLDM/WITdXNApiJmDVAUrQJJCImtNAAjxRIiQFINUBRKRoKUCljNFStOYUiBpikSwZBs2GmOW8zSnnjSWi5doDnXNSdxo5s+NmkzDWOb1NB8m+CEXGs2NNJ9IRNfUAk8NnjZ4klFGBAuAkBFVYeYQRTZKBQYB5UBAxDmUFUVCOAhDgjWaZwhzQnJC5MFojokdZsEsiERJl1FqyxrjIBcgVFIRwASj1KnkuTf2vN0n/QorGDbUJOBnaXWrmSAwE17ZktUACIDcLChoTpJmNEodbCVJwgV9ZWm1FYDFlIdFi9aUMAZFg0RsMgqMR7vFup4djR5HDNfNlbvvfHRp9exgNgeZmqb8zVdeiQtgB3qvKcV3//F/+0Lnum+Z7/xksvQ5Q28Pp9PsnFGfFvzBCR+fjs2EKJa+YW989KMjhQBKV3R7ZbOgTCqknoNasZaJvK1qsEwFoxewExSVDICYMswziUBOKGURxArnAhIMAcWIM57JgOdxwtMkz5DIcZwsPO8o8Efz6XwyWMSHw17/KE3nk9FJGIaCkTyCeYaAMQCoWKpsf/Pr3/ilb30aaEGazhfRDJTNbA5Ly5ufb6+NZov7Tx8Px32k8FJpzZ17aQj11fKod8su2OmCXL3y9fHoaZN1jabVn+T77x+tXar99cfvX9+++PGjp1duRIp+VmENSao22iBcBNRuXrzRKVTC0+ODprLF+T4AQuKlomXDWYbCwrOjB5Jq7E1GpWqWM6aoXkkhD46kTq2h8lgBbGd21y4CB6tZIqfsaav81mTaV/SBIq8Nu0eWcxS5CaYyyp3O8rVHO/9OX00fPPqoUFSFdtHXa7jW6N+/ud15HS8rw+hpWQ8Uo2XEVxzN4ZyppJOyx/f2vz/KuzeqvyCT5OpF+uH7P6+Wl/vDGCA5y6x3b/2oYFWzGCqyVrFMyyTdw72yra4vn322v5dOo0axKnFJMfTj014OxeL4VNW0LE84FxBCiCEQAgLMZZLE6VwwWcEpp4TmFiAyhxWEKcskhDVJIUjCAPMkYkkgqQrBACEkEwkgxCHASAAgIINMQFmWAQAIgTynCMkIA0UysjymPIcIc4go5xAwDpGMkSorRJEA4LPQL1mdglGYeaNq7QLU0sHp0cRbFMr0u9/5zqWVG1tXPj3bf64w1NRqqmI5JTf2a//o8i9/dq3Wne4LnEncW1+xx644HQ/aDgnnVQSDwfTeP/lv/hfz6E6Susuts739YeAFC5q+cHYlmU9tXYOIYkVOA3e73vr+zR8l+qJqOmfOnjObyoc/+Rsw91earSfDydbGtSxLGi3bnaXPHvLVjaumg3/+08FWu4YoYvOUg4xBnAvLZZrfSAull7pPBkb2pKgm3tGurq0k0MLRvNvPrKW4pIqjI9WW1sXIHyUFPqcOdj748S0dg/Pb5sHOX2rAs0HxyCntPX1cLRnWeTuK/dL55b3jgaxXot13P/eFrz/ceXRxsz44Ovniy29/+y+/+/Vf+fKke8jL2scP72+WDX92sqjmqWXPekW9cUdD1xNw5/4jv9G+PONPJNrMVWtncffNzbM3P/rjydFPv/zlL9dr6Y/ff//hztNXl14ut+dIU0JxHOfPHas0nURf++bvPHn27uWz67vDH0iyasIraVJ4tPvhP/jq/3J6/ykUfqO1fK3z6u//+PetdYW0aqcf/ORLX31NkQsn+8fLdqrT6XpV+Yv3vnvm0mV2KtFR17PhELHi2WJC4dnmRWhFgOIsiVkKWvUiTRJHqCzqKYFGGYDCT7IR4DxIqKEXJewgXlfiQ4KKqYALdqo7OomaJJNUmAS6SWMDoJhnISYazV2lrZTtrWX0sucN7IIUZpFmtgUmcTx1CnOPdTVeJLmQkRwlRQb9gt0umquNsrnfH0UgVWSTC8eoWFV88XQ6kshMlYuMeMSoaQ5Wi26cPLTsTUGvCEQVOVmEYwhFnnhEkQUTGZxY6jkF2EBwQaEKHZmQHLvtZRpEk8+deaXXuzAcdXeePX547+bOzt1JeBCibG4BOUHy3F21dV1Vs+5oiBUh7WiG0LRPz/sdwMDcf6wZi6K9pshsOIiKpc5wuFerNWbeFGjTFj63mE7DNAewyFU8S/unx0cKLjUKWQZZoVw2bCxJcprksiT7nk9UQ5UBcghJY6oRWSS+YFGWeQQTzkCUxkkaA85UglEmMMYadBKXKSQN6UjhlmUYUeCKUBX6CWQmz9VqcTVOEywlWQoZnlPlMcuXAcZcHkMSi6yKqMmhlwG5pKRxDDiLsgCjTKMYYEAAdIgMEPEAAIyrQSRNPdZeUel8+sEHz7fWN65fqkkoDRaR0DTimFBlMM61WKFzPIzm1VblRntNAWGO+VrTmhwnyYIV62WQx6qUxCIhsJjmlDgyY7LLQIA4UdlUj+4+GcJJjKcORrjWBD4aELPzzvc+AOalQk3PGL710Z6D0he3OpSFFaVpVMRbjr5dBNNsWi/K6aM+m3Rf/if/6A/+t2989J82+fV/nreyxMm/Ozjmd/y+V7lYrq6UbaClcoAL5Q5QQKdhn12qMhMUkyzK8muSiSGgmIk4FhIM45RyIasGIUgIQeMMJbmgPFEgyzPCAQ0WIAtSdwEymoXZaOCfdo8m45PQX8xnE3cxjsJxHM/lEDMmwiiRNRVj5EYLiDkVzExVJSv9/d/59V/+218Zuk/ZKJ/MfbO5osb82tbVtDmfjQcmOsLrrQd02hv3Ur+4/8x/4ca1fn8oWIIwN8xWmqaW1d583Tm4f5P7vcuvnj09PGkVzv3kxy724nxTHhzOKg7sXGrMvTwPncpy45JVvnn/P22011orjadHP0/zUpqm6wV37H5/Nsmm/nzyXELAbte3q0ZJwHCaYztXlTQ5SZ7cPzqyEc8aHR+XKhxDEMXgAVRYkhPVSVbOVo/24MHTe1fXN+otezI75KRSNC2QzcPZPoLXsuxQdVSPdCAsCZT2+11HKmR1tbxZL67a/d4TVQ6BPx7vHJwpbXW7J80lO4ygpUtxfnzvUbq1fZVBz9Q6gR9IWJRLUDcVwJEjrS7VOjdP97r908pSq16u8Zzev3+fqIqqqZjIxWJxsVikWcwZ+8RxFoCDAEGAMyYogSHkQNA5z3WENcmJaaYIniaJgWUJcEVWgIQpRwAIwBmjVADIGBMYAJ6p2BAAQIIBExhjSilEAgkABSJYghAyLhAEsiQBADllYZ5yIADGkixx4DrFVVlWUQTPrzlhFjnEcoRZtJSvvAp+41d/c9obxCLfWj5/lO1nJ6Qum3x5tkHCGBxx0Jm7dMb9w2AxSeX5tCIPd6r5+p3uz379N/6erZ3Z23/SaJZ7gx2MMacmoNLB4QgLDhCDMDVUxTGtWb5wlogdoc5a22pWF93jIJTOXHjtzo++s3GBRonQlZZscCx5LxU6xyfj+w+jakMrNTVowMMnjzVVMgsVhFlnpRGMlEaDpqQH7JoXQxArKvScit6diVztK4YxDI6O071zzfaz50cbL3RS1TodTeslvXW2s79YLAJ+aftzAq447HGbFdfMzZOP+q9ev/zxwyfLK20+6q6uX/jOX/xbHCVb6lc7zUv/0/e+/aXPv72KGvf332Fp+NtvvvLv//gvSqXmsrn8dLJ34O3+r3/1d+88/KPt9jedzeR57+ezqf5r37r83W//SWvpjd7hSC/YZ69988Yr/+jd9x6VzKXPvVa+vLT6/tN331i59F/9X37v2oWN+zfvfe0rXweEQcnpjn8ci5tIWLpKnh3+dOm8PvOeff/B+1QM3n79f/7jm89KjeUGTJWBz/LRl1/91o9/1tW02uHw3d/8xb83O8oTt7q28a3nH9+Nw/5q68LRztNzl5ZgjrwQEVlayiVvNGnUNzPXc4qFnhubVROo8vhwv2QhkZUA1wo6kw2aJqkEahFAmiKLPLEzxVLUVA48lHOiE+pLmgqgTUMpp9CCZZ45KZSBMXaKNUqzeTSIxUwAMfWCkr1UhZKGbEQjFscFo4BkdaWzqoJLUzpvlh2ZiEK9FHLoRq7vTmpRst26xtgQEaPQgEgd5vQcyd/GnHJ7P0stCRR4ijW1FLgAcpHSnl5tUES1qkSzIE85JshLANSbSD/QtSSXJKNsbNertnPt3Pa1Z08+3Nl5Jk1Hj/ZP67Wifjz3nVBq2AUV1U/cPJWL7cv9gU+MjyM2yACmURPz4cGT50Z5PY9nupxbspwSHeneIujngGiagXAahW44dUlObJX6Sd0QQJILQDK5YaYggQzzMCXagsiAYA2ilCqaKUklTgjTbRGNIIE55RBzQSNVggJQJkCYZkCDOaBREhPJyXIW51TGSCaWJKpZZHl4J6FdVVrVdVXkOk1sCE2IAiAIEQ7jNoKAoQniBU3GOc9tVfFATjjMcioA0qooiTJFspNYLBZ5KnKsSZlIHp+MvHlWlyuOpLi5T225bKvRzKPc0EwUhJEN5WKhVliSqgUlT+OogEducH/3uKE1dp+lFQetNCEuKLfuzR3GQU7jcbxiLy139JIO1mR5ohefwjC2+Zd/43OKKmBKDnp+UqxsNA3FINEct9bs4/u7efHchYvrnk0ASVsKDOkCqkBBVj9NX/nqb/+7/+bbjx9fNb/4+evX7QNlXEcKUwiyyHrqn6m06wUoNEM3OStmwAHIcqSAzkPXUXRLleWMEoQ5EJCQHIGZKqCAGNAsTkWSYcazKFzEUZL6oRukvjvvn4bz4ax3Gi/C0A3G7onrzhmlCtZYhtM053kmAJuKWNWNRPAkSRUMIcsxA4YMOle/9lvf+Nuvv3S1O3iGOSOufNY+JwRERQJAmPK5XQprNNs7nA1O5yktjU4ebWxu3vz5A8bExctrzWbZsZQ8nPj1gIzVcucFbFaWg/HdHAdCPltASvv6sN+FaRzMfaVZlTlsVotUAwfdfqN9o1gm/eGehMoHR6fNNv7J9z6SMqrry+P5YvvsqxBqiQgrzorrj5ZLQrVK7sQ3Moh4fadnLrIK4LdEcX2leSlMxkGEDH2LYw4VqbZSod54MmZcpVLBr2nVGnQE3MHGVW/Ur+qlua+vvfD5vECDaJjMM1WPzp9REBcYFXBWT1MuNLW8tdHP7zz+wWR5dSnyejzViG6kmZ1npjdHWPYdReufDF8srTTbrfliNOrvP3z602OB/emo2W5Yjv7o7v21taU0TaeLeaVeQRDFUfTJtzGJIAgFhLCmVAAGXIgccajglKbudAKA2Al8CHhddzgVmqLGYYSAAJQjonIooBCAcQggFAAhBKGEAMxojiEQjAtEEICQMwQFTTMAqQAcQYQBghAzwBnjxNDiPI9SzjEABJbbZ4AqaY61Uqdp0gijLEny0Odf+jufzmKPU01rtW/vP3menaCxQlLQlLQgU9zMX+p09z360JtEBvW9wMT5laud07t3OJ+eO7fa6/ULdvvxo3u2pTslQ1FoQ7Z39nc2r5yXESYSsCzLanUejBb11aVnt3ud5ZWjwUiScKGx9Nc/fNdhoKWfCeK5apiXL77szofvf/DX84VnGFsFOZeg1puPmCGbJX0yOKk00LD3pCn7ZOEQD8hq7vE04urWhQsPTj7ESak0A5X1Vux2jQFwg5FpFGE3kJC23CxrkrJSaz+7sxe5yWz4zLSOBz4Va+VxGiuydnN02o/C+ji+dfdJzarn8XphyVjUyM2f/uiz53/1ha3P//DhO496dz7/ym+/93A+y0BRSyzbvH/70RfefHPYdS3xKdMUD54OWLRd1BPElVSwN7+wfXzgnp4Ub1zf8vPnXLn3yotvenM0829WGyvPn/fWVpcW4wMNlCrF8g9u/VWl/jbI97bWX7338UEUeNubq5Sj1CP+R961V1+MYl9lj0oFd/3FX/nLv/zgK1/6Pxw9W6SDhTd83tgsVy5dv/vR6de//ivcO33+wR//8m/+zuMHvc3mii0VHgyfmyWnXlq52+3JdT2r2iDLQ5pBzmyssHmKEcVIojAXgCCCCEFIhgZRuRslSZjJlBXlYeTpEjQRygM/kspYkvPcgJLKRE/S85ABbriQyjmdP35ymyEUZdD1/SAYeHpvaZXkolHQG0Rt2nKByAsZKxgoCGntRpNlOZAJyUMFy0CqrG62Ke3G+SNFfgnSFs4sLMWaredwAvMC4VWQ0UpZZOlUJo1gmnCRFmtpluc8qUqwjZHgKFYVrlul3oFSrFkCct1haT6rr+isajRXXnrpypvDhw+ePn9w68n9JJKZ0KfTroz2brRfhkA7mR0T3U3xtL7UTNMYmO7cW/fTiV2uT07Jaqc6OtoV0IKskgcR4wJJhGMmMqBqdrncjpPQC2dAlgIvzoiONDuFMA5ZGrlEMWWJg5zGiqxIlBUI7k5dFgYZp5xIEANFkaAQEoBI8CRPJsmEtNbzVBWgkgLN88ZqSREkT12Vsj5RQ8jqOqqlyQKqvh/0db0kpAALxnMNAgRxQKQSYCuaVCLAAECSidAwV2QYQ2Zg5oeQZohnIIhi1UJY0GTOT/fm2RS8/MqVzYtaJgARpq5CxAFACR9bVE21Gj7bUI0M8DyJAPN00/DJ87t3BNZzHD19drJRbVyvtf0hTI6CS2eXT+P+7pNTXxe2uaRJtF51XrlYaNfs3/nK9bWWdkyBZnbA0Dsrdw73RrCazefzOMomp27j9XWtKJ0uJiax4pDksKABYAkwKZYfnSGnjtl842vnzpBgLd3wQUW0fkLoNpRwCXDhcTlcsFTWC5IkCZ34OWUxWFbMWAFKlveojwgmEU0lrIZ87o0AFZkfh5N5PPdoFE2Gg97xUe7OwzAMAi+JXS7iNImiMInjTDZCwA2eySELOQg5pxAoGBsgD5IwwzIAAkQ5AsAo2Etvvfn5v/sbv1xsVcLwKZ2dzNzIbLRieFKWMBWYgTwiqYQkphgxx/OABUlSMa08ynrHp+cvXOVMggA9f/pkqXFxE9bmBSbnyYpT/tmDrtpooWSEzkXuISdCcuPUKNjDo0dlvRMx2ju6JdW/5VTz08EBAY2dBztYiMfv3Y0CoBE0yyfV1bYqF7RCJaLJMEBIrWbJuWT2UdWxRHXbbE499qEkjcdUXgQ03evVGy4EVFMgMRpAqtrWJA0tG5Hx8KMcBav1r8QDpd42xr4rRCk95QZaMTrFUD0O3ViRtHJTWeRGpSJH6QzpTFHGBQVdWHr1J3/1EVNmo8k4F2OjEHmBZjgiZScQ5Cudy4/u32o1iteuL9+5d88P4uHIG56GsZKbitIuFmmeWFVn6nlBHGEZZ0kSByEA3DLMUsGWJWzqSqVUrlaXVElO01QIIWtylqanhwc8Sd2Ez2azIE/cOOC5KTMgEwkBhAWXIIAQSYhAiLkQiixBwGAOkaCCcQAAEFwimHImIYQwoJQBJGRJhoDkOROcSgSFSUoZA1xN88yjieo0vDzIUa4UqvsP+xz4cbJoVjefHz8raGrJ2Op3p7f7+6qmB2JYLUxJsvThzvOW2V+vf0bVJJuU4+HBasaW9HI4eX6aHRGUzGePl1aIpJWDeHbmzKuNemdv74FqFKE2rnTacbrIQ2+1Xtjt7ZzdqD8fu7/8d3/34cdPIaAbr5zLENm/92jz/BkFkPHzpxuXKnphmiWWY65BtMul/STtxbykVNTurNuUtmyrbElaudSJs9OZF7ZKDRjJKRiXamrCJ6RQnx0/LTdfdVPuurFVPR9FRzSdMckxV7OMAiJX+y4Z+jbEtfvH9NoL6/l4IMnq3JvHk+5WY5uz7ObtmyYp9P2P11dI1ZSyUaY5bP0NeeB/7wf/0z//P/7jf3F75+PHhz945WJdzuP3f/TDGxca0uIxt5Tzl2tBNBQkqdSW1qob9z7a2z77ItC2g+Rp0U5Fenj4mJ9d/Wx/FEnFDGetqmZLwi9a3oMnT7/51b/303cfvPzW13zG4LD19P7hUb97+aWy7mixr9279dEj+ujVxhXMVKvTknDDmMIzKmmW9Ht7t2zkyH7wmbd/tQ9967yqWdM/+x//u2trZ1XoHPbe+8Y3Xru/86SwXCw4meE5xD1cXV9WeEoFAZALiTFJ3Ts6Wq01w2if5gNZViAqAVRWVDlNhqHpI2CADBg8kBmUYCOgWW6EOsozmFAOVLUEsCZyK8MSMpJgvIhcq2heQSrdO3kQeXOFFRvqhhKGtl0r2aWSbcXuTFJQSn29NG0TNYTjXNEUpAkPrVhnYix1J10aDIRUtRDhcqCSJUx2JSWUcTsVMWAW5kiklGZhmi+gNJalvWzwmlOTk9CFGMkAc5TrasOfEMdYBzSTZThfTCVZ6JrkZ0m5VCPlkujorU+db9+//uT50cGd+5OjQ8+hP5z9SDB1qVNy/V3dkND9giKbAied6hxZNIseNRvLs65nKAW7bM2mE43Nk2TKFMUstIhMc2WOK7V8Ltq4ZBYtriCoSDjRWSQmY3/QZ2QB3EzABFGLIA1KFhYmpLYEVGAALjjPoyihag440FWD0LwGl9PBrGCpXjBT1cgyTNdjmDBZWY7yPageYH4WcAvBoUYaSC8IjCASAkhZJjDxORphGfNMJ1gNowxlKo8SagDBuFAgw0AssKbiVOSyklZrTkYlHgkQ8tcv1OwG9lFKw9whZjIOYsyLrdoUAJAJJ0MZYj0pjgCSUpTMJntcqS5v+oyaadipVXrz+RQ1niyigUpnDggtCXUaz58vrvJlBUgOJsQQtRu6QSUzARqOQGLwXGf1USmheZJmXoG5wd/5W7/S2pT83BVZRaAY62COQEwykSxalbKTCWu7rKR9rd4ZDSlTqn4RbMtAB4BOQUpsKlGhZgrR2ThPgwjCtEDUkSfxXuBJmZzEIEmPhgNxPPPCKOO9o4PD+WiCGI08bzYZZ1kiAIO5BAAI4zDnKcBUIJGkjGDVnyuyzAjOVF1R5FIYB344BjA1EcyoADmQZBWoxvbWtTfe+IWvfuWbDOxG8CgWs9l8uLmycTQ9WF1riSglGGGom6IuUqEkaNlefvWcN3Ld6QIf9/eqjUoGgjAuPXzQL1p6s1lVw9VK9vTYvzXLZjrGvGhSY4PmYw+qtrInaemdu/dZPN/aXv7RjH7u9V/Uk+PwhDuS1XcPQ7ZI00Jp7aXx0ft6eeni+guqztY3l7M0blc6WRQNBs+PFz/LWUXWr5k8GPV7q+feXnhRNtmL056hbh7uLjCir1Q/G84i6uxrJNeWl+1ZhVElCxec65me+XO5WV91Nd/tB9WKnfCJhophGFvF5Vp9aTw8Lba20wSaapUKGgOP2uYUAzfhdx7tXNxa/ejDR7LS2Nsdb2+sr7SLk2CWRPGXvvUrttbsnf7s/pNHGIPlpVYaxFjAxAvOX7181O9O3LmpOYCyPI25oKVCsWAajqHLEmrVqqvLHbloqkRRIVYkFUIoBFurOyBnB/P5eDx05x6IM4VjTJHnBQllVp4SjDAXAAEkEOQQUiAEkDDGGHMICIKQclnCnDIsYYEBwAgBLiDnnHIAAECCccCZgrDtFD0eKBAvr19wKkXXD//ixz/MUknXyqELdE2YmB0eP6tdNcIJXltpz8buyOWToL7fffajP/6D//a//AMOq2Ujbs5di1QI6MkikYq1lCkgsob7AJ7vpCDf2K42VpQnD8ZO8YwoKtrCgYxHc291qUZjFy6Gq6Visr7iOI47Hr722jXdJoXt9eONDcqneR5Uq9ct5WKWijQLtrfPDsan7374gQytavWChmRHTk1S1PWsUlMkLc8mwJauThfAXD7O9u+jzGiLc9v2mWe1p0r5JBx7xTSPwKOCmSU+D8WJFa3wlNaXKt1nH0tpLJu9i5c/NZ4e+AmqSVh2lEpjW+UkjxKoMYeHNaL2BlHt2kXqplcr1+786PjJs49ef+VcJE/+4x/+i9/8rd+5/7ynIAnArqrxH+0+/PtvvX3ytKtZqmKlF89udZ/sJuzRS5e/5ncfDU+P2iur/dhf3zjjRWx7benw5D0iNWwVn+49HTwffuqVb01jeuG169dee+s7f/0XLaNx0v9hZdXMc6lU2vjXf/4Hv/rGiytKsVnfPOg+D6bdM9vn3pv8pLJa29197pQap/sHl6697eiXpwtmC+3uT+7Gnv7SP/o7v/cvf/9rv/CVhx//fH31Qsmo5yLY73U7y8VSsXh6fFRxqovRaKlsz4d+xyjFiRsFmOCGYjimUeNMCtNFGg9N8wWk+y6Y+nnRKTiC+zhemGqJQSMWAksSQkAlpTzNIMwTxkToYJQXqvpwclKvmmV7NfbmqnRSs1SnMiGKm1LmhUMHLclqiWgZYVqOcozVKBmb5VQ31QRzBYxMY5KnMqI5wn0Beoi2GFKZsUfTAkM7EkBpGAFZBwoxtRbmJaLPFKvJUgUyKhEgSRJEYRAeaoZjK2VKo5Ksa1ppsnBLxVLO5IISmCuV2Uhav355eWmNNVb27y1//8lHJ7SbMbqY+ALWJy4VnPA8UVQZze5hrZ40Uw1kTK30s3GxPdkf7Nj1SkFr2pITJDN/PrG0hixIBcSlZUPWCZIxAzDPYg44SX3/9IDomSYzYJkKSAXW7HkEPCH5SBE0zfIUESwA0XVbzTVZaBENhEKJgTJAVKMNEY1SYZQLQbCfsHc1eQOmbyjWPIr2TK0pETXyGFYxQgBiwHKKgANzTeQaAymWWUJ9U7FzjxPJiBPAgJzF1JFxzlNV5qrmzEeUIKnTsBrlODOxTHOUISqbMQ+1ijCBHR8CqnmyqmVCet7rMQMJXhBRPOs+axbOAlNOJSnldOj6hm6hPG3ZpUPs6Tzt7j3z5jJkiiETfzLTiqWinS5SzQSA8XgEU0uFZ7f18T23VLMpsgpGea2lmJJIcoBMBSUDQ29AmiyTHFN0SuwDn24UiwBFnl2zXKgbUp3EvSzDDCCccC1XZG0WJWlq0IxqwczLB4sFXHSNabjvhbN0MnC90WzaD+fzWRrSOM+nkziOBeMYwyQNojwBiCU516SmaVpIkVSIIMwVIgFNcuyyU7HzlCdxbhia7Rjjxag/dCAiGOm6aggKbd3QCHjphYvXLzru8fckZ1vyY5JBRW+cLqJ2rTMY+ECvGDFgkirrJhSZXApWLqygIt85PBq9/6Rc60BYOOnNzYKgiJ1rfWExKQ/1H5QqlVHX0cCGjl3m7R8/OpxP6Wk8sxjruynUNSnL/+qvnn3tP/u7B4vDmgJDH+pG/vDR443lNyu1wknv0Rde/6X2ynKS8mLFiPJJqVwBsEppjPG5LCrZNg/Co2liatJ1yEC1JJLoTKOqRNlPHCztPTkZz38mK20/zmq1UgzcQmvNdT0J+vPxzzWpvL55o08nTF1Xy+4kPF1rbKugthDPyk0NYqzoFocqUjJZErP5LE+ppThLjUtP7u+2W4kXzPMMIXVebxSzFNWrojeCv/6rv/7mp974wQ++9+jJI03V6o3O5StXe/vP7j+4//nPfrZ32tvfPaw2msOT/kqt41EXcEYk5M0XieeVHJM5Vp4kQX+iIlLUHKHqi9AXGOSMKrL0arWSFhzXDyHFk96cpmBAZwyi8ewAEkwwVJACOaGACw45oxhDBCAQAkPEGAUSFkIgAL00UlSJC5GkCWRIllWCSJbHlqIlKcVMpHEcpcy2S5Tn/WEf0CXdzCcjv1osTmbP/ot/+l/9X//J/7NiGnYD8IBzfdNsVIfBY88o/uP/8z+79IJzeIohGxUjj6UJqGWhcKOpV0CGubKIsyey+uJokXgB9zxUrJV8f5FFvbIc+PtPq5USVtTbT/c3Vs7PxrSybp1+fHt9o+40VOa7ObCpYjmCAccyHePjez/7wuc+32o0ZvODWlOuVdurZ2SgDItalVWwxKNytWoU5UiQTvMSYPss25EQ5fNcLtWt8tKzo90AnNlSX7vpP01UUoKVebAzUZiWtzg2OJy/+MqZ7/7lv3n75V/yc7ZzdDgJRquthtxuhtOwSpZv7nVLrVUnPp6l0yAlq+WmgtiTWe/x8w/OrG4pqn7tzV/8v/+f/vvNc281186ddOfBEKvSZ269//4vfel3p9N8MOy/vPoLxEY5n2X5YLlxozc6IsbS5Rc3vdlso9NejA5k0xzM00XiXGpv3b/57UV3r1NY+tpXf/tPf/an129cGPt8MbEvbVZDul+vrJ7f+PLMSztLzYvb2//hhz9dWb784x/9ZRLB9fWrIO2p1JSlsiM3H4p32pe3PT4BQ1mPzfAIffM/+4d/9hc/3D4j9wej4toroMDnp+F6uwmdI8ssd0/7RkGe+L5acvps3k+SRtPJBxPbKkOQMzQDSu7PIGJau7kVaCDygCxZBDIFIMrqttUMhaeKBMlFWaF+4MqihlHGlEW4kAzHtezSbKKaklxot+/d+yFgQ0kFJu5YKgHIjoKkZK2XnXNEs6bRI0evkgxU1MKcp7iohBKGVKngcrT4Zh4+CdHd1FMWc3/jjCwZcTA9l8rPZJL4Adf1zYxr1bacBQFOilK9NQogEEhRM03VCShFMS8WTUUdEZarBCGiJhGsF4sBn6laSeJuIZGsYuPQitSmHZn0ynZdv7ncvXNv7+RBGOY5tBRbC9JTrocEy8ERkgv01Bsshmm5oGXoUJ1wu7bGAjz1evN+V1cNxnKtlUwWQ8uu+5KF3MgmPIM0xQAqctkkhSQijil5IJLyPAK4lnJlScERQ6q8CGIFpDpDQid5PMkxCFNJ0ypulCtmJxGpQgKZ50gDIgp1pOdgqpMC5T7MsQwKgOd5pBZLQRhdzOIDQKay3GGZoTndNA9N8KkoSSuDPIj8pMBLU4C0GaE2sgEJcyEwTeXET21DSfMYSXqSYT9aED9TkA51CUJdLNIUpqQgo7ElIIwVcOr5K80z+89Gx08OymqpbXBO7Yd39xvL1cAfmiyGVkFlk7ON1uBUqIuNOp6ff7VgyZmiFjAGAYdQE2NBeY4cqYRSdjgcdexyxS5lnCFFIhikcS4YgJHUtOpcjoOMMWIwBnSEDMFjIFKfRVYGLMGj7DjkOlFnk8WM8TjNuJsJ5rvT2zSajY6O04Wf+uFiMp2ni+7Jccl2eienHII4yQBROBB+0hNcUhWHUcEp1HSb0hxAXjBa65dflCRJy11LU9RSTYJstaSieisczE0M4nRSaDlxRt1JKFEkFdjp4TCLwiT9/5D0n822pYlhmPfG9a641857n33yOTenzmmme3oiBoMBkQNJwQLTB1KUWaQtiqqyLNmqklR0qchyyaLFgookTCIRABEIApg8g57u6Rxu33zvyWHntPJ6oz/gfzxVz1RJI2T0yYMnQcO7ZpkzME6zGRMrkNqPOffcrQaZ56jSaec6jRFnwNiFi6G7LGXl2qXVk6Po8cH9VrfJ8+bu1s1FMdbOn7b9jSefPmo2KkP15PT0JJ4ux1l0mJ6WuDhNarVWG6A858FP//jLefTheLl89/vz7QvdKIHtzoWbz66cHs6b7gsvPPPcydFBt13JOCyTVoaZwGe1es1iW9JSxMDF9DTPnsDgvOJfT5KsGQDPd1h6487DRwp5pydFEr99+ZJ7/HHlqZs/psyxskIL18q4j/zO0fSw0bvMKZNLbuR6UgyLothwvACsJXJir3Tni4XrUE2JNJZnUAnE+uqF6SCJ3CCfj1izqkR2cRO0O0W4dZOdvvMzP/H0G2/9x3/zh39qCNredl5/YXM0GX28/7DeCF0HffzJg5rXTFMM3QA1qZ4ATNloPK3XqxkvW7a7TPh8nrcCH9U7ueMQCoqsnOecQtDEul8UHOh6o1UxJKzWQeiuJPHjD24P+rnvdixpDIKlKgABRBmHUqlKx2ZcmTKTVb+mZEGwpYwGRkFJXeQCAhTWhsDSiFzxTC890FiaiBDZrK249d18AVxWuVyTHGqBRLnI7jx8/Iu/8vde/ckvnpw+2qRhZ63TrKp0ZF1vXv+Ja5VOrVHMD+Nm3xqsHx28ETljjsYXOi/q6Bia8Cwe3AJMTO38xK80qCxmFKq61ZyzKusPzp881C/qeFzKaXZ/9OHNLzyth3I6iq/fuvjuOx++8oXPD88Pn/tM9+yUh931+3/yzTLPULUyzyO33WnZvdblyWZrw7JLkRjHJs/efOHe42932N+Yze40LnkHd0dCkWQgEcIc7NvWrH/4/pe/9CtSZfFs79KlxvFpYlm7qD+5cGH1+2996x/8k//H+48HuL6ZoOL6lS//+Xe+uXP9OQvS6f603bz+/fc+/bGvXTs9OsfCGRwvtlbszdrl6fHx+UcHLeRcblxArPP973/34ydv/d/+h9+9e/s+w9bCnmk7tYN5u+p+tBc9+9TTib6t8s00McYvy6oSyejZjavDw6HrympTvPHNHz3/ytfHavniUxcf/Oit5SzOkVx7zo7oQ8u2b+0+95v//tdfvbTxZHRK/MvWHL14ufs7f/iHz+5e+T9+4z/88t/+JyMt/+L7b/7tf/S3Pjw57VpPxXxyM7gd88sOUlvW1YOPZ9c/c/3O/UcXX1sFs8X593/3xX/8Xx5NFteDC4/uvb3x/PP7sbLMqRYtzDUrgcAPgL4Zj72V9jQ5Kzs+KTmGiHqsISMaOoqrIjdVmEhLWUARTKCmwFi54NoIhFDu2LTkpNRUkhw6zM6DpkeXZR1BjpwDwIcHe1GRKcfVlu2kooWmlufFnlU4QSU1hzZpuHZD0VxXaGLKENpI6GUhVYZBJBE5s5zk/HSMaLq+syrc0zguCVjq2JWE1uueAYUNbFlEzLdyaKMF8nEMNKQlNmicmaXQtiZSF0STQmCqDSChcJnv6FYWZ6bixU6himiN4DjOvNUV3Ya01ax3W+o9VMxHPCqFEE2nhnBHCZd6qcRcAD8Zo8Ho4cpT3YvbVwy3mMgen50dTxft7Y3FfFA9+/jGVrNmNdV96VRXhsU0LQvPWlsMH49P7jy4d0BkyovScpln4cKitpAVrsJRdrTQeUmhZXBcCsiIg5lnMM2LWkd7jgtEVStATa5Bpo1EELvomhK85AklIQEdJZSBShsHoLFNKFfEceNZ3mfK4RmyvbO648z3Jztqq58L2wF+1TZzxRPGTSE15JJ7rg2R9kJ3OFnGpYCWFGmYjrONNeT7mniOhTEoVWNNpCUHympXaovzZHA0NAK01zq9ncZc6UtXwvP+sObbr716CyFg6dCqcJdk27Zp29trNZsSsCg1J9xFhSOALUCmQCZMwY0FGh0b5w4wgAikleHGURRpSKQAkhUVDRQQhZAptnApoOZQ5NJeyMWsT4QuomQ2Gi6Xy2USj8ZjOJ6nxSIrptP5OMmzPCsxJVG0IGkCIRwcHmFEpJICSMep5HmOcRgE3mwxajZDpfDa6ubD+8c721efefql7qXdem21QaoYaRRqgtI6wT4j8+YGlzxPjhoOo7C+9Avja52eL8bH9/vDeQx3dnaW5Szj43zpnJ8/EKOZlXe9+rK9Ya+2LjI2l/rypj9fnD+JZrkHt+P4DBDB5rsvbuNJ0nz0+HfrLVittX1v9ejw5PLVtoMb0UEDqtl8NhHK2ap95jw6TKNHz7bXlifloNxfbQWKtG4+c1Wj/CAh8zlg9lq7fenj228888xrB0eneZrfuHZlmR9YbkxtKKIRF4PDR/G1i58NK2t3R+8FTa/ieaUJ+/MRDNL3Hn+qVbC+tulbK+l8f/diMxl3nzy6V20Gi7jRn3zUGrWwtQOtWVka368KfQphvUhKUPOozQikUTysBTVs29AiQhtPzfMcUNohEkmVG5fXqrYGo06zGifLaq0huNndurDRaxFNWn74yz/7U+9/ev/f/c4fIwF2Lmx99tnLZckXi4in5c0Xb+UqlhpMFzNtkc3N1cHpmdKKQGrbtpLSZgwA4Lqu63vttreI9up217O2vLoXTI6XswSIzqw8RMqoQk0oQQB4aZKej/nxKPScNFtKCbDjFGXmuq7j2mWUUgtrYBBCzKYAaISQ1lArtVFrZUkuc2FT2yBSFgVDJghq5wsbMwhlMUzztdVLjU1nuTxx3HB3y57FeXetkReLz75w7eXnrh0ePJbc4RRmsXU4OAQahcbLecLjZUWWF0bV7x8NHptljRztwufCqLBtCNWyXV1dRsd3HvyF5+2ubzSWRcroRnuFTQczbU9myfFK1olmQx3H3mb3wWgPJ6i+EX5w+4Pd3Qvz86lcFGvtZtDongznBcVQqarvScWT0eLCCzePlqdBd61bCX747d94+cYXBZ50e6/P08eBYxl6GQUAWnG729t7t6xWVx+eF43ttStP3fyt3/63a5u7jXb1/duf3rhx42wwef/D91ZWusfHHxK/Nhj2r/38z/c69nPFhbXtm//+t/7Feu+mgXeqtWUz3L43f0C88dp2ADXdOx4Bq5+B893Vl/ymeHD40e37569//ef2p5OUlvuLfQm5gq4JwqNlIclZo/5X9o8/8h16/vDx9rVwdNqvgJWkTIaT+dWXr8/mKIqq0sjNi/4yGx0ePKq5TcdU1ys7fGzXa3Dv5CMJ/Is7L33zW9+Yj95/7ad+okDOu+986lZhjmr/6O//45/72qtf+MpPNiyftE9Fma3VPpMjTAaPwRzVGttzOFMMIHsQVKv/8n/5Z3/zF/9+fGbXK8Hh+BFiK1Wr+v4n3/uxz/2V03SPWZVRNPaDikj4en3lZG9vo9GZzE+JP3CcsOTGsZws0kGtIeHAqDYAAKDSICGNAsYCwKaIpbiac6IAxrYNLSakllBB5rgsWvZTmDfTs9iFOEsfGIL7Ca91jpyw7rK2ja8b5WEWQcgJQNWyEkPDiVUC6HDLNVAxlDQqNbMyiyKG17QqLerq0iMqIBhrVeuu1PJMFCKS6H7oX07nNnGWhCdYVZRMS8CBbFoOIGghuDUoxpWg7tAqhi6gjqAuL0FOsMVzCRUE1ABtezbUEDtEG2ouv/CF3nY0GN5+5/bJ4cOSn1mqkHmaVuMuaylpFbLY8J3dlF2aCquD7jyqt2R1Ej3QY336ePTh2aR4Jhytior7LoTVRTLb2uwdnN07fXjMRB4d7JEYElhJpS6LlFX8quF9UJ67xqKYQy2EgQBS16uoOAVKUaBts06MBcECEU0NkQgSKjUtbWgLfSpVCXGOsA20ASjRAAAUA+MgWTE8gEZi4yGUQnZcZO2yVGIOrCrNrTlRiFkICGAwphQhAqmFhMgJcuJSGMutV93f+/ZdXMDnr14jVny6nBPotgmSQFHCbEk6QfXobLbRdHvX1y5t16xCA7XcaeoL1Z2KhdohKHLh2tS1IGl7xgN5AcYToabCs0A9IKL0S4xTwbnUjEoPQ+TrwsY5SiFC0gAjpIMtZCyei4KDQk1MoXUi80UGjEzno2wxKJNFOk6i2Yxn6WI+XsxnXObj6aiUXOYyL1NMTJRmwGADEMKA8xJijYhlKOQACG0QJnkRYQoxQEW8qDk121S2dna63d7rL/1Yt9sNTdNpo3bHavqhkIVxC0JqlqgI70HLNtm0QKkppIY+dIFbsb0+A73tfDHPL3ZCLwi8Wq1AkPmt6ekwltlcj/N4enTkzcq8rR65Yl+dNNIEun4mrSPLkdP5SdWtMoYf7O9jhIoSzud5zu/dvNEjEpQzhPUP/So0yK6balnqi5d3Go3Vhru5t/HOahYAYK91rm9v7t796J2L9d0ublZ3mg8e3Ku3gwePHzRbgeuEaYY41+zCppW7y/fenSf9M9HobDX5+bBOuzwd3L/zEJLlWtt+cj/Py8Sp9Hc2VmXycbMSpPpglABUrY2T81bedmHrZPDIgKDZ2HSYO5udn5wdWQ4l2Cpx4mjju3aSYoQItiwJFS+lFnSRR25N6QJYpFbSBLOsWhn83E9//d/+638lNDIGrnV6vVbr4w8/eO1zX50NTv/DH39jugRXNzZee/opgvSUi/5p3yaUYDFZDvdPT7HFanVrMjqkwPFcAjGybWu5mK201qWUAMEkST4qByxVsnSrq31meSoTRqgHs9v9+XDdDl2DM1MiZfQ0Xo6nkSrrLnMdy+RcaWFRrCQvjKbMQhhrA7TWCICyyBxqEWIpaHjGgYZKmdQUFmMAYiOlyaVDCQBBy7X20ju2RRaSC150thsMabcsT8/TVqtpk3R/7+PQr/gr6gd3Bu/sn61t1SYHe76sX9tqje7fW9m4cmCSOTTQhE1Sa+Fcq5G0IV1frwwXssjyVFarOI74wfm0u1IldlQZ1k7P56tXt4RvTSfz3ebKuM8RagQsSuOZC7kNk/P+YHf35snpLPSbRf8AO/ata1d931qkpNWoFVg2WPDM9ev3750sjWesGkjPG6B9e/7dnetfbgYidhy3drnIReAK2458tvnJ++N7tx5IjF9+7XN/8Ae/3+pudlY31Lvvjxcjy2751g5l9TiOr9+6OTyZt9rPPtx72Gw99+HtD1549ub1Sy+KTA5Oo/ZKuLJG+qfTICSnp87OhS/XmvmP7v5xGLzcbF/f2QBv/uC7Zaocr0qRGh4d7q53xtPD1hblBnr1i9PFOFi9cDSNcGgJp8SUYi9pr1XeeON+o1Xd2tmcxengMC7AMNhkZ4dcBnReTtpeiM/S6xQk/M7po3s9/3rY2v72j/683mwji/6j/+4f/Jt/8b+vNvSNV7Z83a6YDdCsv/OjN772Nz731pN3L3/xs6oarbno7l98Z3OVfvDNt7Z715pb9ScH7ztkbZyAizu9g4efvPzMViLOXQlBkSpZ5gvc6taWiyhsXBIkitLjRqWapYXreJzPEEUQOrIwyBogwYCxgbAN1AZwTHLICq7qRhloDDUKAqW10LowQNNIwXKZ5ZFywYwPcEDKlFYsO1ks68G6thgJFkLkFl3BhiJclMHYERUmDAcg1wCjzCEJgjDRe7PpeZqmiGaCs6IobNLR8U6rjSbnGbY4YVwJGs1mthvyTJQ5dT1LW2WuUw6ljV2gfSE9LAsHVX0YYEwtSg1UEgnmaAo8KTmkSClFKRRCuAwDiEVw0KROa9qmrZdW97dPH9+en5/MszGQ7EluqI7WmOxazvRocn8CN+sVl8w6HdersjSzl5lbpMvl0eOPHj6BbiDg1HX9/n5/cnpEyryK/AqqkBbVkwyHboBZrsBiUTi6Vlmm55UMpgoSgDC0kOXkSmRQlBRyeS7K0CgHEAVgCQ2AqoN0E6JzihxjKkbMDSggDBBiWcSYl3KRIhMUS9dhdQigaxEg58hilGfFnIs2qTM3K1ROmUs1BJQQAADOs5zZNBeCOk4B6eOD2Xw6vrVzQRkgStWo1AUHCoi8dC0IdV66wKzVbG+zXmtYqiwARt1mDc9ighAGYLSYEYdNlrzpeWWcy0WOAG5Sm6y4Bqs4iyizNSNcFEZLh1kOQcKUichJHBgIgRAiLbHhiyiO5nGSpflMpPOZTBbpbMSTJJ5O+TJJJvMIn4zHIwQNhGY0Hfi+q7HJsiw3yBhNCMaQci5d182yJYQmAgAqRS2Hl9xymSoLAJRNmaV1tdmSAm9tXLx54+mNjY12p4aQYbRhrIQ4hfbHEGiDFUCesgxGNxDuG5TmsCWZUfaEEEVQ0AHrrNbsfP56WgyLIiMg7NZXKdW4wg7XqoP8g+ExOd6Xb5/cW6mRpvWeYK0b176sjTqZ3jHaYlSH1fTO7Q/u3R4Mz5ajNMf2dGf7aWpWZYGMe8a0Nxhig2HFGVuVcsJzGKJWTw3Kge2x0Ptsb+3S6fzNreeeKpb1ZzbpdPFmY+WpP/6D71ILLJei016hNEhy0Dld0no+DUhfb9Y722U5Dg23Afjwo/24eOK61TTiWoitld39/f0P3/zO6vqLu+0rNdDyquJaE7915w+G0QE09eh4rxBRxf8l23UW8VG307MrlTjvj84IEMVKI6TERcoYDbUWSEC72hfccEPzWRZWiNaknIcXw59+7/j/kApYzPdByQgsikyWmY/Fo/Oz4XSpIXz1+Rc3KjYImIDL87OBR6thGD45epwU0vOrWiXNqs8jJymmnUanyPJ2oxnP43ajPp/OXYvlBj3ZG06nojI5293eaa+sno/unJ09WUzzND7d6fYsmz4+3IPAhPV6WUhRlMihCgBkECWUF2VZCuxSoo1UyhiDKRUFh4QQRBHQSVFYNlMQKgOgbSGgdaE5QhY1s3nUNA0Bje/VUOAEMhxHy0/uZXEiM3nerJ3f3Hp2fj501uxl3IKzd7d3tuLliEfCuVz7t3/8u/58tPV3r5VlfSWYnBw84bCaV2Zdvcnn/V4N+JU1oMhstuj0loMncjZa3NjRo4M+FE8uXqs8/OQulKDn1majfgR4061aivcnfUbDybk01FMaFjqanp55jPb8xsZ6K8uXUsqqH6h0snPhsg614MXVyhcwT0sT3O//0GLcz9AiswpDOY9Hs2Tnxsvtte577+1Zte7a1macFz96+4OV3rYf1KGxqtX6a69+5t6nd9Y3qt99483tze1FnBwO7/fHo2pj5cLl9e9+542tn6uvbpRlvE/tOXM6w4Ha2rz15rt/3u1sbGxdfOtHf9bpbW7tXNm+Zn7wJ7+/2tu1iJfMC99101nGGykH2Xrwyw/O3pQaXlr73PDBR9tdqmGb5a284NPFwXSSnJ4t/09/9Ut3H+6z6sUnD9+OhuBLr7w+ffA+igbLeNBY36Yr4XD5KH6Mqt1oe+dlIi4k0YONC+6NW1+Z9IdP7n4L4p7r35xPlpd6zbuP39B4aaPPPHn8a3//v/yfPrz7Q5D4XfqZ0ZNPnpynX/9rP7G//yRKz9Y3XqOEAFMmS7SzvhoXEVFxksYIxMTrMi+enR3utK/fvfMfXVtB2RVSQDc1Cjs2VWCpuYuIQQgCaCBW2ghgDIIMG+YaYSGgpeCZVAJjgLAWXEjl1bPpQ6in5ejc4guxyBbJbJaPg+4FwRNjqoIHCLmYcsZKjOHYXq1IBtSZtpZSMVdgmGIqW4t4qUvJWGx7kJGOZ3sOcxQo43SMEJWcRzNUq18E1kSZQ1EyajektRQmEKaBLaRxRWvC8QI32rhWl4RwZTRDBhvBgMHUySjnQCNNLKz/MoW1iQ1tW7aUFNqDazfX2tvVxsZidJidPJw/eJjTUrvYnpWimAmQYZvJ2+PztiR8vr7T2J3no2pw9cXdp0pRZGhwzrO0qNHUPZneqQRlg63rzDJgSAaSID8oFVYCrIY7i2UCllPH+LmaE2oRRRQXoigBAIQQVQgpcoQXBGuIGNTImByQgWGfFHFIcRVjo8lSqVQJi2CtwNwCmwaOgaW4PIckM6ZmZFUAULPp5NFtc/Qy3JAr0C2BfCKhLwvDHIwBF0AqXnGcPBOMWpPZ8ny4+PwrF5++vLooU4ztDkUSghKS2TANA+YwGPikEtC0UDwBWWI6lhQjEiBPqpgQ0qzXkQVcJbXmyDBLOcwF0ohMxAS51KllMrNz7cYQQrtEeJ5lIC1llJfzqJR5Xiyj+cgU8eBsfzkfZjzFUTEenklRJPk8yiMuS4uwaBEVyq1UKlEUQYKJXZ2UkgtOacCQ0kBpAwQAAoMCK0ENYACkwHFoliS25YXMXaZ5K2jZBIf1tUbTD2r27u5unkXU0ghaGGE7yDDwkcBlDl3f1wIAbGiQe1ovnES2DCW443ulGkuocpRVcWEIcNxqnIo8d4ghRA8gXFrNC6sh8WPcVKdo3t+b9QdLcBKltdaZ2lvyYmV9u5VmA5+sHu2dHJ88ApBZJLSQSy3EXK5gX6hAClYA1J+ctnqt8WRu5vaosK5evZrm3CFrhPSaK+Bs9s1KcLlR23B6LIs1s3rz6fj5517pnw6r9dp4tkfcpLPS7U/UEMwF8H7myz/t2MOsmCbC/t7jN5Z6ejZwVntdFqiL1zYkH29ajke3d9zuyf53G80r9dX2JP505/LFqD8VsyLNXpj0z4rtgmGCTM8lK0pqjLHMZb9/Nh8eP3XlmsqF8g1hwkH2bFzhaLHI+0BlkteSOC6zOJl8fH5yypxAaaB4evXS1hvf+Ybn0npor66uffkLny+42dlYlfMxVCDNylKBz77wAi/L25+eVypNm/kApCud1dM0cV03SZIiSROtLmxshZ6PtFlOF7tbu1ll8OTRJ5dalyTSaWfuYOItQ5PmkpB+PLczYHlMGi25WAUOI7pISocxl7lQAWoRylhWlFIrYzSlxLPtgkuCoFGaC84YAxADLRHGCAAhhNbAcZiSwLGnFstASTu9ZyptZCR88MH4mE8sv8widWX12R99/K0H73/83/zDf2K7T1bSFsbp46lmbu3JJ+/fv3//b/3cf9ZodObDiV3MOgyEwtQy4WZJNTc96kalGg0nWzuuRfsiwT2fRkd7OkOrlzrRUd8xPF9+okknMZXZVFSHSd8OxglwyLJKi9Dx0+lxHbvRNEF1Vo90lkZS52GtNusPr7QbYheBydyvkvpzzyP5dnXZ6ZIHp9N0UDvfaa0vF4N5dHd14+bupef3z/oEW6+8fIsR+untO2trW1cuX/v+D74rCnVp++KoP9jculIkIo/FjetPG4OE1PVa+9XPfuFPv/Hv/srPvHbj8teIhmfDt4tcUYo3L1jLyYNkUf6Nf/yf/8Ef/PrR4ZPXXvvVVrv8rd/7w9X1px4dHlYqvuAF8qqLfIn8y1IFZvZBcZa/9Jm//t6nP9Ti9PKlr33/vYOL6226TOr+pWJRe/r6Z/Ye79nEuX/nhweHf7p1sT0RxQ8e3f6//Nyv/sVv3vvJGzdvf/ObgdjAjQp0Or1LPZM/iiZ3fuLr/8ioxr2P/rAXrn7r/T/7wi/9ldivVnpP/9n/+P/6X37tf3r3R3/4t3/5n5wcFyD0j8YPWkE4HTz8wmvPojIrs/lTz3xhNlumyclwtPzc5/766cFRAL05aWngWbC+3X12MehfaNyIDrkayOqFNSV5UEFCRSHbVQIiUiCrNIBpQDDECBCEkNbaGKIVhKKECGJlgDIaQgWAhgRYlhxNfTdUws2ZuX9wFI3nTCzWPB4EocWw5QgNZ8yGEGKMAiNw1WQGiyWMlIxZyl1t5VIlxGs0HIar6eIK8ebAOgS4niZrZXxGQJd6Z1kxpg4r9FnA2nncodBvMLvQYykGNqEBcxlGkleJcm0c+aqAmhhNHUKBsW2NMLBKNDBUaw1c1y8KbhEKMSUUojwmGDoVhxNHI9LafsYPdovsYbL8i9nwRORJlgMFNcAFBSYrscX94fLtDdjhKa77NS+UsmD13pf6s0RWjxdJEVd7xJvGxQA7LuddUjdOlIwtZDPaxMiWbGxqcDCWEQQZ1q6WNsNUC8pLRxkPEIXmACECawAAhDIMMeBtVboaTPMSMDujFGtQLRMfE0VZJMGAYF8BbrnLtFwyXBemsGicqEIV6vytxxdfu5WmgFRyzAI+wzJPNPWLooCI5JkAADgUVRz21LWdFdeEHtDClhIfncXVis0tGcc4cKjlAUSMbUxW5pTSRt2BBizn0rKJ3wykkWlmYAkpM8AkEAWLXEipDeaac1ciHQGYl+PpYj4c25jJIj8/PcuiqEjiONqPs7jk2WI2MDybjs64KjRQkDnLcWRRT2qYS6gh9HydGyBwsZBaEm7ZblpkQGlsWYIXEmADlEWwktynLsiEBQgWuu42MMYpiD3sBtDd6tYrQb3T6jQvb3MZG8Cns+S5Zz4TVlt5Ea+utDlf2MCReRqVM2pCWLiEEGbTnIyNthzs4sB4raac+1AbAIxxINNTwGXH3kW2MSS7//iB7a4ZmkI+gro07bLzjO+NXpgvoj2jTh5/PB0MG3VPirHk2WazOzmfJ/1aJVhrrexnZB7H9MGnfaKI2Kj0B8Jw22uFjx4eTM6SsBHWeuHx4UnV7i2WdHWldnJ8nxB88+orZXEeOv2DQ23soFHxHeJqzn/01ju1pvfZ1y//9u/9xsXVz600bnz+xe32GrjzYCYUVFL2/BeadP7Kc93FFM1mE4oTZuGN9Wddmzwef6/aWVqWlssnvibzYTae9TuNa+Po9nh4+Hh0b7X+XK3yxXjJMsnWLlxYZE/Oh+bR4cMr65ekDQopKISS62n2ELphMpEeVbNokCzmmjt7++eNRmMdsMePH1ORFNGca6ALbfuV67eeNxUvjZNkHHe6q8hnk3v3FQCVahBnOedA8pQY/NKLzy8WizhNE5WGQYUxagEWzxeOAT5zarWaSwKLNZmbxYusf3auvNXJbGzjPHGZAJwYZZfGA5gTYknICu65vnZtCxMEMMOIS40NYowxo3LBKcIQaIIhAABCCCEkAhACESSiFFBqagxSWsbFXMUeZalQSoqgvTqfZ2K+MAq49sbpyYDa808fvPXbv/Zbf+uv/vLG7sbdj0/al+rq4FG5sTH1489udP/qV75mh115fBKxyWAwurZyPZQnjFf3y3thrdstGpPoAOkIqPrsGOgy6rWb6SiqVrsOz9KMO1aH+M1ZaSaRQlKN7rznXdhBZebgZsPtacUNRKPFsd+yoE1VFhkJ02ga1FtFUbTC4OPBYrbg1y5dWp5PbGs9ccWjj0Hda234iMlRuTjCOr683Ts/PxgeH3/9K59P86P5fKmEuH7lainks089fe/uJ/VaazweX7qyU+TV5259JWyQa9euPXrUf/6ZZ5P5ZKv9WWc77vUu/s6/+81ad7C5vVFhT89Gh3uPH/3zf/pbSeQcPlZra71XP/P5P/qP3/zSi3/v7oPvnB0e25cuXrt07c//+A8v7GwErpcU5o29yYXG9p999J+i8sFWdfX9j+7XG01T+Hv9H7z+/M8tROYE+Z0fPbh567lajeks3F597e23fvv1Z6+NPs2rxJY4/qj/wbXrURhtV+shpsUf/8Z/vHnl+UH/k/PzwfOXXn/jB+/+1M99verVrty6/I3f+9e/8Ms/NY+xzcjG51sfvH/fsiq2rAMxBTxxsYrGw6tPrR4c7WnZPDs7/PyPv3LWf5gl+foqybgwdr7aXuFyyMHMbdbuffx2vYcpoAamUDWIcYWaQ2iLwrU8zSEHCmljI0CBMQAUAEgDuKZurgyEWNlUAJgUPJOCECIqBqari7OzoPSrknXXekli277j1CaYhRBCCAoKteRVTVxpZl7BTOEV0aaUJF8WU1uUaC5JniSRVDNhnVGbQ+BaaB1QG7tLBJ8sFwUmvkNJmoFZCYKKsdz5otDGVCCxmOtA0y6EVmhCPL9EDkIYYgIINewvO1AOjQBIQ4yhhpjZQGoEsNJQaWXrNsWF77sZhsqkGoQA295msZ2+AmrBoH9YTXHV9YeLflagHt3uW/vA1OWCMJ0zH6K8Rg1TarkW+pxfbYVQtmbni9wll6QhoJqThI2xE5SJpnDsOBFZEh1Ln2ZAW1oLpWTFoRbUQEtlNCAUyHWIHIAiCTiUBiKAkBAgxtTSChqSaeNBjSEpKfGUwlzNkLEghFq6QDkaE4PmQhcciWrPjN77IT28NdvRDFkVFzBlZZkEUmNEDbKyMicWZQj0qoFjA5nqeSSgDZUWBTLGpkDkrXYFEZCkUiNhu9QLXQiKIo/nTstaJfOUZ4pKpYQSvmXnccnTvIIxOFvIOC9FMY2meZYsZ/N6Ou8vpqfDMxsYkCTz0XksklE2M5lIyxwgkiSZBWnOM5t6wui0yAAQDC0BlIQiURiZUKZDgJZIlsAYnSYeRcBoarRlk7zEzLIY1ATRKgt1LijERBuEK4Jnq61VY0yzu7KycQG54er6jtuiXORSSsbCsLbhBy4LIGC5cGuQUKIlz8ASZlQVDFe0cAAgNqwzQ7m3BH5EKGEauiDDaXduxaCClyJphrV5fxI4vk5goM18dqDLTKi86dUv7mycnd0PnfOP0gsnR5NSnZ1PBwyGyehDAmUY7JiWzKBTK5rRImKOfvDoI0Iv2cSzvXj6ZPnk0bjaWinQkR34x48LDXprrgrJosx3Lzzz2jB7r9ayvvnmea3W2Oq0y1TO0exo/366SJ999tnvfevNeK6z9ijic47p7/3W7/b8W82VddAiiWVfNT3X9/PpB769PN/LL+9uu46K59OLa08NB/3j+RBiwGh3ni+bFV/PinZtd5n6o9MhLUxtUwJ7vphE0f4hsTecerh4tCgFgBiksoSiXEwLgGzXAkU5WyBZFpmlVSHO3bWEHJPJYo4QaNc8Asgntw9f/dwXOqu3+sPJbq/25MlZQsCAy3W/KY3cvrB9NjhKyhQYUK26rcAdnY8G47Eb2HmCsiwJmJMv41arwtPS9ULAJWSy6a0eZ33pG6tuJfMESTlJjiLjd/3AybjNedUPNIKFVm411EnsBb6UkmepbbuqLKQW0KYWcaWUwChRSgC01pIQiokllcAI25gQYAwEAKFSgaworAo1EYmAcTFYv7LrO25eqTz7dMsb8MvdxvHRAAjzP/y3/+zHv/D0vfuTStvzhZZ+B0HiCdCya8Yl4+X5vMwxqFn0EQuxBGhWWtxvq5LXxIDw6c5qz3DbAmu2xzGJmnW3P4xyhHq92vnj42I0s6gNUhkLlFKrdzjoeCGPxo5xBVVCmWmc9lbWfAZO3IgUi7PDJz3R9G17pjPFZRUFHOraDT+b1E1+bMMGo6ixs/rx3X7JbL+2fhbL9x71X/38jzm91XSynM/nFy5dOjg+eP3zX/zk448vXLmMIXjwZO/Zl144PnrEPPjKS1+xLIytU9tdPz3qt1u61diN88eL8s6q98zx0Ydf/Wrzv//vfu3nfvavNtYmn3znvl9FuzvPDvqzj2+/9dRL67/7ux88df2a7YYne/2V2urO6s5Gb/X//b//s7/xS7+EIpxJh0KfRPWW+9LWJe+3/n//7MVXP4tt6DF5PNwzUBuoykI/dfkXbBken/3Jj//ELzy4K9rrT+/flo3y6efqvT/98Lc3/Kff+KMf/czP/uTH733akuF6q+54pHfNuvX8dWrwne+8EUAWS4MocNaMi7aS0794evfyx+dvjYtHfriV083uxQtPjr7tFKvD/vK5F34RIf9874e3LtzIypJK7jLMAOtPz4NW53yYKseQoK14ShDJFrJStbicOq422laAAlMxUABUKLhERgNtAeBjUBFEAIkURNogpQ0yggoBRW7nguc0qNFFloTrtfn4oOL5rqwXZcFVLuUgIGsYKGjNDYRQragiIjj3keJSTPjBEgFgTE1TZtVhWdUYUjxldFXzEAij8+40eSdwdhAthpP9WnVXGFWqqRHhtAgsattUaiwFzKWCGlFo1XzJMbcgwwAQowQG3NEaKVO6noGIGCQBAohIrS2KhVTNTj3LRxBphIHtQ2MpwPTOc+3pCr4Mbg3689sP9kfHZ1bGqCwPs4PCZL4HIw5sXY9kTZLEMtMkJq3KVqE1REjk0MGb1aAcTEc6bxKdupYNbEJd2pVFNS3nuYEpr2AdO5Q6gGPFRZkZC3KDJ2UBWQoRUbIuuASKK0sonhcSemGMAUEYlKWtTUHcBWGrfIZtuiqkoo7Ic8KsttRLgFS+bNVbPOJx9fTD0z98s/XffLZMmSsXVYs5VXcWS0qJAMDCDkYgLwuICEwjaZpSI5inyNKk5kfSrAfB2FoaqRBxbOqUEigFoAIYeGycEiLwYpmXzHCpytnZYFLOzSwudZn2j/aUAUqa4fkBLccOiP9sfmAZlE0TLlTMeSa5y+ysSDC0SiOZizKhJdUKYWmjrCiZSB1CtAClhNTxJCwllBXfqfB2VETdoAa0MkLZDNsY8bxoOYHnsSRdMocBQ43rGo0xxpLQRljrdOuA6O1r12GlFfS2FHZaXr3WIIv4tFKtMjsU3Ky0L8/mfQyxTyzXakOxLvPcRGeAFilfegwbDywNB5rZS+NRAyk2VnWm9jRykGbtkPIsC/wmXqejyWGULE6yhAHLGWw3Ot3gYue8lI12GqSHlpiczzMiuqJMWo2RR5qW91D0ZRCsZNmZ53OloE16J8dJpbYAU6eJ2w72ltkAc5mcz+fzeUw+HG9ePQdi66J5uByFen08Wat4G1XfjZYp1tbjBw9no3GR8jwp59FyMc7ynujH//bdb4+IeyF7diJZsxGHrcVh4l5MzHKeZ+PlEnt6b7b/gw+Ouq1qF8yxghDYVDc8L4NQHdxHz9zY5uAjOp3k84ud2gvGGiq+UHQh9crpKSRVzJHm2iBGU8kNl5PlsixvrwTrjtuLFVXKtTB4/OjYqlyMkyc7l3be+cH5q196/fGDPQmsW899watsuwVi+iCtO4scLEq8f3qKCFYQzKLxwXHftt0wcIKAjQfDKIk1y4qyhBoALj1CgTahH1BELYhrVMTZk4aeeHTbhc3oaF/N5xXV6TDCYulQK6+gSZnUiFez3FmaNl0nL3KMMaOEQhN6DnTpJI2UsbRUBCENNaNUC/2XLbTx2DxJiYG+60IAElGWSJvANspWaorDip1hYNW0STRZeuTyy1fN0dlZ51qz1W74zBmNR8TJLa/2wdsf3OVgxQ748fG80Wj4aJOxEcDJbLxerzIICbw2OPndq52L/UE/6umqp8ooufT0qtHH42nuNIoMWtX2V9z5sMC8dMJSeNPxotGqVxDc2x8Nq08kXNUlfvKIr+2uBm5gZlFzlS6TWe7TcjiquzUHU4LxUTJGuejtrI2WAypsQ1zSrD3zxWeTM77/4BSAO1W2XnevDY7SVrPY3F0wU+vHgTZppRo6joMorLVqCNVOjo5vPvvs1vb2/bv7tbCmVblYLjzWyZYmcKzXXn35vQ9uP3ry4Etf+dnH9/pXLn9u0F9sb3evXL0xnpQIeaKsrzV/Zu9hf2O39ehx/9qLX/7g9nuvvLp2+uD2mJ/+zS/+yu/80R9vXP/sDNoffvSHN679dLv5cpOhbo/e/+TDtterNnqA5ZbrK7XihzRsOTu1XvPW9sO7779y5VcrMLDRm+trn/nut3+wcdX77jt3ieqcPXjnqYstYRbTZHAdXkwzPI6Lle1bNPIen//ZWqhs15eVHakAa9349NNPvXp8NPzwPLpN8Wmdyyois/tvktZ1Ot0J2F/Y7fnjo7JTlxjcl+jlhXm4srlz9HjaWWnadi06zdfDrooHhORKWgpMszKrh5eUBH4dRmkBLQA0NAZDYCsjAQQEa0p4USpKbCFNWRQQqAByF2Qyj/r5hJG2a83X2r5M13IrUuiktIXEOTCXTLHqeJsUBIgSQRbAOzPTRtEgWWgRBUk20rkoIeIVtcjTIutDFGtiVWpQZG3IfS37OutOin1Kca2+zXUEKSl4KLUKXSLVUMwBTlxWG9ksANAH6ERZnkDEEFcjBQ21geUhGwNILKqUghBzISAi0JSOawHANcktiC1ilQK6xDZUSRjXmBfWapkkvd3V6q366LDD5zo+nTx8941KjLGQUhVcL6bpcFoCJE2v3d47m251XoLc+IxUGtvHR/c7MHSdLnHsxJXBqRJX7cKWE2TLOSjn2TwGFGnewE7TtBIvGM4eYFU2NN0A7aWIcWls4ueQA1gYCKq0jWSsoUKGAlhS5hJSjaKFQ4nBgllKqrRasebxISE+ME61yTI9kGKVNKLp994E1c3231nLYBVOkihQFoEYCayEQRBQ24JuVgoMm6EFONUCukLqkGhqgQnP4sRyEDdlIstsMS5kCTBS/fMnoQpng6iMuCzyxexovjzhcim0iIbHUZbPo2VcRoRhxUUyTyxkT8QSQmgRKgW3qQUxEJBjhkpVGAVsCg1ULkFcCDvLQmxrzW2LaqgRJQxpDVXNDco0q+Imx1UXuciCi2JmW8hlDjeQaCYi1fSa2nBIoTE6iTPfbQQ+qTRabn1n4+Jz2jbtLZs4iJfC60AIdTVs2jbULA6aXlYuqVvxwZSQAMAq9T/I8NwJry/jYeBirSrTKK62vDRfQokdhH3bXwymPqyUcmggS+cUOSULWpnwgq3d5PH3s4LOyghU7vvNdbzY3SIkjtrraFxdf/rT8tN5muUyPZj3oYgbzcBxsOBx3a+st9txkkyiZDAsMt7drfvA1q0NfzDNRuPFbJEgC1PgpVkj9Ldv/+gTB8PXXwnd5pPB+SHOngUr6rw/Oc2XZ2nxzCufsSxbCd1qOFFS3v4kdWzXSiP44exia3Y2S+zKbN6/XW20W6tXuby71nYG/VPmmdNlzpS1udkypsMoDK2dWb/KgrszeeqaHcL1ShARs5eVjhdewyeLqscyxpOJuLH7hdyPc9fGgh7fG2s+OX94RG60ePQXq34NA+/9wyPo1G1wsuKuRPH0hcv1iIs/+eE7Bjg/89Wfk+Be00nvn+uhrvWTo0rgxAuRz3mP2MPl3GHMCb16p74cj6Ms9eut88kMWBYBCEhdKJGpItdECGDZFZSYZn3dwMN2zcY4PY360nCn6rBSAyAZdamEwLbLkiulVt3qLM8cx9WypDZbZIXDLJkkoW3lpXYrIS8yipjRQMvcs3Mo47ys1z2/yHIgtZHQ4rjuV4VQI3jsu/5M50y05drGNB3vso2lnR4OjnNTIm6yqORAAagr7e5gNvjWuFlbnX2cHwIX3Azgh2+/d2CxZ57aMebMI2FZoNHgcRW0nhwfKo16eXgAz1YqrF2q5ZKz6nIwmNy68lNZ9EFRcE/h0KZRHyIdq8x49RcScCrUdKt24b3vfHNjp8Hqr87SXrNyaXD4w42nvngy3MO4Srx1XMjjfBbMdC2sK1p4EEPInUbeqtZWauG+dSCOwo7UsuUX1ZEVP1m/+jltmkvNi7FcfbqqpmgyW8RqwepQj5Wt6DPP3bIBxnpcppNkXneCjfXeTV6mu5cuSlb7+N3D11++Nc2Ga7urs2I2zhc//pW/2V3t3PtojCGxg+X2s/b//f/566989ilmB8ze69XrMIrVTP3dX/1vRgO82X6mtW4O7z94/uWfirMIOM0JnC+OP/atZKv7tZV448T6sGuveyMu5KKxeonOkUuG7/Uf/PRXX3vcf1hrvHww2u9t9O5/+K18/Km93u2n/NnV8P7HD3t+5fHh+5cuvyLkjyqTlQfn36h3yCK99HB0+JPPvn7v03d+6if+xrf/+Nc6r/1C/5N3HDZIpkO/U987vlv3Wqtw47vDX//8L/wiUwrwcz8Ml6QK4OmW3ZkeL8OKZ1Ff8ZhZwyKObddPidS69P02ga5WgEFL9NOQqiW3sEUhQloDgB2GHa1BlpaKhIhrbCSzdSL5PM15iS3UAp7KBJH+xVjsZ+59jgGUNcd5EojrIap6zIKW5lZemrRCujLeUS4T83mIvVHWp7WN8/0HDsbzKE4EJ06SRkyWWatzAoxapplttVIRO8D3ACuXJQgrcRpZ6BwYTpfPaGajis9dNhLasWhZThlmgAIXNCqSuMggCLiE3M5wvTSRTSxWiBJjCxNqAOYYloxaWEHmFQrjQOmysBW0XYdgBCQUQnFJ4MrVbGNXCTA+Plu7spV+dOfjh+8m4yVP0yezB7Xmeo21PZnpSrnQp3ZBIS51YOrNXSNJsjwiNm1bhFtcM1zTxsv5UVFGAHgIFVoDYEpsNASaUQIRxxQbhGthl6QLKHNcIgNXSQWm4hxKQq2SCwSBZUxSFpQiV6MMYaRF4LBVo3kzXGRybmOLy3mFrEJ36Zj16vKw/OZvFt6v0K+vJD3HgVghIzDgAJdSqDyyEKs49lKnUuSaCwaoKnQZZ5rzLIlxFJxHSyX1aLhMFxnmSz57VGHp20c4ik4FH2kpomUexWkuI66iglKdcY86kKslSAwACpACii2LlcikkmMbQiNso31hLAMw8aTRIfSAawHFseU4zDMas2BrOp9jAgPX40UuZNxzO6XJUgmbtXqZ5SF1tUprxguA64fteZFXXJYlqUObBhJAIQoVBwlnVYGM344j+Bet+s5y2diqXwCVwqZAiEQrTlBLS1stjeAjhBKFHWhFUhPGOjW2atOe43ItEpksEZFSYkoZ0CCNpSnLMgM6B+FKZ5gscll6to04aTksSyaFJhv16nSUl6Y1mzipa2xc9Bd7PbY1yAZ1h1ccJy8bSVqJ5oWcLpI6QUZDaAiBCBsIpNHlcj4q65bL7Fm8SPN8ESWO6xZcG4lF8u4nnzxIpLN9eXcPHvyb33t3pd58qZqefQtUGyifpL/41f8ci5zH5sbzvzTPD964/anvoFc/f/3Tj09uPndRiG3jPC5VSIm1tXFtFj2+cuF6w6vbpB5Wby55H6bZLFLz2fuh24zi6aNHn3hO/e74TntVkcS3HbgcH1TVS8rUuhfcOe/bOZ2r/XSCW7WnKErPjwcmChxLALPqWv7+w+hcDS5duqRLiYicDBuFfBQ0TMIrb//oA2TAreuX19aKYh5xjh4+2u8vphCAalAfny+IRfO8WIjE9+2qV4FCz+OkgLqM5jYiBU//suSlBmaLaLhY0kazV21EBdcA5mXGCNy/f9fHRAhFC1UFJEJoJnIGccBBAFkmxByZwCFSFUaWWiCkDTYEI0cXytUGpjkzBivtWE6mJC0tJA1HmeTEsyrU8jLN/RqK0hEgCsOqIGyc9INwree7taqdTOC/+t63pag6lpPOp6+/uJqMTnwGn2p4Yj7+wlXvwUG2XGDbmXz7+99+55tv/cO/+1+PhN9kRo4faR0Htq2WwIUikufLbKWGbGEyVRu5bnD0oKw11oHEZ/FCLZPdsIvSsl3NBzO+trW6f/yt8f2zn/zJnxxnYo9qwSfsfH+jtdUXsbVNVjS9tP3U7fkbFdeRWJwePbmw1mIAYVDDdOE5u6nAQc0yDuit40I/PDmrdjrrC77stLvaNFbc9lhmU364jS6lOuZy2mo9fXr6sM687Uv1WBfnw5M4zSGicT5+5qWX7977MPBhs9sYfXj+zKv1vLKaZulqhTfEyhngz3z15QcfflKa1LH8z33uxz/86J2bV26sVC+6jsIrP/32j/55b2Vr+8pKpWkwqmQGKVmhfjtodSxpxzwGwhFL+8YtWl2PcjwiEiDavHd670svX47yPbZy7exH6ss7V9f8zR88ANL0r23deO/xr/ePji6tPffg9vfba/U3P3ycJdC3jQ+SPL4DVPXtw2+wejsr2OMf/vHXfvzz48OHG7Xqo+/9OYKVa52N9+/9+2x2Wq3TxTLjRGxcvPXdP/mnX/o7/73l3Dp+8nboTFO35oMsSKtL4PkViIngWZpF0EZtRKFUc8haTAkf+JZ2EHA0ohk2KdEYQKiNARpCSBD9S3CAMMU0MwYCjYDBwFCLUMgkkImJEpFJxA1Nii4MgdSeVXWVaKNS6cOxyKFu1ZHvySqWNa65tvoUOHHcL/hgcD7DFEkYG8UINZNxX+SdSqWn4hqANgFZtDhQcoKdmgAiWU6bQbOKg+WsZZEd7i2k1BbmEApGsEhkkcB8Zrw1oGlQ6qrkGbFKYkFjgmzpI5BjgzSAAGCogTGIakKRhZFWyhhtIMQWdQiAShbGKGxTYuOAMAApImmZ8/ZKM/Ts467/Y1deEP3B+ez88eEsi/pGjp4sRfOwvlcZd9Z6yzitjc9aNtmo1x2gScyPlW5qqSmdSIoLKbiUwE11ARAGFUVrtgONhhBmXABjtZxQJaVNLSFKACDFNE1iyyZGb9vWUAsOMQIwV5I4uKuhhZ2FtniWnrtOOJ+LoLYmFMcYOGQzSO6mGZ6yQs/u+L/xLTi6mH/1yrBrBDTAwdR3CbF1WaaLmUhzkoTxclZEC6xRlvDFNBXSKKVsMzJqNBx+9GT/w/PxSGkLKjqbzJo+LLJEyhJALgyXwGhAhYZNAjOjsQaIkMD4rm1BA0QhCJcVx60ZFtiBzEtMtUMJxpjkAliIclqr1AeD016ro4RBkBRlvFLz8qKAZeEHQQ6RU2pqebZT4UJICMVS3Fy7ALSB2miuaqFWmelVLtiWh2yZkXgmEsQaQqFSSDhJmKBenSCAy0JTBJXIVA61tooiAWSMoDEJlLlLw7aA00Lt0YrH7BWMtAuqWgUpHSDmKAVdJ1CiTONYoRwaZa3r4TJmMoCpEMlQNyJFqpLaveoLQ/iE1tTR3gM5X6Ilg1VH2HVG42jWjzIoDCwk4RLiysLAcrkwZV7Y1LIdCpEJPDvOuFR67/Sgp1d838/LotmsC26qgY+xNZjs9Xx26eKVfv98/+GnlgiqQeNPfu3PAQ3XttbXt3rMLw4PTmvNcFbZF6EQ72WvfOb5wPO++PpnW6sUIejBC3tHb9+8+ux48Y4R/tolK19MkHKYdRaioFq7dN5/eDp8tJ+/xwu11t4gcCVk64sULmefkPW6Izbb0Hj2G1IRuLixnI3is1ndXXEWepmOuY7O1ajdqmyAjbPDT6dnZWu18/H9/bych/h8lqBcR4P++eicRHGOgfWl154z6tH0vPzhve8eHi5dZ2W11R6c7U8nh9NZvpjZQdv3oeMZuv9wXzqIei4ROstS17NQKW1lKpRVbIcAgyTIk3xlLZgMhxiimuueLObtsKGh5VquhLxKXS0FhogrbtkMG2VDiEAJoLRsShEBAEKJKPU0lJIoSEAUzbud3mSyqIb1WRwHbiPUQSEGEM4LOSskMapWAIgQSITlEuxRO7B8iyop4MPjAXQazTWVJou1ldqbt7//m//if/1X//JfEgs16rUkGmy22iELBn2vphp/96//wrULlclkf5LqroSlno8kQTJcaXj5bHlU2p7D84nP8g1pBEeTnCbnoxOPXyjE7fnIYX6Nw48AP85OtlWMeheQDZnPlxumVU17xL9oO4yWw022hT2wVl/rTze2VtvjTFJNT/qjSxvWCFQt5QXJcsWjYRYYL5h1bOo/U51OagEGpFrMkszK3JCYg2TF0rPJwWI6uXDh+nKymA2j1QudPBFlZguIr1z63OHBg4sXbk2n85vXX3zvve/yvBix9KXLL73/rceXN1uZhR9Ozp9+emdVOfcBWtvppjOdL5I8TT77mc8/+OT46mcv/MEPvv/Sa8+1qi0fvzIZuVdv1t+7Pa03NFjm13qXb9/7gEB1Yf1G5lC9eBOgsfIjEVwnYPXyVnWC4w5fJYO09ESjtq6E9ekPv/XzP/u50/fvMB7Yde+oPPIaG8Q4II9Lcz6MJrXLt+KFyvonveaV0Z58cn/udtYXSdpIJpGFR4HV/vGviSg/ffPNp693JnDJm85auXX27qfPf/HvVHpXxgfvpdNZnSZLjPxgZRCrWrfuehqYBUZFCRLKsEZTC8UwakhkSigLyiFAGHCgBdPaYPqX0A8TihE1CEMNMcYSIG0yAJU20oDSpogAVpSauc9rkPVnjylLDJ4024gIyOxwZjn1HDdgVhdDJBsZ4gxObRCkxl7McgYp1HajttofHGqkolgWOez37XbbSHQ75WEFfy0eYQGjtvcZg+R0fl5mtm9BRCMh+kN+r1O5zgHWpUWAD7CtCmnyTJpclTCXsSQGU86MtiFBhhoBDdQYGwUwBUhpAAHQGiBAlRQEIoSxBkrKQhlAqGMRLKABxliYKqVdhyKofLei6667HpbX9Gi+EeT4pYWSD0ejk7MP9+8sVm5bhX10/JBaKbVbIl0b95NL3ZAY2TGEMGp8sqpAhYM+l6pUDABBoG4Qr2K7s3ypuMklcKm3xiqIwUWWk6CLoEzTc9/xQdrk/p6GEiIKFEWmQqBC9Bhbc5nuShV7ttZm6vvIyJhglGSxrbxC2oLF7do6MBM+/Yb55h67fbDxyjOq6ixCa0SWS5nLNJbTuZgtTnGymI+i+UjyIkuEBLTW7gb16lzfLeaDD77/TZGUrbBR5oBzjSCOlxOgGDY+gg4hAlsaYqI0qZdJxw8BdJQyjkUto6lS9U53mYjA8U3OfehqSwIgMcVccuYKYAgywIEW9ettuyKANBrbyNLGQD9EyAIGS9aqeGGeFh5IFISsUpHKCKEcN5gtF0FQYX7tfLbPyKkpvFrnou3W4uI0RvNG/aJG6WB61qx0T0b319fX+xNZr1x3NwtsEalxyVFREIqEyobx5CQsLpGogBZzgEWRjZkkxFgVIGEHIZRGKbMqQi+VKAoT2wywrK5VUYg85QjoOly2szja2OocN088vzp675EHV0+zdJ4ebRjfL5O+zibRwnLag8kJ8+3RLG53XZ7XMF1IBSRGvFRSaIwxQSDLSoPAyelZt9OUIr9x49bwfMgoy7PyC89+qdvt3bv3/rPbV/pwhdWAsjNv/TnbT+xa13jsT7//n6i0d3S3t7b17gd3uxvNKzevl4ur0+StOF7r9vTR8JtPHi7u3v60Hm5d2b38/mSfUdFoVppkdzZLVtfZydk5w2tpCc+OB2vtnl3NGo3W/vt/0g23k3ijcmVjCU5mA4t6q2fLD46n8Txe1lq1UXIicxVULbg4qjZ3Cnw2m8xfeunyW/c/vPf4/nq9e3S8GEY4K6Jl6oyiqDSSAFALybtvvaXTZpY0t9avA+0slv1R/3A8fTRPRp31LRJ2Fv3F/cePKkFVity3LEpQukxUyuu23XRcpgCRgBIKpdbSVCzv4dmgZnvxbOZAZPICKYCQ5qBwIPEgEVIqpQpVYqOoRIVWhGCCCTCAMaYV0FpiDAsFRFliRpbZQlMTq1wRWCJj5LlBquQYYtt27JyXtsOyMtdI6kI3pOPUO6ZiZ1Qgi75+/eaj+3vZQg2K2cGTs//iH/zjlz9z6+jwFHlg3els9YLjo8HNnWfNs7rMD6bjJ/FYLef71+reMgdPxuMQIpdjunSha5e0iJLHRoWLZEKCMgUAZouW291YTwbRp8RnOtE7q1sWHfXCVWQFp+jOiv3iqo1xeGpfHartDb+/HuAWcmKLFbUVv9duDo+HG92d4/GRazVVNqbcKTQUEhUFrXjQccsqC/bCpnKsmuuWBQ5DpJdI5N2g+exicCK5urj73Dsf3q/YdQ3yRTr0vJW1nZXb7z25cHHT8WS9QWfTlBJzcvbIIxvTWb+x5ozGaX0j7DXJTu+pveMPL1/Y5Zl0oLx7/8NnXny5yGm93aGssbn1AjScWMM0OaoEHSeoVdyL/aP5c597YZYXdx+Of/6XvrK1uv7bv/GbtvPoqdZNg6rrQWs4eRjj3E975RL4q/nj771jX1v59M/vNz15dPzo3uR2O7x4ead1fv/OrVe/MhrDb7/5r3qVzjrYrSzow5Opbvb1fjFIibH8K6gTKJDlwwI4u93nd1rVwX+ahHWV8Wmn+vw0GZ2n885nXvN2eiAjx3cOmGmjanfFljbydYe6tQgaS+XECI0EkBoo0ZZ6TVlnWCPMuSWMAVIhoJEuMHQQ0gAgiDGmBmIltTEYQgzxVAMEgac5NkWOiKAozdBEooGAIE73kY4mo4UuuE1EwNKViJmOjJ0LCPYcIwinWHkQxbJ0mZOhktSq7aPzj5GdKA2qK/LdHz5EpCil4kmPVjdt2yLWuTLDqMwMdTkEXrBWzEheLlDNnRYnzXoALKMEtzxuDMDExlaIgA25zMyEugvbco10yqS0sLEoUJggKRBGWktoEDRAS6WRxgABiAxQxigDFIQAUUQtqzQCS2Mg4LwEEGBqqIU0Q+tzlnWE167BAttIjjasZn/t+aO2Ol6/s7/3MB7WbD+bLVuobLh17tWJMpGClEJjoaQwQuIYoCTTEkHb6MKHlBial0pJoAGpOjWL2lG5dKqVKC8gUpVKpViUmHiUMF3WGNFSSwTaFhMKjilqSbxAABMUCrWwrERoiVCIgQcbqZpUXGtGymgWLS1/3HDaxflHg997y6oEOHQcZmLEJyo6SUfDaDYdZkamisdQCV5wYIhp1ErPW0w+ShK97XaUX+USM1xqPF+puypijodsiyBlI2UDjbVJDcxISC3jOJJZGjoQCyMKKCuWd8VnBuPYlFwox/VdCCrEyqM58ZtKGUat5XJ+sbcreAkdrBSsuXYcxwZBYlFgSKYKD+pWvRKVGQPYsxkxOIljq+A1t+LZXjKNVjvPZNwkJi2zManWnrr8SmlVMyezPeoedVyvymXOvLZt1erdtrbHGFk2dUEBZFYYlamSpFqoyWHFX2l2GypVmk0tt2K4hqjEFiOQQowsy0LaptTiOTAGzmfvAtPKExbW6v3RvkCnbqU1idygjlMOzEovzk+aoYW4mMxGdq0Cl+lafWV2Hnf8xv29gyBoJNPEd2rTVAjOQx8RoghhFiOuK/IyApAqUUzHs/W1lm8T2PLLvOg0G71LdhYNrzx7gSDv5uY28OY5Hncus+UP02YYf/CN24gEipZ3Ph6++97s6c/eeurm5UIUByfvQSg2t/lk+vHb3548fPiBX28WS2c5XK6t9J5/8do8mhiV+151Pjiu+Z5z8dZb42i6OLn76BAHzSfn+9GU3Nj1wiaLyjQ+Ga/VVrBa+Ol0djpeRNk98xi6vg2DbDbny5HoD46yPVk6EmYa4W9++8m1dXzz8nNAPKKW/+Dh0IACUUAUeP/9t2v2FyzMO7Ubi/gojvfzvByexEi2HZq0WyDL4eO9o1a3u5wufUIvr25++uCuQcAz0IMEliXnAiHKWKXMpM5lACnIyrVaa94fhZ5PAdHKKKAakHFkFKMq100aMIC4YwogQGlDhPMiB1oFAYNKFzwnCFglsyBkritk4SIKNMcUIVMkdoRMVaUe0RSo0sZKlzTQ646Z+l5oSlBZfxpWqMrLqxfX54txeOGps+HIsunPfuEr1y6y4WEGS2a7DintUu+/cKmaFujg5PSov1fmubFSaD8pVAABpkQgeDgbWioOKr4nshF2swEXaaFAMcaceEHlfHnAqjda7gpVp9TI0wJKZ+r703oSVAJT5vfYzomCERXtoFglARjKk1W1mhcxgEpKLbhp1qu1FX+rs/rwqDBmwez2yXjZbRpYCM9qwGLUuhC4rIjzaXuzPsOL6eJgZe0SRpgxm3q9NFtYxqysbKTZsN1cX+teVm7i+dSzatAoCLRNrdXeVrx8cnUNxbnK7BJXZdOpCpY8ePhOtdeouiSXlWn65OmnL17YvX7v0dGN5y9nGV9f7R7sP1nvfs5eWTTqbjynXJ9cf3pte+v6G2+8+YUvfKHVakyXo5g/civGYZu9tWtcsHg5IVjrnFZQ9fZ7PyA0ddyr3/jhf/XF1y6/++7br3/1tf5+cXBw3qpRv/O58fCtFlYuwP14TlfBcX92AW8OpsfUtzZ3LuKysKjTnz649Mxrfi9ALPhPH/yvzesXcTaKpuOdteu9VneJKrud1W//8ZvV9suo/HjmqmbsIe16JIZAKKmBMNFy6VgGI00ta7HIw2YdKkgkwBoZpTXQhFIDiLERgAgRCpCltZHaQGAoRlS1ASoNVAIn2iRQYGmI4FU7d01cbHimf3YnAM3xbFDrdInGU3wSys2aopbo23gVWnlOy6zYKsolBVgkRRItoqSwWCCFKfJpu32ZuYOyGNp2COAyLfa1FMOh2F53S+UVXGXllOmEOYBzB+rVdFFgz2KMKg4hxbkoBaJS5SR3JBAIY42tVGutCpsaRi2/AaXWAJTCIAAQRFgZCACg1OKiUEJghKhNkCFKi0IUEkHLsjDCoDAAAgAAtjCliBiHMb9B5kXZVxktyURtlt2tnj29Zt+9u7F66b0fvJ3qBWaFUMvz23sEA8bLCjHQNqTkUsk6NQCiEwywksBnNqMWsggCUEpJCzNTpQYEpHOfGCjddIGxH6bWlOZalSW1+xKMsV4jmuR8acsL0DplzCvzHGNWZoraVHDteqwcSiJshiuG5r7To2A94cs5GdpBJ4vG8TAupFBYYcgdUNSA8EsMIJMEGKoyVOZSgCyZLycerddDW+bCyHlY8SlA2rg1482p5TJEcIlggZHG2iLap7RVrYB0nnm241GGjMYEKgOF1EAtKXI6vl2k3CaEEeDbRFkh0B6mVAjRtEEVucB20zh1nCDjplLtcpFkPA4qOIa5UknAQmZcKaXMCmSxXrs1HE8breZkOiWwXmC5sMaoUUHtlebVG4VNK3W/7rVdr9Xp3coLTq0qMKzasNxmmmgqFataVeZJuyrzXCJasZLt+PSYYFnmy2i+0MirhGtAh1xYwIoBshzPWAxQ6AWVTgotQsBooX3kF9HQErGb1+KiHMyPdq5W02XZczqSD4VVDuT4yMxDe8VVleaKq2YTv1beezxGuDGNdKVhCWtqu56UoBQwikpqGQe4ygBCGS8UgoQgFHiVosyUEgYoP7AX49k8TpjXfuHlSyWfVKwayL0PPvoTd/fWUpnUAgzxbLlEIP3Jn/yF3sZmwVX//Ky9hus19vDBh8mkVWbjr33+73Uuer/zm/+bcrv+1dp7H/+Q0LDVNkkZpGfw2o2rpjUIHsJGh8XFyTf/7Fzq+CsvfhZMVzutSv/+97RQ9oW1o8Xj2AWVsKPFiJVMjwodZMqGcwY/SD5aDXrfu/OxYskyKpnr0qq/KPpr64u/+N6wE66P8gQCsLXZCj3fd3qz5WGuPpwv+oQAXuqKV1nMVNO9XE7BPBmGlcoijooi//pXXx+fnTNiGVBWCHMwtSFABmsliiyXvKy4TrGY8mhBLVsmBfR8YaSQ3GJ2WpQGQRdRyTVHihuOCEQQAGQTjCUQGigpBQBAa44w1dhYjEkoMGNSagigNhJIAfQaQIVjJ1AQLCvt+uXxYNxd6bjcVc3molS4voEwIFkJMHJdHbTSxnqFIkq0GhyeWoT5fiXJ5ARGlILb9/Zc0uvVrt8ZDs/PfnDpxsnUtIZLSUiV2UYWh5EucLVaqmma272VlcUgDtyWAqRMGcy7joQWTjU9HExzqSOlcsrrbkUO9NmadevO+d1WuFvGYbxfpPh9q9adRzW+6g2yeWC7o2kmM2HXrM56GGAmzwMZ5el8QlWsY5arIkEs0GS7sz05PASsVlm5+PjoTi2oBZaKraLR26YVNhxNWjWHktgw7vsY46PpnK2vrpVxzHCYzFXoN1Y6ZjKVx8vRta2bk/fv1tb0nOuzwjBrv71cR4GZT5ZK8hc/8/TJMNnY7BFq7t7es4iSuXjh2WtZfggMP9qbtMPdCxsXP3rz3hc++8LR4flqa/eDt/ttv8NMxiPQanmf7vOrm8/ux9+VLB+cHtz57nu/+Hf/2q//6z/wV0JJrj5z7Tm/wNH4G5pV6frnn+6w2+lEV1/89OygYVMdu+ny3rxWz7gGg1PuuJmD7p001js7jn9RVS/d+aM3Ntv5tc4Lv/t7/5/XfvFnm+2X33z7P/3yL/xXH37/rlsXBluTRz+8+frrFunNTHzZ3eA5ydI5BiVBwvU9LmJCYw8uXLBqCOHGFEQDLYFQDvKoQaVlAUQQsRHCBgKiMYQQE4RVBiwspYuAjRWWKpcgUyABMC6UKUWaibLQWgfRFB5gKdfNFY/CgF4SsDeyZhBnbuH75X2hmskSFXl2en7C7BUe5xaWfNrZ7vROjp40gl2zDI5HeTWonBzlqfQPskW1SWybTuOlVXGQ6z55cmJ7dR0soKgQ0yoW2A+CLJ46AeQ6SWJDLRczX6amkDPKOLKaStQpIEoKg4xUAkAEKdUAUmpJUQKtMYEYA4KQUkopaBTA2GituVQaQWJRBCgyGmjFm1DJMha0ZB1fgx1icpDyKlvkg86z2ysXdg6e7I1vT0PSPI7HS5uTMGwUfOoDUnOrURlLOEI4MspC0CgAAmYRBk2htRFAc1cpy6LzZdxoOoinSGloWSnnVkgpVBC7AHQorCPY1oBbtoWISeMGQcr1rCwtGo3eeDYyOCvFqFVcm7JlLo2XZa5Vm+hglg67NiOLGGOF6oxgSjlvZvQpHnjAOveTROTzYllCnWNXUUAZkqrQmOhMUAy6K82kjMbptLraNhBUF56NbQgURDFjhYUwQ3Wfdfn4BOCaHwYaSl6kHrFd6hFjnQlgQ9b2GppIxZXBuhQlc32aOQSTnAMv8IRMXJshzCvMAZJRDRthK8kXvMhqlm9ZVpZltpKMuQseO8zLhDQe6+eRqTA72DVusLLaJSs1uhKQRqWYpZ2ty8w+wxYhVpmWY9eFo2GBHZJLU6kEQIow0BD4XATUuIneh/5xAqdZFC9LDNWa425kqbQdASk3WmiALJcAqBCBQSXEmEAINh1xfiyM0xyZaWliXs7KvGTzGxbhCgMc1hzZSo76q/bFpEztnjai6bqW0zjzl8aDwWA6L6StS8h5yjkXXKXIuK6FbIswq+YGs+G8LJJS6OPzfqfTKopCFGI43W/yGgtJc9ceHfcFiA8WCwe3/erzTsX65Pa56zuAlrVae/viiupO+5DhPm+4npT7J48b/fNpLax99cf+CxYkb3/4ycbKi669fPftxwdnZ5duru0dho6drdXX+7PwdHSHsXBj7WKynEzPDi9d7kzono3Iwf7QlKJWbY7HY6pKv8TBBckaIYhMkvRn47Ker5Zl9YOP7796tTVKRrHwq1XkVrIH5x9cuPi5aFQ2WejYS+gEgduruzC0w9Fwb7o85Ji4bjNZyI8/eK/Xa+fFftXvlgmMUokBE1H8zLUrjW7j0ZMHkyiqB7WKQaYoM1m6FnN9j2G65Lnmoj8+BkBLKWthU0ultLAtRi1caOQBKzCEUDs1QiHsABgSmmgNNaAEW5jleWFZFkUUAyQsEYkSU5olvFltTafTRr2aZ7GOiloFtxvrpvA61RsUOTT7pFNVHeupAZJJdE6JTZkBBCzTJKx405kIAk+Ygos8aASYsXFS/OjRp+e8L+flVrXb8o5mk7uaf9Iksx28CiLmmywVyxBhKJpeiHPFRyejvDq3yVU0b1oOXqIMVtK8iFec3axf4+ETY2/b4KIl7/Ekslqr1a45iXa4sELswdpsf3hYzNqblQrXUboIIVQ+MEvAVKRVu2SQnZ6ODB9Z2I+yQjnk4DhbWaWlOKy5axNLLZPZTnO7Cbmb8vWN8Dg7naFitcUTCRBWFYdqDRRspUsZn04rm50sHRpQ1OsrR8fnQRVqM97ZXX/wsbxz/4cl6AATct1PFovm5nXjAW25o+jhhd2dvOBRdL6xcSmJ8nh2arngr/3CTxp9PDofSV64NrRgZ6Vx45PaodtrHXz06eb0rHvh1r/7o9+/eqVZ3Vo/nEfbTUeS4v559pndrTff/b2LL18rRzV+nv3Cr/zK3b29jWu9Dz85LNmO7bHZNEK1ytGTyd7jJ811XVj54dJZ3brVPzgZA7FyoTfHJRnvrV3ZrnTp8OzTlXggT8TNl3/p3/6b//HK8xufufELv/GvfuPrv/rUZG+wf/YXn//qz3779958dfdLFWPtL/ali3Rls5z1yyy3qMvshtFenmGMgUMbCzx1gI0U8ABWUJVUct8UhDDqQIg1RAYigyAiEAKtjcTcR1ACU0CUUSvXpVISA1BNzTJS0TTfS/RRnGWVWpDkwgJNRoGiTIVLn1E3DbShJcJzssrQEvtkspgWerGcRjaFQpehXZ+e3xmd3ied6vI0SJLR6sboZD93Anj6ZLazy4FtxnF8ajuYoDKbPr1STRMdMFhmc2QxlSsfYdv4WDnz7LEShY0tgwMlcqQTwyyDbJlaSinMqNFQQgCAkUArbKgQGENCCEJQai2F0QpDhLEpteJ5IZDFMCZAqjwrGYQCLetQsaWd2LWJP+XSCVTT0bFyq4TmbjO8/KWf/c4H/zSM7jZdvGltkjJLkxQxi2FktJG8dLQAGo8h0AAAgo1SZc4zLjKLomYYWKWo2AhAHJfMgspxFlVgz0aM2xEjeVmUFNvapDkvkY2FSRBWmDpxwg3kKR9CIsvCZ2xr0k5Jvtel1VxbsdxzHRdQwJHJIYLAUG5cJRlmxrNTCqZp0fAcW1Pfd5Fla45EUVItpcpJ0MlAZjesQqQUou3OlqUsVOACGJcShAWGLUZtoKQxOcN50dus2DYSPFuMKQsws1MOJMZXnIvLONHCxYxCqgPHXk7HFcW4h4s8rzWaRRm7XpClsVf1EcG4HDLmKBmpInMtt+CqLE2tsjKHy2VeuM3WcDyq1msWNFmW9dZW7Y00WKugts6DormzNl5OV9d14D00tEGokcqueFckKN36zLKg716CakiA7SJHyARaue1p266O+6t21Z2P7ySLs5WwTi22jBeppBBSy3EMhLZlFTzHEBGmHQghhMPSr21WF2cH5YTXaXcQS5uR2RKRWvX8YNQMy8nkbrsTPrmdrjVX+d6h285dWa2pShsZ4tF8frpYSgJIoSWAGiKslS5FEaVISmkxt5QZIEgBMJlFGlDbdgHw4jTJu0Lz4t4nb9f32oHdZS5/6dVNIbo6P1lZcaC+wqjdblq+G1qqebp/7oGZ5OHZyJwPH128/PmnX1n99N5DqqKt3cDdbadT3emMYCUezI7LLB+dpT59/MwLj3mRPfXUTrPZnZ1Vm4F/+/174731+kuH1R5EQTDFi2SZBoZtNpt0wZH9/EfTT0VDHmbKmQyeutJZ/mg+791u78jf+Q9/+tXP/fRsSHBYHS94q3wqpA+cysCHmyf7s6iQqlCPHr4V1N1Gayst0tu3P1pd6x7sHz9147l2deXxvb3vP/jIp/Znbz331LM37h892B+eNeu1aBZJ7NmEUkowhkILAhADpFGrPz68o5ACAGBEszSjFPmBu1hOqnYotBrzjCBMJKjYLBP5kgAHWUUWGaBoUC2kth2mIc6TxPctaXC8SOpu3RZsxenWmK9pSB23WVttVjrTyeDCOjs82mu4AUrrM0AQs9hS7LS6hmQLkDc6a3oab6+FBS8WiwhiMOUKUuf33/5kUgA87pSL0/s//IONVv2rr3+9EOXKWvvs3HKcc8tJT/sfE7RS9S/CmhyNH57PYM9aH0/QzlZYFKP5obmwu6XNpwnEIDzkSVOJU7tWKwhkjXWsNyrgzjT5bm/FyvKE0LBiXLCgtKSoXCyn/Y2L7aNP73Quf04kZrJY7nRaD++dLkLnYtOqQ+fs6FCcPwDVm8Buj432Mh2EPQjL09n+UkglbA9019ml0FtEc0MpsikKw+CjJ8eEWMWi9Hv+4d7eC089NennRQbDEHmez2iVQMLYdqVirW3t/uj9H61ttBqNVYLl3tHgmVdu5LE6Pzu0WFnx2Tvff6/uw0q4+9SN9T//0x8e751ubvWQERvbenB6UnV5w62ueDtM02JeBrD19S/+0vZ69/bpvZuvvvr7v/G7FzdWPnj8oeO1LzZvDZPFrS9ftsHu4M4fXuoRYs+73a/8zu/8y//2n/xf//n/9v8dJANS6a/VXz0+ON+4Vf90MjuU51kSXC3XabRsroXV3sq0nzRrnf58+uVrX/nW7Q83LfPLP/YPf+87f3Dpi71UX/7T3/mff+nrv9r/tFjt3J91N0/P5iR85pp/bbp8C5XSd1ctWjEAFWqKrQQYSyvHli7GjgAoJURjzrWyUQ0a2yCsDDDaGK0gAMgAo6WU3JZKYS2k0BpgTBEyABaImvSYFFNISyomKc6458Ga71YrPYyEKUsQFabqAK8CoWZlWUHTOFpN8/Mssk+OyvUtnxhTTs3x4VtA4IreObh9RHEfkuQkJYvzWh88dPzy7Ik+PhtZ7UAGKimS9XBt+gQl7ntr6ApKGr3VS8lc1ashn8daZ0C2ebkoUOrZVZVWyswgZGyvLOJCAoOwBSAy2kijS60UljahSgmlOJYIIQQgAZAoZQhUACBEie06XKm8KGRWBH6YSDNn1Sjbb4FFU5AxLmEN8phVmq4htemobG6uPP/SM3sfL0qjDvJDQh0QmoonCy8gwxlXrj4Dkwr3HKNyQDfZxhJ5SSxibQRzQ9R03QIqMBqeBKELgYpLrjREHvXpbi4WBvYUO0onAbMgAkbxCiejohAudSzUiCcLhcfUoUpBlWRchEc5ppRC7JY5ABATSBXhUXzOLEmNZYugkNK1ZQ7GEHVtUCdSqywDIG3XPc65EkCzJLBCqVBAmW0RoJDhyAqpMfuMVjFoQByXXEJQp84iKfsVtCbnpefWm2FFmYyrpWPFQU0lE1RxsMs4L5ZcKCFYs1rREABVWq4teYagSNPYsZjIS9uxm63O3v6w3ek4AS3SglAPW6CfP1it9AYoOo8OJaFcV6MSwu7KWYvRi1uw1l6rtRoNa8BHThgGyMkI2GCVJS6VWtQUMsowp2kwouUJ9QnnWQaExYhMtQ2wTPn6SstahmZ2/uB4VL823Tv981Z5OWRhWAGEibIsKWzlka412oiU2AWFjBtgE1fIMpnq3EjzHmVxUe46jmPOsIseT4dHUDQXk2W15d0+eNjpVuHCbvcyp1vWNOoPea79SC9j6bW9aplPANCWRXjJMZSu68bzGGiDEJJCYmxxLhezfrNRo6DIx5kpBRA603AyO3vm2Wd9ZiVpX+rJ5d61yWK8stpVsl5reYj10fS0wBtn05HGaHN3u92Bb333bWnk5z7/WhZPMKlgRGgDPdd+9vb7h49O7sPctTHsP0gTObx65Xp1pTvPb5fRwvfb3Qvio7uH1Hm5tdbmKi5ni1pgiVmauQUHR6VedblTU+ebge9msa/IaAyiCKeLyhvvf7q5WesfLu7/8N0LX/kyNsY4T717/3AW9S9s7ZQwgsCBolVz6d17nzDLTxY2Q41ut2M0Gi3k0xdvXlyv16o4jvYePf7Etlg+i9ec0FKaAIAlxKWhENo2bna7/ckAlbaNOIVlXqa1hi+5UVlWMdbSZKIQVT8g2gAIoQFQAlmUIAyYR4oiK6QGzElKoLSNUBgp18CBU60FdlD1UIWueHgF43IxW+5eaA9OJivtEKZ1X02h78RFXM6c2Rq3enjfCdc1SzFGOlrZrnx0ePjwwZxhc2VzXQkuAd/aCJsj8oS8h0YKq9XnX3gdsnpUklo6NPZ4wy+yqW3ibVbhrPFePBV0Frh2mQnbhcLxl1k6rXbU4ejO9sVLo2UENAgcWMgkFYXvXAGmiNQbjdYNcZ6HmBSxtO2tOgS5ieNZQq21ehWd3XkkynacnemOd3F7azhGysm7Ntze2kwnWT6XRelRpLPlqa52XGoSVlnGSyGsntuVbkx46biTxdxOJC3daaWzm00XW9vu6Qm3XOQ4BlnVasU8mY7XmrV7p2ebDRUXMHDqnM7b283xYjw5H1x4pSPMtBDhzc2m4niqjG3VH/f7m+ECA7zVel3WZg5mi1EyF/NXL/7E29/9gy9/+ed//zt/9NwzF6lrVdogK92lPvr6f/b6M688+8E77+6uXUn3ciKd5lo1GuLetWu8guPH493OymT2IJVxlJnAXY+TJ9dvXe+sXv7+W3e+/Nlr33h3cfv0SXWldorqZ+fv23gzhydLXtomuFhfn495rbqaZOrF11765HB2/3u///P/9f/5j27/sBe2e3j1k9//tc+/+HkYtKKTb+IMjd7fr2x1m7Xu+XjeCG2C6wbZGnIALIACgG0FhDRKYY9RGxgoNUDIoYhogxBGwGALQAShwkZCpYABAFFq55zjTLqIDosYaChiTVAtLpXjZAt4zgVArl2UqbEuLdUZsxIHK6exrenNRCEHcilKZi2WKQCuEVlBjS8nMgVnoeMd34lVuVG1yXg4CsPObAqMsqzQVN1JA7QWiZiMeeA6jgjgHMYnY3TRfm/y/tpqeH/wre76ik73g2p1MnYIq4ZNNJ+HlJaeDeIiK0qQGdFd7SFgP/LjHW6D2WRqCRPadmFCq54WYoxnEELPC5TgVcsroshnllBcQwYhdCwmCsG5QMTFFe8oSl1QLHKeC5jK2AuDpuu4mLrVJvHxtNCNmirMxee/8g9/9PajhjUjbEZApEuct4MVWwTjLBolCwjdBJZLUjgGyHzeshGWSbPtHcUz6ZQyt9MY1Jy1Il0SElm4yEpTcdeSKDJ0DhDIIuS4hdGkiIlfNaWEGk/i0icalaKwcVfnnoSJBr423IACyAggKLWFoGs4ict+JWwrwUWxhCh1kKdyXSOubaV50WfM1yLUMkBKqTJxnQYpEkhOAQDEdJn0McmIlzKCF2UVI8fACTJ1jCGgMwv7llNH4JgwK56eBfUVrQmUvktCGUlRFl7FyZK5wyi1bUScJE8qtaqJsTIRgKmNLQs2CbYQiRmT0dhs1huUojgpKMykimXpIN5cLkWnskYKykJ3kC+D1crSWVBP5fknvrsuMjDIg/qWU8qHmRUwfHGOFlJIVAJcDUqblFh5PO0KleWKWBgRVKYllURzU/GaOTDVXbdtLiynnBS2VMVcjZaMV7VVL1YcF0saa5QvkqXvhdpQz1pJwcgG6FJz62CR7/UfSAtX6y5HD2N6BMSaxq0R/2jGeZkbb8XNrDztj7ISGeoBhp1QqiPhQgJTjnzkeV6e55xzAIAQgnPuOI6UMssygCAAIFouKaEQQoxxp9UZHve1EpPxotpunp6eLy7FxwdHmyuvrvVeIP9/pv7z19ZsO+/EZn5zWHmtnffJsc6pcKvq1o28lzmIIpsSFaxuN9ySDLfRgO02YPiL0IZtwDbchi20LbUsyW0rkhTVEkXqMl3eXLnqVJ0c9j4775XDm98Z/aHobn8ZwPgDJsaYY4zn9zg/gvRkbb3putb9p4tW687Lk3uuh+9/du/ChYvvffjk8PD4N37zN6az5+enSa1Wnn0lCHa3t75cjL5PTT46W2gAF8txXfNP7j28tCo3Ojc/ff75b/7mO89fJLyDT6eJxqzKJpe3uo3G2unZ2Rp7Y5oQPvrYdjrRdvQyGy95K7zyis9feK14OphUwnjeAJEqaHWigT/PScJT4Dp21KmNezpLQwdacHl+mjLs8Ko8GT2Chn/nj093dy+tX2xuC6+13jA2evT4WTYSVJvAYrlOaw5dwnzMLEJcRCyEYCV4zYGSwGhDLGHwqgZKaZtBRE2TRBxyjznZagkhVAA4LiXEWiZfzPwoAgbJohHZWojQd31j1XWz6e50o626GPnICSybizToRacvzzGtEWwbXEXtG8v6AXRPY/qGl5vHh59f3mlTTAJj9TT6/scH3/ng6cDhym78k9/+L/7Wz/3K3Z9/Yy4vgdMH68tG1kD/+V/9D+s2+uEPf9RC9jKVu2bNY73Dxf0ZeYZREEyu9m3mds6IJ0azYy52qtyxyGCY3XdcWGZZO97ef/ExaWptKsf1kZmdnJy+8eWN08MhZI1FtjAEJtXUbcCifjheuJ7zaoPeEhAGkWdhEPkukabMecOKt7o+A/A4mdv9uBmANF/ls1mHRjjareWeQ3tEJOsbmcoVT0nYimi18kqEMMB8CmHmOT2tVnG3VU2na3GIatnyQl6UFkYQIdf15oFUHPMlx8u6RyO+KOKd7aNpgcHGtJr3Q+9QmyaMHh9NLmxvMV9AaH/vx++PF+Nf+fm/sJifXbpx83R80mt2PY3OR+der+E2gkGn5TE8Go2kQy1d7T95emljcHR8+Norr07yrJaUOBGh8Xs/ftJsr3nWteuXX/u7/+Dv/NLP/83v/LsPbt8d5ELsPXlw+05fA3b/4497G1v3H9/vd8J2j6Gyzuuj+ZJubG2O9itR+t/53f/5Oz/1c5HfePLj49f/J+/8zr/9337rletq4/TodOW773zw6Z9dvVNsrft1Pgx8u9a5xTqMMYptLrQQQhmJMMAYOwAQI4GGWgNkIAQGQAw1NNAYrbUBAEOECAAAaA2AwZppiGttKLa1lsDRQgumREli4Fmy3qPU6UbdZjjDCJti5XW2jXATeYSlbdmhEmVVNoGkosKmKiz7oMwfCfzmfIh0OUS6gJo2QmX0MnY8ivoOY1YgxtOX/WZQcifs+NNxoQS+sX25rEC5KDPCCO08PltQmzNnQ+FSscnVq5dm9fLuqzfzbOY66xA7DddBgOer5eA0SNvLhVP6xkFzd55VKJhtxdawMpbFWA21xqqQGFIhgVTGIIERYgoTAzGiEpIcKA60yqkCMwQxhh4iJWO+bQ0I5qKyArciMthcp9mWzazAtpcqD4kL7NQkPo0ZDzmBmjIb2IU86uoIyXoz2ikXGuNgOR3Fxt/IQ9zIw6bUKIOCYtOochm71BiJEIfQNnhupOV6vFgpRhpQQwvGEK3VdGxASmHbdlyIJlQJgQBQ2OjQGAwAwERCxA3OHeV6Li4rClUHqsJxalQpCPtVQRlvRw1qnBWvoUXW6tqmNrDb24IzA7jB80xNgHCw8aEufUNg3eNqhljtYMbrFpSB7eQ53wEIW54y2CnqJfWsvFpQB/dareViFIU+0AoCWvGiEYd5seSywNBHpik5h7iEpFJKZSuKdYTIpKiGxliERlm5EKCosSRWd5Ejy9o5mQztS+vHYGG145RLKw9QLQ7mT1przeI5CFu9HNsuWUQ2MOtxahsOVmHOWohADTKjAMYRwjKpRV6XmClCAurbMi/sIYtU0I7SRQ1xnetjRR5Bz4bLV0i/n2urAhIT0+mui1piLHKbgcpz/YnXWLTzt/LyXGcPReagqG/hXp52usE3MTg0RGHKxkMhV0dKxp/uP/M3WoZZKedCate28jynlCqltNYAAK11nuee5wEAvtAFaq0BhI1Gg3MOtRKF1AJ0O2vK6KzOG1H8/e//8NrlSxdu7EzyfymhsPiua+Pf+85/7Uc7ABbLWcarvNsZDE8nSVpcu3rzs3v3nz1/EvgbxEp2t9Xamnd2Nuz2nK2LX8Ug+vjhB5Ozyf1PDotcDiefDw8evvHKO93w8sj5fLDeXJV5FNG7F6+1facCtb0ez+f8OFPeld7RKOX7xVrfWtvaMDvH9HhrfX376IT/6MN7f/1v/ByCzwdeqxVEzwo1Oj0ROYiBHShbTxMcCCFWpyY+HZY5x8TgRZJWFWPWtNk2g9D3PPfZydm77z0CyrYh0TwNAtwwAcWQQoQhMMhwpGqgtNIx6ABYMKII1ABwY4iDXAhwOU+D2M+TzPZ8Y1SZp65tpXmF7dq1PVHogLZ851JEu41GX9bAspOKFlUGKpZHkW2EXiRlo7GZVcexEwtp0rkfb4WFWErKCLpztBjuti/zeIAib57LKmJ2zf7t+w/iqD3PVx988oMnH61+7f/+zVGVe3p0+8I1sHuxwVwSlJPZeT9CPCz0cMkZ5XGpDsp1a+DTIOUrtwlCrVDenqF5lmQA0rOzeeD12l2XMLhc7nuO24wb81Hlo+08k/kCqdxFOsfeWlqYSs6n0z2v9iuN/abH6Cp/esqqOmzX2bSQEcliK8FId8KSKEuJLFn1wwaLvbPREzewlGWOjqaDQTg6fN5pGlat8Zp4blrMufTD/dnLuBU8PVDdeN01uh1iIqLV/Hmve8HCFBdcVhzW0qatgoO0OGFEKo7rsthYb2hdGLXq9z2DRV7U7bBv+HSxGK1d3Xr1zt0//sG7653O6XL2xtdes6Al6iPbi4LAc0f2qEq/dOnq7HBy/c7Oh4/uXbl55dm9B20nWsFmASYesgI7lkmyODno7Gy0UMEhRsHpK6/dtcL8vQ9/X2u9fUl+908+fOOtN/7N77y/Fu34rMFLIldyxJ0wbAzam2vtax/+8CdQym++8+rhySc713Y/efz3Nvq9K9fe/H/9vb//7S9d/Mnv//0rrQtmapflwcba33p49FFzx7ly8eflrGR0mtYvG911iAnGGEJojPlzJw+AlNE1tKSh0BgAEaYMYwogRgRDpIE2BkIAAEIIAAAB1kZZlJVIqkrb2NQ8kxYUvMSmyvIDD69hi9v+PNeHy1na9u6slktNz6CO/AZxWMeGYVWdIB2Gob1ITlntpfubJNmcLH/YjinKcWhfCKEzzZ/7vjQMu8RxaKy43vAvGdyoIVicvcCl3W02pElMWW01Q1Q1IKcmT1dmISSvVFGBiZqZ7saFB9+dXL553WnbhBGR6cnhJM2HFCK/fVPnzXo4RvRc9K0ljcEydG3HARaqtBaq0rXrexoYhYlTc0CwwFgTIjAyBsBaOQKkBivlOG4ZxDiM1qKwCSniFSYuQS4thrNW0CrlcW83MCuNJSOaGcCRUqoSFQaMUqusMqjAHK1CAGuUc0/M0EqEUhW6GTNCJIBWWigIFURzSFeEeVlZ+YHm1ZYAR61gU6sSmWmjVa+KhCiGicDY5RojVxqBsFnDZAQ1hQgYwJUujYYIEmCoEmyzjYrKZkY7YVnnkumWZcFazF16VdvnEM/LojYlsRt5twUcx9LFZ7K2KRow0FNKESwZs5F2Vvgltg9NCTCtGbMhcAw6hRo78IcEWI4XIm0pJS0V8CJzgK+ZiAKvzFcIIQglhHgxn2CKMHIh1gTWXGoIfa2xBisNc9Ks50kpdUyJK00i3VpZVHGYNU4waUCrU4hG0gBnq9Ilju3F0/wYrTCO/MPkKNQOdSbBZhzhnNpvRrblsFxCzpmv3a6CnjD+mso4hOc8NVLRjEdBVKarFShpuutaJtoaHeFHAApYOfWINkxvSh/YDmF6UBnj+BRRD4NEg1VY2A6eYzLWegohqwqap0FtQxvPO/1Jw4mS+fLWpd26bLc6G99b/dOkb49GuSRhs9E5OT30AMHM0nW+rCvP8yCElFJjTF3XAICyLLXWGGNlNNDa9V3XdZNVHQZB4AXelrWxsbG3t2cbqkQdx/7W7tbzlz8qUt4IaW+gv/+Hn+SL6PDwOUDh5PSw2YyrOjs4OLp29dZ7734KgCrqYm57Vy9dfvFoebD3/75xc/fypa87zi6lnS+/0f7ww3+tXwlH57Mya+aL+VozX+Q1c7qBdq9fWmu4VmhBaepCQOw4571i5+orH304Otmbb+++UsOsno+uu/7JejwH82//xa+3BoPlefWL7/xHfacX0Nm9w7HUwokD33KNJbNlFiLCPCbTpC6Td77yU2sXOgfH+/N5dTY8r+UoQ/7i2fPz42lVlhxAQ3WX2HaplqAkEtkAOBp5GNuEWYggiA1aqi9Or0zD0pgajUUhZEYbgyTPuFSAKwRgM+yXy2y7uyHlQHHe7oS8zAZxo+mHxHDsg5RUxYzbsYd9Ix0FXYEDMKnO2yEj1MsyEW+MFuMlJYOI3MjhXoS8ZPYS5Hbkxm1fHRyvFlXva29++fDJ/ZfCvnvjjX/0X/ztDFlpJtzckTafFLzKirJeJufT7GTKy2lAigwk4bDubaDJDJ7NVxfWfCbAKoXRtrVubz9/vMozp5b48sVWXhwg5CNNLIx5nVgWKuqDrFpFsVemEmn75cn7O9vXs3SRFS8tZxvUXR+2PGuRmYaHsZIFKNEqn8wMMQDTyN07W16/sKkM8B0fgZoQsra5tkxlWt5rpZcdRdUqH6fnW5esUTqqihaSC5M9agxuna5Kz4ParOwuGh1JiwDHAwoTKIqizAPCsETFMrG104pbNec0ihaLebKYWxFaW2ukcrE16M2rkhYiGLS+dPPGKFsKiRbTpLe5O9hwhk/O8+X5heu3Xu4/NRW/1Ns8PT9z+42TydlmtzPdPzBKaZsm1XT/7LPb1244Ln7+8InQuOWv12BEO52dja+7Hjg9no7P09fu3p2e1pEvPE999PD9Vwet2WwWtZvXL689Ha0Ojxff/uq1gh+1erKz7lBid9sXipkT2G/J+OjDH//urWtrq3x/9eLp+ld+5eV49ZvX/7N3z/4Uk9GtWzdnyX2keLflySoOrNtKTrUyGkpjDCEEICqNlFxCuzAQGWQQhIg6BlOAiMEEGAIRggYA+EXAEBoCCcOmhMgwhCuBDVIQGggJMJv+1nJWcFlBOENMUdZIcLrAR7H0k+kcCMDtqUp5XlaelZeynuxNZ5P9dFrAdOmzhp20W0HDcbTUmQdR2xoIA6nxLIOErn3XmZcjqJELk7X+wGGs5mw9HhxP9kLfmyxfNojtK5s0iVBexdv5yXBYff9sWFjk5/q8LTFeJdqysRcquLljDYekYoBhGEWWhQnAKmS8FlxKbEBdFAoYy7O4MpXkimkbUxsgKAHWpjSCY1BHVE+0gpblm7jjB3YXUipRmSoVO1hlHpDjktPZUuze2Jo+qbJkSDKahzqiNpROTQQxSi7lPAaoJBhxEQvUycElEmViWZqK1xqaQZFWhFKllORFI1gvqtShHjWukC62EKZcqySOKDDGIp5tCaEQpnEtU8eF+apiIIAwQK6BQBtDjFTGQAMpMFgbHHBXqENkGS0jh6wBWCAiTI01eGDbUEoas11pfKwMwVNZz5n9FcBmiFbaJLxElUYI5BIk1ECCEERIg0oDgxDSEClpSnHBtu1sVTBGDNOFKGnDWpQLv4yZhRAiWmsIALWIRaVBRhijlCCEIIQRxpUUHADLshIuNWU2g1k2qWoctC4DK3PiRYKoaTcyvwGj3bpOHEYUpMju9rZ6gaLz3JwNl6JclPNPnDq+3Lj6eXTUezGxcNVqhzAmpUoVkMR2JwFBdWlxzZUssICMlUUWKl57acBaBr5d5F2oAUeLZbInxDIrE3uedN2eoULRep4vodGMYV/atbC15WC2cu1hO1oCaV6eFH3eX++6RVF32hu2LR1XB7F5/dUvRZSYYhjQuF4sGoHf2R4MV3ma56iAVVURQowxX0yhv/j1GmNs2y7rSmtTlmWe577vdzrtdFUwRhhDEMubly9pABBDP/7wxw3X6nhvxP344PDZfFKOh9NU70PGlotqPDpW2mxsru8f7mOMAdBRHBBrmZYH09NybcsSQs/mQ2qfXr56KwrRfHNXZlmxBCcvhdB8mB29GNufP7j39it3bl1s18UCMKkJMPMiW86v9m4dnu97zVZ740wWL6JgPQcVDW947kNi3G74ta9+6Z3p9MnPfPPLWEy/+51/fTTMBv0QgopigIkmHtDS1AVU0t/d2t7YuLpcTtZ6NwIXpqvHR8NnZ7ODcplVRYm+OKKEBgGPAq8JFMUYIQANMEYVWhZaaqgHoI1QDUABSQkUBoBxSbgJ/DggUha1tHAQ2b6pTKc92O5vjU/3WmstYziyGQF1sZr1W33JFV21+4wwWy2yY6MRZbZtNWQBvXjzdPTctvxiaju6LYpKyALjltvImtBOFyyNageBLRKMkHIa7Gr3Rntn+o03t/ue8+Fni2kx9207SWVlO0NQOpUnYx+kwU56ztbI2d5pGK+dJzxbVssk8226UCRshMgr19t3i837hu4110RVgWwRKgv4HqjIcjbjm4O7dbUCWgReFxI4Sw6KVE1PROy84pO6TiQwqOl2p5MJ7S9Wc0E19vuXalFOziZ2YDBmZkVlpTNtZByenu4Jgl0nnp2ct/yNdLXn4hTwuNBVUvA8bdb4pT6ud631Tt43LGF5zjRDWPUJNv2Wonyc5b5LR8Nse9DPVrkp81af+T5cHs8azejzRw8t16OOXhXnzG5zuZCwDCJsvF3Nm59//pNGx9mIBhWziiz99KMPb9xuF8mKl2nTdxeLFFIKEBaitiyspdjeXB9PF/nxKKxTKtLDkzM7tgYbFx6Mjq5cCWbnc1NGtnHHZ09dK7554e4f/t53rt7sfPrpJxaTtms2t19/98MPQJ/Pk1W7TTHozCdTy2q6tmuUOx49HfTXq0KfDz/48uu/WVXxp8e/tf36a09n6lt/6W8dTzVIb3TQq9X5c+Af4GDnwcHxa3denY9mcQNpDQAEGgKIEELIGIMx8ZSPEdJaQwgpZxATYBCirGIlAhpC/EUBNsZAgBACWhVKa4gI5xwAJIRm2AEI1HqlwKzVuFxZ/in/CJHifDik4ObyKJF6Yg88QZ4WACvukabMa+/4/sFyXDlUbEahpR2GZegvgXbTQlzoXMfIUabGWABVNuNwOSta7lqWV822J0vYtDoVSqbzuu9sYZwj1ye4X5TMGKGpUlSmBK9mnU2v+eL9+aN7R7N8wezowsWtS1f6y5P7zGu219fxpU3qhixRNoR+D051rTlwCctlSSktZVVJnpT5bhBgB3ILCUy4NoorWps2pmdQGzwGOCK4Y2CmKotDz9BFIVQ+N6G9tZoRx92M2uv2rnk6SomAxoGEWdgQjoxBFOga+MznCCMIpgDnQbCY0xzQBRcJspXxsS0VLmzsVMtI8cAivqEVFCFhKWMDXihiycCJT0+ToG0TiesiAFQCWEHuI7AEOBG1b5vcaAqkjZRjDDBGasQR5HmZen5DoTrRc8/uyjJWdUKdmUe6QEVVWtk+hUjJilhu4DpFKfexjhBvYqQYhtowjSpKF0b6qtpQagIkFooiECGwZvBerENUIcsgXUmEoEGMCmpjRyhe5UUQR0VRAIC1AmHcms8nQi0tFhPgrcolZhkkEEKSZwTZBYMdI5ABK78Ngjap60bcuWDbnbrdcAbdFMjtOExHI9e1FQKyGUaO3ZPZVVkOX76Yz9p7L1+ePf7UuRReDtsDO2bCEWXtOKkdCMvRoLQSpUjLrxdJA9iwkAJC1XC1NrbwHEhgp+Y1zC1L8PMKaazqNE/CGjLLtYiTZRxiTkxS1GJV+JoUGgWtRsQXH2fJs+koceLm2Wro2jpXJrZvp/WMet4A/fxcVZeD1rt/8j1k+E5/q07OskWKqF3gWggBAMAYG2MQQpTSuq4RQl/8hjEhSvGiKJqNqCiKNF1dv3ktKZO4EYS+t1gtZ8uiu7HWtvRy/vBoGPGST1aTw9OnjR7K5vOytAl1PIfVnGxsXFkuV1evXul22+vd7UX67CCaUhZ/+JPJteuLS9ed5WxaLPY32jcar/ct63s/ee+RrMSjZ0dHx+nm9ka/f2k5qyAwrXankFxyDity/9H9wGuvkQ4ZtN9/+CQx/NXBFZMDV12gdLLT7+cNbjWg9jeafX/8/QQbvNPZ6kSEmEyJQgEe4GbH7v1k+KjWk7MfjLv9rhc0Xzw7ffz8eSWyVaY0ghIobEDPQ23ioQpDy6t1rglyECHGMM1sCAlExEBQzzG1as1qY2tDBAbcKqGnbWoroW9dvGFK3XCbHAsjgEcbG8EWRZQwXPIqS5atRnOZzEM/6LQ0gX5WCFIP4nBDyLkGy27b5ui5715CBoh62OtP00mA6EKxRVLRMXPOZXlxhxppAReggPcWtPMq6G7cePLo6M8+qqMLEm9351S0Wa9gol6xijRWs1VTxGpur05P1xtIOtPy0JvvTwu4WrRoVY17BRqoy5PisTLL4Vg6rsV11mqHLoqocaQ+o9QMJ0l7LWeElIkZjkuMLnZbRbJ63ukBDVIlDSD7SZ1Nlk8CdVUutU+oKzddj1alMqRYpLOAXVnMV0Aahkk6X/mBnfHaOK7v8OWRs0iPu20nyUdBBZXom9wtAOjGrKyOCvXSdt0qAQ4M++HNJBTT+ZCDCFFkOxirokwxhAJH3dWstiorORii1Fy4fGO61NhVVyNzPFmut/qPZ6eBsF6MDhwFoiCE2PQa3r179y0bxVH7+PkjAsHR0VE3uNJ3/HqVNbrdOV9URPRta/nyUBfw8ODJV7/9lT/80z/71lfeSMolAXJysj86kpcvv3Hw4rPl/OGv/IW/8qd/8nvA7Jm6ky/BRrf767/5N/6P/+X/w43jwdbF7374b29eujCZ7xWpxBpQslXnYZVrZPiLR8+u3frqla/d/tFv/cutcOdwtPjWL2zA5bMnBydMFXY4PZ8961p3DetsbHR4DTCsIfQgRghiA43URmqNEHFsakCtEQBGQfSFNy7SAFOi/n9jagggNMZoo5GBAEIJv+Bl4UrWSBuZc8SIqFGGaHun/eTj59sDv1hcfHF/aNvO5PRkmk0YK/y6WdUTXlaSu0mblDnmy7lrgC1Zq7WRzkoLWjpThNgedKnwEQJaJ5bLCaTIWBbxGg7StYIqj+NYiUW2Ou21B4tyQcV6I7gtdOHALC8wBGUuZpvetqscYvuGkf3xE5gXyqmO5eJ8/1MpkHjrdnClz5KFXWGMXBWy8+XMcRzOC0hUXpVUK1MhroUxZgGNrZVdKgshinAhZWGEJqjXQNPUKQuZZCULGMEQEANgCxhuxbLIIomAhnOjS687oy1JSG3lVcoMUqs6UYsScGzgStbRFwpkks/yMz+E1Ytx04kDbAQQALt1ZZAHJR0visNmo1NxRVBKbAPkZSk0BG0BBGWZhktIujQ8RzJ0UFfJ1LWaRoeaVkCHWnOEBCKlAUorhDSGKJC0NrRWQFogQgoTuDSgsHBbVW2AE9sTjgeUTIWeKCVgHSIVAyiASo0ilGaSTIxGUHVt21FqZnCCTAQNAnhuMaGNrQGqpLBtSwpQSun7fpKVnhfVi5M4DtMsBxAbg6htTcYz27GgCRiRhC2tKqcohsiDRGidQtgCVAtaRp01Grdxq+9gZQ9iQILmoMFDWmFDILSjpudRxyUooEVldry1Kkt6/c70bLG507//8t8/+XgUoJG2m4tFWXdbQTta77W6JHbtwILQ0gAb2zh+VtcGMqYxY4hgC9NKKjWf1hVIMa2yVRV6SikDJUJSm6pCNjKGrLK8j7DFnksZM3/HBPnkZBP3ehfa+7PDueLtVB2k1fBgX1699DNaTJf1P9lCF5izHG95hHb3DscpT+NOWM8UhPzPfe6MQQhBCJX689copYQYEYKVhlLKJEmKNCGETRbL53vPuq3W5joYDsfGYlWts1o/f1KD28nx+IPpIvLC3SLJkjnqd+liNQvj9qXLVze3LwGD+/2e51hNz3vw7On25ZZtN2/cuT4+H0uVj8+PbLRz+c7Fzx48WyQv44aTHqIs4aC5lHX8+bPPNlp+J7ZDTgjE7YY/LlY+gauytJoFVnFbrxfnyRF+iK7TbufyeJRzvWh04rmqgw1rumoD56uc/tGsliaBDsGe70qoM2j2xstHR3UhZjUYDQb5ZPhpUWcGIERsykTJhW95HtKO4D6BjmNlq6TnulBDqIwxWhhjMMTAAKgd4RKbCp3b0Hgk8IhbG8diQQiCm+tXmk5IbUwMSevcDv2ySlynablOWRcYE8djtYSh52kDK8yT1QEkeWPH5/VYQaFhVpYpKddtWguVtDq9w5fP2s0LGuhCLHdwZ45rbts9SNTcpFyFod7yrKKR/8Hv/Xh10n7nV3bFVfZEVjaypZojxojSz6rp1rpj5eI8X16h4TB52eDy0cn+GVr5jrs64007wF654Fmz0R9OhkWdQYy0YWWtJB9TCFJ6yPwrTx/tWy1KcTzLJqicXdi9PjzutlpFVo1qlfX61+tKPNs/BZgVdh0FbkGX1Iz5qupaW8X51IVArfPx8GSruy6mMyaEbzspr2DgeKRzMD9yUJWVJ8WKuaAzm99vODFiNSkxT3ZLfmlhU1kNbW+UQUbnDZ4tMmOZYuG3PVnOpIkJ08zKF8szG4jR6MlgENgOPzkbRdhWddRubWAUjGeP17Y29ocvtBCxtTtNxuv9xsGDl61BcHI8mZ2+7DQHRbl46/Ld9x/ccxpujRTOyy3Xu/feT/Ynw2z0ZPcC+KMf/vPOoMGL9OjR4uKV2wcf/cRfizQfCfXp26++8973Ptp/8cd3br6BRZ3kJ1+6vfP48InAp6++ee3j+w8jB/iBevb0/MaVG1V2/KW3L7+49/nWdpyvpj5p3PnG/+xkeDQ5Wjihf2P3tWDUKzmi43TrEnn4YrS59Rv91qvD6QdttznbF52BMBAoaQDWECKMkTJfeCugUiAMIUbGIAQwVgYDSCCyEOAaAKgBMAZAiIA2AGhplLaxrKSQ3AjFOahrUZm8EjYrFucysuOT/afjwxeyqBfn80E/rCXWwsuHq8U4920Pmjqv0jSbh2zdIsLSUTUFnaZdJCWzO5hwZOMsTWwrANrFJiAUVWUeNP0yW9gU9zY3Tw7mLouuXdh+/HzoN65R6IgaKFUEtog9FyFrkWoLd/xuMp2fdlsbOgnXfK8GRa50kmjk0/2zcePweceKmKMSGtANV4HaXjWUUiWrpNa8LjCzuJLUYQ7HRqoFyBCzbNfRWsOyoso0m1TIViKLLMs81Ap8Q0ClVYNQiTz28mw8O5tOR489lgBQ9C40SAiiJZk33IaV8tSkmawZCBd6BbGnlJiveNTtLLM89HqnXB0BdNW1xqtDJ4J1LaBxKe5UJQWIl1lFXCB5ToOhLtdXq1WntzaeCo41o22DC8bMbGw5MRJ4JIENNNLSQEMYsQCQQmUGZAgbO46WS6UkjTynWk0R0BbGBOCKLpHxMIyLvJKisu2OEQpTVMMaAyaVBgAyuGHUltYlYjUEUgltRJt4qRFQlg2DSggrCixC6WIxjeOYQoC0pBAk80kchXVdO44nlZEaC66jqCVl5bgwWeSakdD1XZ/NVysgWcvfOOHHXuCHrW0Wby2Bcrfc7nYrw1bcarqOETIDjitZUCqodFUjASa1tx67yIqamykRUZue72XK/2uu+OxodPSMT7eIt71QwaQwc7Xg0GoBEDnTNAm9WJeGATs3MjN63WCjbcMiGhmVLyFPbQLrulyWzlondC2g1EmalEEQQdzWReeIqcU5bfuhv+4nYumuqS03PH2GWLvK5wdUNwi3ABrns4dWGTuka7H4mCfbl7t/8t0Pn72YddoDKpUUuCLEGCOl/O/q7hfnV1+kjDHBJca4ruvxeAw1MJDPPr+/tbuFIPjxj39iMafGpdsos0T1LxZns9nn99Tapp0Uz6pUdfqtNM97G+2Ll9e9gFRy1u+t+5HROq+rBdLRzStvblxqz+YTLdBalxKoAA0Ohp/e++yJg292WvM8O1zNaZ1Vk+NFq9FJAfn0h+99q3p1q7cFkRe01pFZuLBZiDMhnCjsZzyBxgZ8uFRXSxS+d//HX3nnFy9evDmbnjfCncn0AZQ6Hc49t205xHHsghcIg3S8AF5jMc0AAYejETQEWYYLqaAUuvao1ZSWVDm13WWZSV4MrEapJIKAQMQQYRg5iACtgFTUJ9R1WGZiFFxwBx3mV1XuUGucilYQeYo1PX+5XHZbUVIV82SB4oBLFHdak3Fm+26xyhEMKWarmdPrXMz5S82NKRqhF5fi2HXdGr5MV8X6+o3R7IfxWo+ryfAcRf2dcW50ecTd5kyhqIn5DLg5Ij3xT/6riXcp/p/+51dybX6nXj2rs6tRUJsmAekEogYJ83RSjcZu4hxXZJWilAvjDBlX5aozAY5DG9XBZOBFiT+J3IE0zSxPj0/2djY9jIyDw0S3bLIVNoqcHxPl5gXyI2e+wJpMpfLms6zRs+fFXhxda3p3RuMTllTEBYvpMW32D0f71lpwdHy8e+m6lRRpvbzwzjvvffh5TY0hUOclBdgbNKiT8llPINTpmNnpMMSS8ZMhXw/K0AJqsHbycvxw03kNztx6kqewCltktixxnhBX2xEFHGAHWknN50maLwWqW73149OTC4OLUBdKRKpMz6xkp9sQfnj2ZCRpsbEVJRk/O9mfn0/e+vrNF4/PL2ysvXx6vr2zMeelkfpie/388KBWWcGz6Wxy/PDxTmBnp0cgbHTXth88/HRj/c5PPvhTVTzs4PX1V3zNx48+++j0rHr1zs083ROr1uR8vnFp67vff7B7YXN9u/+P/j/f/6lXbwPLjFaHLw8PvvLWrbPzFSWNongJzCSMGt6l4r/6X/ynP3vz1SHh2np5nh4fysk33vqlB+9+2Ozd3blza+/xZ30Hicms7bcJIUZDqYTQxmI2Y0xqoLWWUrvAUAMAMFBLaJRQAACCtVYW+fM2XBuAEYTQaKOUqgUFnPAiFUBzUVoAKF5zKauT5XxyPB5/JlehjS4icKokOh/nZKRDp2FHpWNM2/GESpDoOMxCuG5G3dnolGgb8aueTVb52HZ8G9qdDqjFkkJhuUFVGsttFLkMWcDc4OTohePEGMrz0Z7jWdRVVOb5atqMtxntVnySZUXT6VGmxyt4obO2WOQDp21sNa1PXUB7UW+RPzv9uLg/su2G3rnx0gnZoLxpm7XEPzOU0sBlUVAYASQqC44xpb5T17XIK0IMRhYyphaKK86z0nGMkm3JxSo915xSe504QJVuXoKiWt6/d8wT0PJdoK+jTU6WatSzdwrDZnruuBuGpzM5thHgOq8gWBFjFlxntYgoPllckqZOkwi1TZ5DTbR2IdXIWgEEjdmh4MSi+9h4OTl2IlKK2qU2x8dSXIK4magZjHmpOaMotq3lSkNQtzpsOZ8y7CIOG43+cjFTeRlSDYhRStMQV8LUChLIfceuqmEpAGNNx43mqzPboVwjIlAtS2qFzApqmTNLyFVOal/WFKGV7c6rUkPQdHyvFoXGkoIVNg3fGvBqie2hUEutLYd1Kh4pxYAECCvXhtqINJ0TzKRe2R7hAFgOmabnVR0JQ7kcy8DyN6+3t3ePVtOdmzcqL8gcTT2pCc8UjKIBQNAYaBnl2E2tVL4D2aIsLWUi2NROFQ7kZdfeP228unJOmlu1QnJuzOoFSNcx6s7radnoizXLcypVEiKZ1MJQE0WpAW6ZkFpj4sUdQ3iUoH6mllXxtAzj0YhBCt2oIbipq3PbksviROTKWBWs5qxgl/yvUlYdivvnCXZb/Zdnz0iSbBBQFQt787po++7iO3YcfPT+eL6EZRbYm6HiizDuns8Xophj5lKMqjI3QAMAIP7CndvwqgYAIIgBAABigwHBUHG5mM6yorIsKxEFIWRxMtTcw8T+9OFnludXw4mplBPZo9GM+Vc3d66enh1fvtw9PT2mtAZ1g6owx3pzbf3q5noyP1sdvbi41uitRe++92j9snr66PDpvcOLu5eW50m/s5Xl+64beN7gL/zi//B3fuufDUewAN7T06ev37rA0lXUcSzkLuvmmZtVKAN27+wsxZ6NZt/3oq3Ravj85f7OxWvENrPF8T//l/8CmKaHh2+/0f/kwSyfe7sNsn969HDlpEK5tl8rKZX0Ir/MFNAcau4xlwhZgyRgxLOJWEKXOYDiiABe1XVVQ8eRkKR1GVpB5EVNCaSAQOOLa9e6JHYgA05GGswqj6BBWvkQ9VwnsBwzm49CR2OuEKpxfuar0hZeo7FRy7LQtUTNVX0ERIllsxUiA8ZKEFO79fzG1iCCRWXzXc5XLBhe2A6BaU75qjxb9XZ/tloXeKo3FbAu8r/zj8+uXzXv/KWb769m7tK61LGZh/6oqiazl2IheF62T44GibokHKfDZ4dz+zRI3ASqViWIFWnPyg6me+2u3KusS2sXAZpPzw/VwgGBKJMZJVdqiAFSshyjYmnVfc91NXopF9yPr8wKL0sltXqLyuBACYeP96cu9FUJZ9VksLmxOicD653zZ4etVhewcJwmN27cwhgTVA0abUugJJ0YuEiyp44Xe/5qNUxtL5BykmZmpieSgqyVC+bx+RMvZVmak2iyyHW/u11kWXV+0Gx/A9XwLEk9HKkkP18cS7Vf6KQyYr58euvqO0i4h3tZoXVrjehiYaEQDesnn737s7/00x9/+Owv/ZX/6O/+X/5PzVZjtnce4FnFOyuJr29HpX6BcZEuzpLxk92d9XRZnzx76lvpohivJvPf+Ms/+4PvfxaF7b3Dzz///ONLO6++PDgZL+9ZnI+GD53B2qIIH76fn8+OfurL7/zo/X+PBL/z+q/bxc7bV65/6dV3/ugPvx/ZVy/d7Ns9lOR2rzUUeXOug9d/9mf+9HcevdZ6bbMdE7n76em7djl7+/pXi9F1bBa3b9w8vve5tVpYW+GJ5F2v0YDUlDMEbd9u5lXFCHYJEVwbg0uZE9uHgCkhFZQQGoighgAIThDWilOEqyJHGBsNEKEemJcEGrJEeW1pD1lpXS7LoSdHw3pq7CwwcqFX3KtyJMbFnK0HRut8dQp6LZ+pgolmLQGxGx5E2THsh7eps1wkn2Hid1r9JJ0zZ1NyVVYGQ9uWYWSVi9V+6K5VgixmK2b5Gp9KBBzYC2CcJ3NOmo2orXVR5Oe8ymM/hEBKDigIuDq2mAt0UIlx1+pmpRbVqYcGG5fs49U8G4kHq8pruqP+/fPpd65s7TLXcdrh2uVdbVtiVoStHnO9s6ImiUSaipDOJZdFJQoZxV0FDhAnoXWGrGaWO8Miod7QFIfE+Cd7ZDpcxVGuKQfllutYMH5JDIN+yVtcHYiqqFM7LzoQ5hpQA1IIJrpcYIEokmWNbFbYBNGIy6kSGCFEg7E2lhINABX0jxxK66RZl5hZWBQpL6cBczDtA5pQGiyXoeN60ixtiwtxrEQniuLVcmKMqWrlOHaaTx3PrgSV0tM6w0BBGSORaZVC2azkqK4d2/YqPjeaxW63qguAEsczsHQ0LLlZKq1h7TNmUZYSiCqulLAYgcqkVblUGjAWYyShMZhKZCxk1rDqE0igsS23KgtpAOFSCoHLukLMphYTiQWU5wfy7OzAtXuIllW914puRv5NLuvTNLHWLwyB9JvzqEEqhZG0LWYRBWxq1bVgtosAZLbr41oFNLOgQjUR0NewtLFejxV78yvt4uDkaQbs473HF5stXdSnxn/diab50nXLWHpQWcCLAahjVJUcaWIUgNBAz/Fprzc9fylqDuWA2CatD7For2/eLlKJfVnVWZVEBK3qenV2UioNBmvYiHJ8zn3M6tW93faFH704nrh2UExbi+/1g5tjP1ql8+EMPnx6urtzuZAJwDIREwpls+nYtr1YrADQEEAAgFEGAPPFaPrPlUgAfBFrZeI4LOsKY4wQKsu6EUZnZ0MPooz0CQgoL5cAYBOjmRxc2bzbvsGzs9trDV1KRze2etef7X200W9b/Uu23fj80fccd2up+jXBYm42Nuz9vYN7H36yTFbf/9GP+5vrCKG1fu/a1cvvvP7L7Sa7fsH5hbd+jkEXkbUfv/fZ5oX4QrghY61Xi37qt/v9w3BRwzQ9evGos2wJgRUcPn7ZIf7atvcrv/6XQYle3QwcCIenVTnLy4Y7j3qq6SbTF4z6BCjOK6AVT1MsNQUmsD2lddcLUF4wgKuqcgMPK4ykPM/zOAixAj62sYJNN2pZwSBsV4UPLJNaU9+CNqxcClWtZV2F9g7UHLGiksfSCMAdz+nGjW6yfEkwrmpl2w3N2WpRMccCFDL/hWX1EGIaGiEggEzjc43Hfmd9xZdAhQ65paGaT58LyOMwTEXpDdZF8mQd/fIQm+Cy/Kd/vHcdR1/9D3b/2dmjoLn5pu0X9cq3we2V96c/2HPs8ht24/TlKU3mVhSNRy9IwR+zcRetkG6GfuSEdD4aQTkABpeynE6Oq3pfIe5Ebc8Lm21m+EhkO/PjPPNH4VU/zWfDwxO3FZeKVbY19U6cEkZZ0NdkOTvCduD0YhSl80d+O8JR8/L5iN2+tHnv7E97wXWVq+6GvXvVOz76vOEQggQl3pxD7CO1Gl29uPvpe/cMOF2tlEsvlnKmbMHkXGReTf6EyHWxaGg2rlZIe0civ6JBUSTz1uX6+cG9S1e6i1lR1SkJ2lUaWQp4WOBkw9Hd3/7jf/Tml7++mP3reO2tZ8ej6xvBn/23/3zNdcvVym7h0enRfDzaeaXvMGRM48mz546FQj969uJF0+3MT46qWZ04xaPH92aTB5cutx68d/QLv/gr0/Pi5PilfYX95Cfv93qDB49/2F9vvTg4AsTZcgf5s/Lj4v2Hz+//4sVLT198fOXS1c8+e/qlN24enz/8zf/BrRfPXuxe2rqxFjiNei3cbdmDZ48+2ly76MvWK2u3Rx/8fv+VLz8ZJp2oTu/96M47X4vXb//4xXvffuPyk6efrtKPbm51Z1P30o03cjHSOlJKxnEjKfK40VUIVJITxpSUDnURJEpqDQEh5M83vspgSrQBiDCtNGVMa4AIAgAJYUmpubAI0pVMDg6eLubLyN8+3kuS/HPGfVvHtjVVhQnwtbgztOGObbgLtIXspazn+VnTswZ+dJTM13av5GPIV2sNe81xquViPIg7K3UITUspEcQQKpEnOAx2NFZIFVHMpHB4vYkoNaYmbuVhlFYnmjcw0ZDMmQeltgBwuZkzOwNiPfJNUY9tuLbKU9fKiqoV+h2uql3LGARKyVEZPHt/bJz4R0/23IBcf+1SWYjN6zu24yWLpQY0RhARiD2XY4WqMjCQWyQ3mVcHxDH5wkY4bbthnfvJ9AgY59TMLeOuebq0m4tQUQZ7Lk0OKVHGq2yw0jNgZgYn52CeQsszHjTSmHpSLFY6RUSzSvuWo7CpwVIZlzBAWaUhM7LCLLfwmsRsNZMeIZabF2KEje7EfSOkEhuaPoXGYOMhXRljdG0JwYgzUXiphRKKMIQUt7TyAIK5LpA1NsKSJWLWmDHG6gbACTBNoFMlSxsHBgAES6BLj8WaY0TmAFZQdaCxhFgxCmRhG5YCw5VOLOYjbRsFLAYtS4uibdACkwwYYpQHDKOsUOYclCHWJXUJVjVgVlpw2+pyzrQ9VmZU5dB1GlHknC7HpSbLugi8w1Q5qYHtNSNcRN2Gbwc6T7BDCCFcSiA4QABjCAHABCBEKYSgEByoAmFFCYJObNOg7VdgDFyVTxd6nCbVEmMW4dCgPC+ApfrAcQq58m2IBGGqqXEqgS5riQxmjo3iRtjtdJut8SQ/PRnt7rYHg4tFuYy6ZDSbRuF6HNSTeZymMGpVwJoJaYD013o3RsnhK9vfvv/Zj25ebOYKPHk24dUGAQvgrpPYO18sL1y+2e01GcOHB8NKi06zBAAYA1NsLEYEVxBihJHU4gsF4X9Xev88hSArcilUq9udjae+HxRFVVeVwNhfjmwHl4VNFTPQvP61t13fM9zZ2bwUtsCPfvLxxRuvPz1+eD5bun6fHjxL/biQ46sdi2QTmBpncOvpkO8/P/j4owcYAANRXlfDF08v7+78wre+HRSz+sR8483/GLCSy5P56DhAO2F+91lx5q6SKA6c9pUib27U4+Ai+0z/8NGhl9A6cEBd3l8V+3/0f/gDodHrb/zFMD1qt25oUVy7Gp2OxoezepJXGMNK1BBCJSWGCNTcxZRC1LAYrSSDsCKIMWZzTksFMdSO3UQNS+FBd2BpZBkSYmenuZ6PF3boKVoCoSxYEgixdi0TYEGD0CwXOVAAaMqYbQAhxAghouBWLZ8RtEZMVKNzz49KTjA7FRVV9JziATA9aWpq1w4KFUzrXDp2ZIyq6oeQ4EY7qDmtqirw9MFkGTR3Otitm/mT4/L9B+n/+W/f/a9fjo83IruQDKogWd1OvNPJ6m92LrZCKtLRHxXF4vTZUVJjhrGoN3yo2DyfjyRxiH09E9O1gbuoktVZdaX7txDvKjxB8Xg8nvUHX242+MNnk5TLTcvHefX53uTCtbdWswxwHmx3LPWwFV4xAM1Ww5N50nOraBCfDk+DcCuOOos0t7pqRg/zwK77DRPJLvnSfKxQ3ebLBbDTrSsX54ui4Cdj2yuSk9lZ0e/Zeb0QKqVgiI5i1t6g1K2rNQWMlCfLZES9oIE3LShePn/gYjM9e1JnJ6tpOTqS6xvdefIZo8AiXlmKVqfzwY8/2mrfWYyGjbj58LP3CeucHx7z+pzax88fr37mL/6vPn3vz1oRQ3pZpijPZOghP8aPP7tfL/aDuDM9PQ48a7o3PH90cGf9tXR02mjgq5ev/LPf+leNZvz06VPHac1m6dnkqNT4ZHTqxY3GZnPv0RPR9hhkr77y5aeH+vz8w1/+pTuDFp6ctUxtdVtREKbne/u/+JXXsOpkaTat9WaTvHHprfuf/Xg98p4d/eCN27/0w9/9FzevfdW78koK2q+sqecHz/1mp9P8hq5Vp7G9/3h64Vo3XazChlOr0nZjjbDUClJWcu44DlQS6D9/0QgSA7X6AoBljJaKEsyFZJgIIQAiUnJoGFfaIp0iG56+HJGy00Rrx8/2fAZUHhtZ56uRF/uxxSzsLhMnQDPDXOgNkA56euqwkWWHKW+u6a5XYEhKwHRlMmxrFdKJtH3LMoo5joeQUVzWqrYQzssl1i61uayRKn0H+xyeC11CZLsYqCpmplGriFlQQ8b8GsFEFgjJllEzx+JlWtnAU4a7ThuCmRGAAg9qEjKgQGWXp07kaGQV89mLT2f9ZZuRymFW9+LaKiktyyOElMu80Dy0bQtZdVlpoZeur0uAHR1aQVYlRTkjBGG7uEAGtcOXFqeo5UrLtSob6GzikVAYm5rQtudDhRSKW/HebLJmt3IDHMWVLDKemGJh6lIUshhPy42S6D4k1GhkRGTMApEUoqUGJ663ZriflwvLA3VFigoSwpAqNGC8rn3frcQSQVNViFhNCESZDx3Ww9QBcM65tK12xs8wtTzWECgv8pmoLdfWmi5EqRltey4oysR3Is7rulw5lDLgllJAHCNcI1wTaNW5gzCo1RklmqFmXWKjlQFLSEqMGyLzABtrSZFoQCQVmAGiELREbWGWaG2kQELaQFgIQNsiUhVF3SYWyZaCmOhsPDWOZ/v+TC5L5NNGx+o3U5h1uhta4rKQBGoch0JyJeWyzqMoKExNEJZAW6jESDNZGgiBY0ObEWWwUQbDrKqDVpvldHdw/cnhA+r5cYOsgOcyQJBIGas4IRmlCHG7cjFOpEaaUIWhARwAO27s7lw+P9+HANWVm6aJjaRJ6jj25osXvnXRc1Vl5mk6r2eSAc+xSLODqP1OUSdhE+3svPHRRw9uXuhzGE+J3g2u9vrVX/jF7my4cNzi3Xd/GPnM93CR1zWXFZdKKcpYzQtoJDT/vYT/i4gxVkpBCAEyGGPb9cuybPd6vKzqsmKUcSnWWrFkRMH4Qrw2SU+bG+HqdGlfhFOj0oVXqzhNy08//eGlrasHj17eeOsK4cKa9w4XZ+2NaJlUij+uDrPPP30AAECEcqlqJW/evvXl1149PzlegKdXd99uh63FXHmsb/ftZjfPivN8eKTmQmYjtz3s9W8ZYZty8/LFnx/E+UefPXgxObvz5t0f772k3Vv/2d/4H2PdstVxL/Jcuvr84Xd+8i/fd50O5wgbWvDqi/03xdBG1IUEK02lLoBEmWwaAKWAvlWWZZN6a9BpeC3PshnCq2QZN0OH2NhyvDZCEKR1haSmkEDApABIE8dya3WmZQFpSLBHMEUES50DwyE7abjby+XQ8YlMthSQ7Y4ejVqevU5kTtwFRkNe+kKXCJA6fRVRXdZjKYCRm4QBQc41KZGOYuXMq8W1O/2Xc9Cw2b/53v5//Ddf/6OjYb7RX5PplBfvHt1ff7r3C1/6+dsddjMkn47mP3r2yZrb3TscNbaxYzVS17NWZxTe6rfR0eKlRTtRTCRYiTq0GHlx8kOibYeyCxs3R2dnjcbVjH/Eus+2+Eav7x4s+bPz2c2bshuB4WJ4Wn+wxuI6C2b1WDftxXS9ieIqyTbYl0FXltUJEfRC89vDh+UAfumy+/VxAiflYwjkevfap/dffuvbNxEx5bLCTLUW7vl81BrsYKpIwmWRkZ5ftHaZGOXlXlUEkpeq9s9PyKW7KUH2+dn7Sgw74cZnH37cbNuTgyWsqSkXUXoXplIRtBLvFeW/SerOnfW/MjzOUwrUJHKoPVp+bsfV2fHy4taV1f7D8dnT3bVoMX1+8Ky+uHmXOnngs/ufj7DLnt67z0iuF+knnzx5++1ffjZ/qfX8wpXus5cfGlS225t7B7Mk03svjyAKTE4z4F/u7SDb+WB4dsvt/eydO0tWcOvTi5d6b776M5+8d89v0P2TgxuvfO0f/IMPvv3lW/NJEtp2zue7V788uNgazp8VixGf1tvbV+Qy2bzUMp2Oblyv5xw8ude+cbuoZoS0MRKl2e+v+/mqsGyPIGCk8AI3ySvCqNLaGAOh0RoYDSDAAACltDIKIEwcC0CsoIAQUgIgQohArYExECAIkMmyLM8Xnl1CqdJkztCLyG5w0QD4PAgB5XG2nJpgFtvrou5Y6Bjyz8rartGGHbzhuaRI59KbplBAW0qhKDOi0paxlNA1zJQuLIcVGXNgGAYCmIKCLcfCWi4tpoxfWS4lANfCGOkAWCF7CkhmuJQaQgyBtKDqESMRTupaUytGZuHQpjYxc6DibebiBa9yUTuWXVblhc41IWpmb9hNeDp8zglbOcWMDW3muI3wHDftSkKCE8zGylAhkcSMWBw8kdJmqIJyAGqNGPScbWkqxwhjaWRAUSukHS3YKsmVbpMZKy7F/dOkOLAbT7JkwStCwQs9I5xxYCBRmSlLU4HItVTVDBwCGpStgPY1J5gIChtag4qf02oHgY4BSpkJgAIxR2qvkiC0TwB3tVII11h6GGEDpogqWVGoG5xrzwNZDjADXI2V1pawECREM6ptBC0jCEAYUVTxRch6ijIhk4oX2PgQs7KeIhoaoIwppTbQKEIMcwBkhTax1i7QCKAaYYQBxMBwrZGxAUoM4so4om5j5BoipFpUomtQwWFuSKlV6bkhlFAUEIYvJyPtuERbyzJDnLAlGHavXAIb10mLWAMvEdQBQS2nXCE3XFdSYAABQVJCbZTiQiFAEI6Fm2NdMAI1sISNNS6NzrAmTtJGTrosZBtRbt8Er66yVaIKDZqDKBbAKAkUoimXocNkXUEMqUUs20I1zHhVc06Z3e4Oti7vzeezs+kwk61Nc4dka7UfeD60XSjFHHGN1FYhl6ejZwRjj3U6zfRs/MlgMJiv5lHXv3Ph7jjbXybyzrWdIFxut6N8rZrMnnz1S689eHDIFX8ynUNIAETUCgBGRColaqkVgugLJs4XzfL/HxjLYExt20aIlGVpNGh12sOz82tXtuL13XK8+MqX7jydnP6Fn/mNe+//EATLyWHSj1sA2Vf6F/L58ut33zp8cVwsCNS9+WwvHa9+6Ve/fTyczcZJ44L79MUH8/nSAIAIJRBFUQSABkCfn59u+e+0OruTxSdZnbXc243oqkYKLl5ul8NHozJ2Wj6plfu48lyrcXmr2F2iSTs6aLVe8WHzW1969er165ubcVXlmHytUU9EDf/O//XPDjNw0Soni6wAADOipKAIEmA8ahGhCUCq5pEErutSxijXLezaTtyKGzYlG7qPgAbatPrxwemx01/TwCgIGLZtHCCbWCRCAEmgEMkhSxl345BYNqVYpXnm+zEGmGKrKkAtjG23aqHKehnGsFaLqMEIOVFcyGKTwhYCM80ZQAiwe1Fzq8ghRIr6KwgwNx4CNnJqkwmW78xyeHUr00dA2rsxFb+r0N0AMOn+oGf9q//1/+Z/9/Y3/aZnHU5/Uh394Q8+UoslVR7y+mfzs11QOw6pCZQ6u/9g9PZPv5JUycnocyXUZvuy7a+ytIPxSX+7LdT662++U4j0+GXjwu6v1ljvzcTJsfPK9jeHq9m0VRJM6DzhzVc0hFUyb0L/9UsXjmcvbnzrnbq8NuRHRSF2twefHT+/de32cvgCrC9Fmo2+e7K+vlEa7XQa0aD/yY8/Q8qggo8vpnK17aBlWSwyWdqO7dTtpiwXelYu1Tx7RKkFDZTsKYCvLebZfDRstt3zw4lNMC/y4aJoxO3RyRCrRZY7ki6dCMH866RwPnj331E2jIN3dMFKnfsUnU2KdrzTjv3jg+9biO/v7duWWutvJMm5DcrZxCymo72zcb+vjs8nddoOgzsn4/1Ox7JI/+j0uDZHu1d2PvjwsBTMianT9F/snaxbaaHMzde//m/+xb9a29hO85kmy0yIsoSv3b18cr5PLDY65YPm3dOD035P2HwG5nZ7B8Nabm2/ujj9bH5+2vPXJJE7m1/fP3mck1aTWc5qND7/cbfTZ7HKzstGo/H8+fNuH3O5siwQdeNiIuJWU5QVNgRow+syjANRCQQJAFADCA0wBpgvTG8NElIBbbiqMca84hhAXnEtFXE5l4XkGHAiUldOGF8wUvTm43NRL2SeEwmZM+93Iim95erMjqYu3FH5QMNEmCl1qlp5yghq3HKlGSPMUqLWUPmMNKBWBHDIEEKVhDWjsFYLLiaYNC2ytViJsGVBxA2cGw1kBYARmjLXY5RAZOmyKGzkqlLoShO3qcGh58S8os0GzMsVQT1tSuhMIXaIgpZiWNiUg3bcn68mdvNllcuLHS8t+Off/XQxmQKRX75z0ayaRbYKGn6jHaQCmdrIokomC8tatXtK5n5hzmKv5ZEeRjkxQe1VtnbakA7lwniu0XY5zmNl0FvNr0Skl5dFw7daCJA03USNPm+6lhMwEnheAeBYyilXK8mXsioywCss9UroiRClUsYYaFQErI9z/S5HZwh7aeIYzZgrUn0sNBIKG5yn5QGACmgLETsvKqFnBIUGlEl+QHEsBSjFEsE1BAAXZ7xKKbQxy2uZ1BwhWwCDsnxBKRSKakMxhXm10hAI4day5lLL2jecEcYN4NA0tWiWZV3JlQISmACYhtQE25LrQhotFKoFlyAVcMH1QpqigKvCVAq6CrQB7EHiraphUj85G4+gTUpCj5NCNRs8ugB7b9eNK+hiN3HsAkDGAE8WRBEAiMYKpJmjdWBQ3wtZLVwAmTAeRAVOBM1dSztE1CjJ9dzoJVQJqqBBTJLK8nI3UEG7SWmEa2J0VllM4NgzXif0dCBryxTjarbIVaGAkpVIk3KlBbewY3vR9u5dz71AcE9KfXz6WKlFlo09DwLs+w3Xbyts8yBYd9iFuoZJfrAyqW/v5mdKz+VW/4pl7Xbjn76689M8f+qxSlVLZHhgNaDEr9++E9Bwrb9u264x0A18DYwyGpIv+mMAAKCU/vdAyj+X58Miy5PlklKaLpdu4DPGLly6dPe1tx9++OHP/fTX9vafOwgBlBvGl+P5/r3F/Hw1Gb38/k/+IB607XZ/KsHW3VvN2PP7mztf2fizz783S/eaneTeo/33D/YsxyaE1VWltV6tVpPJ7KNPPpVAY+txWhwOV8VJKknLI96K4OOAnBcZ2miFa+0WVFuGX0PczrMD4I4/Pf5ehZ7v9sybm36/SMjhkB8ceEVZZo/m5x/803/4f9t/OffitZNJxmyisONBZGngamBL5CniSBxjL4RO6AUDGmxW9mV34BCf2L5Vww0VaET9sM2YzQjb7m/4lFXLFRZCgYVtmyj0Lexr4xnkQGpJoS0buJ5NocMrrGqENESaA50gUGPneVYsGGx4UVaWuSUvU0C1SutK12Ko0ZAQ27Ilc5YW6q9Ou6CKmO6IxTZfDWzi2rYsM1njAJSPtjp9DPxP96rOXVEsie65X2bFsTz/7GCvdZT/9W/+lADg4d707//xg4bym9I5zWcb7UE6qWXDFbPFKxfeWKWaMbLWviIz/9bVr9usQwhvN/xFfi4Rr0WVF3VnEI9XhxcvX+hv+dOzBwaP+lc8wWZEnV6gNNL9ku5I0tqffnz51gWg/GZDDtZsCUj3cvfXv/G1HXZ7y3rr+uDW4mzs4k0gLiq9oUSb4N1VgoJ48OJoNJknQcNFhO4YBAvx6PRHxLcMt22rql20RydC16reqbLLqrqVLWOI3NlYLpdLWbUmQ3F+toyauJajokiWq9lylY/ELJfZ5DwvJlk6+WBv/3dmyb4TtvFi/uzZHxrv+TJ/4Ri102y8ePxAIHs2Pj45fBbHbuCj09FDz/MePTh4+PChY86Gj5Z4Fvc8uDp9XJ8YumjZmTBmPVni4TCpKqCUxky9OHjebEdQLnttelIc7J8+udLo9jYu5fbATnrLpbu781MQ7QLc3j88vfvKq7OzyTffejup93ZvbDfX+xev3UU4K9JlGLWxu+1tbyXVKC0eNePumnOZzOsoMr3XvlIuttbitw8O7rnNke17RIUNe/P8sCEkVBIqpRACkhe+Y+taIAUxoxhRAJD+gs9BCIRYSo0hIoQQzCzKCCGMMYsSh1mylkAqiuq6mE1Oj4vspdKPRsMPda1knUAFI68NAU9XK1HBTju0TS1xltIVDkDAYlIGWVJlJImM76oQ1sR3HQly6AhhTUxwVBVnyMAsyT1P2K6Rhe3g7TgcZMW05jlUBBq7LoGoJSHKthVhDoZbUG1RHBHgWKhlY8d1U4oNxSHQEEOkpeNYmLAUQSrqfp2aCK12wnGPvNjwM1xzC3Xrw9uRuh3ToOWVVzZwcXq8/4PTj3/n/PEf/cnZ3sOTydN5ehwRzfJ0eLx3np6KbGtx3q3ymFo7kEYlLmvChZ8Y42RCCWIglQxUYn6G+NS2MrLlXN1PnsLQzxarDb+TYX6a8tedKzN1NpbKqomuSEx7y1L6FssRWhYnFW9atsCoMtLDJMEYINMqV5edkKVVLkptY1yW6WqxApSlMgYmM1pACKUeAVBqQZRoMqwRtAwKuMgZWUmwgkQZmCgr19yTaGHAEvKolqU0x7Vs+rRR8CmQjpQOxhEHC4kKCltSz2UdYBRgWipdUNCqMqnBijg5MBYhMedFjVYIKi0dBDxtBGJSg0xoAIFnoNZwaawFIbeyfKqwyNKKsZAYltYF8xxSrhVwNZotpcdkMx/rY3fturutM2VXxlUFdP18XpxbLKSYiupFB3U0ryHGhCBoAKMYUoIJKbGtAYghQwzmuNZauxWUVW04mNBVqSqnNh6NJqBCjmkLX3tdqco40iH1HDsugbKpVPi0Fu1invJElEhVUDuQUg0ryJSEm1u7VVEPRy8hFGU9vXHjq/Oh6N3S6SzkNWWO7mzg1UqUgti0l68O954+Jmjci64dH3/WkM+Ze8cNNhpO//wgDYLuUsy95sbr79gvD+5dv91sLVqfP3g4X2SMBXVZAG0ooVJLACEAwHGcuq4ppV9AsowxFCIFANDw7Oxsc+dCUZZpXty+fftPfvDer37rnePjx4/29v76r/3V3/s3v7M3PBLnldXrPj1JF9Psjdd/ithtaMt4zd2+1RT+1Ofug+/tb+5cTVDJ8eJPvv+uL8NVMaWEIgACz5+OpvPpOEuX165dWbFwb5ic7413ehe8zPKCcH98tixlc62nlntxfJYYe14kusBAkp98fm94ImUBnq9eHj+5t97rPnxIC7G4fuOrv/39f3/29ElMwHq0seLaC8IsTXxgtQDUENmEuti2IaYMe9SimFyNOtAgpGGn2RVlVS4TBkkQtbT26qK0IDVchq4LgW42oyrLJSoJopRgBCVXSElEsU8Aq+vMaEQA4bV2ndC2LAAqCASmbpbi0HWFnlkksAJZ1vsWcy0SQX8MhGtEF+MaQmE4U5XyvFEtZpjVYdvRIDCwqcWug2FhPV9bs8bj6tIKjEyy1eyMl67XO1Bg+8Rzx++++I1f+DXSaf7Rjz69N6664QZkAiBz9tF7b4V+Z2Pn8fjZt7/+VlFggjs3bjVmo3ErHmwE3WQ5f/3OYHJ0fn5WNqKt87P89dfjw7NDgh3LAWdH1XGSX0DBte0L/+2DF4Prr7usuSqsoLu5qhfaoAK4O3dunZ1/DCzkOc6rt9v3TtJ9fU6VO5ktVbHshmmeH1qoYa1n2s3m42Gelx5rD3o9JBEGnZXDcpBQWHTCWzLvV3pv0wtC7Z6nRzX8TLHRgpeyjC2wPTkbbW7aJ5MFJCvLap+cH3Izd612UuSq5KX0HTrx3C4jwYvTT5RgSHkUuC+f3je5NT1ZTBYfbbY6w3N7cq44OD4/H3mOBST8/e/8/tWr15Nl/dnHx9KIWXVlkt3fGkTnx6AE9sb6iQjKoPGVH3/ywzAOhFC1AL5nGwkZsu6+cic5ODCRNT4/8GzQbTgPj2ff+A/+2vv/4vfuvvMqcR1tm6fPP3jnZ68enX8WOthH9O7rPw189t1P3//NX/lPPvnwt1bJfLB5PcfJ2gX/8NP7IYBQH6Y8ZvaVa9fenlZTL1zOjqcUyF57u0oIUQjpHAFA7aCSxnGREFwCRR0/W+auE2oDEUIYQymlMRAibAACAEguANTGKG4U0FIIBaQySgNBqHFnyViUpOFem8/25pOxz7abnkXhhsBZVac2DmyHYqKLwhD3OgVzmz9XRnNvs64hFnZThjM78QbtxVQsl25sXaIoXy2ftTs4ZRcYCghcYlQJvkKIA2PyrCpKY/tUAY1kbEEt4bnjYqBsAFNenwOgIZ0rJEvpM+BQ0q5BymCzqDKMQVVAP24JXSFsM+kh4NsYUsktKDkQq2pBCdzZVgbgJK2b3q6rjFLThrZH9+9lIu1uNzeq3cByoFzWJyu6LBth02qp6bzGcMIaVwhwMC4g6Rd8QnKgXMk8QssQTAtwPusyZzYqiaxOv3H95qdPDmrTeefqxfbz75GBTjGDSXQ/P2xLp0dbzTg2Z3XpU0wszyu1zKRsQdyhTgqgkNrVJoPIXtQjTQovCkRSOFQ1fCaMzcUCU67KRuz1V8UzQM4lb0TRBpBzQI5EaTWirfPZx1GwLvIdScrpAlpWZbitamJbxrZaSnc5LxWZO1ZcFLKWc8uxjKSe30nzYeDGGuQAEGMolzWzZqJW0Ph5VhIiCCuLJAOGBX4LEGCM1GZCYEvx0EiO7ApiA1Ubis1SnGfZPLI6UiGG3VQWiVj5gc7rIK00bTvG989SF28Ec1RpsdHQ87Bj1UouCuAoF1R5CFs8idxelc3nmBINgO06RBPHcURZ+tRPiIIUBIgxY5gGWtVzsbJ1CPMsWyUJilzgxCxlbCko8NccvSpbJi4NB2rhY9ByY93p6czm02EFct1klmPjCvCiyktusS2lDgxZhGFMcdwIusOTaau1K2UctxYFVqPTtNHDG7uuxaJkElqfPeZzb95+R1h4UY/NPlrfGiOCJpUOgt50teisbxSZKfgSW1Z/vR9G+XR6MpqOIEEUgmarDQAYDYdfQEkty4IQMsa+oGV9IRSEwAgh2p1OVVWz2Wxzc+vh40ceU9zyXnzy6Y3N7j///X8ym0uZQuRayoCqgIPW9m6/l40eW0n95YvX1szG8OxI6EM7ytu96cH+6N3vP6K8SHMDEBBCYIDSZPXF4rms6n/3nX//az/1LZ6slsvF1i4cJqf1yXPAZctqOkFv4e3mvCDqSBUHM2649IrjZ1aNDvYPKN6aLF9I/dB3XEr0d360lwK91mxRKMvl1CWUi3zN8ju0A2XCCHMsO3QCkdeWIRbEtmUFkjiAetSBpZbYqUDhWQ6uDBCy40XASICFIYbLepHNgdYta0OJGhtIGOa8rkSJnNBzcF1vGVwwp+bLIWZ2WbtGWBaOk+IlIyGzYFXVSiGjDAEOlB6yC6YvaOgAkwPDsOpIITQHYRxkYKUNQLqhNBLwpAR5CSTkreNxutWu+y6wmu42ZePdMsp2/2BhsN0MsN/bin74+NnMD9uDKDo/0UF0dPqk18aP6hceQz1Htzru3r261Wo4LreZA8kwqaaXL90MHAAbkoafLOpnl/o3s7SwrL4Tzub8z5C6ms1o4+1XHk/L/tp1m1jHVfXar3/rt377v7l97atrG2+vDW4bzi3S2T8//rW/esVrguLd+au7dwnh7sC/9/Hhmzd/eTgxpXfa2L57eFLxxHTCRgib2MdWQO/dP7uuwojGlXvxdDTa7H9psrA0dk28ZNPWLKl4FY8my37UCpz+KsvaTe/Pxr/f7gZSYV0XXhxMF7wo545nktk56LSNlVTAL4k7W563bDV5bI9LEbH2+b1x/8JtrvTR8kQhnZwvkcaT+RAjS0rJHPDy8PzkOL/xSu+To38vUrvpXGm1G+9++PFrX/pS6DafPvvAc7WF2OHxy8vXtte3Ln32+VknuMwzUM7stY0ry+PZTvfmcVZd3egun/xAtA7/5n/yd//+//Mf3nhlc5KObr7yl3/3H3/366/+nI31Wmf9d/7kf//Nn/2lF58e5OfPbm/eMYyJaLx8lroWmQzxxtXWldtXoYUnw2w6nqzmf9hQ4Ubvy+f75WCAXGSWw7TUdaN/lTGnkkIaZTv2MlkEfkMpIDi3mE8w0gooxQEAmGBCiFJaGkMIEaKmGMu6hhBpY4ywyzSnhMRRNB8XEKZBlGEYqpxIqRl1jMKM2kWWOw5FCKvkBEQuYldlZWKHQXkgsMxgq4nscvWJZSMMO7X2NCRe4/oqIYzWNT8mbFEXSNek1fLyqkyWlhSw3SNVVZi6ZduOkBUEdpEiL2gllcC4CdUGpaYUY8PmGBVCCGBc1+6UYuGFntE2xXEuUqVPiOPXxBmnqtto5tnYj5gyBRANTIhv2RhTXpX9YAAz2ne29qzhR+/dEwys3bgzLqUK4kGrU/EsmUxbTZdLf3F2AAI/CmKITnzEZsQJSYaWWbovtbA82oKF+cO//wfk0uY2V2mWHN+69PWG6Vx037i6szmdrHQDTN//F6/s/tTt7a+k4Nl2Om3BsL3mLc+ZZw+0afcu1geHw4Z/DZoSKO3Q2IHr5SILotbSLkotAo9Sngho23aR13K+WoaNG4g4Wp+4Tn6yaIOC9ppkPq1d99cW6UHgTGBKbHKrq07PqPDddqDTmVoSjDFMV5AQTmxbWFjxGjqsUaxKF9wZTZ6GXixVbluUMqYxNW6SZQtGNUAgLc+Zv1FVfekMdfXSLq5hpor8EMLQsQYGF4Co5UqGrcROSju8Pisy0Fgt6xThmFNYyK09NdGNrLA949N4mw3T015wS8sTUYLZWV3L0nF9YGKgnVwuASNPjiVBOVTZoL2VF9wOUVkXlK1BSTwbY2rmdaoNyYQmDm260WiuqwzKWSKyAw0b2upT6kJ4RKddEodLxA0XAXVi31+mObVt12KAWslsqSoCOPOonYvhonoW80LLYpmeRd62LpqSh3YvXlqqS4e5lNM8k8SkK1mniFmtmg7Ta4naG3sADJx34q21w/1P0WplF4s0u7B22etvyCS9T2FARb7pX0tUVPB/K8vT0FqLezEtYRhvDOtnAAJjU9diWgNCraDbyQ4zYIANEfCsKisJBVqJ2WTIHCfLV14YNNzW82cnK4VfPDosyswYY7s2Iayca9QAd9/ZmSbHFm5ZpOm2m4+Ov99pbmZT5HrdH/3k5b3PH1RZ/sVWimkqgFIAYIqUFIySdJmJvP7R3nOVZlf6vU/eew9BefnaBYTM5e2LSf3IOC7nQBvgNa7JhEzSwt9Ijw4WpR2ygKsCywoYG5+uCuBVBOPJXF1wB03Lrk3epM4lu73D2gI2Km4IcB2JggBgY6pKasEqMBk0b5czAKXGDSlhCmEDmbVme5nMat/DECoGwlxoBXTgXMBcAVBqUUPjWAp5TajNtFAurRuIkSpbeW5QVwWhXFGYmoUF2oHX0HAG6KgWoQ0uOw6szdNpgihu2MyT4sxFisCmNDzu1YeVqNI09myteCmzCo8qlTIWgSy4yl57SeEMVm3Y6hh6xyl/MskmrZrnrWbcepQf/1z7SiehyWh0Ejlq7yzIeD6ct6ESyhbNyx8+PRIm61yzvGTr8GzfbooL3bvY6z84/fj2axfXnr/dbba/9pUvJekhNeX9j2dXrny90W1f/2onzNe4mbXe/PJq+qIzsLVAg8bbF9/6D+PJg7hbno3yuP3lYnQedwd6bgmE3c21zbZ+Ppo4Yexdjz7/3r03vnJjOkvLswQPqrBr1dpaqcVlrklBe1uvP373X9n5aMZ63/zKnU/+3j/u79xKFrJUZjyZbe92k4loNFrn4wdxs/Xg8Kkfb42np73mshO0lUgEP5GivVjY5WwehUCWi/N9ztOOLPKiXT+eLK5ev/B8+ofHZ87m9V9UxYGd1p+Pn9597cr04yAv7wzx7Mr69fHB9N0Hn9/+8lo9TUjdKFeL1tdIfvQUuKoYkbndHY15tH3h4OTd1vXGK19/u87D3npgxebp48+OZ+jOWk5Y8OLZ9xve5fW7jTGY/O3/5X/5B++/u0HCo2fDwbW3Ri/LG7vXreuR1fcefPi0e7Fx4dLNP/nT375z99co9M+mR3ycW6CxVJPGldcufP2n94+nxfMXfvqyNdlywp8JwjRNjtZbO1x5Y1JnbjFoXWJSCL4ygBJiQ4Fdy1VGA6QxsGVdEQwZ1mUtMWIEUc45lgUlBEMCmS2E0swGxnBgKp7Vol6dluV8oswUgLmaY0tro2amWFiuJ3AtlLBdYlEbKFQZjQAnyA6jeLU6b0VXAQ4KOUtL2yXXlDknAPHKOJEyQAlUEpcoMae4qYFvrEVSJ0oSy1+2PTk9juJGKxFPIN7yrLsIzJBzlpQ4ipoIZWl27LImo6xSqlalj2PLKapq6doWIGmlU62RBtCmtufkkusoTg3k0kSGUWZtQH1YlpABZFtxLU7iZiiy/nwxWWOL9YuvT15Oxveet+84NGpLabt2aXEgxzJ0qRN4SGeqmBrQRFjndKEStTg0UhwhOfX1nd/6b76zt7dHAHlrMv6o4Q7WQ7tcnV/e6R+eTNq9K7Ojs3d2fmZn+wLQi9ANm82tKxdfe3448hh1/Lq9RQDEGFxsNC6/PPw8jDw/uBq6wHbPIBGLg3G3v+27HVloi/nEOZrOx2tbN4iDJXehDigbsYXpb2yPhyfd7iVpSKu7e3KqqROvb/TxDEagPehb4xdPBO90BwF0rNqaJxPk+sWqSGnglrVBTm3Q03ZwgRJd1bSSe0htIwEY2qRx4WhaLEDLuVybIhiA86lmdBc3hOVslJPHsA5dy/Cao9LfbhEE0JzEAq5824F0kIgiL9Nm3AeWjoN6mDSw2yYtVyJvfTOu9fz4eDYIrKg1yJawtIoFWgJMkNV0vA4hCENg6sjWyIkXCDlSskrMKxoGlKAayrz2XNvyPY3kNBlTfGQI4rBZVWRVjyE9C/xm6F6sk/OQinQl/CiubHeUcuYESZGvSZa67UJKcTaG+ar2LW1WTIrxeVMxqxteUBJJe47cs1oVnovr4pIX1lHDXpVI1pr5aVnzKO656NtV/uHLg2ev3+39u3/7e1s7XNbZwYtpo12K8XPT/GZWdS6FXR5bZ/yg7TUFb7cvvXbnteufvv/H40Cu9VrF587WoC1L7bYb0zKP+x25ypkCCmMUe8zgGlRK6NViaRFGEW5F4SrNlxxGUbRcLpPVijCspHRszxhz8e5mCCydsUm6unqt7/BlMqwXJfr0j/+UEFqU9cnJWZVnAEFgACFISGAAAFArqTEBnEsAiNLssw/uDbrB59lSidpiZJQVX3nzzWypV6snm4OvGrRWA5nk41bPKqk2c7vnKboeL2eJKYvb29deHB740JEVEKbsstASRklxaWtjenYeOYGqNCaubwuEKyAglBFFtuPrSiRYdhEiCgybUWO01Bu9q6pIDRqtlgoiu+LGc6y8zBBCUiKpKikWjgdkjQ10qxw52IFIIMhY+KyuHV37WnU9qiuxwLhuhBYkRVFyRhqitCzK3BBnSWrkIKZzAmVdn2E2ynnNESq1tqEo0pnvaAiyJDmzw7BMVFWFTrwR+1ZuH2y5HiF2HU8r2oYQfsPT/2qq49YXVo/xAAEAAElEQVTwQreZqerj/N47aPud3ebH58u9AC+fnK537hwvnuNgOH78YOBdXN9aG9A7e6eHNYj6G1e8+OIsPQ89f36YJWT+za+9hpo0Dq4c7z9T4SLBh3duvskmrfnpZHBtM2ps/u4/+P2vf/0WYOSnfvWnHefjwq0U2Rj0d86eHEaa9Zrrnz4YEZQPmmu2LdabWxd//uL05KjTDZWYP3380c++/as/evhJ27HbHTk8LZHbI8HTOv882vIORvUrVzYefvJJb+3LWRbRMsnE/NW7r6ymj27f3B4W+CRDV29cv//BH/h+h6E48HVRFRuDu8vls4qNiqxutjefPZ+muXGioaiPHOqXPM0KsQIdb7V14+oAi/E4SR4vzWs7P2dWYxwf9jpr2gC/q158hFazKptFoxOFdOPmzeumxMfDsW+R3esbCtbUyYJy6/b6ze3LDSNz17duvtH7rd/+0eHsqHfRcqPXv/+9+65nv/n2LalOLmzfOdjbz89gHgw/ev8Hf/2Xf/Xxgw9/5tf/WtzazJ6T50d/9PbP/NL8mFzt/Ke0b3783X/46obzYuxdej3aHuwOer9w/Mnx/OjjyG1Yndtik5BJQhwL82Zdh0VNnCCMrJUo5xz7QhtCsUttRJiQGkBMKTVKa60BwAAgghAEUCouhEAIAQikkVoDbQzBWGsNlOaiyLJFVUzrfJLOjup8jrDSBmktOOepAghAVfM4jMo8j6LIaKFqDxobECt2LubpKmxnDAEJzzElRbrsDi6VmZgtX7RaLT+s69JyyLV0njK7cliLF8R3iNSrbK5Dvy3VmHklsY41Wc7nxqXXieFJ+dL1jRt2haAGc5cGKOsJ9dxRu7w6AIAH7itKnxT63IOvQBDX1RkyCuiQ6xKgCYKlLLmQlJIewnWVs4C+wbOZEHM/zEN8e1XWVt349A9/snV+9LWf/x8ttHx5ZttZ4nRgcKOqiSN1OyRuVudQWG4TTs/NaJhB2Ssm4sXBZ6MHp69uaaKTZ6Kc9be3lgYF3fXlYrbeiLsuGdLnF9sbVVkFfg+marsDoF3U9fnW+kWo24xGs/G40W4ovKjqYLfxetTz6mxBwg7nlR3oqL1jU1s6yqJlWbMk7d/oviqtZ6IQRLTrBIQsx8Ra23kFK9t3tcbqyf7ylTe/EftninWBWm9v1U/vT6h/zYuYES2scbBTYuLsfXhlbf1VN5gYs5cvrX77rWn6p+fjk0trvwqtx1A38mJFreS82PZ7acUn2MRq5TbgpixXLmJ1AjrujVLxOtdu0GINd75QUpWtuJlLwwhMszrGO5YHhH0uUTyrM9ZbXzmrQkyyMxomgzQfQyTTwh09fK/Vi9tRZzEsNvtbUYMHfjotha4doBMDnJa8IfIYMG670EErJVBtUelpYeVG5baEbSiM2bacMWosOBericiKRABiQDvA8WqcQaJyDYnlB+1GVa8ALs7AOHbCjraOdT2UiRGOizy72prRe0W6ziQCOEFETVeHloLt5l/srEOhhshkng2IFnmanE4m/fWo0+8/e9rb7mxMDrLNTqfT8x48+Nx2reEQ3L7zVwrxcNDojJfCwEdNW/OSbwe/4F0+eH76OG5uvtZoT/P7YK2061DjKp1MIstNqzQXNfTcwHEsSiejMcZYSWmA4YIzxjBESKvVammMTrOV5TDXdR3bm8/nt2/fWU2LEzoCsbRUJWfJsdaRUavjo5PToVKqrkVdVQAAoA0AQCljsEaYaoWABsz2S5kjaADWlgrmMz1DKef1YCue1/m7H/3k0tr61sW7h8vnZfndzdZW0+rWtQXS2XZsL+YIWFgQeOHKjZoDCZAxRirZpdaW3/Rr4oeWzEWDui2/YSPNmFPUsq7q0Akbti9L5RBm4QADnCei11vL8tmg1a9l2mrbOoGEOAAqI6FleRCtlIIOsm1Llby0mCeEYLbCVUmI4SbhSjC5o82S2OcAjGynV6+oyRwlLUaBkSuDCAYBgAU3LyudYTMI4rhSh7NZ7lWXbexjPIJiVIyMKfsUtxt+owYVwV6uloFvI60prP+/LP3Xs63pgZj3vfF73y9/K6+1czixT+jc6EbGgABmMMPhUBrSDLZJWRRVlGiyitaVq1wuX/nCKpVddklFSTRFUZZJiWOG4QQOBjMAugF0Tud0n7zPznuvvL4c3uSL0R/y/J4KYgdZVAMOpO8AANRbreDjy4sljk6rePnPfv/Wb/9g5peWz4crT7Rf6LyRWfEv4eK0nLbw2lvHl49f37llty73b+GjFWx1bQQRxpFsemUOAzvY37yZpQtiMCidgfvy7PSyyY9q5Ts9j/omT6a91sDpr0Xbaw/vPcIw7bRH6fzgxrWv3PsgvfbiNyeLouO5h8qLLxdqUO4NN+dJxrPmZLLstN2rGy91toBzHrre7Yvj94GcxisnK1GdBRafxkUCSK+I1c5e9/ji0CnYa3tX3rv3qTcaSd3Lji9e2791eXYCQ7Ax3P/ZT/60HsirV0fz9AwQJsuoE3YgmLH28nBWO6bHmdNyekeHjzud3Y7ePrz40N26sFsv0jiP+HMLLw2PgHgYGGi7zvNHT0Q2HDDu6TxnaLkUmLH7H34mLPnKzduSmGKxIgyMts5Pj01ovcjdYQ1nP/7JT598NtvY2sIcajl6fvo7f/c//vUHn9/7X/+lv/HoSfLhxz/6K9/8wX/xX/7u93/rteMn733lm983G/wsU8XsYHu91RWvfCnPr7xlfvyP/u8v7f7wNHv87d/6RtLeF7P5+dPH8fyzjSvY8XJTT9SSw2G7zkDR5O1usdH15ovLfJ52211tJEKUIGyAUkIqCQwyAEACGVJGawPAn7k7EihktNSEQPBnBo8CEEJIoDZGad1EoG5sKDCokpyKjODaSnIDZWKMcV2fEy5rwai1TGdGSQqYMZywjLClzTqNijGykbRdOwAg9tlGnXQFuO/YVp30JD5tqlXU6yuvNsaYhlTVDFPg8GFZXiBSas0dcqMoCswqSHNDZx5oEG5jHUiFyuKS2w1qbJNm1N9drhTFm47Dm7oAiITOIElPXVfkmbBYiaEGKuUUABPVJvMimc6N0AaCBiLF7ZWtYZU7WisgVD8SLl+vHpc/Pvhv8rCT+YDmH9r+zvX6V8MdyobPNGyVRWSxannO6jhdC6J3/93Dt+5ufLl6m4tzuOih0ko3t6+E1vWWvgnnPbkKHLu/FDENrhPcXcWCYNsqm3V/MHmab9Erg36XaI8gZTsiDFsHj5ce37Vdg7ksdWV57big/f4Ny4qQRQ1ruIuzIvc6mLc04a4ThH6IRJMrFQa9tXBtHTKLReH8LFkb3grXR0VpEXfDaTMgQQOizStbUdv3hk7oB62wm8RZ2LcG244friF9Z9T5tf72CttVnozC9qjbe8WY9VH7u5Tyk0fJ9Y0fDDrXjIRVMryy99uSXnk8xfkCWHoDQdbtbQfh7niRSdBpDV+QaKvbv93ULE8xIwPEvZrpBVT2xl7r6loOOw0ewqBBbtFqb/vehslW+2tXbdiPV1oxsISz02r67tMns8VJLSdQteZTOV58Mls8lKViVlIYq8wwSFlQ+Txl9UInJW54h/GuG7aCXtgZrHV7N4NgT5l0lv+JgMeyTlwYceMIkZbVokokq9aY024Kqklk72z5Pae8OFqcnyw4Vma/PeSVmhalNCqy6bV+a9fiT7RJLBhy4iuwlGZBUMtmAyGrrECjHex3z4vytBW5ZT1xW/b+tW/cWu8addpC/vj85zH+jLl3MH4x060JO0ch7V1rDa92dkfDa2s3TBoOTRCEXst2VZoNoxBj6EZBt9udXFxqo5XRBmJEqAGgauo0jeu6zPJkuZp2Oq2NjQ2llDGmrgWl1sl8Pmq3Lw4e7d3aKZF87eaLDiSH41OlTBKnTdNYjCGICCEY4T+jPrQUUbt39+WvjIZbr7/+6je+/ZW1raDWaa3ypq4RhYtZdf+Li4sxmK/sJx9/+OiXZ1b8Gsu/X6fXK+Vqt/XBwxmAjlKMsvArX/3WxWyyvj5QoPRs3cG+o0mbsg6xYVL7htd5oSEw9WoQtNpsaBtH12ngKI/boOEQaKBQXQmKMBJQl0pV0iIuxR0ILKPsJEEQOE1pEditSs3JCOmukbZSijKmgYWUrRu6NI8rUBjdF1WrqLUTIOaauqwaWUMrzsQDbZ0KuJwnSwUtocjB4fL0VFUVgbR2HcvS62vhS1v9q5BkjFHLsrltISwZp65HMFtByiHbzwgnNWivXKsBAGgEwH/S7739WVF8+PRXvVcmsX/GyZdFezQMrvTP1mvkpcNV4aAWw+B44Ke+70u8Y9R1VGz0WQCy8xt7m9Q3z7O3X3ljkzEbqMAA4bdK282kKDCyLLdFMEyOjxcHR9v715+kqfTcs+fP252ryRx2nEFZLvs7bgoWabVYLi67fXz6/D5AkGprvMx317eJA5SJr+5tVAJtbV85mnyBrTlXVIqWFHaF2OSgWmvfmYnE36DcEAfRgh9fzOv5ebPurDFQ+GvZafZRt+dv+Vc/+uwP9290lexovRH23O3dNaO9F+5cPzxbQHI9KQELuqU0ZYNde6eCH8enP2/s8d62ZVz1+PDLde5F/f3F+MzZ3O9vv+QMgouaL1AyK+NbX+vKdumH8vjyIaNaIbPe33r46ISCsBXtPrmMUUjaa+2L6dOzy5+PL//0jbvuZmD99l//+uV09s1vfK9I3E6rGyeH/+J3/p+9Qfzp+aM33vgtRgYV37795g/72pp//EVnbbWxt7Nk8tbttT/8H/7hr3zrt3x/sH/lpUXgXpz8SazfmdCf9LdGJHvl+CM5O0kAYVVuYRQN1rYB1ofPj+O56rb2/KCtobYshAmoy7QqMwQVtZBRCmoDjFFCy1LIRimhtRIEAUSwgeDPin8MgZFCNsJIwyisssX47Mn84gA2icshtYCCFTTGthg0qEwraFCVF9xiNreg1LbFHNKHzaguXJ9vGOGYRosCyayNSREXX1Y59/kGZ5TKzXa0pbRglo1ByHnUH44gspW0IdaGLDFblGosZFUVkDMHsHGcKQU6SeGsStgg2gCQlQmzBbAfMstHkEp0QFiGZF8Uju9VwIyJBgRABAgnbZtuYH3DQrsmf5XAIcEqaAFRJ1DYsI4cGiC51mabLQuSSnrackqNL/Ti/YOTh2uHn08f/eKfzj76kXlgWWPm4Mqm67hGKF+K4yffv11b55+cvz9uBzQDE6KFpzBXujLWeaXnG7ttasVKVSHrurzst0dVCvsuZhamkG9thrrMmkJ6VsftdfM806rc3l8nuKyzyncDO/DK8qAdRgRoBCAmHOA0T/DW1pbUiZbMoQDBWZEB7PRJ0BKo1qwBhTLC7vRaUi0NcLDrBuHk4lHc6d3pDCNcUO0gIhCAJlnKvd2rjpf6kfS48SxaKn12zH7ww98UNYmCqwC9l2WfFPP1zZ2BHbSKqk8tvLHRE/iBpJPB9l7HaRX5wnPuui1T50U+DX7wq68cPExAuNfbmB2eiVbnBdwBlajg4Io0s60bbyl/fmVkAzqYzSYWMVFIy/r03HsF++F2f2MxGUe25Vnw/PQsAMioZWS/Egb2ycUnecq1SJT5omqiHssbC6+kG3uEexxbyoEMV42mlIIRcyynd9ZmhbV0lpft5ayZiTByrKJIo7CjBIzPZ+2ANvWprnoO4syxHc0l8QQLlHG18Rq/KOUiyeJR75bnDBup03jR7sdVbpW5hqDxfFalxdnRhLDAtyPCaotzUeOyHpe5ZXSXWM6yeOhe+64AqHZ5VW/wmXHXV+fT+yRJFOnBtb5ZqSvd7aQnZ4fjnaut02pinjVxumptreV5/sLWDqUskbWh0Pf9dJVatt2UJbKYkM0qT4s09xyvLEvXdfM8z7IsTfIgiD799NNbr908enw07G/7wfDRo7e31zo//cmPj08XiGJgEIJENkJrjRAyEBgAHHfwta+/tbHeB1Ayirrd9tOnT589e7K2e/v88JAaBWop60q6+mJ+dHLx0IDmjVe+0tG5mnzYjWotF55sv7L2ynl8Lzera9dvnTx6/PKVG9OTkw3LtTAOgdO2HUdCJOX+5u58sQDCIBv4iFGDiRaddlQlyzorjCSBHUhheSEtshPfDUxNuR7KasW4SLMLPzKMo7qI02olBPRcG+GEgqiWuYRZKlJKvKqgGLU5RpkBRs8wGTekile4090FCqfFDDq8qE2eN5a9sCxLa0wA1jBbY14leWXK0LYhRDV0yrqQuvYCrzsM82ScFpeWGyIaiAYF7kYDCkvSmU2AAS3HHte1XyFkKQ3If7EO/q9/0B382vUH11b3Y/9aPvGlLMBdPEywlNoS21c7X34Wh/bVopgygACBgxF2XRU5nhexMs0Yhi+/8fcrepGxi5ANbTCarJ6Oru+0t19//u6Xjz79eDjUSHaHWxvhfsRcf+/K/mZr96A5eho//drtr62vtnWi6yaPnVOHrnk+w0Sv4mlRxltbN/fn22V8lOUnqH1FNQmxRJqY9aDrhk75Jamq0/Hyybdfv3mGZSFKt8Tt6Hp8uZhMPrBdkCTJoL85S1b7O/tc63F8vr1xKwy647OniJK0Xgz6vRt3tmt1MRrdAlYQ9S/dFvMirx+2j55cjgZ7y9LZ3bS2veG//aNHy6r+y7/20k9//JENTr75nb/xJ//TR3deHrw9zVzadjqD3c5mMf6sO/SfnpxFbud0Nn//vY82bt9sRYP58bmA7f5N8eDox75/Y6P9g9On+Md//G//3n/6n2V6ox096A/0+MnsL3zzL33w85//+nf/shsu9na+fgzupVXzm3/tP5wt7Ac//tPdrZG7vp8k4sbWlT/4p//k+2/9e8H2i/fUz1o0XH2x9Invul4x53ndqtQn0j2yRrdT3vWSmNt4FV+WZd7r7HtOv2zO5+VDF25oI4DQSkGEDcYWQUYhqBsBNAQKag2AARJIiACxCPpfJsEAYyy1kY2QVaOEXF4uTNPY0NRaVWVdZjkyVuC52XgZBmFd1oxYnFrCaIKsuhYWq7F1QVknXdXECI+FZa0xLkVtcSep1cT11pVE8arotHrYuiiaXJaGkkCbTMolAz0DWiU4k1K23LU8z6ti4fBIiXaT5V5nVoNX5+JxCcauu2nUMC4nRhRee92oUNv3TeOofEPjAuBjSiyXt+IJdCiGRgPdxhwqOlcSQuQIcR60cVZOIWyFPtYiXF32A9+m0acibjrk7jwfA6e2QOkXT767tfdxPKdgGN9nT0/q/Po73e1r/mC3pH96cv7BVvgVKx+dnH323o//oM13PJc0lJOu1csE4r6Vq5nxnbhAoQiaNOtgm6glg6YSE9ApC1zzwJOuVU51qw2qeqwkoaRz9YpN7ZRQqHRtOW6Z5Zz5FuEUE40r10XlvJKi7dlreTKGGEksoZTAjLyotVo1dts4AdUlJsyGSDKsWeggUEMnWc6S4drrdZNWMTOWdpnI4hXS3S5/Yzr7srW28jtGZNOiPu22blEbaJI11nFRRK3IW54Xbucq6jWwDvVFx3eDSh516LV+97YX1Rcn1Oa403E+PLj35rd/BbjdaRO/fsO/XD13WoOw18utrBvsnJK5H90c3F1fpC0VJFLTMGxZfFmUS6t57cpapzCJFVi7e2tG8cPDo86NqAGZk79iudr2W331kpSLZFnNZwnl95q1r0CA24K3hGNpmgkpXcocX8LHEK4Z5AIUWjYODASNBUUDSDXPThegyeAojLaYHTSJLmUZo5N22DO1NlmjkAP3rnvKtzNLEgKba2xjjK1U44uoi9LVuJjcgFnCPMJda7XAWakNEhYx5aIGLcmoVYP1xdxgJsfJ+8Ot7smTfJR++epX/8o4/tONTuvLk0SyQ0bhRRGLUMnZQV3mIQkGrU0yKnl1Yh23Psh/cfXG9dli3nJdzpkyus6zlhf0eh0jVS0UQEgbCDApsj/DLI0QYjK5VNoACC3Kq6ryPM+B1jRf/vo3f+Nf/4+/8+rLd//tH//p8cVlx2vNswxhrKQEQCNEpNQAoOFo8/vf/UtXr48QWc4Wh2vr/cnlfHw5G/au3Xv+HjDC5ryqFCeeUvjoNHNse9vrxpfjD5N/GTqtuy+82V+/vmqmD9KfoVoNNiLiqbhaOIhzL2hKhTQEjcA+TJPFsNUXRQWFcRihSFMZORaTLC3Spa5JNxwArFb5pBd0OQNQ9YusGXRNnuWWFaZl1m17RTUvitNOu09JiHyiREqgrKsCIEM5anSCsCoUIqrwXFaoOSgoxB0AdVZfgPysyWtVSFv36zyw6U5Tzxtdeo4rhQh9SjXIsnmRS6CvAMAjVy3ymWjKMHhRi65uHFXxShHOfUIIRbhQGa2nrs9qCqxNcb6ab9cbnCVEmVejzt//6/bvWDBnfJuu5r49XT7pDzeofzWLn17fvOILe7i1v0jL42PlsfXNgd/e2T2aztZ74WxVgYq8efV7iJ5BhG3aoRbSbOaG5Y0X7to8xKUImNvq+2Vhv3Dj5uDu2vOkJl5A2gs79db4zZYfLDpP7GR1emI43QLUdPo9l8nnTz7n3MWWsgw6n2T90Fksz7quz9GGAD2pJsKaUQx0UjgjAtsETJFopD/qnU6yZGpcazi4633y9I//o+/9nXd+/vz68M2zk3pR+zev7N/77LBQF8GwP5s6gb9/8PxTk6mdrW8V6Mx+NsQ2bIfIiCPMT6+s/4XTwy+7dnpSJJ/88vlf/uu/XjbB+cPJX/ubf/3zJ4edF7yns3iwN/ry8/kPvv/Kf/+vfvTGt7764bsfv/jCVybHF4Hd8lvRztbICXG7Q4fhjfHR6Vtv/fDzBx9999vf+8//83/z5//aXz4pHn7nxR8eHd5zfH3163vnk9+/daeXpPDVW/+B4+nFZ0+//tt/88uLH9EvJ5a957yx+fhnRy/cevH83ok7Wr/y/bv/5v/zztZ+9/J4Rqaf4P436iwLvVWBEua2LepbClfnHxhOZ2PLCYbre5t1PSuKYw0IQi1IcF03yACLOgghWVdSGWRZBCCELWMgBEhDAIE0QGOMgTZAGwABMAoabZRQQkohcEXqVZ3OC1Jjn/dww5NVnJfLUacX+tHzp8/soNXUhc04xRgA4NK9Wk40Ik2TcxsUuUS6w52IhA9k+oLFHQgZMV1BnhfiAKq+NHM3BFoWmPKiWqa16LQ2ayll3TPSpxhH7Vyqicd6RbIOMn/YPo6LpU+BTbM0z2lNGY1wPVcMN4uX3WCFnHG+GGLiIusozxkC3GFB3TQalYQAIRuIcgUan3fqqsJyS0liORMJT/yOkCZBBoWhBcAR4Dn0GZFFS7u8qq+zDUPAuXiolF4cBfHFT6LgI12se0H9LP78fPqvgbKubv1qvZrDNOt4mkzAY0p7Ygk7gZVnDbQ84fCEZduguFgVGPdstJlVNZUlrBd5XgYR9N3h+FQAlPXXtUNUkpwTdgOKAjCQJEm322WWbYwAyCBOimowWgeALDCtKB4CjSXOoy1DcEZAWMerTt8HGJekHHR8bBwpaKEauuy7xAkiv1SIA65ISm2yOlaeZyPrwnbj5dh3+YD78eJpHbWIUjb3NTB+d3tRLI3Cqw67kCuMjd65gai3OD/Gc+H0BlLOZtVC774cZIUM+usla6pKdm9sI+9ycbBUNAKhQo7nbWyqUvhbewrL3nroAyBkLYsIwnZlssH69mp53OLrGlpptgjd+gbzmor47q1sVZY5QhbvDiwAXcd/Mr3ITL0psnEuVYPT2m77NhdlEegsAKoGHUErBecSF8DCBDK3FQG9qcF0toRG9+qFNNbxZrtdKhta/RbBqdElAv1hK0hRlS5zuIIbQZgEafzYAqVlOY3KZ2OWT3sdSC3QFEpphIljtwi1iN2kTTvAs9kRwXYnDOLlp4U6wXZ6dFiNutv93kh3pNdcf/b0H4EOr+M/18Hq2ezjdCmv9PfmqsntS5nrKLiS7FlOfg67kdBmo9M/H5+397cny1XL90d+S9sIa3B2MQ1bwXyxQggrpYhF87wEAECIIZJGGwB1XdUvvXT3dJX85re/d/74SQLEH/78o1BTH9vzcgkM0gpAoCGAlNK6kd3+4LU3v/rGG7v3730QRNix6KP7jz+/9/zoeAm03QvXgWPOTy9a3X6l6jxeWgz2e3Zq4PRowaG8tsmuleLg0THxna+++OYvPv5A2zTVlfZgmmZOZDezGRDQJzaHsMTIcfh8Ere9sG1zj2Eu/DLLjMYI4lYQQoiErAHQTbOSEpmqawEvyZ5anOVlpxC1tfSM6bnMEOhlCyPrxiLNaLA+Xs0B4gT6dWOEgMbQokqZmy8uExfTVkgNsDxnoKSUMndChUxmO8a1mzIHWjPbtADUPqHzPK610+nbiC9gsywSRBo7JC2KYJJMOHY4aSktmFV7TlkXuW/5hRtaXthgYBoZKnYRgw43gAMbmG9s0L1M/I9IP4xQNE8lDtjwPH/vvOMPrFeCdCZvdqXU55Mku4gvglbTc3YLVYyXmed3eoO+H/F4crm+fnXj6vD8/Ckh3Y3ORsfbNGCc4jpqdS4vzsK161ZIFxdHRaxJrWZJlaySvc0QVNPZbOZFW7gsAlQTt1iaxDPDyaR688UXLy+nqEg4yQwZEBNxQewOWEFs1xtnk7M7tyJbk7XuS3GMGzMfDV2bj/L8sIaTV3/4F3/2u3/Ey9byRPS2b+tuW03HHjFp9TTJF1E4zDM+G4vttdB1+n4oF/lHgdP3InzlRq9J6OIo/+H3/gqVoyaI52N8eqpao+qFq9EXHy+/9c3vySAlj+1EXHSibcOaCZjsb7R/8cfxxsv4gd+dna+cqHuz0xvudtc6nZ2rOx9//P4LNyJlBsvkCeaPJXi6tqa//Pze3/k7f5ua8uzpk//T//kfPPjg0SwxnXAtbC8pW372/Iu3vvHNR6efPT792ctm+J3f+Gs/vXf/Ba89ksl/9+T3/tN/8Pc++NOj/auvpEcfmoMnbN+0ID6V4Lz5lDMT1ut4UgoTENSrmonf6mPs54moswmGJTTDdningZfANBBADAkCqFFKG0EhQoRDYLQBWgNIsAH/i00JpYRGA2WkNEpKBCCEUFS1LMfJ/HmWnpFGyLyUVcWodoguM2KREkLjcKSEBlCWZWMkdFtTAlBWpBZlCJGmTm27gRQA7VRi1XK280RbzjxskSrxtBEUDqCs8yRjJOBsT9G0Kat05XiDeVJc+vaQoijNG0hWthcbcqrNytb7luzo/MxFBXHWXNeT8DTPvKibapCLirVbrbppZlPb91rQQga0RRNYTgyUQOV2yN2yrDFwYF2EoTA6WMx9iDLf541cANixbTtOzxxrD9SeqQ9Cr1OVU09NNCYjd0hcC1mqSlxcYcc6jZ8tbXLjpe2tWfKwTk97fr9cMlK7qGW2UNmtG2fWqIWqsM1EUTXL1HA2rkS0RXlrXKG5qJZupVHcQag9m+dZVbaGFGA+n3S9cMjCxWpmIxC4AfU7tcTnpVga6BZZYCzd2evUQnHuWH4qyVIa7XYj28ptwF0UmkbOk2Tzxm6pZZVbiNTMBqr2NjZC7Dy3ndz2lpCfl8rmLbSx683mF67rUk6wo2lAFvGx72xZTnM5GcdJQeCOwnGl5s4gFGgL8R2B7LzIiuyxz+cdNFiCauNO73gSA9ZcXp6BkmE1D4mXXZp2NKyrgLCev1EU9LS9FQW7sTeQXlsz3N3svRC4wHX89fVrgE93OlddhAnKtzb6lHiQdHujPcDxzg2+++JquDdnYcMde3v75c31N11nYy7LtGmm8/js+CybLjki2ODZfGkKu8mqKm9U40PkA15DN0G+kpkKe5J0L72+Aaa1mLWpvaEDmOjlOkP7BHFoGsJ64Uaf9UANoPM8CNoW7jM4sMkVKWXQWlXNeTwfq8oFOihVKlEe+n3VaAjmIItktTg8fLuqKiSvLM4iVbpVnhSrKntwluefni+KPrvrtNNn6jDP/ZBvwIH74IsvxWz57Pzs+MlxX9Ked3WzO1QEVS4loRtRmyaFz9iqykadzrDd6fq+TayWHykpGeWqUYQQABAAgHMOAGjq2gvcg4ODMj4bp8n9p1Or9lBVLsp52pQeDjBEEACCyZ/Nhi3L2tja7g/XvnjwbwycHD07+Ef/8F/8d//t71cF8j2uzOrP/+Bbd1+6eucrd77557+PQnf31q1bL7x0deuaTThHG1995bdfuPGa33Gxw3rrNy4X1nbrhi3DallZwoQW3uq4sFhEtCFaa9G4NpsvZlEQdv2ozlKkZJZPjSadaBsaByIp9YoQhGGgazteXQJYOy5vRKaUKkUF+ALgJcQloqvTy8/KemZ7wnKSy8lTSZ/V5iQpxovVfLXKICIKCIRrz2qPWuvDdofg3AtKRAsIuG/tUXUldD1tDi0+9W3DoApcKarTlo6YTtc6HVhuOfb1VMfCrTITMS68IPWjJUKXnbb2uUISe2gD1FBZ20gzoQC6ZHdxL1HguXIDHQKV5kqu8/r/YPQ3yvZH4/L47Xc//+N7w64Y+nEw+fKaf/7i67umtf3CV776YPW59miWVS0HMiBa3ubFDC6N9NdoDA5pD68a3N7cGd3yF+j5pInDWxuDtX58Pmu12+N6kaglaur42REX6c2bVydF88XDMVh5UcnL5XEG74PGwgCfPP1yuO45oEjiCWnMeme713q9EaXHpUVI1iTz8rQ9DC3IeTj0kGlz5va2o/X9bDIPmeN0tgP7+oefxes3/9y0AFd3+gHLbB9HO3uq6nKrg8xaUZBoUB6efthurZ9fzKtSEczvvtojZsNGL+1d7fpR6rUuK6xipTp5/Ru/8fInzz410IqtfGCtT8ZjHtrIrs6ep1/7+vVfvHv/xosvrmbF5fh4Z2v9V//Cb7z0wu2zyTxg4fHp5M7tV2elGlzpfHH0exuju+ePaD+qXr7Brg7cd97+nb/7H/89Kvayla6aozR/kBSfpNnz1/1XzuZO9uHH37K+M/raX36cPPTnre7rr//TP/7XP/j698t5QpoWmj9qVrPe2psvDf7Bx6c/o/gJPRWbya84xb5hrnSj2hbUxgIdZuqTup6L1A3xhmc1RfYLo4lFXUZdCAmEmFsuZy4h3ECttKjruqqqppZSKCGElFIJCbQxWjd1rYXEGBOIpJTMcCMQwa7N2rJhosQY2EAipUyRZpSgqs6FrJqqYJR1u/0qc2yyU+SNGxitNcYI4kYJG+uNsI2M/ZCGxwrHi2UGMdD42Oi5qTzPChCcccv4vF1mCca1qV+UDVe6mc8KjterjMrS8mh/Kb6a0xsr6C+MbaJRxtkM4jpcd+iWVCmENTCsESnhSz9S0KoU6lQ4bYwg2AUacJr326VPbEgPA59BrRwbhX7UantllZRFgCGZp2cKhBCnNjgZuFSZZJ73LdaP+M7Q3Q7Kvp+td/EmUX1VvbTWf2tzy5LpYp23r7WuBZA6wdTyB2RR5wjVG1vANGVd95gws+XTbndwtDi5vrZfXKRaKYdbxMKZlzP7EuracVKRt5i+uRpXnYAgk5XzKGyXAApKGw1BkTtBEECQYM1pqyjzVUWqTquzOj/H0uG8r1HZBG1dTil3xnMwtEeNkMyBlrxEtK9Eo3TThJwgW1ZVSjNetOo6HbX3Lk6fMRoQjovZorMTXTychO6VaNMHMvOV5YRIiBrEw9IUUIcE5Fly0fbD+VLmaW8wvFUUSQjcZFJ7dhc2mJHQD5zUJG5H4wglXy72r7WcdfiM9BZtxTdd5lLKaKN1q+UzCdcGmzUHja4i06103A1tKQgwyBDAejaCst/vlE3OqU0prZs5ZzSeT4lfgeSUSS9s07rSyARZFjhRW0EAOON0Vsq8bjJZX1CFLdaCdLMJYFetWapyRJNOEmKjsA0AKjMlfE2KGiDELGJraCqupBEoLxC4vWqe5fCoyfayJF/bJGU1Wub2oB8CWulaewRqxatmGYyqVLhz/WmRd+ZVd3H+ieeEy4q3270se5QtX7/5DXR5uFzmPg5beXa2tsXrcqjdxeHhqR+ZVRJXyezq9oYxbY6eXX1hezvaOvj06RSJR0/vsRZfzGYe9K1EmyzHuPZ7rWqWUQUJRLVAUkGAAHK5GwSlTIFEzHa1LoLerfFkqZssjs8JBlgDymheJwgQywIaSiGAE7Su79945aXroVuw/MoHzx/88Z/81Ab0a2+9Nbyx84v3f/7X/4O/OjRSOPjP/9XfOhof37ez7VF3EIzKTP3F7/1aEPIw2I76Xprl2+t9VDd77Eq9g/IvFzIveeCs6lWeXFIc9NSQWgJbzEGdbDJvd60mnzuM51XZ9XnTLFbjie34VUWZ5RthYdmUoGn5+xaqkZ70vJtpXWf1BSZYYYn1kFFq0LnC06Z+Eagw6k0nqxax7cVi2WkNPciIga3eft6UkSNEA5bLKrLbq2XiNK7LqOUY2JTIWEC0tBKIRZW0i6pxva1YVYheUVXfwlWe5Kje8pw16RkqeFPPXdfzA+EPgqOz5fqGszjTkCLNS+gaG2dzbI6V1XbAYVX/vFj2nPAqt0BVpWjy+sD3rl79l//qZ1PxJ5+Uw63cxRPy3Vde0Qm/3trK+OSVjW92nN3L56eE0/Vbd5bp7OVXNreHmyaZh92ByFwLe57dnpyXTeP4rf6Njv3gydv9kSOSIl1NfRomZfE0mb9ov7xcPtd5iaFTpouVkdO59IMNDoLJ+eH+jd4WoaZERVybsGhRXh6dZK5b8CZf1ePF8hs7L6SxiJtjUIUSmRyqSCuxYrIbJNnpsPfm5Rfz69f93qCnun69UH7m+N7F+WxC21W0B5SZnsxXLh/1B+Yyf2Bop1RLZhXvf/T0W7e3zid/9O0ffOOzT5NXX4PedjJpCqeNZTVPZ6x7/fHeVhAfXnPp8/0bbP6UN/jgQGWpIvuR//MHj4B/9W/87b87z6uLpfjeznZqKOTB1nV2+uFDQWmEdjlmz8cPd3c2+kG6LOlX/9y/143I6aO3N3tLuNiBmdXA3L+Bj+bvPHv82dVrX3X3X6jiMZu1Xvxa8OmDRzfvvtrbvvr2Rz+KPzx5ZXg1ur2D1jo//8P/MuIxY8Hm/q3l6gGDyCgtSGm4n1XQQVY3agkhTKAnArj+OjCIo1obJsEKYUTxhjRaiSmSLjIMSMClL5FqYKGxIqyC0KqYh2vhCOnIRohaYdVIIrVdpsJGSImlqbCL2nHNEJamXlHbxgiHzpBTD2NBrMYYOo9Fi50laRIGcpVeevZG3QBuOGo45EQ0RZND140a1bjWpmpwJdJWq6VMAoBCOohXKbcJgI1tW2P48377jkgqjk+JNEpsVFAmqnZgXOkPZePtbX7zYnxA6VRXpiytEj9maodWw0aehf1FWdpNtoYpxcDWuraj+5jsqLLPnXE+l0zbkOLIptNLW6uS27XEhthOXtW6Gapy4vJk2NvPiqpqiJJ+5GHfifLmKcHbNMggvaxz33dcrWrddOy6q8ea9Sixl2kx4e5GWUCia7h1pad0kxaAWgZCE4braRILAQm2L5fTnZ3eKjnTiBMcpEuG842yXlgMVWKs8QqQoBI1d7CSizjDQWu9KDJsQWqLtEiSVbq+HeWr2nG4qQHnQZVXAJs4LhxnYEWu0RkUS9niQBFdKuOGEmQaaMJQUdTtoFdVQhsXQua17GQ+6Q42NEymsyZoW9llrgBev+5xUzw/Oxqtt6lOFTLKFbdvXLNdgICOWl5TiCp3+r2OG0BpZsiSFgBBn82m83anX5YUM98IQld1u9+z9zafVouZqtutYVlVkmoIoSeQR7VgVFHgQVABVFNd1zaEBBJsWdjBxkCgZUVAjBAiGHFOALCR0dJj2thhrxPPZgREFme2CwBumsL4UdAb8XolEOBAusoURgNkOASYIOmHdTYv1nrtWCVdhnyCDo+P3A2v1btSZ6u0nCGla2SMIBwGzIqEMbBxQdkFJgbSpNNNTSrfF41FWSjqgll6YNvN7GLaafXHi3OvX8nDXF3KK3svxvHDLprxFRjPUXh1gsgGKq21wANpvNm9nlXl5pXw/PyyyI66ndHv/uvfu7J5m91ppsVPpXX5wxf/rgHxaM350S+Wz55IutIdOwgQ+vziWIrMsS2rFOt2t0O7l/Nxp+ctZ+Wgt2eIdu2B8M4LedHu7Dp2OI8XnKK6KowBUgKMYVULhCnQsG40gIA53mAwuHZ9v2kks9oXs9Pz09P/1W//JQXRqy/e/aPf/70bg/Wt4fD5/YcvvPy6ZfNf/Oz9QbB7d/8tC/HNlzbWr7DA7p+ePWlEUdWZMZMW217bxl+cLYSsqYyOD84dv2Ub4DrGaWTgY5ECwZLIJ1WGOLK1jn13rRSu0aJpFv1O2NSJzbIsW2EsXdvTpd1uXWGIQlxn+WE/9BqgB8GGUElWrCK33xTA9qa2xZoC9qN+UuSB5TKIOEE2JZXORZFAPuROZYCcrWDg9pQ+QwYx2RPsGUS7snaMSZ3IAA3L0lhcOMjDbiXVOdRu4LuAToV+zqx1ReaWaRWx63dgujwNrchkihudLZVA2PNdVtORTZQEoFG7Nm+wW0xWP4flqBts802dgsOzS9v1F3/8y1sv/coc0t0XXoOd8LPP7/ntG2y+/q1v7qtGpBmijCCEFovlqLvuUOdUnoUulmreDWCTnOb5AWB+a4eefDaNOlcuZjI3k9vdkae6K9F0N9eq8UKIphUGeS2cPhD1FOIxROZocq7V2EbDOM6VWHX3d6RkyenYSLA4O7s1evH50Vlgc4DVZDXzPdiAGaIZpdFy3kBkLIzn83EU6jroRGbbGTRUGwnDKX+QP5s++2L56ptfb21Un9/7lNKo1SZ5Nsly5Iel5XjuUuzr6PTwy52bb7z7k6d3r9280vlKOYgev/eHZkhiXqys1RXvbloF5qq+5e5R6ibln64mBaPq6nVbznxYNv+7v/368AX26e/cf/Xm9e7G/OGDP7175Ye/eOf0xldfP7/3uB9cORk/h9Xna9z33NsW3qVKnj1/5ESauDerCo0v316PnOo8xam5+/JXNm+9engxHfavUALKQgXVBKmb7/ziy/rpl7f3w+qqbZPRk3/1h6w/Zv0bporm42cKnLm9ux54o8lOWf1u4XYQHgnBpLCAKailIVQQUqEqQhCFbYQIIQXQRtcWgABQYxpPwURp1wAEaa61p1QJm4VpQK0Z0EQBhAxEKoHNXDXIdf0UQQWL2mTUo3khVEUjr0YgIoQ0cmwqaTUhQMqghUXWMIrirGm3nSyPfd8XooK6MOpM6UoDKy8oMJTYMWO1hZdCLZoi1IphWiCqKRkISLTQQb0mUy6rynV9iyOFplhg0XCHNMT4rjc6OPq4PSyaktSZ3+lTq/ymgo+8qNHNZl4+A0AHfmRAUVeJahSl27XAFIkiR5xoZc51OUprZRGXIE9ABU3uEul11hsw8fF6trBOckX4lFkBVYrb46byHVcSuIzj2Lf6mHCIZxLkXjczchb2klY3LEvlsW3XHi6amHT9cNTrPntySUw7ajVQU9p455Px/vUWAmY02BG1rCtgQJNmU4J71E009CGuZvPUQKMB8oM1gJeqGtTCAFNpuJIaAjKAxvNdB0iKYOwEnpIQQeY4mjCoNGQYl6YhjXAJK2QDhKISKAyRlJxFy/jU5r0mlQAABPyiyJhpKlFwFiTJCgDX4e75ceJ5QXvt2tlnH7b7EUK8OC+hE67y+U7H4610elrKUrnMgaDevDKcTE9EgjwXQEIVYItYuN4GIQjxCuOLBQUmCpe6RpwGLq3rUlgacEtCRBAAFFKqOIZcQ1tCYXBhEYaRMQAxDCGsgWhqmUHVQQxqicrMQxAhGgTRAhBuLAs5lNK60k1toEF+SF0f5GnNqMWJD6mHLWFEg5AyoNYqUZhgp87rsWUFhDrzxamQeRusC1OUuvA9C2KsqipLCx55gRdNpkf9Draafrw4LerjVXYALHT96g9x+awVOXHZcL91+vxECL7KFLFbslzfu5pZ3nvT5Yrq9WubnU+++NGq+Iyng7Nns9B6RbF4dWkF9hZWSccFejDNZ1uqhG++8v3RaF1rvkoCBNZtz/c9X6JqOBp9/PALRFFeG9lgzWC7203nsyiIykL5nIYuu5ifEm8bqub6tbvz5LDTab+2+UPIZx9/9qdXtm998vFHoiwAALbDi7ICEGloMIYIOrbt3rx5fX2jP52d3bx5azHPHx2PN9e2trdHCSjf/vDHIpnv795YHM9ZsJE21b1fvOs7+Nd+5S8jbe/vjxaLQ0XQ+fT008/fS1f1rTu3siQG1OiqhE3AgdcsH8HVgYe9fDztKjbwB4iqFBy7eCcgfdDkjPRE3cESnmcHG/0hQdSIhgjYbXdc6CRZRo3NHccmhoDGtvFigZC02mGXSAegjEhIUYciTYzBQNs4klJZgATtrpECKdHUtVK1BcU6o1KAQmRR2zq6OIzafYnkCqwieSUrCqO1ZdlNpTgXLo/yueUPTBFjyGyCJYCCAIfZTi1WBlRKIQtjWSNiqJGK21CDyg3FB8/P7naorFFTlmxoYAlwZUkBnCjIBHx8Vh6qxOLeOvfGm+sbZ5sWW1KuvWjwwYfv2r5f5NMq1y+//vrPfvLTIAr7m2vLeHVt/0oyL5bL2BtsWG5/vjxoh+3Tpw+jVkDcbpaWK7xsSrTt7NiutczjmaqwW11ZezbVXe65k7LsRJ2To9MBs677a9akyCx9Y39zdfbctRyv3TbIPno2HlkejtpOfJwsV0k5vXNz4Hpkcb8GFVYsDn3W1ImBsqkb6rR67Z6Wy2m1YJvmzvrr/+//+V++8sZb8dHwYPx5yznYWf8PP3vwo+Ojx6+8/vLJ4XFdQ9f1b7ywxsV+BVOvDwo8TxZpzx2sb0b+qHd1pj+zfy4yPT5r7e5trruO073F13oS+vef/DKN5cZ6eJmM4/O6KR7/4Dvf+vWv/mf/+J//X/7Ct34lP2bzix7Tb2UXtNcPjEl98wGnG88P8Z3N3VaI7d2NJTl0ShkFvsuGy/N8vnzku3ZEvlnlU6elw631STK9tjFCorMSF5Mlx7xcFY9HzRMV8M7d7/z86QNr/Ml2v0Xbfws0F3mdEe9qJ3ipqS8K8CPoGOJdoUoRTCq1RFAjKjnzsKEYhRrWGAOoHd0AAS6AwQj0MEJaM0VWuowUSSFFAHQMWsratqpSyFLATGOtIaCG68bgChbVo4cP78Xni1HYL8pEi8RzcRi5yawmsG75VFTGSItC37IId+lqBWr1lLlQ44C5Ko116PQtzwDj51XOudEGYhgoqZpaed76anWG0IqSAIMIaNmohTQK1O2WM5UNN4w6dlfIsqqlxS1is2alfGdY1JecS1zflAlpBaosnnN8VK82ihoj93lVL226TYCRAhAdAPocaCalAGRilJLQkc3A8YRRqzDkQuZAI6AVNAIaDa2AwAgNPwf4UmcDC1KbpUhFyxwRSAne8OCGrqYO9jBo5eKynEfMO/fbKcWdNA+QxFipjodRFLAyqbK48n3fsT3KsIGV6waux1ptB2FFCOl3N9OkqutqZ6+r8VKCJfNSoYpGgrwo51MyvbQAWSpR1kuejRnFvCoXBJsg8FbnKRRGFFVT6TQuqIXqKmPU0TilQNalRNpxQFgn1SqectbEkypbHVkmtFlRVk99H3vRI9uZGWF8u4dIXZekFYImBa6ttNDnl+87EWHIr5KCOaVQx6FveBAlCw0M7g64GxpkgjqhTV35Pi0yAHUHaN/xJPWesuBYqqpYDmMlKmymIptwuRrQom35rtMtwKCmHBFMgKuEZUTGVeoAg5EKS+mVwJYQCQdgt7bCymkVdolNCXWuhSSmRLLmRHouHQx29q63+1HQdlvdHuF2JVNpKsYdz0NhADst0u5grw1sT1JaW7pOVFGpaB5bBWwS3UxKz+ncJqHb6NgOOPdaUnEg7I7f4VRPZk89G1lYEuucOs+8YGnxZr48f/fj/9+zg/S9d4+jFq7y90n9ZMAuiqM/CuKZRfOjeEVad4fRVxw7OtfnJ5WZHO01p2dbPQ35M3dzHl1ZxPpnrn0ZaYyKtWEPvHh3dPP6C9zJKvDRYB1h7J7Gl7WG1Lg74d5b11/Xae0EfmtntB1xUDaEeiQIlSWpo8pk/uL2zbDDX//KW6U4G/Vu/9YPf1voj57c//zO/qvZaiXKAmMIACjKClHKo4BwZ31nbbg2unbt9uuvf+VyfGpAM5mcb+/sVbHe3tqHSP7xj/5V2CIb++u9wfDq+o3OSORxkc+db7z5K8+Ofuz1nn704N+++9nHf/Tjj/9f//C/+hf/09vnZ5N/9wf/7tH9iyybUOLYMvNFSeP0hWg3WgUjvXtn9NWOdQXVgQ+vh6wPdWVBB6HcDxZSzSyKyiJDBnDMRt0NLTBGdhh2XDxs+YEQU6mXVVUz1LK0HTFu4FjUDQI4zY/afePYNEsWgEy11pxaFsRII9f1LYtDSCjmgGpqe8iykypuRT4DxDV0wBklHqXUde3A7WLQRTIiSCNyAYTSDeE0NMYopZQkNg2MkqayKWsEvGA0qNPAsz2lS8R0WlatfhANjUSIhTbkTqZ1RXDhgDgbbzN41XaIsBhj23uebFtt/1XQ6TX13K70ztWvMDzq0HZrZ/Tk2QFkVn97Y7qcEYaiTqh0ubY9JAnq+S6ze9MmTamm/jAKgsVRAhMH23bjlszTkyeHq8OzwBoVyb4tU1vlAVD5eNoPe0E0gG7nyaK8evPW8mLZLCoGbe62k7hExor8LnST69u9xUz2gqvDYDMtVKWKPJ9blrW7c3u5moYhptS+vBxLUAvJxovJt3/ztz58f37t9u1V/kXHtg6PZ5321fHsvcvzs62d0WxxePDsOIycsh5jHThGuLscbHkvvvbVrY011u8q/8okrVTwqn3z2qH+HNLF1va1zo2XC9DZbQ/C8EVRicDbiXqWa/H5GO7cYlu7w88/+ZNROFQVn4zH84snW/sbj49PvvLG1x9/dv85sE8k/9rNV3lFw/arIg38ywlul6PB67OLoycP/tsOxVfXryfyI9U6lFgsZs9Nc47K8OzZBajHG/12VbS83JRla/c7f+vddz7tHE5bgwF63bWaz7nkmxtX/O5GWjNOr3TsryF9J8nWUN1FBikxAWCBgKHGhkoTmBmIAcBKN1IUojKyMUZVRolGl1o5mqYGE4MpIiVSntESGAVkJuuJKM51OTd1DQSQDdYJ6AW9yLPGk6dAp0Y1TWmStGlHHUQmGp4iKHzfDyMNyEw0MaQ5c1i7dTVPsG3rWs4RdurKq+taK0oIFiI2RkNglBKy4QwPHbbhOqHtKcYxBiHnnAeXnKXCXDbwsMHntSZAbgPt1/VTbKWFeMyZx9BeVSdOUEoRaz2HKubORSOypvCIRRnFurQYdNzWM9/VUHYYowqmnO1i1GVeVaszrTAwysCnhJ7byAusEIKTQYcbmZp6h9a/XiYv1MKB2GtqpsDS49u1HGN25LnQdlZl87jtr3NWU3lTx6/mKY7aeb+vTJNbACBg8snFyvUsqdMsl0LWmJfdfp+jzfF4wr28v8/ScsosLwy6gRf6kcd9w5ht0+0iZRA1Cp33h1jXfY5VVT5ezY4CNsgXgRZWnn4pksqUsk4LpAzFBEJUZrnPPcKpWMYWRjz0yvFMJLnlOWqRYPBcZrHrZ5fPLouJVc/M5Zed+DRIZ6t0keZpATXMk3QxPncYWi4vHBMinwAz5UDMMt00XmhYnB1YRHESaREsF2mrByCdEkKnZ9SCbc4zbD3ifFXGdplvNzoU9qpwyUExK3yoIwod4ocuVNKmJPNQ6ePaAdIyAEgqtd0or1Zu1jilsIVCQhqjGiAbaiqiTVIziTzIXMB1ImVckxq1aMRbxA7W3WjN7TO/T22/x90u941vW76NXN44dmlbNePIpo5LomKh0vkRlHGR4NlCAVsSRzfCi7whBFwI2O8NQ99r6nQ+O4O4Ksrs7HQapzOk1i20yWwpGvPo4eN0/FOrGR/cfy7SjpDrB5fLMiw/X/1EZBNVLMp01m6j1jBeNj/zhucwmLikn46hb611/CEQoN8eqUYk6TRbpqOREc05tVZCnvj8BVPtvfvpf98N+kWeFtlya7T7tbu/emf7K3vr66++urEx9L/66mvbgz0bsytXNrwI5bI4ncW9TadUM4JG21fws6Oftt2rP/zeW8MOXUwnDmfGmHa7bTvO3pWrruNvbm9BpDEG/V77d3/3XzZV3mr7hMJf/PJnXBXUxhfns/Q0vb330rQqrL4zmx+ks0RU029++6pSi+Ws+bd/8OE//ef/8p/8zj/7x//kf/7ksyca2E8OLlarCiObEhsDsrin6cq20hKuzjukuLnRJlAlaS6KKvA82QhZNwghozSlGGHYtilVEkpgEc7tQAhc1KCqsRsoaSqhSSPdNEGIOJ12YHSiNKVwaFu7nA2A8evSF7INYbiIZ4Qgo7RSGmJe1EBIi9EWFRyb1KbSJ72ADbhlbKI5bNXgNIh6luVIeOiEM6WaNFsFvVlT5+1uDelMK0Qgc72mEVOGPQwghtRiSGpjca6QrBCuOHg+sQJ/G4CkrkW2BNmpcbWnoerV4CbzJ+X8YzFbu9UG3MxXzbeGe9e6e1xyAp3WcI33fGctxCGNRu1ZXG5fubnKiqKplZJ1lXiR1YDMITLwcgvB588/2d7tKoPz5jLJUmhWzK6dMJ5PfrmcfNLrmunkmYdIt2NW08dNfAzSy9tXRn6IPzn4ZOe1/cHaVpk3BBJDQJovZJM21SyvxxK2h4PtJI97XUBZPV3OMSRVEazv+JcXSynw+ujKYsyyxCiY1lrcvPGGBzY+in+8tjHKj0cn46VZlQsMJouj6zfuLufo6dPZ2sbAwBRB8+D+oUTRdu+ta731elEsikz4c0GWobcEo48xDEbW7UE0vHLnJeN3J8nUocrQeNS7Yjnw8HxVK/317989XoCd6y+rRt3ZvvaTd/6gu6kdLbXs7rz8epLdb7L7V5rg28NbZ2Yc/Lm9yfkH1fF78QYLef/ho59qPXN9NezdblYvhu4+Mtzkk7Ac4dIfN5WIzvZHWwfvf4Tzwl0TOy/v3v/Fex4AwdYGrruTzyox3GMvBAtxYdNxrzfTPJ7nZYD0wDxDRiEDiOHEtLAMoDRGLYA+0ULLBmu9gijBJoDKkTJp6lwZCTDA3IKUGAQ0UFprLWSFzho1AUWC4waugE50UWapWIhlMz0+MTIPfRtLQgV3mQNBA40HdWCRFsURlE4aq7qA0Hga63bfkjKuC1mnrN0aKPwsx78HyNxmgGK7KmhTUEocixFjSkK4kihLyyQumkYqZRBCSqmksYTZMeiORJG0joD3CcYzVLUQS41uK1Bl1SGGraZpDJ4w0jXKZjz2w8TmEZQbQloKJYQlqqFSz6Ve6cY20gUk1mSuDFLFLsRFLRag3ifNFa0zz0ZcvZCccio73bDX7rrU0ZkslrWMJbOsflqfGDo3yKTVtKgLagWZ/pyxhtKxxQqsPWiQZc8RXJKmgwhFWutON1gm47yQAFI/4JTpyXjOOY+i6PDhAcXR2mjfGGhAdfQEakVcj9T6eGuPTabPdzY3V1NmIGwPRqrEURjU6oy7JQQMia7rMKMgBNiySdAPgUEaEGzBvCa+3yEcJvkZUSmGUkkkUgTLlmO2n3367NmDkyrNs+SoqWd1c1glSdOsyoJgJmXlcqbzXBAHFPFsvpSLMT8/qoNu13ZwGZcU9IvYsriqxLnt6rLO4mXTlNRxEGSHZVmml/1quWWQq/hKRMs8yqsWydo4DUDQ8QbUstOCULxyINGy05hI4YbghEIJTYXk2JYZ8QvsCmIrAAjQXJeejHk9y6hJKUgpTgjJGc0pyRDIoCxKTSzIfUYt2/XCdie0bSoF0AZDAxnELrJsyybYBsCRguHqxG4MSEpYHKviCFXaxbxeHVwcpgyHfuAaWACQRL7NGK8qlOSCWC1Z95eXt2R9QwAddYbf/tbfdLb/WtO5OYfRTJmT5b1SrrK5QY05fHIPz7It3EXabTLrTufNffZGPF5bgOcSEN50vJztevsmbVUQzKzPnFadJZs/+vEfnV08NdXrEOCnF//feMZQvijiXKHAG651tqLvfvfV9dB3a759/Sql+Nrm2ndfefk7r74imgo4dhM6Bjhn4+N59c4X959aaG1n1w+DdlmshJJl3UCIbcdzvAAhZDOqlZjN5q5jPXzwCYaaWfyL+48OD4+XybzVBhDJg0dn337lNz765TOJ+fHi6PHx+ww3o0F/OomPjhazlf7xT76YTO3VjDZ1yVgrbSbTVfL87KK/4QFtn548Lcu3z8/f8TgJ2Kjn3bRQN0nnJEry5lLj46yaUeYz20DoVmlfC48b1PFaLne1wWeX06KRACLOOTSCIBvjIK9KHirKc9dmWEcYA8vOGzXpdHplWQo4bveQBrBqasuybItzyqUyQkGIrMCJaF2aRDJBu34oG4Wgr0mwagQAXAghNTCA1iIp9RmEhpqrFCMCHVFBl9tV2bisC5WjG21ZhRYR4xtJvgpaqqxWSrmNpmwE85o4NORGt/xVvyuUBoucPJXglNmW696y2VUIAmEyKU/spv3STiv0Kp301pz4wUOcCejhPH68trVLbXs6mXuWXc4X5XKlZH14drh760ZZyXS84gWxUqhXzWqZG8IEVDJz7KxlZ7TOYSmtZDnZ88Hp2TJJZJnrwO/IWqRx4ljWnevXPv/sxKK96VIuc7O2vletSpvwUkscCGBhwh2XunUZLlMQsJywrCnZ44fHtm2n5TzOJ+s764T5jtsbjcyDw4c+u3s5U0WzLBa51eo1EDFn0wrqR8f3NnZuVY178BgXq41Hjx4B9BwuitXZ54MNC5Xu7OPna8xn0dUioTvYv+EhL1x1NrdXU7O13q2w7XVi24YCwrjEo80Ocqvv/rn/LQW7W/ubshoNe9+TVavlsLJKws7W9ECO3Bf4zVee1EtXWOUJrSBvRe5m1jl8L3e8z6O+YzlfN61yav6Vhl/0HM/vbxZLHIIRysvtAfziw/fK6mL92now2LpYWA6A655Yysu5Bt3opiqL/JiZwk7n9uQwYrrlevMSTRZ1x2bMgr5tDShxkCUUTiFSRlsYAS2kFpnRBVTYaAyRhhgiSIhdEhJgCwKkgHKAWapG5JWoqkw2CyOWpo6bMiuzMomLOrl0GCjLqsqQaWyHeEUyp1ZRygMAJcYE0oXAp2U9x9Q4QakkqNJOOm8xOIDKg5rpph3SrzMaGCCllEEQ2J4CsEbGosRGpGS2cByPkYFFXYBShBAUu0Lf5q3AipSQUZ1sicJBKPd8pcUAE5ZmlR/ZAlxoyR3rrtIcYCcvuIGUYmakC1BKgmkhZV3iKu1hjIW5pEwIWUOIhJ4yr6B4TVV9yrSBWZkxUfm2gyx2tj70Ay9v5ANCtIX7gOD2FkZW5VovcbqTJXZAv87IGmOM422Zkya3XM5tr07iOp9vcLRtsSXCOApaXCEJEEUEQ+RQ4mHarBZjxwrmczMZgyjaQtjZ3dq+ODvjXjJc80+Psm57M13IfusOZDwMKHUFsCsNzGh4oxE+4V3Ckd2tAVUAM8v2DDMA1Q1AzItq0DDb0hxSRpABFVTEom3HLZVotanVO6gr5bZmmhxWpYLOF0KtDExX2fj44mSyihdxUdT6+cl5XBZKKWYyQcbGK3RTT6dTO4TJ7D6kC23ipqI2axu0NHhhM+owvlx6og5q0ViOdDtIBPISxVNHaiB6OyMRoBnOY5MDoHtOgJOqskRNdA20VFpLQIThCjoacWARhYDSQiuBdYlVSmSMGqa0KSqR1bJUNrIjarcwdqoGSG5MbVHQDtY8u10UizKb+6zVgNIYQ7RFkUuJA6nVwLo0sWX7TmgoKTGyHCfgdmWhBJWmXMSzy/F8OlONGPSGkR8SagNCNSGI+WktTpY/nWVP83SNkP5wi6x5sE3VVqcX2p2N9btlHRm6PU78e1+cHDw/HU9Pzy+fMmqpEn/ywScuy9rt4cXloevGFjvT4lzWstPeQ7h3nPzxk8kfbV99PZfI6n/x9OTLX/60tF3nky9/qSDe3buNiGr3Ci+cUaJE5iAUrW8Nrt/qbG2HBweHDz4/DIJWls/r8tQlNhMvZFlSqbPnJ7ODs8Of/vKL+XxujIlarflqOZ9MDg+ei7o6fvZMV3g5nx8dPl3Mp8+fnpc5Or+cKiULBJ89fqbyqlHNxeQicrx7H39GXGdyLmfz5GJ6Nlmtjk6SpgrLAgAggAFVVeW1KKT02t23f/n+T3/yzuRyLuVLz08Y9bcG23uLfHE5OfNbgYYIWVFVbGrINSwQDjWqG/S4aGYWGEnhK+MIgNI6Toszi8y7raLOMbM8iCTAheMBi2gtoA19z+4AY6pC6NpnuO85vs2cOuPD/ggbTAC0qWVRPBh2PJdC2FyQJHdcabfOLk8HrQilDks9r4auF+XiuYaFTV6T+U2EiOsTWXYoJkVMtQgwxlI1TWkxHBhQS2MRyy/rDBOgRW4TWMfCMnZTHQHGkEWAqMOe/850+X/708P/+pfFuxfglyk+X+o2QhJpZbMm10VRPZuen8+rTni1Wak1b0PNrcnTnEkvanllmgacn3z5xKzK84fP52fTjdEmc92D51mj6160Nz1Ks+kxWAJX5Wh5rMjFk+R9HpY8X51/8ssWh3lNLn75xQh6++v7DWKXpZw26Oar3/jw80Nmedhyvd4adEKg+eGXzzut/tlyVTR0KSD3hM3H5/OzZRq3mYpag9klbncdKesnTx6t7aKgy+PMQrZ3fmxWzXyTB5V+vP0iA3q09+oPsiQXBj0+enj31atXbu4fPJusr92uSoMxCIh3/9GXdm/tfHKSXoyHLFpbd+eqWqjza1+9OVUju/dWJmzJBF/Xue2M58KQxSzOThfntcoieytw3KMvvoC29Pf7uzeuqaKeJ8+DcNUiq3QytW1/L9g8fvyRQB9o+YXndStvMKeLWv+iRb+9GneYJxarOUbrNrtd5n5jNpboIXfStiL3/ujJbHH45g9f87p3zpcDc/RQlW/Pw3ar/839dlsml1m+KE/fWY1/aehxu92U81l6WSvSpds7FvMBxoghTbQmoDEIWJ6CDgRCq1TUQFdI6diYBAKLWRzRCoMWphkEHBgGSQyVi0AKMkc1WJiqwSsBl1LHuipRIT0vGk8XcZZwTyBrKsyEUuY5u0HY4nZHCkcp7jie7/s2D5IEcKdVNbEdHIX9E4uVRVZiSC3cL1KdF4u8mDGnQvxUoXOEBaZV3SRARRi0EKm1KeqSqcZVJiHeDLNVkc3zZY2UgwyrK1E1wvDjrGiY7Vm2ruSyNZrn8iEQW9qsK5JohZu8xXiF7RiAtgB9xrXjKSfIGdrFzasYWIhUFrYEmEi9FLoUqlYoZ14hwJJamnFq4KKaBTy/sTvytkZ9q3khn3ENzpfxozSdI0OS9KlSEyBpnqQc9jGwRc1U3SUk4G5FWaWES8ocOV09j5NWax3qWjRANDyMLBFt1SUriqbdjoIWrUp5eZotZuDu61uXp1NVt6HBjNkW7o6Pn7W6PuB0djmTyoIYBD2zzM49OpJVG5DEcSLa8gHP4mXi8Z7nO2UxJU6DbK7nEtbc7rSaLKPA8Aimi+zyaXPj1s7FWa9uGk1rVbzg+qZpjp4fXBQArPXv1mAS8D526qJBsyLebK8BGozzVfb4uN0L5lnZQR1FTZKfWFbv/PwybLOqNGEYHjx/4HSiXt9OsqSWYJY00rYusV672k97upYVqyVUgvq2dugiX/m+z4XQVAmtcK200bmDEcGewWMcA6GwBlII23KMJkhTJZtMZgghTCylGkYoxogjCg0gBlisV9e1BCuXY043RF1WxcztKtBgI6BSQAKgYaWsWNqLWtBlBr1WP12ltsuDqHs5zRizyvwc8rbtDpuKYR5l1RghFLadRsk8PV/baQP2bDq5T1nfcTaOjpKNdgaVhVk1HEQNDVnPibN7SQqdbvPu+cdncLbX7hAjPn7weCXMlc1rtlZAn31w74vRcDNLXSHLO2stmFmu893uxg6GaDq7P5k9+OUH7z47Ob8dvHi8al4dREVzGtAcysRU1TRe9kfrnvaKfNzZ9z8//PTtTz7v9PayWdptEauJbJe0hyQt2k+fJOub3qdfPonLBFJCCFmlidYaQNiU+bSpjFKVkGUxsTkpshwDt9/r8YBALGeNs4GtUSe4XD7pbQ8nJwct3vnF+8921obzR2VVwVqW8+w4rWOogU1IJaAEhdaeJOLpwdHxM/byftPhHSfyfuXPfz9Pz/LVQrOCEoiZihezVmtP1pnDgvkysdlS68YiXqNnuTjmNCCWN40TCojLWwH3l6exxbiSKQBV5HfzFcEmYrbR4kxUFrfU7tYwTUuEdFmsZJW3go2kaaqssB1fqyZLlm7kKJkBLG0cAp1jrTluL5cGOxBxK0kDRysFV7VZcOBRK6wFzQttaUGoAnhOqZtmxvftvHrGGPM9v5QdAzPEJuUKDbztKj/CUlmSu3mbXxsqnjoyuH8I/rN/MjkCN6omjj67/1dfu/Kdq75cV0WZJHZ0WjfTX96vvvgfXv2V3zTS97z2/eK9k2S637l7dDBzg/j500dYyXoZz3LhBxHShBF3MXn67Olxa5TmAm50HJE8s8tRdfwowT1RzDogjJ+i+WUzGDXz7D1W3OitS9YrFvCs8buNqWxigXldHk2u/caeSExZi3DEf/Hevxt0mJRzv08LkUwKfD4+3h/1lwnG1Imc2UWeWWRYqMVinvf7e2GEZ4tpu722yh96rTV4bip96VYudLpo7yBcyjRVrQFZpPucZbP5cuta68Wv4CcPU11vLmF2Kh+HzhWWYR4gb//VM2GdHc2G3qjVvWainYAutiyQyEF5cd6K8o+OfFMZwIqg7boscGkHNZWNnzP31bxnDr58f0PVmLt1ldFiWhTHnZfXL87vb/XvNMjc6F0/ePyUDR2pAQ9fVkicnP3hld6rQHsz+QvgWooTuHzWGrrG7Tw+/L2wv7f/4q9BvXvvnV+OtooJIMM732jYKFuk04tng2jtcjmuorlPBK4mtWiU9jprbYfbTMOCNHWdYkKFsKDpGGMIqySamJIbpaEIMePYWkkFleoqgyEwAGVGhcZIiDQxriFLBaClZKORAkwAy0CbGkRhZqPZefIF4Zrq9tlF1uEk5NDAarY8tzG2KMU0kjWt67rRF6Hd18qqdQUbLoEisCryhetix03jpbJQxw86QtgyRVlz6PuuRb2iHHP0AgBF1cylBDYLLKt0/AbVMs2PQn9oE8jcKbVAUTSNhJZrFRkM2rDKm/GZ32vvx6snxkCgaKEuXPsqAE2h3nZgK5vulQ1zWwbAmmIq4RhaXjqjtsdMbUETGvpQoUJDq64AtoEdmDxeisrn7GYpjy2a+u6aUECI1LNLQwCkTFGdVV90hztl3HWYFa+WjHCpZq7nNTouRQmQLksmq9JhOUH2JTEDXYhgTWWFlEZJbKDxlFkCv8vIvOtaiawYBq5VoK4HYbBMjvf2AlnXodfTcAV1ZYHtfJIZGfZeHtVxLoTHckO3WHoxs9Z7FJJ8NSGVy+whdBgAClWomcWm7ZNS+Ve3QFmjyF8dnLBRcDLDL7x+zYhVUx1FuLe8qMMtJpz648e1tIXHCQYTIiPHFpP5obHtTL5ouvHp43uOtW08ebachN4m80IzZ0rXs0VGse11Wlk6n6wWDBMPeB8fnzVqQlkyR4IZFK27p/gETDpSp1GvjWlQNEUuFy3XtRtLM40FMEhI1FBmVbJuAD6rSwDGGDkSOI3BRdZorZu8boqKY7HITGewJ0vMbVTWS9fzAKVQLbCpWw5DEEuAtSmpBZDhQSUbCZQiAGJisGUUhza33I5mkLtn49l6q8c5fnLxkBInyOyIsGVxLC4l1+awuM97a1kZRAIaeNIPbq3KsY/XEiPPvkihPGkNL975fOX12jt3zpv6jmXI+nWXnu3NklU7GRSTKvniIr7uf/r0YWPU9Rf22xw7fCdvzg+Oji5jQKhN0HJfDkg00We534oCj6KqQtLymLU92l3NZD2/qM5nN2/eWc4Pv3g2fvfTT40VOi1e67rT2nvwcPzsiDH/zqK47G31ymJiharS2o8GJcgCg0SVxfMZgJZRNSGWZfF4sSCUSqGANhhhpQtgkDKc2db+tX0F5e7u5nI13eFklacXWV4R9Pzossiro3wm6mY6TdO8AIgkyyUwwOFuUeWlkYABIwGklRGQI+/atf32qL395k7AtKXRMBuVC++hyIFEj8aX0LAhGRtBAm7XpJhkMmDdJgYeXuPeOpSgievd3kaRLG2HSIRx5CVxLojlOTZUmBLGKW9kTVhIygoApQw0YKJFFtpu2dRZVfuB15TLWhfE8i2hKMxt1gDNXcAhTcum5Na6F9iTxSeEMFw7i8WMMWphD4oUAungNsYY0fM6XhDSXaSX3X5PyxAIi1vu/ELZ7SJw/SzzvQikMGkCm6AqqVc13869ys5xVYAHtUjWe0NJQUNWxfC/+j/+P/43P/nflxQdnvlxAJonH4vZn5xx2p9W66OY+0NwSDe3r2iFJs/Pg4MJyNeW8aQ18tMpYESo+qlHbz88XDqcZ/NCoeeOfefzjx7feRmdzApycb8d7mu4fTB/p78hn398efPFr50zUy1kPVhToNv37OdnD3JgLZb1zTv7AtpPFp9u9+9E8Nrj5TtbV9vPj997/cV//+hQLxcTVyiHdj55+/dfeOm1OegQjFwGpoujvRtXIqd9cvxJ2O48Ont845XrTawOdR7W7ELPNjovKpOlhNxY21zb+trbb/+TV3Zvp9nsjTfeHF/6r1z9u8vVg0cPP3jtazePzi4PJsnmRrftq9PPJ1dvfc1h8fmZZHz2LDkp1veXz36/6y2eJJvAno3C119a7Jf75Hz5+6r+iiM2z1G81rY+PDqKssu65bXwG+vJ8cQ+w3aNFgvjuBvu8JhepkMLXoZxOtnkr5+yqTR24OwokgJYcOCWy+z27q9/mN7bbG1cXNYo3Olsk8Hm+uOnK7AxOZe66BbrwVr56PHy2cHW8JUi9qfpdMjeKorYw1a33bccWItZVtUlWIHMCNgqZamhCYMKqkY1PSVbnGZFk3kh0iDNK+34fYu2hPYsO1EaGFVDg4mxgKxVBVRTC1jaBKi4RWnLOKRoqFBeWa+oN9oe9o4fH7WswLWwEorxqGqE1aJpmrou9nre5GyyNborC90itEZLKUoXDWAlfF/UzQprDMwSOVgCUMkFZ07XXSsLnSuhjYet9yzaQuaKS4MSfqzwmYI3s3QzIAtbhwKklS6U1r4XlCtiZetIA5naAFz01mZlfobErm31tLPiiiErkXhBkBKq4XauwdilvKk2tCmgZgiLwfaiLGMAlNbHFAijIoJ3iqJ2rFKWjaxg4Pc0WuhMtbyObGBW2dj2h/16evHI85wCjdJm4/jscuCrdLrE1ILUBiSY108delUBaMjccwZlDpjFkWdvySYAphu627Y1Uo2HVFSlBGHBOKHU1tJarSrmB1WTB11LwNINLQOwRphHIKuglL0G1kKp3u5GsViwTqRWCfbscjKjNicENaJ2w7CWBeVUagEwQAzbIFQrZYJQIbx0KQQsag3L82L3xj7gajzG3dFaDTPut5GdHx2ubg47bfBy130zb0KnFzTkiGNAV2uD9lk2XtnNYLO1iSpBZHVtszs9fVqVic1QLad5c5KJUxaBk/kpcNzz1YOPP31n0L16dmpj/1rNB0eL5DI+vizenedPkvK01oeQpACxqmSzVQoyDTQ21MoxXKgqrVOlShsZK22VWbisW0J1rdpFaVMVk6W5WC1cBcr56lFR1VlGKPfzOm20pogBg7TURgEEDSaQEoAxLGSzKrJ5Nk/qWIEGU8Rs1/VCOow0MNevXKVRa5ZVItYeCBSwK21E3Ecafvnoy2f33Y9/cnJ68LPj009meQABt1rtwdUXXb+bqoVs15KIcXZxcO/syx89Pvzg4SpJn53PIcaDVr03ivyuwzeCzFQeZLdG17d619avvdzfY9Eg7HTWgPQun8Vt3Js+nG6wrTg9ffb4mce2keisd/dH4S7VVjswx88OnxzdezT++GT1+PT0fLPzwre/8hcpGqwPHMugnt/b324L+TnznjTiNHK6raCHIf3803tpmgaeOx6fb2wO9vc2uG1TSpUQAAClFARQa62UgoQAgr0gsD1XAYMxPjw6aJpmMkvGl8uT44vnT46fPD44ODg6P51MJ6vzs4skjpMkAQgBAIqqRAQDhEDNCXBbTn9nbfebX33rjVdvfv0b130/TRtBXd8w+/6Dx02ts/GyC9gui+rErRsplfbY0AURNVmvi/zQgyqGYNbqV1n90PJXCswtKqu8cF0TuJEoWFMCQtV8eaR0XZdUw6VDr2VL7Tvr2vgQWJwNDDs0YM7IkJGegmPE4iz2GLxqjG5M2Uje1FxCM10sMV5Xouf6/bZ73QavIz0wQBtNAawlXNal57lXKRn2OpsQQmQVkC4Mu3TbK8prQgWhUCvTVLgpeZV5UPV5PA7XHG3pKgBDWf/93nCrTDK9KN5L/pOvb77VDxcXdl3Q5HlqF6iJyevrUXbxI1rbReyISnPgfv7+74/CCsE7sTh4NP7dWTZblvXz8ccNvfj5ux+j2UStJtXxl9fU6OL+R93BrXReeidNpmfMvXx+8ovR9dvPLzREViPnxq1LvVidfpwcfqYhaGr3evumV1oIsi/e+8IWm21389mzo/5glBSae7vQph+cPF3Zz8M16733HrXaTirHyveeV6uj4+Otta81JX/69CBg++Oz+dYmG7SCy0nlmc7B2YWlIiE/v0hP1gZhZ/PW5OyojXz/ta90vv317OHjjrl47d9/8bhY5LL35Mmo1X59Y3Owvbl77+NPuT3b2AD3Fnmdny5PP3nzxbv4HJBnPlt0ktm401Fup96+vTbcuU3ooBKTrDxGcDMGq9XpItp+I3Ju12qVkPXZUaxDc/kU9qNXzs+LiLseV1k96QzYYvLlOs5R/NzFz6v6IzfUGvV2XvjOo+l0WvwuAi6QzObYt67G02o+fhaQLbIcXXdemt5fXF6eXn/re0lwcZT9N3d63/V6aLS129sMK/p8lj3LVaaQqJVEtqTe1Lao69ZIx7LUUh8QuhJ6CnAGUAmxwRaCVELSYCuHOkQmQJAhBCCSEDeQ1Ig2mCYAYEgriaZSaGgqYM6abClKsVqtEIGIwTifa1O6rnYcHdLhRmdncXmp63hjFObJtC4yC1vIansdP1MXJFSZABL2S9HVqKuBKeoFtlTT4PlMVk0JaEydRJTbCI5K9aBQn8h8kxTfL1Nb6CdEXZarR1ivHNwh6qbU+42FEuepHZw08H3bjWEzrOItAyxlVsvVvELjeOaYeCCW1xxnt2GX1G4sesK4KDIDdYgxXS5yKIcEbGDowfpmlVjYObJbz+oiF5XLWSBqms5j5FtH9UnFF6Ej2wCLFbCcnSZ5S2TU0oJTXetZKYFUoZDzskyJHnE8QkA5LitTymiU5BcEEVVlqTKF1pkUsRYSIbuploHPpSo4c+usiMJOmefct6ONUDXaciGyXJuDTCw09hAKahBH3RZwLSenab4KmT2ts57vVdRorSGEgCGqLaFqy2VC1dRlKsscm+GWBVZZOAqLh8cNQe3tIeB4tawhJdhq0aAhGB6PM9tplTDb3HUpndYXq43dm0+OL+ex09sJp3FGAbl+Z4RIffqo7PauvPvFmMLulWFfycRxIwjw+WUhoUKOv3Xt5u//wU/feOOVLx/fQz0Jt56dN5ePz2oir/huYKEoCrqT/BSwplG03+kFLrpoug4QgWZESwOVMjJWdaWlj9oEygAvsaUEEw3Im0zrBE7ny6CvJFGL46PNtR3HJwaTVVz2Q6yUNkoipKEhECmjJVC61CwvhVQIG4AVNIgIwXQTxWDVHfSWi4xEATPdXm1x6NbMKrISSsKErxySxKnMkrPppDcIuqunxY06AFhWmlNnrd3pMjsF8PrghTM9Oz47sJ2I4kLjC3/7q2HvB4dPflLWSdcJEPLuvvYmc8HWaIQapx3KtFkMb28tp2R1vhxPJ5Ua//iTf6fKtbqj3nnvHw/7YTaXoVd//7s3nz6ZTmXyk3f+ZHl5HoS9ZdXqDdqcqdub+vJyczBAgXt28O6X+Wo56O+Mx+OaneVn7aKpjYF5mtV5dvvW9axM3vnlO9AgJURZlgAAozSlVAgBAICYrA3Xl8tVK2z3ep3Fcnp5dt7pRpOjy7ws0rJSWgGIgYEIEoSIVrUBBhgDtGaMKaWkFtxxbequrXdu3dr1XOpwu87qbG6mZdlx0L0nn//kT3827A2hQkLXazYvynK3DT2+SzQvxNjWqGffkAb4fQ6yRVNbHPUAW1NCA92omnZD2xiQrZaO41RFnSa2RcMkzX0f+LydJKeUi6bBFvENlBi0fKtXJLPBsCySSZZCr+VX+HGmMUNdgMdVQ9xWu6rmmBGtqEZEkawoL7llOzTQyq+qvGwUsTzORZlbBkqRazdwJ9OqE24uxqXHB4QfNnIpQE0sm3PU5KJuct/rWGF4NHAod8GyGPn6Tq8Ot4LxwnbexP/RK7ePct0dwZ3s6PJwNYmft/ZsnS8HnY5DrPlxsjop8WCZVzPirMcXb1uF8aqOWzNmxHR68WQ27nZEa/Aq6rWOUhXGIiBpkc9WEqWWUEs8bhU68Ea9/QOyTGFS456T08Bhpwcfv/zWrxbjqQ+9Udgau+z00QOXMks5xeKiKi8YR4P+AMftTx++EyzeXmu9FojhsyePXn7zlYuLzAdwGJ+z7VTi3ZOjxjTG42Vg2aJhn3/4s6C93Ymm73720TX7L5RJPty6G1J2wT9fqX5nc7er2EJEj0rv1nd+cB7ntGCd1hu3b45OTs5evPqb8fJ4kq5G1++OKyu+PAlam97glRsbX33yy5+wPg73bsqTFfYNd7Ww4u0Xt4viu8WiUdWjcH/r6ZPP3rw+eDqvwnzP8KMPHn9xe+hepuHW+mRafBgMiWsxFdNR/9Vk9VyvJs/Sj5l5yY5eyaqpcTba2yTFoODNGy/9tgP3C3beHRJTgV988M+2rwXzsdrye9NzSxpr5843712cY8LXd35AaZwhOF49VylAEDue4aiPjY3ItKoLLQZaQ25ZNZgYdQEgsQJQV5JgGxgfQm5RhKANjEUIUyYBkCCDDQRaQ2AI0AGClLEGagpsorVpGqyFlrnK55mWyGjq+W1RVkILISxZ2ly7i8tJrx/1W4NsuXS6vBtF8SKlVs3N+nJ21Iqc1eocIRSFwzhOw6id5WeuPZBSQntVqRiAKAq2ZrMJ5aVQjVKKYu62QF4+Q0i3vSvYgZfnJwF1HNcYc1GVOdbKx+1lMgYAIe2lRcn9lHtClq3AvUHUfeTAFM+jgMti7AA/WW5K3q/EB2HfFHnjog2LUgFOISJAORI8p7QHTQN0gxEzJpdmQqmqUJdp5AIhiqoz7I7Pz7iFA93Qnrc8jxifN0iUyjKugTiVeQi9JYJ8vvzYcW2xGpZV7DmpB14ipUwUgn6IGrU0IGbcAiCGMNWqJcvCGFQ3lWuD6cWsG7SNknlahn7bttl0OvUD17ZZLWrb8TGyRJFKLSzAGlnZlACLKl2Z2lBKAdLcsRogAVIQAk2IJu1CNHaGLO2ChkPa5sSuDbBghZDtuIog0uquPXz0pRDI8REXbNj2Dy4uwtHeYf7+F2dvv3j1b2F06riaGtdF4uEXB7v924hogS4HnRbxitnZXBlMUODxTlqlNq9Pzh4wf03o6Th7fOXVlycm//JimSi05pynaunA9uEJxUQlVRWG29lchV7YCWvh8jpwEcMQa6VVUxdNWZG20+FtB/NSqBLXgHoIzEVcYjq/PJPM9TkvEZxNxxJZDnNaECAANAYKGmOUlEobpbQUgGlqS4aAhiLP52lS1I3WGmBOKOXYwgRBx3Homj0bzzqDtt8iViWapoxC0B3lJ/fuO2R+/+Evg7VXKMVqa7hSVcsd4BveOFt4ZR3Z2dpW7/CsMvXk2b202x/MA51bn0lsD/rX0/FkfdNVtkAcF8UMpCWRgWo61OpxUG7uTOPy2e/8wftrG9vp8vFydj0MNxfxKptGWN7YHAWBj2fT3Xe//OCP773vcfvO5rXR1qgfdYNeIOTY6JpAZpTeWm8Bq8JEE2y3w/AXH3442t6eLRYU46dPn15cnmWriiDLGKOV+TMpWikDAEIIrW9tagUc3+v2O5PpeLWYVFVx794JElhoZQAAAEEIDTDGGG20AQZjSylp2XZdlJiQK9duSKh2ojWEQZGrKOw1jSCcvvvJj4t8OpOdZ48OAARHSgSYsVzZiK3Z7rD3gtCqSpq9rbvNZBr5ugZisUh3go24WdZVxm0bQcWxLUvFAFeytigpy2WrNVjMCsg82/WFLBy2tYi/dJyRUhIC3FRQggXBOzyY5KnX5IFnbWTzkjg+RWVdZoz7QCOKvFobizmVNBgxUVdU74LaNI2HacXcMTOWEW0jIsxWQpSub0lVdnoOMrXtEwgqWY5qpaSooYWp5/s2kyqGpnl6uQKOX9fQBtDb8oiXewv5Kw7xr8eldFVmb8bvs+Sfd8xiGdTL+EXdeaXV8SybXDw5a1H05NE7fvtGSjqX48/2N78zVCQWh0fHTwb9bpVFWV43UI4//uev7FxP0k+ZvyXSJcs9iz4tdCMPi61WtKqe1vhkHfb5RIJNqbPC6/YsOzp7cNDbjtL/P03/FWvtkqf3YRXfHFbca6+dw5fDyX26z+npST09iWTb5BjMAaApy4BhGNCdIBC8EC8I68Y0IAmwRQVTlgQmkzMacmJ3T4fTJ58vx53TyuHNb2VfnFFd1UXVXRUK9f8/z+8x9dnky6bZd9bOzw4XgbPuoEhXYnDySml4Ofyi1/leBVZTqYPbu1nQKIJzFrByRFaDXxSsiNuXL5/+0d7eG8Vs5/xyGK6P29Htn/27yU73e5dXR+s7f1GL8yt2jOmt8vXDrfVr49PpxubN1fb+3Y39n/7Rg72tX+m+4zx49Wm/u6bpcpF82fSNp9n46kebvT4dw3fe+qunmhyar27tbDtrAS0sW59Oh3ZB7Xc++KC8GhTHn3gBr0vclA2atPmw0OpnVfplvSynFb5x5+byAlvdW9LM82Wy0saW57B5s+s1IcPtzk6Snzsotcs8mWZRM4iXS+G2luQPWr2ozujnH3+6vbXuidWiqFKWL8Fi/Y0354nwWyi2d0TWnTvHVX7JcuNQ1uu0Q2+rqvI8P1ZpAEiFUKXMkModXK9h1BI64dYAgDa1PIQCDT2MLWMA0BBCqHkAEQDGaMA1kBBoSAUBxtS7gi4QahthqXqhKiWSlqrgYvaCc0GJn9V5GIVUES1FYPs1WEhJELSjYBMoa7yYOg4o+QSYeexQxEFkO5SqMr0EPEqH0m03Cnbseg4vmkg23AAvk4E2HGFXwonnxVCFEC2L6sSzthzbWqoruwXDyF2MZ0TbvteSoK6y3CNtyyKIoMJkFvSqTGjFPPeKY5uwecd4ii2kTRelccOxozSHsSh8D0csZ0BDh24m00XUcIGGAEaqtrWhCFGjudSegaHTLIDU1KDQ7YwmlbFCYiHCay4i302paS5re5lnBUOaSt+5ypIt6I94GTf8NUHHtjZa2soek2yJMPTjONaitjBhHGVzYHTANXVjW1WV7cBFct5shUiSxZKL3FBKYKSRNrJylVyubnfLuZKkgIobB0TapFgHyClYpaE2EhBCAMGScztwijz3GxETXOeTaK+neZm4yoaKrlM8LhRX0Gkpedr0r9X5CUYOkN1uO1EcNvv+Yllj0BaADpfnYdexbNd2OsAaLUaz5SLMM3rtVsttLk6P8jJzwu10MDu9vf9mmcnhYNjs+G6TnF29trytNB/b3bXTfHpavxoVKcAbxdy7GpzaeLm+trpc5M1efH7xIA7a87FLtjeUbhpoELOU0RACCAiBHiotRhCzNOccqIpqblRdEW7VdV3knFWt3a3ZeOAFPlIgiDsQIkIptQBCQAMhjdLQaEAQjghUmBilRCWVLGtZQ2iwLsvUlhLKFkZXk8mr2fidd98i2syWc4oNpIWN2+Vi5c7Obz3K/3gVM5nZLy/VNiuxTpaQeaSzYdMsvEoWeNX1vnHzlmD42en8ko/qS93t1pTVXmfdiZoFP7drMz4xdSMuzGWfbm+v30rmF9gpdnbRxWXp6Nkv3Pv+49OWYLXUQMstZKm9W2gyubxz+x1v/RT5149fnl+Mpp9Xj89mk78br5I8brQbl+dnjuVsrr2J6cZgtlhpdzkX89l4Z3stY0VRZnXOldCjYeK4odGSc44QMsYYY7TWmBDXdSGE88Wk1+7N57PFfG4Uq+tSSWARgCFU2hijjdEAAGOAAQpDsrKy4kbBZDTe3dput9unF+dMyxHLvUB7TfPy9JN+f/3Zo5eLaVGkbM6PAAbEC5KaJXUaG/rW9ZtvvvVubArXDo8enwPPuO3W+dXQdZuuu75MEoioH3hFngKtDZJYo6zgjisDt1UWHjCUWJzYuVIUgWg8uXCtjSrzW12QZTMEbc9bJtXPbHUNSo/QAjgPHJ8juFKmKvJtURGHgHQ+p9gTJbcpgFoAA6kNjSAKjoxGuLoFoDYkAZArRQAWWmPOueM4yXJh4ybjCZbQcWwMJONZWQtiG0QWeT2BnZXQp7YDpMTleLlvw51Gs2qD/AT4HRsv/9Tm/yNAr6hn77RVlLzNg/3aLF8eHrEx94PUgomsV8p5oYpVatdJ9spwFHv7QMh8PogdeHY+zGas29KZrpE1BnipQV7IUUHiZ3n57r23kqsTb637bLr0sOjnylp2452iEh9VXFTlN598VUaBt9mqFVpdX6WST0ejS4pwI9Y+Xbu38guX09NeyxpcHfRXG/rsKJKj2QVj3G62d5eX27i2bXNjcEAm48+ZUbv2d7/40aNJ/fhO/OFJMo71Qyz06rXbzz89vL59b8hPUWtheSSIV6uZ9eD1Z7/1l79fDl6DJbzz9vWPfvJDUK+vbgVPr0orvrseu6yYura5GJ9b2NrcvnV6OfYQKmel4zcFYVEU9Do3zo9fFovDsOFHcOfLr859v/3o4l94ntdpOpbbajht1ls6UUuqIAhQUap58ay34+mjUdi8XeLsZHZwbXd1PrsUaHI540VKNxt70FvUefXy4WEzkhtr8MmTHxMXWZ13d/a2XjwYtzopKY0iDjOvD56PI7HR6o6b9jqfbl7qS40OpKh0DbDdcYIcCF+YXEmAIWX4GWPz0GtYLjBQaMMRhQYIAzQ0lJAWggYaSTSSEAGAEMUYmUrVTAmLWgYqZUpWVxWbQFw0nJ0lT2zkFho7VgfWRjFQVCxesQTjth3kaVUzTqgDMSxZYTvMc7vLadVut/J6gbBFLAoRoJaG+u7somx2jN3K57PU9wPLUbwCttu1aCSNzrLKJdc9a42LHPPEcEdD5BILutmiHlcsCrydvqMLPlO69jyPVVZZwCj2sySPXStl0UJFFMJ2wB00k5aawLFnKckU48yyac3ytOK9fmexPGn6vUV67ljUsp2ymFmW5blOWZ+0WWteV1YjLgyok6oVhQjTOsDUaEwJksAhdiOCthJcXAH3HBoFvFfNcG25mAdhZAUJJYCn14isDSIYKMSYxNjSQgEAAr8JDAVA2jaFCjKd+EGYXuTawVVZ9a5tLicHru0DQyxiAJtzZiFoYQO8VjM7uvTX+mqSAWr5lsdERQiRdU1tCpgiAGsBlMTaj2BvA58OiJIO9xiQshZWu10sFwQ7wAHFqLIIWttY1QB7sXdSzPMJX+mUqlp08btrPVdB5MRdIDtNMrlcTJx2XCEW+A6yu5SuTqfnozG4c4O6oaQLEzT9i/HZfGncrbCQ53N1pZzo8LCmzQ3ggVcHf5wt3LV+fHY2aXe2Ly+TrZ1VUcvV5npNDWS1GBvX8hGhbhwYHxkKOKgBZ5Y0BnIOZKWAMqhht/N07rgT4qoirY22PZ+6gS2E4BaGGNmYYAwRJEYDDG2AlQCZNlwJqZQiqIxDDUICDA7w6sHk3PNsJHmVJK12TD3oaTMahMejxyuNRjK4aMYkrYUhQqnJzVtv4jyZDs4EmTeA31xpW5sdcfQ06NwUZdFc2eNMxsvjl0//8PRkvdu+G0dme9epqsXkMnn18rDTbbvp/Pb1t3xrVStQ8UMETD2K8+X2rRvfncyLtV7gOKv7m98oypNG73R4Rvu9dyCtt4ndvn/bDnv1589cg6rx4tPP/wx++G15dU5RoyqxEQRohZHAENWFiUNfVxXRpq5rbNnD0RQArCTABAEIAYTGGAAhgMDxPdtxJsMBNGA0vKry3LYdqbgS2nGsuuYAfL0D/PkEQYQQJu7W7s7R+en73/rm0cvXVVkqpX7ze7/5h7//33/j7vtZWdje+tmFmCd0thR1zV0Am832PEmVloEfdBuNe7/4XgkgiDYOns+83vbx6AhrYa+0LAopnpas8O2gYgoaj7GSughQYbtYllgZ7YVkMhnGcQQATLO82w3ySeX4IXXns5lBWntBSWmrZDmx2HR5sdbZk/xunmQGlp4bqNI1cGyANoBLrVzP5iIzEAgNFG9jsrSdjBBLcyTrQAsHYwCMFfi2ksDCgeBSC4KIa9lSaw0AJsinTmAkzisOTNciRFiLzo6bzZO2oEGrNasqjsG4VNt9izFBoowVmFk7ZDyiIp/pR7+49WGe4QfFE685rjLQDAM7OKLsPQ7R+avn/WirXnoVXDaDJKfk6tWRs+fQ3fYn5U+sJNqvjVFdp1VczVPXZKta1a8/6a3tn59cruqT6dl4sbWDMLWX7kwKRd1heqg5fPveu1ejZZ5eICSybMDqElObgihfXCoGJtkTYqllSg0SeXpuwXZZelEHDM/ywBk8ffbvV1s9XqvF8qTR2kyG9OXDB7vvrObp2fvf/K3RouiQO0qmDWfLamWj15Pv3Xnni0+++KW/8zf/8Gd/OD5/fXF0VNetaMM/W8z9eMcKimr0Ih/LD27cu5rPQB8mR6fkbHi7v6Ezd35+tdlZP+bEdi7Xt0NZ53XlB96+BAuZw+FijFfd4fHzBFb9jV+E0/nO/e8ef5Xfev8vLqXU9qnb3KVgo57Nh7kMq1jNf6iseN263kNvGrcezv5stngSBtsSfj490zf3r4XeiBL87OFjiKnvNexGtnhtrdfR9NGZ3bDm8ChNjpt41eukJHsrXRS5+FfAxLF7txFQEi4yzSwUKKtm8srg1EYrFnibyhuYHiHSFNo2yNYAGoUwRFog7BVAQ6SggRACBwBoDFZGA0yMDhSUvC7KWViO82yx5JVHFK+yCvk6cAHUWRjZPkVVvlCql2QL15cKpY7j29TPFtVG/9q0yupSGzecVhColh84yK0dV/AEAXzcXtOi9iBrNIK4roxr9aTz0qiwFGUQBHlO4ybUamhUT4iOFypgJVIIUHYsjYmdOM7rqrjOlBZKOl7HdRGimeNgqJxEt30LWOILx9nLWdvyt2RJoXphIovzpNlYrQplO9jzWcnPKQ2lohTHijlc25iUBgIpLASJ4p7hwkP2MhnbPq1MimrHop4UqalXEeIALhwcEKzGhZdWd6nd4Tki+hqvB4Xz0gffEFXLic6IbQvXkUolQi4QdQAyjVYH4rpMai1qDIIyVV4nqlJWl8IJaKsbcb7MS7axsT66GDQaMau0lHloVqhLdc1pI5BlTX3PMgBIjSGBBpasjtyoWuZuo8lLSWzHumNniyOVLxpeE7AZApq06dwMKeZha1eMx7bTkppxNAlILOpKDEDD2pwvXne2uknmVXl9bw8U47MaovnodaexmadmM24AzU2SOq3Hy2zr1v4vIejUchK1Ni5mi+eXV+9/83ufDj6Z1ctZwwh7uXevww04nRXXtn4l7T533bDmEIam1Y5ba12ZFb5T2SziTM6ksEPsW7Tv2R41BOh5WAQ8jGRTImdOjcalxYtAMqsHYDEzGEuFA79dC0Y1sGxXmVwZogwyGmgINAAAQIIIkFByw5hmnLEaUuTbtosQ5joPPJwtZ0JRpZQnyfTwitXp1YW69ca+qfXuRuvVwUd5iTd3f72VvPHi7N/mkhy/PtJSvfWt7+1tNiMLTavVWBQ5cGoqF/NhiNof7P7OkumL4rHBb9pAr3reAqrO+nVBFpFjR3R1tSmHF+O6YISaukpXVjtJJcN2EylGCaJIt8IbBnTeud+aTrKry9P9zZtbEQTt+pjO+7t7kKx/9dlDAMDGvt/vFlzOmU61xKIUks+CIJV1P02qpK6o5RRJHkfNumbEsoAWtm1zJTHBWuu42SCECCEoBGVVSqGAQayuAQC2bdc1A38+IADAGGMMAMAopda2+mlZ3b9/fz6dLJYzrdT2xvbjR488dENUrauLFxKNJ5NJvqgQBACBOrDDjV7Q7QChAsf+7e/9qhb8YjT45EWdnB+8s72f8Hr/xl672zr+4qAt1tptAIBMZget0HVcHPjNuiJcYcaAHYgsH0NiMHGXszwMYyaWYbNT8Zkf4dkxi71YcCZqA+VmamaeH9e8qOuF5cOqKoUgvhUIhZV0XaeVFePY9vMSKaOppR0b87rDl29SDweNAxOO66IhODQ6YLy0rSBP026fzOfDyMbKJJoFBnsYEsf2ueBK15ZtG6NLZaytsGlzu2H9ly/SM3TcDPZ2S1kycq9vOfEtXVQw/X0v9v795876zv+t3xEvp6LTaQM4ksZ6/er4w1+9a+N2Qsl0Pmmv9FE886XM02TK5d7tN6/t7pyfz99ur70ePL2Yv9y7A1A5ja9osLE1R+N5koY4Yxcsh45EDVpbBePGa4zOEnvVTpL01v69i7PDtL4IfDi6KnjlQWMhYj9/ebmyopmYOPyN48OjnTtvz5fVZDrsNVIMmoRtnL28ctwBMjB2m6PBg/ni1Tvv33r2/N9X1Xlo0/23/0qtI6a/Cjfig+PP11bvzR4uvvvt7z/40e+1XNwwXv2Svd26sxZ15mWej9O4f2cBy3k5kWiztfKLR+OponU14T5wh7x65/b1J198vt7blFGrnj+Jg44qncv5+eZ173iBl1dogzaRd26Du6dJcv/dX3aDFRvcS5Kuoa+t6Ob5gx9Z7ODmG986eloWs+P+HpnOHmO13uyuggZNMYvDrWcH1tb+m9Lhy/lFw3tjOR1dXj1zLQABnqWze+212XFVzh/3Wl4c9ObVsdsaRmW/Y18T2fay+qSuD4jDgtYV8M8l3MGq0/B9gDsS50ytE9tYNAm9lhuOsmJFmVBqjAg2AABjEKCAIUVtpKDSxkAAsTFGalACKACuMUGGl1UyrpZFnQyK7KASuVWsYENEJgMvKheV23DyStSMsEpsrO9KVWFolBaK83azkSyXmswtyyLYAxI7bryYJ512PDkbAJi1ouuqdjAqpFkAKIKGtUyOe96tUgykmEu+S1GrKqeVmBAA4i5gvEwZCxtxnRa8BLHdi1U70SNCiAYKAICg69KmUUMvzC1wbORtO7wmChIGl2X92nLeXJQE1HXs32AFQHhuU11XIQQ2xrwol67brFWqceG5PuO1ECj0thk+9R3E0yp0glQbx4qquYwcvzQJ8U+a3Q5jFh+OqFpvWHeFe5ksl1ATAIZhgwvdFMpk+XmH9omSzLZwzSshK8i1UthxrNHkihWqv9YtxoYV2O14mhvPcYklncA9Ozt2nHiZzLyGRsQtChPETBcih8ZiylprsvOFaXm0NoPBoL/Sq+uaWpTlFYYQGIQNRtACVeECkochYKgKfbrIQWSHtaArTnJ5RKoNLyzHi7HlhtIsssR1Vqz1Ljp/LcByEWOs3Nb5yXkc1gx0gvYtoVu93bCi4+U4C5u3uSaWzcsK5bmOms1cVpNybnXQ4+EXXxz9brP/LursBysr1VnV7dve6tQ3flEZile9xkqhk6Bhs6JGEBRsuZAORhZQGHOImNZKVhBgR/m87XoNbNnQ8AYofcNLUBc6c9xyrXl7NOHSwEolrUafSYwlaDiYIKShRgABAIBBEAIAILE1VkjVMi+KPM8RQp7nUWyNygHKyu21jdfn4yBsRsDly0JBuLMVuv4KiS4uTz69eKXuf+dtDk5Uurze++XZ/OrV7OTwZHJvE6lrYiQXt3v3cpmwq6Pi6sgCTRlFnY1WY0TwcShkViX9g9NXCi4bPi+SBrTizL18duHkU97rrBez8Xb/PisX7+3vTydzRUMPdtLs504gIuvbPu1n9igMkKmH0CfULbY215veFnW6p/FY2tq31olseZQu9QGS55GHutHebMzPy1eB35Y4J77fbsvh1UADbRMLIdtGCJQlpZRL0Wq1yrJcpAkWleSaUiylBgBZlsUYI8TS5uu279dvLwQAQAghhNSy4zieLxaC8263m87TIstrznd221k6mU7nTOmyAAC4WgoA5J2btzZX1stlupzPN2/sPrw6Ojp+Ydn0+bPxBon21q0b39rMQf5ocaRxsdYol8N8tbmytdWvp5VHvWxRUtdJkkXsm9F41ojaQYTzcuYGBEIlmcPw0iA4unSaTc/BTpX52E2oUwtAPdcrkqVlAw1B4AXEhMi4ynoO2QrTRqLpoqyotZlnWXud1rmAiGh6VGnGFgrAmlpT1+0InhFL1CWySMxLEDo36jSA2M/yZehHCKC60oxL23aobZ2fn8ftG8tSrzet//uXn/5XqfLJOHl2cFdXf/nWb94xXjFuddRfBG7vd5+cjO98e+1t+/nB88yMgmYskuvn03/T3b4Rdf426SfNB3T1emi7yMGNfE6u0nxrxdvblVHbW6moH8V19CQEaz2izwesDrotb8sXlmUn2FtykHW9m6nIgS33mivnFxf763uQ6byCDDjT5FHHPk6uPnRg/+j0IOiczPLaJ/dKpi8HI+L+vBm83XU6j7/8/Z3eZqTtp5dP/PfaYr7S2V3zwk9TeXRyDNji7vFrMZ2k/fVVzMRYnJTFcb/xzSUracVb69eP13/v7X78384vvvMbb8yyI7wCtj/8lVZr9/D4XwKLcHJSySvXbQJ05ljnPFtzazJ3LOUZEjhnVTaK0d616PL4ZbxyTQk9HV0AX9y8+a3Xn7cACoB9uBL+ldNn41t7O1a5ZdCSWswlF6n75aK8yXK1Gu9apDWe/zgITny6tlC9znpLO62sLrd3rac//sG13bbmM6NwsVi12uXF4jkwxXxeTyeLN9/9ZlHqNqpzAo5TOM3+rNfw7GLPCurUeq6Sp5yVRiBI2izxNQPYV27EgAFSM4B7VqACl8g6kGhelZ5CWgNpMDcEQGSMkQR6RgGhK6QxMhYELgREAwsACrSQRROKVGVeNdZyUYI80tkG5Bez9FnguUWSO5ajMPGsOE1T3+83fCdbZloDZCIkILYR1JVrGx/TOtdR6BblImcnK7Gr81mH+ijuFMUVIdR1XcagMRTrOLLarNYQ2j7ZT5am1bVYvWJ5qxBnJH+ldRPIVWxtFOUEWDloZBN+6XkqS2I/biPvfDI7a7u3KdjTtVD2HEHNZ5bnBVwgy/4GgraPYt+BrJYAEKOaw8llEFLH9pBZK8GLmlnYLSiNWXpdqrkdvzbOyxh7M8Yl9RwYtKkt08J3NceXHoLLtAntkOLUAm6jRaFbXWURsQTSlk1MVl5Qm9blKXatWmESEq8ux0wRbHcEqiVFWamWS3nzzttXF2cGlI2NWHKBCCYtvFhmbc2s6bp7B2LGRbkmQ9FQ1XwWcFKvwhZoF9npFBjqOkm5LDtrq4DgxXDc7XaJ7wMbM1ZyLAIXAeDybNGwY20EzQVwHCmlwJTCJR4b/xadl5VzFIXfwKNDF9t0q4/qYlErbEGbiLblnSJHDEfcJsaNteDECevFLIDIdjuQErdc1I1+AiyzKFBVLBQvQMN7nHyRRduyozM+2LS7wV6v21nbxIraUrFCKyGUjHSQZWWZ5IpxjzbHcBBHKxDYcdvDIZmy+Wpno+J61XIsGyU8lVoEvm8qxAVzW31Zy/l0Gni4yPOVbk/Ume35HmTF0nEaLgKVY2uXIialQVRqEGgucW1sjrAKgRRZMZ1eSBcsFovNTvz4cELJxorNsEUB9fe8BW2tl5eTclI8e5bvvvMWbZTLw2EI0IJenR5+HDhwJut/++Uf8gB++M6HI6PIVBdTZMGbnXbbW9HL8qIMZhk4nCwHRUVkWSqwVNyv5gyrSzmvTDXZ33jHQB2vNhl7rSAKO1uz5ZfNoizFjFfuinMjmzysJg+HCeB4ba1VTsdseL7kZSe80xR4ceut+8OLZ0oVzCwajeurm7vn+WmhJsM8q6GBPnEhdb3g6Pw4z5cWAUrodD4DrtNutwMSlmVJMRlfDlhdQ2Ok1hhDIRQhSEqlNYfQKCUoREIrAABCQBvQ6fVrJhqNxvr2zsNHX22srdeVNAaOphPbtd5+++3zs6PHT55tbG2fnF0AKQEC0NK3blyPXefs9GVVlLZtv3r99Pz8sqpZe6VnZXrzF1rWvXBm+cdPz/PpaWC7KOrJCsZ32ogL48NXL49bVkMJ7nkGEtxubkmuar6ozMxFARGYGkJMUBVFGBIuZZLNOs02ryJKe9rgurCUsik1QhZFLoKAp9VQEy/05obXnhXXktZkuLrRInWUJsOQrkM88py24QFXYyBszlwFCYGGgyr0w2U5a4adIhsEYe6QLewDMZCMEkgyn7Yulipk9ixqb/dRVZpF1bnVVoktYk999uPnnef/9j/+T/7BEbCzXvjs/Nuve+94rfzZ8Qt7Mop9vr2OYWflq4/fIs6aio8s3+quhxR0a/f10fzMloRMydtbby/Dr/TMvXXre6+SR63N9SZS54OMlZN72+8qONYaBm5cZzLqX9u663/52cfX7N9QObNsm6PkDPHtjQ83mM6yfDle81voJPkqdJFd9MlasdKizz69aN/aTA7S6+9/8PnTj3NVNvdXHr78DPlur+OyIGLzFx5bf3zw8uXgo1/94JfswHs5Gnz4bT8rPX50ZnvXLLs6efDj1Ru/PPDKLr13dvjVbhxfD6+Ph2ckwOvX7mIPlrolZXt6SbZvbwzOznAVaNhcji5Yt7NC8cHTy43NO/OT4+sb7Yuzo9Z6UF2MlWkit7O/s84XPkADP5pe9/7e9GII+Rdua5/h9Pz44o2djcXlCNOVxoGOiwVouzo/T0cft3dXXh7W7X6zW9rnWO73Nk+fmIQ9Wa2iaYqYe7bXvDVJxsOz6XxmVq6/B9xMxlt9K3jyerHaW5sdngGUOC1dZFdFkfHKCzzJFbN9OjdTn9YecFuNbUd4NW5TLbDIoa2VRMYitXKUMIGdagZtFENpNC4hqmtTQ2wR2QYIG0SM0VAyJAVUCigpnCFgXcFzVl8ukwnPloxPlwNJcRsCadv2LFk6Qbg058AhjdbN8dU5MrXvUIxp3HYqnqQMe2QdL+1mCxfinMHUi9crZUvJer3+sjhGOCB4YzQ7jOO4zIu8Pmh5bzBlKaUByKKGW2Zpt9ubzhNVdN1wjfMnTpiXxbDb0hY180ke+ZuaSDug2TygSRi4cSX4ohq7oR3CCmJp+9dqnQnpBBYVxahBYMlcBk/9UBOwauH1KGiny6HUl3aAPdsHqlkWE4schHabFztY8ImIIEqQklirUtVOZGe8rEqwEkS2xSKUz+YXKyur01ni2+0WAnmQaNHhlakYpzZEwBelU5k5MQRkS9dv28iC52dgY3NlMj7b2bir5fli/mp7a48AUxZlt9da5hPHklp5EiUItJfTureKc5ZgDiWqoxYE8TTPYmphJwJlHmlFNVCiKgLHJsCINFcIEsf1iKsKAq0SQgiMAcAYoIFBCELPts1Q6J4HADcnJbnb5Nkshl7dUnUllwu02u8U1ai5ujh8xUI3Dlx3e/fG81dfbW1HwKRFcX795kbNkuHwwAneALLC+vL45MxpvyFafC6Gsrwh+qrf6VzrRSv9LeP5xKUUFkQWufIw46TkuK5rBRzLUrZlKLkV9FzScOw4dAIllEGEpMC1AocYGyJAqVHQM8DVABsIuJrwyqW4FhUCRknuuH4ceRBDBBSxoI0tArUCAmMMEdBaFmlIaNz1CRXLZXWVLUfLeVKwzA43RkMeYqHB4cCXrXCF1CAtKjp/kS9OFpPTyLoeI8dXdFbfE/LidDCm7rWMfbm903j04PL3Rr8feyzuBzB5Hnh388pl9YXIBnnKNLcjr0m8W/nsmOhkZaX/0cOPd6/fPXma3dr+xb0Ogd7ycsFX19aoQmxZFOlpB0XOG5uLyzOXWq+vzkqmzi7Ob+/eC7V49dA7mL86nybb/bsd1zgOJzk9OwGLiWlFjbIeWT69cX3r/Kej3kr7wcMvw2CDEptLs7Oz8+nnH1dVAQxACCGI6qIUjAshHGoppb62IQEIAAAIIWMgAEAI9XXpWRgFAKAUAwghJkKIsih63d7rg5dra2uTycS1rJpVK/2V3f296Xzy5VePwzA8OT4DmDhhwKryzp1by+WiLNhkMimLyvftumbAwP76ZpqmN293OvEeVk2mx7meaKtfY/rZ0cfv772lYl5XolpUN77xhpzrepE7GFdsqc0MECwKT0NEPYOg4IWNEInjQMFcqsLzbIBKrhcWtrHpE5xZ1BKVD7SH8cjA0qK+CygXUmEMuOVpSBHneVqRJIyAlo8piDlXEGZaY9cJq1opPg7dFVHVigsL2KwsYz8olqy3Ks+u0lU30FZa1HVendq+kEth3zCXhtuMvXN9ezQ+zWZWdpEsHlz81f/z30t94BucFyzwqy0wmx6M/accr5O97WukRkFQavzpzsav+TywE8dtoMnsZHY6LYZglF6+9X5rdjaNx9+6yjZ7d3N7uhuC6W5fv7oahyvbrLmoytlKpzEdV7jXuXmj99mP/7SehXI9YG1w8dOXW41vvb3+zpSfLj17MHUjn0P43NM72p+ttsNu67d/+rPf77bhkx9MPvz1NZ5PDz9//v6vrs30rB6k79zZ9Pzvnh39aLz8n6aXzatBq7u23t+89uQhIzDFdewhNh5+YYVsPonKgm47fppd4Owll53VQHswvTjNrq1f73jO4cEU8vrWRkrafjn137zx3Wfm6PJJtnozcjqNpz+8WPXXTDLd6t+4GuSuhWwQOGtwdO614gpC+uLl41wM3rj3C6PJxfHkFAK2c21jcQlNbeWFKKp8Ob886jyskIxNv0oEX+r8chnies3ffSmcndVuZsTxg9+3ksNq8x1rh3oEDpPLbB5eXqTf+xvffXmQ/dKNN0V9cTIePDv/n5D3AYfYJcF05I5HQwGu/EicjNDtvTdYjuLIM3XVXOtOFsvYcYz3wsIOQbbWlJVaA0MwdDCC2IFIalgC7WvhQRBgDCHRf66EBAp+bUsAQGsNtLbUalpdVomBxZbI0jJ5XSQJBV4YgjLhgd1IsmEcIyUcKMF4/AJiGnrAsxCFnflIWl7HqAW0J1YzTDkqK+h4HTvw6rIKXE9poBVyglKVPHL2sJE2doCVQf8rD2/XVVZlmEOO3epyOHfclnYfM7Di2m3OK4NmgrU1Cz3XLssaSGRZ0PJqxth6e38x10xyIJPSEAvsc30FUaytSyk3PKeL9VyhOQFet3NtMVVplVEPlHqy0m258o3jk1dhk4ehjbA9mowxsZBQjikc4louIFgmyzxb2oiSOMAcXBiAs6KJTQ9oL46VwWWgIMzbgIRL+xwjssgso8rQna43u0SiAnoc4a5N40azcCzm2Mj1F8lSWsChELF8AZUCXC8H1drGVl7OvZhgqX0nkjKxbL2sQNz3bDeQixrYFo2GAhCm7TBApVBW2cBG8hJSB2tRAFpiigCGSlkWwUZLbaSGGkEglcLAlRmFK1SypSts0KfiqbECzw2T+dWs0VoTNUBqM0sXFLUd27VseDz4ke1ZQS87P1yu99enA6FkAOtNlpdmdXK6nEvrNjTh6OorvhWsfPs6bFYb7XCjE1PbAqHDCfSjjpFukAPhStbUilVWZa9B7BMLc8UwFtzYQUNiqE1luUiSMordxIgcGESAZSEJjaYaOlBKHrpOaXSZpbZjaa2l4ryuWJbEcayNQ6mFoTbSYAQQgUwyK2IeIZaDIJaV4BZiniz5YORlaunZiMZiwan0qmJZ5rOqTfHs6elh3e/du3X7TVmXk6OC4sWcfdnox9lCOUE8ffZ6rd1OF7P/8p/+d2s7N37rV77ZjDKVn/lLSjDysTUtZ41u0FSzEcgJ7UzGwzvX+mXCKY623105f/WKn4uVPhkcXfXbDYBPkxRYMe6cXey72xejszk7WUB/wdrPRnl3ZThalKyeAVGu9JYVC3qt79JudmUPJDoj5H5dl8TCZWI3/es+tXbXr8+KmmkOCX3+5HlVVdSyBOMAICg1E6UUAgAgAJRSAgAs2w7DuCiKuioAMJTSryNQpJQIIm20VEZrBYCEAGsuoDErne7GxgbF2LZtpUXouUqJzx98ZTl2lhfU8YIwXEwm9995M0vn0+lC1kAr4Xt+mRcQQNt1JBcr3dVmY6XdJq2O88kXgxt3vnVxcfH69Wug7WFdhvmCcnn91tZwWLZXg3avM7k8Uzio8nEzAl5AoNhVwuL6ygqnhrW1ccsSWMTBiAleYuMg07LoEhkkZAbISEnTiJtpmmkgETZaAOrYApTIAAKsumbarWXetG3HsXsVnyBgd1obh+efr7bvExhNh3kQ4apc2KRPIOFsHgbEmDkFPYQpsfDyyltZ9wQ7KHgz3PECajkWvcMBjLt3nHZF5H/xD3/j1/YZL1P6YuixwEXd9DQtFdHNSmbi8OD0rRv7R6/O3r3320SlERqpZOUSlzvRZvKaJsWw048vnj9puOz51ejazezR08Vq4+9s9a9ZUAxnn91668PLyXjL/S3uHiH4JAD66OMyL27CYGnh0xj358Oj3t/9BxV0+vq9cpwj/lQHK8HWb0h6cHXF1zfXziZ/fJj8KAAdt2egd/0AX4FtsdK7++nR1cLxwq23LusvtBg+egzDRrV7Jz09Bbs3f+m//ef/+fvv3XO665/9yU/yxejuO/c2dzuHz1+TdNyorUF6URbFaq9R58vFfPT2+28NLl4jQOvJ5QQHkM/3N29319DJT394a/Xavdvf/9OnD9tbl9VFLuaB1TqzQ/bVz17+3b/8N374fPnmu1U6U4cHJ1n94vaNX53Ph7PyhxpOvGijVvZ8ehDEl+fLT1Ttoaoh8+Hk/GSr1/nqs/+52cCWF+eqiHu3y3G+vrH9wy9GdQ4dq7P7we8cPj6priaX1YSZT779/e/bzlurvY8uXn0ERe+PP/3BX/ubf+fLz15YVHWi1cBvlyXMSrZMXnpNn+ukHXZboS9NDFg/CHvQJhBsGcWkqgwskTFAY11TrolQgKKWRSJiA2SnENfaYKNdBBrGGAM0AEgbA7TWSmmhRIZ5DuqkliwB5jjyXJ1aOUpzNhIcUwhDPyqyPI5tbVKE88i7DlUtGNKQdTp+Wk6ARKG9xVSiwIilrg9XpRkv03S1vTqavqTUwQCWcuj5pOZzSJrUbImlxUCKcdu2mJYc6S61lm48EQkRDCFUKFMS7EMNIeUWwUA2ND61A1ErvLZ2J2jw88mnYWvDId0kczTKNcoJxLLoa4dAAgyZc1O68J3RRUfoAbBEXkCENtK8Oi2+JE2E47jIc4fmDYe7pINUR9klrwSrCtcX1IHQ+EojxhLHamFScZUj7ORZSR2ihKLAWm/yeVFOlyGhAYouKGQgs2QSkSJtQJoGQcQYxzDTIjaswbIQ2YedPjXGOHYDopqLLIiZE81nl4xoiIzmnPvEq+oKOr4duqIelUkc79I6ibV0/KYhNae4tBDSWhtjoBOCAqoaGUUAgiSCECHBmAGaUgwAkEzJmqEgoJUxZurs7BfzIYF23YYuqwnoByE+HE9ctCGVdgMWNrvZosTwulZBOsl8upUmFxhjSqmykrOc7eo1h3luA39y/pHor1/74M0x+LLVux51omilASUIrUBpoH2ylCaIqKc00rDJRMYq23UopWVekDpNlhXWhVEIAEKwAxTlALoNDISxLMtFhGitoDTEqpTWmBiAqOP5vs+ZZEKBIkcIGSAZq4RFLWIbCAA0xiittet7uua64lpo4LohXTeVVrN6lkkDLvNprx3t4WYyGtaOXimvXtLA0l3s7l6bWxdstCxny8Zags23s9mXCkmEWturtybTAyWyvECHF0//9b+ZvfWN29fu3SooXekEp68e9cKdQG8O2OFmM6TCAbi5xCwhgxvvBdOrjz5/eXFt490Avy/Jw/OLp7du3cFUMGktmoO8dfE4f1VKfPzoyXv332w2BcR21q3RNPJBlC8v0PotjHq9tTQKT6fT68GdN68mD9prtYLDKGaE2hS0mDh88fJopbumgAEICiEQIsAgyTkE8OvPLjAGQkgoDYKASwUx8YOoLEtjAGMMQggB0MBgQqSUCCFKbVbxmzdubW/vDpNpWZbdbpcxhokDgH7+/KWGQDDR7vUty1rp93u9XqvVevzlFwBCoDEhuCgqQgghpKqqZjOOQpe6znAynGdzz40uR5NZlr8+PoUatyNWosnd6zcP6jGr5PVuKylV7juhTw3q+XHkoFyzxXykeW079Ca0B2k1UKAKw7U6Q6KmgWcDVJvaUcbSqgY4tW3bKF8rJHS9MMaStgWhAaxCuNYtbKJYqkXNozarc1imfrtfXI4OW+FNQJayqiy0XmQaE2nZJs+Pm00bq3aZL1zbswN+NT1o9+4IKRGLUtYKOm0CACjZvuM043Bzlkar7XULSGmn/81P7J9/XLkib23uv/srX44HUQhg4jb8TWaKDLywfHtj5f2zk6lN08DvPcg/y0PUIqfHTx7GdthcC1aogMu60+4Z/Hkpk8kI7t26VueLCOfRLkwue2xxkqLTXCBVyK1r+6nqHP10cG/7N2mn/9nP8+9/78MxeLTb++5APwhcoKBZ62yMBhlO5XZvT1jIFWUxFf2be392Lny1mx787OYtTyIdmRp4W3npf+OXPzg/+Pne9a3SOB/+6m845mDwLH/98eV779547/6HB/PzqahgGD18+Dh239nYXnG9zicPnzS7G7a/cnxZzBaHJh8Td3/V3ty7+e2Ds9Gd7Xfb200hRBgRG+89evynG6ugFsHp5cDu0Mbe1uzLrzzn2rS4LPLzbtw3VeP44oe1WG5Fb2UcXE4GRwdf9NedaV586+1fvHwwKVHtEzy++HwwOvrGu785Tdh0mZ6MP+2tLGBkhTCfkuX+d38LRUF1RWzz1kbnxzL6tbvv/+qTn3xy8uCp47mPnvzg//If/UcnF69bwUp7RSCTZtmcYhN7W64i/dZtTC7aKxTrjmv1K5kGbQZUxZQLDTYmQDhGFjCqFjpnKicih1ZCcQxgE6mGll1jsNYa2wpBhCAyRiupFROKMckFr1+yHOuaQF1BpSkMlD6X+EXD/k7hXDk21hJ0mytSlJ7Tk9kmcA0vQexHUkApiiikJIrn0wQ4aj61t7adojzQ2XY7bilzEQUx41AULahyLRkrtOulBhdKrBAUL2fLuMH8wBFVrAQbXyxC743Ik/PimesGQDtSzY206iymiMryfo1OIeAINh98/nKj/266SBFmvuNJ8NSCPUO0JEsryqWCsN4A4gK442UycF3X8xRnB5bV5WW3DdYhnNZJjkBXGsdy62U9dJxK1YHSihCljNYaAsMMpBBZdU0s0kZoqdGYFU2numO5Oo7OZLLn26edhuYmZLrNWc30ooRPEAnyVnv76nIMNIR8vcy0H1ZJOlX8ZrZsF6VNbDsrlmlWxvF+tez6rkWtQBYFtQw0lm871DdAgWpBwmiuzajOSi9iFtXVvGHrXQYSTWpNmJGlMopSSogluFFcfC2bARAi2/paQQOURj5B0qPayDaQg5I2G8BhopRB7EpdDC6yrWvbiger68F0diXxOGorAeaYMssGeVYi4BPYqsoQgLDR7NnN8iI/ThBaf7dturO48+5ufyuOWgKQRKnUVDSCcWjWWnbccP3I9ULH9m3Hs4lNDDJcspwHEkeVQcC17IZNIxj2DIlSC1EMMABIKlgwmQmVSjUXbJmXlVB+1PIabcvz42YjDOOtjc3I9SEARhqtgNHYGCSlRoZIgKSAkiGgXdtZcYNNx99xnB2vW189tvpr29LLZi/dwPUS8ic2zHi+NHXAanVw9ifPj36Q5FVew2m1aOBI63KavtQ6acUt11vpbW8zU83qC89a9bKVO941ciHpNPCgxfABrV4gOzuofox6T3ySW3MicvLv/uyzbPzizfsrw+RZZo1bNxuZSXi19FW92difHFrz8+arF1mt/LBxs7f5Lad5q6u3Gw1L01Wj77i67gTDSkyt9Q7yH9Xyse2ywWDoWZ1Wo8dZlqYXVVV1u+2XL59nWQa/lqMZo41GQAOgyddQDaAxgZhAbSRjAmPsBWGj0XA9D0L85+pnCJVSCCGttRBidXX17bfffvHixWy6gBCOxxPP8wgh1HKWadbtrcbt7tra2tbuThgGnuc9f/oCGIQQsiwkJScEGWPqur5+Y3dza10qfjodKoxni+XLlwc3rt85OTzvtVapQoML3Gze/fLp5aevXh9Uo2Nz9lQ88t4hZWtOd5huuQnbKfkecB0SJ8aZGaegTkjwOjCx0rUCCw21ZL4ymSFDx+dGhjZtL7LXxL2yvFThBDolA1PklMirFFpSl0ucOvEZY6rWL7prcjarbFd6Aa4Z1BDZgcHuQsG0rCFEK8a4hUikphiZIicqbzpBmNeZFmUeXqLrPcg5cfWyEojotzb92C6UI1//0bn66EWDuquJjD794avf/4dN+VBl2d6+292Yz+eSgl+LuzcG6atHh1+mci7EaDB+CoHAvDc+jSC6MRiLRrBqI96wmrii9cgy6qzdxNDU2/19gV4vqq8kGUtTW8Ty3dDz3fPBk2flq93r/S9/78mak7W6iyV+MaW/G3SRKGuLYiVRsgSOu+l6t2zrLSlvdvZ+YfLp8Ye3PzjlL7LlyKscjsa+d+9HP324di1sdtZ/+qNsd/fb02XS7vWNBS8QD27F+x+0GZ48e/TinWvfyU/KvWB1/607a9e35nwucHn7/tZ0dkjR8vmjH1Lb373ZJh44OjutROngW3Hw4dNXX3ZlVC4XnX7z/GpQTRPM0r/wl7/3T/7Z/+vu7eCjPzjuhav1TOpaHh390Xw8s+Ca4B6lzY8/+TGgxdnZGQDo1cHnzZWqsIIZc4YT+eatvzy5KPNJcqv/5vGjf+9b/slX2B0UN2/d29z/9ouv/mDnXTXTjxrW3dsbvzk8zrPFvNVqLPLzv/73f9HrSWz0zd372UQvxkXg4f4acWi6uuIScdVrdituMrAoUO3428XcUZUQ+sqgBbE1tm1AQoGbmq5Ce4vIDuA+rySrClYnUiy1WQC8NApAAyAAQGlR1VWaV8uiTkqVRtWMKDFz7KVNsdK1Mtx3bg5mnwk1KMs5VNhoWuUFBlUUKcGhZaOaZVHYttAGy52Li1duMLBAZ21lH2hIkaZIpPMx1kBxYJGGlNrxjFYYmzUMusYYQ081fBVES8sxRTVK6yOLtAPrDoZKVREsb+vyulZIg0SqSuGB8X/SaBXJlNUlHIw/663Ly7NJ6LSYfG0r5ZoQiMrme9hEPNsWBuZ1Zas9k621/D0b20hjaiJVy1ZT2O1npX6lTG65hushMxMDaZG2mCTAklaANfYl9CXiiBptXAgsaJ8TJwFsH4p9rq8MOQIaCf+VE4DVFopAEogGqF1AnFLtoGbbSYuLZiOoC46xIERWdUbcDDkZtKXtOhoQ2/UBEcLMFB5jZVw/kFw5vltLDpWE0ADGbNsgXGZz5NhNYLp1hqB9zuo5sUIugNJIGY2wBohBXLu+1tIAgIltI4QAQowxZBDQUOlKOxSQsEpn0HFxGzu1UNh1w3w8TjfX73K2bDX7hERScj8uB6Nhs00hoiUbBhFN8yG0ckDyVlSWaPhyfjnS/Obbdxw3YJK6/TBXY1ktYMkJtGrL5p6rJQ4q4kthKSE1q5CoqOFAASl9ALw+6l73G3tBtNWkrVjYvnKaFXA5FLVRpeSpqBMlEiUWRi6BgphiamPHAgiHjXhzfW2102rFXicOQtumUGvFDBBaSyk0QkSYucKJpgW2SkqZRYUbkeZGO0S3+1vBaXH8evxwPv3DenoQWLcM6ogjsklhNfyj5BBE+BogyeNnR4Ys1jtgMk53blzrrQXrazv9jb4f2YG9u936jU8fPf3dr/6XHwz/4Iv0S3ffqeGy07DDzXVQb+66t0NiUpEXtBOFe6uk8+0P/1qyyKr8q4i0XH1rMCyl7i4r8WI4PDn9uS8vA2b2NzYlPAjg+T2vW4nTCN4JrSLyh4Fzlzjry7zE/L0m+ku86ELgDS7yogDdzrWqdP2wtbm+wapaCmGkMFICYwhBCIGvL/vX/Get9ddE6CzLvMC1HAthiCjBGFuWBeGfr/zzLhUEYRRdu3Hjo08/W2T5/s7+5598vrmx/dlnn+dZ+eLZy7XV9eU8eeeddwAAYRguprMvv/xsPLjEGGtpOOcAAqmk0oraZGd3/8XLl57nuY3WeJGWJf/ur37vz/7sZ0oZXouqzAFkl1enzZXO1XyWAvj50dnDwfR1zs/r7sJ1Lq3DefxMrlR2u+83NpzYq8otP9oljlvVAuMV197UGhg6x6hDwVpdWK7jVxWzcBuoBsWNwLQBiTPQkHAzBBuBdiFgS5UQ3J1MF2HYTVIraDhOQPMcSp3a4aCWFwi7EDgazm2Xp5nBehMQRKyCsSpyWlm+INSxcKcILLshupYGsG60aVmWMqsc4FzNiptbTX8lShWEqFUvon/9w0Md73PHr8q5pfsOiafTB822eX14hpB3djU4HB+tkQ1vXFydfbJyW2bmlCp3xesDb2W6mNtStoG8Ed9fHHetsBS2nBxeaBeubf12Q/864n5zowvsmOeLkLL5vHkxffpr3/+LP/nxfL11d5n3o/CDJFcb135bO6a1UZJmk7t8lD1468NfuxiOp+nB7Q/XTkcTz24MC61adz796oHw8u/+8t968fTZ2p4PYPcPf/+n6xsb61t/oeOQm9t7mpt/9t/8166XVOroaPkkuLniW1U2zkQ+/dY712BF2bzSedal251r13ThqdDJ09eGn61cdxanT8Nmozx/zAaVXoa4HvvwcCe4cfRVDe1TkMPYU2W2vDi7XOl0G2HHs/BOf8uO0WRQdqLbEHZLZp2enh6ffD4un3VXJ0oc7ex4JT/LwKuNW77lN/f27ycXo+T4TyvxePP9D3/ysz/a6a0tubT1IOj0nAoWF4/yejRN4J39/Y0V66cfH0LlfPSzz2zSs6iTJoMiv+r2uGNnNrZV0a7zvsFeZa4kvTRoAUDpoDYGrtZS6JzrJdcFk7xmvMxGVbbkhZSMa5UZkwGljXAl50oIw6WsGM9KluT1spBJZdiMJ5LNYTE1iK24aJtgn4ky8txuvG+DlWbcFrWhcCNfepJL2/IMtMIgYqwcTw+lTtrtJquR0aTm58WS6KpLnHPbyTRvh6GvNK3VDJFCG0bckTYFK9dZ1bIo0YIWOcckioPtpBg78ZUXFQn/iesXUo0hkFjvAdltNlax3qr0RRDarWCjThAviq2Ndl0KB29X6pzoayxpQ2MIKUt+DsVuzWgQjYj/sQRfGG6I6BmlKVY8o6fDHrCv2c1GUk0hoK7uRaDrAuV5HkKQCSUYJsi3LAcAU+U18S608JXsaDKk0SEkieA6TxeIRgA6RPnU0E6IOq3Icf1KLdBiuEFM5LkNgozSg8uLK5fcgXq/yjwHt5RQeTrzXCxqlc6ozPvlgnGZWcSeLSrbB5OrKwJ8kSe20ynTjjLEaZWCz4UR1FVcaRpZmErHxghAaEhd6DIxpnYQwEADABCTAmjNuUQAa6EBQYTWArk0Y14vljiTC2B7QZXbDl3d2HGT4pXGA0odYBwfvxN43bDhnB4twyadLxI/dqkPFVKmGR6d/7yczgLnjun15yEL2v7i8HVRD7JswoqSF9IwDATCxHa8KDWlMsKSqilhF1APEuJZTr/Zxe2+3V1zm13qdgjpuWjN1X1P+FpHQIfGxAZ1kdUhbhfba3bYaTXazdgi2Kao3fBdC3pEYV5YwHg2sKkGoESoxlhowyE0WWbyCiSlzHLJUl4kFdfQbrftHdHYiOR8Nju6THGA2l1Z5JHBG3dvhK31uGV2r8crqz3X7batuyhzP/rxa8nWS9bf2Ly7s9Pdv+4ROrt/fW3l2uuzy0/sClx+xLv8uklSBArGtcgvSONkCZcvXonJ2WRvtSrSw/XdO5s7N7LiBeEigPP55VGZWefps5zUXxwdDgs76u/u3FvhtKplO2jvB5sQek1lLq26VKm3cd1aqkmeNueTn9PwcHXv6vDspxhTKZnli3gFBp3q4uws8vy7t+8IzgEA1CJCCGMMxEgDo4EBAGijpZRKKaVUyQulBRN1XZfLxYIxZjSwqPO1IZjaVrPVeucb702Xi7Ozi+/+xq9//vmXv/Wbf+nJwyfvvf0eRST0gslgst5bxxg7jrOYTS4uz4BUECKtBAYaEYgJAZh6ceN3/urf/vjTL+O4bTvBKL1EqLOxdv/x889mxVWzt8eUrYBWullW9ovn5xcX8z/8ox/8q9/73S9fPfi9P/vdx/mn5wYc5M7QFnl3zLupiS0aNSUd1jqV0Biskb0kwdSQuUHCkLxSJZOJts4LeRiEtjHQAI6RUXqOcWEkN0pSXBmTYgDryl7rfnBxUWtUGtXKUg3tC99uaO5SyvJ04Ng4DJwyZ4EdADRFJOQyc6MZdZ8i7zW0Ekpj6d9o+JQXelLC2aS0bRvhYDAGTT/+eZHRX/21cO/uETX/ajW695/9V4n3rbNXiuWOqNl08HC3tzo/tHzpzkdfgnoS5ktCe63O9Tcbb91q7NgNOlqm/PRMqjhdKi3AzjWzyJ+EK6O44R2/Trheu9m933OvqXCnf+uupzmuWHvnxvv77/3Jg3/6zi99M3MdrwfFNH773b/e37l1dfCZoQ9btu1n3YYvY6kbS9fXJ69++v+zPTE4PlfHtI3l9Tv+8YskxNF3v/830gWfXKV337xzPnl08PLB7vYbNWkwEtz91l/64nm+s3PXFgtSvOwH2lT16wc/SWcvmzHHaHw1fhI0jIL5zfv7AsNF4sT+DVv0XbWeTE+gfj08O3p9ehR6riyvVuKeLLYbzeZw9PRvf/8//fKjp/dubf+vv//P3GjWbtxmeQM7g+lonKqzXk/21+spO1Ekyqf2xdkVCCuSt0wW96KbV8MRdTe85jdL0dXgXbi8advt+Po7J6/Mi4cv1rfe/PzHn93f/+XnZw9H8x/MLg7TyWBRfl6VwT/9x1/Mzo7+w0/+hwo/NN7ZKPk8aCIhHS5BEPaDdoPjozDMYtz3UJeJSxIiDd7EDgdISAF5BVhVi+qKVV+V1Z9lM1XlCyHOtZ4DZUEZawm0nishBZOiqnlZybI2pQAVN6WoR1KlA1OPs+kFLy6AzAyj2Uy6eGM5Tw0aLYuPiPes0ck8n5Qlsl1LKlPWLC9HQYNVcsw58q3r2B95fihM5kYGgR6TCDjZLKu4XhqNywpraQGgazPUYKlgKsvQJTu25Rtt8bJp2Uahi/ksc0jXD1zLkYQaQoCBpVJKi5jVDrXTqjpsep0QdWfjY4hHtqsruFrRGrenpvEj5E5cX2ipwjg1vAOrt6vFtpIQEYag6zheyl6uRfOuT0CljSmDLuAuv6yK3PaRKbGBFNhAa80Fy5ThxiWSl7QqQV3USnNEC8uRCDpAdiU7QZAjtOWFGyRO3RD5aD9CN5DXOPM8N00SrTDLOqu9raA1V/AKoyUmpVE1wQZDIDlrhgGGxnBiu4pXQhuX+MhzbQJCDLjClwpXXoy1DgVgThCK/HrYhGJOVRUj3K5zJRl3qHZsZswMaiDqWtR1XXNgIACAUGoMwJFHZLoQ0MOhFVuCzdIcOrZbVZXr2vaKSZfGc5rLea5gxoqG47aLIkem8XUjzaadi/NlliK+KIt03+rtg5Wh7RU8qZ89fSBwffhkdHKSptxCwG1B22E548MROA0EcCHCFgG+rT3LEECN6VAvbDpWAKgHJODCCICoBFgCWNtSOEBYWlFtLEQsTCxMHeoQEoVe6DrtRhg4tErnUJYu0XWVYSMpkQhWEHFMtAFSGclqUDJQ1IrVStWyLsq8rmqs1sOuvXpt+/5bW1tbELk6S/Lxo4RMDoC6NIFwbjrx7U7vW53VcHPvbH7yNF24wKvf+tb9m3fedl0Xm8bNjW++fWs7n/m91uaszAbixcH8xdVEEdpfJqPWyttPHkyuXtqOWbejGkfzNB9AOR08ezQ7oFqHh8Pp8/Hxp08+Xwzp6fOX+AysOat1WbAsudnYebP3tgW882TUaJz4DfeCX+7evE/KJuWPZovfp9HKVv8NipvjSzwdW2Vd+TGiJPDdPQwxAjiZJ5ZlAQO0lgAACI0GBkAAMUIEf12YRgg5jiMEy/N0OZ9WVQUgtCyLYAIhtG2bMRYEAcS4rNjzJ4//3v/x759fXu3s7EIIKbUX8wRD4jluq9H64FvfarVaRZkFQZAuFxABBA0AACOslTEQU8vZ37txcTHAxL5z9+2z06ub+x8OJy8Pjr9cLixC++ezZ9PsEFre+eQEO6Co8jwvO+2+Y4WDy+TseH64HBVuOYHFWSpPl1mKR9JLKoOo6yzSCZeF47la+aKKlIoZoyVbLvLjqOUv5y4BG2VdYSK1goVEqixDzRArSi4Ysg1rd/QbTE8ZOnYD7ISauKKuNLWA0QQJzzDacDZFAY2aR2EFwBKYiQKOZv181u76H+hy36L9yfTCWcVOy3o9lUPSUJGXAvHVsFxY+HI5jzqNwbtrr9775svv/739f/KPf+k33gzr134sqrQ5H89UJVg6Hp/9pOd6NA1RnfhIrTaGEv6sAMl6q7NBZw3AgtU7BL1ubzxdyAcDtmhfXwtXnfMXnV4I3tjZTuRMdw42tyb58uLWezcXYtJz9+iNzZXdb76/9vbFV0eeJ2BzeP2XbihLbt56b1A7w3y5shP5vS52/dXu2sOHk7D/dlJWgi/w2pV9q/vDnzzsrqi3//JffX0+X9/oLifLX/7O35Ui/oVfuDbPH4yy4ds3PgjtZl1W+9s3m84mqroXZ5WkYTKxJZeCO09fTtsbzRyamjSbOysu6U3RV1h86YZFVrxAi9E0qdh8PHcXQ/ADhp9DC4NGNTRP3/jw2g/+9N9trPevhgfL8uI3fvNvSZwt+csi8Ybj40bXl4VdLeIgvNnfeGsx9j3wnffv/5N/8Qc/sTurX754Ke2yv743vhxT9Mnpy//P+huNPO6YBqoe/fAvvPXun338H964X76ch9TYmS5zcbo8fdGhqy8uXiXsbPF8VgtvZX37T3/45XyBFzP/8tQSgtacZXLRalyP3a6Dh4GVO2irLL3SOi9zX8qIYB9qKnJdz5BcRla2hYA0EsvK4ZVhfCbkWKpcSw21MVIJxlXNjZBQaSQBVmZ2MUnSH1B0GsK+izwAT8Mw295cN6q2bNZqdWL3/uAUI6QNHjfaOsknyiQGp34YFJltwXUpQV5dLMvhcPnaDkoui2VqHG89qYpSjoE1pq5g5iW0xkivGr5KqENoYLvMgClE3AtrYJ11Wlu6vN6Ot7HaL1MPwxCQKQ6eEkuWqet6gNi5VtSwOHSdmh3awRX1Jlxf5dSMqyWxb+WzX6qSfVd/kBcvPEdUYsDMfHOv5cY1U1NqWZK3I/8NZnscx4a2w2gtmWlduK7RTXdGUGkYABwjw4DhmkGqqecoils2ocAQqFZ53pe8IbgWWllsG/EeQ5cmHEm44dE3PRu3oxShqme0rDmkDQAay8ZmtOBTGjrp2Nh2mFTCcnW9TK26ycUIt05LS5BEJZJ2NrUYZ8DZZTjN667kFNpNVDRkVnvEGZ1e0BUJiC1mI9yRQg3t2tirkcyrTHZlLoTh1KbUwKblqbL2HV9Co20Ml5zLRkP6OVbA8vSg7eLKtIGXELWmkywl457pN+azCbE2481lVUwEMyvduMpl5DfPJ8cXGSPbq8V627u/m7dhES6fTX58sniwqNUnXywfHzA33jYWYW5pmgp5thShKvqQRJBSbGkEGGXKEziGnkcIVhXLa1Yagq1G0w1DDJUmPOC5biunkxu4yAwS0keA4hhaQjOb4GYYepCovGr6YewFyADLoRygZQ0ZCIX0ylJLhfJSSlTneVqldZnUdcZkWvhK4MVClrc9W6IM7HXutVcrBnOqb6pKwelZE9fdFlxprwGtARhAbhrOpr+RfXDvxhvtvfHZ44IPNvvdyEbVMrq7f+3GjRuI+EjH6bBwifXZo6fnlfXDP3gZRq32JrACFPm3jk/KqyJ9vSx++ujBaXn50fPDP/rJxevn4ssvXgkIDwfG2dFre7trKzd3tjZolAT92o55UY7Wve/brNWzbnTbvRqL2XTr7PXlBuxvruwsLqpEDp11YWS4OPNDe8UsZ6JSgELkamV4s9kGgmJAoNZGaQSRMUYrRS0LIiS58F0PcaMqQSA1UgFjOOfUsYVWjDNIncWSr6zdmGd8dffa9l7/5evPXXfl3//BH1+7s1upUlMzK6b9nU3itKbLcRj6H//0J0AqpIHRCgAgjYIGNEJ7b7cxmT/F1mj/elyL8d6N9Xx43gg6yPYH4+N2ANo43F7d6bSbVuiV0iDLlxoIUQOkq1pfTtjigo/H8rIYfzp+8OOrg5HnnsDlk/SFqBoERtgiwIWTaiapRICBekHwNcdtp+XQ4Axg7jiWMkhym9VDN7SELVHgQwsaO6ntwaX6tBHdEIpZdlUvSbUoQ78wHFDkQ7KKnYYGoaGlQmA07DC2K+QdtCwYuGo30flkaAv/qhqVMnKurTgAbMTgF9p1XYPjI60BjqxxP251NjSOwOTb0vrF5rVtejB7OcG+j2LRnnwxe3TlJjPAm+FWdpl326Hf8pYFy/Ihr9Xq1sZEDHZu/0r7zu98BZcgfL+99p/O2EZVMjUA+KphyvO4pV6NfzYYDFFmkoKPZXcybUEZr73/njD4zpu/eokXJ8f/Yce1VrwIjwdmXv76r3z39NlRgMnqvffOz93d1vXN+yu2LW41aGx6kdlqqp1iVs6nV++/9cHF64/2mz2A9PpNN+76TjM4Ts6fvHj11taa1XQev/zT2Bv73ovmXvivf1Ltv3M9Aoe9xtXhl190VNhDXTkrs5OLdeTys6/CLN/geHFxtLw6FEwdnF9247jOWN9c2VcoAttJlvqw9dbmb7746MurR//8m9/95hd/Su5t/XZ7fe3x4aDb25AAttZ33CJieryzd+3N9Q/Z5GjrVvZ/+Ae/8m9//5+n86/S2VWWTAing9fP2exJcjm6v/tuwVCSHsVWN3GwwPXg1VedzbVF/TmGjcNP8uo85mhCGvL8laGKUj95e+X29BVvBmvrm/dm08SLtBv2K9Bo2ZtAJwj4UgZEhU1r04ZNH97rBg3XARK4aaVKcQnBmApGdck8CQOHujHSNmQS8QryTGRLVFzqbCZKZpOoWjLCBFtMLg6fWmyJy/b4VOZsssguFhO5uFQ6WyDBAtrlWaiYt712S1QeMJ1pYkKHIBDU3MWurXFdiYrYUWVwLNc2o32r3gfcUzyxkIGydkAT4+5kkXvot414U8FJ7NhN2OhZKDeqMppVXVGsU4qLapqU6ZxdCm9YmEtgWmzxJi6/h0nHWR0Ny5Hkq4ACGjq1DjIeU/A+qt+zcbtp3AC7AMyX+eso9BGsiNlcTGPg9bVjnw0vDPTzAmmtIU0kGCIF6zxTEs3mHDso5QckyCSAuWzaHcwxMLiBgxr4LNOOsAMIsAICkULBAcCJlKxiPIjcuhxU5UWZZLaxPcAsncZeM/C3ULPBx6dnK7HnytgHHVhXpIZUz2kLcMZW2yafVfNMhmuuY/dHR1OEZV4hhJDr0CSbBL5FMEY0t4EXdDxtMSwxz9jKZsPYHJSaI+pCobibO5IUBaFNHAvbCiHAsmR1zRGlQgiMIatL13cZEqgsrIDg2GdXY4xouLlezgptQcK5S1vhmo1qUyzB2k0/Oc8ogXEYYUxFpYuiyvIEwCxqSp9IrogJQUkzihtQmxfHP3oxfNjdoDtbLQIMoZ4BNJ3OtcjdSAAIy7peJFlZVZgix3cBAWVdDOulJiC0bV8Dq1YOAArquS5JI1hgmTlQh46AAABk2a4guIW9ENIAQYdA4iBFQUFMSiEwGkKIIPzf8E1QScO4UNrhRhUi1UBCbFl2qACsVHY1/1lZcM/vKhM3/e8QvNtY9aENV/rv7G9vNPJurxQu+zQd47HcG24c3djav97fm1x+oQu907lPRLW/2VjbPBLocm8jaFCMuLn/1je+fPn8i0efDS9et28GOiJBt9Hpu+0I3+ztdE1QnZ5TbFEYnh6fGj0ZT5/2ms3h+bjf7lzz1jdbqNemjfhGw3/Px2skd8xFVKMvE3MVbHZpe5GWfzy9+jgwd8Oo79Hkzx79NCRuU6L+fmOevsovX+QqbbVaBCIAQHe1t1gsDACEEg3/HGUFjLEd52sPIiGkKAqIjOVQAxSAGmKACCyrXCkOADBa79+81mrHZ6dH1/f3njx+zCp+Pnj4wQcf3Lx279mzz1e6MZRBr7VvAB+cXXz68SdSSkKINhphAiC0PQ87ftBYN3r9vbf/Jq+uddrfcO2t+VycDB9KnRmut1auo9rbXNsxGEi7anc7EMLBYJDMpzUrAQAQAceiUtrD6VEY9yHqfvH4i0zJUoU5Lk/R0wUZKV0tL493uq4Si7ngItrmIkWgReHtyLtu0WCZTKWqEBFhvGGMW6fddL6oyxzV6xaOIn+9yGuoVglsGTwFdGTbNsEukwMIIWOlgkMJxmVZWG6NvSNtf07DeSNqTeZXbidlYtJy/WFxdu2DNSWAG0SHV+Af/dsfvfDkycXiyx+dkRLQyoc1CAiUZT44E0CtOlYTWgqnd+BiOzJ7LTu8OPkoag6igM6urJrPEKkCb3M+E+3GPhS9X/72t85en1K9CK2sF27i+joFzbKe2E50ee7Mr0IcrFe4vjh9kE/OHM9aWd2gmWlCf7/bFjNUTvyrq9HVfHIwu6Tb/PHpxezV6W5vNT0+76927M0WkawdmhqI3h6N2uE8GUbuyq3N75y9+vzFwx+214I6h29s/bXTL5Zts/P+/t+YXlQaKHHJnz89gU13bf13nv0UffuNfreZFyV6OTy+98HKcHEs8Eez5N+2Yufg6OHLg4dm7+q8Ojo7HWy1Vi4e/zxEy3x+PpvN+Kt94K0s8uO4IYuo/Pjhjw8/OvitX/xPDk6Ow62Ht95DV1cXXFS+G/S6bm9NHU9mw/Syc337EsP47u33vvV3Hn2Wno2evn3714AIeV1IEc3r+Vn1PNh4+1KA06/+8M3d/mz8evfa1svD1xa064H95I8PT44eHNU//ndf/uGyum/770/VdO12b3fvDd3sjXJ248Y7LopbLefOrThEsiXWtG2Qu2ECFwVN7awLp0SNAQxnlZ7XtQ2RsWykq500wak6VoR6ju8EiWU7CHcVTWtZstwRclrmWAqMAAWKeQ6o67nWi06bsCxkuZslhpe6qguly7ABuBr7bg8azuSVAiNsCakqroftfkqIU7NMKy65AQZLVVnEOMQGFCQpKljteu0gDjgYMaH8gFoFXgtjxz5R5gWhfirTOTxdKOBQFIaVNhPDNdUtUYF2HHo2gnoL4ZjhR0H3UFqfQpSy2U2bOo4/5JUFcVmws8i5LSQ0znFZV6CsXJSrKmlFPgDzis0hIo6PCIEEGcuGAIpG0+Wi0KayHUCxtoiCuoo8SpGKA48AYGQdRiBZVhgTIQQyrcBrKpBk2bIoEwghIZZFPSG1UMp2raIqHOtOkteYSsUU0AbhLIwsUQdoKfkSYKtPRnzKHVFZBQw680o6DUrt2gZ1mTM36mibMK4xj422qGsFsTbcqStk8GQ2PrVtaqDDsjlSVcZqjS0LCizLvK4bnS6wHGiA2/DFMufQOEDVaYoh5DUzShupgf6aQqoAhuliSXzLQMl5DQEmrg0tGyGnhNxWVp3n0VqjmFfd3qoTkiIrmuHeZFQuluO0mig0j5uW46Ph6Go5yyt8CTpcevBiePLZj1+PTrp37v6F79z9do6V0wNtKxHzQ9hEIPTNHCRlXkuFiWXbLqUYIMUNqxWPLNehlsEoMyJVrJYCa+UqhRFI6zIDGtg2EAbX2oZUG1gQWELFgIBA2BBY2kCusUJGKiU457woijzPy4rVUtbSSJUZY2kTQuJDxDVMiyJNU5MuQVWMKv066ChEAdcG0p2W9zvbW87F7GPj6TEbn89ex2ELLc0evre69+2z4mqiLmmzPyl8FHeWiiZs3atAuhiubHu/8L07h69+prOZ60Qo6FmFc/4oZWPflHarsR43dgYz0VnfqNXV4clRf+VG4HRXwo3Qbvc7URjM3YZTZlM+PrRnR/dbqxvO3nS8DLbYlnedpfLO7Q9yNhsPc1av+lvIuY0/u3o6HPJo5TtW+63A9WuUXCA2Sl2LUK31YrFQSgEAbMdhsjbw6wNgAACBH0GAv36P67pWStm2bf63jCRjDDDG830A0e27d6mFPvrhHzUbfiMOfvff/C6QyHX8b//S7f/13//Pv/Xrfz1P0MZW58Pv3D89HA/OLyyElZBaA4SplMAATG2/tdq58+YdOyYS5Wk1thxcMOYHrf3mtsjZ/u2dlf1WjrKjs5NOuNKlfcbY5eXleDQCACwWs7oqgFHACAnHlm1LkGdssLKx9fDw8RSdjcRkJgBudxYQwegaB3eSrNdoNAA8xsE5oGleLfMqE0IIaVmWh2k9WQyLLG633W6j1QoaCJQiaypVaeuJQRMIMQI+1E0tO5JbXGYGJazWSikAkBTY9xpYb4Hi24KvCnlg+85o0vYcIrNp7bTpdovRsSLiiZh/7/a3wlHjP/t//OmDz85bbYmBwhB4sOVBazI7m8zOIOAKwIOT33Vo7ihcTMprm9d9u2uBiADfyKbjhuubWzhITgdfSLnIkxcd1+60u7k4eOvDHafl0l4hGq91PPNWGzQ4HRSHD189j2yvFQBA5mkyCI2PaWttY7MRrPg0XkwGSlZSymVxdfL6n2/1ChTrZHYWqtM6fURFWiCHk3F7dRN5ab+3D0Vg4+royTkRE2n4ePqsrh+fX/zzb73TMblX5Yu8fng0/0MCJjfanfOXZypQ3mZ48CwpjgamtRf3vn108olvVJDddeRakWknCjF6a545Xi/8N3/yr2olFleLr/7gh3RwbK0dT05GzfBDQvfOHr78/OM/vv5hzOmftTrOxUXqOTdzNvUD5WBvOlm+egxt2t16462lGS+mn3/j/s6syid8uLWlaPuGtaK8Tm2Amg0vtlb8bDg6fvgqaDV80kVJvnh2OHj4MMT1p598UWuOI/3JDy/C+Nr/7v/0D/7oJ1/cWu23rNTtgTx/8O330I2tU6xeXN//wPZ+jaP13p7VsN91XVuAqTC1tg4lPNVFp5zx2bJI8rysp6rmGkwMmgmNuf8VwRXSfQD6AK0b9p7kG0pJw+20zCo2L/Kz2eQIKMCTRj26piffbLSTRqNY7VPXQbwCTX+3WjYtcIvguq5rz40xxdPFMRMTSpGWztXlcX9lvxWuJcthFNLYW2GlAaBKigTbNQ4OF9lZuiA23vbtvVoUU3imwrwUrhbXFENEZi7XtFCoXqOgRVDihIeIXDiwBeubqLxl0MSxYgvuQN0op9tsuSbkBdEOgpbvASFEEDjQOfZbpRAWwm0XiYA0BZuFYYaRprZyY6GBny8Q1g1sGlWGNHOgCbTweU2NqI1iFCqMFVQSQ2hRijWYTVOCIoyBHykD5HQ27nabUbAmeQGN0gBD7EiNDITEpkmeKCujli+5zco6clwLOlWRtHoMLYbJWqsFKiWz1DMQFqZlRaRyKKDEydIaQEo82yoSrswy8NfcgKU5LjKZLgZR2yXBGhYdRErp2tUgsxig3cDENigwLCAMbCPLAoR1PbUABdiHkSAp4pbAGiADCERVVVFKlRK+a8s8RRUAsSulgBm3WhEnAtYF9rzeVo+2+iwbLZf1bLHsrQfz85J6QMEXp5efdlb8sqDQdAPv+niSZUVRNTK4skjEYrSoclk2e+EHH9y8f5c1m8TAEiHEC+2TFiVhli2UWtaCI0Icx6eWq4xmohaGa2RCyxG1SPKi1loiwLRAxjQ8zyoE5RobgCSApTQp0zlXXAmKGTIaaoiMRRBByAiDFQEAIEQIRAQihBAkGBIKCIWs4XuOG0nXB7LG1YJk84yxESW+LddscyOKY0LGFg1avbXuztHlwe9hyQsZXMgze6c+vPy0G832w3o5/2I5vCiG1mL8aeCcjA6Wy8tROrn0O/31dr9PaDG+UB7nLVLwOjmefPrsSQmlsQw3LI7Q4aufbazodsCDcLu3um57KEnHUmWWJQXjcbi2POU8q9KyaKzvkLZ5Ofx3TD6nFXo6tBLjNDfdItngeuA6yUbwphpPj14lTYKgOGH5BZlaAV+LfT9bfIq0qcrcaCUEQwRCDCAhAP45yRkAbNs2IQQA/DWLw3VtraVWCnydt2A0JigIPMsNCCGDy/P17fV3377/5eefyrq2iBU18f/3v/+XJweDZuyUxYwA97/7f/8PP/jjf5EuE84YpbZSSimDqLW1t7+9s//m27ceP/tsbSO6HDxvtAFTw0bLbG1FtLPBJF1czbOzq0ib7/7id86n45EQWuvh6AoAbdnUKIAxpBRbFnnr/nuXp/lkkAPtX16JgjuTkjG7qdeCuSu6b2zV0eKy+ri7WVbF2NFBnrUFb0hJlNFSOoGzowRJ8vNWt6XJMC+Wi+WZ4jMMAbGWBFML7khGOOcYU0hgzaeVmCNsQ8SRaSHdo2aHgJ7tqkoeQTqBlgB1A6AGiQ1jCvOGWV1BqzhQK+ZK31tvra84+WTxf/37v/xf/Od/qQIz4cgS67yUtgWhXR0dPz8/enB68NDtWsSniyS13ZBJLIRwwpkbPvBdL/ZXmKwcL2Cl/fSr85Mn/N72X9BBRDpNTlcbq98r+Nu1fNdvfsdu7Oj6hkob+bSSAt65+f5iWAPDJtmzxHUr32tsxLUYdmMi5iOf69nzCWWTd76xlybjqkqWgwM2OOWiUkRtbfTKfKiqoNkIvUA5jkNIvda9c3XxabvZXC7F7fsfng5Og5Bf29icHg4jYSVZqsP99v7azvUZqheRu3Y0fXS/G4niePXG3afjzgXIfv70vwtF0pgsq0d/+nZ0Tw86h6/OUeS9mjCytT5vnj04m0t8nvMfH7/6EydLel6UG3+UrI1PLx3dDuG3F1d+N9z98vOnpTzfv7fb3b62a914/Hu/+817689+fmANyfvXPjwe3bBcj+Xttvudxfhor9cvjvbM1N7tBDkYnl8cyXJy+fpZJ4pni6VlbbRW9oqfV3v9nX/8j/7J4OcHfTxJzUXj+tsPXzxziN8A7+fHa7vr66l44rT17rVvCNFW7BGqBawyS7p2uUMKl5QMLgTQIdIIyIWBjwM370bvNLxfAPWvABlpBTROjDMA/gTaNYAWUC3XawbOigc7mMVEUM+tHP8AkB+VCeOlcrDLGWvGPiXapjoMEAC1McaiPjC2EBjCQLFWsej6tJcshst0oOqgTLBSmeUIx+pQKpQpMXCjIGzGPtRGC0l00BTXrMohSjQjm0uEnT3j7jMngqpTlcBzbtWLb+n6LWjVDD6Q6Mj1HEmOOQNV5jk+J/aQ0gxpw9KWkFOClKgVokmRM8n6yAI1vFT0QvFWubxWZpZRNjCkVk+gKS1LI8htSwqV+SGyPQlxyYXhXFLHFlwZTevSWCQk2Gt2MCGckqDOQlbaFg2yZC7M0HagMUoIxYVBmCKCmKiVkRIn3EhKHM91Z+OJERgBCEyOEJWWp7IF9b01YOIy9ZVJXY+iSnGhObWJH5RZShknWBegpihM2aDRgD7qAdkpxhe+gzHdLIqsLoxk0PXQfDoAFVEZVLIuWI2BpREESlLsaAREtnT9EBqAIeI1IxBhy9JKQULLMo/9HhMCWsShjuFM6Bz5qM4TwXRejygH+UK0tlowct3acVr2fOBsrr2hgShF6nf10eBAWUpZNG93Xwzk5WisQe41+p21a1ure+vwjQuWBYWyk7L27dym+cGwKezMho7vQWQxBsqy5pxrqA2EEqGzLJlkmWK6Adwm9mxIJMXcp4BLz3IxwHXNK6bSup4XOdPaKgQtFGSaM1kplWg55tUUcKG1BgYSTB2b2BYm1CAsAXSt0qUBRT3BrLqYltmZqEqsO0k65OUMaHFwOCrmxHNIa93M5q+q3KWaLg/FNvpVM94FZl03Nl5xtVgkyYLNJ7JM6fBymRfLkp8L+FpNFwjbowo8fjG+fD4fPD5pBlZlLeoiWe87aX7FavXVw6dru63dW1u1pFJZXmjbDrh27VZ/dau/3kqL+dnZ7ODiMq1iy73PVFihUYlOM1574Ttn5//L/V3mZEeekiW7lvDfsHf0k/OjJy9mY8/1Vzrd5hrq75aggbi1sFTgu8SA/upKt90C2kAAWo0GgAAh9DWFg3MJIbYsyxhjWVYYxl8nDwIAIEIQIt8PjYHNZnM4uup1O++89fbRweHlySm1Xc8LltP06mr0t//W33365Mmjhw9+8Kf/4eDFQ4SFAYYSWwhBqA0g+M4v/eLKyuq7777bbXfKVJwfJqps3Nj+5lp79/7tm6fHj5795CNT67TGw8r61b/ydx++OFjrBLtNZBGquAAGSCkhBLZtK6PjZqvZ9D1/okW6u7UL6dhvgZPh6HT55DjK8E1/Ci5ImLfaeJnM/HBtklKBD4FzbDcviT8o5ZmBVVkobLpZWhtYegG0HV9oWNZzJpbIWBhTraBWEEEbQUtqJDUk2IJi1yJNQGYAJ4QgpVS6ZBhTYnNkRFoviS0NqIsqExt2EIJ0CPSqvZVk99rgt74d/oO/2HiGkz/5rPfwrH4+m6e80KDCJBqfm+nReWTnQefujE0qOhFYS2K0u3A86IJN31fZgg+ujiKvudJdY/psUb1c2ZoXlZOkVi3FrHiQ8M9rcUJxWmUvnNaymp+shHZnG7+e/ski+fza7rWTkW/CMui2pvlQkRxoB3BYLgYe8Fca/3uIN6IUyQwvygiAjYUwa42ynurFcNFuBstkoGGdFGWjs2kH/WosY29D2dJe6csA3nq3ZauALlaGx9mNGxvtzjXLXXW8la2tG1wXy0WMW9fC5kY6Ou05L19/9NNqnB+O/kOO4gNdqtXJk9N/ubtmvXvjZjYeHB2cXV1azTAYK9ez7pN83euuxk2cHF61V99//MMX69sfDeb/T9cdzCaH06FoNb557fYv3Y/eHI2lgnF9JsCS/85//OuPxh+DQqVXV1TYP/yTn7fbtxkJFtaXov/Fo/ETWoPJcPrq8hiuOmkAN9+4t7q+5sKa3cn+0T/8H18+ePHHn//XJVt+/+7v1K/1Iget3Y2Fmf3/WfrPX13XxLwPu+vT29vL6mvtvvfZ+5x96syZPhzOkBQpkqKoBiWC5EiwAiMBnA+JbcRQHMBBHARQYiFOBCmBZckmJUqiWIbDYZkzM2fa6bvX1dd619vfpz/PXfOB/hsu4Pr0u35XRZNZklzefdPUHk+f1em3p/GISeHYrcBtWzSi2rOQG7iWawDq/EhVDJSOgXLHIIYVQzzHRg11TyKmaQxhGxFb06UQgaidKgU8k6iCy0mZzg22atazJk89kRosU1CoKLRGo8dRW8yXj7XwPdeu+bJmebe9Z5H1JOaESscHWvhINqKGabvAs4e8tBbLo7Z7AwlDFhHWCMK6yDOpDjyPGXYl8g5SROhzAzaRbnNVKugQ/1TBChNrkU0UzWqmLGON4E6ZUVE0IYlNG1iOQubUQK1G0AYAIN0EWmAEVHYJ8w2Ac2IwbbUl2PO7LegsIbUQQiZRDfN26PmCVVBL27EoxUozQgChEEAXYgsiCpGpgK2Bp7WttFlnkVIyWU2Lao6NkesjLUIKfMc2AABKAsYYIEBplqaxY9ll0sKIUEOxCmcJEEzK2inn28gMuhVUghg0tGKZS9MqEZCGj0ANdFdhpSG1TdN1xWJaaZo7tjAtv4hNXs+cACQrAzCrrJcOk1a3TdbaKE+tWtSmhaOmy6TRCK08dlprwNPVclklmHsF5hQoppUoy9KwbaCglBJIiQAEhklqAUzACQRJaVCkbQRTQU0PWHFk9NrtphPSdM4ASxZJikjZarUuZnFRupWyzmbLzo4r7LNT+qMZ+KjZjqBoSKnX14etRgDQWboAecExUbyaL2cnWmvLDGVl1KIWXEmutUB/YT8VSpaMlXFFoGlaniBGqVENEBcqz8ulZLmUacHmeb7QbK7qhSgZVqs0S6oyFTKuRVpLxoBkikoEsMEVrKXiQnApmBRSa2JQCpoaiFxcxNm4KiDPbcUxQLkyzlRtn4wf7c//IEmnUXhVg64o1hvDrwoHrtBvPzv956v5+fXrnYPDp1TfccI7NPJAeNZdu3kxNrwOUMjJqvbLpDrcHz97//7oxdF5tgx3NhCkG7i5FTr17BxV5dn+RRQN2/0tu7HhtG60mrZJ641h59LmlY21HcsyHBeXLAUdYLUjLmMDnWXzs6MXXNHhQXqowr2o86vpcgeydYQPuoNnMFbxwUOon3VpPfTDhi357MMIPwnI7OvXXmkG3nq/F3luYDmB47aCSHIFJFDqL1yzIE0zxjghxl+kUBSFFAJhjDDWSmmlKKVa66rM67KyqHXvk3uP7z+CxNBaB1EIlPtrv/6LeT49P5sSQIGuTFspDiAi4n8Gr9TPffOb/W6v02rmaXL4dOybjZ3Nrb/1N/6qZcArly/99r/6nfd/cK90vbDbdQj9pS+8m5ydriYX2iSwHc0uRpILoP5iyA4rxiUHrU5vMska0eW1wZXDg7NXbnxRyvBiXuYsZCp8MV1MDMHWulMzMnuXClFJMTHoFuc9LQZShlLVHEw1qHxnzTN9AltZkVS1D0HXcihFHVYqSMamhQzqAICUxEhHUDsFy5hYKM14bbK8A7TB1VjjuelNkxhCXGHTWE1h1BicxBPv+i4BirnJHGXaMgdMXGvo9z6c/Wf/7NF3X66+/cN73/vo4MV+zXMaRi2Hhovjc74q5rOLfLGuqyuj1VHnEu2tX9eyszEMBSsnoyVQZRT67ea2ZfVt+2aSryvxk/HhU50DmXG24hb3k7NliFzALjecy+vdvbIwXr4ofXN7PDpfu+wYamRqtpjNqeEfnWbS8LVPlQ0Dg5zNz91mR9k+IrhaZkUNJXYXx5VPO/uH3+dyZVo+U6rRvn46O7p6Fc9XH+3ealBrsL75uen8eLX6cDr5Pac3r7LVTsdfjh8Y1qBQ9qdP3ttZu27R8vD5qu18s4xfbfV2c4ai8HNK2x1/PYnnO5evrW1/dbLsTRJ9NDnoboZH94vbe19bv3m3ahqjZHE+mfUH1tHj/9GmB2fPF9l592K/pGSySr/T7M2ZTM6TH568/H0/CpLedudLr/7Bn/z75/ceX769u3N398P9e/fnPwouDePqdpK9XhWvE+oH0ZW8EEgZEAnbN2/ceSuTF71d9Mu/+r99rj79dz/+HZDu3Ln2DlgTnx0+ujkcNlHgmpK4+Madn5Ogo7E1WwVa/mq4fom2Gti6LFSzhhkHuARFZT+HnIv5a5IrVG/L1Zfz+ojrBwYBmljAnkHZV/mrSNoEtgjY1dYU0SRLRuU8gcwAzNCiAOgMkEdFfraKTxTPmpGfxRlFrkW6gbspBSPYIthWAJR8JeDccgtqlQjYrR62PF4WoMwBJDmkReAPgCSea9gWzfJlntUERqbt1oJn1iF3SgaM5bL0fUxVDqvYQylnwrWvxGkWDO8J67vErg2jSynOVrFHN2yzhWlZ54GL7xqYKBW7DrLxmq6aFnGBqLyAG0RiPlTAj8spY7QqAkK5lKJMbQRqDGxZUxOHdQ6wdlmBEPKKHFLiGNRijFFKESKW6bJaMiGESJptmxIvcNYgcJJlxnldiynCCmFIDQyhBqriouSssk1T6RdSnxd8nMtR1IeVWHA+dZwlsmvSAA0fM5DHruJNS3vKN2qkKLepx1IJFAvaYalhmpW+QRbjygtVnWdYmhqQolwiY2p7ochq4kpglavxxDZMpnKNuS4UIoClFXQMUFallBY1Ld+GmEpWa8lNgwCpZF1LoYHSBiGCV9gUXJZISSiAa7llVpna0zbAwuBFDn1czAsmJLZ15DcMm4/nL5xWIc34YnVIvKBQpjbWskX7+f788BRgsDbsOiYpL6bJ4/Hz5PRJCrLD6XzyeAZmVFrei8lLWo+TJKkqphVGgCihy7JcpelimRoVVAyklZgU5aSqcqnrmperfCnYcpUkq4RzIQCstRScgbRa1HmiRKFRJlEtCYaWBcwIOxJTAaBUQEGkIdRQI4INyxQgrYFWKOTQxLaWKGNKpDlSYKeS5ZOjR9OpJ6o1SZKD2U+oGTTXXaFveIPb944WZ9Pw4EUZQObpn1n6dLfd226EDeP0tRvAqPJANtCSYWU+PTrWDddqOZFtt7ErEn02yo6rk8qG8zK5dKVzdTuQ81FYrG418TDs39q7sdH3fH/casa+A5ezGusAp+L0+AOrXeSUPDqulPZ9itDyYscPWPICSgaNwxb5qg13juf7xxlKeFhnJAVqRRAvrU77BonWA+oHjrkx7DY8z7et3Y2Nvc1dG5kGoIQQSimEsK4qwblpmp1ORwhR5BXQiGCDYANoZNsewQZnMl7M0lX88vm+YKrVGmiut3Z2o1b05a/cWc7y588OtZ7PlqcUOXVJbQsroJVW0KSv3LkVNgJqoM31tSJJ2o3m2nr3y197FRnzWfriv/m//1f7x2fDtUufu/2q49I3vvoq6qh/8Xv/nKH6G1/+1gff/TCPE80ZQfgvUAsldNjsBGHzxenDVrf/6eMf33ljU2PkN2wrUlktidQHJ7NzCZ7C8Q/z72VrxzN4bHluJVccTARMtNauF2hYEEuUVc7LyjQlAmvYwRWoGOtiykxiqnIPgQgiLtRCgAttjDRZcSEkvaeMe8A4BmSmyL4mFxbtQrHG1ZkF7ijlRo0EKC+T7fYrG65SLYv4h0Zlh6dOdgH1b/3hwbc2v7h3M75x56bQxnd//4OTl0eOo/d22pc2Wt2GF/Bi0Nivi4+60fUy2W52eo5LfHoFa0+xmpeFlqeDdShxun0rWPDUYLtEbhwdHbSGjoSk0d8uJHCi3dr4LNii0XBjdlF4hgVN3uxEpELVrBgd75clSzJVApFJEbU3F3maZR+lxQne3gzWtxifCjW3tDvL/ZrrsK0uzrO1rY5C3LXWopaiiI6nteO1Ov4VolSdntVpDKTot18Jqnqt8U6BxMuLP/fVyMvS0LWs3TSt+5sbX1hlP1wtf/Tq1c+fX+RX3/hm6V85Wl6sXfpbNf4mj9rcP8NGKsZi/NH8yust151abScFgyefHMfpgXbFXutz0wtOQH+2ejidv3/+ch+mriM6Haf9g+++f/vdX9185Yubw714mn/y9OXadq9v83uPH7SGLWT6N25+84N7f3jpxkzkT1swPJs91/B8vecZKr17/Y3VuWkazd5wK3tyRB9KcDT+4i++PXjz8z999Ky7FcKu9nnSicKN7dca3bvIaBRy3NpF4Z7T7tyl4AavRVp/tyofaVmXbJrGAVArw6itICFhKr3HHI8Bf8UimwpRBFoALyV8wMVMoxWwMoD6olgvV1aVFEU8JrACAGEZwqob2o3Ajii2lADJKnedcHQ2IsgwzVJJDrWHkRcn84otfd+VNcjrk6PDEyGUGyqF4ywtKbEslxXqoVCKWg3HXfPbnhGVCjaLai3ILnUcZaADx86xUQPX1F6zdJDWI9t7CeEyJG+D9HXPail1ruXC9yzDf64ky/IFdUeOYyOElqsLgtyyij27vZrnTrDKi0PPDKuCOdCzdBeokpAL10G2i5BRKd0COncd4NhawwpTQQwJIIeYUagwVEBWSDMTQwo1AMzEGoFwNmauRxQaE8qbLR8TaOI1IQTGGGNomFADBgF3TYOX3IJ2MnVYuu46l+q6VaY9z9gGQqJYnkHXyVU+z5Hd2GQGYwRKd8WQRKhQK2pAXsFsUdCo6cEa+I5NqJkl0nBhLRPDcPzASMpRqYBDK52cA4MabuCaiuVzZNma5UY4FCjmRzOj07VDzOdK2kDyWkvhR1GZ53VdKyEAMYBGFlSpUUlZ2MQqlFQAwqUQ2ipgCmKfmqWysQualNYpY7KseNXy7d3VAlKz4TYs4CTS3Z+y9548+neMl0ZorW0O+95uOU+n2dGz6Wy+5Benk0f3P9Q4XeRnhy8f5atsEVdCiLquq6Iuiqoq6iqvkjhbzFfjqriYL6ejSTFekUJhBSsEl1BCgFlR4UJ4ipoAE6FpxsBsBVcFTJkqVVGKpJZLxmLBV5olaZ4VJRMcIoQxVkpVnJV1LTRGBrYjw2k4XtRExK+liqsEWm3ildR1Oeh2h1sKojgjph0EsLU7DB1sAb6W1suVWO2P/fPMzpR8dngRBd8EZCsXzGs1MnhSI5iisQC5Q512uLdcocOLReC5HhYwDYuzkE0jxI3ldGYg23EcauXbm6aLUb/Rw4pZFDTC7lp/gPAqQ9NL21+vRpcevXccSLPnD5MlyJWMzEupPE7IC4YPW5ZXLL8bWarTDZwKJ5WOUM/JqOU6gPM70XZorju2aRnG+tpw2B8M+v1+p7u1th74vmUZtm1TSiFCECHHcfr9vlLK8wLH9aXUWkPLdrvdPsY0ywqIgFYqihpR2BZMAkSEEEEQ7L88Pji6f3r6aD5bAQm4KCCQVWUQy+yuDW/duX3p0iXGmGc7FME7N2901uzf/Bu/sn94/O0/+uF73/t0uZKmFfz6b/5V5S9uv7Xr2PTjH38qMvS/+rv/4N7DjwARtmlopbRUjuMAAAAmw/UNLvW7X/5LDBdRa5hmpNF205I1mtedKFrKmdHApxcXP/7xwdlJ9OkTnTsdsWYBsWXSJoB4tZRl6qUrZTlawAmmCySdrJoVPKtVoWlNUKjQhIukki9qecFqR7CGBhUilUmbRG9jGJo0oHAAREuLkBK35MeOY2X8WVode6adFtOz7LG/ThEszDq3WwZTPDIoKo033rg6zZ6QcwtwlOcXP/7xv63LI8sAJnW2t6POsDZjsm5sWUr2e9XapsuFYTmwAu/1enZRjiYnaZ0hVXlv3P3lGjKv3esO9+bZwuyAl+OR3Xq7s/X12u7G0KzT/vDK3YdHL7sN9+be7jIthmt72SjJs4BrcHw+chsN5OTtVshSM7Ka48ICqdGM1rrB2izn4fUbDvFgzQe75vl4lRR5URhS6qu3Ips4UtTr619wHEuUMREXTz64D7J1yVUtl0mGvvLWzz37yfcudVtFNZ0k+U7/V+qReXe3+3u//18djou/9Lf/64S+8o1f/U+AkZ48f8w0V+AxUWebzk1QNH782U86rwVbX/h5SFvhpTd16ajJfLCxefA465C9e+ej/cOXduPi+eFnPG8dPHvSb8u7V+5+8N5HuF9/8fNfe3rvzy8uvpuMXt7ub3/97VfuP/z0jWZHnn/8f/yH/+vv/N4/2eiHPfs3VqPtZrTmZ24DW3GSmx0vltwNeoQlenoYtRtPLj56+xs3Br324bNndy+/1ppGX662BxvvdLe+FG6+fh5nhICG4bsKoXqVLs/y1XMZKxgrUsZWbdKaOjQVYEqcwtJfkRCWYCnr2xqKSi4hjhAcQO1KrkVp8cqSknAR5vmY4MqxJSsXWnHBOMYmwY5tWY0wytN8dHaxPth2rMAyGhg6rWYHYb5MDqWUnrWt67Uic5Wkjm8PNgNi1+PJiFJquqqWcVVVJaNC+rWI56tkvsprUELTEkacGTNlBFlNPG9jNfaIrB0yUzPiqi+y2Os2O1nMTNzQvFY8kay03aUsbcexTHjZ1LfPLh5VnHWiW0AbiBTEmpsG0lWP8DVCGHUfy/yiYQsP+VS2JYNaS42FpCPFbKi9IsM2bhMYKe6lsbZoF2oBVWURJXhmUSVF7pgg9A2ASoJdABU1IFBumua+DxljUkqE/qIYIILKpMh33TzJs7kc9GxoXxR8nNVn2D2v2THLBEKh6RqQVfXQIpyYJg9ZMQ8zyiYyN6np1NBAkgKDXURRtFixILSff/KURrJEDJYVrV0GYBVHltEspStmWAlba8Sp0ukSmYrnCgQcn3LQ6bpNE+QVj0yQxMIJwEIoiSxDVOcJxAHQKU+ZCix9rDTsgJgZnQhKSrWWduyyNkjiemfXqWtVcL/pAQ5q1APd+Ug8nyzL3WFfLhedxvT56cF3Pz17cN67sv21W69cAfaMGSsaIFeXBuSkO9s/vV8m4Hy/nB+n6cUKcAWxvUoUL+LF+TNVcOoE02I5n52X03l+ZmeTvCrm1GbErTM+N2zDoKEnbNP2cSNkWpKEoUWdZvxZnC+IXRp2XGR1liTTcZaUyIymOQ4cu+FYncCDQCVVnZSyWFVWDfuNoE1wxKu9bghwZbQ9ZId5htZwj1c8P68ilXTbIjlZebnmuSrSACMm6oTVU88gtCxWo08hs/7k+z9MiuNGUOvqlEAmuA9IhHzu2kFnr98flHb9bCvq9J09qY2xZ7guPOf3TrMfx9XZw5OTcZGdnB0vWQYMxHHx/DRe8vaknAcNFoTO3Tc/tzVsnyy+/fTxv4VgMVeJ8srIncOKp4zVeVTXMXW2lmZZem0u1/oNxymAzQrljFRrJVCBbXOlFDA6lbdqrzWbfrS1s+71Itx2Nq5177waXlvf3htsNfxmfzjUUPTWWq1Wg2JLmVxgGLT7HNKo3RovLmbxWKrK9Vs3XrlbchWXS47i7qanCDs6PYkzzrkxn5QIUIwxgIDYltu0L+++vr1547VX7i4Xk9uvXIVIC6mPzycb61+4//DFhx/9+Kc//pjXqD9sf+Erb0zmY5y5h8eL9z771Oq6r7+2O91/8KM//i6QoOYCAAvbKi+F67buvHIZlfrzr1zf8PZePD72AbENyPJpD2MLmjoWRbFo6J7d2j6AyY/Lpx/kPxX+tPB8SOJK60VaUxs7DgqsTpVHHPUAtvNyYUBsglUUzCUbKyDjjDOAiooSy8R2oXRp0T4rgeXNMpGkhZwnC0VPNWCTcwaxVZS4EN6sWPa8rYrKPL9v+Ft5mdcQ5WGHoLhdMkNSbokbt8FmwzNz/NHh+bMfFVfWL/3qb/xSEle+bUDYMGrfCiY8vbjdvXm1twuUS+110+2K7PJiPHYh2F4HtUoUADZO15ru9auDWWT5FLsLFRbszT1wsfwBbsMqnRudtflhvLX1uWD71mw28/3+acJLce5FdsvZqGbV629dJv7bwr9+eBrrHOOSp0TgXv/p+UHP2kLyFbi+fXXQOF2O41Ru7Q4WxbOda9c6W9uVlVFz0yfy3r1Z1Hn9j7/97U0a5S+OCC0q67X13fb9w3/Wba/ls0FSNLSfRFH9xuatgwUzvPAv/8YvGLbVak55/LOzZ6O5fvHmzXcfPXI6NzxmJL/3r37HK1p//+/+s5XXCrbvmo3m9FwM1s0qWFgbg0TPICBzYL7/7Oz5+Fmvu/7pw497198sG8afffS7P//Gb/6///H/+cP3fhvO6NX1z/c2Nj757BEu64Ozl+u3vrF/5BDRuP76qy9EvP7uW/6VV0bVzLSjMl4FKFj3rfMHf2QSWYcI2SRYm73x+jdmz/kVv8VXx9EdUr72RXrtJmjYZfrEq8dR6XusyZecMA8t4yrbV+bjXJWaYmTmSAecKa13KtU+Lj+sTanEJqW4yFOHeLYwTTDXVclThEUJVjE7GrvpY5otbNWajDxe7ymx8qGrEiUSWddFvKocxwv8puR2zQS0Fqk6Xk6WSJkGaQghMM6RMSdeOpcXLIV1wmRW9puRjUzALM8ccua4hmMQzvKs4QEXmGDZMgpl1UuH4iw7a7euF9ymkSgFAtq2nKLgv+cYmiWhTV1ACg79UvVL2sayVxdQVBpiFufjqNmAZj1J5pKMsYUYBsKpQZRLbzVZzTDawvaeoCshp54BXCOp0qpIWkwjiERVVcjKa3yUg1McVEHfr5SbcZxLmFaV51t1lQBVuibiVUpIpgFPEiBVaHkhoBoYqhIplH1WmIqRIlGS+WGwm5aYIdjZsrJC8LJi9QpiDUkLkD1BbNRtXVmsJoQEGWN+d1rBYwm9ecJoeDlCodfB2mZyltXMkqZLIUpWaehHvhNZBsxXCtECSKsuVkaUO4JrpFGASMF54lrtW9USOa6lWA1tg1KqqpwBjoQihLBlihsB0mW1BKRpOy4vRoq6mpXK08iQlWgYcl5UTFdN13cNxs6J4/K8mqxeWD6Px0mtiecJyR26alyxL2Xj5fPz5aOp9fF+ajTs7duW2AWRbXTCNbe5R4ONotFeV4GcVA3TNKP68eLT/erkOFlgu5GvJFZ0VZp2/7KyaTKewTHUsdFodnPjWQGZICE2XC09kHXNIgq1pDa3Q4xcnsrVgo0KGHtNtHO5uxmUhI0Fy0rO7DBEVNhO4VpzTXnGyumynC31bC5rgZ3Ioa4sVF0oJaCdFdC2GgYRQZC3m/F0+lkUGZ2uKXkRLy9WyTGGhDEOybheQZ3iu6+2e5eov3HLHb72wbMPCeCOZX/86Le2rlvU6DNmhH601btNSnitcTkK74DWztVXO2uXcrfJgoolaG9ov2nbty7q9vIcx4cyT8xkn8tR8eLJyfmLsTWVt6Ptpm2st3FLzGAFYGFXpO8Nru42e46ol1U+jeXjJ6dOuCjTQFVNCA+xZBEdBtTt3Da6g4gvdBIfV/5paTcU2oy8pSrtTnApcjdWsxXCWejRSxu3m+adu3e3b9/Z/Mu//NX1YXT37vVWZJ+dHnq25cq6ZUBHiPXAN2SJWYmYbvr9259/Qzu4BhVA2iKeh/yB2zUqHUXR+fm57TicS6C0aZi8KhDQXmS//tZdPwpuvXrHC/ysyvdPDsJ2+Mln7+V5XuZoc3N7Y7PZaGJWFwcvTn/ywYMHP31qF6YlnA8+fvr//e3fyxlCyIJQIgIdP/Lbzue+/KbpNNvDNrTg02ff29vZMwykYMWFOSsm3H9u9Jbv3v7iYT0mdbrd6293Nx59cnQIrVWZxGZc4tz2qVKyVhxaAJo1IhlAGqEG4yUlZrkaAj6QOvF8aprzRkNXRSJr4NodoBzf74zOZ0h0HVe2olZZn2ly0epbSf0ppFox2PI2x/FpUqaYohDU+995KYHniDG2w5WuLJ8ZCXGqfntvuOimUe3+9V+7+q/+x//s4KKU1ChwUigb0Vf7vR5yD/2BcnpbtGeDnkwNgLotB7cqk7S2Lifnx7Oz95d1NVl5PtTstIScL6txtNnen678cGOrM0TZ/Ko7CG/fhMO1+VHVadyo5nZYRBZr7Vy/dDS+uPX6W1nV0PZCEnVweqqpWeQbVYHL6fT09HT99Ws7rw+m8+Pjs+x4ehi5rWbnneuv/jXf2jo7FFx56736B+/9t21/enb2njCsiTmeWw/Pzvevbhx99uCZbWWziz/eDJM9f5jHcGHi+VazqIuNSztWsPvg/GPclocjmdXF+vq6SNXumnO19+74HB8s5//p/+0/cnx7t+PudrYXn53l8Z88evRx/JJ99tH93tpbz55+57U7b0wfWH/ra3+9OkvrVF2+dPWP/s17n7sZ/Ov3/rASi5rNZPOl2UTH9y+GgdravAt83HVl2FkOrwRtGlzdWLt0bUuMjMC5Op/FjFXxqpgvDmerD/LycGNwmc1V339NCY2MsrUuGb64fecrvreZjZazk+eIe63G9QrkjOTQwSl8zm1mQKseTzxl5nw5FQ+S+oiKqUFTVr1shqhpDNvupuuQsGGMZ7mEslaFVBpDRwtcZ7RY+tnUKkonWcx4ch8u7+uRTiYneXUmsW+b1DX9bFVAUJlOZtgZIYahe9qz5qwwApsQGDqUsJwW6YAS0xgK7gfhGiW20gygehkfQxIDrDQwvKBPbATdCfFOlLEwHLNOB4hdh7jKy2NkHEHzEdaehXqseDPOeKHvYe8hNF4y/jIKYZ1VGXtAKa0roNFS44lAUw5OnPZJUS152SwS2zM3RLpbpS3fa+ZLV5HDLK8E95kkaZEqkHUaIeHrwAQkPCvFSHJHl75YdccvGCUXttQ+oDYyoDQQDTRprLhV4oaFhk1nxyERK8oinUEpeUZxPTS9aV5NTdMkCFArl+iiqCaW5SWVJWlR1T4AQeC3GMuW6Z/b5oJUGa1q3N3kBc7jJYHa82xl9cy5jmVWZrXR9Ndm0/Fwc43VsdWq04z5Xh8BXJWrxaxc30JFwqLAJGayGK8aQWjYDDLGBUoy6boKIFitUmAQA2LFGQxsIykBApRB0CZqkRLlqZAhJbQ0DA/y6QINumhcCg9iDwLCgMTAbiTj0+aa4ylSWY08UyKP/XYgS6yEBd0i9+ePlh8/9Q9flizvWFdefeU1d71ntxxqexhUBCxbxppyaNil55NVIi6eLlygy/jw5jvvHh+duuHQMFPH7daw0iCu+QpD1GtGWTEhq2RtK1oU4/39xc7VKzRCMZxAW8vEgBZWmmvDMU2f1hxirBXerysTYg9LW9euhLREgW1i7D49mPfaHa54pUri4aKu6hj4rsdFBiGUiudpgiTMkhrUvgM3p6xGcrBzoykFiuvUXgOZqsqKNRldtMs5N8PZDaMCH508aKxZ0bIFYNNEpBlcQvzucJB3e0myavJ6GTQJmjU7HTGbHbo5sgN+qI8azTe/uNc4PT/KqWT5fqfv0z46nI5uNwYH8gQCvrm22V7bbG95i8ODoBVVLuhWfhk/D5qSuAxzWnFwzmcSyd0bg3ufnu8ON5b6ZK13pSzGxN8fhNe42wsb1xxTY8uMyKas60Qc1gJZllXWU0zyTitKz5RHe3ly8c7nekh7pq8LmRdVrxldS1fKx2vlxsUiKzu9/nQ69aLG8cn5zuBKlleu46/ZDcZnr17d+ezeI0hs6DSeXIzuvvFaMpmHYTgrSwAAxriuawhBslrOVxfP9x/bltFuN+O0HM+m3bXuxXxU5KCop7bHFrNZsjIJBtni+XQ6YcK9dfUmn6U/eP9H0/kY2ATYlm+HeXZx9frV7mDTCbkGKi3hb/zNv3z//o8gXazvXCrGqIBkkdQFFM0rm4NO4+TjAwOVLxiHlbdYpqx1Rao2MHl447Jd1mA8B6io2ep8nPa7a0BAQDAxhYaWaasCveTc4WUTk8AmLpSFkjE2FpiCNJVR1HadNQSmdRIgi2gRspJalp9nlRcsRdIsVAKCaZESDNVOXxTT/H/4/3z8d/7+qwbII69VLLjv5d1QABYO/fDdX/I7zXrKihJigdhqOlZp2tsSq5gaeBehTYjMTtgqV3YWvwTp8mcHj27duLU8vTifn8Ks14OVT9WyZNCvo0E/m40vb3WgUw0vbTzZf/Hxi5O/+o9+DZ/zqlZntNq1m1stH2xHesMQi5xkcntz70+/97Ov/KV1XhCj0i0j+LT+YKN/6fu/+8H6+tDcGOw/nhvKf3L807uf/0ZxnL/61m9++PJlH/K6shQIH997D8t+I+i67hVyrTdNzg4v6p3+3v6D+Wi5tOp3n5/85Mrnw09+9n11ASQJzctfSWY/WvPClx89CQehXpXb4cbmwLj/crR7vaxiY//hxIpmv/q3/15nc1hkQQTJqn7RMTv/7oP3M9R0ZOM//k//64dn7btv/cdPDk6HVy7OZ8Xvfee3XvnG9TO5OEqfH3wy+bnP/3qJLE16txp/5Wcf/TS46ljW545/+mBrq6u7E7Eq9++xX/yPrhfFqT453b/4N3ubu6wglOpmg6zGWBa99V26WDzw5LLX23h+dHjz5hfi5ezq5b0yR3brYzFlVJueNcCGlxZPEOUYNeqyISvT0ge8rOqVzywLBitVH+K6rzNRkxEAIasaUGjBgERN24OVLDAogfK44ILlKjdFQYpqbqPKAhgBu1okQtoCLiBOhSqFHhAiHDv3wiBZcYiCho+XydSojBC6DvQJIXlcB95GWZaW2wCwpiZcrOYIQQAApcT3ulwoYjpxvCJY8Dx1rBbB/bpmUlZhc66EmJxq2xsqlnm2Px3th85mo32FwceR21nOtGlYlpGm8XknuAR5y/BWQAfTGehtNCfnHkXfAPIM64VCI9eHmFSCu77VlJUkNObFUIhZo4UlLzXv2gYV4lTLKXDbRdp0jCaGcpGet5oi8LFgNoOVRkQrXbLaMHypASuAbdt5OVMgB0BiKCFzXGoDmIaNBGHq+pKJOcLaQHa6qMMwRIgz5QhArEaCsLeKxxgXvtMpYkQwHAd+W9dIAV7Gst+LtCqyCoZtczor/LALFjHyS+Bm4CRWzY4ujqVAlilm46nntwDkZZENOs3R09psX0IKiek8I6bte2CR8Aau0kxLQcII1EApBShWdUUwcW2vkFk2ZY1LVqXzMqbuugkqgjhhDsRyypBn0SbnGuuiZFMCuwxKlKSOPUhms47rC99encjtqHqUHoyYnihtBdGATMOdQWu4nlkbtBlVa9S0tC3qvYJSRk6xoGqz4kfN7c70vGg3d6exTZqKREtqe7ahVbICNkM+QQQZTNensTau339xbvn2cHOrLCSv49ByykQCiyKJhARAY8N1NBWirKui6qW+2wkqUtdEHJd5aARqIWyA6opqaHJeMFERaiotsLa0oJKbpkWUKrgAGBKpHUyiVsNZ7y7LQjE2IdjM4MXLF+/t7bwNIZzQnbeN6wMJH5fvT/PYL/Tr21cvwGECtGSQ1Xa66lEv3rkcxBet8flDzxat4d5k8fiVK9aat3c0aW11Opd2LhPRcQp3u+EveBIN2snzo29svq7aDrk4n9mpxpwU4/pixuTEtlQD0WJdYg0bwToxSEkXJa7ixTnOG48/XV2MJneuckTi8Wze8DcY61Gz196IrW5dQQPoW0xTpsbSiBTpssUzr3O5HaEffvzd2erUDZv9YGetvZetinbUHM3PXrt2yfbMxWKCqXN4wF931qKONV04putvdrywuQaQXqWzzx6fOc2oKlaY0r2tS1laR5jqeDWfz/v9IatqJWTNyv95v6QBq6p4uTqaL7/5zW9++uG9Tz9+8Pa7b+d5mhX5+emoKvnsbGL71CAwXuR7u9dmxfzZy3uRH/UHjcFmVCuOEF5f2xR5fvv220lBanzwB3/4x3/rN/5zKbQXhJJ93feialaNRs/DLnd1o0r8aV1cvnE9rE5///s/fHPzNaNrZP015RjiSpsQuv/j52ECSQI8v+U37JplFhCrRc+0MwN7RWYZNKi4JoYLyVKBVVWUtkmFxGUBoLLzVAZeR1QnCsZlzXzrTppVAM6jsMUrKIqw1bdm2ZRWDdp0jub3BpNp+lPrXxn7f+2vXLL9GHqVRXrXItBeZNcuNY+TBGX++STPBS9y3fb23E27Ku6RxcPtvbdsmhr2FJjRydE8UZVjN422zessXq5Ma9ONbhmY1NWpSW6abltFykAgCFBaxBVzNHBuv/krgzK0IH6+HK+3Lm8O9+qm0d7qXPyHHxSXg2hreDAd3T/47O9c+dbDz8bRWvuiWFy9sTOOTwDpbG+/lZYGqmbz/ZPe+mud1qvKFqPVXOjKGjSu+9fu/eSnvHLH9fnr3W+65trzlyfXdt+pu6zROXz6+HytZX+0+Di8ZKrDKv5RZu0ardtluvohad4GMF2W7/X8t1eLNIcvlP1Fr/l2UbslA3ZQ7QXDkz97xmM1k58t4tPLg1/43h//m1t3fv5ssrx766u9rVv7Fy81AzqPP/zp99r4F7751b/tD+yf/eAno7Onv/ELf/OVX/n1f/aP/8nWWnhWPQnW8mT8YrYy280sXl6xEvp4/ztvff5zLm8evnxhUh6o3V5ruD+bB/blqhiv0p+9cuuOhihLsGHpRXwadSw7ZF44RMoDokyn+z7sdYZ9I5xO8hcKNJG2teQm6kl9VvAS0a0sf9xQIVreWOpnF2Rqo3nBpvVh7ruFF82p2eHlhmVFZWlalgaMspKxfGowh8CwrFaoqIhpG6C/RPcgWmJZe2wL8Pkku9/vbCIyZDHAuma8qBk3IOVyYlq2VAsFeFaugmhdCy2gVCJlnNU173UHpuGkSQWUjRRghUkhdGwspWMaAa8QREyCeRJrACrX3SKUW4Zbp8J1rMB391e/025ucNE1iGVQzVlBICNoVGlBlb9axpRarJZW9FKIMw3bUjFqQMl1Wk4JPbeNzmKCGk0fwYWHW3mRCsmIdqmqEag8sp5VK9uKEJxl2cr3eryCAinJvMouOawhVopDUJdEUiyBSYg0UFkJig3H5VyfY4xY6Th0jcnCNu2izAk0gXCUQKFnFywF8Kzb7uSFXEyEa7uGgzgzqcNQuWCEpFVcce76BjRtH1SdJCsI1Y2mZzkmV0ICyXUNoXJcik1QFJVlCVbB3oa7Sgo/IMvpWEkcRPji4kngeo5DsuoAGXOEayGEYzqWYQPOhRCMMSYUQAjYWsVQIQh8pXOAlAJ2XUxyEVX1IsfWQHoNkEzK5BB6hhwjRIWonaoklJYKLqpaZnnZ7MnncTUujYw5lu1PJi+21rtd73oo333VkZtN47oKfdz2zLXdaNdYa3se2fLa3/zcr+4MP//5L/xyb9joN+DNRueKXGtZm7rSvuUZuGsZa9C0LlaZ4W1Kes54qbXSaLxYPV7NF1mWMXXGxMrAVeSAwAOWKQAqNMwJqcyeQQyIS2ynXiDaNg0qR4/tuNuzqywWNbJRUxZGZDcHvYYS88gkoeFi4Zi4ibHrN92grxvbdW3oWMp5BWm4SYMdp3n9k4dLaFy+HLA4Pn6+XEl39+KCKGFPdVbueZ2ucTE5GMd/vhLfV5oXeU1Qvbdx8xJ5BXsPLT+/dPmrcztf1kmLb8E8rlefofZyBc63Ivf8yXMUNUi45lRdCQYS9RclIEE0z0HQvpTVtlaDjXbYXG94FII0X+ZpWYmQBAWHH/7ooWcToaaj03gV5y9OTgXeTnEStCtfg3YGu5ABvVQIN41woIXpamzWhZxvXmoGHfzoxQfIroO+adkuJGmzy/0QW7jTb941YC8KGnduvdkJL13eejdyt7bWt4CqPM8TFaHU1ArlGe/11iDSi9Xo0uWtsooBAJ1Ox7IcTKlpOQhTRAhAqNnofPbxvcUs/vH3f/Jn3/ne+nDz8NnxBz/+eDK5cO3IsVpOEJVpARWOwvbh/lGdFYsye+2rX/zyL/ziX//133xt99r2YFMidPeV1xEgw/b68Yuzd15/1yLufLpquA2rWTw9/uz0YkxRNGztYKkjWyJ50XMbf/Len9/cHC67yxfok5uXaHcvmoxnf/yz5zlyuIW0UwuYAaDWupcx73I81QgKOE+rg4pJhXNsjTTUomoA0aGoA7TJfS3o8QABAABJREFUeeWFquSny/Q5F4UXEKBdZT6W9IHSNqYizRemm6Z66pnNCORJMW5trb188Lu7+TF//+D/8n/9s/vLEBoNUGeyyNst2jGSW7Y/AHCrDTc3ULNlLMtDYyBHkui110aGfl4vp4JUGjN+RuCISjYI1yfiAkWNnr29u97F7chs7KYnR00MLE9Hu50ZNE4rH9qbDT/YWCOLoj7nVT2bvB50kSIm1ftPPphZtdLUCUKmy7e+uDU5B+fn52HLbwwD3x6E7fU7X7zdXSf17Gj+9Ikp0Je++MuyMsIrl58dfHR1r6sC/3z+QsZHd9/+ha3hV73G22f1/vU3r7JihOvJwP+GVHvvrN1x4jW29O8/+/HmK/2N3S9xdhuBy71LG0lZrrU7pKqqZdHt9jnUBcLAWXfX/QWbrS4yHX98tbF2vn+mMfDkqgarr775l42i7K1rXR7mL7+/ODzm9cnm3q1f+jtf/+GDP3jvB/8ewZNf/Pm//2t/83//p//Tjzea7Mt3fuP4xTLhh/f2Z97m9afpzHAPCFdXN6+3W8PnjwqsehipRieIV2WNf+KEJ1ra672rrrU2PTOV8BSxkGEHwaWgBQz3FOtV00OBXncj23B8Jqxlwm3XMSmEXMGCzFfz//lOG9M4nZyMf5zWD2s2X0yS1cQwoLRoUiy1qCvDviiqOVahqpqyCrFqYt7WpWNoxwaddJFOzif5KoMaYICFkIIDgzr99iBepKxUSiCizcBqBG4zT8sYbK5kN+ZhJV3P6dRJHUDDKBmFfjNa29i8tFilF9NJGHmGoUxTEXpkG1KWVDEq2apmLwleAlnZxsCzdtpdhKHBKgpQTom5KD6E0K3zvpKOFYzS+j6Qgan3qkoA2ZXMVzAxnbIubAJ8YiwVPJdS2mYvz1OsKanvVPHQ802ImBDCNNw4XZk2VYDWlbAdApF0kWfAQhTIon0/0hKXGkfEwwbuaOEbuG2bHaBcBF2Dukohk+4JSSUuNUFFFgq+CXTEdSUBKwtNQZtgV6PED6ssnwNlujBQpeRx1zA0sURR+4VeAEeixUhLZQm9aAyAqQ2g3TKrg7Bd8coENXHkWZms929VC+JudXVxJKAmJlgsFq1GO8kXQhhe5EzPFzRsEk0N040FyY5Y014Hdj87o6ETIMuWSVElBcWGhQwr8hXCHFcGi8KBI5kwgWU2YDwtqyQjpKVlpd0M5XNAPSAjXGiAUsPGUK+8FqBUUqwKPSM4XZWLP50v8XrHMLOzkxeXrv8VRn7B6u70rhzxjQ3W7cxMxeuiAvk0EoDKLgfGxudUt+vvWe6aitaaVqMrHGcJ84CLwMfS0cAyDURMKR2PgqYTmqjlmYYi82MwPjWYaJUwjFXD9UPH8ht21LAii9gEGpQ4BNsmBjmPa7Nkfumtm6YtOiZZQxbSkCBgGdAwlG1IA0nIBJG06SmTpFqPMVlyMaOmoBQjSJqWEVIWIO2CeqsZkKLY7Vq+Tj/86Hs/O3koaDWwys3tqL48eLbS8JEQUjYa4cbw1SzOLy4excsJq9PF4riulACQAs8QgWUZzQ7CqA66a83h5VeNvWuNvYs6vXRpuN11hJ8WYWqt+0JxM7Q+np7OzODlUY5Jt/I2xAhYblhT6blRaKzjeWiy4P7RITKfOUbr7OR4e+NaMb9C6WCSPpnlp4nEKzasvI5uWQw7DKHMiBdYERhJQQzqtxuXNd8EcssL+44POJ1j27PsjapWpp8p44DJC9cLz8vHJSq15dvtCIZFtMXsjmyut9995cby+FzlQFacybq31clhtZJSCTGfz4uqNF3vxq0765s7axs7g7WtkskganIhHj16tLW1dXF2kSblcLCdJnVRVNdv7IaR0+oOEYoocQCuWAbWt65L7A42rgIQvnw6+uSnjy3S/PGPf9rvrS8W557dfO2Vt0wih81utkqlebp/fNpur4fhlgXvdIJbdZHubVz50+c//erX/7JN1xeP+Vcu/ypb0dH47CmfJnqyH5+tiFEbXQGbQlgHxwe5XBHSte0WBB2MmgpW2OB1ZVVpE1FIbVSJ1LQVNTTjCulI865iDc6RgqIsIkIHyIwXyRGhkKuSy3Y1cX3frxmy0ZWW1z577w9IffJ6Cf/gv3j/t39vubBdHNZ5np9RJEi6SIHUbpFINkMkbS1PheA0qGU1PjIrko3ryekxlE3Or57M2TJeqcxv+Z1oC6Vw2e5sOaT54P7LyfJJY9jo9y9r7nGBl0m8jBeoEfj99rOXj4bvrP/x6mczOD1/+kHbqG9d2vYA4XEii/zOlbXZwXi323cw6rSi/qBpGj3L65blFK7G6712Z8fl+kXUQJP0Ymd3iJlOCv3DH73/7tuv5kLAKpbmy6VKw62t33//3zBUakh3r4fRpc9f6oXrHZNvbR4QVC7GweoiCorl4qdrodlQl2b704h2RbaWV+fXbobSnnIFlcRKxDZODx8+B6za6F8/PBp/7quf/9nD3+qvRwVvCNE5e8kG6+60vP+/+y/+D//Dv33/NJsNd1+9fPkX3v7yX/qd7/77p7N/c+XdX33v/geRg6uz1mxSWI680/zC9vqNqbgwCIynJ+7OLM4+k/NpaUxq+ZzKS0Rdwto2SWu+PG32i153oCDSRPV7W6zQeZLxOqn4C9MZ2/ZOWozzIrXwwAItVQZ1VsTVn/DGxxYdLs/OkuXFy/HZtIaIvasmvmR+b+D121/li69IbrF6CXjLRpFjZkgoxSqLAhuHmgHFa6ydAmgmFdQXTmGSxZrBGwyfJ7oSZcv3WlEEKM0wgfGyrjK9ubFL6PMgHEN8YjkZNoVh28Rp1SrAWGbpIk6WrU671xsUWZXHFQWUGogQxeoUKI2g49Kebw1s0jL0gNf5bHEA6KmEF67fAtiDaq0b3bJMCjUqlgOZ3rGM9UJMqRuTYF/SRRB1IGaQnrJaUn4DFDue3yxzy0Y3LbKh4AzbF4QCVlGk0cV5HDhrjhkpmTgNzmFW8lrUJF/BsmAQmPMpgNhG1oqjQ08vHbiy8MqxU2wvuDUR/jQ3Tiv1TMMKqobmLYgMw5TUVlzXlmVhwpmcGGaOcS1FBSE3KCdAJbNc6zwMiAZMcIV0v8gpag8wwF0A28CypeLAiJk6xUZoqY5EFk9njS2rgtNG4C4SWc4tSM2gaWYJChrWeJxbXrPIaqid5hCu5geGKYmZCjVGSKTJ0jRrAElVlXyRKaYoNonQtNVgSmlElMGh7agcEBsAA+A5NyyK6hXWSEKXzoX0NXZqsYyx3zVty0IZQwXPgGe2oWMSjV/sJ7fWI6M0xqfq9ptvWcPkyjvg6vUmKhCegWAmAa8jyHwiSliArIKG3d4wqQlubF7ZaTR3mnS9A12P9Da2iZW5ngkhJFRCxCg1+oMegMnCArJRT8ojxqvtXt/SyfLk6brXDdtDjF3FMGQECcs0W37QD8N1g/oNO1h37U0TNGGlRb5U/AIBJYnlOMTgeTVSMGE8TZO8EfUNAoGuCKkATLN0nK8KXdgi8WlrtzAoaa4Dzz9Pa799RZhwWmUoUYtn7+WL/aRee2X766/RapvtR47HJYoanWI+vLL1FuejB/c+OjreT7KL2HgJiss8a5r2hJTx9IRlCJ/MRjM+4z2j9sFOp3uz1wOixlL3hXkZsu1hoyzmlxzLTOKozUv5mTl/X+LalK5FNiCOqMihmmMbd5zh9Ztvhk132N2FqtRg3HDsltfs+9cbcmiYcwElT7o4lX4tadExyHq/FZZJNWhtLOfnFX9ZyZedTsOzdmOWUx8JVJiO6XqdNIV1TdOkGh8sCTdgCTzdJFkjEOvViQhVsKQz4SOr2Wh0+s3QbtoGSXlTRkKIx48fG9Tyw9Zwc+ftd7+0c+nqO+9+ae/Gteuv3d69vhv2wrhYMs0BglKj+eL47t03kiWRnHzla69bQRW1fEIiDRQVmmXVJ599WlHwZHT6pZ/72ivXbgTtKM7jhy8+vHL1Vr+3ado8Xi0D1zl52vnc3b8lJG0NLLvFpJFbUeP50XJve2c1yZ6XiyvX7tjkSooGDcNvUDcXYPPOdedyk7dYRWPLw+3esIYOV2UFnykykYKYNIDAoaaiwWMFCyEVr30g+xh186wkZuH4KztQrGwqbQPgYBxB7SjW8QOFSClFbpjjU35ueg6an/Ji2fV59OJk+ez+VX+Ofnj/u//d4Z8+1GXYHDDvzI7LDhgLUHJggHz6/AFlS148OI7PmsOt7b1LBlix6SO0GEV81QBHyhAgQ5ZGRtfJsNtwWweP75lGy7BCrszRyTlly80hGJ0/SFNtBK8/fTil2i+TAp8srXuLeqmDjSv8ENegkER0NvrQakp7jj2sXKJ8pwKMoAWvxuVEBLBjDpB9WcarSalWBNeh14pXuYNAv71rupvPD5653g1VobeuffmT9z9IiuTW299KYbCx93W2d73x1t+i5BvOsbGJk8Z6kNFuMtXt9sbZfPVicbj0VllXH1SzYHMdO/2zF9zWqGk5L54fMb1VuccZf8+sEmzr0ctqNjdvvf1LXuA+OPzB3a99JU7g3Y3ffP7DZ5/+3k9+/Utvfu21r1xqf+Xo4+Mn33262fjGhhisXnywfnntt/7wT379l/5Bv/GX2m+89k9+53d17Ci8ffmNvz16qI+fPQ/WqS91vMiymEQN0N3ODNsI3CsE9wnuEehYhMbJgzw9EPUSm9l8VSrkATSWXMky8GivLJcFO8nqudL2XvcfJIvGxeokrTzHvTbcCdwoMezFYAN3O7s1/qggPwrttxvuHQD3TYiQWlGJRZmyYiq50CDl+igvL0zUNlFEcY5gqcG5Q00kEU9t2+Ocq8VUaWlqmLshc1w6OovD4mZTXDfKvgkiKTVxlLRTbs+BYqZF0zTJ85wxwTn3HJcCcnYYpkloO4HjmUJKpkCSZQpxaB1qcubQvhYhge3z0yopLohNV+eGSbNF+j6yLrobKlOPDV8LsZ6WGWdWWUrF3Xy+7pI9qRaGM4XWRap+SpxzJucaJUC62bzH8pZj+wqcBNEkz45ZiaDYVnKoLcqdg6A18ILNoipNC3kei+cTWt9khY9Vn2WhyCPE+6psAdZDoo+Y71mI0rFGZ7attQC8EloypQk2gUYrDXMK7bqwDNxUEqfiwI0ItcoqDU25ZRLNS4ZUjmyvk6nzIAqmCygVqSvtR6E/GJk0G9U5qqJucGVU1aaF6uUijLqu23R8EvmbEAnH6himM75YOXZDFKw2WwaObMmEI7nQkTa0WdZJEuc5Zto2LMV5Ol1JhComKPJLPIlzTBmSRp6m3OPaCfw4Z/Y4gy4wLCwTxmqwwsIy4HxxjnE3L60yL6Ck5yMyO7Fsr78J1i4Wp/VOcNrtmbfemqL8xfKTqTop4OMFPZGqmLt2CcPu1DVR1NrYseDSsvOMxIWPc8/TYdToua6bGd1GlRttc8M3ggpQafTq3AmU5cm1etLwdMd32GL1rBTK722DhjtLTuPiQsPMc6EXYMeDpoewI5WrzWYgsadBu1qZvo7CCjTyQpE4r+dSQww9pW1s2NRUkKRpAYucQtnlRTuZ0MVFxosEsFmcvVT4mIlxWoyiwPXtfivq2ziMhVos7VqHRZA9BI9nQ1zuetPOWcaSNFtsXQYp+xOlVkj5EHGMo3wMFyfvj6unP345PzguTqb7D54/8tOuU/SePlwEVYvk9MHJmUYqsigbmtKom3bgwOZxbCzZMJs3XLSxYm5KTVLkO10rjJBrmk6ngSNwdye8emNv+9KgEewGXuPy1qDjN0S+MKVXea6ULZ4WFRsJT+s+494BhjNVIQebBJBe4xIoBiyOMDBX8aHS3WTVWsxaZRUkWQpQhkhNTWNRwYvyPKVnqV46za3x3DpdJNrJej7surYDqQGxYRnNftPr9HDQbbfb/X4fEjoYriFMEKHDje3OYPDGFz7X2xj4TX/78jqytB3Y2DKwSTc2es+ePbqYPL98dbi9u/fVL/8ixLjZMzFindB6+vFPRqcv7bb96tfeeOdrb2tV3Hrtlf2Tl+t7zUtXro2ns1rM1tYGL18+b3aL0ex7lqNv3nrr+fGTQlfRYIO0q3hWHJPFpUvV9s5IlU9ubLTwWiQy3Vl3x9X4OBsL3/TaXUjwaDmqcGEYRFQtoM1VfqGAjNNzBXLAtrM6L3mBDJFVCw2YYTiaednKIdSUxoFCyxocrvKneVW6PsxXoRYBkMwOFitiG3RtSLVDjH7vakdz6+CpfPRMx7Pk+fNn/7/9P/zHjz9+HC/HG8s0n8xHhy9Xjx5+7PUWFY1TbNlBa+faTW2JQkFiXlvVIoZxBreqi8Tu509HR4t9J6C9cb1CvnN12G6jDMt5UeWFblH/Lqu7w1Z4+uLbirBu3+fjg+3LbfZqu/XaVp4sC9fqWZQW5ZrXoElwY9uhVXFluElKeZEcpoukWI6eP/2jnUt2bpKp9kVlWr6/0+2fnoxNz7BhsjG8PFk5QOrwRp2vxHL/Z/f+5M//5q/+feHnVci9y5aoMs+fs/psb/cNia76w3fmUq/fdKb393HCoqC8eu2d01G1c81vWL6aF23PrVaf4ZJLVXUuXY212/RvwuIpqD/gJz9+5+aVPJm8/we/8/q1a4Q6aBnZfXx08eFb77LX7g6FhV9mfyasQ01/+rnPD//p7/6fBpcv/+6/+ee//K1rb37l8ln+7d/+l/9lUoAz8jGgehDcOY6fXbnSlydOkQECe9t7cHrBI+PnbIfE1eFylc+TF443Dlzy/NGH+Sprtami51HrimG9WuTnruGaOEfoIo0TxhgHMmy+YnP76cmfWduL9hU17GzBVTdeTjdu9KWGq+x8mc2jrinwBdLtarlZpZUsHMyHqnDiWVXESmutwCrLZh4Y8SROYleRdR3EAGJa201Sp9kqapjUVKbpGrhjGx1MRCkOSCubs0OBFnW99AxcTFOa4qZqat42YHetexkBynjmOJKLc4Av+pvE9iU0dQWmFToy/FhjQslOmjAT7eR5ipHFeNzopUIBYuNmZ5rGlUv3CDbruqhrF+o1Qpu28QowEsfxkpXhNxNovCBIK5GXheGTL+XLbV43Qn8o8ZHR/AmNXqTZotfeYEkEmNftoow9dRu0FECyN16enwA717QEZMFrCZhF0CiBM2anmZjmbIZAgURmiTKEysTMgjZPfZG2LD1khaE4jvxmli/TpGr4e6I0tNaO45SZWcYDy3yNAUGMpuXAsrpQMvb9MeQSCR573K+rwsjKrHSIMAvFsNgajYs1p11bcV6Um9yPZdQ1PeHXDnbLegHQs5IanNRqNqUYre24BM4DJSerEsEtrEPMV8o1FA+oPjO5oo1QcpHNKn8QFsvnUcfNkwNTD5p+llbKIA6fT1aW5AZAvGZNCyZ1piVjzDHMthOUi9irIwZhPjsLAjzhMcPaH1pQnr4QudxxKzuO1LiTPBeH89mBPZvYC3bpdGYUxFSSYwPXAe2uhRZKLN0OSc+RoaWiTrjTcIa2Cl3mLeeyklWtk4JXlmWZdi2sybh6XsUHDtWEOMsEItoRHMu8YPMzVZUA6RoATamNaQPhUMkWRWuOa6aJ4ShgVtLmqY8qahR+wy9drq2RqKFtDP0QZyWFFCLDMrlYJTQfieVSMZ0miziH5/kiuRgPOrcHwxaR9WJW+L3t9Ut3HLdc8eTp4RTUu6snrFugXXDVWlwGiZ/dX4RqCyMDgWi7tXtjx4uaxlzkc7I4rPDBcfz88f0ff/TIgBs3hpddp/zwwe88fP79917+8IPZx+NiRIxm4A3pslyYcAImyF92m7NW87EZPmTVPAK3PGxwupnhzO3V0HccqxuZzeG18Nb6nasb1zyva7p3cLC1lMALb2d1ZiiOgDa8VclG89MqPbVlGpmoaVtBSU/m4iX16Pqma3vLSuejSgXeMss+4sWJKrJ4ce7bEaXNZToG9sV8fHp2nmgnglClfDFjqyRPWNVaxsIICobmF+ea5Z0knvuu6DXWbIqHXfzqq8Nu17ctjwLHUK6cZDgXkAlWlVLy+WI8Gp3Eq3mZOnUFDk/uAdgTYnNRkc3rX772zpe/9jd+LaHs6bP725s7IY0+//rnDs5fLsBFo3fnxen59s43C64N27CNQVEd+bbphgpxf+fyt4BxfHj0PWIabXep42CVj/3aaphf4vDNM50dssdJPJEYf3Ai//Rno88O5x8tnn8ini9bQJhQsyQVJZSkTIqb2z1a5MSMcm3gslQaEsMWQGCzzNgEIIQp8UJSLgUuo5ZxzRBmy21ZskdhYJmeRpCquEzdPkQynZ4XQ9e7buJIA5eJeHFyMXv0JOJlC8oX3//B8//p5ON/+fTon35y8IdPfvbeH5ZPz3oyH798bM/q0ChZmpyPLwzUpKxYlg/m5SzeP6KOnVX0PJ0kUDWaHcXTmhroxtYEO4qtJDhsDCVgy429tReTqVN1G2G8OBx1Gtt7e3tO/XyDUout4fBgvTcQ2ruIWWYkNejknCqCxtmhmB9sXdmav5zf7r2JCZEnk/akuXn7Zr91SeaQyHrXjMIqbLpuzxMZYr3OZkz4H/3hD3uX+1/8+V/+k3/7Sa/n7//gSJJ0JvXdL3zrwf4f96+vedHVd968/ZOfPaN+lgeHwseb3U1jiW73f2H/UXz18u7pyQsNh9My3XzFi7pweqpKrludL6F5xO9cio3m2YezS2/edNaj/Z/+EZB/VMtzzS+u3fhiZf7K08mTu1fWe+R6f+O10Zn3rY2/12JtIcu/+w//0ccfPv3kd/51Jx/+tb21w0/Pfulv/MaDz/7DO8MrjtwqpUT6xPL46WjaXVtP2PxselKkE1kdW2CkFsbHf3Lvcr/f9mCZFJS/YpmgLJ4wTxdQaNuJpbLCZhljl4btNvrJy39r9FeIXE+Zf1J+mBnZzrVfPDu5ptUQahCiV9kKVtkZSySpcHoCynlVxZ/oxcxYADl6oI7PnVmzDdl4PqvEOQBnrnliM1tWBTQiElw3IClXE2qlOT+p8zMKWZHka94gzWKskKMcB/gm8azAqWht9s0luL+U9zkeE0ot1KoqwVSlkBDFBTRfMlbA5K5XvsMXEICUw4V0EVeHvmMgy6pkCWKjb2xWaZmWlkF6pmkidCHYqYstqmSWP6z1kaptnuFW4Elu1cxJElSnA4tsA2vfiHJG40l5UvIdha5rm/s+rfmK2AYxo6JmYUiS2RFMSkQf9rsNLjI3oHW+Vi/XPOojxqyq7QibgEXg6aIygOPqJphqUaCqghUylYSJAGPHSwO/roqxAIhajaTAmnbSHFADmubcdg4hPLMIxlAjTbUyMGjUqQ80QRIfYFoiXFteZrq54jDy+nE8brV8qEuhPNcvS1Ba1sLytuq0R20klWXAPpSRYKrZcAfrnaPTE8ZwnF+YVqh1UYoCWf28mimokNGgEOeromASmRBIiLkFNDFo17CJhKkXouRsbhm9KGybLnCCkAsFAcaQGMRkjFWsdtrN0kmNqnSdaKm1ZlUD40lZLZqdZmPeNrjnVSM6/va9e5wRi6N0Rek06SFz02uaTAWWRTDEFEkIVEMgtwr8OjRiQ51Aelw5L2bWQ9tbGlasYAw1lwwtJ6qK/U7jjY3BlhdwgONG0CyymouFlCuLRKx0RO0oYQNNNUDYRMSUkJYYCu0bhtACAUmQXqWTaiXLAmlmKr7neGsaLS7OU8Ik4U5e3Z9dPAGrp2JWyjxdJFmtKZVbrvCsXc6lkLouDdsK7ZALMHEcw6r19lVMuo/tFguaGyBkJXx57/sfZGbCzbSq2GpCWBEaps+r2KeiiaoW8VDpg9r3o3Dr2qB3eTCTNc/htb07tA7Lsb/TfLsXbbNalDWjwLYM2O+1PLd1dloUWRRn+GT5NJ6m49nztND7xyCu61bP8o2+Ky43PculZuQ4Js08L7ctzWWi0EzqjJoKimFZrTSeIR2xWmKKAKlH+ylcNkO4Ftnbw+5tnkK1mmreyFORlbPp/Gg+Gy2WR0gX6UyBAh7MZrxU8eGiwjDwjcXzA8HdBgZ73YHBAiQ9CdOL9OV5sjrPcsdaDte3mr23R6e+CVoeFphOtTPJq9Gjx58dH47OjuLFhPFKa1HGi6O0rpfZRRD1Ts8mH372vUaLXrtx5XPv3r3+6rvrV7547Ut/A7vbZ8ezzWjt6JORJ/ZGo0929wK/mZxMD4nfl+4GbN/Jg43DJZnwIgaLh08VB1thZ43VO9TeDux+0FgNup4sDIKq0HLHx3W74eh52mzZP/zo+0fHE2X4J9W4dmUQNksFJBs7of80zZdoAcuyYwy0p6RAjGUU2bJac/BVi9pC5nUlINqSyFqWM2KbADtu5FRynLLHvCxi2ebmJmS5oS5oSIAlPXXGCjaMXgsk7pcX/IMPX/7Zn23sRWfRM3Z8/pNPjo4/PXfGzeP8w1pMBma80qcvL4p4uW+jvGDJ2fQlKlB8VntDHDW9o9HLne1v9Te2/AGjhtVu+liDFrrGToaWd7cE1JknjYJS2wx7JTsFr2z3LaA1s7AR5ip2emrn8p3Di4XXWDJ2Xi7Z4dFTr1Wn8Qmuc8dxPJe4gbm9u7eIE2qTWtTNVj9n6WE1u3Xj6sLh96tzGhozlb65e+nyzS88+eBDx+r9ym/8w0+ePRgMduqJrWyzJy8bdPjg4IJYX9y++wW+WR0/nZkfnJgTQZdqPdhBKuCUVdE0vNl4XtZ240qr6evs/HL0+uT4Ajaf7L0aSVpyfLqN3oifP/S7z++++u57//73EXwmvfbp81O/b3Vb18b3/3iLuqq++kcf/Ld3Xg2Gw8i9Vf7sk3/9rW/+b04P0ifvfXt999XX727cv8j/k3/4X+4/W7Uu3WKtbLT6jtcoz/N2uRw2whYyTlbZR0rGk/MYCLvI6icH95r9CMrt5Uxi2SPWIymfUa365quWdSvLza4BdfpS28vO+sb8wMzOhJ71VZY4SofUemXv0vNPH9nGR65j2VbTdGrL1aaTM/CMq/1Kfe/8+WNYqKY5yOfV5Py45iupBcJRoHYjtEfLRr3QOq+aDvCNlBdPTe0x4kNuBzpATmM0zn3YQEEbQWKatNmKbDNSLJTMhxrFq1OHbHf9d8rYr+sY4oqVFhBtBG2ha6quCskq9EPqzAhuaRGaZM1jPS0aNcwYXELYMZwN2zVMgVyPYKKzlUnF60TdgMDgEphwjzhD7NnKyVbqTJoFjZCy0+YWkPAFYH0TeS5Z89Ge645sc2HWN4DoENgQIjGdkjPHAndNtNkeAqqasHIx77OcUCvn9Ay4jBtSuZN5LGzjelkiKaeBLbJZQmuzZTdUqU3sEeRH0doqg7X2odlxXdBqWkW5FIJRw0lTadk9x+xrNqwruygSDiZWkBoOt/3ANNrEot3J5FlvOGA5Jcgv67FjUsUNpXVdLlDkz06mGO94OFrWo8YAr7KV1BJCg1dxr+0iSM9Goq43nIa5WomwXS6S2rAa8eqY0o4bgWwFkFYGIingQdPm8wRDCxhAamIYpJLQ8mg1Fc2GDTDhVZVzRgyitZZS8qq2XCcvCmwaoNRAGNlUhQPSFBLY+tPi1Ftf52a+GPOVWOay3mhtnRw/p21HN7ZiT+9tdZiHw2ZXStEMPFlmHsW2tJOKK4AqJlVtONg1OTd5WRIkRWW5LhegZFUYmo7lZquFocTJuIYaVWzSaDcEt3yvUdYLiYTUEkAEIcXIJNgBwBOScbVAFMpSAkgIwbVgEEnbQgqrBgdYiTEqElXs4m5V8admreNFZ7FtUm+EP7G759lz0EB3E1TYxEzqZb7S/aihzTmG6455w+3/5ARXX7n+Ny0wndWnBw+MRoRmiwnf2O5fCVTmjU5HrpUXaHX42TwKzXZERuVgmoy8NYXS80HYfnX35vnh8dHBYxtuZ9M8zuJep4NBnBeZ6ZqlKiO8WdIDrXUya9dl8yjPO007S05JGm0MG6Pjou33svxAeCY2WoVm+djTxsSxsQABciXECyaU1Gw2y4a9axzNDDKczZ/MV2fb629Cc07mZbs1GMWroa+2+mp6UM5PTr0BNSk/Pi5W8ci0k7OL1fbGldn4hRbpctKELn/+/APvZhAG2wby66zK4/h5WjV3Omms1NKaxw/Gzxee02m0gGIyUUlzvSvKvMyEbxqstEaLrE5ODvaPHYsWZaJ4JhmUkJqmzQi/vL0z6N7YWnvd9BauH673vxi1WZ7hO5ssno9KpVrrO3GaJjR0Al/V4xt3/vLBs7GL2zZP22ugZj5P6Ct99w9+//vutbeePf3s7dtXD15etMNXGpvJ/st6Z+uXCpKY/Vid36r5Lg0OsQ8bzUCszr/1c1/JOT7T6pJnOJaRCD2EtEbWgU6AKG3hcajK+UFTOJ7nmraEuqjrGGKzqBMFAGdEWfuGk/hWVFeKcZTmR5Aw14+kESp2j+AmE+sAAJMf6GzC8e0okkQpG3Zy3n0S3zf6fv287547OHw2dBLadnAzzMsQ56Zj9tadygvFpn1zf/asQI+yLNHchjY6ZzVkpDe4u3Hl1vDSmoK4riREbLNhPCzGOGCdQbgsR6ZPapSTvs0tWYi8s7Z+frSwHJctZjeat+o0afnGT2L1zqUrx48/8wKrZrMia6q8oVYPqWcaUFo2hsQEwHjw9P7d1z8ntNEOArAWTJcZoW65WnSMgCl+5wvvfP+jb8OCff2Xv4qi6vmz082rmx5KjN3N9OLwIk0u3b7qtB9iKD/4F38Sn37nWz//awncWeazV3c6szK1nQiUIj0/CR12c30wTWPQ7nEVnn38ZPeytdF+/c8ffBQK2aLGcpF/4efe/O5/+M6LT89/4Qtf/s7PHvmDbaeI1fSMG6Vhu88+/ad3dq+YwTcj+8Z/88/+ybt3bq7veD/5yf9zc2MMYTf0h29+3mw0/aIqyzx5+nC+0/7Co0fH0CwwPnMMO5uRdGIn6ZizvHJRlp1aAWg0bk8WL73mskhdQroI4HYnuCgXML3Xc9cTFi/EB7c2f3585Hz44pPTw9H6ujPorsdj5XvW0dn3NUKONTSoQrDFkASaYhiJ2KbVpqqeFYviIj+MLLS6uHBdS5Q8g4VkWvnxxSwxgdkwPcMNRmmJEDEsP6+LjjJzKjMuQo6B65cBrVfzhnc7jg+UMYUaYBSq2nCcJqaqKKqsuK+AsEgg5JwYhm0Mq0pQ4JcZRTqgdlyDfYDXbNpm4nRZPBn0r9aLnhzzZoMxfDjPq0bgE6JWqxO/2czyWOrV+ra9vz9p+a+RZVPwFVB5P3STPEUa7naaZXahmQ2liZyHmGgirwPWhFJpNarUhWJt31+r+TJoFRm7h5BVZdB1idIZhgERBFGGgAmxLxHTegUI5kAByQgyRGGbgiu9qjLTNS3GGYR6PJ8hw8y5hBJ4NuV1TalwHAWRyNIlNFhRMQUpJlRjahg20KjKmWlYUgKUxdhEW4fPq8Bv5NmcYFdUENEEagFk2/OGoBziRs2SsXBnQtfYtIKwY+FoNdUGavOSLcuXV14zl2ex6yiCLEJEp9NIV8gyJc+KkhOTIilqaGBgSJnlMpOcVQBJgIGUIdAgagWI1Kws8hQBQl0vQKYlhTYMgxBi2BYT3AxEbC+WRmxYaAXgSw2Z3zGApy5OiS/ujfafn1wcXkytjR0Owwbz7jTbA0DbglilNBXgdYkxRsTI+DwTq5WKY1zXHi4pToRgkOrSbvgbFAdKgrV+uLHmUSPTND6+mFCr4Uetdj80bNVsNxAlilREh4hbSFsUGxQCDEoMU4JSoaRdgVxLypBZI0nIkHqWQQUChY2Oy2SepJbjM0rnnC3r2khNjrMKaY8OvLCxisZH5snTc67QLInrazc6o/HTMmlpKakdz06bX73ypaAbzGrw/P4kK4/fP/qjRyfPdp3+cOvmMjkIXSVyO80wp/V4NTk4nLDqNHA9C7Ycs+W51mTxzAhlY723vtErq9HZ6aer5VGRzhbL0Xi2KmqbioZP1pIJNCkp+Oh8fP7TTz86WnwCi9nJ4Ymy2H7yqDTMi4ugvPDt3Mjkj1jSLauUw/tIrqvqCsQ+FHeJwc8Xfy5kJWo0Hc/KTOZpls/bC+BV9bJaPIRyUgCtokjAKj1//Hj/AbQyjvLRBV8uvIePP4VWnGesxtxicL6qP3qybwO+WDxpXeqK2Ci4qw0wT0e1KNqNdsMdbPa2kZyNRt26sPJ4JNWZFUDqmXEcOxRmaR35EUSSYDXoN1thAIRUtaZqeG3353/+q//LmzdevXnj9qXd9SDIfJtubEX+dn/7a5+/+dU3b17tDszqV7/+ZddticathxN97+QEecHZeHU8Ovmtf/1b1K/+8NOj5q3LS5qGg71adB8+eKE0O30RZ5NUVxd61j3+RDbdkaknP3f3N3XGLFE0d4ai4RCK4jxjnTAPzE7TLUhtGt7zo4MfjZ4e1XXHbrkQA9cvcgZlu8gIBJVUFa8d19pw3VBKjHQvj33MN8oEODZU0gSsLzRHlc9iV2ilzUpJZlKDeLqNzSKz0RDk1rTrea9E8ezH/8x+ef/k4zleOA244RBhsavJEind7bSur23tvjha2PTa5MU5Fk9Cmzft7nKyXypy89Zf7+1FhWZK7BwfH1EkEYd6Zq7tbDkp36gHmA60ll2hdG1uNru6zB3DScp5NAwv4sJqNp8cjqOBs4qng5aJ5HR9LVrFI1Fe2DqlyF5eXDRaUSkhZ8iPGsPdHc4t1YrshWRHiXeSHX38WLfCN27enc3TeC470dWgt/7s+SPLJhs32jl/lFbPlgS9/cpNcB579dc//XQm8fnf/mv/ueSvLJL6S1//NWI3/uyHf2Y4tlL2cl63W1GqDk/O7++s7xwe37fbGXXQ5Ozo6LMfeuZOCj7dvbp1/8+To48+7GxM3r//39+6tbg8VKPkOMWnl9pvnz3kzEDru78oJ+b9B//CRievfuOLv/0v/7vbwy8evOw1PONCHl7phNPFZ88O/3s2+3dX2kJp1GxGl5pGYK4hSUbnh0rF08kJxTRfieW8VkUAaheARR5rw8krfka8k9G4whn2guuQWi4nbfnafGkcLR+m85eXX9ka7G6NxuHJfDXJMiEvU3ctLYMaPBVgJDioK8lLUafQ5L5R9dhKFstJGR/4BreBnU14Nk0sWOlUtWjoQx9WWMSlj7GLmS7HvgWmYiZZ2qCQGczwYBmPhS/reuLY1LaiqkBaGqZpEgzj5cyzm3WO21GHIh/JtmU0uNJ1FShYCPCImImJN6s6qqWEEJaZHMgNlF2FrgtbVQbCAli2Tf3sUrYyTIsKvQBYQNDME98kLQk48z+xB2fAn2ubWYFXa7rMQVwQahoIM13tiuySZFjWDVX2BS9983IUBVJnWIcsbxhGhBA1cLsq2xKJWkwQEnWeACWralXLYwS5bRIgLC19hEDNF4gSCCxsqlrnmlTYEpajuVwBlNuOsvH6ciJdo1/lJI0VxqEQhgYUyL6B+5QEGipAGIMJNEqBE8SZStI4DEPGhOVgpxEsFivHMl4+Ojfd1nR0TmwWbLlVtQjaXYO0CTZtlyF7hMxRWS/KCjYb14RoT08uQifIljGGAEjlmJYoqni2MiwT2zTNFhgJWaYmRqquZV1Yhi1lqRUCiANoSgU00oSCqNFQStVlKRW3m400TS3LMAxiFl2W46vNgcPkTFSKwleaprt8xFDju+//wI02TXtnc2fXNO2drVuXLg1J116C4rSMx6I6Z+kSidTCcwQW8xrW1C/xoCabCtnlss5HCs+7PcjklFis0/MR1NkqKVOVLIGGg97GYGNv0B3stnubXhtKI5XAdi1CCTIQsAgiQALBgVYYaANaUCCsCOCa5SVRwCGWrMUMyIpJI9UmN4HpnmeVEjhKydxZsYaa15UfDUDeGeDXjGVG449HZ6dAiqODw2ajYVsUY2hg0m52abDRRLynN++8/Suop8oxxtPba1cvP79/mC0hq1XUK4V9Ml6y8dyerLLnpwdPDl4+fvm8KLKWbybT0zpbea4p8HHUBteuXbON/sWJLrNQ65ZtDzh7Pj2b9hprCE38KE6S4uRIrGJ4mOWnE5DPSjvPe8j1CdfOlAXcwK95LYgIxnobYFaDY0jrGi5kbWLgzi4SXqu6KkanLwVb1sUYV7NpNh/r4ODc57G32wrmy9OnszivTyaznHFaiLkdoUVMTk8rwyMYNafLEQejzx69/+jh87pybNcFxoKNY5qLANsGpFyDUsvWznq0veZuzaNm4UNhw6Bg3iihVWninKTFCTVVuiplYfHCgsAwTAhwbFrngacwWrjBMgpCzlizLU3ilz4CuvYYa7lWZYnw6nB9b2uz0WKqvHf/I9e3TdtKS7FciP7w5nJO2tp55+qdj773gz/59m+99/0frV3ZXBovvvPZD5RvzeX0Qn081+NUe40r9ZH49r2j0yVODIZUpl+mp7BnrS5SxHDscW54cT1KmCi0X9FslceQB4VIajFO84nggMAISM+1m7UoFU4Bmtfl1LF4upy3wkgJ5eBOOsMWOzS9oSI9IpZExxnuosZVLYsplyTMfSpCpm+E6/LllT76Zc+FOP5ola/ErPZynGjpdeNO46AOF+NFBrvmpLzQqTIzRKA6fPbiundl5/pmc+jXUmhAl9khtF56YTY+m/ftBfVX0ivSauURW414hAYx88vKZ3BZgbO8LqntfPzg+5ZtTk4d327yKp7PH64PujKzTZzV7IUFW5LpZLZCkORMcqG29q501rfHFwt1kr14euqtbf/pDz/41he/0cSe0PSIi+RiyckyrsVn7x/u9dfPp3WRb3btjdXjjxWqS/Os008bTXT51buPTw5+8KP/1/pVN8vI7//Bw0an/+a71zhnoTVgKX55j9+68fmi6jHY0TgInO7+/R+9sXVlCQqqL52cnz44/39Q9/3V+dSGm02/JeMaAK/X+evjJE3Qx+G6l5b747PvP/nZn//i17/1/T//aeCiT+/9B7+nu5vXXe+tybj+5GdPqIp8shc4G1l5vrHVtvSVRhOdHI6a7rXlRFED99a8J8+fUdhjK6VZspg/NygEwAPYn6UrgaugIVitq1KMRmMCest5EbXQ2+++4bvm+fmDH/7otyCJO51eXaHQc7mYJKuyZrmq2qpCvJzz4oLVD3m2kFK6jsnKlUMhTxMihCGUKZUfaMcBZb0iBJV1ZVq2ktrA9C9OuyGEQqiqZIwxiLRjmUqlQAmgTM+N/NAo60lerJphV4nclDdA3V6sjhA0OZelfGmGo4JPDJNCmNZ1jfSOBLCQJxYJRcgS+JkqF17h+5JhqRnCF/QjiOag3ATZFzHYIW685O8T/5kXjQgKkrntG7d5vsbLMAy6ZV65TkBpD7oXAGEFNXCPsHuKjBzKnWSJalYKPVMgN0gDg44SJM1H0FbElcSSlGKCMYXaRsSBnsEDJRaWVWtFhDaAgVKWCQoKCbDlllzYtl2VWeTbRHMX61XyhKlTy0sgiT3ftG07Tcs8q5F1LPBFUeVFSjVr23Rg2RHGmFiOjotDw91KEtm7vDE6fODYASVhv18zfI4qHm542QnmnAa4Pxm99EIbUXO5nPmNTYq9Mp0FTT1JfrC5PgAi4GIMahvYCMKVqNqOYSooAAJe05SqwtotWWnZBqsqbRiFOkLUAy6NT1QraCGSQ5rynAIA4nTl+R4QNcRAVCUA4KAeD3o+5fVIlvOO98ru9cnDT46W048V8Nublje49Lk3GJiBSq5vdk/YAUqkr32pZasdlmnpm76ellVRpsTwPadSWkOAIM0YgYZpOZ4QU8c1peZ1UVKEl/NFkgnP67Y7LdMGlo3KunRcZzIpIDCkloZVAa2paSCspNBAGZiYGmgb1TGtIkFyKkpe2AKtNJRpYYREz0uqiO3bmgMrZg3HG5cZsloeXCKkOfcRMzvsoqdMDLayFEcD4Btbi4vTzuZ+6N1MZgChl+3BPK9co5UN5cQo1XuJMlrgo5/8Xp4kX/vi7dlpmoy680QoNWt28fHxy9pZO1+MLFKGRmkSyCo8m8xaw2YYrCnNcdcQtfA9vLnlz5PVeHZOPeB64PTk8frmhiglQrNutx1PMc5+sr52Y7zS29vbsQbdoDCRa9VXUvcJNiNeC0hWTDKtKCYGgFNFzpHom3a+mkxBiXRpHd4vP/8uPSymNlFykcTlqDQvGJrlFbdr8/HTi5t3qsn0qCyEQWuAVxpGWexFrbmyTLNqtU30fPLs2tVOi9kFsgtxPpm7caKFBlArz4WhQxHdxGszkltde72GcCHii+UZQMWjh+ezasVLXqSJQY0sXxCKCaV1zXzQf3Z/du0yFbKuah8bzsH5p5GrzKTX2W3mKK4LHhotrP0jcbgKgL43udkf/vIv/9oinW/vhBlb+RG5cu2vn4++e7p/kadZMn/aj4C5ap6dHfzc1Q2g1xpkZhv1eDkxwJCkYZIv09nzz73+1tFFCSF0Z2r88ln38htnTOwhlYlUSeGGrk2MdJFV3Q61JeXQabXLYur5HuC2kMIJwWIypjQkvOP7NkWpH6mSLahdMaHtjoa1YxtTyUuALAUJr7hFraKIgJV2SFhfnLQxh8gS7mRn06y1CGjfNaw4/T5Le1gX3f5Gwle4eKVVnWX1mdkoAGOMDT85et/esy1vs9X7FWgWRdxumv20PFtrvM5SW5Z2MOzi2jOjzsnogzpOElIQl1XJwX46WPMbi6KI/J1sVkZGOD087XhlgN3PHh5v9dcuzs/8cOgoL85Psd+ARLqGWxR1Wo+LeNnp9UsuT4+PZKvR3tw4/ezJO7/wc0tXoZohVKNZPuiaw87md373t9tBW5b84Mmzth2mD2aW29bMPj+SrauOw9Lk9LP94wfv/i/+keJTjcnlq9d2rzaqvJC10fBahy/uu6QwTHlyePz48Af90Pz0/Uc7uxHE2RyerFduvXpB/BtpLBqQD7xoNguoXTr+IwE+/uzoabPb0KvrTsd9PP/TPh3+7NNPBx3vYgVjlv/dv/dXFqrTFA9/9uSH6/1dB/krpauau3b77HTkN4ezcxCEriQvFZlc2nz15GDlOv0aLiLbuph/6gQ2sWrPujmajaJ+4ETlUr4c+JcPX8wG1y5PF9ONVv/knL2cj/E0Kyblzb3+3Suff/z4g8DnddIhiBdqSAC26tBkTJQrWYBSzHgSNkJTVKKKUV6tIl8xXTh0LV+KDAnbcNymE6e5NmGFatJAeZ6p2m6jRgaKmOsIugXXXtRjy4Vm0o1CCGFRzCzNgtDE0IPazf7/JPnns6V5Yhjm/fKbw8nh5ns79/Tkmd3FZuwikEIgSEoMklWmZUoqlapcrrKs8jfZJclWqcolqSSVaFuBwSJFGQYBCkuAWCyBxS52Zif2dE/n7pvPPfm8Of2SP/j5N57qEtJNWtlABgpuKlE4vqfISqtQ1JgSCFDDwRwgbRoOIgXJ+4bVK41Faqxdcx83Bq7zANzI8CsAlm4AkjyTtcvItzBUBDJVfcFTiEhgIzuqMtg4oWEiCcqaCO1iyTQQsLmpuKHoUpLIDWogHa3sVXzV7Yq6Ia7nImoLeFbVnAI3zhqKKBeliV1dtUUtDHci4YIYHaVtCaTGmsO8aSwuteN1ryazbjvgedGye2VSatXpd7aKtCwKaHadqmigtl2H8KJNDUFIhEgCaAoF4HUgOSOESoQDpFsQ5U1ygZRbZjQclrYXcWIHaLeQCssmHLGqilphnzocSJnmaTAILQ9VKwlU2HZeM0FdNwvbPKJODT3QrJjjFzz1dJ1K5pqeU64ikOKy0WaAUAa4zIjREGCAsixy0evbXEQKVnUC/TCwXctyrCLPPM8RVVnlhYs8D3U381PsG4c2Zs3iyflHGUi87cB3g85rO5ldxGv+2vj6/OVF0PaFXudNbQTBMk7MwH68nECMqrI5dDHkZcmFgkw1GHE88HycqwwyiRAgpCwzKCqKQb8XSMRsp3Htnga1bVeXlyeiMOsaByFLCkIxsQRNK6F4aRrQwFiKGgBDE0RsDUQDRV0XfBOtaAOGOZzAWjGznQsKSWnjDSxolYVWGQvACZHpzzlZnGCTBENQ1VW8QtqdTB9st3fiWQqMMylqhw9QnbFUnl89Kh1jHrlb214HF2Kz+9rrfpqXV3mepZ93PGPgDDfrTGtYXXw8YNctdv3aYU+q2VnyalHwF4v81zrfaPdaXG8qcdkKeLR5+fLZxWBr17PePj170fG3r042VHqHe8np+dMQ9SX20zx7Y3gPrJQ/4pA3scy5HUKxr6wlBD6udqV51vJxLd2a5UU0ILa1umqaau5QWtW4Jp8ur6Scqnl+Am3ZdQ6WzxYIeOODvQ19kc02F08m7e54M32kXbhZpdlKj8cwXSIBGxOLSktZwrOnWcdBy/hpolAawaYR3dC3Vd8xbJ7Fob8lkNkdD6ukgBQHjOa11TSsUYlrgLhcAiSFKggDGuiaYw3sna3hO189dEPDcBjAbYftAGFfzLBzbWPCNhPdaDXL6YlB8NBrrZ8vG3D47d94yz2wVVWWtemg/WvvIgjLurxHj4LTs0evnr/+8Pkstz7b2r5VOdsu3tx/OFlMstt3dyfpM36sfefoG7/0r/HoqoN5lsYY062D/bLcpJL8ZL1+fX/3TnHgmuyn86dxVH9z/05TThfaHOtdIQohIYJIKFmW2DZ3EerYRiZqCmFZ14Vtu42kUAVC5KXETqqh0KXdYKyZyKkskMv6Ea3x6UXtes6Q1eme045LVDUDy3kw0M+XZbya7e6EZsc1L2Cy3f6yPHtZJk+gsT+JSpcgYGyts4F972u1TiG48gKYZtNej83OCsGl08p0YZtWgAp1EB49vZx47l70atEyx9KNmku7h1ugYULK7qi3KFMyzuLpU9sq8ypvVC2bkpdoPBxV/MqzB1xSw7avolm6mb711bc+ePCAVxubhbklzXFAfTx7+fidoxvHx88EltcO3/jgX3za1vZ4O5gvJr5axcWXrWA8/Opvfvynj9/bHzWcXlWzrGi+9+6/9+nLf/4vvf5rfju0TZXEUZYJ22rP8wmnm2tvvL45q+jZ5FY4JL5/ev6oxq342Unrrh+dXnZcS/oyqaYOwkXd2BZo46+c4ejJ5QO6OdGQuHeub8pArHzJ7mPY3erc+ME/+fv//v/p3wWMvPjimVfz0L3h0C2bFEn8qs56+8G95dUJBf66/kPTtgjaC70OxkToZWdsc7lMSqc1wGH7pm8dxsm6v71GhNYbN/DarxaOM+5PTp50WltrIJdylpxfrc9OstT7jd/8Sz/8wz8omuPvfvN7VIyr+hwbLpdXRD3CwlExkfkmz2KqIBUkiVOmQyE0AKThuJZIK2zKpIyi0B04hmXQ1mq6cR2vbe5WoFrAkgrRYZ70XLVKvLTZYNBtG4IXUltt74AxK0nWRbPBbGkYu4C9YCikYBeopckM0HRLnmAScbWhMMRE82ZF4MhAu5wfL1HF+HnA2kI6ZTpB3GV2awlesqZsd9y8fsUsUZcMQ+L77Xi9zvlr/YMgjWOCFe2EyzrnTWNZSFdzJTzEco2vBPQk8KDQUokksm3bKYqN7/Wa0oLSjqsSUchEV0GAMcVEIoIgnGMa6xpDEBEaxCmhhqHZOUIANy3dOEFLpUlW8Mr3bcZIXYK8aGwzrPIcYMVB5gWEsKrJ1oTxRlTIqhQkBDBG/abhom6EKgnCaHXltcMdk4Wq6eQRxESGbSuex2Xck7JLaCSJsJykqrGUiVaVKJN4kVEyxLBbS8Vs1fDYNMjV/FQoR2GOWbBerhDLmT8qmxpppSBbrpZEgauzteWGlah1AwguLNdGIFxfbQAQwOQK1AhaBMC6LNxuN85iTEmepwRhwEWnBRdXZxdViSAdI/L5k4/KndDfPoAtRnd2SWDBxdWdcJfLbOs13zAaSJFCOlqveV6n02V6MVu/uHIqPAN43jRJUcC6lOVGo7g21k+jL5QEXIJNnMVRjhF1LI9gmxLXM13BrxBcZ5scNETxzKIoXepVOknrddak6yRexmVWkprbaWGWQFpaV7aCqMFEzEC0vrqYV5sX61egzliRrYvFBYgTV06zuYANUSioYiufABjzGvXBjqsY8/NWp2YU7u/sUlat1lfxSptotFlkjbBPZ1dXZ2j1uLLEheltBIU37nQ8a3Q+P89AmokaIZCurqo0T9aN799qJKGObkR8dTlvezuaGxRavpvm2ZpX2MSD+Tm4eoltvbflHcb8R+PxWDQg7DT7O7tbwfdu7f7Sa7eODkajrVGosXC7VthzoRqYYEfyc2IueGUgjbTMRBoa6gCWLihGZSGLpPHDjGG3SlyoNmWa5FFWVk/yS20u7lZngciVqMX05ZKlnoMtpup4lsk8yNeqHXp5vricPESMd5VFQWj6AY4ymdWLvGQc2qVpVNCCRb9vdXqHbufgKo/WIN1rv4GAdbm5UkRGizgg/tZOC4abJLuESDh2qKSBYSAaqGB1dGe0s79z5/UBNmrmUbeDoUHSuhYsG1GfqHS5evb5Zz89fX7hWt2Kgapdh30/7FjRpvAco4ou88mpX0dOVDMjz5Pi3s3rv/T179za8/V60mnGcHN+dfbFw88+nF++nJ6+mp1dYlD2ux4VHkgg0Lyp4x1/hCr48OThk/XpRiJmOIv6hJm0DfyvvnOkXHm5Tn1bZeIBpKKuFKEaYTWfxZZrK3pRq2XdoDRBpmFzvYGkTnJRNZaBoWxVsNeIrNCRUAxyqFisI7ORKBz5u7aVmh7lwjKa5LrFh+it+WZhlDsw1hLkkFzsmG+IenxqIav7G8t8P/Mq5SU+mgfyEWruR9klau7KyjWQIytAEceiT+CQr/MHxZMpWwLb2X7r9cXmpIgvq0G74tfXuaj0WZZcVcmlSB55EphJPz5Htt1UqtLN0MIB4OXO6IjZ/TRfKi5s215tLobjIEmivEjTdFaFKsSg61qbz754bzScL07hbLY1CF9cfMmMxYCYBhshbFz3XnfVV/b3vk1On++/tv8SctlVRdns7t1++eyT14JvNiP6wdmXP3v8Ii9JsVkklx+H5WKndiw5WkzmhrO8s/u2XDiesz6NP6s7pLmIA+tWXePV+ZPkcsNx68uTq75xdBLP9sJfkZNxEed9b9uvhyLNzvMnJ9PZt1/7Vz5/tvnedwdapD+5f46rJ1X+YoRDgwmgePYkfqN343zyAQueVrMPADSFBIiqrX13ET/qDGm70zeNnWCr1R5tmSEv6sx051RsizjoOUdX6VW/f9E0F/ZguzSbBx89e/HZ4sHpjxZFcvS++OjF7670yze/8TawXdrNzY7judtKqbp5xvMkXzVFvEpWm0ZOmzUhAssmDgMny1C3dzstdSpTBa+Z/u24siRzZtnSGdKKLFN9nsvYQ8Lr0MLI8+Wl5+gSZS2qsOpARYBOG7FZrVYNR6YZmqZdqbmubwohMvVzBWQQtDbZl45rcE5teggla5rGNMaIiox/DmAM8LxtjUG1tyqQOWi89hpUmlRvmmQrXmPAx0TeAs22aw+iVcK58JAp0plJZxhMqnhhNJalAkcFRFOGNMMV4WNY+0rPgRIYQIxMCVamVwIAHMst6ikxUstkINe4kU29pBTyJsR4t2xAyRV22KaosGHn9aqoVr7TSjaVQSTSS4OkBKVCrIVKAW40FCXPvTbKyhmAtWUb0SZvCmKQgWw8y6JNw7OU1xWUghjEQKh2XI6o4v5erwJTVC9raUGjlceb2SxuDVh1chYj6SOcHNcOrh1HSW7kZQ+2gdltXBPqopHct7w2AM9MYSpS2x0sykVIHUxbwKaICqfbrxZL2fQSZtWAW0NntoSCdfEYL2cS8StnYtr9rixiLUMEWQORkA2oEiRUkQDP2ytLaLg2sOw8qrqsHZuL3z7++Qa0gWZXOty6fq3Tc9oAHI63CptjvwOkvwG5lEadlipL89VsuTwr1TovosUkVbOkWNcyWS7m8yXFqUE3K2o4W5kpJ/Fxni1tK1DYyhBhHbuxZlWNAA907eUJ15AKRbTQUBT1mhrCi6bJ/HLGy0rJJkqnHCWVLjOJcOVj1TVQ4HMWUsde1bw0042dJe1kidAiLx++ktP8dLGaTflapRGSSG+7UIX2Sa9DyspXseFUfZcaSbPoja4hRSfTZ5N8PZmef54en9CfGr5Q5aiPb721/fWKT9Poo22/1QOd2+OdLCkqEJxHFeoaFOYOzov1+Xo1BbacFS8IzQ87Q8O91jTF1dVVEsNJlJ2sNgJ3qtoz7bcyWQ1uGG4fA4K3t3dfu363Y3dvXb+2tY13tsNBr2uYu8og2hrkajtKizWMOOCWDVAI4nxqN6e0ucB1Uy4fq0VOkqZYfcrUZmS3SJzVcwyLXFWPmHyh4gWP50hlJvWdNj+tLp9nj00fduzOxcsTizIQD5U21nbvvFKYIadvNAa+mpUE9mVFTc8a7Oz0x617r7XbTHaAOyBAiqTdGlCLXS6baZbE8OUmnzuWndX1erUQPGOoRqgiNmuPjoLhze2bR2nqiQK2iRMwwLNocSp7fh8Cu6nw9DIi0hi0B1wrZqO6jkM2z3laavPZZ2U55dv99vQsffrFx5tXT+LJ2bj33utffef2117T7s6z2dmLyeXlZFrXmBI/jTVUvTLXlgnPz883jZBIUFw0fHE6nXj9o+WquL41erRcXDoqh9a98P223otz2B0d5CmUhWmhrkW2y8jkhey3KRW5ihFACHtFIqISAs6v82JgkbUhcq4k46NiJikymamhLuIIQadn0QbVTDUxFVSmtBFRDnhheIbkAb1r4bztXYC2UP3r2mbpVdpd3t6cnqSzP+pHMtwM5zFG7duWHbZbuFZnTtvOJZyvK98NWm7s64JAM2gCuaraJtlGqiUlUFW3R8kKwGrz7PnDonlZ18db48NK6perVVM/cHmHJGx3p8fhkTP27Hbv6gWZvZzZVktlz3edHlO78XwJpouBaw4YyReLfHN2HD/WLjt9npY5JpdncLFql3fSALWvY97kicf7d7ZyMWdhtVz9KS8vPeBuo5vxleW0h7Z2Jn94FszINoNBdxgZIXX3Ls5oeGP7+Y//RHUNJO68OjnlTuHA2wYPpg8+B8Ro+s/neFLU1zDZp6bcO9qLBOp7UQv/bLQVDm59/+cfrLa63ZNXZ6QEX/ve315XlzK5bNRoGfPzBw9V3SK2fXj0FST7Zb1uHWY5XFAabMo69pOELP0WsK06iiubXt9v3aS16HW3BsEN0PQZvCshAczNpWWE+xE53fJug+yaKJ0m30xOJ3leTK/OTOm1drvLDSyz/De/8a/dCL5uKaJAWDMT0FNY7IvNTlEssyZqQKhpr6odjEsLoYBAohqM6Tqem0B2VY9RifRma4S4WIad/joGALYw8QPcItUu3uyT3O0ELSAJVK0oMSq1IayHcE9DoFFuB7E2zyWKPZfk6KIhlIJtBunl6oQERiIvWoFZgDyFiLDQ4I1ZShONk7od2NfW2TgFq04giqneZGsarrR+0AhPQ8x5xSvsBkXWfMxFQYlFsNZCU0kpRy3bAGBtGZEC5xrECiwQBhLkAmqI+sAgxJeAXjVKSRX+/9ux16JaKqGJMCtoKaCQgRvfXdXVGtN2hbkNXdAQStamKYk6rHIWdiWjiisqMcp5TSwqISAG46IiWBGJdOlS2Y3XmcEgxlhwTSkVkYCFalvEQhuDXkh9bBhN0zQEBwQWuUwTZbnrMr4R9CfL1dZr11Q5w2DMGJF4ykwPKMLlJqvyXhhKYHFEALaxXdZ5Zvu9TWQKQlvhME8TrWhdC0wsGXOlDaALKaru0E8zuL/n6Pmy00IuhWVCu44Tpzm2y8Bx03WJfdusAwJLd9QpJieKK8ezVut5Z9yevXhgMfqKX9ls9/JLuRNes+zmo2k5/Mo94MdjOgKG1Rjrto78NponK0+v3CZJhQN9v+ZLnGRQdsqGNT1Q1qxMVqZu2YFUWZznFmGxofzT82Pfvt7p+kW1hLVpu2gzW+hmLAfSYFiKGhlQlDVzaJPVRVN1295mdWJQ5rpeU6vpIjUso5GN4wgMNIESIllKaQahUqzmcZ1PkSDTxcww5GbR1JnV6MruJC6/V21MUYTdo12pFTDNaD0LO5EaDZMihDCmIVw+j5luQcBpVS7nz83jpOX+YqPsuzevX7549HD9o+vvjFW6VybH1wemII429NUyq0T0xuiNNK+SiwcdD4mmQXposwF1N1tt2BQvingDVfzs5IsohVzJsW8sCm6iDCjYFAaBYSd0HUTzEvb7gsAtg77rOrvMz+qKYmY1eQmaTQMBrVrIKouGaaWT9CzJ8Xz1Kk4TVXSEmbZbZNA5AoKmm4VIMl6p/d5RzZNiWbbNQGKcraekY98MxkaSGb12Ga2ruBiP9i6mi+2BFUJCcSFoVc42xDIYzSwnXyar976/d3UWjFpfcWtIimwQdmZ6kzc02chr3dAPhqC4KrL84x++urn/5unDuSw5QVRKqRS2mW9b7u1brx/dvOWB1uXJwgw9vxP0kPAxv7Zne+0sLUR9zqlu0bG5JIUZX4VOa7UUhuyZaDRNnrw6/eKdG99ON6gRJaHmz/757/SGPQpuDHtifzB8BrbX85Orq3PLtaAmRbmaLjaWK4YFfXryE7sdwKS+Ok1ZOO7stKIvnqOz9Ob24Ut0Dnk1cva5SA0rSpukjNwd566FHG2fpdWc6Nw0DIsRhZqonHKoica6Dse9OxJsGjit60vLMalqcYiVUgAA1zW5zJRSlmVskvPBSMM6EeWamV2JW40ijVggwZv6yyBom/b2EvJ0IddPSy1WWIoi3cRZlK4dw3XlDnFydNcMuuF13g3PzqeB7YusPlseO7cOEKPAok1D9wK/XkwpwxNVVEib1KE1nsw/8bdGBhz6zZB6o5yCyewLNtfae8aMr6b5vOQm51gBdXrytBGzzfyROjwqS6vkKMeXVKq5aEb9zsuXx+PRzsuHL9tVC2UlhMdRxdcrn6ZxGfDhrsmWfHa++uZf/EoyX3355x+r7ZtM9jvdbS6TWfZxWi/evfOLL05ObSNq7e5vQ8sr55426s2U0dPEee/++d/5zuu//MGrl+987VdwDUlp11XUa5mWxtUMk4Le2HHO5PJweOPRk/Pzh8/M7vL9238dsOzpx1/C9pkiTZlfvPOVd7st9ed/+rOj/b5pYVCldXxhwn6b+Q2+0M7Ph9YNVO9n0SWhLz2jc3khTdqLEm1s1WezP7hx9M48aZn+UZ3Hud70+qGCFxJIkx1gwqVedbyD6YatVy+77k506aKMKfHC6qJ++ItiduYj9N7730rki2fFJz55pyWCLg2iyGTCi5KfpKvPxMrsedsSGPks7B6sF3GzzpEPaECZb5Yai1SmqGq2+vsnLy73DvfjfNZq0abkSJmLcuF5le/4qAapLnMRYWIboasbnjWPbLMFFEW0KQtVF71+b1jAtEWwVs0cRAI4XdOF2FpxKTUnWJZNIUEBsYSA8UYaNKyKFJsnCFg2GWa56vSOhHpOzZCSHCIt8h3HB4VcNxVudcx4BRBdaoNwy1Zl5qHCZKxB/bjGhnoG5bDJ+1zkBG2oJZUMedZvhDRBahsZ4LAAZgUdCDitEYA5IQaHrC607ZiM6KrKXYtJrihpgOwwYgF0VTZIVEGBEGJ2UZWWFbhWe7OJJZcm9QAwVuuYEKAQt01fKRX2WVWKMkdB3xRJwlwlNC9T7jmDzVK79pgQqqlJlJZxGrUG20US9XotXjfHJxPf7Fg20wRWQqrGYMztjv1GJKuSe1arVAKBygQ5LRpwge0R0XzlOGger7GBO2Fndvrcb4cAMF4ipBXWLsBpmQK7ZyXLzAsCsFk3AntdRxc5r6A1APVZ6vU7chGJRkOAlRKtjpcuJo5voULbQTDNH+/u7yKROAdssH8z7WjD7Cb0wgy8xcrb631Fwkgj4Fk3puxVtok7RJeFWUFl2pyh2uakKMz1bMbMpE0DnFkK0cRYyvQiNHpMxnkOlqkYb7mrRcqTquNP88bLywaoBmKFKKyrWiPlegZS2nNcJWWZV37gLjd5s0q9wNVIYlVijJ3AgdAE2hAmwS7xPXk5Oefs8upy6sEdpZukyRp0g9oRMjNIRQpzEW763a8komy3uIi/iLN06LyWRH4KHlxdvDC0TXUvFsGw0wGddFqcmTg/3Im4+rqTjLn+2Gr1c8kUr7wcffz58e27d2/+wtby8ykG1zZ5GVhOi5nJct1pdaOUbOrlallqUcWZvLrIui03v8oMO2/SgaavVEVE3h30ghrGFGLf2sXVXcO1zJZQpoBoYENts8iMW+fxQlezTelhQ3mWSbSTgRVoSL1mqsptO5jGBZBlso6QkNqcb/eCzea8qbjnd/IC+F7btTRYM484PeJWad0yTSGLwB2niyqZTixrxyaNgTzkd83aLFHKLGewc9SWQ906375evHqRBOMeE5ujLro8LqhJRPnclPEmWa4u47p0P33858DayEhTCiSQCpDu8Oje6+/fvHPNtFnVQAvLLqsXkydZ3RLcNZXVyYZXF19gr0sAfN3sIFF5QfvDn9+vLuLhO7svHr/68P7P3ryxc3r+1OuYtgUfPXx5fef7kBWz+adb/e/g4uidNyYfffRqynMtG8EVQsimrapUr44XiPpbO162WLIhOdo/QomxNFP8dq1gXR6nN0b7a1ixawMwj80ZGDMri14CL6UlbqratRDFGGBDScBFaQeWKoVUk0JMGfEmp6DT+kpVNdRuYdJkcWUZ/TJPhFZuYJZlahimio84RhHgpkNoGZmy5BokknHhFJHI69OoOUUWnpy1q4oUadTb7ZAwC5EBCDewbtv9Kr0kaPX0+UV3tFOJQiFxcP1a3XCgdRi0qPio0H3YdpIa5yu4O3pjdvp4cjrrW7W/18yFgZxRvT4uqw1Qm1X15YH/tYvJcyi9etPdVC8cT05fiGj9JUB5XkxB1Y+m8f41f30SvW4cdLF8dnbJyiBvIrbLyqIZd3/56dlzcvblqfrUBteH5JeeP1i1drf3u/t/5z///f3bt21cl4lKQTq9fKTgxeG1W5pZwjlL1GQA2rNldzJ5mV8sNguydevWLPpZd+fNqweP+4d9MmBBaiRXdV1Vbms7m7+AsD9ovy75ejBsV2U6GNqz+TnBRvfAOZ4+4IXw2/d+/vHnB3um16ap2u1fk1qXdjc8O3/ubbnL+pw6Q7vYA7o33us8/fyRx+yhd/fi9FnXr6LlmnZvnU2qln1X1oY/DrN1ZpvK61GmD1SdG+xZIy9C6zXBg2LZylaLwWCwXB+vUTFJNnHRuEZrdflsMFLXR4fRxQOu4Z2b/2pNpJSf5AWzrg3lsiiuLMK+wtm0qBUCFfA+EfIQgIAwjmgilIvqDjIbYh4z+dr5+brd8TfJKaS1FNQirXSjelYLqlhmKWwsz3RN4nBeN0WOjXY3IE1l8NL3fILUyjOtphKgAtIJJNKWQpRL7SiAVyyLpHqDGgTiBmttWqCuCgk0oTpfHWLnvt+J8npB2YEWQw1GBIRcvfKsvmriGkwRlkhuCY6oe5bILQ9qh8tGsgK5HJlYYFZVtn0TWjXCGyAE0C0Lh4XMJFqNDFUi0DCrKSumKyprYRBuMl1owzCSTWGbBtBa1I3rGhooZtQOoFJRqB2FSs4LZiCCRJzFrVZLQ7CJp42oHMdGOuMqM1xLw4Ixu64pACiOpoZBvaCV1ousErY7TlODGR0FgR3WmMbIoyRNIqMVyLwaWr4ykXKsYhJBsOsElVB5U7Ql1NiSEmIAa5wWOBMuNrTiEgHmOaWoBTKp39GK8gJQI+gM92WmHOYDaEWbid8jkDWW36xXFxIlSTE13ArxuOYVw6QRllSu6/syzRSM6jLTSkSrddBuSykQJXlVQ2TOs3hzabpNtdsB/taN58C6BFVnoEaIUhy6NXHyaZSezI8v2TKmxkkfuT2N2o2wKgg4zJqoUqvV5mIRfUAFRAgsN+Lq9Pxq9vnlgi+X4NMr2VCgk4sguRDHny2Pny5LcawyIZqiKCCESgLfDxmlnU5nMOiZgUEMLXQWRWenx59m6UuEZk1z1pQqy8o8zau8kIosN2VRSafVp8718d49g7253fvNTu8wrs/9npouX0UVV4Q5wTDNXdO9TpyBHbrMQg7YMUC7LOdZVZr++8rbPxWzZ3nSxrE5EqwFXxv/RYe+Hdzqte+E2qqhnwYedQGBXD588VKZvb/6W//bg9Zu/0bVDTdbLKV8U5OK+3Sy2GTT7ORqc7k5vVrlZenXqioqPpvWXOUNek6IMZ/PG/Ds7OoTWbeqdNsih94IMqekDNcFpzhR4IqaDib7HF2lmy9evrx/efVifX5VrMh6IdSmHeqRC7nM82ZNBt5g3DM6AaNK2cgeBANdAVNbN3cPXAyii5c2SMejG4Nu7+LZc7FKxmbHynhQq3vtHb7chBW77e4GqR4Ke1y3XgtvjMzuy8soCAbZ8hGPPgbr5asvcFHdfrlpLsErGTbPT4rnj5PL44eBeVytL5srajk15xLAXtA/uPH60WDX0lBr4YWYa8xP87LU7WwC4+cTz9Dnm6eLWbI/6u/eaT/Ul9l2O63gyePnw4FLKfr08z/oeAHiwcvnz/O8+LOf/vl883n/WrrKX1Bmn1z9yPCWN6+/+dbbh63Q0jVRQkuutCJSes+frmfT6v5nL+JsMQ4ODNSa1XNAY5aW8WVsbIXAGWU6lmjZ2dpBwaA0arer6mRqsL7nDRyvzWtUpLipzKqgvESBs23QDlHtuuadYe12LsN+pI2zGn2K7RfYuazEOYAl0oiXKrS7a4maZhLicwus46aMpWPZbU+uT+IXCzFPtHx+ElNyUNb+o1crboxW05PZq1cUt7b9wFxcdg5HH6vVh4/PBmw0O1tD084ZXuk8EWnLN2S8YuvBujAu6ixZn3Zp6oxA5dTF5BIPd4qJY2708eWXj2YTyfXi1QnNvTJLZ7MHhvPo8urPoJwdP/sQiwyluwHpLhb3p/OfdvsGV/Bs/aRzM/vRpz9wvPaXT+93t3tO4LtOuXuQEGtSVdWDh5MW9FiDT64e33vj2u/8wx8Hzvj0/INk/TjbPOfVZ6qaj6z3UEXXqy8Qh2ZzUJyLi8u1gBTzJ4R+ZNjU2ewcDL++egXf/Novn5wdgzIWWF27cWBQ3r1+k3VJos6m+STjTgUGknk5XLfM4eX8EW8mYbgsK0ZJFV+Um5kbYLI6f+iTBKXF2NzlV2BIt7wmkOTTveG7xTqs5Zk3XAo0Rabww65FBoGtKcwHgzds822iO6KJoJFqqSr11HCXobdv6bsWHRK2WeU/tJxJtGy0HkBbmL046LDlbElEiegk55kyo+HWEdKVBPc5EkZ73/ddLchwBPv9TWAqF6F6mQ3Jm9M0pyQauNzFZg4XkfXnwDz35QHQFKKGWQUEmRYYCIcRE6NGexRZW5ocaqPfUC0NDUyPOVuWgdOIS5kKvtGcMaPcZB8SliCwUDhSqA4c24RWXUPOaYBbgj5s9CvKyqpqGo7LBgAkudh0tj5vGe/a/Puo3rftSoALDRBwHmhYlAVAhJepo0VgB1lZCIMMWwKjShc1AjI0cs9OAGrWwLyqxabheclzpcuaz/P6ssgXTVWgDgBAwVSJVGJGoYcoliqKHby/XlauT5mdpuUr2wJYWkT0ZOMp7hO64fo5lJiiAGMIYeCYI9lYRQqBshj1qkKleWOZbi2WTZ1DjRDABFHZaIyAZ+umcE3WqesSoYoyUVYxxjDPUyIAEKVcJfG163fKrORI1kBgYPhBj9FCC5xVteVamiiCUVVsVMpd1xfNGlMguIEVUhqYJgIGEVmpuUAGAgSXdWWaZlYWEvcN3+ESSlhAtOcG1iyrWuORjl4tKtBvaWZ66yIPAo1LPwIJrhMv9C3LAEBCCIs8p8TJ0jL3e60dtHdgl+oYdgcPH328dfMNc91ciC+Zt7suNSTgbPJ5Oxx1bY/Y1jy+LzxPmBqiphUBkbSZbW3wvMgJpTJV56uIssTEDVHNxgQL1myK1VubqHJDZzPNNS48PBlatzUHJraoJkWVaYpcMzSxUWSFoJYiqqoSyUlTCaBBk9VuQMtkA2SNMVwvl5bnXs7mJrPssRmV5WjsV40ytHjx7I8gQ1kyWKXHh+NGyykWhJG2j6348pQyZbieqEm/K5UCjuMs12dBeGeTEdpe29Fdc6QocFvNyLANAprl1TPTPEL6LULF+Wbx/LjCoPdbf/mtVjsq86SbjSrfSWxgW55LjPl8/sn8yRXMbvnjtYJxIp+fTxtqnBV5guM6RYfkTlMErt0kyYtuONrks8Fg2GhtuEDyWnONKy21zouBdnwZPPPzm8t4VpcXSlSOuW7AC82JY2SbVUkU2axedNpjWG51rP46Ofbwbsehy8U6NE0G0PTsAhF4MB52HHt6vq6q+e3tLqtgsxadwFwQVF3lvUHZ0616ut53Ea6SbutwNs1SdgqSKIc3f/rwebBjnt7/8aunV4Jk1eLp+mSvPvn5k8cva5FmGV8lBBAgNeM5tUNn+2Aw2j6wvfDyKlMgdR05l/XR1igsq8df/szuDLfG12YLYBT9r359r+vQMk3uMJMfnz8/voRV/pWvfv+jD/4ZUOL2wRvnz1988eBPSHv56eef3BjuPDp5CtDeYPje+eQjJYHvdQ4P3nrtNfnJR88wqqumyOLacU3QZGdnTxsRg/0bsIZyk9qo6d7ePX9x4vvh1cmUBC+3xkbUpExf7O87CS8uXxYd5y3BAdCaAylqwQziWi4B2qIoSiaE4aISiDLTJFJCWcMizyHuh2GY57lhdhiBaZq6rlmUV2023dQVZJ20CHS8DlnqB8GSL4LWYYk2y/Sy1Q2lTriedbfFxeqL64dfUfXEHAzP54+vD/ZyPh463u3RtxCxAzucXsQxT3eGgU6XXCZANaKb+HZr+eyq1963t3c+mT7BltHaRIusun50G1Lr1asvTQseH5+WG37z4PpmcylqHc90UwyKdWNY5nr54fYOO34hguANZBpUNcvTeCe49eUnn3dsrw0d+Pbb2+OdJ88ePw/sHeRbp9mDp0/u7RzyHH7wxcX1o50v/uzvTSX8hV//zv/wf/6v7r727fliY+Gh4Fdp/km0so/uvJnxJzqzVubusJvQZHm5pL024ZvL66//wh//f/7u3vV+2O3Hl/9iCeuvf/uXvvzsd0wsact4+sVnLlZZHinEOkGbVFt7vd08/ydE3hGbIWoWHT988eTpdtj1bAHExnNSSniZJfHStJkxPT82tnuuu8XIKs0zx74mq0POWdhLU/GgO/ZaqKVJ13T2NKjS1TFuFHL6sDlyg9o1SVkLjGWZg7oZMChWGtp+Uy+bNr829N/+R3/8P3T3WKGWYz4mEBWtsBjntXyiVgeG3iKjj9fJyGvtlZcxwhXCVSNkq7MjlAGqbY3WUmdSMgh6ltmliPK6LMCFaTGMumXmYOJ1hoPL8y/3dsKrOTIpRKgAsGwKqEQIIKfWrIi32i0zyU891wJA8QK5bAuKIXKxoUStksaCGiuaAgu0uOWgBmhhasQAUOt0YVmSWqBp0qI2LPPjq3gWOkdVBagJeRUy8I5N4jhZua5lgiOeVrR1YhpMFTvEOJbah9qnjECdU1giAAhsKVlA5VIQYEMhvMAkMw3bYqPZRGGYObY0odaC8sgEQqKmrs2XhuWWGe6Eh1QnvK7CNs/KVxAwgAzHDkVEGBsQqsrqAoC1odtlUxqMMBOv1rEG3LaMSpSQU0bdMsstKyvLutcaCo6KhFNUO46T57HnB0VemtSqcw4kJCnSQ+bPkgV7fefs558wVJu+j91A6iiPQ8MkWXHa6d7MqsKkuK6q0jDDThBfvHC8UJeGrrThY0IlxHVDKgZhLct8PSEOEHWh6qxzbX9z+dwMuopEputImARtvykv01nZv3YDpMdCxYFPGhGTtU28tmnh1WLa29lJNivL85M0F1wSbLWsVasNa2x+cUrms4+Qv1nnD2ZJ0jG/Y2d6zXNuAKt2vcCCDOUXy6C9x5gppOSUZahe41KidFpHQ+DUUKXrLhcLy280IGk2T4V1Y/vds8sLqJK6AQCYShmM7bjBbhZfKC7rrKQGa0oFMVqnaVOUuoUJERBxRmkRifl0XXN97UYoWWwxajNzvYpkA5qsQqw+fbkyW9tnL3Cr3WaA2Owvcvfi1fkX/c54Lj4Gq8uT0/O2d51QKjgc9Ntb6jr2o7rESmwIUhao260G1Iv5RVWH0753pKMkKo+x3BqsrGvyKLYSjIxn89OH8xcn88lf/PYv3ey+tX7l0zAwWo+HOjEWS4NZCWwSytuj1ijshxYJgrtfPn2Y5jOBfCdwlSxWcxcWn7dbBjJthDoQetp82rCTJrtJSpMioQSxiRPlJ7VelfmQuI1BYgGubKpFHqdZmUVZYLUM0rXBREuLA98CNdPrZgMc6Q/b9OLiBaN2x7cBUBJSk7kM4/VF0mZkcvzcspCF+7Ih68WaArLdHZtqaWxkj3Qwrj3TrefKE1BbqqqfPrr/7PL5hS4OVtEml9XF1D2bxrV8+OVpiiTuD0i9LKA2GDU7HSLB9a98/TW/Y1iuf3y8vrqKtrbGNc9Q4v341ZdWq6OadrtxfV24Pbl1dNBj1hJA0t7++Hd//sXDn726PPmbv/6vv/jk2XptDLpbD5/8T1988DOExsfPisV0etTpvHg1u7l/dHL1mW8HdXFc6QvXdn7ll98qs8Unn3+hNKLM4jJhNsyiFTNQktJUxHaVvL1/6/PZ84XRsLr41uH7z+Y/Pz61Bu0blEmvmYYdr4ntCjYBkIoLQKBpQQjzui6F5EIYRSH6zqDKoec6WfWSGVI20DY9aGZReoIQwhjXjcJYm8xIs6ikb6HmzNeYaBxhBwZtLhoYrwPgtAKz2Di2u1VeVdTwTShsBZlxHvbagNn9O7/Otl/Xl/FO9AnrvZhmXeywzTQejwZWAXntldSNs5Iae3AejfyODJvz9efFxcthtzPn6bjbCm5Yzz+n0aK6NaafPnl5/da9k9lZ2x9t1mstS6jWgz5ZXfk2uDk9eYQ7/f7W15588UKW02J9aXqdDtEt7+Y6+/jGN//a589f1L5crVMThNHVfOBcttvfyeNXuI+7t779j/7Oj/6D//i/+Pv/+O9df/tXNgnFxCoye7nYFOWXFruF1BvZummPexevHov+NDp72SL9Sux02vfSdbQ8u7z7a19bXCzi2fM7d67nyf0PPv2n33jr7jD8hRmbrc5ejXpHrZEnCdzaH3/x0XHofFtFNE5f9QcHDVnoxgAk7YbtrOJSW5fTyHMsIzSiEjp9X1o8z4+B9ohbGkFaABmM+kU9KaarlvWmajCQG2JMo0hQPjKs0B8iLC4QGku+w/l5A0+U0kr3FKxMwiyKKkSdIPzRj/6JF85WV4vX3/iaq0zUSYPu13Czr5ILAqreVj5Pr1dAexSmBRSRbuCmklVo+VH2fOgSoY7ymmg4d2DjyQFq8FK+0iBpd25kkTaIx0w4nz/vdrtVjroG1UAKERuWorgNdTsvl1xc1U2LNAvbNuO4UuhFu2vOZrlE95E4qCGuhMBaMUQ4rAHK82KDMaRYali6vpktG8cZ6gaRaqjoGecOKF+HfmwHsaj3iZ1pNtHSt11QNzkznhASVmlArI0EJ5FqWqxhYl0DkYOGmBbImUq1aXWErAHLkTAR76gKQKWIUYkihj7TrkMJhRnXdawIxi1T1z1NJDPrrDkjNrJMd70uWuEeRAKizGKtFFWWM2HUkk0HI5bxZRCYXPGyTiFufM9Rkkfx3A+4KCGSLS2YbqpKIYxTgecED8qiMKhVpRwChoBWOrJcTRzPrqNotLWVrJe8qboDJxFl1+4po27mZRYRpTBACkEtS5CvRH/gAY1cZjJKK4RpYNehzCR0U2z62/lkYRNPNCiXVcdtN5upromsGWNM6RYX5Wra9I/MdJ0YYQhEIQVhHVZdrQqkO2GQ1iWTVEmsKoEgQQhk6aod9kRey0VojZsf/PnHzZYT4aLhbHa1Qn6Ysy8nOcQ+K2G9Pb4pzW3FsDZzifYtmDGeNtySmPX7QJZ5WPdrHdJeMxK6zhveoCqSVomVqecvP7R7JbGD06miNAjcjovbdfJUSrMpS4yxY9qQkqIqFYJep6XYZD45N0xYFPnx6SMJrO3964m4CLwORMBkhskszpVvW0olz59+tplfff2b30/APC+uFLTCLh+IZHqZNeLtIoM8UwvvyxJcGnQY85tp7ukgaA9OPY8UcSgIP5u+ylO4KeJWdbnMC2hOkLO/SuJE5N3wrblc59lHn388jycdU90A7MZppI4GBa5+4rS849mft+84orHsODhsjUHOh4cdlwmLtlPpZ2o4vSohrMrNOlvkeDRiMAzYSNSNv4M2KeGlp0CK0tegPQHmVFOta5s3k7K4BDnqkoC62Eo8haLZ7BLnNi4vlTnUqQ9h6ZNQZJnbrlaLylJBsZp08DXbNNMiS8vSo0zyQiihylikyVG/P53PGrHavv6aiqFJ6aEfJBfV3nbPpRYHkmd1n1GkGqSs/fT1J9PLgasW6cUyK22ywyfSjuODcR+2tqfrM9tuXWhr/+i25UJJz/+lb/+GbQxWy0RX+fLqx8v5VZXf29l6/2TzDIh08/Jid/fWjXs7tU5b3ZEluxuSD0EAMm1zdfHwsd0ImhTHZdnq0z/64Y8DV15dLO69cXRy/rjVas0vixjEpvqYR68Zu0nLxNHpsBU4w+Hwva88f3XyKEo0UJI3JecVgQZC/mr66upVa/iVe39y+nHLbvWXba/jPDNOV1DueQFcFWjQikJUGmTHb2VPv0hjAiWDgNiUaV1zrajpQGwSirNm4rbtqk4hYEWsPRdQ4wzoN+PVSX/YqcoMKBH4Vl0WNjOb5hIaZQKxQxtC1j7tXE2CAnxj7CYfP/9Z+4ht+OccF2++9d6Tk1WrHd5yYVYPC67f+bXXH2enw8P++uTtudtpmcvZdOU5gSiKyVU+HGzPJpXbHjTwoomXo2t7V6JYnSY+bxmgfZm97PfsJht2gbw/S+vRe+ao7OwcieORoFe2++ar6T/75e+9n8aqAeft7qvjs9Nf+MW/NU8/mfOz2Vl5cMNe6C9XxXpAdnbv/ur0VZVc4r3t1+NnD5/OfvtR/Xi7e+35xU8Pdt/9m3/r//hf/eO/+8t/5W+d3D9p5vmNd/7y/NWfL1fL/o785//TRzv96+98G53kfzDc+zemyT9j9SnVd8P2rQFbf5a8aAVlfj9q9cuCnU7vnzEqWru9P/zt37ux/R03+GYS+4xsX7tB6yq2nJujnTvL9YOjd8TJzzFaP73zxk6RHcynzdXiIb3mNOK8mCfffP29n3/4M87L4dCQTrtl9Pl6E/EzZ+tek10a7gKoS4pdBikDrgByXlSu74lq7TmohrzV3VMAbhYrO0i49RQbNmXXbbO1iSshwsPO3pfP73e2nZPJDyv6wvatfrh3Y+jkfOQ6HdfwpssPB+ZNmx5eTj7DttOu6uREdUpxefmKFS0X62T+uWO0EaDYfEEpQMqkwtJ6oTEnNA2te6pmJm2oA9bZ3HJtSqw6h6VxSVBb1S2IdQETjZISEQxuhC1DADPPke/2ERVFEptmnzlxFm9KhpVEQW05zJ7IDdCoSYXpEgU4hqVQDbOqWi9UJZg2KD6U+sxqqbokjG2VGZUk4uWi48QmviGVrsVT26pBHXLOCQJ90Cc2qXAOpfYy5gIvZzL2K4uCqkBIM15pjLSCAiHN68bfzmHG0Rwhg0gfIhPJvGCCNyBwHGe9yUybIIy5FJgSDZVGiYayrLhqTCVA2VQQSsqagIyllEm2oUbHbY24qNM0soywiEWardpdSGzEMC9TYNOeag4o7TZ87nhgsTzvdvurZUKo1dSYOJimWBdA4U00DkPgAoYNoxTLjJtmBNAwMI/qbCN0Tstxyx2DDpou4o4bVFzUTRMGflLOFZcAZ1VZ2R6RSc5MqzZAWm18l2yiaXcwLOuJFI4bKgj9hq8MIlnbTaMrWbpAEbESpNsGITc2Is2h7QRFzpllRvHSspnJwHKV5a3uT3/2qbdjPDM+i5EFEleo8zpZWAe/XrBky+wH0K+AwuIJnMp27xoxauYEMrRUFqEE+8b13BVkT+yUeeN7spqXUyPOC1+nGtzZkHLl/cSzdo8ffxgY3bJsubdcaaxz2svjS6RB2/W5FNSkjZZe23NNa3Va24p6Bi6a8173Rms47o7Gj189dbVYbRLV8DJrsrxyAiZEenb2ZNxJARhOXrntbl+jJ5D31fpr33rfnS/PF5zYxoEZRMsm30TNenYsouVgfC8IrvN1QzU3daWKcnG2aVLnklQbcRHu9+OrRXX1zBp5zdX5APof/1mBPPtic6GUijbD0d7uYl5ZtjRJL1rvm7hv2FyRZc3PBz3LFY6OKu3k13t3AnYw25k+eXbhkSPFM5OBbh821abtDiEoWu5YpMNOe18kL6ukA/pDYS4NZ5vWBNM8j6NFMt+sCFiddmlwdT47aAcgMnVr2VRwe9yDKE9SXK4dBpXvUku8KchSVDkDoOv4kDiL5dr2vFZ7OFt8nCTQ99oWJU0S27Xdc9rWbHZ0eNuVhYl0CYxwq1vnEwHKBhE/od0gEjCFjZ8L7VpxU5UHO3e80H7x8sK1W7IK7lyzfuXX33nxsLx393+9s3Pz9PyzePNkNj9/9eCyPzyyqbezbbx8tjw5efCdb/5iv3Ww19kROC6avGECFfYcZy9fPjy/fLG/exNbztPJpGV7908enlx+3jV2dvvvaa0fPXp05/qdVXze673vmfnOVj7y7s2nz3xrwSRwcHGw98ZX3pVffHF6MTsNQlZWmUaqynGr016Ixf2XnwW0d3lVrqpsOOqJGI7Du/1R5uBCliyvDQb9qFGJNto2lrVTNQRpQrGgmEhF4hX3/KSqNQFDywg2yWPfd2VuC2Fzcu4GDWYlU8hmPcmBqKFhWTV7ZTKZRnFNqlReObS9LMr+qJvkT/rDbgzlIjnrd8erCNth2xtYT7NluzPcv3d3sdDfuf6dj148rGnnLXe0usRUkqLUQknqIMByy6q7TvE4NXaDUROlise+Z65IbSDaA+0oy0d69eTVo1eby+/vfO1r6JZjbH2kP9ohvRou+lu7jv3WycmD0c6Np1/++Oj6u8Hem3/0D342tm65/rnOF9VyZ9i+u9dybRL84Ad/+M3vfeXs9J/JrCgS+O7dXz2ff7Hb7hx+6y88WcVdF1GqPn74heVturtnjz5Pt693zi/rovG++v33P3/09K/8q3/7/suP4GX/7r17HNYRu5zro7fe/Fd48fD+J7/f2T1MSqee4F/7C//ep09+eDgMr701rByWlNPd22/Hk2efv/if/vJ3371arSQ4XFxJRX/uWM4ydl9c/bxYHGMvV/D2syfndhteRWWp3b09f5o/qT3FfaisxoqtOH++132r4n6aPwtbO9GrsmdCaU0rWHbar7H8AEkHhEsQxvH8WNjL4db3V8sor1ZtOhbC3aTPdvaDXOBWZ49vYn4p3Mbo9sK33nnzy8eP9zqmR8MouuyOdpbRslk9bKGAX5wta79rwkmUW7Tnd+1oRfZ2vhdF66QuWaMdAKjlCBPUUDug3dZbqnEblUHIi7IyjI6WpAZNIyOzHGFzLnWG+BjXY4iI0qVhUAnOhIRuqPLyS5CPuTAxIUztK2Y4vIAghVYljRLFEbNbVduxLSVShaEfrWs72C2S0oLQZeamgQBLDCMTvVsXUXtUJnFo4QERLCtg2M/z9KDceGEH1pULtCVVgjc+4yE2JAfLBkyx0gNsERMIISCATVUbJkVAKKWUasxozHEh7ZJZVDcIlGbVgNrAXZM2Tc0Mh2BSlYXj2xAWUhVcUCkNQRam19jGOI3XlFYUu5CpvCwdl1GD5XkOAHBdGyht+qakuKhKBIerxbI3tBDJaw6FjKgJ8koywyO403Bt2S2pGgJoAjlxPZQtoTU6SMACrGXZbdA5I0MLTlPyBsGrgsB2zRMZK6eQHTAi8LLJG5m5oC9ByrtOb3087bx2rdokkkGluF1pCtlUbTDpAidPz6F3YKu8nD+d7fUGIEDxbIZL6A+d5epUYn8wtDfLSYvZsIokRNDYjtOHPcvJI7+m9bRhL14+gd1WTp6Xy5kdHC6LV9NoeW3/18Z+pcTAMzE0F4K7Advu7DDLsnKbAy0NYQrd8QLD8q02FY5L8ijFGOeKGF1tWslSPc/11IGgKt754tUqaP/C+eVypzsKnHZ8PG/Ps9H1oBKqkJVJA1Xzcb9LdMXrJXYby7RqTUCvczAemqapON4ZH8TJWjZOxOVqcSZkKVUL8NxHPvWsj+8/uvXGjbhuogXyDPLuN77l99JNgY5ub4U2XK1rXL1pqRLwPFq+8m/vTy4+spDYHuxsFuuq5KUA/euhYdwzKdjML0wu1lJefjmpK/Ag4/bACDp2cnK51zvqu53NdCMac2/r208//2GV8eciJy1dxld91WHSv8rPRyw0fGaEtNCJNhov6GWRoeSQFRk1Rta2Y5GSSMPV+7TTmvGzvEohmOvqXDbMMCFQFkSCi6yMC0cmUYFebb7cDxxLuNAr4wS6NqNluapVh4SqrJXhirhB/SYtVrLKPLIlKwjYacsBCCKRXgWyNzB7mKhpPJME7vbg1avPW90bLbNO5i5zUMstRYRta7/JFzsQpGqT112X7YDsVb87LktsKdkq6DR95TSs7R7uXt/65q++8dGDDyjKvvWtd+8ff3G6eXgWzx4fv7JGphnau7s3f/SjH7x4+AFsbKQ806cNSTdJ6nmBqvNVfBYo/8EnH4/a43Rl9Q4H2dXjB5PHs5PLapWxg5Kb+nxSNJvk4vzENM1bXTJfgcObo4hX/e61bJU1CM8at2+2vvf9bzw4fQw2WVlhm9CyAcqCcZku567vtNPmYrWcX79+PYtk6N1WybJl39qsc4pllh5LnVUcBoNxDZzWjEosqvKyUcBSgd9A6gtCSqgtoc+iTFHoy0poeAG4U+N4Z+tgPUkZJTWIlmUSuqNNzRA+FEtpezWyAJrnlha+Z4DicxbY+XLBaqvfPZCjIAX4vXvfnCKcX+U3+022OYY3X181EwMUNYOl310/K5ebddDxHS80TDJPVy3Xbkhzu2dWi4hZHt/U1LUGuKEIy7ev4aqcnU/mjz5+bWf7y5czCPUtx5+tJq+/95cfvPxtP2j/g9//b99+/ZdJm56t1u+8vT399PGd/dsCrpan1ZYluDoXdATah2f84zDwxHxpgc4SGv1RvpxOtvrjqvpuZw0wPeeJfxF9qihv7X738njdMu1+u/0f/T/+g3/z3/n13//dP/1rf+k//p1/9A8r8mgQXLvMgC2wKVur+Kp/8PInf/B7d496Qe+1Z48/e/+v/4VUxargg8P9BBGBltTrrl5+GJ9+MWyzSneKuUPL+476dLS9u5rnJ6cPFunjXEdjdg3nVYsNTy8v9lqFBy6HaGtxMR6PmFVvZKS5XQ+2ulwnSVX2tm+v5QnoKsW7TVpt+b5RmwVeNSRqdcdNtTHU24O+yldUCkhDS9rFdHXWH3rE2suilUEXcXp7zf+8vT353vv/+//ln/3o7p3a7Q/ypOhZI1Uu6lTrUpTNOlqsvZYznS2JG8vU3aSJNi6a5hqCS01QZ7g/uVgbggW+zat0GV91wgBitlzkjm1aLoegZMiqm4rojtm1y9JQ2gd11wmTdGMiekFMqCVAOkDFiKgvlS5dM6jh46radfSloMuaC137mzgT8GrUcoy1WVZ1ljJt1RBmqG5slkJcZSAwkafqHmSvzOADsnlXrFuMPsJY5nVue29laViDCfE3Ud7lQhDjUdcNy6oBjMoGhOYw2sTQZZGAVjFVyOcCGY5nhVhUWZ1qjP01ELYR2ozyImdYlWUZMANBo6gRYzYFNVDSYla+iQk1KGZl0pgWZrq1SdeyuSSQaN5VwCzUzGJ7hrtQWjbcRygzqBNvqjKymN6WMk+SDJl2nFEGKQEaOVgZhRbasIabuOz2UJZeBc42amqgehikyusbcTE1E9necer5BhMVZbKxtV07G0CFqeyUBnv9phFCbxpeIUgNS2pQmywQKg27RPJNXmycblcqSJ3ecpIGwXav50fPi26vg2G+WW72rm9phdJFN+hvGaSVR6g7PjAcBtKlzWhVwrJyvaAn6knLGwIvuMjmTy/zxp4sSVSw4umLugGHquOL4OZw6ze/+tX3/d2gddDt7m+FWzvOaGD3Q6PrsC61AG3Znqwrz2XDoW8bKnSwCevQ145heqbtebXt5GHL73RDbEaAxU69qJcvbr+73zkI17MJL7mztysBzXNR5XWaJAamomygglCTlj907NAyvcODa6PRaDDoe4E9HHUOh3cPD3rtNuoPRtuHh8P9gIZstP9um5CeCfbcgw7LQnPSsprRMCuz1Zbb2hrv5KDd7X0twMPr2y6ka9pruzkH1frpSfRks4C97jJBiG/eHB22vSe8+KzfVb5rdTr9e6+/ee3mbmdovHHwfrI43xps37nzbgUWXzz/KC3KSfxgs85exB+cTH8/fvgZPkOrjZqJRVq/zO1OVHW0QFt+cLv9revtX9oZ3907en1wNNgdl22ZjI3Xvf57Ra8AwVJEVcvpm6RVpSxboSzaSH4J1cqmyGTaMZiqZdsaBHSsitDgu7Te6ZsH0zjasqQEmyha47WsNcFVA7NDR18HpT1odVzLlmUtc5mvVC0wc0ia1oPOnkMNUpFrvTf3Orsyvo2Mc88X9Xo/MK9VmdR1V1Z+261ubh/5qH59/FoXdAeW9hGD1YlKX9DmmNRXbxwenHx++eSD2Ws730oudHW16mGnb9jvXv/G2H3vcOfo8vLj6eXV7vDA90wNFhDMTo+f8YSSyj159FyV7csVCejOjdfu0CAfdWSm0mRZvTo5MQxjMplwzh89euS6XhrFBKKn+X0K5uD8eTV7/nj5+dQ5HV1rrPwLRZamkX/9nTfbfgtoUkvALKyqFCG02UTT6Xw+Xzp2sJpHUOGHnz+y9m+vmrlDDKbSqioAu7asTGC/1WmJ3EzrtJBGS7OhLTo5MG1ll/mIGh1eBxbdtmwigTTdIceFheyqWafqVQUumibqhyEGleVkTT4TdmwQp1oDO3gNqE7HUcTp4s22W3Zvbh1ZDQ/rutfGipzw/IO2Nd8avlXFqVWdscJx1dbQtMS8wRhCVEGWuQGzbE9xlqUlxUojam6Nny8XjJiw1mldAUwP+tuJYmdPn+/dfKcy2h9/+IPeFnk0P3v97lhd5ab284y0wh3P9M5enHq94bMohf12TVS/q0bWHB33adHalD04fh+n75jDwcoyod+N45T5/Kev/qD9xnuJtZTetckZfXT/B1CVyVzbRnV8CnavfeMf/e6fvP/dv/rTD9HutW/+4I/+zic/+eM99v7m6vzk4Ylh3P34Vbaqrv74f/7vtzrXeOfeo7OP3/oL/6peBsc//IPaLcitXzTp1+tz49FPf/f8xfPh3b/QCn9r9uEXm+zPToVw6MHjfFE6nULA3dG9m1tvDYfD1nAcHLptz351eaKc/surqd/e1OXZ2ckC+23TMSWopSqxNMo1lBkxgTbpWuqN5G1EoW277dYAaMuCrxNqo6o1rxoYhC60VVaa4bbfecsqttqOTdy38s0rHR3/1l/6T37ywYeD1lV765fmVeSPdtYNeTVlK3CfhCyVTWenf/XkHFSnINcIzBScU+hzENfcZdSdTi5Ni0s9r+qJkLmBbazDPMGmnfm9RVOxOMq5ngPpMlPH2X2lGw1sIUteM9uhruNjta3qQ85hUa1M1nN8IeArJbGUG155DI0pGEOx7VnXup3rp6dXVV1rnRtWpPC57QnL7jKyB3Q/inmjpNQ21IcAjARKC7URmkEausaNvFwSIzNoWOUA443vIYceQhU4Lk0SYdljTbkE0rH6gUsreYORax7uGLVoFutiU9YikGTXchQiOZcRl7FEBcQNF1lerBsea5UVxVrJsq5L2/G0hmXFa4AB6UX12mwRzI4aMFQW2NSVkoDZeZHJqo4prSjyarEIPM9pzUxvY9oNZRrARqGYuHOnNxWyKJZjXV5L84nlr8sKMbSTZhXRpmc2axX6gke8zLxwC0WLZJO4WwGZcX1kNikvYoGMWhgtxFMpHVEK3w5qQYPA4nXD7EGWvJAFcX3bsUmT577vbhaX/siGrMmTJ67jCb5h2JQ8AgSkOUXIAladxktk9/JMM8cADIuNilfU71oANckst0dOrpeNQ6Dlr+snWVF99urh9jsjPPByad25cXR0PYTsoQ1vExKGbcxRXRSCGYpKA9QoNKhFCO34XCjT0ExrLfOWZ+X5UaVPmb2AVV0UOTISmbNofmjq9WB4GHZ7nXZf1EBYTCNDCgsYUiGOgLYpdU0DKA4UMJkNsSkFMA1qOmZRZxBJSxIISTW4wjExi/1t5POKMwBs8cpXFzVoH/YOposG6fcYmQIn+vDB5/2dm0442WzKJo0uimxv/26eHAx2kFc9PeNpetXZ7Vt6Ur6Y3lfNudO6ff8U5XFEKXW2DYkyAcr1OuNlc2t3j6XJgPSqgKT5dJF6Vsf392hRVzd3diHM1plVcos4MdNXtnSJ3l0l/8vw2m8C3SK2BtxkWX59SBarV1Wdyka3O2OMlRAcqH5RQH/Q0sWxCSotbQ1c1ACFSlUrXLfarrVI6o7bRXmBBfQIyTcb2+og/cKACJcDA8Cum+MmN11rM59gww8tp0xUHcuqIi4dMurgSnBzV6sKKKeJ8bgXFFGy3dnj6aXhTnx1SGSXmFONcgOzRivDYFkxbIpm3xkXAFGDA9PKM6RQ7ZK3OKkpFqeff/TFi89uv/16aFzNTn+4ePyk3/46MXdi41G3Lbw2PT+d/Mr3/ldVc/p/+0//89fe/leK/E2Rx8PtcpYcV7U9cu3T5avXbo9SIU3z0BRbEn05u3xa1zUm0KT08ePHoqnqUmJqzK6mi3Vad9u4eX7r1nbaxDd6ty7OLotl2tlVBIZvHu08ezB6Vp9nvNRcMAbrutZal2VNEV7ON+0g3Kwz0ajz+z8d3cZZz7maRNC0Lq4mW6Eu0PFxZPu21+tWGOR1tqYQST+knhPPnhEFHL8FeF5WMUBWlDeQ2C2JysTToNVIZeJ1YFSzfA6g33GGC1EbJWFwLoJ2WZugopO0CTtXUF0GB4PQsCvux9X4rBguL/n+LYT2Qz3dLzbmkl5EMB8Yu0VeX16dWAEM26xRJa8Zo15dTJfzqxtbb15kSZZXO+2t6WIeQ0BNzJSKShjY17Ra9g86/c5f6/fu1OQpK9rV8vLw5v7wxnuTl2eDtv/Jnz7RNnTcERRV4Lgvn933AZxn95fl5uvf/SsaNAD85Mbu4eXTyyT5me9YP/05/dt/+z8h2vG3zE8vPoD5cuztffrz86AHmXxdO1eC6Fcn9//yv/7v/+f/2X9z81e++0f/4vd+6y/+ldfe2/3s//kvBncPLuIffnr8x7/8nb8Ba+PanfGD45e33/lm9eDlw89/3+1b77z217/88APRnLsKXB85pvn9Jt988MF/+u1f3/PxN6z17Qz+pF0m43aSYq/raKPlnV4llTHJN1g1FaA4rbXhAM4nW92dJIYFamQqx2O7KhvDwKqWEFCbkOcvHwZdDxtzSbIgeCfj0PNkvFg5Vq8C3NXARR4gMF6fH/Z8IpMMnXEZevJgsvpvfvMv/bvHHxe1ern/+ven6+ro4M0snsar8ybW48Gv1vlFm7qLJwJkE9senL0QPjOBQHmN7CGvZdYhexbVq9Ws1+8CpSuuPKfLK1o3SdCh6Rph1fLJW1is7NaTzSxgznXTKhWdKRXz/B4CDq8WSiZeOJJlmFbHqPGpain5ijEkOePiEqNdxkSjX2pqKNFrCtJuWas49ZwuRCkg1Tp/ohXy3b7nXZdcGN4ZYrwRRwVnhEoFRmU2ImCBoKyrnBDfYbbSieYI6V6tV0gOTDvN+BLmjmF7XMx1YzvkgsB+pSwAWpg4ppkRuUYolrIlpZJKCI4psaA2tNRKSNvWBoNKEEyQ1tqyLKmwENrDc1xXOgJmy5LgmEJBGk9wYLrtMpOyYq5v5AVg1MaoDaRt0X5WRLypMKKmSRUQVVXwSio9A0BXTRfhIE+FBjlkZVNnJE0Kq5HQVcls1e93WWiUF9zxA9ujONUVNdJl2mm1UVNIS8rNhnSIbgCmitqykQITKZuZaPKyNgMjaIqV0FLWNbEw8w0ua9RQTJCUdrnsdFwEsMwyNBzwzaUSFe0MvEVx0WLDaj2pauS2e07fqJJLWg9F1bA2yadl1lz85GdPO63dvet3/aO9XIL3t4e7I2tVzxo89lyBkWDElsIjUFHAgKohyG1jGwHl+VaUZgUvTEaBBEhhRSaiklmK60rUtaVESA3s96IA7qqA9cZtkSbakAVFiNpSFxDRsNWBSnZDzyQEAtjwyjHtUgqTQdO10yITstJC2o4lOABJz8eBMJXCKfNAmlWxkcGxsmbW2fP7YQd5pMfT0+PzD0x7f3F6YVmQSWlAbDhu0eQVbiB0WuRbdXNsbj3N6w42fGdkw/SoG7rzzR9/eXa8t7ObnR/nRa0VDa2WjW1XW/f5n5V2fTZdNpfmvfzNe3t7e2AndIfP6s+6od91jEoRSKnMDIkg7MCQ705OJ632a1VTW07hekfxZWNhv91y1ktmAKsEn0P7qYN2i6inhRNnC4MJRqHNhgroWihepaKEQJS6UaFnlmUCJHcczevE98yy8nZdc9PMdCwHva3SMAJIgCPdlm7StWt7BEuhLC6bNJq5DqvR0ncNj7IyU6whrrUFSouBsQ2YaWKga5OEvKAWbkOjNNwqE35VnYR2Z12fA6NEtLU2Fpxbg5CXTZXWJV3TntpZPiz46pjaIIteDR1qKV2V7P2v/cYf/fmPr9187xe//Rv/9//y367LU+pdTFbqzq13CKqh0ptVJm6vLJNs79354U9/bBsGdeDi8vLyYmmFluBCQFhmuWg4AABALpUWaTMBRFrh0x8+G9vO1aNP3aEd7naik8U4xERYN3aG63xTgkLm3DbdTAmM6GxyGfi+Y7lRFJV5sVgsKuNgpK/zyWSX3fnBgx/de23YPtgX8wsbjAwNz5nGqwKXdWOVvVoVYsKooxqTMliLtayA05JJc86MFk1eL3Bqt5u6XjNARYZQ4yis53M9uu1XGwTla0gJiSbr+nnYZrw69Jh7ctJkBewEThHQ3Cr8jtFp3ZxWWSQm+txoo+sJj3qeurqoVrPzW4MjJalpeJska4f+5brgDcsscno6NTynAcIy2RZiOm0axRm9oMNxfUHaZkcOynnyNDtP7aBjbhkHg0Pbp48//znot7VYWMrwZHr2svzam997/Oc/Bubwgj/dvfGNlr/z7KMPbtz82h//8W+3qFFehTgcvPPrW8GN9tMf1/NjQ3hn6+MXd8bXP/1y8W/9O//hj//0T+zw+v/8g//2N3/ju3/6O3/3t976/j/7u//cMtzw+t0/eHH2xaOn73733v/yz//45sHdvWvmfLB1PCt2TbuIHj340c+CXd3e/daLf3F+sCNnzlmn926qXFOfPPjp37918w3W/q5Ma1H8fLY5d3wrJf0r8iXXg1C6UpV2dUvzldV7bZo+74Q1F42L7jX5Qbez3kSf7PTuJVGdpZt26Jm+iZBuGhC093xfQkgp3VMo4lwQfbsRZ5bL1vm6F3ApskJBryccCqvcNiwjaN/8/Id/fOvuu6tIX14+ff3NX2i84bVrYXJ1WhXTrbFtbNlnTwpRzy3FfOoOdt5ZnEw8x1JlQzHtDMIk2XSDdqNmpuEwirTUTV1ZDlssnoRhu+3aUviWJZtqIvUS6V48G1veLC3ShiukRn7oKUYhmgPNDcMu1COAu8w0EUJAdBiUXJ2VGbe7SsoJIg4sOg3Htdi0h7CBMSaJ5C0pfKQYVNxyGo7SiteB2dbC440LiYXYQiNDSg/gK5spG46zrDAcxQgtsrZF7are8NqQaG3YQZLmlpkJiHRFJI8QN4BbITMFJGtUYUBCtGvj/rKsCYYIEYyhEAQAhCAwDA11zWvJqFHXNca0qhoAgFDKNEdpucBe0GAmtcWoW3FIvJzQPE8BZiklA5NyyOZIu1wtYT2gyDB9oBBcZ0meJxTZjFlU96i3AiA18E5VYsMGhgkI7RKj0m7/sJ6+tL028zvpbJJgF4PCrHjZl/VFGlBKRw5/Vkg5k1I4qA1hIOWUEmN2oYZ7YRKvKRx0dhvQLBueGaYtufa6u9lmbRBP8TxtVn7Xy5OVlsVmvW6PDzQ4Jtg3ukIZ0yAAtLAnSxz2B67t5XKpJVyli9HbBxeLRS3RFy8+xSx485t3153pC86v3X67E0xMi6hioAGSzOVQc5XUcC2Z0myosQ+wWfPGNEmaZYBgJWHJdWB2L6eLVb1A2mwKiYnrhxZmCjdN3w+o6bZsq2xiHjQEACct+r1wI0tKA8eykFKUEQQVRghqjAlQopRQNzwvykQpgSkBCkINZNg/nb5wqCVTHG1WtpEddfxkAZ+VZ063a5AxgCvPHIzM35B0ErhZvsykBVIKRy2zjp/ZBo61Lq1WaHWFNCq0KutnQLuWSc9njygM7tzZXa/y1Sr3W+NKNFGdNHjTAGnOd6F1tmXfiCStwQZ428IHC/XIjG3c6doGaGGUV2jqDpO06BpFg3ao0i5b82Za5GVFVUmgNVhF5Y32WLtKUnBnxYsVX3bMqV4s68ar+cKgicVSBBlQlQSbRq3Xk8ghNgVCE0YYwRAOe7uUwTTNBVKMmgJXAADLcrLNut1ri9rHILUsUFQzzKCSwlCCEZMJilPWCslkfdnv3GrKghobjEyX+IIr5qYCUlgPIJy6wVwUY4LNYecgjuHQ6cJqLoHBHCvJS6PueCzf7TbzZLkfGGfzxA1aX372aLS1+/SDzyqt+/tvnD+6f9Du3D3YsenxH/zPv/3tt/+ar3cH18OtsWxKv0wjAB9nyS+PrD63CEHZaMSUnTz65KeS52+//fX7n32+WS0ohgAAgrAUQgLBWluWbcRXz7nMaulFl8Ut+VonRtSsUmfhYrY16u6kQdrEq4yXhQBGU1ZCNtxgJEmivZ39P/vpnzLGlhNr6HSv3/Omk5nIlq4M06Tq7h+lm6kAtSr4yFAh8XOFa2REUPZAYBh+Hq8sFlDTYhh1PKtqMLDuIww4tBAisPaUBDZFkoqN9YUudhRxtNEv1gvLG1H2LVV9YcO8qOt6KbCoFi+/7O6/3WrteMYYFGfZrGimDUHuUnx8uXrYS742f5KO9o10FdveMN00124ePb7/c8c1A6et1lG3lNRgdZlZbdez7OPLi9o3/Op66Hq5PhmPDl/MJrbdquInYVux9rCp2MMPP7yxf1jqQtqoPQqQjnvXty6vfs70i/XSOrr5L/WObnz27Pc28zN+ljbxjnurm8++uN7bvTi5Sgc7T+Z/1DOnF8txyx5//OjPfvW3/vqjFw//5E/+wb1f+M2vBEOS9bwO/Sef/dmfPPvZt7/y1bYc/xf/2f/1+muDzx9ktnd07823fv93/uy19+9e3x7/7LcvG/nhm3/jf7Oa8xefvbh5rYJdfPKZGr/Zt/HR5//fv/fmV3+DDtynny5C+9q6mLiA+mXHsGMmWdgpymbR3jlc16e1QsXlH+z2XifS+umHP/r6t36VtFH06oXidRPmrDHa4Q6XSZkvTNuICzTcuwU3NSDUYntZtnYss0qEawdVzQMTcFcWmaK52t7trwVnth0QeHz2HG95OqufPv3w4I13vfaQGeh4vWIaS3WPsXC2OC/NPzH0+OLVzDcyXniT2XIn3FaigUBoVfAmUQTyygLCbgeDaLPx/Fa0XltOqBXKEm17ZZ5vfGcXI54Vz21/R1ajToAauVSVh1kl1HPeFKoaETmQdKXh1GTXtIolmkLRr6uNBo3MXkuLM2pVmFKEJIE1s1iW6tAfNpUCKJdaYdi1DC+vzqWsXDMo6wyg1HMChrp10ZI4sXuPcDlO1wZDnhbRahNROEAWFmAO4A5CIEvjIPCYIaPlouX0GNGFXddK6ZRZaKRFoaiqoG5Ig0ltUKy0gFArKSGgGgpMgOZeWdWUQSCJRlBrrbViBEmdaumYHsY4RzLkvNYwg8LlClLCtCZFTINWp6yjpjSpRb1Os5oXdYk0cgi0PUdqsOT1Uqp2HTPDwLWKkPZU0saa1SohZZFakZeUSX/rRpHVqRSO2UbMbHgpQCUyYN7orC4mrjaACetZaY/jmmuzxbN0Ra2+Aqnl1ib2hEllUlKEOeee7ZbpirmUb9Iq84MgVHrjuGp9KaTbMj2rWQw9GuZkqggkSiwn0/aohexKVSshcB7J7gHkPF5FaLHZ7N940x0R4/bR/GlpWaTbBTpobaDbFDWBZZFOgEbECAHyMFZawKpIlb1pYMuTlsmQlLKsJUbGsizidclhy3FqaiuTeJjBClxpWFDgK1g3lEoALWSDRgW9vpYGaQQ1dFMUiODlpmoFrgGBYZlKcaEA5zLNIkQJQsCgZp3XjFnV8gMZ5cvSXq4kMRzueRJiZTJoVQVUNTip0mnLDKyhR+i4krFFQJZB07B43DjmkGdOaKGCX6hmGjjfF2LpBmRydWKws6Px9cVZGW2oC4Dt6rQooiJiJkoJH/e7w0OaQUul4PnLS6RCcqsdmOMsJjt9r5a7peQFW0TqqawrWHIpFfWqwL62XFxQSyLUlrLsDa3zWeyyOGNLZQEl+z7qOrin63iWCM1gHEcMM2kHrtVCwGTALqqYJxgyL/TMWCRECwprwIGEtcXyWDMnC4P+PsINqbLSRrrWyWY57I0xyIsMYhpaJun0YLzOW24BIJxNng86fZ5wz+3l1cpwexCUmJayGriukYCfUxTwvMPlIwNvc4FbfqIQ67YIYGXVtHxG2p53eroOYZ8rU0I02scpX72z19XIinI/Lnl58qxYPVpn/lt7b/2T//LvMhrtbHmv3XkPeyjKEy2bWVS2h697noOTFBtE8Oq121//nT/+3c0s8nr2sD/4jHMgJReKYiKkIJgIKe6+v3Xx6Hg9Xfhh7/gyd0N/vlnYCFSNe/z0SejQN968Ne73Xrw6MxjlNVKNtEzMLCtOE8uyHj99BCF0sTvq5rPLDzr+jU8ePHy4PLtr3t11EFmK5LyKHSMw1LrXVFFK1pZ2jR43JVo3ak6oD6FTq4iKsMxNZsicmwDSKs4DD3I+ZzQUpStTv+PuYr7O6gsBvb4f5uBpLoMQWcLjq4srp9WGMIv4EkfHZON3tu4uXhzOp6/6rX4ZLR/c/6cQmH/w4ndbw4tW85cc29tMV/5wEG9WCGshVFXr0oiIQyDQXstpat5CRqzoJqsVi3aMO6+qE+VU4xAa3vxqfO5AE4qYR7XK1u/c+9rv/eBPOrvf2Ll5iIExNHZ/78f/6eHWN3Npv/mtf/kP/+y/3vZxV9sMX5Cc6FVSRPnF8coYsuj5Sl+p0d5Xnzx8vCwffe2b395sNr/9h//jX/kL/44d+j/66Mv04o86fufRDz97e7v3V391+P/+x/+HpOIUjg22bI07X16dX16c/O/+xr/5H/yH/5FziL5+93vG+u1P//i/3tlOFL32hz/8o+//2s3p0/lm+nBOX/7Cvb/5B//wR12nuUo+bg0palq6+7bCXq8XmxnXG67Q+flZNs9PNTuRuSNS+tX3frm/tX21fPTq8uGd8etXixfX9t4tC9A0hFqGRrg37BADFKXye36hJqa5bRBWywvb7C03ab8zKpssL/KwNSprSAmmVDaIW44Gaz6L5zfevWe7bWb6WZYFDDRljjFbXl1tls9NgiYvnxg54Gm+KRbtPqCaUo/ypo6TdavX8GplWQPTxFk2CTusrK4sTwV+e7mKCd7kqz3PuV6Lzxh2e/5X8/oMmxXGHiZLiFRTM9EMqGoTuyHGxJB7TZNgbCpyzAUDugMJ9+yuJguHUIyZkFXdKEyd6eTYsAtQfZMqYLtZxed1lVe1jzTtOjfizZKYDUKkyGdlmRMyJKAlNofQyCDJ2q1+VhQYmbaHyiYKWmGSCyxcrSMDF0VGbM/nIjJh38VWwXkuG9N2oXQYobwseA4pZhJqLhQERCtGCJNSAcldy5VSNk3t2VbDa8s14zQllOBm6dG2ygA2ESHTLFn6wYjXEri60Rcm2qrliutca9PwUgBAmUNCtWFgLpo8TiHgFnUElIVcyKZd145BgQa17Xh1XUHSELfriXiJW22gZRYlwAtVEmvHZI5rF0S6NfBc8eCKHe5qTCjhvKBSaoB92ch2u9s0a8caAgGyog6RxXlsh44o80aVQavNl3Fr0EOkzrk0dW1YjXPzdpqdUG6U1alkwOlulfPz+GrTv3Z7nW9YYUJR+57FDT8SalEt3UHHvTlUvc1p/uHFpHzr/VuiOcfK5MYCh5tq6dAoVKiQdAMJ16jmlStqy/LyxkZNxXttL0kSCRE1QBynlkk7HYjkoC4453GR5by2DYMAFqm1u6jTVrfVhZQ3VS3gdHHRt4K0zhupkGFByoihtY0pxErUQlhKSiUahIlJIZSgqXMTmwofQVoHNnDacymaltFlCqdZ2gW6FOVifUrF0TqqBsNXZ8crrbG2zkfesM18qbuZyARZwioIm5tVnyH3mXnhsrrw+hFXe+fzVeRMLXioRCFl3jKtINh7/OSUAJ+4d65t8XUV8voidDee1QMGjPQZ67m1Wer5jBQyrjnETog0C3HNEp2eRFFkhbY2lGwaqpxy4h+Qv5o3fyJID4d7uippmViiiWXOQ1isrtaLyCEh8jdEKQIVbVqggCEmIEOOY5a8sLABdV1UwqDKJm9WOJb5hDHVlEgWsDvcEXlmWxEUGYCyH46l7JVVklcrpqmD97Im6rdvOIYpua7jdafnQjsH6x1qVhWPXeDK8rZBrbqaMqPXwaOkSq02iLLUw4hgOy5Yyw7LLO+5I1SDo25vHS8dk6waw2lde34mtwxxNLI2KYnmtU3j05/8/fVm8v3Df/l64L5xkP3gTz7AbssJnXHPGPb3G/28ELYbtRkZm5b/6c/+HFDTBIPPPv4kzzIIkWGwuqoAAFrr4WBYXur5eUQtuxIZKMuyEVfr2qWDRlzMV/PJSnqd1s5o0Hc70foKmtBEBufKNChAMM1L23GzeGO6ToVj6O7ON+D4QfHm9lf5VK18clqWvUErV97V8ZwqF0U6pA6neUMazNtZWbQ8VnJZiMzEJE4WnT6u1V1Yb5gWhJOSt2rolWoN0cxzess18oIDSGiZO7XsD1qNgZzH6bQgok4uLuur3e+8tU4UOou2btgr9Htttvfy4iPoVEVB0uXSDczkZYjzD26+gWCo65IUuZEXqmU5eVlsO60aU611y3TOounKraey2lTlm9d+AYDk8HA/ihuLYoJbBIy2D5yUy8qVB7dH9x99kmzK1+99x+85Z7Pz1Y8/PLgxHO5/7/pbR//wf/zvbu/vyM2Z0aF/+PjyF2596/jZs9e+8d0SOpts9vz+0zoPH54tpsk/Dfuv//QnXzz85OO/+Tf+rZ3bwT/+x//dLJbPHp3sDIkkm+/+0q/+9McvqwwNB97Z8SfHz8Gv/JVfevzgg7/1N/+Nf/D3/1+CzXPUm6z16sX/5eaWUzuD2fLLG1uHTz6SlvH09FFy69ff/91/+t9X61W4TV8+ePKX7v3bi4xTG9Rqwan16PxLrPli1Rynr2JVvGN8a55GN24cvf61b56fl8ePn/UHX3m5PH7va29ESZospoNOp9dp10WuFF8tLm0zhTioRWn566oUrtMuK4NYG4GwTrUFatouy4IOzU4j6Kpir57/3NLn+9feYx3UpVYW+QKs2boUOQVyHV2ddj07Pd1x64euwvWyJfmcGTalmyyeaCiYHcaJYZIOtdBivhiNtiYXl1vb4ySJ6oZJabSDMXZtRC+zAm7yl3WTO/SOok8ACLRoYay1bjBViIeEcl66ZY0pGTGzBIziqs9hSXEjapxsNrbXSJgBBCkxIbBDaxi2u+vFJZRdgD2EtGtKrVOMUFkDAg4Y7WOylnoOpXTMAAKb66TIOaWyqGcNrwwLcxkVdWHBNkQGIGsX+02sKnXVC/ai6f+PLT+L9S1Nz/uwb/7WvNZ/3vPe5+wzV9WpU0OPVc0mu9lssqnJJEWJUSRbjBIphuHYsWPY8IURwIiAABEcIJbg2EqQQJZIKQolcWzO3dVDddd0ajrn1Jn2PPzn/5rX+sZcMGJ8kefixfN9eO8f/J6XQ9aisuEeh31OQ1CsCgAwpdpjPCs8A42WGmMKLIeWQyAh1AC2GjQQWguUlFK1UrYKGmbRTewuq7KRKMYIa74j0brxVloDKaDr+gigIi8dmnBKyyZzSUhgSYhG1HQRJ7gLJJxNpgAGyqQGTqwBVksPqlXWxv4aYRxN+WpgNxbVDHu0TweraBwYboGSNG7AcTUraBg3EZQfFu7VUV0tvIAAIeO4I0yKoMyz2uqluxdXJxPKGMIGQeI6SV1hrCKASuBW6XlIWM+PV/npzF0bzZZHXQeQeCRqFzRs1I+AI1XbtGXNAHF28IMn7twca28VjXZzmrbYrp7JjZFBcGayTdwmLVwAhpUUAjR1nTUZaqWQOhWNj6zXGTa4QT53nj85hMj0hgPZVo6LuUvSS0vIHCEJNZCVsgYSOCoWa0pNu0EQKZDbTKk8H19QJI+zJ7xe15giN07WR2mtHMdpG2mUKVJsEQOQZWkah6yqVrJpsYEMurtrDsZU2zUhGmvy2fmRVoqQiBLr2Re/9/YP968nzz97XGZTavdvda4gf2OltWxPmAGuiZRlrVs65TQJXl6wTzLT+u4dBlbrhoTTzmdRbSqBWzgI+g4hY3SwuxGw6qD0vwBjSctBHNl08czmm/KSut0LXUzH5ZmyW6rao/5NRQGnKE6bk/AJcFcIADUOrJIstMbJZ/aPXXWdgWx++p7vr7vkRt2gIFra5R/m83Z1QbTr2LayMmdQdfkAKcXxBUBhuZo4wO/7w8Ui3ejuAlLO0tMIe2R0g9TWtKXyIM5zBVFAdoHAxMnq9kzIMorCoszW+nvWdFeLo7W1NSsJAXXsd2J3mKkTxHIAOMHecpm6rl+XM+4A39mpqumway7GVbcfTOcTj/SBOwnd3lSnSMM42EKAQQqAEGtOJ5tnNzZhW+9jjPqdVRFghR2YscB+Cc/e/ZneT3/nH3y7FlKySXzzShD1t5z4956d9bbD2dGzq7dHRxcHKq2sVeVqWjapERIhIKVECCCElNLz5eJickkpRUpR5mIkEJR1Mz89/nieZ2s7g3zVHp5e3ti9cfvq7YPTy1rXtkXWQk2A6wRlXVV1C123NUan2YXKv3/4p9aEY2RvboHLi2VCeantajF+vjjc3d4nghfapZdIOom/1tiiO02XUdh33BuY0DACqmbIL1WZh9xKcW4wqkCAmOOSgcwgcF1Cqyo/XFbXe0nCzWeTy10lGyiq3eGg0m29gBdn49duvmFFJcY9K8YDXD0+n6KV6Ji2zi83BrsnBw+SQTwIcL9/pdPpPn182PGdXs/1Pb9hsC7KfJExjRtjzufLrhONBsWPP3oeEs9F5UI3awQNfahI16XuNFuxYffpJz/8+ptfK+ar6fnDBk1Z4vhrd++8fuODd37z+Ifv/89e/Ke/+dl/ToeeK8pRFxQ7o6/+hZf+y//073/19tc0Ravu4ER/0NT7FxfFgwcP/ou/8/cMZf/NP/wns/FhDN0v3XtxPCt+8W99/ccPPoXyyulkenp5sAbc4e765FmGzsl73/+gjJOA3Q4d8P53fnv93m3HgIHQtds5WB2+eH1gDVED9PS3Tt796Pe//Bd/5vhU3rv3C2s3744/+J3F2aEbDUuRtzZ0DSEi49N4PWAILONtG+8H7z55l9sir35YaTfqd3707uFifPKFezeUuqwzHYW96UXu+VEU9fL2iR/fyTNBjMOD4bK9dPntwNanxumt78llNupuLPS8tulyVq+5LN79HKEwcNenaavKixGOVzBticKA3/38V88ez2DykU+88mgFEeKyjJ1bq8v7QHbifhf5lWoHGlVn03e21m8uFpPRcKetNcFOWS+SoWMrd1lcxnFMwHqArse+m9YfV8VqrZu2ZeK4GBFIeK1MoeGJkH0pYRQZZTKx6ksFiVMFzk6h2yjueXS9qi+QcwapNzuLwk6Y5w+5S4xa1qq21nI4MNrvxo41iCWnWbXSqRd5d7GWZbPQNqdgI/Ct0XyVTqOEGqPKygyGW9pqAxtmY93WlMDE2WgK7YXE1LzhghBohIGFxJViARKuKKlEDWXMQmIR0rJtADIQ1oQJYTJtqjgKtWgRAkIIjl2EqW6PgAgYsMyk2DheRNPsgOPN2p46TmTxXCjKKcROlhcxdutG5AhCQkMjkBaWcEiIorjmaFsKE/fQbLKI3I18AYHWmOdEzpBOg1UywUyH7EqarZjrZRr1fFsvHzvg9vSiHe5jWGdio47IhqoaCNGqH3qlQlPN9vxZddDhV7CU00Z2kn61kJxTBGCbZX4/QFhOn510HYo7nXpqwghfXF500ACPfKxQkZdEOdV6GxVVCLBOsA7W9MnFJqseXszynb37pyfumb55PWEkaWhaccuTstKWg03OlLYfHl6MRTMxspiP9TILOz0/7terbMaU89H0YQxvba6PqlUhtTWwynTpOmuQ+/MSKol9v4NULvTEi5ks+o3KsoszqQSyTEl3tcpW6RRibzAYbPYDU6wI9c4ncwUwoQ5vMsEr4Iba+IuiYqzRgTptyi7vj4uDJEwCJ6yrrKifL+unMXtzeF1Mzjwz/fGXb+6Ozw9wAXo+k4VdrpreYA+7hWHF0+PzYcib5dkAsLD/zdPxZ7535BQduCJhuI1AWJDH2yo7y0+2tjfWejydV7fvXK9awzt9zHIHkc098Mc/ftd6Nz5Y+WXSrjlN/SGs6GvAF2tJ4TRY43Sw7dQT5jov4PycrRRAcxXEFexSlDqIy/DMiAkT60TsSGfFgplULQfdGl94A5mOnwPUwYRFmDb5op2ej/hdo/MaisarHDSvkG2rrI+6IRMcb7TzvMK5ywLY6JboKPKXTUZJ6NCux2nPd4wpgnhIjb+svr/buUc0kfDI63Ali6KRVlsfO5oeaOVC6mj6aSfoi3IkoayrPYDG22vhbJYPu2t5Ne8Ew7aSTO0FodbwUtS9brxWyScYdPqj28+yJ4kfhk7M0dCoZV1l3WhnNbebna+ACzsSJCpLISI67s0vFs8X/4J9WuP9p3m/i/o70NW9LYcdQVETXSwhBMZYCCGESBsAIBRCAECsha1SMi8xRgAAz2d5XeEgGZ/PY4R7mMr0eHPDvva5/T956xFCFmCgdK3yBkqNgMUOr+saZnY5fSAUgCCPnM3FMYHiyfoLtwDUA+q++/Diw4q+5qzXZ0XAgisuGk9TnzvdyAJ15CCvSmvPcy2wQCkYeOPZOAh2QNNLOjOEpkwNDzKxsdFfLD8m4ErHdaK+PTrbdfutP2nC0D+ZZTNL2DTXugx32weHv+m77tguF9kyTxc5rCCmHCXT+cQXneNHz65e+SkueZ0de9QmlHcoLAoyPjhcu37t6WSx1vUQgFXZfuWV7QfPp4Y2GHqqbDFQIlVxGJVZndB45AalsP3BrbnNQUxOPqm++tVf/PUf/O/+wk/8b89OFr/xb9577X/+C0+Cj6G40ZxXn/vpf0cl129e6/5ff+27L379G6ei7u2/ridk9Ru/sRgvrt9+5aXbo/DKq3/vf/W3//pf/0syw1958W6ykXzn/h8w541ldnDzWv2dP3h078YuzH1g4Ek97txST+ffGfC7V9bvrBoaXY8uZ08id6ipjr3jve7eKH7tX337Hwd4ksNpb7ju0120cVTh9Id/+ofnn70NBXr5zVtXNwcq2Zuns+98+G0/7ibRqrN75/jk4KNPfufalRc3+nsX50S3k+3dRVY1d258vlVsiZbD3voHj0+519sdREtZYwdXFTCSJFvns2qC2W2/N6vGuYethSTY2s5EQxGtliZEZvvK5qoSDHeQsU1x4W8ky7LQ0qPao9xcXk5wY6oDnBCt61ZZyhN/np8QuhbEDnTUbLza6nSqKYg6b7bllDLcqqUBZZnrTjKwdQ3bwKdeVdU8sAZly6JFoLOxDqt8GgSe0Y1smyKPHLJRFSF30wEzqgZllcR93WqjFGvSTYKXIlMietSUVGdXsDsLB1WWGoBHFGee06vKpy7vYiiYI6eXcDSKobxBzZLyJUJVWwNIFmGngnZRNuuOizHpNxUIwhYQt1oor3PmENYqB7s87DjZLEMmBsTk6mjUsaLyRNXWwiG4r5VRUsKaEVfntUCIQKR8HzZNDowjygSifhBeCr0AqIOchHikLacMqQaEEEJK4loCApAVIow8pca4coDERdFSZl0e5KsyiFoEolpINwgQ4m2bdjqdsi5bZIP1UaeZTZSrCtQb9tPsEmvaiwKZTUleXvZGbp73kHYkHmutsNiNE7KajF2PzuQ4jgcudS6ms07S1Vqy0BSlTNrAiFT2HGg91wykKNWcDXpXy7K21jIODWq9wBb1xMfGgxuFrYNyzn0EOIJnHusBRSZa6KDbHU/nazdvm3G+ytXQ2ygWU2lxQ2bdqMyOsS7mzq4J4pHyF93kTnedu0HDbeRaodqVLaKBM2jt1sHpYVtUL995EXEYxChJ9g6fraRscnpyVM/Xe72mdEFjEyemMV2lE+hgzq3rRvnUdRy3MY8qONbSLKerdFkhgJUu8vKilSukojvXXyiWmQK1aFMFlbaAOX7iBlh77bzJ8sX61kgbv5wvquV0UT8Z9m6sVjXsFMY+qCZ5ebjR380d193YxcZeX+/eW107mC8/M2Z5frocIlw1/2p77XZRoCuD3vT8aHMwAk28Wt2v20lsAystJs8sEW5ieqa3TD/Z6oX77ha2rulikhCxMpH1VLHR6+2e5z/ej9enc1aePV8ips+7U34RuE8i/9a56Pe9eVR2i8MroFPfaI4UH9abXuEhAQ9sM2d627dXZibz8Sbky8b+iBjXMwG2Eku1Qdiljk1CG1NVVQCagtiVp2MX05NCJFEc0oRyA+GqH5UYN7JSgJ4GYdeoAJIscEbABHU7pXzuo1G6mniORCgULXVcWKyKjvMtxOZCLxncpDDxHE/qzIJTaQqkQy18h3WM0tShkiwAyZ0k9JyeFKswCbOCJlGo7YQx1vcQMKGULvRqDImoKffGXN2+ir+SRHK6+sjv0trqOOkum1N3RO6pTZl62FWX2aXLrpK2SPP78klDmtqAzXY2ufoGe/T87Gdf+Vp5Ovno4QcQImsthBD8TwQhtNZAiAEA1mpjEEIIAGQt9FiglOpE4eVkvrkWv377xU+ez5Kggxgoqko0DQKQQGysadsWGAWlQRAAABBESsLJOL+1t81phEzdIqaM11ZuaYog0AFhs0WD/TCJ4+WkSMKu0nNrIgY35/lzD8VAmcTfN4ZYp6wFBjbW7DzeKpcraFHdHxaLC1pfBq5S9erj9TV9VNlaFfUkgzX++l/52fvvl3XdNR7ixL04uHBoF7ekrdswHh4fPrl2s3x8LDoHb3/ri7eez88yaOYqGA3x+QeToJvMqhxEvNSiXC1funHLt/j4mF7vbuX2s8I6sVW+9/x0rL4w2itQVs1XkBFEyGQ+uX19/+ZLnR+8/+ubt15oV/nZfP7KT77xhbsvrS7zrVc2isvH1/a+Oc2Of/8Pf6M32qhy8Cd/+ONf/IVvleUnIAx/7t/58jKv9rud3/n2//vanZ03vv75s9njX/lf/2f/2X/+H+7tfG23P3r99r1/8Wu/d+36VRL1DtPzW67/cy+9/P0/OFT0bPeb7OjkAvmLxw/Sje2ByxHG8zStdjf3/sk/+28nixSkhjLz6iv7R8/fbd15r7P37L2PPFNvbFQq24mSm0XSl7i9eWWtmaebG3vP7x+c5o8qlXzlm1/8x//Df2+zxb39GOU3rg02UD0fXz6+e+e1Z++Nowhvb9jl+NGg+0pTuml9ef3q682yy13lRCxbMsVngd/zWVcvaMD8UiwV0N7QKw3sMg8DfTKfjrauVpMFbvS4Wvg4qlKQTudodY70KahDlEluaww2RFlywhBgVilGw6rOnNDBTDUZ1JL5vg7dXSgKTI8c2pd2IlXGXAtt37YecRYODZYnL7mdD2XbGCUg5oRJ7BxipCjxpmrMwcjUuF3MjCUgGpvwuQZb2MypeSHwGomPlLZKhMyrXF+U5fm8WEWxayRTQrdtEfV5Wj9xumfAdpFaM5ZBNgU2VPWe1sQL2HT+qNthLlwX1YBgKeEFhCE3O1Ul3MhfjscMuwijRuWOZ63sZcvWcTqMMACcukrdwJECQtw4rlOXKPI7bV0QarWu+0Mvq0+0qKH1y8y4UdOoFSBlXUOXD5SxmECMsZRSSeFyXtdtEDsIWgslxkDp2nGZMUYrixHMsjRJEsqQsRoTGPlRVhaQ8aTvNcpWagoAIczPGyUFIEY40/NyfddRelEXmmAXwjJdAKsxQtQPFGPSKOrRAGhkgDYEKLeFyzqva+9WoheK2JBwgZxAtqpt2yR2m7ZAFLIwMEUtlTaad0cEFiDXNfVaT4co4syFoqmzReqEbpOvRJuvjRLQNjKtk5ujDx8eIJhcGzDsBmwtOq1Tr9dJ1iB2E2FaHK0K4OQ5q9cgM6vVhTA979q9m3u3t1qVWiVn87JwJ9Iuda6GwVU9oSenq+3biYgNalgrURi4GAXFypT1GeWRaW4RvrC6MlpZvdRWNY3IVrqq/Ss7LM+n0+nUccn5aUYdjpgbhKDhSFdnkeNx3D8/Xgg0J60tTpU36l9ePGvleTdY44568vQHsLnWnX6LhWMIRvvX+grOE7p7/aW1k6P7jFwJ2yav434SqoKUWXb7TrSawXhwVeonLZirMoF4Bp0UypddRkDyYF9+PZWTvG0jj29E/aoRi3pBmZ7MxsgZiCZJV/X2tn9+njYVGvbznnO920FEYIUyBFhRHFf8jAFiuLIII5b5gAbNjmqIsGGKZx5cONaz2jNItcorMm6wEbGDxSjW5/1yKFbatXWaC8mG4YCVi/vGN5HL1UK2NiA6Zk3nsi76nbrMYeK33FNKUgCVtAttNJHbKDyL4gjJvrTH1BNa9+MeBOhjrPYhhNRZtrUGGEolIeoCugJ2QAgB9IICZZoRaqEQgLthK3NGCIQi7EhrPQr2Nakknxubar3N4a4BVhtNvQuDv98lL6rKMtFFReQi5fiM4chCoR2ULS6G3bCn97l00ukcSNLKjRGxl6fnqnTKgwqUtLPpr+1sffD4A2zhn919/3z+WxlrNQDGWqC1BgBpbbW2SNp+d+C5zvL8QgNuNNsb7hz4+dLk1loArLHWQGwsANYCqSHSxgIIobaozBUPkFZkfLnqku7MjC+Wx6+s76+He+MH991gRQLH98N8JazNtCa6GRFWtfbS41exnMnWizreojx03FhWA2scgRpl5jxYMbtp8z3POVD4nW4wmM/4sPzCZfG24xm/d+FvsvceP/9scv/u7XtMsSZPA57VVbG31R+Pi7SYUq/57oPl3VfuOv4XJ+eBbkauxqEzg3WYBbgo6/VkWF7MNjaGFvHDyTzXAqjPUGd39aDZ2xwgCpYL3cctwub4RFy79fqnj55EUSdZ55PLiw/ef3rz5u1ONJzDbr9XzT593tJIyfwP//k/+Yv/3t/6/o//pROtTk8f3Hnh5X/03/0fr195rZjVDz9++xt/4e8GQfDjH72dl/qFl9547fNfkcb95b/5H/0/f+fXYBC/cu8LxfJROTvvRr6m8q3777x4N3n1S1956737tT/b2Nv43T95fPfFL3zy8fHO9kbSZ4zJH3zvu1iS6Xl1Oc6IE9bB9O6rd2fl8TidbvSvH00uvB0GGvTJSZOixz/39Ztm8mgTw2y4cSTBopQn2dKA/v/mP/6FyXkDKjIY7F5/8ctBvALq/PtvP4tcjwZPO4kP1dZ0ChVSk+PnOE6duDGkl3Q+P5k+EvCMsC6AA8dJPMfL0xxCa4zxeddlri5TGG41DR+6EWjFophYSdb83coqzmzk9WRWSBDkadUWTRI6RTEnWDlu2DZCGxz5G6IqAEdVNca0ZThQclUbF1tfNBZKDjGJ3E5RVMvs+Wgt0e1Gm/vu8JmD3Cb3rNQQSoKl1RAoYiwIzFbUAW04McrXOsRMm3wLGYMha82lhR4Ut5BtGvVIwaVaeU3bI5hrpesq68QbdR7qepval9r8CXMvtRFQ7gPgWJgprbWhtj4ZDGhTEIIhYnMhgB9utWKK4VEyiPJsQbBxvaTObBSs1ToXTeC6SOpZ4MH57Mx1eVPVnPa0bhwOETJVNXZdF0JuFF9OQGMMwdB3KcaoKgCifuBT5CvRKEqJ1gohQCmWLdTWAotF1dFSWcAxI0VVcxdqXXPHwQi7DqvqTBnJiIMhqsrGIa4mAgNEIXChr7i0hmZl5noJcZyWYTu+mHSTbV03QsuNq87J5Yed6AWCKCGtlm2dqzjxiyKTUiMnTJLMnC8L4yU8qNNDCyPuR4CIMls4LkEMyEz6Ttyk2uFrdrmQvEZJLGa1oIzCioXaEK9ZVUDSthSDja08nyBsIDLnpwfDwfaj8wu3d9eopsZPKpadShzAfkRA0yCNJg6zBIYY6hBUsZu0Akmmgq3t6y+9nLYzh8fWyrpqtsO1+wcfbW50n40/nq3ev/vSN0Lmnz08i/t1GN7UbW7IvFhZaJ26AgR2gjgpYQr7jFq4mJ8ATUb9O5xtG3J0cv6EEOeD+0+HwzXCgO8Hs8ulRk+ubd9YLOtGPlwUeRxs61qbNrVyPep3ykn66PR9B8fL5WC1/HQyw296VwlHTZ3wTu6GHoQm8vcy9/GyWXYG+5NF9Wzyx73o7rKMTOckR6rfvoHwbW2Ppc5XF7dM4LrdJ8qopnnX77i9wW7Ae1R3OZWtW6fijCS+CD5+70dPfHcTkwK5p8nghmYldy5AuD/LHg89h4J7x7YJIkVyH5KrmLocTxCIsd6myEAlJH7Imp8U9qBtFoR1aOgqw1q1atGzPWftGYi99fiiPYYZ5ALPJwcxfWF22umtjxzL5+WzTgT8xFi7xLJ02KBR1BpiTGUt0aCWdkWpyxAT+QAqB6KK2Njje1XOIVdpMfGd0nGxrAMpBA/nrms47ZYrh1JDqNHNkGDY2lPEpK1cEKWq0brt9vsbs/yYkbAthePmOPWs2mfomLKZ0iRBs66+Uq1Y455A0va6XIu6yYhcRi5xIaI0URjNsiyheIh4C2zD6i5pewT/YBC9vGiI/PQJQcfDzu0dx2cG6H+Lvv9TDv6zJNZa/dnPn6GwMYYSzjEVbS2ojbq9VumLi8syy7uee3ZxZrUGGAMLtFYAQAgAQkgbDQCACCKD21b6I3+ZLiB0d9a3xy0bL/Io8p4fHHqS1XVb+rln2qJoe1EPkZbHrWoDqzyAzy1ZGn1VmELZGUIx5kvKVtZqW8YKMKtd4h1j92x2PIi8l8LwsxP2/bjTKUFZm1Gvt/Ps8Q8GZDR5cjmnrRLF1a3hk/H5shHD3kBrlWVmn19Xx8uNN06nj7l2CR9UPLxzeF6paba72StFgzqBM+pOTqZY6KDV6+udo/NzI6P93d0nlwdt47x4ZfDZwcfWp8sKJD3IKRufPfngx9978yufK8pJqlnI8GIxu/7C7eP774E6u/n5K0+e/uHpyWd7O1+/d+fOt3/v//FX/8rfy/Lpd3/0z/7St/6XX//LP/0P/y///Uuv3fYYHgy7b//oR/du3Hv85Ml4Ub/xxi+ywLHL4Wjt1tHZ722QGy+/cvulJLr/1vf2b355a+OVR+99yBdLMX9HZOPt2195fvzD1UIyuHvlppvNUzfkAj/bC7aWJ7MoRDe71w4/Mv2N/afP3z8+Ogqh6/eSR9NHAeKqoS1Gdd2Sool6o7XNpljK97/3YGvY+9JXt/dvsk8/ZmKF50XmhN2zC3+5qte3HmFvsJqRK3FgW9rhXzHl9aPVA9/XVF8J3HUNhFFQYKVDkLU5ZDABiS4lc4aKw0YtQxBfnBZhct2qGucrWQVISwZ7bcWEpKvqYwtEQnsiO/BdhpmpamOVT8KOZdZS4YCtRf5p5DVB4Ep5XKTWNLU7mIomrjODgexFiWN2Kws0Pa9l6dIrAB8SDq3eMMJYOAfW6Ha9zg0hpRSfb+GEOC1UgTUTahxDHaUrTKcWHyEsYJVhxduaJgNTV7Voie/HRTUnrFX4zNia22tQjowkAC0wroxVEDecWi1Da0891imXPuYzNwJCCIh6Rq+0UAghaEGezjlz54sxdiAhMkh6WtHZ4jwIBkqXmCrCmsm5200cwqSQTdxhwAqEtRSWGh9o3uSUUK3MPO4EVri68aW8dF2nEJW1OgiiGtdGA8585i+m0ykjnKLAcZnDWVlJa4gB0vV4luXMYdAqRHiV1UHIMcYCCJc6nARAag1R0zSuFyJtquXUIdgJ1kDTzLlbArBolxsGaCWj1aIGBiohAFhA0BilkeEU+zmEdJiAtAZZbn0AkCizzPM8x3Fk0zBCkeOkaco9F0jMehSMy6xa9NYGtPFhbIA2qimt1V0/bNMy5IlRfH64BMongUSt70LVmIvUxT88//DHJ98BrjOv6+PVeNZUBaIrQHKPN10/9R1ZBmuDrd29AYKllgUwtTaTzV0NbHPj6gvVSh08eVql02zx7KMP/jSdp1WmMZ2UzZOquOC8IZhWZQvdCQ8WSpcUr3WiL4Te53r923tXt7b2+Wj7ajLcgMS9euP22tY2xOjk/IQyNAh3DGlmatpogoSry0XdziqAZFsgY9fiF4edK5fjJ6Jk2RxN8+8dPX948Oy9y5Oj8fMC1h6GtWpP5+Mn0E0p72XVWeh7o7W+BY1D7vSGvon+xOvNSDTRNDtffnKZfZDmFpg+ie5hsc+yddS6GcxKvwnj9QG8zbSQC7+d+Y6B62Gwn7xUnIKQkpZFKzW3gHEQUzgPcd0DPNEzZCaJDIbqegT72s/KaCndETZfv0AXhQcEDxulZTP29Xxg8bDtHIByGEXB6XKX+KjrLCK4trG+VmI3UhGohMio73rKoTIohdfBu0h5UQxdGsjKg7B2HIehNUiNETYIpBAZQ+sU9RrzzOk8VeBprwf9wYfcW4rGMv8CkVpX3Ty7bBsELJGyQaiRMrVAQ8AoChHUQA0c6iuTI+0boxBZWINhz+jAwNjDURd5feAnynWUyyjsevRKnXWhHrh+7Pm0qkoE+XRWJCEjfJapk1yURVUzX+pwImsnCdWwN3Gqi36xbp+sb8IbQ5fYf6s/J98/8xACa/9/qQwhJISEYahVeePmnkXGC/jlZCalvLK7qdvcVi00GiEAgLXAAmAAMFabP++0MUZC15fT08v5eaur8+yTb//xd7vuRsJ8jXLi4l60kVdWCXc44Jg2WgRNyaRexR0sW16K2DJUyjmEECpKpOfqfVJ8wTZkkIwgbCEBB0d1stHDnXRZePByPWqInbiD2LJwcf2VF4Kr+tPL86PDy6aCnz048mjAMRFVWeXF9sb2BJwvwOzDZ9+zaIG0OH1wEsvh9ENTQR2G4eLgdMNwd1WBWtDInyABPM4aiZPTsSgS0u2ve0/nkSmvIWM4dIkNqeyePim/eO+bp89SKIM4GhX15bW9104+Zah02qX16M7T589+8Sf/S5mCowfFt77+97q9wWjr2l/+pX//53/pZ/7Vv/7tX/mVX27rXMp2djnfWNshMHr86PznvvbTnR5Drr328it/9KO3v/S1e//er/5yxCO0d+Okbr7w1Vf/1a/9Eabi3ldu//rvPTmB2f/4P/6fzi8+dn0zWh+WpZwv1XymLi/ko9PLgrifXRy/9eEPJIFPT4+fTs5ax195Ywc6hx8vatDRrr+8OHBsVWIyfvzps/fnP377ECY23MbLXD/79Hg9tM3E/8Jrd7765u2zZ/NmHu8NbpIGuiJc1E8xrzrJcLG8iHpj1y8wxpPFA4szzLQQhtjQSIchBxIJWIGGqF61DhjNNKwDSXXqKrIoguLx+erB8eLh0fLoEtbG5YHnxwS7/XAncIYIcs655+I8uxR61ehZ1SJrdjENZL1VpTux/2Li/IViua+kwdBYwxhal1Jq/EyqU6O8vBlLZRAFgF4YuDLGY8zB3hEeCWOuIzBh8sIXwCFTGii2mTX6sRVryIy0gqrawuqG53aCIKjbilFHt4koO6buUTgyxhAHcJZRWBE850Rzc53IHQgkYbnjsnyya2QQdGdGY1nsIRgpcGmUazTlLHB5j8AuZ0kUjjy+DsgUgpIQaqTv0BGGEXcZ5ipKCsdvjFFJuN3kfpHi1bLyA+b4ihKNqaC8oU4NcaNM0YoxZ0QpgTAkFEvZWmsxpgbAPEMUddaGu4wxqfO8OgNk7oWFlnW6mFNKXNdFCCELgiCQbYMxdjjqRK5LGEM4Cdx+EiONkVAQsKf93vrJR60BldH48shcuYUM1JNJRgixBgKLATZNU4ShL3WulqSlXqdL2sklwIHrh0U5ISSwlje1xcjRWrfFwgkA5A1ikiLezDQPMTRNPjY87opm5rtDPxiK0tatAtJWTckw2NgaZcty4JXUHAgyuVBnwgEvv3JTiE/xycKcHZqLVk6ZqJYYCkZ7ShEUdUnMWQSW5dT1E0R6kHYA9cgId4ZrzcreGt2Odfjxj360zJ7l+rzJaVk8U4WsZ5HVzWJ5kKdKG9JmPaMxj8vO1qqzXQ42/e5gK3C3Ge/uX7+3tXvj1dc/n/Si/Zsbr37u6s6VaHPd18qL48217WD/Sj9x19eGu8Cbq+VldpTGRPXxlZuje0A+oaZc8zeyXFyen+flg9XsdHY2n54+fvLkO9nYxdXVdPFeCDdcu+azFNVy6DMua0wSzKG1a8DuWToRqgHNixjxpDepwGfz9glwbOQNPBhDYBo7rdLd6SRU1ASDTitH82zidqqTY6Kb2h6fb4gISFa20w5oaao4ZQYNLVEQF4gKTGNGB5TMCfiIOyssetR0GYGg9VQdUzvq8C+vg77Xdy6xwSjYXhVbZwUX/n1xGrrMVq1qIGYdUUCtLWXAIZW1S2S00Q0hhoBAtxxYzuzACgQVDiOP+hfIfQZtgNq7Ab8BmqHNX4DNjmmZi9ZdvE6wx5lr0ZIST7aaB+eNeUBsT5dXIXRN3YHaBD5Pl3PGa4TywO8gE5KsY+qHpNKkxrTVrOihtHZFMQwylS5tQSBgNGhrdoD684rNp6sMiCCsXyHLNW7Pm9VDZBwWxdy/tywTIG86+iUf8OXkTyJ+0eUbf56+f46//9b8f5/GGGPUn+1gAnd2NifTizByIYRxnDDqOA679eK1nhP4gFihgTEAQoQxgsgAzYhHCTVKMwp93xlPLyHBCqDjy/PpdHp9MCRZthovGInrrO33QgBr2+4qEQKU15WicKMptEe5EsxxBIOJC19A2rUgA3Bp8dNOB6rGYDvMi3rn6kjYUuALEk1trJ/X2Uw9/OqdV1/u3tvfutald9eU26g0LaZFm0lYF+0Y0ezKlZDS9MUr27aiP35rMSmXj+djZ+NL7SA8Y+ntwVY1nYedOAXtRJSQY6RtenwRoc3NtddssQUV7mz3eBhmzfOde3xn9FK+yK1evnf/N9c2AXNNnut7r/zs6vK4u3NDtMfMvN/fRtyZzo7eefMbf+eHP/r9smh/4is/XVXlaGPw5a+8ngx6b7/z5Auvfv7jDz/9/g/evXv3iw8fHXfizd/+1388Sq5sr3XjpBhtbfzud3/zzudu/Pv/8X+I2Oxnv/FzSLa/8MZfPHjrI9A+aWH69//Br5fn0DtM2sJpi95wOGR+BSg6GT8b7boGMirlk48ewdpJaL+dzlAx/urrez0/i0bXfv/772hT0zatL5Y7O9cH+3s1Jsy7sspgtwex8GHdf/bk6dbOSw2y/RvVN37+V7FzK9xGr339Gg/uRMkb0WgI6Eanf/3g9BNMVrIMqN4p8qrT4xV33ShBStGm7mDEEGwBRJ2+KTyFleLLSs4cHgkdTS7T9OT4/J0fj3/0SfrpR2b2Qyw/CbDyLbdNKWqhNKgFBpARzB0WdqJdzncRz7UIpcxdBxMUtvrc0GduPKam04k3KQ5qddnCx0Yx3fbDoNbthtIEYgRMbEwEoMS8gkg5uLb8HeovSHIM3ULmV8UyltNE1giQpwqcQeAQJrmfGdhIZdNF7QXWD7NKvudEE4SQUSMXfMkIF8gA2wAhYOmxdT61QNfTN5qShJEjpYW67wcuwEtKjWi4lBQSrJQSUkJqsuLEj5WCKYejIlNN0wyGUSUyC5iSnboYAjVoa64V1koQagg1no8Jk22jpZTcIcBgF23VaQcC4oQLxliWZRQjxlhd1xBCyplSCkCpjVhl6WyaQusH7hY2/cm5NUZprTFAy/mSIt40giKICcCAQ2stNIRQzw0IMqHrOISjIsWcrQlzweMpJXy1aMPQn40FdVAj6+6It6KENgQ2sIYiaoXJW2upT1lRlJXE6wOklcg0T9yqzrTWyAvaxta1CIKgrQvjGVIa6FvmRMujhSUGGC7bzGKqICirOtkYadk4sRcmft1ktXDCLm2R+nBy+qPj+63VDz568u79Pz0A82d19aR+di6OShFb5Tgmi7W/sa5ccgmap1yeRHAV2mrN9zyDRu4VzsJom7fdTHeA2w1lVrZny7I8OHumLw/B+Oz404/fP3x2XlYqy4t0eRj4KO52DelrtAFIx4/hxp66dnsLkXpzu8scG0dOni6SKGiq7PBk3IvZMHRgjZLOenczSnqwH7gHT99pC5OtxuP5e/1BRzRwOhsvlrkEvAbFZ0/uW23mi+/96HvvT04czxlozbeubC/Ko83tF49OnznRrBMkQF2G/g6iLQtn3FWJ95LVFuJnKhvQ9G43eQnGbJoeLc9OQNq6ACNuaHCJXOuOjAifnqUPw06QiRO3t1ik57OFzlq4UPUCoBXXU5SVpBf5nwL/LOVR6vrApzH3BoD3qo01/WWYmjZ/iMAlxlABKLCqoNjgfnGCoiDMxLTR4bC34anVLbZrC6UhwRgC1Vjf+jEbhp7ncAylaghQ0vcAMm5bC0oFRh735mUqoZV1ZpC46wdI8j9U8Jhh4zma+Z86zgwU15rMrPKPoOoRyAhdIshMdZ2BDYBX2D/X7MCqltJVk7UevKYk8X2vrltEmspJFdtC8VoDsSKxv25wf4bcHZVfBQB3R7UfLpezdHoKXbBrarrLXiVCZvpo4eQlH2H1eTxfc9KTmDzs0bnTno7IEk/OrthRN022QOfP0xdCiBBCCP2ZtxZCiDl3/y0WayGassyni3mWZWWWGwOisFuWLfPcIAlvbu/1/QhbACwACAEELQQYY4yxtRYTwB1KKfXDruP2l6l963uPIpe9OEqKx2ejYDN0oshBTFey8WfFxwhrl+50ul4QqmyRAyt8E1JFA+YRCzFyCeo1YtA0W2XRcD9flQ+pm6WLostfK8auS5TjHnQ89eraX9tjXyPFqK5d5aUpbNrGmVzqovQuxpq7a1pz2cCAxYVth5tf1mHjDnGyzv3OMl+tbl7jqutJlyRRNAxi3ujVZFbJetzk++vaukXCNzaTYCXKshzd2L4FA2cxq4u0XS6XlNmNne54efbaV167XExOVgLNuxKw7rVBfT779JP3ui/u2+pKS8p7b24Efe4nwfY1Pl8eP/jguc+d+x++9dHH3/+P/tO/ez4/KM3icvmMe/XGDjt4frqz8fL3/uDBSzc+/61v/NKn9xdX939qvIC6hm/85Jf/6J0H3u7r33ui+Wbnpa+A+fw4iNWNWxutym+9cOvps+Ov/MS3IO6G0R5ORny4/WyBhLN3ktUlRA8PZhV07Ql+6e7nf/D47ZUe+8Ous7EdD9Zv9rZNf/LVb3391Tt/87OPv9+L5ndvv/Hk7Diz/PZrXyl0Z96Gd7/yk6ArRTS9aA9gDEZXb01SzN3hoLcbOP26XUQJN3rdpevQelZprQrKDEKIkAjYjlrOMPdmudRVi3TmJqBpxPJhXi0vi8WZzC+tmNXlZdXMqzoXVemFknkQYgswKKuV0W1V2PkMW71aX2M+J7LJrJQOCBl0rfQoEqvlwo1WyRrWaluLJAodXYZurKFdA2oHYoSpUDJUbSy1AtWZqgtEYwC/oGkXuZmre66wDo0cTpBcp/YmZyHBg6bsK7QadG43OXHwIA4GbV3V9dLzq6w6kLqV2tVqXTS9qoqVumZxULO3DMoBaVx3lGct4pNeH2Wr1uE4GWY8mCZDIc3SWun4wWJZIdihyNcSUIoAahmHQtcQkVbBILLUKZ2gauQEIQhMCOT6+MhDFmjp1rknW0YIIRRDSzGMlTTWGAih1hJhiDFsmgZCqCTEhGutCbUWlhpMDZxwf8EoCnxfa5tnrTEIGNiKkiBlDNMAN0pLgP1O10BACIq9GFGvSOLhfKbCoJtmVdKlyuRFChAh3V5IWNWqEsOoWtko7OXZnFLq9pnvazCtNO7g9UgXM1tHRo0xq/2AAK0J4aE/VC2fTxsFMRYSxlW6sGKGu/txs0oxYiRcpeKUhVrBtlUg6W0VJT87V6jvHk3wH3/8NE282u9T38fcWL5DVq4pjkR5RCwM3ADZWEvfC6qLpVfZjVIMgs4V4kcCIYEZCnqV39a49gO2Fgx9PSwXoLb1WfWkKdLz4+NnB797fP79998+zfLU8kerdJ7NpGhhUda1lElvY21jH1O/qUVePjLgsihPlrOTIkt3N660uZUFlrC+OBynR9OQgqJeLvLCWrveJV6892T8p588+xBHzR/96F9+8GA2yfTD88fvPfv146Py/CJ/+OCdB58+jpy7UTgIO04wHOBwyDrXSkCmeYjwK0XVI/g1bm8SvR2Suy6jriPy5bKun7TicGWf62Zpxo3OmxanM3kwWx6iVek1LW7Od7rDxO5Hepvk4QjvNOdZlh2sYHpZZLCwHeMizSMz2s63m3JgrfJQHstJmDYkjzPXvdgITtt/IqM/9GNmxc5y8bgovw3Fc0fKU40xkODJMppQquqT6WUUbNO6Ytphsee4EuoJ7Smhy3pcZQWmZuRy7PGEwkToCWFtHCcWjpFa68TbjMSezzArVyvNwYtAblg4tiIS2TpGriWXFo9FmzPkQdwIfUlZ29alH1BjgMfXoPUd4qqaQZQDMo38qKnTsp61+UDmEcfEdYpqiZtc+kxz1dXy2bg5ITGb5bkUwDRipxd7NvfVYh6/3RIKqCZsXCzzKHAhqxTYh/LuatUabLXpbK7f1bBSaDLa6Pz/TV8IIQCIcx4EAefun/XPSqmiKKbTuRAiTfPRYA1ZAiAZT2fE4de29wadrkcogH92PlbGGoiRktJo5buOtfr04tJYenQ8e++Dp0EQ7Iy26tOqI7sOgK06AmrVLoAblkm8Jm2Vi6eEWiGr3ghi1ATOEjSAAiX1BCEMuW7I8xIdxdH+xXHiOQPGWk6C5eQo8ovA7H12senom29+8fVazt/+0XeO3nv38pPDSuTzqZDKFcIXyl8spcM6SdCr0qZPEWkv33jx54i4shr3u/GrkAjH7VHGIKdH00sUuLkRTuin80UAqQZ8APjmbnswOZXzwnEWJY7apcf9Ioj9bOWuDb46uUj6w/1Jdvi9T36tGxM9ONneeGnxvPfhwf3OyLky3B/bd4Lo5Y2trzZwYfhkNQnuv32yvoY8Xh0+ufjC6z+1sXHl1//lb3/j5/5KWeurN26+9dZbr7954/13n3zx8y92fffhB/f/0l/+5uNnqz9974//2i99Y7KYhglZnk/XUP3f/lf/9Sj6Rv/O1quvvopouTbcPz1W3UHf8f3Do9ONPcI5n63O3EhAZxyNVhamVQojch3vCYZw327WK68urZxPgC7I3vDNL7zAuH3rk3+K1pC3vaZd7fPunf1eOZXLyWOoT9psaWt2eThVVZOwqDe6x2LsBHoxzdvKcsqqqtBa9hio0lUhUGnD0oYCOD5nIp1AHJSnE7Eah5sxjrzLRydg2nR6SWdnzRkA7WqJ+pVOJFbGbaHri1bNZ+liuYJEGjQDZCrthRcqIncoatNpWa2WnF1CLdqi1Y0Cmhlp62yjTDe5jxpzrPW806/cZAHYwoDSYoWoAChXxmjhGucaRAE2C1s+lROhK4mCS+sn1HYIGFlQK3iQVyd5MRGy9L0NRpCo9Xyibdtx8DoCkRCN52MtbloqAcuF1a2tEIOUbRiwyZxQmSxrP/BCBdV6nmdhkgHDx+euVWuXZ0JKH0COMeCu4a6W4FFvAJQwFK6J2ut2u4pceL1T4hQQibZSHh82JTPKkUJwx1gV+wHhwdSLp2V9URZVnmeU11JK3wshhFVV/VmrPJ9PAbIE+QT7RnHfHUITVjmrC+6zLUKIMQZY0usORa08z2OMtaKRinhRBzlepSxxA+p6rusjyBAS+xcHUypd3TgSKxw5Atq42zaf5XrRpgvUwpU7zFpdpKuZyiOLWtSuJk/Hq8YbbEVAPp3Pjjt+hMiGqgyCpM4aN0kKPaO09KWkwIAtykrm22XnXjfPDNG1kgCUvl4p7nVIvuQIgmY5XZyv7XVmy6efgGer/TLeLN548crrL71x6+7nrt8aOVsckZ6jnARXVM4JbitdLgVo8SoXFQ97QTws69qJnQKYC2nb1XME625v5Lrb6+vxC3eGjjPIRfvZ9A+en33y0Xvjj+6fT7Kzjx89PnlWr04yrNDibFFOF1xlIcsZzIGSWiGhu1nazi+Onnz2Tl1fSDVrls/by0/RaoJUldbVrGhXaV7XtYG+Rnsv3PkmdNXx9OHxcbo8czb6gY9GsOxifD0rTsrSzoi6/sbPLWoTdzy3g9Z2PKC3rt36og1LHnVqBU6n34mSKYmeMr8ussViftgW092dbt2MxkWVXV5gSjXpyFbNnjyTE9VqZ4qH00YHHb+fBF5Q4/i+MzoXhnIywHLTymZVn+VaLlLZ1mXjLC+6J9bZwPRWKwNC1yolDJ8YsfLNoqOoK24j1m3I4yC0Ab5SV2Quz12Bx5ereSOyUsDa2e1uAdiO5ZQkCKuiXtWO3QjKgWP9GkPmDBCvS7EEqKGk7YR+4g2blSzzc8q6mfi0rue+0zEN5yjQ6tzYMfK0pAeNXDEa+75bi64TvjC3hwA4EO4CznGnmdWKhmtpa5pmxwYeSQjylMFnpvXy2YbjEMhXvpfFvpeNdTcRUTgXNVBCKzCmqA6ZE+CeamngdzX0NOxb94ooKuUeWmu9dG9g112vQu4Bs/NO5EQURQjoakqIasbOVr33htvDgFhGA0O1MpIjaJHRlloMsbp19y996ef/trvTs4RBlRCACACtbJoGaAtbmKVmfDEfHzw7P3h4UIjiymjwwmC9a5APXYQ4JsQKqXRDKczKZiUL4+nL5QmQ5abv73vJXoXcpjHUuqCfgJc0HLmJa5W1ggd0PWTDsiyNovNLAsFGVoetN6jhhge6LpoDsrCm6eKcQ2zJj3kwhfKu6wyhN3f4tpLxne5P3P7ivtRInWBRkZPVOGGLKzE2CQB0VS3LtpkRJv04NQwtnbxO8XiVAm4ZyD13SkPTNGQzwLJpzie5XOasrWsIhBUxEuvD3nJcGUfkDU7nmHAfQzKIEHbnob+jhZOtlqKZnR7dDxlQq+Kl7ZtrQ9dpqtPLZ/X8B4PT45evfNPf2X8xHARr58/PPj4/dTYGX7qcPxrtmDe/9LW3fv/g1gu3Nq90/m//w7/4D/4Xf1PMD66v3/jOd976xV/9G4/fmQz22d6bfCaKn/urv7iozf/hv/4P/qu//fdWmfvR8yy+eXV41/vZX/4WDZNnh++51j4/Ol6WVQnnFUvvfP7edPns5hUWidKjfr+3OVi/Vmu8uX41XZYv3dun0cXi8riQY5psfPDJ7OGzjw9njwnT20P58gt/wyDy2fNT17n54pU30uNnPlpVBWfd4Pj5x2L6dOhi0jBXj9a37+ntvYvHRSW28frrZ7IuTD5bilJ7ZN0pZlORr3xsOFUItg5D6So3Gk3Sh8qvwkFH1aBYGOZ12NAnPdS5dju3MaRJGKuOj8tZE1EWs661nSgAgVO0y9rHdxx0i8HQlJPL4nEuMoUx9X2L4xoiG7UrmAoomOciiuaLRdOauDOwYKDaV5ZTxXG3bRQHjGiObMMDgYII5ZUPNkzLIWbRSDAnboRTlmW3F2WZcmNKGXJQFPFe4g6snhWqBB4hnbrSTaMqyufc+G459IILQI4tqLUIQnddt7M4OHHZfS2kbpNh/46ElUAzjVtpUFnJbpyIZkosApI7HteWiTJOpyXCdxoVK+BXsoJ8rkyGZF+mA1kjCAznTi0XJDxxO7UhSNNGkKwxRSOtNrEwiLitEwRtuVYIhF0HM8AcSVhdqzTux42SjrtkREpVt2YC2DyIsO+6bVnMi2WraVbVGmbCpHVpmoI0paD4Ekqry8Z1yzyfad2BYYdvKFLBtzv9PT8sTy4fAR1AAKxdTs6ytSG2iFaFjYPNtkiZdUTd+smKhWuLx8+8wGNEAgvbKmJua51iMV5FSbeuqqYFbuIQS5DjYyihS6XVh7OLq5tXsTDF+ZwzHiW+qGe+h7nrPnv22aC350orXf/JbDpv4CJoe9fvKl8pkI4GSZV7SJMaPmjQgqCXLxauTfJ0IT03VnbWLNKkF67q6cVENw1wHC+KPGoaLPchZIoJv5cbM9NZ0YwXVVHbHBwc/pDi4fyiinpRD61Pj2C8P19WAXdQs4Q9vK6BQ6guqxVByOmrtCqPD7L10WsQkE8efEbRclY8evLkbG/v1Tfe+OblbMoYp4QyBHrDEOEnXwhfOz0yjOmd4ZYF5wefzc/HEyiQ76+NhltxoMD0eGvUHyb9Zp4oVLiQOeQsbCyeBTlO92/dy0SteJhNVp999JvABC3iDnb6cdqcBd3uq1JMaRccn4q8Quth0UznQTjY2Ipn8wvVBgx2kBbpwiLUxHFvOk0RN77vQ6IdF1LuUOZaQwf8TMpWOf0LZXHotVXOhEBVC9svavqsrD5rUsnIdab8ql2tikXU23JBG0YsO526Pq/SnCO10etwItqMemwUUL/Oa4tx4NFWnijBQ96rCmE589z9+fLc8aBPX3TZBoBPy1TkWWvwmct6BFy3dFnPLfOtAA1nda4bQijQxiGQM1BXpWxJFHZcTGSzQKjoj2gpsMOJqYbQsln1wFBjUOq51rTbQiwcD7WV0wgniKxFiMErAHMpWkCkVpyzYS1qoVd5ufTt5217gdl51LnlezytDixiNDiuiwDDqGnH/VG0mEMIsbXLOOgPgXsBFKIIydYgLY3CLhCNCde31q++cOXqF0/OT1aTf9bmE0ZcoSQhoCzLtkUffPig10n6cWd2ORVN85Of+1IYBIOsVI1eVKKFRqsWYy1xWIgVBQg3lknQ73TXOTVFvoUHoXKGvk9tnvSp1ClnnVK5Ax4o1UiFkBwg23PCFMAFdgTMGMFayDEDIHFfPx+/L4FaD95owAPf62PTUw1xgpiGIF0VGODXfrK7wiVZVgD3L6cF3agKOKCWvrhlPvnR6WBTRFe8XNnj8+VGF9y78tIHH07yfOUxShjf39gKHegzjBkxpS3PLvvr3cbKxNIVaP2tIZwsdaRUpeIIXV6etxXEhGpbae03eSvEKukhTIQ2TW+YKLgLUKgwN7Z7eHlQwcErL7+0NIqR8GS6eO31f/e73//enbu357MJJskLV154+vBT0Xx294t/8a3f+vDVvf2e3zmFWx8ePvnyV+6tDk+z6vKvf+Pf/fHbP9zwNnec0S/8zVv/57//XzTxiVr6azw2bnT1jc8PR93f+63/bq1vFyrZGoL6tDfJ9bXbmLWUbd7xOv7ZRVae56I6J6AZsGR6lvU3B61Szz/OXdo/TJ/2ughg1Fmjs0k6X/Gvfm2PUI9vrJkT73PXX7r/yfvPyjNXuXvC+fBP3itQ/sWvvIwABFh7w76Benr/YVGc/8xP/+rlZWpmCnVJ67RBYOrLdLVq1zc2lLFxHAupjDGMk9lsFZFtL4hqY1ZNQ13XYC2x8JLO+fcvbt/8CTt7UI7nq9VyczOgkqX5E95x8mU06NyaLp6xODNKyFpS7vhEOqwrgZEC1u1kbbs7Xxa68L1hMF8ec8/BhBAcKWkBqsv2uWypoU+JSzHfshLbdqPNgMIHiCHFZ9byuvIMhMLMEEWMxHVTeD6XclIWMgnWDFjV1cQC5LFgkT2VqgrdtdgfAFO3VQ7xWeQOplNP6MutLdI2IHC7kyMau183zoJxK9QCI5ejrpJGmElvzej5gnvYAuxEtIYVxhZYFXlQpiXj0IXSCKgbqCvmcsIcNK8ufXdorMW45Sy6PCmH/T1prRZaKxklHaFqaIEQ1ag7BNbGJsgXi9FaV6gmX9YhCzDAgCBkKi2xw/xWpYiixaqmJGCOIcWaEpo5ulULxjB1AEGhH3WKGjCqpKkhVIQyjA0AsCossZbVcqEy3tbI9Qaz015bupy5xkGyza31emEnz48p6kLNIJIiO0faT+IX8vRUtjMUwKTTXywU7/rEIUCViPGmLQECAKA8a9cdYpo6DGPkMrtqfd9Pseh2+Oogj6LINhxbr5EmM+kkyCpHzt0oXN+QauVpETJHycyQxqDg/kWTLju+mQydtv7syvZw04lyAlRx7BaXxbQ8a6wNw1G+PLu209tYdzQMhEqzIt3a6lm0/uCzRxQHOxv0R/f/lJB1W+G9fkRDME1/3FurPzlzbzh+3NVVWyAPrMfrrcnyMseg50SGYry5OcjTaX9t6/q1O4cHD/ImWhWfPD963OsPi7q4evXGxdlYtJ3FTPb7kQPX1gdu1FGjaPTBj39rkLDt9a3pw/ed/k5RqP3eHmxocmV0XhxiYvQxVjSjfn91fsFxc+32DokvLse5G3dqeDqXKmJhtyOKuZM3AxrVdVBR1hdpHLCljbMsc2qshEasOOlE20rX6RL1wvXQSYuU1c0qjgLmenEcc4YsUEEQWsCQJTn8srEPHHVK5hGnnUItjUukswblpah8gu6NogqL7PTp0zanSZicnZ2sJxtHh8/6wSbS3DaasNC2oHWypiSBRxHWSlcU+i7nEFcMuJBGRZMhSJU0nHBgDcXOdHUQhCM/rChWRnUtBFI2bQuArzCOum7HloWXzFNZknBXo55pENQNwUK0C2Q1hgyhgc6wslKRFSOVLCrCBDBdx+yKXHJHLNNlf+g24kw0EMB9rajUNQMhwVaUjTW8qJe9NVK3qY+tQO8wdL1Y9Tk/amWIEWWOr7OX3d6nk3MYB3dFUQH6ZLiWLRrHqu5Nh0yaPCfA4ayp8HBj/+Jy9uWf+Fr3xl3H21yWan3t2lESrPJCKACI0gogBKyFq7R2vWSyquZ54fv+04uTm5s7W8M1Vpq4LVqp3LCHsT0Xc4O8xO/UZQOk3UbDsMUh60FMOu5o6K3ZomSto8tV4iEfIYkkxA2wHYuWQDOo1ihbGLgyOg6Z02BV1ael3NJNFHc9zU9ksUZtz3Pt6ewpoSNK8GR++c2f/Yk6jZMA2n6lzmawbj44PH+VxrQD0al/7+Yt7YgnTyedTrWb3An8blZkS1Nubyd1cTFa/6pyOsTAzcGV+x98SmROehGUejvsPUwPiiylF01/a1iJBdSuDytkCqrR4fnJ7VduVCsrqbcywdb1jcnZe7tXHNTWvkSz1SGPg7wsTPNge9MzVs9X99FYb65tPT9/+6XPjSBM62ox7O5Nz2dPH7/79Z/ZXz57Pp8evvzKS+9++nQ6mTtG+/iaBNNXv/y1P/rOu5fTi2/9xV/41V/6uz//8z//1Z/6W//od/7R2mXe+nz36ldQ4auTKfVfSjbN7Tj+7PFbqT6Ftv+d+8dh16xvrfHV8OBkykPY77kdbClctu2COL3Hjx+3KF0f7qZLlheNge1nn/gbm4P5/OTj94LiatVD8o0rG3mTfe+H77z5wjU6dR7NV0fpZHN3h4NNUlmEEfTBwp6eF5/+9Jd/KYL9P/qT37mxs68B8r0wnS4nJbh9fb+VAhJaN42yllIqjez0Ow3rjrMVIjDqdtqyEU3DLLIAhF3WA+TTJ2U2Gce8SwxfTJ8Po50sbxFDaT0nNCTEm61OkzBRrQkcukqPHD9UyjgUF0VmZbExCCiFlLhG8X53Pc1mYUyroq1riWy/qQQPikzkuhlCg7WdcgIBHhojrIGYCzdaUcWk4hqmqOlSvpDAWhUvVxNIlq7TN7RoU+CTAfUMtK6ogbUIAI854XJxFrDdqIez8pSCK8gMer0c4MeLEjTK1S3yvShPU8dDnDKgQW61q0KquatwK6zQtNEI+Ea7eWtCZDsWKprUBuWN5aV0Av6yVgulC4qGpnGizrkEnxrZo6whFEuZN410nVAb2NYEWmR0Oej366xUEnhOZLQxSnjcNcKXKtMQARBAyCGtDW60jbSptJXdOClLF2lWl0bKFloH4r4bzjB0rHYsGWMMMVh3WEXmFzdHO2NtC6GFMQ99/xib2OWDfOEl3QrgtFoGDo9bPa2kSvS9qpwkA1+aaSsqT3ehhAAoJWcB69dFiq3lLqmUcF0XtNpjfhk4XJnOYJhVJU0bx3WxBfJyqcpZBppGtSsCpqpu2mrpYtjhuT1Ka9My0PGDbHUhynOj7LP7s8eZH4bzfrgdtddBDUU3Oy/zvJ3bNm/K6mI2b1u6MVJAsypTEyuKZrZzrTva7jw/Pl1O8ivXXpunD1b1+VfEnaPjJgtSFJNlyQ0cXBye729suy7VVp8cFOPDdGcnFOaAIDnoeBPtKuGFXsJJTUCV55dRnC9WHy1XwNrmt37vN9Y2/Sw/7HeuHjydibZ66aWd87Edba5vdPjpcQUB63e748mTA+LhehYETRuQjaibXxypduEyyCpgkTfOipI+xQPAglfSydTTcUKbywWL3Fdcb5LNmzJ/aOO9yPdK0HbpQLTf7Qc3HNubocdUX4dOG8DdWpy4aHtnq83zcV1EYWCKbOCHBUKhywYERkjr2Elam3uRqrM/xQxal5NuLVpPVQPV1IhMpVTETbFJsN4jsKJkUYrx+HSx7of5tBh2+XIyQdiPEp5ETrnKjIg6UYRBLWXLOTJKVhmkbtdhySo7jzqOkksAvNDdV6Yo9A8JvYJgZCwVNQcWQVxhgDBvPeMyHuQVQ3RrtrQdt29z6OC0EpQy6HJW1zWBDgIuMTxNUxQjmW9QjrWqCLxqYIP5om2haWUQBE1TLlaTjdEdYJzZbDpYdz02zutzgOza8HpWZmVzlKXF+vCV48NuuOZAIJJwvchLxztV6FmWO5BsdXozTM9U66C6X63CzihcLX900xueUHNoRVWAq5t3tu683rkKb774xcJFfhBX2bwopquLAhgEIbAEAAUIhsAiREhTy8V8FUY+pKxSopJ1l3lENNuB35bS9bzFan7V5y5xsWGC8k6nEzFXzrO1KPLRsOui1eKj0aBTVGZ353o9LwgzssYEdakHrWmUUUp0AbgJUdHplmX+mNN+5N9ZVh9LOPP4a0DH88XhaBRDcun4017yyqefLa7u/xQNtmF5Zrm0k7W0royF06Pp0S7rVX4Q3eJgVjQnAzIgavb00Xmnk6jAdEYvP3nvT776k9+cLdLeTjLs0OX8+Ty/kFl9dWPkuKjBeHk6E6LxurGoBfARsPV8Ouv4EQIaGds2pqgrvpxe7UJKdcWTbrLLB+F4tlia7nXEr1y/dfInn651BmcHJ9IJZAmjYRj5m2VZCSl83x6dfC+Kuq9/4Wenl/nZo4u9zS9dLLOTycnV3bBamt3dwby9fP67n5yuTn/1P/nbv/av/19Xt9f/zq/8yj/7td+4fPrAhFfffPGN179879nRJJt1P370nRv7/OB08ubnvnV08d7z55enj2e9Pupo/+Dg8IUbdyos4xv3vvNHf7g99KGOEribh3Gm0WUtGrRaXepu2Kc8axYuyhjI07NztzSZ1jobl8KYI5kVy1Ok+Jtf/MmQuFmph7v7WtGO06XzYuPaN53N9U+//8l+r4W9ZxVIVCqAqfZefgUJXLVN7LsaWMKIsUZrzTlXMvOJchynlXWeppj40kOHx+c3tq9MnhxF6+txCHSq03kVdiNGuqQpDVwQLjEO6tz24mFTZ6GfpEtqgeJOVMxWvhNTyxw39DCsaoNZ2ela0S4YSWSpXQcLsUCwD8QQ6G7V5kY0gYuQVS7cWuoJbtYwTxHOsNrX0oFSyLZL2IWpEwHOPI8hu2aJ1aRerURIW2N908JWNpRmjAMjSV1D5E4Df2++XMVdXpXHFuSqQhZICjcYQcLWlKrS1tB4GDnpLFvzaaW05mYJZzjCMocBRY6p8synFDuOlVIhS6RqGK8ATA00ADKHexjbulQQhkrVFPocR2WWYqh9P87rLEg8oPPZdBwGa61spLGOFzZ1QzB0XadtS2FbSDpaSRY0xraeM5K1gqhgXg5Qq4FGOLTQItxyAgCAUla66WIvMzDTxcjwnLlPCNwkJvqDtn2NoV2jL9sSuZy6kYI6M+24me+HvlHksEgxI3t+gHM1TrrrdXY2XdZMR5jGVXlisyZ0ulK0nKAiywBhju8iosp55ji+8QNSiWaxIJRZjCoMHN8Xk4XbrKdapw49BKVyhKBnLHHn5flU0lWOSOgtZlPbauLx+XRWZ71bdwNsNkbhRpEdMbdNV33khZN5Bcl4NSvqFHDM2nzqBOGqhpKGuuJZqabn5xS5QhqEWFlHBmyw3rW4er4GGLDipHoqAx86Tv+FnlUWatE259QhVZ3W7XFTaFtFAHeTnmnl8WLx2LZluihlS6geDYbxfJYWxXKVn5wcHgLziZFkY7M/n38C4O7W7pUP3v1w5N1Kl9n6MIY28gKcTi63u+HJZHHy5P2Bl9CA6p0kWzrYOSzB4274+dlUv//g9zpx5+rO52fLw4G/dGNkyDpcDyfF42pK9dLxvII6redzAWHVgMBL1AIniFfSBnTP6qof7gcuubSnTbp16wayza60rR9ha2cck9AfenrfYxsg/NQqqsqoLksDjoVKHZZgOBRqAfACmFbDPsGBIX2ps6x45pad7e3dthTpcrF9feQRZ3xxvtYftA0IfSPbRrfUcWKAVCstNbHQj2XtMXevKD/rrmVKPqFoBOtNN25tM1TwCWdLB19Tdqz0SlTcBt2qnQe8luV4FLVS+phdTxvGedbqkkDEXEOwbqq5whgHAtgAucd1foWSq4v23/hB0hR3uDPRql83c4oDH7/eZl0NyyCkRtO2wsD6vU68WJVu4OS5iBNfy7KT+IQtEEtVsydErtsgdF8OOieAtLrtYkgQqIHCSUQbuQr0rbtr5Pn04fP8yAIVhsHOrV2a1amYQwayhSrS8fjiGQY+Z6IWNZAepbWUFgBJMFytFhaYzWi0WCxgxwcYeB1/c2fk1ngxXnguxyCSq3LYGRDEWEIwhlW+jH24PeIwo1AUo05c58XGxn7bqCDsmUYAUGLCqHsiqgTT2jjvMPkiBIG1ULZPPQ8B2EvnOCEvOHqjlMu4YxwHnJyMe92Nk9Ns7+r1nRf6gK4gQdVqTiToryvyZMWAP505xOsPB5NB2LPpZ2Y1d711tUKL/AiC+Nn5x5ZVByePFoT7g82mBIx0ypSHHBDmVqqZLBYWok6nDyn0Ak/bUSOeyaYI+v2qPbx94/rFBNrWX6qTrdFXLyfjsjzZXE9kJlGb95Oqs/cXvvfxu8y/2bqG7/cPD+GLO/eMT+wK29ZL5yV2UG/IZ8uDaR1cFOLql2LHbM2WH37+lc3TWesOty/OzrPzKqjzv/13/+rHH3+8xsO714N//du/dzj/zc1hE6x/7tVvbE/H8/5g9+MP/8XJ8VPXufXyi7f4XjN6+sr7D37r+q14cjl+8PyzW69ce+/8o7/5ub/xRz/8g3itI/Aw8Lyj5XFWrXQD5wthYOEEfPOKP704KBoeubsOH/7wvfsKlq/ee6WTeBAdNwoLTf/aX/rl6fIdBXv7199A/rppzXyx8ANtWfPp4yAqeJ0JpwFOFJSluHHthaIJ2uJyMBhoLSknUkpjjO/7TdMAiAKHC9GKonYINEgL2SQxL9K4snvO2hMxcWWzVPTY4t6keMYpo8ZRpYU4FbVkcE0WTBHBmUaoky0Rp10DCu5CVVpZBrk49cOoTJnjDKoq7cROW7PQfbm0BxRK190xhYXOJXMTnXeVxQzuUr9keKTbXdNIa+augwO/zefGj0iVRgD5XlxWFRF5HISnxBRVYYXUiBonxBST2rbKCK/9ZcEaCxBnfWvatqSWQsdL2yZ12bYoeSGrKMQAZkqGFA0WsJGNw1tMgaDM0w1pGCosSDxlrTK2lbKlgGLkcEYRNvOVcHgglRVCODyez+ej9Wg5raFduYGjpVVKMuqrljVl47MtDZuqrKMollI3SnbjOC9zz2PLLAo7jWOsVd22bhGfQ2Nw0wUswTStm5RzbECOiCLYB9oi1AolUdUg4EHgYdhqlUGTkSR8aTad+dEYBRll4XzBO7FDyZlpE8FneW0Q7OUZGu1qSFMlOkU+qbNZb3O/HANTZohmEABofUYUYQzmkBAmtQFWIIoqUcbSN1lJyhYHJMM2GiTjxTSvc0lKTawlIqDNRbGayWnaOgfFBJuC9FeXH+DiSG7tyJVUBq9/4av9TCcI9lC4ROEpMqGGVXpyvDi8mPtBOgYe8AaJe1lfEv+YFKQrB0SXn/7JkjK2ShfDTg9Y9uRwEiUjX330+mtfyCsjqeBZtJo3N7Zuzs9O2E3VFrZY8P7OyIEBdcT5wcfl8kPWW16kZHq51BWoF2J7Y8uPvbQYK1TE3UAIcXBwFrgSI7Wzu7HKx7PZygunv/M783439K9e3btyfbE8TNbRxkfVq2uff+ft79cM1VX60nW51r3ywcVxM/4oYXs3draYrqiudRPMiDz+6HtX8C7EY+JgxvaA/2TPvw16+KNPfkPmL47W13D9Jeget+QC2DWnNxMN163vcujiOwSp8UQxtRONMLTIj+pWur1kp22KbtjRijgOM3DmGFWUHUvxXDwPfSqWXbfelXVJowyqhMOR5+ms+GixPLZNEJGRzGE+U9CSG9svtoWm1DIaVrV1iRaiAZoREEMVMkdx3mpVFQuv2x0sy4/90IPtLSukgEU32nQcvzQzUfFWa+veN8JzyXXqpww9aQ2pZM/p7efqOEkCtVhFmhPfKetSmhZYYiwWghFCICKcgTrvQXbKnBkrt43ByMqmGDVKMieBSIYdDcBUVC0ArpEE466oc6lqbTiQsanXKNauC8sCtarEoFNXYRitaVAyXKRjvr4zfPr0/Pr1m+PLLAwocb3PjmuPd9Y8r3dcc5Eph17Mnl7TnwdGlaXUq7o7AN2kub84sdKRFnBHKq2FYkEnaetKNjUAJvS9dLnSWh8eHjkIjcJw5/pOe7JAMyvqsuP7MUtU3ULZdJIe5zwTdq3fk1XT2HHfXw/wVtehVFgMAGqAj7oygJQiIPaAWTJHAuMY+gzq7iKbd5x1AsiqPQHYDJMEgblS58RujM/KwL3TSvTS5/ZIBKwzq6Vzenqww3y6adrHIobrXn+QTepw79G63Tofjwc766GiRY1GgzUo3E9/9HhZ+fsbLx5f1Dc3JUamaHMmi82R6fKNkhtbivRy6gwSrGw2vljff3l+cOhyadzNfO4RN1AScy6AOrgziPpsMq0vYOPXRfh0/tBQ3eleObv47OaNzsMfj2++sPvW/fcG8cYoYG+9//v7a1sXZwvP7exv3/6nv/a9ay/uVeVsuMUwDhu97K3tnR4eFUWlEBFpBvTijb/ylz95+mmd4ur0+MGHv3PlpV/YeOHmyWfpV968uSg7pRZdVn/4gz+q8bO9l/eGjrxB/uoPs2/f3e79+J2Ptdh87Qtvuji19eFvfPufE0i+9PKX3v/k8f3jp4enz65vrat82SUOxHF/lLR1Rr31Ra0ycnT+6MKgdieIOgqfle2gv2XG+d1rL318/2Scp3/5l37mdHnWPnjX8xCJ3JT42dFquDG/JKq3t96JgsvVYuPKzrgtaG26iWuMLqvCBVYK3en0tbIOdUrCZ6vUauO7EWmbPFtS2Y48uGrdaJtWF4h2SEQHC5Xl0ywJtqiwzLdts4CABn5fNLDT6QBUGWgsKLURjhdgjIoyxQYibBwWa72AuCxym4RrWVpyBiFuGAAIAEqXhBZSSWNLSXIDMCJMgQU0XaM4gKWUAKqeJAVkAuiR47QA5enCSNVSl7ju+tHBsed5QYK1qZXm2MYYNpBns+Lf9HFMnK2qDqaT8cZWr8o0MwFWdrk4lbpEwNfNhtbG8RvuTU0JGceKNsgnRSkcbokWHBDbLZqKNQ3SBGMPEMIb48uSM4S1TgHCoiWUmLCHarHUwAu9rbaswsDTuq2bQssiidyqXEEURIlvDWy1oJ4jrW2kCGmASKulg4ktqqmDHd26HAOjVgAm0JC6xgQ7SikBKLBWq8L3A4OPqd6GoI/YHBqgm3XqT0hVuIb/WOMA1C+pNpEqb2o/qzkhRTKkk8upNWxrfcvj7Oxsub4Wnp+s4hj6oRCrdrUU4dom5mVlJp4JRNEQQhCmUpbcx8Qh2hGNUQtTDbpBk9VN2/YKVR9P0ioj23uItIgCHxm4XKbN5bnmjQui6eni+bVZ+QANy/PmVaGz115mG3Sb5B2cPGhbGKGvCVjhuGjE1L3hxZnZ29rg2LPCNC0OQo6JKPL54YGZjCsp87aa4zvu6fljL9niZHD93r31wdU4f5yls65z3bnSrdTx/ccf+XOeFynAK8CeKc5Oj5+9/+E76QLu7G2PFxPOeVuIa9v7Qa93ODnia31HgXRhLy/HnWRU5HXgR8tUc8/IbCOr5t2YYNlXDYWAXt3/0jR7OPj81bIKNvnuh++9vz3cdh3w4N3PppVULF7QtOPuIXDiJu1e5B6MDw8eueGgdTpJ0KUWi0G0ReXmeHWgAZe0k9ezECzctj9id1OzRG68Unnoap/sVeVxusyRCjRcUJwkwRogxvG73O1Qx8GMmQYZRFtVqmTP2AuzWpjDStBA2pO8d1m57bC65gYXHLRiSepF6UjlU1rMmzDqN0V2dWtveTl1KSO2hVR1Oj5sHSkIhgRTa61AgFgL62aMCQt9Py+B74VVLnzXK4qSOkFRjJXwPSfCzsQar5JM00vVetC5XdXHnRCjCjtwvx5TY6Ghsz7SjECtHNV61iYUAghLIWeE9mWr3NAaS1x2XcEl5HktT5G707acO9QJlqvVGXdGBHWyNIfePOmhqlEuxlromO+aulwsMxIipHakKBT7ARTbofs5Q5+xoCpS1ulTizLu4DDEB4eLrr/dgHRVFT9x5fr7BxdPirwmxQfvvv3q3TcvT+e9OEpnT0uxoNSNup10fgE0NrgdXn3jC59/9bOP37s4e17naS3bvKwIIbEXTZb54/FFdz9K+p31Qjfz3DaGceL5JMCcQQ4sc7Xf5dtlUwxZ4xjIQIGJciIuNa5r3sgmsn0Csa43jXnEeL8pY4GfUWog2oLkshQZgKM46KtmidDKcyqrNmnHLLJ2Y/MFZ71blpce3sVgEMAVCzfa4+mzs8d+b9a5HD9tYXjpvD++uHXND4IbRtVS5izSWc6n6XJnbxD0Ii8M97a393Z2Pnlysj1av7V9fVrmYDKNd3rPDh/fikaz5SzeH40PnurlRryeoOj07Py9re7mfLWMuzeCdgv20OkSzUuyvt1fXD51jBkmCdTz2crbWL9anv2g7Pm78R3ks9nD5+v+usO3hZhEfv72d3+rXRS31j53djl1YGeWPbt2N3zre5+tLk9CvSpzz/P9cM3ms+yD3/ojT/mfPvh2pxvtdYbffRt/7eVfWi6Dxz/+wVff/Ol/+I//AYyyV6Iv7ge/pP3ubPIga45r1vn4dPGf/O9/9sln35lfBgl5kXrGVPT8IAs47sXOoP/Vzz55NOwNepwiP3PYYL4EX/ry5h/+0XcdHjvJhKMX2l7wyXS1G288OzzYeWXztLn0y9kX7rz81p/84OFnhz/7k9/45NOnL967uhVsrw0cy6aLREZbd1DD+kmOaSyakshCKlNWeRT3lBKuG0AI27oimOGy8CSgPFQaZHWhKNVUjZdTCCYKyqjf6XbYxf0zUSScVpzGtgGL5aPegK/mhjoOZG3aLuM4LmYwSdwwJHVZMxo6NOYOrOoldXMIrRDI9a2FBxzlRnAhdzEJlQSgrRhsrPG1NIamEEbU4XL1kuUXOHrG7DbCwJBTUfsu6xfNscEtx3ENj/0QWu2ML86FRI5xtcZ122IIMfeNxkq1G93XyvLEC1TdHPYHSVu3hOp0lY2itcXSBF4fIaJ0BjG0iLSt2wDNCGLIUEFkAYGjNFGlDcmk4gxyXADoiAwqi4yuISq1V1rtxcEgQ2dZOw+da7NpPlzHyG0p1EKVUmrO/LYlbY0ZjCgN26a1yHpekGWZVjYMuumycWCM9FRbZZWHSYRYapGRmlP3uGmpQaBuCgQphgwT6zhS1hcQBdBrDThQtYOpY1ENREgy+G+IuSGLbtBtsuoQclrbBWLWDTbP55cawjixhp0ZNYroRrNY+jz3cf/02TIJfG0raZHUliYJMI1WLadBVVXIpYToi+nJergNc5UBaIxB1jiOO51Ow24vH/lhU07aSeqDdy6+r4LwcDbm0ZWodax3C4Jszb158eysoUed4a3Vonu//F64d9uxV/th1yFtFF4rGusPrwFuHS06o7AUpQbESirKXNWnF3Vm4cNOF7e5daIuEWgUr0Vrnc9/9daguy7K2g12IevXslobbh49Ma/e+sm0vCjrNkn6y2whAfj00cO0XhmEH336icY4iPv5UnS74Pl5unHjTsPFEA0//fD5y6/ePjs96nRiCLpCIGRxkCg/SXrdQRzTN34qfH78I8hf7Y1u9ejxpeJnLnqj+yYrB2l7uft6NKwuHz/4pBXwBx8//Pqbf2OrfwORgysj9+Z67+GJms5/eNV+JWvreXraGRwXcydo0ZUr7fjk3Ft/farycDgIzU6ZXm67wwKfWqUJz6B+6KNbEPlBp8knrL81DKK1VjVeCJpi5YaDVgBknbiOORFjVFQ+maYzF1jn1EXKbbsTWYiAMI8BWzTiEnUh8t3F2aS7s75TzGzM15GUFAKAQZ1boh0EfAtLiJauFzl0qARyOeeuqdvZ2vBqWU8hnyB8jeFhmp/FXV22vmm5sRKagADPcbJKYJ8ixRpACPZBW6+Ay5B0Yg+qYlOJC4Nm3M0JKSFwlJG6VY0+wtxVcMJcNRmf+TEDOnbZCHo1DpjIWbVcJyz0OrIspw6PGfVV4xihoAedcL6cnUUhD2N1mYUuGxDnZGO7O7sQSqnlzA8Hy3plws4oK59TDxq1H/uOZKKpbURvJNxG6hEGjajF6eFTXMkkHh5OnnS3Npsi4nTvovltSwRhjqztT/3cL71w68oqWwWx//EHb8u8DcK4adqq0UU710ByBV4KNzyLel7U5qVooigMXQjr1aLfi2gAHKiVVcDvIgygFNTGYOlhYLkuOCvKZkFIR7uPQbmGYaLxU4rzrOQAAQAASURBVCA5dxvg1k5ARXY9awlnK910Y+dz59mH/X44yQ+G69d2dj6nS0GwgozOLp4yn0J48eTiaG87yheDWu9wdVbUomBmWPQuj2e4Pot1D9gTEGa6U4tSdm7tOJ7b7/fPzk4EMI5HbTtpFqVyzOXZga8ViahZtLExpzJf61RWuwg6ShEpuoO+mzUH/f6gyszp5ZHnhVrLNE2TiK+vb37v+2+v3757cDZP66PT88EShk315Nb21aS/fXx68vz5c/fm9pMH93/ll37lB2/9m1sv3D385BEc3fvRH4//9Df+YG1tBta65UKMbDvIb7zz0f1iMjm6nNaxuvXmz/zxD7+9Hvch/eTT75V37/3Et//4n3N1PuDR/q1XG7ra3+59+/cfJesvnv/o//7XfvmWnZ2bse4H7s07r/7G7367BfNSejev7N+5evfTJ5+tNinr7hTzsWuTqp791Dd/6t1337Wt3N7uAeM/X57ITMusqkbLIAh62uWOj93gdz96pziZfvOnvv7Wd//V9uZGz7Eed+bEhTN+8/U97DqniyWxsmuco4MPNzfr8QXpDUZB4E0nC0rc85PTzY3dIitrlhE/rFrR1ojTxJZpmzcd1MnY8yTaA1lx9HBVTlpKS4cF2pxihzt2U1a+56fEWy0WK4d1pCE8Xmhg86xKwkCZadhNVmmNuCtXe5Aaz/eMAoxpbVYuj0QegCC1JrNt6NGEOYUwGOk15GBpSu0+NKBr65dakkvdUNgjvDIWcI+XYp4XjVYIobKox8B48aBFBkHocsfRpqrlBQVeJ+kXs4a7e9n8eLhGV4uJ5ziUYaHjdFa7buwwLEzmehBhtyoMwYPIHStTUw9WhQQ81DALONRFq51EWCKEwEQZp2Rc6AYaxYnsaVsUVV2VMOmHVTl1A9fiWqqoaSFU2vO8oswIQQhKDGxTyEa0XuBlq5IQ6jv+YjqPohhJ6biutILHft0IDGmrasKNKHeaCkYRg3DJOVWNIxphlPYd1ygHWqXMgtCO6/akUlYr4sLrUjeYzYB2HSJnqwLaYGvtWlaNR85U8s2mlWIez4OjTHYiIflaf6XdzaF3djQednt6lheNz4V0uLU8JFEwmy16TtekuOutG6gEnjUZDocD4avFbAGwJ5Vl1h5j/Gh+8f8h6T+/NMsThDDz56+/9/UmbEZkpM+szLLd1d6bMU3TY2BGDCDNSGIXtGIlOCyIcwAtSEe7HI7QCiSBsAMMzAyIabrHtJm21V1dvtK7iAz/xuuvdz+3H/grno8PEonV7ry9WGTm0AVpVh34TtAPgjKOzU1rejob+mISHtJz5xtijH0D265lrWbs2Av4KroYV+PGWmDATpUDDWXJS90y81Ad7N1pbPWrUk+fFqGCrAPWBtcDc83B7vy0sEwxn+9bht3112zL664PqjPe3WjX746y6ujk8P66e2H6FJfK42WmDMOx/eUi7Q8b2JqtbT53ce1qkiRGgC4/11G1c+0mx2w6OjuUFTibPt3Y2LDI9cH2zVsffn6MojizWo3KaTWJIuwQ3TK+ZK4Xy+xOBcBkfgIoe+W5Vw+PJmXpv/fg9bTK1nrnNjZbdbR+YeXs9YfWeyffUAR6JAihz4184eyU4wxRZcETi/TieeX7kFGvkj6fhyV6z6RDS34c02MgmrS44TcWRM7zMoe+pSh0XaTSY8wxxI7GcRFNUI5wJAKtTdaqSj4t36nTjZ1g6+DwyYCxcr4gdlGEmtGPb3ZUnR90B8N4vuR10fM2GfUqcZLmzHFmsBi69PlajJhpjJbVYGNQJzOEyXSpLbvPYZTIx6614+htoXeJ/6wuTYo6GgmLGFW8AWE4D3PLWodCpvnCMgOAAsO3wnJC0VibAuqmAoZGIM8XpuEB0daIC5CbeK3IAdEWqQPbJFGxLI/9zqqvzLKosmZghfGEGj4xGlAv6iL0LF9pgTWg1CDE5WnpBfuw9Gh6OT6eNbyiKJ9YNvKcgaFKWbKWuxGFMJSSOAojV5G4mNcBwh1NhA1BXeHJ6PFiGvRWaoR6Ik6Wi3AyMbBZK1hkcriy/vxLW2+9vtcdvFwV7wx6W8fxYyCV5Dmz6qqARQbCYpkFjut04lm6PTgXnnIL0GiZ95o7SuRNVxXpuOn3gUaULTgCtRhKDv1GXOVzy1sXqWl6NS8Mg63UKbGNroRACNoPe0jOlQ5hIRjpWl37eP52o5Ef1mFfba/vPCecsa44FooncztfkMCcLFUsrGROdqOA57FW0xMKz6PG0WjGbAewTpbNPX4pncCedeF0PN9M6kvXX+SmDwCaj07U1vZ+IUhFTX5m0jIHRp4DEjjTbB4wL6tM7ellhLTdM2w1Pck48JP6mZVdyfOnjd7G/u4C27FpDZ/cvqOqO8PgufQE4oRKvl+k8daVjz0exWrxnbe++9bNS2vf+rdf/fCnb331O//Wc+neHjjYe+TOFrdvfyvHItEr1d4RA0pwW9RvnzfUs+XbDxf3P3zpc9/817+50m/0L6+/cUcGzNx77wen47eazS712rPoWdDfUahPYhRFo2HQr+bVnb3pF3/m0+curv/b33p9lMxvXVh5YXuFi2IehVGp15r922+/zoud85cz0zs9PsBhnFy4diVodb7zre9L34njfGt95TRbbLTP7T5beI3u3ZP73SDbHpz/5r//vcFlTwf5vZOH6xqP5tOLa3Zebt1+/1FnVX7g5sd//59/99IgQKd97D7sD158eHzG83oN1k0bFMW8NkwKVktecgigAfJ4bNAKy7JOzA67uVjGk2dhfXbstAXb6CTjYvlodnXFKfSZMqgskS6bfa+d5HNAs4oDx7Ap4kBLilvJsk0JrOqJ4wAOggIuFUlkvYbVOQkKTbmCIXOEVDovasuroUwcEBBtZkXZpJclPEROFMfab/I6n9HyHHLIOMpwoFI+brf68RxJ1eJ4MnA6J0fPTBZ4bi8X0vVKUCuc+J6bz9PbjZ4tAAPIAiiAihBSGC2Xy7iGhmNuJ0miSNzuuHmeR8JsNmlVKKlsr+HMw8hA7Qwali5ME1BzkYaiHWyUFSeSEKMiTBRxv8ryTqtRZKxIwnPnnTSVqIgbtpvkVS0q26QU6YqXAhHg0LzMTCwNu3BcKsqy0WFlHrZ6XppBITxeatc0MRJlvnQ6oF7aLZ/VYg5QES6p7/SzKvYtpxRlXlQdv0OUCSBfRE9dy1c1JFnM1wdrVRUhkCi9ACBuNS+IegaN5HA09RrrzPErScskxYZlmUEpoiQ/taKbQFMNSZpi5sd+ey3MEhs3eKoawBbhwvKdWJQo6FihNhSRSOZYxLrpEI/L4yIqRyoz+vakOj6KDiJdEdbMOXG7a10HIuosCVCtwCJBzRCmRTh+GC2CiyvZrD3NGvka9BHpl24+CHRZX8rBgdQzAzZdZBlYTYq0rf0Lgw+/ffsPvTqjxuDWzquAJEEAHj65a1O30+n49grBzvHhbMPwHR+uMk8kzc4njK/9mx9HU3UyfrgsTkVUK2bZlioXhUankHcc8oKCOsrHF65eBPm0xS4p3bKbDrTnXOZ3bx/hvc3NdqPd3zi/feW5/s5k9NDZvGVhRpbgcFEIfrpz+crZM+IYLw86lQI/0biAWSuwL58lP8qLztNHTxGe1fzqhQuz8cO70iifnsQba0NpxiWb5nO5wa7yYuI4VguiIh8VVUW0LaWuOcQmjutqFNdBsCUFDty2FpA5CHJmm06pVVUiiwxKnkZJbnoO09pv4Nn8yG2aWNvxYlGkopx3+qb+yTtv95U3RiCcTnvMsQKHRKU/SKqCyhKY2PADinilageJTc/bN9UWB3MJfuSY65PTk27XLJNaSWrZFUVPpfKo2LEo5Xqv0seO+OR4lJw/f358tmi1vTwrmUERATUvMNVSIIwxs/IsP1XCN0gTaykl4FxiikSubMMvyhAzqRFq2w1RuWfj5cq6E0XhbKkgEo0GUypVgjNGlLA985ymhYJjXXoQJXE6tp1GkXtaWLzQZTkLWpdn8YzYWAhosbXZ9MRv2uEy8rwhtJI4z0wvgLmVhdRvAamMIAiYrF+9cP0P7z7hQFmEUsuOTk8BwifhUtdC1VVNCDaZbVrIMr7x1d+pKxdp6tn4STzzPDtJYg1AWQoAWcHr3YNDJ5ftQafVaolK2BaFZOn4GaWWRRoEUkJrhIsqxp7dUVyYTKfVNHBdnrbruM/YqJhtQnbIwVtBo5WkC0wbStCikWm65JzThidJVaICGt2CA7c0Gq/cBO12vj+yHJNrVc4T1+tVs3F4HDm4mqRvq+oJrYqmMQQWiEhJsxJnRb/fOkXyJA+RsoEAy+X80e53Pvq5a55lIuw0TIp4NtufYTjZWl8Jl9wyJIZTlS0wM5N0htAiimPBTd/1nz25jTRqdi/K2l8e3es5G8VRYpbJSqd98PQ1ht2d7hfPypNK1Mx1k+Lo0vnu3sPvh+ERlDwqk9FBkYfhW28uI/Dmunv9zXv77ooDsjsABWJ0aiFds2bTbT547ScrX96eLcrXXnvWWDu/v6dMe7h98dzRycPdZ0ddbJ3NJ+3+6oWrzu7uri46H/vSyu13fnexfJIXaZ2W8yj74s9/5vxzL915/ymw9cc+fH1luN47d+79d36cZctGwB4+O2tfui6LkcBuOb10d+LEBWw1rffeemdjdaXKK3e1eTwZzcowLKKVoL1cnH765ZdPlvUb997a2Rke7+1R0pF9yeXZwLEq8fw/+9f/5BOfuv7pl3719//9v2t1F63hymx27/LWT99//5Esn/S758qUsE4ri4DfzIGIu852JugkORBCJInqrg3n8dHx2HpydlBlpxttr+91iijxEO+uOHtRtepumpUSWoRF3ug5Wlj1XBlWBwDAzIpYpdS5EJXmGCil6HGdXyRgpVR3DP+xLEyTBhpJqP18aSkYEyNVRaMunBonhplSBiGsRbqJacZwVkaGySpgZsvwfqt5uZRdjNdBHRbVE9uwfXSZ1yPbM0wjS4p9y2prYdusBSuPq6jV7jLo62qt5bFaPMvKrNe5WuoF1VAplZdTwzJrHpwd14hor+EvRqFFWcszsnzWcB1ZFwxzXmWWDerYcS2cJrVpdEvwBAMTAOC1kiieaOjUvOp0fFmBPDQpkZAibCBKagKk5EAKrJSh8LjV1o5B66ITnoWuD5FWjtGB3ENqqVFErJrajuKMkU6VuRIf1dKDGECsHZMX9SGiEGIrnslOz6vLOIxz3x1adFBmqe1gQu1pUWNVmmViY8tpObUsiUS10r4mCXOXKT8FYENo6gAgIK2rqt/pFkXOGKuqSsi6G7hJOBPCKFVuWiWva4bdNJRSaw2zDNDmaq5hoeb5esdPRRULJlpj6rihqepyrY3aKp3JMMuniafkgN40G6brTJGhosUknMxsTZJZLuli12CNGLWCUbmy0rLwiq6STifJ39ICe37L6NhplcxingXDnc9eiZZPn/vg54bTGRB0tXlFySgJ74rovmhcBqJjO63ZPPR9j2CuALdt+/zajaPiNWogajSq9CRMF23ajQoVx5kEem1zR3PK1Xhr81O8HMblKWNNw2UAVZvnhqBuQa7yVo6nWefCC05gX3z+fBkvNnbOPTpWGpLJ/WeU0Vbw/Mlh4jQlgCWvYdO/kOYjYvKaPdlseosFGo0WZ8du3YijZCkK8zitqSMHNm5ZK8ui7K05Mo8woxUnRQ3jOnE9F9m+1qqI59UZr6vCBMcgHDcd4jUK6q0ltaSMKa4M5mFklAWvZamNeaaPDNQnsOU6a1G9KGJd5CCcn60NB8VIoLI0sE7D2gOdFu4KySmZy2QN6Tgtjy1im2A7izlhc8pUA+0U/JlD11S+XuuJYUhZWMQccUixWifSqcWS4RAzWMfQBK9WuWgG3TiMOm1/Ho5sy9Mg10AUiY8cbGBzsYx92weiNM2GLNuY7UOSIQKV4FIRKHAaOibdFvBZKQkgB04rq8otk7UYS7UijheWuYd1A9NKqInBUFVrLjHRyrbcAirH9ZexpAZDVHlGo65qy0RJVJ0/9+LJaM/xJQTChFvYAOmisOmNLD9w3TArZpQ4RukBLSEg7lJchu1Dp6xlLZLIRKRUUqQJAhAALUUNKFQYRGnyxnf/MAg2LctSch7HE6IpAJAaRAuhpErKvFZ8QtOFHTVRv8pLpAQGthTUwJ35ZBY4lCAzcIaMPKpyTrGhRerZXhZioLTAeyZFAE6KsrRYr6oyCTTgzLJxDd6j/DIUieBh1395Nho1+yCPgotXNupzHg9D34CnxXRlsGqVeaTjh7d3n//gld///g8n4sQKtO+Ig2ipVU9alU1JaUBiG8Vh3G5tPD0NY1HXCuRlulgc3rh+6877d7Y3hseP3y+jmREQ0wjS5YRiYSgtlkmm6irOaXnKAgmQG83yTOSt1cYiDQFrz5NHHmxr3XDQpTtvv2N5YGWjt3+67wDYcy9U8bdM5M5OzN29fcIab7z/L+PTBji/MtOT5PTBBy+/Mtmvhhs9uuo/evfH01HRXw+Cy4vZYXK20A9mx190Pv2bf/D1k2n1c7/0cwbla93Ggwc/qUl57sLw3W/84OYLW4NhK53mODU++7EP/eFX//H8bBKQzUQkTw7u/OznPvhily/uvJGfLZurGC+d529cPzwd94bnplP6/u3bFy9cHi/yOXzQbG2ePk0tm7tmeXTykFI6n895xdJSW6wdxPpS63wqkkJXi2iR4dMbr56//ePH11ZvjMenl17a2trw7/7g/k/OvvGJj75y6dwLv/WP/308H7/yytXT5UyRxnvf/pr2JhvnL6nGHNdltmBB2xB1EzR0irLxLNQ1MIFleyCPxse7xz95/M04XYp4roMGMQfrqxcg3kYKba6f0hgUx8vAYSXM4jgl2m94g4rXaRw7VpdXhgbMMIw0iVtuK6+eMWdXQOahhi5KRkhdlFxJwYllasNAQNtlKg1DMpth4mfFZF4+CqxVqUpmIqB5WacmbA0an5zFx3ar4ABHU7i1cisti5Px91rGRc9tLeZHjVa/KDhGZhhFLdvKwa4jd6QYAF2YZmHR5qK0p5OQmUxLy7YYwiGmpYUdqYUXIF4oIBeNdr+IM6QJr+aO205Tx/YrIImUETb6Wc1dr6bC17DQus3F2DAMUTPfQxAnQEFGhekaEkogaVFKCpEWHFPEKDQMM1kaee5WdWoQT+SmSQmiaVGeASB9N6groQTK0hoSA2DpeX6RGkUqahH3Bp4W3LV9WenhuSxchEVOGq0OZblpKZFwJV2CQE9DZrhK5JFECBGsVGy6/jweWea2Lpvh5Fh7ipoqXM6Y2VEIlMxWeCk1LaNw49ygSK2iiFpGWdQGsNs1i7w2zWcjC5gG9xcqajt1FUKQklZXxvPE9H0d0D7wFzWyDNNqUdY4XcB9DQjpd8HQ5YTI2KeUuJ6hoVN0kng+DjSbH+8f8yfdfmclNfSqQR2LHkAmxKC/4lInWYQQW7bRtlczhKelw2SELVp1WzVRu6A08kW6sXZzEdVAqixZMiYVSh2vNV2IXu8c7OTi7cYXPverj599Lzm136O9g1HkGQ+nc97peAIVXgtde2l4ePY60E5n8BnPLiF3oU0bDVZVdVksVi45tVpvB/b5jZYRP2u6ZpjEncCdHhwxXMd5Z5Sctrs212rQXzk9OYAQthsXHGjk6l2gLtfF440Ns8iQwCcP92bUWbpmDyzOT57h/vUOgmfNrq2kwlqJmiVVEbR9CInvDWez0EAc1GaYj6nZgHZQ+qMin/TYuU6LCx5r7jqqT5FMxUOlj5jGRWIpNshqBuAcW/u2ZiLRYVmBFJwcv3elc6soLLPIHKsW5gLORSltw4mJJpRZDBIMGaXIsrHNgiqDhCEpp9gQGlUQAaANUF7Q+JRzCRRkCBHCdcVE3vYa12fi257LuIgrkRIsa166js05sWzS6rAkmvYHzmx61mi18iQFupLVCjUTg7lpRqhZxPx9aZeaCAPoik8dutK0tqbzp5bTdKxOXo2AaGipmJVKOYdK86pZVwpQ0Wg6SqKyUEopRBeGw8okA1JDsSbR3G8JDXOoHCwpZQRAlUVx4BnT8bNux4yTxGRNglwlFcUmQORCsP7HVj7/9x9/O64XFqIV0lgroBUEECEklIRCybIWWot0VoSl6ZhZdAA0UFpAyLhUFCIAFVBAY8wsr5aq1rWJjaCh8zQ2mFvXcadjYFBYzC7yrGmuco4ZtaSUJmmUmaLUgniqcpsaNWOVaQZpBoBoANWnuFbZgABCgOXZZVq8S+hgubQuXttQK47MYmOaRLOFdXmlWk6MRXRWL1BDv733k5hW0xiM84oj1h50nk4iBGVZJ2fhtOF3u43O2XTqNtoHo2kl8MlpNZ8X9+6/8Wz3JKDobHSPq/1V6/KThz+CQlKKDvbGshS+4YwO90nb1tFypT+IEomESWKzqp45zuSYH5eL2HNN5vC0vg/K1ZzLCf8xnJAsj6LMrnV17/FrRYHj+FDNV8+KR/zMXDE2V5CqSls/p3uNweOvve3k4mJ3u9nbPjp779VrP/Xvv35v7cWd3/id7zot83/8a3+lYbs2mX3vG7/+4sufLrT/o3fvDTfN566+JJLy6e2p67A7d34nSnGYyeP8diK8wXPX7bWde7vQ0HJycnvj5sVrr7yC6kqPjmzDWUzrsnawRHQxunLpC2VSPP9Sd7p4AlmLoPXJWTab3v/0Z269efd9E+r1YHBhq/uDe/vdtQ4gyXzmnT55SmT95Gzi2cHlwa1/8y/+1er21Rdu/AwoBr/3tdsmWVx9Yf37P/l6bw0wulom+qMvfWh5Wulw3vWl5cGUJai9Aionjk9KERJNijjButzfP51N+VZruF/SSLCstJfShCpzAhqwYAhePg4PZnValEXPa1OC0hoczE82WmuCC8xUlXGNakbmipwi1oMCCA5stxvHacNl6QKZrC3FsT88wSBThQ1rG9Kp4XlV1Y5msWFrE7xY1HcctkNAO5E/MAwvT8c1jmrJUZ1k+QGxTUSHi5PEc2ypci1dqi8QHTQbVVkvg5bLcEXiDyNdATSvMz4vgO0h14MAqSITdV2alguBjKOcYmxgv0oqwWXPeyFdLLERapUizbTizDnBuiUr7bkE6oIaqhIzxtq1wIIrqZTJerw2CSuqUkGkLavSEHKONDLrGkMMgBTUhMTQZY6lTk2bENM0DRAlJzVREFDLAGEiaBXwnDLLMY2sBnEll3ViGiTwfJqXEihalRl1kFRZEmLHdiAQWiCubC1YHObNVk2SOGh4QRSPqtKA0JYaOJ43no5dm3IxLfixZUtFDCmY5hPg7QlhpHkZpuNea0NptFwsMcJQQqRbECZFdYwI0cLHuitEBuSccZLPG8skZ4E3TkVchG5QLQ7Mg0CCXssLRFYdMBCCbCImVVo5oTi2Pc8zrCbzIXZYZ5jwbLO7oYF3aL57vHwzz+1ns9lkfpbJjbWO2RpauTWZTvMkMldWLhqmJso62UWQOtU8brChAxo1R3FxzBr901nTN548evR+t7sptOoMmmVeeXazSOV0WfcH54zwoGm/WnSutBuPf3jvjfffMvvnho1m92xycv381SDofvc73/7cp77U9JomS9JMNkxD1XwxXhoMUW05BtrZ7m57KDBgqPOoKotEtxqtDGox3nUtarpenZlPH08kx8t5NuwHCx5tbb8yn8arncumhcez8Ogoj+L5GmpvtO1n2Zg1uyN6EPRCLAnm25a9xzUkhiWrpWPYfHrakBQgODWic94FjgShRRHjfrPJyEJmTlR3G22p4MO6pKzuVctmlS4Mk8+iUbPVsZgFxfU4z6Yn3wssiQpJgVElhUldz2nUfI4BdTwrzjWEWnLLdeyqCBMxZwwBjAuuIJ7Gy8agHyziXddwsaWy6s1my84XHib7GNpEtZmiQGEFZiX7PuGyKArPt2aL0HcHUmBeC9dtFmW4mJeWYSGqWi2fV2bD73IRh1GCcCVkoqgPcUuXl2yTM8ZQHWI1JBhE8UHDO1dUobSnFPuccwAwxbiqK9/2RI4ooaZt1ZwroZlJuSgAVBBqpZRjWmWqgLIoNpJsgomFtCsroXTMIM9msOkbSjIpSKPjhEtALcPkahJN+u4gNaybm9f1+IlJ8N74AID/WPlqqCRGQAvOUwkRQUAAmedJCgAgBBBolTUHSgqFLM+ttdSF9Ny277tWTU1txDNJGaZm2W0NF6PEd72qzhmTpTAcc1UAAdg8rJ95Xl8Jg9eEkD2QPWe6RsUXFPtFWlj+tJZjidvUnPPchGi7QNWoqG5+4Cq9aCZT4kEHCO66Q1GYIiqSsCjLivXq+VyGJRYmVoIkCys1cmxWtd+Uy4UjUThaVETAjpslBS1UouGnP/bJH//krYcP7mwMLv7rf/2b5zY9RM882reDfrQYHyR38xzkUafbxBIvJ0/mly89l8zVwf4T3+prWVdF1O3Uswe40QkxqRaToKs+ufvoD9ttnp30Tme3zVudu09fW4SJ721C0BzNZ34Lg9mmQkUmZom2b21uchI+3j1+8WO9eX5FMPv1t77/qU9/uGqu75dfL04OVnYu/6//5//vn//GV8u2+7U/+B2vB65vr5h8/eSb7216nXoJv/3dPwj89vVLrzzZ18hsHMzfYpgE2XjNt/gc3Q3B0wePP3nxpv1mHbuzxelJFsfBMNjb27tx64XF6eHKYDgeH1/aOZ9mIwiLq1deUnrl3fd/69f+3M/d/fb7HX8Q11XvwuUYws7alZ7vzXdP280N2NILcPz08OkX/+Sf+vrvftW0GkF7a7Y/AS3rcPnalYu3/sxf/Gt/5j/7xbZ35d//9ld/5c997MmTJ1t9IGQvcVfLhnTNKzqZQ450SG3YSMojieRsqYE7cOwo3kVl8kiT/VjWwL2RErO/ttUh3fCH5jzWmhgUo6rkWZkoo15dNfLwzAnKKDtkRpMyN8vzVnO1TiwpKLZ5mnCk2Xx+5pm+hks3APXicl0oyInrFwhXijeAsm0vNVwt00c2XpX47Ur0bfR8XP3YgNsQu67dqvOZiUrTASfjhdb9ln9hKfYZcoCBkEaS1wS6JgvSMCfWGBGqBfB922AkL/OqwH7QRUxZLNeqgNAyDUaoNgiIQuh4iIODtAqb1sAwPKEyXmukNooyxixz2KrQSypVXVLLTbQwJTyxLCprDrGIk9CzekUiiJVnGeJAeE1tQkmR5JXkNeY1ocR1PJAkkdb1bJn4DUtDSklQJpHmtevZVT3Ny0RpoTHyvA7nXPCkFiVh0jBtx/YQ4UrMbPt8GIYQUs81tcJRNJMiQxARrzOtVKhhyQwHE0sjCHCiSela9GxeEQhbgTnXD4huNwy3qrDh6enyke9cXixTxzBl4WXqoN1ZieREKwNlFq8y0F2oOuSYTTNDAk4MXEyKRtBN+dQI0CSbzeoSixIXphvYWomFVjnVqVOfpU+TZ6C30R+ct7KmJBoxK3DqZodeKqLEGzS3Fu10bO7Oksn4PfjePL1QtdL1dtDA2GQWmpVP9x4/KnIxG4Xzo++sD291G+fKeVEVYVYd9AYO5g+iSqdZUVYqaAxmZ1ngqUV0AAA4Z1zLLV7l8aqzc9yMh3ByS7bvP+w0gp7Fhu22uT785MGT2QvXv3Jz5xfanQNu9AmbDNaaMudH92ab/R2Z6s2mdWFnxalzLUtFnbOj3Y7ZbrZbGdCrxCLAPzs+xHRhWdXuyeHm5vpk+W7L21CwQVhBoU0QN+nYpm436i/DiS6MtY7dvoTzvNXHn3Etnpt3y2UfAKC1iKI5ChCUacMJsCZkO81CRkEdOKZvrGqAUlhA0tZwP897qF4lmtRFKNREozRPpaTBcjGGOOdZRFXZNlow6ci04euNo9nJ9V6tSYBlm8V2wpYUT4i+BKCNtQ0Eh6SgNkTEKNMlhnV7YzmdnwReR6OoSPym9Wkeh4wssOaq8KVs1jQzbcUMFZcHBriBkTUZT4JgVVQmRJrzmJJGYcwJ7GhgQ5hVaqKRXVa8rHK7mTO0Ey5qy0slfmw7thJDVfpQ+sg4zYpcSmBYGcENXTFqxlLEGDQ4d2XVob6hjMIyTISNOE5tG9gu5gKCrMUTk2rXt5yiOFGV6dvDo9Fet22cnY4HvWFeVBQhKV0GkJCo1WpMw8eBc7msC5f5qecGgRvE1ccHVzf7K7uzo8zA44OnBGPJOdD/EWIFAYCSY6KlrDXSQAMp/2MaDAECWiHLMjxmSF033KZFSZWmrNLd9vkofEaBkSxFu9HGsEbIzDOtlVsCjCiCyMcA14XJCAUqs8BLGnaq/EyCSuqQMUrVDkxuEHhs25PjeLfVDsJEXbi607uwUyyoEe5WDSgdmB+MO7A5m56ABqlPM0s5CiZxOfG69uh0hrVEEua10rBc6/fOkoiwzuxsvrLjIyiiKkVEz5aPNa+Q3Lnz3jNZZ1k2jeIFe6FnXF4sw1NRNquSTeJ3CojHJ7NrwyDePZlUFXSrOwdvOOne6vrw2Uk4Od3bMq6ET5WSSyUe7p2Fg2j77Sc/YGGU9F66f/dQ0uYsP2bBM2u4pRv4eUP/4PXb7Fb/fia/vOGdvrF3bcN//fj0pz/08ntv3D+3Y21tnf+t//CtnfOUrnziz/9X/9kPbp+0WyuTt4/xXfNP/Nof63sXv/fmnff33rx88VotorlEX/zjf+T4JO+dX1fFiKpbjyfPXn15c/lsUR31jkfPCuJ//eETG6oPPohH8+zmyx95vLt38eJKvwlHx8UCt8riAS/dZ4/vt/rB9rnG0dnpr/zKp4HMN6+tJ7sPAZG1nHHOtYxanf5yVH/wOv2/vrGHcfsTrzxnafDuk7dvvfzy6Pj9SzsXvvvd31/ZuPRX/vr//Jf+4q+1vMH/8Q/+xS//wifFU6fTvDytM2ewkRmVXYcsr22Ol2ZoeHgR1pC0EZcEJibNpmfjd5/+GFICpW9is4zdjfVtxvyyEHJl6pWpUAkD5iIEbrMPqzkreCmGy8m81RqmeYaV5dndJIxdA2KIBJibvh1NoGd7XIw8v825B+Dc8V3GEq15kQ7qGiMqCG4VMXIYzYsD194A0Cx5bKvP17xQqq7lMWXLaEEKHghYYHcR88hilwkUJZhhameZpKhfcFtUoNUH2bLBc6LtuBQLBA3ThRW4n0cXGx0nzZailp5vK73kMrMsh1A6G1vN1oCDYw00Ur6QXOknht3F0EmzEkJbSek4hgI1pgWjlhZEgQywxDSl0hZkSCNAmdYKYcCEkpxXFBoCAQCFNg8hbjO3ti2hNdbC4RXhKmPEByJKkqiqU8c2KTbLWspKc45lzQlDjKIsrbMEeB5ptwaKFBoB0/TiZK511uxYlDinJ2dE5+2krltBU8EsrfeFlqqABmkVKSkFpIjhtJ1DKOVKJ2DjbM9UFiS4qNOqKhquLWTlO7Yoi6ImQQNTJrI0qSsXax8RHNchRK7lVq7P83yhWK1deDCbqT4zL/Xn8VJzWXMcpShJDVmklNfIjuvUqKbNNDMGnS6FmBnS8UWw1iBx45kkHJxcMpct7xynw7bhOXkS2Kas88X07MEsXyYE4QqSkdvcXMbJbHq74YN0OQa1vzzqbe20C4i3z7Nmsz2dpQYjSRzbjGCiJns/Pprg6xevL0QUglHQvIz55EMvpuFUuI677laDnr3We/WVjzY1f7a2tnF2eopg5XJvuVxU+ejZOGu1L5y/djPQoRKqEpQKNIR+33YNWa8gVLTdg4PXlsXTNetysgCe2To8jBaRq9ec4vHpWrclxNQxGhQz34+skREMPhDQCcwpn/lNv1+qk2msfP2K5SQaFgeHTzxnMEvzQd+fprnFgl7VLlmEjZeK1PO9hElig9Zydjvp0CzKqFECYsVlKEkIvGU0P56fYocNV9rnUVmqPLKUFy7DwJm4hrJpn0nfZB5ykSHLUmibDPL0kWOs1EkPCoMYaZlxCnuqbgbduCxODOxb9Nx0etQMLABmuhaW2RF8rtTMoJWoKce+YbSSqqCMImQLbSJs84qW+bLVo2m2TLKWSXxmBZNx2e9tJunSMOyywhQaUk+YURDdUOUmAUYtFxrtGz4SpQel6zuszKBpCgGiOmMI9jQuNJxRk/DaBpIQU6Xl0nJd01RxMmPEo4RBCepaTEdnkFpBw5pFJyur3eW0NFkTYe14JeeYBiPAgEXbiykK6IsiyR0bx9G8t9ZivtUoDPrg9JUbm8yvlyKPiS0llwACCCAEGkIAIcK0llIDaViu4EDVUmgEAdaAY2xwUbmWCxkzJFZ1WeQ5lTjn+wjXUkBI4Tw8dl2tpW2QFdOohDhCDFKEbeplcWVaFUELQg1lH5cpZ3AzLs9cP0e6gYlvQDQdzTrezWjmbW34qxeugwjKbGIiATv+6d17FuK8nHtd8yyZ4SaYpMWj09vcSx49OyggJH6tZEGVr0v+7PDk4s5KzFHgtGWSxlHYGrbCs5NwMkMSgmwyO1s2WgaApuDWPDoI57dODwgiU0itNDbyRHm+Z25sHz7NiizZbPRcRsb7hzgtXNQB6tqirN6//3R1fZOYRwfJSLyVnM48lyaH4C4akl7HGLY2wnGx9+T1v/CX/ur/8g//3fXzr4STN8699NLw5sd3T8Df+/t/9h/+09/Zf3LwwfNXXrs9u3ugty59fGfod7cv/7/+17/463/rt/78P/nVL3z5l+hwex+zxVm41mxuYQk68B/89m//zb/zm8A1Bb0/evr+uu/fuWt+6cXPn5y86ZpGlRx2yrP5eIpXh5FbPzvYt9z2dHQyOTn4/Oc+9dZ77776wVd+8JN3P/TKT7/zxptFYn70Z740P57qKmsHPc/cHBmVf5wYPLz7xr1+v31+89zW+o5GVrc3WNuefvTjX5jsjn7zN7/xykd/XvFo/XzjO997bWvn8v5e+ZU/+rkof/SDb377uRdeYM66OaSL4vG54Yu7T3407LrdlQuT7NB2L5R86TRFXaQUtZPZnFfLxfjo7OmhaRHTdpngV1cbXiNvD+eaQ4Q6rFs4hY9wMHDWdx8dnh4fmpJ57a40n3Y6/WwR+k6AsDU6WXbazSibML8gcCBr6gQxBKFtsaLSdW4YSChQZLooObOMFqEZBGWdKQVQGI0DxxJlgxgMWCeCHzIHnizNtm/ZlE7y3LI7ntXIYtRoNHJZ8hJ4jlUXcb93bjoSpmM7JlyeTTA7dlqWUl64aJiUmDaMlrLRCA3TVYApCRBCsnakkIHbiMtDP3AwhBgFi9mi17ajbOlYK8gABLSi6AhDjxJKLZHFFNKCqKDigjItNbGsRpYlZkC1ogaCeQW1IqJkvChbTQuhEjFVFmaFIi1xUbUghPPloWk5vrOR80MvcIWGjASaoyyvMANA11jTqgYUW6quTAND19BSRwuujMDyJBB5VRWu1cmWSMis1WwiZNxtNHJdc6whhAWCS9uG4/G84KGiCdeLTB6T1kGF9oROIJVCSsUdDkcQ5xqmEM9mZ8XZyZTPJ45pVwpDzxmlE8NnmguSwo5yROg7LfOwOn4S28cZy3EKoHdndxoVYjkfL8OzCsFM29PEpfblkxrkiPi+vRKYa20HQK48lzc7qkoKM1xf3bh5udO/0Nja/PjNtZfNpknPB3OWjEpJnMu9wYWbN7tbG+rS+nClsX1w+MY8evTe7f0/fP3JvbPo7ZPkYUhstkNxA6JagvnhyT3Bc9/zRK327+/mp+9/9Vu/8833ni3DHBqa+s0X1q9fGK6ud+1Xr315Y9j+5Of7jmX2h+sAUtjsmV3M8cwy+PZqM5+M245a683q5His46WDEs5X1zrAqZb1qNNBMb97cli16KdQ1YNgMVit+6vwpVe3TR9owjUJw3BUxozBnoWDC+cuDwc/qmFhBi+bzobAldEwOoE1UJMuzWCyF5AQFsvVTqtOliZCVJpnVmtJXohwZg5PClSVbnpI3zshhso3CQiKYhwVT6BZKurGVYfDy3nsAJDv7z2IJ0UdR0W2B0EkeMW53HS7UZWbShfzMBZVB9kCYJRtN1zTsCaBB1rOusoHWDG3eWaRRjyxLKMr1IiwkZBTZiyL+m1NH3AxBnjiN2NmFFzOEZZQrmsWlWIetAwJ6ixP/cClFCpRWUbba6la7zmexAYkVh2Vj+xgmS9xODtjFKvSNGjNrLumMbXk+brocFHanlQgsSxd5oDANsWwLKEUBEDmui6Xc0BmiEBetIRKGDOLDFCGTSum1pkX5IyUXoAxxkmIKG4TAwA8sSzJc1wq4TRsLgKhtNSprLKGX+gyw4B7nvXk6CnP8+e83hY3ggo+t7rVdAMTGwZiBGEhtQRKQl2JEiDAbLvbH166fH3QX++2Bo7tYQqklFmWCV7xpMiiGGvl2oZpMl54dc0Z5QjAprtpog0DdQBAos5NRnheKllG4VPHTADHVdgrUqcMt1xrzTBhw7kkchfAeSWeLkFE3Z8ZJe3hTWv1w9fyPE3LE8OzKrupDxNzqpvB8FGcRrUmwHp6Mnnv5LXSIYdZnFhJZmWzSh6mC9mIY137ltEijkPsApGFqipRsLxc6bQ69jaqW1UW5emJY9l1XQcdmtbiwcGPSx0R0j8dLUvxhFizKzsfoTTALLl4zZE6l4IxwmQdL2cnmwM7m51U6XG2nCzHVbqcRvPbslhsDweLo2pnc+eTH/3FF25+bmvn2vbWT2fF5qCxanX0W3fmf+KX/mRRir/2//3v/tNf+5uB0awD56m99+N39q6et5ze/Bc++Z+89+u/+Wtf+KU3Dt4flY9/6osvMc55mJ8/f/40XtCV5tfff/tn/9R/tXLFdW396N3DvnmhmuOrN7Nhu9DcFLZbr1pnrAmDq2vOpn2g9w/nbcNKntz57K1rB48Prl99uVhEN4atGy9fvfP4/Rdfeu7Ouw/vvPXEEGrYpFs9e90bvHD+qmFQ2rdY37j1wqVifPrZD750XKQ/+8WvnI0OHiy+/9GvDK9fdHzsvXN7bnWg7dMXPmgS0fnx7/IPf/iDd3Z/ZLXpXmIYphkff+/KEFzc2SogYJ4J4GEHmflpiSo1j+8ardTtda32mjvovHB1dWfdvHYhoEo2nK048iVthLoIXG/t0rXWlecrx4asMI3RcKuuglOu0Xg8Ziav5Z6CB0EDVDxr9xugfLGuTYEmZZVCuSm5BUnE1dT1NMYYqFXMHOyfZtVZmnBMJ2bzKTFyBRJJHmDC88ijzGa412nuoHo1mete38B0FoVL23DC5QmXZ4HfMtEqEA1Rl8zKy+qo5GeGGTvkQjLfirPC7oyQOy4KbZPLjuXOxrxIsRC8qBYAAIiEQmcECIv6aSTyLBn0u1WuDWQ0AhwuqEbcNDvESLGRZqnIipmsvbwaux6mlFI4XExaGHUhNuqqWeVMCgwhp0aJSEmolgKVGbVN6Fu9KjGAVEoU/U7fpIrLhwgL02ZZHkGkCSFaQCBpFtWmFfqebgRGVkzS8gDiqWEJhJDhpsQQhFHTgoiEppOahlY1JhRul5wonEFQWOYgjVGhytV1IAlGc4P4kJcVGbd8i9TCskA/LI763oBKo9YBQTAMj4q0YbWRabpFHmnE09nEpH6dAl4TgczarjJbPpwbsQp2elk4j333+rvlMskLWkZh+eTChe1mBlE32OhZ83zczSkoT9OUItgqJkmn3Qdl6lRMCIKIh32TyBc28dXcXEbhmGizTGjb92ljkdezQfNyXp75nXJ6OD7ef61Jz4/n+1zFFu1RxDudfZe1nk2FYR6LUxpPxeo6wyrefRwj5zhDD37y5mRr/eXhMHfKhli0Os21Y/kDbdLG4LLfNB2kcW1wkzjQPgfiDGuiV+osdrugmJbuqnXxQrMcHwPUKLNMgYnjEEYAEnUB2ONFcfyw7q9suY3+4mzS6j2PNV8/1z84PcPi6ebGjSRKzXaA2YILQg2zkPMu/WlkRDU/oe4KBhYUIy1pZVuVEdbMM0zDo1RVEtL2tEqwcdQ0LhIpdDrRwKV+I+Na5i2reCh5PMuSoDXwzYZc5i5QLlJLFBfuFNeinMRE7rSt7bKihEYWYWstiCXtmO1aScFVF7cgxoZM7R5nxC1TnNeJ4xLHMV3XKsRpMabDYF3LtKhigzZ4bdWw4VjPQ0AhGQO+lsWBwE8MCwjlAnOBhY9kB8uSGcL1NCZwNs26fSeZzlTiGLCptMqjTHAEZRfKlawa9XrrhMqoOKkL6DeDNMlMa1EUSwusF+HcoI5Uym1URSk4gnBwbNI2Ek6yzHyrAzSSRW2bkek7y3jmmKugZopzwkyBziqqhQhN0Oj2SyFHVUps14/zWCDkop1yuTSssizTwLNdu3F6cthq+YDA09vPLNG0W34s/cmx8eGt9sPJ7r0GLejGuORnyT6wUaDsokwFVUrYG9s7Fy4/P52ItXPNuhw9e3J7dFhLmihAi0J3t+wYT02rqQtgFjrT+732ynwZ99oYahyN05WhWcp7TF+ryjEFDVwHLV8k6ZlBud91oZ7X4QiWPjesUnIbbSIuAREO9xE8GVwceKtbyaTEuXb9RjqfAb2glpcSqrNxm1gPD34YSTCvR3OdFinnpdLcKFTNLMIqmi4EVrVp+oDoGi+m07Hjt5vGxmg+72+vOD7DkPgtPRi8vFjOrl6vTWXnI5bF3Awc22Vr5zcenKnW9npCHqO4Pr91LhWHqGM8e/D6S5efJ7D7ndHXmle7Se4v1QWDitniFFiXO5ub7mp6HPJZEr584wXN46KpUL/++PkLfjOStPzGj3/4kS9+/POf/cX/+//tv/4v/vSvfeZnPvtsdqRS98m93cI9ev3RNOjT5ip4NBv9pa/8mb/+N/7el7703zy4nyezwxsvXmqu7ozL73OQv/zSi3/8l/9IkaPD3eOdrcF4dL/C0QuvfODffu1rqz1r8nhkuXBx8mht4yOLyZFFkleuX3334NFnvnBztHjKWuZ279Wnb7zxq3/hT/3Dv/2bn/3CV3afPmuv+wbXbOqfkDO8eqzAc+d2+pA+f6O8UNfLO++/v37pwmF61hNbNGvwRfXK+Ve6je5bP3qtXMYbzs61y5+QKLv/5OkPX3//c1/+2a9//3s2NdNa1jMOnD7tbdSee5LiMh13/IbOemWVy2JsYny+ta0N8f7bp3miMJzG8zyrFwkWlmaroq0WY8veod0LirXTXPkDsNyNw7Cxuf4lfHwcjpamJXKUR2Xeoi/LmSHFAfFkmudZUQIFW83zFIeEoiq+aDXGtpmEyqDErrL9ltFLzhRCNSENw0awcJg9k3VXwyCXI8PsiqwnQFXyXQhKw6KyxnmSBo5hO2aWXTX0LlZiLt9BngPgFVHEjl+X+cTtuKPx6+12W1YrsGxQO9RcUQpmIaS2ZVlWnueUGGma2YaXZ6gofcxqiEHLX6vlgUDQbbVjedA0OyIrtYLI8AzDyeOs4fQRkID10vLId1aySBCyJNBcjnSjqWuYioybEouyajZbtdBpBg1mS8TCdIwDoYDBcLsqAESG4EXLrZO5QeEasMJYLDhrOqbnekkxrRsdL0wWXNFec3U5i8PFbH1lK4wiqSqbYZApq9ku6loSBVhN8oQFQbuoZrPF/spKHxEsawBBoyxG1FlwGUhpZFnh+jjXD/PUcAiZ5SWhZ6vOajJ1j9J4bbNBSn58qHoK2wEzqJ/m8cp6q9RTy4GzGBTJaoOzbRfHxeLQXTyud3XZLho/WkT6/NrLAbk2kdGgh6mtGuFsPP9GHnsHT6RrGb0Vh0Dc7TUIaeUgc5EyQaJNnFsc0ALXJR8vuhsdnw2OjzPDa/HS2lr9RJrefnTv15PEe/j0nlAoiqRhmHBuFSU93H/T9fD1q1cno5kQqj6xbj/+xur6GoCiCNHG+guXr7wctLiAszjPORfJ0mICk2b6rfvvXet9ce18P2hMKnw2tj1H8bw6C2x7vl816tV+H+7e3+911mP9IEv0Wn+rYVjzyeOojGNBHx9H6+KcZxJEY3uNZBEvJVnWSnve1bWPl2XhE1rFEKkcoiKZT/1Wt6hL15FcNIvqRAlkoD5EVV1btt51kFk6VgrSvJjbwu7UPgIrTY3G+gQEG7XAzTlsY3UsdmPXLpPaY7A6flobK9Te4obLHKk5bAb9eHI86Kq9u/dK65gCJSoVGOtVlVFcQoyUdjfPrcbJFABCKANaVSUgBDPWiEKmJCmqKo5oLziRWEhZQYhM1pbaxJhSKsNozojVbexoxZPKTJeO61wM7DGsmGAzk26H8WM34BgMfa9RZQYlqsiFaXHTEXGUU9ykJhDgsRc06pJS7BPMTdMuYgMIH0FKtQPMXcNsVEVpmazMWpTYmIb55AXtaEjjwC+ZuYiTkFm2Rc1sUSktHZOleUgIK3Pu+IxiSOTKbDFbPddaLhLbMy3LTpYGJqqA90y6Fi8Dw2hrYzlPnzY6vhaOqFDTxx6kzCJ5XK/3cSJDnKU/Y37yjjVCJOyrbot1Dk8OYj2bpyMLgXR+8uj9wjT6DbPKlgdIhBYq+8ZAef75wUZZJestH2oLedY8KTwskrhoN4Z1HflNAqSheMDALUIw0AMMfQxJkUYMblukb2CtUzvDBWMuWMa+YeUoL0XdNWwOTNpvBZd2RFJ4lj2r5nbXz3cf99bWFtMzy8ZxltaC1wIVMq1AlRW53fCreM6h5kjP4whCiCHiQCKEKGUICoRQv98Pl0WaZ887V3urGTY2e7719M7rhPkB2RpnRwZTX/jIV56M3m6+2KqmaqMqLze7aQ5dEnTXhvFIiRk9338R+Xh/P9v2fyF7DKPjNz52c/Vscbp/HD//4sVB1/Db6//of3/v5ZdfrTwPuMqYJxvdyzVsn43dLI13LrT+P//TXz0+CM8O67/89/7b+48fFclw//AHF7Y/sJyK73znN/7W3/xn//Jf/LMPf+SVsnDd1uWu1Xn4xvdqurj1qeeqrO657V7z/IVXPufaPSPDbSjHOIvl6CO3XgITd/6d+KO/8uFy7fa7d/ae/8CLD957DOuVm696i3m1szkI+XrmRy9d//Bbd3/85f/yF+7fe5rIEyDVz37uj6Xl/W/97tdcvtbvBf/u949f+ZCuSw9SOh4fFUVVyVSJ+OxZdW6jf3j0w5//8ge+/83vSkVNaKWkUP3k3vHT8Xhy/8EjYtP7995/+4e3v/jFL/zwte9ur9949/Gjq5s76Kkr4dnVV1bDaE7UwQIYQWeFIBXWk9NnZ7LmNlKThXVverbSxA5uWY5/Eof91UsIbloolUYZVELpC/bw6k01AqE4nKWEJlobtpcyjOoyrcARMUtChwKO/YahwbzkgmKQJiY1J0XmQlpYlGuR2KZblrVpuJQ5UmCZV6LwsKUgaAClIWSQ5IDNpQAGM3k2gNw1rQgbpZBGkcE0LT3vM6JewOqqFMtM7EPkYqOUVZVWletehLjG/hEhLJ6ZoLTbgwriRGqzrBSvlcmAYxFKCykz07E5x16rjLMYiF7QJGk+l+UNK5hgJopSSKXTrBYq1ZIgbXLewWy4iEReqN6gn6RTO7CpZZdLZRqF1JFpI60VQrg7oBUfxXPT97tVVREEkC4I5WmaBkGQ55Xj1WkuAWdIWRSmFMNontiW4ppgbcjSLlPCsEVcmFYjiAEiqlTaajppWZUV8Fud6WRGBDws6rIs4KBzvc5rg1hVEfIaiHKg4IKANqEAgVYWrmq6q0meENxnAgH7tEyxmfhSqpiHpvQH2SQeuaCBkdluro9PObOHXAouaqZq11aC1stM1Ao114NJOdt7BM/1N4CWNdjzew1mra70umfkbrR43umUp+O9h4fvHkwGa/Nrly5eSbK6ew4z6kCBgKZAV4SUjsvKeX7/7YOyvh24q3LcXNtp13LBbHrluesHz+63wmFZovHyvtQxBkd1SZOF94XPvnj7rZCaVnvoWf663Yr2Rw953rp64eLOCy+sDldmiwME+mmqan4qwels6o6+k+/uv7v2Ub/gK8vjerO/4zkmpjGwcJbFRZSCtNK1KEG2cKrRk2iw2S1VfLhIpWhHEc2ybKvR1wpnqoSlangNzYTnNLIiPtf2AAokrAuVQUJVCUQVaSWjSUqCwjAC1+oxWnFRIlUUfF/AJU1fSq3dUiU4WdXJucyvgDVvo7ystuv6iMKp1CJUvknsLFdpnlECszqmRC7htGW3pMzPnuw1bL1QSdBuV2clwc5yMt3srWV1biGjrCa2s2pYJtQlpnWeyWbTNSyRnTmmaWAjNGyUxdxpKgViB7oKKgwaunaApsTkNXomlGOqrWaDQmXNlwftVitPjPaAp8W7KD3v2KWsrSyPbGOlrveYNy6WbcsIJJmahpQC1XnPZALTQghN4TXmndSZ0BpiZCoJpaohziXgDh1AQiB0ajaTwBRCa3wAKiNwx8QoJayLTNU11cgrK0sXAcq14WSlCJ12XRSRbfezVKmyZbVF0GRZMTEsSqmEuDBspHQOwCZXmdlYUmoo4aB6RQiJUSK0wFi0mqYom9F4+eLOjXceRdvmNdUMsslPXLe9Gy3O3zwve6U3dvon51AXRNlsb+8gaMlalovZM16kaS01Cgf9YaZzA0mSlwbEVRw60DCslGlPqMgy6yR51m2t5eHSdzoQhAz5ZZL5gRWN4n7ncl3CCucaz5WuEXFNo4AQOhZZJAkHGHhu79KlrMhtyxS8cm0r2nvEqAbSno9DZOZpVuQyqTQtYR1WMaLkdDomjlVm0SKJsUVVUVKKawCKqmoErTyNWs1eXQsupe07vBFdunhehMpxjJ+UMcfmRVOtQVdYwLvsuHQFJQyeHX/hE5+/++D+dHb8pY+f35tPDo/2X7ry6nKR50lrNt1X/L32za3nzt+4896Tjc7HrUs31trOqnPp+394+/Of9D75mZtvPDtzrU6XaKL5w8l7l66ev7T2qfPX2yv9a7/xL772x375jz47ehOZ2fxk8sWf/cTDd/fbzs77++8/fX+2+/ToL//V/3b/2ejCcx1zufzhD3/vz/yN/wb7jXQS/f5/+Eef/vRwZT0iTnW8m0zne8Xi5FJjW6b8G9/5l+s3PWKc9cwgny/IxVVJza0hMet0hLKfunXu3XvvfOZnPr94/ODG5uAsmf/N/+Hrf/Ov/dLsAF6/tf3b//JrX/78Lya4zNHDe4t30e8NN7b7XnNj+vTEDcyPv/yJyemyYdajvd+6sPPc43vL/uCTP37zd4bDoNkLZuHj/dm0inGh0Plh97UffZ+a/u07u8OV3u2Tdz966fp0b1Ty8NZzrz547ZnfT4PhCwA7yE1Pjo9ELXsrK6O8DhczYGRXXrwIJ+d4+US7TwV1sXemzFrWz1EAMFlRlXaDlAVOdTr3Z7zUg6asn+3NqXXosjLn2LE4dfNk7jh4BYFVQX+A8CazSoRVraZUDkFB67qwnV6WL5AJeCUAmGAESji3dY8RR6AFrwmqA2xKRjUXBBmxRDFEWgPM61CDyPMZp/OSP2C+9PCLUuWxPi7y61J1RJGVYpyp0KKrjBnYiPxgVRQtXSFiIQQFYZnSOUEUaouitkZ4OTaaLRuBsUY8jsuinvVWRDTRptHNi5LZWmvgWmuilgCmTjPPi5gYcnOlPz6ba1Izzw6jXOuw43VnM+F4QZ6XdV12u6vhTPv+GAHEoIMRraoYM2AaVlUgWQnERoQ6VdVgxDf9SIrQQCZznLPxWeBZg56DYJkViWk5ZSlse9swUZRMlIYlrwEkUmjHMEnXv5XXR7a/rDiEchAngBi+1EtgPlVlgzIq8cxoxlG1a2KMoIGzNdjjB8dPYOEOBtuFsYKbLRvsT6djw7UlQRBLYFjj6WhncGE6Pebo4lqPh9XyaZrENqiAjwx0Onm9v7ZdZtF0XE5nxvqV5/t9I84fUDp6+eWXi7JqtDbWNxdpkSTJ0+OzwnKviclO3TEFSpFKdJWalTStThyoIN0rlk/C4vTx08Jofqw7fIGRRpWd39p51fflO+//qL/hAuU2W7ZtS96zHt57x2CXrz53YXWr3/C3bK8effXO2em+Iu7x+KSqYJrNNcxNy0rS+cHeooxnHmp7mvBUvPvm3edffR6Xug4jACqMggLMjT44Gu2WCzHcXpvM9tjgJrYVFRkssEw9Q3ZRM8CBqLKpZbRssx0tlr1+gyLZ6w4X84i4dV2JqkyLIhVZzKA2DbeuGAGBql1gVTbrVLrKyiyPNjQKRs0DPA1g0ansUnunTGKOi3k/TEdzHDVByrFrLlnM5ZhKDy0eV3ZG/TZrrE5PYjCfDs1eGBlatmv16ODkLJC01/MKXFUpb1htqjVmKxR4WVzblrOYCs/peU4wX5w5du4HSkgpK2YSjxIRxqHv+FV57DCTKCRqIbkvCgtZE+gsRfaCqBlEYZIfMdwWuW2yWMFS1KQsUr8zqbM21beWk33DLDQ5wmyOdRdog8up46GKSwkIJmEZY4SSvA61pkUmmp1ACU9IW4gFAo1KaOxYCminWYua47pFzHA+1pYZQFIS4GLZLyrR7JGqOBGiIKzBpel47TyWENWQRBA7vPQsxuu6VsXQbtZZdRL4HQObcZ45pgMxSKuEMavKOCAWohpIoGWRxIuVfiMJT4ZBK6uTqMpeXL/6PomSdjsMF3Zcnuwfn7v+IUyInEgg9uPFvIgXdTXDCAPAYklVXPq1bEnUXBvqeU45dg2PKeoafVkhWAnLaBYRdh0m1Zhhv66k43plVgx626pGCOgilbXFG8xkHC6k6nVXlpMIVu3G1Zu60QLEwqJKYOU7Nlosi0XoNO18OtaqCrM9Cb1pdhLVVkqrhJcxF8hik3CWqNr2vbguKMYQQkIgJcZ8HpVZXPCi1RucTZeGiV99qUcN88LLl+JFut19Dsp0fYPtHswvr608OXwzLwf8yHx+80OP7+xCR8biIWhem753fOv8x8bZrH/B3b39WIl5cB5Xpdh9Ot7YGvhe/N7+NzbPv2xeuYDT/JOXPmd3V9cievPSC3/wzd93kGQJbgarF6/VH/jQK//qt36js9LbuTz81re/8fFPfbjXr05OjgyzDpMfvfxi9/Hx37105ZWqngiue+LSG2///Y984gMGXI/2zX/yf/zPUNdd60ZLfezeG+nRwb3F8vaqT0eH0Xvv3lsUy63nPgMarQff/K2f/6krZ0nZc7lr7VUz6+KgmY3w1c0Lj+790DJEOfnQez/++l/+s3+832317dOHh98z2ODC1cv/+g++uziGK83O5uaNcH5cxN+7eAO3mx+UKFvUBy1nCy92GO94q+Tt2z9s9ImC5nJSRHPv0e57dapuXLp0/Gx/0O6enEV+w10myR/5ws8ej0emmex0Lr71+o/NgbfR/aNn926zxtnZcdhp7nAGw/hQO4HwvJXhS8f7z6biu8RMKfe3vRe99DwmZuHPjALRdhPgGEJV0A5sep1zG2PI0kd3vQbFMEDK85q10jyLcafpRMt9jWYG6PHSCdyVOB0h0QHGHJlPtS4UYtiEAHllgkzDsFirYjOFswo9AbACyNVoplGq+BXNLUSnWiVVaWjJlJSEatdpViCD1XmqkUankmMMmpzuMbsnqsiAtkEDVXeTUGGiNRJV9ZSgBoUmVBgCR9VSQKWgZEQVFfLaocZYlRBCWZbSs25WS5uXB5ZZGQyauJ/kmUK5lLVt9KN5jlAH24UUiFfYDewsnxnmBhc4XGSe2y55WstJe9iYze+Zvm+yjuCKmFVRTgFWQluW3csS0Owi0xP7B1MGXQDoYrHsdprQNWZpSizDdqy6SCmlBsOGYVRcc3AcJ2mj5RKKqlniGA2sc84TkmbR2uDGcrnUNMnAUTBQJ8cRAB3HHlqGjUhaZIamhsZjwVfyzFptZXfvxu3eENEyKXOnacT1M5W6AFqm1ZjOlr2ufXA8RdiaZ4VE1OyjJ+ns6PC0sb0BttCJWs7HZx/qvHi7fJfzxG9c7zReduwmghHCstd+mTmwqEDQXFcQ5VV4ePRouZhMZkeIZ4IMscls06DIA0aqYEbshed5hv/8073dZq98svfNuqg31l+KksnxaNHqiY2dxkvdlx/cv7ucyVb3Km0t33gw/8znL+xsX9CIeW4nDmcMrLxwy04ScZY8vpe/g3G0uTXwQf/Ou49GR4J4ggaks33hsFo4s7PTB3tjPIMfvixHIfdte6WbZXpaQxN1q2yocXutmzBiZIILAtiAmLymuSQ5GjjnHM+fLhcXLg4X6eTxwaFjdSnw0eHuaJo0ui3TVBICBr3FLCMGBhURVVTxlKiGkLKuorpGEFErVgW0qWG1ZZ7Vo5jiWrn9ZGUaH0msCiu1ic8TgmrMKFUdCuilmsPkqHY4RXU0jifax3Wg5g/faJgrRtUIT7MG2u41Npdn+5qUZdz2V0opKqouLJZzt7VAmNhkg5ETDWqsO0XaMQwKyxLXApkQgS4BQ4EXCu8qdYGpHUOtY1Wn9RFh0qIDLV3sTYWoaLUOUFrxMbNqE2/VMBR6QghkdlKlA5feSvPMdpiGRZWTkpeuh0t+qgDDEEIVANEAXCLlAFCXRW3hCpCFhkjrBiARgBDWOxhXi8RsDgzTwEki6iq23QpTlCwAkgxSBjCseSQV5pyZ1DRYqy5DrW3DMMqytk0zTReuZxuGAfWJgc0ycjzP09WJJrlhYCWV4VNeGEoK0xJCo0F/8+G9iedA32KWgV4/eBjKSYnh/Xf3oZOfFq8PyQ0sspZPCCNZspQAQCkZrCtZpAcRgvbVrYtQLWpVSQJixC0emLatCLAMYJusiDgDTlrm1ACWq3lx2gi6slZOsxxPRo3mUJCr5WTp+z4jcVnZ88Xy8gsvOms7CuT1bGkGQR3PqjpBaRYYRlUUcTZDRoZguUz4ki/DSizrrEakhnweLioticHSuoQaNFx/Hi1N2yyyEiNS1YoY9lvvvNNoND7+sVdlaTtWb/vcjduTB2mcG6h89ycP1nd8Mu+bmTsNH26/svVsepbOz1as1XPdn957sE7YDLF6eYouXjz33bPf/OBHX51lveOiSizqb3Z0am+sfqxDX5w98j/z/C+ZvWYMVG/dO1pOlxbgzHGty4s4MOzMCMSdR+/+rf/x7/4vf+cf/vyXf/m111678dyN2fT07R+/fn79UhzNlpPZpz5x5Z037nRat5ZPvlpyfhDy6rvf/+63bg9WOx/56AeK+tHeQQdVk5OHd85v7xyH0V40KwS+ceEz1N7bO5h+6uc+vDji6Z3xCqvSZQQ802sPT6qJqxpZwdY+9pGffD/st3uvfPr5dLe3f/Tr//iff/X/+ed++Ruv//Z8qW7sNAYbXzw8eKSTs5fXv/D9b7576dO9s5MFTKDZOWne2Hz45Gm/PRSnwqfrp9FJgca3R++c612A7UxkM11JwzQ++/kP5TXf2rn6+9/5sa3nn//kL/xo750ClZ9uffS3/uk/OHfxYjc96ncupCdnrGEkCwEZ8JpoNlNHR/vQGLWMrTwBhXxznu266lMu2CqN3UAdaaNZkpbBtbRssNWwxIP4GcgiyTTDNUUIu4HBc3R2cOq2mJQBBLQA75vqubzQlnUMoavEeYTSKGaGpSQsFaugHQmYWXaVL4Mq8SyrskhbKcTFXaEfE7JJQL/knlQTYhSGtASHVV6lwgo6e6S4kYy72HnqOMMkbSTlgaEBBT6BCcdP2t2mrhyeUtu2AcBSSilrQhgjVCsueVVJbbkeQW6eVQTajJlCjqk9i5O822NK2EWdSXpsmJKStuYCkZFvQF4Dx0LZcgaFVSeKsU6VOZhbhiOzZEENg4KNOrWkwIaJokT5gSOVKipmOYGQpQZjbwjTGEVTHgR9qBkhhIjh2WRmmkKCuNPs8xqFS93vNijNhcy8BsgK6jqNui6Xy8S1faV4lmdBwyYtb8jV0naz6SQnZDWPwlYPCZ3iah3gOq3vU6tT1yZG/aqigIxzfdEhpY0c6dpxLMFMez5+HD65vn0jF2nOk7QKcg5bfv9oVPmdzUU+frR3MrzSKwd6d5mtXz938Vw7PZlc4NfrBpyOZxy83iZDJTYMOpggMLScVlebfp2XSV2agf/c6dEoS+NJgo1ZFZg17AjccWrlVEvMsr5ivmOJW89f5Tz6yY++/eDOj0fHjyQpHXrFN+j2Zt5sOEdHD6LwNC3Qw3ffavevF+rZ493MNNuOr8aT0ebGwPaz99+bHh082X/2EEM4Or3a7cR37twBWPV613mqdm50nuzuYZZFi5NBo7l/e9RybLuNlKzn0yKrod/QkMUObkUwN4uiaVgms7lAHFHh41JIEjh2YDiAhlFy+/6JH3SmZyObnbg1s1CTZ1atS1kZtTJ5rZfxXOspoQuXDgjIIBIaJpruF6XNy+smeVKTYlcOKnmxhTgV2VwBm1rT/BjhtazODZn5pi2EcI0XoHwGAUcWTpCWViNonxNlGI2PVvDPoCoaPXt3xbcDmmbhE15G3qBPNWBIl6JQYL625iqQ1WUKABJlM89PAk9RlmKSY8haXkvJyDL6mIpaTZQuIEmouyCMyGrTcWJMeV0sKW7WWpleVGaVqn2TrkB2WlQLz7fTbO6aLcUDhCsJYsyWAFpKEUIVBDMJCIYuplTXjsECQXNmgrJKEMlquO/hywAQy50XWUy0E+WpCUqAQ4EqjspoWQXWJlB1UYyDwJEcCDNlFitLzOggT9LA94U8qdUxr/2goYSKG01TgmOVho61JXTOEzsrYi+ACmiCHdt0s3yJcJVVca+5WaRQA2F5/mTMW43VWoxgXLbN9g2z06XV29P92WorVd7kznHSPU2yueE22q0BoFYdnfKi1sxziZNm0dXu5icvfah6cuLpACLS0IZrFFiVFANGuVbSd3syNxy4Y2AX84qyUlY21m6RLjEIPOtcWU2FX0dgaVOU5fHgufP+lXVQVyrPSi1IXfrQzGeTGossCZuUchQtijNhwaPZUU1gibJFnhVKJ6rmUNuOE6aJY5hMq1kSNVx/Wee+62VZUUmZR4njOKvD3tbqcCHKj/avnj1+7+DJG9jky+JURekHbnxueTruOmi9M+SnZRmGq9triNpMSYb3TqLF0TI7v27uP3jHMj9Z8tWz/e9Pj3LLIXAxILB17fKVRXG6erG1FMvVoZs8HBOzfRIvB07D8kmWh+X03ss3fv6rv/0bP//zfzJaGs3WTsGjw+NHL7/8wd/92t/7+Z/5E7/5L/7V1k77w8/9uT/4vW+sbQ8FL776W//8y3/mz+4t7377R3/71o1XT8ZxVsLzG6vAnBydJQdHwLClYlLj+ku/9JEsX5y91thad6tFerYYVe3Zw0e3r2xf2ez1Z8XS6onl7sHVC+t8QUA9+5Uv/afH09H+wT893J33mwwy9fRpefnq8MWreL2xc+fgjc984U//8Pf+w7VXm7ST3X/6/fVLlwXduvP2my33IsYaOVGzZZ+Vo3h69oHnPjs/ncThHFN848aNJ4cHfmBdWL1YZGWD5puXf/adkztRmL768he+9d4fPHj2/fWNdMa7ThCFs8iTrfNr5/YOcy1AfLY/vDAsxg1azBXPjk9XLf+sCX7dqT6BjYthUkO7oCRVxNG2cC3Ma6M4dDruVTF9UEy5zbq8HpfFfH24syxCirUsAxP2y/qYkVVFHgLnME8uWJZZiwxonJcV1hTooJaEL9e1njGzphQDkAlZamURtVOBkJhLTPOyTEENEIQICqkVxClOPyL0HLuHltGljHF1Uqi7W+vnp/N9pRFV21i1ODwSaAZURuBFhCvGBIARpFTVEAFGoImRXZYZxoSZGSITwp0i9k0TAeDn1VTpmpdN27YxLbmspHKV5IoXaawpsSnJXQ80W+7p6YHtWFxUiNYaUgGUgIrLmpC2NCMBa66k4zUlp4wYXFdSV3lJTMMvawlhhBTTHLleR4Go7w7KrIRKeQ2rUrnWnGBYFKWqVgVECFZdbwVqlSShYZDlckkQtHg1J6To9MzFMjWYgYhfCaroEyVbulonhuIkqwoMIfHcJq7mqiEy0E73xtQeFS1d1qRvtQ+OjryWM1hvRNGJ0wmgM61UHIPl6FnZaTTMgC5IeXFny8V4UZ/xITSfOEAb/XXj7Oy9dM6NqhWTMtjQFWwZoEWk5XqsNJZChusbvig6Z8kMIZDHuqyBr03FZJ1nzKTB0JG48put3fvwgze/pOR0//TpdGY89+ErQZMU9fTg4LCKurRyz/aS8KRNz8tH+2fJu/utoHtyfOQHje2di+/ffe3k9J077+/x3DSY8/rZO5tbx7ZvVQV6tnfypRcvl3v7a+aFZIF+9OD3NpuPfvanf3Fa8uacqHEmwsJR2DA5seYYplZ2rtdrKF1lAFKvxUsNKnGx34Mr8uTwzLaCk8dT39sEKm+5zCYpZZ3OSmeWZky3C7BYTo6zNHn46L7lUMcum7ZkpGKEEdzhxUqdW4q8scCqBgDLCmh3yVpCFayYmtBnZUV4SqFtmE1oQAiPPPPMlTfiLG72+z3bVowyLGa7tyFHRls8fu+JC20PbNShjKbjW9cuzc9mjpEjNWy6HoARY3USmoyZjldURcIkwjSmdIkkBSKASktOMXEFF1C7pl6j4opAjxQ5lILAsq2KBrGOsnrXgi/xyLS9I20nDBlx6DOT1yW2LFpWMxvfFGAm9YlNz9UlhigkBNpgtU6YYXlFIYDigi6gMWIW4LVBsGerblFAjAyMDQAzBDwECbZmhNgOd0x9Ucgiz47LKvPsi4KLqHyr3Xg+zScGlQAsuh27zDNCjCRVJvGSSAQdV0u2DKNef206LVyPSS2FNhyvkeYJtKHCtYQEaAMUHnGprhyMSZSlftNPyr1uELh541CqjtnR4eLz9tpVVpwZ7jfGpE41yIBNvCbsMMuwpCEdhXBgwxIg/LHhqj+fMUKMum4EQVMyx15PoqTdshaLw/XhhSpyXNIBABCrEBUEQFmOCKeR7VCEgdRptgiba8PT0zk0/NWdLXNrO0oThxgEI6qxrEpUCNsPjk52eVk4CGcin8VhlZGoKrS2Ujmrpch5XQAhIeBVFThuVVVplg073XG8pEKKPIf9roQAMRIl4drgBddAFgbzcJyp/VCMVpv2tKi3nr9eUkh7zFwH9TEAo/riVmcCgZCG5jNBMrs1Ozs0HPrBvegdQM7yvDDQys419vqbP1bvP/gTf+LCcnnYD7r7j+58+CN/8uDtR8Ogexou1wZBVKeBF3zz7fvXP/SpJ/ffM5luNd3FYi549c5bb3/qYx//9u9/6+bOF2eni/fee+9X/8v/4Q//8J0nj0cf//DP/7//xl///Gc+bRg0PMl/4Sv//fGz5fzx1z/5uc9/5/febpjZCx/85XHmvXf4mg3Fr/3SX1CE/U9/+7/+qRcGjtW++8ZppWQhodVb+dQXb939w8edTnOyyyD1Z+YyGv2h32q//p1vuGTUCs59/+ibP/f5W5Oj9wzr8cc++PKtK1988NrBV179pWh0dHXrOjOdZZR59lZ6hDXbH7pXNi8Mp+mzYMUSQF+5/Oqwubx66er/+a/+5SIqr1+/enB61Ow1Dea3rI7fbRdg/eToJ7oOrr7w0qJ8Nj1crvRWwEDvP9jXtLq+/VmtIYcjZHBddba2rp0l2Ty/o1TpWaSqsCMvYgWUZhDNY+i0QGWoZc5spIGtWd662bu12Hv9O0LVDFmFPMKkwnjIdS4Ep0xLMPcaVbbsOZ6qqi2dQUhCCKHnciQgLAGASpUdyoy8iGwH2szSaFTzqdQepoIau/X4AiAzCCOkbVU5iGpKaoyAa/S43K/K0nahEKLKlsS534Eri1lW5NB0IKY8jOcAgG53U8OzLD11raZhBllaY8CUrA2GESjDqPIaiUlW8rBZS+4GUNSVgjoucwBbra6f5nOOeBRrTExi6TqEjVYQhnVZepYBMZBHhwkhDAgDa78sq0bfkehUqMXqeldKhkC7rJYYVY4LkqTQyiGqLULTREtR8H6/vYzO6rJynU4Yz01HUWEUoqIWgFDP5+N2s8OYNT+O2+uHFmXRPAG8rZWBFJQCm06LYKR8vy/rxtHhBDBLyIhhiQDLMuT5OSPDJEulYFkaNdoZUGuh2HVgkCUT6eSON8xnKcSLiPdXOx+TsoiXeZrV7dZwEWZpiaRB/UBDB0z2ivM3d0o7qvrE1j0wP7t8+drD6b0EiwE4H+7vvb/7jwYXXz57fEEWK3jbFoDbAGrp2oZpe8ZiMt3x2mlZnJXTfJ4NQNeyDQGk32m4TeG6O9PlScEPN1d3kjkftnqXLw4bK30JpkXeRHJ+/mqeLrNv/+4Dx8tiCfbvxmu9jTibP3k6fu75a7/17/7p073jclkTamuW17KwTGMxzxDhjt3Y2dh0GzcOTr/b6h2eHh7gmFy/vPH7T75ZJdqu7CvdnZVWc0jXh/46R5HpZqZfRsnCoy3foxWY+00auOsm7tTJszYJDvcX3XZrkk/ichk0ulXkBJ4dlqeFrlRFhcoUPMmzA8/Iw6Ko0pawJgaBJkOGVSllY/MsCU1cEQcqZtWVOAbFQkpPeivlfN+ozmmcOh1luTkXpWdv2o6kjXrdv6S4zyRRy7N48gyF+eFxutnQSFRMtqrYRLpud+0wHvt+h6q8ymqCMTNInpQG7hmGrUTIxSIwrqgSaFVYtCtlUcs9wypTsUD1TZP1jPaJQUCeaizPAd0n1h2GYJQq19kSVdXo8igpVLWiWGmYtOYlouli7Dbc5xQ9lWBugw3BIwEKz24lSWG7irBScMHc2KCwKgHi5/NcGzbkXKjKM6wU05gXLce0NVyYrFMJCZQHahDzd5o9UldKZKHTB0mqmu3nIcY8qQVPBl23KDPBMVC112hKfqrKhpCZkJlBuloLr5kKDqlrNL1GKWlemsw0Tibjfq8dxcvA6kAwV7VSCPVa54qaM4Jl4d3lx5uddvM4Pdf9dFzW7uT9l8852x8znpR5GDpQaR87BUV1AJllVhV2gNsI1LlU62XW6q50zvWSnLusySCUVirV3HWYiXxMXcJChY8IW19M6sHQFiry/J7mzHf7eZE4/tbpvVHQ63nrQ/PcUJdj25almdqZiZdFndc5Bligapk5rnkYLaIyVohGCXSC5uk8nmYnwmgqoLhWWVU4ll2mOULIY2aRZAxiZFjUMrXWmBKh5PrG2sb6MJ7Nn/vMK2V8Mno4Q/F2jY4/9rkvL46wLUdoI7+48vyjxekUEbD6HH/2qFzsDZqrQl8GYT30zKU6PI2eXBxewij1b/RGT6rnb35UQvd4Nh+uXHv6xCh0mLGo662kDaPZsxwk50tt2satS9fI2qoY3bm4uQUEd/y41eYfeflD7775xunxmx9/6TNf+4O/+8qHNp88mXbW059/7hdPT042z5krrwYPfrD83It/eud567U7/+av/NX/7b/41a9YQfnf/3d/5+mjx0gcv3jreTfoPVmc/e6//VeX+82dGx8Tsj2u/lHX76d3wq985ZXjvX3c6ls31/Z+++uf/akvvX8XYjFJ5V4Bplf8F5ejieXoHjwXL8NPv/Brt9Z/MZazTIPdN9/fOt9Yqme+t/Pew6oWva0B2BrCh/PTqMIwW93qXvSaeBothe8sRFJhvnb+2tk8xRZxA2u1t+2wDgNSGNY770221jJWthFsmIZ39cr1O++/Tcry0//Jl58+2HN8O+ee2wmAUy9jZYCQOUbgfoSnh1F8LzBX7NUbtZvEgLWI49oXK0CbKC9oFmlM2TKzDRR07c6Z5oksJaRCiaSoewCHEnBlnIn6mgBjhR2IbaGkSTbyZWWZBdLCokroNE+BCTGhDmaFEh6vW0BThrtYMhEr0z2SkijNDCOjvmLI5RzWVapTrgkwnNj118KJVcmCkusIkSRMg2Yj5YeliC1zIGtWVe0kSW0DKWUqBYoyJZaPoIG0n6Wl5UeIX8rrGXEWuvCVxBrPoG5Sl2VZmOt6mS8Hw45p1IwRKSvKgtnitNvdHp8W1K20UViIewEWcxjFR17bxowXs4qZXlWqWixlmRDUpKCfL7RJy3l0QOi02+4UiSvlUouMAM2lRKD2bOr4Ls8WGII45IYVGFa/quuqnq1v+NKA0SJimDnMnM9S23IykSkgCeAjmW5Ce+YM9mveknJ1sYjcJvfdPi/mRTJqNNuLaq/haF75nI/GtbPadDEKDVmdnR46gd/2O2V8tpC/7ZVNQvvQsUZiHsdH57aGMRhx3s+V9jeawgck6M/qEDLV6a5U86eb/QuLeDox9vZiidjlB7f3LX9SjKdhuHPxxg1CG0BnWkcZr1jTmU0mAORZNvXt9k/efmdn58aFq89LUNeoXxT74fhotftckYyeLvZoa9Pxm3F16JqdcH5UZKerna07h8vLFzrnLhlFxfMidV07CrO337otqwd3bt+GUGkz6LY60emRlpKWUChUmWi4Prh64VVtlZs77Y7bUQZ5XN59e++dp89OO37+4uqNiW2Alrk67GVGbfQalvI18OwWUwBgxx/4WwBLBcsSnixzfbzcC3FGoz2Pt/HMGO2+Z7qDM96QbEaNIgwFwkbFW9JAiXHXhoPZ5LgqkO/SGmjIo4a3rcudZlDkywWxyFwV0LBsITowJOmStmAijgSE0CJUDQJyyW0OvW5XsFMhRpguKu5qP6uqcR2HTaNTzGKQUAsXRM5cZ41LXaVJw29kqfYdrPmSIaapYdh1kswp9FbdjaqaQsLyvNSBLquSmJ1cl06iGc7KeuRSHIU5RKZSSw4im22U1QhiAYSF2byUKaJ2VSpeRn6gW4FTFrlhLCE4porKqsupxMy1CE1rbrgdAaNCL3xnR1UR5x4mKqvPXL8RphPLUYw6CraKzHWdWqlM1QGkXOqUEhvbkVINzs2kGjHDEakDE41hnamphcyg6UfREsMASodRWZXHRU5WN2lRWFWBmoFbVDNiYCkypbawqlSeEBUzZnu+wjr3tKxZWmGI2wWSCKilrqtus7VY7pvSgaXXMlabBlxO929snS9C1ROrH7uinzx5otHs7KS+dv1Dz0Zvh6G2HLvB0PI4W+1eWOlxmRoiZ1d6GaxBrPqm5AYMjPagFtSgBYK0xJeXx7Nh32dMxGduz+eKLOOkLQ1hB3lhJVtXb1nn1lSZIwlBri3DQbCMkxJq0PZQFk4U4oLaZRFPKjFKEuDB/dlJCvLSMpI6LLVIaF1VtWlYVc2JRl7DV0kcmO6znBcVD5DoBez2w8Pz/e0yjK7euL6C6tcfHd196wCaTz/8sZuVkGhwRDrWdvCF8cjm+dGaDxjXlk/PJvuXNp770ZsP3CbhvHh63+q2P4P70m3Vru91mpsFP1omx3UWMHG+6VQ3rl89mT4OrO5qazg5kdBtN/y+MIz2xW1Kyyq40uzKduPcaFSv9DdqnhLEGlbrhL9Zqcu3rt5aRLvnzl0tcv69H3//iz/3n+8/PHX7na0PXfi/fu8/fOJDr77z+uuXb53rX9x6dFDUDfuzf/xPvf/tP9hptH/vO9/vbLA////4S3dvny7ivAI70GqO3LfMlZ89e13/yp/8o//7b3zjM9c/SETS6VbPfvAE2hbuboajyYLvdd2PLO1K2NOmW0MyptXovUdfXVu/XnRa91+T62U4OXnnMx9++Xx3+/3d6XObZDhcMbYuHkxPuOGZjZWNRmeR7D032NGEfedHD9t97+a1dcJG93bvfeKzf/TR9+7Pz36ys/mBNAvCRG5c3FCsFNj+xCe/9ODkiXJN4vnUKnFZJ+OcLfV+ej9lrtYRKkcrbdtdayvLxqrRRBIiVMMZMlkJENY2raFEWNto9YPb07ut0n5Awgck9WtlRwm2u6SMpWddwFq7DMii0pJp5dR1aTJLKE+iGTOQKOxW3xMyM6BZcVbwBWEmZRaGLA5l0FAEbpwtniiJXNsFPClrzgEzAmlyVcQ2hYFYlk3DSnIia1ThPdJp1TpAdMNrnVXZHiUtXqQuw9rNJfDm0dL17CqzAp9V1RGjvuNYdRnWOeHctV2FSA3qhuKeWGrPbClenFtZicKMUrdKS9NgEidA9KNlGXSwEu1sXjoeXBylnt1WEuvKTVNh6YZDrDLLNOdINbFZmd5yPk0R6yC6ZljOPE2YMWZWdjxNMTSD9qAoObPxeCI86jLPFvTY1DPJW5VAGqDFseWvzQ0wtEwnVxPtxFGJEPXdBiAGsx0bcHGNycSwK61s2y5LHs1DsLbWnspRko0QadQl0sLIsmToBpJHC37mMLvpbhBlLBa5doAuHWYkyDEIbo1PZNtby2N3PLeHDdz1Ghx4M4hLLlzm6iJeVEsitznME6nPlmFljtPISAWDqLIxEFkazsamDYMAU9uueZZnRaU8JnsBzc/2nt7cuNnubk7OJl7rAt07iIOFLLDgYnc6q6b5deYmUQlWSZYui/TItczde2fb22ut1uL5F194dnTY7XaUUr/92/9/Ev7z2dI0MQz7nvy8+X1PPjff27knp52weTYiZ5IgLJIwWZBkWyZl+oPpKrtc/qCSbFkliyItq0yAEmgRBUAACJLAYhebZ3ZmJ0/PdO6+ffvmk895c3iSP/j3h/z+JAzDhw8fQgzCsAUtUqm6wAh7rCwLbCsgXVT0IZF26G6v/Se2W+yP/tnWoOdX6ZOW53SvtcLtynCDQdOsWjwEQEPbjqBxXUQYtSwCuAZK1E1ZVPHx42Q0uYeaVoPSSf1hGdsiY2Q5Cv2HJNuAOFwmn0zj/TStjXJMSfPi0HFPwtAnaq/b2qv0eSrGgWfD8ZS4kPukWxLIfNLuWcD3ClzzaqiFRRyjA7fTZa4OHA3rU2ACBoeqhhAJI/22ayl2a9S826SMU8ZB2PIcrWKjGQFdUU84xRiXTdLxnCtC7AOhme62vV7WlNI0Lg4hMpjGXDEmdvNchWFag4cRWlvOKOYr3w8WU6TxqY23mzoKLGVxMZtnPt/WTRa4E8sJJ+eyIFkr2mBhkRVnKt+0HbvR57WUxHSAprVYYgiQcYR5gHRXSq1Uym0JUG1zm2O7zLhCZRhETV1ribVqFIB+0FZKI1RpnaU5xXAIJAC8ETqRMsK0g0lVi4Rx1NQp4bKqQVMHUdheTY1Qwg2U0DPZOBS3m+qI8DGlDBrlULsqFCdhlUobdwzLbTtcLJJOJyyLzAtw3eS2FfS2wtXsLGznGs8GQ1A3TUgvCBnC8/0n9asQT66tz9p6YImnUjQdRP3VQuxulZt2nzE2B7HlmkRKLq1eCFc5i3zfAE0ozhMGEcIItm277VyaZkdBXy0WGQNhGLbGy0Ta4Norr7JeWy5TIKVxuKgBT3SVxpxybKwml2lsMEWr8qTUs7yatbv2vfFBKXLECDIWBKgqSiegFHLSIJ+5yCBVKKSwkaiDySpUSNUyA1F/t0wdu6wRG9/cr96/dT9tkp2NLlbcxlaTrl29+tJUdbLqkOyG0I5ZfqdVVcGFV+FIe2Js1b1GCX9Y+i21u3mVFFsBubrcOrn3IO8OLly7enV8ctYZ4p2taHXbyQrRbg3y5aqsmjjOd3d7dV1DiAFW/eF6XdcAmNVqZVkAIvLMM8/+T//mjwfrBXTgD/7io//8P/tb/+T/8r/9h//p//HsuD0//3df+KVfeTC6fXjrxlef+80H2eEv/OJ/+pd/9of955ZfvfrCv/r93/3MN36Bb2xb9w9+6+u//ek7D4cXLx0++Hc7181iKn/zV3/78enBz/7t33nrgz/Yc6kKEDEb5XLpPnWxWBynxw8uXNu986Fz7Slcx+5kH1//0nUlVjc/fpgmo2c++7n/z7/486effPYn7//F3/r1bwRh/+0Pbvqh7a/v2tGVZfGgP2gBscVxc3x8xFC6caH18PDh+pbNmcOa4U++9+F/+9/9t7/3r37vuz94zw8Glo8EPXp8dvaZ57+ARY2KR6PR2F3FG70uWtb1DGjVHR+Nk/x+qQJrFUyO7m9uKaR9lCvKJozzGHYtBJiAlm4DqCXJalaWhrU3itM7oL1mgLyepd1F/E5oV1m9XxS8FXWxokVR+q5lMZgXMaU1gKoohW1FDK1prQmTtQCi9jGcWsGSSVtpWGQLZLPAaRfFQwyJh68ii0n0AaDHnvNEnV3KZkDxM8gEJl0JZ8LMJAght1DzLKtvQvYTCp0yCRqpA9+x2CCOlyThrDW3adQUvN2vVC2M6EFrOjq2Oj3LDVRT0Ty2fd/HZAbZfalbhjRKsTRrALBEZRttNAym43O/c7a2sz0apQaettfseCa9oNXEjwfr3Wk6FQzZobtMYi5BxNxlXfleuxZLZXKK14FOtF4QQCy0OZnMgOb+sG7qqazaFDlBCHUD5wdgc/BUXN1dqYed4YZuCLUKY60XRalUjYTjWYGEwmihVohYdBOgBaAjll/Wpaj02LXbzBknlB0+wK3OhUTcYzioc4pp7bVirss4N5bVNxgXskKmSmsd+ZvSuIk4tS1UpAvf6WIIgDYWoVkrSyNkIs7Dtiia4zRVeRZBou0sLRYM8L3hkyH3VEXSQuXivOe7xIJQFVCVNo8cl+e1zOrsUgudTu8PtjZyZdVWNU8f10mdHP3UdMP5Rwcu6jQrhXTS6/iVo10aAWPS8jRfHRw+Wly7+qVVvu9H8pOPbo3j2Q9/+GPGmON4ZSEaUfm+TwgBS1KIGaeNagAGVmC6nJFXn2yZ7P7WlVefeyZYVcVrX/ilxfjB7Ozj60++lLkHfaKZRhFnxgElVxZQvuGOjTlnhuLSyCqOi7qqy3SxHB88HpGyRYXPQ9OOnlsAXdYHDiJYXU+yWKjHZaUXh/354rRRZ0pYYaeXzLFv7SEG///bImWiLu+C3tWIB77XJcMWYo7HXQKgY9kJ2gclDXgoTe22e1lpNBKGjOr6LpHbRQaYlVfNiBkXA9eIDgUc44RoR9XUoCVQTuT26+qRZbUtsOd2EgFvUByKwmqFpdSfamuNQEi5jFgHVJBIicnY8xJA+0VWQXeiIA3cllYlpZjT66PmMXZbGrfiImHdYCrGEhLfGmaLOgg0ZU4tllWuGe0ztyiaEcJaSswI4bZuZGG0iwFu6pUqWRAMqwYgRDCwJIBlKjnu1WZMSJOtGghZEFppXiZJHbVwmqSUtTCymaXrus4ygKjHHQCBBtBUpXZ4X8uEuUKbhhkfU1GLxMDGmE7VSMIqwhuT14z7RZ5EbhjHqR91y7oGCAgtkCFNRVXjNhVFmDZNpRVFwK0KUJccG1dXKvSIcRRB45oeC0M6fTOf0449ADXZsK5nZjCw1gadGQoSNifUhNhnqFYJ8h3o8xoF7rbNGGgmQGc5BkHLwzjG0K6ag1pOOQkNc2zXAPq4Zdb8zQ7s97K64QBR182K1AiAMREFtTmrKzWdZatVTT20TPJZKgwGo8l5b9BdnCRxlVUKUMvhUlKNkGNBgyCESgMhFaKuUgbgmM1lZlxDKK+zTJzHul0dxdPJuZ3Lo9Nje/fV+RTm/rS3vn0u58UHt6yL7cWZsNx+3UXETYf9zlsnHz+uVVgWWi4GgXd146Us3w7WdpAvuM0CvdnvXLTX12Wy8gMf857NLxO3vnNvvxtunxwfUMLLoh50B5WMB8MuhGiVJmWNZov51WuX8qX44MYnaTz/6utf++tvfefzn/3ZT2/ef+LK16vS+uThH/z6r/9jTtvvfPS9i9de/L//0//6H/+j/+CnP7qzfil+9VrrX/y//6v1J4fPfv7ld9+50e/5RYNPy/SSz+59dOfX/s7r00UPllXvgnV7fnc07l5+Yu9oNZ4+vvPkxtXHycZf//Tjl54hn6Z11hAelNPx2Weff6HN3Yf33tJF+4ntz763Pw/76PorrYvP/841/9rv/u6/fOVrz+Ni6trWKr3pW0+n+aTVmuzfXzhOtZyhAfbOK9JlvkDFjZt/8dv/8X/w1sff++mND8s6p3oC6FqesS9+7pfmk3vx6CCynBVJF0vR7UZnJw/WtrurSoI+QrVX3Y2BfgRaxeN00eq5rmqJCk749JKrARwKyiUtlMKo6RmpYROfJz61mnQ5c4jIqprCC2V93GptJ8W+Ap6USEqmlCtLUea1GxCI2goeYV4p0coS6DpS4xmycgv06oIDQ3z7YtP0CnUQRWPUcCguKbKPWcHUjikuVnxUgI9rs2ERB9EVxKZKA6m4RoTbGWCZKJ9T6n7VpA7V3barxRRWsu94q8TA2nMtKze5FqiqCsI1Z0G3ZyvBVKU0LBEps6LCVs1dgiADGiBlSSUc29K1AUgTUobeFlD58QPhhRHhNJ1p3XCFTeV2iHF1WfvMYo3VCKktNjPKolaSnWltIrcvzUzryqLDWo6zRLhubdkegiBOE0bjRlce7qfVqdtXx0tu8yuo6ekSpOW51sX6CjkCWMROKl1AKCE2BGdFTdxOozQy9RaimWgKDvtQCQ4veN4RQhXiDFW72bJp9fNCpkWyJ/15vjzpOSSv4awC3d6mywodnysaAEQeHk2CUFpYGmVNp6O1rXVkX34cr9IyjrRTeWDOKmVLqxO01WS9tbHKVl3urfUuIiDPpo8Qu0wBIrbvd6IosCwKGAaGsZbjLav93vrG8eOHefZwNZXHJ4/Lpt5YuzD69DvJeRpuXZO2c313rQzpw/psExu8Io1cpenq+pPP+c5wkY1ODh8fHz84OH68sbG1//CB7/sIgUtXrpyenmZVXenF3qWni5Ucj85+5Vd+5t2PfmCFugpneUIk7XK7s9dqhVzA3T4Vf1uDfH6SS7QCTslD2aKteoWATxMHIMOyUpR5WWmTpGXVKKh1lkPH7Sl0vhgf8SQYuk9ifKDwvqYXkCu1mBJcRT4ERARxnmX1fKyWOvF7G4BbaTOPTKDTTkCv9ztD6To9TpljcI8LhpBWdYObyFlPXizDCXYArQMLUmlG0oAat0nZqqpc1DOCkcx5kzcMo/VBW9A0l1NZFADsisoL3AAjDzaXSnjE8cpGjpIE8hUV6y65nKTHLKryRc+lRqixSwfL7DhoIVBtSOFT+bk6m7sWAvX6bHWr089VU1aL1fpaOD0/6Pc26sJA5RCtCZaArQAQsmorXSJWYgYlXGaFbLcGyAQalxDmEHBgFAA1lptOS5d5ymyPYFwViDMucFpWIz+y8mxCSIiAi5lxgTtfpHWTEbClaq5hXcup7fE8NaHbyYslp1IrDIGnDWEWVaYhDBsjG5FZjqkajCBHGCOaSV27rsOxlzeiwiAI+mkcWzaFjqmqHMqe0MR1WhARAJHWkDFPNSaOgcVCqGQjSps4UgGRN3UKUatvdc+KUYVxF7GJFXWQQwCNLRSkjdlsr63kgpPCly2j/c22OR6ftrfWkckZrvMsdvt22LebRWZMr2oaVA41L1zbWiVM4LrXC8GwqyvBNWyo1qZmtWCWnxelRcokPSib3FhUW7OT5dE0LaUJ85Iwu3f3/gPgMYhqoGvRxIwZx1DHciDEWZE3SlPOFQCFqANJM0p1BcIOPRAr1yJimp/Qcl6l4yzBnoIQ6arqbYCQJ6Y4N+t+kR8WIK7tjhgtu53O7QcfTR7c2mG7dV7nDZOBw6jlkpWYLsf3D9c++zeHraTVaRdFMVzfg0IYXV+8FJzO89l0GgVi/9G9Vz/71NbG1myaer6jNDSGUIoPj+9eu3bt+OQ8Xi7X1jd/7Te+cfv+D6881R9sev/fP/qn/80//Ve//6++9cu/8PcbrWX9zmvPfPO/+Zf/Zye0Tu83Xd/l5Pqf/+nvrj/xzJd+9muTOzfe+bd//Fv/4O/denjw3CtP/9kf/bvhTnj14m/sH7358md3v//GeDrPfuXnfz05f1QdxTDcfvXXf+n7/8V/d/25HQBH8oTtXUPl7GLPLy5ezN/83k+3L6+1OrNa1T/64R/8L//ubwXd1tmJ+ON/8z/88m++lqlq/7SIb4zXdnqQn125/MzJ6Lyz3VssA9BejuajUV0UIshj+uXPv/TJG3cHa7ttyRNPXLo4eOraixZ5aTbPzyeHNi7KymrO7kdkOx1lFsL5MibA96FdFgw5e8V0NHAwdmTYuV4E1PPjTe9SQ9ewRlRWXHJjtETLEoMMmUbr8+nbNKdeo6UzyZT0uVqVUyKuljFlhFNs6kZCoBA2SmaNVoxhY4SSaVMSi9iIMUoapXOIGFBBrh4Z+8BCl7C4ppsT4r7D0YAyp2qOFQy46TDk1xBi6EBdKnoMUIsiz7AamUiKlY3eLdN+SK5oqZJVQ2zFfOv4jA4cKQtP08Lzqzx2EcGYF0XewQAbVDHqFIX229KwGTLB/Hyj1Z/KhiJaUOnrBisttHDKovCisWPtTqYzapfxqhKN2tqOprPzAF7P4sxwKG0lwJIFDUOlqEonGOZZh1mZ65ls5fkuJnSVxMB2x2GHxrNVlgDH7rsBy+vDPItxKpsLTu/pa+MPD9sa1EuO3AH0Twp6rrHPLYuTXMsMVJwT6jo1Yu6u1+t6A2UIoGy4daEDeZ7H6xaOnrj6zHh+HvVsbgvbAgAATCzAqR36ju8JraqqVDIHshDFyrbPmSOEgEzbXGstEqMaIOhy9qOOuLPBT/LiJgCjSy5/cX2n1W2Z1o6Kwvbltf4Tm6hH8NDeevapwaXnBruDtb3+cLMTtVyGAVXSgSiy3G7/ojIeQBG3Wh/fvPvhjdsnJ5Pv/eCnn777wRKSPK9QWR9n+b2DU5TXj5dnGjST1RigMK8RcZE0kW1d/YVf/fmvfPXLdS2aWolK1GVeN2V/OOC211sbRH7QlPXv/L3/6Iuf/dKLzz3/8osvpKv5wxtn3/43bxBgZsuH7f7ahctfcwcb7StV76m6MyA79nBor5s2Sf1JJQ9ZOS6qMo7jNF42Ra6lwAB4njcYrF289CwMvdoPaBsies8WygW7aTM5PH8QJxDp69p0vA7s9Lc21z7f719skQtt362bWVPRvIwaQ/w+dAbC3mHoqS7eHnik1dFe6PO2X69VB9g6CH3mMIrpQssksi745BI1FiAHTb0EoqUKT4mmyI61SmzKm8Kvi42m4oTBqlbUVsviUwnnnF4wNF8WR5a/USlMwpNYfQCJMJVysJvOBDGdLOFBeLERvgBRWi6wswAooU6cyw8RBj5/pqlwy7fiibRpH6EaorTJdD/sldkBpUJWXOoVxT6GoZCFqLvc9ihsW5alGpGn0DSOUsoYaNO+bDTntu+4eZ5TrA1okmwaBAQYraWyLAtRUuQVY6wVRnVVABlxJjEukLKaihhYAloKyWSDRcUty5Lg3PKyPCuAdqtSERPVWdfIyPIFtXJZOyJfo3B9uZr3dzYbJdM0Df2oLpvJbBYOh3UplSmIU7iBqaqCcpcxBEnO3VTDhRdg3/Eo8vNYcRIiSTxouKx9qCOKeo4VANPh1BKlEsyn/bKSlHKMAbSKYd9Osn2IuFBCAZYn7brcIHi3zNZWk+uLGkCmVQkjMvQsbjDt7TzlXNiqYVOLmlJMkanyGAIJmgLKanYM6swDpi2lkxZ6HpfYCtIGSAQK2UgI60ZjzKHBDnVd4tsQMK09TiyEGDIuJxhqC0EbRy3f0yApm4zZrW7vUpJVcX4+mypt0HPPX221jWXXa2stAlk8qwxy6xWqZoteixtuzSqQF1aXPAejELS09MWoXH3vwz+dwu9/dPxX33/79gD6kUZdilwl+1bIFcVShy4jCG1vra2W571+cOXKznwxbXWCqk7cwEHQTuKsrFY7OzvTybLV7Xz9536myIZf/Ozfd8gzf/nv7n7t63/DctnXv/m15UJ9/Ob+Ey+9/t03P6zn5d/6lV8ZPrE5bc5/9O//dWvnqk07Zx9Vf/Wnf7J9cT2u7MnxaPTRg/NHi2/+rV9M5cN+lx5PgwtXX/7VX38VROux8v0t8pkv/Nz7784RyWfjJa4vDjvtTmvn9GT/4u7eD/7y8OT80dWrL4qa3b75ybWrT19//m8c3Xebpd66siMqfOMHt2zPt5y1yHuuFW3XAnTaLwHY445LyJX5HQoS3Qmq3lp+48H3uxeDppVN2MHrn3s6OdMmj5pqOl/cbnX6i4REg/XJyWh3Z21ePt6f7TutSwjuNZklU22d3pD0jXP18d6wvYWXm4z2vcuyUaIEddk0VVrXc6kTY0qjlGqQkLhu1h6OTz94eHheJ7RXE7ZXlaHSNbOU5dYaxwAo2+641hZSG6auLb3XLDeJwVF7CsiBFglQRBjUNF1FktLcQzSAtCnR+1ZrxWAvi6ssQQTtceaW+mYDHkZhTzZNnTNTd2zc8hzJ2EjrsZKZaaKo3dDwhqK3Le6D+mKx6jgsJJAoOGpEBbTNHUG5rep2kqYGKYwpIjX30qapQbkuqwizAkGiGtcAwagnpWR2YVsOwjXFa8vlklu2aYag2XKdbrKSNrwmyoJjbBNCISDAAKORAZ7jrBZCqHldotGJLKox5zRZkEakCCHQdHXTwRhhjBcjQ00vjFxFm63nnwZhu8hWnpNCP9ZY+bJHqufy+cZ05AC9JeuuqK0sqbFhRChK1DXHv0X9qQX7hNAyd7A1bttP1bFj8ZA4R24rL7O2FoHkB8U0MSyIJWsk7NrYFiuEOVvfzhfLghaYdLMFU7TK8THzOgeHkwr3vL029MIYl8wEXLoyBsVoQXu9Vt9g6omSbm7ZdR0T4hCbVEmbUNu2HQtjYgBGShmkFGQKlOWEOV3FmmhzXWFYx/p8fkOFvfHDZMr211oeuDMqa+l/0br8zPV5Nj6frfxwt9vblrDpDbde2H4N24eVqD/84JO6ro3r9Ps9oQW1PUS9pweblMO9ofdLv/a5j967/aWXfo7C+tH+DeS9wcn+J+98uPnUWrR+6XR0W1tzml1yq8fCwg1g68OODVYeWlucmQnbHpgZUTWB0uYQMssAYvkOpmhWN5a/g6YdABdES1jWKqsrbUTq5NWBMbllObbdFo1wrNb6Tn1d+oVMUn1GwgWzV7a13d7YKXLYp223wUamBusGQy1shFo1ZsYoVJZYKFv3JYHCGatybutqVYOmqRhUZZXoGqh0PVmWyeTcqAY2TuT7Qi4DPypzCIHtuha1EAYtzmhVMli9gnij1RipVlWcDAaLoswoD/J85uPdoggYhxjlZS0ZCoHiypS+16plTbwZJztFjRSwBUTz4rw9ENNqAbld5j6mgHEmG9wUHqUt1yUaclFJ7idaUSKH3DNCCaAZpBWqwiSuHJdinGVl5rq2bdtSkapOo3Y3WeXK1K7H0jSlCIdea7U8dLgnKug6rek0tp0uEJZjV6oRAHCESFVU3PKairZCt7FzTGWdp5bnKk3KWnOiGQHLRRJ0UV1OIVdIUq11VZhWtC1rW4oJ0cb2Ua1LQIQBgHJaisRCu0kzhZ7kjjifHruuH/SsWqTttlWlAwpGlpV47tYyVZYN0sJsrut0NZ6Xs6H7RFk5soOaspw0zqXrg8Xq1HHD2Tx22o4blLVs7LZj+cOquOVFGNudrDnrXvBQQGuVUyNqGzaywZmwJMAem48nnkBCNpjxqtLT1WyerhpYO35eJmeQR6fTs8FW797BvuN4sOHtYK0sBadzoAEzKHBsW1kaQ6mVzUgMM5oKA5xVQV2Hh4HDLNLUGao0N2B3eM2yaJ7n80WQK1Boexg2qSRXomd50amAHWAalqm70XskJzzeLY7uMPv2/vmofvBzTzzz2rnzV/fOfsjtKC7IKo0dJyMBnSmlVhYBBgG1t7uuRSOlgNCUZZlmycBtcdb5sz/6n7/x81/AED333PP3bn9SluXDyZ/+vf/4f/zWX73/N3/7l4fr/umpSBL98NFHNDRHD+Z/9d1/+g/+7n/SXdtdxsc33k22dp/nxH/06R3vha0b4wf/5f/hd373v/jDzRZ9NF1euNgv0eT8aDSd9i5fUZ2eJxf8jVs/ujy8hOlusyiCOrjz4WR+evKlv/NqcEGd3cmlOZrPu2fjk6/+2sX7x7dXS1+U7pd/9jd+8NFPur0AJLhC7P79d67s2rQv2zvdefapKK50PX5w8NdKwm7Hmh1lanPa7/cW4+LTj06v7lzNz91aiNef+KW7j9/glCGhfc/aWdv66NZ7rag7zZZbl15t0LCmdSHyFEIYFDZqPnzjPVFIRLsX1w0WOq594OCWm7M4cDtTbYIK6pwsVEN02RGJKfLZuF5UBh/MH4v8LFUOYlEp576/ARIIMa2apFYx93wJqqIqXNf17AzDpUhL24Gu561mUAuPkKBGo4a9y6hl8qcJWS+Kc6mTrU1vdlxRjqmFiiIzDbOt54iRZZZavDQwRnoAAFANreuu4SMMAeg4s2LKwXpo78lmjMFhxDcAtquqsmyDCclT6bdZltRacC9ywjYqMpUVRRg5i1nBsK1B7nq10R2oLag1JhgjQXlNeKOYXi4UtSS1nKxaskC4PJqPMYQFDxE2Btba516Wg6bGpNcbr1btSM+nlu1Ay5Fa9zFlxJ77bMtlThzP60a4ASA0VVWNbRLHqvFDo8WjD97q270KEuWXplyqqQr6knWWEkFK9opKOT0qaluiAVFKAXoK5SYQWdSHWT6HeNELP2NhMROPL19fPzjIVSU4UYQ68/Hy8vBqiZKkPKPQRPZGXcICZEVxvAa3G5QKkHssWqVTPiBLUVgWuLi7eegmU3WibV5KfJoJW/Mut67ZRFcrXWEoLNlAi+OoRbNq6TshQJQRTDGiCEMIpNKNUJUHadq3q8PA3LzWte6X8M5qJIIdkMU9FDW8eP/04w168cUXP+e1XCdbnixmQbQdResaQD9qYVR2u+h8nB88vmdZDCHkOM5yOc/qQhnm+70EzV965gsXLz539+Fpa+hduLirBVq/eP3FV7/4YPTv7hx9K+j+nR/96TthgHxODUgzRHmg12wdcDgyPQ1rzG9j8rDRTzNCkNK2BpxiDTECGgLIPBS16lN5lI+sMupL8hF1H0Tl1Ukzr4vRXM8Db1M1Tl0tMCptK2qyk3br81b9BWTHkNdQBMuRFbVNSk5MCqnGIgiQQWyVupasMTBc1LEhimGaYMSzJVA1RrJm1Ka0pAgYUAAy5W49O46LlfBgt2WxtuMkq6rTs+NVEbhRx2PT5Zk2buReXSQzr30XUdfSPiXTNDnIZT/ynj8/yjtDazq/71gdAKrQ3snzklAphEJqE6BoMZWW9VmKKp88RmxRLpwu3yIiEcWy5a0r28qyRFXr3KndoAQGaZjJKiJwoaUiiBIXECZ0QxBFCuQY2K7tzCZzDYXvdR3HKoumqrQGBkNPgZmBDcZumafSNK4zYByIBlW5CLwKY+HyTSMbrRYQQmZJpQsMo6awKSGUGcuBTTMnVsltXua2Uhy7DUaqqTLL7hVNVTZ1v90q5mmrHWZSQqW4hSzOMSRFlduubZSWBiDg2eG0qjMIg6qw42U1XNuuxYx4mTSXi8LGdllDYQNcoLHl20IuQBvPbx9vvLht5k22VNFOdHDj7sVnnzEayMStGqogkrApFjkijiFGV2B+5PqBk4NcBpG3cb1ZCS2m2pIO9YECy9Es6gRQAyDFar50g/XJMpkk0wZlGqsyp+m0IpY3ycZWSO/t326MCpEfOrYuKiaRazsQI6QxRkRB3aiGMcdAgEB6TnikIqjAGE0UtC61dveX86pTP7p/dnEJNnpAVTA5UoUcXXmqz2uzxtS0XCQMo+pgLrD3zGYyO+vJjRunn56Vccf7UooPHi3vf3nj5fbB3nd+9O3trWeCIMvL2doWG2x0pFrllRs/Gr/6uSuiKnyH50kaRe3lspRCeZ738U8fIES/+Nprb713y7YiCOGtW7de/cw/OnysvvS1L1x78vrh4bHvlbYLW8HFq690brz1k+s712fVIiebSGxdvvTgaDRnxv65X/2573/w/m//h//r2x/cWOuIRoslpBe2k8c3BwB2vLX08oXWR+8dlUU8aAeBXCSn1I3a/tXWRw/ufuPLO9de6i9PFEIfR+SLn3z44MpLwI76f/IH3756aW/7souny1ZR7F2+cmtSlSV49quvQRr0N19+809/FA2tRXWXoi/YaKMGaTEddnriBfvFWzcf39x/3A0Ydabn8fthf1ei0O9dODu6JcEYQz+b51hwz/Ex0q7ddmn75Pzhxa0LYJ5ubtvfeuv7qhDdDWtVH3o7VzLIPa9QOYyZH6z1MkkIVhawYdYu03Se313kySoxQDYf3d7PC4fS/lkszg9Pn+4jodSaF9ZKalkBg6XAda2r0jg2JuCC0Cmxq0ZR3DgaacMzaWUyZqHzNYjOl/pQS4cji1MnnRvfvlA0tVHQ9uZGj03jmSa0uQQMQS0NmWrV6HqgqgEyPgZ1fTpqRb2yhkl+DHjm2F6qmZDCpYCxjjJCwbKuXWM0ZnkY9ubzHJAZZVw3PZtlXrQQQuTLiPRz6pdQsbKeEoqKxDYwV7KNuaAsaBrT7lMN5MmjsUO7fqgdWCVVISyY2WDZZJQxSiQsEm84XK7GhPcpaRXlPMmw0U5VZRRRqVduaDuOvcoWCsS1IMB0Id779N9ONnodu7OcJ4I23Z7DpHd4srwUDlzL0XmmRJVSW1qgAllGLLvgPgX1ssor1w6bgg38fqtbx9NV4LfOFghLgslDA2calp01lcoE5cIpbZuSGjQr1NhOS82h3S/yZKJstKxGUdidJjSV1pVL3Q/NtC4W2mpY2z8/3k8maX9r7eKXX54m46gfGLRyAgNBQGwTN3VRrXedykBAEEAIGKg1ArVUhRb5fISUFEKHnUuKPAKnBta4H8BRrnSb1NOjLszWLnZghFdqfIsvikxWmeassh0Wuu3IT05O3n28fzKfz9Y3hstZjhA6PTvx24HjtjBhG3vXW37HLpp1Z319fbPRdWmvOpu4Xgw875dPT3/y8Rv/1db6azrvOJcuJvRRZLDlbfnhdlGVDRyrIqXAF2IzgSwgCCoNS60NAAQqbIwx4xk6v5dUJ8q2xqmdW+TJvjdYFJ/2euX64CmFVmU9KkufswBjIfQ0UYO4OG11olbbL5LSt6SDY5xUrrpMXGK7hCmtEax8W9ueWRS4IYKUJpBpUvi1S6saYRqryLd4aT2CkhF1VeYDJE7LNKVyfRXfW++QeEltsFEnkgJerZxGdxxcAwUofxy2CgAjWZsyP+u3uy79KtBiPJ/ZAeaUd/xeUVSuG6Rp7vragGa5KBi1kZVQUlDWStRSEyAE9tqsbFKCEPF2GtwT9YSxgIUzrWhTSUwqo1ijH7peWzWRMUtDp1VjK+0EjiWlXTTTVrDDVZs5w+W8ElJzbnNqAQiTuO722mW1Wi2TKHQAgNPxgtBdwJaWbQAAQDd58YgQioBbVcRvVVLHDvWbSlMbVY0scosAw1AXaCbByguwFl5Z254dAehU1dwPXQ0MYUCqFCCgKYaA2fbabB5jizVN7nvuYlJYpEexrZuH2IdpPtrc7jHLns1ot/vs+GTEKO/3paxDVTcILm1n6FbNJC8RulKziINVy8VSFtuOpORgssKB1VWVXN/YqKq4Hgs76OWqoGYW+R7rJjCyo+ElAY4gQ1aFoO9mj6Ye6wLmwFZndPNjChts89P5e5QH2Jnk5YNCZ1bYma60oBhSZzIdWa5rId3ItGWFus79KJAldW2nqEpgDACaGhzYTlEU06q9F/BRORNcWFVZrpp5JLmhYoavbT8zPZ1aLBFloQDdvNJ6vDi8ELxuhtntt+5t5LgVdfRZrpfA7gdjNR7PT65sX9vob1bj27abH5785GRxIAvw6Hy23rtCCZJ1kMwzHoCmlBbjH3/wcegHW5sXorb/cP+809lQIBdCTKfLv/kbf+N8esoIPT09vXT5wsnB8WDYpn4x2KHzZULgdlmsMEuvXN0pxquD8+ZLP/cLG8O15fgwr8MPD9/8m1/5+QtPv57m4xevXAL30P3T6c6rF/76r2+tWdeyxDzxlIgr12tvvffdB9RaF/R03b/4ve+99Rsvv5yQ5A/++L9fB/XnX33lQIvzo/2u7Z7qN8q5c0n8xr/+Hw+FZRqtNoabIJiGWB9MflDZ8sXt54drLz1YTD58501a3zUxHWzttFrLs+mZwGLrIsiOXJP2yubQDwIg3XiSO8S0g+b6860/+166TGjenJvk/s7uK53Wl2bzVXfNvp/O+s5pQR4QdgWbXWrtLSr+lb/xd+/d+OHFXo/MU+OiDJleCH0CZI612VdkreK9AuOZBqvcy5a5yKaPj5Oyzg/nn6bzEi/Gz/sbWr8gdErosC4LxjoA0CLHvm25jm10FicEs6rV6mYZKioEWGZAntUwCCA2Vp1jh3i2vcizxAJ2kxMUPlQaAb1h6gjCHBkAcY75Ki03QfMkdQyCNbWloecamEo90HRrkW8bVYbt0tRrrOwRVDO1soJQaZCVtR9GUqog8pu6qMXKdv3lom1FDLBD1wLLOXCtFuVFkTDLK7BZL9WDVtfPYkeRMSW7kGCtcCkWZuEh3bbs8dqGGJ3lGXQJsXzLzuIkwCFz7UWRBzuD89GjKOxCjLNszrjNCJZSFw2h9qpK0WqJpBJAezYZ5Mm81w9E/unT65fni+xMOjZvR3VVZpNYb7kw1XGhIcZYM5fnpQukjw1GxGWqcRdwcPHKs6AdLMaHtZvx3oXK0MBba7LxhU1/EOxxNdyK1tdwEOiLGPbdYUe7ZdEcdlvKIjmnzTJrOG5CFmS1GxNd2ybc6YzhDWt5vo6o63WT2rXx2vruM72d68VxYSSkkDHm1CqpzWlV5CiGeDZ5fEjmC5LXMm7SRAoBaJHBgHS9oJc3BUU90+h0nPXY08Nw2HLh3k4Q2qJWtt97QtR1vVyVx+TkB/Pbd+85bluqst2hFqcEgRs3Pvng3dHl3WdnY9EeRvce3tTac2EYSfHq9oUXtz+j003qb0bX2mf6fKHPtDRk+Vy77QTd5o2337r74LCWcNDdoUhYsPZq3qNWopPzZsmUpVMsFAJlYSejbDKJ80rw9igXylq5wezs8GGzHInmZFT+5TzZb3KepPfy+hPLhpcuv2IHLlKMy45V2rQOObqKyJMRynE2x1lpG2ZbLvYYjGw6GLidBg2KMqpAy6c0CB1figZbSJPG1i6roIdJrRziDTjnEUGyaHLd4mQNNaXislhIN0ZAjihZK6rrNd0o3abQNXUNjpKZWtYy1ExqqKvYATlxYONapCow10uL3g+jM9cGVZE3cmJTwaTLnSovZ1VpPLbb9q7XK1+kLtedZMUZvG7TXUSBABVCXd14TT6HBuXFiOJWkfka+Ij6ZWko2pJio1bGAFBlrbrkBIuqMXmhgVUrkhMKlvMZwKYqsOe2iuZumkFK7Gw5yudNaLtFUeRFi7c9Hh5R3DAZLU+qgHUsHGYLBWsatKVs+HzETGNzpm2moGooUHVjEMdlWTMd8ibiEEo4pZ3VarXvMuJCns7rWljUIxarUIxwz0icF/nSx6gXecvZaW/ND9fcIp3bGB+n47WddthW8/Ko57Hlcm5r4Nj1ooKIeiypu/7gdHlEAW3lGyDK3LNZJXKwFzplax5bSdzvuKhwUrzH0yoDsbGBKLJjZCqD+9aFgb32pN3dTE1ByxbNrKbdrU9WXiuQNPZ9A5KlUKsaNvME6zaeq7NHjw9tulkU/izNG3e5VCdTsRCo6bc6RGHfaUHEKGYWoJ4LCBQ2VC4FoR94Tgsh4jt4nTpRTUPu12kdmM6jiT6QEoI03LNJD1x7dS8R7jTjDyfH79+M7zzsnFb3P/rB7Q6RILy3RHHlhWOdw6h343Sx+9TP8cGFlTvqPtGaLR1Trq8N+sMuD21NYfX+B99+453v3Lq7//1v/SVORvHx74tJc/7RJEv279x/hwI0yjKAWvfvPxxcQDWt3vnw4HQ0bXd8xt3WcL1Zxk9f6L7118ecSQAXCNg2Z4cHd6vZYmdn8Jkvv3rzwaeLR+mt7/7oqSdeoc90Hy+Lk9EIAf/O4w+efWFHTsEXLj+3GVpbe92idLPz1fe++y3Sy1V115TZn7/1b7/w2qsP/ORPfvyD+x/fe+LVa5ejwddazzZVIjko6v7mZbR/9MbtT7/zi1/+Zc/AjcC5+cHjTHKVvtD23e4m/uT9N8v9UQiEt7ETXn1Rrl+6cYioRbpsd7GvuTGynvjbjAU4raB1aW+FsrYXHNzLrWKya3nOqr1mfZO6z91ZfUo2lmfLfEdv3PnJ24sFOMtY3S5jVb7w5M/oVY0Mu39UfPr4QbJ6wLXJMriaTOxkqqGl9GYpkrS4BxsSx6cNPR7lepIvT88XJ4fZqsFj2n13VT1UkxVQK1iGVrQcgbzEgVtm8iQHhFR9HhwZo7IqVvjQ0I+NSKrR0DfDVJ+VegKg4Gwrb/JMNpISJ+jJ2uOoDxoMjVVWDm3ZNLCb+gKjcdAZF+JUWfcL8KisG+4iU12y7S5EysApRXUjcsFvFfbN2vJOF2pVNIRRAJABVl1bumawMVpVFGfYiGJJyszBlABHA98iDIsGxdXjKLywmgVGN7C2Wq4oMxUvV22n5RDYVJN22Bqf5p7jcqfSIFW6kgIAw/NlzQBSeaoAsnw7rTJCsCprrrGqdLyaL2u7UutuFKhGQ8E4zlsurRbaozuHy6S2sB8iAyfKxsp4cjVm9hnCua5VwH2L2Y1SzPMVJ4Q7DkBWk8Qtmxul1rY2YBgW6SpsOwY03VbUbfVWs2R7+5nT8eM4C2zveH3Y2z+cxzmyvM08Fav0JOpEZ+auXe3mKxmrtGVds5ITUM4niRetXaKtVgmFwai1HiEDiBHMQpZPs7KoVgIRigCu0rLO53mS42i5Z22PHy3aPW9za3B8duw6YdZURWl8b6tW89rkBgbULXigRdLTpi7y8fbeVlUQA4NlMWtMKitikbXhWsu2bagiy8Y3b95exdPPvn5Jk/5wt3P79ri7uduO2hQ5SHLS3nC7W2uXJePTONOLyTSZFTbmV64UM+alGRl0r166vknqST690W5tlKJYrrdJk3QKve21z1fTlRYlbyintWpBNqKaNVm62WtTBNJ52emDE2HXB2vFZN1xZoX1LdsKagQBTVf7u9xr5TypYCWxjgKr7Qf93sa7P72dFvna7oWsxoT3ecQpdWy3R+Dc1q6GSrBYURVWPjWqtOe6cABrCAgxFtgaGQNARTVbUp37xq6yR8SVYmG8NmsiCVZMp8IKj7QoRAHDqE90UFfYsmut59TBadFwZ6gbgblWcKVNBpCW5S7BblGXnPpGpYgZIUHVNLbrQIDqairgArtLpFlW1SEzoXMcL2dKuAEKMIwrOWm1rFWtO62tOJkYVCAYVUUdtYmoRdUc1hUiZsNvZ5hLUXoAZK5NCLkYL1etiHIbBC0vSeR8lgTBdgVSyj2i+lDXkJacKgMFQq7WPsZ1XsyJZSFmCyW9NsV4niTAcWl3iESdUR1p4QCohJZBh9ouGo1jhh2DyWq1IDaxXA82lxpxUlax47e1SvOsLjLebhG379796Z1udJHYw2Rx6jkdTNTp2Z317rWGs03HUdpUVcMELajFDK1hEnY6/TIuZydLrF23jSbY29iYnTzquo5wLUbd+nRSQd69OpS6WS76bpSIxdxIpEOTG4Yl81FROphwhDxHAEUQqtKMVrpcxBFriXKRZTmFCOk51t3lIkX+4elZLRruDMismCti5pPToP00KlZC79uMJ4uFZ9lAGQh0YHs+58p06vrcdTjl7WVaaJ1allNlwZZjH/IkqrjjX32oZjs7LSrEUcwGrmgNQ6ttkWyriM8CG5ycvLu+1r511u7z8PDw0Mtg1B1SA2arNDmoWgWfyw/abdY1a8ncefHFrytqiCBd/NlH8u4KJeHG1uJs1vKOHozvH/z0ni86HP0eHaDizS805aYzqHo+RM6ajJfEb33vez989plLTZK7dBB1+wuRlOcnP3mTTUfjJ668+uM33uivwccPMynZBMkvv/blx++9Y9fo8fj+5S+FsNkS++5K3EwXdyI23L68J5yak82VKlLw0wiuj94LwSBrybQ8oInE4wdHX/7KFypwcnZ7nsXgF3/zZyb3vnfx4l7WeKZqndyc+UF25fpXvvej77z+M09+cu/3QjQski0h6+3+59775MdDFz/4FMTZ+Nr1K8fnzoVde1qdlzOAclEWwOAzYXguq1rmHf/ixe2gTN5dzB6FlN+9dwu69d7V13740//+UPl99lJyfv9SZGbn0zuf3OtQlBWHW2u71fwe2YIhH+6t83/zp2+oJr7//vubO/ZqGD1MH18I7CC8WlEfmDrLblnwokkvHTz4YLpMjqYr4+aLsgIQ+paVN41SUnNyaoqiztVEFmYQtqAf2CIPqEVqeGZ1Nmr4AmgQNVNSBsSEFT7EnaPK7cpkCGQEmzW79Vg0yHfXsVpv4MOKDwDKiHckZcnhupysc6IIOE7UiMAhNxueubpsPgVoViY9pjaVWhB7jvVciIEWHkWOMHNtxJpjpWnVCodxkVKf1CBtkHCZVy9Vp7WZF+fcrRzHiWMoSmoAtt2iLl3PYY2ICYMYuEXZTJcn3O4JVUFkpWlq2zzPS9cJjIZ12kO8gEhZrhB1WpTCdkKpGxsPFmPBWEQQXuVzziAwsNPpWtTS7IwYCFQLgMLgSdkAgkgzn4Uu6Q43jk+XQunT2XnoR9DtaZBLqSERcbKwbJe2eZrObMaJAabOU4oMtDAgQCAQtsJ8vpLAFlV96cqV2dlRq4XdUBfn08G2nyaTtDJ5kfhen7uBBFIYBCHylg3rFdRqkSlS1WRmWePUWh8+6W3v5BEqQcI4cQeRrRUWhUTV9OS4LGSdKwiYqGVRJho2Wjc7dPvOe/Nub11AdF6NIdBGV6oBzGbc8WNTtPJrolyJ+UeWRwi1jg7Hq3g8WNvuD9sY41c+/0wU2g/vHw4GV1utFiEszWcPHsSM9F579YuGHpaj6Je/9BW70mvDbqlO33r7IwhDrz1nzVFykhJvfnp+osvdPNOzxUEJxF5z2ZPBL3zxb65mI9ezDCVJRrzW1TDVFoc5SWtaT52FoarT2E7NpVty5svC8ayA8zrV5Qo6s8pNi2VSfaL0GQEDlWtjAqmVgouMvhNAD5k6IDYA9lpviP2gcpUkc9sOQ9ex7MKyQIB8LDQvzmE0sHCDuKkAx9AAmSKtgKCQMgVOlSh03RPANniKdIDMphEVLANTnxf5CMlQ67nVCuYL5RLAVbtIdTvoy3zqt5iqM4waAH1YXzEVMXTlBEVTMoqeKMsSYYlYCbAwZIksxvQaNKSmt3S+xQgRsjKayCYwGmFL1PXI8jaXSQFx7bp6lS4csENdP67mAHCpJVABJZxaBRVBnfiWvapRHAaXABBlGqIy595Ei6hpasN9CHEjKoKd5SIBCDq+gwAn2KT5CTKW51pCgaJAhk6DqC1qTLBVVqjVcjVp8moZ+E6RGQgJo1YjKtu2tUS5qBnHfisSYpnnsTYN4QEAqFHSYl6WVkaKoGWvVklVGiGoa/vQrQgv0qMiCnqEwLwcYVu7XjA6n7a8oZZ1QzXBoARNowtXY0kZLEverjVHi/28w6OciVTitV5XJg94FpetIQHYrwBjyGYgX8XCDxiLUb0m88QLUVpWks6DLqgWXnh1C2AomqYBGipk2zbQ0tYQ2Kv4pLCtsszHyzNkOS50DhfldNEcAgy0WFPIFEo6/q4E95TOOv6mqBuPu8ZAbbRDLSKgbUez/JGFOlRbxJiWE9RNxJjqrC2bCbeh6HM9WeUhCVHpoYA7a8HOZ16M3C6uwYZz7vbrh4f3n33l9Y/vPtgl/tmJrmLnvBib46qczl985VXLqvJO9uLaa+kqj6HYfMXjIlEGVRudT4/ubG48vb6Db344ubD7LPGX+v7O89dePIun9z4+cnJrcu+Np5/83I/e+eGGR5595RtxdbqcTiN/1ymer6WTKs3qIj7KUO09ur14+TMXjw+PRAVPzu4eHlVPPNvZ2/rK2+/89PD4r3/9F/+j6V+eX9+9duO9uLtJ3rvxQOcNWVtSs1An20LURw/ff+GlXVyG6Cl9tv8JCqJVI6mgwdNXP7n9bc9cur7X3fr5rxPl3frWG5jDt+/8ea1uzYv5q08/93i/aOMXaPFo9KgXPju8vUyvXnzl8Pyj7eFTj4//nFm31tZeB7zeenq5OPYOz1c7u+uVfst3rDQuet0v5un5+mZvnBbz5X0p4m4vWE0nK6PWo+2f3vxxO3qKw1DKqZBYmOjBnffGD6fgwuZkql2fZLX6fOuqgf2Ds4fB4Hq++sj0ZLjWCsvtNX/N4Owoz8LmNEwMwHwBHp7MZzfPbsWzhBMbzMmqypPlPEsSCKHFaA3AreTM0jAK3WHXGo0qy2oZUFRVhbh3vox7nUqztGSFRm0EG90IBxEq9qFzCQqG+BgaT9RFEFZK3mxWXctJGYdJbAfBxXl8HrTuzbJV4K23wdW8WDXqeDJZ+B2mS8phi1girWwgPYiZxkvEBJBX69LBVl46sef2Z6u63dnSKK/zSduxYFMYpzIQGGVxuJPMcoBKRNJG5KoOmlJ6bS/NEs4cY4zl2I5P85i5vFVVwvUcKSvGoNS1lJIHQAsnTyxMbERSQgsC11ZLJwrjtueNJmPmOd2uI1RGOUA21AIAgyBypQTUVnXta2lDy1ROV6A6Pj23qMdV0/IAB3Hg0EqtUww4sxpZN7VEWCAtIQREA6OR9igDFIqqrKFWVd6o2l3rWgA0ycooa2N4ff/w+Indr41nY26CdLnoteyg7S7zOQDa9fl0sdDuiz7tnp3fcNq0MT6vcZtTw3iFZcFpr9PvD1rAA7QpYWIer86WlZmNxjZhFsHT2RlzsN9xV8miPCsZ7k4ruI0Jr5QXIZgJz40stYloBRHigceLU1KC0Hu2ZKvtNd1vXTaGX3/muusH7c5ami22drjnuZjIxXJ/Op2vtZ/fu7CFCH/0uBmEkIjk6UuD7e31Dz85vLyzyd21PGsWp3NG+8eHp+N09cxT4eH0rZU4+fAeucw3rj33xGl6CnxoBVadN1RZHnAIHGFOC8OSSd31egqk2lY1qlhjA0kwTwVpzsZ+ruUofzBOardw8aqzNrjY6WtOhGXaXhU0hQ+okRVxwjZ1Qy2M31t3LLycT67s/BxgjWY29DaXsijZynFtqMNeVc75kiBFC4oQj6WCBuPMNWEh8x2tUw2OmyoE8jpFNTFlaSpgjNTLrDyrkjEs5pjMFUi51bKsdh6fAlpzbgNUpuXSsZ+GOjTWiNCVqSOM1ho1IywFGGpgoOlqsCSsANBmDhayqAW3nNzoTpX5CBEAhTAFhjZG7Qqe2Gzb1E5VzjlTkJIizzGXDqJZWnIL2a5QAmEq0/yQ0YigSMOZakIIADSgSDDCC8/aXuXzXs9LVnlTI42g1zJVubK9nimQ7RBsHKGqLJeuuw7YqBEls5FNmB94nu9KWEOCKQ6SCgRdSwl2fLC6eKkvYOyG2kCU17gd9iazuet2geaNNO3WNg+CNFlAnhljS7HCVDHSkSaGPMa4W8aq1+vVSteiZBw1ogmDtk29rEkIUFWVYotgoDFDEIkKlGHQPz2ZayCgW3lUK+xJgVbzwlI1dB0HRPJsqi1YwLosc787ANWaZkvoFpAYkZ5w3qH+5RVNPayBVFJKQxHHBGABkC6LHAnHYlWdeMcPs36flWpyvsgE8Vz8ZC6LcfwAunicTrr9QbroMTwUZqab3A14kmSBG1AsGAIEZFDbllsANZMCQkIwkUARYOycHu5YO4/j1POyjWZVlayog1dfeLnlrSdpHnU81+aTBLz04mcMng+jwy59qmh/KqnaP7EeHz64MKj6G63lzGwMOguRlCBzSR3SQUN2lZGL/e+EnA39BEw3Xni+DcP84FBe+mz70guXzr77o6c/+/LBR/cLKzsZf+pU4t5svhz/cHs7+Pc/eue3/sPr58l7Mq7y82jWH1RWadNESPSFLzx1NnqULYtFNf/sy7/W2xRxdn7jzgf/+3/8v/uTP/qzi5cvZXHg+zpq1dHcDvtLKiqquw8e/TVz/Ha3rYwsjh4axzuP5a9+vldP5gdL/OkHf9HZFa+++PXF9GRvuPav/6ffvf7ihfff39eiZbmt57yuzdwJTG+lP7za2mgI2N54eVkmVvjEM0+8/M/++T957qnrq8Uy8ikyejlDR+n8lW/uvffGjcB6SZSLRL+5vZ48/tHqyiX94+9+kMTpzl7vdDR20SannYP9kxd21z88mH/0+KzG6Fde+403v/+BRqj70vXj/bthKzg4OfjiZ780ns7tYOj33TW4/b3v/3Engutb3RJYj8Vqc1Q4sywLpNnsw+byajYuRrOOugjY2ajav3U/IR5drpaiqjDGjIJGqyJJGaE/LfaJRXftnVWmWpZwuZ2mMAysWWaAQlhYEes2dS1UX+u1FIyRlRMyI8Qv46HBM6VbUDme4yn8KVJDjr2mqil36wZCwjVBWdyo6oId3czLYwBe0gpKtMDcIDhuCkxMgEELcaDAqhalb7NcgsbkBspGxrIuXMxkWlqQEbxblQvLkQZPSjEPgsAo24JDUSaEJFonooJAaYPmzCGNsCFZAaUZpUpCRpym1kZj0QgNYk4Z0baUjQFcqUyCmdsyZXnU6m0LNRKi61qtIpca80YbBkFTMzv0Cp0gzYSgtuVJnXFzCsUaR9z1SxCy1dRvEJH6rN2VRVGlFXLclqqxMTxy185OzkittO07Ii+BRfO87F+6lE8nEAPt1sZorFTPDo4PTwmpt7Z7TTaJY+y5raiDF9lYS9UIqIDDsQtttFyNfG9TGV4qaKitKPE3kBshp+9F/cB3WYZzBqE3iGSb8ePk8mCQLkayyp688FRcZGfT+XZv15OU0pZSriuwWJaMOIxRh6AUnGLcx3AIgQAoHPaf7ATuaPFT5fcsPvCC3trWQCiYJTmjutfqatUR5kTAebvVY4yvkrEGBYdXJa7SzB7sXl6Ukwp1+ntr9x8/ahK3FT2S2SEn7pXrr45mtzs+rWet+GB8diF3VuOaZ+2eJUQu0vkg6HATC/cJQ7GjS5dWnpGxrBUJhRXkxUopbQc4y6akaPJZMj/dJwaeL4ASs25QYW2bZrcCOIoaxQxoAmKx1rCHbAK0wURwFrjWQFyNReUWeQN5LnSKcp9LjMk0QUFWIQQEEWe25UvTdqiDeaGKwDQOgQBSAQnXSiNVGpUVDaUQFInRZWvy4EGAXZOuebJve+Xx2X4UBAAEWvRmcdzqhJm469ABJoVshM1RnqeWiyo5IR7URV8rSMxANJbtR9I0AEKtAkR8qXMBThyLQxwgZQHNAW481QZNihuCQGiQBDIlovJIC2DKWClNDbRflgUjhetZVUEM1QQxzgCwVlpRlfe0KpQV9/qt6fSwFfQpsQRS3DFpVpd1bTtIaw51F8IU4zmzhEYMyEBkeWOXmOSNgGVDTOPIWim5ynPfc9nW1iZ17dnJke1blNnMorKRRVG12r08zykgtuOsplOAESXQKMQ5p6wiGFTlVAsQFzRq07JKjPFEQwmyV8my32+tVieWuwnSorGxqykSQke+WiXEcU1VO5DIfkdYwqnMapGmtoUI1p2ojSORm2VRugTXDFhb6zQ1C+vQswnLUDWVRLasVrehxh8GRVWySnFG80ZqApPlwmEcAUUJyES6ijPuGK+Fl7NVZeJGQdXoomwQdtNcGdyeJ7kymnEFa95xAlBSF7VcEjZV7QdBlebd1jrSmmMbaDcpCm5Jbqv57LwxHIJKqjMLEYd3ThcEtTHUZQP03rX1e/f3mXY1qpF/oiS5dumXjXUUtMnxR5O8oklBGNt89KAyzTAfPVgmeH04cCN98/Y7X//Gb7355pt+AUi4c1o1QVv2gq36vPYmWa/tffj2j1999hfunNwfbukarhOyvXeht3z03vrW1oP44ca2+8mPvnf3JxuDvY3e9sSVdx3qzbNqc+3a6pw0eSblmWcXRXHX5U/98Nab//Af/t3RzfzhrTtf+7VvvvPu/aef2jr9+KD75AuAtLf66+9+/10XR7SQbgPv//XN9tpmid4MYafHPvNh/OeHxZ2LVwfXtq/MT++cLjOsw9/42s8/PP/RbHroww6yhv2LTwoAkv0f7nUu88LT/snmc9vNvFnfG/7en/7X2skgRr7Li5U5uXfX77euXO9+9N4PHOy7qvf+rR8/8cLefHIcuS5nkWPnrajjsksf7X/nqZf0JH6319l+ME2Xq0+fHD4X4db+7KMyOr3S39g/eJxxo9K8Y7NmNbbVVZAtQy6m5UKVTw4vvi5q2MrHrjcXxByW7FK01Zynij8qkZ1Q90Q+hkQ/ujPlqpyOjDGGeHaSZzKpLEyVkEaBczf5OD6i4dLnAwtcMzW0yRQYJmqHQRvCGUZK1Zp6+1of43pbyw5ECDEp0F0Xviarcwhr12JTGVrIFxhCWFDUWMADMrIKbwWOaDiv8gsEvrgqbnuBl46HdnQA6+ehyAEuFWwINsDUjFHGLF92ASxZIGp9zt2oEdSyw7ququZ+aO1hSJtmHoU9qMNGlX40jZfcdXwhKkYxJohwG1O8XGU+61Fk6qKwOF6tFq1WuFzOPM+rlQBQQaSErBmHrmXJunRst0yeXo7ooDXAWFXFillKwZhyotOAUcGclaNYkWLMZ5BlxdxmaBC0U6GkKLbLukFsihEz1fZiVBLSppxAScsiRiDnmLgORRBTBQxDUBjt2B5wHa1BEHgUbcwnBOpuEmODw2svfVZXDZISExl4fuj2Rcls0or8vuf6rst3mGZ8UgtlKTfqZGM8outXC2EFHb4xbIW+bTt4u9/ptDzAkB9G1155onOxf+H5K3vPX0dRy1g9q3UJ2xed4UZBVMmrx8vHn+7f/2T/6CyJH54dp6syjylluL2eDzbCze29vQsbF7dee/LaNy5cevL5Fz6zOXwuWzFKeZWLB7eWdQmyRHWCpy5dugLtw6qqiNlY5o/27z60aWSkrutyfTAcnx0cHXy83rF0458dxRcubvkhjNM0bHOvn2jr8P2bb31y872QOC3od0gncHrGclOKGUpdqFs8clo7jzK5JJRRFKQr3QityjyzCOlLtjg8ve3woEhGk9Xdup77GLlCueTUbn3IhwVtf6luHbtrpWOnsJx2uYYqKdWC9/km4oE822oJW+LQ6WCrWslVXFmL2jEZMpnKjRNrYnQFVFowBQFA1n2IElAPkSkQeQhUJlNf11wlpSpUtSplHKezSZ4WDoFFsqdNS0m/LA315obGQviMhAocqHwLVy8IURt6pCRGagfotkUDg8aENKKClCe1GiHMKQ0rtVCCYb0JdctoZTGIjKUqj7P1VdJoq7L7SlBZKAfTSCGpm0gj6TlrRdYpK8CsltZ9oYiRnOGAObHUWghK7YbxoJJFkVcWC40xWTHu9q2iyAywOIsYCZNYFNUSEcKsMC+aPDWMMWgcI32MWhpQiCS3G26LIOTdQTevxraf1/nYoqFD1kVJoUFlHjsWoj61HeS2GOAyTUZBQCBQGi5s5kERapVCJDFwlUqZHSFIpCo6LYdzEwRB08ioM4BIAlEyB6sm07owtC7LpdtmVbFqedz2AwlacgGqtAxaFkSSsEjVlSoyrYQ96BMeiEQICEmH1THjhcFgSXrc2vOAC2mxa1kWZbZIK9eymyQhCNSisDBIJunkkKRFycLi7v707Mwx0FuslpWqBRhDDDBPbK/UWgMaQ0Q8R3mOspjwXQBg6riqkXMFl3W11KJpxLwBnxJ7H+K8rutaZq6FM1INgnVPdq3I9q3Zs92OEBsljpZxYBNnNvrxRheZbE+ZKzLSFVr/4F3v7O5g+mh0oTd4cCv99OHysLn3g7fHw+6QMPHR6Xm488yjBwcbXb+7Nez75EJrK5u/vd2/DK1g/UVx6/z06c89S/iuD1qf+eZXXSf60hd/XnY6W2v90s5uv3dj7+pntl54+v39Px+Eq9MP7994+/F333z/8PDjW3e/9d473/34wx8No85b3/708d2DG2/dfe3Clx89eu9HH3z7t/7Bb87Ozq5s7ty+9c50BS9eKLfXLxvkuhvOk6+8ogMPrqsJPx2+4H56T79+NbJ789R7WpCLmdXSKyefmdH5/lNX1ifHs3v3Tx4c337uxV2NS8fKru98pbd2tbX52QUhX/vl/9Vqrt0qWKbZdJF+/et/r8YzSHWVdpl1LMtcx01QPn+1/Xo5mwRO3WMv8Pzy55959Tvf/gBU0bNPP/Xw6LvXnrBFTXqDz6ZJ++GDR8Pdl2+dxzcefpyOJnv++sBtVVW1sfPc2VhsX3zh0elymeOHB+PTs4ltd168QjfMcbG4PQ2S9+KTWcKI3Lw/yc8qMqtmcTyOzw50eS9JjnKIz3Wep0Wc5klVFErUTSOaBmtEIFlIdXN68ChfuDvbbK9d2TQIttIchIhaKDJgI1NeiRXADjF2x8oZaxAAoBpA1bfbDwQ5UErm9QKml5CSQp9SyKu8raFXwbiEZ5bNAD2t7b8syQ+06CPds8JTgyqN71M+B2Qs9LSqLCWGrmsbfJbpFFkwSWtRWfmS5AsJmkLkpxbYYnYm4QjoQCs/rQ/soCrzkNnAGLvIletDzpUSFjRBELoarsp6GoY8zeIo7BQZtGkXqohxaIyQsgagILS0LSRKVixbgE0kGlVq3KhUQ1AVsC4sJFtaGkbawDDbZnVjKOmIBgohhINXZe98RmqwqprTgHWZsny+RKQwMBVysYyPHM9ELZ6mY8o1sV1XqhJYTAFjuW68WGllIEZNdr/bd9VqCakK+u0sy5DWmPG1zrXAd6SuiPIQK60IViBLx4/PwK4uLrc79ByelwlwG9USZ93e6+FWyC03VSUEINIGIaNc3uWuZekKMCDoPJGLyQpksoW4S6x0stpY6+w/voOp3XN9sRLQU5gISWoAzjC2LR6FvqeqpjLjKHCqhnV6jsSC2fXmJf/k+M6t+28T6B1N9ne2NmHUGdfTSk+KhWTYLLPDYehmxc2yyQwA49Hs4ScPSOM2o+ze4zdCf/f04MbR2d1u+Mztm6fD9U5ZiePxe89c3Jk9zHdfe7IwK+PZhTRVo5tUQL+i0ABTabVAxlcgKhqEBYYgXsVnmICzo/PpDFjbcIIOEaJQR6JyCYkRFARtAGMh/6dr8FLob0nkVSipiIdBQXUdwKrpD117gImjiyVjBJkNrDFGZpkKx82wxJR1G60UzLOmAMrz2MhIowyQ6ryRcyOYTFiVjGXj1Ke5EWWTzTxI0yJuRBzQTWDdwLrGdJszVtcL2wYu143QoOpRN0Z8Xlexa4dlXvueWzSY8zHMLaHnjp9o6CE2U8gw9FRRNcJYBGNspCx9i3YFaBCep+CQRp5kfKESHIamZEl+3PYmKsmN8hlXcfaYWz6mtChPmNujyovz+ygPLStEzBJaMH/ikOFyceLyXlMBA1GWZUUBBv3dpqzyFBPkOpFsqhxCx7aolI4SqYAGSVKVxCYE0FqIXEILY7+RQkNdVYVqDAJ8tZhrKPygm6eEEybTqqqaMi04JZZlIYwpbvJsSSB2WTcvS6kUhKoV8STRaZpSrLDlLk5HttsizJaG1vkcMk1FXaqMOkgWK2k1AJWm7qa48l2aTCbLajHY2TKVxmogMlnaeWihVs+RDqlGJZjm8LnNUJFZ9SngXWZfQy1L8z4WytSfVHbXa4woK876XEPViLxIZCPKHLQH5TQv5sWqYMumZlUt7agQ0gNmLUnvQ+wLAVwLQfGk59GmmpapCh3fSGg0hBatytyz2hpBx5FNUetmyLmT61klY8IcVRDGQC4TQt15IiN7rak0MNUQwJPDD4oaVPqV85XqD1Y2iVcn6IODT/Y/ftPHSDQlRkbCGbR7tx5N+z1RtxXt7PZYy1i4/8ITB7dGffFyFpjeZvt0DIDsRQPJJf87L20/c+mVf/6H//zVl79+ks9eeX3j2Ref++GN94bDl9/84MdXnv7mz3zlF/7sf/6DF659fRyDe4u7GxvDh5/eu1v6L7106ff/6v/xyqvXV2f643c/rLPVpau7zeQrx+LGC69/RRpZnFSjR6d3T28/88pmb/3Z2/vvZCl/6snXb3/0Fz7ZmD1abnV6zQpdxdX1Z/du3Tj88jNfmc5vvxpeHmys15/eXQ+iv/yrf1E0J7duvfW/+Z3/fP+x7bEL7s4WROMe9f3owde/8IVxnDw+hBeuBx/84NCyp+0e/Dd/MPtf/J1n7n36diZGn/3ytePx0Wdeu5qMirg+WeTT8/yNdmf7g0/fydFf//pvfPXx6T2tJaMtu4vvTN5OFnO2vvXok6znWd5mrVz/MEZtnzy//ezbpw+J52QgF5b84QdvtCJ/OAyIdpbLVjiwKXR5bNdH00dlYvyyZ9HiIWZBiKzOpNLTeO3k8LEQKptmADhZnYMKEk6wMkIpCaEwypQIe3r32Ve3Xvic0VXphmcfLwjrpq6GlfZgAIskYBVW24UMRHRYz2NZ2tT5GFh1XnVk9hL3JqW+7XtWlXQi+0Jep24LLJPScdq5qeFSIzqI3EsVbKCDsnTq2IEprmDRQDbSeIFBW4tBjRbMVXW8aVr1olae20eSVUU9aIX5/KTludLNmzJS0kJsVFaVEm0E+oV4FDpbWmgIoVJKNKIsTCMNd6isgG25VSk8zwNQcUsIIQwqRXoJswLjinOSJwpoyCyjzSPMuOd7aZErU9qOpbQCGGLaGE0wYkbSSuTcBka5Rkaem1kgjdPpVr8LibJ6a5NVA5FVVjIyHe5wAIUSSyBxrUUjRRB4JM9KakFQlMbmQEorsIlQkABehECzdJ5F6+uJqiRoHI69DpHZKOqtHR09rqoxwS42HQJDh1iOTOIAjJIF5WFpWtZwg61tdwbDlcqtuMQ9x+u4qFjKusKhayMsdYEQbIyJsyyrc+4yQmrCJlFvT+H4yrMXXSc4P6kDb7icjxgFLh50BiXBXpqKWo4YcUyhkHEUou3uE5VMFvEBcerJIl3b3NEqPT5NajVaps1igpI43T/83oXdCzubzzwaT/L6cau7PlvE49kZDjur8/R4cnz/cHpxDz0aqQubwx++/Z3XP/+5S8524QDpxCfjeWtgjeLSDxumVtlk2mPDaZXOtJu5DkNw4HXjJC10LF0nMeemiZZxtX/rrdHD1aW9J27deDMYtHY3A6FWAOWCcmMRm26wYs02SWaXChuL1V1VwyzD1Desm4iwNdW9MEyqYq01lKBAWBACyrzphESCgchLKupFIUvYNdq0oSpqhhSCKAakUFVUlyrLD5PF3JM+WKKiPrOpFI1jMTZaHHecNkO2i4nriDQ+2OpeLvMEsgQbaEDmud3lovKcnqgJRpZBRplY5F1ARmWVdqI9kboMbWX1wovu4qYtBWTYIJxomWgoleQWc6zaTvPawkFWoFTErQC4dkfPQoUzz/MWUw1hEER8tdQ2v0itHDZjXm1BQLSkAEtuY4SiuD5idoUhFgUHShvpd9vDJJ47TlOVUkkbAYoRJFxrMDeijYDPrYaQRskV9wYA9au5q41rcB7Habe1u5wuHAtTt4YkRtjWssImQIRpSTzLGS9PsUd7ne1ktqpy7bgdx6ulPEoWuttvS5XnCcVR2aIu1kQsZS/aniWLbjvIxVwXzO4GIC0V9MMgWJ2c4na/jM1yNVrfWq/GSzDHrLOLQ0dOphYlNeYRwLN6Eqz39CoDy7K3u7NqSn4cc7KuopYJKY+iKp7JovCCbUOFrhLP88rZ3IZ4fHISdUKuDLDULEnSKh6vZtyhqTwQQMq0cy7vEgY1MpzVDkJAWhgmoPQDzwEcEAMhJYSx0eS8FQUCKIbtLJbUWMyWabVoFLGcDQFjbVVt0VMkmKnztY5fSHaeySgpCrpSmDhcPbnrLkZnSOFZOfvRp9+++85otxsoIC89e/Xtd9+5tDGE0uq5fbBa8RVZX7dWWzVnQ5Ju9QipzKMWbt1/dJzbibcO3fTi9PRSu7P33ZufvvDyL1x87vXRt/99azc6mo8vDja2n46wPR36z0KI13Y2ynL++ODus9c+x/zOX/zgwUtXgls3H4ma1hn6t3/2x5ev9cYnE5f550f/z5/9+d9OHtZFkwOj/oc//L2//w/+Xrl4nNzZBKtpkZ9W6DptLMdCcMB2L3/j4a2/evnnv3brYXf42vbo/PuvbPioA/Du1tF3/nqn400z9cHHp9/84lcniw8Pz/AT609F5DMPb/5FJ7D7gy+O5vOy3nLcWT5ZdN2rly/87Wy8uUriYf+Lv//mX33xV9b373rPfP43q2pyeH68kOmlF1/ZH92L1n7mzsPjX/76/7UcpYf33nri6ecef7QvVr35ZNBxO9PjUwcttzeeWE6Xj09vvfrlX/z2X37w89/4xp0/f2wbOD87PXh08ytfuRwvRz/+6Lse6YAeuWY5nHWShR7LmRNrPe2U51vdyDx+9HHUmudFPR3fA8gsswY4TrZqICKcEaOkbKSCGtpW2ZRMweH17ZI/lt2zXvg5xZQvb9ocnX08bxpgD6aZmbX9PS2UbhYocyxOFFpgOKQUrVIK8TnB23ls121c8yVgM8djQJQuKy1jKPRgWJcVrRYd7CwEPIYIY7zSfEKYpaWNtOu6rjBWkqVCmKZkHvGRVjbFmsd2ILMqIX6/1G2Rn1E2gxjXlW9bPew3cXmMiS8EZbz0EKlyQ7DTH7iNMIu48R1pOzSOc8aJAVApRQkHAAB6XpRS1tj3uqoRlJrAs2eLRmt/3pj1jYur2XwxW0VRSwINEaKcE+cxc+zpkQgjN8+PObMoQwJ3tRw1WItSMVK2AwxADReSuyuMcZJnhBJjsKihZ68VqSYWMBhaCZQudgEFtKlqJjTStO1m89i/PACzmFrIrtBSYju86vjzVZznhdcbPmMotZ2tOj+V8AMVIa8KdWFHg6CZH7m06xOcjn9Cg2G4fiXJMtCUCVlS5smsUZEwpW6ycjVaqmUWMRu7LvFsZFnE6vjhoBVio6qwUyfLAnI3CKLScUaZoLDMFxNV5TYCInV0w3Z2szq5OzorDMQS1J95/pk8q6ejeKdXH5zdenD06OHjwzg/aHt91fiHj+422dl0Hn/0znuu35rOZwaARTxOC0waejqaPf3k3tHhpxVY9q/uFMpsb/lur21Uh/omIQ+XYoq1XRGHMuQREgCbiLCytICVF/i5JplCFEbHD9+tpo+L82x978mHqzsyn0b0MwkohxfWeYcXTaZyZaoEtcJZnNOA8QDIfOS7bl14WjtJmTK3MZTVUrmeTZFgkCnCFYY0cmitDEa45SGpO4EsZGNEQxTg1YmkdrnSgfAorWO3smIzvXc0k1QUi5Y9mD+uLKJwza541xy8zJFtcallAwTIkiWnocgZlKgG9TJhCnQ0aoye2SQoYuV6DmosaHxteJVDBXNVaxu3milArnTaZwyy1fHAtZ9W7EiQJSF7iUlKVkDA60b5jiNyCHBQyrnt4jQf27ZjlNZNjVHj+9ZiaSjtIdZoraFBWhnQyCRfeO7AKAtQwNwS68bhlZK5x1SZ1oS5gDSId6vc6FpZDmJWjAF03GA+RgR0IC4NKSmzjCYQ6bBFhNJFRVzXhzSlsK7K2jKtUhddQDOgca6hpna3V01myMKOZyEsyhJJUaxfbC3nY4QAoiu76WflkvgO8aJVppnXlYXBlcycVdQ0U0d03U52ci5tu63dOqvsyC0h4JIWVu4Pm/p8KQpsZEK2IjUt7BVFlALfqu0loJiczCmxyi1HbwckLkEtJMHGtsBq4qQ+Ys5ietIK/aaoJICqUUvZ1Kx/vjy3QsV4mcSC2YNlfMjtJS8uEFgR0sSLJuz0a7TUpICBruaYYGGxqMhHDri0FV2J64+YFZnCsS27ETqv4/aQjs4rUTCNAIW6pAV3mBXbxcJqecNapGn1iS5eAJX3zHNbxM4fnFXL8fLu3Y+zZY2r2dbw85PZwfTRrc8/9ezW1s7Bwc3QC0AnurN/49K1Z6uzuHE/uTO/gQpvOV5GxHNalwNi3v/ej11bXd78lffffK+7s7bzxPrZowdplc0/mF0duq9cumZzPd/80vDJ3T7Zea6Q3/rLPw76ey+//rPv/vjOz3zmNUuak5vvX782PF8+bG17t0+WTmjdXX24gfDbb/zLyN97+vJv/O7v/5evPLEOptVqcfjTg3dcJ5JAsbXXjZES39u+urOAgyrfdeLWg/SOVXi76Np7y5svvvrkH/7f/k+7175+6YkOP5x/+YvNfLLY8p/asH9akI9undw7HoGLF3tv373z5S99ff/RaVU53Z3c7Wa9ZuNbf/V7f/8f/Wc/fGeyuX1bLGz/ujiZvFWOrHJ1++mdft7IpzZfv/Xxj1vDj11v634+t7muY0X9zZt3P+5Hlkk9LXt55+Tb+w+ubF590bvw1ttvXHt2R6cEYsdfe1bKO5vBFpRseqiKSWa61x7/9JOQ7m0N6doWgfbnv/Pt9/rtVYDQh7eWUdg5O1uMpscaiUW6aCSoG8iIbLSppYQK2IgDbSjFFYOh4uXpof/yM529JyqRWc/R/tVnH75zvILZBl04mW3THbE6rW0XtfaacWajFnUmsuFNrkKrgXrTVMt2N66ns3Z7q1JMFqxcVpHXFWpuvOM8xWFHimyqlaPgElM7bVoQNcCwWhVBDzZSL7O7XlDXpe2GmHNZqXJcNL1OnyAnjmPPLWqYYcQ4bxXyZuA8lcaSe7EDh4BOBL5bNJTTFrKIAXyZ1Z5v9TYsvTJVlrsuXSwWjhMR5idxIbVhbgZsGvW8MhsFQ0tKPRd5RkzESscaTM7GEBduxPJGU86ALpSVIB2ly3nkY9jwughRi6QNAAVmFs2zRtYQBbBcEkoc21eY8DSLuc2MMcxjYllqrbXWBGMMjLEtCyEEEKjyClLACCMAIosZY2rRKMKV1pRhjFA5dTwbc1IRxrFTCXPg0MYDm2p8VvYIDRe6afywlSf7xWEaPv+FAfULHbeHPsQ2A62qTHprTpJNT8sGaA1CnzGryUulNaMk8G3uWkHILQvIBtSVitqt7tApioLrTAltNLRQu8K80DXwDLcxApuzxaIUVW9ts9u5JoTgVkyt+Wo0blet9z58u86bZsXyGh3VD5QZq4bcvHk7arVyIZZJSilllrOaz4FBz169ZLPw7U+ng27v9o2Dl5++svfUs5pK0+itII2qaHKuoFW4xBMGcRjWNhEsJQBSyJEVGqCAKJN6VBt71HT8XRzP34mns43d6yt71AcagG6ddBnZMqihCHEW2JzukdIV9rTup4ZhhzkBt7WARmPDKEEAaKmFhghpDAkhCKMIdBRRyixQI6AIlBZGzHUptOdJbWElfUs3Pl+VdZOkuDl9GDNjls1dmyGK/NVi1qKdvLDctbxK69Abdv2BlLquGtvJFEoG7jVhKqONrGwgOwoo1ShkegaURdLrtlzIlrP42PElwYw3A0HqJltX0rG8BtAjqTKpahrM65i4VgvTedip0lhxbuf1jOANAl3MlahLm3vxKuVWVOYAY1JXBire6tJanUAIoeyE3o6QBbSXkPCmbLQhAAVJvGwa1W73x0XcC4dlMmNorIEO7etZ45a6KleAsIZgAFSggWROgoCQDRYlR1BTBi3XbypYpqrd6SSr1OvWZXGqkFPWpd8NFawBglIZgmKEfILbQKXL+RxCE/j9IjOLpWx1elk5abQi1LeYrSqZ5zhsbYLaBBY/Pxh7mHm2VyxSSKGhS1qHsVp6PmkyAqkH6qXGXRt4j04eXNi7Bix+fPBosxdpvVSdxuBu2wuqtJQEEZvB0crjPDeZa5syj4MAZdkMSYIAXiU5ADoTR4CerVYNgn3bLQphKG7N09uI+LLuOlZPWmdQz9c728tVikqz5mvFiqK0nfZ2ak45Cgb+1nw8cZwzJHc5wFBSq9gOZFqUy3bY5RiN02PShzxgdZmWWOYp6JjPCl2+8PJOv4enE+0w76d3vr2YnaTz+qXXn2YkvtrfPTxDqcr5NhIrLnifKRNFxdHRu0rws6MZ5dbR8c3BEN9v9GUX3PrgEOPWcNc5Lf9ocj779Su/s9p/zKO1hwfv7/g+jjpjjdzG5YAFQT3ouj/80ejl139+fXsLM/Pki1f84SoI99KAnR7uP3g4+tmv/eylLWs2Oju496kGey0+vPX+gx/94J/sXLaHe+Qnt/9ZGIZ+8MRk/+j5Zz/36d3/V4N1z/9Vka89uHty7aVvTKeP+t6G3/gF0P7W8JN7Nyf56d/+5uZ0upfod5PD1eY6DPbyZPRakuyPPp1FPftk/mFn8/Lh7Oxb3/+jX/qZX7u0dv3tyfH37/3J8z/71Qofz5c/9sLtwO6zc2tqbjn8GRi0S33LZsPzw7msj67tfX15cNi3e4fz1O+0760OG92UCBaypq6czrw1Bp7fKDleRfNmp+ZHq4Ov7G7+649+YDqJvzOowvKnJ+9/7gvX9h9O9uePnso3nrAjXLDd9t6gdarZdH95KiT/+NPbve4QEWc2O62kqmodht0yryioDRAKgtLUAEDQEIqpluwbX//SNz//VV6J0A0R5Bx32n1r+LXt7M6D2eykbnIH9fI8Qfrh3rA3X9zSmYVpyTgxIIS8VApni7Zv11kzIV6rzKTf5XVzTJlVZB3HoqIUurSdACMzzjMCROSGWVWV1Jrn870is4JWoWpOMWPeWZVySjcR7hVznIrl2qBTFBnFjHkozQvOdyRZEt80lWtbCCIPNS2llNbUcTjGuCiyokxgBTEDsuFViZxgqGRi8xrCyrc7EPG65iqH0OSiEEaG2hCHOqHLZ9O5Y9uEuMaYKPBrKZoGrfe3jg5mnrMJkWgkrpvcVqEuGWHnvoun49x1HYsnFBNRAJ1TwQ1UXApNCMniXGsJjMQIo7qum6pCCAFjAERaAYvZ1AtlUxCKtTS1BBhTTZDlWpSjOJt7btvhXuRbw2gdlz1YN459q99/anLieOg6qILz0zhraGd3TUeFxsRQNYvjNEZpwqUwq9WqqsBQJVEdszIxVSUkNrhlYK+s2kIs48VoPpmWRVOVSmrkeDblIDdFjaQAmlue73gOYS3X7TpWppdex79w/Uqn7/OoFGRMXOn6QdBXjDsU2fF8Vixj2Sw/ufXWbJbvH5331rcMpUmRc5uFrWi1WFlu2B32gExW44PB2hBgvNXvUqPa/e1eEPTCi41wC5XZgQw95hADxFktYYxNiY0SDWgqAQQA2m4MRXyrFV1p9fqUaSHb3hW7WfOqymI9hr3/H4n++Wxbehhmfm9+V15rx5PDzbFzo4FGJECApEHJtCRKlEayYo2ksuyaGlvlKXucymW7xnbZqvkwrpHLsqkw0kijwCAKJAEmoBE7d997++Zw8j47rrze7A/zNzzffvVgXEcRCoItxvp+0mTjlRts1nzQenFFAYgV8YRPie+iABEKoXNOAWugscBAB5B1puJ5Q/IK4sr3RGJRomnqg4xa1hGmmUcMBQp1mJsgG6UbSSyW01Xs9aqlaFd8a2uvlidru4mqmI8jADphziBbQU902jgXKLOs21PjVsAhj/SRY4xZ32+tQdlQdu5ToScevgDF66bdwsizHUCWG6AsLRtVIRQTSJ05wfSZlUtdc1UNMv9aFKx5kULBUwL7nFKIBaEOgZCTgXbWwRLRlUVTY5Rux13Zd85Rv5Dm3Jlh02BCOfNtI2eQyCDyO6FTOQpRbGBUuHXau9Y6yVzNqipI6jCxhDolG2esMVwJZh3xmJXyrNeXUp7WzZJQqnSDeQsIIYFHOM5GCcSaESiszNK+Eh5EWtl5K4s42vXInjMhJs76ncW2azCDQ2ozq4BxDSKlFbUmCugSm9zS0uNNnT+GfGl1D6448voEMNN2KLSE1iiqjh5NdnZ2ACmL4n7iN9C58yUx4S203gPWoVrigNdVEULWTKYgpKL2GB7XK8RBVhdKG1e2xbQ8a+Ux5RwQpVyZV2q6WknQIJgaNYaAdW0der1R0l/OHo17mGrnvGv5KvCdv+VFsYJIomUd8/EbueE5cDo2KlxN5P2GHghvYsLVks4chVwEe3ArVZ5UTbjTp5vZS29ciFK7zI9m588efPb+qB/ubq5/4c03btz+OZpmg81LMd1+Y3t/2OZf3tm/mg1vvbYzGq0743Vtsb8/ZjTY2b1EAnv15SuffPJTrqQPJgGm//7f/kYMzaP3/umLT/KDu8e4UimFL56+m+fP/uSHvwtIGxr/+fPn29f2v/iLP/fgyYP19c217Yvp2uWvfu0XXnn91WVVhPH41/6jv/XpwzuOwVLga9+MHq2OHp1UwdCP463l4TgBo8tre+EaWltPRLU4fWrygnz27BPR6kv76O0b2wfq8cWv3yp983j2dHd98+lHz/7G//w/ff50fv/+b35y8N9u/dzVm9/8y0W+z+Q6gxd0XWIoi6pFXvb9n/30yz//lYsXLz//rJp9786b+29vel/MqhFU8zxiZu8WXIMwW9+9uGtzfPBwSRJV0/M08+/+6A8vbL1+/OK0l7HJ5LMkbY1diLrbXb80HpNLaI2mvdX2xuPTIhtsNo6EavrO6Z3D5f2vfumrI9qTdx/d8BJz0kw+/GDLv7Cc2A+efNIktvblYKffY5eCZs1hEkTJoigNoFIThII4SpeLhUEMY4otwBhYAiwFwNo+8b/1rY2X397WKV4lbBagGe9yOr3yuYRt5ueNbJULSNXD0chdicuseD4jgaUhDhKI6bDtQqUoohGOFoqoRmRtsQ3tRis8qcNOOmUWACxUg7SQsrVODf1w6SePRZ0BbWRrtKrD3iHxlghTHsBVgZHLMAGInwvwIO7Xq/IpCypHzhxpFFwauWZNYCwEKLNsaSHyeMxoIERbVXlVFcAxZCMPr5UNBhyla0zZtq5JscSUUgvOrZkZWapOUECMskZpYCrfn69W55gWQSiCAIURM3ZW14cQy7I6w9hVbdPpurPn4w0AwawX2TQOq6rJ4oGPhvNjYpuYQAngKcY1Rp0SAkOqJKAsQSgCKCCMUEcwwtA54IRAAGhlqVCiaWiYAmmBR30/sFQgArqu6432alnGmR940XT+UNnl2rAnT2/XPdA/bzkcHNaFn0Tsws0qukrrujGLxZEJs6FsVns7vapu2go5FzvZtaIzxnGOGYbAKSLmoJ2B0G87QwnTCmsFEUOtUBo6aVBAOQCKEgmwg5AyxGULAWLWegz34ohQ3i60MYLF/mbS54tcvvXly1lPff97B6tFlwzSZbdkfCCV5Z6PEIqi4Pxs4nv+MOvTgH3xtauL2QHzvQv7V7ZGZJxFShIS0hbl/XXDR+T0BQ+7i2nm1+WHFkimM8wCxKR1hbMFcCGESb9/GYmPfAd6LZPWzJYzLJ5vxQxREKYFwOtJljXqCJg4ILcxyjHzrFCR1lDKwEFcdATHnHnKGGedodYhBCF21pq2s9ZCiFeisdplkGEAl7YVWngWUqg6yCHMoNJW1gZrL4w2Btfud38y6g+rZUNBhgDJVwXl/vn8KGGjyCPIKWkFwxxTJlvpMIV6yEFEMOAEY8vLVUA83jbK4KVDvhZ9pSVPHlM/KCbI769ZYxA7hsRZFzmQOAcY5LZhSMUMG0KIkIVBR10VK7lHfNnZ+6YJgR3UWnlJadDMuqiuSRpnDpVNt0QwVLoLMO06p2WQ9PRqKRmJIUi0VIQoxl1Znfb3vU4/sxbyts95ULRnXghRGjqLq1oabR20w15smzmhHfGJ6wKrFbBB2QjgeOAndbWKk17X+mWdJ72gboos66laOgjapgpT4hzWAjsDSOrVp6dNAQnmSW+j60o/oIx1dVNZRDjnwOtTRWtgWQtEbsc7G7PT016yBogfB6ztXsTpummRR0vRWEw2qEfXUkGNXR0veJz5/Z5sxGhvqPsh9m359Cge9btOYgdUWWGIIMEG1AghKVbUUiGm2pWCrBq7YHDU1LaSRdHOaxFDApUVCPUAYYiurG6TeK8pgA/XypkeZBttcQdDiKLmrDFC7cQRc/JxSlceHkAkA5dIOK7FJKQbEA9sW4esjtJBa/WL+R3c96Xfw9HwF7/5VbLmZofg+aNni9mTunjyzW/8Yl0ezWYnoR4/ffyuvbz26pe/3vMX+WpC+jtTJTYIuns03bp4e3MrLNVZYnPVRv3e+sNHx1liRD7Z27t956Mnpp5fu7T9x9/53pWvRe5ZzuX5o+f3dncuHt9/urdzJa+PJp8xSdIbr1754KNPXrn12sGDJ0WFknhrlK4vpnOC6P/nH/033/+jP/7C175wdnb6l//m3+ay+vGzfymkC8JbP/vk07Wxfvm1l8LtS5998OHV8QgHsuvsEEV7u2g+//T2G7f/39/5jS986cuPfnhCKvr2N77+7gd3tzZeFXArIvi9H/zuL/+lv7Z+40K1XBi4jNJudjS9+tLWwye5w5cff7oapEkUkR+++0fM9b7yF35BJpsP7/+0evrJ/bOPPv9LfxEFew8/++FLozc//ODhx8/f/8bbX8ZqFoPuj39496vffune9MH7zz6OvDjr773/g3diFu6tD+vy+flC9bdjvZh+7//3wbWXN9669WbsXfj09Hs/u3//az//tkPpZHkcWtJRev9wsfTI1gCc5Yvmsfiz3/4bjx8fX92/9OD+ce0Z15G8qZR2GjrKOPfIdDrB2ClVGWuRRQgzACzALqLu+nb/7a9sX9nrrVF/A6daYxYH0rWlnajhy4O3ODzk4hkrqsaRQxrxcjX2Gw/jVppCyifCcC1jDwCAPAswIz1CLPPaYpVzGCFLPNJQOoPOOtgZp1S+D/Aa8O+W8vdHwbesa5Uk1K0vZs/iAMsutbCGpMTM5kWThGPkUqCDttSYeaKIOGmhEV1bM89YlzOKRb7dmDoIYkeRBq3WwvOds0rpFdCRKGhn/Gq5olx6YU2IWSxWAbrpnLRIaNdBCBzQCHJs4rqtB+OeEEYBzwFUtAs/GCTRRlfnoR8V9RwhhqAm0Ci5AEjPS2WNU3QS+BSxuqiXly/vLxZaNQGGMGCIY68yjXUt8QxlEAEAAABaa2OUEIIzDwAkO4MAApQgAEnoA0YdI8aYtm1hSPy+Hw1jaV2QZFGSSYn6/cvO7PeHsaaTBjXRDo8vF0v4YNFWk8nZ2dE05Hw0sqI7RgY2uVtMV7NclRJq5qEohBE1nsGJ62+HSikIobP47Hg2X9aicyenZ/PZcpPHPUyZhQhgwKhkqCB2CgR0UeBjROcEN1a6xF+jEDPWGBiMNndffvPltd20v8YcleezBQSx1cYZa7XhmABtQkZfun5llMXf+rmvrA96r9289uqNq1/73Bu9wGuLigKkw+1s/YJHNmk5Tp1vwZOlfaZ6YwMhqI2prMDMegGxBCjQYly4B83Q1heCdpz0hjsXt/uXbl1cgesO7HL4RuSteYHFJPZTTqOKAI5hAWAJiGoMXXTBCvRWASx6KwCAtdYYo601zipjG9FVVTOpVnJZ21W9kM1ct7ZqcSNraARxvJFepwSxmqPQIU8DyfDm2jVMZZqF1nRSHXrcdYVP4NDzYVUttOnCOGg6UZWdNVhLLDvkgBT6TLkjyE6wN0kHFlPdLvd1O1ASxuHQqnG5CNPeunErTGupSqMhRlEQEqlOjRFQryMoqL/qREndlXoxIoQouySQEZcibMKog7jz+YDAke/FUWIdrClOoU0pg0HInI5Vx5mnOaGMamPmxk4471SnihkM0fWuiqr52HRpf8ilmTHSl00fgQgRCOnUj4TVPoBrotNNZcp5T3SK4ahY6TDIPB8i0nAPKSFVp5yDWCOogZXaVB0EGChHiCeFMcaFSazr3NiOe8APIeHIORNEflUXyrUIK+c0REDbRkNlZNvrpZAwbCgLe2VtPMKgx2wrUOARTIujqQo9BFClYT2Tvutjl5YGuD7DmUR4Yozh/USI1qOhzmvHMc8iV9aUgPn0nBF28GIiBJcqBXZMyP7p6WrZnDTCKBM5WhosIIqw10LaBf44Sbfy5jyIEbRJwNcQVpZaHgRVuzJGJ4EPdTfwU7Fc9nyXMNoulRNx5O1ikjgCBCw6LVvddrLZ3r4YDS/NkXfxCy/5a4ZCNDk+Qdq+ePxgb2uQRG6+eJHEGJLlz33xpa0UXrs6tDy4cPtP193W5nD/yScP+v0uWa9q2M7biiXt1SvZ/OBFEmOvl1U0CTZ2ZuX8V/78t2qA2nTv4f2TyVER053jp+358XJxflacP7v73m8WZx/fff93n3zy3vNPHulc3nvvJwcPfjL069/+7vc0ZH/mV/+S74cvXjz83Ks3Xr128W/+pV9dwBve3vjv/e/+rsO32iYC9nQzWr//4/uL08M4W690fOWV4PJu//CjJTDn7370401o+jyLgoFk+mF+p0NPUnwadqvf/8F//sY3X/v857+Ojzr9ZLa+c+206r/08rdYf536wZ0P750+fXD3/T9sqkOWFtff2sXk0slnE7iawXrw1ubf/8b4P/qN/9s/uL1BWYJ+/9/+1ttXxz3f5nrzOx8f4aTP1NbTZ+LJ4URCde/xu9uXQy9FkCQHL/K8xCWEz84erIfy1c10r9/Ln0y6j6Z/Zu/l6HxRHy1WRe4PYoNaWYqX9y4CKFvRZqPeYjUFTu5urw2Gva3tXYJ9hLHUXdUUneyqukYIUAIBkhhpChg0PtAEOzPq0Tdf3dxHu4kbB+loZouatEXdcZXaCTGxWrs1ks6vFwTTrm5m07wtuTXuBDum69TZrpdmaeJB8hzqsXMOsadB9NipOUXMwY6xFhpdnt2u6qWFK0wkC88RDAL3tUHykrAz5lGeHCs7R4hAdpDXj4OQOp2Kqh/xK12DtV0OxtgYB0zf6XMOOLRG13HM9qzusMMQnUPvCaAnkNeUM4xjBFJruGhcxnMO5m1+kkYcWgRsUDcexls8ciwteOyETB1Yc1jhYKXhkkegVSvhCoPb1ix5jJIRb2yOQLharSgzQcCydE3UcDRag7hjYeX7az55tZztBN6tINp49PS0LCLMlwbMtc67tgx4REkCTFbmDGmtpRRaSK21MQZ7HiEUA0RwABw2xuCIAashwU47hBiLrIbGi0KLIIC9wL+O+YjGoE/OZsROkaCjqI32mLez018H/R0IvP0Le4Mh9r366PDF7LS7e+fpwfHj4uCUtZpJKxalETpOs2Q0ZlkvjmNKKUQOQhcEAefcWtsfDrwBUcQ6RCGKMck4CT1Gej0v6dnhOPA9CmwnxSIIhFZ5mc/Tnnf1+m1KdrZ3b29fiKU7TpK0KbCoy43RyAjpjDVSJWHQy8JrV3e3RunLL73hs7ULw6vDYGdteCWO+qvZ8QgCVy8xWgHadTXw5F7idlmLMPSsqNt60skWuJTYIXJEw5K43dXJoJ6EVtK9nddHw9egjftpStOahjWLVhZV1qZBuAsxsLYJBY0QjnwSxzzyovVofWjieIWox7HHECYQQuegsxAAZAGShbPQsyyWiiqJIIsQj7FmPoqFFbWdalkAjY2LOu2sKsIsEK5d5XVbOyFEVVWc+YFP8zwHEDqItbLWAggIMJgh6gU+9QHCsZPXTbtjnWzEydnZGYkfWrykfm7IeRgmhBCpaqdG2hCMhggEziwJbJHlCBGFjlE0Fc3IWqbpR35ScJyFfoDIUkoFLFeCacmXi7ZpQdtCRoZKcK01wkqqGmNQVguEUBxsldWpkiJgfY7GToUEEco6h07Asocl9dNAhcKEKxge+f4hbJ8USyCaAQYjpRtg5hACFlA/rcOYaNcQD1LPdnqJSA1hreSK0vN4IAnKk4xW9RIYgz3m+35VOu4zoZcIK2dJmq1bpLHXGDV3QBqNyxpG0RBhXpQzBDoByygBXuDi9Xh2ehAGtCEaAJuvqii+VuWtJqLKNbU6XDdStUqCME15iEHk6NDnw6xpLYV9bIEAlqeJOD3nECOPAQrF+TyfnYhmPls87+y5AOe1OVFoUctJIc8QD4TlmPchGJS1QKRDUCLH4mBUzEDq72AEg7SEeAUAYOH1ogIRSkckDsFzYs6N3DHgcqUUQKMOdg0+QxFdyrO5eYBTbALW4VXgk/qMtkW2+9L1wa0e3SBHT2aiWkyOnpfTzrTupz/7Pe6rrLeR7YxUJSZ3P0HN6WCt3yp5fZTeAHZjh9y68YWu9iDJAT3d3d6Bisuqvr417JG1rfHO48/u3bqw/9L2N2eHjXNTZh9u33SPT95PGHx45xOYhLO8fml95+DFw4/f/e6ffOfXjx+989N3/tW9u793/WL22//y14+e/fr+5iILl+//7PeuXLp8cuz+3J/73/7hH81De+ev/o9+/vruUImzX/zlL/7qX/2rLQt/691/urFVfnb/o7qrb177cnkapmi4OD0z7iQNyMnz8/t376GyGZXRmkjDMP3g+WIzfusrb9y899F7H376SZTudit8/arHowUlN1dVWdenqmrfuvXLuL3e9z4/Pdz67NPH08fHm9HllZnc+ProX/z+/5VdPe597ue//99+/wtfup7tXj3KV4dPnr5+4UtbexsrQs+e3R+E/vPPzhP/2mwOs9H+wXJyLCd/+tVdeffJcOBnV/Tlm/ufLc8+ZY+ufelGsxN8aieflYclXnhjjvzm21//oufBdb6BjUnHvd/8wX/HhiqK+c2Ll375y79yYf/mpQvXrNXaybarq7JMkkQICyHAGEGMrJHE2RTaYQJ3dyNvP/PXBtZhH8IQOQdkQTp4IbpwaUpDk9fAyzhPfZ9dHXrXxhu2NQ8Mua8k0O2a0z3ZhG2rLD4UkjkViQJBw4Cj3IuFzYV74PePg8hikKpmiFBEg6lGB4ulkYY05dAPU0Z9H12i0Pc4grJPUGKdRGyhwHMW5J068wJtQQmth/RGVZ0nvaaTx5SgYs4wcWm02QnctlBb7BDUrqZceGFnOu3hLgwrhCpoWVFgayLuB6JDDpYsXiB/zvwK88IB0ZTAGU+LyGcbwPqc9iN/O1/AurLI04M1zgOJiXBWQghaUef1outWfmSK7g7vnTo8c9DE8Rplu8Ak0IUQECFazi1GnXGFEHNEOccAMk6RAwhCoJRRVkpNcCgtsNZiTqzqDAJOI4/HFK0xz1NSz6edBTUOjwwyPv7a+bTl3lWFrtDhjc3bb/nj3WQY7O2Dnb3Nrb2hg+azzw4Xc/Xp/Tsn08OzxeLRBC6aqGk805EeCzZ8P1ENWBwiBJqmyIsFwsZjQOkaIxf4rACuxRBGnuOYEBT7QczicTDMRoOqxNMz7OyYkazIu5OjsswjbLgWK4pwW+HXXv3izatv2MaMe/rGrQvGijCKCGHamPPpaRix0TjiBD14cbS+u39xbx3a2mAYj/qcm+74ma/HBF9ZCFGRMwFmqsrXAj9OEEqQZRBoA4QFCBKCYuCoUiOshka6RYEQTbLXiLsewijqD72+Cvk1py4p+phER85B7J9OfX+C+Apz0o9pimHgOodam2mKIKWEUYoodAg6hDDjvj+OUTAkpO98LjCuG1o2cAWbc6RABUwDDBBKt6qwusLOw1wAaWyoFAmjrBdvE4TjxAqRC1MGcYRQ0jYRQ+v9dBQGII66Rt8tu8eIKAihhR2PW4unPFJpMmwq10t3q8Ii6MVJf3K2YDTpFOJeHwJn1EJ3LUNDBLmCU6svGFz21gGCKYbRqvoY4iMnYgg4pQbRgjAFnUdxzxoIiCC8MPDcWOXEpqgG2kjiFQCvRJNp5XM/IJ7UYOmFLoy5MsoNlD+WzLXyAPrlti09wtcbvOtnnccjBBkPS6EnVkeqTRwA0MYQ8CDyu04ZGSM91m0ArR8mrJVV19RlUwdRpK3yUl42c0QLlg49ui4lox4EqKqrtq18VYXEBgYYHhsUSouk1b4Vgzjbwy4juH82bV3nVQXwR7tRsN6YUwBWkjfadLqQ2XCP2gzY4XgjqKqTg3xmkgEOBk0FMaRGSS0kRRgo5ZxrupZE0eTFC9iJekqpHUxOK+bFjRRNJ6TUxbII+0QaWjRF2S4cin0vAUhYHaQeWEzvDlJkOkxN5hNf1JKCcdoeZ0hEMV9pcNZKEmNnlimdM4ux1utJ0kPU72Aqe+vmyoa+zaeBrzMcenDdNsPZtS9fvH7t9uST8r0fv3P3g4+avNSdePbocVc3nh/WjSqP26uX3rr8+udUHKeb24f5A7hewa3+tde+huHVG3u/0JzqHsh8tXv2wodkp1pGfT9i8vmQetcvXvjgR+9X50d7weBC8jk1C3v+JSWSqLdlYPT+B48mZ8X9gyVh/tnzR4dPPrYuH6yHH7z//ofv3KUr/8e/+cnBx5OPfvJOWbxIEvl7f/SPv/uj//rNz/2ltcEvfPSz/Ff/3Ndfvn7xWv9LeBb+6hf/2mD4yuL8/Mqud+/9A0K80Z6miLTn5fHzd37y278e44efHf7O8+JcZH7aN+r+nY3h7cWzo3qeb99+uY1c1q8DPlvk9cHhH1j85Nt/9pULL8MOHs3mk4g715wZ4a5e6h8f/IjKsj4gzfPBn/nS37j34w9GFy9nKaPCb5dk/6XtYIszFp989vjuJ8cY+BcvXnrw4AFwqliVLx7PhvHa760ePEhOLlzauxj081ke5PqlgKxd2bWlvHn1NbOQqZJd3u2OhxfW1rywt3AzmmhXcnOiLnhbMcx2LvW2X9m5dflzo2yTEc8BAxAglOZ5TSkGAhhjEVWRr1++OHzr5u7V/fWkHw2UGLIAOuwwErrtB57fNWR5WjTRKjBrP7956c99vbl8u+ijhj/NmwOC9gCXLOmo7yl8LlwJwY6XaIz6yG1K4WO/xWFOAk+bDKJ14aZGbSjXCPoTwlvmhcgrrKv9hFvveVN5Tg+EPHQKxV7q8D1HDgGZzmaTXnxdFpdkeUEJHxNJGGpliSliLClyx/y+dA3gc21R2ymAEaYEEWIUszbrmrTTYdEMqmptVagga1l8FCQLhKu2rozwnOhzsA3FJpTbpo6cRBitAg6dbtrmyJqpbPOuzaNQ5k3FeE/Wvqw8UaH+YFfpBNHdzMt0pdMgps7PZxjo2FkBUJE3R16sekPq+05KUeXStH4S7hNgrZQy8DmAjlJqtcOMQEKRowAqhBDiWClhOIJSkyDSsuvKOqb9QdZzrsK253F9tvgoR8ONtCmYKNKNdIuW0YLw3k4Xr/z5opyc3l/UhZ1Nzzo9xX4gGjaMbalWsiFpFrukd+6sdCYc7anFmdKiaVrrMKoxNswAdX5+FpAeIyyMidKVcpp6fitxZ32UzwhBYQYNLBaz/Ohwejo9w5ydHh8dHpyk4eWEX3/jFRBQ1/dSSkhvYyA6fXJyPjmbLvPFhSuXx1sjGuCzs7PN/T3oS9OehVEGwoDCGMjS9hLlrxhGsjCqRHjshG8F9EO2aElgutDVoOtm0ocMc18xj86qZDqrTHph1HR380Ud7e1NGrUWjUK27/tW1AudX7Rq06EqQHsClfVCsi4ORyNhysJWOaii9YFZSUIIRRQAB4y1wEGMIKbOSz1pO2i7gBmreCOBgoqhiZo64QIy6DzT2MbJjiirvSHjGxBa5re6PbMg5twRoLqln/ZfLvMcwxXnUOqFcesYcFkjxJXppJf5Dh92YhUQoPRokFxpxTzqtav8NEky7RYvnp5f3Lmh3AzxCgAtG+f7IQbKuLIT0IvWOwmloMCEhEjtZj4bGQkVfEEoUCZksAecCZIG0U41tqmiOEx055QVyXBZFEVII+TCuirDgSPCtbrqWu37fetc29Zh3BPVc2+4ezZb8pQrBmETywq6psBZv1U1RjqJ+8wjWquuaQmNTo8OhxueMHNtYZptdK0iBGhVWrUJMW+bOt1aa7saYqCxcF4Hbd9UizCGZSlk5xUrkMRrfkBW00WSDrAXIB1XlWLYyzLXLQs8jIHQs8W5C73RsC+qAkSmOjhPepfBYobiATK+z+Y07ZWnhZ/R5j5VYLj75rYIBfVyahUAfiOscyIMom61hJT4nLezeVdUISNpIhtReFGXd6WB2FinGghdXDaq7g4cgk3bMXTIWKLa4aAXdfM6YdvIOMZ0Uy6DcJDExMD7jI76frw4+TDy1lL6UpPPWyuyNAFOLIuDcXKhy5NWnIe9XhjQVfETG/rM24xIT6jDrb5/4/atZSPOyvPF7NmHP3u03gtCDxqIppMuGSjnTvejSySJhe6xZKt92LzF18BERv2XchCct985++w/XN64bHTv7PB+A0o+pEe2OL6fX7m4j0j9x/f/v8y+ujvaPHrwBG15w8D2euNPm2rrxv7dd+/7aPjoqEajOPU3Dh4truy+rdXgw0/eiUhxYX/vJw9+Evu7k9U8TfCLB5/apbzz8eNbN6/+6A//obTHWkGr0sv7N4vqgQt+dOvCtd/4wwc3dof5oVwcT6veJLuwE8Ryszf66Af3o/5+h4qwD8BSQaJ/9Oy757UYc//BKbl+mzbHx6s8j1/qLYprH9378aafvfat/4VUvfPyndXqaHtw8fj548ijdHT90WF3/8HTa5fWHxz9xv4bqLVQKc6j5z688XT26db+xa5h9z76zSRMH95pbnz+ZZ/q40er0F+nujw/W/SAt9NPP3q/+oVbydVBvwEg4LaYHr719W89OeGXB9fuzp6fN9NX3njjB3fuXV5PT55N1ArWB82NN3eLrhtezEqwSEE0TDIos4BmX/3Ktz59+P5seQKcRZBSiKToGGKUoSSj45R/8wuvXtzoB6Hb3duh2ZXC9oMwM2jOMSik5uFGKURf6PFaagLDlwrO+1Gyh5+tMPQlyYvVAANIcWDACnjHzmStli7+qG2bkGZF0Qt7O4s6p9hD5rKTcwc8jOOQQsTMKn/sAIr921VJuGdW52IwPCL+HNmt1UxiGiNvOFuo3nCnLV3gtxAutVx5Xojt7Xl+7+Ll9fm8wjwAyCYjagxyehtB3/eotk3bVVbakPldq6IxU7po61U8jLWmqklEjvr9LOACkABoA2DetBW23FnKObKyFsJzzsVxoKzRjRtma9Iuhhu4mE4ZIwQD4Vbato5q7aBqDXGBlLWG08HQ0/AFpbgpBxBzCGjXddoojzNKaddZYDRxEDDGnLHOGRJya4wDHULIGd2WVToYNqdFwDPdiDYh/sgr7j6zvRHIKFxVGFPXOdcOjuTdJBoUtl2kLr66heAgg1HrukK1jw4Kh3QnurwsTxarXrY5PTpfWwfM75wrh70tP0CiWxDjej5Tk9NZ3rZ56SPULKqOkWVjUBT2N2Po+UG/rFVZFZSAgUdBNT+F5jwa0lLkaeJPTs7OJ6VHkyuX9+suPz/lToX5an75xts2etG/8OVX8KiZHl155fbpoxe7afWByMfR53uji+v9JPYXo/X9OKZUOmsuIb1hm2a8T06dwyGLolG1kLpRcZZKZzg0ql5MCOsxHpiSJyiXrhUh5wxTYX0o1E7a72QzT/u3m/ZZnZ+O8NiLXtG9emVeKFBmceShgLLYutyp1dnsuc8zjhH3Sde0QAEITK0hYwpwAyECAEOIrdWdKCno/fd1QC2Qww54GgKhDIY+rhuCbdMZpr0+jp6dPNUWZTQaxZZwcl4RpLm1fmNQlDDqCuY1bak424EEGtM1putlW6je4k6pOecB8aKs7TrfL8rlca+3WVaH1homE2T8Uc8oMKtKR1EiTG4ctihcdmdJ3GfKXxZH/RiEUb/OpSMIupFQNuk5gz3VZn7Qr1pjnQwwNFJhTaHBFjR+GGgpJSI87Rkhja58SpBm2LUEJAgVSloEfT/Kq3rOwJX5UUXsOPPcdJ4ng6ppsDdiul1Sz1jKNYjVyguTqMvvQ1BCr6XRxuRZ3e8Nm66Oe4GQnXO404L52jG8cDbzLWrZRGajGrQhxHG2Ojlq6rzXoxauABoIgTGOIQMNmINZEfSHEDB5eCxHNMXhqjgOximAFjBlPKiOZpixkPLpculD5KdB5fWcoFHk1Z2QXOPXLoCFthXS0NMOIWOCfgSOmShyQvGqyLM4nJw8930fkGhaPsvbuSa8LFvKF4DaunYtqIomh7YHkYizltNE1vEgjpr2yaA3kEJ4jJXlYrC2uVpUXuBLqRiVjkwHw10IscdVNxHjKA1xYkWN4qZT52q1GAx2CkiWVQ1lz7ODztqWPIIO9/rXUMxtXYVz4R23r7/qgwAcPsJnq8NCL0fDNbIo6ReNXWI+B6z1Hs+PhyGrz+8Mq/cszIA9Y3E0nc+UqypkUEpYtTx98OLGfnjj1rf/5OMPMbh8dXNszWl4IW/K7gzu9RPhzMnYDRc+23v11js/vXeFOWVIf+36Uf4Mts+ot7F19eY0P74Sfm5RqPtPXty6OSqro1PbIaynq4dPZwugS1STl27dODv8XiN+srGz743vpcFq7/q3Pvn0fcIHEew1zUJSrXx9462XlHHzuR5uwrt3/skbL//1B3eKW6/u6vx83Pv584N6fv7gpZdfm86Xx8cfv3bxAt3e3Oinn/7gqSuuelS/9+A7SKYZWU/PP13M5qEmuiaPjk5uvX4hb+51pb1+4xt33n92dvzDyxufu/vx+7e2Xn98+OGrbwx8tPHb3/kX2ahfmcX8cAE95Q+iO4crLxEwGykTeMBzoLvx9lprHiBz/EDSs8nB2jr+9N5nhx+//9ULvzppzo/1c7qtN3Ca7oQv7jytR497nwuUt6u9xRuvENPuvXnrz/+Hn/1D365UkxhvOQg1BmyjH13dHL528/rOJdffhNi7Sfo0Y4rSOVQCk9ha4oCzZhURaICyEhm4Munu+pWX3v2D9/a8dE4PXTOmUEY8kOKxta2TI4Y9XUrSjZJgqHTnAKgXjmKMcaEBxp5omiOfjmzX06DmTEtFlV7w8HQx0UEEgRtANC70YTq4KYWByUlKAAKG4L5WuDUcks3I36irk43draZV0GifAWiA6jqAkYRPKNUMx7ppsJa+x6TM4z7vauOcxYaHODg/b+JorHHRdiXvUWBj2QIMrCaF52sEvaoUHGiMlUJtUfWZP4JMFBVkflhNNWeBNMY5EIVgtZilwzUyANVqHQZINAa6tDXEKl+0QFmT6AR1vc6CSrY0CgnQ7eIsCUIijTbWUBYioY2QkGDnoGgEQwBB6JR0VgMeiaaMBhHAkFJuKQWRMFRbNND8rJJHjYlH+7aow5CvbfY218f6pH10cD4vz2HMAufM9OyJQzCNEEH1+jjcWIvbKhv3Yh5iSkEQZJwTo2eNOA66EcDedDV5fnSs9EGa9iMdYLuIdrbtMmo6adzSoZNOdflinsb+0UHU75OTo4OutuP+9aaCGElHNQRekLoyn1JCtMCDnjq4U37l8395tryTUX/t8o18eYIY3L/Y1/U0iz3Ph0EM2lw3beGHQeKv+d5Gr69CE0p30OHchkNk16q6aNuCgIiEug4WLIilCplVCOUOakfW4XmNAXChVgjnDRFdRrXOuGf8OjDO6FhighGOhfKtbohbORz6fUpTrZw1pTS1FFYrRwmBFjHCOCUIE2eRQxhSZlEHIaQWGKCNVs4IACTBXTfHIPQLIfoM17J4VhwLWmQdKG0ZRLg8LX3fR5BS5DVFl7Cgc8uI8SzrQxlBAIxUgceXyyNiD5KAA11JrbUgGI2h8fxgmVeHCCtOAgjoMi+pj9quoh7BBkO6CFjY1V4QDI0RAPCAbhEsGAcuqZtughH3g5EyuGsQJxhDHYfIAb8uawKA5xkCVq3oGSS164ji0CUUBNZVBrbIcQhpVS+pb6QWvSQrG2g0wfEcER6EsChQFHse3yzyF2HYN0YaJXpJuqjmaRrn84nRqCnCgBNTyyRItDRZ0lNdhwDHiHpgWBQlNwZhBmTb1nlvdyhPChT3dVlDQOMoMxqPhhtKOwiw71MpRQckcTbw/TqvLTRhmBUnh1EaL5bL8c5OPpkQiAzUURR1x1OPYRb4te6kT3yPOueANOnFdQwRCKBnUEOcN63RWtYVK1Mfh+FYdg1202p1jjWA0OX1C2uAqkeWaGdLo5JaTTvbGJsxgihOjCOyCwB2nl+EIdersWhdGBOgaRrctA33/bl1dS8ZyEr7HsEENPWq1FVvxBiTefnEw5cpIGU56Y83+/1hMT1t8tlwGIXBhOir+bLOYX3x8mbgMaXS9+4va11tDj0A9949/oFG8avX337+9N6bV197eoe37rN4nf/4Z+8DVE7P06F/adHyUnai2twe33zvwQ+v3ki9ztW5WpXyxstvbl981dGXGVysby/7u2vlKhmsLki5cfvz3R/+yT9/69Uvbm2MzxZSssjbDZat+dW/+Ff++b/+x6+/cvWzH3+S1povpkMbJPv7T37ySS+A+VHz7OPswi9+af8amy7a8pMf7u1feOmNr373uz+s9JnH443xteefPt2Jt2anP7h+5cuVaA+Pvu+bdZk3PLzAYvjxpx9FQ75okmBz/90HP1vvjTLJpr4LyKEU/KVvvTKfgbqM9y6orctX81lx593HUchWi7vHp487Ke59/Ce74yt8Vzo6+6Vv/fL7PzxmZFOsuJvhHr8ybC5P7/3JrVuvOAk3LtJ//wd/0Fj75pde+96vfyCtWa7yk9NTRLCP6GpVLHO1tnGx0bM4PL+ycW3/0sWAXZhXkXT7fXCvG9/65//styNobl+8Vprq6dFRd6j6o00N/ZWqS6iz/c8VdcWnnzB/299n1VR++9d+6Q/v/RufhYZzGugBsxlZv3ghunoF7u+RQX+tn25BusuoJmoDQ+iQQrjFhCAQIuerznMkR7ikPCKgK7uDwbWrNv8EL/qeLTkbruQjEgZK7HqUEDcM9A2WrRo1AxAxQlr5mOLA83oreZLRixofGjOldNiUTMihtigKegCYJO20iDChFIqulbhfGAlEkTLeUrJSoqA4y/zUYmjaBaN+U4u2qntx5HleVZcYc858iJyUsq5L55zneRBCAIAxhhJwfopu3t56/uTQ82jQm3YN4YHt2p61HcRKSmkNojSVonKwfD5F65swCvtNt/ID0JY65qI8K73NXcQkxoVTxioOUSQlUU4ikEMbMOQQhh6WGnbOEmQoC9pSHIZJD+vKOV21TX+UOAMIItBBCChSldJaJ0nmnEMOYUpiRrRWjFFgVKe6AESyaTjzrYeBUn7GZ6u6U3Vp5cbe3qo9lIyEY9CSR5+dzB4dnHVuyOzI6qpsy5DEfhjNFksn4HBtrZf2hxtsc5xGPqMMIezqtikWwupxByfn0+OzoxOsUb4Uq+nKUbp3eV8zMjvRPo8oFcN+enpcYTx8/Ows7mlqN2dzRAnS4gVERmsdx2k+523zLGD4s/fv7e1/9e7Df9e1yywd/sEH37m08XqFt7K9Vyv3JNyqDj5BY32tFHfH+EsunJNgFqdJHG0JYbqWtXSBpSMKebjhJFjhqLLWxITWZ61IEEqNbhhqrAFSSWgKiaZQJXSJA42hm/l01QJQsuia7SAOEOwPWiGIWnKxIpYrAU0vTQGmCBEDnOczn+Ha2MojY4AsABBCCBGAGBLi+ZDMTWENdBZba60yVkrnBAI6WuPtauUAWFoMKItRVkzy40qizvPo+koJBBFEFuKWsNoBSFBfitrihcdqazTBJvBTp72ieD5KX1GmVNpYheKkEUpAsHQg5ngDU5vn70sA+skrXRsrt1LK9zgADvu+D1HDuFsuZ0EQABuvljVAkno8YJEWRHSkl+wJWXZiComg1DPaUdRD2q/qkvaNg9xDPrZGqBPAsYUOI7+rNaLQwRZhqIUwtjEaIOIBu+4FtBEvIHPEb6TiQRBp4UOSM+KJlqqGa98xjpBFWhnfD62BAAAEnVFaS910Kkni0p05Py6qFQUE0UQwgSyB3npITV3VnhdqqapSRJHXNDWEOOZpKyVmOExSp0TbVIxC5BxEplivgJHVAAEAAElEQVQu4jgFwjmFIMVaGeYDQCD3uAVOSk0IUw4ADKO1MRjHYF4LWeNeZEWDlQbQNquFb4lVp6KpPJNYrZ06NojWJezYqUVauAJ6tq6DTsW1VJBhbQBkpwxzYHseiKU5B0abDmgIjfIoNgYfEhZaYRhlPnMSCalUk1eU4SwbSCln02IwXF82566qEp9BAh8+eba9dmEt2jgv5w00XXcc9vorHuKtCqGmWxmUfkgzkrDs8fMf9nptfzPe2jgvzi0ZrsBKf/bTp5ftxtaF+PgEDgb+48VH21t7rshgPTksv7t5hbMMnX3WOsc3Xn1ljWQlPEUovrE9XqzWtVns7MUrUI2u3zs+R5eu/IU3vvTXP/zw/WfnD6+OVpNnx9/4O382F8c3dl8bReN36jvrG3uHh9MvfX57Npvdvhm/88cHE8XJJTB+jalpy8QZo4tXXv65BwffpRvHAzT6wudemh9+kpWXk+seY1vV9Llt4FhvbMajB/fOnp0ePrv7o6uv3SI42oretqWi8JPk6pWjyfmlC3oQOxCtmUW/W94JqBryi7OD4+dPn22lLyE7z3qKeVfv3H04Hl/UkNrJ2p/5lf/k7vsfvjgsskH06KQZ9qnwzt9/+qC/hXqj8XR+juEAu+AXvvoVM+839sdRf/jTd3/m+T2h5PIsj6MgCvzV6Wc7r7z56itfwAhIwpanZd00ZXmynu7/4Ge/XzWTq9evb6yPDp4dnxw+ubS7SwasonlQ7t/e7in3KCbX1ML3LqO66XsBGg7M5ogPCNGd0oq+vHWrnwZbm2tbO9X62jAKhmHEIXKMhP89wWrrKQiBAwg5hOoOrXCdgrK0SEccZcMBfu3W0SdL3gza1TOATmOwIyrJaBNn8bJ4l3pjVsfMC5yJjBYQMNEaBKo0U037jHNsoTD2ucWsN1pvxaLTP4TdbQu6wTg8PX9goO5le4t8pdoErQGjtrWKLFhp1DmAtYLAKiwNtC5LBsbauhYI8rZpICAWt4xT56CzGEKnlLbWAgCKIr9wxTs7shgFcU+VOWSc1QVCeKY6HPipAcqyOQ1M3QltyKC3QWk7n+k0i5pKitpjSGXJVkOeSjNEdl0rA12FvVrBuXM0YENpKy2X1lrjfKcQ5ZB7BnBHCXSgG/YCrRWE0DjkACUAAwIRsNZqgwAECFshKKVWtIiQtq7iLFWqCyIfAIAtAgASCmXNnakhX8mSBnzMemJ+UkiPlRg8O1uVjWgXvY3BMGJadDrykqvXrjVCMh7HcZJlaZIGyPP8IIRAQ6RbtTBAIk8lLHt+VEXRNsXt2elBURTD7bUWt4+P3vvwrt5Z38HOjrLh0YFZrpSFcm3bS0nw4/f+AOJuONhqD+hwsDWbn8wW7/XHqQ9hbvNaPf3os2d3Pnnyn/zd/82D+/dGZP3BR/deuf31cXw1Mv7kgb46fjllplDXaTwXtkX1JeOsws9E4zvjc9N58ZbwTevOFF45jxGJqQG11a5x0lY4Mo3vlGWm05GcY5FZYBokAfKswhBFBLYe9M57KEaIQWYT5KTxbQdaKy0UespoRGlKCCBMBAFCcE110BgjRNsqaQGgyCJEnDIAgEzzTphWQWiYdVggpxF2SHntMEBZGPuTatF2JWuEygshFLGVEcJYSRCixBONDHiGAU+ToWhC0UrOQ9mWXkKW0wpjFPErFI2Ad0aBb3TC/M60WFW70cAry2dYIwK3s36vbs+dM4G31mllVQIcYExLWXC2ocUSRiulne9HxhCrPQk4tBzhTpoz5qWtZE57wAVhRAiwiBaqPYyzPdEtMARWYtUiTobGaYuBswI4yBixxhDsSS0QwQgDFkipqsWCbG1HVRkhWvk8k2qitUXAia7xKEeGQgAskoxDgCDEwAINIdZWSq0wphh5qOjC3qBWZWiBkbIf8bI69kgEHDBa8myoVI4wVkZ7HqeUqlYCCz3sYZ/NzyZGa6+XGOc8j8my9cOkmpVp3FsuFxqqMI3wqOeAgcpFkEJEEePCZ2B9ZLlBVaNFZy6uh08bEPqgaJB1nHvl0joVW9v53NMikNiVaqq1BMS1ZcQiWuo7kKNOYEYRRwPgOoyc5/uR76/qDqEmiDS3byAFIKgR6JyVBKYMhrpTVgEv8DwOlTIExYgBQQkGcSfb0HmxF9fOMkY8oObzUxjYMOvRJZg1y/7tW8nOS0p4qpjJNrBe89HHHyM5eP2VLwqnAtd75SUZD9IHL967/cal2xffePL4/nps66JG2rdomvaSjx7fj3q927e/2IGlHB9ev3mjtg7qfaXOAQjoMM34K/3B1ScHPyzdQZ1vrY9ek89e6NV9mx828/b0ZLaxvyUee0W2Fu6Qn376nc+//fKjew9f/uatf/XOTzeG0V6yl4Lol77x+ZNmcufuh69eu/3OHx7+qW//fUsf3L59c2N+Y57Xhy9mzx8//tKb9N3vv992wetvX11MWC+4tMynl/bxb/7OPx699LU0Y2MUBLY6B4d4czGZzi5s3EBn43eff//m7bfNs0tVcWLCCrltbtr1dLvf48ulcCA4eHEWRZevXv/KdDovFf1H//Ifjof+YLT/9OGEkuLyV2+uRb5248FgYzJtrl5Mfu97/93ubsfQ2R9/585grXc8O1rb2X367ABjOl4fQeuktDc2vLffvBF4/bqxSW/t+On7Drgrl3bP8zVQ4i++9nZHYGHj+YvTzegST9Lp+cGNr9/Adn6rv5Ul16WMw1CgYB2vGl2XphRv7b99ay/55NN/PxiOrmR+/2LFwS4PmR9ssGAEoDGKQLjl+UsOrHDaaKuVdgA5yKFwRb0szs42r2CE18IMdxTF+nI5eU97EtKoXD1zYpgMgtl0RcnXWlNS0lksavEEIRIGfUGOKymEuITciRIbhPRZuITESQGlgI40QfJUdF4jqjjoAUirYgpg4seFK32tjggJGeQMBB7GmHaYylKG3ONCiCzLtOyWy2UY+gAADACnuK6EczAMIoqw06opq17mt6Un9bzfX8+XM8+nViVdU4dBBEDrYOX5FKuBU5HVpdFdEj4Jua8wADaqWpX2egpJaee0GxloMC8B6IAFPotaJRF2EFkrAwp2EVUIVAp02nAnEhIYo830aNbL0l6vB6xe5kpIQ6SUHmVAKkYI8zyAsRDCC3xrgNYdsA5YZ4Hxg8BqAwyohY4Rch1qVlWYBZIC4rF7Bw9LYkuAWx00dWcQSXsoi6VzyzRJLl7eI5wcHJ/sX1vv9XpSdpRpAiNEOoRyC51WMIzXI1+qbrmdoUfPZjVok/3tCMKubNWyhB1lppo+/8CprvSHx8enfoSzUXTwWP34R4HH435/eHLybP/S8N7zO3Xdrg23tcPSomqB18e/+P33/8Pu7qsaLhT+5Pd++2eet/b6yztan8RZcDR7UTQxdiwarLv2sqgfWXgk5bYURKMJpAnsxhBChKFresa0EOcOAtF50AwRrfPq2Vp2w7nUkQKRBii2LA8xc4hhQv3WdRhz7CHW0/02pM4RqA0R0LMAWO08YT2/44w76kmKI4rXKfEwFpKv8so4aVulLYIGAQqstkhr6yisrWg7BTSGDgBrqNMAWtDJ1sN5tcwcS3n8wsxx5JNpjgNUlJWUshcPrXZCqCxIKMDT+QEnnFKqzYIwE8W9xVxQH2HI6+6YIM8jlxTwVVsy27OwnU3nSZJRjJTFUkqtnB9GslN+aIpyloRZJ1pgaVtAn204vcI4x5R00hBKEEHKNCxoDDhTlhCPAYC6bpWEUdtYpgecbDrdqs5po7Cl2HkUR85JByT2SoioA9C6GGNICLNWQ9xhb1o0VRSvG0ud9T3ud41lXiBqCnETpQoiTSg6P60xYEkS16bwGWcR7bouisOqqYfDdaOtjfHKNXwUWg6WbdVPuTZ6Bpu+wZwTpwUAjlDkgILQYcJa0RJOoUNN2wJgMQIk8RnA5SIfjMddVWGMIaRd3eCQIMY72SGEsIcpD4BxYJAR6KSRWmhedTTkwljYWeDcqll6vt8JLTrrEVo2q0a2EsmqW1V2QeyWQTODi6KRSmTQhJQqi1e+XxuBncwgBE7XSHOiswDRJDNKz2TXZsHa+fl5f1gAODMOx/6lpqnieGBsJ0UlVR0npO2OMKKcEuQcgSCO4040mEA/oA7wIi9aHiXBFRCODVhNTs9X0/DO+97F4TVgKx7UlElTksH4SjAYeeM/fP2lry7PXuxfZYePmtiLKFmkcHda5UtuBlscuKnMa9nw1VFwee2Lj45+xOhxFLdCIYqmJx9/wJBeHoGAOp295xj57R/8TlUv48QfuTjWTw6mH9DZe/VSca4f5u9/7Vd/rV56B3f+yd/5L/7z3/0Xv/Xqy+s3b3jmWfTFG3/zB9/9/n/81/5eCZ2Q7PRR87M/uH/hRvbp3fv/2d//f/7BH/1Wc/ZLS/ODZ/fd5OzJjau6XL65zIevXf9b3/65N7774XfvzCe0nFzf2loeYGgd7vkPJj/43Ff+bNfs3D/4d8RbXb/4P+7aRa3vXBv+aiWefHrvo166Nd7cvHrt1oNnh9Nm3i4PX7l2tc3V8+cvluXDvcvMkNGiWj+48523v/ymEZc+/uCZselrb33h3XfvKVrsbm8fnPTvPHjUH/YgxItl3k9Sa5oLty/TaKna5vLoc6A1W+Ost3W1bi4dPv33X/nmSx/efVJBfe/uj6gp1tJNi+HrO+GaHzx8Udgd8sHBO1cuvVo3ciBf9RiaHhwT6H7+i18RxfPbr15LYtwzyTC7Cl0fBOcooJBmDitjK4EeSWIw7GubApBYCByQzjSNKsqTZiPNUo+2teuHHAPEeikbbdHmbLlQlL4u2BnzRsDauvmDYbTRSCGbTY9eJtTUuZZqI4oxIR7QGSHWD1WjWmORliUjPc5eMzpHxiBSQKoxCppWIEM9nHQsRfEp4E1bosa4kFYEUlP3fdxZKz2fnZ4dEoI2N9eF7IQQXdty7vm+r5Rp27ZtW4RQmqYQ0rYNsp6p2gNKdylphXk2WBvJmlDMtXBBFBqnu4YiRzEQ2Ol66UchbTvfo54DyOq+BYWPagggccgB6AxhKJZSQUg0aKWeWdIgQoCOMUwUFIaVTRMF1F9fi7RonIGLxSpMBr1BSjDA0CHZttABAACQCiAIMcYMiFLEUWi0ptxzDjrtVCMtIQCSajULWTBbYY2bufh0UutqO2iyhobdCFqNWYD9NCE6iiKwBpB3enaOqe+xuCzaIGQYQRYsjWowAJT6nEOjkWhhuQRSEY16W1tJ2osJM8dHz4oU1nm9WJK2wZj2z1fd1qXtefns6Lx9cr9ynljf6BsUKQmfPIWTs+W1qxfTUMnuaUBh2Z370lPoZDB68/D5yex0rvFocKF/JH6gQXF697ydE7JTT9pHbw1vCj2HzgvoDvMkIgJIz+Jc+EnbLAhS3FJqEwnSxpUtkQMXCooWZqppRxUNYFA71aI21851JoRxEkbMCeQBR7OOjRhDrZPUqljI0MGOUAS8NUnrEWAssYBDgAB01pZaI9160DXOOaWM1loy4THKiecA6VyjoDRAWmOgdk5r6yRytnEVqEGAPQeZMloXhasbz/eXi5zYgMAOQlpVCz/A3ANtPg/pDQJxEqJOTDxC69KqLvFZCAgUsnF2nQWJMEemCyMSQPaMSQ7kdqOWUW/alq3p9ixMvWSlmwAjAWEd8qxpasKl1UZrF3iDrsNt22RhyCiTrcUwcqbXWRvhVAmvKXOP0U6fOyJpFHRVhs2IOEioVHhp4VOILWVe20qPxdoKgsK6EdyzStgwgU2OfbIJuW1qFfekltyiyugQM+0HHMBOK9hWOolGbVcA0inRRoTJVnke6+qGUgyQrZvcAyWGNuCemhWDMMUKB1XEUKDlilKWF0vGuXGKUlgVlTHOOuXzwEjTGDFcW2vmsxYYTwHGwzwvEKSRH9X5gnq0PxwoKZiClVWkx+gg1MYRhpAyqNUNbgNh4G7mzhvhDFhVjeuyKCraVtmpNdgSktdLgc7OqqMwGij3pJNcIbPIZ5RGjVqFadjILas6BlNsMcHaSMfgADmqzMyKnpY+Q57TEFqqu4D7qTNadCdZFnmemUxmmADKYOB5xbK0yo0u7C/ni1WpB71tbYCXhgbLReGtXwBVnW9fHKUjPllM1rZj9MFzHLxfuzRNVda/uKzV+sXs2rU3n88+uLj/zc3dm/k0W63anUtu3Bv/8J0/MsM2M6wHN7uJ7UgFuzA/Lu8vP/HUdKphZIhU9bm4D+z58hwj0v/x/edf+bmwrhbHHx9848vffPfxh8vy/PVXf+WDn2Qjendh+nvX9wJfBZ/2btH0377/nf/Z3/qffvnym81bp6++/mbt5m9/o/eTP/7wjStv7g/6D5vV4fNmNjn7K3/5K58+/uH/4f/8d1pxvmjP8Q55bfMrv/uvf/8Lt9/KD9sfPPudy2/evPGlNx9PGw8Ey4MJ67tTNJbdrRsXxraoL1/fHtrNP3n3x/FOFke7Lz79Dwjn1156++mje6eLn926fRuaEeE1D6t7j7/PU/RaFv30nU9evCjTDf/arU0JRS6TSakPnoOvfMPLi+elqr76lV8+ODiwnfzy517P1fI7v/vdX/z2t08mBx99eOf65WuzybHvoWo631/75Xz+RLFzyq7u9L5VSSeqZm98+fuf3vn0yUO1apbTKu4lvd1L588Op9x/Cae9uHv++JOLty86A4w/BKNHenFx3lY3X979kx9/AF0ZrW/0e3tJGyLvESfc4oGQxpjDgHoQbAE9CAS20DjdEioIobLDTeGLOYv8B5ZOpLzEY7hSzyDeGG6b9jKutN/fvl7M7ic4cHIOuObmQtGeen4KXFE0hpmKp4rIdaeHFnVGeYg3GvjF7KozgReuAJ/WXW2lD6AMvStn0zNMcBhcbPVJp1oOSl35zOv5WDnY+CpmKMOUK9gao1eLPMkyyvB8ce55jFFEaNQ2QikDASGEUMqt1RjjMm8sfejARtJPFounsupt7Izz1RnmHoSB7pjRnTILCB1lCbC+8bIi72KcI08YaZyRSKWjEV2tfAgyQxJgWuhmhE2RbJzFzMOllNZQaQVyK0idAxy4CABRVg3HBDpb1ktGLUJdVTaEEQ4AMNIyTmTTQkqYzywwWmljDEAIOAsAsBZgh7W0PPaFWNR1m67Hy2IhQnPQnsqNER9RkUgIYYLGJNrIAgLtpCRuetacTwtt1dbOrpXYauenCQK2WM11Yyn2PN9CJjsxgw4xzlSi1qOeB/2Y+xDpLPA6C+ar8qMPf8cQH9PQJvX7jz9wziHXJ+Fo1KsIiF88XhKKpSrjmHT19OAJhGEtFuMrFz7/wUc/ODlvv/H2ZVPPjl98f2PoU83f/aPvBhFey66cPp9MFAZQFLv30PKaxzkLcmcCIBOPI4C9jKlpASShlhsgOyAyLFQIZsYHhPSjgGhV6k553iYw3AA50PGsfVrQlQFjyjAHvm9cKE8AWk8bRYCtMLbM5xoADud+F5oBdq5tp23nrPadhZhKqecIcGwccVAoKYWwnDrmkGNj6ClLBWWFa0sgSwg0Yg4TbmN3OgXYTtQ8grBHdNWcLpsin88iLyZYN00BHCU4gTYRnYv8F9bGdcU4QxAia3U6QF6Ym9XnPD7XXQ28R8jMGdh3agZtxLhlREBHu+VAdl2/5xNWV925bjaCzHdGeiHupMKcWtNiKq2JGPWzlGrVLeuGo55TZDmrg2FCCO7aGfcFAmHEB0ZBaHxKS8yF0hXhKRChahHELUJSGsash6i2TjmgRausxMgS02nCPG0UdAEAohMVZrUDHYsIpmFVQGB90Zn4Qk+e5xZ2FACgnKxVlsbns8lwOJR109Wl8fss5HVrq9qMt1Bb19Iofy2SJ0gY7ZwjFGkNuO9r4Rj1OzTHBMla8DgCxniMVhjWqzYM/XJ5NhwOAdRFs4jjGPeyajpJaYaMI0EoIaSR15YNgpBz7nUKeBgxRBcNAFB4MHQcyM60p64jtbGO55JUTc2VDBARqwK1qujcVOPWZxk1FOIG4iWFA58JZE3sh1Z4CgYIGIwao1bIYI8hqU+yHtEKQRcAsAoD6zO3WEw5573eYHY+ba1b612QyjufVIT0d0eR1K4EFXaqySfheEejINpY8uxBvbzlebdPiz/WAvX4y6fTzy5e+nlrzMbmaOvSV2CkR2YjcpvHB27t8qZF04DDcvkMjT/zhiNzxvuI7W1s5fXjB08OFpV86wtfeffu6unDZz/383uM4e5QA+2/9coXvvOHv/u1N165PL5wque7X7laEPzBi/p/9b/+T8+ffPryrav9G2tHT2dfvPWn7332CQ4/bbDevzz4+Z9fe3F6trv7cwePTjfWg2rSvnbhgoB2idLps48ivrz9C59Tsn/z9p++sP5r//if/dMvfmHr6s6bv/HvfvCtP//5zfHVBx8/i3gBdfO9f/tvtjY2B6Px9VtXowAvJ2WYNs+PPm1Qd9u7/mLydGPtsQ3k+ZFJGd0Z3qpPq/n0o7XxBrK0qfONePDZpx+HnMa95Gc/wXZwtD+Cb732rU8/OtxaY3DV3f/xTzcu9qq6XS7txtaeFWuT4w9eenl8enTyD/6r//Lzr7/aFOVHH9z54hffODterPJqe4O/ffuaZwcFrBThKIjyFub5SbE8u/tgev+z9405Z9iatrrwyq2yPJHoxVvf/p/Us3I5/eT27Ve33PZ5c78Z7K7KK4xMs/Gwql1Ts3phb2xsR/64z4zUb1Ov0GgGFNYdUyAiVLrow4beNBpIB4glQNqmqTohK9NsRtRxf5VjbkMaYao8I2x0fRMPGGuW3uHb7fNFUxwGJKvx3NGBkX5vJAtLVHmJAtXIQylFGt3weZy3j1oz8QYdgsC5udSKop6BMeHwfHXiJQAicL6YDUaZUQT4ZSckIdb3pWqpbBHh5yw4oN1lSsloNNLWAgCCIKiqgjNmHQQABX7Qtm3bCkLIf/9haTdjBLV6BcVlB2dJ354+9+NhYCUBUNCwU4aIzoZ+gFDDwkW+THzuEegDaDtZJ9FYOb1aqk4wFswMPkAMQBkAvQaVk8JGrKawZp5EEEGVQEgq2Uq9IsSLvAAhZq0Vova9QAvJICHWWuQAIQT7gVgtEYIe8+q68niEIAQAY06brnEOImlF2YRDb5qfcT5YrFZs1FUwNXwtJ6dsehMFAQkZ86hJlojU3UlTnkUniwe9YS+KgrqehkHc7/fr6ryql60xkYetdpNzwfgQQi9NvCShFGschgZS4GGM9XhAxaquzk6vjb54pCeWtK1nLu3sydqr885PVuVqClAx6o3Kqq0q61pXnU8O7PnLb7y9vUXvPvz9s8UBsJcm5z8Ws1NcXQtGJSSp7lYvJvN7nzwNeLxyd4Sdrn+W7u8vL+7diOiuNNKClpEMuFFLZpoIChJbM9kWxDs0AZYuaaGIQD3iXlcoARuvN0cWx83aOZ/BLvRNErYpVEsDC+UHEvUWZmW5C7BHpQdgVHmGeJI4oSoNAMlXssgrB1ecswgTBCFSOvL8NPI61TTtElhtlNTaHfk+Zx4kxmrkOk07zAAlmOd6EY8yVTZ0CUQtzmcSsHWX27aaqrJmjkLier2sWCx94rhvtaRpGOerKfdN1XRZvOfx8PzsRRx+EvppUy+58rB+ORnwov6ZrS/4NC3ztp/52tR+QDEUSimrAGaHnFFjXF49I9Rva8pISoOVqE86gcO0R6HrOi2NgMaEEdeSIAsQ0KEfmw5xzlu3AGgZ+j0hab5ANmWBH2LkZIfbhaWcaUOpB9q6TOJEaklJpFoRkOx8fjAYjWh6vMptEPCmGPbTscTPF/PCYz1IbH+EdH3S1ILQtYAtZC0YZKbV2GKKKIDAg9gPgIFV19qUJqoWuia+7mHtedxWTZOkmXbCWisa5SyxBmMMAXBaSi9IDj/7bGdz3U+SbjqbzfPti5fL+dSjFGEntQRWIUo6AII4I/1Bly8g9xEEhDOFNO2EI1ou5lrbsKhFhnmuz5bnbmEgtUrporA0GgK4CINevTKFeKFQmVeqn2wDAHw2kqUHQOFnNbRCS8di1JmlcacOMM65B5mXINECH9+CgMBIVt0MYI7NGCpfls6LWFchZCnFTAqRhOGq6xDg1aoOo3GQRAeTZ9uDvbbNOtCDPvHQ7nx2PrqwUxRJL9u8U961aBD3toCgTvCP753s7d8oz0+KxfHG9q2wf0GhCGO4OLa7F/6CBfOiZ2OT28gezuDjY/D525dcfUQ43bnIcC+om97rt29srPfun5xt3Nq+eq1nVf9ilF2//NL/6x/91//H/8v/6fhIrO+9btenSlavv/X2UXO2oifeID5dwI2Lv/LDT+Q6+jQY2hxWjX858GMjmkvbW4fHT77w8g5wrz8/fdGx5aXbV3PxfG8n+tJrf/P9x+eDC8E33v6lw3vHaBc6fPPDxz/99NHzNQ/HvVd1Te49P6FZfZp/j6mx62Ado2m3HI9fzY9eSDcZXHnrh++/Y1bd1kbRLNOQw/Vhb3rQDoLrr14fPzx+cfOGvXLpz/+bf/Pf/Po/+a/G2yOa7d19eNZfH9/s9+TZ4yvD/+GP3vvpq2/vLuBJDC//1o/+8Ftf/zqA/X/2r/71r/3any7r6t0ffRj7bGd3M9wcTaoH/YTzrscw+ezs9xaymp5uN8BcXbtZHelKV5s79OIovvPwyVvf+oWnD540z4//1N/99tnzww/vv3/j7a9ODvqXdnBtxwESs+MnCQGdWtbn7a31m/P7n6XXS6B91F2PvAH0ji05lXKEOw7MGXDcKqw0kqJpiqWzihOFaGCxH0SoFqTqVM/OQ7YzTYoY+c25IrttnPb88+T88XsIrmgTGnq6mu5p1WL/kcU+ZSnzfGlWxt4FYM+JNSGVVGexPzZSQQA1e2wcw3FXN6FzFHmwk1y5lT1JAV5BRmQeatPGySGFvlhcQFQjhFbLHDMSBEEnWqWM0Q1nISGYYpZ3hXMu7fXrplwuFsPh1mrBWtnSYYntJiMe8B6F7PVlM4MuiP1B3ZZaTGgcKiUwiIbeedEtHNiTwPph72xugqwTSgcwhmhorCZYOZRrMtFEda1J3cgJbgQxWiAreYCp8x0MiWsJYdbQ45PJ1voasM5KFfgBIRIKLZRSAMAgGwClupXkJMIYOC6FAqjjHkKreROQjHiK5i2rfZXaDnhKSOvnLfME2rD9kshutD6q9SzGwYvTJUDws6N3zk/r9WovzcLt3cwLcFEGAFBlnZHqZFFOpxNGaRJYjw0i5qlABkmGIG872/N63LOyq2gvSjdkNpYb19aX+cq0F8S4uPPRRzDowv7InQIhz62VRVXxXts0msB4OJKz6qNlQU2jYr3NWFitugI2deqvHtUXLk0zOD6d1E+PPrp48WZ5VHaldydbBvzyZpq1sMBhBX2vRdQomM7TEI1qeFbKVuOngR1jVINW8CAjQXU2e54G14f8hq0WRLbQCYoFQM4fWGnnq2neS0ZdlXeMj4M4BMyn0nh1DRXEA2o97hwFC2O9JAsFBkVVAqBIg5HlyFOcNQghilgoUcizqdDnURHKRmsLLQHEw0lsndSdAEaNu2hVPUQoBoBbuyzny+WiPNLvxxb5NPWMl9AYNNbH1FkBiQzieLY6Go/3RYMwIMCh89mLJMFWJcJYL+xb0QOumU8eIRJ4nnNoSVhUNHNIqlH/4mR6Rrn14j0fT5arzg8vER6fzx/vbFFTS5vH1hItlszhrnY+Mmmvq6rGCM6ZQQhijIvqpNfrQeu0QpwNKtFBS6AlVmkbyGWTp1G/WHZhwuMIlUvHrYNKeDhsSQ04LqrnUX/A47CrQqBXGDrmVyZoq+dhlqRqgPRsSdh6Vazqcrb2ylp+0gu6pkE1CXUfkkIvLKK+H1LE2qXSGOOBB1oZINB4NZGoOD7pbYwRp8WqophhA6XuvJAyb61QHcFYtYpZX3oJm8sau3R9TbfKg0GXK2rD+Mol/Wwa7A5txDFEGspadF6IueUWWNC0tWt5PObpuT2oK4eDGh6dnSPsuYHJZ0VIObYzBkCuF4VSZWdRhHC7NoqwNY0lzGEVBwqRFQcMYq8lsnO1xSok/a4yvkdW9XLILjJfTRc/CgIQ4z3Pwl4vqE2U14vhRkiJXi1PojAAzjDsT1QLg1KDZRhuYVDgYjFGyrQiJbWKBMwGOgizfTKf/uzFoz+BktDYuzpKm262avCVdJ+1z8+fzkfrLxE5QLbzyYmrIEfbm9FOiw6Unp+ezMJols89swRfeev1t7508fGDZagfX7n6kgejyq/41SEML6KTo+31Xb//VnNwFG9tzJj64i/9LWq5b+4q82LZ+Jv9a4+efz9L/cQGnk/7tmrOfjgIJ8nWLmr20hBfvv25zz76I5JOVmS4s9dng4352ZN6Nr3xxlcI4Mvnz/Y3wpOzR+NUlBtxtxKr8uEpeIRX/bfXNzdAmfjXvvO7v0XjDnN2YecLFN+u5GPPp3l+YHRKMDxq7r79ha8/+niiFmevXHmDg2Fj3hc6L8kbekMlJF48LYax9JH9p//y973+9bWbnk9ZUUWlWEQjciDCgO3fP7kn6QR7Vbk0nlr7xts3H3348IO77//yr3zj67/4Z/7u3/rbGNmb1y9upETUNNgYBMF6I3EH50WTDsJLve3FBx+4AzFfwBNZdXsXbrw3nWeXd7a2wneO7n3rr//Fyu6/99n9ly6+USz4/u7u8WRuiDhYfqbaWvr1KVotXgjEvt/z/EzOcbiBMpZ3JZXrRHkGLK1aQyYSpG7gJMBBcWp96xt0THyiz1F8AZS6EQS25dzLNgt0AhvWNPNl59J+s7YfH/wk83evR/Zo8TA08xPjFcLGxKxJMx+l60aRhXzs89tCg36qFT5VtcD+Xl3Xgd9SMVImoj5DqNRNQzgw7gTBAcIznfoTLUa4z0EPcVG3p4nndXRdGuiFFMJyPjsYDdaUyCAYaD11qGJ6Q0vAosNpeebz/WBI80pJs+j3QugcD+ji/DQZrE+Kz6hdA6ir1ZkGMs44YqCtK2M0cH1CdzQqCOkIwAn3It8XbMaME2rOuA+sp80QtBbZPPHaRk4IIZ4Xn86KdNiva0shwHIFQ9rWjXN4f7sn5IxyynzYGUW6ThpgoyQGlDR5DjAKgtgaI2oIMWbchwArlXuBY0RB3a3CvquqYL6CAZsk/nxMlkoZ2SwXp7vr+/NaWjPuhJtPG8Kb2eQw9rNyeeDE2vbgWgdjHHd59YL7+vzpi2W+WC2h71+yY+hnZ6hrVbeZLFHK0ZCzgdUcoc4PH6+W6xduEzNtlMj02ovHT8uu8tcHO6j/7ORFHPt2vmc1Gg3dbOW6UjDczo8AGBz44NqwHx8uf+C54WD5LeRt3Lv/42/cuOx57NGnz6bLRdpbO5uvum4ZePbo8MGFHdKI3SGnDmJoxoy1iGSIHRthhV7pLtRyKNyIBwoDEJu+q9OYxJRixZrWWZzgujnGhgpgjYu7zhAaLAuRZUCCLtcdIB4yDKmAcQtJTUBEzLoJhSUdxNJH3MIISORAK+2Cl3QhYxaZzBrj+pohg5ahzKwQABoKnQGNNhogAZBoZTtXvtWbSeApOe0mdn5wAkSTrPZgHGukta0L9YJqmPmjfjDUNarKWeQPKaatnRKuDCBxkOmWM09oJTD0rRGcBLJNA5ZSOC669xhpPR9a5Z8ctsAN4pAaBY6P/F7vKmO5BHcGg56orZKn3LOmzXx/zblQgylERojYWhKELoiz6ewg8kOP7QPtNWrS6wdtY7TCcYTiFFEG20Yxmvo+g7DRDq1WK58xq7QxDgJbFMXecI8TJVwxm8JeP8DSdnUAWWHEMEyOtNdvz6nP13TZNcvZcGfN1jbruSYv0qAHADMWewHrXEuhNc4hyDIvsFrXbQchTLLh9HwlQ8yGUTmbMaPTtLc8PeehbyHQXVOVeZ/4xojRer/TnRM6jHwMZH14Zi5tBMqPlSOLTm+OAA8oAh00tGiT7TUwrzoOwbJAjDKzTpACi1TUK6jZsnkMQaztpMkd9VQtJyh0i0prh7UrDcjrAjFHgiRwwBLqlZWzCmJHlWUYy9APZAODoFdXS4yYUV7cuz0rTuIUs+CCdk7BSBNVCh66BwhooHlnYAe1RBJipEyzBy4JlwDQV62zfu6os8Dg2IRq9XB5Kdy4mkSBen5esgtx9vLhs39RdfLZR+/tLyf/8V/5e08fPu7amloHZZlkG2HPaaCGW4NiKRHvQgom5xX0OuCut+7jqJ+9+bXbk5lp1fjNr6YyT1A4tO1ic7SxnCzSndEwCNOe92kpKIYBorH/yfM7zRuvfPGP3v0DkonpyScp6vxV1dR5sHNBeX4nehezK/WcF12z0V89/eN/DgKdgWtrvFd5dTvLT48e3bjW5zBvSm9ydFaX52u7a6dH6fr48qPD9xFbu7S3c/rixbL1UMYb8SHql2xtTAGZzT7ZWxsdLhbX3vxCEFcbyej09NG17asP370Xh8nmq3sE0aI94+tflwgFC78P906Lx9wVUZl+/8XHX/4aB9Z++kHSC8NmOdsG8eSHn73857e0OesNB1Hvy8XZpbb9vtKzo3u9VjR/++/+ndzk/49/8F8CSm/duHRyfF4vRJrBK5fHnbV5ZbNkdP3qVQTCP/yDf9PVL25cGD6+79L1sS6K7d0dU1buhP7lb3xzNjt454PvETQlcD0bjx+ffIRSPUJZintkcO3Owye/9fv//I1X6Y0rfdHsntcv9ywhdY2QxBEVbqbqBVvFSFgWcaW9WkBM7p8t7sj85njtpcC3TdMQhpFrEnq1nBBLnotyWD4ujup/vDH+lXZxsb971NvbePROz6VHLt1WeUKFks2MBP0Xy+Mggg7xuqyS0JPuY1X5zBGjfpLwi8go66yyh8COLTDSP9eYAT1MUgHZiOgT1vos9OqwmnStZzd9L5T5mXMOm4hhn5gNKEOKc0eeJtma7vyqmjJfOst6g7ju5lYSUFT9XqIIIlFW19aPhmqpcM1wD0OkLSi90EDkzs4WHo8pZYj4Dj43MsC259jMI5mux1JLh5QFljKotfa5r0RLCHOICxCwoG7kEjG/qCvMWohtFMbT5clwsGmlEbaTtuUUGWsBpgRYhyByDjqlDLAeZYBAJQREDAALnXUWdF3HqaeUFkoLM19GdMUCQWUuz+vzJlf5hOD18aWi4Ywqh5/oTikJzk7U5trLJIy4rwlhDWgwoAcHD9bX4udH+f2DR22JCYqxP9FOuDYRk9AYLAfShUmDDY/YuVgxz0/X+lLACAagdZ2s0n46m056g0HXtYNkyIIbG1t36iL/7G6DAEwStJzMkYdB7iPv9GSqpFjrJ/v3HvzJ2ji8tfvSxZ21s2N5/Zaaigd5Z7SkSHmex4ykq2UNEWsETqP1tvLHoWc6gINrDkyREU7pdtU1+ix2Kuzj2nEtJfaIRsgZqxVi1NcNwXWzHsZOSSNsPctDnwcWgKpqe6PIqy1aQdunduSk1UAjIAh2QLPA+ASYiCkDrRW0s7EFREoChdPIWAuNRsBxbJmWkQMKMwuAslogwDDkWsLWrESzKhZ6Kwjq+plQZ2LZZMFaI5rTo5O99UGcbubLZQNAQE3lVkRHxLdCnhAq03Asah1FscQd9VrdBdABxE8MwBB5GEPCT2Q5CoOLqj3q7B3ibRFzS4tO04cs2MHBrCuiYnG9N9ZCzxndNcZi0nIaagMBJAgTpZFSljJWFp3T/U5oAA8djaCMRJc40AFcIpDoDhutAa+oB8s6ZyBquyYImNbKAQgBcNZEUWSNsRaJlitdUH9ImxZCqXWklY0CNNFl4DLIUFerEPodZK4GmtWt6pxogQVSGIaNpbhujSEqC1LddFVToZCwwK/rOsSY9HoWGD+gi4NTQGEv5B1wVVVS7TjCns/zrkN+RLATRvnEQ0ppbP2QueOi7vEYItrvV0D7psPWGoaZdKVoAsMspVYoDForTVc1sgy5v6pWgtE1bTwOcdMslpWifiQcPJmdGwAlYJR7aZjJpnKwK8sqS7aws2EwqIp5EO4pCTjVou046gmhotQG8IVHBqgl2i17GYEWz5smC2XRGYM8ZQJtuc82CSKBx5WoQd0wnC3NHRRWUuwb1Wes7GoB0+u0faCqZUEuX4lGU3v38iXI6z/1nff+7yFfc3rtg48+9r05oNO1tZtRBKIBOzw72Bxs5bIjPg8HmciV7npNWWCvSoLXdCdfHJ2dTMz1a6/URS9Nljoch0HW1A6B0MC1QS9FjRwsb0b9z3rp+g9/8Md7/Y0nD//dsOsn5uC4afa3vlycdkD6N67cfvfuO4NemsQX6NmchMf5OcqLZT99va1XpOl5XfDup4/G4eXiBeMZffj0j7v8xWuvfPl0TmF678LOFwh69XyOXnp5z0vI+fT4UhQ/+2Ttzd3dx88+CQOe7qw9eP5Iu84W1eEqOsPzXsSXh4tr+zekbbnPYv7GIF4ePFlsbl3SSJ6Wd6MIhcPhg/rjL+19A8f8d370W4Wc80JDp+hI3nz5Ri8xFLOQ3j5aKdc/mSw/ZfzNNAbbl15n3P/f/y//s9c///X9C5cfPfoscnR3fRT0xif5kQQ8TK7WdT3YIPc/ezftK529+eTscO/lr9WLBXd2qcsr+xfXLr905/D8+YuJtt6bL32+zb2Tp22ey1e2Lwi8lwT54cOfPvjZb6yH077/zZ982lr2736R32p6G0FqIwpIneEOYq+nI67WzrSBWL6RN6flDB89iNd6K6QXCzFh5TaFp76/X67mZfH0+ZPD6bnE02lyiTap0FnL4K6qV+SlPKr3lbk8v/uYLg8DAluX++tkfjrbil5aNI9cPQqjPjAj4LhTZaciZU5KKoHxIlEr1wA/Npx1XauWfqfUGlsLkdJqAgFKYZdy0C1L5sXWGoAEwoiFsHONxloZZfMZsFxoFfpEKuOcNaJDMGH9UWc6kZexBQFCZVkiBgcXU2lyaPlyrvx41LVNFDrjCoB05+aqSiFoICCu3Yh6lQQfIn0dB0tnkFGkqes0A0DVziEAMkSrTjZVW0OcAMwhckpr3VqfDwmKCtU6B30/YTyuqlJJR6CFlBPRdgaaMAoRpbprrVJ+hoyRbZtrhR2gGCaLonUwAAoFqbRhs3ACKqoq0AMgCZqzvMz63elkSlDq+wnh083dxGODcZ+vjfr5qgM6LPIqUpgJKeaHCsQsjtYGvSx1se986HPoRZTEA4V8WUmDZFA1LgIiDplu51iQBDGLOfTiXpQRBRISXFnfPZo3PNifHrdQqaW49+Tp4aC33pYyUgw7H3ITxjRAgCMeWfsX/wdffvLiOxcuvfbw4PnW+vY+333+4hFgmEG3MUzSaJB3jzfCW2WzyLJYK0npqYQvIw94CIuqMGLZNQSTjLAsAQ33S4QigAcaezCZCQwEG1l0GA2isi6EFQU6pXxowkw5h9u5oF7rONQd8WYdEq00EMZxipzFFHOGiaHGEacpMixylnAxxZZNtVNmGrcpApkgjUKFUw2wDiFkgHYQQ4Sdo1t057x9YWTVtJVzfF4AJYHAK5ovruxth2hQzv7/BOFnk25bYhjmrbjXzuFNnbtPn3TPzWECLmYQBoEARIIEY8myRUqmyyqX9cH6IpfL5fJfsL9YDkWXXCJlBhdJBBGBJAhiBoPJN9978unc/fabd155+XlUmhxFMbld3SDHd4eLwDvq10PqYuICja+lmUnd6HKfBhVCpkgO67oNs1KYul3HLAydt5BcAHOQZ8e8F8ounRFe4JqShGEbD68hCimlNIBX18ut8bYGrVSSkpRiYF0HkDEq5rYBRMZJzvsdpynAXZSa5aIfTJK2XiBPMz8xoICWWaUMdAhZjxDec4QQpZ5xFiPadZ3rfdmjYuyAhVKLPEflxmKgALqD7C0JWgA1JpREg6bhkCDe+9Fg35RlmEIMEYaYhTlvmyCi1WIVYY9CoLAjAUHaIu4oZLxqjeiG22PedlXZjnePrNFWySSItHXIAa0Vpb6iFACoehWMBj4HrZD0zrYBmDjhU2Kk8QAUAIC61VojYaBPkbJAKSlqIV9CuG+1M7IwuLNwM19eZoM9VaNOthfTV4NxJrX2XIJZ4KzyfVjV3e7OgeTGpwwoG/geAYqyqKrbNI15J5KYUg+19Za2mzB02I2WG+r7fjTy1nzJ/CEG2CiIIQ486qQOFVAcmsFF1ymJHCNhERfrxfpgL375vKlgk+CDwZ0Hkszy7XvH/bsfPXsu0JOicFW53Dt4+/OvfjqZuK3diUFjQLc2zS3xSBQPtHVG2eXtjBkieVDguW+8s5c/Pn5wQESwO1wWOKJE0JFFWPK6v1pMJ8Nd1fcIJNJt8N1zGt9/+VUzCu5m0aBTMj46pPGbH9ydzZdNld984623cE8fxu/v7A6m0zbzkK+SeTibzi+2YJ6z33x59VmoBQtm5eZl6BXC+l11fbQ7tNZWDX//W7/VX+j1QhQHFUJXaXhv9O4bqLxBH0wZPzx58nK0E97Ob+KRJgavzhdT8Xh7cD8L2d5hgNmmnPIBGtX8+VJcBDTu+WXl5nn0xm70qCxXD45/aX55u7i4/NrB8Q8/KzdU33tnC/AuBa+V6+fjQ9eKz6PRUTrcLkb3knjn7iN5eVP9//7F7zkH3nzj7R//5T+CVm+Nik21Xn/1eOeN32GusAKHg9Ht0tDBvcvLM70+y6xZbxb94mI8SSYp+/DNo+nJV6UO/DhatvWnrz5+5/Vvvyhfvvf178BRcD9J/+wP608/qRVL7rz+3vntiRM68fZfbZu3M4krpfQIjo/ZXmeMBn3iatj3K4i/mN8Wy+m9W/WzJF92uY+aLMKx7sV67r08/bjtvnryMzOdP3n4tveNR78AlgK111H6kEb++Fv+fIbydZ6kg+Vjs5380nT+BNj1gV8wy4l8pEC/6F0U9tXmwimZ5rNNu3L+booS3zQxI8bPKiMA7KHCXlr3fdDLzvciuI4DbvEgsHQg8QYAYgyCVNFQ9NAhlwGRWiMcapMktxawoGmr2vAIkHZtVOgRRhGUGgAa0AT6XidBSI4Wy2Uc7vSdzLItwTvOUymEMrGBLwMvA5A69qWFCbH7YcHrBhICgWuNa4xhzlKjjeehtg2ByRLPSrgWtt4smyhAHlxB7XetJYRi6vk+7rqGUJfEMdFKYQIhgZRS55zi3EiFIbISOIBEr51FSRojSJXmcRqvxr3lDDWMm7Yt+ttwY/zIuiHeTOVmgDiiyXIw2gbgkFDmRSrLR/O697Kw71cWyYhMqr4Kt8fvhA/8UA5GBUQ5xgGLHPFdPEHJOFZtNySMrautMAJGrq6vtrYzwKOeiyTJrm4XO3v7RTbIg4i3nfZ6Xhd5+kofnrL1m+vrg9vy5OBYV7faI8XWQbBovkgKxtfFX/+Nv6taDMzXwvC+T8/eOC4gYgF5FhOHNQF2J/BTa6jW1ELkQOQAARBIcAqJ8QHTIeFpQDCALmk2QZvXoYegtTFw2PEB0LquPBmpIAMCaomhBHeLHSX02Au51kBKIAIDHbC11pI7UitucZ3cbGNa+gHwWeRcYhDTSHi0WUMIANfWbPpOicZgSnDoELKICO0MtJ6HtUXKOGgcQNA051vxaDa9sLY+P90Q3zX9FdXHQTKgSSLbVuhyiGggI9DHW8O7m2aZFjnCjTK3tbBFnGmeAbmVJgmkmIt6uWx5a+NkHPqRsp6jQNuSUB3nWdddOIgwTIw8NuFnRm4FwRGEtqqXhMSKF1g/pKyrq7W1LompED0EGmOAMJSiLwYR83FZ1mk8bNq25wgT0GzYamm2xgOCadM0APRx5BnV58lOVa+ikFlrMcXI4VW5TvPEo7lBK0q3ezGTqpZ8gmnlTO5gGJu4Q02ioXWggWbgBUqJeqHzg1FfzXFkFAKesy3vnJPWQYSAtRoSG0Vh11cR8aXu8VxhHzrqcWcqKYdbO5B6quaMRcC4XnHmMYdp33Iaxs7hTV+N8hQIpI538qTgulnwzYgVjmCLEdo0rojyBjZQsmVPAmpFK0pg5NC4G94mKHzaKgaxDBO2blaA4ZvpVZgFALuABrxVHvaAaSRvRoOhTwmFQDRN5MUUjSCeAcuwHnoghdFT6mFgDh1YhSFFzic40GitXRX5aV35iS2UUxhwjxlC+75veimkVqH+ujTPrB4m7NG6fhrmTPIUelcsqC1L27H3weR1YKlUHRx71ffOh8HX3nk9fv7qR0nq7d759vG9d12IwsMerPc9qmSLuWi6bpUk2DT98f2dr66+Pm++6HbP+/HR3v63Pj/9o62JRmHc1l5oQ1uqbGdXYTuKQ1GVvV2PYTp7vhiEuih+jlrG2GbnPnfIUjc5v6gevf5OMRjNT7vhsLCOIyhLBC2/cnKLdXGuXxP6R9ftlwEKfHRwu3p6/739p9c3GFM/jG9XJzRKLq4asC7vPMheTD89zr65mz8QtFxuLl8f/eKXr354952inNWZnXzz9b/9L//gf2zB6e5kCOHZuk4Q/LnLVo+2FnV9xdSbu2RQ6mp6cTNMQcjKFeAiOdrMbxJS4SP7b/7sk1V18f5WkV0rgIql+NmD+4npHzhIFHts6Wg+d6uq+ezpj89ezC4urqED1lpgVZLSqt0EAdx/632BBjs7b3Z9I/k6slt/+kd/Gm8vJ5M7n3/y5OarF8Pt8Yfv/TIy6OlHs8vz9d6vTj5//GW76n7tzTsGzjy/13I1jF7//vdvrus/sNGVaejZq6eEyCKYjCfe7//BH6W//Z+9cTjQqHdICVU0/conG1jB0Abz5Yv55aeSY6KVmOcw2nG+6tWXonOvnn6yWm0Qtm++m76D7g/vuTijpofDYZQkpObRZuPG+wPGPJcP3vj627Nz4d305SU4HO5TA9DhRNhTZCWfQlfhxJ929SILdmynQnLRKC0Jue1Or2d1hra3Y05Q5yXU8txESa8vHE05oq3/eAwLAgMnkLbAAaScJK6HygZ5VDeNdEJKFUeBNQZDbLX1dcuCoAM8GgfT6c2kGDtRuYbzsLGoUs7f2pvU1bVBquarPM20kroZEg8KVTqx4yQMorkjoC7zwVgTv4sBxM43jnK99EMexbKvobUOmN4Zgy2j1vMwJtQTQsZJCCCFDvO6930faEWg1m0pwiKmlPV9Z61llCkhlQmJB5DRkFBCSd9XjvReFAR9tCDrtV81pvWgP9Rj5eE1bh8MDhfLmziJINobJFsKrar2mqGxunWqVn4usZ6No0R2aJgcSX8AdgYsUGHsEKEeyTzPQ1j5AXDGx8QRH0CrDRLOgJAVgLMSgXXfe55H4pgwFo8nHoTz5y8Pj7c2i7pt6qP97Ll+8u4378bhB89ffBcH5YNH+2W72LXvnb7c/K3f/o38YOuTH16lQ8zd6cF+jJw/u17svvV1BhO+8ebdUz8+K7I32v5stL1Tt9ibyL4PrJAQEezSIIDjcaqGZdPzqlunzhGRaGk1LS2BEPmddhYbTYkDXllrTAs/wAlxNvV4U+c487BHfAEgwDgkoCCgFuSqW/UUA+xhSwGAwmConRMGUbuqsWdB7/gGymSBOMZXcT8g3rZ2zCkBAIJOQSOs7oAz0kb12vXLo2p+wZyqOziErwdiN8tWt6cXKaPb44GzfF2p2M8xjqxdCs0RAR6JtdAmSK2zaY44n2O9E4aTRjwudgrXjT3qt+pjCMM4HNRL4ljUdqskHkmhadCC/lthcsn1WvOx4ASGUIPF+A7HtIAw8ihCpJfVEsEIGIxZ63usXhsj251dfHr6SUB2GR3wftHLbjI+YsTv2lVeBFLV1rokHNRdQxBCCGhrjFEWoiAIALCYlcyCTtwyHzE/kcJ4bCIElnDarMrw4BhroMwahYYaU/fcDz0XgNBLrPStDxFCUi7TGE+vFgfHD5enF+kwsc5BZbSVECMfoKrlOA+Ax4IMERbe3lwPi5E0kCCMfN9J5QJPSxMUQb2pEhiJLPUp8YYeaAWzBlooZQ0U8qAHPGybHlOEa0UglGWj+LTeBADXQrZcNiS0QrfQJhZnq+a0lmWU+RAG2AX1ehVHGCiDkc3jaLWsPRRpI+IkdgJAYIAhvBdJjJRaB6nfc45skxIaBbhurwiio2jUNVRVfeBPe7OtrKIeiUKCoYEUUWARQp7YNc3jwdg5Va0XfXCwdVNq6U/8THHuVt2NF6lbcQs1CGBbTILxTF1efblcTf/m3/4vdrbeWqz94ztvKicUXw6Hw4ur09FotD3c2azW4+3tLz79rMC48L89cOPdOP/iR384TH4x15mYrTQWfXuRkmiQ7S2bq5gETkJlm7bvXXRjcuyhb17cPg1CZ8M0RnevLz5+tPPgbvT66cuX0RZb9M9c3VEX1YupprvQdvePt+vR969eINhFbOudxeyzOHK3m7N1qdLsLSWzqpyP7xxKK7b2h8K8KMjYSbasvru3+4iO7q36mzC8LoLx2VrvfNC37iNE5L0DTCDYzPIvP3/x6K1A9nZcHHo6DWhz42uEK8/fWy5X1vuEVJcxfedOxBekf/nxRSC7d94cXS3ak6aYJCiOdV8N27DhavB8Cn/jr480erbpzvt2tJx9fHV5/vqbD6wWAEKlVZENt3aytk8aW/dgVVZokIRX04/2d8X24d6X8/53f/iHR/eO0tcnZSq/+ujz549ffP1bv3ByelOt5fHowXawk7Kk5hu2YNMfzyTzuRrdXn8JObl5pu6/PlHA/tn3Tz588L988qRBpDve3V8vHEsuUaQUHbICupYB+4Ewv3+5+Ajyrb0CYPypBu/IKtPd7TglId6lYe8x7OOjBC2L+O1uoBZkdcOxh3PcyWAR2OIqSA8WwL/miNs3r1bN4bvj1aaMgllB74nySn1Ckmof1rXZMER1Z20F8Vfm9vFyfqnXWoFdX2UVCRbnb43f2GW+UdMa8mArct2N10xN+osUWoRLZ5xoKIJMCx0gK3yuRWhth7ARfBtDJcEKuxHxX+/bVqnWsAS1vIfIYyEkDCiPwSG1cTn3jBktljfF+FA7aQ1Stqx4q/ScuKLrR9alDvRe0EKYqpZpo4lfYwZtLzj342C70We9bCyk1ql8zIG60Qr7+F0pamBDIQ0CDCNAoddXJTFCKiu1IJAiowyEEFgILUQEIWA9RhHEWvdNW2FClOnO7UZgUvkJSMO1XurY+GEygZlxbrz9WtXdaHRe8RulEuCyp5+dBNHNZLLz8rra2nmwqHWcxmzoY+v8OKMogKgNwz6g2vEQaB/0ndSShrQ0ymJUr6uUZjlLFzezFdUewD6iO5Pd+XqllKnbhvnB/JYo8NR5i0052t1/DRGmFdh1g+2tByevNodHb1alONj+5sHRoy9efH705uFsepLkg9tX/lYx9vf8IAqt66fwejs5HBQM6tSnXttIFo4brikcUzMzgGvQQapZPPAggx7ReEkmrusBotQSTAimiGReqoRpzZoFXodw5PvYmCJj2CkOhIabHhAAQgISBDWjGwKJp/dQqAgJKPah0871FGpiQtCFHS0NR1pCJygCft/WVje+hwB0yLVGSa6gc84KrrrSijZkUdl9efK8jJyv1DnFnapiL5qhlu8PxsAgZ3waRo6oVtU3oityn6AIWJ8xLfh5y6+I3bJwAtEMkdZhIxXKaNjjpfMIUtqIDIWdtKuyyoMggIgoBSGJKPqSwHtlO8XRTZpta04EbxzPuNYIEASp4r3WOgm9hnNgMQA2G6C2bCx/6DmcpMDaRci8Sq3DzKyXc9GjdPi2EcPNeslyqniTDiJrpdbSQQwhzrKkqlfCNYAMHa4I2fIoIEQawQBoVV9y14492IsGeY4h10lhpIgL2pEuJNISDzFPrjfIsxggz2LbCkcpjdPF4iZkfuBHZdtM28X2vWOtNMFk1bez5U2epgBpYyjxPEMgkEIh42GkrUEI+aOkGfgAUNTzBtq4NSyK2nVlCfIcQiED1+uWGFxzNEza27lWiZArmj7r6lxrouq7yq4lWLy6vSJMp0PSNHMMI8HRaBgRAta3YjIOrBajbLcu5WQ7N4JrSaIEdlURUB+AlcdwXwaEFcIug+CNq/Ix832L9teNhN6cMtqVx+lk43hHmU8p6KueImi1BNiB7Me0j4623njy5Pn9rdc7vh4Pac3H/QZVstkND1/c1r5nJtng4z/9CTfBuppNr7q/8dv/1dbgsK7nCMRA19W8TmPcmzLJSFutNc+tiZqeGC+JgjO12g2Ym93qKImzrSdaM6PsyCtqW6VhVF1ISMIeeSkbT+yoMvMxfs2UXxbJs9gfWzhIIez5chAd7I1xU31/NGGtRSna5byeXzzBuHZROdnev7pBtxfHBFeuR7gXPjr8y7/8H375t75x752vS36U+bH1lcCvDsZvzW/byO4cBG98/snJWz+/W5UnjUiHO+9Pzz6+fvG0GGwDGsCo+NX/5Du2/7K20ZOnT7/xjaPV8guK/OvL5f7W670B1PCoHhHCXogKVe8db0cOCpC+655fJT4bHdGqaUdR3uHzg/fcVy/0vRAL9WWevvXh5K3qRr219zuF914Q/sGDB1ufP3ny9hvH77/z6B9bOx7v5H7x7NmLcWV//s3J5uZ0d/s3N007V+fZg583+RDdPP76m7+2vT/EYfT04xt+rUc4+eJH3/ck+uD+22cvnvjfGnlB7Hl+43mTe9s3v/uPQpK89/Vf+X/8f/7fKuv9yTtPfvaT42330/pf0fPqzt4vFm+OS9cJHI0gHmgtwEp1ZZKQyHutESVKpv6d99AODlqjVq5Z36ZxRmib70JgisQbI7fDl2XfK0oR9q4U2OBgu6bLNBoSHNXrqSUtT/zw0eFfXtxirXNRhHS7qxf5EfJQ8uLHfnR095P6L1/w6flcvBLnz+oLa2Iv8R73T2DPXkv01ZIfpsukvgV8MO55psT98NGZuM0wCZDDjmgA8ii1tmeBb1wVsAwyiRDuK4egEarxULwxn4UeCTHul1UIGDEYoGjZVGM/jZhp+IJ4oOzquMg9FvPOOTDHRElJMToyTjvKIcWOOOKktRa5RPGaetIBhRkC0G/FUtgmzeOqtarHgCNgggDGs/UsjKkivQVWGuv5iAUmTghpmypMI2et6HuAkTNWGRH4EYiFVjUCDIFAKaGUCaNCyT6CQQwcaSvo02rd8whXTPZEYNW0mzYMYwx2+1pApFfrp7yvoLp/K6601huUj8aT0EMB8S1ItnPlnGxbjPW+gqK2M0QZdFHghOsQkqjbKN1TM6JfbV6FKQSAeoSBxlSbTRwFPe/6VQ2kBJitp2m5ruLYP9h79L0ffv/wzvAXfvFvffQffpDhw7fuPPpn/+K//0//3j/Q9e2ju7uzm8WwOJzPLnYn93e34cvzFyx8r9NsfIeg3oS48CDQ3FFfQ/8GeCnAHat2OLwyqNV4DUCIAKU0TVIQwUnbPaepb00msHBkERZeJzHyfOn6aOR8WkfUq+t5RBOaeqZnAq0xra1JoQwogB4BTludTjTuDGytMkCHAUwwAA5WXMW0WZqGcJWzGJCl1B2SW7UsBTLOcKMVRiAwKuA1V52E3rya3jbL80bAKKZKezRWgJqORNJYrPXA95HhHgRFGgKpee+wrxAASjmEcoJgHOeaV9pUEDCgEUSB1qmRpFpbLrKQ7C6uNowWDs4pA/XaBoknyJ/T5h5ElVYxUccoBEJfERxqqbsKYCKwxbKnFBZJ6vVtCWwBbY9NFgZitniaFrHqMYvyqlxkW7tNqWSX5XnYdFcOyDCzyrVFMepEG0Ws4z0AlhBaVRuIoBER8Wzo7TkguaiH8c66OfO8XLd0eDgA7fNW9UW230wFzhPWGEKIRVLZdRAAGAWrF9fZ0R3VgTygXdfHxfDy8mZ/Mu7rppWChSlMzapeeNALdegpR7HnB4RbCQgxhreWD0JPY+cxXPVVPhqbgIZCGWyMNfFoaFczBWG0wWbXk0DTDYd5JF+dCaOHGyilRCbHiBP5oTVXAJe9+9SYu5tW0CjAiDYbHoQjCAVGxmnMe3+YJ9DUVoFBNnGgscYZ7YIgoggx6lutkiIrqxWliZGQkAjLNvV83zd9e5OwxPOGdb+ZDJxppe4AFqFA8aoiQZoqZi0Bs1mfJoPr2RyB0rMxcwlWCLq5k6RmIZzz3HrHSfrR7DT0+gA+m69me/sHT599LuTNMB+PxuNu0UYJFiru2lL2bUCDpmnuPni4bhY011jtdf56ED28nr7Yyt4y5KKTS2Dj5soYhozGct5nB14fqKq7zS1C5Lri69R/j8Sh0ldR1Pn6SLVfKpiY2Cjgeyb2Nw1crqubMx++gscH7joq52J5ZY+30JPLebL9YNXNP/7ok8C7c7T7N6+59/D1t5rV9SR4I9/dJ5V5Vv6J75Orm9/1RzvPX3Syffrgnb/m41dt7x+//f7Z6ZdhtxP6Dgx9o39NNo9/52/+PSNf5YgBjaUpu15J0B9aFm+3xpVvxNlssalZH6W45x9xJkZbpj/1I5pwMwWqG1T33yJotXh1fH9IYWvlmrr3xlmx3nx0fC/9bFa/+9bBN7/x9tNnjwFCm3V9tVlGnnlFz84duzc86LyLXs5zkCcu69vnvJ0eTeI3Hu5frNpOMVAHgYxFs95+//VpN6OZk0SdTuff+c3f+Y9/9vHF7GUavR4n9Gz6VYgX737zV376k68Gk7210QasB9t7jTd6dR1tDe7tFKhvnjbWEDbysPKoHmeLdx8kBrVHqT7Wf+3F5hziH0zyfY/1IMTGbJHAAKAV7NabeZEfAliwOCA+NsSHaWGsP6ak3oA0mZSxOYfexx99ZvsX89urjz5/8j/7n//9e+N9ONCLY/+Pv/q9l7MnHQue3nwOEEaAMrD2O1ZJERbNpdveDPvlMGlePfb6auw99HSwhT96d2uHuzupuAdVIG0LPCXxnHqpx40xU2SJkNCoDYYAoRBTnmMPQrfuyiQbWmks4HbTDsMQwNWmrvM8NcAlSYIJVaDCAbFdRomveeWFQd8tHJlZliG0u1xUxagdT7BdK2jHvNMsFGFa9fVQCecNtprFE4dJzxMfhwp3fnCHhbjjJSGMsCTwqOIVxhjFxHS3xhMAix60PsIMDQUPnWz7vtPAUWtkW26wTY0NG9A6wEoBQLr907N5HyaA+dS4wiIiPR+OTR95BAl9Y+hqU/cMH/Sw0ZCM9+8KqDm2NE6sk4OEX9feWvrCxRb5VddSYmKscctv58vpjD89ef7Fi8cK95999cPzV42sC34D235x3r281dFK4WV92a1tt/B++qPn2rZKY4i8P//xfz8cyweH75y9uHgxfeXSzb/9wZ/mO29oWGjjLy9FO9V3hvfk2ve9aN3wKPklTPztwB+bs/H4MPa3SRKrCCAYoFueCGGRqTIjqKKwMRuCAG6Ek3Cu7bQqZ9vBGC033fwxFfNcRJHI0jjyfBl73k5yEIEJBGmQbBOUBWAYhcxJY7vWN8I3DshG25JQ5tXnXtdFgFBVIJUsl2sBSI07y2HZs1nNrWduu3mfcjp21XLTzhttQhWBFZlvSH0rzq7qV0/Plgr4L2dT5FEgus3mLETWlRr7foIi0/QTRCeE8V5TlmETA5BEoQedbNslxYZgh7Bd11c44oG3o1TN20XGMlnfhuGL0L8cxzudPJsk3sivqGxUvWVtrHrAyu9UeH9DgT9ipt3Q5UXYL6LUW/kkzmNFysmBh9mmyN3tycKnSVxU4yx3+kyWs0Ga8g5Exbi1Jyxteq6ExuPtA2EscL7TQ20SHDMJuoYjjeI022F6YkpDnYIa+enAEGO9lbOcmthuYL1WmAlCA9QmdTvw9BaWocXMKUzHE2sMOF32wZh3W0yMBTFBBGrXSep4pmV5PY4iCQBvVxh2VtTiss7YwOAAsajc8IimfWcdDRLUyX4TOsL9GIlQWj/f2V+PAhjHSDnh6ih2arFyY9+ur/t7yDalpxsIpVkpLRm2elVdOFgb8MqBk6p5CRyH1HXcW/FTgSsn5qK7IRhSmBsdI0gdEphoB5cQWYRIL9ZxipXkxhitN8vmFYovQHypaetnPg0k9TrVtjCAYTgWHFGSFENbtyeZfx84GkzCsDhuDVL41f5+lxGUCbKD2qNgVPjzMCyDYlghVMOgKqMQTsJ4RD2c341fH3q3YAWCASru5eUwSHauX52WLy6Wr86ePtuoYhEfYQ0GqupjUuwNHgBJ8oSEntBts5vuF9n9nf23i/G39g7/qoNgkr8BRU4cw0MugV/jroov5223OY/6FZy2V9XNNjXHUl5rCbBXGmBMsLH+dk4b3WVqkWDlTOHJHF+Xc3b4SMOiD4e3jcZp97L9URS/W4TbHNxMgmh/n16+fJW73hOX1+cn9+4d4x6Y5HZ3ny37nuZ+hte2WlniBSH59Ltnb75zb//Bfu7fnT2XEc7laonmZ3vhYG87CKK7u29mg/syz+9irAOijWEcoNZuXVyBLDS4vEpqJE5mW14Y28JHGpKTlp8FSZrvbS3cKklc36bYC7PBFg6u8nzx2tY2ukp0yR+9Hw+3HjXTHWRY1dUmYS3Gr4+2A++is99vVq+qW6uIrNzVxYuLdFj+3NffLSZvSH9Mh+TuLw5mwWL39bcKO1mX06239hc8//Xfev9n//G7UJ5koV4B19CYFW/s731bbJCt12pzAfvZKLnvRPKzH3756uXT0Q69FZdqWJyhsM+LDcuXSuYxfm9n9CuvvZP5g4v6GS4+jottnNxpYYHiBDDooM/BDd80eb4Ng0R7gvh1jMQW9Qbahr68mCp/a9iTaRB6UvL9t+5FD37pj/7y6smS3wD9uOxetu7cls/bJ/tfvx9kKndxCrzA5wTYUgoXoJ18qxjSr3/jP4F9PLu9qfhhnIVvfmPQPSr0vcOTdursadR9fGBe+esT3EreetLFvSTagk6UKHQ2UBo3foDrCgGbjLPjfiFi5vp+iUk0XykVgHA0KjvcCwZJ1nFlncMM+6i2oopCKvqKAI92w5Eds2qJiYHY3dx21C82/IJEyiMD1WcQtkkG1+sLjMUwZxRz3lR5MGThK2TXAUS+VQHi5fqci453KakUGu6Freqt1oBeFGHRdz0LlLIFhkgbQSCFNo0SpP0NtTGdIDOvYdMeUEJIdGv6EjtOaRi0WyRtWu75MXLbtuvvD5NOk9t6licTWcut8TAroHNL5iXrpSQFQG5tITS6xbCzmjcdXpzb2Rpj7/b6YiNE//zL2hj6K79xeH711STamj5erNpNlM2SeGAFv7j9rqd2PRYoQa4vlhfnN1tHI4Lyf/cnf3K7+JSL8rv/4aSqwX/9v/k/IoRWzfzZ55+Nsx0CL1Hg/PGWUjooTYEDpdNo/AsyKCj7GeillPdbE3bdCOFRCFCUdhWNKtHipPPsYptMSiNr1mRVsw5Qbe2wD2kdzQmKAj2ikOOQ2JA6TxBsgFTGIUuIQxgxSzti9q2OjfeSIA+rOwq2xBxpvVA8VHYppG06LNCzjsM2Wa15JWszxtuTcHuxmirgeG+lLNeraLA9Cqm7vblYzy4jBoIInrxaTXDxdPHJ9mAUbAqg/Xx/i2xCkZ9s+YwF8bwzA5T3m5azzaHnVe2IoTQNwqZahhHs5ZoQv21bpxsCDq3hXLe8oQx+U5Grnnw3HR1ON9M03k3Hb86nN1FcW6y4zOPQxOh4ubqKJ9X1pgn917t1ETgFvDJjh5ulDOOt+aLJt6OWl514uJo/93GhtNQ2COJovTGcF1t7gi/TIFw0/HK14seH71prtTNGObeCJLMVWfvQxr4Qm0aYNL+31940GhOIgAHcgIrryveZ7+1W4BWliZUojSfr5ZyGPUAa2Xwxa4dbAfQQNnZ2fpUlO7eXN1ESx6PMXFQEJS0qBxB0gplJ4W0WNAj7uslGk9n5eTzOGqSJRzxMOS9caIHuWVOhOOBFDNKg0F5TtzFVRFLgxZzfxDqDNvMhaOvQca6EML3RAvgs7qWtK96p84ANW7mC1PCOdLx3RCpJozDVhvk+68QN83Jo9zxs190zFtzXwvMogLjhqoFuELKJ7znXDhzHRisFfMlVHOTEEcJA4FPgatkeEc9Uq9YDD+t2Gkaj+mys7UmcOiV2tAhgOGep0pZ2i9uQkr7FwpjRBDb1dDg8amqD5QihszgPLIpo3wRqsZ1rBGk4YF2fj/d3lnV3bxtuZXsM4lk1b0STjZLpen54vBfF3s16EW8N15t6ssO0iKWqLbN7B+8JsW77585kQ73VVes4TawYyQYjvLmcf7l/FFoU3c7Oh4UklNlyZFinvWsPglwfldNX7frZbvEBb9JuY3E6uF5Mc5jaOdvMlkHRhclWOgQvrr+3/6BYz6NFe1q4egLz22mZb9HrZtlDMEYFI1vjwT1omsXiBzRoi2Srnl3BvBwdvn5+8mopL0lGHl9NrVEJ7Y4Suu6+hFFs9SRmk2hLOAuqiq5I+SYd3K6fBRPOERnjrU1J3OShpSU3a+gNmuZVUw1xoZ8+Puf9JvB+JUnCKAikhJiCPNtJskMUXtnkaLj3mnL5dPm7aVgLAzKAoREsu08Wd3DnJcejNidhIK7Of3R/P9k5+JsvSt6vS3n9BfDMckNZl/d1JUV7N/z2vmkz3f34+/rWzfYOhu0t+pVf/OZmXf3Tf/4fHJAfffq5AyBIh7P5NIUzudFreP6bv/4oCLvQUqtVRIrV4nHs5SQ+lg5QMkN0olAKh5exVon4xkx+N016Jt7EsPc8o3oMxgE1HtU3HQBCPOIspdhL4GhaPfHCGlAJtYHWHR5l/ia4ubjNh6BdtuVmunWwvV1Mrq/wW2//cm/YmPb+1yNP7Zy8XF7YLz78uUd/9zt/Z7S9A7P9r87g7/6LfxZ5dIWfPHj7v3ptkr+XvfvV5cvb5nwczLyAeDS6vb3OszG3M9GF2sxYdOSHhQWV4MiJcGWXnEgfTFbrygtyYccsbiq5JPGINx0lHgKeh0MCMGFR2/LNUmwFjGGpgcSQaSuRbzu9aauORfthLIWE5doYG5HUcL6xmmJCwshpBWw/rIFSZpMOrRd0zSaKhspp2lVICBUHux4JW35FOG4XvYQQepTmSdGvhZCQFUnfAkyJ0GvmJcb41HeKbJAas0Wde6wvKBzaJeIGmL0si4JobaXwXLhbgFZ7YNBGttuUTJldcrg3iYmP/AgKg5BJjEJJii1BWgDZy043DhIHfdmtbpbnqxVTeqaN7PT1pt988xt/5fHzv7i9FSf25XrVTHZ38ohubpbrZb+psGyX4UidX82++Oqn77/3659//Pxm9vtSbraHW0+evdAq+sbX/ppH0n/8T/5ff+fvfuu7P/qz/+I/+2++fGw3JS03iNhxHgruPnUkse6A0pbwY6HWnqcV6pVrm1b5bK9BhACa6B1toSC9YUti2LB570U8PQCUUH1jer8j93U6sLhJRWT3EEAAORxpZZXnEJCSUoJAYhlyWhq5EWAD3Q5yztIzB4e8xxBNhdKcZw6Ytg61C+EXa6/VXJcqbHngSlbT3vO9xIHH1szm8yxPd2MSlOD2/HTK7OuJWotFkwaFkXHAEmFeQW9pQJq6gcA6Ay5CmqMNcC6HoUE+hZT4lXHXQDvR5wgeOSgBli3vPe8kilkYJSxUSn/KOyjLN/IUQG/Q47jrzyBdRnR/0zgYSidb4DZACiW3YPygsvVWuILrQCsJQKYpx7QRTvWyABj3dm7Arp95qX9rFK6bWsF1lh+p1ln8PPLz9TIeJrui72kotBTQJdzGPuCuw1qr0nYgnWAzsjXhwkYZtobLznlgxznHginwnjqQ1BUPQsTtM0yA5nmeDTo5o7SnJLc6rGuOSJdmaFPigO6tTme+h0JGAYpkJTxmHVQEpdxWQ0zE7RRZEWbZpu+D0Ndck7aCw2FDGYxzf5QzT+hmRerGCwrgBp6r22YRsSOwXlK/VSufwI0WG8Erp6gxnEvLRS+VDrJBU0lLwGxxA0kCKGz6HoDII0MLSiHrwB84TSk1zojEn/hpI6vA95lGle4kRQWwTuoySQutOSLGo43sKwiUs5BgT4mortsiB5vqNk0GEikPBkkwSIksu3qQR5wzpeNyYwiDFoA4cs66JBgT0SHQUtrOlydJHErvmjQNBUbzFS2r0ejeX4gvsvfffHvx8Sf9wrT81fPp6+/vAxud3kxhERVStf351mQMoGp7JyWqap6k29qBYCAWZzyKDqIYgDWpy3Waycfi2eR+0WJd1p2Ryeym3N47vF08tR3yw7kf4lX5U2i+VkRRjOO27srdZnXT6nT7yXWp6tuLy1dRsquqw8Wku2qXGKmjgUN9Y89/eh8M4pOtqOhPDW0FLJnhpqWyH/MgpYu2p4zm3PUYy7rdMLf3xt5vPzv7Z3cmeb+8xD2EHfNTOR61Z2ers896T5Lnp7ejiexbfnwwubOXGhVxVpdEWXfoE+iTlyy8x6Kv396cHwzCun0ZJOHQDJYdRn4/3A66avPw+DWJTjVAs4W/NbpjLI38vboBrZseDaoRW04iTg3aGb3z4uZkWvP99IBGgaMYD4aXQkoIo76mftImx+XaPH/8g+v1gtf+7eVibU6W/PxeNfa3GCdf/uAz8m6weHPC7ppHY/QNfe9TBt0f/U//qq3m88U1Cz0H2bOzyywfeKzKJvZ49O2IvHf6an736NtSpGeb7x/kx7xppewZe5OyD3XwgqOZBY+QCeqgalkXZGDdvyQBErBCYHdso44tJRthnQWgcVpDYsvB9Xj1phZkMTuNCwRBA7Dv5x7+IKfuH/zrf/+Prq7OvvX1Dx4+SP/y+znGO+n4U695943Xhg/v47JaDPb/4W9950O/XVUbAsZ501/vDH2l0vPpxT/+g9//69/64N5u8uL5Z7/662/XJ09vjV/KbHljQ45JdQsGoZRc2AXAjPdYa4uxExpD5Qx+SiDLo3FZ/8wPcqpC6BbJSELHDUXIMWVMluWIKELlxkDtkq7ngHLtgOdvc6BL0u2jtdS9BXFVyyghmBgBFfMj7APRMqVFXDSIQrkc2I7MuzYZUd74EPAg9CjcEbx2wYKQlCgZ8iYZjHRZTo1IWAQxk6KBQnTEIgOcdhZ5RltiNbPQKpohz2neUoaI0yC0MFSlmbFwmKg+YvjWcajRtg5NvahhNwju9jULrd9aC4PKi62ByOGoa+flAskOt7wy2AjRS7lZzG4w0k1prqcvi2yboOyrJz/77OMb3/elPhkNd/YCWK5HXz75NE0K5A4Uvdis9O2Ff+fo3uMX//qrJxdJeDAsjk6elLIav/v1gzfeZv+3/+7/EHhbP/nhVdXAz57+6I33xxHMv/vH/+o//Xt/rZFNywe7g9fFhhLrAX8toybzh4kOlf+k0aeLxguxYC6OgnhjblBsW21iElFWH65zPTSOtcNZrYU6D3GJyZhT7W0ghNY55vtAQwJjoAAjvkONBTvaawBeGJlKzZw3t8D5XqFwy03U1ZHQtw6brooVfbLCSiPRd+2ozZFkB+mD6epKKO2Re+fzH2+NAlkT4uKu5NCym/MKSXlyc7af5l7rmSLDXR51mMYPMZxxqhsusoD2QGRB4inGHY1jKIRQWsRhiKEwVlgniEdGg62+BbYvVhvOwlKYqyQaJ/Gor5csKwGy01U7GbAWl9pjzPdNM7xd6+Ho6Ha9Yjlxki4qzjovHU569BJ6TMhJlCujVlEYCdlo3GC2bwHi9rKVbZyMszRcLy7j+GCzadNBLPUCwGC1xOlgy4I2GL3oSjGMX5c6v13Lnf3M2mW9OYuKkVIqZDEgRrTLMBhm8dvXz+c7h2XXKisyBvelvEV0VpYz3sRpvg0gubl9UaQ7HiwQcHFkrZFiJaM3Bnq9hsDXIfOwVm235tT3GPX9ZbUabY0BgjEmxGGhJSEZpj7OiN4JADBw1plK9zQIHbSkQT20KEKxsryxmEmxosoZJQEHyHi6k71rlVXUC6SDa3FBPX/d6HyrRSiI4S5hFhoDDErTCe9dnofr9WmRTojd7sS1Vtga5kwYMBZHSIo5gkulgJBdHIcU4dAPPMycIQT4GlxR5pzZiiOhBGMkac1Hxoa8E1alXU2RJ32/lzpMstjimk9lMYxvrlfj7e1O9NjFDgNMtGWjSbBD490+9gb+6LNVlT08EGePAz1+eD/62bNP7t5NP3x7V09vsuBoZ3xwdXXleV6ICt7U1pUI8Cz2k8TrnWlbG8Z9XS6T8LWXL186tK4qdVSM5Yavl2g0eF0WFyv9Izy6A1ZvEPwsJAN++0g6b+9OAOlVZxSJpboc0pkTsMRR70T18EE2V+vhyLXr1d49EMpvMiqinRAmioSPnp0/fYiOKfrspm7iOrS6i0aw728JLIwmbftquIWff94uZ8EbD8h6+orf2uLAnyQHcvPy4AB5XrGZs9XsuhVffHkDbtfgL5/+2f7OKNuJrj6dHYzfneyMdz3cSRll27KajIcPbvV1Nur03Jl2bzgeWTyHfYbBUjSjrmrZ1paWpyEeAQBW07O9O+90SkSRN1u//GBvW5r7y5ci9PnRo4NnZQnNWkQXqt/u0eXG0p3hG9PTE+k6z7vD+f4PX/0bp2CcBJvVxfnlT3DMhlt+iFfavV7VNEgGe4cqQPruwYe/+8f/8Rf+1t5Xj19Ob5cff/rZ8b1jtVoaY7e3dn0W5Qk53p8A3jlvmYwKTVYIWufgpmgaSQBIxknVyxO0zgfsKIiuGnxHiqcj75HfBF19GcK8aVFR+KXpPD7MSSqx7QGVEAIdofnR9epZPoYu2AC4z6XQcNqbfrK3+/Pwb3/62fXTs3+nrenbne27u/ceFZ9+KZrJR7/04S/ExfDowd7Dg+2Ts9WTuXywXWBE78eb//Z/8b//5//mv6vb9Lx++Qcfr9CP/+V//r/+h4Pd8QBvu5npF5vsTnpxcbPj57btbe/ZVW1tqWVOKfaIUC6yyOTpETD9Us29dKyRJ4ykON/cVhj5HgkQxHVdU8AkJwjEWSJaMNeiY26goXTm2mIX4SAMQ80ZMDkllmBULiC0jKWmr3OtOkaBdn7brQ1YYhr7JCFYAcihGXkkgbjysPBoYg0gAF5z7gvJopiJDlI/mV/3u1v70H1pHaR+TAhBlAuRKjTS3kYpVGkxAxvrU0mxhcA6BAAJ+syNwoW8LjBm1FVEo2HkTSseNgjaTmlCqAfYcqkjP13eipp/tVoIJ9OWm9asynqm+0SVQ49eUQzCiLZti0D24ukZxdFqcxmz4+VMiz76/OOTwWQsLG+7BYswsg0L28XtanbpFcEHSc6r+lnXBMNx3rf9n/7Jd6+ub4/u6I8/vYTAW8+LX/zWP/x//l//z4E08xkHDDrKEbthwS4AHfEdcyNKoO8tINyym1GtTmO3VZFN73cGqxEcMQMtdhu0Xg1GmNcBdmiSwg55VRMagLdSJTKItAMd1lpZiYkCWBvUOoQNP3a0QwQYRY2zECin7yqiEWZOBb270Rb5ONPoaVNSISogVRQwLSTvZAK8rulizydhHaZ9zR8bvNKcBGR7vpgt51cDDAcD0a1ng2y35eemuxz5u9xeQsa3vdFaKCX97WAInL4x5RaOHaQ936SxD5FLomw2X3ksENKU6zJJpe+XBqYETBgZQi1b2fth2q5nYRRMJrRETxYGjZKf66ustj/JJ2yleJaNkekjQmAwaMJNS1bKDlSdhqF2dp75EygTUa28pAVktrwBvp8MkjGCrCwfI9RBL+yVRZ1v3RBjHKbMwg4HXbjYmi4vBzsNcXO8mPkStkppd8cHmFFgOiN64TGiXMWlsW7dVVnfC4Jr4ObZYNRs9p12ecatRfWmSeNC9iYfDM5ffnV47+58XqYDIg0DghmvSrNxc06SbKDMIvHzdVP5k8JiBxsBO26dhzzKd5LAZzHzbGds3ZiqJ1mucr+/vgziQDRdtLPVbqbMtG0DfGKr6hq43ijnNBFCGKIM5oCY2aonzFvXVTYcUKY263YwGBrbcbGK/F0rsc+asjxPvKFuKSSNc5nvWYKckyENQg/kovMx2QVAIk08FFjTBT4AtgTEOoCBinx7DNApQ3HPsSVXmL/FJVGWjrbDtm1FCz1fhcGCoqhcUI9RApHkAmlsOEiyYd0oowxSA+Vt5q7Nioc3T58AYIrWbV5Zx/SLV087EQ4mu6evVEgXR/feWK5eWugBhABGDiNCGcWeAU4ZbUUiecvYyMBO1gzqYjwoqs2qYizKJ1374viofvLly0l8P9YZRlUyPkL4+vbmX46K+z31tBkIDpxCVbsAhtMh9idJlB9H+SMrSyJvO0II4of5vRhbHwEvEkIU6d2vz7/4yDX8m2/9eut1Dpl88HaUxH6An/zoZ9iFKcKKTz1PQrpabD4FmguCrha1gPHW0d3r6cuLzdVSLHfvHqIOXDx/EqQ2dOyT7/808TCtI1F6g4OdnYJsSjx67YOL8nNfnQ2kf3Exy7x7Ua6kK3NGwq2HF9e3SaaNPdkdvD7wDq4Wn0x2FDQbzRXXycT/th7Es2U8xEFjFtLoO9uBqZqjQfja/u69yaGn7sCXDeYzMBzteHuwPnejb0tE/Pn8q+WFHBVu0e/iA3cwMfJk6Cf37p157bfnYGeBfy94Y3Y5RT/95Gyx7t567xvL1c3s4nI4mQyLsNpU+6+/B8jqzsP9naMH0EtQaMrFPAgjfMNzKzbNonYAB4ClunG2FWFU/AzdvO2zHqJrLxAICQ8XiPQOb6x20rJeEEU8R410t30/r3kNNPWzbal3rmYzFNCKl0na0PCL3/6Nv+3+xLx48YXPJAhn919/6/TilYbvrEvrrOATscCrF2eXL5fzbN+vX5aG1/sF/s0Pv7Y/NH/4Q3xz1Rqt8TlND7bGXzu8vlpHSnUvT5r5Be8vW0PyFCoQCAEQXWEvko5if5aJtD5/FUe5pxmGnh+giMDl8qVfjK2TDgBKPEI6B1aYQD+IO2h4P3JS40ASjKsypp6f+kbbyjiFAfHD0IGua9qiKCDkXMqAhH40mC/qvmmibARxL9QaCkIxxdAi7CxQCAEIAcKAlGszGQZpmFzeXLNAF/4+pLxSnzmjsUMMJxYornopQkvD3ogp3oRFXPgBp44bwq2H6ZD6/kbYjDsP+GXgJAYDmDirtL8V2gxjMRiStpOyZ8bQflNpVS8rPF99rpTqmqOqcZ2+8cg0IkZK3x/w+7vv3c6+IqQOi/FiddGct5fzvxCi/9Z3HpzNv3+5HA4GIxpddN3e/gHPo3vPnnwepp1UTklvMauTyHWtT5mASALTvPzqy3w0AibPsjxyzZ/+6Q+//uHbM3nhVsvX9t9fXpd+NkfIi6ENoIAc9EGoMkchx6voupwij/lqGKV7HbKQlVp6WN2J+hMtDAsyj4Q9k4r2G9oL4DKMCDAQWaN9BClUzDmgjLPOGFBiwCn0CMLOOQucBqrV0uGBxJWGK8ImCGpkU7Ghca2VbgY7cQPqlerXi7UBPArDzc1xxuRqdVYpm8c0i8J2M0N6fb1OtsKId2GFo9B1xqXeeIDWpbZBj0AQRchayKAQPKapdBR3ilIMkTaaLObKiJFBDBEByRVy465pmbcWvY3DuxKehpPP+34H4Ny6IUvD5VwiFnkItupjzB6CpO4215RsuvpW28x5xxvRFX7E/IQEjvfYtLthbgBaGbCbpqBXcyGozwpgISTWWQXleDE3fhC3HY9CX9vlZDs6O1mOwNtl/5LhzNNJ2UhK9h3NZHsdoghQZYVwxhLrQVsIrRDWaWEJ48ToNDpcLVRcFFX3Q4qIZw8h6ZGFEKSU0dXtBQulljVyDIUId1x7CKcjvuAUWpcAtJCaSA0NgsxCzNvKSOPvRkHs60wbYIECcG0ACWRKgwD6q4UlBtSEixpJIFsLNIeu6dpUcEAwUtIqroUB1PeV06u617CBLlZm4aehEoFHsejmCCRpdOwAJx6XUg6zPdVC4kEMtfVuAph6OtIid9bnUmiz8RkO0aMIa2SdUA0kxhoOnHYIQdBDfItcriVkjAkVZLntu0ZDDqnRTiCYepgg3Ls+JGI8OODr9Xqc71DEGEZa8rYE+dFBFsAnT8+3LrdvPv1qd5D3EteLTZrsRLvj2Y+Wfnzn86ePsR//8m8cV6xSgOO4Iwm+3JwOhlvET6e3i8DP5is5iBuMl7xFWTLu+4vjB6lRHmHtYroJ9vvBLlU+WQJjVJUoP8tfG6Gt2+mn9ebj3XG2uGZZvm3p4816TfB+Xtw9ODwwoEwjplr5VrD9yefPojy+t/3+OEk3i1MW7bRaBQM5f7q+OStdVuYHsUFJo1i0HU+y9OqFfPr52f174vnTa+YexOxgvvxiNxsF5n5qH53c/HSyjTOWzvrBJII6nR2Osz/76As2ysq+T1wr9XpayrVu9gi4j+5S8n6+/fO+7/NXtxQmdYuhu71Z/VvIMg/fnwyyFkx++OX/+N7OW4S2xoSEbO1s542qfIStNhhDD3q0SPLYnJ8/nl73s9VN2Zi39/e+eW8b6ZnHfj4rHp0+/qQYRMKMFuu6Wf35zut//8XjT1+9fP7k7NVic/POQZEU6pNnH71+fIel+W03D+zFwVbro7869gdBLMJkcXh856OPfryYX8VZ9vDu8d7O9r/94z/Oirfee+++45Mie494sm6sFJAyp4UFvLi5fJpvNXvZWxQNRb1M6LiToRe8U7ePaXzp+WlvWDAKy9aPdarCeU2hciZkgoBh3yZLfrEX1ahjkTdZV2fl9csknQQIAPSV1a8fPzr/ueXBYt199y/+5Ld/+7eG2fb2aOvq9LO/rL57kHTHO3/zs9nhR5+exDn9s+9d881yKNHeRHgee2N/k/3ad/74J3+0Xurf/fOffOPDX0vlPA075Cjdyf0PPpg/OV+efulFBTE1F73h2g9qigBiVJKCZT0H1HkJ8yvh/K6T/hhBE1mje24hNIh4WlttAFZmZeoelNaDCBWI6A5feDgM0O5mHtCIexhYXTjbGNMRFOgujqOZkxF0gPnct87Dk76tndn4oUdxBlAFiXK8cMBy0CAQID+mlaimy3ld90bCm6tbH/spi0SvjIbGcml0WSoNuIGVFPBBWEzCECVs5ZsuJ44RvW716Tyorsr1LYNxsGJp6zPiMYqPo5SFkRZxX+W8AdbcFINr6r1CdgpVpnnY1Vq23PQ49fe3h+O79/Cj93YePHwDucNHD37rwf0PR8OJH8Cd7WIne/S3/+r/7uyFnM1mUm92dgddczkcLKNgfHLxdGf7ziD+esJeNxpRj4ZB2qnbnsur0wrqNM/irllslqfvv/3m//ef/JOmri6uzx4/vTHWf/7ibGs4kpUDplH9AGBgySmA1IJjNki94bQKv+r4mi9bvjlb968WXdtIidxKQN1jJmCsFaXOpYmf+JHHGQIBRkGIA8/gEDKCHKZSw0oZZPENgJdIdQHAEaUecspsHLgLGDGAWX1IgxU3L1QTN/1H5f6VGm+kbuECxesirOKCRE11u7j50eL2J+MRVZJjoBbTV6OQDVmEgkbIJs4aDT5C8Mojrm10z/PYBZ1VDLvCsxKWBOgJjbUNrSEM3dHtMbLjsjmj8aUjUwgd8w4VkNoKIRiguLen2oZY/u11T+VgM8t++KT7cYuEYcsb8ePSW9hYn1/QNHhvVrklmvDiramW/rYygWuNdh7swAwEdsXp2kExqFeVur1NLGatvSjlS21V4N0DkEjRabvJEtA3fcbuLM4N1lCJi5rodICBbPt6AweyD7klFsm1R4fLWxCi7TxPFuUnjp0m41B3oagpMEnTLlm8kO1lFO4bk7IQ+CxXuoJ4WbdTjyYBGRAf03DhkdBaTqGjLmlXOvBhvb5qlhvpRJ6kQDvCUpBk3sEu2B3AIqSrBHPfAFWDGSoUQp0re3QlqIpcee0slktH3UybzmvS1XxKGdKw6fU5RyeKnnXwolLTjVhBJMtm5Xle1wrgSJHmCMLYD7SkSjfzxblHwr6WCPGmmgPjo+5rtj1SgpPgS+T/EHmvshiFjEn8F172ROinkNQOwsDfYnQvZHcoHARBpMwqjGErTsJEKR4AS4u44JuIoQljhlBr9EjJkEW8a5y1lno69EHAwmrdDQbDOA5n1/XYuzf73gV9eU1Au+6rmjTd/b7Zfvjur/8Ox5eb6tn2ru7Xl+sXXyXTEeD54lJBGcnaiLr1oZ5dPo1ZH8UeBYfQhbezC59tAYiR3xK22y5QfRPc3Xnz/Plnk2Dw3viXt3p2YJ906Ptn048wOAjoKMT+4vYTtRGRPsjRcudOH8Tz4SQqKaqZ/vjFj39w+lNwHXTn4id/8fvX1x9nW/2LF9Ozk03bxPnbR4++8VdEw++l4Wt5+M7hMQL5Ri6LDJWr59XtLQVzoxd9s7vZxF7qri6+u5tN+AyL5bpgVTt7FXBAazQJNZbz2KAMI09at474XHk8W0+raVeSAVi8PD/E92WjdWRhOmyo6BAxZLJ78GEvI+ClUnm6SxB2DZ8JC7b33nA0iLL09OJnYf6R11SxgHBNAxgGMWXJ+On5VATXe4cPEM2eL78M7iLAMixh067s8LXTF5+uX62+95cf30zPHo7uAHDw0xeX+xPbNVcv199z2eTg/oeBeoffnO+PX3z28e91zfTy7MlyduF7NPDohx9+/ZNPf7K7N/zgzXuw3RsNAj8/0aZFRJDo0jodM6TEGeh5QPxanU7rZQNSMyihrNL8Yw8KKndDsBejcegb7FRbPKZMRmhNyJp72YZACW5zSWXpBQQ42VVT7pvMUwHqczkd7WxNUnrnm1/7+unLrybRL5r2YVdrYr3MwUkS7Q+/89mP8ZOnXx5s+zGXpz/9A4O+N29+8r1Pv3+6mI7GbJTZ+0c7noNKnf7Tf/mPP391Fh0OebbaetOfHOz5+BjTiej2eh4BlGm5a9QE4RSYfdQHcjH0QRAR1c2IKBGzhPYHXHcWOUQcZSTNEwCx0bBuxNjSA//eEOwHAEIuIjREPNJVC4nxfIepUGal7Qbjrq5v63YGxX2noeQ1JSFCpBWnkJWT7XtQ56NxkCYjLUMLN3EWB/RQSkluVxrKEaHt9nhbtgF2kibremmNIgSGDggAPN56Ye5gULdVaOKs7EotuiRUYUqm7eJS9IhQAjeRPyqbVDpGCVkv156P1rJVejXcTfvqJkvTtiPdigzCvVUzhWiGxT7uJz6t8aDcGr6WB3ujbEJH/dZ4APHMJznvdOAF25N76/pEvfkkiuTN+vlrrx9SD373P/zZ0dYHe+8P/uKnn/K6H6TR3e3wq6dPdLve3tpfzxeTyd3N5hyRVivXlYEfeBKszi//9F//4e+GdLu7cF/89DP93vBg+LWeq53Yk+CKk8DSXV95jC4tJA7lLR3uRDvT/uXCPlkvtw7RO8BZnfVTtEhAoSttfW0TjUJOmAdQgciWR5Y+cCHGRgAIPKsdgI5LAEiPNEMaIkMJYiwUziDXboniuZGDprfCzRNzaLsl9k6xHg5alod+19aKiGk1i6IoJq6azpw5GWTby0uoOlnCayTCyydnRSKgsZUdwLU4Hqa1soXnET4DUa6g2KHbZStxEA8EhViv5IoZ5jDWeun7Pia2GKQQOQCdEBtHlh4aRuxgdbuebNFOln6gV2LhWHfTxm3gZpuXo2CvbbXgq6QYN/iTYkjmVWuDvRKNN+pJPhEtz/yIT6enq2rAAEnTMwvNugJemkVchSzyQyHbKIq93lyJOvUJTnMh6kBqisDSGFGv1lm6RxRLcWiJ2NjYeXcDJPUSADPoWMm7l4MJgWCzXkmG9wNSdCttrPKIE4J7OO5bR6mnwZJ4uuciCFsAXVUqhhLmOyErYJ01oL09n0F0f3So2gb4pllqQuz2vUENoOA8C7K+5aDI/K2itr3VmnAVsQKTqHYcCN87v8IBdDtedb2IGmqoSCOxWiqCIegr1Xk0P6qqrmmXlDltXFPrWlAHBtZM/VCE/ni57qIQNVWdBBNnO+JzRncxTCHkxG99WiA9YIT6SSkrBBViNDQOYn0n9MaKL7VuWLy/4WUYjYwGwKNCVcYJw3NlphTd462gJLZ8F2OseIQl3mz4ZHu87pcABQyPYYgALHkVODcb7cBqM603fFTcldb18mZat8W9cXw8dCScGVyaVR5H1gYfvtv9eBaXYeynv74+k4vzL46Ps0D5BB2kYUI4yCJm+75ZVj43kQQOKBzIcl5tNmU+uoaB4x3JJt541I+3DoxN8vHrUexPX90IhSfs6Onjs15fv/Xaw7L9qEh2ZXVJ0dtWVYdHvxXmYeL5sg76ZXn51Y9f/fS7kzxE4MnLl58Qgt568NfKa13fJAEgxzu2nOaI62Bsvvjy2Ttff9jOnsHV8K14fJvvrJcfba7p/d3tNft400nI9jrbGZ/M+CtMgMRDGhfh0PqGJekd9ZU52F+fX7S8D3hP4gK8/7UHfRWflqdfm7z18Y9+77X7w/ZcjplfeX25jQG/b2Kz1h8djX5l9vF6d/JrQlyu18vd7eNWrYMk7R2Wlgbe7nx6aoEasfHdB/Tl48fUQgQVRBtt7KR4ezT5zaglNxd/5I6HXN9ZzL/yqXz5ERY33Webr8Ko31nTqpJfnTwZhjg6uDtI2zsH79+9f4eA6bzbPnzjwdMXyAd3ffLxanaSxWy12rz/3re+/4O/ODg+AE7lWR3gnZ2tB9QVFqZ8Q9Jop5cX8iifXpQdYZTlfEXDoChi3JwJMywi+AAVUy49BSM/s5URZjgPu4kNUItoYyuiXhhJGN2Lipyb/c7D12XZpeXkfnj6aiOEevg+CGgjVac38oP33+5t9+///P8ehL9+fOdgeSIOiu1wd239+f3o4e1lVTYvf+1e8vHNCbOeNvvX3Y/ds9mqusX+zr1H7zckPlveXG9++pYcZP5+PVfFRKSvnd1ctqX8nDqSRQUCt4AGAPiNPCV21wuQJPt1hTFzlGFAnISXGEaMQcllLyVznpCaeDEErBWrMAn7rlFO17qJC0/0SvZ2jAkwCYAhcB0LLEWTvjFRAh1+RWHCa+iFfhqNahFpwxebm0GE23LSc0U9RFAsZKMECuhdsh3VNTrLs6OmbSCrARlNX4X7+6Gfrrm2cImpbcahoARfl0TDoKerqdxwT5uQcEoWbRMGqHcdrAZKes3yghUpAKETGmoP2zyIEsmBHw2U1nGKfErK1Y3QNXcgGPpBEifBYZj42wdDmtAoQ7zaSgowGdyTNa/BOn/juJfw8uqQ2je56d4j8Pb29ur0lpLru69Hn33uppcnv/qdv0Vg/urk8e7encM7e69e3mA6sK6MWmooEA4Rz6tmi0ev/fx3f/B9uZICGM0vj1z26qUJ4I/KleeGqYcfwR5CvOZsQ1mGOMK2CbDBUu/S3Vm10bC+rb8Xj+J6iTcbxn2YBENrULupieyVEV7kRUGnLFWQ1gY4wondYIOdUFjKyrVOo8iHkqxMpBo81L6vvKuQv7Fuzqbnm3yYLMtzY9dB6jC1MpAdg51o0jGs6vnYQ7KRui3TaE/C5wP2NXgzirNXHFx7xhcq0kQNkdkmGLd9TqPQ2+K9YcLDvlrU0sOhE6J2/fbWqFnMBYLDSdKtjOpXvhdhMXK+nYk5CrdS6AUCOrbZ2e1rzt3gwDo3VS+upJ6LG+6Y0IlquxFCMSpQb8IinEsqB3mHmuXmrPBzqSzwzr+4ybIwB0TlHlr3ljctcHQUeWHUtvrLtukz8kbXbgE4tBxIMNHkBIfz2rSj4WhZvUyGCSaogwsnFOBhFqzSbXv6ara1taWhjry7olpCCkzoejeNBiFCm2rjEEpjP7LmSvWNkw6Ybjjw1nOyWQlChNMYWM5yV/eKup12w5ysCNWHRWY38xY5Sj0dKO/OpGm7QBGMaGlk8vCOI0AsNwlLeC87u4zYGNgqwhz0wsYJMGLzpPMiuMLnRTas10RzJuzpVTnfKt5srj/3vc4w0DhzseHZeALBIgwvmsZYkVnLsgIAJH3fV2bDWK/UoOPcWR0kueQMQAiDkqNN1BcUED8L68XdtIiN/8POnPUyHRbbTdsC1KZJrATbLLowzMMAdu42iCJtzrWyPk2jkKzXaxJAIAe7e+N5tYyjLcMNoQ2lIg7xTBrd5LKfQCudWzDKszBYLMDxg30dgOlijmob0mhTnmRkK4zGfjIcDuHD145nl69Ov3iK0Ou4L7JvvXKlma3V/Ud3tVddvcC385cffPMbxgS1tKrufAQPJtumpyTyvFCx0IzuPSJhqSwMHACrhq+usgFUZMu1L1selRxsZ4fTtbMq5dXT3fsfkMJJcWvj/Pq2B2vBwPKdbx4ZywmutoYjPwlhjIVG0P/I6aP5qQYwu14vHo5/VZlZnmWi6lmCV/0Smmgw+fbLi3+DxqFZHDr9xKLSkj2K+2r90gO7J/ovjg7v4fPD+w/9v/zeJ/v3RuXV3t39WU9CU692dttvvvP6p5+f/uqv/f36tF+9vFFH3ujhsVpHpq6GWZwMF6+eXR3ey6gkuf+lJ9h6fh5uP2pLGHuC4rOOrnX8oSOTMIb6ags8rDpw52qxMrpK4YjDFuc1hqVPzMntR2wwRuJht6IG7Z/Uzz6e//vNVT1brituN70C7dlW6m9n4MEe0cHDN9/8Rra1VdXdcRxQjoNtVMR3f/LZ9w6LwWyhzDD84uXP/vPf/C9Pns8GD+Tho/+V1nJaL8Ye8lw5hF7FZe27YxZ9fHHzxr09RtVqvZgM95X9AqiIObqcP8+zjKHYIWxFz8uqCCOfvql0JdsFNgyDoXWu5o2XUCNLSHI/dL7bajd8e+zXdQ3bkSHCKj1k7Jffe+t/+u73+TQi1SA7CoNyjxw+o3AcEN/D1SDKwB45uT5LqBczkdPrid777OkPcIwPi0H+ta2PP1p0q2joOdZ8Yfg9qb1iZzz92Qei+ukkzWzXZjHQNCFeBCGWkpjU1wTO66tJvoU0hKrD0sN4pIEUXCPnszitVlUYp0oCRBCLRlUpgFqmUeeqJGgTgE7DcG9+U6Sjejz2RLsMg7jtXSUpgoGQcRL20aSzqtebBshNFhLDLTIeJn2QhApyY31KYqumhHnkana9vbfdiAYg4ozX8SoZ0Vafts146LGGb3jhpYNh38muXZkdY/meLyQsBrdqiczpIKGzepDayIHFxnNRno2zvO2bnpp0FHhlxze570tllsq1RueCDzqdrtoFAyyOozQb+SyO8iDIPBoQEtA84WE45gCZnNAIWaPk4mL/QUu6/U4qSnd2xmWz+d1f+vZvDYo7f/Hjf/TOo+8wRiFcDEb40cNf25SrQX5qQXP1JP2iVtQd7SX+dD7buvdadtB/9d2X3oixpdxY8HI9Hd12D/YGIghjkgt0g+ia4NzxY6eGiKwBhkC+IfxNJ4ClPsZzRoEnB77QTMwuxM0O3RknkwD5GA49SQhGGK6FmOBgibxe61Bp5lwFbYsglFpBx+reDoqk7ygLI4/QGBlsHAMyxRKs62bdp3Gm8dR3ZUbeDhi3uFXci8MD5DnkbFzcxWzvKHjr1fVZF79yFwu1STXrWLvYCydBkFYN10RFqCNuHhIGMcXGAW2yPF7NbseDRDhrMWNh1q70OIxWF7IKYXhUlmomr4N77o5QNy27hMpcLuDxvd2r5gdTYmR89Pz6ZG9vrG8XKSioGKF0p2Iq3Wafnfe7h4Ozm6eWIBxsnW3aQbqznCZ5VnfiOg/8Zzc3nUXUkne3D0I5q8xOPd3ajqhLrfHqlxdtUMSD/Sk5G3RNdud4dzG/CsFBlKbnl6csHiBJ44QAR189nef5nbYkEClLFpzPApAAmXhoTLQHjA486/um5i+sA9b5xTBGyG5mgZE4TFZKhLxdj7ZGvDdQ+doqaA0jA5SaXkvfBwwa3/fbjUQLgRRBWQ4TmCVM9zV0oZ/uunKly2le7AO1aUppuPOThZGcwiiIN5t1m6V7zarZrM49GjuXOLws1akd5Mt55RC+nN5s7+1tNrcxxV5HHRkZb2O0tHLXOandKcXOiLEHIuc8TAOsDQUMcsZQTCDQ0iBsZO8ng0aYU1/dEW3P2I2yOmQPGbq3Wd5EsfH8PoiVxcvI34YOOEiwBxAkzAMIa8ZCF6xX1Wx7uIV161hnESXB7qzGPZ8OBwdt04236Wh79/qq08YHUGa+//jkIt3Lu7Ou/OjLg0GkWiGCeFN5QfKo2O77WlQlVvby9PzzKH+NxHpRzu/cOW5b4QAL/aPlHLHB2Tb9dp9cz/QVzLKk2CmXahQPZbO0zkmNoUUYU5/iIPDWq8VkkBibpDkBfIvTUy759vBtyz+3rrPasMCUM07oGkfhIP5gPFnwfuk48OmdKAGqXS8XlzEjfTcLwkZ5d6a383t0lOyWltmlwPkePPuUGEhniy8fvvaW48VHP/nnb76xR9v9zXJ9c/PD4WC3kuuDo3uyaUbDdnWj2lX/xtfiT2dP3n3nwIsf/tm/rx8+2vFz8f4vHNzd/s5/ePzPs9QtL2/w3h3kJoTGQ8/10aa3PQvvfPb4+4f7r322OBkM3iJBEXoiGbuz6+B49DeK6CgMvWfsIn3tBQ1+Ra0FaMX14ure24+28XBx0xY7aVuKs/OX3/zwjcXilQMBhcDUzZ3h/ZP54uaaOyV9D/a8VpgPj/bZmHzzvZ/fHe4vO4P8FGs8XcxlCv/sL/6QkiBIJ3r91c5w9723f0eCdmV+8F/+jf92MMh/9vmXr915xK9rNtruC7w4e37Xj5ebcnj3Ed3aXiw/hRG5WP3HLPy5pTzPSzGIHlYry5LGaNdtWEQOquoCDr5gfgINTILdpgdBlPabOa99wkJoE0YRQJ7HwHQ29bxEcFtSO6FDPfbrVn/wztfy8dYM4u7Frd45c5jbdWT7r92wmYOr6tbD9XXDNkaM94qfW61fDrPJzuF+PKCY7KxyHOw1FqF5taAo02i/Y6wORzo65L5EsJRkA1UAeeCjgCnkqzZAA0KHyFJELHcNcDHnXh5QBwWLgMFTlmhlOgASxaGFqqpXUeg5MQqTGz/V7fRA04rlyzDcWtzOtOFSoiCUHW8B2kGu41WQhpO6K0N/G8CJVOuk6BjwnYVtP0V4Jy6wAzWye0LdEBp4TSu8AGCmy6pnQRZGk9sbezTRJ/WrfGewNxguSrFivtmOGHZt/4mb3AdIRJremAeU1gfpqqWdcvk29Qm1JvWS0SBvW6D6Bemy7VKIiK8DhEJpruvqUwIGkRkND7DHomw0Vg7QmCBP+wEmRAdRjAHoNqth4c3qqhckTA4tEh4qiRpt6qluksPtv5rn3sX0yS9++A+O9gZBrNbl5Xvv/JxPdzOffPDWr3725Xc1+V4U3aduKGMeLtO/8uE3Pvvsj8PBAfW6S8Wxj+rbanRn93a9dry6tmKce0DtUDSxJrS2RUgDZI3Xqw3Q4JplneEB74iQHaGBHx3hk8+AdsgyFFvDrjtigUtVHW/5z6EcOTNCZOXIChgfuMghQwntaimEMBBlqQ9tT7GBTqisuZgupAyhgU1TJelgWZbRYIJBhVRB0VihebEdypYAo/xi7dBJjeMgMv2zzXTaHw5RTl55+DiRGlOrCTUe0gRAhl3PY6SQdsM0l6pLilhaU3c6CAedsHvkzuz2+8VBQotdTpOTj+Wbk926+XeSsoZPJjQvjvkZ2Nyq/U87bureG42fnp4Fiu8eDzVsL/lHW/cGJ911le8/P/lRxPxuCVngs8RcghM3TIcgvVw9nyllKEIqGhd7tTaX8xM8ngV54QW+jfXN1XWUv64gOT8/3Q8SHHS1EMtynu3H18t5EOcarpLMGwyHL5+WTsdprup24XtF2y8IQQghrYGHAmRgzzsHlAYOklGaq8WsBi7pGi5UFyYIs4ZIn3o9AJUR0KNBmALJJW8rYlMiHE6ILEuDHU0jRmIQJqAQPQk9l6hyxbwS0K7nfYxHxmLDrW5FiD3dlFaoRgkhVop31o9Vv2B046ze1I0FhZDbff+s7xRAeHfvzobPcQy4NtpRpzeUxlpoBzZ+REwd58OC846ClYYXBOwAPaJobXVAwR4ypTAhQhWlIsxauYDQJAitPbsb4h2hV3U9L5J9aMR4S4jWQvEuwr3gEDjqeRRibhTGLmO4EMt5mkYsJDfXLQX+3tb9qhSgFdt7gRSnPmEU33/2/GS852s7o9RDXFAoRV/3yzBp7zorDx4MpuzyAUyj+vDJ7IXcjlu9czZdXy1KNvfrz7+3ezf62Y+/ONh/4/rmKQrWwfDDcXbPuLrc1MAmEPh93/R9M63qmMYRG2n6yg/getoAOzLd4HB3GIfWS/np9WcP9yarK6/Y3p/Pbpnz7ybDvl9CMHROMc8aex0WwohtvsmS5FUSA9lVCFpZ1dVSaIVunSDJF28d/kIC/K39ST1djON7QAu1JHRxdS95rZhMXl598uY30q2dne//+Ac0vZr4b8bj3fny8rZuGGMwOFgsp/feuf/iCU/T7P13716v0c7WKIqYQ8O9g/cX6MXDXx9993dB0Rz1ZRkOPk8VG812Xnnpz3342y+fvgrDUHB1eHeXd6UCVz5+m7BwdBf6Ay27Ng/spqxf+8bfx35x/tMvdrNwMhkmeTJ7eZGS9O23vv3nv//Z3Uf3rJbXVyd5fp9zx0sJRTRdfOwHcNPVUuiD/V1MLA6Hk4O3oyjZVBvtsWw0mD69EtZWK/3006v18ss4HT9845tFmO3umNYtfutv/Y27h988O/lye5hI14nEjXbz82ePRz5yGRBz9dr7edVuXI/XZyMIOj2cYe/9zeJHWv7E90m/GjqYQmuaFlFz1KpP4mQrzw7rpnFIrcpTQLTSHu/TIKTGQSU7ALGB/WA0WK+XqFdNKFJa3Cni3W8c139xo68vB3f31e6bzebCj6hG03iwWq9Xhf/uJH/th7f/wxtv/cbVq3XZzB3s6vXFmw/eZ+ah/+iS5RPYHW6e7vq0ZJOPqDGMMFW1DkMfhwjmxsXcBiymfgBQF2OICG37Dnp0DGzCQqrtBuIMUd9h4IAFCADnoLPWCaASEjzP8qO2VlrpepVbixgzmgsnaRZtNW3pgfFmfh7FVLYijKjna49Vprll4QgYLLQhhhSpN5+36SBPC7JcWIS84Z5d3xTEOqV0Y+XaKYf0DuDRcrnWyqucwkACAE77WoWB50e97vEoATbLEnAurlu/j6xSzrfBlqdFEnvpKMPEhBQCqNdQaa1TSKIycnJDOi3dpOwHi3bjpTAtMqORwlErmcY6AiTxWEQpwyQpXevWwNrbNb26JYnnMoSwyNao7PQL5DHt3N3XaJwpFDNASOa93rat799JY+Ys390bz2fTKB49pN8xxdFgWH7+yQ9+/cO/mkzE1ezw3sT75NkPgUcpoiEOllW32mRWuGx318ET0+8p5GE2l5o7MYJgoGDJh/P59Ur1KyhshndivZt6CYeL/pgCWPVkTcGImH2mAUKy1xuHUguunQNIRRjFCCHljOKQeleE2rZT600AsJ96qaigxwrh95ay69v1JA/90M2WN0GaVw1yUPXyhlLqbOD7QdteAeKwDiL4dmkvgqDn9bSpCxWksAtqRYrCOrUc+0HvEGRFh0KtFmPf+Syum1oBfXx8XK82zbrJUp8Br5VPrfeuYA8uZp8Z9dl+nhu7FsQkkyNPeavb+ZLJ60x81p/j4aBA7HbOE+9IIlQmdypb2ST88qQyZbTQp1EITm8vB+mEENgbd//B60+eXP7g7MswcKDrh162F2fW2h+dPB3u5rtNaCN9JTefXwqAItC+KEi0E43m/WWS6JsF2d+5z/W15yddTVlEjShubzrqgSiLl7OWeGkjez+komdcASdqRrBDyDoJHNWcwChUctO2giFjnQxixQLsMFvdzvIilVwiSJp6SWlKKe1db5YKC8lpKIXTxNFJijVzeUBRiCzv2pmHAfISvm6wsyB3zWaWsSGDreeDboopcWU35R0cDE21etl3TRyOjU2QVxrcXd9CgJowSpVSZb2xDDunEcZpWqiuXC2qO3fuX12fID9O46wquzBgRL7mzBEktxBboHawt7Dgme6P4xHn9YASV9ZPtUmUMYNkGxOt0HqzPhkMkiSpVU+atfSZh/21MNcARQRlLGCANELVaRb4zGN8ByLY1MqAIolGQoK2vdnZjg06UqZhzH7++Ed37j4M/PHF1YwFnmjnFuGl9EqFFsvZ4d1kWc7pnYFmSEY43t0d38HB8AUJxCDf2Sxebe34zdp8Mn38+PGXJ2df/eZf/5V8MDSAtXhVdo1p8STZbhZraOWiXgZ7d7j6aDjYm1+5ruui4plCn6f5OwTksvqaB7rVbOkDumleCDtjNFLunJijatMmEalXqTMx88V6cWO1tiajRN8ur3dGd1RnQh+dLm+6nkJXH765I9DaIxRSHybkRx+/bJFIH1AfvVXxa0P5B/f++j/9x//q3Q/ulWWYo2R68tmbb77/1ZOfjQ/elH14NKqfPX3x0ydf/J3f+hWM/CIat82n641hqScR9OfhaPjO/uTGyKvh8ADGD16dlo29IEdJEPk9n23a88nOsG3CNNydr2rkDQJ2f91eOCyTML5Z3OSjsegzo2612/iesV339oN3/i//5s//T//b/6a+9oGctZuM4Ilo9r44b3eOJvP1+qNPPtIMnl1Po4jkfnx7fbO9Mx7l21UpfHBEsHLEJGl6Zh9j7P7yz//k6vQnP/+trzeAaLw24ObRw99a6/133vulzcKk0TjJ4lm7THeys+vP5Gp577XXvry9updm0KXAliy4/2L27yLmOP3Ec0Xr1kYrOkYk6LF9R/GdunmMg39PZGpb2EsRxIlRKkuicq15F/V0oXRhoUe8oO1FEIUEe85BrOJW4jvZNnb01WoV+9ko2ladW59e2cGfTtL/uu6bxIHCvSuz64vmdmeU3l5Oy2aqnRck+ZtvD7RssuQZbV/fNCzJuJZXWr6MuGbrw+nJ72GywDjEBDLGOqMQAgLVGFsUBIL61vpaSQpExJAPGIV5p7nnBVVpfS/vuioOPWMNwpYGm8zfWywsZRzisGvaZOBtVlkSQYhqh9sgwldXVx4jKcHQE2VNtiai0yviEQgd8src9zSndWmx1/p0n/fW2or3QVAij0FkjRK8AcqEeLtbDbtNUBQI+F/1ygKUL9Zw2RobWhmsUC60x+mkvd4shdzt+70w2ismA01smGejoY9AFTDtYd1sVpr3xKGu6Z6try/beUtuN+LHSr/YSpIRHmTALNZm07iqV5j5jLE0ZEBJUVbPZ8H5teZrfvv4c9pOsalOb09vNX/1qnvxGNbLJM3Cozv7ThdReP/g6DWYnm3dReP9KB6Sh+/scLdebFaPXvvmw9eOP/z2o51D8Mbbo9ce7gDTPXo4Hg277d277x2+zehgZaTXq4CijrWmXBhbSNB3upKaCYN6fd3qCwBhuGBZF2UmJMaVXXUrllXUmD23O3knTrawp51fAdZabB3wMRi2QnbSCW5Ez2Vf8XrZV4u2WvJVEIBxTMdAR2XV9bq6XJ4KYn05ERtx/yCppp8zKVAdmBJ2q3VnzWxddxIb5zed6TtLACPWL2tQ1MPNLVYIRbrpS+XyMSXXJCKYIgJgjKhnYbUpaeALAhrRc6O2tsbr+Qwql7MQCRVid6YW+YM7rxafj8bKsyRik1WN5v3RoqY9WP+w+9we7J8I7wwJiOXNZtOhS10043dHZdq/lNcX/eLxqzPeYRhct67TQSaTkG5vBcPdL599UTafr/7/JP33l217Yhh0fuPOe5998qmcbt268d2XX7/OrbaiaUsWFvKYAWzAi2GYwcaAFsNaMIsZZoDBJNsaHLCckJFttdTCbbWkDmqpw8v5vpsrV506+ewcvnF+mM8/8rGjTJahHXBeP1w8/jD6KDaytMou2umb2Zvvpm9dqlEkhlI/csExWJ5U0i6ylbqiWZlWlTOPk1ZPUWIyIZNYVjzhcGx7BuN5IzSyRGsMJQJcK02Q0EIhqICQkANyFUcZVKZhF9SOtCDzMRF1qJWhWFtWHaBtgnzAu4K1FTDckBCbENtvb99qbhzY3T6zkQpRFEVmJX2FFVAAa8y4KIsim2NZlVnM87KaLfMoi+YpzxVSRjbZUMxxA16Do1F8f5nOonwG7OEMg5NsXJglcpBDHVvaHeoVVxdSymYYlHnmuy5GgFW1ZViCK0UmhHhQ7hn4huabWG8oIIF9BCEnJLFNQ5dbJjWINaWoyUVZzFcC87rndKWolMwB1JIbWjRV7RDUMnAfqS4S/WRh22RPVaulm5aqxsqxmQ5wkmafmG2eGCwrzxxPJmlqGc2ws3E1OkfGvD1Yar2ike14shankM4ms1NqBFKGw2EvE2Lz2sudzp/oDZ67/dzeS8/f6/mr0ZSzWs+TT0bzHzUajarUlg0ZY6J0HdPO0jFEHEIbw6DVDpme6npjMVsu0ye71wZ5FDTM123cz6rDxtqz3tp8eDp3fF0zUETXA3e9SKoiUXk0qiJdszOvXbhBl1i5kpBrPZqPLNd79OxBxSpATEWRxPYnH80+ffhushy6VrNIc6DpyeFZu83Hsdi4sXOxPPzFX/p3vv37Ry+8tC/kqS66j2dvVY64SBfWoBvhRbhPZmL5zpOHG1vbN258Jlu0zo+La9t3z05iUXvziel3De6CKQNJHJLEM5Jlz61dS4Z+P57mGC1cCyI8HLQ6WIMbWy+nOlagNHhT527Qat5/klB0j0g3Hqbnk8loNt3ubItUCWC+8vmvfu+fv7Ea3nZJP89zbRROX5wtTj58cj7LGqOF0tQrOYmz3KDIJmI5eTpogvn07aq6GHTap0+nff/aR28+npyODjY2MOYtf3O+GN56bi2O4Ouf/ROGrQnuBo3BIpeh1fdiI51W3vWDp6NFu7SCPjl/OgyRbrneylbrYlIdfwIvjv8XWRBcPpddbShe1upHw/m3izJKYjtP/GRhJAlhlQtkqFjIS1dUNsV2sii0NG2zY9G+YuF8AljqP01jyfRpEd/PxhWvgpUuGwST+dQijKZfLIvMDagQO07HMrrG2u5XGmRX8wohVBZWq73ve89fnQfXb7wyBVdvHr7f2LwrvZsTIQprMSquHp9fCbtZ41YlA4UMimVoW17V8uJrJrExMKCirhNSYlFq1hUXgiEMMKJcaqUBhFhBgAkyDQxwMr4AXggYY1Vhraz781lMMdFVp65kmeu6oIaBfLcryg4SocAkF4TVDd+5rljHBC0bEZsoSCBFXUwrVmgEbcOu8hzXPCcIEsfsY4izZWn5sdssoqykZrCYnjX3n5vFhV9CA1hn6dzurrRxmIuzFBuQLvsukmGL82XbFSD0kMncEqKyTIkWWOFMxfHiIonMVMdJxtAyYxNAtlz3usA1DZ8OnGvYktQUgY8tSwCg03jCsoqR46Q0x8OqFDXndf3kEsllXXxrsvT3915aZGde6J+f5lLKawd7T54u13d3bMNcLiYb6/0snaZpure/4jgcmLvrtv/ofn/3Zoer1pr1GqHF3sFL7cG8KrQ7Mo7OnyApJ5fTfBLJ9W0DldiUlQRQrCqBFJSqLilxuRnURGRFIQvbxA3foiTlamlbDUaAR2CINVGoKNFSAQkoIgKYet3CnkaXUo0454JTBbTQHs9T02gu5nXT68YzWKnW9Co06cJymuk8DQbN4+OnrrPHc40sP0qS6UgpSV2bizqtYguaLpAF0g+BZ7jECcDqUfRA86RK5oHtq0xo5C8q0m/5qp7X2czf3p2kdcDp7u4OlCwvawyB47ulqKFdWxsHHx3/4PpqmM8zVq9eARbJxebWy7PkybPjK/nqc98ZfTQc5oZ5jUfGWJ51Wy92tgbPLp5iAxNo3r//oBeGiRUL+JzpBm6nFtbi09HH5dxSKbZJD+FFKvTUJIzK0Wy6s7XpB83xVTJ9co45MyQI7XRezDZ7/ad5nS+erTvW3uqKRVzHb+TJiNpGLdhyMaTUpEZvbX17PDuUjCNLLuPIc3cYnGtlYOQAaDJWAogVKgCVULoI1e2wQTSWgiOUckGAaHq+GUVREARM1H7YgJCkWaFNkLnQ9Jtm2AZGQ3MhcgG0Msqq5EtRucTrcTazVIpBzNIUwGbTDYv5pVY4SbntyniREewQWnPzfp10o8layk+xu2ACLJdVu2/4tWm6ZD4ZBn5YKmnbbpynYSuspTQNq8zzMLCzPPEcRwht23ZeJbaVIODQoM7xI6yfA8Vd6p3pGlICEchtvKl0avtXdT0pckvSNzv9br7ESA0w1l6wSNMLxyJMa8uSlsGkLGteAiCpAaoqqUuwvdvPy6SSQho0MNex4WeVcIxrgl0CGN84eO7iyXmeRps7G0Q0xnEcZZOGTdYcPDnPetd36rQs7GE+hp0mCG3/4cnCDbcZdpdp+uKXXzx+8oNFPKpBvL6589F78e//3j8LOq1W5zOvXd96djQqpKBtk/L87NGZIcmdvTsPhh/3B51uY58gwzTLbtfJy9R225v9V8eTi16fpvkVDby4OhO8g+omcz820V65NCF1/aDDGYLYytgjUvdVpS0aDOeHluskQ1NKExLp6sE//ye/erB2Lz9bDPrtbJgHJF5z17zrL9fF1f7uweVltrLtut3kgx99enO37T1r7DVfnEdPLLraa2wl5yO4WOmQYLBGmFjEqUROOVx+uFg8lWoBwdKpO47sgniR1W8u84OG8SVhh8GBU45nZWo1/AGviWMu8jkwSEpR7dtfymfd+eSh2VxIKceT09CSXK1/9P7Z6cWpLpZf+exP/i/f+Pp/8J/8ld/85m/Uk7N8U6URkbR1bf8rv/r3fo2byeXyAbZIsQSIIs4ZVCD0G55h8SgLkKF4Y3vz7vk42tvY+MPf+cb08nG7Ca6t7a5fe+n7P357e3Ct2/vi9et3AIiqolxprp6MPml1Vin1yoJ5RigXaTQ/W7u99+hsaHa01bJHlx93Nz7DPk2PTh6udqZMJKz1vbXBCow/D1THUI9qeeg7/nI5ctxG23fLgplWJ1lKBAzDArWUaRbbQSeKIgAdoKAslayUrXWaLdlZaQUeNVyHKpkmVGXDtNjsbq94mKkO8gOjL0n8OksmtnWNoY9Urjf3vZUVGiXF2n5nWcTDJ8PDD98HP/Gz7da8aXUD6ytA91lZeCp3QODhEAuXCwWAQa3AsXpIFhAJgATFlpC2QG4O59qqHeQTLG2bQcI8R/FaGMTVihSp4YeqqphpO0qpNNKNRouxrKwmrkcIbBfldHWP8OoyXVoII8tvFwUPHdvyyoLnJnTLtPADICURtSslJZbghWMaBjLKurSIabnLOAr8fq0yZVwZRmexCKTq1taYzC+bbqty+OHVyCB0dXNtLCXC4VZjMdLC7K6qfJIVVd0MvfqiToPao1IJMM85Y6MinyeJydDM/mQ0JckcE2xYzrCscsMIPeG51xwbmR71kCCKoaSSWW5zZuZ0HrNieHoMRXX05PBiuDBcejl5dmv7z1w4R57TzmZqbQ2urrff+OGnG7v7raB9cvKo0w6UEPGEXVt/GUFZ5knTd6Z16vV22OIi9NkSpTAXrx2sSkrfePKYK95yuk+HouNtkMi2dvdhNbYsq+JZIRdQCqy1VDGAS5mREDgEt3NjwepZVjgCEMuVUjpOILF9SSAxdIhkBwihZcm0Z7qJbRVQekyuazIVuAbSkaIXL0YWLpGCkOdpPCWN/uTqxO1kp5ejvbU7777zjtD1w6MPVjd2bGqX59PRdFwVcRisVVWEwDItLCrbIOfL3hWpr9hyWnEPcaPFcKN1U2XPJGCEEmTRRZR7nmtil2XzVmdgGMazR0+vbe6WSRHzTFiM2dXhfbTS8pQ2Dw8vN3f6w+oxWi+P9HceLMnGF+/8cPRwkc4CDzvoUgamgWWr5T0+f0woTOLF1eXo2rX9RVFNMe60eJSe14u8KqM8il3bBz56dnG+4h+0V9vnRVIVGSb+5TibLE81xRWot7uboKqPp6e7K+2z4aMAmzd3t3DcmCfDu6uvn58uvKA0SJjMPBN3MWqETXc8nbHaE6BhWy7nMecLSmolhUGx1FzKyvUorzElhNeOVokCRbp0iOE7DSkaNaJZniSQAOoYvFAFzxWolQmDZkM2POzaEFhKlpBAmJVOwwWFDmBTkRLgMYUMslZZmhTXHqrKqzxJJ5xTVmpIYCUSnkUYZ9ByKn2ZE5mpmAKzzNYBA2EjY5cR5nQQ9AzHLmTBQW423bhWNm56oZgvRgPzRclwxc49P6wy10RNKByEc8krQ20SjIC9gNryTV/zDi9Tqc+E8DTf1LCyfVsJU2UDGzuVnpu2PR/7gb9DiHacyjSx47C8LESdd/uB5cicZVbiiaoeJ1eGa81r6qAAZIJiaLXPJ6O40WiW1dg0ZRuvCcbS4i1OGq7r4SoQObPXaVIs10hzeHwZkyqg66PsNNPnPa9nV27TT/d3fFaH7FRt2QPLWbRaKdfr/+jXvnnvlctquAFw0F3fXcyzWX7a7ns8MpIIA/IUE8dzNupyVvGhYzQMG9RMUN0IrG2fLsrETha214yX8XGjkTveHZu24vKjohCzuUdRL896lnOqCuy69nScU9uZLEasDpJigonX2Fhxdfjf/X//2v/5//orL/Q3Dq8ebt1ozaM6XPGzYv7K6z/1+9/87ovP3/7m199/rv/zk2dH4WBvWYkMZKubG8MrwGsTeS3km8Tgl8Px7MrMQLaz9Vk585LZEtsPHvqbO2ZncaFWB690g6359PH6+mvJ5U4hvtPsbtnVarQwRNkejyLbMIspN9z3m+Frl8vDz2z90tO3i6fvnH3uK+1C0m/8wbd2+mZIdFLy7ubWyy8+/xf+6//q51/5wsnFUhH01T/51Ydn49liuiwvAsvlNUF6CQXACACAASIGdduBnc3jjdvBo6cf2u3W08cXH3/45t3bd966/75jb4xPtENGn//iT9x8/nmNKRItF4gHp9827IaB2TIaSYWT4ZlezHZf3F2YGaxaxNHDJfK7vcBb9YMYWacEvnZ6eGSOJi0vrFHlBnB1pXt6OrPUpqlGJoHLaNpqA81Vq9+KFhfU5VK0CDGVkAXLMBIWtcqaKZG3qsZ5Nhs0XRjrR8lZ13DtJF+czHcPXvC9JzRQ2J26rS8vpw2MP0G0hUO/Q17VuiyKhWTQtYzVdbu7MgitlWz0ZMt11FwSy6oL+bu/+av4Ke3vzkOLhrbJa0Uo4rA2nJyZl4FwtfAIajDOFSwV5JgghFqa5QpakiuEENCkKguFMNDSDEmSRrrYFWphejGmHlaqTAzDMHxndTbLHSeMZqXr+hgpgwRFxZCSSi0rrqlNMHS5tC2HXl3w/lq5XBDDxJZbZJmBlLQdSrI6c1t5WkwNxzftwdUVFSo0fdUgOyTwzaYVjcdeq9fd22VmESApYT7LPAgNFBkxt5uhm5cpgz0OQXo+kzzPZcl57VC77YXLqm7DL3jXzuPWAsI10wyIxfxwDaqNfjc3LNlqI0krjVWcFhWSgBrDj2mSTuuFOHl2eXJ0To1ieDxqt1Yfnv39oP8nHz76eHt9AMDucpH57Waz2fzw/XeCwGk2GrPRxdZmi9dTIcTqoBkrRVLbNEvWWdcopXm27nxRmyJnz3qyvPb61vn8U88aiSpm/rGuP9CohT2h61FR14g5pmqKLCQZFY1KW7moOEKGgWvfusJgYfLA1CSwA8RcDgpglcTivGZVVVFxBauBkjY2ODFqrDzAW1xgTiJG4tnk5GDz3sXZI21LjWldQVHOm9RKx5fJdD6bzc/PqmajtZidkSKNplW6rKL2FReJ6zgmdn1XaOeok60dn1YX8XjFdmE9sdqAzz8O11ayxawVYA2z8yS/c/A8Y3bAcmqZ0+kUQlgURV5VTscFIT6cPWqT1Vde+9w3v/WjRseM+XuOhQu889HlCFy3z+w6XQgunHDQWbGdS8U3/NXo4t281G6nLw24ttMo+LBUlh1sx1l6+uw4IGaIux139WrxLKmT3Wu3j4vq+OnbbcSwQm5n7dniyu5QKeduDKZXT7XAluUdLmXHXLO1f3nh9U1zxb+7mJUNhxDYrFllgglU1AyKSuVSeEBZtZoSVQNEDFtbslXxHMhMiFqqisB2XooqQ72NfDrOorwyUGDZzTq1i3SSlycu2Wt3cFlwQjoSID8k1LEBaYHAy8uFSGbSgV6nI+aF9hy+KC22wK0wzTmuAQDxMrvsuKGe8igaYxpolZqulMoL285ycYolZVIWPE3STsZ9m4y8bumWjWRZZiRpWitENaoqdTykNLcxLWpYWaPh0MOwkxantkth1UfKMZ3MRTs1XyiFdXLTRgY1Jpomdd4Q1QawjikJMA4RIQg0uFQKgBX3c0WZ5fUybLpJWrqeY/rleHkU0FtKcIJJVdRZglrNdS6wlqW3KwqZr4RbkoukHNst7W11zy8vUdqnpiBGiZSXp7ltwzItLHe9Fayw5Ex79YPp03ow2O9vffDup8jh/ZV7aqTn8cTQ2+Nhk/j2rS9dmw1Bv1877U+hds6O7L2tDT/0F3/45gcffjvPNnbX99N8sb3RR7GPcUvbPMZzh9xqBttPHk5Wer5v3qOim8WHwEgCs/Q9fPpotn/TAzocPlwpac7iFjdLbZ1gGEieFEXdbnll/bjn3ZXZJyV/1hlsf/DdY0qDquZpIuvcrOl7m829tx8++O2//3VVOLdf9Zlyi6JjZ3zQ8cdHD16++/wfvvEPgzWe64uz4umrzjXOpq7p1eWQUtAKvTpbEKAdYxD4PcFAp21YwP8kR0/vn+7d3t24dXv2xpPo4nsv33vtbHTV666neQLwAJR3M15bjjNJ7wuFnpx+CnK62lxHenIa/H5ipd3B7rd/68cdy0bKmeXZtL4IRuql1z87zZb/7l/5D3/lL/97HrIOL2aX58XP//IvHJ3OTk4vXMeKYqCkrQrbUJlWCFLKFCMGHqyFLz6/1mpL5MiNxnrG6fGzo9Xunm27u9f7tb48OXnytZ/7mtu13V6mQcfK/MOnF173oNTqcs74LCZxroQw1tdKHOoL0dDEdT3hn4k0ZPGTzx184Xb33t/+tX8waLRZyj58+1lnMF/Z7ja6rmk7EBAEfARTTPN5lAXefrJsKTZQGJqWD7CZJ8TywiyvFNDTYVQVhSai7ZhxHY+raNBoUQgeHD2+vtXJYWR464nY7ts7lmYNXI6GW4ulsXEwzKZN5M88G6lSXbvW8YzO4f3q46vpxp0XLhZP95w7F0ezf/i3/3pf1K9sXi/JzZQJkypeVv32jkNaPvFEVle+xhRaFqwWggAHFciGlQYZQNDAZlKrwOnVdUGgwVlumCDPqzyhnU6+mDPCXQ5rwBxsZACTaFEqXULi6Gq9ylSzJWezuUmDftcri6xYBtRuVbDGlrEstN8kSnRrftTqblalyeW47XWzIiM8L0WtieVzTqlhuXZZ66TizWsHILf0B88et3qD5iAsYKlmYx/yyfpKe7exyGcLmaPALSWp8rKNVVxPSpYyoEzTbjgN327ktWj2rCK/MM0VtNEByqakp7Enca3orGJb2DYKCupYGdyR+SwqTuYFyJeL06Oz8fIhotwIJatVo9uYL5IXD+6+9+0/2r59jfjOGw8PX7zzE7iEP/7hb8Ly7ue/eH1yWiAT56kVx2L/pluW1vHj01dffi2NPwH5hYYd0eym4miAvPm8bHXXD9ZbLrq+8vrBxXAu8U5MVbfRLasTjzBWu1z7Z9kPQwdB9moFEjPXAWyl9rIizwzUc8lnE5R5vjWtTySnjdY1iby4Kkwiqc/LxFKkqvSz0DKVUnlaKhAQSVVdxvPY9W+UtjnRrGNtP3r4xABZc2OjSZLjo+/G8fjZ48um7zz55OMpo75dJXVtwlLInoutIiprlSTji74TRslQnkb5JOak2G50sZCkQfJlKQw7CHvHRxfN3rqEaDI7D/omMZPTUbEauIJd0FZHO8bx8ehCtH7+J7/8u298SxWXiG4saG8Rog8m7w06ATNXju7/QVnoG9e/XLAybxxgpp9FP0aeV4HcQExoVDLbsG0tSsEW508O86IAIVhUh/2gNWGLhhuMLg5rVhuI1tjzA+9idGXaRr5cCiWAHdZpamIiuGkhyQ3utdzR5Mn15g3Xhaqocw5N1AEylphLuCpnM4QNJDNEYsfhhDKIHFbDjI88p1txpiCnrl9Bs0LC9Y3ySvM6UJLDBkz83FzOzKw0e3dwViapBKbtY6JW2lDDouE4gsi4NsolJjqvA1B6TlerfFbA0qU9lY98qKNYyyUIkM7n43Fk+ZYZLc+CljFbzgwjFNoomCNgIaAohQeN3HeyuoKaMGieI7mC08o0e5WosjpxwibVwXwehaEF81ZnRc9mcyA3ZNFldSQQwHBVh1kVQyZSz8sNWypdQ9lo+CCujrrNXSYueMGA8DhfIth0/CWXGRORZcOizDzbchxaFFmDBibOEdFQCQubW4M2rMUyWZg+JrUNhJaiLCV3+mvIc6bjxIUhwSBamM1WNR1GpeRBy0qmbaNRj4cnPR/cv3wCqqvtwjo6EceL0ec2aFmWXHiDjQ3BRgaerfZXh5MxaYUQNgf4X7r//kcK5vdeC5bzy+fveR99QP7ozScPG6c3b9z1UOelL3yuqGNjkRu9dcsKj5+cNNecUfLUc4wyfiBZDSt72Z1g6XR7Ylo9BLoZNIOoBKfl2cqMT1EidNVuvKznLUFHzb4mpl/w241e/ujp24OdDRlLQUsDh0+TsWPeiuClubL17qPfGHw82v7M/73g3LIS1DWkCrpBPb/K1ML9E6997Z0ffO+nX3hlVsqr4cX6ZhPISHFSZRZXkTTPBuZdosDWlrFIM1Yvt+5aMZtBaqDT5NO3PnXavU8m7996bsOyXo2vdkbqm01Ni3bb0atr1eDHH9+fnSXrvcbTk3cPBq+9/+79e3dNf3vlf/ujv3Zrc7u1cvPrv/ONDc4zgspe/9rm2jf/4Juj4cULq9uXV49/+uWvyWn6xkc/7Gyt+cSOljWxJCJlLTiEDdNMHA171Hxhn66tGp3+9UF/pc4H7//gu5en3291WMZ6vrmS1OILf2J0xmZb4c9D/FU2i2azw8aqKlXtJL2rq0tx9uFKI4btMDBfquZJ+16IuBMnDaN4bRZ9jFB8+zM3/9n/8s8HTgM58bMHF9NRA6Hos5/vPBMXlPCtzZkwqqa+rec38ur+0nwyLrKVjTYvoOX1DW9iYys5G7W7jqgdWhdZ9WHbOoBag6xa73ZFXGgKbu7uEwookJawTA8JPo4h1hZk9lVoQVv40/rC9lxdsp1uiyZ4kc2fHJ+a0YMvv/ZSOpl+f/KtP/it3+2bVuh6mVE5Wpm6Q+UaIczCoBmy5ezUpC1V2aYhIaeEWNCOygqoumFRS4lYa7O7TmazGcaEuiQdI69Vg6psuEEtphAVzdCbzy47zRdPzup+w9GwsmjDhY6w5kkuNNyGRgWxXMSYkLZpawnmSJkQKMsusohYhHXCsE6nrDSbXlOIpe/5xPahRm4Usd5gPY6XHPDGgHomrLF/cba8sbKjeLZ4duTvP2ev3h2mk27HXc6LKAdeL8QuL8oZRLUWjvZoE3kOMWqtse/FVdn2my4wZGsfY6q4EIJBgrAFFXI09ClSlGZUF3GV1qA3y5PRqI7G8PzyyHY1rdzFYtHsNRfTLI9lEKKPPj7urQ0m4+UP3vzHX/7KT3/44f/uuQCh6HOv3jy6eJeVzu076xejJ44ZOtbtd370/guvbls0Ps1mdridD7UxvVj18WkcG3Wvu45pY3sFtDolD1S7qMY631uan+6s3Z0MJ44jKgls1i2SheelcEoBZAy1aqwreb0U0LWOQ3gb0KJLr2FZiGgIpO+6DeizuBoG1jaE0LW3iryo65oinOa5hjBno7R6trt7N03SQWMrnSmWHkN6GcDrV5ffA8o8flYBgy3nrK13Vf2s0O7x4cnq2paNXIFqQ8HFdIIJLF1uLWoeZ64VuKZFNDU0pYgkmjZwNzoFyPGZH5tQOpjmqF2M4abvpTpHKxulLq7m54mqfu4rL779xo+TE9C888WRjkW7+c40qsSGud6Kr55GSbM/2LIaBtFMmY9GV8cYuUmMDBJw7gJkVnWcVwUX9eXlZVXmlmdDSiBEF1fDKM2kApZhV7okmnX7W+PhGBg4q+tlkvb6fTaZYMc0Lc/DlVxaScKhcf5y485KIyrnE7O+hl1Y6CeMQaqv9XoNk8ST6dDzvKpSFm9KZaTF0guwrINYxQhTzhyosdYJNThnuExre7Wbz5cDpzWaXs2WaWiHWVy4Qur1XssMC6JMx8TYYqzip2O6v4FhwOuSmhDoqphMLAJtTaEZXR0mvtPM4st2hwhWskoAzaN0yaUs8hCpzbrOazBOeaK1DS3CRE1MRdCOZTKpMpn3gTXpd/sIlTIvWt4qqAkXctDcyTNB/TeXs30bPQ/QXKHLIFgRlaZmpVUZdCJWeEIAzTue0wcgySIahEjqseLCpTuGCUtxKFgN672MDW3H8TyrrmuESJGLspQQkna3GWdjRKQUHBhGHCmFAsvqc5FpzTBSHrU0RXUWIVU3HK+QKggcDYACotPtjkZDanbPLi9asIWBP0vzVm+lA16qOPAOmsv0SXz4ZPu2ef/48cHBV8tiMr+gLujxeF4p1lv1V/q71sa+lHF/sPL0pOqucNMz9cXh4YMPOwH0GvPMskzS3TbbbFDLpMpPRStYYVDUWIb91uLiEn1iCXOZW9sNvd5oRLHhj4a3kyTqOzWRG6JMRvWHnhMp+SXLOQDWYwsH9WLVQS+0tyZFnj55ND/OjtTaUEUA5Ssr3RMse9/53Y9f/9L7mxsv+H4LAlikUcNXo/nR5758u6yP79594fLZ4WIREaqSiFsWu5h8/96tL99/rx4EX61ZGjatJ09jr7FGlLXefOmtN78/X6uX7afASZHHNv3X5bR5Wj2Zzz9uNsCsqFGpTrJlngIJpYXo0aNTp+kki7Pp6PHr//F/fvpw6SL82ev3JjYYfvf9oOnVrf5P33ntUOFv/vr/+0Z3593hk3/j5Z9prDV/9R//jedvvjganqTzaWBRYkCEUc6gQHGZgb3V1mdffV5liC3bVuPl40/g1ek/d9nVqtc0/VCbQCwWr+3fBIOfC+R82ze96mQ4fIKoqmvn/Dxz3emTx/9iy4eJudK7cbOw8MDuu6J1uHzUwUvKLViI5sqdccEP7uzvBM3f+L1/7GC0udIYDc/Gl8+Ojs/rSsa371mDqzrFZUYpDgGpouKHpbaESg9e/RpE4XSe+V53uFj6YW51oUteq2BsArDWbwFWORjXqpYGLKByTSkhKXONBAlaTSEKk4sqmU3zCuTYtZtmA4E2HkbLVIi5MP/1n/vzqrTf+O6PHn78hleD/Y3bXgECoJwW6jaaRDm+uVYVCVCubYOw4fNC1iAYJarfaakqwrA0mq3TSdp1qMKXTBCMPQQNKefELEyyPotm1ME2PIDeglWMou24GrqhkRWLXmevrGeL+NKig1YQ5sXloLtXpAvDUFJxBH2EXEw0Y6VigenUlUgx9JSkhpfXKoGVXaQlKblQqqMRS+tDgSoI1o+eLZvrqUTbzbA9Hs6qmG48d432Jd1KjMKaXJaVzGyfODbOy9yAptszDVQjbUHHTbKk3e6UZdmzLUiEMDDCMcSGUoCLmgBCoIWxpQDWTPBK5zN2dpkW2prOinRUwYWlYL8oM8WuOUaRpo/TbIahGzTssn4izFwro+WSj97+8a3b977zrfeeu/Pag+BsbdPXNU4TMJpdfuELez/48fdXd7vQznJpI+X5QAyjoROsxKmAsytqDrzwHidakmHDzYE3P1kuGLjftG4vFhV1SVmMGWfrqyuP7w9TfGjAHWxlmAoqPAbsUiRZabitD2m5onlXGS3iYamKWi9pwXEhUYtLAGtQ56quJEMa1bzijOW5sdX7XJEAzkrfVUV2EvhJO2hW5IjReBqP2we0qlrJaLp2QM8/ni6HBaiVDY06KQTABOGz0RgAHXtFK9d2xikioFYVL03DVggBFXc3e+OHT5VppjWshN+QpC7zGUE9kGmEc+V+8vBQh5s3PvelR6MPL6KjemBXYjpf7zweHrWkXuiEzB2m8d2XXy6LxiePjvZvm88eP2uHe0dPT1e2OnleLpMpAEohVuSLJJ7xOltmaOB3FEJMyYLX2LVqBNM0MZ22adKnJxe8Lpotf5FctfuNgo8hxl1KFJ8sRDt0qj3PWmM3PTMtsoxi3VrxlGRKLhqtvpKzhJ8vRx1MXCxNhTTXionM9ASHEbU2pCKWpSWYAmiqKgC8k2Ws4SttYAG1TisQc0CtxsZGUStv0ES9ZryYO54vryKxRe1xDl1T4IJQu1pWhHLNFvlyabpNzmqpFdUSyKrpdiEvZuPDwGlWNRGg5XrOMh1WauT5DVG6RVmHHZyWNTUsk2xlWew0mEkMDRVnbSBppccEZ4FnSFkxVRrYLblH1H6tUCXmtmmp0qkhCjw/K6ZIrtrWDc89V7oEmnE1l8wV9Ni0BnVqscLB/kgAoFnfxBYxUqQNz3HrshRKScFM23eQ5Te8krmGZ3KVuCFOFkmz346zjDpFHC98z9VcCiUNjR3iCWZEV6nR8y0bZ4lkjDGeBUFrshjlddLYz5fn8EbYOC0mKXu8sLVHLRbLjbV7Ond18ezwwfcBD1xL9tbKnM/7mxtBUDc6Ok2U4/eJ6XY3+tS1DIv+8e+eBv7G8Gj6a5/805dfe3Xfn0TVsNV7HSAElUYcJ4vlwfPPn5w+I521xewc5Uu/SI3WWkx8Zgs/yKkoJlPYG1wQEwpuCnWS1PEiXtWXRribxMkCWRDihsp5g4AVC+esNa8rveStVad24NXF6adv/eGdzReEuMJ56FnmxeXDwXoXGaDRHAwzZFphq3+5nLUa1ouPP/ro7stfvDqGZYSCtqbqZl3BJJ0vo6TVobX8gPqPHz2uVszuu5/8cSMQDSs8ORqaG2p7+7nishyOMi/KipJnNkFYzsYngU15mk14NugY9774td/6zd/nV6MXP/fqX/57/83d1so/nr31d3753zWvvfxf/vmf3Tc2Hy6e/fl7P+lc2/rHX/8HK/1enM34QloGbpg0yWPqmET1qRVZXgPIqGQf39y9sb3h5OmDk8NnawfXpfWyl4KW6y7i014/7x508vHpZuu5ZKxOz98K+mS1u3/41slqJQ/vf7tdF+Zq7+7nX2u09uaxdEhYznMzH3CrusxmrU5T1kfR9GR1e+PjoRGYsru3ByrYMjfqKbKBi0nx6Uc/po+35wN0OX7vzt298eIEEh6P9yFFqn7/sy//WTcmRFY24DjBnnQ4S45Of9RohnDQnycpgjS0mrQgSCC81VJc+T4tquz00YWWaq3bqTA9W8CmzUx4rHQNjc2gG3aDIKSLy0cffPub/6ieRl2n4duGQcr+SpfUsGU3oYAYJoyxwAvrQttmN4t1hajO6vXQqfMJp51URy1UtowcYMElZ4mtQK2AUcZaClZUEcQhlxFnl0otilL75tpswR27x1WZsYVJbYO6WgtCES19li0MTCEofSeII97t9pNiaBgG545l5VkWUaMtIcZuUafagr7UCeEiKMVwZaNXlm6dKS/kTcsxaV+wk2kSOdtrvr2L1ztrL6ws+IzN07wEVkjdkChUU2w0Qt90QFZMe6iRqgpaIUC67Xt5lmmiK1AZKoRIIVJjYRPUpKCppNK6GssTGBvR+Xw2SiqpcpjM+AXwLUOMo2SUlzJLWZHPfbtBkfH40QeOv1WX5OToGAH6hS/eeO/jb2jAF1ErCF94573v3zx48eOHi3t3Xvrm77x777mbjuumMWDmAuiynktW190t5/57FwfOLhkAy5FS5yx3kOcpY2pZAwfc4pwDY25QDFFf5OhiEgdevxLHFY1FvWqzhqddE19UDGblNc0L1+3n1psceSY6kMhQhe0h3/LP60pJzONqgUzICSuSGkorS2vNbGQOkjzqrfSFnjFWPXfra88eH7kGbGPKpWF5bdjKUWsrK+jAG4zyur254SIoqlpgHJdFkqWcc1TrBnExgARAjJBt254XpHXd842rfKFtv0GDTycnV+F0s9tV0aXsXJ8kSae7cv/iLMXuF778s/Mi/s4P3+j1zMFO99LUk2JOYDUuzzaCTrcXzDL/dHoGtB8Omoen54D3xqdF6NtZOlEAllUtlERQzxejdDFqNb2D/YOyyos0KVkJICyKwjI9QAjAUV6JgmWtZpsJ4dotpNx0Pul67gxIG9JdVzZqD2CXmeddspukd7URx0YCawsVz2EHEHNCIMo4Cb0GExU1GJNLqCkq+qzaksGnCDgVMzkXSNtEGawulF5aVnM8GkGFr4okWBmEgW+0e4gptN2OTy+tta48GlumlzKGWE3WO5InRHdkhYhbS8g9i2ouyjR3qGdSniZHUAR5UgNgaxNJVWh0rZDH2Jsb0pynRV4XfqeFjdAE4zKjWgjTYQZpFHmsxKVv3l3Ep5blONaaKHyDAo0my3jkhY2Ke8QcIaga3oaWuqpOIOnVsdXpYGicY20ZsCsBFiJVaExUE1QNiObEMBGQLKeaOzQUhCADWQAoABVCyPQ90/IqxrKCaSsh2PbcsMy4ZdoI2r5nCiFE6TFgYEQdBzNepNHIIMDwoKwppAAIs0gX1IaGbUFQEYTxbLUWidnconM1OnzDv3uQTfvOxm67015cJjZawKxYXJV5eHiczbYPftEYjWVhEOq3+gob3icfLiHYvfMCqa8Ot9a3jk4upEzHPDWfnuT0agV2X1998fD88Sufe73OSk9qkFVFZkrXaQXL2cir3YxZRT31u9QW1jwD0ERzTV2TrELRkPWSg2g2fxcAT99vNluBFIDV3FAuJT6vHFZAZKdAfpTN20UtNrbCj39w8qe/ysyOqypVCWWTAcQrjmVdDN+1jBXTTKulleVDxv8wr6N4dqBk1l0Vy+XyhZ/1//i7lyeHo3n24LXPvLq7ffOT9x5fHiGz/kEaD3cGt5bL3HCFQ8KrI+7SfDEZnt0/afQGx2nUdluB36vLyqvscX3+wk9+xmtuv/3GX/vTP/cz96Pz8scfnizVV1//iX/5L/zbG3/2p7ZU67h69q++8NXBvet/6+//usJMiboWuq44MohDCPT8tEwdv1qm3LEgrw3F3YO950F+kM1nd2+ue45flAh3G5N8IQB86cZPzodpKfP5XJ48e/LSi5tsqd7+8dP11bXmuqjhC2W67Ny9Fl5/FSeIq3lKdVTHfU/mvOQaeI3B2cPhSnMAgJui6f7qZycX52UxaVpYwWKt5SrtRJGRq6MiEYiP5lcFguryeOrd7EbZYVwsVzd+C+t1H91lgNdMlGU1vDpezhsXxwsbT3e2e0UxSvQxIOD6jVss8jzLrpdJlee6rgRXFbQk0zbiFNdlmpmG58a9ZFY+e/qDj976gwePrurFcK/dX6Vux2z1LLuBiGO3A8ek2ATcbPqbVYFtG2ucUbtEaVaRsIB0Hk/Weg1iIlZHhbZCBIEQghHqFkBrBHxiUiHqVhcwRZialSmycOj7mDHfDOIKeLZH02VFgLO6HkbzAiibYFgz5ll2WdS+F0bxhJgorYrAc6sKM60piZmSokRVSaktka6IwGed1lpecClws70jtEFNCO2aU7B+7XV/vw+CBDbqSKrhWR0SZa8S029S36tUpswE4lxD13TWGCysEnWJnbOi0FVFlOaFi8xCcwi0AgwgpZCqZFLUec1SNlOjBXp0NqyFxIq7LiqzmutCTaECgVRjUeVd91Zd5aU+xjhTND67mjqOfbBz45033kQUVQnuhDeurg4PH1851uM/+8v/xm/+k29/8fOfCVuNk5PRKy/fOT/8KK/URxdH11fXn333Hauy6M31ii1BNoaVqyWLdZWZALRGgF6DMiRUcl0LUFPDzc6R524DTTG00oIUHDUax24okYFT9sPlsmEFngmeM9EZqs8gu4ttpoLLaepapaWRIQAFSidxmifAoa6UJHAT6hzFy9HBinN8MmmvbmXw3F4pvG4/HjabvdqTBgQuBEZIvAfF+MU1cz6csryWUmZFHWe5rEtdcwt7DkQuhBhBQjAyaAXkoohD/+54chhiKZnhWTt1ZUWMtFZaoqAxWXn47DSCyWd+8ZeejU8++PY3PBNZzcGjKaHb69X0Gc/zcWGtXN/PUK0QzjOyc4M+fPjWWuuFRMyYcWgZVhwzx/UptebjebyMNNeeu9ZpdgWQJsaVlrKulFIEYcMwtAaqNAgCgWWZhM6WI4I102noyRnj+yTYcDyCGGL1jm+1KThiwxBg2yBpXmJREqA5y0xUYeU2t+ZVYphoIKXDyjzwYRQ/abfCaHbdbyQVn2glNVTYq6QSvruSZCnIhL+6opq+OxhAQOu6Uo4pJgtFMeQSCAU6hp+W9WqTlZWSKSgMXZaqEDlIHWwnSVSrnMqzNGHdbivLxmXNWo3dNBkDc5TKKZXtMvMEXLoNq1wajINKTjlLXHcN4HNWhOWy73p+qUWhfoQ92wu2MQCsGmKMIeCAlNRTjng1ygA1lsvlJQU9z7orcra6DrxAlXlQlpzTE9sxLbTF627FtQEtaIxtw6bGSlVABhhGFeBdieqqKgPPybPScSwhNTWNKIsGLb+oFFREcU4QrsocEaARCoxSg7LmAlNXK0iwT6kDAKqyiU/ceBk1m820KOsiRxq4ps0Y01Y+jcfL6Ym72RmeQs/rpiyOgVmY5vrmn6L84uz018sLc3Dt5bPH9/s3Pl8UY+JBCjvzxYRa+fP7dwmkj+anL+0/h/3O08OP3bmqCvhRcpWD1Er/eP+z65XKxslivRXO5nPFgN2Anu3n67eQeE1EhwZ9z+mtFMv9VkEScToaiU63ruQDS2/Wy63F/Ak1C6JUNZlTQgxqZ0W+zKaWI9OUlcIKzCpbmLaHsSEmzy4ePPwXL33xy0ApraVhCWrZURQhMq1qxek0i33bvPnw8R9t7yCmYqq2J1dn126snJxeRgtR5YZnrq719ubTaaOJalYdD4vdlT3A8sEd9ODJiRyt7a/+5KdH78wPmWesXlwuDQOW+Zg6Oqnne+3Oo3H5+p/6pWIMfvf3fvP/c//bf+lX/sq6RI9Q/PZf/Xtf+H/+u6vHl6nj/ltf+peDG/t//W/9T9tOK6cGrLXgtRZKIeyFjWh2aZlOljOXWKA2iqrqdla5qK6G721c8xnZi9AChtaSiQTZ9nrnipfHE+Xbc2/T3LPWZxM2PX+31Zod3P3MKHL12jV0eX9/sGNknQ8++Lh1zYqyYcte4aSo43jFs2eXh2fj1PCuD4+esfp8mc2VZl/8/BcevP+2YfoSqbOzMxdhi/YIWVpOz2ebmFgR/9Socj72ENQ//uefKnl19zY4On20OnilyPn5/E3KdqeTSTQ7F3f2l9GkYiUyMZtDhT8C0qAkUMp4eHhoOHBrs5NnS1EOzMAoWOwbhqsPT+6fTC5msyShHrq1/VMd6Nh1udrZX2kc5MsaW9iUJhAVpgLBEgIFYFAVkBquBkl/0BpOr/zAztIcYigwKSsRkI5Ux4IXuHYQJJbFqK01dybDyA9CYpqAV8hgSXRBiQFURgyfVw1EBCaVlKsIS2rVGLUIKZSwIZDUEExVUptSKY4iRImN25AIA6syJaaNESkVt4hNVpP8DFLTorfiFBA/gdThcrD/yj7tbXGqgITJOI3lWbMZOlBJ06AugoZgBSMKwwpqgrFFiQCa0loyjLHOipbrLZdLSQlGtRY+kD4GDBHGBeMFLfNuOj7NSluZptvWsDJ8Iwzz3VoadfjbBhkkqdnu+PEsq8srwcu7t39qWs5lpdb6q8PR0LSIULLZ8TBOf/hHb6SL4D/7T375G1//RjPsvvb57d/9vT842H/p8OT96XCpa9MBYVWKtz45euXeC2V+Qv1Ql14VKYSbScwAbhmYIb3ZaJ0tM5uYa5adltlpoy3qOmbo0+JoHbYv/balnX7OcS1hYAy6lpkuhobXQ2hfoAJZjwza1fk6X15IlAqJLLu5GGWTCbNMpK3KsEEneOXND//Jndtfq8u4qJlv7miY2uSWKyMgnLSMwsBj5QoCygxhCwXbm51ivgjMYDKL5ldjjEwXE8G5I7AjoYsNDkTNWcq0tBwnaMyDxzheIOifyicywKZ2l3JV8P508QR1bshOcHtv1++G3/jGNwLXyG3fXLv2bDHrZMslk3Eq9vcOSseQ86KC1fra6tmzZ7KCabyIkzlFxsPjybWDQc3ys+MzDTFUJTHw3vX9PInn0wmluMxyijFXyvF9AAAXiqAMAMBYkV5xikwoMeBmu9HqKq2rEtF8i69TGhdkeV50XXUOcYxVp64owcp2zrAOJVwTKEJXe6bJtMEg5FyUvGxYuG8hT5MLYlhamBgbGLm8Blk1QfbMIO3ddke3W2Czw8qa1JwB5bgmOo2sXnNeF63AyerMEhoyDYtaa82zBRalzFFeVRDJLJ4ZoSkYrnKzMBpxXNYcT2ap1jYythApZ8mpYUII3bpG2JCeTy8uq6ZzUJYnGkWeA7SMlfKhCFstO+bKpM2qTEynBBoA1Wr7u0WccesHJl0DbMuzM0JLA18VJafCk3WDl0BraYNbFHAJjpVuGBalllHGbQ082wGWW0qllQqoAZiC1HY0JsgwF8s4bPW45K1uRzPXhBppYpllVS183664koL6uF+rmqmsqqVNUSM0Kl6M5tPVsB9H5Wwx3tja42ntOAaPoe+6mZh4/kZ2fnyzd+2o9gqpfCbWw/1JOtq5Y5jSnh0F63fXHrz75sn7VV2JZx8+7W2Qz33pM5TXy3nk2mR9zf7O730U7mxZIekaendrdXhy8uO339nyvWLB3oi/N7j5lfTDAhi9Gc41B8t5shuaV8Kz7QnOLqf1wvRWirwrmG63xpcpi2dLZDtVrjqBO0lGERuJUl/Krm9a8ejSwGR9tVdps2YwdFfG2ZtJ6VE3xgQQ5TlucXh4ePvuF13aZyJHNquioooKDYzFjJ2cQysQ8/iR49miXmdKXYzfMAzH8MPFHC/rH5kNzCoq1cKxrVsHL1J8/3gyxLS7vr45mugi2e61G7P5e9PFcWiXhuc9+vjyXvdgOZplRdVubc7jsvaCn/qX/53//t//G3/xX/0zb19eVO8/PV1O/qu/8z//4bMHk299rw/Mr718Z+9f+pP/9X/8f9k2ewRWKq0Ct0Eoxb4xXM40xb7lxcnSg6LRC5IES5yHbnj0IJV6RPA1S4hG/+4kkcV0vNE1B/32vFQ711vrxDkrjpsbq++dPqXIun3zC1kct1v2vJxu3r6+u7v3wfsfD1xslrQVrjEIhofSsHraNuLlcH2jOxodLYpoWKYMP/nZP/0np49mULmoNqaTy93+9nRyoeoVgsZlLdqtZBlfbTQCnJct1DBKyU5SzpPDpZrNZmTzCiJJY8b5j0KChZmcXz0pCwY4NpT5/sVH0s+BRNNZUgqVaWa51rvvcQTkdnM91eBylhnA2/T6pmJWQDb6jb1KdVTWo2RvfbPlBi6umKswUCS06tKySIOX0LXtimeIMKlrjsMim7TNWmIyTDJFaWDahpwLEdSVKbgCoFAAUmJSZQtZQBEQDIBsGsYVhCUvbdc3Vd0hOKnKuNvtIkzn0bTdbEnGpeaW75Yp8P2gZPOw5U8XteMEWTklGmrekwUzba1EYbiwqouqCIiqOSZdYqJl/hjRkJBtw+uvXdtgelGmC1N39CKQzO1teCxjELSxrmudybquaxaYTcv0JJDz+LLvBBkQ2sDpfNmiLk/rwPRmVQHBRINAKRNgiLUSXJUllsy9tKdItW+5nm9XVaEKXHPHr4jVzP4UQa3JJKImo/TR5n63LmpZW+OjyebG3nw6zqolRBITGzGdFcfJ8tlP/4n/4w9+8Ns//uMf/+rf/Fu/8Ru/ES3M/R378uQsyc9mh8lO+85v/+Hvwo4SjdqXXprhqhwuikOV7hOT+O1DSm0OZJ15puGUug5aMM3HEmWu47MCD1ZXrlgeL5RdrjSaC+KVark6nhwPuoEuz1JyxYkFdOjwjgldS2RzPU6TyiJRHJXJcglatulZyKMfPP1WCXJkqSKvgeDYqIZHrOt2S1zioJT11lz12ptu02o+fnR17eaaZmXDD8q0KOuirmsToxZ1kWmYnBgmNQyrFiWA0KC274bdwcpbQ+GVV4wybZDFxbwz6LNW53h41N9pPDo9bA82du4999/+1f/CMIKxhvdef/1Hk9MVXz9dfFCO6pWVjdKSrcms1doscHL45L7g+N6dz1xcnlRFWWjD8teYKB4/+rTVbsaLZbfX2t3dffjoMTVtvxlOJ6NlErebATZIHC81II7v8ZxEedRsNat66fluYNjzq7GSBga6azgOap6wIySbgXQJfSBht0OrR1cPDOX2W81GjWjFm7byG04WndpBA2BZMgiAFaeo1ViJE0bIklWIYC1BLAQS1QChFqGktdbETkdjArVRjCfIMy3fwRAAJdKrYfvFG0V64Wmayao6i1thUwACQGZSkWZQMcxhboDC0ILpxHDEsoiRbfoNEmWnGqooiSXY8/wNQOZ5OQKwLZlfpKDbpZodWjCD8jbPJQSp4zquHSEssYo4k1AZhm4qIQkQBo3jeOJa123XiqPStzZFzYCWnlsZ1FksJMLctrpOsBCS1fEqxMw226xOlCQKFpw3IYKIxhgFlNgCWmHgKlkLmXPJqeOMLs5a3aYUYwUw9ga8YJbtKGWadpCVSqG0ZJnhO45pVEkRTQvGgWX1zMAZH02JDy5nYy9wo3JqB4MonW84ze88elbLaNUT2z24WB6HRpXZURO6MuuOl9PBmsmy650mfv/BQ4ycAjw7+uMAsNG9l0XTt7VcKcaUgCxId2q5OFhrlqNL67leZu6UT2ax3Vpx8W994+uvv/6z957bC0wymiWWYSosXf+EiGZFAQ6brq5p+tQahLG/69XHOQPTRBEE5vzjRCfQ9QDH6eRimTSrXEDrQppzJR0GU2SOO2o14matFjBhjkOaXVUUY1xf1MpCBNVZxmpdREmplw+enp5MhkzOAncjTeZlsQSGiCJrtbd/ej5Sad4O7sTp6O69tmHWLr1jIxPCTzV3Ysadjq9jY2erC3UyPj/Jo8nB2u0fffKh77UW8xhh2IVIy/TD6Mlf/Kv/TXYuvv3Nf/b19//en//l/8irwWf+3L/6pc//9LWb2zdA9xd/7gvXX/3Sv/ef/IXb5k7YtJfMMR1/Pl302r04z0I/yMrUILBJLdtsJ1EJyvza5rojtyeneXelO7tQ/c+EVdUgVXZz32ONrHApQoGVyok97jWvzS+ueuZkfdOJisXJnN9d293qXTord77x5sdYp0TjdX2LleRJ8XinqS6zeeC/2uy9+tH3vnf87O3GZvd//Rff/nOvbs/yqBBRu2+IiPVCv5qXPXfD9awk1b0W1jXvGI1cKMQN0+aTeu7ZmxTS8dXEMMHknDl2EwDIUYWY7hoNVGofkEjGBeQ5YHAWEAwbgUVlWWcVq0sFMIHkZDj2GkbLLhWb1ywJrW4DBS4wusb2tbWOJyyLrCPgc1gSH2tmMbZoNDpZXNqOGcXH2KCcYc9ZC3R6Mr1y2/0qy9oe53Ve13YMiYMjyQ1qcGLwupJA2bL2NZz63Ugbdhq5FlnhrDANV2sOMbWgG7YlAChNhGFqDUGSq5U1p+KE2KrmJTX8aFnbtsuUUtzDNlRKsFph0/BMbpqEMxvZiEBQcAaXqag12Nxd59hu9t1nF++kl+LVn/3cdDJqh7XrKCh5OS8syjmsK0Zdo2VQhlhW1QugfS3opVi0bI/FqcX1VTKVEBFEUV4JOhCaMZkjgjAzhNJcFBLm++EKA92g1RROCqGGTPUBM5gC/c/U8GjnVjfP2CvBC7NRJGV+MX4LwDVeowefftBsE8cKofKXy+WTJx96cNOi4Ov/9O9+7vO/8PTJ+9/97u/fuvGT4+hdnNP77z7t9zbeOvtBoU/u2neNyngIr3qGnYrTTOk8e7jv7Qa8Tf1MwgyCjoQjgJrjcy+0X7c66dMHZ9R+8ah4FBVFA7UxPCQZAbiDOlPgwEm+4huKwooASytbkKscFxOdgMpOkuwqubRME+GaM2Y6TUKN89nj7Y17yFqkkSnilTg763ouIT+w9cZ0fl5Ly+j6qZC0SNf7ZnU+q7XnON6nHz6YJYlp2EVUtE1zELSRcg3qIEikrKhpu1agGSyj6nj4zpcPtp9dPasQ6TstYVlPy1EnkNkUeIb3c//Gv/N3/+nfQE3GVeR0904uPu2bvrFU9tFy5bltRi2xMI3BCjTkgw8ftvxrjU79wQffsmi/FuNSXXV7zz19uNjffSVL576DBq2VMleO22ZKXc0mCMFmu5Xmieu6mBJiWMs4oqwKAhdAuba5nkfpeLpY729BoT2nzGSRsSKNgRcUZyImlTVoV4dxqUu908VEa5WZe6Gw9bA8CTo71tUkbri9Ks1bLULMqlIz0/Ao7xbF1DINUbco6VDbXN/oeqsrTMV1xZBpolnqphy3Gtoi/Gomk0gcrIDDK000iLJqPHN2VpBEec4cVWrFlnOOkU1hiVGVL5c1DzFqa1gxGY1HEsOVUk+MoOSskJqUiSX5quXbYaiycl5nquW1iqzthDOtIZCBUDEUhmCYQk9yZhNX5BbUjFppno5MZCAZZmni2JCQIkvzTnswnzPPtROZNMLAcuqyMAXzHIcaRlvpIo+gYZrYTgyDCGkTqiC0uYyov8GkNqk7Gl/s7u4BREzTMqhFrDrNdLbklrMSRSPXE4yP/W7IJ1QbNqZ2kqdFFBGJDIQRUNPlwg1bNYyhoqVi4+Vwe/XW45NH7dWbrH6nZYud5ubTpHr6ALefu9cWpmU2XBXW+ZiJqF7q1b1usAseHS/PjsalevajH00l+4maRdQvTLu1vvpS3qymHz28dufOkntWMt8MG6P+0MwvVHFjURTvPnofSvri7orPeyNOc8NVKWVYUZC2JFnOlgswv9HcmD2Chh9YrXR5Jtc7r8XxU4UgJBDSlOc1p8+YwumZQbhb81NU58/vvTrR00aPj8/Zih0GruSGHy8FiyPmHptuq+YVFKGu6WRxdXrxMIPZ1tpWvKivZoef/9wrvK6yctJoO8MrfG/3NqthGMwgryx0raxGeT26c/dgtng0Ls5r6Lz+wmfPzt8bZ7KqzK+skvtvDwGpV9u95WhhUoNENaZYNRu//O/9W//Tn/nv/vJf+Yu/+tt/e3dmlGtr/+X/+Kt/6tWfvAeMn/+zP482t/7qf/tf/EJ488pKK26BEpa08hteLWrHcXJW+LYFJdcYs7zyaJsGU9+yjh4c6pJvru8GLrW56A3K1K3SBSyfumGvkalYuTlLO8kSUbG2v78zjk5N09g/sMRy2iHXPnjj6aMP7n/tF//kW6f37UbUlKzFrNOJuXM9gPXo4ceHj8+vLuKrk9/7DmR1KtKLyWTNH1CBl8UIiYVv1hhFDec24InplIjvZ7l2GuM4kY67gmTfxnmt8Up7vxRPGSsM4SOawTIECAFCp3lcS2Z565asLChjPIXakAoVGQjdQSnToprbNs25sJndRKuWIX1HrNh4HXU37WsVxW17x5KGQwmmEMKGE5hxdGF7JUBlmud1xb0gqHjheU5d8kp5rTCs0nlge8jB46QkSIRmXpU2q1PT4QZcY5prmEplAeBpwnndKPk4bA2Ws1kjTPPM810FqqLOfMPhfsOwrK00iyxfJhlHhGpYQUTKHKe59gCjtqNky8CU0zGEJRAIYsByzBhEZoK4TagROj6ijZwburXaHZ0fJ0fLey98Po8jh/SEXClTPnv8ZPnkOJtfRBcTMRJsflkkUVoYhQJZstDJuFG040SNszwu6rICCQejLJa4nskiq2oh4SyXV/NYVaUuRRB2tbeJ24bdZqaNfbu/trq5sb/d39nu7VxtXm8Mdjp3XtlcWzfu3Az6Ad1u3Ltx+1pZL+7dfe7WzS+6wRbXiNes5a73NuA7b79Xl6aNOr/2d/6WR4PLyz+8eHr63//V/6zf72nKz84PB739WVYqhGHUUUZLS3ur1TLEY81PLGsgyrbB18raoHSrWto2JwjK3JL+9T5qKM+vfZwhfbQsggLsccUAHBRwSxU/tKwh13iZu6Ww8wXMzrFfXBdndHaSKZATizsU7/TWQ7nKJsaqf68VrFaV8fDBY0ydcWSVuImt61cVK409TRo4FXDadBwn0c+IZTtLABbMFNhjxrr2D1DrwF1tCOeGz6heGqiGbVyl8wQVTp9+kHx4w92ojMZYUzpoTOkoURMnaH2U2cvO+stf+/m33/qH88NvUxxK5EBYAqPTcJ8/vpoYmxv50l0TvUHDba+2v/P9dxrhAfL4Ow8/BXBtdJk36KpK+w2zfeeF9sXkw0zO+1vbEjTrwraUW4ymWGikNEHUpO5iFmGFstnCQzhstwl1tDJYJoCQJlK8iqtieR5FSyGuyqIIxGF1FdN6IsefXp3rAq15bS8D21bQQAIjI1NaNqM4B5YbZPzQ7SYQIQFwLqdxPUZlIUlo4B5pBlt3V6/dWzM6ElSnSLdww9ezC+Qq3WyABAOrRTMAB4YVLYCpDCbGxcJf8R1UZul5UKE6zqKJ8oAdulfQKgqxXstdrto1rtIaL5NVAdZzWSuQJFPH4CHnl4p8agWzooy0BprXrim4uPD83DZavEIlvyRGUXON1YZvDzrNHjZySFLH6mDUgphajq/IlCDlWo04yvorK3GerawMFM8ajqe1YoxoRIFZKDqE+NIkgBKAaOI17BotM7Fs9jaTOoaG7UpOQycq8pX+gK9485On3kaALJGd5tJwvWtWJVKXxI7pmKaSeZmL3KaQcnb+aFgV2m25wBAAq2yeUsA6zgGPIS7Tvb59+PSfrq9C7ka+aksanuNC1MkXd8j0we/zM9wfGJU/EcAdj0tnZ001b+yufXXLfG2nc/3FW68FgfVHf/g7999/P75iRZIRexbMwcrGq0ZjoNrhs8W8H2577g3oNA1nuhZeX5zz+4dP/vDRe2Nyia1Js8a5TvM5F8VqaveMtY7DQ3mWEfggtULTu2n1+SX6tA7oLEIwOUiG/Xjmz9LBkKuqQ994Nn0yIanT+t6zw8QU89QF9N5ZoWPQAHLTCeCbp39kGXMssOT2efJJ3Sw/OcmE8F698ZV7B5+fDIe3b25MxvM33nmwe7D70YO3Q6+VoZN59XCwZa9vrZtmOy/g2sZ1bPhsyfusJ7P50jy1Wy9sO1/5zI2X1vZ/rsLlc+2VeCG3rZsombUGwUfj6pf+83/tyTfnpmm2/uT2k289zLLq3/z1/9t/9Wd+JT05+bf/tf9g0Nj97q9+/U77Xmp4WQEjFgMjsw3S73UIBVm6DF3fJT4rEYS+wtqxY1p5Bhs8fvLp2eSZ7QNZcwuh8ZhXTGPpFufL/OyZwa00KSV/COGEmmxWfdrcLdd2tixyQPVgMobv/fH/+sXPCE88vCaqDWykaSxYuXPAl0Pr4pmC2mFUjdhlXOZN1/3R6HSh68ZNH+7mvWsWaEJ7fQ/ze3EidGGish2zBbQKU3ot01dC+oZlsHDQAha6wkWr5+0hNDNN2XfDlkFBMeu5suviJjGaxLe53alXm7xtCu6RuIHLFvDX7J0GaLQVXPFtU5UDM9gmNzbgnZ7Ta7REB3mBQQgsfB8QklJaRUueZxuG2JqP8m7Ha3SMWtRVKetS1FXh+Yu6EBhDruaiqCiIbXupuFdwKJ0Fg3qWpn4zhLRdCUkcQBBMF5eDsAkEF7q3zK5Bo1fLQoFryJGmuWLIVZULgxkgkaHq8CwzlFsViRvwwaoHyNwwJy2X5KeFyGrXt4FVc2YuLmsbLAPEiMxqs2EZ1OzCdSvjTH2UV1O7uxexfHQ5NKzzjc0+T1keOdD0JouUYdJZv8L1NcZ5LmcisoViWpaj8GMCHSkIJLisClHWVSFq6gOYLaVV1EnXWpO6WPCl47TE8kpaHbsRptIyoeq4jCKJSSPzpMMMN8CcZAahRenXHLe7aHWj9+CJfPF5q9vunJ2fXg1P8vyq0UFI5U+PEiDakIAfv/v9sG1gYibR8p/9xu+v7TzvDnZ+8+/82s//1Bcvlqevv/Lixx+9Odg76GRi1339fHSa6v0U3/GZJDQy3LW5FJ2qNnGcAF2WVqCpbaXnbKiZp+GqaRtXyyNFkn3/nogQr89s4zOLmID2ESWtsiyi5J3QuVuLT1L93toOD92brR4oM9Ml/Sh7g4vCXr8q87P33h1bg8GT+ZGYLn3rIKn9MilZaQfehkTVyjorUzMfb/h2NhZHdc3TiIuMGK5NCQBqiWjJsy+t99E0vmKZLGTF5tN2u3s1Jtdv5UcXF9cG1z789HBw7c64Ti8vH+/tbQ52e7Py9I0P3mytbV8eL5rtjVIa1GzMkzcXGLStFVDnqs121lvf+vqvb9/54vVt9off/HGgZDd0LueXZbW6dfOVoowuL4fUCHr9ARO8LOZ1WS2mQyHzwG+VZcnqyrbtVos0gwZCxDJMXs+lpo4bLJdLkxI3aFzNFr1WnyBaMMa19oiBdZ0uEheSlXYvLBxcVxbFSAuuSJIr37awoXxTpfEca+rSlmJKcCYlhkSxiu9t7XAB+3vXATI015wExHNJUIH3rmarzc5KH57eBxaKH00QtXGyiTAHrjO++KDTDqHSjz945tmBb4/KssRWXRUp5mtZQZGdKXRMZHu+AKWeUsuTulAqNsE6tEqIK4M0qQ4RCAHNk/zCwD5R21hzYoiKTSBNTdUHbGAbGaBvCR0mM2Ubtml4QFeA1IHVq4tuVUxX+15dlEQ5dcZ9V6fxuaxIo2nVvC6qynZCVQcmXBdVImBqGJ2w48TFEmIjbLSKXKyubEEkYD3Ps5xAbZsWq6RjNU3VSJaR3/VwJ1A8L6rloO3No0l7u3Xy4aPAv2VY1dnxE4y8vf2bj59+rztoTa+qkrPrt3vPDg/H2ZvXO3eOHnnN5ktIeKmutZFRRQzZ0WXc7688HT+Yjt7psJ8YXV0ZbNxAAtEWtHWRlMieaIO4HlnFraAFi7g4Pn9C5+ELr33lvKwQWtrF3sn5+7SrVm+99HRyud37HC9P46dXLmfLT86c0cYnFz/aurfP15+LZwtdu4bjNwPz2ZNjxwWnkyts9K+fT4cG727eml7iOi11Sy7N2aSa5QleWV+pJ9nJxSkwXdoxPjk9bNh7+WFMrHo+e78XrC8q3dkuikz2Wi8Yfjq5ZFz3ATz75NHvCF28+pk7nZ48Ov7N2we33v7wySwdm43w6OzZRl/2O0lcUGxViGDBTGEnWucAGpZ/5q61fvitb7/ymVWVqwpre6NhqsRj4qWV598bne+R8I8/+ea+59dm0FtJf/K1/8P/8B/+pX/8a//kl37lPw8fh/f+Uvf3fj/6J+/9tb/55/71rKV/6x/9/Z2N7aQq8qJ+rnswHI2h6+Zppjk3BQ6oJVleyEIZDLjKrQKtUgXSaHkpmJlD8PjRk5df3Z3PCCHA89yilG4TZuC+ySsb+2bgqUIVZWX4zet716MZHc6uhmdvB7589Yuvma3dZ3G8//n9i8soYoA6rACO41ysWY3v33+jGH/UqsJcswejYYdvz9dGFdunel+hya2DdnQ5FfZ4aaYr/iaLhWsXXCZAUdrwr1hEqoZJmyyb5tm42/O4igl0RNqt9DkxTEIMQgOEQClLziJIag1oJZfYMBr29TirocENW7Pa9gEpl8vN9jVPdl1kbQ6cfFJQd7/Z0q6FK2mXFaDYsDyMjESjPJpf8wJai0ldZKYR2IbJxNxy66IKBCgd08mrOk2nVUEAbEiYaoUs0i3TtN2ykmjueFDgoq58iB3iAGppyRwL08DRNkVYNyGaENTMio8sx7KNA4Wh5cGEPzJpqyqIiXdZwZmOiEkl57U4MjuQOH5RhFk+N1Ae9u3FIg7UKkHAg1WGyhgE/TErKdGI1avF5OiD30lq78/8W//6x0dvjhfjwOpYIiuHqtkLyqpK07llG6TgPObMrMlqgOKlWcuiFrnFax7BItFMMi/NLHk6X3ruRiW/L4QM3K9O4sxWLoXnElamfzOvMXbqvuMk8yRoa8f1ea14aWDPQJi5IUG6kWeVExqvbr5QLeNHn866rcAy0Xg8Pju7arQshBLHNS8vPv3cn/ipw0cnZVm2u6Fn52/8i/+tuWEs3XTVbfz43T/W2n4eWz5bos6p8N9C4Nx3NyaKNs1VSy6BZTDppZmOyjL0mpUEVWmE1usCnWT4PMrGZiPHPpmlJ7YRGmhtUSWQqRV7azrNeVlACCt2lcVo7+6f9dyLkHZGl0jibEbfWrLZbvdP82j0vfs/EtCDo/r+gye02Z2V8d2N3uHlh91ey1Y4mzOAF7ISnNmCsVl0UbHCM2sMqaslkqaHu67tUDbNlhY3IMGzOT6/3rw1ZaXRLk9nJcTobHZp+DhhUan1/q2XJvN5EPRPPvhxm6xcXF6qtvOETw7Wbnh48dH8SuQ4KuOXXrmx1lz9/e/+gb+xeud2/+v/8JvE33Rb6Nn8hNSLz965u8zPDxePgF4PfD8tmJB5nqTT8cQyUWfQ5qksiqLb7eZl0Wq1xpMRVDrP8zpPgiCcjkdhqw0gTKpqbe96GqfIJABBIcV4MacAtR3P04TFOfWoawS8UFFcrraaBlBSCAT9vEyh4oHX1lwvlqcODUNvy3Ub63cHJrWg6wDbmR2dW402ATbETj4eu7Cy13ugTKplbl1fN7KFYFHF0/bmtcXhY6yEhYyTw6OGbZd5nJawZpll+kA28krl8hwLUhRd0xaAVA7xqIvnM5sVA6dFbVcKlgBpCA41SFzPVFnHc8OyXGAKFORlKjBep5aB4MgybFHvY1wTwE2KMZJaKgCAxjVX01ZoRXMABFlZdefR1NBNExFB5phSXVsm8ixTEpwCRZBuadEScM4FogYUmts+ypNCEwI0S5assdfPqwQhQpQWREKeY8oEaUPuLMZLAzSjqCBGqGMEK095yzQylXAHa1aWn9hWKDieLj9Z37v96cNnik4HvZt5WVvhZV4O9jZvfTpLOgPXM4iEhYDnVQVubO3+6J23VG977WCfBnI+nNRlNKrH13eeH2alHToY4zpKwnZHiiWi+sHjp3/jr/+tGy9vXl+9zq+mgW7+1C987Xe/87+vdjYbBmT2xjhbNNauvff2dwG+kvwGP0zt8Psfvf/Hd169TlswXxAb9Xz/4PT+/bz41L79grOyOY1kMf9ku9ePihXpVHI113hUF/Z0rNwmBISfXPE8d3MxsrxOkoJ5aSqtBv1eyWrPos/dfu5yljGOPn74HjSr4SG8+fxqs8NnV6RjfkGaxYsvP/e//fPfCMN121iztASlKHjRbjWzDMt60YTSchCoVvjcs/Xba7e2Z0CP5suttWsQKalrw1GN/uCFlfUffOvHB9t72yvd73//4//o63/tb/zXf/0v/PKf+a1P37Ifsi//6d7eL/65X3zhi3//z/6nfMt659d/sN/ecalnYKPf8NL5tNsPL5NI23XJObWoR/26rim3ILRhDuc8o9QahPsIAUGLKJp98vHjve0b4Xa5vBRX5cwwkpUt31IbSg9sRAGFFYaa4kF3q4phGtUffvBmEMxe2N3Ji2tXy+HB89cni9W0mBLzMjBXep5XBMY3//dn0yQXDbYo8Wl8sdsz+4PVw8uPHrSyn3npF8Ibzx+/eV8nVWD387EJvaXZABH30oSsuIhW+So2c/eCFxUBxlr3Gldllo8H7UaW8qBqYoIsHmuVV1KDsrYQ8eygruu0yHipDYcSoTHFoJR1hRzXN6jlQ7zWgQ3QcPi1bhNhsKSsz0thGkSoWmmuMyZqiYHJySkx+qJoAWFyUBHCLWIWhQLUrOQMVI0i7RRs5oQSYk+UtBE0qmpCjARhx3e2CAauR8dXWdBtA+1WFbMJNrHybVOx0kSU1bZUle/2q3K1gspozIs0wEYf1JDx1PVBWU8Zrxxjt85VWZ02mgE2HJGTqlbIQtSkhq84miOrRYTu19U1sLTN6dJZoiprvH0yGY7Vz/7Mn3rzO9/74F88Uqd9NuLzxUPsFsP4kVmETnWp4yGXxO4K21VqOYMyYFArp8QepM0Wb4Zpg8+syypt9ymGi7pKN8tsk8/ntB4Px8UpG7j+Jk0vB2gKq3Q4jpHZErXH8rLMhGf3kDDyPMVEGZbFNdra2fZ97/zi9KV7z929eWs+nWdpTajHSzsMg+F59vorP3N2ODKp3XRWo+mpGObDZcZzsNvZm3AkuLuONljp6f41k28H5bXNlS8LbWw2Q8QaM9NtIjpdioIbJjeTYT5OyhwYKmr6uB70Es8jjnFd6c2YlYk6maSRHxihc61MgjyCCGAuMgDZi68Pur1FB/fMpL768EwugCXsgfl8Q4tMxQ3KdTmZVeMcVR+//8Z88vjv/s7/+NaH755c5E+PlsNp/Mn9YZo4puGMRk+SiB4/GYMStG3HUrJh4H4Q8Dy3nNy2pqVe+uZGXDc9v5XpspaGFM0UGFkAjRXD8eBrL74a18bKc181YXYVP5VNizR7i3m+1dkDMjwaz/MS3NzbWO2/3O2+/s47315M5i+/8kt//+/+TQJIE0k1XLCpc/elrw0Z++TkGKjeysr6cpmykg3PziZnh71+s9trF0VJEGz4LiLQcawkT2pe5VWuoeoPNksGV9d2DMNTEAXN1nQ+K1k9nU6W8VJoqbXCGDHJqUFs24oqXOjKaDBgVtNJVMTKQgjwqeUvIMny2Elm6y492Nt7Zf/mnb1bA7S5lWIMeg0RjwnKXa+2dKLyy/R0Cm6uu2kZPTzE6wMNCBPMZ0XDaeUnU5bo0GoPjy4sDFohlWICpUOpJaRJHJjKZ4BQVvW5VgLExGYAeHWlDFMHIUI0SVKepqlCV5Y/V1pUudI6B2RpGIwYHCoTaJsSZRJMdBMpnxCmZdV0+1h1FEeIlLYnNWCW7TJuWi4ybJAkitI2MRE1CcU9Aw+0NAgxkyVQvFVX0mmmbvdEQpWWBTUsbJhScqkZE1Ve5abtA2ynWQldhxo0YTkrUj/0GGZFPCGMNTxCTSJFXiVJYBMIcVZMPR/7Qfv07Mpr2FmZG2ab8/4iZp3g81ncNemGEPbeQTgej1ksOuaBC7YXU1FxNBistmF7vbo5++gdz6VjRSoX3f/o+3c3gtHlfe7Q0/OT0fJqZSdMxPDGve6Ne4P1nbZG+vzxxXwYDS8e3Npb+dZv//rw6H40KZS2O8b1m5uf2VodvHj3XtPYsyT2WHX/989Wwn0hg+OLT6PoY0rLebmoMbPN1hETk7OP6OwZAeMCnmt1YqERQf6N2z1ont28ufXC7Z9ea99Euuq0/N3NO68995V2293cvJGI6fni6P37wy/99M8a9nWBBhG4z93fmcZvdf1X0lm3KmCndbPZfmltz6vr+JXnXgkbF+3+RAr46PHSd9cdciNa5gBHhoFbLRvCCMvGJ+995A/ss+RJnB5aeGEYhmFet+1Xb/7iF7fXNwaD7ldv/amHHzz77Ne+5Fx/8YOPvvPV/9O/+Q/+y7/96jV1/U//zL9y+xf+0/7Xtl7487/9N6dene0frGJTWmVtCyNm8CqRPmqvGc6K6XWo7SLToo7rtQy3xYDVcXYA12U6KZOFjVqhtbOcsocPHyYXUTU5LYYLW+y65stBe4cEk2ZvTFXQaoSuRwDkRZ7Ox1d7O5vXDnbieQ3g8Wsv7CcjfvLonb1tc39rtdsyUad1+GYhTwKDd+Nh1M3yoFA7z98xwIlBm4O155RppEbD6bxiGOvYcc0eRbTj060GQV23brk2wr6mLih7vtmr80TxwgBOw1hjqWuIjrI8Tin0bBQY0MXIpdC2c6mJ5br+JqB+DSdGmANMqpoQ07IBbjtmQAJTNDtOazl9ujpow6rbCZomIr7vN4LQsbqKN1TVajsHSppCVkxPFcgQNFnpAhlIToQwBAuzsijkOTWJa+8wUSvzyST+WMAUaBdBdx6dZdV0sdBA7NqGxtKlqgFkEQSwyKWSFJmqrkMFfNNcMS1PClKnW6oeEAoVOSNWgoDPyxaGBiI1VForAkldqxEgY8suKcTLed1t7gvhEZTNTAcKt4qFRGYgGAFi6ejDVz77S48f/3B4+azh2UhOXJPE0YVW3GEBa1URjG3bb0HbA1JSmZlyg7gVIQq7BFIN7AVqN4wuAfU5mhlsINTjGu4hqkv1MU9WBRquIK+Y1grymkJRBARpmR7hXPj9LrI5glle5hj4FDWkLptdwzDWZxdnr7z4lXgxfu/Dj1bX+tgYaVjsre0souXnX/2JQX9FiG7NFrLOedOcQf386t7zrz/fcJFzcdYMvcJJOhvAMuYLucI6tbvMe/7mUk1wUDqVm9eea9NanM6X51D3mVa1HPrYErWRFa5jbkiUAgBCZ6ssL0PfkpVO0uOg02sGbHgxc+076wftWqXMDObp5OG73/a7G7jTzNRao+nG4AmxHjpBEej2o7MRIVSq6tMHjyQyw43NRVpe5m+zShBhgwMYBizPkouzpxairLbqil5buVbEi2w5CzxDiRoZpoPti+mIQWU1g8unp1ldmb4CjlsBmOXgYPdmoS1p5GYb/+F7b0nGQmUMY752cAsETVDilsTjKnbaL967MXj64TcWSf/LX/j8P/obv9K/dqfnsSLNVKU2t26mKT4bRq61UqeyxJPApmfnz7QW2zs7EMIsqdKoNALNRZXN0///zGLYhqaUUqPSVqPbSovKccyO5yXJDCoONNSi1hAibAIoNMZCqVJgpWBX65a7rTNRQU3tklE5zWjL6ZZFpaRpYH999WCwZjY6npYIOkVasrARllVdFmVrdV1rDqoaGrjZNsWiIJGGVpjhyjw5UxRVypEiZzyHMJnNj0wD+154cvyQYBMZOdcZq7mCKOUL0yAaGppEedx3XKuS53VpWZaH6JKVLV4ardVpGfuisrROLFuFxmpdl0xMQutFLrlnFYRqig0NtFYpMTKC+xTXtRgbhlVnXV22NVqYNgDSYlWKICCGhamR5BEFhAAjyacSLS3HRqYdeO2qlILb8dINWjYiUHBlmmYWV0JYQaOT8bkZllIvrQAzWVWzPOhvmpJECVOKNYiVFhq3HRzzOooAxFVZNvvNvNBFUVESu44/nxaIWt2uN10+3b8+mC8/xU60jOyN3uvJYp7kJy8eHMTDWiFVKxH4W1VWhZ4A0cUr17+yutYorZsZJXe8154eT04unl5lotkwEPaX02Br5WcWswmExc7eztHpk+WEv/ngh4bRKuzvzIajV1/5iePRA9nePY4f99ZDgzfyoQs0MUx9NHxPm53rq+vzKJTQCZteMitRuPRbMYxXQIqZdtY3XrvKgihTntDy6upO/9qs+MC2AWcgucoNAK9vtkziba3uAPHoZ35y9f2P87b/ZSTZ66921265SzEWlCznqy79aek9BuERNmxMt6jTWZZVXoqG1aswhXQACv3wycNbt9YpZgAPK/FkvbVrGR0MzIrNDS/SLV4kcU/da+t7SdwyVy2Rj1r6NPUPolocdNfOTo8nSfo//sO/9hOv/sL/9D/87b/6//gf9ozRX/gP//JX//1f+Y+vr/9r/9n/4//1P/+l57eM5174i999848VB4orkY1WQ3syPW/aFhMdqmVZFbWqJVYKCaEZNTQC54GJIAi5rgQ71YBhaAzPZpNHMQI5q4oJ+tToCnetRYyOkIFLvbgcAqrPr0bUAO3WJkHKtIATdjY2V69O1NFHRy9+fjNsoKMz03ZWkvsnGehE5rMf/s6v37q+cklGvd0bfbwJOwlp0cvR/KUXWtifBsCl5cZy9r4DbVzIWXyszNxw0TLPDeIvlolnasfy223KeMpFZdu05kyD0oRVWXCgDVAaknMTKmrzKLlisg2R6bnNUkkFRZVnBrF827K56riho51rG3vjw+H+xnYcx2GrSc26TBgr7FqYQGMtlZCR0LMqbXgOKYsRE/Fa057mWVETA3uFHhMLSaG1MhBEhXiUVrFv3SxUiczI8g3Ooeu2CA7rGrtNiJnGHHRbrfli2O62Ts5nvV5PEYWC2mnY83QaNEujbi6XUXsQFRGBesf2plxdcIF8J5RSIjt3rRiKa7yKIaO2oSmcL9OIiSYCmIxIY9MmaMqN0jR75ljPJXI3Oz+Nq+jxBxd2u5WpSVElyZEPWK9WVnO3x6fP6ChoXw95UF/VpkWNO83VWTMXhgkAUlmGcWLp0gdmqFqyAON5ExNts7zkIhIb82U4aLGiqB49u7p+s7G4fJRN8mbYvhRgZfvLDlxibKRJJaRcX10BSlxNFo2mBxFXirvN5rPjZ5s7N9yw89FHH9w+eMHExavNL/VXm4+fvXtt9ScbrfzDD7/53L2vsqrX3VzbXdnU5ZK01k3L3W1u5DJMp5fX1tpH5xOrvzqUhpWukKSmDVM3NVuMVZFlsLy4eo9w4bh4jJRtvASBCUTpuCMEhawkrQlFymu188VHFO5eLt4TWty5+QvEu0yTgZE13337j3pdoqr2Zmv7KvqxI3oh3ZzPntkN/2j64Pqu5zZWOVm8+/ajdXft+Fnc7E9a/Xo8zDZbzyX502w5p/WWISTP65bXCIlX5xmSuBH2IdJJzhm3Yct4NPlRc2t1KdLj84v+Xrd0sEUwKJDUhr++M0nmVsNOJmfT+8NXPvPqLM1zonetYHI1mrN6Fp33u8//8r/ywj/4e3+n7XcdI3r/nXdcf219XVQpm9Wosbpt+Ojk43cDSDjLsFdJ1Tx+dtzr9cKGm6ZxUZVZygzTl1JDjQzDEkA3Gg0IsYWpFEIAWwmFDFNrmBdZWeZ1kXMhfN8WjCvBleDQNBCCQnFZsL3OHb2MoM7DzorkNgeBJOwyn1wzbu9ub3TaK72ui6ngouLcxrrRNiXQ2BYAOR0A/TLNivz/R9J/fl27JwZh3q/eve/+9Oft7Zz3tJkzMxpNH0mDULOFqMYEezkOJtjwAbPiFYdlxymEYBYxSVg2hCDAFksCCTGjkTSj0dTTy3veXp/+7L733duv5UOuf+TinagDi3WzXoqea+h6/tFzIADs2EinyXyFAIQgINJpMlWsgaVfK4qqopOKFQqStrY18HLLx5ic81oSWhFrhZuFBjyCcNlkEiycjo7ENkKppiMd7ypOgJBAwn50QbIUQkiRi6FJcArIXLaG1l53w2Y155j2Qtc+S7OmUYaDodSLcuFZGzomHKTLZNHtXNQgPTq+v+lHpu22rYGEk6SZ7qwkkF7ftxy3Lmui6ULxqsq8MJCSYaqXTU0tHGxszY5Oec03bgzrx0etS2hLoESs0YpVuppVoeWkadkSQ8F8vWxMzSzrJaagqm2N6A0bm4bMVq1juGXdC+2BbxvH9xOnu7E8wKPehXcefqe72aF4r+dFZ+nz7ta1a29+ob+zdTJ/BIhx6c2fkyWsv/VP7n37D+CWRnW5zE7z8qQTmFWdIqxhTG9fGb31yceGT9/+8YM3X35lo9OpxeDHP/nW/oVd34teHAqzd9shxZ3379V1GASrJ08CPTro9/eePn9kmdWQXgi0WzniMn3fvPh6bBYUryOlmEQNFpq98Nqr9oW9t976qNOjtkufP1GhbSNxfvnCVV3rDntPJpKPBsP/+K/+5WLNSlE+fsyw6uhUzcoibwABAABJREFUt535NHmyM/hFhTdQdz3EV7Jzh68+PK4+uTj89Hg6u3Vr2N+i+XQSOp6j2zoMGcsQshHfK4pFMg+xKsfjqSx//CmrHjq3ymUrR12b254/moFnP/ngn/8X/+yffOftT17pWZ+6/Cf/1X/wl//B7/yLv/Y//rPbJ+3/9pt//P/+239/2Bovf+PGN/8/v4nqutcPC99I1m09bwfWVolZCwVEinCqIQ0h1NYlY5pp6nnlSVQIWXpGByGDYVi12eHT8+nu9ygexSu6ePDRVzsoGnzVjDrrQnRtAjT/bDXv9QZlPVeqsG2rBYqOgocn69n4/PWvbnohXpWN0FCN43XKZkfnb9//zeiL+7PKAuXk4gYmnSeXjNvYJYPRsNEtndjBdiQnyG5DOn1UsSfYaQplCOxpsNSRtukOWzxN1m0QXKlAkldFydeWbWl6tJZtI2UrZctrSaGmEepYmFcOx3m5sl2PyM26TSBcBLYmGQ9134P+pa09A7Y7g20bb2MkdCcu64gYFOsSqYQzZVkaADWDUvfKhrtQuRpy6kqTSkkgylZCN8EilHCJ9CklWywfIa5rGse1VpaaDrYX0+rCZa2oZpAHjAGkG65dKVZoxBecBj1DknaV4sDThTaF2BTMYiLFZCEZhO2eMltMjbooFRTU0Gse63rPQrcYywSPGVMGZTo2bL23nNWG1SEv6y9z4+TEHgNDp4JZNdIIxHr+3tOJMnPFlzYr6xxo9uVJHlf4OT5laANIgkFdQqo8J9J0WjdQyzYNTUdUMRXrpNF4KxmpK9QBPa1Tv3gaWbi7rpZZsdwejHGFt/tXJ3F27/5Ep6Tj9xHFlzZ6lr0Gem05EcCmrnFNh1kcWxrVoXs8v9vf7Lx48sxwnJsbbzx+/PgXty53Az9JEtvxlvHy53/pl13t9nL97LOf+Qv9Tl8YK1Uwc8ifPDsjWmMF0WG23NM6esOXUaXAmyh2NQcWqMIm11mcSRPrsFyZXAQYx+uzRYYC4njT+o/2ti8URSVyC1qWO2xML8rKZDYxK9Zt0VHT9F59dROaP3n//cej0Wvv3fu/DHcun6y8K3vXHh4dDjciS3OOz44YvDak69g9t/bDNJNWg/rEV67GlokshzIz0tW7OTl9MXO6eg+0K63exLKsytTzc4kyJ7S4WhBJBBnoHTBbnbbmpuNe/PH9jwFGNY+yvBCmmMeLnUuXrC46evK01+knSy7MGCI+Hj/zOk7OUSWoRqkovG/85a/9zv/824xH0Bnd//Y3L9zcuX395enTiRehLmx6Et776C1mCWG5ZcxpKsriwPdtKeVysc6LWChhOi6CkECqO07eNkEY5GVhGXqSlQQixpdlWTmWWzFel4muYd22VF23XNZNgwB0bFdHhOUlNY3tzd06G9vE1EEgKqIjDBredTZHva0bW1vDwTZnNZSwjDWiIyuUrF6BjLQEa7qle75qmaxribksVsuj9ehaP8Uxe7HyGK5sp85Kz0B1VVi6S4ne1KyVNSRNDSdWFxalEtJTmGJTIhHhtqfkMbYfapqtlJL5NY0CjSghOgpPdOwhBDTcVy2DVkk1S0MjrDsKzLlQFIcNK6iREaTxatdAtkJ1nhl1wcKeAYCwdIcLahtIwAo0rhuJsoghdLuBhekqz4t+b8hazfAhwDkioq2x4oNWlJ5vtHLRAu7pUV6Upg2sUCvilVSQCIflWKPE0G0N8yydxucvBp+50ZwnDZfYpsfLAxt3TBMVjHGLrRe4rJKNYaeqYFEUti8atsqL2taJxGObvgSp0HXB+Xr/RjGbA911S7nc2gmAxi2UakjPMApeu7T9ZpdH4Gx6r+t0oYaErC7dvIJJ8fT+/QePjgbbl00UFFk9GO49evh8b/vl/PTk1u6rOT+er5IHjz64/erOyf3Ualx6WqyzE2o0dYvnJ+2liz5uy2d3m7sgH+4ssDDzkt64eblasWK5rujDTtpxleTl0xu7+4KlM3ZkRnv3xixq+NH5W2989tZ6oQy7Wawmx0eHP/dzf0JiLU5817ryzQ9+/R/8/f+7a12688F72JriYF4kqWqLopxsbb+ETV0LHKc3MmU5e17df/RJi86BDbrb7bDbmxxXLg60dstHpqpNEqQYZxqOzs7pfP3owtWdSXK2SmmnEzp81Mhw3dV11nRM7/vp4ht/5le++qd/9XPXPv/D7/zb//yv/Fd/57//T/7Zu3/w/m/8H957ePg//J/+8eZitfWlX/0H/49//rX9K66Gz6eHR4tzw3EVBgpLoHF7mXEAMYKAUIGogJhhyBgw9SMMLcGRhGXDJq0sNc2wbf7oEzS6kMe5mC6mqsg0foRATfVLjE3nyTIMt8umjoJREsdCam7UlWmvqR9dvnGpEsKnoWeOPn7rXi0+OP5k/v7Ttwehnz6MYZowVGm9ytLyVz73JdX0pGXUCPbsPSQZ6c3TBxOhHfK1G+n7lE1YndgoqDmmXRutW0LRMnlci1XU6ZelyLJ16HXlqrF17GqAU06oWVcc5q3NjMJijeANr4VSLZCmZ1PLkbXWId7QC7TGJWqgYYHQBBONV90aGrYjFagoLSXjGEVK0bqiuq6EnGsGIbizXijL2ZFosUpemMJo2iWQAIkQ6w2nsUtsnuu8bQInQqrsh06b6ggApErHNbGpYwnyotF1r64KP7KrQsoaUNctknngWUVZtS23zWtV0lJnIbCqWqZwrZkE8F6daihU2M6axGwri3PAVamQpmCjaNWiKWptIUq9y7u7nlm1B1Lnum3VxTkpkWJ1K/1S7AvDWTbPDZpGVOf6Ub2oq+mH1erFKqnn7KxmmdYIC2dW81xkH8zKOwu2KgRIpHgB1jFCbalcR19DPmFN6EYu3Wv1rZMs1YzkYkhf3b908/o1p7fhBN0wKAkOuGxrNm15Mh/H6ZKHXljVc6TM05OlkLg33Frn8YXLW1/+2us7O87+/nVkH996be/SjT1uPEVGubv3ucs3LtVWL7r8koGcxeMTV9frJjtbHj0oXiTSm48zCywM40m6WAXaLhPkKBsuz401ACA0+l4nIB4xO9Rw2OqZ2yyyg0OQJrAkbePFjf9oTNd04zzJZs2DAowvX325LoI7Hz0ZbpCTo7sB2i7iwjW/MFk/XK0egtWFxfiBaOf9ztmsOgt71315zWIb4XDvyu3bOtMQOs/yJ4fPjmAd8rpcjF9QiVbjE9a+8B2mE0KJw7mJkd20levixnk/wQccZ9yv4mo8r0vdpcycaEzEZTq4sd+/vHNy9KJZLnY3ewfz56Q1u8Mrp3ludt3AdnXJXhx9fPunX+aZ9pN7B9/4uT/x7d/6d3svf+nCpZfWx+MKhPOZtRTy/dMHwLI0BsqT5zaT5cowbYMaelk36yQNO+HO/pZhEzswtzcv+F43CvuCY0P3sqyRAteV4PWy6xtKlHm65KIp2rLircCII4KppZBWFi1rZGBHrubytMWdoNGENFjTNKS1963LP3PjZ7524yuhs6Fara1SrLUYIsEaACvWZBXj2qi3mE/ifA5JVc6f+GYiV/f9LbPIUu2g1CpZ9HjTTjoKvjhJlGwBqtLsUOG5Qollm3VN4lgXoFL6LM0q1lo5+0SZHwmRWWQ7S1mTB6aV6XpVVVVbAQNctSyjqE8cx3LMDSXMmk1KcZ/qTVu6mrhkGrZCGcYUAVfIlhqVEFkjD93Q9J1RVUjDRAhz3ppN0rV01OSIKhuhXIFYsNa2TE2PoXlWs7aurLqEhmUqoEvpCWmVdeO4YV60EBh+MACSmmaHM6pUikkFRKlhyGsuOBn62+mSrReF6fZOZ6kb9esGSoGLWk2LKklXob/j2sO6XROrLstKKeUGzAAjV7tStweGO16vDwTXTHDTtk1rCN2hmaeWVu32DLdMV8Dz97/8hjvUn5+mWrDx/e89eve775ugtZ2d17/6Cz//1V/wDOPRo7cbfvLKaxvz+VGWtFgNDovjef0MkY7uhYd58Y9+87tn2WHoB0eJMS/A46fHTK7dzlIgOsl61u4Fp9uqwn/84D1pnDWtK3Kl04qCl2O/hsrOkvIEx8tIQGKaE7pViwZ88vkvfnqdlCWPdc/5o++fXrjx1dpY3XvcAJs9PXyaNbNWHZ2Nn5hhifDg4PSYoJ1OrzMYdWS73ypb6y41l06fgufP3mvR2htccMI9hI1iXRkC9DeWZX5e5ue8rWxyqa50puK6yU4rb3zIjawTOls/uvPO0/lHTD1cLr9DAnh08PjVy/u/9l//nX/4l/7W3/ubf/Obbz/avRUdvXHh7/3t/+wPv/dvfu+37y4+fK/7GfTt3/r1X3jj03W9fPvp2w8nT3aCcEP3qbJ14VyUQzPa1OyQUJMxJps8MuSmC1yZWHiIhSsbirnrkA2X7mgoNKiTq4NcrY6mx4vVIp/yZuwvT5cAHxKNj0YDqUyoIgz9KOxbliUkCsEqABaUhWMbs3P4wU/+UOdPO+UuxWR7V06y9fcO7j3mL4DlGXj0Sz/7N039M13rpU5wG1KaxPcMaqaJQfGsS/Rhj5fyENmuIkOuFIGrcv4YASsIPNvXTDNcTXWD7Hl+p2gOOVppplQQM0alNPKizvIFNSqQpSEKccVgfWLIaSAtv+1dDvc3w41I7xvQkHVKpWbBPdCYREvsCEEs0qRipYV5H6shEEHL9GodGmBbMNKKCcf3vf5E4VzTgioOqwxKrmMAGZvXRQ4kyKoHjhNrCOoQUyQCM0Sch46J2lDQsmLEsLocFlTj2aJxtG4vsEQ7RdwWIsNAo6ijuSvNa+o6kNIr4j4GkeHUQFu2KmlZ2TAh0AkTErRbkg3rtlkkh17gz1eU9M0Q2u5EHCT1eae7M52bXKi6TX07NNnlxXpueW28FIbhYtqUFSxrtEJLKwzmd897OzZpxEk7b/deojGtC6jpkWqNdaoYLCgwbeko96RleivKXiQ1CpTYAjC8voVNqBApo+6mbvKyrkbuBtZEVjt2AAU3JCqp0ybrttO342YyOasRdAxiRCNCqb6taRubUVkvjc1eORaj6LObG714XTn6ReBm4SjN4OqCydokfjj+3likL134zB/8/m+AtNcjTx4L2Hc+6w8W+bohCqzap3lm5ck5NWpvaes+XfAxQdnVC/33Pn5/00BzZUGkcpbfuNjkyzOceqYG5i/AVDYbhjXUh3H1fJ0sAzN4cvfBvJRpUnXdPQMfvXXnX3/lZ37lrYPfeunCVYCfF4s3LDEGmDs0KFDZD0BVTbcv8/ggmp8skCqdTm9dGYYU48kxo9TXBSnaTWBbCjMs27SOhpfPihaSy+ukXUlIamMqqkapyrZwg2tdM91MlQmpZz/50SdXLn6aoHL2/PEv/8JffHZ+56WLo/0rew8eHM7X8cb+rb7jf/+t7/0H//7P/+N/+HeioHjlxvDeo/cFWuK6VVxZrOg4cjY7U9CQ0GmB9PtqsSKOQ1zPHg23EUISwG5nsyzLVTNvWQEgLlOeJEnYxVWZKkkJ2ZrGay5TgwoLmUhAxluuWoxpympN131N9zgI2tZXRmDa5+fJHgqpo9/yLr6y+dXe3o6v5SmZem0HIFBRD2PbQDU0ddmotsaBzsF0TmlrMiAnMvI25udHthc6MF7MCDWMFk01UAKszde1g7Blenk2ZfVQs2wOzo7OJ5YDgSK8uhK3n9gBU0Jhvp3m96AG1skGIWMFNIWgkOeNyjuDLSxRm2kRfKXJcolijVDHuCRbVBXcjQLYTIiSAQkG/nA8SS1j2BQJVqEWjmDNlMw17E2ypRUaRC8wqmxzOGuXPdsq1tyMtlleZ/OFselQ1aEKqqbUDI1joYUI10jUwoy2GVClxvueB5IiaVrkmCYrjS5dpLHhd5Ozqa6bAXZTN8HH46jnHY8nO55kLClwlVTenK9GeMvxE4xUns/aWmz3u/funPe7uzbFSQvdoeW3YZOkwqbuQI+np52tDgQ0q8aaz71WcBLdKeavfvEV940QMEx1cdML1IB+6+iHhp/d6u7j7StPl9X/+r/7L3/jH/2D9bMXiyg6fnJ2/ZU3V/W94eD606dPsyzmbesRsnh0P7pyaYrOSgu2J2BDH9ipKR0Ou8AgzAYd65AsUgxIb/4IPGn/QMdbr7zx8nt3XgQbF44mTyyN9ntWs6i0snfp2rWny7sv89eydd4khqaH//qf/9DE/kuvbP/B99/68pUb583TUq96/VGaKZnPh7q6O2Fb3U9HXdJy5vk3EIlSfqq40cbNKX+bOwkklUMbh7saHgHYtL1pAQea0VbqvDKC6WRuBWUOzv7/V89p+ezCzS3RRosXtflVWNUTLU/qcV1GmXXBKU/GkX/jwvXPfvhP/4df++v/xZ+7/epHD+49++3lu3/773z5L+y/9eEnP/2ZL9/7ydl8dTJyI73fQ1gl+bQTaorUs6ZQwECIdqJgNj/udYZVKUXDHQJLVSnIbQ8r3goFHMNggFJsxFnRzuYD2F4avvzow2em4V269aaY4fKS1wkNjOeZU/im364VBnBSpQ9nuNdxHDtuuBPnzOx1UTD40Xfe+uDO71ubnXiW/9TurSuboSCTz3/xpQ4lhV7j0BVA+XBXkyhLVkHYlv0B9TcPHzzYDMz54WOlI2iHlAUAdlphJulUN2hoRqaCoqnDqDtOS8d9o5EZ0cu6OeE8V1S51gYExDBXFWpLVnpeT+VtQN1Ny7SU0BhVRe3ae7ZvKDS2vFbnLjZInb7QaUAgJ3raomIZN0pBAHItMhJ5Sq2AFyPIjSxGadHmKsZ8ouNQglQCs0gcAYBiJse9Huoz3MnLc9eW05ZpxmWFYxnO3dZlQOOtRMhVAlGi8nKK9FrwjaqumSwGW3WcFi3TMBFKgTqf+6FVV1Q0g7YMaiYGo8FifS+rOsNoUBV3qRbXRUcn+6Iwe3pFdEKyHGPleubeZF5YRlvKNU92pD7heA0ImM20Xj9ialLzvFAc0CgIKdHWpt0m9VMtvwmN7ZPZJ10xhFhPFjzoD8v1yjCVYbM4O7OdXWocuITp5sB1BxD7uuE4kdSgVpQWtdK0FH4QCBC3telEoG8Oz6YHBEO2hhuRI+q2yZSBK2LDMAog0IqMD3oeIYWG9XhhJln82utXF/MXZbnynV4W1zbajmP99HCma+A73zz66S9+/u6H99ZTTtTJfBWty4V7DRvlMJ6TXtiB2gDjRyW/P3vuRqYHlxo13aruzJPF1vZofXISDJunjxc/9bmvAU48VygQU2LxFnZqOrQvM5aKJN7EaPHkgDBfyjNLn4m2efT0o0vDi7PnY9M22tSeHFrc+a5rdwnRltlccBzoV2QwvPfofb8RynLqsvEbzrOZ74eYt44CXrvdtHnYdybz5OroMqyBRGpNUtG2gsLJdIEMvF4vJYIAI6mwQolO+/3OG08ePeCqvP3m/h9+9w/6vTcuvtJ//5/84LUvfi0fs9VJYXSDK6Odw/Pzm7d27nxwvFqd/8Iv/syz50/i1Xq14K41T9snfe9isjJlcyHnCaS1ZtK6TEdbfYxxWzdOQEzTPD2fNDVkgoFaz3LIYdaKmekonW5w6DBRmAaDQHGBEECVkA3nQjKAOWHcAlrYmgZE1BS66ancrdfOS0P5xsatjnf7jdE120iQW9Rzze5sFsUhaqEVuqYdANCW0xNj6BoGSJPYjmLJIYD+cnmkSqyRHUuH85OsbQWmxnKGIn+nrblh8iI7J3S/4jW0DhJ4ptsOLLYQ9It2Co2HjqsALov0CYHQ1gzL9ZRtZKvbxDqnFAO+DekSCiIEIZow6SKPY8/uAmE5ei9uxn4nN/zx8kg5zm0m8vmYGoZfyxdSmIO+ldctADKTRZ7Gm/1B0zAkzQaZSTrTnI6GRmfLF0ZPl7Lub+ysG2Z4pM1KCZRueYqovK4IpkRDTd1gS+91u22cEwAQJFVSuI4vhXQMrVlN7VAAGLdNWZRjx8VKBLPxB9H29dl85vgQUiwmFNhVwdNsbbh+40Vkuay6/Y4AKwDtpmmG2rBOi7qow2Hf0EzDhADmn3yCXrkQ5u15dMn75MnzLSdqVWX2UZFU28K4X2X710efgSdnd9/beT0af/OtjZvBay+9+Tud37g86P7o7XsGNSKdG3J02J5ujqIW8OPxOm3aMHDXpyu0EM7lHm/gEvGTk8nV2xdWk/mWt0VrgLYeNitnslzWBaBj+dL1reX6yPXriBv3yGln83Noih1zol/vjlkJpuK4rF+0T65+8fN/9//4P8ZPj//T//AX2/UUS3rxFev8Qxq1kd7RPv/qpcNnWBpW0wNc3oVBR2tGnrP57MWdskQ9/3VUS5xcbierAd3f8cz1InP6GwvWnCXqld6xWm5iaK/WJ66nWO27wTXInntkOuw7erMXBM3V28rQdMQcmL9cHFQaO7nQu/moqXZ+7dVP3v79z/7FX/1br33hH/7knz5+Tv/r/+rP/bU//6vzqnuz4x6888mzNr283UEAFEmqhNgcbU/mE0AwavSa652eKQUL9K1y2QJcIgB0ECEoOOBEQIQRE1y0EEBEEJKU0Mau2Qmwqvm4mU/OnPA9JTcG/lDfuFk0nt56onTmyayFLed8zwsV4UB6PT/ky2axVkWzevHonGB7/nS213M//+WXQCtubH898Bw6cLKTtc59G+vFOm9qprgK+h1dN+uHL2hdn9RSehtdoCsMClhYdaOMWuQ+aPVKLhuWmWbn7GxtOU4lTwUrCHJQG+maXbJZW5VNDWJeYcNziJNMple2woFrGkLf6F7BzYjiCtCZADZmO6AJJFhAkCHZodiBXDWVrGtJCdZ1rayasqRYGyziuCnPO4G+nFjLBNodF/pp08y5aDULAKCgcrBmadgX3iod58Hmq0lZ7ziozk9d3bcKYy1bBWMmUGBeaLnIirHvu0R0kmKhEz8KNtfTtUBW2LOPTx5H/qiqSghA04CgS5m5lNmEccIaHAR507SitXz74rPjR7uX3cX6maVRoulExrmlDRqxDj3OkY1ai5FzAbpc1JZBFZ6nzUOgulLtUGuB6xopLy6HUgxqlHWNyDfD7P7a2kc1brBHDuJnFKOmhrNa9La32pJh8LLvJIqWUG5IaJhOaepmW5O8aKhh+Z5XFKUEyrY9JZvj4ilDnahLMOEHZ7qpmzUr3fB1pN1V0MnSwg1bP8KLiVyvSgXaay8NHj9+gBQOnd3JyTxwo8nJ+XvvvpsX5tWrbp2Ym/3hX//P/+rXvvpLh8c/ODvVNXMURrOETlbnUjfWSOvyZruInyZxuUjmFnKrhG5f3U+zM1QVyBrJUnS9yrKZTrMy4xv9zarFloaFcbS/E5frA6SPjs/GwRAFmeyAvZlAsyPxxq1tDs5X5ccXt/5ktj5AkDudUZY2bbLo9z1LwWSZmVjuDrrHT08MxyqStKuZDDMKpecYZJ1zEPeDrpKGYaJFeTLs4iUDDfGWSWVYbsbLphZQg0pCLhRrWsHs/uXNw9P7RRk7/t7Jca2gd/X2peMD3hSBSYcPnvyRZTY0pPcfvvvZr/2JyenxB+/duXn1lWQ9u3fvE426vqeXWbs5/GxbJ4vkKdH0RqjXXv38crne2ujajvb8+XPL8FcrdnLyYHNzkzORppVNzwE0DGpA4Bi6hYRDEaYmbpoVAIwCBQFmCigFAUQAa5YubQFAvQr8TrrMKfcjZn7myu2vX/rSwDaIFjiIIM0sqhxSggPKl7rf82uYs2YaHx46doCwoZoWCM4yvcpWrleWKUO8tt2mTHAVe7q/qJvC1TeLrJb4UKEM63YpE2gnZUmpdiNZV2Hfy8pjQBsmXCKvZoni/NR3Uyggj0lZczM4k5JLsdQ024NDjaJaFlTtgAqhJjZQIGAJ0JzSxiIbPNccShkvDVtwea6IrarQ84hUEMm56XfOFmW/u8dSbhAjzytz4Is10cxgsZ6FfQOAguoEYAdDAEBlWHoDcVXVDEEFsOl5TZKZmiENrUwyVLWa52qMm9go8rpteGDoSbzGFia6lS6KMjGwE67SR1f3Ls/TxXo93tl+/aOHT1QJHPvi4fhF4EZVk21sdaZnGVfcDw2l4M6uniXHBEDTigJ7K1/WijuP79y/cPFNIlceCrIGUqxC36wDx0B+Dou6Pgsv4qYZvm58I4t/9Lt/9Nt7G9rXrf/u+Tvrl2/8/Pnsjt0Zy2Z89+G3hsMLg9AYIm++qjYuvzqdrxfJEvraQhWr46nphLIi/X7/zscfUC4uvLlBCD57PKx5qusdWI4wa8/PntbMeuXlX/zkybOXo5fK8XTtDlk9lD88u3gxyI3OWw9+/It/8mceffL+q5evPlIyuLYxOVtd2b30/BFjZX0+fv/m9e55lqTCEqtmXUEjuIY0N4yC996++/TRR5/76StIPfn+t+bV4SO/2xTmOjbqutcg/XmTr0aWFtmvr6Zt2Z5tDIlrGqINNID8YN0BOFDu5a2OUnC1WIxGl0+ezg7HHw/3f7iz+SuLcoN4RVQx6+vf+K9/4c/99X/4N7zRZ//jz93623/pF4DXOX03Wx0eWqjdMwqo68vpPHD8pmwFBxbxMCUOgTVcmVitksTUEBINQgQSiHHOpN6KFkGgUY0BntcNxBhDQgwNwkSnGpR60ywWp3ObBow/Y1o6vLgrCLIoAagUbmKabahqhAbcJic5HBhVXCUnJ2fcyLdvvYoqa3H+orNNelv2lf1XwdzqDfpTPk6tno69iqGacc5S00LCFSKQ/G248+anx0eHthDlMoYN0BtjVStHqbpeGLobBoPzeVM0qe3rSVoRmhEVrOelG4G8Ou2EvTJXrk2zJsE4owrs7+3YyurRLVZiygfEWJk40ojSkACsYqpkYKXDXlaXTGRUhxJQhLhm5mVTl6zW7GGcLDVqMay1jRJCQSDbJo/kMM2WqqZGKEHDldAtWJqou1hawz5FKJFQarKVqC4Lt22B3guV6iLMKpEIzmzb0TSjqpdO0GqK5WVmGJZuDx/cu7+1s1flEHBbUtxWGcZgvU5sy1zMCildXNp5cez7/tHp48G+LPkLxTEEmwQD6vu0ZVJW0A8GeUmRirnzAuJN0iyzBnI1JNiUsI6LhWYYqmPNCgngi8CZ9yK3UM85vmz6b0hZmB0jxUVexwHWy1KYvUGFMa8mBtogmom1NSBY0xXBQDE9WZe9rpNlWIsQVIiADpC5RTqwkRQLU1rzs6UJgKhKnTRK3BPtaLJMRltu1CHrRfro7vnO3qA7QMdnD8pMXt1788EnT6siAVK8+96P/viPv/e/+Wt/9Z/84//zn/3Fv/rf/73/xtTVcjZVCo7H8WA3mEwT1ZagNLJiqhnSBLsm3cHgrEat5eDZ6cHbd55f3duWNakhJVJevnhNtrJlsOtuQ0l1nfV7wHdvL+rSCV5PshcUy557tXEXDKPh7KXB9cXODpmPox2063ga7K/SjCfsgqZPCAT9aHO9KHoDvJgnrrt961X29Ohwf2czma51AQgkaVwM3VBHnoO2k8mMBgz5AXP2LSjE7G6FQVKsNd+eLs68wJe1lAqkeXnjlSvz+TzN1nlZ3Xr58idP7l++ek3T9buffPipr3/67NFHWT3b3duYHI17+9dlSd/5wb2tbY9S+OzpceCNIJINP94YvtaCqmFSs5yilF/7+i+fTedBJzAc8eF7P6jrNgxD0zQxapUsJqen/cGAqE1KGEAkLynCpGbzplkJDohuACYQB0gJIRRWQgNKkxg3XWnWLWqLmFwGb/7c8Euf3tz71I1LUIS8yaU+bxg31RVR1VhPRS79AQGyxUIv8prIqCm4CaVoVjpxmgwQxgliWAHdAFwsioVCdklwsE7SIERVHCth1W2Aoab0uq13MdipqgXUs1ZmCkEIiAGpkDOI405IfGPQ5BqlVKKlSTwgHN4aSLYQ1bLu8HRHt922nTm2jkgDOWpK09W7vG0qPvcDR3EmqwiqyrZcKbgARVmYtrWBFO76AIFUEplWwO9u1QWyvBJpWdlOd/Zv1iVQQJZipXt8vWwGgw2s6XXDTc0SSgIF0iIJdI1JwevGwTRntaqlS+0SY4xUkxWyZi2GkectZxMN2EB3XNJfj2WKxHDQPz+fKFJfvtidLZ+E/rbnE5Pu8oZFHcFrhKRhu3Kxnpu2S7AuEIGyKfOsYVVodS3JFhm7eOXzh5N11+jCCHfe6OntNIVtjLimDy3dqobzT33hJfKj8fH0yTf/4L+h3TAa7rdi89rli4sju8zIekxhxC0Cbr1yYXJ8uprOLm90hTROz+cLkdTJ8o1XPtUkK7ZKb7x8q+LlqiikkdrQqAs53INVVs6P00vbNx68/8Fw+0qZLRuZtvH48Hl6+/pVZYgffvP3L13djGeorPUo6LjU0lTvu29/1L/u0VBHrihquTn4xv17BYKHchVfvvzFtbmw6dbJ4XK1mEDhdp2brqGvlz/cfIUrmbJVXc6ArdkeRQBTQuzFWORZ3LKW8H5TpCWbUG9PQ9Fnb78Slx/fei390Q9PEIWfPPnjUOvZQUv0waR+MthQHeDo/uZ3/9W/+6t/42+99oUv/IX9X/jrv/ArnZ1f/uEP3vGyu4ouWqoGjj9Osm7YlYx3o6jIcsaEF4TxOg2CwWpZqsZFmPfDKI45RQThCkodIYIANLEpkMSgBgQrgrIqbnlhak5dtYaJlvOVieOmXrVme+noPNgdEIukjDlmV9OIQ4hv24ucJwcH1dlYZoyoDDF5pd99fvyx4VaXrt4Ydm+4xra9SxvOZOtuBSWFZRnXBkC1ogZx6lJKBYev9mpIBq7hx+D+9ENbsqpZc5th1vW8smoni3VNsZNVK93RbJ+o/HalnmFjlRcmBGFaJAo2UlCpTMKayNS2HMfTeqoCG6Me4KllclezsPAxbhUtJKqwABoJDM2I0+NON2gqPUsZICBJGtPoFNlz20vTrMkbQnW9QsdMkxIhbmzUdcwlKVECbSYaC7lMYaPDnFYl/aZ01kaco+Gl3Xmd6Te36Vk+Ha8t3QCowpAoZp0dZ2Fk64ZOlc7amFraydmTKIraGpUZds0AiMwPtTyPq0xzjA5vCtfH6XyqmW2R5lUjA8tMk1rTbQXmpK5At7O5zs4wGqQxNb1EkbKY7Gl2UdRwdxBOV7OypVm7CAIV54VcNYBuNY48KeeRgzRqONWka72lkxFrLduwomg/n8Wbgy509efTI18fYPPjivddfgG7Y9fHZUqL9Mw2AggrKdR6vYJQ9cKNql2WKV8VTb+zUZeqTIWle0JRTdMQ0udTOdxBYRfOTuSdj44uXepubnmnh7PTh+WtW7d+/P1vcVkcnDzprPvf/MNvD/sXziZ3zk6OHz5565133h9tjOJ00rRYSlW3ydk4a1a+b5YnB5qoRmHvARdge9M+WtbrxRLjzA/sydmkTwIJczcCUddfLKdRhGy/bJoZxNr21su6Jp+fPDe8NDRWviOQ3sazxrSG3a3HnnGzKdud7Q2i53kemo4hWFKVFRA2JGQ1S9ZxbruG6drY0nM2257bNrYmCQuNoAMtQRgiZpXOWdC4PWQNN2LervhhKdk0S2EYTWYnwIKAgKzIdc0pmzqIwsHAf+utB1HXHy/XRIMSlmHkP3h09+VLb4xX0/lk5jkD1uhFnn/hUxu/8ev/N6iuWGS4WN73vU3N6JwvPh5El10DPHjxNF/J0Lv82isvp3mqGW2Rje9+8sgC9ka/l+elgIQCFC+WncB3TW2xLi0HAMJalbKaSikJGFEcKnUsOOCMSygklBBKihDFyKVSlNUFs3tDv/Tn3/yLr3avBZSz9ZmwOdAdCH2zb7V5bXuKQ4OXbqtaWBeSNjph0GgYh/W0Wp6IsL/Oq7GJPVGIqp4gELLKATBR2KohY6xarQUhIeNU0604Xhh6zoGBpK1AKRSvWd4ypmueLstSlLrGLLNT1ouKF57Vx1gXTappGtahBLGAS0wSKzA932vyNdU2AO9xpjTaUE02VQOBQymO15DSxDIHVd0ALddIf52emh3PQFSWdlUr4jiGLaktVucvDO0SL7Oo59VigjSrKpTtBhhAHS8VUAwIbFBq2ixO27y2HEcI0eRMA0gpwZiyEJ0fnzpbm6arreYLxQVvG8aypp04oeNE6sXT88hAvIYYdalWhVrHwntQnna9ftXMqypvahAETlXFECAoZVN1ul5XgAYZ9WzycGtnM29hB3lxPo+GapHerZR7cevGB88PmrenX9q7BeMlrTXeVIMNR3gKxehztz8zPNr9wd1/12n6dM52u1vB1uaOY5+Ns3vP718hNsNaa/dXBTX6+zdevbFejxs6pcmV6XQ6Pc8MhTai/emkWleLcTK9ea1rIrdAsaGdUQgcw3vy4IWuyd3dbmrWrAlovrh9Sxym773/veaNm8NwQ3v49KPNS6Pfeutb4WDw6PmxTfWd0Ebd5eqevLH9plrH+qB+fPhxP7rojNz1E4vDPJuf83oF8NlqOc5XnW7fmE1zDFHH3m9qQZS0oGq47HjOnacHHaseDb3VMiUmlqQOwlFtNbr/k8+/+Trk17IsDqP+e2+fvvm6a4hri8mUGE/8wc0j5LjBs099qbe58bP/2Y1f/ctvjm78zBf/51//F068tMKNutzc0uvlckkhtixLYFGXtVQq6IXT1dgwjDInVZ2Gnit5QJED8ZFUAkjf0JjChmAcAgmUgEhKoKqi1jSdiMuCFA2f21okZZ1k93mD4if57ju9N/yfRrZZc+bpBoYQG3hVxdnSsyRcz5KiiofbDpLu8nyxMfIHX/y5zmC407kYOn4D6uOT5cDa0mVSFAwqVIMG2JihGkNmYpLumXJSbL9+5dF33ovHp36/zwOC6qIUM94IN+yk+QogYeMoiWNFZ4gs29qn6HKrYqyJugAQQQbmCjSDYKeLIloyW091z/ZtwDJD4/sCNHmaYqwTggEMOMcIxhwSahIBBEJASpkXlZCoZpCvbYPy9eJcM/y4TKqKOe5e3YK6SYVsCbFYy2wzQjB0aCSaaGsI7j6eO1aztbGVSHAweT66voXtwdkLbrnEcvQsxoRK3YthM2lVT+e7WdqaRqcsyqpOuwNvMj7wg5FkWS0S3bCStDJNfx1PDUODKOUypwoVRen70Xwam/qQ4LZh94njeuNxAkF3a3NfgWfHk3PHD3teEGf3Nr2rml6WxmlTFg7uAYSBjo6aPOwusChtQd1adqNLUjdat3Ftv2RNd+gDQikKNdfLeevZPRM52CzrpsF6KxhhlZlnVVWtG4tk53xjN8pTghBq2nw1AWVxpm0MHz1PDDPZ23Vn47wS00qVJt7COhpt7K2X8ZPHR1HY3Rhunh3OH9ydYWB8cufucn366MmHTDUQy8OjZ6+89ubv/Ovf3x69/tv/5luUBFRzy2pVZgAKoVqjLSQACwVBvA4NrQZWLqAu+CSw/PmqLFu14fQrIXRDBzwOgy+0LGjFqml4vOKhv0U1yzcunBwfRPjSJlEiC/XQPEge6sTuCYjkraYFdjDSyRCiuWPOk7JNMzeN53Xe9np+VS1MjeSpyEsGtHTkRVtXjGd3HjsAoLJo8mLQHU2T5MJgmJYZw5Zeak1bdky4yNoZGJoixhadJ4uGCSCEroE4Xt94+fbDex9QBNNsGUXRwcGL7jCqyqYThYrkz+/8QPn4+sa1+3efvfL5r/zkd98pU/3VWxeWk1I3e7uXur/923+8sXVBcDRfTYrY3dzsb2/1FvHd8exMKZUslwY2ZUtW8xJA1NatofuUksB3J5NzaruSmaxpAMoAajViaRgCNK4TqYRSmAoiAZaKy5ZTQ2pWY3y28+k/eeHzrw2uuaYNpUgZ9MJrAjTAhCD3WUUkHsuqNfxN1sQK1ogz1ijHi1arzPHs1WIM+cqiG0xapkZZk0KIEQGI1AbRMpEjZQCxQWm/VU8a/WNButR8hTNInLOqig1Dy5s1woHiukYvaMxR9K5uzgiy68rTSI2Iaqq1jgZSKKmmEFINXvZtwmWMpO1ZnVZVLTpHCOlmJFoihW3ZZr60OiHIyoOan7vRqKy8vFz1hiGTfp5XVLJWxN29wfR8Srhj0o7hi3KhYXKhKlloao2WUdsUGbMNX0pZ8wqoGgGkWi6JskM/TgpPM7JmST3bIkgldZLFDhzl6UogoQCUlcimqeN2EEH5spQ1gUbkG4KJWteUCUvdWzpN6lhDyYM0m/X7I15rjC2jrgRtMNzQmzSlvgYAwEgqwFw/TKcrRYY+RCfJ2B7olb4MadGFVnmUpoD7htZY6snzZ5ZmG9aI7geXXL1prz64c+L1FsEwSDRXbmo1n3l4c7oQrGnuvP0Dw9LDyC8mZ5qAX7j9lfEs++70bL2aAIg119Y43tP9C91eU+7mxWy3c4E1xw1QmiXOjtNup3OcrBeH+f6VTe/ljaaqjcXJG1e2Y5b/6P0/iqLtZ89PL9zas6LOYnH2pZc3LhBLtH7MDhl8ag3E6YoL5Y023vzk6XF1cH7l0me+//xj2x49fzJ99vSkG8VFmW1ATxC8XJz5kQNgyy09pBtVJjFxbUcHWDV1UjKzF+0j3dWC1fVP9T7z6q++84NDIIKmUI7jWI6pq/js8aq/2S+AxoyF3pobt3/pf//5v/LTPx/e+tVf+7f/7D10mr9069UfPvkY2cmygK7mpq2GBE7T1HRMiGFeJGHgtLxhIjNNzTD1Ms/LvHQNi0MhVQthjTUsZaMgAkAg2AIIGYtNw9OoWdTMpAYCUtP9tqw0Ik+Onz1+z7504YJn2gRLS+cAZQDLF/NcZ1ccT1+VXFoIBNiA1m5obUm3pBalnm0KgtOzeb2zdX1+OFZ2koiMm2ZatGEYtXVjQsK5WrGMGMBDibdNbv7srWcf3AOCUOIAmLNCxWkjobFcnHueZ9q0qtySp5AyCV2sLCFy3WRK6jp/2TLXroiG5q5HfJYAr7vD1joVFtahptfCUBomAAoATIwJQPE6T8LIqpqUUkXMtpVcd43l+tSQ4PmzRPd2DAMu1+cG2aoLHWpxtZoj1RpaDYTUlSQatzAoZRzH3ZGzN7zhHsyea1k38raymImjh46LNR1lSWY7jmmaSRK79rbj+BLHRVWbuoegGzrO2elsMHR5nVV1omH97IT3htttDetqTa1OnQNI+g0rqZULdYQwonRQZVLTR6RpatNGnrUZxyuJJsNBz3f3nh0+do3N0U704NmqSS93LASs9dHsyHZH2xFNq0erKtvaeUP3w6zOPavThS+lggWhIVsGEHdH4XSRhOGmiY22nFB8WfdqYhZt4/IWY5QZpDeZ167bk0AvWWEY9OGTk/FB7nkamx5HgT00hw9/fDJfTMJuz1XXpunq8i1nMcnWywyR5uZLt+5/9GyxnFTtdL5aVnXG2vroKPvqF7/2L/7lr2+OunX1FLY8qeLVOm0lsDw3rxeSi/2tnWkVK+5bFlQS1lV7OnmcI623EbWNybMKG9r25ZdXs3mnE1Lb2PZf0qKjojh2eipNsl5wTSlpOMU8+z5fn3Uuf3rSLoaulZ8vNoOdtYa4lSPWYkM2sEUUU7bXZB6GmYT3Dae1bcMwZBznnjOwkEfdoJZpARaC0o0Le72sMBTSFKnrutPaNU6QHY32hgk+D6m3GBsJBrn3QZW5EsO6bkUrXdcXXHW6oQL82ZP7ly5+dpUmph2u15NX3tjJVtnli69951vf8qyRNXKfHDy+8tJuxWZnJ4cbvd2j4+f7uzueu/+v/83/N4iufe6zPz9bfvjsYX7p4hVM8kfP3p7P5449aGvW8b0sPhluXl4nKdF0gonv+2kWn86fuq7peHmallXODGpCCKGkRb7mbUyIDiAEQALBAOeONC+QjV1t+Kfe+PqbW7d3YGQofrp4Pri8UbU4Y4SQQjOIynhdaE4YrY6nkKAqTYLN7Wz8BGmKl6WpVUVWNI3qO6M0LouV3uJUgIoxmpeF4Etem9BpIVHAOtfDebbgnL3GoLCCKW9iLnJT75fNKvI34pnnWUrhe2kdIJALQWAtiSY9V+cSa6wb9tyKHXLmYtFHWCDly7xTs7yzMRYlkUJ3HFupNbIkgUqzdA7XEmIDXgN6LiWHEHqh1JAtWMKhbCQcbl2ViTKAkRdJdzMAMNRJUcnaDnVZp5oOGIBAmayuIWamQ4UQrC4tw2rbukrWDBDMpEao5pnlMk6XS8O1iFLZKicazauUCCWEMIxAMFTOi51NY7Ysu6E1Wc+k6uwMN2tRoMYuq1yqxvF1ofg6K/yOk9dJ6I4qeKZrSCrEgTbo7KVxpUlskE4jU8FNw44oNBXLWZHEP3qxZLLzDXu8iNNFXresDZWiotN1TxL1xkuvoZweHtyfnKEZN/ZeudLlGULrRs412LGxMT2fTZdxvGTIQ1955YJTZ6/fvvjixYuT+fz5EdN1e2er//CjT9wrk9cvv5Qu07admPpWxaju2Y8P79w/PvW9/Z1brMxbB7+8u79dls9svnF9qznNVqfL9OKV8ODeRz/3ma9amEGILmu9d+KfZHz5bLpjeJuz8yfGy/VbH/3h9f4r7/ww7kRXDmbfu/zSwPN10wZCZA/L+7CGm2F32wnH57OSdbvbV54sX2zvxwYDOUP9vgrs1XAnYhC6/Z4B/+zJcUeAp1HgJnHph1qbWVVT69i3hv1pcTaQNt4YHnzn25/+wutvvv6pf/o//VPx9PHP/umvfPd7D/qtbpr2zCaVFLZl52VhezbCoC05xQgxQQWERDdRF7UQy1YJYRsbAKOsmojWQkQngunYUFRR1BKDIOCV4kiBigpbR2YrUoICVjutNg6wvpwsHn54f1fazu5+LRwGDLhi2zqXiGeV7Nhg2x46xMEa8gK/5kZSMl3T81JWBTeRd3L8lOgMNJHONKyQw6HTKo0oXi2boqCQWb1BvmwH+zfolds5oerZwbPnj4Vwo445n68NLfKDDcanrIRQekRtCr7U/eV8ft8x9qtVFAYeR/O+3cFFPQgAZpUWdepmHHjUgE2cB5iYCGBCWcsLqXIAdVYBTLq8NVfLCURZzYSEegthwet1eV9gYFibk9XKsaCJ8+PD+/tXjHkysEyfG8jQHQ6Vbpst7TRaZcMq6rin55mgke32y6xRTTOws6J1qfKbFtYo56KA2HI8La/OMFRIJ1h3OJdpWlq+RzBdJUusBwIALhrdsPI00zUbCooQ4rgBAmKuNMNUyjBMPJ8v+s6IuIHP1ZqJe9TynHZTd+N19sA2Ldvyz8/PDcPY9OHZ8m6+hp1g/zw5ogPp1a8jUFuQUbGqVBttDZhRqFwSbFpWlJcsSdje7kWEORIN63oSlq3CTBhEL1t1xIAs842oHxGzmqwqibIXz8+fPzg3KIjzLrDJPKm+/5M/buvl7tZLwab28PTezu5rdYoKlRwcPdgcbv7oBx90gsh02MPnb89Lsru5+ePf+9Ewuvgvf/1b26OrSFtm89P54jmGjmkjYiGmysVydW37qm+FuZS2wzrmZSYOLGe+WGLUwF371aasHTMWWvbk8PDW3iXdxb2NbT0xmHqgG90irTY2BrZjY1nNTooscwbRm9NkQaVK0JJTWVIp3XZ5iHeGV8oiOTkBuxeIRWNkPm9ia7f75bPkxNAaJNju5k3P82q2qmXJpaaGt7O2RnUTNsI1jPN4zngDq7oovI5Ojk9mlF48ziZr8mRa5GUS6TJZzBPLcZumNXQrz8tPf/b23YcPMOiORhvL4tlqVV++9IaNrxiusVo8K9K70dar7YLVKoyGF9797nekYYRa6O0GkR/85IPfBa3xH/2v/qbE5Ucfx1A56+x5mRdVVtqWp0Cq62AxyUKrdz5NiGaYejgYbTx58oS1pe91EYLnL3LdrEJfc9xgNpvk5SlUwDGCXCQQQCQAATJE2qudSz+/88WfGr5xxX1JgVZZMmFxZ7NLiU2hnsc1A8wcXmbFE8MRoAKIZTV7ZJv66vQxavO2VbzF8WS+sbO9TM7zuioAgyoXjABoGqZqmUbhBYTLluWS2UjB2eyUGLaGuhB24sVKR6bhn5ZVgiiRAlgWA0DI1uTYMQwdqIq3AKpGcM5b5dl6IZ6Itm9qNnXLqsw4r5BGbF1vyxApDQjkO9uzyUm/FzKWQqBRCnkrsX0AoAmULUSryf26LhzDmIk42hi2vEKVVHUd9QalVM1q2qXYciGySZ2IGgI3aqGZ0jrM+VrXIJYoiXPTNiGEnPNotDG788DuuxVviiRxbbNSsCwyzxhVMCvqw54BTUef1AuMDNfSRGl5XQBzHPl7eXVeJkLr95V8Fqd096ozOSmrGlCHm76hik4Lct/3oULjhA229uLDE6/nUk9fLw8CbVtqyuxr6cMZ1NHu3q3V+BjO0/rjz9Ad7LdH1fOT2fal7d4V9TzXfVp7Q+faISmc9x89ywGXCFkFvE2s5c4lAWBSPSd9y+bW5Hx80b2wvj//8ODR7d19vqiub7387Z98bAz977/1MDQihAfT+NCHnuNeePZstXWVZ8msgdlynijaHJ1Rg9oYvLezH8oMhdZ21TdP37oXzXVMjzqUnUwb3ZHdrv00PsLuhUBtGrIbwvLqa9H05KGm+wV6kaTPqTaEcFTWxWe/8ebDD86XZ1rnUrQ6Z93tlx+ePrQM4kd4PH4v8tKamayZYSsAJPLdvarygbR1ghSqoPVMN4Dv6h+9/eFPf/kG1cYi3Un0lZ1+69Wdnz9J966sB2CkxfXZb/0//19+ffJLv/BL//J33pPWGgV1CzwIJQWdUqSWb2ZxYuiaY1oUYd7WSKhGNdRoMECO0gEAQE4Ny85zaRpEw7BVkGLZsLqpC6ZwW6Wu54Cm1/F0JtdVFSqpgLlO6zLEO/E6vfPR+wqxGwHIzR4HiJTC3IMZXAjT9iLHA75NN40RXzWsnsquBcu2WNed1bzU1UT3c9zTk8IBHbdNagLNdZ72enZWMmGgEG/Fz8+1XqBfDM7vP7X2oul4HspIdDrrZO24flXHvDEBHwBUIbpmFaLU5plnYx/wotNPTCqwCi09u7H7ClhrgOs61hnmrIaRu9PqCnCvbWcQNozZhCoJ2zLF2FerdcxEK8RaKiWQfXxy2sK1zjf9QVOKigsiWlCx1YXRDimhppYOdinkge6VBbegBQof1xiKdYpMi23KYsk6T7FuUdZfcqGrPE2f2o5PjU5RNooyJhACA143UII8z5s27Q/7s9UEIioloNhK8oNwqM/WdzjzkKolRQSVSo9W58t+SDXiQEXz4lwzebzWibMdTsa5LAyXGNj3kqVyBDW7bF3nbY03L8FFuuiGt/VyWciDy/3NxgYv4rPNi5uZylaqMlz/6dHU7xomCMpIzeoVU7I/dDHOsGFkNdJUX/C8bbOkSJggZTvAJq+MiZav25nH8OlkevDiyZlt6atJodGnmkHvffyJYw0G+7d7167cP39xY3O3OTq6w5e8kYbuHeVp1DWpURw+fDafysF2/4e/9+Px45O2k7s94m6FBwdJM22zlRl2vThbB92AVWCzd3H34mXRVHvb+3Z0H/JsYFxtMgkgIiJLJ88Y10YjSqe4VUZX5T1zW2t8ZgsXXVye5pf6F21TJmXJoMjaRZFnxJ2K2axDXOm+VOqTnvNs+jQP9MtTfW43C9/g5wflprcLdQc6QKF5byRVu98U3taNYJF9ZNsebjqBf5VlMq9zaum27ZRJdp0apGrbIm896/BgDMN+nU5Ia4mVncVrDBvbGLSutkomlg3T7BwTAxA4OT197XOfOzp9ynPbtu1Lt3djtQKkfPDJh4MdvylPysK8tX+Nx2MMWS8YDq/sEbP5o9//UVoM/vxf+W87o+1v/+bfr5LHqxrV2RkSjoEcQ+C0OEcalsg1By+DMgk6rhR1sRhbTea4Vs6rcZkASENvGzC5OEmTsjRNj0tR8taieim4D/yvhK+/uXH766PXLhl9u9+dVeO+HbYDB9xfmf1eyrjp63y9tgO7Sc9gldVRZOlMpY1wu4Da9dPFxv7gbHIQhH0O9appbQ1iQ6l1DmmlGVQKoZoWwNJ3wuW8AoIiB9eyAfBy4Dl58Zw3pWVQRR5zsYWpJ2FTNgg0JmigTlTHmyNgti22LAMAu22gaGwENzGlVG1QkCJQUm1Yi5qQOHSHJdeNgmk9czF+qlOcw8rFeF2klHFnK2qSSgOYm5RKpepzq2+tZ7K7f4HWTUpK1/e0KVe2LpZlGBnLOA5AJEqJPSswrGqdE2LFat61I0BclWeeo6/bRKZ15+I+qI+RBw1CQZpL1WInsNomWT+3RrvFmQCKIHfndFKHHRAnM92lLGu7US8FKSvXDvb87RsvHh8B+9r2pleflU1lRz1LS4XKFMYI55XW253X69Dv1WnuDC0Jm2LZAD2iezWN/cn5ncGlK+MHKzlo3Ruvv/jgSRgdUR8LtCNVyed3JiKNrI1doyxSO0K3f+pWeMl+8dbdBy+ef/tTn/7Mej7oDTYm8Zk78oUJRSEQF+Oj588ffnDt+q3x2VgbdXLZfuor1+89ejxfrBPLTZ8lM0quXd4tFumnvvzGgzt3LTz67I2X7x6cGib9+Md3Z/PJN372Txw+aC5f3K7KZxiFVqSNtnplTV+882xZPb5yEXia43U/40YfY6MdbvInHx7Z3hvvPHy8f/01m7cffPy7X/nZX0Hi6rUbb3z80UGVH2xu12XcXru+ce/ZE4B41B28eHR67UI0jK68d/eh61zQhYqPlqcFHGwBzDI76DfaC3Nxo6vaH5/9oDYg12EJ7EP1sarh+ti9ec2oTv44jsz2hGaf/NCE7JXPfOWtJ8+yeHpz40aRrS1TM9crw1R27VTx2YbnMhYWVaGsDBAK0QWrWXuGu05SqZ1gjFTZ12rNQR5BXHJEoSEFBsAgCHquyXkLa6QZijEmEaEmq1vQNq5tAaK5VsXqGKxOmvmjsw1qZi6SA2TRgYklpbRu9yrWEq1ZPktDz3/OG94SALCSizg/8gI/7Gy1JctjXhWTzUEXApzksmKtH+zMx0dMQ3ElXHVYxxhpvr9F9Vv9h7OgmtxVlC9Z2XDmIN2gSCmLEK+mSwAcxk6iUEvTAqG+hvsYrDbtG6sZJMoYRD3LorwVlh7MEoHCVqE8WZ2ExrBVWGAphKwltWUumZOXRJCFlDEBg8A0cs6QMWlKA4IcSwblDicAdPST89nORkiA9LRNyUk36HApJa0Mg7aoryEo8NgwgyKPbI/WRazxDWQATQMthrrTaFYsKnd8tN6/aK3Ohesl8TLyg0vzxWMgAOatrWPi1cvUmi6UZD2dapSIRhRQ9OpcbV+BDJwn8Q3FqOUoB+rEOidttdSNTtC7ni/mkDDXR/USY9Xh+fnFnSGCZJH5sBYO8QzoCpg0s8m+161WDLQi9IIiUxypJuFqIOgcM8Go2QDTqc0gV2wmz8wmxpA1TaOEXpcarxTPGQRaJmJIsvPD9P0PngxH3fn0iPEF4q+98/b/Mtp9ZVmWu2H79nf/7c1LP/XRO8+ZWl8e+kfjidBwNOxMS0VE8e1/89sXNzafru68f/f9qNOjrhFggpZpvVg1hOxbDuYoVXjPCyjWgqC3Z1m6Q4JOIPg3oGVQPz/HRzFNkOGnpYeFn9ZwwY7oRXOh15pOiZgMRul0jkdXe23zzFB9xXLfhsVK79KY4OGqTlfr3mB77gRlXny6oWWs5ztgdaiCs7N131o/gytQuzeDfc9h09TJ6jja8nAHu8YFXhYj2xBZ1Xa7FoogpQ0S2Ect4LresdXQbnnKuRZ4QzlowT6TTTyL40X57scfPrn7Qug21EzXMa7t7dx/552N0AZofnrywjd3X7r+um+a73z/Jy/f+HSHvHx0Prlyfa9VlR3tnJ5/SIJ+FF6jwcZ3fvOfB8PeL//ZPzPo+X/8h//oo/vvKa435cQwDDd0iqyuOJLAkhwNRpuaJqllB6axmK5S3iwQ4IaezvNAC4edjfP5s4otkUawoZWNALIlRIWCvuFd+lO7X/73Ln81gB6AXA9kbowtxIFeqZrrGqoR8JxusUwkdqgied7ESRZ2XCCqghdbvQsHH9/TrGC8gMQIZvGpgnQ9VRAZvB1XNej1RnnGlKCGzYBozpMzrPmVO9DZGi8rHe6MV9gcbXF9XabTnn1LQS0vCkwBUkLh2Awohq1sRlXThKGf52sFWBAERb7mEOhUKfhIQUrRiEOGoARsKOq+YfIKlarm1ASa0RJSrQtuOZu2B4u8FMrClq8RJ+ZxEG5lWez4BCmQlspwe9mqhBATUQYj0ubItiJMbQBkk2V1XWKMEUK2BZbVpOvTRhYKtLgt7KHflmvFwpYVANIq0+q8dW0wnU4t2oWSlOU4DENDd9t22ramTiNMGq8rhIoxRJwhz3Oz+Sk1iv6eX68zBPFoNKqbgmGYpnFvc5NhthwvXD/kjAvBizjr9v08XRnUwKxzfvwc6nbbaN0NrRUxK3xTXxRT4ewOA697yLOjpx9sX6DUGJWNk1YnWmRo3qdJpt94DX/4zPr9731w89qtPbGxqtl+d3jYci2yx+NxtD3QCmMRj7M896KeF3UXyyxy+hT4ZdEeHI0tAhljV67tPn72mJrgxvUdKtRVbXc8HhuGYZjhD398t+N3Nbo5mWaaM7txU3c06+CghejJ2fFiw/vixZe+kDeno1BQc/Pxo5nWCY+zo1deugDaRQu97Us7XBq7F/f+yb/6L//cn/1TRy9qXrmn4/tBt/f82du/+u//udVkbnew2eu/++R9f1NjVfrWDz7cGO2erZbYAvuXN/PqkBeKURf26dNF1t++aAD/+J0zw6IfnL747GdfWsyqH731aO/Vn6rUXFpiy3t5sSifvbj3yutbxXosa6NuMFSAGlnJas0KW0XKdkU1HXMfI6uu8qCHimLe1NAgnm2aQtpMrASoNNiBWDFZUo3qBDdrLhvhGRGhar3KJY6prjWppwhz3IZxR4OnQrpNVqzOTz6uxcl69YVf+5ogI62IuWiRAQiCdds0Nag0KUFrEa0ua0pIrzPQkKEA0JWGIJ4WL65es3XlnR0XmkYlN9dzYNmaVMdCqLo2JCm1iCGToH1/67Pbj9/9hLamtpZQNBDNVnVCzKAqsO3prHyCVVin6Wanb8MrmqpU61KoRZ0+UQaEMstiqWoBqpo1pK0Nw6Bgh5UuJlVZIAUQdJ8cLbyGFwVPs6wIQxuDumj5uhQONS2TA+F0u15bTyU3VToYOV3Q2I7rSc6Lch12jDJda7pDqMnbpmKppYVI2p6vcZBhnRN8ihy7yRvCYT3BhPZalZiRqChGdC2kaZgWUzPTBkT1mFiW5cRuSpTKzUEnrudED/LUhpYmvbVa2jIdMGEwNW+LHqt6ujPBqEsEC8IRLk/vQhO40Y10QnuD4ix+BNrIs9u0KLu+3RumWYEWa6tuzwDSOYOm706TlW7jwDem8bnt2CU8zfG4JaHr7lSAafxELiDKvCWaO66W56WSbVNCCLBQJcVsPdcAzsbjx1GvYK0m226epRl7AeHm+HxuOO6ze48HUf/89O1/9+3f+w//o//kOx//eDVZbPV673znd9588/bJ+fPpamL4xr0nD0LfAWW1c2P4/Nmj46oiCDdxUd+8lCwPUQTaFnod7+Kr29iWFSe7gbTNoFLnjSo6dNRMfCGlhFOrqHlejTbch8/T7aCzTo+uDK/i5bajzfLirENetfU2ye/wxjGMPDJ3pKVXrW124t6ow3LVlI8GZlDUZ7W1YTb5hU27JmjV5pdcH+Y01jsBiV1fw5SV2YQ6usQmMXse8T2rlqjJyxUTJAy3BUfUwE2bL4sTs2dvX7moGyTJZ1K0ddquxvFef7PvDxLBsrpu6tqI/PPV/Pqtqx/+6EUQ9DaGoZTp04f3u461OH8cr5a9MGT1uGMFs4OnWLSb/ujajdf+8a//+kuXr735tb9Qy9n58R89/PCtpi0xKSylKQHms7EEChMHQPPyxRs6hQhxyMGDF/crCICQuAZOBrv+KKmzg9l7vEQSuJQYXC4NXe5Db592f2r4y7/88mevuV1Ut0Aq5VrQcXCaE82JGfMBhX7A+jo7eqEUjzY6YApZ3eqOZ7VIVkVvt786fUFVI62ztg4DoxMn806H5tkjxTlqR5ZbClAxIDinonIbyTigElOjaJBhgF4nE3ddgyjhsFpY+obkvUZM62bZs7sYorSeA8K44pblMNnU7brTdRWQabyOOlg3Ul4HsnHdUCblwjb3cnnsdwXPCsKk0Bob0hoYut5FNZPaud9JpjMwGA3TZIltQxQtArAQ0vUHVcOx0IDJCGKcZ3boa9hQikIACVa85oRiSqlsOSWYsxq3OjFdsFYVJ5amg5LJwGvXFXWBH/lZvtSpZzkqyU90q3FMa71MGEt0ulEXAmFGiA1aB8o6SQ1iIid0SFdzbffxoxf9zV2kIlYcu4N+Xda2YZ2tlmGnAxVUpgGYRAgIVLGm1XVTw1ZTnnU2HVmotm2DbodquKl5U1emVuiSxSfV/tc7P3n+7nj26OrWqIonT+PfCm8odi5G+i+b/azT14kadMxn4wak6+c/yszNnV7RLLs9VzTy5qX95WTZcUfHs3IxLxGFiLIsWd+8edMwtI8//pjXCkmpcpafViUijqGfl+3uaLQzml3Y23t2eLJVBz955+Pl+enZHz61XcuUqa1+SbTL2XJ2eevq2RhPD0+y9dEKXdahVR59dEH3Pnkcf/rrt0y/Oj/Mzl/Mv/y1n/q9b32YlQ9v3/7pO3ePyqRl1fLitdfu3j28uDU0mK4K13TCO48qoXV3ot0XT+4M9kPTjqfHBycnoBdtJQuHese6+6iqjK4ZWeCUiHz/ys3v/PjdMNoAxXSyeNCQ2eGLt3isvfGl1/P7B6fj5ZWrl0ReUYUtBzCWaoZdNUXBzI47qPIKI6QRgKQgpKC2LBOd6FoUEahX6+WJZ+6zVhg0aoW0Hb3OMiFK2w5MgmQtHdPLyyzwlJRm3Xi+Y0hclUy0ZeYgyOFzgCxV+hU+Ob6fxkev0v4R3LwuGCZIIgSJlKBuHYSbONVMZbnEdf0oQpahFVUpQAKgvHq9bxKtjAsEmGSe4qIoTrN0TZAa7JhukGUtBnBb6AIMis3Bhio/Mzs+5fW4ZpBTLcm9kJtG26gGmMTtOJpq3aFjmlLBYjMImeV1BYdZmpiGRjHXTIKIQIYycZQuZMNLYrA4rSSghq3igmfZE9Mcts1Mw+sya0wSVmnpWhIbroLA0rsEerZjFlnjmR5BiAul6bDiotcbFHlNsUOQW2Rcxz2MGgI1KQEEuVBcCLsVzE4gZqYwhLTqWlhQagbj5TEzHaNum7oZJ6ulRh3bjDlYQuRIA5q+l9Zr0wasWegkpdJCq4thOGaVrPKe26uj3UQBqyns5UIQMyqrgrK2K0UF9LUeLkQKCd7qdwdQLXhTYoANIhrMAtPTdZ6AVdLwtkWOHTVNUqWF33XS6ly3LsrWFzaWBstboiW+aGJDPgew6zCraqq4rAHWqIUVog0Ult/U5ejiZSnR5nSy0swE0v2Tw+fKDClLehCgshw3T77/7t2dzdEf/OY/rTjyg2CeTGfl4t7hg8X5qabw/OmJhIAi7JrmdDw9mcwN1xRV7ZvWpy5e/Pazh64T2j378o39fhhQXLsWptqm52/h2lIV9/3FKlmysmeQVVPPe2QftLTnxZOT59d3r7VFCxTH1S4xTrj/Tpp1u85PL+aJG4jO7nr2ybM9a9Ptqyx9cfRkfvXyT8Fg93j5AMkNCaXdFyA5G1QYB1dOodrg+cxZd71N2UBTuEZtBRpSoHG8msvY0CK91AQQtIxrwRw8Ijzk7tKInG7QE5JxkUupR7bWcXode7R36XrcrI/PDs4nZ7/3B3946dbN83U83I3S9dwIokXyvGW0LUUniiQrm0pRYna6fd/yGybdyPx33/yHL73e+frrv3SyempY2nvvfjiZHXpBt8xV2SYU2EoiNwg3tvcpscu8ZE1dpHOWM1zWIdGBrhv9bsHqvEjaNGuwhywGZMqq9KIzes2+9qdv/myYkNt7X+zYJhPxSi8NAJAGeMM84CVy5Xse5IpLkWelFTfOzpCnLB9PpIEAAjLNqyItNLmcTXu2UxbYsE/yLFW1A1uDiL08BWFgVLDI8hWmZlUVGBotg7bXYa20cZPDdSn3stwxkNnk5xKth/0rcVZDnAWeMDWCpYtdg2qqqjnnXEhu2j5rCa+JAT0DKySbmjPb0qqcu7afVoeu0wMNJFqaZ1xZnonCRXlqk0WVrDUnUnVXj2LAMg5bSVmezqLRptBQM18hf8irgoSGqErHNICuAeTmDTOgEoIDIAFUVDchhAqItuZE1YFjpbO5YeusLRVhoknzIh0M/OlJpiM9L5cKUsg3eNMaoX96fi+K+gqIolyHYc/z7GleGUAzXMIEAtw26WByvuj0dnSLQlwgqBolIMTJMvYHfdFUBGs5FJbpNW1uWDiOs83BhbpimqYRDaSLsyDqU01iXM4WTa/fMVQLc3dnpE3unLW1vjG8pIHnvEw6Tvji4eFA7tXZnbQYRTb2L9P7p87PfPkb7/zkm0n71noW7u1dw2YwXs2kphlDczY9wqa7sd2tmvrx47Fje/NJggF2tG7vcxeOXhyuymZx/OilW9dXbLGenaxg76XR6/1BZ1t3LM2ydKspquXsvKlSzdl/791POsFIGU9Hxq6Hdmr5dLVavfTy4ODkbXPLb+uBHlQ3r735e//2DyHHi+RoOr126crmwfHkc5/+4t/9u//tlz7/6vOH6V732t3k3b1Pvfxs9nBZND2j65uGQfmqkBJ0Nnc2zw8fzccHefIMq6jrblhxTjZ+2tTH1y8DXF5rS/WDJz8et+SVUHW1/XI2ePzgxz3vh3/lL/1fv/k/fVIeLgc7o/HRgalAZIUaInFRNVC0vNXpACoBgfSsQVMniK4l4I474HmmgCSo15SugSmFBnXLpkxMKyjzxNR0Smm2yk2iO3a0mK+pwS3TaCurYVA3GEeSMt3WFeCmCXf8ANV8Lat6nZx/9IffffMLv6wHSrMtploJlOM4AkOO0Cqu3BbarqcTe72s86qlmmXZJoRQIrmc5FCIXt9ME8BJ5oaMVXrYC+PFqmwsE/oAQcNX0sbxgnivfP7Z2e+a2C7iVQNb19VX1Xl/YMB1z9F93NCutU/a1nftpjYJHSdJSoBBMHJdR8hGCNbUopUKVZVQQqFGAj/OADKW62Q8nuSRNkyLY0zbMvFCx8mSZ7bpWsZVRWKCbFPjTZ3o2r6BuaYrwZhuNxBRSg2DdpdFYrsWxTqUieVI07GhqrlYlaJ0vaAGQjCoHMTXIUsm/UG+WtcK2RzSFgNNKSmVQpntmBRGEq2bttFIb5HNgEAMjA0n6oe3J+M7ni3nx7HXi9pqpbtjpHqcIYRWkvUtpyGKbbM2IZpAyGpzN4ulC6BuFgyPJaUbO5urRQGA4dq5ZuY8aUfmEC4zoDldfxgXiwo2gT0oGbAiDIjXCtfkOgMrZPBKEw32QwUErBEClOp20JWIUl0DSKng1DS6jGvTM8iD2vbvc/i4y027rUkRsnVatsfrptaEff48Vk1y4cYbXIrjF4dSiXsf3QF1tTHcoMTqCmOdl7uv3bjzwYeR5czOJk4vci9tr8qpg3u7WvTqsHej22+Y4w9sbo43hduUla48V/eXTeZaOQODZO0p35xX1faA2AwoPlosIR4yCMqAwaizV1SC2BhC6Lgi6BqnR21GN/TB6iR1V/OsbFdVjU4OXhBIk+mGQ9o6ZTroOoEVF405sCzL0qvPaCCDekkNfZkQu7MNbTGBsQ0vKsgbOjUtrW2Ubjia10Axi9AWxZQzUTaNZ9mYEAIJM5g+GKxXMyfTuh7tQLjxi7/y1kcfV8t1K4uNzctPn8WffvP1Bw/evXJ5b3yyQNjOBLp1/fbpUSYw0g3/t37vuxdu3fzCN754fO95L6S///u/++Jw2untL04OAKBKN9tGbu9eu/nKG49fPMmr+Wp2rkNY50WjW4NRT+V1txdNkwVAvKpjBBub4rJsbaD9e1d/7mf7n/vZvS8ajbGAaWeTr44ego4b9npytqIUZiBjMDUNHzaCFTkzST1PQmo0rCrHC6RqXsluv5cdnksp86q1DZdCw4QrXHXT9aFmqDTrK2kTN5Y2j49Mata61SDcGobNYMVFgnU6QY5KNEfEg6hMGqyZV4vKS5KkYa1uNralpesUMNTpdqVUqm2Jm9iE6XqFoFlLKRlzXFsIUTUYYS4YIJqlyZIJKQTGSOpaH9hQyUQ3AFCuYMCyo7pe245fr3PDdrKyMB0TOIZgPKt5d7fOihirHpQ+RDDN28gVxAQyayFSmqmzulYCSg6FQBhZhNQyzoGhGYjMVlPLc2nFmeCKO22ZOR5dJ7ntGRJxL6RpddKyPPCuZOUxppigoK6almWEdoKRPjmeWj49PngRRKHXdcomFqKECEGCDcsokyyKuuOjFw6VxDbKuDQsBIDEGCMElsvlaDisy6TOmNfpJukK1zXS9MDvzk6fOaYDVnZ7hC+9tPMweczziUV52Qoi5ThH6elREJh7258+ScvbX/vZhx89vXrxcyfzF8lixdqyaFNMOVcKQ8v3d6CNp/NZWVemaaZpulh8EnrhcDisT2ubByYBQejptVsVKur00mV99/sPbt6+arlakqbDjS2AxO717aJI8jgp5D0apNU6anK4Tp5GUWR3Ytd/mx1Ap38pn6b7o+077/8OMqbPnoOyyV5+6c133/nerVvR48ffeuNT/en588s7r/7B+/c+86XPy6SaP3843Nq5ur21zA4QQmfJD7cvXHv68Uld4qKAy+UZkj/c3BjeMq+ii+97o+FW8upb3/1BmVdc1jt9Fadj0Avef/fZ5qDziz//s5OTs+V47KiyKeeqob6322Rxpc7dyIgTBHiv32dNVfqWDUUDlZLSUxAVje06dLE8s3QgGjTq7y0Wi9C1WA2kqFzbqSvWMuKZfaVUXZSWiaW+jqc923LDoGi5zLNCtzQCI2yVZZ3EbQ4EDLQdhJ2TOx90rXYv+pXda/tEo0Wb+5YjIaiEcKCuaUAwUSPGBKCagSipmkYIXucU4xYppRPaGbRlYZR51w9aw3fViqRpZhiw3wnbmq6SM90AmnN+6ebow7PTZuAv06mqmgvulr3SJJWBtzaFP9pYFNVK0R09WjeCuI4vJaiLehUvGWOG5SpAmIDrZRkN27Zk0/PDFqZNVlaNQpq2JgdFlWZl1gnDNVs5vY5UUNgrp/B9J2RiSV1c5yvP7TElieZiSQEzdWKMp+uoawKcYZoEfcFLyWoTAVnXBuMDRrAQK9FaZTsVwsfI0rCnQdAwVYt5xWuqFBTDMk/sAEheydaqS7PFs76LAA/PZhXt9Z+fHFNtcBTPULhGzGhFFA0K0TZtFkEIZZv5Vp9w1ZiexdratLUKNUxWutMpShn2tCIDuulAvGaM6LqtGaqtdnNRSMls21Mm0gJcqpwR5fqOZ7qNlSg9htaGCSNTx02xRkIVhp0VVQs1r+v2e8OqqkydmrqRYh2TtiytcFRpZj+NSeKe2s5WeVZnsMwJ8vXQmM6m01kB6o0rWyUqk8XShKjOWw3o3ES6axeMl0mxv3/p9OmLwHaX8VxoAGLAqurhu+PhboANZV+/sTZtDTXD7c7sXNQ+LKqkVmsIezre8a1yXkw1wIWuCZkRaW0FO6fxEpG8Kmreerl8ez7zBoP9qAPaZHlh+9Lp+Z3xUxIawWr6tOGrfudW0onO6kfrNNvY3gGzExCSQA0zvlGExCif6Mv1QvRdP2thKkCSFWNMfCqLAY40JVZwLVuNS1czbKLHlgEJRrLxKCEEIN62BsGmEUogeMsY4BpNBqGJHDeGjn8jen74uFQtcsTJYxl1N9L04JM7T8tCSEYXyzkm9ML+pz9654cv337T0NHv/s633vzsl7/+jT/1r3/7Nz710vDBR/ce3PmJGQ2mE2ICU9GGRnuhTl++/cY7H3wcp8vt3U4UehTgNVdhdygEK03J6tVqMSaUAAwapXqNeNN87U9f+DO/+sovwqoIQ2d8dn/zUiTq1uiFVs+vslTmOXUDV2CJENI66dNnuGPKonEBAqhJkpXByjQvjCCoF8tFvLIs29X1VZkByF3cqUukw56pg7zQmSosF69jiI0EIiyE4dg0K490l7PagG3fsQsUKV4Wi4wDCCg98WxpmSFtiARCJyY3JCAUEySb2rMJ55Gm/HRd9TpRC6skW0Ydt21Jy2vbMXwHr9aZH+3m5dRyaTzVO5uFhGGW6b470oiQUQuxJJqbrJlLQ0u3QF0QCwJJk1XR3bgi2yUyDYwkNlGeFoRQqRCCulIVQAoA2bY1BJoQCimIkdZWLasEGUXL8YxAS0KjWKWG4bVVY5s1IQwCrmuQsYk/GD6+d24YhuAQE2g7TryURZ3qFvH8zmKZ295IsFbI0tu7mk6mhu6zvIV2ZTvuerrsjAa8qAPbz4rSc+2CrwjyZuNJvzdECFRNieyt5GSOZY/jVgmnitPRns1FNT0f33zt1mT52JFunKmqmWnSY4UUEulSi9sHYtbztKezA4/YwwofvXR9lGvkjM86lvXk4CkAwgqdXn/jxYMjXwtpGChJlvM0DDpSLZhM0nIeKTNjKXFNpqAK9IPFpBf1DtNVkmX7xBCfsJoXfjcabW6PNjcgVJ0eSqeSkC2gP+V94RFaVdb25q11zP/47eW779/72hdv/tY/+xe/9CdvXLv4urT9Q3b/L3/mfzefrWbn6fZuxEX9hTd+7Y9+7w9No8Ze2t/YO3k/vbBx2Qu63fDS6XiCZdAzu7BwfK3duojL5hzAQej3ZEXAZYFGfSSv81kbkV1FV8fP7hJo7dy6Mk7qi9c2Pv+Vn/vg3cevXxzsd5t8kbYLLfLqvHwWeR0od6tUElx7oTSwqmvL9qJV/kLTiQJdSPW8nsoycgwfQW5buCjmCArOkKmNMFqolksGdE2HEEvJuKh1gxQMaZqmUUPCXNcFrRBkJgY8z+aa5UB1xTF7nJ9pUkfp9vgTxjae9DZHzlYEZIMhIUyoRnmccFTO5ivLDp0gIgZdLOd5EVOddv0RkgbBDdYbKOyWVRhptrmZx3XL171BEHb0eC5EjR1bg4DC/gV7X7v9FXx+/4F6GnuGX8dr348sjD3SC+2BIbekwFVW+z5qCgkgrZqsERUFGqSakKBpm6oRLayXMaxRfJ49oJZWVy4Cnmwla8wWTgPXk2XP133CE9u2y9R1bY5VrniXEl8LSkoa0boQK6ItlCKIWIbDFCQajlRjY2hq3rGomWkDiTKbBhWPidZS6TZrw/EloOTFeNE2OPCIpwgbQzvqAEWTomKVI1hjupop/VbGce2m2aEX7FQldv0JJY5cdizNqMVKUYbUhsRzx5WyDWs+ESIj1GZZXdgOBG2hiOyNjHSysLwOorFQhRBNEDHWsrat6rrSIRZad3trkLRZEFncAAfzqRd1C1HVid/wyzywSr62jJxUDoyxDeRcASUM3SDdfs/2KNJLgltKgYlonhLHjBB94rlFXZS3rnymzORarMMNrZHNk0cnSQa9YXVt+yIA1vrFOYcq5k0OueXoW/0RaBrIGvfihmhalRV5lWku7QYeqFo1HfdHV/Z3ia7ky5uX2qrV7QwqiWi/0vuCtE2dcFFiQ6P2qJkd2j6t61I1Q9SElr8S8tzRvLbK8mQy6F6FIjJsY7YsAqN6ePI7f/xHH0ANNGXHhhvdjlSBrDId1loA960lsreepdYQGZpaH/CCQHc7a02nWRbzmpoDaF4VNXCGUQtZLABFECaZ5em+RzXCoAhZLhVSvmVwaLS8lUBBTDnnQkpTo0RqoG0rqYBpuKOBMo0BEXOWXFEsRNPf/+G3jCBaL+vQHh48XLe5bod6fDTZ3e7ni+n7z95+4/Urn//stR//8f+y0WnOn02//d1/4/ld1SLFj6HZjXovYx/u9a88ePzA9dHlqy89e/ZMpz4hwAswS3KDS4OLk3wMQpcLaGXgjej6f/ra39hq2E9v7oD8CHbDeTX2NmyiJfVqU/MIaGW9zJxuBBjgOSadYTO5L2HqdYP5x8dOFHFk6TksVkwh1O31zt5/YEQe0TSjYNSismnjumH6T3TNq9muZheswPm6V4oTx9yX9LGkxwrulouhpY2EOpHkBVxwGrzSmCCXpyNfY4uawBAZNRItkBarLaozpKuWZawpLRMTYnAmN0ejNFvVbLV3pVdXsUQQ0tbuTNKFQekmhyvX64i8Q8ikbmwC2xIvCSghCv5/JP1Xz21pghjmvfldea2d95fDyedU7uqens7TPYFDTSJpkaJhSTDgSMO+kAADgm8MXfpGsGUZEiGbhkiRlEiaHJIzwwkdqnNX6OoKp+rk8+Vv571XXuuNvtAPefAYlqi1It3I1VVtAFbAc9x1temwJA5CzZkVIXI5NQIwAUkTuFy72CgADEHIiroVQrgOg1YSyoWoss11tzcQ1aJoZntbo006a23NYKBEuVmf9qJjK6CRMbXh+trXtdsfVxq03PEY8xxfMBtQHCMGyzzv79y7/ORka/R6cw3b1g0cqkGFQtfUlQJWM8paqRRAjOqy9RwMtBEV4F7UtqUXcVU1Rnth6BiWAYAoNY5Prl5MuE8ENkqjIN87e38BDu9Y9iKXT6zj0BqMfX5VvL+4fqCKnw53xwN+GERoFtp7W1BtXGexm1VgPasgrb0BLarL474rbRl1UHeQLLMN4x3OvMdPFq/v3UmCHiBmvVlUk/W6aCerRTTo/aQUaLPsx/4rwXD50YVe85vbexF3NnYRdZI4+Fu+92L+YnMw3BsdTJ48y1W1Smf2v/h//ef7t8Mv/sHfPX/Zbve8r9ij4fj4//yf/p/+7t/564SAfvfB6ZPaYvDs4p3ffutArq8KmN7+6m/Mi/RF9SybF0duj/XYh+9+8PqD28QrXnG90W487O6UqXEOvMODL53+IN4J3j9hP3nvJ0bh8Y3by9tv3NGNIXX74uzdYCe49+bWO3//T3hBQ19kq2p76yjL1oRmgJteMpxOVsZlCERtAyi2DlXGSoCRy4USK9+BooYMJWmaDkbxpn5OoFUV8EK3rTMpU+4GSohSlEFnBLO9qK+AzDfLKupAj0cAhJDmob0trMngc+yemCrmLAQAtBua//DzauuokyQcUQmhIrCFJJcI5WA1qXKH1qXDA1jVgLO4lyR+ZJp10O2GGrRXF65ScrjtYh0vz6+6XYc6cV5WkLYErWo15/a1gGR8WAYx6PR6bXKLXOs2nQ5pyIPEVj50FulqEfl3ETgFbWgrVkDTCEMIFroRTSE1dL0w6vrX6fViTQ2pqRdnGYbQKv14sZjtRkdJOIIYOKFGTRrADqhAwhtEUSs0Ap5q/cgNtGyRUhA3FGxjQqVshyMvy1fMxUqWUiIkdpSaKaO1ajEtpKiRdaCA55U+6KCEEN7ULtQx681ytDHKS4EyJ4TWQPeNUdpWQoJW1f7WWxh+XNpn0CY6Q0FEXF1E2q9bHnan2qqmAgoyUWHXd4m/IrpllIBiM4vcgBFeZ60xlvMQYhn6vqm5rbtVnlrgMB7HfWeTrparssNdsgECgLDt4XXiAFrxFPPWMa5KrW55xdvaYW40DNvrbhwC14tir7USeG6rbKFsWzS9XictPgIqnJzoTsSTqNMEZW/b9Ww4Ob/+wttJ96Bv4G+U89n8+WPWpZGD0RreO9i/cfNQ6PzF+Qs0CLYHOxfXC9hz95xOdnX+1tb+ycWLe6/cv7G/HQVjiJT2phbYne23s2Uu1p/f6CXr9txF/cKkl8vP2nogbFLhC+LRzHy+ckPlxCnuKM2NEFnBDzuZpteiujuZXKkh++H3ThG7WQuhNBgdpFoMzlaLGXxZC7jfLYNOfype6ZT1afuot+3T3C3ySg+3s1rHkWebxSDIexHWzYLSPiG9Vbk69kbQYtOCTVXFXaxhbbVl3qCsQFnXCKjQ5UYKYC3HSGnhJttFuamgEL7MNqnL6Ou7r+6C4bL/MK1efXldXj3/3MO6TBeA0CwPgL/Eeric4P7BrWA8+N67H7VtnXD743/9Z5aNDAGwvej6Ae1u9492XIRenlz6IdnZSz795BMHDRwSr9bTRhUtsaLZOLFvGxDl5pvDV746vPV33v6d3Toix4OrfB7sedyuB4QBEqcZ9fakloqkBm0MHoaFrliol+opXwHMkyyrI0mUUZmp1HxeVPnO0eHp6UUH8QWwabreFkAEMg69lWpd9AdarfL6yTgcMlit1x91ohuz/CpxtkW9VdYo6lDsX9SrC59GTS+AqqHFi5txJLQAiSFIITozJYqjmwrwWi4YM5xyF4eq3SCMtLRVXmPEGXOMRrLlCITDQVdXoMzTqNsEsbOcFVoWYbdpkfBBGHUPVVrCJNKgFG0eMYpaEfb7uNWryZm7G2m1QgAb5jHXqasW5paGoRf6ULbAEa5VxRK5ntdUG4wxQrBpc0Jt05a2wvRgUF7Oo84Yu5E8mfrjrexqRZhHzXa2AEFg/LC8nGVhlDidqesctzKDAKzXtedj6kRl6i7Xk/HWnq7TwTaDcCGQdSlG1E3XhRcluigwZRoCXbd1WfNuhFsNgYTQGw63dasXi3mSRFlZIeLzaFNTkJVXvRg2TS/L1K2bu+fXUlW9rKlYN/ei+mJyamFLmPWAmue6NXczN/eDirHD5WJeygR3Dp2m6HRC27z0i3Tx4vTyidofHd3qfdFg1Y1pOQJxb1jW8uziIgiJsFibhYGQeU4Hs0Hv/pPHzzELrucFRbo7iIYxPbt6eHx0dKFfEiuIhun07LW371t7pReHBzs1PzqbL8YP7u7/ySd/Oc2y26Pb/9n/8X978vKRgHsnp2db2+A/+8//14OtG9TPdw/gr37xznCw09/Ors4p3379L//BT96+9/qbvV////7k79//8p6Iycwvgvnl8vqhvTu20uyOXh32bkK15wf7sZLzxyUiL9xh1bKjm78+QrT84q0vf/I4bS166wbdvmGGhw9UO5idl7f3Qg9bHCR1aVw/UHZJCFyuZmE4yPJlN3TKfNXvdISsgW6lNJ1gP2+VENMwJlWZRR3QylRKHYZ92WxUq1wPWSTT6spxo7gbC2W1CpbL87hbx13XwUeAFthp8wx6UGNoEb6HhWfsXKq2VWWY5JdP4cXz096bN0CCEIIuIVSDGovWTl2mXc8i1HDu+KHHOCRUYZggLLUI16mRqu50fQDV44c/SJwRsMDCCjgzJGJVhNqurDMrq26mBgb3RwdHPXM9K5+KjtfrHNdm7oZ+x+8XYk0U19qH7Nm4+9bTxYoyzByS5bVFhhGkbX41n25KXunz2WwRxOPp+mxrK9CV3D/YwmakuDJWasP78UhqC4BlQaCEDeKOtaXr1DIPAz4Qat11txtUxMnWfKaaCsfhWOkS4tb3cFUWhBdSuEZHZZUyB5qmtmy11XWUaK42RBMXmJSUsFpVt3dhmuVZVg8GkdUa0QpoBrQXdZZQ/7ugeUUbDzvCd++s07NonNYNQCUM0XGrZkzfdJ2udH+KvSjPDwgOcXZaIxCAyEVNY4ShiQd5LgtP04nmpWWoHwfpqkBYE6qTY8dbutNGM4ifPZuBfm/Q2qL5HIa+LZO0Fk4c9x2HErxQElHVEkNdArECthSVBbabbvJGbYIoqtbYZA+y1bmpL45u37iepZh3u0yk2Un/iAbhoRMOlvMnszR//dtfenJ6vV7Ke7/7gDoWIyvqttPbc3zR9VxbLrYPb15eV1978Ha/x/yR/8rBvdfGX3tef9qBdIfdeUI2M3zOuMy9foG9it6SzUtt5wjSar0IFStz90xMwjKsrns93ekl9vHkYdiUrt9PlxVNwtmykgx9+PizqNuxlYycuejusbiYX18K0GTZ1W78ap+xSbao7HLemH2227zklwy5nWWvng+iL8Vdu1ob63QXiwoa0IF4rQvieys3kGbJSYMsVKrLcIiw3OQbgwlESDTexZl23cALcNHITCKU51a5yipblCPtNGZebTW4F9xpXuEJ//FPPk9Xz8u8RKRfmWXsOUKil58vXnvtTUzM0w8+HvaG4zj54R//oDu0jHJA/cbxRnudRgrfA5uVZnHTxez5u58Ch5q4XkwvYN4m1EfAFEjQDU/Urb92+PbffvUPb8fHppkW/QAVWRL4riV5RLABsk1jBtqNBizMF2Wwu4VEaS5P0f7I21RAm3TaDCBf8iUqbNM0JayTrf0yo7CtNkFD6tBDixUDNL+lwCUBmIQ/FaJp025a+FW77HS7RiDmyVYqjTQLB40pAGzc6EAb2jQp4Jkf3ssqy5jk1KlqCHDPS6ZOuKwrhRrhUk+pLE4Gk1m5FTnGNoi3bYsCfyvPKt9zCNUa1FlJwlGMcTu/rFwcKiwB7NjZWh6FSCw4MUJiuVqHkVvzjGQIU2eRbfpsWDue1Vow42kkTRYFTqlqx0NAAYEYEU6rDIabDTIhYBCobD2luFvhDq1W0eFgfX2lwDQmXj4Veat9oSkfcKwwXqUc7fcPr84uBqORTdt+uFf3JJ8Cr7OVZVfDwe1sOTXFuXdnF0rQ1qXnkuV6Q3jEeQyE66Mea4dZmXeGoMo2DRCkizzPvcxOrDC73e30emFg1e27+WreYaPpZAEPd9uZUeuJdW1TLWKOQTECtN3ftp8VL+h4L3Kg48dev7NZTJDoNe1136vlpn1xRYF5iuBo7Oerdf3qVqyLTt45U16+R7dWeatQfp4/3fFeA8L4vhz2ZVNrZHwI4624g3v+gEZtdYl6ru/uUQbOL56fXKN2vdp+cGc78bVw+uNYW1gjY1xvuPUabe/MztZhDy+cPBm+NtjfBjX5Ot3+8q1k71CpgLzz//vVydmf7u7c+3d//HL9cjZ+e2//+C3TxNn6f3zlYPz+j+e//vXfvnjU4Rn7m//h/+q//O//P16beurtq1lp4Sfugbz7ta+3iM7F6dC5tXyCLLkcJ1eLpZqWLCDhpqbO6IuRfQ7S8b/+qx8lkB/13e/c+32N0JDfVlqKJHeMUtgzkMYBbtuSyLjJ0riLtSpCA0ErrGaNjIR03ZC3dXo2eTFKPCti0GCHqbKtkO102E1bpZZLSIg0DGE3jHtplruu19ZNFOW14LLlFDMDMsZY3aJGGRJoygCXwHNo28iybHZ270udHh40z378cXd3q/eNG4BEUDbYtB4OguHdoCPKpvICNy8zyvw4HuR53tYIevqiLNNSJh3IXOfy6aIpFI/nbamj0K/mO1VLeNLUxTbCCMQnEBlYqJBHuXFg3eW2svJjtzrk/sYYRB1u6ESJAqLhaXHSwQmHdTGfO9jdCL/SppETC2Yl4LNixQb45fyDsOsDGliBAHRpqFULZUMZixtLGACxbz1bWt6rMjDsHxKUanjeT46hTES1Yf6O1pZ5LXegH/mTy4T616LpMLBRkmCCIJJWOHWthayiOFDyOnCjJhVtVQ+GUZkpSNyXl6dJcuxGHBJ/Omn6w0gDaCRGehSx7swuvEgC29Pkus2ioug2NRzt5BZQVQ40WCEqnWZscxuxipiigBDGnQToEgDQSBFzFwADiaJgR5sG8mx2vex4x5iwSs381uSq1SHiHN6owtpYBgCkxIH3F5crnNjujtsis6psPBhqoDB6UzdI2mqTLqNOVDTXFjeErNPKO8k/1bgtVL29d3yyNGVKhlH4+acvRuNRtxfnhbIGMid6cP8rAQ39+O7uwbCu282q3dsdP3v2/tHR0HeC509+/sqb3969cffDD9//2mtfWC2yeHz0xpuHq/Si0/RJpzN31OHG98vkfD09jtBmfpm7ts/G7VJezD5jOJxdXcKtbDB34DDphvH1egWq9kh6SyB12Twij74Qvekrk9VV5NU1qzSKTNXfJcOsrB2HRWUcmr5LbqRLtbl65L+679d3Hk3yztj00KKaew75rcRr1k0NPEdYlgtdrKVhKnQJZmCTrZPE0dZYa/OyAKZiBPf6nXmxMAhsmkWrJEHJIm0h0giBtdKldEtVUYBLoT2/u8nOIxRW66THx2/dc3UN/+KdH1RqxVAvXawQYPfvvfLixQvCHMdxLGh+9fHP9o6Gpj3I69XO9qiocm7DYSci0BTqwlTkSXqxtb2NlnO4KjdFZTyeI9lmqx168M3o7td2jn73wa8dDgd1uSo0C1wKsNUulUI4KDBZ4fq9ajlxByNdNC3MmMjKdMM63vp0ClDUD6rp+tyYm03OIWirRkRxXzardH3poTuQTdqmtOIOC9c4uK5a0+bblPZauaLENqImJKkbi2CDDfboqEGfYrJi6gYUqC5TDLgHWUgEBUsFKNFMViJglIBMtHFjfKWv/cAYGWhlqkoE7JUi23STYVatEAHKSkRs01gPhUDGrjvDAOo66ISiqvIk2tpkayeKsEHGIkswg9T3Qu5zZXFrK6507PhA1RAjUdeeF1llrLUAIWWsaFtjjOOFAGDdVggjYtralC7yIOq3pFRNGfLBbPVSNSRJAoyYEE3SJY05o75r4KjT7auQzifrfm9nval1Jnce3FylL4HnawPHg+16uZYW2SDw3CTPWqQ9JaDrRDwMtdJlObe8ssTEiWzE2GFNURaQjAHEstgJOsuqEE2Fo7BrZO4FrrGpZtcah0iFCrWsMyxKPwgs8NckdyeXA9RvrjeX8Y4ednfKtSqLK02fDrrj+TKV8Mxlx9MzMdpCsxPqJjLs3305/yzLrva37j395Go0HqTi+eXiDNqPMeg9ePB6Udaxp1SMyhSHMcRwUW5o4OwkxHCCUbJdlhUD5ZnvhMRdpLWC5oud42cXp6bj4o15+vmns9EiGfW6nf35SfXKLR4MYFp12YT8wd95e3pZP/7kaVXEn33209LMn7yYqwwsP/6zXzvrjcOvum6vatCNm18edr/8q0d/9frv/vqfvfPDd9///v/lP/nf/9Vf/CJhRcfb6fX860/Yjy4+vbfX+/DdiWbne2F1EQx9e4p39prylTK/eu+dd8tW37sjvvGtB7zi+/tBVtl1hm799u2rn2RoLfmYrFdLJSSG29C4iGaYElEO6rqOQ1OUea8/KsqGMqfKKwjJsLuNyQZCZrVXFtIJBowG6WoS+VxrCBEBQiJA8k0ZujGsQeSO0nLFsWuhdpkjK02xFVYFLvEdp8hlEgVK1gGP4iBUckqI4+hBXRcv3n3Kep3org62OqJFPpI8iafTaS+JhTYEOnVlFrMSY+4EUAGr25IiGLhR0zR53QbdYeN6QafTolkjV5Z5rXId5uXFiz72gbASNIDo2quKuEIVbpwQ6ate941sMwPkkvBUlRHQHJr5whakpbXEFtsNvq5Q09pGVjbXy7rR2oTbwVuB6zT5ur/lGVvX6RVnvu/DOGgCh2PlO/iQoT2KahttINzoZuh7vUXxIgw8y8bQmQG45bt9S9PFXBEuusnO04ey17GYIKUb33eXYkU4FmbDvURe7RUrqW3aid0sF60Bgmo3uLeaZ7sHw8nVdLwP27ppGuYmS2S3N3WhsOG+k69LikQUutxVFAAMRblx8lxubfM0nVE0wsgaOCPaAkAgcJnM18YYP3ABBlqZWlfhgIsciMalbkAjWWSV1N665tSqLgKgXCMaAEBc6nSVOhcfDHtHmfSXVzS41anUnIjCAf4GfOD7/aZpmUelaoD1FtMMEXTWvu/jyBZ6yPph7j97cdLfjX/59CdEJlXFLi/asmokLL/w5pttkTHjH3SBAeUqnx3dOoS2fPD6TpYuynQZxeN7r3319Nn53b27lvrURXdv7UNf9TgVuXZ4xIhT8eJ8drazN5iePoPuMDFsnRcrWftIQt40nhKravvWrefLjwLN4sFhUzy6fNkqciP0i6EnTpePPbZ/0L/hZPbs+imPnTbyJFvBwndx77puDMg5yhHoRHv34aonkpcIlnnq9ZKeznMknl4X4133lbxa163ALhz3oiCCNDS1rTCAmETLVeow5sYMI1QX1fU0q6wnZFU2BkJUSl0XkiCGECnhusorP/asVjRMpC6NIETBFhX9wJM1/cKrt37+q1/UuBUVQIDsbe+dnZ0ZY0ZbQVVuTosFpcgLUEtlxGOr/ND1XQw31/NinVuFgM0sci4X60C3ZbqxNHJ5XMyv/rD7yu/e/JtfHz7otmQY7kqwab1V1OkTYCQ02GdaKCIBbBBg0CDXyKyeLYNeJOZLaCEMuVwvbWjSsstQ1hRStnUYmaYudBNrMIfSoYFUoCEOMHTTmJxZbhGFwLPwijqtBRFEiIdp27ZA7+kKIqZRO4BC82CigTTSZd66BT1JRNNoAB2GeGWBzyKDDXcwhtKaPmoZRMbxqDZSgyVSrjK4KGScuMTBjoMhINZoqyQHQynXvofbykVItGoGTEdQASqJXKa0batWaYAhQa02BAFjRFFZCBCnuCYAwgpK33GBMcThrBOrqq2rigDkOb7FUqbKj10k8PosYwMQQXU1nQWdQy+wRXnhesjz2XoDevFhlmkZlKoq43DsGLqYnHv9AeVhI3OYCbTTwYin5cpxHAyhOwrBsgAWu4FvdVuVmnqQORxaCblbqY1nI+JUurIQMO6A7KqijIQ9iEWLcWWUbzEk1M/ynAV9AIwsJv2dnmHJ+izt7oUCFlWW3Xwl+tXHE3UP1OiUWei4NXKXmL7VZAtR1rPZ9uFdF3MjxLSoC4wPrzfX3R3HyHG+arlpbTtl2Nw8fu3qyS87vfzsUeCF5OburZh3+I1CNuHnnz63TtrkLzw0rDMwUZUbx6aw/W1et9XDZ0863f562cwv0lqSl58+iqNZ/8aXmdv/xbs/fPXucTbrQHNQ2IvXvv47JoQns3ODuTXld77x1Xfe+eP97viSesuN/Ld//OI//J/9Tmtq4G76O52rxUrRzO76l2cvvvXNbz+5nnthsBMMOHIDwD59+icxc548etf3zXZyI5dwv7NCYuSi/ObhajK9MVn+6Atf6o2jYGtw9Pi981o3ojs7+sLbdHD45//qv+q0Hd0mm2UxGmGIgagLRqEUUIJ1d8ighIRjgDRlqBW1koYSwl3fWFC3NgkR1aZu1xhZRihF3HN0WRaUEtHU3dD3XVeUtakzBwZSl25ARSN9FtSVijynMRWBBTHUqpJiZYUTON50eeF4nWI9YZ5Ul7OH/+rHf/0/+YM2N5r2CNzotooDv5WWYyfTosiaKq9Xm0km2jjCSdJNkohAUbQbHtRRHCDncLVYRZHbqiqgTpvJq7PHQZzp7o3ACVpUCpzDXbr9lT34pAvPUg/uFnq2kcs+f3V60XBaW1wi07G0bI1obaNxu6o3paqErmqREc/4LiPtmoO6zS0hjPPR1bzZdn3PdbHCjgwd1MMooMhDrIiDKukEWUEsCRzHS8uCuDGgXQFXBhdAJ7LldVMMxmw9czBbeaEuipQQ1ggRhsF6VSkVrtcYjy9np8vAg5b12g1itAJySWS34niztm6AtcHGMi/QVaOTjr6aV57vQGyDmGTZZtwZpdnMY9zKAMCi1/OU4BgCLwBC1HkOiTYgGXbKzcrhjqobrVWQxG2eUgyBrLTWEJBuNzFmo6Dk3q5lFQEWIa2J4hGTjksw8H3XUT0+bH3abkBdKei7LiOwaTYQ7BgRRx7OqhnmcDGfNXVRtjNSi0dP5l4YHX5n8M5P/1nER9MP1cX507uvv/LZ84eMOg9e+Wq3d3exTA/2e4FTXF8prdxe93ZvEGjV1CnTreh2gzs3v2hCxE5kEG+fz5dfevv2wc7Ww8l10tlfLy/6cSxEcz2bQmtAo0wurHlaxLdN2eLcbGy3WVx0aPlMmsV1/ob/tbot4eyMO13/qOhLYSRvzVa1WhAPzXGe60XGmx3Sx8tOOX4mawPQCfATRsO6zudFHh3AZjppG8qVB9WisCGPvPOL94LRNyF42Go1cLY63rCTDGtZEQCVlqLJEBm6TgyAEqaBFlqM8qo1tFlvFo5LrdWbfEEsRlBn68zoRuQ0Yi5wqGW0yIVGpk7TlkzStO46ndKrfus3vv1P/s33lZp4NGiaAkPdqubF88fHx8fGUGvterU5PD6aXOXQ4KauLdfG6Nlycbhz69nzKYzroq5WsENY3+Tzr8SHX7z5G7/b+8qNnZ3Er7JiXhACLQ1Yn3g9uV5Kaz3OlM1lWTrGLq6veoNBPj9RdR3SvrIQWQfWEPxPXUt26biyKCYYS2CIw1wrLLB+EObMqWStCCdSmqYW0G0hpohfNbVgbti0reMHoukroaWxxFkDuw3VANKVARkGnHPuhNe+YNSCpoUYCAJy7hGoFdYAWkfYNcWuEKXjCsxiURFtZNQJG1F5buywUGkljPB8nBebXmcvW66FgA7VlsxdvjWbVa5bQDeBTUuoa6iBuSYYG0JQ0yBGAUD5cu1v9wJIocNF0+IgBFIoYAChdVUzQh3HsbUo5zOSqJAkxuhqdUYIVDqpU2FIEyaqrdti0WxtHVxfLLudg8n1vDvoS808PxE1M5XBIO5EO+vZBpGAAkIpB5Uqtej0x2iTAYcU05lwpAMiwri1BhhsFTKGNE2jmhD2+1heZcL4flfnVQXtYAQJCy4vL8ejoWhW2oAq03G8vZIlkm5bPoy3b0xWTT9Gjo8u5grZatPuzuBf3bt/t2UCpS6Fe5HXpGyVXuSOG9x9EAtQEbgLQDk5t3V9qijpdiyLeLOe+b1MWNILe8Ph4a4PTy4/FPUGQ//Jp5/tHfRHW/78LHrty/200IsLLs04a7NZ+Www6o9v7OL085fzpZbFF1/98tPpk59/+MOtqNMSc//tb4oy+vmHP+gPdn78s5nf+cEr959/8ZVvRhI//uGpTDeU4Ftv7liMny2+TeNZ70qXtbeZip+8832j9N07+4iX7kBviwE0nc5o1W789VrHPZ3O54mb/OW/fT8eiASswsQfDvvDbtm7ffMw/o0X69MDHu8OXvnH/92/mJdmkb0IjXz6zjTL57vt7ezsPbJVvj37G+tHn9ze0UqZ4W6hRZdh6semrWsvRC6PdD1S9kkQxGVZOo4npWQUeo4jyhr4a4s0wAo7tS5bpTmjvpWOtTUDQeDFmSwIcmWLAEDAauZmSDt1gR2OpFyEMW0lxnYAmqbrR5v0enu7s25S1TYUtR6vqnrU64b5pmiWl6c/+3j3D76o3NSnuqowhXRTbPzQbWsJAZ1MZpssBT0FJely1+F+uc6pZcd7dxh3L6fLiBtYc88ew9K++PT7DDZJtN342nc4rXCrDOzIiGK9xtmLQrEXZ+fLm7tvLKZZGIGymnmIbNaVoFJqWclSELNYziU0iBljpaoD0ZqIR17UF1XhuGgxPcOmMWaHMeIynThu7McAeMIYYSuru9zZQUWBXCBM6gY+wEboCQW3lb5I08s43Ea4VMosZ6vu9kpUu+mqDEKsgYoTXos1ZY6Qkk4C2rRBEK9nFmIHeJlo21avGYmlKpAGshliaIxZO7QP6Zoi6nPHKkEQRpArI40BhLO6Lob9G1eXE8crw5jnGxkm8Sq7IhAzq4QfOrKRShnKoKoKTlxgYXpFrfWiDhDtEttON3Exh0A0C10sDe0nSU9Ba1WuN2kPh5BszMi6XS9eaX3uoE5bExygwF0YnUHmtPmkWNgsQ9KYxWxZlRdu1KFu8PP3ns3W+FI/Pz971Om4z89nHI7u3Pz1IqshOd/e6ZWl+Oyjlwh7O1vHo2Ff26yu2vlyE0eDTsIAgVKVrkeyq+XdB8edYYyY8QLHTq7u8e2ZkAWehs0G0BsPlzjs7Of5BbpelnqToUm7mAgtBAl76ObILWA9DTwvjgZX+dJ1exQ6Fjd10fpxiVExmWPH24/ccSVLg1/2qu2JEtKmuy5erFZzsyRk0FeD84HwL3azduaPhyJnKvY+v1r9RmfV1sZPImCFVOVytXAcZgUGEDIKRVtjDJWyVVML0YRBD1CEYIugpchfzJeiabtxUDdFka9E0dA2XMHJ4HA0Wy8Ba5ALARNUj9pyai3sR+ODsTre2vloOeEenk7PXS8gCDHPuTi98MMYY+I43uqS1KVcLj6N4s56I6s6paH++Oz7KAj7tN8U0Dgwwe4fvvI//zW49XsP3narnjTz1ti4O+QeEw00TiI9q5fWC3xrjaxr5jKg2jKf9fqemlMUUjOdW1imZRmpnoAuqzjlp02FEULI0nRJMVFhR2w2uS2H2LmQytPSMew5QAmUR7V51um2rbCIxdwFlAGEAYAKQg3NnvV+QUhI5Cta1JBBireMbXxOEWwNYwRhbaXjsDJrXN+RulSVzz0TJdjoyBhl0KbTPaqrBcFO0om0snXdYgzbxmLsC2AMwr4fNqIEnKRtRTwWxFgTTxQV0lpB6DiMuV4Llahq3PdBWWEA3U4CpRZaAUo4p7IsJDBuFJRVzSmSsiXaYAsg9HWbVRJXGYwSmlWCCX84QkKlwpaDkVfXabfP6mbpRsgJFCMMVK1C7TK9PDzYr9TM0MLrRPXGRUKLLBsd75Si9qBRrQAeikNfyoZQSjlCUBdpCYkGVJMixj3Ufgq0r6hLNo/b4Rc64mIxr6zDulWpPNdZpIve1mi1uoi7yew095jjckwqNep7KkubQh0c3fqzh5/d+doNRAZNqhwwEWra6e8Vxao1xWa1Tl9e7h73e105nZ1xt3t1fWryAbzlVTB1etH+vfH6Ci+nF3cPat4fWP3V52fvzybMj1mvGzXLHYLW3cGDg1iEd/HT66frHPSKLz57/nLeeRHq8Tff/PIzfnp5on788a+64TbnY2nbbEPO5h+IzD57/ohESlh9/+7/oZFXl1fwfHbVSzqhH31h5+2PP/749779G5eLH39SPh+9ejC5mP7pn/zD4xsPusP+1v52zOF7P/74a2//liFNVlYyh71btgrTyWR18Eo0Yjfd4VAts/2DbXcrYgIBL+qn35jVV9//53/83qP/5j/497/jwL06O6myy+3bY3cKltO6maHpD87YDCiiAiKl9LhrEFkCoDxnBCyVUkC0tsJRElqLlRKex6QQvkfWTWmkE3hBmVkDnE6MLSi0uNAGYgAcn9fNFXLIplr5vm+IQQwQ5DR14QZBmae9aFiWNfO8UpYhh4xvSC4oYpFP8lJF9GbsJGS4LOqc0RbY8rOfPYu/8Gbyaq/MhR941ydnnLpaaAKhFzknp6v9/RHb2ZV1xRmmCDq+43LmeqZu1i4V1HOzNWgaxZHlvutShJBraaatA4DnumNJWStT0GXujXH6+UsnGK3L6ap8bsGA0d1VuWycFaC4KOCqhhrJUq8xN5R2tB2EoGlwY3E7LWbUcqbGnhr34x2PqMjZItLHDTOYMhe6gQew26oirZeAKwiZKpXDqKmxSB3aL2UdS32O4S7BTr5U1F1pRSAEru8DZFzuFFlurUUIOZ47fT6NR5q6olzkYexZi1W9FYW9xi4BqUwTEc82paZkhJxr3cY+VgwAAPhqufKD8XJT9vv7AGjHwOVyqbU2VhWFDKPRfD4bDoeEUi7ajHtO28jAC2WbaymUstAICLWyFUKxFJoF1tjSYlIUBVDED2II+LqtlwC0AElAlTmo6DnxBbM3YblF8boES4J3oe62lVnO01qS6WTmuF3R1KLNnn5e9odX3c6zZ5/mGHcLOxuNhlIH+eZ5PLz1V3/+g7sPjl//tfvvv/t8MxMdf3DvlX4YAeZWi0WOgNk+8F3KVEMsbXSJfC+hO+D+g+2ygdSLzeRkYkMVobLKm0013Nq6PrkKFOMANRQsvMn5B+d9b2upoA/crgwvyFqvKdh5I0mqqbzUqHMQmF8VPw7QXi/eXok14DDi0gMbpUyqae0H7WaF8I7H/Zbq8/WzeOgMR/1Z4VfWcPcxaNv5Rb8Y4XxyEjEXkSoOXqMMFcUmCqmWddDdFq0kDCd+UqW50Apj7GFPClHkddu2PvMir68VzjeSMcdqJpvKYb5ShTWqzAs4ARIT4sk4CjzrgIaebVYomItaDBNy58BfXB9cr6YYQ9GWWtvAjxglVuvlJg9CY9qTslpTDusaFGXdSKHryhoQJ65ZwR2602PO33r1N38z+OKDeFvajZtcEw7d8C5CMRDnxhSMgEoXgCLgu3WaN2URJEO5STlnTboBplEKVlm1EBXBTpaVpBuodcaALxSGTJTthtFBo3KqpQISgyBf7UqYMn+t5Qgaz4AM1DcVbqyui4pwulVllRMUojUu6RikVbkP2Rl2LnXds84pdJ+Z6kFF1pin0IUasLZNoO0IXCOfwKJyXAJAgKGrTOG4QBhkoc4LsLfXkaqqmg3EIIxGWSY9b5CW8ySKq/QKEVZVIfRaP2yw3mnaRljtWACkaAjnSBvRQoQ4ZavrJXN9whmoCoWs5/tNXhIIEcDIjzwFtVDZauNh6kVhaxwBpxxEyh1rVDJbMCdsJTEmThJdFmtjFPOBQjAIhgBrWfMmFf5213Vqoz1tVa/Ta3MIHEcWlcWIOs5sPvFZRBkrESCwo2CtDdbSiKqARhICKLW6WZWp5IxxwquiRFjqlp++SG+/HV28vB6MbqwWOcXDMre9TjfbzNsSDfpHhOJhV6+WBWjbMHJrDNzj9ubrW48mM6CZQZx6Pg2DPob5qJyuJ0l41/fU2dUvWtn2x81x5+by5HG62Wuwj70O9VpMayHWL86ub916dTQ62toPlunVarV6+SyVBeHhdTLGI6fX4YdzoJB7hbBe4qaoGqfj7rhq2bcPT04ipyIcfjaZcKm68VVRJskwUuWTL73yrdlV+tnnP3104t8JXj2fvffgr//tSubMd7WDRgfe9Se3v/olP1/lf+Ov/dbjk19Vqkl2Z/Nl/dmnjWjkfP6jYfdBMbsOvdbBr/3sV49+75u/IZuc+RdxHEHvFRTnyorx1hdnC/3pD//8LxYfUW/1d/7O3w7coMY7J3TaRcLj3u6x2tk9dEnz9P1/uDMUYm7q9tSAcbZZ9eI9iu2q/JwRGoc3s3QV0KQVDQQAE9iKimKS5ylluG27AGFgG05ca6S2mlFXlsZjjpbIKKYBcJgHIYbESqW0MJRyY0QQBFWjIHJaoRA2FO40+dR3+2XW+LERUiJkMKmwGkJjtF2Fifv88eXsV4/dXsM7XZMBZJHLnbypotCFDOwf9fqjpHEz7HKshet6cbivq7pMC9m6foev11VpUOutuefy/m6+fMF1tocjB4jWMgS4Q7q2j611ZKCclG/m17PlUmhPkvpy9dMgPkg3tzV4ulb5tFlabJQBjnZVayqxdm3W7YwJ6RS5TFwf23o4tBx8TtCe62chh5xAq7UFmCBubM3pbrbO4g6ztmaOUq1iCAGYCr3Rxh/1d2fn6+5ItJo2jeB0SOKFEpm1ps6NlqQuWkJ5nkpJhyzAy3WJsUOQogZQUSe8mFSW6B2/WyA853KvFUXEuSwHQF04jAqJCSEYeYQIhNyyXjHjCJlGiWcNB9ACVIYhBJoQKTTvRKvzs4B1oecXi4vuaHvybMY87IYSY6hhgGmkYd3aCumgQCjweK/nZtW8gmlDkUOBMbV0pauOO6gvycUKTw2+m7g387q0vNmkeV6ls9WJNqCoWsygBc397W5p24urJQiTtrY7vb188nLolynsfe8v/pw5hvmLvMqn1+CN1x70RgCYkOFutimyjTw82ivSq1pRRmJA1vlkEoXJcG8wu571t47XZXX28PnO4Cu//PQnb29tZyfy8kZ4Rk7sLLXudpuTeMBm2dTSkAskta4pCACRZV6WH0dOj1u/budWJH37gClR+VWAXB8ggPCsbrDTdV0Eyydk66bbmuV6fbGapig6iO85oX2Zzr0mk4nxk1uby8fMy8SkvvvK6zAa5u1DBkNIQmhDq1iZYWGaoIuzRQORanUFIFE1biUpTc5c1IC1Fwaqrfxe4TmutiUjAFokCmwFUUadn55tbR0RAyyALu/m2dSJ3cpeR4nHsvarr7+6nKPL5TkCgFNmsW2bAmKireQOaeWGkxQROJ+nnHGEoGrFzu4xtI5eNj1cHZLgf/GFv/dGfOzJK+LknO7lZMZcr8JtUz1npooIBzUNTmi1C0Bb54uFZ5FWttHAKqRLZEAmcoVZmK3keLS1ErMeEhs0Ay0iFACsDaiJr0DhbTIIAPPiKitXCA4xGikrKSKUrrE/gwQjEGMjg97cFgtofY9xPxBpmlL9qpUh9K+4NwPGEW3iuNekgBQJjKGx2GNUNEUH08CohUoAaggFm3zhhlktHQyHaVqFYY94UbMuNbBRGFloLLRKC+4mEK+Wk7TbuYH9stcfFKtmnZ+40RC7jDtcZ1JgS5CFRjuJJ9sWMsKJ01Y1Lxoydow1qJGGWE4ZaGS52gBje0mnLatsvYJRHPa37SJHniWOz0SbtjOGAseFRZFG4c7zp5f7h30MVN0qxy/Xs/NRfyBsxgMgdR12I1C2TaGIZQQjpxuUVwtXYekiCpiWZj7ZeLGrjUaIQI04coo0xx6lXLTXBe1gX4ZZWjgjf/lobQmC3IYBAViVoun0t5RSomiIcrd2fAVBtakxo6XS/WhLw+pFeXL3O1u5eidxR6Hja37p4N2iQIF3uX/DjZLXltln1catM8VoAIvtFyfPME55yRdZcHqa3r0XtOaiMuuPHq3Lqr+7J2/s3yeeGQ+P51fs0erHRNHZSai6VxKJ/d3BqlIvzk793jDhjHEtlYk7ib+Y9/udy+tpq8HusB+xVx8++u6mHO9vvXrj7ijopkGHNob+xUc/+PBX30O95P13f0Is+Zt/+EfnH/7q73zrP/r553/62uthPxpn9vzg8CsnJydUeV+83+v95q+fXn1UXTUdgjvbg//hH/3rOwc3NfeVeGmiO2UhxnfbsirHbFRQ+6Mf/Ohf/bt/4N24961Xj9wiCfqVw+eTebjf+T0PQNZd2zbHGIcD5xyDNvPGW4N1sWG8rqoLLXDS2QfGEyVXIrNEcQorIQCgQjTUDaWGyELmbqTOuccJBkUjEfIxHEjhCPrQGjgcDTdpDglu25og6HlEtkVT9Xx+mBfXQbjMy2vPO4D1UNmVhtLzkDZSa+4wTyom66iTONRmmCXL9apHe0//7OHtW68Cnmyq834vbqVAUEaBq7C9cXNfaNFlLic9oXKCkRQ6bzINMxZ00hJRF8o8G+0MJiebH33vV9ujxc5o6LAjjogUSrcNNgI5tvFsmVjvFZ+e4Gk+3T0I0sW8UiLdPF/VFa18gdeST10auLjnoAjihtLUM8dAYlk120HPw65po4F35Luh1ktCGMABRCPRcEaA7wKA15vqGiKgldFaaUFUwyxFBjSybjGWUOw29SWwfts21lqEbSs8KRShyKg6CHwD0k4XrzaznvuSia6q8jDqcD+ohOBbuE0qkOnAHQE0wwA4brDOXxx1bz2bp5QAS4CsTX/QydcyDGhTbSCopBUQRsPhwcvTX3S6MQFDAqC1cwQhBnUZJ5G1UK6yOAzL+czlnuf7Ze14/i5iRFpc5sMgfhUQnsAbjYgL5ClMh27Y0y4Xbl7jNOUH48RpNulp24mOSjifFu9zll5eP23atGmqJB4iEFvVuXwh1zPvw/Q8Z7cLuRt2QNCdtyrfu323dPLn53/W7QRIbs3Oy4cPf8K8q70Dx6HMD2qE4WefffbmF/fz6uU6XUVJSJzs0efXv/bmG3mxapSTBLsAyZOzFzLF2fQX9eLs4cXzjIn15dXivHiZFzOUCpUtSu0FYbtpff+1Yf8QmeuoC7KtBDvkyeIqr8qS6ncmj02rw9DvC7PTu5uT7Y3j4BgRCD043B58yZPPNFohHBx6w2+/8kZvGObNdIzCbnzcMa/V3pLtO3G71SW9SU6WiyJbBk3puU6UZjNAK21zSHSe5/NJXpfNcjY/P72YTjJkXCkQhki2XLYIYjTeHXgJk0Y7QVdqz1JFA1qIqsyrelFwwSYvFk0JRD70/D3GvpRlQch3Bnz//v1kfBwZg5pWtKIlFBjdKF1YWLkeiIMHTYO4Y6wtTWv2Bodb3UgUz4889ps3f//vfeXv/c74cISME91IBSd8zVXgt2HQ5D1Ye3y7hHEr1tNi5cVOmS5FXoZeWJRCKrJa1EQ6jcC4MYpJz5Far7Srm3XWSMAIadtUCcfjR1leI46Ri4A3lbBATDoBEGpVtxvXA2GoMBZKWmWXmK8gLDnXrZxQArAZMOKE4YbzOZKxa25z0MFWOZzgMAJ8pNC+tD0SJhUwwOkWoo/4RAgRRJ4FTRQdrtMNj9ZejCkDdZYZxTkZOs4oS8swIjxsMcva3B8m2wCuGXJEjqtsTZHmBAOOgDaqbTS2gEKoFcAgX6ed8YgHnmgkKGrMnazOmetDCKWUoG49x2UIQ+YCYL3A9yNZZlhkIhrqvMltg7zI8Xwo1CrsSGEu+mOr0EyYXCtMSMf3HMK41pY6kYWOlswIT7dMK8ijDohjUKgui0oI6uU6cCLPx9yDtSw55xQ7WAV1ykP3SJlxB+m5aAkWRBPF92A+ufnKrpgF2ZooCZwAUlcQ3hCkgW4JwwVcNYKJwgv7EcTe1WXVu+O4A79YvNrBb0EtGO0p5GAnCzh2HECIidgetuz2jWjc72X5Uw91pDp+/PRltply7UyebeoN7I/uz4rgne9/VLaLq8VnGO7rdi+M2Hd+62uEhi8nn5/ksmTb0/X6xdWzyvPRYCvoOECSirHBYNR3Y82Z67j3B+Odnf2Pz3761oOvffX+V3dGsSJk7/7Xtrbe+Pzn1/ffAr/7u//+j3/84+urzb2bX/uX/+zftrk29pmw8cmz4bs/i6TcSwvZ7XYjH7/9Zs9YzLz/pcO9N+4m3/v+M2nmB9vzWXH5ow/ez+fP2fZxkY0wDp/l8+XZ5F/+1T+4TtwbHXxcYS9EWbDnmN/b9447IUhIdd3UtBOGna5w+59PrvoDvMovhRBI7/nulu+HgTPAWAIyBwBIUREKMQZVmQdB0Aoz6G9XtXUocbljDakr4/t+mNgGPsXhie8PLPJFgxmKoKSjaAs10NU8QDdd5lo7IbC0reuibY6I5y9bKeJgn3CedFwpIHco5a21tlkRU7W6xv3+LR9jcJXXz4on77+XxA52AICSYoAQSDqBw3g3jkLYelYGDFOMs7yRhvrJELIgYH0KN70I4DY4/6R98eGz6bNfDL1VYfyNsS1R3AVcK5ulSItOP4xecXr3b3iDB4+fi+WaCE02dSps2qRXxOqExRHzQ6R5k9NCeLUjUUCo5xGyk3BH58c7XUJNWmaD4Ms+vec4Yyc2TueaeBOlZLkIQOV0IolADuWWKLvUk9BdYxaYxqe28/LZy9F+LfLe2en17hHUdjNfTZWRjQCcdosVsCLJF7hYM+jvtfaGF28HXYwgLOZ1QhK48jnxq/YpNUMt3U12PR4erdNzi5c89Mu2UlBbpCDSCFRYl/0Q54Xpj6OLy2dSYmiddHNlQeWymOAwBczTpxlkknpYZTXpOSSri+uoP45BkxXlukrVcLCnVrUoigStcNjIGlmyLZ1Mq806L5PIDZJKlOvKAC/285VojRfEcbWZRdhWNvWILvKqzbPUSNJHsqgO+rdcbA93d1uV13IbI8u1FC9h6L+xs3dUC1HlOUbeW6+/EXR6m8reSMj5+ce/9Rt3Td4++WXxha/cOb38vM6i73zp7tPllMRDSnwYR6JYfvTd79596973/uovbw/e/Ox7l+6QZt7Fs/NfDekIXjdy2N1zj6oZ2N6hCF8DjbSID91he/kId4cj3t1saiUaOZ/M+9ah28Szq+rx1vZelVMre7G3Z2pGYc6Gf/R0duYeuhHBFKHJerYqfMQExRrqDW+7vomoO61IIatByphBJw24QeEu4zBHl2XLgNnhPNY2n52s2qolzJMqxS6OEzSZvfT6B2EE66mfhCZLp745bvNGmoz0hgxZkK1nmw9H3dGqbKbpSnLs9kG7bgYOabErs8hz2N3xwdd39/7ZySMLDYbAQKQ03xru5uWkExOpH1uiRJbsJaPBUX8p0iePLr/c+8p/cPsPX93dOwpCtV74zPG40dStNCFcGprn0KFXhccWtuvBTRZ6EqRQtiu1mUnsoSZTunHsWrHSsgqEWpbKdYbGtMwuc1MmsZemG8od2WiDUi/QSgNTej5xpUkhpjA41VXtkuOsMXU5KES93YNWpKaxsAyNivsxzZdrxnIEIuA1ZYG7nX4rawtqgASQnmhaoDBl016HFxvXpxjyc0tDk/PhqLtKV8xN8lwOOoc+psimVYPjYaeaLOLhMFsVoOHO9v7q8gpA5AdgRbIo9vzEWVxfdTtjKUylMtd3QUhZhqjPzLpwo16aph5LjBAKWaBV23F5iQLFa9u6ni2ZhbIAdU4MqTxNrlTp2liEup75x/12usLTFB7tCmPNvESuba9ZhrX1kI8dd+hO0zwqYut5ABECFJNyTssxtLpvwPUkwofiiBXvPe9YR0XIzjPu9urNVUtD37pWZN6Wd356ygjfvrUlq5XmSvojcjUVPbIm84NO19weSikJ27ihKaqlS90mrV2/syzyILoB1mvmdgUCRta9/ujjk0/4NwT5UpWfv2zqdu3lK3028Pv5+sPYGyNzxHM16L6cVLSTIKX6VWmz6rqoP1Nw5+pqfbRPUjERodvb2p1nEyGWrQj+x3/+PN6ZHd1uYi949VZXtqqH96/tY57j808+W8jCH+04SoMmDbiLt/uT8lc7dvzG1o1a4+uTWQ3NMr306z3aVF+8T4rMtifZEqKWnL/6RfSFW7/dMOVOF/xtWNGTO1/p0kBv6sHs+o8Hydaw/41q/eqQFafXn37tm3/w6MWCbtZQ/+z4a3d09vBrN9Hezh8Zh33/h+99/ll7EIKumki6rkQy6B989PyPO006urG1e4duQhO4uAda5j8WTPpIr/LFrSQYwFsWdSePX5LiEodbDu4LpLhnqnZqbZtWa4SQhlCxpjcYLBczoCynXSs7cVIuVp9sdW9LWNeNYW6BcQbVSDYicPy2cSy3UJYWVFECF1Mzn1lAolbdUPKq0/Hzeu7ESArA6chYrlpJVMG0WU4J7hwYUwIMQNP6OLBonuYW2Qiq1iI53h//5T/90+3bO/pBz8YxQnEQCOFtgM4DOtzklHG3RZpyWtWtxZZTty4tQYCYC1vtMR58/NnjNaiSB3vJzeNLejQuMz/ggOWmqQP38NnTpZu0brAKegkl8Bbs7R7ZH/6zd7jxmR/MyzPZZ/2We3LRoHRigRO4Q0luoUPCAQayE7+e8BpSzM0epGvXGSv0oVYgpK+VRUaZl9ctctoCEiAVqxJrdZGfIAthzQAiRi54sjWf1V4MHdY93Tw+uNVbF02t0FYcNkKUdUs8VsJyOOhu1nPPNR0KTy4/jMcjq2iZze/d2b+cFoT3OJy6ic3Wm8Dfo97ciSb5Wnb9XSJ0WwMDtdO5O5WfeC4OO8ePLx7uhVE5n+m2Gva5Q6JUtNjL2zohEMaihZT0srqGiCkpHdyp5Zq5zWq1QRRTHoYBbRrh+dT1yAbGFAtb10RsehEGDlZ+eNGKbfNgtT6vWVkxDLo8B7M6dluFXOmbyUxrMVMr3Av3wFhq1+wlaTrX7Xxn624rAXFqaNHk5fnde2TrYE/adjK5tDI5GN8aDXaYqYIIAxj2eqZt2c9//P7B8e333v90uZz/1rdflfHR+//kv/y7//Ef/OmP3vmdvd//859/ugTCTqcvHz1bTObXi5lX90StV3PeuRk/WV3HGlhYIV6VJU66+0JOiCdauKJOj8Yh4l1RX8RBdG+/m7azjz85vzl6kAwcABbcBXHndrq6Hh/EogrntdwKO37sKxfNJ1essWO/+yydhWk7W03H20etAL3gcLk+hbbwiXz6Qn3zN9PW/AzKo+U193yHupswFK1V14v3EK2ypTo4/Momd4wmm0UxGO2cPvls1N2uSlllLqY1doWphoFDq/xqvVB7w29N1w/NMgLclmIRzm+7/uZqccUdrzaX1PpOcHT7+I3Xluzxk8/atmYu7vbioqikcCAYX56dJNvbo91ApukmnWWzzTdufOnfu/utB8nhwAtFXnbCqK4qZo3bCdqy0o1mHoQldx0KKFEVqrIZhQlA9ezMZWKwmF8TFG42kPqBKHidRdo/Nw1UtUL8AkHNdRe0eWvuNmaD+AISpuBAwpRGm6rpMNoKoXn1QG20wwQHwpTQAaVqe6YeeW4JsPbIyICl32m4IVIoxqAbaO6qusKc7FDWMAIVLsLYdZ3tMjcWWoSY7yZZfeX7YVVllHGEIaW4yAoQuE2tPba1kCiBkUKw1GUPSc2ztrzobG0Thiw0jLGLl899L1aqQIgYAxhzAIBKKSM1g1CWFSGEE6aNqdvGj0ISx6D8n2ygA4Koujz3+6O23diu7y6qOVFDP65WAnqdZiW1hM7xyKjarJbh/aP08dQg2OnG83RJBv0iTbkl0miHDWStNUGNUJSHskJKEwcPbQLYhUZSwNvD6iwjpUBbqp0jQrURbS9K5pdThtio12/zcrVaDY47oK0pUWWR7Y332ky1OaLctci3NcQu00qEEc3KiyDGriuzKuObgHHo9PHV6Qfjtyi57YkzKsxLJyCrzWnQTYjcZiaDptSq6HnyfJZptOEDzU3MmrVbNtXM4ZE3THbX8zKIIoKDTz6cacRkFte4cCG5evYsn7789V/74i8/eDje6sHu8Ovj/WcXF2dXmW6MrtuFEKOg07P+7FId9b+GlPS2mje74WzmpatinVa+I0RwRaJtMaPdqP/+h59leRV3e1dJ/ulnv3jzW9s/+Ok7R/d+M60UjcPHT3/64OC3DGlqOXN2w8dXL0N848WHCyPmw+PdncNsN/6jf/hf0N/9m1uXq4+2gj98/2eXVXHxvfffV70Ga/nanUFuvY+fLsP7b9w8HLlmK2Fx4JIoTvL6vDO+kJUiR4nv4lp/OFB7xeNoLL9eC7v2Zl7TcZxOuQKx38EKKVkoVAdOvFraTidON2LUuzdb5HUKOB5auFASUNBDbT8KQVVKDFytsrC/WS4CXP8OTua1XMhS86DC3FT1J524qySUlRP30bx66rptvkxC504yeDFNNRt2c31BTY3LbjeOM73sunDkHdVw3tpZwt48OVmRRE6uz05+2Bl+O3b6khKqG8dQt6nrwKuaNpS61QAR6gALrIWVyCiD1o6sO7ualvnaaZoVJUtgBwRSwNg6dVw/CiPn/Gkq8SoOBEZb01kVd/nwtdsLuv/7/5v7P/63/3gzeTLARoH+bP0kcDuudwCWLxMa3hjc0ptlHEawObJQN8IlboW8tM3HyJsgeSibVYVLgBWBLtbA6JI7WFPZCCtbbjVzfLPanHSTDqH8/PJR6I0oAlWec849FreKVWkLcUagSkIftCU3KbEBQC7y8Vx5ji8Grp/VAvGdWebGrktFrXjQlNWgvy9UxeAG6UHI4qw8x0Eb0Zt5vRDmPPA5tS5TNGGx1R2L5n6cYKZWWUq4T1zVlhlBRFlloGOhaTWQ1LEW1wbVQm8QCLV0jaYA2yihkOLVdMH7xgBubUOYkQLXSvKOl7jb1JEBN8pkO4PhtCp3e1vzhSDSB1AsZXe2bjrOodIWjziwRYRrZLHHXh+PhmmRWrPf6TCX2P3hVyfVOq+n9/d3X35+UcpwOH4lr+fJkK8WdmtHffev3g/8wfd+8k/Lovf2a3+0c9j7F//4v771pTeenJYiD41hf/HH//ybX7n/p+/9Wc37Hcd79tkP+v1d4PbXlfQWU580Ei43+WCdtYBcOID4YSKNh91SD2hjbYyWGGoYsLAHwXSk6qLfV4Gzd/3i5a17e0XeIt6fLyHDfRevcobXZbl8cYURYC4HFB90R+tKPbh395cPf7SzP1pt1PGNO6oRTx9NuCeGyZfPzq9b59QPurNJvX9wtFi+qOpUCHF90nJ/6wfvfPY7v3MwvThLAn599S7FeDE9K7Ks37mZ5bPILzQJlOpx7ITeoN3AUsgw4C9PL/CUoL2BZ+rt/vFmmXFrBQAbWA/fPLyXzi7OtLWAUF3WUyXh3v5djJyj7p1wkFwunptivatH39z/td+7/1sP/GOMEVMSKMO6CWDMEqCbtBFVgJzN5dpNehAQVVaAW4yCzXoTCUfKMxf7kTfO8tqLC2NLWe/zYIWJBnBl7RIZCwEGFsvN0PLSY+NaKgjXXgCyjW905XipabddDxaFIVj5XtVkhe/sVDXm2KuM0ApCAJTREEHGOTaOA3WZ1xjHUmhGSF2BbqdrzYaApGquhCaUdTlb1yXW7SjkIis23f6wado8W49GO9p187IxhkladjkHA1KlSw9jNop12kpIHbdT5DkjPWsiowrX6WJE0/Ua+g5CBEBGMNMYc4qLqiSuByHQSlpgCOdAiDRdM89hvltcr7hk7STTvu9wV15N46OhzVoUKyKBLCp/d7Rpa7NYdqORtiTPNkG/RxB2EAEQaq1traXnEKwUagkBAlW+x0CjKObY41WeQWi9QQyqCq5zd5SsZYWFjIZhVWSEcRcxiKEoax4F6rok+rjI08AbtW1tpUzTeehzimvZTCmXmPq6tchGsmQ+H+kSzvlpgnDo91+mqXNvT9ydfnD5Tr/sNyIA7twl45jcuTz7FCETk/tVKefVOSSat069LHkwy6+n1xPbIrXNagzMebrZ3h2+OLsoCkkcz4rWC03EAge3d+5s9brjX3487Y5G0vApkrokPXf7venzNrvyFertBfZup9PJjV1n8GK41X3TvF7ejn/+q/c6PUeWxZuHh6tTHXiRwrO0np9dpntu9vPvPYkH9z96d7rDb+jZ5dXiFGeHB+TeaufRMBmKtX55/vAnP/pp2Dm498att77RSRvoV1/+7OyD7/z+2Evu4Oy1TW47AesdPftrX/ubzBTZqrXVl04na88NDgYeQUTkrY2oJbwyyJhwENyDnFIBZg3udLaXH0w++9kP7u/5boCrekQ4ytJrPzaElEpI4jCjMaUBxSwrptY4s8XnGl9TRqjdVg1FVGs4dZztYt1JkiAtTh3WEY1x/AvL/pLgL4D2VZ+fQ5JztxGq4Z6/XF74iadqN0R3TU58Lh3/JNeUMe1QKTFTTC2rsxv+nfVFXaWe3zvR2RZq92D8qBOeJuFbL87n5+88CV7dD/dDu84cFreIE1dBm7sBAa2oW6tb92qa5XnbKtnv96Q9o2z7xfMnWbH66Jc/W0wfvfHGIeOhMgGNS88faBFJ8rQFVZ6xTtw6YYbYUEEd3q47x4M3mr/x+Y8/ff75h+NIga3eVVprwV/du+O1iAjJuyGwbthhxHkoNrugfgV2uAEIg24jKmWNFIB5VGtdlnXbKN/tztLpeORbqairNaxd18U4zFaGc98YU1Y1cGnodfM0Q8T2kgjl1HJhvfFGS+UCQzkxmacK13RKCNJcCKPjGNXtyvrBQjdDsovIzKK1hRpaBwCwSWeMDqmjJtPlwZG3Xop8oQ6Piqb8nNsAOCufai2TrEgxE9qiPPcpHBBrXcoosKXjdLVuCYNFITAM4kROLitgaX/YbVWaFxtUAYqDCPpNzZtWeAmzlnlx2uLrkDqWh21B43hLqYwDWV3murYAFLJPXFgcbHslrABEDgQuC4hDqqKPsW6lRZgf3Q7bNo2THdlOBnIwdMKPP/7Ylcnh1s3F2SLokGpWrMzlxx/N9/f8afaj9z74/ODgzdd/Pf7jf/0nMU2i/vaf/qt/851vfOW//K//bxSqaik/e1aUyABh8pw/uHf8+dXTFtUWM2vIchZC5aRr7nl9iLzWlmmOkvT1/WC2kssUjCtwHSgSkzGMLlq8lzcXtVm99uZXACTr9UW/e9RJgudn3w/ZLvCjVbrphZ22ba3rSCn3+uNkOz/9rBh3buz4g+t04TpsbTfXbf7bX3wwmU6h6bh8azp/tH2w/fDZB514mxJnPavLAn73h9/ngUOZOdo+MkW8XC5uHT84mTwJI1HW134wLjfMC/y2mjcpjMKtRf2QqLEw61qkxRodBVdW9JTNGtz64Vhm1x1filK9df/2ydOzTx6eyZpK1SadTuwPJ1e5P3Dn7Wp6dbobDI+io28df+1mcMQMHfiubTTy/SIrgm7U6jot1t1hrzybMd3nJLu6THtJB9N5ugDct82qbPPMH/ZqcUmDaV1RK0ZFWwpAoU0oq7Q0AHoA1ZCatmWcnCtxQWU/4G9U6ynVpc/jNs9YkpWV5ZEU9QrTftSFrXjmdboUu8RZNVJE3ladb3yXadlrgSVsA2RISCDEDJA6TMKk70yu1oz0KL1V6QXx13XDXN9TYqZL1+/y9apECIzH46LItbYEcycISUJktSkJDD2XWiyMzi7n451dBVNlCkQBJipMOOMaISn0LHHvtI10CAMAEcwgUghAgqGSrbLacV2A4GY+RwgxQoCWQoCu328ur+H9HbSsUtUMNNy0RbIb1I+mbtwFSdR8Oo+ZD5M4u15yQnnoK2mQBGVVa2WZxZBgIasgcLQWwKUcQ0UBwUjV2uYW7wgMvdWLSSdGNqLNsh1EFAA9X1zv7R8bTY0xjPN6vU66EcCVAWWjIMRES+vR2GV+VVVtrTwvRJACDqumdAImdNE0ze3tb8hmWi2zZBDCW+zR8xdH9OupTbOsIKYIos5itqzFaX/ISkGqRhwmO8+e6iKbOwlMhtw8+9jB6W7y6mI1KYXYHmzlWQM1BkZSC6GULoBlmisqX/v6/Tyr7r6+t1g8rMuyTm6Bnvv56amkojuIS1Xwm+Zs856uD2ZXl8P7nRE52nLHN/Ye+jsJ1yOzHt4/HH3vL37+jW/fe3r9jt+FX7355WX+4W7/GHMPA7YzGmZt0ShTL8tn+a/yp+fxl7/NgyjcoaNXna3taLgddZN7P/5Xf/kf/+8OvP0WturJ52uDfQzWR8dDGP1HrxxvLZ9fxmGUXrpK1f1eKZbuJ0/Ptncr3+lheLBZw2H/FhBQg5caXCTRqyAjD3/47v5QINxVxQjXueJ1t9vNsyovxO54d7WccZ8a3VjbEQ3vx13RQMiOjLYYUg1SpPwg6ChpIZq0SofhqC3DRizDaFTLzKDnOPjYkUzKgJptp95S1dLFfSQ1YyqtL5Mu11ojSOrmLmhTBh2rXR7G0VY3nVe4SOK729PJnLiX0bBpsjucDyVZ8Ejb6bp8ks557LrA31MYbRhx2jqEra8alOWZNHYynVZtBamMkcEILeclRc56deL5+K/99d/tj8aNcUJXMtdVSLw8fWIbh9PEcyCDI9kcGVtiWoVRnM9nd34zCY/usnfB4z/5l9aJMa1MvQH2IAni4ZAvSxji+wg/AtUNIAfUXRHHBY3UMhQwFmCl1alnfN8eWx0V9ak2M8+PlFJCCIACgJK6SAmG2KtBFRLHwwwBqyizoCkhxFo3ggw5FUAvmCk9d6VVqhDMVQ0dX7tepWgnDFhbmCajRm75HeA+lZsb682C+RKbO1VmavOhH9Q+351UqkpB5HEV1atl6XtdN2ogiCG9KqtJVbeD/miTc0yMZjUxVmBEpBYaGcoQkKppix7zoY6ydOH7rlYbY8o8T7kbdeLt5eozigYMKtiCprZeNLioMuUnUNdNq4DihSaVBVNRKQe5MYQNI4AzGmRlsdysw919ZGgnGBR8SR1t8ObO7UPfJ5uFIxteVwrz/Kc//1BooiQA9cnh0c6LdJYu83pi9wdf+Oj9d04uP/nZO9e//X/9T3/+w4fza16O9ct/8k8wqH76ix/89//vf/7X//Bv/OTzMy/XV+tPG3fEh4Pn86tyOd/eGkDjPF2Uo+EKEuiGqjVzP+lOZ+eYge4wrNrCr0IPtps80fGIbMdsGvDlI8PvWFhjOl7P6dZ4L89P58t8NLhFovCTn75bl811lR7fuNUuNgcHB7Mi9Vy7tTvq3rpR5ZsjNynVQkH9+hceEDZQEES9QV6Jrf3b08Xs3Q8efufbO/lms9xcnFw+XqbPE7J3fvFCNwtZLo9u3L06f7a/e8fKGBiFkAKUFfWzZhW4uFPUuRt5Qch++ck7tWz2jm5fzkunRgHQTmCyTRFQRBVrJcHdqwd3e48ePTIoDGLfC+Bk/hkkZDlTNitu2ORbnTe/Pf7qA707yHAQuz53laoJ9WbTSYCTMisxwYCQthbd2Af5tYWq1TVYrpXyO45bZwuOiahoXXPAXESoaFtrJOdA2RkmMQABdkSjW4Rdg+dWNVEY5GurtabUIQTVlfJY3DQydLur/NJ3E4jjvNiE8VbVcF2XEBnuIcenSilOrNRGSsEYELlUGMedvlSlrHmbhcTuIVIwj4i6j2GAUEs5kbY2YA3sNiE48Lm1YL1OB4OBG4RlUQEV5qDpE1chObu+Gva6oKMxKerSd71RvskxSpA1SjBMQOiPvCRer1eIEqUUA0A1NSHIGiGFhIwRQoDSyIIo6eT5BmkZRV0w2cDAQwaZsnX6nWq+SoZ9sRZCc5d3qsnaR9DtOYvF867vgvEQep7OGiEUMUYrFfihwLCtOIy6Kp8zv6cbIyQBkrWNgXHguEF6MbUcw8Bp1psu8pUP5vPruN8x0JRN5fo+CMLp9Vm/310t1lEUAUCstkaYoiiUUnG305axti6mDBPdyNZxYd2sAZPtumhaIR0Tv4F+ufxudnnidoZPisdKXR85f7DYXFfi5aD7Fm5Gl/MPwsSenU7T4ro3rgC1y1nl8+TO7U5eXdlV1u8GtdzUZQ1guzWKhFh3jvnJcpNX9taDo/OXy+3R3eGw98HJj2LPRTS+XsyyGg8HB4NRz2Dlh8kmv6xnk9s7B9//2Y8oDkcHB4c3v+rADaxHZXd6Vj0hPfin332vOwY7W1u2wF/Y+80LLCfXz5Ne9NGvnr72+tuYdJORavqbJB/7nU5WNr3Ozje++psPP3/3rVf/2i/eeXzcCSg4e/h51YNvitkT7qdX8+kvf/rTr3/9tyTgU4Wml5+PR9PQPV4W2x+fP9pK2mF4iIrt2jqtOQHxXBaRbW/W/N5RNPjj/+pPtpa7sdcjsZZuUZZp39taTLNO0tdNVecw9kbCNrJtO13m4sN0fd7tBWUJAaJexE3br6uQYUig0jrXcI0tBNhgKoCMHewCtFTVNsE+9q8cr6jDnyp9l1HfCkMB5ZbCxnEprcrKM2e8N9pUadIVqN3g1O3FgwXLfLCM8SSCu3LhM1oUrVLldtQo1JktPrh4+mTytb/169pIpBvTAMD7umystQgA32NbWx2LAgXqKLau3cVgdnk+P39R7B/v/dq33moaLJFHqGY0QtKrN3PdXiSx7MbbUISWXyndQMyqiiIvtpRuHW9FSa8X8g9++D7Lpnf646Nghxniu8NGExdnRdr12Zj410baOuNSn/jkjWWx9IIYoLhuK2WualBCXjjRjqhDKSV3RV0uPCcASDetJwQljAIjECYWwFY0xhgGnFYVmF4xh4vSwXYMRSdPW4e7COdUDTwljaodly501PDAiHSEDbadrBSACcwLDkW6lqPxQVmW6+lke9xxOZnPcouU63UJ2c+KC6RapkOxceMQCHlOHNRJhutlSRBuLQQQV9oo13V1vaFUQdhen60wxmGIV5srjK2Uxg+c9TrVy47T8UnHKt4U7dwTjVjmfad/kZskDjTUjuoL1e4moraFNbRWi95O7/HLc5E1N3Z3UFw7oaAoN4IHve2dY7/TZ5fPsyprtGyh3f7wB/8d0s7uaHexXN4YjsVms76avPvLD28f3VkV3/vu9/9FXdcAzrxw/pOffPjg/vDv/9///l5/6+6d1/7d//DvoHWePHxs9ebs+rLf2zu9PL/76oOzsxPI+CKtiJ9hlPt+oKQpslIbsV4KVY/qcsm8jJZBGeTA2XH69SBgoQhS8LRiOHAmt25+4+XFies6sdffHnXnk+nRjd/8wc//0bOzE6AA5Pzl85d72zsffvrZsN/NS7a1G7Qo3eTrTQF6ncEQh8BKjXBVk6pph1vRw2cfnr5IqwK+PP2UeJPr1dOnj57rGtQsm83OsIkJUC9fzrPiOfVLorcG2lVovrP92ouTYtSJazHxEozN4fOzv0I4cVktm/SsrDyhfuP4O02aY7WGnFrgIH8D6mB3eHN7eL2prFBQ1nCzzELfKdT8pjP8cv+Nt7feOAi2d3pjKaUKWdsU0AKAoedwYI1Rqhsn7XwDLNVmcvV4GR90VVuYDfKCsq4cADaRxxsxYTzZZHFvLMrqucv2AWmB9KWhTYuoHZYSQq61iT03XFcOCysUX69W1vfGlFd1kxMTC9H47BBI3TQryryq6gNGm/Upc3s8qJRJKYqMXHtRI8RYrG6LKo171BoZhf7J4rnrCsRSZUetNhARYKzjACFLhKlHHeL7rWiMhbZRkR+WVa2s9cLAEOs0ukHKQdhljjQWthTvDPT11KeW8rpsrr2Q1vWSI2RQA6A1VgFgGGOMMWEMQrZppVXG8TxggKwFYw4grK6bYbdTZCWvGz3qeIuyZDCMutVqCRAxxcbb6sh6QzTwdvrVYkUygLqREJJp0AgRdjpWA99xAUOirRHQRuRluubxts4aTaG2JXasoQCsgSI28bm8blVCDc7lXDmhnwwGxTpHFEIIgBRR3IGEx063rApjhMMpxQDakrlIow3161ZUhMcGMMcN2lZC2/U9quAL0HbkYfRu++GLZx8edflJ+0ElK7O50cR2erno9Q6R9DbyV0X7GGbHEoONuqLLNCA7DDgx2ym1m8p3A+cIWuRjW8nl0aA3nc92x7t5VYYJX62mLmjNZrV90/3pu99XeL5199Wqzj97992j3X3r1RTlb+zfytZZy4PeXd8q6Qbp3l6a6o8e3PoqW5OT1SMf+ZZHW1v05OyhWNtHLxb98Ih6tLcb3eh96d0PPv/oo+cIyyFzbx68cVXgj4rHn//pv729e/Bg/82Hv7wwkDz8xXunT66/9e/d/6s/+fN4cCPkzWbxtAsO/tv/5v9xeAS7/a9/9O6Lx48+euXV+7JRfs/78KfPY9j0OhxUdds8Sa8ktiM9XUThRScMQtz5N//P93mq/e5MU1IKXcxnr9989fo6jWO8XD8NPdcPjWiNqAV3g6K+EGngUEZ5HjKGkSfqxoqB66u2TSlzlfCSIKjEijMHaA/SGUGOFDENMsaKenW3qRPM/tKQ56rtUNgzUiUdlFUvuR9DLV20n2diKzk0qigK5PshBYMR3346OT8+OBS5rBpoTIgS1pYFxL5U7ubJaYbq1Svjrd2bFjgIO8A0kGShz5jDMGfcSQywFkhMDNaSdfqTcfmN77yedGjTIC/wIGYGkLZiLz+plxf1YPekN+wbRRRY84DVG1LWEtBp4BKmY0+BEa/Bt363Nxx88m98cL7xPD/2tovUSZeTqOtqeA0orCoDYRmxLmmPW7mUyrFQAayzMiUoaWoSdChxmun851uDW1Y4Hk+adj3YCefLaSHlwB9KXRDoWsvKusQ4tDbglLmgRYYs1SUOMIGu1aoTMNTGa9wYrQjHVbnmhMeMCk1JYQqCw15aloCYW5BaP2yhIW2lOtHeYv1sxIa+s9WCa2k3Tek5gb98sTm8Habp2g+8Te5w3LHWKFMTqAIDGTTAodC22kjlMqyyVinlB6wRqcudutFlVlJWaqtiz8V+JTEWGkWdiKGkZ1BcRjNGE4KhI6/mi2Hop20KqdqsczsYTZ6e9ly8GRIYE5Q5+ztv/8mPf3a7cxvCMgkPr07PGa0m6akS+GL6vRb6Auvvv/f9N15/60+/+90k8j/+7P28TG8fjP7Bf/svkpj6vjve+sLV+eP5/MN/+o8m+bPZS00vZj/IFie0Q65OZq6JJrXTni6/9ZVf39lLrs6f0Chk3FFWBKQNPC/LTg0oGb0lajPadp4/3sjGxQPAG893jOoPYMDO8yeLZRaiamdwsJlnoilv399br91l6gEU5hZDrc5XE1EpV+LuaHwZhM/PTqkAnXFyev4IO8nZuRmNjrgTZfnLTq9dXjd5fd7vHb377tli8/Ly8rFLR1fnTqHOVjMFlDce+IXYbJaNKsAgvoHdOWHdjz9+cf/4zuSSR3G8XpQujhpZ+gHUbXl1vbTW3R6+8vCTX1olqMwhdtMW1DrcG/fXly8O+sH86knS32n7m4ODePnZ01YgCF1oRVlUD7z+b46/8PXeF4ZoEDaig6TAlhksGeGMAtko0cgij7wAKCQrrQ1Stm1zUbVZ6Hv1hW7MkpOBVazOoBvWLfjI6/ibnBPclTpvDKVoTGkOxIKyxKUVj5ZIH2zWMYQFYnK1Ugh0DdyIdkNVT9EzPwyqrOE8MUoLXXQHqNALaEPGmAGlEi3SBgFAIdGQlORn4+PQ9b3FLGdq0Ol6gZ8spoj1rUv2SvBC2mvYbFGOFdg0xXHSaRQoKXNEpeqq7Qz7xKWbIkdR3fHiMkT1eUqB2zpBlzKpfWRcJanrJKvVoj/wgKVaM6WAbHLOMYCGYAiAgQBorQHQlDpKaEaRscBaaKvK8zxACKrWdL+rgQFSWhdbKZnnp5NFNHRgKxuRO+OR4bR4Wgyj7U2DrKxQ2VaNGG6P6uUCMyygEnnhxriuV8i2ra6NrNx+AsoSYCAy2LoKRx6eZ7JRknvFfNEFSdAJynXqe16WZcYKrRQljsNDqFdS5ZQ5DnWKZa4b5JGuMYiY1litBUIYQYSyzToKPGQsnMMlWqSybFdTt46qrOfgB+xRHbzy0WL2qUgN6S1q9VlVerjdm2fPmvYjF39xXa1epktMUgumokjQ4pbwJgwjq9Xt4461Os8aKVaL+YSg8N7uoFxPZwb84Psfp43gUfTpr1ZjIrf2bh/fuSlmK1SA2SxzmHcn7Gcx+Pzh6Wv7v6+uSHKvf/7ilDWdm+6b683J4fFXHqonD15dN8iuiutHF5/d+2J8wG+1er03SL569x5V5e7uoZHk4S8+2N+9/+nVp9V4PdWPzqsTD2ORtyPP/+xFM0nTrsu/+xc/OrzH33t0id3xVvfWez9J333n+3/0B3fTTDw7b56c/DMfGj/bevxMwHa1M/SQkS5vFs3laCx1N/nsF48OB3vSrzcWU9gNsMYcXp0b5rZtDeNgx0FBneog5GV9hUjLkGeR3N3a26RLpWPu77RqMd6lm+zcNNt1gXwfto0OnGOtLGNKrN/2olpWOec50G4jUoBfeuSmEh7ChZRXYThocs8nb1WpcnyoXM1tXm2ufH/kxFuS5JDZdqIdw81ip11ddTv1sqiUjKs87fZmaRNV+YqA4sX3fzh6Y0vvxYAxVBatYIxyThGEyqNCKsEYwsjyDvv8iewOOk5XtRlhiFNQbg2iUrCTR+IX7/4ocM7vvbLv8a3C1MKCunI0SF2OEIqachMlawgdQgceVjfuH8bCnf/qsrq6hkXLAN7pupALVQ5WRVak1Wjc9XpZ2qTVxo2iaduittqt6ma8JRmGGMHFVCXeGCq4nJ9v7/ZamTatNZYmydZmc9Ubug4NqlK3Ru2M+9lalW1jfIeJAW1VSAiyXcsL5DcVUGHVGh7gOG6bjNrMGE2jWPLYLNZxHNfrEjiVaK98Nl7PiQMcRTXjt1qhw0SorGkl7Hf9tHyOnJrQIaZGGIWoYyAsG6vFMZGqJARoW9OwU86vHaI0xHm+dDwnDNjJyYu93VvL5dpoaoGmXHw2W9/d3vFB3F5XbqBRoAPPbel6t6s8L5kUq94umjbtVPTmmXK7nDWzzv4OJqxjSWvAzqu3vvveX3a6zp3XS8uc+eZTx+di5Qa09/L66Wpu1pdnp5MnXswuT4WtyHJzvXj+8Ze++srPf/oLz29EK0WL9vb8H/7wL6xRTz7/iAYDZz7LRd4aazN+bitMNrdHwZtbR1u3oo/PHx8+uHH1Ys2t77Egtz4G7uLCdZ3RepnGvetO946L7njwlUX9zBilVKCocZFrqxLIFNEooF5p1mWK55cd3hXdYZMWkg9oqlvXIGbw+O7NuD+anF09OLxdt+3yelUV85ibJBiZYjJvFl5v/GTyrDp51hl6y9XVKp0VxVy37mg8RmjSSOI4zq0bB1pCkvmXixmIVn4Ib+1v//LHa9evl8WvtgevrOamKcSN24PFSktET15eWbPsB6/MFo8IbwPfuxKtJ0IKjdYbnfYJZpNyYcOjOvUj1+v1elX9S8J6dWUc0rtxtPsW7d5lx3c7N2Qr9o+GEuSu2wMWZFI63BFFlWcpxijc2rp48hJZFEfBerU8Otpa4mqT5aqck57ftLmLHIuvmrLjOd/YlAtAKkIb7CyWWS+OCkSwVhTZAmsEi5E1LHAXbSF65J4RC+RkzPgEHSi7qpr7CivqniK7kllEYUIEdk3PUumGRSFan3QNkJHTbUrTtNrnhw6Orl6sRuPXi+La9fFyuQ6cm7xbFNl7s2t6++iL1jtrJao34/5Oq20axqhqVtg6cRw7SbKaTb0oYCTOs4JDZhzPiNbkqU1cq1OtGkqYBRpTMZufx3FHytYPPSFrLwirphFVBcsSKWGh5S5nPFwsljyIOHXqulbKBFG8nkw6gNZdhl/OleMwAxpkXcI9qmD/IH/ng3Crk7qQVkU/pMCTEgjf90yhGXOqpoXapOtNsrejpWB4UEvtsX5dM9jq/z+T/vWz65oY5n13v59e3v71b/W19tp9CmeGHBZJFClGgoXIlmTYgSUEAQL4JDnyUZBAPg4QJIANx3AMG1EQ2YYKqUJJFEWOOJy+Z2a3tfaqXy9vf/pz9xzoJP/EdXDhFwQjVWlhBUQ+3/G7s7JeSnY37labwYJHv7q/ePU6CQPVCyNlOhiuF5soyUWrUY8Sf1J3NaAu8piXBbJf9V2PhRd4kdQOIiTqVjStotjKPqMPr7LvFXYl53KL4MJs+9O3h5MIGmrti8PDQ7kdqGKw6d5gb0vh5LK/hfKN7jeBCYUqhWul9WV6MZncpQjWq2Vbr4aDsUcgMHqYD3bxbKO3dsRP1tsNmrftTQ7Andl7YbafYrMzGn16c7o3HaVUbsrl5MFjffXayp/INuXRd6g/enP1VX/+EvsOmMQrr87nnz15513jopA+396efnTw7vKyerl93Vj0t/72f3R9+9UnL86ef/ladXpv1nBwdzfL7s1ml9mNcnZFV+ZQnVa23bY/+/73iKFfvVZ/8uXPdqdjpapKXT34zp0//Yo23UlXX81fyod7R0Cv9v3Dbf0WttQjHscb3ShxOVsvwCDCDCoMIoBN5q8iEHfR/ptmfijDLI0RYX3deJxbaz2SAoX9zMTcr+va92klT4MkrWtWbIUSOwQOkwEvqxUCQJl1mrG+Srfq1TBFGkoj7gC+DPJLqHf9EGiyVi2OvMO+a1i4VvYUWOdYojvpxTuKI4lr1NewYcu2SqZZooeb9eUgjzTUjveQgdzfMWDFuJONktst+6prrq/IvbDstonmjhcAUmsVBoxD6rSHDBdSzjcGBitdS2jGYSKniccRC2C/6PJC/OLh0/TuTj6dsYsTxqOZ8D5RoOYiSc2O63QeT3ulayBosvHKzWB83/+QO6FutpLJlrgrj/gVqR3XhDpOCkfjk7eT1Vzv37XtraTEC0MfOEEJEH2FWQsRQeYBcjiOou2qTdN760UdpPF8vRgHu860rTQWEOe01E3ZVsMJkYslYEmQQxiItlQ+gVAZT4xkFABdue3a46y3qVaQK0TKJolUVVx5ZADqoVSGpUUcEdsnPSwkolGoN6UyIoqCbj0/C/h+mpvbuUSUadA7FHdCJzlUmxYh7CDSdkAAUTSKgJ9CQZzj1LcaOD+avjp/1eEzATed5E3H+jnRHROgVLgyinTrTUJUDhOgY4lRRaKLMnA+i9OTBH31JM2SDE+HaeBzxGGSB9vbrb7h33r4N4O9OwIr23Ef81YWq7ap9HK+Pl/IxaY/vXO0B5zerOsXr6+efv3RycV2O69DesdKVpaXv/z0z5Tsn3/2DFgC7GJTdRBkPrGUVoEhT7IH7+4/fPDRAwvo7vBBxoZP7h/4cV2plz26FKQEfLvYnEmDebR7VW7ZpJfhq8glKaV5CFIvphgR3ijdYBific3J/NVgtFkufnl55j77VHIylRtweHgM2H4yPTqYxO31xd29PWUM5kNR1E+OIfW+EHzdOUvBqrn6XN+STYkXF+7i2QKVQXnNrUoIz1qRZcBHCM8e3gkmA0CdRwAEdLTztFyFfVdDGZ2enm7V9RfnlyDPXt6sX7780/LtV95qO00G04fO0P6bX//abJhNgVXtshGEkn2iWta+TswihmXsL5inj3emqaRQ+zSN3h/kvzsffduNP54e2FYOyH6E7yoYA4pE2ejaAA7F+nJAII29enmRKhlbvrpaUCdPF3N46/q3FvKxrjvX10qvOWfAWExfsuAXg8GmUzXGH41i5YGw7zgZqAqsvHCnqarMz5Ab9AYX8tKQEuOx0+N1XYOYeOGSkk5s/AjfTbLYEd11VPcJC/O+8ZDJIQqQn3SAd6JFbqkRMMhyz2+ayjIZDnZJOIThVhQlUOnR3Z3WzQ3OWq1ouiGBZt2gEalSg7rFJh/0QickxThuVQkJZbVSXIHIS2RelpoRhTxdi7rXlpEcukC02veQ1SXWw66mWnvRwUF/vWGEG2WcBaq+ZaSHrl6tzqkPMcOy7SMagjwlJ0tJAUqI1L1PoLKW+rFeLIODQRHBVDFdSJQOVRbEQut1zXKESMusBZg4K1y1Mlg7TPu6BL5mtqY5MasGSCYvezql7tWNqJro6R18IT1Nmqc5WBbYWULIYlOm4x2pVJJ6or7hYO3NRG0rLjUIXC2a1a0C4R7qqM32HRmXVIi6CKdxaPY15JTLni/nS/Hq7cn5Erx6DZu5iYJdujfzhk+B/bXFDbvdnFxtbztDl5uyXJu0DzarIkHR2O+QbWb03r1gd8D29kJnthVWMwpn60s8jR9QvJ0Og8Ex+/hXHv/au7/y64fv/dbO9MMo+nAyfXpE0uj0/k6Dbjb3wuE0Fdlolgf3AnRFFP6V4f/m5lUp8LKpy9P54ntv3v5///h7P3zz+f/tv/uvzs/N6mYT+nUaxYPRnZtSpGMu5/Lbdz7YSQ8i+oQI/hd+7f7f+ht/6fjJI5Zux/ujg/1fD/juJE338N475BvfffLR04PHZ33/R2en/+xffe/JePxr7x+HbiuX0e//i588e/ts15uaZ/YuG+B19352xJPWQEFJN4l7si0OeJ44nQfE45HjngGcKY9AVIkVI90BsYHf9ep6teriMUfJ3ICG0GY69FyfdsVx1ydagxTOAosouYK4idmEodskuIb6ejQgDCWgz5glB5kXaDwMGXYXPhj44FHAY+byoBtGJkc99tEgxPdgdxiY/cgOZSsoKCOvolhTL1OAB8FAVA50peczx2CrGg/DMeem3CaU+E1HVA+QK7btn/2jPyNvRILTlggJmIGxc7li+a0VYUCb5bVOMDYOtvT+ZPJ4F7x/FGS+U4iWeLK93t5sCzchOh4ummnNkKOVV8/2zaMoylaeE7vjkhsntVe6vOlRMFR+r/fc8LsP7/z6B9t1P4j3l86S+h5o97pq5sFvbG5zoG+94DmyRWUZGeJF84rz4XZt1uut7IIoCSXqFF0HadZLYlALjNct/SwwUVIRXEC8inwQklFftuPYc2VYNynzvaaKbH+olekV6UQuSR2TRnWtUj6EecgzjztHN96k682g7wfp0JPwCy/syzKxcIZyUG2vwqTWfdb3Qxx4tQyAN6pAoShCEdWuxyYwdZ0wrAsSckcwDFSrICRGO4QBBFrpFnOL4b5orZYG25HrRz5Z+vRiu2JB3paVaVrKICB+l0TZbd0SLlnnrS9anEMcyNZASh4d7GqI1znxgjBom8IL8t7xN5fX3/idD+LjyshrJ6Tvke3G1JXSsuEwmgwTQvh3v/NdoNWfvfmjZIS4P1xeqd6cJyNP9JtedZQEWbLDSNzXbRx6LYbGdVpWuwc7lMWys3/hr3xnNkC2CYTa3jscXtNb1UQ5G33x4jlDOkQpsNfaVeFopNB2kI5ADWxNCdo1bm6UHI/H88Wiri3zuB8D2WWpP1pXzxx/SeR1GHzUle0c4cnkIfW/NxndO3s7n812o2AsFBPoejQuLq72+m5vPxyL1ojE0mTD1RVPzqz1NJLnixVP0e5s2Ijn20UPjb336JvFumrbdS+XhJCm3nJ/4wWTO/fHN+eXfrDz5vWLfORfX9C3L+ffuvfoqkDj6R6DG1uWH3/nu8urk6O4u9hUP31+9eQDzcwXeV5StOF4rJDjg4ir7s7u/tap0KuO7PG38g/2idtLH9ly1ydTL0AazAk1gEviLWP/2GxMV/lp6gGpb8+aSYS94JndTFqtCFv0UnAfQ7z14NgB3fdASQmZaeoR4rZqG6XT2nwe8HS1vg2HLbaxMRNtpBeM1u2lUEHgcY9GGOTaVixaDSLQVBBB6fm+UcxaqZTgHHs+7qXinHeiGeWD6/ki5FEcxVIjgpmhwjiNKQGYJemwKkTXgGCQUj6BsJFG8YCuNsvBaCqkBW7YN68QIYwgzAgB1mlprFHCeWkgtDLaGmPiJKov1+HIX6+ubOfFEeGBK8vzIOZRMFQ9rraYeot0OuKU1VUZBrF1VmlgOkWBBJYgGDBKRO8IVQAKAxWB1BU12Ulc5JHbwlorQmoutt7RSGx0FGXteksJBw4gRBDjxNFys4UEkyCeX96OxoP1ehVnO+VmQxFs29aLY2MBJqjqasyghg5LNQ6jstkaYohxOQ02xTrOuLRdkvp9W3Put21PWSyE0U0bwtgFuN4WqulGs73Feh06GIViebmIBox0uG1uSVDHg7hbk7rzL9qb4vj08u1PjqfvDiJvvbquCzOYT8+XFzTdhD6Eaye3SjKxMGchUtOMTXYGixv49M6d69UpG9hRK4prb3OzvvcUUi59igbZmPPfkYp7RBCaj3dnD+4ShJr19nh3/47F8PT0NPVJXZuD7GskwM/e/nAymoXdu+9+JF9frGdfOx7OBpEc+s0RaN/enw6UAR45avTZD398+3ee/h9evPxvv/jFy//0b/+dr0yj0mSltleLK2vQk6ejwztJRL9WN5vvfGMwm448Xhwd0cgbv/PgEAnJ4cFnV7/84otnuGn/+u9+4/402R0e/v6L6gc/+fOmqf7u3/7PPv/TH+VJToRJGL+5uMzT3Uf7d9t5o8ExQ6Bu57tHmZSgrwuOfCnXgRebJkcuMUozigI0Bcqm46irrmPySCkShlccxr2mCOk8jzjxtre6b/gwPXKY1H3jMdo1lqIBARMKt0Iug1BTlsk+quoWeQXxFxx5QiiHte5Tzn1CWN+JXjT/HisQRMb+t7ryxOfDPJleXP48jiYRy26WnxF/nIRDITulVBRRi5RDHfF4B9tRlp4a3Sj9/J//+OPf+8uz3RAjFXQIWAkssbrLsCeLepgMSgfDwPpxQD1IcUAcctpwA6pSnP/8FyPUj3wkaI1COgp8zkhJsFag76ihpXalkYgQBz1Zdf6IQ903lgfhUcokO7j++PRnz7wQN+06zkGre+pvsb0F6P4k/YtN8ZZ4X6nuYRiE1N/KynKaWB3a9o6Wl7ILGnU+3tm9Ou2DRHnR1tlh1204mUEDEG2Fe7uT369WEDqSjYw014wrhF0UO06x7DtCQFUXECtEeuVqhqnTwliFUWJB46BqG2ptQjjy6QKwdVlrBo9N7yjDwJVal5BAYFHTVPkgdEaHATFSJmnQdS2jQS8lAcDvm84PPWcMgcgA5YBkPvDlNbQ6ojU0oDdYEVuB9rJeURKFvRWyRm4zmx3VfVnLcuCPNMcINjH3gfMyT7V8rRkVLj7eOf7ixfPRzqSWtGvx8Z3DwzsjA29UabDKIdfbtQVm5lE3CEY7jw46WJh+dH79g6ePv3l+Nr9zH1xfrrX64Hr5C0qB0jSMoihMz08uPN8PfRriQSHeQuvev/94Ne8dEY8PRqqZtxO0mxy9OT8hY+LPzMnrG5L7Ppu9Xj53zMZB3F3XZAp7V+8dHQsuQ+9N13UOBXHGi14Mdz2yyYsKPH1neLOYf/pMfPz1bzx79jMrwbvv3Q1CCnH6l37nrz//xTOHkedHhPkHx2kp60j93uvVGZVukNu2XxpvP/befTBrt6JdLS6+evnLx8cfrVdKNaTaLCnENNi9Wb6+WZxR7GmtNVil6XBxrpweIifTzHo8Xs03nIEXn30S+YngV33bnl5O7t79xjCIqTm7ezi+OMs80oX9K3L9wuByEw6N95j74wBqjmejHPz4k3/VO3A/iT6E/n1qJhHOCAvIOso15qFSB0gN+67sq3l8p1W3jnFggXYb6PRSOk9ezpBVFswpTLUrISbOxj24tSrR+EJjQ9HY0jUPsDWxl2hEJst1NRrutPLCSEpJb9BVOEqvLsqjXbxZ9+uinExz2SPTDhknxrxO4h3oAka8uhFpNFFaeH7atBvIdBT6wJmAMz/gFtggCqUsA28iRAEBG0wmRX3iIGUBArgUwDqCMSSUBwA3LAw31TmVRhkVRAExBBACMRK9RghSAKnnGwmBEZEXAwCIjyFDUJIg0ACaeiMjbyyFgD68vjlNoxhDZGTFSIghIIQoIRj1/SjqN1zpXvdtGBCLe8J9LTkwVNatiXjgeUADkweI0tACk/hGC2sNjgK73HJGgIFCyABTwP3by5cPPvpafVX4fij6HgJqDcBAWmM451Y5HjGjlOcTBRxa9naaImDFm9MkijtOpTXEQuLtdFWRxGFdFJBrhBX2XdvVGR2ulaIWwW1VQp3EJDrr5ZhDRKQsEpj3GgPhiOcoBuvWfiouV1KAkt/bP26w+Hx5thccbk+a0jzXsp0NBqPh7o0Br7dvfM8GEXY9YaC9LV64IPU9GyVkIRXoB1y73/7urz3++KBvwe6O15XN4nzAs5aAKh0PDQwOR7+12Sz3UyD1uC/3Mvzns2R2uvlRkFZVFefJOAx73zdFknlmdeTtl/36tv+pn+D3HkOfj5Xy1pwiStC4fPnlH65Obv6Tv/YbYvnlj79P3n1Km/lVuvN+3cwPB48jOZrmM+bHyvQ7s8ef/OTNO+/8hTjZYF0TNNpeb7oNPZru/qVfib/x5M6Mf/QH/+onF5sLOIgejaZvf/QpKIWommEwGPmpUmqAA2L9w6PZan7u8SCfTG7XRZD6PkUMBshrIo8GaCqlxLiBYKgFSfISwrit9+mASvhykGVN6ThZDbJ7Emw7s4gHE6S5FtKLhE7Pc/642vZ+vMRs4aq0q6YhMb3qLVwB1of+GKhYGdBVle9zLyR93xpgCIXGWACs1cZh1nVX2Rhia9aLizSJZK/nm2WaDwTeYM6wk37AIObGeBCMykICntara5o4IZqsq37+R3/43cd/m4VMKWERREYYixWDt2U5Go7fbudTSMPYM8KFUeQ0pBB5hBRlORxE4zQnXBdKaC0ZYp2sNdHr/szaNKIRd6wRyjIJAyPBtmnydJj4wbRn3LvH6MP75ByJzecCLlUP44xXVS9aPxtJQ85l3XnkA9n4YSIbedV2nkdnxnYavUBgt6+5H+q22+4f3p2Xn4VDs11J148AMB5Xq+W5EcgKz8LOoduAhELXcYKVvQEAAZBZBQnPHFp7jDpojdPOYgipM1AJIhpfuBd7O0LPu04GvjcoSxkH095Jp2sWYGctsI4zDxjijEVOKmMwolp1hBAhG0IIQY4AqxGACEBrHYDQOkc5A9rWeiz4xhhozTnECyJTVE08ufay3dadlKIYR3e2ZVh1XTLb2bZGlqlMVxIWHR/60X7IU+QahsKTdcUHk1IKC2wc+hAitSwcUKHvY4wrUfAEjncHoh3KUg/zybq9XszLA/CBj3fuHF1i/3o8rOfzZZD1HBEl1GpdUxadn716+uSJFk1HrGL5MEnf+/rHz798ff/w8ODe/fmNo0XMlJr6hvpx37ENc1fqlTXnkTM7u/s//OTFdHe0lvr+bDdGXtA64EXL1dVH3zhohQjDe20zbMhtlLQHs+NfPv9hPBzNr/xBtOt55ic//mcf4r/28COyd3inbV+cvr3GfgRI4yfCwzvdyn7nu+9uyut2ae/sf4tEbrO+GE8eDkiRpXjvaA9RtK3X29V6lj5oV82L+RdaE4qZNV2WZeslhzZSfXVxeTYe+Hfu3X/x4hej0W4AdyloQlY9O/lZv+aT6bgC1mLuuRFUCMU60W2S3L65/tMHd7/pm5nHNPEc8Lhr3m7I3dc3Z0MfsCu1f3jvKLuXOMIVn4yGPo8siPyAYLJSTR+yA1Mn1frfeFFcVDHtdcanxVaS6paFTHU7yimIeK+M78VNSRBfWj1CREh0hT1d1V9zdtiAL5iOqYcbeUuQx+NC6TnG+e1cJ9Gvd9VpGBDjWidpW0rGKoQgxzCInBa1sZZwhD0p2sYAx4NeKephb7upmedprbUzSglMGIQ+wQpRDJxTxjCPBQkHoEPQ1I1K0h3VKWCxEYJSjAkwQejxSClNEAYIWOAc97jvg0YoIzkj0jjbCkhd0zWRl1IEmrosimJnNunrqtpWVoIsndR1U2+K0ELOvfVyRQjhhEKjlF1g7Kne+SxFCAPrpFpi5mwLXMAAxqDtBQHOKm4QDEgnusCjwGrOuRSSEr/rRYBIua729w/79RYjphwSvUmTwWrb5BHqrQwGAytcWdVKqfFsQJg2DiOExHbDIo6GgVdLuyjCo72+kAhzAAkhRGsVBEFvOuoxwGOvL2vdBsrtHOy1uodShslYF46hsC+Lvo+yKJEw7useYCfDn84eoZ+8KaM6i/yItDrK905b7ceKk7Dt9LZeuBD4SctxhLa0NSs6GARRkCbTi7MLGngc9JPDyV/+q+/6A7/rqYKjSBMoqtha7hBHB249VgAXTRnlY+NInAWr5mUy/fz165u7737jD/7gDz547y9Nhh+V9W0A7+/dUrzDVPxVNz/fIbsnQk+O/6IVYL6pdz9czq+zuh3eqPa3/9ZfOZhM/pf/8V/8x79z9+TNy1n+qz/58c/Oy5/9B//rv4tgVnVn2x41VXZ62gmwmu7dLxbEdHcpjrrtj791gO07B4/u3Xl3+rU3p90n5y+phk5DX1mxup3ko9pHgyAul+sgS2xbelFOkcGkphTKXgHNurJPKGEonaQH1hUe3xaLF5k/8L0DVZ05F4f+uPcLCIv9ydO+wBD1aUL6fqkBDoJD1VcoeOk7v1rtIP894AkDFwTEVmWEyTTrg4BXZegHxo8JIdQoYFTtx6XPPYhHSimIHOccQEAJAgBBgJMkQ9bVbRFEftui2c7w/PwEIo/CTDTIOe57uG4lQh0PcFGv8+RoixvZXhvRc+sufvrV5rPb0eN7xu8lkNjZkMXWAUdYa826qTjgvVYIWAyIVRAiDgDwKT384F5P+qJekh55hCoMnAITGFzbYRzaOOQIYBuvMfIdmBm2KZy2cpvi1OmWBGDy9E7zCn55+r1ZqptS+JLKxkdm1MmmE2eYRRh6BtSiTTrhAdQA1Ko+FtgBdOYA08ZDzip37ZHdfhuJ7jL1BWOG4sT2u5xqC7bUs6oPEC6BBNRNutpAQBVzANTaLeM02WxK3x8y6FXb3vd5GID1eu37MyD2V9cQgYHHLMaOcyxVB/HKuB64xCnC/AFxnrI2Dn3sLKGkayUhpO97iom1NgxDAkzn+RgiixxywFqHeZippo3Yl8w5VSHR+pZPeuI6dFUOXzWVPN7ZFcDwhL05v4aUUIbGd+5V2bWyxA/gOJedvNaGVki2ZAl0biRSPdvZ3S+bLSZomA23qxKhVLsr6/D0iBnVOuAFQY+cHzIM8UwLmqRWapqGH/v0drZz6Ox7SpRtu/ri+WdhnIr+7r3DuyH1kXl1fbnz8M4HB2G+hvprB48iETYqSMK8KOSMfVch/ebqJ17kDybTNy8uh4eHm1ZGBI+pGbne0xbSVHrDZnV2sP+1y7f2V77ztZ/84k9uVq/9INsb3W9qCc3o6fvjP//jX+xmd+++x14t/vDVGc9mv+ZhSsnsztHXbJMZnTCUAmKyw/12NU/pXX84butVzk+GUbQqcRYdhEzlqVfJqmmDB3cfdOvao+HDp4Vs/SzabWq5Wq3iGC1X18vNK5IvDqJ3q8Z98PGT87Nb6gvTCgL8q09Duu8mwypkV/VcBwezdbX0rbuK4LpH8QJP3pkST7NQJAZka38NR03zcnHzeSInH+/+pY/v7NGm3yzuf/yN+ywKu0YSypwt2+bW9NC0IeJv1OZQd6x3c9eCYOB69Sr3GGQnutnX1jg0Bx6E/B4Nexwsq+WYuT1NV04nympLTqFDgDQYImCYM0kQTDZ10fdRNiyK/l9QfQiNh0BiFfW8wg+tks6n+7ojCHLoVJIkbVs7F8qORX4GQy2ETuKoE9JhEEfReq1Gw0nX1X6oO6Cvrk5mB7PNtkM0YTwoV0q2NRvHqm8ptNjxhO9DxUmyMQ4LaxDnwEoDiaEUUK9ZLVzEIGVdU2Wj4Xa9BJxTHDt044Dy+UjWESde220ODvcA7SwgGGDkiOq1cTYKqFNqOZ9bzcfT1BLZiysjAFZx15EYDnja2a4HmBjiUNEjTjXHtuxRCFHoqboGAGitATQYYwARMNYPgqpuCWBdJ3Z2hqvNktOQQSMgrNcrykPVtb7vOyWk1kgrFWLKGSe4NconhISeAk64a99nzkmpWiAJJZFoSJSn1hlwtgzujHme02WnY6r2Y1aqpt8yHPRVg5kxqhQ6iyyPM0Nk+vL1L9quFq0h05GQ5mL+58RbapiQPOrioeqdWa0n0htO4xVZhXKvs4j0rhYnNLPv3v9gnE1Hd2fsJukW8Xa72JmEcPlw8dVb5V711w+HO2pr3rLcGyT3rKNepFFg6o2eJf/Z2vt5PPayWXj0aHB7ezvbHV/fvrwUcg/c+/X9X/9+88mbzeW2eX1M/uJPfzn/9u/utcXdoVd/+sWPP3jn3uHO8T/+H378t//G/yqiiZC719tz/67P54eL1nvzxQ9HqbuevwWg/6Ovzv7j/+g/t4tw/vrNTh7/9OfPzfqXIdmOo8OB//jTt+7v/+M/uFzdmO02BXxCvB0e61qnJEiCGErrhSEzNIyNM3AUfkRhLHVxdydtG8Xja1EXVTWkaIfRkuGHrn/Ut2OEwiiabqtlGGTY3BV9Bdm2qtrQHVmtsbfyfWyqoZP3gLfl8a0lQHYzYh4h4LTuIeyCGEtVYUqsGFtHK73mniEu8GluVSva2qMsCgNrjVHa930IMYJIG1KUzWR6IDupJFwuVBjsIowQNlrhvm+JMaqXhAec+Iz6xFplCZe565i0efWq+vk/+Nff/Dt0cC/TThCMQd17hIWI414nBkIvLZuGAEexFFpx30KsgxAbz++EoibKPOxBLI0GxnGA43yY+ZYYoqQOwlw70jVAWgJI25YVAXGcBdLV2d6dm+oCA7FtHTB6cVsGHk2mtqmC3P8VQuai1XFMpUCem/ihcbZntCWMQEi7vmA0w4idnT/bGb8PdYbgUpo6oHnXNHk66PoSQaRkpzSmJG6t6BtLocc5l6ohBEndrddFmgybRvddMRzvGGPmi9sojrOUb96Y0Euk21CCs2BnfnMaxZ3WFiEoZKtUh2CilOk75ceBaHvmRVpbz/OklAhBozTikGgnCefOagiQMxBiDhg3vW7wkaW9Dq5R5zx8BLqiLRRcfzN/VL9904XhpBZFDbZ7e4+lZ6+bNwIYHdCq8Wo/BrQjsFWVCvmxRBerucyGj5sCIT9hKbos534erxZaAhvHO3lCnj37SjX+3k6kes7YeN1Xdx6M/WTLyOPVbfn44FBsd2R3hpD48ssf3D0+CtOMUf/O/v2D2d78Vox2Dh4/+tWyfDU63p/cPUZezHBT3ZIWdJ6vLCU2GAvbVe5NCV6/iw/eFpt0POoZPS+2kwPEHQohVHnSyOvpzmRdv0nSYRJKoWtEt42cfPe7v/1P/+i//+zLH/7m/+5vXF1dPnnyWz/97LPTt/c/ev8RH31zu7htyDbgo4uTergPsjxuNs+kKE3QmOCiKEps42DiqkYD1/Zmsa3rw/071xfXjOFgyi+271i1ynNJcJ+NfYMqclqJcnC5WlVr9ejhh8VGWFhG0y5h8dXrEsVRGun11cXSO4ADs339an82Wa8ac9E0tR88vtewGi6brN/tqf9SlpU4S0i8+SV9Oht+/CAYtHu+HQy/ywjerlabTpmd3YESvW4GDHKhN+Y6jkZF2wmqoEFCdpzpiUDXuB1KSSmZCXATR0FfJBCwvtqx3ucOCmQe6x7wZCHdNiAzaP2+XULtDSfg6vI183GaxE1x3Dfd0T2yuBFQgyDqozhALmnaNoqZsWsLJQ1wI295hI2S3INaa20xQBgi2ssuivy+7zFhvXSURMYWSklGPQeRBQBjCIgrt/O9vT0AoOhEkiSA46pYpGmKeKArYRG2FIPOEsoMxc4C2cn8YNgty4AHABPEAfQIaJ2BexQXhi6pv3ZSMosIGdRbG6VQKaWV6bRI85xi9+/jZf0Gh0MnSF9ZQHjgBdDrISgR5C4JjVAAAC+OMSamqAGElDAgjJQ9sTCOIttpFnmyqMPA6+oq8Pz1vAh8DgHQSmWZJ/sSOFgUWwjLyXDHGCd7ZZy1ZU12E4Bjd7OOqF87GfvU9r2HfYqoA7CXgjMijEDQUUQ2841SYuJ5UrjTq4vDd+8ZgPtCYnLt7GEAY5zydvuiAYOBNzUWv3lj1yWeTB71tHq7OhmMOFUFbc2E/2oxf667NQuCSlmPjzcqvdnOZ/4SYJbn0b3D6Z2nHwzgE7uJkEvXReXFm934INS8Kl+o1Yb73tXyF1evdwcHM4wg3TFFL8b5w0qsd3Z7z6oPH3yzL8O/+Xv/x6Z9pjgMveBt9ZM03Bl/fb/yi3w5jHrYHTZN8fnv/cX7Ecx3H+9enn+5++TJ3ezBV5/94DfeCw/Izlm/GO+OSlu+9/Th3s7JybO/fzd7YFb4gASLxeLdPTOLf/rmWbs+ITDFm+t/fmeY+/Fxd5H86OrLf/Bnf7paz2cExTzZJekA+gkJOPMZYx6hjomEx0SKzWozG8+MboEFWRCpQobMGwzuLdRVW5yFw6EwV9nIV+LM2K8yf6dvQ59yZ5eIXhGSbQpMg1K5CeXGoVCVsc+wxS97LaB76BOq9Osgp07saR0aeI0hbMsgzj1jFcTGdpoyCEBDaSNU6YGRcwY6BKxDiBLCuq5D0EIu4+F2ve0JHDFPZNnO1XmbDjSkwveCvhNaSp+HztKm7TySLNdnSq+GEVUcbLR0m+rzf/3Pjz6aTe7/DiAOcVKvG+OjRikgFcWIeklddlaLGrXSKelUHMcB82wjU0tRMGqANEomFhLPa4DGriFox6leCOHItLWFAEuPBaZDzE9qSXRlaByeL2+lEwEbS4KNWEXMAmiUdNZ1ZX2DtMSw9rxQ2q1xuWiOetGleeNcZtUYGBwGye31OotnAN8AWhNhnPG7BlpdQ1ZiytpqBEFs7VaLWKseolWahwCATVsHOMdobIzclkUYUB5Yoc6s40FIe6nrapukEHvzhPddw64uthSmCAhkdxhvlRKI9JBAq3AnlBexTiiIDcLMOuCHkew7A4zsWoIxBRZYByEExlniU2e0wy42UdcrhJnzhVK1RNfSu+gDK7u7zpAgjNfFyXDs9+hGEp9mceft0fgGosqWMEjjHpRrs61A0BaAB3E6igRAN8WWU5RPY2maTt0kScCpvDlZtaueMSSUj3ln5WzvLhJdD9FQmJvhDqIgxymAFhKEOfc/uvctAwmng4f3HqRhROv7yd4TL4hlGT8++CDikUVWahXlrulsX3WXxY2Tcwy67vby3en9cMpjEWTAX16vnj55N0SEJfiquTwa+N0cz29NnPAowAf7/mq1rdcd4ZEwi8wbf/3r7/6bH/0Pv/7d//ynP+F3d3curn7y3tPUGCPNzXgXF9vrw/szR9fb5TPtvHQAHe6AOKKBo6yuCwHh8u7hk7PTqzwKEBTElx5JsAnHY729jac7vJAvL1enbUXT/G4FVvvw6eq2PqObpnfTw4dJHmFbsUhG07fN2ywld869DfA9r6M7Pm3qxWb9KvaqhDdVea1ZKtqC8gbSfvde+m/+4b8OrP613SfxChPsTWdHoVOGrAzmIZ1giNt+4bRpJBVK+g4ajCnrrJQaMWmviYFd+4QHzxH0oLckIHeO1eo1snut6OPkiAZCbyHG2Agf6KGCxpiWYBxE0XLZAjDOh2Czfs3RnUHsi2rK+W00Im2Ny61h3pWfWMpjoMe9FJBArcxgkCulGPK3ZYVjFXqRViBKwjgOymbDfA8iAm3Q95WSYLI721YL5nHiQWWrdERxRnXdlG03TWNgKgWWKMbGZtYo6lGEgRbSC5lkSHcCWgcIbPsmT2NdloRD6YwUVvElpQh0BLPEtgVAYFMuICKWxVIKqyDCWGpjLbQ9oJCzaCRrI0zPfIIpgERywpVy/bZ2RyOwrJh2etfH0umbAh+MDARAK0gxQRBxbjuJEDFOWyn8zFssbpNoaoTarpZJFErR9ZXwYpbktNxsETTL9XownsRxXsPSa1TTNNrnaTZqf/ElH2J0ZwKusLMAEseCGGGHsOLMOLXS8zZ+eKC35Xpe4dkAIlBd38ajI6y9VvUp5wr6TgEUGQdEWZkBvw1z8WrdBZwR6JkNLbvh7sHX6821j3XQUKC9si9q2PpNt7PLHuyywc794913d4YPXR/MTwqf+swhqEF/dRR7AmzF1c+orzNtTp//6OJXv/FByEDq+z/701d333l0JV7EkzCKd0yDtOpHU5/xslzLoX/n8nK5P7l//9vvyFXXXpFx/kjyzjTRenH98cP/8Pn521dvr65OloBebct9p98Lss3b1Qny7Dgad3iM38ZsO/2V2X1kKv/uKhq998WX6vjON0RJDnce3dljnK7f++D3THWU7s6+9wc//f3/6d9KWH/n0QwsGwwnT6L4ar1IZgNddBnxm6bxAD5KRk3TQouh1lHSUuCwToBmBGvUpiHOszEeDNKL886Z0KeYhR5yyyiXXUdDeoTQrTEXg/ARpDssXF1fljvTXPVbLRHhPM6Si+vbWXDYVXskoISXmFUBoAgknmeMFBrPKaZRuCf6tOsqxQxno4B3fW9VKwFAGHACuZI1ZSDEQ9GXwySXPVBE9v35aBxCNnf6yDoEHIVIMaq1qY2de1Qu+s3eMN1WFzWsttVyOhxU1+rsRz9/8hd+I76TYKKR51UQCYyUkGHqK91o2fR1A53nGLROjPMUW+n6ImAxobhqBKGAE+J5DADb3hoDECOWeJ1A61r2HMcenWFSI4I2N0tV2Qnblbq487XpvJmtT06289WdiWcErkuSTw2Hc66mGMVOphQq6vXWnRG8iLLUCbYo3yZRVta3yjQxHVKomm1JwI6Xt30JIn9P9LfM01ptKJ0YO+jNCcSW4NSqpG2F7IXnOcokdFQbba0m2CHsrAEAIcZ9BDvdQ+wdt21jQe0FdVOvrGWY5oSgvhOEEwsQpT4hsO56L/ApY1ZrbW3qexBIp4ExmkDkKSUQJgA6CxT1SL+tHVYwlH0/x5ZAB7r2DAo8Ygfh5PW6qZFf9mBhMV0XBMgtnqCgz6W+WM8Vz4eSdE7OYWAsHV1di8aGR/enC3m5rjZa43x8pNu+7zaE4oBNby8vf/njs92dO8FusL5WNKxHE+Dkvhds0ixQYp+RHhiy7F9xBs7PzobZZG/n/qbsdna8IIg2mzWmB7M7h69PriwP0nzofE+gcuOaXgyCndmL578UWAseLm+bbHS3Wa1vXi0ns8mLN8+nx3m6A/0EqbYfx7tSlUW1lXL98J2hMhIikebCwu1XFxfHw7sD/0ETm9cvPn15/fODh7um6z84/ObNKcwTMBrTi4ur/f0H22oL1HBM0FtxplbZ8egoHddLcWMsThm1LDXG7e6MCfWJF0E9U0oB50J+fngwm59tkb6fRbPpTL9+9dmQZBu49CO0aX9+u5J7D/7G7fV0d2xIuE7QgyZFWZAPeVjNVyL3r5s367fPpUEmHP/0xLx/dPjN+5Nq9XmtzPjOe89/fv7//if/8u/+5u8+kXsTOTt6GFF2lprj+SakYe/xVVGQbsk5N22/COMgc8OvFqcRYqatred0R23TeLtvbS1JeNXLEJGoqpS2hrMLH3vABMRGwp4m8bARZRi3osYQNx6bkfAEqyTyxm3ZU7Cf5dAZ35BX9dz6QZ7luBPLru5iNiEo1sB4Hima7WiStmKbJVmxKjAlQeJ3rcDAwxQL3TKfLlfbg8l0e3mJSY2p1UpQ4mkbABMZ3aXp/dXltR+x0WQAKGh7nQ2OVM8ANdBoBKkxUouGJxxDaEUfhqGWMssyLYyDGlKIKWWEFd0mCZMoCduqc5AY21tgAo/0usGMhKFPgvT87Hw2mmBq2k3vzchqteKcx4OhlrLarj3Pc9BqEkQSac+HCLlSOAsVQ9xhC4FzEEIAIdRd54xxDvtBoKqqWq/zJFWd0rLnjPRda6EfBqmBUojWD7joWp9xgqkxwAfYYCgoZgrIq6VEkE0Hom5MX0OCCKJpnnRdx6ivlOhLlaUDaVtZNUGWeklk6sIfJaJoAZwIVYLA1I3nkUMcRkJ1dS0bo5bLE8+Li62ssW81vBNV5eaTWi7vPR2t6rbbnBwM9XsP3vXJ4Mn7h8o+jTEk6Xi54kEBda2Sd0Zvf/iVA1GerMrlGi5zU72N/PH123uP75hxUi/mGrP07LN6PEA0SY0XnVxcTvYHKOq2/YLraRi/u1l/hTz9zsO/Pm7YD07/nZflpyefP9r/oNaTg6f4Ry9++tUnF3u7lR+8jv19JMVkxLe1B9gXDz/4cP6VP4r5bHqqFUhHD0i4F6WTF8/+1ZP3/6qWlMTt3cfHV6frNHxKXNXr7MVPT3/y7DY/AA96b1ANbDiBYk1KenR0Z1FV+0EWYcZ9ONw/6lfbUXLXgqZqK+v2MIsoc0pVvpfYnslN6g8gM1EI7zPDmKdkA1WjKU8AOcdM9kUaxk66yzQaFl1EeRuE9OraDuMjA0oAEOOcBRtYt8YG2GJrEwTirtcEOs8DdT2Wig3G3MAFgZIQNBiTzUnle5GDvCpbC1ySJL7vEwoQULr3W9UQ4gGZUS8AToky9gf9Zt1Y21CiRS8ZGyR+jKjAqQI1KpbepXNHk/sXp8+HO3cuf/mi+PTtLH+sUBfwTDYygrQSasjTy23pVNs3G4+mBDNpjUewbBuJuiL0EcFy0yVp0CJtiCbCRDEHco1R4vMD4HUUQI4CALc2aMqy8r1uiny5epONEu995bH98g9eqKaVCkTc3zQv3XL//s67WlwyFiyL1zzwKXNaVsCOTHtQFK8RDiBgCPhh0Cgz140feTEinRSeMoUFmJNpV4owBXV/bSzxMaaUAciqUjet8/iIQL/v+5AaY3DXOIxxGEcAG6VbL7RilUI0b/pLJTjBiULSp4FsLBveOtxJIzkaWe17XsZpU/ZlMPAAAU3VGqMRVgQb65SzhgDoIAaYAmcdxQRIwKCvDO6cDaNDojddvbJu5A1g566BHrN+23Vu1XGAB8tyPj4axB1EDVdkW6zWWNQ084gForGOOiS90UGiS3x9vmaeGu9MF9ctzePS4Tygf/Bvf/bZz376jQ8fBeP69OYU0+FOngOXXM7PHr4zhrCjBiBjIezePhd+GOSzX5X65N7Dpz/+sz/ZHZhmsR2EXnR3Ui9vU8ACXpjuNbb3t7enu3SvqV7VN66fdzBn5vok1MV2u0RLmz7czbw4TyY4DFdG5b7XVeWDo3ufnIiiQflg9Or1TZ6Ho+HuZtU7FCbyzaq8kTHanqod7n/xL//no3sfff3Xf7XclMlRiEFAzf3p8XC9Osn43sbEDr8Z+lboolLLPMu6lSI46BRvVuu9vcOqnjf9bcIaP3QB8LSCtjqULhXunMXzaP3167c/PJpky8tEeMHRcfbpp78IALx8+aPjx3euywhHT32dTI+8ADAptVWqumle324H8dHLL35/mh88mvkJePX27JWR6un9d1/+21/+0z/953/zw/d/I3kaLtKDxylhSjR+79eeaoAyrRaM+mEQXF9sZrNBW19cNVUgLfakMNwDqAUbNpwqUdTNofa/8Hgou32DrrBft7Jj3oUh0eXGxNEBxKnoWx74OECyZTTuu3qHg2OEFgBVw/G4KiogRj1ykcUDzJqqtSaPs13RlyHkOBZaUqVXgPjQpq3C2vbM+cQa27TJQV7JgitvU6DR3iPd1tLCweQoWBc96jTAUHZ0OkCrsGgXg8xvAqACBGuJIMKejxsLXFP7IveC3kpiEGAeE6bOqFzVgz7UkBikESZtRYc5BwMZnnsa8g4gir2I+lV1RQLrcdq1UEYsSpLy6sonlrr+8vYsf3Boipp4HDAPKNSWiiQDGvjVxU1wTAAQdbPOaCS62tvbQedCEk2CEJ6sUETc3Zn48m0YJQjB5nptqY0PD0DTNfPLpq6jyRB5nPay6jrfOB8YmTPfwjYCHVMBok3fk3XEifEDtJ6LbJIAsJGVi3wAd4ft9VJaEgpitXJCmYg6cBPKcOGzcZZ0db3q2tyiHlRlywgAJHS8vNkIN8TpYomuFq8HCfp29FsvyhezBC2X3f5hFgz9RuhfDXfvjjk/SOPoN/ZnH+mtzqfHstLQG1DmdRdXmYkvXzsIpmAZzk+9Hb7Si6RfA1s5rMaFuh1OdvF2ijdstL/zi8/eDCFkizdxdfj2y4vRb3ld2W1vlu9//cEXJ1eeP5y/VnenR9c/+/4fPn8D621TNkvRkHdX52dnu3tHt+ufTfl93+Y4/N1o7CtzGeBjhNNwsg+lSmPv3b/w4S8+eX00jubR1den77247nX5IHwQnL5dTh96c7bAbeTt3r35ybMXn/7sJz/7h3dTQMheedr6jo7ToeAxbra0N7s8HiaJXJQBDLkYQG/Wl5m22yAOtMLOzLQoRhOzWJ4dZh9vylUYPb682TKv9oKo3djJOBf5BtotVCPZrVnUxvG91aav5a0fQOK8vvKTIRbo2rjaV9FBDooO8Yjq3ke4xkxYYb0U1usAhH656ncGcbVZQxYFDGQRXry+wOFjGPhC3QY7FluPBcDVtezz3jOd9r1g6izAVCEGiqJGGEf0fkO+bAoYeFMFutK+6UkBum+xDezjL/1YPPH2Tpafj6fpTrAvzOvxz8uaXpP3dukI+x5hSkXZeNG7wsop++D65T/131kCOsi8XSb1vGzRMHXWo4YPhhkwmppIS+AIiLAhMXEtR7B2jfFQMm/OausdxDYCM8tKFPpQpn3XRRNGg8P7q9lnn/5XEt0oFMcR8u2S4qcF2236DYq9Rdn7VTyKdoHrtutbjXaHhkLUtFBZNEUKBKyxBHXKV3Kzm6e2Uw53KlSt6ZxuIseBnKWxvV3NjfGzQa7M1sKirVsWPrFgjhhLBq7vS9F70krbxH2nw3hYbprxBGglpLkxiuaTYLGJGcOJ7zdNN5qAi4vXhA0h9kwgOaCDmCzmNYBTg7Cf2nK5JgAACKGDwELggIPOOeQQQhxD4GpRRdvbDBJppQuju1X7eWnnfffI8qLWz3t3XHUYg7Irb4WaD6Nk3qwlBKYljiW1XU2PBolxL988Z2EeJvdevVoFUQturwMe/rNnn/zgz//Jdz/+T8bD9zfrqyzhlXwO7NMffO/m/juR0WWxRaoId2fxP/yD/9GZ/OOP35H99YOHe0VRPHj84Or8RAmOcyq6SkkHyO3mtp8M7yxu+4Du1/0JivcavYUpwRyXXmgZHlAAAQAASURBVOgEXFbXGuudfNRnK6+kU7yb4nbbrKazb5XIxYOL6/L08vpjpMd5KH2QkHRYyBZicHHasFRB3DjnO7f99PM/I/Hg0cNv33618e7HmjvW+1YONqBL0qUTkRPDiEdds+K8MD0JIlb1p7MRvT5/ttrog/2nr58vPY4pEghqntm61M6MCIsl8VnoEc87vHc/32gF7O7de/6k9/2d6xt2tHsvgMneZHlx8bKELs78tyfPqmK7PztqZV4r+GsfvCvQ1QKAWfghpuW//d6fbk7cX8m++/XJvWMzG+Shr0PZ4SxOsa0R8BkZqu62lqdWSULiviGbYhVH95kPF8urwcgRmFM0RmDTrgIWISPv9t1A2lsWXwdsR6kQ6DOlHwTRstO3FlSDQQYBA4pT7OtaiG4Bgj/PwvuqHxXbUvVxEkaEgCDry6qHMHSw0JIiM95ut8OdSe8uAp8hB7xwq7VH2aDrVgEca2mkpASHxXLLeEKoKhdX4937ruu2WkY8hhgHx1OxXEsrCOfaGGQRNFC0gkexUJJDaAHmgAPtoHDS56bpKCQRC2pPCK0I5hhaLXUchICy1fUFUCTxAgwEVp1WXRhxHsVd23uhRIEzsvYDTqzftxrA0OeDRp+GaSytNUpwD/OEA2AZQ9jhru2QgYAAPwxM28KIE4KbeeFhwNNMFC1hPoDIKkeZb2Jkqq5cb3AYUIyIw1ppw2gEgOO4uVmENFQQp8Mc1BZyxgPfQsgog84G3NO6a6ouSmb15Q2/LWDgy7JS1Ee9Ek4nfr5eFAA3LHXA9qKxebrfXrwJR1DQEgigLS2LDtEI6hbbzTDuDsb7j1nw3dnjZXt59HAWTr1zuX7//d++ODvLhiDbvSvT/VaUjFUK8Jq1/u1CCO4kmi8uFlfVBx/fE2fXiYlBt6g6EeCkBzrwYL3SFFmr6nzw8NXyKkTVZHpndVF/cv5HH//6R4k4/vyP/+Xhtz/4Z//8z8V5lOBLGK8/ebl99ekrYFbn6+vID47yySf/+Mcq9q9fPTtKBv7TE7neh91W9adPHh7Mz2+U3oQ8utq8muV7J29tZHavlp8eHw9v8RtC5DvfDNrt5mA48jy2+vmyvim/+PN/4223P3vxy0iTaftI9yra2zrpe2Aagrk3mvosJzDoGhkMA9G1ClYIEuj/YhTtyzZltIvSL1STVxc7Ph4aKMOo5cE1rbZJElvZJZmv0IXW3AoPagWQ9r2JspAFsJc857MCbEu5AQZFNAvxSMhu0RReLKIg0Jg0nQ2TtKpU6PucM2zNzlHRLNfD9NG2vaYeOXnT7OT7lb1iPqpLil2iQdcI59FBLUpmPeIDZ66BM5xSaFAccC3xCv1AkZkkF4A51GWwOOYOd+Y0SE4R7ofxrO7dJIkmw2O7je7vfm15g4NfNkwuqsf+ZoczQDKSAMrT3F9d1dfFcpqOlY9YElzf3iBMggY6V3CWOT0tymWUNZ5ngeMsp9VWK9dRkmKgF8V1WXXZCFYJ49oxTTvbE+iHFGDXpD5dPzwYHXyIzn7MMdbM0NDb1CdpkFrKFECj3KcOYicJDBAypTkBatfJvaZqw3SBoemalPsewCeeeLypS+BZ02vU+xhB7Xo5oBntr29KLwhR4Bh3xS0NIx/jjsdVdSuC0C7mTZQQh7fIhEpVQd4TwgPYEjqomwUlmSPu4qwJEuLzwWa7yPO0KDTnwWZzNRzvmBrRBG822oEpxggTvl21FENiIbAAIIgdsBYCDCHGGDHgZI0CuLmZe0l95/7wcrm6mjd1gVP5Wz4/60AX+HFD3lDQ9Is9AYskHgO+GSeuNmErmLBNMmJGi5+++Gq0P5QQ/cuffG84mtqqrNbzLBi9+sXVweC7X//6k1cvP7t/536xfQ4ce/nJxpGbkP3u1euCsfr89esf/nC9WoG//Fd+yzSV7Xmej64uz6hLb+er6XRkoW3VNcETC3LlmkZrZgTD1LjYiZhHLuKwXq8CGp6dLH3jv9qeVtsvve7wXjar6aXzooHemZj48f2dk3/4r9hVEHrXokQXt6OL5uX9+09BCnvBpzse8sGXnynjqlW5xDT/2c++X/fFzH/8lQ6++9vfePvjH/neRHMWOLR7DK6u55TzJL6zXs/jkBhTGQk0Gxc3C1O1p8s/DcMQQB7uzyrj2KKmahEZuzrZNFs3240pvnHwBytyDztO3M3OoAFO+Bg36lnVNMUvghB0fb1YQXhWNDxIj6aPX/7wx7/yGx96aRyAb3AubHtVvGzKn5D/9C//3nR+mam7jyaPyvINDY3ThvqdqORieZnmF8ZJ0wRI78ecGb3GwG/NgtIyzqayN6v2deAPm7IOsrrVHiIeJD1AK8JrADRCCBLYmi8DOnPNPqeJj4lRtXUVwEsMjxL/GPNLP5AQINFmfhjR+Eo0XGjqiNC2AhCMptl6dcoJb/UWo0EaU+rCrooM0sR3FIbSmShJnIMY+ZTI0EuU1EEQQAL1qqNBxEjgjAEebss1zfwwikDdE4IBwB2k1A+UEZCTtlUpDQCiui7BMKGYUkjUsuCp7wzACBkLEYCMMNDJumym6buUcdOtRFd1xYbnCY88JbfFKsbA830+X8yTcdKrcu9u0utb1QuWpVq12iGDgJZt13WMOOCgAyChHvAZAgZqywYJIgS2lfI5Zbw5Ox+MRgBh0PaAcJp47dVSNiKcDHzf16sSY2w9D6hW+1ghQwlvnAsBkYt10cggcko0AcX1tjQ9oj4BEGngAPSsAMIDWZIVXdleXe988J5cbR1qCU4Jyap11fXraIIBNMAMrCUIKyFXndjsDgeq6VI8cU5nhDtIkO89HNzxlQXC29n7Tv+MZ6ucDYckvkuuKl3dJseHq1+u8bOu9lxTl3mWuGUXdILW5e38fBruXr4uIjZ2xKYhOzu/Ot6927QERFtALOxVjtyYhctbGdCA9eqP//s/Gez7+KsQ/FxyVr6tX8cDE9iQbU/HO3GKH08iLeX62iQfjPaR2UA+e/n91zj5WTbNsuTRq3Pw6uUXx/cP/uyf/OCYflu8f/X4W/s//uN/Hn908Ni9c9os49STCDksT5enefD+s99/9qb+2ViqpJ3k19N8J2R07Bs1jTkUHqTx0pyg5nFAtE9s2/R+8tC5zsLbKLyK9HcYdoBsI//INpGHjYkvKWv75jD2Z6IEmTeGyjCSAegZDYxrGYx5qBknSkZF1fIQMDQsbU0AjTW10ErUGYKRgpFOi9UmobPtylI2agvljG2bipCIYw1UlqZq23xBfZ8Sf7SD2vY68Fi9wlGojYgssjSoupXPfTU4ype3bd/QNNoBCMwX11nu9a4ZiwHRpDPQQ6kJ+FK9sazr9CrsP1bqzIKOwPU0h7nHN2Az2aO5iVZrZT5t+JJHH8eroQaJRm3dDfxCrqfj3O/QznRIKF1pqQI3pLTp2Xwten0+mAQ0GTjX+B7oVx4lER7cKtFACKDozCoul2DAXIBhwqJeVNBpQkjXVpSK+GHv7w7KC9a5dpROsXUGmLKqPI4Xl1mc6XiyUTVrRQ8pw/ZDHq1atYBQeiT1CFPOWSWNisj4Wm7HKck6+FrFnYVjJIOE62oNKc459TSstsU6ihNlCmnWQk+MyvpOQxe0ZRvnuO4ShqkVBoJQ9RuBEI8QMESZdZRzhmxbyTCOFVAARlrJIABAKAZNV2R+wgMfLNclJavQ73wbEeecgwAihBwBFkIEgMMQQtMCWQVBNIgDfHO9aduGE+zhu3563TYvmxohPHa8bXQRwB0eBgBukB0hTaHZpCFpbAw16stLjiO3DZ8/+wXWty9ef6+X9OGT9z9/8cOLi1f/+//t3/vs05+OZiqeiK++fxvYp9j/PJvsffKjn+wdDf7sB/9LRHYG8f0nT46XmxfNpXzvG1MheiFwq5abLXh874PXb39AxE40WCJuNJ2XdRCow56/RHwFMNgu3gRM1mY5DINbVFRgc+94atrstbBff+cwE95m2+lxsLc38PG0C0GLr7yuZ7EQKsjphz4Ucp6NRofAK06vTqIgPrl5Rjlpan28l6ru7E9++uXXfv2vPvvCHt3xi81FGHLC6NncpcMQWIAw29u/14nF5cXJneOHEsF83PNMA1HMb69urhW6OYxGx/eHnupuirKWfKWTeU9Q3+41JY3EfLjzOGDjq9Umzwd+3XK7pKq+CmRpYxAdamdHw+bm/NX3n311uqz+2uG3N2c/ejR9v3vNrr88+3B4/B9+8Jv3ZAoi38rA+RuHzbxEuweHm8VXbVVobfvtmCCM4BXip1L6ogeMpNbQrkr9tFxt1ghGOKBSZrolUqWArSgRFO04GfZWAnBBYTEYcFU6hjBn9fXtaRIOkiTDCEhzRZk1YmBEBK2FUHthL8XM4SvCpizgdVMSN8BwhJzCcFzpm4GfaD0H5LZvYZTlBriATaS94F6koUaQQsCVoL2BWTBVvZDWBV4oe+0QKW7mxKdRzKQRhEIlhOsgYR4AzjlrmUuDCFS9AIYxZkLe3mzDLCGc9A5wQpwBRmmPEqBNXddJmKD0qhKAOebTpDeA0oEUQEmUZLjDomna8Xi4lSKIBgAQqw0hHQAII8oY65Vs21YpFSe5KivrU2AgQLBuuox6MqCubXwI9TAEqlerEuzuSC2BUYgipLWxigecYYQhmvdNmqbEOcg9C0mUDkngw6rpmhYBpaueDoYQWatsX/dJlPMgEMRCSuJ4UFRrfxAAhnUtccBAXXV1E8Y7TrR1M8fWDfPpdt4ThBWojUbDdHp5fnaw+17T6GTI663ASId0fyuvHQDES3Vj6kvd3pzlFhlUsVdcL16enl9ii5MzVv3056nN3CBKGQhMbTAO2Pjy06bTeDy1SEcAAMwQAEQrkOUJgIa6pO977phn4ggQqPuj2V27gmOH9tnD5Yuv9gcZIg/kLd4LC0BS7+7TbXXyBDZ977du8pv3TVOqytzhrhgwqRoSrKbXr06q9vtZsrf+cptLIdBPvv/Z6/WqOr9Qv/rdj375j3/2td95v3DdLz/73G5DfI+d/rvv158/c7iOwgOf4oeHT4vN81DdzEZ3hHaN7qkGQ/d1lKw8GlDkR4HPIPSiRFSO2hmjvlG91R3GlcMakdrZLTQDjKRPw742cRj06ob6vOsQwHHme0pYaA3DgXbWY9gajSDIgKoo3GoVenhALAa6Qbj2GOsJBs7Y9Tgf9l3FmHKgZ9Qwc7RdI4DrOOd1bZmfI9f4PiHIFRsUHpQAVRSE1Os0XIU8goVmXR8SQ/Wl1nLkg+Fw5/L1tgt8BT1r322bGhMT6j3jblA3JskFUqDd5sPgHoHKVsk0fhqTHDARYh91UfNK1aurhq2j7+y276bd27Xv4Qdff9d5C2+QisYmfog93PdoU8ptt23NbcbvSJdiGyihAeooDxUIt9uKUopoFMZCq1ZtQxcQyjPKQgMRYtRCDwK6F0bKRIWLBgTX1846t7s3eX5xfW+GRwev4mDXyEyoMuBHEEWFfKH69+v2VZT4QMRGGxou264IvP3e+dZdI7txWkGSaWQpEaKUDnBAKoeipkSDfG+9uXHAhfh+2xc0jAmyFGHRSysxxB1lqllnAUuRFdpwjKNeCGGkxwlCCuJeSIMhqcvVKI+6uoG2LyCOScEUUXOxn4BVU2setLEh8N+b9f+/EQ2AcdAaVxEeev6wWPSyRZEfONNGmSiEbOwBDgea3viTsiysBL0U6v54t7W1aXma3bndXIfjHiC6mTMvs/PLU2zlanntJ3iSz95cvLhe3f6V3/6br05+lKczbAc//hPx+uXZnbvXqHpwu/riZr758hUQfZvNjlarl4/f++jZi9P3jg4COvrq+evnLz8NyHGS7pxc/7LveC7O/Hbcd7GcX6Dwp4vFn0/yHat3rgI4it77/PozSXG/WPUiVOGx5+Kl7O7nPFu2DcRHOVGr5T5L5/iV6kEQ3Q94kudHpxdfzMYatk/j0WL9+VVkkpPXX/q+2J0+0e0Jpp3uXK8qnG3X65++/VS0++/e2X2XCVUogwl881Ls7e0RDBgmy7nj3sygDbwFGNEG5j30lsBMdhJuaPnm+avrnIdmObcsGGLnmsX2YDYKAuizvQRrVFwy0USlQ5Bbt8+9j4boOgHmIM9++ezFSoJHw3fI9vbXs6Q5m3+c/9bwlqjt2XeOf+04eTj1RkgVYJD1bQiDyXYtHHTF6hWxoDyP8oGnlACsbbq5z4ZtjS2SXtAosYR0UFY181PMw9ZtYGzKdj7MPpBua03B4TFCiXYbRLhHjmCFm3o5GkWUkzCMKE8ACluBMNRGYisHKOCErRu5cARDC5DIohR1raM8ZGzVd5sg8YX90id3NOrbKnF0mIQa00A0vZdIBEK5sTxmAEMlJEY2CIJeLnngq8Q3Zd9B5yU+KLtgNgBWtaKPeaiK2iibHuwq3ROAMMZyvXXOoWxAGdNSgrpGWdiYDhhmIAJKA6OVs5QTwhkPfBqE28UtxshKraBkEYakT3NqFaaYACWFUDwOAi+QqwJQRFhgLCCMQ0SskRAQjzPghaCXqusM4s46iiiAGBEsmpY7zCNf3W44wwCouisj7TCnrmoQRZAiZpwRAgXUEsClgkHsWqkh14TBegup4CnnfY8xBVD0lWQs4GlshFQWosBqJXkadauNG4Y5C+oR3ixXAGLrIMNYa+2UZQlnVlMbFM064lQ0t3EIHeggU8r2ChoBW2cK5qko3zu/WQ29BHZNjO1gFJy8yVM1gEWhVgXlD8A6joc5G+4WL+vBMCyWtdYGMyVVF0ZelJjx8Hhxez3ZG6wX/XC0t9zeEpRS5zcbkCW+EUgXULarYLzPJP347tHJ5We1wXcORnr++ihx08P33pzPc2+T46P4Pttcroe3W5oClLiBCEJMOHLlkqb9bGc2PL9Ws/RxJ/Qobq1I1VbfnPzZX/4v/osvv//yQZKd/rx+U9fln81xJo+f/JZ+7j1Mcs5PEd/plO7t82z4ZJQMgNGb5WrvaKSEX9/uhcSTjrAg9/UyxMrHtmE+ZilAV5E/tpv71pl82tZbouv7YUp94qxt4yDUWvm+b6yFwBJKbeua+jKJh9VKGNg4C63zmd/XXkJtPcQtZ5Gm2bLuqdZD0rcsVZ31uDGqw4hrTRjbr8ve8xY8X3YCMXa/E684V21LxqNBXQl/ULRtTqMVhLLrhn5+2tWJFx005pYjIoFF3G42m/pi0xi+gySmKo5BK5Y+CCM/qztNVNI3AJLCi1USdXVzTTnbP8ggx2Wh4SCMfBxWvbzY9POzlTCbRcsiefD0jg0D6gVG9T4NlQQJ8/ueMbycDrkQR9VFF05QFo3UNnRBJXShnc85JgS1lQfh1qP+PMLCt8RHIUm0EtAS4ueibXAjI86lqDSQgDoE5dvrH/BBIPod7hErgOyVxVvDEJKPPPOe8q4ZYyGLtK7azlCbUzRJ44G+WgPqKqyNSr0+cbZGPN5KG5Hco8FyMR+O9utmyzzdd9sgJo2KaNAzEIq+wshbXKtsqPu2NhAoUHGPQ9JUW4yoY/Bocb04PiCEt3Wly5WaTFNILQSeH9huo1QAHQsqYCGhDujADmEDCDQOOgcMsA4455wD1llrFWMpDJWuZS2ao3dnzWJ59WZDAsstSfLtpn6rZTh/tetFe5tu7ZLLZQ1G43fWjaiam/EY19Ju645RWKlrQ+uKNA0fxrPZF29/yXH47rvfuri+iWIxHg8/+eR7RfnG94JeHv7hH/696d6h0fmde8e+z/7k3/3+f/l/+T/9N//d//Mv//bfoHggVfV//7/+g9/7a79zs3yVJ1Nrwz//8R//1re/yaLBF9c/2ritreuqmJc4RfYcOyQMjT01X1+6csXBuqvLEA8BtF9tVHJsA6gwptcYs8PMdi8OwfgNWpN8PO9+BjuFlik5Nmd1sFrfrtdn4zz96vlnvpfs7Oze3t5W21sBgfbB7fl5bHdu6Mu6fHlvfxcNp9DxTpUXV81wkBCyyzlXWlctwtZpjXrh4mRAYgu6dQDLnQNyfS5uLj59cHTc1MU0eScO7/3y311pgZ4+PESiS3A+efztrmmzUGyu3sriNk7uOwB5xX7n3nu3V88TyoU7Clju8cyV5VG6HyRP/aBzsLq5Ptsdf0jkrRcUxnQ+kqvLcmc/bbc3k5gKfGkUhipW7YhzDoMtRqwVsawjwOcA7oapv27OROM75/Lxe1KdAYAYpp5fGNurVjA05mQMVBkQy2G4PA/i9I7FC4QsZ3tSPov4MY4qTEorHUMZ1gdCXTBOe+E0QMoQoqcYEUcYBkPm87ZekUgCesmGeVM2xgBsx9ZRgqw1RMjaD5AfQeP11jVCEhQG3fo22JkgxnziAchV0bIkwmHIylaZHiSe3XbYAKCB1prGIWVMd7Wt2jgMECFlV43SHasUdBZh0DZ15uVekjZlYYq5NYWfIGB1Qn0cpaLgYoWUEeEkopi8Pnnx8Nc+dLIXroIIUy/UGBJChJDGWc4YwATUHR0k5GYBUqqtDb0YKAGE0Y3keQocUEKGWQQw4BAS6JRVRGqEkFIKQKelivOs73tqIUBUy04p42GCrIMIWeKogXXZCFlG4TDgrN2uEPHCJF+tFxH1SODJ25oPImSpw4YT2mtFAw0qxFAixKat5kEe9rWCMKaONlXHfWJBW9TbdHo0v23i8HjZNSQYekU2RvHl4qu7jw/7WisLaIRrJ1PY5LBxZVFYz8DRzWmzcyysctVW+D53sOXcK1YgiTIAFOag1wXz87JoA05F3ft+WHdmckg3ZVuXKvHD1IOB4beLlXEPYnM11Piy4jyelGIbMheYzHjd5ob72HjDtiOHISpdewr8e7hi+8le35xFKZ+xb8mtDcItctMLww6DUbfDOx0Fn7OCLe2+Kp9/9vTucPYbX3ux3v7KA7hQX0Vt2AOm4OUI+8LuN1J7rJ96B5mMrprX/g4LzHTZruDAUuJC4rveRJxbhkWTK0AogqJllU66rvMCgJmCgkOkHakB4hYEjKZK9nFsjM2CYD0ajVaL1veBUD0jQRDSciMMD3TACPV84xXLCifMJRGvJSGOeg2gziiVTGJoXK9bQmjXx9lwWDYNZ4mSaDCMW7G1SHrRFspctKEjIvKmRkwBkNuzL/MgR9atbzajceLHftWsc+YSe7Bptc8vEJXMiyt5VvelPy1o60uj4zBQnYfF4f5sHCTetrtNWbih2qgmY8F4OF11bftqsfnkmf7N8Z139xBDSGCiQZJFhXNt17a04MO4KHXZiuV8gTDv2zUjnLvUuY5jTlNqlOKYKIyhCQkoiGmdxJAMAbXaOIg5IJYEk+vbv5+FgjK0kYJmQWxCRhzqA92OWlDE8U4CvtGocy+6meaPKjWKaaD7Pgh76UmpcRjwbXOhSR14OXKeJs6BtTbGg2mEKQ2WRSEYI71cOkdEzfP0vlU1tCmG67YREAAtoJGpMnUvAQtrg9uu8zGQlO1Z2EOHgsDjXrRcXBkb7e3s9nIBURTEw7q5wK4zaoYiFSd0s2wpNBiWfREQaB00DmjjgAMAQQQggQhCyO71zYV1NspGujDXp46YfYygFM95+zAFp4aVHbDx7I3YnAHxa33Fb8Eb7DNrudTBqrmiWdIprFrNAOei3w9HAxqPHn6wXjWwQbO9u8Ns+urNHyaRh+3d4RT963/9vXuPvvXi+fPpTvreR3v/n7////rVD/6D//a//p8ePn7iwDab8P/5H/67129Ot9XmxVfLj94/eHHzZV8NEhmo24vNySdNA3QXWhlenr8JgzaZPHpbr2u5DSGIp8ev39xMcRSFSFZ5yqFaFvXwDoF3EjcPihaS98xAu056yeV6fRPQp0q2Y+a9/eqzKPSkXl68uoz94enZV4wmARsQeLPdbkSLo3w8X1zHWviH9y5XiCm+mzWTidayQI6dv32zszdAPX72ZeFn1eFoqk82E4Vk7+Jwf12UXasG4XIWf0jleC9ECQlPvvqjj/d2E/8ANxT29sFwAM8qAmhzCYbxEzyi64YxUaL5Ynd/Fvr3gziLBjyGOEIhGrcMs9X8hmAeZu9s16eAnZty24omwAeqWMTeQrSF1pBEqK2OnCKWbll6YwhUKldGV/qNl2VN5RiTWnRWDxlzyr3iKLxd5VEwxQxZVSupZa+8UFm4rmsZxwcIptzr0kz2UmsBnGQA3IHYESa62geOM2+N6UK3m1F2t5MB8TrgOtkjGttWX/NwaoGFNg9jbK2R9VCLDcW1ba1CFhnX1iVgXRxwC0XZytTnZWMjAEVAaByaVmhKbKmg8z0eWmsRRUgDp2oDDOgUMDC4c9xu1uJyRT3OLemw8et+nI0xBc4B0QlOGMZIWUMBlBBGahBR32poXQM818oFZo7RwosJZm27Kg6PdgHmUtnVyh3fvyPtEnuYMaq08CmHBGlrjAHYdERpy4m1Foi+BwYphwxwQeRqhQDBsQcMCDEDSErZMy8wTY0h66zDcYwAME6ZwGPcuQj7PcEa+PmgABoBoKJAbZQG2osTIF25qqbTBGJmpfBm8Xq5GO9OZCnbXoWhV9qSB5R64/XNM5LDMLQIBNUaiLqPd7kRtUGY+7PN2sT+sCsBgZwTqNDwsllkE7pY3N777a/N35yXp+3k7n5257Z5fdpvPMZ3IDKsqgKPpxPnQFTWLYK+zynxOqdRs60RXFtlfEatlV5gq6L3caa08jEe5sABXsk+iulhsA+FRBQOxtO4v6xW1iKLpxrXW2/Zz5LDK1Aamz3aiC7Z/6RXk0W1v3+88I7CVpHx5+Xp4PG992r1y7m7He/c6wXsK/kXD/Ob9Wb67b/+8z99vTcy8+rULcnXHt1Lkhne2V3+sz/Oj955XlkvGQFodrJfUfLLmWNYVcYoNLmP/WyITeoBEizoSvnaOppyCmpRQ+UFZOrHWgrNgo45oAQN0348GPbFodSfebEWBmEPSyMDP0CiJcQpNMIs31S1AoCTOPS46kWxNS4EQEDUUc0hmfmgQYRi2GotfWNY33PuDbRqnfOKooPcpQlenIQ4AizpCOGyEYAsIFagDqHJabBRilrtOC+qdRD6RsFDjayxNcud9WVVy7r38nxv6c4LnUPLGaPExvpW8J4MOGgj2LVT4hgE28kOznagsQ64sQ7lALCuMrXvBIVDHk01lqT8/A8/WTzJBt99Mm+qg3HYAoc0EutaHCCko8VmvimuWUhuGnVVN0d3872whII6jUWRbLcbDE2SRgRLX1CsW7+31igaE2HpulBpFnz2aW1j/8HXP4yCGMJQLraghMubs8lADYbINGMEsWFfUqI8Mtqur0juQ9jppiJ4Sngm27rVYHUDk/EupmtmVsBlDUyM1xtxm5OAkLHsF8TDEWdCSAh02/f5AHXtwljVqzIKwr5vg1wDqBh3FE8oJpWuAfSD0JZlZ20XJWy+3CTxvtFus759590nFxfXbdsQGncDlgaquekmPMpJ5Sg92dYlXiFgnTPWagOtgxAiQgijhDELXjMfd6akPrdih8Mh4w2mKhpNKjtnUXK1mXvDYr5tLdw3/iVxyApVVDeI1JtqiWlGwjgYI33waAV2jx988+sf3zuYYULIow+/kT7YmRyBSv3i3Xe+vTc72tvfRW7v137zu/GAPbj37sdfe/qP/tE/ioPjuhKdePvknf1yHlal/m/+H//1h+/95rMvb4Qqg8j90b/5F9mArPH8R6c/uOr8H78+PW03b8v+xyef/OL09uxic62bGoqi605a4w3vGIsvqqs+uJH55fPTn+8mQcKXXobDvT0ZXQO+2A2Kwe14op8W0G2zpMR0u9w6VHSV0arNc4ZA0rWGsb4pJWDByAsgWkbTDVbX56evK7Qx9Mu3z+fVbayblEKXJ/zmdLte1MdHeYT2ZREeTj4gZoJkvj3vnkwf7LPheD27a3YekChfbg/r5Bv8nQ/R4VER7GO4C7lXlUOy3o3aCURxBR8lg2O72VHqm7vve3N0KNMn3pCVdQCcLF+ihqxuLmmgjaBvP//+YdJEm2FTch9Pr05Kj0aE8vkKljq67K6Fvhbmsu1K6CZNQ2u5VrChLC+1B8JBB/tWhnEWA9vsxt+SRRuP1+HgGtALrSXUuyG7H/ojQghgJM73DdDxcNF0b5FMPRdGwXmct0KtmioGAPg+5+iYMpAmRHSIeaLvTBwdYQJEBwP2kPAEmoD4LSLAQriqvwoT7JNRVa6ClAq1RVjksxxgJ3rjrIfwwEsSrKwNGJDCCKkwIj3iUY4wbUWPEKKctKqjnFGACCBtL7TDkaLci4kfKY9Vm8r1RmqBCRSiQxhESayN6UUfhLFRG4yMUYCwPIx2euEQNoz3StC2tgh6XpCKvtFADEY+wG2vGmmFw9YhS30itBCixwyvy42HEA4YJ7wtGsI8Blkc5x2AujYejx3z6roznXbaOQhAGNnOhCwsraV5roXBgLg4QtgI3zIPt9sSBP6mbqEhLs2AAVkSAa2Lsg6TCCB0eXoeB37nqiz0HYV20ziPN6vCMOx53mL+ihCSjI61ggD0kLRJnmw2WgAz2sk6u/TTjvqF0gurOt1qdLO8d8e7Lb6XHqzBXbcVt7EVgdmQNxx7iQn3mPIRO18M5ucMcA91neLcjcfUmMpJaPsgYLHqloOc960YZcO6uj48HF2+nSPjQyvCpHAubRV03jKJPWwHm1XHQtbdkjg+QG16AA512+ePI81rcLIa18V60Ai9/EaUwRg2WNB1HaUREPfyYevQbbsNdifv7u4cOOsFwU6yjcxYVhgO35Szo50A7T/17rMK7k97h8Lk3E9NcDR8X5vdMUGsuCLru1ZT5yVesDvwO9R9loeKBDFo7oR6ABab2CFrOfR8Q86y0c+RQYk3xPIOUZM89bJwKlq/119RyBmeRd7Tvhszb9x0huJcFFnRdn6011ub5IlUnheEjipCUwYpCSXOakcrBAiWBFOp+HU4qCEpopQQ6k8md9sW1y3gPC4KnE0UC8LNfMTQDGi/K3Ood0UdMLhbb8s4K6PANOUtZbfU+YxeG3lFQJd6gap76ux05Hu0Vqt2EF0FMLDVTt9Fxq/4bN7rA7GNuTk2TcpdNuAPwHralyzJCBNjx3PowciVfrdwqJOEY5i//fzF6y++1GWVQi+jYVM2l6t14bS5Sa6+eq2LGybMIAhW86+K4rbeekpC2XnGFtgp09XObLGLOAv8owM8negoWbZuUarT0+IHf/bsi1+cn5ysH3z7Ufzh0L8bCThvmtfI27rBFpDOOQgsD3hG4QTIY2x3rVbOQaVM6EeMYAA1YkBZESZ8EjPn7jXwifJYHMgxn6gurJnt+j4duL2DZLmoGEnDCGNiZechBFQTRkFuZBiFKaY9QWNKB8ulLLbc47FP96WUCGRRFKjO9dpgkCuls8R7+/JGa2yxKVs8VZFapR30y5ic9XgrbARtXgYIOKYJQRppZzHDoJPCWFdLhIfI6dAOYe91+DScaUbyxFJWiYD1DUBNHL+RpkY7zPdkd2XsSQ8I9vZYPtZ56O/P/FFiMnjgRR8mg6eH8eH92SC9O929d/Tg4FfvfTyO0ifHv3F8dCceHpF4d3y4+/Dur+8O7nzwrd1t9QYIsDe5/8WrV+995xv/9s//aN38+P/8X/49AMF3f3dWVb+cBflP/uSnq01x92v+m8Vnnz17dvLydMxwdfI9VL6M8Y4i4fX2Fy8++XRzBq0cr87XcRbPK0n0gRVufWapTs/PXxb1dRASRNjVtZqwBBlxs7nBgcfF+hvjCKxtD3fVm5MoGO/e/Ss9ihq4KrG66BYoKNCmAHrDFdi8sQ5leVLjm5/AN88xPJHiXLQco13hVtFgGXJ5+uztkdi9gwZ+u07Y5v0nw7uTWL25GazAcZQ+SCbHfvLu5A7YXO6Gd1zNh3G8T5Jd4B/KYFxm4MwPttEuT6Jmmwl/xDLuqcmMMmhh2w84Dghn3rQwp5j4TO6Wi+tRMLLav6n/hIItcKWUV1Wxhn3oOkFFGakchkBH173vnW12FyLig6iqOiBQRhhsN6HD47Rttssw2BOwbs0uaPbkduDzuCv7JIKcrokFQLTjWV52F9xnWu84uIcCwnMI/YDQjhDGfa4th4Ty2CjFMN4F0Ux1IKCw7rZYQcoAzI0uGtNr4qjydXt5NjQhyYZ1s4lHcYckxTiJp8aOAJ3IvvZDXcmNx2hZtVE6apxlCAdOwEMi6RZsC2/RyCAAPKclhSionAH7OWgqvirU1AORAlcnOJBwz8NaId8HnpcN8nax6TxAdlNQVpxB6UEKiAo59GChFmzTELr39iYPw0R7wCDtfMRb0pfap2FLlGcQDmLbUSIigWIaZLTXYrtBNFLjAAllO8fGQw1qkCiQkbCxQLVgYCCp3OJGY+AGaewSsQGWNoaBpIaquiGxP3Bj1W/NpfNMKKEOie2h3PESVyoiMSbSaQoMhMixYNZDxoeMJLlvj/U2Oz2/5KMMycYlXSCddZ0f7Fnql2dvDZdgyFuglacHCe61MMLLk1/RJik3sp9D4jm3Z+h7md5QUmX2zsP60uErOLkzM1VRxfXQB/8/lv7k5/s1wc+D7nn6jr/5Gd/nHc57ah66y+60g40hCoo6Is4iCIG8gQUSW9iyZoUILJBYxAK8A+GQttsmgaiddMs9VFd3Vdd0qurUOe95p2f8jd/5nm8W5m/4SJeuzaVPIe0Bcdde5oEq0oanKKW0EeACD84cTkYW0ab7cn6532pOzryZFwUNttHazK+gyZ8io8f7dy/Oy0KQ6XAvs9Pqyp3uP4s1yucLzmrn7q/LDD/OD3cjWABczoRH63ndDOMn9fMLUmWcmcbndl7xtR5xVS7nktCxPRPyPMt+Yo8315uqyxQGi/e/eX127QNEzdT/7tXxZ/rmlDA2YFPNYBoDmIMsE1+tisKcaMGWw9YzX0QrgpNADTEDbL3UhICYFCjXxff18N2Izw6jpqrNc+BH3p/g7rG9vPimWcyHTDQwYoU4KoFTPLOBx9k59aCdtNPOFyXzRqG4CcHEaZJgAcwMgE3T+rPrZXNsY7PRLs/EeWyK6J4C/WjSVGQpg9DBI00ydB8lfZPSkciI+egmD4LBkHD07d3DZjI1EQsdQCJhCpnDdSDLw4imSGSWYQSAnyLC1lXVmmRLc7/7xeX5dQa+XZb6PEM8vq+Kbna1sLNszKCcF27SYzn6YCGdHV0+OcYkFap7sTLVxfPP/sUff/ztZ61CQxejBx0JZT27fdwC6YFQTCyCO83qeH5z+aF/+ttfjAfVZVb76CYLc71w0otAc81HKSfKK4pAmloNnn728MUf/hH5+V/Zr+5+8cdvb//0w+4n22ma9u5jyV9l/IqRTYIQQX29Umc1jPBQnlcYX0KxyM/WQ/KE5TmZ1TRbZiSGwg4aTwMdDTEpaJfnORE0MZOVm8OWAcgQazHNUlx6pKu84rIFznLky8zbyd4/vHfAzEqTZ0+cynHc73ZPxdxDNibEJSWYR5OSKEvtHzgani2z83nr6Na0716UUJn7DC+MWXi8m28QAcFiioCzmKEQHIKRcx66KaQxJU25sM5njHjikycAucivnuWbn375Z5fsYuokKuPt/p7k10aGduT5186/8F9+ys4XgoxzXYJnaTwufnAVQtjp8WDNzde/RQXVKBF8KezWNsPFql5/cmXSkE7Dgv2goZ9hYMOQnp7effc7r37648+mrv3b7efbw8P//H/2P/3sT/+oBP3d7rO/+ts//w/+4R+s+9//5V/9iLlgpnDz+n9wVGcwfHR6h3F1Gg/Q66ePnxXDTBZ0ONwtciN5Z49GlZjk/suvviD206/97tW06wDvSPVaq2PGxubpVlVnOyX6409K+pfTip7229mannz9za//4G9/+NOxWcprLK+YNceIPWOhMxqberVaaTPMI//wy795/SLGD2lT1RwwYBBnhX7zqxdfu2QML1e1NwlmlR6mqijnnDaH+zCZDJe1KpPpztelEjNr21mZYoT2RDD15VlkwDQNVDUMsTGTGgYsssHHoT3wYFIzHC+vzp4+9ofDPYbRhCFOHU3JDn7ooDOKZmiwAy9n+6YVeTY+PVL8iYGfJ/bA6O8cDzOQe5AR6HdIvBf8W2YAMR28l87iorSKMYTa08HUtUAwRbvCCiB4bqaeESqEcC4E5wGMECYI0+4pLFdzJmCvGyQQJvJ48ILX1XK307hCldMf6QJyUg5NchjN5qR/Ouk9LudnEIhuf0rAorp0/cQxhgRMts05JpzqYZytZsF5uaihS8QEx2gIlDoSEtFmNMHmALmog4ukH7Ky0G0Tp4AQM5NDkEUIMWJgChBRjPh46pAJISHFpLURRmCMBR6TsiS5Gr56R+acSTAeHp69XAFuZWdHYCbk2bHniuFCJtOzZZ6sBgYchlbNOe6DorkTqF6y/mlKLjCZRt2obBFGDdFgjZCVMv04db1SGeOiH3uppw4Oy8Xrw6HNKsaS6/W+wViG5dF+lB1JOe1h4ONkA8zOStu1rOYQQg90gp4gH4LPCXTNoZ1Gaulqfa6HGD2jfI4gjhFEvYvBZsWqhOz2zYOQRNTApqEgyzCFp9svh7BbzjNz9DKrEWHo2acP2z9nwzT7WzPEflnP4Pl8B3Hlj330em+Y9+ULtrs3M7LpyVu9L7VNfF1AcGSMjL0WQgEAHu4en33jCdOXaPh2BPv1xd75JOm/27W/YVyHgN1UNKe9kBDGSlC8rJftqS8yRgSGETWno530t7/77dPHz2DIsM2W1aI7dZTVIssB3Ut0IvCsbczZpbq7fRT42xLNA2jOcM7Uun0/5OtPYtGVFobipul+m8lL/PmXYnk2jBnZN3RhkfOgyYXYMNlz6TmXB3DK5cYDTjMHI04MJ+9CskrKGB3i0RijauSSi7GKAIp8BO4+zyYNRtCpIlcB6xT7jAlnXIRAqhnCYYq2LKnMgLEnkBDhmEsSTeU8SL6a9DabHfeNzOWr+RJ22h4PR+f5XJ4/3T/JfJMX8vj0PmKSSabHZTJLn5jVAMKgcgDrVocv20lTJstqobUGgRGccXyy8IjZCXsHkvQOpTgF37ppWZ/x3VN3OH38+tc/HXof4C3lSzOBcl5ndR4JAgkhghHGAKJMimSsjaMSIEE+9rFrSfCzs7Pf/vNfvQt/8sf/k9fPTyHhlF5kZOqHOUKEFd1wPP/kmZnI1fI5gfW0fez3b08fsuv1tQeRVCmiocC0osWTPyzDxRh473fnVZ4uLP8ffvfzf6F/86sf3v7235TF/M9OoGZ0eUycz/v8y7PZJ1q3z65u9HScdJD5anv3cHV2vd+OdT2buqO3PgjHON0fmzrPKN5jSkwgPhBFYpmHca9TIzyY9eEWC5v5tR9mLn0kZIqmji5Fhwefslm5c62DHPpYBDHSo/dVcmS0u+WZMhPSNgDQFTXw8EOIcXtb5vQb03CHSWNMiPY1rX7S614bBdhhcrgU3zoePIogphis04TS5EOI4f9/Thjz5AsEC29pDIU1wlnSnlwZoT01k91yVZsIADitVCl1tIiw5xz5/vXihTuvxqqfRSjjJrs8v0Xjkwb3H/Srb3xjmWdw+7QouhhO1lrdzTO5zOVc4uuyzJ+/qpflc2hqTopvfePq6plk2FYlu35W/sO/9ztyFj1bqfKlNw+/941v/Ud/8B+/6/7LGZ9zW//ga3+3kuFiLW7OX336/Nvrmfz06mtnxTKDpL/fmqcjOI7P5xtlIz6bTc3m9O7Ns6vwqOlRyV18gt2Nsb6u6xgIA/mnL149fXxT8XkabjD5/ievUvv4awHl+az45lW6mD/aSQ27tk43F+D1FSrntk0fvgIftmJn7HtVTevp3Xj4za5yZTaRjaDPZmi9dsBN0wM5/CKT95/M9jc3/mIzYtTHwl9l/vy8XPFA5vz5jL9IxomZ50hZVDKRpLBQMt+6lBIhpRkXGGUxOt0HZ3ouDkP7iKZF++Rtf1rUTvHR9Mc4AtfkMYzAU2dQIrYPTw/9QxPM03R4iK0pWgMBJ5tastSfaqxEMNPUn6++I9CapJlCrxnIViuTwkNZDrksJL6WdJVgm9cTVxyk85SSEBwTCIFHODKGEE4AhjwXKaUUqRILjAuIeECpmEmvaXUBLPmqKsRxoKBap3FCGTUOBZcEgkl5UgPbH5TKtAHYAIQwSCEmA4jHDGCEAKIuBlpmaTRpcIbixDmYQnIAIQAzjhGEBMtMhG4kDFMbmcOIcxKI6UyUOQSU9yAmjBKGHoqslHlBAIk+cZUxzIBHoMju3nzMWJ4woaUypy0SNuieYsQwQTCl4ClBCAAQYaeZbyFNTFW5VIChCaDesB6EpKeJUARptGaAwcNEgkfBTQCA5BODnBKVUoIhABQhIgCSOFmUSzOMaZxCTt045IKFjKiqgJNug8mr8vThDnBIsoUH0gaGoMIwT44IUIxHg8SeqIYVkyicDkcm3PF0H9KY4RokSiRt26fY7ZnWnBaQLFLiAIcAx4ubxaRbxpHVTsolcV8kv2eriPzntXwqn4sIdoB8ADLohxyTIDZTakSwgZ5NLM2SgRRw4AgnCkPifWRUTJO5uM5S/7o/ibwy1sX57EUEw9Pxi2BVWXMmVC6vEqBKlinkAs+e7n4puE+QWldAuKBMvXy5gXGP+mXGgKDj1I3zekbFwISzY0n0746ty0TuTi+JewngIYIPDBbP6lWWSwTfD25rWYFGwEJcfYvlnJ/1b+pPDMBR9jFmoapFIpwyoQ2u59jGO8bKGAnPEsZ0aDHDy1ydMVYjpIbRgYQpEyRdElhh4pFoqJgQ5JK86rcvSqz8ycIJ0MTHLsIglVhpTSksg2HRCwxKYxhl8wTyBItEBOUkq7QSjPoXwQo5H5Nwp/ZxsVEih/10UIWgDA5DJ7IipcSERTggACBpERqDtxiPRX7pA8zLLM/LsYdTKzg5644x+hY4TuMaw5oRnICBsITxVT1DELnkQ13XRSUZwQgq3UmaKSQyIiQTOeE8BGhtZIyFU4CWUMApIMn6YRgm20MGX5Wbtwf913/50y9/+LNffdyZdW3m7AsCNd1ujx+//61LFR5frGcZQ5D1xVqFRdo/tG4MCwdeKMnFhDnQpUy42t2d2v2tdk1/0jS5Oo/ZatWfQMDX9x/lwp5ds6ycEz6b03gmNqB8JlEGVFkwUsVB5fbCfOCzSioqvUm5qIObEHY+OoRldLicJV6bqIRJJaAFSoCmpMp9mq44fF3UHqI9DEqJhcpQEyaL3XJRj8edSDbFPl+KYzx6vx4N0D5V2Uvgl1JUSpYMr9unrH2cu4mZ8EU+uyco6BFTSmn1EXHsIvJkD9hISJ4IiOSJIEyDnkCEgHDgXAIETA5AirCFOMFoeRYYwKziCGk4oi4kWrr6ac4GeMbNEMJ2AKl0IqvXali9eHWrj4qNsFzvjFLB0TgtsvjbNx95cY4Sen/XQj//6s1tFgokq+rbq81ZctZAX4eoJtvjNs3qssifXd6IU39YzL+jR0+RYVNMalIi73fTVfXdl+e/V6WlHffqrPjG1TV1UCG0fvWtu4dHXpz5JxGaZpktuBm2nXsxe2aDTdpLusKPv6rjzfr892Z6k3tGH7b4uBnH04VyUU/OLpZnN7s3t+fLRCLpzYYakmP27Rv8qzc/p2b6zrPfAf0XKqzzdREHXZCjwlCfJA3P1ukmmLua/k21yrvjpEBKhw8uQSGfjbG8NvmL9VXk4bDdCXTgy5hR1h8Oc3wZ5PG0b1GUGRerawzMcbfrlpsl1HCCUYEYfeo7gZ80vxLBDBSgGB6C3bmpEFVBUjdONqfQnbp2d4dmkiAwjtPQxTzPNXyzb0NezXfjh9HfQTD3iDOBbZRWPfieynAGw56ihofr0W5Z+pQEZcG9rPdBlwxeS3jZnio4O+kxLVbOmgRTnuUIRESzj8kyzpi3JgRHCOGCpRRCcPPFbLttEqBUZOMUpMKEs4BCQE4AMMAMoFop3ffvVcEMqYfpy0IJjGoNpAU845hS06GGhzImY41BEpjgEGElV2NrUcGSN16PACMIE6JEDz1JECFMFQtdHyjiKhu/em9pqlUOQoiSUYimyfJZ4RHBLk0MOK1hiIBiQPDUtYlhRJHWI8fAAlPmAkAOgbN6mqvC46APE79aYQOFoZoTCBJoO1zzGBvKEgBWUOzagSTmSZbLyuxaghzOAdBEIBVsg1U5nkQuQ3c68lwKWbnTCHzECFhgCvpMh3uCtJmUjxMPMoDKhd+ykNOymE4dCZjmyjuXU0GKDKShscdMFphCgHFIbYTYhaMUV94EPwZhMUEZpQUiBiE5WospgSkmP20uZwmQtumTFLOLxbuf/JIS1PeJ8bxk1XbfvXvzxdU4E4cFOV9vm6dlftZ0mZxChTaIS5zusrLwbNnf7WQRNPSZKH08RoSHdpdJ2h7bssx9hOM4UlR4eM/E+u72dHF+ddwfiazLshv3AYHMe6sYwBgjhLTpCSGlyjGKCMfRmExmw3j36uJie3iP+KKabR6evkp0mK0u7x9oLc9O269C9auZvB56A8Tt1U2+e1A5nyW87814Tr+O6XKlDIhTcV5+/PLz63/v7xx/UmZhbZPDjkmymny/2EQd3alPJCkQRlXwve9XdTG4hsUZBj4lHBIkmJdVOWkHkUjeW0tTwkwwDHI3YQowSsinIZHkE0CWY5w5rVPEMdngXdf64M1yvRz6k1Com7ZSSsLV7jTO6iWCncqCNjuW9RHP9k9nigPnQz6jkz8hBJ11XMyHFuF0lhwj2Fg8IAQJFjDyqXFOUgAYlcGYk2Cz4IOzDVNg7BzljvHk0gSTSJFwlgxoOHfbJ08ZEGp1Oh4B7gice0uLlQzB+YQBQJwIHL2LCUEcgQ0OmjF4HwmFgkBPpujaAsyX6vLdT9786f/1j//R/+LTp7958/x6c6YVKFfX5Xnoji8vboaWYo60PVRlOaPgN3/z5Zd3X91cXNBMWAOLSGhw3ImWj8QjlPKP+iSN/TT/9L+6/+HT05OOnssj8YfTPVtcZB92P/n+zd+H90U5Px+aMF+XIpMdc8ulOjXbmpe7h12wSM7z9ngI0OZ5HjzwSGQlGbuDjCXwwpsECYQApeQBmiAsYOQhdhFoiIoUmQFKcUZQpTCIeihVmYiycIIxpNTOikXfa8rAaO6zIh1HF9LIhc0YxPDKjgLBoR/6GT+DJMZpEpRheJYiFyWb9EOhLklKOFnAsxzYlDwimUjapkiMHREAyE8heKuBoCQCB1AKHnmLOXqRK+j0XtEXjO/qi6rKF4Gw7dhO8ZSetNnLiYLNcwPjy/ef/QzLtVosdu/f7IbBs2JWIsUYFnF21nsvFeWyPjYd2Hadt2I5e7lZzwjXmxW5e+cgz1C0q5spg6Td/xLMcV58a3kWto9/8t35s9P1/vGr8Pju+I1Py4939xBeQiDyWRNHsO22WLvXm2UBcG9gJkrMQE5ufvOr9/XzDQNhQHf5+ltP3enuuHvJ8jNVmfTUbe82xdoc9hjv6tVDNNPTh7qcjdfMQlfwVXpLORp39ZFvsk9qIsJ0K6pkh2Px9PbybC3BenzsL8SzHG3wW0+Y3ORzrqdiRlgyzvTfeHk2an86DqN18/LCHLtkylWxsGanpGg+Ih+JECL0cwDuE+z1oKyWUGIQ9dSwLMO5MofHYWzSrHbI2Yf7XuYGpp3pTcZF0PLYOSwKT7qtOSRsaS3u221W+ASQHvTm/Orp9HFNL1gfAXii5O1oWD4/C5KM/ezTzebjw89m4kWOrzvwLivsqH+z+gSE6QfWNCJ3KpNGY+d9DGNWWXvEIUbvA0AQEQwRShHEhFMshYRcUUh1DBYzgomcRibPkrtLBjMvQWnBMQiLKEGdwJeUYDN0vvABDAUnk+HV/Lp/fIIIK8RH3QNKcyaCjo7gMqP+/hBhxJJJkCBFuzitgACCIYSstVTkwHuQUowRIOSihpACGyjDgCNCELA6ZEoQ6LzVZsAcJmspJwkmo3WVi9b1Zcntrh1cXBclmJKLidAqAhmDT5HYEJAzPEYIuIjrAJ1HAXoN7GgLhpgnKUIPi6IAzsZApRA+TCCBhDCgpDs9McZAcD4EkliysR+GFUM9w95oMhikqN251IwiUyBm0pIe4igo7mIfJ5wJtG+zrPB9x0RtvI9WpOiNi0ytCGYpOkbp8e64mNXaDLNlPtjGc1eg3LWmUOcWBkDD8enjebkM46masUyWp8G5KfR6wiRUlZx8UnKoSmtiHV1K8V5wpUXJPbHr2TS2eCKkzpE06dhaViI7YobGaSqKGiIvObMR6mkioZYZDSlFALvhJLIRcEuY9YOw03IcWrZ4JCLFGBPshCrI8DIlPUxPN6+WX37+y+ub68O+g+FMXbDTOGBZzYrZ/f1UF2s7dpsZp2rjw5SXFEMFAquXzel0p1jVgtkI0lItDvbNIv/a6X2YvfSxVONn/22x7qltPU5wuRQWuBYE7hWop3E3U1djO1Xr0YKe07PoPBUdRAlTAnCAMiIeEgqEEzexmBBmKAGrdV9VM2dGRqZ9O13erMyEAzK1ZO1xGIZdXszHNmRZZo2HECJCKyHbfiQsYu4ifgQep8QRRNA/w0Em/rM5/t3d6ZFLAeHcTwZjTKXsxn2pgrOSMgSm0VkVQRCZP+7d1Wr95u39uZopmdkxYkpiws4PFOeSI5BAigiAhAkC0E+65fQ5xQOTo/UmK3Pvo1opQtMYMeWYSzlqmyIUKvfRhehI5r2JYfIxJRghiYAF7EPovRdxKtXsxz/9fPwn/6d/9L/8x1M4G48PFytMbR8yt7UfHV31++Fincs0Orkeuw+3H95eLUrgZjFSLDOfNAkjlzFM5x9vD/vp8//w+79z96cPb3/4JY2H2BzzObxHvsCi6sAlOZdpheYLm2XVKkt4tH5iEIV+WJDkgx2HLpezlBLG2Dm3nC37xk845D4ftiwXOSU2hiPiyIWCaMqy91iMZigpzjGJKQUXThdlfhj3R9j5HBYVRM5CA3Kk7/ZpVr9sDiivqPM64y+O23eUYUFqKrFAEAbSty0jiDIFsRiPgSAWU5AZ6O0Dx3PoI+MUOecoRFjyOOnoA+ACJuxiyNRM8gXnOWcqepVSlrBAtLxe8qDRYnMG53pEcNc0mRiohl1f9xDcfvajqpOn07wbtlX6wAL/xcdf7Yf2vrt/c/cb32hp8zk9q8yNE9Os3OQxR1qI/MwgOU0wQ362zJ5/stlcVi9ePcMMyNp+8s3yOz+43nyd0cuSP/uk+uSTy289A0p2oSguv8/Hr9clyDfa4Dxlq+rKPD7+mJwEdcWrzWs8pMyxOpTZKKtQvaxegvv4B1f/wc2DUL8Oxf23r8Hvs9vxO7EkcH5752gAz/NmPP42qmcpvcoeuTwmdqTlcPX17O8u+m+Iw+x3np39O+efrqvV1L/rxt944Bi73qz+zmr1NQjzorq+uXlxtipLCjKPyN7y4wSedlRxLnOKiv4Ama036vq8uIC9806b+KYdf6OnCQFIxLEfv/Im2vbYNI05bq17gnhiPiAEvXmK1owH6ppMksL7seu/NPYtAr6bDvvmxDJGc3bSk04pktRoa1HRe29jsF6ZoVwUr6Y2pIlg6nwEQs0IWXOwXs4UDEdqKgBGmAAhRMqMolWwBaUzhi5dOs42KYacSxbABJPiAqGwiTF5H1JKKiswYdbFECGhAhJX1BllEqJMqaU10XstM6DHDFmbL6mNqTuCen6p7ZTShEAbiMckb/ZRkJnVAYoE9NF5DzmDXNpOA4AAZcf9IatLYKPvDWIkUYyMh9776ABMAOMwGsAopUK3gyyreTUDMSaBMIHWap5nxhiYwjCNngJCMAEpEUCrgiMSfYAYZUICjAhOzf4eZajg3AE8WucdoIsytjYSGquSewAhjIUaDwPCJxf2OAMRYSGWAFU+1dOtA2DEYj4OELEQ4hgNB4EVKx6OJyYEQWg8HhBCMUaUIOYK4F00wliSSxY8bM2Tgh0Eq/3jdnJ26ifiQWtMfXWdnGdlnnzDiMFk8v7owhHSIZBeFAElndKUohY8JaC74QniKdExr+pRG621h14jbUnIyzl0cr891KvFMHSEZpQXhHKhWFbI49NRFmd2gBakyRgVi66NVoeoepZmw5AgHwoh7Egg43Y6BeAACkyREDxjzFqLMU4+FGc/J0Q4C8+ufdvfwrgAZm1PSy5BDFBIRpip6jzGiLAHybVtm0Csy8JNPue5t7aqSxeC8wILX66oiwEhUhQw+YmBWgnKiQwmckoxoOMJb2af2l6o2oK6BPe8mq1Gf+vN2/oHm/bLUBkBqu/k9nfCUMB5rLg/PuxH66gCSsymMTDGrENEchMGmAQGGHhAiYCITpN3kXrPCClFdY/plLxyWhrrITUO9DF5Qq5Sqm2ECbkANWWY4hKlmcpWjC2aozUTobjkYp2C0COsijJ6jogAJGQ1AuQAg+X2U+PusiIa77yVHM0IAk33drb2HtyG1ALoEIHOQ8KhrI0otTbtfL6kuNIDgbBAoBhaDNOKc4nAYuwXya1ioBjj4LEZ+aSxrMfJdkRY7zn0rxNKNliEQIwRMsqYSBDFmCIEmNKYFtYzwmBeeAj33m5h1Byx2+bji/OyGQ5b2P3q/U9+9Ot/84vmS3KBuLyASa3zmwyeNztg9fnxuBhdPmF60FTvO+Z96p0IFKhcU5yV1SYvO2v/iz/8r8xvGnCa/dF/8V9nu7dzRSFqQ4+XYFHRA8APF1cXVu8WsKlgo6hN0DnKnKpGsUyLF9q4si7zik/TmKkSJBpCsm4yGoydj9ZQqEkKdkgYCaqgKKYsW8G0cL4H/MhFSemGytiOgbL6cvVSwhJotr2fvJcyO89zYv094SdCpvmMu7AXmQFo8smNo0Bx6UJiHEMkVSkcfj+YX+dqEwxKqUnO2slmSjv3ESEcCU4x2RgcJTC4CSQPIQDgmPwJkBaSDrGQqBNVzOfkYdiJjM2ygI/2ebES6QBo6pL74S//+vEv/4Tum5/+xdv0EBILBx7vft6wB7t7N5mtlg44zIEID8fPhqKfTpLAZbB5NQ+Ut/0e2zEPbiHExXJzhTBv+vTx9mHzLF9ehnrtL1Y/QEWx+c73rr//qnU/7rrdJ5/897bgyMiMk3NO5O7w2bH74sPbx1X5fDx1aJDCZOfi7Ka4mAVxxefXcjaL5O+8/CZmXQvuEd19/3ki979cIUDQmHo6Z3M2Jtb6M4ymt58vepl+U1/RPHz5sB7Odl/9NIt3y67+Tn59KchNO/s+/8b3+A9+t/r9780/fS7xSy6+Lm5cu1mI78NhQ0KxrLLLi4xxM6sFfsvBV071HvR3EN027leheIyLFsS0yF6yuAERHJ4a25TMX0lSAndqGhcPGCKPSaf3RxsC8XZyb5+e7iGdqDTtKRxPFjPaNuRjA2O2fLe/f7f7nBagHQ/3j0+L2fU4OIAmn46UKEHPEMgyVeR5rsMUaCvkOrlnSi5IQKkJRbLDvijpd0Hg2hwZy4fBqTwfuxoipgoqi2BDDyGXYk1I7qOTmQIQA4izssKMuwAjYkTkiXUuTqOOwRcg5H1nILaY9DE0HpusPuvuA2Ak0K0ENoKN77BnkigA0payxqYTL4rDuwFniBUU6J5DTCCI/UBQJBKaxx4yxUQWbdLWx97JyACnwHrXjhGToI2dLMwFALhzms4LGBPGGGBCEtbaBkZwprwxyQdMGEAIBWRGGyNBgFmdBGRKCTIXsi6fjg9iWYpMQW480lhAzDFmFBEMiZw0IHImQg5DNiGWICIxMmQA6INzwAaIeUo4eAgASMkDGseuz3KFQQrGEE76vudUqazW0YT9SdSFMzp1E8KUUzG2A4teXsxM3yuAYSYADNhZy0I/BKkWIXBrSfCEwJxEAR0fT1630Y8oF+upQyCUMM2r8kU4QTNEKFmSgPFEE6zVqj3hZKRpB+dHAJ3K2OQGKmQ/+AWmYnXtcWGBjjAwOrc4rwEKtCTgNiEO+Y0+vcMpRnaZ/B7CAuFKiLn1ECNmjYMAAACa3QrQUWRq6MvVRrX9FyA6KVO0KIBjXnBrBcZkNCMCxdABXoSsIs4C1+U0nR33nQ9ducCm3S/yq6kdGH+8fg72+2NRXkymRYQbF0XOPTpAsVUzDcWBlVuBgeudykdRRkQAWxNU8P4Xv6D0MbKnwKeEDMu8EDHDCuMckugjodRotyvyq2EEiJkELEO1M8xaog1Mkc3qDUC8HxwIJcEyoMmBE2LBWYjCedIv5mJmuxAGALxoTy6GnMu1thJirf1htuI2nlgW7+9+nWVR8JAcCiEk3AGcRf0pjIXWX4CwTWAf0V5kjnEUgwuuJ8yIDKGwQJBPA2boDOGM87VzCyrm2n2JWRf9QFgwfhvJoV5hwn1AMZKTBR8xn7wnwcoAnMhblrVUhLyol+trgITKqhCkNZlSKoQAQkQIhRCsdzFGxBCJzE/JmRhjBDBSgZAAvW9cMMLw716/hoPmx3T4059Wv/2wvnde6Hzh++O9TChn7OOH41/+5P2f//LnG06ensanx/bOjS23TDiMYWUFhGJ/8qfH7e8sz//g+X/4n//v/uXP/+zPCnCv+tcZubqYXX2CLlfd1UJ+ZzRss8gmOEfq7DjBRIXMBASuEJGGJiQic5mQCcBhmoXATl3v/CA9tEPHpYv0YKGOvkiGSuQAddZD65H3xDmS8ASJCWaRyiRLdNrfiWCo1c8vVsbrh24/kzeKSgqR4hftEccICRHR1iAuIWkSf59QwxXw4BQCH45fk3LGGEG40N0NtN8JjmMMU1ghIgmEUbsRE0Ak6aYGeE0oAI46i0AS3kEAlDMEoRzjIh/WSzUrqnK+/ndPGvKCluDV/jePn+JbTuzxY7xUpSxOzT0+fnz+w/bu7faX96F59vrZoiwAzh+/evj9F6/G7fH5ap7Nd/vQBJwND1Nqm7OLiS/z5aZ0oIUk3d8fv/Xt33t2cwMxKqu5JMdvrO1NaPxvzOE38/P8a7vf/EJ8vEMrG4E/L9eki3WY5eksJbV5eb4uM4XDIoMC9DkeM9SZ05tFPpVLsYK/93fqf3ARV2J4yUMOtnfL+8saZhsynOcM6nO1q/6BMov9v379fJyhy+9tzgvz5qJ8QTwv9PA1+u+vwL/33335+9/dXD2vZzflc2XXhV+9Xn7zUl7//U/36/jFM2Y/qbkKD5dL9PR+D6YrPr/lRTMOQ+xm+9+K9HgeHyrRLYELRh9i7JMBOS/60z7Y6e7tkwgFIUShjMSNM2zqb22cwjAfmqVPg/X6cBw9GH0C2oWn/q+3dhoAaSz0OMvyNaWcYAfAVCqG0enqShESGVUBBpe6bEY3cX2JX80EhOxzWWEbP43s5ewVna8hzT7IDBgN8hIywXFalLNMlLY5csZWelJZgaB4M00OQVnWc8xoQhAzhglLACPIEBEhKusBookwE1EvFVktz8c+lQIlwZ9uvypYDxWC6By2lFeGQEsL0o/derH0/Ug5icQH3Wa1IIo0zalUkkDQdod6Xtkwut3IyhqLijhkI4gmlpAHzgFAEmDISLBBKQWVBNoAQmGmnPGMKuMDY5nTQdV1VtUpQQQIwNhqCwnjVCGe6SnEyKDHCKEpmuH2/fp8gzIagkFwSHNAaIx9pwX0CEFPcT5zWHMYQQykrqeIWMqIpYTkCEhtDoTHYUQEVUylhIf901FyBRHSesAoYk7GcQSEG5fagTG9Ldf8zcfbHIK82IwT0+Ntsam7L97NVrNjGGaUgGBcTjJKOtuxgvqoQ5wQDBQFkrwdGohaQsZsRrQ+GdsnYIlAxo/u8FBkmUU5wMvuEZKJ4QRkQTabT80UnZ9mZ1U77Oq6AAlbjSUrPtr3IrdrMVMO+7j1pR6PAwMkzgUhBvbxqcfVuoD9nUcFgjMEKxCz4FhMlBCBIKGYEHiBcd5O76QC+0e6Xp/LrH+8ewRRQnIUEk8ddx6EEHKxoXjWDdYYVxX5NLaFYovFTDvPZHk+47uPP+HQLIsb3XEAzaH5Yr7Jm/5DNQ9N95FREWzO0NlwnGH/TUFIdlo4WmGw3D+ezn9wbR7AhbuA6IwlZpEHRELH205zRqzvnGOYH0PqGSsRCwTLFDLEDsYOAFqVYy6BBy0VDtMJ0XEcRwAiggzBhSTPg5VZNYnZ5yC8z1ivaKSAYCR8iib0SQwgKYKKoQPr5c3UJkaqYAUjldWBEhXDGhMxxi/KXBK/KqRhqISBEEKMMUKoGCiJ86CXjFSch0kfEDck21FpmtZPxuVynvH1YedByMti7rwZTR9hDMlAmCGw4fQqeDZpH5zK+KuAmr6pivxVu5dcwCg+13ZQWYY4F0IAjLXWZtKUUia4997Yzxk9lorCINuGaF0AXHugVik/hy/xLr06u7E6//xn797+4tfbQzBPjetbVc96pMTmvNHqpz96nMNzuqBf3G9vf/vQPx54MBmyI3SRKTc9+ewatsVlz//p//6f/PRP/+xFwQhByP/V16scj7tWHsoXmwz2K9CVYAUnDYwnAAJEoJCB0AlgR4WQBSLQJzdfzqTIBS8wxnnBl9mQxikBNYTJshNR3k/BHbDVdBoiIoMsAcEXKC4BDKOe+ADDGCGVmiiUL/oRUa/WeLXffZUcTpHc3f8KwtEZIthstiCA9pTO3FRHLyHgCEpEbba8nS/WFm25VDZoUn4FMDTDDRWBuFNCkSsDJjdygGpZDU0juYzQe9OxRGlSfdjNN+exsaZpfBUzUX788IgIwJGZgZD6UGWydqDVCYiGzre2L5hgj1/9+bVi44tnZz0Bo9l17x6e9Hf/3n+/KXOCSzwPHz5H5/XF9u0v87UisyWA5Uw+DRkSjX9sxeJ5/vWZt6OSy9U5jF96ofF2PKaPt0+atV102+GnIL1+mfL52e/dPT7wDZMsm4tNOp6me4rGx5rUIK2oL4vCZ9wlDWbojOontrq3oin9urEfMiC5QZg77t8FJhifKzRGG2r5UiPMAMlmjkyDsLTo6TDx5VUh2PD1S2Yaslr+3dPpzflZZceaMQJJky04jN9ONEPLoRmCyr8Vks0Fj34izQIW1jgN8XIM07N1mp4e9ImRTZb43dScG7/nIq/OuvYwcHr+4fMvi4UvZlXbb/vpgElhPfeZb7vburq5P3ye6F7Jq0Pjy1kIKN7wputzJoLR4eHwsZ5NXKw8AiCllbxWuDjoZtcdF5sFQVzhYswgKwdv7ExdM+8H+2c3Z3PbLTQ5lJmyk1P00ltNqHYxJLjHEAfQWgfyEhvnBC+hjDjLpsMHHSGr5w5TzCN2TpRstJaYHvKKYeunhEuVl2T8GGGWwQn5nPJ+AkryUnXvvmIZsycIV5vw2CJOqOTtw2O9uQQaUopBxjX0VSY67HNEBcFpnYG3e/5cogKCw7j1vWIU9cZWgkEIDLUsYwftlxI1k4aeDaDgMkVsAAsgZR41p52QFMzJuPuQu9kuIzkKwg4n4bjFgGQJBlbxtulFNScfGliuQec6ggpS2KMvpTxhU4CAT1q+enYw45xxNwKwzNuxKR47mPOTsrlBSKDYClwWoTnmgrftUQgVBVmYAOoyNEenG5bRcDqUFI3dQ0hjIeWpq+Rjd3Get8aEyWvULF4+N++f3GVdQ2abXbicd92pJsWxMfO8DsGNui0lYxBBmY27KZ68+PocRuN7sts2i9X54D2cAhjdGOJqLkUzEkLUQpnJxrwiyEfwMHGaZ6/NQ18g1kKPeNzM1O7t9gqs2mHAJ402c5rl83cHsynQ0J3eE4gj5ruL9Ut/0gl0Mn9uhyecRIoSUElyi2U/aOzpWqFbTYqCV2MzgGgBe9b2rQqgD3Z59sn244As4rWYupETdnv6AEOfi6tj05AZ0dBIUtu24y71urLwuDiftU3UJiFE14vSDBrXdTDVIq8H31UlcceJMjugJhcXqe35jdu/ua/Khc5Z9xe/LS4zFwjRiGUqRt9vO1WWnYnIEgqPENVjCkyxYRhytUw+WBttgPmsHKcQo6jm+XG7J5FS2ONMOEL90yHPVhBTfRr65BTmfkFH76DwCZLgR64CgcyayTmYSIzIExbadosJRMq3sbMBVVh4axEkBc2c6yEPkSxMG+mSTsYUMm+HXcomlSv/ZPtTjxBhGRxNS1BtBsrCsSrptnVlyXlleH4y/WgOibIyU5xQceiPLONd90XFCKXMUWAZkL3qYcsubtr7XTM6AWi1KTyG+6NZbNYgdo47lecOBSGxb1o6bYIdk2TDeE/pYB1rx+To1Aed4uGSgd7aVV0NLv+Lf/Uj1+pX//B/rD8taH94/qps22H5Ovyj3/30O9cXf/jD7nV1MW7TcH8SL77bE0CbU8ouJqTGP0d//X/4hXn/Qzf++SKbhDrvQCnSLoKioBcrxUxzLOpvJfn83uUvam3cI6/nIRDf2lJlmtoEkMpJe2CqrNv2aV7Mc34Y9FHQ+b0vNe5rHkSsUxshfwRCD+FGANyMTX1N3F7u79ubmyr4WqiMZUNKaL87XF286jqn3UgzcApdWRQa88CEb0CGlR0e+NmzBgIXvsoxQElHolk+nzxjjDEe/BEblwN0XCzBNAKlJoCTBwylGCBKAEQEYApRNw1jDDGCEMIYA4y7riuKDDgTkk8w5WLZn5JgVIiRovD65vvYJ0o/7POy7fWMFYd9n2xcILfIYv6qWug1B8cPx+1nO05uzmcv+Mevfr5Gzec/ejApfTRPXpbIkprHhPehDldY7onYzNw/eH31SCqQ59e5vOfmfRPssXyz25pVa/qd0QubfeLDOOGUz2Um3YszeT3HzHXzMpcya7vtcELrmZDsjoJW0eNiYZAvqJvN+EsRni35txfsZZHWRLPp2IrHTd7Wpc9EsssVRGqfr8bZpasyUpLlUm3WFb+cZ6BHeSzOS55hQWO/qZau8euKA2vn6hxHD2LE8ATRnZCnKqducl17uznzjw/7x1uNPYXh43qut++exhMOzt292bdffQqn5XLzROXj6YE7LUV1W2/o5MeHJ/N4T7SRoz+M6X2jv4CguD/+mAoDw3y3O87n9dTiVX2T7CVD9TxfQthnhVESpjiZYazyuZLysNuuV4uL843inBCWHJjVznVZRl5xnjDrYMr1oFSGUyRDz4pCUjEgBDFOEGicMjtWs/xrwcxtf9ZuFyRdMya0u4OIcM7r2cxMehiGoq601tZaUT5LMWO0MJMNwfnQW3CU8wRQgCFAAiBDwFspKC9YJjCAkTKWEnAhlcVcD701Oq/kqX8UmPeUp0EPo2ab5/pOwypnnJ+eniKMm3pRy3wKTuRld2yGcIR0AmhSEgiZBA9Y+GnaAWYpj1nOrBkEYzFAIkqK86DH+XzOCE02FEXFBHfTJARLijAfmAtJEZBRYm2BYWdP2oyg4hRCHKKfyeg0G40j3moHgMeAWBPaqQ0h4chxWeKc4NEgQYweBKckI3jQg+u8bzGkMFbtyWEKUxxBhJJshk6rwmPSKJEF7xlvRT6A5EdjGaTGesQFh5QTPk2jpAwWGTyNJRZOUQvj9Lj3k6nPl3ag0+Cs6S6vZ5CPTCGA2PFkr158cvh4i0rkpjZqh7OSTn5/ukdUE5QyVQ6nKNgqeFqo+XhsgxMAlRJViEnOuZ0aUqYiA+PeZXWXZ9XxACLcaj+guA7g5EZFcdLuDWMniRenu3I4xeXKuShJj63KScSLajbCSe+2fMYYFhgiBBxCESAseJZiSMAtVp/stxNOMpMZRsn6huep04/T+CAI7Y+DEIhxXM2vJ8enFEu1xkhP+iGXJUHVMAxZzjNVuNZE8qVBAjZu87uX6ZEiVwl5TikOIPR93/e94JxRShDOs8zp0voO0bZrjaCLU/ug3TYmr+oxeGBjo+2THUhwzPnJTUUwEwYYC9HD08SfSKGbRrP0sj0CEEtOF4zMhwF7Izmdg1AADLKywog6GznLMcyj5aU8A9b3xy56TzBLCO/bziZoIkjAecuiwxiPnMHV4hvByn76mGWFMzSZbFZdEAr1tC1KoSdXlAago54aPUIIFJUI8dbBp94mhnOsAUkECDZAj0iqOE6AKFkAlxDkeVarvEaQxYhywV0/mMFSQJkoKGC28Qyo1u4tjJiDYPM4PpeMC/7IgkqglQJlIs9ZhRyRMN990P/Nv/zZF3/4xz/953cHU/3Sid+e1EVZf6Oa//Bf/fX0z370u0Iu3HO7Bf3T3u/mKqw/+9ef/cX/8Rf/5//1/6q//Scr9bMfvPrey/oHae9mUYnimySgDYbwFFdnX2N1PY3H0pngKAIZRgol7lxwdgLRIRxGM0IxuGCNgS5NLsRgCwSxbadMTBhM46jbXus+D7qczyyJ81JeTi1gWCrFXTiJXEPS6N7FGFWG235rdL9eLfJCEhZc8gR7hgZK+sltsyXBHPSHw9VKBRQbtz6c1nHsSvnBmbYdnquV5rWDPI1TZHBhh+zh3eR7ThgjKbhp6AnDwZmUICYAOO+d55xHaxAGICUAotaTUIRmDervrlc3d/ddRg7APxVIwOnv9hHiPCFIL8KzLJ6dTjuKs/QWOvGzzbLed/71YnmxXn72p5/DANtwi6przI8cRYaqbRdSzihOoAe3h3fX58vz5ebLj+HQtp/8veLDsfvqHVvg3duvJrhd31xd/Lj9b3ZffFXrqF3EUg2jXlQldj6aNI5kavV8tvH0O07fcURxuqZ64lms5VqgKgGTk6I5BRQK4SjpE0OE0RjHzxXl1tmY8gxlevAY5BwX2J0yzAuc3T/cX5ydNa1dcrndPl4U10z2eoiJCmhHCVFoU6JWysr4Nhdw6LsEGY+wVrTdPXgLeJ6Np/5s/erd5+8WC6ZtC6KoBZbVT3a3tP9tKVkJIBasPO7fc2E9lBFpXPYJBYIvvLMefc4kBu0FtJsiP8niLQiHzerc2S0CejZzx25c1+XU+krdBPMYwTx5z7hYLhYgeYJSVVZd1+EEgAVBk8QhITFGkOIMkQoJy6IcjwvBZTv+PMVS0rMYLSKgWJgA3xBsxyHMNvNm3FaL3DgHA4oAgwit9QRjHwOASCll/U6HVOULso2CSYSZiZ1HOcud0sByBAAIw4Ax9TgxmwBAIKIUIaUCpZjcaINDyZagSlViH6Z9Q+v1lW12NKMJZs4202SqVUYHG9rGcpj5kEZHZjPGCUgDiNyNg0GJQjkax5GByE6dIQBbYzFXbvAJUgcMh8mHBK1DEGoXvLc5L0CMjFMoGJwmbQY09mpdwBCK6w3oNWNYS4i6gAjlFQzGYoAj9lJmyHBYTlk9g7fRcY0KFvdHuBLAJSZVOw28HfBcTruRIQkTQAkGHaIDLvoErDdWCWJGY4GLASCEBONT3yEpi3x2/+7d+c2NGYfj/nS2OT8c+/nV5vT2Iac4hJASRggJIQAABLLJcFZt2t0+crh8UfYffru8jh6zkqvRUR4igS0txPi+yYuFH2gms67bJtRopynLhgb5YSHzrSNdGm3AELM87HXK164H07RbXOJ2HyiRCR85KbyXIktw0hjlOFSEERC6TFBC5lPTYSdwXWObgEKYgsPTA11QlryzPiYN0BETjIggmUi64+UoC9A9HVU+N/2QUqJUSKk+7D6UICNQ4RgJCUy6/elAcJyd0RTN0B4lK4Lhp2FPxWAjZuJC74/Sbo7azF8sgIb9/WO+SNM4cklYQt7HcbS5UiCA5HwKGOKO4pmxSUrAZE+8DwFWZe0jHe2JiQLDDLOJMwc8grjpoMtoxMCBcSwX+e1hl128OPgkWIERtyZkmaRUUsohYVofyoUebIN4YLWc7jszmqyqMJHRu/VyMTnTtm1ZV4BSyDnL5dC0OGAEZbM3xjV05q1JyRdqPj48nurFxtlotOMsHzvidUVTTyVlqERxGa3DqMM8cKEakzjEvtcEU5pJ603CkMQUhGIET70hkEuZgxhd9BAiY0cpCCXEaQ8mBxJyY5CU62iVhNtjG9HAVXQ2CLI4HD8C71DAEuZlDSl6BNwlZCDxv/yrf1O++fx0/588+/1/58MX74R63tvh7v34CWtP6MNPf/z/jeC5GFZffTa1D38xPn3R7B6v5nebnHO3+Pj2vqyLpVol2Bk9EdGwCtgmL5JkDgMGmeLBYRxZigRAAEEEIGKcEI20LpAw+pC4KDBLnCk70pQ8taGe1d64ZrwlopX58/5UTi3ozUcqpXeGC8AIcRqN2JuJnZ+hoQMSVwD6KE4Jp741gs5xyaahR9Gt5wtjBhfT0EXsRBNm3rxZMn6aQOsUhPnUp7l60mO+ezpsNucAWT81SqEIYIpbBAiEIAbrUohmnCTn0XmvRz1OKSWEEOU8BO+sTSjSXHjNGV47E6M7Xa5W3C/Pi01O9ufT04UaSNjK4PX2OO52hQWfwoW6gAGJ9Xm9XPrtw/Zh1xZnM83LcpYzFCX0bz7/zXx11Q1o+9izyKsbegYX+z1/c+pfrISd2N++LbrtoT0W/+y//n8vXsJ9894SWC2rYZjofEYDmqkZBFIVZzI7AzhbLi44YuVClcVi7ByDBlmk/O+R+Iknn0HgADRZzgSzknaueTDHA/Jj388lu0AA1yVQwpQ88SGUnYhWVhWPYGC0IrQ62xSCBtdBBgwHSHdtJaXpdUa5GQaFVJhsmpACFyJUoXMfvniPDARTnmfisL3LKb39/EPqQ/O4zSSZhmY8LrbvlmYaExyNM537oo0/hhKP5Fet3e+PEeC6t/Y0NMME8vyTEJwJu2z+hLBJ5kWyNQLQdWdKrBCAPCx4nC+KzdTZ1YpV+cCw0qNVXIDg80xqMxKIq3IepstqQSK5Y7IM8YJli9lZ5SlCOFOzvYP30S9QmoliSugYnBD0bOpF3+G8WHivY5qcGzDGFiQm1NSNGMCiqk9Nq7IMQQLQQqk18KjrhrY9AexEDUlpjHXRBIgJYCyagBCKBCUfKEVaTyklCLCetFSKCGKcpiJpJ8wurpcqUA0Ni4H6tHPGl3kJSzXsDu3uMDtf2+OJI4I5t8aP2oNGG5cEyjBVIqtQniGEvNWUM5lJypFzhiEoZoV2NoVIuPI+RpBUniGKU+8iF4BiMFkwOC9pRFElbDEcb59wwJ5QDAgA2MXgnGOMGTNaa4MNk7PQAzNZA6MDFsIIJg0FBhT6psMEMsndBDiHMR4QMlZHEvPu2KbQlBlNJgs6Px0aTiUO5yRsxkZjKqbdKStKAOJ4aossBwgWUvi7I17NgBC01QgkKxDACUUwtPtMAQAbxIdiJlyEefbM683pELKzeTe8x9xxMTMNBhgVuSM0iTw77Hsp5pyVRVEO4zHLoJIb45gZE5QqeBPNALMwDU+qCGZgCPspPIr8/Olpp93D2ASiTgnSFFdap8lvVekhxPsnV6gMSTocj1yS+8e7OpO05MaOJJR+pAznIEoMS29FcCJXqwA1FyAm3Z+OGEKMiY+QiFzUjshh8odpNMETApSi86jn/SlKzooaANAOvauKT2ASgA+YUHCaZcSPzxbm1zuUTkgq2zVNd/q3qxGIYowpREYoDDF4FKJLqMGsiwGhuMIwh6Q1ExqmASOGifBhcH6I0WIyzEMOtfXAaCFaUGmXr5ZzZu6kQgS5bngCaMxrhLmJqQF4iKAEsYCwcD2cukhQrvi8O1rEExTIJ+uC9d5SjDCKwVkzkQSnqjaU2FzMphYQCpkcAQhcIUz8OLTe+jybD5NOKTjtITBKWURGDxrEe8JTQhKB6LwlnFElU8QE0uCBB4gXGSR4HEdKaUzReZdSQDBFOFFFAYQQwhCC9x4C7B2gYA1ctqxfCV5Zq8eBHrcyy885CYJwBnLqqwIti7Bak5eX8nsmO5o7C/7sP3/6T//Tiz/5Vf2T//b1w/0/UvQTCzb220u6+eqvf/5H/9n/9if/+n/j7v9onv54mT2eFc8Zm991H+S6CspC0Ue7Qv1FRr6N0CdV+WpqI3Xkcn1OBYQkARiCszBFAhGG6N82BQ54AEivJyKJNkFmhZTMR1BUDylMIbIACZUqYOvJdopfocgFUUosgoshToTGBNt6xvXgUWIYMWstiI7iRAiCEB/1B8bGTDqUJoA9VoApXRZTGoYIFaqW2UplBJR+nrMlrszhMZTZXIg4ufe86EUGAcptWCKnR+dsnuVB++giCCn54L3HkEyTBlIAAAQTehhVnieED8eumq8w4XW9FDTHnhAvNsXZ5tkF3DXu7ul+dx+Qezmrs+CsjC/9dzY+K71VgcZ++HvfPXs5h0sv+AkBN/v1hyNiXBj7+Isvc0oP+rbAlx/d9unwa/s4GHD5sx9v/+T/8ScIF//iv/zDC569+vpFh8c1QePpA18Vq5yzYcuh40xpICzN8uW6nEkI2nLlVmcrmrW82Bf5jDCCResjwRR104kIEOEpUy30I7Rcser0eJyO3vdF0OsU5hBTAA5G/xpAKmQxOHf54mZwJiK435+qcuFs4ydCEdWmg0E6G3w4DU3Yvm8XRea67vBwNx4nGkoUU386xuSBzcfGEPoBwHcEy4c7Cwme4BdDuMdKRsh6+Jt28ncfZ03fmf7reZ3qs/2oPU5n1aycLWRzTMlelOoCAIAQOe17jACEXZFrQovkw6woGWSMUAgoQzmFlFGRZ+UwDBECqRSEcLFeGecJL3lBIvGI5j5xmiNPjAkEkIOan4bxoLJa5CAiZ6JnWefB4APL+Wvobqax4LwiRHWD1zGyvIg+SK4gIQAjgOA0Tc4GxjkIU1ZmhHGQEMZ4MqPWzkcIE8NIQMBiwDEgZxOTMvlAMe773nufUoIQZmUBRm7v3sLS41DKIH3RgdPbmLAkghHuRqO15lIAIbwPCCHC7TQ8etB4c2BZEAVwqAVkAjqawVMsnNGY4dEOIFk7tIAhHwIMEfhkXICMEClisC5A7+OkPYI0y4tyse4GExFNjQ6ZTCbxLlpE0r6RXchmcyQQtIByggtGEQfWEwLyovDjiGdZaIYQgtVaBUyKYjg2GEVAQAJunNoEbEw6Bi0ZlBlI0QAYQ4pc5JQoOwEQufc+hJhl2WG3wxhzzruupVLGQavlrO86MBheF4Dg0GoDgaQLb4g1qa7mkMSQRiBTOz1luR+cpXoGcRmZ1ad3+bPV6cGCkEzfM0YAjlhAHwaV4ZgmwIi3IQGU1zPdTSkBLAjHiHEYvYwwLZYZABlligknRe2CisAn3kViqahCKHendn2ZwQoNt+9jBbd3HwvO2GaWO9wZTXEHYS9kSnBEZOqGB+uPnAUQcoLqYDGlnBAQwejTqajDoWVEVBFyEPPDw2GxiJK33eEhwHtRnvc7RQgV+RhSCxGLkTMJdPpSKXn32PAMVqTuDyWjOWPMBY8xEUJ6740xIIYYPabOhaOUmdMFQsTDDzID42lFxAECkuAQ4clOwlsKYETx3PIqBMEcW0WJ99Oz5aofT1qFaWgwSRHG0YwARxu08VOeC1WcEVK2Jzf0ushripnWmhOcr/PjuPfQr86WzmsCogBpPGxnm0bQZbsrjO0BvfdhyLPFfDEz06our2OMRSkxxsZ2Ihtw/pExllLy3mutU0pKKYRQ13U8GhMGvilImQ3NCCYQAwVZBQQi/xYZDE9mCMAygVOY5EwCRTo9EsmxwDE5TJL3tsh6Kez24ed+MgzdeHDCs7f3zVMA+zx3kltvtjnzGZ5E7OG0u2BnhNzNS3qT7769RGt1XpB9+nCvmm3V5nxPb8Tmu1e/sypnkQHDzmu1AmCcxpjnS5rrw26M02a9jGH2DoGODhqHk5Ntz5B2DDaRUEdogMgBEFNK0cXokzMxJBBcHhNUBesaiwnEYggh0PS9w7aMUNNidLF43GIPJRbXvT6G1FvrjZlgAsHD5IM1cGwqY6bRvcNUU7jqj1UKjIgWI4VwgcHCTCVB13Yq9IiFyBnjBIthPEEUIRIIkbJgEBjOPs9V58eou7nTFy5kUFlN3iLvndMGENK3vaICRIAScNpJIWKMyXpKOUiIIIoJdwnMVhLgcTRT16J6tlmsmBRCgK899JnnL+vqa2diMcei6QeXEa9cA9zOPIi87AezOKfFZvPjL9ujDKpw7e62f9zfnF/+xV/+eVYoP6Y5W4zT/V/86OMv//bubOXffPjqX/6zHx3ef6Qs1fj2H/7+P2BjBo/hfJ5XJGY2At8oYrv9LeMQUwIw4AIP7VPGfElfgTRCCKxeJBI/7v/Nfv8Ehu9gmg2Ttx5Po4UgwEhQnCWvzsgg7e1cbCF6S8smKAdU3hmBox5bQGEVwJCQ2R9D3+MEnB6HYBElwhjjXLLa2LE7bY9Zebe9/fDbn3aK1AjfEvFm0LfBzLRpRI4hA8duFEU9envoDg7GPn4cJzKY077pk98s14ti1fOMErjY3VMzVHWprp6l4/GnXffE0LyqptkikqSihYtVKLOSp5fAyclFQGJeOEx0hON8tZ7aOQxnCCHCKOUKIqKdL2ZzytlkJ14Po0YwbhJAkLdMmrZtMRKIAIqeT90lE7kDduw3CLxWa2HjHSAHWRuPnmQxUe6gyGGsVFmBEK31FDM3WS7EMI55njNpEu202cucAszHCXI6V3gBPSBcgAihR0go5wEKyAEUTSCEEkKcN3mZT+OoR8PyyrQPFNc85ZP5CNExjgBl80w46JPpR7NvqsVMLefd7T3mDAkBPMaRiawGHgbCgA3GJyGUGYJgmZAZ5kwnK3KhOMPWT3oQksMIdNsjhBkX3lvrTBCEBYBtCLn0mQARJ+3IvOKUFXntQ6CMUxe7cYCFjOOYqIud98k7blkgqR8dOE39AF2IEEIPOJKut3Z0LgAwBs7c7vaBkRnBIoLO+cf5XEy9dc5h3iR0VDLHmCR0HM2tUgoEEDHEmAAfIaejHggEk+7Yaj7uju7UikWhUUyDKag6WZOfd4A8DvpoLDSjQGAx7J3kM0HPBmfKPEGe9EQluQBEhtSc9lPX9uvzucrT6fSxGQ5SZt5BUkQUO0c9YDjZSEUZDI1eng4GQDsOTmSr7cO7oii85QhFBMpx6iEyQoiUOKaUSSSWhesOBtqMEO9ttV67dogASsSdhdFlICyDLRAoosXQl9Ctne4Q9JhCmQntbAJQ8GzqHZadxzuZRZQATMwNPhmK3bKsru2oO3OPyFjkczuptjdUDZhyULL+dlw2g72qYYcYuNPAlfMVxjQGQAUHADhnjDcJRYoLziWmmkvrXeLkEibh0w6BjGAIEqZISoWFpIIrgDU56ZzMRseOwKSFduwQuj4fa6shJoUSM6MjAAJBmSKDWIGgremERGUlMfHGdxDZgDQXgnKGKYnee+sEI8kbb/Q08YS9CfezhaJ4RuDy1A7dtA0hTFNHGWBKJJ/G0YYQucCIpRCx93n0CoacggWBikCXcZqATxRHDENIiitCecIkwEA5LcqcQOC9JQwDQWKwESRAOIAUYuqc9mHEJDo7+VFMDcrV+dC7rjtyvuzbIqRsbCqvKxhyDmY5XiLLFaQLST8ZvjYLLwNIm/rbJeKKmild4RuM6nnC+09vLuYlGA6nItWzrJGMFMLn6RxPcKmge0xrsVoXKHapAjeu3aD4zGixKDY8scNuTzMIsKcMYgwxQikk5yIElGAmhMA4n8+XrMoiwABBzAHlLNIGYiTYioJnYVohJCB3zdATOUAx9mPngpWZSpEpOYsmowICBJ2NUlQyK9t+tNYjSPIcOdgO4DiFg5Te2uNgHwJrHNccSthSHudTAg39KslHeKxzeam1n+w2q3pItwEMhOQpLFAKAWMS+hGmBBMCEUafog8gAYyxtgYiHGyAgDoXEqbalH1fYqoCORARvC/LMq/PPkTnxGodGF6KUKYWJzfLsqUf4fhuQYR9nFA3lkD+9m/uSnouGXKiPTS/PivI/dsHT9Hqk8UvfvVTPNT/9P/yL5qPn2HoO5v+X//0//6jH/2rP/jH3222x4v1P7j83W99sfuzbGbGjL0/tbPqEiwvPMoJreIUSsTYGA9vnvwx+RbzwOMgc/oNgjIXH0GSYVpIbrwdAUAgZozMgAO6s2OrP959pcD5+Jjrp8tp+6p9euaaC90Ic/DhNIzbk4LktDsxRKGHFPD+MOk+9O1paH3UJNoh6tEPkYKg94uhu8/LW4Af9k/Bds9CRBP6wtjWgVOjT6cRTTHb9ofATWcHhp9jLpjwq01eLfupN7Ypc0G4bIqsELRmhHstWHo5L6rL5x+ReRnMmOfejeRs8Uk9S5P5IoIhgTpXN4SwofPz1dLGA0AQsy6r86bvKBN5UTOujHXdNMpSCuUx5pSUlMB5jSgMEtNScuSfw1gxQUMS45QhYYs1BGDT7q4y9nK/O3IZA5gwJVPbUs5UWQ3ThBNOPgCMEoIBJKzU1CLTI8IyVtVZKRKwBI1O3wOnI4POmDAZLGQCQPJMVsXQG0qFtTpXHKAEYwQRgMkHwNSaj/0dW68fHpuCYldLYBZjPyWf6OhImScOzbGNGGIlxoPDXkIktYWAZt5hxgvM8mA0TMFZHRA4jSMkIrlkmgkQSBmDEBJElcwRJSFGxghhCUvMJIYkuWCj7pkQgLMxTFH3IMdAYWmdyHnDTLd9gDVVKccETHQgjkLreOlwSJKI9tRGJaGBsfETRKY3Oc1Bon2vESKYUkJIAgHhqKeTHiMmMkYKEUWY9mMbgJYZpDEe+hYQSkKKFBKGOQBYUQ+C3x6X6xVZlOPjoT82YFaKSM2+zOR1CCmgRhTTZB8QDgSSyXc5LVl5aSaUgKMLYpqTrM8Te5BFZLIEYKXHkrNlSomJGGAt/AywEngoCCRl1NNtIodMLoWkq9XZ0AXMYIIAIjXpPlprh8lriGJmpynCA+MhtKnbD9XZldkN589fNtsDGcIQgoLMxgeIR2MG50eIWpFpzryfjJm2hGhCg4fOJRABg6wajm6zuLAnZE7JTeP5WRmTHWxLC00zOkx9nq8hKrlkDu4Ic4yugcREbcxDu5C8s9D4QcojxKPpNUjQxwQBxpSKQhIGVcG1PRG4nNoSY2zDjrI4TQZhYHqKAfCOpqAgnlyaAoAOHI60DdxSnJCxBeZTPyRBrIKM0mAtpTQmSCmHiECAvYv7xxMEfDW/gkCdDo7iuSiu2yNwg5NIMsi2j/sQIkJkNJYwyhWlFGNSw7BwFiYyWmswuAD05OMAAByPPSEMAmw1hWkNWB+gJsLKokf06FyT/KSEQyrjTIXBJpdYKdk8JwJFPQYIAMYAkhAS4QJiCkLEGFuTgAYUZThi3U/JWeBdcjaxlNgw6AOk23z2QQmf0Zl3j0SdALtN5JbJ0RkdNeKA55wB8OObyr4s5tHeUzBzjUro2Plnh8QRQszPt1s2BZhjxI7khfg69OK0f/NycymdWhTTegGiLwC4WBEn1QMob7M65ZDmEXIU5bxAUMIkgqfJIRAQCBghjBBxxmm9RwCCKXCBMCGMVEopWZtyuSfkSbIT57+drR5S7A7HnrGrvsPHY3raHvth34+PPt5hfhrsG6aolBfDCFzoq0XIK2GtGHYsgTxJ1vtWT+2qmi3n1wbmqp9FqOysg9XE9XnWnzMUdd4FOao5xQJBQjM1Q54d7/tFdob0ZLiQ1vgyr6Zh9JM1xkkmo7chBELIMAyY0r7tQsIIU8gmWVoTxtXqJgEU8XHU3cMtkpBfptXz4gWv191ErvyL/AuZ7WZ5J0JHjtE8MfXrVqI1fv3NcC5lahDPVC/A7aH79/87f/9nf/nP86r/z/6f/7f9WxrCB0H7/8+/+udcxv/kf/SPP/n0Oas/fPLiSuy3cQLAvyL3vES9p31uZoep7EaR0/Xp3eHuF+/9U3z4cti+T1/8+kenpw7Grh1uP77r66JO8Ivd/m/6/glEM/TGjKE9tl5PSgGuBkP3R/1uN/w6oI/j9GtBtyI81vB4fN8Nu9vx9MhDpo+eAKO7ve9JzmfTeEw2uRFT5PZPj7r1OGqCkTOIoVV78JnKjXfb/ckaSRne7fzj/lieG5AfRg9FdgMI88mVNSWi9ZbG8ZrGWZkhhvCkn6TyKWrBuZ66umA4ojgWx/YvNvU3uie2WmVKxVFvs4Lk4hUr29WL5fZwK8SKwKU22BhOKQYoSaUgJj4iKnNtzWy9tN7EQDOJIexhcoKWrneKUWAHY/sQQr6wSL5PdFuuBrE6HNr3CTVqhbmM1oBCvrDjDKYiRm+9gxAWRWGtpUoBgJRSummU8oRPRMVxPDXdZDSAaE7jLOOU5hymCKyNFGhnQQz/1soBY23bMMn7/SNjLJdKtxPbSP9wiosSZygZnYoltHnbTMmHTCnuwOSn0dtlObMxIE4pMpIHHzofO14BxI2H3WH3VpUqBosxdMGrsooAQ5Ing5jg0zQ5YwmlAACttQ0eIcRiiBI6CWmMLAHNAK6V2R9EDFONeCn9w+PedWyZYWdmr589bT+6xhKBcQ6BR6YfLRhsPyKZ+U5HwcO+jYNVq5VIHELkXLbanBl76vqDUEuG59unfV4CkCQFz2BYaxupoEOHOZ1THmBIV89vfHsiMZar+tgeUYoBxq7rcibgLD+cjnOLeFU2EhUaunQ4nO7Prm+sJs0xEKykEkKlCAVzCZa0PRwVryZAiUMG2CKvGGNd+3T/+GVeiSyrhh6bKevME0MTrzAAjmAZoQgTzoqNc85qOE5mGAYImOASwIgQjiMsMwWD5UiUqgpmmvojjInnc3AKISvB4MdT3yVfeHTqOwA8Y8pZEgNOKSkpYCJ9G0koMKyMJQGirBQ+jSC2jI2ufQ9d8DoIERF2iJb9iLJZtds6SCPmU4ooen44HObLUo+jE62L20URD07wbiQ10d3lYjE7nU5SZlJkCQKEEOfcp2C88XqRksPUWANzdZaAxmyQkhN2klJhPAVw0oMYe5hSwvFCKT+6ezaLuCh2HVPFM4hCtTAh9U33AJChLCLsnB8TsISmsnIJHI/tW+uPWU186N14ykvFAdPNJLEqZCVFEQFEnNMsM053HcBQWd8wRii4cqaY3D5Fsly97huy3+q6zgEaVIZjTBito59BLIQKmGqn49hQO2RTwpksqYccYparKGDCnoQJYupdjMY5GxmVISQ3GcGV4tVwmHQfMJSSCAqQGzUBsPOH49himTAsbX+l+77tfpFBJfg152cISgiIs3E1Xy3myrk9WlzO5DPYnvH579+xgFdJRlWTofDVTYZE+ElW0vLijFekyK/vTz/y5H59KZ52H5JbhulrNmZWHEd6cmCdIZB2H2uUbfeui1aokE5bTMqQmB6TnoJ3KcbovZ+mgVIKQANRGlsnFQEJBZu5GMr8E8rM2J1kvKL2Ck8X06nOVOXisO+2ZV3khVJFLnjetn0wADOYgIHIxmgTQCFiY4wPQynLhAHOnVjYhLcgnhIwDoEBnWybo5PyU9O5bkDYJSAC9PGq6ytKrylZtscWpLYsjpvNCVEVbXARS6ZmjEvnTAwwQhXnjisIR5eDzHaWKSEXhRsalGrMoCGRnG/M2KqYHfuSqE/mQkRsck7LmGAMsuTVPIbQmDs8vQO0DXK8X5H29dWm6cNXu9hN3XzxjbHLX7169ZO/+dvmPkz7Ltqff/3br0r2reZxfHFx9rXXz159uuColuhZXKiv3BFRtanaYmVHJ5H3tH/i8T4vdZceSY0mMLX9/dS97Y6/2B8P7fBR6200TjJozKSt7G1uW+kTwzZ0U96YjdOuad7xrSUDmvpjP2775kQhhsl1Ph1S3ei8dSXgm91B56rCURM0lrOorQkMD9PjQR+3feAZjrXetn0HbnWST73rcbZHQWdhO8BysTl2J57Huq5m6hlxTLEmr59weSykoDrJ8Lq3LjJXVSNPpdElZqtSzaJ9x/FdWawgvmJiE5yQ+fd8O0Deqxl3TfT9CpV1oj9bkbJ5P1J1M79W2+O7RZVX55qtckQwOgEjbTGv7eGwvOLD8ZQVUdLSmogFp/NFY50VEs8WHWY0m3im/eSczRZnL3cHCbpnvK0oqK2gOam1Z8mGkLVs7bi35mng8xrYoRM6HPYsQRJIcnGMOHOqbTLLMzI0giadtRARjOGxO8YwBeaYAIWCRmr4eA/6PpAghTCnll9tHAPHpwfxtSvi1e624YvKtRgpDnUww3ulevRy5pCNdkSTyzw3MKLTwbktNQQc7NBbUa5Tz5DPxjGWJAM+AILHGBkVJRZsmIb2MSwxNlCa6AuiV1Qzx23ICAcWxdE5KejRTyaQLBcR233Hi9yMmJISBKknR86XALN8giCE8i3RX8OAC/KU2fFEr+d2rLhm3bGr1Roa0I1NdrWkRxepd/DeTHsOUb83OZnpVp+6kdebqC6kQs34qyR+Xs37YAhGVErZ7RZ8BXAcD22X2By0GTD5lICkUNrM0RkIs6SzPUSKCfx0aNFE8EKtroCNCaYil/bUWAAmC5zShCY/9BQGPLYUBBMAD+WEOQVqemj4apF/ujn0t1VuE9zW1UzTSAUJZhqSRkKpVBqjkkMwTmnqC04J1nrqKSBBN1lBnoajEhSFbrfbhVFkqWinbW8GodCM2I/2djaT/v3elwUBvDtRAlQ3PqpVGV05GhFzh8THomRHY1khSsSad06JtdVDTUrPlCiVlJzhLBjPZeraHYC5VFOeZqq6nLrGfBzq+hzUJLUtsbk/xqgqOvVu1LCoigvZNqPnHZZkt9tpQAQrQgRqXsfOwHlPNiyB4CRGERpAkeUQ4igLHwyOaJggomFZYTMeDbZ+CrDlAOGx6xHQUGKin9nji5hMJmbj3maI4hhOTy2jWUJOjxPGWV5vJmuMs1lW2RCRiINmkY8gJyZRC8bRtCjmwCgiV7p/SLrF0hkwIq9z0kBrSYZHc1KVqFZy3z+InJfzRTf6oD3CAON8GkoMZ6fuoCocOKEyQDhBFshKJYZRopTkaX1pbRAEGXcApQHMEK+p4COOFFIAfTHvrHnSowVB7B5BQAyPy9yd66cJJQcZj6oanQ5xV6ARt6B2F8oUm3w+noYM1lzzjago6882G+VVST0RXHtlR9en7WByzL8nvFKHfUU55qSM65m5ZGMlxVBUaTaj2OTYk5l6lczjgHTD87vOFxzU9EjIOEC55w/8W6+3mPh1rksTqGbJ5HEMXSdQCWKA1FOWAUxcnCjOJ/OOwu8ZWFpmPM0D6oryocRH6is8VSgcMQqT21l4jO7Mpa3MM2T7MDSDjoTXONjg9mQGjryBPLPHon9SMjsfnJFcpts+8kFefqXW4nCivByKOR71zHAE8RcUDkUBnWsALSyV+dlZ5wpEQW2NpmKyvkmRRC+995iOqUfRwPbUTdZ47KAE/fFR5AxID07+PFubECdYUhtvqiSXGArGGjavzw+NulQL3T+dxrm02TXy31zPlpgsslml5uPehp2fWVVKSqKuS35/+3bUw2Jztr66ubz5+utvzNYXeVnVr1//zqtPvnvz7JV2HZFW1motM9f01fWVk7KSpUiIVDIvBxiIwjfe4c0VGMGvevuwPQz4iMo0H4bhbvgcLvVE47v7o3O0dW9sIA4eIv9bDz9AGm3qTmNnxx02BHZLeyjHbWifGn0wsROcf7Ve9U/bv8H0ad/8xsC+9eHj3jeh0zvb4sxb07fN7RRSB9mctXtZVD7gXxF6DN50/f2zZ4upHVX8XUnzvAqD7q0mlXqO7Eu//T4BkACZUjOfc5hUOZ/k4jcR9Jt1vjvcVuUzTr9thiwrzWKeksGXF6S1zSxfR5OO4+7qxQJHJIvrh9sRQHf5/NyMMtgiqzOtR5yWzlko0LKe7U9NWa+T5s0Qy/xy8G89OpSL2XgyKJVlfqHHpLgqsvPuFBDKZbXSWs9qpceHU/eWSQRdMsH6tgUKQw20j96OgjIM0el0qsvSOMsYa/sOY0wIiTEoIauicDYoITkiehi6dsIAq7z0Ptpu8jFp7QlThHEEGUi4PfWUZUM3FWpm7ndDc5xVJcWEJpgzEUYNQiSUQxuC84iQAGA0GhHKuUwBjsSOzAMMeSlx8G17FBSSKhuOvTUJI0GwApH0o1P5or54oadxGAaSMCWEJIwghpga7yAlcNC9HeVqNTSdxqmQmXWWC0hQNIcnpZRSmR5GgFnyGErGEwTN0JqRlbluez9MKGdKZafxPaJtfb4xdrDhCZPopjpTs9NxcCGWZTmOLUS+yAljfhpgcvOcfbM/EUiarO5P43tWNozMptHWsxwiPYy79WYePLAa6XSrlqE9fY7oYbZKAJ9UYVXhrD8S5qxvAZoAnBhPkz6VNZ+h5Shk6l1yFq0FgROIDaQ9T6VtAFHrvDg3u5SnWXfwsFhbHSTOAmf+2IizSoAYuCdoEkUMkRUzJUuA0JzQHLOA4OzYdReXNyKvmmOHKEuY5HXNpCIQWOO1QzkRJsT52cW0a4c4yLoPI6AkyzMydIMQ8djfSXEz9hhFIuTFOMZsNiB6ODw1IHEYK62ti8OkO56t9vdTWS/A/4+l/+i1tk2yM7G4vXns3vvY1302syqTVawiWyDQUjc0EKSpRhr0UL9RgKBRCyW01E2CYhVVLv1nXnPsNo+7vdEgO/5EIFasay3mNxsTiTXaJVix4/1hnI5/5jiAC2rMGmNsVRtddMbnkPfdV+VohrEpeQnhTCndluI2rlgfFldQQmED7HCshI12ETFfcB2Db/ZXshDD8DXFt+NBtupDqpd1XW/fCKlgmU3EvwXxIye7GGbKXSlQvGjblrIaQ5HsTigAcFCarrlKaC5wgcrMNlVkrP1EuEk5tG1bwWT6wqBHmVc0eQc5UaIsxi1nVwjhEEJKoeaSQmKM5ZybRqVICM1Cu1QWs6W7m+8IFkrV5bJFKRwlEGpew7Y5RATzmAYaESaqk1WCrSZCTpVmklNCCOVUGNe1MIJVLhSDUs2jHn+AujK8DyHPZyTpL1Lil6Rje0yHP/jmYWOLfkPP9eHm+3duObZ0ZEhjlPsWI3il/FKze3N/s6yfdmNXwSlNc2QxYIqusNZ6T5R+b92W88ZI6dkdRT82+lcjutqHIvNHW3/awruy/oK6H+//z/9bFy7X1u1mpx4nkvjLTIv6PqVUc04pcc6p4AUqIhgRQOku4y9je4WZpfoTAgpFCXrr2RSoTaJMwa6pXnytYk+b+9MnZ+M1EtcNC7S8ViGx2iFnu25j9PX1+LuhZ7Xg6NTDD75Vv0ArwTaa4+dBmp32aXkWCajlLP21N810nJhIiF0wgeUs7XTAAlMCqOaSYjB2IbRWHFnDiWXIUyk1EagqYC3PEDEjaPYbbUHR+PAJUhbXSuqIrDu07vbbfnpabrv17TdX67Sl6e+1uhfxaqfflDIk0k01XMo5qc2hT51gDCLJFqO4P3S3b++56n71V//NuB9u7q5++W++Vn2myquWbKvV8tAyshxP+/1VRhRxvb99Q4S8LDO2/1YLSPCnYGjZ/nJs/obwYbHYDh//6+vffU5naH71+NK6+fW2eer9b6T6i6fpD6+vL7S80Vq/Hufj8zVjvzYeYk0JLbn6WlCtmYiTGH609igo8KKOD/706k/TFnh4ip9jgBmJnRpRk7PwCivHO84a1frnB1fch7h1inSjupPQBxNGnXDU1bdCKaUOEN/hMOyHfHc7Mra4i+rEO9249Tzk+T/cv70RiCjygeD7AGt3tSqdURSi7CCtN++vMUF+M2+++9rGxJGsRDO9toMw2yWjl36XzLpijBFdGMVV02ASbRrcdqenTeyuUW4IfOjaD0DAhOeCj6VclCDJIxeDzwVTGVYniKopE4TH/aBaFtcorm8YhMKSRtosUfdNjsmtC2MMUlFtk2MiDDPOIScsKCaAUpFSgtDbZaWEU6J6NSLCMWIIqO5GxZuCSNsNSEmEyK47gC+N7HEmJWLdNExwVDNgglPxm+NUTOeVxYJKBc4QQsYFIgShEnkoHWc33dCpxGqZl8lcaKl5PTd92zQKE0jRQY4YQ0Wp+MV7L3UjMQs2MsRiyavZiFJIsnhZ6aChpGyN7BtIudaKcUW5xBSw4BThGEpGpCKKJOcV29fzeHWYzdpwKTEttWZ0KcgBrkDrZl4pDVDrdsqFHJk2qsmhbN57LfoSRDI85RehcgzQd9fGheC7Qf86ehw9TYXkHHVLNnOpNbf7N8cXI1VffF23JMXOGWI3DLFZJyRoVwsvgdYshdx7S7S+Tp5DKlXQ6fVE2w7U/vwlCvWtf+mz33hLXDWYJIEzclusTlyr5FFJSBJOMIvRg99EQ1JctjhXVlDfzct2Oi+IKir617NBjCOpc0ahFNU2q12BkIpR9vVyetFvbqdPWz/cWxxalEGLfndd6KNSOKygpa055jjyBp2ntR22y/lfck19fwPhlpSbSnyscwWp5Vc5NVAN8FX1OlixG69MmWwJh7s7sqe+xuIpAQIYSSljjBgIEyKGEI1nQHKosQKUqoT0sR5Pc6u7ijBjNKwGUUE99oVkk5EQISQh9+3+FYmfMG6Co7b+odCftoXEtEWnSH7P0H1KSXeFUgRFtQ2N0QnelqRScm0fa3F+lbm66LldSq1WDBwBJ4QrmVJkkDTHOgXK0G0IGmFWKso5EMw45yi9Kem+IqiAK00EYWdt2zSllL4bvQ9/ZgdU6yTnr49O8m5/LRN5pRJ7o2pF7c0t1q1fQ3VV6ZbpLjxfBEhfCOINII0jTphGoLzK5CskWms15rXiF6I/691Dlr+xC7glYyCYFJ9nFy8JNpcmlGcJXXgdqXmXJ+GPljqGN7Gnf3EzfE9pCP5cfedWwWhljT+9zFJUDA2neujGbSmlWtXg1WebBMIH4K+6Wbpu2ambll6tm9/EJV41jv1iWnsTP8f+kq5v6euHhz9l3BzSctIdbfKsyTRPvyeAUIUYY4Faao210EawRhH5isqOcss5RfGWc56DrxVudLkWMb7+fOClLse7ToTLF3/+LFAFikwI28lMz8ZFDKwxczDP4/as73bfdc2YslVtHg/px0//S6N3nO5KHCDdQrwtcaxZIRBUPHJ5KYGEeRcsp5hR6gv5V1zrFn0W6m66mN1O+PQ0jDp7bBfjrdNDW0kpJdUYOtqsn87hgsigXJyYP3M2kQ7PU4SNDexNKiAxNPX9smwo1784/J8eP336Zt8NwewtvC3jLok93d127xuqmZaEs2W+/OUvvwvF3b65TtG/vb27uT1gkveHtiDX7/iyHo1x17s36en0fDklQmRmh2Y/lXTyW08E5V9Op8fXhxcuHKITpiwXJVRz/JIH+m9V/aYE78K2+auIvjkmelyfmrYfDuTh9TfzPLf7ML49Pl1+PJrLJb5cwtOals2zeR0u0/B6Vg3/b5apndetb0V0xVv28hAP+2/9SiOqKG7GHX2ZebWJ1POrF+rV+enmcMNYZdxLVtx2alTA9KNuXgqacqSM0Wb83B9+h+g/exO6Fo87UhMWtPHpKZOHWHzwD4fDIWaZM2vaXU04hImrC47KpMBFHbsW891mGAcVcLh7+85aGhwtFel2xLUPXgnel4z02BZfsOTbtmredoduWRaqaCW0Jk7xgKoCgFo3Hx6IDP2eI55DSlDwfA4YGkwGHxbOxLaZft+yWp7P004NpTjnTfKhHcdoApIqOM+1QgRijNZbZ+x6OhWo4Jy5zIhgQkRJ1bqEgdQMlQnO9LL5imsyK0ChfTudL5Kyy/HEKUsErc567yFGjDGlVA2j7rpqIiUEoBJCUkqYC+sDCgAAgGmYLSHEvJ7H3YEjUgmNccY8CwkxmWV5ERoV6ir3jDEiBGASYwITYypQKm11zplLIaVeTi9No3GFWjNOxadSYm50WxE4YzmnCReEaw4x54wQwjFDioVU1eltuiT2J61ab/dlIYhozvfrOlf2SbasoFBQtHZTSo3jngA5P1+U3Mfolaac03Vxrf7KGkzV6qPz3guhrAmEMEp52TZOiezfGkMku1L8Njut6Z1dBYEDpTL7am3grIFCoXI23k4XF3Blm68Nkm842M8RfSHjnPyfxEBDmCVOKFq3XXwxw1UXshOAs+BkyUlzskZfADKEkJrmFogFFwEPeiAu+pQVb2ojxXa+LMuihOAcSrI1+WBdDrXrObhzS9t59c2dTutjd9hVrKEoKQ3GT25hdqW7KxHA6F3V6nY7Sa3fuVBjekDkU6JHTFrCgSpPRX45rn1/m2uuZC2+Il65ZISQybw4Z3b6ervMKSUAIIRIKWuIqKKSspISoc3GiTGBooxRMKpLNM0eat1ILQhrEpqQFIo1o5nKCwafzLviPpwuD4Bitl81/N/N25nKM+Vu93Y2ZvVb3/Cv3fSV2zhBfUqJSZfKlKtg6N6ZSugiNYKCgkmcVSg+BAgO2XUlBBHUEDxQUBSEc65ixPg4zWdEDKGL6B6o/pTKKRMboaBSGSPem6ZVpQBG3HuPKRJymOajlA6wxe0I0C2rI9jtdrtsffZBaNXtx5xSWFeqOGIi2lBjAoCCMUMUlwoYpbwZu1KsShJ9/zYFBXlcLxwiCssgRZfyBlUylW39HVVbT3d5umLhrudkJ8tID98d/kNfv9b4PcO3VCrV9SVdQ7wNgaREw8oxYFLHvr19fX2ttYo22PgTo7gGXspRCmD4usQ2pBOq+k1z3sd/r/OHRv62Z3/oM2OeLZP58n//v/XhkqgJe+kRsg4LL9sooCBACEoBgAIZcOVKIo4BkYyWilH2u65ThBBGvnHRhnjt8hXi7xMcAuqeJ3v2bq2RCILpEdNXrjnCnEJGkbj5hkORDNw2EQQpVck77+p+d4taCzrIHbfVL2nlA/VkjXxCpVJqpUKlWsJtTJugDQGO53XTWod12e2GkPyw62vNzptUHeO1RFdKYggTj/BW7ZcVtVyiGRsn+quiS1ocNlINXSDAZ43E1r4t6ZF+d/vrjV72rN3dvys+9om9ZYe33agY8yXxK4VVs5rw9t0H5w1FQHE9DK0sidDL9c2AQUWjIXbHl1lzvM5ffvOP//LdV9+aebObffz8gArSqhVCTUfj7CJoZy+N3RzQn1SzvDyWp+MeWA3hJ4n9zcgrfvAQKvlLSiD4wduh71vZAMbYhRek/qWRw6DuR3nXCUbJUy0/onxJW67dC99deGdN9JD7ll8NDcHpp26vPzQ4SN+U7opepSbdq0xkhfDth/cH1n4mzCnW1pK6RpKsW/ZNNLc4fEB5kFxo3fqlw+5XQlWCdKeVlBhyT3HXdB3UvcT3BZ1lP7f9MJ8SRlGoSCRFICjtzxev2oMJoSBItXRd59NG9BNRz00vCC2RfBqvrU+O0SbGiJDEFAHNXa8u65d+5Jt/XOwDooEponWr9OH10Sl6w7msBGcE7a7ftlVLQQizLghKffQpRLxrmYmgJcnEpUw5EZzmminGxluGiYu2ltRoHUrWuuGYIYKB0qv9ngiOCV3Pi+oaIYS1NtaSXESY5hpWOwtJIVhGqw8bFxjhzKRsulY22gfPpfA5nY4nKlU0Dih1wSOEGCZAsLG+5qKrSIu1lxVjWT107RBSpU2bUnE2pohqhBiA6r4AIkJqrefLGVyQqrHzgjjt+gFyzCGysS/TGgmQrnUv59orHHLFEoMAoIBI9ZFihGgtwdllJUM72w1tvhgPip/WGdkgy9/gcl+qz+yz3k25Xrzlo/yrGq4ur0iKG92MFcfNPkq96W4GusjWAZkX/9D0qaCTT09cryEubatKJc7Ww+6dN8m6pRt4jueKDSI211nqKjvweR6ulHEvuc4xz1zGZXnaXynwp0odJh3MaHf3NUmNX+rhq1/kKav+KjHNUdOh7vIwh8ra63eXi8eOElxYL8NmjEtMjzViZwvFDaNaisFskTM97ncVIqFZaRyDzcnjkmtyNZqxE5A9KnXcM4xYDMW41+FarpPJCSFi5nOyphBChGCPj18YJ1xAyut479bLF6Ud69xiCsoaVSr4ByFoTC4En6HUmlz0hGGuMYo55+ytSy4Ow1BCnB5f9uOh1uq9x5hSSpdlEUIAAEKIE6x6uc7Hkh1vBJMsx4BZCRFTonLOqBaMExc1lYU3Oefq86eMvqCKKeGIvbJuLplgJBCiULKPs2xiKA+xfuLNq82fc2lqehMrYDEBNcHnRl0BFrG85Hxs+JVdUSG+QoibYuqCSd3mVWns0xNTp4rPWjexHDEBv95A6Sgec/iKCgp0q7WWFDGUy+WiZDNd1r4fpGKn45kT3jUtQsibtRAkpWSEx+jzaRKpZIazwDWGYBcYeGEZ+QDWVZQCisg5FHwgqekEIzinkmNNLl5Oc4m1ESOmL4wvMc/TuqREnSc+UEwG1LKlPLL9eYUvW14rZY+nn+fwo9YhplTQqPorV1YiXCg1lQPEHSoUVXe5fKz4cnN7tc5l139oWGZ4iukTyd9n83UK3wRYSbMGrGl9bd0z28AGOJWfZ/NDfNpUG6W/xB9+VlsBpkKnoWOQV28d1MoYo5QCwVRwzLHLMaU7RL0Q17lehkNNQY3jvqZ7whzCAZDHJGMSMfVMJNWkGR7c+kRCRrL3wPMWqN/krgxdgXIh2KWUSuI+SEB919wuE5SMAVsiJiAnTD0AiV6WuI9O5JzbsWkalQJzawf+LUaowxRlNMWy1UJL1pTKAotssGzZvFxQrZI3nMj1vGmm+7G68JIQBTdQqwOR7ds7Xi5hwUn9IJkszn39K+l9qM6+ed9MTmSquRpLxd1e1iaf8in1ZjJzLvHt/bsvH5/effV1SoVgdDUOEve3+3c//OHj8eXl+Pq8LStH8r/+59+I3d6/rO7pMi/Ljx9/gvMmXI2AGLyL2/12AcLmbbqcPqnzS9L9Z/3V52N4tMlLaZJ7pLFcDRjTf+LsrLsfY3mhYvTZCskhaYkpiSeenxT+rNARLTNcog5CB5LtN9HdFNRVgvudupzOHR56uK3lHPGKfOL4oOUt2GDLUfCNkiTY3pw1Th3FLcUDxb2SHZJP1s1jr8fBS33EkLY1Xd3cEBFOpzLNqYKbJwfpnsLbkkct70JA4xVj6tXYL4p3BVo1jqQpirWArm3kraKUG1cNTipEovj9tjHBW6hinUir3m1LAUSjs8CFkhzhHKA0HICAXWWjbmJ0iFiqYopzSkk1OzfT6DlTbYxOikKID3nubxTDYjPLsB+ASDO57mrnTxcuB9W1FcAkl0IsCAiGUHIpxS0WUQYVb9OSUYESY/S2eNqqdZlg12BcCMq8VcFsqpEIg1IKY4ASpeKE4OF6VyDGzV9ezjHGkCJQIrUinNVaM0BlJELBJUvBMmQsCAGEK6omjvu9fX4VfWPmDXFq103p25pVdpzigdNdDXSzJCYOAKmkaGzlRHGh26Y6H61hVEZjc0jNbgBjSUEBKqmUdxohPK8rokQALi5AQWFau6Y12zoMg5vWXqvTfFK9RjGWUlI567ap4UNyH1ImqvVU2cvpJKWWXFlrESLGOO9i2wwp6xLvo7vN7krx+/myHHZ3YXrHBQVcU0pKNgAwz3PTtd7blFyFmLIjrMZkjL2IBsWy5gAA9Prqfts8YwpEczlNbTPW8hMdJx8f6+mhiMIajhdDRlVQLMVBCsPQ2mSRwLuxy9tmk4UYEkdtJY6h8LwmIRXV2zbjOuaUAK2QJAAAnJJPCOe2bTmXOWcElVNq1q1TA2KhZm3X2t5gqGd/SkvkiqXkYi42pfbpJV294eM1n86JI4bzX6xnlvMlkSc9UAx1N+pQrLWPtVaC25zw7qp14WW8Gr3FuMSUcSNa5NN8iYfdTcPRZh1nqmSEMcGY5FK55ISRXHPcmOj31p4JmlmTfTC0UkK7nIaKdY4mkBMnF9GVkipBLS4txAHisB/f5kRR7MJEKTR+Gyjara93UJRQ3sepGWfGZMk947JyU6kBLGIYamGYXXzcsi8EGOAckxWi41wRXHSrYiTe1ZIzwRjVjDF2mxiHb6U6lEpTPSK6UCII6gm+9c4xgr23knHvA6U8lQyoZJTa5mAnJthowlypYZ2GJEIIDBPBlQk+o8q1ZgTbaFOJkhKKoEBOkGsMOOeKU4mxbVtUcbD2+eEHgmbJNyVN3BomgvUvFS1Uf3Z+EvVr8Lvz+be6WWpwLF43+DA2vuHzm/1+2EnROhCGNKWQibCAcCUsEv7b1fyeEtTzvyTx220Sjbop5FyrocxRtBflWyon1VnOOgzXmZ2SWgK7S+gb4BmYqVygPSbuebv83A0EkRK2HDdE+QDNAACQMkIopRRCQLgCVIQgk6Ub3gOuut2vk6JMFkhAoNpEAuS5UtvUqeH2Kr1I85m6wtcT3+bs60PEH3G2yW6Mn6OVfmM3V1+nSHKCCr4dynH6DXFFFeFeks6jjH081aYqEQnij1xU6wMhyjsppAZyqviIRasxZ6FmwuhqNkyYc05wBQQ7H2pBNaGSa8xpzUYcFGTnAipSmXkSRpCxd0Mql6Uml8jfEsw6PP78VFlbbsTtGmQ5P6k87xXmULXgvRhuxLsx7Nbp8XbfX16eu6aLEa2hrNaLphWw/9f/+sP/+//5P2/TBRXvt/Xp0+n0yVoHTw8vkrAf/vU3y/OLRAhCfn548fA4HFJBl5eHnz79/M/r8vvkHjTlv6hf/+Vwfdvujq/4uCoYmqXml40pomjeYYxCoNX9KrsbXge+/e+i+ca7Q0k7lA/FX6N84IphfVyW/8j5goAQho/Lb3d3L0j8jtAfSqxzJQ2wzDfWxhaxOROCaKL/mtKqxEEqvrlHRIyNl+GqvJ5cv8ddR1i+BXtLcN3dAJbFmGYYb+7ea6BuHPs336zd7W8RnRJ6Jpxzuk8BWrmj6CpUhgavDvzh4w/vvv9qg2CXSz+0VEs3mbZH1iUhtM+XjKZhGOfJcOWNMaOUtGm8sWbaRLdrmvF8nNtWKdX/WVkKli3LcnXPMvoZADdNQyn4OKuWn8/HzTmqB7OEKy2O9gwOReB2vSBWc+GVogyVNcp7z7SkCP/5o4UqVW0HqVCEVdtUXL13vFWAM0IZonF2UZoDrSgHqBkBBkxizFCrCx5wrSVXilim4DKtBEpNOaBaKMDp8ZFIlQnBjJaYCCE++mbsYkk2GEAZ9cKYjexVTV52OpktRkcIpgxzRoRg83wRmrGOQwyqbXLOHmcQAgjMLy8UoBJaFk87TSnbppUNXdpCLYBUreAqTrWU6jKOJJlSNgBOSa4sFN1353VuhJKYVoKTgRQD58mHlRKBsGassd7Xuuz3cjPny+XSNLumuZ4ntC6sYHLZlmYsRC0uPuvdM+L/VOBT0+xOp4sc5J/5lv2hrSElV4XcE2gY6YF1MUDwVTW9D5nRHopAau9MlWoIa8BIUqLSukP0w/aFFDtKejAva+YFaAzLBbfSkAAKDb328xnjwgSOMaaSKmSuhY+mZssaAGwJLn5bUSmyaWvKwTrvnGBCSI0wBUQxEaEU633KpCLuAvHJU8hit59fFuID6pSIfasJqTsbljW+XL35tzULa48S34T60jYIpS7nljcl+CWb3Xa5TUEJjqnYGC2kDoK+BZDWn3yyN/dfvz69Zu/68a3z6efPf1BjTxCllCOESq1cch8CFqxSqBlv07Lb7aKLqVQu9OV4YVojQiMBhlFigGN2gFFkOTUpHWO45DRjZVN6ptxXZIS2lFLZBCJfuYzedHn7DoVfbJeWCsokQ6jBZMg1ZfzKmxqsLKUwfNWK65K3DAYQiyHXeiZ0n7IgDNeaKW6S46Tq+RL0fgF2Et1UCymZEHEK5YtoT3+Ou+qHznuvdZtT/fOtfzX+6nKeEV6ABEBd07z3q0FkbpouMu5ybnir5RBdCCmrTFCoXKuEAcUsEakCg8DZ+NP5KaVUC6OoYTBqcl3dbn4kGIZapOCt1ALzSlmWCmOSaWkH9oblPauUY5/s3OADXt7hxNuWEIYopX1PGQJWWAonv3Zj+1bpheupHbfL8vNy0n7dVyYzaim5BnEU+kzwC8kKeXlV73BQl9maZW2D64xzz/7lC3c/74K5flxLYJDzdLXDAMc1feSExhhrLjH6FFzOuZQiKCOy0CYAAVy+3dymB0h5z7ovQQe8Zx/++msrAr9ix/iKd+DEhtw7W2RRVsjnvjmpLm9bDqc210215OX0mjJKmRLUPj8d7+7uqJgR2WIytVYAKNUDXhE7QcWEtQVbXx9dOiE+i25jqmAmy+b8MHwIkQyj9OEl51xSg4Bss9mNV5SpmIutge0E2bOzK2odGwRWLUUQCeV8/hyx2r07DPTUdG9mHDr6crXjz+XTTdPl2h+XPFcSBjXrNJGFjTihuWFFkhytkUy+vl5+94efdrdvH46X//gf/+5/+rv/l5nBzer4EF+/XL58+lGp/NNv/uQJPm1zeD2/a7uLWR+OL13liJ9KKRiJp+ePtZRPf/Try47lg9D+9XR2lcj9To0jijwft681x15HhxTbx3zShy8hPzOESv3nslu8qI7oyHovSlCzE8slL/tGzS+e1dvge9lcCX5tLjfI/IfKrrt8HVue0p8w/lJH3cQD0GsS/lqrlsoJoZq87rpbJXenI61oYPT2+WmibGtbZE0SDfXod7WOrLlguD4/0/H2si5xevhuf42d7RCCVFaCWaNFyM9Mc7O9Oc3z9UHE/BDqVALGuRFNz2nYFq2ahlDKyZ2g95xz3UhSb2WjirNbjMmFVg+kOzz865+0vur2w+XyoLqC6bbZk9Qtaz6s54ZSh4h5Of/cHjoAqIUKehWMZFRiyjbkyxRx2+11UxnGRLgUpZZy6CilCSoIQQiOMTZNY4333ne7XYFqvQcCRNIY3TB2NphaM9E8+lVJgTFg1VnrtWpyrlBxzHW1hunGPZ870VBMkw+CcQxAKgyqwVyEkhEl3lnIxbpNNdJFSzRtdt2jOR7eXHtaGy2dXWjOTHkmnI9HH8+sq4QbvSfOPQOUUhJlhGuV3BZiJACI8tV5oYbEWQoRlxox0ogb6wvxPsxNp2LydjGEartmGuXrNgvMcMgmOFezJjwtJtNKaIkBfNgS+tLccFQ7azjCGeWmZklJc3V9jxCydsvVCFWmyd/eHdbwhXNO8y+J/2X1X4H93ll0fXVX3LbZZ9UAa5h3GaoKziGEoOYwzYQgKrD3jiuGiAEwfv4kVMr54sKxG3AqF9KsYXvsGaBOoCTxAkehZO16uDanpHbvA3TgG/9a08QKjKhUOrTxdVppGoRs3/Y1rAm7YAPQc9u0YMnr688EYQ5XKdhCyOZjAlIQtS7FitvusK4JwV2qkxLBxt6cSCuTuhH+KDt5W+vRuOf3H7626/L8FBV+S1h8eoql2v14qGmwG+L46nS0u/s0DhKDDKuQfHe+vDBeTk9PnB6IxJh33sX2zdtlcpv133z33tb059wiqDjnTAW/LDPgiinlLFdUUiA1thzfBEcQFOeOla6R2Ea0lXTViNUglEgqmRPNKKYEga/RV0oAo5xCpSytEwUoUrSpnHj/x1xnKgyuI6K5koUQnrPAFOlBhJyWmefkCEl2Bgya8A2zVTDlo6HcV/IkB2v9hXGS61rKxSw36zxwpiG+TfYagLjlINAvCCEYYyCklPTnquBaqxAsFweZ59AAapWmi30WrcqBrYuDpila4YRhjYv1BAtsKwm1CG5zLi6JSolSlbG4uP3u1m5hPl+suwjpzPZjiH+q+JMcfjBm5mzwW3/+8ia61qY/VfI59+mPp2e8G87ZLlUV8QvUHXz/mQKWfO/n/fmJQF5zfNWs0+QOkL+cVwxNDQdvmsNhx0RSw4sJ5DiFyT1u+e+rf1u2fUvRYfd0li1uu66Lst1Z9t++0LerWLioLzJhXaVb4uvDuOsva8xpkPFdztl7X2slCCOEcIXkQ6mJid5aI9Rwsf/aDZTzfryKkr+lftB5VxZS5pImOwra0axhJfT3qf1UBU2vX62f36+OmHpsiAFI5/MRAGrBJZMQa9v0jJMtXl+cqKpxJAdW+bhfU2PzbfLtNjWQW4w4F7ttDRUiZw32IVNcUzrXOFNMfMAhIuCMJSRYY31a/ZaRQcQdxl0IOM5HLCeES1hT5dmcptZ0/e6N91Z2e6rObqlkuD682zF3W8vzyfzQq55bGCKnR3EQhwphi6jZDS9T/vx0YdKT8ppeT+lL+P/9j/90Sh8fph/P2+9eX//x7/8/f+fXy8vx4x8+/1TjT1iQnx5PGNowE47t8/HvmVxqrfks6AtXlr1+uUzGr+5S63railAtOCuiZXYeeCUkx5JtCTVlQZehwTnbUJeANFE7tFzgdHqnM8u/ZepS0RC3Q5uuXLIVnlP87aHbety4iWGBg/qREiPHy/Z83LG/TpdO2jx2HNyx63J0gRbJEGCYlHBSxL6vSlLwC22rvO4uz88NbXG5za9fNRIhPrxezvf3gWTx/PqG7QZQr6LZImBke2zVyVnWCH8+xe0sdzeqv1q3sN9qzCHgeKlOAZJIeIh8bFIEY2NtKdNErCZzgKvrwc2IsVRQ2Y5jN/CruL0skihAApDod3dUtMv80l5LpvflZa2xBbi21kvBTmXh+ESwm3LZl+sthW7XLcZnLAmiVmIk9LJMjOImFtthbUqMccuu5xw5b3jmlCuTsVSAKKpVeaQ824QAvV+/LFuCcgpQg0AEhJ58IZ4WA93Ne3NakfTbvrhXnxiBMm41bUIhYPn50tCOFtHshmNeD+r6aKIAxl00mB/QPRicIWQZ2ZpKc22PFd28hVNi7VAiZvwqP6Ay9+5wQK+efnUnz2bSRZjUHnaFwEDZM8xMSDH75BxTdMsbubyGKUhxnc4xpSjfHvIU+RxLu93sD+sfzs8uG1qHjKbFMM7bK1kYIoohx4br79LFrOg89IgQhuQimlKqaVsckxOiAdSkynZ7bO1DDQkgGXjEo1yrD+pHMjhSHazAxF3hu7LG7fzMusrvR1yWuj1V4eX1gAoB7zHJ/mhZpwMrHChhe3NG9bWGfuDnbBcr7g9Map9C2ulDKwFvHhZ2w2u80HJ2/gHIRK+zXz9VEsF7NXQ4AoRExut6wuEiCCGku4tjP4Hb9eNu39nyzN509vTANXmxP41vaKxlHJqYPkdyIuYjk0Ntr9H0enUNFxrtyYl9A2LzuWp5E84jSmsJhvTJi9Qil1KLx9vt+LHlzvOP8maJW4oxz9tR7cnRPGOuBNtlK/OG5XCYLnN7P0Jcw3xpr4bQK41knI+8phwip2o9LjiDbprFLlXwZtSswSmbmk5aGMCJywOvlcVjyIXYELnvhUXNl5ZTH332jHVvn1+3g2yBM8fUgb3x0Tc95ayxS9Bqj8oVQiQBcihgVUMCbxKuUdGb5VOlxZH6wA+aYIFaShjNR5HR1Wk1LEg3XzS5Mace131NOljQre2YZdVtlm51Y02Fytu+Pj//roYipQZMC+ZCtojxUBDrR4rXKg29EqXmOkXl6WY2f0ObocMhUudr9Sk7hYjeHbZU8MhDCaUYlCaIOGy7UhpCz+AYpysUuLlrOefOHDjtwjI4T4DuH0+9xeDJH2P60grUSNSbr3919+8JnKX80isL/ul6pA3dFyk3V2RvRHsm7Gpb7rYtEW4y5QZqCkuPI6ZWNidFjutxULFRCHWyleWvUjq1ncjozYuBXa7xxfViTNFGF1HQqISQ/xFvJYataMf0aI6SZZrzC1JJ7W6EHgBwWk0PFDsnJEukWurUbn85/7RvNSm9MSGhjHnOJivlAQtXQ/+GFgGVl0xRgvfbg85n5oEeI7840e6uPIF1vhQPkAhFwYWfu9Yt5/nlS+o6xmqVqAhUNdudHl5Jej6oFdNNND8J+bSeXjVIGkcF77fLhv32nESluGH69jgVmehwN5A0HS9nwvC2bV3TMqAMMxs8EOjkXzL1zq923DeMS2/h6kax5hPBeFsvxyebS9h1+9//9svNvTpdlkFoFDOEkFbbEI5iVozv+yH7EdXcD0gp8bvf/jSOh//8D/+Try+XV7y6S7+7i7XN0jycPgPuCrEHxT/96z8sLz//8ad/IUNGvROauonlSdH29Sn86YfPnz/99F+u26VruElpq0Z0cHvAI5tHvnlzNCkEIbF0tjxvbjo9aFW/vb1O3v4DcRrBp2Zfn6ZwnrQE0OKPQn4Brg7DVbCNZHspvY0fczG7Ueb6s2Yo2TgMULENXjGJfPyZ1NZa3zTdujiCxfX1/bYGAEwI2Y4h6atGvoVZRNVzzVi+pOZV92ZebNd+h9FYyCq7Sbck2l3KVjY0F4dJ4AoBSRVSP6iKcCgZ21jHtqGCty1PFfcd4pVUHI3nimCBGPBg45Zss7+J1mzU95zVfW9eN3V74/wWIcvdkJ21m0Glxhi5UKTtp+li3DaO/frlC8K1VUoxCs745CkGzmo7yOrn6fKsNT+dXzvZwbR6EwmVZgu4kuAil41Qjfv8Wt6M2tdcs4GMfclbcCFUybbLNOo2L0vTNJxSokRNyVoLWiFUMaO609PxWQjG396gh4uUsv/+HpzZHp9KSVRJAJ3KUomdTrZVV4Ct0jknCvIQp4tq04o3XXReReyVhBUpGo5H2snNLZhjCC43WCFAJqj3N/nTa9Ss0x2U6jEghGrKDWbObIAQZyKWzArYmBQfo3mipLgVGGPT9ohZrQUdl08BLtetYDHw/Uj1mB03xyIUZ4xhjLd5oZQKIXKur6+vujmc5lfGVbR7vzZCIuM/dR3rBnF8Xkg+RC+UpiVPzvj98H0I7PIyhTLL3lN8rHiiDSEV2/mpZsb4LYa2lsBEUm3//OgoCqXFaN702AKuI+JOEB5JNFXIptRotmeMrFY8mTQfDQLmbJonw3mHkez3995mjARBI0RpN8CYl5KcOWLqKQ9BEJQL2wJxBYTYgqVcp9dtuP4LmnOn3wJ+RzLKjhLygVaCxJGwzXtHSBOC9CsqpTo/51KYCIBX2Z1KfaVsg4jDRoAgQNydPusW2Q0vU+o6VQoYm25u3wKqMRnVFMwX0SxcX2LObYnSw2la+qtBJeRfzBy2FIaUlE8ZccCs7PdXkHUOXWGoznKeyP7dDuzkttLfvbHrR8iSwZtkhRKHdbGEoc1cqngkUQ5X0sbf5vIjbUsppUT3PP0oRRND9jFjRgkhqYQCkTLgeKMFc+gZk1LXVB8z9wE45de8LLV1xQk3k9pZFF53uw9Aay7UOOfi47DPQqjHz8vQHyCLeV7bll7fiWn9qBqaEvTtXTPssSDGXKSg1eWW6uJ9jWv2vus6xpjzXjSaNk0Kbhj3paRSAuCKKMo1uLhlMwvNTHysgTb4G4SvfJ28/8FtZ0LfhHyKeZXjx2n9+XQ5V2Sk6Li+8BrscevUzw32CpdGnv2rUKWfwx9fpv9vdIWk71t5qwQSZJT4faN3OWeMqRQDxS1l2FqDkaSkctZIToUqKHVh+hbcV6WkZv+pP2xx++XlpKg8VXKM5UXSNzaAaCmi89ATKFXJASMOuBLmTPh5nejxizbmC+UPNRIS96v9HPMFkMcYQSVQVI0yOsWRgAyUCdG0otWEMgAY+765ZoGYXIzghBRcLbUXTMvBmufDFU5lWf0fmqs/pXI5PjksthQPTOyIgFjN0F9DaTlTFZyPZlqgIOkj2gzp91c2T1SSCAmz9jKT/dV3i5/kaCb3SPmIJeJU63JeM0Fq6DhmNvi6OSw5JgRDDathorGbY4wRRpF8WqdTyiKVspqjUNJ7WdFIoc7HiYLqO2WWJNiY6qt3SRLcCYltTPNCUxp1qyjHgNwGUvKU3XRZx2G/+eO7b/a6Y/ek/h/+6j/86u3Yksf//m9/1ZYJr7/twvrx4sIs2SXeNwnFHM03Qv31KW8sddNpiLgWvNx33zJfBZlL1Xt/hy4NwjdeXk1EbJAaTVkwpfKh/5pgQZhbzvnxDy2yo6BHgW/WjU+xjDf3ed2FxzcDv0f6MftGS0h5Wy6EwVUtaZt93j4U/4QidwZVthS2hEjH/k2jA+HsNF2EViGXUllIhTAWsr95v9D2pdLtNC/Oc0LuCX4H8C7EjBCqOPhiYsrd2J2m15IrQ9dD9xbh3jnV6Xc5DDUNKXZE8hASDhXGhmFWa60mFkaBexQqjjjTgCQEm6KDwFKoR8Couflm3WIA0x4IlJhSizTLOVQEXdet8xK9F4e925Zas1Ccc2q3BRNCGZaUeO8BEQ6YM2z8Jae10yxEO3QKPFzO69X+NhfAmG6zQ1RI1dFYPCOIMCjElJInS/dj/HSSWtVGoAo01YwBABhhSRBjvZQSto1LwTgtkBEpRPN1szUX4Cj6ZZ4e+0Eehj454+FMcV9Rp9tc8rkaAl42fdmWxy1GyMq6TDhw6ivHhA5YUu5zFRhhgOgFAkMCQkkADqX62WAp6uoTFEzZbCzSuinMx+CmrcaUAEgsuu8g2GjRal6UyNsJUvURPybPKO2a/W1cQ4vYjH1z0wZ/lrpu64oQ+rNgWEthjJVStGoRxwTuve8qtqlckqOtPGB8mY+BUYFwohhz0tfYKNmn4BjvaWwwvsf4XTy2KXS029OMUIEIFXPBqCgROZ+h6RniqvseTTqzcTmt8+vnIKbqPspuKiBzwdZuBEfWMkh+mVZWtXcJgAiuAVHvEhQaHKKkwYQBJgBAKS25pliYUEAp4ZZQk9JZylBgNf7EZfb+DMJD3Agtm1s0QaX6OZwECYBuUB3WJSJMM0Sp8jAkEEebTkA8QIOqzHbHgHEkUNyU2qsGKMsplhzKYXiL8cB4SV5CarZzJaWleDALYOgo7vxiCKsEUCMGimKJvu9vMQLexAgTEQ64ESpQ7Su66C6FGsG/MhVMICQ0WujJZxJuMX319oLYiy/PTNCahur/pvhfzKcvJoPCb3W9iUBt8grL3fXXq3UZEGG0QPbRU4qV5ggVHAmEVPMZY4uwMA5hhavwrF3cq5zXZll+z/mr1B/Q1lXxcpmeb2/vS00FXUJ+tdZqtcNEnM+PXa9TCgjXvm9fXx4JQYTgwq1LJTrBQUNZc35JyWxLNoZyfZuzWi3G7e352XTqFhacc5ZSMslSibF60ciME7Cqu1tw2S/LGgJv+7EZwHoTrPcI8i0rv/BbxwUIvYUyAeare0t6OcertTKHeEB7PNqXpQzdt5Q3Ps7dbjbmZwHfmdM9piEXRhhhjKXEzRalZDHZ9RxxbiCx7Fpe3jOsuTj3g+GMpe3bdXFY/ih1xv5vqvu+VR2G4vDaDHtKxul8efuGFnioNed4HeBPfhsg7Xw81pJo7rJFNSBS2pJFLZwyDqTGtIUw1bpAKNGkikmhOFGcUAnWSUYDpqrtOJe0IvBl0L1kXbDo6sot6xfEzp0e56cRV3Pzfvn48zMbz4kenQdU7tfFXty/DDdr03Jnh5DcuD9clnmNPwEPTfvh9bhxXaPfcfy1iytTdt0CQooqi5W+R4mabCtamx4BreFi12Pqh1EIEYOTjIdpEUTFkAsU44JkN8m3QmgiCuFV9RRRm5MlVV/vRk7F45fp/dt7Y1YpBQakGI/WcABWUa9VCMHHMO4ZF0TLXYqs3+nvfrXvRnZ9/c2br2+RVvsP+5vvr/7LH/4ZdaS/bx5Or7ie1qNZF41291NTHHfVufLkM99SfkIpR78QeUzZcSS1+ALNUbTRXbb4VPf4fUvf+ay9kLXmWP+QsumGlg7/iLuPTX+9hCcHj1IqCJLipPsFy9dte1QIYfxQsmGkdINF/JULTAn38dILpRjBta2FZPIaPCb1vsAsBAPIUlLnTIwRAEnFY7Ky+xU+t5gPMEpFAlaz7V5T+IlgjQi0O2z8RfQ3tXIlKNQKNGRkKtkW+6QGWrDTHXX+zJX2qxFKYsYDAXdaEUIJQ6IJYtVUJghUwnYxjEpx0NXLIlB4+B29ZjvU2qrBo1znQippZQEopXAuGRUQQipR65btdufzJKnEjMdQaGWIMMQkDrWkFHCOybVK5pxZ02/npWIEbRdy4JKhXKgUtaLqIx40yRVKit5zoXij8mmjbVMERQhV6zEltdZsXeVUSql3Ox8j5zyXGILDjOQY+Jbw/c4nw88ThggDr8Z6Y7vhuuTF55nzHQFViEV1SYkUMzfvbiASlUjgGXh1LxcTC0IEtEKM01AdBki1lAyoAqV4ceiqJyYTIHjXM8KZVDX4cFm0bnPOUjaYknBegRF/sS6cFNPFIIaXeVuG/p1zL3VNDjBQloJXu9Y+PqTssyg5Z6UUJqgZBx9CKWXbtq7rctyLhgKbMImlWiBz1yq36OjqYdxBjd5ux9czRqJRLcZgwkfGN6pyrB6c4QLJA2MskqQqKbxLtdoaSAoSCm57UvSK0zzc9LWknqtCuaYjOGW94YJyzmNMsFlGheasZJ9zFkL04+g2B4CDMX9usktoAlhFgxGqMVZKe4Ta4KUOHdTOQUP1bV6pih0pI4jbgOa4gBIEsQ1nxaQsYiaJEKlK9SWfsd4w963uGBp96IO9Yew2OMYUTOdZS5VNA36A2hN1ds6YFXNZMVLzK6v40uyDh8cMJ6kzFFtKEkLEWJFJmXpPQFRuzq9BkAC4xYhL4Xzh5CZMbY43ywk5W5RiAr19PaW+uYIkzvNCuJViCfXCofXrDuXrYPpG3VWSMZsj+S9Dl1a7KXpXzT7mHmGGskciu7hWHIWkGOOUUimAESuZABIIs5A9oOQtJA+CUopLWAckL1qvnL7R/H2MH4G/knRANGKeY/QEy+CLbvjN7e758bGgy7hT22bjWhm0y2WVoiZ8RmhECPodxixgva/Q7+7u5DXBYgK1ufh4/ZYZ86McPW5M9J8x5UBZzjXXQpnQfVcRAEYlSpS8YCahEAtBCZW4SV0RcKamZZ0QCUP3hpRfTXMsuQOx8d1jTNg6CL4p4QMWxGya0FoLgdDL/B24XdNGrs9dOzgfqaCAa8nIWo9pxCiti2Xdn0T3UaijlBbjOdVPmF4AxXV7tdM1bX5g428yZOfPmLpaTdN+MFaZLe8P/Dz/KybHtu3XuTX+E6FBNK9U/RGqcystaQP0gxY9qTxFQIjVWlN0OVpBCgNMCVKNBIGIQKLliALgSmBffGOnfD1c7fuOMiAKkAa/8PvrD5Db5+Pj1W1ClZ2fBkDq+ZkyerNsFyJXwmjYdpeXhtH9Fn67H26MMZwxv42UNDE/xBjNuSOoEvHYdrGETuO/DBZc/AMGgtK8ycNAEXbT4nLYsSbkXEoxdtVaYs6jywgolBKcJVQRFrgymESBdxzfWQ+iIznarrlB2G2TYVjEtGp5LQUrBHzyCGorZSuEN9Z7z7VmsmYUrm73VDClm9u7NxlQ249N+3U/NghGit4Lqe/v/vIf/8v6H//jP9e3X/24/t39h8e6+DF/YHF2+Lf1bk7CxHTenk4dfIjua0R+VcybXf7l2NzgTHGFrmXevxB27oY1159bmcB+13YK2KOzb6m8Mvwj7b8JeGA0aez9ZNa46vsCNIYX7edrVr4q7gaVnWAjZzKFIKjg9Mr6U9uxHFVNTdNi604YegB48/Zu2V65qLrhlBKMQUhqw0ulF65XqjYi/J/DwSV+R0khhMVQDtf38+UsVFIaZSs5kynFApFqDATFlABKLqEilH3Au5al6kjN09buR8YYYEQ4Q/h/nYqACa7bVigbTTSTEGSI6ST4BThOsxSCQUoIoVoBAIQWAIVSwggDwM5EBgwzkQquGVGhIsLgsjd+9/59DMWulnJuZ4OjH3Y9TMeMU62xEyxDjskWTlguBYHPiW8Rf30DLxtRAlJKJTvnEKCaC6V0miaEUEWQrcUYI4RCCKppMEDNOdYyNK0viWHCKSOCEwBgiApql1W2GnysGTbvBObGOamuFae1PDeyQmLFK1IREa6EAkpxLsPscdu5EAesAaNgVoYQ7pT59Ep1gyvNqGjBt23LLlCopRQQ1E5LcR4hFMxHBl9xril79EtFVaNdLj5X88TaFNsUcMRAwscNi4PoPxCGMUUhRaiVUsq4IIxiSoC4VFcuKmIFSGaMpFiCr02frQ2c3OSEmXTNYDZzwdC5NXLJsbSYnBhfI3LWoLyoaB0VlHY6OEOhaq2Sm2NyIS5ZQ3o9L8VViuNxrodx/TRRBQUVqAxnZdcKGVGGCmxcUEJQDNaHTTccIBHNUnYA4KylGOecY4wYY+tCqoCFT/FM0AZlqmhlMgMySpbg5fOjQUnSor98PqfAGdkfHy3TMnlHcNWdxpTlkNZpTrhUkCnjvttvy8I59WGtEFyYKq6xxPNyHIZB6ubhy3PMCRFEGSOYCSG89yEELXmtedlmPfYZQSXIRccbxQR7fH1GSgBGmDAhm5QgJ0CVllSgEIo/14464xVaPXXe9ny7Fe0+pURIqOTI9CXjtWae3XUxX5VSuPJYPK3205/NiTGvof40jJLQXEogFBNMU0TeQS28CkfEHsGBsSF4g7FlkKvpMKx0uM8XLNoc0FTO2NY2mpem5Zfpk1Bcy7eQe0KTiy8Y48PV1bIsFOGU0svz8+3tbSkJY1zyS41Q47g5kuHi+AvbSdK8oVJtr6+tbiCXmJO6voIUc86MK+fiZgLBQoq2RPAuUyrseinZccEwxj5tMZ1LdhQkJU2J+HKeOQVjnn16pPJY2MOO0PSkevpZhii8afk/lcv5Zvi4mZNbodUNZH/Vf6Agh54iEECAcRJz5ooTUku2jCOMSo6ixoGAoqTUyPPyNcRbJixhaVB/G7bv5osv1QcPdsGcjpWeEDElCRS+R+7fpe0+wwvt/lOy31B5Censt9FbukwbLgMCDvhMmK3gUgoxVEo6hkaSh+B8SgEg2bhtccMUEM4xGJxAEpFdErxhXFXCeds6AIb56bJlxPt+hFKeHx+id03bF/VfZ/cxQwZsp+U5J84ku/h/YmUM+TMqm3fT+6/sOn+256FXdxArwSfNyfyk08YR/qlRDttvcIRLjTZmwE7R1IaIEeT+SgUXrbXd0KUYCmDvs5KaQlXaGP+FsxpMcbbUCuejxeU+1UIEcmkrCB9uh1JdCoxSbIMvJe2GLjlLa3Hb1jRN0zQhVtVIKmPF29XV3ZeP5s3dN11Xgj3dHW4lAlnTXXPYcf0v//C//F//h/8Bz5/eDNf7218avbvULcbpbTvc8quad3ZByVxwRlreEf1Mur+XfMpnMzaK6RTEgluUI6/n3XX+ty366/3I51M2pw+Kv6fol95849KLgF/7NWv5jOnT6QR2+Z7AW8xWH19Fc4nwOK8bEzzV0+qfGj1uYclpKKUwGhpxTQjH0gJwgqX3PmW3v2pT9n3fW2s5F2Aq3e9KDOlyrroyUcg0IQ41cVQBU2vdrMQuWKAE15igtDlLH9F+/8Z7VKpyHul2V7wTQoBkyPmUEpREtES51ERAsy0YXnlxiDcsQoSMk5MNpc0bli/PG1Dsmmxd31aJ2HK+AIBodKwFEQwlejNjjK134ziWmDBniOBSa2assFpTJpiBkLkSUtm8GsqZFhJrEaMDDJigsK0VFcYYCIIlz8dLoVhqRXPNKTElU0rIRSEEMMII884hgov1xrs/L2aMMUEUKmZAwubSXsDrUnxeJedMCyxBykKxcS8oMcoGwGG6PFbUZi+AZ3bThp+f14IyE3Q1sz/LvhWirzlmUrKNXKgcC5OKZKiIQAhZY56hpOxqgqdzkCS/TrVmqUWYt4oKILDPR845hVoCJjQ6X1lVp9c/dl0HVkGaBGm1GteYC6Elx4FzsddU4lxLQQAIrdZgwQqCZhgKQog+EIqcrVxQKbQ1HGGV0QUQzVArjhWX/c0NxoQwWNZjxzvajTVrbFuMdt4Js5SckeIZiMhFl8woT0xZ6zeCWjlcq9rGwhhVOXl93WKeMUvtYcg1xxiFaDCmqeRSEiaVEAxQjdm4IIRATC6aORfXiusUWE2MAGEUMI2pTEKFyA9u5WJV9qVUfW3EGHMj/cBBN2MSjKBQqV5pi1p5pXqGCI6+QKRQu5DEMm8Zr4evCOCHnM+6RXYrTBBES2VPWD1hsW0z2+/3zYjtTAkhsrGUdMGNKYzRNclxTjTG2LpVSFw6ThKtLsrrlg7j5eH5dlQO5eCTVBizlbAT4GM7IgR1mz0OByb6GAokQqVg2p1PvxG3zNgpwYWzJgRN0X5dHdcLJqfn1zR270LEAaygntGKSJfXnVJCCJ5S+jPPLUXLqSoJhQQhlYo9ZbVkxlCDEYZSOVFE0svxGRA1NihGMUUl0ooIVxJjDkWVzM6XYynxarfPvjVblop6d96NTPcq+FqSIqXRime8NDtRSSv12xTB+teCbmq+Yuj+/FCH5tuyqVz2KY4+RUwp4QwA14pSKoSwmgAHVpALcCnZs6qE3hPGt9NrKL/3xjOaFDucXtaU1k7+VbK35+05gojsNbPVY2tLIviXBV0RjDoxcmqkeqIkQ7gKobcuAomYa0oUQC3YYYyllIBSDW/cOpi5iWvP8V43okKuueFMg/5PKVsohwJOtam/mjk37ozG5tA0bN4+3dzLlLdlsrv2LYKSgtqWYq0BlDKYgkJJyq2JEcm5SgVCSJRigpI3Z0oppZwywTmnlNJGt+OOCgl4VQ0IRUNM1iOEGkZ33mIbL7FE2dGY0cNPpu/y4c3lMj2Dvxe8ZZh8+vGEMWZ6DgH7y7/T/XG7pJLqYTecnrhWA+LPgGqBZwwkuz5aYswzEyvBQGGHoSTa8DoZqIUSjm3aUsaEQspD1znnCoLVWkY5ZEQqRK8a9dYugpQd1Gjin27fwmZOQBrEVoRZ08i2h5KxXZ0SbSmFMdZwHtY1boZXNOqWViQbqfU+FzaMTYXQNgMnvB9Y+506Fx+Fv/u+/+ZXv/wf/9P/4//4f/nbM3pCEX17/+vteN7LVcz2yv9a83/zCBsypelOfKDHY7bTRcZDT/77EN4Zer/YpkX7mzqMkfJQdNdaBD99+Q1ms5L5dn/TiOz8f27ksy5XNf1joxEQGWHpusVvT8fLK9/zYV+XqSr2nglhXNym/b7996WqiKNqu1orJYWzau0GGHzdUJbHp0vftBSh5APDvARSI4FSOVUpEs3HVu0JUG+m7E4ok1Z3zq1c0JJp349uXRjI2ZxzMSHPlZoEq+4xEV7tcJq29nYXo/cpChNwq0pJwVmIAiTx4KsnxVZgNdNYA7b5TIbracFUjPv77unpX2xYeP8mzJuiMoSYcu12HeB6Ob0wgqHESlLTCEqg0mqToYJWDqyjJRlCyLKujHGldcyJtYIAKTUzzoWSAFBtQAhBQUUgwjCxHtVcRolep9iQhGqtlWXgUoDiENM6zf1+B5tXjRRNUxHEGAmQuNr1YqKN49XOns6ASU4YWD+vdpnmTLFge4rX2XyB2OE8DFeN9SfBb6FJ4bwivcOZ1miDcNiFYBFXJLkt2pVddzCtpFchhZoj5wQUQyU3Y0s357IXFcdtq5ArR8g62WkgSMQck/erEZS8Hh2i0Sxnkg6Mo+R/zpZH1PpjYEhWhJv9DnA23NnjF6EU0xIYoZwBRps1FcCHAKWXssR8KVGj2lW0CVkw3gMMje58WHxyNSJjoGk6IgqFJbBovS9rLJjwFo+t5/2MgAERLgIlEiLOuSJKtdZrfQ6nL9CRVjcoITLu1qeY8pBMVbIVWsRqUtmoZIzrmGmtAICklIyKlFLO0dqFMYJwZQSlEKBmTiiGSinBBAqxlPtUplTPTHngWygXRFdvF9pSyOv6+hPbZaBbDZsc5OI/cjbVuoTsapU1d636AOxNTVipzvgH1ZKL+WN7dbMF3w/f+HyJkWjVe7u+Pr2Mu66iNQZAxKR6wcx0A6bCpXJhwuk2hhScAxMMcJinzRoj9totNkWUE0se58hRVjWI7Fi0GDXg1h9155HU4EktgfUNXFhN15jmSlIqZ8pdiIuULnvW7neQWrNp1b+tPrdaZay3FxY8oqRBwINNNYMUjBOMSiQJ+3XCaAVYCWkK0sApUqlgikNsr0YGvAYAThXiTXsQvCVomOZg3JnryBjTarDWr4tjVOLKcszdza1bNoxxKSXEYwXivBRil6uBdFmfjvGhIuHbuz6Zl7aBHC+VmMos72sqgTdcKZGyS9khKI1UdlvBABaEKiAZha2GyjBri0Vx2ZfMGoVJLaT0JA8lhoKfz+6mqPFs3q44eZ5MOZTRHeOFEqvbLSxM5L9FuZXdGYuz0IJwXCLDuI/Jl5Iw4ijzUhLvn4n+gcojYEfFSuSXzT+ajcUYQ5oxalr5iwqUyyj5EJe7VkVcDcLxcL07Ty9NyzVT4Eiln7Ztc+no6m9APGH16PHvQ538hkviBGnGZEWlZJfSXPKcC7EmOBNJ5TmgaFKpNFUuerVFD0pj2SEqSqrFm+tWHXa/jkm+nnK3p3z4HSNlelK6KynQaf6dbF+UZMUrxkREj7P/HUNfh5wIFSbESB9cmbrhq9W5GOU0Zd2XTD9e39y55X0tnan/gLMXVWlNq2rKafoZO4Pa/vySUAVKacXlssy6672PADCfT8GhFF9Vs4a42ZX06i3XO+cNY41oI0YqlUiYe346S8UYlUpyAihYxytCMQtEUC5Qa4YtZbWcRdsdugHfvemHodOy6dBtQ/CI9vtyP3/88a/ef61jo8H8+jAcRMQwyx6wMJytftt6/YH7RqK/purqm79SY5d6nn38ExouO31u5JqZnSHo3cglk5BkmN++eZ/stVas8n/Ylt938KHJVx3zum6lRsQ/UPJvcNSKntqePb0eSuxqzYDSOleMxOI/ufIzIO/zuKbfcx381pcU286mbJphXKak1cioOJ/PfT8uy0aJToHIPZbBxYyKGusJmZPLgl33A+aX03Er4bqmxvrXAp8RTubcMHxomnstb9YJ5dwQ1Kcg/JTiutH94I0NkHQEeehQLqhmqAwYoopnV0ihESJVlBBOSRPi1hCYWQCb1f09qyi6i8A8uJhSIpKHnEpNw9BpKX3YCEfOL1ySitNqZq4YkVhqWnKwbsOEYMJySle3h209pZBDrM543XbWuGbYx1i3eYstJeeV3e1gtgFKJZj67HAOIRBEV2tg6M5Pz6UU0rUkVyaE2VYhxHxZog9Md8tlGa5uzc9fFo3HN/f+51OyPmilqORCEe5rYpLvANt+FJsBb6m4HdIxWxSoDjhshTfD1dd0zU4avNN2vghOnCgqZ4AccIrWGW8J4MXbmBMNyPeiPLxSwbuuS1CL85t3Zj5zwMZtHCOKOhdOzi+K7XJIu6v2fD6STNGYBHYsu3Hst8WUKs+GKfkVpiSmNE2T1ApTShgFgpngjIzRdn17u7nPJn0Z9lchSiW7lLdty5TcSXbwYcXCnKeT1vfIfqjoDUE9TiWhzITmeL9O/PKUCWFYRISz3yrkXjdDrisr+yJuVOqJbgLJeXmNu9CP1VvsQknZc5mJSDGsmw1KXyFgCBHRtCkljLFSSkoppdzMF4xNSFPwW84VZY5rs82YOpC62zDGWpOEVCIppSQ5qzLFa6gCJQ/o2nvGME75sJxlw+8UF4gYohwXGVP0+OW5bTPkpPX+/MIluyumY1xTKRAi406dT2t2lLJIaELAS0mxhFKS4IpRfT56u1DF304npqiIRNJGxefncnbvvv82+7OO0IwzomcmKkG4bVtvL0ys3WBne3nTfVNre3SPNwOZz6vYjev0R6lRu0/GrFx03oHmXUqzNxarur78Tnb27v316ctUAkt47YdTyaxEjCrlXHKCvV2MnQgrWnuSCq9tLYTymMhUecR8xxTdnqYq5HJ+FQRnoetSTvOlVPr4eWvUXreZK6tVazfwPuoWAZSSWave+mMOvjKOhYoYS8RQJaniSqvAgbVVDLqthOZ5poRGE7ZlrbUWqLxRXADUmLJDqDKCSwxQcvSBkDMQGfxNXGSwl4hfESX5csDygevPCOi8fdLdDOBO8+8YGW8Owax/BI9RNAKhllxt02dSTyx/i0tPMUN4Hg4OgAq2J80X3bbbkmLAhBDGSIpkWyPnfD13Nb5v1C0XBYAke12S7nbO5R9a/m+wWDL7ByAnb9Hxi3Th1IuW0Vm0x9V/5qLHcMOoTvmM3N84P6VYt/Nbv6laqzMK1atUTz6cUlmE4JSIFGgJWrEbRHiINYWCsURAnc2lcISVCSyhtt+/CUBSyUPHe5E6ZpbVf/Pd3zbtbpl4Nl/t94fV/URIg5Gt9is/vQFysfm3KeLpyPpdv7jtcPXtw9NiXR7697HWLR5VL5peC6XP58L4/vXyhMRk06ntr3HEQRbqRFMLdeui33f19YHRKAZqvU+O0koki/uDnM5LLdeacyoZERiJjGRgTbXH6dC+59Vm+3Umu8wNsBQ365aIOIbu7cU2549WUjkp+iUJKKpnNdi2okJ7E7Jr5a0EKolhkC7lc+0MHNxU5oTH73/53xX6jnb/m3X3v19lPqjDe/TviU7Hvsn7WwL//IIRElcD7skxoKQewzre4M6cBF1yIAz9GiHlYSYSJwZI/VuqnxjJLL13c98MV1TKimGZ7SzfCz0wc9L2B00u+/4XLBw+HDbMf2T8C0EvNS3WpXF82/aHnGNNP727/cvpRJpWQuanL0LY+/TML+GzGKn1Zb+7Lyn6eOLKtHvwlr88OdpurL7ITq5Id+LrTa8FNFNTRS8YMsEyxdE5N9790N7UzJ9ieuqaBlJI5Uk0a6CO316Dt/GptEmSb956S8PygmvF1xbmla416WTIZYdlerI+FVFNCSBTIkaYjfZZGNaSjiJp0/TAmQ4k1Eulk0dltKDdEShj1ral3dVHO4zfAkfEkPQcaDfSvoGHM2+161T9MjOgW4uli/J6hIzWJcQK5LSIWyXsOffBPH9kB65MdALnglmitJep+hGzEDzM9u72bksbVSSfL9FNoild2eg3XSkbH9pKGEU3KurgDKOBXjEeDSQvOIFNxy0BL0BQWA2Jses6CDUG24OQUSy52goi0614pTWY2l1wjTjpFpYKhXqtRSRcshpIh8tasc+4K6jUJpaUgDhPnOcaD/aybWaihBM1bPNcJCeuXI6/H38toIj6WMS3gWf+HDOTh3yGJrcXsx6cC4fIsmBUK8CuxW67kLuevax+pxZrqJYVi+D1of9QErXVw8hFIsGcEZ9BGACQuKfAAUV+szDywrS1sEUzY5Z8Y0jr2BAoiqIgyrgvhmqwZoZYrc+SM5+dQtoVkV5y42ndC+4XWi5IDEDe0QkdfWbnLFpfcFqPR2AUFfA+QT+UzBDReMFlzZppzrtUcK2kRl/sZBSGQXe73evzmWaWbGn46F0Jcup2YbanpLr7/R6MPW6Xpo/KHN0WMLmtYZxeA7AOHKOfrdA7W9totoEfNXs7X04424iJgia7QghTneB9zOyCVeR9RXntZZdXlDKCDm1yjmS5GrV7fNXE87b1DoY3V4BZ/jEZISCPxRxsJizK7WLgRhbcIaZYjIl6sy6H5s1pJZwfqFcAV1VOkO+2C2RrOThcKs3XsquNqaE03Aa/vbR3N8F4hlmjvg3Ibmn2aVMCx+BSSoRzJptkduwKe6ehOkcxk229kGRMtDIzrYDogxZ7+vT8+/5DQ4qxYXp75xh89Ik4d5XmCs6BEGsk/c0Y+Bz1KSkn+xZF4p9dwppRIXAufs05A5WhUihQ7WZkhlb46NjY0oz4JZUl4szdZHHMgpFo5pJ9LpEJnvsAvtseAIkvV7cn7sL8/FneveZtmF/uCdqXiJP1veSC7DKcX9ddzB8EKzwOhwYB/AOJgrNWtB9rPb+551fqq3Q6DJoRxFB6s22gu5ziJ0hRsetldbrNWpmWTwrZbB8QXglqBe/3o6LJ7/SvpvWPJYJfr7wRnO8qSbxLiaznrYnl3yD0FpdJi5cQs4e/YOKnm5u20VfDeD1NxS+DO67F/UsD1M+Qc86wpYg551RlYGJ9feoFEwySPQrmuh7Ujq3VC9ER4Wm7YiIwfreG7DE+zXcNqi05iVzW9Vn06tMj7Ic7WMuaNnl4Pk+XFK64vn08HfWuGvfMEkD6RMtyUCw9O345qIjT4sw2JmSTeCoU2uEbaxvATQgICyFqSqUUABj3+5LSn3slCyxMRMQ2KmzKF0ArIVvblVw8RHI+Ls4sh6sRCiFYPj09gLBEf9nWePv2gzkVSb67uu0rAnd6MOZ1d9+DqgXXVOPq7BS9bujL8efsdK/eIHLUjYWiQoQO/1qxq7HvjDGqqZP9J64fvv9mlOeHkJpy+83S/alDjdh+2yqch78Zh/+Z7n/7u+Pfv6w/3fTsnfiwPd0R8WuWx0YiXJ8J2nAs2H6o2/3u8BMqO0BRsAEjRdJNjlp1Wyu/2W1hPdsTZlt70w7fpdWXfNrS2ZnDfv+hVtW37xih3X51/qdWtRj6aZpKCTGUVCoTrtLN+Pl6f+vWFAPyriyr13JXqlzniNms5Q6He1xH45+YOlbkSr5ycxudatXonBNCxEgYvib1rbMRKtFqeH187nRvtlAykazxr1+ss+XK5bYUN7F0xJVlle1CgFEmI+PA6bBeymacaCtWe64qIOnCJHl1c4hhxrhZX6MebwoXEBKEkHk5uQvHSPBCWs0gIZbIMHSMrGXLzmMtSCO5kkKIknLxMcVIMRnbbjpfagxuXlousWAuRY6JWzvCPzB8IGq/bZtQuKJZ6oArRgmy5O7pNOx3C0qNiVGinCtlyhyNaHfV1FKJJAIh5O2se1lccCGmVEgCXzOU5LLhqFBKp23JW8BAUMvd5bRcpu7+xp3OSikhRF4Nb1T2IcxrICVKyl7nLCC3vH9evcQVHMIxbjuCGEJrqZ6LEL0Ae8ThXP3k5nOrW067UqSZswtVEYTLrbPXnKTl/JDLnubRG6ukJKTmGmr1TAqMKGci+2SeTuLuhjwsZOikrR4V2GLX4m19bgbKdElg5/Wp1UTQdJ4uXAjOuVJKDj0QHHMCjBIi2Ve7Jqya/uberyFuRY2H/9V0R8hyufzZiCulLLk2ggIpiEByi2wEFZRSCHbDjBIhOOfnz1+w1vumU72ezaa0bpR2y+Kc6/suRJ9iCMEHwKLtakHerSUZY4+Iu+6KqITA5/PLS4kJE9zq5vjytE2LojK4wJVmggPAZZ6UUiklQn4RSpW6+iXkUHXjXf5TM7piJZkvFhy863mzAclE3bMLPl5+wNQKVrx3UvTOYG8EKXt3QrXIJEShlFS8YztIcrICVWCtSvNCGhm92z4/8+tx1Nq5EGOUihuzaC1TSgiIXbxgI0I11QtCFhWcE3V2c/6pRp1CbTse0hnJWkqp0G5T42Lo9/z5ZWP4ljJ8vjxTCa78VrK+EaNkbQyAgBHgCJhZvfWnGMDH13UJDEtGatgYFISIIzSl7GtBMdROj9lXszqtiwlR6TtGNEXW1ReqAWfRdYNzAQFRsmv6MaXkYmBSKE0RRTGlCsCloJRiDqlYyhqGJQDe7/eMEaDYhy1G69xRSopAuBml2HhXnTd6oG6eJUZAf8KF2/nOWLWF0t4/FbApulRfofKcqI1TDDRHmuvfM/aD7D5n8idrayoNbVFFH9ZlhHrAaCh8wc0acKm8ZII454SxlDICYowBKMYYa60/uyW4hXYZfy3yjsfN2fzxeCMVUW0hWDF8oJQDYIxZrvNqB+8MDk8Nh82pAPchsn1Xw3oXHI9lWdyTDVsINKbeOJUyZRzXlFOMAGuuG8GQ6yZ5UwuBgmOoweXkcrQJMgjpOBXbdOLqUcjHrqHZ+a4xN3eNM967eDV8PXYfKOUuRExdjno+gwk/bO5jKaVC8KZ6YwtbfC20pWt8zcy4MmeEA50b9jO2SNlbFlNDp2ROxDIWOsy5rLViinItehhjrhkqEJwSryBrYRS3JYnkabC4ROrsOl/Mrr8WktXsU8Cn03TYd4y/nS9yt5fgAWfBpM0kBvKJB9d3hB6oZTUTdLy8uOqypM5YWofbO0bZS/WdWUFojxCR4kWgZmx/cb6E4Jq0/uLt+N9lA9YsKNIcCsZvLV2qHEPBOIyy/LfOVMWlYl+biW/TrHjuOoNKwEnF+BkXzOP3gsQUPhVHWR1qbvDw90j+oaKl1EcMTcZr4ahRzYh6kW+3rBf5wAZL3NcE77dVEyyYXDDyaRkE7GL6ue/7mvq+vWciYrrpZsAUIXGUgmCUG8UAEsYgG22ctd5D2CvJCzoRlNYJMXIoFQFeZvOz5AgXQcoB4sEZLCXPsMSQJRu8K+Pu6vxy5lj1h1s7G5q65Syv7t4sllJ9FwNo9W0OHQUcNlMx4VSEkFKFYdzVkMHVzcxzKIebPiWzunTz7tadTXE0VJYREpRGu4GipOEEIzlwGwAVi0SGikuMASyp2KFiIZeYAAAAlJCYM6ykuyxcSTQObl5LiBmTZrfDBWdHwSMuxzA5KVRKSSqFEKouIyG8dShmvO9SiVBQQqXWyhj3s8tU1Sn5BJ1QEIJ3M2lFtp5xTbmikQRUIMWCk5aCceFrVkJzzmgnUfIYCEgqKTfe5VIIYFuSqJjUAg0TkmkiSK+hJFYqVSxZBazk5DHxjHFIA6CAcUjzhrznADlY0bQY45DT6XLEkracFhTHu9tgwul0uv/+AxRApTKMcgmTPSMOuteSSbClxhRLJo2mJmEqWMVVS5kRqV0KIiVdoZPNPUGDm2tdmdItEIwokVolH0PMumm9cVssxWaJWQQMmEMEzXSKQCkvUFOMCFWlVAgBALhWirHsXYGUSFW7ViiOOa8hIcUJlduytoBTI1jCm7O0bUuuCKFt25SSf47nFIIgnF210PPNn7UiyVvOkA8BMSp89M/H6uPd/Q1QyDk5Y+52O5RQCplxqbpxdT5B/TPNmOSJ0JvzM+c8jbs1xoVSFuqS8AXzTcj9fJIpMIoYART9J45HAk3JzNlIMcGQtcA5W6nOmR6zDLwRjWgEQalc+N5UXHLOY9ezoc0xsgKvZYuriT4BFERyiCuhCANBlUSfYzla66NramKUWoAHSrymw3L02dFW3uG691sN2VZ8Juqk+xjxJyY9xlgI2rV7uzQIjYK1Zg2X86pEy7kMIbnNcS6lIikipaugiiAiKMJVJh+4AsxKKYUxmWMVvPUmEizACZNC1YnU4E0GMfChpfj/z9KfNVm6HWeamPua1/qGPUVERmaeCQBBsMmuwWQlmanMdCEz/W5daeiWWq0ii11FAgRwcM7JIYYde+9vWvNyXUD/wW/c/X2ed5vnmaEc3N6vMSxeKeW6rgERr8AbInKuiTCWjJK4RqVMiy1uIdXSUq7JkwBtJKMjkEGWpQt23/qdJTDLlVt6RJqdONjeg34G5MIm708CoeEzUeYcgVgt2DCU3Jn8nzh0b89Sy2+3GPZ37wrbCj7fP4xd16U45sb17gDygXdCuFZKqTm31hCRMSYVF0JxrsRp1Hqw1Khel5o8e6fsh0PPawII35V8AfUviEiQuFwh/Vr3x3fHO4x+1zmhx/NcrRlo83J8Ah6g2ZgqiWviv2T+dp2nVJ+4/Ip4oxw4z0C6xROEkRHPoVDmNSFlBlXW2DST0pwlU2lTmgsluaIBSt7tbvMF4mZd17Rty/bUYAbYc34yfFR4dzgVZWbJOLVYSuECr7N6u5UCJcUHgnfS8cos4j1QFSIBvwLzOQE0Vyonyqw1akBMsgoNgLhUSpsYPTRbMkdQglsp+rBQXNs2h85oxd3lbRv7rpSyzYEzKyRkYg2r2d0u5z+boSMiv3a1nARw0euNNTYMvhS/TsdDD4jTBccRBG9jN96ftDNd2ORl/kw5d2b3089/eJ7+39/8pgwDj0u8Pj01waw0iki2x8Lvs/ihFIFxUw9yedP79D/qZD1+XXnaj9/Q26TEIGR2rnfs10IooUKnjxy4wERFpdt/5LBD+bMSmqqJfu9ttzuq0f7loD6HM9T828y+y+I+o78tLzE0yL0SssGTs1rV3+bgcr0yuRBZAGeHSmIahvvr+RfBo9QlldntJFfERdufdi0JIgIiaowaY4whq4iYYul6tfiv3S5M64+1TULJLdTScpw2Ke3qF6dEZ/vX5xfOmhq1VYXnaHWcy4t6GIg2mPzQY648Jpc9b9XbHarj7voaUiwIwu41tJb9dnjYLV8v27TpocNGkCswQqu4klp1wC3wtp6T2hnAenm6FoEdkykBA5RaCWQAUGsVQiTFiIMExrRM8ySB9d2QoXFnis/aRWBzCOdUfQOhzakmmzbdQiqShadrf3+EkruC1WBdAxMIQAblkjPzuULhRvj1LBUDw1pI2nVAXBIHLRlgySkqoHnDRHx0rdW4ToB1tH1gALZblqXVCrWBUlgpBI9aQqPc4hJWOt82g/W2cFRl8gSzVjysKaxb2vK6nCv1AE5wwxiDtIV0E2JFdmUG1umi99fmns+f1914jPxJ8CilLDUT1VwDKUDJmFZhSYyKfhzjumBvYY1ZMjVYaRWylYmY28x1AxacwRxuyb91+xGEzKUQYYyRCGw3rDGNx/3b+ZUD9oddBfKzZ6UVpFwLYyznrJRCDn/dioCx4uP17bL4TWmdcsqllTWEOZDhjYn58qatYX0Xr/NSVu2GdV5ijIioDofL5SIEk0YCVeYq1IUgQSkcuBSukYpZhOt8/vK173u7G+d1mcPinANn8pagQi2gnJvWdX84VWqtNT2cpvwnPX5SsvF8lHRYV1LymJrz7qSla59/4jwy8GW6zMo4M7bKEYSSLufCOVfG+Hky+jc5uZZiStdGIWYosdf0TWJQVw+cTesUb4saO6m1EAKBKy1SWriAlIJSpuWmhWasAyi2y4ieMblMlVoRcm71meGZ2mRNN12zFK6RsPoO6N35BZDxafvcYDUWz9cvOaNfFgYArRDlEBdtkIvKINWC4zhqZZMvw6CB1Lq+OCtRYEqpNeLES4bk07Ytw2jTLKTqKzYoJczR7e6ZdkAlx8SI5dQQlPfBx4CCC2MrUCvUiNfGauWxVOQSJIvFx3VGVitUpXROFbjNnmxH0c/bWpJXfsJGyli5hRfg4e2cgUHL/XINIf/sxO7ydeLQKX1jrUNWgWeEEdRbLLLg89b+WfYJeONCXJ8Iw9HAY6Mb0opFWm32d48N70PkMQBj0Cp0bgfAtJa1ZgCIIfsWWgsKNiMuXG6oGLKE9NWHKdcpRaqp+yv5hiiBbRwurUHM3bKitaTktj+MMRrbR4JEKImasKnyc2PrlmLyXdyIV41NSV2Qh5xXgmtrpaSMAAIFR8aRoFbBGdQPpR60GVBUghBjlvxk5EftqjWdNQPkIW6m6wbB1W39ApiBmFZjziHGmHNM6TnHwvVrSTL4VPC8xU8V8u3qY/m8tIoDBV6L2J/9xvZb0usKHauFUkqAVVjpU+ZCG2MqFSGp0qJMFSIJVpf1jfHMRQIiqKClQeS3t2meVwaIiGGDwx1eXhJjDSgjdbaPCGYKsKZaOdfdfgvlsO/vRhunGfhaC2Dtd/0p5jOK2+X2pvTjsp5n/+OynX/9zf+B0sPL80/AXsdROJMKEBpzzv+Fl4f5+pdSrj7mkuTu/iL6/+7jqxL73TCWcm21CCVbc87dFVZ8iiUPw/CBm4B4Y+q15l7hP0AZOrljTKjx2ax32/zdJT1Uwzq12uhrfp7dP2E9nk4Hrmata6eOkk5+Da6PlV+56BtprmZlimT3fjbIw9AfDuOd4CqVRiCm25YKLnNsFUspQjAirrVtLQmGrYG1FgBaK5wLv67GGKqNSkVWWaa4+fHYmU6u68qN6pyAzJXMUB0TsK1XQV1K11SIEzPOAuMxZmOcdKal2ErhrClxWGmCxlqsia2KDZSTOEprhWltS8Hu9xAo3DxItW1BR6neHSC0Gpp+2Omot5RpixwZNASAwgAEZ4OtkoUUmWSExDgBFURqpYQQ9MCobY1ijJuxCiq0Aik2Jni7LKVVHNz6ehFCrKxiKigw+8gV5xoFJ44NKFBN2qoG9NcO12mamBCdG2olXqDuurp4nUoZZKVSpgU1b4XMMOZpGlynOAvrOt7f+esipTS7Hjq7Xi5kubAdaw0A1I6mc+aklbkrYUHxBRLzc5ODS7xtdSXezueX5IPVerB6Xde+N7Xl4EvfHbQ1teZWGZcCGgkGu2Fcw5qoAABBRQPkODECyauA2kqRDVhFISqQUkopdb1cSim73Q4RV+//qqsMKVnbSaUqgVBSWSEYgBCMWitBCaBWqJbWGuOccxair7V2XSeE8ssmpLHWdV3PDofVJ62c4JajzoKwCZ5za4vQNvvNjdbPGzSi1rRSEEMqWUlJuWzLuh8/Tuew7x/Or1fJhQ9b11kUSKVKpd1+d5unSNWM/XAct8uFc04Nc861EBAzxm7LKhk3g9fWKPWOQefDtdJszU6wX9Vaqezqmu/uD9bsS43Ar1JKH5+Rr1I319tSkUGfZhnXDvaZYZJRpDeW247MTmhW1s8guUa5QmEVJbBItUNRgJTQAjHnKCUvpUCFHBMH4py31oQQMUYhWM5RCI4MBvX3VAbvV6EDyrPqJ+BTbYmQOvueCDkjjsO2xt1OazUiZMaL6wQTWcha2sp4RVZq1dN8ZbWjStP1yc9tGCMXiKCoCcENAJNSgmhcMTsozpPVe8ynkozSDPmaa6G2lwqNMTk0JV1rwIRgQmYCrbrSsFbMqSFyJS2XKtemNGjRhATgAKUCCJS2ZZG2rZX6VyNbKSWFALUYxQo9Mtuh8U0sPl4V8oEdR/ymFuRctYo5Z4IGogEvsaxrywC/9t7qzs6XTsEdhDTU9/nmDO0GraWMwGZkTbHBsofWWikNkRNRLrHW0lojYmKppcVNcIDjDuEAf4b2aW6OMSa4lNJyLoFqLaHmBJUsrjEHd3pcUxGUf/vhwKnI/pCXH8ImECehZgateNPSyFkfC59vCRKHDAicsMUcGDYlGRfAGDAkBq3VTM1TC03lJldhOiZ+FbYHYkq4Ulm+XG7eB865tR1HXnJVSr97956rFdja4n0KCgCc66VZqaERRyE2qSIrfU0ypyfAW6cfWu6psQa+Nt8aUBPAIhcXJpUBIGAkrC2NMgEhMMEYKShMctUaC776tXXdzrmemphuFw708vWGoI7HPeNtmYOVvARes6T6EGbicjU25/wlAOvHzkq1XrwQ7v3HD+fzmReohW6X9vBuKOXZzzjPsXKfm3h71Sna7z5+98P393/8w//Xe/+bH/6DYB9h7Imv4fo5z9eV/a9Rfo0pCF/b9nx//N+r3X+0J8fKy8ggbhHGAUT2AWKQtRBnVjsvuufttmP5XhoP3T9yzikOQIWaUMOz1P+t4b8is5f5sQ172M1OmPH2q4ZvjO525h+U0Fy+1fbmjKgtMNwLk0hMjI9avyvVV9pqdNC6bcFtQS2Pko9aHo7DxxpUQ1ZKEoLHULTQrUQGNW+p37mYmxZ3aTK83g3mPmzxr6z6er7uhj1qNr8+WWvd0IOG/JIqSujvQxZdcvDaGInSj9Xz1S+iy8OgKYtcuwpkbeZOffn0tTv2EKnExntVMlinqqqQvOKyEcZa/eoVsByDkF3PTcBWItuPPTiWL7nfd7xSKSVdbz4n1VkQUloTfVhb5Bz1fqyC1rxoyZMPxFldaVuqkjbkBFaGeAG2ChWFM+Jt03djCUGkWpxkvihjGvG2BRLQOQUaBba1BiV4rFBDkZ0RUOO2gRYK2LR5y0e+3wlgCpEcAywCUCnlfQQQt+SH3Y4TsF4BQYxROVt89HHB19XsdqBZ+emVnIKQJJchvOZ5HrpdZ3u/ls6pRNdY37b0SryUAoINig/YrEQz5cl1v03Xe71T9uDS1NW2l1YjZ2lLnRtKbNrahhUYoZM5Jdd3VCvse+FrpJpbjZmUGhFc2FCJHWAn1L6Qaa01IGOMZDLGVCtxKZU0eZ53dyNA8dPUYjSdK7VCyv3uUHIhhNqatBoYa63VWkOMnEnJOCzrOs2tEBADlJFlJCZKoaOKl4laQ914LE4bzjnn/Pnr19PpxKXJuVIhDEP2ivORoaxQABMTwegCStlhBILVh67rjDGVWmlVDZqgAlFY1sE6v6w5Z855Dt1++M77NeOZG8Xwfbd79zb/V9auD2jetsQ+fLy81QrYv7dqvtQmpOpippQKcu46vW4Xo0nJA7RS4te+n0w/c7VxpBbQmg5qM/1gkStjYy3ry60qKRlPKXGBACCFDSFCba1EAF8KlGS8J8arMkVqUYsB8RTLz8CX1kiJXVhB4q54G+kzFw2JtSymM99mEEJIIYVgKQelOWEzvd28B2h/vUlYa2ul5eaFpBQpls06t8yppJpjWuYb1YiIyNm2BURHsdQwV8rd7hjmArkxxbUEoFpKEyiEEN1uB1KkTIASgDnnOAOiyhgScsY1Sm6kLCWjYnHdOBNMaSlM2NCYTmngynd9a22ZrxfZ9Er/TfVv02W/Xu+wPig6vt3+W41vrS6ivW+w5ESEgvjUyqHwSerSQBjXv10+jacnaf54fypC/9fBPB66D53q06q3DdzYlCuM3YgIgKVUAHBZZiEZACjphH3Q/J5F0UKiJkrdCRj21gI3iDuhBZMLQULIUAMrgyA97jpuq+oFFG7YmGNBWUqdCZIUTAtZQ4rbpbabkGtqLyHOMSytpJpNjJyhgGaAVc6xtUJEtdZSEmIDrESd0KWIJ262CG/uUJhmpe4Op1+5vsu5VrqNByaFCOv29HkrNRBuJbqarffebynkVCieX75cXyrEx83fkMLlhZWgQ9wM9fGtYQqYnnZS5bPRQTr+mQGiEIIJBCrIWa1UgbSRVBCJQyMgjKEo5bTtc6Xnz2fndMpecKuEezs/A1REwfmXZb6YLqWMTFhgXpZ7fzGHu250yLe5zosQylN9uVyl6MM2cjUThpz4eBQNTCvHP33+Rznww+kdknn+9OKs+uGHE+ivX5f/W+EPFdM2vfLwyNmbU+9E2WkeLH/fWgbx0vWG6gcl75Hrlh84HEz3FZu24uMwrt04MwocNKsnASNL/1ArKZVZ09Bi8/8uindChVHOoiTiAvXIAE9mSkHG/LMwn3PCtO6E0MdTl2IJNfqoCToUmfE8XevoHlzHAEBqwSTrR4tIjFP0G1AFMTPBBT/lKIB5Ji5C1LI5wIOxQ65zLE/9GJHFHIqG3TrN++7gV395fR5s9/J8UW5Iy5Lbi5IQ0ieoG6ue8yvhJoeVSl3DKqQEydd1ZQK54lpyWNb37/ax8ObD0HUh4epfpZQl5yUFUMaCKXMAwexOluWZoUTLS/CFGFM5bpdUUfTMdB23ulAjyZXRsPmWcnqbTt89lhTT5QWs6B6OrBSKUfZ6ukUpupxpvzvFadZWb9tqtWghiE45Y+K86sMhl4a5Cmd9IFUk06b6SNjyFqCzgltiuvrErdacCcjAW108IKug09agEonGGW3LkhhAAUYMlk30FlKmmNVxt76epdXgHOaaatsdDtK6ukYz9prJ5RyMLinO2/aUUomzDWETrPq3G6ZEyUNKkjOlFDDINZRU7X5cLxcJEk0/XS6WaV8A/urXTERbU9wgl8CIRAUuhFR0Ds32UCVkVFWhVFs99weW6wVp1ipJkwqfmw1CCKoNtEbEbV5KqoACgElgjfHnl+dOaE0ixJxK1Y2BMavfiKjrOgBopXjvtXFMApMgJPrb5bTbEVRgaHrLjICYNRG+69eXNylFoWwLEtQYIwBQA90NJWYgYXTvp1cnMYdbN7oKVWm7rbllliuVUpZ57pRpsaYt+mmTXJQWUZBAbCFZLv209M6VUlqkUiYm+OY73fX23bquPzV/kDAw3rRsm3+7Lv/GNTH+GMOg+LEVS6Rzaw0qMwx5NK620HIUa9Cm+5t22+VXlQNjmvNC55ZYpPm2FCU1U4wJczo1KrUkzjmiYCRaJs6o1Y3ByRjF5MJlyVkD3ufKlnwmgkaMga2pR+q3bVMy1vqm2TcMrDP3RgwxvZ7uBOIE7nm6BSV7QL1saV1zP95JPU5z1ra13Ljcum6HKCo1290tITut+t5piVoLY7SzvXE7Ze5SBgprCc+oMwjRNjRMoEuul5fLueWCKLTWgG3dVuVcSYVKVZ1kPLe2AabaImOwzDmvFYibzmkpAGuBlOJi+0gQ/FL8JOLKi09UJ4AvVpCkwbqJMziddk1/bnUoJFpbBXXUEkFljOVKKfVCYCr/i9UXp7lRp0bY8kO7/Z86/p9Q1lIrsqzke4YP0mEM63T96rpOKSW4BIDacq25lBJjniBTYzJnwVZ02rMHnzpBnrAk9iO2Hfm/ZVC0kFA6ZX6e1kK1rdezIATZv0ylVKZq091iTBNMsqprykge27mWz2tMVLsQCkAl4LEubr9VuOScgWFpRMAQOREKoYhqo2fGAgfeslbigNwAryhjqGe7h849ctxZccfr2PVtt0dj7l0/6r7sdg9cqUqA7agNMAVm9ypdEKapjmS3cPd19WsVLzFTDXc5WORLo09AidKBRR+RM0QM3iMicq6U0tYizkxOxG7CrEwu/QGk9pP/xeixleC3pSVkqF2nfvn0Y4ptfrZWu+WqlCvqGAiK7Nay8tOdXt9+SbfX0zDEnD69nYXrYwLU8w8//O8+/zwrzbYtnC8/Tf6rM989fvz1Ev8S6xfWhvvx76jp5ye4Pv9d+kyvU7zY3aXMw/U/i79YjHp224We/VyEb5SfqZsn8drkdaeppmrVSaoo7Y9hy9vbbttedrvI5I81jQW2inPXDUoD56LwL8hhKw9L3R3vbnv8F3sVb88y3L2Np5cffv2+Fk51DfHSu3evLzBd62H/3TiO9/d3nT0iqOvt2XXSajuvX42rTG7E1twuhNMWn9+/7xi+UxZk9wx8wbZT8EEJx8Q54xf5IK+3JwAwxuR0I3gD8XJ3vIMEb+fp8PHbnLKUqgDmVKnvq+9MgMuPsxs/rhSVeuChML6O456qDW+BaJV99XHDZpNPqdxqtQjt7fWs3V3XM2lM3pIcRmCCluSY1qOOuGG4Xc9vVZZeChRyCm8YFzkMsJxTTqCE6zu3G1CIeJsNsYMZEhbVWQCqnIDTukzWGpSC8SoV2t5xzgU3tbBWZUnSv5zp/ShmX0OCu12dttqACKNvEozsuuvLObbil80MO2p8GI88Q2FALTNoW/bZh93xVFD6ywpErDNS8RS2ojlUJoSAimhUnRYkKNDyFpRx6zJxQp5b2/fp5Zo+n8Xfftw+vWjTkOXB/nq3u3t7++l6ez7sRZg1m5VtvSoqzJ5aIQgoPXdBYHn3/Teh/Anxs3H3gCaFn/b3JubQADszbFNQwq7rihy1VVDQjof1D1/LfteetwhcNyOMk3KHZidYPw7v3162kqQye9vfhRCUUlBbDEFrLYQIy4KIkEgqE0oV3MQ5IhPd4RinWOeptcYYU8as0wQAf7WJMc1LCTWnbbna085v87pNyMF0Jq++k/K1TLJU21nrZJm3EEJYN0Q8Ho81pOv1BpWEkFA/aXVN+SXXRWmbsqypK77jUgEXSGy3P8Z5lcCUkNDadb5KKTgDTg1yxUZ2GGOM0T+5sQ95Ud2qHb+9NEb73UGh3Z7bj6MexGfe250RQ36r8YAFbnN4dqPsBptSqZE4G1sb6rTZQckdwZDmy194vjlNamfm1xuMlqZNcuVOexFJdja93WrNREREDEXJxLkUknFBm38F4lB7xrvUNm0bF0KrY9+/M0ZnWAgXwCiEZLQPt30rnNjNb8/IUqm/SI0ljOFcOXPQ5G0K1h5KZVIO3gOCSfkNSFS4IZO226GAWocQC1GkFjZ/g5ZijPO6eU+ALsPFcc6SVa735aLkLCQ2cESZc7a/u1uXZVkWUOqvN2SiGtMKLZW8ISvKMKIaY5SibxkRZQoZkDZ/5aIxkVux6xKFbMOBoViEKL22kJUI937587CLlX0mxl++GjVwOdbaPKFvRQNGwJyCSTkzbizw9PJdXV1O2373LtMW6LzGxdihQmP6anoEWTP6Wnaj+/tW818dYTFGrTUAKKUQeMc8uWU1OYvOST7IZy631n0HzNTigAGxCbFJAQwKq07vuxTKgY2YmB6HJHBbkyOj6N9xHFu9tnaBIg1+y+uh+Lq1P3GzVHoTqgretWZEd8zBFgLGBIIQQnKmqCEA5FzLhliN4n0Ma+dM8RzyINgBYASAGGNpV2liSomIrLhT4o6a2OJnZCSEQKQc96n5mFqq4utTnuZ1Whej3qPocmErqdLFTU4B1S1xcCyJFKphVBsnB3nIUWmrhSmosDTyidt+T3Tcrt+cX9HaCLSK+M63Ktwxg7C92fzbdH3rdYeRcp7nl5uh2oFbPgdrHr58WdGU0sL69rvdafi6vajT4Ji9d+r65r/5lTu//uSMKM380/+29Lu/K1v7YXyP21fXD03j4T2e4xM+dv/85f853/6vWfzrYVTnp38i+fPN/J59480Dyfat4TuBzu1Pc0udteaGj+q4hjPUH1hRZf2pbwNGLdnJmf98ixsJavQJwjzYwdfp4s9cMcOEutKeqq7z9QpL/D7bzjixPd1ZOt1etxR1atwOlUtC1e8+3A39JafPJb1ty/Pt8nI6neywu8XEdyoQ9e4UVlapZ+J49+6HaU1+vkkj8lWlnWEQfcobUpr68fR9/XHGdx9ibsrZxWlYRIIjsoefMb3bH+FWL1sxuVUftbzvuEtbnm/wuHNN5K3t4OKFUdntIKzqdpnOUx3uIBK+nFdFntl0tfv8Ouds9h/07K9fGQxIvNfsFPntrSTW90yMZqNwe1TfjXwt8Un4bdt//GE6b0psM+vUsI+zX5sXNcA2oYGYfDBcMYDU5WcCqyh50VzS+zx53iSaETx6zlOJ/OtZKAy8Dr/Z50QZT2mR0IDrPHL0r8s4lrpvUOswHNqGqCwnfpOR67bNN0qxGVlLNCnj3sbnC4zxYQqX7Pl+n6Y8JNXJXTYDLwiM5ZArMt7Z8HweqQUb60suohOBJ4YlRG51nbcANdIul6OQtN1+CZdy6j6kGFOq0l59e/VEaAbTuVTm88uW/Yf99z/MTxO40/DrI8Q/1DpdjeGG5UvOW0KL1/IGJnej25at+AbaLH5jH0a9THLHWpnhTs3zjQcDSZBikZbDuw5F3rY1l6Z3TqGZptK1wT7c1TCJrsXlTGqoid+Z4wypYJQHDcsaao4AXREIIsektKlIB2dxJ9laMxOcKzvsYc6BcwDDm5HPtE7bV4kPU8e6vgyuPk3LkI2VKb9Uugmh1jk0DOquWxNCtlCPRn6okRnp3n75dOh5jH+Rd1sWl+7OTZeLUF1pSII3LWip3R4uX89Q19zdhvuPsMqUtdAf57fEMneqX9cb6Ei2LjXlz6I7DaD8ennRSixlkpq3JeptLGrHtLs+v4rcuBCxYzVuoZ9J1bvD757+MGMn+YnNzcPAVfQH4jlXZi3NHra16cKkV724nRcGBxh5wOaUZu12XaXpQqticB3CNS0vp5FPrz/qlsn+wUcB6Vue9211vAyZbeL9xCW7/QKHx4fpPMl2ACXrjWrudkYU/bTrIJ3XwjaxA1iWyjaR9qxepf7Nyt6gVCu1F9fh4ZSmvN5IqUfjHp105Jde+Ba/DMMYhFlaEw12451279atSPKIJz4c1jwbUY7axuuValEpYNrG+29uG1o58mxy7Oa5agYgNeuOOUf6RYd6ZyQHkty57XwtW+JgXp9WRrvx+KvzOdXikFUqp+efRFpP61y6nULWvJ+1lsA/KVm1eigkGssMKVxn1f6du3tucl7XUwkfnfgwar5X2i5xEJSyBB54JbEdnKsr/TET9MdunRdWuKiRUdq2Tdo8+V1K105wLeS0sjk4Yo025PXA5HNsP15nXvhv//ScshFsZOv8uoXmVXKnpkWF9KzcU1U3cD/WYlP43rm/yVCT+lPpv5xTLCIZOcbnwX9Oefpx1Mx/LroNSiAiIrFWKKdotWwFWJMGbVtY8aQsF2NlQzXOYGR3j2pZihrq/eOBey4lAAEAAElEQVSRMYeyaeMawp5mzUxtf78k5Rd/bx0rvx/wpEgLepdg4+P2cp58fNP2rVEk1k2zRuoF22xbbFNtAy4L045YxxplKYAqIciccfFNGwbMpQi5Xu/f9Vz00y0Lzb79lUxh7jWX/EsrP23TW+9U458470xnay0xpFpbrSu15cO7x59vm9p7qm4Qd5rWoRuWyu33XS0s5HD38OGf/vlfteO1hWHf9SfcwUNYnhjwtJh3vetK7uvQWcfBzheYX92x//eKPnb6tG3nfvRM+Dn8S/ZS07+PoTW8MmGRenL/OG2rEj9QdxZDAKHW+BfFHnOUVj8IlRl6CjtJ94K1kpK+20iiNO+p7qRAzt7Gfrk7MK1cKa3WnMuCPDC5ED93O1/bliKFVXX27u5+t7vTt9sVW9/b3xj5odWBqmuVCyVT8Zfry8O3j7w71daPu3feRwRwO+i66/XppfXaxaY7C9aEp7fuw70CFtOX+3s5+9dUvBuMzzejc40v5+2n4WQUyeYcE9ve3la7+KdAMqNX0ePw6GRZyzV70E4kltJu34OWraShN5fz0+FuD0zclgw7ai+fTxRW8VPW13iZeUsKBMgC+Wwsbq/rzn3MsZjewJzX5ytjojAG2mRE7QYoxFHAuiKilpIaCsGV4VoJbVirPlPqB0NQQo4lx34/hEuBElN97gZW3maqbppXZkOLlqG+vT4pky/TT3cP+/X15tTx7etXHDVHRhyFkmQk5aJ3LsU1humvmbUYoxkGH1bpeIaWNB5X5ErfcpQR2f1JXqsQnDOSnIwROQYhGSeyRmv5GvM/z8u/tkL7/pttjlAXpOv1TWH5mKPcH+VtelP8QSll959hW8s1uboz8M38Cfb8/iD36MMyh8PxwYc6joecWom1G++pScCmtWQCAYCIWmsghFIKZSjpwllJOTTijXT03HaPHIaYvXWx4opVPj/7lqEf2ZYbzRf22CwFNdzX1EEWu1PPKtVOlbeZOyOMLm8zGzsW6/UyjY/v53nJOcfrlQleSqo1Q5PyWEzlQG5Nr8vza2IHxet19Ts5aNVtpfBELWND3gkTKhV+2+orsP758xVFBl6p7eOKnTvmNbRaUl65aFJB8DdKH4rflyqMuhPwYVlfffyRqhJyEjwaN9TSM3aEZhUnp5J7VxT0y7UJN1TsrLgHKIcHSdgYg+XyRgi7485Ps2CcEGrxQhxrvbohDe6jX3EYZL5QbWNemxoEwQ2ln/JEEaEO8cr17iiKDpHGO3P5+nPreNfRfOUonmtLn39kVr/za+Ptm9vb+OUP9/u9Y+Zc+VNi/2aMEPUDz2bxv3z4jgOXuWyuE1CKtG/SrBXTehbeV3vYrPS3n964HHf9EBMa9bDM3sj9dk1UGGtd3kqtWlsBfKp18QGodCk34AE541IIJWe/+W3xJTElUHKP0IFYn698N2ajREHHpDrtMtZwnTQidgYMZ6WMxjXFGby0eDMSGr5JnSWMYRLLJez3+/3BcVG1lPNyC8tr1wuC/LxNK67YL/cfK+dPZfmSL7cj2wHjYT3mbKftsvnCoEOWbWcC+ye/5VQuu3efGv8J5XOVf5bdVDmCknY3JgCmpM8ZhOTaIcst2n5wQmUGhxRQmVyzGu2fbOpwRd380U2nPg7UYXwmNo36V1Ye7fg1lH++f9fXgsnX/fAoJMRtVUrdpleGejf8Bughb3e1OtuBT784p5B2LYu+a7r+w9PrcssvCbOPkbEZ7XVjbzWLmBbgEzAvhUmB11obTTUXgMY5cs5RcMZYoeZLCIvS8kTJtmSWCTTbYXUKR6ZlSOei/l+En+5OY6Gb1d+E3Jh4BnwydlrOwiotBf7yb521dp03wXCeb7UgEN/8VZiaybMQGG20LcEILZE4T9IVtwdleQnQAFFu/U4AaR+YkLRMfd+dIKp0GdZnexo/+IVuF9eAr+Ea8vR2XQBYIy94WaZFzOJwVwLvl67f9FY5v129qltY3d3x29//68vzV3j/+N08pe+++/uQ/GTKfPleZD3Xf8yHekWrxuO39//AxTZdfhr6ZHU4HLTgDAqHYuLtoxX3IV0KvboeUPDL5aKdhKpE+zVzotAjkw9F/57YRXKvdFwueBr/JgdMMZ4Ocro8W/gmpe9mL2PxjBdEwYrFbHlhgu3CBrvxAZp9d/9rqh2jgci2dLDaaZuXcKnNQTmUCm7IZjhX/inTl+5Qhc6NQimlc4PsWS5ljQFEyGWSQsclE+T9uONKOmWMMWX1p3F/m6ZtWzpzSFuRHRcmoNyYhLrUeGPavgMeW32BQc9ffTyHTRALkQvpbCd7O8f1YN319TVB40zagrmmGovVJmwzd9LuzfTHP1kuIU6qnfj2TYu9qMP109zfS8N5o1XS2jBxadJcizJScLgug3YMFTduK1l3AyQSIMK8LWGxnTG6Q8GFkwB5mycSlVqolJBaydE4rbgoOYuKOUUlkPGGiIjIpHDjoITatrDb7VIsj+8/gpTQCgK1ILv779Gb0jpr3/HxkRaR+Y61JJ22zsUldv14fTsPg23Vk6KNEtwWKrVJqVVXQMDcULQWQqMClWLYmOSUC5ScZ8a2b2D9RkA13eu2fWqFrJG1oDLl7qF7/bocdt86Z7Zt6+5+FzZ9OD4SJChnZeK8XPrxwS+aiQgyz8uzG0ShjYsCMuUygWTRr+Yw1Lj9tRqdrgtHwdmxlS5HQY0rJxusTE4grspkYuhX4NKUvHYjg1YZ6wudmeaCDdVDckWVOVsRZy4kE1oQNgAopRSfWcXlMmtrIOe/4knaKikFFyg6G7bXyi1mDyICdm3JoCsvnTKu+MZtv8bQaUWFWNe9fPnSHQUIBVwLm2Ob747fgjohksSeFTVdF6XEYdcFfwOo2gjUfxHClJIa/3n1X5XcUeOcBaUa54SIpVIuoJVjDQzIIm2de78G+76CKqxi3jKhS5QFx77rtbXzutxuN2dMhcLqCDS1FjhXXLQcGCvH9fZGLmnFfQUrjulGen8ivxEuyb+ao4d0K60Sq/lWuP0+B6fYiPX+7aXcPxwZzwgq5uKGJFjmpEL0pu+pHnPOJT+x1BpZZnkKUfdF2PR2uzHVGB8iu/QagTOuvknn+23xbJjC9UUYn+ua2lfbtZavQrxSmoycmGRdZxvUVBIwFFZXZCBUa01otTuclNFSK2G0ch0ImXMmImO7kqvu+gYIjJdKIHi8TZhLorzWkJZFC0FKhDefV6SqUG6FvTEJNc2sXEJOjWIMEwBcr9fr9asyNaU4pO1ISNe6veAy2X7/m2KPv2yhVNFYUV0UCqXs1bBk/qdUM89/RyA514L6lgWUd1r+1g6D2vX93aE7HJhSBTDWsqVciHFwq38BYilwFLU1wLa/3l6ZOZGWWb1Nnr/e+mvIiTs5uFZouQysHLFVLRUnWRO14oKnodeNKjY87jslu7jtts1g+17YIIY/kXg2xhmxz0tv6t9LdgP1Vd0l0K5suziJGLPaGeE8gkDYl8QJ11SeGFQFpxCXmHwIm/drjLFB45JxLYGiFgwopbhoUfteMIwhvK0ekYvRudEcBZ3WhaHasvjj8aiWKQxuf9zfUe5Lyqa75fKE+p+kTkTY2CvISPlbKL8iYEx0C/BJqASaAbBpKik6Ju6BxLLNxkphWIVSGyhpGqBwENuZ2ByTf/94T7is5ZVpoTpDPBCPiHyZg7NaKfX180UmAJavGWZVQMlaK2Otbd7YsOafP5//bXc0i//83Q+Hv3z6QzVT+vzHjm/TbJ38D+yVf4yHOxqP31SoGxfpw+OptcAZcSTB5LZGbn+fQmS8uCGlbWDlB8ZszFHk9/v3P0Fz2X8gvuWwG8XfYa6s9kpSiheO1al+mciqQcqIiI1W4uduF4QK2jAURKL6cNOG+bju96cYJYfTOhk/d61tnJnOvIdmpaI1vnKB0bPgdy0fGDs5d9cqr4TKyLvHU/BzzcG5Ju21PzXZ9bfZuPF3oFW+LmRN3XIJUT0+8FSZUSlOrJFyDzXfQ3607sN23UqYD/e/Ba0Lr3mrnB9Md8cCGw+PbRFv0xe2F7zaMDcm4vtv9nWq8/NlWhcmRw58ut263Z5a4hEeBrfcfBl2JAaX9u21KCPwYSw1NaOx8VCK7nVbbra3/u36utzM0BNRWkJeMqX2+nxmhBIUswIFxrd1nldghbIHokql5cK1IkIqgNpIrmKtwiAWpNJRVYBJ6sKlAHWqNNfsc2JSnmo2UMBvF79+0jKQi3l7zvVCbU54i/NToLdh2FWOlaBuNca6/+bbdZ5rLiSqZHVTBaDtbQeCbS8X4RxyyD7U3MoaoAJICbHO1yXMqLqfxPDfgW/bmomhjwsBdvsSyhsR5iQQ68v5z4e7U3rVwZ7hUV7SDF13jhF7WdSc7WXoHvKCku+5vKfaIz/kGwg2Qs0lJ1A8pYSI0Nm0bCEEZiOKGMJkjAG7r6Q6d5feIheNS8EqJ6Gp+OFgoVFYssWWdwM+l9q50BbcrnnHsk9opUxV3e/L6tOysdGxLW85ur776cc/CylTriBEKaW1Uv2UaYOMqSYom2aWcS2JamGKoR7H2/O5U3wK0/50hNu65dWN4/l1SakqSWMncizz1xdtWFwzA7TWhLhxyYnI2Y4a69wA4lzorSTufRz2AsA7O5bEAVhIG9c5t9X0Ji4trawwm5aqDVdH05Dl4AulaQKm2TgOYZ0rUq70eLq/Xc7aGisei/dSS4YipLXr+uhBq6ZHAyWj0PPbxlBza60UIa4MdgZtyyiYnqav3UlJya7+s3X58hwYS+N+FhKW9SbdmzRB8FU6Aiany6Hmh34fK/45LsJ1PK41bmZn/72/3afNOXtM5Zaq7uXARAZb47zueikNTC9ku30I2nUDFtOSlEJXL3jh3ATgrDZXMroehU1MCsYPHBmr9NcXvve+lMYZF1yYRkXz8cNDuK7gCxv7jQGmYo1VRnMpOAOBQIKB4BIhL9woXQm4UbHGBomz6LRd5rWU1FpRXCguEAmRiKhasUFNVAkya2v2v+j6y31/BsZqvVuWcV7CGtZtHpN/36j0u71QqSa6vvB+lONp1c7Ot7tMjSmbK+PCtNaGruMonBsRGbLAOFVAoQE4q4W1GkJZiVllHuRApKHRt4Qj6Kht4WIDvFltBvdOyqzd2boEjbThirvzy6a1IUIfqWKs4l8alenCqY1h6SB+m7Yayz/r6hjaUP15/TcuXzmtt7elFCVoJwRjPCIrNUuoPRUOEKw1zmitFCISEXCGUggthEQumpKQ8tIPmouiNXFWCb5n7a6tH6xpDW+78bel6W0d5pdHq/fbFhv7V7f7crs+1zotl07CA0IwlnLsS3bM3Zbybw0KK2sfVsWgh9yANyaTGpKyW64MBXDdqPFGikmSBgiYsqWRq+R8vm3lyvihc4+JZsazdSKmDaBdrrdGfFtLq4IGDqAClWFsahZsCyTzJVSJmqG0bq/0bjc8/v6//eL04zLJPzUd1OWwY5cwlG/+7o/ik/lOb/5Yk951P/T6txS/vb5oKhZZAvFWqSHsqNzFJEJ9RfO1sKeCnolXFh9b1JU+QSNRrWBZATVSwuYKlBMKFVNetRqBxZafIXIRf9W2H7I/XhcCdcx0TyJp24SKqV6RpXm79juFPFgzEOG6euM6xmUp1RhTK+XStDFSq1zLFoO2xnSuNipbYKVZqbQ2gqs1Jr3r9d1+ulwaR8V4yMW4fnp63j/eS62ev6T++E0GP2+/mC7IjpeVGf0R2OXt6WsTIy61WS8em9u256Xk11u1EohMga3E/eEAN3+dF2PcMAytqctt2e/3CPJ2ORs1kGoq87l9zvtPAudp+eXwt/u81LUlbncNRq2GuL0NBwFpWZ8m9XDIEo21MrVdt2O+aiaYtbwgt5IAmq+C2wYtrrNkEoUsqUo3SG4kUz5mJGZcD5EhU74kqdUybxx0CK1UYI0QMcbIuVyWrYagOaOcO3koUbDaadyVKKoXCvqdvYvXOTGOQkviKVYg3jJK5RSv7mD4UYtRY0npfBYc2aAJkXKRyhSftXSEAhsLa2z8c0l34e3fpfDtslVjvpnnXWooLd9mJdlR27Jun8fxsG0b6lfnzPXTp363aw1KJuv6So1LweRc6Hy4l2BC43Otb4WudmjzPO9cn0IQQkipw7ZqbWutIHnOWQuthIaSgTOueNgWKGNpuT+wjCs2Pa+SUi3tpvDdkmKeX9zjgCt4lILq+A6AM6pVKPXXKJa1Fjg3xhDVvu/H3Q4RWyzOWiVF2Ly2R4M3MLrNEtMlsQo3ldHH29U83vt1xfnaBgYM09Pbw7cPyytDSoPjcYI4V47TNP2o0NS8tpKk5Jzz2qiRzBml6LX43e0CTn0v4Ju+72vK65KlCSmlSsgY45xLIQAw1VIquU5Cm2xnUzpSvgOG9l6lvB3uD89fPyulUqPD3f3lfL2/u2eS1Zz83NfSQPiwSSl0rp8F04KfWmApzsCnxmfgpRZGsUMFIqUkUTbOKtrTEdYgnKl54/rLsJvWxUMdTK+k1MkfmchpHiB9DPQv9uG/av5Nnv+93d0Evy/xgHJFGRf/2h9Q8vd+dcC2ZaKSNNAiVJZ8jzTajjjnUkpEbK3lnKERNFrXtbWWSuYcW2tcqZQSIaDg2zT7ZZWMD13fu0ExnpYwvV6V1kLKXIsyOsbIhai1StdBqHxwRTJOYJlgTi3R1yWqXqhTQJ0bKqGO20ZcuBofEHmrnJFqpTljpXDbWhAx5wjMd2OWatImttwEPGL+vhKp/Y8gvmg1uh65ee6GZoyat0zUCXPT+mzoG4iPKUVgWgjRMlFGysgRJeccEIn5+Cb5gauCamrFlly3+Iu1va0vPDzVN878MojzQQfHzji3vB2deVhmz8HOrwLTY4mD3xryllIwehDYx0BSci5Dw7Pij4IbgN2g/p3kR1Q/H+6ftfaN/y9U36jouFEORN7xZEQp67xB40hMKUeEUthaIPhac2y1YiMGKP7/c8qRMaqKgZOil3xEciVLxtzh+N4Mb60RK6PiqrYgxJj9flA/FHaTw1dqktdfcSZrU539tvJz8jrlubTVBxEya2LK9BZSZdZFpaN1LNWYKxNyR8ldXisg78euQc2lau2YUMSq0MBF2+Lzl5d/6/fOjS7Uy3X9ejqO83IJvqTc3m4vp7u939K6BiHBKJY9TyPgt+JlyVuc4ha550rO2tb+WLrDdr39xPhW6K1Q/IE9fjf+w5Lejh9mtb78VndjVaX8gBxcJ7kpobzltk7bjWsrxBiSlvuvhf9yuc7EMiFsy06yb1Etby9jg1mKwoqy/adY/lUJVXkUiltz7xNGuug+1dZSYpxKZ8vxlLt+s0NNbXMHl2VpaW/to99gN97frkvXdUpx46gEbq3OdFMa3q5eyjvjRpDR7kPGV5+fcr0y2biSQGLztTNDivVyzmk+hNUt27R7ZGv5c0u57R3zDbQsnLMpbYZBbfvHDP6LtNqpPWddgZrbq/tQIW0IeTjxcaz9vY6UwvqmTlHWuT8+UhHz9fMwcMDu8uyVbvZ+0Ia9Pl2Hw145W7aU/eZzWcratmpBplJ84Xx/AMHi06xHO1/Xxq0zPScCScvXJ6WM27vL7bzNN8Y4rD4Hn0tMfq2+FEEViuHW7U7IWQxBomZKckRg6Je15iaMkoxnatuEibLe58JXwYawaqOHxtaadcvY77tY33YH4bd5OLzD5NgdNv/SzMLlxuWm2cK6gHy7XW5VcRTIWjVWXs/PmgvIzRpHveMoKscthTpt7uGwxq2yxlvjgkFtxpglJagNCdr8rQ+fE/wBWayAjU+gnsdjur75/b0K7ZOx3OqHmo11gzRKbDuY1Y6P2+vlN4/fpLcktl6FY0sGoAfqISjODqV0Rp5q0LUCIymMpYZUW2MAAP24A+q8R22PJVNYF2UhpDdjIwCkjBCZMK7myERttXZ6B5rxW/O8bwG43+S3vdoCCcMLeMVg9lVx4QwtgQzXTFzezsfjYb7dOGPT7Ua1+XVjCLVmjEIoxWpgmVdqZb3U3EoMa81WOVbqcNpta1RVg+A5xMGdRJOtrNS8HUcpFZNklGqtltJ2+4ecEZmeF69059NTiNO7h4+N+WHP5inlYL0/c4tCMiW7sDBOnZ832XF7RMy6ta1AiDFKSNJxcPu2sTksHx7f+8Xbri9Ekom0Bm1N9Cuyuq0kxA5kq+CFUK2lVnylQms67h5L5dj4mjarILFnKmvDUNK2c48hi/ltvrv7Ic56sENN3XpjUjer7rZ5JAid/ZtfPv1B6E+n0w7znY+bHhvXJ67PDdZct+jBmr3SuKxnaa+Wy4xXLeR6FlIffAyUg7BY2ybl+vrytRu5tiWGmesgDVC1pSRts1AZqgirYFyC9H3fCyEAEQBKykiMNdIos2roA22e7Tp92m3Pbyo1ggwpg5AJWo0RaqsEKeXms7QHYFibCJ6cHr33wFbvV21YTjwGXNaLYK1GFjZgghyBLVIVs5wrwkGYd+BOX9e6+rWEPsc9Z1JIzP4Ql7uUUsTfEwZW+8PeEv5Lg89I+eFBdd1QK0huasqCYcpboxSj58wiK6Vkaqxh4ZzXwqQCxG8rXyNd18R86iJAZluuve01l4GrVbin7nDOtEnldFdi8cgM59wY1TIMYy+ll7pBpbz0Evsm/tLk72/TmdExBV7i34Tp0cDJ6DKF31/CH6S8ifpKZYaGrVhosmEQJnHOBRtrrSmlEELyKYWUQ2y1MkTgBUWtlMaDY4qkZiGH0lK/u0iwg3FQDgBqiv/S6rbf59VT9HepLufrLZXK9Dz7gppCfskUFj9V8IClFWn1ibJg9aa3G8tZElONg+k5Ct/ZwkVBMK0p3SnCmhNjQts+h1djxfhw/33wB+t+q/n4/vQdbKd1iSUZK0+IMIwm11JazjQR0eeXS77jl6FdMAeYtwU70pT66g9D944IIffH4T02UfKovivAFpcfGdzHXb7wfmv3TfwRRO33DNUV1Fm6JdaNiy6XUaj9bYnAnRB3ftml6IyjBL+v7UMb/u+EUrH3DW/Q3rXyIZZDSrob72/xFzMUgmOOe6bFli8xvmNiDOnGZUghYuuxdsvVc+bWpSjZpYic9TlKhjYm9nb7M2OiMx+R9RXW8dBaK9ssFPy6+IeW7hi7E3JXCzZCxpgYDgUbIC9JCRiOfQ8t1TkqJUDy6gNwUVrtj8dIVWrd3/3m+jxrJ41rQPOWF6l6UIfry3YYHvKyeJpBuLdP5XOs+3urpfRv10K52/d18SXmw8cPnOREa8oz1mYe9iHPaZ57J/XQ4Rwy+a57V5YO9GD1cfm0IpJRfXp7rdwjVcG6daUWWH9/FD5YAo4AEmOLqjdCcYSimJBG51rDEtMacy1GaSksl4wBbWmLPhBVOThqKZYlQyFF9tgl8q6XKXrb20ZlWxYuEFohwlyrlBJ8rrmA6uOtZTnGpBAHjOaaWbvV0+mUedvy0vICGPff3M23a149dLs0pVogzIFxWXYdVCAiboAo+rQQZamZLxuUyDhx8QqRZBtrmY2d01p6+XeKfl2rvE1PxmIKfJ0Jkaw1KZiQv+4/HKZb1Pw9ivcM7bpdtPNcplymUK4xXaVuTMQGa6mzURZSZcaVVFsDaV1dA1e8iQtXC6CvLVdinO/jppV6bNXXJuIikHc5LMNBcAAEE9ulB1Ht3j9vTDPRM0h4u7FSCbmslQCASRFKSJQzFKVELamVbLUxSgvkHJg1Lm5LiJrHUtuGYHSizGdMRAgYud+KORzi7CXrchV5a7Yv25pez1fTwd27cbuVBiOzkgicHTgz0OTmq7GdcdrHubSbcjPYl9oytDHEi+sClDumBsZ1jqUEz7HmmpQ1zLl4zVLKrSTJvYBnUGJdpUKlrPHeM2CAvBA3yiohX9/O2lY7Js6tkPf9XjAFUhwRectTbGHPhuSZ1qfqqxg0axsnk/kRgiTGgVl/fo78q9ZrCq3FXY22VM81XN62nKiJCeRNGq2N4k3HaY/c6ru6tkR0iCU2gAhf+lPOtaaatH6v4veiFxznslz54Cu/YBSl3OdNU+Et76AapU7eD9IchHzPmUQAjigYj2HjArXWRBRrKUjEkUlVgRjnOVXvfanJJ6+MyTkDYzkmQRTXrUnJCazQBZEkF5V6brhUFahkljeJKUPcRMUcbkxcjaslU8nEMCpNJTPOrJA0K3cuuFaB0mAN/vYH9P/0bvi3YeyEylxeS1tTrI09A/9L37tO/x9zci11hr5V9DDK3526v2eYASCmQoBMSuTABHEtpJXGvS/Vl8aBRq5IKmfUvZC0JU3sozn05tCBGwseMn1ourTWbstXhibMo5Q6l5maYDgoY5H1paVK07ZtVNt+3zt5Z23h6kXoFerA4VFb08BzZmpXAv0yzT/6DRK9W7P1MaxvrwKGVtYGT4WuDHUrHZdCOt/tRmOt5EoApwo11poqNkTVMsSMERUII7iRwFvIwdZfd6oDWkNOeuCyf7NdQC+6vVk2lPpwOLz3fhS6709UcKbyLoRMrOYiUiau5kKvKSXGJVDLyEnvhoqYMi3XwMmgyH5rCM7urQ+3ZWnW7IRLUj1hi4LX3SmcX/+RYT32XfR/2tZs1Eny8XDY/fiX33vvp+k2h6/1bvdat/F+rLlYhilOL3O7tHi7TAgm5zQMErD1vSLcGAeb/Pa6KgWSlz1/EHOs61fvWa3usP9tCqfd8Lucd7Y75upje03sq+I/EO0yPtkREPm2NlZ+XdqpV/8XYCRUrOEhh3ut36/lK+qwLpLhTmrdiLkdf5u/CPbOnC7dwbxdK+Ju87f9Pml1RZgP90Xai7KrtqlisM4gMmPc2N9TTTGfb9Oz4A6gz7kiD5m+qG4dTiB1qs1XaowrYHpLpfCwf6cZr1II2+/mX2adP+pd35k+GY6lGam2FjsUmcN83Xp3n6OLNw10nGe2P7zbNq+1vD0zur6z93+zfvlqKv+b//x/pottzRwdZFyHxx/qjRqst3a7Pcf+sTeDGge3vD2ZTvBaBZTCmruA2lfoV+Rv9t2tXf8ir42NjtZ4VKLhDYoPc/HNDsM77Mz202fXmh66l8szdLIqUFZJjsknJrlQoiUIvgDjUsp1WrhgrZZcUz8YLRm0FP1irNRd6cYeUHOhUrkwdoXmt6Uq5a0TgCZsrCQjuC110zplygKbu99JzZjm2HIUjUnkgpvBKIutbnpQ6/nLYddzBl5IfInYjXjLxg7+3Ri+XsbDURrWKM7rBakwzRvW2iKyvLdWy43Bst2y4UNKF+teLvP/lDN9uPvP4fbtuiRlV6FCpU3oBXrnyyIOrfW3xJ5gSMUAdk5wk1KTwjFuAFSrfJmjtgNnGqRJWyBCKWVulSGu2wYwOHNftkaNO2dAJMIFREibrrXqoS3hDUjn3HHkq3+Oa1EauJpVi+b0CF8wMGkYhZptQeo1pcIatV7rQoVT58znTz9ba7dt48BqrQCwXG+6DUmu7RrWFTPcdE4g9hJ8ImZRN+K3acKEYSme2KD6ZcvCereH2iST+yVd9/fDFpRWXQhl3XIjIbVb/IasIcvO3cn2P16fBGOtZVGSUUqMB5diV4ra/M3YaGy0HUsNZ49Az93OttorNkKhCt20lsMhppzn22SdI2Ra65bL9Xxx/ajctRaOgvk8tdbXBjFfc+jKKqUeIKwNb7f1kzUCpS1ea7tgz1ja7KBDQFgYH4Y0Y6Hn4dAy/PjxV3fX5yoV42rR7NeV1bt36vba/LW7eyeAX6e3OJ7uW1HIWmc+tioZWA6ncddBk7W8VMDbKykm9aiUPPHci3EJ/srk9vj+/vnyc6w3qaXo0hYnLhM1nryqheU8my4JzUqS3CiuVWOYqG4xIWdcSaU1j7lohE6Wab7+9Hl8dyQtDLGllbR4ySUZSUZCqLKCz6mJr5xHKMWp6m+vFk9p4r3ukaeUSsuNi4I8bWskYiFNNK89J6caNR9LBfEQ4W8v6+9SiOvNIfUEAUhi05u/Uc3e+1b0+/ePnXWY+lJ+GQ5foBphtLIGmLBDn2oCySLFKhiUOF9FrVTavE5ynhLhUrOWZRVpgfjUJqR5EvhPPZv3/CHBV7P7ah1j7cO20OEhknptlJGpt9dVadgd+V/Z4rv7D69PhbVDTZ1fQqE3YtN+P4YcmFyW5GRHXJ4Bo7DjUvLm46jvWrumGLEqANS2JnitLeTIlnn265pz5kxqobXQkkvJBcCYsxH8sK2yFBe8tuZj13/3+vJl2D0pZQQ8lvBB4HdDz1V9CMnu3t9SjZndxocrtXG+7LH+Ldov0zxLZUP5Zdm+sPb++tT7tbA1JNNbasW/vBoSqjtYqYTi61XyfeFHVt5kzc59W0u3wvIe6hgCCD2uUbr9t+54fPOXn5++3B362uKW51hn5Oi6e1B3pB6e/usv8m63/9UubMt5nqbbicf05Zf83aNz8iqQXVcejHqJCVDddfz13Pl+l97Fxq+f/+UcN7vUMBwMpygbMF9Vo5Y8QOv7XkvxjfnNPP/l+eu/mnSw7C5wkiNL/vO8/THh/6fGUrJo5iWJJ2ETZNtRr2AR5ZKviyjd7Sx3pw+0366beruh7onrqxVOse52vZ6Gj6FUIMXre8n3ITMw6OXPhKo/3ce4sxZrRaVOzJTbFofuB6mAJR6axCpV46ZTt6ev3XhvYGP3J8bv0zTxh2X775/wCNwajvail5ll3CrcmZW37Vzkad/pgjS/sDe9q9DHQTXUphZhhan8i/mu+tdrSFr0xF9/XG5f0/0QLhPUfVyvspfm7nf+51flembY11v03FvgdIOUuRx/HfPU3gmUD+Eqej20pGi8Xyia3njw7XEnuKESQ/zSOU9doPMrPYz1UcFrHUw/vy0S38lT93rZyiMTeWwvq29ZSZ7nKZtO7AOktHrY4T5AxX0XVsDhpJmiOsgoWyHhIcw0wq4RcIiFn2Rnn/iqN8AYUJFvgtuHurHpsrCUis9VmvJWj3q46LQ6ZzYl33TcP8IvcU2cd30o2aZWlpVywo43ltgytbg0R+FHhnIn2MFz6/3lndLnaRUallJittpmif16PUjXkiwR/+67d0fEz2/L/3q4Q44SmitN33zt6dRWZfWxhKxK4j6IitBs4Z3dP7CNGicxCBW8ZBUgE0G6nVVb1S7k+OxSyFrKTbNblFydly01xEAwJ2c0WCD5NLjYMPKY9V2nOcys2sNJ9Ick9CD7qdTMNJxXsCQO1BrQEptP5ruHlJJZSyUsc6LoTh8fVrr14z7NaU2e8cpjzrQYJtgJily4ca/0ZLprIqP25jb9/rQHCiRqDe0rDrdqnmVyXf99uvXJ3p8/Td3xQwvF9rjWFOe5w8p01Da76nXO1lqW5ZrL8J4Tbtu43e/WdhKhTRhf+XlT/Bhst8QqzT6sST+9qO+/24BEmDRhQcnbU5e+EBw7JaywPkN8ufJY2n6cpqk79r6cwKsyX8xQ0fBWiEPTjldd8OBbJwKLjAmateE6rxzMxxK65ykoYpdPn5wVZva0BmUemheavSc+NlXy8rzja/D/M9P3Ut/N61dtrww5p7saRvJ7VlbDZUxfXCdLCsZWlqu/ffbx2nHFdyI5nVedUsl2K5EJ14dV+WnZmXunjrmsnDqEBJS4KKaXGRH1oN3jGjiIofiokS8vb6rhYeiR1Ygr9MRlk1XUmVl91EaSXzmXntlOGDOy69tPpgHFdPZPaBtGaBeVhVX8Wdj+82sTj6Xv/MwDow9S6M9PX7Gd5itXDlHnZWMP78ec0/nrhRcxKKt5lnLJ7WmJ1N/R1p5SQYk9InJWrQXBI+z1W1IxcmFiMmqrJwNDiNAQSCcSQTqTAnfmMV9bYSsTQLFjZaxhutthJ3ULiVvtdV10t6igTyC02PJ6nSVbj1j/Rg2/DnCV7MI2xvO+CNlqHEZbaePwnrHHRPH5sjQhG8XhkHWHin1b/LvXl1lJE1ZjlpsotbUPGWXwM4aPjH3zZVsrWeDmOm1CCIYMamOSNWwGd1RVI9YaMhA5V+SUWUKsxiWnwQqI/qsxpd/3lS/KCBQPFer9XtbbauN9Dvc3fL0D23l9lF9he5b5xGhT4oJhTuf/0GlJ7Y9397ul7X6+shVzs5+YFExy7tdNSsk4z29vKZflNkkllNBxmktJfd8jYU2t1JJKvv/4HSBHFk13DeXTtm3fPP5HIx+1lozB9dwY9IXe3Bhqy9PiZR8/fX72gR3fsUYrALt7iFnYT+fLFgPD8uF+16u27yRvYXz4ueKPotblecrh+Xb9RTAA5j38/LZ8RZV8+3NiXwn4vGAq9ee3Tyaq7YkSN0EEUd72SlTT9/pjnPoG03TznPbDoIKn0M5Cs0qTFL2xO+POzlZaH9fnu9Fir5kgkRagIhkJIzm1ReBdTcN4ME38rEwS+KDhcdzp15fbbndi9T2VLPWlZXr38dsCf9wWahWlTpUmLY9xkwClwZKBO1SN/YTYQhDq4c6wXpx8Tqnc/J50NggHx6bLzrKqYqmUED/evU+lAEBlOcfXYS9ya8ZZSKkSKaX6vhfGbFtQDaNzgjdYo/pwyvHJAakThwlFXQcD3B5/+elFd9XHl373kJuQVVLFaiXFCCmMv7rztzdGgjcOBQF4ys2a3ocCzMiuU4ldMBjOLec+L3jbmJZq0PXyZzJo78m4ElthelPAqDQiCiE451prf3XfpxAkZ6GlVmpeNuFMZYCVmNL7vYKkYJn4vuraFSU4ToVUjeHjr35dc2EcGMNY/DB0h2HHGmGj6eXFOBu2zRgjtGupXm6XbrdDJBCcodLSCKlbKHK4mr3Xamr5qqhdXi5O75U4FN6EuSvlcfavdvilBrm9dL39vLSpiLC771BkwChlVSwrrIXflIktTJILn1uo3Lm7vCITXAhRa63U/BZaa1yqWquCSQ5iCY3FMV042L6IpLQnTCFO/aDG+3HblnXdbHc3vyaehpL5Elfbo8B4ffkiwJRsBYL3q+DIORJUMDLGwBU3aGKpJeQyR+JCGnd5OQvnin72r8x/vV+vOIXNkuJVkmNa6xRLSiWFiIhd1yEiADjjo6/asAJLrYNg+2F/uj5L15ctPBe4cbZp20paGaNa4jyfdx+OaBjUSoUqk7Ewyvz19jw4BQCmGzUYv5ExeyxcOcY0qy1xQmiY17rMiashzV5CD4hPT78fxj2j71vpZv9HqHtgUTuvDa81N5gf3j+mL6IkqTQa3VO2rXhs1KouJQzHU57kVhbLu23xc34Jc1R9q2vKy9Pdfsg5Z7iaXtnxrogmrD9Pn3xeXt9eTW901+dqtfk2bSFuXinFBOQ6r+mr7WaCn3OrlRoTgnO++K3kdLlcaq0ckCNabQRCDtEIHrxnrapOSiekZqnE0rJ2FhXnnKcgBR+AtDM2pw1oq/Wi5IqckWBMipBiiBGMUUrFELgQrTWimmsSQjQgNNo4y4TKiYDkuiQuR8Vt9IlKFbITtBLwt0t6OOi0rbn0fr6E5Wncv75/v1rrO1c5+1zT57vh+PWLd90d14J3sNYpI01z7u1HIL4usdPfWGsv4b+UOnfqdy9fQNVXm2xbkxZVMDXuVeWXNTJnd0KYFCF44OgYiLREBpxWpzk0/Cz7F7RL5i1yNteUNp+uRxYfjGwtl/j2KNvh7sNTLwfKeJ1usrMBIbW2zotuHMuH1lqKDZgPYQubVGr67jcG3FtKJ0bfowq2q53+H1r8mwoaaaDGtvLfiC6Nf9L7/7mxvxB/Wf2zVs1YwQCn2yK4BlKC29oKMpBctFZKKUgAAK21CkiEDRghAxBEvGYoGaQxKc/dmCP+2e5eGv9Zqtn1qPpgjG3ljrXHkiwiZwyG3YDdn1p6N+h/uFxflExdvxobeXtgSqvpfO6srqVQqUIo76NURhnJCPOWpJRMC6jAgddauTYAM/Dr/tCHxcbJ9c4N+2tsn5dljjEzng8H66cCVXAZm/Gn+98UQDfSp09flRD7A/3qV/dfp62glFLuOgNxHrUwDJHy5dkdzG/92fjb+vCQ//u//j++/+635/MF8P0ak9DjMr2r6QPxUuFZa3E6PgAwznmuJaXAGP7ll7+klHjVo/7b0/FRd9cY5rfP3fyWRffnCk/ec2KNiZWqE9JX8V85Po0aKa4KdNo4Z0oKUUvhorRWGM+lhuubEvCOICpTr5czEyDGz1u4MBgE14w0NFqvJPmh4hVItjyaPsU0MzxwvYJeZNFrJgTLjUjjBJw1I1JIWhleqRt7WCeFhIYgLNs083cn+jLN0EAIiU0+WO+flxSk0a0S55IIS64QS82NY+O8U7IUJOCUylmOxow1X5ZROqH0/OWrNtL0jhgxzYHfYrvYHYcUrrfZjMf8RqU6I7vpsnJU0227v3+fGlYQhRgwFW5BGdVKNoIxXsNttUozr5PE9NLUhwdgHL/ydDzCi6LaGGO1Vsb5X11uAFBbaXlrErIPGnlkVVgV100PfZzyVM+uipDYMj9FSAqGVBfyqS6L5MI4d355IsMByZ+vlLPfFmBkBptaUUrRFrfLYg+unS9CCKZl+PoiG2RoPLcY1PqGaRrabXf7RA73l9cLF0W4GdVVuFdtWwmDlcNgBpv/PeEYc2fdN63tGR6wDmXTsu1JGwTFMhckfM7gGNOp5lcuBUes1IzrkYgImOAtl+IxEUfDKflO8VRjAoI1CStT3LQEaDmETXADvAsLMdpyzg0d1D16RyswipXNwa9S4TLd7Gi0YlCT6wwixutSCJzuwmXhVk/zJACH066WE0/04Z4H+sXs0S8rNoxYYiw5F6vNX4uASikpJan48jSwStMFStoVvLgewJOWZ+CF8TYcuugDNbTKGOWm8zT0Bo7uVrYUY0mFdz13Q9oqG86uD4AROlfOOOhv1q1Pl65ARN0kRwjBSpVSoQKyG5bXs9Ts8Pgt5+8amoZX28Hgvil0NvrYyKXyJm3KwSh+P/szggIFCGKZY8orMuLNECQAtr1lMkgJDNeiJ90w0FVX48yNU8mBnx5Z4mmLY5blcgUtH5U4MSl9vtmhFvCNN8w+pzCOe6G61KBWMlpiCcAgtyqUboRSGc6klLLvu1JSK1krwYFKitZYqE0LSViBN5LEFPq8IaMSgtaa+Ao8AEbGgTNGFRQqRsIOfSPkWgopAQBqpYZCCGCKcy6M1FZJq3KrJcZ1nVuDWpAzU4sA1M4NLRclOErGCtSCunOaQBBnykIot/a65C7TD0+v6jrtcvtdah/nlkI8+7gyuV99j+JdBSM0VHhDkNV/zAl9fIZyD/Uo9CTMdS/uT3YZWL0bP3CVWVPbYkFPFRafb8qiHSSyImSlelmWTxS94TtW7ji9L7mbQ6vMkTjdHcput1kp63YP2werLJPT+e1PqcsZyig7vJUju29JyF5OuMR8kcYvW2A8D/uhRKOUmd/Slk2iLBUh5VSeKvuXIv7s9soMfzI2s9pTtTldUvu0+q8lkJY5hhu2VgtyphmakgkYbyUiVi6AWm05YyNoRLUhY8glExKY4EJyJqgxBoJYTmkU9LuWvpd8R1ChoaI9kWZwbK1XxghdhOYpsxIHrhbG2u1V8jYC/9Lokj0TCKxuq1aq5oKNaq3Rh8PhIKVEwfKWBAiuWWuZVc5RNU6iL+fbFcVB2vuUCuN1t+9KBj3kbnBKdrv+xNown+167vNqh93ddX05337eZob54fH9qdH566fQiCtljBLHYdCMU60xVdMdG6rz7YkzOh3Hn3/54/HuuxgPlzODcsjbnRQj8DflbpArb4NEFc5Bn/RET+n2lVYKbBzff9tL3PxPpH9/vr0wxox0RohhT5b9p+gfiAjABT9uHnPoymL3uyJQ3G4XKTVyZgbONVtC0rYv9CYku755Kjtl7Bp/EqIst9QfupBffQm264k6FN315Rdj3vejijHHTRM4EKnhVWkOYLHWmBILhpqUp90aPKmWtqIryMEmRgZEfrpK22Vt4ZpqSfLDKfz8TNbVmHduD/vx9nxWzgqjUQrbOa015zyl3A19UU0XBpLa4KavZyVFu7uTAJxVjiNktabz3buOinDy0PKCoS9yBLWjt4CjyjrT+RM7ZYgVSg3r5pxBISq1mLMytoZclO4QUqsgUddUlYQU65JRdK0VLvQy+067FmT0wBiz2kjG4+a11iFuQgilVPAzCJSMC2KgGUmgUrlWycfGU290miMOKAUTw0lJ3lJkWmLDBmQU7x92y/mtzVEwiH4b70+VCnIOjK/TKoib3VC9R0QCAF9YY8Z2mAjAtQJW8cFWgVczZIKL7Vp4/vu8vA8rtNyvnuTuZ77/L1V/2u1kLisyIizSUOM+0soNqF1J5Q2xRh9QGtPfxShYdcJIaDW3yjongWEjLgUHTJmgoWIcOYIzLWaIrVaETBw4ByzTRUi0nWlbEEy0mhljXXecp1Q22Nt9y5kw1JyVUTV61RkOkChLIUOKcZ76w0gpjkrN61Rb7rRklp8/L8LOvv1B8I1BlP2a8cwFw0bYMOcqhBRCCaGIaFkWqM+CydomZWIuqiTpl6vFR84PfkZgo+W7brhjRd+m4PRut3+gkBMAA4YA3Go5mBS91N+A/BgWWbGrSwjxNhwgpV98iqBEZ031XhuOkKQgkFUjQfY5JtkdthyVSyhTDI2AMRFbq0jvoNxXSCgmxgvwArWV5HNcJBdKCmCRWvNhzeut3x+2dd4NfQLGoVZAxqtSh2Wdga3WHNJWkKf5UhC90tA5JRk30k6XNLhva7iD5qEka7rcdE6DxPs4a9iGbhyY4MjY5mPXDYvfkPOUUiGoDIBhQWICgYNSCjhjSNP1ogQvKex3Q9y2HCKUKsWxZlOL8Ft0zra2KBVLfkGpCpDUWipeW24xMgDFFRBnTOQUQvHeewIQWminS0lCCKWMkqYsGwPkHJHVJb/OTzWEqPq8nP06b0yluuD7nU4vk9xo4NnVzUSwiVS8DOpuWxJgArE2NgFPVvVhYcNATP1bal8Zuv3hTrIjqx/34/ucpISe62uVb0QfDf7QG25GVpLajx8FP85XLMmw1oWFHbp3RETwIu2n0r4IJnlzDCLK/x9P/9mr65KcaWIR6fOxr1lmu2PKkEVSPc0eSJAwgjQf9LP1RRAGkCBN90DdZDdZxao652y39nKveVz6SH04IyXyP2TEnRHX9el82kL+xvQDimsWX+T4sekbjf8jW74YFkPdQiMefC2qFVRbn0w/pVjG4e7lNFN1u4P0KwUnpNohK9tUyvlHk3+rRQb2sq6rm4eSFOZ3lDGvt+nl/6zod525AaJtWZRQ0UVjmpwz1UQUkRHUAkC1FqilQqGcgQhZBV5QILDKOeNSABBjkH0nNEX8JhUh3fPyYyWZ8eu6UUVl20ZqRIEp85ww5AB1aHtYtiejjBLWr0kwQfXKoveSC6V0Ssk7V4kQsKQMJbEMnLiPDhEk13GNQvEKR6F32jIfnrsds52NUUh9B6w04zXDl5z8dHntxun4NhyO3dWdz/OTlLfz5G0bf/rT6fp0pxQJyhpRAnt8+IagYhEFu/MGdi8yu5Q6OVd81ncfPvzpp/+Z+McE/xnwZ8HWrml2zYESsBKKf9kfbNNyqQlZLqU8P71ua5a8V9ZTrW7VpfS1Xm33lwI/R29DfmZmkt1FDC9muKBc1yXU0PuNMyZSraA4a4sHx1UPvGMMOByJlf5m1t2plAL5cLM/RKrr8p2S77FxVUBlNuJ6+8FkOMV1D6IIc/FzJ1Wn20v2Ok9tEc64WJkD0YnlnrWqLJOwAnMqguVMmDihxWpTULu7HS1rc3tsuJ1eVhiP4dkLfbCtzVCo5pwzIrK2LVC11hUy8QrIuGoKCYEmowZoWGMn7wnrmx9/WL1LIddEGCvCizwU9/XnYuDw7rvty9p++IMtt9FtWgohgfGaya/rVSoGHAmo6w5LmI0yKZVYo2QylsjVipeN/QbZ5RTjxH7H9C+v9R1CZUrpEMK2bSillBKAuJRMMyIStp+vSzP0W9yUVTkWrgnr6Iur80P//vcqcpCToEZqho1x64aICoFElVJjBBRcWwUCvN+EZIwBAOx2+/PpVR72y7Ks82b6vsTEtX55ecwJiUrJl5C+MbZ8+/knjrvppP36M4fn6HJMfncHue58+C1rlalMkpTMINdMa5IcrGJtg+UNxWNceAzQdlpol+ujMK+omGCcCQ5Ycyycc2Y0o0p20wLLDNy+jU4baiRFvoPTZdOirbFyFEqpVELJm8AMdd81RyTvtwdgE7e1Jga+t9aWWse+T6yU4JUxfl6iD8ebPrkrYnHbbLQqyUsrz5dnI79iy7YwXj7h2N175tRBsEzRJ8YYFJJCswqlFK0sVGa1jH6zVkvFGCOq0e5HxBpDhcyBK8gFFROYt3A2e53m7Fc6jHcIXEpZKBbyyLLt2uvTt3Z/M4cQFi+MhVq7YWBMoDYMQGItNSCPlCdirlVNJeHzLNsrF1TDrd940V+gys2TkE3XDvM6mUZiI7gqwFwOgCxJ5bRogSiml5IJsSrrGLMlbVzAfC1bmBq7D+x6PrVVgDTr61eBpG27uFd2t7/LPj0/fBuaYb26Vo4lMCNaqrmUVCs4FzIVa+18ueYSiLLWOufCmBTK5lyUUhWJGSWMjUAFQTZmS4Fr5XNhBSXn2QctBaU8NG3afPUF1TcQL5nOyIjzhlIP6eDn0bmAyDnnPsYQQq1VSZNi2S6+1lpraTrDJdNal5SWdQbMgFlrgTV5N4e4KcOX9doYCcSUbHIJ2rASkzHGGH1yY+5QvJlT9zSbj2n4tJn51SstsFGMUW60WJcrq9VvkxZQk9nWWAmNbYCfA/6p1DltNysTlQvg4uwCcWvlYEXjt2Aa8vEFxNL02YXnVE5tmxlfQaTNE4M+ukvbPPT2WcQg5lth2koHwF72HuT5dA0vz3VatsWqzGvDp7dm2fPAci5CJ/N2nXOrf4vIlW6JKNeTEKLpFrc+dKYbBzseJ6le1omqfyPygZBKzVKnBB9J/dfE/4tQLxX9+bRQYtq0McYUPNXIRanVcSkyFSL6VT2OFUr59T3OtWaATDUSLyigsiIkMujbZiiwkrjqJiEHq27Lts8wM5m7oaPCo+vcopVGMzzlAgSq35VlfRX5ffAk7WVZMiu55pzBmJJyDtEaG5YVC4XieeHZpWWbUQuscp09V7JyYzohmxKSR34EuIkAeshj/4bzXU48lcX5bwRLhXNlD7Ylhnadrylfcow5iNb0bk6dFopBjqkQLj6GjC6VmIDSO8nuX16vobDbt7+bw2uB5+JCx/9eclNokZIZy5FduKiivqldcK+nOuE1pWDdriWWUtF7H/P5ItVuq2LJnive1dTtb+Nu1yn2h225W1e7ua4yNE0dmt+si2+HfnMhlpKrc2Ftm713WXCLzNvOOZfcbIfuPsdSca2QtLa6K+u6Mt4S+nboY5TXs2eiDHvGOQQPrX0H3MZ8Bqq6bXhplJBlPTVCAcMySTpYs8aKAH2bEJW08dVHZfjtDj4/l5tGbUEiWzjIEzXDXSwh5wgMYvQhefhV3qwkj2VtCRKXiZq3N9Gj8DGj2GYA4VlXKctYlDroXDYog9Dvedm7zyv/8TuY5jGE8w+VTw9cMi4ZV+I6XxCBcejbzs2THCW8LlvDoMo4J37Xl9dVHy0rGKtUTMaFGrOnGACF2bVxc5TLOi9EBKU0TZNSSsHpvpVc0ZZSBV6BMUQl8upCJNXLmit6TLrk1YWN0uZFa65uUcogYp63wpEzWRIrUNvdfj2dGGMcKiJWVjNUI1X1jjEGuVSquVJe5jluh10HmefQUXxL+V6ag9QA/NJ1C+Wste4P6nB776Nph1smzTolzQaOgxA7QlPRKHuo0CT3zGU4r49ckUKZF+T1UOvtlhzUYqzNVHkFUBYYbssqTQeEglEBRyz4dWFZ1CSklFLK8/MZQVDFEII0IqeNLJN9s10uHFBonikDUI0OkSHntRAxzoBnqhp1iYS9WadpW2Zj7fZ6GZtuvc4YMmem7X+zrGzXWZq85r+L/p5ltiwTUAUApLptPoYspda6iWm0nUkOkhOIc9szSinxl0Su6wTTxfuTq5cKC+oIfFlmp4kbrs/XiQtRU84hMiNM6+QuxulT18sCFUQPvo/5aLjOVOd11dq4khArpsQYeR9RyX6350w1Vk7T51z8/vb3l8lLdstQZfZU+UvTjBCNUo02WCsKDoLVEotb1hK9lFYw6A9tnjwKrJWO3bGqSkQF9JpflO6h7gk2wWB6dMcDF/z28rqM/bBczgIkERHMoXxlXAmlUVSqq9JBdb6IF2Gv8/UsGKdc2qanXDnnyJlutJAGhQgxImdC6pAyk6oiC0vo7KCkAWDLsgAAAEPkUHZa3dRq22YHCICxwIpi5YCUctiCYMxaWwmBc8ZYY3uldMquUnLO5ZwBwEjBa01hBSwpb4wXxAJGp5JZFbyldUrzs6/yCiJfnyLoGJ9dl+/YtY0vznjex1tx7bqsCE9CpVpgm0or9wJ5JCfbPJ2q4R8Yk977GPuKPvF/1v0jbxB4lvyDMD/qIS7us18BUVO0CndhAazNMNxxHNZJ1DwSGYaCc168cGeb14Yntu9wniD4Lrg+bkPN3yv8jdIg+z8P+GAx2/Zwrftkfuug6dts0i+c82VZUE3aQoyiNe+fv7nDXivGOWM+XAM9cOuatrWmrbga8Y4xAfZTyR2Fv6mlyak/n19zQu/ycpmgFqqRswqUBENARhUrwv//EmUAQCAEQAaEFQUKjZVVLplqXjiXNb5zayMtEHsyraRyNKZNqaS4EaxCkhJKK0vZaa2dv2jVsbpPKZgGlzUK1bMCqJsuvJwVF1ab5DcpWIoesf7aLVlrqOSwOM0VcuD2uXKKqZHyNuaQ+aR7RC2jP1yfbmX9naiD1Qee3zbsdxyHFBTyhfBTo8121cPuGuCf/dLuDoMvIUC5/+47YtxHX7K72Tclb8+P34wRd/dvH75Nh13HM2/DvzvethzfRn+XiiAmAG+AGdG/XC7LfncTQqBaUt60gcOx//Ltl+PNPZgLdl99Diz/SNu76vfTyV6u67T+kose+t+pPgnjUJST/0+Sk0QqkZfY1CwEU5AqxJVqLuiQFbcOJR0RMaZtW7yVSrIzY9+yR8GwwpmCdiswtMKeQahtEcAW4FjcwETBoWCSVXFj2+BP1E11LggWrIFYqTdCcciJWp63SfUyR4JIoQRaJ7vTFFaUlSNwxYVknKPWSkoBOXKtuOKVhNAIDitmbXhy0faU4+bmrW8HqPh0fu0OOzC2SJ25IJPK9VUORo/d5dMz2P11BQiWCV0Z9zF0XeecO4zH6BOFrDQu53PbN+SykLZKzpjgGuMC2Bp4Ekm0WjT4rfp7i8RSSjFGa1urdEmJATLGYoxkpQZxnVbVDcVnxiDxCjFXUupGioDd7i3ltTACZxAyaKb2rVB6mdah6WRrty0q1pKUoGRKSUlBpQBQLsXXZMf9yW1d0xum1hRsb9O6jncHYC/L9inVDRUG8GZANBfWPGdGhXFUuR+Pfu1TXm07b3MmvvAm+XIVJgrlC5yFmEs+46agahLS9p2bJxZ9iYEYVs5Kzih4gSq5glpjjJSzSF3NFRRRfJW4+bwRNv7Eu1FDTdu8pC2WAkLZ5KOoSE0GiDykhqlAQEZWTiIHBEmMex+IMcZkTITSIIlCKa8OhdgKyYD+GjIw5jHScH1+5TBn4V2seVYit47AGlUopRC3bSu5dt2AIIIvpJ6H8SakE8MziwdWd49PT86/sY1AJJc2I5Xth8vlKtsWiAmJLKZ0voYYC7KyZQ0KhAHxY8QjJC0AeUv6WC6nf63DmVH1MSDykrFyzVjTyn2JsoB23uWEwSlWuWBXIWt2+xy52cVIL8FxpW4qrOv6Ivm9FG0hhyiwmEq5RMDacxQlEW8Ofjob2/sYmqay1sR4YVkpeUXiFPr9DSsQT6dw84Et/hfdz2bvUPqQEHGXi061MqW5lJyjEsxqSTmarq1KYSZRUTBJpbhti6ls25apcCaBMITEOUcAIIQCWppSeUyVDf3rdWqG8XWZbd8lrFxkxmutlSoCKqpKypHLkaNgiCVnqU1jmxQjAEipwxLdvOUYUIqubRA5RxAcKUEJBXIUHGsttm3y6rnoNMMqNAcua2EdU60h70mDffcy0fTltPKhE/245Hajoo8rsX3ICDyu22dlHJMo1Lj6HsRjd3xgPFFuBW86+e8U/XfDjtVy4nG0XLc9KHWAmpg6Nft3QmOmOdG54jytXytu48Gm5Ar/r6apyfWIRxevAT4W+YK6xLVVSlhbgHJNnuFZi7Qzd1P4G4B3bnrp2EOc/60xac31vO3aXkgbXl+mlJyxarkyq3oBY1g5VCH1m237h9Pp71y4IZ77vYz8X2JZou8BdrnMup249G4rWuvNr5frS4ybEphTAGJIkggQuRCqEv4KlUNEAILMGXEEASiYkMglIBJDVqnQifAbMFdBMt4VeOXdX/pupKyCA22E1sE2jKOkaPu+B8w1d21zLGyRsk15p1rG2qaP3pdSUkqlFCnlfLkIRCHEtq6c8/Z43LZlPk99v0NEKkephUufRHMSpjBhmLAoBZfO7F6+/23lIioNXJ+a3kcHnDstdN+8d/6bbP5SMr8+y7/7R/l8OW0xmK5/fH25zhcp4N39bn79dL3+cdebt/fff/s6CaF093qZ/qcf3hJXycNfA/w54rXwUNWyxcmH3qbDi1trl94fWlPENdVfXj7urPPepvVvluf/Y8xF2Ce3bsMhojgrOcYoff7sys/PT/56spwfWflN34ngV807Tq1i3a7d+2XWkmrx2e2TG/dHvbsJ58szxUOrv+NJh0mwaBojEb9w3JZrHm/O/a4g6LLx67SgICrTup0lO6IZ1ssW2q+gC2c2SF4XYbqCGVNM4n7vT2fL+VV6OTJj0V1dNKoRmig6nYdSX6TTJcvWEtE0TYz/6g+OVPMaXOKqrSx5SAbT+QSpsHeK1ksji8DeLzQeDbc0XxPJgUx1kbNrbX/4HqYgGV/EdhdztDmkMs2uGw/KtMbYbfPZRcNtzQ56Ywlcpub2/vrwZD/cT9fzWucOr4UjKofLq1A86SdiE+ccqY53d03TMAYxRmMt5zwSJVcq41UKI5VzDqVgVNuWL6W5Pnw198qULnGR/QtCI1stGuPnFamSC5fLNBxvL+dZNy2VbK2llKP3nDEU2Pbd9dMX0Zjkg5/XxEAoRSXLVp++XnPOstl4d5Fd+vnTS6v+keb/3dnR/l2fUAPuYz43RhbHkV6b3R3T/eKAiwHlWKPgyUBUkrtSJz1K3pv5dOE4hFUQ7Nv9QLmklGJKRFS9TyV3fc/qlFW5+CCpz1cU3Z40Wp5LXXPe2saUUhGktf3j47MxlvhILjWamLhs9E0dFKASaVBdv27emjaXCgRS6HTZGPA15V03bi4BV3nLlBFQhykcf1clf4ZQhfrNeYPOTpA+z8FzzjnnwzBI+SuYnZdSGZcl3bw8n7D0mt01TU15G8bbZl/dFq1qOLclC+Adw93x/g/rxIQkWi7VufEwAuNhCsiaXDVM2QOXXG3rfHx7c56eeyu7Y1cL5Zy7fvQxCd3Xajtzs12raW9ybgDJWJdXJ+kHI96dt8/jzQKUS1ZSWwS9zEawEdgSIvPhWolLvpNGaG2RRu89Ax5zC8k33X7Z4vz8U8hg21rCC0t9CVuiV6BdRWhufQQs1aJUpYY1LuOhu6wvdizmMGcsBLVWhMIhm/nClXiXw40UgnLWQnoXpdBaa93YtusU41iBFVQoS8qcIPqkUCrdMGFevj41fZ8QDm/uQq0FGWfH5HUKYro6QAxphYaY8sF7pRstFdRKpeScAXkpRduOVSAiSKHW6taNiDjHmivnMqVkjFrdJqX+9nhmqEucH19D0zS1TMKOq9u08S5RjdgZf7OHVlg/uUaW0drTA7EmoQRgum/fnV8zMJsYXcKLMufLC49e2jGkcgEBSraXp1GX4TjUTkEKOcSp63ZK7Vz6fH26Kt5qYWsFBCFlA9isM0G4FXSYrkFprVpr+htP3eOJv/vhKsV5nacac9eQEmuJE4V00/fRQUptrjfd7nc+geK+MVe/kXe1lX+P3N69aYA5rl+995y3hTvWP0fzl2Je0JhlHtfrfc1vEe54+VE1V8/+tdQcysPqvsUcGCdj5LJec85+8Vp0NctUKjDBpS5QU6kVETirDCljKVgrVkKorAJLVImgbr+r7m0JvdEDFWHMflsbhd813aaUkuy21z/kKCknjjSMNpcVy22Fcpn/UlJzPSvTqOtyYaIJKsV8Dop3HHg+OZv3wR3Xz4tqibULbHNdStNqorVMq6iOZWHl27h1OSutmxIAvKm8YC3F114eOjlwBq6s2CD1zQYlY42hDcvtsoI92Id5Xafw7u53LItOiJaV+0P3ej5FNmirlOAyVlpeDi3K+N3A/3HXq3ROd+MPqXaFW2nvFteHfAAx9m+/a5vvbnb/8PW5qOYYVyeIdNt8jc+6eZXTP48hbv5VvNEvoTtt4MN1v+OjFjqnuzbx8qVvK2JavSzYi+Fc1Z8R+NPj5nOR+vtpAapBs311+Prw3HdWtg+svU7LA4jAjIl15vrgr3iz43Hm50fXiN9wcMOd7i2dPPYHiR2XSxLp1bQfrhTA7npKsixCtuunb3J4k//l0fQ7L/ubC1gNbrtKKaMVBRRMs+Fv816FC4+Ela/15b7pvkP8Bvka8RAu2LcmmYXnFPK13d9sJ1+lytCVyO1uXORVbj58Bk5Df8u9vpSHbRDjiQDr5LcvG/GuedswEU6zn5bhu5vpMkPuBHT++mjfS+ARr3y+XtwqbK9WNu2KvqZLXZQ+DJfzag6MF3b16Gzb+SMj5auvg4HD7FdafnZFwnLBqvctWpdPxqLaU1igb0eV2zjNW6e7r49BNWE/4tPPWjJ2uIHxBIWlc2ZeVzHmDPJgyvYiledm9eeTK1IvsnYaVRRpy5haRLFpdrJjM/ai1hS/viz6zz7kyPOxk8388KmeGrkaSK9u+brrWmBW8ZybNU21X9+X5n2jbyVIx/Khk1WVAqUTnUOSvNQ5LVs6yDF+fc2NSHxm4iIPC6Q0lSDGtkcpJcw8tsousWALcnZmyul6ud76rlzV+WmRRZT9di1SGWl5dzCX8yfbAlOpfnuiaDY9Yv/W8j/kSZiusHt009ZzVXqhGUHwT5evoZwH7psdD/PZhMj8UuvMjEedhuOYny513QsAUX5qRTTd3TRNR+DWbAI2Aez89CjZ1U9XLC3DGubnZhjrvgstEi/T68d2J4NbLR8vhDbrnLOfFtkoOC3+9QrHOh2rXy9dYbLgcjl7tg0sFzEdaD7XjGmAYkU+SP3bdBHLCXbH24yrg5DmK8Fy4ZdqkaFTvC5TCrmP0iZNJSbrW63fh6plgcaodXqxtF78iSGqbcZxZJb587dl9a7GrkdmVJhEul7lLZvTX6nyyN73Zox0W31Xou93tbIziikVEPgG6RaqTPEdz/9YXo+0bqbPKVV+uufYPX/2KmpV+DIn2QSiv/Y8ToFzWwHJL6sLX391sYSyRYlunQzLZZtzjmbohJUuLJEcb7BR3IydzhWZSKtLqYQ8pbLs3h6BBaBtt+/CvAHZqAxoJhteglun2DY7QAKbk5g98/vjTYkyesXYLpFNoKrUqbbSmgAeuCUBaC/2UJ3PH+7TFL65vKNrTPHPYrwaltP1u7gpIDbPlGUN8mPhz6qOsIFfQkxJ9aLZiWV5Yt4dmQ1aR+zvbn9bw9bwrWFXI1Kcczs2jlvSg3vdRBJLLlV1NR3FThATHLQAaqzaXNzcakbg8jCtl+MdT2lleVhemGK8aZfnU8fB6rIY7Ve2fcspq9vsb9yml221ZtDC1nSRFbHcBt9IsykTZf+CYT8/xg5XG251rcOdc+Ei0w+2vlNsZfhvTfezYnhNl8xyFKdlMQb+B4DvpoDV8i2LiOecJ5GtBiWYOF1eSV943bAsy/VJ8toYVUvJLokqWdbRh1IC5xyguZ5T342lLsVM6viJqdi0gmhxF75rbgTT4VkfGjTiuYRrTbUbm9dlua5NLaxCcikO403f4Ls3HsIXdMSWVz1dCnIQslbK3s3L+rHCX6F4y6UU3fR4jUtqTEdRuSvM81woS8GNVQhUkq+QU95U8K2RYDnt9BVLFVaR1Zvw6+Ln+vxpwyxuj4bzqxY4vXgu4Lr8lHH2OSQMgfLiE+rVxCPh4dNGjvdxVmyxjf3weePB9RR0g01Dxr+cBlhHcZXpJcBfuH0FtnKpXl6Wrruz7c3qyG40dAVHuIou6/E8/eLmn25b2Y8shpKCkLxLcafFH2qRl+3/49dGCJyvSfEbof3r+fPxcPdy+aMxBvjc9N7YquWupp3kI0XqzG+G3c3mQme+P33xw/GWcZ39aPUOzZqL4I5vDYnLxcubmpbKnGgOwDvNnKDFJ0HVnC5fEBu/Oi4y8An4AkBuLpWORacRWYwXSPugKlNb85X4h+IXijQJKwC603mzFrVhCIYzXUMHLFDEmLEbYD6H/t0YTyrhgbIxqNio3fbY4NTexsyv4zuLq+SvQn2Q0GynvzynFXf/4aB8LZ+u0JaTCPv935frfvJEAtW+F0L4HNvK8+bNmkZiAsXu9s22uG3bxvv7WkvOMcQgUXOjYM3nusmc1G3TiZLT1Xs/SAOt1pk2UcriIpa2bQ2H5Ur7u5sa1y1xvdvn9bXpbypP8fOD40ELUh9u3OXCc22OQ7oEzkwmhsyUzBAMQ7utSXS/Oa+Pr+ufhWLA6hafpa3rqglqc9zWkDLdiTa09/MUrs142N8eERqON0q2pqOIz5U7IZtt20rK8lfbABcuBiKKKc5btdgnz1D0N8MbyTsuO8a6y+PT2PWIGNbF+9C2LXBeU3bPOoLpDq0Qqku3y9YydVBAKU7ASuWViChkJVsjhxQ4a40oMVqBW4HicTT8WpwCqXMFzyVs2wYJ+/ZNzT3kIV2rQ89G5+evg26b8TYzujz9ab5IaYppvW6E0PT4+s+mqd6r1Ukux2UtzTCiYsNNq9tS+ITVZ9q61iDWnEnJBjwJbDZ87qUXbRW9Qp8YKu8jRZQz33V3xfQr4ra5XdcygIg5O61YI1UFnIBNyGPyZZuKGRmsq9/Yof+b128gsD8cbsZDt4aL1KUfjJIkJDNGif/fyZQQMUbPJRNaN0ahkCmrsbtfplxBaKEF58ggRk/wM2dXf77p2D8IvPTtDJ6HSy3syhWVpCAf/NowtDl7t31DcT3cb5f1f+52a9e3fuNcNBW87C/9oQPBwHjUgbGRi/s1BSut2zJnmgpybBo7xgTrklMQjA9K7LG2SvZcYCoX3TgARgSCcc55zgUAmn7oxwEKaWXBe6VUrVUI8auzQUkPlaWkalVMxYKXFNcaVeFBWQBVqkwFXMGtslXaXCnWPAFEikGyWPzCCha/LOd+PR8VvB+Hu/lKrfz7MH2X3R2qbzG/6MZV8dB2MrlRsBHV0zYbzrXU5GOYJ5HCHqCLNWL8W21Doq/7/Q5YCJ6Qjru9bVqeaUbuh4PWLQHbQGzAXNuJlIJfKa6K4y5FVkqCuhbciPlEKSQfcohUc9WM92qcI1WqI7IR2ZvsdyFdxPhPXCWpaF6nEAqCFNzkUJVsLO7C4gWYZT0rC2vxQSwr+fV87MTvS+xbs4O4W17vIN3l4r7faTGnG4F7+03Bz9vLN1Mwu+fNzdV97xab6sO8fKYcEBJQ5vVOsfscGqzNukQEXmvRhhN71CoLxgoF0zjdLpmuWrXagm4GIL1cEWsjJU/l2o15TXXZ+utVa2MYh07eNzh2EgbSv3mDO6ME7DOWJVXR/z6ZHZu3RTe1P/BSt/PLFDcQTEmB6Wqu33g82TiLzkpg8+Y+1zrzijWVFKJgglUqJUBNuXgcTRHEIA9KW1LRURUNGw7DEAs97g+4G/U6zXFh3z7618+867ocGmPM88vTYfjHP/636zDuNidCc6n8WZSHy/Wf1e1SDjPbudP5L3msZ3zMerVdnyLkUlJlTByx3HLWtD3b4i/9YZMmDMMuRbO7f//5seSyfzMcbSAburu7H8/gYmhzwZAgpxZZtuNzxc3yfzTjPK+v/YhC+5dH/+but+fTXNNNI99CGrxDIghxBrZVds3wtKbnyzkgb9pDkN0cXIoJAjzalhWt05KgcZzfWuQkS3VADKHRPkeDssxbLqVw5IDtveKqaNtQtZUa5CYEL2RJvoEc/cMDyQTHOTw96LXWvj8/rsObMc2vaWVcdEBBScyJV29cfJX1ntXcduL0nPcHStd1rr+o+kJyzibC7KbHLPE9hn1+vWCbcs051/HQzY+vIhrxZvQLTJPb390SS5muS/yqh6W5XdPsm6ZhLhFDcDHUXJzjinNiafUMRG86yHFaL0ZpJjgvsoZUMyIV3fIUVqqLxsQrVCLyfp3nvmmJgzIy88qCF2RQCvCump5QqJoJ1XQ69ZJLLMzy2AA/b9A1THAXr1SdbeC6fDsc22V9VRa0Ie9+YqKOx5vVr1+/vG6TZEy0h8mF3Om//fZFCNMkhGU7KPUjasnlWCLnxlSkiilyzwWhpIrACajWHBMQ5VI458CYaIpmQXaVdFStCPEqRwH+zCsT2uREFRhyVmvN19VyKcSSFaUAoFlTl2gvJFyYHfFsByu1rADr6pTslBiSZ4yBG0JLTLEGTMnT7EA2uwGBC6FyrFA5FGZtI6XeVsfzUrWu2JW5pDhnuWxxhsS54s4nbd779bbSG4SdVA3KQAihpKfTcz92VbBI5bpNhMVYpkRdl4tgvORq26FE9As5z0TuwlI8gUIytzro87DfykZQ5YqYGPPe930vAEkiwAJYBNMSOhCjYLKilyaMb3/c/MZ4Kvm0HzCnDYG/PC1UPWDistaaOYdfd8cRkZBKJWDVp6CUBI5KKUgxhAogElGuQDEwBiGuQEEgq8VrkdIWJe3SpGQVFF6gSq16AGC8FNo6a41sKGvvJ6266VI5MyACVzOKjYiWtai+kAogGqqccNMtM12PbM55SmUSNgtVmMxKlwpJKsZ4Irgu7msqE1SZXC/hN1prKITIWcUYc8wkpayIRCSkdMEzzlOJKATjvNaqEaCkGANxlNYQQkqRIQp+RH7wXqVkAXqj9lR0SYrFkRID35I7iNrS1uryDjbbtva8/j+Ht//0PP0/uNwKvDbd2eW/QGVMhJhWxW8oWKYK8auxYjw65FtKgQtS3VbVS2JTleTCxxJpmRKFofp3pVTdTsbYAqyiJECC6lPkUpi2qbWUzGpGhjJnglyTD6wgA24s4zCuly4Hw9XajOdcX72j64wkT6x/ndzqVhjHXaPfUPgHUv863gapwG3RbVFpAH4G/lWyAniN3lXmAgWq7RJoDu1xuGEAy/p5dj9pw9rmRlke8a/zIpAfYu6nSRRsxGBql2o7q+H/lfm/Vpwa/eb0wktd9sdAQYb8XNmVq01oz8RWcSl1ivkSA0GVlER0ANhoMcaNSxzC2sZFS4VCb9JsTZ+JKEfJxNGVqx0QqOvNbXBfrXEamivSUv42wl0oL5BTnZiOW08n1h1QD6rknBMBgGSyMzuKStqlwLS5BQC0tWEJ6wyVdhwEpZpdhlQpFMwghdbKZlQ+EwDwCpLJnAClyJyu5yZEFsrk4/PlcuKcA1t/+wdrcHz3wc6X683+9798/PM43C2XhoscslC8L0samx1K2xxuHx6uh+7djt/ZLAaQQ5K7KhvwslwVpteXf21MgZwGPZLXfsGnx6s1/emv//Ldu/va8389/1fcedvWGs6DuOZEbbcXil+3h1Jpne3l6pu9Y6xpzLuYsbIacinkhZkAHZfPMc/RlXnaVMMr+pJEXA8hMmFTd5Dn01KJA5/tURAozigS5i3CDkzs+E0nQkyEBSzrK+EGTs3fvOmAmdzZG3KLcy74vK2lFATOpUJgHsI5psfyIGp3bM1x/VfC75e6nTEDtNLNLmxJ9y0DXhILwbMaUzbaJorVBzrettszxJD57q6NOz0e807Fx0cFwEeZ/YthOwliLS92J8oE10c/3A6yL+Yzp52dDhznhn+Smvcb13W9pcuqQZZ5U40Nbi2dDhJTp5JL8+rapueVP708CsG44EzJUkqdpqSVWiIdu3yKCSssFFcXWDVbTr1m07YphArYSPJZKsyAaQr6MMScMPE1bOzF8Q838HqFVk7T3FVTJPOvc6PelmRLVo05rjNCGUuyjbl303Y49mv4sm2PPLamfKeZSvhvreqW+cTMRzN4FxoUNN4tXOZpYbUWbiNyFwlFd69lW8FzJaUQsRYoVEvhRkkhmJZ213KooBU2ulynlIKwMi5z3/XVJyICzjiXJeb1Ogmm5CB4pdPDC3YWwqrbSnkjqExIaWwFJEC3hV/9ZzlnYHXjQenW+1RFRspFGlCSihZ82NY0DAcosYI3bbyuv8RNKn7vz22jvtuims+lTHI3/k3Tq18d7Gv+U2R/5Jq0HVSTTFMqLlxEY7TmtmRVkumaW6601c3l+Wy1BoZcCs45It7eGRdfanWdtiED8FbxftqQ3g9LXlJ1neQCoRpZARnXCJHiVmKpJICE9z7Exba0bGdukAnPxWZ1lCIu60lZpVWbE0QXUsqMsZyjSyuwSkRKC8LKGBNaQUmco19XYWsN0/7QKIMleykw1Th2bc1j8trsHPEvJbZ+1ZTPAj0wFEqiwEIhF4csaSmAsHgRVynZXUnt9ezbbixJ5Gh4uZWiqaio2pxSzlfnXyp3WIxkR7fC2L+hPG6zVGIv8GgsI4KSmuTb6CRAKeyl8J+klDlnJKwVoQARAPKQImMCav1VU5grAUMqhWpmxdYScj2jCMoOgh8QhNSx5BXAU16gLBxXKX3N15IvlXumplQmZInhVutqpKh1HY++hvenLz82+h1QgNi9Plgj3iM0Am+KvyN3511lcmFilapxoXIcWD24RUbPjRmkHJZVt+JHLVrbrD5903Lo2uMwdCmzEhspDog9UVurRWwBWsTWb5Izw0UGvJZ6krIIpig2bl61XU371I+5eAv+fVpaI1XXooTvp9e3u+Httv7SN/5y+sxZeH7oSzgM/bEflG4KUqXQL6dDCEepbyoehDYoEkowbWA8zfNnHz7f3KJpim6BabelF2JBtjdBXF62P6oOpFaV8PqsZfwfw/P/xcg3W/543T4L3sZtv5ysIE01FIrGmErC6iOlgdFdXPcc9rVQxbWWCE5BHFJghbxp/bY4IRSvzToxIYSymOtm21lJ2A0N8JPQ87w5Zaywa4tTuVxGDVIma4/C3m1VsOGeoVSUTdjapr03VszrY8oLVAZia0dRMbm0eu9zpb4bpLB+iuShRsxr8lvSslHCIsryUgxYknLmdILYHnqLAJeTaXd3bz9c5+nh5bHKssWz7qAdkfPH7Mr+CLH8eZ2329t23v4Lr9muNgXt+Nj133Vxt/3Vl60Z3//9aznnDkvLHtOShyaN3dXKTzk09Hc6/WDr29v+3bFvGhOUPHH1uO9vrpfHx8drXH7L0h9KElTd9bouK/MuI3cgXnS/ZthCBLfK82nL7Oy2dDnlYceX9XLc/aZr0a1riUEp5ZM/3h5z/lVtTm17q8TeXQlpYDAofswrInQxq+q+kTaCRihXzwufmio8IEfgUqr1MuWYtW05lzGV5WKU2AvBgV1LPVO8SC6SQ5lH2kbspN4HOJ+hSPH9Dh76u/14Or0M5sCRFR6AN34FKk4pGg9tdPP16anpBtCtu4a2v2VaQiZiBDzl4Fs90lwz4NYqdrVszsDLco39+xu4IzFt4CtTUKS/fPnT0eTCz6qbKf4krS6MmODC6lRBKKkbWxG2eTm8eVszXl9P3Ijb+0Oa5hgKE6hYhSry5jOXRu606bap/GrZdKsfDrvlPHX7EXJOJVPllTmtWzcBMwQ+uSilrD0MC9V5nkFwPSW227+e55pRDDivD0IsQizL9sSlL2Wa1s+aRSP0y2ccmx+Ph5XY/73Cxb/+h0ayLx//enPcR++A6O5277YLZFd4EUDEq1JKaN3f3EFVMVRCkIyD4EbrmoswGlJBxnKynB9rslDHeeaNfldiq+AABeZ51kJnl0rKWioGvMQIcM8nrOsCtvG+ZdONoP1wc3ArRU/eZSpANRcKFQJgrI2UU6BGLZfFlEo73TO1uI2xmlOotfDWbttSIRPFXNySz5w/pPCfxe4J95n8xdSXMvySc6PVuK2C8yPWJjjF9TsoXQm1FjgeDtGHWpBXaZVujGLMele0sDUDCsxIIMt+Z8K8BcFySOm6VK3y5TJ9fi6cmf/+PmrXN1xAVZJvjBB5SZXDnjErVQU+AZ2ohkqMw67UlQuUot9mJcQdg1Yq0fZUydRiKulaGFakWoQEpirWaqyttSqjETGlxBjLOYOY1/krwVqES/66TKdYE8WwhRiyBupVayN71P11Wl8q9VVcqLpKKgaTgvBuBb5SfTFKZzo3w6qb6p3m9D2W20pCs1w2HmaBJRoZO3ETLraSU8YzEYAvoo+lLgTz6r8QLUgDFWZb6g6R6wsTQakm5y6VmCtxzgWTnHNWgTH4X6P1nJU1sWTGGEDNJf4KPqyVaq2ICJz/Wv3UWsPqWalWKsV4DYm2ACnJXFBUrlkonilMEDMWkJggPz48v/mgxkNN3vpl1FpztS7bMxMrVN3pm80/CxVSkFLuQ7lQ6q7T5ONr12ujjstV+QjHW9u0QfDI4o9pfZfgI9Ofl4XmS1XKaG0JWNO17dCnUty6SqmVFUxiTI7xzCBaLYhyiQGTha1dnoFnKZjf7SLn51xOhu5SeWr2f97Sfx3tWBZrlEP1H8e+WdaL80vMc8yvl+2jsNvNvX5evrg6oaTNOcnaMLFBfcfcoW1bY9R8zdvULVcGrCI2iv09l9eap5arAUa8kPVlj4EvP3H7cF3Owd3UKjP/OeVJwSHFWRsuBKuVUko5Z8aYEEoIYTtCGRgPSsWQzgQzEy7VKxcOKmrDhOQMpZScCgseNAudYik6xpgLWdmOm060o7/0hf03Jk+KfqDCiD1VLFAlq2LLEApUqLxWrIxVNKk0OdsKClkVgnnvS0yIPuWnWoASxTXMlwkS6X7MMb++nJhumdBQSDEmShnbJtUgGmjG8O3xcylNioyq103d744l9GHT8/Iy9B8ev6a3H+wyP2q4P5+eI59TfG148str5fHb6eOPP96E6aFMn2VceQiqxtEYXTq+djALjuxyfuUYhYgIJTpqzfvrqzmDzFAb9nrX/VXyf3o6/3EKebj73eHt6sqXaSrb5ft12oPwN++YUHW4AaVxd7AVYvDAsfv4y9dt4WHuJLc+nqUCtyQgvW4X3S6m29Z1u162cRBtA8scLuel6SPVZFYlblq1FsfInxxJp7kRqszPMS880XrzdgSn4oQZXNNKcxhN22nRUmbbvHGonGWUJ1Na/raHeJt/rs3drdAqrg+8Am8YZOJciEbVdcupSsWENCDmbSKBxfQ6PEcrCJKCK09JrFNQPuLRAmfhr5/ohsL2GhfWD99/e7wMXI2DBBbWFRfx04Agn5f9m93GjGX//fLze1P/tt60K5a6a2OMTArhSoOKTbHkCNpMl0mgGPdDpeKmpYKQtiGDIlQ1tGJLkStgTOqu2R8pVzIa1gRWqcoBcLvORTA1qOKjUA2VGL+d+HFvACtT8bzq9zc8JbtV3xt83bqbHV04r71iw8vjsu/faX4IC4aVKba/nKfDrVI6LedM7nZbS3uzRT8r3or0Ywn97oZ2/UDrXXbFjgUSBa+wdtpqMMnPs98ECM45F0YBgN8cckYxcSljXFjHkcP1chpv98BKjR4ML1hzJgAUgCwBVF5rDSEBc2xZrLU5hSpLcVemGDKZY6WEORaGKKUkyoUiQOEaDW+W89zc73izu357ZrcN84ybbQuPbS8gOOcCA7vMyai9EaPG2+p2fm2EuWGl6/F+mTrdrJn9Wbez5IMyQ78rJX1O9Fpin73k2KQIlTDFLdNc4Nx2+/Np3g/Hy+XKpQCBPjgAgtib5s7IXtYqJMU09xbe/O4t9hxqGhoFbkGsSSBDkV1JeQGsUuqSBSWmjdVWFfCdehc2rfXeJ+CqzcS13LtJLMvCGJNcAEAppZTStC0wpFyg8pQych5SJIACyKRoOmu1KrU0bdvpFiu03YDEBbe5zCHiulbVLcSuiK2QrBYdM+acuShCh4pecS64FYqgVqhCWals8PTNtJ7LkPy51CeCWcnO8IZVQ7Ex8h3jwzorKY+QNaWua94s11yjzeIXpq+ghZE3lfY5Wa06rVUh4lKgEAAgGM8llpwFR845ETBpKjDGOVGptTIGIB0TWuC+Zl3DUusMSNFpBhayRrI1S14NIy1KQ55V4Ay6khkiL8WGiAQseM7sT1DGl0/d2PW6vVT009X1naUahH5C81djJ6DKsckJfYCCk2lQaR7DUvLFNr6xKaZZqyKEqBCOh07gXaO/5yLfvstAm5QplcmFU4wXghUwIAbZFSYzMi7lWMg4TyFuUuewBcKT6Z+ZnNYZp9eecq+1TC4kX3vz+/nxthEfasy79rd5/j9UijVpTh80/P1g/r2V31WU03KKseH4plTB0DoXkG8pT6V+W9fpcDjkIg+H70IBF7dcZSnHzw8HIf737fC/eZw/BfEEkmSjorg6+ojNXz37yxQeVUtChXl5FTxTAc55TBvjyccTV2uGJxAnglySKnEUbF9KAOaUNYyP87QytICBYG46LmyNAaHsNL+BWpIPfrZGfBBcK9nUcpukHm5/p9uuHQ0nJone7nkDG+v3Xa5LqudlfUEm7+9/4MqsflYaQnhlbO2Myg78lV8ew3ryVvHglmW+xG2DWgFgXRbGGGu1y07xqlO5NT0nlksVXav5zbdP2/Sa3QzX50UiuPV5W7+dZq/03/7pz8+7uzufjW67xZ/d2l/JMcbLNYosYxXju++4Nqevj0sZHL5ZYMRdG3VKLDLttX1y5RF4TFkd9387XXgGGXGyR1/jnwfZmvph8ruXeND7f79v3+L0cVuQsUE19f4HP+wYpw/bdfz28su2IKW719dVW54i2obZ4WJb4vIEeN78s5B1nheOPdKo2FvEytRz067e1XUmLq67mySlxLQV2qkSoBKBAMd45zmokpF7inMUTcObNi8xL4ELQ/U1z49uWrMXjLoSeS2gFS+bKbpKxfw2JflkGMsby0m6KQ43ZpufsVgumuAvSoIADUTPT8DF3B/fnZ5PegjbhVK5SHkifka+NbKa4eBXC+dBN7+zCfiIMHTJI2pOTxc4wzkFeXhDW+6aLjVFHBmsD3n5y6I/VyiQImjGXAIldGYp5LLmpjHT9YxMdKapUFKIvCBHhdqWUoBYLxWxHJMH4ZmmLafC2Xi89bkg4TbNyUWjLBs4mm67nvqjjQvx2ct7W7c012xjbW57jLGwDN6rWqDj8/zYtlTKSXBHZSJaQjg3lkJcNl9NuztdX1JlSr/PKNm4OOe+/73J8mk83jbtAObajpvkinFFGaEqSJIz41KK3klOwuqcc+Us+YAAQivMBLVK5qDLIV+wTHjkvlxFmQkmFNI0Nm9Og8RCxflSauWMwtfsrmoccFo53xi7RJv92SlWtQDOCCtJKYkIAJkQSAWKAZfM2x2QKJc171iTZS2VoRC6m66rFLaUmlLRWmv0pAWKHj2msJDyIJmklsP9uuS2baE6KaLRzXLRnL5v+sF2fcxFKFm5QGmAiUSFKciUtJEhxYJMGOtz3kJUu+ymjyE/g0kvXz6686rsfX6o4Y8v7DUxrkKMv+bV4BPklGAKaQ0RnRPeywoWOEZap5fAqkglHN825/WL0OSca/TAeGAiVgiC1wqUUuJSU4GSqIRQU2WM+5i0bX0IUpttEyy1wWHMvCammHU+lZC1JC19jK9um1p962ZhlJU6Vrop0cZUmg6ljkJWKpKVHUUCalndUeSyKSBeUczIElTZ7SvowEWTYg3bSy5brTrSnKpXlnx8ZSJxQ0YFyVLx7wXeQ2CFPJeh4lZrAgBhpTSSKDm3MsaAavKu5lRyRUQgklIyxlJK+OvvA+cguBCixhxXj7UKrjKR6XLGKcM1lTOwlQkntAv5XOlccwRcKpw4yyGdmboEWlh5v60Puv/y+PJHo/sYaBhExSlHXcH7+KKUKhm5zN777HfamhjkejU5NpUohSX6xEoX/JLd4LaNm0cUVx9nqdDqD/nXDDDlnHMIUTJhpEkul5wJUBoNjCHyGDOC4Mzo1nhvSrzfnNBtrOaLaLbFB9k8SIOv1+n+h2YLX2Py317+iLv/IrkZh5aJc6C/FvaL7jxVFnN/3KVWkxJr0zQp4bgfN69AmsON5gKXdbqsX5naVKNUK4uYxLBAW5ZcE9yq4W9eY//TJaZuQBDXsy3+d5D+t18/7kPxhX09nU7RS8qaQc+gw9rXYmtuczDO8wpdjqJWzVBTVYIbLrQ0K0ORfF0nvk4y56zaYsfAGyiwr3gouPYjo2ggqpqfj+KzdZqHzPnjFnOg9xPungqy4m9C0Lvd2PWKgGLZ5vDJHk9pGpcTK4FToDjHRjIjQm+XUsK6XEoKDGtJPl7OIfj77z+U8znOV7Vrz3WVN2MGFIXDycdta7v6n/7j//WXv/ybm1Sab85fgZHOWJ+nr77QmoLdJd74BFFZ4MlNYd4aDJJ/uHt7q9rr+XXCUOs6NK3VjREsrevAhjf6bihatPnqv309/fHr67/1R0PAF2/nedzk/cv8WdcvP4wM48u0/dmhX8L9dd5sI0upOWofnU9fQ9p2zb9TlhX2FTDlJCtsMRKv72Iga61bmVXvc5KHG4vytD+qUgqVuE5iveqm3QFxxd6GrTmfTrDgrBb27TrznapnoSTjfSnrttB4OygeiQ+nc0RaOXkijaCm6RLDqzTbODAhhF/QT5Z8XMYHfVUuonpj8CQyzcCjADu7x1odgjldVqNBG5YTulevTC3eQFy1YX6O/ZAJibG3attzvi9Sk1+n67cop1S/hWr5EJaf/uW7Zr9BPpcGwmGnSWxvJ0+wazzbuWuF+VmIbfjhQ72u1mdeqiIAwZkx15Iiq23XZaLhcNi2bXVODYNgMqUcGcdUguT8siRDI0Po67Q8l1LI6HqenUI+Rb4b0mVhXHTHdpqTgCob8FNu7W5mc1lL0UIi+MsZasq9aF6mzPPkrp3dXV4n3e6MarY5/vznz/vhWAv+/OfadHbJD4Wn45vDefsiW034ZvUF4UfkSnf++ZlV/5sUlVCyxE4w2fYcamHQ5twaJYZDLgjOuYJARLbtdNsigHdO8RZ0e3q+3uzfb0sSvGFR5ixcDE3XbcuWnA/rVmJhjAFn01eMobJe8ojkOoR3HjvYnGAFWcFaUg4MEIAxrqWwiRF8dfy4m9ZL+TYdf/tdXafksl+V1fdQ23WJbduFuHKRga3udVthLs15tJTWAKqPNR1GWrZ/YTxXErWmQu75aRZMmu6a+dLupStzoLyGYrtb3dysTizb1LQKEdq2SSUzIZTspGgWz/fdm2XdruH6/v5wPJrX8JXSqfzplZ8pgorIhGlExbKuANSP3wtuGM/SeGk8F4WzRvJD201SLSkvq3e6scBjLA+En8e94iKlsghZheA5Z6iCqoBCOWTGGFcGgEHXxly4EG4VKRjB9jnqGJixu2X2UthSPvVNH908dJblfc2K6AKFc0EVWfRc8dsa25LZskyre62kuCjdSIufWD1o9mN0XYqYa0bczxML5VrYiQC01WCfckKjRi6aGApDXQN07ShQJ3rmMsTkK6nOvpHsJnq9zlVZxQT6ELz3XDCjBMMKSL9m6SlFIQQhpJQQERELNcCqEI7IJc+gjEI1lfuKtoBmvM2kQxbOY4WmgiUvyHc8W0pC4rEEpbjB1K0z1tIjqKbD6/ykxZijFcKUytbzEcNv3FaU9d67WjuqwkVn2tjurgSPIS6C876Hdjxr1dpuE7JS0Uo2fm0Uv0n8n7UY08awNvvDd317x7GrpQmeea9T5hVrSBeus7XWqH3YbEIXyOuuIYbCyliLtC2Kdj2/LQS6nxf/WsA630n+7931f8ghM4DovGDAOa+VrzNJdjSIy4vjlebrgoiZL64sSVyXZTtf4vH4ttCmLItJpsyECTuyOjzi9rEXldy1bydj55JI4PcKvxPNCxv/o8tPjH6T1vdxvWXqFcSLaX2ps9K1lCKFFdwgU6YlUCcmJyZ5rTXDUvk3o+4oGal427NUrlRXa23wkFHxNgY4d8OAtSh5TuEXA0WNf3fJl4ya461SdBgkX6nBhXG8NiIvsgLjfaOf8rKTR+X3CU6tvuN1zLEiti5lUvLsbsPSeFfWTaVy4Nq8ns+NHs6f/3Sezvvm9/nFaKyb+9j2TapCd1YWe1leydS//vyfq/z8af4XfT+iQMAgampY/Nvv3tyMN5fr1vQ30oy/vf93t9bW7frhx9+euPh/P/5ZHIe7w/c/vLmj+rq7RdW1jthS16XOifMwOdq6w7iT9pppbQyn7ZcGn265tvXIxjQjFvobq+795gr5nb6DnDUboiNKTDCl9VrSdJ6+NHSzo2Z78FLuo1xLjY1k1/WrNDqVi5LBXer8QkTNdRll1kRfZMuW8mxufUXH46zWsiUpBHMj7zldPyWfJjQSQj7cxgWYKqG5vOx8vBjjaS+Nw8rS14W6XVF92UgIEdxFdVXkMA4/fgn/fPsdwV/Uhc1K7g3W+iYNVxNFn8bS0lajjaFZQ0SSyQc9NBcvW7hfsGq+q7EJ8IrDJzpPbr5hxG5b47lVkbqbo7+eJCswdkGGsXyL3VO762D+ud7r7VX30yZt+qSb3b/7ezjXEC0cDmJz1S+aK9Ct2SBxRrppG1/lS1JGxPtyglhyh3KZHmJn7ekl3hzMrM6MYDnwTdvBDtk7dR43K950UkES3uANKWCfXnfv8FlfD+2udLXLKjXJCpZkKXkP0MTr7gql399YFpav57t3P7jT/Hp+7Njab2cpcXFl0Eu7MV5v9fiGF3LT0nd34Zd09/3vQILSLYJpmkT87GsUXYvbtI4khMgzBBf3fZ1YcHiPJ4RCjSOQu5ctVZbV+11xRbw5xKfL7fGQLbAcVc5AGYEsUuKPZg9V5Jb5QN4uXO5UJeFDLQgbrDIvtS31fAUhzWAu62m827m0dHtbYnBLzFHLE+V30JKzmdxIGm32HIcipOMNnqcvLXHYcc0MR+Wj3dxET9dW9x+nF16ijJtu9JbL+dTvDv9QFRdWzmfZt7cka4QdLU2aRYuDRSbpSeFPxX/sOMfa9n3z6edHrZjmULaa3KPGZGOdqYypA7Grnm8Rds2RpBQb4vFQFxJos7YsMx9Kt79JeE3uhJa6N0daPSaMBegUROnWWlGguh35DIj76bmI3Z0u372eqpdKjfscS4vGr1fREPaINjQddyHvYZiWqa28cGso8TYaPUuc+SDmbdKsFrXJ8qEE1qomZ7/QY3vfOOKzC/ueXz7+1OBE8QzQc3GbsfTDwBvve3Ilk4+mU5fri25s0Mr2wxyq2bwGSskInvN+ZcowMjlMcQ7gZdsorPnlvIlBiKJyzMKyxBcUrsJcKQhEjDP3quKOA99k5MpEJaooRvdeKIhZ7RpfmKaxyJZiYJkocMZGLvvKETBTiAqtlEWKaTlT8Tddr4DVbbI5MV5JyEVqCmlz+au16fX5qTVem1noRakkWa/x/evpUmBF3m9TandiTpdax/llx+MY3Ccz/IXheJ1EiH3Brhl2IGT0jJd913XJCy2kFkqLt8ebu7lsBH/f9FX2PrJnKhNwDrUy7cTuwvljLkspA5e327pKZSfnknmythuGfp4vUASkFqMJc+I5K5Ny6HN6uxS5oGPDSQ8/I/2RWn/ZJs6PcT7Mr63G+0wiQXoJVnUAgetaSn3Z7/fBLW8PByk2ioHYS7+zjR2hgKmHlo1VPi3pl/ZmVe2KLEJZblrV48jZP2v9yWpI8zuB+zV9BhXM4eJebtN2k30fNwmZEE+qm7JcMdYScms7KVhOCwBwsJBGQpnMvzHdcH3oDybHnbtYo9j06izrdu3otyUTY/IQqU3cUKOk7aQMopZRvdUsd800shuWI/G+a9t29kuR8OHtu2IEMI54dNmZfi3i+e13Y6TqYnh4+uXTLz81hr991/v48PT0187K4qugHmn3en5kvCh+IBpO0/Ptm7EUs50vyeXXLwsv/ePXc47x7Vt7mf5YrkV4cdfcqMiYDyLkg+Y3VmYRt+K6wcbkvj18tbq5v3uv275jtwf99oebP6RTNbk9qLuW+p46Dm2JfDolKGPyJgXRtLcx8UDB0zeI33PqGf/ZaMqRc9ZUFG7hzoVEz20PtTRWDjF9u7F/T4VltLpPDF8HY4YRXSJGd103UuVUuJQcgEpd+v0cNsbhaNUoyphXtc255KGQGW58b6Fh4/Yagau74zGfz+erm1fJZ8bF7nlecTDcL0J53ZWyhOF42KFmKLz36TTroVteXoSyy/Ns+wMEWqa13e+m16s2TfTo5oYzw3lOEStEc/D9yIXJSjal0O6uuZ4/CiHPj49yLIqx87SSxm4nU4lLWsfbFgps+compe8PE702f4mn3qijPX+ZOeutrQ4nCMY/pjcfRgK3fFqk5N77SjAv/nq6Qq2Z8n43MsHC5LEwY2N3mEk/yd5cJrzd3Ro0SQjF5Wlb5JYA8rDrhRCvT69aNcuy1FqhcqiMKxm3wtUR5Ac+98GViJxt8vmhmu73zz+9tO9Unv+I5lF2tJwi0NvULYW2NAWJey8OzvYXv7Iw397cXMLZqppd+tO/fTvevO+aIsYHZWLlqx3kZT53h5vVFSVGxF4qPvT7FEuiVVnYVt+qViEFWob9mxSBM28NYhFxidqy4D0RiaaJMRLRui5Cq0xlnquwH9gLUFWnatkFXiSoF6z11TTJKB59yDkrjcMezeC//nLd9d+5lXlXgUsmiIlQ5aRujogszWvwvjvcrH6TXJCL23WrcU0LZzD7CZbpIcwJS2psNwx7F2M7DMfjDedS2eZ8nQFzP/bLshrT/LppmnPsB1t15laveXHlWZo2xw/LZEUbSymn1/XuzTHGjMidm8eb+3WbgK2cSahDq/cFQsUpZbdeSRoe41ZrEhLm6aStVI1wfi7eYu38AtnHWJJuKpMbyoWsrAW4J1qDHvvX9doOLRBOyyPjsW00CFEJM7Fc0LnAWCzBuJUx2HhbowMGFmBa3fp8evUp5pwZB+ccA+RMOp2Wqgu+m65m1xzrtknP1dL5GYbxfa02JQKgUtcYLzFP3e1O5ZwhkAWWvFZE6OL0ygUyBlKLUsput0upClRQBTBEzoRgw+3x06efQ4ptZ7nAShh8yQk5M95TTmDbBgTMF6Rcbc9MgxUiYJDCQhlSmZR4zXyCZHnZy8OOl7IsjItaKMS0lRKIYkqulIRY4wplGypxocrlvPgwgXhWJkn+Nqzj+UmdvgnLfgPpLZY369wxVUxDlO/W0/00LUCg+YcSRK9/5+YMeB0PE+PPKcwcB5bvRPKqRF2hx54uSsdGUs7uARGNtdLIVErMQRuJVFOIsVShGqU7Ju123SrxGEnylueGwqLEyqgY3pWt1BglK4Sn1V+EZEwkosxxsPqGMYWOD5LKmdqwu20C+pd8xoYLSW3fS5RP/c1q2m3xn2z7Yro/U0gMHcGUS2H1ELeutU3J3+bHwks1IG1t3OX10E2NevbTJ0pDZ38/Pf2A8e8Y3WyXN6L8IaTTOv0Q493rS074xyz+ya1nDkFVwexHho5qGQ5YuUuxmyeDnFeWUwoxxm3biIhyJKKcsxBKcPProFwlAKwFU85p/+4zqjX4HtMPfm2kUFJiicm5NQXmXQWAUlIhXkkSVFaA1aHJOWMj5Gg4wwWrNp2Hb93BltoTNkv4Nt6GypxP8eZe2YZRXtf58u7+3fnl/PHnvySf1nVTqrmc13nyghtk8uX5zKUeG6GATk+vJcj5FZ++4sPPbDvdZtUELi8+eoSzd7v7HWs4aZIlMp8GpsrrqVn9W94fRdMSc6Zh+8PK8TV6JyBrjBJXXoYBrEk+XrVEREewaks+PflSbXeUAkr9OHaDwjfX+Zu2IsHHNcwcboz8cHqZkfvL9NnaCvDXLD4FqoRNnlWdxuhiIOiaNykvKU9aa+dCTpxV5dLHzfvO3EAMGuz0siiBzjNhNVO2rHE+PW7lQQ0LpNPlYavpA7PE5+dcVlBsY3WHA0NJTrvThErDmubzpTHtfL7IoR10s7mErt7evt8uG+UaWD10Qwbs9iAEGItCJorcbbmEsCwVVK7EtOnK9JhoHtquKlGkoyXI7iBHnf1rRcBOSQt5LSynVAGsraGgL914Q5NTXNUbVn6a8ynA+1a2XK7Cf9oyT7ZXFANVzoVpTV9jrAK4gOXhItFQAsoW2Bu37dYIsi8QIHnyWkCkNQcRYqqJWRYWz1BXkF03aKmXxWvTpUosTFlmh9W4wqWjXVKZhqEL+G/HtkZl4XpQ9vvstG0zmsddaZnRH/Or/tCWvL7t9+sEpX3j4x9lXxs9PP/87fu/f2t3MD1fhfoeBFNGl1KQM0CSWmRIXDElwPssm0Z1kGiuBazZ+/OlmAxSSWGgbFbVmplzxFRlgMoYyMlIFWPUbQONIaLR4CP3MbzGXbAsF+PU+adTfPDXzq+GYTefVmRymjKkfl3tYTds82p0a9Q4vVy1bkPyUvPz6SS1lShrrsAwFBJC59lrISAao50oe6Iny/dA02B7F8q8bFyYSnxzKUQ6nSeq7PZu55YJgAnVllKRFcFrLk72mdRKjDP+holdQR+pQHmTY4Kqm9GEWCiBFBmY2cJGZDgjpjZtashYY8OEQe4J89A3XIALa6M4QF7drI1ILlTCvm3XadPWbN5JxpnmGZlCmbdQtwCaewjN0MC8qoaaQXKOflnnxVdgv8JPKBgrWcorJgmZW1WUSd6l/jD0Y2f7sSIQ0a+jxct1k5ZVdk31cb9n1+mspBQqZPyihlDVHOustaoVt2ux6l7CLcq7ujSljMT3tCqF+0CW5a6UbITgSq7ecS4q45R4dkVYXQUwq4EKADi/duP4KzQYgDGmGnugwlNFbnSihNwDX5gQFPdhHWrhSmVgYdsM3z5UdkR8JvgFMOc1VHnO2efkgKI20mj5qw2eiDhftVFSx7YrwRNHA8AUPz6f/xvXr/vbatpY+fky/8zkpOwCdKy1z/AF1EeihCyb7oH4vxH/kxIVwm1e75RsCaYQJyntwid5tF6VVc1lN8NQ17LP8I+/wqj3N8etRK6Vj3FsG1UhAwKX2valQAgJkdfEsChMVmDkbGWZ4lo5Yc1OserXXSUOTCxXBlUSPK7hjxUui3yFsRb7hZnnkveIv636bs33NU0lckoDspbJnPJscL8X/4FRib64LWdIRUzX+bMAnedhFjt+rxeZX5yF9oeZDh+fVOLvjbxPvq3sLOyj1CTbT1P9vymTQM9J/pNqVwChRc+4c+lfKpT1tSupgdJld5+2m1olExxgYKwCUA4RkWMFpRQHBGCcC840IuccpZRKCdsIbbg7/eNy7XI9yeGRqZemldZawGKM4byPQSUqGUomwVgnhGCCSWGbsLpu1wsj18tEgjHg/dgpE6/z09jfhU1TtM4v3/+IoNfJzasrjA0vL/T0fO128nz9RYqwXWJ0jIGved01d5K1JV8kDpfXS4Hrafnj8/Jfm90yu68PTz+BwIJQOM+AIUaUikmhrPkaVjzuX3KgFkkTa+TPz19jUySFXuPzxz8qmlrYmD/xdBL5Ej0rmQUncmiEGLQ8CLbTqkNL5+UF643l99P6X87XPxrx/nQ6GfG34x6X+E/9WJVsrbK73V7LQ1l7wW8jRuJOKl/zyzJdUfHM/uTjqaY7wd9t8bPPv5TM83JPfBaqVnhdr98YrbaNqTjVl0Qb5JBXP+7f2u5mfllEjeMN18j9+pJF3feDSwTIUcsyFdv20/VaOTt0w/O3xySZPuzXdc2VWq4TVStt9Js5WKg5hAAQY766bWKVKcW01iliqVgIK2Vp+OX5Km3DJPY3beW8zJmbo9K2uBlJ2L5LYSVXwYG+08s16KtM38lm48tVNQcbbPIfry2TYJhQPHx9yc/JdBpY0lyWDMCkbruccz926zQ5erG3srBJ6K2mlTMS3Ld33l02JkTbD1myne2stQxqEZVV6LvjMkehFNTaqI4IXFpVFWavSAXpXIVAlqWnF2HydJ7b+zfz5RvUVHVaHh6TYrzIh5fNndP34x3LKfL08+mhlHIrRwH/QHy/zS/7odi9LCwbDVUtAEOtnfNV28a5VVqqfAY1Qc3eJaZtZdHnxegOfKHgVdutfoZep1QYcKhJKl4y1kgEdXEbq5TcVhEAIcWSamX/6Xn+735o/v1v4//y0LaD2RlhrOLfUMyQoiiNkCMAITvz5pHqq7Jxmp+1UQwVkWjandZjKCSEWqe1ElIq+8MBCoXrIrj14aL5uLlvNRrTlJI5cgLGgMnGdkpbAoZcaGXfvPnQju3j40Pb9Ou6okApOWAJftONKZSN7Vp7B0UV8lqxsGHN5fbmXcwbFZZjGYd2e124ZMgtIFWTGOZALAehTdsYjpyFdTPGKGtLztfXc7cfOTKkhamInBgVZVrKskRJMFBMRpoAUGsNcdlbzTmf5lVKqbgCwlpRGW16yxXksiJpQAw5KjA+pNaKRI4Bl4YBw+ACAPPeGasEspKKWvUOOx5Q83G6cJR3Dk1sdKlWyj1Ak3OxRpa6mAaELG67JBGESrWuSz6BcLVc2x58dFIIYaT3fl1X2w4QKLoCyLt+P11Xotr2Q9fvUyhUuZCglKiEAIwQai0ga5XF6PtClcpcaKMaqCaoPK5a2IXhAwkPfs/Cm80F8ouxPcD/uqSEQnLOoVYABoWllLiIKa2lZMTEmYxbLZEKRmRUKXVGxnVlUDmHDDGHZp16t/J+FN1YkV2oZvLv1rlFndB+mtPHnHYIvwems/jU0ft8KSKUDhucGxnsscus/peSSUo5rdvh7va6LUJxxjnDyrVMpSptnQtKCS0FYyy4SLnYRlEpJbHpuuiOIcucWTtcY8yNHW2XUrmweujtD0SRGlh9C3inVRvipJpJ9WHNom/2EkSj+uR2YfqQt++XC8QwHW8iYxFr1+oPku0TIbJsGrgZhusDMFolexBeccfe3fp9ly/rQ7N/GPbZO/JhOuzfGPZ3frqNW9g3f3j66hvbr1ta13FbvjtfZS5ryI/Ap3U7M0mVnVW3olwqT78OrlvZsMq0VLVWgSLGGDx573MJsZALW6K1Isr2rBqSsg+Bh5idXzmzVr3RRjK0DNoKYK3mzAjZAnLGCiKgERIIc8zW2rHrQ3Rt0wvBGtumQEqwHHIjOq1ULIJgeLmu3Khp9XboQnUB6HT+Ni/nsE7bdG2UzMFbKfw6PX6bmuamaW9PV8/k8HqO//qnh/3hh50WdZvbWuu0vBtuTIA9tmIpbKk7sTs0ex78KCC9POng9hoYRwY5+JXXJGVJeSVIVYA02nRcSn6Zl5RDjPH58epjQKytvRUqMVTWtLVexu6oLRX+T8+nX1rz3fXVpMAKxM3NjBkU6AMPNCETnAlgS048pm06MyEYt3PMZ4Yd0jFuabeDX2Mia/XDw6fDYRfDyjgxgfMJeZVtL4RCtxXKqm004xf3AFFas3vDHIlaV5rBXlhZEiuGy2wEANum+fbvfgMph5z2N900XX8tv9qhQUnz9TX6LW09EfiNU7bKJtFQgTQcQ/RcihprbPUR1VCTR16V2PPM1yUwQs2blAqvLM5RcIOaiSrd5ECJyll+mQe5m1lim9Adt2+F+7KFl1K6IBrAhbnoFRel1FAonC+CV5A8+jQcfwPlfXA3UKXfHiQrg3xXH99QTMJo5nNQ2HNVrUjOE8OcAkPRdKNb1/PLCyuwrlu/b9yLlqZlFdaz85Er/mZ+oVJSL+4iiZ5SZd7Rk9rCJkTdGlmTmxd3qe4iLb85jkfJ3fXyJ3ugNb5oC21rWX+YNzHsf7usjbXGxyC1BWBcipyz7VoqpdbSda2b51/dTYg4L3M/jhUapSvEay0KmM6waQMpc8olV2raFlJRjC/bCpwpKZONdwiH/9PvT//pf0kfZHj5kq1/Pf/Cy17qbr4+KT4Femp7wYvW6j3wEuMmFbdWO7f+SmF8Pj/e7A+lUqzFtA3USilvl2vf974k4Kwi+OgJafOOCTFva4qFc/718THn8qvF1nZ9IUrbypjgXC3z1rRGSKyQpJRQOJbGSkX1lWOt/kZAC/wjAgjTFIIClQhqqTFk2/Zcu+BThaFEzlsAmIDV6PW0BVZYiIWQla3kTKLpsXItFBfi/PhkpYol94d9XF2pxFICgNo1nMsSQpuAiKrSVHWJ+CvYhyspNAIvUhapU7yUUgyg4zoVxzeHbV9rrd7H63Xq+76UwgBiCI1pz8svynRW3T8/TPu99unJh0WJ/XW57G6OSqmHb99sq42VIYSYS5kX3hrJGYshyEws4rqJTgCw4iNvbCmFCJixjBhDFWP+lS6ZMozDsRKmWCohAAmFIa7BLbVERACK1krGRIyhQlFaNtoCIBHlEq26hyIYhpQerXWcZS16RkfJG6laqKLG7F2OgRAEglheO6xYSURHTVcEDykFJl7GsY9pe3r+qiXM0wvjhWoEqAXOAf4lpFfOFJcrgIjLfckKmi8uEce/EeKdq59q83M7mm29J/ZFG0bZ+q3e3nRMuBhQwm9N01LlmwvGtozzbduAgff+VzU9cFaxcEGgAGrM0RfuiImUdK4cZQK5AQcCfT1V5NsWvl1OSbCxsuu8PUh+6PIP6fqZb6828o6yiW09i14+urlPQcY8EzzI9rnpzt1IyD2ldzGkVD9n/LRszykIv7GUpW5TKBPFHWXr8ychmZG/LSWh/qWUcn5N2jZGD89PQFkLc2lY70/80JvL6UpUqjovOQRxGW9eKm65eN0ubZeBuuQ7ZJVzVqAylClQrTUFR0SlFK2FlIZLZhqpZFMrMk5a21yCkKVpVUnKiA859gUKqHP0LvoghGKMNX0jtWBMxFAZcoqnK9c2rpE88cNecKy8EFO8aU0zLO4S8YsZ4jB+SOv9ze4PH3+6VEjtWOL/l6X/WrJ1ybL0sDld+y+XCLX3PiorVXcXupsAAZIGAy/4ynwDNmg0mAFokOiqrKwUR24RESuW+JVrwYuDt/D5jeHfgNnn1YYwL+S6rK6eL/Mnxobb1W/ra4H1ejbD/Ym3L6Lxzdgs6/qvf/tXAPP+XReJzyRtfskIRHBgzKVkrG+Ovec8dXpmboYlCKIOY+AJWLtFbHd3rpJIlCfKs8bzdnEnD+fM1mn7gmKRbeaK3N33l5epFY+T+fOX879y+tuU5WJ+0Lr6RR+Hd4Tf9O5jJpdtUlDexZId+7yZN8lBsnE2dPWZySHatVHH5DusjfUGsLQdocJ652JgSESIkvGWsMY6UTOpURbb2FhRkeRvwS+qb4HxZKOf5t1vxriucXYEqOgHf5lDFiiw7VRi9fzTT0/3d9hIP037YZ9Kypww3hjvuuNwvbzp3cCAcUmblvatxkprzjWWHAWhLPvKEQopAFS0IxLCGPNrnJ2VDQGf0xozKaSQYisbZfP1UP55Zkqr7zT8fTN9B+aMusnRcFA1lVw86VizH1RmjluhVPapIBzuD8GsAOV0vQ3NCNzmMuUyme2V0VpjKHH26ScuaYW0nl5zTTnHwDGlJLnyfgNCqFQxO0bKuixt2yJLOQJEG6erI1G0gobMtBzvO1rnJdkuN8vW2Qu09PDwbnc5/y1fE2dNVXx37Ozp+YA0h5i0ttTf774J213T/b5M5uGb9uR/Uq1jbUS6UpY4pwiCQMtwn1KHlBCazLY07Z0Uowtetjpzll3l43g+vzGlQeiKCUkmQCWTVPBaK0AlJTdNU2qhhSy/4Hp4Wv9fJ/ov5Pr0LWu+a/yHTnwdw5xyrUFvN1nzgzey2DIvNyEemvYRib5ep92+IzT+8NO/9B2CizHG/v7AG0FyjvOSgmeNcG7VzT7XmUEvpZ+uQTXEbEFIxhjTQjBGCSFSclILozS60Hf7WnDY9amEXHzbtjViMFEgJUCXq1GSVriWsgraMELX5ayaAQgKyqbTuhs6QkUqdFtuFpZanGxGxUYfc/BLykX3uxBSzJhDHruDDzGFjKmJRUWHJZRYIkAgYIjwAjE4L8cBAAjDtCyI2Pb7GDAFzC6VFEoJIQesuZEqpxLcogfprysyGaxhgpbMc0ySK8kbZAJKoqzWWkopCwmGL7XdCp0lyzQ5VYNIU7cvMV8JjSn7EHwBCqARx7IBkgYTw0CUGihtMXHGBkrEdtsqoZRyIURMsaFcMB6tN+s2dD3WglinZaacAcFUMqWUC0Jo4Qw4xWADFASylVKgcoKS0bYGQbGqdkv5lECr8lSLKIWA47QllX1vjU++hJByzqWUWisBCkBCiEBSo4VzrlHc2ViTBKAEHqPtq29U+4S5oaX3Rgv2xIQXoiCbfVi90YhNIa8ofiG8IQwrM8Bi24wIIucsRKn43yxOVe3FPlrqHQDtyVw/IhE513HclZCHbjzfJlCKNQpyZkzUVBulQzQAPgZDCAFavK8piwx13HfGmAKYS5GshXBH0r4bKtAbobJph8ounv5IJUvQXlZDJCfS22QJvs9s68c2BxAcG2VdeKOMn07o6kk2XMkdpg4Sl5LzhmeWvLyCJpsfK33IIkZOPr/S2R14+Q9x+7dafOctM2vPOS94qVUTcZP9iegfpPTDjpvyNzFsk7mUcMdgiAElG0umjRY1+mgK5SylQonaVkeAbttGAEuBEE1KKUafS8i5+BgLlAp0XXzcdiR/IISo3UvV36fq1uUoGKUkcFFLgZwz47nUQKogFUsxPhMKiTGmKtSSEu0E1/ehzlv9NDxwqttS9zFLNdCXTx973YyDfn7+gWA2xjjnKqgogA/66rbbuhqfqGh++vkTE7rF32nym3WS67WUyAbdHoau4fC63OR+wK5R++F1Pp/XyxJnsZPvlOhrzcv8MHbhdv3t3VdsqXRNexTaJrGGodA2ocqkJR2LnLCRyU63h1IloTJHAXlITneyC+lLKTspP9y2F91D02EOWcgtx5Jsv9yoMabf88v0PC2rC//A6HGUd4TcknxJ2svOcSCN3oeQqVxCfq25adQTVnI53xCk0uT0ZvaP9zb4nKVUJNmi1Ym1uDkJ9qFjH0jToqopTKol7J5ff/oRsAChvN2Ri/Ny1+76NRtVCgOglC6vZ+QsTZtxbnz3WGermv4yLw1VqJtejrFeYvRNy31YUxApUKmbEFrJck0VGLdupg2pvkJheZtxEP09D8ZMi+cdo5i10L6LEOL5emsO+7AaDUi1ut2u467Ldc1RFl8FL/xeABJiCN4h5TIYH2OEodWa+GBSyVTvwDISOSuSwcjJN5C/dpGpkfCeYbJQo861Dhooafd7dLkbm5DSsq2AqR8aVrE5Hqf5TWiAYMmW6TjIg5g/f081L6lMFy+xdbfZBl+XyQOQRKc55P0u+XCAUufXwO2NBKp3wrfN3T6GU1WvjlwvJ+fcbnj3XdNIyFFJGZwTQqWQhWyt9RRoLej8ogUHHKPBykA8dFfvJGGw1pS57ASQgFTXQjmtOWegZLMGnHfzKpUyy+rWTcs42b/vfvmMR6mXl5fnv9VBUnMiQDL1wC5Kn+RwKfUczOJdJVT6UK7XG5eS6/Z2Xe/v3rftg7tca82gmc2xxqCEaLW8bDcGFPIcVg71rZiW4lKDIgAEAGvp+54yjDFQBGNXxMpZS4kAQnXTxGSRVkq4dwkRUlkIgZi51LzQN6JSqfeMiRAXQCEEoRSjJSCIdYViV2oAsRGaU5UMdj4U1dRhv/PXC6U4DJ1bFyYoMBKDqzUXrL/ORALB5IJAXisWDpgTK0BCBsl9jcgFuuKNKzEwqFJQLSUCDb76FUJEpZNqwWw5g0xlEx1b52w3UzMwlMvrpebESNUNd8404tvombfbfr9fZ+DkHaljTqjGb99eXUlyt9ut5kyYoXqTnYt5pu6a64o69RpL2SJ3DF3JrCR0KTdNU2u1yQkhUw5QXCMwhlVIepteu16kbJiCXEgpIIXkgtVcsJLiEZKstSPQAeRCXpBfACsUzUCTzKJ4xvIDFRgzFDuHImH5QyklBReDIwSkIEgyYK41IhpvN0L9urzkKJabh8q8UT5egM5SryX81I3rsAvALrGcSdXM/1v0/yaYMceW8VrIxugjuHeMSoBzKR9bDaKoYqgESfN/PjaeW0GnVhmlIyML9HG0PqimLxEhY7Jhvz96a7rDoWasiaSIpGJJuTgDAJyymitWUVNCsJwyvzEoMufFu63tjPU/eR8562KM54sL9qtQGqKeoKmWLR4HB5zv5iRebDp7uObiabjn/r9G++8Yu4dmm0yq2NbCS1m5urr4DEysZlSOlue+h9tRncTaDPT2cP+/qvq82w03/5/U+CxUVcMrb97WLWjdJtLfFrFtPW+38+Uve/WH60dGw36deEqh1i04H8OG9MTEqeQl51wySR4pKKyEUwZYEBFJ4pwxjkgyoVzKRikFyIeu580F1fcF5/NJ2unbWu4KGq2E1lWIjEjWdeU8Q/FajCQkp9oGlKSUIRVTCoRzaIjFj4n5dnyvmifR6MocsGpDGIf8m2/uawwMRSMOfbtrWpmT6R6bf/3751jV6/zly/kXn4QLyuaNU/L6+rMS9v0HHePZrku2gqX7FtSB9TvaUJ90rmC2FmsLiRO/mdt43/ts7949upA3U+xWUacswufrz2ygVWXPY+1woT4SU+gKfENugC4xz4Bx3c4CRk54xSXTkzF7Qb+x+a8puureC07aLnhvleysvww7LuUY2EV1CwR2u25M7IT6kDGUWGb7JylFo44hJKUpoWGdIy//TikGzK52ZQ1U7r23+71MboUS1OE4b8G7lZHN5Ql4M78yqd7breI1I1e0EWm79NSJJzb/8gs2LF5uSgnI+SB0ZIg2HB4ethiLS5tPsZS2Gc+3BYhOkfm1B9Z5b3KipUah53l90U2BQgtQ1YIr83Tdrqe5VeThd+9Tmcy2CK2xRe83Oe4X3My/fK5PTDb98//0d/rv7uzruXb3FKyYORwpu6flLeUF3vAttbGlg9lsLWitDbdLrSUEd/fwBAkloeZqo8ntSJ3/G4jXjBDDmGgum5WtZNbnniefsGnePj+zhhtnx91OCL7ezjF4iL7r9cvrbG+Em8dCn0AO7rJR8fDpJ6fk0Mkx5ty1w0HorMT20+fhcL/rIx9q0pKIfV1EW1ulBX/UNpHiePREH7QQb4l8pj0juYtOQmlToDFUxArgU5wqrrEUQkvT6uXzdV1i0yigJVOqW/nlp7e+uyMafbWEKASFJJScAWAYBmcsAYzOQ6mYSpfCbkQbp3yZdgO9J7BcL2u+USK5aN9et7vhm21ByQ9mKUN/LMRbd+3HNpcImShxqGEHfheWTSnFWk0YLtcbGEcZRcV2Y5d9ZcRUJ6BOd+OHmtzQjCmlplHWbYxQitVaK6UI3gIgIq21ruustWKtXpaNUikU32xkKutxRQG1vlP6g6snhkQ1ZF2DkJxg1WoofjOb521t9CDEPSfaxlsq15h81zxVrNYagOKj6xpdcrxMb7pvmXRMx1Q2wWlOyJpjccotzLPCCEUTaMiZVtIqpNy8zV2vpWC1RG9NCA6AkaqxNkxYxnchcqUyESE6kZOOZT3s72ilFMi2Wa11SuFXUeXA1xZKnEMOBvglypdrPXup4voxlYnyKCRBxH44xMhz7kppmZGQW1QHyH3YiCkNep1zaVUfUmm7wTlHCAHBvLdKESkRISzzm1RMaVppQpIQmHe5llp82OYlhUSJEKIvOBWsFRWC4Lyl2MQUVvuRDTqV1p4J45wxFEWE6jP+0vc957SUBJgBc0ouF4+QJd9Hu0cQIW6cSiSl33tGwvXsOGvaZjydzsGnWoGAqoUV1/n8McOXihvhNwARzYFwAuIv3kwY3ov4+7ASAqZrQ3Q3pj6wtqd9pru04UZarXZH2u+4UIg0hXB+OUkm9/u989GliJUlX0sCayNjzHvPOaeUZ4+NbHJyUK0zHvNIC691plVD3uWotCRIXSUVKWSc9sJh+J6FfBDvRDXhOu/qt21olPp9TY+NOiKZK/k7UZ+NXyj5qmDDFWHMaEX33fvkGyoVyM1sv7v7bWgf68cXqLIB/j7U3zh+c+mjor8h5RERKRxpfRx3arUfqd7f3Cmnh+dfWkm/u729He5+7rrPhOZt5tkPKSVB9Po21O27hnyw1tUKZvNN06aY27bNOQNAhUgpBSgppRhzrbXkam1I20PyQMXadiR6hXhUDZfjW4mB0Eho4pynEKSCUoPgDZErd7F4YymjNfqdUCFHnCJXe7p1YuxiMNFp7Pd7lRTLuWGsKehF3fpGiWm5eDc/3Fucv0cHDw/vJvPijf3y0+s8P2/+89W/NkY15I+evb/enlN+3n91/3ILUuhEPGkyaclSCO/f3xwPpD/dxl0fGIG2/WPD8Lr8aQuXx6612d8ufs/+aE7tumTBAP10pCuGTOO9hA9j/w/GPEYct+L57qFDmdlpLcqm4e64NRgk/DGQd1P2FmRERUVPma6UkCaQ/ufqaa4l4rmXWpqaz7OfWG0TJV0I7fVSOP1q2KHQPxB4HYbvkZS3H/oPw67eDI0NEHu5gGi1v/sKWsz+piRjLWUu+YvtDjz3HH98cccO3nVtvSV3fbs/tC/FJT3cPZWud7b6OAWZUi5+V37+l596aHNxkM2h1ykazZnbU7K5jbxBvGrFYpwoEo/qwHkOMKXEeNW7Vr8icW6/o77bZ2/qJxZdFB3KuYlUBj7tPoMp8PD7b9e//8vxtw8gRHDX/VG9/WLyQIo05Ko5l6j9KPZs4OvbzyrbROauoeCRH3+7Gs6zjfX7HFh6/tz8YXcTmpTH9VapD1yiuSW+P5ZQ4ndHfppJ9KXEQ7+HZkdzrSmWTFl7L2KXaWd/9o/azkOt5e3xm1T/ehl3T6X9066Zxfv89sMP/ePvJ3lKtPSN5jiKoVLXRs/Yob8s14f94O5Eo0gJt9bETJGPe6iddd3YfTf/cvMtZwyW5dq12m6LVDyVyLUCTmukjIwApN+nQm+VMnsOe+y28+fDtxzsDLkpmeJmXUkk5NxxTqC4ayiI/KmWpGS+rGLlWp6G5fR694fd+QRnIAdpe61IxpoIBp/edasFfvLdN7uSl3QSTlVNVtXk1EYC2aEDdRGDisltObSRu8ml4+gqiKZbz1OVdb69bDC3D+/n12vWTWHAC0zPU9ouUhlfHO8F0zx4FYcAPdtyJBKl6t2FAjSig2XZotPJC8xtDUMMruY5rqykqxEcW6eJi2WjXU1bvNsl2GC9WYbSpnJPVCTpoOSbv+aTpwX10K6vp+54jAy7GmG0Sy0CFRYei9BFzKeXqJ2kG8YQK2GpuQYuU0f6lstQ282mtzUZ2u0zaVQzJjsDOg+2JA0iCqhV9dR7omqdw6hHNy+1JBc9As+eMdhTMhbWedWz/mB867Zh3L3HwnfyjscCpJVaArVQJBRJsc3r4Jfz/fvffl6XjLFX1LlZtR3Gkjlv+y2Ul4b6lfhKCS3E0CIYL1qDUjhysxiWtI1JxAplz2WibXEGY8O52AXlCC+Vr8lmUpGJYfPCl4pNCCHQ/DUQKiqLtYRlC3GlD4IlL6kOW4EZddW3m0HSj/qb5c178F1zzuXTPPnd8ejDPLYK6jZv+f1dYsm7Vdb4IcV7n6jLb7K9pfgDwro/dEg4lneQD86k9bzU8MDyw1t8lePljSwZwQmV8rtat3U+DR2ndYX8BjhJWRlj2d+gWEJ2Qr+zeSOkKBjCuYq21oLZQqMVYqXYkTzEDRRWP28xblArQbWsr1yGsIn9AYy5tHKwa4RSoPheNRx74rpkFKX3Ve1ffSn625R3+0EQ+HL3VKNYV4ZXFIG1JpqKpz3h8ynH9NXm7n78+brr2nKbhkwJ/NzQr8J2zxTbwudYv5Bsebhz8SGreYHzLdRbXAzA5Tqm/C5Oz/sutJo0el/U98OHy/OpLlYE8prrWkKAui3hp/0Hlmiet1JF6pCPip3dx406NyGuXPBqXUcZh6yK1XENvCpKJYhJj4ZwuZru4sLDb7Dyv3OyNenor5WmToiGgNZq2KZ51x9LKaRAoLQSAjnGFHJOACiobAkg1RJSrgxUrxmSQKts1E42vCKU9O7pgVIuRENp9/PHSyrd+0ee3D9V+fpj/ct0/Onkf1ShP53nuwf86t1M/M93/TsB78zmEr4YmhInIJj1vtfN5fmlJyJPM+n+YlwKPm/blv2dUg02nypdJQ2NvL29/bNkWVAi8U7l35XlAxVu3I+/+d1vv7x9f13+S3D/qogrt0x1k3wYdZG4RZdvt1IS0Hodd5yX95DS7fyy32HyX3B9SHOr2UMyXzsrqaKEjj5uVD/vd9L7TXU3Il91Y84n4+a7mhulFPec6DPsDTZse5v3nAk1nfyNVLu+/vLd1w+5mu36rFpm/K3pqUn/Utf9/mnXcHd7DZkfO7efZnf37TswUy2ZNUK1jUTaMRlcuP9mX+LNZa+7NobK1FBc8peVS/Ukx1vwYNNetYFjvaxMqJJJrqvohi+/XFjPKMXTy4okUlKcW+/fPxACzhvdyJgD04IpCaUChfb++Muf/uXx/piSV4xK/eg/8re3lzQYNDm76Ejs/Feewf7hTjIQUN6+/1FQxpo+S7m+XZvffYg+9JMTsYhW+IYAIYLxAiioSr4i8lJILUgpXU6/MBoRDGOB8yioi+Eaw0UcjyKs0JVwnd9IYceuuZJ09/Xf//b50BGQrni+Gz/c7AnBUDGW1o4HGtY3ti741ZFuoD98o43KNTPNlGYARWtu3l6lolJz67bd8ZhrQURk0qwWAAnyXwNdbywQBILB25IipdgeWknueMcBpuxYYQzSNWet5V2ItxBiiU0/NJRCsPB4v3erv91ukr1zUxuDWZalxoM3ivAE4I/d+2SLkF9AfI9ySXjz5tqyJyzU25mWnTOZU5McSqUJk8TmBNjsdnl2UCjJuFmTYyPFN5IftulTZiehXAie65aoAngo4Wsk3X73dQ4tkEWxxhlDIDVqiCEXiN2gfciKvcPa5dhG13pHvBEljJwNKL4SVBKb89JvsddPd7PdVH3Y1qnrGoASY6wVcqmISAjLBYAI53wpJYbAmaSgiiOS76fXSTeccjevXyjLgnc5ClE/ACDyi2huzt0YNOZWBO9JhZIzZZwWqN5BLjmlRilCc3LK2ZULHx0lQK17pSBL9U3PlSaEeSQulSnVa4WZsxRj5OqL3n2eplny3TSdGbm3CxPsIPhYConRx7hIXVRfr7e/q6ZKqUuSNatpWrqBMDV7y2uWJVNCGOe81FRrlm3rF2pswXnU3VHuoiwS9VOMPzljcyySMMG4IJQAYqlYEaAQWnOyhFbAlINhDDhH5wIAUW0npKaIJfgKmTLCJZyXv6id29/tU83L+vdh76Xk65wRKWUwdl0wmaCOIRt783Uj2oG48WHN9JohxiRCGEj9juF328o2+1bFD1T92HTp4e7bdrhU6XBpt/C454ciaEMUob9KuBXme7c9CPb7Vn6dM03J7fd7wixXq0+v7Sh9sBUNFROg57Ig9xU2LhNvCqEh1yUmSCkL1tfS+xh4c03lkrOy1hAajF0JjN5yxBrqXNFNfG7uyjAu1f15Jz8y9v1azr9MuYan+dJCus+2L66D1ErWs6KoIkJLytlmI+VaKJ0IzH4VWry8/XWLP3RDPRy/NWsfc6f7satCR8XjheeTrqThL536SaedEOFu9/tpfgN+yvHh7eN933wVbCoVYr0k8gUAqv9quwwhndvjn6BgKrlg4ZwzQoFiRYgxNi2vFQnqRnf9yIlwKYVWHDKuAd6kcrSQvI6yfJ0d8/FWifb48zzVmEgqM2d31oBzieSaOOccSHEBfS4+pVgrCloBJS8uVE5ZpyjB1FDVKS+Ll4kcpH4cHEfodudAL6m9P/7x9ZZ+ft28kWN9eP1xPm/4CduYLAHeJfokum/v3t3vjjUmpI2crXY5Xqdi/fPb6RbcRzd9KZbm39TwwbhQyImKzHij5Qdvfvu2alPesx3FcZkjvNiPi/oTPfD1Jq7TRLTx5Q2g1EQ1sjvF1vqy3ICarqk8xYXwxJjoVe82k/Cfc31u1a6s75j9rhfiqJ5yeqXiubDgIp3Dlusg4d/Geec2Ahkh7ARTJUesjLK0reFGb1oSeBM8EX4kJ7K4vNzTd/vmK5mGl59XCF3N3ZePy37/G6R79CODrtu/y6/CewNqU45Y8nMV4DcTzGaLZ0ObNxcm03adGPA0fekPXS5FMAGrlcBJKgAkpSSESDGmGJthyDnHGGPMj+92ed26dg8ixxxafSekuLy+9nf76fxs7KwUSyk45wCB9bJuW3fYvV5OD+M+xsg6qTnPdqGATXN0ljf6PSlKCZn8TFVbCELJeVvN9HZ3PILQiTS0kbzV/GS2aYGWk2nupXCyUooxJ0QBkRCUnEhSKkg2n3Oj7rF2UGXcanYEEm3kznrWrod4/HqrRvk3GDvotIqnA09W9/7jtn/XRDLbZ8u/+U6RkKBjw8P2l9Pd7/+hltg9NdPyEdI5YR52fYHi7KoaySRr+z7MMyGYowMoSqliQ07YyDE64I2kgnPOAWAYOsypERQwW8/s/FKFgCQYsWxUooyUw7qcSGkVf2/jVOmJwGBXHfOX6F9Va9tWm3lt9Nb1NUMlFIACkLXEN78svXiK5u52Vlo95EB6RVKkvO6x5lITzRpp4N1AiaRrTITIYYinBWJNLjGOXDrRrKqFWnVyg1mJ0h1pEtW+2RGTL6LJoo0FZ0I3NwdNS002uURRpuxc2ipypqa79ybBp/0D3sz/fvfeA7uK9kQ0InhZ07Zedo99oBuoCOhScpxi9EFwFnMKORUgCDQgVATv/TiOXAjCRAnopgp0FhKk3Nc0cnKEKgjz7T5be05hQUQEGW2hREXnOUPOpeQSSkFErFBSppRSynLMwQWsWErBUgVSSBF8WLbNp8g5jzFprXOKWmlBSbBQy1oyhXTs2t35+nZ8p+nwTz68ShmsuwFAioTiUMpQ4k7zQXPNSFyWT5xvSmZO6DY5QfeUdgCMIWEEQnDW2hJS0wCwB/BR70mqBwINtpHWg2Dy1z+7UDInqBiHmN26CsGEYFCDYEARvPeAhdBcMxDCmOBASC2YUqq1VgSUFeAx+yOQuqxXju85fPDOMQVYFcPDfIsVggsXqXjNTYg7wIPPSChFSgjVnBwx31dU07xyTt+9P5RqYjJasdfTi8LvNle/uvt2dl6CPbzb+c3rgVDac9YAwQqpbSUQDB4o7acbUtJJqcbhSGoPuV+mWCEHJ6A0OUpvCdShljZEFiKv4SGBZ2oGKN5wyXeFRCadMV7Qe0o0ikuh5xgL1pYLmNaTdbDcdqdfnjD/gTDe7bf9U253q4+/MD4hmQR3fUM6RTlJBZtQMmG27TYmZ95ipsxEzWQBSrQ8+IiE1UxCrPB6skFFzxpX3/v6mOh9hG8iP1j9aRxxuTClBxT+cnsr4hOIf4rpy2aaiodKms1fqngBemGgivuKg0ilFFIZFQwZoQC0pFy934xx3qUQXUGT6zxNkzU1xCGYQeBBUYD6qW0nRiuWPRf3pdxF/AUo5NxqrUsY5HAmMWDOiBmKjxQQKwDWUnKJJZIKLqJghSKjyMYWOWnSP/Dw9NR/I1IdSfh2LML99M3B7dg/pXg6R+r6p+cNoqctW5P7T8Hub18Gdnn6Tv6OBdH3nIutQBD7FjSlWiJjyfn7cS8TPHYHE8+5rNFImv5Awrd2OhLabvCnlp7qze1pX9YvHZQuPeGimZ80O1IQKdf9/VdcPxLxYH2xebX6M1UCc5Ayhnrho5nda0y3phuy/5C2f+yH/RZ/4aIwebks/3O0nFJOaRuKCHVBERDr7fZRiT1WVkOzXG0wxRnsug6rkqFFqq7Rb/Wtb+/y8xPHPdl5SOv1/Bmqy3lrWtaOwsVbzLNijN2fqz9/+fHS9He0QvFJqfeUIAkOY6SSQ6trxVqrfHzY1pVznlNFpC54qDkmIzW4xbLDyH21JbFWg0tvwZKCVFBC+NvrqR+bvNrNh2Zs0uYaqaDC5TaPh33NAJmM+7vFBpAUkVwuNzV0gjDJhS8BUjQvJ3pMUkp/QS9cLh7O2ZQTq2xbVi75lrb2MEDThM1DoprTeV3SeQaChkVOgTO0dqs5GxeS8dVE72KtaKYtBS9Zj7z3hQAV4df9XK6oVPbTGb+ylF7ExtXDNzk5uyZZf6twPK+fUp3Hx9+dT2448iSMXev+Q7eaV2QpslJdCZ7GC/LuPQgGQjnrQy5MadGPUGGbVqHk9Xb7Nb9JKbWqhYyQ0ZVYU4Sap3WhgmcXsJZpuoJoMEfedVAoVA8E01p9SSWbaGvJ0LSIDJbbZM1U69ZwvK1vvl6Visk4xliBZO3G1eiuD3aZO73Nb6IW0e4m5y1SAPAu1UbtnZ94J2pFUCVDjTnAsqEglVYwVjBIzo5jv2xvXOV2kNanUlTXHnMsMTcI3wz7gwknrXbBVAKI6X00sWtbQUmOIEQrJAImqbp1zhWh6Q4pQikJgQrWb9YEe+F0mLd0eKepsDkioRLEigQAasmJc76YTekWgOQQ9/cD59SuK0VczM2ZtaTayLGkVop+W68+Xpqu+rDkRCBp6z9TSgt0FDtCCzCLUKJnlEsulHUeCAIlCStlLJXsNxrSpNUYVkFJ5JTKeme2SShFUKRMtdwHy6KTYeNmZVq3Kc2NFkJSG05KqW1uOXyXvBLs4LaiZIeIhNdUllimFMH7SDjxYU3Z931bKzR6yJB8sCE4qAlrFYwr0XpXECjhP03xcw79um4FwnwuMQ1CaUJIKSWklKESRgvkmBJl6tdtQUQkSAmhuVbKiWYCEVOuMfhaCtYKALmWDJG1K5HmdDrv9seQn1M6+dUJ+kAptf50uX2CqpNvKnImTXQ6OOFWMEssqZZoOPE5XLP6U/fwktgnaz2r3/j5w3prOFNvp9M4WtZdappCqttFC/ZVdLHS2PQMiRO6iCat5pRg1T1zNjLeEtJZB9tmAYAQ2uhdLgaJI8xUaikPuZqMRjSBt5ZRVWKLSIFYxrMQmosdQGZqZjxn9yTJ72IJRF0ybGP9A4euqoU/pDrozcnpS+9//l0NQ40Nww4rKckBzjF8ofTi079yeXLuRGrQAmudjf9l9+TMlmvWhHRQKaG1UJuIkR1nZW3y2FLXiB9VdcyhqkHmEn0qsHVdY9ZGsQ99t39+ftPk94F+jgWjfYr2SfKdkIxTGTfNgSfIkZRaMcdUIAL7tcgvmkb1gwKaGSN9PzImSilEBEBWfK/gEQIjJTARCPWF3aAeOP4HJBnoXPBC2h/G/jtSPSZTkk0lRIKVMeQMKCk5hhRiKYVSGlNCynXbAmXl3qzdLR7iyixpZNMfx9033fDNL+S71fNvBfxj7787+uv6s090YP/o8c8Jf3wczb0oJO8a8tuD+p1iXwPUdV1rKa9fnknl87wSwqy1641dr1ekJ5//NNu/Or9YHxIEm/9h4adraK/Lf21IU3rq+d2lbiF8qrl4o2vdr8ElYUtbp2hX0yJ7qILEwin5DvGrENtQCoUPSBt1PIVSfc4b/hcT/DwX3dvgMGXb9LFvHxAxxhPFkTBLxEk0X5Bda8YcRqxtJVU0c85x7L4uiZv5l26wbcfXCZfzuab8dP9kjU+57naHEBKlVDCXBLWvt0RPTTswwzb+46AOEONyvvrVKKXStroYCiNmW8DUQ3fvFr8sq2wUSEzMBbTNsLcx2eAPj/cux/Pzl3YcElQ5qLcvW6ul91NMohvG4E5uy7rZbW/T3cMjoMgJSaVmcZy3QohtnpumYVQh8hACIeR6PY/tfT82Ll/unmqpz1IEiKnt7sxpaXiDWtaGqWNvl2uYVukyvt58ThuBodsFZ8TXx81uzcVLIYFjdJaVEpNnBLO1FaBpMaUpkpWowJtIpQNhDNzYcKCXvbIPtAWrTng2ugivf3YFnopkv32A61YWP/yffkNPsz4eIEN6nvH3HzhvxW7Pl8QLWxGZaIMNiJwSSYROLtrJKqoBQEqZc4zRC6UIIcs0c8qY4pQxyIUKThiTQkAlKJhuQbA7pFjyVEJXEmS4Uuwa3hHicvnCuY52yPg27C8QOpobSh9N8cGve/G7aHfny6Tlwfh59/5Ug9puAxv+Ve1Okr439jMq41cgGjK5rSbrfSPaJVTqgo3Rp2g5K87PXFQiKUS3LYbCEePT26uTOjfjEsvJB5uhEsmRsFKRcRVjrhVqRYqs5vzrcZZT4pxzznMKKekUFKlD8rqmrqSG4L6mPpxLiJJ0D6gOYQKyCc3vLOhCUDcSaw4hpJKGw96uWw1li1MslnHCWkVILRhDcHZadNc456y1AEApZYzVWoP3Eva6Oxg/NYfK+AZ+TR6TbwoSEzwSEkqOJQkpXY5AKNZKCiGF5IqplFwRgKSQKzjr5tv01rbtttq22SEowTukJpoDqYP3tqa2lEJ5KOGeMAoAXArOudIiOEMqcEa6A2k7CUkyuA+myVEs622zr4AW0FMaCU0pOAJUSm22kElSKfG9Ylh2fVsaRn1QDXfex1qJ5JVihJRpBcFE3+aI1kZSoaSKlSk1InIiOADUWivBXAoAQEFCSCEYrNOq964Mu4daMed6Pd+Gbj9tnwlX28wU3yFuolnn5VLrWPEzknOjSk2OY85houQK9VPyRwJPyR7sKrEyKjY5fLr/5sWH1NOu0L6JB8+6vC5V36j+KZZTM3IfKiFjLb3zWbaEykn0JpWNMbbZW7/LyN+EDgAl55pLQihYCwBxNuVctNYZbjmXedpiXHK22wJuo9ZagrqEffC5sJ9QfOZ0qPHOhSIUjyUbO3Eu3cIRUe9e2vt/SflZNp7LJDlNvmYntokIPBzE/y3NT5o8CNoFU+Oin8b/iwz/frrRplPtEJG64CgpdzWL8U7ERED/yMgO3L8t9EuAH7A+ULo3a1dxS+XWdw0lJBreNk++/gJIfTqZ+AOVi+BtsjoFynmuiWYOmdZSADNUSAUzAPGWlJIyLiEtLpQUZIng3SQVFdq69JFyV4Jya1/DkCKJ+VqqExJjWmtN8+p8rAWB8IrVx5JiSRlqqsFjThBDrZWGXCgK5DWVSghWBshEqS1jvVB72Uif6WJ+f/+wIxA/nx6PePy2f1mrap52fWjYq5tfC0mbqaq0sMWn94Pan8f98/Fp7pGPRKbZZV8J46tPWcpXY0K0y6Uq1m7zdTlbgjIWS7k01//PKD+i/XHHXFo+5+1vAz2PhIiWFDIzuRZYlmV5u5xtvU3l0zbNxtBA1WS5EIeU1lY3Srwz8Z9Vt1YaEnmxodT0H+d5aA87RtqUElROq5QyK1kAs2oSFUuttZLUtEoPodtfXT5t/s2DquV13/9Co5s32r0f5/VF1xmKfLj/2rhKacdoO09esr4WkQtLntTQ3X89AH2GVGojCHtLk2nbXg+dlpoxnhkhSnDKIHKgGnINwfNOu7BxKVCwRFB4YMfdcrmRXHHXEhOa+/tgNoqya1pCKyDtdqN1c6fb7bq5UPrj4zwtlBAzr84F1bZuWmTTcqoapq7zIo/389tF9To3U7g4X1xqk1hkMTl223ZbzWzYuN82h1wQxpyxkgAJHjRtfB2GXWFIKa0xbG9XyVqggjKWo2M1VgicgiCUNy0mjD5JqWtFUondfC2UqTYLIOmHMExpYeLCK8ckpb/1faPF4UOM3M2XYVQFJDYtYyk7MbQPJXGgbDm/FhbHpvI7QMQUcsO1Nx4qsT4CEFpIAap1SynXWkMJzi6UAdYCDCBFM2+MCe8SyegWI5o2bD5UV9eYIueckghAJKMFqkNQKRVA75wTXAtO58uJUoKKHd63jNnkPEVy/37IyTDl3KYod6JztXy3rSNV3JxaoDSGrd2P1nokjg9CqSGUSgjhjICgJJdoHXYSas4hCCqm26mCYbxCRkgKMjfTwoRD/uxc4OQeMErJY6jAXoDVUokPZdsmJJmiMLOr2Q87IDS6+Ca0K8Qhi1SYrtclERtP45MyS7JLIrBKGUJE0WrCmHOu1jzudoDlcj61nFNZGAcldJzMshnCSNMqihXghiS0bV+zwtpJMU7zRfSEUQ2ynqZPoGSJXVh5TJY1VwB0LqihL6XEGJuudTYwIaSMlDSbn3gTrCMp14A3wtrDnQKyjSO3/sJVWbZXF2/OX1MshPGcdm4dBW83e9OKbu6ndgQbz0iCsTelVHKVsw6zMrOLIb+9vXJBCAVK6dAdpRgqiUozpRQFGmNOqfwq74Xqy3zP6GHdfgIGi3VQz4lcfkVWhBDEShjlSqJgyGmKUEoBQlJKOVegvNSacsjO1pq5ZIwJigwKInBCJWcsby2vj9tkUkpuZkP3lSDCrEho4noWylOik29qQSZNiq9Qtr5tONEcd6T0tA6M9JXcvFs5V0qxAhMTnvM+uPt+71O0GbMiEXgVBEOQLf0PKYyU7Daba8GcgfG2bR6c0ZTSlLGC6pq9EKpWsCaUzDHrmjhBhUXVqIKhNWpaW0ok50wIT4lpZUfLWDKvuMYYK7kAsY34blt2yMCXqxDytX7KYtNyehp8E0sLdz41v9yMZHcCh+wYVMY4EapWuoV6C/nPLvyUwc7LFnO5zV8Ye31+/n+rNmhdoUbIpfjU8BaCCqvairZwtMJu7Gr8PyzmH4NQob9OdtPN6DfmtotunnO+bdtS9SeXfynkteAl57BOzrtMmWPyNSckSpBOMMoFsl/lpByoYOJXOCRVw6jOiXDOdSNolhSaEBB4KXyqfAGCpPQAlPFJNH+HEhXrgxmz+Tdb+EiKm6O5QfGAKcXojS8WYMNaK8+QEbAAKzwAgTkQFAHfaF+g504wS6RlbWiPeXzXNX9s2m9uZ/i6/Z16Ew/83c9v5rU7buHz2/XZzlu0UXd73bWtwl5z03Lf8S/zLZa6vM1tZfm0lNc5R09BJHMwEzfmtdRFsHFZsin5+vrfv719c0sft2y32BqgnjKX+rfbVSh7HGkvdceOLR8Pu+7QX4GdDZ4dWUs9Rf+fOf/o49xxjnF2l0Pe3iGoflcD/RFq78sz1Z+VzHFNJbpGHCF8U/N907XJ32V3Z+YGSSr8U4EsZKfDEqO+JWqLbiuV69lPKesj75Krl0IW3kSiEhPOhbccL5Zt1L+Ku0pEQ8Nmc5D0j8GQaVro2KNSbtogZOMsAGE2FqiQgo3m6cODnW9QsETail2y0S5b0/YlxBLirutb0YALt+vW9TKlkgON1cXiBW+hWB+D1ApoFZpGv+XkH949BLfFxTHdYKrusoFQEBKE1B/2AdeKZdw9QGwpuS9B8KZb4yqHERLYLRAHIpOGMUJLrKY8dfSySdluPqBP89tFAAMpwcWQfAymhA2r926FnGoB2Cp45KSxk2dVJFNzoFru4nWB3/zeuYa+TvKBJ0CXPd9PsHYbn8r0Wvl9t/umXD+63k0fzeR/jmp+JHnDdej6JGQtqkado+cIBGvJMSZPGCrBsndQSUhFKUUIOLcJBpzWWiMhCBW0VJQJygVSRQlvxz1JANLVNZbYcEmq8Vti3l2YSPPFLzcuNAFxNYs4f2JC2nU79/cyU3qdplyeuZ4rhJQXv30r+YcQuY+c67sQ5eXz512baWkYWIaSgm6aBBTA94QwQpigKkhRFiuB5EEn60kmJaRG1wqXWqyWB1Z36zUOfc/pGIzA0mMaSN4zcgy2IfUgWl6pFLJjkhBWSiTexrbhSmu7ASKZl0sj75zNyFh0AlXpOlbNpZHVhIl3JGXLS+BapVQopUIIKeW2bVpISLFCTCG3vK9Fct4KpRlj1m7TBRAEkpDhGsu5VOcMQjmmMkGOBVU0AnGMIUtdeLORQiSTkIDWAjlhKQww+wDEMZ4r8UBDxpBYEC0jEv2S/VaU7M9vt6bVuUahYThoLnrRT6q76s6e5z8/3b9//Zlm30n5GIIMCVMqORkmHeAlleeQCDLa7WQzosvXxU4hA0DvXSYovSvWFE60oIwT7DvR8jvSepkFJQcgN56jbD5w5kVlLCOmklOqtSAh/wd1yFFKDrQQSKWkmgJlNWVfUvyVDVRSERFLBSAZEHOU+jyvf6mQt/XWHyegn5xfKTelZIF9TRjCJZazbkQpKgQVgkhJxMhCBEI6H0RMmqDSqqdQzTZTVign02YK8GruSflmOc1ZG1nLzV61KM4RwZ+iZyFG0VbkXmqB0KTUcXZkVKeUaqXzLZXY5ygEb5QIklnJLLIViCU0UhZSnZyZg/WYxu1Mcthy/WTNKVsNlUcvGWNcXwp5xapqvGNsR6Bj9Ztkj24L3q21Vi1U3w5SsOhD9CVHBXmX/UGS7+xymG/x2+9+F6pd6/TuN0fWkOvbZdCHthNfvrxeTqYRQ9MwLButpWE7kq/MdWx9EPWqm/9Jsn8RqZJVN6O6TovmB1kHMzmGfc6P2/qtXwWmrkTI5bLaPxdyIsize4qxoOREsVoRKyAWgEqRAfG1QI6ckqaUEqMTQkjWpvgl+wrpPufHwqQeoJIr0JmULHgF+wcsnIoVKuHK1nJPzO3VrudSHGLJOQefayQQaUVgQBJWSCAITbmGyRDCRHrU5JGVwW2glLp73Ll61cd0fBd7ik9cDm14rZ/eqClNapqXZeZIaze4RrFtPXbqvzkM30qRRhRl8cUGM2+X6VYoe56nawrGTqrb5qsNNnjyv832nzhrnl9+IfCyuP+n6v53O7/VeMvpL2G76fBvfSE+dpp/2Lf3rMRRknCry5fhQP6IqZ22GWDwtyNzTzzuo8Ns8OUX27RvFc6MgNlyx/+9lG3OLcbfSLKrxWMQFEPCnzKazRRroOtlSUKS75ZpTP4rgneR67wc6cJVESawH59xbP99nmcABaBC5GbLy9VC0WN7p+Uu1E4sD2yf304XcPczfCLkZEze7Q9Z8qpkSbkYVys2/WBP12ZsbvMbCiBaUCRm9awI8MJfZr3fw8uVc948POTXKVDw59swPgI6xpvb1SpdAYseHq+35xh99+7BmGVZJkJgP7bJzMYundTLtmLB9bo0fffzDz8ed3c+x7Ls88CiT3TNtj47b+prB/pheHdv1rUVDbGFBmClWLtklm2Os90Clj5Q/OUMjVT3x7R6QOScN4pzVqUiMblSSsgJ4lTDDdLNbK+0w76ttS4xXcVjn+yzuLzJ331ngefvPze//6bt7mI2pLT9/r33U/Cr7I4Qye4gebMT0EDlfLXzmCUNn+oXpUKMgWKJwezHNpdfW4WBcXAu1FpBiNvtRgiK/W6eb0TSxWzRWaqbdV0r0uojITTlyohFGNKy+TgD7DAhNlbytjiKxDEq3Ca2bWOMYW13ux3ng435dGKKfReDqTV729SkEvlBdQvlohJ+cz+I1noLiu6hBpb2zqytyhL3JdRtfuHkmAPUDB7AT0YTBY3OGaXU1jpSRpKfSlLGvqpuafuotaBY3Fp1EzL9idCY8pbqheLIGna+rVL3476bbm/zvDIiAXOtgfEmpMAkTQn6boQarQ10aCQ8wtxBrruHh9vWCPKO+ZprqQi78YCIyzrlkh6/ej+dL23fx5BjALOEnEjKWAEYoVKHXJw1oVH3OSrBu6d3d3Z+LhkAmv3+w7xeZbNVeu77vqYDJhhUYy5XyIVV9KtRlC/na4yRiKvSNKRKW4M8tcNjZqtZhKL3OTQlaWdQyd65oNvmtpwJ9L6sSG0rvyUo7t6vuntLMHEdGc9tJ4wxjIjsGYOuHWJIE+cqR8VwPw7HXKxPJ846JYfgiN0KZxqROr+W6opbPIlx+Si7xi6DLqyoDMu75DykgkgwlWhc8rbWqpQK0QmOAAlJASgVslKikswYAygx55wz+T90ajWmnKLPrsPUKyEeHg81tfMtOb9WQgGTcWch4XK5Kd4CgHVT370XoqskV2Ezm+XoC7tFMlNk1+kjV7YfVApK0Ke2OSzmTElx1T8OMgnJt6d2/K9IJFSmZgg23Srkob8TvEVSXb4ytdYaXb5wPdv40vVaSqkbMm0/pMCDx+DRrxA2TI5Hy+ZzZPBecDIMOedMYeybXsrcj6xtW+tuMTlripYHzjllsK1+5G+akoLKMlJanhFZYQcycr4RbsYDNH0o5GrS52a0oluBxtlub5PV/dOX02ZtJpxylv16KEnuBi1YiVuGLPqeI/1syqMtgxVLoCLV/9bhvREv1zxJ+VuhKFcvSnhFBso91V8CeeEUval26mT5HUnfFdfGGJEtwaeKJUIJISSfUowph5pLKjNWUnNTEvfR5Wq4YFBldpDLjTQvmb4kKJw/WqP9KqJFtP+YY6m5ZN8WvFHlRZPIxXadUHnazJXElfG8knCOrqqbryu2CYO92tnqWDz3hfJUSYolWNPvtNhJkEgqGUmj/I6Wr7J6Z/k4Ht/7uftG/z/4TIVw6q7dgLCQ3qF/OvY4vp/8QwwhueBXv8yRkvGvf/4FTdwTNB4mfwb118+Xv0f2fz2O/x0zpxLf9vX3RX1rSRSSmvDYNb83848X8k+4LQbOf53+hezQlXLaLLL69R3/cX127HtWW8VVad4unq95oLoYwvRuvEymsqL2c2EnJSonPx0VYemTglVi72J6vZkKD7rL82KFZsjQpxfvPUlCqYuWmXoq9FW2SEVmwj080syfjaNKs1gNkwXQ93s63b4AU4m2YltfG4szkaFMuZfuj4y3eGCUpduPpVle1SP78tF81XZfLj9Hk4QMQmIkBAgRCsL23Bzoyla3NbxvT/GFdjpaR3e82CurmGzhTbtNn4a24XhHC4P5VqduOBzr6608r13kfHcwJQFGFleZjV5nezurQWIKh2Mf80SWS4NCrBRSNNliUIiyaDd21foTbVIiRkSb93xxs+hYVdXNt3s+COKz9K5PQr9njqyffgYS28+1KGWgzaKVYEiJpZxrYUFSmHJz+JBlE19vkIGvnQyJri1XY6ChWTLwSvx1uVzFXeUCinMpLBtxbs3KNZXQ8hKQNoGwgkpvzJhwpw919U3VUwUgCh2wSskWeMWFpPZqVo5AuaIt//DBLOY47MJTp0/cBm0q7fSBI/cS6dCW51ejUO6ZdzPTBLiZTp8YpVHGEq5ufmvEAvHEMuNEZXQ2FhRWzkjfToSGW7qj8iuKxPlWS5i+fMlosCv7mXgnaOBbKGIY67YBUUHunQWwrFKVmFc5uNV3A9cD1kDS5GNYYsgRW54N4dvYKAHNeb1r9L9xaG1oRWmxHjO7g57EdO7aCvtrOG8tRcr0dmMltYtZuMYYyYIvlIed/LC+ZtYi6eWyrpA+7p+YyZ9yfoU7ZsO0o7m2aFZAEk1ebb2FFBkMhPoi3rrffpivFrYFBsPl6qkTl3QqVVjgmcu2p0BrQ2iOkcWQLOxkRSg1C1vkKn3ZR3KgRM/Lycu0XF8RHZF5MzfRK8+AZyLv3pnUQ9a4VWW6OtP1bYLSMVK8/6mEF6WTHr0rpiRlbre+ylKbNtwlz7N37uUza5AB1jl1QjrDfABSBMYuREO4TpNuxq/mxfpt3j31l9cvdXWy6ZQOl/jc7YtSJqmtEF+dy0gckww0qFYQS/GtyiCRrnlmOw7IXY2YO7pvIEhK6fTpSggSPcQtpFisuZGaAFk1HGTrTQZbFFWIaNJGJUS31Hy3Vo+NzgFymE01VO8JrYcWLx/XYdgBo2rcuVLNLY7cA/pKU6oEWc91c52fQ1z37ZHW0tCvCGs85Ap3zlRMBuaKQ0K6orzr4+jxp6H9vrBVylHUJCB0HbFuWo3t+gdjqlJ7xkec2LrQO3l3+/K8uPOu76hqCkXZMirBhsgY2+2lD8th98GV58WefOJcdpXZbbOK3tnZnf25b2tTfQ2b3nfnYgJDyMS65HPNBDLeHp+SFtO6vhIePp32sYqa8nZ5/fqBtZrdTImc+PpwW2DYQ/QnGsaO7b196Vut+fl4b7fop4CxW7HN3rcx0lHNTf8XzbCh94yeG7YRE/c8ueVSw+H8NtwslzuVMZKsmdvlfKvtJ8/DlG6qmyl4JRgQvntXtE/x50kzlZGElSloXZ4E18g9FUvMt67pCUqKJKSb7LWkT8WMOj926Te3T0v25/2eEXFsnr7c8t8KV82uI4SSwNx5I0IYs9axuVvWjz6dgoXlFmM5T+dbSsVuRkjJANbprAVyjFBySVEoIYQAgFRqO/Ryt6cNkQ3uDi0lpZH06e543I+H3U66ad/+zuffd4d/MwzDXtUcX+lhYXK8XWsIbXT+fP2bbm+37bN18RGab7/73U+/PD/w3bvuUBr999PrqAYL1/Ty10O4+/LZJXl9eQ5j/R+aFQuxtaicDlIdVO9Z91rELeREUkOLOIwy5xepzX4v2kZA4ilXQrFpEi/7uCikp2V7zfEh0iESEShs9e+pur7pbfmfSzoPqs3xEszWd0ekrmKt2HMtbPjkbKKk3ezbuGsEfZwvXOt2m18EoSUyVoc0sbE9Jj9TMsW1fxju8lKZHpGekU2ZoiJlWWGfKr772nx/eX//GMYd/vmk3z3mmzZLevd4MLdz3biEx2potbayS76ZTnwVHfIGc14ppVT0pWRwrpRUIaVgCKSPH38exzbUiJqnElXbzJ8+15hoQU2k44Lteoeme99UsTUdcs69iZu1McbsAskItVJCrFuGfSfqUaZ9vgkcv3I/Bi6+KvaY34aOQtqttdubbDR5iOc/l1uI9WAjRuYLNo0UJKWwUKxJkW5xW962WgJSEqeVDk1tFKlAyhaUX2FOyxusNzpyIJGFMK0TpUiHBmruWl1Lguh98uOxdXEVCgkByUXOKHiHoCutdlqEFiY7RplzAaQQTEQICtJye2OSrG8nqBEUN8uN4UnrmeCZazOvP6sjz/UWuWXAIBXvPUUCAEopv1o+Hq7n0IivaH3grON6utn/rHsPpfOuEG4QafCk67NQZbo5ICvXncCnYfiO1ogyNaLhimh9Xddb4rlGF6tXDQ/b3A6t5mxzGcGEzS+msBYgJYk9a7CUlKuxPgarYo6Z/kT4rZSRsPP4jr2df9j1MlsPIAo2eRUlPpTUQtxifdm/w64HKfromuT2DPfBeiIyYqiZ2JUTeF8yFVwz0QUPSjTF5+QzlxrSgaGsaW+XppbE8fD2SVJkNEjaHdKSZNd3QiUSHjqFOi2zh8pqRUppSkkwmWNJoeQw5sSaFnlzBX5KcSqOkPIg+Y6Sbrul/v4fCLRQ9HyLbf/ObK+CVUGUnYFAa4zzZWHCFcpE08cKpVakRGrholWNTBUAv1RtpCKVvvC2zfNX89xpNeRcKMWYbNPRkKYKTnWklmS2pVGSE3TrIgT/Pypj4aGEO0gHAqOWOwCklJQaCXmh1Oeso7vP4Z7iUNFQcUrkJDQQFDmhkIQJgCxoftQNQnWUUqX0ONwFlyEzgnxb537sY/TLMseSEahUmgMJ4VYz9t0uhmUzU6P2MSAj2HV3hOkYYDPQNfdmrTUrJfdU8OiZ2RbJzXS+kPh+7L61+VQLS2VZroqWD1SuCResd01/pxqWCl/XTfaxaRFrZ7YI5OpNLZm1srPWKiWsWxASozU5Dk2L3qGkzbBnka/ZMRKK1+tcoydS6JQ95aEfcVp/YnXgtNnWpeu1c8anaMNGZdqpcn6LU+7J/u5tXWukTXXV/hdJ/kPFjTKV1388vzRU+Yf3LRA1HgMiz2kv2DdfvtDkG4iS5aOAm72deblnKI9PMWEN4W5L6zzHaNq+5QQWcF0yUOCEJH394R+y681COWtSpFAFwZ3fHkhloXyW/WfZ2OXG7fRI2R74ysnDOsdMf3p5PqVIinhJgZ5fs1ur2yIjmMqGvABmIBRBplx/NQOWArVWKXRFoISVLKmedD8H/MXVf6btmx5jIn9j+v9XkiP+oXpp5glSEswPhwsxLua6/vjzv6ZIvCmURkp9dDnH6owziwEfq/fVOBpDXteSQ4oOoOQccykhJ2QcSqUNVQN7uOtbxgfV3I9DI3gttAhVZtPZKAVRH77x/VdKH+U2u3pZwmkx53m+aSaWmznsHzeXhvFA13pk4+7+qTCxvU2iCrE/fvIfDW+mmiRue++DPP2o//lWvnx6/fNffvhfVBdjXd5/+7XujtbDdfOaM81ae40YxdvnS9vSED8xfSJydc5V347DmyBtfPvv53lu7z5d4k9rUCZvqfS6OVSyUP/7Yj8Um1pVg/fOhJS3SqrZcsgO4lc5quArhX2KNMO5kBekpmGPkFT0m1SJ8UIIrPPi1qK7BezL62lG9R5yHccxFpHWtc5rGGdiiubEsIu93B4/HHJZr2e/6+7DmsBDcUmjLGupS001UaXm6dRrBFeuL6VpDr68lhqAMYqk7VRwm7X28fG+YsCa/bbpvkNCKFBFZfZ5uk6o3s9Btof367rJ3dE5gNy+ffGlJslF9ZnE6merlOzGZrU3Wly4fNnpesOLigtXtRZPrV1vxfGd92F+YahMJ5wgX5BEV0Af5bpFiM5Ny3SJcuggc6UFz6W0THNx/eVLaQRKfnp+weMjNVxYVbt7GN75Z4CrDLDLpaCg6XIRBM08KcGW+cqFAJZCMi4YIdg8LVp0JWB0FTlRABWBNCpvnhBSCWlkF0GN9AhZucx7cRcMAut1GYg4TudMyx7y0MqvzY1ttgP6HkuNt6XrBsn5drlxoRouw/kC0LR3r1n863TLaf33DH6jWmLSj5TKEML1eiYElKbLfC7Vtj3L6FP5qXZLnMDmHpwNKSRzIBTkoSMlM80LrfZ6qwzitiXCVENFpaspmcbkbNryGpfdThE+pMDbBkAaJnhJQXeBgndo+rvOTFfKWGWESkVSJe33IN6stfvdH7a3RvMPNWOMK0XGJTN+1i0lpGKpWGjb9D5UBhpEE3xWvI0xp5SavhMq55wppaUuOd2kkDlEQYMorSUyTiEXFIRetgtuU5Sx0WMp2DTNr9aXdb6xSnvecH116Y3INtqW431OrIKlcjLmnOJ6vOvmlx+Fqqs5H+5aZ95I7KOBArYZnIvPFYxWvfccuUqVEc4JZ/NqpOS6obEGPWi03dkkHwqph6jQhb8dvmIpEmfTMPTjXlUwQlalcZlOwWyas+ht2zYxRmNMd9iFHGO6ARjEmEsxNt5uPiWp6DFtd1B7ygPIU6CfC7EQW+LeLbeBN6PYU8pDjsxtGOLSjrdcHEQbc0oRANW2BqiQoSZngREuhY8BGeWcFxsw1uis4nxdXyjbFO9YOUBmz68/nKe3SiLQWmrq+x4w55xOrxefLGDJTnX0G4FCNwagzpc9U1NMVjZbrB9zNe0IFn7u9tLcHjk5Iq0VTAihpCa7DmO/rUFQJUTT6Y4RKiiJ0RNWmf5J3MWacgBESUkqq29F/n2GCakB4rmgtdaSqRRDCjy6QkHnRAiBBAa5RZaRkuelyz0l2glP2i31+c36V7L/Zl1NrqFCKOSVN68EWzN9WKdOEDpfSyhYRfR1AXUa7y5tY0ueNOtzWHI204XItlT1YvwhVybZo700YFWnaoHXYUeMW7zxLH1d8UuuS9uMvHHWqJxbLhJHWXObEyvoK5uQbhlcxtX5tdSt7dm66Lh95x2OxxuAwZqlGIrXNWsElovNZK4VKeWpAhCGlAFjNkafo01vos2lsm3Lokmq0WF9Kv4P6frfRUN0/6a7iZBAKoPYgf1AunYnhJjnmVFZMsYY3WbM4iglzhgG6FdnZ8syj1MqG0CKHAnkUlJWWmvdUi5CKrzV7a7hmjLCNG0kZZyKEtlX4o8a+f13A79vrHf+NpFMJ0fNKjefUt0YB2/Su7t3y/aFDSc9tp9+/qVvepDSldBK8XDYByjDav9BXC+X739K9e3y6Wk5iU9v1Yrb9tYdmpg9l2J3uL9MG1djRQH0zbgLoQkAxv797eI2G6Y5rCsq9k41b959jv6V6Z+lPK63xzx/TcmlhqIlaxuYz3Icd1RMsh1ColLKoW9yLLSmXc+qtzGZxw/tvL5kwJJpSgkLDvoRSTPfYsEsewqtPJ/PpaSaaKt+e/0hNnqo2rS9Z63lbYlT9bOW7x7zzznK+8VlMWn88C04SVSGSv1KFWtjvlGxkRLjAsf7YzRmN/SA2d+M5keoHEVgSNbT1PT7YFZnNkE1I7KU1BBulllwvixLrZUxkStw3dQ6CxFkh0KiW9+akc3bp+GIw254e36hBbRukw/e+5wj1Oy3Nx9vVRiCk+NX0bl5+kFry4VmYlffriKU0lZs9pu9pjhLStZtvTs2y8vr9HK5f7xzm0uY4+XW7QaXovny1kjFx6FMhjAq0CUdIncdLdUs2NMqsj+dHp6+KrHmWKBgo9qaC6GcCumcY4wBYCngrWNCeO+dc8BoL2WqqXASna8VC2OYwJMV/I2QjUoP4Wbt2TMji0vFgCz80GzLiRAX4zQMPPgL5ho3r7o2xxScyzkPqpvO18MTAdRmHVcTQ/2Jty/WRAy/Px7H+UqOxyOQbZkyIWTbPimmCdEk3xc8kJJQ+uojssrYM6U0IskuybazLohKgfHsElMsTSGnRBUphJME2dumGxoxXqZVSLT+0u323stsgTcmeIqsk82eFQYuoEDCA6mG5A+CPjCu1+VVNbGSZTNvQiJh15hffZ4oJSVVa2akK2/W8mtSyRCAQCkJM5SCDUNhouGCI7JzCAkAxx1gTqwiU1K2nZ/XqrgkLMWIkgYXY4xc8nWdUrbGLlBjTVH3Akkx04SIwYVx2KeUGCOEIKE1l6AbYd1CaKKs+LAJHku262S0vEuR67YlNIZ0ijES1IKrkkKyiRLCaYFYbLqUmCKWUsp+/4HpNvpFNPp8PpdS5uU2TTfnHFLqXNRqEIxuy9ooXWJKwXdDvy0zMErpwqVDanQLSCKhBbFwQWoOJUYmGs7bkLBWBCg5WaEUVF2djAmROq4sJc5aWwCBSYKiVlpiLgjAgPEqGA/LwhUHRitBzuVyXTgwxYd+FIReKBY7k+vFcAEPxzsmU9OnVM8VnHFnJny/R9kgIsp2TeXv18vfOCKWPK2fVRvC+nQ4KERMvk21GNM04t/YPIXyiXWfmJqDb3O8L9Wz5jOqH0opKaUcU85522yMFQuNHkj5RtCBNiXlLQYCbIDsIvkM1batoJixZAS6bTaGrFQT/FJSbJt+XhfGa9PyrutigBE/kzKLkW3N26t5hnI/8n8U6WF4/CwkI8hV65SmJfe5cN4bLFrQLsGsdxWYTqEvbrCXIadB9ylEU30zT28lbI3sJPMJQ+J/bva3CslvgZXv3PYPstlv9vtm/NiKr263m1mY2+7Y7p/6hzPRP3YD1qy8JVIBk8GHTPI7xu6S2xH3R+vf2PDJlk+8ectGQtiTqqD4SqZaz0JVqIKzu5wzEMaZJIQSxlOFmErMVZL/art1PkI/PAZ7D+mrnNnmr7KzoVwpRe9iyouHn4q4pQpEdbDOYr/7bSozlzGYZrkyxoIPW62VMZZDckvKFrPl1Um7rJhKNs5bC8gI44wJSplux25oUwqUSCG0ZOLQH++G93f73z0MX0u4Q3i6+LV/OFPxWYrOm09SLoWfCz+nNEeHtzfplvc/fP931wvXq1E1aVvryAxNOyJtd/9Jvp/1ro94DPerkNcn/rOPP3x89X6Y55HRh2W78tZ8Pv8dBcvUE55AzqLdml4YRxE+RPs7hgLZc7DahxnQm1lTeTG2DO3zIJNCoQgY9yNrXqhMpTQmpZCHzfmQ16E9BLuu04+SoOqyMyjY2A11Wn/JkT/cf0A2vb7+1flNNz1lQ1jkvOZhx4V26/afXHwej613kcQP24nQQpLj/B3lt9dlsKg9mDMca8qXyuZuL6/LW79vMwZfPIiU0YW4qdZfr5Pkj35OIU25XqhgYWMEkBFVtpx97toWC9/WwJhwp6uqzBsrhEDEWHIhqHbj7ZeTcDJfOGz782fiF7GYur97tHazdtOHAYJf7UoI8dZrFH5VRN476PFM8v2jPZscKhGy41suX7K1w91Niw/bRG7rO70bwawYKG09yVlQJkZ0KHxdZKi3uMXN9gHlOOYUtAmVIhByPV+yDyXl6/V69/SYUmGEc97aNZRMtG5zrgicAHdroKRholV68Nb1fZv9louhLEVnf7UfWOOllDFkisysm2ge0oysDnr39eXHa6ffSXFvLySydrz7AJlwpu1iJABgVVhzzg2XProSk5Qy1QQuCsqWq1qual3NcEiMY/a7UuDw/nR+W/puJ2ULGRBRMnk4HCgy72OKZdu2CrlCNnb9VVzW6s4YQyknhHsfOVEk07DF/t3eWyIEPxzb4Kgx7nz+EZEFwxJxFT0texfV3WMXwszFkxSN4M2yWMkbADZPKxMqpSRGO80/lrJSSq3JWt016l1NvSQshEAFYYJywrIrjHBgIASjWANmKbkzG2EVqgvE5Q0otJQ0JXNOu+JRsdFu5Ta/9IriwON5Jlr3oIlsEMTzl585J6Co0Hyz6/39XkjqzCI7nUqhFL01UkqolRCSUsHaCrbblsrV/eXkOY4lSDMXkisjNFi3bYtSglJi7Cw4i942XJMYg1l37b66bJZZiZanf2S0Ebw3m139nxM5D/29j9eHux2U0Cq9u3sgXKZElT4i6ShnqcRaSwhBCKWUmtcVKS2xqUGZNTOuueSHY5vhZvwX1fqQN8ys5gFCR1ATmny56C6Xco35BhhroRQ7QvY5aCgSaIMgpFAhR8pKzYayJBn33peYKCEhhJQS55wxVvJyPb/VKKPtGdX3TzHk1+22KzmHuHq7Hnf7EBJltUImlFOkxe4V+yaE0DQNg8di90M7EpTBp12/884lnxgVxsVcqZZ3NcmYGEDX6SeKI2MDgnx4PAKWbmhdCEKIWsjx7j0j7ZZvdam8+w2kLueF7n0DyVoKeShBpcAReC7e+WvBifBZ0KbAwpuLca+lNAweaxEhXBtykOU+272dOsH2wIKlP230/8vJ43RNpUYlR7tqH0+8/eJdirZ0Pc/1ynVEwqNn1tqCt8ikKx1QzRrXd+z6WjR2Up1SBiE/XM8d58cqjMUfeDPbbNe5OovH4/Fwz6h6zfiqNDcLS9s3AAchBGW1FlprRX5h3d//8v3fdb+68hch6F//co4FSym0PFKxCUlzYqQeomuxKutuIb3EmGvOnPNcCxCMMVLBpVau/Ek3A+QegCAi8utk/qrEuPjrMmmSf8vI09D/BuJvvN+/3D6TeXVbcPO6ADJCRa2VUgqVpZQIhW3bgoul1OBSdPHyNsU1Rhv85sGXYnwxHmKmwBAJFSyT3Ixj1+/boW+aplc9u9PHPuPt9fJ5Ef3X/PjAJG0A/JmKch+8nJY3X3/++8//Y4rLfClv61VydXm7rjE2u+Ew9JyQL+dzNLn+sB+utTbPn7lJptybt5d//V/frq5S/HL6WTVyN3wQ9OHu8CEEF4vm4l30qhaxLlFwEM0q9No0YOOnLX6m9f9M639rwg0xN91co4cwKP2c62qu7x72/36dhDGpHQdCmqbrxn0HwASX+8MQba6pz4n0/bjMXsmm1Ntifqm4us2N3aAaDOl6ubwddnul1DqFLz/q48N/NPOl4fPqXgis2/QZsTa7+/DGsRkZ3/XkKaMqluYottXdP3QlvEK1nPepdIszQptsuGTFuxNSSJnEkCFGMzuoSanOTJuWIvlQE2o1OueyiZILZwMhrO3GbV6klNM6jY0ndSJpMuvp3eNwm788PDXI1+t0+/a330BysznJnhPBG7lbTqYCimb0vjLH9HD39nJ9eHhItNgvszeIA/eC4XLFlywHLR9k2VzbDHF9FYzu+uG6nLtxRyAzQtjQw+JrRfX1k78tp48fRceBdvazOaqny817IsEQ6snw+N5eF29cKpkKfr5dCWcMSY0JKiWV+dWSSjjnPvlcYnPo7LyhlCUWRVgltO/7tJhSCh8ibZxUDuxrxrnfAVDrtleukWn09kLB17QUP4G7KhFCSoC1MhANj8EwQcH7bV7Ol89MGiR5kL+h9R4hCp7nc7WmpHJDoNM1KJmaRpmZ7g4DI1S0G8Or7oeGDaxhkmnED1SIuGyildl5WiFhhZijD/58um4GGA3ebretHfp2pwWQmJ9Vu2fksWaaqG13GhMteRjvm9v5s9/mCAWooEUWx5je+9Oo2NfBIaBHtoLYFvtFdwj+WEOndUcIkVzVxFNQJewAcy3ZQ6IUSwpCC05JZmW7hWawwGspqt1hKFfjki+rixuNbnIzk0xJaS+LqblWVIJAjSC40h0TDVWaMVawAEhKGeeU0EJJitGXAjlBhZRzIljidm0bFpPVDUOSCIzJYdfrkG5A1hAWQZWgfaeJ24x3duw0Rb6tgVKOVTn/v13Xv0m6PX54EPx9XnaEPp5+YsbMbdcwxvxkuuawLn6Z7br4gqAaba1LKUkpY4xCSECaQo4xp0hK5mYFSsfkW4o7Lp9q4TGtzv4ixUqohyoQdjXuc65INyEroIhRIql6CDkRcCnnzLREkoUkIVjGSYxRCRl9UpSTXK3ddK9vbjHTKDlS/ezj7e0ZTy9FaUakKU7RLLNFe8PTlw2KQKIrdG4zz1/eELuKu1hLqGckya8c+CfJ76Zp6XelUdL5j8N+pWXMyVHUja5E/7XqP2U2czHETEJMzseQ069+roq0FJjXrRYW3bXqS4rX4mWtjxp3hBZGyzKfc4pSCEQqRKNkF3xu9yfGiFlGgvexXF3+wWwz+PuJzFSfiP/YBrjTjzHBZAiV/zHYRvNRCoKVKL7TamCkpfCtS1vBuWvlcgtD17tkxGCbh8+xEmRjwo2y5DfNkFVyLZF0Tb9ODuVbpieKj4fhD+t2JTlLHUh+Z+xkbgesXaFfsvm673vguLlzxpmKHHwldWjEfbB49+0Lp2P2fLqBarTNH70lrx8vl1M2a5yXUyVXwmfOMydtw95ThJoLRSwpp5Tirw8pKULcNvesh5ts/NtLhHh/d3zPeJHsEYW18K82/zXUa6yGKyK1IrGA7ogNE+O6VJqrqWhv00opdzZsq53XqdQINEzbm/EXSXhYfLGpV32yIZpAEkDKyYdaHZdEj73o9bhvoXqKZK/Y3btePBUYzEF38SOA7Z6dkXDz22upeTbx799/MVu9nWcCYK3naznSIWaokm/XBX11jMmHffh3p6U9K1tr/jxz8RK+e6VJtXfn6QuRt8vt46dfJntroiMANvtil9qIY9xQs4FUT8gplZ+yN5ypjv/fE+Zr+l+63di1RxI/rPZ9yHc1/g/BHqRWCDKkHyRtivV9W0oKzuZCEvv/0/Rfy7ZtS2Idlt2b4aZdZrtjrqkqAATAAMlgUKEXPep/9QF6IsUgEBCqWMA15x6zzXLTDde90UNR+RcZrWVL3a5BTqlQlk34XMjIWQel967UKOZzM/BBEoHSsixfoNjjZmdv1l1y2zGy9Wa+DHhPcKv4XZ2R2qS0fq1DL+KbX55F34p4tuaVVZutBdE+/fKNFElJExMqlXRdT9OWMyByIbwQ0mx3x+vbqVcNoLBcz4SiFOw0ngGQsz7n2G62FZNC0LwuZpziumKEwHvODsHi82VmlKdUUOHVyfGttq0GyU7Pv/KGDndDSDGZnGZAaiZodNNr+35rvz63naSaOHdzpdPig9S9y8fz8994WelwzavBVfq0hipu0xUhxEif3Ex9Aa2s9ShmvO+sm+u89neDEMQ//dbfSeiKe/llS8PMLvhQYPlGoMRg20G7bNutStUyzTmBnHzNaV1nQhGUAoABU2AKF1Q5rbkoTH1OTdetL2+C81oF8DYGPF9WrjY5cpgBV+1nilIn8HE8A8StZB8g7ee5RQQlZ5GkAMU5W1FNxvplbdRBSt61KMM55TdUQ1zV269907Ltrj1fnpRmXa9enr/VWtdpTg4Hd0ftNvKxhm9Ii+B8RF/NckF2jRBKXCkqlWdIUXcizEH1QnS9u8VkZxCE6c1yu1R8rQQL3p7On9sdP73NpHY2WBDCTYaELBtt7XjYNcFfaY8K+tn5JyWaGncE3l1eXL/tfblaYwAgF1gXVyOGjOd5rjiGlDCgBFAKEESJUARjzDlkqHUFZIUQgGvCxtcRE9IOTYoRV+CHAS/BFxdK4hwfDxtrLSyxggKsrC02ZkRoXDqt78b5tDnCZfxr2xNvgcKDEoCQm+Y3ptDh2JVqfJge3m9jvoS4quYO112wmlRBSUJwFg1e1ilEM2yHaba54GF3XG2RpGBy9OeAEcuhD9c10VMrM6B/iY+W4LMxFmP8+O7YDZxwFlJRjfYxhpgwY4AIpVwIx5hve1pKcjFAZQRr3Ty4vFCOMEJ+SZq3NVWfrBgYxQWS9qYtSei+UnlJdSJUYowrFMwrVIdw1m0LiJZCQy6EMJQLqYAAYoypJps9UV8R2sflD1q8b3exiN+ank3XbhkXhsi276Cgvul1I0tNt3HeNAfdXdj2F9qPEXsk3eHeqeZVsoeUUvZc0wdUaiO3xfUMq5pmhiUuj5C/X6ZtSQNlmjJhDWDSYCRV01JJVSsyBMBRMVVwj9etT4LIlOyXgGdJaIG1ggMUSkkEc86aHHn0vKQDEWDTT6qNkHbLZYsrUPmVg7aXrpS++YC/lJ/mit71n+6cBfpz26Vs5e21RAPZ9cEJ2Y5Ny0q1rTympVV0x/GDN98b844hifGXHHMN92u46QMyXs6egQ08tywfBOsxddP8V4bnltFgH0A8j/MJsXPTlY7+g50zSm0FXnKXU58TRcRROhEUIKHx5Yf1enRhZO1vEb0RKgqsn34X2w3pNkrwlqAe5W4arV3mZXnhlGIoKSWMUQqRYACAnHO2R5IfSPlkbpiKCbMLAKBKgz9zglHYtPRfC9hTalI0wWxxxrN16N2H3/lyIdyUwmNiVLha8LJYznmI3qeViGL9ZdhSiOh6vi3jijDJLkXrc4hxMbXklD2iuZBccNG9RLgozlC/68UP2mx/92kPwxPazFwyd/EaM1JLyXW8kujuf/3btd/WAP9pl0QuKFUMU2wz85z+Nl4G3h3C3z0cf2R9c/N8GP6uWWt5udyCPJ2WGBpBH7abd8/Pf1vcL5jN/Yb1Gy5l9PGJ8ut8+9qwNi16w/4NKz8gNLLmSvCPxhyAriFaUjvcKjrUKM6Lx8OmPZ1+o+Xd8VAVxsm/uHVp1R5oJFwj+oBU433S6ofbiVIKukG1sFoR4SOj03o7hdX7CTQ5ksLmy0sry2H4979+e5a8SbNVXRxvzyhm0izIh9dLlITqQr8+3ShmA+mW1R0O6vzPf6trh3wffcrFdV3P6d26nIQQ0+hnU/u9vk4/C45FPVYIUrF1niryDw/H6/mMoXZ9O3s3B8/bpu2H08trL3UdF1FxIngKC5apOWAX3gRPKXoGnBBiz69S84zzdbk2Qz/fVhKY7vB8ed5wkRUnLxZTBZVeX8Zy4JxPZcSCUbMItl0QbZppu5oMrE4GjDecU8ia4Xz7es2aN0ozwheBbtPIcibbljIyrvXQfjj/42+yO8rdvawaHHqdHceVUUjZ6U4RgSlFfromZygDhHPfNTlnIpuUStNusouCcVeKlNpPtmAEMYRxoZRyTQovzs/dfghgK44Aqe2EwOdgfknhW6NcoxNWabKvIKNodUjJhXC5nLSWzrnlNt7d3XHunn+mcb0P8YzQhPIDKs3H398ymoLHFbmmz5wOnPNuU+fJMYQQH6VcEOM4cd1rKLiUh5L9ppEJBYYhR5dQKtMVIKFMK/MJEMli03FEQMhdwzHJQ7vLl/mf9/t9jj3nMmXTtj2kRkG/aXaxZDXIdfymD3jOX4p9aPj99XrBbKLyxptIKMW4BXLWXSIExUwo0VoKgFuzNQAYGMeE5VgYkYBpybgiQlA7XyRkJmS/jENJkjBM0AeCeQx5I9oJJfvbN7VpCMuAIuecUr6uTunBOlDDoQJFmCR8cn5kpF/PshHf+QXaniB2msesxA7V5vbmchQ5iuBJsHi8JsZbQCnmiTAnJZ1vS44iFc8kidkXyD4kzAVizCSo8/HucY9D9T5i8cZgXS2nlfxfBrsLTdNIKWtN83LCLKQC/WbwMVPGAGAal/3+mFLCiOdcCcEpr5g6xKaCn0v9bTQjZpgzXmOiTKQYrTeq08bOTK5KT0wEKO0yNctCUTsAyv+CkMfptCwz1BoDul0dJTzamGPxi4GYCQYbfDP0BLXXiyG0uHwxqw+mX20adkVzXMtSyzKOz5TG1Z5sPFMezbKQ8kNcf1dgKATFoN0yjKdSwQquZ/dfefMleYoLYfLVhdPQbXIep/nMyBYhRbhBxCl9jInXwhlrbtPChXB+wSxxWTl1WRuaz0TWpjvkK58cq5bFVUh+QFWvi0MIAMV5fa54Wu0TRiKFPYEtE8nHL02DCKhRtKTX2VQ6HcgyKJGAPQV4lex9zr7R/HjoRPNG+QsTIZUnqH1KdRmNVtiEPz1+gmk9Lc72/WV+wxQ2QKbtvkeknWJaI+9FNf6fKlzMYjHKrO7q/Miy6HqOxK8J/41SMl0aVv+oZJfZPxk/qY5SWUqJGNMYqF2xEkeur6D+c9eW68UEtzHrsJrr/NrHhFLKpYZSHeMF1dK2Q9/e/V+Lr3ec0loL5/xfxOShu4v1ibIbYEOoiaFUvz2fJkCzEqSmmdFLMLe4qOgSwj9jqntxvFWxdu0ngELIy66LHBZBV4rHGBefVtHSpy+rrruuLrM9mXmigaULFIdDiG5xDHWs4GwKjjtITjUEassbcf/98Z5qnOP+/nfc7vaL8HN9Xb0k0ylYtr9TTLbCnf0v83r7yO/v805/d/cafN3gr8Zdyi042m+P0N7d8ozSw7QOsG0sen4rP72Sr8lPStMW+w/Nxq9LxpcUZsj9by/ex9RtpTUBoSZTNHpIifv8mYv/hOzOLvM0/3/3re74AyX7m5naaHrKaGqGpl/XF93WZosjxym/y3jPh7tremk2u5o4hM99TbeS+oNhW5fEOr3cWvoOacx4G8jOI0NRizzv70LEN6YOhZXF/dSmknByR70YnmfcdDtfjmVtG1Ugo+n6TKRH/N7ciGjuVssjQvt3baUToQUjQolMMQqk5gWh3Gwoj9MV2pY/7tZyjpna8CLutpY8mDUzjoDTbKZc582+VQS/vr42D0ey3xgGhRPsMLHNlnwqZ+7fKHOPderiDEQfgpVQtxW2R/0ebj7Np3wICbhoenEU5Le/XOnc0G4xpamYO+R9xvSVjn/JLQT+b+uTOqHr8c6avPrxdsf3QKhPc7xIP214r9SaLKnEB5lr7iQ2xNQWtvuCUXdo8cd2XUc2+rMNmjUOKogGQIcFtXgHiOcaUF8T5YUoKg+30UOJjCfrrjkZTASZKKho0lxxgAFIEKnXxTNYAQXsXMq8o6Qx49X3hcKH+XNEkZBeR5zi6Y1OI40LXDiWW/82a1AC2uhrvR+Mu6aUeP2Cm9uKJad7U15Cd+1kY/0QKiVyuzoUq2O8UBR2Oyc4hrjmgcDzDB/2+XbdDpKmXK4L2+8vTx4MUD9Evw37rhHviP0sS+Nf0golJkrO0ccl9erVTZ3fCdnjDWEmogLoyGt0EJ7rViIRI76tc0T57vVL2NhPEYIktdIIjcBVp8AyYRANVIYs5Bkw35QOjfHz/nFYoyaEZjMrQsS12r4FjhFOkMEnqxsJGRNcGF0brv1YJLV+LGhta5ZNQreCFq362rh6uM4AC6BDh+3IYV5ff+bZVJphzXU9tYdGH9p0+YzWa84VsFXVmSP2IrWlRFaoQsSvN5iZCCFfQXjOEwVRjMS+AwPYY44hB0Kw9iUstiCi5HBF3fL69M/tvSK1UIQ9wRLIXKxXC8Br+wmMOaNEI+8E0akBbGF+hgRFNfuwuPZIF5/J65xxF7PG0M5Xt2u2bnZQmlo2TaIeAmwI0yyFUsWASON+OzcNXpayugHyLi2G5BHzADh5SwqSBRNCBcEScBtC5lJlJ6iS0BCPet5R6427PjRiM69YtTaFE42lYXHbZfCuVhM4zViHzIVuEq4IIV3EEHCzk5hdCTztWEmnZeCtWR1Tm0yzzWvX/V2NDxnNtRoG++IY79iXOezf7zP+zA9+CddhP4yzRznKxo7mtNk9Xpep7R9qGmpOq3csNqZYjR0yIaB5ewymXaHWWF9EX2Z/rfjGGCP0vUnt6kiMjMhTJH/DRHab9+flXKm8qxmXGel1jL/2uvRMjTOK6uBDCqGZlhcCBKeNUk1wbFkGQVyyW7VDcisx/cPp1Q5SojnhdCc2ndianExausUmIAGt7Y29s+jfOXiMQJ/fTEY5C7uGNsy709deioHxjfEZK3FLf435/a45ckxKflVqrRbv9fuYrC03VWiytSIr5YXUP4F780Y68awba2aC4N4VWAA5vA2JpzQDuRV04Y0n0ugecjHBLKxU1GfWbNeEE1aIPKTEqY66laUdwP+YlkdXm8Tw/d2a4l9Z8w5v5LtefPArbdQBod35hrB4GA5/vKIm824826P8UCeWQ10LXtng89X5ldBi3TdClxJccn6+ffMOUFY5UUo6qCJlykSbC53MWzPQdo+avbyZIBse61JQo3ti43Q6f3186AkLuoXL9FRljC8/i/Q0Tz/N5vrbr4u/6SPb2N9++u67xxj+RMV/BfiaVtbzf2jF3evpb2Rz/+nDux2Pd40Y+r0QQ5nGP3QEx0c3JQqCosPQ71V3o+2J0AJpT2gnG2g2QTYOkM+BoLLdHXchnyo57faqpCbaXSPfC95WNDPa59A9HP99sHgxz1ym6/jr4/Adaj5BaMgi2HZr0oiWaCHSkPvd9s0vmeFwucTr6Fbzalety2Z/qLmpK6A4p3rJOIcFGVO6RpzOY4rbVjzcrr/qjxnIpaBbN2DG6zhenV+UpgVmH0+kO9V6wiU+fb0aw4/Dd+vFTOskMrB+rzAV3kcmci0KQyCY1Nacptvp7bBXmwab8ZJM0KRFzCb0y239Jx9uMU96c8rkZ0qtW96AByIyp8lMJ7e8IVEIRJ8lR3z88/kKO0GUDT8z+5rFXjYOKro8N8l/enz/yPqfLfy56dRzTeorUv5Q3n//Np+bPC72m7pXuHQxxpzHHA1ElDytNRI83zH/snyDgnq6c7/OVhJd3LAtiF5zOWHqMKnOOn/NqA4M3bslMw7z8vn+rl+uiZNHyJJrXkoBluLsieBCK/N84R0pKaboQ3BKiVLSbtNFO2vFGIHkv4Z6Jj1b7MJ0d755PXwCtGeyfX79VbVZNvjp6yWsotd7gJLglSuvGd6qLQTJa9+w7evLhPKCs1WkUozW1YRCKtEmknkxiy0U7QjdR0+9t0BvwJ5AHZeXv+mMMpNRv/Vsom4x5OcQdikWWiPOiCtkylMu0Z22Xdf/Sy2ZEJRLdDEgwmLMpyegcgKGSHpAQCizSjbrvDKMcwySsxwTxiiHSAGXEImIFRnR4BBXY0wjhxoVhcHmmdAtLbpIK0VYvs24v6fFAb01QwnpOi+viEZgERFHZV5LRM3i3VId6lU87trFQqFW7ICJQOzk5htRKjONYEBWpWrbzbsUYy4uZ76aACRAFfO0cqJ2w3FdvJ89KiRnoECGA3ChzIUh9D5mkogt3PKWvz5Xa+3xfvf27EltHh81whMjqsQtjn9f8rCs63wV+8O74UhLZqr+cTm/j5cfcHrw1mjpETbF58iWXmUwOFRWScujrn5O1CN8bZoY0q1tJca4VklxV7MSvEmhuMUJIa31AAgjwpSEwDFQilKIJ7oh0VtUeLKME1JDIgWgVkg5T4uiHOUC4pJTNetZ6bRcwn7o2u18uT1RYRCxgL1qpLH+dvGUHuYJhVtzm6B/9+DIivCM87z6MShqgwdGVduOq90e70KKbd84P9WMEZCaqvdxM+xSyaptUgkpyE/fDcmHtHYM7dzShEvlzVtII0YCg8gl1lpzWnyYahFKdUJJBARhmlJilKOKUUGMvIOyqTVrreeruryiHNNmoJocvZsbfkTuADGayUM4ROeX+ZZ8IajLmblol3WEAiXyyLgHxOQfb24sKJflXiQygEyJ9rtSYj9PLpUXTArCIaa1xEaoUtOmk78fdhmwrYUi9WeX/1F31+0O52TuD0eEY8xX3pjKX2RLCO1j0P0W2fjLRv2PJbFUbiHdgt04s8Fymtw3Th5ybhqmUqnPt3wJD2N98KipNePowzJIFbSqFAaKEaCTi5cYI/I/gvsuzMdgttn1BPWENojIdX1KaQzp2ujcdjnVC0ILYU5wN8f/XQ5n5xZCCCPfp/WH6AlGdeJ12PX3lZxteesP7xPRntloXvtd1Hdp5bNhN2jeNnszX34Jpvfezsv5+dvy8tXY2dibiReNiiHI5jCXbLy7lWq7gbGmptIysmnkD6K5S3QleJvssRJDxSY4su3eS7bZ9fchYix7qndn3EC3f3o+0+rAjy4+j+UtHyOHZnqlPL5X+J218e3y9HJ6gSpOt+uJ1W89+zkt77//8G63rbT+at909y3H23bYeH9OeX36Yv2yj34LuLfer+4a0myMCa4QhLVACPNauhx7gltMwm6HBU/jZUT8dj6/UmK8vU3zWTdM0B+75r/H/OacocQDVCJiZaemaaCktE+CKXKVG3Hw0qdDiCQ/sEfBdrM1uiPM23INUu1DLY0EPeTLaTzc79TurNqzt+j0U1TsIeWixNbM3K99K36Yb8Sa0jSNjYPIfXGhO4jhSOP8jOy82fVKaj+BmY3gVNMWCgKczBq9A0a11lJqts6XsMw842qy8YaxHef7CjkHX7zMXtacwBHKu1h4mmE5exuYbh+28oGi27TOOGKxYeBtqhvs9s5hnN8TPpP+z1SeEWqg3jXtMULIU7Fk3X/ifr3w0id8X3S33yJnnlKqkDcaDymOiFxzMrRouKXVWUITiZeyvuA7QdaQMyOgKGkIlbkUH20sVigCKDBuUQWUOYBAOHl7Y1RBaEuOqa6MdFgwphTLkh+YFCy7UGvGFBHInCJjJ2CUlpKSVOoIkQnRxWAxC0DniG4hfAaArv14O7ucbv0WxnHMtlfk99FvUKR5XUsa26YqXoFVhQPKixIY5QQV54K43tiEqeBNv2G0ofwg0F0pd27eYvjIUbpaEhEmwcOkXG4TFfms2Qbp3pX0RMAXpLHodJe23Tcpeu9SzAFIQTgRghmXtTKhpSJ7qF0wY4kLqbJmstq3XDyqUXCCaoEQKcK41LD6mu+h7hAIIRiGyGhEaAK4NfoeWmKXN+g75KsmsfCUrtD1m5TAB4RAO0NKEsNwP0+ORiN4Xdw4E482AjhaLqcWEFaMc0ZDCquljYqAAqo01u6wWW7OmJU2BEiTABOOSxLO+BqTUspaD6liIFAxp2K+7UIOJp4QFUQ3kU2gSih7pm6bbVsr4jIridzM5xMtlmKWMnnCwomGBvRcwEJRu32P8bPPXzi/6jY7b3AQNe6wva8CJPUo1lC9aGVaAIIvRHA8tPqYXFVa5xJjmiu2sU686SEiiJVxWSpyxpZSCkGo3jgJBEg0HOIQPSUoU2lrysF7VKuiXDAeneeEpGCF4NYt++3j9fkSVs+ImKfzZtPq52banQAAmDFJREFUhnnvKZfTOjEpjvfvr7eFMbHZnNRmVXuN+RanDc3blFVgMqZMmTAuEaKsi9My5xI22wZlej3dlGq8j4Sw7Xa3mLnf9ufnJQd1fXNQkFZFa7CmuKlnrJFSi8ZSbgQeUO0ARcLCuticMxNSydZ4F2xwayohU2UrNLdbplQKIQDNzn/FQIS23ricLKCpJMQZMH6rkKuXDLOCDBWEsoHSHQQU3XhfqMpPnRpd8FnSC/p1Ud/KIKDyYaOL3/tFAhROt0reEXwP/DPGdBzHcf423pxdgVJQSkkiGq5qSBiXmBYfr01fqFiWNDL+GFxT0IXibpqvFdKyWKl6pQfEAyaspKN1oZBbCuI5+SQTpivPptpLiF+CNqbhmH1dRxSjR/xrLoHUvaRbOxFEfqv4c8qfU3oJ+YRpRLQQhpNtGtVhlJZlMQvUOHA6YFKL3zLye8p6yipC9Dp907sL4WdsLat05N3sPEmxO9wj4Kfpwjf8O5SaXHvMHhE9VJCktBIeXBgZ2VbQqvUl3yQ5hllEN4ZpMrdbXmxe7HodUYwYKoW82exKzELNlZtueF/qLxX/Ryj1cp0wkqgwSGydbS1AmLYJdy1J68JMhvM37S7+7Zc0iof2f/nt9T+1nRb4cZ3IZNY5Tl+e59tlG9vy179+YW53f/x9UOgVve3eH47texyIQgcIuu/7cX5tO1EhdQOa83+Uqin2Dyj84eH+ftitIbw2cmtcIFgzMnhXEC5tx5xdS6op9UIcho2+nt82Xdt07O10ydiRFtExC9knui03ofidJ9+9/KliuzXZskfn+QRGKXdfPIj79Pr1jCTDsk6nVz8aKbqYEiQ7raFRHDCHcg+po8Lo7Wzs15q2mPFYnhH/KeH/VvFL126mK71OUcleCSlbasJobm8Np0KIkHN8sTFGaIAskSMSsY2jbYaWSVEQdrN3Nh0OB8Hx6e1rzkzJ94o/Rk8J1nbigh5LpiQVzCjmlCTU8JYKPdswnSe+lCU4/VHTcEGh6ObTlFHPQgGLMaVEZYg+Ty5YwHoxNLqeNbtizXI7v2SvtNDhzW2+np7OKc93P26u588N67zjqt0st2fviiIioOBul+ah51Kk0XngKYhG7wCYtRahKhXGshp3bhoenVe8M/MqBSqwMlHWeTbLyjWpYwBOoZSwJn7XuHUpIQulUyoMs2B8KQVSytYz4XWD3TJJrtbZ7Ld3binOELPUTx/eX69flvlyd/yQPYaScx2b45zkhAkfXwtF7zi9v11XpimiiFDqnKGUQi5aNjUBRrTkDol2nl4cPBH6TLub9V9EE1PQTfO7Wps02Wiyy162Jc43kxNK78Nt2zYM2IlpHtc+XAdE5lRWRvvse4yObbMH7IFeKPfrKsCHmF9rRjVhjJa20yGHigEw4pxab5RSOeeUEqIBc7+YF60QpdQumaAe1ZarDRQP0SbJk0tYszWt4ABhQUjjLaRAOFelQC7RJ4vv6MsceYrvtk15y/F5bI7MRLBTLaSBKhDjghKabSEWywhc3MYrIbRGzKSgUsWACcJCkrAsOXpEKydQY8AUoVTm66W4VvOmss9C+2zfC/y9i89cJ8bl2+tls21KtTlGb2KrdfKPy0KT1xgGzsk0X66XUWkcbQuEIryACIzz4HJFOaVXifsMEVNE0E1Lb70njOG8jR57U70rOUFMCWEQkkiFvbN+MSiXXEs3aChZSMpa7i2tlRCRiXRgT4RTQAqgr7gigoxzFWHOOaCCCQCUaDe1mjAXCs39vY4mkLK9XcbxGjjdlfQvrzPC7XYpYLiypQAu/PW3SzLYO8CC6q5ysXob1slxLDiXWjY5plpC8IYhvt8eckyN7oLPq42rNQXF7a7PtmNYELqO11krQogl9V70NgRcYksQq+BieUNoTV5r1cXofUgF0a5r2rZlILNPNn9mvFBWMfGCQwynEF96zRLYVKj3HnD1ITNBfV2pbBAdtW7NqhFWVDrRLAjnjr1bYGHq91lIm1CpVGC1gd/LYCv9kuu0+q9AplwXF79VPCOcpGTX2zdjjNKcqyWXWFLX9701hhK43b7t9w0A4LpJ/nG5vecNqJaNNxnJl9n+DdALkX/utymFoYTvazpizmLKuuFMjaq/XYwgbNurI/YSWeyMByKnoMLtR85icNHdBikq4WdrFyEh2k2Ne0gdKionXGuuECsJDIidSw2qVbu+bXOJ47jgugGYGN/kqgFIdHH2N64ZhzuMRUfEfpwT5Z1gO7NWRTXDXW73EVqYWe9adC5H/eATRd1D3/fDcSb6cyx2cZPLPxXyhXMyvYTrN59mkW7CnxisnXmFcKEUsWoTckcfZaXTemr8y+/NdCV04TIWWCn3QmXV1LZHmERG5YryhdPTnv+//vyP4a51lArdZMIKWc/zf834xjTPlL/NX17m//z0X/7UWoynqoJQRTwMj2mK9uKrV86flIreoLvD90yUpsNuITW11i2Ue6Wa5dqEdc8Yi/ArpRTI1GwMYOMNi3aXfHt/9y4TG9OEcVR8mC88++7dxw+ZnQuZYx5LuhWYC57bPQ7p4txrvxm4EE3b5pybpmGEKqWcsUDd7vj+esqMtIe7ZrFfcvIU9f22bZT49vUpAcIVKAY9dCWW3XtxuX7zJt0f/hAWznDj3Bjy6f67GPMTwgWKsovAdUiRIERut0mppus6t8y324ULGmNUbcfbdF3PPpRSFWUbJBobDddVDy2Wl9P0p1KKUgrJN9lPGadUTy6+Friu7qvUXnYx1jPwxd0OHWmjQJfPC9luBH1Z8F8397KgizX9+Prglq7rutWNp9tvTF93+6cgTh4lnIrmdc5L4Xu0vF/Xt3YnAUUoeTqPu/19TdTPhRzwQIhPLIaWvvuDe/WVVLoFY66clhxNqYkrSamsHucoi29ziYjOmLrgS9seS3URfe36jV8N0k1GsFxvTddNy0QIKb4SrjPCuJLoExCRM3ZTIJhHBzUxN3uGMKEo+wXVsBkOp9crZAKlAAqUReOu+0P//LRi2Vdafbx1D7LQ5G3BfBuAY9HMi5dSe+cYgmW6aE4o7mqVyTCuDn5GgLuSRCrSt2+b7s8qP1391YtTjyksB1cwYI7EhNRvwJ4z5JJYyqsrf0WwobRtWm7DG8DEBXiTs2tWC4TZnM6ctAw3q/lKlCmJEUZ9joAR4rQSnKHGWmTbYIxzziWGnEIKuZRKKWWMWH9aDWrUXaQLhiWMmaRGqlxK9GEmJCpVS5mtf6Fiweym1zx0mwRkxiVv+sV4ibleAFafMJiakGBQQUUAgpMg42neHJRW/dvrwnSpqHhLBAEuaXZLLl42jNVs3YI5Sm4dOtuIwhAtXhanUeaoVIoCrt+7UAsCKI21ttnckPgV8ILUXwhzBb+Y8EvfvtPivlay3rY5PiD2wUzSOqz6fcm1CrBxrqEkQbKkPENYDCiGGolCwNS5eBOShhCgsJpV8k32Q65ZCoZRAciYE6gxewMkh1SMW2nDiWARimoawuiyzFxT2cjVGuNcgYooKRC5piWQGKO1a9uDcd98WJXAfgnb3WBdcj5hikpNjDEl5DqeY+nSUuv1CuatkKXyikFz3w1600q9zibH8vL8/P7xXcM1BTRNU44pJu+99ym3zaBVq7VCOBv3NmwxRXS5MlbvY3LtdtTynfNLyC+IOJSbGnpKJZBbTcisk/dxmteYw7Is3hWKMGdNKjPh15in4Amuu1YOuS4hHBCnuey8PfgSbSDrel9wEzwHkjN6Xe0LVGoWYIxt77BZb/2gS0kAEHzSWjdNY4xh7D6MfyiBDu09LUfrLzEthCUMm+zv2mYD5Bbz0nRZ6NWsodie5G1wPHhUa2WijMuXdki3S7nNZ5SPO/0PukVtp+3UQpUO/e8m/5WLY0WysDdG92X9t8Vu72lmKcRMb0EE0QdUIM7p+gWLN+eCbEK3qcu1mSfCGCvhdymImhUjGww9zjo4lqMsSfn0ClAauV9X6+LLsHeYRR8qw2pJn2MtYWHOz+1wZ8weA8FEv0antLij8kr4SEpXMhm2E5evhNz0tiT2LLY3OdgCpxy/pHTDtRf8yFRRPb2N+DbDy+1vpfoUbLTWrcbPtlifFodiBvrSbaMentTG+9ASsnL2ROtHihAqCCorlVVAKZUccCM2GjbY5u92Hy8/vfX5Y7zVbYcR+UtMm29P47r4vt9g2oyrNWlC/LYj/RqWP738+bfbi2C7surFgni3I3nbsIecEeOQUigZBbeE9FmxD4Jt21ZLBcaOAHjTPw7dO4Z5SZyRHiop1TMRVEsqqpTj7/+4ozwY81ySq7l9erq27af129bhQ5xbFXXtdrFq6szH339w/M0szj5xEQfU+S/r/4lwIlN39/EHv66Y5O5xkymlIBmlufrmQZ5ezwUq70zNF072r8+ilz+Or6FrHo6Hd24N42Udjh/GkxNsS/WdjXU2K9VCchRwLhhlFzXT5L5BJbvznBvEBIUpD/e7GGfrRkwJEw2XrbNxca7bb7kqPvnFrNuDYrpUhBa/VuowlzUUDMSklAkpqQom+/3B0TceYB1RUQwfSTy9tKybPHKOL8sotOHSlUDCvKF1rzjvxTsoDWy3GMN7zOc65wdGLq93j6oQZNYKVTStzMQu3rbiEEFQxAmjRWGLYppWvjtGi6OhJQnvqlCNECLmEKKTivpgoFLMW0pYQR5YyDUihKlUumjvprbtUamhWs5aJjiUUqBizmrODBMgFGGaXSlZQNGotslXlBP40dsTJ85OX5ONKGoEvMIS6wuTtSL+7ae+7/8Yq6f6RIaXKXxupUpBYypDgqbdOB/bth2niTLMOEn4nyL6SSsrO+Vmiwg0LU1oFGw/LjIEWo1nhVGN19vPonhBa0Ug9I/z+ANJH0rysmFCfV8LpURyTmNYY1ghJZQAJUQFb49iXkMtTCqfUlHND+P6xLkMLgDGMRWpGxN9waC3Q3DMraVphhyg5qK1yHUKcEIFCU0yhEbuSmaeJpECcH67etndE5DLaPp2C5mcT+tu836sIgjHI6U3oYPjvrL2w7M/dS0CGVM1hVSIBTuCUOM9ZVwpQbwNFHEhWUhRcFWiS9Xn6AEyYiQ4W2LAHGNUN81jhZvzV4hDcFkPrzF8E+l3XOZaEVSaalAdNy4IuZnWVSmlGqAMYwxUroiOhIw+/lTYX8TGVIi+JOCxFkN5J9EH769YaCCixn69gd70lUMsb0B1KlTqDirGGGNUUlqdm2Svu6GDmDGjIQaUi11XF7zQkCFBwcETVNuaqKTYrs8FAWBcMSqAEKaAa4y+lFjzTTGlB3INf1ujj9li8m3XdyGdAflh02KUYvQlED+WTbvHKsQ47vqOAddyC6CDoyTqHLNdzX63icneP975GDCVq0193wHJu12/mpkAoUSGEG+322pjqjeESPCgeyNUDJaXShAPqZYSB0gtojOQCyGEkU00XnK6HTZSKkLBxZATbtuWgJ5GV1JXYuuca1TP6eH528okAkQzBBPOquGFBqry6nKWk68FwS560rQ5wwmJehuJroSUv9rbqW8YwjmhtLJfLeFY/aXQX7D6WXUzY4KCxNBLsU9lpLhpe+TjKTqFMS2wTqe+uxsv61+6jXA2TWMEpCiluuF9ewy2ku4fl/nqp302R1zv2lZX93vvoOkKFKXYx5hOBf/Jum9ti6M3wV8pfRXiraLR5hUrMDNljEXXmAVYO2Jc1xVX/hXkc6VPRFwxvjEWclxrjqWUffcP3qaQLoSWWgdrNsZi2RI3Dozd+7pymTG0GQSwCeNnXNbozde2DcnjmjVrbZbPtFH7VnsHhTZk3xx+fJxcsVPViHX6o9Yqxpjj1vvt7ENhhcpD4bZwO9oX42/W3cx6q8VgHC63Ujwbr+K2wvP0y3Sryd5XsvaqP+7vld4gLM/X9Xj4QIo46MeJvfJDnsOYSUqVe0Tnqr8a//X0//H+7ePDRxRE8qD4ppc/Eve7v6bn//yX/5KcM87+b3/7b38y5+7+wb4tTWeVzkyEUl4bpdN619DfDe1+fjts+/uKL4v90uiNoO+nuTAB0RWGtm4WKZLdUVC9VjqPy9WZ3lsebSsFNN3KpKV6BUIQkL4vGDvZBKbKbV4qPm92GS60kIIfavuo0ULERUki9UcVkpjH23YvDQ3flrVv7kiEyZ/GtxXVoGSP4Pd+3hPmmv2U89XDl4qvCIcU4v6wy8tpsV+6h2x/dQV3RGtwk7NvuClV4Hk07XaXsPElVaDdloUcCW0KKiiBZrwm691NKsoEx6QNgZdSnFWNfA9K5wIxNdYrqhjRO5rbVt61+49Ub+wYSRY3mzi/RgikQveh41DeRrIRv79MtdSIiLl7bBmHaT4h5IfmUOz7Nwg7RPLbyyLytZb35DF9TTPqOX3EQp6XL5ttA0VxeX9bxnaXwpwTF7zE3EY0nZhAqGvTWySgUOUxFCFUzrmUBFAAAFPLGIPapMQRxd4vhElK7kIs5iUgXQEgu1RVDSuqiBFcM8RCUqmh1owwLggYoVk+s8G4ckMUFeDWUG80hffz1WBkh22M8ZojVepdzODSpW+/qs6EEFr1YZraZaSicjOduqaJ1nVN633U3daX0u3vImGnz6X4LUtbOxVSBBFSSIZ44SjaJFwJGgpemzXwyXvlDvNrXsPI97einjF2uJACOIoc0G+IGFQ7gX8o9t4t0Khc6m+VRigyR+7DDJAo2QE/UMHDHEihAosSckmZYlJrBSiYXgEulAaEK0YqR5VS4x3VagDqY3EAQ8la3bVoPHkggqoyO04EJ9IvGZLm6DidmXS54TKk8uaX2qmCkV+XLeasa3MFmTEuNWGw2RMlqg+6kfOY1mXqepkrJoxxFpOLiDCIuSCUa0EVU8pdypLJkOo6S0R0gC+J/CalTJEgYoFeQ4w+FJ/n7X4TfU/xu5I1AgbI1iwV/rhcwnxG4N+j3KIcEAKBKcZg3UJQqmjleE1coKgp1CVW1nScRoiQZbK2xoRqQQAAKDCepIyULZUwZ4JZfakYKqWFK9oRqnk5dmJr5xOUc81nv1whEhG76J23a6s0IxSVWnyEWrJ3yZu2b8+XVGp/vP+7XDSCbKeTc65thm9fX5w3rRZuXSTDxY/mhlYvpiAzdLiy6g3hc+1vKZVu6F3yGWcPYQne5qK6u4IiZdWGWSmx3eyv17FvtiWVfhg22/sYUIhGNs7ls1SDdxu7CC4qpt5aWzOKXnpLEFmST1BjCC7FAqRorYNP8zxNl5kA1uyelDbGFyzmebUlI8IWVDCgkasTxo7gRbaz9x6LfcEEkzC0AmfVqHulhtfpKezIW2hm2yuleEFyuSenza7y5fT3uNxD/GAmWWIRbJPrVOm3EGxm/1RqbNi/enjcOxfcdKBUYrRfFiTlQekBUURoarr69PpfubCE2O3hq9RXwQsmEcmfYrnUJEp2Ef3MpGPwXY5KSKeliGVIcYOL0DxHf4oJXReW2B2QaY2fM/4tQ/bmyBRuNsGOd4Lf59TmyGMARkgtEZOIwJhFUqq5wpSTWjRBB8a6cb4VeGoGmenE5CrIYBxCjETXYGQJ8c38GpITCHazAdHuQPQ3grE+JqdlErCApvvCd6HtASZC62xGplKAGSgklJBaRhd8xrc5eI9CoMtSnCd2BcDbGLWPwSRXCPHoVWxemk3VOmBqhi39P//8fxh/4TK2Cuz8dm/bR/4hOrV5d/fmf9bD7aFF/tcLIbHWtWsRwuvdfXM4MM5mjK97YTHKf/7teRxtub7eQ6CrG9S7lv33rd6P46VRd7XIdkip/Fzh8un7+5wIw0fJ99fpzGT88OF9yk1JSSg/258Bm7v9D2ZSywRKqe39rDs3XSIuHaPty/PleH+4jZ60ihfjgk2ittDiuKfb+zKzJIhifEdkms15nDYf3wOAfzkFmBre2pXK/vD4u4dp/fz2/PV4+FF1GVVCGCZ8AjxFL91yMDe5bf+1mWlKKddJt3C73d7d/717bVR/W+JTv2shcgi9bt+/jX7bb1cMYCfeyto3NDhvVrLdLpdLWnMntCCoFEOwi9Fz1gi2BdSEdFU9ttdgLUIs6A6r9giseH+rYa4sBGS9u20GQVQV07u6EbTxCCm17meOqwiDEpjQplVAlJ1bhrZCOBt+Svmbrszg7Xrb5Dey/26LxNW/Pfebj5fLCUjbD99PUwLsEFuYqs4mhZckoxttJl1vNNbtAkuHDeG3iq+pjKUEYyOqPYGjmVqMByqwWb4CijkqXO843etW2xB7OtCGCakV44WkRmyMs5RCxTFkj3DxYUW0pBKFEAkzoDwD8bnopnHBEo4xLVqtbSP8WhrVE5YW87bfH60VCsvTy229lUYcQ0SNZJobwS6aUpSTM1YwHnPWw5Y2vQXCeXn4uFF9mtbfug4YY3ahye0cUTuVZALcNjP+Nc5/27Ia9K+cXwTbFvwx1365BZJ6gFZsKcR7hDpEbLdZCXsN9kLIkOZNqdS7sr9rKJHL1Bm7mPOfKX4/nq6KSkAM5eJm2zctlOqN6Zs7xbd2yZBIreh6e6XcY2mA29vVy/a+zifEEpLbMkERRnfJxVcgE6Um55FTwBi/PL+qDTeGCijbBhdDakxZLKLd2KycISoqnElh4ImTQ2moG8dTDkxQkvPsLWrbdl5fCbCuGzBitaBcMaWcUn6bVkKYTzWh3G7axYQYOqgdZRH4L4J+TCl1XbeOLCbZ7tB1+ZoyAxRp2RGoTDq7Rs7T9mERKrJ87wwqLtTE09y38H1yyi0rVfdllRzFpYzt+wbirVqC9MCbVXcJqME0xBhyKDXSsCIiGrP6WkkqmDCdQhVERw/OnFgj3Bo6scNBxbVUZwS1kFO0TnMBKSfro3UcEQpVs70zU46HVv+HL18nBLvLK2jFtLwPTmw3D23TB79yFqXwUi4M6WY7vMYXNLiSprg6AkebHpfVdn1fKdhkZKuI4MDkaIJupXGLEGwYOs558ulyuUkpz9evIRSfJ90wXv+4XJtuABteSkn90Gi5r1lSHhEOJWPONeTSKkkpBYxSDkxQjKmUEsNms2E+P83mm1So326tm3h/iYvgLDds2Lef5vGrW011G6g140yohKq65nA5n4TEsu0w63l2CuLQvlWLgilkc84SLTgUsN3hVSpi3VLBSfYe8lCSupzn7eYBqvj863W8FEzS9oCYcAg2283H6zi6aBgjtVACx/Gko2lqpOn2v9T5P7j4paIl5+jnT3q4aC3dvNWCZfQnb2m2nzCZdPmiqPW4TDJ+S1dD4zx/C/NfcvVN0wgx5JIqviJMACnW3IT2FU8pryFagjmpktQWl4E2nytydmEAuNKvFv0X3jqlD10fEvrKqLYzBnoRbV0nFi3GqcmOZLlhcvPM1BdWhb3gEl/BQFrIu3c9b9ZK0WUd2z3WvYLcx9RH1KFGqz5rOTbUEO/6jlgzcYxKuD3eV8Iut8vbNNby+jpeP6cmX8qcoPoxCdQISUcJqsLr5T8aNFC3s38aN/122qzTo7jW2x++K/nz+Eke9/q70zSRXn9K/3MbdpQ0mHy0kTBNfv/7f2tXVM3d9SRcRc+nKwn3KgwyXf74CRn4P0KpHP0rhAgngcVP+/7fK/UdrWvfQA5RwOPhIPfHZNe63TveLtMtteL+sOu9uwme2gZLKc0JZ6d4W6rgsnsUXJmrFTCK6NOLNh7nzd23m6PFQKhLFeqAklb2stRc9ncf7LysGpHhfaVGqRTJtJY5v80ksXd//3dnc8sGFZuapnO3Ob8T/vJTQ2/qPV1vJ93siiIrkdDv5CDGZa5kiWyzqf/D7PgZP3ftYfo2He8FYpCtUdtPfkna13Gpda8LuuB1xMe+NMRm6JrvrjP1OKtD4UNazVhqbGVLIZfyiorXbEcKhacrZeoGSKsNTEXxFhoWeUn1rKuB8CEu+baejrBdzG8g0G1B/YafTz9v7npz/WznUTY7lnNUeQ1/zuSn3313d/7rZV7y7ruP4+kieJdO1zbFUAzW2s5poNsUka0RFqvebRtr7RZPr69t4hZJ1u6nWxSguJDGTrxF8/SVx3NmYyw2ViyHgzEGaqzZ2eXWIf8KM55kfnmpKKp6KNlTv7KuXyfSF3EOpdd9N+B4HcmG4iS5M+b11Cljxr8WHNE+xupRfqh5V3CLdDcHP5tVcVGNl9uJuXDYHeewxtkQgU0jCP3x69Ms236xl+1etpLykOPrK768NHsOSb9ON+wU0tu3335GSXVY9XT3fF0XeV2NF+GOJGpcTAXRWOq0hLeXfVOA3s63b82uX09XQovBFiQPha2Wk6gCilnNLfViNhH5KBcLp8dPw/L1nwv6svmeZG0zibxvGAKUUQ5kuaBpnkFLLBSOtKwlQcObjyQ9wAso8NDYdIlyC2TOqVICtOSGEE4QVIwK6GWNNbpDD5fTNfs0YwR+Kf7FClpSU0Uqt4CWkDcMM12WHhEKaL3h0ipAZqmcFCmYRbJy1IqQg/OJi6PK6uW3L9D1qaaB5JOZQ2R98+n2Gg/DQVJ8u8xKP9SyMaRhlfQ8VHVFLR5frU50aIo1FHqVQyZC3uy1FATDx/OYQ3JdbW5L9ePYtlNsvgT7BbSQ9bbav6zz9b5pymldV4Ul6kjjzgylmmysvnUrV12LOIRS7fK8E3SzHbCi1cw1G6IQnhbU1VK8rwTrNtOUqUUtj4VpdWzVu9vtxmQOlVDdz+vC8eZqHcPHXs2c/mPDGCIvTPBUgauTi7/UNLslcqGgqZeIbvEHi74IYnsMnYDMIu+6FMamPrGmEuUZyj3bTS+3ViVGFylx0/ZMDjcjr3MPeFjcRTVFt01397GmHGqWvUT5WysjAskW2mx4jNzMRlJkx6SZismalZFW+NisY2llzuPWjXEYAItX417Xa8GjKlcm8ru00gpsHdvJT1Xal6t9emZcPGq2JSnvmqdNStP0FvBkZwK5Xd32Nj0d1SjJd9+ez6VsREOGe2/s+C/4YMPq9IRThHZfHJgp/UkM/yTEeaoyBgUo6ENCQs5nHjzM5IJxycVC9cGtBNA8jhiC1DWin5ikl/nGh4LxHQOm07FeJ5M/2CzM6oLjNhDHvqJ+wurjl3DF9MoRAbMdsqLVj2HNyU2YznMNKwGQKVZRHC5f1dHcJhlLi4QSSoWSIykRh0zd5CECBSyiE3aRijzWSJb16s3v7Asqc6RiFyPG4U+H3c/d0eISu/74Oq+v1X+shTAOm/Z3JWxyXdpOVGA5dyHIpt1tth3gdaYpUvSwe4cnxBYlYLd4PcNmvhaoGNFo83Kdl9N5NGFq+/h6+5xoOa2O6qPo3vPhAYvGlTxs/s24wtvJmDCO6+vf/5t/N1tP6d2yUITuXp53rAO2mdpucOEXQL9e2Ive32kyHPsvn3ZJZn6+/ilTfjUn0eV1/WW6/DfN5nfHjhQaLS1JpUgeHn6s0IQU+x1xaaZsQ3kUtBGMCAmSb+c5bndtCNLOrdBI7VPCvOBjoYppamxUmwZLWhjSfWfCyloVUZVtE/UL9Mtur+plFItvG0S2Xj1a9FTnLy/4xzZt8eW8CHXc08ajuRHy5XIVte9sf50SHPaJxp2sOZfm0FeaUc0SydlV2fcpB90q683q7PHuLgefczbOMylzjmP6aWjZvrkfzVchebLaJENocn6M0RKGmVKb7V2titKeM3m7JM5kKJ8jfBm2++jFNC4pgpb7im/X5ReO3xHYk6b4MCGNus1AKzOzIRKpLau1rNc5Ijldh0I/M54JC7K/1HCfE94eKgS+TgghlDPaH1omkjEERUZQL8TepYgoQsCu11GIGouQw/HlfLp/94MPcp2p6vaX+dY22xQ4lL5kbtx1s8elTBV823WUE9VoO01cSues1IIrKdWuZCaoTtYSQkoptVZKZGGYdbjgAJTxtl3DjGkBhDOytXwxBfekQkOnzyjiDGGz3Jq4cCEaJpp1hkbscoichct4ZnKN8Ntt/JsSWtChlFLw3DcfYyCAQswX3VaEI6MqBU4UhJI+/fhH64n1kBFao+0PO0Hvp+vTsKWyzafTWfH7bqvPt89Q3pCvndgSEtuO3cZsgkCqMNIt6wjF18TdXBlLZblipCrMy7iC5bUwzpPQMSan5d5OPKcEqZXsnaT67evNzlqJjUD3Qj7i0vgxUylimHFeqIq1onUGXHfjzVDu9/c55rMQ1LikFLfXynQyMw9pJLQ3xoqhr4Bd8JiwmLz1DqFKKe2aTki8upWyFhO12W8ko8lWILdhb0yY18VLXUrU6XxoxTHnDAhxTmOMq1tdDDnmXCA6mckTEfPucIdZVeIg2buEb5TVWjOluN8In05S51qzkDsMOMZIBWWcCqVfXt6EVqUExqIWomZuZsLwnpMm2pnLxEXFJBXIm2EXA86Jbod3tXAXLOGo2/QI54pTyiYll7OVktZaKmRMCqXYWptzbttWZDzXZKKvi4Nc1G5wwdYYnLEIyNAOKQSMMSEorqtSgjXmOv2qG4IQoaShaJtD51bd7UefnlIZX59HQLNuXCmLm1tSPs1jTGVhIhsTvKGlYEJDTe/Cuoc4FE9xLoAWYCPmV2eTHRmBrXOOUuwNXaZEUDw/vym8IwUrfTbxZ6kGJh8T5dXfIDhFOrMQqP3ioskz6pwL11K9syk4JuieYAmQQ7pWYrL4DNytRkaIm4dSSBinMhwIYTgC91CnfAn4xjXBWLea2NUOm0LkG8Ye0xjzjbLBlYkiL2isLGUMKBEcW4IOIcNuexBCcdauc6G4WRfLGEmQpzkjkGHerhMjsPXLv/XmD00N1dy2QhCXyhwf2nc8qB1+ZEiYxeYKVIo1mH7bY4xq9IqrTh0E1xHGgK5JLrH9rRz/18vpRRChG36+PHM6SPL7kobVnI747wt5Z+Obz78ZzqYlPjQtJCzqiLomMszLuFNkSdqX92zVUG6QCgld9ix50yoYGh0d6ZSQshSYKnKCaVQUVLbtBzH8EvO1gqfcbTbbZD7a6/du3uGapbv+DgGPcZwvQ6l+DP9rzpIzRTkKyVOmAROEcQWSM9pwxRAtmDiCSC8zjoL5nc4CbxiTCaWIEtVaNA2hKaSTwIOPmDAsZXl+/dl6Z72Iy2a29teXvxIhXt8+v/swqKHBjangZOO5bGkTav3hD7/7f0rVivQflP+fJfnayb7SJtf/R63/d84psVW7V49u6zrWidZTy6a7Jr0fxL1bI4GBS+/yr9YudhZ2ZZxvKTlgKGZNDw8Pm62WYmibw2Ina0m/oZvhjvP3CbdF5CJWqkRKHe9UQgUxSjTzNWNOiKS04YwIoptIcHKpkRpLDUxkC0/OtlUSW8scodXrfZNrbTgrq3CFazGU82xzaD4cnI+4EIJFkBDwqjv59stz5Q10g3FzxbmgKpUinM3TyqRs2g4RHIzVDxZBuvx26w9cagJeGeSbjfB2JhgQ4+2wiaEaWyvpY75RirTuapGM9JBQjI4w1wx1d7wjeMtIrxqJqA9mOp8Wk3sqhWRrSrfMpIM2Q+65BZUjwsP9LkaWQb1dX0slnCdChDOZKwd1dksTw6GiXOlcfWZ1MAYjRhHHxsZGNIBtc1jX9QkTAZzezGexmYGOoiWL/1WoiFDmnEPFlChnGMkPxq2EECKYMYuQrKCCCUklghcpIs6FtVYISinCmNQKCRO94wFbGwsgYeMMNPmIrCEt+ogE40lEBIxc281g1l+JMLP/KpoxZZM8leToZj1fE1XEB1r9bhCf3JQYVrUO67LlOmGSBOsVf6xpiAFDtUSMTC+lUkAfllX6YuW2JAxUPGAMCGdB73POVHrdk5hvBLfujfT6UNJM5XWJfxMdcpHG9LCYEpNFqPqlMqwEo89PnxVpaIGhaSEkb20IHmMQggGU1cy1jma5UIS58JLXVvWUZ0gGNC4phsWQZggOc68526OaY35N6DefXxFoSHfLBABABLMmESaB8RgKFypBoURCSqUU7yMhJOSUcwKMfElQ5lxe+m1yeQaep/WLVD7a1ccIqIkBNy0H5DFCyzRzHkJIRGLRttEFFywhhDNdCa787DxaTdA9dcHbcAVmKdoJnrx/ceFkjS+xhzq4OI/uT959bbttLTtcmmhf2o2Re327FIw4xiznmlLu+w2lfB7HXjeFzi5cuoFnCDln3W1eX18ZoyGoAj3GHUJNcISjDhWZI0c4VciY1AoB0xxjBADGMU54RdXVipeYamKbJqVAGdayMbPhnOdYYvSc8wLZegOlS17i0vsV1VoXc871huhcs7Zz27d7KBgqxvHvatgiiBgxDF0OXQwYk9RtcCkBqlLdhPibFB6VQlFD8h1KH0r8xAhZZyDQYFT7vq+Rl8i6rhW8UDptOo5jP77Au3cPN/s8hokjaqa5k60SahwnLkWzHZZgSdkx1HBRK75SYSpEAgpiZ7wz42OKA+KjCWefVlcu3Wa7LEvhN7J5FUcjt6Iy5uLFl79poVEQlEBKFwDEhGKCrzMf5yOJW4pwgBPRYy8jTun5sqAyME6m5ctqxuR6Bp8QyM0eIqH9nWDtm3HXoWu7brhckNwgMXwMsAm4Q3oIrLIdsngMYr65tVKsuEAxb3SrlHydzoHVGgWqiIk0m1POOzv+a2//hxD+uNmNxrykOHf76/DwOeG/TdMk+Duc/RpojhIltcTehIrCq4tvqRazxpQkwCZ6ZlfHRZjXvzWM4pRxRgKrHEuwLkSfi8vJCdQlq5OHpqsJvp1vPwNKgnccfwxm4721cSqZ5QxcGawalcmvgveCPsrmBEDC/AchAeou1URoidli5pgoITJrRNeRrhfjugaQVL6v9bGT/8DKj5RVITiTqlBqksskMsGs9W6CFFDXtJLUx50+Hvp1ND3fn8+2ovbLz9WcFIcPUn3XtO1+2CjKm3athTFJ2w0IVVbzz7SUCn+o/FWjsKXnsPy/lZg2d4fIPzChWE4PLezJ9L4r4M69alqx47ARaBuXZqM+3h86pb917YoTZaS/uz+kwJTuES4pF6Ek53Q3bChR1i1cOioIqnc1a0JvGOOQA2Y4lsQVRwTaoUslsqVHpLv4mR+YulNL8SkIdBaAfP/4cTKU4m7XSjKdssb57p25VtUOgJ0NT5t3HEg1Vx/JTqomS5AtBUbSGru79yCUECJUzwTudptpWkIugEjTdzEVDGz7eFxuNzc60fchx5oia5QNvm+H4fjuMk8+p1JS3/fneQ4ebY86BOtdt+1+9/b2BGC02JQC1r1cLo7zh4wmoSA4ITQb3olSLmE9YVSZHgLSwXb51othr7c1Wx3iSgUgsqv4nENu+5pTkuydWZBuMWUZU4UJpzXO05oA0YYm8AjhYdhgklt1eHv7vNllO32rkTX83nijN97OvFEHbwNCSOvGW1fBUrlcrlfCCZRYSsk5KqUKKhHSNK64MowRQYkLQDgD5NksgJjYtADVziGsif+LAhNQLhfMCuRryGm9eCY0Cv3bm9NaxgCCqxQ8oSGUZ4AppheqQ7vhOUfJMKehbcvTy0/dVjO8dx7dxjfMDKZ+2/c5YWcIju+EEOP4p4IvpXJJP1HaL/aMEMGYWstyQd1GIYRWN7d6n6rH3GBKbm9K4A8YO6XnWlcAWKfAqSIYsg81IS1ahFBaadNqb58wdrVwu2LKpQuX7aAw4Jw85znnzAUFFJ0NnAKSAJA4RgWqDSHbaH2gSAl6RGW/3bwjzPv8hKnFBDFN/Iq5yoAbJQJUQXXkRM3LhAnLCWqFnCMRCFEEiIi6Y7ipVWF8SKFrm3uMezfzplXrqFOscovd7BrZ1HqJfiVYZFoBEQoEc1RRQYkgTnfHHkCPk0MoSykJS4hYqGyxk272nA1C4oJfErzkygT5OxxZpWVJJymBZMH5DmJmIqKsgi8IR6Gj7hIGZ2av+N65lUqIaeEcE4KsmUM2LlxFizKYNVwAG+NOhHlKbUo352eMMaU0ZQMoUEoJYSE4yACUMYRrKZnhGiMrhWjOmIRaa4YYI6OUEFRrRghZ86Y0TylhhFAt83gmFAkhkut8mIi+tfqYY0z5hTVfpXSX22+6EVDF9exLxkpJY+eUAkKsFoKB5RhLTKWmWqMP62Zoap1zMbppOJelJEoYAZHKLtZY0KXCNYYLbRlFVMA9QKubvQ1LhpXrstm043WRdKjgQrRK6ZLEMhVnS4XIRBS4Rega3MoplzLQekTu35FysAZIeUju0ZiN93warZ24qj+gSChmyVKK7kpqguMI9sGjxBeoiaQmlwPADiIq6WrrL7F+S7HUuNPiYbNTzv+WwrLeUKV5slMOjZTS179k+jfajEu48C4kulyWV9YJECRk5Au1nk1lAVaUoMj7nmk72ViAdpuq/7eInhS/z35o21rpn4T6wnlKi3B2LnUkhFwvaDv88bj/QbCNYxhjqtW2baRAL5vBn1cH+GF0h5Yylq9TuaE2b9SCzcjUB2tDLibVU0UGishFF1S6XeGkhPSN8K+qjVA0Lo+CHHJM57fK6T2BgTFp3aI6Angq+AWHdEawWZYxljeC+nG8yXb2gXqfS/VCi/N1SRXaoeVM1oqdZLzXkhWdZhGfh2FF/euV/U02gXGEQcUAxs6U1bbfxiBRm57nqwPRyMfd5n2zH/R7NqOn4BfK02+//BOO43FDHz60TOdGxEZwmnetegdkbocUY7BuDPA3CgvLDc1bikmMqaZ9191vHxGx5J0+PpLNsTYfup2sOHunBdeUEvTaqGfJgqb3G/kHDjvFNCZH2XFEu1qV7IFwRomQDTi/BG+dWbVijCCOkbempAioMsbov8B3wYQQwLgzNmEHNBCVuy0HbDN2pVrZi3fHR0sQ2KR2A1DUMKoOm/l6QcS1Coc8lR3bPRz9ry/EIzjuvPei0ZSxebx8+PCJCAkucKmpoJhRAIghcSa8jzElRJGSfVilsf7dhw/jW44xIjIL0QBhyUOaIteNaIX1EwLHG6LVp5Lk+fLmwhW1aF1niofke6Xf5xyJWLkuzpNatimDULniPJ65v31q2SdgY+W/UWIgtItp+n339noZ9jnj193+mFEisPc+lrpyInOigKwL3lkuOoKrWZfT/m7ADEopWuvFGiZ48kHAPZj3xex7tfVuRllXe79pHoO3IV9imBCoHBXnGlHPGOOUBe9rrfD/n6Zpak5CkuhXIQkjYOwYky0lEESgEpQrzgQi6nWXXORUNLJ36IpmJTYKLVOo/XT5QkiTq0FVItC49gBg/YUS0bePuO6CT1xmhFPNUtB9SmG7i5fL5L0XinPOUyrOxlpRqxUqiCOJCpUUU2RivKJM3axw7Obb4v21aWUOjVlUI7tYrqBRFSKDonQjeQfRQ7hJvEAxXbsLpl7PT/2gMGoo7oQm1ixhmYwxbdtKKUuB4ByqWMlhPDPOOopocZv5hnPFjN6X2oXAYsZKqdVfqDBUT4W+pZBqqhQRzrm1ljPJCC8RfJ41V8abijOC4u3EttTNa61ZCJFThYIgJ0JQrkU1XSpziGO/Yc7fAHkfJyAuxFHslLNXinMxU4yZE0lAB4sFa3ItaVk55lKTEJwZLSIwnXrKfb8RlDSAgrcoW0XEKSTf74WxF5SUQH+Q+EdKKW1fon9GlOnmU3AMg0F0jCVo8ZAhAUpCMSpwLDHVDKjUkjX/6FfFyJbgwRniLWn0rgDT4jEFlYOG0pakl6ng2vuFIFwxoghIhYBxxZj+S3sk4NpgxhPOnOBG+nESBTmI3phmGGKMzjnatjln51yz2aSgomcElO6aUiauFtEsBT/L7ppjM71qLojNX3NNkm9TLSHNqg3dJmNcg9XRtgDA1IRLS2uDgAMmBWcgjnBb0K3tmGxMhBNjbF5dJUEqcj2HtcxEH0ZbdF+ZiMuXacB7XmaqJZLUpRhLFZSXnO04KkKgILvOjGPMqo8BY0wR5gylhTZ0L5mhAHl+Z9drJf9pmX5t5ZBCyRE4YtmnEkorG01VTI5wq+Sg+QfnvfN5XZJos1QIsKV0JXQNcR1vBvJmM/yDkKoflNCJ8ZJz9a4eDvvdQfvlY0p5XbMQHPImzu8ZYykass7MWphXGjzYhflVuNDk2rOCq/d5hYaN0Y3G74b7Dd/F9f8WYhPhRHDFceDpSM3QpEeh7W6HlGzX6346bVKsPp9O158mGhi+xrBaG3SYS4ynCEtaiP5lsn9BJEixna7AyJYzBaj44vWggFUbTcaJKlIgAs6MimWkOH8UdD+tXyj/dv+AS/LAvvDuV9I855xL1JxuGHuE9HcY6pZzutlsIcrgFkRHwlehEsGu1jGlsk4M1QYBzdEKHjEq3q/NpqdtB2JQzYfijwr/GItFGCPgGCjFlHNOqHQBjbXKh7vRueDWu+PGYWdYWTGCcHd946hQAeyPP/6B6w7T9yg9NB0mFG/3DkPXNX80HjH+D4tr1brl5vcX8/VSEhv+bRESBf5R/e4I3Xv68FA/fN/8K+ke9u0nrTYhhBpSxz9U9w5SV+uU67dhkwUDoNLESbVbl1LbKyF1LLkgyLggkRkTKG/C6gG/5Tqheiy5KiFLKYQQZ4OSMq9rKQW/71zNO3kHRvsT3tJ9AigDQ9B6v250dcy/AqDuwftAnr/Ku6LbipQi/X1c8fI2DvsmwmjCRBE1VwdNwxQHkpJxIVaEEGPMGSuE4FwyxgghQgnn4/wWVNc6FIOjXd/oDfgxmJApksu4IkzXuHSa4uptXERfr2dTUyMEBbtg6BltQ7os05OZudQNoo4LTTVpuirYcb0lbyomXLRNDA5yQDhjXAuzQNqaHS66Zp3qSpmUOtsVKgRMnVI1Ju9W6hyorrjV9btGaEowF0ysy+jTmjHJXnetjOkF40VQCaXlTMgmcVbG6+dhIELi4GstHYIOY902TS1QUmWEdLqz1uZcCeVSIILKsk4YY4yxcy7n2A8tlFgnmxxwhjjBANysTgoEpYmhE0CAaRRrJQYXvz+KFBeG5Tr5HCWkhpE++73AnziV0y1J8RCijommCEOzy16IBmNSKeVmqa04CN5TjKy/CHpv7Nj2K+BZ0IGmAy6UoCmEERUMlTDSp1RKWYRQzliTXNM+YtbLxq32F1QgLBDNDCgui7HGc0EwKTmhdjhcxhvlzvko2K5WEdLadBBjYmRvwuijkwov6xlQyZD7rcSEVB5zWjOOSJNgVikla5TiKofg/AsV47w+T3PU4l1JzbLYXDPHhaDB1zc3IqEclOrWlRCSY6kZWtUSDKhmY9ZSyrQQVB+S2W7bD2/PK4PDdCq63ac3qHXt22G+gNbFhQvGRKi8jpEpGX2pNlWcBae0klTibTxj6Fp9zKmOF5NjApQodKJpS5HOkG8vT/3O+/gVKpnf+rwIoTCoS8mju5FN83epkFAvhK+iwUI2OTXWEAScc+zCWahcyZXqeVz/BOKM2CWjl2EffHjLeSRkKWXUOs/zM6UesFGygcq8S5RSynDO1bvMGImoNIRjAiCY4qKmihk1PhCCoNYYPcYYvK+pUszisjab02T/jOgV6jrdxk37jsM7Nz/W3BI+uXiRcovy9wV4TDK443YvYwxQSdP0hNZcXNtpjCmjN8LniGfasEKYC7ykIdtNRcAkqiQWhK1LqpVd13kHTaMQToRSQu8YufPGmfXFjU+VL1TUtt97w5eJJIf6QZcyoaRSLDEtVBjCLKE1RYgWY/4ra/4bpQ6yDH4cz7H6DdMXzOA0/hTST5uNEdQqjrbbGuFnnyci1n6nFzuGNO6P0qexkjMuV8AZ4T4vfV5bxDUfaqlPb5e/+Bij7WLApVyYvlaI0xkR8nLc7VHaoaq0bhEGUovI3/uIqdjIZh9LNWEqzFS+irb0HnaqmYNLnXSaIsloLGKNFA8YOrcKig7LFLlYYv0rZn8NaVz9PC9mDW64I0v4q4vPbdNTURptMfUIqV37fU293PS2/JQuqeC9qSjbv0j6FHl9NUkh2m0E4zpGiYALlSse13WJThnnm6Eg8WbjRbIDg09mpCmkXf8PUBXB3FokhErwItsR0RlXclrta0rR+dW4K6nteObRcwyI8WrtihAhBOcSnAsEYRFltIVIQjdIHKDwq5RLy5bLJXDWdJo3TDCQyy2N44RYiUuAkEQuB0wPGO9Es23u48Izmi7zeTS/PT5sdMcjn4vAoskhb2h7fj6/cAVv19OakdU/P5nbc2Cm+ey8idN1ACVjy/TT3bv9vz7++FF2n3r03X1V8tIN6HA4YtIDLVwjKsOwa/r+A4HvuHiPOOY9boZ+siOwUICvS+h2QwqivfsDbQVtfIxzcqLGPWDFB6gIKiaV4lTLbFYi+HWZ2s3A2m0yIFmbEXO54iwYaJeJfzt3rc7v+imuzCXi0vrtTewH3HeAOaISAfdLIJuWH3V+e1aNwAVVT/Tjw1pso2ldDKO61ooQCiFJJhlmjDGpRCnJBqtxES3/Nt02/ZYQQiSvs+82jXNmmWYmBUIVUlzGm5JN9K+APZeiaw9uzUIITGKpt5icbjeo6opoIda7t3Ecx0vdNomrV0f+DPxGkhLxY1iG1db7R+nGuZZiRqb4fSyJc+7Ct82+BMed4YSgrqf9FpqBB9+npPt+WJYFFYmTmG6v3UbYkjKdkADAuOBQxbWyN6IS4Wo+J5K3pG5REZjkjMcAZyxcyZBjgoIIoohwXHGtNcYMkHKONUNwGYBTohBigqsE1odSCiASgPkUQ6qlMuviN5xSkbN5uZqIqvUYf6hJVb8hdSglO7tywYQEX86R/Er4c9NnG9bFT8M9Deg1xBstCPKmbbZi4EBuPp6dX4MjuB54f3LRRL/DcEQEsJgJCwTLkp+0bCii3iAMteCTWw3B8C/HuNtuu8wRVW3WxKWw3joXGM05rwQxztpU/OrngmTTaSoooiQVsNZjwjDiKOOQ7O5IEQk2mEomoQqhfA0X3mPFiuxYEajGgpFwhWdHMaoMb3E9Bg/N4IF/ZnLkFHHOky2CqhAiAw6YRe9RpgSDNYYAAalyiIzRUsq6muEoF7sQWp19ebxXjBcqMuvM5dUpySmntVCMmI83wmNFsE6uaRqItaZaSqAIEUAIwe6Is5frLeWUYsCH7U4JkdajULwg028lQhTCZrwgVIMeRi3watfrZFu1IQAZ5RAzRgoTigkLCRJgQhUmklANla1zN7S/NzN3Vu/6P1zeOIcfsn1cLk7zwa0VEpO0QyBz4owMCOGccPBAKcUY10JSypzzFCKmqFBcMaqLQ5xmLXUlRBCzToQQreV8mwkhrWpvlxHBTrJD8Gi9jaVaynOpPibj3UnqykQp4heuESZ89SHLX1CV61ynWy4lq9ZXcsUY3MqrJ9GhcQlY6UTJ4m0IAZecEw6hxWhbCSecEdrnwqRmIrxz40p5iMgjUdodAci07v08b/qOIuycB0wQ4wUTqrUNL0LVeV5KVBTtvCvW33x66oaNX773trfxRbWk3zZU5gq8ShJSO57a5cpSjCGNIVWM3/lcS+0yxMk8CcV1KwH7GAm171zQCUUMJ0bOtEtYS7/iu/3f933X7sK0fmOkY+gxB4SpFdRCjkR9BXabbrGm2jBc/FePz2KogboqMJaNyQyxfczb2RbOGgachtwSyknxeV3T2PWI60ltvuL2r8AXRD8Q8geX9qj8d5L+WFkGdk41ONvXtPXeN047pwvJmU/f4mkta4NLWimuEAMw3LfiAUOXSm03ONRnXOU6RTNbRigBDBGhRDhuQkRN8wGjx5hEM1CmRuNeEeSQX114oywLwbhoa2qSb+crw1JSlD59/tlR7jZbodVWKWXjF2do1/QYeUQMkFlLIpguSY8IaNORgoWDLgsIVA2PTyt03ce+3wFkXOtGHxTrU0nAzFG4IUfyFt2fVvHMH+GAL1YZe52/vp1ut8m8f/jvDsd/SIhh0V3Xt4xk9D8sMyxLWgN/O0PF//BiT2a8oLLB7bsJHl/Walf1SP6nf/WYj0of5dDVQ5n6ln8fXRuiULLb3R3XlRB87wJNkGUnFrf2+5412eeiOz7sWa1i2D7kOHvL+LHG0pV4l3PlMgBGFXdYtojgVDLjMuScKiDKQ0zqeJcWi8KC+EwebNjdZvdrR0BWHD4QJpr1nOlb2moOR+AYAPeZHqYZ5tWS4lpZ9YfNSpEcMRe4hKJoc14NsIpwur2+SNUKIUIIOUTGBKXUGJNzdN5wSdWAXTZiM1BcTqdX45NCjApMKLRt45yJMTLGJJVaqNuF/P9a+q9l3bIzyRL7phZL/XKLI+JEAEggBbuUtXwHPi9vaMY7kta06mKhqxKZEAFExBFb/WqpqQUvkq/hPtxH17NUT4QmhINsXEU22g7lu3ZTFvNMKa0QEG4J7HdHHG4yucH5BjADNFX4QsTT3Sdcc7ssi+Rs2JEMY8whhFBTA5UtU8R4KuiEoVsWzHj1yTTqfp5DDDVabEZHSRE9Kxicl4z1CRDjUsrdbarAh8tkjf2y3Yrb6TqOs5QU4ZozR+g+hYAxrSnnmIp1/5YH1FpziQhAyca7DIUK3tZCnEuAPWOMcp7BVuR8ilSxTKzg7yXGBd+naUQN1DmDvsYwh/gC9GV/t6T6KgQBwAghoZPWj9GH2Z6H3bbWfXTHhj2WCIBXRHNcbHDUrliwPiaf61zFxBriEkh1XE1dra8QAFvGRC2hopeY1uBJMNUZT9m1oR8RKTb8pJqSYcXKpEoE+yctW8IC5VHKYZ2TjQvhteuOlG4KirN9EhoobdeJlIxzXcZrpYKPtyzZA0IEIRVdp5thNiIuvFTtK5aEcQlVB6VCiDNl4+r/WvGt73a3c2G0l0oQQiC11t1qGfROLq+BSYwq45znnDEQKGVZFilYq5taKyLErsBRV1PmlHqTY0aqV20/tw219hdCzToxhDrO+XzeMiwxxt57LRSjZF7GZZwpwzUNs/0plouSnV2sW3WYdwR7KlgBNK1ms+lu09fNhqTotd67JYcc+h3zYSlZmJkMm7uYllo3IbLFzJh63TNMCRTN8D0i8zj90m0j14bwlTAH2Fs/pWg2G2mWE6BQwWtJrZ0xSs6FnFDOBSFUa8WYQMUI1WhNrdVTKDG50y1hCJJoqud5Rqg2rWaMpZQ4FQBIC71M+bj/rgRwzm13Qy7ee5tSgdwzvC/+cbpwglqiby5PCA3zeUtxB3gu6Np1LUG6FsJ4hYJzwiEW2Q5C95QppZqh21aQdlaQdggIF8Kt+Hp2jEMxX1u2QXnDhU5AfNS6G1h3achmerkt4+nxoYt1ihARbzIZSpBDv8/FcOWbviKcOFN9c/f8RVjveKOWFS3hhkSwdnv6+mvC+v3DjmpXwQzNtiR2XUbahRi0W/vrbWa8DP3d6W2MMTbiU98Wl04R5kFzgem0Jp+bbfurdUnzvLStds50XWdNmGeLETXTqWMfc67n04IJZ2rxbmo1RaNQoVu/2Targ2jy7dZAqvP1JsTb7Aak1RjZacLONQc1NZ6w1xyYJL+2tiJtHIxZ0luItH1zMZiVtBtl4y8Fn5jwmI8PYo1JSP4R8O6PJ5dFauCy7dqL8wpGEs9LyaD7uhjmxBw+FD9gwEpkAtGMOa+aJhWXGRF6vr65OAHky2n1lrZql0O2VkE65NDlhK7XU8q+IoPYFftZLXSFe+HyFsV768K4nhQVEdD5AiVsWj7U7Iy7qHawoXHTpCRtdl3k4mRgXhHHZOB5d9QRrVWE/qG7uItsW4qb9VY9/8DE3r+e1ev5/hzEF4Mc+bza8x+nb7///yjx8Xe/+aTKJEigl1AKZyy/vbzut9qb9fnrX+f15XQNQN+v7mzd+vr2zXr7NlvHL6W5Jv/376DfIRlb2u6PxQup9jtCI9xq0Pv+e8nK3WEXEdO7HdcP02wo3xdHcfDZs6IL2sRU2l6h6HDlZveRrPUGSq7eNC3mLLIS7c0J6Z1ft8dhXp9QGSBw9/NIqIa2mUfbo0OtrRcQeJAFAV4ldZnmWiXcKLCea4nONxgzg6I6dF0cIQpVSEHngZCeQsOaa86BTbPr/+GhtgtGaHq7kmbjsvE3C0Sox1KvN94OcyrJkTvJXy9fw7Qly1Hcu3xbQykWIY7kwLqUcUbcXF17731OJTUhOjE4E1a7ApNB6hSMJGibQzZnF2fv0gKSZHWtHJq2g0jTulknwpW0qab0BXUVMPJN0QQTpsE60RfC75bw1ux1wIIMFOlIsEKGzvkLFg1FO8kJcBeVBropLzdkWk6T1EvFsWbVN4e8TqQuD8f301hU/8C7gbQI8xXVEcKklnU6OK4bdLliQa7nkCX2Y9F854pO09rvG5MQSkA6lBeL9bHyFdGpH+6fzt6ionRLw308W9q2MTz7eJMZkf0mWpwuN4m5ercbRyIKovf85Xq+b1moTYyFKU0QCOTj9DOH22Qv4rC5lF+axx5zfbfrEXr2yx/7iqQ/BL/v2gGTq+LXbUN5YSiRkuqaDlh1IVPdOC4vzq+hoKb5H/JCp2ssZLOubCf3PUdicLY5X0ZU0m68UkrF6/U8bPa4uuj/jBqZJmj5gS2pQZ4qG8wFccWAouOdyqQHOcdC2C3WL2wFJRRO3py/KUDVs/mKksc1BskxVDZdsaKfahUBL3wrAvDgSERnlTGpCYJDYBypehiDsRjZbhjW6+uw20aDUV5kKSbbQ7ME8ZY5sQXJDaOzsWuT7QBVZM8ZbSkPgGyKgGjFzUhc6bf8lj6ThHHdJKaSJcnOfccKcJuX7fvtHGc2PE/+r+Y8c8jFKFTo/mHwdcx0CbbDnRChXT6jq0NrE+6+l8HdaJWOI4YZEZ2ENppg0dK2tshvKK+Kf6iqNynUdYfFwPdZToGSGPDadzgLZ2HlBPNuJ/DWry8C+U1X1kvFTjOwtOCwZlks2NTEJkdUekJR0EmMI8HljsPeTcEta0WpCr4GJJr7y2mO6JU3u4Kkatr1ir2Pm/0mpKmEmBZLA9HkOE03zg0KIZrYCJ6yHY6oImpGFO1FgMDbFBHayD2aZrTctrIxZlH3MF3MdhcR/lrcHBZT8qtqr1y5vOmnjKimi7syySpZMUS07ryPTA64SQnz6BAry+3pTWNfgwL6LgVhxo4wNy3fmFjmsQgKDXdluc3n2uyZy3Ya//ru8MqCW18mUjBV3qILSAHs+DaiXN+azXPyTvMmu9vtZdy1e2+uxvGWfWD57y4rke3wuBl5+kNz+BE7k61DqOrheLUEt4T1JKQ9r8rb5wbxTmRI38xkPSFv4HL//cuSGNsBWKCRyH4uLjd8Vw2UeMvYDSPeCd23b1+YxB/MiSsYzOXlrh+Y2fGoFFlzeLEn10u8GQAS1vI7zJUFY3z/GrZmnRmxDa0fBJW5OS3i9WaEhEs0a95Z09UaDaoOSa0jlWfABlF5HUsuumKl+01BGBmqGRYESvV6FyP1a0JVdhBF9qFVF8mfNBeKHP2V6fgOa1UFT0qWRmNAcTGzs5HRtpAfFdvkjIYtnS/UzX1By7T+62bHAZvT2zcuKAbS6M0yZbti3ZJligzf5yge3x2AjCHcGtUi+dWGv0k2zy+/mKfz27++vf7LdP1r+Jf//uMvo/vNr/6DF9tzkdbzV0xB7cZUpggvr+zXv/u7//O//34a2Wn65afX/9fV/Ik1LEn6Er7RVpjrMP1IN0a/24muu9+XXxPYqh6Ofayaa/Rht5NQlu1WFFi1ym0LkGcpa0FJtFK2LcIUAGNCCmTjlxC81m2BKqXOOR8+fai1vp5OsRAmRfaME6GFnGc77HmJU8VUblkKWaIeV8cpxtDVGoOVywgEa0q5dbMPE2Eu2Bd8u8E2th8/Xd8wly0Bzh3YbqJ1iwEqmiuYklErDwQ4Ap/MGqPXWjCOrDNKi8vpRBmTNBRbJOWUUsrx9sMCw7dKW4itc3Z7QExYAJhvblmWpsNKfEhl6nvN0d149l0jGtks11hrxuLKmjWEImWru6LbYpds51YqvNsPb28viL+mvC5XxqkGL8BLXFqICvBgxirVUcrDbX758PFxvK3XswuO5IRXM/e9JOVQ60r5WGPBpW+EhBxoVe3WpZKskXYRKZWcRu9uHMuINwGhVKw1AeFHiA+c38WaZXusNxVY1Wowr5fmAYNZM7s5ltslkl1TJa6X0UNcg1WE1JUn51COKKpk8GFQgtbTt1tA1/HyakafgYqO1HzrGiwanRN4G7OvhAjvCkaMUZkilFKF0k27SYUAbgnbNO0776SM35UJbm9fK6TouVB3K56hfzK3gouQkt+WV5uuJkyMqmgwZitlhRMxX322mACTClw+5/JKwDtvMCtESMHuwqKLEVx/c/E5xinmUbYzb64J1hQYyrimigjzMRkbpmVtRIeBUBTg+jnQZ1evZcrQPA6/+rvZLM6dqUxKU+9WIMAYV6xLmUHp1hF7GzBbnJ0h7pKtLv2F8KJ6bZ2Vup1m0wz3MVDKd7mOmK4hjtZNpRShNpTsc+oRsqk0fqyIRqFKtsRlntONt4uzVooHv+roGoY2FaJu56bRQNkvP39NqVoTKaWYYe9tpTdCM8IBKu03cXcHYXlH0q9x+n6d4fB+UoOfriGHtuHfI2KY4rkEyYmkhGMCCMUYEcaMe+/PhNlcpwqecR2CiG4jm0dMv9WASjwAO1Gc47pf4Sx4z+lhulJz5bQOne6se17dj1zpTFDO9wXTTNeIHFYWkMJUpJp8mJWgBChn6vnbV91xwucMKyWiZqnl/TRaxhAifisVTVVggkvNIVHBQ6milURkn56Gu+dCfrnOf1X0uG0/ItBSCWC3WlFNfS6uFizYO+9tLUfdy1DfJnsmtL/efLPpx/nsrOXoXVgb76+Mj5tuX/02G16F0w3FtrKFyqBwFVM1vsuE5lxJyX3IV6WBkD2jKhaD+j+u6x99oCD8Yhjnd9H3VDr1fl6DTKlueq+wVOLO1smJxcXntidt0+UgbpfESd/qBkMsYbtOolX3jKlSM5eZqZmpGckfM/lJdUuCU0yG4f16/i5c/mdfcEoUY0pQgeQFQ4BSAdvsfoUaZlGaZobRvm1bLZtsmq6vlDqqnxBq1hWpbuGEc8Lrlt5ymELKcVcTqyZ3aKbLZ9UceWv6I/fmDsH3PlsqWoX/1wj/uBCjNs0882htnFYYB2H7Qmo3NKfri8/T5qAwjfNyE4IB5VSgDDdGUI1NKx4JLgW/TWcdrGZM9BsmtY/xbV1eUzAEc7tiRvuuPUYrU+Ba9Rgpj1qDvEM60gO0aSGLISH2J1yLL2lN9hr9DVDEjOaC5zGstxSTRfjm01sIBgquIWspUGqyYzlRyXSFWIupMG72YEIWskVIdP1eCo1wxTgMA0mRRQsS+H27O//tr/XydP3T781f/yDcfNgP//SbH9pjlxhWguYmFxxpZoKB0EcPyaTbf/k//neR1tMfL536n98uZAzr5OdpzsToR8J37m97dD+0x/d6w6mgpOnQUIjc9NteHxlp+/YeVclZVwuvhXOiCkmII8RopQQBRYhQiqki/0Y5YSxU01rnqrXGm+12nwmjEpekNNMQcw5I6GDjwocWiJtvM2M9JGvtGhyigpZUU0hMaK3anLPgom3beZ7dGlAHUMBNESsEkETVohcYuxywm0WNlJCVNwZStDfqg/3w6YMPNqXQb7qUK2FKbPbhmqqNQqQcwMx3lH+KVbtyl+qpQEWwyVlgEm14ZjwjqqJPjD2uq12WC45dMnA6fYHSIIRS0Mm3lAhGdbR9XHvvgIgy3O1zpcuUKW6VaDApQpYSjaJQqpcc3y5PjWbNVse0MlGYEMam4/ETJc3Qbzut7LqU5Bp9aNvWuL9RurJ6NE9p6CrTdV4sozvBNSKrbALFxK+8tGekAqIkpwTEZbiyBmVEQU94XeiQYk41EiplnTrO9qFG4BxrZuelliQ6zWICnP16BtfjsM15ZMgCu48zcv5p916THJOtst+CAARLSZPJhiORfY0+Myxyqlr3SnY5o5KTMUslmfAqGhRhyXjJaDoOLQlTTTNCVfItkw+Zd7jRghiCS3AkpA7wQJmgMmc4qx5xgWrCJEoUuRZaKMBiTbZCanBphVIR+VhrDlFzr4VEUP+tauVcoCpTkDE0JaaUSqkoVcKUroA54/N5lDzXCyxplzxshWEf/UjOTHNIArOBsyaHhGktsKZ8i3nUTUjlQjBwvE0OERyLg2o+MkVddWrTXa+jGrbOJkbakEjyHYEdAlFKKWB9vBSYhAqSbJu9llAx6TDpaLKsw5w0gITzBCFW0Qp4jTHiKqDUgm929RQ9aPkOsUj4Cigytu3bvyNkJxUSvA0eoES7hjX8uX/8FkuG/GCuvyrpTnYIkTAun/VGp+JLsdmuYVmiDRWg2bQxmBILRbrmhvNNKUX3tbA3Q17PXxlJfjg4v/Zx9oh8kbsfKCnzfOq0IojkgJYxKDL4GVXW0nYd3RfWhphV9O+F2hQMSOoIKeUVspO686b4GNhAMK2YQIi2aRQhiFJcagYoBHKyfj4/4wqEMtm2iPLVLos7My0TGCG7pmVvL0uOsSaM6VqRZUxAZbVQAKp1gxCb5tV7XyvJSaRsDo8Ukwiwo2Kp+MQF6vQnWveYeETPVDjFCi4puoiRMLYgzJiSpCGXtyL0SlmJQdzd/xqT6vNLsFqrfzSL2u//PiTLWEd4Rlh7l0d3jMQxQUjqLy9P3i3O96E8qjRgAyzMW74M7KTKswivZH3b7tppulGGSgnjbbm/e29Wz0gfl79j+ICpxyQGR+1Kcp2o+rPsdjZWszgILpobqiF4U1C4xufFU8L3vM2Iu+BEdlLwqNSJIixkezE/q01dVizZseSrBtJBbcUkBbbxkrEizQbz97a+Xa7VmsbDjepLwbGgxNuJ6QsKB79gTM7rOvfdPuEvqP8v5/VHi8aEEMH9uqJUQHbVlW9vFxSjKGXl/DW4X6BMbg1uamV/kY2DUt2ClxFnzxmhbUN9fiEo5bQGN9aUU5idf2HM4/W25bwFad9MmIJCqBcExRFP17kR+rjdCUZSiZQzrjRCjMMHwK/9Bp2evVaqFn87m163BJR3QEFY65tGcVG7nnEZ5zk2gypkZRznKGrqdttjzGO46Rp6oe98QgSDe/tK3n4ZLp9/xZr/6eE3e90NQhaTciwsJ7ea/Pptw9f9DnJqBN9Pt7/98od/QU8aaH17Pevy8J36x62n76j7QQ7q9GFT3x/xtlNMVhC1JXjHqup6VbHotkcqNFM9Zo1PlUoNhHNJCqkR1Yo5YJJSKrR0h5ZxsiymFIQpH7YbH30qmVJKJK4k1EIpY9N1UrxLyZdaUQMVIYoJODfdZgAQkqHCmg64KCUv1s3jZQGQgIeaOy87CZ19+Xp/x0HGuZiEQdrGngFi5sIJVaDS9RxrxiWsTTcsyyK4yrnGmCuiXLTBFOcZly1COOSF8JnLAOQG5K/LrfR9W5HFBOJKzZU07QZzWzOSCk8TECy7bXBTWc7t/h0KIeXISxKEs1pzDCgnRHEm3APafv7lq2gYrrtGD1y6eV5rCQxBTD6bNUPuGuWCCdFApRgzrVup+Lenn1NwTHYoc90Pi33lqhAqV2epMlSmGNS6kKbdKU1X+9JsqtR0vKzI96CMGhjnnCGAsJa4EKgIEWMEKoKR7cXZ5tCHdU5skiIiH2BDs7VgVzKonJyqUBi4tRIKQFPwVasO3OU2Pu2Pd0AJlMwQNEO/uiKJriGJjiCEKCGlFIQQxVhKCQAI1Tg18xuB0OM6YGgIFsFFgjCIxa8LZ81kkmDc+aVSXrNiJCCoxlXd3GPaES4KOCkLwtR7fz2/cYZjcAiytQYASC3FA0WcSeyLSaVowTXPOQyk0rbFpbqSRLA6BUpoDd5yhmKNiCHZSMZJKdEsN4gtYqp96NJ6jbGI93/nVwPsiskIeAluJRUIVykwc0U172stGCfGWHSoFkJJRFAVO0bjM8KQEoWaa2YUZ2trzRgVBAnhjHDRWi2rdb5g0q2TrwxV76fRnc7Tcj1H8NHnXGitYrWT7CyXs/dzzciuPvv9y+u34S4iaiBt5rE1q6fyfJt/Eqo4b9bFknSX3S4X8/B4FyNv27ZiWMI3qk2pwTknyG61S0UBQ24lF4SWVAFwhOKnrpEHgIKp4crZOJHNoZSmMNYpwgqzJudqBs1LQnNYvCvOeKFg2JHgz8GtNTFat6hqAvfLSAXbFVgReWHcxjQhKjBFKVtGEATwPu33W6iOoF1wqNaMiKl41BpS8CkUIqgQap7OnDKo1DkLCV9fXtt9RfG36/k3ZtIVmWB4yVV3i0vnHKQQIuW1Zk0IQvSmtG5kJxkXVBVfl/FGsZmnC84NK//pfPOFjVjAahqz7BE6jmOGNZpxLhypx+1KQiJVI14uXmiUIqqlB2xv47e3Z3s4vkc4WX+i6o2IL1CjMRcunLUv0yVLfhX6NdcllYarXuqqpSfl6yjYU/IvkG3TxuZwiv2Y3xv4O8BWSnG9vWBSleym0QreRc+kRkr2lzeg8NCoXS5Od4Vw226bUuvtfDlsW8hu0wzOOCm5ICrlWyxXKVpKdEjXy/R1NQWnpqK3afRNdz9NKSWG2NmOuMx7nne8ouLLbfkGPNj6VMncSC6ZREBb3SDkc56tuXKG9qL01LO0anqo/mPGd0slY95bJ3JlBYfJvyR0jWXNBUPRhZ8qwbj2pDa4AgGDsaGUR48JIYi4DFdCbNcqhhu/csqiVJigkqLDgCjBCAfKM2xOcw63NGWVizheQrnB6NmAKW6yw+vVzzeXK+G6STm/vj5THksNtfAce0HeRy8IgJQ+lxPCi1I1R0cRJ6iluA9OCIlisULSZZkQoZSooT/OU2iwPx50oXWBUlnH83Cw+39iv92E4RP5od99knRb0/bkeJ6oi30g2mWQ+gwhkTAA4P/+xx/1+xTXvCf9Y2EPC9xd+Pa6k0v/Dx9/d2jvH/EeqNZYbVRD+6YnCnGNVGQtgiZXHVCb+ACkiUh7QhFlDBjBlBBCaq25VuC01owxxoQZGzJURKFtG0wYornimOv/31tJiRRCYyREC9MtckwAB4yaWhGijpK2lIIJlFK0klxQKMUtCyGEbxg2FDNEPvQ88BrTgkY/BVyhpFJiQqhqrWOMjPESsvNJN0OMuRSQTKNCnC1mzWzzjWh3fivBo83OQ051ua/rwOsjhtaEG+CpwtRqXbM2tiXE386lHbjaBD8iArTbe8JUChHTC1M35wxmiDSv7eGGqWXoYC9LyvbhnSbMckUASWcVRVs7Qan68mx3h09+xbdrUvL+cvKMNrppXLw1G9wMfLnerufAmow4WX1ZvB2OavtOuWpDZYx1MXrCQi7OLiEalDPK1ZD0XtIBFU8QholDuAuG15RLQVgmGCvZSpAIz7jolNeEoURIyHrWqErR+PRKGl59xCQXVEDgCIbw7NepUtTctdNccirDRiKCrYEc2pyI1NyFVShKCADKFdcYrbETY6TWJ4LfhFpyPfn0JruK6iyYt0GnpKjchgyklhInIYNAo7M8B8IY4TIWdLNhjKFKfoQsnE0pe8oj5RGhWjKpWfN2CfkVoQVqqAgTqht9SCtfzZRLqOCdvfkw5ToT5ih1Ia66lTn7WmOINmUf/dI2XLfpi3muNQ1CkqazT47fWsXvIWxT3tqJkqIRASYSlBFxe32jyR4obox/xjjU0FaIvPmjXwIhLK22oyxFS3ghaZEqR49TRCXjlNJmN1BWC/ahTJhagnrBdlpVzqNiOyV3XAbMYsUxlyiE+LdrxuDGWmYpdYoFcsk5lppy8JRhSrFoavKy+se2YcsyrfbS311r6a3JRMSUMqKLbjMBQrCRuPEuaq2hRiEERjSHihBJKVHxTLpQYsF155ZO0EfwxIck9VYPOcYCuZeNq8XP19K0uEaVIycg5tu43euQziG/EnETfDbTVbdztIZkwRGL05BXDAAIIYwpqPb0/NLqpmmaab5hEMvsm7a/Xsdac6kesM9lcaT6WjErCCFnfYlJAtsIsu0/vZ4+yw6FKL3FH74bqFxSrEAwYA6YudWhGpkqvkxMl28/T+s8E3zrWvx4/BRXwYn0/iwf/5QAQ/0hgJWHL3z7wltIQDJSiAmgCZBBYL2ZISKWtV0NF7SWTClVSoWQcIXgU7GlLFrh7fhtt1Hv1pOUtOIatJPK/l+iU2R76447bwaed6376PzMBFdi5ww1Sw5p1MNV9D/ZFbwlgnelpKZpVzOlMgtJEXGYJYRT1zecS+8Kyrxr7mK+nS9vwzCM18u7h8fr2yR455yTpWdBguMo6ewYoKYgLfQeSnM5OShK8H4aDaWsVlRKrXej12fSgo+qlT+05E46ss3cmglqRhmqJyg0vBy38u8ehn8X7F1KRfCeAdbDy7L8wukGUX//obvNt1KbkrfRD84RzMDVq5DYuTAt422+/hsSjyBDrm6VKcgcOcGUcaDch3Qx/hunW+9qzYrVffSc4l7Lu3WNGEOttWQspWKMAMqxhlwixlxRKgRtlOwRZj4kwGi76Z0fw3J/OdlhH1xYg0dN03iD3OpQxQgIxcTaleASoi3ZNg2UVLXcc9n5MOke+ZDb5uPdvqcEEEWHu3u7xIf+/a823z+U3V0z7NTw8MMH1KH2fut4vcy3S0i/1PT58vD0uYnjjdT/+vMv/7fVlyW9Wz7/nr3Iu+tvPzr9EcchoHQRrO479n4jO92QTScU7zJoQSRXQHnjEiAmMlChO77ZJCCICG8SQoQyhilhhDJCAeMAgFHlTPhQAHBIsaDCpcBSQo0IaEEu10KVAJRA7lGCEG3yQIBBSkRIIinCsbi8zsWukHzhQmjNfRy9u/Qd4uU2Tze8Gdzi84X0SWLqaVsoNSWlmtvgCaAE2AKhNYpUcK1oXU3XD9fTOTi/3exqqgx9grozRmJolFDLxdUAlMyI/3UxJyj3JP8awmHTbY07E+3cJEP9aXunommn+dRtkJDNGmfNWbIle+y9E4pbmxEWBWXB1bh8vrt7xPgYig2phKC6LSe0OjPpTgmGTLYIcrPRmKP39x9qhHmalmXueklY9d63zSCblALDeDPsOmC+AuNqs8axFMNlTsnFQJX6Hkrv3LK/z1BSjin4BCjHemPSpjjnmGRXCZmX89vxh/t1ngTaANHzBUBJ4gqlLGmZRtMgAXe75enStilGUkADt7lOKbCmOQJdceKYC6q5W+aW9xnLSnVYQ8iRKk4VQwQwrs5b5wwXlAssJMOElcJLaSFss91S9H3CrOklbaLcUJRA0IFgSXItNIaapejMnFEhGBAhKOZQI6kF604HFGTLK4JG9NkznxgCwqnAhaUImQTEQi6+4khoF9wQXQO5AHhScPEKGAABb1coCUqiGIXguGTn8ZW397B2483RBq3Pv2xkmy3C+EZlxCTXGH0ujDa8Djn1MU+Ye8YxRkwIUYktJUUvBNWICMqkN7bptF9GSQGjOJ4dqpoiXQtFlGJeiPCILbnAcn11ZRVYKNJQSUqwPmTJhlqiVChlH5PTDXHJCbk39muvt8tNK7bN9ZXq5/1Wc/SwXoZoB2dWn782LeUcEzULzSF20bsKSTaulBOqhSG83ipBrNFdjLGU4n3KGaVYoFSO34NXLrpUr6t7avZyudxw1VLExTSF4s0Wjee8+LXdWBYlU1dAt5wjqtqtrICoKBXqcP4w39B+r+bpRBGHmkMYK/0JcrCrG/oD+BRKoBzXFNfLirkDkoC2JTVmwQTLUh0VLmC4zotsSCklZej6JscsSF2mgsUTkj+q/ipVE8s63uYYsFb3QkEKpCRNmGUcShIZ1t1BNk0fPa+pjte3WmvwebPZedu5uFj/5o1U6N8v58PtYvttWTAVw5ZVFK+Xg5QkJZ+T3G3v7z6a5RrCidTm7WlGaBSbFjLVnGl2NPO13y4J/YtSoaBpOCxh+YLxU6neGnEel8k8MTZi8nmT0qHSzqHGcr227byXlyO/PCDi7h+O355+ajuZE/IWtOpq0ikcgyOYJcATYEsxnqclxxTsbdMPtRDKxfl8rYVFG1H1sfwVYGXMRfhrZT9z5WTjsf7s0ozz+75tLq/PXSuV4pcTa/fMn1t7jSTx4Bag7Oy+WJgTswQrpRQm2diRMkCQEF5f3/5shv/meYoYs2aVNHawbXLPDbm+4a655wJN9muzqZWk69UTdJ89L6WwztHGi3ZXoKdEUIyFsBh8jAlDV3JjXXXJiYa6mCo1ITrvo1CJ0GJdTuCFu28R50FRK8P8s0LLBiterpjravw8zWOMmTJVCc0555xqkYx3qWSmok3PqUwhxGXEjLYloGUyMaZaEuMA2DKRcsKcKYRw08iULefYBbs/HKkaLue1oy1awhaxgaB9w6O7fWi6x+NxIzDmnmtEo7NpduO6frlnNS/2yzAgmXYf0X/69/2nv0f01+hBvo389iW8fUtnCtN7XR9RyRI1VOueUz1ozAUKpAoqOIGiUOaoaoIbLjZpyTURqIwUUkrNOQMUjAEAABEqWgDwPq6L022/vbtjgsYY1/FGQdasuSaVkYqr6gBWH/2yjma/7zDmt5tDLOtBYySn25vgFEHKJZxPr8auwTrGGCEsrSnzWFK9frsG5IERHjhVxCy1QpBHBDTebiWHAVzk3BbIq7VK8fPbtxCWzdC8ffvWdw0lV4pfhu0L59cUaEpJtQgws5ePGLHheCXNn6z9HB0qsdXqvmR/3P+Qi1/Ma6vuCeZEB6oaTlIJfJ0rYyzn6my/Li1mbYwXKF4QNV999Mz54oJnErkyIZZYB4zljB0lXnU0x9H7ebzdCJaH/SMmYl7GWFYusx/VYScpXotrNf1krV3tqWl3XCC7LoyJvttCQgjI7rCtGHJaY8yICRClyhGpa0IzIRTRHZrbRDFTmxACyBUFS+RUCYVQCucoQ/F5eHgAm3IFCi0mJqSbIDuKeii+Fhec9GbEiptQ0hpahUFk0bTgJZEiQa0IV0SYkAgwBlJrzbjSRlZaEwm8Qca/AbUAM5BJ0OyDRaymtNSaXCLLjYsBV1oQsGABAtNCV1QSDiX4nBJiIlTqK7OhloyTjdOimRxIFSXoFAllOaIJC6waJaROkSDQUJrseHIkrlW1bcwpp8qA4oQJkFQhY8hxIxLxr5+hL7LZ1hMK4Ch7xrkpoAio5EMuJpUrwWNBF9HNRJwymrXeI0wI8wgRN91TSlmjgg+U8oRQzJBCTRVX+otqbhluAMXbGrz2ruPsA1AZ7RlkrIFmh6pONK8Z8RQJxkAZWuYYPQZUOOeCDZfnzCgu9Q2h0c6e4y1BPITTZkDOf+m2Y6OFNWCtqPHD6ToifK0Qmhbj/O72/L7YfXC+0v+WXYECKVfEBOZKiM4srviMSI0hQlFuJVL0kA2gt3Y7ooB4z0E3yYM3l93dMBzun/7yR4RWIUsMy2a/e349d91dLKpW7dJnoX0OCiEC2Fi3SMlJ+ZD9WiOqWY6jHbZ9SmuynmUGLBBaSlg5p7UQRlUtLHnc6pYAa5UCwLmiQsGkNNprgpe743s/qYyeAPvbJXq3ZTKVjBFQa6MUulYUY8GglgkSvwBR40QJV76s3aYDKlTXV8+UCG0/6cYg9IrwZ4KWjXrvpnONgSKBimj2jxWRUL2D1YenZDuMOaW2aUrf7ZenVOpFSunjLVWf8cm65BMJ7pNdf4PQP7gYoo/VajNdh32r+ve3oJMmjqdTeKqDcc15lc8v+S9Gvrad8N5hAoDyMrvD4T7GmhOT/Suhebyg8eYJs9tjxZh//Qm1Su+7O0G7XHElLFcQkiiZmfh3rqhYG7d+0PJ/oLRPgZ2+NOuaj+8JIidSMK1MNc6EN4R3abQDTQ0p/ZBdBkMq2/7aontvh0oWm38RUknV83Yi+jmjixK/5uTvBfqBxt/U9Ye+l7k++UWuyylHR7Bs5WGZY4il6dXiLufb7124IqRyvVvd3jjm0jWkr1AFAAA2RE1EmkpwzkOtHwFh1aUMIdXSDL5iu5igOxxFM6Z6jRY6sqL1FkeLKmm3uBDLVJWacSEqxrliAEQAOx+BPhEmlvFAidR9Ttl3A8VkBDKpBmFcgy/Xi4Pc77a/SaYlQLw7m/Ws260PlElRyBIg9JsmrxZuywHzH46P8zh1m+Fgtx/2v21G2tOBetVMXPPDET8O6+/D239G6/v/9n+obz82v2rf/Xua/q/qP30s/9s+PTalTYvASMTyFNGPuX5rtMtEEbvHdKBtavglN6SGAZVVqUqw06pAU87nz5xFXI1sNlBQCKHWXCE750IquGmDt4QQpRQgDKWM41hxxZgS0uYopRaUCxut2LDry2t00344AvGnt4vSh+5dv5jxcrZ9K2QbuwE19y1lpW3brj0osT+9uJA3/d2Gz0aHRO581iVcib+Gps05Z/DcOYxw2T/0KYXbxWsthSRKM07R0CkEWTDk7QIu57nh9WhGtkxAhGVtuJya/nDrBroudL4KjBohQXb19fqFMcz09vnJFMhqg24Xz9kj0cHaW9NNgF+VUtNimz4z4bXa2yX06ruQxoKfuq6VUgBJ3m6MAS33pcjzm+m//8dlyuezLVnkuDSNJlilyHLCSjX9oBAPEBCOyi8xpQUKLm7H0VY3gYBgVAPCPkzOnzJYSmUMMrv7WrTsJFEc6DbXQwHNJfXkjIyVh+KWteVbVzxa26a/Lz4vzgcAmSnSKgtq/vhl+PCu5lmSbTCYs9woVr2aLxWjYpez7odYKKcih3lyJ5tcDUI2bYjF+ZBrpYRxLinl3sVpHHT7d0y+M5EXyjOuokPGvREg2Pdx2ebIqVhAfEPKhFIR2WKiAEUhjAvPAM47UOyRkkIIKpVwtUmFVyRSSpSgTILU1bprsBEX3baHUhoMd4g4Ii4Z/0L4CLUGm4OfC7yIpoVKlGgpFsEGZzzClMuG6BdiLjITfb8L09tBq6I300mkMhp7zdWkaCsq3juCEMKUYOkcWdeZyilli8uBYJnoz76EAMkEXwFXKnJlFUQsbL8/YqHmyeZcQ0g5R+cXQjORXkLH9T6l2zR9y6B47QmPq/lFyJg9c7dj9h/MinVHCrlq2QmhWs2tm0M0faNLScH5Am/BRUGPEL5DqBJ5qgjz1jUd0HKMRsxXj8hleLzVqIp50KJFhYSQXPAxVS4UrnjoemAeESO0T/XWb8Xt7aTlQbL76+sFMbKGyLl8/PiuUjDL/On+EfwDzvuu2X399tf3329iXShHPpfbjW/vu9frSfYo17rOnOwwEatfl1a3b683QExqUUpMIXRqACS9tzFPPp76DYkxk9LfTrTGpInAJddaQ0lLsnrT603L0C7XsVEPJPzHvP7m/vvUbe08qnE6OSucc1Kj6NQ8porTcuNCD4eHw5rOmVohu+eXzNXmNP81xp8V3nT018nA+fl1UPeb5nB9+9sdI8S5mOBsy2zz2TrKKi4zrtzYkXODi3YGcWG9nQiSpaJM32JOXPZvb0TvXcAvJr/N9JfzFXPWPt4TkhFBrWNT6l2En7lecs4EOrsyQBJTtDkyM4nbCR22n2rBTatSmXQXbPjmnNntB0ophiY65QxqWlzwC0o4+mpNyplK1VRUEUQAcyvfzm6qggT2xvTi7CwY3u9DYUuBUbBBNiOm59NLev/h/vn8NCHPdmqJlIrddKYd5wOv5u3Pmd0ouw+x1bs6mvH0vL++3gmt0sW787jTB2decPfnzD1vf0t2w9A9lALjdOIypbL4sGAqSmYUR4JlTNLG4MtElWVMkHykiFPSpCDNTIMjTBLaWCRPlN5Zk3KUBAazhnUpkHZQlR+/6Cp3AvXMUMP2bLuhEi4brHnbMZksm83KUOYucOaiphk5nz2jheIzioZ4luxcLXpzaC17U2LG2AWvGxIMdcbkcm00Y4j5NZFEGKKd7pbFBAtKbnjTYSX7u+262i2/k2G3HRr19bx9wZsX6Gq2uWmud/iXc3Pqh893m7+d3l+//Kd9++vuV+/U/7SV/T9+oA2ecJo6/q4Er/tQ8uNiP604Y/AgY42+ZoTbnuUY0oVwiBVMwhT3cIoiaUo6hyTw7EvFtMG8qQQV6hpV8/WVhyHHojqa0lys6aiGUmgHUKfLy2fEFQjH1ZCT0A+Edfcos3UUbUOgjICLavMGcXvNz7el/ubT6aez0g9VH3Igk130jjsyMolKKd4Vhbf263r+dpHv3hXNG94usXBEesEAw+XLSbVdXRIaWnzxxZfyYWfXWUNFHVpi78g4uVM7UKhrI3fX07euvZHND6dXpgrVGjzHEyoogT5rtjXXX25bxnZd83bSsZXiMI5fFt7+ZkL88bffmfHGPImRVEwppq+XqwxR7e5nj6yLim7kJeLuTE4u/T0uf/vx7lffl+VzOn0+PN7bdVG7d1ktVc5I8kK4y4jpjzeryp4CranhkklLHXdvQB1IaZZbcLVuaVmLRLjeu1pjrSvAt9qs6/UkLPWOZwNNqJilOhay72XajV/OAYpkHdEuy4D8jPuR5Jx9ppyEWwQtkUyLPuLitc7WxyXUTO2dRrFC07+nFWlVXXUx8Yf2owKCmxVhRZYZZSL0jlxnS7OqAlBsNySiOc1vXbKCphTnluLFz5jdn7nHJW/Yo2/fW/QBX9vD/SZcZ2KJGxeUDK3Ij6LalgIWiqcILO9EcNPXn5GbsH65+PXD42DPV9Do+ECFWAtDGz68jSdUjw36e1gUBVvJRNuVy8TCg19m41+Jji7X6xqZ5pzX8XTLS0PUMpEaTbmtBDXfUXuxFZDc4BwJ00XWBjiPd0AUnmF5e8frgaJW8ve+iiU9p3KjqeGSUE4ILm6+cE2Cu7rqyH5TyJ0xuNLL3aP05rqOF5rb8TL3vIuYEJd4w5rN0VyX0pISjii0NA1IiTa+rssvLKHMelok6aYlv1b6OI8P++2HZZ0v85V0QYsPwZ8jV4GiTiCM+yXkbgneHIJjKcSuKcPQrqtHm8Lvu0hu18m2fc8g7EST1zMV0+w9yxilDaotKrWuRNZtWlMKie8UwWs0I5JNqpTBAeLjCn0Skzy2J1eQEQVxn+02Jy3RVj8vDqmsEGww3jYorItNvi+oTbK00rryShS9Xqd00PiOPf/hlcUgiOuUrh7HsDAZmKwS+VzbX95Md0fAo3wJm97ezk1cGk6FCbfsUUw/0txC3hCJHu4JIW8fflWAxpBL2xZJag038qrW18v9XTPZW6qRU6tZrg6a4R8d0NM6BWiHx48GL0UHT+XoNNpt3M1wKrJbHsmmhCNehhp1ioix4+hPskucc4xd9dkFMV5RLt4vsGt25oX9cLyTcD6qrmkybevX16/3hyacv25Am28xjK25YcaYD5IzmRwmkW3pr6ZpUZqmMl9PV93WlG7uRqJdEPTriiTfuMTmxIrcFNH3+3tczXSeEKxczi7+1MrHeay4sA0KLRfTq9mgTcPBi9vNXRrY4PpunGRFW4w/LEtpZAO+2bVFNSMT90twlUbdRMhyDjPq96h0s/nPDV2wc7u7Xz78Jo4jZ+TXa5bqXXj2f6HtPUd/R/2HPFOaR4q+1XLO1Tk/KR73/WFd88qn2ePZfYnlz/v92DW3XEymzVK6EK0tXwARwIULiwqhVF7naG+fOd5RVig9q8LLehLtac0ZoQFtmqfFLIVfkMtaPl8usxwxYGRdFO1r27HoeS2MpU+3y6R5bunAqc9+wOQelE+UWTqCP6DMatB+VY28Dx7F4oJjlCJjFiYoY5gwQCiP02V/GIatGKfnpsOATQUDyBZY7x97FaGeJv/j28Mk+p/zr+fm/qkcv+b7r/747XJ4/fbbGv5Hvf+P6v1/aD79u+a7ZPNd933Pf8huagXs1QdaqBY+hBBCiCF7n6RoERCCmRCCgCIEUZYAxRRKqQIRQngOBmNSmPAIWahC0SNjuqIFBNd9N823SlAlGHPebAaEqblN9/f3bhzdag93d7VCDEVKaSebYGbsaK0FznDd+XhZVv/wURr3onzPf9D19W2Wf17GN73d9N2xWkixNkMHMfqwNHtZ0+LsQrjWTKtelRy+/vzUHA7DtvdGXS8v12sm6B3GCIoIbp8rKC7i+p4zGaKVitVaFfkHSul4+7EbFtaK56ex6+XhYYOpr+qLGbeYFdkWpGzlPw49tqcmmE2pVvDejKwUKtoU61PTIbeuu/YRaWvyz4JlTkOAr6CWt68z1T0PHLUb3h7/9oev73/774lll0vCJNtZSClzuiXH2s2uwoUCp7hPgXXy7vl5hdKU3NoVE34wZh2Ox9e/vm7uNpUWNvPxOnFCm27bqpYQgijiDEspfIwx5VIKpTQYU0pphmGZJmutbFqlpVuZj1eMadP21/EzlI5xAuCC9c4iqAJVz1WJOaVARMOh00Bwgaw6lZL3JfBOL2atBcm+DyHanBTXmVPRalQXRsOy3oTUmLUYb2oaSDmwZBFLpKtATMlznN6EyLXJUHQpgfJAaGmHow+AWELilhN13oR4dmHs2u3Q39vFdz1fb2tkDDuEmHIJ3NXNuQjC+l1y5U96mGP2BDWobM+nSXZjMVrAJpgFyCunVtHd/Fazd02jvGmb4Ykxo2SM8IeSh2bDS15x1gTnYbP5/PkzwiF6tthTxieuXEXzal99vA0bTlgI+RxXDy6jQijhEEpyoVOdv6zbexlDxnXnV10S32z7GKMUejJhc1TPr0+iCVQszk8YT1AyocC33Ntn3I5cPKN2iW6eJ0fDXtBY6k+K17gqZ1zfkUZun2/hqO7nbxdXUsCJJrtrWN0SQkiCb9tjSREhkCXs8/prqFzKHeN9ow+1qtWkb1/OUFQ33LtpuMy/18MV4WrjNypv3lvKUUPv3YxbuadYXs8nQCHnscAo2yHbuN0OetB+XXa7nc+lZghO1LIQcQJ8hoy8YaQmKs/7zXa8jATR+/07v5Zkcb/7LntR6OV49xs7HlDZTPNFKnK9PesmADYuvjbNUGL/+nLb7fbLMgltEJ19WKVGQiKCxWomhEOOYrqlEnVYHsykcrHBUVw39x8cbd8AJZQPl+cyDJuUTfZ4vfSCYIyuQrxJORUfl3NeL9CwreTEjbfjuz0q3oUx8FDBBeJyXQGvxp4JiUqL09uIal/TFtXnh+2HBn8XvBetwwI+v16BKZ9PhLYxZK5TSKPusTGh+N9q9V4q2m32Cf0N4cr0rW32023VoigRMayAIkChtI3Q6/4H72dUvFKopvW4a+dpFEThKpwf7j4ei0hPz/nx3b9/vvwy7MTlimbb0iR3bX+e7Ou56PzYooPLKCbHeMlwTinuhu9Xf4r1C8Z9jSKFuFrvQ257GaOfx0VLZlKP4T8y/qsvn+H65e8V/mF394bo//cwoGm8EqGrVKhNhv7X47tJ08O+/9DID4JzAOzX9jK+Xuy/GgMOviU0ESZz7KcJK3201hNhGZtJ3BA6SREhCHt7BrfuZd9sm5BZpqXZs8ooawhmE4aUydl+/tP9XetyOJRGBeFBDrHHVDpUepR+G80nuyIEC5eL5LYXDCVa/S6jNyxuPm4DIoEEpR1jKflq3F+pvAafuYyiXQFXIDll1w0toWh1s2w45yR4ezju5/GGKvzbrV3TKALgZitiRa8j/+XSfX4Tf/5T+cP//nF53gV0Hz+8r/+rePtda9/99uH7QdNaTAPfreNFY/3rd7/byQMOmeOJR9FIZYyDygjSMWBnMyEsWAeZoZoJ9oByypUwgaWiEpiIuOKaJSItoTnmOcWIoYvJ5Jp8ihWhVKASmnL1PgBigGuuwJgAVGpFSg4po5CDahQmlPEmmURZsxjDOAJy7z+P+ti513NFvXtF7f33eTGA2PjtvK6WKF2jRTVu3w0A1p8gS4vjaG41sY7CjUo7XzNXDlU0mZf2Hi/XCVA05Vm3uuBzhs9K9hhjREgtHOgLkFuNOoXsrlXz99O4gtyMEwUqUrkhlkTT2qWkwDhVwVspC+NY6gD8SnmEIhg9BkfGcZTcR8Jr1axmhuF89WI4VHemQyMz6b5/9/SXPz3u7n2Op58/P9y/u11802HJ9O3itQYI1s6p1cCoNe7N+/P9d0P30N/sKyAPojRbXaNrQw8iZ5rcU9r2WwA8XdcaEcbYORODwQQSQhjxXBNQdLmcuq6DCoyxFALknALjwtG6ceEKsJSkdF/MTBhKKVaMW45VKZkIiLWgzAvkahcXPGYECMxuAooQo6VUjIkeNhCrpUALrChzJuKEi5PR0wwsA+6GvtYkRSVRQGIepHUAFqFAueiQao3/lmoJVqYkC6yufsn4FitChSmlYr4BivPi1sXlBJzlUufmIDSvlUbgQZNIh9r3JHnhA5Xy+5qG1Tw37brditWfajLgpcQHM66bjawpplAwkIp4cKjl3yN3AL+1iwgpAUXrmBnLuT6HmSWvaTONyxuAbvqAiHPO5Fgl2Tbyk5+7uHQcKI0gudTNkC4TA56WaF5u4/UPxrzWWo1xgP3uSJm0xr6qXhpHbcCUPHijUnCYoWn+EegCktsRV/7A0gaLxk9unV00meUjw7ndPiH2DKX2+sGtDeErb8OmRxR8KaXVx9NL8vlY0Aw0hBBZ/yXks9IcNf9vyoyNSbTcxiB1O5tZd5oSkuws2jdID6dvfaveaf3JrhhoSTH61XEqtG5v19v+eBdSrAiapsGspRlbb7PI49tr8L5KEX3KxQncptgwpKO7UWFQSagoZ0fOai2hlhSsoYTUeZku12578HX16KdAfpQtWW+9nx9JPZbSWzc1jXJuuXuk4/Sq5Z2S/TpXRpvbCRgHxL+hqm5nvHn8hvI7To85+5BfuZ4LTOvivWelFIzx4XDQqoWSjX3j+lVvP6f4RTPZ4O9I2GfvpViUXLUoq7mCHV1eMIpKQJWZkIga6HqKgEi+d4vGtccYZzgn8hNJO+u+pfoFKit5WymOaNXDfhqZc4EwPZ4RQkNwJNWVDT8i7nzMMa017St4nBXCt5zPQ8tyyA0/Dvr782uOpYomsO4SrBEcupZZfzN2vDvuc0jz1ZiYF19j5i4DosxHjHkju8bWIGmCfJI7uJhJIs5Rxq1vmgVVhipicl3tMt4cERhTT7JKOSjVhYhsvFIGndonu3b3r7a8RnJRm6nd2DX8JeUnBjxyHvxj9azYr9iQvH6M+G5lfLlKgpLgXXRdhtz0bHM48p5k2C+ulnxnQ9T75xA8Ko9IfF29tqm3dTF5LaRQSYo73F5YymWaYshTJJfbahAZaN2J8A+a9p5rZ2paAh9aX3wLYckXbGZO9JnqE+5/3xy/Uh5C+VchZyHeT7MJvlA1F3I2xiCEMNmsl7LOX2KwHB1JOYSYY1mnm/w3b2VOiFLunIOKuq4zznLaoSxvF/f48CtrAIE8Hr47vc20SbnODeDwlMoXdvlnk75odnvPbYuSK/n53fv+3fF3qPyQ8vuldMvNbzpaYowmdLJtuN50/P74LqckhEwJQkScNRhzb50QgqAIBdXCagFAiSsCBHLmiGaEEGQCIecYSgm11lo44FpL2nY9BQyAGBPJR1KwbgcbLJeKMGXWFRDBVOWcqcoYN0xagrkxUNHC2HZzkMvFdqEd01sx3Pmxl5+abXc9XxlHyDsqeKYom4gxLoyYaRaRjsWHyzi/Xapkx90uGXNbZq5rDWV37AAtgtDz6zfeZqxkmLeURc5txsu8PqdyLWVB6V0rGshg/Wl/DzGeIV4rsc1ml+szqprxbpo9TR/jWoU4N312YzNdMcGyAg0p7x/vMtzafiXERyw5PLqbgnxvFi36QycqSEAITdfnzZ1UvD4//fnwgTG+plB0q0JIKUDTy+l6EkyWbJKrMaHsKuWde5lS5X1zKKaITpkUGnkgLb3Zmyy9bLtYoR/2tBJCCBO0VdIYMzmDMSWM1pwppZRSO00YY63aErO1a6veI+KSL87atksg9ss04YgL1KZXCCDHWhDHggmOMSCz2JrQbntMKQHgpusrMEkErYgQQnLlbZNmlwDVUvwaa0Ja9TZEmwJWNGUD1aeU7epwKhwToZtuu4kxzNcbpbzZ4EIvVOAUmBADk4zrnLJ9+fp2f38c59X5hdAkhOJEEtxnx60XZiKcHELWNUgmtznR7W43LZ4Jvd1puyQz7rL5ruCXmDyFR7fuKFGxXqgMnHeEBiKmYHMIM+el77fNYGb/QjGHGhAi19v54f4IACmvQqjTM8rubmh+Q3FXC7LrUtG6vy8pObfMBQpu5DiOh8PBmKXnnMOh0/dKbnKiJSozU8H2KYim3Tx/Lf0xjfOcC5GK1fEf/PWB0OSDg8So2rKqgIgaCgAA+0tOVZD3UHuEGsoZ1uU2nZjhUbZrLn1GDS4Gm6orJ5EQ4sMczMHP91JoZxCrvw7LQwWHyLL6M+sIl26z4wiHdX3O/lB8329QJc8lJEj76RZp36cypjxXnJgWiErjUX/8wUflfa0+I1bbfbfrOyFlIiS6QNmGZV4A2dVBpggrlomzoVYvJS7J5jBjZIceT+NXTkw34Mt5ROkhmn3TbEN5bfqwmKuZsdAi5AJAVVNSDt7IFEE1VagS8oXLWDLl+AOpx1bvE/tzZl8K/aVCEvWT4K3UuYZ3BG+vFzOONynROi+tvBf4V2F8dztvKug1vrj65POECMekWZ2nraAYmRqdWSnUbtefvvwiOR7HRQgluC4RnAuU4mGn+p14OX/xoei2Yco7Py9XJOmuacDOGnPjXYF6P81XTIUzqNmecw6M65QzoxsAULKHaoVEwKmNycdaC06paK0pgRCWVGjK5O182e+3tcbreMlQCwIumXNOa9l28nR6ickKiWq1BDtfZ+CF07rp2GzedEdIzcGPybucUNM0gH3X71Ngp9vT0G2CGxGqjHEgxRoPgSsua3VNw0jZRfduWVW0jxz+x/n6nUx/+u4dt7BcshzxndhyZ/62rbpvu9223w93jWg5qwihFMm4XDLxSAdH/uyLVfSfQl5Uf7O33+RurdtzkoclPlxsMZEhxbt7I2VtG9XJ79brdp5ZKQXyK4H/Ntkoj3eTjQiJa87P46XiSnYC18JLRoQQglnNoqYe+Q88/wOiWxtd0V8o+s7N20p+bATlqdfdjREuWbs9oAxXjveK3lHqMBLO5lrxNK4pQtcN07TUDF3XGWOEUFCRoGJoh9Pp1Pf9x3fva1gHhTYMszD2Yv70HufytUvuCAO5qo/yeOQjsb+/G8aWGqGWVncEcL9NTVe9E4T0mBulVE2VUTEMw7TMACCEDC5iHFCh2cuSGaVJylRDcAbblVKGKDfWXYNBit0xNcR8Y5ziCiTXZD2uOIbEESO5plC7vqkVORO4wKUUvyYlJeXEhBV3fFlnRmhKZX8YKk4InXhDyJpzh/v8Rh6XPH4tiNZiKSt9K1MKgImSXcm0RtIcAN06ZxuxCzi84rSJZLdtfZgkRCvZscQ7HBKKDKPvaso5zSQfSubr5dFN70sWDL3HOHgzQtFNP9zGUyMezNvSD4rJIc4tqk0sCQsvpAvhRgjBSKn2jLETch8cCSFACn7heX1P2JaogPJUUgNFty3JZBF4QMBf3lYcsTpsrufrw34LW7xO581WZsvW+dpvKARFMJfbak1BuPjkulZVWpM33dAEs+ToKmNACXAWSiZCxgoJUCh1XBcoBQDO1wvEstls7x/eeeP/bRu93W7ncUS1zvPMlcSMEYwxZd4lpZqUgpC8LkuKuUaaUaKqWDNC5oA6qRqGPa5AgNWAATfZJQa4BsgB4VQQQtX6lJKWqrggpYyrRfQqmsBVxKQAwHqzUFX0nG4yoQuPV1QuDp1RHxb3Uu0Js1RhydXknEMswacYc3BoWV6l6G7XdTMcpSJCe0a4M0hscrGnpD0Cs99KJy1NV70tJeiYU6i3dpDRsRrbzWbny7UAK9iu/kZoO60Jy4xoTJme35xgA2GOyzCvL9P0FWXRybthh4Inon6P+bndWDNuCW4JnwvMQkLbidWeYrn5sGBIMY6YI0JrhJBpxhiAVFO8kszOYZy+YfHCm5Pqk7EjwmF/5NPtGjy06sN04YIem6ZZ1r+q7olRPS+Xpo+suWJ+SvVaimukkvKdTTckVxtzrMjVa64rIfeCsXmdCKp+NT6nDJVUpBpNaIH4GMpT0xzP51X2b9eXTNjYdX2IFmNcM6hWTvMNKhOSxTCr4dmu88vXkuCp+/AmdclzqABCSRe80Gp2hikZgnM5YsaNWZpWpBSafhDNsCyrbFrVGrOOiDbBOtUsJv81pytUptvj8+drDgQBywnlmBhFUmJnExcV4ZSjMEvqOyJFcXM27tp2gqPudiLeSM13022al6e+fbde7pRsnEvr9c7lvx0+/fnbL5mUjxDvJX5gSMcYCizNNhB1UZu/IXrLETV8x1jebD1TNyZtZr8gPhnrOL1n5GP0fQg0xFIQdPv9vKy1AKrYzfagd2mOFDf3j/fT/BORr4BOxhiUH55+6mjnRdcthqxz7jvSNYmV8vSXM+UJk1pKQsRUfMY01LQF97t11E3TMbIx8a8lY8ym5Nvk1dN14R0nzeLqT7q1tKI4DSr/U87y27db02wZ19OyumB9tMOuLQGkXKSyDGT0mbFpfwRvPCskk8ZE1eKdv65sUDeXiBMcP3K9ruby01+ND2jY8JKRZrsCVmlCKbarEVQQRJ2LSrQ//1dfVkfoz7v7J96dkHZVpM+nHy/hQOQdycsGTXvAPWuX4IzgVJ79LHLwTTNvmwNObS1RcX2bQ0hlGlmNd5fzVLE38WnO/8WbvNjnlFKzTe02hhwX82RNiPUJ0I85vN3erghM8Hm58WRLlIt5+zkRM2HrTzdG9XNEaaGYyqtbWU7Uu808hUpem6ZjInm4FWZR6XKUbkUCH5QoMZwYpwWfIvzi1nx6mWz8KeS3WlGJIHmzTi6F2qiuJBRs4Fwwkcb55XDscjXLek551RoYL/Y6YedgtmhCMMoj/V66d+j2jhHv47fdvpIK7q3p0m/rLDgpD3fHki0j037Y5ICm5SXV7GIILmitK2TnDMaFEOSNxRVHb2IsyZISEUUIkZx9REUgnKEijATDApNaIUCOUFnMhWC83BYoiEnpvcecB7M6m5GUzoZSgFKUoqWUY1wwaYUKkCSmHuEk2BGIv55mRrbJm+7wIV6+cP2hphhvSGsZ3FopAoKzS4hxBBRMJkwmybcRI83kcVvexhR9bXi8mZLXjstlvSBixrfztmsTNiklO4cSeC00ob8NhxUqo7j1FgBZsybO9pAOxdwvFyq0ttGTuKUkWuel6Cq+EpRIGWJKdmxLUHFNzjhOhVvNdiu4XAIUjCgOU3ucDfzUihR8klLaubTkDrKMa2FoyJFHwIT2CKBkU0rhTHm/qraxk2v7piLT7wVGFunY7gXiLrhTzqNuOoRIxoZEjhMd6401OgH0x94s87yuw/4AQJ9++Xa+3nCphKD6b7hsyrJtGWMu+FgzJRyIRWUDUHIJjPSreSVYSa6YZEBLsEZQQbjCGEc3p5o4596Hsq4IgGA8TRPDDFJEihfjI6oo51qzFMyMM2EamAw+ayEbwW+XZyEL5q5iwphAmUCiMUGIkDwo0siWxOg571HVUtCCFlwh2Q7VjColhAFgSrGQ6NvXt0b284Kql4Qd1olEp2LWEPW8lsU8de1GtcfbzRBMmyb68mc5XGj9hElF4ivQV0JQyYJyvdjlsL3DJL+9lpAkZ1sKD86atFTvK8YlpH9Tyhe/Bu9mTuXxERc03aYn626Cqhp32T0spx63VGiZa821dEpP1ysRxHtb/FCcHpq7mqW3JHk9vlUz4fkEjXa40G5/TfgvKTlgT5jqEnk2hQgFhuSyiSMJMXMaAa8uXRMghHaoPgRzWBffDJ9J67K/7Fu1lGgF73Gf3rxDEuW9mfX+/T7VCyO7FBiwF60NBF4TKYGvE0SPKR4gD1CaZR27blOqF5Jmd5ieNRcSsTcCHYKGs2aeF0yKVjBN3xg1DAHV3HtnZ5MQWRePgbBGQPwPELeFhu2wz8snBv+Lu2y7rkuGrDNwujULMGiDxbioeQzRMCULIq+1nkuMUERwTLA9yryV3TyPAE4KkmOQjHPc+PpHTGpJ2qwu5RWTAqW/vEihckVzrZWQismUzV28/afTk5heFYWtpn3yHPz29FJOb1fZ1RJbju8oHiirQF+pnBDCpN57G06X67vDAyEshqKx5LoNa1iXOJ4ms0ZcOcGs6xvjJ65AyfuQroSvw7CbLuX88sxIGvQG4+JmgYiv9dKIT8lSoRdrbSqzM7bkEAyRUpuluugAlQoYACvZUiIxot57xpHzc4mo7zfTZLTq5mkFKE2rgjeMrMnksCaEVoTsYf/48nyVqm57eVuvVHIzn5uG2DD6NBOIKYF3qR8OlGJEvLMFw1Bz8XmpmLRSQcpprUM7NC0JyR7vbHFgbhLi+2TerUvG4nJ8T/r1k30WBXO8Q7ljIWwGtN2kFy4wE1lQQYFKUngRPGrkI6g/P3/FtVas/7lgn93RGKLbd4eOabTLtjMz9etHVI+Vjamm8fr387SbxuqzkbsQhBsTXqqiBMYwnq+fa70u8Px0+yNi1//nP/8/qL99QslhsuacMN5Jeoweh/hG6MKA+nlA9ExY0PzXuZwSjNmpEr4XkqCqOBW1QrYIaMgZOKPJp67rcs7em7ZpGCan59PhcCyprrNRqokxJ6iUczvTw+GDViLGKHXQLeDywrB8C/e/vLhP3z/u7nuff8RoXOao2u/SvAyyCfHy9POZ0267rZxC33fXbydrjdayVB9TlKrphsFMc40V0VyQq5lXjFAkyWchMJEQLa5JUYpKPjt3oqwVrE/VUMww9rzpgFMiODBEKUmVxWUmCHEqUpwpRpQyu1xFt2MK0my0VLgiqMzOoWSK065U50nSa1lxK5yI1qsDhVIdqzVWWlDG5Ha+SaSIKm5VjBqhqZ+YM1QdPZ7G24LaYSq5I8xf1595xbhG2Zo0ChuemmED9V3TNEoJu2BPf8ngNnu2hJcIzbCRL5+/dQOHkgudlJSlQK2kVF0zphRjyu1y2lDF2hDSqBRFRWbXYBrM9CYfuugIWUE9EBMWPEsmVaErk7VcbmIrCC63l+vD9/fLddlsHoyZms42TeMtZm2ogK/X+u59a0wc9h/M16eQgF4NGTZadsFncJlWsqDbUPeXt8vwvishUIxnN0oGBZhuN/nkKBLdruOcJz/lnO1qtdaQMwKCCPiQEHJgH3WzrDNBSGE250XptlCWC3AXASHGKELEp+yCz2KnS8qIkYqKUDTniGKmkmFGsiAlrDB0JURgpJRSa0H8mLyAokhBkCvnQFikPN1eTa0qYYLFbpulGV112mBcY5f4qcLinId8YHkDmZj1tQZUMkLETZPZbu5Obz8dtg8IshRFdLzi4hlUWjQCIhFa1+3R+OzbYcguVItv1zOhlMr3KRjBWMyrTysj0q1ISonRi9ChMivagTW0VlZjSf550M11bvttifEFl52bSoETVJ+98K6PVZold7uWUHB2Eor0GxpKZc6XWEqqPGOISAoNa2H8hgCc89aEQnLbt1WxruWX9Q/9oIKFbteOV1yS7I+RQmdGq1QTMiELAfwemxCr5dxfZ4JB54iYNFRMDG/zzGh3ma95GD4uU8VE6q1KNzO0MZYXl7I8/BnwvxNtceYnVD8KrmopfjFCFYqIWwPgeNjup1u2Zup6dXvqK86yvRDMKe6mxUv7kWG/XM7t+/sQAcVYIB/6ze2XZwAqNrKmMMiWyM6tt4E3ptiA/iJkJT0wZNbxT+29rNMrYu9vb9fju56JunjXNLuAaSlQIrDu5ucG1w84B6hTrFfMC+AV+x0gebn8629+9V3OayxI0IHQXUyRUZ18Uo3bP3hAvVtyd/ycsPQulbjDddBS+yVmOCf0s+a/TegNia+MJk4OIakcN7x0JL0G42uyYVXR6n7DjH3l4iTGRDvObBJC5Fz9ZLFWznifXFn0ux/+6fZ2WqdFiPp6+9Pdh4PK28+fL7U1bVvero7id5xLKt9OV8QIi+G22fVuYlLyCp8RQU2Dol9DsYq/V8otkQJ9xpy9a/unpyeNVLYDpTyToI/ob3/8/XF4V9MaV8MPG8hlq4fr29vQbbY7cX5BwTJA1wyllHef//btN/+gUqaNoOv0Zdu1CVEUKq0h00mJB7vuAAnZjddpirZ+9/6geLckM578fpNbKYPPBFLBJ1+paGh2rmnvcgSMrWSJ5c57Bsff57hviqTud6TwzP+IxJsLW7dywpzGKtg9pxPpiEotct6h/yWVlwK/LumeiYuPJ0K6XNNPT572yvI3ky5uLME6RoEA6jcnSQRE7hEJM7/Z6To/M4uv8y9/ePnxd++P07dvP65PrebrH24TLVRu/k+pNm6+v55v262uIE34MyGCBk5i4+FngVulFG9m60QlbQ61lBLz4qeKEaVsgiKUJOsKp5fXzbanDL88vwz7jjECNUVPGVPe4kbdQQkYiFnmdquqli5FpRs7RQtIMYKB3q5B791vfrcLYRRsAx4FH3718XENN4rx5RU/vruTQ7MsoRIZHZ+Xn9vmUQnOOA7JU45yCc6VZZqbdkcIqSjVgnIgNSDnQ8tDChIhj8haMwoeYdwxxYF7nEWwHnFeSzaLBYKitaJrwTBvRt3vcoVak5CtH9eSQ84lW+XDN1SUHIZlfCpW9z2n+jbmyqdLZm0rL5/D+BG4RY80Z48QMoEBRZwau/Ra85b6Kd0oDEy6519sg3DT4n956T+9n0433YdSFO92vvwk+WDiDupIy65Vjza/KnFv1uLjc8pd02yzT0KZENK8TggvTfPddAlk6DG+ukWIHXLhJtk7iiPQuEysUVeaRTC8bYZ1nZu9sJcZCtL7D9cvP7El1Pgbyog3P3X3cD5nsr9saLeqDMG3mtSW6krm5JVMxQshq48TpY8hTc1QS2JC5nl6q9lvDtu3p2/HHw7L376ooTs9nZpG9e/V9b++PGyO6AC3v1xzBYIrb3W2FhM2zZe2aWXT5NuYIUUfmqZJuY6329v18pt/+p21CxSyumeOd3N46TsePS0wDd0H70+5Km8RRqyCrZikFEjmvGWXlwlxhDjk5H31hVQbHWXMoFiC55uHOp2A41KybhuXk423pmF+tnWhu+7RX6cilMbFaTyamXpCY7KvJ7HpMqs5pKYdomcl5SWc93eCMepXqWQbQk7ltNs/Xp/s3eHTeHOn89fHj+9uoaTnhWxazJpyndaOc6y/fD7+6ne/ouLtPH/byHdhSU1LM2KL+cPj3T+c3hRDeBkngnRCodF5vlbEjli/+NhxxjC/hdNH3CeuwK2Uiyia9vXbN8r8dvhuur2SBiQTPqxMQkGeigEIntfznv9DvqycSgYsjLNkfHQRm6C2gdNuPJdGfopoLcVTQrxP2P7Qdfen6RXA63Y7mzEXMhyG89/wcSOu5VmkhPuDMJUiRBnNwXcdRJtx2NZ46bo5xS4ujayX1OqcIV08eJ2Fml7McWgmXxT638Ds/fIixeP59Lrd3J+/oWHvK8zDsH1+HvcHttpLqRIRN01FN8/Bl0b9nbOTD6ftvnfhq7uuu27vbs+EMYpYCVAWQqxmA7iaeiHWeZrywqiAlGSnzHVlQfW7h9O//LOiXUZYicN4QQW/6m57O59w0xifQ1wZ4rrnNYcUI8EX3cbz9Pzh/W8Twc8vv/TdfH29PRwfriczbPocRyLm4H2z2X77+ZfKRszL0P7TX/5yHvaZsEDxHkQg+AqZIiRc+QuluOk7IVYzFpyOnd6si0UkA5sDmMMddu4SfVJt5TxinJcxfXj8R1r/ZKy1a1xRqYwddPctmE8f33/5y78UqMmPzk+SCcElw3u/NmV92zQcY2FnnFI6fEiLOym6pfQN43XoOgwl8pfLpermB+IF1KdKfHYJb74sKxcNTrdmnrOWrzTPDHc5LYj056vp7h5l+8lcv3z88CuU+XI+S0RwqRvde+NTvylgM9DVkGa7fXk67x/uCONPJ7FX71/PfxkZbNu7eF4+3D3+PP5ZF2CMXcdfttsBoU8jevPx6yA+/fX0X1r+PieYrlcpBiXZ6/SaIxH8+0v8Q9P1bhJUr5BQnAtB/0p8z4WY7Wjz5+p1JzvsfqdyO6WnkoDK2EqF0baWr5mPXTqe578d+v719XWDP7wtl/3dsWL/0+d/nso4flmf3Wdbqk9vy3wT6Lf9hj5q8dj+hsTgsx1DdXi+rV9LEk/l9NC3//ef/jNtKWLpyxrhMFRX/n+vEMxdFseMagAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from PIL import Image\n", + "import requests\n", + "\n", + "url = 'http://images.cocodataset.org/val2017/000000039769.jpg'\n", + "image = Image.open(requests.get(url, stream=True).raw)\n", + "image.save(\"cats.png\")\n", + "image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GelehaYFbqY6", + "outputId": "2b39281b-cee1-4f66-c8c0-40d7179fac23" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([1, 3, 224, 224])\n" + ] + } + ], + "source": [ + "# prepare for the model\n", + "inputs = feature_extractor(image, return_tensors=\"pt\")\n", + "pixel_values = inputs.pixel_values\n", + "print(pixel_values.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HGWRHvYsbvcB" + }, + "outputs": [], + "source": [ + "# forward pass\n", + "outputs = model(pixel_values)\n", + "logits = outputs.logits" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UpiFj8a4byWC", + "outputId": "613905dc-bfad-4f2c-cc5f-eb5da8cff0e1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predicted class idx: 282\n" + ] + } + ], + "source": [ + "# take argmax on logits' last dimension\n", + "predicted_class_idx = logits.argmax(-1).item()\n", + "# turn into actual class name\n", + "print(model.config.id2label[predicted_class_idx])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RYXXspm0bX-8" + }, + "source": [ + "### Auto API\n", + "\n", + "The [Auto Classes](https://huggingface.co/docs/transformers/main/en/model_doc/auto) automatically instantiate the appropriate class for you, based on the checkpoint identifier you provide.\n", + "\n", + "Currently includes Auto classes for [image classification](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForImageClassification), [object detection](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForObjectDetection), [image segmentation](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForImageSegmentation), and [vision2seq](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForVision2Seq)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 113, + "referenced_widgets": [ + "247bc93b19724c2eae38b148ebd36faa", + "c5e6eb48578544da9960151bd4261fa9", + "904466f89d014246b06aa8c202ae91eb", + "4fd65d6a96ac4c08bf2cfa07b1f0d4c6", + "dcae9ec41c424214863a94641c6c2793", + "5f3b0e2b24294026aec08c561d3088c8", + "9661dd3c3c604622aadf3e1d147343ac", + "92a94bb63800496c8cfe08469c6c4f9b", + "ecc7130759004c40843042a4c88dd3e7", + "ac07fbbbbf0042e28b0a65c0bebe5c53", + "d37c7e1da4804c74b2cd3cdcb712518f", + "4c23fc80cfa945e3ab8fbc0cefeaa88a", + "6bf41e507f0d4bdab0718f7cfb0f64ab", + "8dd9bfa6be1847d8bcfda4e58a79a49b", + "b0197fa6a73149178095b1b0d4ca912f", + "e22aea73562e4fd7af59c86d199c9d06", + "4b9040d3b5fc4aef9870749953f6f3dc", + "b2e398d8b4c14e13b392526a30ad9645", + "d7e16d6695c94875bd1cdb5ef91130ed", + "da65e6e1f29e43efa94b138835ff08ae", + "f69c2b33c0c74a76b4e36b78f8769ebf", + "b16dd6b230c7417d9fe545ea2b61c6c4", + "f41d6117df6e486b8f94e23b21a956a5", + "d771e016a16b447b8f8cae13c2c6d66f", + "95e416b00e6042b2a308b90160dad073", + "d89a0e73bab44f1abb85816622d54b39", + "ad035a8f5660494ea8f87799d873a6b7", + "2c9e40c42ffa4a38afb20b171565be06", + "c9d8589bddc74d4b93cba6faca7f1f2f", + "1071d53bb40d4d62bce36f6f9061e287", + "48dbe8e2192e4fa3b4017501cdcba264", + "bb43e8c2b0224a039fb7da54cd56774f", + "4f33f61dd58f4366a5a133f53768c057" + ] + }, + "id": "9U__X2vhbZB0", + "outputId": "16c6f794-d41f-4d7c-e0f0-d3b93fd1f688" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "247bc93b19724c2eae38b148ebd36faa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/266 [00:00\n" + ] + } + ], + "source": [ + "# automatically instantiates a ResNetForImageClassification\n", + "print(type(model))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i3AFtDOYR__7" + }, + "source": [ + "## Pipeline API\n", + "\n", + "The [Pipeline API](https://huggingface.co/docs/transformers/main_classes/pipelines) allows you to just feed a text/image/audio to it, and get a prediction out. All complexity is handled by the pipeline.\n", + "\n", + "Currently supported:\n", + "* image classification (models include ViT, BEiT, DeiT, ConvNeXT, Swin Transformer, CvT, SegFormer, VAN, ResNet, RegNet, LeViT,...)\n", + "* object detection (models include DETR and YOLOS)\n", + "* image segmentation (models include DETR, SegFormer, DPT, BEiT)\n", + "\n", + "Soon:\n", + "* visual question answering (VQA)\n", + "* image-to-text\n", + "* depth estimation\n", + "\n", + "### Image classification pipeline\n", + "\n", + "Image classification is probably the simplest vision task: given an image, predict which class(es) belong to it." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X40QYLLwSBS4", + "outputId": "9329ab3b-6d1c-4409-8199-c2423d72138b" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No model was supplied, defaulted to google/vit-base-patch16-224 (https://huggingface.co/google/vit-base-patch16-224)\n" + ] + } + ], + "source": [ + "from transformers import pipeline\n", + "\n", + "image_pipe = pipeline(\"image-classification\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X-JmQ3cbSLKD", + "outputId": "983564df-1607-4f24-bb40-424151d59364" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'label': 'Egyptian cat', 'score': 0.9374412894248962},\n", + " {'label': 'tabby, tabby cat', 'score': 0.03844260051846504},\n", + " {'label': 'tiger cat', 'score': 0.014411398209631443},\n", + " {'label': 'lynx, catamount', 'score': 0.003274323185905814},\n", + " {'label': 'Siamese cat, Siamese', 'score': 0.0006795922527089715}]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "image_pipe(image)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K0gn_i-8xaqL" + }, + "source": [ + "Note that you can also provide a custom model from the hub:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 169, + "referenced_widgets": [ + "29c30d0633534ac89d5059513ea85f92", + "6b916a7d0f544a63b80a3efe9dfd0f44", + "46995a901449477087bb712b3a0dfcf0", + "eef08a301ddc44e2b0f7b74db6f86127", + "73ca073b98994dcba03670961dbc49ae", + "40ef861ef9a94ac09e9858dfce45a644", + "6f73931aeaf1432ebb31882fdf83d462", + "c04e2c71bdd94b3eb8375fa75a134bfd", + "0729f9745cce428aadc5dfbdeadb9273", + "20ce43c9abef4017a9befe6472c5278e", + "f0728765a7df43a9bd021f1472254836", + "c31e28dd39e24325a1a303d0262ad0a0", + "d0d3c4d7409546909e3f8acf98785182", + "b03d4140889e429eb6a84a6518e46353", + "ffcc25068ca14b8f84380eea7f4f46d0", + "c95db8785cf94d8c88e3aa8bab2632af", + "f4d2246d49584564bedadd088116b23d", + "51f16b2a35f441c998413fa4ca842d4f", + "7c1130828ce64c528b5ce0b3014f032c", + "2882b1d3f58e40a591d827ab2c4a2979", + "074ac740a19a4f0d8991205db9506b33", + "9ecb99f53c434d88a5afd72f5ff3c889", + "811fbfbf52b5429e8559aa64ffddf374", + "907b35a327ab46d79d2654babeadfd0a", + "6fdfee4649614e74a31a53f3e9db467a", + "eabcdfb258ee457bbf392d692b6e1f5c", + "2f2df35b25634b6e871ec11c250741d9", + "dcd5525b4c2141ab9a387ddf76b51c88", + "57cfa7f2d5c24955a4b29a9daf121aff", + "547a3c59328f48a7b71fca469245f0c1", + "22f0c016cdca44ab96f13ab347a54ad6", + "5d0701fa229e440ab1af934ad360f948", + "d9d9c1e654ea4eb4bb3b1d8cb7b1c6ba" + ] + }, + "id": "yOTEmXU2Pk3l", + "outputId": "bc81f8a5-75d2-4141-bfed-4de4cb207d3b" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "29c30d0633534ac89d5059513ea85f92", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/70.1k [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_results(image, results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FknA1N9tw9ck" + }, + "source": [ + "### Image segmentation pipeline\n", + "\n", + "Let's try the image segmentation pipeline. By default, a DETR model is used." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 131, + "referenced_widgets": [ + "02cd9041b0224fa3a4cf880f0c45985d", + "2e0e883a5ba64e4ebe7467ff66abb3ea", + "0d272f9b7a094c9ca736ad866a1bef5b", + "20bf04454cdc4641b52ea4be013b6c38", + "82e8fae251514300ab2c6db08091a940", + "260667ddbfcc4e45b84cce342154490c", + "647400c28b3a40bab64315bab8eb54e3", + "c172170b46d54b798aabb272d7aaef95", + "41fea4646ecc4436b0d4f914a61c8a0c", + "4b42c5c51e244e86a127bcaf990bd5fd", + "0a16a06f6bd24d5390b7cdaa91e8b97b", + "e3af9820e79640e881aa3ed4c1b066f6", + "ff07eea706904ca1b5e62009f466478b", + "602ddffe98c14572a0a194f69618fb1b", + "b1a8fd86ed8342ca8abab37fe1b5a4a6", + "a22b490f1ca74dd1a57912cd3bb3b39d", + "345f8852861d4e238b97e78b02eeb306", + "eda4959d91a34006adff8dd11e04a839", + "4b4439b5d1d14515b7ea1185823896e3", + "97bf303cbc5a4a51b2576a17d56fd064", + "2067a949788d41e49914425f88ccdcd9", + "2339866570a44d42bf11f10d187d4638", + "92ce7f001374492188aede199bbca204", + "59566f88f9fc481dbb25a916bf6f974e", + "229112b0e02d479c9eac0670b911a0db", + "c6caa5f1f1e943c9b0094c60c1af5223", + "5cd4e0e7bb6d4821997efe66ebd4cc16", + "82829d8d1bb840e2bb9cf9b35406bc9c", + "1ecbe9017f1347e6bb6dafc014f0b8bf", + "d9ebf557e3134131bdc4cf3771d1794c", + "0160242380a444888c7b91e2934ed4b6", + "7c56738718424c578bf95845fced08eb", + "0373ca2dbbfa4411a1bc45289969c4b3" + ] + }, + "id": "i-jMGCJTw_ho", + "outputId": "00061c71-f0da-42fe-e446-9e07b71ed5e4" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No model was supplied, defaulted to facebook/detr-resnet-50-panoptic (https://huggingface.co/facebook/detr-resnet-50-panoptic)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "02cd9041b0224fa3a4cf880f0c45985d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/11.3k [00:00,\n", + " 'score': 0.9094282388687134},\n", + " {'label': 'cat',\n", + " 'mask': ,\n", + " 'score': 0.9940965175628662},\n", + " {'label': 'remote',\n", + " 'mask': ,\n", + " 'score': 0.9986692667007446},\n", + " {'label': 'remote',\n", + " 'mask': ,\n", + " 'score': 0.9994757771492004},\n", + " {'label': 'couch',\n", + " 'mask': ,\n", + " 'score': 0.9722068309783936},\n", + " {'label': 'cat',\n", + " 'mask': ,\n", + " 'score': 0.9994235038757324}]" + ] + }, + "execution_count": 186, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "segmentation_pipe(image)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-r1ml1C7P_BD" + }, + "source": [ + "For visualization, we refer to [this notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_panoptic_segmentation_minimal_example_(with_DetrFeatureExtractor).ipynb).\n", + "\n", + "Check also the [inference widget](https://huggingface.co/facebook/detr-resnet-50-panoptic).\n", + "\n", + "\n", + "See also [SegFormer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb) and [MaskFormer]( https://github.com/NielsRogge/Transformers-Tutorials/blob/master/MaskFormer/maskformer_minimal_example(with_MaskFormerFeatureExtractor).ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IQxeZCidcEgi" + }, + "source": [ + "## Other tasks\n", + "\n", + "* depth estimation (DPT, GLPN): https://huggingface.co/spaces/nielsr/dpt-depth-estimation\n", + "* optical flow: https://huggingface.co/spaces/nielsr/perceiver-optical-flow\n", + "\n", + "For an overview, see: https://huggingface.co/tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WKwBj48_bVPz" + }, + "source": [ + "## Datasets\n", + "\n", + "### Loading a dataset from the hub\n", + "\n", + "Loading any dataset from the hub is as easy as:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 201, + "referenced_widgets": [ + "3186989e75ea42b49b6968fdad675f0e", + "98521f9c810547a8b2088b2029e988fe", + "ecb66501abb8458a9fe87d66df1e8b9b", + "944aa3af20944fe1ad6a64f24b0311f2", + "1923a6701d3142de91fb18b8389b877d", + "cec7671880a44682bd2d9328279933d4", + "3fb154228b8b4f0cbfd7241fa7402e2c", + "702476251304489bad9e4739b6e6494c", + "5ed70ac5d4a94edabe580ba4e73dadae", + "e51745af8c9e4f3b9f8736d0c0a596dc", + "e83b7231b5ab490a90fe8a7f8daf8f6b", + "899f3acf8a514a6ca4ac646b7aef9722", + "a869e071191843f1a79eb233527042db", + "2ee71187b6ae4c55b3a3a2ff808f4c1b", + "df0468854a0b456792e7182a8e8cb5a8", + "518a8d5e56db4000a40e5d9f4a8ca33b", + "55d6f63d6b4e4b52bd5d3e1fda443eba", + "a310413fe1ad4e23b15fccf91c9ab22c", + "bd7aa91b7d9d41a39ebecda9c8e563e9", + "15b1d1466ffd41e18d73728133b0d982", + "1099d908c27d407bb3852e854db86a3a", + "5cf3a92da0ec4b02b7e9179e1c3d74ae", + "9a28ecd289254757a8921be09b647a56", + "319044a8127e498ea888271dc220d25d", + "8f58e4207b8c4f1b86e5aa45a7af1ae9", + "51702ed6311a40a1a80b016333c8742f", + "7f9b1792c5554e7cae829fef946442c1", + "4999b7c9f302485fb1e6c190af2170d6", + "123b8ffbf8a4478eb4922c83fa651d94", + "295122664d7443639e5b80d5a5583084", + "fe794c67ad5f443188910984832cce77", + "b1e78c9ac68c4bfcb40e133dbd569423", + "8d2e9e35185d4e0f9dc33f15e90162c0", + "da2fb6423abd44d29172a18334df6c88", + "79ea37ef27bb4c54b54d5f1e93909eb4", + "c1d17ec02e4b450e9da55afaada13afc", + "d06f377e53a44e4491a9d5b27daa79ad", + "5c3aa4e8316b4baa99ad373a03da36ad", + "0e0c22389bbe44eb8dc08bde90aa8f76", + "bb9e6c8e4951437caa08319315601dff", + "b7143ec6bf9b4704b2766ad671063fda", + "c7dc6d479cf948d1b4afa1673718cd3c", + "8cd5cbee19674579b9048774b93efe01", + "eca0e385777849e0bf854224c52c91fc", + "e1d2ddf731094c7198cfeca992d39661", + "fc8c8bc86d42465f811316d9336a4ff6", + "013b08183b4745c589fcdb58526f5ec5", + "6bcc8e8b7daf458f81186182f35de964", + "3371a438bf5b412ab5c9b7230fe27623", + "43e140f9909b4bda821f6e360678c370", + "86488d305931487bb0f986d4222fb381", + "9f539ba3e4bb4db08d16c87baf59835f", + "588af91d2c5942449cb3c2c11fe8acb6", + "fe429a84adc84180be600727fdce1524", + "324a6401e529466e9b0a97c7449c1d99", + "ee9207dcade74cd396713e492c898fb1", + "5c056c2760064927a02f7eac60b4fbc5", + "6229db0835a741b8b88a54308fef276b", + "67b362e258e1412b8a0d955911b684a6", + "c8281d1792784212a154c5259e4a085a", + "9114cc7c6ec444b9816c37ac80567309", + "53b4511119aa44ecaa25de712332d0e6", + "98c61aa306aa486fa2fdc74cc2637521", + "8c713e29a78048888bc694bc7a247ee1", + "3548d003c9b741bc8c50c60bfcb22acb", + "fc0d151b52b741f8a64ffbc19dfe5333" + ] + }, + "id": "T5_9ImAVbG3G", + "outputId": "eb53af0e-fa28-4897-9696-c2096b391c0e" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3186989e75ea42b49b6968fdad675f0e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading builder script: 0%| | 0.00/2.19k [00:00" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset['train'][0]['img']" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dY2AQl_GfwYE", + "outputId": "93d536e7-17e8-489e-82fa-6118a38d8e18" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "19" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset['train'][0]['fine_label']" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "di7PMENA0yN3", + "outputId": "e560f509-417c-4c97-d230-2dfabf8b10e8" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'coarse_label': ClassLabel(num_classes=20, names=['aquatic_mammals', 'fish', 'flowers', 'food_containers', 'fruit_and_vegetables', 'household_electrical_devices', 'household_furniture', 'insects', 'large_carnivores', 'large_man-made_outdoor_things', 'large_natural_outdoor_scenes', 'large_omnivores_and_herbivores', 'medium_mammals', 'non-insect_invertebrates', 'people', 'reptiles', 'small_mammals', 'trees', 'vehicles_1', 'vehicles_2'], id=None),\n", + " 'fine_label': ClassLabel(num_classes=100, names=['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'cra', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm'], id=None),\n", + " 'img': Image(decode=True, id=None)}" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset['train'].features" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Oha_czj9f0Ip", + "outputId": "be55f67d-4a4b-4027-f217-1c05b305dffd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{0: 'apple', 1: 'aquarium_fish', 2: 'baby', 3: 'bear', 4: 'beaver', 5: 'bed', 6: 'bee', 7: 'beetle', 8: 'bicycle', 9: 'bottle', 10: 'bowl', 11: 'boy', 12: 'bridge', 13: 'bus', 14: 'butterfly', 15: 'camel', 16: 'can', 17: 'castle', 18: 'caterpillar', 19: 'cattle', 20: 'chair', 21: 'chimpanzee', 22: 'clock', 23: 'cloud', 24: 'cockroach', 25: 'couch', 26: 'cra', 27: 'crocodile', 28: 'cup', 29: 'dinosaur', 30: 'dolphin', 31: 'elephant', 32: 'flatfish', 33: 'forest', 34: 'fox', 35: 'girl', 36: 'hamster', 37: 'house', 38: 'kangaroo', 39: 'keyboard', 40: 'lamp', 41: 'lawn_mower', 42: 'leopard', 43: 'lion', 44: 'lizard', 45: 'lobster', 46: 'man', 47: 'maple_tree', 48: 'motorcycle', 49: 'mountain', 50: 'mouse', 51: 'mushroom', 52: 'oak_tree', 53: 'orange', 54: 'orchid', 55: 'otter', 56: 'palm_tree', 57: 'pear', 58: 'pickup_truck', 59: 'pine_tree', 60: 'plain', 61: 'plate', 62: 'poppy', 63: 'porcupine', 64: 'possum', 65: 'rabbit', 66: 'raccoon', 67: 'ray', 68: 'road', 69: 'rocket', 70: 'rose', 71: 'sea', 72: 'seal', 73: 'shark', 74: 'shrew', 75: 'skunk', 76: 'skyscraper', 77: 'snail', 78: 'snake', 79: 'spider', 80: 'squirrel', 81: 'streetcar', 82: 'sunflower', 83: 'sweet_pepper', 84: 'table', 85: 'tank', 86: 'telephone', 87: 'television', 88: 'tiger', 89: 'tractor', 90: 'train', 91: 'trout', 92: 'tulip', 93: 'turtle', 94: 'wardrobe', 95: 'whale', 96: 'willow_tree', 97: 'wolf', 98: 'woman', 99: 'worm'}\n" + ] + } + ], + "source": [ + "id2label = {id: label for id, label in enumerate(dataset['train'].features['fine_label'].names)}\n", + "print(id2label)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "KRXUJDWpgFcG", + "outputId": "9ac1ba1b-8e5f-4745-f545-1766c035692b" + }, + "outputs": [ + { + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'cattle'" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "id2label[19]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WWnByIwQd4N2" + }, + "source": [ + "### Loading a dataset from local/remote files: ImageFolder\n", + "\n", + "The [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) builder is very handy to create a Dataset from local or remote files/folders.\n", + "\n", + "It will automatically create a dataset with 2 columns, \"image\" and \"label\" (based on directory structure).\n", + "\n", + "Let's say you have a remote tgz file: https://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html?ref=hackernoon.com" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 251, + "referenced_widgets": [ + "eee3f3ba19794c7a961251ec1500af4f", + "4ea1ef0070b4488d89ca58f1b49a0a1d", + "a98654eef27848999db523b11dc629ef", + "64943c92c083440b8fc6ef34d176f3cd", + "5ad23b0d9fc841c78f9fdd82a583fcf0", + "e7320ec976ab468b9dfbe92e72e405cf", + "23f23c71ff3142a19fd66330eadf1d8c", + "298380d2ca6d4ca5a221c3036e546fac", + "c3d7196996bf4fc783715921bd57b514", + "2efac48bf966407dbbdd6185b746acd3", + "38876295726f47f1abffb8bfb28242f0", + "fa4d2548d09e4dc2bcd3419acb94cd96", + "cb619ae1c8cc4b53b65eab78a2949d88", + "dc6c190bb7b64b27887fab5f32def509", + "8362e331c95f4797aed82468acba0591", + "e94bde66c9f649ee85f273a271d66853", + "a1aecb72c2c84aa7ae629a725cbe1c7c", + "4483b6cf1dd348b9af2d99dfd44440cd", + "c9e136be9e27403190f97621bf0c2360", + "4368af454a524f2693415c016a4800be", + "1024dc2d2b154759b8109f6a897a2fee", + "41a5174bc2c34ca38608c6e9629290e3", + "ebece6ce2a704036925fa3cfdfe07bc3", + "85d9db12932f405c859ee7ed934dd597", + "1ab6ccdd683b45afb861b002559331fb", + "07d918a32bc74fc88322dc4872c99553", + "32a5290505a84c0bb601f5919d0ddcc3", + "7d5222c25b7a4d46a38c0612924c56fd", + "2d28fd9efb064a6da8a2b6eba7754c49", + "011c4e736ff249dba90d5cd1a1606961", + "5fdf7d5836e040c382b28c7f2b626e86", + "daa2f4f8369740608246f483c9f41bf0", + "9a982e7499574ee7ac372653236ac017", + "55605d08c1944709ae8d26931c8be8f5", + "403aa2d1656248eaaead105c5404afee", + "d8ce5ff0f10c4c3eb344e5f93978b33d", + "488bf505e7ce430eba7a031278e84d65", + "29caa1a9eaaa46289907ed1d8afa6e18", + "656846d428c14f06955f6f96864a9465", + "c503e40b90064b98b9dc7aa439d6c5a0", + "e79898e9020844cca1928f9136562320", + "5c1d822500534adbbcdded6b3f2c8d11", + "35d8e0ecb38d40f38dbfc749d2b0a9a1", + "c6cad6f551a8418593bd2b59eed85bfa", + "855f66f34dd14ad2815f3c6572b38d44", + "3bb28cba70eb41e7a187834eff9ae53a", + "dc29b44fe051481798b2864c4bfc64b7", + "32e03b9289084b7c8a1767b88f4589ed", + "39e30189361e47ada33eb9ae5cc3d0c5", + "698b0e78c2004df4a124a3154fac177d", + "09f88588cec84029ad66b9d2f4d30b70", + "6823ab3fcf8649fdbdbc74945cf7609a", + "8b2e6f860b3a4389a6927bce42ae0cc3", + "78ef4b5e93c1464d8575e2f73e8b11f9", + "1dae25a4d6154128bb80e1fe0fce59a0", + "6a0f7103b8b741eebdf32d28189cc124", + "689ed43f2e2d45b49b8d49b0681a9b17", + "4ba60026d8f84e63962de7a0bcff68ac", + "9dd6a8362a53483cbe6f638e53ea548a", + "585218ce6f16419c80dfb0484514c1a1", + "dbcf62a4eee242439357cb17f8e755db", + "7b5e2a733e2d40de9882c598b17e2f96", + "b2988973aecd46518f686e5d3f2a6d80", + "1786794d8baa47df8c5f8c3f1b9222db", + "7a7b3baca14548aea00d68d1e239f9c7", + "c1cc358324ef43c89c3d24e44e180754" + ] + }, + "id": "g9TN9KJId3tG", + "outputId": "ad0dd3cd-c2be-4e02-a340-e6c0fadc7080" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using custom data configuration default-3b023c015cb58e5d\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading and preparing dataset image_folder/default to /root/.cache/huggingface/datasets/image_folder/default-3b023c015cb58e5d/0.0.0/48efdc62d40223daee675ca093d163bcb6cb0b7d7f93eb25aebf5edca72dc597...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eee3f3ba19794c7a961251ec1500af4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading data files: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa4d2548d09e4dc2bcd3419acb94cd96", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading data files: 0%| | 0/1 [00:00" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example = dataset['train'][128]\n", + "example['image']" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zyca-8bH9rso" + }, + "source": [ + "Similar to models, pushing (and reloading) to the hub is very easy:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 99, + "referenced_widgets": [ + "f49cbf34b02c48398eb8784c93a4c661", + "ab0e57d6b33c4c10b5c8067d1cc9b7ab", + "324931d5bcf246ddbc8f8b1ff639db8a", + "7e96a1edb21c41b3b17a9e1139fcc83a", + "26d03f69263a42eb9f981bb4aee08105", + "511f3158859c428eb3a6b785c10090cf", + "4dfc40aff37d4f8b855d25b41300f86f", + "6d6963c84fde4a72bd17e0cf6f740999", + "32b6127bc65d4bafa0d28e007d6ec724", + "10c9c655f73e468e8e18ee4e375cd10a", + "273a5079aee34065b923bb8fab13feaf", + "df53601719bd448aa0d0ae19fd1d5fe2", + "ad303c99faeb41ee93f5fb06ab040ffb", + "1bc3dd51b29141b5948e5adddb50222f", + "80d1138bcbfb446893b36234f869cd12", + "bdb67c2ee40f4b2491dfc441fa2f0233", + "6b53dcb287f744eea39a4523b66ae8bd", + "d88b629d3d5c4dce9a3b379d97edcd6f", + "b66fcc8768474951ad878426589fe2f9", + "257f0c95724947b8a1c76feb85a977f4", + "306c66fc67bd4c639f0a1e29967a4496", + "87671aa71b344d81aed69074f1e8d3c9" + ] + }, + "id": "L6EkZQ6YpUPA", + "outputId": "4d66ffa8-8b67-4d5b-8a01-312a652102f7" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Pushing split train to the Hub.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f49cbf34b02c48398eb8784c93a4c661", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "image" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "id": "kE7wJAQIWWUS" + }, + "outputs": [], + "source": [ + "inputs = processor(text=[\"two cats sitting on a couch\", \"one cat sitting on a couch\"], images=image, return_tensors=\"pt\", padding=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v7YIL_twWX_t", + "outputId": "d8595960-9c82-46c1-8ec4-ecd789806fec" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[0.9762, 0.0238]], grad_fn=)\n" + ] + } + ], + "source": [ + "outputs = model(**inputs)\n", + "logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n", + "probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities\n", + "print(probs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hJWM08NzR0r6" + }, + "source": [ + "We do provide all of this in a \"zero-shot image classification\" pipeline:" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dNNaWUAQR31c", + "outputId": "0d84343d-b39b-4c64-9003-10c20378f2c6" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No model was supplied, defaulted to openai/clip-vit-base-patch32 (https://huggingface.co/openai/clip-vit-base-patch32)\n" + ] + } + ], + "source": [ + "zero_shot = pipeline(\"zero-shot-image-classification\")" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lBI18sxaR_Xa", + "outputId": "00f44f4f-e4b6-4e55-c183-3b9d51dd4aab" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'label': 'two cats sitting on a couch', 'score': 0.9810003042221069},\n", + " {'label': 'one cat sitting on a couch', 'score': 0.018999747931957245}]" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zero_shot(images=image, candidate_labels=[\"two cats sitting on a couch\", \"one cat sitting on a couch\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kt_vxLSAUUeJ" + }, + "source": [ + "### VisionEncoderDecoderModel\n", + "\n", + "* allows to use any Transformer-based vision encoder (e.g. ViT, Swin, BEiT) with any language decoder (e.g. BERT, GPT-2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254, + "referenced_widgets": [ + "d26381d5d1334bf19d8ceead8faf7927", + "8af60ab423c44e5ab03e78119ea332ff", + "85661f74de214119a0f8fca2888e448d", + "b84fefbdfcaa485ebc9e581ef40c6253", + "ba7a6d9e2de64d7fa3d45028c95e7cad", + "f565d069b26b42ea98dd9b218446e253", + "7b45a23733d24d16a63ffcdd653359c5", + "0e7d14c054e743a49e52f5eb5c783cc9", + "44291e5ce7e1427da7eb4e8d5757ed2d", + "9b691966321f476dbf4ee01eb28ce1fb", + "f53d9f5318c6443a88fac515f4f435de", + "8996ee989cf24377adc1158fce6b1efc", + "b0825ee74c5c4e799b57a91496ebeee9", + "04ee213a2d2444b9aee2f93079b1b4cd", + "2da12854d7c54afd8bbf03a8c78def48", + "13c6de2887f9485e94220b42bd8efc9d", + "f72e053dcc934a269b5740e47c15f586", + "e64fa0fd9b85494982587c44f6a324af", + "4abb4222d24d447483b90fae3ddce1b2", + "22a1b23d69b5421dbc687f0f3747b328", + "2231554af5dc496bbc6f0ba1d9a7538f", + "81e46cd40e4341fd80aea66999175b5d", + "7269fc577bf944aa84195b1bfba6a079", + "637fefe04ba7405d8c2f44ea04bb31a0", + "c32add5eae4249509500fb5d9f06ff04", + "0dfa70467a1341acb28ecb1c70425ef0", + "8664e395400642d79172eb061ca95dda", + "ef3faa8cad154918a6018318a82b5bf5", + "fa160f1751014425a8348f162a563b41", + "db6312a9778e47fdbad9cd713af94a21", + "76114dfc6fe54dbf93b0b1636a0b6f1f", + "f61dd5654c924e8098ab2951caa77f80", + "7ade8963522340538bdd8c2640ad7a13", + "4e50f8e74e4e4e44a57defb935f126ff", + "79910c67511042d6b3d2b7c64c39025a", + "5d474560d3704bfd9a2d89f5a9092afc", + "4d4d50a19aed4a1680574a0630faf474", + "f471f6be130b41cf87db2bfb435311d4", + "ed52bd3874f944af9b1013d34e42e2c5", + "d43f1e18882c4b4d8ffb3ac7a9047a49", + "78d580a17946424b9dcb7b87b11a0848", + "2739bb3935504557b9202c18e3ac9737", + "ce9f65c5902c4358ab00482235a53ee3", + "0e4ef50482354401bd20e8ba366ff1bf" + ] + }, + "id": "4reO1CGeUO4k", + "outputId": "ff1bf2ec-62a8-4d79-ddac-7ca90f2938d4" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d26381d5d1334bf19d8ceead8faf7927", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading: 0%| | 0.00/502 [00:00" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(,\n", + " 'http://127.0.0.1:7862/',\n", + " 'https://57059.gradio.app')" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception in callback None( result=None>)\n", + "handle: \n", + "Traceback (most recent call last):\n", + " File \"/usr/lib/python3.7/asyncio/events.py\", line 88, in _run\n", + " self._context.run(self._callback, *self._args)\n", + "TypeError: 'NoneType' object is not callable\n" + ] + } + ], + "source": [ + "import gradio as gr\n", + "\n", + "examples = [['cats.png']]\n", + "\n", + "gr.Interface.load(\"huggingface/google/vit-base-patch16-224\", examples=examples, enable_queue=True).launch()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fqLpVqkrdDBS" + }, + "source": [ + "## Resources\n", + "\n", + "* Transformers docs: https://huggingface.co/docs/transformers/index\n", + "* Example notebooks: https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb\n", + "* Example scripts (image classification, image pre-training, semantic segmentation): https://github.com/huggingface/transformers/tree/main/examples/pytorch\n", + "* Blog posts: \n", + " - image classification: https://huggingface.co/blog/fine-tune-vit\n", + " - semantic segmentation: https://huggingface.co/blog/fine-tune-segformer\n", + "* Transformers-tutorials: https://github.com/NielsRogge/Transformers-Tutorials\n", + "* Video on ConvNeXT: https://www.youtube.com/watch?v=Hn1IgPY42Bw&t=2216s" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3kaSUMbeRrj5" + }, + "source": [ + "## To be expected\n", + "\n", + "Standardization of other tasks:\n", + "* object detection\n", + "* panoptic segmentation\n", + "* pose estimation\n", + "* depth estimation\n", + "etc.\n", + "\n", + "Lots of new models! LeViT, MobileViT, GroupViT ...\n", + "\n", + "## Interested in contributing?\n", + "\n", + "* Check issues labeled with [\"new model\"](https://github.com/huggingface/transformers/labels/New%20model), [\"good first issue\"](https://github.com/huggingface/transformers/issues?q=good+first+issue+label%3A%22Good+First+Issue%22), [\"good second issue\"](https://github.com/huggingface/transformers/issues?q=good+first+issue+label%3A%22Good+Second+Issue%22)\n", + "* Guides:\n", + " - https://huggingface.co/docs/transformers/contributing\n", + " - https://huggingface.co/docs/transformers/add_new_model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "y8wk440mUzQF" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "HuggingFace vision ecosystem: overview (June 2022).ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "001da0115c27458fb2364aa9c853a2ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "010221d1d14b43baa5ae99bfe40abb02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7478b9d88d24488b922a65444615c3ad", + "placeholder": "​", + "style": "IPY_MODEL_5efd673896bc47858f1662c1d12839ee", + "value": "Downloading: 100%" + } + }, + "011c4e736ff249dba90d5cd1a1606961": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "013b08183b4745c589fcdb58526f5ec5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f539ba3e4bb4db08d16c87baf59835f", + "max": 10000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_588af91d2c5942449cb3c2c11fe8acb6", + "value": 10000 + } + }, + "0160242380a444888c7b91e2934ed4b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "02584ce2d7db46eda58dd452a85deb97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "02b3ac5b390b427eb4b1fbc849a52485": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "02cd9041b0224fa3a4cf880f0c45985d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e0e883a5ba64e4ebe7467ff66abb3ea", + "IPY_MODEL_0d272f9b7a094c9ca736ad866a1bef5b", + "IPY_MODEL_20bf04454cdc4641b52ea4be013b6c38" + ], + "layout": "IPY_MODEL_82e8fae251514300ab2c6db08091a940" + } + }, + "0373ca2dbbfa4411a1bc45289969c4b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "043f0589c8034df495f5a0614c2ef893": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04ee213a2d2444b9aee2f93079b1b4cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4abb4222d24d447483b90fae3ddce1b2", + "max": 345636463, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_22a1b23d69b5421dbc687f0f3747b328", + "value": 345636463 + } + }, + "05e4c57b8d234c22849d75e7f4bd8318": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0678f88db022403cac2552fc84db87fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "06922697857847b7b867c76f3d38cf1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5370de93300e45c9bfb244daa381f1c2", + "placeholder": "​", + "style": "IPY_MODEL_6a1410d9d8e44f3cad4633c73f51d2f5", + "value": "Downloading: 100%" + } + }, + "0729f9745cce428aadc5dfbdeadb9273": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "074ac740a19a4f0d8991205db9506b33": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "07d918a32bc74fc88322dc4872c99553": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_daa2f4f8369740608246f483c9f41bf0", + "placeholder": "​", + "style": "IPY_MODEL_9a982e7499574ee7ac372653236ac017", + "value": " 345M/345M [00:13<00:00, 30.6MB/s]" + } + }, + "087cd11f05ac425db25ff4ef598e6a9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d53a104249ab4b40961f37ded1494211", + "placeholder": "​", + "style": "IPY_MODEL_1dc537271f3143c3b84a100ff253cf44", + "value": "Downloading: 100%" + } + }, + "088f18d37c0a460bbc3b2b6048f2345f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4491d961ce0a41b492d76ff01fb9c1fe", + "placeholder": "​", + "style": "IPY_MODEL_e643888f79474cef9230ab923fb7ba4a", + "value": " 160/160 [00:00<00:00, 3.89kB/s]" + } + }, + "09f88588cec84029ad66b9d2f4d30b70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0a13f3b9c7734df380172ba0f087ad32": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a16a06f6bd24d5390b7cdaa91e8b97b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ace9e737d2a473bbc8fdca9dbc7ebbf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ad2e088a86b43418e4bbb70135b8224": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bfa226a7de042baaf4e6255cf6ed967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_19b0717774d744b39a3806a39925a9c0", + "max": 69640, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_889eb41f139a4fc0a9d59859874986b9", + "value": 69640 + } + }, + "0c709e38072a4308b7e7d6bef5663d01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0d272f9b7a094c9ca736ad866a1bef5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c172170b46d54b798aabb272d7aaef95", + "max": 11607, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_41fea4646ecc4436b0d4f914a61c8a0c", + "value": 11607 + } + }, + "0dfa70467a1341acb28ecb1c70425ef0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f61dd5654c924e8098ab2951caa77f80", + "placeholder": "​", + "style": "IPY_MODEL_7ade8963522340538bdd8c2640ad7a13", + "value": " 570/570 [00:00<00:00, 15.2kB/s]" + } + }, + "0e0c22389bbe44eb8dc08bde90aa8f76": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e4ef50482354401bd20e8ba366ff1bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0e7d14c054e743a49e52f5eb5c783cc9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ed373dbc4b64850b8640b92d8a5a95d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0eea3094d07544bfb24f1db8527e8423": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f4fc6ef56be45e5b96ff090020a3a9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0fad23865e6248d09de3d5eb5ef113e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0ef6b06b1254a8584dea133ec38c19b", + "placeholder": "​", + "style": "IPY_MODEL_ac231e4dfb574277ab53605e754c033e", + "value": " 4.48k/4.48k [00:00<00:00, 55.8kB/s]" + } + }, + "0fb58d86c2ff4476bf8dc53fe2fe86c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1024dc2d2b154759b8109f6a897a2fee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1071d53bb40d4d62bce36f6f9061e287": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "109186b90bf64da5a3a9dbc662346ace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1099d908c27d407bb3852e854db86a3a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10c9c655f73e468e8e18ee4e375cd10a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "11b0c789aee548e3810643056ec0cd9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "11ed145351aa4455ae3ab001771739f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3bc94eeb0b9046e0a6d7674e51963593", + "placeholder": "​", + "style": "IPY_MODEL_89fd6cf0b6df447199974934183d231a", + "value": " 449M/449M [00:22<00:00, 17.4MB/s]" + } + }, + "123b8ffbf8a4478eb4922c83fa651d94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1267a9fd1e354e68a3e918d8287efcde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8bfa189895c47748b44de5f5d136562", + "IPY_MODEL_3c2fa449694244b188f01ab2ee12b011", + "IPY_MODEL_323b34f51cc149689d76d7f11b1ac8a6" + ], + "layout": "IPY_MODEL_6671b7c8c8cc4b589ca68dbafec68817" + } + }, + "132d8068687a436eb3ab84bdc04afbe9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "135c2eb6e5804c9b8d49adff5acee491": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "13c6de2887f9485e94220b42bd8efc9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "153c7c778a704b53af2ca5836e938866": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "15b1d1466ffd41e18d73728133b0d982": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1718571c315e4463b8faea1f5cf26c80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8527a096932c4490aaa4f9b2d1c406cd", + "IPY_MODEL_23dc76af703340fd981fe487273431fa", + "IPY_MODEL_088f18d37c0a460bbc3b2b6048f2345f" + ], + "layout": "IPY_MODEL_6903694b772644b1b1bc1a218fc48e38" + } + }, + "17731aba57ca4f30af93fc133be8ac9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69ed86491b034c17800aae7df7da7823", + "max": 120, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9221fa844954a5f8d439e755eb0a466", + "value": 120 + } + }, + "1786794d8baa47df8c5f8c3f1b9222db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "17bd99f8e19e47c3af0b308027afad2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "18dfbc3c6bac4a778666a8655695b6ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "18ee5f991ede4b16879f2c114eadbdb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1923a6701d3142de91fb18b8389b877d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19b0717774d744b39a3806a39925a9c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19d10f4cf34a4b0b87e70110bf508242": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19e80dd68a28425e89ac7be593596f79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_496723589bf34e439efd7efcf5bf84c5", + "IPY_MODEL_ff1739ffefc44eec9944e15c9d024df6", + "IPY_MODEL_ba6f2aaf20524d25a3b6ec5b55ab8e9d" + ], + "layout": "IPY_MODEL_64c26e0ff1b54da3af85c911b2e9efa8" + } + }, + "1ab6ccdd683b45afb861b002559331fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_011c4e736ff249dba90d5cd1a1606961", + "max": 344862509, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5fdf7d5836e040c382b28c7f2b626e86", + "value": 344862509 + } + }, + "1bc3dd51b29141b5948e5adddb50222f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b66fcc8768474951ad878426589fe2f9", + "max": 9, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_257f0c95724947b8a1c76feb85a977f4", + "value": 9 + } + }, + "1c31b382c0044c128e3f9688a4a0cec4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d825810b1994bbc84f05b5510bf4a94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_402b6d4048cc460e87b499dc60f58f54", + "IPY_MODEL_91f29db05f7e4034bbb2aa0f2cfbccae", + "IPY_MODEL_e9b27ed7ff6443aa87a574d7547824da" + ], + "layout": "IPY_MODEL_55131b71d87240729a37877d1a253a1b" + } + }, + "1dae25a4d6154128bb80e1fe0fce59a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1db27400fe8e4aa8aabf7524b0ec6a2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ce756c10a2649dbb61fd10a377d8105", + "placeholder": "​", + "style": "IPY_MODEL_c84dda9ece774bd0a3d7099d522da8be", + "value": " 4.03k/4.03k [00:00<00:00, 87.5kB/s]" + } + }, + "1dc537271f3143c3b84a100ff253cf44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1ecbe9017f1347e6bb6dafc014f0b8bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "20301bc5fd154013aa828735dc966a9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "204e911e5f22409191d339acbcd17268": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2067a0757ad04940bb0e1a18c7821872": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2067a949788d41e49914425f88ccdcd9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20bf04454cdc4641b52ea4be013b6c38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b42c5c51e244e86a127bcaf990bd5fd", + "placeholder": "​", + "style": "IPY_MODEL_0a16a06f6bd24d5390b7cdaa91e8b97b", + "value": " 11.3k/11.3k [00:00<00:00, 2.86kB/s]" + } + }, + "20ce43c9abef4017a9befe6472c5278e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21c17d6c96f54beeab9620e8ca56a744": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2231554af5dc496bbc6f0ba1d9a7538f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "229112b0e02d479c9eac0670b911a0db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9ebf557e3134131bdc4cf3771d1794c", + "max": 273, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0160242380a444888c7b91e2934ed4b6", + "value": 273 + } + }, + "22a1b23d69b5421dbc687f0f3747b328": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "22f0c016cdca44ab96f13ab347a54ad6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "232dc3949156475c9164271a3a0e2deb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9de8db310384e50804f1612afb02e5c", + "max": 346537664, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3e3a75c3e7a1435bbbbfb1b6e1bb89b3", + "value": 346537664 + } + }, + "2339866570a44d42bf11f10d187d4638": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23698a6b40994a8ebf783fcb272da297": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "238269279dd3439e87c7eb5661effc59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23dc76af703340fd981fe487273431fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0eea3094d07544bfb24f1db8527e8423", + "max": 160, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab379371be664724a209b3ce0065b153", + "value": 160 + } + }, + "23eb73c8084e43b0bf973c7d10adfee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23f23c71ff3142a19fd66330eadf1d8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "243d4938860942b2ba1024ed10f8b907": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_905ff301192d4bb4a401ef06d70a9189", + "IPY_MODEL_cd19543310b443b99946a64ace409659", + "IPY_MODEL_76ef27ff545f443c90abbf5e17008240" + ], + "layout": "IPY_MODEL_e2ce97d00cb44a7da48bb439f95791c2" + } + }, + "246cf1dfd6bc4e04aa7c97787bb71399": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0678f88db022403cac2552fc84db87fe", + "max": 456356, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e8cf145682d4143ba83162bccbbdc5f", + "value": 456356 + } + }, + "2474ce59591e43278fa4f2df91d1e6ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "247bc93b19724c2eae38b148ebd36faa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5e6eb48578544da9960151bd4261fa9", + "IPY_MODEL_904466f89d014246b06aa8c202ae91eb", + "IPY_MODEL_4fd65d6a96ac4c08bf2cfa07b1f0d4c6" + ], + "layout": "IPY_MODEL_dcae9ec41c424214863a94641c6c2793" + } + }, + "24cfc6ca7615485b972ab80abff5e84d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "257f0c95724947b8a1c76feb85a977f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "25b22f473af346d8a055fd180156b747": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b8ccd69d5c24be893b396cc16b6edee", + "placeholder": "​", + "style": "IPY_MODEL_cefbb2bedb574363addf54a368287489", + "value": "Downloading: 100%" + } + }, + "25fa1664569c4a4383e53eced19c16a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "260667ddbfcc4e45b84cce342154490c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26d03f69263a42eb9f981bb4aee08105": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2739bb3935504557b9202c18e3ac9737": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "273a5079aee34065b923bb8fab13feaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "27720dad130c4ca78901f439dcf30724": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2882b1d3f58e40a591d827ab2c4a2979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "28a996f44fc246a1bf062921072a4c23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e60e0e9469984ce0a2e8e05484a153d8", + "IPY_MODEL_359feecbefd942f5b2370f37a510392f", + "IPY_MODEL_be415f0c92434f95ae4a57ccae64cbe3" + ], + "layout": "IPY_MODEL_814668620de7415c8c8317dc67864d98" + } + }, + "28f6823cba3f4a9da782c5a620040f83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9ec0da0d0994a6aac390103a343a094", + "max": 524657, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ad0c3a240544881a11d4ae37ac3feb7", + "value": 524657 + } + }, + "295122664d7443639e5b80d5a5583084": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "298380d2ca6d4ca5a221c3036e546fac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "29c30d0633534ac89d5059513ea85f92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b916a7d0f544a63b80a3efe9dfd0f44", + "IPY_MODEL_46995a901449477087bb712b3a0dfcf0", + "IPY_MODEL_eef08a301ddc44e2b0f7b74db6f86127" + ], + "layout": "IPY_MODEL_73ca073b98994dcba03670961dbc49ae" + } + }, + "29caa1a9eaaa46289907ed1d8afa6e18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b52b501b661487e83c65f2f75f7724a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2bf17567a3f14dd7ac8e3450e5470656": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51dc1b6f6d064d0cbf476175ea5b32b4", + "IPY_MODEL_ab7bb54aecf248f3adb523b56f55af94", + "IPY_MODEL_f7178833ab504e97b86ea0907704cdeb" + ], + "layout": "IPY_MODEL_e4a583b82cb049d29c134ae631c7f6c1" + } + }, + "2c40c6c149ff4187a6d9faca50242ec7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c9e40c42ffa4a38afb20b171565be06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d28fd9efb064a6da8a2b6eba7754c49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2d8f41ff3cd5479da2d2c1109f80b798": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2da12854d7c54afd8bbf03a8c78def48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2231554af5dc496bbc6f0ba1d9a7538f", + "placeholder": "​", + "style": "IPY_MODEL_81e46cd40e4341fd80aea66999175b5d", + "value": " 330M/330M [00:11<00:00, 42.5MB/s]" + } + }, + "2e0e883a5ba64e4ebe7467ff66abb3ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_260667ddbfcc4e45b84cce342154490c", + "placeholder": "​", + "style": "IPY_MODEL_647400c28b3a40bab64315bab8eb54e3", + "value": "Downloading: 100%" + } + }, + "2ee71187b6ae4c55b3a3a2ff808f4c1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bd7aa91b7d9d41a39ebecda9c8e563e9", + "max": 1436, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_15b1d1466ffd41e18d73728133b0d982", + "value": 1436 + } + }, + "2efac48bf966407dbbdd6185b746acd3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f2df35b25634b6e871ec11c250741d9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f37b1b2e57e42bdac471feb61e5ded9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2ff94603046346cbbb4015464ecfa171": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "305fa41ab72d487aa5253ca89160bb63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_132d8068687a436eb3ab84bdc04afbe9", + "placeholder": "​", + "style": "IPY_MODEL_307979d68f5647658b7aebfe3fef6857", + "value": " 662k/662k [00:02<00:00, 330kB/s]" + } + }, + "306c66fc67bd4c639f0a1e29967a4496": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "307979d68f5647658b7aebfe3fef6857": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31638411cf8a4609ac27a6515e11493a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3186989e75ea42b49b6968fdad675f0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98521f9c810547a8b2088b2029e988fe", + "IPY_MODEL_ecb66501abb8458a9fe87d66df1e8b9b", + "IPY_MODEL_944aa3af20944fe1ad6a64f24b0311f2" + ], + "layout": "IPY_MODEL_1923a6701d3142de91fb18b8389b877d" + } + }, + "319044a8127e498ea888271dc220d25d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4999b7c9f302485fb1e6c190af2170d6", + "placeholder": "​", + "style": "IPY_MODEL_123b8ffbf8a4478eb4922c83fa651d94", + "value": "Downloading data: 100%" + } + }, + "31b0349956594ac2bf03ef16cf4c4d52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_814a7513b58a4cd0b4f940ea566c6aee", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0633b37f12b4a70a8fed191f9a7644c", + "value": 112 + } + }, + "323b34f51cc149689d76d7f11b1ac8a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c37f1c1b9d34dea8aea55ba089b9561", + "placeholder": "​", + "style": "IPY_MODEL_86bd70222cb848f99f77e7caedab5d21", + "value": " 316/316 [00:00<00:00, 5.90kB/s]" + } + }, + "324931d5bcf246ddbc8f8b1ff639db8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6d6963c84fde4a72bd17e0cf6f740999", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_32b6127bc65d4bafa0d28e007d6ec724", + "value": 1 + } + }, + "324a6401e529466e9b0a97c7449c1d99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "32a5290505a84c0bb601f5919d0ddcc3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32b6127bc65d4bafa0d28e007d6ec724": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "32e03b9289084b7c8a1767b88f4589ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78ef4b5e93c1464d8575e2f73e8b11f9", + "placeholder": "​", + "style": "IPY_MODEL_1dae25a4d6154128bb80e1fe0fce59a0", + "value": " 6918/0 [00:00<00:00, 19360.50 examples/s]" + } + }, + "3371a438bf5b412ab5c9b7230fe27623": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "339f7cbeebe7414c9aa7097d3c2261c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "340c029578984213b324a8cb3d9b53c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_44c365a6be494a5db758fb0f42d22540", + "IPY_MODEL_9d7a74fc55b24144af74836de9d2b4c5", + "IPY_MODEL_0fad23865e6248d09de3d5eb5ef113e4" + ], + "layout": "IPY_MODEL_19d10f4cf34a4b0b87e70110bf508242" + } + }, + "345f8852861d4e238b97e78b02eeb306": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3487724515434d12bc06aa8d1ad998cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_087cd11f05ac425db25ff4ef598e6a9a", + "IPY_MODEL_bd3e92d2b6d5464da8acc9481f3d6528", + "IPY_MODEL_5d06e3588c8e4f15b2a619829467fd8d" + ], + "layout": "IPY_MODEL_ab4025f77d32401e8be9f5337757a55e" + } + }, + "34b8c6f11f9545c78a0a9effc58bbcc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3548d003c9b741bc8c50c60bfcb22acb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "359feecbefd942f5b2370f37a510392f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_459e951f621147478be7296fada63a9f", + "max": 166731871, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b75c743206744a9af7124cd7c0c8461", + "value": 166731871 + } + }, + "35d8e0ecb38d40f38dbfc749d2b0a9a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35fea5a0accb4127bf5fd1611fc75e3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3756de870d564e41bc542ab400f1f6f2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "37b0077c21fd4e59adf070941bb3467d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "37b8075d13e2414bae451597817561f4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38876295726f47f1abffb8bfb28242f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "38f4ca68f6c345998f3cbc8e8835965d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3947f82d144748e880f254b39e7135ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39a5ed2bc58749c69c6c756692976c1f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "39db97a5f36f4898ac231cca0d3360b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d518781b774f4d32a9ccafc399f5670f", + "max": 4338, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea20de66389d47de835ae8989637a871", + "value": 4338 + } + }, + "39e30189361e47ada33eb9ae5cc3d0c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "39f0995e9e6f458e93265f1ef6e0389d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4c9cf062362e4e3b990852a7cc477ec0", + "placeholder": "​", + "style": "IPY_MODEL_3d48954600a84a0096176a391915622e", + "value": " 226k/226k [00:00<00:00, 2.62MB/s]" + } + }, + "3a49c633cf4a4d1e89abfa3569603dde": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b2a4eeebb954825be9e8ac4bd9d7674": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b82b63ecc8244e1978afb1748a9332a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3bb28cba70eb41e7a187834eff9ae53a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_698b0e78c2004df4a124a3154fac177d", + "placeholder": "​", + "style": "IPY_MODEL_09f88588cec84029ad66b9d2f4d30b70", + "value": "Generating train split: " + } + }, + "3bc94eeb0b9046e0a6d7674e51963593": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c2fa449694244b188f01ab2ee12b011": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aa40b47c439845a0a45e359ed5a7cbe9", + "max": 316, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9218577032ec465c8b1265765e3441a2", + "value": 316 + } + }, + "3c33201ad8f74dd785fc2f3a1113a0d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c59a3a8657a464e92960b1b7c9b05eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3c5ce485207b4daba05e3f1761674fe0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c40c6c149ff4187a6d9faca50242ec7", + "max": 2224041, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_25fa1664569c4a4383e53eced19c16a9", + "value": 2224041 + } + }, + "3d48954600a84a0096176a391915622e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3e3a75c3e7a1435bbbbfb1b6e1bb89b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3f64e26fe5234f118387259870682926": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3fb154228b8b4f0cbfd7241fa7402e2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4023e6e4edba456cb670954a1f153ce2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "402b6d4048cc460e87b499dc60f58f54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b3ce14450a44eb5b8d22bf769c4c4bd", + "placeholder": "​", + "style": "IPY_MODEL_18dfbc3c6bac4a778666a8655695b6ea", + "value": "Downloading: 100%" + } + }, + "403aa2d1656248eaaead105c5404afee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_656846d428c14f06955f6f96864a9465", + "placeholder": "​", + "style": "IPY_MODEL_c503e40b90064b98b9dc7aa439d6c5a0", + "value": "Extracting data files: 100%" + } + }, + "40ef861ef9a94ac09e9858dfce45a644": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41a5174bc2c34ca38608c6e9629290e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "41fea4646ecc4436b0d4f914a61c8a0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4356e240dffe464593ef8566fbdc9ea1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4368af454a524f2693415c016a4800be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43e140f9909b4bda821f6e360678c370": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43f5d259ff4e4620b77459f5ad5deb88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "43f67283402043c7858ec5b426be0dbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef7ec69c07de4ff4b2d61a51eaa62521", + "placeholder": "​", + "style": "IPY_MODEL_8158494a1aa64f30bb74f3064ba497e2", + "value": " 112/112 [00:00<00:00, 2.02kB/s]" + } + }, + "44291e5ce7e1427da7eb4e8d5757ed2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4483b6cf1dd348b9af2d99dfd44440cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4491d961ce0a41b492d76ff01fb9c1fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "44c365a6be494a5db758fb0f42d22540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c70aeada82c94cdabaa5b5d5d232df84", + "placeholder": "​", + "style": "IPY_MODEL_0f4fc6ef56be45e5b96ff090020a3a9b", + "value": "Downloading: 100%" + } + }, + "44dfbdd5285f46de851d0e8bab99ed43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7acbea892d84d459ee44ff168a80efe", + "IPY_MODEL_0bfa226a7de042baaf4e6255cf6ed967", + "IPY_MODEL_8a36f0a967c3494594b6f3d1256b853f" + ], + "layout": "IPY_MODEL_b6f4a6a646af4643a7d84a77cc344d71" + } + }, + "4528d4507af8407787d2438cb233d391": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca7f6a65e8044702925d36273a765673", + "IPY_MODEL_befc14e219b247ce857ee9e1c57d1614", + "IPY_MODEL_e9ffa9f53a894fb7aa6f70cb0f61778d" + ], + "layout": "IPY_MODEL_6c9423f2869d49e9b7360a73493bd558" + } + }, + "459e951f621147478be7296fada63a9f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4670544334d84043864442af4ea93612": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46995a901449477087bb712b3a0dfcf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c04e2c71bdd94b3eb8375fa75a134bfd", + "max": 71813, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0729f9745cce428aadc5dfbdeadb9273", + "value": 71813 + } + }, + "469e67ee9dfa42c5bd2602583c00b934": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7aa339a5e5e4610b8d998e9d3d04d43", + "max": 251, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d1d4583980ca4080892be634d3099386", + "value": 251 + } + }, + "46d657c2bbb94a858ec54036ae2d93b7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "471e7c8f428044bf97a7ef360c1a599b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "488bf505e7ce430eba7a031278e84d65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_35d8e0ecb38d40f38dbfc749d2b0a9a1", + "placeholder": "​", + "style": "IPY_MODEL_c6cad6f551a8418593bd2b59eed85bfa", + "value": " 1/1 [00:06<00:00, 6.55s/it]" + } + }, + "48dbe8e2192e4fa3b4017501cdcba264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "496723589bf34e439efd7efcf5bf84c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_853c8862218f44b8baa1e3f238e81eb2", + "placeholder": "​", + "style": "IPY_MODEL_e5ed2e3e17dd45fe8655db1d922d184d", + "value": "Downloading: 100%" + } + }, + "4999b7c9f302485fb1e6c190af2170d6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4abb4222d24d447483b90fae3ddce1b2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4aeefa6739dc40c29b85a81c5be3e725": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b42c5c51e244e86a127bcaf990bd5fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b4439b5d1d14515b7ea1185823896e3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b9040d3b5fc4aef9870749953f6f3dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ba60026d8f84e63962de7a0bcff68ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2988973aecd46518f686e5d3f2a6d80", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1786794d8baa47df8c5f8c3f1b9222db", + "value": 1 + } + }, + "4c23fc80cfa945e3ab8fbc0cefeaa88a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6bf41e507f0d4bdab0718f7cfb0f64ab", + "IPY_MODEL_8dd9bfa6be1847d8bcfda4e58a79a49b", + "IPY_MODEL_b0197fa6a73149178095b1b0d4ca912f" + ], + "layout": "IPY_MODEL_e22aea73562e4fd7af59c86d199c9d06" + } + }, + "4c9cf062362e4e3b990852a7cc477ec0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4cf103cd899045d99eb49e384c05f733": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4d1250e74fc547ff80227bee5c5dfcce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbdb96117d7c42659f3c5e981e2e8b0c", + "placeholder": "​", + "style": "IPY_MODEL_4aeefa6739dc40c29b85a81c5be3e725", + "value": "Downloading: 100%" + } + }, + "4d4d50a19aed4a1680574a0630faf474": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce9f65c5902c4358ab00482235a53ee3", + "placeholder": "​", + "style": "IPY_MODEL_0e4ef50482354401bd20e8ba366ff1bf", + "value": " 420M/420M [00:10<00:00, 46.9MB/s]" + } + }, + "4d7f57f043d740f886e9b1bbb9d115f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98b15f25809a4ba1bd86e791d68ff72e", + "IPY_MODEL_3c5ce485207b4daba05e3f1761674fe0", + "IPY_MODEL_d28ed1152fe7423c9297acc3b4666cfd" + ], + "layout": "IPY_MODEL_6c24198121c9477d830b218e848920df" + } + }, + "4dfc40aff37d4f8b855d25b41300f86f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4e50f8e74e4e4e44a57defb935f126ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79910c67511042d6b3d2b7c64c39025a", + "IPY_MODEL_5d474560d3704bfd9a2d89f5a9092afc", + "IPY_MODEL_4d4d50a19aed4a1680574a0630faf474" + ], + "layout": "IPY_MODEL_f471f6be130b41cf87db2bfb435311d4" + } + }, + "4ea1ef0070b4488d89ca58f1b49a0a1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7320ec976ab468b9dfbe92e72e405cf", + "placeholder": "​", + "style": "IPY_MODEL_23f23c71ff3142a19fd66330eadf1d8c", + "value": "Downloading data files: " + } + }, + "4f33f61dd58f4366a5a133f53768c057": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4fd65d6a96ac4c08bf2cfa07b1f0d4c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac07fbbbbf0042e28b0a65c0bebe5c53", + "placeholder": "​", + "style": "IPY_MODEL_d37c7e1da4804c74b2cd3cdcb712518f", + "value": " 266/266 [00:00<00:00, 5.93kB/s]" + } + }, + "511f3158859c428eb3a6b785c10090cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "514050b900134ba7b6e5181d1eb7ed23": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "516ab714af834f28b82ebbe33a12260a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51702ed6311a40a1a80b016333c8742f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b1e78c9ac68c4bfcb40e133dbd569423", + "placeholder": "​", + "style": "IPY_MODEL_8d2e9e35185d4e0f9dc33f15e90162c0", + "value": " 169M/169M [00:03<00:00, 49.3MB/s]" + } + }, + "518a8d5e56db4000a40e5d9f4a8ca33b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "51dc1b6f6d064d0cbf476175ea5b32b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87f56812ab744f2db24c8c122033c740", + "placeholder": "​", + "style": "IPY_MODEL_4670544334d84043864442af4ea93612", + "value": "Downloading: 100%" + } + }, + "51f16b2a35f441c998413fa4ca842d4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5322c7eecc9f4a8dae73bbff7cbf9467": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5334504e9c204eadba14a37ad969303c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5370de93300e45c9bfb244daa381f1c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "53b4511119aa44ecaa25de712332d0e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "54258459323d4ca498f179b3c9dd2c3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "547a3c59328f48a7b71fca469245f0c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55131b71d87240729a37877d1a253a1b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55605d08c1944709ae8d26931c8be8f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_403aa2d1656248eaaead105c5404afee", + "IPY_MODEL_d8ce5ff0f10c4c3eb344e5f93978b33d", + "IPY_MODEL_488bf505e7ce430eba7a031278e84d65" + ], + "layout": "IPY_MODEL_29caa1a9eaaa46289907ed1d8afa6e18" + } + }, + "55b7da800ddc4318a1d9d5c6ea0ad68a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55d6f63d6b4e4b52bd5d3e1fda443eba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "57282f25ff774ea1ae44ea331de03d48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5797eac9c4da4d5eba5abfc4ff0cebd3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "57cfa7f2d5c24955a4b29a9daf121aff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "585218ce6f16419c80dfb0484514c1a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "588af91d2c5942449cb3c2c11fe8acb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "59566f88f9fc481dbb25a916bf6f974e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_82829d8d1bb840e2bb9cf9b35406bc9c", + "placeholder": "​", + "style": "IPY_MODEL_1ecbe9017f1347e6bb6dafc014f0b8bf", + "value": "Downloading: 100%" + } + }, + "5994d7d67f6b4678ac354e1cc1800cc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e754aa1e6885498ea098ee46b03ee3f5", + "IPY_MODEL_5d63be1c95324036a62ca0f2b9ebc8f6", + "IPY_MODEL_ae22bb62fa5c4f12a2eaa98350d77fbf" + ], + "layout": "IPY_MODEL_d7335a96b8cb4925837593ffc69c6afc" + } + }, + "59b004c7072546fb8057b87f10dff707": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_25b22f473af346d8a055fd180156b747", + "IPY_MODEL_b0e67980e60b468ca10ba9cae670a01d", + "IPY_MODEL_ef20339664d5460fa951b1e3567cf6f2" + ], + "layout": "IPY_MODEL_97882337019149d09b76780e30f20525" + } + }, + "59c12ac23e3c41ac912f2115b5a879b3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59c2e4d771ca420994f6dbcb200a77aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a483369b5654f35a4c35e817dcfbcf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5ab1f70cb16b4d7ab09628e4a68eaacb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ad23b0d9fc841c78f9fdd82a583fcf0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ae199a168d34fecbfa2cf3cfda8e964": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b8ccd69d5c24be893b396cc16b6edee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c056c2760064927a02f7eac60b4fbc5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9114cc7c6ec444b9816c37ac80567309", + "placeholder": "​", + "style": "IPY_MODEL_53b4511119aa44ecaa25de712332d0e6", + "value": "100%" + } + }, + "5c1d822500534adbbcdded6b3f2c8d11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5c37f1c1b9d34dea8aea55ba089b9561": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c3aa4e8316b4baa99ad373a03da36ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cd4e0e7bb6d4821997efe66ebd4cc16": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5cf3a92da0ec4b02b7e9179e1c3d74ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d06e3588c8e4f15b2a619829467fd8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9ffae2fa38343d7b440716cf086fd50", + "placeholder": "​", + "style": "IPY_MODEL_acda95f067fc4b52983ee1e17d361214", + "value": " 577M/577M [00:12<00:00, 49.9MB/s]" + } + }, + "5d0701fa229e440ab1af934ad360f948": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d474560d3704bfd9a2d89f5a9092afc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78d580a17946424b9dcb7b87b11a0848", + "max": 440473133, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2739bb3935504557b9202c18e3ac9737", + "value": 440473133 + } + }, + "5d63be1c95324036a62ca0f2b9ebc8f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05e4c57b8d234c22849d75e7f4bd8318", + "max": 389, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cfa096546b2049c0975ea77d86380ac8", + "value": 389 + } + }, + "5d676bfac37141e88df2c10c28fff474": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d8a2596d8434a40857718bc6887cc6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_99179ee8f8f64ab69cfd5d1840934314", + "placeholder": "​", + "style": "IPY_MODEL_238269279dd3439e87c7eb5661effc59", + "value": " 4.24k/4.24k [00:00<00:00, 70.9kB/s]" + } + }, + "5ed70ac5d4a94edabe580ba4e73dadae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5efd673896bc47858f1662c1d12839ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5f189a835c5340179072a9f3f0210fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d6a7fea8b9734f97b247c8427f7bb960", + "placeholder": "​", + "style": "IPY_MODEL_80bcc848fd3b4d1b82b0f6e33120c2ab", + "value": "Downloading: 100%" + } + }, + "5f3b0e2b24294026aec08c561d3088c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5fdf7d5836e040c382b28c7f2b626e86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "600cc970653c4b8a932887cb6c683bb4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7104e38d28a548049c02b3b4015c54c2", + "IPY_MODEL_7f7b207e0c1b4827b1bf64f21441df35", + "IPY_MODEL_6ebd428fbdb64cd585794918d06205a3" + ], + "layout": "IPY_MODEL_db35f9a1489e4abe94d617e5afb10f9b" + } + }, + "602ddffe98c14572a0a194f69618fb1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b4439b5d1d14515b7ea1185823896e3", + "max": 172245279, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_97bf303cbc5a4a51b2576a17d56fd064", + "value": 172245279 + } + }, + "6229db0835a741b8b88a54308fef276b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_98c61aa306aa486fa2fdc74cc2637521", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c713e29a78048888bc694bc7a247ee1", + "value": 2 + } + }, + "62d8a873a6a64f7c9dec12e4c0c60b1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6333430180444c8ab4faeceebc51581d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63711ae7dd6a40f2bc9b56139e70061b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "637fefe04ba7405d8c2f44ea04bb31a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ef3faa8cad154918a6018318a82b5bf5", + "placeholder": "​", + "style": "IPY_MODEL_fa160f1751014425a8348f162a563b41", + "value": "Downloading: 100%" + } + }, + "647400c28b3a40bab64315bab8eb54e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "64943c92c083440b8fc6ef34d176f3cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2efac48bf966407dbbdd6185b746acd3", + "placeholder": "​", + "style": "IPY_MODEL_38876295726f47f1abffb8bfb28242f0", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "64c26e0ff1b54da3af85c911b2e9efa8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "656846d428c14f06955f6f96864a9465": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66664081b3e24c8fbd48aabd2c233040": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f317c10c74d54e9b8704be87998bbb59", + "IPY_MODEL_31b0349956594ac2bf03ef16cf4c4d52", + "IPY_MODEL_43f67283402043c7858ec5b426be0dbf" + ], + "layout": "IPY_MODEL_f8a79a267a5c42afa621d4fcdd6951e9" + } + }, + "6671b7c8c8cc4b589ca68dbafec68817": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "668dc5dee7ec4e319c415283b619d60d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a13f3b9c7734df380172ba0f087ad32", + "placeholder": "​", + "style": "IPY_MODEL_109186b90bf64da5a3a9dbc662346ace", + "value": "Downloading: 100%" + } + }, + "67703df7586d4ecea71221f4f9068aac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "67b33124b77e4b39a311ea648a6ae589": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67b362e258e1412b8a0d955911b684a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3548d003c9b741bc8c50c60bfcb22acb", + "placeholder": "​", + "style": "IPY_MODEL_fc0d151b52b741f8a64ffbc19dfe5333", + "value": " 2/2 [00:00<00:00, 30.38it/s]" + } + }, + "6823ab3fcf8649fdbdbc74945cf7609a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "683138a370f24e1ab4920ff152a67682": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ae33e6526d754b7ea2ff15177a93273c", + "placeholder": "​", + "style": "IPY_MODEL_31638411cf8a4609ac27a6515e11493a", + "value": " 568/568 [00:00<00:00, 9.10kB/s]" + } + }, + "689ed43f2e2d45b49b8d49b0681a9b17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dbcf62a4eee242439357cb17f8e755db", + "placeholder": "​", + "style": "IPY_MODEL_7b5e2a733e2d40de9882c598b17e2f96", + "value": "100%" + } + }, + "68affdcf9c30442cb1b59ff4c2a57975": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79413972bc3f4bd3b3411b5fb5da4a6f", + "IPY_MODEL_232dc3949156475c9164271a3a0e2deb", + "IPY_MODEL_99010785c2cb42a98dcd33e5a908cb72" + ], + "layout": "IPY_MODEL_5ab1f70cb16b4d7ab09628e4a68eaacb" + } + }, + "6903694b772644b1b1bc1a218fc48e38": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "698b0e78c2004df4a124a3154fac177d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69e37e34c7524e1db831315aea772845": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69ed86491b034c17800aae7df7da7823": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a0f7103b8b741eebdf32d28189cc124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_689ed43f2e2d45b49b8d49b0681a9b17", + "IPY_MODEL_4ba60026d8f84e63962de7a0bcff68ac", + "IPY_MODEL_9dd6a8362a53483cbe6f638e53ea548a" + ], + "layout": "IPY_MODEL_585218ce6f16419c80dfb0484514c1a1" + } + }, + "6a1410d9d8e44f3cad4633c73f51d2f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6a1f5709ee664ee89b90a08c2844b98d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a35cd13f03742348c0750f2f8eb7bd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d1250e74fc547ff80227bee5c5dfcce", + "IPY_MODEL_17731aba57ca4f30af93fc133be8ac9b", + "IPY_MODEL_fc52749c37a64691ba7193b2a0d5bff3" + ], + "layout": "IPY_MODEL_ff69745d25484e08a3ab3146aa4dc0e8" + } + }, + "6b53dcb287f744eea39a4523b66ae8bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b916a7d0f544a63b80a3efe9dfd0f44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40ef861ef9a94ac09e9858dfce45a644", + "placeholder": "​", + "style": "IPY_MODEL_6f73931aeaf1432ebb31882fdf83d462", + "value": "Downloading: 100%" + } + }, + "6bcc8e8b7daf458f81186182f35de964": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe429a84adc84180be600727fdce1524", + "placeholder": "​", + "style": "IPY_MODEL_324a6401e529466e9b0a97c7449c1d99", + "value": " 9946/10000 [00:05<00:00, 2187.56 examples/s]" + } + }, + "6bf41e507f0d4bdab0718f7cfb0f64ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b9040d3b5fc4aef9870749953f6f3dc", + "placeholder": "​", + "style": "IPY_MODEL_b2e398d8b4c14e13b392526a30ad9645", + "value": "Downloading: 100%" + } + }, + "6c24198121c9477d830b218e848920df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6c9423f2869d49e9b7360a73493bd558": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d6963c84fde4a72bd17e0cf6f740999": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6ebd428fbdb64cd585794918d06205a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3b2a4eeebb954825be9e8ac4bd9d7674", + "placeholder": "​", + "style": "IPY_MODEL_f600827a1b1e4e68809d9421e349c098", + "value": " 842k/842k [00:00<00:00, 1.85MB/s]" + } + }, + "6f73931aeaf1432ebb31882fdf83d462": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6fbc5e09b2d04c96bb9b65e8c17cd368": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ccceee9856014b2483430b36bcc73223", + "IPY_MODEL_28f6823cba3f4a9da782c5a620040f83", + "IPY_MODEL_9db3d51516fe4c78a2f45ec2d3965480" + ], + "layout": "IPY_MODEL_6a1f5709ee664ee89b90a08c2844b98d" + } + }, + "6fdfee4649614e74a31a53f3e9db467a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_547a3c59328f48a7b71fca469245f0c1", + "max": 255, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_22f0c016cdca44ab96f13ab347a54ad6", + "value": 255 + } + }, + "702476251304489bad9e4739b6e6494c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7104e38d28a548049c02b3b4015c54c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f7c1395acddd4032814edef8a5292009", + "placeholder": "​", + "style": "IPY_MODEL_abac6f772c2141bc82802f3ed6f0bbd5", + "value": "Downloading: 100%" + } + }, + "7269fc577bf944aa84195b1bfba6a079": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_637fefe04ba7405d8c2f44ea04bb31a0", + "IPY_MODEL_c32add5eae4249509500fb5d9f06ff04", + "IPY_MODEL_0dfa70467a1341acb28ecb1c70425ef0" + ], + "layout": "IPY_MODEL_8664e395400642d79172eb061ca95dda" + } + }, + "739574b067424930acfed5c8763e2b5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73ca073b98994dcba03670961dbc49ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73d9b9262b5849798b78f337ea557e62": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7478b9d88d24488b922a65444615c3ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74b1401e161a448c8593154c2e7b72da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4023e6e4edba456cb670954a1f153ce2", + "placeholder": "​", + "style": "IPY_MODEL_cb378dc011144ef5876f6531405ed01c", + "value": " 779k/779k [00:00<00:00, 1.82MB/s]" + } + }, + "76114dfc6fe54dbf93b0b1636a0b6f1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "76ef27ff545f443c90abbf5e17008240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d25c2d1b17584164a3859e4d0e23880c", + "placeholder": "​", + "style": "IPY_MODEL_81575bd8d7a14f2c9343e3cf61c3805f", + "value": " 68.0k/68.0k [00:00<00:00, 4.95kB/s]" + } + }, + "78d580a17946424b9dcb7b87b11a0848": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78ef4b5e93c1464d8575e2f73e8b11f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "79413972bc3f4bd3b3411b5fb5da4a6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_73d9b9262b5849798b78f337ea557e62", + "placeholder": "​", + "style": "IPY_MODEL_21c17d6c96f54beeab9620e8ca56a744", + "value": "Downloading: 100%" + } + }, + "79910c67511042d6b3d2b7c64c39025a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed52bd3874f944af9b1013d34e42e2c5", + "placeholder": "​", + "style": "IPY_MODEL_d43f1e18882c4b4d8ffb3ac7a9047a49", + "value": "Downloading: 100%" + } + }, + "79ea37ef27bb4c54b54d5f1e93909eb4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e0c22389bbe44eb8dc08bde90aa8f76", + "placeholder": "​", + "style": "IPY_MODEL_bb9e6c8e4951437caa08319315601dff", + "value": "Generating train split: 100%" + } + }, + "7a350d8644ba47e490d72aff9106d8f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7a7b3baca14548aea00d68d1e239f9c7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ade8963522340538bdd8c2640ad7a13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b3ce14450a44eb5b8d22bf769c4c4bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b45a23733d24d16a63ffcdd653359c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7b5e2a733e2d40de9882c598b17e2f96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7bb7d38bdc024b0995a334171f0a9ea4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7c1130828ce64c528b5ce0b3014f032c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c56738718424c578bf95845fced08eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7d5222c25b7a4d46a38c0612924c56fd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7dba12055cad4a6daf4c56ca1b65198c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e0bd05f94e2445b868f738d51230137": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e32c676253f4882b76e3172ae39bbac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7e8cf145682d4143ba83162bccbbdc5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7e96a1edb21c41b3b17a9e1139fcc83a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10c9c655f73e468e8e18ee4e375cd10a", + "placeholder": "​", + "style": "IPY_MODEL_273a5079aee34065b923bb8fab13feaf", + "value": " 1/1 [00:14<00:00, 13.99s/it]" + } + }, + "7f7b207e0c1b4827b1bf64f21441df35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37b8075d13e2414bae451597817561f4", + "max": 862328, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf699fd9e9804900acb70c2f30aab488", + "value": 862328 + } + }, + "7f9b1792c5554e7cae829fef946442c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7ff1990838a44511954efb6cdc0345f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "80bcc848fd3b4d1b82b0f6e33120c2ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "80d1138bcbfb446893b36234f869cd12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_306c66fc67bd4c639f0a1e29967a4496", + "placeholder": "​", + "style": "IPY_MODEL_87671aa71b344d81aed69074f1e8d3c9", + "value": " 9/9 [00:04<00:00, 2.42ba/s]" + } + }, + "80ecdaabd84a445dbd549fe87cb4dc30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "811fbfbf52b5429e8559aa64ffddf374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_907b35a327ab46d79d2654babeadfd0a", + "IPY_MODEL_6fdfee4649614e74a31a53f3e9db467a", + "IPY_MODEL_eabcdfb258ee457bbf392d692b6e1f5c" + ], + "layout": "IPY_MODEL_2f2df35b25634b6e871ec11c250741d9" + } + }, + "814668620de7415c8c8317dc67864d98": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "814a7513b58a4cd0b4f940ea566c6aee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81575bd8d7a14f2c9343e3cf61c3805f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8158494a1aa64f30bb74f3064ba497e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "81e46cd40e4341fd80aea66999175b5d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "82829d8d1bb840e2bb9cf9b35406bc9c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82e8fae251514300ab2c6db08091a940": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8362e331c95f4797aed82468acba0591": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1024dc2d2b154759b8109f6a897a2fee", + "placeholder": "​", + "style": "IPY_MODEL_41a5174bc2c34ca38608c6e9629290e3", + "value": " 1/1 [00:14<00:00, 14.13s/it]" + } + }, + "8527a096932c4490aaa4f9b2d1c406cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bcf0bc9647204386bca77d24a13dd5b7", + "placeholder": "​", + "style": "IPY_MODEL_d0c98a71363646b0add37c4aa54db634", + "value": "Downloading: 100%" + } + }, + "853c8862218f44b8baa1e3f238e81eb2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "855f66f34dd14ad2815f3c6572b38d44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bb28cba70eb41e7a187834eff9ae53a", + "IPY_MODEL_dc29b44fe051481798b2864c4bfc64b7", + "IPY_MODEL_32e03b9289084b7c8a1767b88f4589ed" + ], + "layout": "IPY_MODEL_39e30189361e47ada33eb9ae5cc3d0c5" + } + }, + "85661f74de214119a0f8fca2888e448d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e7d14c054e743a49e52f5eb5c783cc9", + "max": 502, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_44291e5ce7e1427da7eb4e8d5757ed2d", + "value": 502 + } + }, + "85d9db12932f405c859ee7ed934dd597": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d5222c25b7a4d46a38c0612924c56fd", + "placeholder": "​", + "style": "IPY_MODEL_2d28fd9efb064a6da8a2b6eba7754c49", + "value": "Downloading data: 100%" + } + }, + "86488d305931487bb0f986d4222fb381": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8664e395400642d79172eb061ca95dda": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "866b6114ad06416890378ce87082286b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86bd70222cb848f99f77e7caedab5d21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "87671aa71b344d81aed69074f1e8d3c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "877134cb2a6a48d1991a5ad1cba3aeb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57282f25ff774ea1ae44ea331de03d48", + "placeholder": "​", + "style": "IPY_MODEL_5322c7eecc9f4a8dae73bbff7cbf9467", + "value": "Downloading: 100%" + } + }, + "87ac3e43ddf94585bfea85a065ad1b54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee61565e8aed419cbc21b1bc36de211d", + "max": 320, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_bd30ae82f5e04da0a8cf77ef3bd8c96c", + "value": 320 + } + }, + "87e5ea0d53fe4e91a474a6ad95943bb5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "87f56812ab744f2db24c8c122033c740": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "889eb41f139a4fc0a9d59859874986b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8996ee989cf24377adc1158fce6b1efc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b0825ee74c5c4e799b57a91496ebeee9", + "IPY_MODEL_04ee213a2d2444b9aee2f93079b1b4cd", + "IPY_MODEL_2da12854d7c54afd8bbf03a8c78def48" + ], + "layout": "IPY_MODEL_13c6de2887f9485e94220b42bd8efc9d" + } + }, + "899f3acf8a514a6ca4ac646b7aef9722": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a869e071191843f1a79eb233527042db", + "IPY_MODEL_2ee71187b6ae4c55b3a3a2ff808f4c1b", + "IPY_MODEL_df0468854a0b456792e7182a8e8cb5a8" + ], + "layout": "IPY_MODEL_518a8d5e56db4000a40e5d9f4a8ca33b" + } + }, + "89fd6cf0b6df447199974934183d231a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8a36f0a967c3494594b6f3d1256b853f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b7fa96636d3c4609bd0434257436285f", + "placeholder": "​", + "style": "IPY_MODEL_471e7c8f428044bf97a7ef360c1a599b", + "value": " 68.0k/68.0k [00:00<00:00, 1.25MB/s]" + } + }, + "8ad0c3a240544881a11d4ae37ac3feb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8af60ab423c44e5ab03e78119ea332ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f565d069b26b42ea98dd9b218446e253", + "placeholder": "​", + "style": "IPY_MODEL_7b45a23733d24d16a63ffcdd653359c5", + "value": "Downloading: 100%" + } + }, + "8b2e6f860b3a4389a6927bce42ae0cc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8c713e29a78048888bc694bc7a247ee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8cd5cbee19674579b9048774b93efe01": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8cdd893451b04f5dac88d7ea6d1cd280": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8d2e9e35185d4e0f9dc33f15e90162c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8dd9bfa6be1847d8bcfda4e58a79a49b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7e16d6695c94875bd1cdb5ef91130ed", + "max": 69556, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_da65e6e1f29e43efa94b138835ff08ae", + "value": 69556 + } + }, + "8f58e4207b8c4f1b86e5aa45a7af1ae9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_295122664d7443639e5b80d5a5583084", + "max": 169001437, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe794c67ad5f443188910984832cce77", + "value": 169001437 + } + }, + "904466f89d014246b06aa8c202ae91eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_92a94bb63800496c8cfe08469c6c4f9b", + "max": 266, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ecc7130759004c40843042a4c88dd3e7", + "value": 266 + } + }, + "905ff301192d4bb4a401ef06d70a9189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46d657c2bbb94a858ec54036ae2d93b7", + "placeholder": "​", + "style": "IPY_MODEL_17bd99f8e19e47c3af0b308027afad2c", + "value": "Downloading: 100%" + } + }, + "907b35a327ab46d79d2654babeadfd0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dcd5525b4c2141ab9a387ddf76b51c88", + "placeholder": "​", + "style": "IPY_MODEL_57cfa7f2d5c24955a4b29a9daf121aff", + "value": "Downloading: 100%" + } + }, + "9114cc7c6ec444b9816c37ac80567309": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91f29db05f7e4034bbb2aa0f2cfbccae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2474ce59591e43278fa4f2df91d1e6ea", + "max": 135543, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c337c183b5434620bca53c1b40a9c727", + "value": 135543 + } + }, + "9218577032ec465c8b1265765e3441a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "92a94bb63800496c8cfe08469c6c4f9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "92ce7f001374492188aede199bbca204": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_59566f88f9fc481dbb25a916bf6f974e", + "IPY_MODEL_229112b0e02d479c9eac0670b911a0db", + "IPY_MODEL_c6caa5f1f1e943c9b0094c60c1af5223" + ], + "layout": "IPY_MODEL_5cd4e0e7bb6d4821997efe66ebd4cc16" + } + }, + "93f94795cc4849f592d046c9a669eb66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f89e5408523b4c9789caa4c6155c21c3", + "placeholder": "​", + "style": "IPY_MODEL_e371096ff0b5400a9fa5054a49871e0b", + "value": "Downloading: 100%" + } + }, + "944aa3af20944fe1ad6a64f24b0311f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e51745af8c9e4f3b9f8736d0c0a596dc", + "placeholder": "​", + "style": "IPY_MODEL_e83b7231b5ab490a90fe8a7f8daf8f6b", + "value": " 5.61k/? [00:00<00:00, 81.1kB/s]" + } + }, + "9485e5a0a8694387b6d0bc415fb40e11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5797eac9c4da4d5eba5abfc4ff0cebd3", + "placeholder": "​", + "style": "IPY_MODEL_fa3d9221188540d98dfcb848f5953123", + "value": "Downloading: 100%" + } + }, + "95e416b00e6042b2a308b90160dad073": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1071d53bb40d4d62bce36f6f9061e287", + "max": 102567489, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_48dbe8e2192e4fa3b4017501cdcba264", + "value": 102567489 + } + }, + "9661dd3c3c604622aadf3e1d147343ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96fab1b1dc404519a276ef466cc6b114": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97882337019149d09b76780e30f20525": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97bf303cbc5a4a51b2576a17d56fd064": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9807ff10a451493ab9bc9818dedbedbd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98521f9c810547a8b2088b2029e988fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cec7671880a44682bd2d9328279933d4", + "placeholder": "​", + "style": "IPY_MODEL_3fb154228b8b4f0cbfd7241fa7402e2c", + "value": "Downloading builder script: " + } + }, + "98b15f25809a4ba1bd86e791d68ff72e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59c12ac23e3c41ac912f2115b5a879b3", + "placeholder": "​", + "style": "IPY_MODEL_7bb7d38bdc024b0995a334171f0a9ea4", + "value": "Downloading: 100%" + } + }, + "98c61aa306aa486fa2fdc74cc2637521": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "99010785c2cb42a98dcd33e5a908cb72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c31b382c0044c128e3f9688a4a0cec4", + "placeholder": "​", + "style": "IPY_MODEL_d11e1bc7cc55414994189037eeb67f21", + "value": " 330M/330M [00:08<00:00, 45.6MB/s]" + } + }, + "99179ee8f8f64ab69cfd5d1840934314": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "994ce872d0cd4b64918f5547207ac95a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_739574b067424930acfed5c8763e2b5c", + "placeholder": "​", + "style": "IPY_MODEL_5d676bfac37141e88df2c10c28fff474", + "value": " 236/236 [00:00<00:00, 557B/s]" + } + }, + "998481fd77e5451b9afb088a073e1e0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_514050b900134ba7b6e5181d1eb7ed23", + "placeholder": "​", + "style": "IPY_MODEL_acd973c93c9f404ba569ff51238b76a1", + "value": "Downloading: 100%" + } + }, + "99e1b5f592824544aa07a27ff1b383ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a28ecd289254757a8921be09b647a56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_319044a8127e498ea888271dc220d25d", + "IPY_MODEL_8f58e4207b8c4f1b86e5aa45a7af1ae9", + "IPY_MODEL_51702ed6311a40a1a80b016333c8742f" + ], + "layout": "IPY_MODEL_7f9b1792c5554e7cae829fef946442c1" + } + }, + "9a982e7499574ee7ac372653236ac017": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9b691966321f476dbf4ee01eb28ce1fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b75c743206744a9af7124cd7c0c8461": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9ca5105629eb4937bd78182b370ff2df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9ce756c10a2649dbb61fd10a377d8105": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9d7a74fc55b24144af74836de9d2b4c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_001da0115c27458fb2364aa9c853a2ca", + "max": 4592, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d8f41ff3cd5479da2d2c1109f80b798", + "value": 4592 + } + }, + "9db3d51516fe4c78a2f45ec2d3965480": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6333430180444c8ab4faeceebc51581d", + "placeholder": "​", + "style": "IPY_MODEL_0fb58d86c2ff4476bf8dc53fe2fe86c0", + "value": " 512k/512k [00:00<00:00, 1.25MB/s]" + } + }, + "9dd6a8362a53483cbe6f638e53ea548a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a7b3baca14548aea00d68d1e239f9c7", + "placeholder": "​", + "style": "IPY_MODEL_c1cc358324ef43c89c3d24e44e180754", + "value": " 1/1 [00:00<00:00, 22.52it/s]" + } + }, + "9e777be965264bfc90b4a5b7c3e4ee4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2067a0757ad04940bb0e1a18c7821872", + "placeholder": "​", + "style": "IPY_MODEL_2b52b501b661487e83c65f2f75f7724a", + "value": " 251/251 [00:00<00:00, 3.89kB/s]" + } + }, + "9ecb99f53c434d88a5afd72f5ff3c889": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f539ba3e4bb4db08d16c87baf59835f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9fc8b7910a3c4ea1980b64fa86b6f001": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a040488016f044318d3bbe9025c3a45c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a084902813b1426e85b13b7cfd69581a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7e0bd05f94e2445b868f738d51230137", + "placeholder": "​", + "style": "IPY_MODEL_63711ae7dd6a40f2bc9b56139e70061b", + "value": " 446k/446k [00:00<00:00, 772kB/s]" + } + }, + "a1aecb72c2c84aa7ae629a725cbe1c7c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a22b490f1ca74dd1a57912cd3bb3b39d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a27b474641d74f25b8b6dcd88491e8aa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a30386687d184797a16a8fd379d6acb0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a310413fe1ad4e23b15fccf91c9ab22c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a42466decb6f47a2b297803d38538eb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39a5ed2bc58749c69c6c756692976c1f", + "max": 982135145, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5334504e9c204eadba14a37ad969303c", + "value": 982135145 + } + }, + "a7c9dd9062564fd8800095bde17f68e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a851e6617fe648ca91a5072a5bc55726": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a869e071191843f1a79eb233527042db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_55d6f63d6b4e4b52bd5d3e1fda443eba", + "placeholder": "​", + "style": "IPY_MODEL_a310413fe1ad4e23b15fccf91c9ab22c", + "value": "Downloading metadata: " + } + }, + "a8cbe4f310894d53bc1454b60930e748": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df697e44d7e449b8b2a8b80788857e35", + "placeholder": "​", + "style": "IPY_MODEL_2ff94603046346cbbb4015464ecfa171", + "value": "Downloading: 100%" + } + }, + "a98654eef27848999db523b11dc629ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_298380d2ca6d4ca5a221c3036e546fac", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c3d7196996bf4fc783715921bd57b514", + "value": 0 + } + }, + "aa40b47c439845a0a45e359ed5a7cbe9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab0e57d6b33c4c10b5c8067d1cc9b7ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_511f3158859c428eb3a6b785c10090cf", + "placeholder": "​", + "style": "IPY_MODEL_4dfc40aff37d4f8b855d25b41300f86f", + "value": "Pushing dataset shards to the dataset hub: 100%" + } + }, + "ab379371be664724a209b3ce0065b153": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ab4025f77d32401e8be9f5337757a55e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ab7bb54aecf248f3adb523b56f55af94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_02b3ac5b390b427eb4b1fbc849a52485", + "max": 114423189, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_54258459323d4ca498f179b3c9dd2c3b", + "value": 114423189 + } + }, + "abac6f772c2141bc82802f3ed6f0bbd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ac07fbbbbf0042e28b0a65c0bebe5c53": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac231e4dfb574277ab53605e754c033e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "acd973c93c9f404ba569ff51238b76a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "acda95f067fc4b52983ee1e17d361214": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ad035a8f5660494ea8f87799d873a6b7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad303c99faeb41ee93f5fb06ab040ffb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6b53dcb287f744eea39a4523b66ae8bd", + "placeholder": "​", + "style": "IPY_MODEL_d88b629d3d5c4dce9a3b379d97edcd6f", + "value": "100%" + } + }, + "ae22bb62fa5c4f12a2eaa98350d77fbf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_96fab1b1dc404519a276ef466cc6b114", + "placeholder": "​", + "style": "IPY_MODEL_20301bc5fd154013aa828735dc966a9c", + "value": " 389/389 [00:00<00:00, 6.49kB/s]" + } + }, + "ae33e6526d754b7ea2ff15177a93273c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae4053556f1c460397425f703ad933ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9485e5a0a8694387b6d0bc415fb40e11", + "IPY_MODEL_ca6b5dd86d48425a96a7967ad92e7554", + "IPY_MODEL_74b1401e161a448c8593154c2e7b72da" + ], + "layout": "IPY_MODEL_d3002480428d4a9f922e9920ea65bedd" + } + }, + "ae5f5d11dcfe4b47b20fffb986fa2420": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3756de870d564e41bc542ab400f1f6f2", + "placeholder": "​", + "style": "IPY_MODEL_da8d3e676b8f442b9c3429feca7fb60f", + "value": " 455k/455k [00:00<00:00, 1.61MB/s]" + } + }, + "ae5fa4a74652418ea28c8ac247b7bf23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9fc8b7910a3c4ea1980b64fa86b6f001", + "max": 677421, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb7af1be9e9a41fcb320c0f1b5529611", + "value": 677421 + } + }, + "aed53a3ced8e4751934297ee6b3a919f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c6714f85f70e4fd3905f4a839ab59310", + "IPY_MODEL_ae5fa4a74652418ea28c8ac247b7bf23", + "IPY_MODEL_305fa41ab72d487aa5253ca89160bb63" + ], + "layout": "IPY_MODEL_d8e7626a8e1b4ff5a12093a11bd80014" + } + }, + "af5b1778c960450994844c84276db7de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "afc103996f4d4c85bb81efd3d77e8eb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b0197fa6a73149178095b1b0d4ca912f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f69c2b33c0c74a76b4e36b78f8769ebf", + "placeholder": "​", + "style": "IPY_MODEL_b16dd6b230c7417d9fe545ea2b61c6c4", + "value": " 67.9k/67.9k [00:00<00:00, 1.26MB/s]" + } + }, + "b03d4140889e429eb6a84a6518e46353": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7c1130828ce64c528b5ce0b3014f032c", + "max": 113476015, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2882b1d3f58e40a591d827ab2c4a2979", + "value": 113476015 + } + }, + "b0633b37f12b4a70a8fed191f9a7644c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0825ee74c5c4e799b57a91496ebeee9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f72e053dcc934a269b5740e47c15f586", + "placeholder": "​", + "style": "IPY_MODEL_e64fa0fd9b85494982587c44f6a324af", + "value": "Downloading: 100%" + } + }, + "b0bf24a8ff3d4f0492639b7f76f60cab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b0e67980e60b468ca10ba9cae670a01d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_866b6114ad06416890378ce87082286b", + "max": 346351599, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c709e38072a4308b7e7d6bef5663d01", + "value": 346351599 + } + }, + "b16dd6b230c7417d9fe545ea2b61c6c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b1a8fd86ed8342ca8abab37fe1b5a4a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2067a949788d41e49914425f88ccdcd9", + "placeholder": "​", + "style": "IPY_MODEL_2339866570a44d42bf11f10d187d4638", + "value": " 164M/164M [00:04<00:00, 46.1MB/s]" + } + }, + "b1e78c9ac68c4bfcb40e133dbd569423": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b270a9237fa04bda91cdaabf1f6bcdb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da93b909d03a43d083377dcbd38b8370", + "max": 236, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3947f82d144748e880f254b39e7135ce", + "value": 236 + } + }, + "b2988973aecd46518f686e5d3f2a6d80": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b2e398d8b4c14e13b392526a30ad9645": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b337bb8cc21c40a796d53f65a6215493": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b5ba4d7eedc7407c8f70ecd4a4ad41e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b62fc9b31fd24cb98d6f763c979c0fd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8cbe4f310894d53bc1454b60930e748", + "IPY_MODEL_246cf1dfd6bc4e04aa7c97787bb71399", + "IPY_MODEL_a084902813b1426e85b13b7cfd69581a" + ], + "layout": "IPY_MODEL_339f7cbeebe7414c9aa7097d3c2261c8" + } + }, + "b66fcc8768474951ad878426589fe2f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b6f4a6a646af4643a7d84a77cc344d71": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b7143ec6bf9b4704b2766ad671063fda": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b7ccb1a6bc504c47ad0d21c35aa35b67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37b0077c21fd4e59adf070941bb3467d", + "placeholder": "​", + "style": "IPY_MODEL_e9a63218e1e446899ecf4da118a6f020", + "value": "Downloading: 100%" + } + }, + "b7fa96636d3c4609bd0434257436285f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b84fefbdfcaa485ebc9e581ef40c6253": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9b691966321f476dbf4ee01eb28ce1fb", + "placeholder": "​", + "style": "IPY_MODEL_f53d9f5318c6443a88fac515f4f435de", + "value": " 502/502 [00:00<00:00, 8.32kB/s]" + } + }, + "b8ed6406cd8548be90ce9ea430c27e46": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b94cef78dbdd463b999d5cafbae1480d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b96ce25aec0649cf8e1d0e9e666aacf8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9ffae2fa38343d7b440716cf086fd50": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ba02948164d64f0b87796ac14c453267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca4958dcc9114bf89ad6d44512eb36a0", + "IPY_MODEL_f51c8aa5005e45aab1481c9259da9a04", + "IPY_MODEL_e59a5bc83b234152b0a146b2e49c4567" + ], + "layout": "IPY_MODEL_eb9206aa68ac4a788e97a87b2945321f" + } + }, + "ba6f2aaf20524d25a3b6ec5b55ab8e9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ace9e737d2a473bbc8fdca9dbc7ebbf", + "placeholder": "​", + "style": "IPY_MODEL_34b8c6f11f9545c78a0a9effc58bbcc9", + "value": " 274/274 [00:00<00:00, 6.40kB/s]" + } + }, + "ba7a6d9e2de64d7fa3d45028c95e7cad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb04b8c68c0845afae9f939bc13c50b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_998481fd77e5451b9afb088a073e1e0e", + "IPY_MODEL_f24dc25a752f4362aaddbf139e9f95d0", + "IPY_MODEL_683138a370f24e1ab4920ff152a67682" + ], + "layout": "IPY_MODEL_3c33201ad8f74dd785fc2f3a1113a0d4" + } + }, + "bb43e8c2b0224a039fb7da54cd56774f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb9e6c8e4951437caa08319315601dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bccd6ff7a71f4dadbac31f119f5372a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7dba12055cad4a6daf4c56ca1b65198c", + "placeholder": "​", + "style": "IPY_MODEL_99e1b5f592824544aa07a27ff1b383ad", + "value": " 937M/937M [00:54<00:00, 24.5MB/s]" + } + }, + "bcd90750c6f74a1bb9b50aa177aafb47": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcf0bc9647204386bca77d24a13dd5b7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd30ae82f5e04da0a8cf77ef3bd8c96c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bd3e92d2b6d5464da8acc9481f3d6528": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27720dad130c4ca78901f439dcf30724", + "max": 605247071, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_204e911e5f22409191d339acbcd17268", + "value": 605247071 + } + }, + "bd7aa91b7d9d41a39ebecda9c8e563e9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bdb67c2ee40f4b2491dfc441fa2f0233": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be415f0c92434f95ae4a57ccae64cbe3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8ed6406cd8548be90ce9ea430c27e46", + "placeholder": "​", + "style": "IPY_MODEL_43f5d259ff4e4620b77459f5ad5deb88", + "value": " 159M/159M [00:04<00:00, 39.8MB/s]" + } + }, + "befc14e219b247ce857ee9e1c57d1614": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e4b98bdd7ec74fc5a8b574f4f727bf24", + "max": 1355446, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8cdd893451b04f5dac88d7ea6d1cd280", + "value": 1355446 + } + }, + "bfa0bcadcc1e4911bc13c76ec46387a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b7ccb1a6bc504c47ad0d21c35aa35b67", + "IPY_MODEL_a42466decb6f47a2b297803d38538eb0", + "IPY_MODEL_bccd6ff7a71f4dadbac31f119f5372a1" + ], + "layout": "IPY_MODEL_a7c9dd9062564fd8800095bde17f68e0" + } + }, + "c04e2c71bdd94b3eb8375fa75a134bfd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c14332dc84ed49ddaf13af4694e290de": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c172170b46d54b798aabb272d7aaef95": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1cc358324ef43c89c3d24e44e180754": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c1d17ec02e4b450e9da55afaada13afc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b7143ec6bf9b4704b2766ad671063fda", + "max": 50000, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7dc6d479cf948d1b4afa1673718cd3c", + "value": 50000 + } + }, + "c31e28dd39e24325a1a303d0262ad0a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d0d3c4d7409546909e3f8acf98785182", + "IPY_MODEL_b03d4140889e429eb6a84a6518e46353", + "IPY_MODEL_ffcc25068ca14b8f84380eea7f4f46d0" + ], + "layout": "IPY_MODEL_c95db8785cf94d8c88e3aa8bab2632af" + } + }, + "c32add5eae4249509500fb5d9f06ff04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db6312a9778e47fdbad9cd713af94a21", + "max": 570, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_76114dfc6fe54dbf93b0b1636a0b6f1f", + "value": 570 + } + }, + "c337c183b5434620bca53c1b40a9c727": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c3d7196996bf4fc783715921bd57b514": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c503e40b90064b98b9dc7aa439d6c5a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c5b94d8279444738b27e8cc98737dfad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5e6eb48578544da9960151bd4261fa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f3b0e2b24294026aec08c561d3088c8", + "placeholder": "​", + "style": "IPY_MODEL_9661dd3c3c604622aadf3e1d147343ac", + "value": "Downloading: 100%" + } + }, + "c6714f85f70e4fd3905f4a839ab59310": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5ae199a168d34fecbfa2cf3cfda8e964", + "placeholder": "​", + "style": "IPY_MODEL_7ff1990838a44511954efb6cdc0345f3", + "value": "Upload file pytorch_model.bin: 100%" + } + }, + "c6caa5f1f1e943c9b0094c60c1af5223": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7c56738718424c578bf95845fced08eb", + "placeholder": "​", + "style": "IPY_MODEL_0373ca2dbbfa4411a1bc45289969c4b3", + "value": " 273/273 [00:00<00:00, 7.39kB/s]" + } + }, + "c6cad6f551a8418593bd2b59eed85bfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c70aeada82c94cdabaa5b5d5d232df84": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c739c74bab86481faba4f5434affad87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_010221d1d14b43baa5ae99bfe40abb02", + "IPY_MODEL_b270a9237fa04bda91cdaabf1f6bcdb9", + "IPY_MODEL_994ce872d0cd4b64918f5547207ac95a" + ], + "layout": "IPY_MODEL_0ed373dbc4b64850b8640b92d8a5a95d" + } + }, + "c7862ae42cac4dfb9b9087958239716b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5f189a835c5340179072a9f3f0210fc0", + "IPY_MODEL_e1d16d238c584691b080102408389765", + "IPY_MODEL_11ed145351aa4455ae3ab001771739f4" + ], + "layout": "IPY_MODEL_dd32d7bac7574db68d6b6027b36f776c" + } + }, + "c7acbea892d84d459ee44ff168a80efe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9807ff10a451493ab9bc9818dedbedbd", + "placeholder": "​", + "style": "IPY_MODEL_f1a42a947069430f960f5276cdc9ffcb", + "value": "Downloading: 100%" + } + }, + "c7dc6d479cf948d1b4afa1673718cd3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c8281d1792784212a154c5259e4a085a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c84dda9ece774bd0a3d7099d522da8be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c869d188ea18416daed575188e299367": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c89bf52fc62144bbb686fe95e74ee965": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c95db8785cf94d8c88e3aa8bab2632af": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9d8589bddc74d4b93cba6faca7f1f2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c9e136be9e27403190f97621bf0c2360": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca4958dcc9114bf89ad6d44512eb36a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ad2e088a86b43418e4bbb70135b8224", + "placeholder": "​", + "style": "IPY_MODEL_11b0c789aee548e3810643056ec0cd9b", + "value": "Downloading: 100%" + } + }, + "ca6b5dd86d48425a96a7967ad92e7554": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c5b94d8279444738b27e8cc98737dfad", + "max": 798156, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_153c7c778a704b53af2ca5836e938866", + "value": 798156 + } + }, + "ca7f6a65e8044702925d36273a765673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0bf24a8ff3d4f0492639b7f76f60cab", + "placeholder": "​", + "style": "IPY_MODEL_c869d188ea18416daed575188e299367", + "value": "Downloading: 100%" + } + }, + "cb378dc011144ef5876f6531405ed01c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cb619ae1c8cc4b53b65eab78a2949d88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1aecb72c2c84aa7ae629a725cbe1c7c", + "placeholder": "​", + "style": "IPY_MODEL_4483b6cf1dd348b9af2d99dfd44440cd", + "value": "Downloading data files: 100%" + } + }, + "cbc1ad73bfce4149b4830a07c41a24ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cbdb96117d7c42659f3c5e981e2e8b0c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ccceee9856014b2483430b36bcc73223": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23eb73c8084e43b0bf973c7d10adfee7", + "placeholder": "​", + "style": "IPY_MODEL_f533c2d8e5254888a6bdd9d59f437d83", + "value": "Downloading: 100%" + } + }, + "cd19543310b443b99946a64ace409659": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b5ba4d7eedc7407c8f70ecd4a4ad41e0", + "max": 69665, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e32c676253f4882b76e3172ae39bbac", + "value": 69665 + } + }, + "ce9f65c5902c4358ab00482235a53ee3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cec7671880a44682bd2d9328279933d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cefbb2bedb574363addf54a368287489": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cf699fd9e9804900acb70c2f30aab488": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfa096546b2049c0975ea77d86380ac8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfb2c030d3814db7bf7be269270f8b75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d06f377e53a44e4491a9d5b27daa79ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8cd5cbee19674579b9048774b93efe01", + "placeholder": "​", + "style": "IPY_MODEL_eca0e385777849e0bf854224c52c91fc", + "value": " 49825/50000 [00:23<00:00, 2420.64 examples/s]" + } + }, + "d0c98a71363646b0add37c4aa54db634": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d0d3c4d7409546909e3f8acf98785182": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4d2246d49584564bedadd088116b23d", + "placeholder": "​", + "style": "IPY_MODEL_51f16b2a35f441c998413fa4ca842d4f", + "value": "Downloading: 100%" + } + }, + "d11e1bc7cc55414994189037eeb67f21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d1b0ccdce4664be7a95e52f450368ce9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a27b474641d74f25b8b6dcd88491e8aa", + "placeholder": "​", + "style": "IPY_MODEL_b337bb8cc21c40a796d53f65a6215493", + "value": "Downloading: 100%" + } + }, + "d1d4583980ca4080892be634d3099386": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d25c2d1b17584164a3859e4d0e23880c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d26381d5d1334bf19d8ceead8faf7927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8af60ab423c44e5ab03e78119ea332ff", + "IPY_MODEL_85661f74de214119a0f8fca2888e448d", + "IPY_MODEL_b84fefbdfcaa485ebc9e581ef40c6253" + ], + "layout": "IPY_MODEL_ba7a6d9e2de64d7fa3d45028c95e7cad" + } + }, + "d28ed1152fe7423c9297acc3b4666cfd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_043f0589c8034df495f5a0614c2ef893", + "placeholder": "​", + "style": "IPY_MODEL_2f37b1b2e57e42bdac471feb61e5ded9", + "value": " 2.12M/2.12M [00:00<00:00, 3.19MB/s]" + } + }, + "d3002480428d4a9f922e9920ea65bedd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d37c7e1da4804c74b2cd3cdcb712518f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d43f1e18882c4b4d8ffb3ac7a9047a49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d4410af262ff4e83b39eae65042059db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_877134cb2a6a48d1991a5ad1cba3aeb2", + "IPY_MODEL_e4ea9875d0d8427abf1f2011bc2b1dae", + "IPY_MODEL_1db27400fe8e4aa8aabf7524b0ec6a2a" + ], + "layout": "IPY_MODEL_b96ce25aec0649cf8e1d0e9e666aacf8" + } + }, + "d518781b774f4d32a9ccafc399f5670f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d53a104249ab4b40961f37ded1494211": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d6a7fea8b9734f97b247c8427f7bb960": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7335a96b8cb4925837593ffc69c6afc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d771e016a16b447b8f8cae13c2c6d66f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2c9e40c42ffa4a38afb20b171565be06", + "placeholder": "​", + "style": "IPY_MODEL_c9d8589bddc74d4b93cba6faca7f1f2f", + "value": "Downloading: 100%" + } + }, + "d7aa339a5e5e4610b8d998e9d3d04d43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d7e16d6695c94875bd1cdb5ef91130ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d88b629d3d5c4dce9a3b379d97edcd6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d89a0e73bab44f1abb85816622d54b39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb43e8c2b0224a039fb7da54cd56774f", + "placeholder": "​", + "style": "IPY_MODEL_4f33f61dd58f4366a5a133f53768c057", + "value": " 97.8M/97.8M [00:02<00:00, 51.1MB/s]" + } + }, + "d8bfa189895c47748b44de5f5d136562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_135c2eb6e5804c9b8d49adff5acee491", + "placeholder": "​", + "style": "IPY_MODEL_afc103996f4d4c85bb81efd3d77e8eb3", + "value": "Downloading: 100%" + } + }, + "d8ce5ff0f10c4c3eb344e5f93978b33d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e79898e9020844cca1928f9136562320", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c1d822500534adbbcdded6b3f2c8d11", + "value": 1 + } + }, + "d8e7626a8e1b4ff5a12093a11bd80014": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d9d9c1e654ea4eb4bb3b1d8cb7b1c6ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d9ebf557e3134131bdc4cf3771d1794c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "da2fb6423abd44d29172a18334df6c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_79ea37ef27bb4c54b54d5f1e93909eb4", + "IPY_MODEL_c1d17ec02e4b450e9da55afaada13afc", + "IPY_MODEL_d06f377e53a44e4491a9d5b27daa79ad" + ], + "layout": "IPY_MODEL_5c3aa4e8316b4baa99ad373a03da36ad" + } + }, + "da65e6e1f29e43efa94b138835ff08ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "da8d3e676b8f442b9c3429feca7fb60f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da93b909d03a43d083377dcbd38b8370": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "daa2f4f8369740608246f483c9f41bf0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db35f9a1489e4abe94d617e5afb10f9b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "db6312a9778e47fdbad9cd713af94a21": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbcf62a4eee242439357cb17f8e755db": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dc29b44fe051481798b2864c4bfc64b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "info", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6823ab3fcf8649fdbdbc74945cf7609a", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8b2e6f860b3a4389a6927bce42ae0cc3", + "value": 1 + } + }, + "dc6c190bb7b64b27887fab5f32def509": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9e136be9e27403190f97621bf0c2360", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4368af454a524f2693415c016a4800be", + "value": 1 + } + }, + "dcae9ec41c424214863a94641c6c2793": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dcd5525b4c2141ab9a387ddf76b51c88": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd32d7bac7574db68d6b6027b36f776c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "df0468854a0b456792e7182a8e8cb5a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1099d908c27d407bb3852e854db86a3a", + "placeholder": "​", + "style": "IPY_MODEL_5cf3a92da0ec4b02b7e9179e1c3d74ae", + "value": " 4.21k/? [00:00<00:00, 99.7kB/s]" + } + }, + "df53601719bd448aa0d0ae19fd1d5fe2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad303c99faeb41ee93f5fb06ab040ffb", + "IPY_MODEL_1bc3dd51b29141b5948e5adddb50222f", + "IPY_MODEL_80d1138bcbfb446893b36234f869cd12" + ], + "layout": "IPY_MODEL_bdb67c2ee40f4b2491dfc441fa2f0233" + } + }, + "df697e44d7e449b8b2a8b80788857e35": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0637e19372241d6b505d848714bd375": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0ef6b06b1254a8584dea133ec38c19b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e1d16d238c584691b080102408389765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4356e240dffe464593ef8566fbdc9ea1", + "max": 470435927, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a483369b5654f35a4c35e817dcfbcf1", + "value": 470435927 + } + }, + "e1d2ddf731094c7198cfeca992d39661": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fc8c8bc86d42465f811316d9336a4ff6", + "IPY_MODEL_013b08183b4745c589fcdb58526f5ec5", + "IPY_MODEL_6bcc8e8b7daf458f81186182f35de964" + ], + "layout": "IPY_MODEL_3371a438bf5b412ab5c9b7230fe27623" + } + }, + "e22aea73562e4fd7af59c86d199c9d06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2b5de75ca46494792234cc17114b1c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e2ce97d00cb44a7da48bb439f95791c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e371096ff0b5400a9fa5054a49871e0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e3af9820e79640e881aa3ed4c1b066f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff07eea706904ca1b5e62009f466478b", + "IPY_MODEL_602ddffe98c14572a0a194f69618fb1b", + "IPY_MODEL_b1a8fd86ed8342ca8abab37fe1b5a4a6" + ], + "layout": "IPY_MODEL_a22b490f1ca74dd1a57912cd3bb3b39d" + } + }, + "e4a583b82cb049d29c134ae631c7f6c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4b98bdd7ec74fc5a8b574f4f727bf24": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4ea9875d0d8427abf1f2011bc2b1dae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c89bf52fc62144bbb686fe95e74ee965", + "max": 4131, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3c59a3a8657a464e92960b1b7c9b05eb", + "value": 4131 + } + }, + "e51745af8c9e4f3b9f8736d0c0a596dc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e59a5bc83b234152b0a146b2e49c4567": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c14332dc84ed49ddaf13af4694e290de", + "placeholder": "​", + "style": "IPY_MODEL_02584ce2d7db46eda58dd452a85deb97", + "value": " 266/266 [00:00<00:00, 5.70kB/s]" + } + }, + "e5ed2e3e17dd45fe8655db1d922d184d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e60e0e9469984ce0a2e8e05484a153d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9ca5105629eb4937bd78182b370ff2df", + "placeholder": "​", + "style": "IPY_MODEL_18ee5f991ede4b16879f2c114eadbdb6", + "value": "Downloading: 100%" + } + }, + "e643888f79474cef9230ab923fb7ba4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e64fa0fd9b85494982587c44f6a324af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e6c768db054e4d3185e3f415a0abcaa1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e7320ec976ab468b9dfbe92e72e405cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e754aa1e6885498ea098ee46b03ee3f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3a49c633cf4a4d1e89abfa3569603dde", + "placeholder": "​", + "style": "IPY_MODEL_62d8a873a6a64f7c9dec12e4c0c60b1d", + "value": "Downloading: 100%" + } + }, + "e7953f9c57d94fbfb00ecfa4a791965d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eecbcb53ff074aa886b8ba17f6fa6676", + "max": 466081, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4cf103cd899045d99eb49e384c05f733", + "value": 466081 + } + }, + "e79898e9020844cca1928f9136562320": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e83b7231b5ab490a90fe8a7f8daf8f6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e90c71b97be2438abb578240387d7182": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d1b0ccdce4664be7a95e52f450368ce9", + "IPY_MODEL_e7953f9c57d94fbfb00ecfa4a791965d", + "IPY_MODEL_ae5f5d11dcfe4b47b20fffb986fa2420" + ], + "layout": "IPY_MODEL_3f64e26fe5234f118387259870682926" + } + }, + "e9221fa844954a5f8d439e755eb0a466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e94bde66c9f649ee85f273a271d66853": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9a63218e1e446899ecf4da118a6f020": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e9b27ed7ff6443aa87a574d7547824da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87e5ea0d53fe4e91a474a6ad95943bb5", + "placeholder": "​", + "style": "IPY_MODEL_23698a6b40994a8ebf783fcb272da297", + "value": " 132k/132k [00:00<00:00, 1.88MB/s]" + } + }, + "e9d17cddaa25461cb8c4a12a23aece40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e9de8db310384e50804f1612afb02e5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9e4c25c4e3149feaabe2cd1694bffb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_516ab714af834f28b82ebbe33a12260a", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f842b9c7d97841f68c36403625d2fd7e", + "value": 231508 + } + }, + "e9ec0da0d0994a6aac390103a343a094": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9ffa9f53a894fb7aa6f70cb0f61778d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a040488016f044318d3bbe9025c3a45c", + "placeholder": "​", + "style": "IPY_MODEL_24cfc6ca7615485b972ab80abff5e84d", + "value": " 1.29M/1.29M [00:00<00:00, 1.12MB/s]" + } + }, + "ea20de66389d47de835ae8989637a871": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eabcdfb258ee457bbf392d692b6e1f5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d0701fa229e440ab1af934ad360f948", + "placeholder": "​", + "style": "IPY_MODEL_d9d9c1e654ea4eb4bb3b1d8cb7b1c6ba", + "value": " 255/255 [00:00<00:00, 4.24kB/s]" + } + }, + "eb9206aa68ac4a788e97a87b2945321f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebece6ce2a704036925fa3cfdfe07bc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_85d9db12932f405c859ee7ed934dd597", + "IPY_MODEL_1ab6ccdd683b45afb861b002559331fb", + "IPY_MODEL_07d918a32bc74fc88322dc4872c99553" + ], + "layout": "IPY_MODEL_32a5290505a84c0bb601f5919d0ddcc3" + } + }, + "eca0e385777849e0bf854224c52c91fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ecb66501abb8458a9fe87d66df1e8b9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_702476251304489bad9e4739b6e6494c", + "max": 2194, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ed70ac5d4a94edabe580ba4e73dadae", + "value": 2194 + } + }, + "ecc7130759004c40843042a4c88dd3e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ed52bd3874f944af9b1013d34e42e2c5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eda4959d91a34006adff8dd11e04a839": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ee61565e8aed419cbc21b1bc36de211d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ee9207dcade74cd396713e492c898fb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5c056c2760064927a02f7eac60b4fbc5", + "IPY_MODEL_6229db0835a741b8b88a54308fef276b", + "IPY_MODEL_67b362e258e1412b8a0d955911b684a6" + ], + "layout": "IPY_MODEL_c8281d1792784212a154c5259e4a085a" + } + }, + "eecbcb53ff074aa886b8ba17f6fa6676": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eee3f3ba19794c7a961251ec1500af4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ea1ef0070b4488d89ca58f1b49a0a1d", + "IPY_MODEL_a98654eef27848999db523b11dc629ef", + "IPY_MODEL_64943c92c083440b8fc6ef34d176f3cd" + ], + "layout": "IPY_MODEL_5ad23b0d9fc841c78f9fdd82a583fcf0" + } + }, + "eeef98e34b3e44eb9c5188dfadc7cb09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a851e6617fe648ca91a5072a5bc55726", + "placeholder": "​", + "style": "IPY_MODEL_35fea5a0accb4127bf5fd1611fc75e3f", + "value": "Downloading: 100%" + } + }, + "eef08a301ddc44e2b0f7b74db6f86127": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20ce43c9abef4017a9befe6472c5278e", + "placeholder": "​", + "style": "IPY_MODEL_f0728765a7df43a9bd021f1472254836", + "value": " 70.1k/70.1k [00:00<00:00, 1.05MB/s]" + } + }, + "ef06858634594efcb19cbba7110ae09b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06922697857847b7b867c76f3d38cf1d", + "IPY_MODEL_469e67ee9dfa42c5bd2602583c00b934", + "IPY_MODEL_9e777be965264bfc90b4a5b7c3e4ee4d" + ], + "layout": "IPY_MODEL_e6c768db054e4d3185e3f415a0abcaa1" + } + }, + "ef20339664d5460fa951b1e3567cf6f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fd54fad2ef214c46900f15dca5742bfb", + "placeholder": "​", + "style": "IPY_MODEL_80ecdaabd84a445dbd549fe87cb4dc30", + "value": " 330M/330M [00:08<00:00, 49.9MB/s]" + } + }, + "ef3faa8cad154918a6018318a82b5bf5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ef7ec69c07de4ff4b2d61a51eaa62521": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f0728765a7df43a9bd021f1472254836": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f1a42a947069430f960f5276cdc9ffcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f24dc25a752f4362aaddbf139e9f95d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfb2c030d3814db7bf7be269270f8b75", + "max": 568, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3b82b63ecc8244e1978afb1748a9332a", + "value": 568 + } + }, + "f317c10c74d54e9b8704be87998bbb59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_55b7da800ddc4318a1d9d5c6ea0ad68a", + "placeholder": "​", + "style": "IPY_MODEL_67703df7586d4ecea71221f4f9068aac", + "value": "Downloading: 100%" + } + }, + "f41d6117df6e486b8f94e23b21a956a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d771e016a16b447b8f8cae13c2c6d66f", + "IPY_MODEL_95e416b00e6042b2a308b90160dad073", + "IPY_MODEL_d89a0e73bab44f1abb85816622d54b39" + ], + "layout": "IPY_MODEL_ad035a8f5660494ea8f87799d873a6b7" + } + }, + "f471f6be130b41cf87db2bfb435311d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f49cbf34b02c48398eb8784c93a4c661": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab0e57d6b33c4c10b5c8067d1cc9b7ab", + "IPY_MODEL_324931d5bcf246ddbc8f8b1ff639db8a", + "IPY_MODEL_7e96a1edb21c41b3b17a9e1139fcc83a" + ], + "layout": "IPY_MODEL_26d03f69263a42eb9f981bb4aee08105" + } + }, + "f4d2246d49584564bedadd088116b23d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f51c8aa5005e45aab1481c9259da9a04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a30386687d184797a16a8fd379d6acb0", + "max": 266, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7a350d8644ba47e490d72aff9106d8f3", + "value": 266 + } + }, + "f533c2d8e5254888a6bdd9d59f437d83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f53d9f5318c6443a88fac515f4f435de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f55772bc74ea47649c3b6d289f76daeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_93f94795cc4849f592d046c9a669eb66", + "IPY_MODEL_e9e4c25c4e3149feaabe2cd1694bffb2", + "IPY_MODEL_39f0995e9e6f458e93265f1ef6e0389d" + ], + "layout": "IPY_MODEL_e0637e19372241d6b505d848714bd375" + } + }, + "f565d069b26b42ea98dd9b218446e253": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f600827a1b1e4e68809d9421e349c098": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f61dd5654c924e8098ab2951caa77f80": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f69c2b33c0c74a76b4e36b78f8769ebf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f7178833ab504e97b86ea0907704cdeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69e37e34c7524e1db831315aea772845", + "placeholder": "​", + "style": "IPY_MODEL_59c2e4d771ca420994f6dbcb200a77aa", + "value": " 109M/109M [00:02<00:00, 51.5MB/s]" + } + }, + "f72e053dcc934a269b5740e47c15f586": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f7c1395acddd4032814edef8a5292009": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f842b9c7d97841f68c36403625d2fd7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f89e5408523b4c9789caa4c6155c21c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8a79a267a5c42afa621d4fcdd6951e9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8d268b204694f75b8defd049c4dc9cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_668dc5dee7ec4e319c415283b619d60d", + "IPY_MODEL_87ac3e43ddf94585bfea85a065ad1b54", + "IPY_MODEL_ffd08cd6ac4d4065b40d1d970abcbadf" + ], + "layout": "IPY_MODEL_af5b1778c960450994844c84276db7de" + } + }, + "f9d63900758e4fb99ce956f97b04c56d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eeef98e34b3e44eb9c5188dfadc7cb09", + "IPY_MODEL_39db97a5f36f4898ac231cca0d3360b3", + "IPY_MODEL_5d8a2596d8434a40857718bc6887cc6e" + ], + "layout": "IPY_MODEL_38f4ca68f6c345998f3cbc8e8835965d" + } + }, + "fa160f1751014425a8348f162a563b41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa3d9221188540d98dfcb848f5953123": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa4d2548d09e4dc2bcd3419acb94cd96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb619ae1c8cc4b53b65eab78a2949d88", + "IPY_MODEL_dc6c190bb7b64b27887fab5f32def509", + "IPY_MODEL_8362e331c95f4797aed82468acba0591" + ], + "layout": "IPY_MODEL_e94bde66c9f649ee85f273a271d66853" + } + }, + "fb7af1be9e9a41fcb320c0f1b5529611": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fc0d151b52b741f8a64ffbc19dfe5333": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fc52749c37a64691ba7193b2a0d5bff3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b94cef78dbdd463b999d5cafbae1480d", + "placeholder": "​", + "style": "IPY_MODEL_e2b5de75ca46494792234cc17114b1c7", + "value": " 120/120 [00:00<00:00, 1.40kB/s]" + } + }, + "fc8c8bc86d42465f811316d9336a4ff6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43e140f9909b4bda821f6e360678c370", + "placeholder": "​", + "style": "IPY_MODEL_86488d305931487bb0f986d4222fb381", + "value": "Generating test split: 99%" + } + }, + "fd54fad2ef214c46900f15dca5742bfb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe429a84adc84180be600727fdce1524": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe794c67ad5f443188910984832cce77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ff07eea706904ca1b5e62009f466478b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_345f8852861d4e238b97e78b02eeb306", + "placeholder": "​", + "style": "IPY_MODEL_eda4959d91a34006adff8dd11e04a839", + "value": "Downloading: 100%" + } + }, + "ff1739ffefc44eec9944e15c9d024df6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bcd90750c6f74a1bb9b50aa177aafb47", + "max": 274, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cbc1ad73bfce4149b4830a07c41a24ff", + "value": 274 + } + }, + "ff69745d25484e08a3ab3146aa4dc0e8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffcc25068ca14b8f84380eea7f4f46d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_074ac740a19a4f0d8991205db9506b33", + "placeholder": "​", + "style": "IPY_MODEL_9ecb99f53c434d88a5afd72f5ff3c889", + "value": " 108M/108M [00:02<00:00, 48.6MB/s]" + } + }, + "ffd08cd6ac4d4065b40d1d970abcbadf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_67b33124b77e4b39a311ea648a6ae589", + "placeholder": "​", + "style": "IPY_MODEL_e9d17cddaa25461cb8c4a12a23aece40", + "value": " 320/320 [00:00<00:00, 6.21kB/s]" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/computer-vision-study-group/README.md b/computer-vision-study-group/README.md new file mode 100644 index 0000000000000000000000000000000000000000..afdb7a90a2b4e9f661d0a1ee99a905ce2d22f5fe --- /dev/null +++ b/computer-vision-study-group/README.md @@ -0,0 +1,15 @@ +# Computer Vision Study Group + +This is a collection of all past sessions that have been held as part of the Hugging Face Computer Vision Study Group. + +| |Session Name | Session Link | +|--- |--- | --- | +|❓|How Do Vision Transformers Work? | [Session Sheet](Sessions/HowDoVisionTransformersWork.md) | +|🔅|Polarized Self-Attention | [Session Sheet](Sessions/PolarizedSelfAttention.md)| +|🍄|Swin Transformer | [Session Sheet](Sessions/SwinTransformer.md)| +|🔮|Introduction to Neural Radiance Fields | [Session Sheet](Sessions/NeuralRadianceFields.md)| +|🌐|Hugging Face Vision Ecosystem Overview (June 2022) | [Session Sheet](Sessions/HFVisionEcosystem.md)| +|🪂|Masked Autoencoders Are Scalable Vision Learners | [Session Sheet](Sessions/MaskedAutoEncoders.md)| +|🦊|Fiber: Coarse-to-Fine Vision-Language Pre-Training | [Session Sheet](Sessions/Fiber.md)| +|⚔️ |FlexiViT: One Model for All Patch Sizes| [Session Sheet](Sessions/FlexiViT.md)| +|🤖|BLIP-2: Bootstrapping Language-Image Pre-training| [Session Sheet](Sessions/Blip2.md)| diff --git a/computer-vision-study-group/Sessions/Blip2.md b/computer-vision-study-group/Sessions/Blip2.md new file mode 100644 index 0000000000000000000000000000000000000000..b97b89ad654c41b50ea7da1e8efc599de6249255 --- /dev/null +++ b/computer-vision-study-group/Sessions/Blip2.md @@ -0,0 +1,25 @@ +# BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models +Session by [johko](https://github.com/johko) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=k0DAtZCCl1w&pp=ygUdaHVnZ2luZyBmYWNlIHN0dWR5IGdyb3VwIHN3aW4%3D) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/1Y_8Qu0CMlt7jvCd8Jw0c_ILh8LHB0XgnlrvXObe5FYs/edit?usp=sharing) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2301.12597) / +[arxiv](https://arxiv.org/abs/2301.12597) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/salesforce/lavis + + +## Additional Resources 📚 +- [BLIP-2 Demo Space](https://huggingface.co/spaces/hysts/BLIP2-with-transformers) +- [BLIP-2 Transformers Example Notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/BLIP-2) by Niels Rogge +- [BLIP-2 Transformers Docs](https://huggingface.co/docs/transformers/model_doc/blip-2) diff --git a/computer-vision-study-group/Sessions/Fiber.md b/computer-vision-study-group/Sessions/Fiber.md new file mode 100644 index 0000000000000000000000000000000000000000..4d150247fec7cb7f7b81fdd89f909ce41da946d1 --- /dev/null +++ b/computer-vision-study-group/Sessions/Fiber.md @@ -0,0 +1,24 @@ +# Fiber: Coarse-to-Fine Vision-Language Pre-Training with Fusion in the Backbone +Session by [johko](https://github.com/johko) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=m9qhNGuWE2g&t=20s&pp=ygUdaHVnZ2luZyBmYWNlIHN0dWR5IGdyb3VwIHN3aW4%3D) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/1vSu27tE87ZM103_CkgqsW7JeIp2mrmyl/edit?usp=sharing&ouid=107717747412022342990&rtpof=true&sd=true) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2206.07643) / +[arxiv](https://arxiv.org/abs/2206.07643) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/microsoft/fiber + + +## Additional Resources 📚 +- [Text to Pokemon](https://huggingface.co/spaces/lambdalabs/text-to-pokemon) HF Space to create your own Pokemon +- [Paper to Pokemon](https://huggingface.co/spaces/hugging-fellows/paper-to-pokemon) derived from the above space - create your own Pokemon from a paper \ No newline at end of file diff --git a/computer-vision-study-group/Sessions/FlexiViT.md b/computer-vision-study-group/Sessions/FlexiViT.md new file mode 100644 index 0000000000000000000000000000000000000000..0a509421c5abdce45697f055a4eba6c2bdf7b504 --- /dev/null +++ b/computer-vision-study-group/Sessions/FlexiViT.md @@ -0,0 +1,23 @@ +# FlexiViT: One Model for All Patch Sizes +Session by [johko](https://github.com/johko) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=TlRYBgsl7Q8&t=977s&pp=ygUdaHVnZ2luZyBmYWNlIHN0dWR5IGdyb3VwIHN3aW4%3D) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/1rLAYr160COYQMUN0FDH7D9pP8qe1_QyXGvfbHkutOt8/edit?usp=sharing) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2212.08013) / +[arxiv](https://arxiv.org/abs/2212.08013) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/google-research/big_vision + + +## Additional Resources 📚 +- [FlexiViT PR](https://github.com/google-research/big_vision/pull/24) diff --git a/computer-vision-study-group/Sessions/HFVisionEcosystem.md b/computer-vision-study-group/Sessions/HFVisionEcosystem.md new file mode 100644 index 0000000000000000000000000000000000000000..806dc2b11eac09ec68d29e20758e75e660d56904 --- /dev/null +++ b/computer-vision-study-group/Sessions/HFVisionEcosystem.md @@ -0,0 +1,10 @@ +# Hugging Face Vision Ecosystem Overview (June 2022) +Session by [Niels Rogge](https://github.com/NielsRogge) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=oL-xmufhZM8&pp=ygUdaHVnZ2luZyBmYWNlIHN0dWR5IGdyb3VwIHN3aW4%3D) + + +## Additional Resources 📚 +- [Accompanying Notebook](../Notebooks/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb) \ No newline at end of file diff --git a/computer-vision-study-group/Sessions/HowDoVisionTransformersWork.md b/computer-vision-study-group/Sessions/HowDoVisionTransformersWork.md new file mode 100644 index 0000000000000000000000000000000000000000..053ff83616d2da2937b2a8e55001d8b0a371e595 --- /dev/null +++ b/computer-vision-study-group/Sessions/HowDoVisionTransformersWork.md @@ -0,0 +1,27 @@ +# How Do Vision Transformers Work +Session by [johko](https://github.com/johko) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/1PewOHVABkxx0jO9PoJSQi8to_WNlL4HdDp4M9e4L8hs/edit?usp=drivesdks) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2202.06709) / +[arxiv](https://arxiv.org/pdf/2202.06709.pdf) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/microsoft/Swin-Transformer + + +## Additional Resources 📚 +Hessian Matrices: + +- https://stackoverflow.com/questions/23297090/how-calculating-hessian-works-for-neural-network-learning +- https://machinelearningmastery.com/a-gentle-introduction-to-hessian-matrices/ + +Loss Landscape Visualization: + +- https://mathformachines.com/posts/visualizing-the-loss-landscape/ +- https://github.com/tomgoldstein/loss-landscape \ No newline at end of file diff --git a/computer-vision-study-group/Sessions/MaskedAutoEncoders.md b/computer-vision-study-group/Sessions/MaskedAutoEncoders.md new file mode 100644 index 0000000000000000000000000000000000000000..ce841899e7531a401aadf539b39a8f934f65c7ff --- /dev/null +++ b/computer-vision-study-group/Sessions/MaskedAutoEncoders.md @@ -0,0 +1,24 @@ +# Masked Autoencoders are Scalable Vision Learners +Session by [johko](https://github.com/johko) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=AC6flxUFLrg&pp=ygUdaHVnZ2luZyBmYWNlIHN0dWR5IGdyb3VwIHN3aW4%3D) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/10ZZ-Rl1D57VX005a58OmqNeOB6gPnE54/edit?usp=sharing&ouid=107717747412022342990&rtpof=true&sd=true) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2111.06377) / +[arxiv](https://arxiv.org/abs/2111.06377) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/facebookresearch/mae + + +## Additional Resources 📚 +- [Transformers Docs ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae) +- [Transformers ViTMAE Demo Notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ViTMAE) by Niels Rogge \ No newline at end of file diff --git a/computer-vision-study-group/Sessions/NeuralRadianceFields.md b/computer-vision-study-group/Sessions/NeuralRadianceFields.md new file mode 100644 index 0000000000000000000000000000000000000000..47d61e1deb632dcaa2fba89492931c18a019d59d --- /dev/null +++ b/computer-vision-study-group/Sessions/NeuralRadianceFields.md @@ -0,0 +1,19 @@ +# Introduction to Neural Radiance Fields +Session by [Aritra](https://arig23498.github.io/) and [Ritwik](ritwikraha.github.io) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=U2XS7SxOy2s) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/e/2PACX-1vTQVnoTJGhRxDscNV1Mg2aYhvXP8cKODpB5Ii72NWoetCGrTLBJWx_UD1oPXHrzPtj7xO8MS_3TQaSH/pub?start=false&loop=false&delayms=3000) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2003.08934) / +[arxiv](https://arxiv.org/abs/2003.08934) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/bmild/nerf diff --git a/computer-vision-study-group/Sessions/PolarizedSelfAttention.md b/computer-vision-study-group/Sessions/PolarizedSelfAttention.md new file mode 100644 index 0000000000000000000000000000000000000000..6769ec49b8c8458f70dda0030bb87ec2ad68dd63 --- /dev/null +++ b/computer-vision-study-group/Sessions/PolarizedSelfAttention.md @@ -0,0 +1,14 @@ +# Polarized Self-Attention +Session by [Satpal](https://github.com/satpalsr) + +## Session Slides 🖥️ +[GitHub PDF](https://github.com/satpalsr/Talks/blob/main/PSA_discussion.pdf) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2107.00782) / +[arxiv](https://arxiv.org/pdf/2107.00782.pdf) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/DeLightCMU/PSA diff --git a/computer-vision-study-group/Sessions/SwinTransformer.md b/computer-vision-study-group/Sessions/SwinTransformer.md new file mode 100644 index 0000000000000000000000000000000000000000..7b213d2647481c1cd73863274aa9145d7f385472 --- /dev/null +++ b/computer-vision-study-group/Sessions/SwinTransformer.md @@ -0,0 +1,25 @@ +# Swin Transformer +Session by [johko](https://github.com/johko) + + +## Recording 📺 +[YouTube](https://www.youtube.com/watch?v=Ngikt-K1Ecc&t=305s&pp=ygUdaHVnZ2luZyBmYWNlIHN0dWR5IGdyb3VwIHN3aW4%3D) + + +## Session Slides 🖥️ +[Google Drive](https://docs.google.com/presentation/d/1RoFIC6vE55RS4WNqSlzNu3ljB6F-_8edtprAFXpGvKs/edit?usp=sharing) + + +## Original Paper 📄 +[Hugging Face](https://huggingface.co/papers/2103.14030) / +[arxiv](https://arxiv.org/pdf/2103.14030.pdf) + + +## GitHub Repo 🧑🏽‍💻 +https://github.com/xxxnell/how-do-vits-work + + +## Additional Resources 📚 +- [Transformers Docs Swin v1](https://huggingface.co/docs/transformers/model_doc/swin) +- [Transformers Docs Swin v2](https://huggingface.co/docs/transformers/model_doc/swinv2) +- [Transformers Docs Swin Super Resolution](https://huggingface.co/docs/transformers/model_doc/swin2sr) \ No newline at end of file diff --git a/config.json b/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/gradio-blocks/README.md b/gradio-blocks/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3d1595c37a9a3e4512b034d996955742a426b29f --- /dev/null +++ b/gradio-blocks/README.md @@ -0,0 +1,123 @@ +# Welcome to the [Gradio](https://gradio.app/) Blocks Party 🥳 + +![image (1)](https://user-images.githubusercontent.com/81195143/167954125-9854bf6b-4ae5-4735-8fdd-830fec41efa1.png) + + +_**Timeline**: May 17th, 2022 - May 31st, 2022_ + +--- + +We are happy to invite you to the Gradio Blocks Party - a community event in which we will create **interactive demos** for state-of-the-art machine learning models. Demos are powerful because they allow anyone — not just ML engineers — to try out models in the browser, give feedback on predictions, identify trustworthy models. The event will take place from **May 17th to 31st**. We will be organizing this event on [Github](https://github.com/huggingface/community-events) and the [Hugging Face discord channel](https://discord.com/invite/feTf9x3ZSB). Prizes will be given at the end of the event, see: [Prizes](#prizes) + + + +## What is Gradio? + +Gradio is a Python library that allows you to quickly build web-based machine learning demos, data science dashboards, or other kinds of web apps, entirely in Python. These web apps can be launched from wherever you use Python (jupyter notebooks, colab notebooks, Python terminal, etc.) and shared with anyone instantly using Gradio's auto-generated share links. To learn more about Gradio see the Getting Started Guide: https://gradio.app/getting_started/ and the new Course on Huggingface about Gradio: [Gradio Course](https://huggingface.co/course/chapter9/1?fw=pt). + +Gradio can be installed via pip and comes preinstalled in Hugging Face Spaces, the latest version of Gradio can be set in the README in spaces by setting the sdk_version for example `sdk_version: 3.0b8` + +`pip install gradio` to install gradio locally + + +## What is Blocks? + +`gradio.Blocks` is a low-level API that allows you to have full control over the data flows and layout of your application. You can build very complex, multi-step applications using Blocks. If you have already used `gradio.Interface`, you know that you can easily create fully-fledged machine learning demos with just a few lines of code. The Interface API is very convenient but in some cases may not be sufficiently flexible for your needs. For example, you might want to: + +* Group together related demos as multiple tabs in one web app. +* Change the layout of your demo instead of just having all of the inputs on the left and outputs on the right. +* Have multi-step interfaces, in which the output of one model becomes the input to the next model, or have more flexible data flows in general. +* Change a component's properties (for example, the choices in a Dropdown) or its visibility based on user input. + +To learn more about Blocks, see the [official guide](https://www.gradio.app/introduction_to_blocks/) and the [docs](https://gradio.app/docs/). + +## What is Hugging Face Spaces? + +Spaces are a simple way to host ML demo apps directly on your profile or your organization’s profile on Hugging Face. This allows you to create your ML portfolio, showcase your projects at conferences or to stakeholders, and work collaboratively with other people in the ML ecosystem. Learn more about Spaces in the [docs](https://huggingface.co/docs/hub/spaces). + +## How Do Gradio and Hugging Face work together? + +Hugging Face Spaces is a free hosting option for Gradio demos. Spaces comes with 3 SDK options: Gradio, Streamlit and Static HTML demos. Spaces can be public or private and the workflow is similar to github repos. There are over 2000+ Gradio spaces currently on Hugging Face. Learn more about spaces and gradio: https://huggingface.co/docs/hub/spaces + +## Event Plan + +main components of the event consist of: + +1. Learning about Gradio and the new Blocks Feature +2. Building your own Blocks demo using Gradio and Hugging Face Spaces +3. Submitting your demo on Spaces to the Gradio Blocks Party Organization +4. Share your blocks demo with a permanent shareable link +5. Win Prizes + + +## Example spaces using Blocks + +mindseye-lite + +- [dalle-mini](https://huggingface.co/spaces/dalle-mini/dalle-mini)([Code](https://huggingface.co/spaces/dalle-mini/dalle-mini/blob/main/app/gradio/app.py)) +- [mindseye-lite](https://huggingface.co/spaces/multimodalart/mindseye-lite)([Code](https://huggingface.co/spaces/multimodalart/mindseye-lite/blob/main/app.py)) +- [ArcaneGAN-blocks](https://huggingface.co/spaces/akhaliq/ArcaneGAN-blocks)([Code](https://huggingface.co/spaces/akhaliq/ArcaneGAN-blocks/blob/main/app.py)) +- [gr-blocks](https://huggingface.co/spaces/merve/gr-blocks)([Code](https://huggingface.co/spaces/merve/gr-blocks/blob/main/app.py)) +- [tortoisse-tts](https://huggingface.co/spaces/osanseviero/tortoisse-tts)([Code](https://huggingface.co/spaces/osanseviero/tortoisse-tts/blob/main/app.py)) +- [CaptchaCracker](https://huggingface.co/spaces/osanseviero/tortoisse-tts)([Code](https://huggingface.co/spaces/akhaliq/CaptchaCracker/blob/main/app.py)) + + +## To participate in the event + +- Join the organization for Blocks event + - [https://huggingface.co/Gradio-Blocks](https://huggingface.co/Gradio-Blocks) +- Join the discord + - [discord](https://discord.com/invite/feTf9x3ZSB) + + +Participants will be building and sharing Gradio demos using the Blocks feature. We will share a list of ideas of spaces that can be created using blocks or participants are free to try out their own ideas. At the end of the event, spaces will be evaluated and prizes will be given. + + +## Potential ideas for creating spaces: + + +- Trending papers from https://paperswithcode.com/ +- Models from huggingface model hub: https://huggingface.co/models +- Models from other model hubs + - Tensorflow Hub: see example Gradio demos at https://huggingface.co/tensorflow + - Pytorch Hub: see example Gradio demos at https://huggingface.co/pytorch + - ONNX model Hub: see example Gradio demos at https://huggingface.co/onnx + - PaddlePaddle Model Hub: see example Gradio demos at https://huggingface.co/PaddlePaddle +- participant ideas, try out your own ideas + + +## Prizes +- 1st place winner based on likes + - [Hugging Face PRO subscription](https://huggingface.co/pricing) for 1 year + - Embedding your Gradio Blocks demo in the Gradio Blog +- top 10 winners based on likes + - Swag from [Hugging Face merch shop](https://huggingface.myshopify.com/): t-shirts, hoodies, mugs of your choice +- top 25 winners based on likes + - [Hugging Face PRO subscription](https://huggingface.co/pricing) for 1 month +- Blocks event badge on HF for all participants! + +## Prizes Criteria + +- Staff Picks +- Most liked Spaces +- Community Pick (voting) +- Most Creative Space (voting) +- Most Educational Space (voting) +- CEO's pick (one prize for a particularly impactful demo), picked by @clem +- CTO's pick (one prize for a particularly technically impressive demo), picked by @julien + + +## Creating a Gradio demo on Hugging Face Spaces + +Once a model has been picked from the choices above or feel free to try your own idea, you can share a model in a Space using Gradio + +Read more about how to add [Gradio spaces](https://huggingface.co/blog/gradio-spaces). + +Steps to add Gradio Spaces to the Gradio Blocks Party org +1. Create an account on Hugging Face +2. Join the Gradio Blocks Party Organization by clicking "Join Organization" button in the organization page or using the shared link above +3. Once your request is approved, add your space using the Gradio SDK and share the link with the community! + +## LeaderBoard for Most Popular Blocks Event Spaces based on Likes + +- See Leaderboard: https://huggingface.co/spaces/Gradio-Blocks/Leaderboard diff --git a/huggan/README.md b/huggan/README.md new file mode 100644 index 0000000000000000000000000000000000000000..12f7933f47a4684de0d76cbeb21a3fe1d6f9d3e8 --- /dev/null +++ b/huggan/README.md @@ -0,0 +1,487 @@ +# HugGAN Sprint + +![Banner](assets/huggan_banner.png?raw=true "Banner") + +_**Timeline**: April 4th, 2022 - April 17th, 2022_ + +--- + +Welcome to HugGAN Sprint! The goal of this sprint is to add more GANs and GAN-based demos to the Hugging Face Hub 🤗. + +During the sprint, we’ll be bringing in some awesome speakers to talk about GANs and the future of generative models. Oh, and if you need access to compute for your project, we’ll help you there too! As an added bonus, if you choose to participate, we’ll send you a gift (specific details TBD). We encourage you to form teams of ~2-3 people! Make friends in the Discord :) + +To join: + +1. Fill out [this form](https://forms.gle/goq41UgzsvuKKTFFA), so we can keep track of who’s joining. +2. Send a reaction in the [#join-sprint channel](https://discord.com/channels/879548962464493619/954070850645135462) under the HugGAN category in Discord. This will add you to the rest of the related channels. If you haven't joined our discord yet, [click here](https://discord.gg/H3bUrDPTfS). +3. Once you’ve decided what you want to work on, add your project’s information to [this sheet](https://docs.google.com/spreadsheets/d/1aAHqOOk2SOw4j6mrJLkLT6ZyKyLDOvGF5D9tuUqnoG8/edit#gid=0), where you can describe your project and let us know if you need additional compute. Still brainstorming? Feel free to propose ideas in #sprint-discussions. + +## Table of Contents + +- [Important dates](#important-dates) +- [How to install relevant libraries](#how-to-install-relevant-libraries) +- [General workflow](#general-workflow) +- [Datasets to add](#datasets-to-add) +- [Links to check out](#links-to-check-out) +- [GAN metrics](#gan-metrics) +- [Evaluation](#evaluation) +- [Prizes](#prizes) +- [Communication and Problems](#communication-and-problems) +- [Talks](#talks) +- [General Tips & Tricks](#general-tips-and-tricks) + +## Important dates + +| Date | Description | +| ----------- | ----------- | +| April 4th | Sprint Kickoff 🚀 | +| April 15th | Submission Deadline 🛑 | +| April 22nd | Prizes Announced for Participants 🎁 | + +## How to install relevant libraries + +You'll need the following dependencies installed to use this repo: + +- [PyTorch](https://pytorch.org/) or [Keras](https://keras.io/) - depending on which framework you prefer ;) +- [🤗 Datasets](https://huggingface.co/docs/datasets/index) +- [🤗 Accelerate](https://huggingface.co/docs/accelerate/index) - in case you're planning to train a PyTorch model and you want it to be run effortlessly + +We recommend installing the above libraries in a [virtual environment](https://docs.python.org/3/library/venv.html). +If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Create a virtual environment with the version of Python you're going to use and activate it. + +You should be able to run the command: + +```bash +python3 -m venv +``` + +You can activate your venv by running + +```bash +source ~//bin/activate +``` + +### Install Dependencies + +We've packaged up the example scripts here into a simple Python package. To install it, just pip install it + +``` +git clone https://github.com/huggingface/community-events.git +cd community-events +pip install . +``` + +If you use `pip install -e .` instead of `pip install`, it will install the package in development mode, which can be useful if you are planning on contributing any changes here 🤗. + +## General workflow + +The process to follow is outlined below. It consists of 3 steps: + +1. Get a dataset and push to the Hub +2. Train a model and push to the Hub +3. Create a demo (🤗 Space) + +These steps are explained in more detail below. + +### 1. Get a dataset and push to Hub + +The first step is the most obvious one: to train a GAN (or any neural network), we need a dataset. This could be either a dataset that is already available on the [Hub](https://huggingface.co/datasets), or one that isn't already. Below we'll explain how to load the data in both cases. + +Note that we maintain a list of interesting datasets to add to the Hub [here](#datasets-to-add). + +#### 1.1 Use a dataset already available on the Hub + +Most famous computer vision datasets are already available on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:image-classification) (such as [MNIST](https://huggingface.co/datasets/mnist), [Fashion MNIST](https://huggingface.co/datasets/fashion_mnist), [CIFAR-10](https://huggingface.co/datasets/cifar10), [CIFAR-100](https://huggingface.co/datasets/cifar100), etc.). + +Loading a dataset can be done as follows: + +```python +from datasets import load_dataset + +# a general one ... +dataset = load_dataset("mnist") + +# ... or one that's part of the huggan organization +dataset = load_dataset("huggan/edges2shoes") +``` + +In a notebook, you can **directly see** the images by selecting a split and then the appropriate column: + +```python +example = dataset['train'][0] +print(example['image']) +``` + +#### 1.2 Upload a new dataset to the Hub + +In case your dataset is not already on the Hub, you can upload it to the `huggan` [organization](https://huggingface.co/huggan). If you've signed up for the event by filling in the [spreadsheet]((https://docs.google.com/spreadsheets/d/1aAHqOOk2SOw4j6mrJLkLT6ZyKyLDOvGF5D9tuUqnoG8/edit#gid=0)), your Hugging Face account should be part of it. + +Let's illustrate with an example how this was done for NVIDIA's [MetFaces dataset](https://github.com/NVlabs/metfaces-dataset): + +

+ drawing +

+ +Previously, this dataset was only hosted on [Google Drive](https://github.com/NVlabs/metfaces-dataset#overview), and not really easily accessible. + +To begin with, one should check that one is correctly logged in and that `git-lfs` is installed so that the dataset can be uploaded. + +Run: + +```bash +huggingface-cli login +``` + +in a terminal, or case you're working in a notebook + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +It is recommended to login with your access token that can be found under your HuggingFace profile (icon in the top right corner on [hf.co](http://hf.co/), then Settings -> Access Tokens -> User Access Tokens -> New Token (if you haven't generated one already). Alternatively, you can go to [your token settings](https://huggingface.co/settings/tokens) directly. + +You can then copy-paste this token to log in locally. + +Next, let's make sure that `git-lfs` is correctly installed. To so, simply run: + +```bash +git-lfs -v +``` + +The output should show something like `git-lfs/2.13.2 (GitHub; linux amd64; go 1.15.4)`. If your console states that the `git-lfs` command was not found, please make sure to install it [here](https://git-lfs.github.com/) or simply via: + +```bash +sudo apt-get install git-lfs +git config --global user.email "you@example.com" +git config --global user.name "Your Name" +``` + +Next, one can leverage the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) builder to very easily upload an image dataset to the hub. In case the dataset you're uploading has a direct download URL, you can simply provide it to the `data_files` argument as shown below. Otherwise, you'll need to go to the link of the dataset and manually download it first as a zip/tar (which was the case for MetFaces), and provide the file through the `data_files` argument. Alternatively, it may be that you have a folder with images, in which case you can provide it using the `data_dir` argument. Note that the latter assumes a [particular structure](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder). + +```python +from datasets import load_dataset + +# option 1: local folder +dataset = load_dataset("imagefolder", data_dir="path_to_folder") +# option 2: local or remote file(s), supporting the following extensions: tar, gzip, zip, xz, rar, zstd +dataset = load_dataset("imagefolder", data_files="path_to_file_or_direct_download_link") + +# note that you can also provide them as separate splits, like so: +dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}) +``` + +Once you've loaded your dataset, you can push it to the Hub with a single line of code: + +```python +dataset.push_to_hub("huggan/name-of-your-dataset") +``` + +Et voila! Your dataset is now available on the Hub :) If you wait a bit, the Dataset viewer should be able to preview images in the browser. The MetFaces dataset can be seen here: https://huggingface.co/datasets/huggan/metfaces. + +

+ drawing +

+ +The cool thing is that anyone can now access this dataset from anywhere, using `load_dataset` 🎉🥳 this means that you can easily load the dataset on another computer for instance, or in a different environment. Amazing, isn't it? + +❗ Note: When uploading a dataset, make sure that it has appropriate column names. The `ImageFolder` utility automatically creates `image` and `label` columns, however if there's only one image class, it makes sense to remove the `label` column before pushing to the hub. This can be done as follows: + +```python +dataset = dataset.remove_columns("label") +``` + +Note that you can always update a dataset by simply calling `push_to_hub` again (providing the same name). + +#### 1.3 Processing the data + +Once you've uploaded your dataset, you can load it and create a dataloader for it. The code example below shows how to apply some data augmentation and creating a PyTorch Dataloader (the [PyTorch example scripts](pytorch) all leverage this). More info can also be found in the [docs](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#process-image-data). + +```python +from datasets import load_dataset +from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor +from torch.utils.data import DataLoader + +# load your data +dataset = load_dataset("dataset_name") + +image_size = 256 + +# define image transformations (e.g. using torchvision) +transform = Compose( + [ + Resize(image_size), + CenterCrop(image_size), + ToTensor(), + Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ] +) + +# define function +def transforms(examples): + examples["image"] = [transform(image.convert("RGB")) for image in examples["image"]] + + return examples + +transformed_dataset = dataset.with_transform(transforms) + +# create dataloader +dataloader = DataLoader( + transformed_dataset["train"], batch_size="your batch size", shuffle=True, num_workers="your number of CPU cores" +) +``` + +As can be seen, we leverage the [`with_transform`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Dataset.with_transform) method here, which will make sure the image transformations will only be performed when iterating over the data (i.e. data augmentation is performed on-the-fly, making it very RAM-friendly) rather than performing it on the entire dataset in one go (which would be the case if you use [`map`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Dataset.map)). The `with_transform` method does the same thing as [`set_transform`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Dataset.set_transform), except that it does return a new `Dataset` rather than performing the operation in-place. + +### 2. Train a model and push to Hub + +Next, one can start training a model. This could be any model you'd like. However, we provide some example scripts to help you get started, in both [PyTorch](pytorch) and [Tensorflow](tensorflow). An example is the [DCGAN](pytorch/dcgan) model for unconditional image generation. Simply follow the README that explains all the details of the relevant implementation, and run it in your environment. + +The PyTorch example scripts all leverage 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index), which provides an easy API to make your scripts run on any kind of distributed setting (multi-GPUs, TPUs etc.) and with mixed precision, while still letting you write your own training loop. + +Alternatively, we also provide a [Links to Check Out](#links-to-check-out) section to give you some inspiration. + +Below, we explain in more detail how to upload your model to the Hub, depending on the framework you're using (sections [2.1](#21-pytorch) and [2.2](#22-keras)). In section [2.3](#33-alternative-ways-to-upload-a-model-to-the-hub), we'll explain how to write a nice model card. In section [2.4](24-model-cards), we'll illustrate alternative ways to upload (and re-use) a model to (and from) the hub. Finally, in section [2.5](25-accelerate), we explain 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index), the awesome library that makes training PyTorch models on any kind of environment a breeze. Be sure to check it out! + +#### 2.1 PyTorch + +If you're planning to train a custom PyTorch model, it's recommended to make it inherit from `PyTorchModelHubMixin`. This makes sure you can push it to the Hub at the end of training, and reload it afterwards using `from_pretrained`, as shown in the code example below: + +```python +from huggingface_hub import PyTorchModelHubMixin + +class MyGenerator(nn.Module, PyTorchModelHubMixin): + def __init__(self, **kwargs): + super().__init__() + self.config = kwargs.pop("config", None) + self.layer = ... + def forward(self, ...): + return ... + +# Create model +model = MyGenerator() + +# Push to HuggingFace Hub +model.push_to_hub("huggan/name-of-your-model"). + +# Reload from HuggingFace Hub +reloaded = MyGenerator.from_pretrained("huggan/name-of-your-model"). +``` + +This `PyTorchModelHubMixin` class is available in the [`huggingface_hub` library](https://github.com/huggingface/huggingface_hub), which comes pre-installed if you install `datasets` (or `transformers`) in your environment. + +#### 2.2 Keras + +In Keras, one can leverage the `push_to_hub_keras` and `from_pretrained_keras` methods: + +```python +import tensorflow as tf +from huggingface_hub import push_to_hub_keras, from_pretrained_keras + +# Build a Keras model +inputs = tf.keras.layers.Input(shape=(2,)) +x = tf.keras.layers.Dense(2, activation="relu")(inputs) +model = tf.keras.models.Model(inputs=inputs, outputs=x) +model.compile(optimizer="adam", loss="mse") + +# Push to HuggingFace Hub +push_to_hub_keras(model, "huggan/my-cool-model") + +# Reload from HuggingFace Hub +reloaded = from_pretrained_keras("huggan/my-cool-model") +``` + +These methods are available in the [`huggingface_hub` library](https://github.com/huggingface/huggingface_hub), which comes pre-installed if you install `datasets` (or `transformers`) in your environment. Note that the `push_to_hub_keras` method supports pushing several models (such as a generator and discriminator) to the same repo, as illustrated [here](https://github.com/huggingface/huggingface_hub/issues/533#issuecomment-1058093158). + +#### 2.3 Alternative ways to upload a model to the Hub + +Besides the methods explained in sections 2.1 and 2.2 above, you can also share model assets directly from git, which is explained in depth in [this guide](https://huggingface.co/docs/hub/adding-a-model#uploading-your-files). + +#### 2.4 Model cards + +When uploading a model to the Hub, it's important to include a so-called [model card](https://huggingface.co/course/chapter4/4?fw=pt) with it. This is just a README (in Markdown) 🃏 that includes: +- license, +- task, +- `huggan` and `gan` tags, +- dataset metadata, +- information related to the model, +- information on dataset, intended uses, +- a model output. + +If you trained one of the example models, this model card will be automatically generated for you. If you didn’t train the model yourself, be sure to both credit the original authors and include the associated license in your model card! Here is an [example model repo](https://huggingface.co/merve/anime-faces-generator). + +You can also use this [template model card](model_card_template.md) + as a guide to build your own. + +![Alt text](assets/example_model.png?raw=true "Title") + +#### 2.5 Accelerate + +HuggingFace `accelerate` is an awesome library for training PyTorch models. Here we show why. + +Basically, the library requires to replace this: + +``` +my_model.to(device) + +for batch in my_training_dataloader: + my_optimizer.zero_grad() + inputs, targets = batch + inputs = inputs.to(device) + targets = targets.to(device) + outputs = my_model(inputs) + loss = my_loss_function(outputs, targets) + loss.backward() + my_optimizer.step() +``` + +by this: + +```diff ++ from accelerate import Accelerator + ++ accelerator = Accelerator() +- my_model.to(device) + # Pass every important object (model, optimizer, dataloader) to *accelerator.prepare* ++ my_model, my_optimizer, my_training_dataloader = accelerate.prepare( ++ my_model, my_optimizer, my_training_dataloader ++ ) + + for batch in my_training_dataloader: + my_optimizer.zero_grad() + inputs, targets = batch +- inputs = inputs.to(device) +- targets = targets.to(device) + outputs = my_model(inputs) + loss = my_loss_function(outputs, targets) + # Just a small change for the backward instruction +- loss.backward() ++ accelerator.backward(loss) + my_optimizer.step() +``` + +and BOOM, your script runs on **any kind of hardware**, including CPU, multi-CPU, GPU, multi-GPU and TPU. It also supports things like [DeepSpeed](https://github.com/microsoft/DeepSpeed) and [mixed precision](https://arxiv.org/abs/1710.03740) for training efficiently. + +You can now run your script as follows: + +```bash +accelerate config +``` + +=> Accelerate will ask what kind of environment you'd like to run your script on, simply answer the questions being asked. Next: + +```bash +accelerate launch +``` + +This will run your script on the environment you asked for. You can always check the environment settings by typing: + +```bash +accelerate env +``` + +You can of course change the environment by running `accelerate config` again. + +### 3. Create a demo + +Once you share a model, you then should share a [Space](https://huggingface.co/spaces) based on your SDK of choice (Gradio or Streamlit) or as a static page. 🌌 + +![Alt text](assets/example_space.png?raw=true "Title") + +Here is an [example Space](https://huggingface.co/spaces/merve/anime-face-generator) corresponding to the model example shared above. Don’t know how to create a space? Read more about how to add spaces [here](https://huggingface.co/docs/hub/spaces). + +Below, we list some other great example GAN Spaces: +- AnimeGANv2: https://huggingface.co/spaces/akhaliq/AnimeGANv2 +- ArcaneGAN: https://huggingface.co/spaces/akhaliq/ArcaneGAN +- This Pokemon does not exist: https://huggingface.co/spaces/ronvolutional/ai-pokemon-card +- GFP-GAN: https://huggingface.co/spaces/akhaliq/GFPGAN +- DualStyleGAN: https://huggingface.co/spaces/hysts/DualStyleGAN + +## Example Scripts + +In this repo, we have provided some example scripts you can use to train your own GANs. Below is a table of the available scripts: + +| Name | Paper | +| ----------- | ----------- | +| [DCGAN](pytorch/dcgan) | [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434) | +| [pix2pix](pytorch/pix2pix) | [Image-to-Image Translation with Conditional Adversarial Networks](https://arxiv.org/abs/1611.07004) | +| [CycleGAN](pytorch/cyclegan) | [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593) + +## Datasets to add + +Below, we list some datasets which could be added to the Hub (feel free to add on one of these, or open a PR to add more datasets!): + +- DeepFashion: https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html +- Flowers: https://www.robots.ox.ac.uk/~vgg/data/flowers/ +- LSUN: https://www.yf.io/p/lsun + +## Links to Check Out + +Below, we list some possible awesome project ideas (feel free to work on one of these, or open a PR to add more project ideas!): + +PyTorch: +- Lightweight-GAN: https://github.com/lucidrains/lightweight-gan +- StyleGAN2: https://github.com/lucidrains/stylegan2-pytorch +- StyleGAN2-ada: https://github.com/NVlabs/stylegan2-ada +- StyleGAN3 (alias-free GAN): https://github.com/NVlabs/stylegan3 +- BigGAN: https://github.com/ajbrock/BigGAN-PyTorch, https://github.com/huggingface/pytorch-pretrained-BigGAN +- ADGAN: https://github.com/menyifang/ADGAN +- ICGAN: https://github.com/facebookresearch/ic_gan +- StarGANv2: https://github.com/clovaai/stargan-v2 +- Progressive Growing GAN: https://github.com/Maggiking/PGGAN-PyTorch +- Vision Aided GAN: https://github.com/nupurkmr9/vision-aided-gan +- DiffAugment (for training data-efficient GANs): https://github.com/mit-han-lab/data-efficient-gans +- StyleGAN-XL: https://github.com/autonomousvision/stylegan_xl +- CUT: https://github.com/taesungp/contrastive-unpaired-translation +- studioGAN (library with many GAN implementations): https://github.com/POSTECH-CVLab/PyTorch-StudioGAN +- MMGeneration (library with many GAN implementations): https://github.com/open-mmlab/mmgeneration +- Deformable GAN: https://github.com/ssfootball04/pose-transfer +- Denoising Diffusion GAN: https://github.com/NVlabs/denoising-diffusion-gan + +Keras: +- WGAN-GP: https://keras.io/examples/generative/wgan_gp/ +- Conditional GAN: https://keras.io/examples/generative/conditional_gan/ +- CycleGAN, DiscoGAN etc.: https://github.com/eriklindernoren/Keras-GAN +- Neural Style Transfer: https://www.tensorflow.org/tutorials/generative/style_transfer +- Image Super Resolution: https://github.com/idealo/image-super-resolution +- Deformable GAN: https://github.com/AliaksandrSiarohin/pose-gan + +General links & tutorials: +- https://github.com/yhlleo/GAN-Metrics +- https://paperswithcode.com/task/image-generation + +## GAN metrics + +There have been several quantitative measures defined for assessing the quality of GANs (and other generative models). Refer to [this page](pytorch/metrics) for more info. + +## Evaluation + +For each submission, you are expected to submit: + +1. A model repository +2. A space made with the model repository you created + +## Prizes + +TODO + +## Communication and Problems + +If you encounter any problems or have any questions, you should use one of the following platforms depending on your type of problem. Hugging Face is an "open-source-first" organization meaning that we'll try to solve all problems in the most public and most transparent way possible so that everybody in the community profits. + +The following table summarizes what platform to use for which problem. + +- Problem/question/bug with the 🤗 Datasets library that you think is a general problem that also impacts other people, please open an [Issues on Datasets](https://github.com/huggingface/datasets/issues/new?assignees=&labels=bug&template=bug-report.md&title=) and ping @nielsrogge. +- Problem/question with a modified, customized training script that is less likely to impact other people, please post your problem/question [on the forum](https://discuss.huggingface.co/) and ping @nielsrogge. +- Other questions regarding the event, rules of the event, or if you are not sure where to post your question, please ask in the Discord channel [**#sprint-discussions**](https://discord.com/channels/879548962464493619/954111918895943720). + +## Talks + +TODO + +## General Tips and Tricks + +- Memory efficient training: + +In case, you are getting out-of-memory errors on your GPU, we recommend to use [bitsandbytes](https://github.com/facebookresearch/bitsandbytes) to replace the native memory-intensive Adam optimizer with the one of `bitsandbytes`. It can be used to both train the generator and the discriminator in case you're training a GAN. diff --git a/huggan/__init__.py b/huggan/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3f1c39e544792d8fcd640fbb4f6c0f8acab404b7 --- /dev/null +++ b/huggan/__init__.py @@ -0,0 +1,3 @@ +from pathlib import Path + +TEMPLATE_MODEL_CARD_PATH = Path(__file__).parent.absolute() / 'model_card_template.md' \ No newline at end of file diff --git a/huggan/assets/cyclegan.png b/huggan/assets/cyclegan.png new file mode 100644 index 0000000000000000000000000000000000000000..cc4eea503268d83b0799361d1c49c92a8f1c1630 --- /dev/null +++ b/huggan/assets/cyclegan.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6ae90c6e39d2675e1059d60c4d1af1da4895eaef8665f5b3b70189b1b96d348b +size 2743051 diff --git a/huggan/assets/dcgan_mnist.png b/huggan/assets/dcgan_mnist.png new file mode 100644 index 0000000000000000000000000000000000000000..e83b904f3a2432519f066067eb02dc7243e74c9d Binary files /dev/null and b/huggan/assets/dcgan_mnist.png differ diff --git a/huggan/assets/example_model.png b/huggan/assets/example_model.png new file mode 100644 index 0000000000000000000000000000000000000000..c96d1840788313a85105cf7e29259c715823be33 Binary files /dev/null and b/huggan/assets/example_model.png differ diff --git a/huggan/assets/example_space.png b/huggan/assets/example_space.png new file mode 100644 index 0000000000000000000000000000000000000000..211d2507ccff99d5b9e52b1883377ab3b71c0d96 Binary files /dev/null and b/huggan/assets/example_space.png differ diff --git a/huggan/assets/huggan_banner.png b/huggan/assets/huggan_banner.png new file mode 100644 index 0000000000000000000000000000000000000000..7d97ed9b7a794dfa36eef0429edc039f91168141 Binary files /dev/null and b/huggan/assets/huggan_banner.png differ diff --git a/huggan/assets/lightweight_gan_wandb.png b/huggan/assets/lightweight_gan_wandb.png new file mode 100644 index 0000000000000000000000000000000000000000..b67ad06f117ecf7c66656b0c2065185fb1cb030b --- /dev/null +++ b/huggan/assets/lightweight_gan_wandb.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3f11f0a72781708bd2b2f3f9beaa87b859b501765f7782112ec758afd347dc2f +size 2945626 diff --git a/huggan/assets/metfaces.png b/huggan/assets/metfaces.png new file mode 100644 index 0000000000000000000000000000000000000000..763adf4a117842802b95d7f4ad1854d3d4d90ca9 Binary files /dev/null and b/huggan/assets/metfaces.png differ diff --git a/huggan/assets/pix2pix_maps.png b/huggan/assets/pix2pix_maps.png new file mode 100644 index 0000000000000000000000000000000000000000..db18a0036882676d9c7f41a6bde1d44730d370a7 --- /dev/null +++ b/huggan/assets/pix2pix_maps.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ef74c7a85d56e5a4819b84bf6c1916f4b99090252f469379cf110885073b1508 +size 2932882 diff --git a/huggan/assets/wandb.png b/huggan/assets/wandb.png new file mode 100644 index 0000000000000000000000000000000000000000..e2b77c3f6ea53c91cd459043a822c996e212604f --- /dev/null +++ b/huggan/assets/wandb.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd973bc2b323d414c7757ec6e792e5a2794fab27c3481312bac6e77d5e75ea4d +size 1851201 diff --git a/huggan/model_card_template.md b/huggan/model_card_template.md new file mode 100644 index 0000000000000000000000000000000000000000..5c690f3dcc978276df3d2401db29393764962d37 --- /dev/null +++ b/huggan/model_card_template.md @@ -0,0 +1,50 @@ +--- +tags: +- huggan +- gan +# See a list of available tags here: +# https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 +# task: unconditional-image-generation or conditional-image-generation or image-to-image +license: mit +--- + +# MyModelName + +## Model description + +Describe the model here (what it does, what it's used for, etc.) + +## Intended uses & limitations + +#### How to use + +```python +# You can include sample code which will be formatted +``` + +#### Limitations and bias + +Provide examples of latent issues and potential remediations. + +## Training data + +Describe the data you used to train the model. +If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. + +## Training procedure + +Preprocessing, hardware used, hyperparameters... + +## Eval results + +## Generated Images + +You can embed local or remote images using `![](...)` + +### BibTeX entry and citation info + +```bibtex +@inproceedings{..., + year={2020} +} +``` \ No newline at end of file diff --git a/huggan/pytorch/README.md b/huggan/pytorch/README.md new file mode 100644 index 0000000000000000000000000000000000000000..d32dd1ed56a6b20d440d0af90db986fe99ccc969 --- /dev/null +++ b/huggan/pytorch/README.md @@ -0,0 +1,19 @@ +# Example scripts (PyTorch) + +This directory contains a few example scripts that allow you to train famous GANs on your own data using a bit of 🤗 magic. + +More concretely, these scripts: +- leverage 🤗 [Datasets](https://huggingface.co/docs/datasets/index) to load any image dataset from the hub (including your own, possibly private, dataset) +- leverage 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) to instantly run the script on (multi-) CPU, (multi-) GPU, TPU environments, supporting fp16 and mixed precision as well as DeepSpeed +- leverage 🤗 [Hub](https://huggingface.co/) to push the model to the hub at the end of training, allowing to easily create a demo for it afterwards + +Currently, it contains the following examples: + +| Name | Paper | +| ----------- | ----------- | +| [DCGAN](dcgan) | [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434) | +| [pix2pix](pix2pix) | [Image-to-Image Translation with Conditional Adversarial Networks](https://arxiv.org/abs/1611.07004) | +| [CycleGAN](cyclegan) | [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593) +| [Lightweight GAN](lightweight_gan) | [Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis](https://openreview.net/forum?id=1Fqg133qRaI) + + diff --git a/huggan/pytorch/__init__.py b/huggan/pytorch/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/pytorch/cyclegan/README.md b/huggan/pytorch/cyclegan/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a6c16e00d516c3ca9e5d9e43901e6d301a79c959 --- /dev/null +++ b/huggan/pytorch/cyclegan/README.md @@ -0,0 +1,81 @@ +# Training CycleGAN on your own data + +This folder contains a script to train [CycleGAN](https://arxiv.org/abs/1703.10593), leveraging the [Hugging Face](https://huggingface.co/) ecosystem for processing data and pushing the model to the Hub. + +

+ drawing +

+ +Example applications of CycleGAN. Taken from [this repo](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix). + +The script leverages 🤗 Datasets for loading and processing data, and 🤗 Accelerate for instantly running on CPU, single, multi-GPUs or TPU, also supporting mixed precision. + +## Launching the script + +To train the model with the default parameters (200 epochs, 256x256 images, etc.) on [huggan/facades](https://huggingface.co/datasets/huggan/facades) on your environment, first run: + +```bash +accelerate config +``` + +and answer the questions asked. Next, launch the script as follows: + +``` +accelerate launch train.py +``` + +This will create local "images" and "saved_models" directories, containing generated images and saved checkpoints over the course of the training. + +To train on another dataset available on the hub, simply do: + +``` +accelerate launch train.py --dataset huggan/edges2shoes +``` + +Make sure to pick a dataset which has "imageA" and "imageB" columns defined. One can always tweak the script in case the column names are different. + +## Training on your own data + +You can of course also train on your own images. For this, one can leverage Datasets' [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder). Make sure to authenticate with the hub first, by running the `huggingface-cli login` command in a terminal, or the following in case you're working in a notebook: + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +Next, run the following in a notebook/script: + +```python +from datasets import load_dataset + +# first: load dataset +# option 1: from local folder +dataset = load_dataset("imagefolder", data_dir="path_to_folder") +# option 2: from remote URL (e.g. a zip file) +dataset = load_dataset("imagefolder", data_files="URL to .zip file") + +# next: push to the hub (assuming git-LFS is installed) +dataset.push_to_hub("huggan/my-awesome-dataset") +``` + +You can then simply pass the name of the dataset to the script: + +``` +accelerate launch train.py --dataset huggan/my-awesome-dataset +``` + +## Pushing model to the Hub + +You can push your trained generator to the hub after training by specifying the `push_to_hub` flag. +Then, you can run the script as follows: + +``` +accelerate launch train.py --push_to_hub --model_name cyclegan-horse2zebra +``` + +This is made possible by making the generator inherit from `PyTorchModelHubMixin`available in the `huggingface_hub` library. + +# Citation + +This repo is entirely based on Erik Linder-Norén's [PyTorch-GAN repo](https://github.com/eriklindernoren/PyTorch-GAN), but with added HuggingFace goodies. diff --git a/huggan/pytorch/cyclegan/__init__.py b/huggan/pytorch/cyclegan/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/pytorch/cyclegan/modeling_cyclegan.py b/huggan/pytorch/cyclegan/modeling_cyclegan.py new file mode 100644 index 0000000000000000000000000000000000000000..8b15844056313513140761ec3d42b423e68bbc30 --- /dev/null +++ b/huggan/pytorch/cyclegan/modeling_cyclegan.py @@ -0,0 +1,108 @@ +import torch.nn as nn +import torch.nn.functional as F +import torch + +from huggan.pytorch.huggan_mixin import HugGANModelHubMixin + + +############################## +# RESNET +############################## + + +class ResidualBlock(nn.Module): + def __init__(self, in_features): + super(ResidualBlock, self).__init__() + + self.block = nn.Sequential( + nn.ReflectionPad2d(1), + nn.Conv2d(in_features, in_features, 3), + nn.InstanceNorm2d(in_features), + nn.ReLU(inplace=True), + nn.ReflectionPad2d(1), + nn.Conv2d(in_features, in_features, 3), + nn.InstanceNorm2d(in_features), + ) + + def forward(self, x): + return x + self.block(x) + + +class GeneratorResNet(nn.Module, HugGANModelHubMixin): + def __init__(self, input_shape, num_residual_blocks): + super(GeneratorResNet, self).__init__() + + channels = input_shape[0] + + # Initial convolution block + out_features = 64 + model = [ + nn.ReflectionPad2d(channels), + nn.Conv2d(channels, out_features, 7), + nn.InstanceNorm2d(out_features), + nn.ReLU(inplace=True), + ] + in_features = out_features + + # Downsampling + for _ in range(2): + out_features *= 2 + model += [ + nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), + nn.InstanceNorm2d(out_features), + nn.ReLU(inplace=True), + ] + in_features = out_features + + # Residual blocks + for _ in range(num_residual_blocks): + model += [ResidualBlock(out_features)] + + # Upsampling + for _ in range(2): + out_features //= 2 + model += [ + nn.Upsample(scale_factor=2), + nn.Conv2d(in_features, out_features, 3, stride=1, padding=1), + nn.InstanceNorm2d(out_features), + nn.ReLU(inplace=True), + ] + in_features = out_features + + # Output layer + model += [nn.ReflectionPad2d(channels), nn.Conv2d(out_features, channels, 7), nn.Tanh()] + + self.model = nn.Sequential(*model) + + def forward(self, x): + return self.model(x) + + +############################## +# Discriminator +############################## + + +class Discriminator(nn.Module): + def __init__(self, channels): + super(Discriminator, self).__init__() + + def discriminator_block(in_filters, out_filters, normalize=True): + """Returns downsampling layers of each discriminator block""" + layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)] + if normalize: + layers.append(nn.InstanceNorm2d(out_filters)) + layers.append(nn.LeakyReLU(0.2, inplace=True)) + return layers + + self.model = nn.Sequential( + *discriminator_block(channels, 64, normalize=False), + *discriminator_block(64, 128), + *discriminator_block(128, 256), + *discriminator_block(256, 512), + nn.ZeroPad2d((1, 0, 1, 0)), + nn.Conv2d(512, 1, 4, padding=1) + ) + + def forward(self, img): + return self.model(img) \ No newline at end of file diff --git a/huggan/pytorch/cyclegan/train.py b/huggan/pytorch/cyclegan/train.py new file mode 100644 index 0000000000000000000000000000000000000000..3faa50efa45f10eaf8d36e725ca2d51b6c901d21 --- /dev/null +++ b/huggan/pytorch/cyclegan/train.py @@ -0,0 +1,354 @@ +import argparse +import os +import numpy as np +import itertools +from pathlib import Path +import datetime +import time +import sys + +from PIL import Image + +from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip +from torchvision.utils import save_image, make_grid + +from torch.utils.data import DataLoader + +from modeling_cyclegan import GeneratorResNet, Discriminator + +from utils import ReplayBuffer, LambdaLR + +from datasets import load_dataset + +from accelerate import Accelerator + +import torch.nn as nn +import torch + +def parse_args(args=None): + parser = argparse.ArgumentParser() + parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from") + parser.add_argument("--num_epochs", type=int, default=200, help="number of epochs of training") + parser.add_argument("--dataset_name", type=str, default="huggan/facades", help="name of the dataset") + parser.add_argument("--batch_size", type=int, default=1, help="size of the batches") + parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") + parser.add_argument("--beta1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") + parser.add_argument("--beta2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") + parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay") + parser.add_argument("--num_workers", type=int, default=8, help="Number of CPU threads to use during batch generation") + parser.add_argument("--image_size", type=int, default=256, help="Size of images for training") + parser.add_argument("--channels", type=int, default=3, help="Number of image channels") + parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator outputs") + parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints") + parser.add_argument("--n_residual_blocks", type=int, default=9, help="number of residual blocks in generator") + parser.add_argument("--lambda_cyc", type=float, default=10.0, help="cycle loss weight") + parser.add_argument("--lambda_id", type=float, default=5.0, help="identity loss weight") + parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help="Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU.", + ) + parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model to the HuggingFace hub after training.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", + required="--push_to_hub" in sys.argv, + type=Path, + help="Path to save the model. Will be created if it doesn't exist already.", + ) + parser.add_argument( + "--model_name", + required="--push_to_hub" in sys.argv, + type=str, + help="Name of the model on the hub.", + ) + parser.add_argument( + "--organization_name", + required=False, + default="huggan", + type=str, + help="Organization name to push to, in case args.push_to_hub is specified.", + ) + return parser.parse_args(args=args) + + +def weights_init_normal(m): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + torch.nn.init.normal_(m.weight.data, 0.0, 0.02) + if hasattr(m, "bias") and m.bias is not None: + torch.nn.init.constant_(m.bias.data, 0.0) + elif classname.find("BatchNorm2d") != -1: + torch.nn.init.normal_(m.weight.data, 1.0, 0.02) + torch.nn.init.constant_(m.bias.data, 0.0) + + +def training_function(config, args): + accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu, mixed_precision=args.mixed_precision) + + # Create sample and checkpoint directories + os.makedirs("images/%s" % args.dataset_name, exist_ok=True) + os.makedirs("saved_models/%s" % args.dataset_name, exist_ok=True) + + # Losses + criterion_GAN = torch.nn.MSELoss() + criterion_cycle = torch.nn.L1Loss() + criterion_identity = torch.nn.L1Loss() + + input_shape = (args.channels, args.image_size, args.image_size) + # Calculate output shape of image discriminator (PatchGAN) + output_shape = (1, args.image_size // 2 ** 4, args.image_size // 2 ** 4) + + # Initialize generator and discriminator + G_AB = GeneratorResNet(input_shape, args.n_residual_blocks) + G_BA = GeneratorResNet(input_shape, args.n_residual_blocks) + D_A = Discriminator(args.channels) + D_B = Discriminator(args.channels) + + if args.epoch != 0: + # Load pretrained models + G_AB.load_state_dict(torch.load("saved_models/%s/G_AB_%d.pth" % (args.dataset_name, args.epoch))) + G_BA.load_state_dict(torch.load("saved_models/%s/G_BA_%d.pth" % (args.dataset_name, args.epoch))) + D_A.load_state_dict(torch.load("saved_models/%s/D_A_%d.pth" % (args.dataset_name, args.epoch))) + D_B.load_state_dict(torch.load("saved_models/%s/D_B_%d.pth" % (args.dataset_name, args.epoch))) + else: + # Initialize weights + G_AB.apply(weights_init_normal) + G_BA.apply(weights_init_normal) + D_A.apply(weights_init_normal) + D_B.apply(weights_init_normal) + + # Optimizers + optimizer_G = torch.optim.Adam( + itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=args.lr, betas=(args.beta1, args.beta2) + ) + optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=args.lr, betas=(args.beta1, args.beta2)) + optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=args.lr, betas=(args.beta1, args.beta2)) + + # Learning rate update schedulers + lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR( + optimizer_G, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step + ) + lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR( + optimizer_D_A, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step + ) + lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR( + optimizer_D_B, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step + ) + + # Buffers of previously generated samples + fake_A_buffer = ReplayBuffer() + fake_B_buffer = ReplayBuffer() + + # Image transformations + transform = Compose([ + Resize(int(args.image_size * 1.12), Image.BICUBIC), + RandomCrop((args.image_size, args.image_size)), + RandomHorizontalFlip(), + ToTensor(), + Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ]) + + def transforms(examples): + examples["A"] = [transform(image.convert("RGB")) for image in examples["imageA"]] + examples["B"] = [transform(image.convert("RGB")) for image in examples["imageB"]] + + del examples["imageA"] + del examples["imageB"] + + return examples + + dataset = load_dataset(args.dataset_name) + transformed_dataset = dataset.with_transform(transforms) + + splits = transformed_dataset['train'].train_test_split(test_size=0.1) + train_ds = splits['train'] + val_ds = splits['test'] + + dataloader = DataLoader(train_ds, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers) + val_dataloader = DataLoader(val_ds, batch_size=5, shuffle=True, num_workers=1) + + def sample_images(batches_done): + """Saves a generated sample from the test set""" + batch = next(iter(val_dataloader)) + G_AB.eval() + G_BA.eval() + real_A = batch["A"] + fake_B = G_AB(real_A) + real_B = batch["B"] + fake_A = G_BA(real_B) + # Arange images along x-axis + real_A = make_grid(real_A, nrow=5, normalize=True) + real_B = make_grid(real_B, nrow=5, normalize=True) + fake_A = make_grid(fake_A, nrow=5, normalize=True) + fake_B = make_grid(fake_B, nrow=5, normalize=True) + # Arange images along y-axis + image_grid = torch.cat((real_A, fake_B, real_B, fake_A), 1) + save_image(image_grid, "images/%s/%s.png" % (args.dataset_name, batches_done), normalize=False) + + G_AB, G_BA, D_A, D_B, optimizer_G, optimizer_D_A, optimizer_D_B, dataloader, val_dataloader = accelerator.prepare(G_AB, G_BA, D_A, D_B, optimizer_G, optimizer_D_A, optimizer_D_B, dataloader, val_dataloader) + + # ---------- + # Training + # ---------- + + prev_time = time.time() + for epoch in range(args.epoch, args.num_epochs): + for i, batch in enumerate(dataloader): + + # Set model input + real_A = batch["A"] + real_B = batch["B"] + + # Adversarial ground truths + valid = torch.ones((real_A.size(0), *output_shape), device=accelerator.device) + fake = torch.zeros((real_A.size(0), *output_shape), device=accelerator.device) + + # ------------------ + # Train Generators + # ------------------ + + G_AB.train() + G_BA.train() + + optimizer_G.zero_grad() + + # Identity loss + loss_id_A = criterion_identity(G_BA(real_A), real_A) + loss_id_B = criterion_identity(G_AB(real_B), real_B) + + loss_identity = (loss_id_A + loss_id_B) / 2 + + # GAN loss + fake_B = G_AB(real_A) + loss_GAN_AB = criterion_GAN(D_B(fake_B), valid) + fake_A = G_BA(real_B) + loss_GAN_BA = criterion_GAN(D_A(fake_A), valid) + + loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2 + + # Cycle loss + recov_A = G_BA(fake_B) + loss_cycle_A = criterion_cycle(recov_A, real_A) + recov_B = G_AB(fake_A) + loss_cycle_B = criterion_cycle(recov_B, real_B) + + loss_cycle = (loss_cycle_A + loss_cycle_B) / 2 + + # Total loss + loss_G = loss_GAN + args.lambda_cyc * loss_cycle + args.lambda_id * loss_identity + + accelerator.backward(loss_G) + optimizer_G.step() + + # ----------------------- + # Train Discriminator A + # ----------------------- + + optimizer_D_A.zero_grad() + + # Real loss + loss_real = criterion_GAN(D_A(real_A), valid) + # Fake loss (on batch of previously generated samples) + fake_A_ = fake_A_buffer.push_and_pop(fake_A) + loss_fake = criterion_GAN(D_A(fake_A_.detach()), fake) + # Total loss + loss_D_A = (loss_real + loss_fake) / 2 + + accelerator.backward(loss_D_A) + optimizer_D_A.step() + + # ----------------------- + # Train Discriminator B + # ----------------------- + + optimizer_D_B.zero_grad() + + # Real loss + loss_real = criterion_GAN(D_B(real_B), valid) + # Fake loss (on batch of previously generated samples) + fake_B_ = fake_B_buffer.push_and_pop(fake_B) + loss_fake = criterion_GAN(D_B(fake_B_.detach()), fake) + # Total loss + loss_D_B = (loss_real + loss_fake) / 2 + + accelerator.backward(loss_D_B) + optimizer_D_B.step() + + loss_D = (loss_D_A + loss_D_B) / 2 + + # -------------- + # Log Progress + # -------------- + + # Determine approximate time left + batches_done = epoch * len(dataloader) + i + batches_left = args.num_epochs * len(dataloader) - batches_done + time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time)) + prev_time = time.time() + + # Print log + sys.stdout.write( + "\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, adv: %f, cycle: %f, identity: %f] ETA: %s" + % ( + epoch, + args.num_epochs, + i, + len(dataloader), + loss_D.item(), + loss_G.item(), + loss_GAN.item(), + loss_cycle.item(), + loss_identity.item(), + time_left, + ) + ) + + # If at sample interval save image + if batches_done % args.sample_interval == 0: + sample_images(batches_done) + + # Update learning rates + lr_scheduler_G.step() + lr_scheduler_D_A.step() + lr_scheduler_D_B.step() + + if args.checkpoint_interval != -1 and epoch % args.checkpoint_interval == 0: + # Save model checkpoints + torch.save(G_AB.state_dict(), "saved_models/%s/G_AB_%d.pth" % (args.dataset_name, epoch)) + torch.save(G_BA.state_dict(), "saved_models/%s/G_BA_%d.pth" % (args.dataset_name, epoch)) + torch.save(D_A.state_dict(), "saved_models/%s/D_A_%d.pth" % (args.dataset_name, epoch)) + torch.save(D_B.state_dict(), "saved_models/%s/D_B_%d.pth" % (args.dataset_name, epoch)) + + # Optionally push to hub + if args.push_to_hub: + save_directory = args.pytorch_dump_folder_path + if not save_directory.exists(): + save_directory.mkdir(parents=True) + + G_AB.push_to_hub( + repo_path_or_name=save_directory / args.model_name, + organization=args.organization_name, + ) + +def main(): + args = parse_args() + print(args) + + # Make directory for saving generated images + os.makedirs("images", exist_ok=True) + + training_function({}, args) + + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/huggan/pytorch/cyclegan/utils.py b/huggan/pytorch/cyclegan/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..99874d3f4e2503266c1e829e4f84e85b642fabb8 --- /dev/null +++ b/huggan/pytorch/cyclegan/utils.py @@ -0,0 +1,44 @@ +import random +import time +import datetime +import sys + +from torch.autograd import Variable +import torch +import numpy as np + +from torchvision.utils import save_image + + +class ReplayBuffer: + def __init__(self, max_size=50): + assert max_size > 0, "Empty buffer or trying to create a black hole. Be careful." + self.max_size = max_size + self.data = [] + + def push_and_pop(self, data): + to_return = [] + for element in data.data: + element = torch.unsqueeze(element, 0) + if len(self.data) < self.max_size: + self.data.append(element) + to_return.append(element) + else: + if random.uniform(0, 1) > 0.5: + i = random.randint(0, self.max_size - 1) + to_return.append(self.data[i].clone()) + self.data[i] = element + else: + to_return.append(element) + return Variable(torch.cat(to_return)) + + +class LambdaLR: + def __init__(self, n_epochs, offset, decay_start_epoch): + assert (n_epochs - decay_start_epoch) > 0, "Decay must start before the training session ends!" + self.n_epochs = n_epochs + self.offset = offset + self.decay_start_epoch = decay_start_epoch + + def step(self, epoch): + return 1.0 - max(0, epoch + self.offset - self.decay_start_epoch) / (self.n_epochs - self.decay_start_epoch) \ No newline at end of file diff --git a/huggan/pytorch/dcgan/README.md b/huggan/pytorch/dcgan/README.md new file mode 100644 index 0000000000000000000000000000000000000000..515da8f33a30d223bf9d6af385e804a07756dbd4 --- /dev/null +++ b/huggan/pytorch/dcgan/README.md @@ -0,0 +1,155 @@ +# Train DCGAN on your custom data + +This folder contains a script to train [DCGAN](https://arxiv.org/abs/1511.06434) for unconditional image generation, leveraging the [Hugging Face](https://huggingface.co/) ecosystem for processing your data and pushing the model to the Hub. + +The script leverages 🤗 Datasets for loading and processing data, and 🤗 Accelerate for instantly running on CPU, single, multi-GPUs or TPU, also supporting fp16/mixed precision. + +

+ drawing +

+ + +## Launching the script + +To train the model with the default parameters (5 epochs, 64x64 images, etc.) on [MNIST](https://huggingface.co/datasets/mnist), first run: + +```bash +accelerate config +``` + +and answer the questions asked about your environment. Next, launch the script as follows: + +```bash +accelerate launch train.py +``` + +This will create a local "images" directory, containing generated images over the course of the training. + +To train on another dataset available on the hub, simply do (for instance): + +```bash +python train.py --dataset cifar-10 +``` + +In case you'd like to tweak the script to your liking, first fork the "community-events" [repo](https://github.com/huggingface/community-events) (see the button on the top right), then clone it locally: + +```bash +git clone https://github.com//community-events.git +``` + +and edit to your liking. + +## Training on your own data + +You can of course also train on your own images. For this, one can leverage Datasets' [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder). Make sure to authenticate with the hub first, by running the `huggingface-cli login` command in a terminal, or the following in case you're working in a notebook: + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +Next, run the following in a notebook/script: + +```python +from datasets import load_dataset + +# first: load dataset +# option 1: from local folder +dataset = load_dataset("imagefolder", data_dir="path_to_folder") +# option 2: from remote URL (e.g. a zip file) +dataset = load_dataset("imagefolder", data_files="URL to .zip file") + +# next: push to the hub (assuming git-LFS is installed) +dataset.push_to_hub("huggan/my-awesome-dataset") +``` + +You can then simply pass the name of the dataset to the script: + +```bash +accelerate launch train.py --dataset huggan/my-awesome-dataset +``` + +## Pushing model to the Hub + +You can push your trained generator to the hub after training by specifying the `push_to_hub` flag, along with a `model_name` and `pytorch_dump_folder_path`. + +```bash +accelerate launch train.py --push_to_hub --model_name dcgan-mnist +``` + +This is made possible by making the generator inherit from `PyTorchModelHubMixin`available in the `huggingface_hub` library. + +This means that after training, generating a new image can be done as follows: + +```python +import torch +import torch.nn as nn +from torchvision.transforms import ToPILImage +from huggingface_hub import PyTorchModelHubMixin + +class Generator(nn.Module, PyTorchModelHubMixin): + def __init__(self, num_channels=3, latent_dim=100, hidden_size=64): + super(Generator, self).__init__() + self.model = nn.Sequential( + # input is Z, going into a convolution + nn.ConvTranspose2d(latent_dim, hidden_size * 8, 4, 1, 0, bias=False), + nn.BatchNorm2d(hidden_size * 8), + nn.ReLU(True), + # state size. (hidden_size*8) x 4 x 4 + nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 4), + nn.ReLU(True), + # state size. (hidden_size*4) x 8 x 8 + nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 2), + nn.ReLU(True), + # state size. (hidden_size*2) x 16 x 16 + nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size), + nn.ReLU(True), + # state size. (hidden_size) x 32 x 32 + nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False), + nn.Tanh() + # state size. (num_channels) x 64 x 64 + ) + + def forward(self, noise): + pixel_values = self.model(noise) + + return pixel_values + +model = Generator.from_pretrained("huggan/dcgan-mnist") + +device = "cuda" if torch.cuda.is_available() else "cpu +model.to(device) + +with torch.no_grad(): + z = torch.randn(1, 100, 1, 1, device=device) + pixel_values = model(z) + +# turn into actual image +image = pixel_values[0] +image = (image + 1) /2 +image = ToPILImage()(image) +image.save("generated.png") +``` + +## Weights and Biases integration + +You can easily add logging to [Weights and Biases](https://wandb.ai/site) by passing the `--wandb` flag: + +```bash +accelerate launch train.py --wandb +```` + +You can then follow the progress of your GAN in a browser: + +

+ drawing +

+ + +# Citation + +This repo is entirely based on PyTorch's official [DCGAN tutorial](https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html), but with added HuggingFace goodies. diff --git a/huggan/pytorch/dcgan/__init__.py b/huggan/pytorch/dcgan/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/pytorch/dcgan/modeling_dcgan.py b/huggan/pytorch/dcgan/modeling_dcgan.py new file mode 100644 index 0000000000000000000000000000000000000000..1f1bf88207f15723d3e98bdeface109b368ea987 --- /dev/null +++ b/huggan/pytorch/dcgan/modeling_dcgan.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright (c) 2022 PyTorch contributors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions. + +import torch.nn as nn + +from huggan.pytorch.huggan_mixin import HugGANModelHubMixin + + +class Generator(nn.Module, HugGANModelHubMixin): + def __init__(self, num_channels=3, latent_dim=100, hidden_size=64): + super(Generator, self).__init__() + self.model = nn.Sequential( + # input is Z, going into a convolution + nn.ConvTranspose2d(latent_dim, hidden_size * 8, 4, 1, 0, bias=False), + nn.BatchNorm2d(hidden_size * 8), + nn.ReLU(True), + # state size. (hidden_size*8) x 4 x 4 + nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 4), + nn.ReLU(True), + # state size. (hidden_size*4) x 8 x 8 + nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 2), + nn.ReLU(True), + # state size. (hidden_size*2) x 16 x 16 + nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size), + nn.ReLU(True), + # state size. (hidden_size) x 32 x 32 + nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False), + nn.Tanh() + # state size. (num_channels) x 64 x 64 + ) + + def forward(self, noise): + pixel_values = self.model(noise) + + return pixel_values + + +class Discriminator(nn.Module): + def __init__(self, num_channels=3, hidden_size=64): + super(Discriminator, self).__init__() + self.model = nn.Sequential( + # input is (num_channels) x 64 x 64 + nn.Conv2d(num_channels, hidden_size, 4, 2, 1, bias=False), + nn.LeakyReLU(0.2, inplace=True), + # state size. (hidden_size) x 32 x 32 + nn.Conv2d(hidden_size, hidden_size * 2, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 2), + nn.LeakyReLU(0.2, inplace=True), + # state size. (hidden_size*2) x 16 x 16 + nn.Conv2d(hidden_size * 2, hidden_size * 4, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 4), + nn.LeakyReLU(0.2, inplace=True), + # state size. (hidden_size*4) x 8 x 8 + nn.Conv2d(hidden_size * 4, hidden_size * 8, 4, 2, 1, bias=False), + nn.BatchNorm2d(hidden_size * 8), + nn.LeakyReLU(0.2, inplace=True), + # state size. (hidden_size*8) x 4 x 4 + nn.Conv2d(hidden_size * 8, 1, 4, 1, 0, bias=False), + nn.Sigmoid(), + ) + + def forward(self, pixel_values): + logits = self.model(pixel_values) + + return logits diff --git a/huggan/pytorch/dcgan/train.py b/huggan/pytorch/dcgan/train.py new file mode 100644 index 0000000000000000000000000000000000000000..6daa1741dc65f982164a83271b50c624d6a22751 --- /dev/null +++ b/huggan/pytorch/dcgan/train.py @@ -0,0 +1,346 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright (c) 2022 PyTorch contributors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions. + +""" Training a Deep Convolutional Generative Adversarial Network (DCGAN) leveraging the 🤗 ecosystem. +Paper: https://arxiv.org/abs/1511.06434. +Based on PyTorch's official tutorial: https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html. +""" + + +import argparse +import logging +import os +import sys +from pathlib import Path + +import torch +import torch.nn as nn +from torch.utils.data import DataLoader +from torchvision.transforms import (CenterCrop, Compose, Normalize, Resize, + ToTensor, ToPILImage) +from torchvision.utils import save_image + +from PIL import Image, ImageFile +ImageFile.LOAD_TRUNCATED_IMAGES = True + +from accelerate import Accelerator + +from modeling_dcgan import Discriminator, Generator + +from datasets import load_dataset + +from huggan.pytorch.metrics.inception import InceptionV3 +from huggan.pytorch.metrics.fid_score import calculate_fretchet + +import wandb + +logger = logging.getLogger(__name__) + + +def parse_args(args=None): + parser = argparse.ArgumentParser() + parser.add_argument("--dataset", type=str, default="mnist", help="Dataset to load from the HuggingFace hub.") + parser.add_argument("--num_workers", type=int, default=0, help="Number of workers when loading data") + parser.add_argument("--batch_size", type=int, default=128, help="Batch size to use during training") + parser.add_argument( + "--image_size", + type=int, + default=64, + help="Spatial size to use when resizing images for training.", + ) + parser.add_argument( + "--num_channels", + type=int, + default=3, + help="Number of channels in the training images. For color images this is 3.", + ) + parser.add_argument("--latent_dim", type=int, default=100, help="Dimensionality of the latent space.") + parser.add_argument( + "--generator_hidden_size", + type=int, + default=64, + help="Hidden size of the generator's feature maps.", + ) + parser.add_argument( + "--discriminator_hidden_size", + type=int, + default=64, + help="Hidden size of the discriminator's feature maps.", + ) + parser.add_argument("--num_epochs", type=int, default=5, help="number of epochs of training") + parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") + parser.add_argument( + "--beta1", + type=float, + default=0.5, + help="adam: decay of first order momentum of gradient", + ) + parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help="Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU.", + ) + parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") + parser.add_argument("--output_dir", type=Path, default=Path("./output"), help="Name of the directory to dump generated images during training.") + parser.add_argument("--wandb", action="store_true", help="If passed, will log to Weights and Biases.") + parser.add_argument( + "--logging_steps", + type=int, + default=50, + help="Number of steps between each logging", + ) + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model to the HuggingFace hub after training.", + ) + parser.add_argument( + "--model_name", + default=None, + type=str, + help="Name of the model on the hub.", + ) + parser.add_argument( + "--organization_name", + default="huggan", + type=str, + help="Organization name to push to, in case args.push_to_hub is specified.", + ) + args = parser.parse_args() + + if args.push_to_hub: + assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." + assert args.model_name is not None, "Need a `model_name` to create a repo when `--push_to_hub` is passed." + + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + return args + + +# Custom weights initialization called on Generator and Discriminator +def weights_init(m): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + nn.init.normal_(m.weight.data, 0.0, 0.02) + elif classname.find("BatchNorm") != -1: + nn.init.normal_(m.weight.data, 1.0, 0.02) + nn.init.constant_(m.bias.data, 0) + + +def training_function(config, args): + + # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. + accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu, mixed_precision=args.mixed_precision) + + # Setup logging, we only want one process per machine to log things on the screen. + # accelerator.is_local_main_process is only True for one process per machine. + logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) + if accelerator.is_local_main_process: + # set up Weights and Biases if requested + if args.wandb: + import wandb + + wandb.init(project=str(args.output_dir).split("/")[-1]) + + # Loss function + criterion = nn.BCELoss() + + # Initialize generator and discriminator + generator = Generator( + num_channels=args.num_channels, + latent_dim=args.latent_dim, + hidden_size=args.generator_hidden_size, + ) + discriminator = Discriminator(num_channels=args.num_channels, hidden_size=args.discriminator_hidden_size) + + # Initialize weights + generator.apply(weights_init) + discriminator.apply(weights_init) + + # Initialize Inceptionv3 (for FID metric) + model = InceptionV3() + + # Initialize Inceptionv3 (for FID metric) + model = InceptionV3() + + # Create batch of latent vectors that we will use to visualize + # the progression of the generator + fixed_noise = torch.randn(64, args.latent_dim, 1, 1, device=accelerator.device) + + # Establish convention for real and fake labels during training + real_label = 1.0 + fake_label = 0.0 + + # Setup Adam optimizers for both G and D + discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(args.beta1, 0.999)) + generator_optimizer = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(args.beta1, 0.999)) + + # Configure data loader + dataset = load_dataset(args.dataset) + + transform = Compose( + [ + Resize(args.image_size), + CenterCrop(args.image_size), + ToTensor(), + Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ] + ) + + def transforms(examples): + examples["pixel_values"] = [transform(image.convert("RGB")) for image in examples["image"]] + + del examples["image"] + + return examples + + transformed_dataset = dataset.with_transform(transforms) + + dataloader = DataLoader( + transformed_dataset["train"], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers + ) + + generator, discriminator, generator_optimizer, discriminator_optimizer, dataloader = accelerator.prepare(generator, discriminator, generator_optimizer, discriminator_optimizer, dataloader) + + # ---------- + # Training + # ---------- + + # Training Loop + + # Lists to keep track of progress + img_list = [] + + logger.info("***** Running training *****") + logger.info(f" Num Epochs = {args.num_epochs}") + # For each epoch + for epoch in range(args.num_epochs): + # For each batch in the dataloader + for step, batch in enumerate(dataloader, 0): + + ############################ + # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) + ########################### + ## Train with all-real batch + discriminator.zero_grad() + # Format batch + real_cpu = batch["pixel_values"] + batch_size = real_cpu.size(0) + label = torch.full((batch_size,), real_label, dtype=torch.float, device=accelerator.device) + # Forward pass real batch through D + output = discriminator(real_cpu).view(-1) + # Calculate loss on all-real batch + errD_real = criterion(output, label) + # Calculate gradients for D in backward pass + accelerator.backward(errD_real) + D_x = output.mean().item() + + ## Train with all-fake batch + # Generate batch of latent vectors + noise = torch.randn(batch_size, args.latent_dim, 1, 1, device=accelerator.device) + # Generate fake image batch with G + fake = generator(noise) + label.fill_(fake_label) + # Classify all fake batch with D + output = discriminator(fake.detach()).view(-1) + # Calculate D's loss on the all-fake batch + errD_fake = criterion(output, label) + # Calculate the gradients for this batch, accumulated (summed) with previous gradients + accelerator.backward(errD_fake) + D_G_z1 = output.mean().item() + # Compute error of D as sum over the fake and the real batches + errD = errD_real + errD_fake + # Update D + discriminator_optimizer.step() + + ############################ + # (2) Update G network: maximize log(D(G(z))) + ########################### + generator.zero_grad() + label.fill_(real_label) # fake labels are real for generator cost + # Since we just updated D, perform another forward pass of all-fake batch through D + output = discriminator(fake).view(-1) + # Calculate G's loss based on this output + errG = criterion(output, label) + # Calculate gradients for G + accelerator.backward(errG) + D_G_z2 = output.mean().item() + # Update G + generator_optimizer.step() + + # Log all results + if (step + 1) % args.logging_steps == 0: + errD.detach() + errG.detach() + + if accelerator.state.num_processes > 1: + errD = accelerator.gather(errD).sum() / accelerator.state.num_processes + errG = accelerator.gather(errG).sum() / accelerator.state.num_processes + + train_logs = { + "epoch": epoch, + "discriminator_loss": errD, + "generator_loss": errG, + "D_x": D_x, + "D_G_z1": D_G_z1, + "D_G_z2": D_G_z2, + } + log_str = "" + for k, v in train_logs.items(): + log_str += "| {}: {:.3e}".format(k, v) + + if accelerator.is_local_main_process: + logger.info(log_str) + if args.wandb: + wandb.log(train_logs) + + # Check how the generator is doing by saving G's output on fixed_noise + if (step % 500 == 0) or ((epoch == args.num_epochs - 1) and (step == len(dataloader) - 1)): + with torch.no_grad(): + fake_images = generator(fixed_noise).detach().cpu() + file_name = args.output_dir/f"iter_{step}.png" + save_image(fake_images.data[:25], file_name, nrow=5, normalize=True) + if accelerator.is_local_main_process and args.wandb: + wandb.log({'generated_examples': wandb.Image(str(file_name)) }) + + # Calculate FID metric + fid = calculate_fretchet(real_cpu, fake, model.to(accelerator.device)) + logger.info(f"FID: {fid}") + if accelerator.is_local_main_process and args.wandb: + wandb.log({"FID": fid}) + + # Optionally push to hub + if accelerator.is_main_process and args.push_to_hub: + generator.module.push_to_hub( + repo_path_or_name=args.output_dir / args.model_name, + organization=args.organization_name, + ) + + +def main(): + args = parse_args() + print(args) + + training_function({}, args) + + +if __name__ == "__main__": + main() diff --git a/huggan/pytorch/huggan_mixin.py b/huggan/pytorch/huggan_mixin.py new file mode 100644 index 0000000000000000000000000000000000000000..2267d75af305052534fb6357bf23258c75168f80 --- /dev/null +++ b/huggan/pytorch/huggan_mixin.py @@ -0,0 +1,131 @@ +from pathlib import Path +from re import TEMPLATE +from typing import Optional, Union +import os + +from huggingface_hub import PyTorchModelHubMixin, HfApi, HfFolder, Repository + +from huggan import TEMPLATE_MODEL_CARD_PATH + + +class HugGANModelHubMixin(PyTorchModelHubMixin): + """A mixin to push PyTorch Models to the Hugging Face Hub. This + mixin was adapted from the PyTorchModelHubMixin to also push a template + README.md for the HugGAN sprint. + """ + + def push_to_hub( + self, + repo_path_or_name: Optional[str] = None, + repo_url: Optional[str] = None, + commit_message: Optional[str] = "Add model", + organization: Optional[str] = None, + private: Optional[bool] = None, + api_endpoint: Optional[str] = None, + use_auth_token: Optional[Union[bool, str]] = None, + git_user: Optional[str] = None, + git_email: Optional[str] = None, + config: Optional[dict] = None, + skip_lfs_files: bool = False, + default_model_card: Optional[str] = TEMPLATE_MODEL_CARD_PATH + ) -> str: + """ + Upload model checkpoint or tokenizer files to the Hub while + synchronizing a local clone of the repo in `repo_path_or_name`. + Parameters: + repo_path_or_name (`str`, *optional*): + Can either be a repository name for your model or tokenizer in + the Hub or a path to a local folder (in which case the + repository will have the name of that local folder). If not + specified, will default to the name given by `repo_url` and a + local directory with that name will be created. + repo_url (`str`, *optional*): + Specify this in case you want to push to an existing repository + in the hub. If unspecified, a new repository will be created in + your namespace (unless you specify an `organization`) with + `repo_name`. + commit_message (`str`, *optional*): + Message to commit while pushing. Will default to `"add config"`, + `"add tokenizer"` or `"add model"` depending on the type of the + class. + organization (`str`, *optional*): + Organization in which you want to push your model or tokenizer + (you must be a member of this organization). + private (`bool`, *optional*): + Whether the repository created should be private. + api_endpoint (`str`, *optional*): + The API endpoint to use when pushing the model to the hub. + use_auth_token (`bool` or `str`, *optional*): + The token to use as HTTP bearer authorization for remote files. + If `True`, will use the token generated when running + `transformers-cli login` (stored in `~/.huggingface`). Will + default to `True` if `repo_url` is not specified. + git_user (`str`, *optional*): + will override the `git config user.name` for committing and + pushing files to the hub. + git_email (`str`, *optional*): + will override the `git config user.email` for committing and + pushing files to the hub. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + default_model_card (`str`, *optional*): + Path to a markdown file to use as your default model card. + Returns: + The url of the commit of your model in the given repository. + """ + + if repo_path_or_name is None and repo_url is None: + raise ValueError( + "You need to specify a `repo_path_or_name` or a `repo_url`." + ) + + if use_auth_token is None and repo_url is None: + token = HfFolder.get_token() + if token is None: + raise ValueError( + "You must login to the Hugging Face hub on this computer by typing `huggingface-cli login` and " + "entering your credentials to use `use_auth_token=True`. Alternatively, you can pass your own " + "token as the `use_auth_token` argument." + ) + elif isinstance(use_auth_token, str): + token = use_auth_token + else: + token = None + + if repo_path_or_name is None: + repo_path_or_name = repo_url.split("/")[-1] + + # If no URL is passed and there's no path to a directory containing files, create a repo + if repo_url is None and not os.path.exists(repo_path_or_name): + repo_id = Path(repo_path_or_name).name + if organization: + repo_id = f"{organization}/{repo_id}" + repo_url = HfApi(endpoint=api_endpoint).create_repo( + repo_id=repo_id, + token=token, + private=private, + repo_type=None, + exist_ok=True, + ) + + repo = Repository( + repo_path_or_name, + clone_from=repo_url, + use_auth_token=use_auth_token, + git_user=git_user, + git_email=git_email, + skip_lfs_files=skip_lfs_files + ) + repo.git_pull(rebase=True) + + # Save the files in the cloned repo + self.save_pretrained(repo_path_or_name, config=config) + + model_card_path = Path(repo_path_or_name) / 'README.md' + if not model_card_path.exists(): + model_card_path.write_text(TEMPLATE_MODEL_CARD_PATH.read_text()) + + # Commit and push! + repo.git_add() + repo.git_commit(commit_message) + return repo.git_push() diff --git a/huggan/pytorch/lightweight_gan/README.md b/huggan/pytorch/lightweight_gan/README.md new file mode 100644 index 0000000000000000000000000000000000000000..8f5c49d433dca56a420478e0f4a005bc7404a412 --- /dev/null +++ b/huggan/pytorch/lightweight_gan/README.md @@ -0,0 +1,89 @@ +# Train Lightweight GAN on your custom data + +This folder contains a script to train ['Lightweight' GAN](https://openreview.net/forum?id=1Fqg133qRaI) for unconditional image generation, leveraging the [Hugging Face](https://huggingface.co/) ecosystem for processing your data and pushing the model to the Hub. + +The script leverages 🤗 Datasets for loading and processing data, and 🤗 Accelerate for instantly running on CPU, single, multi-GPUs or TPU, also supporting mixed precision. + +

+ drawing +

+ +Pizza's that don't exist. Courtesy of Phil Wang. + +## Launching the script + +To train the model with the default parameters on [huggan/CelebA-faces](https://huggingface.co/datasets/huggan/CelebA-faces), first run: + +```bash +accelerate config +``` + +and answer the questions asked about your environment. Next, launch the script as follows: + +```bash +accelerate launch cli.py +``` + +This will instantly run on multi-GPUs (if you asked for that). To train on another dataset available on the hub, simply do (for instance): + +```bash +accelerate launch cli.py --dataset_name huggan/pokemon +``` + +In case you'd like to tweak the script to your liking, first fork the "community-events" [repo](https://github.com/huggingface/community-events) (see the button on the top right), then clone it locally: + +```bash +git clone https://github.com//community-events.git +``` + +and edit to your liking. + +## Training on your own data + +You can of course also train on your own images. For this, one can leverage Datasets' [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder). Make sure to authenticate with the hub first, by running the `huggingface-cli login` command in a terminal, or the following in case you're working in a notebook: + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +Next, run the following in a notebook/script: + +```python +from datasets import load_dataset + +# first: load dataset +# option 1: from local folder +dataset = load_dataset("imagefolder", data_dir="path_to_folder") +# option 2: from remote URL (e.g. a zip file) +dataset = load_dataset("imagefolder", data_files="URL to .zip file") + +# next: push to the hub (assuming git-LFS is installed) +dataset.push_to_hub("huggan/my-awesome-dataset") +``` + +You can then simply pass the name of the dataset to the script: + +```bash +accelerate launch cli.py --dataset huggan/my-awesome-dataset +``` + +## Weights and Biases integration + +You can easily add logging to [Weights and Biases](https://wandb.ai/site) by passing the `--wandb` flag: + +```bash +accelerate launch cli.py --wandb +```` + +You can then follow the progress of your GAN in a browser: + +

+ drawing +

+ + +# Citation + +This repo is entirely based on lucidrains' [Pytorch implementation](https://github.com/lucidrains/lightweight-gan), but with added HuggingFace goodies. diff --git a/huggan/pytorch/lightweight_gan/__init__.py b/huggan/pytorch/lightweight_gan/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/pytorch/lightweight_gan/cli.py b/huggan/pytorch/lightweight_gan/cli.py new file mode 100644 index 0000000000000000000000000000000000000000..056391613737488200c5d246eff4fcabf3ea1b31 --- /dev/null +++ b/huggan/pytorch/lightweight_gan/cli.py @@ -0,0 +1,178 @@ +import fire +import random +from retry.api import retry_call +from tqdm import tqdm +from datetime import datetime +from pathlib import Path +from lightweight_gan import Trainer, NanException + +import torch +import torch.multiprocessing as mp + +import numpy as np + +def exists(val): + return val is not None + +def default(val, d): + return val if exists(val) else d + +def cast_list(el): + return el if isinstance(el, list) else [el] + +def timestamped_filename(prefix = 'generated-'): + now = datetime.now() + timestamp = now.strftime("%m-%d-%Y_%H-%M-%S") + return f'{prefix}{timestamp}' + +def set_seed(seed): + torch.manual_seed(seed) + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + np.random.seed(seed) + random.seed(seed) + +def run_training(model_args, data, load_from, new, num_train_steps, name, seed): + + if seed is not None: + set_seed(seed) + + model = Trainer(**model_args) + + if not new: + model.load(load_from) + else: + model.clear() + + progress_bar = tqdm(initial = model.steps, total = num_train_steps, mininterval=10., desc=f'{name}<{data}>') + G, D, D_aug = model.init_accelerator() + + # model.set_data_src(data) + + while model.steps < num_train_steps: + # retry_call(model.train, tries=3, exceptions=NanException) + model.train(G, D, D_aug) + progress_bar.n = model.steps + progress_bar.refresh() + if model.accelerator.is_local_main_process and model.steps % 50 == 0: + model.print_log() + + model.save(model.checkpoint_num) + +def train_from_folder( + dataset_name = 'huggan/CelebA-faces', + data = './data', + results_dir = './results', + models_dir = './models', + name = 'default', + new = False, + load_from = -1, + image_size = 256, + optimizer = 'adam', + fmap_max = 512, + transparent = False, + greyscale = False, + batch_size = 10, + gradient_accumulate_every = 4, + num_train_steps = 150000, + learning_rate = 2e-4, + save_every = 10000, + evaluate_every = 1000, + generate = False, + generate_types = ['default', 'ema'], + generate_interpolation = False, + aug_test = False, + aug_prob=None, + aug_types=['cutout', 'translation'], + dataset_aug_prob=0., + attn_res_layers = [32], + freq_chan_attn = False, + disc_output_size = 1, + dual_contrast_loss = False, + antialias = False, + interpolation_num_steps = 100, + save_frames = False, + num_image_tiles = None, + calculate_fid_every = None, + calculate_fid_num_images = 12800, + clear_fid_cache = False, + seed = 42, + cpu = False, + mixed_precision = "no", + show_progress = False, + wandb = False, + push_to_hub = False, + organization_name = None, +): + if push_to_hub: + if name == 'default': + raise RuntimeError( + "You've chosen to push to hub, but have left the --name flag as 'default'." + " You should name your model something other than 'default'!" + ) + + num_image_tiles = default(num_image_tiles, 4 if image_size > 512 else 8) + + model_args = dict( + dataset_name = dataset_name, + name = name, + results_dir = results_dir, + models_dir = models_dir, + batch_size = batch_size, + gradient_accumulate_every = gradient_accumulate_every, + attn_res_layers = cast_list(attn_res_layers), + freq_chan_attn = freq_chan_attn, + disc_output_size = disc_output_size, + dual_contrast_loss = dual_contrast_loss, + antialias = antialias, + image_size = image_size, + num_image_tiles = num_image_tiles, + optimizer = optimizer, + fmap_max = fmap_max, + transparent = transparent, + greyscale = greyscale, + lr = learning_rate, + save_every = save_every, + evaluate_every = evaluate_every, + aug_prob = aug_prob, + aug_types = cast_list(aug_types), + dataset_aug_prob = dataset_aug_prob, + calculate_fid_every = calculate_fid_every, + calculate_fid_num_images = calculate_fid_num_images, + clear_fid_cache = clear_fid_cache, + cpu = cpu, + mixed_precision = mixed_precision, + wandb = wandb, + push_to_hub = push_to_hub, + organization_name = organization_name + ) + + if generate: + model = Trainer(**model_args) + model.load(load_from) + samples_name = timestamped_filename() + checkpoint = model.checkpoint_num + dir_result = model.generate(samples_name, num_image_tiles, checkpoint, generate_types) + print(f'sample images generated at {dir_result}') + return + + if generate_interpolation: + model = Trainer(**model_args) + model.load(load_from) + samples_name = timestamped_filename() + model.generate_interpolation(samples_name, num_image_tiles, num_steps = interpolation_num_steps, save_frames = save_frames) + print(f'interpolation generated at {results_dir}/{name}/{samples_name}') + return + + if show_progress: + model = Trainer(**model_args) + model.show_progress(num_images=num_image_tiles, types=generate_types) + return + + run_training(model_args, data, load_from, new, num_train_steps, name, seed) + +def main(): + fire.Fire(train_from_folder) + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/huggan/pytorch/lightweight_gan/diff_augment.py b/huggan/pytorch/lightweight_gan/diff_augment.py new file mode 100644 index 0000000000000000000000000000000000000000..794e256a9bae5f63fbb799dda8200786990e6da9 --- /dev/null +++ b/huggan/pytorch/lightweight_gan/diff_augment.py @@ -0,0 +1,102 @@ +import random + +import torch +import torch.nn.functional as F + + +def DiffAugment(x, types=[]): + for p in types: + for f in AUGMENT_FNS[p]: + x = f(x) + return x.contiguous() + + +# """ +# Augmentation functions got images as `x` +# where `x` is tensor with this dimensions: +# 0 - count of images +# 1 - channels +# 2 - width +# 3 - height of image +# """ + +def rand_brightness(x): + x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) + return x + +def rand_saturation(x): + x_mean = x.mean(dim=1, keepdim=True) + x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean + return x + +def rand_contrast(x): + x_mean = x.mean(dim=[1, 2, 3], keepdim=True) + x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean + return x + +def rand_translation(x, ratio=0.125): + shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) + translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) + translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) + grid_batch, grid_x, grid_y = torch.meshgrid( + torch.arange(x.size(0), dtype=torch.long, device=x.device), + torch.arange(x.size(2), dtype=torch.long, device=x.device), + torch.arange(x.size(3), dtype=torch.long, device=x.device), + indexing = 'ij') + grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) + grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) + x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) + x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2) + return x + +def rand_offset(x, ratio=1, ratio_h=1, ratio_v=1): + w, h = x.size(2), x.size(3) + + imgs = [] + for img in x.unbind(dim = 0): + max_h = int(w * ratio * ratio_h) + max_v = int(h * ratio * ratio_v) + + value_h = random.randint(0, max_h) * 2 - max_h + value_v = random.randint(0, max_v) * 2 - max_v + + if abs(value_h) > 0: + img = torch.roll(img, value_h, 2) + + if abs(value_v) > 0: + img = torch.roll(img, value_v, 1) + + imgs.append(img) + + return torch.stack(imgs) + +def rand_offset_h(x, ratio=1): + return rand_offset(x, ratio=1, ratio_h=ratio, ratio_v=0) + +def rand_offset_v(x, ratio=1): + return rand_offset(x, ratio=1, ratio_h=0, ratio_v=ratio) + +def rand_cutout(x, ratio=0.5): + cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) + offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) + offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) + grid_batch, grid_x, grid_y = torch.meshgrid( + torch.arange(x.size(0), dtype=torch.long, device=x.device), + torch.arange(cutout_size[0], dtype=torch.long, device=x.device), + torch.arange(cutout_size[1], dtype=torch.long, device=x.device), + indexing = 'ij') + grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) + grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) + mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) + mask[grid_batch, grid_x, grid_y] = 0 + x = x * mask.unsqueeze(1) + return x + +AUGMENT_FNS = { + 'color': [rand_brightness, rand_saturation, rand_contrast], + 'offset': [rand_offset], + 'offset_h': [rand_offset_h], + 'offset_v': [rand_offset_v], + 'translation': [rand_translation], + 'cutout': [rand_cutout], +} \ No newline at end of file diff --git a/huggan/pytorch/lightweight_gan/lightweight_gan.py b/huggan/pytorch/lightweight_gan/lightweight_gan.py new file mode 100644 index 0000000000000000000000000000000000000000..bbacd4ac5c49e544ebcfa299ad5637bc369916d2 --- /dev/null +++ b/huggan/pytorch/lightweight_gan/lightweight_gan.py @@ -0,0 +1,1598 @@ +import os +import json +import tempfile +from random import random +import math +from math import log2, floor +from pathlib import Path +from functools import partial +from contextlib import contextmanager, ExitStack +from pathlib import Path +from shutil import rmtree + +import torch +from torch.optim import Adam +from torch import nn, einsum +import torch.nn.functional as F +from torch.utils.data import Dataset, DataLoader +from torch.autograd import grad as torch_grad + +from PIL import Image +import torchvision +from torchvision import transforms +from torchvision.utils import save_image +from kornia.filters import filter2d + +from huggan.pytorch.lightweight_gan.diff_augment import DiffAugment + +from tqdm import tqdm +from einops import rearrange, reduce, repeat + +from datasets import load_dataset + +from accelerate import Accelerator, DistributedDataParallelKwargs +from huggingface_hub import hf_hub_download, create_repo + +from huggan.pytorch.huggan_mixin import HugGANModelHubMixin +from huggan.utils.hub import get_full_repo_name + +# constants + +# NUM_CORES = multiprocessing.cpu_count() +EXTS = ['jpg', 'jpeg', 'png'] +PYTORCH_WEIGHTS_NAME = 'model.pt' + + +# helpers + +def exists(val): + return val is not None + + +@contextmanager +def null_context(): + yield + + +def is_power_of_two(val): + return log2(val).is_integer() + + +def default(val, d): + return val if exists(val) else d + + +def set_requires_grad(model, bool): + for p in model.parameters(): + p.requires_grad = bool + + +def cycle(iterable): + while True: + for i in iterable: + yield i + + +def raise_if_nan(t): + if torch.isnan(t): + raise NanException + + +def evaluate_in_chunks(max_batch_size, model, *args): + split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args)))) + chunked_outputs = [model(*i) for i in split_args] + if len(chunked_outputs) == 1: + return chunked_outputs[0] + return torch.cat(chunked_outputs, dim=0) + + +def slerp(val, low, high): + low_norm = low / torch.norm(low, dim=1, keepdim=True) + high_norm = high / torch.norm(high, dim=1, keepdim=True) + omega = torch.acos((low_norm * high_norm).sum(1)) + so = torch.sin(omega) + res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high + return res + + +def safe_div(n, d): + try: + res = n / d + except ZeroDivisionError: + prefix = '' if int(n >= 0) else '-' + res = float(f'{prefix}inf') + return res + + +# loss functions + +def gen_hinge_loss(fake, real): + return fake.mean() + + +def hinge_loss(real, fake): + return (F.relu(1 + real) + F.relu(1 - fake)).mean() + + +def dual_contrastive_loss(real_logits, fake_logits): + device = real_logits.device + real_logits, fake_logits = map(lambda t: rearrange(t, '... -> (...)'), (real_logits, fake_logits)) + + def loss_half(t1, t2): + t1 = rearrange(t1, 'i -> i ()') + t2 = repeat(t2, 'j -> i j', i=t1.shape[0]) + t = torch.cat((t1, t2), dim=-1) + return F.cross_entropy(t, torch.zeros(t1.shape[0], device=device, dtype=torch.long)) + + return loss_half(real_logits, fake_logits) + loss_half(-fake_logits, -real_logits) + + +# helper classes + +class NanException(Exception): + pass + + +class EMA(): + def __init__(self, beta): + super().__init__() + self.beta = beta + + def update_average(self, old, new): + if not exists(old): + return new + return old * self.beta + (1 - self.beta) * new + + +class RandomApply(nn.Module): + def __init__(self, prob, fn, fn_else=lambda x: x): + super().__init__() + self.fn = fn + self.fn_else = fn_else + self.prob = prob + + def forward(self, x): + fn = self.fn if random() < self.prob else self.fn_else + return fn(x) + + +class ChanNorm(nn.Module): + def __init__(self, dim, eps=1e-5): + super().__init__() + self.eps = eps + self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) + self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) + + def forward(self, x): + var = torch.var(x, dim=1, unbiased=False, keepdim=True) + mean = torch.mean(x, dim=1, keepdim=True) + return (x - mean) / (var + self.eps).sqrt() * self.g + self.b + + +class PreNorm(nn.Module): + def __init__(self, dim, fn): + super().__init__() + self.fn = fn + self.norm = ChanNorm(dim) + + def forward(self, x): + return self.fn(self.norm(x)) + + +class Residual(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + + def forward(self, x): + return self.fn(x) + x + + +class SumBranches(nn.Module): + def __init__(self, branches): + super().__init__() + self.branches = nn.ModuleList(branches) + + def forward(self, x): + return sum(map(lambda fn: fn(x), self.branches)) + + +class Fuzziness(nn.Module): + def __init__(self): + super().__init__() + f = torch.Tensor([1, 2, 1]) + self.register_buffer('f', f) + + def forward(self, x): + f = self.f + f = f[None, None, :] * f[None, :, None] + return filter2d(x, f, normalized=True) + + +Blur = nn.Identity + + +# attention + +class DepthWiseConv2d(nn.Module): + def __init__(self, dim_in, dim_out, kernel_size, padding=0, stride=1, bias=True): + super().__init__() + self.net = nn.Sequential( + nn.Conv2d(dim_in, dim_in, kernel_size=kernel_size, padding=padding, groups=dim_in, stride=stride, + bias=bias), + nn.Conv2d(dim_in, dim_out, kernel_size=1, bias=bias) + ) + + def forward(self, x): + return self.net(x) + + +class LinearAttention(nn.Module): + def __init__(self, dim, dim_head=64, heads=8): + super().__init__() + self.scale = dim_head ** -0.5 + self.heads = heads + inner_dim = dim_head * heads + + self.nonlin = nn.GELU() + self.to_q = nn.Conv2d(dim, inner_dim, 1, bias=False) + self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding=1, bias=False) + self.to_out = nn.Conv2d(inner_dim, dim, 1) + + def forward(self, fmap): + h, x, y = self.heads, *fmap.shape[-2:] + q, k, v = (self.to_q(fmap), *self.to_kv(fmap).chunk(2, dim=1)) + q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h=h), (q, k, v)) + + q = q.softmax(dim=-1) + k = k.softmax(dim=-2) + + q = q * self.scale + + context = einsum('b n d, b n e -> b d e', k, v) + out = einsum('b n d, b d e -> b n e', q, context) + out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h=h, x=x, y=y) + + out = self.nonlin(out) + return self.to_out(out) + + +# dataset + +def convert_image_to(img_type, image): + if image.mode != img_type: + return image.convert(img_type) + return image + + +class identity(object): + def __call__(self, tensor): + return tensor + + +class expand_greyscale(object): + def __init__(self, transparent): + self.transparent = transparent + + def __call__(self, tensor): + channels = tensor.shape[0] + num_target_channels = 4 if self.transparent else 3 + + if channels == num_target_channels: + return tensor + + alpha = None + if channels == 1: + color = tensor.expand(3, -1, -1) + elif channels == 2: + color = tensor[:1].expand(3, -1, -1) + alpha = tensor[1:] + else: + raise Exception(f'image with invalid number of channels given {channels}') + + if not exists(alpha) and self.transparent: + alpha = torch.ones(1, *tensor.shape[1:], device=tensor.device) + + return color if not self.transparent else torch.cat((color, alpha)) + + +def resize_to_minimum_size(min_size, image): + if max(*image.size) < min_size: + return torchvision.transforms.functional.resize(image, min_size) + return image + + +# augmentations + +def random_hflip(tensor, prob): + if prob > random(): + return tensor + return torch.flip(tensor, dims=(3,)) + + +class AugWrapper(nn.Module): + def __init__(self, D, image_size): + super().__init__() + self.D = D + + def forward(self, images, prob=0., types=[], detach=False, **kwargs): + context = torch.no_grad if detach else null_context + + with context(): + if random() < prob: + images = random_hflip(images, prob=0.5) + images = DiffAugment(images, types=types) + + return self.D(images, **kwargs) + + +# modifiable global variables + +norm_class = nn.BatchNorm2d + + +def upsample(scale_factor=2): + return nn.Upsample(scale_factor=scale_factor) + + +# squeeze excitation classes + +# global context network +# https://arxiv.org/abs/2012.13375 +# similar to squeeze-excite, but with a simplified attention pooling and a subsequent layer norm + +class GlobalContext(nn.Module): + def __init__( + self, + *, + chan_in, + chan_out + ): + super().__init__() + self.to_k = nn.Conv2d(chan_in, 1, 1) + chan_intermediate = max(3, chan_out // 2) + + self.net = nn.Sequential( + nn.Conv2d(chan_in, chan_intermediate, 1), + nn.LeakyReLU(0.1), + nn.Conv2d(chan_intermediate, chan_out, 1), + nn.Sigmoid() + ) + + def forward(self, x): + context = self.to_k(x) + context = context.flatten(2).softmax(dim=-1) + out = einsum('b i n, b c n -> b c i', context, x.flatten(2)) + out = out.unsqueeze(-1) + return self.net(out) + + +# frequency channel attention +# https://arxiv.org/abs/2012.11879 + +def get_1d_dct(i, freq, L): + result = math.cos(math.pi * freq * (i + 0.5) / L) / math.sqrt(L) + return result * (1 if freq == 0 else math.sqrt(2)) + + +def get_dct_weights(width, channel, fidx_u, fidx_v): + dct_weights = torch.zeros(1, channel, width, width) + c_part = channel // len(fidx_u) + + for i, (u_x, v_y) in enumerate(zip(fidx_u, fidx_v)): + for x in range(width): + for y in range(width): + coor_value = get_1d_dct(x, u_x, width) * get_1d_dct(y, v_y, width) + dct_weights[:, i * c_part: (i + 1) * c_part, x, y] = coor_value + + return dct_weights + + +class FCANet(nn.Module): + def __init__( + self, + *, + chan_in, + chan_out, + reduction=4, + width + ): + super().__init__() + + freq_w, freq_h = ([0] * 8), list(range(8)) # in paper, it seems 16 frequencies was ideal + dct_weights = get_dct_weights(width, chan_in, [*freq_w, *freq_h], [*freq_h, *freq_w]) + self.register_buffer('dct_weights', dct_weights) + + chan_intermediate = max(3, chan_out // reduction) + + self.net = nn.Sequential( + nn.Conv2d(chan_in, chan_intermediate, 1), + nn.LeakyReLU(0.1), + nn.Conv2d(chan_intermediate, chan_out, 1), + nn.Sigmoid() + ) + + def forward(self, x): + x = reduce(x * self.dct_weights, 'b c (h h1) (w w1) -> b c h1 w1', 'sum', h1=1, w1=1) + return self.net(x) + + +# generative adversarial network + +class Generator(nn.Module): + def __init__( + self, + *, + image_size, + latent_dim=256, + fmap_max=512, + fmap_inverse_coef=12, + transparent=False, + greyscale=False, + attn_res_layers=[], + freq_chan_attn=False + ): + super().__init__() + resolution = log2(image_size) + assert is_power_of_two(image_size), 'image size must be a power of 2' + + if transparent: + init_channel = 4 + elif greyscale: + init_channel = 1 + else: + init_channel = 3 + + fmap_max = default(fmap_max, latent_dim) + + self.initial_conv = nn.Sequential( + nn.ConvTranspose2d(latent_dim, latent_dim * 2, 4), + norm_class(latent_dim * 2), + nn.GLU(dim=1) + ) + + num_layers = int(resolution) - 2 + features = list(map(lambda n: (n, 2 ** (fmap_inverse_coef - n)), range(2, num_layers + 2))) + features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features)) + features = list(map(lambda n: 3 if n[0] >= 8 else n[1], features)) + features = [latent_dim, *features] + + in_out_features = list(zip(features[:-1], features[1:])) + + self.res_layers = range(2, num_layers + 2) + self.layers = nn.ModuleList([]) + self.res_to_feature_map = dict(zip(self.res_layers, in_out_features)) + + self.sle_map = ((3, 7), (4, 8), (5, 9), (6, 10)) + self.sle_map = list(filter(lambda t: t[0] <= resolution and t[1] <= resolution, self.sle_map)) + self.sle_map = dict(self.sle_map) + + self.num_layers_spatial_res = 1 + + for (res, (chan_in, chan_out)) in zip(self.res_layers, in_out_features): + image_width = 2 ** res + + attn = None + if image_width in attn_res_layers: + attn = PreNorm(chan_in, LinearAttention(chan_in)) + + sle = None + if res in self.sle_map: + residual_layer = self.sle_map[res] + sle_chan_out = self.res_to_feature_map[residual_layer - 1][-1] + + if freq_chan_attn: + sle = FCANet( + chan_in=chan_out, + chan_out=sle_chan_out, + width=2 ** (res + 1) + ) + else: + sle = GlobalContext( + chan_in=chan_out, + chan_out=sle_chan_out + ) + + layer = nn.ModuleList([ + nn.Sequential( + upsample(), + Blur(), + nn.Conv2d(chan_in, chan_out * 2, 3, padding=1), + norm_class(chan_out * 2), + nn.GLU(dim=1) + ), + sle, + attn + ]) + self.layers.append(layer) + + self.out_conv = nn.Conv2d(features[-1], init_channel, 3, padding=1) + + def forward(self, x): + x = rearrange(x, 'b c -> b c () ()') + x = self.initial_conv(x) + x = F.normalize(x, dim=1) + + residuals = dict() + + for (res, (up, sle, attn)) in zip(self.res_layers, self.layers): + if exists(attn): + x = attn(x) + x + + x = up(x) + + if exists(sle): + out_res = self.sle_map[res] + residual = sle(x) + residuals[out_res] = residual + + next_res = res + 1 + if next_res in residuals: + x = x * residuals[next_res] + + return self.out_conv(x) + + +class SimpleDecoder(nn.Module): + def __init__( + self, + *, + chan_in, + chan_out=3, + num_upsamples=4, + ): + super().__init__() + + self.layers = nn.ModuleList([]) + final_chan = chan_out + chans = chan_in + + for ind in range(num_upsamples): + last_layer = ind == (num_upsamples - 1) + chan_out = chans if not last_layer else final_chan * 2 + layer = nn.Sequential( + upsample(), + nn.Conv2d(chans, chan_out, 3, padding=1), + nn.GLU(dim=1) + ) + self.layers.append(layer) + chans //= 2 + + def forward(self, x): + for layer in self.layers: + x = layer(x) + return x + + +class Discriminator(nn.Module): + def __init__( + self, + *, + image_size, + fmap_max=512, + fmap_inverse_coef=12, + transparent=False, + greyscale=False, + disc_output_size=5, + attn_res_layers=[] + ): + super().__init__() + resolution = log2(image_size) + assert is_power_of_two(image_size), 'image size must be a power of 2' + assert disc_output_size in {1, 5}, 'discriminator output dimensions can only be 5x5 or 1x1' + + resolution = int(resolution) + + if transparent: + init_channel = 4 + elif greyscale: + init_channel = 1 + else: + init_channel = 3 + + num_non_residual_layers = max(0, int(resolution) - 8) + num_residual_layers = 8 - 3 + + non_residual_resolutions = range(min(8, resolution), 2, -1) + features = list(map(lambda n: (n, 2 ** (fmap_inverse_coef - n)), non_residual_resolutions)) + features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features)) + + if num_non_residual_layers == 0: + res, _ = features[0] + features[0] = (res, init_channel) + + chan_in_out = list(zip(features[:-1], features[1:])) + + self.non_residual_layers = nn.ModuleList([]) + for ind in range(num_non_residual_layers): + first_layer = ind == 0 + last_layer = ind == (num_non_residual_layers - 1) + chan_out = features[0][-1] if last_layer else init_channel + + self.non_residual_layers.append(nn.Sequential( + Blur(), + nn.Conv2d(init_channel, chan_out, 4, stride=2, padding=1), + nn.LeakyReLU(0.1) + )) + + self.residual_layers = nn.ModuleList([]) + + for (res, ((_, chan_in), (_, chan_out))) in zip(non_residual_resolutions, chan_in_out): + image_width = 2 ** res + + attn = None + if image_width in attn_res_layers: + attn = PreNorm(chan_in, LinearAttention(chan_in)) + + self.residual_layers.append(nn.ModuleList([ + SumBranches([ + nn.Sequential( + Blur(), + nn.Conv2d(chan_in, chan_out, 4, stride=2, padding=1), + nn.LeakyReLU(0.1), + nn.Conv2d(chan_out, chan_out, 3, padding=1), + nn.LeakyReLU(0.1) + ), + nn.Sequential( + Blur(), + nn.AvgPool2d(2), + nn.Conv2d(chan_in, chan_out, 1), + nn.LeakyReLU(0.1), + ) + ]), + attn + ])) + + last_chan = features[-1][-1] + if disc_output_size == 5: + self.to_logits = nn.Sequential( + nn.Conv2d(last_chan, last_chan, 1), + nn.LeakyReLU(0.1), + nn.Conv2d(last_chan, 1, 4) + ) + elif disc_output_size == 1: + self.to_logits = nn.Sequential( + Blur(), + nn.Conv2d(last_chan, last_chan, 3, stride=2, padding=1), + nn.LeakyReLU(0.1), + nn.Conv2d(last_chan, 1, 4) + ) + + self.to_shape_disc_out = nn.Sequential( + nn.Conv2d(init_channel, 64, 3, padding=1), + Residual(PreNorm(64, LinearAttention(64))), + SumBranches([ + nn.Sequential( + Blur(), + nn.Conv2d(64, 32, 4, stride=2, padding=1), + nn.LeakyReLU(0.1), + nn.Conv2d(32, 32, 3, padding=1), + nn.LeakyReLU(0.1) + ), + nn.Sequential( + Blur(), + nn.AvgPool2d(2), + nn.Conv2d(64, 32, 1), + nn.LeakyReLU(0.1), + ) + ]), + Residual(PreNorm(32, LinearAttention(32))), + nn.AdaptiveAvgPool2d((4, 4)), + nn.Conv2d(32, 1, 4) + ) + + self.decoder1 = SimpleDecoder(chan_in=last_chan, chan_out=init_channel) + self.decoder2 = SimpleDecoder(chan_in=features[-2][-1], chan_out=init_channel) if resolution >= 9 else None + + def forward(self, x, calc_aux_loss=False): + orig_img = x + + for layer in self.non_residual_layers: + x = layer(x) + + layer_outputs = [] + + for (net, attn) in self.residual_layers: + if exists(attn): + x = attn(x) + x + + x = net(x) + layer_outputs.append(x) + + out = self.to_logits(x).flatten(1) + + img_32x32 = F.interpolate(orig_img, size=(32, 32)) + out_32x32 = self.to_shape_disc_out(img_32x32) + + if not calc_aux_loss: + return out, out_32x32, None + + # self-supervised auto-encoding loss + + layer_8x8 = layer_outputs[-1] + layer_16x16 = layer_outputs[-2] + + recon_img_8x8 = self.decoder1(layer_8x8) + + aux_loss = F.mse_loss( + recon_img_8x8, + F.interpolate(orig_img, size=recon_img_8x8.shape[2:]) + ) + + if exists(self.decoder2): + select_random_quadrant = lambda rand_quadrant, img: \ + rearrange(img, 'b c (m h) (n w) -> (m n) b c h w', m=2, n=2)[rand_quadrant] + crop_image_fn = partial(select_random_quadrant, floor(random() * 4)) + img_part, layer_16x16_part = map(crop_image_fn, (orig_img, layer_16x16)) + + recon_img_16x16 = self.decoder2(layer_16x16_part) + + aux_loss_16x16 = F.mse_loss( + recon_img_16x16, + F.interpolate(img_part, size=recon_img_16x16.shape[2:]) + ) + + aux_loss = aux_loss + aux_loss_16x16 + + return out, out_32x32, aux_loss + + +class LightweightGAN(nn.Module, HugGANModelHubMixin): + def __init__( + self, + *, + latent_dim, + image_size, + optimizer="adam", + fmap_max=512, + fmap_inverse_coef=12, + transparent=False, + greyscale=False, + disc_output_size=5, + attn_res_layers=[], + freq_chan_attn=False, + ttur_mult=1., + lr=2e-4, + ): + super().__init__() + + self.config = { + 'latent_dim': latent_dim, + 'image_size': image_size, + 'optimizer': optimizer, + 'fmap_max': fmap_max, + 'fmap_inverse_coef': fmap_inverse_coef, + 'transparent': transparent, + 'greyscale': greyscale, + 'disc_output_size': disc_output_size, + 'attn_res_layers': attn_res_layers, + 'freq_chan_attn': freq_chan_attn, + 'ttur_mult': ttur_mult, + 'lr': lr + } + + self.latent_dim = latent_dim + self.image_size = image_size + + G_kwargs = dict( + image_size=image_size, + latent_dim=latent_dim, + fmap_max=fmap_max, + fmap_inverse_coef=fmap_inverse_coef, + transparent=transparent, + greyscale=greyscale, + attn_res_layers=attn_res_layers, + freq_chan_attn=freq_chan_attn + ) + + self.G = Generator(**G_kwargs) + + self.D = Discriminator( + image_size=image_size, + fmap_max=fmap_max, + fmap_inverse_coef=fmap_inverse_coef, + transparent=transparent, + greyscale=greyscale, + attn_res_layers=attn_res_layers, + disc_output_size=disc_output_size + ) + + self.ema_updater = EMA(0.995) + self.GE = Generator(**G_kwargs) + set_requires_grad(self.GE, False) + + if optimizer == "adam": + self.G_opt = Adam(self.G.parameters(), lr=lr, betas=(0.5, 0.9)) + self.D_opt = Adam(self.D.parameters(), lr=lr * ttur_mult, betas=(0.5, 0.9)) + elif optimizer == "adabelief": + from adabelief_pytorch import AdaBelief + + self.G_opt = AdaBelief(self.G.parameters(), lr=lr, betas=(0.5, 0.9)) + self.D_opt = AdaBelief(self.D.parameters(), lr=lr * ttur_mult, betas=(0.5, 0.9)) + else: + assert False, "No valid optimizer is given" + + self.apply(self._init_weights) + self.reset_parameter_averaging() + + self.D_aug = AugWrapper(self.D, image_size) + + def _init_weights(self, m): + if type(m) in {nn.Conv2d, nn.Linear}: + nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu') + + def EMA(self): + def update_moving_average(ma_model, current_model): + for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()): + old_weight, up_weight = ma_params.data, current_params.data + ma_params.data = self.ema_updater.update_average(old_weight, up_weight) + + for current_buffer, ma_buffer in zip(current_model.buffers(), ma_model.buffers()): + new_buffer_value = self.ema_updater.update_average(ma_buffer, current_buffer) + ma_buffer.copy_(new_buffer_value) + + update_moving_average(self.GE, self.G) + + def reset_parameter_averaging(self): + self.GE.load_state_dict(self.G.state_dict()) + + def forward(self, x): + raise NotImplemented + + def _save_pretrained(self, save_directory): + """ + Overwrite this method in case you don't want to save complete model, + rather some specific layers + """ + path = os.path.join(save_directory, PYTORCH_WEIGHTS_NAME) + model_to_save = self.module if hasattr(self, "module") else self + + # We update this to be a dict containing 'GAN', as that's what is expected + torch.save({'GAN': model_to_save.state_dict()}, path) + + @classmethod + def _from_pretrained( + cls, + model_id, + revision, + cache_dir, + force_download, + proxies, + resume_download, + local_files_only, + token, + map_location="cpu", + strict=False, + **model_kwargs, + ): + """ + Overwrite this method in case you wish to initialize your model in a + different way. + """ + map_location = torch.device(map_location) + + if os.path.isdir(model_id): + print("Loading weights from local directory") + model_file = os.path.join(model_id, PYTORCH_WEIGHTS_NAME) + else: + model_file = hf_hub_download( + repo_id=model_id, + filename=PYTORCH_WEIGHTS_NAME, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + + # We update here to directly unpack config + model = cls(**model_kwargs['config']) + + state_dict = torch.load(model_file, map_location=map_location) + model.load_state_dict(state_dict["GAN"], strict=strict) + model.eval() + + return model + + +# trainer + +class Trainer(): + def __init__( + self, + dataset_name="huggan/CelebA-faces", + name='default', + results_dir='results', + models_dir='models', + base_dir='./', + optimizer='adam', + latent_dim=256, + image_size=128, + num_image_tiles=8, + fmap_max=512, + transparent=False, + greyscale=False, + batch_size=4, + gp_weight=10, + gradient_accumulate_every=1, + attn_res_layers=[], + freq_chan_attn=False, + disc_output_size=5, + dual_contrast_loss=False, + antialias=False, + lr=2e-4, + lr_mlp=1., + ttur_mult=1., + save_every=10000, + evaluate_every=1000, + aug_prob=None, + aug_types=['translation', 'cutout'], + dataset_aug_prob=0., + calculate_fid_every=None, + calculate_fid_num_images=12800, + clear_fid_cache=False, + log=False, + cpu=False, + mixed_precision="no", + wandb=False, + push_to_hub=False, + organization_name=None, + *args, + **kwargs + ): + self.GAN_params = [args, kwargs] + self.GAN = None + + self.dataset_name = dataset_name + + self.name = name + + base_dir = Path(base_dir) + self.base_dir = base_dir + self.results_dir = base_dir / results_dir + self.models_dir = base_dir / models_dir + self.fid_dir = base_dir / 'fid' / name + + # Note - in original repo config is private - ".config.json", but here, we make it public + self.config_path = self.models_dir / name / 'config.json' + + assert is_power_of_two(image_size), 'image size must be a power of 2 (64, 128, 256, 512, 1024)' + assert all(map(is_power_of_two, + attn_res_layers)), 'resolution layers of attention must all be powers of 2 (16, 32, 64, 128, 256, 512)' + + assert not ( + dual_contrast_loss and disc_output_size > 1), 'discriminator output size cannot be greater than 1 if using dual contrastive loss' + + self.image_size = image_size + self.num_image_tiles = num_image_tiles + + self.latent_dim = latent_dim + self.fmap_max = fmap_max + self.transparent = transparent + self.greyscale = greyscale + + assert (int(self.transparent) + int(self.greyscale)) < 2, 'you can only set either transparency or greyscale' + + self.aug_prob = aug_prob + self.aug_types = aug_types + + self.lr = lr + self.optimizer = optimizer + self.ttur_mult = ttur_mult + self.batch_size = batch_size + self.gradient_accumulate_every = gradient_accumulate_every + + self.gp_weight = gp_weight + + self.evaluate_every = evaluate_every + self.save_every = save_every + self.steps = 0 + + self.attn_res_layers = attn_res_layers + self.freq_chan_attn = freq_chan_attn + + self.disc_output_size = disc_output_size + self.antialias = antialias + + self.dual_contrast_loss = dual_contrast_loss + + self.d_loss = 0 + self.g_loss = 0 + self.last_gp_loss = None + self.last_recon_loss = None + self.last_fid = None + + self.init_folders() + + self.loader = None + self.dataset_aug_prob = dataset_aug_prob + + self.calculate_fid_every = calculate_fid_every + self.calculate_fid_num_images = calculate_fid_num_images + self.clear_fid_cache = clear_fid_cache + + self.syncbatchnorm = torch.cuda.device_count() > 1 and not cpu + + self.cpu = cpu + self.mixed_precision = mixed_precision + + self.wandb = wandb + + self.push_to_hub = push_to_hub + self.organization_name = organization_name + self.repo_name = get_full_repo_name(self.name, self.organization_name) + if self.push_to_hub: + self.repo_url = create_repo(self.repo_name, exist_ok=True) + + @property + def image_extension(self): + return 'jpg' if not self.transparent else 'png' + + @property + def checkpoint_num(self): + return floor(self.steps // self.save_every) + + def init_GAN(self): + args, kwargs = self.GAN_params + + # set some global variables before instantiating GAN + + global norm_class + global Blur + + norm_class = nn.SyncBatchNorm if self.syncbatchnorm else nn.BatchNorm2d + Blur = nn.Identity if not self.antialias else Fuzziness + + # instantiate GAN + + self.GAN = LightweightGAN( + optimizer=self.optimizer, + lr=self.lr, + latent_dim=self.latent_dim, + attn_res_layers=self.attn_res_layers, + freq_chan_attn=self.freq_chan_attn, + image_size=self.image_size, + ttur_mult=self.ttur_mult, + fmap_max=self.fmap_max, + disc_output_size=self.disc_output_size, + transparent=self.transparent, + greyscale=self.greyscale, + *args, + **kwargs + ) + + def write_config(self): + self.config_path.write_text(json.dumps(self.config())) + + def load_config(self): + config = self.config() if not self.config_path.exists() else json.loads(self.config_path.read_text()) + self.image_size = config['image_size'] + self.transparent = config['transparent'] + self.syncbatchnorm = config['syncbatchnorm'] + self.disc_output_size = config['disc_output_size'] + self.greyscale = config.pop('greyscale', False) + self.attn_res_layers = config.pop('attn_res_layers', []) + self.freq_chan_attn = config.pop('freq_chan_attn', False) + self.optimizer = config.pop('optimizer', 'adam') + self.fmap_max = config.pop('fmap_max', 512) + del self.GAN + self.init_GAN() + + def config(self): + return { + 'image_size': self.image_size, + 'transparent': self.transparent, + 'greyscale': self.greyscale, + 'syncbatchnorm': self.syncbatchnorm, + 'disc_output_size': self.disc_output_size, + 'optimizer': self.optimizer, + 'attn_res_layers': self.attn_res_layers, + 'freq_chan_attn': self.freq_chan_attn + } + + def set_data_src(self): + # start of using HuggingFace dataset + dataset = load_dataset(self.dataset_name) + + if self.transparent: + num_channels = 4 + pillow_mode = 'RGBA' + expand_fn = expand_greyscale(self.transparent) + elif self.greyscale: + num_channels = 1 + pillow_mode = 'L' + expand_fn = identity() + else: + num_channels = 3 + pillow_mode = 'RGB' + expand_fn = expand_greyscale(self.transparent) + + convert_image_fn = partial(convert_image_to, pillow_mode) + + transform = transforms.Compose([ + transforms.Lambda(convert_image_fn), + transforms.Lambda(partial(resize_to_minimum_size, self.image_size)), + transforms.Resize(self.image_size), + RandomApply(0., transforms.RandomResizedCrop(self.image_size, scale=(0.5, 1.0), ratio=(0.98, 1.02)), + transforms.CenterCrop(self.image_size)), + transforms.ToTensor(), + transforms.Lambda(expand_fn) + ]) + + def transform_images(examples): + transformed_images = [transform(image.convert("RGB")) for image in examples["image"]] + + examples["image"] = torch.stack(transformed_images) + + return examples + + transformed_dataset = dataset.with_transform(transform_images) + + per_device_batch_size = math.ceil(self.batch_size / self.accelerator.num_processes) + dataloader = DataLoader(transformed_dataset["train"], per_device_batch_size, sampler=None, shuffle=False, + drop_last=True, pin_memory=True) + num_samples = len(transformed_dataset) + ## end of HuggingFace dataset + + # Note - in original repo, this is wrapped with cycle, but we will do that after accelerator prepares + self.loader = dataloader + + # auto set augmentation prob for user if dataset is detected to be low + # num_samples = len(self.dataset) + if not exists(self.aug_prob) and num_samples < 1e5: + self.aug_prob = min(0.5, (1e5 - num_samples) * 3e-6) + print(f'autosetting augmentation probability to {round(self.aug_prob * 100)}%') + + def init_accelerator(self): + # Initialize the accelerator. We will let the accelerator handle device placement. + ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) + self.accelerator = Accelerator(kwargs_handlers=[ddp_kwargs], mixed_precision=self.mixed_precision, cpu=self.cpu) + + if self.accelerator.is_local_main_process: + # set up Weights and Biases if requested + if self.wandb: + import wandb + + wandb.init(project=str(self.results_dir).split("/")[-1]) + + if not exists(self.GAN): + self.init_GAN() + + G = self.GAN.G + D = self.GAN.D + D_aug = self.GAN.D_aug + + # discriminator loss fn + + self.set_data_src() + + # prepare + G, D, D_aug, self.GAN.D_opt, self.GAN.G_opt, self.loader = self.accelerator.prepare(G, D, D_aug, self.GAN.D_opt, + self.GAN.G_opt, self.loader) + self.loader = cycle(self.loader) + + return G, D, D_aug + + def train(self, G, D, D_aug): + assert exists(self.loader), 'You must first initialize the data source with `.set_data_src()`' + + self.GAN.train() + total_disc_loss = torch.zeros([], device=self.accelerator.device) + total_gen_loss = torch.zeros([], device=self.accelerator.device) + + batch_size = math.ceil(self.batch_size / self.accelerator.num_processes) + + image_size = self.GAN.image_size + latent_dim = self.GAN.latent_dim + + aug_prob = default(self.aug_prob, 0) + aug_types = self.aug_types + aug_kwargs = {'prob': aug_prob, 'types': aug_types} + + apply_gradient_penalty = self.steps % 4 == 0 + + # discriminator loss fn + + if self.dual_contrast_loss: + D_loss_fn = dual_contrastive_loss + else: + D_loss_fn = hinge_loss + + # train discriminator + + self.GAN.D_opt.zero_grad() + for i in range(self.gradient_accumulate_every): + latents = torch.randn(batch_size, latent_dim, device=self.accelerator.device) + image_batch = next(self.loader)["image"] + image_batch.requires_grad_() + + with torch.no_grad(): + generated_images = G(latents) + + fake_output, fake_output_32x32, _ = D_aug(generated_images, detach=True, **aug_kwargs) + + real_output, real_output_32x32, real_aux_loss = D_aug(image_batch, calc_aux_loss=True, **aug_kwargs) + + real_output_loss = real_output + fake_output_loss = fake_output + + divergence = D_loss_fn(real_output_loss, fake_output_loss) + divergence_32x32 = D_loss_fn(real_output_32x32, fake_output_32x32) + disc_loss = divergence + divergence_32x32 + + aux_loss = real_aux_loss + disc_loss = disc_loss + aux_loss + + if apply_gradient_penalty: + outputs = [real_output, real_output_32x32] + if self.accelerator.scaler is not None: + outputs = list(map(self.accelerator.scaler.scale, outputs)) + + scaled_gradients = torch_grad(outputs=outputs, inputs=image_batch, + grad_outputs=list( + map(lambda t: torch.ones(t.size(), device=self.accelerator.device), + outputs)), + create_graph=True, retain_graph=True, only_inputs=True)[0] + + inv_scale = 1. + if self.accelerator.scaler is not None: + inv_scale = safe_div(1., self.accelerator.scaler.get_scale()) + + if inv_scale != float('inf'): + gradients = scaled_gradients * inv_scale + + gradients = gradients.reshape(batch_size, -1) + gp = self.gp_weight * ((gradients.norm(2, dim=1) - 1) ** 2).mean() + + if not torch.isnan(gp): + disc_loss = disc_loss + gp + self.last_gp_loss = gp.clone().detach().item() + + # divide loss by gradient accumulation steps since gradients + # are accumulated for multiple backward passes in PyTorch + disc_loss = disc_loss / self.gradient_accumulate_every + + disc_loss.register_hook(raise_if_nan) + self.accelerator.backward(disc_loss) + total_disc_loss += divergence + + self.last_recon_loss = aux_loss.item() + self.d_loss = float(total_disc_loss.item() / self.gradient_accumulate_every) + self.GAN.D_opt.step() + + # generator loss fn + + if self.dual_contrast_loss: + G_loss_fn = dual_contrastive_loss + G_requires_calc_real = True + else: + G_loss_fn = gen_hinge_loss + G_requires_calc_real = False + + # train generator + + self.GAN.G_opt.zero_grad() + + for i in range(self.gradient_accumulate_every): + latents = torch.randn(batch_size, latent_dim, device=self.accelerator.device) + + if G_requires_calc_real: + image_batch = next(self.loader)["image"] + image_batch.requires_grad_() + + generated_images = G(latents) + + fake_output, fake_output_32x32, _ = D_aug(generated_images, **aug_kwargs) + real_output, real_output_32x32, _ = D_aug(image_batch, **aug_kwargs) if G_requires_calc_real else ( + None, None, None) + + loss = G_loss_fn(fake_output, real_output) + loss_32x32 = G_loss_fn(fake_output_32x32, real_output_32x32) + + gen_loss = loss + loss_32x32 + + gen_loss = gen_loss / self.gradient_accumulate_every + + gen_loss.register_hook(raise_if_nan) + self.accelerator.backward(gen_loss) + total_gen_loss += loss + + # divide loss by gradient accumulation steps since gradients + # are accumulated for multiple backward passes in PyTorch + self.g_loss = float(total_gen_loss.item() / self.gradient_accumulate_every) + self.GAN.G_opt.step() + + # calculate moving averages + if self.accelerator.is_main_process and self.steps % 10 == 0 and self.steps > 20000: + self.GAN.EMA() + + if self.accelerator.is_main_process and self.steps <= 25000 and self.steps % 1000 == 2: + self.GAN.reset_parameter_averaging() + + # save from NaN errors + + if any(torch.isnan(l) for l in (total_gen_loss, total_disc_loss)): + print(f'NaN detected for generator or discriminator. Loading from checkpoint #{self.checkpoint_num}') + self.load(self.checkpoint_num) + raise NanException + + del total_disc_loss + del total_gen_loss + + # periodically save results + + if self.accelerator.is_main_process: + if self.steps % self.save_every == 0: + self.save(self.checkpoint_num) + + if self.push_to_hub: + with tempfile.TemporaryDirectory() as temp_dir: + self.GAN.push_to_hub(temp_dir, self.repo_url, config=self.GAN.config, skip_lfs_files=True) + + if self.steps % self.evaluate_every == 0 or (self.steps % 100 == 0 and self.steps < 20000): + self.evaluate(floor(self.steps / self.evaluate_every), num_image_tiles=self.num_image_tiles) + + if exists(self.calculate_fid_every) and self.steps % self.calculate_fid_every == 0 and self.steps != 0: + num_batches = math.ceil(self.calculate_fid_num_images / self.batch_size) + fid = self.calculate_fid(num_batches) + self.last_fid = fid + + with open(str(self.results_dir / self.name / f'fid_scores.txt'), 'a') as f: + f.write(f'{self.steps},{fid}\n') + + self.steps += 1 + + @torch.no_grad() + def evaluate(self, num=0, num_image_tiles=4): + self.GAN.eval() + + ext = self.image_extension + num_rows = num_image_tiles + + latent_dim = self.GAN.latent_dim + image_size = self.GAN.image_size + + # latents and noise + + latents = torch.randn(num_rows ** 2, latent_dim, device=self.accelerator.device) + + # regular + + generated_images = self.generate_(self.GAN.G, latents) + file_name = str(self.results_dir / self.name / f'{str(num)}.{ext}') + save_image(generated_images, file_name, nrow=num_rows) + + # moving averages + + generated_images = self.generate_(self.GAN.GE.to(self.accelerator.device), latents) + file_name_ema = str(self.results_dir / self.name / f'{str(num)}-ema.{ext}') + save_image(generated_images, file_name_ema, nrow=num_rows) + + if self.accelerator.is_local_main_process and self.wandb: + import wandb + + wandb.log({'generated_examples': wandb.Image(str(file_name))}) + wandb.log({'generated_examples_ema': wandb.Image(str(file_name_ema))}) + + @torch.no_grad() + def generate(self, num=0, num_image_tiles=4, checkpoint=None, types=['default', 'ema']): + self.GAN.eval() + + latent_dim = self.GAN.latent_dim + dir_name = self.name + str('-generated-') + str(checkpoint) + dir_full = Path().absolute() / self.results_dir / dir_name + ext = self.image_extension + + if not dir_full.exists(): + os.mkdir(dir_full) + + # regular + if 'default' in types: + for i in tqdm(range(num_image_tiles), desc='Saving generated default images'): + latents = torch.randn(1, latent_dim, device=self.accelerator.device) + generated_image = self.generate_(self.GAN.G, latents) + path = str(self.results_dir / dir_name / f'{str(num)}-{str(i)}.{ext}') + save_image(generated_image[0], path, nrow=1) + + # moving averages + if 'ema' in types: + for i in tqdm(range(num_image_tiles), desc='Saving generated EMA images'): + latents = torch.randn(1, latent_dim, device=self.accelerator.device) + generated_image = self.generate_(self.GAN.GE, latents) + path = str(self.results_dir / dir_name / f'{str(num)}-{str(i)}-ema.{ext}') + save_image(generated_image[0], path, nrow=1) + + return dir_full + + @torch.no_grad() + def show_progress(self, num_images=4, types=['default', 'ema']): + checkpoints = self.get_checkpoints() + assert exists(checkpoints), 'cannot find any checkpoints to create a training progress video for' + + dir_name = self.name + str('-progress') + dir_full = Path().absolute() / self.results_dir / dir_name + ext = self.image_extension + latents = None + + zfill_length = math.ceil(math.log10(len(checkpoints))) + + if not dir_full.exists(): + os.mkdir(dir_full) + + for checkpoint in tqdm(checkpoints, desc='Generating progress images'): + self.load(checkpoint, print_version=False) + self.GAN.eval() + + if checkpoint == 0: + latents = torch.randn(num_images, self.GAN.latent_dim, self.accelerator.device) + + # regular + if 'default' in types: + generated_image = self.generate_(self.GAN.G, latents) + path = str(self.results_dir / dir_name / f'{str(checkpoint).zfill(zfill_length)}.{ext}') + save_image(generated_image, path, nrow=num_images) + + # moving averages + if 'ema' in types: + generated_image = self.generate_(self.GAN.GE, latents) + path = str(self.results_dir / dir_name / f'{str(checkpoint).zfill(zfill_length)}-ema.{ext}') + save_image(generated_image, path, nrow=num_images) + + @torch.no_grad() + def calculate_fid(self, num_batches): + from pytorch_fid import fid_score + real_path = self.fid_dir / 'real' + fake_path = self.fid_dir / 'fake' + + # remove any existing files used for fid calculation and recreate directories + if not real_path.exists() or self.clear_fid_cache: + rmtree(real_path, ignore_errors=True) + os.makedirs(real_path) + + for batch_num in tqdm(range(num_batches), desc='calculating FID - saving reals'): + real_batch = next(self.loader)["image"] + for k, image in enumerate(real_batch.unbind(0)): + ind = k + batch_num * self.batch_size + save_image(image, real_path / f'{ind}.png') + + # generate a bunch of fake images in results / name / fid_fake + rmtree(fake_path, ignore_errors=True) + os.makedirs(fake_path) + + self.GAN.eval() + ext = self.image_extension + + latent_dim = self.GAN.latent_dim + image_size = self.GAN.image_size + + for batch_num in tqdm(range(num_batches), desc='calculating FID - saving generated'): + # latents and noise + latents = torch.randn(self.batch_size, latent_dim, device=self.accelerator.device) + + # moving averages + generated_images = self.generate_(self.GAN.GE, latents) + + for j, image in enumerate(generated_images.unbind(0)): + ind = j + batch_num * self.batch_size + save_image(image, str(fake_path / f'{str(ind)}-ema.{ext}')) + + return fid_score.calculate_fid_given_paths([str(real_path), str(fake_path)], 256, latents.device, 2048) + + @torch.no_grad() + def generate_(self, G, style, num_image_tiles=8): + generated_images = evaluate_in_chunks(self.batch_size, G, style) + return generated_images.clamp_(0., 1.) + + @torch.no_grad() + def generate_interpolation(self, num=0, num_image_tiles=8, num_steps=100, save_frames=False): + self.GAN.eval() + ext = self.image_extension + num_rows = num_image_tiles + + latent_dim = self.GAN.latent_dim + image_size = self.GAN.image_size + + # latents and noise + latents_low = torch.randn(num_rows ** 2, latent_dim, device=self.accelerator.device) + latents_high = torch.randn(num_rows ** 2, latent_dim, device=self.accelerator.device) + + ratios = torch.linspace(0., 8., num_steps) + + frames = [] + for ratio in tqdm(ratios): + interp_latents = slerp(ratio, latents_low, latents_high) + generated_images = self.generate_(self.GAN.GE, interp_latents) + images_grid = torchvision.utils.make_grid(generated_images, nrow=num_rows) + pil_image = transforms.ToPILImage()(images_grid.cpu()) + + if self.transparent: + background = Image.new('RGBA', pil_image.size, (255, 255, 255)) + pil_image = Image.alpha_composite(background, pil_image) + + frames.append(pil_image) + + frames[0].save(str(self.results_dir / self.name / f'{str(num)}.gif'), save_all=True, append_images=frames[1:], + duration=80, loop=0, optimize=True) + + if save_frames: + folder_path = (self.results_dir / self.name / f'{str(num)}') + folder_path.mkdir(parents=True, exist_ok=True) + for ind, frame in enumerate(frames): + frame.save(str(folder_path / f'{str(ind)}.{ext}')) + + def print_log(self): + data = [ + ('G', self.g_loss), + ('D', self.d_loss), + ('GP', self.last_gp_loss), + ('SS', self.last_recon_loss), + ('FID', self.last_fid) + ] + + data = [d for d in data if exists(d[1])] + log = ' | '.join(map(lambda n: f'{n[0]}: {n[1]:.2f}', data)) + print(log) + + if self.accelerator.is_local_main_process: + log_dict = {v[0]: v[1] for v in data} + if self.wandb: + import wandb + + wandb.log(log_dict) + + def model_name(self, num): + return str(self.models_dir / self.name / f'model_{num}.pt') + + def init_folders(self): + (self.results_dir / self.name).mkdir(parents=True, exist_ok=True) + (self.models_dir / self.name).mkdir(parents=True, exist_ok=True) + + def clear(self): + rmtree(str(self.models_dir / self.name), True) + rmtree(str(self.results_dir / self.name), True) + rmtree(str(self.fid_dir), True) + rmtree(str(self.config_path), True) + self.init_folders() + + def save(self, num): + save_data = { + 'GAN': self.GAN.state_dict(), + } + + torch.save(save_data, self.model_name(num)) + self.write_config() + + def load(self, num=-1): + self.load_config() + + name = num + if num == -1: + checkpoints = self.get_checkpoints() + + if not exists(checkpoints): + return + + name = checkpoints[-1] + print(f'continuing from previous epoch - {name}') + + self.steps = name * self.save_every + + load_data = torch.load(self.model_name(name)) + + try: + self.GAN.load_state_dict(load_data['GAN']) + except Exception as e: + print( + 'unable to load save model. please try downgrading the package to the version specified by the saved model') + raise e + + def get_checkpoints(self): + file_paths = [p for p in Path(self.models_dir / self.name).glob('model_*.pt')] + saved_nums = sorted(map(lambda x: int(x.stem.split('_')[1]), file_paths)) + + if len(saved_nums) == 0: + return None + + return saved_nums diff --git a/huggan/pytorch/metrics/README.md b/huggan/pytorch/metrics/README.md new file mode 100644 index 0000000000000000000000000000000000000000..78452abbe471835aba62fcfd97da223a9b319e0a --- /dev/null +++ b/huggan/pytorch/metrics/README.md @@ -0,0 +1,39 @@ +# GAN metrics + +In order to track progress 📈 in (un)conditional image generation, a few quantitative metrics have been proposed. Below, we explain the most popular ones. For a more extensive overview, we refer the reader to [Borji, 2021](https://arxiv.org/abs/2103.09396) - which is an up-to-date version of [Borji, 2018](https://arxiv.org/abs/1802.03446). The TLDR is that, despite the use of many popular metrics, objective and comprehensive evaluation of generative models is still an open problem 🤷‍♂️. + +Quantitative metrics are of course just a proxy of image quality. The most widely used (Inception Score and FID) have several drawbacks [Barratt et al., 2018](https://arxiv.org/abs/1801.01973), [Sajjadi et al., 2018](https://arxiv.org/abs/1806.00035), [Kynkäänniemi et al., 2019](https://arxiv.org/abs/1904.06991). + +## Inception score + +The Inception score was proposed in [Salimans et al., 2016](https://arxiv.org/abs/1606.03498). The authors used a pre-trained Inceptionv3 neural net to classify the images generated by a GAN, and computed a score based on the class probablities of the neural net. The authors claimed that the score correlates well with subjective human evaluation. For an extensive explanation of the metric (as well as an implementation in Numpy and Keras), we refer the reader to [this blog post](https://machinelearningmastery.com/how-to-implement-the-inception-score-from-scratch-for-evaluating-generated-images/#:~:text=The%20Inception%20Score%2C%20or%20IS%20for%20short%2C%20is%20an%20objective,Improved%20Techniques%20for%20Training%20GANs.%E2%80%9D). + +## Fréchet Inception Distance (FID) + +The FID metric was proposed in [Heusel et al., 2018](https://arxiv.org/abs/1706.08500), and is currently the most widely used metric for evaluating image generation. Rather than only evaluating the generated images (as the Inception score), the FID metric compares the generated images to real images. + +The Fréchet distance meaures the distance between 2 multivariate Gaussian distributions. What does that mean? Concretely, the FID metric uses a pre-trained neural network (the same one as the one of the Inception score, Inceptionv3), and first forwards both real and generated images through it in order to get feature maps. Next, one computes statistics (namely, the mean and standard deviation) of the feature maps for both distributions (generated and real images). Finally, the distance between both distributions is computed based on these statistics. + +The FID metric assumes that feature maps of a pre-trained neural net extracted on real vs. fake images should be similar (the authors argue that this is a good quantitative metric for assessing image quality, correlating well with human judgement). + +An important disadvantage of the FID metric is that is has an issue of generalization; a model that simply memorizes the training data can obtain a perfect score on these metrics [Razavi et al., 2019](https://arxiv.org/abs/1906.00446). + +Variants have been proposed for other modalities, such as the Fréchet Audio Distance [Kilgour et al., 2018](https://arxiv.org/abs/1812.08466) and the Fréchet Video Distance [Unterthiner et al., 2018](https://arxiv.org/abs/1812.01717). + +The official implementation is in Tensorflow and can be found [here](https://github.com/bioinf-jku/TTUR). A PyTorch implementation can be found [here](https://github.com/mseitzer/pytorch-fid). + +## Clean FID + +In 2021, a paper by [Parmar et al.](https://arxiv.org/abs/2104.11222) indicated that the FID metric is often poorly computed, due to incorrect implementations of low-level image preprocessing (such as resizing of images) in popular frameworks such as PyTorch and TensorFlow. This can produce widely different values for the FID metric. + +The official implementation of the cleaner FID version can be found [here](https://github.com/GaParmar/clean-fid). + +Note that FID has many, many other variants including spatial FID (sFID), class-aware FID (CAFD) and conditional FID, Fast FID, Memorization-informed FID (MiFID), Unbiased FID, etc. + +## Precision and Recall + +Despite the FID metric being popular and correlating well with human evaluation, [Sajjadi et al., 2018](https://arxiv.org/abs/1806.00035) pointed out that, due to the fact that the FID score is just a scalar number, it is unable to distinguish between different failure cases. Two generative models could obtain the same FID score while generating images that look entirely different. Hence, the authors proposed a novel approach, defining precision (P) and recall (R) for distributions. + +Precision measures the similarity of generated instances to the real ones and recall measures the ability of a generator to synthesize all instances found in the training set. Hence, precision measures the quality and recall the coverage. + +These metrics were then further improved by [Kynkäänniemi et al., 2019](https://arxiv.org/abs/1904.06991). diff --git a/huggan/pytorch/metrics/__init__.py b/huggan/pytorch/metrics/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/pytorch/metrics/fid_score.py b/huggan/pytorch/metrics/fid_score.py new file mode 100644 index 0000000000000000000000000000000000000000..01d2ba3c25c05c30d13e2bdd6da98996b693fe35 --- /dev/null +++ b/huggan/pytorch/metrics/fid_score.py @@ -0,0 +1,80 @@ +# sources: +# https://www.kaggle.com/code/ibtesama/gan-in-pytorch-with-fid/notebook +# https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/fid_score.py + +import numpy as np +from scipy import linalg +from torch.nn.functional import adaptive_avg_pool2d + + +def calculate_activation_statistics(images, model, batch_size=128, dims=2048): + model.eval() + act = np.empty((len(images), dims)) + + batch = images + pred = model(batch)[0] + + # If model output is not scalar, apply global spatial average pooling. + # This happens if you choose a dimensionality not equal 2048. + if pred.size(2) != 1 or pred.size(3) != 1: + pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) + + act = pred.cpu().data.numpy().reshape(pred.size(0), -1) + + mu = np.mean(act, axis=0) + sigma = np.cov(act, rowvar=False) + return mu, sigma + + +def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): + """Numpy implementation of the Frechet Distance. + The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) + and X_2 ~ N(mu_2, C_2) is + d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). + """ + + mu1 = np.atleast_1d(mu1) + mu2 = np.atleast_1d(mu2) + + sigma1 = np.atleast_2d(sigma1) + sigma2 = np.atleast_2d(sigma2) + + assert mu1.shape == mu2.shape, \ + 'Training and test mean vectors have different lengths' + assert sigma1.shape == sigma2.shape, \ + 'Training and test covariances have different dimensions' + + diff = mu1 - mu2 + + + covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) + if not np.isfinite(covmean).all(): + msg = ('fid calculation produces singular product; ' + 'adding %s to diagonal of cov estimates') % eps + print(msg) + offset = np.eye(sigma1.shape[0]) * eps + covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) + + + if np.iscomplexobj(covmean): + if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): + m = np.max(np.abs(covmean.imag)) + raise ValueError('Imaginary component {}'.format(m)) + covmean = covmean.real + + tr_covmean = np.trace(covmean) + + return (diff.dot(diff) + np.trace(sigma1) + + np.trace(sigma2) - 2 * tr_covmean) + + +def calculate_fretchet(images_real, images_fake, model): + """Calculate the fretched distance.""" + + # calculate statistics (mean + std) + mu_1, std_1 = calculate_activation_statistics(images_real, model) + mu_2, std_2 = calculate_activation_statistics(images_fake, model) + + # compute distance + fid_value = calculate_frechet_distance(mu_1, std_1, mu_2, std_2) + return fid_value \ No newline at end of file diff --git a/huggan/pytorch/metrics/inception.py b/huggan/pytorch/metrics/inception.py new file mode 100644 index 0000000000000000000000000000000000000000..7af64d7a95dd4822c120e6787a1bab8cf1d77cf9 --- /dev/null +++ b/huggan/pytorch/metrics/inception.py @@ -0,0 +1,328 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision + +try: + from torchvision.models.utils import load_state_dict_from_url +except ImportError: + from torch.utils.model_zoo import load_url as load_state_dict_from_url + +# Inception weights ported to Pytorch from +# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz +FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501 + + +class InceptionV3(nn.Module): + """Pretrained InceptionV3 network returning feature maps""" + + # Index of default block of inception to return, + # corresponds to output of final average pooling + DEFAULT_BLOCK_INDEX = 3 + + # Maps feature dimensionality to their output blocks indices + BLOCK_INDEX_BY_DIM = { + 64: 0, # First max pooling features + 192: 1, # Second max pooling featurs + 768: 2, # Pre-aux classifier features + 2048: 3 # Final average pooling features + } + + def __init__(self, + output_blocks=(DEFAULT_BLOCK_INDEX,), + resize_input=True, + normalize_input=True, + requires_grad=False, + use_fid_inception=True): + """Build pretrained InceptionV3 + + Parameters + ---------- + output_blocks : list of int + Indices of blocks to return features of. Possible values are: + - 0: corresponds to output of first max pooling + - 1: corresponds to output of second max pooling + - 2: corresponds to output which is fed to aux classifier + - 3: corresponds to output of final average pooling + resize_input : bool + If true, bilinearly resizes input to width and height 299 before + feeding input to model. As the network without fully connected + layers is fully convolutional, it should be able to handle inputs + of arbitrary size, so resizing might not be strictly needed + normalize_input : bool + If true, scales the input from range (0, 1) to the range the + pretrained Inception network expects, namely (-1, 1) + requires_grad : bool + If true, parameters of the model require gradients. Possibly useful + for finetuning the network + use_fid_inception : bool + If true, uses the pretrained Inception model used in Tensorflow's + FID implementation. If false, uses the pretrained Inception model + available in torchvision. The FID Inception model has different + weights and a slightly different structure from torchvision's + Inception model. If you want to compute FID scores, you are + strongly advised to set this parameter to true to get comparable + results. + """ + super(InceptionV3, self).__init__() + + self.resize_input = resize_input + self.normalize_input = normalize_input + self.output_blocks = sorted(output_blocks) + self.last_needed_block = max(output_blocks) + + assert self.last_needed_block <= 3, \ + 'Last possible output block index is 3' + + self.blocks = nn.ModuleList() + + if use_fid_inception: + inception = fid_inception_v3() + else: + inception = _inception_v3(pretrained=True) + + # Block 0: input to maxpool1 + block0 = [ + inception.Conv2d_1a_3x3, + inception.Conv2d_2a_3x3, + inception.Conv2d_2b_3x3, + nn.MaxPool2d(kernel_size=3, stride=2) + ] + self.blocks.append(nn.Sequential(*block0)) + + # Block 1: maxpool1 to maxpool2 + if self.last_needed_block >= 1: + block1 = [ + inception.Conv2d_3b_1x1, + inception.Conv2d_4a_3x3, + nn.MaxPool2d(kernel_size=3, stride=2) + ] + self.blocks.append(nn.Sequential(*block1)) + + # Block 2: maxpool2 to aux classifier + if self.last_needed_block >= 2: + block2 = [ + inception.Mixed_5b, + inception.Mixed_5c, + inception.Mixed_5d, + inception.Mixed_6a, + inception.Mixed_6b, + inception.Mixed_6c, + inception.Mixed_6d, + inception.Mixed_6e, + ] + self.blocks.append(nn.Sequential(*block2)) + + # Block 3: aux classifier to final avgpool + if self.last_needed_block >= 3: + block3 = [ + inception.Mixed_7a, + inception.Mixed_7b, + inception.Mixed_7c, + nn.AdaptiveAvgPool2d(output_size=(1, 1)) + ] + self.blocks.append(nn.Sequential(*block3)) + + for param in self.parameters(): + param.requires_grad = requires_grad + + def forward(self, inp): + """Get Inception feature maps + + Parameters + ---------- + inp : torch.autograd.Variable + Input tensor of shape Bx3xHxW. Values are expected to be in + range (0, 1) + + Returns + ------- + List of torch.autograd.Variable, corresponding to the selected output + block, sorted ascending by index + """ + outp = [] + x = inp + + if self.resize_input: + x = F.interpolate(x, + size=(299, 299), + mode='bilinear', + align_corners=False) + + if self.normalize_input: + x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) + + for idx, block in enumerate(self.blocks): + x = block(x) + if idx in self.output_blocks: + outp.append(x) + + if idx == self.last_needed_block: + break + + return outp + + +def _inception_v3(*args, **kwargs): + """Wraps `torchvision.models.inception_v3` + + Skips default weight inititialization if supported by torchvision version. + See https://github.com/mseitzer/pytorch-fid/issues/28. + """ + try: + version = tuple(map(int, torchvision.__version__.split('.')[:2])) + except ValueError: + # Just a caution against weird version strings + version = (0,) + + if version >= (0, 6): + kwargs['init_weights'] = False + + return torchvision.models.inception_v3(*args, **kwargs) + + +def fid_inception_v3(): + """Build pretrained Inception model for FID computation + + The Inception model for FID computation uses a different set of weights + and has a slightly different structure than torchvision's Inception. + + This method first constructs torchvision's Inception and then patches the + necessary parts that are different in the FID Inception model. + """ + inception = _inception_v3(num_classes=1008, + aux_logits=False, + pretrained=False) + inception.Mixed_5b = FIDInceptionA(192, pool_features=32) + inception.Mixed_5c = FIDInceptionA(256, pool_features=64) + inception.Mixed_5d = FIDInceptionA(288, pool_features=64) + inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) + inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) + inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) + inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) + inception.Mixed_7b = FIDInceptionE_1(1280) + inception.Mixed_7c = FIDInceptionE_2(2048) + + state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) + inception.load_state_dict(state_dict) + return inception + + +class FIDInceptionA(torchvision.models.inception.InceptionA): + """InceptionA block patched for FID computation""" + def __init__(self, in_channels, pool_features): + super(FIDInceptionA, self).__init__(in_channels, pool_features) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch5x5 = self.branch5x5_1(x) + branch5x5 = self.branch5x5_2(branch5x5) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + + # Patch: Tensorflow's average pool does not use the padded zero's in + # its average calculation + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, + count_include_pad=False) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] + return torch.cat(outputs, 1) + + +class FIDInceptionC(torchvision.models.inception.InceptionC): + """InceptionC block patched for FID computation""" + def __init__(self, in_channels, channels_7x7): + super(FIDInceptionC, self).__init__(in_channels, channels_7x7) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch7x7 = self.branch7x7_1(x) + branch7x7 = self.branch7x7_2(branch7x7) + branch7x7 = self.branch7x7_3(branch7x7) + + branch7x7dbl = self.branch7x7dbl_1(x) + branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) + + # Patch: Tensorflow's average pool does not use the padded zero's in + # its average calculation + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, + count_include_pad=False) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] + return torch.cat(outputs, 1) + + +class FIDInceptionE_1(torchvision.models.inception.InceptionE): + """First InceptionE block patched for FID computation""" + def __init__(self, in_channels): + super(FIDInceptionE_1, self).__init__(in_channels) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch3x3 = self.branch3x3_1(x) + branch3x3 = [ + self.branch3x3_2a(branch3x3), + self.branch3x3_2b(branch3x3), + ] + branch3x3 = torch.cat(branch3x3, 1) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [ + self.branch3x3dbl_3a(branch3x3dbl), + self.branch3x3dbl_3b(branch3x3dbl), + ] + branch3x3dbl = torch.cat(branch3x3dbl, 1) + + # Patch: Tensorflow's average pool does not use the padded zero's in + # its average calculation + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, + count_include_pad=False) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] + return torch.cat(outputs, 1) + + +class FIDInceptionE_2(torchvision.models.inception.InceptionE): + """Second InceptionE block patched for FID computation""" + def __init__(self, in_channels): + super(FIDInceptionE_2, self).__init__(in_channels) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch3x3 = self.branch3x3_1(x) + branch3x3 = [ + self.branch3x3_2a(branch3x3), + self.branch3x3_2b(branch3x3), + ] + branch3x3 = torch.cat(branch3x3, 1) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [ + self.branch3x3dbl_3a(branch3x3dbl), + self.branch3x3dbl_3b(branch3x3dbl), + ] + branch3x3dbl = torch.cat(branch3x3dbl, 1) + + # Patch: The FID Inception model uses max pooling instead of average + # pooling. This is likely an error in this specific Inception + # implementation, as other Inception models use average pooling here + # (which matches the description in the paper). + branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] + return torch.cat(outputs, 1) \ No newline at end of file diff --git a/huggan/pytorch/pix2pix/README.md b/huggan/pytorch/pix2pix/README.md new file mode 100644 index 0000000000000000000000000000000000000000..72bc7dee7d61652a889357ccf57888057b289c3c --- /dev/null +++ b/huggan/pytorch/pix2pix/README.md @@ -0,0 +1,91 @@ +# Train Pix2pix on your custom data + +This folder contains a script to train [pix2pix](https://arxiv.org/abs/1611.07004) for conditional image generation, leveraging the [Hugging Face](https://huggingface.co/) ecosystem for processing data and pushing the model to the Hub. + +The script leverages 🤗 Datasets for loading and processing data, and 🤗 Accelerate for instantly running on CPU, single, multi-GPUs or TPU, also supporting fp16/mixed precision. + +

+ drawing +

+ +Pix2pix trained on the [huggan/maps](https://huggingface.co/datasets/huggan/maps) dataset to translate satellite images into maps à la Google Maps. First row: input, second row: prediction, third row: ground truth. + +## Launching the script + +To train the model with the default parameters (200 epochs, 256x256 images, etc.) on [huggan/facades](https://huggingface.co/datasets/huggan/facades) on your environment, first run: + +```bash +accelerate config +``` + +and answer the questions asked about your environment. Next, launch the script as follows: + +``` +accelerate launch train.py +``` + +This will create local "images" and "saved_models" directories, containing generated images and saved checkpoints over the course of the training. + +To train on another dataset available on the hub, simply do (for instance): + +``` +accelerate launch train.py --dataset huggan/night2day +``` + +Make sure to pick a dataset which has "imageA" and "imageB" columns defined. One can always tweak the script in case the column names are different. + +In case you'd like to tweak the script to your liking, first fork the "community-events" [repo](https://github.com/huggingface/community-events) (see the button on the top right), then clone it locally: + +```bash +git clone https://github.com//community-events.git +``` + +and edit to your liking. + +## Training on your own data + +You can of course also train on your own images. For this, one can leverage Datasets' [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder). Make sure to authenticate with the hub first, either by running the `huggingface-cli login` command in a terminal, or the following in case you're working in a notebook: + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +Next, run the following in a notebook/script: + +```python +from datasets import load_dataset + +# first: load dataset +# option 1: from local folder +dataset = load_dataset("imagefolder", data_dir="path_to_folder") +# option 2: from remote URL (e.g. a zip file) +dataset = load_dataset("imagefolder", data_files="URL to .zip file") + +# optional: remove "label" column, in case there are no subcategories +dataset['train'] = dataset['train'].remove_columns(column_names="label") + +# next: push to the hub (assuming git-LFS is installed) +dataset.push_to_hub("huggan/my-awesome-dataset") +``` + +You can then simply pass the name of the dataset to the script: + +``` +accelerate launch train.py --dataset huggan/my-awesome-dataset +``` + +## Pushing model to the Hub + +You can push your trained generator to the hub during training by specifying the `push_to_hub` flag, along with a `model_name`. + +```bash +accelerate launch train.py --push_to_hub --model_name pix2pix-facades +``` + +This is made possible by making the generator inherit from `PyTorchModelHubMixin` available in the `huggingface_hub` library. + +# Citation + +This repo is entirely based on Erik Linder-Norén's [PyTorch-GAN repo](https://github.com/eriklindernoren/PyTorch-GAN), but with added HuggingFace goodies. diff --git a/huggan/pytorch/pix2pix/__init__.py b/huggan/pytorch/pix2pix/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/pytorch/pix2pix/modeling_pix2pix.py b/huggan/pytorch/pix2pix/modeling_pix2pix.py new file mode 100644 index 0000000000000000000000000000000000000000..71d4efe3380139c9231bf28d619d0742a48f9e27 --- /dev/null +++ b/huggan/pytorch/pix2pix/modeling_pix2pix.py @@ -0,0 +1,150 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright (c) 2022 Erik Linder-Norén and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions. + +import torch.nn as nn +import torch.nn.functional as F +import torch + +from huggan.pytorch.huggan_mixin import HugGANModelHubMixin + + +def weights_init_normal(m): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + torch.nn.init.normal_(m.weight.data, 0.0, 0.02) + elif classname.find("BatchNorm2d") != -1: + torch.nn.init.normal_(m.weight.data, 1.0, 0.02) + torch.nn.init.constant_(m.bias.data, 0.0) + + +############################## +# U-NET +############################## + + +class UNetDown(nn.Module): + def __init__(self, in_size, out_size, normalize=True, dropout=0.0): + super(UNetDown, self).__init__() + layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)] + if normalize: + layers.append(nn.InstanceNorm2d(out_size)) + layers.append(nn.LeakyReLU(0.2)) + if dropout: + layers.append(nn.Dropout(dropout)) + self.model = nn.Sequential(*layers) + + def forward(self, x): + return self.model(x) + + +class UNetUp(nn.Module): + def __init__(self, in_size, out_size, dropout=0.0): + super(UNetUp, self).__init__() + layers = [ + nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False), + nn.InstanceNorm2d(out_size), + nn.ReLU(inplace=True), + ] + if dropout: + layers.append(nn.Dropout(dropout)) + + self.model = nn.Sequential(*layers) + + def forward(self, x, skip_input): + x = self.model(x) + x = torch.cat((x, skip_input), 1) + + return x + + +class GeneratorUNet(nn.Module, HugGANModelHubMixin): + def __init__(self, in_channels=3, out_channels=3): + super(GeneratorUNet, self).__init__() + + self.down1 = UNetDown(in_channels, 64, normalize=False) + self.down2 = UNetDown(64, 128) + self.down3 = UNetDown(128, 256) + self.down4 = UNetDown(256, 512, dropout=0.5) + self.down5 = UNetDown(512, 512, dropout=0.5) + self.down6 = UNetDown(512, 512, dropout=0.5) + self.down7 = UNetDown(512, 512, dropout=0.5) + self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5) + + self.up1 = UNetUp(512, 512, dropout=0.5) + self.up2 = UNetUp(1024, 512, dropout=0.5) + self.up3 = UNetUp(1024, 512, dropout=0.5) + self.up4 = UNetUp(1024, 512, dropout=0.5) + self.up5 = UNetUp(1024, 256) + self.up6 = UNetUp(512, 128) + self.up7 = UNetUp(256, 64) + + self.final = nn.Sequential( + nn.Upsample(scale_factor=2), + nn.ZeroPad2d((1, 0, 1, 0)), + nn.Conv2d(128, out_channels, 4, padding=1), + nn.Tanh(), + ) + + def forward(self, x): + # U-Net generator with skip connections from encoder to decoder + d1 = self.down1(x) + d2 = self.down2(d1) + d3 = self.down3(d2) + d4 = self.down4(d3) + d5 = self.down5(d4) + d6 = self.down6(d5) + d7 = self.down7(d6) + d8 = self.down8(d7) + u1 = self.up1(d8, d7) + u2 = self.up2(u1, d6) + u3 = self.up3(u2, d5) + u4 = self.up4(u3, d4) + u5 = self.up5(u4, d3) + u6 = self.up6(u5, d2) + u7 = self.up7(u6, d1) + + return self.final(u7) + + +############################## +# Discriminator +############################## + + +class Discriminator(nn.Module): + def __init__(self, in_channels=3): + super(Discriminator, self).__init__() + + def discriminator_block(in_filters, out_filters, normalization=True): + """Returns downsampling layers of each discriminator block""" + layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)] + if normalization: + layers.append(nn.InstanceNorm2d(out_filters)) + layers.append(nn.LeakyReLU(0.2, inplace=True)) + return layers + + self.model = nn.Sequential( + *discriminator_block(in_channels * 2, 64, normalization=False), + *discriminator_block(64, 128), + *discriminator_block(128, 256), + *discriminator_block(256, 512), + nn.ZeroPad2d((1, 0, 1, 0)), + nn.Conv2d(512, 1, 4, padding=1, bias=False) + ) + + def forward(self, img_A, img_B): + # Concatenate image and condition image by channels to produce input + img_input = torch.cat((img_A, img_B), 1) + return self.model(img_input) \ No newline at end of file diff --git a/huggan/pytorch/pix2pix/train.py b/huggan/pytorch/pix2pix/train.py new file mode 100644 index 0000000000000000000000000000000000000000..67ea3ce73c35f709136e5a13c775df4d40472abf --- /dev/null +++ b/huggan/pytorch/pix2pix/train.py @@ -0,0 +1,306 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright (c) 2022 Erik Linder-Norén and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions. + +import argparse +import os +from pathlib import Path +import numpy as np +import time +import datetime +import sys +import tempfile + +from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomVerticalFlip +from torchvision.utils import save_image + +from PIL import Image + +from torch.utils.data import DataLoader + +from modeling_pix2pix import GeneratorUNet, Discriminator + +from datasets import load_dataset + +from accelerate import Accelerator + +import torch.nn as nn +import torch + +from huggan.utils.hub import get_full_repo_name +from huggingface_hub import create_repo + + +def parse_args(args=None): + parser = argparse.ArgumentParser() + parser.add_argument("--dataset", type=str, default="huggan/facades", help="Dataset to use") + parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from") + parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") + parser.add_argument("--batch_size", type=int, default=1, help="size of the batches") + parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") + parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") + parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") + parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay") + parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") + parser.add_argument("--image_size", type=int, default=256, help="size of images for training") + parser.add_argument("--channels", type=int, default=3, help="number of image channels") + parser.add_argument( + "--sample_interval", type=int, default=500, help="interval between sampling of images from generators" + ) + parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between model checkpoints") + parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help="Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU.", + ) + parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model to the HuggingFace hub after training.", + ) + parser.add_argument( + "--model_name", + required="--push_to_hub" in sys.argv, + type=str, + help="Name of the model on the hub.", + ) + parser.add_argument( + "--organization_name", + required=False, + default="huggan", + type=str, + help="Organization name to push to, in case args.push_to_hub is specified.", + ) + return parser.parse_args(args=args) + +# Custom weights initialization called on Generator and Discriminator +def weights_init_normal(m): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + torch.nn.init.normal_(m.weight.data, 0.0, 0.02) + elif classname.find("BatchNorm2d") != -1: + torch.nn.init.normal_(m.weight.data, 1.0, 0.02) + torch.nn.init.constant_(m.bias.data, 0.0) + +def training_function(config, args): + accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu, mixed_precision=args.mixed_precision) + + os.makedirs("images/%s" % args.dataset, exist_ok=True) + os.makedirs("saved_models/%s" % args.dataset, exist_ok=True) + + repo_name = get_full_repo_name(args.model_name, args.organization_name) + if args.push_to_hub: + if accelerator.is_main_process: + repo_url = create_repo(repo_name, exist_ok=True) + # Loss functions + criterion_GAN = torch.nn.MSELoss() + criterion_pixelwise = torch.nn.L1Loss() + + # Loss weight of L1 pixel-wise loss between translated image and real image + lambda_pixel = 100 + + # Calculate output of image discriminator (PatchGAN) + patch = (1, args.image_size // 2 ** 4, args.image_size // 2 ** 4) + + # Initialize generator and discriminator + generator = GeneratorUNet() + discriminator = Discriminator() + + if args.epoch != 0: + # Load pretrained models + generator.load_state_dict(torch.load("saved_models/%s/generator_%d.pth" % (args.dataset, args.epoch))) + discriminator.load_state_dict(torch.load("saved_models/%s/discriminator_%d.pth" % (args.dataset, args.epoch))) + else: + # Initialize weights + generator.apply(weights_init_normal) + discriminator.apply(weights_init_normal) + + # Optimizers + optimizer_G = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(args.b1, args.b2)) + optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(args.b1, args.b2)) + + # Configure dataloaders + transform = Compose( + [ + Resize((args.image_size, args.image_size), Image.BICUBIC), + ToTensor(), + Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ] + ) + + def transforms(examples): + # random vertical flip + imagesA = [] + imagesB = [] + for imageA, imageB in zip(examples['imageA'], examples['imageB']): + if np.random.random() < 0.5: + imageA = Image.fromarray(np.array(imageA)[:, ::-1, :], "RGB") + imageB = Image.fromarray(np.array(imageB)[:, ::-1, :], "RGB") + imagesA.append(imageA) + imagesB.append(imageB) + + # transforms + examples["A"] = [transform(image.convert("RGB")) for image in imagesA] + examples["B"] = [transform(image.convert("RGB")) for image in imagesB] + + del examples["imageA"] + del examples["imageB"] + + return examples + + dataset = load_dataset(args.dataset) + transformed_dataset = dataset.with_transform(transforms) + + splits = transformed_dataset['train'].train_test_split(test_size=0.1) + train_ds = splits['train'] + val_ds = splits['test'] + + dataloader = DataLoader(train_ds, shuffle=True, batch_size=args.batch_size, num_workers=args.n_cpu) + val_dataloader = DataLoader(val_ds, batch_size=10, shuffle=True, num_workers=1) + + def sample_images(batches_done, accelerator): + """Saves a generated sample from the validation set""" + batch = next(iter(val_dataloader)) + real_A = batch["A"] + real_B = batch["B"] + fake_B = generator(real_A) + img_sample = torch.cat((real_A.data, fake_B.data, real_B.data), -2) + if accelerator.is_main_process: + save_image(img_sample, "images/%s/%s.png" % (args.dataset, batches_done), nrow=5, normalize=True) + + generator, discriminator, optimizer_G, optimizer_D, dataloader, val_dataloader = accelerator.prepare(generator, discriminator, optimizer_G, optimizer_D, dataloader, val_dataloader) + + # ---------- + # Training + # ---------- + + prev_time = time.time() + + for epoch in range(args.epoch, args.n_epochs): + print("Epoch:", epoch) + for i, batch in enumerate(dataloader): + + # Model inputs + real_A = batch["A"] + real_B = batch["B"] + + # Adversarial ground truths + valid = torch.ones((real_A.size(0), *patch), device=accelerator.device) + fake = torch.zeros((real_A.size(0), *patch), device=accelerator.device) + + # ------------------ + # Train Generators + # ------------------ + + optimizer_G.zero_grad() + + # GAN loss + fake_B = generator(real_A) + pred_fake = discriminator(fake_B, real_A) + loss_GAN = criterion_GAN(pred_fake, valid) + # Pixel-wise loss + loss_pixel = criterion_pixelwise(fake_B, real_B) + + # Total loss + loss_G = loss_GAN + lambda_pixel * loss_pixel + + accelerator.backward(loss_G) + + optimizer_G.step() + + # --------------------- + # Train Discriminator + # --------------------- + + optimizer_D.zero_grad() + + # Real loss + pred_real = discriminator(real_B, real_A) + loss_real = criterion_GAN(pred_real, valid) + + # Fake loss + pred_fake = discriminator(fake_B.detach(), real_A) + loss_fake = criterion_GAN(pred_fake, fake) + + # Total loss + loss_D = 0.5 * (loss_real + loss_fake) + + accelerator.backward(loss_D) + optimizer_D.step() + + # -------------- + # Log Progress + # -------------- + + # Determine approximate time left + batches_done = epoch * len(dataloader) + i + batches_left = args.n_epochs * len(dataloader) - batches_done + time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time)) + prev_time = time.time() + + # Print log + sys.stdout.write( + "\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, pixel: %f, adv: %f] ETA: %s" + % ( + epoch, + args.n_epochs, + i, + len(dataloader), + loss_D.item(), + loss_G.item(), + loss_pixel.item(), + loss_GAN.item(), + time_left, + ) + ) + + # If at sample interval save image + if batches_done % args.sample_interval == 0: + sample_images(batches_done, accelerator) + + if args.checkpoint_interval != -1 and epoch % args.checkpoint_interval == 0: + if accelerator.is_main_process: + unwrapped_generator = accelerator.unwrap_model(generator) + unwrapped_discriminator = accelerator.unwrap_model(discriminator) + # Save model checkpoints + torch.save(unwrapped_generator.state_dict(), "saved_models/%s/generator_%d.pth" % (args.dataset, epoch)) + torch.save(unwrapped_discriminator.state_dict(), "saved_models/%s/discriminator_%d.pth" % (args.dataset, epoch)) + + # Optionally push to hub + if args.push_to_hub: + if accelerator.is_main_process: + with tempfile.TemporaryDirectory() as temp_dir: + unwrapped_generator = accelerator.unwrap_model(generator) + unwrapped_generator.push_to_hub( + repo_path_or_name=temp_dir, + repo_url=repo_url, + commit_message=f"Training in progress, epoch {epoch}", + skip_lfs_files=True + ) + +def main(): + args = parse_args() + print(args) + + training_function({}, args) + + +if __name__ == "__main__": + main() diff --git a/huggan/tensorflow/dcgan/README.md b/huggan/tensorflow/dcgan/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e6eb62316b09f08f9c17b03e3631bd512b823d79 --- /dev/null +++ b/huggan/tensorflow/dcgan/README.md @@ -0,0 +1,50 @@ +## Train DCGAN on your custom data +This folder contains a script to train DCGAN for unconditional image generation, leveraging the Hugging Face ecosystem for processing your data and pushing the model to the Hub. + +The script leverages 🤗 [Datasets](https://huggingface.co/docs/datasets/index) for loading and processing data, and TensorFlow for training the model and 🤗 [Hub](https://huggingface.co/) for hosting it. + +## Launching the script +You can simply run `python train.py --num_channels 1` with the default parameters. It will download the [MNIST](https://huggingface.co/datasets/mnist) dataset, preprocess it and train a model on it, will save results after each epoch in a local directory and push the model to the 🤗 Hub. + +To train on another dataset available on the hub, simply do (for instance): + +```bash +python train.py --dataset cifar10 +``` + +## Training on your own data +You can of course also train on your own images. For this, one can leverage Datasets' [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder). Make sure to authenticate with the hub first, by running the huggingface-cli login command in a terminal, or the following in case you're working in a notebook: + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +Next, run the following in a notebook/script: + +```python +from datasets import load_dataset + +# first: load dataset +# option 1: from local folder +dataset = load_dataset("imagefolder", data_dir="path_to_folder") +# option 2: from remote URL (e.g. a zip file) +dataset = load_dataset("imagefolder", data_files="URL to .zip file") + +# next: push to the hub (assuming git-LFS is installed) +dataset.push_to_hub("huggan/my-awesome-dataset") +# You can then simply pass the name of the dataset to the script: + +python train.py --dataset huggan/my-awesome-dataset +``` + +## Pushing model to the Hub + +For this you can use `push_to_hub_keras` which generates a card for your model with training metrics, plot of the architecture and hyperparameters. For this, specify `--output_dir` and `--model_name` and use the `--push_to_hub` flag like so: +```bash +python train.py --push_to_hub --output_dir /output --model_name awesome_gan_model +``` + +## Citation +This repo is entirely based on [TensorFlow's official DCGAN tutorial](https://www.tensorflow.org/tutorials/generative/dcgan), but with added HuggingFace goodies. diff --git a/huggan/tensorflow/dcgan/__init__.py b/huggan/tensorflow/dcgan/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/tensorflow/dcgan/requirements.txt b/huggan/tensorflow/dcgan/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..462542f1c1668f5da3a3469999b12f91f6898acc --- /dev/null +++ b/huggan/tensorflow/dcgan/requirements.txt @@ -0,0 +1,2 @@ +transformers +datasets diff --git a/huggan/tensorflow/dcgan/train.py b/huggan/tensorflow/dcgan/train.py new file mode 100644 index 0000000000000000000000000000000000000000..32554915526f782a43c65013dbb0709dd23cbdc8 --- /dev/null +++ b/huggan/tensorflow/dcgan/train.py @@ -0,0 +1,225 @@ + +import tensorflow as tf +import matplotlib.pyplot as plt +import numpy as np +import tensorflow as tf +from pathlib import Path +import os +import PIL +from tqdm.auto import tqdm +import argparse + +from tensorflow.keras import layers + +from datasets import load_dataset +from transformers import DefaultDataCollator +from huggingface_hub import push_to_hub_keras + + +def parse_args(args=None): + parser = argparse.ArgumentParser() + parser.add_argument("--dataset", type=str, default="mnist", help="Dataset to load from the HuggingFace hub.") + parser.add_argument("--batch_size", type=int, default=128, help="Batch size to use during training") + parser.add_argument("--number_of_examples_to_generate", type=int, default=4, help="Number of examples to be generated in inference mode") + parser.add_argument( + "--generator_hidden_size", + type=int, + default=28, + help="Hidden size of the generator's feature maps.", + ) + parser.add_argument("--latent_dim", type=int, default=100, help="Dimensionality of the latent space.") + + parser.add_argument( + "--discriminator_hidden_size", + type=int, + default=28, + help="Hidden size of the discriminator's feature maps.", + ) + parser.add_argument( + "--image_size", + type=int, + default=28, + help="Spatial size to use when resizing images for training.", + ) + parser.add_argument( + "--num_channels", + type=int, + default=3, + help="Number of channels in the training images. For color images this is 3.", + ) + parser.add_argument("--num_epochs", type=int, default=5, help="number of epochs of training") + parser.add_argument("--output_dir", type=Path, default=Path("./output"), help="Name of the directory to dump generated images during training.") + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model to the HuggingFace hub after training.", + ) + parser.add_argument( + "--model_name", + default=None, + type=str, + help="Name of the model on the hub.", + ) + parser.add_argument( + "--organization_name", + default="huggan", + type=str, + help="Organization name to push to, in case args.push_to_hub is specified.", + ) + args = parser.parse_args() + + if args.push_to_hub: + assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." + assert args.model_name is not None, "Need a `model_name` to create a repo when `--push_to_hub` is passed." + + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + return args + + +def stack_generator_layers(model, units): + model.add(layers.Conv2DTranspose(units, (4, 4), strides=2, padding='same', use_bias=False)) + model.add(layers.BatchNormalization()) + model.add(layers.LeakyReLU()) + return model + + +def create_generator(channel, hidden_size, latent_dim): + generator = tf.keras.Sequential() + generator.add(layers.Input((latent_dim,))) # + generator.add(layers.Dense(hidden_size*4*7*7, use_bias=False, input_shape=(100,))) + generator.add(layers.LeakyReLU()) + + generator.add(layers.Reshape((7, 7, hidden_size*4))) + + units = [hidden_size*2, hidden_size*1] + for unit in units: + generator = stack_generator_layers(generator, unit) + + generator.add(layers.Conv2DTranspose(args.num_channels, (4, 4), strides=1, padding='same', use_bias=False, activation='tanh')) + return generator + + +def stack_discriminator_layers(model, units, use_batch_norm=False, use_dropout=False): + model.add(layers.Conv2D(units, (4, 4), strides=(2, 2), padding='same')) + if use_batch_norm: + model.add(layers.BatchNormalization()) + if use_dropout: + model.add(layers.Dropout(0.1)) + model.add(layers.LeakyReLU()) + return model + + +def create_discriminator(channel, hidden_size, args): + discriminator = tf.keras.Sequential() + discriminator.add(layers.Input((args.image_size, args.image_size, args.num_channels))) + discriminator = stack_discriminator_layers(discriminator, hidden_size, use_batch_norm = True, use_dropout = True) + discriminator = stack_discriminator_layers(discriminator, hidden_size * 2) + discriminator = stack_discriminator_layers(discriminator,True, hidden_size*4) + discriminator = stack_discriminator_layers(discriminator,True, hidden_size*16) + + discriminator.add(layers.Flatten()) + discriminator.add(layers.Dense(1)) + + return discriminator + + +def discriminator_loss(real_image, generated_image): + real_loss = cross_entropy(tf.ones_like(real_image), real_image) + fake_loss = cross_entropy(tf.zeros_like(generated_image), generated_image) + total_loss = real_loss + fake_loss + return total_loss + + +@tf.function +def train_step(images): + noise = tf.random.normal([128, 100]) + + with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: + generated_images = generator(noise, training=True) + + real_image = discriminator(images, training=True) + generated_image = discriminator(generated_images, training=True) + # calculate loss inside train step + gen_loss = cross_entropy(tf.ones_like(generated_image), generated_image) + disc_loss = discriminator_loss(real_image, generated_image) + + gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) + gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) + + generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) + discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) + + +def generate_and_save_images(model, epoch, test_input, output_dir, number_of_examples_to_generate): + + predictions = model(test_input, training=False) + + fig = plt.figure(figsize=(number_of_examples_to_generate*4, number_of_examples_to_generate*16)) + + for i in range(predictions.shape[0]): + plt.subplot(1, number_of_examples_to_generate, i+1) + if args.num_channels == 1: + plt.imshow(predictions[i, :, :, :], cmap='gray') + else: + plt.imshow(predictions[i, :, :, :]) + + plt.axis('off') + + plt.savefig(f'{output_dir}/image_at_epoch_{epoch}.png') + + +def train(dataset, epochs, output_dir, args): + for epoch in range(epochs): + print("Epoch:", epoch) + for image_batch in tqdm(dataset): + train_step(image_batch) + + generate_and_save_images(generator, + epoch + 1, + seed, + output_dir, + args.number_of_examples_to_generate) + + +def preprocess(examples): + images = (np.asarray(examples["image"]).astype('float32')- 127.5) / 127.5 + images = np.expand_dims(images, -1) + examples["pixel_values"] = images + return examples + + +def preprocess_images(dataset, args): + data_collator = DefaultDataCollator(return_tensors="tf") + processed_dataset = dataset.map(preprocess) + + tf_train_dataset = processed_dataset["train"].to_tf_dataset( + columns=['pixel_values'], + shuffle=True, + batch_size=args.batch_size, + collate_fn=data_collator) + + return tf_train_dataset + + +if __name__ == "__main__": + args = parse_args() + print("Downloading dataset..") + dataset = load_dataset(args.dataset) + dataset= preprocess_images(dataset, args) + print("Training model..") + generator = create_generator(args.num_channels, args.generator_hidden_size, args.latent_dim) + discriminator = create_discriminator(args.num_channels, args.discriminator_hidden_size, args) + generator_optimizer = tf.keras.optimizers.Adam(1e-4) + discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) + + # create seed with dimensions of number of examples to generate and noise + seed = tf.random.normal([args.number_of_examples_to_generate, args.latent_dim]) + + cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) + + train(dataset, args.num_epochs, args.output_dir, args) + if args.push_to_hub is not None: + + push_to_hub_keras(generator, repo_path_or_name=f"{args.output_dir}/{args.model_name}",organization=args.organization_name) diff --git a/huggan/utils/README.md b/huggan/utils/README.md new file mode 100644 index 0000000000000000000000000000000000000000..3f05a7327f37d81ba18ff4042208355921816aeb --- /dev/null +++ b/huggan/utils/README.md @@ -0,0 +1,51 @@ +# 🤗 Upload custom image dataset to the hub + +This directory contains an example script that showcases how to upload a custom image dataset to the hub programmatically (using Python). + +In this example, we'll upload all available datasets shared by the [CycleGAN authors](https://github.com/junyanz/CycleGAN/blob/master/datasets/download_dataset.sh) to the hub. + +It leverages the [ImageFolder](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) and `push_to_hub` +functionalities of the 🤗 [Datasets](https://huggingface.co/docs/datasets/index) library. + +It can be run as follows: + +### 1. Make sure to have git-LFS installed on your system: +First, verify that you have git-LFS installed. This can be done by running: + +```bash +git-lfs -v +``` + +If you get "command not found", then install it as follows: + +```bash +sudo apt-get install git-lfs +``` + +### 2. Login with your HuggingFace account: +Next, one needs to provide a token for authentication with the hub. This can be done by either running: + +```bash +huggingface-cli login +``` + +or + +```python +from huggingface_hub import notebook_login + +notebook_login() +``` + +in case you're running in a notebook. + +### 3. Upload! +Finally, uploading is as easy as: + +```bash +python push_to_hub_example.py --dataset horse2zebra +```` + +The result can be seen [here](https://huggingface.co/datasets/huggan/horse2zebra). + +Note that it's not required to programmatically upload a dataset to the hub: you can also do it in your browser as explained in [this guide](https://huggingface.co/docs/datasets/upload_dataset). diff --git a/huggan/utils/__init__.py b/huggan/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/huggan/utils/hub.py b/huggan/utils/hub.py new file mode 100644 index 0000000000000000000000000000000000000000..53d4dcd6c08cfeb652fcda8f7dd553b2d08bc192 --- /dev/null +++ b/huggan/utils/hub.py @@ -0,0 +1,12 @@ +from typing import Optional + +from huggingface_hub import HfFolder, whoami + +def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): + if token is None: + token = HfFolder.get_token() + if organization is None: + username = whoami(token)["name"] + return f"{username}/{model_id}" + else: + return f"{organization}/{model_id}" diff --git a/huggan/utils/push_to_hub_example.py b/huggan/utils/push_to_hub_example.py new file mode 100644 index 0000000000000000000000000000000000000000..af75e1a250c863a9dae3e7a7629d3c2f600902b9 --- /dev/null +++ b/huggan/utils/push_to_hub_example.py @@ -0,0 +1,27 @@ +import argparse +from datasets import load_dataset +from tqdm import tqdm + +# choose a dataset +available_datasets = ["apple2orange", "summer2winter_yosemite", "horse2zebra", "monet2photo", "cezanne2photo", "ukiyoe2photo", "vangogh2photo", "maps", "cityscapes", "facades", "iphone2dslr_flower", "ae_photos", "grumpifycat"] + +def upload_dataset(dataset_name): + if dataset_name not in available_datasets: + raise ValueError("Please choose one of the supported datasets:", available_datasets) + + # step 1: load dataset + dataset = load_dataset("imagefolder", data_files=f"https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/{dataset_name}.zip") + + # step 2: push to hub + dataset.push_to_hub(f"huggan/{dataset_name}") + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument("--dataset", default="apple2orange", type=str, help="Dataset to upload") + args = parser.parse_args() + + upload_dataset(args.dataset) + + +if __name__ == "__main__": + main() diff --git a/jax-controlnet-sprint/README.md b/jax-controlnet-sprint/README.md new file mode 100644 index 0000000000000000000000000000000000000000..cce7ca01fc7957dc30c55588dcc43fc5096e0ab6 --- /dev/null +++ b/jax-controlnet-sprint/README.md @@ -0,0 +1,714 @@ +# JAX/Diffusers community sprint 🧨 + +Welcome to the JAX/Diffusers community sprint! The goal of this sprint is to work on fun and creative diffusion models using JAX and Diffusers. + +In this event, we will create various applications with diffusion models in JAX/Flax and Diffusers using free TPU hours generously provided by Google Cloud. + +This document is a walkthrough on all the important information to make a submission to the JAX/Diffusers community sprint. + +Don't forget to fill out the [signup form]! + +> 💡 Note: This document is still WIP and it only contains initial details of the event. We will keep updating this document as we make other relevant information available throughout the community sprint. + +## Table of Contents + +- [Organization](#organization) +- [Important dates](#important-dates) +- [Communication](#communication) +- [Talks](#talks) +- [Data and Pre-processing](#data-and-pre-processing) + - [Prepare a large local dataset](#prepare-a-large-local-dataset) + - [Prepare a dataset with MediaPipe and Hugging Face](#prepare-a-dataset-with-mediapipe-and-hugging-face) +- [Training ControlNet](#training-controlnet) + - [Setting up your TPU VM](#setting-up-your-tpu-vm) + - [Installing JAX](#installing-jax) + - [Running the training script](#running-the-training-script) + - [TroubleShoot your TPU VM](#troubleshoot-your-tpu-vm) +- [How to Make a Submission](#how-to-make-a-submission) + - [Pushing model weights and the model card to Hub](#pushing-model-weights-and-the-model-card-to-hub) +- [Creating our Space](#creating-our-space) +- [Prizes](#prizes) +- [Jury](#jury) +- [FAQ](#faq) + - [How to Use VSCode with TPU VM?](#how-to-use-vscode-with-tpu-vm) + - [How to Test Your Code Locally?](#how-to-test-your-code-locally) +- [Sprint winners](#sprint-winners) + +## Organization + +Participants can propose ideas for an interesting project involving diffusion models. Teams of 3 to 5 will then be formed around the most promising and interesting projects. Make sure to read through the [Communication](#communication) section on how to propose projects, comment on other participants' project ideas, and create a team. + +To help each team successfully finish their project, we will organize talks by leading scientists and engineers from Google, Hugging Face, and the open-source diffusion community. The talks will take place on 17th of April. Make sure to attend the talks to get the most out of your participation! Check out the [Talks](#talks) section to get an overview of the talks, including the speaker and the time of the talk. + +Each team is then given **free access to a TPU v4-8 VM** from April 14 to May 1st. In addition, we will provide a training example in JAX/Flax and Diffusers to train [ControlNets](https://huggingface.co/blog/controlnet) to kick-start your project. We will also provide examples of how to prepare datasets for ControlNet training. During the sprint, we'll make sure to answer any questions you might have about JAX/Flax and Diffusers and help each team as much as possible to complete their projects! + +> 💡 Note: We will not be distributing TPUs for single member teams, so you are encouraged to either join a team or find teammates for your idea. + +At the end of the community sprint, each submission will be evaluated by a jury and the top-3 demos will be awarded a prize. Check out the [How to submit a demo] (TODO) section for more information and suggestions on how to submit your project. + +> 💡 Note: Even though we provide an example for performing ControlNet training, participants can propose ideas that do not involve ControlNets at all. But the ideas need to be centered around diffusion models. + +## Important dates + +- **29.03.** Official announcement of the community week. Make sure to fill out the [signup form]. +- **31.03.** Start forming groups in #jax-diffusers-ideas channel in Discord. +- **10.04.** Data collection. +- **13.04. - 14.04. - [17.04.](https://www.youtube.com/watch?v=SOj2sxgvFe0)** Kick-off event with talks on Youtube. +- **14.04. - 17.04.** Start providing access to TPUs. +- **01.05.** Shutdown access to TPUs. +- **08.05.**: Announcement of the top 10 projects and prizes. + +> 💡 Note: We will be accepting applications throughout the sprint. + +## Communication + +All important communication will take place on our Discord server. Join the server using [this link](https://hf.co/join/discord). After you join the server, take the Diffusers role in `#role-assignment` channel and head to `#jax-diffusers-ideas` channel to share your idea as a forum post. To sign up for participation, fill out the [signup form] and we will give you access to two more Discord channels on discussions and technical support, and access to TPUs. +Important announcements of the Hugging Face, Flax/JAX, and Google Cloud team will be posted in the server. + +The Discord server will be the central place for participants to post about their results, share their learning experiences, ask questions and get technical support in various obstacles they encounter. + +For issues with Flax/JAX, Diffusers, Datasets or for questions that are specific to your project we will be interacting through public repositories and forums: + +- Flax: [Issues](https://github.com/google/flax/issues), [Questions](https://github.com/google/flax/discussions) +- JAX: [Issues](https://github.com/google/jax/issues), [Questions](https://github.com/google/jax/discussions) +- 🤗 Diffusers: [Issues](https://github.com/huggingface/diffusers/issues), [Questions](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) +- 🤗 Datasets: [Issues](https://github.com/huggingface/datasets/issues), [Questions](https://discuss.huggingface.co/c/datasets/10) +- Project specific questions: Can be asked from each project's own post on #jax-diffusers-ideas channel on Discord. +- TPU related questions: `#jax-diffusers-tpu-support` channel on Discord. +- General discussion: `#jax-diffusers-sprint channel` on Discord. +You will get access to `#jax-diffusers-tpu-support` and `#jax-diffusers-sprint` once you are accepted to attend the sprint. + +When asking for help, we encourage you to post the link to [forum](https://discuss.huggingface.co) post to the Discord server, instead of directly posting issues or questions. +This way, we make sure that the everybody in the community can benefit from your questions, even after the community sprint. + +> 💡 Note: After 10th of April, if you have signed up on the google form, but you are not in the Discord channel, please leave a message on [the official forum announcement](https://discuss.huggingface.co/t/controlling-stable-diffusion-with-jax-and-diffusers-using-v4-tpus/35187/2) and ping `@mervenoyan`, `@sayakpaul`, and `@patrickvonplaten`. We might take a day to process these requests. + +## Talks + +We have invited prominent researchers and engineers from Google, Hugging Face, and the open-source community who are working in the Generative AI space. We will update this section with links to the talks, so keep an eye here or on Discord in diffusion models core-announcements channel and set your reminders! + +### **April 13, 2023** + +| Speaker | Topic | Time | Video | +|---|---|---|---| +[Emiel Hoogeboom, Google Brain](https://twitter.com/emiel_hoogeboom?lang=en) | Pixel-Space Diffusion models for High Resolution Images | 4.00pm-4.40pm CEST / 7.00am-7.40am PST| [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=iw2WCAGxdQ4) | +| [Apolinário Passos, Hugging Face](https://twitter.com/multimodalart?lang=en) | Introduction to Diffusers library | 4.40pm-5.20pm CEST / 7.40am-08.20am PST | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=iw2WCAGxdQ4) +| [Ting Chen, Google Brain](https://twitter.com/tingchenai?lang=en) | Diffusion++: discrete data and high-dimensional generation | 5.45pm-6.25pm CEST / 08.45am-09.25am PST | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=iw2WCAGxdQ4) | +### **April 14, 2023** + +| Speaker | Topic | Time | Video | +|---|---|---|---| +| [Tim Salimans, Google Brain](https://twitter.com/timsalimans?lang=en) | Efficient image and video generation with distilled diffusion models | 4.00pm-4.40pm CEST / 7.00am-7.40am PST| [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=6f5chgbKjSg&ab_channel=HuggingFace) | +| [Suraj Patil, Hugging Face](https://twitter.com/psuraj28?lang=en) | Masked Generative Models: MaskGIT/Muse | 4.40pm-5.20pm CEST / 7.40am-08.20am PST | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=6f5chgbKjSg&ab_channel=HuggingFace) | +| [Sabrina Mielke, John Hopkins University](https://twitter.com/sjmielke?lang=en) | From stateful code to purified JAX: how to build your neural net framework | 5.20pm-6.00pm CEST / 08.20am-09.00am PST | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=6f5chgbKjSg&ab_channel=HuggingFace) | + +### **April 17, 2023** + +| Speaker | Topic | Time | Video | +|---|---|---|---| +| [Andreas Steiner, Google Brain](https://twitter.com/AndreasPSteiner) | JAX & ControlNet | 4.00pm-4.40pm CEST / 7.00am-7.40am PST| [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=SOj2sxgvFe0) | +| [Boris Dayma, craiyon](https://twitter.com/borisdayma?lang=en) | DALL-E Mini | 4.40pm-5.20pm CEST / 7.40am-08.20am PST | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=SOj2sxgvFe0) | +| [Margaret Mitchell, Hugging Face](https://twitter.com/mmitchell_ai?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor) | Ethics of Text-to-Image | 5.20pm-6.00pm CEST / 08.20am-09.00am PST | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=SOj2sxgvFe0) | + +[signup form]: https://forms.gle/t3M7aNPuLL9V1sfa9 + +## Data and Pre-Processing + +In this section, we will cover how to build your own dataset for ControlNet training. + +### Prepare a large local dataset + +#### Mount a disk + +If you need extra space, you can follow [this guide](https://cloud.google.com/tpu/docs/setup-persistent-disk#prerequisites) to create a persistent disk, attach it to your TPU VM, and create a directory to mount the disk. You can then use this directory to store your dataset. + +As a side note, the TPU VM allocated to your team has a 3 TB persistent storage drive attached to it. To learn how to use it, check out [this guide](https://cloud.google.com/tpu/docs/setup-persistent-disk#mount-pd). + +#### Data preprocessing + +Here we demonstrate how to prepare a large dataset to train a ControlNet model with canny edge detection. More specifically, we provide an [example script](./dataset_tools/coyo_1m_dataset_preprocess.py) that: +* Selects 1 million image-text pairs from an existing dataset [COYO-700M](https://huggingface.co/datasets/kakaobrain/coyo-700m). +* Downloads each image and use Canny edge detector to generate the conditioning image. +* Create a metafile that links all the images and processed images to their text captions. + +Use the following command to run the example data preprocessing script. If you've mounted a disk to your TPU, you should place your `train_data_dir` and `cache_dir` on the mounted disk + +```bash +python3 coyo_1m_dataset_preprocess.py \ + --train_data_dir="/mnt/disks/persist/data" \ + --cache_dir="/mnt/disks/persist" \ + --max_train_samples=1000000 \ + --num_proc=16 +``` + +Once the script finishes running, you can find a data folder at the specified `train_data_dir` with the below folder structure: + +``` +data +├── images +│ ├── image_1.png +│ ├── ....... +│ └── image_1000000.jpeg +├── processed_images +│ ├── image_1.png +│ ├── ....... +│ └── image_1000000.jpeg +└── meta.jsonl +``` + +#### Load dataset + +To load a dataset from the data folder you just created, you should add a dataset loading script to your data folder. The dataset loading script should have the same name as the folder. For example, if your data folder is `data`, you should add a data loading script named `data.py`. We provide an [example data loading script](./dataset_tools/data.py) for you to use. All you need to do is to update the `DATA_DIR` with the correct path to your data folder. For more details about how to write a dataset loading script, refer to the [documentation](https://huggingface.co/docs/datasets/dataset_script). + +Once the dataset loading script is added to your data folder, you can load it with: + +```python +dataset = load_dataset("/mnt/disks/persist/data", cache_dir="/mnt/disks/persist" ) +``` + +Note that you can use the `--train_data_dir` flag to pass your data folder directory to the training script and generate your dataset automatically during the training. + +For large datasets, we recommend generating the dataset once and saving it on the disk with + +```python +dataset.save_to_disk("/mnt/disks/persist/dataset") +``` + +You can then reuse the saved dataset for your training by passing the `--load_from_disk` flag. + +Here is an example to run a training script that will load the dataset from the disk + +```python +export MODEL_DIR="runwayml/stable-diffusion-v1-5" +export OUTPUT_DIR="/mnt/disks/persist/canny_model" +export DATASET_DIR="/mnt/disks/persist/dataset" +export DISK_DIR="/mnt/disks/persist" + +python3 train_controlnet_flax.py \ + --pretrained_model_name_or_path=$MODEL_DIR \ + --output_dir=$OUTPUT_DIR \ + --train_data_dir=$DATASET_DIR \ + --load_from_disk \ + --cache_dir=$DISK_DIR \ + --resolution=512 \ + --learning_rate=1e-5 \ + --train_batch_size=2 \ + --revision="non-ema" \ + --from_pt \ + --max_train_steps=500000 \ + --checkpointing_steps=10000 \ + --dataloader_num_workers=16 + ``` + +### Prepare a dataset with MediaPipe and Hugging Face + +We provide a notebook ([![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/community-events/blob/main/jax-controlnet-sprint/dataset_tools/create_pose_dataset.ipynb)) that shows you how to prepare a dataset for ControlNet training using [MediaPipe](https://developers.google.com/mediapipe) and Hugging Face. Specifically, in the notebook, we show: + +* How to leverage MediaPipe solutions to extract pose body joints from the input images. +* Predict captions using BLIP-2 from the input images using 🤗 Transformers. +* Build and push the final dataset to the Hugging Face Hub using 🤗 Datasets. + +You can refer to the notebook to create your own datasets using other MediaPipe solutions as well. Below, we list all the relevant ones: + +* [Pose Landmark Detection](https://developers.google.com/mediapipe/solutions/vision/pose_landmarker) +* [Face Landmark Detection](https://developers.google.com/mediapipe/solutions/vision/face_landmarker) +* [Selfie Segmentation](https://developers.google.com/mediapipe/solutions/vision/image_segmenter) + + +## Training ControlNet + +This is perhaps the most fun and interesting part of this document as here we show you how to train a custom ControlNet model. + +> 💡 Note: For this sprint, you are NOT restricted to just training ControlNets. We provide this training script as a reference for you to get started. + +For faster training on TPUs and GPUs you can leverage the Flax training example. Follow the instructions above to get the model and dataset before running the script. + +### Setting up your TPU VM + +_Before proceeding with the rest of this section, you must ensure that the +email address you're using has been added to the `hf-flax` project on +Google Cloud Platform. If it's not the case, please let us know in the Discord server (you can tag `@sayakpaul`, `@merve`, and `@patrickvonplaten`)._ + +In the following, we will describe how to do so using a standard console, but you should also be able to connect to the TPU VM via IDEs, like Visual Studio Code, etc. + +1. You need to install the [Google Cloud SDK](https://cloud.google.com/sdk/docs/install). Please follow the instructions on https://cloud.google.com/sdk. + +2. Once you've installed the Google Cloud SDK, you should set your account by running the following command. Make sure that corresponds to the gmail address you used to sign up for this event. + + ```bash + gcloud config set account + ``` + +3. Let's also make sure the correct project is set in case your email is used for multiple gcloud projects: + + ```bash + gcloud config set project hf-flax + ``` + +4. Next, you will need to authenticate yourself. You can do so by running: + + ```bash + gcloud auth login + ``` + + This should give you a link to a website, where you can authenticate your gmail account. + +5. Finally, you can establish an SSH tunnel into the TPU VM! Please run the following command by setting`--zone` to `us-central2-b` and to the TPU name also sent to you via email from the Hugging Face team. + + ```bash + gcloud alpha compute tpus tpu-vm ssh --zone --project hf-flax + ``` + +This should establish an SSH tunnel into the TPU VM! + +> 💡 Note: You are NOT supposed to have access to the Google Cloud console. Also, you might not get an invitation link to join the `hf-flax` project. But you should still be able to access the TPU VM following the above steps. + +> 💡 Note: The TPU VMs are already attached to persistent storage drives (of 3 TB). This will be helpful +in case your team wants to perform training on a large dataset locally. The disk name of the storage drive should also be present in the email you received. Follow [this section](https://github.com/huggingface/community-events/tree/main/jax-controlnet-sprint#mount-a-disk) for more details. + +### Installing JAX + +Let's first create a Python virtual environment: + +```bash +python3 -m venv +``` + +We can activate the environment by running: + +```bash +source ~//bin/activate +``` + +Then install Diffusers and the library's training dependencies: + +```bash +pip install git+https://github.com/huggingface/diffusers.git +``` + +Then clone this repository and install JAX, Flax and the other dependencies: + +```bash +git clone https://github.com/huggingface/community-events +cd community-events/jax-controlnet-sprint/training_scripts +pip install -U -r requirements_flax.txt +``` + +To verify that JAX was correctly installed, you can run the following command: + +```python +import jax +jax.device_count() +``` + +This should display the number of TPU cores, which should be 4 on a TPUv4-8 VM. If Python is not able to detect the TPU device, please take a look at [this section](#troubleshoot-your-tpu-vm) for solutions. + +If you want to use Weights and Biases logging, you should also install `wandb` now: + +```bash +pip install wandb +``` + +> 💡 Note: Weights & Biases is free for students, educators, and academic researchers. All participants of our event are qualified to get an academic Weights & Biases team account. To create your team, you can visit https://wandb.ai/create-team and choose the team type to be "Academic". For more information regarding creation and management of Weights & Biases team, you can checkout https://docs.wandb.ai/guides/app/features/teams. +### Running the training script + +Now let's download two conditioning images that we will use to run validation during the training in order to track our progress + +```bash +wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png +wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png +``` + +We encourage you to store or share your model with the community. To use Hugging Face hub, please login to your Hugging Face account, or ([create one](https://huggingface.co/docs/diffusers/main/en/training/hf.co/join) if you don’t have one already): + +```bash +huggingface-cli login +``` + +Make sure you have the `MODEL_DIR`,`OUTPUT_DIR` and `HUB_MODEL_ID` environment variables set. The `OUTPUT_DIR` and `HUB_MODEL_ID` variables specify where to save the model to on the Hub: + +```bash +export MODEL_DIR="runwayml/stable-diffusion-v1-5" +export OUTPUT_DIR="runs/fill-circle-{timestamp}" +export HUB_MODEL_ID="controlnet-fill-circle" +``` + +And finally start the training (make sure you're in the `jax-controlnet-sprint/training_scripts` directory)! + +```bash +python3 train_controlnet_flax.py \ + --pretrained_model_name_or_path=$MODEL_DIR \ + --output_dir=$OUTPUT_DIR \ + --dataset_name=fusing/fill50k \ + --resolution=512 \ + --learning_rate=1e-5 \ + --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ + --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ + --validation_steps=1000 \ + --train_batch_size=2 \ + --revision="non-ema" \ + --from_pt \ + --report_to="wandb" \ + --tracker_project_name=$HUB_MODEL_ID \ + --num_train_epochs=11 \ + --push_to_hub \ + --hub_model_id=$HUB_MODEL_ID + ``` + +Note that `--from_pt` argument will convert your pytorch checkpoint into flax. However, it will only work with checkpoints in diffusers format. If your `MODEL_DIR` does not contain checkpoints in diffusers format, you cannot use the `--from_pt` argument. You can convert your `ckpt` or `safetensors` checkpoints into diffusers format using [this script](https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py). + +Since we passed the `--push_to_hub` flag, it will automatically create a model repo under your Hugging Face account based on `$HUB_MODEL_ID`. By the end of training, the final checkpoint will be automatically stored on the hub. You can find an example model repo [here](https://huggingface.co/YiYiXu/fill-circle-controlnet). + +Our training script also provides limited support for streaming large datasets from the Hugging Face Hub. In order to enable streaming, one must also set `--max_train_samples`. Here is an example command (from [this blog article](https://huggingface.co/blog/train-your-controlnet)): + +```bash +export MODEL_DIR="runwayml/stable-diffusion-v1-5" +export OUTPUT_DIR="runs/uncanny-faces-{timestamp}" +export HUB_MODEL_ID="controlnet-uncanny-faces" + +python3 train_controlnet_flax.py \ + --pretrained_model_name_or_path=$MODEL_DIR \ + --output_dir=$OUTPUT_DIR \ + --dataset_name=multimodalart/facesyntheticsspigacaptioned \ + --streaming \ + --conditioning_image_column=spiga_seg \ + --image_column=image \ + --caption_column=image_caption \ + --resolution=512 \ + --max_train_samples 100000 \ + --learning_rate=1e-5 \ + --train_batch_size=1 \ + --revision="flax" \ + --report_to="wandb" \ + --tracker_project_name=$HUB_MODEL_ID +``` + +Note, however, that the performance of the TPUs might get bottlenecked as streaming with `datasets` is not optimized for images. For ensuring maximum throughput, we encourage you to explore the following options: + +* [Webdataset](https://webdataset.github.io/webdataset/) +* [TorchData](https://github.com/pytorch/data) +* [TensorFlow Datasets](https://www.tensorflow.org/datasets/tfless_tfds) + + +When work with a larger dataset, you may need to run training process for a long time and it’s useful to save regular checkpoints during the process. You can use the following argument to enable intermediate checkpointing: + +```bash + --checkpointing_steps=500 +``` +This will save the trained model in subfolders of your output_dir. Subfolder names is the number of steps performed so far; for example: a checkpoint saved after 500 training steps would be saved in a subfolder named 500 + +You can then start your training from this saved checkpoint with + +```bash + --controlnet_model_name_or_path="./control_out/500" +``` + +We support training with the Min-SNR weighting strategy proposed in [Efficient Diffusion Training via Min-SNR Weighting Strategy](https://arxiv.org/abs/2303.09556) which helps to achieve faster convergence by rebalancing the loss. To use it, one needs to set the `--snr_gamma` argument. The recommended value when using it is `5.0`. + +We also support gradient accumulation - it is a technique that lets you use a bigger batch size than your machine would normally be able to fit into memory. You can use `gradient_accumulation_steps` argument to set gradient accumulation steps. The ControlNet author recommends using gradient accumulation to achieve better convergence. Read more [here](https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md#more-consideration-sudden-converge-phenomenon-and-gradient-accumulation). + +You can **profile your code** with: + +```bash + --profile_steps==5 +``` + +Refer to the [JAX documentation on profiling](https://jax.readthedocs.io/en/latest/profiling.html). To inspect the profile trace, you'll have to install and start Tensorboard with the profile plugin: + +```bash +pip install tensorflow tensorboard-plugin-profile +tensorboard --logdir runs/fill-circle-100steps-20230411_165612/ +``` + + +The profile can then be inspected at http://localhost:6006/#profile + +Sometimes you'll get version conflicts (error messages like `Duplicate plugins for name projector`), which means that you have to uninstall and reinstall all versions of Tensorflow/Tensorboard (e.g. with `pip uninstall tensorflow tf-nightly tensorboard tb-nightly tensorboard-plugin-profile && pip install tf-nightly tbp-nightly tensorboard-plugin-profile`). + +Note that the debugging functionality of the Tensorboard `profile` plugin is still under active development. Not all views are fully functional, and for example the `trace_viewer` cuts off events after 1M (which can result in all your device traces getting lost if you for example profile the compilation step by accident). + +### Troubleshoot your TPU VM + +**VERY IMPORTANT** - Only one process can access the TPU cores at a time. This means that if multiple team members are trying to connect to the TPU cores, you will get errors such as: + +``` +libtpu.so already in used by another process. Not attempting to load libtpu.so in this process. +``` + +We recommend every team member create her/his own virtual environment, but only one person should run the heavy training processes. Also, please take turns when setting up the TPUv4-8 so that everybody can verify that JAX is correctly installed. + +If your team members are not currently using the TPU but you still get this error message. You should kill the process that is using the TPU with + +``` +kill -9 PID +``` + +you will need to replace the term “PID” with the PID of the process that uses TPU. In most cases, this information is included in the error message. For example, if you get + +``` +The TPU is already in use by a process with pid 1378725. Not attempting to load libtpu.so in this process. +``` + +you can do + +``` +kill -9 1378725 +``` + +You can also use the below command to find processes using each of the TPU chips (e.g. `/dev/accel0` is one of the TPU chips) + +``` +sudo lsof -w /dev/accel0 +``` + +To kill all the processes using `/dev/accel0` + +``` +sudo lsof -t /dev/accel0 | xargs kill -9 +``` + +If Python is not able to detect your TPU device (i.e. when you do `jax.device_count()` and it outputs `0`), it might be because you have no rights to access the tpu logs, or you have a dangling tpu lock file. Run these commands usually fix the issue + +``` +sudo rm -f /tmp/libtpu_lockfile +``` + +``` +sudo chmod o+w /tmp/tpu_logs/ +``` + +
+

 How to Make a Submission

+
+ +To make a full submission, you need to have the following on Hugging Face Hub: +- Model repository with model weights and model card, +- (Optional) Dataset repository with dataset card, +- A Hugging Face Space that lets others interact with your model. + +### Pushing model weights and the model card to Hub + +**If you are using the training script (`train_controlnet_flax.py`) provided in this directory** + +Enabling `push_to_hub` argument in the training arguments will: +- Create a model repository locally, and remotely on Hugging Face Hub, +- Create a model card and write it to the local model repository, +- Save your model to the local model repository, +- Push the local repository to Hugging Face Hub. + +Your automatically generated model card will look like below 👇 +![Model Card](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/jax_model_card.png). + +You can edit the model card to be more informative. Model cards that are more informative than the others will carry more weight during evaluation. + +**If you have trained a custom model and not used the script** + +You need to authenticate yourself with `huggingface-cli login` as instructed above. If you are using one of the available model classes from `diffusers`, save your model with `save_pretrained` method of your model. + +```python +model.save_pretrained("path_to_your_model_repository") +``` + +After saving your model to a folder, you can simply use below script to push your model to the Hub 👇 + +```python +from huggingface_hub import create_repo, upload_folder + +create_repo("username/my-awesome-model") +upload_folder( + folder_path="path_to_your_model_repository", + repo_id="username/my-awesome-model" +) +``` + +This will push your model to Hub. After pushing your model to Hub, you need to create the model card yourself. +You can use graphical interface to edit the model card. +![Edit Model Card](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/edit_model_card.png) + +Every model card consists of two sections, metadata and free text. You can edit metadata from the sections in graphical UI. If you have saved your model using `save_pretrained`, you do not need to provide `pipeline_tag` and `library_name`. If not, provide `pipeline_tag`, `library_name` and dataset if it exists on Hugging Face Hub. Aside from these, you need to add the `jax-diffusers-event` to `tags` section. +``` +--- +license: apache-2.0 +library_name: diffusers +tags: +- jax-diffusers-event +datasets: +- red_caps +pipeline_tag: text-to-image +--- +``` +![Edit Metadata](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/edit_metadata.png) + +### Creating our Space + +

 Writing our Application

+ + +We will use [Gradio](https://gradio.app/) to build our applications. Gradio has two main APIs: `Interface` and `Blocks`. `Interface` is a high-level API that lets you create an interface with few lines of code, and `Blocks` is a lower-level API that gives you more flexibility over interfaces you can build. The code should be included in a file called `app.py`. + +Let's try to create a ControlNet app as an example. The `Interface` API simply works like below 👇 + +```python +import gradio as gr + +# inference function takes prompt, negative prompt and image +def infer(prompt, negative_prompt, image): + # implement your inference function here + return output_image + +# you need to pass inputs and outputs according to inference function +gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image").launch() +``` +You can customize your interface by passing `title`, `description` and `examples` to the `Interface` function. + +```python +title = "ControlNet on Canny Filter" +description = "This is a demo on ControlNet based on canny filter." +# you need to pass your examples according to your inputs +# each inner list is one example, each element in the list corresponding to a component in the `inputs`. +examples = [["a cat with cake texture", "low quality", "cat_image.png"]] +gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image", + title = title, description = description, examples = examples, theme='gradio/soft').launch() +``` +Your interface will look like below 👇 +![ControlNet](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio_controlnet.png) + +With Blocks, you can add markdown, tabs, components under columns and rows and more. Assume we have two ControlNets and we want to include them in one Space. We will have them under different tabs under one demo like below 👇 + +```python +import gradio as gr + +def infer_segmentation(prompt, negative_prompt, image): + # your inference function for segmentation control + return im + +def infer_canny(prompt, negative_prompt, image): + # your inference function for canny control + return im + +with gr.Blocks(theme='gradio/soft') as demo: + gr.Markdown("## Stable Diffusion with Different Controls") + gr.Markdown("In this app, you can find different ControlNets with different filters. ") + + + with gr.Tab("ControlNet on Canny Filter "): + prompt_input_canny = gr.Textbox(label="Prompt") + negative_prompt_canny = gr.Textbox(label="Negative Prompt") + canny_input = gr.Image(label="Input Image") + canny_output = gr.Image(label="Output Image") + submit_btn = gr.Button(value = "Submit") + canny_inputs = [prompt_input_canny, negative_prompt_canny, canny_input] + submit_btn.click(fn=infer_canny, inputs=canny_inputs, outputs=[canny_output]) + + with gr.Tab("ControlNet with Semantic Segmentation"): + prompt_input_seg = gr.Textbox(label="Prompt") + negative_prompt_seg = gr.Textbox(label="Negative Prompt") + seg_input = gr.Image(label="Image") + seg_output = gr.Image(label="Output Image") + submit_btn = gr.Button(value = "Submit") + seg_inputs = [prompt_input_seg, negative_prompt_seg, seg_input] + submit_btn.click(fn=infer_segmentation, inputs=seg_inputs, outputs=[seg_output]) + +demo.launch() +``` + +Above demo will look like below 👇 +![Gradio Blocks](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gradio_controlnet_blocks.png) + + +#### Creating our Space +After our application is written, we can create a Hugging Face Space to host our app. You can go to [huggingface.co](http://huggingface.co), click on your profile on top right and select “New Space”. + +![New Space](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_space.png) + + +We can name our Space, pick a license and select Space SDK as “Gradio”. + +![Space Configuration](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/space_config.png) + +After creating the Space, you can either use the instructions below to clone the repository locally, add your files and push, or use the graphical interface to create the files and write the code in the browser. + +![Spaces Landing](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/repository_landing.png) + +To upload your application file, pick “Add File” and drag and drop your file. + +![New Space Landing](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/add_file.png) + +Lastly, we have to create a file called `requirements.txt` and add requirements of our project. Make sure to install below versions of jax, diffusers and other dependencies like below. + +``` +-f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html +jax[cuda11_cudnn805] +jaxlib +git+https://github.com/huggingface/diffusers@main +opencv-python +transformers +flax +``` + +We will give you GPU grant so your application can run on GPU. + +We have a leaderboard hosted [here](https://huggingface.co/spaces/jax-diffusers-event/leaderboard) and we will be distributing prizes from this leaderboard. To make your Space show up on the leaderboard, simply edit `README.md` of your Space to have the tag `jax-diffusers-event` under tags like below 👇 +``` +--- +title: Canny Coyo1m +emoji: 💜 +... +tags: +- jax-diffusers-event +--- +``` + +## Prizes + +For this sprint we will have many prizes. We will pick the first ten projects from [this leaderboard](https://huggingface.co/spaces/jax-diffusers-event/leaderboard), so you should tag your Space for the leaderboard to make your submission complete, as instructed in above section. The projects are ranked by likes, so we will amplify the visibility of all projects for people to cast their votes by leaving a like on the Space. We will pick the first ten projects from the ranking, and the jury will cast their votes to determine the first three places. These projects will be highlighted by both Google and Hugging Face. Elaborately made interfaces as well as projects with open-sourced codebases and models will likely increase the chance of winning prizes. + +Prizes are as follows and are given to each team member 👇 + +**First Place**: A voucher of $150 that you can spend at [Hugging Face Store](https://store.huggingface.co/), Hugging Face Hub PRO subscription for one year, Natural Language Processing with Transformers book + +**Second Place**: A voucher of $125 that you can spend at [Hugging Face Store](https://store.huggingface.co/), Hugging Face Hub PRO subscription for one year + +**Third Place**: A voucher of $100 that you can spend at [Hugging Face Store](https://store.huggingface.co/), Hugging Face Hub PRO subscription for one year + +The first ten projects on the leaderboard (regardless of jury decision) will win a merch set exclusively made for this sprint by Hugging Face, and an separate JAX merch set from Google. + +## Jury + +Our jury panel for this sprint included: + +1. Robin Rombach, Stability AI +2. Huiwen Chang, Google Research +3. Jun-Yan Zhu, Carnegie Mellon University +4. Merve Noyan, Hugging Face + + +## FAQ + +In this section, We are collecting answers to frequently asked questions from our discord channel. Contributions welcome! + +### How to Use VSCode with TPU VM? + +You can follow this [general guide](https://medium.com/@ivanzhd/vscode-sftp-connection-to-compute-engine-on-google-cloud-platform-gcloud-9312797d56eb) on how to use VSCode remote to connect to Google Cloud VMs. Once it's set up, you can develop on the TPU VM using VSCode. + +To get your external IP, use this command: +``` +gcloud compute tpus tpu-vm describe --zone= +``` + +It should be listed under 'accessConfig' -> 'externalIp' + +### How to Test Your Code Locally? + +Since team members are sharing the TPU VM, it might be practical to write and test your code locally on a CPU while your teammates are running the training process on the VM. To run local testing, it is important to set the `xla_force_host_platform_device_count` flag to `4`. Read more on the [documentation](https://jax.readthedocs.io/en/latest/jax-101/06-parallelism.html#aside-hosts-and-devices-in-jax). + +## Sprint winners + +Top 10 projects (based on the likes on their demo applications) are available on this [leaderboard](https://huggingface.co/spaces/jax-diffusers-event/leaderboard). We tooks this leaderboard to our [jury](#jury) to judge the top 10 projects based on several factors such as open-source model checkpoints, datasets, and codebases, completeness of the model and dataset cards, etc. As a result, following three projects emerged as the winners: + +1. [ControlNet for Interior Design](https://huggingface.co/spaces/controlnet-interior-design/controlnet-seg) +2. [ControlNet for Adjusting Brightness](https://huggingface.co/spaces/ioclab/brightness-controlnet) +3. [Stable Diffusion with Hand Control](https://huggingface.co/spaces/vllab/controlnet-hands) + + + diff --git a/jax-controlnet-sprint/dataset_tools/coyo_1m_dataset_preprocess.py b/jax-controlnet-sprint/dataset_tools/coyo_1m_dataset_preprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..bf60a4f05ab5620347a2dc020b7c1ab285218863 --- /dev/null +++ b/jax-controlnet-sprint/dataset_tools/coyo_1m_dataset_preprocess.py @@ -0,0 +1,131 @@ +import argparse +import logging +import random + +import cv2 +import jsonlines +import numpy as np +import requests +from datasets import load_dataset +from PIL import Image + +logger = logging.getLogger(__name__) + + +def parse_args(): + parser = argparse.ArgumentParser( + description="Example of a data preprocessing script." + ) + parser.add_argument( + "--train_data_dir", + type=str, + required=True, + help="The directory to store the dataset", + ) + parser.add_argument( + "--cache_dir", + type=str, + required=True, + help="The directory to store cache", + ) + parser.add_argument( + "--max_train_samples", + type=int, + default=None, + help="number of examples in the dataset", + ) + parser.add_argument( + "--num_proc", + type=int, + default=1, + help="number of processors to use in `dataset.map()`", + ) + + args = parser.parse_args() + return args + + +# filter for `max_train_samples`` +def filter_function(example): + if example["clip_similarity_vitb32"] < 0.3: + return False + if example["watermark_score"] > 0.4: + return False + if example["aesthetic_score_laion_v2"] < 6.0: + return False + return True + + +def filter_dataset(dataset, max_train_samples): + small_dataset = dataset.select(range(max_train_samples)).filter(filter_function) + return small_dataset + + +if __name__ == "__main__": + args = parse_args() + + # load coyo-700 + dataset = load_dataset( + "kakaobrain/coyo-700m", + cache_dir=args.cache_dir, + split="train", + ) + + # estimation the % of images filtered + filter_ratio = len(filter_dataset(dataset, 20000)) / 20000 + + # esimate max_train_samples based on + # (1) filter_ratio we calculuted with 20k examples + # (2) assumption that only 80% of the URLs are still valid + max_train_samples = int(args.max_train_samples / filter_ratio / 0.8) + + # filter dataset down to 1 million + small_dataset = filter_dataset(dataset, max_train_samples) + + def preprocess_and_save(example): + image_url = example["url"] + try: + # download original image + image = Image.open(requests.get(image_url, stream=True, timeout=5).raw) + image_path = f"{args.train_data_dir}/images/{example['id']}.png" + image.save(image_path) + + # generate and save canny image + processed_image = np.array(image) + + # apply random threholds + # note that this should normally be applied on the fly during training. + # But that's fine when dealing with a larger dataset like here. + threholds = ( + random.randint(0, 255), + random.randint(0, 255), + ) + processed_image = cv2.Canny(processed_image, min(threholds), max(threholds)) + processed_image = processed_image[:, :, None] + processed_image = np.concatenate( + [processed_image, processed_image, processed_image], axis=2 + ) + processed_image = Image.fromarray(processed_image) + processed_image_path = ( + f"{args.train_data_dir}/processed_images/{example['id']}.png" + ) + processed_image.save(processed_image_path) + + # write to meta.jsonl + meta = { + "image": image_path, + "conditioning_image": processed_image_path, + "caption": example["text"], + } + with jsonlines.open( + f"{args.train_data_dir}/meta.jsonl", "a" + ) as writer: # for writing + writer.write(meta) + + except Exception as e: + logger.error(f"Failed to process image{image_url}: {str(e)}") + + # preprocess -> image, processed image and meta.jsonl + small_dataset.map(preprocess_and_save, num_proc=args.num_proc) + + print(f"created data folder at: {args.train_data_dir}") diff --git a/jax-controlnet-sprint/dataset_tools/create_pose_dataset.ipynb b/jax-controlnet-sprint/dataset_tools/create_pose_dataset.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ffefec1074adca24eda52f49cbafe2eaf6ff93c7 --- /dev/null +++ b/jax-controlnet-sprint/dataset_tools/create_pose_dataset.ipynb @@ -0,0 +1,3165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jZ7n0aUCsO2M" + }, + "source": [ + "# Dataset preparation for ControlNet training with MediaPipe and Hugging Face\n", + "\n", + "_By: MediaPipe team (Google), Diffusers team (Hugging Face)_" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PI5zdqLlj3wa" + }, + "source": [ + "This notebook provides an end-to-end example of preparing a dataset that is compatible with [ControlNet training](https://github.com/huggingface/diffusers/tree/main/examples/controlnet) using MediaPipe and Hugging Face. Specifically, in this notebook, we\n", + "\n", + "* Load the [`horses_or_humans` dataset](https://www.tensorflow.org/datasets/catalog/horses_or_humans) using TensorFlow Datasets.\n", + "* Prepare conditioning images from the original images of the dataset using [MediaPipe Pose Landmark Detection](https://developers.google.com/mediapipe/solutions/vision/pose_landmarker). \n", + "* Generate captions of the original images using BLIP-2 using [🤗 Transformers](https://huggingface.co/docs/transformers).\n", + "* Prepare the final dataset using [🤗 Datasets](https://huggingface.co/docs/datasets) and push it to the Hugging Face Hub. \n", + "\n", + "Let's get started!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zX1aP71GlRbz" + }, + "source": [ + "## Install libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "Pj5hwQKLSACL" + }, + "outputs": [], + "source": [ + "!pip install -q mediapipe datasets transformers accelerate" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VrgKQ9X9lTHk" + }, + "source": [ + "## Load the dataset\n", + "\n", + "After we load the `train` set of the dataset, we filter it to only have the `humans` labels. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "6_6M5AALVQYh" + }, + "outputs": [], + "source": [ + "import tensorflow_datasets as tfds\n", + "\n", + "dataset = tfds.load(\"horses_or_humans\", split=\"train\")\n", + "dataset = dataset.filter(lambda x: x[\"label\"] == 1) # 1 for humans" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7lbE11mbqIZs" + }, + "source": [ + "Let's visualize a few samples." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 829 + }, + "id": "c17-lH8VVWjL", + "outputId": "2475751e-732c-48b6-efec-f85459de4e65" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAMsCAYAAAA4VG/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz92a40SZImiH0iqmbufpZ/i4jMiMg9q7uqpllgDUg0yIsZgkMOwLkgwDsC8xD9DA30M/QD9APwri8IAiSIAZuYGU6zF0xXV9fWlVkZmZGx/us57m6mqsILEVFV8+Mn4kRlDCv/KpPAH+ccX8zUdBGRT1YSEcFKK6200korrbTSSiuttNK3RPw3PYCVVlpppZVWWmmllVZa6W8XrSBjpZVWWmmllVZaaaWVVvpWaQUZK6200korrbTSSiuttNK3SivIWGmllVZaaaWVVlpppZW+VVpBxkorrbTSSiuttNJKK630rdIKMlZaaaWVVlpppZVWWmmlb5VWkLHSSiuttNJKK6200korfau0goyVVlpppZVWWmmllVZa6VulFWSstNJKK6200korrbTSSt8qrSBjpZVWWmmllVZaaaWVVvpWaQUZf8vpzZs3+Mf/+B/jv/qv/is8e/YMRIR/9s/+2d/0sFZaaaW3hFYestJKK/2mtPKRv5u0goy/5fT555/jn/yTf4I//uM/xh/+4R/+TQ9npZVWesto5SErrbTSb0orH/m7SfFvegAr/U9LH3zwAT7++GO8//77+Jf/8l/iH/7Df/g3PaSVVlrpLaKVh6y00kq/Ka185O8mrZ6Mv+W02Wzw/vvv/00PY6WVVnpLaeUhK6200m9KKx/5u0kryFhppZVWWmmllVZaaaWVvlVaQcZKK6200korrbTSSiut9K3SCjJWWmmllVZaaaWVVlpppW+VVpCx0korrbTSSiuttNJKK32rtIKMlVZaaaWVVlpppZVWWulbpRVkrLTSSiuttNJKK6200krfKq0gY6WVVlpppZVWWmmllVb6Vmltxvd3gP7pP/2nePHiBX71q18BAP75P//n+OijjwAA/+gf/SM8fvz4b3J4K6200m85rTxkpZVW+k1p5SN/94hERP6mB7HS/7T04x//GD//+c/PvveXf/mX+PGPf/z/3wGttNJKbxWtPGSllVb6TWnlI3/3aAUZK6200korrbTSSiuttNK3SmtOxkorrbTSSiuttNJKK630rdIKMlZaaaWVVlpppZVWWmmlb5VWkLHSSiuttNJKK6200korfau0goyVVlpppZVWWmmllVZa6VulFWSstNJKK6200korrbTSSt8qrSBjpZVWWmmllVZaaaWVVvpWaQUZK6200korrbTSSiuttNK3Sg/u+P1//N/+r5BLQRGAiAAiSBHkUpBLARMhBIaAICKACIoIUspIuYCZMQTGZoyIgZGLYJpmzPOMnPUaAGEcIi62G2w3A0IIgAjmlDGlGUyMR1eXuLrcIQ4RKRXsjzMO04ycMwC9L6QAkoFSICUj5YxUAHBAiBFDjAjMyDljmhLmXAAAIgWlZAQmjMOAzTBgjAGD/SMizCnjzf6Am9sDppTARBjHAZtxRGBCzhkpJZScIQBAhBgChmFADAwi0iF2c8vEAAQ5JUxzwpwzpOgnmBkhMIZB5y0QIwYCE0GkIOWCKSXkUnTeQSAQBECxdRARu6cgF8FxzphSRs76HYJgiAGbzYAYIkJgRGZshoAhRgwxgIPi0ZQy9tOM45yQso6RbPxMQGBCIEJg1vtlHWMRAROBIRgJCCSY5oTDcUaIEY+3A3abAcQMKglbKrYeOvZXU8Ft2CBuNgjMKAJMKeNwnPH65hYvXt/iMCUwEy62W1xdbDHEYHsBCIHBISAQYRgChjgCHAAeQTygIGDKwJwFRYrOl/i+EJ3PkiGlQIquu69NYALpJ0FSACkgFBAEhIxAAIghYGQh5FxQJOt29U1AhCI6v7qWBYEIzPbPfyfG//X/+d9803P+W0Pf/977du4npJxBEERmO2eMIQQMkXC5GXC122AcAghAEWA/JTx/fcCr2wOmWfevnnsAzCBmiPEm6n4SwdZHz4SUglJKHRMB+ll/QfRv/77vHfafxCACUPx6enZzzqhth+z7zKTnlgOI9NIipY69nVu079lPJtLRiaDYmHPOdibKkokQIYSAEAaEEMGsvIbqA+o5J9azSaB6L2ZGiAHDwOCgz8zMNlagZL2/8xG9pH3OxlhExye27+tUGo8JrPxlHCOISWXDnHCcZxQpiJExDhExRjAHGz8qHytFUHJBSgUl+/yVxdjaVNiaMdf1FIieX9HP5lwwz8n+GS+0qfI5U5lGiDEgDgExBoSg+8z3VQiMOESMY9TPDMHWwcZfgJwF85T1PnNBTgV5TphTQrJ9g06ukm3BuuZFebi+zbafqQ2WCMwAc6jPzSBACLBtLvZZNl5ORPiTf/9nX3Nafzvpv/9//F/qevs66Flt6+L7s54nYHleOqJ2SPQ7/lq3FjAZIAuZKnVv2ZW689Zdx9/zsdmZocqn7DXR6xcpKmfE93ZpZ74+M925Tr9/6nXRXqt8sRt/u4f/3X6vT9Q/Q/v1Lp2Z3/bMvBhfHUud26anQEqd67bOJ2Po5rj9STjzav1b4Otlg5W2tv7BOl90sl5Ei7lYzkt7VvTXW8zN8jXnzy4jiOjOun4V9euWjU+oPq66Y5Vv1PFp+9nLRr+O/lMeWYq/llWHPDtv+td/9n/4r79ynMA3ABmu7Lng0gcEiFUxcAbnzFFKAVIGkEEEMAHMusFTypjmhGmaTDChMVIumFJGjBGBdZJKKTgeZ4gIxiFgt4kYY0BgIJhiJ9LuUw+PCFLWf0UI7PuiFIh9bzE2BEhRAbXbDIisyvOcEkDAEIJuENsYQ2A90KJgBiYAAnPbBKUgEYFzse+hbqDSHSAmQowRREDMjREUEDgwAnMDI7lA7DlTLgrkqiDS5xQ7jNL4HyBU5yXngjlllFKqEhdCALOABUilQGYgC5BEwMnv3QGUIiDm+kwlZ+SsTJjtgBaBbXhl11xmhABVoOcZAYKIAEJBQMEmBMRhRJqPKIUwF93kAQDPE25ywTCMCFEVkc04oJQdRIDhMGFKejCKCWXmoN9nNnARdB1JkHMCpCBQRqBg+0XBKQSmjNqBg4KMkguArGAlBpBEUFBgZV8Co8ABLzMhEqnyxjofmXVP+p4Xsb1QBJITSi6qtAEGYhjCDIABerudjzFGlFwgJSiPABpgY1OA0M4wGzMnE+4kApSCkvMCKDSqmpfr+aYI+7ti6jY6QdqJI2pCPIQADlQBBlFTMFUj1TVTsKD7TvGJPw+rgloVXjGhgOXY+zPaveaCF+iELTNYCgTcKTf2lVJQKDfFSwilgguAQ8AYVZEPIYKYF8KjyUjlD/q78v5msOjWKwQMcQARI5eMeVbwOKdUlSTY58MYGmAOBBJBKUDIqIpwMYHpE8FscMXQjvMyEYLLPqAT7vYcyud9lcmUiwYuxX4Xt0md7CBf2rty3vckwKyKkz8Tcb9vDOQQQdg+a8rgLDo3eaGtuWAi59rVXlZc+YMYUrCB0amSRACKyWeVG+QP5wqZKS8qx0+f7W2ibvFhsq5uFAAgnSrgHoWv/ao6t85ngxR07qP3juSbjZvu3KGq7tR/jBbCm0jX/+vv11+9W+Rz6233aOfn7KbHAlx8A+qBQf+IRATiTpE2XlXXlfj8uqFt5a9TwnE6p7B7kNjRaWeoIUnn/2eu8wBSg+23RdL9/753z/2xpDrLJ+BC598+U8GNM4aTe3c88q/TuvvBIMMVW3aEbIujgjSagsooIphzQhJVtIjUchbZLb4qSFKaMc2prmgxj4iYghoDq2U8qMfhOE04HGeQKfsu6HJJyDkhzXNTKmDWOlLwglwwRLNEMQApVbDBLM8QFQwIbk1Va5Ba7NUan4cImKXBLVVEQCCuAIZJGZwKSDYgQZUtKoO3g23CMhe9nnoQBmQmsyj4HEdwYIiYpTtnBBNqagWgOncEIKMpBb6piriVxJCvCy5qY8uw+SKdnFwEqQg4lw5YKriQUpBFgEyQogpEKUU9MXNCKSrkRQAw4XIY8HgbQFIQxK6ds4pVySiZgVLAJYNhCicxOBRIKuBRcDwWSMpISMgAIquQ321HhKDep9vDEXNWa2oI6o1hA17MjDEyhqietJISUp4RkBBCQBQgSgLcemjWUvcuqCXUDmUMAEewFAwICBXcdtZsAISg+z9w8waZZyIVVyTI9n0BioG50gSFOKuo2s/bS4HV0puzKu1AQT1IpOehQK2/OWcUCQjEOgsi+nlXeEvVMgF0TJE6pe3EakMuaOzv+j0RwHgHs65VDAHEBjKYlTGTewrNum7ez1IcBOj3YwgYhwGDWb+ZyM5ehiT1KBDTQpmtHmIbVO858OciV0BMMrp1Ux9BUHLS10vR6xvgiGAD2hHjMIJDRAxRz33OSDmpxTQX28N+TV2LBnTIzmbAECJiGPSZCxvgSvYd8xYVUY+0gRgOppSDUQojRgZle50cEihvKbkJQweFpTi08rWovzYJSPUbAATM/VyS8ibjCT2d18Ocz/dakgPJZj13A46zXVde1PsIqDkM5o2hxc3cu70ciVt30faDIw8+8YYTIGBToARUxAwdDlocQttfcnq/t4vcwOm663m1+B7d60Q7E2kK/LkL9ep3W9yvvcs9V7l/OGQGisX1q1XbN1MHH9ybit76bXCAaHmN9k59ze+51KiNHzuo6QZ59ynPPPedx+zntFss419+dsUARsM6HSih84rtEgdQ9xp1t6X+7W4cDWgQiYFMv1TnGcPy94cgiPtgWg967rvMV20tOVmEnh9Wo8T5hervbn908uO+B+m+IHd+O7NXv4IeDDKSWf+DSHVDk4fyBDZLjrpbUEr1FrhAYRfOvXVLXRWmAKsyJ1QwE3AkAFIwBEZKM1JKOBwnBRlRFcfNZlSrb84tbELUas2RDeAQxMKdNkNUJbxks7C7CxrVpcRBLdQxaJhGyIw5Zcw514l3QadufQ8RYrMMuuJO9vwMoqDv2QZmcsXRLO4iKGQWbzW/I+mk6DyxfidLMWt7QSnA0D0jM8G87jqnpSBZyBaZguNgB8QIse0kMmEppvyLWcQyVGBRbq44SNH7QcFRyhmJdX5FBCklTPNsXhIoICPG7gooScONDkU3KpMgGOBjYUiJKAKda2khLR46tGFgBGMCgUtBKuqJImYMMQJbnd/DNBtgI2yGgMjUuRJVyLKoQjTNGSVnjEPUkC4pIFHPiZAgSwFJqh4GX3cIgUkQGRiCesNKKZgtFEbsfDAUvJFALfcGKrN5SXxPqJBgSFTlgkzZZLLwBwMmb7kjw4A4KvArFschxaznopI0s1g4TIb5ABrcqkrkCTmH7xTx3u0NEKQTyHeVBKo8zT1l1ZXdubQ9ZAIW1gCopwBMYA7mvYgYh4gxRgthUb6RshoQciFTzslxZQNE9rx3AYZ0Qlof+CyfF4FbZgNTNWCooUUNQiFy5b8QHZcCAw319JDBIlCjgrSQnSEOCBxM59IPuVeKhABpoT5SekAn3V6HhfioslTDu8xao0K0QIoJ+KrfuUJi8sSeU69Z6h4IzHV5fe1jYGS18et4DAQsFEl0ipx5KOp8G5jo5YbPQTHlPif3qJPy/aoFmzJADfzc2cNLbaiT8w0MCwAq/rfYnvWBoCqE9Rvk6ly35wngtzgdUwx1OZgjvl/VP1XoZPk/LNXCpYp4yh3O3cP31uld6e5L7Q72P/1BdR3b0E7vdKosd6CClr/XT1Pb1/3+rewR0NDS5fAA47b16c/irzOq9L3K7QnQ+BryM+388Ku8bndOSw8uzv7+lU+gn+5kRR9yVtf5AUDj3Og6jNF4OJ3ZJz46OdmmWIIIAaqhuHk62ycXIq6/d3+XE35Rv+58E+eW9ZsBDOCbeDIsrInI7ar9kNUTIKI5CWrNkiqgqzu8eLyuAoHNEAEQsqhFbp5VKS2W18AESAwoRap7fpoz3tweEGOs8dcgDW1wb0hJCYHMuu5x0hYupfzYxu45JKbcBwMXsYu7DjFiQ9yOnTRB0QUBwVBWVeLdWgqYpQuqyPuiMwEBDI+tLuZCd8udgokEyioQI+v93FqWRZV/NkuHH2Z2gU6el6HKbTZh7+EeQwwWJ25zaJs1Gzp2duQKQnYgJ8A4aG5Dzhr2RpRRSlRgUgTFlAEiAdvz3xwTpFicsgh2AdhpsgKKeXzEgYUIUpqRk4Yz7cYIEWBkxkUcAAmYcoYUE+gsZj1mbDej5b4AY2QEAgIBSQpyypCcq5UvpaQ5ORYjzq7YQ5Ch3xsCARLMYu1heObVKBrC5GFsRQx0paJ7CgQuAmTRHAxbv1TsM6LrzbZ3lKiF1lADGTW+Hs1y/TZSi/1tArWIIIsqTyLqMU3s3gyBP7OCrrpdFxxIuuujCimYpXLJE6sy2b3ulmlmAoVuzqmfe9QwIFe8/QJk3o8QNC5/iBHDoPlfLRergBKQS1BDRylAIFDplATqQrksTKm54XuhqzxNeRJU/pF5YQwoxThg8BwBAxv1ORdKiF5EckFKCSmnai0WLEEGQJCiQDuGWD17lUd4LK/lj0AAYTMkueQgskWgLuyonYG6L+ynClJXxtw8Azv7Pnd6cv19Nk+RG7XUYslq6Xf+LzZ5dXGbMt+DypqD0SkZfbx4MW+5zxcxIXFphgOfG/NC15CtxW5EGzeAXFTGKj/3Z0f7XtWS9CyFukNOQltMQ6wKhZgih7eZ2tyD1KZZwVz3YOeVJLTvdrTkBR2/cK2w+86Sf/R3ofr6YhS9bmrr5mBDSPejuOfgDr6gxfZsCnC7tn6s5yF3gQb11xNR3anyFQUcZ5XQhV7tY1x+UuoNzu+q5Z6sB2hxzzqX5N5mwMO/H0r9+aTFvPfrIq4t9V+s8qKfW91TdGcuz+2sUzDaD/urn4AWu6eFRfpY28V75b6GUYqD7QVMqFdcGhjOj/f+oZ3s+yZkvxHQeHhOhgkTtfRFu5cyzwR1d6sQbNa1oCYdFNJkt1SyWolJLWxDjCDipqxbrHUIJnw8VCEO2GlQMY5TwlwEhzlhk7KGoQAmPASw5NxEav2eU7LwmdEUa7Pqk8VYw5RBJsQwYIiqrGpCpyoPmxCrIC0iYM4At0RPASB90pnjEOcmJlhdaDBBY6VJgZgUFaS55CYALGGw5IScC2IsmtgqGmohReP6CQ4+zHpm3pQASzu25HyC5hZQEQRL7nRPSF1LD6MqdTfB45dTyjWHY541r0Gk2NzqmGMIEHgCquWvmNeDCJgBiBREqAIfmTAhIIGROSjYzDM4aBw7CSHNBVQSOI7YcgAImAqQhDBnV1s0JIKJMMQB2AQNvSIFDCW74pORzYtCxNUSkHNByLruBKoeB7c0cCCEElCCaD5AURA0s2AOCgCJCHMqmLJokQF41LyGhxFZngdEk1dLUSZY2BSttg66n4xFdIqE2LO8zeThfiV7gprmRmUAInqWCwkCBUyZMSRGMGGYDMD2ygDQAQz/aXOljEWceXUC1zx3KAvhqz88mRn1qq5o+00qc/fQHerASVQvSPCCEUOsoZtS9BljYOQQ1MoPQNiHwJ1VycJeKpjRmzOJJjuLJln7QxN6r5cCjHEz1oIRHhqkIYwFAAMGnEtOejaqIqxhkU1zI/TJpzoXBAhhGIt6DQCklDBPE+Y5qVfaDSgSbF5ZFWZR4wrBQRGqd1wEZqjQnI0a0lZUCWmAp60QkZ8fHRdRAwm+L6QCNnQ8rgnLc4ED7llRwMKWf0YVzLm8K1n5GiJABciZACRTkpQf55Qt0Tu3nMXuIYha/pXqNsXGp/mEvVCvSrLzKL+AMkEdt1DNU9BoYFGjiBnI+O11ZCwS/bl/kJbOA6DhsPMKkdQPqCGieSlPf/8qlawq+3ffOf+bK+MGLDxS675b1LUlNHBsskHfOvNar1p3gGNxUTcOnBm9vt7AeLOSnyi/9nvDF2fm4Zyy3dDSeVBYn+WeiZHTP2jx/PX37mf7uJ+XFna5DFm117rJ6wHL0iTQPc+DqHkuHAyeezape6Tjf3YfqW/1IKML0zwBvCcjrdf65mYG5z3dWL5tkMFWlSSaVUwAq/ShinYQVVg9NtnzKZgImRRA5GwxZCRmCdNcjSyAjIMqwrkYww1miRvAISLEqMpnnAAogGn5AQklz8a8lYmnOaMwq1JTF0GTLhX4uSDTyWLSPIwxRgBe0UrDjbwalWImMmUamEmFHruV0JZOGGATZvqsngAaTNiLhuuo9INCDksKNkapeR0awlTsPYaCHiYNr6qVRwATNp2iFBgDB4Si+STIGQLP9bDjRWLjMa8HwWJDpW1o1IwAiOi8zClr6AW3RFgRcl2uhdMBtRKWhsYI0uwhR+5BYjwaR4yBVNksGYFUAQETQlQLZ7B9smXBRgSTAbRAwCaqV6xWbIACIJRSwz6YCJFZn9G8YlvWMLaUcosHl1KrqGVbj5rQa+FPAlW4ppQRJp2dEIJZa1kFurhikzWnhZrSkz2mWHQNimi4jYuGxjQKRJpnwyv4vM00pxlpTkhm0a0J7yJgLjW8DFIQA1k1Nd2JsxcdKFKZf2VzrlBVUUBNuTSgq5FZZHOtHgSBGQXQAT00pbMYUBG7Z72de7VKMaFgo+mEFFWeoeeiGIDx8KVS+upH+j2/hwiAgMq3XIpIEWTKmJMrt36WPe+IjHeGynNqErIVyEjzDClFPb2iORlSEqRoPgcTANZiHm7YyDnUSkilFBynCaUIhpQ0dAqlVtbLOdUqJwSqfDZl0URvuDvfY8DbnPlnc+cZ0LOEBcBowMtWzM5SFd5ViBMgYs/plak8N809UvfvV/L/qCW8uzHHPZ+y+Lx5NgyUqdHCPRlqbCtZ9ycTqV5MCjADM4J7T2wTFFGgqVzH79ABDQNYzePmvyvgkSJodbM8z0nAJ9bot4mWXqRSCxh83Xe6v9rnTWa5BdkVb92jLXflIWDinl/vG5EBDaB5FHSNFmoiNR61uH4HGs4Cjfp+4ym92kl233b9pvifAx79uO94AhysnT4fzij5Z0ifmtCS71HP850vL17q/6C7z1+fu0MIdOYyWFyiu5Z9uwccPc85eYL7nm1h4OrX7WTMdUyd7rUEF83YuAAanby6dzyuxN3/9Oepl0f16+5Tfhg9GGSMlsColVIsvARAglnIjVGqmoWaq8FMSFkgJQAm0AB0DFGF4xgDCCNKya16yeAgI5hb3CuHeChMsVj3hJzmjvmoAq9Vl0otKeiu9Vw0LCh3YUSB1bIeg1rZJgApJ0yp4DjNCog8lMoETKAACVJLvhJZ1RhRYKWyTkvORtbQnX71vCpVNqtWIS18CnOZczAhD59bX2y9UBGyaiyooRDJFNga+mHWUa+4lC1PgqtVCyao7m47tnXy/BbfWMmAZQEwBk38rwzSmb9b3IUwxmBva0KnQHCUgCKEKIJAgjFERA5gFJBZVRnQBFzbI1EypBC2BNyIILAWAdjEgM0QGshzNhi0WlgpAjblRsQA7DAAUI/aHh4OBrMeFOSilvNUlsmmRAYoACujKyAWRNv/FDTFU+dbLZbF1u/UW6GKhk12tZoB7qZ0y4Qqss2K+zZTmudmze28ZqrwtcAoEV0bQKu4AZoXpjk0J+Vn0eubcsf1f5bBO+jrJLjvbzWUnJpFVQirlbgZKNwjpbos2QG181wKSlFFsoYxoq+mxcq/pKZbVqHfj7EqBKasJnILOinQsM9qroVWj4qDJnaHGMzToEpNSahePU9SJ9JqznFQ64gIa76ZlcJV70LBPCVM06wgIhccDgccDgfju8sysi2HQ4FM4AkxDApcyHJU/NmrdxEGMNRbIyYL/f07gk7Ej0pbVwuT8iVrxqRiHk0vBezlbztP0WL8Dso8VFbBKbN7X0KtfqUAWXPzHCDo+ojtA6kAQ6wgRmACSQACrAS8gQzzZAAAi4BNtroC3It2sb1EgUHBvS2uUHWftTmo5Z1F8Da3yOpBBgDdIAugoc93OluyeN9/uLRwRU9AaODfZWMfFrUI4fl6Hfru+PvfRPdWb73uGFYDIHRyl1MedxZ0nPg2urFKf/1z4KIDDk3XF3j4qY9VehDTn5+zHHg5Byd6P/rR3QF1vmSLhPTTdaB7fi4f/gxMWtx+GXaF5VxT3TZtf92PMRZr0K/r3WfuH7MHEeh+b69DXI8wJuqv91c90Tf/etTWpEEfOHN90BUeDDLUUqwWZa0ipZtKS4SiuhcBDccZY8AYLa8BAImW+cxWacSrVKWsij5gCdTGZENgjJGsjK0ADGwGxhhGvSYBAerWZ4iBGcAtlRBYfwbCwE1J1vlRQXactYrKOEQN4aJW/pXNipHmZONkDANqrwXWTN+68OQMwpQMcnwpdjChVmnPG2Hyj2u9eIjUsm6C1oOBqyKiGy5LsYRq9fp4yUdiqWEeWVSAeslg34wELGKxXXntPQ/VtmhnwuO3B6uOolVy1NvjuR2eiK/en1T7YgCoVZLGGCrjyQLsC1Q4loTpeARyxnYYFLBR1JA50WpTQpqUmkoBcwHlouZusRAVQGPlYbkqaAmvGnuq1ahU9loIBDnA1fCoySpiwYBeKVq6N+dmaVWBY/MXVKgVMOaiD8Wh5cao9bUdTILcOeZNQWpKrsZkE8BAwVKZVovdX5dZ/HZQsnKvXh64Mkbp1HoRzCK4xYxSBNFC73LRssvOL87xdmeDTXgtBRURGlhwZF0lnlSAUcry22Rr3/OQalkHdE8SoQRVLjNlJKhCJ4GtxHEbLzkPNCW+KgN+D2peiWBGDQcZ8zQr0LHKZwTRfJAhYBhj9QDHMdZ8jKr0wqy/RIiwcqsxYEODVZnKlgMXwWxlbqGhm8cwQ/PutC/IPB9r6E+x8KeFBdEs7KWo1/t4TLg87HB1tcN2O0Bt7Mor2RK1S5H6T+rEUFs7EBwbemUVzxVxBdvHoJ4mVGNSdl54Ttm8IzBbaBW6cTQwFxoAtP3BoYEQiBmzilgdFNGKX0KIZNXKApBysLDbFi7l98+OXzuZ5nK2Gios1NIrojGrR70lh7fHq2Ev5L7zt5Nq5cWeSkGriqGH+q5B5q4yBqBZ8ZU5QJOOqFNG9XqeW9mrxg/nxnTvh1s4ko8H6DdWU3C//p5LS/nyZz+GWr3VhdDp/ZyvOTh1xL+ESKhcTdASyUUWY3ZF/e6D632XQGM5zsXHe3DQAZ8eEdTcKX+2jhe1q3fXWE7Q4vfFN+qjSdUj+k14ThbdWbcTYHh2TtD4kxtJqufAwbXzpbqfUccii2eixXOfysLux4OpAZyHf/fh4VLwXArUWHcEDXfx5GNnqAQtLzoYwyxUqoKL0GL0pWhPjJQyBIJAXnGEwAJlxkgoRf8OrAJRV7RAslTGy1q+BQCq+5TF1X3SROFJr5HdWmaMqQ9laRY5qXHWABBCxGYcsd1sEANrgq/1mshpRmHzDLjlzK5RsmCGKu+ByMr35qroaqgMt/huQa08JNAwNBfkapVTRRoAvE67WgPb+7oJS9ukcKWmCX5YWBBEE6drwhhZ+qRpOtXIB+s1sVXhqhW9iiZHs1blghDmhBoGo89HNaRLK2Wx5smkjBwZI7fKZId5RpmATWCMAdb/RLBlgUhGAWNKqjDELDgII2bGTLkWJlBFneGWOimCORUcrSmkQC2rRZQZTXPClMSa8KEKYA//qhrNCbMKFBYWoFQK2K1CDgohjX/74laG0xiTh0WBNT6USJPJvVy4yr+W8/M2U1POgXNsys+eFME86zkInOsc9qWdOyNLJZ3+TqGXbg30E5UXqWVX0MO/GmNfg1N0odg+209/r6sKBJILSsrIUN4ziwHNECDB19O8N+Lj7QVB78VALf0dvSEmgJwKJjPEpJQxTfodbQoXqhdj3AyIw2AhmgSRjFkcxuk/DgHDZsRoYEQr/FmYDwUQBxAUBE1zwfEomGdgnrpqfhXQdQo+tzRk/YjmYUxzwfzyFre3R+x2I7YXUUuFB4CpCVL3XPjcEqGr627zxYKcYRXfxDUzeB6FJ9qLiFXkljtA4qw185R6ayF0HN6cj/qzbHtDgYbxnqRGLvJQO9K8mTF6DybCkLVYxJxzk5HQ0LrFvobtVdv7dc9Uz8pdo1S3AnUuPRb9VNF+m+g0J6d7Z/HXwvPTgwtXyM5qmUZF82k6H7YquYRmza9b8vxO+uoZlrO/nirdrqB/I6DRf+4OWOkUcuC8oi+wlhILxrkAFUuPBrUKVN31TsfytcKLlr/Uj5+ikA5gtECz7ied+Xl677vI5mQMS5DhX6rXMfDlpYfPrnUPbM6ARul/nsjD03wLnXMLl+pB9uIgLDbS2XHUj9HX7c8TWmxXqeN5CH2DPhlmMYNAyKI8Lfa0CmKY27wAOREye8lY6/xsGjCb9blArAeGhjoNUY9yYAJCRmDBxsJaCASmUJNkSyZk8ZhpBrEKmlxUwAP2OhXNfbBqPtEsZu5q9zKVYop5KdTeIw0PE1jYTo1zVrOS99yYpgmzWbv6TrW5s8iRlGo1T1biNFquR4ixHhIRAQx0ubJaDJiIKQkCBT/REtlTXgIK3xMla3K5YTtNGIcrt1rVK+cCKmWRc8KWPO6fVbCgxnvPT0nMmGTSK5GotygSUmKUwDomAtAdFg0x0JjoOU2at7MdEbVOZK1WdSDgYmCMgTCwglHxRN2uJ0kugmmeIaLN8cQ4fwxaTpdJgdSUCuakIVBEaj9NVplqTmYf4WjWHWmKje28mm9nSr6HtZC95spRrmeBqnJr3+x5ewcWzMJck1Btnwcvy2lJ4UAtM1x1rbeezihBy7fUW5o19Khasc99ns796eLQLrmUl/CrWdS8vVBFqK6dK5gE1yS7BOpOgbEbiXkXChEyrAeM2R4IqD06dCwNXDiAdGvzknlb48+o/UIKq+cWRTANE45B+aCXqB3GiGEYMG4GDHG0Rp6EktVYwTOjmHEiDhGbzYjtdtRqfeJhgxoyRRQAMOZZMN8csL9NSLNAK+YFgLKj5LZ7mUDWR0O/D21Uqk8C5oBUCK/fHLHfH7G7iNhsFeQQmuLnnu7awK8rcctEgFUynOesFfjqOkGT783QQMmqutUcGgFKXlg52645LzRt6ykfDYw4KO9tycGA1shTJYSpBd0wEUp33gNrHyb3WIg/D9wz02ah2D7UCojSDa8pYV7VTJt92j/zYhQ0XUqLjeiXiJpn7e2k+9fqN/mszlVTj6vlXFBLJTc+0mmpbu3/lmmhPt8BF8v9e1ZfPqPYnvkQAMFpFJJ7UxSXNl2gQq7aDNKVeQfAd693ngwgVM+A/k+f1UCg+JOdA2QnQJPqq0sp0ZZoyf/vmZA6y/eAjbOKdfUiLKth+d993pwaH79+T54HGA4y9LWHHoE6om4SFtDkXtB+Oqj2xW8CUB7eJyMlQBiwajiqC1sENavbXXm8WvHnlCtznpOHOXiYUNHysaUA1rRPLXymrKWMEqiFT1leQRKNc9cOs9ovAqLlFAMIXAApCSnfnQIxQFJILYQhSM15YHONliIQ9uoSVi8/M2ar1z+nhGlm61asvRy0NKJgzpZLIgqiIKgWy1IKklDNyagVhGzRYxxacm/ttFuqhcoFrCbtWRUZy48JliuS+m7bMGs9NHeCgWolr1ZeUc+E5kdruIN6iVpyo3ftNnEI73gMoCaAwoAlUcQ4DNUbMKdsndZl4YFxI+5xLhDMupYYMQTS3gFgSE44QkMLwhCQyEMTCIKAeHmB7eYKmylhfvkSMk8WHqXN0zRMIWnitnkoqvFYHHzpPDtIDYEQ4En2TYCU6lXy2ve2z2uSuQNBr/hjEb3M4BOg4SCuhnP4xqTKuquSWUtoYglMvpH14beQWo6B/v1Vz+OJzL4Pgc5w08n4huBstjoBISKAnXv/qKtx4t/pAWPP2P2Got9XB2m3DieD97Xq711rBJHfiizPQSAkNRfDeaXihwY0CmUr/WwGDyKgRKSYMcQIZuVFmsOmIGOzVY9rqAUrGshIU7LiGqS9PMYRm80GwzgAQK0upY6KiJSA/X7Gq9czjscE5ogQBKXMrZyvAwxS0BaIEcKoVQiFLAckIecZAmAcd3btI968mTFNCbuLUY1L5JW62llhZoSoHh323DohlJQROGGetbgHGIhjwDgOWjBCpOXiGVBUY02v0HeL53H3fl9C9RAMUfueDJbz4mFJBSoDrNYUPLpXFXsL940MkaD9gIhbLoyptETFDG7FMVtTKLpN1sn4+jwNhFE1vnRaRXseLOczhrc3J2MZpsaL83v6z+lkte3vTnGvbIPuWiPufNvYNtBZ8O985Oue4v5f6SveO3n/vlvesdxX6gf61Uy48r9vTB2DX4CjBuNqh3bq/vaKT0LdIy4Bhtwz5qrg+9teGhitQpiu2QmAuGee7l/KJUCQk1+cb1dQ1gGN+9dkeVe1UZ7zYPj1vwJg3Idf3PPiY6ovO2rpgAw6XmPv+3967+7fA+jBIMMFqEBDjTymuoiW+NRkQRPSRb0WqowR5lysLryoxYXMPW5CVzvIai6HlIw5W/dpaLhTIM1lmNPcmnfZhqpJ2CFgyIJEWirXmXUlt/IYaGGL2WKr6AHzYkBUCGgZ24BkiYIlZxwPB+3BwWz9NgRMjGEcwNnyGnwjMRCtrCrMG+EDCjWZ24dmz+RrV8dO2t18GJCHqKUhc1e1xOaaSZNjmUo1LgZomVeNLW/YucYU2sYtKRmA1GcJkTEOA8JmQAzxRHipOjRbAmU2C7x6UgRDDNhtRjATjtOsoXBFKkjyUCUQg0NEKoLbKUGgTfM8UT0zo6AgCXAshGwdksMwYPfhDxB/9/dw+eQZ0i9/idc/+yuUX3+Msj9Uy6GImAcjo9TqTNTNQZvnPrTLlXqufJiQiQCUyiSq4u8KbXdAPGGwAQKqsc+uYKJaUJsdPbii6wrWAlzAAGupOtDbTL0yuiS587nAuq91yqwCWvX8YCkvq9bRXdGFkii/UQu83akqKY2xU/c9v37jIaeAURafreW2PYei/tMQz2AeBSIyQ0YDQL6XCJY34P1+TIkPFgrKUbs+ykkBikLN2h/c4zpEDONg3dKBzEBOOo5Uk70tFGscMI4DCEAKAWlWL19KjJubglevjshzwW73GNO0R0oHlJKWVj3b38pbLFeOBwzDFjlNSGlCzhNKSUjzHpvtFQIHpHxEmgWHQ8JmY/kjpLlH7hnhQDUEzJskkgBp1kwrgZ5ZCoRx459TUJUDVw+ulG7/VIHfQKZ0D8NEiDFitxmx222w2W40rGyI1YtRRHPDSi6AaIU64XbWvbw6O2gUgIVqGXjnVQlajIJ8rUpGSsZ3veqcV0VcqMc2VpNplSWdgBNVhhvf8n3ytlJteovGU7kaC0zOYwkyKlXBe8pvUHmwv3Ln25Xf9MqytOt9leK3/GV57ZNx9kCj//0Ux9DJl+juq93rpw9y99czf9772l1qHmHlr18NctpUKlpTr4Y/r1T9p63UXXAh3ZybmtUUetASaNhELD0dJ/P+NYDjXKEJH5KftyoPuhPoW6TxyyZz7qMlyGh36e9xOr66Bl9z3d67gt7g3b12H4j466gfDwYZMbYKT7Vih2ipT8lUS7kWi7d274Bbyl0hZY83N0UsmBdElUFqIT2BAArIQhp+ZXXSve+DGMBQD4ZUBhtDl0Bo41QeYEq1rYHnSFQrqQhEMrJw7XFB0PAqiUErP4mWbnTBH4Na9qPFwvoy1PCgoK5xhlZ00ao6UpMkAd98pVZASclrzAsigHFUoTZAE86nvvxnErWYmyBVVRp1c5jBDxbIpgItaQnLNM9I04wyz4AUTetmQiJCYUbZbCCbDaLV2lferIxcLHFXSutAnq0KSgyEUhiZCZmt/GyMNXkXuYA4IAQNT5tTAWRCTozBuhATs5VthH4ODOKAcv0I+OBDDB9+gOH6GtvjHlkKDsc90vFTHZsxE69cQ/CwOAN73Tn3MKU2Ze1935+uxC0MCLZfQH4WO4HXfVf3e8cCzhz+GoJV9w/Va9dxmSUBXd+At57ozLNIc8sTt0IQ3ClPqahxwkHiWaAhaKF69oJWohVTJJoK0UTBVyM4B6f6STm5v4eycQUYWqaWqrfR/xFR9QB4adnaH0Nar5qcs4FgTXz33hQhEEgCkoVKVvBqj+B73UN6gifDilT+qlNF5sVt4wWZss76fIdDxM3NLQSMy6snmKYD5vkWOR/tGtw6bjODOVZFrZSEed5jiCMuL58g5SOOhxukNCHlGfO0x253BWZGzrPmeCUgblpVIOc5wcPAjBcyM6TopsipIGZdXx64AqYQVSYlViCSsyBHzRukpPtAiLoVd+Co8xNCwG67wcXFDhcXW2y3GwM45omChZZJRknW9yIAJAwErgCuENUKhkwZVAhxGGqPKCnKw72fhkCQkgI8DgyttycQeH+SDpR2hVhqwrfvUzlzvtxIYnvubaVFEq8Dg/7ZsPRktFU1/cX/7hlIxxNo+b8TMuZSZYDJhrPKfPtK/+Z9AIPO/f1AugOJ6J7X+zF9/Uv2xuk79wAqO7innPQ8yOkC03wdDGxQ94acfq2Hzz3g6BR5NWJJbXLY/7xvOs4BjDuvLBDGXXnRwMDplJ2GI/Ug4y7g8Mu089uHSd2l5fbqx3UKrGze6xw5mJEl2Oieq3ow/OW/hvrx8BK2o+YN5JyRDFy4IuehRtRVw6jdvv2gS6mCTYEEQbtid3HnZOVsO69DFqnhK8FiT73CTIGGJ83JqzlpQ7gYI5Il1Gl1IJ2ZXKx5ngSrYqXlU2HC3QUXUYTHSQdm8DAAgyrT++NkDcUKSgkIQbTaSLVeWyURECJRLb9awEDQEKaUu3jbxUGx/hyzdtwdRDCOA8ZBAVFkhgQFXSBLEM8FCQHBSi2qotw8TbphtXTs4XDEYX+ATBNQUgUXgTVUyF39KAQctHpMOm5QtjvQEAGC1fcXeMRvsrC4KWrJYmKu1VwKgBADxnGjFtSUAVIfFTODiuZHaPJ8xpTUIzXFgIkEmQlhMwCXV8CTJ5ivryAoePOLX0BixEwCfnwFbDcQsS657L0IYEnwssi7oeJNxixfxUppei+MGhrVWb19P1da/CqL15m57uXKHGxdbHe17wtZ0nu7oHTj4Hp2GrN5++lu+cAF86wA2RWo5kmrZV6d8QFAnVWXqlTvoKFFpb7uAIOpW9tOXi746xm56oqFj0N6hcP+EbU+GLVHRWgGFM0dYmPsUZOlzAOWzYNB1shNw61MKJh3NTIjAwZeNDzQdWMFZ2ShRQHDEMDEmpBuvUH8uYhhlaWoGil8OtUYc4GUCNst4/r6Xbx58xyvXn2GUgpC2IF4gMgtitXQZQqIww7MA9QrnAERHKcbbLZbPHv6LqbpCm/evMDxeNBmlmnCdnuBKBEla24Vc0CMtk7My54fg3pomLg2D8oxomQzGA0Bm1ET2TnYHFNCKUAMghQKAgsSn5Qn9gW2vRACYRwitpsNdtstttuthZ+1cNFStN4yS7CQKV2TcWyVvSi2EuQpFaRZvzPwoOtSNH9xsLUmAFIyjpOGv46SdV1DQZFgBjJdLw2ZDTWEDNZvR8Nts+7L7ohoNSvzeDADfxtARgUU+jub2+cUZPRa2Im+71fsQELHn08+WPkFoRos9IfvnftkxJkb9wrmCUKpv36NN+DcvRbPcd9X7/56/o0zRqD+/bPSyJfm3Jt3EUP7TRl21ePO6PDd367XnNxX0FnpqV+sJeDAcmrpq2fs/EOSGtD7oTXPSvds9zwzfN/aT02kP9moFZyc/nzA+M5RD+akH3MfGizVsNl9CO0XubMsX0cPL2FrLuJEVJsl1UQ8ptpwSNCSh+OgnbJzLpiT5hwoM/Wa1l5m1EtdW218MhBgimH2kCCLheUQtPu0C0z7P8NKgPo6WRJ6RXQCpKLxuxpGELSilSHgJALkDJpVSdVSssa8AAAJMYSFl0SsGstgVi51V3lsd9H8EPFqT6LAhk3A+J4k0g7dZpESscTkTAZmCgr7qTNWVjUiraKiaShcN2G1iBbBPM04Ho6YD3uUPGtvCtZNHZgQ7fHYNC92+VQSZFLPC8oWEgOAYIqUhrLM1sl2fyTLdQmYc8ExF2QhxMV6uKVWAQoRqtIFUSt1Fg2TmphwHCL42Xdx+fu/j/DoEcrxgFc3rxHLHgiCKSTMN0fMz1+BiyCggHIGWSjJEJuCVi0dhFaFDFIrnUFghQQagA4uzOuELFmjCzdfjuoxQSuFrHynMY/++Ff91K6h5TK9U0Rz81ZMgm/CCH87qdfjgeV8nuC1+rOGj8mdRVh+wSy0ZHNPIhBT8jzHqOU4wc6l6OfMe1T6AXYc3c+cApcGcgSojc36UJRoOWXMHqpV2oLDlL5BeZAA1uxP+8aklBBKgIha1L2q3WYcNU+ACClGjDFgMH5E0HsPoydzbzCOIwBCnnPNRXCXfwwaGukdt0GdB5YvEMJTXF4KPnj/EV69fonPPvsFiAKur99Fzhm3t89xFC9GoTNBYGw31wgcMM17pDSBKOJw2OPy4gLvvfcerq+v8PzFF7h588ZCSAsuL67MS3JEzoLtNoKDJUl7xawQMISWD5FTUUt/UFACkFXhGjXMM7DmgpDOP3NGCJpPEkNBDgGZ8+JA+ZoyMYY4WL7KiCEO2rk9DvAGfKVkMBiRtZw3B8JmjNhuRwzDgDBYmVsrHFIKrBGfboU0J8zTDCmihigAMC93DAE5J4CBkLWEN4WgYcUcDXTFCjAEWhp6Mj5/lCMQvFMEwDEiDgPIcxCplS1/G8krw6mOduK5IFQD4UJZd28z/Hj7b3eV9Xut/x054NBz4yClV9TpDLPu79fGrz/+mpyduvHSQ8d+j5ooD/jM3Y/eO65v9AVXojthd8cY9VXoRtCKIzi+qKagHnB0K9AJmQfNf3Nl39UHTG440OgBh3Qfcj3hFGSAqBYGIYuL7vHK0it5OgH3jP0Ob1sCGL9u9WR0YGMp4ZayGd13HkIPBhlaXpZBEUiFkUsAmcDSOFrLxbDO0mDGEDWZTwqs3Guy3hIqFFywa734Ftbi9cLJAY1Z5Suw8Tkk1BCFGovWK/SklnGfWbXwo26CUrQLLFpEgdZ0d0u9r4lZQX28xAwWWEfnAnFvSWQEqwAkZHkkRZ+7lFJjzNksmsWQjwNvu7wqKtLq26dctAyj5AouRNSLIUQoouZ4cgudKVs5JRyOR+xv9kjHA0gyIomFiWlJ2+DzT14NxSfXDikBOSfwNIF5o16gQAgcQVsd32FKWgc/ZUSQhU9pvw7K2juDSUO95nlG8kZ7nn9QGw1ap21rypY44vX2AtfbC4xhQKIZcXuFx08fQ8oRn376EfLrNxDxLnoWmtd50sTd2b5fAANfnRnCwJVUDw0BVlZWSOr8OPVHi+r/2qXo5D1anvb6JgPNui3WtMvloe1f6r70tgMMAA+QTu1j9Z+fDwA9+1sStbVgVgWL0BgiaWw/h6WSxaUp17rji/6XF2y5jonEhUh9QYEGTCmOWuVJE479PEn9r3gFFXiBhaAGC0jdBx6eCCIMccDFxQW2my0244hAGgKUkyZ+j3FAtrynOERstztcXFzg8vIS4zgAAhwPM/KcEQx8x6jlbkMMVpXIp0pL147jM2zGx/jOe+9imhM+/vXH2GwucX31FKCAL774JVI+NIBhEy+SABI8evQORBJub19hTgnjsMF+v8c0H/H+++/j8vICv/71x9jvb2zeCy4vr7DfE0qZEMKA3XaouSzDGDAMEcMwquIO1xe0WlUwC32MCgRCGKoAD0xqbBgAEkYgVdYhsJ4jhCRSQ5F02k0GxYgQ1DMxDFqBy8OagAgaNR9xGKJ6nDejhWoFhMhWSIPNw6B8vGRBmpKCAT6glIJogJjMMMVEmEsCYsAGAEdtHhqCJvoPg4aExXr9gjQnHI4zDvsDbuINjvsjxHolxXFEHMZa6ORt5yTnwqWWQONEge++25/pO3z89MP1z/NmnkUYSl/G1T9rL9wxDi08Md04mzXuzjOfZZud8PH9fnZpeyX33HXO3eDBHzwd0NejiYVi7l+DcfDutTujleUf/TRRYwpt6s0opOGt1InwtiLLvfT1j+cVsfoxNWXc/pYWYlQ9BYIqYxxYkJUepNOSyP1M3RmP3Jm3Ozvs3uO9vJgPR2VsRTMLgNQe6y6oeKAofzjIKF0d78iMmTXO1ZvYZdIRp6w22GzWPi8DGxiYRTutpiTV4itW5jVZM6u+M3f1FhQNy8mlgJN6S7znQQxioRWeGKolUlWIB7MimhJRBIXUu6HXyOpK9wRt0oTjIkCibIqmVAtlLtIqmbj65whQEiABhaWO3wFCShkpJ0RmaBaJl3a06jMyWWyyzpvHoQdmq42fVNntlCHPi6kWWAiQyULOdC7mecbtzS3SYY8I7WkRTaklco+Td1b2pGlUxsgGWAIAlBmUIiRGBFYANFrtfmLGnLV8MFw5I1jzsITjQRX32QCHeAdrUmWQzJJAMLAI3RtlTnj15XOkn/0c20ePsHt8jcdPnuDqyWPcvH6B3eYC2yvGK/oSBPewGaALoQocx59kCmFxwGlnqDN01TwdVyjJlf2uK3Q9fD2g6ASFv1bsoNaKUkBnTbbSpJYQDBHMST+QvLGZWzkMPD30UP82k1To8IDPiodKAiReEvr0250CQFw9ncTcrYNb6FvltN7yqeuhVy2sPCoj6d8ORk8ES7u3h+exVWsasBkjQmwSy4GiJhxL25duEICC/kKi+UulWFhpwDgM2G422G5H7DYbBNJKfzklDDFgHAKyBFAM2IwbXO4ucXV1javLKwzjBhBB4ANyKjgeJgxDBJGYd4BrXohv6M3mCbbje/jggx/g+voKf/zv/xTDMOJHP/odbMYN/uoXf4Hb/UuUnBbz4MrrPO1BnPGdd97HND/FF19+DkB52suXL/HuO8/wve99DyEwfvXLjzDNM3LOeHS9RYwRN29eghBxff0I4zho0ncMiIMq7cRqvJE0a7EQJvBgPT9G9T7EGBXScUHkgjEWbIcNclYjx35/1HLAWbuYz9Os/FPcSEC1epx6pgbEYdQ8CgtPC0y61lv1Gm22I8ZxRDDvApECWgC1EmLOBWnOmI4TtEmhIM0zGAS2youudG7KFogBQow46v3dixOHQQFn1EiBYt6v7XHG3p7/MB5RcjHvloEzVlAi0qoYvo30VSAD/dl26mRa5Rby9dV+7tPXSRrz99Cc05ApMuPCAmh0A2igZgk00P9+D9jox0X9/zp5tPimG1vOXezraKF8YqHjnqezI6ivyeIt6X50qdJfpezL+T/E6+760gi6PhYuR6XNVb8WVWbfA9LqOO8ZmCvq/X+qucN7WgjckCHtntoUq+1faTLp/Hwt6TS6qsOc/jSLqV6AITRdxPXc5tXwL0j38wSMfAN6MMg4HI8arhRCs7hTU7vqY9nBm+cZhwMhx1CrpIgrUAk1wVetyhnTnC2OVnM/+vyEOWVkAagwAgdtaGfNoGIIkJyR3cIFV96iWeEtmbook3fFngy8EERrlVtlIzFmpYw4K7hi94iold6DbaJ3fS4aNpBSVguYhdh4WIYzvSIFKbddkItAMiFTBojMgm8Ki5VA1W6w1tWcGhDwvVBsA2cL4SIoOEkp4/bmFuV4QERBJEukJR23JxzHmlVry0fNjedRQjVBMc8IeVAAwgyGYBwGZCFQ1+hODcea+Fpy69Ls3c59wzqi0VAWrj0FxC0QAqQ3NzgeDti9+w7CZgOB5tYc5wTELeIuYry6xPH5CxWcVvEsF5jVWm/G5HkwUsGckIfXKJMJ3YHVnd3CAX1OWhx+EzSVRXVr7aCWgLYXbF+7eGcChkCIHCqDLe4tMw+djjfV6mzlr3HIf5uIFjBS6dwTqYHBzkiVuadejNPEXQ2fCcOgFZmMFxWr1LTg33BlUl/0YyBcQNb8TyTVTvJnB0oEjow4RgzjiHGjSu64iYhRAXORrL0zvLicGTOqYJLuWrZ3xnFELRwxDNhuN+rJ2I56fucZ03GquQpDiaAYsdls1YtxcYXLyysMw2hCgzEdEsbNEeO4AbEXlIgNdIEwxC0eXX8P7zz7AX7nd36Kn/38F8i54Ic/+BEeP3mEX/7yIzx//inSfIQnumsvIkbgAcwRpRS8efMa3/3Oh/jusw8xjhu8ePElYiTknPD8+XO88847+OEPfog0z/j8i8+14EWecX19DUhBzkdstjs8ffpY8zCCC18V3iklkBxAJWh+hWgy9WazwbAZmvfaPOAwAa/5DhPGYa+gfk6ap2aGiH5dVTLY8xngYysJHFlzNjbbDXa7DXYXW2x3O4ybEcyhKoni5716MjLmOEMEmKYZCIwyAd5ryqvwBRHEOCCDgBAQRy2+EUJEiNE8K/q7VyZMUcPBPJdxHMfq+Vfgo4BEQLXv0ttKxF6cBVUpa8CCKj9vHgOcYTL24ldpcWfJwm/QJxL3lnLlbqdgoL+rDfw80OjBQG/9Wg7h7sVp+QudcMp7dPN76PQDD5ufxZBOn+Wb0L1fOlGTu8/VGfdlJTkBGmjz/JXz193tK2StdPumWv5dL6uei2JNlqX26VmCDK5AA30RjU46Oic5PxvKt3TvOCDpwtPPPUcPNrqxnnyj//iphv+N1/ThfTIsoUx7CegkMLNVgLEGRCOBPDFYCo7HI3IKbkxGiAGlsJWTdUuzKafwBi56Xa9IpaE3ViqXfFJMYc1F67qnoBbhGDDGAUMM2AwDiAhzmtXylzPmOVmVKysvyKjKO5n6ky3URwVfMgChsdFa1rZNd6C4AFqliFaRomJWQrNiM4GFqwWkNumD6quuyBSQlcA0ICDqwdESq5a/wC1J2birhZQpWPOyiMfDHvl4wEAt7EZDy3Rz+9p513FAk/CHQI3vUqvG5Ye1zBOojBAJtcQwmEGl5YHAFKQIRiatZ++5BoG8fK8q75ocG2ouipTmvQIBHAcgBC3tSYzCjEmAsN2Bp6Ou5/U1ZBhQJssJMu2NBBVQJg+LKaX266jhWuzN0CxmsjIsXih/TRjYFrCJcuXRvUOAhlnp7Oh3A3lVGtQ50m87QCGrWBZqSUomQi4Zc0IDaW+xBfIunbCs/k+BdZ72txqAPScRqtU5RgyDGkNgfAJofMO9FkwMYWXwwc4oQbQ/jzCEi1bLI4Y3wUR3ayYrWTtEKxerpVO1GZ526CZWA0TOWePxC4EQ0OKT2lkTe8a+8VywxN7NOGIzWqw/ERgaUhWjVimac0EIAzajgpHdZovddodhGNTIckyajGxzAy41BMn7EBERLi6e4t13P8Tv/PSnEBE8//Ilrq8f4TvffQ/H4xEvXnyJ29sbxLhRo0lO5jmKGIYLjOMFUpqRUsbhcMR3vrvBd7/7HYgkvH79GswB85zw6uVLfPi9D/H+B+/j9vYG+8MB85wQAuH60TVePD/ieCy4uLzCbjcaQG/nd55nsDAiJlOWCcMwWpnZjXkSbGNY7hsBKJIxHY8gAuZpwuFwqOVodQ+h5ewwNbBhSoDyzaC8zRR9nVfrrj4YyOjAhYjaI7QJqBpj1GOuyeDTlBAglnNhwTcCM3AEWMKMhtmJ8rZihhJisWRuso7twLhRPr4ZN2agklq2XcgrNbbqhm8jEU6MPG4JrkYfwC3Elc+a0QrkRjA1FklvDna6T7HH8qNucKpK3gnQWI4ZboX6SqDhcra/5fIvl04nYOY+VHP6PN8IVJ16L7o4/cV89M/Rfb0q9dI12+uBx/kB3wtNvmLY/vg1hO2++dAl637pH+RUGV/esJchritUAzqkyvXmIdBr9NEn9R51bzZlYnEmq2fsq0hcjNgH1TtyZ/uePMsCVFRd5O6diMiaZi/n4JvSg0EGiDS0p7RwGO1eqlZ3ARAtf2K2TqxeLSXGoHHKMTTrioWJaKlStoOPGn4VY0CttHPUBLlatQqMYrkeOlWiXW9FXdSbGLEZ9Ps5ASRWc96UNILGT0bvkhtDC5FBgZaytUMspuBZPoTWFzcLKFRZIWssSNJCM/Q5oQo4rAGgJZEruDgtSQhTjAuYgglFQYZUN1pBCy/TPFENpxImTdKWpqCnw1HzLzRBxGChC0ursR9YO4GL+2baVtPSv55Eq+sQUbR87TwjsSasZpEqiIsoGHWm630BPA68HkJI93qoSlUpovPi665JMyi5YDoeMWcNYnn+xZcYmBDjiBIjwtUlZBgBmuCJ9149hQyI1TLBgvpPgWJzr+v5KTa3/ZHXa9TeB2698gIANZHcLBA2kRXc2fMp05VFRaNSCmYReNgDEVo+AVwpbuF8CHi76cTKsnyjidP6z+ZK6M4XUK9kICFYQmwwC321pJmyVXKxvacF1LyimlcE83H0HqnFYB1nGDDlruJRMLARYrSY/ND6B2XtdJ8yAPGYeAO1BShoMWAK/r3kbcAQIzbDYMow1+dlS4KO1jOjGliCAo8hRAxhACTV/efAKEI9IJ7zoK8PePb0+3jnne/g6voKf/5nP8M0zXj33Wd4991n+JM//TO8ePECw7DDMGxwPN5gnlVJv7p6ChFGjBfmzUjYH25w2N/i8eNLPHp0jWk6Yr+/RYwRL16+xOPHj7Hd7nB5dYnXb14jhAHH4xGPrh9hv7/Aq5dvkLNgt7tsld1Eww/iNAGieWHZyn0P44jNdqshVuzeyaZkqkwvOMSAXDIO+4OGP9l6tzLDDr4MfHh5WWolb9VQoN7SXASpFKRUwEGBqZdYLtV6Sep9TyoX51QwTRnHacZxnhEFQNSNzl6dz3gVCVmBEW1umoogFkHgjJgy4hCbYYJZc0dCrJ5U7wPkOV+pFFAW24dvJ3n5zQYqCO6mXAAN/TSqMnbnSucUJjl55+Twd0p6VQ8rv0cFGuSf6MfUeSzOAg2gMz6h8a/OI9ByT50ZNbBEFTT1Q+9Dbr7as1B1b/uy65O9TnpH8+315A5pVJAv0pL0GwQ4GddiAh401sXt7C/BV5epbcO1OeugyeIznSLtv7vnonkpelDRha7f+Ymqy58ZCJYTePK+z8I9E3EHYNw3Z92anv59Ci90f5qcsX8MgcfvgBiEcuaB7qeHJ37Hobp9BQJvcAYTuIHVzatWVwsxMHe6J+cBGvNc0KzII1MVqhrSoH6NyAE0qBAoRTScitTyDRawlTh1NM9BO71u3YoIQckJJSeIWD6ClVFSy30BQV3fmyGghXGo8M9FbOwDgimR46DeDNJptrKN+uzFYm6ztGZhZEolSIXHOAzVYj+nUvNWAFShwES1k3axGHRmABz0NdFlBwNkXhk1umk1FUCAeYaUbPkXXD0lRNosLJrVLFioSERf+ctCfIKBC9uQ3mgx5xlyOCiwCLEKX18H/7yHowHa0dyTu73Hh84P4EDOlXV1K6LNXwxgEZTjhOPNa4RtwEjAdhwhkTHNE4brS4yPrzHvJ+3EXvwI9VVIuDZpgmhVqWBAq68Z7wCErOM6AGTJILFKUwauRQQJXhK5savGqKUTKDZHpiTl0sdAoim1tuYVyKOxoHHQo/o2x1KfUmVT5zWA+hndT020OzNtX9H8K+3GHGrRCH/fFb5ccq3ipBYfVf4hXmmpA/FF0CcD+53hhgPznIaoAIODWp3dAu7N+bQ7mwBUQJGsTDZXpa9ka6BpJb61hGuontNhGBAHPWeal6M8oQoW5gpMdO+VWltceYr1cDBlV/vpWFiZfRdE2G6ucX39HoY44MXzV/j4159gs93gnXef4XjY4/NPP8Hl5SVC+B5u3ryClAzajAhxwI9++FPkTNgfMq6uHmGzidjvX+P58y8QuGC73eDy8hK3t7c4HA7IOeGv/uqv8PjJExAF5JQRwoCc1RN8dXmFFy+/xBdfvMC733kHHHTvG/cGBCibgsCh8rYYNHxpGIZaxtqVGQeMOSeIZAyHaOut11Njh4K2EFRR98TqwF7ylfzuWtzk2CrlaXGPgnicNR/IPCBkfECg8iHljGmesT8csT9MOBxnzFOysH0rcc2szfiyVjskuNdBwKye/XnOIDPEhaj7fjRPF3PQ6nodv5Fs/YxSBqeETMBQK3y8hVQ9F/77/T+/WQNTuaNDL97Tm5+8IgYwvIJhpzQawOhDuuoVTsHFw0fYPDLoSrOeXu0MwLjzKPc84fIPV0xPvRpKp4p+73nWMbpmVV+1KlC+q5WTLwHNOXC1vE8/RPL/3aOvLx+yhbvVO3bgTLq5ugsw9Oepx8I9Gf3fqK/J8l5fNbQzY+3fPdXr+2WtAOPc8y/mdvnCnXtSC9bSojnKQ1A0XxnkuJZwZ0D30MM9GcwolhuhCrA1xCMCUwGRhSeIK89m5S6ezGylHAnqlRBUYTyw1nNPOYFEhSKZld2T4dyi696AQEAJXJVaWA5AsBhjVMtRQprVyh+ZwANjtuZJWQoEOm7fdwTBEAi5ELK2JK+JkTGo5waAgRBS4MGMzEUbP6VsidRuEbXLe98NB1sgS5I2oCEAcWVbNf6+hvPYBtDPaXiSsCw8PCKaoI80I5CWRiRAy3iKh3xZvLgxvRioluQslhFP0HKuXulE95YpKSTIacZ8ZGAkhBABtsZjtsu9IaNAFXKN/Q51U85ieSyAlvOyufdD7dWcxJ497rYYL3YIuw2yCHgcELYbzDlpWcZxi/HqCnN4Dliujh/tzpigaxlCrXHe+jC0k5lLY0Ct6hCBKKMUsuESvHNwLg4UupN8yu/tHIjlBqSUFrkVGirVwvXmpEDMw8k4xAoIw1tcehJwMUOLV+6Kra+QFtVC1r3keyy2UDOgzbt7MTWME4CUyiQLG8CGWDU3BXLFutjXEdmw3SPFgRGsq3YcolVpcmu3h9gY4IBo3xUhIGjeVylipZTb52tOSfVQtPA5Da9Ub2lOagWfc9tHfvbznGqzTQKQZ00SFzPghOBAJtaqTMyM7fYxRBgvX77Gq1cf48svXuD73/8ATMBHH/0SwxDxu3/vd/Dll5/jy88BzC/x5MkTzIXx4btP8e4HP8LHn3yJ7eYC77zzGDdvXuFnP/+P+PSzT/H48WOrwDTi9etXKCXhs8+PmFPSPDkpyGmGlIJpmi3XZMCvP/4MH3zvu3j8+Lol64MQOKhSbd5usnM9DlrZqcbmd14MAgzg2b6wghw5lxqWNlg3by9dO44jhjE2AArU/J6pzDgeJxynCcNhwrA5WulcTfz2XBffsBp+q5UGb2/32O/3mKcZc9Iyuppvx6DqxVA5SuJ9XczTKVqGHdB9GizPUD1VCny9EIqGC9meE0EMhBSohni8rbRI/NYX7v/ZK6oui/FQ3HHuU6evtT3lRrPl2HACMAxw9OM8e+umaKP/ad+7Y7UXtIZz9sJZbPFNl33xpZMx9dq96UhqAGkKr4Ms1zf6cVd1X5ZhPguAUT073bwumnDcCRz72sexUejPU8VdGphw0NADjOrJMJ3NwYWPtwcYHT7DfRO/HHX/Vw8JejRwd8x1P9+3se+AjJM3uivpNj2dSwZRAUMLPFE9Vw+DyQ8HGVDrfSqWkUGAUAEX0n/kddg9VwPwRD2xHA3j9MaoCcwCBO2q3Sc115h8wLTEAibBBQMbEmRmZAQUaV6HXDyfIqMUTUoGBAMKRgZup6ylLUnzHbRUaItzdyaerTpSDGy1jqziFaFWAlImnes6qQDSvIsQli4rjYtt+SQwgTAGwgwYaFNlJNjj1lhaaiE61ThiORXE2kMDopY87+cwTRmcMyLEQsCofS9oeIcKJLVmRSYIWW+ITHXNfL8WNCENCLzlX54zMmcMpL1GPC6YiGrJYUEL/2BufdF8E9PJ7q+VQqhZoqUUUNFmi4EYNGfMYMyXQBw2wKEgDSM2776D21/+GnKczSNDdZ8Cjbnrfax8qe2HBjLUWig51y+SATugVTsjm3M/ZsR+L2rn3BmQKQ3eRybnjDknAyZUvXMcvaqaIGXt+u45MyE0RvawY/1bTHUN3CRy+uY5Ib58aunNkx4nT3XFsWCSdW+x8htpe8LhpxSBkBWEoDMz3L0m6MKOYsCwsTCpoLH6qECDa9hdDeVQl6Q6NhigwhBkVSThZ1iBxTjEmpslgJb/NuV4nia82R9wPE6ac5ELivVdmI4TjoejFmRICTllpHnWvg5m/SZiU56tRGzc4Pr6Xbx4/ho3N5/jxcsXAAJECj7+9Sc4Hvf46U9/BJKER5uEy/Ic722e4vd/9A7e3CY8fucRPvz7P8aTp0+x30947713ME2PsbsY8W/+zb/GJ5+oF2QctLTs/rCvSu4wjBpydDxgs9lit9uiiGC72eLlqxf4+FefmKV+sIIYKgiHQYPdnGf0pWybkQA1QViV9qxFQFLCNM8G5oEQYvUYDVGT+Ldbrei1GQeMw1DBnoggS6t2eHs8gvlgYXKxXSPG6lEDoZZgn+YZt/sD9vsDpmlCScnKWAPJwGv1hKPxCHLQsFCO1MrowKeIymPYefC+Tc4HSwnIMX+l0vM20IKX1xfvhiI15YuWSvp9mtgpOwLuKHRnv4cTvtGBy1b9qh9bBw7q5/t7LoHFKSB0+QZqvy86Wy/GLf2lFq99/VOdeC/OoBZnxWme8frNa3z+xXM8f/ESh+MBAGG72eC9d57hvffexeXlpUaiOMA4SZxfKta4C7TQL6XPpDH0E5Z/Vk6acXG5/x34dIChBxPV0LgEF3o5n6XudwMZ/rucnf/u/lb6GEDtu9LUorv3Ov39QYD5zL5ejqPuynpVIZVJ3oqBWL3wRL0B7WE85BvkZLRfklVlYuuWrf8sxt/iWscBNVaV4B4PH7RW2iCodT2HUBGUVyjyRO/AWvVnhOA7W8bjbcC+AJ/uBQf7nIcdzBDsRRXvITC4FHz3ckS6GPGzL97gWIqFyFD1NuQCzAYypCbxeO6EKi4Ly5DPAvk4rds5tcaCvlGzuchF9Dm8qWA0j4t2NKeayE1oOR2lLMNiPInNE0NFGEVUQZGiyX01gbq0UB12BkRkOYTuxUB9jcBIRUvkQrjmBgQB5pQhFqigYEJTgZgESXQvqButY6TEAMyjIGbBF6sUJMWewcO8mmLoZ8crMYHs+rNaOTkVrXAGwfT6DSQEJAjiOKA8e4rxvXdwe3uATMnygNTzVENTvPeFATgpBeKhEHZoFDCGBhqYunE1RZYcxPnXbZ16ZqMAuKBY0YE5JQuV6ubfrDyjgV+mgJyjeZf0OtrkUufnbW6iBbjSDVX28XUMkpa/ngiitt86QS7ard0XJYSIDRFKLNUz57ymuHejnoWO2dq5qoUIYDKKYYm/DVy4JZyD5YKwJvbq/3w/tFACzRcBiAREyntgOQDezE+v62E+WfOR5oSStKDGm5sb3B4nTCnjOM/gnLHf73F7e6tlaqEVioqIlYlNEIgVWoDmyHmxBSHc3hzxxRdv8MWXLzAdD/jud9/H8+cvUErG7/3eT7DdDCi3X+A7tMF3h3fB9A7+57/7PUxzxuXlBS7ee4rx4hp/9rOPwFTw+NE1gILf+Z2f4N/+23+LL77YY7PZInDEzfENtHJXwm53BREt5Xo47jHuI66urlSwgfHLX3yM6+sLXF9fYRy1hHYM1v08dvkXVsmvea9EDVoOMoqGKk3zjGmaNB/iOOl6BA0jdS/SMAy1HO4wDhiGgGHUSk5SCgiWL5i0pPk0Z8jhqPsiRq08NbbQPYjmqmm4lCbFT8cjkoW1Mljz7Qz0EimvidwSzRtYJetabDKHSCsHQkClmDVL/zG4ARQAzGJADA/Rnn9riTqG26tH5+wD/u7X2jLu0H2amdz7dssVgSPE+noPjPph9M8hXzOo6lm161Y51ivsi3H99QBG/dxCGe+fuynoJSV88eWX+JM/+3P8j3/0x/j5Lz5SkHE44nCYwRzx9PEj/ME/+F38w//lf4r/5Pf/Pp48flyr+i3AkPS3EzQF3+7WAQz3ZlSPBHqv0F2YUf9aKOvdHPm/BajowUbpPC09EOjn6gQcOXCtOkEbjG/BO2PufrQl6ABM97Pd/+6zLegrQEYL6ae6IfVXWhwTKVYs5Vxo3tfQw0FGVXCtmpFNJIOQSgFnIBJZIyrNTk1ZQ4jckk+kzagEqMp3FFeeyBJqNSQlW8gUM2OMEVkKxkB4ejHiMYCb+YA3N3NNRi8lW0lYRs4JQ2BcR8LucoNNDLg5jPjkzRECS8ImqgIp5VKrMoloZSRl5oCgVeIoxftaSE0cFhCKMXsOQLRmTUWKgQ8V5MsmSKqIxxAQQDWPw0ueVcBlG65YTJyhEAAtRCqXxryCWeHSdASLYGQFPdmAAImCQ0C7fA9B1yVZ6Jf26lDUWnLCXASHuSDnDCbtvjtGhkiuh9KrWrlL1Dekxy0WaIIkwbwiTIi1P0YTDn151kUcawgoWTDvjzjgJfJug2EzaojMo2uMuw0GEtwcjxi2o3aPt+T5gQljJJQsmEqB5IxSDxyZVcMBWUvUDISqtDiqd6XYlQA/lw6yPffDk8C8sgw6gOM5J83SRQYe9HWGJqCWQbsIe7d3z/kQwODP2013ZfzpKwsNAoAKk3OskowpOtjQZp6hvjsMDKYBgFWRqxV8LIcqZ2RpiWwCsVAqAMXymcRCb0i9DS20RkFG5FCrpBG7AgBkSM0xYmIztrRxw/iPCxtXUnTvFEhR73EWwTTN+u+oVZH2twe1xk9JY/RZsN8f8Pr1jQKTlDGOI4gJKWufnpJznRcIINbMMxPh1asbPH9xixfPP0cIAz7//DO8fPkCf/AHv4/Ly0tgeoV3dzNC3OLdRx/iarfBT7//HcwpY7fdYPfoGq9Lxi8+HvCrX/0SH374AaQUbDc7PHr0GB999AsFy0Wfc5q0P8YQNY9ino+Y5yNubhkXl5eYZ82le/XyDT7/9HM1FuQBMkTIEDUfBGIlpvvqcO2stdLpWvb2eJxwOE64PRxxMC8QhYBAGpJIrGGdnqcC9MYANzowYrSdSKSe6Hm2MsXZcsISUCKKeYogWo49JQ2FTPNcw8M0gljq3lAsrX9r1TNr2kmAW1z9aDCJwROC5uJoPpokLxjCVn2qGSYqgH6wsvnbR9XY9wCg0StzX/nEp2+eU8w6y/XdL7nxyl9v5igfyL1A46uG9VXeDBdEHn5UX7sz5MVDdbrugwbRhwb5ZQAgl4Rf/vJX+Bf/7X+HP/rj/4AvvnyOOSk/Oh4n7PcTDvsJH3/8CX7284/w7/7oT/Ff/u//M/yX/8V/jmfPni3ClOt92jCr0u+gogcYi0pep8nedzFGP+y7r9Q5cQOvyXRI1QlOAc/9c+W/nIZ7yeJDiyG7oncy5rsAowspOzsWOffjXqqgrff+VaBBnZ6jRvdCrVrmNwEaDwYZ2bpgBSYUK6+qFn7UMqi5CIKIlYV1b4E2sSPSz5GgVsIgUE2q6/lGLoIpWYK4K9PM2lk6F2zGAY9HxqdvlHHXGvhmaZqnCTMAHgNS3uBqQ3j/asTrY8JNslKq1fWtFqZaNchKELpgcbQrgpr4XkTLEHolmxCCfrYIQJ4cQygWKy6AJuQxNy8NmjLNIBBrCFkWd4EvN2XhAhKCpna38C6g9RRgDthutjhOR/CctYcIWaK7udP1WQlDrcCiQs6wCwhaTtjDiHIR7FPBGIBQgnYXJrWcKZjIqOjXFW20Q1BEK6Kw7eBWoenE0sBSuy/bjKOW+CTCEAKGEJCPk/Yk2G4xXF5gsxkg0xGbYcTh+hrD1QWOhwNgydrI2qhqOs6Ys1s2bc91CqmIVODLzAjmIvTDbzqmMaFcj5hYTkmtOMRqafT5BgEhEKQwJDAKO9O09RNUBSUXTcjXBomhNvDKpVOm+O1VDpzu8scz4IGa4n0/uXrRBLrvK/UsUgsbcV7FVmmsaN5FSqzFCKRUQVBQgCCQbCWeiWrTyThoSdlxGDHEATFo/4Ka8Cted6BYiJwqukwBIQgCR4ilJ2n57Vxj6t3rl1NGIvcFajz/NKnA3h+O2O8PmKcJOWcrcQ2gCPb7GSHcAgDSrCCDgweO6vNpRJ4qpdlAzU16gxAu8ObNLVKawRzwxZef49mzZxARvHn5Bb6zm/F0RziGDX7wwbvY7bZ4crHBPGdsNhtcXe/w3us9LrcD/t3Hv4KkCY8fP8KbNzd1nabpoF27mSvIOx4PVkEq4Hg8QopoGJEAx+MR0zzh008+x/XVDpJ3KGNAyWM9cyANM/X5y1nLlXshDvcKz1PC7f6Im9s99vsDDscZAtK+IZYLw4FrlTzNt3IgaoYW1j0msEavAQhBG8RmZOvDVLRanxQUO8/qqckWYqX8SAGfaCEXAxBeuKOWKCdTesxT3OtOBFSjH0Ggka4FJTMyM0pi5MBI5mVzi7cIqqHsrSVX2O337uXTj92b+N1ePgMZpFMJ7wAyV/r6v92y3kaguho12UAn752jhSLfy/9Oa1yAiU7ZFlkYzU4gyVkjd/8I3whwQM/U559/gf/mX/wL/Lt//8e4ub0FUEzPc8WUzIBY8Ob1Df7Dn/w5Xr95g912g//df/Gf4/rqannxOnBV8tuglwDD+1Qtu3h/3bjt552JaMBLpBklpKvK5jzE16YHtdVC2Q+/Xnqpw50d0Dlg4d/tgEofQtfrV6fffuixdoDRKig60OkiA3rDsSlAxFT34UOBxjcAGTW6H0PQm8fQPAJFgCyEySpZuLA3oKQhUsbgmAM2o6oFwcNmfHNBG+gd54wptUnIBXh5nPFif8B1KXiyi/j+4x3+6ss3uHXFOWg52iKC45Twap/x4jDhYqOvX0bCPvt4pSmEoqFR4FZOVZ+0VSYBadiCliy0WvvR4nljhEhBKqnbS6oUDqNKETHBlWzzFqBWh7JlVOUn5wowFqzNwmx8LzhDyrlongyFWpkmhYBYBkQr43tIBfu5AFwQS8Y2EIJoPoUY+KsN4mJQqzqrG36gGa9TgpSAbYwoUgyG2Mbv1tkROqAKWWOKqIoaYIo6muLunxHcPXtSipbn3GzB46D3ZEYSgcwzppwRoUr65bvPcPz0MeYvn6tiNs+YZ+AwzdgfZ8xZPUsOcjWHRHsi5JwxTXOtux9C6yXSj6iOz71XHvpllapiUFCZc8Y0a6gTSVFlwyqoqaFEPUsaUgVMiUA0I3BEWVg+tfN0ZFdo3+4atr1VSFyonjLGhTWFOoF692NEaNcycM62L7musX7WQYdC3gyI2hQ0fczAZE0OlwqIgwgEmlQ7DIN19bZqPl4+VKh6JYCClAQlaZK/FEFgTWaOUcCs5zI5yLB7RS5aW1cKJLeO4xrLr43j9ocJx6P2h3C+K7anUym4PaiCPs1Z8wI8GZ7R7VWqRh8N9yQIbrHf3+Bw3CPnjMPxFik9wqeffop3rz/Au1cbjBG4vnqE3/nxDzEOEbdvbnB5qbkfkYF3d4RLyijHG9x+ccAPn/4EG5pxe3MLgHA43FpDUDXyTGnG/nhrnavZErEPePP6NUIcamjTixev8PzLFyAI0hyR5mwhtwVjShjGAYGDzZXmM/m8uWFoOk642R9wc3vA7f6InApiHLUzuxUL8BNeRMNE5zmBefaNixi7nhPi5bCb6lHM6CLiPX8KEqsnQ58tI2fBbBX2pAgQtAdGStn2c+48l12Ootzd99FKNmtp9owcQi1kMXPLHWLzsFEnq9/mpp4tN+We9+tvBgAgC290L2f8Y9L9chZs3Pl7CTyU5ZgA7MQ6deNZKnSnJIsfdz5XBSyahujWb3FPur52CjDOgaxvQh6Q1H4H9ocD/sc/+iP86Z//BeaUNVRUAMpz5S2+FwMRCqmi/vHHn+L/9n//f+F7H36A//QP/wDRKsdpwFMPCvsagl9vaHoQnQA36X/iBFD473aO+yIwOrxl2JCOvR/LbzDpC5Arde7veFS+cn/epTa83mBh61p13u5fZ7Bz74X/903owSBDLSBSLShj1AZ4RN65WkOoShbk3Bihd71OlblaLCl3PQoAtIRjgrDmSrjlx63k+yz4/PUeUgTvPr7Ad662eH1QC3U2i7JXIQmBkXLBi9sjnm20AlS0g5gFNQGbLRlTQNogkBsjqGDJey5wMGsp14XWZ2Et7Su1eqRaKu2nxvmrZUxKQfI8DJFaxtYbMWkoWrcrBI7A6uez3cRDsgQaquU9OArUI0Ksc3CYE/bThHEYcLUdMZIgzxNmsHVxZwTS2KkETUQmFEQIpqhjn4ta51gCCmmTMnh5R/SWmhNpaK9IMc9UWQI338yVGVPziigTUOCVSWPML3ZbSyLPON7uFVw8vsbm6gqFCePVJcIwIB+POJZkMekJx6RlJok0uZtZMAKQyCgZVVAfphkQGMiw3BlqtgpNatfBas6Hx+Rb6VFjrJOF4Hiyt1tnSs4anmaKsFeMmUSTwUMQK9mcMM8JpRTLtSGNDY/foFbDbyN1AGPxsv9CHh7iniGuH6gNnRZWQxVEXj3K/4WODzoWlgqCbbfVJOHud+vA6ufcS8MKtHNy7ZIdHMDoGfVqVL2g0rAYVXQDBwxRkGPRSmtuIEha+Y5ByEHvl1OqJUiLeNnSpHsiZW0WWp9BjTSssWDIWQ0suQAhzLUULgf3IrqVUeemCAEUARxxe3uDeZpxPBwQQ0RJE1AmXA2CgTKIA66vdthdX4FFEA5HbLYjDntNqN7GjEs+YkTG413Eh08GvLgm/JFoONE8J8zTAVebiIthh09eJAP3k5Uw16adb968xsXltVZam2fc3gpevHiN7XaLedA5SKVgmJP2x9iMmiAvrbu7ewDVuFNwnGYcjjOmOSNngGPEJgzwjt6L/SR6xo/TDDUQ6XWGInXNS4F5GgUebWfYVGVLtrLhNoaczQtetAKPiMsEAaggCawCmO9Z5eseRuqFNABYMQjLKSsFJSuQSOzNVptc9bwyt1Da8GquyttILezI1Z37HsaV8UbS/a+FAdmL/vsdJe/OFZbfA6oXs64fUKsYLtTkB4K7u586/0qfj1CBTrNC3vPNJdGdX0wPW/Te8CgFve7nX3yBP/uPf4EpF3DcgSmDywHMxTx8AHFaKN7ucfnFL36J/+Ff/Rv85Cc/wjtPnyobE2rPYTqAdmTgbmhuWe9+1gufn0MSD3+V+mr7ta2t62zncF0DPP08nezBTknXr9HJfHa/d0a0BQpto67gohpzZQky5Nzz+ChPFtzvV1fRq5D1MvLkp4+53q97/5uGWj5YY2lNx6j2VSC7q1U+tQ7L0pU/1eRhIvVOTMcZU0qIzBiHAI4eYlC1aoC11CzFgEk07k9Ew7SEI57vD4gEXGxGhM2I7z7aIQP44vVehUsp1VodwMgCTCkjbhhjtCoe5lFwaycF7SdBbKEz9XRS9TgQay39iGihYcUsmLoIvs+zWao9uV3L99pOcusDliUNs3kOagiRCwkrr8m15FurcFTdd0xg1pCNELRufKaAKQPjXJDnI2YLQ9heXuN7P/w+0s0rvHj+BRDIrIgqhLxkorpcRZcjqAXW782q0WB24Uzu+TEWdEd5lNoUSsQ7oFtYkVXJ6j0CjZVJTcotOeFwu0cYB2y2I8pUkPMMYsZ2M2J7cYEIYL8/YLy6Bu22KMfJ4ikJQlqGMkvCnAuQMmLQcp45Z+1qaWvjY/JkS0+81mVxC6Y+UzIGwJY7wWRhaCEoa7TwtHmefXdro8qUF/NEAIooQGQD4nPKmGa1gg9QBYeIagnlt5WcSTUr1V1yI0E0kOGeUCn5TviDCGqZ2v6fAjjAu4YTFFBy8fPXlSD20Rgv88VpRgj9jneCJjuMYpjE86lKBToKWNOczFMBBC7IsSCEpN4oQf2c7x0HAWxC1K3YxZXUkhUUWPUgL/Cgz2dKJKmBRkwRD7lgtvBEO+b1O4CCjBBHxDhjnvXMTNMeu0ePUaYb0HSL/Wcf4ZdvZlxeP8LFQJhu3uBitwEHQi4JcYw4Ho6Yjm9wPU7gcsDxzR6f/+pn4P1LPNsRvmDrAZRnPLnc4r0n17g9zvjy9Q2m6YBxHC2ELeFwuMXFZqPhmjlhmgpevX6Dx48fIedBDVapYBgThjFZt3AFbmSgoM/xKkUsrFZRZowDthtAYGG7NXRXN1exNdF9p+FrM7sRwEKXfN2zIgwmQuRgChJVIAL3HhSCiBbNCGxNVC3XRyvntbCXWqGGFHzqZtT3ahigg99c1LOeCwozSmje16qcVG+gAQy83SDDie78dv6hTl/tFbHfCGj01xGNbnClzJXbHmDcF6JGd65/7kMnjK+/f0UYuqfuhxWnKuR9f5oiuoAw/g5hlhmffPIJnj9/AeIRzAMYCRQAjozACSEf1MBBjJn8OjqG/e0ef/In/xGfffY5nj55gqo+ULuH/t6qhLpSfwo2dGqWP3vQUcHeydMvkqfvrEsDDNKdO2mjgxtI+5/3TucSZtax1mfpAYn0+md3hnudT9xz78/VXmvP4/oMumiAdsfT5T9Hcu4MPBAk9/QNPBneZE4grAxUWB8wFY1HhVnWAEP25j4mohp3Pk0zMgGMQRP3AtczUkQQPSzBu9HO2gE1MENKRsiqlKYiQC54fH2Bq+tLfPz8FX75xRukVCCk4QfDoADiWICLwLjYRPDtrJb+IhAUDNQqPbkEJiEQa4hPcQu8CAZSy7ULnzkXzDmB1eBVq4dk0XAZtTpaWAZpUnwMwRQaaQqEaOlcJq5TqCFkBR5/qazDK1ppiyaQxu6HoHX1iVSAhGFE2uxwkxO2FHA9RmDWErBvbm8RcsbFZsR2iBhjAKyhVIEARQ/TNGcQBHMWbCMbEGCMMSjwErN2wLdzqxO+OLSC+hkxxqsKT/MQEKz7ulnsAQVok2RwjMDlBXCx1W7iRBgvdjgeCWHcaNdlAhIBe8koj64gT5+ivLmFTBO0SZvmWIAYMs1IZmV0JS+4ZYEJ42gVg0yRyyUjJ7Zk8ha648qkxsQnpMSAAevNMDjmghhgEFN8cymYZm9IqBPARBgAgDJYtITllDKOk3Vxh1pQ5zFiO7zdngyx3K4m2OEyDd2freu1nUtmARK6kCT7vxs/cgalDJBaz0IRy7I2iy4TZjundSzWBb5h5GY1YlPYlUF3DFYcABcrNc3wngbZ+msU816llFGSCoZMGrvv+SF+Oe/hsSxT2s+Pj8FDOslCVL37u7RndMFrY/cKeWI8Bli62mHXGQHkfEBKs+WIZDy9CPjJd7f4vQ+3+OmHl/jyk1/i47/8NfbPPwEdX+EHP/ohLq4eQUpAzgUvX7/A8y+/BM2vsckH7F/eory3xe/+5H2MV9c4phl//ssJQEEMAU+vL3Gx3eD5m1sNcZqVv4sUvHcR8NP3RvzFJzNevlIeeHt7xO3+qJW7RD3j05wRJ03oDqGVba0eYLTcJ30urWY4jqOGrAG1epOWwNWNUEpGyToWwLw+4oUYOqVLVHFSwwJDYrDbukJvgl9gPY00JIprYrfyTaZWclvv6ftUnyN3lW00BEplZjZDVS6+U1S5rQfLsApEILaHi1Ct9PfWEgG94rt4A8D9Sjbq+xVouFJ3TrlDe+/s9/s7y9KT0T7qPKNTgvv3HjDa7i5nngQV0NSQ868CJG3AaApzu3b/tz6PaR4OYEiLKHzx5Zc4TDM4jBBsEHgHCVtw3GOebrXxI0+NX1VLv+oHn33+BT7/4gv8/b/3U3hhgsX8MAHVs9cVLug/c24f0N2dcR+4OH3vHFUAId21XV84ATdn8wfdsHzmrR6cnI5aOll0GsLV5444T5e6j3sw0PIRm9G636Nn9tMZEFHDN+XMuXkAPdyT4eFFbv0ni8wvUnsAAM0yru62bG5eDaUikDUTMysTea8CdA36TMlmxmCbM5k1MOeMDQEUGDdzxoYiOGYMgfDubkB+fInnt0fcTrlagyIHxGHQmEGaMZAqMKnYmIpo0jG1jUBuVWcCMtUO5u6xiJYgmCyOP1v5pJQypqShCp5U7opHX/3EQxWyhTqRZf9pCUWz3GZXYHsmxRBTHAoIXkG4iMaA141J1qF9UmHJIeCiJOSbl/ji+BrXY8Cjiw0GBiCl5olYaqBa0XNGsDW72Ayt5nsglFROLA/tgFkIctvsnbWhdieuXgLzAECAwuAgiJbLISBIzpA5g4ogRO3Au9lsEYegCaqkIW7HacY+zdiXjJkFMkZkZmgZR53fGLUAQQoZflJUUSRkP4iwUARmi99vQEiEu/3fAMqUMvKUquXTy5N6VRk/pLN16nZw2Xd7D8xgyyUg8XAGU2alICXgOM8YjgHbYXjokX1LyRPfvSu1bjQRQebWuNFfE2iolOQC4azngxgSAJYuDMazqHsNDLCStC3O1P/vDL5ZpXW9kVTJm015VeXfwnKylyxu596FQ7FiDXQ6jDo89170jLuFZQUznNTYWEINsXSp4THDZIqon9neQu782Juhis3RmzevzFJWsN1EvP9sh++9u8U7V4wf/vA9PL0e8PKLL7B/8wof/eVfIE97/Pjv/RSXj57idn/A65df4NXzzyGHV/jhuzvcHgO+8+4zPHv2BIkjPnh2gU+/eIH9JBgi49H1Dt95eo1Pn7/UKk+SjKUInl5E/L1nF3j9+ohfESOLGmymlLAzQ4vY3KasSd3Kr1vJVjdk+HnUwiVS+9LUlfZ9FlqpWEGE93PyXLiqvrrCbzwkWBNY94YYou0MK22ZSZTXBQYie8hwK+/eDLFUS2e7McO9uu7B8A7exzlhSklzkUw2ezNTlbPtyDjIyCKa5PiW0qkl9q6q1J+H+6iFo/hfvqZS/48HK1MqyRuQP+vN+GtYgevjnP1qvXIdwW9yHzdS+O30b7tHd6uUC17f3ALEYIqguEPhLUJJmPeEnOcaDu+hrzFQ9Z6RAPNxwuvXN3fWqK2tRo8s3u/G1w/6HNz0OemW8fSdxYtnZ6wDDVQ/1Xkw7gEb34R6/n1nMJVndzkiZRmWewoypLi+6MVEuPHGUnRO74Ho/nwV+vrcdfc6PTcPoQeDDG1I5432zA0jLYHMk2iDhRRANGwqF21GBreEDwNEPM5ckxIDEYQFQZr1xy34QwgQQS37xwQcpowpT1p+lTOOWeOF370YQHnGjgSTACknbMDYbUYEVosbSgZoAAdT5M3VDC6dEFeFXuvU63ekYxhwqyNzbXYFwGKsc23qRfDqRapQu2ejAg7X1IkwRMZmjNhuNyBoPHAu2qzJO2iDFBCBGqosOYO92lFnSQlBezi4G58hEMmIJBgM2CULzUmlwIHfMZlgKl6PRp9lM2juhtaJhzEYUi2NWlf0Fv5mscew7sogEFxpd3SkgnxOyQTwAPeIFOtqG6wpIhvwOB4PkDIARRAADJsNAgNymDGEiPHJU9w8+RJ0+TnkOC0kEBvjs7R1lKwhT2QMzUOmcs56UFkcMeHEDFQt3dZbGimpEhNsLgZECKRW2qhJZL1yaec42x5k9u7TBnZiAGWNy57nhMNxwnH82w0yHLCyK2Fa0gelOHu3+NjeuiIFQIKQdbAOQfOFBC3HyibbrTzSuU50ZyoV6ZmqvW+HKudcz0QugpCzlrv2FpVmXJBcAIvVh3i+RjnZQt5krQEBVyirMcLCN5lIwyIBqz7GNZzMFWqg7S1VthnNa6IPXnO4umebE3CcjpjmY7331bjD44uAkTN++auP8XgX8Ob2iBgHXF++g/nlr/HlJx/jhz/9IXbXj3B7OGqo1XzEIAnPLgJevZrxH372CZ5MG8SLa1w8eoKnj54jP38FSMa7Ty7wkw+e4C9/9Sn2xyM2QVkzM7AbAt65GPCTRwP+fQzYJ53IeZ7hhnqRAskCkVTXiMwA4OCCOZisah3g4UaHYHyqrgNVYewywBPJSylaGtbPsIVIEbT3BFmIEpsA740r0oNC2ylePjz693y/uyGGqPZb8uR1bRjb7cWi+TxenGBOGR7e1zzf7uw6KbRRpCp8bzO1p/yqD1GndJ/XOO96LZxXyOL9+8cBA+yy8GacgotFfsJXXfABIMHUAYAMXHQA6UQLPz9mH1xVlLvP0gJq6Fx0uK6UgnmeLDctQsYdJF6gzAeko1UyczBrj8IOtuyeKWm/mGw5hz6GPjyrAZ3lc9x9vP6VDhx2a9m9c3Yul2/qw1K3DtVT1AGKRcWwk7//2uRgoZNvrtg32dD4+AJoeOivg1yyCABYeKbpOMF02eWs+YbwMtlUQ8VcZtY5/Ya848EgYwjNigaBhSXpnAdCTSCOzGbVy0DRGuxqQWJQJGjeaqkPmLM2EIpBC4KzkFlvU42XdRd4AWOfEkAZV4HApGE+ITKiAZQrBsYoOOaCQ064CBtAgOOUcJwmiKiVj6FxzmrUEZB12Q7MFg6mqodWWQrwfAJhtmouQIwRsVMMsic1mwcgWvx8ZPUW5JxrtYK6SaCCxatsDdbQsBRBCFnLrjZoWy2sNW4XouvAlldiG73YpveGUFoNKZgFLWBOarX0nBDb36ZkOZgCwIQhRpBVKCmiSeAUtIwjyN1x+gU/80VUAKulVEt3soFPMQAhUKCRS8E+z1YZRsuBZgOAAEClIIoAxHj95gaPLi5AUjDf3oKzgHcjxhiw3WxwOGiC+zQMyOwRzW59LBbaot1/pQhSAuY5mQVTQVMI2RQAbgKjE1QEszxCavhPLp7gm2pyqCvLMQTkUDAbePFyvqWTf5rgmw2YcK0c40mrKWUcjzMOw/GhR/a3kjq5s1QRuj8IVBUmT/wWKuh5uPi1nCmXAuQECQyUDJKAwMDg8evdOhZ3NxugDbFVyUsw44hpC4E1HCp4dLBIbWyXS7DqUqEOSj27MMW01ORc7RFRmmKrDETLr7ob257N+QnEAHe26mxEgOje81LHnsulYQioCoJXkzKRqEmchapS4nOhynRCzhMA1pyIY8aji4j33nmMjz6/xZ9+PuHlzYSf/O5PkJCBNwfw8RZl2CJ8531cFUH46OfArN6IkQHaXuPX04BhfIpn10/w+38wIs0J8/FPsB0DdtsB33v/GR5f7VDSjMc7NT5NM+Pp5Q6X2wE/fPcCl0PAfp4gBTgeJhynyTwRCjS8vKzvGwdWXlks1lAo9TS0/VY3hHohi4fHoRpu9R9Vo5eHwImfY9IEcqmxw9azghwMNz2O4Q32tEeRr52HBDpIcW9pUzCMmXaKoEB5iFaOEiAV1OIg3VHys+FKouZiuLHjLUYZncLbfjvzPB3A6NTFOjdVjqLJU1eo6vzf1UDvkH+nAnp0ngxT6HSkFXYseOBvRD6+XtmWkw/cUcTvp77KUJ1oOp1l5SEcAhAYhdWoIyWDWQu0xGFQfQRWlELavmTTVg+WK2oaPbAoSUsLfv/189BHTnR2djm/eg97jdqz18PcezIa4Ohf95u2v09v0o9Plm/1oMj3j8uVCjB6kNF5NjrgISLmDXWhqmch2DydVFxeTEA1wPXjqKP+Jj4MpW8AMizm36wq2arkDFGbyjGhJq8xtP53spAjEl2AISpDjYGtCZ4m7U0QjDFgHPQeXqkKYuUoYZamccB+n4A54+nVFpebUZNjQZhtbYSAMmujpQ0zxqBekDRrGdMMc7d3M5sLNJ47uB1Kx1e4s3K5ABJTAmyTjYM2+hIBQkiYQ24xsp0gC6UgZ7aqJxkiuVpNYbH905wwzjNyDpqomHWgbKiyChD7johbt7g2bPKTTAAGEhX4JMisrjMKERRYE/STVqwBPCFQrXwFGgaAXKpF2fNqppQxZUEZVHHzLsmn1LvsCcG6GKsnJCW1CntIh+avzOa9UcuG5qoAIwEUGZkKKE0oueCAW2w3GwzbUUPPQkA6TGDRHJtHj68xXeyQxgEyT5rIKWLVbbT4QMrFKoy1sBOBgbEQkAz4uqLWwpy09KSHO9gWqqBC4FbGXJOGQ1DQUESQoQ24GApqqjJTvAlQhgTBNo4YrWQvAbjJGSkXq3jzdlMTxSevdp3GWvja8nPNI9SUBxG10gsyQtYKRYEEm8jYjhFDDDWfxgGJu3y9OhxIY/GPU8aEWctt2/4QBKScQZS1gh5svSwESqBnsHYId8NDLgZotDKbCwQ11NjZqMJJ/8dMkELw0ExyQVK0j04hfV+bc5r2WIGDVCYhPjHUK1J9KUYHaSacSrYqRIKcJ/zge+/gD//BT7D5i1+h7N7B1fYNbn79V7h877t49v73gDcfYzOOoIsLXDx5it1mBKQgxoBHj67xo3HEpzdHyBe/QCpv8J0nj/Gf/OAJDi+faB7VMODJ9YjHl1vc3NzgYhMgMuDAgu89e4TLqwvkUqqhxjuX728PGIaoz2XFNdKcmuWOHGi0nB6vCuZesWWhCv2eN/CjXNRja+Cj5KwGhKQNDVNKkFyscabzDW9IyrW3jubPMAhWPpjUeIXgChdrzp8po1oCWXNAmrfCgI2VvgU5X1V+nVLBMWVM2Q0YXl1R90btVm/8SWwevYHq20oLBfjkVQALxY1Qj9oJdSEfPRBZAIzOiru41V2ZRxW0YOHN8Hvpj5OBUA87ztxn+RT3vNd/Vbr79vPhA2yvt/tSfd2/u7TQn9zHvGACzWfSShWauyh5UrA8jijzBvsY4f3SUmqJ3z4/apjVHkW9ofLu/H0Dkl4J7r0B5+jcTZQHkrRkdQ1pryijyaezIAPo3T5379CtuANQB4oLZCTOxI1vlw5gLEHGMpzKAUcxLzuq4cPz07TE+zmUYfBRltW0FmCnH+sD0caDQQazxo5DgASyCi79g8Li+i3fsqIvq8LBBYNoQ7VxiCACppkx54LJ6r4XGTAOoSJ/fQ6dIE3kjoBskaYjDqkgZdEHIMKUPX/BKkyJx77CXstIIpiyICOrEpGzXhuC3Kk+YoGslAlezSNYF/CMgpxQD4RXwnFlJRrIcEXIZAIEgpQCckpI1uTLk/aKJY3uDxqyEDgii8bcortGccVBmttMBasJF6giAehrl2PAI9ZNMs2CfRIUE24kFrNMhFSs3C48qRSapwFtkJdzgbD2B9HykRZiJB6q4hvZlUO1Gerh03tES+aXUnC0HhF+UHNQb0fKRa3IyXtJAGFKiEQI2y0QAsZhgwDB1dUldrudWpWZMW43kJJxPOwhQ8Tle89weHOD6bl2hfewrCknTc4vLeShEC1QP+dSm04GL0wAFc6zxYJHZmwGTeTXrsFcmU1SDWDBiNxq2SuVHsbRKxMpZwQJwCAYrFeHlILDpGfkaH0z3lb6at60FHin7udFAlp3ETHBpeF3Wi1sDIzdGHB1MWIchtr3BM6Mu/PpR39OGYwJDNGcC0vIFgCpMObEmEzplG5MPgp1NNj5tBBLEi2nGwIDoXksOARTfnX/KN8WQBglBs1Hgu4R94hpxbLW0Vqnx4wwxosWoV5mzSL0FbC6Ah4CaE8HDbXZbDY4HhKudwPeefoEf+93foLAjDkR5NmAV599hst4i90m4vq9D/HkvadAmQEp2G0vMWy2KFLw9Cnheib8+N0LXFxswbstaAx4Z/wQx+MtPvrky6r4boeAy3HAk4sNrrYjfvV5xtV2gzhscJNuccyecK3A/ThNXdUoa1yYU+XZ3kTU87/Uo5EQQ7QEb/cY1K49EAAh5dbzhL1/iJeItf4bXo7aqnqp8pS7MtdaaITIm32ql4vIQ/+Uv2qRCw3Z8tfdWFNDRUSNFbOF4Kas3v9gnmkhrVR3OCb1dJonntAAujcUFKAay8Rff4tzMhYWZpzhJ27ckvt4Tc88+nCQe36/8/XT1xzot2C5RV6GGVmlU+you87iap2S3CvLD6VmuF6CiiWaWaqXS+8Bda8t+W/OGZ9+9hl+/cmnmI5JC9UwMJWCOc+YjwcESQiBMY56hsmiCdxAXTxKQoCbNzf487/4S3z/ex/iyZPHaAngD37c+tBeplaWL6PqdHc3CeDW2PvIAAN13t9ez1l4NdDJK7p7mTogB5Y2Zv2JBjTqR+96JxxAaKXF0qJipBj4K9XI5QYlHzMVjcKpwOvMQCvAqF6lNm+LnIx7z9V5enipGoH2mgjaiVhErUgWAYOUi5VsVZdxMIaWsyXdFWhjIkRlrCZwN2lQ62FKoKCLPgzaj0JENF9TVNhuBo01ngB8cTvhcpzwbKcJwSzA6+OEuQgQIiBJEZsURBLM0KopKMAsCbMp7L5pFEEbg6+JwJasW8iEuiXj2Sw7wBih1Z00tCqCxb09qhB6aVaKFuoQAmLQ+TrOCbPF86csyMcEpiYAHEBoRSezvnQbUkMjjDmQjtWFGiHiZpqxPxzBEBTSEqi5WNUeZu1GZkqb6R5VwBVxy5ogcLHKJW2jE9o8AGJuf65/12ewcIBApL04AltJR2UoMQRg3IBzrvXtYdZbmWfwnBAFGLc7jBcXwHECh4h5nrHfH7DZjtjuRiADN8cjeAgYnzzCHBhjCEho3by1pC0trUgV1FrIWykQC8mo6qTAGjFqeJQwaSnRGCxnpJVEzXnGUazrvXn6gikwXiChj7tGlyCcrCt5SglqkWcMQXOTtFfC22uB7Ok+JkVo56X/nAODYsy1XYDq+wIvkywYB8bFdsD1xRYXuw3GIVbP0iKm1ZimKrCznTfldUDrizBbkm2cZxznpM0g0RQ6dEyYyCoGhdYgNBpg9dCmGg5mjejqs9bzpcYS6Y57NboIrO+MCgMIVyu9N9gT0c7SLvfcqu2eOG8iV4r25SBo+VituEW4vLzAsw/e15CIecZIwLx/HzxEbJ9cYXzyCPTe+4BMwPFGwfF2i6vdBj/8ySNc7y4RSTt7H1LG62nCm6stfv8w4XBMmGdtprQZAi63A5482oGIcXucMIeAl8eE//Drl7iZFKznlFGKdjL3NfcqXtkVbIJ27F6AjICcBTlI7X2zCMNTOyWSg36TBcUAa03c7wW7KY+AVQFEE9cc2KoEcq1a1ZfIVZBBiLV6GvmqGoBs4TzZPDWzld8l0l45MSo/ySKYks6lNyBsYbQt6sBDfR1ACTRP6K0lWqpHS2lz8qpbliudfLIqeqZE1t+lOgrPMqv7NGFfvM5Q6kYqSAvY6y/ZRzzU18+BmwfSHYDQ/U3d/5oRZxmadNeToZbtw/GI//5/+Nf4//yrP0JKewxjQD4ecTu/wP6QsH/9ApEF11cXGIYRQ4yITJitOEYWK3ojBYfDAf/v//Zf4i9+9gv81//n/xMeP3oECSflcs/M8R2vRJ2zpjrrEXBjSzOqnNX+BXdft5cWCnc/Jp+/+vcJyDhDTc/oZFcPNLrna+FJvp16oKEejbzIzygVjHgvNp2mAi6sle18PqQfz91H72fpFORWjdNAltz/uAt6eHUpO7CmJ6oiUKj+nc1qMiVL2DWFs8DDQvT92pzMeCGxWvSSAHMmUABQVHkXwDowa3OXSGQlV0fcTgmfvz5gExiPxhHjhnBBwJAL6GKLnAsiASFqSdLjzMhhxDQGpAyLq9Wp0xAE1bmTEAaoNUoXNSNLsWftEwhtXmxByyBg0hyFGitnri0HLbrXzdIWlN2Eoujeu3zD5ouos8qRu9JtmQkINj4HGF6NxM0GQoRbGXAoCdN8xAjBbgyYs8YUbz0e3MGJiJXS1XHPOVlncwbCgK15h7yKSaHWJVcVQ7ZSuqpIaU1/Q72mEM3iCeaqumtRAFgZ3mCHMKGUhOrBKRnp9hZ5mjTmM2tZ22maUYr2AqBpRjrsQQQMuwvIJiLd7sFjBGIACIhFwJwQmDEOzbrjdeph4wFKTRgFoa6LiMbpuwU2RCt9aaUzSxHMVgVnnmdNyGfCdhzAW8YYuDIiKW5BV2+WP6sqApr/M6WEaZq1zCVpLDcBNf78bwedkeCdlciZWN+QrE+epxMOqZafbMBVixXstiOuLnfYbTfVsNGsQmbZt47aWsJUmXGwXLAYIogJORcM04R4VAX1mFLdD33ynYONITC244DL3Qa7ccQ4Rs1bq1Zvt3o1D5gLFOWNXp5UG74lywdI9reHvQCMUGP8LYSxaInXJrBUYSLXudDPoaitwb8P4PXNAbf7CRQ3ePT4KcIQwReDPlsIwMUG2G6gZswJ2L/B/s0rFAF2ux2urh/j6vJCDVJTQjnsMZSCzSB479lTfPidd3B7zNgfb7ENgstNxIWtz3YIOMwT/vijz/Cvf/4Z5pwtoXopaCGooQPOG0VaLpq3WSywELT6XZ3bZsmX0x1YwWyuRTfcSu0gBFqJwNarBT2iei/J+aPlFbZQrpa0X0GGrbcDy1JQeXFtvgr1hg1DwDCqYQ2gWsY2ZfXqNCWj66dkxjT3iPm431ZqhsH+NaNeUScynHGqJGm/kvqV/vtw0McWiShfrUx1MreOa4FpnCcQsLCI9x+R5efrWO23uyzyzh+nvBB08hp19z3xVix/3k8igv3hiI9//TkurzZ4NAZQukU43mKkDW5LwfPPP8V0s8Wzp48xz5OdoYwMwmYcEWBFFErBr375sfb2sr3aJ1q7V9YNlovtKidnVrwnTtM3en7hnu+7TVyXq34HaxjQOEW093kz6u/3ELlRyPQtdN6XxkGWxib3SPTeibPhUQv5sxxv25/3Dqz+cnd32utENhdivK1UQ83X0cP7ZBSp1pJs3bt1E1iFE2jCj1j5Pm04pFWBQBrzCoJZXzRBSMhKsYYIFg/TIXAxK5tY6U/RxeHgCjUjbkZ8eXMDfrUHmHGxjbjYjeAQEWKsyhoxYy8Bx+ERbp+OkLjBuN8jffkc+fUrIFsfcyKAA4gCQK7wap8Pb1LHVE7QqmgjQqsoxST1e5p7oNZB2Jitl3H1/ug+Y2j+dAMZvYWhKh89v7AcEQVpuos8vMhD1gBNlKdhAxpmzNMe+TgrIICAN5oHU8xi5lavVDTueE4ZBYRh2GjZQ22TrsJPLM/AQsgIJgDNYutz4xZGF4Ru5SkQCxOzXhEQq4Kg72sFK8FgQCjf7jEfJ4TDEaGoANDOyDMIBbLbIuWE3XYDigG3xxnT7R7Hw4TB7uCALcag4VfWME9K1lKjUlCKApBgsaQp2zxkF9rKHGoeinEG4y8u02pYVSiEIXZx/wC46BxqvpvUjcDM2GxGDALM84yc1bIeQ8t90dC2t1c5+GpSps9eGciEtu/p7AqY+CfJqtjZ3+ThIZbIC7UqDzFiMw7YbjcYY6wMvo9tLTlbsQXtSu2JxdG+T8zW5BOV39ERmLxUrQk37x3DgbAdIh5fXeDR5QV22xGbcay9f2pOQNX09e8qXODhfdbMMSUrXJEw29l0j9cQ7dzVAg86lYEzSrESkCRVbKgC2+axWEWslIp2+Y4R+/0ev/z4cxz2CReXj4CLC+BqC+RZw6MCAwh2dAV5mnF7u0dKapg4TDMuLhlx2ALIyIeMIjPAhO32Ak8ePcbrX3+G25sbbAPh0cUGlzsNrbjcjfjFJ8/xs89v8PmrW5siqgYBP8eA1MIjJqtrMYammLUk+Wglal0hcUugWzp93qq3rKgxrGTvpUI19EmXSYAq9K0anRmtKsjwsCxq3pPArAVDYqjhkM5OShfOlqV5Th0QCQAKDM7ac4eIF7x7ztkaCTavi4ZUtJBbr7YmbzMfcb2P2hnqgcWd5nadgu2fJttTizfIlCizYKsRu50dN0qemzkHcWbTtlsqp6oj9Dysfrz30YmyeEdBPAUXZ/5evrcEFvUydO71poD3TxBjwKOrK+xvX2O7iwhhAA8j6PIS4zvfQ/no13j+2aeY5wwtsKNGzVwAWEgzzTNSsWqcRXB5fYWLi53NT/MOO8Dow1HPAg1X0k2OuqexV9DdM+BVk04BGAFnPFbkbPlk2qmbz6aU36fA0+lfxjP7vdvfdwmMlv/c0CadgQzVKHVn+E3O9ONw3fIO6CCcbA2Vv35VUt4h7lhgQinfMsgopWBKypTnrM3jQmCIV4AiqxluDDRaxRVtUKe1vIm027bkgiAqrDMAqW5qlRTFBLAyXICkIImgJMuY19RyTBzx8asj3hxmvHu9weOrHTajYLcJiBEQIkxhxM2HP8WrTDimI8bNFun1LcI772L/q4+Bly+Bw8EmWAWCEFWFMgtqrXGd6xP2YEImF0G1ZqBTYkwpZbBVY0Ltn+EK68CxWuaMj8H7JFSFCqjKQnX3iyu1llgKZ2Fa2YlZARyNW5SUME9HkGTsBq2YMyUNz5lSwWzAMVkjqtu5IISIkRmCouU4/dnN6jlY8ylVrLgbl9SEpmSJ7jlnDXmQUoVdMaUsF7FiAGqNC6SehKuLS8QYMRMhklb5GsKgPTO2G5SSQemIYTMAMiJDq5wNadJuy0wo02QeGG3oOEadv3GI1p8l1saJyuAYcdAyfHMKKLcHBRqlhSywLruGTqVUy9YyaXhMGYYu3tK8VGb5LCVrZTY7uGLCTWO0tYLXNDH2h6N1hLdKV6RA7u0HGacCf0leFQjsln0P+7DeImaVZa8654LfvWQWu5+MGStztEpDtq4AaoU37bWQasNPQPmw9+kYhqh8ThR0aG6R7n3la1mVO88JADDGgKuLLZ5dX+H6aoeL7UYLFcR4puGe9PpHFZjZAM80ZRymqZsft5Rr4Yho4H4cWmIzAMTMzYptAkdBRWsCWiAohawUeQDgxT0K/tUf/wyf/OpT/Pjv/wQ0boGwBRAs4zgDJWnCWwGOc8LhMGE+HJC3W9zujxg3EyRskSbB/jgjFeXrHCJ2uy0YBYfbG+zGACHGMAyWk1TwL//qE7zY5yoIXfEAxPIY2EI5GSillkxvKpICABJV4PU7OncCrQKleyrXJrFuIBBLivZQLA8rItawgwpsxQV9buEKDjYNANfiF8TVSxlCsHWJIESMRJoIz2yeNOct7r3S6IBiwIKp7Q+ils/nCfDJqpiVOp52yjQ2G1UZe1tp4clwJbkHFh3Q6BWp9veynKqCCldBDLz6ufRv1i/3IU2olXh6L8ade4p/+QQQPehZ73+xV3hdQbz72hJENEXylAN3d6oaOdXnJgDDMOB73/sAjx490j0dR1xePwaGK7x68Rluf/0XuNhGPHr6LraXj3A4HI1dZFApuH2TEaHGTbXpBnz/w+/i0fWV6T/S68Cmi1MDFEDdz4ufnWHGPQClBxj2z5VuLwACar87OOym7M7cnPX8dJ6Mfm7PrpuNeQme2lsOFMQMse6BqbqgG0Ck92Y0YNKjMOp+UjepPTTqNMu7471zvkyvJEYh5b3VMPw19PCcDFsg79mglUhUIc/SJolDwBAHbMcBRGThTsfO2qJN6oaolu1UFLSkIjX/gK3ai5jSLaUgl6QxwyaorEYjJg74/JDxcrrF9esJF2PE5W6H3fUVpt0OXwqhvLoBxgGBMjbjgPj9D3D78jXyxSUOv/wV+MvnkNs3FfFms4SqAFGGzCCLgYYKtHrQTREyq7wfB0eecI+DzRWhgRaviQ6yhBwJdRN5siMEqtQTgTnCN7eXO/TP5dKsAFWHsfvGzQbTdEQ53GKQGVIijpm1aWApWm0pFRyzVipJAgwcMIwaV6kW5VIP0xAjNsF7bZQaDuD7ZBFTKC4EPfRDXZnqwdE9xTmDRMHW1XaH3bhBEcFmM4JDwAGMtD9Arq3D+jCAY8B8OKLkhJIJU8lALhhnQj5OCOMGYRyxnzU3x3VzJg1V8OpQwtaLIwQNRSLGENUCKSLV8pxNcAeLrwaUKR6ThjRpnLQl8rKGU2nisH4uZS3vWZKBruLzFuDN51RR1AZdYsqylKJloGF19B98YH9b6S5jqkC6evw0P8oLHaTcPBkirfwnmVbP0sJkSik4zLP2FJlnTMnCjHLGIIP2liCzZZpnUs8pw83i2mdBzDtnawrCOESMQ8ZmGHGx1TyyaVbvQsotGXszDLi+3OL6aoerywtc7rbYbTbaqPTkyUsHGt3G6bk5R9ZyxSmzgtcoZtQI8PBG7yXiHdJdGc9owtKrwzlvc56WBVp5dYha2U2AEBSs/OnPf4X/77/5d/jeDz7AuN0CQ9QEu7moR4MKMGoe1O3+qIDoZo9jHLAZN7i53aMg1GIFNQTJevqUnMEQXF/ucHy1x3/81ZfYHyb8xccv8OXNrHyerX6+8QuIyQgGUEzzCWrAafHGJngdaMCToRt4zIVQWPmZJnbn9j2Ld64gw3LxauEzofo5MeMOw1g4eclsBxdYmEgJRflPIIzWF+liuzFP16BV0NiLQWgI3zxrYvc0Jys6IdUIp86UFoKcs4Oj5qVpRNCKUzo3b7Mno8XFG5kxxyBaNdz0uRbAPQr7qbJNBA9raZEyDjg6xfuEj1H33+nYbLkaAHno1FP76FmPBd39eUcJPlWQFxNxZkak+7l4W73/P/j+h/iD/9nv4c/+8uc2DQUBBVFmPL0MeHzxHrbX7yAOI+QLy28jWFWjYkBfR3J1dYl/8Pt/H7vd7o7SXcdfPRadQcbBc33txINRyv0gg8iK3vi6L63ximmoGh2cd5wFGncAxl35vJxC203Vk6EP1gdM1XmwZytdiFTLD2s5GK5j9UBsoZx2YKFf9qUnhxbfWzyvfabvq8Fm5KEH7uNvUF2qdRKNbPNTBZdORsoFXEQtstZlmYgwpIQps1pms5YJzEXAISBl0Wo/2coVRhXygIZWealRyaJJ5FJAJYNIw7ayECgEzCA8n4HXKWObDrh6/AzT1VO83t9im2YMuw22F1fYPnoC2l1gf5gwMiO/8wzx0WMcP/kE5eULyPFgQU2+mctyY8Otqb4uBgBAIFZFQQCgtGWqVRN0uay+Oleg4Yq5chVtmJIowdNG+qZdvkG8VGMmqomckFZrvd8gzIy42SDttWpNIQaEcMgaJjHN2UrTqkCNgTGOIwYDcyJq9XTlzMMJav1/0XAfMNcYwRobbM/IYBRiFFJvxubiAgxCAGFHjEfbC+xCxBhtn0ET5CezJg6v3mDa7TDhCkTQpHrRXh9Ha5KWD3sIBBxGbC92uBHgcJgwBO1nQBxAoiCnlAJmqzhDBFBuilDWimLMpKUvY9YSx/CGV1SrUeVSavPFGHTva5JvsSpZqrRMk1jukit5GkoYzDKrwqeAoSBouxlwdPZjY3ar6NtMZ2PBXQBTY+6e3N2H2523vjpjNOAn2hPnZn/Am9sDrvZHbDaj5tAQo1gCuM73iTWpu6R7S3Q9VflT0BmxGS1uvqiX1kFMStrnZDMOuNxusNtssd1oqNQ4Dqj9NOpcFJwLa3Vhwr7W0sYm/Uilyx8wiz659as0qxlZYz4RzT9zdclNZ1r5jDDPur9jDPj0+Wv8d//6j/C/+V//L/De1SVonoGcoI1lJkASAAaOGfubY73HdDggzzNSSri9ve08uloII88zJGcEBna7DcbImJ7f4I8/+hJvDglvbidkseZdYuCiAgDlv2zHgNCHGgGqQZMJ5qbnEzXjlRqwRBPePbwMUstc19yI3MIkhcwgUSM+WzhGIFQjQQxce564IuXWUl0LrZC42URsNyMudls8utrh8mKH7XbEGAcEkwsp5wowDscJt4fJwuW0d5KHUSmf1Tw7rWjmuXuec9DJgqqtnQKQt4zuaHLUneUONNjrVVHy17pP1So/pze4gxUss1SAvuqOX8nXumnx1H3Xbiv9rHfzf1e/xmk4V7O2n3yGnPfdBRcNX5177Q77qwOpt3UjKQDLFMWjR9f4wz/4Pfz6s88wH/fYU8EwZxAJLq8fYUoC8iptlacTBqb2t13/+x98Bz/+0Q8QQzwvF4CmmDvAMKt+BdmQTuH2gh6nuQumhxi4qA0yYcbTTrkWq6pUJ7lXxk+U8FNgcZ8Sf/axRMz+4PdoUGMZ8nV/6FQDJHKycj6MM56KHnTT4sP3/WFXWp4T1vbOX/mMTg/PyTBFU6AKVqzKsS1kVuvjnAuOU8JmmNXyLr6x1DLpIQq5FHAuKCAr35kgwhgDWTKQljJN2bpZE6OQtK7bbmmoUlqrisxEyHFEun4KiSNoS3j0wYfY/P+4+69eS7YtvxP7TRMRy+y90xx7bV1ThtUsiqSaYrPBptRqAXqRAAF60TfQB9OjBEiAIKkBgYBIdpNqskRT1SyyWPbeuvaYzNxmmTDT6GFMF2vvPDcPux4qOw7y7GViRcyYZszxH+Y/rvZ02rIYw7wsqOT23714Lta7/Z7ly89xv/glTCMqW55Tr+rMdR6zazzdNW8yxpRkdUgbugTeJ1YPXZhITAFs0q8+li1JzosRUhG7ECmAoiTapE0v09Z6owmY5GEyhXYze1yM1tB32GFDmCJLhOCkYOG0+BT7LZ4Yay2bzjJYU3IPtBJFz6AIiQ3FLTOm75OnIpaERklKlTCf7BWJtqMbBilKN56Yx5FOa3am48b07KxlN2zY9R3aWrx39Ik0QLuFOE3o0xn95SvGzYZZa+I4Jsst+PFMWBaurnZ0/YbZe073Z07HoySOZqGHIjrZnBVCrFWTMcH4kJhaFmwn9To6axm6kHKSdKl5kfNqCsgsoTQphMynReOFyWV0AUlhScniyG/FEg1F0UlhHZ3ReGtSOEcsnqp3Xdh/VY/i5n7b9yRq0iTws1VfGO3qORmTZwEbG6HrnONwOrN56NlsNlLNPUSWxbMZ+jJ+WYl33jPPC4vzyTOYXdOpsnfa3JSScVFaxKYPkb6TEJ9cqA2irKG+w3a1EKbIgiZZOHtQYizzSJ5N5oFzkosxz45pcczLkpTMyuJXwknTNTNzWSz3SGxTWpK7Y6R4FF1SVIkpT8MtOCeWf2M6nIv889//E/7gD/+Y//Kbn4gno2SPK1gc4ec/582rWz772U+ZxzMheLQS7yOQihbm+gxS12GexTswdB3b7YBCMS6B4xyYs1zNypjKTyO3zJW3JQ1NY7UYVsTq1YRKNLk7RqtSQ8hkI02SqTZznAeVwusSsEiejBiyop6ATsi1jSr9tTJqJZ9FJiWjks45RorMJmZLjlDH1W7gel9BxtB3yUAnRWoz49k4TXTWch7FOzfNjnFxBOfhEmDEyvqXlcOi4ZZ18haw/x4ddb2Q9rkagvJUOEoBF0Xjp/z+SXVwpYGlPI20poqXaMWRm5ToJ6/WgpL2zo9fwgompfmawUvWE1T9rgEYbwMb8jiXXoy2KXlXuaiPwOq2AHSd5bd+89f58vVr/uiP/4T7+1tGfaLrt5h+A2HCMrPpxFBmjWZS1fMs7JqWb333W/wXf//v8tGHH0Ax+lWLS1bgWwt9zP8VuXmheK8SosPKC1D6QDVAQ+n1MFMBxHpeqJWBtwDQFmAU78Gv8GaUfk6jnDBGzJtamlsVaFD2o3UuYcMOF9+iFaRrt21bt6caQMo8earlqslhanHuZee95XhnkDG7bCGRxFix1spTZDrTEFMdieBTNUehH1ycZ3ZSwVligVlpCqJkpVoJwcOyQEwFXnJnaLFEZgVf7iyJ3UVo5kGJkeV4RivDzUcfcnPzDIWiHwYOX35JMIZPvvlNTqezNGFZUFfXnPYD04vnhDdvcJ99BudTUeS7TsImiFLELmRgkBT6zEOeqRMB8cCoWuyLKJz5stAkF2FxIeX/JrS9QsukCRSIUWKsUWKtDEkgZHo2DcQUp65z6EeqYaG1QncdfrNl9JIf4yJgexQG746Sf2EtfWclIVFR/sUUEoCCDoVH4+cFPThJ3NeaEDzLUoGTi+A7SQzrNxv6oaffbhgOB7745S9R54ndxvLR9Z4uWVn3Q0+/2xGBeZwkQVUJoJnGmW63FaYwwPW9RMxZzbAZ0M6x3e4IIfDw5g1+nPDTAkryd2IqMOO9uFPrRqQeWYyW5BnpkjIydAZFj7c+9adO/a0Qz54UZZQE3BTmgyKX2fVEZu8xQdH3NhWdlPmu844SJaxM5oYoGlZrpqT0pisWL8/7e7RbaN18sxUnhohXdS1IzkRLz5nIDWIgVY4QLFdAmFzjPM7cPhzpuo4YIsuyMI4Tm6Ev+QslFC7VqDmdJ8Z5YZ4dIMB5XkRhzjkg1mh0qPVOtNZYchE0MbrkIo3ehVTsUmRgm4uRnr5RjJK9KAqgn+aF0zhxOo0czzNjAkG5LwrTFtIfzldCgixaa/hp+jxWr1C+lvQnzEtgWQKQ+hrDH/30S/7xP/89/u5/+rfYDwP0HXSDAI5tT3Ce089+RnATu91A3PR0my0Ym4gw0iaWPAA+hQ36GNDGsttsOZxGbo8TLhUevVTGtJLQsFw5PcaALUxYorQImJK1nDfnzMoUYqZElp7JbHJGKymMF6R+iYomKeex9J3PvZnqQEHd8KVtEGNl2CuhWWlfKoVMS9K3JOhn75jVudJ38oRkb0get6ThhRDY9DnXIuB0EGZAwqpfiA1DT15mDRDPcyBz6r+vx4piFUqNhDXQSEagy+9ZA423K0pZk4Qsp3IF7/y74t1I56vLn5XfNtbxZu03pzxx76d4qNqmqfLdGmBcgIwCLhqrdlZqM/BMffJVsLPqXPDJRx/yv/pf/BdYo/ln/90/Jywjthsw/Q7rIptBM3Qdne2w2mAVYpxWkoPb9x2/8zd+m7/7d/82m80goXta1lihllbrcLdLQEGMjZGmAoxcQ6iGFWUPeGZFSnoamWGsdSVnxV9VcKXrg6sWuJVxbrxDFwCjvH40x2Ie4lWf5/1LDCTVW9qGSD0JMng8j1uA2battlldnnwx3+pEFgIEtXqeXzVf2uOdQYbLITlArwLehKIohWRl1EoUrxgj0+IKSHAuFf+JVVHKrmuxBBsUlIJH8ohSE9ka+S7EGp9GWjx55jdjDEBcZpZf/Bz7jW8SPniJWxaMsTzc36M6Sz8MTG5O4TAd0zJjY6DThv13vsP84jn3mw3jT/6C7nyiM1qsT32PQiylzrk0GVTJo8ibg8mIORGw5DjnbHXRaVNURIJRhOjJ1qaWsqwoVuiaFF6EWwImQRZnBLRRifI0zRWV6korUNqw2e/R1gp/vtYY03E8HgnzRGcUm64Xms+0YclmLpSYpKRSiYeWuid3DwfM/gq9GfDDhmU8E84j2vbo3Y7NdkO/23JzdYXtOrx3qMOJCdnQr4eBzmi2nRXq0eBx04RXGtv3WCQsa9N1EMGdR65e3xKu9ozPbxh7i7KaYRgkPt45rDVse8v08IB2Hq2NKKBOLH3OOamGqZXwdocgxAORYm1UeAGzOQRFSfKoVqYIW5loFMXAmiyYkiKTxoiE9by4pNBGpZoNqkkYDQUsOl/dt4UdJmZ2m6bK+Ht6aK3wPs/15otYlWBIRh2Q3BSf6xPIiTFEiBqV4uoz60Z7hBA5nSfe3D3gfWSaF87bCjKysqeVAOQxhaVM88KSCilmoON9KIm8NlWRzuGL1cKUEoljxKsmGdd5JruswhjLIzfP1H4n4XULp3HmeB45jTPz4pqNNLNoVYVH61DARJ43EvKVE5BJ4Y2SSJy9Njk+WGrMdSLffERrgzWR3//DP+OnP/05v/XiRkCG6QQ8a4v98EO+GeH51TW3t7d8efvA4iMhSmisyaGWIRSZKQVGwXaWxTluH858fndOOTe+Av9GbsXgS0ioUpHOiLKeny3nnIh3SDZoHyiAKoddZWVMK6G2VVEARrQapXJSvl4pBSHlkImnoIYypI4n6lpFNwjaFQ8lCLtf+r8YX6pcz957Se6fU10jahJ6an+mAG1gOMQKKiTBPRR64rRCiuwBCvtZ9sJnxqn39WjXSlGQi35YjUetXT4nEFPGomy56YTVHVZ6RWyvpShejSdatur3y6P+5EK7vFDX5JlUAxRXu05tYrlZBhh571crhfhpz0Y2sCWgUZHHZavTefk2soft93s+/OAlopsI1bNGo/uBMcDrL+74/ItXjE7YpbSOKeRaE5Xm5vqa7bApCrRGo1I9h7yPZsW2JDU3/8o6fApgrJKjq0Ke17/IRRCeTbm3HEF0ptWcqP1bgWkegEYxf6SH1vFagY0W8JP3j/xYLZB6/Nllnkm+ukqyZb2/ZO/LJYBQbdPW7SvfXZ6g0hRcB+29qybyNepkVK5y5wOqWMLqZiesTMmb4EkbTqMEK1VKnUvbk/VPKwyRGLXEmSJKnU21EzLNpEyWbPGqrnWFsCqaUkHZs4xnxl/+nAVhC9ldXbEsCx/+4Pu4FOO+zBPjw4HDmzcMuw22E+Q9XD1Df8vwxe1dKkAHKoXOGC2W6xGp4SGkH6pYwPJzSWhUYmEyNZHYp35yITQ8+6lD0kYgCdKiDKNqrQwXpcCWT7S+IUo12kyRalLug1bJwhlCElCywVprsHZXwGIMkfEMnTVsO4kTVoCbZyJSv0Kl6ygtVsVMz+oCYHr8sGH7/CVstsxffElQjn674+aDlwybgc1m4OVHH2KV4vDqNcp5jkHiNjd9xzRPeDdjkITZASX0yGkWe+dYloV5mlCLYvnZL9i+fEGnFeHZNaiO3gc2+z2n45nT6YQ7HojHM8rJolic5G4QBRArItoLe0+MNd9IIYm+UGM1kxGkmbu5bxvFP9d0yQn4KSZcQi/ExauUhNT1KVxCKyFFcEgF+JDMvTEBIiDR5wpRgk15BO85xkBrU8gj1kdMHonkxcgypWFiay3/4iKqG2cJ7WM9RsfTKEnU88zxJCEpfWcL3bJOnlChiZUE2xglwT+HrGRPpOT25uKKusovHluIy5pMxdlyyMz6kdfWoKwghZT0W2Px50TlTZKHoQCN/Oxa+yJjJDlYrtxSvobQ1Nvwuep92uwQSzsqXVeJPP7dP/wJv//v/ojvfu87bIZBlHC/EIMjPjzA/YFNUKjzzHx/YIoKvYlYHzDGSfhjiEzzzDzPQoCgFJu+53g48rNX99ydlgJGJL8rKUkx17iQ7H4x4AhBQtelmjxajDqSayHrMABSeyjUKt1UOZuJN2IgeTQMvrHuZY9ZzOsx9WkLCsXiGHE+/S7mPBgBCbn4pjEGo2NJINfGCPFDZkPzkXkWL9vQW4w2Ys9Jc8Enr9O0CIXxPC8si8O7/M8XRqksrLKCGUnALM+JmGjFQ6LdfU+PSwW/fZ9DmR7Jl1ZxLNWMLxSu9q1aqV7VuJRAbE4cLoAgn8ijl3+px+V1sx6ZwUU5o1GE10AjG3hSH+QLrQw+sVyjemESC1PamLVWbDdbtLb4MBO8ZzkfmIPG9Dum2LGElIfZ/E7CMQ3bzVDJOy6Ox5BrBbFXoOMyRKoo4fl143mMMSQaa1J4VgL2iZAhP3vMSiUkr1fbmgZ6RhIQikU21+67mIAZxD0CE1lfuEhUD+1nocqjuJ7beZrWULA6ztkI0+bz5sn8eM0ocvXJ6nVrkVMev/aZHg3dk8c7g4w2mThESsXWVbEfrUoHSD9n74dUORUqyMYCR+WQFiuh8JBrKBZDKY+WrbmURQ6pIaltVtckQIUwU/mHA+PyE75cFq4+/pgX3/4W8+lMVLC92nF/d4dbPP3L5/TbLWpZ6IFr7+j7gQ8/+gRrO370+Zcoa/BzQHXJ9a0UC0ngaIPRhpx0JwpRQrcqxf5pleqLNNWGY2XN8RmwxYbZJMbEbiM+O6l6W+tPFCUlZoUiW9yzslYLvcWoij0mRohKE5TkgxgV6XSkSzFRXtVJm8jUAC1KbwSnFOb6GdtPPqG72qMjuDe3dD7A1TWbmx0vPnzJ0PVE79kaA4cT5jDSR8VgBTx6JJE2ApN3zD5wZaRvD8tcqpz7GLFaMxiNiRF3e4eZJ/rbK+Juixo6lv0OPXSoacbdPjDdHXGLS4qAr4sqikrlvIcZFu+x1tKZHEJjS4GgEs+ZwG1bjNEnNa5VHkOMMkY+lDnqvfS30bWOSK4OHwEpP+KSQBfl0S0CUoRjPKPQdTjd+3po3bqc48Xmlvo21qrOWeg/wiRUGtucFyMfq0buyHvnPKfziHML51HWk01FFHWizw4hSlJtSt7ujJEK3w2YyPG4+b5aPfZOrFpYDATSjjbpsTxvfkFVZrJyPM4ueVZkHmTijZzYHCPkhGudPI2irGcjTLuRhKK0+pKMXftfa0vQTphDQsBYKWQ6jjP/z3/8L/jbv/Nb/GA3CMX4/R3zqzfc/cXPOHz5mtv7B758/YZxWWCzxdzs2dxcsbu+Qg89PkTmaWae5gIYg3c8nE58cXuWUClU9RqI5gZKaL9jkNyOXB07A/u8R7SepQBiOQV8MnoBiUEqeSJSzkWmn20pImWD1qAqmx6xDYlot1rZtb2PyQMR6jmLr8QRJeFclTwNa2fO54lNP9Jl0GuNsN4ZXSrNx0hJ8l6cl7ycxGg2zzPzLEn2GbjnEY+KWpQveWVbY13uj/fxyIANnlKWyptGgX4sPS6PlfX5Qk/PemapBE4TagusaXZab0Yzb/I9EqhnFT6VV37z+9yCr6vVPXXKCnBc3u/xUVqSHlHkjCigWe9USvPs5prNZuDhcMQtIz5MjLMmGMd0HvEp33PxkagjvTEEFM+eX/PxJx9hO2EgLbTeST4WhbhtTH6bxjXGdYJ0ZuLMnt4ablRBhlKk0CzpgzYPpL6OAjpiJnAIENe5Innk22rdJXyujPFFfzaKca2HU+VwiLlWV6LFLq+bZ8jPQZqFjZ6mmz7U5TNdjB35vKf6sp1vGXyrjKi5AIIFt17OzbcfXwNkxFRXIKHJVupmNSBUtpO8WSglVXNlU0+J36mR2fmSEwVjCBgvoUM5NlUKjoREXaiJKhJJlVDTs7Yxx+2AaCL6fGL8yU9x5zM2FWvrd1vO9w8QI/1uCykGXnVWzGD3Z8ztPR/4yMkrwjjSKc31fieTmMBiOkwUSlKVizTFSAhOQhlIyeI6JXYnFq1pEaUh915Ogpc8j7BCsNkyWYAmdRGWv2Vi6RoHrPJkiWWiKmWEFz9GfNfj+y3T+ZzaoppJnEMt8kwUqyA+LW7bs33xgqtPPmF7fU30jocv3hAOZ7bPrrl6+YJu03G13+EWzzhPjIcj3WHETAtGK7bDQCAyLxNXux27occoxTzOHMaR3lpUjIzTucSVd33PYDU+WeYYJ3aLwx7ORGt5eDGjPhGPSThPTIcTzi0ShkXNTckUlFLo0WGxWIts/knxzDLZp4RepUTxFCVHFeCcQ3sgxwML7vUxCwGVKFYF3mXGHBFKAjyjivjYgOlAqgkRSlhDQDyDCkVU7846/VfzSOaUJzBGOZKSmQ0X2RjRxkPnwmaZzjaHpFTDBWldVE9VVvYUiYpbgadaucsmQZofzuFco3HIPkurCKytSrkNb3tuyvXXG1FsrlWND85l6ufqDYM2CKQCjDaBr2zEtDKx0h6Wzbm5bogew4JSHRFF8J6u70Br/uW//xH/5J//az7++AOuX1yXOgJXw47hOtBNATaOV/MD8+TRi6PTGp0KHDrnWFIYmveOaR45jWfGxXOcUn6byht6LIpMDql1zXNk75I1hqBlkyeE3LtCqZ5yMSQvIxltUrhkLtbonEtejlAK7pUwtJj/NfM1bcCt3C3W41gtjFXRjaigcGFpwOxakRJiiXOZl1l221xc0ZiUc5jC8ZInKnsvMn1ypaxda7TZIlrCMrMCU6IC3s9jHS6y/vzik0cKXz0ai216n/9UXbzMqprXsVp/2aah6hXKZdTqg6J8prVD4/1ox65aotumrYFLbe87anm/6ohPv2lnlOhy+RlEZlxd7dlueubpjFYOY4VNb1pG/PjAPJ3A+5SHKkZFrTW/+Rs/5Nvf+ibG2GSI0ev1VJ6vUdAbva5a/0V+hZj1zdCcUw0tbWhR3XSS8SGEQh4kQAMUOoVKSz4nIddni80l8kxYhyvV5b82jLVzcw0waq2dkqweGk9MzHO4MRoVoNd4LDKQyFEZqqYkFANH6dP4eA21z7UCGqzuWeamWsPhrzrencI23yB5K9YPrHJPkpPnspXMWEPfSZgIRBxIaFS+bqMseK9w5ToUs1wMHg2lroL3EFUg6trRefPMm0ruQB3BTBN8/gWHGPGnI1ff/AYxKp5//DG6s8xnYUY53d9jNlu6Tz7gxmg+uDux8YHvTh8ybAaMEdf/4Tyy1QaMluqV2e2WkreLpSXqRN2YvD9OrFDOiRcoAxPZ8OpmkdeaVjnEIdftkL+5sm8GFgKnIHZSkE5FiXuW30i7VCqcGLuO7tkNMSpOv/wl6nwqidfeiyVTJEpjtU+Lcri65tm3v8v2gw/YbDf405nT7QE9znT7Hc++8TGbzVbYkayl6zpU9HQ+4M5novfs+h59dc3iF948PDAvsyQ2WkOIAko2vWWwlhAGjvPIdtjQG0P0C/f398wx0nUDfdexuMCswQ0a9wvH7Zs3HL74kuVwAO9RMWIVNd6aRD4QU2JsshzmStMmu3CLshkkbCP1O0h8YtDUGMmQQHeURU4UEJFrahibqH6RBF3nAtoYIgoXhFQhX6dUrY4p9EcDIVE1awVqTYP6vh0FKJAsek+oAK3gzOxMxVEBkMapggxdQUYqfJatY4X5RzXjXMB5blRVyEOsFrG2zSKY5Tc+ZOapmpCeDSqqisLicSibXgMmkq+zbKoxKbWyuUijMlgI+RptP2alNyixoBcvyRrlrN3yVNncyGC5XyAER1Q1TwUUXTfw2ZsH/uv/5nf5m7/9Q/72//R3sNfX2M4SouLkZrqrPdsQ2RppS/fyGf3VHlLImTC2eeZl5nQ+cjweML1mCYFx8TXctpB6yBYuoUZiwBGPL6UCuskMVjoDw0hMWZohrXHnQ1Goc82LXKtnSfkhmaUrTQNycTthyctJmKpoWK31sEyftAdmsJS1M4meikjwZ3g0Nq0FUqe5UOqepORwZXLuDwVsVJrdUDzeuQeS1roGmFmB8SExUYWGOev9O54CGOmLx9Lk0blPKUZPAIzVQPFYTKVzV5dXF18WsNBeXwBGTHOWJDfqDRpwslLkWgH4PxRcxCf+rD8rZxbDSzJEKlJ4WJQ6Wv2GcVpYloV+Zxl2CkNAhxNhORP8InoI8rth6Pmt3/gBL54/K7K9gm/1JHSK1DaWeZ30zEJf2xpPEuDI4KQ+S+uVaJK+JeNczgnidZGPI7ngXIgpt4pLRbzK/reF8bV/pUnhAmQ89a+CqZKLvMIELcAwKya7zGZackxV9XS3fSr132iS7POczqF0qn3ilYHk60RUvDPISPq9bJ51Vy6DmDd/UcaknDxIvP+m7xk6k8J8IDZUjuRJESoaFC8Hq04WJb6isSKgSSwcShFTArpPCprWit6ACaJkmrs7/I8Dt4cDPH8GnWZ/fYPSMB2O+HlB3dzwEGF4dsPZRbppYhgGHk4HNrs9z69f0NuO0TnUeGJePKd5ru6lGMiiQTBE3rBiiZvNm2hJykxF+AqXVt40Y2LNcU4SIJVGWeEVsf2AthbTd/ggXo/dbo+7v8OdToQgVY+t6dEKNsMA1uK3A91ux/L6Fn86YoLHWCt1IYo8k3bFlE2ojcbur/nw+z/g5affIHqPVXC4PxKPI4O2DDdXbK93uHEmuMi8DJLkrBRXcyD2Aw+zw7tFqGy9Y98PTNPIq3Fkay0vrp9hOoXXmtkJeNtvd/T9gHcLh/HEeVlQSuGYOY1nAa3WoI4HJu84H4/M04SOXhAmQEyx0VkxCRJ6AImtKQSiDmmskoIaM5NMBiSyALJ7VYeA8skTleZ/sXyk8TfFwqBxXkvBrEhRmKpykJSZdK+QhFYuAuezhTW39z0+LgVxzmloD12S6VNYUw5ZItco0QU0ZDronJhdrTd5fWWWH/2E+5gGUMS1ct+CoQISqBZyn1maUpXlKOtWQncg12vIVvKccFsYUWiEdVYcoiT+ZggQG8+w0OSmTanoAxU45L5serZRjurzROrHrQIkz+kJ0aOVFTmloLcd53Pkv/29P+H/8l//I77z7U/5+Lvfgt2e8GLkcP+a13cjt+qMu+kYNhv6qyt0Z1M/OZZl5jSeuL+/4zweGDY92vZMs2NafLJGiqwss0HRbI6VBneaHadxIkZYUuXgrOxJV1SQkRXxopSn987lxGtfCjzmDTRC+Y2MWaazrGNVQnXynE7/l7m8BhKUfq9WyTLvE2gomzcSiqp0wOiA0u5RSF5M15T5EYpiVRfRBcCIsXjHISZLbc1heh+P/1gvzHrULtRZdXFmo9PH1f8pinYsM2ONNNbeiLVFOBsqHoONp0DE02P0l4IzSoPav0+ANNIUbmhMo6rgaLPdQ3/N+fzAPDrM9Q7bbVHHE5hOwrJT/ZoIbJVif7XDWFv20uoZrIDjyaZeyOo2EXqdm1HBxoqogRzelEeyAo2YwqUicR06FSVfY+11z+N+KU9VaVsL9OFiPcZLT8bFv1hlVlnbT4FcJYbTS69FGz766F8awzzWISaGVppZ99QEuwAYOcztXY6vUYxPHihGiN4X15ZPilZENtgcg2qDIYaIsVJB2SQLuVKZGFAG0LsALnPWS+ONbhZm6phS/Zq64edOK9Ylkzpd53hrmbBZmdNaY8YJ/+UrFuBht8P0PXjP9HDk+qOP2L58yen2joehZ9l23PSGB79we7jj1z/5lOfPnzOdzgzzDKTkb+eZ3CKFAhUlptYYLdWbYyD6nGxXFQJTLOfyXEplPv30L2kuQRu2N8+Eh9poQoTnL18KQ0vwuGkWqjjnObzx7LZbjDY4pemNxbuFYRhAwbm3zMh9s5VCp37MoI4YxSWa+n+4vuajH/46H37r2/hpwd8dWLyDJbDpemFNGjpCcJjepvwhyeYw3qHmwDzPkuyYJqvzgevtFh8Dp/HM3fGI0Ya+H1iiJIddbQY6JcWzxmniPE2SiGsNeI93C6NzUogv+tL+zqhU+C+W/BJrbErqllyHGHNhPGHyKc+uajHA7EUKUQpFRiWAwRBTFW5RSFSMNRxHKamtEgMxUCwNWmu8kVwhFyPaCbWpVtBbk5RJjXMOVExx2zKPTUyhW7Hldng/j6c2sZVqnEFBqTtiEzDIIYEVTFxWui71anR9n39ntNQnMan4otamuXFMjFWxbmJp/eWtJOvyIYNED4sPQkqQAatWq6Rw8Q6m2P9CglF7ID+L0k0V+WajbK3uOTQm52dkgo1WZXrU0090dt4/2nnUbp4heLS2kisVY7GQHc4j//V/+6/5O3/j1/nfvnzG5sVz7Ecf8lHfcfPiGXeff8Grh5ExRrA25UIJYcPxeOT2zRuOx3uub3bs9lccx5llWYrhKZRCchfPolUZF+8Tte95SsbHanDKlswQ6lgVI1Vo+jN7AEKrjFS9pqoOgNaJ+KNVJ7K6ue7rQjjaAjdVz35SeUtnrpWA9n0Gm/WZynVjVXQoutlKM65GPCWevlZ/e5+lyCMvjHr04omP1eO18hTGaBTcvP+JHGhwQAMwRNuuv3gaYOSxrDOoBRttAnrbjtVabRW/FQZRzb+vd8TL1/Gpb1T9SNWvIzl3LNLvXxKVZR4PvPnil1itmE5jmbc5xFkMQwabAEbJ801hyHyFhbx4LxojUAYalwnfRUe88CSkoWTlxYitFyMkR4dOugCoqNPnbV5GGzpV81QysChGgCKDHv97K8jwfuWtzN71S8OXPE/1+BeAkYxotX9VM3WkobmNpVOakLF1f6mig17KqSeJTN5yfI2cDAEBUcWCQPORY0Vlf4lSMdrq8lnwEvmcLUfZRZ2rmobE5NMbSYCLShfElUFDQXS5k9KDaxULoFBaC+15zKxMNTwmImwAmohxDvXqNcuw4agkYXy7v0IrxXwe6fZ7pttbjm5h/OQD9tHzbLtl0w8opbjuLCZGpq7nZnfFs92e03jidjzzsExrF7tK1rWyCdak4PxAWhv6Tv6GKJ4iHwIYA11Ht91x/fwlw2aTaOAi+6sr+m5gPJ2J/UCvDP3pxMff/BbWGMZ5YbfdgXcEL7kgROg6w4NVXF3dsN1uCMs5WRB1YkaqC9J2HZvnz9l/8k0+/Na36LRmOp5hdqgY6bcbzgrObmHY9FhjcYuEMgxDB0S8WXgYT/TastnumE4nmbfapPCHwLYbIECvNafTkdcPd3z68gNmozktjv12i1OwGA1DxxQjIXqW4Fj8grHQWS3eAa8apaCi+S6B3bxEvW74phV4n70OJI+SKgqlbPCN1TmmLSsLDRCXo9boCCorlkl2tlSbztVETaM1Rmm2QyfC2AcmJUWVIzmcSyc6XAE35h0X9l/VoypFabtd7W6yGddQKVOAxmWydQ59MqYJmUpK/jpfI4UWputlY0kbUkUj/CmWsqw21rZly0+et9qljSgJdKNTYr+tFcJzIl8O18nzBfImoUvyuQB9say7EIp81LrKEgCVvCjFo5z7NVZbZN2Osm9NjsuckmYQ0hYunthc/drann7oWdzMj375mv/T/+0f8v1vf8rf+gd/D3N1g+k2bE2PjR2LfoM/HZncwrzMTOczt3d3vHr9BjefePHimpubG1wILMtcWJ8yuBGjRwnMLZ68/DR5zzhPMyGz+mUdKLbhEs2wZUUkpljoAs5i6atipCJvpJVEJFsjW0DytnAdVeawqsab5vWqy9MzSt5eJTDIRrP6TJT9UjxigGr6KbU9h1ll4Jr1UqXEo5qNXquQ0Pf0eNT/rQKcjjJrCjqoRrPL09XbXmUluFyi0bJX90nnPQUwMlgoyt46zEbOuzAINACjDOQTbfzLOB4BDar+SWpvMYM2immMkXEcOZ5P2GGP7jbYzYbz8YHD4cB4OHA+j4XQJhsEvPcs8yL6WEK9ua8LAG7WSjb55Dex/LtgY0ryKnsM44Vi3rZfIb9vwYVQ6yamKS17v25Cpx7nL8jIR0XN4c97GtXI0eYnxxY0XOZlFC91lYX593lPqvev87IADZX3t8xqV3WdR6Axxqoi5evFCrxUFUDUQakgo8iqv2yQketAiFJcvQQ+eLRI8GpJipIMDZTiUcaIEjstnsUHGdAgG6XzOX5OOiTGamUM6d4ki3ZWMmJKmJHBlyRDlRJAwwWPtUCNRoDEQO8W+Owzjg8P7L/xTfaf3hBC4HD/QLfZMN09sNnvOahI9/IFO6W5+/xzuii1NYZOFGlrBAn2StFpgzlrXo9nQljwXgosxUw1G8WzIJbLKDF+Afp+KAwDD8vEomCzv2bYbjG9Zbvdsuk3bIYN5+lMN1iGTYciMruJ3WbDXimu4o6XHz/j8zevMV3PbrNFxcA8ixegUwq7OPquxzy75ls//AFvfvJj/PEBtCLmyuva0vUDmw8/4tPf+E36zRbrI8uXr4jHMxttxCujNUPfs725wlxfwTBglUnjpAjHEU4j52nC9LBEOC8zD+cTAMd5QRHpjObD/RXPn93wMI384vVr7o5HqXitJfzBWc1oNOfeiGXXOeZlZGM0u6GXOeGkfkf2SGRLYlbWTQpnUilxLSt5VmspptcJfS1p/eXciJxYJtTByT2uksfKmhLykBXLRiySE9sk6TwQtNQQmJdFwFjXyRxBgIzRUlW9hHqEvLilJkdn3l/lAKDZPeVtAuHrU2oOhdWZataslKgSa1o8ExlYVIrZVhjWf02CXLGEpzYVc3HVUFVpp6jqOVxK64hSle5WK5FB4s1tQYYnBE3wumwkBViVuaGLpVOsaBGd6XnzZhMDIWhikIKkIW0SUWXRmQFS3phr+1tgcalctcEDci8vRVS1Fepk27Hb7JmmiXme+Bf//sf83//hf8MPf+N7PP/2QFw8fg7cjQvHRRjipnHicDpw/3DPm9vXGDwvP34poalKEeZJqmcnAB+8J3jX9DugNdZ2tb4QNVRtnp2s77JWIw3eeloNa6xz6nIO0gCNBhjkq4eQap8UZf/RNC69nTd+U+ZpQyXZKP+kOa6NyJ98XgY71SiVc0TEk9nSPyudWOuMTgxVyaKpKuiu3jWTGLky0H6qk96Po1DZAxV5N9BZ1bEoMKA8cKQZhHqo9XxYf8cKqFTw0vy9+EEBGlwozQ19bgYXhW0qrtvxNij0ZBv/0o7HAC6qDInTR1E8tF98+Zr7wxljdxg10HWW7f4Z03jkzWc/4/RwX3I8s3yZ54Wf/+KXLPPC0PdyVfX0GD7VqmwceAw0ngiXSor+W3N4QqhF5mLyVsQGdBBrAvjlNS6VdChMU0+GcK2IN9beixguvBlhDaDWRrB6+3ZP01r2n8uQ4LU3p/F+N6QfWuv6QM1zFU+TqkaJtTdj7Wx42/HOIGNJhc20JpeSTQqUEUsyKaRJyUbsglT4FsrWIDH+iAXQx1hCBIzWYCkxy0vmb0/bn3SN3EsqpUov5ITmmN05qrrPheUqDTaNUFaJAShEFAF7PtMvjrkf+KKz2Os92J758MCgDUPfc54mPnOeOxW5WiY+1orYdYQY2G4GenuFWxwP6kAAriOcl8DsFrQyqVhbR1CR/bBjt9mkvglsOsu0zAy249X9HdPiuBk2HLXi+oMX3Fw/I8fmxxjpeovp9wzbXuggo2cJM9pu2OmeK60IwdMbzWa3Y3GyGR/PI8F7Zh9wWrHRG/ym59s//D43z59xfPMaHSPLPHM6HrHDFmUNVx9/xNXz5+jzDKcz+EjXWYIXtD9Yg47gFeADQz+g+23yjMDVdo+ZAg/mzP3DAR8ju+1Wal84h+opiwylGJcFpQ0ff/ABC5HRKrCWGYdXntnCeZyZx4kwz+gQMTYzt+gEDDyuYWfM8ydB8UaBNUWxkET1LlWwJ08WTATwLC5ZUfGEkAseihIUUDgnoCY0gigiiuzKAp2t3TamGg8iBFyqIO+b2OmiXKY25jCfr5Nw9VfxqF2UVdyL77nY5rJAu7AOl0usfknqOqnNo1LifIyxhLFFYvIOQQhyAd1ojAVUpP/n4csgI/8gJmNItAEX0rzKgj6BhyAl3y4bWgQ+EYKOyV2tHn2vYlWKs7c290NRr8tG2vRB28+l3dUKqdIJq427/D7iw4w2VkJBvWfoBzrbJVaohT//xRdM44Hw8Ibj6wOvv3jFqy++5DxNzMvE8XjgeD4wTydurnq22y3DZo/te1xKBNVa0Xcao8Hn5MbV80v/C9NKtUDmsKdl8RJJledRI+OT/atRi54AIOn71nqqoIawqXYORMR7AF6Fkuq16s/mdavkm8byt/Yw5PA+ARmqgAO5WvZchEylC6gQCdkCnuaENUKN3SVyFWNUA7J1ARY5jDB/vmZWes+OZq5AmuIphElltP5UAbsnDlUu0FzrMQJhbUkm2whYVfOmzr0CNNL6k3NhlVCbjARtyFQ7ly7bU5u5llWr46nHzv2xqgsSL0544uPVZ7EyisbI6XTiL/7ip5zGGdPviQmMd32P0ZFpu+HOaHx67uwFnOeFP/nzn/Dm9o79fl+K3b4NLNb2xGJMoMgqihLOSg5+xcMULCfntqAxRKGujSoWGRyzot56QfK1lFpXvlbp29j8/gmwkXWe+ln1wpZzQ37eLOPXj7Eymunqlc+GBZO9NAVopDlWzE9NlzQXV1HVKufNsOR75g9b4PGrjnev+O1DqtOsMOiUf1Cr4ubEWq0kUXVxEe+FTceHiGkKqWZrCyonyuVkvVDBQUanqSNtttJoRYmX07midcqcb2ZMQbRp1eliKkwTUfRaerewvHrFaDTGLTjnuX7xDHV1xeHNa+xmy+IdYbvlGz/8AZtFfuucZzNs2Ww2nMaRYZkJMXJ2jhe7HRjJSbnZb9kNPcdxZDvs2HRCz3qOnu1mw+svv8AaxTSJdf9bNx+zbAbss2uiUow+EIKi23ToXoOLDN0GApzPZ4ZuYKMMvZPQhvPxhPFB+Nb7joeHA9N5pO83RO/oTKKBNdBvBvYvnnP18gV93+Hmmfv7BzLl7fXNHh0i9jxjAgRrUNZwPJ9xs6NTJlnKeqK2bIZNmYjH4z16tyckGkbnHZ02bLoOe33Nq7t7SOESk3f03uDGEacUdtMzAqdpJi4zs1tQCpZpYjmO9AqCmPGE/lglrmAVRekPMREVyGdolUCIAFttoIfiMUu+CRaXkyNTzRatk8VaLLyLk8TJWBQDhYmKEJsK0Uh9AQnhkjyQ/J3Wmt4YOrrErS/euCUV1ZIkrGSlhxK/nwWIYi0Q3uej7hVroKEar0benIRpKxkdYiz9rAJITK0SARojRCMeISOCOm/0IpBDsR4H1YbHSW5MBn1ZCQfK56l1xAieXP8kNBtNrPlUsYa4+FT8Lni3smDVsERdmM+yYps3npxc7ly+Ri3OVP4GyuYb235LvVT6Cla87rXfI83jAuC9w9pAjIppnrGbDZ3t0coQguPhcGJxC2rfwd3CabzjOB04n05M40gMM5sO9psrlLHYrsNYocaNQQxKWil2vWawurAd5RwxstIRwQWXaKgzsIulX4NqUm7Tg+YQpOqxqEdOh1EqzbOVhbYqEbAGIBoJE45KNu9VdfkMMlQFrBUYUgFPoze1npJmZl0YENZwe/0oDQCtJhSUouQp1bDBWqhV9uhsgfwfhxxp+6XtvlYBWs8D1fR5/bI5+/FNLmXupSL7CME2QKPeqCj68jaDjezVeOK5fiX4uWyUunibgUW9R7VskwVsfc2lbGgbVNACp3Hkj/7kT/nv//1/wLmI6eW+fh6JXqHwEB25SJ1P+lyWr3/8Jz/iv/sX/4p/8PctH3/0USJkiU8qrqLSqfLfarKTZLaqZ1WDQ75OXF/t3fTiAgihjlORp60xMcnUeqcmbDOu9+vWE5H7uf1Xzn0C0BR8RxZb6kKO5P9XafZUTz51qCKzGi9FyX9c19hoZdkTs+TJ42uFS+Fl4/EpTixGSjJstsJEqrXJOWHe0dpg7NOW2ByCgpZQl9z83C05icUak+oUpK+jwihbrHzC7f421CcXay1+MYoyqVEM88T8xRcc7+7g+TPmzYA2hu1uL0nuWtNfXTFtBl7/4nOeLYFpmjAxMluDB8wwsLfi6fno+XPMMDAuCx0KY8TLYwgs41niioMnErg/H5imid12yzc+/JgPbp7jlGKcZkKnWFTABU+cpNhT1w2JijBilOGjDz5iGwLdcSL6wN3DPTtjONwFJu+4u3+QRCtrQYFRERaH8oFlFsvjZrshqIgLEReEXrW3HYOx6OOZLgQMwnwCUpk7KoO2hqCh6yweYdXZXu2IPnI+H7k/HrDzzGazIYbAdJ44HA4oa/HBM06TWJh94Owd/dAxEjieT/iUmD6NE84thGXBouhTHkNKEUIbizI2jXMoCdjt5q6VRqFp1ngDWLNlVFiCINJ3plgDjFHYoHEq21IUTtwLhdUsF84y2ZqQrIa9TUX3UiihMTm/QDxTznumacaFCKXtCXQHof+MVKtou0m8/0ejGDebdLbe1LoFQZi8kHUdGuFaLCpJSEr/+VXdgVxnA1SqWl/DVErYldYrgdyyxYgyR5LYqaJ0FLmVld2WRlQpRSAnfYfyvfeXDCKxACayYpz+xtgmMksOm/OVtjSHpMYmeXnVszHz9+UQHZ3RS/Nk2Vq2PlTasJdlxOiB4/EeRcRYi7Ud8+x5dXfkeDzBYLn67jf4rZsNn372OZ99/iWvvnjDOB7lXkoTtcHYXvLd5hHnJpxf0Cpwteu42XUyr6vwhyhrVkIUHT5Xp242bWF9MesJlBSqEFK+eB68AqzKQzY6SCyWTOmixKyXQ4KpyfitQll1vlj6rE7iFDaRGDPFUVuVqKKkaJUfipgqlOf9MY9rBpslVKsZMwHEyXuixaOs0vzN+1swuq6l5IHO7Hnv7aF0WaNF8Ux/qxV8Df5U8/4RuPgqBb4B5XkHkM95pLO9TX9tMUbCztQCjzl86onfqdUV3vpZUSmrBiptvQjNau8R2+eJbcTHE97lJIfmeeHN3T3/5t/9Cf/k//v/483r19jtDSoZW9x8ZpnOGKPwy1zK+IKsIYNELnz2+Zf8n/+v/y9+/JOf87/+r/4+3/3ud7i6uqLruqzdU0ZHxYKVUCRjTFpLySOd2fwI2UiYchmAxAFf+6yZI18/KqCq7nVOrDqq/m1lxsWRt5OYFJRLBT+HcMXYjHcxoiRgU/ak+lx57DJozLVdnmyDytdPe2MxurUhvOvPa67GuwMM+BogI0Zxa/tkrQsxu/gMxkrF7egjxJDCPnJRt+q+qdVz0/VCQPaPGhsmepsMUhEKWoknhFhqCRApHZI/F4Yh6fQMdlXqwGoVlc7R1MlGDNjxzHZZmLuOZXfG2E7AUYTheo/pDGejGXc7hi/f8MF+j9Faajb0HddXO87HAz4EhmHDtCwYpei7DhelavVWA8ZwHkdm7+g6wzhP+OD45OWnfPTBhwQX6BCld5oW9KZDd4ZOWebzwjI5zI1mnifmccZojZ9nwuKYw8w0z5iuJ0bHcRwJBOwgNT5sivWPeKILBO+wCjbbDefTKGxQ2tJ3HRvTYcaFbvF0WpOSAyQGOHiU7bB9JyFOEWzwdFYRwsL5POKiZzocucnFrkLExcgyTzDBNM2MyyLsWECIDqsCSwwCPkibvA+o4DHJ+glKWKqorFg5eVvi4xVYXRaCUmBMBh6qWVjViCBehUwnmT0ZuoQoGZ34/p0AMR8ljyiHQ3TWNIswAjWEQVLJQCFAWcKyTFWWOpsUJgXJO6gAr3KRNBKA0UkBfX/57YEiGIu1vRVYaeNtSRKychQj6BiL4ieCsf2bozgr20YGfRSLT5VFGbRliuESLlM2oUahLLI1VQcvICPloXnXJBXnommhKIfy19MWYarx9VU5ze1vw8Gy3MqeEjHg+CY/QPqm3YuqvrtWOKoxq943e6GttRKyFUnEBJ6QKm2fxxNDP2C0eOXO54nj8Sz9ajRqf83NywWXkr2Dn4T0A4XuerSxcq3gCMFBWDB4rncdH90MWAPTnGnNQ9YaEs3sIvlf6bMYGzpjVS1wWXlQeRCbOdZ0ceqjaokqW2V5keZKaEMCYnOtGq5ElHuuNtysGcQonpZY29gMq6xtL/PP61DqZOT21f1K+iREak2AdButJOQvpDDL4A1mcSw57yKHYOUQqdI/7fO+f0de9+ndWvEuICJ9l37wtr/tlR53SaM05rfx0bfv1uZ0vxUOSFd5ypNRfvfo88vnfdziGhm1BhoQm99Wg+xKMc1/gZx7cR5HPvviNX/85z/l3/7pz/jDn77i9jBj2dFNYP2BTivm04n5dE/XabxLNbeSLI7OyV1jZJoXfvH5K/7f/59/xo9+8jP+5u/8Nf7m7/w2P/j+d7m5uaHv+1RjCmq+Sl6PsVlPCTCHvAEkRI+sqzXQaITAE0BjpbNf9Puqi5v13daXWIuANlwqj0orpJNiz5p5ru5B+dNL4Jjftl6fyzmQwSON1xraBkrzs3GOVX9mIpLWm7HOUUthifFC7n3F8bXKB7fMHDLZNdqIZRaVk1V9pZhTzeClGV0r+GYe8soFXDbZ/NsimMUa7Km1CyBZq1LcU7b4xXjB1pEmVAlfCCGh30zZmiZUhB6Pvr1jDrCgmU8ndi9uhNUnKvw4c7q7ZTtOuL1OPPmRoDVDul6/3QIKHQMbpYjBY/uB3WbDNtUP2W83sEhl8Gl2gBcqzGWhU5ppmjmcz2y2Gzosd7NnsxMK2vvjgXEe0dbgo+c8HtkGSTo/T6MMe+qPqBRX+yu6fiB4X9h1wrzgxpmt0vSbLUM/oJTmfDyzWKnO3i0zW4eEAwE5jCTHr4fgiUFLMnOE3kfGu3t836GUottY4tKh/ExnDYvWbLfb1P+B7Xbg1TxyO80EHdnYnmWeWaaJ6BxD3ydWFI2PCq+SEsKaQDLPtywojVJoa1Iylcwjo6oClw0eZS6nhShzGYxOYU6dxWhJ6jYhEIymsxIGOKfwFQ10JoXyJYUiM/7oApRl0bdMMyr3p0LCsoaBYHPlz4bCLgHobK0Tj927JVv9VT2qqLwAGOnzECCorExL4UIQgKF8lQcVaxRTQQEJORwzy5r2NwIMK8goAKMVtmlzuOS/z59kA8kqwS9Uz4vzuVJ3qssQKnuIGEOyEQZKvK9qcgHSfG2BlOwTlXo1hGT7b/Sfx/3cgKV2N0t/+77n5cuXfPjhhwzDBqVlPZ1PI9M0Mo0z8+IS/bTHWsPeDHzzwxuudgNoIxum1uiuZ+h7IcOwVvrVWLTpQMESpKa9QogYjFbstj3f/GDHs43heKqNyyFRzjucW0ofKRVTUmZiTGoSqkveQwo9CwlIZBrqtRc73SnWOZiNU6XSvFqz30SasUpzoCizK6VRFRnlszLQVApfzSYFKtPBo0o7quLX9Ekat/xdHlelFItWzItPtY5qn6imf0j3j6nxITSJa+/ZUfIuoA5CoziW12UNNWCi0SlaoFGMmlD6SF7n8b4AkrQnv62d+a7rca9gF/gKgPF1jjIFG5Qh+9oaYOTXee/LFnfJAwiF/XOeZ25v7/nJz37Jv/vjP+ff/vGP+fmXDxwc0G3Q1rJExWlcIEwQHGEcCeNMpzxGBdAWO4DSmtPpjFuWxJ4p/fpwOPKvfv8P+cM/+hH/+J/+Ln/nb/11/vp/8pv8+g++xycff8Rm2Ahdfdt7SqHIkQpCBIRuaqckoBGR+5LZPGNdA+vBWA3PO/Z10n8LwEhCIIOPxhAA6+mymhIZOOU1muVFTCFaKoMFCddch3iq3B1PYYwCgjJgfHQ08urSk1IL++litGmWmYie3J53OL5WuFRI6CWSs9lrQhkxKW5p85VCeblFwoPuG9lQqnOnD1Shoq0COQsBsTaL9U/irKtbqYKe3HMVreckGFlA+Z7p+6ggZCVQfqoDdDj0wx2TdyzPrulurrDzjPbgjic+irB9diUJ3NOEHyeuhi0acIsrKrD3PhWjUrh55uHuDrY7+s3Atu94c3zgdjxxvd1yvdszjhMGxdVmgwoet9lwfXPDvDh61XM/z4xOeOXneaYzHdoadtsee1gY54XDNGE7CYsKMdB3HdaINb0zmt5aFrfQacuVHfBBSd6Essze42dRJNw8oebAYHpG7+msxSaKN5DJ67zjym7pjWUMgV5b7ClwXCa6q2s6PLv9nuBhvj2yHXqmxbMbBpbg0fsNz3Y9djphraI3htPdicM0SUVnIp0RCsugYq3oXNZHlErYIeCggEtZpDSGg8TRDaAkEVdp0DF7RJJVNLFgQAob8z4lnMr8kQq8YHXE6MhMLlZm6KzcN7PBhCRJfXRkhiGlQmqTgFIBxQloaEVUGu8Cc4qxl5CGmJ7FJ2uN5IK870c1DMbV+/xpCZPyvmwKWmdrAEU+5KORl2l+qFUeS7uzFyCiKkNe0VlWyngFQvnCWVENuc3thhKqF6M1aORxLlW236KrEKWuzGqOX1haoYbuxDzHlV4ru5T99K2HMZpnz5/z/R/8gO9899e4ub5inmfm5JUMibnPzQshBg4Ph5Qb4vh05/g//u/+Dt/7G78OtgPnpZ3WMmy2XO23nE6j5DdpW2ibVfQQA0YJOLBGs910fPvjK37w6TVf3j8wu9RHQuKNdwlkEIGQ+le8qiWHRVU5n9nHkhqSgLx0ig+Z3QVWSntWuCgfFKVEFa0t9WueD2ng8hRczUVVZ1puH1yCxqf0mgo61wrKeo2sYrzb/yXFugUUKJoqxWlyRzFgvM8eUbXqxKeBRXteARcXf/N3Mb9vQF05YvM+L7rL11/V1qaJl6P+BAZpLtmMc6ukvm1tZ3DBKnugzHfV/F+uKbqU947j6czt/QOvXr/hze0dd3cHPvviS/7Dn/2EH//8c17dHaW2lNLYfku3XSREOZIKDCf6VecJXnF0WQsawPYCXEzEY2r+VaZpdZ77w4H7w5G/+Okv+Yf/5F/w3W9/g9/+a7/Or337m3zw8jk313ue3VxzfXXFdrsp4clC+e9RqfBySIYMtEYV0NF4OpohaAHphWLxjkeWIa3graF1FajW9duOQb5tHtv6aV7DCRgVQNLc+mKtN01K7YrFKNzKNcjTXJX58SgPozXaNCGjjx+/RgX9quPdE78TTWelm5Rh0jGK0I8RrSIxudzXgjd5L6JQECpUEqi1UxUk1p4WMLQ9rNKDySdanpOQBKnQ1zaoTTXqaNlMYmkPKrcBIhKuoowkDNvo0ecjqjMcPvucabymMxYLUs32cEbfTkS34EKk2+7QqSbItkuVLGPgtCxS1fp85mwME5Gb3Z754Q4VA+fziU4bfuM730VpzX6zYZpnzuczxMh4HhmsRYXA/PqBRXl8b2ARpcY5jx8VfprF07IsbDcDEVX5qTcD0zKz78QF6Y1hs99jO8vpPGLujyht6DtLjAEdPLsAXQCz7Rl6MCHSxZzEL5NGKo53YilYFtx05mq4wUSN1ha3ePQsyvHBS8Xy/XZg0xlCbzltO4y+ZnEj3jmm1w/MIRaFWyHUljFSEvi1UAU1dMqUzaF4wGKbeJXDa2RjXfF+luUeS4Jm9JHFO/y44JzB6JxrYegBayzGQB81qpM52VmdgJxonwWIEVPMvE+hMkHiy52rlLWp/VoLLalL1aHl4xRbGiVsJQQpKPg+V+ptj7WVp13zdQMMOlm1o9A/E9dKVj4ujVNKpY2lkeRVfSiivL1lVThTo2q7WhrAqmiuVM8sR2IW8Nng8q4O5dXj5+akzlGP7pVPfiT/VZGUbz022y2ffPIJv/7rv8Gn3/wmm81QwFLf91hjmOaZeZ7YbrdYo3l284wQI50O/IMfDPy9/+o/p//oY8AgafBCvqG7gc2wZbs9YxYJe3JugVTg0yTFwGjJTRqs48WzHX/9ex/x48/e8LPXJ6kDJFtKKWRYFaVYqW9Tm9OiT2A8PX2pOxDTXnSxT2dr4cXmvZpal3Hyeezr4GTdPj1/81PVhnXI/QNimaxTXa1uKs2vgCc/c2gQR2jm4XouNMrE247y2/8RgIwCJrgAGmujwgpMvAVwlM8ay+9lN8bHw958kF+8ZdWpi3u2X1y+LZdp1n3MzVxrmW8Hq7WNrS6V5Um+jfeeh8OJH//0F/ybP/hj/vhHP+Wnv/ic29s7xvOZ0zhyHqdkCNNoa9FWi/FhGlGJzTG4heCW8nyyNlO/6k7+GuhMj4mB4BzBzQTniIkMQ6FAa5wy3I2eP/jR5/zpZwf2u3/PbujYbno+eHbFdz/9kN/4wXf47b/2G3zw8oWAjQZQSIgUQKjhUlE8m6v+a0DfEyL0V2ON+PjNSlSUNX05l9pBzjpI0o2zx1NRwUV7i2Ze5D8roBEpMqvk/lRks37GZs2IfKpRFlqlcKkSDaBpBU3xfsmbX9VTwNetk5GeTiuFJpfukCTk/KRaMu7SZi4DXL0aeR9IKEojFvI0MSRlMrGAFEFRBYFcqw5qAHRZUGqlgGXrZIiU+GeZyynujBz6EC68IdLuLnri3S1+WZjcwgno93s21nJ1OMB5Ztv39MMgm/IyM00zQ98xew/asNkYYsop2G96nDYcp5Hb+zu2/VDYlhQSonP7cMdu2HBzfc3pfOJ0PnP97DnROXY+4tyMUhZvJUxht9lyrS3anQk+sOsHhj5R5BrDbjNgd3v6aeRqMxBSsnZvLcE5Oq3pF884nlmIbJRmY3rsOKKUEeamIExVvTapXonHqg6nUgiac2yscOrvO8u1tTjn8MZycid6pdg+e8bDw0FyEZaF3dAzPN8Th57T3T3+7p6DCxxc4qeOkvcg86qCwzTbBDwkYGlSeES2FDovifI5iVLFKnjSzCAnO+V5pU1e6prFBc7jzEnFlENh6WxHCJHeRmGVUorOmDTPVFoflDj8PH81WcAlK6z3cteQAC6ksD1VvHq5foN4UZJlRqpIihCw7zfIWMnOFcDIr6tSX80MDRIgKVuNCSi7bVv5nONW8/xplbinjnarKOEDuY2N8lfa+1gXoX2cmtT9FX3xlUP5VV8q1hSkFYgUhemJX213W374w9/gO9/9Lh999BExBk6HoxArxMh2u8ElWd73A8YY5nkSIojO8sEQ+Xv/s7/G9pu/Bt0VlIRsUc6s1Wy3Ir+U0ixu4fbujiV6FEIdbK0lRo/zAs53Q8d3vvGcv/H9jzlOP+fN0SWglsMHxVIKOcxCai8ZY+oKjiRaYTFUZfCQPQPBt9zzrbK4DplMXdfMqaYfm8GNF+8vEAxZMywhpvnCSqX5mb0s6zWQ2xIu5tBqY89tzK1rFWDqCa0SsH5djR/v7XGxcFqlaaXMXwKMrFO0ICQdT62Xt4dIXcqsi+Y9oaqu3j3yUK4RQwEXFcWuvRlPtDWfoyoqaX5T5WlEDL1fvLrln/6rP+Cf/pv/wJ/+5DMeHh4Yj0f8dMa7meh90Y2Uqd5+2Z8TrYTWKKPx5wk3nmXvMhZljPxL1PJyruiPKhNtGEcMAZ1BRn4obVDW4kLk7jBydxxRSvFnP/uC3/u3f8TN1vKf/ae/w//yf/6f85u//kO6ZNQNBWgoQqi5UDVv4lFvP92ZvwJllBX1FcL98bqsa716PxE9WcVG3mTAEZsQqbSn5criSX/Onsp1y/IIVwOMbBPN/rgSVumejTejUOGqmvBdZFDbB7GY5H7l8c4go/KviEWq0yrVrKCxtsQivHNHmkbxl+S1ULiRBTio5P0QJa+iQNk88kRH5RCHatEsORtK7qlzJV9VuzEzsIRYY/JVapsoqhnxpqRMyaYrikx3e0c4nghdj/8gcJgWXh9HNIrn19do4P7uDTbVzjiOI5thg3MLb+4fUN5jYmAKgZMPeOd4GM+cxxHnPL/27e+y63pmL1SmcchwCxSBX7z+Eh+jJEqfj5wfYOwNw9U1+092xGkmJprgzlp8CJymiSUErmwPQRTbxXsmn2IinUMHySnwIeAOZynoFBV2XogBur4XRWGZJAE6SmK9jhFtLRZxT0qCtOU8jSzTyLP+Gp1CRe7uDnS9Texihld3rzEoBr9hNzlwgasF7NULXo+B2/sTD7OwUiSoLp6ElXxP7DpKaHaBNA9TlWJSXlAEpST5UuaBzJnMKKZS2AbkOG5QytA5wwiSCxBJlJVCI0qIRGsK0JAEYJ8q28eUoyM5Ql0q1JdjV7LbUSmp11AYawLE4HEhorQphbki4KNCGY01CqsFIOYil+/38W7CqZ4b66aRFa4k5HICWhG6RWmrwrR81CpdPAYvq3eKCi5ilmvv/liX1vPHNrOv/PlbTii7RmltVUhaPVetaBZRimEY+N73vs/3v/99ttst4zjS9xZjNd5LvQpQQjahhVbWO1H40QpD5Le/+Yzv/ye/DZtniOrs68Nqheosm/0VH/UbYvC8uf0SFRw5vEkbkxhmTKnmHkLgZr/hN7/7Eb+8PXH6i9fMqeJ9iL6Mc+0D8eBq7fBKo31b8E7IGtqNMabcngoc1+NQN8wMMFRyhNR+fuTBaH8f6+9Xo9jsb56651QPf7VGt56JFvisb9l619rfNZ807V6zYT0O46hJse/fcRkmso6zV48+V+nz9d/yv3r+E+C8zcP5VeCiveJbV3sBQarMkeZFnoTr++dnWS/92gx18XbVznrtvOd8/uoN/49/9C/5R7/3x9ydJoLqQduiC3m3VH2OpIOFlPsYHEQlLH+pPpAdtgS3sBzvQSnssMNstmBNBYBJJukEPrS1ReuO3uPnCTed5X7eE/sB3fUY26OQqIaH05nbVwdevX7DLz77gv/D//5/w1//7d/CGJtSMQIxsVyqHAqtpO6Fqp3zlnF7PGIFb7QbQ+ONvPRUvDvzY7pyAhMZWNSPk5x/VNek2VQSKCiuUmpTspyQ67bfrGdnK49El9bFWJ+TwPOeWyuP08jSv2SQYU2DFpXUvTAqK0OS6Ngi74yGsjUx1wXIc7dUQU4PWkBFevoyxdtxVC0PufwrRYuixG2XWOzUETkRt7ihmo7RKTY/oMpGVPjXU8EfFaEfPXaaCd4x7fa8coEtmttUwt0R2WiDSkrnl2/e4N1CpzV+EaXc+1GsbCkb+fZ4oLdSYfr+eOA8SQXoX5y/ZOg6qfNgDIfTic522M7SnRXLtODOI9Ps6JVht9kxJKUguAXnFqZppu86FrcQlxmlNX5ZmBcnQEql2H5jsFrCuM7e02uDQeGUeIicW/CLY8YIbWwSkF3XMS0OrYTOdrfbs9kMnE4H9rstnTYp90MTUGw7y+zFwxFjJCwOfZowXQ8RNtaAsThSobQUZpLlZ92Ms3cMMlOYTPj2M+oc1EJbKzzdoQg8neq5rOOXRRAZbRi6Hq29xI5rK8CWFCne5BzlPCFRAFT6TrwcUhRLOPV1ame2FIhwld8ppcSTosXKY0y6VwQVdSrmmNlhKtf/e3u0XgoFl9W+SZ/n/skKVxZ2kTVZRK1GmwR27l6qEaKVIyuDpIprsZveSChmMkjoahHP+1O7r7cKXqsHNOrD5dO1v/qKfnriI7XeDMueqapy0QKN+lLx/MULvvtr3+Plhx8w9AORyHbYsN1tCd4zjmPapMXIcjgKtXZEMc8zH256/vZvfxv94UeUHTtPyBBBWxgUxvaY4Anjkf6hxk5HwGDwMZa6DVopptnzF18c+LMvZ86hY7Pd4s9TkpMpzCFvGiqtZ+9ZnEarsLbCtXsDebzXIWa5b1bW71Unx8c5LReegYuvVgN2CQSaM4vsattxiV4LtGg/fkL5bX9QQVCBGOtiXk1DS7jf+xwudekCbNdF079q9fopwJH+d2F8kDfrHn93sft2Y0LNJVl7W1qgUdf0hWFl1YoqfbLepC4YiNqWt3r18TTyz3/vj/jHv/+n3J8WiAptOkzX0w1bYvAQPX6Z031ljubE8Ogl5yFSQxaF6GUHMbKcD/h5RCWqdnQz55VCKZOcG9JWvwi4cOOJ6IWBKnipjdMpLXm3qEomRORwPPGvf+/fc3O158MPXvLpJ5+kPSOPpUr9lkOQVh371iFqDQC194CYFfaGVelrgotfNZvaXSHvi6vCjeuGlj+VKEmt1sXlEnn6vio9W/uJWl2r9Ih6tCTeeVG8M8gYOpv44ENl9tCq0MnGEPHU+Pb8vdHgWxoUYrFEg0aZBC7yZpARVRKe2bIjQlri83PV0tLBmQqyWDlrH2SAmKmUi5UqKac6KZhyGRHOeVPL6M6qtIjnCe8c5xB5Ywes7eitYXQL/bwwWMvVfs/iFuZ55uZqLzUxnCNE6Kzh4XTkzcMdQ2Jx+vmrL7jeXWGVJiwLt4cD11dX7DYDEHl2fc0SJKmqsxa7LDCOjMuMv7rmHDVu8SgCcwiYrk+gLTItC8p20jfTJAovijE4bNdxvdvB0OGiZ5zO6M0AITDPAauQWh3BY02PtpYQI0Nn6bseZSzj+YhKbFG97TgrxeI8phPl+ub6itk5+s1AOD6ggH4YpN4FWooSLkvKwQ/4KPPGK7WKP872x+K5CuCLAlpjlXOibXX3KYiVRSyHL2CqASCSCQiEKhWU9HMKhzKpqFWpxEuT2B0k4Q2SkIgqMWKlipuqznfvg4AIla0EOVEtC+oIKil5ae5mhodcvTM/3/t8tPUkcjBk3eJzoEGWCQk4ptCxrDSGTBjRSL2WKCLvN3n826OViwJN8utma2kU1tyGvNk8qT42no4Q8wb09vu+bZcrn8ZHzU69Uze3olI0+2dVCdbX7LuOTz/9lI8//pjrq2tCjLhl4c3tG07jmf1uRwSGQVjmOmvZ7XeczmemaeJqu+F/8s0t3/3N7yV5PQNdRW0RsD1YIw3xkuhtuh5jLVqLcUGMU4aoLUpb7s+Bf/uTB/7Nn73izXFmpmN/dUVEMc2O4J/e3Ep13DxuVb9aPX1VbmqHVTWiVTS/YlRiE655Mf5rfJHnSHrdgI2i5LfKZQEcbztacNQoNWp1ympeljyVsr9VMLFWjN5dZf6reDwCGVAWg3r84ZNH0TmpBq3L758CleWyK2rYup+U79Xj1rztUl/V1KI1rawj7WRYs0aVSzV9lM8OPvCLz1/zu//+x9weR4L3eLcQnMPNIyE4jO1ge4VSJ7yfE3N9nqux9FaRnSHgw4LSmm63l9yK8UxwC9F0qWNMs9Z0YSN188h8uMdPZ/GQUBqKn0eRbX6D3ezJ7EtoKWZ8PI/87r/+A/76b/8G/+U/uGK726Uk9DT3LxfM5WJ/YgwKy1PTbwXOxUCb9XsJNOpvGgH96Lt8rXRmrP15OdVEN1FljrayIxubCoNq1oUb3QJVd9d8iZW/NSadNhPMJJ1c8h+bfU8VkfYffbw7yOgtIWopBEfKbVCIK91oPLEphqITG48unowQUrXkCDF5NbSC4JPylhVAlaoyqxxFrwuqDymBUAWK0qcTKo4xs1BJyEydIXlRpM5N/xeFoCox2XORX0MFSllgaCImOHSIjE7x5emB55sd4zzjIuhh4PXtLRFwIWAmyxwCs5u5Ox25eX7DUQWOMWBC4Gq/Z/QeNc/02tAr2A4953lCKRg2A501ECOv7++kZsfVni2R8/HIfDrzcJ7pgavtlv1uz2macM4xdJIborVn2/ecz1JsrrMdQ99xjinkKHqcBR3k/NAbTOwlPCpEoWhNrrPNdkenYeh7UAunUcK6nHN0VqHcwjSO3Oy2dJuew2nCjRN3dw98+epLlnnho+cvpOAfkmSvlVgmp2VOinq88DJAKmucjmT5T/RvJnHCZ4MqShVFPiuyRAgqlLAmH0JTnywzAsUiUPtUuLCN1dZK5nn+fZ7PulDK5vaulQcfIy54lhCEJAFKSIdSKY8jpuTZANqEck2d2B1yPYbFOd5viJGBngINJuq1ACv7gfRNZplCQQzrWjeX+RWKmnxb2OeSIF0pm/kOKsEZVRuQwzhX9Readj1tyU7KXMhyhJJvkwV71vuyV7X8tmm9tJsLuVVvq/JTtk1K1y8/U+25lGvudjs+/uRT+r7nfD5zOp2IUXIoxvMossR5tNZsNxsAbNeTN8Jtb/n1732L7YcvwC8Ig0sqhBeTdrXdwbABFeD8IMYZ27PbDigCzkVm52BacD5yO8K//tGRf/ezM/eLRpkOi2aTvI9dJ/S5boFlyQaARvlLSvvbjjzmj8Zwpeg356PWUyTdrfbrU1rDxWeryfyE9yPJE2laVVCbH3/FLdKL0L6LF0CjhoUVRet/qIbwV/BQujUJXCh1v0prf+p4ypNx8d3q/qjqQW1kVtYTWq/KU4BIPXq1/mQViNKA3PUcVOS8rMIWlOZ8ng8rr1kUUpM//9ln/OzVA4liMTE0LfhlZjrcEZzDDlvsZgdT9SConGStEkhACelLKqIcvScA3bCVyIlpwvsFayQvI+dnaC35Gm4+Mz/c4sfjE161SPQOPx6TkXeHMoZuf43ZbPHjCT+deP3mjn/8T3+X7377m/zmb/56YYisIW5J9yuejCfGYbUnVONDFfmNHG5237fOrkfyfT1/nhrLx+cl8Agr9Lr2gkIugl1BRo4O0mXePdqHWhmR75Z1pVQbKOqsA5tCXtL++xXWkUfHO4MMoxVWGUn49b6EjSilMQZsVPg0PJ3R6Z+4y3ONg6ycFfaYiw5XTcEgRVYUZPH44CXkSrhoUT5N/Av0WRTGGJu+KN0j90Es/RJnVjs6NaZJvJMhFat4rRFhNSxhYT4veOekmuU8MZ0tPkjc4RICh/MZNXR4A/d+YZxGyUy8vmI8T9xZBT4y+YWNgf1m4HycGUPguER2Fjqr0J3lNFju724xoePoJ8bo4PUrYrflarPBGkvfLSzOoYwRwBAjfp7plORYdGhxh/qAsRp2G/R2oFOBbiuTdpkn4fZfJGfDWotViugcLjpCKtYSgme/2RBiZLMZ6LTQvL65v6PrLNvdFovH6sjpPKKATdeneG/PHANmWUBppsVxnCbGxImf3YAlnI4UI17GtS6sXEk+hlAWnGoWpk5UlyEoUDUJ9NIhkGP6lVKJJjYWznBye5J1ISq1cvkWi3eaaxK+F1Ap4VxcyxIvGosyXOGuT+BcaQUZvJhKThB8YFwWnHcY87VK2/yVO3RSELKi9dSWW/WFZIsJKYSl8SjkPbUVze3GTN5Xilci3yBbeyoVsELGU+u1J6rN+coyo4juWD2fYfUvRRCVPABVarKk0illrjwpqksnXD7dW86N65et5T97Yz748EN2ux3zPBNCYBh6VErCNtowjSM+joTgOZ6OxetmjUER+cUy8x9+tOWv/SffYbfdgIvAJGxtMUDXCciwHfhJPlMwbDpe3lzhdgMBzeQCb+6OfPmzV/zhZ57PRovd7LnCksPbjLXc3b3h/v6B4AOLc0zjyOIcznlCYpwqe202JDQb8GWib+mu1eZYlcL886cVwhSOCaJYPtYF8owo92uJC6Cdz+u/9XhsyWx0iWZer6Bn874FFE8dT2lX7+/xaBwvjrd0ZXOCANR4+dnFIDwa6ua+6uKkFZh9C7h4Ky5+aqxZay2PFcPc3CSZkiJ9mfjdhlGN08xPv7jlOC/oVGtCir5KwraxHfPhnuV8oN8/wwxbwjyJtVtrMhlMzQuMKDRKG2GKcgvRBCGM6XtyuJVGfqONRWmDXyamhze48+ERwMhyFsTo56Yzpt+wuXlBjIHp/jVhmUpEyh/9yY/5l//mD/j2t77Bfr+nKtEX3VsW3xNjmPeF/P1qjGLp5zwa63FqTn480cqf4gEpCv/aIPD4qHKpgow1wCgpCU2l7prAnQFXlmG5T5MXOEdgKIVSNfojRp0cAJIygKrGvYvWvTPYeGeNxftQKg4774tlyaS8hLJ5q1w1UAn7jxJanJw3UQYqAYhcqcAYVa5TNov0HHH1aQ198SGkit85h6MOXAlbSEprq9iVWZLWo1bV4+KLNhJTlXKz5grOdTxSuPDJTcU6OzmFj8IUFYGzmwizBiu0kKfpLAsQqdHwME9Sv2McsaNmt2yZxgnddYRxJhwP9NtB2BN84OF8Zr59gwJ6bdAoZjejzU7CjFxSRG0nCnoEYzt627E4J2E31qJ2HarvCL0BK33pnMPPwiWvug6vJdk7Jz1bLWxLk1tYvCRtdX3P4j390OPnmZv9nnmZWdzCjd4xxsDhdOSLV1+y6wZudldYLQKns1IJfXILPgTO0yTFqzIFMnlsJOQuagPO40rNnVS5OYEIjbzPICSPdrFMpzAscf9dLjJJBseoQh4AojQ2TsoixIsYzAWPUCV0L6RCQGWu5DWhVFFin1Sm0zmmhEiZAsYzuMpT930++s5W4aiqkliFcLNBZPmrqkVG/sTHry9kvcrhmqYWbctK5SUQVUgRRm3k/M6KJza3MbsYMsAp8cnJc5HzzXyieK6VubMsEievCtV7WkFpPR7vNY+BRjv+rRdjte01Jw3DwDe+9S32ux0mVZwvtXSS13az3dD1lmmeWRaHNaHQRBulWXzk93/0OR//sz/kP/u7v8X+g5uqTKGh78EYARfRyXedwey3XGsldJVRcThP/PiX9/zej2/58asTUWm22x19P2CtpR8GhqFnt9uh1S+Z5ollcXSdJUaY55kYA8viJL8rCE1uCZVrHn7tqWrm02UX5/mSr5E39gxom7FXl+OR4m/X4xbX10m/eTJeum5RMsffAhJUueqvAJ3t+Rl85Rs9Oun9lSQVVFLlwGqLfjqsMZ9++eQrxT6+/bv179T6Q9W2K4/8U3d6Wil9Egilvyurd6z5aTK/kxSIsQKhWK3gLbA5nCY+e/OAK9bp6v1KmitKK9zpzKINw/UzqW0WY9JbcgXoFJKiJeRZFFpN9JHovXyuJelbGyNFOa1Fa0sITgDG8dDkWVweVUGLbsGNJ9ywISyTABPvSg8fz2f+5M9+xN3dPdvtthGZLcp4YuRaYPHofZ1fRUlP111DDcqHIjOKhrren9Jp9XXztxjO1k0urVEVXBSDet43s66iapK2hFGJHp3zxlvvSQYYOexaNdcNSqG15JXmCJ81Zf5Fn75NYF0c7wwypllcXxFxXS9OPAtGhxK3ngGBDyn+NpKKilE2Y58T0nKzY0wx77q4tS4z12Oqw1HQVvqd5HZkb4Qih74AjTKXYyfrvbNSKEpqLeIWoyS1S26uhMeURNxsRSfPjVgGEsSquSCKiiMVEYuR6Dy4BROkEJVOgsaEgF+Wct2FyGEcJSTHzRKWFgJumQql6SZGBtsVT490lhTdU9ayROg6yeUYbIcLga6TnAxNZNNZpu2A/egF3jvsMNBtLIt3HO+PRB8Z5xmjNK7rsMNAGBe6GNFBePSVWxi0QtmBru+x3mH7DSoEjDdYpZjOI+pqhyJgVEQTuNrt2e927HZbTuNIUIrealzwuBgZlwWVqu3GVEU8cxSrmBCdUiTG+dLn0YcyPiFV98xzscQkRsp36Oz5qgsva7FK5VwjnQRrOw8bC0kUC47MuTxLU6iN1uQQnbxAbSoqqFS2kNcEboXCGlPzjHR1dYZAmc+dNZjw/hfi26SK8BlAluTsJCPaUKivSqir23V8ZLGTzU2n5PuaPyZH2kybjSeDEcHgUsHdpjA8uZ6qBow0z3xQKewzonXAey2yI2SgoVDJY6aaHUqFVNQ070PN31ZhbTezNV1tev684Yme2+SbrQ9tLPv9FTZRPU7TxDhP9H0HKFyUytrZszP0PSFKGIXS4tXr+h7nA//4Dz/jz7488dvfecn3Pn3Gy5d7umfPsMMmcdV7WBwsPgFwi1cd0+x5dX/mD/705/zDf/nH/PkX9yw+FFf8drPl6uqK7XaLsZIk3vU9X3z+GeeTxGYbY9lf7ZmniRzGeD6d8ctS3q/nx2MVOxJLH1XlSzovlt5uQVuFCa0VsY5bBYsrCKCEUCRNNdZgR1HEj8re/PVdV0d74dUYyxt5rxpjXPt5foSq6JRrvseH0g3XZd6QYQUM1VfIjtURL/v9V8seaUR98Whs8wllynydDm8G/AJcrENtsl6TQSwVbKh1Qb78fKfzxMNpSnT+MeWfpjDEKPkZsp4Cfhrx80QueqlNJ1cpRt1QtmRRfDVKC8iIyROqTQeJFVHbjugd08Mt8+GO4B3NAmmAUVaM63O78cSkFLrrUaYHtySKd5HFn3/5mje393zyyUdP4unVkBVjgnr82aMjNvI59X05N9bfNdXV17/Ov2/HrY5lwRVZluTGr7YqtfpHMc41Xou2iF5zXr5Byasg682hFM1WIHm1yhNSnmgGHC3pQAucivh6R0PFO4OM7B1QCjpj0kKUqtakwmGg0gYsvzE6SOiJEqvZ4oT7XCImGndlWiAxUtw5VanLnoNkbVa6hB8kRFJGJQ+0QsCB0dmVngrXJXYrieWvSbhlUqf71sGjVO71QdiJrEnx8qoWJsy2bdVsbSUZNK4ZrnIij4qihOCFB95oTYcwEekYxDWfknLwOdk4FVGKub8iwVhijAybDX5ZsNrSd51M2eATgxUcNHT7LWa/kcRqIsO2w/Y9y4PDaosdhBFi0w/03YBVinA60blA54S+dnQOuxnkiZeJPoEin1izXjx7xjRN9NbycDowLgtXuyt2wwYDqChhVcZYjIIrY1JifGWPyILeBY+OOhlN6oSOBJGNShFS5e6YaYeR/ssFZYik8KhASAAk0yqvinoh1MyKBFAbRbgkU6b5JQqZJkQpRyaf1w1GKb2ynps0Z9K0RyHelahAGWmnWSWXN4A8xuRNM0I37N9m/Xk/DmtNWc85NBKQcYqyLgq9b9boVBVo2WtZ1ilZPjRyIgFFkzwTxuRQt3SrxEledC5FPdeqBDKSdahCmQJklZffi1cikGW6UCfmjbd6UCUUKLG8NBtaVm2LWtHqgkVWpDf5T4NCciz2ikddHrAoojFGDscjN+MN1jpihL7v2W62bDcblNaM44TzPnkOFhSSZ6W1YkExO0cIcB4Vd6eRP/zpF9wMhm8+3/Jrn77km9/4kM31lr4zxGkkTCNunHk4HPns9R0/+/KBX9zO/OLuxGnp2F894+7ulmmZC9te13fCeW80+92OD1684Gq/4yc/+Sk+BjIpW7fv0Fqndsp+M41jqiCcwWprGqAwDT5SGEp/t3K76j1JbUtzpI6azvMhfxLrOLZjldd7/rReotmv6q2KYvgU0JChV1V3jcmC3Shl7Vr6Sr32fQcZK6XwYv8n7b2tpfWp510PdPn95avHN68XVI9ey/tHutdXjsVa6a2TtDZTVJO3hUvl10kyqlyDRT16xNCE/0o7ZS5bHNN4xB0f8Mssc8vPnF79EnIoVT+gu45us0PpVm1Mymieh0WYpX3QCnMVwDyeWE4HARTGlmeP2UBB81uqYScngtts9FWaoOr553HieDzhvV+HweY9o+mEuo+s+75dOqvO5wJwNp1ale3aFy1oKOAhffgIZGSB9cR8U/nfBciQUKg1sHgENvKYEPHKUzws+b5BwsZLdITKIfCRoKXwrW7b+KhxXw82f40Ab7ms1uIyyz3rfExsUxpthNbTZaUuhhQmFUsyZEhKvhT0a62/lE0cSC4dceebVDxPvANZxLNSQCTEpVLh1nj+0i9k74KCcj2xnoZ1SIrK1tUohe1SHL8Al1z7QxZWCKlwXIwIms+xbZTnz2ENIi0yJ0qdZNmCu3iP9gFjqqu7JKdH6YvYnK+ARTlm5xjnWbwNSsCO854+WSKjNYSocdc7lLVS200p+qFHKUN0opRf3VzxcDoSvMRVGmvRRtH1A/3xzOA8JyfFuXZDDzGyxMDiF6xWmGFgsx0IMXB3OPDl3T37zY7rZxs6YwnThF9mhs6yHTrGaUq5FOC9JKbnmdYK8HxEUphTDOLhQBdgWsaAKG5bXQs1xjQOWmusNsU75SAttmbjboCmNeKOzOBU5kZWBcAkC0bGPzk0Jrc9JwLLO7W6tsrgI1Koa8u9UvhNCCEBkmyJV49ySd63oxXqeX1WZV/etQWEpAihWgnPrPxlJV5rSs6U0kIMkGsnmPQ636eun7yH5DVPkiXt6yZIpTF8ZNnkQ0iFPgX0ZtarLPNqOEL78OtZnZWFvEFXxVetkUf5QZJ/GYNlxboom7GxtilC8Bwe7jk+u+bm+ppnz14wTRNaa/E4J1nadR3aaOKwwWrN6fQAKhMrGMZxIkZYgmf0nvuD5+ev7/nv/+IVm+7P6a1i23ciE5aJaZo5TTOvbx84zw6X5Nhuu6PrDH3fp+KUArKXxXE4neido+86TuMZbSwvX36QQjYd4ziitKbve8ZpAgQwxRiYx7EAs5BkQt3cq7KWe3TVtUVLf4TjyF4CkuLWDl45N02Si2F+dMipzSSI7Yu0J6xWxFccTyraeV40ihSRVazHV7bw/TiKYRAaL15S4LjoWlYvVucUMP60nlcnwvruqQ3y+mmgUc99R2PvVxxFUK30kxoWLN6MVdiUaudUugYUQ5bIU8n96y2MxzNhmaVOk7UEl4rHTqeybpQ2DNcv6IYdWQ5m23tcd3a5H1pJPQylcdMZv0h+h+56qsKdGaEun7rqR4qIDg7rJ/rOYqwiePBRoMk8LxzPp8IOWXS9S+h/AehUIyfLsmyBAPnhLmR4XmMFzDXhkI1gqdb/6vEk91vW/fK4ts+fr9+2M4ELrXLIWgUVkA2aDeAge1caKREz/XvAB1/GIGhPCAodNDFoogpErSk16i7m+dc93hlkVCutbNpWaWKUxEBtNF1n0qauMUk5AtLDpMTxJs45W4szg062FD5hx6m6eVY4UM0kSIAiuVCzhV8AQpUeBewEsSpK0mYuppYADaQ8DLmSMPp45kWSqPto6Iwug1voOIml6EkBGwX8sFKqCtpI7VCpVke21HkCpOJY+RlCspZqVFEOVFKWnPecz2c6YzFE+u2W7aaXUDZr0UPH2RjO04xVYBHFYponxtPIeBw5Hk54E/FaGCgG08t2pyJz9JwV6KHH7g2RhTg5CB5tDGGJzDGw2Q5EL5+N08RpGrH9hpfXN/TaME4jQWuGYcMSYZ4dKMUxBH7+5p7DOBdLhNYao6oiGKnJ1DEmi2WQSuRaS85PTEBg9S+ZlZVSGHJYUsohSopiJofSSpEtD84HTFMIJwuivLhRWaGMeSibmZoXuFxP6Gtj8ZpopVCm5nCgag6TzPOY4v1DCuTP8ZFCnPAO6sdf6UO8FZL71HKYF4GX1mV+Tt1sACgSK1g2TigJUdKJPVUrWU8JsNU6PPnusRRlLBadMr+k6GNMAY1SmFOT96qcY+F9SJXdPd7FMr6ZyELIKXIeRg29qHM57yFFGCSwteZfz5Il/2i9B9W5mln1MpjJm17p3C0/TwABAABJREFUvxQbfT6PWNOx2y/s93v2+z0hRsbzyDILJ76xJlXkhn7YEoNjt90REYtkDpedJmGMi1pzmhceTiM5gbMzkhzqnYAG7yFqjZ8XgvfczbfJiyVPcvPsmt3+Cq0UXd/jg8gz7zxaK/phw/7qmvNJlAjvPcfTCWLEpjpDEtqlib5dHxLS0XqUK7ionp62c1twsZp2sQJiYgWG7bg8FbKVh08V9MI6ebyZD+3O95RuW+bxan40N8qyR9FcSRU965Ht8T3GGStrdDpWwEHVdVO/ZYUC1uvpYjCfOGd9f1YK66PWrPaNr3/Ey3+NfOTRPLsMm2qBB+U1QNcZNtaKzkRko0TJd7pj9+IDbp47PrjZ8PlnX/D6y1cs0yR7TggobZMXwxRjGbGuFfkkyaUQQaUCnNpKBIZbAAnfDDHK3pYNrloRg+zJsmaykp7XhYLgccuMJmBipEuG7ikolnlhHEe8d5VYRNH0weV4qbImivJc1icXCzCu+n8FXS4ARjUQ1TdZLotsr+CsPF9zXhVQNO2r/3LF9fy6Aqqal6YSbWYDM+qsStfPBsyYck5LpEcMhcI2hCBh+pHV/LoEau9yvLsnQ1XklxdVLJ9Xik9DxITMQCX/pJiZorOKiNTAyCENmS7S+4Aj5Ksmy6SUiM+dJHUtcu7HetcuxYfqfEn3D6nzVRnkbIUkivdgcT7pc4poEnJOIEI2tuxdSfSnvskNISVIkjefzBYExMQUpOvELpueiuX3JJRKUU4CpLARl5iHTAZwWmM1uCB9FqLnYTyx6Qf2m4Gut2x6C8YQjGHebQh9x6ZX7K72Ag69R7FNjFQdbjMw4SRPQxmGvicScClByOMI11t836Oi4/j6Ddp7nvUbnm92vH64xyjDHDzH0wO3D3fcjxM//LXvsdtumc6jeBFsz2az5cVmw+F44OEsYRqn+cx5nqSml059AeBlTEMCi9779JqUIJ1AagSlTIkzBOpCTJcSK7ckrAXvVkxnWmWavbqBucadKAtNvGltMnAEQqPICGBoqWdzqJ3MowwyQGL2sxJMAhF5jtWYSdG2fdZsKJjovT0Wl6tEV0FdFObG85MFqFZK3Lcq1z2Riq5G5U01yQojf2Uopb8qx7eMT4jiJvYtMAgSzphBi7EKo70kgbdUgAlAeC8hBz6FMAafAQvFiJG9GTW3JLejPltRRMrmoGizV0s/xKw0pLc016tny5ai6u/ylYah5+bmBqM15/HMNI48u75hM2ww1mKNJcTAsiwQ4Xw+p+cJbIYe5z3zMjFsBohwOhwIKPquKzIc5Hd5o88qbYwK01nisqAQIo2oxPIoBgXFNE0obdjvdrx4/pzzOApoIHI4HlBENsNGvCnTxDJNydutyno2RmNtx+SnknRfjFax/ss9VY6L/Tf/X9WXxTikqGAj93Gp13ExHi1YSKOX9me1mgiN3vhWhfbRcaHAPrKw5t6/UJ4aXeu9P4pieKFwV0wR63d5EGgGjncDAG1MelFQ1dMK6tfp1lb1K2/ayZA/z8KjzJfUlvIbeZM9GWW2Ncp1rFsHm6Fnt+kxCjqtubm+QutrXnzwAkNAE+h7S7+9koK7pyPLsrDMM151GKXw85nM/y6F+5p2Jit5jMnNEKMwwaWx0NoQjZDGBBxpA5XN2aoEROqz1n03Soii9zhiotSv+3ufDb/FaFOBxqWFX0bsiTGkdF/VyeITnsUyeKtRXPVz/pZG7hSAkUFGBi7NHI7tQk3tKXkYhXm1SfLO/5ISXjz9Kj9l9eoopVFaGC9z5E9oogQeNz4Pa51XRYfO73m3451BRt7ka+L14w2tmndi2pRFkTMajDUVZUJKuKYoXVGlCuJJi1JKJVeoSSEJ8htjcjhSrm0QimKfFX4ppBbL5tCiSZl4dfMwCkLjVZGq3YGMbRRgTY4PFEpFn+lS86RVFMrLldUhfZcHtSgd5MmW2owoj0orqUAe2s0uV5kWpaeziQEpKBZISoAwOi1OQht01xO2CoaeMBicCnSbjn7TE2ePjwrTdXS9WBkm51DjQt8NZSPt+g4/e6ZxAsRbNfoFZ2DeWPFmTCPPklXydDrilpnDw30CA4G7uzviPLPrB5YQsXjmEPDjKODidOS4LBzGSXINlIQDrTbfbL2PISV7ibCy1qZk6RRCFINA1LyImhwH8hzISr+v4FMnxUdRLeBE8CnfKNeFMUlx1ToRBySaWxUrXalSis6akrdTFJuS+yGKSa52IYnJplFKLlSNmOK+k1VBQhXfb5gxOV8sLLERVM1eKv2MjGNIwl4rLR4/HSWpNiltDals0dFlDYoimtdjbAFGyFTGGRRUQWaaUCthBUv9Has3I4OJRtyVfzmXMtcfDRdDqi7eyBxsrGtKHqT1atTnyLKjlSX5uSshRhtqNQwbtrs9nbVM88T5fObVq9c457h5dkPXWW6ur3GLGBkOxyPTOEq17xA4HA4SRhWDUClPM7azxBCY5gVjDP3Q0/c91nYorTmdTkzThA8R5xdI9WlEEaCsTaUUzjlOhyPzJPkgw9DjFke/2XC1v0ZfK6Zp5rPPP8NYQ9f3qYiYK7I1BKEyn5elJIJnz3UGl/VIsrWaOJuJV89Ql79ICl3LILMCkI+23Ba2NNd9B0CR95HHbX3iDklBzSCztCQrUSiJALi4/vt8tH2T53wBFpfKHNAmChR584RStQJqF33U7vUVVVxYwmvj3t52kJCcDDibqs5FBK6E4ePL5l/Uedq8Wim79XOlFNtNzycvrth3mutnL/idv/U36aLjZ3/yhxzuX+PnBT8udCrw7GoDVwPBewEaznM8jZwPZ+aghHUqxIaaNsmk4AV8qEjwi4RhGYNWmqjFyxm9RykhVyHJ2KhTrq1f6nNok3JGvOhtyD3F0iYRDL3WbIc+sefplQLeFqhrFekKRtZjKDIqjWdS/us8qJOkBSbl+0cCo/4iXszL/Fk554k50wImlS6fQ/GfBBhNO6qfOPeDFqO21kRjSFVOSgi5MSaF0umVXrt+oAq4Kxh7t+NrgQwiJT5d6D0p+RjEumFnC6EPkJMsiSkHA5DaAQpFMym0UKHZpKC2VmS3uFRAzQpDkxYPR1SeoCTx13mfAIauCDbdtyj+Ksdrm5IMaqyhC1lBiMUlH6JYna3VdMqUpClh1goFWOgEamJipVIpoze2G0Rsw7VydWlf3FTWaKwRqyJA8LGc4z3MIeC8eFiMTvdr81cIHKczVhtChDEEJtthb7YAuHEsCc8x0esuztN1PX4R5i43OZyRREw/z6j9Fc7NoCLncQSlGAaxek4xEoaOODlMb3kYA9slcD4f+ezVF+yGDd/98CNs3zNstnRdx5KU+2WemEJkmiTE4v7+Tqp+o1I8teSTKJSE2iUvRg5vgYQS8wZagXbdI9R6YbTVw0MQ71CMUSzV6fT8E23kXSSifC4ElxjTQiAGlSqGS7y/Clrmc5T50FktYSVJ0fUq5wdVcJDXifIQEmlCUXmUSvkZyZMXBQzlooPvO8jIXr4E28vn7ViqKCUYVJTzVKhW+hhl/GV+iNfLB8j1N2V/kCKRISTq7EBZL+uaFiGB2lh+W4U5JfFbksalAW3YU/pJeVVDlyhCWOZkrM/Y6CMrd/iFwtJaKyOVMUY8nPl+2ctXN5U27Exry9XVFV3Xs91uyvoxXcebuzseHg5stlv6vmOz2bDZ7Li6uuJ0OjKOU0mw9kGKeE5hKmBtXmbmeUEbzbw4jNHs93u6fuD66or7+wemaeTV69cs8yIWzfTM2hhsZ1Nl2SgU2CFwPB6Fznoc6aaR7bDh5QcveP7sOa++/AKtFC9fvOB8PjONZ+nZCMsShAK375hnJ17DAgKe2MDVehyy8vHIaHbxpii05TXFqvf4eKycvPVIwLI9f2Vh/aqf5efJZ2dwkRWocq31b37Vtf8qH1kZLOObjQiXQKPdHL7G8RhgQOmvrMSV+aPWXZkb9vbGg6oKrex7jbml4qXVv6dAhypejPp+Ne+iotl22G4Gvv/Nj9j8/p9yGhe+/OIL7PzAFz/7KQ8PB4gegiP4iT6x7M0L9IMlRoWOgXC8Jy4z3klYcVRISFQiWlHIvqcSjS0gid+5+m0mZAm5DwUsyFcCQGL0oqshobXZKhxVJl2oslVrxQcvnvHyxTOhy80A4wJscDlmq6GroCPXxCkfF9Smy2tVJsVKkq+nWgYaLThsAEb1cKzPL4dq1nV5Fr2qiVHnYm1Tmaox6zUqMbxKvZJ85EgLSXFIYeQqF1tUjcxoQqVoLv41jq/BLkVZxPlGJimu2SpVAEZMNI2kkJKoZXNEJ9o08WIEpRlsh7WGTiu6GMQl5mYpvBSFFUpu2aBRleNtKxIsHoOEyKQjQZm8GQdRWpIVzShhn2nj6bwPzLgEcuR6mV40Rkk+nObk/otIGxLdaZ5o+d6tIuKLxTQUAJVfK3ItCE2XmHccofwmVyEOIeA8zAtpBiVXGELRufiZ0c3cj2eW64GH88J+02OtEdkRpLaJ0Zp+0zMfZsbzRPBgdUff9Sil8CEyTyP9ZkPXd7jgOJ+OEkbSbTHGiOK73bB0HV/ayH2Y2Y5nuhDpuoHtZsuH11fMEfquo+8Hxnlh13W44MFoRoQV4u48cl4WecYIMVmYRRAnmjwaz1iMmFDZYLRuLBBKwpXyIeExvmzESmus0mjdpfmRw5WkTxWZAUg8VZ01aK9wKiVAqbgS5JkJLYYUMqel2rgopQmkaoWyemUhWVIInoCegPdtorJGmZQXkAgH0vR/J8XjfTkKxIj1vYLEkhQLUC9sbCoIj3dMyrzSEtLrRbH3xCIYQ1Rk4rZQwpiAlMhWChK1ACOv17z/KNA6FEtSbXdtM2ms26S/KpCrdbJsR62yV0RZ3gDrRif6Qf51nuuq6KK6EcO5YGO+fPFiRMlZ+PTTT/nko484jSOms8xOQIPtOsbTmePpgLVSu+Rqv2ez2YDS2E5YnIbNBuccSik22y3brYRZHs9HjqcTCiXgwDm22x3BOdCKvu8w1oBSHB4eOJ1PjOMouUbLjHWWvusZBqkDlPs+INXG53lmnh8YpynJYMv19bWsdTJ1sKbvDdYY5kVyuqZxFgKJX0GQ0CrkdWR/tQr+tE5woWi2317mdqV7XiqObRJqvLh627rVXctcrapSa7Vdn1+v+SuM7X/lj5gUaMjKWmMljpkkJS+S5mFVY/1vTP5VaeRRv60B6ROz4mLo6+z51Z0c896GIru4Sr7Do3+Pe6HcuZ266vEZ+dGMMXzw/Jptb/mLn/yU168/p1MaQqTfPMNaTa8jgw3sBoOKQqHvvef+zR3TeYQQGIzGEJiU5uw80Scj4ap7FME73HgSZqq+R6dQqez1lyCoUIFh+k8l5V4r2Awdm81A9IFlniGGMiZaa7qu49OPP+DFs+tS72wFMJr6Ee9yJJtwOV9ep55sHnDlCb3o8/IvrfHqxajv243kK2dKBmApHCzrmNWLAXV2XjyjopxndGNQVSnnItbyEVppieTQ5ay0TriQR/Fry493Bhmh6RdRoBqee3LHxrItCihJ4QJBcgp0zAo3KB8l1lxD0JpeG6zOIQ6p3kUKoVFaoUOOr0tVvbNVMd2P1Pk6ucwiErdPUuiLezEhNXEPUcK/go9JoU2TE5LSqrA6FaJBJo7z0su58GBBgdlluLKmJOu5D4WmNYnHRiio8twhWc0X58XijtRIsFkJtboUrIskNqMY8dFzd3pgGPc4v8ebjvPpxH6/x2jNPE1Mp5HNdiN81dMo7U6+dKUVne0ILhCU5HqEqPHeFz77aZqx1rC4mXkxzES0m3k1PXC8fcMP98/56NNP6Y0haM0yLRgfiMFhjcLHyNBZnA8MnSUAh3nGZ+trTt5GQitMsijn75xzLD5gdKBU4I7ZhSiV53PWQrbu+KR0lXkRKzNX1uMyeBYw58nuaPHSCdDwMedTZGVW5pXUiwnJU6RT2J4qG5wxqhQmknsFTAqncUFC10IUmlpy/GmyoEet8EGnsMOW4vc9PjJjUxa48ufRES/eZcYpEwG0xPwWI4ZCJ8EdkhAsICO9rhbPcvOVISDdpYKeWNu4tmymE5QqVraMa5stiLJVtfU7nnjIRgctSlCRpLGeWBShFaKoClBrhV95UaHUoNBKMS0zDw/39P3Afr/HO8c4nhnHE8fDsVgDu75LRTMt11dX6BzygMia3U68HjFEhmHgcDhwPB5K3tRms8Fay263TfWGDNvNFmJgnCQca5ymRD/tcc6z3+/ZDBsC0Pcd3jlev/oSYy3DMOCWBeecFOtLxp0YxBChlXiD+6FnnOdKL5v1sNVAxzR+7aCksWryYi4M2iug2HR/Gcv6p1Eyn5g6cu2sytQxVO34l3m4Bj3VOptf5z2LCpoy0GjuW0IGY51h7+0RWSXQV0NB9WZkxfXyKCOTNggZR1VCmNp+zj9Yr+uvblieI3UP+BUPkltUjBNNGF5sTmver+flOtxqbXJYH+M48aNffMGb08iwv2Gzu6HD8/HzgQ9ePGOaZ/w8MnTQGY2bF4KfWaaZ4/2BkCinhbTHgBKj33SZlJTb5R3eOfwyoaeuVPxW2TCbqOfzv+CdfJaU3xcvbvjo45d01nJ/d+D29a2EQzb6wXY78O3vfIv91VWiL38CYLwTyEi9F3PoYZT6Rk+At3xcKvlPgsvVWMaaO9zedv2iuUFrWKdhlcrru/W6tHvMuv1KEFkJQVZRI0X3YvGKFOYq1ZDSXPbQJTB6RxHy7p4MVGE5yl3pE5KISRMUq6G48wMCBHyOkY9RWHWiwiWle0kVcocoXoTegCaFNJSwACmMReKxz0m0OZxJo4kpgSVXgC7LLE2AfA6R1eQTpYTi6ciCWCslrrkU5pLzNVBSwMroXDMkU/ea4r4KwTMvCy4nuJLjtFOIjjESspXBTcJSi89FcaSeyLRIOJXSis4Y7NCVEA6tcthPSqwKMYXwBL483OOPO6wfGMcRYzWd7RjPIwf7IAmeKuKDx1hNcAEXPT5KAUFjNSYaFhbm80xvO0ZGrJViPG52ssCt4TyPvH59y8P5gL4aOHWKq41l8bC1HdugGKzBjzMBxc31FZ13ksBpNc4tuBhK7kT2VkQkD0YrTWd0Sj6XZyZKMn0ufJPXYAaMStGMb7JgK0qYkXfJO7BapGnhJErSGHKsovyzSqNS4nYMiqhzrQy53uJcCWeqlqhGCUhzLScIy7jHknwerEmT08jmaNIcbCpvZpaPR5rPe3bU1j+WUFV8iUng8gxF8pAmIBcS6AhGIbTpOe8lh6TRbNgNyFgp8FmZyOp5u6u0f59qrUpsdasHK0rBJYRp38lGhsxR1gn9LXvLSll9ai9v7hJXs1len84n3ty+4eb6JoUUDTi/MJ5HHh7u2Qwbur5nt98J7ezpxLwszKlQqFaKu7tbrDE4t4CCod+w3++5vrlh6Ho+/OADnt3ccDqdeHN3x/l04u7uDohcX19jE0jorCVEz3a74TyOyZILD8cHTqdjYjRZKwk6hb8656SoYKoM/ub1K+Z55nw+4bzHeScyLZFjZA/mU30WYU19eokegFyETK1kxIUCpy4kSFyPcavkxvX/KrhQuhhS8okS6pUV52zrlvOzYWvNnpatnY1SUtpAkSEhMdaF2oz38mhDTSq5QmzW+Dr+PR9PruQEMCrtM433ogLAt7Zl9aLeQV49LTsaJwptYm3+rs61Ju+queM6RKptwHrcL3Amv/zylt/9d3/O/ejZ7l/w7PkN336xYatOeHfi8PCGw90tRE9vJYLDasU0TowPt5DIGiDlamvFrjdoFxhdE1lyeYSAnye8mskRBau2JqapOl6K66s9P/jh97i5ueJwOHI+zwy7Ld4N+HGUNaI0+6srvvPtb7LZDCsFPMsRXe735ICVlzWZuSroUdWIiTo47YRovntyklSzO2VNxyInvmpeqYv5WEJqm9Cpx7dt5FKuzgqi/xKI2ogsiZEYa/jXk7kr6mm5lo3ApTve4fgaIKM4FtBQFCSdcgQkXCpZ8rNyn2LpjFL0CSQEFfFe2HucDzAn97fTBCOUlMRMqQUohbVWagjEgHNi9SIpxBmF5WTp7Dkh1rbGJABijCs0GGMkuECdcG1nV09N7nStoyQukUKvqCwH2bIWQmReHPPsyiYtRo1YwspMqgAd0+cuBJQnbRSUiSn7nyS9dtZIfY6ksProy5xyiTLOGs00nXj9+g1XNzcYq3m4O7Df7yS/QUGInvM0oiKcDyPaaKZF4puXeZaEZ7cQYyfF36KmMx0bO0hxv41lnHs6a7k7PPDL11/Qdz1/7Yffo18C2B71MGKjTQUMFf12I3ke3nNaZsZp5M39A18ej0whgZsEJkyKC7RGnllrjfcSctf3UsDHGk1vLdbUscreryx8ja71BGJM9QBiZHGOeXGreVVJCnKSuYTKhChJ2dlTkotA6lgXYI799iGwzI5F5URT8U7YHL6nMsioScNZKIcgoUAueZGcv1BtonhAJKb+PS+UkQ6VZGC7+r7qiBdvfIglT0PFNdNFVazq+LQgo7qrU0OKwlda12ihT9w8/0nfBSWgd7UltRtuK40vG5qEVCB7aygb0fp+WdFU5aflMWKdJ/Jd2sSM5Gh98cWXZHm8LDPWaDabTcp/OKMUeC9rYbvZMCSQLXUsMpX3wuIcMQbhpT+duL8/sN3t+OiDl6gU23tztefm6opxGlmmiePpxHkcCT6Q85i2my373RWoxAAYA955rq6uJOdtWTBGS3I3sBk2bHY7rO1wy8LxeGSaF7xzhAQssmJhjU3eVv+VEyuH4okVu45L9mSXfYLqQc8c+mslVJUrtlNjpQjThhi0e001RNSvkoxAlK+8l2ZDV1accm0p3X5eGGjkN5EapisMiWKAU+G99mNUkJgVtyf+tXmdQNnvW29F8+Vabyzjso7UKDfPalbM0yauitC9yxNkWlkZq6q0VdD0GHBcKsbVDpJl1eV16xG85+eff8FPP3uDMh0xRvq4cN1Z3DgRo0J3G9A9Ck/UBhTMy8Th4Z77N3eyHi+0YwV0WhGNYnIxP92qnTG3Jz9f8M2v2z6RWau0ZrvbYKwRqv1xZJ5mUgncRGQg8/2jjz/kww8/KCGfimqRz4AmG4BzX0m3qnLPlXc9KegFYDS4Iibdqx2CJwFHEsbtOK6AbyMnyq+fQhwZWJBARQZQSed9dJFVb0qbyvYWK/VwmVb5rKznptf5aaRrYpFneT5moPGXDjJ8VvpjZAkR51zh0jVGNqWQJrhN1batFmu9FLCTCZJDrVSyIEBKwCTiooCMXAQrC+FssYlekS0VpapvZiVISDhTjyqlMEomRhY60vtVUPtsIc4Voi+EfhXo6fxidaggpGi1SMXokCb1I1GWLiq0tBGtxKrtYwrTSXNP3P7ZIh7qfUiTtSSs5jABhdIpfE0rVAhMxyMoScScx1noJo3GBc9gNvSbgeiEftNYoZaNYZbcJi9J4MF6rBE6284ahkGKXmlrWE4nogq8eP6C6+NrcIFNt+HmxY4BjYkPDGPkPHuUNmz3e7TWTG7BB6nQe3c88vp0LpZgo0B10m+S62MKcPMk9q6u3WDVavJXFqpYLH1Q81qMkdWew9BkDIOEJPmQFKgKLIOPUuwnCve/FKDUUo07Ka8lryJGVIgseYNLcaMxAkaquF9MhjJ/Y6ihfJFU28VTPGXZOxMjFQS9x0de16RnzsXg3um5GkkcSaxeCkjGj3bNrQRiq4Bc1n6KNZcj/359l7c/R3lR5EL7i7UQvtQxaz9EQVqKJve3CvJWec3eu/ZexYDS/C6fY63FWovznhBht9myzDPnUWhqre3Y73aoZK2c5lk8o8kbbLVQkeskBzbDwLLM4kV1ntP5xPF84nB4YDMMYvlMSYTbzcD1fs92u+Pu/o5lWZjmiWmaAMV2q1mchD/N05TkvIEYhEY3gYfNZsPV1TXPn7/g9ZvXHA6H5PVwkOijg3dSg0kb+q4TggnnWRbfyOeLI+tll6OqaEIH6n6Qw2fLuCm1nnNpN28TwzPAaIGGenS7FmQIUJXf1Hy/ap2trHllbyrf5fbWdscYCVqMenJnT26xiusnf6+ObMiMFdCVmP6Y6ylVT0ZSJ3litNe6etbIimJXQYbcFwob1IXCqhLiaJNk3zb16sXy+evPWkARnxSOlyFSFWs8RlD18D4SMRA9bjnjFo33Pbub50Q04/JaQIMREoXoZuZ5xo0jfp6TBTfVVohruS2G5OyhL/W7170eL8FtbM6R6/adpeulJs/xcEApuHtzx/n+QPQOTcSmVkgNtrAGhY0ROecaFENke9uG+ndVYyRyATBy69b9e9nV8eL16jmzXE76Wz5aYBGb0Nc1ilNF1mjdzsmyabW3aX623ivynnvZ3rdNl9XnFfEWfSs8PTGfPN4ZZDgfy8a+OLHU++BTuFAsVI9KKyKCKm3utCBxvC7WMKnMdJLjaqPSyTqpUjJ5+q2qdQcUCmsFLFRhS0kOLWxEKsesSh5FSMxGSmmsTddXSgpFxaQsaklkVykXSYqGBWJMSbixFuPyySqHFqTnSYRHKRF+6G0BBjJvc8hLTOxJodQEEBCm0VrCy0x6ts5aYnSlT4kp/Cxx9edNLVO4xmZRzOeRGTC2Q2vL/mqPthq/SKGrkBCN3XREH+hVx3k+EPpATM+2zA6zkQTpcRoxk8VqQ5wmpnHiF69uefb8mo+fv6S3HXH2HO9PjBj6ENgZqQA/O4c/PODnRTwxKRTj4XRiXHK9ikTpmsMAmvwW5z1L8jKIt0ysn0BJ3I+xkg7IxuKqBSrK/LGZ7lb2bykARM0bKu5SnavPkwqrSV9blRg08lxYxKM2O5/YsOQIMTM2yPV8jMScW6RUzuwhh9q1wip7OnyqQK/K3FD1vv799mTotKiz0K+sUfJ9bKTfpUpwISfL77KwfiT4LwBGpkd+cuPPSqeK2ShIJop8SiCrYpprGxrrtdaXXn1W2tvsetmiVlSi1Pb2urFEy9UWre4TaysVMAwbnj9/zkcffUgkcjieuNrv6PuOxXnGcWRZZoiSJO6co+t6rLUsiyMEJ4X1vGee59L4vuuxXc9GCQXt+XTi9vYWY614QlLl782wQWkluRJ9T9f3KKUZuo6r/Y7D6cg0Tzi3ME8Td/6W/V44+s+nGaM1+/01V9fXnM4n7u/ueDg8iJEl5UHtdnsUlAKA0zwTYpR8Dz+V/KsyABkYNPMwD59s5DU8tuQ+XPS2an7Uxu7n67XzqQKPtNe1w1fmwoW6WPXUlae85hLq0rYKfJ6wRqqUL2QMLf2aUgH9bvrBX8kj5s5Ni7l6NNKaKWu+ZOYgz50AXzJwlnXeAIkMIlfx7zRfZt0qK6lFPjSD9jWfJk+mtWEkf8ejOfPot78CXIDM65fPrrnZDbw+3qO04YNnV7x4/ozXv/wLTscTr798xf3tLTqFaA+91Kvxzkmh3dQ5PoWiZuVZKMYT8QnJu5a+8+Rz2zZT7TLNc222PS9fPufFy2fsdlu8c9y+es3h9a2EPyYZntdpUJ7bN8KSl/M4al7BRS2JRuaqFcC4aIZqAHipol510XYveDwuTzxUM4pPQawnh63IkuztzB/WyJq8xmPzv7IlXVwsz+n6gBfhubljmmu1n5W1RQbxl/vTVx/vDDLOs0vWf3GXi+U34lREl3Luit4anEqW6UT7JVSsTirlNoWUtDZizU8PYkrdjBwPK4I9hohKlGoDMpkjhcm0brwxs/yQlMpkCffpfJ2TeVv38wU6S0IrxABBYQoLlBKA5Hzx4MRMqJb6urOkTbijs5YyvaJ4gpz3LC7gQsDTxOQbaVswmqAjJi0ia02y9MuD5gRyl0FOrEnl4v1JSrLWKGN5c7wDCzf+ht22Zz5PuHlJ+S0GHx0mGoL3EBR+Dnjv8EiBG9MZTGc4vT7BoNj0A8yRznbMbuLzh5nvfvwJWztgtWawPfjIrDRT37FxgXA4cDhN7LsOvwQO48RpnrkbRybvyJUmYwzCNZE3Ty/5EUsKjyvCIPWl0pIQb4zEdxbLb2zmQtr0Q5B5akg1KVLVUh8k98Om68icytdK1EQg4KXxFsUE9pz3koy+OBK2FS+MqflBxOqt0lolnbQqASYlo2fgEZOHK8dQexWxVifKuUoe8L4ea8EJMSipSfNIOP7qo923yubRfh/rdykcfaXwF2WzKJ/Nb5S8yAaMKqyzgH+8RXyVzH3rV8W6F0sB3HytWNrTKBv5FJXBKu2n5ZU2mt1uywcffsh3v/trECO3t7dM84ybZ7quo+8sKItbFqZpInhHCEp48RcHCoa+L5TZw2YoBo7MOGWNYb/fMQy9FOQ7nzkeHwTcIwaB7XaL1kIDPo5nghdgPs8zwS/CrmcMyzIzjWdhZENCU4dh4MsvvuB4PEg41zBgrCUi3vRlXgSkjCPzPDOOU6LHjlXJzn3VjN9auYdquc7e4TUAaQc3FuCS8iWyUl/udTnqqrTncmNeKZNZYU7WzuxFt9YkuWKaWgCkeZy9V2p969WzVeU5K4rvMcZYKUKr0Memv1dJ/I80uWbtXp7SnJvnS/k4xgRI1lbwrKwCSZ/4jwUc+U6xXCdbpCspRZVFq5+85cg/UUrxwYsbPnp+zU9eHehUxLgj3m3ZPf8I1c/QX6O6X3K6f41fZubZoWJgmuZiIC35qoin3+hErpIiElTSYA3i8dcx0/dXY17x9iXZprXi+vqKb37rUz748CXb7YbT6cTrL15xuL3HLa6sn6GTNaCS4nc8j9zd3bMKk3qCUapViiuYi80aelI1T2u6yt8a0roGHsUopaq+1nohSYWkgw7tNF1L7fy+BUf5P7X+lxd7zimLpWxC+4wioeT7dN20+ZU6MQ2QKH+b/slgI6+1NeB4+7xrj3cGGeO0YDRFsZIOTNSuwuqK1RqpDq/wLrmyYqqqvThxXwPGaFFiEziIqTJ4UAkARI1RpnA8V9ewJhoo4U/p85BqVNiS8yDhNkoJMMjLUtPWz0gWC5Wt4VTqu3TP1WTNbdDi2GslujAFRZQXNqE8mPl3gv4qsDGI9d37VomoI5atJ0bXqb5Wnmo1W59Ah4RuSWiOsgO73Y5JLXgVUFbYYvBSyM5rRyQyzaMoCxG6rmcYeg7nI0oprm9u2G43YvHxEOdAf9Uzu4nb2zuuhi1LDxrDMi0oK5ZTSVDXxKiZ+4DeDJh5BgVumTlOI4dp4jAvqfaITyFrNa5eJbd+9vrkJPrswgxIQbaSf0PeQFWaM7nfkqIWhNsfQCsj8zjUhZWtg5DAoKv1FNAheTVcGpMUOmWqlbNsdrRzKs2NJNxKyBvVEpA9G9k9q1JbIsn7Fknx1Ig0T6DkfT60rvMbIGrQMRUdpFpncv+p+rF8F///3P3ZriVLkx6IfebuEbGGPWSe+WcVi0U21YLIJggNF9KF+gEEXfY76gV0I6ABQZcSGhJaECg10GSxhn84Qw57WGtFhA+mCzNz91h75zn5t9hApeKcnWuO8PDB3D4bPmuP14JuI/RUVpYNw9RmlbXHDvjVEe0Ume2v5PNtLP+10ta/akoKX92LXaeCDO7uD117+bUzVnWk9lFTlAjTtMPd/T1STPj44SNubm9xf3+PUjIeHx41bAk1dGqaxoqyiBz2u0lCJVLEqlW8c5YyTtMoSdxEJOQNWYwAu90OORUwJK9iXRaklPD0+CSMeesixfm0IySJtC8IRbhcznXjZkDayQUHBSrzIiFXNVZ7jQqOinqZI2o4LQEiEJosrusTpkA2kKFdV1/1AIO7QTDlAXp6MgBxpVv2Sg13Y92/v/3Jdg8QD6xQ9Ibgq1Gl5vkVrgpcnzTblCgowO7CBTsF50s9Oohwddgi0B2/5bbWX9BmsXSjTP3YU/+GKomsMfl6dQUx1Rr+PxhcdGom9WC0uw+7640w7EElbe6xHQq0tE+Ouwnf3u+AtGIMhJEixmmH3c0eOb3DMgdQLkiXGev5DEh5W8zPZ6CLJHAQYCHstyojTR52AMmT5sS6xjbKYKSO+m0YBuwPe3z73df49rtvEMKA8/mC9z+/x9OHB6R11bB3SUJ3BDEVksz5dVnw9HQSAOT9y/3iat22R+7WSQcS9Z/eP7X5l7bzrwIM0wXqfHMVIBrbaWH+TQ/iBmSg81y8MrpV96hjbfeJ/t02JQ0sXF+Ut31R+6h73p3ilV3x14/PBhkxRawsdQcIrDGwkmURk8ZAupb/kFSBArfiVzY4YukleIca31sUkHjvgeDVq+FrqFTfYaLEtVg7ACoTzMooKr5UnNXK4LpGSS2UDLEw2wKxkxARhiDWcefF1d8nFjrvJGEdTRhIbQcgFka2VFar8aBAwcKsrDaGdySJy2gFDa3QoFUAbhuSWrd5G3Zl88p+YxNCCl8xxmEUIMIF65IQXMDhZo/IQltJXpK7LpcZAw2YdhP2hz0AhncenDKcD/j67VcSohQLfvrwDh+fPuKf/fCX+Prbt8oMIR4UN/ga/jQzwQ8eh3EC+TPO8yIFvJYVH5+ecV4XyTEoXDdLm+AWUmPhQzJETcH2es/itZH5UT1UqsTbsiyFETkh54wAwA8eRMLzXQ/dT4qGw61RksMLC3jL6p3AoN42BcjeOwyDKEdGDdlXGq+VoQFYGWgTDARUi2Sv/FouUXFeADtQk9c28/0LPaoVFlCFFrJZ1z7olYGXIMPmhTFHGWUtXghC1PnTs0zVs4ow0FnSa+i9q7gHF7J7mDVvmxeuL+rvgDbKVwKZReXdbA+d0mkmkQY2+uddn+hmtp0OamQJAd99/z2+/e57AIyPmsvggsdhvwPAOBwP2O92OF8uOJ3ONbeOmXGZL9iNI6BryYeA3W4ncoUJ5/MZDOB4OGC334Ocw6zJ3d4TkhozvIVgjYPegBiektLm5izGqmEYcDgcxWIPwvlyljUaI06nZwzDAOcHxPmCdZXckXVZFLQkG0rs9xPiStXzIiFfrc8quO3WUW/tpFcXV+v83opXXZfKnoju3P1vGyhuY2yv+zXf675k8kzJL0LwEquuHg3JR+Mqr4i18K3SY9a5r22uhWC5XfdzQx3+UR5d39nR4UXV+HUFUj8kDVxs+1tfvAAcVxdgo7xtiqUB5t9UuV4Fd7R9ytuPOnghb9k9YfPP5t/XLy2NnaYBP3x9h8kxXElAmvHxxz/CDTvEJMZeqVOW8fB4wjqfRcdTpjZTlBlKvAFACFEkp7YCb2skSaE+F4LUzIHMW2ZgGAfsDnvc3t3hcNzDkcPlPGNdH3F+PuHx/XukZWmGYR2TlDNKkdxIIsJ8WTRcCnXf3fRtrxRvjAU9uOgU9G4cCLSNhrXpwVfDuUEcrQWVZpvbnlKB6Ga6bOeO5ZbghVyh10e5roceLGzP++J165xNv9Rww815P9XSzzs+v06G5jVwYaEXVaUOjLoUauyzlPpGca1uBEE8DSCqlZa5FOSUhJUnywbknUMZBk0AH0EuyKTVKq5GTUnXHc6oindhBnLWHAaljnUCHgZNSrc4QXPhSSiMazGwtQqibkikhd5cBirHsA1EQeQsvPxQz4zGEFoxP8DYt2TWOgLG4MFBFlHwxhhAAFON5wUZHaeEV2U2gKOeji72EBDg5LyDHwJu3t7hdD7hdDrjfn8nIVKFMQ4DypAxjAFzXOAnD88Oh8MBFAgPHz8irgvCNIEcY40r5mWFHwc8np+xmyYQgON40GJ9Z+RlBXYT5ssFy/kC2t/BlYTHj+/wLRyijsXlfMaHecWiYWes94LS5gmoFa9zDiBNAm95Ls3iY8n/g1bJZh17izypsYs2DwkIwcEXy4cgcIGEsJWMNWbMS8SqTDpWYM97qhqChcJ55zANATTqWKEBC2N0aZs6idXeNrnOqiqF4ri+550De659YJ48AcpfsHIAXIWhUNW1q9JTLTjo9/x6iNtdYn5L6WUPRObABCU24GIDMNDkR3+ddrzsY5PRZrk0oCCcPW2X2agFGtpm4KntZz0blnRAv9dtvm/f6JrE2j/MsuGZgkUk8ubb737Av/ov/g1ubu/AuSClFes6I54TPrx/B++9hEtpKBQI2O/3uL0VGfH+/XsMgzDQPJ9ONnAgkvCn29sb3Nzc4OHxEZeLhFnJOQP2uz1iSjifTnJfJWseX5SCeSXXvCXWOjyXywIujMNhD5BDKYwQgLiueL+u+OrrrzF68ZyM41BlwWG/Q4xRFKFSMI4DlnnGPAtrXlxXLGuEaXAGJuvco342oMr5qmd0lr8+DrkZeHSkTAnqwWqnR7wWIlVBTifTiFr+ofci04RlTwGG0mTb3Ujiu5M8Op2LZtSo84nbfLIWf8n44rWjehE6JVDyJV9Rya6V/Cpje8BxdfKXF5N5wrqSf8urca2UXj/TNvShd01hvdJcr3993byr7zE3WtbgPf6zv/oB/+y7W/zDn37GsiYM8wWBPWjYwYUBYZR8q2EvBojL8xmOCMPgq1GQiJBJiBrYe4w7oWDfJDUr29w4TVrYd9SwZJE9wyiFOMk7yW28zIgx4vL8jOePj1jnWSp+kxGEyLwfvdCwenJC6kMSSeI0/L5XnO3+mxfx6tEMuJ0CXmtLvBj3JkU2y7wCkv6fV0KanYNX/bUNcHvo1H4YnLB6Fb0RAvXz64G2fWJ7T1vvzVaubR5rP/VGO+6mXxVY2w75jOPzQUZNVlbBVlhLz9ryAFAKWMNYOAPIptxJ2xpTDoNLQWKxNsWsOR4FSNRYdEyxDj7Aacx8s3Z3ISldErUI2VxfExEG7zAODvsxYBrkXDEJc1Nh1pj5LgyFLL7PgUF6TgVQLLkYrALA3rcNCFnyC+qmBIJIPAJ5i/k3hq0ms8zzAi5gLwBiM6boEoF1w+9DZ3rwBQ0P8uQwDSOcIzydn0EgvLm/ByFgnYVJZn88gBg4P59xupwAZuQ1IyEhlwRPHpd5xh/f/YSn9Rm7ccRXd3dgZjw8Pkp+TGGpF3GKiFG4sP3kkZeE8OaI+edHLDFizRmPMeL96RnRkqWb7r7ZaEX5lg+8AT/dCTabNvN2rveLXifBhlueLHmS6tiWLABDCv6ZV62Rq1qOYcoZTumTnVoTzZNSmSkEMbRFrmNj57Kqmp6oCg9HDVSaxTwEj8Ay/1hZ0LIC7S/5cL5Tyc0yCF0LBqgs5M1qoaBTtPWvFEioSrGNoxOgvAUY8kGT0AZirj2hVaZ2SsGLw+QMuIILLSHavnD92LWvWrLrZ53wN4jSaRD1/U5nke/Tpl/sJ8M44nd/8Rf4/vsfEEKoNSMenp+wLrI+Y4o4nS44n+faoR8+fEAIosCDGdM4YhxH3BxvsN/v4JSF7Xw+I6aIy+UsjHOlIBYCeQEHFoYVQsDdOKIcj1hmqcmRgjI/xbUaFWyAYox4PhV49YCUIixTh+MN3r55g+PNLVJK8I6wLisen55k3ZSM59NJ8/5yt0fQdnyN2rP71/rY5kL9xIRyN0QypzpZv50SlVK1KpTXSk137Y3xwDV51JiimifDeyN+oKpzGvW5JTc3T8XrFn4HyXsyhcX650s9Wria3W17Xr0Sv3WL3Rp7obD3wM9ec6NH3/Qh8ZW8uFqoLxrfzm/X6J/34dptHpuMoKuZ+8kn8n3VuxhS98E5h7/6yx/wv/sv/xf4P/6f/69YYwKT5jhmBgoJwBjHVjtB2TsLOdA4aK2dAeM0woegwNehlIyihTgBgJxrhowwIAQvsr/WeHFqjE2y5+YIUk8K54SBhGnTaf6tN4Ubsl8WvcHgHA67CcMQqufAVtwGaHBbmP0+cQ0yqrGAcVXQDmhrF22v6BRwGa3txLNxtD/vzNfYriE/bifehEmZFczm4icndXd/uin0uinsOa4/UxnVvVdBR+0Xk6Vdm2Tqf9bxZ1T8biwBRqFaSit8txF+BhIqKFFk6xwCeQBQ9hwGk9G2ehQqVZk7zwtSzhhjwjiOGENQ65f0s4GMXtbIgJSqYDj1XuxHj90YMA1iGQILmGnAgdVLAxAxKDnkwPCeq7JbKmc5FGg0wJRq+BI3S7XOzAKJbJTNI0BtrVWZBqsVPWcgFzjHCMyVBhjQ7xVha7L7NMtLLpKMHrOhZIJUKJPJ8+bNG+SS8ad3P+Juf4vb4xFDEGEBAo7TAZ4c1lkSMFPM0kfeYxgHnJ6e8e7je5zWM9bHiO+//kbzGgJKySCSmh+n0xkhSB6MD4MU+isebhpwCUDKCad5weOyIHWbBKkQ7fNQxCIhC9C50pjEYEKTWjJZYck7AbYom5ugESWsAxWqocrnkkxtvOpEwBAcHHkwKSsVNSt0KkXCyJwpItzyhdDYxyxB2/JnZBzF6xQs/I7UO+EAsCWcQza0TrEs0BDEnJU44cs9emsTwHWTFou8azkbdY4362vdKLhXrLWTOjnQY9DrowcYtlZNbpsl5/XfdYd+py+iVzechmr6T6qAr7fwqTYS6YZD7bW2uwcf1wcD8N7jq6+/wf2bN/j48SMcEabdDjfHI24ON4hTrutuXhZczsIuJRW/FwALSskYwoCHx4dapfv29lbOcXuL/f6Ay/kZj4+PWFYBLY4InrVivXeIMeJ0PgEMARWrUGHGJAoFgTBMAxyRsEHNM0DAukZ4l3G7m3C5XHA+n/Htt9/hm2++wWF/QGFgWWaU/IAheFwuF6wx4ny5IMYohiulxU0p1/Hc7FFdkSpiUkOZGgy0v/uN1kKMCiqDZ9us61hwHU97v23o8k8DFi2h+yVjFCqgENDRvNQMJSMxfn8NlUpKHmIhwX27egVIsKMDuPyWGvxFHK+Fe8nUbiEuppp339h+3/7p11VnPe6/x+2fzXuNnYrb3Lpq2ktp8CuHXr9GSkDmrDz/pND45OkMYDAEceymEf/2X/9PsKwR/83/898JkYNLcOoW9sFj3O9x++YefgiISvAwDCPCqGChY2C0tVJyRopR9BgFESEM8N70NjHmURZq5kwii1h1OKmpJnTUpBEtFl0C2BrkKl6ZuXpLDscDhmGo5QxKKa2+w5Uy3YOKlyCjVybRKn6/6OYeeFyNa0c2UCMugFpKocojZp2nev1u3rSk762uh95osh3kqydbEFEBROmec98vV99lVL19057ryBn3qzO5Hp8NMmrjmTWZ0iwnlgitncma62DW/CLfkamidTVgVmlJ/Aneo+ZypCyJ4lo0LawJh30BTxPG4KtkMFWrWnyck0x7hsbLKsjwDrsxYD8J9zIzIyl6TlFRtFqfxZqtTEZugQ8D+sqK3ksYFci1+FbGhibRLFEgqkxQpeRNuI+xlzBIKqMXSUQGa7kkdfXWsBGIFwRgzdtQNF/zPFitCGJBAEthvbQkYGKQA6b9iNPlGT/+DHz99dcAAYE81nUVcACgpIJlVaUBhBQT3j9+wOP5Ed998zXGccJ+GEGF4EeJxXSJtACWAwXAazGsrON3eT6DSoHnjIfzBe/PUvxLwo900y1A1o3fb2qfAOhj+DfKJ6nXAM0D5DrvFov3LSVhNGMIv3aiXBm7simuBvoIGINDZkJyBJCrzC7MQExZNvPMQDZwkuHQgENRBjUuIgTJcmzI8kZ0rtqSqgpuW19tA7XQKwWxtN38vsTDe9cBhoYWLPbWORNmVGVY6ddZVpYgx5KMqEl1WgygOwyQN9HbhDa1OF8ouHjl141D6OVhY1QATfztgc/1+Xqv5jXQ6JQZa2zdp3oNqLdi2rPtdW5ubvGv//W/xl//83+OGFecTycsywXrMkvxulIwTSNujkcJvznu4eiAed4hF6l7kVLS+ypIJWNeV+SPDzhfLnh8PuGoxfb2+yPmZcHDw0dcLmesKSPnVYxFRfIkwhBwOOzx+PiElDMwL1jmGSknrNGUawmpWJZFZLNS4goFbdZwSK8elIRf3r/H6ekJOUWczhfMyyyMeKlIaBZrCG6MSLpe0fV7BaRq3ICW0nD9ezZedYN+mTzd5gxX0LvRAF5TggENA27zu9F29/lKWy+V1Khy4rUDK/uchM4Kzbbts/pL6ryBOq8YALyD07DNLxpmMG/7uh62pmtPwF7pDz95yo0yd3VK6NkYHUOYLfgryNbkBm/eef2imwbIQ1U+r23i3fESx1zdy9V3O0okArDf7fC/+rf/M0yjx//j3/13OC0ZoASo8W8YBjEoHA81z8e0+8xASQkl5WYFh8gtcpKrKMYir0WH1ZPPucpM7wikBCrkvM5z0TckD4NBGv4MyP6eSpEyCtr3jiTs3oeA/X4nhXWdg3HcZiJYFXGu66NX8nugyldTStefMUV1/Wmzatv/V94wBSii+RqxS9vz2l7fBpN18+g9WaJ7Ni/CS/lfW1+30i1YaH9mRG1RNuoAsPDK+rkBDIaF2hm4cOykJpvkDXy2CPmzQIbKP7kIWWIyqmA0YSyCsNRkWAMfRYWjoFC13sAApiJQEjrQlRVs5FJdbGBxz/WqgeiZQZQ8/U+JZeU5CSOQ0P8J65UlzJWaPVoU6RWUnNUSHQFaQCRKoVSHHgBVZD1Rpd4Vj4yBArmvouE2OWcUSE4IebH0Ab0yQao8iyWcnAepFT1vigjoo2sT1yYDQT0ApJ6TnJBTqhSqgTy+/+pbvPvlPd49vAOPhONujzfjPdYU1ZOTwH6AV8B3vlxwd3cLGh2Otze42R/x9Vdf4bA74PT8jBgjDvs9AndgbtqBHCrNZc4FiQEiYVWIJSOx5UuYNQ+Ad/CWk7FB8XX3fqFu1aXKFp0MqZxX50VBihmrkhJ4LwtEKgUZ5zZvwhWsiiZBLe6ki6ljimCW0CUQFNgJK5qNwXaxqOLsrTK9zFGTbeZFY3teGuCpngzqAK7TkLov+CBB0PWVeTKMDcgS+s1zBUDC/9TzCVUCoZsZUdG+cgAp2QJt1xeZkLEuVQMHtSY0lcBACbf5BjvVK1K1KRz6Gtx9H5tf2Sf86pmAFg4hA28yxdq9VZj0e7WxhP1hj8PhiJwygg948+YtpmkCc8GHDx/F0lgyLuezFLwDkGLCui5wzkm9F5JQJ6HhHjBNO/leyjidT7gsM86Xi4YdehxvbhCGAdMkIRbn8xkfP3xASRmxFKGVXWYwF+x2O6zrinVd4J0T70Zc5PfjpNS5EafTWQ0/hKenJ/z400/wPmBeLnh+PgkQYokxP+z3KDljWReEsK/hVOu6IviAx6cnpFi2fa5PLEG1KnbUpmZv+Svdc+bXx66d+FqptFGndsE6kurhUo9mH1pcAN2XCK6nMlWFSQwcPWe93lM3V+yNum+zKHPg6rf5Ig8GlLrzCqDbp50FuvX4lcrei6BrwEL9I7Uh1cethdrkh4wRd+f9rTLgdD1GQGWts1AdBtCocl/c3is982tvq3QiYL/f4V/95/8CD4+P+Hd/80cwSx2xYZoQ1gHMGS5DwxDVAJuSJF6nVJPBSfc1k5dUq2tn5MoKWe2+6qh1IEr1jcKEkiLm0xnISXU5OWLKWJT2v3ojCEKTS4QwDpimSQCN6pNm9LF7v7boy/u999EWNcP2+qZ1XI0WbV69GFEDFt1bLWFf54Tt930hwAZa9WcGel+5TPNQXsuZJpyuAUbhUnVyrq+337E+qcUs1RhLGl3CYDgoKZJ6gD/n+GyQwboBVWsjyUZIpImPes+1+rYiRyusZgvdrC7GG2ydaQjO4vbIOXCS8JAYE9YgrECh61cuklfBhYEh1HyH6mEAg+G1kxTQGEIjYPCEHFSTY8CFAHBAMcrdlFBykkWBguy1w1UwBSIUB60MbTuWxtHbRIEq2QQErXwOnU/GguSJQKrcC22uWHtTEaYomxwOBaMjuEGSnoQ9S8LDLMTIrLu7acIwDnBKf+jgcdwdkHPB+4cPuMwzbm9uMWS5Ri4Fa4kgMJ6fn/Hh+SOKL/j262/BbzIO0x77/R7TfkLOEQ6EKYzIKcEPAcfbOziyWpwFT88PSGsGoYCJcI4rzsuszFyoHp8ab0y9IEClt2VGzaVoY2gToBWnc4408bHob80rxrCaI5bDUllZwBAXEXdrVOaDxX0yi6CFLlLijmzVpGbdfZqHzgBT0ORNE8TQNoLNQimKhLknmzUf1eLOhUHeFJAvO1wK6DdXAGz3CjEnO7PcaCCSaBQqqUtdO+1kChgMqFMLeyGT7Lo07WUFcP051JIk1Xvxyi5uQvV6I2+goWd/sc28/177bnf/m8+vHw1gtO/X57afdPUAbm9vsVPqWR8CgILLsgAsYX77w0GoYMnhdDohjAN+//vfA4Ao/zHCOcJ8mZFzxrTbwTuP3X6HaZqwxoi4RpzVyDAOI8I4inWsFEzThOAH3N3eCyUugNP5BO8dHp+fpa5Fipo7IUyCRJLg7aiF3haW0EDvHZ6eT/j48ICb2xswA7c3N3COsN/t8Pz8DAZjnRe8//AeIQRMWvCvqNfGnz1izGjYvCn5V7m5W4DBLZSgelWvICRtT/lCuXip87U5IPYEbrV4SMlIYHsGZN/MtAHczdpoYQ8bnHk1h5rGW1tML9WnL+5QYLZRyuqT7dreAAxuI/jJDqjLj9qLq3F8LVTrxdfqtRo47ElIzLvUj9RWpW3yalP070p0bZvymaOqom6/3+OffP8t/vu//wmLKpRhOmJQggYusu+VHMVAkZLk5lZrO9QQKHspAVVxtb1NlHwJeSbXPBuyBxr4Z+Q1IV/O8Giew1wK1tyM1YG63CK9+UFr6ZgRjqs238nbFwCjH6vNZvLpvuw2BfMyvXbQ9ff5+s2eW7A3l/Yn6bwX1Ona25F/FVOa7EJ/3wYkDGB0fy89HWrEqOHjondtkYIMwucW9PxskJFzEmXNOwR9tHVulhgrNW6UpG1cVJGAdXPXsbrwHIkb1zuG90U3oAyGuLytkFYtmGdgQV8TM4LSpMkiKmIJYNRaCwVCl8tFlP5p8HAERO9QINSHVvQsritiXJE1fICZhTe+MMYhYJqGmoMQE2GJQuWbUmqKDaRgnCNCcA5joMp1ngqkWnQqEgKlwkQ2DM0T6TZlMGMMDjx4sLqqchbO6ZQkJMppiI8nQkkJy7rAeYIPe5Qo972fdmAPjH7Eu/fvcXe8xXF/QBgG5FLw9PiIh8dH3N/fAlxwGEetriv3epkv+PjxAYdhh2naYy4noX1dI8ZhAINxOZ/xfD5hGDwoOCwaM/xxWeAcENjijztPlqyQKqByznpdQnDSb5aUKqELVL/LzHDKNFRYQ8dMMHnXktUGj8JcQ0Is2bJRzhodsBedk6F1PHJddJY4To7AjmqhxyYQHDxsI+rcrb3lhI2FKncKjH5GnUeQdKOqisT2u1/i0drfKdoVrOkb3Qa/vd0r7cFYXZzTJOxSN2VTBj/VXxvrpQKMGh/bt7dv9K9munEN4bxO0Ny2naqC8epOpe2ivj/q+1du+e5w3mEcR5FZWerMDMMgFK+qwD88PeNyuWBZVjAKDvsjgnPYKZXtPgQNO5DQhf3+gNvbW8zzDEBk2M2be2WEumCZF5yeH1FKwemZMIQARwIccs4gR7i5vUPwA7gAy3wBEaEMQS2kRYw4hVGcrBfnHQIHCXVKGd4Bx/0e333zrcoMjxDEEBRCwNPTIxYWj3FKCcss9TMu86VTil52Wt//BVw5/tmUQ1NKOuDxYjTNiNQp7+1T3ioam+t2FZOJGuX2ZnqrUcUBrnTAt8oQbuerM6OprL2i8WI2El6doV/KUWzfryActbjYZtVof/Wg/rW73ih0psx1gqAfeZPr3I8Dd8qdAcDue9swGTSAoeNvXpl+RPu94sXse12//LMP7z2+/+4bvLm7wc8PZxRHcH6HsMvw64q0LMgpI60RJUWwVgt1xrqpLSs5V/rbVq+mVBIUMAAjiCkZOeYKru2GckpSgLdIEV7z2EtoM6AVMGoOnOXkhmHAzc1RjFKK6V6FCv2ct+fXnUiohr1mRKfN76S1Lw/+1Cem/wK6z3Tg0sa/++zTRzcfK0jla5S5kSM9kUAvx14Noyr8AnRI9ADAXtvdJnCj7v6M47NBRsoZgypkQxD+bkDrXJRW0dFYjuqK7jZLc/OIElWQC21isYWGVKzhtjDnFRtmICfVjwQ560ZAsIUNjdVrQjyniHkmcM5w1BA0WAANewLIg8nB+SAhL6UgOMIYHKwwXCqMy1oQk1jYCQFjkJAB7wglZ6wlY41q6XbGEmLVWiV3xPjOcxGFdS4JKXMXpsEonDSJMUluRc7q7ZBwpuAHgAiZMygzCgo4M6hojkqQuMmsRRPBrLkSAbtxjzf+DXIp+OnDzwIenBPmluDx4ekjci447vbYH3bi8mRC4oSnp4g1Czf9eJyQYsR8meGdQ4wL+GaPkgsGP+LmcIOMjEAOZfB4F1edDgIa7DCEbTHPPcomNHrfIYjXS/PKqi5q00tALMEVBpzUaCE1kfsQKn0elQJWwOS7RcJ1HiqYMSNEZESVlXULqvNQSAtKExudkqILumSULhPRvHcCQERoVvmoplWbuzXviVH77ks/uIKnTplWOWHyAR1IANAst9wxrgCQ0ETdyAkgLZzIKn/ao0nHFo6y1ejarn2NPequpUqDnqX7Uj2JvrDJeXXf7WJVMe29zZuvXwMN2+i6dlcIxlRjri+XGY+PT3DBo+SC/TRhXmZ47zHtdgATlpzgQsDgJzw+PUqo0Tzjcj6DwZJfNQwYpwnTfo+b21u8ffsG82XGk3owmKXOxs3xBs+nZ8zzjJQi5vmiYwUsmsxtBfKWeUZOLRxrGkfknLE4wgrZX0iL8kUQRtaCfuuK59MzvtPwoBgjLueMy/mCp+cnPD89YVlXLJrDkZKwTOWUsa4RKafal82f3ubCq+pBBfWbQdmOU5229n4/Ph3g6LEHOuVR1zkRAxVE2LirrGGGK33+kK0Rs4bSZo70k9fWic3Wvt2/Fcbzj/3o17OsIwEFVD2SHdTYLMWrwbBvEX1StlaFrgNt+mRj+KnA1EBFBzD631wnA1uCcoOHqJPEzrOZjJ8EGFcGku5+PrVrEBFujjf47ut7vHt4RMlc90YjdKn3ohq8M1lIunfnjJzMyyHrztafMSWw3UsNyVEAwX3/SfRLZqsVJP3jQ4tAASA1pPQ+vSMcD3sc9nvVn9paJrTlWNmoan90oKEHAQY+NmuNKvjo+7obpqtR+ESf9+uzGq268bc51i3nl+dubFfddNjcF+teZnpKY4VCBWH1lwZ+mWuIVO/hKBr2Ltuohr6ReFcZQPlPDTJKl2MhyauyoI1KzBqYa2y93HZ3S9K3ioiyVuJ2VIRJiXx91IgiOL0WM2pyt4S8sCYYATD2KtrW7kBxKCzJ3WJpbxWaK30sNIeBhZJWJjoBLPSqw+AxBuGSzyCMa8JlTS1JprAAHpYQsZQSljWBtd1D8HCDRLExk+akyAQIniqNriijjbJXzt1iH0vOUs1SlWCJP/QANIm2UC0sSI41xEYobMGAJ49hHFGy5CaMuwkpJ7y5ucV5mfHu/TucLifc393h/u4O+2mH3bRHII8SJfYZDPghSM7FmpFyxGVhZGSwZySl3iVAeLd5QGTdIL1H4oxYpPZEj4hz0byV0oRpjb2ELe4Ws5yLJNNnTfAaglhOa5JYlj8GbZgpck0M5o0wkrmt89UogQktRCE4AL66YjfMR9o2h1bLpOUiNWtWn4Ng+R9erZRWM8ZqoDCaFC3WN2qN7Olfv9SDuSnGNbGtCnSgggObC0CLjS+spSe4/c6iqhhgdsqiY4CtAyj2wtpx9eRaXm6+z22T1RY2IV+1A355Ev321VkrwLr+1Bpiyusmd8S0pWuNhBQjlYJlnnE+n+GHQZXsFTFGDN5hWWaMwyi1XXY7+GHArKxMl/NZQ5mS1KFYVxQuGKcJz6eTbOTHA27v7/Dx4QHv370HLiKT53mBc4S7+zupS7EsOD2fa7G9ZVmRshhLRM+QfCjvOq9tFqaZcZCifRw8nJsAAOfzBX/3t38LIklsTympIqNMVbpmyTkJZ3QOjhnsW80jaH/2/cbGuFMBrc4VzREyRcba2I9TBRbV2vkrY/6K96sqpXqBqhL3ORvmpQNVxjXXKUGuu5/mxZD32v0YvWrHvsf14Ys9qtLeKVt1aDvPQP8+XnnV65ovriEXaspfBRLXj1dgw2RF//pKG90ADXvdbm57j9fXe9EXn+wkXCGsF/dOAKZxwPffvMHf/P3v8bxE5CVJzSsWVinvPbJzILAYCdDkFxcJK08xglNCSuaZFEXH9tUmIln1P95MwDaeZBmQQn4TLAcXyMnCt4DQrRPvpHaOieRNd9ge3clQA/BbcNEBCrzsshfruxuLT/X/Rvmv4Hd79jp9O7nearu8PnAGNPhKrhjAMBAi39t0xWYc+rnJLwy87Xntk/IKaPlPDTJyKfBFFMRcCkgMRBKKVFhYLmrDGhJkBSIkJRolKUdvBCmLcjgGDI5AmvMQmMDqKfHOSa0M1/I3qE4WhpiBS7Xw1NwOHdA1F5SUsEKKCAYnlueSc+1EcgFwvk1yYnhijKOH875yQu92jKPmasSYkLJ4NmLKuMwrzvOKeRVmFe8duAwymAMD3gPwWmdBxidpyEDOuSrORvsLZS4CWhJTLkU22CDtq8XgIEnWokZrInROiMuKYRglPAwCwoSRKsER4f7NGzz98Q/46d0vSCVhf9jju2++gysCUoILcM7X8KVhGnFz2An4IQEdIWQcDjsMF48weCAIVW/xAWWekdQaeYpCYbmsEZlLHcNSUNmYxOPTqqsLmmYkJzHczNA+lxhrr2FUg3c6DRgrtbopllRdNHdlCLnm7cgkpbpQGBqKpyAheGMtAxAIVJx6eElrq0DzbEzgbuMcN/KEofkdMsZWbM8KMBIBjkkp+oqJPvG8EVrWXCmvlfn5oo5Obl31kSUMNgDYC0LZt7gaOkAtN8w2kmac6at8cxWq9bcVz/JGlvfhMd2bjRKTrWW0uQcznrwUuVcA4xULMvffpLbpgXqhLt+wvaprLdp+zUg5ggjYTxOG44Dz5Yxhv0cuWQDFsoKcw8PDIyb1cqyabF1SriwiYRgQgoRJXi5nJZUguFJwe3uHadphni94/+6dhmclXOYZx8MB0zhiCQuGcQKvAGNBjBHzskjehRp+7F6YpVBf8AHeBwzjAM8S0liKKC1PT0/4wx/+iB9+AIZxUnAZME4BKTr1ojN8jABbmGkCWIxZKeXWl12f98Vb23yTWk+km+7LEevARRu4V771cg7Usa1I8Qq89POCoeE0jFJ07Ely+kiBuDPvzGae2O/13mxRwObQr7X1yziMIl/AlhmGqIHBa4DxGra4tvRvOk/+6Xtp48H4JODoQcVLkGE93+dnvNbEbUjWS4DxSWDxuUcneJ13+ObtW9zdHDHHJyQkUFnhSgQgRsGSs7BJqf5XhLoROSfENUpCeJLwZkKx1Dl4BcoFIrfXzFiUcGcXJOy+r9K9mcNKthMGUVEjq7W9rh2JcDje3GCaptYxzUJVv9d7qnrDAKmBD93nLzuYNzK3P7ifJ3WMun2gkzfX65y7DzZMVJ2+1wO0zXX1u5t26vl6sMQ9KLg+E7fuqkCjtLApIUZqAcCb9fKphfWJ4/MTv9UaHKMURMquCXfb6KpyZQ2zm5EToDgCFZGWhvglHIZQihMWSqKazOw14cQVtUr1bWFL0dVFqWjMdcXqAAtnkfOJB086MSZJLjRLkfNFrUWMQACCQy5eQ120qnQgTKNHjB6X2eG8RCwx4TJHnJaIeY1YY9K8DtfNrs7TkwmLelWE4laqTFe6W7YwIQFRjgA4YZ5KWSglGcAwBAQvLs0xOGRlHjJAkJjVeih0cGtccZlnwBMGN0rxw8Q4nU847g/InDGNE9KakWPE4biHD0GqdC8Xqch7sxfru1YJ9t4hZQ/OjEADiAnLmjEUDwpiZd7tJjz5gGVJWFPGZY2IUZR9r3U/zIvBgvNk3ElyTswKPWhfmkfNRImjxrxUqMAXDUeypDLTSXUOVqsFt42jxmHCFA8rr8atfUD1Zhi7C+CkSBGa9Qo6p+tCJFElHFvV9pZoX1iSzs07Z542oNEiewdVzmwNftkwo8lFUlFJ0OA2s5mgbdCo4GBLqiXfdUqS4FQ5tvP3oEKAXycj6kaxFf29K7piCf3k02qhtuaTsrYBWNJ/KpsIt5bYeelKmFcBV40qFUu1titQYgaen0748P6DeMl2+5oftptGYJoQhgGn06luJDbvg/NIXsKYQgg47A843hwxThMIEFpr7+BSQkxnBO8xhgn3d28wDqPWbil4ej5pzseiNS8cgg84HA56nqVuxjnlKhNjjCihYJ4viEnCseK64nK5SM2LXPD89ITLm7c43tzAOYd1WYQb30uRLxCQU5KkcmX2M08GUWkMcp1RoQewNTGSlT5byghf7WltwK/nQj89NwrFtTKpg0iss5jar7unV9833El1zK6BaFUcZUO8Atim/rzM/fgSj94zUDSpWHD+KzfWg//N0qKr13gJNKgHFwYkOqWyBxMvQIYBve1ah7az33va805xvQYY/GJqvOyX/hpX7/eKb7tfUXBvb2/w7Vdv8eG0ImFAiBkRFwktLknyLTQevmh+Yk4ZJUbkmMA5gUpBgOY1UgufX1LGnJWCtjQ5HkvG5CXPNLi2/zpHNe/Wg2XfVKOjlceVmkpyV7c3xwYyrjrC5GXzJLQaDy8Tq/vf86bPa7YMYzMe/ThdG3/smlZDxTYWMxaYN6IxTxlZzGaYOqFg90AdoGlfqftTN9+lyO81vOlbaZ6MUnWaXAqKAowW/QEQZe1PyUOtQukzjj8j8VsuErXqajEqWZutbPSjcgt2eXPbMAAUgF2rsdFPgFIKYpaOTh2daVMnmwA15aH1WKlGaV8kadxqUjRTn9alYADkxQWtTDLicrecD4bzmtxkVL0qPJwmmDoawExIBYiJAUo6ARko6lFgwLlS+42ZkYk6RbIl1+RcEC0ECGqt8o2piKR6BjID8xqRSsEQvdJMhlp3oeZxZKFVnS8XDLsJ/tFjP+0QY4SDxzIv+PjwEbkU3B5u8MNX34EAzDnij+9/BJeC//yrf4FxPwKFkTiJMGHG6fmMdY0IIYDB8ExYLytSyhiHACqMyBlDJvhhQFkj4AghtL7MhZHBYHJ1QwSgeTPyvPZZZq0pYsq4qyxSpoNtlxFVD4Gsf1Iw0kKVAFMqdK4SVYtYtYLnLfuCURMzJBk85YLiZELXzYFYc0FaHLWJgEpYQNCQLzZNB0Owgn4y3hIWJGCKnFh8GIyo7uov+dAw3U0eivTdS4XNvFeWiyH0m6qQV4uUAIz2Wiy/JoNI3wPQpPHmOnz1Xv+6KRGff9DmAaBKkVoLqdUJby0gQyHyCwUOrbBTt9VdWdl6BXVZZrx79w4hBJxHoah13iOuq2wOuoGQI1zmGfM8K4Mb1zFgCCNUzgmH4xH7wwGD92K4AYln4XwSqmtNqj4cb3Bz2ON4POPx6QE//ulHlByxzOLF9M5VQECESmObs4WzZgQvYaBFE7jXde28zVm/GytZA1dPrySDOxUEVgTTNkQAlRq51iqqQKOF4ZWiCk2xXL8CY9Bmq/pbd/Jujpoy2D/Q9vq9/m/KLFEHUTrFYPOo/5C79lh01sleCbH1ot5wY3K08E0YkP9M5eAf69FyFQhwCjTgNgrVdX9KV23XZm/13f6uAYl2UX1/o/T3jw3Y1e91AMNChWxfq2B387xd41Wg8aIfXrbcnlaJ8Wm+W9ik3u92+N333+Dvf/6IpawK2kVeZGWUi3EFUtaEblmjnMTD4ckC8qRBa2ashbGkgrWS9mzvIDNwyfL5zhN2wbfiwyrXcy4gV0BeIkrIe7iUKt20dw7ffvs19rupruXNVbRJtnZs/ZhRqoJ2C5NGP2Yqp7l7v82MXwUaFdNUJdhqZbycaz31sfzuU4OlI6p7w/Zc6gNR44WhGQMc115OO11vkGtyUAzdWWUv6w1Rofq4iR74jOPP8mSkJG7uYMU5Oipb58Ray6rQbxeX3WjzehBBE3ol7q6AhBdcb95cwoKoZMDFbd/Tu3KHVqFFXADHBQyr6GzDAEXK4ukYwoCxsyCARbn3XvM/tG0hBAEhzoFh8fSMEQ57JjCcJCvlDCoJF4hHQlxaQufKDKTUNj9Lnirc7tfa4Ujv04AaOfUcSAhTTBlpWbESIcaE3ThisJCpkiU0YY0ozsFdZhzuMgYXwAyt10A4nc9YYwSD8O39G9wcjhiHEU+nJzznCzgl/Pz+F/BXX+F4cwM/OjA7YavS8J55mXGPG4QQECMAKgjDoCwSwOg9KEfEnLHfjZgGqWUyDL6KASnIJ3MiZ0nGT5bnooPqvBbeccL+xU4+S7kBRBs/U5S89zIX0TAmVRC5ZZOykAldd6iWAmatpmtUbgwf5IQ5ZRkHArKTpHTbQKyq9ybZCm0zqZ4pbW/S+w7egbwxW2hNGQADtbwT7xyS/7I9GeaIIQbgARQTvubJ2cbIC5mEeUy3wtj6cGNFqoKz/2ubB+w9+XrbMq728Kp4w754tc33P7gWtqYc2ldV+LOtaVwTF6qSaNew75Ndh9p3anu2WIghhqAPHz9iv9/heLyR/KtxREyMVKR2huWwPT0/iVfaO6GmnkYMw1g331IYl8sMhoQlJu9FzpUMoMC5gBhFkT2dTigpYhgG7Hc73N0esZsGxJgk3+v5jJQinHPY73eYxgnjMGBdF5zyGUSk1YGNTKTYqCDFiCF4sIZ8rcuKt2/f4O72FuQcSslYllWAeCm4kLyXkrAhppSwllJlSL8+bX8quaA43WRJipoyOckv7Pu6GwoDwH0V4n74DcwY3Xm1UNqfFXmtlLLdCXSOV0CiCKpt7A2sVvnWtcU8ROadMU8sYIbA1/nPvpTDiucCSoMPXVufWpOmlFV9m6pOUo9N928XV7MJ8K88/jrIaPKjX8efOLrvXoNY/vSP2nl/4xLX6ukQAn733Tf47u1PeDr9BOSEtC5YThdcns5C2hBjqwuVRa+phWLVSxEzYy0FS5YCw0wv5Wrf5wwBG+cMLCVj33k1RiXgKSmLEZUIY/CIOvaOCHd3t/irv/oL8WSULSjYXK8izsYMafmtFbS7pov0JRhYo2CuJoiNTr1mfb7pYQP12wEhoBmdLFH7Cpj0RBWvjPDVl7vmdXtPBVdXo/7aHtnnY+TqySh1LXRdiLqQPlOEfDbIIMjFHRHKIN1vVkQLZWI0liAT4FdrvTbSEcTtPngMIahBRqzWgQzJZqxFBj1nIDuCU7YBqPLBgND8AVdCGHVUapiLbgbOk4AHszTp1x0BQxAmKHJaUVItbE6TVI05ixxhnAZlRHGYBo/jfsSyrFhWLVpT0S9qknhvsQY7VUx9RTrMuWrG9Vrk4IMDFyd5BznL+XXRT2VECKHuhFxKuz6J5T0gyGbjCi7rjGma8Pb+jSR6aiX0/c0Rbw5vcX464fl8ws8f3+GcZsQ14u5wI0Lcy+bo4cFMIO8w7hx2PALew0EoeSkEcIrYHSZcLgHTfoeg7FpmOTADQimMnEpNPXCbYmxcw2KgYyyAlup8YkX4Sanz5IvqJekEtdUyMa+EJ6qx133YX/WfccsDcE4snbLgzJrKdW72ReSMAo9ZBG2pm49aVC3wTwVaKYzEErpH3n4nijRICjgG7xFC6RSGL/Mo3BSuwtCqYyqonXoduOVPMLdwqbbZyxhZ+FPhsrEMVqHfbYJmqanGDwBNWdu2cfua6qZgTCDdT68OqmBTXlaVxs6MGnz1G8NoShNXBN36pvvSC6gyzzPevXsPHwLGcYT3ASDCOE5C171KQnhOEQRgv9tjt9vhzf0bjOOElDPu7m7BzFiWCHJSYM85yZlYlhVcCnKeNSyV4VzAvK5Y44rT+Rnni9DHjuOIb7/5Bm/vE37+5WdcLjMu54vk9AFISfJByDnc3Bzhg0eMCZeLfAcMcCmYRimyF+OK56cnvL1/gwIgLwtKyZgvM87zjGVdqze4srKRKZSo63ITNqUyFsXGyQFo5BRF95CK9WB5DtsJ0O9zPTW25YHYY1N0bZ+uaEJmhsrs+l3dY7s3qpzqldeqlnayxizs1xD1Sz+qJwMyP9hJ2Ol1rkPzJJnM6YBGHQ/bZZoiX5/+KqjYPn7OezaJehNDDavR501R3QIM3golvD6avzXKW9lkXQIAd7e3+J/+i7/Ex4cHXD4mLKcTTo9POD+f6t4MGsB+RPFiPo05Y11mxHURo9t1zuArMm4Tftj1fWbCKYl+GQi4uILJORynCb/74XuRHZcLvPbROA74F//yr/HXf/3PNKrCLti8GVWDoLb31urVCjY23k0DGGzFlEW3oGbxaWvtap314223ZqPBUA+DMRpZ3RMy/EFt7m6A8itDuDFEcbtYv+/o96jKj+sTbedo6b2epQGMrAUXwdp3WSqpE2VQ3symXz3+DJDR2I9y1iQgx42Ctt5IbpZH/aV8Rz0EHbIy67SwF8m3W/IvEKMkR4OFtSpa/5gVyhYii/KfHeAlVF6uQCQ1C4jUImohNroJ+OYmk2tDWEqgCckoAGWNF7TJ61TWaxVwLXa3mwbkvJcifjFhTVGfr4hrrqjQq1fEpp8D4IOAmMKSBJlSUZYpuTebrML24BCKQ9L4uTUmFaLWl1LDZFVu6xiF4WUYR+WRn7G/OUpRq+AxjTuAgWkYEaYB3hOSj/j6zQ6Pl0f89O5nIBYMwWPyI45uB/IMPwXsxh2Wda7gcholnCdzRlqEZWJZJCHMkwdDaWO9AQZdjMTw5GAuZV+VdK6LBdxC5KpVGyysXNQSyI1f29ZrD/T0x9WjYKwtMn+4JRTqL64Bcg27gABRAxn2DQuTMmupLdxmTTcQ1bwpXKgyipnydU2Ja7hCBOKn1+iXcFTX9NV9VIHMTSmzd0VBvAYDakyo4PDKYlgFaLcBdCBho9zRa01qtSx6ZaEqK+jGtf/VK5Yje8ksRgImV40O6FukqJn6NvUKZz2tyQT7t2W3MDPWGCWXQde79756ClJaawKncx6HwwGH4w2cD0hFZEpMCeMwYLffYRwHPD09Yb5cpD6FzlHnHFJMKJxxOIxIUerjQCmEn56fZd17h2mcMGgF8RAC1nVRem7xXMQYJUcMAjyIhBJ8vlwAaP0jBs7nMx4fH3C+fIPbQcDTMI44X2btK5Or2neqRLCOXWFWb/tW7aY6otvn1v9mNLR5JQdvHuxoVOtNHrRxbM9fzJBuv7QHUxLavGq/L23abO9ZlRiGhLLCo87TV5r7hR79GHQK2ouv8Rb9oY14DzD60zaw1j12cuM178W2PVeA4AU4uAYCtnq779brsf3/yvE5sJG2z+n19wlACB5/9Re/w+A9/j93R/zX759wxhnxsBMQRwFspDnGpJgTeFmQnx+Qz88ocQH4dU879avqhfHF1pbYnFYGiMUo+J/9xT/Bf/Vf/e9Rcsbvf/8nfHj/AcwFb968wb/5N/8KP3z/nXYZt/2erV9ljHpZ3+TsS+IE2XzbfOo9Wg26tNfYvP4zjh5oGAwxsNmB3xfejH4+VwMUtmDjt47ufuprRrdv9t/RfgU62bn9+5zj80GG3oDEawnQcJXKljrJTIoGuSpVcBLCMg2iBLMqhK8l4JiSDEAYjrzDSnLOmJPmcmgwkd5jKbrhMpAgCuTgLflbhskTamw/m/JHTQElklCOwuIBSEloVYfgsJ8C9qMUdPMhgMjX/vDOIYwOu2mAOb2lYnjEuiyY5wvmecWyrsqs40TJAMEqZXpF2LkAKStgKkAxxUGz/s0a572UpjF606xMD2ZBk4KJEo89DOJtWWNEzAkPz0+4vbuHI6mC7bwoPEte4NljWaXte7fHm8M9bsYDPn54j3/4/R+xH3f4q++DhDAFgh8cyll49kth7PY7ZDBKTvAgLGuEC7IjuiwF82xOVBTdzS9HvQcDlW3LgIjyDCNx0fAzRs5dYch2Mtttm3BjUzSABLV8UwM7sNAoQMMqZBycI3Dmuul7JyDIq0BsbkWowtnFfLJuIMW0FOXGZwbBmTMLpWPgyN0CzgXgKNYELiwets9dsP9Ij+NhV92ypiIT0SYxtxVD6gwJ6BS1TtFv9VU0/FBLwrrNb9v35JX8vuGBJsybxbkLdwIETFYk1ARwT+2tJ6vPNsqdjavnCox0UrZfmkWq3mfz1lUZ2V2pGVnafTEDN8cD7u/vsMwL1mXBZVlgIQGlMA6HA96+/RrDOOLu9la8mc4jpgg/SKG70xo13ChjHCd453A+nTCvK3a7nciKuMKBMC8XzOcFz09PymBnnOrSoIeHj1ijgIf9blfHYY0RyzIjBKGgzEmIRRiSbH46n7HfTYDKhZwzlmXB48MDdjuRNWtMXf/TxhIXldGu5AxoTomNRbPwdd73aryo6qIaB7p5w91YdkrpduShOt3VnKrzwqDhp4/mgVFZovOCFVibEWNz1TpfaJvb1s1Fk1VfNtrYwMAXYK1ZyK13BFgSdY/Wj+jGFWaM+G2Q0QOBT+laNl5Xqn6nDHbjdzXvmn7LtW3XfUDXE27z0IHV15u3aQMRYRoG/NVf/gWmaYf/1999wN+cAkh1OWieD+cE5AwqGeQDxjDCjxPi/oh0esQ6nwV8lPzKZRq4YHR3v+kGU/CFvfKv//qf4r/41/8Kd7c3WFfJ8WIwhmHAbpokN+xa+QXXcKd+LKtpmqnmW/W00X0X9wr3tQx/7RDcUFd8PwKt/7l7w4CG6agqKzez+sV+Z+fhFxXvcf0abf68aHMHJLoNpu4RxATHTiM3lECDnIamW+M///hskBF8wJqyAgRJxPPeIddEEFcXqLXe2u+UnSl4X4v4pZTr5m6CkRQ4bCy/JEmDkrjIncDUxF3dKGxzICZ4ElBhLEXSnO78miDt2DcLFdrkX1NWa2DGEBxSGsAsoQdhEG+CCWxAqVeV7ckpU1BJAWsgBCoIYAxO2aSYkNlpcruAp1wA0urPOefqehRWK6PvRLWKWYyiM254UoUnZ5l8BIQhIIwjxmnENE3CsEWiYBABwXkcxgOmaQIRYU2r0iUyQgjYH/bSGVNGTivmtIIIeJyfscwzjtMe+90OS4xiiReEhmnwuKSIVBjDOCDFFYkzDtOAaQxY0qrznKtSb5Zbo3MVnd8K97Q6KAz1phkTV5G+58EjBAkr8joXwQKIjc6W0YXcsIRWAeLNKEWAWkzKeuVCVXQLZU3k76SNbvBZ2TIK2nmpFFAmYSw2hdG4+1VgVAFL9YeA3hvpGrL7jEXIFmLwGILbJKl9ice3b2+Rcq7MaqzjYwDailiad84En3mImntbuq5oMnPOuXr/LOZ8A1QsdKpTEOUwAa+bkQpRcrbemmIqG0/vGdF1V13r6JSVPo9EX3fKbFNObAM0hRJNLpIpjFQ/e5HEx3aHxoJG+Oarr/DD9z8grhFrijg9PePdu1+Awtjv9/gnf/lP8fbNW1VeuSZc+ujgXcB+v8fHDx+ERTAnMDvsjkeEYYBbI87nizCk5SKyhQvOlxNySTidLuLJg/Un6gYmIVhLZZRalgXMwmoFknkuBT4vmC9yjT45MxeRuQ9Pj/jq229wf3ePaRrhiPD4+ICPHz/idHrGqomq82XGMAxAYQkRKwUF3IHYbmxVzlgOQy1OpevaAFw/d7bgUsfKNU9GHy61PVSx+TXttFdRunnhAFUwZI+zKdSvEyKpv2PXr/O/MLIvG8D9JR6mmNV/X9V5uD605NruUTrtkwBjCzJ6Jb+XHa8DjFe9Kp9o/1VrsZEL/XX767xy+nrOa5Cxfbu+eLWFOr9CCNjvdnAhyBpkBhzgNSw1ax85J4ZQP+xA3sMPA+i8Q7qckOMKFCsGXF5c0F3d0mv3ddjt8M/+6i9wPB4wDOIFPRz23Rp8aVV/ATaqTkqaI8IKMu1zqsnS2zXevtOuo0PR7R0NpPW3Qd0Y0/UAtFs10LXRUds5Xlgt+j7jjlypAxj1srV/6g+6u7lqi+0rHcBglpRJMEsur+89tL89x/vjs0HGEDyG5BGVJlBYphy882BXKpe3/Vk4SLVS2uZNiooGpQqEDbz0TK5sBMJCRESVQcks3zU5JbWCId41N1hmVIux0063Tbwpqllj7Zs1m9ExuKhOGVPBEhPG6Gu8L6mCnJXLHUOAV/BULWSaPC7J7YK2yRUgSe0HmJJaGMY0YnUwjLZR0IB5LdAKf+mmS94pnZu2n5SZiACnCetEyrRUCuAY4xBw2O+x200gZZGQAGdgt99hLSsSIvzgQcQIQ8AN32IYBrBz+PGXX3B+fsY8XBDCAHKE426H7DLWuCIVqqEaQxiwlqSJ9F6ZuWScCislnSp2BA1HskmMRgFcN3/e5k/I0QSMhdoBGmqVUa9hRSKrkgoBFoU190frn3jnEAZNCENrm1nLM6QdMRdEOydRVdSSMu4ERqWmbetBxkeUBnPjijLCpc1PUyiYZU7EIu1PxUOn2Rd7fPX2TuvCaHXmGhoog+06E6zMCQWPzsFr1XZfLSrmScpKXdorT2rNpcYO17PtmKJfhXfpCmHaGRTsVMPGFUho+39pGxm4XYuxATdGDdjmr24MnXyy+VZBhYEt14qxXQMNmc0iV1gNDIUBPwzYhYD7uze4ub1VcoGA440kTccYlUwjYI0RpRQhvwgBwzjBeYeoXol1XQEWUJEuF8yXWVmgFkzjVMM+13VFShHeeRQuWKN4Rp1zGIeh1r+wsQNkba9rVOAi3oo1rg3XM4vn1UFz6YB1mUG4B7GwYT0/P2O+XHCZZ8R1VRkqhfsA8fpmcnClyWhTBHrFxPKnTDexNlTlwzqdm6JAOle8gQyVMU6NXHWoOo20nr9//8XG3UJlGaj5o01Hpfq8gjFqCe4GeABoYnsBsoDwLzm3i9ACTWBrAlf9bMU4SVflK54MUpljFu9qaKin2Sr612FQL3vQWta9/oQu9kmI0cmFHmBsznrNGGWKD3XgYvvwyWu3PmsvjocdvnsrxBGJGS44eDcIq9Q6Iycp1FfMuqZeXucHDLsDnA8oKaKkVR9T591ouQ616Zv2UG1PyhnLGjWnzvqnGQ2rwUc77jWwYc/lseXmWqSqAQ9QJwes93n7twGA1nk1ebsDCLY2u0n5Oqiz93vvdT1xGxe8eLp9bYCjA82woalgyt6/Okunl5tubqqX9YMZ96jmtHw+wAD+HJAxeIw5IGoBueQUaKj13jkJYyIA5D2sSrE1XkBDQS4OLojyQHrnZrW2uDTblLUX4JTG02ZkLhLOBAhdK6vAl+Iu0DhcaotPJ07dWFiYg6DhWNRtCABqkTvvnbaN1P0ekVYHZCdF4WICNOyoDZ8BlJatD6AlK2uIloXGFLWqSMkImx0FpSQYd74jzTvQb5hXKChVr7nH5XwSGuCcx7TbYxhHMAMfnx4wjCNu9jcopWCNETkXeMiJl3UGnTVkKTiczs+4uZVY7cNuj7xkTLsd0l3CD19/i3fv3+E//vL3+P6rb3HrDyAiLHHF5EcAhGVe4G4IOa2gzLg73mD0HoMjFAigkLCxRnGnNy/zRmiYgCL3hWwLRjdO38ApgSqAcZ1ynrSuiyn+oqB6GVcFLLV6uyqJsJoNOte8c8guV9ApHgzUuiZEmlNTw7yoji+41AqmzjlIxopdT+anMaY5ZyFEHYAiueecjcmjnf9LPd7cHZG0Rk1KuRakNEFull+uFiJS8CgAI3gP5zsvRbGK8QX9xmJruoV5NmuUWakAVQt0LuQihdvqOZQFTABCrt9hMW/XttbQFr1H24gkD8zy2AwMddTI4Pp722S4AgnU+6DuPZvvTa+Q3iqFUVyB9yNubu8xhBHLcsHheMThcMQ4jsg5YbffA3BIWfI11nUWlqYs1N9nN4NZyShAKGnF8eYGJUUsy4p5XsAEDMOg3oIV6zwjZwllWGbJj3BjGyPnJOcuqadijQICmAu8FwIOy8NbihQLtV1RePmlD5cYa1HLH//0I5wLmKYJyzrj9PyMeVlwPl+QUlRAlwVoaGKjInlVyrtQSvSA4gpg9JO3jncbjz7Ju8/HqkoDOtnWbf6m1TF3eWBscx7dMm9KF18n/r+qUKpsqadkNWpQe8Q23+xLO0RPwKaPr4+2vvESYPTx8GT79evW8I2C/wJYXI1HZyT47eN1YLF5/QrAERmxDcLqgaZ951PHi3Hv0as+eOew300Sqs6MMO4wDDuUlFFyqvsSiLWgl+QKFmY4HxpoBkCa7ZxZwzHqmlPtptPXAZ3jugZiSvj553dYlgW73W4DJFj7hI2J7gps9H3GqoTX0Lfur9WrqC2oe70p5q8aGfo+rcK/IbXNWLza550xCbY22+8sF7fOgIayXm1Dj0vqZTpLRvXIvPZTva4jUupTd/V5iyLodfrPPT4/XMpJ9WMHVWZViTOOc8BXCw4zJJ7LNk5FhSkVOFcQnIdzrAqmTjzzfACyKZROydCYVLPKmOvGOkA2RafUutCEcqeWv8Yq01iDGgBg9mr9Biz21RPBB48AL6JIJ2mMETMKgjIAZQacDzoBpUp3tYjlXK1pqRRkFmt0NgXHBtZZnD8Ax+AixfVYQ6qa4mLJwQx2vtbGMAu5LTrBawQfNNGSxKI4LyugkySvGZEiEhJKKrg53gAEZCSM4x7jdMTT86PS+A7AADiccdwdcXO8BUhcaOsvEafljCXe4bg74Hl+wnjY4f7uFrtxQkwr4AsGKihEeHNzg4f5rMJGxExT8ERoebVa2zwqasXPOh8sBMBDdAZRTHXmsNGdCtXvvCS1kDK89xgGsYYH72X+MqtS50Ej4LOyTmk/May+hlemrkY0KflD0pagVmYBfK5jl1KvUg9+GBU0sFagJycgqeg6KXpfragf69iLR+tLPqReQkHIHsknxORfAASgCVunTCBmIZbCi50Q9Kjx+hWkkOV4uI7cQaFLp+CpviUerdyRWpg8J6pyLqmH0aWMQurRVCXTQHENa9LLFQaKgtGUMmJ2FWgYlaw1baMydPKbXr4FmCX2unMZGHc73N3ewsAsOYe7+3tM44h3795hnhfc3R0xL7N6pRlIkngNavleUsRUvDfOOcS4ihyZz1i0endKUeoAhYDL+YI1LnVjW5dFvLuqh5j32aoEp5wwTTtMu52ESwF4fn4WT4jW5AHEuJNKwaDnjeuK2TkQPeJwPOL+/g655Krg2WbIDKA08EkwI0PrTNPZq8ICqt7gXmEQuaPjrWu5Z6bpGeX6MWNFKlznHlUlgWWEarXfqmypklUKq1zAZl10+id6paGBUMCRGvOMKMJkUWFktsJb15PnCzp6cEHd3/XBps+94slQC3SrhfI6yHgZVsZd/79o1sv3rpWxqiT2WmEDoS+8JvZelUm89WTo+Pa5ZL/Vpl89WOZIykmjRRIyL3LN0slP6zcLay5FdRQB96IPMTT2BJZ/Kr9usrdBjtYVlWHQvMtdv229jtIIe7R+65Xyvu+Ie/KHK6Bh/1UwYUp5999rAnvTwW5jG9hK6A7E1LVq49aMALW+lo675Zn2fXANNNRsUHuRqN5+dy/9nJWO7yNjQKiee4EZZtTnjcGOOsPd506uP4tdyhpooSPVsqdCnKrV5OoXzFVw51yQfIZHR8VnKBioitZmgTODHcGVUm/WkdQPsEXlHMGTt/5SCzHD2H8kjEgATba2Z5t9qvCjgLQOR4sBNxkmsd8rZxRVLlmVzpQifFRiUonnEsaUdRVLesqIuWBNUoQtFwZYwx+cgIrgCcS6KShAc6lUKwG6PgeAwuot0oQsq/Ydk8RNDs7DhwEgwsPDAwIFvLl9I0mbcBiGCcvlgnGcMC8XrHnFOE3wPsAxsB/34AKkmDCFCTfHIw6HvfT3AHw7fIv7+zswF1xOZ/z0+DOez2cMw4QpBBHgcNgPIzyvmKYdHu7v8Xe//IKksZq9lTcpiAiBMQQIVV2R3ImYLSFbapw47fesilTRMSUpWKKsWxKqsSaJB61F8lDlsvDyMzeg55vyWLcCU7xKU2Cd1lIpOjdtthMU3CqjTUpZlTToXJFY76SWe58J2YsVF0wVXDcgI/M6eEvy5E0Vzi/xEK9FByo2GzvQi0LzgFoYi3HeFh0Lkw9ZlUnZoDRZH806sxGM6BR3knC2nL0QWWTxbNoYMICcNcSytE2rD7ViWaKwjcM2CSKC1QB0LMlznqmGlTYq27bxyinbxrJRQmq3bL0YjpoRh8hhtz9iGEctdljw888/Y15WfPfNN7i/u0UpjHm+YJwGTOOA/W4EAXh8esIwjhjCAGaRaSlLjtLp9KTeIsmpuMwX5JiQlRFqnKYK8LxzlUlvXRWEEAlhSEqIUlQH+/0B026nYEVY+NZlqYaZHhSW3JLrU84IWrh0vlxwd3sjbR4KSk6I46B0t1Gtq6rs5KLhvUYI0hSSxvcv42GGK9tLak4QtaJ+Rg7RjAqou7vN2QpUOqDRjyybItEpkoqtZI5yQdFxpm4+ND2vB0JNv2zzvqNL1/Nfh+p9iYdYfrk+f6nryP6KaqB5xZOhIS4v1K9XAMZLoPEZbfyEJdtGzEB0HdNrUHF13bofMYG3p+wvugU1vzHOn9IRU8x4eLqI4YEh+kWKKDkhrReUlFByqgDDziah2V68GbrXEYsvv7+v67741JFzlho7SgZRPRiweVwqeN4AMaCTq/qvgge66g6DEvaTqpRfz4NOsadufnVmhbaxbJ9uAXE9Gjrucw8tGqh6LR009r8DDu3GYNuGyC1tXQcwupusz/uXJjTMuGE5xUxcKezMM+uq7PwfyZPBbNSFJLHurPHxGkZQcgY7V6VknRTcYqCJWgw1s3oNVFg7oAtdsYmjHZIzqJBu1EKHau6mGu5kaEvb6zZtt82GYAnqtsYLM5CVx0nDoxyJMuABqYNhKI4LCgtgIMgYMGUNIcsoyp5VsnDRX+YV8xqRU9HaFrrZVNQKDN5jPwWMwYHAGIIKQgKIcvs+W692i0GTxiVHRhNpWWKyXXAYdwNAjMs64+s3X+O7r79FzhITfdjtcdzvUTxjf9xhjSuQgWEc4FhYZUouGpZUkDnj4fEjdscDuDBOz09IS8Ff/pMf8IcU8cuHR8TzjPPjM+5vjqDgUS4LBnYoSwRSwcGP2A8Tzuuiidule+RadMoRA85CnpRJqrN8wKlXQJWNGo7H0LnXkrItvMp7YUcQ6r1W5dgM3U5zfnJhxJKBnBW4tpAm8XShEwjSDvPoicJSVKniFlrDAClVrYVZCdgQ74l3jWmNwTXcj1xB0KoapeTfFMpfwnG+zLXvc9dvzRCBCiKvBVrvWga2CoGJTWMos9CqEHy1bvfWI1EQJQDRks8tOdYICQqjgWAlZIhR2IqYG+uGKZ65WrdR50YF0tWS30Km5OgVx5YTZu9uwjb6jY66/tDv7vZHfPXNdwABp9NJmFiYcbmc8Q+//we8vRcjw9PphHfvLvj48SPAIu8yFxz4iGkYsN/vUbDHPC96HwXOZZzPZxQGhmFCXBPWuEo+07pofzj4cRCGKbVsgo39rmgit8M0jvBhqG3PJWsVcAmj6oF04VLzODbJ/85JMndmDFMAfIJzAYBTeZJ07QlaIC1EGoLVqBFl02oJGaho4XY6KHWD7fMdtmxo/YZrrEVVRmsoaAWp3Zw18ogmz9tZepNoG2Ho/moWzbpIXhw2P9ymfd3vvuCjgsD2zkYuboDDJwBGS/7u99PXAcZvgQwRU20S0eZ94FohM12oE1v1fWv6S4+GvlMVW/uhhqhT82T1CminhW5+tWkRA732HbzDYRokpJkzhCiKULIU5OOs4e0MYVQisiRYMdw4BxQrJ2xI/fre1UikeFFCqKm2h3XNHY47hCHYIMEiH0xHFFnNVXnuOrC7XxkXAxBbL4bNha53uF6u/lUdFqi1i8hKj+v413nwWh+/ctTxUkNYXaskc7PuERVg9O3jHqPWPt32wktPzDXQa2KmtVbqymmCvMrF6uUgGCnnq/D+tePPqvjd0IxMslY3IyEXL54GoLaihvcoK4HE4DFSZnguCMFVS9BWMKsg1dfF+oBJZ5/S2Jo1kxzgjTJUjiLmgi7x0tRPZTSi1mmiDEhIj/dUBzRrolzPe54SI+coG6fGg4OEmnE/jRgUZMxrxLJErMmUlILMYj0Pg5dYfUcIQSpZ7qagm5hDzmLBF/c26QJRWje0zQNooC2lJOxIzoHYNwsnEX73ww+4v73DOI1Iq0MuCT54LMsMAkmiJwrO5xNOj88YwlCt+RQc1rjCTwHPTycUMC7LBYUYlAvmZcEUAr4+3mH/5ls8fHjC3/3hD/j++28w+YD9WnBzc4P49Iy3+z2+ubvDL8+PTekqW+WSnN2Xer1SAxIEsexVa4FrYNJCUxiWQC7CkrlokTyxUC/qRZFwJycqvI6/1QnIWYoP9XVcLPeoKaitrRR1riuQtCTz/hGMSlNrSijQhIyryotvoKkAGTIHrICfFSX8Uo/3Hx83G3EV+Njsc7ACmrZqzVCwYWgyJRFtP3VOyBa8Aow6dmbZ3VihZf3L3LH4fy0Cp5tjVia6GCX0LqdUmYdMNjTg0pJtaxijgoyUJYQvpS4HBc2qfLWHbJQohnlee7rc5jEmksKm3779CmGQJO6YksYyH/DV27eI64r3H97jeDzieDjgcjpJgvWyYBgkLyLFpHK9gMiDAeymCTGK4n9/d4fb2yPmecHNcY+SC87nM06nZ1wuF60JtGr7S11nYNmkdrs9Qgi1srf12fmsbVkXzPOMnBvoLoXFiFNYmOMghp8wBDgfkIuEe94cj1jXVcHHDvN8AZeCeZ4xzxekGGv8tm3F2423zcM6LmyGnQ6FbH5L9XdAU0Y2ha0UPPeK0AZoaGikeSptbG1CtwBN1GugzhtYI2t/9ocp0bbaqlJT586XeWy8kvQycqIeFUBugYXlOhpLVw/iUcfySsn/lUNkV5sfqMaQZtTo24NqbS6b+bC5nukynU7TLtam41ax7ZR6u569bU97QfPaJNA5PMcsXgmpcgzOmo8BRkorSkoIwyB6mP6QTdfT8xA5DIdbcN7jtC61IdcKs5GziJ5H9felMM7nudJav1w7RqLRhZ6+Njh641xrW70CNF45v6npFapYp5tcs6Mb41eX1dWbm3UI2hgrLLyXWUNWuWgdwA5goMmT7UWuxrvuk3WH+UTbOoBk4LGbf72u0vIP6RM3+/L4fJCBjs+eGh1jYVHOfM5i9QeU6cnga7PYiTIPEBU4aGEq13Pd90m4VwpId1M2AUrRCpMs7Fa5Y7GSWOnGSCR1MUi/K4LGYuiFogmCxNGsDLbgxZLtwQzEzLjMEZd5qVY3BrDbLTjudhi8FzrUmJByYytJuaCAMBDBs2vVoTvLmHcOPAJTylhTRs4MxxauATA7Xbwtlg/UXP1ZE5xLKUgxCU8+Z3z/7XfC/JJXpDUiKWd9TCvGYURZM3b7HdKUUHLB7jghTB6n0wk+BHhPQCLQkwzptNthd5iwnIRp4u54g/3uAEeEy+MJHx4+YL8b8MPdW7h5RprF0nnYj/jqeMTNtMO7+NxkIPV9gTqvYhLrsYBCYZgB0JQ4hlQfZakxknkLVmQsA4hczbvJykjmg4MLDYy1DcGS0TPMGywhU2K5pspGZlZk7iwSGiJ1vf47CegIjYlM/zELbfCNHUtoURlcdPyrMvllg4yHx9OGktbkYZPZW+srw2ofcAXTKXcV2ruONiNIqBXS5c9713I7vCWSd7kzsEgs6fM+xIq7OWVFQx27Tils8e6l5BZOwxJq2eaWhnQqScB2ozOh3pQUu6aFdKXckuRN8Lc/qYlzPB6lKve6YF1W5JSxLDMcoNTVhKfnZ5zPZ1XmM5Z1FaYmR5hGqWEyzwvGYZQ8MvXKlpIQlZM+p4wQBgz7AbvdhP1+h9PphNPpGVFZqmIscN4rO5gA9HGcUPPiinleuYZLxRivwgFlduSsBT11vVr+E0OoaZ33GLwUCgwhKE0utLYQwTmPEAKStg1QGdOFSVVK6qJmKAW4tosJG41U/nQQY1ehqq5WBaWUFgZai3FuQEEDMW2v6wSGTQFTJvvF0ykLV1/fAIkXNkbdOlvF88b++CUeW5ABvAqa2PZ7bgZKasYMJqrsUsCvKGH/gxv58mXVrTtAuQmJ4rKZChuAYSBE78V0FDIFtDPcNOPE1XmuNfErEGJz2QwNhU2pdGBX1HILpOWCNF/g7t7oftXby/U+iBHGCf/yf/lf4u7+Lf7b/9P/AR9//rGznPftaG/1n1eCmpKrwrz502uZIv3rhyl1qH9tDTbwsAUx29emw/bhlLoDYKOo48Xw1xsVw7bcqXQt1ffsedVzSc5nOcHAp+cpX42lvGe6lAGNbYf3Hk67aF0qV8Jns85MRn0myvgzPBm91cAEZbPSCcjwkBwCbpsf6QauAjKDgaz5FwXICcjoBlsvJooeKygBJEKqvy3teFOwiyS8mQLB7FRIX6Ne7XQrRue0wx0DVPQ3osgVts3QlHplOVkTHp7OuCwrcskgEKbLivNuxTQEUX5ZK5z7APKyKdmiJjJ2KCd85hXFegxEGMcROwUMKTMyN2pUGwendGKsXoDmelfPRoyIMYJ9wRIXhJPHdJiwLGIpHPKAXDKenp6w2+2kjZCwnDmuCC7gfLkIHR1LDs1umDD4Qb5bIEqDKovz0zNudkf87uvvcXd3i0KMX37+GW9OC/5yf4MLCHNh3NzeSQL4+YxSWHnfVdH2lvAtJAHJ6oVA8jEsWdGph8FCOQoDSAUsJFBwjjB4AoJHKFY7QS0ETs4XnIQ+eLWYs+W+OAZ71nyQjMRadNIXOCd1MABhpHCkseYatmVKYLOut1CL6s62itbyBVWwWyjGoCAjGz2gF8tC1gKCX7JyAACXeaneBAs56wWr9IVTdjoA5NRDVJQa2UgbSmd90nUBA4RO54hSJxsFrsqGEDwG9Sh6zeg1we8VYBgAIiLAy7mDI5QSdB62MFCr02GW+z5RvcpMbrKo39zEKGAySfvA/HOdsaNwu29wRyuoAnkYJ7x581bCtmICIIBrXVZ8/PgRb968xX5/wBojnp+fkFOqwEn6VGSu0MdGLGHFNE0IwwgURooJjqQuz+VyBhGJx9OJ3JqmHYgkQXyNEeNUsJumuhaseGtOEsst+WMR4FbxO8ZGbwu0NWP3XRTcrcuCeRjhyOH5+QlPT48Ypx3issD5IEAzeCyzsEylJAX7JFzNWG0auKjP0ecsyBhLG8QK7ooo6MjdPmTW8DoftL06MV9VCa6Vvbp5U7NOd5+Z4lDZMtFAeZ2j1MJNriWE0R+bp9zm55d62P1W5dSEqR1VoWogcKNIE8R6Td1J2skriOfu8XMOATANBJoXz1RDVVM7naQpr0UNHJ8EGda8enZVb7mxctq8aGoUb8/zK/exActAJSQRvKDeAsu/ZRY62npeO7ckd5tnYph2+Jf/8/81vrm/w5/+7/81nt79hFxeQRcvb/DFW9ffvDbQfOpEvb7IXYJ3SwDXfOBidXGugMXmPdQF2AAGUD1kRNU4cN0Ua00FFGpAquFRptjbIwS8/Nq9/9ZRPe5o99Ib8Vvzujwf07H7+7j+rGvr5xx/VsVvE1LN+teEas4St+udk9yMaq3RTulWj3MOhQpKlhCX63sCUAGMhJeQ1smwLzVJW0Ms2KYPVcFL9RUqS0y0eOrg4FyA81IPgkmWSEbQQjFdwmfSzrJEP+cB5zCnjHmJADMmTe7eT8rq5CUBahil4jZ56aNB62YMquA4Ve4NPPgQMI6ohQdjkpAhZuE6d2yTsrtPIhh3Vmap4eBjxPlyws3hXtsiSta022FdF0mgdAHsJGZ7jQtuDzcog0fKCYHEIzOfLrg9HjFMA2a+IMWEXdhhHAdM44hffn4HJsY0Tbi7vcc0DAjngDWt+ON//DvEc8Txu4DBBxyDxxMIX93c4t3DAz6WS829sTEtdTE0tgpAQoeIGLk4ZBUQrlpOmnh0JIxNQxAQMnDNX0JhVlDhq/eIKgi2xachS4Mou2YpMUt67wbP0HjyKKFqlc+7SV5A8zisAr3VWjCrShVcTpTLGkcNAtRzhY6y9XMX9j/mQ3KJCB6VVQHQ+UsMZG41L5iNsjrV/J1rql+uY6zgLjd5ZWxhPkhNn+AdhsGjjIN8e5A4fSuk6RUAibwRZTE4QvGEUlwT0D0AKAW5SJK/CeNroFHjja+O3pJu4TO2s9h7ZvG/rvlTi60xMOyO2O0mDOOInDMul7OGIK14fh5UzolkC84DgXF3d4vjcQ8GcDmdMYyjehxGSR4HkNKKnKUw6W4nIao+DMgp4ebmFoUzxnHE6XSGn1dMRYDCuq4wT7L3TgkQfC3GF8AoFwm1LSyeVwMYFZCbt1L7gDTnb0XCLmfkIjU1fv75Z7x5+xbMUs/DQqSy0hEPIUgf54JlWarHtyopQJUjL+eqvFeAqw3qFeW2UwFfU6B6YELdm/V+O2D1Mo6/Xra2qeoA3W8Uq2yva3u3F9lm4YJf6uF0PlkH2A6yUSjlQQ+yDVb62wBGp6C/OMgU7+15NyDgE0dTPq2Ntsc3nWhrJe/Z9fjlyV5pnNwO1/OaTtbThr0aetXfazcPO7EGB2AMAR6QGk2cJI8xV9d+lTtNKZO/CmZKwXo54z/8t/83fLjZ4+HjxxeMZq1/XwdTzjscDvsaXlk7D9s/roPdrys7cwMpVXVk1Za4gNkBhdVJ0wzSplNcj9PL9a6RL7C4ho7370opr1t4J7sJnef+et3/xhKtff3iTVQgu/X6vDbPO4DziWMTLlXv7aWM+tTx2SDDFDKfxRqY1K1t6M8K60EHr2SNQe9jqKkNhIEIOwdqZ8v1ytWCqIuTJeGGHNcop4rUTJigKd+udhIjpYg1Cs+zByH4AipOUkgKpG4Ds3hi4Os0RmFRXCDAYDeNuLs5golwuiy4zGtlQZpAcMFLxe1hkHAj5+G9WO8CkYRwaL0Gy5W3HEXJ0/AYxwDJZclgTnCF5c9k5QZoWBKiq56lrEpvSRIqRt7oGbNYRecV480N/N5jfzxgDAO8C7g8P8MPDgURJWUsecY0jUgloaAgpRU8F3h/Aw6MvEbQNOLm9gbLMuP5fMZ6umDvgPtph+Xpgssyo0w7nJYFwQH3ux12wwC/zCigxubDRcahm0umqMgc0KTO1Cf+KdBFq6cwDEG8VEQ1H4dZK1jW+SZ/lkPRckOaNToEoBQDqYzMGablkYZ1pZSxrKkWLav5O3otgX+uCu8CSwhvFls4am1iCasrXVgflFJXYuU/d8X+4zxsSQu4M8W5rdsNk3rdI1vYoeLA7eZLtqn319AYXxOyhZWxw7SEBta9c5IroKFWFpLDNjeLjGs266a2ucWtOhQFhCaGqsW42zyc7jg1FMyAhYKLWgzQ5AFkw2uJeA1gNBkgnq8wDJjnuSr4plMBWu06ZxyPey2YtwAQ74TXmkbO+5pf5nPBTo06u92kcmzBskbEZZYk7RgRYwIRpFbFsui4OgzjAJ+zss8UxJj1ngvGcaheqJwSTusqTFUadmqrWnL1XN0cU85wqmxwjDidnpFSwm63w3sWiurbm1sErx4sR5LPVJo31OZGnUvax/J/t7CugOS10toU+SsLZLcZ1/vYTFOqmo7thIStR689b2Cl2iRMWbA2dHPB8rx6pcbaUiuQe8tH+tI9GQ5wrMqz9mUnD/qxUglaw6Nk6VPLobD3rq+B5vEAWRgRoQ3hb0AN+91Gh+mV1WuAUbBVAn9tfExJ1pYSNnLJrlUfXwMZhOoVa+o+aohOCB5ciiR7F1nL3O1bpHtSVfr1kVj2MOaCeHnGf//f/F+QL8+YH9+ho81r87R1q7a9zWFHhN00aYmEDlYwNmuibSpc13HvUWhAg+s4sl64FNZoFumjnk6dNwCjgRkDdPVfFsAnjw1g1H6uAMMiG7paOq7NqW2kzq9Pg2vAcA04TG72Hpn6vXru5nnppVWTX1tg1Matvf85x5/hyZDOck4sxcm5qvzZJNNay6oo9Ypbu/WWq9FcVXWQQJUDuheoNrHEyi0D4USD2CBVLozi2oJyJF4VSdolXfRF1I9CiKWgpBbS4siDHKtrubVVWWlRNJxlN43w3mO3G3E6z/j4dMbz+QIohVsYBgzDgDCEVqyQZfMj6CTrQh0KU004lrg8SeQsg9BJ5sIImcEBVXD1nPwSh+4RfFeno2RM5PD25l48K8MAgBHGgMy26Yvm7YKEjCxLlAXBDstZqvbmkpA4gaPUxrgsF+ycWJbXRVw83gUcpgM+zh8w7gdcPiYcEzBNtyjfjphzwX/8/d/jbtoh+AE5F+zHsVbEluFqAqC+ZgUeOj/M+iCe2h6ESsiG8x7jEDCErvZJUUW/zrtuw1a2sJylOKPl7pBrFbzrWjLt0Ti8s1EGS1HKrCZock7Ca0xpAMH191ivy21d6X2mnMCcdU4AuRCYvCi7sK3lyz7MWp2LzV01GNiGTK2miNXQEaawPrnPJJ+OSSf8+29cW4jMNW0SsirqrtU7kDP1m5luPtwqgvcgsho1TCmpEunqePF2p8nq6waueDO/qX0gp7ENS3857Q948/UP2B2PSCnhfD4jl4TLZZbwx2XRfIcEcoQQBuSUkSCF8YZhkGJ9hbHbTTgcDnDO43I5o5SEMIyYxgneZ4zBYxgnlKdH5JzgncMyz1jiCoA0nAqV/pYhm7XzHuwdgg/i5SAgaXL6sq5aXFXHxpQRBWbeSb0NC50VNsNS77/kjHVZkPd75JTFGOY9gAiz8g4q/0opcDFVoFGTsztdxYalKu8GItBy6MwCaXladU7YBsz1FrpH03p4Mx36edjvj+CrXJHNnKBm0HBC+d2HM/dTrWfDkjpEGib4hR4br67puIROmW7g0b7TAw10z/kVbamGSskLfd70ks21+0PPd+0p2WhAdV/bejBKB4R/875NQOmLVy3Upj9dgwzrl9duQDoJyxrx8fmMrPdPBrK0DT5McC7UYqV2h6Qym3NGWRcp4Hl6Qjo9VAMGmOscbaC9A2/gDigBy7JWY7Td+Fbx59o2nQRXY01tMdR+E8MRNFS+FNG7emBh7HiMbpzQamr0vdfnaFx3p3knbQ/aEIXQtrgd9T9k+z26J9gCiRdAo6LGF/tIxRndHmrEEKj93wxgfd5Ie93tPf9jgIyewsuRxOyZhciQGtVNVj0Y9geu37FFXfSGTMDbjZjFj2t/cb2+xNBRZwXtB6+LnSsFpDH7suE4YVAKVhQvgSHKYZIC2Wp1FC+Gc+La92RWH6/TStxrIXhMU8CBR+wnYWJKOUscPUkehrGoGGr11XLUMLB0CKQoXCwgpKZEsGwcznsEDzgvXozWB2qFJQdheGOlbBTGJg/Cnjxu/ABfAM5Cd+sHj+PhBgTCdJhAnrAsC8LOI6WIJa54e3yDg9/jPJ9xWWadhAXLfBFay8GjnJ5xtyfspj0u5xmn6SSWjvMM/viEyA7fHvb4kDLOyxkEwkjAHFccxoDjOAJQylHfsbLUgae2SLWOhXNmDWa1rmhv2gZtm6hvlv9GkWozmermI8xBReLBjU6V5VoYJG6fQqdQ6NxNXGrVaqsDYBXpTR5U66HTBVkUeBvdcekWOATUrsnGXhrowgAfHKDgFwa6vuBjialahFDlRifQun4GtjUMmueg/rqTmdQ+ALZCmS3RuqAwdYxsHW0gA764Ttjzppp4zQNhqXsioEIFL7qNHAAs7K3PxUEHdGD7iOYGmLK7CZtq9VRkShhzWss5ITiMux3efvMD3n79PcZxwPl8xnqM4MJYlxXn8xkpRjw/PyP4gOMBOOx2GIeA9+9XsTjGCOcCdtOA4/GI3U7q4UzThHVdkHPGPF9qP0V9r6SMBPEiEIucZQUFQT0j5Eiqe5eMAsaSkoa+ZVzmGfM81xAq24SLUo0HzU/a7SaMwyA96x1yltyxmCIoinfz9PyM/X4n+TbDoOG7wjZVYsKaorS7ZIQgXhJjB7QaQ8b0RIRqaJD6OYSgnudaLLTL8bEcI/TzoVND2oxCBQ4vQCTJPdczsObhGDOhMfGx5ZhtqXSd6+btVuBVxjPvHQZlW/PhCwYZjtQwI33M6C37ejDaXtIrRKro2vOeFarPv+jBwXbnhq7111AGtD1U50Bdv/a7ur7751Z8uL9iq3tgYKfKGFKF0mYLc51uDXtcgYwroGH1Nuz8DKj9jPHh4Ql/88cPKAVw5CUfEA6MAnIB4/EGJSeUJGFUQpQgtOxsICMpm5sjsHOgMIJzvELy3bC8orjmnPGnH3/Cw8Mj7m5vm6JcR6O7R+sNErlqQK+xw/X9ZqcoqPyUpRk1t96MPrSSX5lL0LEyANihDepkPuElwKBu/9O/6uWmq2v1d93JDgMW7RF1IvS5JOY9ezlnuz2K3BZsmD6zAR5/PtD4bJCRC6urjJvipI2s/9oMYFOI2k31KMti1w1kVFGsyqJ9tXpKFLwUEu5eG7Aak6wtMTnfFD2ZcE7DIcYJYEdYIyEmLQyGohsKw1Gpv3O+oGgCIYHAXjw3mTM8i3IcPKGMHrvRYwgOac3IrExQ0E2DqAp56RqujzYBcs5I2l+liMfAdM1+YbFJGKCeG5DQjCF4iJsyIKaM+8MR//TuDaYkSfEeDlAaycEFzJcZKEAqCWlNWEmS2He7CRmazL6fkDhhf7tHyRnDMGIYRsBLW3OO4FwQzxcsziGtK44p4VCAx9MJIScsRRJA99Me/+Gnd/jwfMIYPB7nuYawOJKEW8dqweYisU22YPWxbqPdOrFFIAqBjB24Z6dKaoFugtTCWCQZVBJOY07qOgUcBQzeYRoUJHarPecCzqKcxCihZ5Jb0woOESw53VXQULKEbfTsSDaWJqRZlVX5vcPIBMBDDbk18e5LPtZoFbX7td2EMja9LceWHaMZFn71YOO14+riZ27UyDnJ/FiHAUNI1dtZ6bShCd1FCAikiq2OT79ZuF7ZoK5d1Okz3MBLJ8Rtj6q1OTrlw8Iea3iCyjZTcA2YfXu8x83tG+wPexCgYZiSqe68KNwxJazrisenR5wvp1ph2wBvLgXgFcsqYbDruiL4UEOoDGAZ69YwSM5ZBrR9hMIZWghdinhpoy2eut8YvRemvpIF4KSUYCGK0DUzBIcxiLX09rjHbpqqESCXglmpcodhRPBBww4Ih+MNhjAihLG22TzHNSwXjCF45FywJgKSMVrJDTgIYBqCyNVxCJiGUMMwBx8UcFgNlkYYQHU6bC3MVVFBq8VSKxUTbeazzQPr96i0x0m93abr1Krjrq2ZnqGxzr36XaqP7gv2ZFhNo23+AXCtePb4YqPs21qsimg7XoALHR/ZO7j+/gWisV+YMsuAFTjb7Ploa2FjMdfXnX5awUrvHaHNJfW8FSV0npoeVOi8sznYTqDnt+sRIeWMP717wC+PZ/mEAOc8ChMcaQhk1T0UwJQs/d6HgSloci6IkZackOT0POXU9zS3FlUFGvj7P/yI3//hT/gnv/uhztl+fluNIzsfVRaxDjzVO26eiPauAA2bPz3AaECweTL6n1Zwh65fuzEyDw3wGsBAAyEwPQa2vSlBDLWLvXJUYFF1aK730QMjM1D10UF9WxvAkD3J1edU76H3tPR72eccfxa7VP1Dj4nav6zfM3aBTi2o3SIKYFvM7YalzoUHanVkK2SEq4FoKLCzejpL174CGwQUUo8ASMNQxHpditCfOpZCbkVDchwVSbD2rT6Do4wEQKwnCSDhkM5ZvCKk1cVzLog5Y9TJ3yrCNno4WxxSN6EgxdxZ8gGvPPEAWr4AtyRRVIsL6a0TAghgj1JkeR2mCYcwIl9mxJIRDhPgPHJMCKPHbr8DIOENwXk4OEyT0e9GjOMA70dEt+LydMJuv4N3DlGowOA84ePDB6RlwWFlgDw8AKcMQJd1wTMD53XBn57P+Nsff8E/fHzA0xIxouA4MKbRwtg6WlqSBNvsMpwDfGatf/FSuTYrgPcET+INABeULDHcS0yYl7VahAFo3L3XavFQwSjC0XtJeNuNUg15DAFWr6FVtxcPxhoT1lRU8TPVWJUDapsaoSWuLjGJ96xm9xqBQmufzG/Ag0EpAXDw9fv9JvFlHrkCBr0PDXuUY+ObANDkCOsmWhV5k99Njm9/B9uYZbMvDFApFZSuzsGvBO/Xms/kCJWxTZTZXBP+e+pTaFMMrNbigUBHQ6jn6bjwbTfcfA/dpommLJmHw5LJSdvWh0yQ83j7nYQUzPMF3onSu9vtkXPE8/MJWSt3m+t/mRdceEYIQUSmGXpU4Z8vM56fnzGNU+XBL8woSQrlAYwQNOfJe3DOcN4hRQE1xOLVha7n3W6HdVkBglb7FnBDOUt9pZxgBQyFVpiRC4liPw4YxwFfvbnFbhxrUcSUcjVINU8QtFCiEniYMu48gCTelaBFvUrGNAQkp+EQNRdLCqJ67zAGj2kU785+GrGbJoxjwBgsHFNCjpqi35T9qtSVTgmgBjSq16oCDZieVZUC867klGshSGPbM0bBHuxWEOeoemQqgO8skr9FRPAlHHUNWDVkPSxECb2C3f1GuqR1tintG4/StZGDGiGFiSDTLXt1HejkkH6hFkfrDIy14DA66n5+JVzqCjhUgGEKeKesEzc1uukGaACjgowrb89GY5aX6xrx+58+4HlZ5TfEIPXelSL6QkkJyAKoSs5gCaxS6W33qvmDIrgALlvp3gEJaskhbV/Qfv74+IT/8B//Dv/23/wrTNPUARBV+nstUnMtLOTeACIYNe/D4MfWAKAFfa/C1zYVxVVRt34ST3Y78adW08YrQB24p23oVA82XsyDTx2M2gs21/vwuAaUUPXOzXltQtt+Sl2+CKjl3bwAGVsA9VvHn8UuJRP45ebYt9zCmGoCDtXZU++sMQi1+xTUKyDAbMd1IbMmiTNDtBIPgOGhrAB2bmrnIhYXn52FQJWz3TvfxcN5tT7JvUmirUzMzACJuU4QsJOcj5QZMcnayaUg5gjyBeSaZTwNCSl4BAnQ16RrRskNRxPJJEiVMQdSaMo7eI0XzLm516ndYFVIzFJOMI+NbLyXNeI8LxgcYfQOAxew9+CU4SaSar1JLBAxCq1kGAIKMsoqLFgEj0AB83lGjgnTsIMnjyXOoExY8wo4xuPzEz7+8WecC1CWFRxX/PzwhGWe8XhZ8ONlwfMSQT4gA9hTwWGkljcBVIpRIgJ7RimkNUcaRSyX0gFY1M3SCAOEnz+CwYhRCiLOSxSQAWGWEtYpILChdgmRG5R5ZRyCJv9CQaMIn1JYk/uFs59ZQ+uozTIjOgABrjBSEctUThlzTFjWqF4M1I3fxpGhFL7OQw0JkMTjXDdGasP/xR6tgFm3Tbed5wWUbOFzmy9uNxC87BfV1TtjQ0uaJwIoZyRyACUFK03iNEtZAzgmtIkNCBLINQ9JBUL1XFqL1xhg1AvMtnvClFG6un5/u23DrZ9SC8H45ru3ON69wWVdwI/Aui7iMdOkayIItWsST800TkguYp5nrMsslvlBqm8ble/lcpEch3VFTBHOWcinePEulzOMZSUMATkXyR/jUtnYgAbAqlWeC5KCDGGAWjBfhK1uP0noZPBOvMxq5DjsJ7y5v8UP37xFCEFJHzLWGBGCx8fni4R6kUMpGeuyYn/YYyxTBSEPH99LjQxEjCS5dFHrggzkkLND9mqd9eoVHjz2Ci4O+wmH3YTdbsQ0DhhC2NZdUS+mhfnWjb8qJ6YGUNv4WWsalVI9ZDbUskdkDZHKSN4hJQnHio7gU9b+fDnfe2t19f4RGluiTSeiWkj0Szw2Xp+NptPJCgNdm9+ZJqDrrhcSn7wYamhR1VsVoNTrVR23U9rrubvPO+Wv1U9p88TkYi+n7B4/L9erzaPeW1L3GHsC1HobYv23fmR8fDzhP/zhHS5rbH1jERnFoZQE1tzBUhJKiaqkS2FlOPMUtD1L0dFVo9u/XHXDl3e4LBH/7//u3+N/+795h9/97oc6z+2mmpxWWVuV/k622tWYNldu/d32owYwurHq96Uq4+0Wt1fpw2F7cCG6ptM+oUbUUP9swGlzoVeBh80b7YcGLLr+4KY3bvT0bhi21zcDhENvjPhVT8ZnHn8GyJDyyg7cXPbI3eetMQYM+mnDilYr9uyoS5vCIai9OAEEQKvoDJZ6EYXVJew9cpXqHSOQd1qDQ2glnYVf6aQRy7eXGF9qao0l/smiF6FSCiExw4L/iyMQFTBlIJXKMJSREQJhNxpCzjVeP5cAq5/G3FFtVm+MWQnMalo08dw1IWNKtSN4GBvTa0JUYnRXZPz48QGjH/H2uEdYd8DtHmPeKyVdARfgcjljUrrKXDIGF+DI4Xw6YwwDbg475HVFWlccdjuAGZfzGc/zCbkUvP/wER8/PODHf/gZl+cVkZWaLydcUkbKSfJDwqCATcJOMBqdqEdT4no3tQFC2fSzKxozbY/cBIv2j1mboyr6MSasWszPEseICcUpQ1XOcCxJxTa/e4tgShkZuZujFuMo4XW7wQMU6lgxjImqhQBmHSfj5y9MKHBNmJBteE5pmj28DzX3xBFrPLiD95aP8oUftrm9gBOvHIxmMep+Dmz1gte7pZtNajcwZh3vCD44LaxoY9cLZgtJ4QbkIevXNgfvGri1uVHrXaAJYjN6cKcV9sK/1WUwi7SFz2HD42+bll3TeY/7uzt89eYtXPBY1gVPT0+4aKG9FKMaEhJSXLHfH3B3f48UE0I4YVnmGra62++w3wuV7f5wULanhHVdYDkbVm9kHEfM84wYF/GeeI/o/MYgBHTrk2RtcclIMSGXrAX+IpYY4Qi4uzkogALC6nEGMA0Bx8Me3379Fl+/va8yUkBGQvAea0pYi/Wx5JDcHI+y3kvGcjljHEcxeZHSpTOjhICUUs1nGLzuG655MPa7EYfdhMN+Ek/GbsQ4DOLFsXw/3aeMrKPOPLaiqAKuqpIpPSPvB/Vk5IzrEI1sSmY/v8nkooS0WA2pXuni0sIBG6EKYEmOzsAHbRX1L/XYWqNNi97o/a//DtanbQ95oeJqfwOmi3eKpi36HkHYiQ1Y1L1J3zPQY9Ts/XubFveoQfaJa2WwWb6pshNJs15RSak1ifVeZF70IS/No/PLx0f8/t2DGPUgzIibZjFq9e+SE0pJch9UdJ2rMZgLtLiZGOlyBOPKW3M1Sl236afilfibv/0H/PHHn/H999/B8sI2/cX12zCWJ/TPK1C0/LYGLKqIJVPQuzaIwggHBy37XHW2rWJOnWxuf+j6uOU92PZvT9rd1/u3NtB1D/HmQW7dAEanv3Z/23mFbl7LhV7eh9X1Qp1j1cjVAah6b59xfDbIMHOeJwd2jOAIK1lDuwbpDW0Ro/1cN/JKWdo6ggjignO0SejeLHbbyLMxMQHihtP6CCEACNJRhcQLod1iKM/yM2yjtjClmlin9IqlmFeGwY5QHKN4CMiAMlQ5G2lRBqfJCd2lE5QfkxeO9uDgq2KJrRXMMUpxIMo1j8BporO59bjYBgOAHJhqtHn9jglYIlGcf3m+4MP5DzjuJhwOexx+foe721vc3N/g8N0bTMMELgVTCFguM9a0imeBGWmJeOAHAMDgPcbdBD8EXE4XPD4/4Q9//Al/+OMv+NPPH3A+nRFjAvwI5wMAkoQwLiKitGnOD5r4pUBLWb9s0wVkg+zXXlWsnNssFQZL4ovccGctlflUQw30vFYdHGThSVLkkCwMrco+BqPUdrR52AQ4kVDbOgMYdZyAVBguS70UA5QGoJz3GMnBF/GQ1ZXLLAX+OuFlM95CMIbBYfCNDvXLPppwqxuwHdx9BdA+kd5ob1F7tM/6jama8gA4qFdQa9MEj1HppYdBirbBSX5A0rj3rLSrijK65jTZJnobbcajlDbvtOndZsi60Te2oKpQ1rhfARUtvnY71C3JVz2dwWOaJuz2O0zThJQmrMuMdRFP7ZwumC8XrOsCAqRuRIzY7SQ5OqU91mVFjCuGEDCOo1j8k4QxOe+EsSklnE4nbU+zdjnntLBnBnJBCKpQdMqThAOVKqNKzjU00LouhIDjYSezQsPZUkrYTQMOuxFvbo8CQojUOJCkMKAjPJ9nvH+ewQDCMODu/h6Hwx4fPnzAPF9qzYxlWaT6+2DeEEK0yumAUoqLF3gcAvbTiP1uwnE3Yle9GAYyGlOh9Uc/gUUUk4YEC4thL59tbphsqwpJN3fNC+MABPuOgVplQ0y51PlUmgrZWWC35zcv+G8p4F/CsbE2q1HAdA6bf792k9Q/oxdvfuqN327X5glv3+9AZLU8Gyja4AtT8Fw3fr1S24CHM0VWdQrA5GMPnkS5ZqYOKL2UMAQxin14PON5VnKOQuoG4+pxK1lJHEoGcwZbfSDZMKWehn6X9OYI0ERVm6Mv+/gaYNgtMBin0wU//fwLUkrKEncNy7iewwAE+ucMI60UOUz2mY5LBS7Wlo3gB6D9y9CQ1a6e1bXlv67X7et2g1fz6lPTrLvBV4HG9UuTMcydvDEDbkVaLZTM7pRw1XaLy2hyabvHNtDxucfn52SAGwJH2yTk/hoa7+MBrU39ImoLcevGYYZQilk8qddNDVJLggjKDGNAQxINHbSWgip8Vg2hlCKeB25uH9YZ5oMW4fODhuEwki9wXViO3a8xfBTWFCGnTBbEELZRBqCx+Z40kqugcEJKHilnjCWIF8gRmL3tALJxQKyiRJCEYs7ISb0mzjwjFkvuKsVuTWZtXVuF2BwzliyF+Z7PK9ySEZ5W0J8+YAweN/dH3N0e8ebuBnf3Rwyjx/F4RFozxnHA8eYGmTLGw4jJD3j4+IiPHx/wyy8f8R//5h/w7//973GaE4rzIEwKduQoOUtb/QAC4EdRPnLRcIq4SM5E6YVlK7rH4MYapfPCijJWusnSuUJ1PbXPbb5RTcysDGckNMVCCUv1t+SCXIcZOTGKgjx2CjTYZnev4HZuzqo4A1Yt3mI4iYSOOAQPZqnkbTk2FqObAOUkV4HtHFiL8wUn9VpAJuA+d8X+4zwsf8EUzerF7GTDtQImr5uwI0Brh6COQV3f9nvIehtCwDB4TOOA3Shx/tM4VnppVpahGBPWmFByBmrIT6dEcjemULOFanMCMM3TZvNMhLptamKBU/BbLdFaVT4XzdHSOQGjJm2sQF7ziIIXI8kwTri7u8Pj44O0sRSUlLGfJrV9KEmH9k+KSSt1O61oHhBGuZl1XbCuS61DIZumR86pblxEJO3OBc47IYAANDxUWGOcaDtwLsj9KFjL6oEM+n4uGVkVBi7C0DQpxazXZHOjCL+7OeCw3wGAAgSPFAJAhLf3R5yWhHmNwPMTTs9P+PHHH7GsKy7zjKSkDzEmzPMM82IPgySF5xQrg9QQQpeDMeGwG7HfTwIyxhHjKMnuLS+mW/v6SDDvlAPrnsEw71avUDaFAP2cJRKmQwiQE7YeodSm1IBIKQ6uCBFKD26b90JJJ8xz58XjIvOoEaZ8qQe3sIMG0A1ZbTX9F8drd/2foic2ek19ugUaNR+Dt95M/VnXloZ8emXVSEj6EBvzZhiIFMVZ9YkqV68fXz/SGvGHnz/iskSYUso1B4jrfsVcxAnEzRBaOANZq4D3+SVEIPKw/AaT4ddRGLWTFCQ1mAQ8ny/4u7//Ay6XuYIMQ9Kb86hhaBOKC8vTaICrAo36ja7P9ae9MUvazfU1XY8LbQHFC8Bh/1G3j7UO6m6fQJ8aHO7+Nm+ozmT/9eviaqTl/regYQuMrJ0GjGgLi6hvt43Vbx+fT2HbK99dDkG9IfucgKumbNpEEOWtFNSYyH5C6VpphkRqLp1ArLxHqJ1oeaNk1o2aKNkGHEQt/hKirINEmIMkzyIww3lGKJoIrIup5IRUMgoLZaP3HYUltkUDTQEqXECcwdQUD8fKfGQbk84RVuXRk0Mmvbb6NEVwlm7zIbGMAdUFrjJFNvXCWHPBJRaw863ToTSSYKQCPP/8gJ9/+YjdGPDV12/w9s0NfviBEbwUDpzXBUtaQOSQ54hf/vQL/uFP7/CnHz/g8fEZsRj8UyAUBhEi5ITylQYQeRDnGlIA55HXC5x3KCxhTH00oylu6ASwJLubUm7eirbOnAoko6qV73foGwo8neE6WzxO/tBbPSTnAqWANR9FQCFp/xqhgV7bsTCSFVsfUmk9plKVRhAQHACv7DMEsGux0QCjEElFaZCGgmVZHF6UH9YxpFfCMr7Ew5Fx+FALIXp142vWOtFdqS6d3oJkCnyVGZYnQ2L5H8eAcRiwm+xvwn43YRhDpaZOuWBZIoJfUYpYiFvRMlc3RcvFsTyRUnIN43OFwCyyRkL9utoJUJmmoYot5l5yDEQZ5hpmx2gEBQYuBmM3UgV/f/MGX33/FyDnxWOxLLjMM9a4IK4Rl/MZKaZq9SUQzucL3rz9GsMwIOUEHz1201RzMFKKnSI+IGtexRAGCYuKms+xam2NPCLFFXGVgl2tfwxgt+2bDFRr34UwwPmAuC74+HTGcTfheJgQBsmL8qoFWK4WMyuAcfDMCN7Jb3YDTg9n3N1+hePNDc6XCz6qJ4NLke8HLzkbq9TyCMFjXVe4kuFH8U6MCkT3uxH7acQ0DZimEdMwaL973UvaDFVb0ea1eEabR8EmdrOOmsWi7Zkmw0nBJZNStBcJnXPMKK4A+SqvQ/PEUm7Kq+15Rq8rCeqkewxpQT7Xqih/gUcLLdvSi5pa9Sk9rT+2yhP6V3+WIYevXtn41M8qiGigwsA3v3IWUouKeS1M6dvEy3cK8AZsVM1xe6MtVIg6Wcu4fiAI2UXTrAAwVe9EzeNhBmvsel3nTGCYl5Lg/CCGIOeUfKEprgBAZcumuOnDqwEspeAyC/30K9p262OiyvjUQqJQ1xcUaEDlOWmH275RVyl1GR0VcMi9GsNeBXc9wMC1V2D7V2edjXEPbD415z6BxTZgw3TJugZa2O72/Ncgoc2ba4DRjHvXcIg+3dZPHJ8NMpwjpNy5zYpZnwXpWahRX+FW+qDNYhtAezA0aX1QawtcdbrsL3IeL1+sAr26h9GUUWlvCzcBOTgu8EzI3W+kHVrJHIB3FiYDECRsorAoAWtcsaway1+g8dxN4EMVE5vgzIxCaqFURcTu3QRNKS2223kHX6QmdOXB7xQoJy3SMXatQ01wQXJWlpgxrxKqJI0R0MJc4MIo910YmQnnJSH+9BHvPzzip18e8O3X97i/v4ULhDUu4EJ4ejjj4eMTHp7OWFZRhpwPyDkixwVhnGplX3CWkCnnxTWbtZJwUXYedTkWMGZNYAy+JWPVGhD9xsGo+TusCLTiBG6WvJiN5x5VGbd8Ca8grYMyaNW9Ufnyk1piigpKKi0Pogc8zMIoJTk62obMQolqOSAs87l4STIv2mhJwFSJB4YnRggORJKfkizEy0uIzzQECfGxMI3/PzjMSACgyYeNNHUVsNvc192yE4R97GjLXxJB32idK0vRICFBu0lCYIYhAMqcRGoMYAj7kCfUNWi5UZKnU2rulMTTa6w/kXg4dQMSJc/X9glwlmsEZuTs4TVny2ocvGaJHjTRWKzsQ6VQHccd7r/9Hfa3d6KMOuGwn/Z78UbwGU+5IOckRg4lo3CPD7i/f4O7+3vNLQianF3gwyBAQwkhuCzIqgAXZiDGKjflGgwKToriefGalCyy8poe1bxWIDFNhGGoYMQ5wuV8weXjM54vC3ajeJgIEjZl4VsAKRuVGChiTBiCx81+xNOccHd/p2EcLKFfvhU8XZYF59MZDw8fpVr5qrVqdFOWUCnzFIUaYldrqKDJ7KqkGXhQRQPo5JXORAIDzsGpBVuFWU34LpqjZrKNRWOr8mmjQG+ARSOhELlnex4ptbrcT1DPV2WUUhnY6Xpf5NHCjnrg2sDbC83sWom71rT6V6/0i0nrT7antqu9ah6KzqqscgBdm/toDrta1ZMMbJCFKKpSq587Uxw7fetVMxR17/cgg1Et+6ZPiF6lM9g5WPRKYWGUMtndIJ1d1dZ8BpMH+aDqh4KJrt0sm2OHtzug0QH3HsTHKLLg5Th0rWC+AhqmY1JjGqznpe4ajD7hftOP9p6BCDVwoRrAGnh6wRZlC63TeTcnvX7duuD6Fl8/uM05rvMOnecJFWRusEGdN/Km6+tjbCIEujm16Zs/7/hskCGWdkJWgGHKltxY77a0wiT94mnYeetRQHMPUSf8Klqn+vt+wjloeBSLVbToKc2yk0tBYHX9a2cG71FAqvRv22AcRzUp1AmYIQBS3C5jWQMIwGUpiCWDKKviqufSgTNuLGYr9ia5GTZoZrly5FD0vaLeF2Mtsc3BFkDP0NWKF9rEJekBReRCrZrA8KAQQGDhsWahoSRN0nTDKHkjuWCNEfOa8P7dA4LGqovrjcAFyM4jr1Go6xigMICcQ0kJOUU452Qc1hXFFwUeCeQdchFFh3MRoaXK9pokzMI7cX8WNg+ZzSm54VZHRaxvVnTPlKOkxb0sEZI65Eqk1La+zact40JzXdcwORawKUxVbS4XRiUeYNY5YmFuqoCmoqw+ugaCJ4Qgc8qhTu6Os1+S5YbB6/dcu3cSgSbWbFFaAbHqfNGHbbCmWrUlDqAJN3f1aIIPaAaJCjZUZhgo8Zq/IDkM0n9OvQJW14JVITElvK1LAf69cibNFs+VsOtV6S7X1vEl12onVDe5bqqcGi21c4RS5DPvHNijrjnoewaKqhejo04Nuz3GaYfgHVLK2E0j5osUj0yQOTIGD09T7bektSsenx5RULDf7eHIYbeb4P0A7xneizQ9n04t/DBLuBEg1K5Wq6KUgjAMKqsd2Jj7bGPv5DV0vjsnHpJhHLAuK+ZlwTCyMsIBmT2e54R9kMTvmCKeTs847IUtKhX1+mQxcHnvNH8i4+7uHvf395VZ6zJfaj6JVBsGbm9vsCyrMmQxUoxdNeEmB1IuCLkoYJLxs6Kb3M1hBpR9a2ulBTpvRqdMFgMXyYhB1FtuypYsgGakUnBiwGpNSahsDWglzTtTw4rk60jY1zBIPmAIvnoDoXOj975/iQdb8nSvpPeK7+fcmtkt6ov/Hw5qlKgbYKhv8NVfA6SfGIcq81TpqyDRNxlIzbPbQnLarYiU+/R9mUeR0byLMSZ8fD5vrOCcMzgn3VO1Tksx2trG1dUr4yACeQ2R0tA2N4zaF0LK0AOt7b1DDRvtrZQz/vTTz3h4fMTXX73tQF0PLPFKtfUe+FEDix1qpL7TquLQ1LlrsNHnLrScmC4/BpY303+X6jz7XHD/ClR+9Tv9Xta8yG1dENCiizpwYQDD5g6u2tqDDDuum/65q+bP8GSI4l2IKkcAM6sLTQGCNU4+RPcABvdjW5/1N9L4qGjTKb3nob9B1t8LXTbXegSSPN0KingaRADDSy4F1NKMfvo10OnNtUwAIL8z6xoXxmm+IGZL0FagohMvOA92hJQshjjBrU5WjSqkoueI1TQlQftFF4Xxr5tFy4Qhl+YtymyUtdr3cAJEiBCzUOIKoPPtppwXsKFc8Jylyi87GdycE8gHrIkBYpQo3PYujChpAeA0d0G8FgRWnvyIwiTgxQcAAj4ASZonAnJcZSxSgQsOKEBiSb7cVVDqWgGyKrMayJAwGE3k1dhoAU8FSS3HAih8tUJLxXbSMZIz9p4PS7oFoL8VFG9Com70BjJqLgXAQldUvyugw8ONvobahK7AmxXfMw+TCQSApfDYINSYpGCxKWmyFiyxPeXG6PYlHs2moELMBEQFCiq0XbOqWP0BUqHYCqzVrVXPacvFlHuRO0aDvGp9hVyAEMQqlnOplnEuGUSQQm3F10RrQMFdaWNmVmNmMbw4R8oMZmF2qLkIokh2tKJQpRACmn3Qtis4Ct5j1FotBiyEJtVoIgdclhVMHusyI6aEy/mMkjMu5zPiuiIMAePk4bwAjGUGjscjvv7qKzw8PuD56Qm73Q6XZYdxnGqfc3EI4wiC1rMAEAbJofBe6J9F0TfmPsl9EyPABB7E2+2dsXeZMSBXa1uMEYXFg4AQME4TyEl/L/OMx/OM406SyX95/xG7ccBhv1eCjlxDJ42Jb7+bcDzeYBwn8LJgzVn7ygPcx0w78WBhD+ckqT1peGPUuQGghp6mIu83RX2r/EPnoeuBJVG95+atU8VTPdrFmAdzQa7eESesYmReegPARUFGRNJ5mlLeyC7S0KgQPMYQqvdOPDNe92g5X4Iojptwii/sqAp6aaCiV5Zfagt66F56/d5Gz8SLF6+cpDt/lWEtoqL+lU7h663LHciw++nP38uwPux7G3pj8q4pxdehLZ8CUAyuc1nwAaFwwWWJeP94qYZikaEFWQlbyOu8NpBgfY4mF6FyDFpY17x20ARxLkl1iJfgwu7edMXaXmZ8+PCAd+8+4J//s38K2z+xHQlpkw6PDAvBkp2rx4ZQC/bJfowKSLYAgzaPG6VcvdsNCNKL8QI6kGHnqUp+u+G2f32uyt7fdXu0+zBZY+Q1LSTd9PSXnpZ2f3YfUOXj06DI9LPPOT6fwpa5JiESKUOPWn4dtVAnaZQuuIrmW5f0sW+bJhK6zkAdUED6LnNLNm+D1SsYslCWmDbveyfMPo5kw/UwRiFZHNd1Tx30XpwmqXLHJLObNKymIC8zSsldiJcAjGkYQeSwIGNZpegfEWnRGhE23muiZpbwoayfDcHDO0bKlpdASHrvYtFquQdS9ZSqcuI0F2FN8rnOMOk/jfEn5+GcB1jAhnxHNmqEAS4MKFniq5mk37hkYYUCBKD4IIAEALwHslzL+QDLdTChUlhYofwwKG9/AIqGPJCEFVWFUgFYyl0SoyWPQrwLcA6OJUaZqhFELDxDAIgk/noYQrVke7I51zanlBkuJawxIwuprMHaOpfssAVrqJSKeNHaIjPLtyXlKvuP1t0ANMzKKGy7MZH8EbNw6zU64amyvP5llpCsL/0wD8T1JrgR6j2lno6HsXlZGGTLzUDdQOR7LYZZmMQKgIyCFSlleB91/UArtycNyRGwGQbxGgy+efXkMwOtBi7lwgxozReqwpkVEDalOHcGDVIPiyXmGihuYS7jGDANQ+d9US8aHFaS2hYpJ/hhwKI1WJ6fHvH4+ICYooRCOYdV8yWkH4G3X73FtNvh8fFBFH8NdRzHEYf9AWtcceBjnffeSxG7dV1qWNGqRftijJiXGWcFNgBrdKb0gxhFsv5paK3rPd2MnDKc8xhHMX6szoHhcF4SvFswjQMenk5wzsgTJDemaAK97T+n0zNiXMHMWFepIn5Rdq2YWqJ9jEk9OHtRupcZMSdQRGUZTCljWWP1IIXgWv6Xhla22HNfvVc1XlsVz6oE6mEAJadUPe4CRkjqKGn/VS+SsnPlXLT6fK5hQuQkDNTDyAE8Bi9e0XHQ0C/1osp+3c3XKtO+zEOU1W0YUq9nbI7P0d1+4zvXesqr+Eytyfa3sSiXXhm/Mr52QHSj4FSFVv/MqEJtp7oGGfLeS3m6aX4HLsTc2qp0//L+Ee+eLwLMnW/fUy+/Yy8gIVsSN8RoW4om2WrLHIELyR6dIzgnlBRhZBRV2b+W/V1/VHGuTx6eTvjTn36WMMmhV1tbqJB8XwBEAxj1LfV0oCuix4o1ribAteJd96sGKOz95sFANYr1v98AliuAYSCH0IyK11Pr06u0M2BIx1WjWptr2MwVQ551PlnbNu3s5l7t1a5/tx31ydb1x59R8VusdZMf4IgRQgaIscYiypUxV1CrNXCN0GvfUNfo19pJmkCj18097SFpaIJ2mISZyuYfI5Bywnm2fBFGCISBJo3hx2bS6I0BaBufHVaBurr7CBjDgMNupxb3jJRlg5PkTEkwncZRQlxcRikz1rUgIaFo4T4wMA4exQGJG/d7KYwyiFIfQ5JFTpIwVVTBtGRRQHIwHDEYTpkTdBPNLOFMuhBKkToVEvMrlX/ts5xjXRxwhBxXlLRKl5AuACchAZKLU+AgXNjkPcCAn/bah6SWSwa4gHOCo1FCppIIoXEfwIk1mR5YsoSNjcGB4DA6SYK+LBFLzHLPxVA5Y2DxJgQtqEdQsEgOPriasDoGi6s2b9TWPe2pKGuUhGDYQq8x/nUe9m7wtjmbNcrisUNwlflnCK5TQpW5LxcUFMlpqpYGpdBUC4ujZt1hvS+791yAomxhX7JyADTKXzJ9XI/rTbJZ71DzvCyZ23eKeQMbzejQEra3wtxoakGiqBStIB1jVPAvScFDLkje6zqU83hHgBIjSH6MXd8s9q1WRtYwo5QL1iSMVazuOQEXFi8vYGbUPISglmej2x00PNCU21IKYiaEMKqccbgsixTOiytSErBgDE3LIvUyGABygisrfvrxJ4y7HcZpwhAkh6qUgnWxpHdgfzwCLOETrMYl5wjLumJZgWWVa8pvpOJ3GAY1lohCknKl6AARYRysXRLeuK4Rqch3pmkCWMKmiIT9j7ng+bJiGhZc5hW3hyR5FnbWYkQQ0r7TWcI89rsddrsd5nkGc5F6HPOMnBMu8wUlFxwOew2p88gqI5PWlkgpY16bt8xC70w5s7EtWoDMqYHBPKje+2aU0rlnBhTLz0taG0O8pK0+UAGrMaLlWTRWm7YmfFU8FbB24FeKBXbAVL3aErqbEbVievqCjRUvmJmqpvX6QRsTkrzzq4cZR/u3us82n3cym+tb3N7YtLXtHfV79RTXwU2EKiR7pVUVH8Mi9f56WWoyFNgIWVNwJWxb5RFL3aiYMv72T+/wcIm1f7iYEYLBKUnRSvVksM4fRxK5UeqNKMCG5qHlVJVazmXTvk5/3fT3i6Fk4HQ+4z/87d/hdD7hzf19NxbdOcj60U5M9XstlMr0QP0BtW+y6lF96GPDfB3A6/ebOkSveD7QmlBvhVEN7abTbpLUr3QOM2JVAHEFqhndfOx17muURoYxNhPlFZi3aeh2NNR48ucen88uBemAaRDLTkhJ25EweofROwTX8XB/oi0VYxiquroHUypsoMx1ZlYeItRcCBvc4J1YAR1hXhlLTLgsAop2ZVD3nPRPdXXXBnEdKFOsRSHQirUkyh1rvP8QAnbjiGWMmFe5hiVnBj8g+EEt25J8StCNV3mqHQHBacK36uROuai5ZKxrQUwS40zOLKl9cr30sOOCzM3ay6XgPM9YUgHRICAAEFChHgypx2GbdJJkct3oJM68xR23mg0QlghmTeZWT5EWjiMfkNcVnLMkXGm8LJwDBU2k9QGZV8S4oMRVFxJh1USuYHNHGZU8iQfqsiaUWJC4oGQBGINaG23DdU68KLL5evUo+Fq122glbU4SNA7eeXBg+NIl1JOMiQkUNoFZF6s8buYPWWhUU3wBrkUDUy5YY8YSFWQUNGpKyFwYB78BRJVJq0iuhzBWtVCtL/kYQ0C1jJDcM6lRoSbadq8NaACs7/UgoyOLMDBg+Su6GbccMrUIa8hT1pj7rN4GIoDYoxTxfJTCWCOq8ha8A0ahI7bNwPugVdrFK8JZuOOzFoyzcxf12FkByjCIQWIcB+ymUarMa5E3710tDtc8uaqcJiAzSXgTVGlNCfPljKenZ5zPzwIqlHY7pQSLe77dD7g/TlDebRARUmFclhPiutbQTgAYlK41pVxDjVjnpW3gkqPSat0oc7iGDnkkXeeAeA+yKrspJcQ1gchhvxOvb8kZl/mCFKMo7Qoy5jnh3dMZh8MOX93f1k3P9pjMAPyE+7t7jPujXDcz4jpDvJoByzLj6fmxKvjOOyzrAmJGShHBO0xqGWVT8ovNE+j+o3k1Fdi0kE7nu6Rx9TxJ0ngHLLiBRDu3mVhbWB9qH0uOHqtc0f1Nwa0BiGpF7ayhzdti+WRQD6iGXP1/ufuzZtuy7DwM+8acc629T3vb7CozK6sjUAUUUOgIUABpQiRFkQpJVMh0WBJNRjjCL/aTH/x7/AMc9pMUjrAUYZs0RYCg0BBVqCYzK7Oyb25/mr33WrMZfhhjzDnXPudm3ZRJBy5Wxs2zzz57r2a23zeab+Ss68nzTTL2D8OLtkQTqBbwXMKonm6095++pvLib9fmWuyd4PpT8dX/92Cw/9YeOelJjY053cgqSO4BdaO2aEB5QTSoGjz69irM2Gx3knMB9QDkgpJkPWEu4KghhUz6vhgwSYm1ydvKZqqhnQyQCwDP/Z0pqG8ka58CWjMoL0KMGecXl1Uxz9aBL3103KNnOFybyyRrW/txf4NXsHcLuTIgv7wvXT2ofdeEX/YJRn9XVWGz2M+2JlmtId5vA90/6/1WktpOzDp2FsUlFw3TGqhvKjvvgsA+4/El6mQoQPNSFRUAVqNYfwa1vjnnNcwFqNIBV26odSx1Vhz7HPWf4iZH62Bx7f2gFGvOEBxWo8cBB4yDw8WWMM0JMUVEBRLkEgq7miBsIKQANXaS4MBe1EBykZoKYE3iK0UtVa6Cg6LysoMfBNiw002KNcZbQ8zUAgtH8F5A5TAYYBJgW0jiHUtR3Xw4KZjZueeYWeuIFGRAE8dlmKdccLaZkAqBfdd23mmsubjULR6SDfh4GQKFsyavelDOErcLqFoOgckBJYIZCKPozLMTkMO6saEU+MEjhFG9IwE5ziDOYp3UqiakOSdT0vwSBZusCbc8hKrm1MiV5mtAvAO16i55BBeqZKiDLHYFTRpSpEab5KFT8uAASdq1iVgtEkYw5D0Gaj9VmMO2EDb1j7qpa5hIUrWpec6Yk3okjOgWCVPj4OED1VAqIjmnkGoFwzkryfgyU/sv5xGCbTyo4F3Aqraja1ZZ71rsqxwKrnScWA5LNUo4qSFhhIMZGm8va0ByVnBPNkoKXsjtEPQ6rR8FrLFINbJK7xaJoW9Ss7LoWzhODYfpjAH2HBIGJTK0q1EIxhjk56BF3kwm1Sq+y2am59JFb44JZ9tH4p0sBdvNBk/OzrDdbqR4XpZNOGfzkBYcrjxeuH0DJ4drPJ4iKEV4HzAMQ/UYxxjlOzFjtz2HEQnxYDsxKDjCqEA65YRYCrwP4g2ap9pHDPEok8515z1CGDCOK/jgMO0mTNNUDT5TnCFKU07bwvLZMlJOeHh2iTsXGxwerGRuFKC4Fdw64GBYYX10Aij5vLy8wObyUvtc7o9ASDnJ2PCEnJJ4I3LCahVwfLiGhbfFmBF1A0/FxksjGLa5W+hEqGMB1fplKot9TkWuIKGzFFAjGQCqYRbURCW8M89WqB40MgBhoKG03LWcgWRgh1volahRaQ5KKcj5ebZW7N+7Ibj250ouqPu3943F+fjqWeVPDeA30tH1eU80ekJQ//t5T8KtH/EUImM3oO+Tbmxc8w3k79VAWEfo9c+8hJKoHoCaJ8gQkkYa5pmVcBuJ0DU57bbgnBBWB4L9wBKJrRLeYJboiDhJ7O/1zWs9cKVl5P8S4uR88+L0U2jRwrxHqLpXtHxjcX2i/feu0oR6JYJa3NtdPm1X7gmHGSrs3Z5s7H+Du37vIzCW7+t97o1bM74W9VRV7wv3nJQrdhXPDu15eggVzHTEpYWB0qKdf97x7J4M5qa0wS1u3juzvHlUt53erOnh18G8N5K46wL7pDXCgt5SC7HY/64jcREfrEeMweMwZwzDDk8uNkipYJojVvMsykDwSAXIFRhKYxZIOAooGwwGUalrU7U+odTkuvU4Vne9WDQ9SmHspoSUosZ5CzEZBl838+AJo8b6CnABHDwiM6TKuHYu1C2psbQWA14VG2CbnQyyzS7icsoo5JU6Sf4EvAenKG5LtgwUAnkDVjKAHJz2jywiIhNcxC2qzFlyLRg5S4hIThN8WIGJEMZBi8mJWsq4HpBSk72kLIpczku4FeeMyTlMMWNOBZmgJEsVU4g0AddyVBJYCVwmhnf1SWQzBtSTkioZKzDZx1KteLJxt/CHAtYYcpusQoAkj0I9DiTJ2RIKZfPBNnFoRdVuA1LLeUoFKVlVZ7tXIZ6sycxOwUIRGXzFDqwW9SZkkDLXsfA8H46EOFePk4a5eS85CZJA3YiHWIZ9DUkCqzdQrceLkBElni3UEog5IedB4uxj1JCprKey3cpQGZTEqkVZP2dJ6IVZE4Ql1yOmAqJUx5jkXgkpFHDuK+kZBsmxWK2senTQ526KVL6GGy4tl8x2PwXbOWJOAKWMFBMuLs5wfvYEl5cbpBSrSlrOSeS2Adx54Q5euH0K8gNGFgLtvYlZMA4PD8AgsI613W6HlGMFOeM4Vo/pqEX4LrdbbLc7lWEtmiemYYzMWK3WGMYBq9UaB+sDrNdrgAg5Sa2Ny8sNLi8vkWLEOAwoPqgErZALoozVOGKaGds545P7j3B8eIBxHIHxGH51hKODQ5RScLnZwDmP09MTjOOIaZ7w5MkTBC8erXG1kkrFXJCTEDB7tvUq4PRIksrnGDH7hCkmyaWLuolzlvWJDCZYHoSrXtNBx3LvgSI4XTeh1yuVfLIhFkU//dZYpWjN8xWamIXtgZb0nDNrHzQCYyDJwq6yyt2mnJFLI8fP7XENIeghNXfhES2HoRmSrj+XgXx7v4OveySgfronGPsnfcp9939dhHt1H7LIitafmrdzXacRahh4A4JoLLMHTQs81d2lrmtn2wl99XRJgoPkaeYkOCD3kQoeaXsJLgXD4RGcG2r+CXkHKl4SvnPaaxHzErbbWrSAPmdnWwKDsdtNEtpqieNfOIjpys992tWaZ9n3fej8z5snVc2qTkzUtrccEDS8XvvIsEIjG0DNEQFazhE3oYnla/Nm9E9MlUhUufvFIzeC0u5FiZwRVPVa7yevO2fjqg9NfjYs8iWK8cmOZ6EEu5gwz9nGIawMAXFz5XZTvf7/+knZDyh50QaaqkftkQw7HzmCDw4rrdIqbnyPnAvOL7eYY8J2N8NnBsijiHsA5KWRhGg4ZBS1CBUQLFGSEJwwc0CBAwE+eBysRlX7KbXgjMQ2Jmx3URIlvW8EwzrHqaxmF7efKe89l7YBCsBdYisYljxlFVyJRD1mOyfMuQAawkROu5YLXBiktXRykh9EFSonAKXq3jNDWXCqk4Gc17hMAKWoF8IIScvV8ONawhVSApNDynJe2VIdOM+wiqdgCQeYU8aj841KBlNzA9pEYwLII3jpf0auYUasRc0KQSrfMtUk70DNW1HZvwIvr5NKit8JYQZZyIIwema0OO1cpCbG4AH2KEqmhWg3r1gN7yHrIzmfeauqDLF5pNhIsnRN1rA1b4sDm2u0qSM95+kYANo+b+tylYxVVSarwByCWLUFjAshrnKhkLycYZC+sFoRJvFoevIAqhU5poTVHDXZ2WoeNCuhFVo0Fahiibka5gPIRjdHSdqFeVCsMrPNF8gckvsThR+nYHQcvFSPtrAaq+UAWe8kVKH0u38duzEl7KaIzAHr9SGIgMu8Qau90oESmJ2i4ObJIV57+QUcHx1iSsD6cIUwrnWeZ3gvUrkW0pVTRjnN2E1Tvb7XnCwLOyuFEcKA9VoWJuck5AkkRh8CxEukcwUkhpppmlRuusAHj6OjIxRVTppjRJpjTeYmR/A5w2cR13h0vsP7nz7Aa69+BafHNwFda7IWAZx2Ozx6+KDmOq1Wo+Zl6BgL8nkx9HgtzMc4OVzj5Ejy7ObZY/IzgneYos3nBJekYKMUXLTxK17poPVsBku2VqILZhRdC9hRK8JJTZ6zxu6TWp47km0k3PIcCY1YFFsXNEfP2qCGVeg4sPyglLLmd5WqDPm8GyuuHAssTcvXutZcte33gL+9WBAIXCUWV183z4Zt00/jGfblK+euP/Xvev3CDN/tY/3zEpt8rIy3Kqhw7ZNqa1D3rF0b7HYTHl1sZR0kjYJwHkQSDpnmCRZqyWpMJADkHdK0kYiSgyO44JFjElxQSnugdtuL5qmYboGWr95kKYxHT85xcXmJF3F32dZPPQwof9FnZFIKDGgnW4Y0dfduJAK4SuJwXetX1oFnnXOyfrfwSjEyqZAAuOEkuwd05MBYxtMuWfeHLlwLSojs9/o+TKMd+3VEAME8z3J8uYrf3okUZCnY7GakXLAevFpGDPz1DHP5hObmQ1eJsVlxLPSnZ5fW0RqvrkigPayxLE28HkeVCwUutzMutxNiSrjY7hBihg8jXAB8aEk30MWd9HtQUOfUq8BQVYdCdaEK3gFDQM4FE4kSE6DKW9XjIHcveRnUBqqCoEY8JBG7Ja3Kz7oRoQNCutB47zXkQoppnV9uMRUJ9QIYnLO0sxPpXNY6Gg5AUeum2uPEOpcjLEjIuRGFoHKdkL7SOgLMGd55SZLVglo5ZRCJzB05j5KjJsgG8RCVgpJ2simHASUbyAjIpeDJZsbgxGuxIJYW5wkSkFbHodEBiNcki26QFw1ZAaleVKUKA14XC/bqoWIGuZYrEbNVVBeQCtfGLKGAyApOSpiNjROrtCuWQbOSSCE3R6jhW6VbY6pFALqIaX+KlKV4OIoqwtj65QgYlBAXzct4no9m9OGFWpTvhCO8hoesNJTIa5yayQKThkuF0EiGADRXQ67MK1A4IOdcq2dbErYRXiOU1XvRgTMjKDm3WPqSMwpHIZdAXeIsL2TQ/IphHLAaVxiGJoUb6n0pSS5qCdMx0lzq8kaL4Zd8iSlmsBOvQtQ6M1KpO4EImsvANVxnDIRXX76DmzeOEYLHo4stLmPBkZOk85xT/T6INGFbNPFTEklfgJE050RU2zy8BwK5OubDEGxnlIrBLNr2Uy4gFuWtjIzVai2CIbDil6L0lHPGdrfD5vKi5ocUTRJ1RBiGQQgeB2B9ijCuMMe59o15QGOK2FxudOysME0TttsNRg0Lsy1FlK4Yg3c4PjzAejVInhdQa+X0Y6SNXVkH5LXrSLGGxFmukFmVUQDvwFaziVrBWNsm677gVKlKjU+DN+LShCTk8+qdKK3ad84ZnI0AWrhe82Lk0iRvzWr5PBf27GC+HE8hGP177f3rnnsJ9HsgJoSgB5989ZvG6vcA9eIGu1pXC5bRnbPmGrDCSSukq39r19Zn0HApVKLxBY/Y38vePTIzzi53eHS+Q20tEkVM24uBgrjdAEU8uSZlbwa2kqPUzAoDXPAoMYqyVEeCgL1b7O+TALgBLgRZo9O8fBQGzs4v8OTsohoSrrClxcn2fqfr/qYLguIcw22NXCj+vPJ/hkQ8oMOxqETv+rvqv3/1/f4QctnVgYHtU31tGL7mOprfcYXmtLHHsDGtRAOdB0ObidX7xwSQFoxmAyT678uETD0zyYAuugWEGCWxkRlg70T5Blmtaia5ivowgAELs+guR5cNOCNg7a8WuqRD3y3HVVXb0ETJQUMTVjljtZLkxc00I6YZYQBGeIwuwHGb0GYVMpIDHbs5F0Rn+RQSf2t69wBqGBSjhYV5xwAPQCkYFPCuhgHOu7rxh87iaok9Vn9BiACBPMSrUh0IbbMTuccBh7o5ci74/PElLhMD1Ir1wBKwLDbPadJnyVI4y3m1nhcpbpgz4DycB8CEUjLIqbtTCYbpvAMRgHhImJN6cQw0evlelmTPkoSYtPyPUqX4cinYwuFsF3EQUt38vPeQ25AESquKHpzkvCwWemaxTBPAnrQNTJVI/k6Q8Cr2oshVGGAkLbIoahqmKz+MHiZbWooWFNKFxLmuz3KuCdlmSbaxa0RHEoIbOXSOpFq83FYFtHYN7wgDvOQF6bhbjwFDcBUE83POMoZBVcls3gaV3ByGLkzKJDgDfPDNOu4dyKt0p/c15LHtH7IA1voWBJDGtbEHVkQowVcQa4t1ShmgIvlORYUYyAomkq4JTf1FQtlyzfEBZD1YjYOEuYSAcRhrhW6rHu11PzP5Yi6ySRe1UDtdPwHZDHqp1pQyEgYcHB8jDGtsLjc4TwlxmpCSJEzPc5S1JGdwyXjlzim+8tIdrFcjYmbsEinoLGCOdYPZTbsKYAEL4ZPQUGeJ3UwYwqAGAgdae/hpQExRSEAu2Gy3tTo3IEn+znushkGNBR6+FIzDAKBgs9lg2k3YbrfYXF5ijjPiPNdK5SEEHB0d4+DgAHOccXLjJnZzxP0HD9VSKha4Iw2jyllUsi4uL+C2ssYM3sP2kdxrQgNYDR5HBysJq2KuY9IXqmFsoYYtAFIZ3lUDleTNNADDOj/ZdSDK1jStWUSlgS0Lm5C1ReS3nfMSDmjejO5cDFbxCKk2X7KEr1SSbHuJ/swaRtUTG8Oi14bePG8H7f+6YBug+oKW7y2+14x4gBGLLyAZaJ/tzoDlB7rXT23m5T7WwmhauJRduw+XugLrBBXK+Qxj2T12IHCBuGh5AmbG+WaL8+2s9+RkT42xEg3vByRyiNMFOEmhXYt0cF6MDCVF2Xs159Lksa8e1hG6vjqHcHCMMK6lUOX2wjIqK/5nYmw2Ozx8+Ehkr7374uatV6Llz6sDAAbLm3W/a9ruU8vvFVwZgNd86ln+0n+EbQwswqXaGlSJBro5TNSN66sEg7iNqxaC155cOLB6MJQQ1/QEcigo8NQEJgSL/3sgGe0BSTZYfUCz6gKoMatsTKmypL6zdcmnrnEgC67XRduWYWPUJgfIkPlkSblUJQZbrQVTbxqDxzh6uK2TMKLCCLaQFEYmAwiaUM6o7IzsuVLBDDkfwJosnWEynCIZqHNcV+/BiwUx57EVeGNJIjQlLKcqXBLGIaofoihCWshGBnuBae2XakkcxwEH6zUO1iushoAnF5d4eDnLMzpNHA0eKFwXAtmMIopkZQFs4SIq5wlL7C6I01aBOYk1wSqF2eaYE5iGOsidDwKaHIPjLOQlRRRV4XHOwQ8jfJDNPmeS2GsFeZkLIgErs067gOCgK0uCjRzSMQK3wAl1rZKEaq36XrgmxRux9U6kMQffmPt2F7GtcdIeQyAcrNq99jGQBvBtw0YbkQvgb9cszBK/WjcTrjUEhMC0jR/cNsR+4ZTYbI9RyWP1aj3Hx8nRgYZekiY+h1aPQIvOWSiRJHeHRiQanmubsba1zJ+CQmI5dq7UzZQVaJBz6tmiuojX4owx1zwz82hatzrvEAhg5+B9gcsaQqMJ3wBqXto4hKVaVFXNUuJQ8mKXZ5Z6Q6TrmfV+X4wtpSS1XdYHYHYSHjRPNeeJAM0JcQBLkvvxOuC1l+/i+OgQRLIGrg5PgJgB1mcaAgYNK+PC1csi1nAtvuccUozw5MQTCcZ6HLFar3F+foFyeYlpmqvXxw8DBi+FJbMmhjtVuttsNiglI4aA3W6Li4sLTNNOCIUPCCzbkQ8BQcO4Tm/cgHcOu0nisR8+eABy4sm1+bm5CDg+PkacJykSSIQ4RzgV6ZjnWdc7qOdVRsXBasRqDNIv3LzxDlRJvncOxfvOg2j1bdQAVI0ORduOF/Kx1QNWuK47tu8RNXlcr2PdxA68kmkBBLmqY+VSkJNV7TbBEtT7Qfda7m/vfe5tss/rcXURXIRI7YGf66H28lS2n/X/ANQQtaceikQtlKU72zM8x5LsLUIer/0ngjBXLm77XMWx8mIBa6lfdpYwNOeCew/PMcXU/U1JTsooJmLjPfywQkwRPM96TkLxXgyOSuJdCFpfK2lUxXKMGpBnENywxnh8A361Rpl36sFgVdpYtuFumvDpZ/cQY8TKr9oJrznqeLiGVFx39CSvKjRd+dCyeXTRroTOkqerxd/e55Y03aqRU71uf5+m+lRr5VSi0arcLxRSu2vW0ED9KdiiwLwXBs73x7h4LVo4lClrKseo2KP2o/Y7PaM39EtU/HZ1oNtmLKEjJvFqRcVob4q1360q9ZJVkxKMFo9uG30tPmP9ZU2ibEJyIayqLIvVXRvDO2ClSi6MXKuygiT2H1li+euoIYKDqzHyBixjLmCJH9JKrZIMLKEaYn02hSIGquWduS0HpZR6TmiblSwW1DnKPyIFldCk4yLJWHNMSKXAO4+V91itBqxWYnUvXPDwbIuzTZLFp2RJuM8EF0QNhrMUwyKS+Eo3yE/Ruy7gkqDbKhhS3wIaFy7x6BLeUOMrPdXxIMX7xAPCWgVc2RrIDyCWhabkKH0wrmUhLBk2gokcimMARUmbgEsJI1JrXQWLqvTVkwwb9bmBSoCbMhHEe0EEDMFhPYhFkUGSdB4zpjiLbG4toqd5GaxJ2sr0RXFDcyeKw8BCo5MSiV6v3u63ggnfCnrZGDeLmRFcUKswLd4RAM5kVBtpep6P05PjurgFrU48DKJ0FNT7Q52crfO+IxZlsWHJWEg1Pt08D75WaIYAb9JimKwbeZEQEqsXMMdUSYYRl6paReZFEyMCMyMVj+QTcvA1zMYHsdjXeim+hXY5vfdc1Dhj41nPV5Qg1Jhq5rrJSJXnjEQBQxE1o2m7xcXFJc7OL3BxcS4J37X+h3gmX757E7dunIhcMwNzKiA/4HC1wjzNVd7W+YBxFEPCOK7gnEOMM3KWMCVyHjuWcNWUEuY4Y3N5KUA+Sc0L73xVyAIXWO0I8dJkTLVa9YycEiaI2lPSuhircY3Do0NcXl6CCDg4OMKNGzcwhEGStkvGSmtznJ1fYHO5wW67lTyLGJFzwuPHjxGCeMMO1muE4DFNE+YoyfCLuVcKHLHm8AFxTiquILV5slkK0fYn2/8026suQMyoxflEkbAV6KrA0NarCj7sZTu3fM9q9bR90JLhUbhK0VqifRvPe+F+BkxsfLHYk2w94u7+/yocPaC89jU64tGvobzXFv3GAgurWxIBOdf+ORqTexolqWvWNX8zwNcDT67nNYDIgOVgoN8Fuv2gKnrSU7eJ3lJvR0wJ959cCMnQNbSNXVFhy3GHPO9E+t5JHhp0veTEgMrdljjDhUHqYpSk4jUNnKLOBYewOsDq9DacD8hxAucMP65AISBtL1HK1IzQEKPOZ/ceYDdNGFcj6ubJ3cMt2twQY//bXtMsmJj+YuQAvCzmp58xD7B8sZea4noPfX/uN34Li716H5WmdvP4qkeDK5YUglFVcJRgLD0bdYzCsBNXae2aj8EWLkU1J4eJNOrHLcichR866gnv048vQTLUwp9716vcWGGGhJ/SYnz3nSJtTHuDXBB9XWj1+2aWNhu2nae6Aw2QUSMYsolJJd+sccWSqzEgs4OF0dS41L2iG9a4Nb5eJ0RhIEEmVM6lylWuGBiDq7KmBLNwqzWM+s6F3mepXiBmkbmdU0LMWQmWq4ogc8rYzVLJNxfGwdppPY4Bg+ZeXGx2+PThucQ+h6E1ehH1phqSwSTeDQVY7CRB040DXIJ6OxJyTEo69FTMQOkXngKCB+csyV05A3BS/M8WnGL5DYQSC1yQgmNxnpF2GxCnmpTOOQE+IJWETE35KXgn98MCsuo6W++rGz06BsVDYEDTg4NVaNZJibZeB+ewGgYcHUouxG4SBZfBS9XhGmagwBSkITRoFs4QSEibY0hOSlksEP28CapMZbKktpdJe3Ux2jCQKSSTu0WiAd5nnbF/OY8bJ0d1IfReCtENYcAwmAyxjG3qFjBL8s+ZdUnnShasQGUpBanIwu7VWm0kQ6bEMkTKKjvPOgdTEgOFqTx5BclE0DybpkjmFEwWL9cloBaCFCnvjqT0O6sS15L7jcNgh2nQ7xGMJCGq4egQzo9qGMjIacY871otDEh+VE4Zt08P8NrLd9Xab+2XMCVg5aWeQ4pSFdszg4O0UUpR7kS9J0/OzhREm5VeAIMpZjmSGkEAQBDjkx2FJcH6fLPRPI0GpEIY4X1AjBFWCXyeZwxDwI2bp7h58w4ODw6w3e4AlnoWq5UISzCLF+rsyWNsLi/gg+TZzNMk4h+Hh8iQe5zV+zHPM0rOkrviCDkmrNYDDtYjohZojCqXK8SzVO8xgNqX8DLfZS3pNns2r0Xb4yz8ArB1q9sbrTAsRLmOlAhQWUJQObcmfy7yLQTKiufWkr+bl7WYgUbDcE0CWfDnNSjzr8xxPcFYgE8GLNG+f2sR4279+gWX+HlH6/kO3Om5v+hL7braZ4xunHED6tfeR/9mUyrS366/JDN204yHZ5eIWeYiQT29WbyeBDFW5mmHkiZUQ48ZXgAwCpB175wn2TD3jEL10chjODrFeHxDpG9ThPcDwrAWT+fmXHM/+vuX8XzvwSOcX1zi5Pi46zPGPqVoj9vNu5/Xdx3Q/6KPXsdLnvaBffLYvAJPO3kzMtket1CX6g0grJ6R/vnrs16d5xVHK4FEP+YXN402zsBgZ14UE/zh7t/PP56dZCg7KnbvLJt9T55BGqeql5f0Omrf1wJ3BfuTmAwx1hs3tzLQ2srO1cfBFrX4xzhjdgxyJGFOOYsFhzT5FiozWcziLXUPXOV4oiFaqBUAa+FaDDhU8Blzhs+qGqTfzQp4GgBuzwIwOKs+ucZhM6MmbxbOyEzwLMmUUZOSd3NSFyZwQCabKO0yx4R7jzc4mxnQhFfmDBshzAUo4sqTMIpmlaAwgoMHJ3WP2oAGi+wtCChJQHthFCtaFRwSJNSqJAmNIpWerIEeurjk7QXIDwAzdpuNxHaXApCHCzpYNXQkJcbMBSsFfq4CcUYqIgWrETZ1mNRcHaJqS6ACtQor4Q2NWObCmKIQvCEwyDmMYcDxIbAaR3gvgImJ1LuUahigxFTLeGlrPVXvk/cNQIKl+BWgNk9neSWoYXLoQnWaYg+qxbHm/ThCKGIVJwI8XPUkPa/H0dFhXXRDaGFSfaExANVqU+WjWYQYSI0cKIyUE7KBQk3WZmjoZBeysl8QrUkMi2RrTAKCTdWHguXfAOBW8duK7pm1OhcCs8bzq8pQlc8tGaU0WVozpAiOzBX8WTJ5AxV94nlBKkBYH2N1cIxhXINQEOOM7XaLrPdtnhDmhIOVx1dfkTAp84oRgFVw2KiyltMK1TlnzDFimiepHcHiOYxRyAaIhPwR1RA2ZvESHh4dgUjCj0Ak9TmQJW+Di3hXUpYcC00GL6Vgt5tq3wOA8zIGvvLqC/jlX/1FvPH11wEG7n32AB998Ak++/QhthNjt9lit9lIEn/wODhYV89ICAEpRUzTBOeklkfQEK2UtUaKhpYhAY4Yd2+d4HC9wqxSwBa2mlOraWHz0BGBvG+JkUA3f3PNE8s61tp6qs1oGyOUsBTXcvwKIWsOkcmUg5vVEmaIKEUNUM0zUrjlYLRkchbp7tKdo2Kaztj373RW///72DdWYmHcvIL6KhjTv1agtH9W1M/RlT98idu79rNcb/ipp9onR2ghLE+7Rk+XeP/vOpyuu2BPki82Ozw4u0TMGY2ZaPRCNdwpHCsV/FXD7JKuyTEEh3EYMM8J8xwrymdmuGHAcHAEHwRrhPUBQA6cEjhNEvlgCanaLnb2Bw+f4NGjx3jphbsqq9qRsvqwXeiQYoQ69rvzYf/1dUftgAY+qhEaQO+tWHrLrvn7/rm7NUKGZKlztYZaKiEoZsTtjRswn4riZKiXhISAtBPjCrG5dqzo/cjcsrHHdejW9WhxDz//ePbEbzt5sRoZBVREO96jdmvjCqAKPE2Jw3IZluO+G6IdS+tdPqwsxkIZrPJs4SLFh1LGPEtOh3OEmFmAYrJqy6lKr8rE1UIk7MBOQTk6eUJLNA4OgUxPXm4kQ0D/wiVd5BpidW/ub8AkSkkHDqvFrKg6SBI1F5QWZqOgO0aRG/Re7tk7Va4ief6zyx0+e7JBggM5RikJVqWcvIVEycYDR01yDgBKRokM5ASo9C5nqa2hXQ04qdZNpSB4j9PDEavB4/E2Iyvglybh2jOAXEfC3j28H3Sik8jqsngqpKaIhGpl1b1OXDDPUUhfEYDQQgO4xr5bSAFsQvWbufZfKZKsaoo/AgDEKryLGUPIklTsHIYwwHuGFXgrDOQs5FkNOTK+SUgDkYCOJjos9+Gcg7MFzsY/WRK4et8MBBSuFvg2HkoLa1CLR9DaK7UPF1vK83l4b6pEkDj/TpGnGijUgsuVFLS1pxQLWSw13EmKFTaSb/OEAU2y5rZom+yn1Q3IQpobwdEViOuIruuGHLy3iej41tj6VsvANofekoUaCmmF8uR+EiysBkr2q7fYeRyc3MDxyaneVoFzW4zjCsM4Yo4z5jgjJQn5u3vjJu7cPK1hUmqLQnAAxwnbAhwcHklhvdUacZ5VYSrXfAZTdvNBantILLjkSojCV8Dh4aGETMWIcRyx3Wywww4pSiK3FUDc7XZaUd1EE4QQeUcYVwdYHx7gtddfwt/+D38b3/zW13F4uEaMCZuvX+LBt17Hmz95Fz/64dt4/71P6gTPangZxxGbzUYT350SzgTvHeZZJHjrGqEhU+PocefGDbxw+yYYhDg3T1bLf+t2J+dqrqBV2AZQAX9KBIJ8F9wrwPR7HOvaofdCXONmZHug+q8SBR3vvQXTPOX1rEUNeR0hYtgYkt/EWd/O77rXz+uxBEH63t4LBpYrpW3ueJr6Tz1xXb9rjL6C6f0v1l2vC2O67riCxfjqp5c5BF9w6IPV/uU+h7X1f7WI2ba+f+/dmDq72OD8clrcaOGCwipFy7kC3Ouev924tNFqPeC3fu2X8PWvvo4fvvk2/uz7byrO0XOniJxmjIdHYohUQlOM0Bhm4qvNcbnZ4t79h/jWNxKGIVhzatcue90QaSMFewRy/+SVYO797N6v5AVtDvXzaf/nldfYm6M90dC1Hwz1WC+9GDVkXf/VSId+HBrB0LHMV/rp+uPKfOkYXkPlS4LRvPBffDwzyTArzawFm6KGh/gssfRsHXxlktii1ooU2T7NoLoAsjbQ0jqhhGThLtE21kklVVoZk2v5EKnmM2TsYsRumqtVz+LsCSoz6hwceRQ0lReCgGFwQHAE8g4OWmgJTWpVGpuQMyPFhDmVGsK1lEJtr0phzHOSwmA5I7Mo2xjJICJwkUSccfBwKlk5DkNVbYip4MHZBhdTruSoTilVSsklwbFY7G3wMgS0WA5GgdNwA1WT0uJRUCubTF7G0cEKt04OUTiDNhEE8WC4MIpnBIAfVpVtOx9QUkYpSUBLGATAFYBzQjLwFUYgJSkc5gpizCAuKFmKevVqKc3tqIsPLSePeRZa7CIqwbFPzEnqDTgirMZcFaUkNEf+OeKarMtFlNLAEnpF3qp+S1Jr0bEMNAnTBphtbJsXT+9CLROEZdKoKYyZ5ZGcJASLubgAUSz57hkn9l/Wo+Ss6z1J7YDiwNkqnAt1k8razVXcqhZnBZK5JkVbRXQTTygMcbeiGS2qQlPMyDk1haUiC5HXgmpWddvmYVtlZBzkbPekngb1molsbvOWEFmIUV6EzxQWIpRilmKdxWLsNWGygk07J4HCCuv1IUIYJAE8Jmy325owbUSZC2MVHF64c4rVatA1Ktc9KeUC8iK7vdlsMK5WCH7AuBoxBI/VeoUYE4YgifZFhSq8kxoRPgScnp5gGEZJ0g4BMUlux8X5ObabDS4uz7HbTuK5KOIRmeZZvIbDCOdFGW+1WuHk5AS379zCd77zNfzab3xHPBggbDYb7HYTUi44PjnGt3/pmzg6PcC48vjhD94W9a5hwOPHj5GzKNLFmBCCGBbiLNKXYwg1TMjyMQ7XK7zywi3cPJWQvTmpByMl5GSqW2hAohrH3B4430v2VmNMK5jaAQ1HXb/ScpM24lz3k2YxbISzgRjf7SlgySm0/ZEWlkUDQo3EWPFA56Qa8/NMMgRTdKD/yqN0hKv/ALd3n/b0PYG5Nq4eS3IBoBX/48WHmsG0A2ft73ukZXGZZ+ibusFx3f8r0ZDN02J8wYWx/xiWE5hzwePzS5xvJ8Fbdt8lo7CFyYhaHZel0ED/rK1VGLdunuLv/f7v4bu//G28+Ie38dY7H+DR4zN5MgJQCopGUZD3su7bfuk9nB9Bblv3gx4B73YT7t1/iDlGmfPajtx55yr2Jr1eZ7B+poO6NaAjHBZBs08w0L9Gt9fvN3r3e08w+rEh64J535s8d79u2Dqxl9qvQ0DAEXf90QbiYlA+5Vies65DHbGQYsJuOZ6/4Hh2TwaJBOCcilRoVneWo1zVnRyjk4OW4WgTsOMX+ruFu9hAMJAlD0UaimQW5LJ4oDagpApvwUQJAKv8KCFlIBWrhyCxuBZCUUlGJl1wPRi0uH7xBHCGJwZKkaRUrdYMs2p1/VsY1TLgfHvOfqETGUsPRwIwphiri9I5SJ0ALdQ3+IDVKFKYlgALkg3/cjvjs8db7GICXJD6Dl3BQFjbWlhESkAW6VqofK3I8RZAQYD1GAhVH5+YcTB4vHTzCAerAWeXG5hSD7RysMjcMkqy85C4O3MChxVoXMvHcwbUMlJyls8mA8wOOc0oJAmhteR9nVAy8Knb+CUuvxtLriVdtpATaVebWyJUIGFquWjehRV7cxLv7+uC4QCIhbM4ye2QvAqvydjQ0DuRHpU+JHgtGGceF+daIqhYbORZSpGwDRCDHOBQFjG05ioSYbSiFnBUsvy8HtNuaoRaV8uSXV0gDcCzSTCjsxqrWEJWz4WFqhjgNw/7wjKk54wK0KXORZMlDt5jDAGjhW5ZToVduzAid+THZGWVAFn1cpn/4qXwuWhuR6prmIlZWC5Ik5IVi5XTDVY8XxqaBAeMh0IOUsJut8XlxSUuLi5gIgtiaRWbxs2TA5xoOJqFDUo7QJWfRhwdrCTXqIhXdggDwrjC2jsUMIIPEs4HriA+pQxntW9ywcX2AswStnW52eDi7AzzNGG722GaZ3gn15/nCHIi471ajzg+PsFqdYBxPMDpySm+8dUX8Nvffg1vnHocz+eY/YiZM+IccbnZYp5n5JRx59YN/Or3fgEpRfzoBz9FigXr9Rrn509q+6UkxoFcCihGUfTLEo46BIcbR6d45cXbOD48ABiIWfT+NaoKzhUEIxm6ztg6bzlm1SLKjUS6nOHUI0fCWNV70BL/zcBm44CV4GYu4Jrj2BkZ0IwmVvulGa10zuh5qmStecLQ9kwjF7XAX/DwIXQk+vk8ZCklteTuAx3toAUH4Q55yvF0eHQ9SDQLu+1FFVR/EdC6BtA9CzBrsLb93veWhcXI/BfCZffFalgEAJiRah/c2n0wI6WE+4/OcTnH7t70fEW9aYXBmXG9HG1/XiFlJ0eHePHubZwcH+GFF+7g9PgQDx89aQQOBSVOyGmGW63V8CkGUKeSuOQDKKcr7RtTwmf3HmC73eFgvermS/t/31pU+/OLx/uVv9p3Oi/FldfdzyXBuDqGrierbY9q/2QeL8MjeY9oNGXUKwNM37LIm/ZnxtVXezfT7ReNZDcMVsOloB7pZ2Rtz0wyBrMMUa6Nk7lXtZD7LPUG9x/GQka4xrbaRLK1whZbsT65RadKWoGcUaIhbJLJxr6bM1Jm0XB3HjE30lKYgVSQfUbpNPQZhJyk4Fr1pEC9i5mQUTBBEiqlDofqqKvaj+qMwKR6rROyWkgJgKRGi9KUJ4/BM/IwYKWu+aSW2FyAzITgUa30zounwQZwZsZ2ivj80QUuZpGzkzAq/RIZ2ZBYZwfIQuwyyAVQYSmGp4PWJrDI9On9a40IRw7j4HH3dI2bJwfIKkXHJQM+iHUjR+1PAuUCKrLJWixniTNSYYRxBJFD0onhB4+iCat1kXBeiKaYooWNd5uueKkcghZsk75tQNRCVgDp76R5MxabDWhRv6ChWKVgN0cUZoyDhIIgi5SvJXAKcBBSlCNLjQUlUmB1njoHZ1kh1C0c1N+XjX1CcQVUk0gshMHqPdBiTchsYT46jgvg3LNZD/6yHiklEQVwTsFhrCoVNQYVzZIPQAEZa0hLWYS21KJ5HVjrAgfUk9EWaXIED1OGc6psJeIEvvdisIWFsrZ/qfPVKiwDQiRzEO9GKl5IJjWAV++jW99KtVIJAHK6JoVg9UHEo5LgkcOI3bTFZrPBZrPB48eP8ejRQwBc8x5ySjgYPV596Q7W65VuGG3XMJyRYgQXwrha1XUWXDAMkojNLJ7YjII4Rwk5YmBS78Buu5GCf6XAeS+hWrsdYoyIKcrPGDEpORmGEccnxzg6PMbB4RFOb72A1bDCKycH+Pbrt/Er33oBr9wdcOi38HNBcQEjAqJjXOSE7fYSm80OKSYwGF9942U8evQIP33zQ5mf5rUlCOBW4C0khxDnGWNweOnuTbx4+wZW46B9UeC89L1Zc02C1yyjC+tktw9Z/9kejuq1cPCe67rhg9e9QmSAvRbURB0Dnbxt/b0BJhsTtjaYBdXCVnj/+3UtNQOHq4YXI61CoptM7vN6SPgSmiV3D2vs43he/q/jG1cbobXL3t8MdFUSo/hDCc/10M0MAV/MRa7exLN9TGmFgsJOdrUUxQG8b+tur3XMxJTx4PEFZlOWItvEUNtMkoRzs7YDzSCmw1ptRACA1WoUZToirFej1sXp7xooWuDXPA2AkwgIX0BeDJYLm5v+v3DBo8dn2Gw2uHXz9AuacOl5aB173eBYfs8eqrcjX5970YjGVYJxDdGwz9a192r4UZWp7YjFdZ4Mu3mu99w9z5Xxw/VHC33a//tedkfnzQOW92py8fyMi8gzk4zDA0nOmTPDz6YKsiTrFVxxnV715tvnWudR9z2gT3ZDTVypilRZPkPd9+3skgCn1qnk4R0jk4QxQa+TVUJSqq+2q0u8fqrM0FzcDEgSpCrbFO/BRUAAhQorK5Aw70hmC6OglgRqaxKJ5XQlF1alIodJQ4gA2xyEOHA34JklzGqzm/HgfIesZd9JNwwGg5xM7BInCXdwA4olg1uVTrBKytrmRboJrpHnSb0Y8tmDlcetk0MpBqcxlUaooGybADg/wIdQk8HhAoizEhNxjXJJTQM6SjG/Ojmck3vHXAmnNlEdA0ELtA3eAwSNy1cCSc39C52ESb9TQmkVlyFSnc45TezO4Ciu2rWSERt/wXusRhmTc4wwmVTnshIRRrZBbQsHLEfEFvz2PrgBlFJvlUDoFMr2gAxrSBYza4G10u+Cz+VRQRqAWExalHQeGuFUCzMb8WoJ8ilnEQMoDRimWjegC5VDWztkrqEqrJlKV/AeYQi1GnjdX5VcWB0Mq6BsBoGi17UYdyl8xvCpiPei21RqjHEFQlwJJTlRwBP1MamBYwX8hhDw4t27eOMXfxHjaoWPP/oM7/3sQ5ydP0ZMUdShFNQHR7j70gu4ffMUwYdKKvox5R0QHCMqQB2GATEl7OZZEr/VANH3Uc4JYRBFK3KEYRTwkFNEShHbzQaXlxtcXFxgu91q5XHCarXG8fExDtYHGA+OsDo4xcsvvYrvfPVV/PKrB/jmyyvcuL3G6iAIaRZLEfy0xXpKuDUTnpSEzzaXePLkAknVwtbrEW987RV8+vE9PH54Du8dSja566ztLQXzUiwYPOGlOzfwlRdvV6tn9e7o/7mgksZcSpM6BrqfnTUPqOpNlpto9l0jPkELtQ5BvKQ+WF5f26/KwiNm49v2PFSPqK+Ka+jGUctTaqFWDXBYxXvbg4LWnrFq9Iuwq+fxMPBnuRBPwfhXQWr3Pi8/0YfVLq+zD9FZOUZb18Xa24PYfSBnZKOBvesfqwOy13+kfV/jmhrCaXhJrmNKUVfvhNAMHrtpxoOzCwnNVdJs9S5ATcq2KHZ4pkPBrK19pjq34DAVLDdPXyHDM2osVWzVQXSUwnj0+AnOzy9RclFD1J5NvQeXSjDqvF/0E64dO4te6A3d+6/RSMxTCcZTerJxuGsIRpeLUT2fHdkAuraD4ey9m68E0UIvf17vKUilq79XY7DdC0lI6L/znIz1eg2GQy5afI93TbJQV2RbiEFm2Zc/llI0AVcggywQdZmX76IBvDbhNYSnqNpMYUgMorD0vmCJxXED4tonIk0EFeslisXyU9Xh7wmPxe8aKIHeT2FLwMnIxSElhxQ8xmAFw4J0XmU+Cg5rkrvTe26DWlRoVhiHgMP1iLkwMjlkaz8lLd4HSPlvIOWIKUY8PJswJVGIIacJ6YXBqmIk8Y1WGr2oRr9cl7zXUCQJKQMnOb+5QQngLM/iiHB6MOJwHSpNlL7tNr3S2GxJUqW3xIQwHkhbOv1eivDeYTxYY54mTcIMSLkgrA+R5wk5bcFeXL+2EMk9OZWBlUJnVp23LpTmscqWZKvLK7WKzKRkD0QIJH1iYCGVAp9lbBGgFkcHz0YcxWVoCcPWz6k0daC2wMuiSq6zeCnRMK+EFGDkmuzNaGpFlWRAQqlsSGVSUAHWBP3n9/DB19eCLdX9agQBBE/Sr0Q1rLg3/gAwMOXgQAiDhZC15GKgDykAlOVV4E2uSzqvKkwtRK+oa7Yt6p0lZ0FojCSh1mPoiZEd1bvhWjVp74Q4j8NQC20aEDw8OMDf+Ft/A3/r7/w+VuOIew8f4Ec//An++f/rX+Lf/NGM+/ceVcnZG8cHeO3lF7Fer6rgxDJeV0jW9vIC2xJw6/ZtMKSC99HhEXJJ1Zo/DoMYPqYZ291OVZBk2O+2W5w9eYI4T5inGZudVOyWkKSAmzduYhhHHB4dY1gfIgwHOD2+gV//1uv4ne9+Hd/51h0c3AwAJVCeLcZU4gA1mT9OO9DlBseRsdLaO94JGSAi3Dg9xs2bR3h473FtS8lxKhiCx82TU9w6PZa19WCN05PDqmQF9HUoGrqwnJ2s3rG+gJ6F4SUujWya3G3OHTEmrY+ictjVQzaoZ8rUo3TTrrlYWUlq6dYrqgYob0YnWtoXas92+0qbF1Qll8VDJoX+pPq879rgeT2078jmrAH99gneQ1Xcf3Xx8ppGpSWItBNcwaMKonnhyViOLV58obu3pzwWtY68esP7l+4AYeUvzIt9ZIG326PUdfL88hKfPbxQkspASSglIXPS9VI3476o3jW3ZEBWSEVWERzGPMXFF4wfSV6GeEiJJIIArgi38A7OhT2A3kohbLYTHp+dI5eCQBIBYXhz3+NQDU3W25Wc7ZGNvq1pf35YqPaSZFhvNWJhf6vfwqI79+ectnmtR9KTi55kdL8zo0b09CPOCFnVNibszYerx+L7+k4vqMAw9dhmXKG6B5aak/TzjmcmGatxrHkHAoIcpnkS1xxQB+l+WlB1/dSET9QRKWOtwPqiTWwFrszgZLFp8nCitmQhMead4HpvQj5SZfQEibNn7zEOI8ZxJbGyumqbS5pZABx3RWaMZQKoMdiJgJgI0QcNbVACBVb2bQW9UBWLuDR3lw1EsS6Jdf3QBxQXUEBImatlTeKBoaEAwOUuYROLKD+B63M7YUlSzdY7uGEUIRZSSbQsydhgoJAW/nIOVgAcrOSkZJgFxBNwuBLXuqjf6FBj0ekXoCYWBy5FEsgLVLozw1OQECcfxEJKhN1mI23gvapfSH2OUiSMDZw1F6dNZIZWDVdrc/C+ElmBILlaBeU7AuhKWebxEBGIoUlL5uWQWP2ikwZgSfDWjYM8IXuHHDyijuWYJBQsM7X5wG1Bd1REsUyJMDODMqqOfc4ZMct5cra5JIlUZn0kQEOsRBI1VK18XtQieB4Pp/1XY9It50TbhwH4zHBeYuw9BGCZh6J5CAWEMXTB7wsD1dhhrteyBV0Oqkm6RG0zMNBBkElFcCAnfWdj0Sw6ZEy42hZEjrTo6l5JCUx9zKzLdu/UJZurtVk/44hweHyIN775NZwcnoAIuHnrFG987VX8+m/+EnwgvPmjn+Ktt97DRck4PT7EwcG6kX8DHRrTwJqbFgtjmmfcv38f3nms12usDw4AQDwbMWGrMrHTbofdNCOmiKxF96r3WtezIXgcHR2ByGF9eIjDw2NkBCAc4uDwAL/06i383ndfx6/86tdx86XbcAeD1N1JO0jjqXW0FHCJmBNjGwsutxPyboebzuOxJ+zEnSfEkxlB1ySvohjggq/cvYlXXrqDOzdOcXCw6vprudmK0puF4ukamguSd3DJgSirGpaGfLJKzZrnIXehTcyac+Wqt7UXEBi8l+KiapAyaXRA9r2QC3LxQlZcRs6urllO1zGy0FzNKXRqTDLCIiMWAoxs/BoYIoDIVU9d0LCpanR5Tg8DdWY8oA5Q1Tm+5Bjtea8AL9uT22Q286CRjf3Pw4C3VWozI1N3eu4+z/uDcP95Fuyme9f2gq4/Fwf39/TzD7UR6msh0Y/PLnG2mdCr7ghuMsOZEWOdq9cNnI6AMTOmKWKeI3LOkqc1TQuTByA1d9IsBfhQva8SwWECN9dcBgSp/H12do6cc8uF2vt4bVFlAc3gpP3KfE2vYXHdBUmphonWJj1xqMRi7/f+vcXVOsP6fk5GH97LQJPzZdT3+me0811Dg/UDNhq7SfFsQ6aRQm54uHo1viBHpz+enWQMAwBZUA3wbbYecZ5QRa4MSAMANXnRUopIfpIVqTPwrg3Gugl3cdgAauyyFDrTQlnoKmKrKo9ZFPYnnYH6YRgweo/D1RoH61GAKqTzJRFOgE8uRZKka2xuc2lbfDaqipgm4zLBaQRWsWRofdYWu9fmMHeAxTlgcAFuXIGGEUxeK31rkmrRWEhIONh2zshwgPe6MWuFc02cco5AXCRXhJwqPElIU04zJJkRYM6gaoETtamSooY5iaTs4D1WwS8YdsllCdxNfg6MlGZwKmBHKGkChRWAAscZzknyaEkJYbUGE7V+A0sieoqiFWttZ1aCzkJgE8Os0AEOhQmlRJWUVSu04JaaPNUftd+d1DUAuCoUpaQiBiSk0UCVUxnamCQ/J1VSK2Sk31DAGR6M4Ekthy3fwCyWqRTEzDWcz2RDvZKfmtxOWnyPHYJzOuae78RvgFoBsT5kJDcC5ZyD54AxEECy4dlnLZFVPOoK8Iyc6WZSARgzmHM1UIgMOdcxYPN4IRWqIWoWzgSWdmdiKVHiXVWHbE/UjkqAa5pO68cWZ98Ui6rykH7fFKNeePVlvPyVVwACMhLmacI0ieXvpZfuiteSGB+88yFu3zyB905VnRqZqudkRobD4clt0Byx3W6w2+2w2WzUUyEL5xwjYpzaZqZGnTGMWI8rkPc4OjyEDwFxnjGMIwo7pEJwwxoTBjjn8Oqxx9/73ov43d/+Rbz0za/BH58Iai4RpgVf5bJLAUdGnhJ22xnb7YztbkKeZqxcwNoBO117ckqYtjvsdlMlcNvtDvMc8dLdW3jj1Zel1g0aiGoWbVLPGLXEWHD1WDlmsGN4322kXZ8u1sFiHhZCMI+B1zXJKVn0ff+at7LfE0yhRY1vjDr+JOwYKI4hQbMsBgfYuX1TvIKNs/aM/ai0ta6KUCiJfa4dGXtHyxVgxQDcvb4Geplh4dqT4Xogfd15unc6mnLNNfd/a2FeC2t3Z/Ts1cz6tW3Rb/tAUdeefuzWzxm5KCb/L3mLj84usY3REFxnlEH910D/9SB2ibmEBGy2on633e4wzbHncHofBXneSSG+YSVGHRYDgGyjCctE84YB5jni7OJS5uGijYDKxa4M8N7T1YB631Z9fos90bWcivvT731Ksaj8IH3dYeJrWq6/K+blPfUbzRUPmI51yyG8clY18JsVtBmK65ftweuLfXLU/0M3Dr/M8SVIhoDx1SCVUterEQerEdvdThMKi4ByfVgreGPPSMTiEq/7v4HcbgNW+U8hJl0YhX1WB7rJByaVrayMv7ZX21gkFnXEMA44XK+xXo1qCWXU0B8FvZysgF/WsBq5z5xTC2/hJvSRoZOWm5ILmAAnILfGIkJ+Z5ZnFbJRkDLBBcaQVVkqOLhA1eqeUlIgyoiJEQuB/NAGFpF4NZSZS/XMGRkSllK9M4LV4IYAT4RcouRBkFgUuMRaZMdcZKMXMLjdzihF6znopIbzdZi5YQSnKLlmXnIxSJsBmVFQMI5rpLiD8wNAhLAa5Zy7rRiDSmXIiPAAAQAASURBVLGttFqpQFT7RvpcvFa+OPhB6oB4ZLhcGhhH45tlAWRZixiiTizJ0bA+S0ipYBJ/hYTPMFcvhSineVGgStAwhyZB2+zmUBBV4BwQYq4FG/vkzFIsqVtaPEOkabNzeq8ejl1bMGHF3AgOzzfJELW3Iipie0TD8li8JzgvxgRi25SbZ9ASakPwIH1tC6BV7Fa7laqjLKVwa25MEa9hTfzVonj7m7Spg1Hw8LZAdwutDaveIgWgGpfEENaUxoKucxaeJWO1jdthHPG1b30Dt27cBhEhpYTdbsLl5SV2O5mP42rAq6++iJASDoLXHI0OaFXgJa/d6iZe+cb3UDjh/OEn2F6eYbfboOSEnCTHbpVHlHKAMIwSmhgGeB/gQgAU7sYCTFNE8ivsIiNGRowR2909nIaIv/3tu/gn/8Xv41u/9iugG6egsJYHy1HCogoAqPxeKsCcwbsJ03aHy+0WF5tL7OZZ1r0UMeYCzqI4NU87PLz/EI8ePEbOBecXGzw6u8A0Tbj36Ale/8pLUjwQIgFOizBVFepYLAMK9/asia1Xl4d55QmoYN17qka3Fvao/W2GNjWySShC63MpxKhFIdXIYXU6SPfE4h3A4nn3voVA9Z6RuulrPZN2v0CzPhZwkcKlvbz6c3vs4Qsd9BWk9YBqIW9KpO+18JurpzYM09W/4AU0vfqla5gMgSWcuOZvyE+x9dHel1H7fPGPXM3TNFJpzytna+BZ3m7zvpJXYqAYrhC5cLDM2/uPzjEnDT8GwLDcgAKJyigaFfHz9x17/DkmTDsJixaBjGUulEHtEmfE3QZhLYVDLfSaOaPk+NTrpJRwdnaBknMNdTVvomGHek8Mze/tDE96JwvSoXiRqMOm3TPR4n8MUTfjfWcWDPzIMJM6JiB9bgMnV+mCfnUZ3nWFkDxFYKDlY8k1zIjd/sYt3LquB3vXtj0OjVzY+238Wb6weoOf0VLxJdSlPJxnMHuMGLAaR6yHAZsxYLeTglDzPIvuO5u+izJDCKCCk2JnDUeaJbK3sDQ3qD5+i5kmqkDBdPHRnauWpbEFgcQyvFqNOFivcbheacwxVYujEYwyS2JtzuKqcK4RH2n0AmdWT7nKAlyA7R4Er6dSgERIjqsHwxG1HAbWULHCSJgxghAgmv0OAoq5aK0GQGo8ZEZBqmFKYm2VMCOANYxJk8bZiuLJc5Jz8GFAyQmOBjBLTgenSVRanMRSIgHECY6BzW7CpIA7s5CMomRSPCDSVkQEP6ykLaLeh3Q4yAXEJOC95CRJ9budcDHnxWriCVyi3Hs/iagtGOLhKfBOCls550BGMLX/bQ4bXargtYMUvVekEg1WsFlE7nhRfbcyd1UgE4ghpJm5yssCLd7bapcUG4xQIlW5b1Mess+ahHK2vCNwvQZBSj9YaMbzfFgRwpLLNfNXFuQQehAltUmCD5K8rPkMkhw96NrhVTFOzmEhlRVgFSMyBuhNpSqBWRMObYzsWXkdAHixVBuIsfvVW6/HwgrVGZeoO29fQ8UAaVNGYnj2uPXiHfzCd76NgQZkJEnQnnbYbLeIUcIQ4hyx22wxeAcujN001btZgGb93WPGsVvj8NbLoPVtHO/O8eTBByBOKEmUpAz4Su4dY2ZCzg6cPFJOmOcddlPEtNtiu7nAbtpit91gmjZ47eYh/rO/+6v4J//47+Gl734XdHxDWo9JPBg5y4QoBCQGUgbmCN7NiLsJl5tLXF5eYLvdIMWEFDO204xtZKRCmKYdnjx+gvfe+wj3HzzB+eWEi82MKYlKzWf3n+Ds4lJDpRTiqYVvCRSWtSos8brFP7f1o7YlzGupS5J31TAW+jAkU/SpxoQWX20JqrBNvye6KmZgBhFmq5lSANb9Uce9VWvv1aPaOdH1fxuLhRmuENgVOOeffy+GraP1GZfgyay3PUEAAJjFl1DBXz1lh0vq14hbLYxK3tEuvn/Yd/ewYH3bGr6SnkYugGYkWXg8qQE8VzuuJxhUn1+eYwmQZYepKFf2LwXS0zTj0fklYsmNoFjb6d5mr6+g0iuP3a4YVLmNiDCuxkVOVGtwgHNGnmcxUA+hhuVYOHY7+3KdLczYbLdS+2ffyr7s1tohvWerkYqGFxdt95QJYm0ke7wRDNLQKzNq9MOsERHzYtAXNWUdH04wVr3D/s+2xrdGMU9JHRUdEGpkuyPg4HbmDmP1BKP+0zHYk972t2fDIl+qToYDYNV0x+AweKrKKJstyWKp0qRu0VHS6tW9tXAFdnHoxmS7xnUk1heng6cV5SrIrHkLCxZpA0da2TmH1RBwsBqwXgWsOh18C2GKqSA5UULikhWgy6ZhMX9EBMeu07ffs3j2CxgkXCKhgHMLR7CYawlRsAJkjDLHqpQ0hKCJ6uKSl6JwBZMqepETNwk50lhGApHIT0qBDovfL3VDJPISA6nSkl7JXkkzcpzBIUiilQsglxBIwP9mN3f9qAQMnRcFgBTc0xhfZig7q/2R0owwjAAKwuAB50V/39iwH1CKSOFaHHJZLGwKCrTwVCoFvlhS+dMPVsBu3gyL418OaQGow0CgTGrtbgPQiIbIkxbELH+X6t7yMceteGNQcCseLIZ3qHKRcj9NErUwlETYXbHtRBUYGkAWwgG44p57ZRix5BO8CwtQYHMERFVdqRY2dPIdojaHgta0ANAAe7fo1XGr60cfZ1xNfPZzMY0JvguH6s/Zr0m2hpmqnPzdSEi/QbZNn2BrOtXXdVOAtIN3Dl/9xtfw4gsvgVEQ06wEY4fddoc5RsyzhBRNmx04ZSTuLgl0bSoxWwyApy3uffIuLj/5FIdHp3jhhVfw5OPPsLm4RJykJgU4C/FnIMaI3TRhjjOmaUKcd4hxkhyNwshpFoJcMu4eePwf/vPfw3/5n/8+7nzzDfFeQBViShJCUQjIDMwRSBE8z8BuQtxN2GwvcXFxhsvLC8zThJIZ027Gp4/O8HkB4rDC2eMzvPPTD/DDn3yA+w8vsJvFuyyLv8PDs0vce/AIL965KTLaFe11gKsD/wCqEaJYobFiai66LrOSCyXDEo7aJVQ7kaq1Ao4gVO9EDfPlPQUoIz36v8Ld+/qayLx2kjwuwgADggoEmOIUUTd0be2opKjLAwRQiJALwVFZjJXn8TCw1wNG+1cJRr8/m71IltuOYHRIzc69AJG0KLRn4KzvPzt97Ye9XzpfiPxO3c/OsCIGwz1A59pY6wULSAmAPX8lRR0eWZANfcweAHOROjZPLndKnLi2pTFtsrGpmEibfWlY2SNbzjm8ePc27ty+Ae89Tk+OcHiwvr4fOSPNOyEVqmjJlltpIVo1ZKqxh1wkTDJq/TMjaBWX2Pra92nXLZVgcLt/aZtmpGldVpH8wkhh3gJiVk8Z13PI9XpPB9Uq3FdRiw3OvQ56ihGrjjlavFmdHNWgalGpHaGqz8XNIGG4uicO9rrWCLLXe6TjWcOmvkTFb11oAQRV4HED1fdKzpimGfM01wlASkyqpbJLkmsWQwMaAFThp180DBwwt7j2mHK1ULO1cKcu0b4nW6x3QopEEYqUNADmAmSWZwreoQRRwQo14c5AgWySTNCcAjTGCFS2akedzFAvDljLPzAcE+AIrkjti5Iz5lykGvEwCFi1wcpSgGY7RSE+ABgSm08SowSxsjM4JzjvwLnA+SDJ3E6IiFkNSPd6m9Bm5UjzJBM6zyIBXBzy3AUCOQnxIXJAYbhByFDJUqyO1OoBIvFyMNf+TfMkLv5hAIOQiwOnCDes4INDioAbBpBLIBJFrKwLofWrCIRxrYsgY9JIoU1dauF4sNCcjCHkOlnaesqLcTAgIJOSDALEsyAEI2YpQJmS9HdN0HZO1VpQE3hzkVhXsJCqEIL0iZKMmHItKoecG8goqOOcGTD/i41laU9Gec7rZKxH8aJBN1XWsQib72iJ/hZiVME5mnWHWQpJyQTUirF1YaaF5c+AZK0QrgUh5XeG5WW0Yznva50T6JpGaNWTLYm2gocm8bx0QbcNo+1b8tDVml4Kjg5WeOXWMejiHqbtfex2W8TtDunhY+SLM+R5whzFi1HmBMnfaZtE9R4XCY+RW5HcitXqAD/+ydtIAH7zt/4XmBLjrZ++JV6MXFBY6lGUpCFUWSqky8M4WBVwsKjbHYwDvvPaa/jf/ae/i3/8j/4ehpfv6prk1FWrHoyYgRRFWGKewfOMst1gt91imiacnT/G+cUTTNMkxpkEXGQg3riFQx/wwYcf4wc//Cl+8KP38PCJSOVWuKee1csp4/2P7+GN117CyfGxbrilWe/2/vWhcxZ2a+pSfc5Q0r2m6MJgeQ1GLKx4o4VYclW6aZ5UO5+F7KGODwM2VPdIO9egClXjMIjq2GrAoAUjqTNy9KESxcJ7pHEMN0qOka7HTFlnyPN82L7PV/rXCEbZ82A3wtlNxKscQ942kGgfMCBX/3fdQcs/7v3arNSGPwwUdwCPliRjAejMi13721UAvqgLZO1AzcLeYnrafZRSsJ1mnF3OS5LCEuJcMYXusdACvX0T7DcdQeqpvfLSC7hx4xTkHG7evIHbt27g3fc/ltD2RTtD80rlrOLtN6XL/QbE4j63u1kFGpaW92vHtj1+B8Ltdc8nbO4sPBmVqDYC0ohEhZ7G8SsJq+9bP3RE42mHjdL++tfxHbuP2iQKFHjxheVzttfd3+pV7fzdODSCa697T0ZHRJ7leGaSYfr+pC4372TRGrxHGQJW44jVaqXhEEkNBc1yQzZZqMU4A73lgaRiePd+2/ybezlb2EPH4BaDRSeWxffXWFa1SObcNPXNi5LV+uRIlKiqooe3HApWi0ZbyGrz7pELwMJf+nWmdbxZQ2SBkWJv5poss8QflxCqCkouBZfbHSIDtegeM9x4AIMQJRe4IEnYKAznB7micyo5pkBOTV9OSQBnUfZy5FAgQMwXkZGzXAMbzK6iczmX1bpAGIAsdUacV3GA4IVQsRQMZAAuDJqMLQsWg8QaWpIoUuUMpgIKXbhcN364K9iWc16MB/k09cYOJa6SRD/FCLOQ931C0PAVO39HUOT5BXjMqWDOsvQuKumSSOJKNV0JrRMlIgdGEYv8ONR4U5czyGVQVOAGljwgAzFKJMzFbSDC2gHoQoye02O1ksJM/UIGdItmfVaqi7m0QWsjVvAnwMq+067RXLvS2w3wca2tUUwlyM5dF2nUNcrvhaU0Qwl1JGPPvdyFs5kndEmU5OD9NU1zQo7WI14OGcd0DkcOB/kcx/MlaPcEZxf38dnj+0jbhDQnKfQ2yvlt3SKgPletbl5YanJoEv39zz/Gz979McZhwJxnXG4vUEUhiFFS1No2EZyyqsGRTsks6lfB4e9/7w38b//xf4zf+b3fxnjjtCoNAgzEKItzSsA8AXEGuIBjRN7usL3cYJp2uNxc4uLiEtM0IeeEUgK2c8KTzMDpEeJmg7d/+iH+/C9+hgcPz2SztvULgMnlZC745P5jfPrZQ4zDKOp5NQyqVL356qngrv1tTBSpuZI1fK3VsrA1W+vtmDKgijUICTWAIQSVi4xvBqNYyA2bShrXOUDgqvZk+5FzVm9DDBfVW+JbocdKWKErCcm1qQi6cZpIa+Os4QrqSPHzeXQ8bbE+7oepNfplQNF+tHBp2j/xHphcEgxe/lyevftNf9Y/2mqOZrRAW0/kvetA3TKcvBLSUkS4hVoCeeWWtXE6HwPDrKDteUrBbjdjigkWnmvP3dpTozqqIU8Nw3XuoaF3PYL3uHPnFtarNQjA8dERXnrhTt/8fYPXsVxy0mRvhpit3bXfsOeRfNVS11yqRp7rriQsoxJwLDFjJaNdXYjao3t8g9pEl11aQby8bf2+JBaLn7rvd9Afi4s1C9TV69f/db/bmWy8V8JxzQevXA8Vv+4TjOrF6LxpZlh13eee5XhmkjGlrNNHQoHE8i8XCyFgXI04zAXeSfyubHa5VueVECqnzB3VAlHjYYkk9MTAXmeZqKoe3GQu+4O5NXRRkuG9FEIahyAJdIUxJ6kMLEmnmkvgpNtjlFAvqBWDgFoQ0BKYWqEmrpbLuojsDQYjR4v7RAei2Nxu9gzyvtiZEpgdnGNMMeFyp14MIpAfdGMiTTiXquVFNfNl4RRC4UIAOIOLJUhp44cAns0FSlKMsCQQF3gNS7KKxNw/m3ZcTQwDg1Kq9TdKyXCeAAzymguIPNwQ4IJskByjVrwmXSQB8h5UMhjNK0FqgakT28gbQ6VfNdQATgggtSnXyJB5M0RCV8JRqBJOqyFSSMPFIZ6lGi/NEibVFLWWC7htFBYyQyxeDg5OdKStzSGLjIMURWMHUdNw8iWrxcK6cZiYgV3WcjOkEM7zLWE7DqFbzHw1PLTQqVKL3dX5bCC85KpCVa3RjJZEq+S/Ve6GjldU0FGrbdfksBb+5EAgLyp33i/zQqpXhVqfO/27r4vw0spTyYgaO+RnJ8kLWVtSEfnpnDPunB7j9p2bcIdrIE7A4BAOVrh7eojHhwPembfYnU/I89wVeEOTOSVLLM7I6mnMyGAUgBO899htL/DWW3+OwXnsNhcVUJlHCTUJHzJHdezSEFDijPUY8B/9+rfwf/wnfx+/9Du/hWG1AjaXwHqUeZ1YrBJiVdBzAjwnxO0Wm8sN5nnGtJuw2W6xmybEOaJkRioZDy42+OB8i8effI4PPvwcf/bnb+Ph43ONEW9gQZZgU8wjXOwifvrBJzg9OcL6YFXDn0wVr+acLABp53HoQ2GhywjZUuUQnFaFD67WsHC+AVXJm9I1yTFEu47hGWBn1+v2K+geX1RWnAoYHtXL3/+zH2TfWmCEClRNDhvorfydIIvubU/DHc/L0YdD9SFnEkXReTbAi0R381BcZ4XtsbhdY//vC2vGtY2437qyjzWc0AhGv7ZUALcAeHugT/dLkOQEWuhXvWIPNK97uA565lIwxYg55fZxNbgQzKDAQjBsHvePdOXc8v6N02O8/pWXMWiV7/VqhVdeuotxCJimuCBnNpdzjkCS0Et5PNeFS13/MHNM6slwbb7AcEO9QuV8rV16g9SeJ4M67NE1SX1s20+03a09216teI7xFIJhuHev3bBPQ7mR3WvauN4Yd/3ejXczxnUnv/JcsGdwtr7JQuf2xmJTulwa1HoD4c87nplkbKeogFNCiVbBAbDN3GEIA9Zrhg9BO18ePqWEeU5SNdlCnHQht0RM85AUJlgxttqWaApTuRi0Q7Xa9QuCbSrGzEKQ5OaUGdOcMM1CeOYYpVokmTvSCE+pgENczyL5UhjV3W3Xl+6kugn1LGNBJqxPlflmLabmOiCM7uv2vCiMwhmbKWKXZKKTD+JlyCL/VkM1im7qWj8DXOCGNYi0Ei55Aflas6KkWJPEFyM/S7gS89IbU3c87ScQAUoMyHsFVqp04ghpmsRbQQRisdqnkjEcHEjxvUnqiaQ5yobIUlsjcsFoQE03Bg9LtoYkjZMHO6/fkwFA5AR823OwxWrLr1FVw0phrW2iLJykcjtrAqYpiAmwtdOr+hma7F+GekAUJBdm+EIIHnAhiAUKHtXSo4CIWAAHzEvGTiyPRbx4GerB07YDDEPZgsbPvSdj1HAPAG2hkskh4TjFwo1MtjSLpHNqILAVNuxV5gpQh6avFrK2+cJ+q3keBhQloVYJg2sqd8tCaM09XOsXeC9x+d7pWDCrWiMlrvtJBLVuo1qXCzN8LsheQnWODg9wcHICqMUS5EAhYDw6wOuvvoQHZxf44OHPcJZKDZ+Arhk2NXsyXDejknHx+B6ePPoMOc04f/JIPZ4OYRxQoq4JzolMLzmARqAkpDihECEQcHx0iH/wG7+A/9M//U/wC7/5HbiSgbMnwM0bQAjALGGAGGz3UoIcE+aLDS4uLzHHCSlFEZaYInLK4AKkzHhycYk//dG7+LefPMKj8w0+vXeGJ4/P5fnI4rYhevrgaogAgMSE9z99gNs3T/Di3dtwRHvF9cqCoBowqLkYBsR1k/UaHmDS0iG0JG/nlsYwG18WRmFH3dh1DRWgaB7Jtvg7YpjXt99OxDOSqiGDLSfEwIB+v3rsDZyUUsdZUTEWO7muLP8zZ/BfrqMSCTRDRSUbajBEQd1PvkhVCujB6B7Y7BDhFbKBq9SivlP/QB1pNO9XD+gUyBmA60OlzAhiBgQywROuUVDt+TvwuXef/f2VnDHPCTGXpmpg59CcJAU5NU/ii59X5s3tWzfw8ssvwAdZ44ch4NVXXsTJ0SHmeNatxTrGU0bebeFIDSbkRZxAMQVriOz+UdQ4I2vqcsbVc1/XBh3Zstf2vvV3n4dDFWTaDG/eC+vSHsOZYcLYv1JaXJHH7UnDldvvO7W9T4u+NDZz1YvX1iRbi6jizxqi1+cb1c9QXUvMQ2Thm8t97d9TuNQUpXIjgVAcwNmBi9daAwLApIZG20gdEYZhxDhm1WCPkrgYk1glNQRr0Z7Mi04DUENZnGsN1r5jDW1gpahFVBQT51TAnDDPWUFaS8gjklChKjsIYZyFBRv2oRw26WzQLUC4ER8DhgDYQo50oWOWOPs6UAx4oA2pFvbBYI2J3E5R8i8ssTALECjZCvaxKGD5ASAHzlHECfIsKiRSgQ4gEhDHApjhvBYOU6+E1Xdw7Y4srM3aCMSaG6GSsVrtnHOBGwaEIAnoJc+o4WjegZ1eJ85g8vDDAHiPki+QY5RnLYwZGYOHADdqFh0dFjoGVPHLiQxmCwmAsbvFRGWgeSNsISVCgE4yLaqXcqleNwPyAkCNRYoFPcVULb/eZa1vIWENDIfgFORqmztnikKS1MvMGHQTLDkjBo/go+QZVYurWUh0TOn9meX1eT58MCIM1Bm0t0jmnKtlP6UsXkbLX1FSKYthI5NyNplrvX66nbctkC1J3ytgDLXuQB//3C2oNZxF5qsjCAj1S9C5jA1G3QC923/f1g+u64h9fj0OCENoYxmQvKoRODo+xrdefxmfPjjHNH2OR9usJLnohuFUuMAED5KGhWWkHPHo0Zt48uA+csoAz+BhDRdG5CjqbwRSqyXAXEDsUAsZxog7pwf4r37/r+N//Q/+Fr71a78kkHjeAUeHAHnw+QZIGXR0AgwDgALEgnx+ju3jc2y2W0wxgnNCjDvEeVYDqRTynKaM9z95gD/8wfv4yednmJIYH7QRNPnPyLeXpHJdZ6Q1My63E97/+J56sYeFqlgpe+FSlYzZXNMwqODhqRXX8941IQLXCMZ+bkfJDdzWXAy2kCz5PeVSRUtMqZB1THjd0KN3CMljCAlzFHWxVUwqK6zeFCOwSnC9ek2N3ELXmlIkx63UBfKvgCfDwG/92VlyF68bGGTdF2y/WMbd41rOtR8zwcv/XTm+sF3J0JNhjaVXlLr9roqi2LphOWHU4Qwz/LXmqDe5iNfv3+9+KVwEk2l+YyUTun5IVW41CGteVmuinqZyNYg5kqTvG6cnFbB773H79m0cHR3g4WMNd+zau6QZabdBWMla5EAoKYHIw6z7/dPYs6ecF56MZS9c/9t+e/QEw95koFWyNtKwQHqN2JHuR6CWS9w8ZfvkQ0lh1z9y7X0AvDwWY6onIJ1MFcP2EvtXur8RLCdHoEQj2fVnxb9A28NcHZf7YxUdGXmW49nVpdgmqyRLEouVOqUWhlNYkoOzhv+T9wgudNWag8qrTtXIRqrE0/FIJQncWZMI8KGSATDXGNpefACQzb9ocjhTkkRxZxny9ihtwJIrdfq0vxtjtUGo9THQXJYJ0LAWzeMwAGIhC0VCn1i19yuRQEsasvcIxj61wiwAkZHM2MWEAgcXgoTZFAb5EZR3wjKHAPIBnjzmWSrplpwBTuDsFIhno0G6+ajcq/MAPMq8BUrBepQqtbbrNnUBV597zjOSbtrODyCSkAzOWcKwxGUgg3QYAQL8MAJJ6iJwSXDrtai0OA+4XBPV4zxhThIwBg8hSUZW6rqq8bQ1fK7Fs1ty44K46eqaYe50YCiMMkBqX8AIqQAAAbRFxxyDtEJgU5zhOtxYF3omJ94VUkUdlRFuRddkcbLx3cZ5wRAGjIMQ8JhUMUc/I20uHpYyMzj3C+JzenCp/SBHUy2RvhRQlVOucbdGGrwT5TICECCFK0POyCEgF+1/i3EGoFuCvKLeo9CqKLcCZd2mXheTbmPvQhY8QeOkl+dsVmRb9tX6xC1mWJ7VlIs0XCfnCoJjEtEA6PfgBl2YPPwh487dW/juN1/F+eWE73/wEOdTUksjg11p588t0d1qgXAp8ABCWCOnCJQETmo88Q5FgzVt2ypZiv+VGHHn+AD/m9//dfzv/5v/DHdfe0kEPWICDg/B8Jg+vYfdk8c4OjrGcPuukIzdBuXsDGeffoYnlxsU8updyOLBKAAoAJSRMuHx+QZ/+ub7eOfzR9hOCSiAH4KC+KSenQbEmGU8sCalOpXufvD4HKcnx7hxfFTXCAmTauFS/WFereCbLO0QJNS21mWp3p22ppTCSKnU8DvzmIgcdiMWOWXEmLQWRvPK1bo52urV6+UJwZlMs8c8DpjHEavVgDEsPSryGSW07OraR0Sap+E0vKMBb9C1mPq5ORhGEDui+AVHnc9KOsz4UPeIL8m6+Cmvnv0UXet3hsn2uvOh7HfUFwA7fsrrK59jWWJiR+K5qpGV+trO1P/e9tV2f2bZD8Hjhbu3cXR0JLL4er83Tk9w++YNfPDRZzBroZ2n5IQ0T5IP6pxgITOu0TXX0wewNdNu4ovH85el1dd81uwReiojQDAFKb0L85SZEZuvGVyL0L5qXGvkgPf+1dHVEer+lP1e10LL9Y4UM9GV1x15BSppaIQC/84WiS9RJ6NPxJEGLGSxxabiIRtn1tc5F/AgISreB4AcipIR572AiJQkR8JiYW3zhYSQePIYhyAKG0EsOFmTeacpIsbUkjYhbS8bS0YqrBuGLsptrQGg8fN6PUdAdgIpTV+9trE+j1ilBQK6vbAuQe3N0ikXU6naLv7b/u6Jq1RmgeSJxKTP7Qq895K0nBIKBpm0SeuQ5FKtVSLAFOEGBTvDCjkllDiDmdQBz2KVACBIVRE7iyoPcsI6OJwcrqtE6r6bDJC+njNjmhTtlgzygwByluJ6ACSsi6QYoOiyexSWgo0uDCi5ILiCoDHe1h+5MOZZQFNWPXjvfJ0QnkhrHgh56pVbWHWlDfC1bmnSpblQVRdKpSBkcc1Cx0zJYjFPMQmYKF7C1JzmSTiHYZBEbq/35rxXQmGWKI+WwLms3F3JJTXpOBNOSMOAaZ4RUwKziBA4J4vFNItFkzWf4Hk+Usqav9OFqPSAu+RKGmVNQPMu+LAIzQNQ26QYma8kYc9KtbACohorYO8BDYTotyswq9+1ImxYkBH7bK2zwC0kFGCdU02aWdYce+YmDc1ccLnZIm6l6jbCqAsaoIlMGI8yXnvlBfzabsJumvFv37uP7Ryrt0bux5KW5fxNPamoOIOX9UJD/WycFVVFk3wrJyQfwHB0hO987WX83l//Lk6PB2DzBOAD4PgYJSZcfPY5Hn/+KUqKWB0cSY5GTuCzM5x//AnuP3qEzIRhXAHeI8ak9WA8ChLmmHG2mfHj9z/Hn777GS7mVMlojqjeOwmLFFJR2EJyzROrHg3nsZ0THj85x8FqlHa3sYYuJEo3XUcEH4RYjEH2mXEIGEMQdbhaAM8IovVbk8DtC0paDZacmwcuqjcipYyUVIK9dHVzFmNLrhV8RkgO0XtVpJOwwZXen4R9OpQiUtADeoukQ5+jVvGI7ZMF1VjyV/EwoNRbbfuj5nJAt+UeQO+BeFKk27fhlfPV//dU439G++pa82yfveZ3W3ue5ftKlo1wgKlZ8PWElvTdP/OVs3e/eufwwt1bWK9X6v0VKH5ycoIXX7wN9yOn63R/DQvPwrL59pqhh+qG8RbE5+c1G6uPoS7uuJ5d8v47e9St8wgYubG8VUYjHPWrNZzTInDkG31u2JJsdK8ZOmeXnjoFcl3jmIHbaZikA/slebU5IcO5e90byHpAy939AxVD2V633zJfdDwzyQhak6FVG22buRW7SllqCWRVzEFJSGCRNyUHGxLeBxDkXNk5UCKxXuaMzEUWcAioc1pM7+hwjfVqQHBiCdvuZlzQBgxRGrBYtFZVuQEIX0i8CmqNlw4hZY0t3MYBkpDbNR91rdk2BLGEFrRBbuE4RE5jo5eM0OJDnWMMHhhUuUqActbYciEZBFF72sWCxMJsWItOWR6FIxJrfo7w40pkUzVGm4hB3sMF8SJJEWpRb2CwFOVjAEwo84zgHI4PRhyu1yAlkH34iJAludeDlHE5SV4COYeSZgUuQEFuCzUROCcUzqockeHDAAqDsmaR4PVDQPEBSBPYOZQ8IydVzHIm0elq2ElLFG7zzYreWbibmUBYJ6n1GRGQCchREvhLKQheamjY7zaWARYS7SR3wjmHQcNqpNp0UIKhsaM68VuhNSOTFl7TTAMypkpdGAZv8soO0zQhaU6Tc1DC5RZetuf5iCm2+PjckmwBLBZeWZQdnLcQOSGEPvjmXdM5LP2WF0S/bqCL9tJfqP9eC52xRTzbQmwbAlT1i6U/iqNad72GyqjxxBSJSjGSVCp5sfBQU5RaEi1Z1Z8crrG73OoGSDKnvQNQAFdAw4ij40O88eoL2O0mPDi7xE8/mzBrOGf/LHY/dq1cCuA9HBNKIcAFeK2uy87BjyM4zeDEYGcegwDOCR88usS/+JMf4cXjgG9/5xsYhmPksws8uf8Qn33yCR59/hlW6zVe+MZfk/bdbLC99wCf3X+EmBnjOGAVBqQckaLW2GBGmiM2my0++PQB/ugnH+HTiwwKKzguKHGGytQBYJAT40XJBcxZvOJJREZkLVBiwozzzRYvloLVONZkf1v8e/13CZeTmhciGasEI+hYIx1N2raFLQ/IQp+skJ6t4fIzai7igmAY2esIRu8JQzduRaWOASqgnDHP1O6hFOQcMOSmoCV/KygaNdAMLbw3r9pzPLeHrf3XPYMZ8/pie23prSe49vFtY6m/LhWJnn4/3Qf2AeDTHgDdgr5HLOpfefnR5bU6UFJv8Quu24NHnTDmTRMDhlT3BncfLgzOWetYoO2pT7nAajXizu3bGIdRjIt6uYODNV556UWM44C0zYvboPo/teSX0mEIy3uS8/fNkOze+2f7goc2r0LFCNy9R9c9FNfrPo222XBpvEUl9LmXQO7OqGODdQDX0E1YbvI1XgzdO2rF7tp6y6esw91pIb+61VHdE5u3or2uYb57zWhXq8UouRF2pv1B+cXHlyAZkhwpCXCtUJZZBLmYXGjCbhYvQ7VGlQxoDYKSFfQ5goeDC14BFSElh6QuaAK0sm/AerXCwXqFg9WIEFyNxTOrEavKUilSwA5GvqkRDkJBMXckkcZm9rGqqDGyknAkHUxkYVL2Kek054BAVDdLkVVV0KQkbLEgWO0QEAJ5DF46ck6s5IwRNdHTqetsShnsPEi9QDJ45F58kDACpAjOuSol6ZCtsbrOSZhViUJCDKw6EiUflITV4HG0XmEIvhKsFnvs7AkAIozDgOAmkXdNUa2HGsvtZDhxLoBK8CInFE4gL1bFHCfxYpFJ2haxAqteNqMpNeQMEJmMHoGdxQSiEhUQ1aJB0pct/K2SQrNaujb1SykoWcmn9as+dxgCCFpdOohKmXO+tmlQLwvpWKjjiJunwrwVXslRL6Ncan0GCWMbgyjXSIFLhylGleaVMetCqYpJCc+3JyNWj4wZAnTBorbhmHKHWZC9JgIKyQjL/AeY16AtZQbazVMAdKRDP1M0MbaYJakLo7E+LKXABQ/P5pVzsGJmy/AqtHNpLkRSj6MRGfPe5MxIpcXsN9e3eBTujwHnZ5dgy8NiRq0aCpmPbhhwenKMb7z+Ej5/eI6HFzvcO9t2IYFt3RPruvyMWWy79SlZwDoA9TIGoHiZuyyeDXYBIODAAy+cHuBrX38Vw3qFdHaOe/ce4rPP7uH99z/CD958D7/ynW/il48OgGmD6f59fPLpZzjfbLFeH2AYV/De4fJygzjNABxySdhtt3h8doF/+/ZH+Mmn55gK4McViIFUPRTSVsK5GN4NMC+phBeKaabFojvspoiUEk6OD6u1FNpvYiiQfAbLp2rJ3S35nxTpmRfI8jtSKhL6lC0syjxvXD0b5sVIpeVa2XbgZFNBlTj2Dt4EHhTNtTC+tsmbV4rI1jtf6/JI7pKvoV1Wy6eHIzLM+rn3fB5c0ffeoXuBvG4f2QdP6OLjcfXjeqo2nr7w6MH7v5MmvY5ZPP2zHXpprxcPsveVhog7Q10HbGVnV0NJkmK9OvcWBMTutXv+4+ND3Lp5KgY43esIwLha4e6d21ivV9jupiucrHml5ZripRRDAF/pGTm8U5xg7Oe6g7oXigf3XBnXf0/HCKtbYvHJRTsomdDK8LW6t6GMxRdbn17rwbDXpe8LvZVqOIJg7b1HNLUrIxpi9OQFmZCXS4KxTzSua0m7muUyQa/1ZQb7M5OMmlehRcdMVcVr+AAzI2UFYCSWvpyLVj2muvmJXVxjY8XEi+AJXDzSUJAKS8IfC7FZjwPGlRYkGgZ4L1KTKWS9viZWQjd+Uksh54W7qXDzUDSrUfu7WSMdZFOzLnTaiQ4AFUYmkSZ03sHOKBYsYdfCuVjkfWFgNre4aRA4AIVV9SombKaIOWpsrmsDbM4FzF4HLsN7IRZBay/knCU/Q2VtGUmsfVBpUD9gGFeYp43EXpLEQOZJ6kZwYXgCjlYjVkPQDU1d7tSFx1XmTxiDuOqnqKFWmoAtrdWsD7JIeAVRooyVouSRUAnIzAjjCEcS3oVQwNtuV+hGO2mf9QYf100U1mdpU8Juu7kJjRT3Py0h1ymABTmM2n/NaycWdEeuKhC1pOK2YNjktTCoFt8KkMai2z1L/ZECzkJEAhHGwWsoxIApZcwaRphyRoHDOBYMs3i7nucjxXTFDrPUgW/z02LlnfOL/lhaqAhSkFLOagA75y75rQPeQjAVsKnHNeesi7v1FyrBcbnA+4KqWW8yh9WT2wBJtXKr5drApwHRel2zZlfjuhAM7x3OLgIeP3yMkgr8elTpSJLqlCmqUs6IYVVw++YpfvFrL+P9zx/h4fkWuzlVq3UlNQpCcyrYTUkkK4u0mZAYj5KSgAK9p6xFPUUWm/HarRP8r/72b+C//i/+Pk5euYPp/j18+tFn+On7H+PHP/0A/+bHH+DxLuHv/Ie/i/XRAeL9B/j4Z+/hwf0HGIYRYVyBiXA5bXF+fglkkUDPMWK73eGdT+7jT957iCfZww0jLOnTjwfI8yQerUDgIvU7jHy1FdXChAhF1605F5xfbPDCnVtS3FTRjO1Zde9SwgGgGc2oeai4tHytlrzdyIS0cwtNa54x1HN675XgmImD0Ai0hVm2cS9jX+aDVbi39UbGbfOGJZ+RksPsErxvKlhi1GjrmyEemRuNfD/vxxXA1f/etSd1X+h3iRo7X3fzPZil4+qLboD39p2K9p+ReCy+XTlGdy/Pyjm6+6k3f/0jAehCjsy4osYMMeol5HlCiRMkxLq/wasHEXByfISbN29WQ5D1SAgBd+/cxtHBAR4+Omukwu5F5zPnJBEbOQGAqGFSlz/TPUetK3Vtf13TLBWIK3FQkrXnvOqakRuw7u/WbGL2PWrcxYrvaSdcGWt1DgI1nHaxN3EXLgVoX+jd6GmaN7J7XmUXtY2M8GjHkP5hf381ImdW0SYo0D1yvXWu7/EiJuznH89MMmrMuT0hq/QZMcxCHpxVzA7wSjychhaIO0gW45S9WoGknLz1SywFqQA+iSqHdw7r1SjWc3UBlwJEjU/tY7eh1h+GVu5mrVJujF1HhxXGYqB2pjFFsYiXKh9nCkHQz0iksgwky1dgsErAaSVqZhAcHEk8M+csYUNKMjIIcxRCElPBxS7iYheRCzd1Gw0tE7GHAnARoDsMcBqDnOYZgHg5yDvZDFME5RkAITsHx4ySI1KcdGIIkCbnkbU41no14uhgpe2LvcHWD0aZYAM81oPHxnJhcqpJ+igJDJF2pTBUU4lzgONcXYkMBqeIBAKxKDRxkXhrAUmmyKPFrzSnpg14s/T51lZAtQxKDRHdQCo4tKROIcjOt751NVF7SaxaGINarDsgIFOgzvzmYekWjKi1UMCyKJokqoVk9SQFLFWkV6OHH4AhZ8SUMccEoohSHJg9vIamPbdH166mYmEkw0LhtMVrny2Vm1zntZKxYiteCyVpYgBZ5TutrQUManKugq1shgBwJdNGKpwrcM4qy1r/762wjHqNnAtiTlUZy8Jomju8W49sk4LG0zLjYrvD/cfnKCnDOw/AidpTLiibHdI8qfV9xDAk3Dw+wldfuo23PnyAB2cXsubpOmay3wKOWUQkLCKCC0Qg2qFu1UziNU1zVbE7HBz+09/6Fv7ZP/o7uPPV1zA/foQPP/gYf/7Dt/DP/+RN/OuffIB7lwn/1e//Or7+jTeAKeH+hx/j448/RZ5mrO8cgEjC5M4fn2FzscPhwSH8MIDjhIdnF/j+u/fw+exBqwCKO5Hv1jWzaFy48wHFETjuqjwrlaw5VbofkYQ2FpJwyCcXG5ScsDo4UpKv5CKY8cBVg0Av/Vi0CnwjbIyUm8S1qVVVOdxFyFLnEasAX4GsGpCqUkv1VvQbP5qFUUGAgQWG3lthOCe5aTkTopER7xF8xpC9ViK3UFObK5ZH0oqYPo9H3bM7gFwParCzWmGvgZ0G3vbPu/ikAUfs/+GaGwLX//aPn8sPbK+i/U9WxtFd57qLN1B79W/Lc14lYk7mPQiF1JORpdhumrZiaOD+y611+x/OEV66exunJ8cwOW+7dgDh9u2buHF6jA8//qzzQOg6DwCscz5H5BQlGgK63qNceRLbGwzwX380xkEdOG5eKmuNvRNUPtFUo675o5LTvmlIq6y3jy7HQzNAmBHSyFItPt2vI2gX7++h97BR94zLx+4Ihf1ePRm2vzZyYevO8knbdbjL1/l5lcv3j2dXl7LLKqCXMa11BjpG6J3DaggYvGyaNZbc4pCZF8lvAFcLTyhS/MwHqbzq1IXtFeiZ9XG7m7DZ7HC5nbCbI3LOzdIIA5PoVog2kGzBBkQJyzYZbT2drL3rCW3zgS0GnYoU2yQvqkee4SiIdCwRClvROyk0FzPVxPYpZlzuIjaTyAOH4BGcBzlRmSo0wKK/S84gYlAYkObUSYnJU5HTXIuUIAX4gJKShIhZ+ImDKEDlBIDgwThcefFi+LaZ9QTD2sziDb0jHIwDhl3ExIarS5fwJEmRPM9wXvMWvCXtEnKcUdTKLLU/HKiIAIDJBxNJgccQBvgQMIShasA3SyAqaIdVFTdPm/PSVvWeGmANVbK0k74lIyKuWrUWo74DDjbQ6wIEy++pMwRFFxMqXMlIKJp/pCC1qUlAi7lpOFsISoICnMv6U1TZvB+wWs1fZsL+pTvGYeg04huB8OoZtEa1RdgOAxRMqMaKtk3o4m25BxbKompduSZBS98sciIsD6fq6rc6GOLBKgti0cfamnHCEmnrv07RqS8A1w5qm2MHikoRyer7T86RY8IAA9AZnDI2F5d4+OgxAhHu3jyG0zo+t44P8erdm3j304eIMbV76+6J2eoSMUCiwpTjLGFowcMKbpFTQKy1BX77jTv4p//wd/Dy6y8gnZ/ho3ffxZ/+4C38P/7w+/jnP/oIDy+2+N5XX8Tv/9Yv486tW9g8fIIPPvgQP377ZzharXF8+zaICNNuiyePHoOnBDo8BBEwTTM+/vwR3vr0CaY5a60fQs5R8kSKkDt4D0vw9uNaSIbm4UjOSNRQWWtUB0bGbhIhhXEInQezs/Tr+p1SU4MyVa7C5mlS8mjgPOeqrmeAnRl1/Cz6u5INNdQAoo6mm7oleS/GV+cJbqBARzlbsjJDNdJ173UoVl8GTWHGe0uaN/l2s5SqAe55Pa4zPevRg+jrPRB85euGX+p3e2CqTGOZFN1dTM+5BPnXIv4r9/GFf13gOEY1laN7fG7/upfXXOe6dmjEheDAKl3IRQr75jiBkxgi+3t62kHk8OKLd3B0dAjvNYxZcaIj4OTkGDdvnsJ5icBo9ELnK0NzTHPNA6lIHnUK1Nf+Su7RNc9Ge2/xcv3eJ1xXmg39WOpIRz031UJ7AJRg2Cdbo9XuqoRh34NxtUho/73uVE8/7H7sV2ptYPtqWx9tvLc1pu+NZRvo+KFuv/33FS6VUkQmKcRH3ulCJRZg77gmgjuSWHa4LmmKIRVQ2eniVqRjisQ3e110maWmgY8ZO8Ta8DllJJeQCZjniMvLLS4uN7jc7STGmxmuAM6J1RxEUt8AdHUx1Y1loXzLpvZjLmzbBFBDsWy8+05CkCF5A2BJ9My62Yk934MtV0GraDJkcU8lI2XGbk6Y5la5kou4+4kBUTfXjbBoaBJ7mYC6qTmS2hclsiQp+oBSUpXrdZ7U6idWAmZLapbcldUQcHKwlk3XWQG8FgKWk4S2mFUNkAkSPGFwEGAQBBCzVnl3Qep1gCS5H2EQ4i83DQKhsAE3S4oFyAcNhwkYxhHjaoXVOGIcR02ytgR0mZxGMiz2kwGQMyUx8WjYuaHWAeeUvGjccrMooBJUO5cdvQ5+tULoOQ0oVOOGnqtOdfWjVut1dw4Dt2BCoow5EYCMgRxckJyeYdBcEJIFdQwDYhqfdcr+pTyGoalvmbt2kfjKQOZ9danmUap9polwthj37uaUpM6GxaonBf2WeL3/+ZaLoTZ9B5XolvyeSjoZzdoE+377WXMhchGi2Vm45QK6kHfP2x+FGXPMePT4AmUnhgc4J55SEHYx48GjM2zOzvHkxjFeefE2Qljh9q0b+MbrL+FHH3yODz57oERdLwmo9KqEg8IXBD9InghICnPmCPKDgHZNvCRy+ObtA/yz/+i38QvffB3zwwf48KNP8Ud/+kP8t//qB/gf3/oU53PGqzeP8A9+55fwvV/+RZRS8PEnH+Ott9/F93/yM/zmd7+NcVijMPDk/ALvvP8xXrpxA7eIEOOMB4+f4EfvP8Cnj8+RYrGbFdneYQTmnWzsjlBSAYpIboqXRcl+jvqcVkejhclF9T4EXbNdNTRQLc5WvVpJi5OZbHI3xmzuGoFIVbSgWx/68aAD2SAH1NNgHdLCODubTr/6dGEa+1t5T1iIoITdavEIca/zSJPHWY17taI5fg5g+Ut+PA3CG2lczC3uIZ/NxT2iIcgJ1ge9ScEIRj1HP225/+weKv2iO30a7v9CC/Hel55KLPjqafavR23sMUkOhoTvFnBMKHOU4pyy+dcr9PnRhj/trfVqxFdefgmr1bqu79DLMnkcHR0JyXBOQ1khIT22FmrOajMglBpStHgWfW0CRFeJJC2etd/TxVDKiuUMnxKW+TnXT4yKtzuaIi1jyE7aqmJe9OtA65eeSCzyMfZIxnV3sT9nG5HoPRT971d/th/LMKrF32uDtafkrrI8daFTz3I8M8nYbHdwJEmqPHj1PoiF2qv1OPgWmsLc1GJsY60ju2Upi/VaiUbwpHURCJmldHxKGROkc5wjpBhlo1HgTkQqm9u8LLYQW95k6RYa09y3AeZgnzUrtxPPiQIb7xyG4GonBq8Wdu+RizBuB7ECsgKjRKZGI9+rlYMFXSJmRkGREJ3AGMisub4WBou2WTkPYiEFXDKYu/h18iA2f5J4eqxyKEAqvxoAliT8rG6nEiMCGCcHB1L8yzcllaKWvZQidtOMlPIC0JN27uCpbmAMsZ6aGlhYr5GSWF+LhpCJp6TAr1dwuVRrgIQ8iafGrVY4XAWsVwMOlGQMw1BjkquluLTkW8uryLpJcGEwsY6PbhE2oF8K2Ftl3Q7k1pHebRvMWrzQVQu4EFSu7WCT08BInewKip22Xb/x8d5qYYuRJZjCsapSkSbQC9kdvMMcn7YJPT9H//wyfpRgwEhCy2kQ6eAWXmXbRtH53lt9ZM1pCj9FvQlWEK2nEoAuRU7CGsk1y3Kt/O2aBDHYlKFMrUk2wUwCOEk3L+7uZQEAjFTtbYLWHrI0yDr28MmF5k05qZ6dRVkuJrHOv//xp/iDf/sYv/O9X8av/dJfw6tfOUH2a7z/2RM8OrvA44ttA6NqcIgMJDdiOB4xbbYCuAGw9wBnlDQDOg8B4PbxGv/l3/we/vZ/8DsoM+ODd3+KP/r+m/i//cu/wB+8+wDb4nDz5AR/51dfxT/83e/i5skan3/2Kd599z388Q/fxbha49WXX8AwOOx2O7z93kd459MneO2VVzAcrHF+cYa3PvwUf/bupzjfTTBPlMQSOwH0WstD4xTVWGDmIQ8gVXDIXIBsYYtG8KBeblu7pDdyMbEJlZpVY89ujoiz5EHZEO1Tp5tgQa8MhkYwlFjY2PLXFArr+URv2TRS0sCt5nCQU7l0zfciU3d0VW2vyWRrrqTzmjOk5IhbDodZkZ9nkiFHB/oraGxTq7dYA9bWbW1fnENxiBmOGApgqNqJFl/pd4sWAmwY43qA2B9LUnk93/gyq/wyaXf/GZ9+piqcwYzCGbnEaow0ImLPVgHmU+71xukxXn7pRYQQmoGjG/uHBwd48e4drMahelv1QxJCTKyeOZXRRtO0vUKaiGotG1vnrtwRXXmnu/9Wx2LJL/XFlQ6ssxLG7pshEYubW2KOpQGsn+8t6RsLgtEXDW5n/OKjxxxXkruxNz6sXzuSYZ+pc6cjL/qAV5qDcfXtpx3PTDJ20yzVoFmSBQHV9HAJ4zCCB8CR1wVePBK2WEtnykNkNjbktaASw0RmbMB45zEGafAYpYARIDUvQIQhBByt1xi8x3aeMUWxPhEsntqMAvLaLIGAgBMCLJUE0EV7HAJWY9CCMKiejnHwGAdfte69D9VN5zNAXJB0oXdecjRs4DJLCI9XNa7CDKSCggKmAjiRmTXxBurADaWC3dxtdl6SqEml4QAAWiCKNJSAmKQonHxDF0vNhckWsiUb7GpwOD5YVy9BHWQ6AVKWKu3TPFei5FWNxXXFqYrrCtCRbOBO276wKAmR99IYKoMsA5S0zgfDDyN4njA6h8PVCqvVIF4MrW5bvSgqU9rPgeploZbQGxdE0j6r1kTWwcahPoPFa9uks0XALFWW5OtIw00s1wdo19DPMrVNSNqtFWwzS4YdBhzs/hkCBFzJIooALQBmuSLM1XPzvB5CWjvPBQCbm1LoU0hGVAOD5VX1BfPAXchUtfx0FqTOqwAdH64SlR74acJ193cb585ruJS1NytIS0qCckHKCZQypDRnBzr12iZVavuXdDPXPdBGwhK8Fjw+vxTSTE4MBHECzzPiNOPJk3P82Zvv4Y9/+gk+e7zFi7dv442vvYavvET43i9+HfcfneNP33wXO7NEavNmJqQioJUhQ1jqY2TNqfIgFNAwoOSMr750G7/3m7+Ck9u38enP3sGf/cXb+L//wY/wh+/cw2UiDIPDG7eP8Lvf/QZef/kuzh7dx3vvfYI/+8FP8NG9R/iHf+N7uHPrBrgwPr/3AD955xO8cOsUL7xwBxQc7j8+w5++/RE+fnSGklnCKYcRpSSgaJ5Wjuq1lD6lfmb11j4LdWMtJ6ibY2FReeoL8dUxwk2taZ4l92muY05W/wrs9brcA5EuFLdu7sz1e7aeX7cPVwCipNUS2I2dyh5i9KZI7SQIECZqYZ+tArmtT410tKbhPeLdbbbP8WEkwkh73eGp/ULV8NOBvNqRZmlennX/sL5aGIm6L7VhwA18Pe2eqRGMBaCz9dDGzfW3srxLavsfoQOYFUR+8fctasMZeS8WogTNRTUD0PKJFkRDFzEiws0bJ7hz+wYAqGEIi8YIwePO7ZtYrQZcXG7bvagMvM1pmIf/upyhjrysViPW6xFW5+rpDaX3vTfk2/7DnYeGFz+WRzVNYZnn0P/sz0NtXOyd5+nXsCa9vgOvfVcHzMKjsxhHS7JxhXh0hq/eAGae1vq89fvYe9aff3yJnAzbCIGUZSDFLBthUr1770bNwVDli2IWGlQlFblbsUw55+rGmnRzNkviOAzaAFHDibTIHUhi9J3omg/DgM0UkZJWfSWAqEsAJdG9t0Xc+LEBDu/lPKtxwGoUD4VViQWgOuqiqETOVU8DwIhg5OwRhoBxGJEK1FJUkS0M7CsFqnXwnCORwFcaLVZ1Uc6SzT+hVuIgoCjAZmap/l0KeC5w4wrQ9qkki9CewTY+BWdcGA6Mo7V4ClodDLGimgZ8L6+ZNV7TOQ29AMOTqP6wVnFHyeo5cZi32+qVodUaeZ7r33OKOuM9aPSiYjFt4cOIQFEIxjBq4cVGMCzO3lRRZCO1dharIbggM+q923irQL5Xz2AGs1pD1CpYw8WYgSxKYv0CzszIJLVKxIKtG0tPHOrmZ/K1Ik8JoIFhvScb0wQFAxALUslZvCvezliH0nN/5JJrPpFZ+60Nq2U5JsxR5nQycFkJeFu8zYrcN0v1RuhKKMSk1XxxaiCwRdTGtPVFlSq2fBEzhGg8fkwJLjpQlDCdorFJig9ReJkc3MZGv1ijzq0ahqPztWQTkOgCOpPEKZecsd1s8LNPH+H++Q5/8KN38bWX/wT/yxvHODpa4cVbx/juN1/Dg8dP8OaHnyGrNw+FkFNBnGbMmMBZpJPhVuCcZC0ajlDmDUqWMK314BHWB/j83n38wZ/+Bf67P/gh/uVPP8dFFKPA4RDwq1+9jW+88ToSO3zwyWf44U/ewb/6i3fw1bs38carL2K1HrG9vMBbP30f5+cX+A9+5Vs4PFrj7PwCP3z3E/zosy348Ab8bgfnvShDzQVV2M4FCIYwSUsp7JlNgYYAkdC2zdnJOgNbd0UOek4JzOZ5tj3JREiU1CYF4Ari+7FUx5cl1aOAi6yDBroq4NN/ldS2XqygTMaJeG5ysWKBTogQ2tioxrnqtbBcNa/ro6uJ4zrC6liEnkeS1lVFrXRGq+fYlWE84WqozD5Ab+GVYK7FNblahICOkfRnkKMj6fve53of6AhLZ3BanKsDxzDw1lmd+z2mMZEvWPDrQ3bkhBp+qOvqUw7bGyVEWLyAjFLvSz5U6tqqFahaMxlO1p/OEe7euYnT05N6/lbp0D4jJGNQXGeeJe8DXBDjo+Qylm5/biRy7wGwXq+wWq8X4dLoX+1heer6t73WJ9xrrKdts/tj67rf5alaTZ4aiqvPbHtWOyMvzrG86/6Zn3I/jWU0wmAPvCCeS6LRj8WrZGmfiHRXs9dfAos8M8lYDQOgA1FkERlzysglqXSrhDtZa1SgxxqCowonBJUR7CzUpF8rulMTk1ZaDWAwSm5SfgwgZQZRqwPhwyD64dBlhUsFpSllLdZGyCzygwxUMhO8w2poErnkCJxUW18LA+bC8EwYKtCBFoxjKT5YAPIDVitXQWzOCXNKoqdeWAcZavI7lFT0IQ11jutCyFxEpckFmXhJa4+A4IZRCU1nSQG3BQwEqN60WGKc6E+DsAoeRwcyQW2zAxoxEdav7eslqTs48faMw4ACYM4JxCbNSyItSQBKFgIBwA0jQE6K9XkhRvBB62gEcJqlvUuR74dWvM7asWgtjZiyulk19Ip8ZzWWiSHPU+pqQEDXrlbPoogMqHrHRBWNxCsEIX6FCcy+htgwGymQDb+unyzkp3QrwL7b0bm2wNhY1+ltW6CEdrHWQSlSKE0KE8mHC5pK1XUb6/N22DxvoUXcLK4p1XApq0MASBgloCGIthc7grd5hGbRq+Ek5o2wuiZdonnvLrd5V9V89hZnwZ5q8e9i3lsCeUs470l6ybmqObW1WfpPQsOWoTciaysWeSpKNFICl4ySEqZ5gowGmRNn2wn/w//0F3j95dv4jV/6Gjhu8MLpIb77tVfw0ecPcP98Iw1OhDlL25Ukwgt+GCQXAwByQi4X4rYv8oxvf/wQ/+f/9v+N05XDv/nzH+Onnz3CZZYaL55mfP2VU/zWd76Bw+NjPDjf4K33PsW//P67ON8mfPtrL+PwMGC7PceHn9zDj3/2EV68fYoXbp1ge3mJd97/CH/45ie4t0tgNyCsPRwy5nknlkytdUMg0DDKHEhSBbwUlvVDZY1Jk8KpsISWkYB16BqScsFuNyN6r+F3uZE/1qoAqtikM1RVuJvFsq6vdWN2IMcqd770gjklAyCquXGLwzwYbP2f9zxguu/YwqNEyup6DJoPaHlnveWaFTSXLhm9Ch7Ye3VAPsfrCKEV2zMM0f60+KCFslXQyrbe6t/25TgXHGPf6rxcfXnxR67tv7gDWr7VW4d7srH8e38r1/eTPbrscaRerlbbpVKf+gjLZ7E11MIPCa6eUCRsu3Gypyi1D9xD8Hjhzh2s1wd6PgJXWVX5kHOEWzdv4PbNU3z62QP9PgFqBDLDi4VNgpva2wKTQ8oHnBwdYr1eLTz7/d1VMt09/bPunUvM/+V2XEkEd2rMaEB9QVKvEIa2K8ivVB9gn6/utwV1/+yN/f1r8a/fL42IwPpC7+UaovH/y/HMJOPocKwVTQ24M5RMxCjJwEPr8GKWOhJLzZxk4yWIDKp5LQC1GHlthI7YmboUkxAY70hBvyUkS76E914WT6JKMixBMOlGb3H7MSlD10npiDAEASEgmRxtwWct9qRWMnkBghCs7S5iNyc9JyGEQcgRCmKUxPXNbkJMc42140oq1PJAFpbRrKvMQEpaLCxnePJ1QDBIkr9JNZWKKGsRi4WxpKyNRwCJBZSIWhIVCg7XBxhCENKTGeYvrG3ixPLgg8cABlg2t/VKPAy5MGIGgouYtcaANIwmgTNENSoMiNuNyOzKSUHMoBBkXKQC1iKBlVxpgUCGQ9aqx0mt20kT5McOCAIK+NBiHmv7dhOxLmBky29LErbYZguJc0RgJxZNi1Fn5up9IKmcVUkLlQ6DdItbnbdsng35S31Wy5EpCniLk0Q8ljAyyQQRa0thVDL4PB/Oed349Y2aON0S/eRzBM8eUrOm1SipQE7717wiRFZXQ+aSqY9450Bm0CBTKLNFXMPfuAas1LFcvVeQvrcqzjFGzFFi+OcYxeuicfwxiqejD00xACnr9xIQ1jj+0rwZhRmb7YTd+SVOzy9ALK7jebfFdrsBMSQvTsfN+/ef4L//13+Ok4MBt24e43Ac8dqLd/HKrVN88vAcSY0AMztkjEBwGAZda4eAUjK4JJlzOpfJM55sJ/z3f/o20jxjt9sgRa07BMLpyuPXvv4iXnvlRaRScO+zR/jjn7yHtz95jO+8fgdfeek2Uoo4u3eOH771Di4ut/itX3gDjjM+++wz/NuffICf3t+AfYBj8USkaSca+eRginpc5gb+jThIRwtZhBQEhfaxgE9oUrZKhueC7TTDOSUZmqvD2v/oN1Ptn17usgcnOjIgxgkCexmHQgC8ei1dXdd7Equ9fqXfGa6zcKIj3Uo09IrNG9dIDLqxZOe26uZ9vRQujdBawvrzbKu4Yt3eIxoGnABpvR68MsSCLwV60Q8B2K/XoMD61/2/1Ovs8xE0rNiAWtvj6++VaNjn7DXQHvOaziJAkpZt3Pb/2v3YXS9rPtj9kUYmmFHSBpSQDpFbd7WdetKiNwAAWK9WeOnFu1iNQzP6megJqTeCgePjI5yeHMv9LW8EdUM1nFR0Dl/jQfLkcHR0iHEca4Hb1gn7aBzL9bdrQCN8++28j6ufNlUaceBlexsWgBjZnz6e2vm5vz89QX2a/tx99j31Pzuy0L19lWhcNaK1vYmW7UTNO7MgPdf0yRcdz0wyjg9XmGPCZgKiAm/vPNgbSBDyYZ1libhmwW8xkeLZQFEPAESNagxeiAaWneIV0NWieyRyoFY4C0TyEN7Aiyg7EYR4DDUvRMCFeBI6zXqdYKVIhVmz9siiLO+lrAW0sliQSinSFruEKcrCFYLkboQhYHBCXBjiqp5TxDzHSm76ug1CNjKsPgZBLL0xZbHaKqmQASGSllwyOENrU2RQCAjDWuITS0SctqAQ1LIHmIY8SsHKixeDyFX1EQBiFTYC5DzCIKM0BEkuH4LHOKqUbGasCuFgFbHbav4AKZEgIVklRq3Yq9KYpBXZnUPJSTw01EIOoORQZEjF4mizKGXJs2AGgqqH9RagummbtZ+gZFPOW/rxBxLSppeU8ByCdwnZyVhikMaAq5VIxwXr77bpgxnFmS5/SwKXGaASutwmu+8tNoTuvoRAFLJu0naQjmnAgw0QP7/HMI6wOiEi5SzF4WTjaXHlAYAjBiNovpORBhujrpI+KKk0oNcnbvcWGqABMkutKUXVoLgPpdHlXZciCauRuH0L5ZomCcNJMdWaPVXJygrv1cXYNrIlmFjs14YMGPj4/mP86Mdv4+aNG/DjAL8K9V6mlLHTHLQCYDNF/NFPPsCLN07wD//mb+LurTtgGvHKnZvgtz/AdpKwrpk9yuq4u76ATskJyxjCCM4F87SBcw4pTjiLE0oR4QPWuXpr7fGbb9zGb3zzFRyuAi7OL/DmT9/Hn/3kPbx65wR/97e/izu3b2POCT/76HN8/60P8AtffRWvvfIiNtOMH77zIf7wrY/x4GKHnAFGrGsDwwE5Sh2iEMDOibdT+09IoIaN5iSGFM4gdtVIVHLsFKaEZOymCO/N47SUFCZqtZwWYEIwEnpDt5HjFkSCOl5rLg91idj6rTr8dFgxS4USqZuBhmpIATHaHmQApoJRpS2y56JaollBYNu7jKgsSazVjXnujw5Y1dc92eheG7lg83SzGCRKMXGQxhB69HGdZ2L/Fq789Qu+cx0hqOCwJxc9Nd3jU8vzoRotzaMmY6O/HV4UoVvcaiUEdj1jRcY3bLzpeZ7yZEeHB7h7+yas1k8bs1QnEQM4WK9x68apnndxkzBDnG6GdZ7XK1LX3gSs1ysMw7DImWNqEQP9qWv77YHn+tx1i1h6LeoI6vpgAbgr8La9XiYqVWOgLSBP60F7Jr0Gc30tY1HP3zX8Pj5eEA0b8za2qHkszKBu0RiuH4t7+1PfToCtgdoXRoD6vvk5x7N7MtYjAMKcCpwTl7b3YlWzhZqIm5qLDjKr1gt0oLonHnqj3juppG2TrD60yc0agWAMqnmuSmgVyFkIAoEljMqxJCajER7AKrhmDXXiznPQErwKSx0NsWLK85jufcpSlXyO4tEJzgOZ4b2cy3uPIQgI8kQYBo/dHCURvrRKsQ04Wp6TDV5LUBeJWiIGQpBCWZrIzeRFNpaAEgsyCByAedrKdxKDOYscLstzeUAK74VQPSttAzRNayF1zjm1TAQlgqQJ7w5UMkIIWI8j/G6HbMnmCpYlZzkIaCCgpAnAClL4R9tYiQe8B6eEnCfwKqi1rZ/AUFWsLvlXG6kqSOnmacXxemsOw5IoWeeITCAjrAzTwNfKz9xCpAATEaCFAoQVjfNE8ATkmlBujbB8TSTSz169daav3x+Cb9sYdM5pXsFfAUDQHatxFMBj4YzQUV8YTKqfrm1PBFE+U/UzyanQAo1VsYvrWmEko19Q2Sy5bJ4CJQ1F5nXOQhRyTlojoYEwMzhYfYSY5F+yJOGcqiyoVXs240WHEepPMSxQfTbTh5fQraLjlvHhwzP8X/+ff4iwGvH6V17Gq2+8itXhIQ4PD+CIsB4HrILDZs5gFDy62OJ/+OMf46WbN/A3f/NXcHK0wq2TAwxO8+UgCn4ijK1eTbXm+2GN8XCE9x7zHOFZDA8lijGjeoDCgECEX339Fv7Z3//reOXuLeR5i0/uPcS//v6bOLuc8U//41/G937xDZxtIu4/OsP33/4Ix6sR3/uFN3B4sMI7H36C//HHH+HtBxtMRcAPnMheU0mgzFKzI05AEq9rzkJCJDlDY86pWWXNM1Z0LZQCpV5CDTkDmp9nyaWkBRZZC2US2jphoHJpyew6cm8qVoOBrqVgM9qQgh7Ua5iKoXS7ZsVyd6Ia6qLy4QQpjtYZ5+wwcGjeW1sre0KRjWR0hN68X7b3PLeHzvfe0ETde/J7g4VW5BXMcEywwrjOkdpsrL9an9hY2G+mfmhc34L77yqMpCWJaLxS3+yAfrWLLBYR6s5oaxtXo0HzgljGdbsPXv6vPl8bC+o1KBb+jGqgWRBSvjoNHBFu3TzFnTu31EDWjIMV6CqRXq9WuHvnFobgMadU5wz25lApS5Jhy6n9dM41aXvLyTCjge7fZASqrhQGvFv71b6oeVe9l6kfQ3v93s25FiFh19TQeLVSEC0J3rXQvGdPVpOFlHDYM1y3/tSfjRwtQ+/aHFkQjP2QYMPbV17b86IZ9UELw8azHF+q4rflUnitgGvx7GZdBESbPGfWit0e3hnZQCMe2tmm9pGLqIAImHVV8UWYMGCeBnEuA4OXz6UMpKJqBiSuKXI6GA2oKbs2ZkaA6K4zg5MB/sZCawIwdWCf5GeKBTFLfoDUk7N4XMsVkb+Nqsu+XknM4Go1ImkscEqW2DrX8AqrXmwApcASSlFjxFlDxOC9dnSSgTAMYtXzShycU0uexUZqKEgBPDG8U2+OtUWl6VZ/QsCOeY4MUININ66MqOEgRABxAifAr1Y68WQDL/MOLgzq2nea8MuAk5h5SdLWEC5H4EK6wDASS/K8gH2uYRqmsFIKUDIDrCQmS7tyN8nbYt4t3NScO9k3VRbLBXAwxR2xLljODjTZuJS2sBAsPEckj9sisOeUZoCc5LQEXRC1AoKGZbnFbG1JxqVZOOrmuQ+Anr/Da+V2ZgYVy6NCXWhriEeP1IG6CIsamNmdqZ5LyKF4EJwrNfG7VAJZauXrVCSXKiWbj1HqAKlHotQq4a2AnRgmWmJ2H5ICNJBjIaBXXNHdTyPy9tASny8Vd4sTsvKv/uIdeO/wd/76r+DmrZs4vnmEo8MDnB4f4jf+2ms4OljhzY8f4N6TDeaUce98g//uD/4MBQWvv/oSznYzMsv4FINJAccZxTm4sAJQJKyniBenpIQCaMjljDAegCAGgqJhindPDvCPfu97+L3f/B520wZv/+wD/PDNd/D9dz7B7/zyt/A3vvdthCHg03uP8c57H+HR43P8zV/9Bdw6OsTn9+7jD3/4M/zFJ+eI5NV7KwaoPG0EVMikAoOR5y0EAHhdf1y1IpJzEtrVwQ/m0mRIbRMtjKBqgL66vQCwr3kZFZQb2FnMXlq8rFCEGmkk59r4Y+lLp6G7NeHYNnugign0mKG3qLY8xmYEsXnRe273vbeVeOhz9blC3JGMNleeY5KB1p51Xu2t+fbaLK7OMUoHoIuGEZqcfk0ArpbnzlDUHddRiC+8U9r/1N59Asuf9nn6gnPr7Zmx1oy8pXSy/RbPbndNglfsTWbWaAl9Xhs72kbkB/hxpXV0Un+yK2P35o0TnJwc1/O2azSLOhgIQ8CLL9zBuBowJ6mrZQRHMNSSbNh59ve8GlK7IJnNC9jfKHOlPBXHLKz4Cqwb0UBbr9FAewPcXA0SdX5XoiEGHDmnhD5bNXW+Yiysps/22x7BIL35xWvu76bbRvbueYl77HnVSEtUlRq/mGQYWVKsVSysuN7IMx3Pri5FYv21WhIpl1pDIqh0ay4sKijcrHkSii9eB6oSUwQLH7GY0VQyEBnMUo1V5Dsb6CqqRU/O9Mc19CQ1BSAbBNLQuqCj5YfUQcukYMTCiexeqVaCJciGD3YVeFqSe1ZmHnzHCiEgdI4Zg5eCeIN3WI0rrFajdrTGdkcJn5rmGbtpxma3wxyzTHQF1YwuTEcHCBHAqjzEDAG/SXXkw4gyb5WYyLNL4SUSwsEF3stzx5jaRtyP1AJNfiYUrxudNCrsh1XGzaUgJtObj/BYdauBArwUgTCAwiBkx4flYu8luTzFKNYmIqScat6EWTis+wplcHEoxYNDQAimjKXhRQb8YHhFBQZcW8jlOWwDpko0cgYihBgXJZwBAax1U8gTisPSWwJGcITsnHioKtvvzBYwONyS8Wzd9d6pJY2rpwQQlQ3rO4blGrUF9a/CYQCvAiarjt3lMtjENEBli5XTqtQ2pyvYApq1RtdBCWOSRPKYJOwxqTcyZUbMSjLmiJyieDT6+6oAbrmoEjRHR72zVUrUOe2r+kF94PZrb2ECGokRo4ta5sH4ox//DBfbCV959SX81m/+Ko6PjnCwXuPlOyd44c4tfPsbO/zoZx/hJx98jseXW7z/8Az/l3/xJ7h74wQPzi4Rc8EwBF0/gZkzQKLMl2lQ6Wsgx1k8axp+WeIk8trDugJUAvDy6RF+67u/iJObL+Lhe+/iw08f4n9680Ns54y/+1u/jBfv3MX7H32ED95/H3/8gzdxenSEl+7cxsMn5/ijH/8M/5+37uE8O4RxFE9KikjzFiXJmrZarTDvdijOg5GacYgZpUjitywtAYAIOLCTWk22CZc0VzEKp2u05dz1wFPWkYKMUveYq/2sKwk17HkV2DYDBgE1RKp+tftcW4/sLBUBiUGldCaKirW4Iwht7piHom5tMKNY0ZzZ5sVYQGO93+vFdZ+zYwEW0QBkByiJqYp9NHKBCsqtTS1seAnEsfgJXAX+C0r6c5p0QYTs8/alKwvGkmU87dxUyQMgXgwVbpGX7T4ZDdTqmJljqiHrAAR0Ogcq8jOsDsDMSNtzyZfq7tBaaQgBL9y5haPDw0p4230bWG54787tm1iNAzabrjaOfa8nRXt7aGsOqmTaksbrA7YGqXwRQItWolawss7LTgWOur7ou6aOJ6DeazFsxrTIlRTPBVXjAtn1FdNdBecK5QldWJu9p+cB6user1pPLMlRR0AWa5Q+q6OmnNj9Tdp3+dp+VuVLxTnmLXrW45lJBheuBcGCJ+Riaj2ooR8pM6y9iVALitl4l/5hOOYqDxgoNGtjKeDI8NmBg8jF9puwbDjQMCS5jklampKHhcWYx8TkZnuro8RlejAGOCLMSfI2RK5WYntz6ZSaSMF1YSCVKokq6jUmA8eVaM0xS0w4ScJ6CAHDYPU1IGEiMSLGGbvthCcXHmcXG2ymuNzkNLyISwK8h6MWn56SVAF3fgCXhHT5WDWmNSRLVxnnAwAHTlFDzDLmKAuSqTr0g0uSyDVHhbAA+hYylrWisY4McM5I84RhtQa5AAbgXYDTiUI+ACmCSwINazivVpMc1bsFFCLkGJHJ6ny0Fb5diZCLgy9ajM8NddH2wYOKW5AY6wNCU4eysclKMix8isDIMEBJuiDJJl0Tw8kvgYgSZp8JuS7qTbWoLijFLDYmv6qSuzq+Sikan91CGhjFJowOBQdP7ovCO5+LQypxJ+SaIC3Vlku23Cf1GJhFzQlglJh6NQzoot+HKFkhtBZfzHpODXEyxSqWNSozVcnmGIVglGweQDl6MGkJ55ZXAzRloWC1Y5yQZqsmDdh4KuJ5k4VJvKW2Wep9V2KlBFe/jHc+fYB/8/238Gu/8h0M6zUOjw4wjgOCDzg5PsLLd2/iW6++iJ/87GN89OAJHm8mvPPpfZTCEp7nvHhhGIAbIEptM1zwgBswbyUHYzwaEbdbMArIi6of51lCX1OEo4J1YKyODvHgyRP87KN7+Nc/fA8/+OARhuBxfHSMT+8/wl+89TP88z/+C/zJ2x/it7/zdXz64AHefP9z/It3HuCTDYsEsFrX07wT8qDkJs2TiHoUKVQqIV0CJkAM5wZpF6e1gbLNkQKTzyYfAGRwlsKkwyCSr6JMSLVPinpcazgkCCZH3AxhnXGCbE9Bl4AtfS5KT60ei+s2aAMxsl9ouB8tItIbaUDzUIgUcq77liVu9yFPphhVz4MGgnqP4P+Xu39rkiRJ1gOxT9XMPSIzq6q75z5zcCOXXAGf+M7/yZ/AR/4DCikCPqyQK7IkZZcAgQUB7MG5ADhz6dPdVRnhbqbKB72YuWdWTw6EKzIFb6nOyMgId3NzM1X99PLpsLGmgvQv2GExR3WO+wWTgXs08BLTTXZe+GoxGepH2PCKTfjK8cenkl5+Jo3EVAOfhX2zA+U1h8fxw390uABMdloKt7gtUIwFsno0o29GuHO5AirYn3+wNIDTTdSl4i9+/UtcryvmeowY7/xMiAg//clP8PWH9/jdH76zJ6RHmTsmZ4C988EU7GyvfW+sd9/GI/0WA+gR4cDuOQDgwWw/gMK4hCIK6THAQCC3+XiLMe6LNIFGyCjMq0PPH5/uhYecOgCHqA3z9OEpTSoBxnz/IbPm135NYYCE0q5WtxffmnL5ZpBhRn6kRplFJaJo8E7SiHo7zRtPHmZ4ONtTeAKdVffqiBK4kRdQRsGbTWlxWtzMN80wsnpaEYagIcpO6KkY4mGE4ve0KnZUV4ix1Ikq06MW2aTLjQdRS9VSr+cgeJ4thgCwnzYHmafNJUNctVaP/gh0XdDbatTAbjBZjUhDOnGnNDRVoLeGulysYLNUBFsOlQrtzbt12vyPXF4xLvxA4KIwDle1AqXJiCqF0olgyQiTJ9G9B5FyEgaWGfICcoBjhhKhlMUpa61mh4gg0iCtY1lWtHZHb7vlVE/5w21XX2OYKI7HHOjQEA40BrtE9M4YLEUmYXRaIhEqDf74CLna+5E6NzafpXYNT2SKG400LksZ7MSe6gJfh2pzjKH8exQgqn/G/5b353+zhn/9qDBFIJE68gUf921zkGGGf9C+Sh8pTcHrr1BQt+cVPSpsbdu5Yk5770m9HEcoIWuu1r2DuEchgVH4rQaSM60ijckAFpEm+pLZKveNN41MNisHOrM3WfzZE0ZK1bGOI9YexnN3Y+rf/PV/wG9/9wf89MMDrtfFlYNCZcdaCP/k1z/Bz99d8J9+/x3+9d/8Hv/6P/4e3902q0VwuWbtJBRNGloHFn4EyPrrSG+QDShwNr1lTdlQlguIgKUQ/u77Z/w3//2/xFcPK/6b/+6f45/987/EH543fHi44P/+z/8V/vJv/gb/t//+X+H/+s//Cv/x44b/7t/8Nf7md3+Pv/r9J/xOr9Dl6vvGyB24LqjlCb3dAFXs+x0AUMriDA+Ctt9AVDySYc4R6d2dF5Ps6A0kozM4EYysInj5fT4PqQ44GulEDhBS/ozUppAdFCmSwSblACOA48jKmpX20EFJRhBjmBwLthcsqr9PHe+H8yFqLcZ9xHEGGAEy4m8h58o8hi/0iLlI6tZIUSGzB+ZGcKlLc16AeO5vMZHoM7/Q8S//mXL5gIpOF9OMqpwNukPa27Q+oqYPwPH92W3n1+hd8em+e2NgS1mmUkBSQey1nsbMAC4LynJB12eE0ovRPD0+4Fe/+jlqrYf3Y5wzqAOAD+/f4ac/+Rr/9i//drqHGSyYfalU/LsSBas5L10Et9staygJ4Y/TaU+d97gZAPOM0/wvDPzXgMZ4Iqc5PUYZZ2rsg3N0npQZ9IIGk11c0X+nMZCBlMMeyjGbsDlEJTKSTpmaOUcu2NI6jgBldopMr3MIMccO2M7P9I8dbwYZW7NN7WUUyfOtGJ2SQykWR4lzulJ46rzcwT1C9o+UoawezuzoKmAhLN7xmErxvGLzYpqdbCAj+l4U714QeYoAwKLGZ05ROwFYsaUBJqoeTu/Vvaq+WGDpCtWNzIiokC7Q3vF898ZGYvSalE3j5hBczNycCmPREuLogF1QwoByWsy9dWh4PQWgamMWUfCyGrBqzkZVAEWkPtk/lTaayokBDKhxurMXrGha3T5P/iyWMmpYmjeaI4+cVFV0CYXpDB1kBeEEy+tmEJIBq2/upegQXn0sAlRBb0ZNyXXxHEaYIQmgtQaqnADUKCE5qZAVwLIULKVgrVafEuab5RuacDZANAkBu1PzguaadJrkWrNIU8QjXb5hRTp6D857Gg2PXLlprPVCKMqp2O0i00tF0nEq7I0Q1yHkYl9FI7cwZEMomLHwZXf8/vTpOZmYeh89CyItKYgYsk7KZ8miTA7C3BK3dRoduAPgYjpfMOpECtaUXuJKKbbpbEBG2mQtJf+VajU1QSE6M1jVCWSEzLNxSgKoXBca5BbIsZlnPaKtmIS7vf7d3/+Af/2v/y0e/9f/AJAGgPDdD59wvT44wwrh6WHFP/rF13h/veBSGf/DX/8WP9w22x3hmOkdpS4A1FiYesO6rtjvO9r9E5hLKj+RBtbhROkK/Pvff4///f/x/4ynS8Vf/fY7/OGHG3ZR/P7jDf+H/9N/i8eV8R/+8AO+fW7QsuLf/e4T/qff/gDUCy4f3h3WuXaTW+h71qgoMepyAQjo+x29d4vUKixdQwTENn4ijAL27F0imR8NAGtdLF2s9xcKPwzVMBoSCDiwiGc8A8rBJEXZbLRMUQyCptJOHRxeznw9nCUzAE16+C4jwtfH+A41FiG6J8uWTi/S+PKPBcCINTp3Bf/SDqM2JQgTgsPLoZS9FHWkMeY6axMTaMwnzP8djrTvDu8N4+8MNE4nnAfs36HPfuT8/dizIedeAg0cjN25gd1w0k63drJ0u3R8vO9o7n0jNvp5SLcaSb+eRuNLVRAYFu8f8/OLn32DX/zsZ57CfbypMEZpWpxPTw/4za9+gVL+pWVjqPokuwHtzoOsdY30Tb9Tgqelb5baqln/5J/Q+RmP1xQP84TrYpxn7/38gOblMWGIFw6AAe51ODVS4Myzn7xRYx3F+F9bV6+8R8AxcpHp7wNIhLwakY3z55EOsTPYOFyO4vmcn+/bZMibQcZ9t5SiLprdUUXhnUN9cDTRs7pQC2MrEB5zpBn5JpExdHKDLcJbwFR4jAmBcoS3g9lFrYC2uvDUsSTJrQqextadLYiYsKCgMtCYsbOkkZ+5te5RJjKGoLUytt3ZqNRSv+yBF39oXryTKNoFwAw0vLhRoViXisfrJUHGbWsQ3e3rTJl+BIlCKTfCvBmeNbq2tIHoR6Eai7XaeKDgvufSJkS4WTNv+bJUXNdqnkIRMFlBehhZ4dnYeUScFOLzZM34+v2Gsj7487LO5FxXayZHQL0+AKTo+wbr1Fss7UGi0dlA4NUb/62eZqYwWl8RRS2M61qxLCWNzsh0cFVvaR4y2IKOOpUyxSZAzAKnwBT35hKBqWHPgjCbRyoF6msyUpoKAZUIVAgdNAxlmNrrCiA8b/5+GMFEGCkWAeAz39ojRg7+ROSVArIv6/j+47M3qfNiW7F9EgIrnBj2O6eXP9NE+oklKrsZT43HZu/SSenMRxi9EbUYTfyMqjo7KzvgmKMZhcsgwojmou45CqDTPVImTBDhw/V9i6BzUGoHeMILRfjDfcf/5b/973HBhseHFQ8P7/Bv//ZbfPtXv8dXTw94/1CxFqNFfXet+F/9+if4j3//EbfW0Z0XuYgC3eaUmQHt0GL1RwJAqWBvHUwM3e8WYex3tE9WgK2lYN83/H//rtt+7WbcG3MV4d9/94y+3S1CQQUklhZKzGBPjVqe3kO2zeR12+z7dQXxAmWgLFeodBC7gdy7sUpJd+8mAG8Iq5E+SwFGyQkkLAZLIriujyAibHuzaT1YCzgaBEA6o7I7vNf2RFpBOYOMyglE2AczZOwAGho9CkQhzmstqhm9ax6J6zPomLy3w0YcMjscWUR0oNnNz2dkT13GxDrmrDv8Uo/RV8gcXiNFRDwTgfJ9AJMBDoROTksxjoMR6G8d7CrK9Xbw/B7mcQCYYXCfrvGKkftjEv11gPESVLwwfEOZ6OTYyrszG+75eXd2e8oeVmB2W8Yp2tuGvm/QvgMazX89E6UW/JN/9Bf45usPA1HM13rlXtd1xT/8B7/G0+MVf//dD+YIinorqHG5UPUoYkXf74BHOOOUIoLn55u1BQj5jnGvs3E/fgZoc1ATNmUY2Tk30x0cfkzRkQCt+Vqn1zKN6ZU1AIIxSAEHUuCTc2LgsuPIxtsm13kCFzPoGKlS4Rw9RThyzxxBBR2uRwhL2obt9SagF2vyx443gwxjTjKPyt6jUZDPLUJhjzQT8n4GNiSPYBTCWgsuS/FicaSXUafZZXhRdRmTURjQEpsurmsPJZhByvxgYo/5W+KAQGHMRNFpldnC3nBPcbDJ2M0BKorunbPT8PMbt4Vk3UPzPyVXworOAFMd3+2SXPwhm5QIS624XlY8PVzwfN+Mkz+s5lJBUJToUsiEgjLoI6JwWCUXm5UMU0YIpDcUN2TMRvWO3MzeRLHg4kY9M3mRvc11GFxmLEW5oN1DF/ETKkCeQ903cK25CPvUhbft/ZByxJFvzQVcDNBcq+K6VFzWJTuMExko4L3bvTChsqV36OQdDPGXefCvFBAHm1hzY7W411qkIusx85yewkAWCWp+3zEf6pEaaPdGe6NJWqb3QREkBpHZ19Xre6CZZpHCh0Y0Lo2i+OWlM+GLOz59umGEte29mPI5aoPQWY46Uo4jlOnorB0GxPx3e302vV5eLxqBRiO1AA2HKEaJNBNKR0q+PuT1+pg1vNTHXPpx9RhSeL5i5fq6o+N4Wxf8q7/+LX759Xv87/63/zV+/pNv8PVvv8X/+y//I/7l3/4e10p4rLaXiRh7E3zq3erARNGLYJEO7owOAtcVpA1939H2Bi4ryuWCtt3Rbp8Q5UAiCmkeIZZYzz3lqlFoT15xYqh2W/PREM8jzr3twH1D4QJiReEKUafn1gbt5imV1gCyOhBEYbMIqK4etldkDjcXoAHASBMhKunFu6yrKe4wwGbDALONqe70QD7TUubUuKneIn+OZ2hr1TZnFMm7zyANE5MHc02FgwyJhrFHMEwgczLBHBWFw3Cc6VB9rySYiN/j/iJK41G6MqJvX3Agw5xqTLZRHFRE2qw7tsdnXf7Hc5hx/NH4tuMsYg8e5JjzMMFogA27ljkZ7ed4DtNopn/0qhF+PE/IlNNZprXyOW/62eg+H9tuDs2wuTOY4DaGjV+MXaptZl9Mp1FYE77/xT/6C1wulzzP+W5HjwU7SmH85pc/x1fv3w2Q0TYoHgFmo7MGmcOUyFIpXzlutzu2fcv99gJkxH2HbCVMA7SJj9/CUT/hpOkeZqRhz270WDtmSsi0f2PNIT/r14KDCwLotADOyyENfTq+tjGH05wwaisGYyadQUbWbpyb8cW1XgKN/Ms0x6E734gvAPwp7FJK3lhu9BIgBHOTG3GTx2ceJjOhwrzh61JwWetoaqeRdjXQJzOhVM7c/AAwwVJl6QVjctJjIeoR0/HgWYf3uLl3qHtYmqFAGA8wqsfSBeJ1GYV4SnkYqR2Rt006inw58u990fXGSVVKRMbB703mRIbwCE/Fuix4uF7weL3j+b7hed/9PozOlYiSZQpk/PjQ8bSjQDIKvUEE2e6p6VRM+Re2dLZSPFVsKW7MG1sTO8tTjC88e+RrIPKPOxs7B4VCVKOOBEeTI/PqqiqosnmWENRp3kyRHLsTo14fUbHj6WnB02XBUqsZeK48uueHCimY1I36oyeHcitE+kMYHj5v8EiFqNMQT0X8RNBlQdC8xfsEz4UmgJqBDaHi92ZRmDB+CsEB3mgqSERgFaiW8cw9jzy8CGOzR2Gpr3UvIEij2J70m7fsn+Ox7Xs6H4DUaSn8gLjDoACdQIMba9bjYvSm0Gm/A8PIyJzmeDP2a8y7G42FRppUyJmRXmnaU9WokpXHOEqxa5ai7l31+jMHFt0L2Y0Sd8iCkOdz/w4beDClxP8oDZuP9w3/j3/zN/j5T7/GP/3Hv8Jf/PwDfvOTJ/yLv7rj21vH39O0+lUhzLhelozMld2jRdLRtaMSodYFvXVjBNzu6aiA13uxClArtIs5imo9eNgTGALJ6ASKvkSTIeVSwiagYGGP8pHVl0jvUK8nE3E5AgWXgn3bodrBS7XU0maRFHiNoKWeFhjYVxuUmBq4XFaXh2OtRbfv2XCLaPmRpn3y+mEQmIQdFvesROg61vMZTCom9jCPqh4KuGUA5ZGuNfq8RGpTLgmMqGykcJ6fx/DezvoZOKaAfbkoQ1RBvt9I7NmJzFGMATqOAGP2OuN1lHE4JsgRMiONPpr28su51FiL48Ed//7HbtIt9BQNk+NL857maIYc79HufBiDpwvureHTtrm+Qiwety/I120f5Aun7xOsP8avf/VLVG88/PIzODaScx330598g5/99Bv81d/+J0sZ3TbIvoOXxR2UliLf983YM08nFlU83+643+4jXcomZ8z99DPfz+64R/0T95NjzikbICXn/gDqPgPwNGpfzyDzfNDpt+nTNAHZGB9NP1+AjDmK8UpX7/lfgJDpvDkLNI8n+MgChR2f8f/f06UCLYXSDyNg9syERyvrEzAp9DIGNoxra2gmDHSPkohaSkp8No14wPoraeTa298t9OsbCormfSdELKyspUBK0EzGItJhXLKNQWEFvM3Bj/1eADA2NHTpGc4mjOsSzGAvbrxkrwtV+063h95LQWuCnVsakoDLObK6h3VZrNHWUsG0A1yhCjCsr4R91qIBhSr6vudGMCGrIF7BakwrylYkK/uzhSTXisJW07BWY12ptbpBHxzKGHMayFyjSHWiiGUGsUIRhUQOBjwViqmCRMDLCt0++ec5jREzzoovXuvsuzysePf4iKfrkqkJgBuUXWHh8KA298JesZ4sRJZyFApZaFLCkzFkqUohDARNgNu2ATDgsfh8UHVDw6/VewOD0QVg8dqImBxIFsTlezpRRzpoMVPLgKMxJY0IWgo/8nS6oukNC2M41teXfEQK2fDamMcuDPeQcpHO1vvoWhykA1HoPQv58CClwszrWLSLpvmNKF9GIibygDBKohswEJFNSxVIMBhe4Sj2xjDwM+0lIi0yQuez0pgdKwmEZwWYYzRSgb/9w3f4Z//P/w+uJHhaFP/011/j+08b/sP39xMziY40HP9Znxuk7aCywnKT2BteiSn01qB9R1kuKPUKLoz7D5sDZRuMWo6ajZltj1v0MnpWmFw19hEGoUD77sw1xYvJBVIqurADdPHIwBXQjrZ/D9naNAFACWILBNve2BvHtARApRmzVGWsy2ppX7lP/VlPOesxv1ncXzgBRuz/oy3ghocY96dMxsAwdHw1EE01QbFeT43wfL+DIqUputYb8K6Zn54wJp/yMBrG74eRqnqd4bzO8MUfwdRHBDCNqIZg6CGROV3KjJZ4Pq+mMp1/DZuK4lc3wHxPDucQ5eM+nIdwfM44QO8/fo/+v+EwmQxdndfReB060b6qh5OdtcZ9a5kCn70coCBl/werG3TnXsxJvGZm/OZXP8cvfvaTGOCLKcT5a/7HDx/e4ze/+jn+h3/xr7HtO7QZu9/y+A5lWc1R2Xbsn37wNK3jyQjA/b7hfvdIxnztCVjk12Ltn3Xn+dnaVCCwyHH+RvQCIbdPz+L4DI5RjZyHyaZ/OVc5IDf+w4Y+gltMgCFToWiKZPwYuIj1Gzb6K4vxENWIPZD7Ib73P0O6VKQ8AbFpJ0PPlb4Zv5aDjGLpJ4WDl9xSRIxSkrG6MI/pjohBE0PNUtgiChTN6CSbrkXO/FoX1GIQpDm/fe/izeKCAal7bw/rwh3eepCHvMkLyR0kFCa7dhbeetpWZygNFpri0Q8KYzZTiY4LsYuAnas/POREZB3BS/BT2cW5FNSlYqlWJ6LbzfpfsPf1AFnaQjUjmupiSl8kowa9dzO0o2Nm76gMVOKch3VZcFkXz88tpnjJRm7gMZ7zZ4wmxZgwRYKMmA/zxpkykL4bj30Yj70DaikaogVMBaAO5pqbahTqE4J1JRoAQiMFKcZmhmshBYptOh9SbsKDStFIPyAQSlJB3p3O71I7sAoIFaQlwQEToN0Mm4xkUUAMf+ISAMPrN8iL6inGE7sWLqAko1pDAHjkj0bDMFum9mxmz+WXeKQXNZUmoBBL9/WNaGFopJc3PL3h+c1w9STkYg4nE88DffzCqEuK0aHB7Tl6ZJDEG0p6+IGABDpxJg65MDEQjTH20XHZn/XhCBmeCiDmxaM5sQ/YvFXhXVcF/qe/+xb/7P/1L/FPf/0Nni4r/qtffo27fotPbaRgipjHvjXG3gwccSkoC1mxpXTs92ZyYV0AKlZP3gWy79CuKItFJct6AamlLYQSZ2ZoKeMZpk1dDIE7qJq9biFnlAABAVysrsW9oH3bDdBAPdJJAASkAsJiv5t3JlOxVLsXj48cmXFNOAGGjgWRRuFQrhm5eqGU4/Y0LUOP1dh8+ncjAhHnokOjxSE7gi4bGM0oY00BcNKBknVBM/gZICNWuI0rAG84Nub0qYigEB37viBv6ct1VszNd22vuN7xGg0+OA0mOTEZnmNLntGBHWl0HyABjf9eWUt5XpfxR3vAvp+XOdfWnT6S3zw/Jg2gMeTN2Zv+2p2dL3XftqxVCjZKXzVAGM2iubbi3mI+lqXgN7/6BR6fHvxvL2XcDCwSaBBwvV7wy5//FMtScd92RIdvXlbU6wNUFO32jPb8yUDOZ8Z/u1mj0Pl5HwDkqxMwP2P/F3Puzqh5aYTzWqd5H3UvM+h7CTDGc5qvS4frv/4LjgDjAArCTjjVW/wRkIH5XNP58+f58jkFFBZqvn4Bqv/I8XYK2z6FhDLn3EDB3hqkW7O3VgiLEFTICohgD6r1jm1v2H3RrNUKjS9LyRuVaKoGoO1OB+hpVk3E0PdmnWnXWsGk5nWG5fjue3NDNLr82kyUwsZEpAsKL67wYhIt/SKMOGtUJQETAMAVfbFUqmJzUNzDbB6vyIWDGcGx2dXybhvaabERmJfR/IYIpGYI1OIRhsLgraPLbkIUxYoySW1j1QLrmFuA4sZX24bw8g6agGBdCtYDE44XANaKoHQFPAytOGyYHuAivHFqNMIhe3JLS4dWLxgrFVyrUer2DqEOKotlNEhH9ToLtAb1Ik/xqMK27+gLA6WAyDs0Zw8FzYLG4aWK5+iYKorgfFzDcwx/lvCcU/YaH86UAhHrmVAgIDRoKSmImK3xUCmELgU0dTGybqWjc0gAC/X9mEADwEgbcSYrsWcUAsAK0eFNEcfY8h6+cJBhxpvPdxjunivvcCqzAAMAjnz2SP+Icx2NvMP5AwGGgnStN9l/9r4mCRhYxEGJjLnOvaCDwQpubthiykdyVPpHSt3XbAhyRwcxT+k5A2xEgbHC0vPYgc+/+e0PuO2K/80//AXePz3i6fKMHS0dDeZsoNwP5IoITCiXFVBA+gYRAzHd2WMyFWP7BOm2j4mtTmJu6papgFCge5Murp7mM+17ZwO0vzNKXcClYt93u//C4FpAsDQowoq6GvOYikDjJ4K+tkC1AwwDQjE+jzzHw02gqaP2KVJyo6dGHEkUEmuRZErFxdh7RBlRVAKUCarORIVJ6fMACRFlzkhKnmusPfsbpXPhWLw5AQ6isXhO55ujYXHYPun+3mR45nP+co85kiGARcwnQ1NOv8/g4tVN+YZjBqUZvTgYbfMAafzQXI1//L7O44tr598nsHgybmdv+otznm5ERPH9x7vVZAAIApP5nFA1RyWO4481/XC94je/+gUu6+WFDD5ceFrr5OBrqRW//NlP8XC94IePz/lhLhVcKqTv6Le7sUrF/ZxO/3y747vvf7DWCi+uPd/1S8n7WQ987Kf5e4mzYk4+n6J2BhhulYxTn5fB51T5AWBMfTDcaH0tLer8OsBvAOL8HiY58RmAcRwLMIXzUocq8HLeP3O8GWQYs4+4CLdFHfzzBjI6VBmtEHY2z3IhNU+1DgVsxiogsqfxH3u2hEUHQesN2OzzRHb927Z5R21TTrWwpymx+R2Kd4MWRSPr5mqdfRukl4yshHcQMOafSI0Ij3Px3M5M6WLgUs3gtHqEhtaLRVQwcugz3xOTIUXDSImUIxBQl4JanVIwAASAy/WCx8dHPN13PLdnfGqm9JidK96Fp/YOpQ7iNXOUofa+pQ+x5Tn3BuGKshQsZSy4ROH+fMNjHis/WE5aRI+km2fDEbUCluaVxpEDjDDMQOB6Qdc7klqQrX9GvVivj+6h0uLNzHoDtt2iFlbQZUxNW+vYu0K6e5sRXojxWgDsouBkF/L9THTwOhrTFBmLxrR3bBJsfVe2MHFzA4qIvAC4oIs7Tlmt87yfIJT5ACWDZwYAGFFXM3vz4YJpCAHA0veyRwjGhubJj/mlHqMgevoZAnyah5DrckovMZk3hOMcth25yDh6nBTpMDD+hHBqjPMyq6dbiHlEQXnOLqNBoP2bBoMxFrtuUNWGVhl/m18lwKBgq3JZQARmceM36lTs/VLM80/M+N3zhn/+17/F108PuCuSJOM15WeOgslwIALcQcSemmo0lZZ/TWUxgLBvThNrvUjgCt2MIS98mOpIpEcfE9NEzBVQyfWuChAX1NIh1dM97zeodPQmjr0J1menQknQVEBLhbZmxePmqQA74xwRWQM+BVQ7VL2HUWH0LrjdtzT4VRXwHHOCgTt2mVB0vCbq9lTTaDNZFL2VmMnTmBSs5rAhaKY7JcuYr4MZH4RsCIMg1yVc+aTF6uDQ3490SZv6CRDKoG530YuXOfSTIeSC8a0Gwp/voa6fJ/piOgKLP3oQvKnaeAaTRjz8DFAz3qOU9Qfj0cEHoE5BPZ78DEiOUmOk2r32WF67k/Cuj2c7Xp/vcX6hqtj3HX/7u7/Hp70hvCzh4IVHFbR77VPe3rhJYsJPv/mAX/3yZ9Yf4zzo2bH3AoGZHPvZz36Cb776gL/73bdpi0faqrSGvt9ejWLE8fx8w1//7X8wp2AY1a9+8vxuPEefN3oFmAXhBBSHGowToAhwN+jRh7wYzwM4Lo7z0wydd5y/ATLijxNQCPshP358PTTPeOaRPTA6h5+iNggZ5HOQkxGxHHtT8fp6/LHj7SCjW/pNZTOS9l3RVdC9e2/34sDeizfNip4Yw0O7LsWLt6fQviqKjg3LbIaA9I57FzBbOKy7Z7AwWfG4G81p3GOwghRhlO5pWzB9KNJx3zZEiPNKqyt1wHN7ENSutbitHN47JqjT7vZCkFqS03ykD4WBQwdaREIALKdWZMLSSuYVR8pFcperGdIKhlJF+/YjNrEFTyrOh2phTQ3PZVczkAMAqFNMqm2STYClA5fFmHJUzSurelR4BMpNks3MPFWp9dFpOfQnETKHuYvmYlZV9P2Ouj54YWY3y5wLyuUKcEmmrehFAS6gukAQ1+Hc6Ba19RJzOm1K31EKZHpKGhT+BMJDbG95/jNFXc24p0IOBiDZvE261bdI4aRODXM41neAb5oEFmHQWjKN1CmhiGwQhCamstzdisg/SS9/bH43Dr/kozkN8ZH3P7xVkyJGeJAGKBjsJUOMxt7PULZOKVVJEpGzG5c5HRads8cVXjkb01ycG/Uh8P1tQnkSuem9ih+aF9P8e4zB/sYcoCOKj0fDtFIsvXNZChYnZ4geMcyE7+47PraglbQxiwOCvY1/vQv2thsbN1txJUBofUdxYacg86b0PRWr7HvS9SRHfjiOsEC6OxBMWJoBT7bP7YYdIGZ/HlPG1qvDi3ShYK5Q2gFprk/dK+ipRJLpUEZuEWvEGAJDd5jBzcxpMt633YFNGJ+SzyiiA0lBOxX+UxgDOu1nGvS2tVrfIns+Fdm4Nc/Dec1ImyQKCtzoGj+AQchVDRk8GTfztceaH+mDStGMZwbFfl1VEMOLpO1zxYHMwSD/0o4Zv59fx0HHP42PBIADoGSNzzxRPrz0syk4iaY8g6asCL1MeRHKi05Cxg27g4F4GP+sOw+3cDhN/G0GFcPqOxu08fbLyfn4fMNf/d23uLfm5mPINHHdKVn0HUbmGJE56X76k6/xzddfZ6rowcin8d75MBuP8fXXX+HXv/wZ/sd/9+/zFrQbe2Tvm81Xqd5v68VpcNt2/OW//1vcnp9xuaxZO5Bg/Th1J8Oc4pb935DZkuB9BheDwfDowJHje2l36PQc9fhMT6DvAAIJhzkMcEGHP7w80p/l9/LyiceKnlb2vDnOH3vtAq+gjM9GhE7Hn8AuBVRmVKeRZQiad8jKB4Ho/2DKOXjXS2EwCEspqMxGE+vbPYz05oo8FHimO5ExL5XCuCxm0F6coSoARhh+wVce4tjADRK9dRFs+56gJ4o3S6gVBxpMDoacESq94YXNJ18ItZODDCuu62qGaTyTfGqxuGNBZ97kUHaRj0tMuIIBslSmUis+3nf8/uNmRZIlDFErxgwwNi44FqY62woVy+3fdoWsbF4/qKeVWa7w3IU2NkWkqjTvtBxpF9Yzw8Zh3dIrCvek0h13bnNeSjVDHUadCWJLv2oeJWAGhKBd0PYd/LBgWSylTUSgjYzFRyfErqYJhnGa4s89MiNkyU6lDEQ6ghkDwRfPruCL1cKCVJNJrDX3/IkCXVG6osrEMBYbY9p51m2WRoFXDFkMFIYSC8wQ69QZcPNco+eDzZ0609lbN/af69GaoOuIYhyUuK+/kX/qDSSBFIDigm5OHUhKUInarsnrJPMamQT5ScBGV3qKyr802sNrPD2nMNRmRRHKaiCj+ewmFSflR2Te9sqjJ0fQdpfoxcAF1UkaDGBUrJ7uGIZLFsarGZ+9j+jj3pr93JunHAKRcy37DcQVbdsMbKsCZUGpF7TbJ2jborjDmmaWYl4/2SHSEM4ju2dxEEgJKM7KlYmMPcbrs2opaLdP2Hu3vSQdIs0cDjpHhTkjKAjmG+kJG9WdH6bwBSqDpezmdVbDMzievaUjAtHVO5tthoGUStgdChPwi7oKEFBkus+8gPo9AxGpqkmRHClQmNb5JNv8Z6zfWDYBMoYI1JG2PAFfEUERdqcfbA4dlIYhe/aEfnmHGzs5Gf42HT6BsdtmcG/vqRv3AeoiopHrOOrrDmcE5ohGAoyjGEBIhkHGYKOxJez9CqbBmm47GaP+/TEE+2XI/0kOngDG7GA7+qrt8x8/3fD775+RDEiv1ofoYWrnOVhqxa9/+Qt8+PA+nbYDaMwy9vU1RgA+fHiHv/jNL3FZF9y2HdI2tO1mBBFEKOvVGnJKQ6av+v2GY++3v/8Dnm83fNAPw36ZbfcJ+Ix0onEnhAAKnPMnr4KL4/uf/zenyB6f5/Huzy+nKFnqiCO4+HGgoXnvL9YQUlX454aMOlYcnfbJOLP/m9fYeVX9+PFmkBGG2VLdUx15j77IouOtsfNYeF81IiBmYIViIjIKOlFFawCxZt+CuEFRYPeOp4XZG8YtWBe2omkmLzi3b4SnOARIdwUMQrK/SFf0tmMnYHPFHixG2bHSPZ+q5nxvXphb/BkQeeFwYVS2ovEmim13its27dHUbJMH3hWMesfwOU2JiFEWwgMzlrViXVf8/ac7vrv9DlsTiO4eGRCgFGNb8WJydaOl7xsi7Sc8/1ytod/WgLWGwT7y2yWMhGmjZSG+R2yMstOZWmgUu5fCWO87nvcGoCDSJ4gA6Xdfxgz1cVsBfzPgxhXolvrAtUJ1BxFjWVerjekdio7qK128VibGarnYowCSYJSSAsM8CgeO6ukODi6Xyt7dPFKpRt2E9I4OB6RNvF7HWXGk21xpXPOlt9EUfZ+UjA22q6ALOYC2dcaIxpQe8oeagZu1Tw6YYu3M3qIv9NgjwhY25HRQ7BeclFQY8EAK/0y36oOVbjTkGyxoeW5gMq5GJDXeh5sbxLNwJ2/8qSgKY/yazpN58j6+WI+zkj5qBluHYdxGbZQBjEi18X3FEZm1KEbI1ZKyNdi3LFIxs0n1IOPoEcUYzHgA0DejU2UVCx37mmauUFiKZ7fybAicpjnSUrwfjsABIJt8lW41GuIGE0373c5pAE72HVgqdO9Q8a7fROhtNwY5NieIuHwkZkCDvYoSTJkTw+k1Dx5KcTltbH6WTUTD/k8zMETziCxEoT3RSGnkNPBTlPv3T3USOA7DQKvJ5spsPUucOaqEDjgs/gE0Rkoa0mAjYDA8Yk6Nirka6bgigp28iJ6AUqKv1Wxsf7mSZMJ/mEIHs405jnOnwnjb9/c4Z5a1DsGUhllAzfhe/J3mgcSZQTkmMiCj4yGGDXQe6IiA2/80zn++5mkextvDsTYbuufPqyq+//iM7z/dp4ZwcAKFYeRk6nOOapzr8fGK/+U//gd4fHwY9xMgagYavsgPcMXt3MeHB/zX/9U/wbvHR9zv36Jvd+zPP6CuF1ApKJcLyn6BbDco3PFwup/7fcPz8x2R9kTTM4qIBk1zHuMcc24DipT8ADEzucihk/fkIB7Awg3wjDzqYTW8POj029A1oPH78Se9+t2j/pz1zdCV5qAchdvRCBBEmS4VEXkz7aa1SaPGD9O96cuL/+jxZpBRojkekyukglIqau2Olsi7Ri9YaoS0/eZU0dooihGYcc6eG1U0Fml41M3YUgxBaiCHPP/V0i7ue8PeTBEtJ+UbyJOZsRRCIUZn61ZtnaAtzasRoULdOLbvGEOVN/tyEKBukMamKQRrKEiE0kf0ZSNvcJMKYtQtEE0edEMaXlvB3rzQP18YCy3gx4Jf/vQb/P67T/jdpy1TF4wPmBOmUl0MaEjzkxQzHsSMeQVBuODed6yNcA2jdjLcYp575GDP6SyYeeIt2lO8URmIcF13/HDvZkhEaoILd+kNVC+AKrTtQG/2XqmgajRZHPNhxSdW0ElkxfCsKJbdAbHQmUda3O8U2QJA9hEhNhAbR9DcGauUPbtCkSJFTkFMbrzGHbJ3NBZE8zVmRiU3ACfg6KajxfEoqpYkn08Pj3rQEOtI16rVPDcq6oXts2eJxpoUq3H6gm0DAMioQCqMww1RfubFd8Kg0kgJis7IOv2ccmXPZ52uM4vsBJj8kmUohT8wKStk5DFZf/SYr4uQGad7DyU8s0YdezNE6g5NRuWIcoRxGnPSe8e2NbRmhBqW4jeno3nKY+uQ1k1mXxa0bQMIKJcLqK7oz5/Q9w2sFvkrRGhQKDMKXwDdEyzwsvg9htqKFI8odO5ASIoweltD3zaoqDs8LAWQfWNzXS11Erulcjm17d68oV/OK0C1WGSlWR8hfyDuuHH5p5IMgmF6hDEQynJeflrUIskUxtGok7HnQ96YkZORr1Z2+m+nAfe00TKDE0JGL8xRZtfI5llhoORYpkhKGEQ0rVMeUZrwIKuTFUBmwOksiBoF6G4shDEU3/+CD4ecEzQYQAP5G1IGz8f825ze+qp/9vxW6J08rU7RDQcYM0/p6YJnIzIuEj19XJH5+UM/D1DpQ/BlPGykGRDNgz4PX0Tw6bZlqpQ1zPSTiHo9xB3t/gxtWw5xntdf//Ln+Mf/6C+wLEveQwKMBBx0nvY8D0FRasFf/ObX+PUvf4o/fPudOff2DdI7ivfL4LqASgGJEz9Mc8ZE+PT8jPt2T9kw5nMCGFE4fTDWQxYcB2YA4wgoRl+bYx+MkCWpaxLczZDqtO5O83FwZs1AIx1tY//jIBeQjuL5yejp2cPBw2vLejpB7qJceq+u+QlcvB1fAPgTQMZldQHrYVuFNSESAK1VEKzR3vXiPQ7cVFPAWKi6pRUZQ4sb3BVpZJVIBSJn3HF0SSnsKaLlFgHpHbebMyQQeSpBBbM31WMGLYSlMNZqQl6km+POH4Z4HwuV0QVVVbG3EVWJ6EggcMAYntQZgYIVpgvQqmCpJXn8ARMUMf5arJP1ZTGlFLUNZnwWn1c/3OD5+sM7/OpnX+P7v/o7bM7Ypb5ANOZYO7hUF1SUrBDE1RWT3d/WCD9sCuaOi2/ANNrdMMkmZ2oJbZHaEMCIKTqUL1hW46FvXfHtpx2b+qYu5sUkZmhhM7CZwVzR7zcbmzSQFtTLBSodbbtbbUf3aIUDLy5AJbG/EQ3gE+lebtCF4M4UG54MCt8cxv0t2aiBYOB0XaqtDxVw6TbHYAgIpYvf8+gtYrU8VtthWWL2LBLcimbpBLkwSzZAGypKsWsbUAMaxNLG/HlEsXrUC4XAQ+Rgf+FHCNBY76YsXyrJsAsVitmBcOionZrWC+7DAE4BPpReCFO30UCY5Ut4sochmN2983c6pb2k1e/DnRS8jrsbXraj0+FYDzAorkPWE0U6o4OsbjKlO6jY2o5t2y0lqkXUUQ5ezS4CJcby8Gj1bduGulxAvBi1eGvgZYEn8PucMXrbwOxyScWIJ8RquYpTlIuI7UVzRcCdl5Z+lVaRGN89m6OASvXeP/a3vt2MiZA7+vaMaHAJj2aEByZ0qmr3ei5jFjSPmztgVF2f+PM5KfoBHDWBHLt8jIh5dH0vxdKcanX6c482haNoKRV1GWyAxevrYn1zrrGIjODgMQ1PKXw9CnhK76TDOohdkUDXTxZ0v4oOdmY06ZHixXO/VjtPeQniv7jjYFAOs+4tsOn8meEoOhpPOv2bz31MMZkBxnSFNGXmgdL8ifzfEHfqy5dOr22/J5DPL2iOzVeTG4P64vnOv4kIPj7fsTfJP1p2wW5G/tYg+w7pexqX8+2VUvAPf/NL/OQn3+T+GhEC+3dO7QMm3RedzJnxzTcf8Be/+SX+xf/47wB3RiSRAZfcBzjsAnspUGzbjtvtlhGEwxwnwBhyP/8Q9z3trNA/WcQt4dwzW2hmOAyb6fBzvsl8yjpdkma7/gCIhp6Cg4kJfPhnX64iHO7Zzu0rYmpC+3IlnB7K55wNE6odIGqWRG8/3gwy3j8saVADZIaZG/X3zbxKa/Wc4Yi0+cBaa4BYVKA5k4F5gIY3HOrO9xk1wYqt08uYihpQLzq/bxv21lFKwWVdcV1Xy3V279Fa2cdk1KO1lkHrGIobElH2NLQV1pyPuIx5pSGgo8DbjFVKo1HWFaKKvY2HRDAP+lIJa/XaEo/IqAgaCOwdsmNjqXu913XBr376DX77+2/xH37/g68LAkqxtBqoFVIrnBGiJbgzhWeFkCIdvTVQWXFv4mliNj7RUUOTvRmIUKqlvz1cV6y1gjw1Yl0XPFxWLMvigkbxn779HruUZKsJ5cn1Yk3A2BiycHmE9s3rZW2OmBlaK/p2w31frF9FqcZY5ekcvRcAO+CRqMmuTOULgufwy2iooybKGervhRe14HJZ8Xi94LJazY+IYN0bttaxLA1lWbA7A4elCtZcrxFObek59CZIMtavpWpFikcYCB45yZQYX+e+HsVpl4UyeJ//7yLYpb11y/7ZHhGeFQ1gMVhvQklq/o7xE8DsTQpZYVgsGh4OIx0ZFbA/zOlmEWUNR0EYpdkROdOWjPksgMABZExgxM7p506lchbMQ37N93QoAD6BlFn5qfZ8vzsl+P224b7t2Pc9i7zFLxWjCs/c9vwJy8M7m7u2IxwmgEL6DiVCa3tef1kvVk9VCrrusHbnAKnTZRd3JWlQMHuPCI8+gNka8MXzEvuuyS3r9A1Ph6JiA+69A96Ay9KlCpQ4vjw8fszZtFWdMtc+g2R/KvHs8+EMgBnHiDY4UKhWNxipbEstpquWajWFtRxS3Gr19UHHKFM+x3QQCEgoHTvzcxzGSBSNeyppDlRz3FnPwREN9/0gRvbRp39WqxgrPdbZIPf4cg+XDdN+zvcBHI3Sk3Efr8/GlX4OpBzBx0z08Brj1OE6E/tgjkD1lVHGeoixnV/HdXSMZxYr09uzUjxqDzta7/ju4y1lr9kZ4VRUqzstxhR5NMHteLhe8E/+8T/E09PjuIkAxLMDxd8bNL4xZzaHpISHhwf8xa9/ietlxcdPN7dfBnUfhQw9WIQDJOyt49OnZ5cjJWUexbfdnIqo5vwsE6JFLanPxyAOkUxBjPrUUXMRoGI8+/n3GUhEpHek0I27m2X0EWBM6/rFGj8ex+jFtO4V3uH8AHcM5E2fDmcFVF/sp/hepuDpeD37kP7Y8WaQ8Xgp7mkjgBhNABAbtahfcU2PDmVUoHthXpCFKCbFHtEDGnSSaZyFQMXw+HSRZKLKJlUM3KTjvrWkmbysq3unKT1SxVlBVq12Lo2HPgR5bjwMb1h1qtvIvhm5ekBTAdrwsDIxVu8Bcd937K2Zl74riGORWhqWooG7QElAtaIsVlBFwY6ig4LzclnwzYcn/Pbb77H1u3nwxMKdptM7aDcOee3NPbFBeBoI3DvUdkVjiwSxIO+ti3gOsxd4LwYwHh8uePd4nZr3Mdal4rKuowhcFe8fr7h9NIpd2W4IlBwMXZFsVZjByxNUGhRshZmyW4i0FGzbhn1vuFwuqVDNO9kRDRmBnnMODBAaIIL9OzIqM2zTkOe4rxdcHy54ul7x8LBiWSwSJ2L1IaULmHfL3nKlHOsVRJ6a03zODJgVpqzzUOWRvuO7k0CHqJwJ47GZQzh3GTmiafASpUf6dh9G4Bd5BJCY9rXObFMJMCIsDeAgkI8iNZQZ8fDwZhEvH/nD4zthtEVqUq2chmZ4tDONKdKiEhSOn7k+YzyTwg0JPackAiPta/ZiJxBRj01O4GQuPAwDsTuD1Labk+W+7daDqHVI97oIHnMRc6Yi2J8/Ovgq6PuzgQs1J09vN+vAXYwdySKiAmkmuwzwD8VmshqB8gajklrEEdM9EBO4LBAxD6k5/AXamhkiW/MCbwMapOLPNDyaXtsX/TkkW3K6OTK8wkZIYelncYw0uAHq5jUQ9S/VAWUCDGf1yihmHc6G4vouo3KxbqFeVEsTRaa9l/VX+VynNAzEWCqoTBHLNCScfjvWN7me9fkQj6DbT9cOmb56sHy+bIwxH0fb7TNvTvEHGobqbMyfwkw+RS+N0mCSimU/AMIUqYor0LjOmPQhxaZtfxq7nyO8/vM4Z4yhKUmPf5uN+ul/CmDfG/7w3Uf0E80xcQGzQIjy/C/lLeHDuyf85te/TFa63EgUwM2lckYRX1lobgCXWvDzn/0Ujw9XfHy+JeixB0Agr9WUtk3zPMZ1v2/4++9+gHSBLiOjIcZl0cTR4DRnIQzmCVzE/kxK2gQX499wML+Y3Ok4gtqwd19bpsP5Nc1dyKnDB19+c3wg1oie1tFrh+KcyvdiXG634fTeDPTGCnybEHl7TQbPynNsxPkfMzJqQIQ0wpp4IzUdBpV5Bf3BhvLFWCOFi4V2ZRQyVra6ivAiLl5oXrlj0x33bTvsRoIaK6M/xNWNiMFtDDfeAuRQLoqBgt377I+ip1dR0TqctaUDCldOBeVi9Lj3fcftvhlDVVMUtiZvrQnADe7eR60L1rUD14vzTvsUR1RFFU+Pj3h4eED7dLdmV0TZW0OlgYL/3sOMVKp5JLgYHz1ghT6q2Lug80jNsfSzCA1qFqBG+tvDZcX1sqQCvnghail2/XcPF/z0wyP+8Pz32LebFZWSGSnh5ZTWYPaCGeFQazRodJYwA6I3bJti2+7o/Yp1YX9eNu5MT6Gjj58Q8Ro3hlxQFVLAqUILWQ71ui64XlY8Plzx8HDBulTzdHjkqDBBxT3W7lnUYLfx59+dhrV5fxgmoHjKVRR/lx4QR3MdhUe8MmW0b/gZB2XwfWtgMha1shiLWhdFE8Hz/cuOZMy54ZKeo6nOIkLVwAlNDO9YvofYozh40aLmYYC5cI4MnTjXxCw10mCi9qGAy7EgONKWxr8xllEYNzxD4ZHKyMwr7CS9B/kDRqG6Kz1RNRa2iUEoDIjeBd3ZowJgbHtPemAFjO2VONmwtCtIi6VBkBsACpAbo9I2aN/BpaDvLb3jVDhpk6kUixioMUUBgO7DEw9YbZE6UxTBPZli+dZcLwAcpPdnMBcokclHOPRz45xrtfossvRTIUC7WtpVKGKVTKtQMaADFSSVOY+1Mtijgk0KhxqceB21GFF/YTrGIhkRubAiblsn5ngADjnb8cy67X0hW9fcxaKzrkNHOsbkXSSPMLdpbeUaG8AjxhyUtJjASjjCAowYsJnP97bUov/ijgPAiJ+u93Uqjj0Inh8zpF5FOP7VM9AIRqvQw/M5MOwWGoBl2HvjOp8bzdEInP8wNKWqmmHuxdLjHuHNOm2dSGsW6Tx9RgE8PT3gw4d3ZrwDCfBT7sUeS8cQTUOZEILanLx/94Tr1RqEam9O7W/RFF5WlOujjWe/AzjWJO6t4du//w6tN1xwOU7/NPegE1Cbpn6Wx5EmPkczZpARTiEDgK89hQEkZ4D46kHzC8o36Pyn6f3z2GegEdcOWvBDic/nv4gBPKa5CnlExzX3dlhxPN4MMsSTO8OjujXBbRe01nLBshcpLkzTw7Nu4SrmYS6V3YCjZGOxzTdynIktjM8AunvvWlfs3J1C0HtmlIpaGpaloLaedKu4h7gIw9PGt6TiKVAORa/WVNDTDFRDIQ2Pkwl0n2ghgGH5r2QF4rf7ji4dl7qgXM3TX9OrDafNNWW+d8F972i6W20KG0XvY7/YeC8rIlQZRXytdSy14LoW/PAMZ6jyfxho2eauGL+0dICsfsMaVzEgZvj31tGYUMg7ZIcnWYfyWmoAjAXXi3VmH4WJpvBELEKxVMYvvnmP//SHH/B33z8DXC2VQqywnUt0dXcPn7qnEmpNuNTTCaigacen50+4Xi8GJJdqHgmMIsoqTm8rBIKAScGpPMUUBxnoK94Z3WopjAb08RIpUkZerO4htRodcYYeW0+tdTcKHID6Oum9O32woDitKAdjlUQkzlL8yJ8PE6GyERiUyaFgKYXd/1k6mJ2roBZnvRLFvjfc9i87khHdmUcKkHp/k8kjF2ssDoo0E0xOHDoI5MmenPLfgzluAA5Ld/L0xmVJb7UZkNWjl8UiAQiPt//kSIuZlEcqJBMeZA8+Fa6BeI/mTcoMPs6G6MVx7B0Sr9v0e+YJO+Nbay0jGLvXYyRAA0Ak6RUTIRAtZpArAFGU9eJN9hrg1La9yWA1U7FGoRwRyQLiCpUtU5mICehhrEly6zORs9a5k8BTOcvyYHPQrfaJlyt4f0bfd2+2p96IT6FNsraKSjV5FgXf8bR93RDgMgdZQB86OguxpzUQZBMlAePkUPLoVq1RbzEARnFAGtGucLyJxrMeRr6Ni1y+KVgF7MY/fN0bRWcYJm62uWNkTiG0viGSVoM54rwR4LQWNTeI3//YUkhDBP95xsKf1xFy9WSYnX4b7+GV9+M9jxKGgZWOAsBDRbmO0ktOL43D+Yi6SZMJYeBG2slwGOR7CTZCtrwOYEa6G9wgTDM/x4/5M2NAUFV8fN7w3af7uCb5iujGyRhkE3OkMA5mxldfvce7p8fhcPZxjOdB8Svc3H1lzm3GiAhPTw+4Xg0gmMOlmy1YGeVyBW+jIzj5nAVwERF8++13ltKcYx2GcTxL0ogQ4wWwOPybHUJ4+Xfk9edZ+REg8bk7n5bjwAmJKHPt0LQuwuifzX5VynP859dZjbvJVzPQiLHlv/N3//jxZpCxNVOErXfrwNwEezfqVlXLWWezvy3FBEjAQK7ULbIwvEcZ+hdLNeJaMyXFkJgb277gg45Rop4BlB7IxTtyiyravuOOeQ+YZ0rUHGXh1VIIGsx7bEDBNtJSTbGKKDYRZ7YqIx1g8m4q4EreGBAuSwHBC4lLwXVdPGxvURURhcCbZEX+vliTw8JwJWvdbI3Gt6HtDSoNK1tBvajmvILIOhSXCjh1JPn1oEBvGwCg1OqFwwxwNcNHR6F3pHvVWnBZFzxcVzw9XPB4Xc2jzuTe1Y5drYeIKWRTvF89PeCX3zzhu0933EU859ukTW7MbsKAy2JMFmoUk+zMLiLW4ffjp2dc18UWulxQ/X4YgqW64a5krGSKBJN28omPvlRjfnH6SCav01mqscnAU1bUUwy6NZXc9+7e4eZd3RWFR6oDYM+JmFC5OrEAOfAiSBhaoLA3bWiEaY8M4bD3jn3vuHuH5bUQ1oVxXQhrsbu7a/cox5cNMlzHnmSVJ9N51Ar5mWFMjqhBfuVwpEEL7xVQRu4786CcDiandVmSLGK9LGZQFkuHofTSAYeREqWBp77u0usV4XQiQDSVdRgTo85Es4iwTwBigFsHuE2cQEIP1LQj6tOz0HuP7/WXvUfCMSBKEN1Ay8PktXLgBKAuV+w3QPYNka4ahZOWvmPgqd83lz0F0pqnVllUIz19RAAVoMOpbYPBi625lncF12bNUUnEmgD23ZwicIBBBKpX9GbdyCHd5pWLR0rV0q9ibXi6VeFj0bXf6vjngMLkREQsI6LhzokAFcVrLjyFbKZtD6mTzQvVSQgClHqNyqhXsRoWTDo7nqdNWxiwAnjPqaCljYhXgF52ASLh0EggTr7mpzQRN7Y4jN3JaPoSjxHNPDxV/282+z9jBP2YbeSGHBMlqUcsmgOBRDzXOOFsMLqxe5zjKXpxABnHvxENmXcecNhMh9qaeWw6njemz6ZMFcUPn274eOuTMWlusD51+ebK4Lp49CBknYHan3z9FR6uF0TdRdz3q1N6tMbH1Oj4wOPDFR/ePdl6ZtPZzMXW/nZH+/hDOhZ0OgVg8ua77z/idrsfz+8bbACMmPYhg18DGeFE/ywIiXnEREuckYB4ftPt0yxqpyj8ebYSYKi/pFwjA1jMn5tuVs9w9JQFMC1MAl5EOMivEbOUZFQzYJ1Pd9DJb5MhbwYZt90a2d3vG+5b8zA+EkwwIbnqYwPGhC2lQN1zXdxTZODBUk+6KJTVu6Yi84hnL4U7pxHdlQEzeomM7eiyGoCJQtwmHa0zFg0P/BQy9v+J2ufvW8On24YuimUpAK0WufDcYnYD24oJiwt1TkrdwoRNNRtgSe+WT0ijeV0oN+v94BEEjJb04cW2a1lxchgYrXW7fnUlJ0FRCM9jJuecJ0gTqG52HliTmZnnHQCUiqcoTBRtALhYis7DZcHTwwUPlxUX9/LaAlR0Veybp0goQFxwWYw166dfvcPf/v4j7h9902eaimbaU2w2o5tdzOAu1dIgYGPe9o5Pnz55Y7yW9MTFoy/k/bBYCZHCaUxYnMXq1ol3kAtEykBEe2zqgp3Le2BEPrMbdWHMqSqELd3NcvKR6TSLG6/huVUZnuuZjjSlq4rtdN+fvVvBvRXvWkfltTKuC+NajW1ml9HFeYRsv8zDbTA31m2DswIRKTrUIuQXZtF2FHgRCTXnb/RMGJEMiudA4ckejGLrutjPy2pRjJmW1gZh10hPlx3RxCr2TutGqmDNQ4GoT6AygEZYESOdyOqLbJ3p6G0Rz3r3Znrdohm9TWvS63a6DHDR1dKrBpXuABgmUwCQR+661XN1aQ40qu3NcPCoePTRaJy7GvVseGXBPq9M5rwQgTZjfLLzOVlGj4gNsIRTJqI47Ea3jnQxOExkLtasUxV9t67i1nQPOS4iS7kEBRWuGmO39lF/4QsmFPAwFGz8QXBrwGWkH0X0i6bzZMRNKI2A6C4e0akuUQM2oiWZPuLFp+HdjW7l6WHN9R3WpvfjmRpwRsNIJo+0eH1Q9nZJd8tw5CGMZRF0ODhy3fPFHmEfhJE7W3PxEQwD6vDz/CEdP8e+xyiCnQDNqOWZzOoZaByOSUpNXbdV55/n14fhHM+Yl6NpPRCgEfmK8bt15CdIrzhML3338Ybbto97YwJakEN071fT/Xw4jK3Wgq+/+oB1XdOCzln9EUz3Y8flcsHDwzXHT8UY0fr9jv35I/p2y/s9H60Lvv377yaGKQcAsYsmQ332xp+jF7Me0Xz9ElzMSugINF47xh+OwGNau9MxnpkmqJsB4+Fzr1xt1jEvhhGggshfazaKHOCCUjfTed5eOenbakDseDPI+Ph8x/2+4dPzDc/bnpsyCiFJKjY2/0uvZtSNFAJDwVAZ86WjmNvSqRSNTJDCvfFmmLvAhDNsqLoyc2OCC5bFJqcxo/eGvbkRHwplCm0nzSusNuHeBPfWsLXIB1QspUAKZRG2+PvCml7owoSqI1+Xts3YfyKqASS1ZuTFBp2pqs18ITMgrCdI8JxzPuDIw49meaVUi1RUBnq3nF8O75gAEvy84rS8XngoRmEpEg31DNjZ54zpxQpgPYpxWXFdazY9DO9r6x3bZpSZrZnXn9miNY+PVxQGrouDIIpISxhcxSv/zRBUB33Z4M/vWZXMY9oFt/sNIt07xZN3Py4uzwQEz+Um8iiMG46r1cRELn5Q6ql6JMtTrSQehgagsNqhrgY8zJA0Y9BqPdh7bBil5bIUrB6h654/bwKCMh88gHIQB4SQswCKrcG97WlQ1hKeNBtD74rdgch/ESDj5GGJPX7+TMiONJgxAEoafSflnB7CSe2HYWC59gYKgzFoXYqnTDkoTcUZ51TDhHNBul8rjM7WDGDse8uUQ2b3fHdOGUL+xbnvwzmKEfVdUW9xSIVqPT+b0QxFnkcwiCJmpWhpmuypoBuUTYaI99PgUi29Ui1dkAqjlqsTRPlYpaNLQykXq/nyHjClVMi+Wz8Zj0aaswAetdS0PQrB9vxSzTCCNxSNOk8uIJlqFoiC9s4+SwSiYmm3xcBN0w5ShrRmcgVmLLETjwyAMQCrSDhIFKihX3zdEKY+NyPK0Lq/xz7XdfTOgQOnAJ5wWRo9e2YKcQOcOj4boHgyICNNLxCSARWn9XRAVBwoL+7IctvBx4vjWlVPA45VSAHg32gh/BkeaaalwT8ZZa8Ajs+dIV9mDcQw3lMKcPSjivdxABzn083gYbqAv6MhqI4gIz5ObuzRAAljmJSnCvALuLcesd6A7AsDTa90jKB3wXefbri17if1v/g+Q1doNwpbndJy4z7XuuCbr79CXZaxbHO+X6KMP7bCiIw9893TU9ZnQWA1GN0a81pPnIZg1pvPrAp8fH7Gp+fb4WJ270NW52S/BjDCHguAkWDkONb58/E8ogGg5qwf5ys++aZD1aMMfkY38Gc7P5wbhwvoaSf/Ecs/1sJ53Ep6jGLgpHfn6+RJ3nZvbwYZn55v2F3pZXdRjTQbQt+tiZL0jnVdsjgyUmUynOsP2Lz0I81AQOh9eCBLgBhHlrGEGR52943FANQL9XrtaLtdd/M8PfFwizEoWdpLCNomzvSkMG/3AtRSD02ybM7HJjJBxIgO6GstuNSKey3YNgMr933PtTA6kgdzCKNi5OwXobw/UUudYQXIQZoZEENhMXt61LImvSsAZPfwUoCuCC8hsheGoNRqxZsNENmsuRszKlFS0xpziqVQSO/Yd2D38297x30zoHm/b2itozDjsi64368oywIN7ygZRaUJRGu6lV6D9CYCZb0ARGjPHegNZi5VXC5Wo2JGXAeTYm0MXa0PSxqZyQTkudPVqCbZoxXx5BRA81xzFHJ2G2cvk+jhogl41Q04iOWZq1MM23MDlsq41IKlsEdB/FpsCiJqemx/2mZ2OGjgwlPVrHg3DEqFKltq1g40Zwq6N8HH245t39HaLGy/vENEUkmSG1J2hDlo/49kp9mLNdT160dEyeZu9MkwF/U8dUqni5RD39dupsZTyjUg+TMUlMusPiKQ2VGbvNg7zhX5vXEvsa5cBkan7ta6pUY6oNhyTTSPkHaPWDiYlTAeJ504/cQ0m+JOBgBOwGAKhUsFiCH73Wui2DyJIpD9BoAtUgEY0NjvntJgDTPFqb6hCvKoAuBR1YgAkHm9CgGNCLxcLSULDG3N+maQXcdMecl6MpQCLhXSdwNA7n3vMLBg7FfxrFzGQVEnJ1UaGWloW/qtZBTFvluYwUrmSOK5c7yAuSNYx0phlH0050QYAaop42PNRtTj4MnE5DCD60W2iHMpUaQ9bQsFUEY/gtHPwxwv7DUDllIcYd1RJ6SAp8ppevxtuF+wsyL1MSZgMWT92yFGABTfrzQg6cHT7HIqbBNg/ul/wyybZhAh0+s4++HD4xd1w3X2kL8wWAcQGgXikbp07uLh3/AB9C74/uMG6ZPB6CmH2TizC/p+R+/thcH6+PSAn/30m+xtFvf91nl/eRDWdcXXX73HUgo2l2twO6Zcr6j9nfXP2Adb3XyhT59u+PTp0wEA2L27AeY6/CgnziDj6Jw51GdMoCNs2QND04TijhGLeaCvr50XRwBQilSleLbTvZx+ziDqnJ6Hw1gHvJhfHpADYUov82jFj2jdtz7vN4OM+20Dez77Utg9bea535ztJB5iF8liymBxCU+B6ihcDMUJxENRXxMyCvdcaBrNLeUEWKOhEOJmFPfesBNM2Kp1UJYu2FobXbaJUGfPBZk3/XrhBA3V+3+Y/eFqwSe/q4WwGSWF/bJYjndzj2QAHGvwNtZEYWMKUrCliDitvHe7MOOhexs4Hf0rwihfl4rKhPtsPpNHSGIhJWoXUF3cIWiMDbEwmQhUlmRQIb+PdVlQaoUC2LYdvbekcI16mNt9w/PtbqxZzVIT1qVi2zZcrxdsWzOPIxeEBxLaoeJGjgAgT3mj6l5IzUJSKCBglLqgMIbgk46tKUAdi4+51MUbZxVnbPKomlqaVSoOr+0RTzFR9Zzt4uwvDjJENZ/FKAYfKR9JKQtK6y4KdWG4zmt9LCUBUHcQuUfcPaYi/WA83raG29awdUWvlgvW3RgXJexNcNt2pz7+MTP7z/+w+qthGwwFrbl8h/EXToL0w77iPaH8f6S8jO7MZfzzvjzGCHRMiVKvDYrTD8kzjNM04jXy5OPZWzods6XtRB2aARhzqoivhywKdgMw0p3aBDRa6+7MGf9a8whHH7TI3XP0Ne/eTSOaDOtZSTmxwnCcC5blCuWCtnWo9zrSbrSyIbSki6disslV6RkBlGZ7rBRjgsqaFG+2BVVvquqRi/0OoQppO1Sj6SUhItzMbOkarXnKFTnrQew5bxCqgzY9OP2lWa8MImQPovF8cTQaYIxPXSxi2uso5M5+KNyn90bE/tg3JXqz2NXyc4VTblv0WDKSEekuFhl1o8XrYhK4YIjzWN0EyjmKtL4ZMIjX8vQ+On9b41vNtKzo6RJ77Es95kjPMHDPZu54F/NfYt9PPw4SlehwlsNVE9ecAMZscE4AQzFk10ux/ZokP4GbGOE85ABCOuotjGyCnAhljGO+rKpFwz/e7snmBsD3twy51oNZ6ujMIhDePz0as1TWpuIVhPH67L1y+wCAWivev3uyPXPf0fc7VJ/AXFGXK/TS0W7PRmM7JjYvs+8NHz89u/NwPvlkjCMM8BlgYACMkPCKJM54rX4jcIzJ2B8Dg8j5odO8zADjs0Z66rsjeplxQYKBM8BQfXVlYf4uBphVr6t4LYoRQOOE3+w8b4xiAH9S4XfD4/WCtZYsGm6NBuOJpwox7/mQsMDpIRlMxZRj71DQFKHznhQH72ZQyk7Ujv5eE4Xl+A+OczP2CdL9sUTzlN1SDPa9eUE5h7WPoBoliuJxwmWteFgXrLVCoN7rYChzdRYYK2D3cTNjrRXXdYWqYtt37F1ALL4+TEGEYRC1AVGELtPDzXnpCtCc32+P9rJUvHtY8bw/Q7RDm0UKNIQGM6S3BEUQAdWCZHIFgSwB3rzxXvha6ogCFCb0pvh4v5lSD7rfLth7x31vuN93o+2F1dFYEWrDfW/YdwHBIheRm91bSwULn0cQgMJZGFqWxXuqFEgxqsulVrNTivej0I6uDAajckVZ7FktxRtARh+StiVjD7xOA8Rp1KkQKgPkUkkx0T46yO09emD0jCJFalrrBmJ770looOoMRxwZoREpi4gdEPUfQT0aQGNr3RjHRFHF0sdaj/lidDe6CwPrmpL0izyar9msE5qUaBiDUF/3OpQDAGRBNsVajrlGAsyoyYlmn2st1vNlpqgtx9qLNPpiDOGFj33kx1A+IyUl5AdxdHw2p0dESEQEJIpOPZVYyJUe9RZ9/JvTo9pkLEaTPYm1ijCcY2yTzynncQTFffT2YTYWpi4dxNbZ20QjQ7sCZQGVap2jC0P3BpHmT8vAgzFBmWwSMWRjdafu3Zfu+CDS/wjaNghXlOUCsfgsIFZori7Xu4NKIgG0eDQU1hBw7x6BjHQIsj0P0+ZUCgg9jSCN56lh8A/vvq2njr0xSjsCiow60+jAPqJhJfupBMjI76Qusc/1FqxzlOfPCEt6UvU41pCNYW6GXpz2UDz3nkaQr5u9WXrX3rD3jt6cAtn3DjicfcjamC/ySON+8lYkeh5Oh9MXXjvJ9Kt/TwdYH58L+TMZiCegkUb9GWhMMu14HEGA39FhaMOWnu7RnQfD/nQHg/p8KNxwnISqH611fNw2RP2iOdJ26z0Vzpxuvbbm78X9vn/3lMxSI5JBA+Al2Bjz9Jq5q9OLwgXvnh5Ra4E+39E3Z65bqhEBrRdwXfDieflJeu+43bYpjdjm4rUrzwAjAQT0ICOGMwKI7Tn/3ch+ToXfp+d2Pl6zx+O5fq7eZAaQASoOUYy4V7sx5JqL16dr+QpG1FLMQANApksZNnNwEaebbyzW3eu3+urxdgpb98ySh3LCezIubsHs1gVEbbrxiiJeeKvwgjoLs5uBPRpnZeEhhkIHxXds6ppfs3oaEE/eS3AwVnUsniPfm0UWgvaV/cFaB/Ch3IOl6urFoNEBe1O4kTeYPGxxIBXMUq1YmhmoHuXpIqjsheIc0RDPm1XLaLLmd+adLiXqH7woPjxRU6EkEeHDw4rvPz7jh/s+KQ7b3eat4rCU3BNPDjwMZDF7UykRy0/Pnhc16yNa33C/78ad7921o+Zgd+NHvMjAIkzdaY07blKsUPTiUYn0tBSgMGpdbf30DsA7fHL1JmAFfbth325ojYClem0PQOzRAGagVNSp47ylpURdRcO2bVkzAmJUb/QHN0xBBEvjlql4c3iXjQp5938dtQyjsosZhpvOrC5Wo7MuBUuxlAWL1BnV8968C7NaUe/tvuG2bdasUa0GpHvhKzF5nU4YL1HTBKyLpZV8yceegHO8dzSg5hex/0e6YGHLUw+nxGikNro2L2X0MlgiquGgYzTTK5NROTmk3KhMY4wIQ8yN/gKWd+9pORQe7JL7FOFYaGagR+QjC7wDQLSIalmvi32318ko1aPb7KQIDwrwpVKZj6GEANUG6c4yRNWizyJgXrBcFgPQt09QeOoT+Y2XBRRsccRQ2V0Ben8ZEU/DbOYc0aihYJRKIOlmeCugamlPhcwhEoxSR28wQbtCxJpwcaStBrOUOy+km1FNU3oUhwIFRvRo8tRGJChTNkm8b8ZgDAwik6wHpNHlvTgL2dwBfu6vEesw6GW5RIF2MN5xAuR4NHHv4/r+e4wpgTiBxACYrU8F/J5sHe0W9ZpreNJopgEAFUfd/YUdFEY3Jrs2Xg8vxCuG0I9Yger59TSMMkqjjA7y6ni2l3/IHXkyXv/YdwMczH7s18d6ds6EUTjqBMbHh4m5d3MEmsggaJesZ4oaM9uTp5Rctb33/v0THh4e0nGak38AZNPvevjx6sHMePf0iIfLBd9+/wnq3ceJiqdCV/CymHzRPk7m19j2hufnG6Lp7QHgDA9Mzv/rQGOA/gAVDuUR7pz5nGPuj9eLYY30+nwn9cp4Jj9+nAHGTE+cc5r/myItJ+cFiDB3jE8A7UBhsE1Rdme3t6ZdcGaReh3Dffb40y2WaFDiN2HUY2Uoa7LPdFHc74J931HYiqMjV36wQYxoQPw7sLtgAAwQEP0cGmDN59i9aAiBXCBV0FpFrYLiFLubN6NLBYYCKYwIZ0ddRtxXNAgMJdNCKRFOBpJt58JmrIciUKgBCHUGljJyGCNloqtidxCEYA1xJiIVAP63MESjy/BSK949XPDxtvumU/cglsyFho9RpIOarwi1+dLW0YhwqaEQR+ifgIxKiLMqxZoCxqY1hTU8uuKAi7SjK0G0W/1BAFLPVS/l6jSTOhA1EaANVIyxgsuCzYte+6UBwmhNsHshaeXFiEpVoa1hh8JiY+7R2xvu9zvu22YggwvWtTvnvUVqwIyd1ApP/Z4i/3pvDbf7lixqe2seYVEnBkB6XmfjYKlucBXzXm/dohP33aiew+DZ94bbZuML4yo9ocWa9HEIsIMBojCYNNHofoFHgK3ZqEe+ngwHF8rFawDm1KdS+eB5rqV4fwvv6O6/5z9PByyeFhORkDRUwltM82tPKwEAskheMLaln1zHTZRSczyxY2wPudyaay8iSpG9fWzP7XvLurfmheAzi9/s9NL5Z4CISWGATmOMoYLB9WKpStKHA0JhYIgYorudQztUiyn84krMIxr+S4Kc4WElAAyRZnVRKlicVGLVCi2Lp2eYkVvWK/q+Ad2jJapG/KGWCsWTpzGYV3rbjZEO5hwwARhNA81pE5HM0VBrAhs6nRPINCLCscdKkgYkwGWUPqc/wdmojv1XigMLLkOn5dotoeOO+3gGt7EncgzT63nDRP76vLYCxI56x1jDBCanCtdIb/5CDxpRnjAODmbbtG/Jq6iTc8gdBzM9JzAMrvj8CW3EZT9zRORisqp1fvHSItPp/3lb87VD+DsY/uOu42FPDe/40crfW7eWA+SGqad6xlhEm9VnHJjHbEylMN6/f4fLZfV1GLP+ClwKo/gkf16zS4kJj48PuFxWmEFbDFhQgZI5EDgiq07HPzCMmlNx33FO/5vTyQYY0zE3s3Mm5UGM8qXcfDHV04sjzqL8QQEu5s++AWCcbuTHFt4r8/u5sfs6inskGPhAvO2RjASqwLnb/GEYf8J9vBlkmCBFCnq7jikPAkDM2eyuOIBofUffrLj4KhfQBVg8lB39NGxjhEExclIzvzj2GkZuXHqiPKIC5cH4FAWepWCpHXcm3O+7dc7ugdhXLEvURwBQzU7LtWzOmsRDqefGHcXbNC0aZkZRhXDBUhWtV/S+O9uMohJQiy3F5gBCZyEnvilUUfyiXY0vnlxJNiXjk1egstGm7goQxyOMwqg5DQRAb0kLl92roaAlgF1xry55Iat5URUOkLyhn6gmGUp0EZYwAOARCwdYqbS5gFENmCrQ+47ClylUP61gkOVqAwAvPi8dqg3bveHednu+pNCqkCZobujEepdu/S1u9w33bbdC/2rznF5JLylmARoUJF5u6kxB4/sbtn3P+pq9NSxlzzUaef3k2knIeq70Dqekbbg5yLACbsl0wSjgJhgtMRGhVGvSVysPL2fOq63/SJX5ko804vz32biPJpjMyGhDreypfJb2VEsd/Q24HIq6Z1DBp/eZvFkijR4yc2icT4ZdrBmFeZKgii6U+z2MXvvOiIiY4asjbaUFQ5QXcmf/lYbeJJvqtTlNKiKsE6vVABpnA2Q60iAaltHBg6owB0S9AJCR58wKZYI2vx94GqzXAFH2HPHoDQkITiXr4F5FnFXOKGiVIqJqUYtaK7ow7rDIqpYFUOslY+ev5rBZjL3K6kCqpXyqIGqaQeHY8GJOIsD70lhUFB5xtHH1NLYjXQr5zDXvFQh62HQmhZMEALGCRdEda3HXKUXKdZfrH55ARvGIWziaapnqOcJATmWKNJwpPYjT/sAAv5na6Y6PLn0UquugN44IWFgSxN4k0YHIl3pQ/m+8Mdv4g15zGO1J1hmOrwAa/h4ChITxFekiZwAz7adzoe3BSMXZB/4jR9i9PtbBeKue+65hFw6jGCejOUzMyYgOIJ02jkfWIz1UxFibiKx3l0q3yMYhymXnq7Xiq/fvjL72PPhgxDqBuPSGJ9IdkikfDxEeHq4GXthkQfQjAwBykgnmAqFRGztNkdkrP6IXs6A7R3z87AnqIdZN7DljyDQZRO5IGfsRQ1/Et9MxgHRm5ecQKy10B+XzfPWYHG+zYZ/4N0WIn9XlRwKIaa6Oc+L7JD5zqM+gPPdxvU974Ux/9iPH20HGjMjIPDHEjAochWp6ChV7I6harvneO6oUpw+1RU6k6elWIRjbj92dlzP7ph85zJKG+AAazrfo61nTkC5khhtDse2bN7eylJUHveByWQ2cFEqmn+c7WW48W+6tKbUw+l+idmJr5mQN8iTTJkoZregDVRNZFYA1BqygYqwm4gXWfutWKcAEqgVMmjz4ka4TxlNzXn7yxlTEVgRJZQGgmVZgcsoWC3sdRGsdxJc0wqDwXgwtmSXsuZpS5+7eZ9XPLq10ZpaazxjMgDIgUxM5riA1Ly+xeYzbviF470UErIpLWSEKbNQhfQeEoAtBmqVo6XRfBhStQPq2NTTRbLhlxoP4P7te5LgTvDbIoxjbZgDlvhmbk4EVb8jofTfWpeLi3aEBK2QWITQ22uF7a9i2htvmBqOnlpEzwYCcmtLfi5QbcjKDVAw+QGLjMG+957m+1OO61slDPPoJpAd48vhGDvziNUPFoxgWtRyF+MESFc96AI2SYGVQYruA1uHpxqSEsr8AkDSCscTY3xvvayqcUOgi7k2OAu4AGnvL9LvsgeERi1GoG70vwkBhmGZDOhBCuNN07Vl95nG0fwD7lgGktgFUPBrn1Kr7Do7qv+ViMoCDKruDwFASzD0kusJrJhjMTsvcm80pFbuwmBxZa4F2wg+b73tiW9dth+x3Ay0u1yFWfC7oCWSgkuCbiAx8uLyL6Lo6Q1bU0mTxtUYkMaiRMc4T1v38+jyFaqnAWXDu5yXy9wkQAoQJ7OtC2SPWATIcDJRe8j7MeXU2Vgc8jKj5UOw0yXJ7VyYgimldB4X7SJUyXRuG2guA+sUdr6UThUE9/e6AIcCC7ZbZIMvTISIINKGYtOs0zh6F+5Mxn9eaf57H+hlDcizH7PCsk47N9Jy8rRN4wASapzVwMKv9931vSQKjXvCdN6806jFeGSkT4asP71DLZDJS3sJBRE0vMEz6+ZxuxLv+hRq7p9+E7Q/XlWQeJ2s2bPQ+B+M5sgN02hNjak9zp5FKFL+/uBV77UDTXo8UNHIjOIBEAovT6wQE6azCwVkwXzF1yGeAxos1fpAHADIa4fc/TQMdTnA+k89OrLkYmyIjGTY+GnsAh9O/+fiT0qXMPqLBJ+9Kfl2qF7uZArIeAYpSC7h08G5pPMbi00fRpKoX6wKt2Y3V6nSCHE303NMcD29GxP5GFyu4JjJWpH3fragRaqH6wp5+sEPuxsIRfRCYOYFAeAxFjSaRAEtbitxoeGMrjocwUws6YGB1w0izK7adRlHJDXpSgBlVrbfHvgOkclis0WeBaUEvmjndO3WsXXBdKna1iIOqexzhS0c7wAXLeoVEzrN6HYz/3tUYUKyYeWoq1s0wts7iQxeFYaYKD6amtTa2jYNLSIeoNf4K+jgCQfsOaYvNAXtnbFeGXJc0GIoqKjOuqzfZkprduM2r3L0A38YR4992S1Hqak27Fk+RoQSqCmZNI0Q9ghQAc98btm3Hfdtw36N3hRmAqoqNOmovSVdaeIiwABAGqEfKgtWFUObqExMqUZ7Div1NyJNgClVqojbqClF7Lj/msfkSjseHSzbcHGw8xXugWH3QstQpCjEKaWP+DmFo/9+c3hKpKlnHMRdkw1aMRYTEgCtiqiOFD7lvwyBhIqhHMDKalIBwNMITX0ttt/znkRLVRjG3jJ4XATCix4qCw9owwx3kDE0yKfMAHL7fXihXfMaIVKBt0FLNicEeoSB4SmOFitFIm8Jk0xDqe7WPORKX26pi7FICgF96QAE4u1eFkILuYtz3fU8jgKk4S5cYP77XXSV4kz2dMIBFSM0YCkNjmHEETJ9FfkbHt5HWpr+Y185YUpM30tdOrtcAohM+sazhkfY7s5jFeVWM1QqdfO1IplGeR3pIVaVp3DEmxLo9Gm+jyN2/7/KEnHY9dQwf07W+qGM25ACE6aPA1EgMr9jKA0QES5l53ZFr4jXoYldwSTDPt+r0DGaAM167HYhDNGWc9GCAp0bLeyBn/VHMwxrOVc1r58lm8KPHMTYxmnb7m2QaMwhQ7cd6jHlJAljWiq8+vEOp0dT4pdEa6y+Ko8/zdDbqg7AB8CbFYjUiwcxoM0aWPuXMfecrqgjavk/nPlrE4Z1/CSxOz2I+9VTDAFDaiPG5ubbiKCtmYDFFOqb/5shEzBViHWKyt6bxzGnE80BzRREyEmHnGJG4WW4AR8CQXmHQWLcz2IDJDz0BmaFx3maLvB1keNGqFCvOtjxn9SZoTg/pgrg464aiopQ2DHlYx9TYJPEgk0ZNBL1bUV314s1okqUgaHHPnkb0g9EB6N7Qm70X6Qk8TWYU4VljtY5NIyqgaYDE4lgCWboBEYwv224Fq1wILGYkk3sZQrEVYnQyAxnVjKNYhOFFC0W1MhmzFtwb1Z0FRMcCMwXs0rIA6rSOugDvrhfc2g331kEeTvTQgNPH+kKJ7uBmWtmJuaCpYusdj2KeRTOKm3ettcXbPT2LdLBsAWNdmmc01mukFzjUEQEVAsh7c+wdVkTTLVRDbKkNuwkXqk6DuUfNhhU7L7VCcUXrgufnOyKLNhySCZBaAAxF9UZVtQ6u/EixUPW+IT7X6pGtbQYY254e6MhzNmDcHUBYAbxtfpuXWKPiGk4jZO9A3KIV9lwkqGwd1MIwhnlE4Slys7cMniw1ebW+1OP90zWJHorLiurAYo3GeEtNcDGz+AylbEeE/fN3DHmaQCQNMxoOEigoe7iE4TDmW6K9jBsi8f0YAKlFFmMMc85/6x1tt/UUaVDdwbtMfRnmwUY9ljkIANaoCyOADMAaPeU5DSReH+/+hVfsYHDZ3iyVAF59TALi6HvhctobbQaVczhkgqUNYjTRVn8nljcNMiYYDdlhMiGaH6IQym2z7uT7HYDR3/LlAhJBu9+AZkO1/hjeediL9KM7eBpekSIaTisMCtmomRgTIDkv6T0kipUyBTJeeh75lJ43Ui8dYCT5yKgVimjaMFyDutkGZXTZk5GpZGsu0syIRhQ8jInUDS5jp3thyiQrn1dKHTvmpORe+pNzw/+MjpwCTEv/YK7PC37Miub/XMMlwNDJsIzzzsaZn+kE3A8AQ6frv2Z7nYFGruHJsHSD8QA2JiN5XPeYLmVbQI/vT5+MzxhbYlxzrD4Qsugbzup3Ph6uV7z/8B7RG2bMbMxNjH8AsZPYQdxZgi4y5831Ys1zAZiTw+usjEACIO+XQ6V4TdiYUiPoaZ9NI9b5geQPPQ9sOoaBPpvSmSKLI8iIn2kThexARM6GQ+IAjsOb5QAj52dec8dfpv8j9RbFrAYl7flrL87w2vw4mAjp4eDMXtu5p12EBCVvFCFvBhmxSLOpVRlNg7J/AB2Frs2r/QzaTwsVcwp5IosaZMGamEe/ulIhIHNblcjC0hpRAnOetcy/7c4f7122CSNVxUEAFdtwxuIy6A5LrZCLes42QRfNHhFRnKnoCGrDiMwA4p8L5Gf3vqDkogrvZxNFgWQX4Gl2vZeCZjgzv+fvRWF2LeaZ/9lXjyAC/uN3n8wxlgX17OlKDa2ZIqdSTdh0XzjS0VXQWkHb9wRTrfVUWqKErQvY+dxbFPtPxlrxNRcMLnYnHrVQhXYHGgqvHbFiTm0NfRdQWfw+BW3fwFJBIujaLZokggsvWJeC61rRtj2mK3UxYA0Pu1iB5mVxRiGPYHRnwlJVCHtTKh0CsDszSxqEEgB00IlGsb6osdcYAOPcF/Hcw3MePRrKyDG0NQXKJpS9D6+5+D21bnSncOA0lJFdKGoVvuTj/bvHA8mDgQxjAAuAEQ0xg8UHAJBAdy7gBVT59J7NH5GlXCIF+FAYbrlarj8GCA2FRADQh8APmu5gIBOVfG+k4jjQiOZ8vXlX7T4ipREajDECfn/2N2arDxAYMQJF3UH8m8YYR+ir/D3OPGn4VIBwamACVDrKcgGJ98KAQtrN5B+vAGzdl+LN+NSYitDuAAqoVFSxVNgwsojZDIHeDJioGdaXdcG6rqgKrFXQegGtD25Q+CDrCtp35/u3OpVRE2ERY/N2qnvhx3yEIUWApTKuC5jMqdQl+uyMNZIzmJEtnx+KGotIwwtWqSAXCDr2wfo0s5uNwu4JiIxFNAxSl+m9CzqpOz6QjUUR8lNHD4ORI3583rYGQhcPfYNpH9jY6qgJoS88kgEg4dS0zse0qEXI4cYYMOgyaHxkgJXJeELI8mHUHaZ7BvABcCeQcR7jy3MMgDgGfQYok/H4ynkTXGAAnXjkL2sy4leLnGp4tQQg9f5i6hkFrX2G2pjw9HjF0+PjkMevHKGnxl2+mL2XZybC49MjfvbTr0EA+r5ZNGXSm8wVVCuICubZDLGu01p/MZ4JUMy/vz6q8zoY78Ybs5Gff5tBRoALGuuIAmBM38+6FddPETE4r5TzWM5/GbVFgxntNAGnmziCrBRPimlsubuOWCJ/+RMQBv4EkFGKGf3NjfsYIHlBOE+TaELO7piJUGsFUVCxmliX6obtziDqIE+jijvurmiqe2DIEabl57qQbpq0teFFDGUjMPDRw3D3e4gtEixSzVEw9zBSzLi8rAtWp7xUsRQrK162VCBV9vxcOI3r8PQzMVCQQKt5s0JLkbH7UK/j2PaW3nG7Dwazp06peVVVNJmjmCwd5LpcsBTC833Dt3dJI4yrzRWXBaK7szmR16kAoAJoR4Qiu9PkhiEeQtlSJJx5SwTZ1ZqCTheJ0CkSk2FomNUXPzO0OdVuMdAlYiFZlQ6CFZ2XSpbC1jYABK5mOFoRrOdww5RleBWi3qRH2pIXUEeqTPzNlxMimtRVga6wgIYregd2ZalY3VvbBMDe0bWlARpFv+z9VmKZG4BwD2YtuKwLLov1XlFEVILQOqDaJ6NWM+JmKWwhbDwlRULRAEFR+IJO7gs7nh6uFvUMr6/PaalldG1PtijObshWqOiGph7TFmI+hxGZSU629sgmMwTn6KpMbqAp9DCtLrRDmQeI1lmhzzn/DjokWzkOI1Hn2iw57LX5oEnZmBf1FI3A0BlhWMwGz9mcoZPSOfyFbS/2/Y6yVJS6QvYd4rVUUKSDBWRRBZWOtm0Aist/y++3hnqaHkb1jt0RdSkMPFwveHy4QJWwfr/jU7PIRwdBe0PfmqXVEgFlgfTd9ilZmharQKqxzxztgKiJKhAWQATrUvB4vWT0PI15b+g5KGznuR8AY4DfsQaDAjmoaZORjwbAyMLuiR1xjn4N0KAQd4a16Czu4wi5Fl5Km9dBc05+zoyGhTFAkYoxFklmC7BHkub+HkGX/qUesa5p3PBLA3JYlmEPHMzj2WqbbKbZUJ2NwlgwSQCF+BepafNJ4tXYnWYQvrRuA1gc7EF6aSCbPBtjmVOm5tHYn/U4K77eu4pH0YNmGma4N6vphEcs53mN675/94SHxwekGR16C8BnUzZPNzvLoul/eHp8xK9/8XPUwuj7jt52rHD477qZ2SIZx/MN2091OvmYqFfXw1Fz4MUXh+Ht+oKA+fRj+K+AjgQWvi8pRjqc7n7yQyQta4eUXrvQ8b7HRQ8saYPi1gyTJBA43PF5Dc5RiiOOMLNp2PI+1D8FXwD4E0DGupTsLdAa/MbUUqQozCx7MKH0Y2qZGFRt0YwUBYDZU3P8gRSEcjPBSrBUIhX2B2GCOqbDjA1PpWBCAWeB32wEhJGZQMjWbiqgYFNqveH5Fj0OGh5WyxHvQAr2LuENOAkDX6QEZAEqk9EFmlFuxnpzD3V4tXdPxzLFHqxF8JQMBMpApIVIKDUqeP9wxc/eP+C7+w9oYsABKmj3Z1dWDlA08qwLoM2AITwdBcjuwQkeJQKvdme7CHobBexFgaLm4RtLMxTfxJMfKVwgaDfmF66re0vIvJ1EoGUBo0K2u80zMboCW+soW8trhAIP5R+zblkG3lnew5rdEYCCYXgkDErruyGZm2qFwctasMAiHUtrZlgR21h69w036FLJoz0h0AlmfFyWisfristaUFgtKiMKEUstUwVaV3TyJmJw73tKSVcWZhcjuvV6OSvO1Jdf2nG9rljq4nSyYVhPAC6ioAcjaBKSk4LH6WfMo5XBRA1Dd6PcPsU+f9kM0Pep+sMZqz4UOcbPBA9BkeogNph9ZPw9QH9vo9bJCnKdbSwpVjUdHgGeRHSKnvi/qW4sjIux9oDXvIYHXeBCL5xA6lGSdr+DSkEpC8rKQBcojLq292dIN3aXaPhJ7mCQvqeTKRrIUameayZWZwRBLQVPDw94uF4AIlzXj9Dnu9V4hJzk6s4NcQ97sXG4V0PZ9zUXaJ8IJCJVbvIkPlwveHq8gtj6m1ghvnfBTkdP1JMMOW4EBEbuUOroGD+YCgME88QSRRm5LJ6KlF21p3Vha8mdNV3Ru3Uar2UU+QeRyqFJJGItzDVoyGjdeLRDt470nVjvBjKCvjkaAv6YR/rP/XgtlSlBwMmwVLh+wGHG8jcD48c01GONjv/Fo4wHlDHNc/xE/pnw2jCnAY9zxO8+ouGAoLQZxe2rvNVZNigOsgKn911yOdmJDJCRSMHXWDKOnYxSAF999R6PD9cX0YIXRvwrR3zjUGg//fXh4Yp/8A9+jfWy4tPzhn6/p6y17+lUQxZnHBGkzMA4DGvI7Jyz8xjP9jZCTIZucNsFCRNfgIzxGjjeXfxGmIFHyIY05DNVzwHGwYk4RetwPv9hwAfQrRprL4DVVCOTp495mVIJc1w6HFTBOjUTKATu+PwjPxxvBhm1FDeQ+lTMSm6cDqFFDnnmTW6vBroLpRDMJpS0lTFPhFjvUdEfgpUd3ETVezRBIjf8JQx0CdCjKL5BIz8uIgyixujCjVzY2/1suxUZ99ZxWbvlC6op/t4aWi9Y1c4axX3m0SQvTIWDKzOBlUzZCnTq5GsgItJ81sUogAkORppFDyLSAHhxoRvOWqxg8qt3D3j69iO+2xVGSwmArSu7Feg7YhbA/+cF+8DDuuK6ABahsvnrkwdNoekhDuUcHk5VQZfIe3ajCAYQEIYwW/ND2TeACUw1HS9EhLpUWHMvAbvnltcVoZT31sB3uMEgKGU0veKDgYrM8Sc2gEJdwAW4LItHHgAgmjoG+HI6X/K0HLK5FVVcLjsulwseHm65HmLclj8fz9xWeURRrmvF9WIgAxBwBxoE0T046jYUii4t2Yh8kwwvhRvL4XWVlGRv3Nl/pkddVm/+GL1jXCkiojdiHm619DbqZqSFQW5F+FPai1perun3IUwtLU7QPcqmAIqvA7fJUmSbHItC2pfF9WGIhFwbRvrEepcEEaMXhtHV7sYmlb0LgvnHny2QKVL2Hg7sQBkFmcYz0iUmg+o1RXT2ghEACFg7qF7Q992KPaWBoAa83akBNlDe9916EpHnJfs17NQusNUikMRWq6a7WMBUCOu64vHxiofLBVQYjw8XlO93aF1zL7bb3VI1+g4txXrm9GZ5tKD0/hME0U09o1YUct10yNPDBe/ePVi6lOih8WHv3VKn4hnHc3aQkc0bq1MmJ+kAZwf54n9PWmSOFMkynE6xvzNKPDU7KwIRPjRaBDQb0Y60V4zvdMLsrU1jMh5rek2nKIf/PdIR50aR7BGZL/04w+rZsBzTo9l2wr4UvvkB5IY5OJ07jMa0wyOTYrJtEmDocNJp2DqKQe36ymAPvx7HS9NCch8d5iBI3F86XHT6fjpKJoDhoKRlxoRHXI0uD0a4YHIAvqfmo5aCn37zNS7rZczZ4Nk9262Hw8w5n1/VCWgMQ77Wgl/94md493jFDx9v2G8fD5FRMJwhsLi8OdbhHSLDA7u9ABo+PW86yHX1ETbMf6cX7ycodYA6fiJ/P86Jjj4up+d8BBf+/5M8zyU1RUcSmM73+yKCNtZL0NjOZsUMBnUa46jPCE37eQg9H28v/PaZEjVmnHgIzFHUPIz4cYPHzZA55QkUBqWgNTKye+ma04ww2fOGaWK3IqRhmZEUidw8r8tQBSrlwiN/CEyAqFGimY0SEQY7mihkb1AA62Jf7qLYVK2rcDT2Yj6MNCM4kwwn8txzWDpCa5LRg4UJl7XgYa3WWbop9qaAGEONePdwBbnnl8GkEDGWo8uyWBfw+0cIFTNkvUs31JkRVK3BFbmxhALojktlfHi6oDBw874OHfHAxr+R6+6PIgz1KBLTIXCFFMq+ocTa5KUXgiu4VvMay26pEftmawOahYmQhtYV227XLoUn85GmegVn9ZEAVM5LXwq4EhY3/It7GOPWxIu9ReysYSg4WgGIrQh5se7vm9fvSC7LANLDoAWMMnldjOK2sNFbah/r19aB9cIQZWizFETzuNrJB2j1DuYyK7AvPM0BobiHDJg9cnBQ0EnSS0wYRpXJGRnnAeALcPx3UPxegyNi+2LyJo1ngoOBdhDSCkQp9GyTxhEgoIfTwGu3tn1PEoFtb9haQ9uNNCABBObzjVSIjMLqS2PyxfFjCvMMMPLzasxM3WsmymIRBa8h6vfnsW+99gyFIa2ZahHxpiIEiBqvfbBSOfV1RDxBwFIY18uCZTEa4evlAi7P2MXSo9SbbnGFgRqnzC0giAtRYjIK63wIYYR5yqK2BP/vHh/x/ukRRHQAfSOaFNSdoSZN/wQFcl0Gw9lSB2vi3NCxZuqRgZuIXNvzGyQA8YBzDQMZNWMWEHdrxhof8jkLG5N8ZZ8BxFgXIypPaQ8PyyRSEdnp2Mfv/GWDDHqxsn/so2Myz1748YmXv+mLPx0M2Mnif8PhBtpbP+6f9Cc8n2XcTwwivHYh8+K7kxMmjiy3UMASyNxoFJkIYl4O/bIu+Mk3X6FWdpn9Et699j0AL/uRTGgsbDumgnfv3uHhegVB0fe7ORVrhViOsXtYg45+XMZsrpFSOJ6RTj9fju9zYnWWyXETQ+UfwejrQOOsY+Z/mPRMgA2/jM9TAhs6n3lMob1LCUpysk/rO6Z6/Hx9HiaTxk4TayfG60BD5+aWekjg+9Hj7YXfMIAhajRoBHXPskcNnBEoIgYKeD1EpOIQADOQ4yYkU4+i8ZvdQJMw1k90qTIJ0Agrz6AmDQT15ncj91peMRAg7hlzD39sUvGFKSCsFa404cZEA5Olj1WPCHApEPGcR3HPSVTzIliEhscjhEVh4Loynq4FD6v1xNjICx9JQOgQaWjNx8cMFAFRQW+73xrj6bpiLZ9wa0Z1GgJVnc0omw6SRU3CS8Cl4N3TA2plLLc76HmD3nZLZUAYO240ANYXJdIEKDy/6oQUYYi5lzdy2PP5EGhqsiVSoTnnCtTF5qp3y83sG+67Adoo/CcetTRE3Y1AOwpZczDmgrqsmT9d2YBGbDYDJQ37buvY1ozXceR6svcUBdDVqIlX21ix3mZBEPds0SPAmhshC06Ts17hOe9OghBCzNeziO0xUkuTEqFR+E+ELxxfALBIKPGUEhB7bTLKgn1qLpwd65ASLBOOhpef8ODxRdRvaP7VQS3yWZqx61FOjD2a6/u0d+0wqRwRjN2b6m3RY2Xbcds27HvH1hr2fUQyMoKByYlyCq/EXjor8FfF+uwdnJTTrNDSGFGFth26iDXoLMuYf7G1y7XA0jkFSpSGPxevvyBYxKIFrS3SkWAKSZORKpwxcBmy1AqGojdrlmnpOwV934xZK7x/tUC0+F4nq+Py3jraOcEhs/XNUTUnxdO7Bzw9PhgGcjILa3x4jAqPiQxQBKceX7CsFcuyJJVy7L1SRjRj9ISy6JjJQQUroaPDU95tj4eCp/FcCM4iVuBRYyS7V6zLiLYO9rL4PeQGjb0iDDkWHSBSS+doy8zY9sUerwGARGZhCI0PElE6A23ZHI3DjMzlN9xLqzOzV0iOg188bdFX8Ysb5MNkwzB+Xxn+yzemN49b+2Ak6/xP9fC3/IxiRPDEEnBBSPtLpQMT2Ug6x2Hr/sOHd4h+XDkHx+G9dlfJ6JZsSNPPNOIJeHq84puv3uPf/uXfWO+c1lDXC4B9gPUgfJiOqKsNUghg2CJx/s85aj7vvzlFwsapZjRxvPfJ+4/pI+fn+rmx5Gyc5zRlxmeGOhkir30kZFteNnXC8YZMbvt3Jhsnn9kENJIl7Y32yJtBRhQBb80Edxj4i3uXwhCFDz8K1mZ2J3ZEysBk9HsdA1lXVIWiaqRAOM0aDeAianUgUfFhE5nLyT06nPSYBjCGJ35OR2hiufuebZGe0ojMWK6tAQoDGVE86B4yb1zDYk3eZmarbCIFUz5JhevsM4SOhQlrAa61YC02h+xKz4oWR7GojS/K10zZcO9gLrgsBe8uC573O8QVd3gorfOudf0gghdlks8V4/F6xcO64LquWJcbannG958Uz70NwACnQQyaRgcaBMpnnB1mXRqa8WKomJcFqoq+725UdEAJ/b67x9p5sAFwIejtBzQI7gD25lSnmR9N2Ysk0husKMwYVCL6wM5TX33cTAZgOhp2scgJQpnAwYqDYnFjJmg4uRBYCaXUbJwH33zhIehizdZ6t9QYbZL1PlHHQ6CsG2AmrLzgcllQPe3wvjVsu3leNYE2YSlWGF2/dA8k4Gsf6DwLMpnkB0GZBnqcvGDB7GbvB2DQ4Y3B0fuiCCPM+2RMnwrGIoUrXTdKZlAxioTHT6hm6mCs+WAou29HkHHfWjbe2525zCIUk4j362bKi2uaz+o/fE5RkWOVAMlHpQ7CUCJqxAso1ea+d8BrxmotnkYlECoH8gbiApJoemcyjkux+QqO/WDec4FaiqUtba2BVQAxsFIFEN3MAcIVIndEGkcwSIXsUahRXO+WyhV/U+kgqsae13YszPjw7h0eHx8BBLNcR/MO6+LRm2NqhbuxXP/UahHMTIniwZwYsq/WejDUrfaiQ2jU6nTvh3JIl8IwAmfgIN1q9SyiOSLq6bwQyT4s2UOAvCdVYRQUgA3ghGFQsiDditaXWrEu1WXjtI++0OOQ5OTpIC/qBQLCc/SzmvcHMto2zonB1IMR7YKO5zZqHN4+0tmQy/fecAJKA5LidsYpMYDFtGDGusHRg6+wpr5RV0LugI36DP2RrtkPDxd8/dVXtq8P4RDKcY5vDk98GM6H56KvI7KHhyt++pOvQQTL3tjuwMMTCAUiu8t4j2TgeLp97556OOTFmOLXQdfrh754qa+9PwGKBBhuo4at+iJaPr788lqfPV4Cl+lPr73EjEYPV5rs7Qnvgij0p31v7IEYLR3WkX/Af7wNZfwJFLbB+GRGlFGYevhcR3RiFqbZXdXfE7CH2z0MroMxIwrmiAhLJb8eklLWvmCKWFNA+MQE0vXPGWd5SdACETPaZBgM4udPxQ8DFt0BgQJYPS3qui6IBk97C2pN8zLv6vypGErdilZ9k6tTKLaG7W6pE1BBKd7KTxS9EXZ/lFtr2FrHtltn4C5DXKiPz4paFXDvYl0WfPP+iu9uO+5CBi5y1sSNVYX22HzqBjg8JWDBZV2w1JFutd3vuPumLaUYAODBBW9sY8M4IwDdUS6LWmGoc1sTFNKarX/vRk4EaOsgXsG1QvYdgEJ27/+lii5mcFojKTNySjUQsa6rF2RW1LpYipQ/9+imDVACI4YVzUMVrVmPkr2JFdeTAk1dEI9UNg2Dip3Pn6PJmz3fWBNmMNjz31vzGo6eRijUcqOXJdhdKsj7y5RqIEhEcLtt+O6HZ3z8dMPtvmEhS9lYnYCAgIwyfbmHGWQhoGh6fwhruMdFEpRZ9INT5840z1R0gLLJCxMe43gdRjjRSG+BZ/yFwddnozCMwcnA0AlcmONl0D+35iDR6y+aG48zuIjBxQpVv9ezQpng0FBSLi/ZHSem3CelTkO5HYoMfQ4tzC0+bx2CCnghaFkeUNiN2q0BVOETgCAckP3m8ruYjFFL9zFvvvPc9x53hZAL9323e+ZikWAdJqIRMIhFg5vLqlJt/3cHAJVBKHYNhsnXTgP4+bUulwVPT094eHh0w9wcQbUUtBYN/8IhFjrD5j/AaOHi8oSnFCOPCngKH/v7I4UpanLUn/1UByJWB2J6MQr7bY1Ft/cW6yfJAyxNLwCRStCPml6yInVzqjAzoJginRF1GQXrS7UUzuu6ugyyPfBfwuHustRDhzoIjD1B8+vYK9PemY/02p6M9EgPnr3kcY1IX4tB6emM8UOP70x3Eec63R+9/Mz5CNhjwzoikPk62Zcp3o1ogn4GNplvAk+PD3j3+GhX0RHtwKH52xjlnE11SA8KeeQnH7KLsK4Lvvn6K1wuK+5NIG1PgoLuxpnD62nW7ELdi9YjlXYGGPOUvP142xcSYMRYaNzP9GOcVSdA9tolaEotm8HCaQ1M8Pr4ufl3xSjmVmS/lWRGOwCNuGuPZhCl405JJ8eX5rlfgI8fOd4MMjbvXtvFhCjBfOprJfRuaVCFJuQ/TcTI6Vd0Hgg3GKTiplQjVQLeh2Mo96zF8DSKyF2PSTf+d02PlBXSAZG5EwWaXSOagSH4QRPQUI++2ASyX7cWxqXW7OZaS/UCRPNEgTwaQ86SBTitpaUaBDUbuoDZjQwl7M2iNXs3w/a27bjdd9zuYbBIjsOhQkZjzPBnrJXxk/cP+MPHO377sdl8eu6xEmB5Rk7vGw39AGzNQvNR6BgNwfbW8On5hvu2mwL2hTtzx4egtmfjzyc+p2TF14iUFxMWSkZJafnTxRp3wSIM6oaXuqdzWYypqU450EstuF4MEFnjtgAZxes5aHgXdXi4R7deQFVQWoVuO/au1pUZ5PaUejd4F3+qthZrQQYQFOl5D5+ORS92bHvD/b5ha+5ZUQMi67Lg4bri4XrFutjYa10sGlPNUyq949PtdvCSWqTpgsu6mke4WSHxl3xUN9BcMACYAAGXA4e/Mcc501yAA7Yc3uiuHE4GySLbSPUbRkXmodfidNoeFfUi8gEIJVNqsv+Fg/xIi0oGqwAXvWU/leYANVlcwsniYxjVdTRpDle5LzShg6LZAKARpk7ljuFwiXUeAGwcLlx1RO6aNChWL7ReHCQYM530Zr1kmOE5VCbHnCmJ/L4MQHcQWd8MU2qeQ62DMvh+341ggwnbfYe0O4AVVCp62yzaSVaDob1ZFJQC3JAVhcOnsq42PiaQlmwgRr7PrtcLlnWxZ2niKxpsQzpntCTAWqyPAc549MOIxnsetSVCEnvYMxv1F6KC3qMBYzuAjdb7sDM1HBmKJt1rdXrW6UVqZT6viQI5zQsvMifDeqiFsHpxdywto463hrZrXXBdF1wu1fsHDTn5JR9hsA6blmabK945AYwpoml/OJhsceIwqAJsBLWz5ko8HmGLvGZAzgbv0fB/ozF7MDLP3xloIiMYehxlGJWRaWGn4oExXmvAN4GE9+/e4eF6SYAOzMZpCKnjxKdnfHL8HNKkkp7I5n+pC775+gNqKbhtm9VigJItUntzh8d8X/Z98T0WIPx8H38yxpgnAAcI+ALrJaiYAMYMNF6CQ52XwsvjjExe+9N5gQOHNU04Au20Z3AGkxPki89QPNuIVoQtr/moE3C88Xg7yNj2YTw548sGgO6hhCuWah5vhIL3sGynERYGQnGPYtfItRO/KSKnmOzBNoM0bCsX674aubAYi1dlUAgKkCG07l5Fy+ePtKg5tBgAIwovbdM1VxrWi4Hdm+WdpL34UdzbWgiopFiYjCVLFQLr80DawSS4LAytw1ur8CZ8rWPvBm7uW8Nt27F5FMOM+wgT+iIIA42AUhmX1bol//LrJ3x3+wFbhA09vYpLAdIDLtZNVxUfbxu2vWNdrMBxXRe8kyv2fcfz7e7pcT2FRELHyYMffUgG30N4/gBoR987lusTylrMe7dv5sFYGGW9mpGiCtUCeE3DtZj35LIuKNFEiglLKbisBeu6YK3VPXVzEyxTngFMs3hWoo7DAJVeFGvroHvDdtvxfN8mGt+hhIhG87tafG10S6fq0pNmtPeOre3YdkuR6d7zpJaK63XF0+MDnh6vuK4rLuuKyxrpGINhqfeOWipUDL6vy4pCjOtlxbqYZ/dLBxgAcL2s/iqMqAGWMxUt3T0O6HwfGCtaAAYrzg2g21vDvu3Y3TA7eCyZQMX3AZsHvDejNDW51LMXTnigw+OczRmjvsadAT1TJi0d5wg01OuqCUjDf1BQIteX7yO3Akbh5jhCF4tLfIbXjyBIHCjnbKT2zA6YMddj/wIk5nWnYmQM/X4DoFZ0bRa4NcbycYgrm7KsgFpkNoyMTLmCGQHkqY8kzRwn9w28m7x83pvLC0nnAzFDhcBrgdVddFAxAoZ8/tBU5rYuNOWo9StSi8YuSxroARCsYaN37FUDYJFOG0XQVoMVxujotUOutNPbp8FcZmOKtLlsBBvyMNaPN95M2lxorq9I2bVyGBrKXEMjaVzQot4c3cfn6MSCB3e8FB9z1qmxgwyvL1ncaXNoEvjFHsNAwvyKcHw/PM0TwKAEF3T6HtJJGpeIHZkG9vRo3jbKzxmVnzvBcf+O+8AfwRjD+Nd4cYAz6jaQG+IEBJ0tuQ1mTXzl8D0ujG++fo/LZTnUMyXAowB2IYdOz2WYDtP4XxrrXBhff/UB67oAn24QsVR0KibjpTVI2zFbGnHavXX01qZ0qeMHzlP2Y0v/RYLSUEWY4zB5olhfORd0XJWn0/1YVOX8eP/oDp2c7LHu494IEY0wuTnWxHRW1ylh98RniIAo7NYEkdNX/kTY9maQ8bzto/iSAhl3bE1TUNdyzJmLm+fC1qDNi8DDUxiGHzsoYDUml5ITYgZDawJ40d3Co5gNiEJg6wROJQq1MDxMUXjrp4wtpD7CeP/48C0nU3rHfW9Y7ltytpOvuuiMaU3uBAsXrBVYi39bfAOTzc+6MlaiFAJm0MSG954Znte97yPFIlJyDoYDBZK03P6lWpfbn3x4wuPvn7HdnDkiFllvrkQlvZ9gwqet4eNt85xdZy6igmVZ8XB9wNYU5b4PilVoCttoMBdRoSiWt4K5DkK1MTCjtTvqcnGFHQDIuoxyKQl6ZLuDiPC4FjxeVrBRzhy80URGi3vwTJGzUwGgzBcnFBjDTFPzFEaErC4Vl8sF163jvnudTA8vD+X6DnSvfo/dQXIXAxS9t1xnzTn4oZQdxy+Xi/P2P+DhumbUZfXu1sTRs8MazBUuWNcLHq5W3M9EWIsB2h7Rw/JleyAv6zAC06RWdWOcU3AO5VAAhMFoFIbR4LNUT9ERkw9SLbIQezmMxjinAX6XCc3SWEYERDItpXtj0IxeyIhSzDS03VmLrPDQKJf3oL92wGDyzQEHQiFjshpc7qURGvd+tEyS/hjmcIkoLDAM4zCqwykRRvgBXPhViwL3bYfqakXdSwWp1bvJbsqcKtC3G9IRpJbyJEqA7uYsIAIgCDrz3CyTQN2DmQqWoggikApKXQG1vY/qhblsIFt9ikJHgIqDmcnrSgQuK9B2QM1ZQg6A5jSmAzmAu2CJjIVuOCjKcc0gbiHSXmMyTS5TnNOjZ2mcUTQrlWGETAZsKPR4ptHVvuggN0Ck6/l5Mw2XIk3KInKXpeDhsuLhumKtNR0iY+2VEQn2xrLM5b8IAok4Yp0kcEe+ka9nkIHpPeSvIwPjfPaUJdMaml0BcaXXPLsjq+O1UY/jDHTy1zPQQOzkGTxMmGgMNu2aGTD1YGBK0ePrjQi8rCiXB48YGJuDqoHx9+/eodYFWVQe0QxM8+rng9KBWfPoBZ+N7nlPmSP1/dMjrkblmZkY7CnXCoG0u1NZH49wDEW07/MzjdTtrx2HFKDplsZCOZ59PLfh6Amb9+WT+9xxLMw+fJIG6Jltv1cGPoBGgpyD5D/dtD2T0DVx/QQkCkTfDjpyJ88/3ny8GWS0LrmgIh8/bkJ0UqhsTZBiOBG6L8U8Sj4PLqSt2C2UVXrowlwd9oHlxVP0xWBPfQnlfeRNNjltNRdzqpVCXaHHTE1aHbH3PBXLjc3WdtzvluZTOPJ0R9k5qxn6ldUKdI22Bu57Qi0ABZ88eRft1kGdQGSFkgBh3xtE2yFdI4rVg8kpUrcAJ9pSeDqYKaKHdcWHhwXf3zuE4F23S94bg4wVBgSoYBPF95/uKGRc6jW7ugPEBbUsKNUiLZqL0YGmAvCGcg3dFaLNS2VGE+uMToRUxARBXVZXpoK2fUKpiz1DL+SEiuUaE7kRD3SvZyhEAEoK1ohaMbxztsbGoPSKaxgGvQFdwaimoNcF7x+tuVAtBZ9uRjcalLHR1DG2dPRoIArjs+O+WaE31NI9KludxerpXOvlgov/Wxa7J5q6VYe33MgAOvpu67iWisuKNMYj37972tCXfNTiTe+i1igWFnFSUwO2doMByt6m3EPHlCpNoJ51CL6nQ5RGPVnUX0RkQqMGow9jLjzQ2ajTgcQ+/Yzc+/j7IIKY6jV0NggGGLahDoARSi06VAf48uWMYCeKIxXI5EHLOUEA8ilHnzwSCkygw6DbVQTPIfWogLQlnS2omBEOoO8bMm3KNx9xNYPEAQ4zo3uKA8j2SyWMju1QTynqkK4QZjAVoChk32xftA3ah6cVzCDPtyZSzMa2AuZgC9CghMpkdTH3e64No7fsCRYBd9x43RY7qUR22gaGERVGvz8ncssreluEIRSGQtDTKjDqAWNtcj94mbOQGENfxboFhpE112EEgAlgtNSCh4ulQi21JnjIiDz5vU3OP5lqIr/oY7aQXgMYCSToTe/PltMxdVHT4ZQm/ewEMOsZWYig43uH/7+wdj/z+nyc5f0RY0xjnoBQvHEaR09HWmpQAEZJzcsC3o/mIMEYKJ8er+ZEOAH2o6PPe1eFORbEnicjPWVbms8uH5nw7t0TrterfVY6FGLRO+/0LV7vFSojvi5qDFOWfh86/0/TkwkwYqj5yNzQzhl5+ehyPaWB/7nrz2vixQCOf5jv4UduhQ6fGSBn/I3GUvgxhOXP4Qww9AVd8Z9+vJ1dCkH7yBZOp7HxCMjupgRGMrOIAZDBJmULUxCK3tIVWD2vHwXKyEYlhRm82FTVWlAd4MSjDjCiOtiqLHVLJ6E9Gyn2wagjcC2enwHBC4ULllJQGCikUG0O7s1D1XoHw0Lq1Qt3lzIKA0EAOSMROTAhVz773kC8QTc14c8ljRTN6lBDD6qD9YgtFDTyhNU/I4Jt22x5sYXRY8EEPSSRNcUS8UZUfYc2wQ7g2+8/IfpMWAdvQusd9607lfCgLqZJiBERClXwWlDKSEuDewj13nDrzftzsNWjqHniqRTj3feGWSzmPVHZc7Pt+47nuzUyW9cF7+gKvlSUQocmWWlMZYMeM1jhz7g4OG0Ib7XBrXVhQFdUJlyXgk/XBZ9uO55vu/U1aJLY1YwAo/Pk4ilzZcHOZlgWJlwWS+FaPT1hXRbUrL3g7P+ipOBO6KWbYebpNvfNUm4ihTD+FmQLoSDKFw4yaH4xecSixmWIcfWGcAHS4+MeMBeL/ox0uJgnS2ULTaSApxwFx7rXNLnnS3us6ah3stfR82LfLb9+3xvuuxX17/48Wo90qxGZlemexv9oEtwxAWfBfTIKZjfk9DK+Pis2eznRmdKoWWN3zBBGewv41F+rGiMdLYhUJ3ZHg7hRTuzN8WTzmivK+2Iu/lLQ+57za974bh203VOvIcxc5EpX7Pe7K2aG7HeQNkvh6Baz0SxQ7uYkABwAeRTbaTcJ6h5+wr7dcKcxh71Hsbd7cTGlSZVJR2Qti33mWC/ogCIeUdRNOGqlmGNiECtYvOdGL2ilZ53XWBLDQx7jDGCa72U06Ag+opGepY9yypvqEU+CO7I0jDdLEyR2WmLVqbPzl3kcTb7pmAHEZ0DFi/fzu3ixJWdn0HxdwxWTNTo5E8bnw5T+00y01zDF54apKRgmAeEDPUgTRTpUwnAGEYLKlrkYG2V6EMZ311rx/v07s9vCCTIBGZoAa+ylyc49HWOOxkDNLiMQnp4e8P7d46DcN0PDUl1rHU4SOp4zsggs6jnd9GEyyVXO609DvYj90D2R3MrUyG44EoukF/zk8DlM/PHl/AL6mVk6Y4sXKVzze2HbTjbsqA+y+Y2aWQ179zNYIwBGrLKMZMyfeXkbf/R4ezO+RDlI1BrKqPWGbbcgdy2RXiL5ubjBSHsxWkPLD2xdrFCaDUuKUPZiiJz16gxBNhGmyK21xZjM8FiqjnqL8EQn0gZByYqhBRPyjMp7WD3Fw1rwsDKWYu+JL9hC/sDUzKHClJ1gqwt+cq9YdMOlwkZ9SsHGxAihIGLnbe6xJhUvoFeLRCDmzI367HgdStYWw+22ozcB18W8idKgiNSTDq4rtuePFtUwLlefH8XH291oRck9noxRa+D5wl2HF8QEjXvUquXILzVS15DpW+vS8bsfbtikm+csdpp9KD27REB0HFYFwMDeOz49d3x6vqOJmuONLiiRarRULIsDjXgmsXMIxlpGwwvJNBh5gnWGiVEZoIVRy4LF6XALMz7eCNAdTSNsbGlmZn7a8wTIU2eMpWtdLDd6rTWjQuTgR3qHQEb6m5p4CXrPoDfePWI0A2RLxkN6gL70ZnxBIzqMaaSnGweFpY4zGGATfGF4z3IoDELrUbFh3ydedRqED1Q4FaJFLyLXfxgk6uPpzhoVz2RvDdvWcN/3BBltH8XiUWOWCvx0xMqh2eOJcd82BzI8hTma8QMU9sx0/vQiIuVbAAvbz/A6pQAZR+21VmBpio0AVYLIBuJ1UpQKFWNWAxOkN6urc6MbLp9sXv0ZSUdEX0rxCKTLe1UGUTfDVxkiJnfKsgL33SIWbriIqFPikqVT0khtI9cVVsthcxp1Btv9bnSckz6YnUlGmev1dYUhpUBUwGIAIcBvurCmZ0xp4UyvaRSQR7QgvMq9d9RuaV7AnMlsazvrAXWk94bxZk6S8fmggs+6G0QUplo68tTRGyIo4tJqcnLB9wNiv32px+RAIP/9kAp1ABtA7PE02s7RDCDt36zvRPjaJ8NYx3dCN4+oo6bNnClVo9Pam+b7Ncl+LpyOn5H6F/JzfCH/Nz4D0/WhXxiMgNwKuDPH6h7mkxEBl8uKp8fHo4ycPxADDxtr2guv18EcoYZO/1vX1RvyhZHrVyIG1wVUF2C/vzpH6aB9iUKmqXkxUePlNKh5jAe5/TnV+wp2yqvlM3vluvNx+L5da6zB1z9/iJvEOvf/xqliHYYdPj5zXpP/c/kv3x7J0MHIEVSmEGB3LvB936HS04NGIXzFlbgrjwp43i1gNJ6U4fxZh2ZqFjPYi9VMcDcviB4MGSHcD92R/Vwadq0iN0Gnw1YBEoxYiP9SGY8Xy3n1P2PQ5AFQRamMuhTUaNjEo0FULA0bf3FPkinEIuJzV9DQk8bQlLdk6k9lgNUYmSxNy9hCite/KBwveOGhbAJqguCWtxz3CoWiexoCKQD3EjIVEAT3bUNrERE4hj4t+sOIhouRm24KV9CloFadPINRH7LisipuTbB/2iCxBgJNh5cQnsbEQe26QtDwaWvoaHi+3S1UGgaLs0kt0zxwGJuKNG5CgWchanyGYEZD72ZQqM01F0a5UBrw6Z0WzfnMHG8lsBaYh6CAKMB0AVFJ5dccnSkZ+44kSCf0btGr6mFg83RGrn+AuRk4mwHCOCmUL/DYN6MqBoZgtOIyY0SLZxn3LsyDHghuvIm4Z5u8XsXkz743T62hPD/tIbMjykjJHBWRPg4SBwnGKPu3R2+baKjXnAVoZpGSQXGLvO5BhaYOIkcKGYEJYzOABmYZSIc5insHRlQYkwKPdR77wfFXGlQjb3oo+sKEioZb30BlAS8rEGBdxSIVzTp5q3SLMKvm7zYGtiJtvw9rjmffLaV6KtLobWKyb7fAIzuBhnSLUIilUEXUwr5jKZnke11b88/zFGEwWl2C4n6/o+3NZf/Q/mnwMHJMkeLGzdOodNBTY9p3WVA6e/YmY5Z8HcY6GukkSIdQQsfYvzr2dhiKLeSNjmcZh60zDHarA9BmX1O+4ojdMXNsxhfPS3xOv+hjFoSx7+a/049FM+zTsz0aRtdLo872LHTs67Gq5ojUSKvS6XUY+VkPhNnyUJzeON6FG81pa5OTLBwMV8XBID+dLq7dmhHKhAM2DFKmAiXLLJB9g2/kvN71csH1cplk2hjhOVWKk/1vkHic5xgvbPVxL8u64N3Tg61VDSinYCoodUWpKzoxMh+fxv2NutGXR4zhJRibgIfOz3WOPA+QSKAxPb4s5nEAsVTiQyMKGYBjHgLNL3R659BQ8iXYoM+9eHXp2kBDrGVZQiiIvN/zSV+HN+ehvuX4EyIZdubChLUWrMVqCRiK+25dHqx41gTbwiWBBohy8VlNA0MJqB72ZlcgQUNanT4wG2nBPbpihYNNxIxamKdTYQhN/AEXMKKPxdwpmBG5yinpc2ElVS1bJ+6aRj0h0jUIyHQIYvYeEyW9S7GQI/e31OppTToMXxWngDRGlrZ37PfNFasbvYRkV6E04NkVd0R0YAOFZldpdDNWgwNdPWKhKr5xJXccM+OhGv2tTgsrFhw7xR0VSuAEBaQAoh1NrfB1793mitkiDKWgEFCWivfXBd8/3yyNyot2yXPyzVvZfSwFqkBZVxAq9u0Hi24w4eHBCqev1wsui/G81zrSpBLQcsFw64QXcijypLcVm3dx76IpI0apjCuNmpnkuhffgGq0pXBg2ESsl0m36BuxALC0CO7DaLXRcBrS4dVtvWfagyiyoeG+9zQ0s3dDFytUhubz/1KP+/2OEOeWwxvJu0GLPLiCI9KXu9XnxEB5z6LemM+5yDfOEd4+vwjCIre9VMAchA4RwWjWC2jvFrXYm3ftFpM9PShqR9QhjbvxP796qHOk99n+MBkXFOoemUs8K+OhDEIZByBxh8qktYepNf6pIju4zh6yMFLXhVF2I85AjwhP9z4YYjmyxJZiKQpQ9XqGkmQYluLn6T2uxKDq6YzBymc/F1VU7ojEpN66F10zuF6NwhYAsr9EB3H07Ahg4zLJ036CuldVcbttw6PvR0ZzyJvQKdCL1UExGWNbdZ2SziJErdsw6sazCJkQzyyXWh4E02vg+e+T3onUOvHIuloxvk71M8O6hIEvHN8D7HvNGc9YOe+VPX1qADx1ZxfSKfelHsPDPfZU6PFZk9lHjlGN+MbZAP6xI/bYZFNOV522cwKMiDSM5qsEZ4ObF8nBSNVXzh0ZIANQjJ+av8/AdVjPevjXe8dtNxsD5A5H7z2lXdBunyB9OwwLUKv7ua6HedUE18g9lfTiuYfoIMuHbBq3d/ak11JwuaxuRwnCAw/4Hl8uNt4JUASAEpFXn+XLZzzm8DAGHX8/7HGMDJ75r/biJWSYHUdD97wEmilAzoN2YKAONJReAb4z4KMxzsO9urMOUyRjgGzXgxgR6OOpPwNapjv9U+THm0HG4oZuKYy1VmMjgnlqSuX0vBZmLJ5KM+eKZVTCvYkqxiQVxn02Q3L2jLkItDu3bfS5MOYlAzTM0Q175LQGCAyvVNQTZK4fRlibaKRiAZaqlCxGU8rWkNWxwd3IhReosxvhHtkB/DnXkh631nb0fUdrO9q+o+3NqdcaVE1hRkOxGg3nnNcfPl6ZFq7ItEHc62HPo6B1G6uNy9OHwjAhxvsK/OrdgkYF9xZzd8zhDpFlHrkCLUCHp515znbkQjayVIkCYC8EpguuS8VaC3bpTiO6pMAHLA1CQejRhbxvUAiU2D0oCz68f8L7p0e8f3zAda1YCqNO6VZM8JQp8g2lzvai2QTLFL6xPlmGWRRsmpFLZSiedbHmi9vesG3m9QvbQlTR92AZst4mrQsaWb2FvWcUy0CABKRRxGRjgCq4cwovInYD12pmfNf4OSzyYrnlHSJfNsi43bfD3qZ8diHYBrmB2WCDBCGM68EcN3oLjIhCMDVpFpeHsE8jkcj7bIw0EnKF3pwlqnkxfvP6nOa9DETUa8rceA8ZPSn4kA+hwAbb00gbCAGeIp5oNGI6zM1YC6Ow8+gBx7hynM2it3CCiGRo0qnrt/2sBBTrZAgqC5psmKwaMyhUQbXa9nIHCpXFqscneZdphTp6+5TCznpk/YMIQK0dBVe03kBsqUm9tex5AVW/ju897UcvJAjiqR+I+/P5uW+7GTuhVE9UtSijz1DvHXvoIw2PP03zLcgnqUigYvnpHkWKYlcd0f4wqmaw6OJ12IBhePmzZgVQphRfDEMlTkJySvhwZ5U/EURztFgx5A9aFZliFo1L32Rd/5kew6s8WX9Aylmafr6MZtjspGF2mAbCnDp9tqR+3LCaIhk6nJsce1Y1vcovajwOaNWtk9nQPIGZgzNlBhbTApvgLBQGRMOBFYrTmCd37Nsn7M8/OCvc+DaBcbkY7fpsvJLPO/n+iijegQHyAPT1sO7Pk6l+c6UUPFyvLv91fJZgtYzF+/G0QeU+mmLiaC+HiD1Y3nkx//yQpQj9kB8dc0nnc5yOGW/E7I90tiPAGPcfa3MCEXQEGKD5AschEJ3GE+t5kjnTSYfuc/sygOLLI/bLy3k4f+qtQOPtIMM7h9YS3NsVhYELFjzImLwEDTzf5tjMEZYMQ2FWvpyomJKVZHR1HYwtVt/gDBqeIpU10xjRhvi+pfcoenSohF2zlGKRBjcSVNWiHBTe/YjAzNohFkvH3sy4rArUMnI0VTy3nslTc7zR1d4cXDjQ6A3aLUXK7BUzYLgwrk59uizGOR95+9GrBC7Qsmjc5756YXKBUdYyM8KrTx5NWBl4vyi+WgGUit/fBLc2bWgFJECMe1IIUdswpmJeuF06tj3SkyIiU7CwjQO9A1ScNcjUBJcKJjblzAv6/gxIx3UhfP3VO3x4esD7x0c8PFxwXQ2wVC+wj7SBGFvAx1TeolPHbuurQoUNbPn8mZepe303xTdRMzWL0dogFYgaovjXU8Zb+kEomTpFmzTWPzOUAWYzZNGDwUgHQFXkPpjTXMi9/Ma3P6WSfIHHfdvNm3z2QkYKJdwLi0iP9E7Ik1EdQrs7yM0u7aK539MLPRXsxnfhz4N5FMuaTUGQHv0yBp3tXHsR1M3q6z4U5JyukIaNy73syUAwR4or5xwLHW2lPM9BU6rveRlyTXUyOGbyC/ufwGrXoiLg9WsABR0NFdI22z9ERgVdjEJa+w7SkZ40LmR1ddDokK6p3Qij/q5E87gwoMkiGODFyCT6zWRuPmAFqHhK40hXQopqGZ/z35kKVBT73pIcg5hRMLq/ZlTdJ0L8fkwPhTylw5QD49kEMVOsTQM4tnaV1BAdRT2HD1jjmkjGmu6pmLNX0/a9x3fy3kbq1dCDlIvZDBiyeU3ZYdcwv5zL53DquE4FBpD/Ig9FrtPZvJ6PkJ3ADDDO0Qz7JMEf02yl6suTHg2v456dAUYalKJQCmeHTCUaNJ49TJ7knZyuqXCDc9JvLgjS4RBvHWwUjL8N50TcB+Ut9taxf/oBst8PMizGYgQmNS1pyvUUumn+NwBGgozpunEvcQ86jVlhkb/LZUVhTl1ossX/Ydgws4nbvanqq4vg9KZOrwbAmPdW/It7xY8e8zIZYFAxPxZ16uB4P8c2g2QHbzqtz3z28xheBRrHKMYMWuxEhKgrCadRsK3OaZPHW/3MRf/ouy+PN4OMp4eLdyo2kLFU9ujG8M6N4irNVJV4DKlAUpgPKsBQtCEIRxGdIppRBpWWRRWCFtEEfxjEEZoEksjEGH1U09gIwWSpEkPxxmdE1TpTgy10nV7VcZ5o3AZSa6THLRmPbF+YUuzOoBRjbfuOvQVNrQ4nlXtEe1d0BZZqTdweH1asywJSYGsN0eSukTWgoR73FXNoxeGm1Bn18oi+3U35CMC1ohDha2r4+UXxYSE8PRbsXXDbm0eMKMFLKN/iwlkkWGfaACCIeVFs2j0FytiqlmXJvGIrQiRQXUFeNFrqasJNJJmriBiXteCrd4/45v07vHu8eA2Gs3eRKXpOheHrzZ99UCPPJdOpFJgcfFV0zysXUVAXAwFkuaDFmVuqR7G0izV3lIhejN4rdmJM8p3gDeATYFg38yi8pXz2TSwtJ2RN5rXW4ulcPvdLAcNSRrb2hYOM3VmCnAEswAP5Poi8XiKr0Wieiw4E+LVDHIAER3oLEJA1Lb5Ws6A6vjeABnuF9GyQiMJpT9VByzCgB1g5GRNn5QxPeXQHRS1ODOFdypkpi9BHuHs6QvlS1G7M7/MBSGWjU1WrAcpxppYecmxvAAEAAElEQVSe9glw0Jt+r6xiqRJkUTYiSlY4Ey0Ffb8PhQ+11CUieLwEUdxsl7XUzFrY67OGmuHd9pXemym9qKeoBZUBaZszz8HBnBfsa0fWm4WcZ2vgSUSoXtcVjfnmaCwAjEaOxaMP4fG2iUhHVqR7T89lxDZgYz6YKvAccVfkgHf5cDcVsdGGR465y8okQKBRKxRFsqpT4TrI+7ZIjiufXepPAVBATdGUIeydkfP81icDRMYWJkaE8KUeqoMtJ7zqL46DIQyE6TU8veN9+/8rqCLPNV7Qq6+PIEPUIxjkNgVjgHTgYJna8OcVlWccOgXz5ydwMX/2fIbEIiGjnIzH71Rhenx//gHt+WOmHo7BmZG9rkvWDs7jpmm9zpGLABgZYQjjOQDP3HcBR9nJBDxcL+BSrBYvba9gtcrN6XT541SviOCXhxv2w5fxMuIQFVRukr0eUYixO8AHMNKadPx12J0hl0dH8inWOIY2yZnX0qReiz2ca+3yIzTGBpelM0gMSUU/OnEzIvrPP94MMr756h3WZXGmimB88vQcX1DsebwpSN2TOHfXjo2tMBrD2aMZtxXeXIUXHEdRm1oKTBRnxkMzvTK8ej1hMHLTUwfA1rk7GhrZtUffg06U8WqdkHmEy83w7pkG09UNILUUq6UWrN71XKFAA1rvqLVlnjKRc6irGguKWsHfvXXcmzGvGIizgvLwQFYmqOdCFwJUehawp4HGDBaAdDNPvguOQoxlITwWxVeL4qtK+LASVlJU6fj5hfCHj3Z9RRhwXmxM6ulJ8JqB0T19PEk37kS8bsGUwNUlKvv92r04W5C6cqTihZxmlGnvuK5XPF0veLwsuHj0wiUmnL4D5N2P45HZ3yQVD8GZmCZBTUCmx6iWzK8HjOGMeIBhM3htA7eoi1DN75jgN0FRiAYIioJ5W3yIeqBQ9hzGdQI2QVAIEwyNqAACzjEsS8XCdp7+Jmn653v03Kfj3iPtL9bxnB44Uguc5S1kh45meBF1EJ0iDlNKVZzLjPZhw4esobg4ZiUeXxpjOB8pgv9/7P1Zsy1JdueH/ZZ7ROzhjPfmzbHmKsxAN9AD2GpSQhvZJlMbX6QXvUmmZ5mMn4Fm/Ax8llEmM72INFHWkmhki2p0E+oCuoECCo1CVqGGrJzvfM+0hxjcXQ/L3cP3Pvtk3gKyhbpErLSbZ+/YMXj4sHz911ho1tKYpU03FSlNKZdT0HFSzOTqy2HcmHaeUezJGUB4r1qDYPCiQLrkfem8UUm2u5llABIFaxM8DA5vm5xSO/FG28xxbU/wQwYYCkLGgnlgdUmnJ8Tq5lWlFetnscAWQGd6dYe1UfhG622E7VrXpqkJYcg1c4IPmlkGi5eBFBgNPsZo6PZa1RpkrkEHJq9NiYk3Et8f3TpSsGqhrAiFviD19agtQCCvVZBccd0XAmdiOckuauwoYEIScGIBv5CEhOTelYRUMv/NmdAoeFqaC76YL8ETrNEsWQkwx2xVmmClonb1yEKxB+f0q0Fh7DvIYC2JbbvadUiAIAOMJHPsyB57glQBMMfvBbDI10rcT0YAKUl54j3BjHWBNIW+H5fe+DrprfbeMn0ImT/o17D77zP6KZ2f9uSQIHMA17b0m5W6KSapevfJBylOWZK7VI532gMaCQgmt76k88sQqeDv6cZ1rUUlQ1UDRmPvYkKP4HzmbeM1ZNCVMUApbUu5psv3K/rPp4KX6m2gSpMIN5LrUnHLPbSx091Jzt3/l5VdxT6RasiV75I/3nrm3lc5cCyNbXrnAoVJPhBl271XSLvs5wz9X4peGmScnx7HGgzJ51Zz9keZLQZIg2p6ouXYoYssaiM1xiFNPvAxqNjuqNqiBqjI9BOQ7A6lmWQGrNPAzNLvHgoXquwEk0BL2khc1C6auClJLLJmYBjQjESjAJuui6LKKCDF9ninAEVTk1pAkX+yeDAM2GHAmLHyKqbSydgN9E6rTre9BzE0Tc181uSChy6mjHQxNiAVM6usoZMUUElMlWuZCRzVMcOR6zgysKyE03nF0gbmxnNUG+YWGmuwJtB7p/Eigx9rmCSfd2JyH8Ygw1xsLDIvIM8JgG5w2K6PY21JrguIUYYWBQgXK3obG6dhzDY2byxNnYpLqZ932vG9buk6rtGtxojgMwNVk6MxEgvfxRrjqalxdWl7tC5L6j9FUpEhZPBmCEHHSYutlabVEGWqaHWTWHl+T2g0IhgveS6GUgCOaYsrKzSVWgZVu691IEx29bJUlaMaXmXhIIKFMNbI8amAXdIoMe4ROeYIPaDAToXbFOydamMkbf74N9VFiWMkZtTiFJtB6aaQzdwhFMM7cums/YySRiqSWWpEy1oVKQ5gBBhmBKIQXbaiwFpsnrfypOwIEiNqVktv+b5FPEqaoyVr3e3J8bto0OVgTS7+li2UMYvX+OhoKUySUgJxBIiWgiRU1LZiPlNrbLmx27rG1rqSCSa6aaECRQgIhiA2PzsFoqe1E7UKlO4yTV1R1fWoSY3xdDZbj4qYiwQEpQzIH1GZlH0eD0sB+m9TFHqLIz7FVsnIerRbxlgidWGNiUtSDGZaH1GhMQwu81YBjEsTbpzrQpzLMemHiXM5VaYHVWzVw5CPVdWry0cUU2TozUGBL1MJNhLAKNbFnpLzjjtkcEK6Js+VUYpN+0aa/x7dq00Ium8FlYd2FQnFPGPXSpaVHPF/6VupgU+T67ZsmADtuEdXxmDQ/dC7gaHbElxMrDCip/G9ZczEttvPCWXsAroE4EcFnR7XfS6CMUIKndx516SMa5oGW1X4qtY+HDRRC8VesMO/wugeX2pWitEhDVCSuXO/hF1AkMCFkALu4z6+Y1Uo+qHskn2hPd2bAmDkJBJxzshuYcyy5fsYI9pN8rX7rlwlWxrnZJr3QWWo+DkpM1NhqsTvKc4JoXz6HfR5CyfSS4OMRVNnwdd7cofl/dhDwGctgcRNwCdrAykAUidhggCSNUwp34hOmDFzkAqP6vakpmNrNf1gXVm6YaDrHaF32KCZj3RRhhiYnuIUlAk47/EDBGu1wIuxOql8IKQgaSKTcE5xAxHtep/ZQN6IgsttTjM4BHV7GmJKWee08Bp1nVMKasYqS+86ukFHezarOFrMVcA2ov7mxUIwptSS6n2qiiioa30OHxz35xXnM9XuLSvDvBIqjdqkMZZFJVg8VnTtbvqe7eCiBWgUvrIFJwvMiTHc1qTohhqBYQi00Tfa1BrEn1PneaexGNEi5geXBRTlGAOLWl0nQnA4R4xeje8pouZ+0SJ7xEBq8vPH+hQiJptnUz8CMQZGsFVFMGp5St4DaTzVz1uiFtqy7QeG7OIHItEtZ9CYDh/nZNLu5PmAWrnS3FEr1lgh2ntPXQmN1dosxgiD0yDywStwcYqcte3mJVf2zymlNL1JQ5vqWLhQCMzFprGzwcqoHdNA+dFdKs1DH8b0wzmziwgiPrrdsKNJzBl7kgUgPizrPUoNqRnnePY3LsEH7GnJTfF9NxhSYnBTyIJ72vhGwaIEQ4nXloDCuZRaegQaSbgk3eWWDBZ2DiVeXZnCSmYEvGoOvahSSd27RhA+bujpfVJ2t+TWoxaEuq5oGpsFbGu9Kg/coAqAGAAZjBasNH6AyuJ9TxIQTewrV9ZYCVFAD8rHFtFiUsV05+o6OoK6bLGQMV23iQJ57p5C+BsBRhw7GQFKEupzB6aduuSR8feceSvNTR9ycU1VbjtMIBakzXBnBNGpNgghYYv82BDBiADeBkRThOUJPloJBet1jfmgSiBTCDevGpVKnhFwhFtT/TYe3DtQ9PeBX/cuK9Z98TnxiCwERuFN0NTvyZKa9oC9F8n3SvtqnkflKcWR0XKVj5DWQyh+D6M0rS7Bqb2irod+GAjeY+oKU5ViYCHMi+H4aBGVBKV1aFw/43cT+eAuwEj8N3tysIMXdt7JWMPp8RHL5YJL5/FROYtEi2TVYGxFcuxK45UUBeXYjIMZhfI9N8fcpyH3YJbdRtenwC2V/12zpDxcYqBQjGkGM0neIfLLYi3mxAPjjUeAkW5+G+QE9uZ7ksvjPcqq5am/k5JGQoIZ5UoYZfE7333/5zvopUFGKiIWfDL16oacsnhkv7nY+IRyU4rO1OykVU5Bs1qtYfThy68j6T7avcnDRl0QhOAN3tf0zrHddmzo2YaA9UHTiQYtttZUEqs7e7re08WsTiJCFWMURLTgm8HjQ9SyD0IvA+ItGXqjKDGzhaCMv87ZFcaBS25aSQAwXgOQzWBpmiab8TEWMQONrZg1NbOZbpQEcgBq3iisug55VdVT11VOwWmtJWBwQ6e1PhrLcl4zr2J64BAweGqBxmi2qNms4vmq5fFNq3Ud0vulyZd8nBmD9SXtvozIXEhm03HhOB9o2546CBIaYBS0Eav3c9rXuuB08tfWspjVmlzNe9wQYrRlcl8LhBjNqto/ia0uZISCqUESLrLElpmIjWkeKcbTxOxi1ghVZVjOG407MhBWLb1zEVQHnI+B/G7AkHyrx3TGSaisjMXVGsCctIxDTMMKQGOZ2dgVYsesZaiQMkTBeYg+ta8ydcMQXR5dYdEpXENStqgwbpyQeIHOk7SusgUjae+j0JFjphKn1RtknqyAJR7ea58EwKQkB8UGWmru0v2UQ2eQkTSmpbtUdv+SlGhAXyO4tIb0uT4Lz2l1RS4TgUXmKUWfueiemCw2Y3Bw8T6jBM3IvUaBNm3OdnAK4mLlX7FWc6pG/x9bNzmOyYi6OImwk8IVyNY5L/Fzfu4oFI1AKGk1YwyBGMCOazI+O8RzsuCVBH2fhBNhuZgxa5octzYKQmm8kqBFjvkZweaeAFd03n5xMZOvG/l8FgEzSB0tZOqyFMcyAuM+A2PtPxMC1o+8SN2lxqryLhUpLIYyy5BxEK0PeZ4hktcWgRx7FJzHhx7px1oyryKN2vlkAZQ4j8LoCpKOC+icS3NQyBH4+/LjnQ8czwtx/ebQglJjUVDCJcbIGFdqzJjEgH0ZbVTYvUQH5L9pDo7gYrRylG6fo9tpTOHuHKaqqGZLhu3mYEc0dcWD1+6zWM5zls1dq0Xkc1EGTLLaftclsFM2PfG+sV2qhD4/O+V4Mef5840maLEVxtbYmXb4sFkX+/jIiyNzjmsojfv4N7k2SpT3kgIhFBn3Sp5I/nRoghTPSI9Ozye1KyngZS8O5UAHHXpEGuIy1iPV7tDe21FKZLksYSNJ/OE2WBitIHG/kb2L7qRQfHp5/vEzFONL8RU+I/JstZC0ORZ/Y++HAkEGkYhilbuKjIsihBggm4T0xARDyhwVMjo3IphKtf21q3I2gn4YcISchrW2wqyxNJXJJuhAiG4WHW6ocoCmxRGM14rgQYWXrlf3nrSobGLWsU2IYEVjJHRzS8IylMKF9h85L3tyHUrVWJuqxlrRwPpoTk2m8sHF2gspCFN7nuTvnbraGkPbO7qupyJgReM4DEHrcQRYWENtNZ7GGrjeDnzwYs3lRit97ngIxv5P7gE+ZSiQaLkpmFlaZFn4ijN9cJ7Q91DViFWLASa63HkdU4mWBNUyWyrrqSsbs1h5gh/dZFK2GcEiMlqcEoMJccctp3+Ii6cUiFI/mmJsxn1La340VazdYVM6ZktA2HZ9BD89rVNL1jD0OK/MQIvyJUCotRi8qMZZBocIeK+CQx+1SW4wEAYIs5iy2OByBiMY0PgDF8H9q0xdN+T4nTG7T2HdyJ/HjZTEFEXHWg07qVjiLhsVIg9JjH9nw5E8F0YXiIJBR/6Q7pFcn5IgTnFdEnASJXY1WnLJQgCM8WeOuIQoBQR2hYKMgFIsmia3CIEc67brFpaEiLhJxlRDBb4qfts/ru9UVQEZgmakSpmejFX/fd9p+9wQhYFRqEg+zbtt1kb3g9YZscaShKgUPxOCQ6oZQsBTId4xbDcq/ETA7hxxYyUqKCIv8C4LiyEEKmtZzmdUVcxiRRxPxmu9iFYN91FBZSLQEZ9jt9S1YcwqI3H6eR8QE++VBJG0H2dBL80h8tMFYvYsbUuueZOyoeVpp+40KQ7RhxFAhgggnfeZcaXEESl+I9XFMKaYm3FepLlrnSrfRIZRKHtlaQTnY9rklPRDlUgalJsE2CT8cbewt/dTWQJhrFkQ90AvI5hJab20MTtCYw4aNpLdCk0EGmlfSjynkMOL5xbtGSESoYDs5UXBpwDpsKOYCIwWZLUCD2BUkWCcx9QNpqpwri8ernvfyfERTd1kN/cSeGdFSgL2RT8mnloCp1336v0e135rmpqqqjJgsFWtz7QW125jFqwof+Z385qSt0jUo/xvXMdJ+k6F6NL4pXfKvZzBUtpzdleKrqeRp6b/KI9Jkm/Tc5LK8C9JITe/UBqNfSqZF478PyWaoJRtipeQkpdlcH4Y5N46VgCal6GXBhmhmLTZZSRlB4w+86nqYohxFIn5JiHOJK1f4UKQRjEkgTIyzCQcqAw7IvE8kAaMtTRWQAxd79huW/qgGvIQ0xDpxqAacBNrSKiQ4vCuJ1hNtWqNFp6SSvA+FZdJjNwRvABafTqgkRuaGlWF+VGAiY5GIeji85IXhRYTHEhFcLwPMZe8jVp1BUvEdLV9PzBEzXldWYwXzQRbFGwSyZ3C0A3qYxndBGrRMRHvmRktQigidM5xven55HLL01UbN9aQJ/D++k+TVAWKUZtK8OPE1908vntaF8mdaAA703sNA8YEEBu1pjHI0yuYq1OK2vhuahxJAkOppVF3MolzIaXHLF24xrUQctmZjCV2xLmRMaWg/CpaYyTlmJ4DzJnVFc45uk438n4YGGwVHyR5PKuq0n8xs5C1qbCjznGJc74Pnt451lsN9myaGmur0UyMnpc0mq86yNi2XaFYGEFGEphTYclxE4VcAZW0qaSfdNANxMWglrSKXYYs6XcYtVVZcWDGugpxjgmjkD4K5IlPjc1K6yFpr/UH5X0pG1A5t5JAkWTRBDDysSwUMV6D7JznfTHH05qkkDUyECpdCBiFgPh7uVkJUIlaM3wAM58TnMP1LSEB27iohUAqNipGA759zKKDqF1a3xW6rmez7QpgE4HHMBAk1iiJRbeSkkkL+kaXVwwBF3mT8mPvXPZjTkJVXVmaporvFHZ4gABeBPEe71Qpk6wREGsi+XE8IGQBKvW98UbdMjFR4VPAmIJZpjHIsmwJMhPvJGYw25nj+szoqBmBjY+ZzhLg8CPvTWmMfXzHJOgZ2eFnIaSiaxJ7k7HvXmE2Umrtk/tkSoefhOwkUObFJqjgF/tX5Lb7zM6eV3zZqV1gkhIx5PWZmU0xF5IGOwGN7BXgi7T9jJekHavQFcQfCyYWdj7sCO+lfDZmYyoUgflcTXSiqWCH6LlBjhMd/6f9OjiXvRS0MHKab2PsRXKV2mGY6V3yfj22ecf6lx+p53VdR+c89fKEarHEzubgPUO7oVtdMnSbnSETkVhOYbcuW5Irc7vimKdsZEYMTlzmlWkIb8Xs5M5n7/2K7+V1sU1p7HeGrRi7OylNgDFtVby2nBjp1GTNiBYOSeC7fM7enkKam/osXRYFwCguvc0jdu8ln/MqiV4eZMSXSgDDBw+OMXAlhKyJVMF8DNb2ESFWEhALtbVR6xSDOF0RMBUxn7USBYowah5RTUACUWmxVpWhqS11bdmKmpqDg9bH+8dzndcARyHVe1DwIDH1ssQaE5gaEzdB7xxuUO11DiCGOLFMzMmeYkgUnPigG5tuyaP1xkf/Wn0nW2hkNeepuFGKcUPUeA3RxUYEL3HDNTY3IvkJO+/ZblskeCpbURmDCyDR1cqhG+3VZuD5puXJTcu69/RudEPY0YLEOZ1BQ0haU5eZWGJI3oeYFWkEGGTBPmiwd7QIIQZszLsdhrxu/DDErF+zHHeQXPRIDJjoSuBH1wXVcJq8wWZ//izWhB0GUigE4+ZADByPbk4EKizOe4xxDF6tD5URlvOKeVPhvKdttZCgxk1UGWAbiRmFKktd19S2orLJ/zuCCwK1V0tHkzLHxL4evAqoYkaNamL2LqY/fpVp27ZpPykAY7QyekaXH9llqVlOKP4m0DbW5Rld9vK1e/dJZGKVd638bTKzVmF/TAG6479arA397NXCUAipOwCgeF42zEDOCjRuuPG38nMWFMkgJF1Pvna3fyABrqKjYOSfkqx3e24NoqmSKyv0sfy0oIoNLxbvVFng+pYw9OP4DGMDpNJCmyEFeYbAtu1ZrddAyDF2XdczuCjYeB+rt/daYCsE7HyJ77Y43yNNQxgcwfWZVyfeEqLwLEBtNcOhj4s7WXpKZp0svyFusD4ErBsrhad/oyvIblpOtTDEWLg8wXYFGkpZk9227swHSa8f+dpOW5VSFjYXrR/9MLrOJo109tTO2qZRwCXWZygF39TOEDMjvqo0Frsdq80n5ZAUPEVyHyXhK4yudnEO78lit78kmS8BAzcqFINE8BsFtnE+xGti7nKVEUUT4GSAEe/BOERjLBqjRr5YyNn1pmhi3h339u4dhVxsjxWQCDAkol3XdwzthjB0xd30znVdc3p8RF3FGMrU9kKBkTLllTLa+MzRpTDJd7vuhbcF2bquWS6X6mYtgutahu2G7dVzXN+iFb9T+md9r7quNV1+zuyYmH5aH+mN1NqhNTVCjBXVdu6EKEnZ43fRaMVI45nczEcrhjIEBTdJsXj3HUfSMR//z948ji2QXWv6Z99v9/3SHAtwEGDcdW357WUVFS8NMjIDE8kMECGmSdXBSJV3U2Vu1diooC3Rrz4F2ErMvOLjbulycYEINEQ3Y0mgziRgAamKdZoBRtR/sKkr6trSboP6r+fMJ9E3Mg6b+tzHBRWRvxGJvtgWayus1Uwlznv6ztD33WjmjBOqDFgXIWu/TGIw8em7i2v05Q5eg3udj1opD6Ea/c4zsyBqtqKbhQRlbun9nQ/crFu221a15iYVznKa+jYE2mHgsu15vulY9Y4hC0+jRizNoKxlK/aoBIhgF5Qn5p2CnovbaG+nzc87iBW/VVMcGXdVKdAjjXW5MSZBK22e2gdORqFh5OrpHEipBrIgm6ZV8Xfk0iHOS5OWsQpjKQtQgOBUI1iJYBp196pthQvQDwFPyzCMjC8BjdoYzRhlJAp3Y7tEBFPXGiCT+iJen8C8i5XL9RotEtcX1U5fRdq0/S1GVo7TzsE8tMoExgBDcgYnWwiDSbuWXRWzqD7O2fSYtEGmRAxpgwo5E8iYFpa4SY7u1CWYiCApBrEnMB7CHrDY+Rx2/mZEn+4dT0y/HeL742wfBUiRmNUv+6KTf4ssNK7JQzJV0urrhd5rilixDcYaXHejAlXd4PuuaEjcjsXGNLeRr4rQO8dqvVUrXhTe+95p/j7v8H2X47RElOfRd8SADjTwKsQGa+tNVEypsDym1NXxcdlikATx1H+CxmAly0Afs32Z2BkqdIadQH1bfPbOx7lSpB2W0UWjFLIyzytHoBAwssAbFUwBchrNNByawEAtH7nifB8LU/qx5lOa8+NeMQaJJmVQjm+Kz/chpe5+NSn1n35Wd6lkydi38uWRiILxXetp50teX3GVJUtGARCym0xK0cOoSd4RdIt1WF6/K72O+62eWPKp4rT9aZUYS97j0jiHW/1QV5avvH7G1brl0dWatW9xxqjFst3g+m5kWAIihjdev89XvvI2zaxR5WsJtsr3yeuBctvObRv52a5MkfbDsn/Oz8945437fPiDT+jXlb6DGzC2ojk+Q2xNf3NJGFrms4Zf/ObX+Pu/9evcu3eWZaIMDQqEoUtyHEcY3d/KPUF21jYJPe2N1zgupQKHol/UaiZ7QyYZNByGGuHgLyUe3pkP8XSdc7vWjFvn5edK5pkU/CYDjyQDHWjZHR8+l34GkLH7yID6GacxULdD1bjkOgsBLWoXBInascoaUpXqhOYhobJYAM4JA+P+MoquUSAUm4MCUwo/I6JVmmv1y3XJLOk0B7zE7EUiWjdixIklOyHfK/nT26AbQArES1aJSiySsgLkTSVtiLIzL0vBQ/vJIZJ8bxVkQEKlVQZRadPxUYhJwoGEmH8d1eSsNx1XV2vEB+raFH0ZM3fhuel6Ht5sWQ8j8Epa/uTbO87Lgjmwj5aLzxEU3hLci28hBHAOqTTfPYL6giamFfPtU4Vs7dhhPSXjTJ3qVGDIbZBR2MkWsUAB1PzI3GQ0+Y7uLjFnfZEVykisAROzPaV3NGiGKAgsZjXbeUMfNbO+iJkQRqBio1tI0n4TiMXBLLaqssCchCUVWh3DIDg3kITlgfBKCwcAXa9pSZX/jzMurbtd4Xj3t+RWmAr2aRVtKfpPY52S4KXXRiE23itjWOIY5HtEhykhV+mFlLKY7LqSNYZRy+xdoVjxmqEtCYylIjmvpZLfxIaMotC45rMgmgTgvf7KlPclyXw4VTFPYCP9y5ETe4Au39UHRCqMNYQo4BoCBK/pUbXTMFUTU3QPaW9Va0MeA02R6QbPpm1ZzBp8HLvBq5U7ZfUjBLzrsXWDBK04juvVTcu7PE88Ibu0Rc6n6zolk4BxbIr6TGVFdOMkWwXG1La7QpM1PoJWj00WSGuw1mO91WPG7masMoLBFB1ZDvCowQz4Yg6RM6l5PwKOpPDxYZx3mknNawKI6DJV+sTro4qaM2mepH2nSKQwPvPV5SPJ/bh0l9r/l9bOy4OL/XPGxRtIAmfSdMZ/GbXHOCbSvjKuOR1/icLgGJy/IyGExJcSQ1BhUX8qtemZi+28QtpnSxfUEnAQYNZU/N1f/jJfev2cP/nxp/z44yesxMHK0voBE7QiubWW11+7x3K54Nd/+Vu8+cbrOU5QEshgFMhhBFX7ev8da0rJeOO7HhJTj4+W/Novfp3rdceGhuerlk1nqKoa/JxOBLYrCAPf+Mo7/K//V/+Eb33jaxyfHOX2ZJmy/F8IOT4ip7GP8meKk9kBUEWbpPibQUT6m8YzWbTIImDx+9hXHLjvzmDmpTvG3+ilJQAJI2BK7xP/jkBDirN3Zbbselzuv+HAuZmv7jdy/9Nnk4SXs7dMNNFEE0000UQTTTTRRBO9FL26ybInmmiiiSaaaKKJJppoop9LmkDGRBNNNNFEE0000UQTTfSF0gQyJppoookmmmiiiSaaaKIvlCaQMdFEE0000UQTTTTRRBN9oTSBjIkmmmiiiSaaaKKJJproC6UJZEw00UQTTTTRRBNNNNFEXyhNIGOiiSaaaKKJJppoookm+kJpAhkTTTTRRBNNNNFEE0000RdKE8iYaKKJJppoookmmmiiib5QmkDGRBNNNNFEE0000UQTTfSF0gQyJppoookmmmiiiSaaaKIvlCaQMdFEE0000UQTTTTRRBN9oTSBjIkmmmiiiSaaaKKJJproC6UJZEw00UQTTTTRRBNNNNFEXyhNIGOiiSaaaKKJJppoookm+kJpAhkTTTTRRBNNNNFEE0000RdKE8iYaKKJJppoookmmmiiib5QmkDGRBNNNNFEE0000UQTTfSF0gQyJppoookmmmiiiSaaaKIvlCaQMdFEE0000UQTTTTRRBN9oTSBjIkmmmiiiSaaaKKJJproC6UJZEw00UQTTTTRRBNNNNFEXyhNIGOiiSaaaKKJJppoookm+kJpAhkTTTTRRBNNNNFEE0000RdKE8j4Hznd3Nzwn/6n/yn/5J/8E+7fv4+I8F/8F//FX3ezJppooleEJh4y0UQT/VVp4iN/M2kCGf8jp6dPn/Kf/Wf/Ge+++y6/+Zu/+dfdnIkmmugVo4mHTDTRRH9VmvjI30yq/robMNG/W3r77bf59NNPeeutt/jDP/xDfvu3f/uvu0kTTTTRK0QTD5looon+qjTxkb+ZNFky/kdOs9mMt95666+7GRNNNNErShMPmWiiif6qNPGRv5k0gYyJJppoookmmmiiiSaa6AulCWRMNNFEE0000UQTTTTRRF8oTSBjookmmmiiiSaaaKKJJvpCaQIZE0000UQTTTTRRBNNNNEXShPImGiiiSaaaKKJJppooom+UJpAxkQTTTTRRBNNNNFEE030hdIEMiaaaKKJJppoookmmmiiL5SmYnx/A+g//8//cy4uLvjkk08A+Kf/9J/y0UcfAfCf/Cf/CWdnZ3+dzZtoool+zmniIRNNNNFflSY+8jePJIQQ/robMdG/W/r617/O+++/f/C39957j69//ev//23QRBNN9ErRxEMmmmiivypNfORvHk0gY6KJJppoookmmmiiiSb6QmmKyZhoookmmmiiiSaaaKKJvlCaQMZEE0000UQTTTTRRBNN9IXSBDImmmiiiSaaaKKJJppooi+UJpAx0UQTTTTRRBNNNNFEE32hNIGMiSaaaKKJJppoookmmugLpQlkTDTRRBNNNNFEE0000URfKE0gY6KJJppoookmmmiiiSb6QumlK37/V98HAgQgSDy4V2EjHxb9SQ4cJyiyCemH4h6hPD9+kXhxCLuPC/vPL+8j7NKhSiBh99z9U+SO6iHp/VMb86Pu6JOyCokECNse8/AjbL/G13PcfIlbHBOaBWKtvnAA8QG8Q0LQ/jQGrEXM+KxQ3LdsQ9n3xLZWQCVgBCqjf60B76Hz4AIMDjzginez8X6uuG9CprbolAD4oNeHwXG+/oh7XGCCo+82LNiwrAZOT+bcOz9lee8cc3oGs2OQJt69j3cvpmUYgEGfJqk1RSfoiIwtC07vI3W8VvQzxaQIAYKH7QbWK+i34AaoKpjNoV7ovYYhni/gHP7yimHTgm0IBIahw3uHHxzeB4YgDB66wXHddrzoDNey5MYc0ZkGYwwIVMYwn8+oKssweLphgBCwxlBVFiOCMQYrUNkKayswOiAiwu/8iuVVpf/j/+tdTOIPcUgE8BIIHggyLiERjAjWGqw1NNYyayqqymKtxYjJNwg+4LzHA0YMtbVUlaGyOld0fupc0dmi/wGIEawYfVZl4r0Fa/Wfjoc+xw2Btg94r600Ru8xDJ6hd7jgCYH4+7gwjRFE9D0EQeJYGv2AMVCZ8TmJb0jsJzF6zHmdqs4FnAv02y3r7/x3nHz//8JJvWYI2rbBBVx8J0SwVYMPqW/ASiD4gEnLwgdEPPhAN3iuT/821T/633P05S9r22xsF7p00ooTE/m9U55SV7pM41TX1SpgLeB1iQX0PdoW+n73/bTv4rubyKMib3JOeVdllV95D8bGcxy0HXSxHSHo9U2jz1xEFjO4se39oPcWo+1oO9h0sOn13zbyQxtgZqAx2tY6sqdNB+tBudMOnyfy+vgZiXwxdkje+wpK58O4NgJ370PFEhkvuv1R+fjeXpfof/fbn33vn1f6P39X/5Zr5KB8UHzIq/FAf6bjsn+N7I5rorT3Z1ko3BJlxj7fP87eOLN7IBR/96/7XDog94QDP5XH7pxeO0LE59POc4o+kTj3yzbst+WQ6LRzLO0TB+b4ndfvj4nsvfcdcueh177VrrvWGof79FD70vMP9f/O+WGvPZ/RuPzsAw/cv0ziPqif9cr07uHQmUHPCzs3Fv4Pv3PgBfbopUFGaunBebc3gOXfQ8eE3Q5JzHR/UpSDfruTyGCGMDLl3RPix+Jzef/ytEPvdfC3sg8+YxEmIJUYu8Q2sqgJX/06fWqYjIJ8mvw6kYUg1a2+2n2JuPDiSft9tTOpJYIHdIMOqGCQJrshgoYQ+1XGjW+/D1Kfp/spg9/ljC9mb3A53MMNPd60VP0NdXvD/fUNX+8u+Op8TnN8inhPMAP0GyT0UM9AXGyNAA4FC7G/dLuOLTbxuwfq4pw4rTO42N/RRa9dLKGZwXYN2xuwFcyXEIxKHniVbPwQJR8HodexDIL1sS3WUjUVlQ94hDmG+dJzPHhuusCLbsOVCOboDFtX1FVF01SA0PYD6zX0w4A10NSWulJBujIqJBoBsYKpGDn2K0rOO1ycUFnAjZPY+5DnUghCiOxPRIXyjRHsRrDGZKFdCkFA64oarBHqytLUFU1dYa1F0sMERExmmiKCCQYxClCc9xgzENDnWKMAAQMhCM55nPPxeYnxjpKjNQZbmdwe7xUMeB/w3jE4p2BK9FojghjBWAVEldV38l6BShI4jQjBw+A8zsf7hYBz4M6+zNDcx7ChEqEPQTUKPuj7WYvHRH4Z9PrgMAR9thiMMQQRPAEPDNUZwczYdgExChqsEaoSQMS5aE3kKR6cD8o3rI6vD7qcVjeOm6sVIkLVzKibmtlMmDUQRFT4D3q+cwoeRKCqI5vsFBRse6DT5xqrXMJ55WX9ENi2CvwqA3Wt2Dw41RcYE0GaV1AS4jwMTkEGHo5mep1bQesiXxQFGJUZhfqAAjST0QC7Aq2Mn8u/h6SQfSCxs1/K7vFDwvOOkinto+nzzyAoviqU9/M9YbYU0PMeGPdrT9zP9jayvGeW41fIBqVsYyiE071z8p9DUn06tCcwGvbmh4xtSu9ZjvetPVi4pWDcfeBhofig+0r57PJ9yuftP+rQO+4/m9t/988/JPftNevWDfIUCLfvv/8OB7vo0A/7Av3+s9Kpe7LWzvLdl2PvoH0lwqE27q//z77h3e0/9GwStEgycnHlvvwohTAuxdmf946JXhpkyIG7Zo3+XuMOTcKdYwXzy4tMbuundwbswIzfn9BZe5QmWCGAlMwiLzwZF92+xiIxmv0FuT8At47vnSDsDbwAVm71ZzonPa8EJwdl5Lvea4/Sb8nKMITbbcrXH+jXfQ1dZsQhIuGgGlHvHMH1eNfj3aDfQyB4TwgeLwuwM678CcPFY2az57xdWcxiSxh6pFtjlws4OgaJVgtbxx0iqLQA6JQtR8XsfRcKG8sdvULsRFHJ4ehUVZ5dGydireriEFRSGgYYeqQyVI1h6FvE1NTzGnEDSI2ZLTBVjRsGRCydg8Y5jhyctI5nNxsu18/pZ0cM8wXee5xToVMQFrMGMaJWjlnFbGbiOAk2vmLw/KxqgZ87Ct6RJq2PE84nfBrVkZ5AiOcoP1SmZoDBRKFcQIyCBJ1nIDKywCSYW2sUlMTxFiNYa6mqSi1H1mLNCPO1RQpyTDxfJDE62VkbEn9P9zUiWAyuGxSM+IB30cISQYFuLKLvVP4zki1YGWSEQMATgsS1KfhoKUnaiBDAnb7B5vgX8NcPVfCOi1bwiOj7iQjOOYKB3jmMd1HHYcAExCrIaIeOlbOsj79KTcOwdrlNNloG1LqjSyPzKw9dH2ivOy5eXHPx/AluGAgBnj75mJ/+5F0ef/oJxhhOzs55/a2v8rWvf5MvfeVrnN07o5nPEaNmkcTLTdQfGKMAo2v1L4AUAr/3IT+/HwLzmaGeCzZaOQYPNyvtqy4ZN9HfArq8+0Hfoa4V2Cxm0A7QR02K8ySdED6ClsGPQOWQpurOTXjcs/cP53scuN3uMfmM+8f+S5r40mJ4S9n2KpLs/Bn7JOzJJEWHmWK/L3/bkTP2N8XiXvm8zxIwGQ9mYBIKTf6BcaB8bnH/vVe9e7w/Q6q8JZNwu8/Kd9jpu0I2OnTfUua41Q/78sredbldhXyXZJpQmKeSrdmXstAdL1nKdHc0g3RKulcJJm+Nf3Fevlc5TsU5JVhMPPnW3LyLyn4Oh8c+7H3e+W1vzPbvfdfXnX7f/z0cfubtdXeIS92mlxZZquhakyck4+DsT7L8PX6Q/R/GPXsHzaV7UVxfPi99KBdifuGCmZbK3p1z99pSTu67zjv0fqlt5aAcfMf94/uf9ybtwUE/MFFC2Yf7FHb7Ji2+0jyX73HgfhLfvxyMAOAZQYN3eJf+9gTv8j+SS0oI+KIxEgeoNw2fhtfg6QuuusfM7cBMBu6dHXFUCVI3Ci7w0R+iGIHcQYc6867vL0Ei0Cz0uc5FH4pichoLZtBFJUJVW6gbTD3HeE8Qg1QzsDWmavDOYYKnsRY7qAsKi4pm0/HiZs3zy5q+PiZEDXvTVFSVutF0fU/AY6RR1ykTbTXRPUbH7dV1lxIZrQBqrQiRr4QMNEJUw4Z0ouh240HXiicK5IKYoJr1aGlQkFIsZp+E1gQgdKKLgAlWQUY1ujCNC1A1/GpVqqOgHUEH0QIhAfEBMYbgEjjSNaJWmfh+AYiWGe0DE//ZaFQb24hDgVOc7yFu88liEjDEFaaulICfn7F+/TdYX36HY7NCnxSorCHEKw0eB3jvwCtQMaiALgKDd7hg6IbAtX2b/o1fRqTC9Q5jfHxfoXcK3Cor2VIgQ2Cz7vnwgw9590//mD/9o9/j/Z+8S9tuqSqLiKeuK+bLJU014+Enwg+//13+ta04OX+dL3/9l/mlX//3eOtLX+P49Iy6ttFSpa5RCXR1XbRaxGFM5B0MLqiVKPIdHyyDg7YTnFdQ4CJLId43etKN7lgROFRe+2ZmFXi4AG1QIJKmx+Alg2PitNnXcpf7wkEB5rPWyd73z5Cv7r5RIUhnd6zE019hlFHJaL9OdGtPTELknmB0Jwm3lGzlcMYlvPN72jt35IFC7grcIajHth0cgkKO2TlcNKZ0rcvtueMFP3Pe7J+0J6/dEkpl7905fO5+P5XPSTzHDwN928LQYps5drbQ927XhGGLLM4U7ZvdeX7XOMqBxqTxufUeBxq3IysdesHyxP2voRiDA9fsWCv2+nhnfO54v8+VdpL8uC87FnQIvNy6V2qn7LbvLyFR7dBLg4zTGbT96L+fGpBeMC/E/YYdYq7FS+zopCVOwqJH0n09u52TnGZSJ5t4vaBuPOl3gopkNgoWLozuQpkp3GrgHQNRTqaibQeBwV1MXIqfw+6xdOn+Qs7/wuEBN8V4ZBBBwDvoW0fbbmjbDUO7wTuHd46+b/HeY0XdkpLGtm5mNIslzXzJrGkwRhRAJJ+E4AguuX0kVV56kSgqBiFIyFoJKTsMYcuCj3zF0xdb5mHFl2cr5vPArHdUbQs1iK3JDur7ppt/V2QrBRQuTnQ/QN+qZOIGwCNNrZrtagZVg9QzJEQpRQIhOPAOy0DoA5UYfOiYhR4qh1QdoVvzbHvDjV1i5ke0w8B622GMie46ws26YlbXOe5ANdqxT795799dH/w7JnXTUdcfn9ZCXI8+JBBVLJ4QgQdSrDfBo6rlhEGNUSYgIiqs5+slukoIO3cOUeAWUa04o8Uiw5EQY2NsFd2ZaqqqUpcfU2GtwVgTrxM8om5J6Q5iFFzHdozz2BCSFUYkWnHl9gzfmeoxjiOkdZ7aqGvFfelXuX7/y8z7H2BNnCcCxJiG5PbjXECCj8KnRDcnBy7Qh8Cmq+i//Pep3viarkFRyOJj/IjzY9yWxm4Fbq7W/Nvv/AHf/hf/D773J/+Kj3/6fYaho6pnnN9/wP3XHjBfzFgsjgjBZZB1c/2CD9//IX/6R7/HH/3Bv+TX/u4/4jf/wX/EO1/9JnVt1LozFD0QdM74sMt2gqBAzVSEEOiDMPQaLyHZ1LL7V2LsRooPcrps9aXiM9M+kYTZFKtWCiKJ/2eLRjG/9veOHdpnaWH30P5ldwkfYf/Ez6DP2pZeJTqyGi/TJyARBfND6ycLjuUWdJfkJONPdwnQ+x24LwDeEh73DuzLC4FRuMvPD3u/F/dJwuRdgmL5bLnj91vzYHd73r1v2D1W9s8tzxO53R+7wm3A9Y7u+Sesn37A0K7xw4bm6B7L175OEPDXn2C6K+xrv0h9/g40TebP++BgR36T2+07BCZuvfahdXnoc/k+e++5L+/u9MnLApXyZnefmhuR27E3PneRiSeUyuVbtL9GSOuqeOBfgoO8NMg4n0Nfx2C3fmT0w/5jD3RgWhhlh+8whL1JvL8whUJ3K+MED0VHlJ1iigYZiUF7Vu/Te9g46PY3nc95f9k7qVzkd14r40QzsIuoQvF7cb5J5+4Bh/K8MiAtCRyheJ8QYHWz4sOf/IDH7/+Q9eVDhu0V7fYG13d0bavCsMAwDNR1jRiDMRVVPaOZHzE/uc/J+Rvce/A2p/deYz4/oq5rbKUjEby6SY0PTW0ZNdWQhKKkpx7fsw+WQY5YyZJNf0L7+JpvDGteOw8sjgJmphpiqrqQKBwEe0AKOzTxP29E7yBBwYYdFGy0G9QXJzplBxRgzBaA1XPjy4ZhANcRBodvN4TBgamoBYLpsMYrNgmBxq94uLrgcntKvzyHqkZQFx0ENm2HTVH+5aoPAbj3l3u3nwPath4rpRZY566JAUE+yC1GmEc5WrFCtpbJXohKyPEb6V+5I6c1PAawSc4BYJCo+YxwJk65wQn0vQIBMdm9ySBgzLhubIOtasRWGFvpX6PPV/ak1hIiXJL0noIK8rd4i+zyHMlHdt9YAGsx99/k5u1/wNF773Mka6wZmaJEk6ohqOUtOAVCCcBG5twPgfXRLyC/9DvYk3s5yUR2bY3MLgEjNwSePX3Gd37/d/mDf/Z/5cOffp/HDz/EtWtsM+fk9JTT01NOT89YHB3R1Ia6njMMA30/YI3h6OiYixfP+MF3f4+f/ujP+It3v8vv/Mf/G37pb/0WR8eLHFif3zfzmWJPKXb2EKXNvL9E7VTJH8u/afP1hcAa3C6PLf39cz/sU7FM97DDoVN3/n4mxZvcFtgOnva5ckB+9l+SPf480LxSt18fAe++cC7FsfEAuR99+e5FX5W8xPAZ/f1ZY3JARkh7fTo/tfXgmBVz7RDQKd9tR+kY778fslfKQqVsleWy8iEHPu/Ev+z3w4H3vRUjEgDn1VraDaw//QGXP/n/Qvucarak3VyzfdRz88ECW8+YsWKxOMEeP4DhXG8wm2nel7KNaZ3tKxHubt5teT8Kkrdcwg+ce2i97XwJdzyraOv+s0vZMct4e/1czqH9V3wZPpIU+qH4ftd7jO0JkWeODlES9w8rIKh13r2kjPXSIMMHNS/PK23D4Efzc8o8lBu9N5HzgjwwUfN1e5146/wDnLv0cSwHyMg42SsDdcxSQhi1VzZtVukeYffeuw3ZXcyH0OZnbQD7z0iDlhkOu/dP755cGmA80TNaeryDbdtydXHB+vqS4D22nuGc44ff/Ve8929/FzOsWSzn4AZ88AyuZ+gHfIB2u9HJK0LfdyyXS2zVkB15TcXx6QNO773F8vQB56+/xfmDtzk+Oadu5hgTAYeEDHZ2x6qEFrc7LQl667DgR13N80cr3r5c8c7ZhvPjmuXZKdXREVLVimbNADZKDbYmB2cDWVpE9Li8RFzGQYqctWoUQMAY9mFrlYbrmf7LO1yUTIYtvluD84S+i7ugIwSwYUDEa8aieUVlhLmFRzdXPL1u2S7u4eoZXlQYDSIM8d1Ky99nShCvAPVO3XYkWxDQee1Dni+BXaCRgJcQdgBE8Lpy1PUqFAJoGNcZygxSsBskQXW0goC6WCU//12bgl4fguDDqCUIQfA+MWENQlf3LYOtaqp6hqkbPS4GYy22qmN8BPn+iamPua7K47vfdmfx3pyuZ4R3fo31p19mMfwYmzYKQDBRIAkYCTvxBSa+9OAC63BM95V/n+qNr+jOsGeizcHMUTp58ewFf/g//DO+83v/lA9/+i6PPvmAzXrFbDbj/N59Xnv9Tc7vPWCxmFM1M7XUOYdzA37oo1VDWCyWtO2W64vH/PHv/ddcvXjK//Q//t/yW//+f8jZ+REpJieNnfZYsRL2N2AZz5Gw97sUQoVEq3whBCQ3lrQ3ZEPUvrC2T3tCxv4ml+596Jyd/aPcb+TAsb13PyQI7Qg4e/fdP/wqUsr6pYLPKJQfEtBuCXeMiVb2x3H/XgfllPIBn/OcPP+EnblanijxnH0lw47LN7cpa6bL82RXQZmO3aJiosihCbR/77223QLZUsgp5W8+4LYt/vIR4js2mzUvfvJtNk++x/FCWDZzFgvLZrPF+Y7N5Za1a7mZnXE6+xH1dgP1Mcu3f4n6aJH7Psl6cuCZh8biQHPzSYE9Nrcnq94l2OcfI48oFd37cUEixXjuLdxb6/jAGr3FO8r27r37Pskd55R9lLZBm0GEWgk1ejJQEWhMYGaEphJcCGz7QO9LW9bd9NIg48VmvF0CF/upyeAAI2V34Pc3gzTgyWy9s2gOSO6W3fSI6W9M+JJdpkL8bONG4gY9llzks3YuPUfYmVy3NoOw+xX22rr/bsXx/C+2Z2Z10+rD6Hom4fY16aYG1Ofcp3SJgXY78PjTT/jR977De+/+Gx59+AP6wVPVM2xVsX72AbX1nJ2dUluHGxyBQD90OOdot1turq/ou06zz/jAzWXFfL7EVlYDSp3j5uIpl08/ZnCOen7E8dmbvPGlb/H6O9/k9Xe+yuLotNA2hluTNw1wCGHst7D3uwhDsDwJJ1ytZzxaX/PAvuCts0se3D/m6PQUYyxiDNLMwVZIM1MrB26MHDaxY1PK17h0xl2+3D0+Z3HYCk7OdRJtrxV0zJZgokuVSfm4RCNSTYChQ3wHIoj1mjkLdSuzRrC20cxEBqSe08znzGYbjm42PNo+5dKd0M+O9L4FZyhBhhycZa8OheBzppecgS3uGtneFUJ2cRJREGsKtJ3cU0qttYKAdIq66+n1QTX5aVeWBGJCTl6QLjNexr6Oz/A5zZrBmDDGbcTfUmwJwet1BqTrENnoosWoDcNamtmcZr6I2a4MxlaY+FnE5I06KyDi+k9uUvJZoy8Qzt9ic/4t2icfUpshzpkkRYeRaQdyMgUfFHRsemF19suEr/0dZN4QkFsuqnkTDYHNuuM7f/B7/Mm3/xuunn1Ku13hvOq2lkfHvPbaA958823mi6UGq7uBbbdlcMqL1utr+rajH3rcMLCYLxi6juurF/zo3/5LNpsVwVT89u/8YxbL6KJYjNU4ofY+Fgwo+8t/1rl7P+3vQZ/1+dCedmhv2Bd+D9GOIPI5e1D+WD78gIB41570qlNXplCOx/wdezTl4b3+upVtqqB8anl++buM28n+89JD9+WJpLvL/OXQdeU7fcZvibJHx347DgiW+wJmKUinvrxLhtn/Lgeu3W18wPcD7ad/Qfvh7zG0Vzg3ULsbmIMfWtwQaGZzlssZXjSle7v1OL9h+/TPuX70Qzj6CvXZm9TLRQ7H/Kx5XZYXKBtcxiQdSqazv472ZZhb67ycO3v32u9LoQCwMl4PhVs/45gcuu0+X7krIL88aff6kHWl6doU12SJivh4oQ8Sww88VgKNeOZWWNQGW8G61fMr8Xe0ZJdeGmSso19U6vQUhLkzNvsTe+974G4EvjNOhxgnUAvMrQrpgppMuxis52UcsErQXPBmtFxg4rl9vHV8hi2ecZfZ7FZbSsaxc1JxPJ6TgE46pzGwrLQf1gNsI+hJevekHE9MKfV1usXgPJfPL/jRn/8RP/yTf8lP3/3XPP7kp1w8f8J2syaEQGUrlosZD+4/YCEDS6Paym274erygs1mDWiQ8Xq9wg091laqhbUVi6OTGNTtCD6wODpisTzi4tlDnj38gGcP3+Onf/E69974Gl//pd/kzS99leXxqfqnx0miCz2JRTnkda+zRk/7xLQ6qXkazrkc5jx5fMUbF0948+wFp8cL5osls9mCqtZsTtT1qKEWqxMkBPA9SB8Rp9Ek/SGa4AiM6XE/h4yFk3swX8T7VDrRhl6duImcxscoIOO11okP2MpiRRh6/c1WM6SaYbxQIdQIi6pmsTzi6KRjcXHDpxeXPHcdbXOCtzW+6LWxta+22NBv/WiBNLdnRHpRE4OsNA0s+MLHIQ2rpNohYRxZ7wV8FP7jnSXuOsl6cnDTIAaMC6QkBcGDGyQKBx5jJQeZG5swrVo0vJM857UtLmeEGgLghKHfsF1fqpuVGKypMU1DM5szm82pbJ1jNXKMRnb/Gluc3bnSRp9+WpywffO3uHn6J8z9U5qItV0IeO8161vqB4AQGJynHQI38ib9N/8x9Wtv4dOz02aVNuZ4rO087/7b7/Kv/z//Fe3VQ+aLOYvlksWsoXIdy8aynNXMKqG2wnbbstluuLm64fr6Usc0BNrtFkIgBI+xmoK6aeZsNyve+7P/gX8GLE/O+I2//+8xn1W39o2dzZmCf+8JEYdWzK37hPHzIZ6+f235qLIRdwo/3OY4ud3F9/Ket+4lt88t73lr2yxumAWYsHvuq0g29UMhN4RwW2DbBwY2ykN90kvtySdJ+bGzv+8JhSXjkCg5HppLSVFQ9vctq0L67RA/kj0vhr3Hl/Pp1n335bC9n/bHPis3wu173SGK7RxM99S/AYlFt7aXj/n0p99DHv85vr/g9HhBPZtT1x67OKKqhDC0zOsZPmzBOGZLQwjCxcWnXKwDTWc5vr5gfv4GUiXr84HFvS/o752y05/7vnAcACflS6W+KS87JLOW87Fo0q21Wvx4oCnjHDpwPI/V3nXl99LDR/8GBRISdjICDgEcgZrkCqVXDCgwaCRQm0AlKkKJBNygXgcmdcpL0EuDjHDgS0Zmewuz/HDLpenAOWmhHljH+bsRBRfzKoKGoC5PVtSsk5TplUQgUqmrlDXjgjdoWkJX3Ddv1Hu7wM5rFY0p25gmSJmizsQ2JKaXv8djDgUXlqJeRWpffGDaMMeFCyEEurbn4Ucf8IPv/Et++uff5uLJh2xvXuD6VjMaSWBRwWljOK8HXnfPONu0LOuObn5G227ZXl+yXt3gctYeQwiB7WaNBtIa2u2Guq5zwbG227DdbqhshQ8rhr5DgI+unvPJT7/Pl77xa/zS3/p7vPWlr1E3DWQhJYyLu5BSxv4PpGoIUnxHYLBznkvNTbfg4skL3lxd89Z9z9HS08znVM7RNAvt9LqJFbpczEtZmNpMBBQm5q5UKZKXoqQ6aZY6Csktyg3gWrSehoVuA5sbZOi08pcXKlsRhgFjqpjBxxJEME1NkIrKWIKpESzGVDTNgpOTcx4+v+LxdsWFm+GrWe6h0Rz9KosHEFIlt7RBl+svzfm9IdJ0tiGDEg/qa1+krdXz4v+zpUGHCyQCh1FIL4tajvtWGIUTE92v8gEhBIn1Fva21WRxCbIDiGwEI6k4nU4hIQw6pkPYQmtoVxXb2YyqniPWYozFiI0uVlYVAAlwimpOjOiqUcExzlNr8W/9Ijcf/gaLZ/8cwWGNiUK9ZwiaTpcAXoTgAu3gWA0Nq2/+z6i+/reQph4F9iT8xC6VoHUwHn36kH/zz/8pm4uHnJwcIRI4Pztjtr3i7Mjz4BhO6w2zsGLTe7bbFZvLKy4vr7i+vtZUugF8ynJlBB/WWGsj4DC4rueDd7/Nv/in/yfO77/ON37pW7GQYTnWuxtx1i6XJ5Rz74CEtZMR6rOARfz9LkDwWZfvA5FbJLeXdbZi3d2kW/fcadO+oJzu9Tnv+SrQwoyrL8kGAa1r4tJcFd3/F01chwZOFsoTnl6pNnbwo9wRyv4pKMslxfhLORfkdpemW9xyeSrlJrhlRcnnlMcPyCX5895kTGs1fblr7uyJbPk5WVaTfCj3cXn+/vzaaZcHWV/hLj/k8v13ufzwj2gvH3M8h+NljevWuEF3tWa24PjonKauuLq+wruO3gWMVJyeLGhdy9WLD3n2wV8wnx9TN3Nm5/eoZ3Z81z3B8q6xuNUXaU1Icfk+UJCiDw7MC9n7sv+MUPbpgQvvwEefOW53/X4ok6nE4xVafNXEDIwDaLKaCDCSot0QdK0Ej/NCJYKVqFgjJgkJYJOy7iXpZy7Gd4hBlYGB5UQsTYP6EreZ+s6iufVh9/fekyPNS1NfMGPAtBFd3NthfH6IAscQiixV+5tG0Z60iHLWpuKlyoEuLTBJSNrR+sVry9oUPkAbEYTzqZJt0PaLJ1gDXtS9KYRY2CvQti0f/PB7fP/f/PdcPvox/fpCsxhZdQc6qg1vn53wxgzOmorzheWksTSVUFdXBOk4rgw3dKy9Q9zAMAw4U6vwawx93zH4QOVrhqFXgSao5nPoe5rZHEFot1uqqmI2P2Z1/YJ3Xzzkyac/4bf+4f+cr37zV5gvl4iYYjx1908xG0Uy0ZihIqUvJVZlji5xRuiaI576htVmxebpirdOrjg96Tk6OsaaSt2oZECqSneTulbJsg9jVa/MBfa59/4M+yxKKzdEkOFHH7xuo1XDCWBniBhC8OoSNJ9hgmjaUCxSL0jLzqMgr6oqau+omhliKmbXK+z1hmddoLUNiMkWrlddQACvYKHS+AAkav79uNGngLO0w4domcAVQhPpQ7ZXICbFbMTUtiG6NPnyojQb0s1Hi4EChtiWQe+pJ2vGLyMm85IQnx+CZpDS+n4B7yUW3xNVfkQcakya0xoQEbz+w6iFYVh3wErXHEUcR60pdEEZmxiDqSvqSgPNq6bGWHXJApCjM/w7f4erh7+P8S9YzjX9bopb0UJ+2uHd4Fn3hnX9OvLGL2IWR3cK0cSe3m5b3v3uv+a9P/82J8uKuqmpjOHkaMmb9475W8cV92aGo/mAqZ9zY475vm+5vH7OcL3Cdx1djAnzQdP92srivUfEUFe1giwz4IaO9773+3z3D/45r7/1Nmf3jrJUcGhjTntOGRC7I3CUfHnvur0XvUWloBX2ziv3rUPZWw4Jr58lMKR77/xWsJ9b18U95xBHOzieL8vyfk7puNn1cc/vHtTQXBtoKjhewr0jrdBuRfU/vdckMJc3msRmcFolPtVDMaLgJFWNH+J6L7NVpnOc1/vdcssrxqoEp3ey7z2peD+ge/+cfdeb8uM+QEg/lkJuKC+KctO+VUcYs//tz/3Egw8KuwacCOubK4bL96jDJbKYQVUxSK2xnP4afIcbLCbM2W46ur7D+cCsNszqmrb3XHLB9uKCZz/8PU6qgeM3vk5zcoZEv48SIOz0X/EOe910JyV5bh9Y7d9/ByyUffEZcnF5kx1QE386WJCvuPazwEjYP798H8gxFl4kuuYLEoLGXxA9bdA9szJaA6kiZSQUjFELhzVjdscqmhJfVlf7s5f2ugMc3DWw+wyvRHay35F7A7CPzoYweqmUDyj97TyqodjXGgAHUb6gICWjzgOdJ7CDStN9y3+JfIC+uL/PACNk+bTtPUM/MAyevnd477LQY1I0qlNVrQi02zU//cEf88M/+V1WLz6mtlbz3g891xfPmQ8bfun1GX/3S6eczizeKWqts1wdMOI4rx32NcsfbALP+lTXgtQ6qqqm73u6vqOyNSKjxrFyjmHoqesGMFw8f8K9e1oPYLtp+cmLxzx//DG//vf/I3797/4HnN9/gDWifQuULh6GoD7zMPrFB8lBmFYATw4o76jozSk32xnP2mveXt3wpQdwTwxN01BZIbhemY8LKs1Vlbox5YE2at245Zv3M5DImOa2a6HdRq7hwTZqU7QzkKDpP+cGgiAOgjVRe2DB6zZhCLlkccDRWMP5cYM1AfEDi03Po9azMg3eWJBwpw/xq0NOp1zODBNuKSPyRpnWcUh1I1LchcTfZVdpEf+aPTA5arxG5jMMcV1G7YTZ42neqauWiJ4TvFbD1jsqo1HFQrzeyI7FQlDLh0sF6+NaVLCRig3qNaoV0iBo71XJoPhDcE7oSFmwTHwXgxGLrSqaxYLZXON7mqahNobj197gunodbp7gQ2BeV/TO0zsPUhHEQr2kOn+d+/e+yYPTL7E6O2YjEQjHPtrZxCI9efiEP/32f0t785R7x2/phmUMZ7MZv/D6Mb982rCoBRM8deUJXHPvnuN4G/j2aqDd9Gy8JyCI9wze47ohAvMhjol2igTHzfOP+bM/+Gf8wm/8Nr/xd34La9OoFuMedvnw/t6+/33/b3lOccuXop3luAduSmHlrufkdhSCSnnNfv/vfC5PPCRwFW3Yv/5VZiPHc26BqhCg6pWnLBo4XcDJkYIN0L4aYprikxnUAdYVdL2m5m8H3R6aCuY1NDVj/ZQQE93EB1ZWrSIOuFpFeaOguoJZEwFMH+us9FpnZVRQjGObMnWmpC53zb/9GNideVUMaLlua6OgChRI5bTMYXTNLvuw3B53hMO9CZPWm5QPA+XRixO25ojnz55Av8Fvr1n1HdYdw8mS4+NjrN8wNx7jW4wfqKKledlUhGHL1fNLnj96yObqBjFzhusvI+/8AlVtDruHlSBMdud9bit7Av1en1H8vt+n40W3++OWi136eggd7O0zFl7OonX7661253cK4/vru8tOH1SisqGRCCBEqIwoGLeod0CAnDhekgJfdm/8kkzk5St+Fy9QCunl7+XA7TPYnevLY4youJy0hiLAO5k1y5cbe/AWQCnBTD5QHCsHMcsdSQYOty67BZTyq4Tdd86ZT3w85IOCCBerYnuPGwb6QSti+5DeLYy+djFQ1QRNE7Zer3jvB3/Cu3/437C5eog1Rss4tBsuXzxltnnObz5o+K2vnPPle0dYkwonerzztL2j6xWZzQP86oMZfhj4k0eepxth1Tt61yNiIVZBdv2AY4ga0Ohe4bVOA6HDWsvN1ZYQAvP5QjWx2y0f/+RPuXrxiPXqir/3P/1fcHbvNapKzW5J8Mv5+yO4SAG+yYKRkXdAi40F/ax+5Q1rf86z7Zqnqxu+uW65dzLn6OiIxdExlqAWjbrRAO2Y5z9HDdtqbzT/ElutGFgeQXCwXWnjZgu9txgFG1EQRGzONCCgqVD7HkIPCCFoULg4R+i2GDHMbE2owJ4uWNQW8/yGT7cbrusjvK0oEhy9kuR7Hf/k+iQRZITIyXY1cSEyzzh34qdQMplo085rMSgY0Ck2jq9aOMbF7eNvybUi2JHflLxFTIiZ6SLLLRyXFV/6fD8TUMBR6ZwmSAQrae4T4zfIwMf4MMZ3mBjDlHbJwqXLSKyp4Qw+CIMbGPqObbvFWkszm7E8PuFo1nCM4/SdbzE8XLOlR5o59WzGomqQasns9A3uf+vXOHr9Lap6xtXVmh+tFmzH6PodYTR97vvAD//8T/jgL75DFVTpsN3cgJ/xZg1v1MLJomJRxTTDIWDE8Pap4aQ+5d5M+BfvXfDu8w1rFwjGYENgcIEQc5l0XauxYdHNy/VbPv7hH/Jn/+Z3+cYv/Sonp/OxjYWgGfL/in2ioLB3aF+Ie1lQscP/9/qqPOcWl7kLaRRf7xIU908ux6Z810P71M51hxr/CtK8UWWj82MV+uDHtVzXChbcoK7JaexdXHdGFCjMKu0TE0YX59pqxtRZo/fyXgHIED0jqhgPauP6XJ4p30jZN5taQc6s0mu7KNivO1hvFWyAHvNO7zM4/beJQMQWgKOOBvrWRVfvwsWrHO8qvrtNIYhe3/NsCWcLfc+b7Wi1Wffq7ZFrv0CWoYzEwF47FsNMQCkBqrzeCgaRZCFbGdq2ZXXxiLNmS+dajucGM2xpLzacWfXS6LyjItC7gW3n6Lqe9ZVHMHTXK0zXUZvAohlY95YHx29o0dqdPWK3L/Ka4PbaORjwXf62d9Fd1podCreft5+hakfmFW7xoVu8pJSx93jC/rPTDzv8Zq89WeceeYB+Vzeo2hoaK1RW51pK2BnCCE58GIEwBPVGj3FNLyNDvTTIWNQxYKp4QZExFsKVHRn/VdFFIIToKwkqSMSFXlfR68SnBsf7Rl/K47neY70ds0K1URuQiyj5oq/jppP25h0+KsVk3JuV5VwI7LpJ7QSqJ2EmvouLD/FDYBgCPro4iUrluMHRDwPBx2PB52ttcPi+RRCauimKcXmGwbFtNzg38OiT9/mL7/4uN88/xlaG4PWeTx99irl+xq+cVfy9r57z1vkR81oRaWUFG3MFOA+btqcfHN57Zk3g19/UAnDfebhm7YTaC4Mf8E5dNKpQ4ZyLVYu1s/zQR9csJe8965trrFVThVhN4Xn19GO++6/+n8xmC/7OP/hHnN+/RxBDyi7l4yClCsbatyHPmwwa42cfYPAhapLU/70LS9bbmhcf3fBm84x3zi947f45xycnzBYLbNNgmpiC1jQJ8cWB+9mNd7fIGDg60QDw9UrrZjRzsqUjTSSPcungdYcTIDjC4AjB4/qOtFrEDepi1XfMTIVUgVB7/JHg2w1u3XI9OyVUs796+/86KTIKHzl+ZlHiM+PYTQYgtxZzuKUJCDnIujiYTh4/hgNMPoi6J7roHhCFhzRfg498IAGNGB1qEiBSW3OOpovwIwOetFOIUfOz8hANbkwuYt6hrlOxCJyIAg8fJAMb/adZy0xsUPACweOdo133DG1LV1c0q6f86le/xfIb30RcwJiaxaLG1oYgFlPPOXrrLcxsznZzQ9u3bP18J/FFabkN+sqsVht+8u4fcXP5mOOjJVeXL5jNZtiz+1R1qy5SQG2txnwF1ZQFhNOF5W+/c8LMCvV7wveeblkjIBWBAee9ukwhGK8ZyHwsTLm9ec4P/vhf8A//8f+S4+Nv7gTc7svuJdgoP+6fexfKOHh4b29L9zokRIS9D5+lpUz9mi+549z9vTztIfvZhw7ISfkH2T/x82WDn1tqaqCKIXeRZ/QxHK+uAKPCetdHh4Awpio2Jmlr9V7CGLdJup9u3zlItrExvrOKlpEQQU60UFYx7M9WKidp5h0I0XgevBq150f63QVtVy4e7PT4poPNRllh2j7qWtvbO9h2Kv/0caCz5Us0oUxl4WgxgjBBrTmzWtnUWT+6aN9s4HKjoCPl1HBRvjuZw+tncNpofKsR9SJ5vIGLaLnpott6rfkaMgAJATrvaS8/pWbLYmYJYcbx0RGm3fL6fMabRyeYqtYCwEbYBoO1PfXJnGXTUGFoF8cce/jBo6cs5w3VbEE9v103J20Pee0LOxbB9MEUc35fsE+y7CHaOa9Y7/njoefdcV257O50qyw+HHSNLGgH3BRybD6/ADvlvT3CILofJU/iQJTvh7gn+QQsQpa7QrypRAW4LxHmZ9BLS1xvnCgSblOWqbi46joJsgVQQBfa0UwneJqUKRjLiC6ceTNqCtKicF4ZwYMTOIuuyF1kFD7AxUYR/yyi+3U3xln0MdNUqXFwUUtQMuCkDc6DGJnB4EemlTSNNkBlArWFwQvrIQoaIdD3gW3b029a3NDjnWYSMsVwBxH1PQ8eEyCI4Jxne/OCq+efcnR6n+beW6ql9J7NdsXzxx/Sbq4gWL73R/+SD/7ij1Tz0sww1rC6voTLR/ziifDrb53y5tmCRS3U1lBbRfo2SlNNZagrS9v1bKMapToWfvPtYza9Z/1wzTVQG6HzA1iNEfDB44dkklGBQZPgajYYEWEYOtY318zmCwiBum4Y+pYXTz7gD3/3v6Q2nr/zD/9DlidnkFJ05gUXdhZ2VAhHfWY6FlTL48eYDQh4hJaKR/6Mi3XNk5vnfO3mIW/cu+H8/JTZbKaVy2dzzNER4uPuIhWEIU6OeneH/1l3XTGa4raZq8UkQ1vZlUwlQN8pl7Pov74j9A6JgHQYBnxwuEEtSuId0vfMfMd5E6jOa8zFio9utlzP7/9s7fx5o4TSGSN09qUgLyncHf1dxioSpSAWSlErSYPFpJLxh1GwS65XIlGzpQx0R5grMkNIZLya7ap4tpHsSpXMy/l1UsxFvE+QEBOQxTcyun5MlRZDGaWklg9l9gIhBamPma204Z6cLQuJChbHsHV01y9gXnP/jXtU1Zy+NxgJNDNAPN5Be7miHa65Wd2wcuCaJb1TLaLGlstOMKwPgaePH/Lj7/0+uI5uK3TbNfP5jNBu+da5pZkPECp8gMqMtTkEwBiO5oZfefuEqrK48JzvP1uztRXGzui7jj7uvNlqqq+NNfDkg+/z3l/8W9756ldpZuO2tS/U3wUw8pxI02EfTRQX7QgHd5x367kHTj106aHrci2FQqj4PFD0eb/denYh4WSg84qSkRh6B/Q9dF1g0MzhJLfclNI+RCE/eQ04wMV1lOIojRktAUBWntYRMCBj2n4hujzGc7wnr/PBw1Wr903Cd3p2ZdTAjsB2qzJJ3ehzjWiG9KpSob7vI8hI7UMtKydzBU79oJZPI6ORPlly5rPIwoJeU4laYTx6/ybOs8qqbLbtlKfO6qjhDvDgFF5fQM2u8P1gAf5cdSFd3M4SC+sCdPG5Nyvh6Z8aLmuDrWuWoorUe4sZX1kuePPBG5wcHTNfzGkqEzPc9coTjcENjqvLG2ovXKxbLtuW/smPuHr0Iaf3TjDxpUvwXYKMDDSKtpdrSvb/JhACOzyj0B3trttirYYD66rcDsqLd2RQdmk/dme84WEq770PmopddYxL3nvWgCYp6YMWp87vGe9XxhmVdavSni2HXuIOemmQcbaE5Qy6WGNMzLjYvIfjpFkwuoBMUJOhMZoValFHF3mJ6WWTe4JRFN67cZACuhgkvuxMRuF/cRKzSDhFz0dRc2GI2ov0jArwes62GwFQ0kAmoTYxmWHwdF2LtcLGCS6oemLbq6llHhfhZhvo+wHvBvrBMQyO4Ie4MaolQzUsmopSAgziGdotBkPXbVivr7h69il1U7M0r7HpNgTn6dstn3745zx5+H1OT1/n+ZNLfvRnf8Dq8gknJ6e4vmMYeroXj/jWAn7xtSVfvr/kqLZYkwBGzDwj0U9cdJCDAW9VmKmqGW8R+Ptf8lx3nj97umFAqEPQzC+2oq5qBvrRmiGSN37vXP4e2GKTq5BAXTe02w1PH77P7//u/x1jLL/x27/D4uiUyspOZp40cX0IWSskEoNvowtVci3ZWSSFDm9tlnTSsL664sX2mrdXW147O2K5XLJc9swCVB4t6CfJ8bZRDroTFJ4d1l5uQSSrxfJYb+GSk36xg7mgVcNDH81vBmkacD02eHx0m8MPBD8AqrkldFTisLOaWVPT1Ibge4xb8ah//nLt+3mluFOPACD+K/w+klUizjbGnaO4jxSalR1JbxSO983YYWf3iXOwlLjijpFLSGYGHl2cSM2I7Yz8j5h2FuKmnx+o6yZlqvI+AocYVK518MYigCalr43autHdS4GHWj8kvX629IhIFDqEWgasHdh2nvV6y9HSYOyS4ALD4KnngrGBQRztpmO9bXnRWz7dbmm3T6mahtl8Qd1YrLXYmMmq7z0PP/opzx99gBt6Nq4nhMAwdMzDwOx8SWUtYoTBa6/ZaG6WOK+9Dyyaml9445h/7Dz9MPDja0dfa6G+sNmoBZWApvg12KrCVhXd9pqf/Pl3+Nv/4He439zLfbwT5L23mZefd4SCYmzTObJ//v6NYCdVckm3vofDn2F3CpdCz46AIXeAhJ+RyncoPych5FWl7SYw1JpgoW0DXa+xgZU1GGNoak116oN6G3iAkIRo1cImRUKaPyKibpFR1kjpbhO56CJiIWdAT4kLY83VmMRFn7Ft9TorYKxQzRV49FHZWtej7OQ8iBvdrYyJVoVivGzcViTEmgZ25HGCAgkC9C252CZB5TV9/aAhg0b5Y99HVhzUItMnN6wA1zcqMyzrEXyZ+FeMymYzxjkkQHZiDLBcCudLOL93DxM6rBjarmO2OOZoecTJ0RHnZ6cs5wsqq51oRV1Ae9fRti1h8Nw7PubefMGzVYu5+ZTt058Q3C9j6wJkxA8lQBSIlmCye1wygPgwxqXkexQ8pAQMVQWL6K7Wu1FubPvdgP9yDad+DxRbmozPyEBADjxfdr/vL/m71mw5DhTPL/nIoVjO5JI3fOaDypdg3BuRl+YhLx+TYWBhdYK33TghvdMBPJqPqDoFWKVGuKgBsIJqE+J12eztC3cqdACuN7CNMqA14/VVFTtm0OtqM04sG9vnNWaa4NXiYeuYJSL6I/aDAoWh72kHj/eG1c0VLx5+X60a1Snz5WtUsyVDEIJzBNfi/MAwOM3wYhrEaD57fCA4x+B7vOtxQwcEfN/i+xaqmn67RoLn6uoTrq+f47xwevY6F88+pmt/Qn/zAh96blbPoV/RrZf88M/+NZfPPkXwbNYrKmtx3ZY3qoGvnTa8eTpn0VTRchEXF2SQAWS3j6qumItoxeUgzGvLO+cLfvX1gcfrgWcd6uLlegieqo6pLPsYP+A9gYAbNEBVvUc0xmS73dDMZiBGTaACbhh4/PGP+PY//78RjOFXfusfcnJ2poXJYFyICCFaLMqdMOyqrMdVvD8vEby1XHFG2824fn7D14cVD/oY94IwF6GqKiQW9MvrJpnU0KBq3W1ssVo/b1EU51Rm3DHSjrTZgm9hiP5+9ZwwDJqJKhYOtLWF4FQAje9nK7WFORegqjGV5TWBZr5gcd1+frt+jikEd5jj5UNhnAaZ4ccyfeHgBXuZUYq4jVCeG9ipoBRkdLuSdEYomOh+u4v2pQ3Ls1NbQwAvZbrcFHhStC8kCw4EF982gpVgyEHmxiYgIRlMhPwuI9BIAeTeabB4Fby6MNWBzgkz5zFhSz8EXOvwNy3YgBwt6b2jWlS0WNbbNV3fIWvLxtZUdUNVz5gvtIbHtmv5+P0fcvPiEdaA9+rb5ZzD1YaKmiBWs9OZZPFMm/voDGqNYV4L33rzjN+66bl6/4pnXrDzuSo42m70A5IRvPl+w6OPfsTFs2ec3zvHWNkBFWWGoUMgY+f4gSEuwUjaoPc3+1v3Dbvf94FKefwQoDnUlLSvfi6FPTb1M4CQQ0DpVaInz1cIgvOBrnMMTnnKfF4RmDEMakVzqRhGUKv4qC3WzpO4kI0x1Jicrtqb2D8Oej0U+TOjskAAPyorUwxEsFFo7xzOBwX+taGyRhW0QWWYJLMM0RLiAWJtL0IEK8RcIvG5IcpaJkltcSAluomFoJYOH0a5KET3qGFQzpZkNOciDyoEcEHf52atitnFTN3DqroIphZ1Za+jJcWiz0vuaiHAw6cbLp98yrwCwUKAuqpY1jWL2Yx5U1NJUWLAVFS2wgy6Fw4INYFZXXN+fAwv1riZh2HNjMA85neJuoydYG6DuoidHcFqoy5otYXTucbabFp1+fJBj29j0L+VEbyFoGDv3gmcH+l7dr26zQ2DpkB+eq3eOcn9reQZ434yHtsXZ0rAv7M/lN/Te8md4k8+N5Rf97bXgxjiAIop77Fzv6yMG9fMre34M+ilQcbQ6QIqMxAIalWIyn5ms4jGrWoQnCMHQUu0NgQK2axglGWl7rRpZBeqGPBkiGbIeKIh+oa5oOlO+8DV9QY/OI5PjrFW89pfrzzrrVft3rZn1fZcXjxh/eQDmvmC6uR1njx8nx9997+jrgwP3vk1jk9e5/jsTY7uv453G66ffcz66lFkNIbj0wc08yXzozPELGi7nnZ9Qb9+Rr+9oG9v8MMG162xUuEZCHbGut3w/MUjrK25eP4x25unuM2app5xfPYazrUEN/Do40/4+L3v0W5vaOoa7yyDdxwNa752WvP22ZJ7x3PmTYWJZsadSNGgFgITfbmNCE1jMIOj7QeCNSyail98/Yin64E/frRiu+4R7/BiVMMQotUCUVeppBqQcRy1WJqqhYzEdLzGAhqY+viTH/Pt//d/yeA8v/H3/gOOT07zBAgePCH6pofdObGDmbklISSBKwDiA0GEjVnw0NesLld8eXvDO23PgyiizmYz6qpRX9AUTW4NODuqpCoLJGfZnPbn8ylNYjEwrFXV0XWwXQNDjJJC1VgEghuQ2mLqGmxNVc2R7RrpW4Z+wDbH2NpihgHnPMELR0cn2JlH6u3LtennlJwbim+SGbJori0gjbzkeVKK13nMkV2muM+o83mFoCfldSbPqfTbHRhmbM9dFMbK4dk8LSB4dlRsFFNlD+BoUUfl3B4IQ+wbU7xtnGKpCGEIxQ2CClZ9CDgss0Zbvm27+FljslbrFgfUviJgWA2Ox9vAgENEXbCC7+i3G7qNYX2jaSe32xUf/eR7uGGL2CrXuPDioG9pWCh/yH02dkYIATEWK5EnWWFewy++ecKPLjounncENKZLFTeqXQrRbSr4gHcDF48/4MnDj/jy179OZapbQn5ppSj+HN4Q988pD4diznzeZlrc565Zsh87sX/5oev2ZYDbGz+773WgkeX5yR64c/0rSh89fE7eJeLaMyI0W8vNak2VzBBC3McEH7wq36ymorbGjJZDMQzWYK2JNQBUIAkhaDpqFCyIUStjKlrmy1RRqEIgrUvnHc4FhhAYnOC9ZduaqDQYhR0fNeKphoGXXbdzghpdQhiDukHPUetnNMxHK4m/iS7eVRx3UaM9SHYbl3iv1Nbk3RHCGFI4DHAzqEt7HeUwE+M+AmNAOpJc1vTaoYenz1asrq8ZurV6Jjg4P1pw1NTMak2pbcRiTUNTz5BU/yYEKtswb6BtPFW95Xh5AjynWtzjzdff4LUjoZnHGN3IXiUKo71TUPT1N+HBHFYDrDrtl2WjoGnbqXXCe3URu1qry/18pt4680a377rWDGImyrEzq3JtP+i7Dh20Ua+YZODo1Z+VK5WMOkcXdtdgZtsHBP0dgMLnrNfyxzt41R5mGb9HgLYDkMqLDtzvUBza59FLgwzndOI5H2MxbETBTge871WWqqIrVGDM5pAi1pO1IhXHyW4NYQzgFkYFcx1lv20b2GzUilA3lqapCINns9lwcXHBZnXNfHnCugt89PGPCH7gS+/8EvXyHpeXNzx+donURxg7IwRH19/w8Xt/wtMf/QH3H3yJ0ze+wYsXT3j29BN8e8nls0ecnr/BV77xWzSLGd32huuLxzx78mOC6zHG8uLpj1jMjzl//Wsc3/8aXddy8fgHrJ7/mG79gr5dMbSXDMOK2eyYxdlbHJ19EyNzurajvfqY7WrFfHnCa+/8CovlOeurRzx6/ztsV9d88skF1xeXCsCMYRYCbK95fTbw2nLJvZM581mNidYDkHHBxRkSgtd/KHNMQpCagwUw3D+e8atvHfFi27FtW551LgPI2WxG33cxAFNz2fugFT3VdKqw0Tm1Chljcd5l5g2Bodvy9NOf8Ie/+19T2Ypf/Tv/kNlyGQNux7k6uj2ktGm7bjBjhp7d6uEhTvz0Xr0YnvsjblYVL9prvtY9553BcXp2ynwGjdcc0antOKcc2RjlyFKBN6PZrRB2P5cEnezdBlar8Tofe1TQOhneIc08Pk+DcW01w7iO2jlsPVPgtd0iVcAGwNaYYKCaf0YDfv5JszEFJNen0OM+pbYlidQFh03++VCMhY5LTiAwnpFBQSmDj2BDRgCwx75L83aaY2nzLRqQT7gFQSPTJrYzRJCRWpmulZiaOVkqNBBJLRyji1dcEFIGx0uejtnvN50fLXFD8PQeBudwQwveMrhA09Q0i5qqAW8XeGt5evGCT59dcxHuMczVH0DdtzQAW90DOrabNU8fPeLFw/ejYORwzmUrw+AGhJCDZgOCjQDdB2KFWJ/rdazbgU8vt3zyfM1MAgsTuO46gg9xfgjWWrWSDI5gVBTvtmtePHlI1/aYKm5de0Bjx6JRjMc+4MgA4q5Ns9hgsxxZTJcSgJS3yKNczJlDQOYWRynbcuDEHbkzjOMfQvHOZdvKawqBYV+WeBVp07bjuk4KK6AfhG0r6oqd+EqIwnVImnODGBNdqwRrVKFWVZa6MjkLYnKx0oBxnZNpn0kApXRdTANV7n0h/1+0bo7XfTh5bA7eE6K1Q4LB+cDgo1LQJMVrfIYp4i9KfiQx5iJ6blQp74jXrG1DAFyKUZGxkFrYnSPJQpPARB0VyiHEkEIDi7mCCx9UEPfRShKdH8CoQnjbOoa+p+sG/NAhGOaLBUf1DCMWFwyhmkNzhJk18UUD1g5gGpzp6NYDq9bRDZ5KDIvT1/ny136B8+NKvZEj+7Z2dCVzTi0Qp41u38taf3txrXEwLsqn50uNs/MBThpNWVxXen6qqRK8buEpPCAlDAge2latHvUsOiQQrRqxL1Ns8KLRsbnaktOxl4oQyXMnJRYhF7zbYQWhWLeyczhTmoKftbbvyqBVXr9z3wO8sdjeXppeGmT0EWD4AbwFH01+yVyYHupAzX9+DL6SooNFYo00GdE4XgcpoeqUycFZzSj07OkVH7z/PtvtDfPFEUcnr7FtOx59+iEvnj3jZnWN664xzTEffvAu7faKr/3iP+Do3le4evopVXPEg3d+har2dDfP2Gye8uTRD3j06V/w4tl7vHFziczuYaoZ7dWGy+4DXH/N2fkpzVHN9YunXL14SOe2uJhlqb15wgWezfVjviQWqWZ0q6esnv+QfvsMPzi27SXtdsV8doRIy8nJfWx9xmK5pFsJfX/DyexNqtmS1c0Lnn7y5zx+9D43VwMXzzc412u8Q4Chb3lNet48arh/1LCc1ZmR6uBrB7ugWh1VMkSxSlCAEINprLEEBI+ntp7Xj2d85WzOhy823HSOQQS8o54vmM3mtNstYg3eOQY/7Oxwmtvf07Zb6qYheK85/o3FGFXTeDfw7NH7/Mm3/1vmR6d861f+NrZudkBm0gYL0eWEkJmJ5N9l3FjTyit2Tz92Bp1t+MSfsX5+w/XmOV95sOX11+7hFwtmeCprEIkBPfm66MNnIjcJvrBNvwSJqDlvcTxy4bopFkiAqtGPtooBRBViK6hrxA/IMABW3dRMjdi4KRlLCIZm9pLWlZ9X8il9QPpOYWEIeZzz7C0Efp+taBkCkPJ4p+87wlU6WgjqSZAvBZTMh/JJ48ISIzuCa64wXjD+xKC1tKIZhY5AjmcS0fcbBRLR54Qit1p8UCh2AxG10o0IRnJ/aVNHVJTcI1bbDf1RoMUiCHXtEAu+r+gHD/VAN/Ssti3D4DQdbioUkrJYZXO1Fm/qtmvazTWBwJDjj2Ibg9fsUGHU5nlSMcRojXDgnefFuuMnT254fN3SVIZffm2OD4HvPdmwShG0sQ1ArA6uKzuEwHa1otv2zBdzSpe4HUAQPxyKjchAIOwez9fI7tiOs2jvfsXfQyCivFcp4OuYjfdM5POFu8/eBxA7bS3OOdjgoi233vVnEBJ+3sj5IfKFpASQ0RIZka4jFsQM4L0e07C/gq9IqmhsNCtjlfiOni+iiVuydFeAjMpaKmupq4q6tnGPjW6/41LNa9sMsa0+aKxhCDneUSj4A+p1YCsFQqqQje6T6H1T/Y487PFeyeqisVION/ic9dOIoa4qQmVjjML4PknYTQJzlSwbRZ+HoIL6djt+Hxz0Tj0R6kqyq1HdzAh2SedrJOiedlw11FJzcXnD1c2W44sbXnttw+sPHjBfLLCxbX7YcHNzyZNPPmB9fYEVw9FiyWJ5xPHpkcbbmBTrMlp2iO9gJcZLRPlys1Wrg41ubNHpIsutVVSA+wHWHmaDigB9PyrFJaiFpu3IWU2rWgHdrNF7DAM510vX6tZeVQpSRNRa0rqxVomI1qpIgf91tK6sO+hkd62WW1Na5r748lnAogQKWWz7jHNK+ix2EfZP+Az6mfJ5Ji8Sj3ZWzq4QUWWQCBBsDFzqY5q32B4fdBfK7xRGMLLZDmxyxh3VlnkCq23Lj37wx/zwT/97hvaC+WzB/Ph12t7TOY+EigF48fBdcBsur17Q9yuuX3zMvTe+zmxxnzfe/nXNghB6Nqsrnj96j/WLx2y7nvXqhkF+iK2W+H5Fv73Cuxtw13z04zUvnv+Q1YtLTDNjdvIWm+013eYZw+Y5tmpo+w12tuTs7E02F5+yvXlC8Jf4YBhcT+dm+NayGBZ4amRYYdyGvr2h3a5Yr294cz5nu15xc/kp2/UVV5eOrtOVEsQTvEP6gdeWcL6sWM5qqiqadvFIMJGpFWJP+miUaaaNmniakeQnLZzMKr50OueNkwVXvWftBBMCtbUslkuGoVcAaC3iXBbxCCFqJ9WaYYYxF4OCDJPrCLih48mn7/Hd3/9nLI/OeOsr34hgp9wtyYxW0gQJaKYeINUMT05hueYGkPXZaUMAvLG88CesbmouNtf8Qtvz4OyY4+MjFn1Ps1hiG01xK1UVOchAdjszBQd7WRIDx8fKYa5vYHYUA5CC3tbW2kgfTYBVFYGM14BgFxh6p9aNxZKAmvldP2BFmDU/05L9uSPvu11GCZqSNQvvYTeANzPcJKQXLFfAiNX+8R7nUwY0ou/o6NOf44h2QAmImATFYy2KEfAEBB/KADfVOhoZ67qQ7gkqkMTYDA3SlBxTEXOrRe1kAiKhiAGIAk7cHFMCiTL4EzHs2vfI4CbHL7iBzfqG1Y1w+uAcUzVU1rKYqwbXhYohqDBydn7GTe/hwhEGn1Wloby3qNDSt4OOU1RvqguU9tOmH7ja9jy9adkM2keV0Xi4o7llbqOQ5wIXN1uCd3zlfMaiqehc4NpV/PhFRzWUAw9ijMbDpcaEQNdtadst3p/szKtS6C+tF1m4LwDQqNAoilTtCeIJ+pV20/I5B/flfRASPgOEFG27tVfv8MPDtC8ApnYXuGbn5J21dPChrw754DT2OvpYJ0uhAYgJQ3IhTAqBLSTXo4T6dG3nJC2ZtYxOlV7IEp1eotaIymjWxlld0TQ1VWWzpY4o6LvoUmitpa4s1WCU3wRNC5ooWytELYDGmrwvemOwVgW1ZMH0XuNKfWQOKalC3ztVADD+lmZvUjT2fcgAK2WSs1aoRLX+nigEh5TUIgKKIcbaDgHn9f4KaBQQGTu6w9u6oTl+gMxeo/GXhPUNczujbpYslobaeEJ/w83jG2p3w2uvv4M5OiYA25sLNs8fcmJ7Tr/8BpdboZWG/nhJE4GMYXQ+yCBD1IqRQiv7IVoUhlhHhTEWOCXxsFZ1gDUac9H1mmmJ9B7xGQG11mxjEH1yUWui1aOJMSs5OYBRlyxBwwZOZmotudrC9Vb7uELTGtcx9s5anWu9jdahco0mPlDyExnbuYMAwh3Lew+47FPmkwfoDgzy0vTSEksK6vGMfoQ+FJ894FRO8kF98/teF4PzARcrznoXcpYpAmw7z7btud50bDqHd46+3eCHLdVsyWZzzaePn/LRR+9z+ejPqGyPrWb0nRBMQ9Wc0hyd0a4e0988pus9A55+fYWVwDd+4xscn5xjrULG5dGS4d59NjfnPJeK7eYxV49vwC6Qasl2syH0FwzbK9Y3j1k+fY/Z/ITm5D6XnzxlfX1Bt7nAyMDZ/bcRW/Ppe79Pe+9t+nZD2/YM3YALPSE4mvk5ZnaPzVDz7OHH4K+pjOX8ja/SDg0Xzz7l/Xf/JThYXV2wWTu6VmtUqDbR4vqOk8bz+nLOcVNxPKtpYtYXmxmkTgUjJmpgVICxEgGIicejeRYTcN5E9zbD62dL3jrrebx29OstwzDgvKOuK80Y1bZFxcckpRkGFyG8KPMW0RS9CjIEsTUulmnv2g3PH3/M9//02xyfnHB6/iCm5CwmtKApf0EDYwMQfNwAJDO/jC9EY3Nubap+dB/rqgUf+Yr1wyu+cvWMt85XnJ2dcnzSMV/OaeYL7HxGRFJASt8h3L307qDUP4u5cjCXFkQfU6pFe7YZNG3aMKjaBHKGqiQMpzWG0ToJhAFJqphXlNywoTYa/j8Ejw/CrGlomlrd7oaBru8zU03zOQn1Er8n/Y4XhzVGUy5HDeHIMHcdlUIUKoJo9iIQzQFOBCtWuXkK8owohlRxXBBcOVdjG9IhEcEnreSIZUh+3yIp04mJcVQjYFC/aKNujJLGPrlQ6YQX0WNDULcK78cg8mQhsWGgNjqV1l1gITpfVluw0qsbVVXRHJ2w2aqLkvEDwbmsqND+Cnn+S4DKWK3EHRUWKqRov7SD55OrlkVtmW162l4XbmOEr92f88bpjMpotfbjuUFoGKojHm6Fyw7OfuGbfJWf8uKHP6F2WifIe58L8hECVV3hvSMgtG2n8XpFnsq8CUsCDIUTXcipA0gnlxxjPK/8HnZ+g3E8b8vpo8teSqGaFCZh50q9WgpJwcvur+Uz97WZ5Ycy+3biCIHCLhvGOKGUUn0/ZuVVpYqCByZlQnqpWH8mFRBLUmdybUqu2YQQ+YHsBD6Dgpcxt10YU+AmiS6OWYrPMDGeI4EVnbKJD2nWx6auaOoKW6lSJKTn5DZoZiwkMHiHGYRWNOlKjh8x+n6ppsxOchQA0XNtjEnxXoHFMHj6zuPoSSYfiZoQYwRrk9XE4AkqoyUQFifR4GNyksRjizlkneCdjXw40PZw8tqXaR7+Ob67oa1qZs2Me2ennM0tTSXcXBvam2vCdk23vtLA+HbLi8cPefrsBW2lWTMb6/jWayf4sxPmdZU9YVxHDnhPfLXXAVMPCBQ0JBaeMn+lVMaxuzRxUYqt6PScNL6pYKz3Woi07QJNI8ybqOj0sbhhP1o+KOSTVPHdiLpWHc1jnbd+d837oMr4Ya/fixjrcarv0/4UKP/uKykib4yPyBT2Lw5j/ySX0h1JKBwAN59BLw0y2rZAdYOaBX3QtIjeezXVea/+uj7QdZ6uHxgGzxDTFfZOtY2p2m5AcySn6tfODawuH3P9/GNqC6+9/QtYHHRXBO9oO0PrOwhb+s4htmJ2tOHq6iO6zTWVCWzXTv0a7xnavqNvt3jncYMHq6kcrMDRyX1O7r3N5voJfXuNly2wZb3aMnStTl5bUzfHmMGxfvaI65tL2s2aoRuii9DA4vg5R/M5oV9TzxZ4U9N2AWsGxDjc9gl9e8PGP2FzITSzhpP7X+W119/h6rLjxcP3ePLhM4zMuLracnXp6HNKPkvwDiOBezPLyaziaFbR1JGpGU0TaY2JObN16wvBxyBttOZABiKGpBkPXlPaJfPr0azindMZP3luuW416NkKVE2NrSy0AWNNFM5GC0bSCu2KcwlwRCEhbnf9dsXNxWM++OGf8MZbX+ZXf+sfUJuaHbeHGAw+bgwxeD3OQxMFxawFj0/0xcLQpD7F8gqBIJbnnNKu19y0a77c9nRtx/HJMYvjgYVzGFthqgppoptTFYiqnp8dcIjEACViAZaGHEgeYsuHQYPDY+Lz4NWCYUytm4jT+QoQhg4/9IRXHGSs2pWC1aD1TzzQOYtsBHzABeURjbXMrdqQBx9STDRE4XxwKowb0TWgQESfYRK6DFC6XoUo/CdhYbRYRJekYKKAnzIjKRjy0ZclRXFIcc+cMjr9F58tin5jcGICH6kXxlTT6R7ZfSNmP0vCj8Q1XhkTi35JFKDGDDou9qMjYAZPbQ1VbeP6MzHx2cDWeXyoCFLRbwYCMJ/V1NLj+h6xo2uWTX0Y57wxltnimKqydJ3LlgyDWi3uzS1fPZ9xMqsYfKAfXFYIbNueWVMhCH3v2Drh9Ff+HseD5fmPfkBTW04by6yumQdhE7ZZmDExeM8aTePs+o716ort5jVsZXf7O0kHB4ToLHLnvefw/wm7aY0zR0tKDaICZ/fmEEHoCGTC6MKzp0KU8sI9ILEDSuTANeGuV9T385GXli53/gBguvWAV4i8j660bhylEHQvMCbua4QxLiOtb9SFarfbx5TXPo2w03uOcd3ps2ruVYATxIGLf1MchcQUsaXk1gKmTW5Zo5JEjMYeGWOobaUpoOO9YZwLybpRuobqabLzD4FBAnQqi2ltj2R5iIWARUBMVNak2EqHiMZNBYmJWGKf5mWRgUVcSSHt8SADmE6l8wAEN1AH4TeOG26GUx5XM+4dLzlaznDdmmdreL42hGFBPQTabYvYjtW6Zds6qJaY+ojBzDCmZzbrmS2PqKRSYT56zwQZM0NJ6rYMLses8m5Iym59FxPHysR4DmsUEGy3Y0Xz0bCusm4/OJzzWtog5hwfnLr5l7XYbBEcrxanCDgCYLUOiotODK3X40mYT2lxs0RfLtj4PeOAQ+BiFL92j3/mgc/gAqE4oRSn9sHL59BLg4wPPnyW3VOCj53uPZ3TIED111ewEaJ/YLJKpoWqspVEBG/w3tAPPe36iqHb4IPj6Yff4/FH30OMYX39CQ/e+gbIgGka2m1Pv12DD3RdRz2vCPS0bacCWm3oehDTMHQD23bF6uohXXtBt72HmIbL54+4ev4hq+tnWFuDPWK7vsFWARhou45u63DNjKOze1TzB9EHVBAcbhjoep14YeXoQkvfC8dvPcBUc/r1Y7ZbkNBiK0/Xe7p2zWxe0zQnOrnaSxbtNU3TAIbNasVsAUOvBf7ypiUa77BshHvziqOm4qipaawdmWghoPio9cubomi/Jy2nal/U5UJMwIQAwSIhsGgs58ua+8sZz7eDClw+IB5NL2c0b34fU8MKyQXLxLIQWmMjpd50USWQUl02tsLTs7p6hhs6fvCn3+bLX/sF7j14I86pZGwdOZvJmp6Q5YcUDCfZz0SZRmXDDtwuizBlJy5j2LDkQ1/RXax4q33GG0NP13d06y3NXNN1NvMAs4BYpwCjicFpyX0qr8rP2aRTe2zBIZK6o+/UedOnyDnUMTR00KApksUpuHAe37WErs3uZ68quc0aLxKTRTi6EDSjivM5GNwYobGWxlpC8AzeI1H7L1FVNASoRKhsmZVK54a1ghgbQYIqM5KbE6JxXi6qczL/jClnDaMmUGObTMyv7xmcU6AhBomzKuFGQ4oPkdgGo0XnnAomCihCBkoSrzDxc7wUiSmUBahiIQ4rQlMVGXGMxAwt+rk2qvDx8TWqmG2vrsDUNcFWzKyjCZ4hWJytqY4XeIHVpoXhhsFvCbbJaTwrqwKRghoFP7P5MqeBTsoFYy1dcPSDo/fCtTnl+WqLqeecn5/gVk/xm2tORX3B152n95bV1QVzsbw1vMB++ozzzQ1vLmtCPdOUmH0X6+Sou5S1FSY4VhdPePHwY+bNnKquVfgyVi2ntooJHURdO0uBLiO8JKjtiPqkKTC6Se3/mjjoLsAIou6qydK1zxPKIlsl7Z2Vj2TxcpyYO9ekwyUEStcEQhGfET/cGdRxuxWvCjkcJsgYGB3dozIQIOWq07FyyQ+eNPRRNkmKCpKFUcZKxjvAIgrVSfAGSGuWgESruTFReDV5RmVrg3OAE1pKCS2BYpWHrI0p8TNo0AQZ1ljquqaqNDOTtTYqJPS6VJBT2x6rSHmTxIioYElNNnldjACdXV5o4oV5bsX7xD5Q+SJkIA0S64zGscAwny85Xx6x6D1Sz5jVtcZd2NOY6amnW11T15Z+sITW0TpDkIZ7xxWzxYLBzrhuW/zGsagbVr3QFckVAxCGcRaLjO73gbj/+7GQYnYpNInXRpcwKd4vRLdKXzwDCMYSxNA6od/ATUu2mKRr49aUa4pAdDHzEbhKjP+L4zGEMdBbx2kXRO58Drtf0xwqWZnI2J592scr7H3fua4QV3b31tvXvQy9NMh47+NHpMBFNQfFBZxHRvIgaQui8Btbk4u5iGiWnBAwwSPiccZzefERjz/+PjfXT3jx/CGb66c8f/Qu3/q132Gozrh4+oTN6gX9dhP9lYWahr4ztNsBCU43cztjefImi+MTTKi5vPiYTz/6Dpv1FadnX2Kzueby4jHPH37A9c0FbbsFO6c5OmJwgSBPVCtSLRAz5/LiIYv5nAdv/SLN/DWa+hkXV09otzd4F3BDTTvMefH8OU20y223MVk1Do9VlwRTYe2crh+4ubrGNC8AYXZ0znZ1ydXlNddX1+NCiFpOGzwnlVoxjucVs6bSoGXIszOvk6Aai7yfBj3HR2FLBSRlpiGQYyY8+vmosdxfVCxrqy5b7Vq1MBG1OO+zxiQQEGuRHHQTSAFogeiSFfxO4T4RwzD0bNdXfPij7/L+j/8ux6cn1E2jrQtFZqmQQMY4xRNjUF/3uJAjM06LREKxGot+KBeJsw2fesvV1Q1X20veOF1zfnLM8dER/igwdAOzWY+pG6RuEBc0nUQV1R8p5W25CvcYws4xE/+37dSuKgbaDXQbQt+pRSMGyUsl+O1VDFCzBOdwbsC7DvE+C7evKi0XM4gb+VAHVr2jdepOCTqvnIfVELhBsxYNzhVCHFnz35iQtf3GmGxxCAQwGrNkjVBXVb42Z7c0Mf7BEwOUiTVkgGjBkKCCvguakz/gNUZKyBrItNgkqECw41+tpgddeyFENyMTAULcoZJ1haDttTZrUOv4DGNszNYUQUkMBk33tUavaQdH4wfOqg3WNohR/2djBGcaDB7rHdYGrLWsO4/zwtwGQruhj4khRABvEKvuW9qvnqPT+xhTo7pZtTLYyhI8XGwdT+Wcb/7GP+L6B+9y1FQ8+OVf4+n3/jU3T66Z145FUyvfCQPh4z+jMhVvzgPGWtZtQ3PpWVZzTUe92dAPg7pponVujATa7YrN6prV9QsFEkRBK24yWbMbgYdY7T+J/3TMoiunGHWZuWUNSX/jXCHNCeIcLRa7gKQ87ZHLjKB1vGKcvRBccnfROkMSPMYqSDJWLVAIhctdAV92BIiQ5192zAragp0ik4fEgTuBx88/GTNkxVnCYZKSKAS0ToaLsRmRnzgX9yATMDZq6yP4T7JJZRVQ+6ioCx6CGTXgO+AANwqGaKSUk9FaKRLGYpuU10n+lNofIgrQQn1STL1AUlnrvLYZZBjRvzaCaWMbjKnG/UlM5pP5uaIzKf0X8nd22jT+v5yDFO3ak4WLdaLbvkWOzwnVkndm0K+ukQB9NzBbnDBfNNjgcMcnEKDrWtzgMB6sbTg+ntPM5gwu0LYd22AZZuespaJPiWAYY6x2hOEEqkIxZAaCSOarue3h9t8MKiTdI55t4lgnzB6KBhy4V8R9Gdyk8lA77ZKivXv4Asb3PLRUSxGv/L5/vDy/zLZX0i6n2r1Y9n5Px14WYMDPUifD9UhklT5qAnw0xwEjyACQkHMoe0bzYUhvGpImMDC4FufBVieImdMOhq4X+s7z/OYR3v8rOj/j6Uc/pO+2IIKpdKMOAn3f43t1AdL2DPTdhrk/ZtiuuXm6ZTY/wdYnGLtgvVrR95b66AHts6esLp9gRDXFpgo0tdCZirbdYCwcn1TUdY1zHc61dO01FQ67PMHYGfPje2zW11w9fJ+mtlipGPoNeId3wuAdoNr/EDz1bEmzeAtbLzG94+j8Tbre8eSjn9Juh+yDHNDg95kJnDSGZWOZ11afUZkRsKET1aUcaTKCDQNRK5tMnGmVBXrn6fpA2w90g35vuyFPNEug63sGWnwK7h408km1KJrSNgWxeuPHLTYOuJpsnW7ykmp5aDva7Zqf/sV3+eo3fpl7rz3Imsbk06yCjs+LfscVgYKh7XCZyFQljBqD2JxszSk45iVHbDYV192at9sLHgwdg3fMmoa+3TCbLZktlogP0BtNom2CulEZCxLtomO8+2ESidcZrQ7UtdBuYWjBdbi+w1ZzFUJTqiMfECx4h4QhaseEW3bSV4xWy9dHZh4UTNZe0yLjRy2xz654ITlR58BCH0C8wxqPEY9DGLAajBhBpomTQ6xQzRtSXMS8Fgxes8lYwxDt44PzXLc9N+2AS37LQXAY+gADQaWO6FTRaMGK+CxyQdEqznEffLy3UEcrhgaRB/zQKb9yHi9CMBUBrVhchRCtxCGvmSoK00GgNia7D3ZuoHfRLRHlx8fWw6nXOCUxiLXUlWcI2kcmVtgdegU883nDshakv2bddlnoTq4mRgwhCIPraZZH2GaB6Tca4GitWhiAzgf61RXrT9/jdXdFeLHi2bsr+stHymsGz7LR/hEDR42htoKpLC7AvbnhjWXNVWeQ42PqumHbtppdKu4xlTX02xXtdsXQdTsgL4GDnM47/z/+mt1E0l+ThXktIqoblgKU0QISArH4ajyWomG1c+K5luRbn7NyZbDCCFoI+GGg32xwXYcbBrzXLHTGVlR1TTWbUc3mSF3rvZNAmN8kFKkoSxEjcskoJYwgo+QZiZsSj/0lElv8HJALwwjQfXy/KPSFQMzgJDmBQggS90TwfdiRtFTzHMBoCtxESStsGC0Z+Tfi3Ep7CpCc6EOUJLP8mRJBlFOh/FCkGpOwCzKk2NdUf+JidLBkqTGpGK3YCFQttmqwdYOpRr4n1mKN3QUEZQre2J9jsjrJbTpEJfDwxTGJN5T5GRfzN3mLR5w2PTfe43uHbQbqek7dNJi5wfuBrt3ihkA9W9D1W5q6YlbVWHHUeKSacb24T2+qnC0rC/vjV/0bxvbkqZ6+SrEC9sBISeGOe5cvvusSp8dLAd2VbZS9NiTZZO+5yR13X87ZeW7ZoEPAhAJ4xS9SXF+eH/YvKn4vXaJk54dbl3wuvXydjEETAecBSgu4eH4Kj4RAn13Hx9Zqh6clKgTvuLl6xHr1jHa7oZ4dc/7G16jqGc99x4tHF1w+fUaQBrygBVyij6EETB3o1xpk6IbA0ANGMLLm+smndDPhS9/8Fe6//gucnH8N7yw3z58waxYcnx5z9fwTrp/UdNsN25unLE/mnJw/AHPMdnVBXUM9m8VMTlvu3TvDO8/q6gVSWebH9zm99ybPn3xIf7Ommc3ZXl/i+y4zcd8PeDcQHGwbtRhsbrTi9/pmy6YPyupDFTcrFxlKIHhPYw2LyrCoq2gytbiYtWYIMaNDyMldSe5RmkpW3Yoka4lVmNq0Pc9XPc9uOp5veq63A63zrIbApyvHdevoBkfnA4PvYpG6YnJFAdBYM2pnUcEwBZcnH+ikKbE2ghJRN6uh3/Loox/z5NMPOT09j8JPmkuRUceNMuRfVJrzXhNzh1jt0TYzFRiMzYJF9j9Nb55We7H5CsIQGj7phatna57fvODt+xse3D9jOV8oIzFCHTzWNXqNCRrbMyuEmyZudKlqeYwd3yERTYmBwOpSc+IB1JWOf1PpGPoYhFyJVot3Ll5ukbrGD692TMYLX+1uEAH1H68Sn/AZOIY4D9JGsONb7gNbKb4nZUZBEl1FNrHwnkUwfWSPQf388wwJ0NvAMPNx/cmoMQsjX0vryxXCrDWjgsXKuCaT48YWolVXCN7jXI8E9X/GWMTWhVsP+Dpkx2KRmJc/trM2MehQoAvQE8ageAMz4xDbgVRAwJkKY6EJTq3OpiaYinrZ0FjLtm1YzmbUYUuL5vIPAjZZO+M69kGYn73O4vQ1us1VfA+t0hWcw1OzlC188ufcr0SLet18TGMGNrXRuBrnELTfa2uoK0F9weG4MZzPK+7XC/rZEc45rm9uaLcbuq7DWsOsqdncPGe1ueF6vYqCfxKIxviWEEbLeYpNGzf7xB92t+cUa1ZuwzlWTABGxU6WC+MzjaiPaHaXS2MtUagz+psPAdd3uLaLcYiRZ0vAkIRBg61rTN2oO1jMXZpkGon77v5kD3HdjE4vobhmDEzPbi4A/C1eReq6UdIRAsFJrEOg84mEPcOo4MxCu+zGGji0wrcphjrFnoYQsxHptpNlnzS+6hqlfEbS3EqZEIvzRyFc8rlpvgZfAI/YptGCT9ryVEkV3arKd/PeEDx0Ibp0xwQSyWKHqNW0qmtmiyOqqoqWj9Gyl5NphNHVOqGN6BR6UPDdEWLTD/F7dXKPy3f+Ni9e/DlN8FTDlhAcNnhqgaZuoKoYtje4tqNp5iyOFnSbawyButaaW84H+tk525MH9FLw+KJBCRCW+0p5XokH0riOq2SkUoDPa23/t1LY37nw9vFD9w5JjAm75+y3saRbAv0+sth/Tvm77H3c+77D8Q7cV4q27jfmM5qxQy8PMvqUHHKU0wRiRVp2RwgZ3VZSr5aJoyUuBCssT89w3nH54ilPH/6QgGN784KqrnjrG79Kszjj6uljJAzcXPb0w1YrJlMhg2jRZmAYdCOs1EGZejHj7ME7NIvX6FbXuPklngUSHEfHD5gfLZjNj2kWZ4QguDDQbTuk2sQCMg4/GDY3G3zfE/oNX/r6PV7/W/8THj96zONPf4zvW1ZPf8pCVhzfO8VWC7rVDe0AEixVHa0utmY2q6jqBtucszh+jdnyFGMsjXc8+3SjKWCNwfmkuVOBfVYJs8qw6R1PblpebAY6H/DOM7PCcWM5biyni4rTRU1jRiYViHESoinu1l3Pk5uWnzxZ8cHlloutY9N7hhCojTCrLMELjYEbr64jPgy4TuNv3DDmrE+B5EkbmBPiRk2giRpD3YQlp/fTOartur54ysfvf5+33nmb5fEZInUSASID1szm4yYOw9By9fwD2vVT2nZDXdccn71JMzuhmZ9hqxki0Z0pzbskJKZpSMFHEToMFxxxvba82Nzw5ZuWB+dHvHbfMeCZh4GZH6iDh3oOzKKqIgZ9SK0r6fMUg0bg5EwtGZtraGp1N2uOtL6GAH0A0SBwEdGKtajm2dQzqvmrqX1MZKsZKRlAnOU6d9KxLAFITJE9Jm0Ne7vA6LYS52T8pgK/3iMQw2AS70rOyeNl7LBaq2mVQ5A9DhxGwFNy6yzkjsw4/azTK8LmJBeKiWAz5E0nu1gVbLvMEZBS4SJozaH4jiIqIKXHSIBaHF0YCEbdbkxwBJljjLpKgdPEGzFY3BjL6ckRx/WK1TrQ20qfGX0rJSThzMDZA5avf43LZx9HADzgnKMWaIeaygjLChaNiTFT6qoZvGVwniAGMJpqszLMKpPv3xjh3qLhZFiwrmuCzBgGx9HyKLt2LpcLhu6ai+vnNKvLXUtGHPOx7sD4PaU1hWJeREWJCh1xICKDygLByCQYA1/jWBOi33aas5Ktp7meSRivTXwv+FDMz0LaYVfwUWwime/leZQsLAUoTc9IErAUvhepbXnK7khprybIaLdxLZvk1rTb99nyE33xR+FzTOqQQIAQBfOYehlRy0bpErcjY0UsKsJOjTCjUztfEAL4kCwthWSUhkYUA+wL6RJQJSLj/dwguUyAMT4X5tNAc3XVC04IwRB8iuUk86YhQN8Ztpvr6Dpo1H27bmhmc2azBcZW8d1NLDooCCan5c58CHJt2Z3puwc4TG0Z3v4mj2cNbz/pqK4/Rgi44PC+A5mDOAiO2gYMG/zWE/wWLzXBGrbDwGqAzWu/SHd0drCWzEGAUYxZaur+OIbiHoeAwf7xfP+dPeE2IDgEFMrnHwqRKtt66LqXof13LL/vNXnnubJ3/sF7j6zx1vUvQy8NMoQhNyYz0uTSAGm3hOgCocyb7G+YuGFIgQFE/34szeyYk7PXuHr6Yy6ff8rN5RNmJ/ewpmG9esGzRx/g2hXbTYsnINawWCyQ0OODaoTFGiwV8+MzqqqhWRzz5td/jTfe+iZ1U1M3R7TrG07OzjFVzermmu3NtWriCdSzJd32htWL55rZqbIslvdYnL1G3/f0pmY7WOphRVU5ZtYzuDUiHms0Petws6IbPC40cbEOiBVsdcby/E1O7r/G7Pgetq6Z1w3zo7dxIfDkkz8mON3wHT1jikgNBeic59Gq46J19C6w6ge6XutV1FY4qi1vncz4tbdPeetsppt3kq9FK4t2vePFquP/R91/vVtyZmee2O8z4bY7Ph0y4QtlWEUWi6bZbJpmG7XGPLrRjS6kf0xXutPFPJJGbtpIzeZMT5MckkUWy6AMgIJNpDtu+zCf0cX6IvY+iUQVetRSFwJP4mwTETsiPrfetd71ro8utjxcNFiteO2oYpwbRrmoVpWZ4dmq5SfP1rxz4Vm7SBMV66QgFoIXWkHsQUaqGQBDcmwIfdREkdmMfmJXWouD3xi8d8TgqLdLHn7wA15++Yy7D94iL48RD6yAie36HA2Uo0NAE72j7das558wP/8pnQebFawXH1ONZowndyjHJxTVKcZWA7CAnYE6ePp6CkP63iO89ad+xupyw9nympc2DbdOj5jOpkzGY0a9OogVioTM9mksqL0h+HkjViFRj6PjXXTIR7DF7r0Rw0l1kuGmugaQr5UtUP8xxQF/JTedIgyyCj4/sWolMoqD8cf+xB0/8w7UjYTd3f5S6f5F4fAbq3p/FTdWy55211/f8wZHmvv6M/T7Pbcq9X2unwI/swL1Bmw6OKKG6FsyU9P/e3WcdLVqz9BNXMBezKEDGh9RIYg+f5Lu1tlYTuoaonfErsWUGWVZUBYFh7kl33hand8oQBZ7RpFSlNMDTl/+Cpcf/xjfrAneY4wWBkdahKwKWHqeuxLqGSK5a7Smyg2rZcuqjuJAyaQ+jTWKg8JQuo55DbUTQZG8yCmcqPmFGFDR4XxLGzoUexEEUvJ7DH0LynNMz6cvfLaLSYVhfQrJqTMU/eubuG+uPVBMaue+fw4UVPpowc0+q9KJerWsXd/Ys1CHzrEzbtVwnXpvrgWhdqW8DS35jf19SZdKAgf097Xr47uetbdufwm3rr2RFSP3rhKTrbc5YEefghtjcfAUKFIuXA86FOg+gt6fe2dhabMP6tIO6evolcin3pj743AOoXLv2hYFyu1ADrvTyfwoJtJwmp4TEKMSfZDe1xR3PQXijd/p60goA1p5YnR4r8BBjBpqTb2xZHmJthI104l2ZTKLtbk85yj2lUpREWX6EdY7Fm8+0pi+DdZwdXCHUL9FvlmTq1oUoXwH9RqTZ7Rdiy5yCq1QwVPYjCZE6BrWbU2rLO7gFmGPTXEDCDxn/A69uu8LLzjm+X1vgIDnvn8eRPVf3Fi3nl/Enj/xc1//os92z480x/+SHV/w8Yt2u3Fv6UXvcFX7O+4ft38ytdv//2fqUng3cPf6MO/gkRlsLDV8NnATUwvpYfHsO6dQcTarC1bzJ1w+eY/t9afoJAmwePYB21VL27Y0mw1EaJs2FWRW+KxGK0meMybinUjgtvWGkDmU0lxfPKGoZkwnE4yyROc5OLlDGwL1YkOMkaIaUY0n2Cxncf6QrllgTMl4MmV6OOHg9gOq0W2q8SGuW3Dx6G2azZxmdY3ONfnsFtE51ldP6dqaQEbE46PHpLIrWXbA9PQ1pkdnmCLDdzXV+ITx7CUW80va5rvYrKStN8OCAnKfWmms0tw/qDidFMmDEkUS2Hm2bWC+7VhsWq5WNUeVgC1jxJuo+2J8CjKruTUrOJsWjHLDpLAUmRk0viORTMOzZcNDK9ZF52SyCm1HJGK01MEIMWCiGtRvQKJJfa0MiANFynuPMZKQplSTOLOBrm24fPoJF49/zmSSU022lOUJPgSW159y/exDtPJUo5lIBtdLgt/S1HO2q3MCgXZr2URYWkVVvc94dpvDs69Rju7gnANCihA5gu+wSYFGZyVaycQqxp14dyKKa2+Zbzou5he8en3N3Tu3ODs7w/nAqHKUKoAV1QypfbE3jH+p+0FJZR5zKFXBYxL67o/zQfTtjEWpSgBIFJEEkOTmL3MsYzDV+sV5+LT/jxsz2M5A3xnZ8llvTcS9gER/hv3ZPe6iBTHtHUlUl34m2v/NHfgcErkVw0z8/KS9Dz/2F9thTtxfkNJ1xD2x8n1an+zTP5S9E6CIvcBmlKwQle4tpKRjlQr1dcFTd26oNeEx2OhRoUXZkqhHKNdI8qg1qKixKmNWWg7inKXXBC05c7vLUIPxM7v9EtPbr9Ctr3DNGmMMEdh6Rd0FVIzYYU6IQPKuiqmFURGDRDIHuhCSHzMqMoqtZnN1zbJ1+Cg0y6Io2G63uLYly4WmiU7Pcb8l9pDewL+OIQGMkGicQBTi3RDdSFXJh97YL6b7TjR6kLBvqj/XV/u8uP77uAML/bFDf9uTwd1FwmICjHG/w4j08r4plBw5KiiCSPuxiwsKla+nZ+3g1s5YltdfXpW62EVp+wEMM4ADMcT7BtzNMbu26gdpymbYA1tKgTLxZhQxqMGeiZEdcIm99O1z1hfpN9I1pVSfVJyTobCsSrbSfmi9N9gVe78zRFySelXqCz6S6kipBDxlfA4Ur5Ai/6m+hk7XIt1FJUcmhNDhul4qSQ9UK20l32oYSEZjrChc5UVJVuRDAvrOCN8DHcj1t3nOs7OvMg6e6fpHBBxdcKiuxuCoN0uYb8Qm6Dpi52jKDJsJqyPEuKd6dxMQ7P9l/33ce71nPIfn92P3bF8EGNSNL7hhaN/Yff/3XvA5N5v55j77P7lv9L/ovj5n69eh5+9B3Xx7Y/8bx++vU3tD6vPA1+dd4+dtXzzx23V9AALxDIUUEtzRZ8RYUMM6uX+RYXgUyVsZO5rNnMuHP+X62c+5Pn/IcnnN5OCQyfSQ+smGZtvinKMaz4hB4dorQmjxETZLSUIOMSRahdBxnOtAKbKu4dlHP2b+5H1u3b3H/de+xfHx65TFFOoVGZqDwzOKqkJpzXh6yNHZbbr1U7JiTDk6xoeO0G1QzRyvO5aLh9SbZ7i2pq63VNmE2eFdlB6zvHbU9Xny9hu887hOY7OccnyEMRnLy8fkOUyPbjMaHZDbjGbT0DZtirdK8xpj8CFgtWacW145qnjjZMRBlVFmGmtkooxBErY3raNzQTjORHwQrrTdM4yMVkxLyyQXz5jtFXnSM+wpBSq1ljRcINPi2eg9dkMxP0QmkqAIwQ/FhPoJXiFFirQX74skTbLXI2RR3qyWPPn0fY4OCmJXw6zDe0+zuiDTlohhu7jGO89qeUHXrgiho+36ZGhN8ApUoGnWtN0zop6QL+asr5/h3JI8zyA6XLcVnnM2QtmSPC8pygOhqpmcsjrG5lO2myuWVx/wqV/z5FnFg6envPnyq9y5c4fDoyOmnacKAVt5VF5CT88aRvUvGIL9SM6s/GsRgWzvGEqR9qPHB9BS2yRGTXAdX26IwVDwrmf7D6CBOHh7k62FQg+yzABhMK/DQAmRxawvrhd2i7VY3v2r3QQ62Cb7hmm6uIGC0ptlOw70bgIXKmhIaXr7BuHgaEkztkr7xxjRQ5Vv9u5buPg9tSfESC+6GyEpUO28772JqgYgL/kA/eLZy19uHXTbhti5FHC2UgejayUahiEGg28CyimqIufooOLsfM6zCHXSeNR7D6c3hKent7n1xq/RXD5kc9mJ84BIYwrmDWxbT5UZdGaGtsqtYtt6zhcbNBGjoMxF0pJUwEvFiA4d1lS0mzWrusPkOeN8QpZHnJNCjX67wTc1fS7Y7nnG4V9IbbJzeIlTZEef2j3v3VBNY25Yx3agA/YjD+wZk/3K/FnrYGcDhyRGsKMs7cz+RLnao7wN6+ZwrpSJpNReNKu/3h0FdWAKJCO6N8IF4Nxco5OW6Zd3C54b41Eh9NU+b4G9IZ2aUR5Pcn72rRuUqPipiDYQdRyMe5XqS/WKPD3wGKJDacyHHnig0rG7B9sTOPa7mBjhu4buixj366NR6T6Qc/XF4XQCBz7ujnfpR2IMKCNrvNJSqVoFoWqFANH3fW9HCYvIPUvqRuJWPUfv8ik6E4MmBJVmK422lqwoKKqKajwmz/Mk6iIOnZ7XNND9ygI3u4vbvAOhJSjJq82CJ64WmK2XWiMR8qhw0WNCSwyOoMeQV+w9whduN0DHc1b1AFDii4+PL3jzPEjol+XPgJIv8Ptf9NpftO0DkRv7DuP+c94/f44XjXf13O7q5svnwUb/+nNu73O3LwwyQmiHyXGYqAeDaI+v2l9KZJjs5SAZpb10oFWKUTHl9t2vk+kM30RcKGRgxwi6RKs1RgfK0Zg8H+G7jnqzJkY/aJMbLRWby/GM6ALjwyOK8YwqH3NweJusLMlKi80KdGbp2jW+W+GaFXmhCdFgTM50dkikZGvmVOWI0fEdgs549vDHXD79ETE2otpgpqzrGucseX7EZHaH0eQOXQvm8ft02y1ZVoDS1Js5vm0AxWZ+gcaT6xllMSMvJmxWVzz+6G267QJXL0XutX+OUQqSHZWGw1JjVUDFVJU39gYG5FZhlSXmiWQSI52PqXC1Fh50orCpGAbJ2i5qdIBt52mc0LBihKtNi/NSR6Dx0MSINRnGGJxL6lcomQyH1u4lRJM0I8nbCAL4bEaW2VQ7A1FNCeJZdM6zWjd0rqHdPsFmGVl5ynh2QnAdzrfUy0u07hhPj9luMpp6AV3Ee41WGcRUTEhXRCq26wWr5imbxRwftuQZpNkSZXQq0uMp8oyiGNO5lqg1RTmjHB/RNQsW18+IQbEqK55dPGK+vOZrmzd56c59uhPHYYDKRbIS8XibJB9oe564ujnqnx+p/Qc2StnQditStiYNSZMMAe/Ad7i2wTmHzfIvOmR/JbdUQHvnBSTlZKQFyuzPGaqv/ZIcFXFI2x0+G0AG9MNGYMsen73vsy/yVu9HP+Lwxc4gjL2VkOa6HkD0m4pCKYqJ7rSzP/uzynX0huLuwJ4734MsGTdiDu7M+5573+ca9Mf20Zl9fCT2jmHrNW3jxKPZNUSjUVkOvqZbL4jKEE1BNp5SlAVtq8lVxmlhmGwdDVm6cpUUjkhGtiIvKs5efovlp+8T6zkqcURMUTCPhk0XmPggUdh0YWVuUxV1cWJMCinwGZWWIlURqUHiPGHb4dsGExWjsuBgNqNzTjymIRJ8S72RubJXq+ufakBU9kIIg5UQlSTbx+iH+TGm+5FIhR5AR3+u/Qj9YJAOgEIqLcf9voZEmoY2UnsNklqyN/L2tyGK1e/aO3kGCtXugnpgfEPMQu3on4qYcl56Ky8OMsl9lFr3Sc83zJYv3xaTEw1IOVbyHJVwdvsvhvHXG0aQ+nFqm2FuSSqZ0THkeQx4c28q35HZpI32KWf7Y7H36PcUrL0pQQ7do0ftDLm4G9e6BxVxMB6FfhiHY5TqFfR27wcQqtN3GpTf3YhERnaKXCGIWaZ7RUMkmX3o2/00mqSsfVDEoHGdw3UtzXZNs15TTcboLEsgKxKCJ0ZxllpjyTKDDpHWK1xsyZQVO0EVlEcz9NhjOxFyUXmGttDFSNs5uvEdQjXZOWie67ZD2/bDdQ9QPP+Mf+EWn2uPvffxc863/3cYUS9AH58HSG4AmvSiH54vAhXDzi+6bsUAqD9vvxtg47n7/aUzws1l77NRnl+wfXGQoRJHnOR98end0PnjcAMxkib3mNQ90oIVFb2UQ69bYHPD7Pg2tqo4bbegAq1rGV+dc/X4I1aX5+R5jtGW6eEJx7fvEbwjy3NJRu481WjE6b0HRB84unWbbDQjdg6NpZrN0FYq5mrraOo5q+U59eaSGLeEbsVodEDw18wvPmFz9THNeIoqCrAT5ucPCc2CPNeMD+9SHb0KZoqy10xvPSAfT8hHBUd37+FjiyJidYYtSh5/9B7r63OIjiyzjGenTI/PKKczXLfm8umHfPrRj6nXV+JpRPTghWIkSjKHucYqUWbZtKKFrxAOM4jnwyiF95KcDZDnGaXSKGPRKHxK0Gw7iXhEFMZEWtfx6LrmfCP5Fz4aQgyct5pNULQBMFKJt86yXbG/ZBiFFHLVqQ6BTC5hoHzFtMCB0L582l/1U78Smdvl9TnLq0/J1C2ysiGwoa0XRL+lqRd0zRzvHVk+pRhnqGyELWaETp5BCI4YGopyJPxSNE0XUKaiGh3hmoUAPt9iTG9UappNh9LrVGQtYm3qa8YRgsJ1OV1TszSGxXrN1XrBt+sG13liCLh2xng6pYwQsxyVZdK/IwlwWBn5+gXDVyzC3UD1ThZG10AndQikJGlGcDV+u6LdrnF5Sc7LX3TY/sptvYqYGHq9gZQWQeLOM9u/Hh7dftRgBxwEWIQEdNVwjHyb6g309M698wv1QSSWe/FlMfz734vpeJV+ZrfA7zjQ8qef6wJx5ySJ/Y9wA1TKS7nfPSe2PIXEr+7pSTrts6OA7JaE3juuBw95b2xptrGk8S2uDfhOgW0ISmF0gc0sPjhcu8EpJcX6GhiVBYel5XC5ZWFHeCV9t6/pIQ4CoR7OTu5w56u/ibv8iHZ9zXQ2o8otSxO4bJaMMsmTy4xKxQOFfhGcREzrFlTnxJuZoq/OB3COblVThJZVtBRFyagapUipYn49p2u31Ku5KNWlyFf/ZEMMO+GM1O77hmBP3ZVIkBn6Q99bek+/NLkR8BgkZw9tkqT2LorU19eQJklqd2qPYpeuS7Qxeoi16xK7PIk+XhEEGLCT+o5Jfau/SkgRrv4696Jd/Vw75Ecqk+pm9NGQXk0t7vrml3CLvbNtgHj74/KmMdQPw56uNBhyqBtGWUwRipCsqR5U7IOMXgXs+R8ZjPz0Zj+avzNB9w7at4YHUCnzYTKX9qeMwaBLU6ecUbGjYil24DMdKLSp1NqxvxYlNYVgAELQ18GRkw0suqgGsKK01BdRCtCp/6cd28bRuRoprhyH++jnMSniq2jbOafbmkVcUxaGqszIrQjjKJvJ7ycnZfANbduyrVs2OrLYNozKDK33QBU3//bbUJ5m74sbEYwXgY/4ma+GVovPf/8C47x/8aLv1d5x8cYHn932j3/+en7p+/2lhpvD+waQiLv7GkDRXlfc3/fGc+3P+QIQ98u2Lwwyuu0C1SPV2NNC4x6y7EO07EbI3pPWmkQN2HljvHfE1qF0YHI8YpyNiCrgY+T4/hndV15ldX3J4slTNqs51cGI2eExxuaUecG2bfj4nXcYTSac3hLO/GQ2ZjSbslmt2W6WrOuG3Fqqs1so24Hr2GwvuH76ET44iA0qeurVJV29BDujdY7t+gm66DCjGcrmKKvosOSxYXRwQD6aMDk8JKtyoqoZTXIOT46p12us0pRVyWhUocMh4+mM2ckJs+MzyvEUm2mazRXX8w9ZLp7RtQ09FO0pR0prcq2wGprOs6g9TYxcbVoaJ4W6xhZORoZJYWSRSwBAZaJKlGkjsokh0rpA6yMuADGwbTxPG8OH3ZRPth0bM6FzHaXyHN45YaKfsHh6jtImVfw1ZNaK2k8ymsW7GAjRs1Nf2dvSIh9DoGmaQcIWhZwjSs7GerVmva6pxlvi1UdEHlPXc0Jo6NotbdeALqjKLnFLS4pqgtMKazNMnrO+fkpwnvHxAT56vF+QFRVlOWbVrui8E9qE0yhtsVkpnNG2oW0zQnSiBqZHbLc1iqS1Hhqy3FDXjnW9ZrldcrW84uvua9x2twihw3eOshpjSqHeYTRkCIgwRkaZ7ofqMFx2/0oLTUbcLKHZEtoapQJKGYKxdNsN0bWobovvtl90yP5Kbnm2DzJ2YEEmWL333V6EIXWs2EtxxkhP+dBIAS1AjG6Q/rXn4byxpd+MPuBjwKeiaH1FcZRE5VSUGgV9JGM/OiKGrQCb2F+XjqjkJZU1WDzLO4rKc9eRrnUwO5VBqSRxnK7/Bk2rX7z6MZXuTfXam4glpZWijSOW2yVNvWVUFbiuwIQGZT2oAmsqNB7XRZSF8bTA6y3TIudetmZO4MoYFKR8LT3cp9KGTGluvfo12mcfcfHedxmPRozHI1rf8Wm9ZWpboW7kBoWmc4HVpmVbgyomYCzdekn0G0al5mRWoLQ8zYqOsfZctoG2aURBLs8pi4KV1fi6pl5cEJzD5MXg+OgTuXtDqo+8KN17lXdUEZJLz5IKtoWYIuyprykFSqhIQSXHCaQ27p99r6wnMt4yt3mpGa90D2mF+aJUkgu1iZoa99oyzdtRIg0M0QiVap0kU1CZtK/oZKvhGlSq8RGHebiXzN0h9H06p6InL39pNx9244LPGl/P31uMEPeUv2MPzAfTuz9qZyHG587av/MDCElGu+qn8ZgiCXsysHtXI2/DMB/dSF3v1az25HV3Rl46Uil8xw0MKYVIZS3tk8WFdiVIJYa+O0WCVwPoEHtM7cCJEnildB/5TX0wikKWOIdJc5tPfU8l+V6Fwu+cO4N6nx6Aznqx4sm73+Wl0xUHU8X5+QWjMiOGGUVRolVBnluyvMA3Nau6Y73eElzg4t2/5C9/9ojf+uf/a05ODwRo7D3eF9m6vY/nMwb7/nN9Hlj8AvDQn/P534t7n9/4rc8x8J+/pl8GKJ63p54//vl+HvY+e8GKI5/f7OY3Xtw4f9rvRc/jP3bu+OIgo16JTJqX6rcuJc9FffOuFdLpB51ynVQ+1Z76g5JBub2+xl1cgzFUt46x4xFRxSSXCjFYyvIEfVzi/ad07VMUGluULBdz6u2GzWpODB2PPv0IpSzb9ZpqveXq/Cmu3lJUU4qiwFBisg7fdLSrluX1Aq0jeRFZXc4JsUPZY05uvUHnVmBairzk4PCU4DqKcUlwDaHZYJWlHBX47Yr68im2yLBZQVVmbBctjXOUk4rZ7VPGBzOq8ZRqNqUcT9BK4V1N22zYrlfEGJIUo5YK6EhEwGiFVhIyvN5GGjOmOH2Zp+2ccxcJXWDSNXzz9h3yzOGvP01FnTQHOhXeAbwPbFPORkCjtaJzjpXXTL/623z95AH193/CfNPQrOdMRzmvvPEm2XjMpnPUTUfjg6hDGQsITaFP2vRJatUYi3d+rwBSFBAZkciMc/ieTtXr66XFu206FotLqsrTbJ5hbEXTBZyTQj1tq1BGs13PKQrDaFIwO6woS4N3gaZe03VbQmhZLw2dc9T1AoVivXiGcxsireQDoDFGYax0xhAUmcroWuH0a6MJrRmM3Lb2tI0jRkdTwPthxbq+Yl2v+eZXf42dNxQqraQAUjTS6U0aYZ2C3NwYvPS2RL9qjCfQ1oTrcxnL0ePbFVGbYWDn1Vhyjr7E28hKonCfe7GvjtRPXyFRUkIfs9/PQ4npWMUNL3ZMRtVAH5EVL022fS4D6fwqqaEZMoAojg1ZuCXhUem9Ym2QDDxZVA0p/6MHQUF49zr2ydIxzaz7nsS9bTBS2NFgkmHYS5Tu7ZiiwbvE8iGokcD6UCcnXXMdcq4bTVs3uLbG2gKjclyzJYYN2oxA50iFng6IxNZxdDjhTrPl6dWSucqIyojhqqXqulZSL8m7DpOVHL36ayyfvE/TzhmNRoSsYO5mXDbnFFbmCe09y23H48stqIJJVVBYi9M1XVsTkTogAYlK5FqRK7DBsV5ckxUFZVmmCsdCyVxfn7NZXjEbjQZhi32zcQCpavck+3oZqL7uCZInk/qUUjsAq3UCwlGhtGeXGJ4WtVQZvafMhKgxGkxS30GpJL9NompFVKrErBJtrI8Iy+/4ATCgEgRIEWGdEvoH51zUgzGqdp0A0v2Evg7D3oBRvTGc7lsSfL+8MGOgRw4f3DTId3ZSbz3tIkiD8aZkCh4oRjfGXX/85xizgzWm+tPf2PtmknK84QHeRTf739t3EkiULarnIc7euAd6KlhI51EwpNnovdMOl9V38tjnpCi870GJOA21juioRIlK91GyXshnx0xQ6aQxJtCiQIvetURWjCIlmcjvOM/Thz/j7T//V9z6xi3GX3sNjeF6vqRpGybjiiwvKcsxxli2bcvVfMFqXXO1rPnhT37OX37wl4xvvcJv/f4fUY3y4d4+AzBeYDw/334xfvb7vnleCExuHPwCjBBfsN9z3/d/PnO9n7PvC0514zz9te7nmuz/xj7Q2O/ScW/f/Q9v7P+Cz/v3N+79hQ3w4u2Lg4xNTYyaPnirVUyqIUjea9qkn0mnDAG6LuKcXI1KigwxeZ6211vCupEBY0uyVgwQ4d5GohcWSYw5ZXWL7Sbw5NFjyvGWqyef0LZrtts1zXZD03q0MoynU6rJAZdPHpGbnJO7Y1rXMH9yTlQZxmZsNy1d68gyGRytMwRvKHRJno/pfMf6+grXFHTOE/0GHVYEt4Io16a0JkZNszqnmEwox2OUsrT1nK7zFH6Kj4F8UqJyQ4iO7XaJ7zp8W7OaX7CaX2OsweYZoX9Gul9MoNBiaC1aOL73Bl//h/+Yxd98H3e9ZLVcMp2WfOe/+F8xVQ0/+9P/ls3Tj8nRVLmlyCzeS9XhtvU0neRJWC2e31aXvPHmVzl48CafPvwU1u8TCzg6PsTGwHazonMeZTMy7WlbI9XV94BQn7yrlUROXF/nI1lVwSeeeRTAEKIoTcmiq4ZJs3OBzapmPbKUlaVQAaXGaD2laR31tkOpjhg9TWkweUNwS8pyQpZluC5gc01Td6yX53Stp2s9bdPSOUeWK7JMEm/75Dhik8BvwOiWxjc0tVR0lyrHsjh4L8M2hIDrAgTPI/+E4DJOjh5QFtcYY0VpI9MUGrTKUEGLPK0uZMJ1Kauvnwn287cVAkKmB+h6DamyvXjYDTbLCUghRa2+3InfuerVoXZT2G4O75dlncBqMshgZ4QlT2xU0iakqJ9MqH3+gCzBMfYUGRI9hoHKFIzGljmTUUmWGZbrDZttg3eRvMzlXEYNuQT050oUgJ4u0NMAnXcpKpIoognw6CT53OcrDeO794XqPlct5Reo3hO492zSNfeGYfBhAGc6lRsfKFxKE7Xhuq1YbWtmzYQsW+OoMDqThO/Y4roVzgUyd4AuSoo8o4oF09xyv2x56mGjDcZaok61alLkx9MRQiSfnVCdvczig++zXCzQRrMlcKJyZm1DYSNFluZ8BaNMUfgtOkCuWkZjw2Rs0VrmAOcDeWYZFzkHbc2TtuHy4oLxeExZlkntJrCZP2V18YTD2/exeSlz8kCNkucekkwAPQAzagAgIXi8D7taPv2clp54v+BrY1AYQgIMWqcCh94luVw1tIEcE9J1JOoUSdkqBLT29Eno/fzSt7DQeXRSkeqjG32ytkQhekDdAyCIqTZEn8eR+nkaK/R9/QadLg6FI54vRvhl2mIIu3EB3DSHpA/s/t9/1u8/eA32FWIZYP8wL+3ysvp9dmB2Z13dVL7b39QNz3J/mbsr2M11N3bYBxif10Rxd67hGQgTcXf+HXqmpzf3n6s9S1MJ6k7jAoKjD9jelNbVkRuXiiSCE/vq1moAyf0Wouf6/Ckf/+zv+PTJR/w3F+/z0cOHfPX+HaajnNxK0H86GjEejVms15zPV1yvtjy9XvHjh0/5+fmclbP86C/+JdODQ9765m9QlHb3M2qvgZ57RC808veByIsAwPNAZe8R918MxvxzhvfzIOHzwMcv/PhzgMbQnDBILPfOqwE8qOfuS30WVDz/m4qb97c/ouLev16W6EVg7JdtXxhkVNsF0RQ05HRRoUlcVReIWsukpRQe0WonOXxCGIoWIwg4aTcTsaYgjKaJvqCIjShDESPKR/pEuhgcGs/s8JBme8Xy+orlfE69usAUFaaYJJ58TV7kjLTBFiXOOepmzaga0fmWpl5i8xLnG7TNKKcjytkIZQpC64htzWb1DNfUuKtrwmpLLMcEtyDUW0LYJCM53Y22gGVxXTCejijKEl+3rBYtm+0S7yI2y/DeJdpBBO/JMtF3rzdrXOsJfrcY+Sh5CkZrRplmUhhKazg6POLo5JTbxwdsL58yHcGbb77Om6+/Smw3vDM+Ydt9RFVINd3gPd6LB9KHSBciBEeDYtM61s2WD/7ubxh9+AHjJz/lpc1j8izDXSz5+IOf8ORijesC5aRCG4NznrZtUFoK5nkkN0SitMmbqhRG60E+U1TExCBy3iWjkGG/mLTvg4dtHdjUMjB88NiskwXWQ1dLAnhVaqwybBZPMWHNZDohsyWZzclyRVN3NE2L0Vryp7sOkwWyTFOUFmvFM9i2ke3W4bynKAzT2RitI4t5S/ARk0HYe3ZqGGKy0FhT8Lu/+U/5gz/4r7g4f8jHHz7Et54TItpIMUNslryXyVomyYT0I7hf4fa4tKos4PQubJfE4DBV2VeSg65D8eUHGbafnRLVp88p6D36sthJIcid009hrOQG5XlOngutqHMiq621xhpNnhdoLfkzm7qmaTu6VGNBHL56qJfgXaCwcHpYcufshDzLWW62fPDRp7SpknXbdrTRD+prWkFmMwHUTs7ZJ0S6KHKRIfT5EoievIbohUqltCzmRom5KxKQEjXTpheyMBib4VKdCJRIRscYiMqglUoefc9A2RqMApOSNi0Xdsz1+oqDaonVClUEyHKMLolBKBAqtETvyEpDaALMG8ZFwZ1DzeH5hjoYVLSoECTSEAJGG2w5BiKjMqd749vUl4+4evI+MQaqIufRyDDrNIUT6epJlXGXSNt6tF+S6cioMhSZxRqF84Gmk3lVm5yTqSHqyPyi5rpt0MYSIxwdHzOdTdk8u2J9/giLZVJOiSkXw0cPUWG1Hd77VGVcpTVK6ESGoPtqLJLMqlI02XtxpGidlK+CKJfFGIS+lCIiKkY0ktsRgjgfAIJ3AyVqn5sfvCMmWslQSSgVGY0xoEOAQU573/0Yb1Li0jVrBVFkFRGyTVKhC07AsNaDQRwS+FZqZw8Pallfwi36FH0bPtnFsYAbn+8dJe97qtreNzIdh88Yazs4sQMeoadEvSgioWAHQpJDgH3BhufvRIEKn3Ptwyk/a0in93roJzvTUA2yZrvPBnrYQBPbP7fsL6IVe6LeKp0r3Y/Qrvr7UOnlDtzG6HGuo2u2NNuatmlYr+Z8+sGPefzB21Sjio33/Nn7j/kP73/KNNOSc1rlvHn/Lt9841X++u2f8r2ff8yy9XidofKSUEyoCsP7P/oLVss569X/hgevv0VVTcnLkizLktT/fi6U+oyn/RcBDmIy3F9k4L8ASAyHfc7+N37jxpcv3vag72fP+dx19fvEF331PEDau9b9ffd76OcBnf63++9vAPL9E32B7QuDjGL9AbaaUZbHbMmQii4Quxa8waFxOsPFSOc6MSCMcPO0ZUis0hrKUqNtAO2pvSTg2dJRTiPoSNt42q1P9RQ8gQ7n17Rthw8bVvNzvO8Ajc0ymnpFEwLT4xmRjrZZEEJNCA3bdcTYY0wu0ZOm2bBZX2DynOLgNqbI0Sqg1BVBNcLBtxFdOEJ0oCNON8SwJfiOEHwyJBREhzaart0S3Bo/yvBB0W4b3Bq6TlRTiA5jJYHbaEM5HpEVI4KXwlhd65J3Tbz8IXhya8iSEdY5zyc//SF+u4LFFXfWT9BKkz1U/NX/+Yqm2fL0o5/TOM89q8kUROflefmAMRrrI43zuOSBq2yk/egHuA89B1ZRzAzaKJbNhg83GwptKTOL0fKMsyxLi23EWJNAZF8gS6XEUKEaKCXKUV4lNankdfZe2lQlMqnSmujE4+wDBDR1Cy54KmqMacmLSDU2bDcdRQFlIZKZXbthvWooCgMYtuuOuq7xPpBlBmstZQVdJxVSfefwTqhSKiWyrjc1IRrKSjOdaawds1lHnAtEJHISXDLmNAQVidHy6r23+Gd/+F/x8v2X8X7Lww/eIYRPiUoMmck0Uo4rdGWltmAIEsfWIWkGAp2/6S7qR3FVCqe6raVGRufANxi0LALhl8xYv+Lb7GCGQqRsc5th7a5OS59jEEMUhbM0HrRW5HnObDxmXJXkeYbWOo0tyWPKc8toVJBZzXrbMF9tWKy2XC/WbOtaaHAxsl5vh6iDVRrlA7k2vPLSGdbAmy+fcDlfczXfcHk1p2laApHWearCcjibobVhuVqxqRu2TYPzDoIjeC8yw15Mi3R5aR3fT/OVaEhGhjFZimIEirLg5GDKeFzw6ZNznl2saZ2j61XnkjJfTHkkfQZLQKO0wqZoTSBy6VqebhpO19dUuUHHMcF3aLNG6VzUkqOm22zFvMoyynFBsLB4/JR72mHGh2yygrzI2Wxq2q4TpRljyaylKnNmVcn28lOW5w9p13PatuGJPWCWjSg2KwyRcaapck2ZKTKtqDKDtQYfRQmvcx7nBGiYGLhdQa4sH88Vz+qGJj0fYxSjqoTQsrl6Qj2/YjY7QhkjUcohDyep4aCINtujDwn1qM+h6B0j+wunN6nIJgoXXHquOX0eQwwitRuCJwkQCy3UyFg20RKc5H/JIp1qjkRPDFK/KUKKMvS0OzVEKIY8ixiTPLseInWD9tiQD6IE3KjkkFMZIdiUH7Ln/Ek0OrVnrH6ZZxHvmoG20+fR9Ib0nt2492bPy/6cEbdv4A9PeNgnRZaGz9RNCt7gMe7PkuawvfPfBDx9/+xjavsAoD8DDFGnPSfLQAMcep1KTJLdBSml6KFl/3tRxUHFriel9vkSzz+n/vzD9ard3+j3bpw42CnOdTTNmma7Yr18Rr2e02xXBNfgupbrZ49p6hW+rcmzDFtUWKtZpz66bODpe59w3Xp++PEzumJMVipMVLgAXdfQtDUxRD597+/4f/0fn3L7wZscnd7j5O7LnN59hdnhKeVoQp6XGJuJfaHFkamNkRy75yLnA6Ds399srBvj4zP7P2/0P/cc+w+fP8cQ+ejba9+Yj7vu+SLgsP/yxu+9wND/PAzwwnva+2wYHvGFp/3sub/gJPKFQcbF4w8ZTQ6YnLWUWQGxE2m8EFFR45SlMYbOt/jWEZXCZpYsz7DJc98rlViriMqjaAdDIUOjlZWkcufpti2urXHdhrresFkuadsW7yLtdol3LTbPqaqKzBiywnJ065j1fMl28ZSqzClmI2LUjEc51SijXm3ofIOh4+TuHcbHpTw41+DcAq8WIiQZO8xoQ6ZzVNbguo4YFU1jcFtH2zhRTBn05MF3Add1eA8qBEqjsTHSusjBdIK1Cle3khLlPN4voWvIMsN2E+g6qfQdg4TPtVJkSkLihdFUbk589GOmFo5HQPT4xcdcX39E7cQwLqxmXGTCcU6gpfNSaXdcaWyn2XYeyb2VhAGJKGmyzJBZjTOevAgU0VJ4qfPug0RkjDG4thGOtzF0bYfDpYVQQVC7xTXRRpQSsNnTRYS+IAtqnwgeYqBtWrabjhghzzTEQFkayspirEHpZIWHiM2karR3nm0QakJIhpfrJDISC01ZGUDT1oEuBLI8SwUKI5nSZFh8E2nWHRSKMjOoEaw3HucceS48Z+8iSslzHOXHfOcbf8QrD15Gq4hVirwccXl9STkak2UFOihUgFLbXSK4EvNP5n4tUrc+7gCIUilPQ4HKwXlwKtXJ0OLxip14a7/E292z2xijyLJMcqW0Hvi/xhoyYwSoIs+8F+bSWpOnwpFGJ5pQmsmVBmsVeaYoC1BYfBjTuMhy3bHZdkIR7ALXiyXeiTrdZFxQlprZuOB0mlEZUOqQVTujbgPrtpXCk8CmCZRWczDOAUXTdaxqxyePVzx6esl8tWK1XrNt6jR7K9rO36jzYZTGGEOe5xxMppwcH9C5QGFlbN25dcir9yqy3PKTD4/43o/e48nFFapNYweJiPSc7UjEuzaptimUyZOEq6PxDcuuY70NjKsCVCDzBcZqlN4mSk8Q1TY9pZycEhqImy1qs2UaO2zR0d06Ynp0xGbbCJ0seJSGSVlyOJsR3D0ObMezd/6O62ZN2zaczxeMzCGZ0Vg6KKXSt9WKPLPkhUUrRXCBzndsGsdy29F0gVFmGBUZgUhpFa5zbNmiUDR1jXeSw7a5Puf6yUccHt9mfHg0UKkYoqdBpL0Hs0qSr4UC2SGxeBEfEaNJ5izdJ3wj9ZcUYK1Bq5wYAl3ssNoSjYUo1CllDMoYIloAJwwJ31Gpvehjmvt0ktVVCPDQRqKeaT40yooTZ6+4X294SvFZK10/eiJm8IELtSoO/S+miIpKzozeAA6DZOmXc4uh4WaeCglc78MFdcMY1FqhSY6JYR/ZFDsDHZD8rBRtVyjoCzqmY3R//v54pYZnLk42hFYYY8r12kU7evCnYMjlkECVSq93kSxFgrbPN1WKJEgwag9koIh6B1r65H+dEjU0Ylf0y01P/xxqgtBHYuW7nUdcVK98iAlU1GzXc1bLK+r1FRpHZjVFaTgYGdZR8ZU3v4XVmj//i79gs7im265pQoNzLc6KE7CqKoiRp0+e0W03PFpuuH33Hk3b0nVOrif28swRQkfulywf/ogn7/0to9kxs+O7HN15jZO7r3N8dj8J62RoazHaYrOcvCgwyX4R0Zq+6ODw4G6Ars96+pNal+qBxh4Uizv/4IuAxb7BPkQD+iH9gvcxPW9xUESGui9q96sDrTgy9MIYb/aTfcDwItnfF21x7//79yPPQr1g3y+2fWGQ8c7HFxzOOl4xhunRTDwxIRKieJKNcmjnUU1DaD11AG0TFz4N8NKKYpLXGhcirnHo4NEafA1rZ3BB0TbgW0ezvWazumJbNyznS7q2ZTQeg29otxuszVjPoawKitzQNWva7UoqO6spdnSIQuG2S2IBoVsSXENZKQ6PDEavcW2Dbxbgr3DNikhIkqhglUI5yDRoU6JRNEuw3lLlOWWeUxZJ6aoWtZq8NOS+YToqsUZzNa85OxhR5ZbNeotCpC7X24aF0nTGctVTOlLjaS1RD2sURisORwUn05JxmVPYpCTipRBfdAGHY2I0RaYp8wyFyM82CXxkmVT2Lq2lzD116yD2bF4pqmetSAs7Ii2GNka0Edk4rcEaS1GWybumQBu88XuDgQFU9IseikGJqlfZ0cYM++y6raJtHM2mI3iFz3UyQiKHB5rpSHjavo2SwO4jNhmirhVwVhYqyd95qXaqwOhIOc4IWuFbkkc8td00h1MzUFuK0qKzwKZdUI8NbVuR2wzXeVwrtUROT1/h29/6Q/7hb/8x+SSnXa1QMXDr7IynsWOz3bDerCiyLEV/CpSyqMImpakIwaR8DLWrhdEbor0HSyOdrovEriV6T1TggqNtG8r/iAH+q7bdv30mSmWZxVojYDEmkKEVWQbWQGYVmQWbkYptyj/nUqoL0If/bbIvCTLpZxZyK+cYFTmRHOehaSJ3z0YoDUWuGGeKkRIhsMRsAmBaaCg0Me6mx37R2TmDM4jwrTtTLrvbXC4Cj58tubi+pqoK6qbl44fPaNqWqswZjyq0lurV49GYV+4dcuc042oOB2M4yBUTLc8ABcdfPaU0Be988JBn59cst6skmiAGcO9EcLoXR+0XTwhYcpuj6kuaes12u8FYTYwOEyR6IlxsiD7SrjdEdYn3kaosmBzNsI8fUrVXvH7nO9z/ym1J+vYR56UdyhyKXLNp4Wj8W/zd//BNttePKYuC6/k17z294MpGlpXjtZnlqLJMikT3Qh5m7QLX65brTYsPkXFpqXJLZjWjYMiNRBN8G8itZTFfULcdTd1QZGtC03D19CFKKcazA0xWoCDRpByZ0WRZTgxCd0JLhMzoAmIkKIVVkkcGkhDeuhbSHFfYPDklktCFtujMEqLbRRJQdN7ho08OooBWGVpJNWRFJCTpU62sAAplRPxCawIe550M+Swf6H89xU+oESGJgehUtTwmIzEyFDZQYFCpAnwCJKnqszUZg1qbUr2I25d381tApcKecjMhxMQsVUk1XA2GdojgvKxNPuVz7AxoeaWVIjMCMLsgEXmbFUDEdR1t16WUDoXpc/aQ9zpFsCUHS4BCLy4Q936mz/vpDf3BgE37B8QRYY1ErnzosUsfs9z5nnfCEWr3Tml02IGZ4XH1UeK0v04qdOl2UGne0VqL6zE5u/pCpITIcr3i2bMnnF88Znl9TrO5JvgGoxWT6YRRNULHHG9zbFby8oOXeePV+3z0/js8fvgxW50kowEXAvgEloPjaj5nPo9Us0Mya9jUIfnfAr6P3Ecoi5zf/I1vstls+MGP3mY9f0a3XTA//5CH736X0cEdDm+9zOHpS0wPzyhHUwEYJkMbKxENLQ4BYyTX0ViL1nawS9iLegxS/KSoww51pNbYQdrekh/gx3OAg+FQacP+u52o9JB92HeWvncwFJBUvdGf9kzdYQA+Pc54LkSxAzH7FtfNq1I33u0ofvvSKTeP+OyZPm/7wiBj20aOrUWpgIlOij41nvlijrEFJstxrsVqKIKi7SKuA9/KoMxUhrKBGDpc8hSMtCU34Alsas+maQiA1QZ8oFmtWV0vqNsa17XU2y1d29C2Du8dXeeoty2uK2maNT44dDTkmabeiPcryytUrMlocO2Wpq6ZTixm+wmh8/jGodiSK6mmrHUpCzIi25ory6gsscaidYY/jMQukFmNNQZrFGWRcbnacn61YTLKCU1glFkmVUG9aRlnhnGZU2nonJfJMChKbVj7ml5+1qTFTGtDrqDQMMotkyrDWqErhaQOEZJWuFUwKzOUUmTWUOV2kG0MKHyMWGIKHSpslEKIPoTkrVCD5naIkbbztCFirSUzmXjSI9jMMh6P0TopzkRRhTFSNQjnnRiKRhbQQa429l00eZ1V76252bXzzHDv9CC1n2UyLskzy6gyjCrxSrSt59GzBVvnAEU5CdiRLLKjSpGXCh+grqFuOmJQFLZkOhpTxJwYFB6PzTJGecV226Vq5orRuGQ6rTg8fJXJqCRGuZem6dhstjRhwlvf+Ce8/NKrvPzgHiqTCSLPMmYHM7SF9XqFCx6HE+PBtaitwbgAZYHqq9LaNIlopAF3Kw5DxrPWRFcT65VQvbSmqbc0mw2zLzpofwW3SVlIxCLT2DT7+D2HbWYhT0BDG8FaxqZHFKHtGAzdKDR2tIamFeaIABQ5l1ap6r2CXEOVqT6TDKtgBOTsCX2lTX3mxedsCiZGMTGGl0tDd+uYLcdoYNtFLt68S/Ce0ahkMjJSlRdZ2Mv023dvkUrf3dxuZYo//NqMbzyY8fB8ycOrOddXNW3jJL8JSV5uuxZrLG3nWK7WFEXOaFTRbWtKU6NXDyE4unoLtiCaThAYShbGALQBXMf09JSOSHf1FFdvWG/e5/yd7/GNr/wTTqcF2XNO1S7CRQabkxn3X36Nt//GMCo10zDl8vKSj1zHeqPZNo6XZxln44y6DYwyMaKazrNtPVbBwTgjsxJN7eljXZBopTaKbdPC9RXOJ4omHre5pqoqQrsmdgXFaIS1SgpuOk9hLWWeAwaXchWarkvR8oCyEmXonEt5cVC3tdTl0EJz8jFAEMVDZTNQlq6p8aEjIgXHdMqLiAZKXQqI8CShi0YedaIBSkE8j3eN5OPoSHSdzO3J0YTOBAQR8NEJIEn2tEInJ4piUEZBpyJuGu/aRMGRxrLaJnkOhM6JIkSXEtO/nNv1Yo6xYhiL4qGmSxa50XoAGMEnM783zpKHfpD47XMhVQLqydjvXASt0CsYCswBZWapjJVcvb3cDq0UXWoToeP2o2QvMqFUKiCMgArVr9E7izAiwevW7Rm6pPxFZH0OCSSpXuo4ASmtevlu+Vxr8dRL15HfHyTulR76h0qOiT4/DpTkjCVJad9umV8/4+HDD3j67CFd10CQ/CIFuBhxrmZ+pajKirPbd6jGE1arK85OfoM3v/Imb//kx6xXFudaESuIergX1zkCQgkfm4yArMfyLDVKScTPq8DZ6TFf/+pbvPvee/RRXFUWlGVODDWr8/e5fvJztK0YHZwyO3mJ41svc3R6j3I0xdgsgacExLQALmU0Wtv0V5wAOtX2EelpMyiAKqUTbVUN4G+/vXdG+X4UoDf0BRHsg4R9Mek4IISYwiYMUuyDY2F/ILwwnNCDhgGlsHuxAxTqM8fsw4x48zvF5/zWjR/43O0Lg4w3Xr7F6dGISZVjlBjLi3XNhw/PCSiOjg4Y5ZG81IwMZEWH05qsGFOYMRaL8h2hCzw9v6brHCdHUw5mE7ZeCsF13tPbYTEEbDSMshzLBvJInRm6LqIDEDSdk+Tcut7gnCbLCsqyYjQyGBNSYvWWw2nFNFesu5bOdZyOCyZmRUSRlWNaZ3FtJJuWEDU2VW+um47SaEqtsdqgrcWWmai7JC6s9w7feZRvcV3LatWyqTc4L5x+70U1peta6m1N1zmMzSgL+ZdZCXdrtauarYiMjWKcaUa5ITMKo2SBkoRD8dIGpcgRConzkYMqp8j04JHtQ54+eb9k8tCY0uIDuBBTWLLvXGKYGW1QShJcbV5St61QOqwonTjXDdQn6ppe1SVE0Ykn/Y5Og9DaTGgEqpfEi4Ocbf+706rk66/exeqM6ANVKVXCY/RElSRNFZzMpng0gYCxDm0CmVWUuUFpD1nNtGwJ+GREKQqtOBqNMSZjU9dstp7VcsNm1VKVUs9EhcjZ4SHf+OornB0d0I+sECJNp9Gjr3B06ysYFciLDGXF06K1Jc8sRwdHjMYVTd0kik0g6kgIHTRRZE9tFKt4qKQUZDLRMFRWCiopwADB020WdG1L0Bbftbim/qJD9ldyW83n5EUBVYGusoE2451IpFoEUQRE6QSbCk6mvzaDbYTGCchwXhbfppZ+ZIymKESsq6e79PN7IpMMRfD6cfKc4+eXbv00/LxDOEv/QJSUjs8k5tTv96Lf+Lz67RqYKphM4N54yq89mLKuA95FuuBFqCyCiwGrNZuu47KumWYZR0Uh789fwf3w+9gn76K8R+mOiCE0MS2QMl5NZjF4gmu5vDin266pRgWL8ws+/cFf8O+D46U3XueV17/C3bOcPN1IruAkg/rQMptN0NowX1wxqirGoxGr1YqruuMTk5NbjzVi6DROkRuwWjGtjHhRjcFqocIFoPWR1oM1hqglh2qzlblG24LMKprVU/Bbjk7uU01mVOMRVZkPOT4Ho5IYImWeo4xiU3csVhvqrsXoDG1NSuL3bOsG5zxZbfCuJbd2MH5AvOQ+SjRHZRYfdaqwLbRQHc2QaxaBqCWyra2RfEStMMkYFKsuSvQterQS46cvbuqTMlpMqmFimMXkPfeovvCOD0Qk586YREEjGTS9h9NHOt8ICEq0mRg8IdG6voybMgaMoiNKjcQYaLqO6CVvxyanjXcBF2JSiJNIu/eRvDDkVouSUpTmsCnp2UVFbD1bL8fG9ECVgnWKYoQYEpVNDVTPqBRWSZ/uQYyAAZEv1n0EQWsRXdCyDobk5JMITFJ5imLA9snMJlGZfJA8iCBoIhm+u6iFjj0RSyjK1hoBGbFPbE/FMfsijWrnNdC9ZHeUOVQBm9U1F48/5uryMav1nOAdRVFQTg+oNyu6pibGQLOpETQm9EutFb6LjCcz/uAf/SFPnz3jP/z5X3B1/ngQj9Ba+vV2U5MrGI8K6kZUFW2WEdtUnDY9q7Io+bWvf4O7d+7y/ocfpfo2AWMyTs5uo4DFYkldNzT1iusnc+bPPuLxBz/k8PQBtx58jdM7L1OMJjcjFAmA7YoZKhRaJIGV3v3by2tSKc9jiIxos/te7yhZ7IH9wbTfWwT6HJ4hstGDjN4x24OMPR/kZ6IIMe5yzLwnBCfXZqwApqRauMMcmv2fGkDEYAWmKEbq80JTe8EK+bmg47PbFwYZ/+JP/iHn58+4ns/ZbBuWm44nz+Y8Ob+iax3r1Zq7pxlx7ilHE6aTCucXPLh9whsvf4XoFevlghAj1uZcXFwSvWNxeUUTDG2ASkn9jbbp8L5hktUcn0byrKSwMzoX2XYbWhdZrj3X84712uFdZFTl5MUIa0aUlSXLWs4vFrR1i50Vkvi8cuQxo4wV9cLgXaQqMhbrwHrtsGqNIpJZTdSKTdMwyjM0UOU503FGkWdEpHaBj1InovUd622D8y1Np3BBc3254nK+pSxKOhRBa6K1orSlNS5Gtp3DhQhKEpK1lokhU4pZoZkVllFmqDLDJNcCNgAdI9pqopUk0CaIyk2VKQx9cScvnq4YaVqH1aBLK97CxGs3SdEqpAq5kj+RY3LNxI5ptUUVI2whkQPvHdZktF1L17b06l8oAYUx7FX77vnFxiQ1nORt0YkCkBLF+/5aZBmjSugCq1XHpgmMjZhzznvKouDocMw0UcCiiqDl3spC2mXbNnRtQ1SeIjOcHR1x5/QEMSu3oBrazrPYeC6uaqqZ4ZVbd3j13gNyW3B0dMDJ0SFVVQqo7KU7s1tkB1/FFAXdVihvUQk4qIqcGHNJ6KegKxvwQmfDKFQm3hEytWfZRmkbFxHTN/T8n0QslkEdleTAtPVWwsZ71I4v69as1nTbLa6tqLe59BUfCK6TnJlRgY55MgoC05lw+XUf/IkIxaeGzomB17Qd260seOuiwNoRsZTEa6UFvxktT1rvzfO93lcPRH4RGNifU+soXvxKywT6ov3/UzFSFGLMZwYOxj1twgy/OXjKyAmMh6hMpCCcjrm4fcaH/3KBnT+DEDDWoFNtIxOt0A6dYnN+TbNYsI0OkxtYR6pRgeoCT3/yNzz+2fd5587LvP4b3+Hrv/YVTqYCEBsfePTpJSrC7Xuv8N6Pn7HZbpLHVcBDi8Kj2TolspVWU+SaUa52lZv3FjofoQ6KwhqKPMeFSNt1oKDIcyZTARShXvDonb/n+PQOJ2dnTEcVk6ogBJnvXr17Ir9lFDZTdC6yXDuulxustcNQCz5Qty0uBlbbhlxr8syyaRwRyf9qnafpPJ0LqbhpB0qzrTvatpX20ND5JHABZMaitMV1HUQvjpeUC+J8h/MuOaKkJ/be0hgD3nUE7wYDVakktKECOqbXyaNqdA+fJWKtQhBnTQImGoULgbbdkpmMvJgQzH+ElfArtsXD+ykSEGkVUlQzExW4qKRqt0mefRulGK3kCArwCAai1dg0F2i1K6BnIxQhoDy0nVBze5WwEHc0HpETl+NDlFwpa6IARK0JyVsfoziSLIrMKMZFAVGRW40xUYCJMXROkJDzgXndsu2cGNhR6vL4CF0g5Tz6lNd2k3ocvNCtxHaUCdP0lL2EPMWJmGr7oAgJKOe5KLh13hNDoF4vuHz8IfV6TvAdMUbG4zG37tylGo349OOPqNdruq4e1nzXdaxWG4qyYts0LDc1xydn/LN/8s9ZzFd8728blst5UsZTBO9pmi2zKuelgxE/Pt9ITogXqezeOC+Kgjff+Arf+ua3sVmJ0lYAofdCj/aeV9/8Dg8/+glNvWV+fclmsyKElnZzxaOfn3P+6D1O73+N+29+m+nBCcbYpMp3kz72mdlc9eBgLyKVwGXPzCAJb/QUs1QhMUWI0mtUeq3ScQm49J/tnR+VIirsgx8gFUMZpMxjxHcdbrPBdR3BiWNbK42xGbYssGWFthnKSCTtBsjpQUayZ/pE9P1Ix42KLbFXIGNwLAsf4BdvXxhk/M5vfourxYqPP33Mex98xLPrR3SdQyHJc03Tcnz6CmfHUw6nU0ajkkdPn3AyOuGV22fMJmOc72jalrt3TrlaLPn44RM++OgRq+WapnOcnVrevH9MUZRczZ/guhpFzr2ztzgYH7Ou1zy5+ASlDePqANDUTUPTtMTo6VxH3TQorRmPjmgenHF+vab1G3yssbmnbT3vP75ktekIPpLZBdYYWufxwVHlGaPCYLKAzqGczqjyEU1ds1jXFD6gjRAcuiChfLSoa03GFbPpFKUzVuuaGMR4Loqc4B3G5GAcq7rh4vqK8/maxbomRNFk74vUlUZxWBimCWRMMsO4yERtKiHd3pvaEam3klCugkWnImYqBnQMZAY6H1nXHUYFjMolcW2Q5NR4Jx60LoJXGcpoCmMw5QjyEu091mb4JEtb+ILVcslWbwdKVK+w0dch6AdGlgnVq2vbVM1cPEr7nGNipG4btIkcHow5OBzRtY6yKCiyEmsMJ0eH3Dm7hTUZ27qhCw3GZLTOUeUlk6piua2ZL5c0XUuWZTy4e5tXX7onxzRbNvWSrtvSdDWtb4loRvmYw/EBs/ERWZZLaHRf7Ujl2OolsvEYdEQ5i29bjC6xRY5WijwTYznPcspxQVe3EBWu8eS5Quc978ekUZy8A5l4TPCaQdakTz6IsujoVBjOdzVd11F3X+5ifN/4+n2cE25/5+OQ9+46UVjTIEILIWKMgmDwHQQtj6VuIutNYLORuiadc2y3NavNCmOMFHWylqIwbDcepSJVZRmNDUUhfd6nQFGRCY1KJk2hUFUvcNj08baIMItWTaQLEArFzHCD//xFtv6c++97kKO4Ocn3m/olr5Pv7MbnWituHec8/cZ3ePqn/y0jIr7JMJnGWE2XFspm07JpGphVxNyy3GxBRcqyYDorWK42NJ1j/vDn/GQ15+Ljj3jrt7/NnQd3+PCTOX//3R+QZwWb5YI8K8lzEVxgs8EDaw9Lb3i9KhgVlswK4DZK8vFg54HXaWHVJmNU5IxKTRuTSh8am+XcvXNbqJ2+YTt/RFw94XT0Fc6OK45mUzrXoIhY3aGC9DUnFhql0dw+sjRtg/deDPSoOJ4URBTrrcKHhrZZcHw0oqwqmralqMZktiSiWay3zFdrfFBcLhqatkMrT1SabS3FCvPMUFU5uc1ZbTus0QS00FE7j3Me19ffUBrvhQbnvSO2Ld5oYpanfiFAISSwoJUFpXGuQ6mIMVmqTyRgGh/Is4oION8SvEcbi7E5VmmMNjtq1pdw2+hyZ/xEoRxJ+lQyE2NPT5GRFQzygYGYQRsjW7Xntd0dSl+wOiqItufD757VkD7Xr8NpDIUYaImD0lWMe2pQaift74xMGDYlaKsYsFEninPEq0hdBtpcovdE8Wb3ORu999lphVOStG16EBpFHlsrlUB+HNgEKsk3By+AN+ooUfWUn1XLxYiNNn/M/NE7tOtrRHxDKOiHR0ecnp3S1S3Jdh7We2Ws0PGCI7OG1WrJJx9/yGQ8wYXIb/zGt3n91Tf48P33+Ku//nOenT/Dec98ueR2qRkVBYoN682GzUbsiltnZ5ye3mI0nnH71j22TeDjT58yn69ASZQmxkDbdjx7/B6vvvom88U5NtO0n9R0MYW7o2ezOOfhO3/FennFvbd+i8nRbaFIqV4UoG8v6N00gnF2USnSpyIQGVN+lBos82TKkL5NZ7rpbtolbfcFY9UeX3cvmqJ6tbl9oCE7qn7ODEFARtMmtTskckaKmGqFyTK0TXT7pGw5DA3iDXGEHjA/HzfZG0ri3BVlDDngn/8uv2z7wiBDa528vCOcVzx8fElmDTazxK2irCp+7Wtv8ebLtygymcRunxyhImxXq+RNkkTPMo+MCsMr9864fXzAo2fXPL2YAw3RtZyczXjp9DVW6wXL9ZI3HrzG7ZPbNE3DxfweEcVsMqHtWuqmpmm2w2K73myYrxaYTDMZjWmC56NH7xJi5KV7B5xfrricNyy2jlXtGBWKw+lIaEFdQ2E1VWboUpXrg0nFqCy4jjV1jGhrqEYlSis2mw3bektuM45nY4qiosgNxmqmVcTqDGMKArKIKBWY+ki+WLHcXBGCG6IIOikOaa2odGCSGUqrqTJNYQ1GgzVa9LmHsKqE79vOSUK9czifCsc5jyZSaEWmDcvGsW4chTVpIRcEbZRC2TQpBU2HSYnehmiEMmCsTXLEUJYlznWs18J/lb6v0EHoW330IkSp9ZFlOQm600vg9sWtgCHEf3Z8xB/89u9y6/SYEGURLotCgEmIlEXBaDSizCtRj1BKvIRBaFECYEJKFpMJ1ipDkWdkNmc8nhG5RfCBzrUELwmSUYFrHUFZXNCoIBzpSMQai9IFo6QoFLoWYwx1vSX3YIqMvKhQxg+hTWUVdmIhiNhBdIqoA9jk/RCE12fXwb7Sy76FmeQJdV6i2g5tI6Fze9roX87t5EBkVpsWNluReYbINgQaL/TCPsillaFp+sVz35iXhTvLRYXI2oy8KCQp2ns26y311rJebeg6R14WjCcinagUeCfRyoODnKqUxde1MBkrinxXJzECDth4URKOETaN5/p6g/OBzXREeZxRmGGdeWFUY3/rAcY27WuQiEoTJNiVqZSI/p/siSteeuM+n/ztXdYffJ9CafKskAJyaS4JzhG0QgfLdt1Qdx3BGMoyxzsveTS6IzYN9eIZz36+wTcr5t/4Nu9/8pR3fvwDnj7+lOOzO8TgmV8+lLXBWuq6pjUw95rMak5GQv/MlJck8CQModklxVofKXXgqDSchZxF1DRNi9aGg+mM2WxK04p0+tHxEa8+uMs3Xr/HZDqhblvq7ZK63vDsoha6ZYwsl3O6tkEbgw+R5eqSELzUPdE5eV6QZwW1a1iu5zTbDbPpDKUsm2bLqCg4PbnFeHJA3bQorSjykoMKNmzZbFYYZRgZQ1YomnrD+nLDBk3deqqiZDQ5JLcFJNpvD5ym4wKjMq7XG5omUBPIrWEyrmi6hrZzGCJ5WbGpNUSNNhlta4CWLDM4b3BIkbLg4gBIvFcpyVxqcMRBTevLW2/HZDl9sdQ9i6k33wYgsPt8F43o186493oYtSk5fndoP5r3Kr6DGK6o4Zz9ufxAB05UqnS0T8dGIm06XA3UJp2q2bEzZpUhmj0D8DnDtRcJ6VfRoXJ8AjwaiMokg7KP06aryeweUtrNWCIFHGhX52wevcv2+gkqBozVaJsT0XRtzXq5pGkaoaWWFcFLLZy7d+/hfWC1WlFvNty+fZvcGo4Op5S55d2fvk1mI7/znd9A0/E3f/c9NusVB7NDbk0zxqOc6TTinSC322e3+Gd/8kfcvn2Pt3/yDvV2jdLQNA1RaQ4PT9lsP2a13lBeX1OWJdt6yezgiHqzFsdxV+NdEmQIDtd4rh69gwuOk1e/yejkjrAMUjSImEBT7/xUfSuqodjnHsNsSP7vKeCkv+If3CnWpV7JzeTwmADyzeYR+2jXr4ZmGny3u/4ZUy5vjHH4fLf+3OzbO6fprr3F8NyjdfVANh2lbgCSBHgHjnE/iv4TgozL6zkRofVkuaEsR7igQVmyvCRExfXlEn/nhLwqyTLLZFTROU/TOq4XC4zRrNdrLq6vGRUFr9w7w4fAyeGUq1vHrOotWnmqrOR4NuFsdptNXTMZzRhXIw4nU86OT/BBip7VtUQxXJAFa1TmdD7w7OKKq8U162aFUZrX7r5O27Uom3Hv1EHQXC9qzq+2bOsNwTdMxlNa1+K6Wgq8ZRXeR6KPWKW5c3zCeDJiWo1BK1abDc1kymKxYjabcnp8iDYZq/UaoyI+ONabJeNRIcWm2k6SETODjhntyZhnF2PqTqI4xhihiwAl3aDElRktJRbop5nIMG+kCtpGRTZ1xzMV8D4nxMh823G17hgXluNJgSXStAFfBqKJCfGmCtgJx3sHm9aTKWGLxhhxztGkxVgpkR71zskxacSJ+gqiyGEyutgNoUKbCTdwu62H8HEvW2uSPKsKgbPDQ16994CXH9xLnyfggCTwxRBpnWPVdOSmpCoylDL4EFhvWz69WHAwLhiVGVrLAPch0nQB53f6/gpLkWdoIyHMqMCXQlcIIQqvMTpUuv+mDuROUyh5/irJGsbVFl1U5OUI7RJ/1AnS10UunqlONMqjA9Wl2d88R8rR7LneIqm64bDYYEqUblAGtOkw/wnNz/8cWyXqnOTpNjottKeWyCi3aGtpU8g+xJS8GWWxVAqsUYxKkbqVvjGic566nuC99FNtLcEHLBV15wgB2qalbYWDb4yhc7DdCrAWZapInSkWhkFJOAZoOtjW0HYSrV0uFlxcnpNlOV1zzMH0iKkyLNtI8DCroNK7RSsgrLjkWJLAFUlsLP1rAmxqSXgPaUbuc7IT+/5/9qYUzKYV93/nt3j36Qc06wvo/ND/RZpaSu+6zLBpG5RRlEUuOUcEqumUML/G2Ir5Yk1s18wfvcfq+oLv/+SnvP/xJ5zceYVZVfLp8oJuvaQYT8jynLpp8TGy8PDJOvLyQaQycaAiWr3zINrBhoqMtOcwhyNytjUURUFeFBRlQdM0bOsWW8x45cGrnMwm6O0KcKwunrLezlm0WzCatnOs1ksePvoE19WgNF3X4kKXhCtEBSp4T2YtjXc0rgHg2XUhjhznUzRADK6gIrm1jIqSg+MTLi4veHr+hBgjZVlxcniMc56L6wvarh1kbMd5yRuvvE7rAsvVlunkgNyWmHJCbjWFajC5ZrU4x0Y4nd5DZZqrRc1ifgUuY1KVlHnF0WxCmc24WDxDKY/RGUpZvHOs6w4XMuZrj091M5wXSVCdaFJGfeGl/1duU3vG8X5EI30LPf1pZw4OvuiYqKgSvYw7AwqIKqS8iL6YW0zHasJgcO1Uhfr38lOiGtkbrH0+TUy/OUQ+0r4iS75vFu6BiAQ+drcpL3pjU3473PBC736XG0Ap9PVd9h/H8FrWm16G1TcbNo9/zvb6Mb6tU/K3kfnKw3q1QBlDVZSMx1Nym/O4bZnOpvzBH/4hr7zyGj/60dsE7xhXEz74+FParuOVV17ld3739/nv/+zf8h/+4j/w5utf5d5Lr3Nx8YRRmTExiug77m0ji9WKsqyYTSaE0PH2j98mkvPrv/7rHMymXFycM6kqtqs59XbN4cEBk8mE+fWVOHmrkvl8ngpkxkTj9lI3x3u6esn805/RbtecfP13GB33EY0Exvt26tu5j2TEOBTZ7B19vfBVD0AiMdW3STAiqc3FoeFjinClFop7gIHeARX3A2cDgHgeRIS4f87edmAAMpLP0vfeHjH1VK8ka6wMKvT5JmoPsCRasdYDzXAAo/t97gsW9PzCM818sWJbtyyXG64XSw6mY7759dd56XrFfLkWCbkQ6Don96MVKppUGC0TCT6jKYqM8bgi+CC5AUZzejLlYDai6zzWasqyAKUos4wQIlfza5rWk49zoutARfK8JDMZ40qUQITH5ym1ZTwac6+7Rd20SYJV4X2qeq28cGWVqBg0XcfF5TXrbU1d14QQGBUFWZZTtx1d23IwHTGqSoo8w8fAZlNzPJthjGFTNxhjmE4n5FmWFqPIZrPm/LLgYHaAtcLLzYsS5z2L9RqtFe99dE5m68TPEwM+eI+NgUwZoXL03sYYcSEOBhDEQQ9ex8CzRc2TReDOLCfTmlUTeP+6YZZrMiUVhW3qNMOkGxC6l1JEDM6UeGNQuqbpPCqHNnnSKGLiDMO23kp4LkUt8iyn66RAlQ/iKZMQay45GYkzrGBA6X3XJ0qiuzGWqA0Rg7Z5UnlQRDQ6Q3jOuqFCJ+O/JRIHlYoql8V0Wyd+dJ/EphUhiByRbxzbpmU6KhlVRUpwF4UoUXeJeC81UYJ3LC4uWNYdo8NORkrrwSiKMqfdbCjyAj2qyFtP8A1SuyOgo3iRVClJfoJkItReLCmjQQdxz/fjVyuZyYN4N4ke19aSg2Fy8BGdVQT15aU5AEPdixyoChE66lrx6Utyv0I78fR6H8RjTS60s/SIjFaYQthnoOicIreWGEX22QdZsmfjHG1kUl+uWtraS7JvZtlsajZLj+uE35tZQ1NHQlDSPIndFpQknRfGoE0pk7eKdF2HItK0MrmvVkH4+li6aqeGtViD9zCd7NhxbWpCpWATYVEHrhcOYxSTieWgEvDuogCSnJu5JP+xm9GKl159jQ/uf5XrH/wZ0wJs0ATncZsVjesIRcmoyChHBUob2s5hjSErCtbLa6oyF2piaYlRY4iEZs79kxlhM6NePcFfPePYevLCYAtD8AXbzYY8zxkfHnGZWS6bmnEWpQ210DtAFleVFndrFFYLGMkVYtCPKsqixPvAk6dPaZuW8aTlyTs/5D2/YfVX/5L7I0V0G6xVTMeHbIsJm06h8hGhXrFt1/LcSUotXmoCuCgce6XAE3Eh4IAY1kDisSuDd9DWa3G+hETv+/R9EfbwnShQLRWfXD0lM5aY5sgQI8F55tbAw0AXFRdXFygFo2rM2eyY+7fukmWGp+dPeXj+lK5t+OTpjxmNJxxMD3Ahcr7ecjI9IMYSvVgyOruLUlu8a5nNDplOcoloBIvzgenVBrTF2IzlppHon1ZYnTEeH/zP7E3/+bdkzsv8r/YkPgfjWmIC+/SiQXJ2OINsYr4LOIiJc05vqKveaO/Pk47uQ6rJdutXtEEmeLDoY6rzsDu8hzgx0WHVACKeH98JZKQ6CTsscvO3hxod/ab2/yh0lJyL/STvntLTe+pjDIS2pn76AfX5R/hOIoAGEROISWFts1rg2pZwcMzs8IBiNqWaF+joOX/2jN/7vT/mm9/4Fm+//ff86X//Z6xWW776lTcZjybcf+k2f/THf8z5s2dcXF8yGY1ZLpbkdsb07C5RWTYX1zRtx9nxCdu65gc/+iGvvPoqv/Od3ybLKz766H0+eP89ttuWV195lddefZnf+PZ3yIuC/9v/87/jvZ/9mKIsCN7RdS3Bu4E2FCNgRGQkuIbt5UMWHx+SjSaU4wN5PnoPvCZAIT1BvEMqyNzf951eACCGXUQh7ve1PtrWn2Pv+/439iNkYWi5XW8Z6Ek9YE21c/q6GCr2pk7cC3ukc6jkLIsJVid7CtXLPUuRVxV6ALLrWmF3QTfAzW7gqB3A/iXbFwYZTcp9qJuazGqOZ2NGTcPhuATOyLKMcVXQtg2XF5dYa4lRUbee+WqL9x2H05Lj4xnT8QRrLUaLURaJhEyS60Qr3yadcUUXPZnNqZ0jbLacXz5luZrz0t2XuH1yizIvJOQVhbcrE0PE2oJRpVLZeUPwHufDjuKjJMlaa8Urd+/TOodzTpLEQrjhKegTcmIIdK5jOusA8cZ1rtdtEEk05zuca8jKkuOTU4yVwklV8sR516GM4vREck+M3ZDlOdZa8ryga2uMV4keIt4Ln2hARu06VqCf7GQA3ZoVbF3AGkmYrIqcw0lJriXZ0kdFmVuy3Io0WyR57gPKaJQytKrAa0VmAk3T0a2WLJsGjE2JWIqiyOlakX4lBDKbkeUZznuMzQbAZ6zF2kyUuoZ7USkEp3aenRgTEIg0TctmW9O2bu+575KynOtShCJI4l8aVMZoDiblIO9H7AFR/3zSMqCiJKFHkc4TQ18TtUFrkbBsXaCuWxZPH3Hx3o8Y3fk23jXE4FFGEaNHZxk2dMS6RucVZGXiljeYKOFvZSzKJkmkEJNqFJIQoNJ7p2TUDhmEaWKLHnxHs1lRLxdonaX5wxL58qrCADcmskJLsEblisk4o26FRuU8eGtkstYkRRR5NG0biD4mZQ+hCxqjyDNASUyuMFAUCmMYVFQm44Kmljobm02LjpJUG5zQIkOIdK0onhBTFNkwhI37GTvPR4zHJjkNcmI0UrzdGKySCMl6uxMRqx20DbiQUnJipGtFkMFaqRe0XjdsNhuMsYRuhIk5jVXUbaBzkVkl1bJN4kELTVKoZs5JnZC+NkiuPhv5UMDBrOLBt77D47f/iu3101RzQYxrlKIqMkj1GBTyvus8zWbFqCoGnvmoyOg8oEIadxW3Tg6pm5ZplTO2mub6nKt6y3XdMRpVhAij0RgzGfEsXHEn1uRqVyugr52h+iKDPg5R3CrLyMgoioDNMtq2YblYEjHcv1VyMCq4ePaEPGsZ84yTvMMYhTEZMVrM6Bbm1d/h4KVX+Xj5jKgUbVvTU2icF/GN1XaDJwiN1AfarqOLnkjERMhUQFlDpgxH02Oezi9YN0LHCEBQmqB3/SUSmY4nrJsaoxQuwsZ3vH/+FKUMZZZx6+SU68Wcj84/ZdtuefXuS1RlwZ3TM0zUPL0+551Hn3C4uKLIChrXsdqucU6i4ndPblPkBYfjCWfHp2ht+M5X3iQqzdV8zsfZQ64Wc7QVxZ/MWE6nB7z+4GWqMuPLugkdiERRBXow0BvPaQdpY/lsoLQkY0336lB9HSf64n3mBiDoo+89OAB2KlD0Dru0t7iv94x5YQzsjuxBzW5N6kFDf87B+N+v0j3UZEkGn4IY9WB8hgSM+ryMfkeldg69fUpuf6/9R8EF2qunNE/exzcrog9ojUQ7NSjE/qjKEdbA4vIRsVvzz/8X/yXf+dY3uDx/xtV8zkfvv8uk+iohODbrJefnV7z5+itMxwXWwMFkzK//+rf5y7/8D3z0wbt8/Mmn1Nslr5wcEDB8ci0OiVce3AeleeXlV/jt3/xNzk4PuV4sefToU/70v/9TQPHHf/BH/P7v/yMUgR//7GecHB8zn19htab24pRUSTZaIl9BkuJNMtCjZ/P0Q4qDY8yDN7F5eZOaFPdhaBz6jw9heA+I2lcCJD1V7ga1jtTv1B4Q2O9heyAidRrYA7rDliJOUSWQouJgTw3AaICWe1GP4TJ6CB4Z6FG7HjXc5/DdXtjM7AHopBMg3+jdPf6i7QuDjB//9OdstlvW6y1KaaqqEKqOtXjvxfisM5q1ZVRYqQ4dIlfLmg8ePsW5jrPjgnu3Tjg9ucXB7JDJpKTIc5FxVZAlXWupsCoyYXmIIjMYghTlWzZ8+vSS86sFv/4NwysPXifPypTsJD4OpWTgoPrsfZFTDYQhMWoA86nKSu9x0ENV2ETCVs9l9BNT9WrZ33lZiPoCPM57vPM7beuUHxCCJKZLcp/HUzGevEdWbJlpSRyuqoptjES3Fu/XXvjKhyD85QQweq1mm2VgPLmx5CpSWQEo1hhG2mCU0K3QUBaZeHxTOFnvyQm4aLn2GdFqnN/i2oZFu6SNimBzQtgwqkYE7wje0/O5syyjLCuappXnHgTdlzZPxdakJofSWoAnadJOIbi+2ujR0RGzw2OKajzU2ZA5W55pCJ7Ou51m9d5A8J0k+Bql8GmgG8xQYb43ZowWI0noWsJZJgaCTiHlKKB3+ewxj37w13QXDxkfv4XvGmLTojKD6mrxDo4nxHojE1aWo0xJVBqlWwgaZbLkBtcSvdifSJRKbuoAfQW5YbxHonO02zXry2e4pkXbnN7T5sKXG2T0m1KphgVy2zkSsMltv7gjdU2iqET5kNSkvHi68zw9Rid5FNYq8UyHSFYIMLF6J+pVWMU2ifAUecZonBGC5Fr4lAkegsfXUarGxzjUmzFJrrAvDNW1ER8Uqo0sFh60wnUhTRe6X5bovCSo+064zdYK8LFalDysldwl5xxGGTKb4Xzkat6htBEjv665tqLQZrXG5hmdcxAiXRdonYPgUCpSFjnTScV0osky6VaFhgxZjF564zV+eP+rXP3oMcbLHJUXuRThUkJJUsbgnadLUsxlJTK8db2lHE1o2wW5laJ0PrXfdFJRVWPunJ1x/9YZF8+e8f2fvI26XjEejYUu2rRweMA8TtnGjsNE2+lrQCTlTxSixLPRknNlyhEja9k0Lev1ms55uefYcXp8zG9+8+s8vpiTVwWrKwvbjzgdSRS4Ch1x+QnZ/D6vvfp1poeHjI6P+fDh+6gYGVUTFss5m3qNvbogoPjm177DfDXnuz/7HqtGamaMTMbx5Aib5Rwf3eKf/vG/4Htvf58fvvsjOu85X1yxqldolREVvHR6i9aLh/OgmqCU5qPzTylNwf3Tu2y6joOy4h/9+u9gbMb7jz7h7ffe5ofv/5RbB6e8fO9lDqoJAI8Xl8y3a74yO+Zwesii3vD+px8yKiru338V1XV8/bU3uXv7Ln//4x/w8w8srz94mZPZEZttzflizuXFJVWZ42iYnp7x5r1Tit7C/BJu1vZeXTWoJu08xL0nuvce96bSzjCU/Qw742r3/e4M8n8B7GYvnKFS1E3hTdzt2VNkBodWb/glkLH/Pu5da39NwZNStfuL3AGTXoaUvQwLpYTlAJL7ly5P9Tl/A4jpnXq9g490PT1YAd/WbB+/T7t4RgwuyfNriEHklxN31OI5mo6piiOULbh7+4zXX32NP/uzP+Xjjz9kfv2E9fIuL9+7x1uvvc7y6m84PRhTFZbVYsmPfvhDri+f8eCVV9muFty5dcpqVfLue28TYuTk5a9SVRWfPvqEu3fucnpyQGYjZWE5Pjwgyyyr1ZLbZ2ccHR8xm4557713efLkMQ9eusu3v/l1ZtMxf/FXf82nn35KFwxRuaHgrlJgok5AIeA218w//DGmmjC9/YC+9kh8QVtGIi54yeVk7/sb0YmY+lH/WWrHvbYSu1PtNRYQ9qhvfcMoBvpWryAmClAqAQxp1z0YcrONkxz28BtDx96JHezqfAipqr/+Xg0rxpjMXz3QwFA9MN/rY79k+8Ig48n5Fet1zWa7pd7W2MxijREKQ2rEs5Mj7tw6Ic8zmrbl6fkVz67WfPDwHKM1p0cPyLOK4DzL5YKLqwV1By/fO+HseCpcea2wJhsScogRbSwRmE2mHB8c8MrLD7i8nnNxvWY0vebo4JhxOcJYeThag7LysKLSqQyB3nWM5OGW04uBoROXTfSbY6rM2hs7oh2N0kP2fZ/aZRIYybNMHn4UpDxIuyIRGmn5MCg0KVVyfHhCVc0pKqmonWc59WaDQ9EFMZh6/qlULfUSzYj9xKLFw6hl4ORGkrZDCPhU0bvvsD0XXfWFiIiDp9ZHzcJZrpylDYH5esl8tWHlIs5mdHUzcPZsJgASJwltWZ5T5EKL6jqRuQ0JVGRZhsksoe0ksT3Rq4JXROWFLRohzzMe3LvD8cmZVHRHFmiXokuuc7imTvdjBExGn2RdpQ0V4JXG+T7i0HuBPNYaiHGQmsyzjHxcSFJbgvuScOVZX5/z5O2/oX3yc6m1UF+iY4urG/JsJOFL36CKKWo6gc1GsoOLInmcQqI9daAycWGX2a6AAoZUjRFMEFf0kPydVrngiZs1ql1jQiC0HT5qVtuaR8+e8SZ/8kWH7Zdi6z0uRu0CP6CIRrBYMDJXhgCu1AQvj6t1ER0jvov4DrpO1KqKYMmsKLV0Rsa0MYpCapwRgsZKvU+ci/hgUjXxlIwrGeTEIJ6wYIQ7leWSNBkNEESpZbNqpH/6KMDVe7q2E96/D0REjjAvSrQ1aDxWJyMBhVIBVEiTvKFNXCqjDSEqvNcSvQkdWkOWi6iD1F7Qsvi5gAaapma1cTy90Kgo+QZlaSlKEY5ot47J3dd49rPvoto5VmnxxKWaCcvLS4rxhLzIMUWG9h4fOqy1lFWJ8x3jyVjkqDOL1wrnxDDabjvGVUF5dMDZ6S22nePZcsX5esPBwYyuc1xeXUGuOY9wp4xkOuIIqdvLXNXXyQD5bBRarHPU2w3r7ZYQYsqpyrlerTk4OOQf/O7v8smjZyyfTHAfd3ThEhMDRkNhQHcrzmZT/NryyaefMr84ZzqZsvULNusly9US33Ucz075o9/+R7z98x/x3sfvUmpNdI5vvvHr/M5v/j7/7s//DbmO3D8ecfb7f8Rvfu1bPLt4zP/0g7/h/PKceyd3eefRB/zhr/8Djo9v8/TpI7791W8wX2/43/9f/g986/Vv8F/8wT/lYrnkr/72L+nWK/7pn/wJ/8T8Fj9679v8q3//b/jGG1/jN7/xTV6+dcZf/uAHfPjsEwpj+d/+i/+at974Cv/jD9/mv/k3/1fuHhzzX/7DP+BgNOZsZAm+49HDI964f5+XTseUCm4dvUaeFxgFz64uuX10xHdef0mkS///Pcj/E25VZgc1sh09KalM9Z8nmwTU8FkPHEIKV/Z9TvYPN47tIwn7xmZvfBr6NXgPNNCfX17rPiLB7nf3vcMD4En1Dbr0oVaRQd6U/rDk6OxBznAaMRj7ZxFiXwC3l6xlsEPSQplOqIdrizGCa2iXl4Su2bNxFd51YG2iRBsya/m93/kH/O4/+D0WixVZUTEZj/j9P/hjXnntVV558IA7d++ileKle/dYzV/lq195nbLI+ejjR3zyyUe88eabPLh/nzdffZnv/s3fMJ8viDFgreXV196kKArOTk64c/uM937+Ln/z3e/yT//JP2M2O+TOrTN+41vf5K03v8Lv/e5vUeSWEDxXF8+oipx//Ie/z2az4e+///e8+doDHj95yuOnC/KyGmqGxegHg9/7wPbyEdcf/IRidkJWjejpaUppfPSE6HdtP7Tzri8Iw0XdaB9j+1yGPUn/3u4cxG9E3URFiFpyOXbStyJig/IJpCRVqT1IoVOovQc4Q3RsoGD1FDk92NESUZFov9R5Cele01qkdxGLHmDIGFB9qujOdibczM/4BdsXBhm/9rU36FqRiH16fs1qWwv9xlimkxFFmTOqSka5xQXHo2drPnh4yfViQ4ya0WjMaDSmzAvGVSGyfU7k/tbrDVVhqKqK3EjysDHJ/Q4UacBZY/B5QVmWHB8cs2lqmrbh6voCP27JixJrczJSJWp8agCkLoOSCaY3eFHs5V6lKpiptgTElGfCzsMcg3g9lSaqiHOepm0lqWjINdjJxhlr6LP2UaJTbIVILgogUTEaT4kpIuC6ViqZR0Wb+MI+aUYrJV5ddFJkimLkt10ytkNEB1EV0WhMNKT1m2h6wCMyiPtJaDFC7SNPNqL/v1xcsVqt2G5rWpXROU8XPNZYXJZhrYSTnRfOttY60a0YwIvWmjwXgGGtJXqPzSyda3s/04C2YxRPcWYNq+US10lExPsgqjchgJYKvjFGopdqtRExCPtCVDYVxtEpiUmnghyyYERilHyH3ivkXAPRElKkK/jAen7Nh9//W7YP38XEFh01fvEpdGtCcETXobOcUAtPRVUZTEeStds0qVR1DnTJgm2hQ/qUyuV7YySykWkJSQWb6mX0biWP8g4TI1VR4LqObd1xfX3JwyePeHJx9UWH7K/k9vTxdarSGwZhgCGRU8mYa1svks6oFGVQJNY+3kPb7opcOhdSnYGkxmUz7EYcBN51qBjIsoxilJPnRphraUw7H2R894aGC+CD1JoJUhtG+lHAxCiqT5km14ZWCQhufSeVbFtHiOk8YceuVUrogOJ9jXRNzbbZikSvzahGOdWoTMWzNDEKuNBZUoHrpFChjwHXSaXornM09VaKUVkr/St0RN+JZKE2KCORkXorynAaj+86pmf3KO++xfynf0GhW4osx2qNp8M3NXY2o3Nd4jInSqmCzneMqjHOg84KPJ4iy3AhVUluuhRJGTOLiq++8RqPnz7m0Q9/RNM0VFVFXTc8XrV8NOp4baQ5LIX75QFrNdoIRZYoRdXGpmPqluS1Fupg02GtYTw+YDSasNoseefn7/IPf+e3uXv3ZZbrr3H+kwPm3//XaLdCMs0gzy1Fbihry+biiqeffsLHXYs2Uim7j5S2mzX/+v/9/+Dh009ollepuJqhWc/5+Xs/4uryMT4G/rt/8y95+f5r3L77Mu+++yOuLh5h0ATfkhPQvmOWZUzv3GezuOby6pqRNkyKks3yiutnF7iu5e/e+QFoxVdffZN6teDbr3+VP/kH/4jGtSwvL9guLsliRHnPdrGiXSx5/e5LvHp6j3uHZ7x2NGJSZERg6TRvvnSX+7dnrDYtRZWxXG4olcboDm2gbRvWTWTT1hxUGXn25Uz+HpWjPYCxi2IMf4dIwT7okDEZoVcHv5FzMUjODsZkctLR2/NxkJHtzT2VriEkJ1HcM/p3lJMEOIZvd1tvqLo0x6l0DRoRGOnzElVf9DHVAbFql1tJfx1RcgF7f/l+pIL+egYeZZ/nIddkrZVIbRSqZEysC6mIDTbPyI3iztkZb33lLQ4PZhwdHvDp48f85Kc/5u69u+joubq44ujwhLbd8vFHH3D79l1mswPatmW5mPPrv/GbvPnmmyjAmIz5fM5f/sWf89W3voo2lq5zvP7qK3z9699gPCq5ffsWP/jhD2lbR55Z3njtAdfX36aqKm6dHJBnOV9/63VGVc6t23eZjEdcX1/x+7/3j5iOM37+3jv83//1v2W9XZPlxWCLKRDJ5xDwvqOeP6NrtthqnJzapn9M9B7+3us/9IXdU0zRWGlj8XumvqPFFuyzheS1AAilwgBsh7W/ByGIPSdiDjopZ+4ARIxRnPCJ8io2DgTVM0R29P2+/w+V50mJ3ykXdgebFH1tj1SBkiGPJwF23YMlZPDsKp3/4u0LzzJff/M1XPB411E3Lc55uVjSAtqH1oDluuZwGnjw0l3u3gkUecbhdMzt0yOmo5yqsuRZxnSmuIPUUsjybDAAY4zJ4y/1IzIl/GxtUnVFpYgmUhQVTedouo66rtlsN5TVlDLLyYwYLTqpAYGcixhJisIDbUoelklKS7L1iZux9ywohF5DRONpmpbGeelUIdIkNYncWpTVKb9DjFpxOipyK0nQPgR8jEnPX+RR8yJnuejwQQpAbXyk8Z7WBzKfPJ2pbls00vV9jHQh4NoO7aFzCqwhtxkeLbatFi+nzvVnJmOFgK6rLVzUULslV+dPWW42NF2gM1oKACnIy0wiO0TwTjjpuUg/aqOHpPCQKHRFUTCqRkLnipAXBV3XCY3gRpgtUuUZs+k4gTjxqnov+tZRyaQn4EGKkAUl6h/K2p3nRZuUJ9J7InoDUahvMrElhSmt6DqJkMgk72lWC569+2OW7/8QG5pUvM0TV8/orp9iz14VUKA1KjdCtLcKKgPTEjYO2i7Vw8hkZGUBOi+Ri+UWTA2ZJRa50KiUAqtRuZJzt0CQKIxWBqVzNpsVF1eXnF9dsdmsyKvqiw7ZX8ntb//6R1L7Q6k0nqWNdKJM9n1Tp0JFkl+VPDa+n4hlEu+dAMYYeum/vvIxRMmjUVKV3dhcpJi1xvtA10m0QaXaJd65QWZa5iKD1hab5TgnbI548QABAABJREFUeutid0vxpq7r8N5L1ND3sslJu10J3bN3SoQY8LXs4+oN0TcSjesMsdMoPwEU6wQkivFY5F83DV29IeDJi0LokVbmi3a7oF6tsNaQ55p2u2S7uCIvpTCkMppqPGN2ckrbRNptjUtKXaNbL3P1wdt022did6QIp6u3tPUWWxQpb6nFOymGVRQFrm2x1jIaV6yaFeV4TNs0ZIeHdK0XY74syIzitZfvs158nZ98+CHnqxUhBqmXg+KTtediq5LSmER/0AYTVSp2FrFaMco0s85xjCOPyeGAxRjLaDQmxsiHn3zC42fP+NrxCQcnDzibjfgktiw++nvq+TOMDuTjGUorDiYj7h4c8+HHmkWzwSTt+OA8wXes25q//d6/l4V1EIGzfPThu3z08fs0oUNbw49/+vf8/Oc/pSgrLucXdEn5brOeE0Lke9//Lu+8+w7RB6JW1F3HuCh594Of8v4HP0Oh6WJgvl7w7/763/N3P/oeIQQe3LrDu+/d5e33f8bDp4+4nF8KKI2e/9Of/ktm/9OUajRDBUduc/7iez/D+5bcGFb1lqZree+Tj3j46DFvPfgKP/z5j3n49CFX62sckcJmfOPBGwTgaDLlf/df/y//s8wB/99u43KvAFhMFbgTTTfSqwr1uRTpu7AHILSs/5GUz4AYk+KE6x1g6fTswIdEDJJhmHIFJQqeigAO9BY5Vx9VkOruA3EqOfySfeE1hU2KhyqyaVqRLNZWygP0811aM0Ps7ZHeWJW5TuwNoXn2NQx6uyWGPUM4GZsKEu1FYY9usb71MtdXn+C7bZrXGIRoxtUYazW/+9vf4dbJEe///H3G44pmW/Nv//Tf8dor97m4vOSTh4/5x3/0R9T1hn/1b/41v/Zr3+LXv/0dVpunPL1ccP/+fUxWooJnMpnwlTde4wff+y6Xl+eYrOT22W2++paAmBgV1fiA01u3efzkEdPZhMl4TFXkPH78iPn8msPDA7bbNQezA05PT3n0+AlGeX7jm2+RW8u4tHzw0cf82//hf6QoRzKH9s89hAFCaiWRAWHmJMYLkTyxaWJipwgk09KnYEBwA9hIdqtY9XoXYdh1JokkqByd+qxK1O8+tyMmRo2yiWKVQHBI9T7CUEA59fV4E0z2zjiV7mMoCAnp3tRwXcK86aMaKfrR99vUf4hRbC16dk4c7PwhQvdLti8MMm7fuo2LJA9fCnHHpHikpPhbCB6lxFv4pnds25YQIDcaY43UHQDp9UphjN0J7BiD1iJNqfXeYALCUGBOHpQk9QVcSDQgncLs0SdaRUcXd2kwOkkVEiNR7wasT8/KGKnfEaKEvjofUoGWnS9DRYNREZuK/oSMNNDTryjhjAcfiMajlSSokjiAbYTgDEUuE13TNGwbR4zChbbW0ratoEmbs3Qt6zZy5COdj2gdpdBeMsKkFkagrVtc47E6xytDcAzcvag0KsjkZ0zAGk3U/QQsORmbNvB4GVk2NU+vrpivltReYfIC14oRNTuYUY0naGMwWotWdQjYMifLM5qmIbMFRotSVpHlVNWY8XgqeRlITRGdKFQh+DSRyQA/Ozng3u1TityQCZckVTO3KWITBq+RNEeUvJYgYqBagVd+mHBDkCJbfZJ/RFA4StOFQHSe3hcRQ2C7WvDkpz9g8+GPyX2d+O8il0q3orn8BKV+SxK5o4LS/n+o+7Mmy7LsvhP77ekMd3IPd48xI4fKrKwRqCIGgiCbVJNSd5tk0oNoetCz3qWPoa+gZ73JTC9qM6m7aWwC7AbRIEAMBaDGrMqhMiMiY/L5DmfYkx7WPtc9Sy0iaUa1Kg8QlR4ed77n7L3Wf/0HUJHc9UCNmltYGPEiHbws8k7J1MKVYDKfZWLRe+h2EANTjHUypiDpmdQPxM2abnPNbjfQRYjakrQhm5r7jx9/2Uv21/I4Oz2VBFKtiEm0MaBkoqHFZU2VbBTUzWaQyfufp9uRpZHQxuw3VGskoycGz5TZoq3DVDXO1VSVaDFGHxh9uDEBQICBlEXQrI0lZqEt5dJgCMhTEKiUUCrv/661ErF/cTVT2mCsk+85aoJXjENXNE2enDW2mWGbOZUzkDX9OBKjp9te44cR33u8H0hEFss5xlX0XY8xluBHQoYwRAafGAfF4Fu2w0COa0gebU6pnn+OBlxTszi4g8LSrO7QPHqf3Ydn6DAAhjBGQg5EA/OjY+qmxZVckeA9YQzMFwuqpmbsr1kul2QNtp0xDIGD1ULMHpymriuWswVf377L3cMDtl6EykMvmrRE5JNry9xlWqcIPkMYUWQqo0lZ9oZZpQlx5NEs8fbccl3kSH3fo41hNmu53Oz44Y9/whtvPKKazVjdfcB7//N/zuWL3+Xq2Sd0l6c0994W15kxcHSw5N7hEcmGImaHcegJRGKOkL00iAlyzIQcQY3SBFVOLIWz4np9Rbg4587hEcftnKevnpCiFP/3j+9y794bnJ+95s6dY7ZDTz/uODt7RcqwXB4wjAOt1Wjt6Lsdxhgutmv+5Id/wXKx5J3H73Dn4BCewPXumqvumqapeO/efWxT8/TZp/zi05/IhNiPjN6zG3aMYaTre/7gz/5I6B5kRj+U8NPM02eflbWfr2yTsWhb0e+Uaz6Vokv2hECOZeowNR8pEIM0A/v0b240GLdBLyE56FKI5/05Ik5CAjEKQCnT+spZKmf3YJXWksBurcU5S9ePbLqOwXt8EPRcaaE5p5hJOmKV5tGDQ44PD1BKc3p+yevzKzCKcfT4yZAmgzKKysl6F0OSaRyKUWVClr1ezCzUTQEbo1CsmCzYZZ1UJUE6UqGNlSyVadSbp8yKyOb6osxnIvNZS+3g3/27P+Xw8JhHD+9TNwtOThwvX18x+sz1ZuDug/tsx8QvP3tB01R89PGHfPrLD7l7Z8HhwQGEkXnbcnhwwOXVldQBd+8wax2aiLaSWP/55y/YdTtQjpw8/92/+R94dfqaozuHtE3FH//Jn/Leu+/z8S8/48WLz/nP/tN/xNBvOb1ec3B4xH/y+7/PX/zVX3F+JWGtujRWqtQJrmq48+Y3OTh6gK1qrLb75mtqHmIMYr6TE1Y5AY2S1B9ia1/279LECsVqEtdLYxdjKBQkWwAytWelTOfhNPkGLU1EcQ+NhcJ7I0bXpOz3kw35ZmXPmZoFKUsns52bLmTSDqNKnci0x5Vat2h6cowk4r7porwuNQEwt+uxv+P40k1G1TSomMjZicWjkgstTqPIMn6ZvqSJzpMplpAKyGVwmNM+hA5FQSDV3t7UqFJ/lTHhGCJZGZSWHIni3oXRQm/QpqIqIspcIIJpkjONioy50WSIYEx+1gpBnLI4D1G0GDlnmTaUTjZKgs5eCKWVwZryPrJQo5yRDz7GUJD4jDOaurL4UMZlpUEYhpEYU8mYSIzjQAgeax3aGrYhsvORISQqm6jKh5KUQiX5DEcf6Tsvda3NdGFEtXOcqYjDgPI9deVIzpB2wvFrW11sIzMhZl6uR55fRzq/wxckLmvLNiRMVXFQORYHK1wzQxtD3/UEHwqqKt91LNxtEXgr6qahcpa6FuqGc7WM65CGTitD1tIoGGM4Pjzg4f17zJqGvVCcjLIyBUpZTvap2IzBEGIkhLAf+cmmIE1FTBprdAkcYy/SH0Nk8AO7XUcMkaPjI1SKnH/2MetPP8D5TqgtSrJRrFbo7AlXL0h+h7F3yoWmoIFMsRJSNcwctFroUmO80VroDDqKDyoiLlAy8pFFIkrIWUpiWTtcXMh9lcI2LSZncjcwhkx0S8Ls/pe9ZH8tD2UkkyUXBCUlWQR9DKikhCIw0Rz1xELNZZEsF3UCgji3aK1KQniSxbLQ+YauF11Q3WCVBBnuNjtSFHphxhQ6YkQZS9U2YAwxamKcOKoy3tb6ZsoSk5fXoQvtUYlIMuRMHjOUjBWFrIlV5cBoGVTt1oQQqdoZVVXjmpoYA9v1RvQXCUmD9j2gsPUc61p8SuyCRmU5f0w2mOaQ1dKSE3g/ooOnXolOJIURVZyiyIk49oRuS8zXoC2KzMHj91HjDv/sh/KeVJDPdLuhns2ZLxayLmuNq+syEfT0nWe+OqCuajb9jvn8iBgS8+UCydGpqCrHrF7QzmpWyyXL3Q6qmu224+Xz52SjebWzdAdTKKDkWWgC88YJsusUELFKURnDO7vIJ9vMOmZ2u47tdoM1Bp8zH/ziF3zv+7/J4eExuU40ywPuzmasHjxi7Hak8l3nXq6zeT2jHRpCjiilsShGrUnJ78OpYkzFySVhXU3bzMGYMkVZ8ur0FZWFO6tjlAKnFEMQcw6VoEZzZ37AN979Jp33/PSDv8HmzHJ5yP0Hb3B2fgqzOU275OzsFTkGju7c5c7RCQ/uPeJgueLp88+4Xl+waGuW8yW/+/3f41vvfZ3nL0+5On3Ft7//DU7u3uXq8pLee16dvebV6+cMfY9zldCT65qPP/uYs8sLSk0pJigh/k996f9HO46Wc1RJLp+c5yiIbc6C5seU9nuEpKmLu6QPgTCZiuwpKAAKpaX4ds7t9w9d6EopCz06ZSEcW2tZzmfMZw1NXaGUJsSAQoCN2aymbSz94Llcd1xvdlytN3TDgDWGbhjpS1KzVppKKQ7nM954eET42l0ur7ecX+44v7hmu+tIZAbvmbcNB4slMUWuN1t2/cAwDqgoFN4QvdQoWWz7p9yEPZsjaYwx1MZhTIVCMcaACjtIUzK82C/H6FHIvrTdbri+uma7vSKHgbfffIu7Dx6z3qx5+OgtPvr4Y35DO954/Ji79+5jjOZvfvhD/qv/6v/B3/vN73H66hmnr17w9777Pu+9+x7X12uePvucXddxdHRADgFnNJeXF6IBM4pXLz7jL/7iT3n48E2crTg/P2XT9Tx6+AYZx8VVx+AzVV3Tdx1NU/HpZ0/44Oc/57vf+S6HqxWr5ap8d54UPVo7oU0j0QbaOFw9p23maKMx1gnojIBFKQaiVvuAXwGRNClrcnaFUgVgheWRYxGWTwWozAeSlX0iJbHINlYaEFUa2JhCsf8vNUukUKc0JgVyEIRFJlumnLehTFamKdk0LNH75kYX0EuAsJKHcatm0iVZfKJIyf0VycTS1NxMK5Qy5T43k7gvc/wHJH5DrcWLPpfMC1X8FHM2hChvUWmzRyBBkP5xDFgria+mbM4TLULEkUnsJKN8yMaIpkKhivjZy++sE+/xSf+gNVaV6UYZ/eSUhNtc7jt1k6q4MaWYpt5mfwTxIJRFR8v9Y9kwKMVGylLECjh+Q+kwWrpLW8LqZEQldJ9MxhpBE6xV+64w+pHz6zWbbmAcPXVBY3LKVM4SY6DHsPGBMWVikomRkclr6W4zfefZ7AJ9VMQ+ElJmuTiGZkG/HfDXW6zRzNqapnb4GFkGxaKVBfS6Dzy77NnsPN57eh+xrmYcpds9aCoenByjmhnaVWQk1Ewbg7IGtMJ7TwihuHtFrDE0bYutZAFLZSFPSehu4zjuqRMxJeqq4v7xHaw2dN1AIpGKlbHWunDVDc4KQpQA5NomTVSU4EsTaFCFWicdfBaLyTSy63s+e/o5T55+zsXlJe+8/RaL5YL150+4/OhH2HFDpTPOGKzWwnpSCq0S4/Vr/HqNu6sBLSMwm0WTYRJ0PTmOsJihai2eor0WStUYyETQnil+TSkjAQhao1yNURqTAwwdo99JwYllDJF+jIwhEXHE9pBNbL7sJftreeSUwRYqW4ikEOVaTNLgF8vuvWuMXKc3iI1wVMvmqQW9SUgjOTUQxlqq2bw8o5GmU1cYqxiHDX3fSWMybbzWoXXEVYJ2C0dao4zFOLenF+QsOiFpIgQxmjCom6mmwlUVWmV839HteqwzNLMZs+UdQgxUdYu1Da4SFPvi9Wu63a7YYcsaVrUz5ocRYytx2ULACaMV2cpGFZOExKUcJOMxizte1G5PLwRRzMewYxxHchxxRtHeeYT+xoKX2w3+/OdYJdonUiKNw95NuR9HQgi08xntYo6yhqxhGDYs50uUUcxmDWPRjlCuPTTUs0aStI3BzWbUVcPV5QVpHFl3IyE1VMaijazNcqXoMpkSwMwoAaneudPweAO/WHuGceD09JScwRnDq/NzPn/xirffegdtheKmyrlh66ZY9QqI5Kxm0c6puhVKJYxyWJfRY09Io6CSpEJvyWUNt8zaGTlL6vbq8JjRU4rXzNX6AqUcla1Yzg6Fxjv01E3Dbn1N7z06Zh7df5PV6pCsNK1rsNayWK7IITDs1syblsPZAqsUXbdjt92RhgD9wDe+/Vv81ne/g7MVz1+8ZtEueHByj8eP3+JqeUhImXk756Cdo4GDxZJmNmPXdwxdz3K2pK5r+r5DKy0OXV/R42A+23PfrTFoMzUDqlB3pRbxXpqLWDK0Ykz0g6cbB5lua30r+FWyciT53e7PYWtE8CxOhQqti94BhXPi+DY9P2VFMUbhnKKpweialOb0PrHpIrtegJXNZks/CP1wsWiYzw3LmeOoNVSqIjyYs/ORPkR8kIa3GzKt08xq2eO6EHl9Efns2RmvzoSFsOs6mT7GzDB6UpbZi1Yaax11XXF8eMi94zuMIdFWjt1mze6jI67KFFFrhbaaGHVxmlIcLOYs53OefPYpzhoePXpA1czIgNXw4N4xv/Gd97Fa8y//1R9yevoaqyND6Fhfveb9d97Gqcinv/yEoevJKfHy9Ixnzz8nxZ4UAsZUzOYLttuOuqn4yU9+xNXVJW89fpOPP/qAj3/5CW88eoOvv/sub7zxmN1uy298J/D48du8+fgtnj37lINFxeZa3NSs0aIDVYbaGVTOYl2slYAtuRi+DB1t1WIrV4pvYV9oNMk4QpQMMNSU/B1Loa2ZHJ2mYGCJP1BF8xFLHZoKGC8FnFUyUbLGQtZF/yLrTC6NTS6ai5gyIXLTMBRGxqT7Vep2PV1qaWWZbAPMnvJV9Bz7oMoy2dBG9KbTuq1udt2paRHasTzvdO7n/19MMvw4Yq1jsoW1Vt6cRhELtSkV/pZWcuFZpUArxlEcTNLUOGThtE30B+fEojFGvX/jwh1L+JTxSR5LRaHHKKXIyggKoGXElAoHcwpVUaWDnEqVmJU0a8pSuTJRiGnPXdNm4pxJm6ZJWGfKWFYamMnlIeW8d9POUdD7PUdTqTKZkW/JlkkFCAc950zXDTz7/BUXV9fs+h6lF0Q/4v0IBTkZleHKe8YoDcZ0FME/Y4hcrHuuhojSjkVd0TqLG7foi47WKDg6YBgFMdkNPRurud4p7iwMbWP5fO257kdy8Aw+4FzFVVAkpbkzr/jag7vM75wwuoqYMrvtVsbAxQVMa0M/duQ8hZMpFoslTVNT1e2+2fTeF2T6liBeKYxSHC7nfO3Nh5wcHVA5WeSyVsU2VO2tb52Vgmmyz01JkCUfJLAtp4CxFcrIpIkyLYih4/XZBT//6FNevzolozk4fsDR0Qmnn/yCi5//DWp9jtXpJiDMiEe4MeJMlsYdfreT1VTpEtmswQRolXR+fYDza/KsRdUOGg26hg4YI2ns5PxEIfZEN/oiciQNPVcvn9GtL/EJhgg+K/rBM4yRVC1wByfS3H2FjyRmSjKtVGpvoywTwlwKvJsx82Q3nJnsGwvFKmeIWWiRSpG1KzTATIoygbTWgTYS6jeMguDNFpiqLnqOSAxCl8ohoVwk+55h08kQyta4ZoapqkLFKwBHmqiSEwoqr10hi7Hycv5gW3ISXVXYDLTzOXXbkrOmH4P0qramXR6AsZh+FGpEiIRxIPVbqhlsrzdstz1JGaxrqRdLdAmQjFmacop1ds4RVBRtiq3RSAaM1o6s5PryowASQbdw9C678yfM0w6TxSp7c3UBWrE8vks7mzFfLqibBh8G+n5HVde0sztyLcYdq8O7bDdbgrWEoccYR4wyFZjPWsbRwzgyXy45Pj7h4vQVXUj4mGmcodJ66m/KxivftNaaxsl18uBQ8/UtnEbDRT+y222LhsZwsDzg6ZOnXLz/PlXdygQqZPw46WzEcdBqmDU1h6sVsx302qGMRgeProSqltS0J5g9Mq61ASvooalaspkzW91jGEZCDGACTdsIAdM2hGCo2jl3Dg7Y7La8PH1NiomHDx5RVQ2n56fUVUU7mzNr5/hZTxwH0YYFD5s1dTMjp0ztLE11h3sn9wFL1wWur64L/1+skxUGRaDRhocn99l2EhhYWcer61fYBO/cfwNbVTx/8QxlLLP/75for/1RGWSKnSXVYkov14VuZ60V5kJdMQ6esRiI5JxprKUxsv/XdU07a/cia+sMzhq00XuQQ2uoKmG9OgtVpeRUQMBfHyTXB6TOmFgbQUoVZAlSWGdYtDJR8wH8iYB2zsLCwQyF5SafFeCOMWWv+JVjuk2Gb64yu7fmXPm3OL0YObvcUNeOs6sNz1+eozUcruaiU7UVbdvw6N6Mw7mmD3DgJHto/eS7fPyD/54x+n3B6awhZ40fB47vnbBaNCznLdfrDc8/f87bX5txtJrT7a5IYWTYbThdX7G5PuPB3Tv89ve+xW635b/+F/8t11cXPH78Bov5DOsMlau5lw94eO9IgMcEj954xL2793l9+prrqwucdfyj3/tdqrplfX3JN7/+Dt3gef78CY8fPeDv/9b3+dY3vs719YaD1Zxuc8Cd1Yz7x4es11d8uN1QV5Zvv/8OH3z4S3IG61zRz1CYL5Ew7DA5UtsZSWVijuisMMqSSWIQbB2QiSRSVIWhUpOzOPTFwgyZ9qCs3N6sJqaMD2OpT13Z88s0TWlsMxf6+FS/Ki3hnjmiCgVP5ULhy5lIRKPQyu6pwikmMJqQPTlGnHalKZZ1DGWkPi9WyUbr/RqilBbGRS6uY0qRYxAQNAtlsCqOr5MJ0cQE+jLHl24yuqCoiFD4ZqJjkG7foKmM0JVGL1oJKRDVvmjGKHofMDrfWPcWLdKEWNWVlfFP+WK0VlRaXFem5MmcFc5aMpoQZRGYJhk3IyApTmxBO3SZJsQymtQTdWoKb+PmPuXaveFk5YkTDnvxTxkzCc4lI9tpzJSzBLaJPWpBP8hlrGtJOTMMF5xdXNJ1W7yPhCJcl49Jgr7Qmuuo2I2RVW0LbQhMBms0MWYuu8AY4WTmOJi3VJUr4iXhNGelqPxI3Xdsdzu8H7n2mcFrbGW56CMxBHycKB+aZCrmBh6d3OHO4R1CO8OhyROVS2sWizlaG7piKSlIYSii0Bl1XRP9QDAliT1GnLOkbOk76dhDCGijOTpc8f6777BaLXFOLEJjFLTITIF6CmLKpCSvNafCrUUaymlaJfkZuSBZUjBpDNbUvPH4Mb/x3e9QNytCrjn75Bec/uxHqM1rKpUKOj2hVeUsKP2KyuJoBRQrWiWNBhoIUGuUbshdIF13KN1BZVBVjaoalHFoXxGHLUO/I8SRHDIma4qhHLvrC85eP2ccBsYQGEJGmYqQFINPxGqBrZsvTOC+ikflBKigABFVWSQpjfrkbS/TQmkqdOFQT5SpnIublGKP2GQyTIgmCjV5FqYEJXQu+LBfGLUxWFehZ06+eSUaJWVmKNsJ9UEb4SqX6UJGtGfylLfHyF9c0Mrwjj0fdKJ9jh6lBHlNQRBVocAmrKmwi6awGwTBsla0J1U7E0pkSmidSX7cO69lkgAdaLKyJMRlLStDTJByQGeZgqIMrl0KBcAPJDTV0Vt0B2/h1x9gdRZGn5GCvKlrlFZs11f03QZXV9SzOdY6hnGHczWLxSFh7Mgp0jQtXRTXJu97slaMMbKaz7jY7AhJDCCqpkVZ2ZidMzgNdb7R4eVbazEKLIbWZd67U/HCO3LXMvrIULQO/dDz8vSMl6/PuHf/ESlREMDIOI5Yo6mrqjQcYoE7bxZY3aIrTYyRfjcwqkDMgYl4PKX5TlboaMWYLMYbqtkxUXWEXYc2YF0qSJ9i8Ip+VIRs2fSR9c6jssZHQ7/r6TrParVCacvoI0k5sC2dj3SjWF+P2x1X6zX9GDg5OqJyDdvtIJkjfmQ1X3L3+B5NVeGs5vzigqv1FW3TUrmKYeyJOdJ3O2EIKEW325FCpKka0f99RY+7y1ZAS1n49xNJay11W0lTiBKWRAyEINRB0WoJIKWUKueFBPNoo0VfUWskZ1YJZQWotOT3WCOzaKuLbwcQDIxBGK4ZWcZiBD/I7lCV5U4YF3KbygAoIvJ4LbKtSJXyK8e/b8FXYqe7VLCs4dGDmvCgBqAPK7r3H4h1dyWZQZOXgS3PheTksrOGWVt/YRoj9YwAQXVTMfrAk6dPOL6z5N/88R/z8bOX/OP/5J/w3W9/i3v372Gt45e//JiLywt+53d+i7t3DtBa88HPP+Tk5B6LxZIHd+/z/e/9Bk3bsttsePH8GYcHd8QcRhBJrNF855vfJMaBmBI/+dnP+OCjj3njwX3+6T/+R4wx8MEvPma729J3aynq00jyHYeHS0IY2G53ZfKUcWaqVUUXrPZcH5lWKpXQ2VM5TdM0ovNUkw+YnAOVFc2K0gKI5wy1Ff2w0YaYE4OPdMNY3OhFYxhjEk2NTwx+IAUvFv550hFlcllbFEEoXZRaJos3ni5a5ZxU0bJ6+e70zdmSUibGEZU1KcmJGNNIzAIuCbAvuhJxA5rsnjUlak9ovkoXExBxystRanelFbmwRgAyRnSF8ctNQ788XcoJf3aaPKDYNxPWaIzVkMRXfPSyAdaVxVlFXTf4lNAhFLtSoZ3EVELdUChtqc2NkCuX0BGtpxReOfVjzoDwCislIXh7f99JNX9roqDKAqIKl1noV8WWTBdP/sLJnHiaqXSjRot7UQhx30RMYipTxLrKyLis5AjuGytTJiMiXhd+uTIGfOR6veb5q9dst9vyGcqGpo0lFVeqnDJdhF1IxY3qNjkDQV+MYaHF4MgSsAUNIYNK8tnUOmErjUUS2JVRbENiWwLHYpbPOGbNVchYpzlZNJwsZwRXEVCSijt6jNa0bVuKCE+/67HGsvZrmWIsV6xWhyVUC/oyFpUmo2IcB6qqkg0iKebtnK+9+Yi333oT56pSZ6oymUooY4kRQhiFhrHPOhEkWxhyklGilVAkckpiwpVF2m2s4Y0Hd3nTWLKu6XzNJz/5EZ//7R9Rb1/gVBQESat9Yzydk2I2oAQpNNOlIoWYHKYUvl4W7LZCWwfRk/sd4+YarSusa6BqMNpSZ4Medgx+Rzfs8ONAGkd8t6Xb7ej7HSF6yVZRFR7HoFvUcobQRL/KDvfQVLLgZ633dEa5/hXaWqlwlUbpTPCx+ImXvBs9LfyxOD4VWpwW17GpLt1TqwqEYI3aozDTd6uNKRuHFt97shQpjUUrGAYv/2ZM0R4Vq+ac6HtJeqYk6eriIJeCjNWLs7iAGxmY6DdRqH1FVSxmFYXKMZ3PtqpEMK7EjMI6R9Wu0HaND1HoQEbOyYTwyGMI9L0vm03Ro6VE9INMFCiTDW0FCYteRuQpo+s51fHXoH9CNh5lDMZadt2G+PIJzXzJ/OCAxcEd6rZl263p+y337r3BanXEZn3F0O+YL+4QxpG26KqMsULzyJnDg0N2/ozTs1OapqVuWmyt6bLsIa3TNE5uH8vvjHT3TJRLpRUnM8fXDzNhvmCbNZdX15yfn3Fxecmrs1Oev3zFN7454lxFCJ5hDPRdT1s7wfpDkJ7PFNqukmmQNPOJEHJxOcso7URArIXKqybLSKXwQWNVJQCEUWgra5Yx03lS46Nl3UWuNwEfxc//7LJDGdiNUAeHxRCHSDcaslmSUqL3pnC0B3qfSbrGuLmsz+stwzAQI9y7+5DDw0WZjlv0dYVPGRsibbsgZhiGgLKOZr7A1TO2/TV1u+TuvXukyfXkK3g8fjhn6PI+J0kpmQhYJ/tzzBBDZhgVKihU1HTRE/zI2O3ox1Ec55TYRAfvgUTbNswWc1wpEIOXPU/nSiyKi2THKIWrxNvDGog+MwTBM2KEYYyEEAnBUlUaW6sJswIKaVbtTaBuDyb2x7+vt8hZoplUeZzpthoJNQVpilZW/4/e/1cPpSg5GIZgimvVxAEpNd+u2/GDv/0RF+ev+e/+5E958fqc9bbn9dkF/+Qf/j7z+YIQ4Te/822Ojw/5m7/5IV3Xc3p6yX/2z/4Zjx/dp64ci3lNCiP9bkPXdbz9+BFV3YAybNaXhHHHan6fqlmC+jbz+YyT4yNCGJnPWx4fHvHo4Vv84sOf88Mf/4Svv/d1VssFKQeury/54Y9+yI9/8lN+77e/z29//zf50U9+zLPPn2OMwhoxw0lJmDTaTJQiRVOLzXXK8jkI+yUVwTY4V1FXDqNlSv7w+BBjNG0l09DNbuTiesMQooCxxZlp03X4GOj6GpXl38YxCUaZE2MUYD7GRCKRlcb7gDdjQTilGU2Fv6qYCTU4B6FZl5pojGKoo4OwgL5ojJBREWEWZdEypgKW7RsTxHlTG4cYHhQaodKyDiKJuD7JGmpNxU3b+u8/vnSTcfdQvKljCMUmEiijFK1LNJxRVFW1t2ubfHV1GcfkJIW9Loj/FGwn4uyi/C/CLQAKPzCXD1mhUDHvkUdbmgdV9ABi6VXQYSX1CmjhK4NsKsXKTfhyksJLLrqLYoMn0wcKhUtJABtTAWD3NI79+ywCMRHtFx5jCZTTxtxaMRQ+eF68fs3zV2f0wyCBdrXwQLVWjLEkWeQsoXwx7x0xUoHWE1BXhodHLdkHnIoYBrIfSEmXxkuKMqMkHXnRWLSp6ENitx4xuojyCyp73UdUhru14uGyJVYtfcz40BODBIu1bcuyXsiG7D2uclytr4gxslwuWS5XzOczdtsd6/WGKZG8qhwxRUISIezQy8jtYDHn3Tff4PGD+zgnaXUpi1hVGSlCfZQOP8aIVnJ+KS3FXs5iLWqKI0hOWVC77IsgXzYhjSYlQ5+XvHjyKc9/8AeY68+EIoU4k4lLmd03SBSOY8waZVtUXUv2RSyQFKr8bAsE5cEKdQHTgHFUsSf6HWN/SdwUL+CsMdriXIXvdxCn6VrRuRiNyjL96ocdwTVUd+6gm0hi86XFVr+ux2zW7NFH0R/cNM4UoTWFHKWMImtTrjEjQEaWpGuZVCSMdTKZLKNm+eSQaxS1F/KSVdFHIVoL46QRTXF6cpmKpCi3qySvwigZjQtwIfQZS8IY0Z+J/bYl+EDXBXwf0EamrWo/EdNkI82PygmioKECVihsmZgY54TimTKSHiHjcU0U4wcRn+CMpW4qlDHYyjD2PToLXVHblratQRt2u4719TVjH+R5KicbSrAYHDHIJGR28ojx/BibztHGUNctxiiads69N97GNhUJ2GwuySRO7j5idXjM+vKC0Q8sD45RKIYwslidMPoB7SrQijtHdzg4OEBrxYtXLznvOk6O71IvF3jT0/tI68o5oDUq5b3GRpqMaX9QtJXmvWXm6irwcaixzlHXDeeXF3zw4S9489Fjvv2tb1E/biRLZBCTB1vAB6U0lXM0lUOpnq1XxGTJKZBMg5m1iMu5L+echKga4yTvR8sEzBTqhKkUlZLCJZbbGaMwlWGImryL2HbBLFt2fc/Oa2y2JAXrHWWqb4i5IiRB3wcvSeo5ayIN2q0YU8XrizXDmHGVZTt4dt05B4cXHBwesOs7nr48I+sWny0uWur2DpfXl/TJsrjzgKaeUY+W1aGlns0YBv8/3UX/H/lYtIralmkDsu9OtCatZJlOTrGYwXLWMI4No8/4ENl2A30/4EeZVDZNg9aNAIlZQQyMRSemYgQdSaNiTIacEk0jzYnK8jxjzPRdZrsJjKPoEzfbLT566qoFdcTQGkafMAbqWtNUSmKSSuMRdXFHLyMExxdpU/nWfzPSYFwHmbAs9Bdv+3cdt4HK6e8pUyy+hRI4bW+60JYzoiP99Onn/PzDj3jy+XNCSPzoR3/L6esXXJy+5nd/53dk2qPu8vmzJ/z0Zz9jPl+yWh7wrfffZTGr+fjTT/n5L17xztvvsNn07LY7nBHKT1VLVlbf71Aqc3F+Rhg2/Oa3v8b3v/MeP/ibH/HDH/+Yup7xvd/8Pr/9/e/z53/1Ay4uL1jO5/zsFx/yx3/yp/zs5x9wenbG6ekrLi/P+ejTpwwhFCaJTBhClLU1JnEUrStDYwOtFac9qbzAkAqAYGkbw9HBQswic+L4TotzGkNGaziY1dw9qPEFNMpJAJKYZkI170cxCooJY2TaFnNpKgL0o+d6K9Peq41odY3JhCT/RpYoiLZqGHwRZWvRDo9BmCQiHJfJuDQimRy8aFat7GGmTHIkKiGjlSEkCymVKUuxvDXCKqlcW6YunpSKNTOZ2jb7CeLfdXzpJsMZTc4auxe/yJmolZyIkyBEay3hb4XeIOF1IpHhFoVKK1UA4QJFIF1Wzlp+n6d/KmhhGdWY6Y3lSQkvY2yb9cSykGM/dSjFZoY8IVJTB5dvLN1UGUfoqYMvv1NWoZ1QdMye2iHzUuHXqxtWRHkPqjg65JhuGpKcyTGw3Wx5+fqM9WbNZrujbmoqZ6hrGXP6cZSxbkqElOlDZizC73wrxdsazaoxBFuYJmRUzigVZVpkipOTvpnADDFz3QeGmOjClD6uWI+RmOFua3i4qNHNjEtl2Q0jEo420DQtWgsPET9KcadHvPfMZzNWB4eyYCtF13V0XUdVVcKPtZbgfQnFm9AnxWLW8ObDEyqn6Lq1jPCLXWgScx6GsTgvhQBIaKEuITQxBSY7UbJMnFKKKC18fGdFO7IbM72a4RrN5ZMP0NsXOJUwTLQsabamEfh0TG4S9Z2HNMsDCB7Q07wbkFwO6WYj5IBEY5apFQ1Wa4zzxLFn9D1D18MIcejorq8wxuHqBhQsj+6i1xVDt2X01/jUc3L/iINjESbHVIwVvsKHmSx9i0H0Tc+kSvNxQ0sUv+gpyVQoUykXB5+Svl1Nzi7eF5bLpJ2SMbOahG+3UZeCQKiUJcBqb1kpR6UtrkrF4k/tz7epIalLVkmKUoyEoRc9VfRoPJWtmbWWoe+LFsns/2ht9+tILtPZ6TxTuqTZk2StUsVoAKiaFluJkNBoGWnnGOh3IzEEaleJpWKOJD+QwoBfbwhXl+g0crh6QMo7NtsrdAZ0hatascPVS7arE9x2y2o+Ez57Tjhl8N2OftiSiMwP7nB08oCmabk8f83Q7Ti595isYLdZS7OhNXmIVG1D3/e0bYs1VoqGEBlDYPQj6+2WQSW6AIsoVFhymQDriX4m4VYgom2dNUcq8XXv+ezVQN+NTOm5z18846/+5gd851vf5uT4RMK9QmK366itQjU1TVthvGYZEqtZx/lGbI6zjmRrUNqyt4VMCZUjWpmbCQXSisoOJYigsRXGCXdZK4XKEYUhRmmGnbHk7CDLtJgoAYARS/DFgpmi7VGKoU/EaAo1dSbrV2d4/nLNdin6v9NLjzWGVxcbugjb7Ybzqy3WVkQU2tXUTct4vgY1I6TM9XYkRENr5vSDIaQvh0L+Oh4KyEkYBJXdMyIptSOmeG9kFLqW5kNC+zR+dMS0QGvwXkqDugJtRCvRD9CP0tiOg1gDp5RJY0ALBkG/Ay/LCmOArouSATWOYk2/6/ApEANcnG9ZW8d220OGxaqlnVmsFfcnrRTLuaGtBXBJGQ4aoVBNRwL6VDAuYNtFrjcjzhn0gWPh1Bf2rX/fkZA4punb9xk2USagcpRJb6llAIzSJKUJObDedsUYQ4Df3W7LX//tXzNra9556w3+7M//gt1uy4uXL/md33pM13X85Gc/5fGjh2zWO/7mhz8D5Xj04AHvvfceKSZcVdM0LavlilnbcL3r+OM/+VMOD1b87uH3cM6wXLRcrWvOLi74xS9+zvtff5d5W/H06adsdjv+8I/+hI8++SW7XU/OkZ9++DHrXUfdNDKxnWg/pVaYJt8KxcnRIY/vH+CqSrQNZR8iZ9p6xmK2om0aqrpiu72m67acna734u5h6AkFfO/Hjq7bYLWESruqwVpH7wfW6wuCHzlYHJDQhBQ4vnPE6uAOjoTNA9o4GhPZdQMxjaSkWTjR++W0xSojU3BjqJs5MVliUoxeE6LEO8xqSzcMdMPIsEsoA207IyRP8BGrFcrW9IPHmJoQEykOVJUTrV7WqNxKBIM2+BiJUYRIueQ/KW5y8f6u40s3GSnEvZZicn0qeyQmJ1ShOeRCRSJNHvJTD1FoTHpqKjJMavn9KFGV2xZEc4IolJz2ewJEKg4PShV3K+GJoeQhKY8xvVqm7qz8XooRIyP5lMihBI6YqdkplAsRfKCjonjqFlFUOUO12dO4SudS3ogUB8L/83v4IEa4Wm94/vI151fXQskyhrZtMMV5SSxwZdw6KCSULySx3SsTjen92OICIdx0yFkEQUYJUmqt3k+CujFy1Ud6n+h9ZBLSDlHRx8ydxvFgWdO0LefKsd51DEG0CD5n6qYFpRiDOFH5caDb7ajrmuVisbd+W683XF9fyUJV3KHIoqeQTA2hPlnruHt8yJtv3CcEz3YT8N5jC4cylkmEJpFygBRQWuOHQbz2y9TJe18E22LllmIqXMQBsiIky2BblicHuJjwV6+xqceqPH29BbEpDkJQBPzl7HFzVm98E7c6EKvokIRgq8rXHBUEXRoNaajRJYAvA1k4j8Y2NMZhraBdY/KoFEpmhFitKutA1aR8TlwP1LPAolXYtCEnMEkofF/lY9LLTMe+0djz8KcwJL5AMaDcRgrPabXghvo4rTtqajLEoEKV/7J34SiYg1KC3ClBkG8n6E4pwpPHuL4dmFSoTXt6ppK1wlSxLL5Ik2ssGSvZPeV1SpNhpMkwhqk02L8mZEOfFrFcPh9Q2EIfnV6P1roUVgGZ7YoBRyrp1Skr3FxzWM9QRJYHBwy7jqEf8aMIjVNU5Kqlci3cfQ/SGXVdsWhmjH5gDAPr6zOa5ZLl0V3uPXqLpm05ffmM66tLjk/ewBjL+vqcup7RzuZsri6YLZYkNJtui9Kay+s1Hz9/zRg8IUS67Qb6HYOt6EZHnhnZ+JSYLRg17RHsBYaCuIoY/NEq8f5m4MV5t19Pxpz52Ycf8O/+8t/x8MEDHjx6gykPJaWEscV1rpiW1DajxzWBRhxWlOhl9jBuAq0F+NE5i5K3+OGnFMvtgAQmifSaWM4NnYghk8aMNwnvAzrL5DMVe9FcUExVBJpqcn/JGT9koocULIYalQzdLpIZqJwjB8vgE89fX3J2eU2369h1I7ayGK0Y+oxzO4ZBQXSMYyhNj2azjRgnFIiv6qGV0KNCGUJOX1kZEkqjUWrkyUwoAdHL7a0B50QvocteqTXkSpoTo6ThSCNghBcfYip7eBH4IiJvZxVtbbHGMGsbfIjMZzNGL/x7VzlSEm3AOEa2m56+F8DBaCOTs6TF8bzIgSqnSIUAkZFGZtdnhkFMTi4vrlhvrpkvDqjtEdWBY0gSTDq3YqcM7NdP4fnLdpUAjxR+BhhSZt1Fht2uTPsmmndx7FMRlAAsky2wKp9xXde07YIXr17xL/7VH3D/3gnOGr72ltjY7rodh6sVH334c/7bP/hD3nnzTVaLGZ999hnvfe0d7t29xw9/+CO63Y6j47t861vvcXh4wI9/9nNyzsznS/72Rz/j/OwVWUFdz9isr3kaR87PT1kul2y2W/7yr37A6evX7Ha7/d4hTmIj1knsgSpUfAEzSv2YwFrD/QePePetdzBVJXWuEiqVtopFa2icIyfF+fXAbthyvT1nN+zoh47ddsPZ6Uti0QgNQ0fKsTQZkp/ijMWnQDd0iKC+KhpBj7GGpp2BMhhrWLYz6tmCi6tLTs9fo7VmOZcm5/Lqgs1uQyzMn0U7582Hb+Fjph8T82ZOZWqOmjkbemZWczZeQxh56+59sracXXWM3Y6qaZjXiuWsZVYv6McdMY8oDFk5Usz0Q6D3sO0hpqrsK/Lli8Xvf2S6VExJkOhyIjprJXxKq5tmQL7dm0ZCyYVI4TNPCLacwTB5OEtTUmxOS1MxCcz3N0EWYkonmvVU5d0IRNV09lMKjXI/gQgoKHMiTyp6KLtYgqQkbI2J9iTtbo6RHBEBqKwI8jiw7/TZv6dbVZHM+NnHdBtxTTq7uOSXT55xdrkGwFlH27SCgvSDWGuWYiFqGIq7VIgZHyNGiQ3bnl++r4elWzdG45QS4XnRswwhsvWZLmR8THuK1DYExpi521oOGkvb1JxHzZOzS3ZRmpiMYrY6LMWhoe86fBjZ7Tr6cWQ+XzKbL8g5Enzk/OyUvu+p6gqUvL/dbiuLk1J7WstyNuO777/L+++9y2y2BDKlj5H35sUlwVYGm1tBsEtTus8XKQ5B+zTUFAnBC/0hRXqfWfdzZouHOGMhJqyCoPL+FBXkVP4ycenl68ugHbOH3+Xg/e+jZo00GCGD1zLTzlFm15NIwxhQHvIgF2DW0mwURyLQGAxKZ1LlqNpGTsk4okxFXbUEn3DNgjt3I6uDY9qZE+SzZLl8WcTq1/WQ2ky2vqmAnkKh9uADwBfObXWrCZnE3uVfCkgxDS1vAIYJyJgakvTF+0yTzkJznB5g75iRJ7qVKs3GdElPzUV5fcaiUFh3yy57mowoI5S+2++BG3OK/YNmEP1ZsTeeaGPq5lycqJiTBsVYQdO9z+Riv60yYAqlk1VJn6U8n8ZWATs/FDpnhoRMS2qrCas518Nz0vgKrS2rgxkbvyUbxcn9xxzfe4yuNFeXp1xfnzOb32GxWLFZX2FsxerwiG6zxlYVdTNjt7nCGcXQD7x6/Zrej/gEMUV8COATw5gZogNjqSu9n4pPrnLAXh8n/vIRFRPLRvHN45qPzw2XuyTuhtqy3mz4l//6X3Pv/pv8w99zzGYtOYNxFm0tvkxShijTzkpJ85KLZaUsCMWlTCtUimU6LCdWihOVU5rZlAMQRFSPUIB11qgg+4zSVgwj/CDFcBaBa07iUqNK0no2VjjQMZSzVow9UgSrpHFwtkIrJ9OQbCEHri42qCS6OtnGMtkodmFAW4/3Cj+CMaLjydmgjIOkCcPwH+V6/v/H0fdlK87QdzK5cFXRRySgbPcTE9Logv8pud20RVtbCqBpUVUwryg6jQxJE8ukU/sgboZeqDd1ZdBOnstViqpWxSFNM7SOcYxYq/dOeIcLoeL1Q2S3G8koXG0ZR0+3HUhBiuG6Mmy2md6qiTBxY/piNSY5qrqiGmtSDHR95HrmWG8yPmRWS82ykcpoSLDeQlND42SX8nkC0mBMsN5lTl+tefXyc/wwCL290Er1rc8t50y32+0Lea0UdeVwVcV2t2PX7bhaX6GV4smzZ3z93Xfp+4G2afj8+ef8+INf8NEvf0lOkbpuWMxnHKyW/OAHf8np009pDk84Ofnfc3V5wR/90X/PMHr++m//lidPP+d73/0mv/Nbf4/1ekPbtHzy2TN+8dFHGGu4vLzi5etTmrrGOSdOk9PUOyViCDKJjmlvLCENVMlG05r5fM4bD+bM54ZUHMMUMgGrTQFpB+h6UPR4v+bi7AWvXn3OptsxjgNC3IPi+CHB1cAYpWmJJHyKRbtryhRF9j2/uSixBwIYGWMZY2QYByZ3u8pV6IwEbCpFCpHq2uDzljEkzq8uqZzjYL7i4dFdDg8OWW83PHv5lF2/4/RywWy+YNbM6IMn94nDxYpu3HK4uId1mavNmtViwXI2J8SIT+Juudl4nGsYQmTwHqcUzljadvmlrtcv3WSo4rueSfjgSWVxFdGjqPT3aGLMe2stkMUgBSkMscI5l9o/l8lCFmeYSSCZ437/VdMGq00pHpJMHbISq8ci5hOxzWR9K13qHgvMoIp97PRHT3DHhF7dIodPRYg4F0xTkyz8+5yByYFEXuQeE0pBnF6mZkc7lK1KExPpu2tevT7j5dkFOWecszRtI8i2D4zDINaZWstGrBVdyIVzJ+KgqGFE7YcmueCYRomg3jmLM8WNi8zoE9ugGBJkFXFWCuvBi5PDLCdaZ2nqijMPT7bXnHUjjdXCEZ8tsE64ervtmhgDPgSGcRD3Lyec5hAj5xfnXF5dSjORKmpX7R1eKlcxDKM4SxvL8Z0Dvv+db4iFYxSkUWvN6MWXf0olTyHjXIUpdJZJADU1ksZYCU00kqppjHBnt73nejSY2X0ODlYYoDKK5fF94uc1KvZFizE5lOXynU7Fr8at3ubou/+U9t4DaZJDUff5wN6jOGeByCbIyCQgFliqZMYg53oqlJsYRqIXgX/YriXMUDlUu8RYxWyhWB7McNWE8oPSk93cVxeBhC/2EUxza2EkA/FWm7e/R/l/AQP2fcQXmoSMyuL2JvdQslbkyZVKHn8/gdxPHcvId/od3MCfKKFLTV7qTJPZfOt1qZvnQF6P0aZoRDJQkdMkpJxuLzzAnBOqgB2Cz5j9hyOORnyxWdqPhKW5mCwPU4pMQ5j91AYgp73N9JThI0FbhkTe2xtO30muHcO99/FPz+lCR6UralfjCbh6BiguL065uHiBczWrgyO22zUheI4Ojuh3GyAzWx7Sb6+BxNHx3UJDlGvVWk2KQm0jR842md2qZjsmVm0tAWgKpkyjDCiVitUi2P0oPXPSZt5dGn55qQiuwQfxhx+959/+u3/LfD7jm+9/g8o5qrrGFS1dzhBcwjmLdY6RBq0cKFsaDmRqnRTZaEiRHL2UEMoWEGxqDjVKOdEbTjrAnIX3XLjsKXhUUqVZEbQzx1wavanZEHvIlKNQPJUhxGIQoBRkS/KGqEEli7VQNTMqV4tI1HtiCuicMEoRx0S3GxEXGAGrlNbykodEzIHQf3XdpeI4YiqDpAGUWWiUfIPKiD0pgHITlRi5bET2J/sKt/7t1mEUzGvQtWI5d/ReKFQxVUR/o4sUkxEYvVybxhZXuQxWK0xjC4gFdX1jbRuTph8cfsx0fSCNogUJXib12guta7qMp7JHlXVQa8tsfgCqkgm8dQwBaYQM9KM0JErD6GG7y+x6KZgVRc+GIPWjz2w2Oy7Pz7i6OCWlsHeYmiic0jxLPdePI8M4orJMAGazOSH4Mk2aKOaw3mz5mx/+kJ/+/OeFSq9ZrVZcXl3y4tVrlFL03Y5Z26KGLV87mvOTF5/z3/zLP+B6fc1f/e0PGYaBxWxOP478+V/t+Pz5c0Dz+vSU569P2Ww2oBR935NSoqnrQvOcbMyTUM+bem8QM2VLpNvreM74oaexmYUtIFZ1s53rDFe7kbOLa148f8nLpx9x+uo5ox9ZNQ5DTWoqKucwxjL0W4w2oiNNmevdBp8TlW1RIbAeOkLyQMYpjbMWqy2HqxM2/ZbT6wuiH4kpizZLWhEyicZWaGWFyWEy6zDy0avnKGVZti0Hq0Mury7Z9Fve8PdZzeYcrhYcHRxweX3Fjz/7iMP5gsrVZBKX60vGceSjZs7h8oBFO+N4ucJaw3e/8W2shlenr3n6/HM2fYc1noO5pa0qvvHmOxwsF1/qev3y3Asl4kQ56SfBtZRkMeZyIUx2ihmUUAK0UYXSlKQbL6fwDUdgogBJtxxTKuJXyDHL81lBC2OMe7F1mV2IXWPOe0RTlTF2TuIbbwpBc7IuU4VzhzFlSlI29KwLx6w0PlqKFLUvetTNol+KUIBcqDvamC+AsExTFyOIJilwfb3h+ctXnF1cobWMYZ21JZVUukSjNdbJ1xJSpAuKPsRSpOaShj3pPArCoQTlcM5SO4MrSdljBI8hWdEMVKosECpznka0VhzWApfsouLl1Y7zTgr8mbZEXWOrGq00McQSNhPpdjvGYcQ5hzGa0Xu6ruP09Wu891K8KPYuVFVdF8/oQZpBo3n7jQd84713aJqaWBBCP4p4LqZUBPaCBMUs9BP5XkCpSEjx1pQLCa/BoLUjxMw6RLxpOFkuaJwh+JGqaTh44z22nxyR189L8aNuLZA3BadZvMHRd/4XHL75PsrVFOhBzt0QUFEVT0Ml04oYpUKRWWYpPL38LpV2N0Wi98RxJHQ9MSR2fc/m+oL1tkO3NW+/95jZ3KKU3Q/HgLJYK26rGL6Kx+0r6mZSATdUw6mBnDa7fZld7l3uSCzrxzTB/NUjyb2yPIoCci6NwwTPKXVzOU9gwb6JuLnvnhKZJ9lb5uZiv3mVqlyPlPAkcWaxJSV4unl53GJAsf9Gp/c/TWzKhHgyx5jet2i74v6xbs+2cqbQVIM856SV025P0bLJlSCzQl0r71vVFcvH3+Di/GO67nMaP+DqCu9H+m6LrRquLl/h/cjJ8VtopVlfnbM8PGYcevpuw9HxA6nPw0jVLlkuDvCjpx89MXqaqpamB0g+cDkErnrP+c6zmtcszM1au7cTV0x+CYIAZtA50TjFo5Xj4aLmebC0bYUyjrpqeX32mh/95KcsFiuOjw4YxiV1I8/dVBqnNdvFjNn5wK7bybJuW1A12XtIo2wR2pLSgApCJYnZkqsGrUVjsTcoIRU3P6Hl5Sxe/DklovfkEEhhkHNSJdkbyzwuKYVKo2S2pEGCFG1T1kRZ45LWxH6LssWURFfEviW1C1ISS9sYAzpBn5FJSMponW84MkYmZeMwkmPkS7pP/loe/fUZtA2zxQpjpQkNfUAXn1mtNKoUjEyY1K8wO/T/B5ghx20RtVNgHEXsCykLXh2LPmKiOEn4nmz3SkFVZdGJRJmcGCtCb1sAp8pCbBVNY2kasZr2gb1ZSfSRIUq4pTJlQmakUc9JdGnBSwOy2QR2XZSJJhPlV+qtfggMvViT2srcZEEVqmhKkeCDiIf7vqRJ66IJjaQoYX4K0Xf6EIkxlmmjAJl93++9NdK0B6IkLHTXYaymbVqaumK93TH0A9Y5Xp9fsr5+wtePW1aPVrx68Zyz7QBkzs4vSolmCSHy5Nlznn7+HKW0UMpL0yNTYcoEyBFjRNFJg5AkIV1rjasKyMBUcmZpOoqTpB9HMQtAvmcZUGXWI5y+POOnP/2hULYQOtS8qrh3fI8hBk7PXpFC5NHDN5kvV7x4+ZTV4oB+6NlsN6Whs3zvO7/H+fqKP/3xn9INPYrMw4MT2rpFWcs/+8f/OZtuy1/+8G/Y9FteXJxxtZXJkLWGN++/wWbXMasaVssDfvzpB1Ta8N7DdwjAvKr43W9/H+0qfvThT/n4yUdcba75+pvv8ujkAc9ePOf51TnX3Zbff+vr1O2MXz5/yquLM9569A5v3n/Eo+O7vPf2W/z0ww85e/2atx8/5N03H5CAn378i302zXJ5wDfffMis/nLtw5efZBihbZhinTolVBut0dVNcR9UCT8yTgrvciJoZUqmwtQQlJ0uScqtUoqEkCP1NEVAxsC2gIDIlJ9+HEk+M5u1OCembVNa4TQZUUU4KRu2KYIfaWC0Em5tHoc9/QBzIzAVC6xipSn579w6Qwu6JM+VsyKHIH91tSxcMYpt2XrHYqH3wtHL62s++ewpF1fXdH3HQX0ovufDIIKxbifBc06KAj8GuqBkklHE4DHKrmuKbSYIqlA5S+MMTk+ONBqlJU23VhFDlnDBDFfbHh8iK6cxRnE+KF5vdlxuR1S2PGoU2VquEO5uuF6LxagxpJjoh4GMfPd+DKy3Gy7Oz9lut0gQoS0e+5qmhPKtry9lMwie48UBf/973+atxw9ZzucM4yjTiBK053IqXEpVvk+9z8yICcJ+hiOLnym5Jykmut7zap3p1ZK61iznjThpaYUxmXvvvMfuyfe5/uAcgzR1EyqtlAI3pzr5Jve+9U85fvc3sVUru4dVQt6d5qA+IDw6vW80chnVTxBZnqYiSlyzht2a0O8kuT6DMhXK1cWieOTuvSNmrd2fy86KE9V+qkban4pf1WP6PKa/Tc3DFxr0240I09/3N9kfKU3Nitrfbv8Y+0tW3UwQ1JRjU36np6ZBsTeU3G9C5RXsr33Y0yT3vte6NLqTA14s69jtVnB6jumFpf3Sp1SE2++zrEVK5f14f1pr8vSzuv1ZlPMs39h3T39POZeBWiCOfm+Li5pSkfUt2qgUMO2dh2zvvs/w6Su2fcfSWSpX028vMXXFbr2mWRxQVQ3bzbWEkpqK66sz5gvRLHXrS2zVYG1FbWC1nOGfiqvKbLGgRaFTYthec+k9533k7ug5345oVdE6g5soboV6Jkw2CVmUPJCMtRX3Tu7xLWvRlz0X2y3aGmbzOW094+WrFzx59pQxZppaLJOrqhJKVlbMZw13j2bUsSYEzW4racmCiQ0kPxJ1RfA7MXxQks+Sgt47GmVTQ7YFYBBjCqUbsDPRV+UoeSSTlm4vmoxo3YIuCcPk4gYo2UYpi74MrdBleh7DQA6JHEes8cQxMXSdUK9SJJEwppb7RSmIp/Mpa2kwXaXRJT9JfYWtsH/yk09xzlBVjez1yAVljBTPVhuqpilUE3EOdHUxDImRZjajnbc3tCBj9u5Dv3oolan0LSeoLMuAc4CF2mRiFL1QCnKOxrFkdGRw3mCtoieLIL1SGKuwWuGMQjUiAA/FLStGxPo5ynqfJbYBlcUdzjVlck8mhkDoBxGd+yRD9sIc8N6XzBwpsm2oUDnIxL7Y22sj69Hl2TkXZ69vFtgsa4I1wi4Qp8cb9F+wjGKaoqbrdAJFytKqC4CSMnfuHJFS4uLinBADTSs21qen5xy0dzhZLeUcDoHZTGIixY47crBast2uGb10xTdgS9pHFBgtAYwheCZtXQYJAdWaumlQiF14ymnfTEn5GdmsL+mHSJhZdoMv+Rbwi5//gh/82R/y/OnHxJhwdVU0roq6nbMbOrwfMcqQR4+tK2LyKB/Ydjs23Rbf99w9fsB33v0aP/n4Y5a2YqYUi7rlv/gn/ysur6/425/9JTOjePfr3+JbX/smH3z4U/70b/4Mvzxgvliy7bb88//l/47Ts1OOD+5w/+SQ/8v/7f/KvaN7/K//0/+C0/U1f/aX/xblR/7x736P3/nOt/nX//Z/IHrP7//W3+fr9w/55ekZP/vs5+ic+D/8b/45y8WM//rP/5p/8W/+G37v/e/yT3/vt1g5xZg1Y/cmj+8ecbhwNFrh3nmDtmrEWt+PfO+dt1hWVgxEvkQ98uUnGVo63+SFz5qRwCOL6ChUgQRF3Ch+4lMJISFSZo/M7jnVCrHxSmCdBI6o4oYUipBGp0K1sqaM3BUNijyRKZVCGb3fuKdFF1VSyWMij4GcomyKVQWaQn0oOgztIKcbrXgRik7TkRsNxoRoxr02RC46BdahnCBcmIxzGVM1KKKkuYbIi9fnPH99Kp14yWWIwbMZOkYvWRTee+rKYa2h7zNbn9mMiRAzYxQtgSx4sqiIYFlcsVSWPylDVBLyNreFdmSlwVt3geveU5Xgsss+ct0ndqOnD4nDKnCvaXhGRVCG0O1IKbJcHWCtpRs7YgzEmPAhsOt2XF5dcX19XQrEjLWmpK5a2rYWq95SgDlrefetN/h73/sOq9UB1ri9d7VSWRCHMgXKOROzEmqDMaAyIdyIa0EaXmsl5HATA6dbGPUCqy3zylA7oa8Ybalrx3y24u1/8J/zyfol48ufoZSMqTEVZnGPw3f/Piff/Scsjh6iVZlOhVSIvRqlEzlEsk+FA6+AMtEYy+uOiazK+aQiMUXGfkt3eSqNedUSvBeLza4nKM29xw+4e/cEa28yH4wxstAXapbQRr7ak4y45zLApEcoq8Stn29w/y+OO9gX0nzhdqW5uI3q32pUvviJ3TSVpLAHIvbPm4uHeJkq7Pld5ZqTB5x+L//Nk1YCyFmXa1Nue/P7zCQMv3mPU2MwNUsywVU6FwBDnOpSSoISFoqYKhONtKdqlVwOJU3PhOTthzAo1DgyTUL2T7enH6l9Y5va+0RzSPCnjEPPfDlj2K1JSkCNtl2Rs2b0AePaMnlUuKql77YopWjaFePQYbXi/oMH+L/+MVpplosFKStsztQHB3TbKwYDV96wGBKVSwXEKg6DpclQ5bOX2kBhbU1z9A5vHL/Lq09foc7O+fTFS642aypXYasKH0NJNx84u7ji7t0jmqYmJ+i9Z/QelUYqkoipbcDNPEkZEjVjnxiGLa62VMsD+n4sKeaZ5HckZKqQslBFYxhJGLRzGLqiGi6TByt0LGmUYpmYRjlXFOSiV1Payj6ZkkxFbNFQTGICEIvuJFS5PI7krAk5keIIFVhXg6XQAA0aobrqokOz1pDRJPPVXUfOz66lES/XuAj7BZyM0ZNLTSI1gRaL6BLEppWYrdRtS9vOUSozm89oZ42wHtTkcFaIWFkRyhRfG1uoWKU1zEUrFCQLykdpMnKhWxorTnKQSdGLYL1uaBoJuZTbZnxI+5YvxUSKoQCsuUwxbGliBnBWQIIU5JwbBUQQ+q1oMFUqlvpFD6BzgugZ+i1xkMmdcY75osVVjs3mks31ZRF1y2fn9EQNlFW1D0FozOV1Tvv76HeFYsVegX9jlgHz2ZyD1SFPnz3FhyQALho/ivHJataKpbsx9ElqCh8kbNWHgHOOxWLB5dXlzZBZ5f1ERzK15I9z7matz+I26UfJgJD7Tfo6jSnNISieP/2Uzz79nODv8ezJZ2Udszx78ktOX37OdntN8IFwKU1KomTnWBF3p5S4uryQa0/L1EkXO9gUI93mmv/y/9lxsT4nDlsJjs6ZH/7tn7Pu1lxcvuJf/eH/i8eP3uGdr32dn/z0B1ycfo51DSkJffzZZx+jErzYbnjy2SdSUw47fvqzH3Gxvubi6pw/evEZn79+wRv336RfX/M/+53/hNZZfvLxJ3z45Bmh7yBnfvyzn3L/7hENia8dP+LRnbvYCNsx0IXI0WJJYy1PX1/wYHXIJ5+94Hp9yfnmgjFFlsawmDfUxvLOg+O/83r98pMMKJ7ekXEIIqzKoKrC20uymUoIiYybghe0e0ILtTGYiTM3FRsllE/FKJ2pgpBl3JinjV5LbGaMAzmJfVcAdoOnzmJvGFOmdrYg7haMTA9yGUEqUzzYw41w2zgnVqPT8+zFltLpyu0yE0ebLFzanIIsb1oLBUE3QqnR02NJG2W0OM5oZRj6DU+fv+RqvUUbKZpDDGx3Hd1ug9KSPBuSjCRt0ZDsYubSw85HZpUmpSKSjdNQRd1CMtPeCYecsOX1JwVjiGyGwMVuxBlpcNZ9YjPKhb0dAnOreTg3dAk2GXySBbttZ8xmYm3px5G+H/ZC5PX6ms16zViEhK6qqKoaY8SDHCTsSHzIM7O25Z03HvDGvXuQNV3fsy3OFm1bC3JHRpnEOIx4L65USotblyHhJg6AEi7r6AO7IfP5VWJkzmI2Z/QDbe2o64qcRdOCUrim4eSd9xl//3/L53/5B4TNS6yrmd9/l+Ov/SZ3vvEbVLMV9GJbrIz6on1J+TmHSSNRvgxlwIieSD4boUZkJe5Y3cUZ/eYa5RpylGJ78CPdMFItGu6c3NkvTEaLgN+aye5U9AYSFPjlHB1+XY9h6OQHBfsmojSn/2Nlj7q51c3/6ulndXODL0wPbv07N83HDWhQqAelebitZUj5BrFT++/31mudHk/dACs3fy+asYkCyvS6ys8qIa550+NN1IZbE4qUBGk08npToSjmLFQEBQLgFO3IberZXvxdlgiZChf3rYmTP/VJWc7V6fPPRdxczQ+JJ++jL7ZC1UHWld31ObEASMEP9N2WdnGHvu9xVStU1nFkfnBMVlquv8UB77z9LgezP+HZ69c4arSVguLx/XuE8S53a8v9kzuE3Tl93tCniIuZoDMm532xp5MU3bo5pL3/DVbf+F2uleVR+pD7bzxG2Z/w05//nKHbEFOkso7ddsOj734XEIrn8cEK7QxBK/pOgI35rME4i2EkJSXUrpSwtUZnmWbPZpamcWJgojVhHBnGgLWWyhmGfsd2u2YYIhmx1SZZtK3QppFvWhcSv2llmpYiYnYLYFDalS1Ho7WRqQkQ/VAaXHHoI4tTlTYO7WYoU2GT0IKdtVIkGkMoQBtJEUMg+REfA5qZrCm/4vL2VTpiGATMKYYdMURMlOlcTF4c3bJQbbXSOFsR++IWp4W2zcUGYy7kOlFSH0xgzlQIC7Cp9p+VWKDmvftgTtL4ay3U6xRFl6pL4WkmB7ksjaVSCm0rnKtxdVXs4cX6dnofIQRSjFinsK6SptwKFWhayYTlmIrGrzQlShXNaAFItUWlRE6jNMIpEcaO5IeyDlR4m4ij5unHH7K5vqC8yQKmqYKhyPox+lAs5rn1ngV4MMbeauyKlkMpjLY07YL1es3l9RXeFw5CTmX9pQSfDuyGER97SdAujIau6/FjoKpnWLsj57hfW7MUmTc1EJJ5Ud4EIDWm954Y5FrNFAC6RAEoLRTXq4tTTl++4O7JCU0zQ6HwITKbzTm59wilMtvttWiRSwaato6qmaPIktQdIlnFMnmVBi3GCDEyhpEnTz6QGhSIKHa958P1jwgKtDOcnr3k4vyUn3zwt/jgcSg21+dsjaKyNb/48CfSlCL18byuubg640/+6iXWVvgc2O62/O3Pf8jPPvwpzjkqbcAYXp2+Yr25QgPbccf//V/+l9xZ3uH46B6LxZw//+Ff8xc//gEqCTC6GzqqpuHV2WvuHz7g4+efcLW5pBt7rLX86WzBvJnjtOH//H/6P/6d1+uXbjKm0WMuJ5yrKio7bc66nP6TsLqgYrm40ytJzt3zjMO02ZaO38gXEn0gIlZsEy1L0nxVYTuofbForcOESDd4mkqC7GIMEAsKEYGcxZGoLEbGSEx8RoRPlA2MKWwrlYplEoWWjnpyH5oOVRopSpMx8RAFjijd+mS9m6XxWK/XfPLpE642O+qqwmjNOAZSGiV4xcrGEHygHwaMElFbRHORK153idYGrLLYUiDlXOz58tRoFHcNClpZmrmYMt0QuNyNxChN2XZM7HzEqCRJwiROZuK//7xXXERBPlcHKw4ODjhYHTCOMprtuh1kxTj0rNdrhqGXxsg6mrqmnbXM5guMsXRdx1AaEGsN90/u8J333uZwOWf0o/AoVfHJTxHtLJOVZG0cLiV0CeaLYxTEVpu9fecYEpe7yOutJqiK1XyO0ZlKK0n6LVafZk/DS+iq4uG3vkdz5yHjbks7q1ncuYNdHqKaCjWG4hyjbpzSYhSSbYGKcylOmWh6KZBzZAxeeg6Esx2jx+8u6C9P8eNAjp4xiGf+rtuhXObegzu4yhFKbkku52A5DVG6WHgmRcqK5stetL+GR9dt9z/vGY5MCNN0mf3K9cZU2JdfpPLbgtSr6WeYfrH/94lSmMv1MD3ilKEzCb+n5jxPVXh5DdPrEQrAZIM7ic6nqYgEgGpty7l80+DczFFk882TfWnRkkyOYUopjCuvATEj2DcGkdJcls9lmq5gb6YRtzZWoOAlXywYyJmczU1DA3sd2tRCqbrGvf0dhvAK/HNiCLimZhi3oFuMrdj1G/qho5kfstutmRtNv9tQVxVJKcbtFTEmbFVxOG95cHKHH374If1gODq+R4qReTsjVDUHJ3f5/j/4B6R+y9WzT1Cbl8TxDJ16oTJqjTIK096hfvBN5o/eY3bnHnp5yOXL1xysVqzuHKCsZbvZ8MOf/hRsR1U1nK/XuKqhrh27YeBqt2PRzrDGsFzMOex6Ti8kq8aW8212sMI4R/CevpecBO87Km2w7RxtKnY50NaSZLBYHpDyARfnlt3mSgofXRGjIiqwLtM0Ne28JSXF0HuuLq6JKeCcWJeTM8lYyczIYuGdYyCrwJgCPngUQt0VKmyGPJBjwBBRSTRiKclEPhu3NwXQCEUrRzGiyMaRbP5KNxkhinBWJ7O/jlCqTMs1tjgP6kJTC1EKzZzFul1sX6T+yGqylZZzTcwAZUIi7l+6OLnJMa0je/3mBGbkYn5T1g9rJVslxcg49AKwugpXi2WyVlIzxSw1TQgBVYLpYoQ0JpQeQWm0SXurdVKSac3kslnCa5nelwJSMX0wBqMVYVQMfUcYB6HlWYdtKow2jGPPqxdP8GO/p4zdYDGy18aSU5VS3utxjbHM5yva2QKNvKZx9EL1KgDGYr4kBM/Z5QWjFxoSyApXVVYaryz06xATs4MlrnKlEYFxHLm4vGC2OGQ+W9D1u31zpYCkkyTXF1rgvG25urpiP9/NMg2ZqF7y91JDmPKd5ky/2/Ly89e88WaHtjNmyxmSi1ZR1TXLwxOuzl7S9zuGYUeKgzynsQIGRDH3kQZDF+dTRQgBnyMhSaGmynmZo4SgGlMxqyq0ddRVLfrM9Zr7dx/SNC0fP/05IWTqasaDk/tohPq1OLjD0xef8fz5pyjnOLn3kPX6mnvLA7IyrK8vaeqGzbDj5OiE3/7N32Kzvab+xY85uzzDGsNvfPM7vPfO+zx79ZyPP/mQu3fvE8ZA1/Vcbq65fPpLdv2O5y+eo4xCZcXYj+ziluvrS/SXTPuG/4AmYxwnrYVmNmtJaGwR36Bvgk60sXIBZREgCgKD0FyU0HlCmhB3cV6JpUOjiLi1FQTOOrHvSwXFQym0s8UnXjGfiWj4C9SECXVmcg2SzIVxDFijsdaVbh1JkdYSYCWWkZMDjYasiD5I+2SN8PGngmZSOk1X4+RSA3IyEW8WIC3F5rNnz3n+8lXZ+LkpnGMkxFCcVaQA8aPHtm1ZhDKddrzwieVuxCpos7lBDYBBK6wOhU8szzsFBIcouRhXfSCU+mM7JgafqI2i85mrIbKqDa3RvOgSFz4zJs/BwSF3793j8GBFVVVstxsuLi4Ziuh76HuGXhoMlJILcnnAcrHCWss4DsVlQRDXdtby8OSIb7z7Jlqp0pzIedE0QnOYHC1gChOUyQY6Fa2KJcZE1w9sh8zzC8/GO4xraWtHU1tSGGgqTVs5rBHhpE4OU0bmCjBVxZ0H9wk+4KzB1EXhV4imyimhSaV9RyE/x/K7aeKVmapAOfdScY9BUOg49PjrdaHM9YRxpBuh95Im++DRIW1b7cf7UIpLND5mgk/EDCFLgFZM8OWM4349j8OZbCIp3xCa5DqV6Zr0dKqIkmHfW5Rrb7K9zQXdnWYOhXn1K9M99ujWfpqwn1pKsyBPcbvgKmLpAk7sqQBKlyZDFXxBM01EpinGtKapaZpI3j/XVIhMU5Wci8sJef/YphQZojOygqQidI10axMD9YU1b2oWQgjsnazK+9XGyDpaeOci7BRL5BhKcVIollpLlke+s+DC/wbjZ2ti2OJSKq+nwtiabrclpswweoZhxFYjOo3U7YK+2+KHHfX8AD90NM7yzttfY/XjDxiLXXjjDBcXF5wcHbPpR67XW966f8LJ0TFKKfzVa9LmlNqJ65KrGpq7b9CcPCzaLM2gDaTIvZNjmsWSdjanMZr1esPPPvmIWdOwub6i6ztWqxUpy3q76ztIEhLb1BVWaXZdRltLjhnlPdYGXFVzeHiXqm2F6nh1jmtaYg7UIDz1DE0V6fuBxmaWd+9K8GhIZAwxZ5p2TjNraeqGumroR89Hv+gZBkXWlqpqgUTXdYy+l88fR4iRnEZxq8pgVEYRxaRCJ4LvSV6T1EBMnpjLd6QUSleSV6UMKY/kMBbU3zAmcWHSX2GXujxlcKliSSp4gaRwe5ngpP2erAj4sldOa0K4Nb0sK4Nib4ueQrmGstQ2giBPi7M8DyrvgabJVGYCRYMfiWEUx0RrhDattWjwtORmbLdrsayP4piXAVfXNLOZBLV50Q5oYzGluNdK6HLSPO5hXWT9kz8qK3FxS54YRrAW66xQilOmns2pqhZbVWyvN3z+9DM+f/LprelrycoozI6p1jLG7n+vUGy2G3756Sc0Tc28bWV9UaW5ypEQE+eXF2zW1wx+LLqkm/Wq6wci4ky67XrGGLnTtiXgVJGQidP55SU+Jk6OT5jNG8SeeLLfkImgNpZZO+fFi2d7UGiadigltLVEZizxAKaAyrIORuIw8Pnnz3n86gLrHFOorlGaZn7CwbHGVgd02y3dbkNMIzkFfPSQAwpNTsUNLiN0KqXIlWawPTEO4jZX6HWpZLbNmhl11ZBQrA7ucL1Z03UdtWvZbjdYZVBZMasW9H3PvG5ZzZccHR7x+tVzls2S5WIlerggtE/ral6Tqazj/p0Tju+ccHBwJIHK2rKqar77re/xT/7hP2HWzum2W9LDN/n+936LlBKb7ZbL9TVPnn1K9CPLElGw63b86IMf04/93jgkpvilrtcvH8aXlPASEyit6H1g1rRUVjoamdYV5E2Jp3jOGWWdJNQWOo8wTqYi3UgokFLFuk/RFHNocani1kkDfpQpiUFi0YWfa0tBF5lsGtUXmqyS1GoU2hnhuZY5nUVDjtJZliQc5aYmRIl+g1zyD8TOEC2PUXzR2MPaE2y6t9qdVkQYh4FPfvkpV+s1B8sFh8sFn7+UcKpU0PHRj0yOUdL8CKLlvScA5ziebnZoBXcBbYpctVy4IC/DRivvF1kIh5DYjRGfcmk4pMmrDPQh8/x6xKlMYxWvu8CzTrFDYeqGo6M7LBcLsXr0nvPzc66uLiGL6GwYxn2xV7uKw8NDDu8cYo2R6UXON/QtBc5avvW1N3j08D7GTanHAUUSMbSyULQ7pFQQXZlaCVdU0IddN/L62vNiHRnzjLqtUQpmtaWymj5MNn0iCIs5k30sYrTMZKCuQBrEWDaUnKRh0Eo0GIWjCkm+V63k53IeJx9Rkb1vPkixHIikmAjDSBx6WVSsJfSBvh/YbAaCtbzx1n0ODuay6GklExxuNAJjUmxHw85r+qjxURGT4t0ve9H+Gh5ffzDfNxlTeT/lEKhSlCs1RW+yBwpvErlvU5j2JtU3ZfW+lygFBewbDjnf2N9XBiLFJS5PDlS59I5q/38Tqpf3zUOZXkwUy/05fpNjcVPml2Zm2sRVQbOmxkhNzYoBbQWksXavYQMBb/aflzY3NKryZnKWSXNMhaZpzL4B0kYyNZwzwjUXMJTgc0Em5TXuEUHkNq3+Fs+ufkm4+IicxfJVNS1oKZ6Nqxl9xIfM0O1oqxUoTb9dY5s5xtaErqOZLXjn3fd4/OA+Hz15SvIjZMvp9pzV6oA4DPziFz/j7uK3uHPvPrZpqOqa6tHbNKsVJmV0StjlSkCooZPmD1jOGqye442lnS/4zre/w49+/gtenp1ycnRMUztizswWKzaba4yyzItGbPReuN9KE1SNMTOUkX1lHD0mwLbbYF0PaSSPmXHo0CoVRDmKXWy3Ie62zAwYRkhBNHW1Q7uK2fwQ4ypyjBibcFXFvXtLtpsdIWRG3xFjonagk8HWNSkZ8JE4FsDItGWmHYodMYShE/ttI1QyHW40O7Gg27pQ91ROJD+SiSjT3tDvvqKHAtngsjTp+5wYCia0z06Sc9laK8X8hKQXRgVIUZ5TIiU1kQ/2e0HOAjYmVay1C7AoU+UCb5SmQxoYyTDISFGbokydrHNobUkoRp9w1lK1c9AWU5D2GBIpxGKHnhm3nQCzpsI1Lbqq9oG7FJv8G5p0Zk/x0mLnja6kZvMJEyN10zBbLVBKEqJtVkLbqipcVe0fb/rMlLoBQqy9CZab1uScM5v1NevrxIVze6e6aQ3JueTalA9pWleUnpgrnuBHUoz044hWGp0jIYVbE17ZpNeba4ZxoHKGpmmpXbOfRCgtDlSnZ6esN9s9iLPPVNKGqq4ZxxGlDZWRLLS0t5TPpDhwdn7J9WakqsQRLkaPc07qyzRDmVymLAI05JSokiclX0q/tHcancBl6RwHYhz3Tpg537gTWutQVmOVoprdYa5blN7hU6L3Clcf4tBU9QqjK+aLJSllnj17Qrfd8uDuI5arA9bbNXVVM58tqKqaYbclBl+mWGNpaHtUzjhleOPeIxbzBd1uYLvdltpbY6uKWYLgA289eMw4DtSuop3NeLLdcbw4ZLFasut27HZbtP2P7S5VXBpCzPjeMwRPUznQ1X6M573w2I1W+CCCWudkF4uFyziMI9ZYiSWzBpwtF+g0CSnc6Mkrunis5wRVJciDJpNylJPeiB1gSnJlxKzQaHRly4IButJUcsVIUzHRDcpFhbEittTFVWpCCc2NYAhVXIT2K1E5a6aCtThUlRe/v+ByylxcXPLTjz5i1w/cOzkmes8wjiJMmsJiUtrzwWMI+yI5DYnRe8am4cONkR5HR2ZOPmcVEyEkulGxGzTOBuwtK8g+yLhuDImQJbHUGgHpn14NxAwzpznrIk87WGcRBR4t5iyLD7JSivPzM54/f06Mkbqu6LpBXi8Jow2Hd4548OABzjkuzs8YR0/bzkqjNEpzdLjgu994rySEG4yVoioWV4gUPMak4ucvQkkRUelCBctsdiPPLzyvtoagHIvZDKshpcCsdmgjky9lRTCtrCWNvtD9tFgXp0wc/B4NDikLWjSd7KVnFE1PQgWNKg0qIe1HseJxnjCVwlRW1harIGSiHxi7NWEciuuHGFL1Y8KnwP2HJ9y7f0RdVXskbaLhTaJeq6CtEsZkqpAZg2L4CltPAhwtbonzAHnD+5/I+79PEwRuvhduNo/pFvvJQJl0qNv/KN1CefiMOD58UfsxpaJwu2DnJlX85lWq/aNM2q1pqrJ/LnXTmNy0GKo8z/RytGRulAYoJVUaDUvKhpwMBEPSU85QLmsDiDvURNMqRUaCXByrckHQUjbioKcUMWlytBAtoSR7pf1LU5LhUKZ7KURiScQ1rqU5+TpXF0+I3ktmTvB43xOTJOl23Y5xHDE6YZuH4pKWEpWrGYcNylicbplXDW8/eMjnr85YNS3vPLjP6/WGV69POTk85PPnA0/fumT18DH4gEoRU83QtkbHgHEaZWvSsIMY0XWDy5rj1QFZQa8d1hi8Vtw/uctbb32N+3fvMl8ccnJyzHJ1gNKWq81r5rOK1XzGsplxvdmy6z3XfaCuK9AaPw5l3ZaPyAeFVrWABCGUNSGQc0DrjNGGlIw0HNELNz+PuCrSLBYMakuIV8RxpG5nRCybyzXbzU4+f2OI3qNQ6ByZtw0xBAgj3hRTFafJyeBMjWtqQgjYSpDp4Ed0QTwzmpQsKkbIA7m4ieXJB1gpctiWy+urq+2q2xlasy8SpzVTG0Ol5PexuDuZQndyOe+5/hOirgsoMAF1Smt0lkA8QU1lQinrvTz39LPKt67yyZBDTQWuTEO1KnrUmPdmM2KeE/briKvbopGxZUIqdVCmErvhiWo+GdrkhM5Zwhun1zV9l1nes8hxNGDJCFNkGANN0f0EP+KHAU2mrmcsV0e8ev5xAQXVfhLcDx113VBVDleJXX0M3KyhpRkIMWJuac1uu1BNTcs0VdBa09QNlRW30d04YHZiFDSOO3EYVRRWhwAhKISq1CvWm81+Gj3RbDMymRTzmLImo/aTFWMss5mD3e6GcUIsn5NCpcxmfclmu6X1FdEHcs4MQ6ZyGbSjrpY4UzObR4a+K5MSsScnJpIKpJjEZTJnshJ3MNsPhBAIE/0aYbYkRAeUZYzPEGqqdk5iTtd1GGeYVdLcJhzdmNG2JWTF2dWaXR85Pp4Rs6LvPE2zEOE5ClfN6MOGTd+jbEVAs9l1jGPg4OCYpp2z2410/YAPgdViSVsX5oz17HZbFOCcI5Zg4/X1FQZoq4bt9bXQ+W9nCPx7jv8ATUYQb+ksRc/MSvebgqjtU5RJgDVGqA9KTpwUfPGml/GyyrIwmpwwtpUmobTN6hZPTusMKqNSBi0XsDQguaA0VvIvSiFvnWIIgfOra0iJk+NDqkpsG5WsSIJwxCjPo8R6VqHFYcrd0KhQRVGkFZLcXFDufXNyq/KZip59TZJvYIAsRerLFy949eqMuqq4e3yHz559TkyJcRzIwGq5QOXM1XYrqFOhUZkyYhv6gTib0RnHp8kRNgNv1IF5pbEaesAouaic1UILK3BESJIYPjlTWa0IEZ5vPJddZO4U533krM/0SZNItMuW+/cfoJQuwqnI0ydP2WzlAh9Hj/djCdWC1cGKe/fuMZvN2azXbLadiBC1ph8GyImmdrz54Jh33nkT64QWJeL5MikoRVTKCRU9k4w3JbHhzBguu8Sz85E+VujacOAMjXNsdlssicoYlBKrYusascGdRucTkjxxWSlIRs7kHAhB8kUkol7tC8KcMiZCieoEA8oqTBYKYUZSv7NOewZViiPD9px+uylpvAqfHV0wdD5x/MY93njzIXXdsBcj3y5qldp/n0YnKpOY20DK3Ni2fkUPZ0XEvt+GstoPAve/zbcuJ2B/sU3ThlttQ542vHIfVYp9udctjyk1IXRqDz5w65VMmEMuP9xueKZnnV6bCLj3v7rZTHOZZpT1YZpEfAGUQIGeXnPe4xEg1qiJSYehb31G8jrk326am5v7TkdBNMPUBMlrz0rj1RT2V6gVlIZtT08sm99ERSEzO7jDdnGfcf1LbIbkN2w3F4x+pKkPCWPHOPQ0zZyUFdv1lUwkUyT6HlctyWNkVTf85nd+k88vrgDF+9/6Lv/g7j3++M/+jBeffcrs3l2evHzF0f3XHNeOpnJkW0nQVwyYZibXbixUGG0gRKzOBGWxVSXrXd1w9+5dvvOtb7JarDhcLHl495imcVR2xef9huevLzk6mNE4R9PUnByu8H6NqTOmsqRGzkexw0yis9GWFDwpejLgx6EAIqZMahuskcRmHwZSFKqOHyMp7QSAShnfdcSkaKsKu5Lcn6wVfTcQhpG6EQvyEDoWDYyDp++vMGpB1S4wVpNSRxp6QVnbFu/FGKLfDYSY0aaAFkX3Iw2o7H0ygRVd2Bevr6/WUVe2NBkTkq+Kg5Y0zOLqU87+6XpXkLO5hdbfXKMiDdWF0jJNKUrTYSy5NBspRUIoEyDl9jSpGIMAg6XOEQc4CgpSahdKQWtMWbdkUqJNyR/TEiSsFLimwVpLX1gapkwS0AK8xuAZh6Fc+8J4EHt4cR4rfncogwAT5ZqOwaN10Rai9iYzU9Dt1BzI21KM/UC362RyFnz59MU9az+dZSKxqpLpIejJF+ic5WRTSpq+ytW4esairWmrWlKxtcK6mq4fpOFW5Xu8bW4xNWBl2jx9jxPdc7/+Q3FxFJfOFCPWSnRj3K+KhSWhDFElVPK0VtNUjmCMNC0xUVeWqmmIEYa+J+FxyOdNtsSYwYi5S1YJ7VQJSg1oZxjGLSmNKJ3KxF6cwkiJSaCPVvhowFQSmaA12koUw0SdDalh3UOKnvU2MwTL64ueqons+iy6OW/wMTCkmqwV3Whwo2LwPdtuJFBh6wUxac4vr9hstxjjeHj/DVarudTnWkDXMI4s5kt89IxjwDhHs1gKxU05Dg8PirHP33186SbDhxLcEgODjyjjWM4VSXtSCvKFuVou0GJxq7LEn8sJokVupTW7fiT7gLIVlZUYTiUdyM0T3qrdc4iyUE9XrtYyfSgdvDKZTECRqa3FGC1DhRSlYZhOP+PEEpDirKJkgkAszYfWhS5l2DtLKW6QgttQd+mmb15kvnUbabrC6On7no8++YSzy0uaumYxnxFiom0atrsOpRWzWYMzhm3fEaI0Z7E4VSit8N7T9wNaG0bj+CxkttcDb80SR40WSzQlFJShBBDaPZ/8JjQqAz4pTneRl5sRoxTXQ+JlByNawvZMxcHBIZVzjONI27Scn19wfn5OiglrTBF4iY1t3dQcHBzQNC2bzTVnZ2d475m1s5KJIkjMctbw8O4xB8slKQZ2Q7cXpylE6pCRYVBWRoR65ePsI1x2kVdbSHpGM3N4P7Kct4Tg0Soxqxy1s/g40tQ1y/mcpm1kDKg10U6e37IEWyULvY9RECejhBaXkbC9cs6Ko0WU04jSeBYXkxiLmFBpaViNJoVAv75gd/EKHyMJx5hg1/Vsup52WXP33hEAox8LmnbjALQ/tfank8KqTDbsEZKv8iH2nZTCOe+RxFzAg5xLbg5TH3CrrZiyLqbH4kbjUB5c/ptL8yJ/2aNoe3E5t+v+fLOJ7RuMvB9ycoumddv+dVobbja2XAqXL7wief7yHvSeW6GKeHdvrrj/wjOxfDSTroupCvpCM8XNv5Y+5vbU5lc1K7APhOSW21WefocUpFNzlYV2UlWJ/OA+z6+fkAePMpnd1TnJOnJrxP0oSWKxD54w9DTWMXRbXFWBq8ljT3uw4uvf+BZPXr3m2atXzA7vcP/hI/7Rb/8Of3h5Qe89ylqePnmKOT7g7sNHJKVFqDohzn4UIW8lYYI6jgIcOY0FasQJ7ujkHtkYZlXDw/sPWc3nKC3i69VixcX5lpyV2GrHLCF2RFIacMaRCWhkoE2ehtuKnC1GiztWGIs9rTbEMBL9iDUVVdOKrWgUdxFdQlWtq/dNim0WaNuQlRQqox+5PD1lc3Uh33MMWDJWa5RxmGaGdjXKGPzoS0OeyWHEOFv2sYzVHqJHk9DGietUJc56qbjZiTtVw8Sr/6oedV1coG4d+Vff0XQd5nLNfQG4mCaQ070mhzhVTFTkekBR9gD5OSnZV3PZ+0VXGQkgk3CjsM7uEXWFKqwJvRdMT687k1GFHnmTo0KhWorDYO3sXitlJ/F5WT+rwrIQKqQjBE/XjcQ4YlWFtbdWyfIeVM7onNFGAL6kEUfOMpHIueSeFYvV+axlu9uy226lcJ5CQPPN5yt/bua38p4p71t94Wva37Y4f4JQw3P53JumZRiDmLXEVJrAsvpOwC3SrO2vg3yzB+zPgHzTYELZZ3WZqBQbca0gG13CczUpDIShJypFROODOFPlOEpyeLIMIQiIkGKRahYGTk7i4CYhWWSQ4M4xEXIFdYXRmSnhyxQpgLUV2sokwxStsDKaqs2yPuSMNg5rNMo6dkMSc535AT5b+qBJ3hBouN4JgJwxhFSTsIRk2Y4KY8Bnh3JLfK45v9rgo3z22z7y8uya+eoOWilenl4yRAVUhOSwruFqfUW2MxbzmoxhvtSsVgupyb/E8eU1GVmz3g1oBXXdYK0RRKEgBNMFdPuk0IU/LHae4n8eo8bVGmPAWg1R0q5VUd+zR9mQBUJrKGiMUuJNLJwhe1PcF8FNVWuOmka+LBKkQBpG0KFML8xNuF6WXmKiSE38v5s/ev+4e8hjmmRw858vNBv7k3xCskZevXzFhx9/wug99+/epakbdv1IXUsXaLRm3rb7REqttaC9WRADQUqKra21UnM1LRebgcXQ4xQsa4PTE6cc4XcqCm2qvKbS8V8Oidcbj0Fy5V500ghUOePJWFdRuYrNZou24vr17NnTwt9WhcvsSTGijWa1OmC5OiCGwOtXr9nttjTNbN9ANM5hVcXRsuVg0ZJToO97QVXKZ21Luje5jDe1FqcwpUi64Wxr2KUG1zbMakfvRwwOqxXbUojM5y11Yxm34qBR17Vs1MV3f/QjIXkyTaGvGkwwqNEXJxZBe6RHLHoiBP1LIaH6CFahTIUg2aVCzLIg5hzRVtNfX7I7fUHot8SsGePIth/Y7DpsAw8e3aWpDCmO5Cjnu3DlbzY6lW/OJRnjT38X3vBX+RCv9eIBnyY3Ooogrmxce5cTPVXxfOG6219uE2J4q9lnAv6nhmHfovzKcbM1TZtXLnfOitIQ3HCJf/W+v/qI6tZryEUUOqGYlAIifcH5qnB3uf3cinSrhfrim/ri329PV754e/bPvS9n9g2rONapqXlStxqOLxRpN4VQc/+Y7flDLp9/CmEgXV9hF4fkLFNOXQStwQdCFFrXOPa4dl7EuYr2+B76+pq/997XOLpzzNtvvcudWUN9fMTvf+83+KsPfs715Tkznfk8DCzuPsD0PTaOqGYmfO1xKA5ujuw9KkWScWRlsDlickLlzMndEw4Pl7TWcPfuo1KcKVqnaCvDlbIYDMvFjHH0rGNGqcwwDpimLXqZqQ9W6GmyWhz9dAzFPcYSshQDuBpfeCraVpJTkSVAVQL8xB0qW8cYPKokwqNEX7haLWnaSnSMKZHSkhwD0fsyaYWYFd4qYoZYu9Kr6qIjiVTW4rQ4GGlbQdYoHaUxibLRpxzKeW1KfsNX8zCu3v+sJiDwNsZXfjctGxPeDkJRnNbXKUNm/0hKY/aS6mnrL45v05pSrudcikwF6EqRJ3DTWkl5399VJk26BCLefryJ+jhptKYXrQBnHNZVpfQoOr1Ct9KVoqpqUirnSwhEP2JKoz1rJcx37AcxMSmIuTHyR02NU3FqMmW6TJkEqQK+Wus4PDjEOsvZxcVeh3KDhN1QllAUxyy5jZ5E9Xn/SRZ6m1j09rFHGCvQ+YAxhtXBEf0wMq3at/M2gFJHTppeaZz3U43y2mTtk/3ZTKGjZcqTCgcylzU+xViIDYrtZsOLVxcsDwtlHnkc70H1HZlSk6VIjIPku+nyveZMzLHQEw05e2TunLBOSc2JaIdIqTSR8l1M36/GyvqsMtbWxKlZ1QWIyppxTEKnzRXiPCoTkIwiRItgH5NeRxOQ9+4qC2qGMZmu0zx5fs3BMhJy5GKd0HZHM79EaXh1do4PGmcd2ApXtwwXG7KaMQTwY0SbOZFWqHNf4vjSTUZVWQ4Pl5AS1krOgzEaU9VoZQV5LhMNCqdVGbnwco7CsVeK7CN1EeRO9rdijZv2524ZhhTUU7q46ZfCh8zkEGRKUgp/nW9ZzWoFyknzIGdTCVTjRrCdMzn4cpHo0rRkGWPdFnjeKtKn64vJX16gh/Lv020UZIOuLK22dP1nvDq7QBvD3ZMjhnGkriuxzEOKk1lbs5rP+cxVdP2auhK3IV0KgTRxObPQp4wxhGm8qxW+6F2MLkjC1MULoFucpjLrMfF6F9EKupA5HTJJGSoSSiU2SnJD+qHnerOhnbVsNhvOL87L4pn2BWEmU1U1TVMzDiNXl5dcXV1Jc6E12lpWqxVaG4bdJW3jWM7bcpGKR3zMGVLAx4BSpljvaVBiY7wdDZ1qoFpinKWta4zJMAQaZ0jRy0acPNYqQhbLx6SmQlNE2lKriid540dsVTzvrUYbxTh4gte4utDopNMgK4o/OSAqIrGWJEsshrOkGPFexOuhH+ivrwg+4H1g8IHdOLLpenCax28/5vDOAUabfSGa9xO8mwZ1+hYpRWCe3tDtYvsrekznjmzgN02V0eKIpm9xxffOSZliBLDHB/bneZrQrKlhgf3kAArCWdaINPGwlNxfKAwwgQgT0KC1urny99f0DcXp9iHPNyk7bjUfE8I2veDyxDd85S/I1cv/3qw3N8vNDSIr7zEVGgHc+iTLvdVN43XzIZZpnDyGvKdy7pWmNU8LBfL5C+1EM6XnHp7c5+L1c/rdNTFElotj/NijcsC5iqwUfd8RfUB1O6wRhD7HjK6WuJJs/943vsXb1ZxZ25K3l9SrGd/59rfRiyU/++ADrs4zzaPHnF+tcWSUzoS6RXtPFSW9N2mNKr70qXayKWdxh0o5slousanlcDanXi7pU0alAZ0UNoug8/xiZLV4wGI2xxlxg3p9PQBWpgCl+JTPXhczwRuNzHQ+5RSl4ShTuaQmG2M5X1MOZBRJGaxxpagT4GJ6rJgT2ipm1Wx/auUs4W1KIZlKVqb2KRa6TjmPY0qEMArDwAs3PqZiSoGYoURjCSGXc0Cjctlzv3wM76/dMX3+N1eNmjqHPXBwQ1XMXwj//X9T92dfsmTZeSf2O5OZuXtE3DFvTlWVVYUqAgRIgADZYLO7qdYS9dBrSXqS9KS/VNKSWsNSiy2pxUHsbgLEWFPOee+NCHc3szNsPex9zP0W0Y2ElqSFdCArb8aNCDe34Zy9v/0N/dxta2z/IVtbRfq6y9aIg7tYYb/TDHiEeEUHsmfI92R3tzUSXfOBv0xh7JEkxETXfgCXNUIsmNX7rdjWwtiE7RLtGGFsh+3ntLAWXFCqsrPGUkNpg+Y1OP0edbaM27ZSSsUZiOadpYynRAoaE2BMq21thm6H3GlU/Sxdgxv6tYbYlEevQ22NFDSvq9bGfHpkXc7abHMFAl2tc9d9oU45jd4o3Svwss53pz5vzYr3nmJupGqFqzpPh6PkmZKPlHXUdbIbcpheRgdSXlkLTXXBQlFig3N4tIFSXf5iQYjR9MrZgGw9M8EP+h7VJtRer6uGsOr1D4LaxBalvzVXKWuhRgu0rQ2H0ss3epoL+DDo+t2aSRM0ib62gGfCiWM+VWDViVGOvH57prbPQCqPxzO4QEqe42MmpSPL7Gh5IEullm5Y8ldDd3/V61svNTEEyxzQZsD5qInIDSRcjfJFH8wh6bzZOQhp0JMpbbNq7Q5O0h/Ybslq4quNS9m7f9fMG1oA7WhrWa2gUBrP5t3bGvSMjaC8RqTh4sjmd4c6X+mbB6Q2s08DN1rBYZvs1nz0ouGdwkFQIWh45+uqBRC+/uobaMLTO82b+OzzL5jXVW9upwnYwQcLrCuUUlnWhd1usiA2venmeWFnY8Ra1dYU55mGyGANmffQ8akeGOTsYVxy4+3SSB7OGd4sAi6wc8IhOaKPfHOE5uD+4QHvAmte+frrrxXpX1ez3NTz6wSGNFBL4/Xrb3h8fKA1YRgnalMxeIyR2irBh82FrNvy5lKU49wawUKtBHXZqg1OZWSNLxj2zzXh1MOQPMt8YpciN7tErup8gaWC96Jwc+ZxyiXVRkEpaCUXtbJFH2i/2dkpwhLserdWL/aCvcA04WzX93RanOazNMoys1aoaaKsKq47Pj5QnfDDH/6I58+faaJ3R8OAnoHRXz2nwduSuRWMRrORb/tk/y19pRg2r3nnxHqqq43b0Hypqq0Rp6nIPa9Ef/RSsHdL6G16cI0FSK8p9H2uBkKGRRilsKOUV9/bi8yrK6AvO/aO0PUC/aqv6TXMNqXpzQH9mGADEDoKaG+/TS+v+HLbEtTRU6FPgOTqa/2b2/YzWzEgarssJgxV23DbyG09M9wRj9/QzH6Opt2O/ZMX3L99TUjeOOAzpWYNfquNZZ6JKTGfjwxjIi0LLnm1Z84LURrp7ins9pAXcivMteJ2B370ox8xRcevfvErmlTWvLLMM+NOU65rWXW6GAO1QTJ3HT2jTUGUWvAh8vRmx+Qc4zAyt8qas+UmBFrLeCrHxzOPD0f2+x05F1jOlPsH0viMNO702vW1/Trgyxq4bVrvm4bL0os702iI0LyKYUXs60H3zk6P9F7XnVp1T/NboaY5EJ0m40NSbZkPSA9pi4EQEiJCKSutyNYQggqEa2mUWvTv+7MkDWn+Umd/V18dEAC0GLHrsQEI27fpv6+aed/XCZyuP/LuEy59Sk1v1jvd0t5qO3Nak3RgYstM2m6ZDj5eKLCgTl99vXOu06nkqhm4rHF9P9uOQ3Qypi0kW93UWSMCdl/5i4lOdzCw36PLjdvOjzpC68RfLA+jNzW6Fuq91e/XTjntE51+3jU086+4sewEu62p08+a0qB1ggt6rA5o1QL73m1StmcRsUTzZlRw2c75dhr7QukUuOoTmpSSNh9L3pz6sLpJmjb1kh+RWT9nHCbwEzjL86AHogKWaYMUZcs0h9QVLPzRu0TzDrxOWgHEhP0q9+15KnYcpWqJK529UuzuMUBA9OccRu8qGVerJrn32pWG81XfN8ZtotOnS1IbQVTrGYNmkTVxhKDRxsfHBalCrkqvqjiWWljmQqmevCq47fGI1+ejreuvP5l/5etbNxk+KmqbQiCkUYNjDDFwfXFt8aqA0v9riBLu7eb0Ppibk374el40CCZozgJwEXEFtfSUK1ePPu4FLVjoOQpbRe0vC42hiSI6ClWUydCoViGkLgKAenEf0oVBH4YeYc9mf2ff08d47Yo73ZuMpih4WRY++/JLBMf7773kxbOn/OrTz8mL+ixrsnOwjdBtD07JhZKzui/5oKZGpVxGfk6vBy4zpsDodawfPHjbbJwzNg+wNni7NDzCuWiC+DToeZsCfHw7cMyN8liRUsg5Mw4Tx9OR+TwTU6RnoEjtKafaRJ3OR87nMyVrwdFRCqXGFU7nM6Es1HZgyZVmE4HYwxCdNoM5Z90Qm5DdHWt8zu7uKbv9jlobyTW8a4gUpmk0/cVM8I79bkcaBryDXa7Ma9bFyq5/E9nuS20eHZKbXV/sGhdqXvBOG+JaTWhtpUxtDlfKNnVrtVFyZVkypRUkryynI2tpzE1Y8JwKNO/58Pvv8+rVS20wrra8dzcR6BVwl/ZeXu1SNX+3y4Mt86Y3z0pTu9rIuWoQWj/7js7NF3inoN8oVXQUCGsC5IphdHkmNkcmQTf4oGCIolv2s9eFPdDH9j27Q6wJ7cVKu5pGXTbiS/Ogf/SbNsr1BmJbtpwha5Xa5IqWoMe4FRTWWKnQsW3HcvG4twbN6H/2Y4BuuH2jb1J1omjGB92owwevmh8DbhyeKkqhePbeK77+8jPm4wN1na3xC+QqMM8sNbM73BFcJY6TNt6HnVIVzkfEedI4apFXVnVPEsENiWf7G6aaebY/sODY7UZdvIZR3Veq5jwU5/Gt4lvBxwCiRb5znur0s08xMsaB5mBeZmopjMNIkEqgET0Uh05AV8fbT3/FL//VP+fLh8yrP3zJuLu9NKp68fsdieMyJepf6TeK1odKeVD0PCDhIjDVe7ttjfE7BbC/9NmgU/kQUW1dSDjb7y7xPGb/TYeVZWtkHJ7QGjVkYotIG+zYriiIPSr5O/pypu/89yCAK73aRqP69e+7Nm2xc8f139GL4v71bQW6eh9r5uXCGrieilyLnelgXy8gAU3l1r9zIu8cw1Ykv4OYNIti6g3Q1SEbcLCBa71BMMppk3o5A2YA0BO3cVpridOJWW11++3dcU4/gtvuoe243aUF68+AcDluobdnF6pa3908ahAUnGpKLKyAUhu5ZDOe6Ifcp0v9N1wm1g42tyglqFy0HlutKZcWxTt939a/Zmu+zqEru1S42TucTzx7+RwhsGYhxMTpdOJ8WqFWBYajU6vbpkJpbZTMZMhHnCQ7rgAEW1e13hA84gpSM80F8InNkrk1W0eUh6Frheje51XjLMWalVbArVaCVhDNU/IhbecghtEm35oKLz6SZ/1Z5wMBmMY9IWhMAauGfEoWVnHkbDoTadRwWUPqWVkk3+b17ScZw6DiVqdIiuZB6EOiDhZKK/EhbvdDs25KakZpT6qcd/0h8p4wJIRKyxlpTk8coiekXe4t57tvsrMphVGaRPSktKZNSTAiRCtQy1ZYumAPtkdtSM3OFnF073libzrshuj0hFyUypOSNRINKvTFWkDF4x2lsMLp/v6eL7/+mtN85unTO0TUNSrnQl5XfPAcDgdS0sj7GAO7abI+pRGAYRi2tE0RIcbIOI6stVCaZmuMyeOaI3m2gso7XR7nXLlfdPFYxbMA+9ETXeMQ4cPbxJMp8S8/P5NxtNzfa+Z0UnF2a8I06mTldDrpI+s8tWjyai2FjlWUkpmXmfl04nY/ITlz//hArc94OB5Z11n5w8ETQiJXTeEsAufimetEvHnF4XDHzc2eZoXELgXWUvDBM0RtBHXUKXinSEuwMLcQdONuogtEzEZdaJXaMmAUj0WTYFtrSt1a9HzGlAgxIlTyWpBakRYBTxySXmcPzem4+Xz/hnK+VxqYU5vm42nmtC68+ugVH338IT6EDaHZaCu2aPaFRItax7aWY/RAf6EN/bq16nfttayZbocdQzDzk3rh19om5eg5FqbrQqkl26e3kbZriuKIndNmJ6pJs0XaCugtd6Kj/0rdqk057dVCoJzd210Xgp1zaUIV0cAv6XaJhu4Ff0E63+EQ94agb7y9KPWXvsjAgFKrjfL7fcDWOGiTY5xnwaiTNlF+B1nUZ0VLkWoFiDVxzm2izugcpAvNox9jrZUq2VxzLg5UDjgc9nz0gx/xp//2v+b4eMSXigsjrWmQXJBCCBp4OTSlXZRSkHKPL2fC/oboGiwL9fxIBIZxIuOI68xtHNi9/4olJaQIqVV8GnBOSK2BHxDvSAgpBlav4IS3IrAIONeIolzobHV09J6xG4HQSNGTneP49eec3/yCL//o/8HDL/6IhWccv/x9bp6/wtk82F39j56HS3OAs4avC2CN5qf10PZN9rWLI9gWNEmfZF6+bl5jqKuMs/wcXesu90IEF7bCqR+LHpjfnpVOqcMSZxxK11EgqxubfDdfrZkNfUfnf61Z2MiOV2CEbIX/pUzvbfi7zcq7bWSvdt07v+/afMK+Tfp7Xn6TApxaQm/LtjUVIkCzps9o47jLM7/VFdZ9yvYbufydfrDt17bWkFqp3SXTjl+/16ZZ7QK44BwlF820QgOQm7FCYoib4DxuJjsXumc/k522qlOPRg9ZletjhG0y0yerj4/3nJaF3Zi2ZqehKd8dfHL+Aqr0c7gBUVsTdlnP4SL21gI76j5iDIZmXXqMGtB82XNAWsa3Eze7F3hXqacv2d885f0PP2Ctja/yPS6eGA8Tz1885+X7H/Ppp7/g/v6trputm3apo2dr1XIzoNSo08R21mP0kVaOUBadovhISxNOvFr4Wn4blmDf/ECLE4RAyys1L2b7r9Q2lRwYS8d7tW9uVu+Eilrtqga2spDPjzin5jYhTqznAzEN5FIotagdtt3ntVl97B0UcFFT5KmV1tOd/5rXt28y0kh11kCYSNv1gJaqqHwf+Tmv+oZgV1u6g5Tri6vTjVyULx9TUgTPHAwEDbCRUBEazjtNpxU0jyB0/URVXmGuOhmQgHcJvCHuImzqYhFcK9CCBt60qs4i3oNXRMh5EyBjTYbx3RC0gfEdchLMMJpeKahHOcrNk0Ytlbdv7/n8y68A4fbmgKNtlq77aeI4L6QUefnsKdIa4ziSq04BUkr4EElDtUZD8zhiCIzDALWQT4+IOAbvwev5Dg7brCAX4VQdzTmyOIoL7AfzY0+eD24GPrgbeVgKX54Ka9EU1RAjp9OJUjIhBqYhcXf3hGVdbHFRy1xcTyMWkk2nVKOwcp7PtLyyHzz3pZBL4c3be97e37PfTZRqyEUurKUiLrHKnnB4j2l34MntjhA981oZk9ryLqva1MYQNgR7GIYted75QDG3lRAv8KAzHmyz4qeWrCI4f0GXaxN8Vb/t4CtSUQ5kKZtYq3qvdrWiCEptlbKeWN5+xnx6QJxnrY3708zxfOa995/w0ffeY7SFVB8dd6Ht2HPQn41toezNBxdHI0FdKPx3vMlYVy2QYwikGG0sr8+PcHE+EdswxTWzeOwCvkpDkfnktBGpVcym2N7EmWNV4zJ5FE/nSXus+TDHLpreJ9WeW0ENCJIZLWjib8V7pYwq+mwD7aBLaGvK9dW4HRMmit5vrV40Gzg2//w+GalN7zu1x7yUPB7jV1sDIVdicScXBE/djxytXDbzYIhmxx225HJroq4nNg0xG0ulLHYKWbNJbv+xJ0+fcPf0OW+PR6I0Dre3YJtdE0exKWcpGRkGQiu0kvFScVQoM8wzrDMuBG5ub6gC4f4NLXj8kPDDAO1EdAJUKFp0V1U/KqjlA6uP6sJk4WTiAtFHojUTuj1kphhJMWwFhXeO6IVf/Ot/TvriX9HO35BcY8hvOP7qTyif/BZxnK4axkvRiE15emnV67itrbAisQMC9K/1Ss9pufhuIxK4/BoVkXbRrGqDzLZ4K6osM6j78ZttckcmZPttl0K703A2xzXHVpx+F1/LcnqnOXMdmOkFZi/2XW8PhI2+dLkQl0b/+hpzoelsZ/Pqe7bStjefsN0iXf2hf7bmYKuMr9/jyuQDD81vn+fS+Dcrqt3W0G7Htx1Iv8Z6n3b64PVn6MyCC53ucgzOwTyfWefZwu0iraz0ziSlgWkaLxoJp4Bjx1G2JkNks6ztE40OlOiX+sH0XtgjRaeOt/sdY4oMKZFiNwrqTUv/HJfP492FQn49wb3MNvr3qfVvZ8y01ht4h3fBQMdL2jo4diHxZNrhYqCVwmFKPH/yhKUWdknw/kNSisSQGPeJ9148ZfArOMcw7tSqvhQe3r5Vxr6/4XQ8cTo9QlTa73qeybk3EAFHhrog7YzUAmFAGJDaVA6Ax8cdPq7GHimGz0dwkdZWbUhcQ1zcmlrnEj5N+hg0wflkhhDaUEFSfVgFmc+s50fN82orznlCVGOi1tDJiguI9wSnjaeLlvHxLV7fXv7lI9u4R9ylW908pcMGHuAcUhXhVl4g2hBg3amLV6uw2ofG0SuHrSnNxW8TBb0BQrQQr6ip0Fv6tvG2Q4w6aejOAD5Zk1AuSF9rEFWIRRUc8fIeooWEa+6y/iqMjJ8m/V3Xt7LvyJXY5w4oBbLqJhEdp/MZ5zy7aeLu5qDey1JxTpimQXMwWuPF3S2lts13PaXEMAwX9wgU1UJ0LD6OIyDkk1I9QvCWqC4ED6UpVedUtLjJLeBT5BaHmB/0B7cDL240xOov38x8ec6UalQgadRaCDGSUuK9916R0sC6LurrXbXDDj5o5+vUzm/c7ZjnhbyuzKcT9w/3vPfsjlIKx9OZ83nmz/7i5zx9+oRhGPWYfWBInod1Ih1eMR2espsSYwqUVkkeplG994O3ZiB4baS84AWGlIg+bgWA96bPkY5qOG1iRahNLOlXG5UQPLlknSQ0o0H5SsnK524WyCeo+Kq1as0UrOcTy+Nr8vxIXmaWdbUpxonDizt+8P1X7KdxW5R1gbP9/mo76rdaR5zM4HR7RvoyqqjXd7c4APR5clrALsbpFNGxvo789fnURq4a1a2q37kIrSro4IGCiluxTa6263Np6xJio2ptDHWMbkVGUwStlmpWrFeTh1Lo1BZFyrQRqA4L0etcZbXOrtZkOO/NKU5Lm80vHi0cWmvkouuATt+0GdA9sG/QtWN0iFSCj1vjItIbDEXiam342qkSbJ9T7FzhIJiYO9r6UpuKhK8bDV1bbBPHXcScRgtz3jGlGz76+GNe/zf/DesSmQ66Tmi/r1acrYlaQU4TtWSlZsWkBuPzCX98REqB/UEDvpZVHZIItBjwUgk141LUQE2z8tU+q+BaIw8TeMcoleiE3ITSYHAOH9WtZy1qxhA80BpLrpzOs4IjpbC++ZR4fkNAGINnLCvzF3/M+vCalN6jT4YMErDCp6e82xXdHmEFcjrL9lLLWXHk9dl3xtnuf2c95zah3Erkvl/ZfSy1F5+6pnWKiLWZl1+3bWV93bMbwn6fbDDw/0dP7t+alwYm9qaiaw3c1bV5t+DsNcn2ua/W3+1n3K99P1s5v9Ug77x6k9F/fKugr9b2/nNX94xcfvjS/G3/3ae2zSik1iT92ufqv8M5bxMapz9rutZr2tLlc/TW+PKrGnA+n1jWs+qsxCa+6LTBe8duN3F8PFJK3c7HVtwb4NoBDO88+l0dTLHP16ADn0o7VRemFBzjEJmGxLxofVByvkwuro5V9br//rV9Z5/s/24NZ4YJHci56FbUca2ak5t3niqwzCuPjyvzueGcaiQe39yTz3+s+WPjoOfIO2ScCDh2KRCfPtkm88P+wDzPjG62dd/jSmNKiWVdVO8wOqJvpOGGYTywrKuyKKSwzjO4gHewLgurNAoB7wQnKzQLGBavRT8QiPQyvklV6pk1oA53kfZZI4oDgtXZzvYnEZwfaMHhXCKlQLQcvGr0LQi61rdCK6pxcd1W+a95ffvEbxFiMheCDR1UypFuNHoCMCEtZh0qVigjRmdCkSkQxNB5neBGtfqqaOjSxgm8LKJqPWrjxS2Zu6rdFoJyV8VOGnpSY9TfZ/QnSlEBby9E+0NedLylG4OYoFe7TR8sNwFz/jHuY0e6pDVoGt7UUYMmjfM8M44jjjvNkTieKLlw2E1Ia3z+1WtS8Hz04Ud89fo1p/OZNa8m5sqK0PvAcj5vdpFPnjwhBC3+FzyL+YiFoBtYEzhV4ZQruQrnog/2IUB06uz14pB4uk+k6DiujZ+9XbjPos2M17GphMAwjLx4/pxnz54yn2fAEXxgtZ00BnXR8MOEoJa9taiA/fF0YryPvP/sBueEz7/6hh988JK/+PmvePXqfT768AOmacQ5x3nxtOEF+5snjOPAYQzEoE4QQ4AUPKdcqE35kKr36BaRDXxgGEdyLgQfTaAu4DTdvHrAC+uyEqpnYFCnC+lhfLZwOtFAIwAT7vcRoneOWNRe2PlCXgrz8Z41r2QCa4N5Xjiejxye3fKTn3zCzWGH84J3bRPodeTL/1ojgX1d5Ip60xfUzTGofecLhFLK5qxWzQ3nQhO6jNxBObUxRhyZUnpxpnqD1WkIlQMVxSLb9EJDFjsSCDhvhbqN9ouuEbU2yw9oG9LV7BjE1pMQI5tblevFhF4jRZ3bNiztVIC8ztpMhbhd845mSxPNlCgrSLvadI3+5TrFQsywoBFDZBondTlBp4jV6f1RpVKy4FyxZlY3l+AD3kfTeumZi8Eabye4aIJUp+51zjbiXr7qzyjNypl2zDnPB+9/wK8++5Qv3xxZ5yMtF8ZxTymF83pmGAbGQUuamhcKDTfsFHnLCzR1TWohaAOVz0pZjFEFhesCUpG4wzkYRRCbmA8tA46lVdXs0WhVWKRRbUpVm6O0Rmn6TGtd0jifj3gn7IbEN6dHXJ7tGnuChzF6lsdfcfriL7h99mQzDJEttUXPR6cw6vXS870VPVdBme9ACI2tQLpw1Ls+hkt30AtXropfAYfSesV14euluL76iU3ju0039DC35gWulpvvMFbx/HZiC2Dr6zeXZq3/udfaPfxMEW3o4azXi+nltFw3LWzahHcoWNu6fNVQXFZr/fP2q+37hM2h6vJyVkM0M7U00bZc3SdX99mmqbma0F8mOap2pLtU9U1E0OfdJuWXoEFHqYXH+zfMy0yISc1P6DVQY11nllkF2r1p6Y1Pb8Jxl89dW73+ZJc71IMzZ8xam1F9GkOM3EwTY0obQu6vDYCcrde1I3BOw/mupnAXjMSOz86dD7Z32GSklMJgus0mCiiFEA2Yaup2efOKw/d+G09FykIH1fOyMB9XpDwCSmuP8TWlFlrO4DRob9wfdBLeKrfPXmqg3RippXGz2+PjyDIvnM5nSq04Toy7gTDtqbWR1wOC2vHjHN989RnHhwdaWxGSpnDEgZAGxkkDjVuF0+lMyUUbBLsnXYggleASjkqVQqnnLUBZp+OVYM6qPjm8i9DUTtiJ1r54j0gGKbhWqesKZSRweIca/N/3+hsY2dnmGrbLqkIb1CGjlUr0kTQO4NuGALZqXMFWia6PBa1TdfrAexyuNcQVoCJSkFU0PM/LVSdrxVZnDYBqLa66t4vcWcfoWwWwdTNYc+Os6XGUZdXGBKd6CgAfCD5uCFQ/4JJXRAo+RduIL6NMPQTNhyhrZV0X7u5uOR2VQvB4PDLPC9M08XiaKUXpWoebGz7/+htKLpzPM+ua1cY2+E3wrU2GuS9VjZtf8cy5bdzb3BxzhbVVcmusTRijJzjBucZhCDybAjdTZLQQmIdl4bNjIRun3VtBMe123N094eXLF3pcy3LldmXuSrWw2+0Yxx2lVh4f7jcUNeeVx+ORr1+/5ZOPPuDN/QN/+vNfMe32/PnPfoF3jpcvX+DTjpk9h/2BMUWS96QQFPHzztAIo4Q4xzCmTbwVo6dVQ3AMNQk+UEphWRfGIZLipD2xFZjrmpnGQgo2ebMCtJZV0V0cIXX0Q9+35UquFQnqNEFpnB7uOR0fWWpjcYFFHOcmxMOejz/5mP1hb24yXb6jC7JHqSzOhP76PL17D10jaFqcmtbn3X3xO/mal1kbQxRJL7UyL7NNAcw4AsH7yDBMumD6PpLXZ+riQAIhBFIat80+hEhMkegVWa/WwKidqL80ewYQ1Cvxfy1Z3X7A7ik1S1AOvd9oAU2KWXhr41ItRyGmZMUvl4mI6UiUXmc2o7Vs2rNSq1Ev3eUa9wa+NXLNMKCiPNRu0jsMvFE6X2063YnizbLRnlExz393AWq8Nwcp56yItr8SNmvMvg5c3G4Mgbe16nsff4+v7/+YdVHgQTnd+sw758g5UkqhujOkQbUsteDyimtCDYHinFqI14zEQDFjEb/OGh6WIslcWKpzBBEGGjORpTV2LuMQskB1QcEIpw3cIo7czBExONayMq8zQ/Csy4rUyv7wBJltIw6OURzDcmL+4k9xP/4xKd5owjpdxOrApjwqxr9GVK/W/+1O703j1QnWxZOOLF/XuZ2E5VxHHa8f9OsJyK+/3sHGucza7Xf1Ym/rWTrK/d19/Z0PdzaVBmmaHSKYxkrEnnc2i1KdYmuhrMYK7Wq9vWjhNrMEx2ZN2ief/bnWb2B7LvrZv250tBi+3A0dyGq92+D6qjnj4V9amT4l6OtUf2fXacJgQIe3ZcOcNLvt6jv3yqXJwY5PG57GsgiPD69ZljM4iDGZzlL1XKVk7t++1Ymp0XD02O2IroEzOkghF0f2XqNtDZlOJJdVtZxTSozjqPt9CFp4W/20Uaw6ZerqUZNLKUe34r3WgTjnGYYRREEt55Tm3LpJjzSiFgWQtZYqJfPl558yn1cOh1v8uIdOgd0JficGCim4gTRCzbRlptVM8LBWT6kry+OJ4/FTHN21y+GrI7XGNO558vQlPnrOD2+pOZN2iWU+UaPuOyHqFGQ/RA4vX+BCoFaddrsY1e3vcGAcJqo4/vLPf87pmCF40jAhUjVstKyaRo5D6oqTim/V7m/V2XhXKXmm5hnnHKWuOG81lx+QPgER1UuL3c9Z2GyV/7rX34AuZc1FCFd3aqPVDFLVMWAYIA1Qs1l8GadYtFvX8KA+ErRiwh7Y7bELEVe0mICs4UK9IJSrO7fVi9gaNMl7g4DtQe5TiuBxDdV8FOtivYeY6FQfsLRvox1tORM1W1OjhUZ0GhsvVcNMAKMqBEMuASswWmvsxkQtg04ZWqW2wn63Y1m/oNTKfhw57EbWVZG1WhWlO51PVsSYBZkItQrn85llXfBO8zFORRfUSmRuMJfKUhWB3EXPGBTB3A+e2ykwhYD1F1SBT+8zX54bzSlVZdrt2e/2TLuRu7unpJg4HY8E7xiGtKHO3jf2EZ6+eMHN02fqQhUj9/f3nM8nWi3MS+ab+zN/7zd/zIfvPeeP//zn/OKzL3j67I79mGgNpqcfc/vijtvbG0KI7IZBhZ1WhEWz5qtNk8xDCIToCaJZK7l19ye1bAxOp1ArUOu0jUR9iMqRX1ZSikoh8eozXmlko9UlH5SW4TwpqVtLKYFW9drNS6Gej5y++YYiQq6V87ryuGYW5/iNH7ziyZNbWmustZKtyd3yQ7xDfFDWn/cg3YffbwurE0dzWji63mjYCvvdLg/gfFY0yDvMt1wFat45YlRLPZzH+0RKA8FomH0b1iZYKW6lVppU5d66YAYJhSaDUuhiIsW0JbM3m1CCLV+1kPNKtXtEG5bharLRcFKQpiGUanqgG2FMA+MwAY41z2r1Ou7N856NGlVrUb2DIX7aLyrFsTXVa6j+Kqmts1SC0+8ZhsQgiSqN8zIjTS70KhEzMlCNihe/IbfecRHr9QJImmY6uGD0Br9NXruxgKMXVjYl8l4bM3pauRY2r169z+3PfslXb98yjbeUfFZwCV23z4vnkBckTkqSqBVpC24+Ks0tjIpIrmdaK5Q4UB34dcblgkwjQRpDu0zuBnPWyd4TWiFWDRxdbSNP9nmWJswGOE1DQErjNM+qfJDG/f0bnj9/Sfnk7/L127+A8mDXXhh8ZX3zc9L6DU/uIlUCuTmKeMQcYmx3sPPqMf9Ovaeuis1Ns3GptBDTimhWhSKoWk92lPriYNXXfP1Rtz35Wyl6RbPZbujeVDghXBXAfZLVizXtY69+9jv2uttfUT80XvpCFcQmF+b8tE2pe6EvSoltiKLrdp6F/v0XEPT6dT2F1v/W/7imafVm5ddfvfnYcnq2xvXy503cb+u9/oxNMTrIqVSOC3CwaXF6w+Fs7eyaK7etCQ0B8eaYqAX5m/uFh7dfktdZwxmdYxgGpLvP1Uquq2Wv9Gn8hTK4VW3vNBrbGbP/7YCO4I2OlYYBRJgkE4N+nphUW+nDpTF3/Xd72UyALgARG/h8dZGgNW7unvF7v/+H3L/5gvPpgRCaXR+rBZxXdzoctQrBQS2ZLz//OaeH1xx2++0ZRxRE12Yz2nVSrVpzAWIipMYQB4Sm01q/s2mNozQHrlFaZT6tBN84nc+kFJAsSGm4diZIU7dUJ3jJLPPMTRJidEjwOB8JaSRNe3YHzR/zTjNW1vMtD/eeXFCGR224qOBLSJFchLX2tPfR7u9qtF5PzbM1DA4vxWjFUfdN55XxY+6uSKYVj+TZgLK//vU3aDK8ivzaYlOFACERpz2+VL1opg0QHJio23kNplPjb9VSSG8ORHQSESNSmxVUHgkJIW+FyJYGblw+rTqVSmBbI9LqxlUWaVA1rE/QsZiEgIuRkBJdKGVjFmti+sJvyLF0bmSh5LolXHu7yZSvHbYRILXhzbmh1cY6LwQfuLs9cDqdSSlynmcdF+aZh8dHEOHFsztaKzw8PNJaY0yRjny2prkifQgpopSfZV4Yx4GM43FtrOJNZK/XKTTHFDXcbJ8chzFwN3qzUtQFoQGvjwv/7qsTx6qLwW6359Wr9xmniR4G+Pj4uC1cHZnVqwS3Q+TV0zuGJ084jyO5FNZ1oZRMRlHar1+/5heffs4/+t3fxjnPL7/4in/77/6S02kl7F7xyUfvcXt7xzioPiYFcF7zJ7xTRLfaeDMGb7ki0YIHvU0iPN4JrRTykjWcql5E6bVm5uXEkldS9Kx5YQmeafQ0hNIuNDlpKv71vqMefRPSz9OWmfmrz5jv35IF5pK5P544rjMff/ycZ89uQKrRrpzxJ/Ue3RBx5JI5IoJvF0/27jy19d7uUiRcly7f1VcpqsMYhpFhPLAz0KKaY5IzJ6hgAUit6aLXEOZ15ZtvvqLkmeNpYZ5Xbm/2vHzvPabdHu8McBBzPBOx0S/2nJbN1rTDyN02FlTsPU07oneXNcIZElkzrc5awAdPXgq0yjCMm2BROfx1u14+OFJIBK/C49oq3guuQmud3tiopkMLDlLs9AelLsakY/KSqwmrRTNour7C1tILx1wP3TsV6TmnDbredYEqquW4ZIuL0W90A9cJRkcr3UZf6EWPOMf+cMtH73/ALz77DB92OGkkRn2fVilLpMxnKpmCI8Y9zuv7+mGgukCZTwzzSZ+3kCAXWFdd49OEL5lGhemgZVgtZO+QWphoRAeLFYmjFHx1ZAInW6f3Zo5xf5rJpTAGx9dv31JL48WHL5HDyPzVX5K/+G/wVPA77l68h3//74O7ZZcCh50jV1H6VRVK1QlJlUAVp4F3BhNry6Dnp0nHpHuTpDq/bYcxXV6fNGyVoHNXjcgFeLsO65TtW6+5+m7bunRV1BtBEfErQk//tneAi+/eK1qCsvZa3jBF+0QbUi/bVG77H0Gbxc3d7XJO9d9i3yvbpet6LuzLwHUlzdVVeudb4Eo+17+/N3Z23a9Fy9KzL3qTIRcaGFvzUu0y60N+ea/eaOif3dYo6X3Xm1+cN5qwgnKfv/kVX37+S9N2FXVn9J5dGmitcD6dLHOlbOsM9vPeuc11r4NnW+thE7vtfEh3fepNkE5pT2vmeFawKHpPGgZNJO8AiE2SNiZJP8f9dzetNVu/922K8/LlB/xP/2f/S/6r//L/xP/zv/o/k9dVbfirQ7wnpYEYkxbjXmtW7xwP919zPn7Dze774IJNnRt+rRaAV0F0AlBrVYDdHKtqKyDKXBiGiRaiPavqf1dKpuRglu1QF8ExIOJZzmpgJG3F0QjRG/DmWdeMuBVcYNgJMSTW0yPrPBNiIA575uOZ+XhURpFz1KIA/xgT484zn864UNU5OTogEsNAGpIyZKJqg0V0z2lVReStNlxb6KYzoPURFKjLtoP8da9v32Q00aK9C7NjwvuEC0nRR53hm07i6uYHnAv0KriJdT+GqqmQEeV+4ZFSNTjEXIN8VGceaUX1FLaQ9tbWua6JEJNvqE5kC0kTE790nYc37QcO7MbQh1a2wqNDIq1VSs60Uii1I+mRa29qsQdUTBAsdtOVUhhSZDQKhdiDtq6Z0vTmTSmyGwdardw/PAKw5EKMaUuqvNlNvD2erIN35Jw1x2Ic8DFyXoRcYRo0gX1sCzGo2HOf4DA4dkntXTsmpg9J41f3K39xn1kbpGHk7u6OFy9ebPSs0/m0oac9QEovVWBKgbsEtzJTymI0ssowJKZxUOpJqyxr5Y/+/Be8evmSv/ebP+GD91/y+df3DDcf8vTVD7m9vWE3DoCY4EhdGLz3BKfWnaWoQHWMiWkYdQpFJXhP9d3eU7mWa1m1WG3OBLY6Ru/uXFWEYlx8dUMDarPCE6rXhsbbQlqMP19qQWqhLjP2mLEuC+fTkfPpkZfvP+P9Vy/U4co0Aa2KITHaCGnDK0hzNAs8896raLQXHK7bTHZUcvsTuO++7vvp05eACsfiMJiPOCYwtmKtdetV5bo20WDELqxHhP1+tPBcYV1n1Rugov7WTuZcpefe+7iN4PV91GHMoe5QMXRrWJ0kBq9JsaBNgPPCMI4qdvPGpW+NGBJxGPX3ezGqYN2moGBCxxDUaKLq8xNCn5bC3gqiZjtlp8X0IiOXi3e9OsDoqzUhBodPURulos2S846A0g17jlGfADrUYa1PO5pYQ+K9rXcdtDGnrVoVOOmUjW6zLMJ7r15ycziw5JVxGGlgmQ7aTOScqUkn3TWvVAqBZnkWDV8yJS/UEBUpzauaKowTXhquFarp+5LoiL/4ESdqY9uArGkUeGCtwiyqS9l59bA/rplalPR0/7jw+vUbnj59jxAG4pOXfPR7/yPe/vkzkMLuxSccPv4pbv+Sh1Pl/u1rDfYbHBcuv25BpVXWqu59uUFtKh6t4qh4myL4vo1sqGj/v4uxyDv/2qh6vhdqBjJstW/vR9DrsJWZRmvb1gku918/hqt25Nf+8N171Vqu9mp3+fi8++wAOs27cGsUBHW/9uG3c+q23ylcilnDwTdHqe2kcpmA2K+x97d/u8u63ZeEfpV0Lb+eUV0di31j15f8+n3SW9p3e59+d/ntnNAPd5t61e0Al5b55vNf8Obta2sY9PnvFLBSZbN5rd2Aprbt2Lb3dHaexCtgLBetY2/+usFKB/Jqq0RvFON5odS+bitge6GzXTXW23mV7ZNqI9kuTl/2ffvdjie3t3z44UfEEMll3fYCsYbFh4iTCs5cSJ1wOt7z9VefIu3vENOAEtkqfqg005E4r+co+Ir0iDYE5/Km6Y1xxPuRnsMhzlGrQ1qkFqP6OmWp1LwiovVIWWcVeZuhUbfgLXVRu9jmyHPW8M2m63PNleQDd7dPEJSdcj6eKOvCkALBVZJfGXeOx8cHfBtJu1ti8tS2QpvZjSMwIAKlDizLCkTSEJUyZve8YI6PUqAtRj/7619/gyajmZ1iUI6ZnYi6znofb5QmPenNeJC+gY9OqUg+4L1sT2EpmePxzOHmRqlWlv5I0OAk15Hzaj6yIqqn2DgBsvEotCDxqFWJ0i/8kNgs//JKPi8IMIw7pW2JbFSsfif3ZgHvcKLH6wcNLbkk93b+n6LdIWgGiFgXqZ73jRg94zgwRLXrrbXivSOgWoub3YR3jtdv3nA6n4ym0B9I2I3JkHu/8d+WrM5NQ4rkXHnIldVQl4FM8A2CY/CwC0LaDImcBnI5dUJ5OFX+3dczq6EBN4cDL997RQyReZ45nY4sy8Ju2pHN6tfhSEnt1YbguInwPo8cl8jDObMcH1mXZXOc0gVCePNw4t/80Z/x/ovn/MYPf8Dh5gWf/OS3efb8OftpsoIOEB1jV5tqDVEdu/TYlbcZvMcHHY+H4DjEkZSUCqV8RqVSScP8orWIGsfEklfWUlENsY2YRZFnpcgIS86MQ1JhtuhUSqpOSdZZbX1zSNRhxzKvHKtweHrLx9//kN1uZ/emuvRsBXP/RxrBO4ILG03eGU1ncxpy1oDQ0Rv9vF38fT0d/i6+nj59uQnza9W8GGgXJxIfcCGoC5A0SvG07Cw5PvL8+QvyuhKCMK4r87ySc8Ht2ahWq4nxRHQCgDO6VC2GUQTdbKRS26qjZ/tnLRnaymATz2VdrbH2pBD1+bTvTcmQN6cuV9VVBBMsiqOHZ2XLjFCLWmfTN0eKF91Dil7dicxGuWEjebtvROCaS+69IwbNdNHJspCC3xraEPSZQbpXhiZOO2t8lWcedJIiqMHBqoGamuitzlUhBoZoImiF6Gmtsp8mPnj1Hn/288/p1qsxJqiFLn4/h0iYGq4u1LJQfSC3Rm0rMp9o64pMCVcKbZ5xacSlgdCyrv3TnuAcQTQ41fnA0ITQYHVe0U9pOB/QMy8MKkhhXdWiMiAcj0c+++xzhrRnGnS9SePAq9/4u7z4+Ec454njHnzifD6zLkdOeeDx1Li70Ul6CLpZ9qF8E8WtSrVk7SqsBXJVd79mnvdVLFQLa1qv6CbSw9x6Q9qL1o365De65MaDt2JqKzl/bVF4txC1IvzX/u46VPC7+FqWzJZkL7IxDLwXAwEuU/sOymjBfgWAdtYDWmJsRX3rAKPZYpuWjt4wcDFH0Jfr/781Lx0Ygk5Tkqu+xICn/h29l9yO60qY7rB1/6+6WhcHpnfAqE4V7zX6VaHf308QzucTf/wXP+P+8VHpnzGqtbu5W5aSjYIsG/iiRhSdAm+krt4AGYi6nU+ub0szsXBAg/PxkbtbDb18mA0R9561FHLJ6rYEloqtb9FF8xdHbaMTuh7SeqEX5uUM+cyTm72FHes66r1NFZowOUeKqh3DgMfz+cinn/6C4/GRw+HGPouG3NHNiqRsn9W5/myCUBFXt4ZBXNyaS81zKhAa0et3e29av3EgxaT7YdnbOl2peSH4RBpHbXDsPtTga4cPkbIuhDTy4tVeJw+i5juvv/yC48M90Kg1MwRdRw7TiAsDPgbVNTbRJPFWiFGBZ7zQXEZQrZofImGYNFW8iWVEZRx7uvPeX/f6mwm/06CLf21KYygq2Mx5RQR2hz3B+HYiolkV1t1iVpPaFWj3GWJifzgQzL9X7Wad6j6K00IB/be1n7Si1CWqbr7eph0udFcFb0VEVV5yjFCNo+o9xeg83jpuV1Vh72xzetdrW5uQJtpI1AplPm3og46ltADI2RoOQ/udCLtxUq1KjISoFmDZpgQNFa0+nE6aAp4L+2lkLVW/PwQ9U+1i/QZYvHxlnmfliVfHvM74ndKJxkEL5/gO6u2ubnghl8Yv3858PQvZRW7ubnj+4gUpDVtzcT4e8Ra+V0rmydOnxBi5vbnhhDC6wuDhuV94Ur8kuYCPmZ9JZi5q67kbR3COD199wPc++h73J8fnrzMf/eDv8P1PfszzZy+YhrQ9sCEq57GKJmvHqJ85eEx0rh/KK8OO4NTxLA2jOhGlxH5/ID8+UlvRhiBnUgpM08B5XsilWvrqZauoFla2lpVcFWmYUtpC0vK6cn7zNXU9U5tjzpXzsvKwrLhp4P3vvU8cdiyros7azMk2qYjhQo0R2JAXtaI0sa0PNNc3DrUTjSGpXkNQKpDTAuNv8ND+rXvlvFCrFt15OdPqym43Me32rKXy+HiktcpuGpDW1EbYbDtLWdWmrxVoMMSBdJNYlpnT+cQw7EhpZL8bVZDdGk7VoSqao9sYm02wuTX1ROYeyqcvwYdoE6mieh6HTdkiu3Fn1El95kutZKMVqNhcJxopxo2T3JtpaY1cBOcSzmNmDs0mhtqwKFXQMwRH52GL6KS0daCjiYkebVLhu3AUneJ59JmxnI9eWOmUMCDOcZrVJEHM4tnRcC7bWij46lhXb4Bob050qvrhq/f41edfIq1S1kqYdnhR8b2UhXkuxGnGNc0PqWFAQsa3hpvPtJBo4vDLWX9/Ui2NXzItjfg4MUgB5ylhJDjH5KruQz4wSiOIY7GmahAN9VxrI8aBCeH1wwMPj0eWZca7gTVnNdYYd8Q0MkwHejJwRwV3w8j5NPPNm5UYI7vJWw6U3hkOXXuUDtctjpsFO4o1HupwVZqjNEw8q5OOLsjXa9rzDfo0E6NcWUHTC0inzmDXDcM7xe52bFvVx3a07t3C+DuOU7DfTaqjtJv94sR1+cytI73WOKhZyruf3V3/t5hbFZcpiJ47vxnOdC2puyqut/bApiTNkP3WKdfSW5nL9zbadqz9el5ybKz+6O+5OWBiOKtcKu3t0Ps7mAvZNsa5bk4u+iaRxuu39/zlrz7nNC+Mw7AxJ3aT0mhOx7o57vX7p1lR/07j6i6i61q7uyZXUyFrQPSbsd0N7yNrKbx5PHGa1VEOsZwiefc+lQsurWtpd+CSS6N2+T6hLEfC+hVPp8qYIvNizxPGNDEr8xgjuVgoaWvUXPjlL37O27cPTOPh6npEvI/8+1kjbAcmUnXiK92PruffiJ19u3c29zC9Dt57cv+9PlKk6X4XBtMQVkIatT+zfYUqBBEImnWR5zOb6F+Euyd3HG73mm9iJj2trKZF0mMp+dJAdi1QqZlahLTf4TAWEQFcJdesdYiB62q3/O0qkW9dr9SaiWGgJ31T1JfPByGZc4+6wEBZM63nJ6SoUwzcdgNSrUM0zn23tN1+N+iD1HfMEHWa0brYMVOynrQQA+Mo+GHUH22KbLlBbcDU1U0nKakkYtSbpTVhPS3UWrZ0S5wKHr11jd0hRmrDx0ArzXycu/WkM35uJVdNGJcQGKcdw6BpuJ9/8SXBnGKi90yjcgHvDgd10nUaGvPhq5c8HM+spRFi1ILbdCb9QQpekTEPSt2plbk25lxAVKcQHJuV5WVuK1uKowi8PWV++XZlrrDbTeyfPmW32xO8ujB6B8uq4S95XdkfDkzjRKvCfm+IYT6xiypaHgM8qysyZcLaiLnxkEY+/t4n/M5v/T3+7k9/yssXLxhiouB5/sGHPH/2hHEIpCEhdh+koMnX3oqZGLU7b6I5CUNUcX8VyxpoiiTWUkiDZwiRlgZSSLgGQxoQaYoqisPHSJMza87qNpMszdQaySZCyVlRMdFzWWuhzkfq22/IeaY2zzlX7s9nast8/3sfc3v3lLUUREsIqq6oRLMadi6poE1UA9BEk4hj0o3SGyUCEfPM1p9vwR7+YgiSU+xg+rYP7d/C1+l0Uv5vcKTkKUTGYcLHCKWoAwaVvMwbpc37iGodGrtxJAdHq5WYBt2ynNjkQN+jtS6oFYJrWxBbQzepFDyeoIs5us704Drle+s2oTk11nQ4zLlGG5cYAiF7yI4Y02Va1VSMXlvRxrK6LcPGOdUU+RQptRkKqc1EyZm5rKZD03u1T7YuO6mD4OyeVlpoXiugydCtisKIYtQH11HTSwHrgiMRt0ZkXZcN5YuAWpJ3cwygeaNL6XSu6zy8gxfPbnnx9I4v38yqH4kJaIzjhC9nbQxro7Yjq1MTBZ8X4roipeDHHUGEIOD2e9w44lvBx6QJ4cHjCjDsCGnEl7M+Kykx4Ei1UWPC+agGj+I1zFQqg/csuSgC6hzvv3rO+VQpZUVaoUmmStBmqxZa1QIHhCF5nj57wnnNHOeZIVVLDL/myetiqo+t3njRa9PBcCmMtOkQcm3kArk2SnPk5mhXug69Q64bmXcbA5VlXNDoXrB14KJTSDZezvayPfcqVJFrRP87+PLSlH6olf/WPOvLiux2cUMCTA/XncG4miBcOaz1NkT6N/Sm/TI1aXbuL9Qp+1lh091spKPtcrjrrXgDKbuuxjulyMl2XS/HR58YcNU8bDfhpSmyLePyte1c2OcSuToG4evXb3n95q1Nd0diGoGGj55lWZgtS0Lzg9oGvmiD9S4bvzsCtlatfhO7LO+0cXoum5qlOB8QgTcPj+Q1A37TUF5MUGTbFy/vYx/UOoz+2a5fIpnBLTy7SYxjpD0qfbyZzXUumcejGus0o4P1q3L/9g3HhyPtJZfpur3lBbO9XPd3jsnuCde/p4Pt0vAmPreLijpPmWvcNiWzZsU1hK5ZVlOhy2+2uzYmHAqMOZy5VOoELqRA8mlrxGrNSJuIMRLNSElsUt0b2doqOS+0rACJAmVWY7VGyZ5axPY3j5OuY/7rX98+J8Op6K6W1Zouj49JKVEmvupc5DCMBNJGBaD2Rc2mGs7phCE4pVldoy5i4pKta25XD57gI0SnVKbaqSZGV3Le23vpA1tzxhWzHXOXC6VOUJ7dwSYFYm+NTiekFjpbcsOWq3L2nVdHgtYqyUe8wswkcy9qTcg542ofeWqREUNgGAb2uz2npfLs6RNu9hOH/Z5nz54xL5nD7ivWqoX+NE2UdaGuKrTvug6c4+F45smd+rvPpXJcK8U60m7RGYODZiM946WqRZnwq/uVxww+RXb7Z9zs95cbNAROxyPn05lhTDjvmaYdoNzuGPdMw4A/BWZWqnj23rGPjjoG5Fa42Y08+fEf8Lv/8J/wyQ9+xOGwYznd8+Vnn3L3wQ94/uwZ+/2O3TiqYNtBil5HdqKLWPRd2KouMt0eT4tyjyMQQsKjdDpndrGXRAmdtvmws4e370WKHK65cJ5n9ru9po2myLLM6rs/rzgRhhhYzifmR12MyZW8nllPM3mdefbqjmmE2rJSKnzS6VErSMv6rODARU3LDAFQa0CAKubAZo9J9H6jh+GMwmUIUS84wq/zib9jr/1egy2jPfbzPBOiis3yqsFvTTxFhJIrKXp2KVJqtsJBnanEmu7SGsu8MM8LcZi4u1O6T7VsnJ6NsS2ics3pVdR9GHfEEDeO78btrmXb8Naia18IjmGY9FnKWRG+VomWRB+iIzaPNBV7B++I3pnTi9sKjyGFbY1pzeMmp3bdrQu5lfvfBeDd9Und1hy1NHKtm1Vma8WW0Wabhm1U6CYSvdIlg/cKRIAJHrGUdf0cKj22ADw0k6PbeXpn/+31n5v9nlcvnvP165+TwqSFeAhM0whZCEkpTg4NTG04fC5qZztO+BiIVU1D4uFGQaul4HcHwm6HqxVHQtKk7y0N0gghEVZ7tnzQLBDxNGfRVKGZkYBDTNT+0Uev+PKLN6zzwrJkxqUSvbrKeWx9aIKPnhgGDvvIPo6cTifm8g3BQhcvRaie2a6tuZQa3QLYrpdASp6xCU30utUmrKWxFmE1p/WKhqH1OZq39PXukCiGRFvMCVvT2Zsd11FSba7f+R4Tk+vx8e8VZd+5l+2F/X7fGg3Xiz7X8cVuPoWX61Rte87tUm5UlN5INtX32Vtte4cCFb18d1b89eLhoqdyTi7OTlgWinYr2/0BzYYLyrAQb+Jbmyi+8970huSSHdGpk/Zrr/oif/nZreuQq/Ol+/zrt295PCnVvawzK6pxbSVSSmbNKsjudKLONtB7rX8gthqvB0QiYufZPnI/V2w/ovbWTbMp3j6cyLWRYlLbWffuz/YP4/p7ARtVq9dmv3Y/jzEwRs8wjtzsps1Ep9qFUEA5MwzeaiuPuKLg6nLkfHyrKdy+u3ldPsfW6F81fZcJVz9OvzWQHYTwVru9QzGzu8H3O8rp7/cGujtUO+LNlKhRccbqCSEgNLMjNwo5nS4n79wnrVXwqqMOMSk7p1UDctWFsbWqjKQLO3CbAJZaNFjV9l9dQ9y/d97/u17fusnwdsLDYPx558FHfCu6cXsPZnvo+trWF0GjLOC9pgR2EqTrjYTjIhq3jbZVXBPKujKfjluH3IoWb6WoGHDa7QhO7U/xJuh2ILmQzzOOShpHwmCJ5V5tx0A5/b316KqhVrIGrPSvAyWvlDVrqnhwDGGwW66ptWkp5qTlaFU2oZSgaHp/DWlQoWlKPHv6hN04kpLyplsTTdgelee9P+wpS2DxbIFhMWgK9rwuhKPa0RUc92ulVCvAvdsKA2fFQwxKJ2ji+OJx4Vf3BVxkONyS7p7oo2E3zLpmXr95ozkTu0mpP94b4lm5u7lF1pkYbhFZeWyQaiG6xi4F/O4pP/3pf8Df/4/+GTdPnyGt8ulf/jv+9F/+c25efsQP/t4/ZL8bOex3jOOASAHvLSjMEp2dI8WgD45ocaT6Uw3C6W4Qwaz6vHYXOL3FCE5Hi7mu1FIIaVBdRdVGpFXV+wRzuejJyQJa8AqspbAuMw+vX1sSZ2StM/OSWWvh5Yfv8fTFExtriz68hvj2ILjaGlIWYgyU3JAawXt8UOlqrc1cJ1Q0H4MuUiEG0+KoriPGSNzcvb7bBcJ+TDrGbU2nPyb0G4bEbq/+9/OyIGgxPw1Jp5Xi8D5ZxkjQqUcIJB8Ydze4NBmSDjmvLIvm0OwPNwzDQHI68i41m7HBSimFNCSiWSbnUhDv7R5TFLAnaY8x4hhwwDgMDKnPk9oVGqYUo1Z1cV4NrBiTaqtEYF1XBjO16CJx77QRcQhLKTRpahhh1793Jj5Ec/8QimBOMQrKFLsvdApoG4X9nJXCQG+0bfJjGHqngzrnkaoNk36jrsfBQ4qB6MO2cYI2ee+9eMaf/+xXGlrYKru9rsVOItPNE2LwRPTa+TgQ10xME+HmVtO9Ab+7YdgdkHlG4kDc32gRWCt+3CMh4dajlhR+wDXduNqwU+pXWRScCAPRe5w4StUNeF4y05i4vdkjtfKzX7xmWRa1mKy6jgseHz0hJdbaqLnifGKYbmhuxzzveTO/JoWFKGdSKJsLV2/+Ouoq9oxezrlTspvXYxYfDHfriGGfdKxKraqa+6B6Dm92o/4y7dhU41ZM9werafHnrquzDZDo/q4X/cflB797r2Vd2e5Co5a1JgauebOkd6qna2ac4Nyme+46p+5K1EvWZDRl8dBKD/S8NBVNRDVj1oy0dqFgKdBqQuTevPTGpNvsO2/W0oBcLGub6H5VOlXImlZvQuULuGbtvyg3Xr9s+lG2sr9XiPr0mhHN5cZw5Jr56us3HM9nENEMKalmwNPBBANarEhVzWCgXtEutZDWINSNZt6fBbtWmxsngOizUi0XSFzk4bxs+1w2FsFlYnOpS/r9evm7rW/bzk//i3FM3Bx2hJCYzLCjWW3hgzfdSVQtZ62G9vdab4H5c27998EnigSK6LOoz3N3jep3YBfbswECzrKIenr6pfmFJu/+Nw4z6Oi/7+JyqrdZ2IDuLSDSGk6H4MIVXRBwVLYbCG34NFohKijro53H3tQEeze7k50zsxS17G5os+6tcfLOmc3wO23gf+/r29O7Q9oE0bSG5KIZElujIOqHTu9u0YqvFaTbeaplz2Va69xF0dPPb3OXRqVWfHBajNqJLk57uiGqqNttO6qO9Tvs4IfELiVUM6E6DqdVg/7bWUd85YbV7TOLZEXBsd7Hkonbum68a6VLYW5PmpIolhITNjTBsz/smHYTcRxJ40BtsOTKy7sDdzd7Hh4fWJYzy6pWi7vdjmEY2O33yJBYo2c/jRuf+/F0plXhvCwaYNMaj2tj6c4PYnQLuwTOeNkijsel8pdvV5pT4ePu9jklJvVt9onaKm/fvuF4fNQJgiWeL8uCNLXW9d5zlxzP9iPZ3/DYMk4WhnZmvLnjx7/zT/itP/xP2d3cUfLMz//s3/JH/9f/NbKeeO8f/BNubvbsdnsOhwOuVUrBUCCn2gggpnAVyKNNhBdFT8VGnhtS4y5Ij6JG2qSEDQG2WxHDJKwp8aHrcNqmlVG6pqJJay7kx3uWxweqg4zj1OBUG7fPbnn56iW7XWJMEXxirRpGNg6JcZqQGm0cKYxJxVaqy+irpbpKKc1E0aNOE+tBaLk2zUQJq9IwrDH6Lr9KXqy4Mu6pC8xLJudKjIndpK4ePZgp58yyZi2I7Rn3fiRIIJeMorQKYlSjwsSYmHZ7mw5FFXU70UlI0GYwRhVChxCtUFGhdckzZW1owJX+7GVibuPnEKhOXcy8Dxrs5C82tpARKeZkBbnjKCKsOVNrYUij2jB35yZ0W3FGKyriGVwg2XOggrs+vahUuSCZeEXMrxHQFJX37DoyZoi+96p9asBa6qX5sHW4u8yE7T7U4/PmENMdYMRBcIHbww3P7u5487ji0sC0O+DXE2ncMwwj0a3EMDIMt/haCXjSdEPY7XHziTDe4HYHXC5KgdvfKjf5eK8NZUhQMr5W3DBpIGZZlWuPNkNSZbOPDU6Ys+oj5mXlfD7z/GkiBNjvR8Yhaeptu6KhRkWSS+sTEJTCFwLDqHvRmhK5ZpZ8JtQTqc4MsRF9Jdi60vd21+1FBbr97OUK67+9gxS0uRyTaCMh6g6jz0a7cvgxXYf0xqMXORpC2uic+f6U9Qakf0G2e3fbrr/Dr1LLNqnpjI3anZFq6xfBCvi2UXDowI/hzlih1ukhugZZNlXHc5w2LSLdXbOZSYRSTKo1Ny7o+5WmroK9ANXrIqiBR1BDkab0ZXXKdngxYNK+t5qjXLTUahFtmKozMwcu9KuezdWNS4IBVQ3VidUrdzrQe3NdM9+8fWDNK9os6RRUE7KVDq3TS22i+/3lQy+A+y+zk2/T1D7puKbw9b/eJiFcGsLdfk9DM4ZaFZw0C8+7Nj94139r+zuuJxqwWb87x9O7G24Oe0SEaUzIdnxaZ8QYGYeBJ09uOZ9nlnWhNQ8kaI3RzXzwxKTBtZGbUh2XCrmtlOo1IdzskFufdtj9QjNgoLVNGLvBAWIntp+TrXy+svlFm8dNXG73uv3FpfHcfq+7nBfTGSq4pEBRCNacePPis4PtgbQ9vBK6EYm3e/cyAdsmqk5dYLeD+Ravb0+XSonurHTpVcU6cyt8ymr5FUGVuducsQsVK1RnrgFOr6J9EDr3ufP4RDZbS5x+n/rG3zC5WzsoRQP91UxTAJqohzHaveblDLUSYiQOA84Vm6hccf7MAzq3wjKfN4vL4G0hl8b5fObh8UguhSFGUgybFW2I/WbuDhcOoW48OBFzcKiFNa/c3rzi/fdeUMtKioHbw55xTKziLYTM1M3DQIqRly+eUYsWXudZKVQpBFqMHIuwFHt4t65eH6re5a6l8cu3K/dL4TBEjm5HGCeWeabmzG6aKCXz9u1bcikbciO5sC6LBbcI0gpP3cKPdo4HBu7LwClDTQPf//v/Mb/1h/+UmyfPyMvMZ3/2R/zsv/rf4x8/5/Dh3+HVx58wjiPTODCkSM3KBd9CfmwYHaMu4r0h7ePH4LAG0W23iU5aFOVrAjkX1poNXVHNgwa0VXP00dCzNReWZcWNyfi6qn2opahhwemR9fVXSC4051lL5jSfuLmb+N7H7/HkZsR5Ra6XPNNKJi8n6hzY7fakODBEtU71lsLsvMM35fojmvMaYsTHSQvJoq4pm1VpKVBVk7JmRZDit6NB/q195bwyL8r3dcFTiqKvwTmWddUAyhiZ0gBOC65cMqU0vS8rgIq612VGJNt9b7RKaZSiwt8UEiF6RfVaASrFUO8YVPfUXXu6OPv+eOLh7VsNuPOJu6d33Jh+qhqNLzhoTU0FFPzTsfOQFAxILhKcI0WjxuTCw/FR7bBbVVHyWBjN9AABH3R6NQ0DudVNROycNsXJq0i85qKbQrvaaHUP1TXDKBXe8mMcnR6gjUSMESEwr5l5Xm2rEiqmW6lKC3IE/BbcZ8LOprqFbGupC45pHHj54inf3P8SGHCiPu/7m1tChCAwTgdSGuF8Jo4T480trgkMI+nmqerszidCGgnTgbKcoUHYH3TzzItSNOKAaxWWhWbPjK8qUhcXcH2CaPq9NSv1bBy0URyHxO3tyGlW965aFTmtQTfjLM0a2kCfQwzRM8SBHRogWOsNrWaW9czjeiLkmeQWklu2kNON2rkVFu2qsu8C3E61ssbS905UqTrdwUqBMLGcjmr3Rp94XGk6nP53zzLZdAC9NtnqtF4Y/v/i6f7/06s1TZG36URrQmkqeu60vj5VFhqtKVKvAZk2/RNt+ZQqaG6ZiOYSYE5TYpMhOu0FoFuyhovttL0XNsloaHOoMo6uv9C9rVW9NzrWKujx19ZMe9e26WSn+KgZhL5381ondTDAew2RraZn6HbV3aVM7OfFmq1SCg+Pj7x5+9ZYA/p7lRngdCpask7pbN3o2Vq7YaCs6wYAXRpnj+a79GLXrpMBK9d5LmLHcJ7P+hldYDft4HS+ADV2LptcWXrb89QF8s2akF4I9L4yeM97z5/x9MkTYoj8nR9+n3/5b/+MTjXHJo/eO3a7Ha2pLs3rBwZ0jxqjZ5yiBuPqLWcgT2MtlVyxfzty82Sx5w9tOlQa4O3R16bjcv9qId8nXlvmTZ9ybE2FwQS9ru1Fj7v8zHYdriY8/Wf0N/TGAZ3Ot96kBQU6GzjXqXS+n3pTKNgC4i5UsH5c2/t8i9e3bjKkKo2oC+9UzG3HYEIssckFUjZhuCBgNy+t4XLWldgmEYJ5pK+aICg4G+nYA+w8LnauqRZg3S7WnloQc5tCEc28ZvK64OzhcQgSFCl3peBoRDdAUEqOWkK4DkbZubVFJ2dFA5zatz55EsynWy9GaE3pE9NoRar+E4InxcA0KX+7lpUxBvbTQF4yd3d3PLm741e/+ozbmxu899x8+gXn6khDYhgGyqoP1TQOfPj+ezZZcNw/HjnOCw3HMIxkWZhz1QeBbQ/TR0+giPDZQ+Wzh8JtCpyI5HigNuH123t2+x14z/3rNzw8Pio3OTjWdSFGtbSdRqV95XlmHBbunLB3lVCFM5Ef/u7/gD/4T/4Zh9s7Ws188/nP+dW/+M/x97/Ex8iz9z/m+cuXDCEaWhSoThuKEAIh6APQLNTQoWPEsiFKso36ug//Wlb2Y7KJk2UrYPea80CgNbeF+Mm0oxQxh5liqd+OGALTMLCumXWZqecz7XhUCsK6kJeFeZk57Ad+4wfvc3d3i2BuRy0rPS044pAoLeOoxBQteLGpTatzpGHAW5HqDJFyNm3BdAStaYJ1CJF5VSqVs+nLNExM03dZ9g1lXVUTkEw30RoxJYYU1Cu9Zpx4sm2y3itFKAwDKWoOimaaqBmAcxowl3NWNC5pjk0tmXNR3mmz5j/GiI8JqQpcqHNUNfoC4Bz7w0GPJa8cH0/UdYbDnhASg1koO6eoc4wDOLe5ZYnAMGhKeYiqFRARfCi0WTeMyGA5OJry7a3QDCGaC5k2ot3xrNQCRRiHEao5ETlPCAnXLja3wFZJ9sKliRbRARVZBhMZLjkzLwut5Y064rqzWbcq745czuENVZcttA+6VDnEwPNnTwh/8Skx7ijLwv7JHXEYkfWBuL8ljXcEEfywI003eAFZZm0iQqIus7Y1+xs9nnXFhwF8pC0zUjNh3CmtoMwQAzJMas1bKtUpQqeOgeiUosG6Kq1ptxtsuut58fTA+tmJ5TSTvIoX1V/As+TKumZC6lxtMVtUD6h7jDRHbYlh9DQ5cD7PnM9nzvnIGGYGtxBD1wFebEY3sey2+XfUsk83MGDNJlTeEzuyGWSzzq2GOmqyr+o8WrOQQBOTV6zgcc7MDbq5hENc+xsVCH8bX+dZTSF6kdVFqmJNRggK6PXpeLWE724IoVTaTGmNEEcGS5t2rnPQK2vOZlmPgqsOgo+kNOiabUFstSpdvFuQhxDNYcqKObnQZyFvduVlQ+AxgXXb1v/eDKmTnQaTbi5joKh9cNu+128TvcaVUpQ3rLa+HYiwz1Yyp9Mjj8cjmkGkTYJ3AeeUKlrNtKeHc9bWuDvs+Ee/+SP+9R/9CT//7Atrugx0duEytbi6s6RdmjRgm0Agojz/VvFBKcTKUICUEvM8X9XMl0nFBm33ie3l6aJPp4L3fPzhBxz2N4xj4jd//CPG9H/htJZ3inMN5DP78c2BUGu3NaujXTCWjBexnLfIxAU7rxbUqY2HsGTI1bGK1+ycpmwFhcC0me0AgOa1XK5np0H6Tr3oYqK/6lndvtDXEH9pTuz7Lw5jtob3H2kXfVZzzWyz++sCQKgsuk9JumoEBXj5K47pv+f17ZuMXFXI6jWS3YV4GZeZPa2DPmPbuti6WnPiQ28U9QiLbm41r+TlpFODaHkQ0ihrxnlPc6pV2GgF3m/WXM5FXDQucUOD/GiEFPUYwcJ4QPBIzvTuTK27ik09uh+ECrxjjDjruJtc7OiGSTe2dVWNRmuNYVRnBhFIUTnj0hedpmP3/W7HMh8ZkzYZSCUGuLvdc3t3w83tDc47hmFgPhfjDCq/eCmJmBKvXr7kZr/j6d0tD8cjf/Rnv6DYQkv1LF2/7i5UKRBK87xdhF8+apq4gj8TfhxZ5rPaoolwOh55+/aNahiiilgdVvQ74TzPRO/Js6cNkWMuDG7hyTDyyU9+n9//H/6PefnqfeZ1Zrl/yy//5f+Rdv8rmghxnHjx0Q843NzigmMYFJV11qkptUMpAT54oo+Wk2DTGvqoE3U3aH3RVOQxeBVCIaK2ti6o8L9YkmZQO1JKtVGuIl/FqBEiihICVMsLEDxZIK+Zh+MZN3i+94OPuX3yjJAia15YS08Hjx33ZBgGhmFPiBMhsrmACWw0wJJXLSJFpyw42ahUwavWxw8wDZHob+3YhOivnrnv6MvZxtmk4YJnSJ3O5IgpbMLH+8eFdZlJadg4oK2qOK02TWoNNgl1Iog1E/ocqyiu1pWWu1YiWBOStKEVbfSC86SYDOQSbnYTre4pNfP02TMcnhAHo0f6S3MoXQztGMdgm45qo2rV7JUQtIEcosfvduSStIBZF8q6sq46sdLCIzAOkd1oYZPO7AUNYdM1rkNMhkz5gHUCNClU45H3IlaRvUAIem/3tUldu6oh6b2Y1vuqGgVB39ZtpgTShGpp4ylGXattrH5z2HPYTRdqlR+oy0xwkTjcoDtfI4zqrV7OZ23W4o46L8iaCWnCh0hdznquh0kn2euZEEd8GgkmhJdhp6P/uoDzuDDiW8NLpYg2bLkuFqwIu3EgGo3g5mZkvztyXo7EMSDBkwyQKUV58S5EpBUDWTxpiDhpGojlIaWAr4oyT1Nkt7sjrzvyeua8nvFlYfCFaVSBJWhTzGZdautXUdRYLFV5PZ/J5xMtr4Rxx7jfE6Y9aZy02AxBDT0A6QGSIlcFj94zxXQeFU9r3TbXUfuEw8FF2/Hde83L2SzN9XkMIRJCpyU5XFANSzMXKPEowLlRdjyeiBfVd55LBmk4p3XAmrPSVH0ghoQ45bUnm0orzUXIJbOus1KkmjaWwzBe1pqYGIZE8smcEC38V/rktL86XUrvi54j1CezONUX6cSjKJ2xBtUaOE/N2UxZBoJXBok64SkbQ595MQA0b8JunNu0frVVokt0bUDXgXaN0cfvPecf/8O/z5dv3vCLz77cJgv6++3cYnRmWy/0daE+AVt4vXeeaRx5uyxkAwnWklnX9fL9clUs98mMTUa22Yi7AvFFmMaBD957pXRrHLe3t+zGgeOymq5Aj7dUjRJYu4tWVYouItv7dGB7a+7oOgY9thAgEZikX7eur4Js9LvFpo6l9cmj3ZudYmX02H6CNvDBbeMEes3a6VRXbZx99rZ1PtvZ6sfO5Vz1E+WN4bFNKrheC/p1tL/GXy6ane9+rr/t62/gLoWOvBHVWAg6vrZOqjVdLPWDBXqCtncaQLQVWdgN6JR/2momRt24N558E0K0DlWcctudciE78VRNYAQnHmLQwYP3uJJ17GVCLD2r6gmPc9A0TKQJlLXQjJfYzeekVnxIeqJbD6JRkZhfM0NSbn1IgdC8eumbYP3KBEvHl61yPj2acr8QUuLm5sY4iJoIHizfw8eIago6mpI3VGscBqZpx/c+/pi724MJuRN/8vNPlT/MQPPzpWu1cWBr8LB6Pp890+BAKufSuB0H3tTG8Xik5qwbXNOmKka9JWKM+OAZh9ECx5RjeDqdOEbHW+81J+OTH/H3/qN/xkff+5i1NmiFz/7oX7F88Sfqn9+Em2nHs1cfMowDpbG520QrpoJdd+cqwekmYR2FUoqc24ohRPC4zRWnOeXBJtFxZqeUdZSjtkJtojQcK5xKrZS+kHtHzoWaK3VZaKdHWlkprXAslblCHRI/+OQjDndPKQSiH0lTwoXJijnDA0T5rJpzEhGpNEOqrxeGJvB4OvLw8MB8PuNc5Wa/4+bmFpcmRblaI8REMtcibyhZvdIQfRdf026vTmh5JXpFrnC6gTRDojXILODSnpCSirXXBSTbOqlaDYmN4JVDndJoIU6O2G1WvSMXZ7SAYPoKvxUEisDpkt/svuouPSEk8Lrhd73MME6GDnYdRW/lteEIKSGosFHpGYYUOi2yo4cUImMMNKwwrKtmurRC8EJL6vYxmsarmoGEIp1FKTM1b+hn6bkc9n5i59C7ywRvSMkct2RDujzgQs/LvmzqLXTqhJoN9AkARtvShsjWLSuIpiFxd7vn/nElHp7pml8q0+2dQjd1xscDPoy0+aQgyuEOaqUtJ1yMpP2tavzWmTgdIHjW8yMOR5z2hh6vEBLEAd9MeOv12fNGQ2qGPJei5iFDdAxDNDG8I7nI02d7jr964PiokwxnpoTZ6JtIpeaZNNikrOj1812TUmaw+0BDcTNxjOzGPes6sswLPjhkmDg9PlDmB4KcyPNb6nJknU/k4yPr8Z62nNQie50p50dknZGWcUS1+N3fMd69JO7umJ4+5+7V++xubrXYDYqAKhffk4we805WR9WwxbpNOrqI/LsLVsQ4msA7UEWzaLxj+6zO6d7dQQA12KgW5GoNu9PQMzETiCZtozyOo1KcEaUM+RDxXg0iNvTcqZZhzYvmSs0Lw5B4cudJgzcwDHKGlIQQtAFoBm6t82KTAKhXRX/wgSElLUANXHKWDfTw+EBeZ9MqRcZpp4yAkvVeHHYGmIhR+8oGhlzTv7xXJzlpgnRdmHO2z3QauYWAmhXwh6+e8/L5Uwsp7ef3sgJeyDT2b++sLuqiZoP/uztTKzjv+fq08qCxR2Zhzzv0qsv8ov++C6Le/3zFFOL2sOfF86f6/iLs9zsOu4mv7x91xbZpbjNAwVuAqeumQ/b7qj1Hnt5AKQilAFPXhtpRWuOhYCeM1my11jVWwpob2RqQtaqFdRFvgJi/cpHr+0qnhF9PiFRkvhX629ji8j2XoEADojpItDUkvU1x9nmu3LJwW828Cfm9u+ifuDR10k/Ut3lev9V3Aa0U1V9EdVhppeAp2om1Ci0bMhYVXeujpjGRxulKc6Fo28N5Yc3Ck0lHV9qruA7Hq1+9UaLm45FSMvubW7W+dcr11RPUZzt238VIK8q/VuW8w1liYucgtmrJkrVqwboJGlUgHpyjlLaNS3GQUlQEMveN11kAltdpSOdUigq2+tWd9juePn3CsqxIadze3HE47MilMo0jt4c9Tw437KeJaRj54s2JhttQ2s+/+oacM09ubnjx/DnTGLk73HBzuOU4/xe8fjgRpdGMm6ndunbG99nx5aLisRQd51X48CZyT+TN2yPHh0eqczqxMYclTfss7Hc7cJ7dbk9MkXVZdLOthdAEaYn04hN+85/+T/jJ7/yuhtmdZu4//Tlf/dH/jbqeKU035rsX7/HkvfdJ40SbzypEMu62XnY9V74j09vUznIJbONQcVegSaVz1YNRTYJT+0fndMrmcdSaWfKK94MJ8y9IkUMnWGU1TndeqN98SXv9ldJvGiznlYLwgx9+zAcfvm/GB1rUpJAY4qhps1yKZAF7UIUANGuac545n486ySha2O4PE2mITOPANOwYzSrYe6/WzlymUyDqRFW6yeV386WDBRVpa7r6oJkyqCVswyFhYL+/2dAl59vGgXb2feu6klcLsDMXlpASKY6bTZ/HsXN+m3D0wrjUogcjDpHCktWJyqHIf6cfOBdUCNxUz6Ne4bbmmU5IQ9gUjOjOTt45kvd4G8evpXGaF4YY2O/2+OR1kpUEkUQP1+ubfJMuRm1byN9aNHtIwwgrOV8QuE3w7QFDocT7jV7o+vHadtIngd6rY4r+TpDWSKELS5sJNI236ztyrt9XlrptMiLCh6+ekZcvKOcTp3xi2u2UTnJ+IEx7QpqoqwbzpcMTgg/k8xGPJ+1vabVQHu91DXBQ5xMBcNNe0d/lTAsRP4z63+vZLmGEWmg1UyUqilzt/lgWnj0Jmyaj79m3t3tevCh8+foE597ImdCyKQqdx0xYTvgcIai1dK2dXmJFj3S6XwRWQkxqpzsMDOOO5TTz1S8/5Rf/5p+z3v+Scv4a1gdcmXGtEqNjsrXQNXM0FBXArktWgkWInLzyu/104JtX3+fJD3+Lpx98n92z5/ik11ibRgfBE5tOh7XZKErbbOpkVZujVncxoPgOvm7unqK7gyMJOKnQKkMMNsEwpy10uig1MyRnz3Ah10KMgTElWtBJiEqEJjUrCBGEq+kCuke0uk0SWqu8fvuGx/vXCML5vDCOIylGdqL7S6mFGJpSQP2yOfTU1ljzTMmL0Z2unsvqiNFp1lNIVtCpBmVMkRjUzrk2gaag4DDtNne44HueBSQL2VOmuk7xm50ntUrXddFfodMxRnXpc17XR2AcIj/98Q8VBOPXhNjeXfyQ+uTD+Kd9Qt1xcOnIumk9sOanAaO5amLnyDbSbcKqwLTfpqz65lu1qw2hU1fKcYiYDp+72xvef/mMv/z0SxqmUcE6LbrxitYdyf4+hkB0fssE6vqW63L/aubARop03WLephDeqEUR9qNNHZuQq1pYZ5s+lqp0x0awwE7VcIids4a7NBPbZ+5X4jLKuWhwxY7q4mC2XTFn/7NZ0Hb75quZxzbFcKZO4/J92/sY0P8tXt+6yXh8OCmNZhwJPlLzQoyFkAL4YJuDAz+o+Nu4dpj3OuJMr2HZAG1hckKK46Xd4jKOwcJaxDre1EWS/UxZQqRuDnobCygysSyUnBVNRjvM3s072Cw0nXM6Lpvbhtw7p+PMHraHE0JBb3BvFKqGCUe1EFTXIxUm49QyFueUE4zj7vaWN2/eItJ4cnfg6ZMnvH7zwOk0k0s1UbU+5LPxTYMJUR9OZ6J3QOV2N3IYn3OeF370/Y/57Z/8kP/7v/kjvASEAZEVpLEUx7lGHltiP+qDeV6E5yM83Xl+9k3hzf09yzITpgnnPTUXpmna3LNCDBwOakcZjHo218ogqndou+d8/A/+E3779/6Aab/nfD7T1hPf/Nl/TTt+rYg0jnEYeO/7v8nTVx8QY2R11jN7B9Kt3/Qm7kWSD153zeqpNtqMJqjS66hc+oAQnSdecTrpBbo0pHnNcGzKYV7NHtR7R6v6vJVSoFWWhze04z1yPrOumbkJeZn5wQ8/5PsfvY+PkXVdoQpVCq5FWhNSGkhpUGTMaFd5WfBSSSmyWV161edoME4ljiMxDYQ4mABZi4JW1UO8iQWJ4awxUTS/tsIH3/ah/Vv4ev3mLTHIhkTaPIl1nTmdzzifCFEXtFIK87IATbnFTQzV13MkrZFFC2+H58nwRAMljevrndk7to5hdKqQTjYabJxt7xW9F2d6htbQNHbQjiNoQyFsvuEd2VC6ijbUaj3skBB1kpAm8IlchZgSPo44qSi7z5jEzZuIVBeQVhtVCqVpg1Fy2SgZipgFwhSuNhd9jjpVSpuB7jbXaGXFS1AL3KDUsNyHvEahidZA94IjZ6UXRDrFQFibIEW/jjl6dSrb7e2OfSr87F/9Fwx14cmz5yw3N8QUmG5fkKYbXBP2+2e08wx1xbvA+OQFLWfK6YjDE4Y9Na9IE9J40PdZH3HO44e9CsbLqufNQjcpGRGH84HoNPhO3fEK+/1e8S7R0ELvHD4GXjy/Yc2VN29PtCqkYdR9NAQClfUkyKqOgHEIVAO/lIYrRjtRamtZTjQpDOMNa25En5hrI5+P/MW/+N/x5b/53+LKGSea+zIltUoti+PkrMkQpQBGAy3WJZNrUxMMBy1X2sMbjl9/zps/+2/56oNPeP93/0Ne/Og3SOOEOHWf66JWtdCE4EFi28wCumC4Gwd8F1/FKJNgFMBaoSlToFpxFkIyVDcyxmQAKPgoJMxw48qpqTfqtVULEla6o3QWBui6URprVgv9abc3wFF48qRwnldaK3inzfm8zCzttAGmrltAt0oPf+0hf9734/E6WS9qKCPmEiUipGFiCury5gRCHIhpMLBDAVLoQu/L+WrSA0kdziViHDdqt04IBFDgYr/fM4yag9XXwee3t3z8/iseHx/58vXrjUaE672C26YfDqs+nbtqEC76Ge+d1TsKDnZ2S84KoE3jSF4X1c+aJqEj8b1+vqYsXQwWlOY5LyvzsiowHDzP7m745OMP+Bf/7Z+w1k5F09+hVueLAlA+0CyH7eawM4dLrcF6XQ69tbV603HVpPXMFJ3YNEtC15N11cw5iNEzjeEy7WhCrZBbYS1CLqiddXOU3nSYmLw/tqIomDYSv4YX9CnDNvm5mmy8Q7eRy4Rju8sNYXPuuo26/sX249/mQbXXt28yHt8SYmAqE9O4204mLly6o37l+8s2BP2yKe5peNe4meyt5fr32J9tCoL5yI87fb9Nga9nztynGoiOD2lNR+7Y4hy6YMVtBSBmFaeiOXUKQBR13jh/9jmK0RJ6c9Pt7UAfFueDFTuKeCAq2GugrkBqcsJu1FyIt2/vQYS72xtev3nD2/u3NLPDHYbEm/tHjsczQ7mgEbqYjZScefn8Kc+ePuWP//RPub3Z8R/+we/yZ3/5c755/YAET2lwykLGU3wkBe1Wl1J5Elfe2zvmCp89zBzn1UakKsReloVpN9FOJ6NwOaZpYpp2WvSWSnDCLnmm2+d88Fv/kN/5/T/k5YsXZNMznN98xfGLP9/OcfCO3W7Pk+/9BvvbO0VKrCjxQYtq7yybwowBxK6DF0WnrdOkmpjNOU023jp0G+tifuF4t+kuvInfulBXR8hdIKgFbqmVMp84n04UoHil4szzmSfPb3j16jnRRuMpOhP+OpCiqDYFaIiL272iugq/LfbNdBm68EacK7Q6UyTb/TrhQ9LP04o24wjrqkX2si6AEIM1sN/hV8kzIhHnIympkLrUppM+hJIX1rySDFHbjdEmjDqV0pEumirtlXZYaiX4hBCY82qDVC32dd309FyVbnuoto1KuXFGmRF7zkMIDN1rvyNl6PeqcPJMyYuKtVMHCCANE+OgznDqM66NTAiBw24HTu8t79XdSlcap77q5mVYRcW/1bRHDnVF2tmEQ2uSti23fbzdE2LptLNmEw6RrXHonwE7F9q5QXBxAzWKiUP1Xg02udPz0EO0gvm/i1S86PkTnIZXvv4V5fgN/k2iDAMxeuZhIqQR5xwPw4407PRRTTvGpx+xe/kD9s8/ZLp9rjbENZOGvSK5ywPg8NMO7xOu6X1CHKk4aLNd26SAQqeSlYKjcLMfCGbioY2mnrdpiLz/8oayfsPr+9eEuLdgxgQMLCUjY0YYKcUK1xQhO8o661o2RKQKy3xCWmM5zwzDnqWemHYHynLPev8pTgoh6MQ7OIjBEZ3SPGutuNoIQHWBnEZC8Cx11X2lFCuuRAXe85ny5p75zTeUhzfk+Z/y3k9/m+nmlj6B6sikFwzMCTRvv0OaoqTfYdplqz0wV62US8+YWNQMJcaBcbqYxYCCC8o+8FY8dyzYUP5WdUK6nEEq+/1eg2kXtZYfUwKEvK6qc6lFKa1eqUMhJHZToFTl+Q/DyDTtN6pNMVviZk1Mp4Z2Kq1rF5Btzerw1iSBCyZCv9hK+xAYhpHUASygmENV1waIGA0Zo1q2tqHXuahDnWIQmqvgzJxHQ0zZXJyi9/z0k4959fIJf/LnP+M8L+hRGtGmj32tPuup2nalNiaIAm2qo9PptVLtYwjsdjtKLozTxDAotbOZZXcPmATDos25c6PtdHDR6ddyKXzzzRvWNRN3gf1+x08++QG3+x1f3T/a/a/1YW8yeuXuvScFz8HMejqdrb8uhbc2Gs4ajXcqbgMjOptho0rbNEy/R7ZzEoPTYNoIE0ZrrEKtmoy+FqVYlar0qoYCp90ap6HgvrzTWLp+GNb86QFassZlEiOXKyUG/tpDow0pvXW7zG6uoQn3zgf/73596ybj5QevNorAVmjpnWMNgbMTaQ4J62K2fFZ8m03f5q3hHbjY7xy29Mxg31PL9oFxHikrmoVhnMGmVBcRpVI4EcTQxdAnK96r65WOODifZ2iZcRoVlcxlsxFNMW7x8r0LbF0U7i/UCLE7pmR9GEPwlgwJ1e44MdQgppE4CLvdyAfS+OKr1zjveXJ7wzzPvHl4IJdMLplhHKitKkpTy4aSedOXaFhO5e4w8eF7z7l/fOR7H77iP/6Hv8v/5v/wX3A8L5wHTRIeUmDwwmr5D7du4fnOMUXHl3Pjy4cTlJXdODAdDtSq5zDFwLpE3OQ2/YVYcfH2zWsGaTx/eccPf+v3+K0/+Mf88Ec/IqbEYuf9/vOfM7/+dKN/BO85vPcJH/30t1WPsWSlkpkLWDC3HszFZbNX67yMJkhtiLlmBQfiVKRWQZPMQ9gEaooWeLOwhOQ9yYqnbPawLqrl8jqv5JyJCLLOFHHkNFKnPXXOpOB49b2PGXcHRRitsAHUaa0Woq/qIFTP1rhEYkg2hbvikHrj+AM4YSAgbQDUbrXkSrRchjROypZuQkyVOIwM60wM3viw310EEmC327HkynnJLNnEsK1RTJslRifIy4pbLQej2YJt4l1pTdOgbWNxArUWTme1h+4UOOcVGFBXr8gwjFr8dwTH1iKlS9gG2wSiJrc3Me2Z68FbutwOgzbwxaamYtOx7G1qOow4Q5K7Q0sMkSKCasvsZJizkzY64PCGbG3GpNoUGQiVgick1eXkUsynv1rYm43qHQRxiLnCgDbUuM7lbXgXNCtD+3TTMXhqK8yLCkNT9BSPOnFdNTDR5uSNi+A4OCH4yDCo21arBSkO8Ua3WjIuG1Vw1mPrwNT5q3/H8Yvv8fEf/i/0XKwzaXeLi4m2nnU6sbtTPU3VEDYXRnWUymdaKYhPeOcRMtmyDPKy4Mjsp7QVbxsWZpPqw37iex89B/mKr79+Q44DpY0MeSTGSPOVUhUkiymRJFGy6m1CCEhRG1xqoeSV8/GBm/0CeJa6cHr7DcfTmTVXvGsMXt2OSmkUK6JqrUQrCMHhpkT1WjiMSTn81cCZCMxrIws8nmeWv/hT3O0Lnnz0CbvbG3oe0gaW9SkcfcruCFjT2P4mWOTfrlfwmB2np9TCsuZNm9QBBdqgE7dWzSFM64LoIbfKkgvncsLRHaiKWhB7wRMYxkHXnVagZnIr2xrgfURaZogOF0dyVqqcIOSs+00VIdIpKXbMDWxEYq6XVihudEcLz7XnFBFqy6hpgKhuqGZktcmp8/iSTZdRKa1sTncgpNQDYi3w01w6tzRoAweDAX+1Fk7HR7PTzTSpPLvd8w9+56e8fPaUP/mzv1DReQja6MGWOeas2wnNMmKumCndBruXiz70ZmOktcrtzQ0Pj0dqXs2hy1NrNyi4Euz3pmwDW2SbSnQg+DQvvH18UJ1bLXg8P/j4Iz587wXf3B91DbO6Y10WM2bQ2rU1NQ06HCYttLloTQz23xr4S6mO4ert6j9U14cd30Yn4zI5uG40tiZKFIQIESTAKGZeIJiZgzaLuYpqOppTFyuCuci57d96qLrOdj1O68evd8R2fbDDEWRbH7cGY+tc3Pb5LrOj/y83GWm6wTnjnph4hiaXmifoRoY0fNIHCfNmbqUQggNnDC8XzYHK6+9DoGa0QPesyxkvVcVXOAjqNqKfVUVVda2cTyeQyjTtiM7jjUsorWxInDhUM+ICu93AfMzUVRG5ZVk1OyHp2E4367ClQHofrekR02eY2MmE5NtY0njcwR4CDe/RC9D52vtpx/PnT2gt8+rFE16/ecPrNw+Ukqm1cTyeLPVTg/1Op6NyFNEmaBxHbm537PYj3//+9/jFrz7De8c//g/+gK9fv+Hn//pfEPyZfVTv7KVWRincpcpuUORsqcKv7lden2Yt8qcDISWW85ndbgciTLsJ5wIlL8yzUlikaHbI3d0NP/zxT/nJ7/0jvveDT7i9u9Niw0FeF97+8s+p69lsFoXh5gk/+L3/mGcffEhKySYzmrKN6KLvgt680rwhuvaAmhmvN+GR6wmVtM1T3gWlt1T7fV70QY0+WMh8UzvBfov6yBCEJSwsCHk5k4+P+KZZBmspnHOlpsT7r17y/MVLfBy6+f32kHnbKHRD07GnrikFRF2i8jpD00VTeeTgzIVK3cgitEqMVjz7HnKjj24IHlIgDRH2k03QLuPS7+qrNWFZzoxDJIWRWqFKZVkXzOl3Q9OdD6RoehrU7jiGSJK+AWsT7bwwBH0GpXejXFC/vp1XK0Rqq4bYOTAqpaJWmn7rxFFLYcmr0vJsE44xMcSAj5HSGkvODE6pk7RGs4JlzRXBMw6BGJNt4ELN5QK46O6rUxdb2Jt9npxXM3cItuBbWKB4Ak6bk1YscyerM4xXp64Yu80uRsEwY4LeqfQpBo6W67Yx1VrUNc/0KrU2VlZ8sTRy1wXxtq42LZQ1S0MnkaXq9IVm7jadDtapFa4DOFrceO+hqZ6i1YrkTBoPhGGilRnvIe6fKK1uPeraOhyAQF1PimbH0aabC854w60VSp65vR0ZRgUGLjuj2D6l/7nbj/zwk/e5u33L51/ec3x8zSKRYb9jLJpRRPAMMpHXM601EwBHzssJJ0Iakk6i2so6H4lx4DSfWE+PTLcveJ2F5CohKfjQLbTXXIjBM6XA4BvJFVx7jXOeFC+0jFKFJWvDuxbRCY535CbI/gnjzUGndrA1f7026GYZrptVape+FRffxddqVL4Q1et/8Amfs2KQJpwezKlOxc/engu9V8fR433Bo/bZyooYCF5zllrV7K2lFNRl21FQdHkcFIzTabWeX+d1el0F1mVlXTPjXjjsdJJJq7Y/iAW/5k0nppfYk4ZBs3Cco3m99oIGADoTqeeiToSdhlvyijhnRXNgSJEWNGhUbArQn10FU7QB202jac9UH9FBVOcdy7JYLlHGifD9D17ymz/+hMNux26aeHL3lMdFQ/O8OTo65xinSV2uvCdET4wjS85bfZdL1qbH1uMY1HltHEeeP3vGuizsdhMxeDW6GUdyLozjQM7FQB9dU0peybmYWxdqgGTNR09HkSrkVd21Xjy940ff+1CNctDpzTrPWzPkYJv+Bu847PdbgN3WQPT1ozcJXEoCxZ3fRfvd9iUFGjs4fT1Z7hEDOm24/A79YzPM3asjZ7w8sNpsNkqFXCq5NnO0MvtqlF7VtmwOtca4HKHbGjZnjUd/zwsVrk+M5FJAiWqd9I/bJ/9rX9+6ySjHe7TA8wjR0DBnpE+giCEkRUdaPup0oqgVIIstAOOAS1qgbULv3tLReX3gU8LFjv7aBMO5zYou7nYcQoSWVWAZEp2brI2/mNi7C87NNm3aEZJGw4+TooUhGHk1W3cshjYKhGTiboFrR4HuL9/ERHdOF/hSskb8bl2vCchq4XY/cR8Dt4cDh/2k/P1cFUktGYf64qvFWkMSTONASonnz55yd3vHkJRT+ezZC77++iumceIf/YO/j3t4Tfr8j1W50DK3EVLQAEPVR8BphV/dL+S8stvfsDvccJpnvNfzkteF29s7fPAcH+B8Xni4f6uFsggfvHyP3/m93+eD7/2A9169Io2JxSrDui7MD2+2QiMMO1799A/46O/+HuM0buNX1R/YNQ2B7Ynz4Hy31bSHw1V7ki8PWB9uBa8LuBcT+BVFJBRp0UW5tov1H6KbRCtqW+ylEc8n8ptvyEAuTbUYy8zT57e8//IZQ9KpS6moNsgQTM1eMIoGHkTH24pcXxrSbgCgrj4FF41G5b02TbEnMjvl3i+zhkg6IYYRHz3OUPJuBvNd5lIDIEWtnPc3Fl5UcT6wA7D7Pldz6PJJufLWMGyZKl5RomXV9PDgdQQv0oghIEkXQdULBHUaQWhFJxylqsg7WqOoNCRdJwRHkQVpylN1wYbMoi4wZc34EIhp0BApsV0uWtGMCR59ookW684r4uqc5s/0IK4O0mzonDTj0HuC68W9V0qGFSNC21C6YmBIa8LSCrk1UvHEEEghKu/aPqPYOtu4cpkJOjnJVRsbMYF7cF3c2Wyj0YLEG7ASnN671Kqbth1/zqo38mDOfH0AIttm2pwWAt2cwmO5SGVWh6TdgbycwMF088zWlgdrMG6UI18WnBR8mjT4qq6olk5BiFIbuVRuDpMKXE3L0tdk6FMsNTMdhsh7r15w9+SWt6/f8vr1A4/HNzzcV0IcIHqGaad0jxgZxoHVOVrJlstSWVfV0uEd5/ORlgu1Fd7/0U/5+hd/wumLP7Pp98UafUyB/WGnLoNOaLngXCM40f0Ocy0T5XE7zIo0N05Lxjvh7Refcry/5+buVs+maxsKCb1g0Dubfh3gW2KQfztf8+nMbhqJKeB8IiVPjQFBqGZhHGLQ+7hp7oNSlys+sq3/uyHqZBudnjbbu3rBOQyJ2hqPR6UXpaiTauc84zDZVEAQpwYPEUjTHvGZEOM2WcjrSkyJcZyIKYAL+vyWTC1Zi+PgKAaYNXFGi70g0iGq1tAhpJiYxnED49RRrCgA0VkeRemgpKTaDoGSrdB3hmP3JmObMmg8QLMwy3FM/MYPv8/7771HSpHnT274B7/1Cc/u9nz69VtyVfrpsi5Mw8Sp6MRlGCbAMZqrnYhw4wQXLP/L8ouOpyMfffA+r957yRdffomjst/t2O8PxDSwLOpAmEtDRHOIUhqY5xO5FJa1cH//RgEjtL7b7SZudnu80wmr94GnT274Oz/8Pv/lv/5veZzVobC2qoYjota+zUwdxhTZ7ydlTViTIH39oH9RgQp31XAAVrBvMvDtGcRafC1zrZbcJgwmlt8ezH5tLrRoI7Zd9HNB1+7B2ENq8CAsuW4OVtXcq2rrM/FwCensR9ilBz1E8Soo9DK54J36a2uErj/4X/P61k1GF/pB0LRsbYVotbKcjlrMey3oPJptMd7emdjJk9cF7/Xr0a+0ohOBDrtILZsFbgoBXQ2sEWkNMY/pVvJlFCTarbsNujERhEBrGaligWjqfFVrVjrG2tQdK2oR42PUEf/m96w8TccV6uVUOAkNMUeXajSHUgrLupDXRa1qQ9huvhSDjrpD4MntLV+Mr5nGledPn/LpZ1/gQ2C338Oy4HxQPUBt27huf9hzOBwYhokmaNp3E8agHOj5fObli+f8xm/8iIf7n7EPM0Nw5uLrKaKncKnw+ePKr+4X5aze3HA6HTmXwqv3X3HY7zlK4/buqVpwVuHx8UTOGRcTd7uR3/jRj/nkxz/h7vaWu9s7RV2aomQNT3GJ6hJMA+//3X/Cb/3T/4yXH31sOgxvk+KwLWp0rksTKCZGlGoOPZd7HYxT2zRB/erLWnTKld+FjTK700Jv8kpRl5XzfFbE9nSGxwd8UdrUOq+czmf8mPjg1TOmaQQpusA1wVGUT50UYT6XonQa2CyDTTWsvgc+4qMHZwI69HN6h3Gl/eaV3uy4fQp4b4tRb5JtYWoNSl1Z1/KtH9m/ja/pcKe+4gSl6Vlo3X43UZswz2dwmqmjrDlhXmYrgPU+GseRaRg2DnLXWoBaLjtfyLno+aNtw1LntLEYkyXicqk7nXcE59WhRhrLFkjltzUK9Fp0MIDqNqqe98Hst3UDjWnEo+YUIXbrYZ2S5Kq8aIeBAChfPAW1TB2TCiNBp6BrUcvl7k4jBnA40fs8BAfiqaLfq3ti0MIbp3QRfXdAzOVFqZhSi2mY2pbrocVstefUinGv4khg+yytto0CVkrh/HhPWRcGB53Lu7myXAFiuC6CdFTnGfcvGG6ekw53qlFqjeHwBHDU9ajN/XCH95G2nnUvCDstqsuM0BA32C5fKbnQWmY33ZklrWyIK3ApFKwBEgc+OHa7kWl4wYuXT5jPC8fHE8fTzMP9A8vjUdcnm5jXvOrEYRwIUW1EXQhMQyIGpTM553j+/vv84O/9IX/0zx9ZHj4nSGEcIrf7kcNuYIgaPFulUYLTYsc0BrVWai6ccmOIniqO1e/xMdPmFY+wfv0p3/ziL3j5/vtquWsw6gaHbXWR3cO+3wXf3decNVgtDQNOui5Tp94xWh6XmMDXO6RctFcQNpoNQDNnxTVXcxnT+/p4POmEIEZu9rttrVlz0RrEao+GPvd5XVTn1SrOqXseokYL+/3B7HOjThiC7QMGKIDmcPSk71JW1sVqGx+v9kyjTzZv7yWbzqE3C1qM6/3fGmSbmEp3GmsaONnE1hObig2DOiXmrntzjme3N/zkk48ZhgQi/PiT7/O/+p//Z3z59Rv+83/+/+Jf/fHPOZ1nvHdM08j7r17y7OkTDnttyGtrLPPCw8MDD48PPB5PvHnzDeezOsPd3Nzwg+9/j1ev3uPnv/g5f/GXP2PNK7WqEY8zjUSfBrdaeXh4SylaBzx/9pynT+5Yl1Xp0AgfvXjGe8+fat0Vg05ax5Eff/I9Xj694/TlawOaKvuUaCK6V9iaMI2JaYhbT7GtW022eqUX/bqHGCXaavZejvepgd+Chhwbs8f2kq7326hgV0WPu56a9Bq5HxOmrzBBeYieFIQx6n5ZjVpVpFGrUTSbp1hwZ73O6jB6lfZAFvba+mG4yxtuTRbbXvhtX9+eLnW4AWxqYamheI+UxrIs1LyQxhFxcQuXogouBabbW6b9zg7eU8tCLUVHnj0joftXmzgboyI5p+PMblMoTXnTOubXh0xdhyoSlIOpjUizDUGTl6Xl7dy1qvxKL8bnr5qXIVUbD+e744Sj2ViuFm1CsDlYKZmcV70iooLOvrh7Q0r15oy4UZOe0zBwd9izzjPf/+AVx+OJZVm4u73h8XhS9yJRNFw1IZH9NJFS5LzMnM8zQwyKZOxG7u5uOX6+QIOb3Q1LiiYs1KKgp76WBvdz4c9fL7xeC/vbpwwIrx/uuX3+gt3ugAuBw80th8OBZVk4hTPrMiu/Oa88ef89fuMnP+HuyRNub2+Z9vvNSjZ4mG5uefU7f8jw4gNuXn7Eb/z+P+b5e++xmzRIStAphj47+vk8bROfEjzBRaNN6Q0uVYwvbugpbsvXSDFCUaS1iyo7z1mRKB3fFCnbaLu1RqUpTakWqnO0mGjZ+Lze8dH3PuD5i2ekmKg1E13DRc9p1iwRcYHdpIFkp9OZWlfVswwjq6ijTa7qajKMg763FaveCU4yFKWp1NCDeHRBST7ihtEa48UWPmvknKj94jL/jR7wv20vH4ZtYqEuY2JjZ3VpiV0kjW6KuihXljmTi268pRbO8xHQycMQzb0FT4ojMU3UsbIWHZdH4zo70YU3F6UeaAOp6LJmwiSci6Yv0IbASAsWxKaZEw5zmGpKfwpON/ea1QZbqaH9nhMGaaQ0mMA962+0jaNYw+AdDEHdhUQcuVTWcnGYak2nNENK+vzHBNhnqbpJekNhMaOD0kQnRU1deIJpIbq7WxNn0xDjd3utSHsBEoLXADKjV/X9Ru116zZJAcd8PvPNZ5/R1vPFxtG22tq0cQ6WaC7o2ooIaXrGsx/+A25efoQPgWU5Mu5u8DGS5yPeQ9rdgUvU9Wh7yk7DtrJlA6UdQaCuy+bW4pxjGHVqqluljaavCsw+ZRFBnWzQ5j/5gZQi/2/q/uxZlixL78N+e/IhIs45d8ibQ1V1sxujAaBACjCQZjLJjKZHmd71t+qNDzKKIAQI6AZbPVZ315jTnc4Q4e57WHpYa3ucBCXgwgwPldGWnZX3niHC3ffea33rG25vT7surxiVNedC3rbdBVDPloY0PQPqcs84TNwcR9bLhqNx9/IV/9U//ue8/+Wfw9M3TKFxHAIp+J2ioAi0XkvpdtwhMAwHDsNIE3h//0DxA8P8ilF0Anr6/KeadN5U3+TcdTqm60OuiKtjf6Z/zG3Gy1evKNtGE2FbVxzCNM1a7OdVG33n1M3NBZ3+CEhVfUtwouBUTOpqlDfylnfuem06Sa2talBkL+IdDGOg1mxNoAJNan+vzlI7wAVaiyB4q2FayzYt0TNVHBr2B1hhhfeOdVl5vL+30NHIi1cvOBxmBRW8I0WljJecd4ejFFVMHUPAO6X5tdZYc+Xx6dFqFXXzXIwqpJ/LAkFjIKXI06OCcjjPm5e3/MHPfrLrVWNKvHrxihAmfvrTB5g/t+myJ6XEYZ5svzAlQ99PamMrK+u6cT6fWZdFDW2mkS++/IIQIv/in/9zvvriC3IpeO84zDPDMKgtcBq0Dtk2Pt5/5Nvv3/L1N9/y7u33OK8W8D9785r//n/39/jv/pt/wj/5R//QslP6ZNnx5Rev+erz1/ztt+9oaMhua80Sxtd9InyYRuZh7A63aIlytXy+sllaV80pgNH/T65TDG82wLYguTq8XScGHdTukmZnaNiuTQW65qQ3Lv03uP4GdXvdWd0xeCbCXiOruxi0Knu2Umma1VF7SKAYxcop7U/3pC4od3sT1d/WDhR/wuvTw/i8HuTSNLDOKREOP0RuX7+hVS26RRxDGpTz5x3U/IPuTgHHRBwCrikdQdGWerWWNSG3o+GahUw18HGiW9fivSUgXz+51KxCPK9Ulj6FIJkjkVFzfGtg+o1tW3fXGOXwaRe4ZX0IkS5wLNSyqfjLGgENq9EF2cfvWhA2DQyKI6UK5EqpzlxzdHpze3vk889esuXK4XhkGCLFJiOneebxfFHk3wrzGHQk67zaCJdtYxgGjocDb797z9uvv6HlFa/0/91CtjTH41p5+5T59lyoYWBAWB/vKbUqlcnrQ31zc8s4job6m32oCCl4Pv/8c1599jkhRo6nIz44C3rXpZGGkb/7z/47cv5nTPPM6faOIQ3WtLFvZAGdEln3gE6rBFdVR6Oruz2vUWyzsDUvV8qQ2PXGFqAeJs1sbxtqAOh2PYdyNvX+u5Tg5o6aRpB7XG28vnnF7//BzzjMMw3llbsmzHMiRs+6bSxWYNydbpnniVoNpd79vR1SdBQu0hjSwJDSLkJUB4dm18BpSJMh166vD5T37oLRq2z7GcZAGuZPXbK/k69cMmLhWLWZM1ftbirXYghDeUD1Fr4HsjnltNdajXpk9Cls/AxG7QmMqYseseKh6t7lnHmjZ2pp1FJopbCJThTGYWJMgxbrJq4W6fkkYta3Cllo+rVuo8pT1ga4U6RKztSmzjSCOjI553bx5C5cLSspOGvK004b02ZMLbynFBnisIczqulFw+dCrhnn7Zj6QRWN0aXEQk37dXWIU2GxnRoANq1QTEsndGa7KUavhh0JblaQiTTevf2OD7/9Fb5VQuqggP2ufvBKBwSVdx78kdvf/+e8+sN/onqFWhlPLwneU7eLNlWnW0Qa1fQPfr4BH6jrI7Ss+ibnKduyr3Hn2F1qam07KNcFr7aBX9HC1sWM3u4TdNqD905DMV2ipxh3OqRVUtqENt2zelZArVoULZeV0F4wH/4BX/3+T6jn95zf/pbt/j1tu0CriPOkw5HBcqhCGgjOMRyPHF68Yj7e0AS++/q3/O0f/ztqzZy+/Blj2/j9f/bf85O/9/dJ42D31Jolu08OrTy0aOoNVWeK/zhfN/MIB3UAGqfCum4sWffckhfGGBinQbWRTXh8fNCmwiaFrudbObVqriWTgtc935r5ZOdWn2As20IxgbfSEbWArFkpmDFGRHQKKjbl8l5zdtZ1ZdtW25tQOlcarLBjd2TqYJSmVCfTqWWid0TfqaL63kXE7Gv9blG7GS1LXZIsI8ebsHk/RXrwmxkNGB3ZG32xdu0p8NWbV9zd3u7f730E1zivhXN2nG7umOdRcyVi3CnmyjCRHVAIEcZ55HSCly+qrR3TtJju7PM3n/P5Z280F8mpPsTZ+xJzzqq18PmXX/AHf1h4eHzkm2++5RKd+RgAAQAASURBVMPHe2qp/Nd/+BP+b//X/4Evv/icYRxNo3T1RToeDnz52Utl2ph7ZhfP98LfOTjMI+M47NQk3SfasywQrf0QnQh39vJz9YP0qYTTpmSn75tb1TPVxv5MX2vkZ5X887+zg9E5+0zSWxnZpxB9Wu3oUxGbeIgnBodEMYBX9rDBTrUqlp1TxKnD1bN08uvUvzdEn9hd2Os/gy5lh0XN5hFvYSUp4FPEDeb3L+CwIDGp6hKl1TIEh/NJdZk1WzKXp1UtNkIMiKjriWo6rDUDLQpDVL9zd30/WHgUJUP3fnaanSHmNNIHxGXbyOsGUo2CoELPUrtLjHa9tRSyNTwpjYhofoEOk/RhnFJkGE82Qt3IZbNpR7WmJNOqWqmGEolxIATP8XgAB9+//YADPn/9kvP5zP3DExr+1ZjHQb3ycaQQOYwDp8OBeZqYh4lhHPWgWwvLeeMv/uwv+eYv/4yfkI2WpA9faRr6smyVd0+FdxfVgFQKT2smpJnD8WRamZGb21sc6CTjfGbdNm1whpHPPnvD3e0dwzAyH/Vzt7bjZPjgOBxPZs6j2RExDTahAgytJQYo7Ahyb+JUzFpNi2sI8t7x67MWvacU9UivsNvcJRev0yULS1IPf01RX228LgJt25Bt1cbQRWSYaWPBS+PNV58xDhpGKDb3SkPC+aRFi084v6lexmsStwuR2LpWCZrXgEdED6I0RKPPNUoRteEl4rw1qS7gXNTP7BTOiNHhok5/upalieBa2zeqH+srOE92QgWyqfKDj8Y9b7aBV9acKduGD44QkokdjU/sI9n0Fd5oTiCK+lelSXmzOw7eU61ILqXuFDdaRUrWUMj9oHU2ihdNU25CKYIPgWke9IDGUcqm9qOlUkMj4c39KwIaCAeO6gScuj+1mtUggq4VK9Rd3IemXsdICJNpPhyjwNOysCxnfSaskd0JL84OJa+uQcEair1ZE7XNVL95R6PtWT5q5VivCFw/RpxSyro7mjZZOgXEUFOdCIqN5iuPj4/84s/+jOX7bzgGE5gGZ2Ya7Chw37IVSxiZvvhHfP6P/o+M05GyXBhOt8RhZn18h/ee8fQClxLl/BHnnKaCh4GyLtSaNXMkDNS2qYYhBHzICi0EC7My2ow3ymHPVMJQa8FoVJbKrlkC+oh0KENETQL6tzovO8imXxqeOWahk3ZRV8HT7YnXb14r195Aq3U5sz49sV4u5G0lDQPjfCAkfXZ81P0sxEBIaTcA+eof/GNOL1/zzZ/8O9783X/AfDzy+e/9PvPpZNSXa22ijVWnQsg+HWZvqH68L71nQa+X9+QiUNX22rmRUgsDmtQuqFhVpNLDKXNtFLK6ekWP85Pq5lphMNBADOTw3mmGQVkp6h/DZV0Qox7VqnS7GHWfDyg9r4na2QccrWl9oMnsqskIQdec0vkC0ZwknUP1OUNibgcrYr3ZsYedfo4Ty0LxO1OgF8slN4JXfVd0cBgTKQSymTvkrHlLzWwbO/Mkhms56L3jZ199znE+WGOi66M2x9uPF7IE4jAQrenqdrm6FSudq7WuaQMM+fah67EauxmB/T41zdGztNvX6iNbzY7cEd3AMMJ8uOHFi880bf2ycDtHxnm2Zk+1sh3cwKior+5ubeqszJnamqVqd2p1YBoGYrjuh/rme8EOBAUV+kTUG4Cj39H2zwIGxsjzNyL7j+uaBgUBuAIffQGbUUDvbPRzXMFWefYz/f4W9W+c73vT82bFaFlGVe3BtAq+afPUJx6ladSd0qxQmpXZ5/6QZnVthP5jr09vMoYRaqGumWXLtOaZXDROacVVjalvJmSya6YNA0IyfpcyoRoaK69FYIdWxJvAu7adb4jxEXUVaWFxJWwr2Vp80Kblh82hFnROEz29RMQHSm0sTxfytnHJmrIqrdLypgvNxn/eB3BaLNdSWERIaWQcR6NMWGcpwlgzperPqrWxbsqHTPsDq840zugOtzcn/uZXv+GzFy/4yVdfsObML377DUtpu7PCsm5aGNiDcJxH5mlimAZaaWzrxm9++Wv+5b/6t/ztn/0pd0/fE0/XoqGaPWIucF4Lby+Vp62QmrABlwrjzYFxGIkxcDgc1LtflJbz9PSkDUaM3J1O/OwnP+HmeGSeZ8Zx0EVWil4D70g+WNGkxZp3etBrIrMtbNs8Qq84WgWJtmCFvt6wxWGxF7slrqLAGL3RxpFOKNJF30JwnoKGHW02Rev0KdkWtndvKesCMbFtmcuWuf/wjpcv1LlrWTel7zhB3ZwiGUVXqji8S0yjuewYF97HtHPyW8kMQ8Th1LbQR9tUhRjNHaMUpZDow0c2ep17tomEGJ85bYGXSmsbLW+fvGR/F1/DkEgtMI+jPafKc641kyxyp5RNqTghqpvUMKjAWNQFyoFR4JwJMVU4r5u9JxhNAmf2gaK0IZGMlHUP0pyGo35vzpYsbmJLqZRsU7FSccVRS6BTKfp0Y90KqzjSlonJk5JSrbSgsSkAFvaHIya9n9XsMPv4vNS2U5KaCDVnCwcNuy9CzpUxKQraQQR9L+bC1h3/YEfN+shdpKATHaeUUpz1971ptUMWbTyaWOp1KWRpO5Cg39ORsMKaK+/ePfH1r7/l/rfvOJxecQgNLxspakq2eNuvLRjVOU+Y7jj97J/we//0/8zp9Re0sjHMN0pfudzjnGbxEDzlco8A6XAHLtDWJy0Gj3d6H4xW6Ly3qTea+O6iUm8NAewTZt+bCKMwYJ+pNxpubzq645jbaUxuLwb0H2dnm/0FO5sW9klJICBec38w2sN0GJGXL2nVsgC8281FemOg1JsfNg2H44G//9/8t3z+s58yH2843nbN47OiyK6FpjVrIdeLm340dsTzx/p6Oq+Mo54/tTWcVGrO3D88sK4L46juScUXvY4CVYTz5WLofyAvWmTP46AsAd+oW6FbArgQFZRoQnWRcT4SqxnTWAPug17jdVt1ytEnjKbbCd7CgGNEZN41PdFS7ZsBoJrRpfbbAMn2jT7FVpF4NQtub+eTGTqgIbPasGhobj83OyBQalFq3TTRxomcFdzIOROT0sNrq0xxYhwntm0jeLi7vaG0QlkrtWVyztw/LvzquyfSOFsmUPdusebV6vLuQCetA2v61HX6sIg+l63a3mOZXs4HW5phX2/2ZBN8VLMXm8w5a7pwgcu28vX3H7m7Pan+xdmawizzHdwcNZ9na5WAaiVFihXkuu/P40CKdo3lurb7RFA/5zNRttXxDmeBmPrnem9tixF5pte4siqu3b6wfzEYuNqeudVfp64/eDnMRMP1X/TsK65gpHvWx4DRVw1EVcvcZ0wAMZJJ0+ajVLPZb4UiKihXMbn/5GnopzcZtajgDu2oq3GbU6e9KExESAO1ZvJZQ2yKOKYx4X2hVmFbNxC1tB0ON4QY8GHQw2st6rU8jJgRMhjvGUFvYow4F/XPPX01oQdJNhTZHmwr0kEP/BQnTqfAOM12mFrAVM6U9ULOm+oinN/9mtU9gp3vGG0h51zIpRcTWowG7xgGj48jpTRicKSUdl5vq5llXTkcZr5685rD4cg4TtS2WFHqmcZB/5lGGmqVNw2Ru5sjKam+ZLms/M1f/S3/0//zf+Ev/uIvGB++5jRmQ1JNe1AbucCaYSnC2VKDk1NHlRA88zzvwUExRHIpbOvCx/sPPJ2fzJovcHf3gi/evGGeR8Z5VjesqsVHp3A1QwGD95qKG9w+VVLbOhXM9+MQK26uT7VcG0unHHe6qw4YGiUWftNHy2CtviGtPYBJf0Zp1Rw3QGohP9zT7j9Qc6YhrFvh/HQGKbx8+YZxiAxR+bMxBErTPJRaKkrTq9r0FO32W/WUqg1kSr2hUuc1pCIt4+1gwVnmiTilwuSs5lrBGmjfLVdNu+GepXuKhQuG+Gx7+3G+lCtc94NIjQMqLeiGJ3icGwCQQa+Dd45S8x5ethfWNp8vliuzi7CdJ3XKpkPFxC6SYmC9NKZxZBoPWkjXbM1DodVCiIPRncAVbQCVmqXITyn6PAimeRChFWhVs0+cyzSBZIBCjJrg3FqlVm+0FbvHQag0WnO9jKfsidrqpX8YBgZDA2OKXAXVV4c7B8qd3WkFldZppRhm6LyicMX26eCxYbo6n4jsh1Grxjc3TczeXFiuS6cDvf+48O3bRpy+5Pf/259yGhJyeUsgM48zkhd8WRnnG4bpxoAcx+n1T3n507+jNKC8kuYjgnB+/x1xGJhOL3E+sJ3vwQlpusX5SD5/pG4rcTpCiJSs+iTV+VS8U0FojAn8yLpW2tEoCk4L+KsgujcZdrA3BUvUdMIOUNGJ/HNUc+8xsHVp6OMP/OSflfNXe4FnBcLe/P1vkcAfBijq+eV2+BPGaebNT39/p0Po8daLjK7v0Lve32zPMugNl/sPwbgf2euyZmLw5FoprWpKutespZgiPga2ooW1o+Es0G7LKzNwmI604Lk8PqHUVdMxos94qNqYXC5nLWrjpHeyFNa82rRVn6vSqoblVdXEKIUxcXNzp3WjD/iQrkAbeiuUKqqgQ2tVU76rggHir1M2rFFwTqeG0jRwcBevS9d1ya67SsEThkRII7XBmqtpGyYTwLt9L8UK3pQUJO0It9K94Gk5G91UzR3efnjgca2kOFqDoToSQQi9MQA6pX1fN2ipVm3K7L1Xg5m9dr8W3b0l3vNeOtjmHeEZ4OFsihNCZKPwy28/8LMvXjFPg2pDcOCqXXNhMhqUOqCqW2HJaiQkTnDS90XYU8qhdwf7qwc87l0VfXmJ/aarzhAHTsJ1rTtnsQrGTvgBAPAMUTAwRJsX2Uul/vc/eF99+fcNSvT57HYf/aZ0mlfH6JFuRrJvg4DZuHtHxBObpyWxXKauxbs2G5/y+uQmI1/O5LzRSiOkxBgbOS/kRYOCpFkxZh1sFcdWGrXqJteK+oS3linbqg+zUwGtD4EQB3xKWItqXVlDio74amkIgePtrTanHYUqRakPTWkSYmPsVrMWllkfqDSMOB+Jg1cbuRB0dNzUF3vLJ2rJrOvC/f0DpVpKq7Mgpm7jaM4VwTuq04ex7Pw28K5RrIsViXa/mxUQhcui3OGf/fQrtlJ5fFI7tmLJrqfjUQukEEhpJKXEzfHAMAw0UR/u3/76t/yrf/Wv+dP/9Y8IT9/zesjcTlGLEa/uGFsVzltj2dRX+ZyVqjIGEO+JaWKcJkpVS85aG7UunM9PvHv3jlaqpYEHvvriCz7/7DOmw8xhnvDOU0z41IvjZvxGLbgHQhzo/tsKaYqtR7N+681pfkZ/21t7Z7IM22C8Pl+NphqeZ4dmE7OYQxe/hjTpyqtGh3MOJBfK46M2yttGyRvrsrKcz3z1hz/hs9evNGQtRlIacEDIRZtrjOPtEq1VLstK3rJ+7ua4bBuLX0gp0D3JpVUOo0e83v8meh+wZ+g4T3ogGge+7yDdcarrfZqhJL04xY2fumR/J1+bCdfVjEuvbaBdqR22c3adhY6IjZrpKyH2TV2R+R39mfS57s+Vuq2IPTeGPDrPOGoKbxcvN0tX701rKeraEpMmbKchMRDNhSTbxE0PnyF6Ugpgo+NgFqe725QD75QKoU5szShd3ZFK33sMzjjjkS7YzWWzgxvmcWBMI/WZbq0Z5aofbNpoGxWrleuEwg4ZoWsq+uEd8BZuePVt7w2FJo4XozT2EKjuJldbY1kKb99nvBt5eXPDZ28+x7WNIb7h9vYlDqHlleN4y3y4pZVK2S5MxxPj4QSlUEsmjgcEWO7fI9JI8y0+TpTlkbotDKeXuDjR1jMtZ/ww05wnX56gNc2gQQ06hLBnCqV15rw88srALzDszmEIZntWwLjrJKk5ZOcfODuPmi5ecVYUWNXUAQy6Nqyzlq0QeY4sdkBE2Asq56DbGEu1qYkZlvQe6BmOYgWN7O91/7F293BOZYhimskeuGXnmG0mttf8eGmXIUaa8+BhGhIpBSaZ9+ToZd0oFmKYnFKUp1b5zdePvH3/W17eveD2dCQGTy2bAhQhaYp21DDVdVv3PIu2ZaLZQQ9BAYPSsul9HOOge3I1QCKlEUHzPJwVwc7OJJ0yKGoudnaVpo1Opz51ZN33mtHusndaZ2zbyrqq9XyMcS9TYxj02fCaueR9YBwSgoKF2WoMDfOse2aFiNq4FqOgIsIYIzdHFXIDOKdUvkvx4KOxPcDaBy3e9+ZYP+vz/7U7u9m/Wus2PDucb82K7j+92b6CkkoP6wW47v2N3do8Bn7z/QPfv7/nqzcvlDJbu/5Na4Yh6ntuVRvTaRx5tOBCbQidCef9dan+YG7R1+zVmAgEJ02vAY6du7RHgV+LfcUDnrUT/UucUTGRvX7YpybaAQGyO/Ltm0I/Mw2E7NdzL4/2J+faCPUG5fkks1/f/h520BM0x8zrVLpJ28XjTVRI/imvT24yPMqp1zLeJg5NaGWzHIFqNnB6MeMwcbiZoW5aDFrnjtPOXh0IFK2VoqNhnwZojVZXas4WuKKhe2MaOd4cgQLFeNXVBIgmRleKc1Wnh5rVMaW7V0WdQNAEFwIQjJ9th4ignOmQmOcD0YrDXDZLDE44e/hDCFAr0XVfaU3bzLWwrisxKiWqo2p+GpQ+VYqOJ9ER1bJufP/2Ax8+3tOkGa8zcjgc+O337ziMir7enk7M08TjwyMPH8/8L//yX/EX/+//mdvLB16NjdfHyM0YiRZsV3FciuNpg4pnKZlLbaSg/ttPRYiDIvbOuLw5Z2pTmtTj4xNV2v5e7m5vuXv5knGeGccRJZ+wT4mqaBLqXih5HRvvTUYfO3pFiKWpLkHpUmVfHPtETPSgxDIlaGVHtGnXrJJaq05HRAghEr0irL14CD000UaPIY60+RbxCzGv+OY4DpGf/uwrplEtUZdNU4OdoeXVrApFnDovNE08jVHRMScqjA/RDgWEZc1IKwxp3jdLvGcz5zQRqCHScMSo2xOGfrTSeZumSWnVro2jT3B+zK9tXcDZ/Qppzx3BeLR6qZRipgLHPlpuunc0Ey+7qyCNfcKla9nRCN6iDX1E7XIrXkD5ws041gpMqBuR6iB0ulkpm/6esGedmKZGsCIP9SofR1prXM4XWm3c3k1Gc1JaRDdsEJvYSas2HXX2ebuTU1IE3j5Pp/iXUkwPhu4lTqkfwH6ACGLUhKrvzx6RThlrNh7XqUcXgWe6QN7MPrnSK6pS2Np1GmJvixA8pVTef9jIm+fzVzecjjO+nrm9veNwOCBtweOYD59xmF5QV50WHm9fEodEudxDKUzHF+Acl49vEWkcX35OiCPr+ZFWLsTxiHeJtjzR8kIcjxAS63qmbmdCmtHGICMEmwRCDM3Oq+6UpSiy9vLP4ECxxsypM1cMusaxAsh5j7e0ZQX+niGbNsUA45p7ex5t8rP74vdn1IoB6OJsRU6xPVIMedSir1HFgkmfFyciXNuY5w3kFebcOd703qrvG7a/9PfzI95HnE1ApxgYZ81gqrWwLrpvz0NEiEpDdFreDWngzWefcXuXCV5BNR+UKeBD0qT7dcNvem9KyYAWsaVoUGtHsBXIAFwHNTRXywUHeGpTR6dtyxbs192bRoKBWL3o7FNC769iZBCC7Y21mYeRKEBRa7fHVcOKalqPlCJEze/pxhDN1us8z0jTJkgduDRPIQSNIoimQ9Hv0YI1pcjt6cjN8Yh3ql+4f3ziaSl4r3b+PnrVUvYn17EDe7LvKWhza0wiZ8+rLqFmWHFfk/Y9zuNRPVl3EO1CcIejOXl2xjsI6vr3uCz86tv3vH55VPfJVk0zYStG9PcG25dTUj1Jdp5s+T4Gxxiyr5qV6nQVBgOiei0O11b/Gd6l93X/Qn6wHntT1yc4ul5Vo7IX+3uL8Oz7fG98rD4wu1tvQn6xfer5mdAMVPDP3oRS8FBApAOi9nuFHqDat5NOHVV6cpCgoCmyG118yuvT6VJOgZQY/d6lJStqS8lsayYXYavCMA741ohOhbOtFEVyS0GqpmymQZNafQw41HKO7uOc6+7UMg6RMZ0IPiq6mbfdXUhpMcHcanRxNvN9Dz7oIZ4rMXlqrrsFbogaw76cL5SqoqLL5ZFtXZWv1sDPgy6I5qhFIBgiJk2pE06gefVndo4QVVhVmjDGZMiHFtyC1wNGHINZ5DYRUoh8/vol0pqmCaeBw4trnkQX/d7dnsDBN9994Od//pf81b/5l7zMH7k9Om7GxGmKjIN2m7U0Llm4XxURS95zzlAJHKLsUwcX1L43xEjpVpk58+HjB0reVHg5jpyORz777DMOxyPjOBJT2sez3pygRLSgcUYJUtqQ2f4Fv183hXNUdNU3nt5cdIywj/mdOEWm1c5BD8n+Na2nc17FlyIWeihNdRmiFJHgnVp4OsdwPBFSYltX2rYSfeBm1nv39v07Gp4YVUeTgm5gKQZSSog4S+ndDIHSYiKltFPp+uh6HBwiUZtvCtGrKLdZkjWAszCm/pz0oDPn3V5cBK9pn2rLbNzRjvD/SF+tbvbvhgxGpfMOZwWc7s0BdWoRQ/nMcAEFllPUA3SrQi5tt2cMwWuDKJCi28WSgmM1H/zOmyZEgp/1IDIb1yaan6MWu/YsmSuNNBjGhGOgb+L7gehgnicc/lnjFIgpqQOebd5eQMw4AnOW8Tuv2O1GBl0r0Z/rTsnQ58TjoreCX9dw122FZpa/1oh3A4Vierl+aHSEVCc+INUAA4f9vGaNix6GwXs9KAy9ezo3ns6OF7cvzDlNOJ7uOM4nal0IIXA6viK5xHa5p5XMdNTMisv9O71ex5e4ENmePoA0pps74jCwLWdqXhjnE2GY1Ghku+DjiE8jeTnTtjMhjoQ40aQgEsCpNrAWNF29aoiXPjveinS/76n9oGxWrIgHEZ3sNJty+OYR31FT9ial+1FoarvfXaf2EFE7qJUzf331YnGf2sq1nNipGSaaFWR3cdkbkG4J2q4C0o54Ir2Aw/ZLrk1N957sO2hvyH+kL03lhloCa4HoBZFKXlc9O702D2HQQMxS1bY2DRPjOJNC4LIuGvYWPPmyUMvKYT6gehhtwtWiGkqtarkfIsMwmrDWa7I4CrCqRinj0EyTXITirAC3rr+JumX2oLweXNv3fUSfjy5y1mT4zW6zM0vpyHA4mCZMzxJvz06TxpozgmrVNOXcq3jXaFIOtW/dtmrntlGsUiR2K3DvGaO6vdW8EVLUM7VobXYFESPirhPVbtTTRdcdONuF0dYIe5uIYuBLsOaGZ81A19ftvbAZWuyAZQcmrWn3IdBc4Nt3j5yXldtj2K9JtUlzLZViGWS1KWW5N3nNmqXdNINmdKsr4VGzrtgbKl2D7roX2KLsO4xdgR8CAFzfvts5SrLTLp994Geysd7RyC4Md/v/t3pp/8H282z64Z793v4M6n7odhCkX8f+E/uP0dwWefY33YhGn8X/8poMBWM1kM4H5f/mgkfUDaMKl8uFj/eP3B5nXt3dMgbBh6SbZVIaQY5Z0cNaqWXhcDwYkqlhfiq+1qIyehU+OpdwFmRTtrxfEhUXFbsJ3rp9B6IFYm26SETA135w66JY1o3z0xN5Kyo6Kjpx8SGoM4mhAM4rSkJrVjgMakHnIw5zYRFFweb5yIuX0CwHQdMkC+uyGbqoRUtyqt+Q5q1ccaxbJkXP3eGGnDc9vINnGgZSmvnmmwceHx74o//5/8Hw9A2vZs9x8EyDZ0xhX6hbczxswiULt1MkV+GhKN99HiKr9Uprqbjlwnw48H59vyNg9x8+GnVLi+95PvDy1UumeWIaR0Nkr0WMc4N6hRtFxAd1/fDdVeL6xD7r7P3ecABGRRA7QKuNjE2YZV+vHHM9uNUKt+zcfER268gQtWDrI2gHYGNidS9LpttpSIz4ULl/eMdlXRE/EoajBrZFdQxKQRirU097tLEqVVh7zot4agVHM4cMzfkotSkt1XktmtF7yajJ1BqYY/kczukacuq3EZwzdx5FT0VPTlqt5Ny4+eRF+7v3coaCdecnqR01ej4a11GsOsDVHdnXgKWI9xrMVFa1eGytWqMiDPE6HenF9MP5wvv376k1M80D4zArPdNoBVgjIK3gAyTM5rA3GT4+e/9X4V4v27zrgEI0MEQPJ29FptLd+nZuaFiz4p/ufKRuV7sYW3pGjCHQtbCtqxb9IdrfX7nTIEbl/OG4vNaKd43mDffqh6aA2kzqv2tTZNQywfFOIOrS9FZoi8DjufHxwXE8vGJMao348uUbpjGxlTNDjBzmG4J48uUBgPl0R4iJ5f4ddVuZX3xGGCa2p3tqrQynF/g0sjx9VIrUfCKOkxZ620VFtGmkbCt5eQLnCOmoB38Tmuj9EdQONsTEOB14fLpnWVamMWlR0BT1c86QRqcFYqvQbLIu3qYKAuLaDnaoU5Yd2a5rYipOrpTGPR+Bth/y+tAYBQM757CJpLsSGnQf64WWXP/bio19sklHgp/9fHj2U3440ZD9Zvd/d9eeH2+TAZZuTGNowrlsnM/3PD09gtNi+XSYuD3d4GNUXZTzSKnUohqNGAYk6TkQgud4mEnDzFYq3guz12Yvl0JdV9IQCCFpPovoXhSMruRAxd9VTU3GQSeSurfbRN9codRlbLUzoO06iibO7KT1rlZR85L9LklDqpBrw/lAjIn5kPRMxMG+D2iwX093bmDTvGZ1FmxbZqvq/oRvlHZlHbRqjnde8zi80Xtaq6zbxrpttJpgMN0cDnxUtzebYlzvEtdnz16darij+PY1zv69l+bO78+7/pVROelyeLPP7o01SjF8e3/m4enCzUFTxxVM0O/fjPrs0PPjsiwWqOz2ldQnU93Q4WoD3T+TgaIu7OdW//PnTcP18/bGQa5/7vo8oX9eW/e7eYdRKHvjQSc3umcLvU+B+hTF7++jn6Heu//gOuue05sebF9xex+kmWcKTLD/3r5LPbuN/c5/0us/KyfDddpCVepCTMEONc9hHkjDgdNRXQfmadIDOTilIRkiGbwdzq3igqPVDSc9ydZcQASGmFSjYQiwMkdU16AZAmbnZrQIVws5NxNUerWQLVkXlllJ9n1WaiU4mMaR4D3LtlJaZTTb1WHSrIhlXVkuCyklximps9Q042OitUYchDTM5KLOCzVnbY5sCqEWj4WSNW9iHNUvf1k3xERrVYTv37/n6+++53J+4tVxpDrdvMZBXYuWp8zHd/f80b/+n7j89q/4r06Om1EL4RQsIR31N77kxrI1phCYY+DjUvhYtNP23uFFx6RrLoRceHx4UIpX0MAd0MyLKI3D4cCrF3e8vrvj5nhkGEYEFZjqz4uGejrl7Q1Jcz2cbqpKC/a9UtHHtMMczhZVNd9sUfJLt1HDmYWmM5SAjnYYOtj06/fFkSKuVnXcQVMwKQ1ZN8rDveauiNDWjW1dOT880MrG8XTDOATieGApzuzbCktT2k4IkVwzQ4AUhCEl5QFb4TEM6tPfbKwdzBrPWaEaQ9TsAQHorlSeWirRUpV9d5JCiNaodNQY0Y17SGqOUMwR7cf6CjERkx4Aym3uwmN0Ouj2S4VaqOvftda4LAVxmeh1zA+OaRx0WvgMuVFXL50G1VYpeaW1VWlHEqhlIUXPzeEETqdUYhQqRMWBtakuoRcBzmGC6rYjX/ueb5t1oBK6VaoZT+jo/UpFklaVw+tMYC0wotPvlAKEQaf0tVhgoLr5bdumz0gIjGm0sDA9aAZLOVZXN2c0CJ0yeqce+/tRKB2tM3GiE6NZeooLiCHpmpwcTb+g9+68VN5/hBiPDF7dZ25OB6KBRPN8wzhOSF25rO8Z08w830BrrI8fkNY43b0hpoH1/h21ZObbl4hzrI/30ArT8YYwHcjbEy2vhDARwqhN5XYGByHNWqSVVfnhPlLbdl0/KTBPiacHx+WyEr3tfcE+i7vuI128rchywbfehFmx7jQxXYNDbdroetCWUte61ba63TzDWLscRBqt0xO8t8LhWnh0MEZsDTi7TzrE1YLr+nR3/rh+zxU31ZKyN4NdO6QfuE80+k/48eox9GXZQc7uHw0fo1qrAykm0jBRmzM3MQURvNF5xQeqFAgJh2OOyVzedP8O3hH9hNBY1nW3EG61stXKslysyPMajDmO1KbC2OidCsljYnLenPM0Z6dbnzrnVIflgzWrV3Q6BM9g4Xc1V3rewi4UtsKz1gr16gjku+4Rtd1XQwfVr9R2bUq3XLh/Ou+0rO5wl4vw8HBmWTNNHI+XlY8PT2ylaDhb0+wwtQH31KyUra4hUSaBIt9qmKPFrdYKsFuv26O/C9v3/rczFhzPeosdEOhnon6tNg5VtFnoAwDvPee18O3be169OKm1ua2BWivny8K6rmQJpJKZZLK9zQAhqawlmy6vsaNUTgGI/v77/uD2f9uH6jXN3rHYB3Bdc9GJqb0x7PRLv/vg7FbaDnoUhDYl/OD39wvUDSKumIbb96z+cljZ9eya7kMPo4T1+mvPv8PhXOsysN4VGvYhP+h3/lOvT24ymlFRuoBRRG0WXQr6JlszBPiAc16dV2phcKgGojVoRRsT/O645AOKFgk0UY69PrROQR8crRTr2DzeJ6DuPGUXglKkakGkWBfqbRTOzqPr+E8zUWMuihSElBidR1ojDYPSuIBWlE85H2amUUVlfZxYq5grgYUurZs2NU2Mlw/i2cVR4XSglNqfAt2Qijor1Cp8+91b3r77yJCUJ/h0WXTh58LkAkcv/Okf/2u++/mf8NNJ1Pc6epKh7RjvMDdhK7rpzEmRk/cbFFHaFD5QWuOpabFUauXjx4+01jRJeBj088pEKYW72zvuTje8fvGSeZzNrcceQtfFrLouNOjIXf8OuS445/bNxZRX+4LZK5h9OfQCu+0FXUcUpFTjBOo/3gVcxCgifXpkQWm2YdV1QZYL4FmXhbxtbMuFx7ffcfNq5nQ44LzT59UJyVJbNfzI72FMtWlOR8MTfGScg1GpBnLREXhnonrnGaN+7tBzQvCav1IaLVdNl8eod1WvW/DQ0INPat3pEt4HXLSMiBg+dcn+Tr66kxwiV4qYU8cPq7LA2ZQs6kSi2VSKBrV5qkG0wQeGFHdqpB6CRQEQOxica0xjIr58oesrJuUCexVkV1H+cWsoUokGdtGRwN1KVAhei4VSK1tttFr3ItJ78DFqCKigzjemHdPmWei2hTE4tfJNA8lQ5ZK3q02l0xhJtRCsRlMoOi1NCZGKdxEXvXK0jVrgvSc4pWopRSPQJOq0SMToWPWZOFOFqz4FvH1+tVjOeCrRB5pXGmKujaeLA5+YguN4mDidjtA2fAgcD7cMQ6K1CyVfGIaZcTxQt5W6XnA+Mt+8xIfE5fEDsm3ML17hnePy+J5SNuabl4Q0UdYzLZ/xYcAnzQTK65lWCz6OhJDI2xmoxDgB6lZY3ID3GrDmvWqe1lyZaiV0YabTwqcWdQHzjh3FFanmroM2EFb8ea8In2tKQ+iTBN/TjTsCK1UDZnux5K5NiVJT3LXw3zUd7MVys4LMPfs/nXbomeaeTUd2Coo9fz0PxEkXhV/pJ51r3nSEZv/1432dpsi6KoVwLWKTiJOChmbDXqueGz6EawivfX8za1Vpzeor/d8956pVoXSMuVYrVvVZUTfAQUXUqB3148X0nztN2OEIDCERIxTb2zqQJK1pnlNu+zRbDFEfhgim5XRmNtOkUu0sTEnPAZ3U6znqnUPMyOJ5hSutMspIjIlS1cGq70uaJq77x7Ks5PrA5fzAh3dveTqf+S45/vhP/5LPP3/NyeztHUq1phewNvHzODRj2NZW1abaG6qrgMa1aRf2NtHWzQ/1YoLsvgS2Aq1x1j/cnamt6eoLVmjkCm8/PLFthSElOha/riu/+eZbfvP112xVeHn3gpwL26r0+2EciV5zkrLdE29T3GtFvlfcPNecuOfrqek63KVs/rpmoSctOVvz/XuN3kj/YH7/Hc/1Lj+olew9Obi6Tz0r+/skyNu01P/gXfR3bmDE9bvYZ6sOvBhls096DPgA06nyaa9PbjJCcEYrcPhovZutWv9MHNgXhTYHmSpV6RHeRrTd/WjbTOMx2afWvq05c0+pQs2LiUChtUIpjbwVo211ioG3xN6NTlHyBVv0lghuDUq/qM4L4xj3kXfwjlYCy2XRIJ9B3ROmeSKaw1MaBmJKiGCBVuaXX5VmgVRGC+RR3pqi9zoG1c1JmgrRxmFAzCr1vKx8/f1bzpcLr+5uOJ5O/Pb7d9w/PHIj8HIeePfNb/jzP/m3fOZXTsYpDT6QQqdhOIooEpOrun2NKXCpwkPVxzoEx+YCJURqe6I2x7aumkKeEm4YGMeJw+FgRV1jGic+f/0ZX37+BfM0E1LSh28/WK2oDnFHfL13OyLtnGM/yUWuT7m3P+9dvi0I5SZ7E982qlnN+WgPdG827H/3wB6hs7Gc/Tp9L4QAJeNao5ZMefjIslw4XxbqtjBOJ2orRG8Ju6Gyp6kGzzAMhmgLgidXaJt6Rnfn2UY1r+9gLhYF7yBnPUwIVTU9NvmQ0swfH/P81ucnWugcTsOiVIys1KlS1CVNGxHP8KmL9nfw1QupbhHdmoZZSll0CukDpYF/5k4WgrrQJUOOaxVr6HVtYyFzQ0JDrRy7C5wLnpvTLbVV+zuHQw/n2gRXlW7VMGoDYhaHBmog+3bvAphdGC2oV7haUwa9j+JZzdr6vCxs63KdcHml8UzTDG7AN6eW096x5cJ5uVDLxqFkhjTScaIQE3OMxEGzP24OB0ALI+8dLl0bW9+NFuy6dPSwn03O6VrSPAxRpMzQN4ci+bX2Q9RRqq7jJvD41Fi2geAdd7evcLJwOb/ndDxxPNziI6zrRwDGdCKFge38SN4WpvGG8XiDICznj7SyMZ5uwTmWxw/U7UKajsRxIpeF7fE9aZhJ0w3eBbb1I2274IeDhu/VTKkbIY52QKvzIHgN8xKdAId44OPjhXHMajHtOvJ6DRKsYMnxHdxQzaHbhdzs7nX66uhvA6c0zOg72HPVh+1oovO701gVo0k1FJnh+rsU0b2WCX4vPAyt7kWaPH8nRoiRa+OhxgeGahup25kmQ5vdXpz8eKcZQ/Rsi5qGSKsM46zufynp1LhpjeK8Xq9aMg1F9TsyHcw1qZm7U6mVNdvEoRWCFyuQAZTa1KpSq1MIpKgOkMUmjoqfKQJca6NJpckVRPFG/VbJpzmh9cDIVs2xp5HNCGKaZoZhsGbXK+VRlJIsYEY67Jq+bjHbE+pbE9ZtRaQyMe9Fou6WwnS4o4XMb371t3z48JZ5nhjHgWW9sCxnthX+/K9/yf/wf/gXTONECpExqSvo1t3ZnpWqwSiVrTcZ4ihSNRMLXUMO3b/7lLk33E2/4NqA7y/3rJjV/b5rKhzY1Ej0ZzrV4jgcHx4WjVcwpz9oPJ7P/PwXv+HpfEHwXJYL8l54fHyklsrpdMPLFy+Nxq8Tm+AbTYJKAoxmaBeSPhMUeTZNkL53ok1E07Tv6+fVa+9FaZhdq+P2T2j/3ac20p5NKPZH135zbxvcteXp91eu72/fk3BKc3ddV9EvddeP/Ye/SD+De1a26XvraPGVyvWfen1yk7H3bSYcKetKrcUoNBgipuNJLe4DUjIlF8TCXWIacD6hmgltPDDBLIbk1FrJ26bC0FYYxnF/0ARHLqsi78MAZv1am3Ll4zgSnTPKiVIlxLzsSzYb2W1DHOrGICroarUoPcsbOoVjWRceLwslF25ubnj9+g1xGPExULaV7XLm8eEjrcIwT4ogea+uOUk5wNV0K7XTeGphGBLjMBB9QoCny8rXX39HSpE3r1/RpPHw+EgphclDebrnz37+a8L2yMuXM3MKJK+TiS5IrDbu3IreiSkFYvB8OFceqopc9VAJbEBuugCW5aIuHdPMNB94+fIlKQ0sywVBGFPi1cuX3L24w1tBpCJVr4M/53DmqtQDcBQZdPtDqtW4WNWHPj/dmWB/YPcnWO8X5uVsOhuaPdQ+ILWo0MurEKzac4OACwHvC63qZtxaQ9YLsi60ovqcUjJb2YhjJA2JddsIMRHiAFV1D9MwMs2D0TCaFo65mauP8Sm9p4l6tUcT5KpXv26eORtdryoFpfaFK6DCK51wlLxRRXjMOqINOA7HmZubG2KM5JzZirqKeB8MnfnxvkLQQ1KcBuity0IrqwEHgXW58PjwyDhNDENSG+Wg1ElnSKwZbahAtjZEtHgeo99RNgUTrEUQpdHUkg31bzb5ArqFpFyLQ6cVgzXOSkXqv7R2kaN9Fm/of84L63bmfL6wravue7Y2RWAaBwbRaa9mQJxJcVM6XimWP+EoAtGpgHyMZoEswlDKrg9Zs3K6B9+TgG3y1wrFakdvzRY87+d1feLjfuiLsE8i1aWvUFGktyFIbVzWysNFdXE3pxPeV2peOM4nTqc7SjuznRejjtwyhInt8SP5cmE43BLnA9t6Zjnfk+LAdHqBD4HL43vqujEdbxhOt9S8ki/3tpcfcN6zXT7qBGOYcXFApJK3M95FbTJaxcUATZ3rvHe43BjHkeN8soC2rHuHoXPOJgfBqC21VLIUzVuIZtZhKG3H/KoNX3vlL4idUY3qHDXYJMmmG2L8e2kFaISuC7DCBNHcGwfqZGeFRTOu9bWQYUeMsXNwxxDlun8+20XpYlCh64L6xmMC+E/GIH83X1Uc880NQ1Hxs+qhEk2c6iDEDCWkGxkYRmtUWrFEDA2RVY1XCGq/rs2n0hqDA+eUlndpCyKN5Ad8SHYvnM6dRe9WCnrua4CZacU6iGa9pU4m1/2s8NJI3hGHRA+VFFG2hFhzIwgpRnWzFKNg20TCl2r0Sc+QLPjVdIH9+anVnn8RLudHfv6Lr7m/f+Dh6YHvv/9GJ6rDwDwfOMyLXk88v/ruA99/uOeLN2/o9v0OZai0FvBNu7ju+gQ2gQ6mBanOggB7Gr05ZVWbaEjvK6yBNgaC9h+dGcFOL2xVN7dooa3qZOUNvNWiPQTP45I5nxeGZI2kNL55+55fffueu7tXSkkbR0rJBO/YWuX9h/dKnV83pVStGzV4QqiEpiwQZ0Bhbyg6zU2cNbQ/WFfX6U1fi4al0+cuHQyg/21Xej//3r3Sl2f1UgfNrQNw3mx0u7BbDGTg+jPMAVTvwzVpfR/bKqyxA7j68vv76LuMc88nJ5/2+uQm4/zwqO4KKeBQ5F5zJGzUWEG2VZEy3e11QTTdiLetMjTHNB7wXqlTmvJoeQClkLNqGzpy1KTh8qbcRbQo6V7UWnTqoV9s1O9KVU5rCHSBzn54ij7MVRrFCv9gxbBIYxwic1R+fd4yWyks26rOQcOglJqcqevKcr6wrYVcBSdVqUuHGcERfSSmwYrjghchyoBkFXXWpg681anT0C9++Wt+8ZtveHF7y83xyPv377l/0Cajrhd+/eu/RS4P/PQmcRojY+zuTfqgtOYoFbaiQqgUHGMMVBzfb9BC4OYIT6uKj8t5VaoYOsXBOcZh4ObmRu1prRiehokXt7d8+fnn3N7dEVJS56WYVKhW6+4AHbza3/le/VlDgC1Cuj/73oY7tdvs/9mahRNdH2Rs41K6s+Ba71qcWeS5/cd6720q1awI1EYntMYQAnWc8FH1HfkcCeK4fZF49fKFivijNny1iaKNFXxWekyuShUp5lTTJy1KuUHpKQjS9P7m2tR6ORdi1PsUQ2IK0SiHFVygmsYoeG8bZuXj0yMf33/k937yFbenAyVrevxaFIGc0o+/QFDUCkottJoJHqZ5sglGo1wubNuKdxVagpQgJlrTnJjrZMDyRdBQvLwp5cBLUQ5+TCZI1IljMPqTjn6V9gYCVpjuuS1gB6e3Q0T2wzCXzLJcWLfV+NEB5zZEhFyyajiCObUE3bBLUYAhDepZnwZ1l9sumknTkUed5sGSK0JWC15nPHLf7XCTOr/4UTUcMdgBI4hUy/3oKeDQD8OOtGntKldd1LNHyTkNSqytQmlUbL9sjY9PlSwH7m5u8a6Sl0dOpxuOhxO1XXAtM45H5sMdHtguDzSpDIcT4/GGsl1Yn+5xPpLmIyFFlvv31PVsTcgRqZm8PuFdYDzd4oeDai4QwjjhfbJMgw0fB3yYwJlFqdPwT20GlNIbLH+pWbOEQJGKa3XXrqi5grvmvRpy7ek6iI4RPtexGDqNFVy2Le1Fh1Sac6oVDN72Cw1x9F5s0m8oOf0Xt33ioaL7/fbB7gxlWTLS6JR1h7NpX0CzMfTV9afPDQqu/0/2uuXH+qqWWVLE01zSSXIQoo4FAIHmqMhOKQI977qpoU6OR3Dqjim14Qct0LecyXnF03AuUcwuVIZpn0oVM6WoZj4SbIrYJxu1VFzwxGG8htS1Ys2m0sKnccZ7ZVRseWXdLBvHwgWlFZ3a5arvwdmUpGluzZb1s+W4MQwqBhccwZlBhtMzpiHEpM/sx48f+fd/8if89pvveLz/wMsXr/nizZcMUV2xbsdIKxsIvHnxgm3LdNfI/fmytaBNg+5Ben2viHw3zeh7SD/n6Q6Qe/7GFVjsE5+eZt5RkNZHA04xy47hq+61A0MddPWcl4V39w/MBwWpai18/HjP6B3/9A9/SsVRXWArmafLwmXZePv+HeflzHfff8/D+czd7Q3RzokmgRaESIJnIADXXWCvca6Ffd9eO11yh+n3Al8DHLWQF1uXHYnc+4r+tTz7a9in1HtTYlOdroFxzzaRJtffqVthdzjk2X5zbSb2+7y3RvKDP+37yg+Bjf//r09uMp7OF1IaaEUPNec8PjhqXXfEp5QCGaW4eHU5SEO/MaMuqFoRE2WXdTUXHgF3bQS8D6of2DLrsuqB4czTeUhEGfAuUpstACfQClQVRqoQu+JQD+ham110b2NPfehbbWzrgtRMOh3x3rHWQt4yx8OB4/GkVKAQaaUoD9toCvPhQBrVvrHzJ7u7UD+Q8mZicDskmjRKbpQGMUaWdeXnf/tLns4rv/eTO2Jw3D888uHhSZuSxbFshc/myIspMUaz3zS0vIhSGraiaKzQXS8cH1d430b8ONoDFXDi2MqZXJV602plmibmw9E2KN081Xd7YJ5mvvziC8b5oILdENWqtXXRWCOFSLSGRycbSRuM3iHvG7+mYAOmz9HC6AqsmTjWHmgfQDry16Dbxvbmvxqvtu2Lze9IkE4V9AeHYWQYj+RaacuFLYwkPDd3ZvnbGhRFnFJwTMOwOxl5r240VQo4PaDWUlhLJfnGGDW8z3tHteRoXYD6rCliFvEaNwcu2PhYP0cg4pPyZWsTPn/1ms9ff8bpMNPzCmoVcq6UKrSin+vuUxft7+CrlMK6LqzLwpQ04T5XxzhMjN5z59TRDGnmcFxV6xCUGlPKRg/7XLdMKRdyzQo8tMwQvYZj+Yh4DeD0HmKwotE2b0V5r4ia2Ebfml5rWsV7RzTnJkFTTy/LqpOEBj2LqLu2BO+YphEZBkrJapkb9ZkfxpExDSCNx4ePLJcns5L2hiSO6txnh2lMaW8iVMytE+I980F0FC+2gJxzqjcRs/HeReo9DTjuiGNHu3Qd6fdH0cZtTOZc1SpYIbNsnnEeiSmwXZ44nW65Od1S1gdg4+bmJdN8h0PYlicCnvH4ghAGWt7Ilyecc8y3L4jDxHZ+YFueiNNEOhwpdUXyisOR5htcGpX+Wja1sXWJVjO1XRO+e5BZCBFpDosEMWpqwEu1RjSoxfFsBANRWqk3apTu294KUHX8AqMHu+vRGry3wrLnsHijjVqDgVIb8X3Psp2sH/j2dT3nRvda40yL0KTgfdvdv9QmVa7oorRrWBaKnnpnhVt4ftz/8OiX3enqhwXEj/kVY6TaM9pMtNpqVZMQo/GIs0RtsLWSFSQUYRgGgh/sPC40ozuJM6c/qaQ+SbdzKYVkzZsW1D54oqv4IEbP0wLXW4huB1M6SIA5Coo0iPqzFDQIlJqtQNXPUXG71bb+o1qL1irFssN222ScUstLb2BBfMU5jQoIBsDp9EP45u1Hvv945nC85cXpwB+8ec0//Czx0zcvORwmBLV6FRFuv/gp//APf1/Dlp+JJPp01vdnXdQIyDmuDXRr2mzb899KJW8FqWo37vv6MSBEgUVPTI7ozC2u9cmOmXnY2ulZG3YB9H0UBUx1kiS8/fDIm9cnW8PCl5+95P/y3//XvBjVAXMthfvHM28/PvDXv33PH0fP2/tHvn//nqfLRV0NEcI+bWiImOumdzbYtiZDuha3A6T2xqwB8Uad3IP2ZG8zbHqhz/A+2RDZXbN+aBLxfPXKsz+yyUJr7LSz/b3p3+9aYdn7kv1a7mCE1fVgjSRyBYvd899rMIf7tN3kk5uM0/Ggh5135LzxeH5kiJGUgkXFa0MRvfKp+4XrzhvBLGhbWfUHeq/NRtUJhkbcB8Zx0MYERy2FrXrqVglBSENkShPSoGzZUB7lrqUYmKYR1w8V0aTfXKoe5s7hQ2MYInGecc6xnO8JAcKgSGptkDcdQ6YQ1KGoqdNMs5+D6xxLm8J4j/OiD2C/cd5TauHp8RHvhBD0PUYP4jV7ISbPx48Lf/PL35DLhkdHmb/4za9ZLgujF1x1nMbI60PiNMSdS9dEyKVSRQXLPbciBLWq3Sp8uwTyeOI4TVzWlTg6Hs9nLouKMKtZ9g7jxDjN6r5wPlNy1umNh7ubG15/9hkpDfjgTcSsRUppDR/ULtA5j4sR58QCieT6oHeeQd+gW6UHzFkPvhd9/UEHQZqO+n0IVKdp8hXt1LtjTnVNi++m1pX91aTSciXURhonpeg1YamV4lf8oAnwuaooLzrNdgnBM46JMaU9dKy2fNXYoPqKJgIx4pw2ByFaHgf6sb2JbktrOCm6CTbbXET5nQGU3mX/hKhL0dPtBIXoNfAopEbeFnSz+PFyqQGbVArzPDKPA94F1iKU5kguqPOU2RfrhimkGAytdQhRkfrWSIMjRk8sOpp3RKMyXO2jfdBislYLkfIW4NTUJ907nYLGEKl2gJZa9eAXEwY/46+7kBhtDeSsNDZsP/A2tQrJU1OkZEsMNnC1T1DzukCtjINOPXHazAQPSMG1Te1WazLs2eEZlONvBhqdE93XjVPO03727AWyHTxa9PZGqzdUKlBX9F2d0HzwDNGDRDZpXC6VKkd10MkXXty9ZkqB7fwWRLi5e8U43VLLmbJeGOLMNN9Bg7I8UtYLcZiM/hRYHj+Sz4/EYWI83VLrxvr0QIiR6XiHi5G6PVHLSkgHXBqpy4WyPCLOEcajCdgXfJgQF1VTEZydrxqM6ZonpkgcZs6XMzdzJYQu9Na9e8sV5/KO0l4bR3v2fM/pAXYDW23clL6oJ3enilSRHYAB1SoKniBupyjsDIqmxb/uafXaOPZz2/jT+o/FdUp9hmg6G3KIUsD+f+je9KMY4mgTarqV7v6FP77XzoqMSlHNOeOJRNcRXkdwPQhWwcQiDRcgovk7l2WltQVENaDOYZP6aBMlu34NNacxmrCGgzaCCwRp13sB9Osqnd5tlCttJAPBj9RW8WGEJrvzXTeNcc4To6cKLOtm5wDEYUBao6zbblvtgrrKDeNINdq4ggTJ6jQN+Aw740EpXCkG/sEf/Iz1wzv+6e99xT//h3/A3/v9r7i5ORLTQMWRc+Hp6cwlzNzc3ZqOtuzaU2cNjzYBvWnuz5M9+z7szpP69bqvLucz0jRxW12oFIH33hGNeg/OtFMear1qzXZE3tkeb2JxjAKJNiV4z/uPF9at2ATY8/nrF3w5/D1+cnfk5uakYEPJLOczv/36W/7Hf/0n/N//6G85HGacw4JIjWAkDtzzUrlPb65T7mbTzVavwGefrAje8oastRBwPgKFnSpmf7GvSpuqClZzPu81+tc72Z2eriGj/X9bs2K1WG+CfnBAWEOiP7rvYnZ593qs7teeDsrtP+fT9pBPbjKmw6QbH1qYLeuKiGjRHhMhjuptvp33sBlnXWRtQm2rIgbeRn4lX7n802ybq43LDAnvyKDvnsmio8JWYSvVHqhA9I75MJKGST/UEElT2y1vW8kaAIfbqTUOGIaJaZ6JKVIsrGuaI7VEHM4s7zQdNG+bpn7aA17M0cp7p7a3w0CKsR/7SHeecU4t4KrpRgZN+3x6vPCLX/yKv/jrv+Hl7Yng4ddff8cvv/4OaYXbMfFqCryYI6cpMjwrZJsIW9UDUWyc2BufBpyr46MozUtZRkohq+ZS05oGFg4hMs0zrVXOF7P7FSENiVIqb16/5PXrV5oIas2V6iDsMPddbOp3+ggudCXU1TetP/R9EWBdt/2d816dW2g2HTNh7943GC0APWgxBE9g34Bqq6oZMbpIH72SBmquO4d1W84cpqhoOYLkjZQiqee45MKalZ8tImzrpjEeeFKE2Tui5TUEo9V0RFuzL1S03fYDv1FbJiUtIuOgLlVSFSVIQ8KFpGLhy8KWi6HSdn2DamymNNHEfeq6/p191VqoTQPUHstKjJGYRvJWqK4A10CkJl3I1nDPKEx9fO79gI8Twwh7voRTa9xWGqEvdGlGY9A1393ntqy2p0OCNGi+hYuOFCJN+u9qYBktKt6e8c5RRZuUbVupddPnzXXLYk8KgRbTTiFsTX3pS2ukoTtE+X0yqZqmQBW10Sp5oZZNUdQ0EPykxgBo/oq0To2q7PoBkV2npVcIm7IppYxWbE/29C8L3YWqKmVR8Kb9CeTsebrAEAfKtnBzumGeDqxPb6E1jjcvSMNIqwslL4Q4MR1f4Ijkyz2tZg3AHCZarawP72ilkKaZ4Xijn3M9E4eROB3xaSCvT0jbiMOEHw4aoFoX8AGfDprgXi4470w/oVMH3ZccPpkhSK2Mo5pZPHzUIM1pUhrGTllyeqi3VgxA7GJGBQWUx173Pao3Iz2JuNUrout9IDhBXBfbd3TZI96DaQD2ML99AmtFgaGXXenZpM8wZJ+oPp+C9O1UvKWaN79TGLrld6dY9eKhi2B/4IbzI3ypK2NTEKioS98QYPAg3psWckWc2xvn5EcFJ/p5afqAvFVohebQa26uc90EQrUNUYHN1idd+r3OQbJQsq3o2aH6B72+rTYLdtWJWRNn7o9Kg2weCEkn77XsWqBWKtLyHvQbY7TC1DGM4xWsMtDvuuR14uKDWuvGoPq9JoITYQqRf/h3/4CXhwn//W/52Revub09MQwj0zQS4shlW4k0jmMib5m8LgzzYdcb9SwN1/WSXNHv/7B19V27aSBiKZVlLZS8EF3jMCfdd8SR0kgVR2yd7tiniV3/oOul08QVALKG2Zl1t494nwHPw6VwOWfmcaC5hquNm2nkMA5MMVDxDGkk+YB8Lvyf/vf/iAr88ikbHVzAFaV3eW1oxPb21vfXbpHL9YP399ZsuolrRNH8nV207jyeTG9SRK4lk/4Mtw8KdhBW2J+5XSC+X3P9/743O84mSvsP7EYyfh98YEGRvtdgKD2tywz089kXm360G4Rg0xX5RM7lp+dktJ5e6Zmmkc8/e2lFpVBLo+bVdBUbl3VhWzKHw0wakyI/OeNEnVcE7fJijMRhIgyDhbepFVsrGaU6eVzQqUazROqyZkUmbKRXezEPpKKIw/UADbgYqKhdWxN7WJo2C86rHamINQ1NzG9aO8hatHBpZiX5vHjtI2jvPSkGhnFgSIPevNpIQJWRVnVsm11j2TKyrjjnub9/5N/9+z/h7fsPvHpxS15XfvHr3/J0XjgGx2dT4NUcuZsSUwz7YEBgd33xhnR0vZBa2wnvN8+DKD1iLZWtNKIPLNt29YDGGQ0lsG7qed1K4XA8mjVo4os3bzgeNJwuBf150up+4Hls3OY93mzX9hVjY+wd3u/dcF8e8uzvCSpcEu2nu1uGoiXXjUZEJyDSxGhdWCKzujZVc7boC6VrewRYzk98+P47Lo8f+fyzL7g5HQHhcnFGCVFeLiFpQmhbWdeVLSvSmVLk7jBxmEfGcTAaXmVdNnIutvj6R2s7mhCMjqMWpFqwuRAgoChLjORSoQlDVM9/MWep7nSlOpNKbo7SHC8/ddH+Dr6i9wQLJzwvK7E1RgdOHNXpwaEFHVacixk7ONtknU2KQOc+Ko6mKsImQHAR79XhxQwCGRiUmok2hd4nDrMe6n0d6f3qQXzekGOlJ4mpp3uRGpyH6Ez8W/fNV7VFKhgPwVBREdN9QEAYAUxc3XmvwSYhjYg4LfqbCD4mhunAOPXmBp3MiO613UEmxaiNjbsWm4BZOvdDul8/zI697cihYDbOJROCCtS36qjuwGihnNM0c354R/Bw8+IrYhBqXSB4pvmOcTgitZHXJ8q2MByODIcD+XJhO9/rvjgfGeeTOrisj8RhZry50+YwL7S8aNMxHsAJ5fygtrvDCQkJqRuaUTTZdFW1ea2iRWUK5E0D11KKpGGguZGtnBnR6+f6qS2dCaD3tqHnXJFOB7ZDXASpWUEno2JK5/ebAFj1MHWngfjQBaLomdeuoJOIFgKdxw+2RXo7A5v9zq4cao1id7Q7sDmuNAdE1C/NXRsTSn12RgSrFXrB0p7jlj/Cl7IHnDcg0xqpWoq69zhlC6y5sGyW+RLMsEQay3pBrKjPtTDEQIyDXqeO0vdfZY9KbRoO2ppqX0JwxKjhfK1WSlnIBq561L4+DYNOTg0tfno68+HjBxyNeZ5JpvHABxzRnquCDytRmubVYs5N+z6ie5UYyu6cY0iJcFQTihTUUTOEqMCq6J6j8GdgSAPp1QuCy9zO6hrlQCePNXN+emSQxjyOLLWwbAtxnPZGuk9utEC+/tMRbmcWz7t+CcCbC6YPbEW4nFcOqfJ3/87nfP/+nr/+7QeOJ88hDVaLKQDgnOBDh/Ch1w19zYA5KZkdr/fV6srAsq58eDhzdzuDQMobh3lkiIm6XFjFMYzz3rDd3dzwL/7xP+Dvx4Gb46zuXc4coJTEoPtl9AQiNG0UuyGI0huvD00XqauBXGdriILNSnf4oW6i6U24ggluv4bwbFLxjLGxP5xy/c/efvT5hF6jZteNZ2fDFTQ26MQstXsdY/+77ynuCoz0Z+BTd5BPbjLKtugmGCIuRoZxUlTAAoBy3qi1EGIk1ch0OzBNoz4sBGpSi1hp5gYRrLNfV8hZxVjmjiBNOcW1NUqF2vTBzXmlFeNKm7CptkIR4bEU5GnRBeaE4+HAMA6GFKKOVd3yVJr6ZzdYN/WXLllR1DSoUMiZ2LKjfWkwqziUZhCD6Mh/ShZcpQV2yVW/X+8ol2U1DQtsm6K4uRb+/K//mv/XH/2v1Fq4PYx89/07fv3NdySp/OQ48uVp4OWcuBmjhl1Z49TAihy38xRFNA+kAWuFdyWw1UrYFmrOzMHz1OByuRh9QwurEBWhuTw9mZ1o4+A858uZz1++5Pd++jNOx6ONNsMu5McFQhfMWpHkvNfxdXz26Dl03GJ2ojRR7mQf8WHPs6iQTRBCVXTOBn3sOyACpq1RIVpv/92+ALu4CkDyxvb0RN0W1vOZx/fv+fDrXxKOI9NhQhOnHYfDiZgzpVb8oBvlliu5qdD3fH7QaZ0/IDKionVozdEkKPffuLTOOYYYCEFpNNHCEhHUltV7EyRbUxXUdWq9LCoSjIFo+Qg5F7asKHUTdVFquN27/8f6GodBe9BOK9nH4IqOKXVME5LFaZMhZvTQ0YQOIuwZG4I2brbmEEU7favWqDYbY0OpqukIfUxm8+4mm05MxBxL9C/199Ft/4RG3jdbMavnht8Fd1Jh3Qoh1t1iUdDclefiyY76tT7lax7n1dkoJUUrW9MJJN6zbRdNfDeDjFI2s5tUZ67jPHKYZkCnLB4rgJ2nVjEnFrc35a07GtHF9LqGxTmaOJZSuX9SFGtIiRgjTw/fM8XA6eYNQxrJ2/c41xjmzzjML2l5Y3u6hyaMp1tCGsiLir69D0x3LwlppC5n1scPhGEkHm41zHJVulWaDsRRTTTq+qS3Z5gR75Vq27JSDVx3/Wp7sZVi2B3F0qCubjGoC9XT8sjh0HOerne3VvPod30v0psTQ8D7QSlJAD3bafeyhz31V3R63URoxYCoGgyAueYHaeZONU57s8mXFhseh28W8mfIoeCMViX7s68AiJpkBBd2+lc/f/YtsHOzRXC+75+KvnY3pB/rS1rZbcqHlIhhYBhNp2P5VilEomiOxWUt1LbuhZH3QkiBnK05H7XY78F0smPD7IWj95CCo6HW6XnTBqY3it4HDrO5aloj551pD2zSnreFWhZF6CXQMhxvbghx2u91zitOlG5eLPcieNXy9YwvrUHkeR14tW13HdMTpe4Zyq9GNBoEmupKdIJrhSBBQ/3ymeVSefz4wGlIjOOkFO7HBy5NKVvnZTWHRWsuejOBNuo7eG7XrBe3AsSgGUUpJZ7w1FaZp4Gv3tzxF7/8hqfLhTTOmkNCp+S4H9L/3fWcgA7KVLWD1Z6aaOyTdYXv3z3y5ZsbxuiZEOZBa6nlvLC1RgoCZcXVSvKe1y/uePXqNdM8mzbqeap4NeTeQxOabwQDqADEjEi6q5cY2GyMX0IMCuSKGJjh8UH1o/1skU5/ol9bZz/fmoAdmHUG8Hug59c9c4zaz1W7/vs9e7aG9im/Pe3aDertc/tPuV582+OuP6P9oNn7j70+PYxPHIFgdHrlqbpm3vIhUnPBR5jnmWkerduBmoshPIFpnnWxtIZPAyGOLMujOU3pw6FUqUCWBamaMllr57gZ51/0YAwxMs0TrVWWVScNPeBLL4aF45gjTYzOnJkCPgzUpgi3inabCp6aCjZjiBoY4020K4oAKqDZdmFgKSYip9FEA7WqND3IRYXnCJScidEx+IHHd4/8mz/6Y757947PXtzx7sMH/uxvfsWyrLyZI1+dEq/myGmIjDEwBBUlX9NIzS429PnBVfT1Ya28XarmZmwrwQkpnrh/uvC0bXQaW4yRlAa2bVO6QIuE4BQ1r44vP3/D688+U31G6JkiHT3RXtl35E2aXev+hMq+GOxmmYWtXSkT7Os60CJB+ZvgUIFjp8xIq3tnHXywbAmz9sxK/2j7w68UAamN/PRIvv9APj9xvv/I+eEj6+XMdEy8e/+Ox4cPnA4HpmnSz7JvarJzXNWVwdGaI9fGh/sH7u8/MsSBmzulinShbc5ZUSn7Od7rYa66YbUpFITLsrBuOiqdh8Q8Jj3AUiIOkVbBlULzmP2iXo+U1C2n7s5BP85XSldEbvZBRYw7SKNFYrMwpy6gLaXstICuRfB2sHtLze2nUJ/q9UyeYPxZ8c2yjro5AHQT8Gb+kgpwCJd106bTmlh/7W/QbJyyi4XXVT34hxSJwbOs6kg2jBoI2Izm6enc/44kSc8dxLlATDM60YO2Lmb3HVSX1oPo3NWxqkkheMfxeEDQ6UtfM7U1pQ6i7kshemrTYrfb8gZDRrujElxd2mqrPF02nhZdkdM8k7cn5mHk5cvPCb6xrR/wDubDS6bphppX1seP1G1lOr5QCtz5I9v5iTBNjKeXxJAolzP5/EQcZ9LNnVqCn++p21mdp0blRJftCYB4OKk1aVmhbvg4QhismQBHsImmJ0TVUdFED/VNnXpSjDw9FF7cqHZDaTN2Pw0o6/8dDONvrReKge4ypf7//SwyoANdpztgghhNRM8FVxvKROhnkp0jVQNrc81aHHlHjLIXLfQpNdjUuDfYOuJrtVHQCao2GVWbdOeMGowVENfiQLNlzJnxB4joj+vlfdhd/FQA7hDJqhn0SZ0mYyAFCHHQ0L5lIVcFF1LSZyc5rOl0e9PXsytq1em+k161K7e/2Zr20VN6OnxTt6TB9Imlqt5HcAaKKcJ/PMwcpqSThxBorSpNF8GFCOKIPuGduc3ZcydWv6glv1J/V5vo2YmHMsdtf6iYFrI/udfiNQXPMM8c24XQKrEVBbFaIa+Z9XyBbdRCWyrLZcXFwQDf7obEMwTdKKXNnlcTc++uXh0cdZCGxPF45Hw+8/S08MvfvuPv/8EXHMaB+zUro8IpBd6HaJPCqz1+2xtntCC36bV3jmaTf2cUMnGO9w8LD49n4u2B4HSKXkvmcc0436ibGuz4lhkRihfErIy9UzpQD+NtWuLgGmQ066Jb6Po+IQSoqrXqMIaIo7SClCsQKlZD+qZNRp9weju3evPWaZm+n316ZVGqWrdHdjugfZ1kYpMHFOTvtdTeGFw9o0Av+fPpyS516Pe510ZGMeyvTwUqPrnJSOOkN750Fx0PzsZnPjJPB9wzNwwVs1lXJ9DqZuLuBl4Dr9qq3NmOPpVaCWIF8DhRWWjLyrativq1glQBr8WWc4HDPO50JV3M2qGFGAlhIASl+ISgzlMddYhJ3a6Wy4VtK4AWFa05zUSoSnsoKI88eD00gnH1dzqO8dl6g+RDYFs0PK3aJhB8t/PV+/Xd9+/5i7/6BTEkahP+8hdf8927D8xB+Olp5M1x4NZoUkPwpGjZF14nCNHG9q5TSNCH5HGr/PaxcF51c2s1M4wTj1vm3YcPrOsKoiL8cRzx3rNtC+DsPQbWdWUeR37vpz/l5ctXhJjAaaJy113E4Ind/rHpQ+yCCvf3lxMo1ShL/aATK5yNDoTRSESbj1qbCuPtPgqO/t2KQEUwV6ladfpRfoCsaCCX1I1yfqRcniiXJ039FgjzjETPsi048SyrHhopJPTghtp0KpSiJwXPNCjdr2QNLvQ03OmGx/MT7nK2yYU3724V3/dV7qWSgifNE7XBtmUu68Z50UT3WjIlJ6ZpwFWPbKiTVKvk0kzTohO1wxRJY9JQvh/xa93KLhjs66VbEgImLkTtbFtVKkItpOAtckXAeyqe6pqlcF85qME5nUBKzysADCRQa8ikT4lxUq/MGSsRmz6XW7Hizuv3aiGpegms2SllQ6RyOJ6Yhwmk8PHhPVuurNu+yzMk1Tj0FlRaMRcc2/RdQBNSruuhtqYidn1XjDZJ7fRE/XObvNVqblh6IYMVJc7495qvAZ1GoYWBrcVadeqDs2Zd97XzUliWwqvPvsCh9KnTzWudzj690yng7WeM00HzLc5PSGsM8w1pPNDySr2ccd4zHm5AhPXhPeVyxsfIePMSl5KtUxWCh+kEzlFWBZ7CeNKdoyy4uuGD6pd8EJxrBkiZXa1XLVetjZCM295kt5GuVQsfDdSqBpgYArxPyJyBgA5Qm27EqHru2RRAml6r1gw7uf55FX1ulYprNJHm6BbF/Xzqu1v/WVtx1Gd0mGvhYICS9z/Q8DjLJ9Cpqhg1UEE2zTbvxZZOWTFLULHCcHcL+hG+Wqs7nZCmou6csxlwmHZx60RJvXfjMJCs0OrNuu8amT6ycGqEkNcF2qq0SSCXRkzTbkncKUmx9TWk395EiK4xJLO0FXDWiIYYSKcbFX5jQ3hRK/la1G1TrGFU5nA1MMSxWzCagxUILXgbVCh9zzl1TSs1c15XtnXdqV3eq65rmmZlaEw3lJZxl484qdR1pcpGK+rCtRRtYj1KCz0cT4QYeVyuNLJejDbAd1Qc9qZoR5npgKRSmzUnLHJ+8vzNb9/xe1++5vY48/78wLpuCmjahFiQnaK1C5j1SlzpQ1YY7xRap4yYEAJPy8a7D2de3c46VXLCWhpPBGY9NIjOMQaHTxFXhMXAmp1Ias3DrlVoDS/aNO10I/EE0XuhdtV6xnnLzhHTUurnUDBYJ4xCcPXKLm9KhQzB9hv7PVo2Gv3MX9e+HlnPBehWS3mH2B6nUy63214/ay2uJhR2TvUMHbGpiRN/nYg4s/Z+fv13l4r/+OuTmwwfjdcZ1PlGra2CkmHtBjYLNeoCE3U80uCavGSWy0LOhSEF0qCUEJ3iNZaiuQIhqC0o5nGO86SUGFJUW1NxuJA09t3BNE1Ks/KR7h7TQUqao0ql5I1WK0NKCB7xiWV5ZFkWlmVlWS8gjXFMpGEkdoTCgVTNuhjMpSAOaplYS6aDyqWINVDFDulqKaCKVhbxu0vNt9++5V/9mz/i7Yd7Qoz8+tu3fPP2I4nG759GfnY7cjsNHMfEcQgk7xii12LWe0W8bMQe+qJzsFXh68fK20vRa2S0sizCdw8PPF4uygv2mosRk6aJbtumC/JpY54PeLfxsy++5M2bN5xOR20+EIp0KzY1sdFRJRZEo+5SO/TWN+39oda2uNW6T6VaVTcMH2w8hC6I1oTSBYvea+aJpRCXqjPRZiNjXZ0qpFREXLmZ2+WJfH9PsbDBOM6k6cDdXePusyPHw8gYPOM0IHi2NdvGYIuPQnSem8PM6TCpaDhnwjwwjxPj4QTmahHsAHMeWmkMQ7LwvqLOW17zVfKWNU0+Bu6OR3Oess8g0Eqh5sp5LWyl7Ba9VVRc6N0E+4Tux/u6f7rgnU40YowMMRHtsC8GYOCUax9CxKUAok2gd2qvWGomVyGNRyukm2mmwKVEQ8OJXHuGKBmyrKm88myDtQ3VXUfw8zQxyqjFSGvkVo3e5cg1ItZsxjCrC1mDNWdScAxpYMuLlnkWnCjAmhuu6CbdaUtO0AIQbSidJGIclbu8bji3Mo0z83wkxvDskLBGw9zlnDmaOBTNDN7ZBDAYKtuMHtVNEZRukWvVfI96XX86mWu8/5Dx8Q5apmyFV6/eIGXh6fyII3O4e0MaD2zbE2U9Qw3Mh5fEOFDXM3V9wsXEfLrFA5cP31PWhTQdGO9e4WMkX54o6xPDdCQdbtQCvVU8njDdAg7ZzohRpHyaDMAq+DjhnE40fOwUFW3KU3TkrRk1LGrhgtqIeqeFUQh9StV1Ee6ZE49ezypYEX99ftUKOerUCBTptqcsBJ2c6aRJne9cM8MAyxLqDZ7WYM5oqGZSUhu+88uxrcHeL0WMWuGtgbECZi/k9NVan+jr17Vm7j3BWd6U7A3Ij/XlpOERktfzdctCzhse1brV6tSsQxRY7KAg9Cnmda13yi3oGVKLZtS4OFAF7h8+8nh/z+GgidhDGiBO5jwGiEJbqoGuNJTaFD3KoHAOsa9VIN7tRgP9XtELdhHaM3DDtd6oKkvAi9O8pqL5KsHrdLuUzLJtLOsDl/NC3jKCIu2CY5o0RiClRG2w+sIlnfDNMyyPDGXBZW0gpuhxorVFbpVxmpnGI0UsEZ3rcyO2OHYuP8Yi2ZdEh/cBFPxJ3TTFO+6fFr5//4HDmKw2qKqBXJedASICzXXdgJg5wrXY7Yh7z5yKIZBtgrRtwtfvnvj9L27AVyQXqvPUkNjDEEPicBhotbA4qN4jrYfqXicPe71hzWEnircKrjqKTYi14G/PqJN6P7slMTw7w5uj9B9pQFYTq6dR97Cey6JTCjW2ATUlcs8nF7r1PfsaDMjVV9fPtn7fuk6r30s69a1PXNq1kaEbiuwohf3E/8KTjNqEuq3kTTtkmuoaekpq51k3gZCidlFeu6q8rNx/eG8e+eqTPE2TiuWqMAwTw5hMQxFISQ+PUCs6shz19wRFs31IqGe0ui9ooZnVHzomQtKPVXJhOZ/Z1gXnID8+aePiA3nbWNeLuRKwNzslF21a0MnJtiwED80lcAPeDfhBMx9KyToaLVps1qbUsGmaGcdRfbnzYi5VkYenjX//p3/Ov/uTP+XD/QNbaTw8PUHd+L1T4u+8nHh1HDkOkXmIDDHoeNMmB8mEjjF0Ksh1Ld9fCn/zYeGctflaSmEcBu6XjadVQwybwDQMhKTC5XXR1PY+bViXCyC8evWSLz//QoXINiLu4qpuY9sLXhctOKcLnwQ64NuLIbGF1xHn3aFAoOZG1QhQDe9pANWKiWr9x1Xk2ClE+O7soBSI0A/+VmkXvaYxRcIwshliMY+Oz1/fGW2lahZGSIQwkLdtF286Q70FDYDsu513A84PSt9oypUV79mKaFErjeodKQRyLjw8XYh2v6YxMYwj2QTqUwiaBF8UBlNQQEjR0wi0rJoN19QZac1qwRo6FeJH+pqmYX/ekD7hcibwbraedFozRBtd++tmGmLEhYivRSlIztl6baxboRUoHQFzndaiPHek7c9Uz4/YaXlSdw4xYBNiby5OigT7GI1OlQmuMaakrmjSncWENAycvG7gKv6156jvm15TvUuu6mIjhmjTqCXvNE3nrpzXZgnA0NRYY1kMzb4mQDtEHZF6Rkx3nDIcrol+XSUb5cft1z3XolQM+/pSPefVMx1H1uUjb958RXCO5ek93gm3d28YxwPr5SN5eySlmWl+iSOwXR4p5wfSNDOfbsF56uUBB4w3L0mjOk0tj9+qQHc6MswHSllpedHp83yCVqnLI0LFDxMuHdREQwrOJhrq6CXgRCN4HAxTgqZZSN3P3gePDxFpK2PPWJBmxbY3qmbPtbD91egqnacPWuioni8SuruOHcRNutmDTkF1L7oKY/v92FFza+oUaQ/6OYBaTUOEopjekPmO2DaaFhHSKEUBJmcOi51W4Wwv2R15cEhzVsBgzko/3n3EO50OxhjJtbGWZW/Aew3kbDKxbZmtZDN7UVqqoA3XOIw4vNKPthWpmTEpZTOmkeSUupmCNg7etDO9IKtmouKdAg3qcKb0WS+VITpCUnpfbYpGx74niAqxldkByv/tDYc2uA7NwAgiuKoBpufLk5k9oBM0p3qPWpVWPIyREACR3WRnGK61Va6F5ax26CFE4nBkIHCQwCSFKSgA472jSCROR2JK0Ly5VRl1p+0Qv113BYHof44h4L0c702tgZUxBlqLPD4tjCmYu5LsdV3JGyklCEEpi74XuLaeUFYF7Qrc9AGK1kiBFiMfHzY+fjzz+lbvezM9iPM6QRa81kKlsoRIBrwoLcyjTYYahkAU8JgOy12BqipiRhpXmlHwXs8zc1T1z5rZ/rruDdDtimmy04W1kWxc81Kuep9a295o9CbV+aDNgNjE1ty9Ou1JsGto4GZv1fRzqK7jh9NcK+YERPY5/P/mc/ynXp/cZCCQ88aHd9/z9PSIc57jfOTuxS3D3mh4Q33sYGuwbReeHu55vP/Isjzx/v0HzpeV+XDi5uaWu5eviOOoTgx2QLai05Cci6Z5OrGgv0ZKI9LUb7+2Rkz6e6VUct5oJTMwggssy2IUIbOMyyry3pZVOfetEYaBw3zCI5Zg7ildLJo3i2u3zxcGWnkm+hR1DVIHIoBg6GeltQxNke0QB7Yi/Orr7/njP/0rfv31dzSBx8vC+Xzmi9HxB3cTrw4jhyFxGCJjUKvTIWr3n7yOXIPRRnahH/C0Nn71YeXduZC8CueH4MgCS20UINfGNAy6yXoVMa7rgrRGsoyIXBrzNPHFm8/54s0bDQ/rj5XvrhU2fXBOyZ/SYA/fcwr7Vfb3pg2JR3LWRmcPOVNxbxW19dR7r923mMUo9jjr5m3Cq+5yZgt7B+TsQC6tEoFwutH9LkTqsuBbZRpVcB1D1A3K+IwahJYoeduLSmeNVRo8AxFpheAj2KHUagPfdKRIz2GxUWgTQ9HQa+MjLiRFOlwlYIFSTQtDvXxNTQPIxtW2zcD2hTUr53j2n75kfxdfyTu9Ht4Z7a9vkr0JNU2BQKHZNFP2BlX3RwUGQLNTctnoQktB2DZ1j0sx4NMAVhq47lhmkzUFKNqOPFVb99pfqOC6NaGK0oowpysXAjkr6jQmS3WPgRSC9TJdQKprJ+eKZ9iny7kU8lpYLhstL9zcjF3Dh3PRnG6UuiUtsy5Put2LUMpGzqsxaUx0iiMEKNWZkLmTv7RgtoGfFt3OckBK3a93s2ZMTSU8ddMpTPBwc7hjGCYu5/fQCnevfsJ0OFLbmZIvjNML5vkO1xrb04NNK2am0x01Z/LlkZo3Up9WrBfy8kirheHuNWGYyOuFli8a5GnalLI8ImXDpwmfZoMrsx7gSTV/zmkxIOYlEWPARU9dFEEMQWlDMai1di66nqILFPOh7Fx1bcSaafa6wwuGRGNFYW84zDuetgMg3pko2xpX/V6wblXbwI4wPnMIau1KG9WzW3VBYiF91Z7XwNWNRsXojk5rkFbJTa7FiOvJyTr9kK5et+eviagBx4/01azh0iZQNU/i4JIVCOsahhSVGgiiwcBRJ1qlVLZS2EojGSWqlI0pqU4xV8GJZ4iJw+GWNMz0oDMfOuXQU0Ldp/Otrro2y0arxRrVBG2lUglhIMaAVNt7gI5o7BkIVjSXoo1/k2bNI1oXSWXJVesiUVADzFDEwTgkYhgtd6zgo3bew5CIIbAsT3sWVjfYaOOIDCOSEk2EoWYGGtVFiktq4BAjtKsbUQcNdS9Vu3/HM6S7F7Ui+/nsjKJ21ZhASgNLbtwcBmu+OpBY2daFEDWHqzW/a5L0Z2F6Ddkfa+HaXKsI3uIHSuX9w0K5O1BdwlEIrRKiuq51yunaHEuMSjBtjebabpC5a39CAKK6lhrAcWXtVMqzJkfrwSsY26eL3X3O5gXUpuedk2qgGOBl//veiCgAapM4b3VyD5k2AJZaaftVbrvRyL4PeWtoxCht9pUd7FBaaEALuP4e7b666/dg3+n+y1vYVmIMHG/vSNMIzjMN6tSj47yISFUBYhXyurJcVLA4pMSLVy95uA8QB9J5ZZpnXr98yd3NrSJD3S+wFhU3tca2bZS8Ucqm4+MQyFkQFpZ1ZRxVc4EJt7omoxYVMzmcFtVVC5roIRj6UKsWtCUXFnQ8N4VBi5eSEYHgE/Mh6XupIKgdXnB6IOnGU3GyUbdCqY5hGJBoxbZ19KVsfPvtW/7qr37OL3/9Nd+//6ij/ya8GeAfvZ75ye3IISXmpNMLH4JZ79nI1Byeglf3rE5NKln4zfuFX70/EzwkV1lqo+JZKuATOZ+J3nNMqq1YUFvUalzdGIJRRuDFzS1fvfmcu9ONduO1UY2Lqpz2vplgwisgiCWJ2UOJHnydTYg5LnTkWkngqunB6f0oqNXec7EtgiWZu30xKDdSf3IwvmMzF41SGzUX0jjioloWV3GsDdz2SIy2oIveR01bbXivU43gogp5W2VdNx6fHlnWjRQ9p+OBm1OkI5DJwzhGYgq7+5bSFB3LulFK1rDKqDQJaY2KfW5x5GqNW/C7fbJznjSoLWKKkbwV/TvTFrROr/oRv3pKszP6Ss/+0DRcPcimQbU9+qg51NlHqUW9dBdpbLWwFT10nVNa2TA45nFUNIhrIaLPnekwYEfDuntP3+Dl2XhQWlX3uqrW27hM16E57xmGxDyOuk7d1QWuGpLeqVZrrkprctBtRB3sNM7WGrU4ilTCqhkQwTt8VGMFROlOuRaExjCMpJiYppkYVGiKqAVlLdkS5Cul6mSoo4TOCtXgg05j6cJBv5sq5FL58PEJh06HTjcv2JYHSl757PVXjNNEyY+U/MTh+IppfoGrjfV8T91W0nhgPNzQWqNcHnU6M84M81HXwHrGOc94ekEIibqcaflCGBJ+OOC8p6xnpammGZ9mo6JsWjgHDXAUQ96aPTMhelzUIk21GJFSlb7aaVPdHc87sXvlqE4bR+ye6LYqVtRdixfl8btrM2rnjbd/dM+yRkSuksgusWwWSipgDmbW2Bl1zXWdUgc87Xfr5FaFrUGu9K7m2Kk2Whz4fdKLNTDODDK0gDBLUwNpfsyvddsQ5ylFkeLdqCXoeVCa3rtmzcUhpX2yUZoVY63TJDua7Nhyo0ohpsFCfCt9mqXnl8c3Z+iw2H0JiHOkYTZLVKO8oCnZrZj7kYNaNi5Fk7jHpBSmdb0YGDkS06Q6x+AJOKi6l1Tbu7zzzNPMbCyQLSsFtz+fKSZ1y4rRNKVahjTbj1qnmA+JNCqNvdv7Njw5DlrH1UJsCngEy/7CKMM9DHAv6qU/T7IDi30d7I06bm8s+jMakyWui2MaB1J3V4zRpjONvK0UY13057s3ZqqfNVc8a9q80wYwowwXZUZ43n68cH4DlSPwqFQ7HDVXpd4jPDVHiRoGqHvE9b22Lv72+jnEJg4VswPHBNnWY5WiQIT3Yf85peikKQbT3diz7KwuKrXhXDPw1Zo5aXvIn+0sYPuPM/1rcN2AlmsTYKBZp13uAnGxe2EgbVdQi4EkjapmFtYkXtu3/rqCV3qkfFot8unuUiXjmnCYZ+ZpUIGdU6cmRV9MsCR1RxliTPhBqU7TfODm7hU+JuPEBs0laMWyLrzVnUkP9WWjbCs5b8ToGceROAyUXFi3jTREYvQmEhK2daGUyvF0xAPbcgE84zixro11U2FVWXUCEmJUqkMTtrKRqyaEp2hWhbUwjgnvE+v5bA8xtDXDqjchbxutZqJzuGFk8oMWnV7Rg1rhslz45rvv+Ku//iX//v/zZ/zi179V3/pSOLrK33858bPbidOUNMEz+Gsa5p6KeT38dqm3aF7Gt48rf/bdA4/rxjRELkUoAqsLhPmIVC2rxpSYgnC/VZr3lKKWnUNMdA/u6D3TdODmdMM46DSoGgqmjChnzYQ1DF6bIRc7dUkfcB2lyu4Ag1EAFPFppOjtEG2WI3Id6dVa6csK2zh2UW9QXYpktTYmaIddqzaltemUII0TjoncGst5YdkW5tHx+vVLLeLtelYL6CtlY9sa6+VM3lZCDNx/eMuHD2/ZtsI8TwT3kuh16jEOkSGOuBC5LBs1Nka8NqzrZj2UCkcb2QIYhVyKpkuPE4KmypZc1OGrFkMl9DmbxoEhJZ3Otaq0q6jpoT/ml/NWBLRsNCjldgbnGAZNje+NprpoXEui51bFrVVqS6SmDnRb3uhNrXJfVdP1PDyrj9ubKL1A7IDUx/X67z6ZF4EqajDgvXnpe0coDlJkCFH3wGcBamLrsk8zcvfW3yElxzgoSuhkYl0dJVeaWbGKud1Ng/K/XQgEr2GcKQyWSl6tUbHi0iiE3nnSNKmIW5ruaUY57YWofk/XV/Xi2O/Uv8uSaS4jtXA8HNmWR7blgVevvmAYZi7ne0QWpYQOM1I3tvMD1MZ4OBHSTCsb+fIIznN48bmutW0lLxd8GkiHGy2g80KrK2E+EtJIq5mazzhxe0J4rStUIQwjzg8KWNRFi6GWTLflcMGc4ba6N4HYlCD47uLir9MB7/BOTQdwPdPd7UX6Lrrtzx7Q07/1wPb7BKxnJunfdfcdzB3mSsvqP05ptQ7v2o7PKsJrxYdcn1WlwSkNB+doffpnv0vojbNRNhxoxouK43tD22xkFUxI/mPWZPjdlc5AB+d0XxQ9OcJ+Vl6PpS4kRlA9Xhh2FLrUjA+ey1bI28aInjsVbQRdUFpjnx54UWexLirvGRzeRLi+gxmibl6+5/W4QIxN0etqoFKaaDXrAevMZto5XEqIRDNoMNq489osegsTLZn1mfNcf2a92cUq4m02200YxwGRmV5eqvbD74wCwVGkqS7Be8bpxoL4nE0mlGLZQfr+bF3/edYd2yMsyA4W6fuoO31IqprQnA4T8xDIIubQqA1Kq5VtXUkp0V2YjF2k9YXTcrfb6Hpn1dE+jVRmytNauT9rmHKuGxFBysZWKunmlrUIWxiUUons+3n0geb0GfNiuth4NYoQroW9/l79nZ2OKR1YkL4vaPNBuzZMzvWpSLPnqxgYa1ocA7RtQ9mff29GHvorFNRunflgOS++sds7iHM4y+jQZ8Xt7w0UxPDi8dIpU0aptL0G+5TOJln8Z+whn9xkCOZ8Yfxm5xohDioIf/bjVKymU45WClpmNnNe8IQ02AfTw1sR6UAckj7EreKaZgycTgdKHQEhhbjnOqRBR+FKEwiKXDuHW1e1+cyZbVnwIRGTWoRqmF8xK9nEPE/EdAIgb5ltzdrwFKW8aNKs43xZ+PDxnjFFxmFgHNTNygGSIsMQ6BaGMQ7EIdrIUzmU33z/jr/4+d/y7//0L/izn/8NW1WR9m2E3ztGfnYbOI2JMerkIoaruDuaiFM3S7upzhAuEd5fCn/+zQMfl43DoIjKWirVReZppg4j+elCCJGjF0ItKlhD6Wfe2YQnBHLJDHHg5d0d8zzrYWwL2gxUdlS5i6FCTCr47vqIfjhK95LX9G8p1ahSfdTai7HOBRd1RHHYga0WdLXUHzg9NPN5F2nkUqmNnW/vnKJSMQSdhnnPtm18993XLE8fefUHX6KheomQAmXdkKZmAz4E3n7/lnfff0v0WAp6ZpoG7l7ccZyPeoA01V2IbQZlzTycF4YUKYOOGKshPZrjElXv073ypRmypA2W6jGEYYh4NyiKYshUD02T6qg24s+5knPj7lMX7e/ga0iJItCa3zMKUvAqlOQZR7Ujs0axg05D0fvlvfLsHcKQBkQ0wV0PHTTl1XUXMtX8ONv8a9OkYICdikWnwmAHpB1codvkmvsTqhXBDthsYnVdk5ZEbJ8LroLOPjFwrttHB+ZppOSVgDpqZZvKlFLI3mnx4D0pDaZNCZb74NXsIG86AamFUps9cwEXHNFG8y4m9nRpaz5EqqGL0KSSm01ovWqJ1jVzOLxUT/und5wOR8Zh5PL0gbI9crp9wXy4o7VCXs5QK9N8S0wT27Kyne+VPnY44KJXGtXlTDocifMJ5xzb4wccQhwPpOlEKRfq9qQNz3BUqlpZkbrhhxkfR0Q0nVmBKr0HPjicF6QafSCoBqM7/Hlz9uv3p2NztTsyefaDV+lQmnvi7Ys7dqeuTZiY9uraQtdmWHGl+p3eIutZ2M87EdXX2CO2UxsAetjjXqSh6DVuL91Mj8FeOff8i94o6T0V5XM7sa9Vui9UXHM098OG58f48t6RLOcoBtUvKJtJEWg1RVB7+cuy7hlGXXicuq4QLXaHdNVv5dbFsrbXWGCtOvToREqLRiurXQ+lNR2P6MRwbxZNPypSkaqNn3ONUrMCFA6cuTeum1rpByuUe6OJvlM9M1tT0A7MxCHQ6ysMyAsBglft0Q7XeE/yXVGi10pQNz4fPNFHnE+qM3EeP4wkazBaVVvutRT9bt8L+t2zxboMLdANC7rijnTQpe7hyerG6Wk4xiFxMye+XxUMuTpKYfTQzQDGsP9csT36isejdGprMDULKBCaZoZ93Fa+eXrPwRXenEZiVhpbLRsXCcg4/2Ayqe8x6iS0Kj0teKXQdeCzMygQoy7uRfjzTAs9lWprSBGq8+qOZ+cCrtjncjtYRAePqk4z+nmnvYRlctlUv4eB0m+B786Dnc50pXDq+YpOR1rXb1ld2R0UjVGhDVC97jXWxOqPNHpWtyn+T7w+nS4Vgq07T4gBaZo0i1eUFqnKLXdmnxcSPmTqouhwE8GHhISkHs5NN/gQIz4qInV+uvDw8SMO4ebmqHw8Q7c9alUYx3EXx9ETKEXRA2qlbjbKDoHS1FlqGCJuHvBOrSDTMKjoKWooYIqFwBOlZh1X4tXOzTlCDNzddBebjoxCDNboqO2D0ptSskUslG3j3YcP/OXP/5af//I3/NUvfsPHxwuXZeEwjvzsZuRn08btpPaWKUWi96TordHo/7br37l3qBXj45L5m+8e+c3HC6dRPfq/eSpUp81QGAaeSmMtVacY4qhpIEWoeaWEwJBGXtycWNYVb9fj889e8+b1ay7rypw30jjuDhc+BAiBummgmQ+D3W93nar1jdEJIgWaVzS4VmXQCypka2KCtWaUBm8otjeagrqq1KbUD4ezxsjbOLxC60FDuhnVssG6IMvCVgrff/8tv/rrn3P3+sS6rjw+ekoppBQZUmQYR5DGsqy0kklRA3vmw8w8zSw2HQtpZgiRboO3rStDGoghME86yvVWpCVJO2c4543FKGnBBzzCPCVayVwuKzFaQnEuDONI8nHfMJ0VNnGeEWBZM+uyWsbGj/e1lbaLvNVprCESkGAHoIPQOnqilKWrXaKVZrVvjm1vbKs84+e2ZmiSWVLmogWaPZvBGhRFpsXyLITq7DdUPSRqq+SqRD7vA2K8dxG1neybd63qXVXx1Fx0c39+0trz7UMjRTWVSCFBUCpdpOoIv2TW4KxYcgYI9ANMP7uj4l1QUwA7EEOIjE4FpU6UO45NvLrouFtHWweHeB2fq/7RaDg4zpdCKcJ8OHB++oB3cLy5ZdvOtHzmcLxhmg+0linrBamVcboFH9ieHsnLmZAi4+1LcLA+vCcvmho8Hk7UWsmXR6Rl0uGGNEyU9YlazoQ4EIYD1Eq5PCoqPU34YdIirWVc8DQXwUWlkzmBpgWZTlodbdO8IlzXrvXJYlMbZOcVpJCGbw6iGmp0NFz6Pt8pUT5o4Y4CGV0M7twzwxm5anBUqtE3RPcf/Ltdwd5nzlR7UboXlfY0W2PkHGYXqgkcTqwptiLGPDQVcDGJXDPwBnrT62jOWAM/4i6jlbLTRh1GLXRms+ks+CwM5NLwi2ZU9b2hNbU9j0ZHVpqrrq9hHLV4M6pIn3S0WjGYw0J7jRLUC0KvdLS+N/SGzwH0c1McuEaputcEpxNFZ/tcs/vZaHsGSG9W7cfYViK7ZrDZ3lZaI0XVGG6lEjyMUbVk0qoF95qjltaT+2cMITGE0cwmPMMwmxZBOJ8flWbVKudl4fHxQZsQH+g6YOeMvlP7c3oNhetmLTrRuVr/Xyco6gLmfOKL13d8+4uP+9/15qjWyrbZNMMK6Gsf3gvy63UC3c9c9bjQ8KJ6ynXLrNsTX7644TBNmnWB8GHZuMwnMCdA57k2f1bNhRDxTem3mp9ke6vzO2URhz5H1nW1poCEdfoGQCjFO7pkewYgjiLaEHTanjasugOUVjWPDoc32ljXxrTWKK3sAFnw3hpi9vWtTahVFXb9xWmOj/69NrD9fvRzF/qe1ux593ibdu2ARt/i/hOvT28yxFHzhjd72ZAGPYxLth2w6kqwtG58o+WVbb2wXFYA0thYt+2Kzhnq1vCaqSAVHwPrsrAsGynpiDANA3GclJd8uZDzphfGQn61yPOE6EA2nNdE8laVZhKchxhpg1ArKvquBZrmVKzbSraAtBgjeNTitWl4zXhMioDWQiNQsoaDDYM+LKVUti1b86OL6O3Hj/zZX/6cX//mt3z77fe8/XDPUtSZ5A8/e83vj5Wb+p55iEwW5BXNVzl6zWgI3iHPqQ1OD47zVvnr7x/52/dPHIfAzZh4uzYkDByGkZRGljByXhe8Q8Xk4w0tDmxPZ/J9Yxp0g8tFUdBxGPnq88/5yZdfMk0jl3Xj6XzhbhiJITAGve/7WM4agd4t//BZUYs0kQqom08xMbS3AryijYciBGHvqhWtyTvS54LFY4lYKNv19/XrXUtm21bq471mY+TM/ft3fPjuO1zd+OKLzzjMSvE7XxbaY1FKm2WFLMsF5zzH4x3euLbKuZ/xvqilqDhazpYq7FhyYXIwxLjT2lzQQ6YV1QXVUsCKlGCp8D4ORO8IBz2c1m3l8f4DuRRSHJiPR522uEB1fqeKxegJhxHvxk9dsr+Tr9UyaDrSo573At1hxGFms7IX6woYK7WlN6Ci3YA+S00tbFV/oFNAO350xO16kJqhl06ToL3rqJzdtwbNvrbkzGVtahkplZjsd5verLWigkg8W6m2bh3jYdifVbGDWzd9s1hMUWlQTlHvnuY7RK9T0rJRcgZR7naMw3WaSTcOVD/8WivBO9P9xP2gq03DuYoVw9VEpGq4oOF0obtYGSqPC9TSWNbCOJ0I0ePdwIu7l7SaycsjtzcvmE+3lLJS64ojME5HYhzYHh5o20pMI+PxVsWb50fKupLmE8M4sZ0fWC+PhBgZb14Q4kBez5T1TEiJMEy4VqjbGeccYTjgktpLtrrof8dZaQk98JYA4iE6/ScXatGDPqXAusreaOx0E0M8NVdDKTDOGfrpeBb+ag4xLe8UI2fVfk9e9k70fLH7cmUt94KoN3cd+X7efPS91GhShsL+cMzQnj1H7oeFjGCNuTUS3oNT50f65MxfXWPUVvOHNqQ/xlctWoc00XR6PYueFZkoQh+SFnQ1uf3+VYFarjTJvGXVdBngGUxEjXSjiYrqPNTso9RsBb/dCxxSPSEKrTijyGmhGk1b6fai1JgJLuBi0Maoo/xc28talAlQLfvGWzHbjR9a1fu7rReawOl0QwqO+8czT5eN4B1nmzTEqGs+eEGwZwObrPpAIuBD0Vo4Z2IacS5Q64a0zaySdQIUuptRp152RLsDF9c2Wz9v67oMA4lM2+BtD6rS9UvCl5/d8W//6tt9Itv1tcq6UF1uiMH0WGJ5M52y43j2Noz+qXoGQqT6gJxXbqURpXB+fEAcnF3icTpAGvE22RGBanww77opCNfPUPs+0infnS6p97Ab1iAY8GXNr/RmSJCmOpgOTpS9sdUm5P9L3Z//TJNl+X3Y524RkZnP9q61dPVSPd09M+RsJEUt1gLTBgzD9h9rGDAgyJJMiTQpUaJEcjjD7um9eqmurnq3Z8mMiLsc/3DOjXyatIgSQBlT2aiuqvd9K5/MiBv3nvM938UhtCrbr4Hudb4oKLdpLHi87pWaq9EJavKh0+8z/bNPPc8wpk1ZbDKyWSd7PRn69IRtOmPTlNr+jcbu3/b6XzXJ8CSdRtiGKQjSxVG1ElP/8k7dlZwQx4HJh230v8wa9iJtNk78QilZF01dWE4LLg0cpkn5idHcVmwhaeKxMzvJoqPGpsmcu/0FPSBOU7rbtmlHn3R8ejxSSlbLs0Gbg3nNxBSZhlFdKk6zUpYM8SzNQgOdI+oORimVGBoxKmzkzOt+WTLLuvCjn/6Mn//yV7x+d8fbuyMPS2UY97z/dM/HH77H4faX7EtkNyTLQej++X5zlOga3/BI7Fta49N3J3726kjwjqtd4m5t3GdhN4zsx0hxMBtavJtGpnHkcHnNqTYOOJZlptginecTwQee3Vzze9/6Fh+8fI/duKPhWddF6WWHwzZCa03RMW3wzhQuWyX2NwcenHhDrLsfuHbNnb6hgueGH/TeSnPmftt3C3926XFOhdMmZNOHQd2ipFXqfKTevaGuC8vxyHL7lrKuXNxccfP0CeM4UktR5CoEtYVdsrk9RKb9pY7CLbBLg7bUTURE0RnnA03OYVet6cPv0F8PZirsbbLlqyLgIQ34EJBWWXNBrHGqa6HVxjDuEBZECp7GEMC5xsPxxGrWtcnE5Wn4artLheiIUSmTrVaa+HPj2cfPHTXGQCLvsFiD7VDr3PpSdTJSRBuPMej93ATdHkX5RPVAueo0QFOvbRPtnPmAokbe4ZPtG9GKOSfUmpmXmXWZ2e1GdrtJ10POTENiN2iej6Br26FCxhQVRBARTQI2dBqn0xRvfGuc0rOqOhRo0RPNjrsUSsl6AIuJjYPf7GvNKHoT++F0H6mdqigNacFG8pUYFc31TgEkpHKaZ47LShoPzPMd15c3tFaY718zjXuG3QW1rizLPSEN7Pc3eDx5nqm1MFxcMow7c/DTcL7d1Y06t80nloe3CgDtL/ExUdcTrSzEYSBOB71HZcXHRBz3NDxSNI04DCMhTUbXPQsftaJDdWEiRklxpBSoVfemzXbbigWljjhrEHQNVROReu+VVtSaTmkNLKmdF2LrsVMMtFhtWxGvOgGzO3XOMgQMFZRmjnh9gtFbR2xSc0Z5ZSvOOmLfHoOMW/HTC5Umxv3vzQUOH4TWdBLWXbBwuma+yn1GTFqE+iY0pxRV0OKvSbUp1dqvrIZzonz/6AMtaiO+5Kr04la3gjakYcsTaXY+NfTaDSkwmm5MC8GqE3QRvIuqsWlCKc0mGElrg+5op+9qhbDbMvb6FKufpz4E/G5ntKw+8TdRtffknHE00m5nIw4tHaPpXHPV80ff1lFNT+mcJdo70dqpaLYQVKLVdXku+KDC9HG8MIc2pajvd++0vtr64EeN97aU9Tc7lahTh7q2SKzZx7FRj2trPL+5ZApCKxnGZNMMPXsxVkCMCZ/sLNY7vl07+9dtQtObbO8FQiT5xhgH7pZMQXDjxBIixKjgVXcZdA7fdVmG/vfWSUyn4H1DryTbfQXs+1UTpD+eDPTCXf+5bXuNfmw11O/AQV8jekF76rdUq0esNtT38/aZ+kv3GNUROgObHoV7WmNwdqF7TJ10dLte13qIq9/2kubtOm/rtV/rL/G8fqk/BbrRh4ibJrpnYIwRWtGLqObM9AA9nc4FfPPEXUKq0guK6Mi25JWcM8s60wRef/YZn/33fx+Zj1x+9Hvs/72/w83Tp4yHS70YTd17PFpcxuCRoIuxZBWPD2FQh4lciM4ZouXIpZp3cuRwcVCUvGRFFmMkpGSNCWebQedpzpPzSq2F3ZCYhtG874VlzTRxlKZTj2S0l3ev3vCTn/6U3/z2c3LOfP72ljfHQnOR50+u+Rsff5Ovv7jh/oevGefjFqoUbCOIJorqf+my0AMrV+HTNyd++vk9zjme7AfWKrzJnsN+x80UyOI5MXAqDR8jFxcXXB4OhHGnlpK1cXN1w+n+HfO6EkLCObi6vOJv/v4f8od/8IfEYaChQuVlWViLpqlSKhWnh2+3se2bi8EAG7LRN4mat8mHPgy2sWz5HF14ageyiWwLihR5jyVx60Yt0lETR0/MBeB4Dw9ql9lOmujth4n3P3qfJ9dXACyzEFMEBpKoe5l3SokTa0q9AozkUlg39x8hRMcQEkNU4V3wOmb3MRLSYCFxyveXqsXetNvhQ9waolr0vykmzNB0zsA0TQyW9TAkdSkKwdN2SZs5QRteJ1C/2nQp73Ta0GrnpFvR1tEiBLFRc22ObBt+6AdzR3C2XAJ9v8Gokykq2lYbumFKMBtpCKExGfoUt+lgb4zt8DP7QOeNYmjTbqSyzCeiA9mN7MZxQ+PCqbEfNesgz8et0JvGyDQNdKTNR20uW9WgzhADEJCqDjmdzuSswXZgTnn660rHEKgVFwLReUSquklZAnKXlahjlIIX0RtqW1bTFOhX6tk7nWd8WhaKeMp8T5hGfAjc374iBsfF5ROUWniPD4H94QbnPMv9Pa6JWl2myLrM5NMRvGO8UJ1GfrhlfrjFBZ1guJjI8wMtL4RhIgyD0uLKqrTDYa979DprQxUHfJyg473OY5G7qGWguSblClWI0VGKHeYOvNd11XNwvP/d4iD4rseoerbZNdy0PN6pm0w/G8ToA9ajdsMAu/BauPXJPtsv/05josDUec277WnQte07r9/wQh3qGe3B3suffxeo6mpjQbnBhMTORcTrz2uiCCk2VfuqvmoDDUTTa8Wmh3DaVIlAXelTul5U9bO032uRSoq6/lunUJlLoubpNNZSWXIjBZsYGq1T3ysqut4KrmWjYUJZV1r1KmQOEe8xGktH/5s5V5k5QDs3oU3KtpbUjrdTRh3exqlznkleVEuCI1e99+I8+/1O++4tj0MscFMtTRtNmQMCQsW1TM2y0aVKq7Y3qg7KoZPn00mDi1urFsh81rX0AM8uFO7XvFuRP3ZL2rIh6JQzYVkL03TJs8uJL5YVxwX9KmsJpMBxKeU85fBd8H0usT39uRSjkQaojeoCd83xRiL7w47W31MUVBKvzAurnJUgJOdqehOYA8aF1D9qdLrHQXUObI34bYLlXbcRF9vnK4ZJW0+m2VqA6TQ62U6nsB5n9CutRbyHIMGm0TyiodkZ1vR9iumblQKmZ6fgoGYFSq3R8FbPYPdDv0qj5GZUwIDDU4vSmWPXYf87T/wOSgNQWx/Fm3HeXCss7K1WKzRN3Yourmh8QWmV3ZjY73abdWNHfnYt89m7V8jrX3N882v+/Gd/zvjkBRfvfcT73/kDnn70DfZXNwzJ4XwyOoQ5EWDC7nVWCozlXXjRNGDvlIu/mj80KMInXlPAYxxY1sq8ZhBhSAkfE8uyMD/ca+EyRNQ5SRfR/rDX79eE3DQ5+/7+yG9++5q700Jr8NtXt9wvUP3A5eHAt95/j29//WtcJA/7A768JgWbXpjIOzi35WD09HJvY95X9ws/+eKe41p5fhgRgTdLw8eJ54eBIUbeycAqI4nM/mLUSck4ICHgW9OcDe+5OFxQ6i01wZgiz5485fe/8x0+eP89mg9UsQT06JmPR/1MMWgwn+s8y9ip38Aj8eWGQuhoresudCPTh6tpJXceO4s3SppxUvtoz5wipPozzcZpgRRd0DTmvOKOD/hWtZgfJoLfMU4rH7z/HhcXe5uAKV+9bFZ8+uCdxXyGNYlO6FIIxGnaRsR67XRsjE1TQhqUDiaNeVmYDdWNKbIbB4akUzVpJ3VfQ/ez4Hpir6cVdTVJXh2q27poQREDSKFkFbu6YMGHX+HXvBS7591txJKqgRSEGD3YRoqDgh4Ga1Uht2oHLGk9aaGth9pgz4xi+zplLHgXVFhPAtRWtpW80V2wA7EjxWpTqIWfGl0E03IE0kF98/XVtpG4x0PLzIt55NvkwnkrAkrlND+oa5w5gwhYoFIXiTZD+/rkz3F3fGBdZtUCec+QBvO89zZ+t8A40YnYYpaWHqcAj/dEH0gpMEYVr66lmKagsayV1TlKbExDIhehVLXcPly8oKwnBTOevc+4m3i4fYX3cHX9nBQH1tM9zom6SsXIcnfLerzHh8R09YSQBpbjHfl4R0iR4eJKKa/3b7Ux3O3wIVHzquGZw0AYJn0G8wLO4cfJkE91JHMu6RTDaXNK9KrxK/ZwJY9YqCqtWfo5xBDV1cUmD63BauGwpRSlhA7JQCTYpmUWcobTKboAQ0zg3OaK2IvFjkZ3Tnm3Ee1Up45gVxHEuW3P0Z9mEzxrWJo1zxs6I73s6KMMcz7CCm1DRkW9rpVzLQ284JruoR7dx1SI+uVQyL+OryVXhqjukjgVw5YmW6Pu7BleunbQ0H5vnPXOZ39s7pBC3KgqWLPeTGSforNmsiKlbcWiBrI6otM642SOdYo0R0QyZc1qLuJGRUqkmWBWzzyHTha2lHlD1J2Bb+omp79OawZ6eOaiIOcQe6q9ZXTtxehU+vmXXLY1LSIs86wAaV7YjQE3qPX7OBqFtCmCX9ZZNY4OSl15eDiyLCcF3IJpTrbRmq1d+9e+Rnth3Zu7Zq6TISizpQuXvQ/sdns+ePmEX//otxqePE3nRlhko0WXEokpmVECPNZ79Pd39OdQwSrnHa/XwmenEx893W8Nf58C1tbUeOTR2dobig7z+q7VeNTUgE6aek5OTJHSlOLc82nUnL8C3agg6p7dOrWqp5mra1R3tuqfQXql28+2ZtrEJohpCM/3Ql/R1rjYeSKtB9Raw22Nttrx2vSjFG3qgieaw1R/z2Zrz9n+0UplGwx/ideXp0vhqK1QTyu1mCWb96w5c3y4p9YVjxA9jONEsM23iqNkdVzwMRJdI6B5Gl2t7rznxXsvefmHf8Kn/+Mty/1blvu33H36CV/81b/ks7/4pzz51nd577t/yIff+32unr8gpRGXBu3KnCPGqB1/U4cRaaLuR05F2LUVpTvMJ20WBGIKnEolJQ2rGZOhVxaq5IEhDRqyhlBa0TCd7Bl3OoKtTcg58/rNa7549ZbT6YS0xuvbe27nSnWJi93A82c3vLy6JNEY4o6rl99krXf49Y4hcBZXux6a1ScZ+qDeHjM/++KBh6VwvVMb1rsCa9zz4mLHzWFHna5oi8c3z2EU9kPUTcvC4FypjMPIi6tLri72/MVf/ZC7hxNXF5d8+OGHPHmqFq9hHKmtMaRESondNG4FTadh+BjYVOn2klbUNYOoHNCqad6tVi1+LJhOamFdVSmmDg5us+asNot1NmLVjcCdF70dFNGjQv9aqfd3sGoImB8mXIX5/sSEThN6aNEwjNAKwXsW09Dk2oPW6kaD6CmvKSVDhHTK0i1KcYGYoo3my+YKBMKQPC4lgjmFdSGulFUfypDMC9s0B07fz7vp/LOsCHJOVKQ+oLkZFgr0VX5d7CaEZk5MYvdBi+1xjCQv29RzcJ6dH9WIQXR9GV1WkftWac6TvNKStCl3uBBJg5Ba6r2AFRZGyyOcTSMc5rhkIsXzzqobuO35Z/2RopzOBzyO5D1xHHEMTOMeT9sQIR8CrVaCEw7TuJlYdCehKs4KCMAKDq0UPblWXt+dyMc7psGxzKt6/u93HA4Tu2li6Ja6rudfmN2u08PM+fNUh6qo32jXqZTKmqEYIoePrFWdXMZhIoTA/PCaq+unHPYXlPWItMx08QTvA8vxlrzOTLtrwpDI9/fk0wPOB4aLC7wP5Idbza05XCg9KmfKMhNSYri8IgRPXWekZkIazca2UrO6BPphwoVIK6ve16jgj839wanZh8Ujq41tbZS1UIuZeFhB6VzX8YitP6GUzMNpZlkLF/uRYRxwTi3Iq2jI42wi8m5fGoMnHCLQTM/WD2/bowRLcbcJRac9NVFBqmtdig30YbBTXbCcEdGu7gDo2wQYaG+NN2JZMHLmqHsrlLbmxZBa3zRc0puTDZvj2FfvNVg20Ua7cW2jNxdz6DmuKw/He20cXKfdOtvT4zYJ6sFouVSqe9TYoTVFdG1DsvtdUNq20eRQ6lEumdL0fZDGNGj+g9ZAXc+ltCykl491K46b1STabuqdr+a+mEuxqVrVfctp0zyNI2OKW5OhRACzihddn23Vn92FwD541qUwn2ZS0BDQSiXGjJ+U3qtrSM/W7gAZorrhRXc0Fz6hi5S98+YqZe5ZNoXzj0Tg/3pJ+niOh4MUEy+f3eD/6teUWhhM7+KtjuxZEz5ngoW5PnY6ks5B1cdnq51C8NTqOGV4fbfwftGmK7izTkfDfptNQvS/6zR7HXrYc0nXgOirN+5i0w/FPBSg1T6gbfdSXKPb8DpFCLY1JTxqkO2q9KlXv6464VDnJy/2CW29iIEXvTnuDBBgC17u4IpUBdK6uP18d2zaay5gfku591sjpRf3/Ld/53Sp0/Gemk+s62LOetokFHM4CMPAcrznfnngMO0Zx0kTN52Dzfv4/HWciI1hdAR5+eQJf+M/+z8wXV7zy3/6j3n47BfU9YTke9pnM/O7L3j78+/z2Q++zXvf+yNefPxdbl5+wDipJakLgbI0DYyZ1ZlhmPb4oJ9hMEeplBTdcDYeejieKKeFkCK1ZjsMIsusuRppHNnvRsZpIPpk31mLpFbU7aSeCm/f3fHFq9d89sXnvH17yy9+85rPbheCj3zt6VO+9fyGiyGx31/y5MV7PHvvfV4NnuMn/zNBVqNznR0g+kMiIhyXws9eH3m3VC6nyC4GHrKw+pGr/QXPnz7h4r2POA0XlM8+Jy4rh0FdbHItXFxem8htoeSFF197j2VdmeeF4B2Hw57Dfs9pWTnlwn6cOOwP6tU/Tltmh44RUevQGM6iEQEp+oDELg7r2otOqcIeOhv56b87kg+KTCquQRFNcY7eAuxK3ax0+0Mfgyc4Yc1N6WynB2IaNKV42iFr45Tf8uRmIAbl0jcLYdTAJtXSNGnkk7pSxRC0YSnZmuUJJ0FRIdQeWIXq4KRxyisP9/c0USvglAa1ON5HTRB3XgsdPCElkIHOng/Ok9dVN1gfwQ+EaOK+WoCG0kU1oEh56ZVcGu2rWxvoyzZSdfmBMQSI5zWjSeBdK+HAjzYxbZRiQvEm5Kap1X3y0ARzi4mb804tbQudVFRaueuyTbHsAJEzcqTLtU9kTXRpUxRtAvXg8C7hnR7IpRYF0lsjhr7cHWW1MDgTijYxdzjR79qMOqOCus4vVieYMUWur67Igye4ioiOqNc1UwyBvzjsGNNoB1JgNMcz/S7ORN/KOe8j/RACh92OMSbLwrFxuHOUCssyc7i4Yp5vEWC3u+Th/h3r8sA0Tgzjjnm5Y53vmcYLYkq0dSGf7onDSJj2IMLx9ReAsLt6gouRPJ9Yj/ekaWK6viGkRDk90MpKnCZCnJCaqcuMiwN+2oPzSMm0shKGSfcdbwWyN7fDYrSklFSbZc+zDx5vEx63Cdw6T1sd+qIPHPYTMRU1bTCwKnotbAJKMyipmtOYFoKlFKoz4wmrGZW1Y5OlVnFOzCFQ+f25VGoW6JaouO2Q7jzyLlDXQ/y8/2+FDmxI5lbqWIF15qnrdOWMbp4LGdUwbrXYV/blsTHDRnvTxqA2pcBKU43Tbpp4OM3c3d9xmAbiYHb4fb8RnYaKU9qzuvUoUJqCaRdwW2PWrABzopPU4Ps0MZCGkak2C4CsRkGJiqS3bjzRGwizcy2qlQIDQdCpTEfPe6OpDPRIimoYEY3hMIRoEwILenWa0dMnxGu2jB70OvngGFyClvDsFMHOyiR5MKB4sqBPb9b2+h0ipVajZ7WzuNm5bWqA/d3qXutjjcFghbzTjlBp0tb8e6fmOil6nj+54jAG5mVmmqZNeNwB6zPrQGmwVtpvjIQeDtynhf3Xg/esznN3ytbfKUAeTG/ppNO5tLEI3YLLfqbz5ydmK8zVoksF2aZTqZaHpDk23tZkPw3swvQeE5uC4MzNy/TGYo2uNRQdTwHZNF/069hzOBwaqGf6i+5U9ruhiXqeVXPlFN9z7jxNeizBOU9JWqN2+pTvTY8QnIYY6xf5csXIlw/jq6uh+3pQB9vwQwiMo9p2+mpi7aTUjjAk5ZLVatfc05qOkVLS4rLVfuccNy9e8kf/+7/Hy+98l9/8+Md88bMf8+bHfwmnt1BWTq9/y3z3ljc/+z6f3Lzkxe//CV//kz/j8ukLc3dSGzr1CG+U+QHBk0v3WY5M007pLs6Rcza0XRfOup4stXYHqFA0DokQEq15mtdDKHihrYq23r294xe/+jVfvH7Fq9ev+PQ3n/Grz97y2buZJp4Pn13zzSdXPNnvuXn6nMOT5+wvrwgpMPi/y+cts37+Q1ybzbPdq8gVXXRzbnz6LvPmWLgcA1N0PKxCG/bs9jc8e/kR3/ze32T1ns9//RlzLhx2O2IIzHlhGCdwnmU+ITXz4uaaYRj41WefAXDYHfj4G9/k6uaa12/fsbt8w3MXuDpcWLKw8k6V3mK+yfpBHy0OrIivhJjofBD1Uu7IgiFPXukMzVK/nUEPnUYlOC0SS90KT0URqwm+A61UcEKuFTHHp5iuwAeKwLvbt6yne66+8RE5r7DOAHiv9K41m+/3shgtym8oQorRRNaOdZ31IfUBHyKtio2eNS9jPw3EOKmoW3QEWqpnPa3KfW4F7yOpJqPEBSs2tfnShuWReFQwnmXDed0oluWMKAlsReRX9mXojjf+7iLQrThLKdTqSSkYymRiXgo9CE2DiIRD7NZ82AZp/9wapXQdkIoze3hd5753UW7nBNe2WovrCUGbSMDWZ4XQnUdMWOt7U6xaCO8cLjrL5GjWRGsxHII+L/2QVMciQZrrsPSGsG94kr3HNAx4DkgrXF7vFHVtSvtsNI6nhVIMXQ9mb4geOM00BLloUKEK4KPSNsQxTDv2MRkkVVnWVbNyxokQA6fjAzc3z1nLzPLwjovDJRfXT/Tnrw+EGEjTnrosLLd34GA8HJAmzLe3AAwXB+I4cLq7JZ+ODLs9w+UVzjny8UEnGLs9IU20nJF12YCC1iqtzNqQDiN+GM7Vse+WoM4aDGusslIw4pCQ1liz3tdgZgA4b88c9IygEAL7aToX5K1R6Vxy1fgkayZzzdDU0lJQulWtmtKrQJ/8bpElYs5jbI3LJgDndxsBsQlYMJ2Q0Ive7rnfEXU5I5tWgWixgk1iu76jl6p9n+60DCvw/jVk+av0klZpTmwJBNMPZu7vVauYUiSFgdYapyWrpfK0I3ilROWcqaLPQ2hpoyl1ShJ9j7dLtyHHrSGWIt9sN9meO3deU9qeWpFt1MS1C8w5r4HznmSNh6Hfsmk0NMgOH0HUVSsET8De0/IbRJSQU0vbkOiOnei6NIqpD4Q0MY0D7bDiJONEm5GcMzlnAmoHH0NgGEaCN+OKFLjYjQzJk4vQqYGWBrONzvT/O1W+u3jJ9kxoI3Ke03mnORkpJp7dXPPe00v+6te3lMOFgR/N6oewXbdS69ZoKQX20VSiuyHYNe0UoeA9c654YIzR9mOlMNXakFbomi9nYJczUGIbZDxeg31CaR2DnlVtA76CTSKCN9q4NKi9Eehtn31KA131z/Y/LyCW5WQTFCX1WpaGNSPdkbNKswZVHk0azqGQ2L879LPUolOOIAFcw/nIBkYgnbmpq7MqrcrhaVZ36Rn65ajbX7rJSFH9ydXEo23d0rKsam8WE9N+z8HvzfHEEYcB55O6R9kXcSGZ2FaLUWeJzTWvYAjz+x99xIsPvsbDn/1tPvmLf8nP/8nfZ/n8E5Cqo8nTAw/zz3l4/Tmf/+KnvPe9P+bZNz7m8skzhlEPo/l0Is+L1cJKTciSSQ32h2iCZ08aJ3waaKVxOBzIy6zuJkOkVuF0f8/9wx3H+ci6ZC4vr/A+UEtlXVd+89lnfPLJL1jyyqe/+Yzv//iXvD02xAU+enrFt1+85OXT5+yvbrh++b6O5KXiSmO/v+DDP/wPuL15zumzH1IffktwTRu51qhVePNQ+OIhM0XP1RQ4ZUGmS65ffoPx6jkvP/om1y9e8uNPPuGXn/6aIWpOhgD5WAkNajtxfLhDWuHq8gnv7u64fXfP5eGCP/ubf8yf/skfc/Pkhtrgzdt3pDhwdXHJGPXh7ymWXdC/rS13/rt3nubahm70xV2LOUj5zpvUJOLSR8fxnA3RQ/4cfZPXDaxP6ro7SHBsDg2j94T9BfhAXlbu3rzhzW8/Y9w59vtBi1PpqfDKMW2iLj+lVFLQw2YtWpS0VvHTZEyMajkqwQwONNAKImMKtBhMA6A82FZWHh4WSlN73OB1cCy5kgxJ1+md8W6d6RBCwAUVkDsXkJrBgovWXIxCJkYL/GprMmqtRO9xVngxmk2vHaw43epLFdQFSp8lnN8odJtrh7ODxyYVnaSiwjp1kPIxEsXbREOL/i4C1SakGFIDIOaiZ42cnS79wM9m3aeif0ctxTQbwOak7zfKlXP6z0U61uoNdDH3EmfWu0WzVJxTYKMXPJsmoD9f3SghJrqoNddKbhVfqvqk+7Ahr51u5829TnUdWjQ4Uevt3uTXIszzCkTyogGecRhM+B2Y9hfq5rUe8T6Rhh1ShfXhHhFhPFxS8sr6cI/zzlylBvI8U9aZtN+zu3miKb4Pd0irDIcDIQ60siIlK81w3NFKoeVZi6xxh4vq8OTMBEB8VI5w9DoSa4IUTSn3QQ/7paiwNsbAvNo9BMvGMO6xhap2gaYCjb34s7rId/qRFh1FVNPjnLp4+Rh0HdNdyDq186wX6PctuF5WGE1HtA2oWGPqdOoSXdzoFM75DWBRCt+j5kAeUaocpkF0268ZDn6uAbuWxfX2/Kv5qmaFrhzbitCoVbUPg/H1xUw0ri8OeO90yheTFqLoXw7Itdn1Ve1Ns+wm0tlWvdYOeJnrT+fmbwCJUWKb5vOog10vGg0dNzS/iaLPGoJ3tlP2ViB384ZSipmPFKpUA0kdvjqbuKs9eq0amttF3tq89G/XRdhuC4eNJgj3QCAQvBBjYbUJv1L6umjZzh1UGL2bBq3/LIRNL0Xv/GV7bnQr7ZueIeqPNRsGQGoRrhQj7wOH3cRH7z3lR796rRqBZNRI29fB6K6mfxLXV/Fjw4sOInia7rh2DSzRvVQOu1EzRKTifFSn0cam6QB7Pvrz2imI/f+kNzDaZHVgITin9KTaTGDfLWGdGlUgW6OJOz/fftPkGIZiBc/jSedGpXJnSpdOxOR3nvcOQvR/2y46jxtDENfPSbGztdm6xHS2pjXrmU+iYEa/0Bto/CVeX95dSndcGo41K31Ar5UjxIFxmiAkpBaoGYc+RD4EfPTm5GK2n2Y/2PJCWWYd70mzsWImxIEhaWbA9ZMn3Lz3gu//t/8Vb3/6l/i6aFgTjZJvOf3wz7n/7Be8/fh7fP1P/wPiNz8G7zk9HHEO9rs9407R/Cr+EaqlVnHinI77cwFxTLu9ajCapoMvpxNv377m1etXW2ZDTwZtrZEG5UkfX88c54Uv3h2pEvjW+8/53je/wddevOTi6XMOl1eMKSLrTDk9INEz7A7sPvg6l+99wP2r7/D2J/+c8sVPID8gbeEhN377oHScy8NESRf4J8/52te+zdWT5+AcV89fcDev/OwXv+Ttu1uePrmh1srDPAPCmjMuK6f5Yn+B4Hnz7o5xt+e7H3zA3/vP/lO+83vfpgD3Dw/UrBqKh4cjKXiqVIa2w8W4CVrN1mRbv9IebwDood/qxik9o8Y9z6BSmgaQ1VpwRBsX2gTOsio0gdLQmapNhyZ6V0M3HMMw4rzjNM+cTkduX79iPt7z3tc+0lFvaef0dOcRZyE54hiCHrri3IZMOe9ZciGj1rjRGiEdsavGpWQVaocQ8KPqVfK68nC843Q6Mk57prgjJE1pVrQLpXaVQvQwjMqlDarW1KYiZwSldTWj+ZTaWJeFVjP7/Y4hfbWbjA1/EqUlDOoJrSNrDIXzQHSGvtli89H2f1tbG8KrG72O8VHXpRAQX/HOGkUgeSHaYdOdRFoTnI9EOvK9qCOV0w00OLcZG5hclpILp1lFmzEobUoPC7U8FdepX50aZUWm2ORDzmPxWivzupoY3vejerNL7Qd2SoEhBMQohE3qhlh572mt0J1bamv0pFbvzqFX3r6Kfn8VUQvnQjfXymleyLXyUGaev/yQPD8gtbC/fIoAd28/J8TA/uIpPibWhztqzQzTAe8Dp7s7Wq2Ml1eIc5xu31BzJk4jcdpR1kUTwltjOBzwwZOPdziEOB0U7MmZuhzV+WSccDEitaqVtIsbCohx6WnVnp+zbWfNbdNh+NCLQ8zuGM37EW/TEGswnTddQ0SaUESxfq8nMmC0mWYJ8kYDCTaZLJb5Mw3JCl1Ng9ei4ayT8E5zE9Rnv6OP3j5nb4TEhP0WtojmcXS3nnOT2gs8LURUUP6oGKKXaNgz14zq7B4VKl+9V66CJXJqwWv0Fu+DUQS1WRNgP43E4FVjN06Ao7RGLgriQSMlnT4oXbVnipj9j4fHqLPD0YfJHfUVoyWWqk1GNU1fMDcnJwrSRh9ZizY2uQqTZzuDnAuIZ8ta6A2pTj0VsGiiFvl5PhGTUrRoujbGIaphjXes6wr4R8++FvohpK0Jb15bjSF4hiSkpGnfDiEN40Y7NSwbpJG8MCYHJ5tEyKNpCb1odtvvbbwgu1ab3S26hh0N17WLKI3tW197j+vv/5xlzQzDqJayPqiZgRRc6gnqWrpuVCz36GdZsd7dlPqUqVZhNe1kv75iU26cs+cymBtZ6HjABhj05mJbDJ125c4gKUAWdXErTYjOm325pX7bJFGs+XKubaSQDkh0xyf3qHnavp2cwbjzk93r82ogSX/4HwESfQ3377QBcro+m72n2AjMbU2EAb8bQKINTy31332T0TutnAt5zaRxwAcYvMN5dNRmF76PhFrTcZ4LiVbEKFd9YQoY/1zHxGq1F6MjxFE3U0txfvbB1/juf/L3+EFIvP3+/4zkWa3nvKe2yvz2Cz79l+9496uf8+nHf8CL7/4NLl+8x7Q/gEdRcxppGHDBczweVYAYHOKChfEEpdYA0tSBJcbE5fUVcRgYxp12xs6Rl0WtH6cBqQs3N1f8+rPP+auf/YbTUvn2h+/xp3/4h3z4/gdcX14yjAMtr+T1BCWThkScDoyX16RhULF3CKRx5PTm2+SHd9y//ox3v/gl4XrlvcsrJO2Qi2fsnzzn6dUVMURul4V5zfzoxz/mF7/6hSJqAncP95yWhWnaU8qJ1hqHaWS/m1hzJsWRm6vn/Cf/4X/Mn/3Jn3BxdUUGnuVCcp6knntM00gYIm5IW6FCiudJhjUYLdtBb05QiLPD2BoEFH1QcVLbHsZg0w19KPt9Utcob65gWbSor9JIUe0/sY3coxkDJa/M9/cc7++5f/eO/WHkxctnpJRQfiykpK40uTXKvCjvFGhSKEbhcQ4tEoaR0jueWrSQcYE4DCQfqA3mozZxzigYuvHpdb68uiTEiItJ17utp7OgwhkyLdqsGNohkpGQTE+Q9bObAD0jum4smfSr+nKy0ioE6UVjABdUBF0LSCHiCTHaOFhAiqb8Oh33S4iWzGuq7hBUeJkL5GYuO9qo5aKuXd3WUJqz5HkxJFvpS2spLLnSRJ1EfABChGIca8zaEMdg070UPd5yekoRo7Z08agZX/xOYGA7NxCGTrWtoTQCi4+0pkzdYJqcYGANKC0LDHEtK7Vm85s35xAP28TN9mFnxc52uMGGpPWCQNFR9eOf9nu8h9PxHeOo+ro8P1DWE7v9C3wMrPM9ZZkZx4Pq8U4PSj3cX+BjZL2/JZ9OpP0BP47akOSVOE7E/QHxgbKcaKUQxj3iPHVdqeusFplxAB9opZg4V3niOGd26arF0S/uIOp0o65ZgQuH2W4bLzsGFpGtYaAXRFYQqERP9ROK3up+p3W9lpfeB52smeuQFofn5OJSMrk0xsETUqCIJTejqLbeb7UI7ahi5yXY7Isu6tbsJ7NgdSCdomdi26155bEw2fQZzuzLpG3vqho/KxoFhC9XIPx1fFVRRlMM2ijqmaPaplrNj+fxs+Ua1bSZ06S24tJW8qouc9Hp+/RJgtlv4Jw1dU2nBbmYCsCzUVVcnyZZ4x99IPrEEPQsrEX1OC2pK1xosrkE6VTV1qN75PzjUY3fOLK3uovWmJcjUhbSLnE4HEhx4LSsODOWQLQh2KeJGKIa8JiFeqmVdS0ozSbqumvVKMr6mVooqjcx97SuGxGnTfA4JC73I5/dPhhook1az4zQraQ7HmHruq/sR+ut1w32Dt7p+3gfeP/FM773jff5n37yBbXtiHh6wjl4bTbsPm2TIsQE0mdNi80Atlwa5xXEzKWH2XVwtIPlACpi77EC/Tnr+4FY/dIL/9ZMI2EmBN55XFRgp3oNcq1Vf563uqG1rjGRbVq9TS6wNesEb7++TTGcwzmdrokT07tgn91tQ5euLekhvt35Sid4YB0rZ2e6s04RQGwP9NJ0Qle7riXY1M3ODRFa63Suf/vryyd7iVFfqronLPOsD1WMtr8Xxn3cRkS1Cfe3tyDC4fqp0gDyYsi0XvghDTqe6+2wD3ivaPGbT3/Nq5/8FXdffMq6LCq6Wx5gGFkW9WGfBq+ezk0R++MXn7Lcvubdr37G89/7Ay7f/zoXz56xO1xQRD+rD4HPPvuC+3dvubq5BBfwMXHY7dQibV3UriwOyDDiRVMyd9NAzpl5nhU9ccLt7QOneeHzL17zP//lT/jZr1/x8Te+w9/9O/8eH334IftpR6QhywnyioTIsN8xHi4Z9xfEUTeGcnpA8sq0O7C7ekLBw+u3XAw/4plT0fp9KbQwcNiNXF5ckHFQKr/+9FN+/JMfgsDF5RWlrDwcj7qpLDPDMHDY73j+5JraHA8PD1xdXvI3f/8P+NM//iMOl5c050hp5OpiYIzJRmbe4ufFnHjMmk/oWwggqmmpOrqNlm4qov+9iimh+7s7o45kQw+8U15+Nju+jj5VqQxm99ndcoT+4GtPXlvFVRWF1qz37eH2lpxXvv6tj7i6PJCGwTboSmmKRDsHKSk6iujIeIgj4+QpeaWVjHee3aRBSnmdqbWxnjLyoEmzzke8C0pdMp7jbtoxREXkd4cLE4I5+tDS+6auGEGTmYta/tBqIcWREJMeRjXjEF3bwwRGzVEtgd+Klq/sS4oBzw4NOQMI6sDSKgq0KYrjtiRrD01pdxh9qNMA2kYlWfVZNYpS98EfYk/cVaS3NT0Wa22sq+ZTVGkWDGiWpFZoeGnm+tJwITKEZN7iWtQ089JvAs0KDm/0mq4TURtDpzbXpYvOZbPJFVHqqPNKt9IOXpsXQQ+NkjXFNYbAEActME1UTIsaCNad1movgrz9XYuMatq3fgB5Oyx6QaWAkBawl9dPNRTLeS6vnlDywjrfMY570jBRlyNlfSBNe9WrLTMtr4RR9/Pl7pZWCsPFlTrVLTPLw70G6o0qvi3zESdNA/ZCoC6zCpO9h6gW5W1Z9HMOwzatwItNL4zbHMI20WjFLES9Et5yyVSjgOh370Gg0nuEM0RoSN7motfKhtQ+hgCD80a574F7Nm0K5ynLsmbG5JiGiSGKGgPUak6K9uOaTh08Rhm2deR68yHdr59HgOUZle0gZTN7cOm6jI1CAn0MpzWqgKGmuia/ug4S05C26yCdQub6nAGbDivY4IJa3SrDprHmwrIqFanrWpqhwzqFUIfK6B1jMjt5PX0QlMGgSdVKLdGf5xhiRK2mozWjug+FUCmhqelMdDAmLVTN8l+P064p0DpIU8y1HgqhU3WEMUUOu4vNYUzvswfR82/NeUt6TjGp4HlZqLUQYiD0Btrb1MeAXmUMlA3VLuuiDARs8ukV8Y/ecRiTuadhk46NmPWoYNaX92dnq77enNea4Kwr0GYx+kAMkYtD4I+++y1+9Os3ei+IWgCLPmtnjYdsekbEbdiBA8QD7VEDaC8Rx3FeWXJmSBHwZhLgSMa0sXnM1hLpdm7X2vaIzQLWmipjcep9MS2G6nOUpi/Nvr1dmh4665xen9JpsA7TofTz47w9PU5/x9aMs8+ANYqPxx2dm6HXxkxyResovS6Pnv+tKzM2geU4ddpn6Hoy72j13NC437m6/8uvL91krOvK8eHO0iYxdCghQWx86/SgScYvD4FxmnB99OcEHwPSPGOIiBPNCojBvOKN29Yat198wY/+0X/N3Y/+Bct8ZM6FigFWVHIMHEvBVc8YNbwMoxLIfOL020/41d0r4u7A4f1v8uEf/W2mqxtSSuADy/zA3f1bbu/eElPi4uKCINfb+Mf7ZChzxqM83i4uGoeBaRg0E2FdefXuyH/3z37AD3/+GV//4Ov83T/5Ez7+5rfUltZ4wjgh7fYMh0vSfq+6jCZIXpF1oc4PejPMnaWWSsPx8sULInC7rIy7iJfGxRAZhoFSG8fjkZ/8+MccjzNPnjwF53jz9jXv7m6hCk+f3vD0yQ3Pnz4jRc/b2wdubp7w8de/wf/u3/8PeP/99/ApUhGGIbGbdhp24+1hbmhGg5jgOYSuabOlrIccJsJyzmkB0FQcVFtTP3jOabWtaapkConuKV/zSsPjxIPTpOM+sla0wP5j0fTV1uyHl0w+nXi4v+Ph9h2nu3fEKfLivSekIdLEkXOhZHWbGZLaUw4+4MeoKKVoG1CXVYVzRUMIfbEReFHLW7zXdbAUfIBpHBXdqo3gPSmNjMNIq4qOqe1q1cIGQGRz6XL0cCZH9Stgm5EIThoxRYYU8cnEWIbSlZw5HY9MX/ah/Wv4KmYRXWn4okV03aabgVyFklW8HUyY20wILQSc1wmS906nOpavAso7Lk0dx8QsAe3ib0WlFtlngV3X7ISgewk4as3UulLyyuaQhvpKUfX9RGRzsenuVx2P6kh5sKa4NqP2JT2ccqk0KY8+H1uydy8SN6TNgW+FXdJ8of3+ktN84n4+mcvaREsDOS86KcXRednStopWi++Q6J7ySAfjxZ51yy1yqpeptXBxcUVMgfnhFu+cJtM3YVmOaJBuopVCOZ1UgzTtWE9HyrIQpx1hmqjrQj4eNbB0f0BqpS6Lag+m3mAccQ1cShCiCg07Ch8nQ6YbAbVgFNfUkjtpAVIW9enUtGRPzdZwtZ6ci1FyodhUCSrenTezZvtLp0koJqzFkU48u15MNVz0A55G16oNRrUA0ARuc4gLkVxs3+q8fjkXKZuo0z6b2Gijmx8oneEsAO9TMm06AhgS2eXevrvu2J/RFtsb+tybqy9XIPx1fC3LYtOZrt2TrVjEq/WmiMe7pBldHuOcO07zwrwWBA2iHFO0SZlaFK8iNKf5E+PoCaIFuAC7caD5aPz9Qqdo5lIorelk00fLxdDzMqakz5U1MtI68CBItzF1ug/VbWoGICpGdjptVbDPG1uhF/eO3eiBBK0xjdWKXW+W/g3vVLTbwSvvoFSnLo9iy0m0/qoiHE8r796+wUs2LUfisN+xmwa8j1ztEt5ysnRDtfVo66nvxV2Q7MCQ+D5ptXUoSkf2OMZhNPdPDVz+6MP3+N5Hz/mLX76jFrOrxdD/qtP9Wqtlg3jNi3i01/eJLdjWLedf64YIfflXafacRgM9rbj258ngZrjwaOrRbW3FJiUae9A20441FzVrad2YI9izp+V9bW1rZM4hrLHferQmOF/nXpuqPggeAw7Y3tH/Y/vtc5OyfW/b1ZyA6MSip9eryUkHYTg3cghdA+Pk7MrW98Mv8/ryYXxOSINursE70qCWcCp+00h6FcKcb/AwTDaybFpUpaTOQq2qzadH7StD0LVaG+9eveJH//0/4M1f/U/U+cRxXplzodu6KidSMyruT5k5NKYYzE7Ohsat0fKJ0hbe/uSWPJ94+Qd/xuH5S2JKPH3yhMN+5LdffKF5Dah7kQ+Ow/4SEbVyjEEPrVLAecd+1OJeGqzlxK8+v+Uf/I9/xV/+7HNurq75j/723+L3P/oaaV2J3jyNxx3p4sB+r8i6eEXJ6vEO1kV7x1bx4x4/7iBE1rsjLDO7IZJFDynWTBTHMA74acfy5h2f/PxnfP7FZzx59oLLq2s+//wz3rz+gnXNXF7d8Pz5cz54T8Xmp3ll3O34zje/yb//p3/Gd7/zbfyQKDjGlNjvDsRpUEBIOyugEmNUMbRPStXYIMD+MLCJh848WS0S81qQooiIWmSq3XFrgmkbEVHP77Uo17kns6uPvQrfmmzPHeIcuayUdabdvWG+fcvpdGSZj7gU2e8HPdSzNgjLulJKJqZEqYVkgk9teDoXUci54EMkhUTOC+taWYu5yUyBMUWGQ1KknJ6kWlXn4xPi1BLXOwsNNN52sLTM4FWjpBaX5r7hHK0jNcWscIcBhwrTH97dkfOKa5WUVMzfE2m/qq91VdvC6KF1iz6zpW1Uum3hmld8tTHtNh1oFrioqFOrWtyrW4yAZRdkyzVwrtuFdrvJM+dZRbpe17XT/U3pew1xUSlVrm33+rSsQFWuKtD52J1ze24MsMZaJ3piFLnk0Vimpp9FmcFO17uP2mwb2hpDd78SQlA3lGmYSMPIOERCUDrT/cO9rumkk1iZBhUHW8HSDDETgSElReGNNmVs5d+hADSE3W4iLyecFNIwsZyO1LJy8fQlaRhYTm90XY8HRdvXWTNhzDSjLAthHEn7HW1dWB/u8UNiOFwYnW0hmIOUj5GWVUTtBpvyGcqLc/g0gNeSOvgeMNUIQalUUosKYEWbdkTs2V3MqMKoA0ZZ0HsvZ5yvix1tQ6uAPKI3OGnaFImmJKtmqLvABUpt5FJxruJ9IBmIgBhPv0OcsAlAW+vPf0cfTUeDrcfgt1Rg/WPVpiXmOCWCWCp0L+J6E6wmAaKhak5BEZBtKgY2KdmKjq/mK2zOhmpJrkwam356h/daj2wFGgZCiq0BbavpdB/9Yzq1SCHQvP7OmnV6EJNZ8buo665VanVK8XVnek5rQnEFaiAGB1U2vU4tj6y0Wzf+8EZlsckWBjJ0IbkBL7aR4ENfBUKIg91XyzYQ0fwqoxDVnGkub7qhsq17/Utdrxxb0rXzBK+0QR8S0QvLaeF0WplPM9NO6dYpNt3LWqHWsGkt3WO3yfNq25r87Vlwhsbb+ev6cyGA2fwOQ+QPvvMRv3x95FQ1Nb3kgvdapkfpP6WbgHjbZ3vj87vrpU8WBIguMMSESKO0Xld6M2Rxdj1Nc+Xddm7A2ZpWKYu2t7T+4zpNSSlSp2Xm7v6E947rywMhJqJXam7JmXldNgvs0hpjShx2kW497DDKrn0qb1T4ZsyJHvSq7HQxNtC2FdCzxXrzo7vbuXZztO3ZkO162jRdzhSu/u3UullBGNWhePBfbg/50k3GuNtrV75Tfro3JNZ5W7gmekJUvA0ZF9QtR/2I+wZfqVJxrSovrKEncxPe/fYzfvw//ENe/eU/YT0+8DCvPJxWHV2OaVuMwQuIJ4hs488peg6jIhcS+ojIIa1w+6sfMZ9m3v+Tv8vXv/M9bm6u8SFw8/S5BrwEv3kO73YTOMcwqNB5f9iTi4pvY1Bi3+3diZ/98rf843/6A37yy98yxYE//r2P+c7XvkaSRqKR0kg6HEiXN6RpRwwOVxvSMtSCVBVY+2SOW+MEYVAEbpmJCFkcxUW8awxkdrsdcdyxLiu/+ORn/PwXnzDtD1xeXXF3f8vtu7esy8LV1TUffvAeH37wAZeXF8zrwsXhwNPrG/7On/4Jv/8H32MYBpZSSMPIbtqRJmsibC3SR450ERCPVnCfYmBOOufRrdhT5wS1oaUXxo6Sly3IsSMLuuE+dpfStaQ80rZx1aN5m6s7VaEt99TTHXk5kdeTIihp4ObFU9PX1K1gi2nEOUU/jvOiX8/Zg+pUrzFOgzrzIIwR6iisRTe3GLw6TIk2XkPqoUVCC2qZKLZp4tUtK3rPlkBth5jSH/QgFKfBUVIqOKNCVU2p1aC5Ri7ahI4p2YPdhdBf3VdtVaedjyw9nffEoI4qTSp51V+bxoEQVawoxsXVw74HimmxHLzH02jikaCaBo/6yXun7l0x6v3PuW2BXcCmE8JQnXPhZlaGDnOM0UMt2CHfWi8cRYXJhgQ95iB757b8BS36tfmJwVOCUTjQddj52YK6FQXTkmULknRBEfvaNNzPt5UxCGtrnE73rN4zDqMJXZMZbChuVkpVikfNm1ZKzEI6BodzAykumxNcXmcuLy+RVjnOD1xdXJJSZJ3vqGVlOtwwjHvqfNQp7bTT+5mL6ob2e51mno6k3YQfBtWPrKvez0E1apIXddhJoz772WzS06A0S8CL4GKyhtRr7hFOtTLOq9NWE52oZE3v7qLqnBvLMpOLWtk2O9TPG9wZBfT4M/3CDlelPHjd51pHG3uhp0sxRhMbW+MwuC5+dVuzAbqX9elDrY8oWxvtQWkKnWMenDNpmzY2+qzwuE6wJqpPrjDqIWfktKoOSLWEth/1xvIr/AohKJCAx1UFPYc06LVr1r4bxZKmhZH4UUM6Ww/ANE6/3ddg4cDVe5w9H2o9K2TT/XqnwAMY198HhqANfJ8g9jyI1qpaYyvqYIVes8LYHI/s/kurVNGgUe+8zanEwJSq4mS6ALcHKraN7qWNhdkdV1skomfodj47zeXpGT2bNOlxRe6Uisb1FbWsDCnbHlUpJXNaFkSq7tU2nQAtrMNjikN/u0fLzDs98/p13kIyRUNZux4TdH+6uTrw0ctLfvLZ0aashda80bGbPRddz/HoC9j30RC+ZlOkPgkXYlBqm+6tRZ3Aku4t1T5TcGegqIvZwYCfEK3YV1odnR7utGnzgk3CIof9Tu2wbYKTYiSh971Jo3hv9Y3Wx2vOChAZ0CF2tuHUUQz0TAshGOW3It6suE3f2qlWSqcy7Yl42yvsvLFL5mzy46xJ2bJCrEbp1C/XG3UUBMOonk7+HQu/NyRbCmI6hlobt/f3vL295+HhgcHDzeWB/X4ipYGQurhJN/ScM6XoTV+OR7MAVTrE3du3/Ogf/7/5zb/8H1gf3vJwWrk/rZyWzD4GdUEYkin1m/o5OwXRj3PZFoY3LmTDeM/O4aRwevVL3v7kwIcffY1xeMmw2zPt9oYaNVpWWowPQTt9UZWOBpDAMCRarSzzzBdvH/jnP/oNn3z2lsPuwOXlFR+/fMEhBNLhwOXTZ8TdAZcGtdD0Dlcz5XRHWXriuCPtL4mDblA+JRxQlhNSMiFGakrEJrj5RIiRcX+AOPDqN5/y/R98Hwd89NFHzLnw+vUbvnj9it3uwDc++oiPv/2xhg8JjGniydU1f/yHf8i3f+87pN2BZZ2REAgxMAzDhiDb2aiHmYkNA/ZkbF2yqJDfkFpvD7ULHsmNZc3MywyuqV2mMwqDPejBOXNr8pa6rc4cyltNpsUoSq3xSjsJQSckuVTVzawnE8wqx1+/i+P6+lKtYEU2i0lcsORzrGBV5DY5zlZ95v7QmjoIeaeB5hI7B1F5qWpHl3EuEikm0rLCMngVpYrXsCCp2kzaQeNDoFs/4yO4YHQMMYSj0KpOb0KAyTa/+bRw9/AWEeHqYs/ll31o/xq+9ruDHgCtWdHXi7lA8EFRv5r1IHWB1tgSVM8LsBmi1Hm+jmDUlyHCNChK7Z0wDANpmHDAw8ORXIWq/BfTh+kBJoKtM1MpCNvmr+vW7JttMqC9nrBYQKL35gpie1CKXvNWTCMiIqQIMdhoOwXWWsm5qu+8iQ41JBSjzej3LQ2WVSddOS8MQakU0gohBAbnuT+eeJgzrVauLg7U5hmGkRg9IVTNdNBvplRQox043x3jTFPQVGc1DjvyuuAExumCsq7k5cgw7lTrlBfKOjOOe8Iw0JYFpCoFSoTl+ACoU01eF9bjA2Ec8UNCSqHVTBhGXHckLFWBoRRt2quHeHNqnhCcZoGAUrm0OUm0kjnd3ysl0igMtTXmZWbNWV2fcBRL565NKUbea1hpLwypTcXfVug0K54AQlSb4s7ZL9IITr3iXdebGVDbAQXnuhmEnPdWscbU9qNmDnve6VRTmjrvdbZAR4e7vl1oBgJ1SgfG69Y3DzZR01yhDKiOR+SsHdmalK9wo6G5RT3JWM/S2mxCI46SFbgJ3pHioDUGqv1blpWSs2m/9LpHA26Cd+wGT5NogK78TjEesPPCBwPT9F5pzaZASNdaea+0Q9eEEAJRgp4tZcVhpieGwDfapu8QJ9ZEyHkC07TtKE21N+K0ONVisAej6R7VjIrnrKjv0n9p6qol6L7YUGHy48Je16TFE+BxcTRoTK3AESG1ld0QmGfdJ5p3BJsa9alFd3w6l6acASW62J1NOOxQEKazOlqrTEPi9z56yRe3v+J20alPd5tsfWohdu3tZ4mYAY39UrceF5uAOhrK+tbnMUmyNHWlSBej/btoYZlAczrpVFvfDiBgboj2vHtr3AwQ8k4bzyElc3s7u2v2Z3tMScFDp3k7WkMF1Qo6bbjC9tA+ItGJGozoOaM/X0Xwj6BeA5dwZxc5HRSdm61OuOyNxbbMzVLZGSupT7w7dNbvpgbWfjld15duMh4e3tniqeS1MowjIvDwcKJIJIx7qLPSO9wenwZLV7aO1ZlotzV18/Ae5yOlFN69ec1f/P3/F6///B+R5xOnXDguhTmrE0dz8DCvnNbOj7cP7xV9cs4r6o8WjipUcfRYd+c9k4eHX/+E7//D/xL3H/8f+egP/oh4eU1sFUqhlqqLT9TZ5zSvPNzdEb02N94HKsJvP3/DP/4f/4qf/fK3RB+43k18/eaKD1+8ZDwcuPrgaxyePMHHURdhzpTjLfX+LbKc9IalhEsTYdrjgifUQisrCNT5hBOHny4ILuBv3+Fqxg8jzUfevX3Hv/jLf8X9wwPf/PZ3EQeff/YJ727fkmLim9/4Oh+8/4FaCjvPNI28ePKMj7/xDX7/9/+A/cUlaymI90zTjmnYGb/QbnQAilCqFlcOx5DYXG36YVmrUqIQYdAZq02xKqd5plQVoTnUKaHaRrClnsp5zFyr0mXGpEmriCIbYg9Mf9Zq0yYvn+6J84MmmNeChEgFrq53XF9dMoyjFrBmIdm6BS6akorpiHqnrtkEi6Ee3UK0kWJg3E3qbGQj65KL0knQMWeICe+Lcq99wnGmW5QqiFMkbV3zRr/DCpDuONWcCm+9gzioi0POK6VoQzbEwNVhT2nqpPVVflU8rTrlBRtdqaNb6hZUlHMrIFkIoW1c3u6IgW2i3WWEreg35wuUl+6TTlwRc3YyNAgUmRajw3gfNBzUikOsKRAwgefjFPIzlaG2vFGvWlMKp9OFylozMa8MMW5FJeie1UQF7gmHVLdNZ7TYzZsraz+Me9EhQK6AKE1L+doOR2E0IWMTYZ5nTmtmv7/k6uKClAZd5yHQPfQ3VzRxlOYsA0T1KOEwUlqhrEdubp7jPSzHE8EFpmlPq5l8utf9yQfW+USbV6XDek95ONFKJu0PtJxZH474cWC4OEBtlHUhDAPEoBkZVYX1Lpq1cFGdkvMBceokpH1HpjXR6UVMLKcTn3zyCX/+g+/z9vadcdCtwfOBNAxMkyLcx7t7gswguy2ETydSyvdWe1flyW9rpB/gzimvv8o2Yc15tQlcfITy6R5VpJ654M5vdst9ahd8F7Fq86PTrE6LcKZbq/SaydHXX6RSNsZAaFr4eAcVFcI6Q7X7Uu/0PlBUe0Nl/10/2P9/fB2mhI+R0rAgNaMIVps+igKOOM/a1BrfmXh5TI5dGkDUZMO2dRoOtReO6nQpei55sbwdy5pBNPCREMGr9XVpFZoBbU5puipV9EAg16ZNNY1oU2vx+jkJnhB1kldyZs4LQt1cjpzrtBbdqxR9131qiAGqBsOKTUEVNOvuRbIJ41u3UDX2wJpX5iUrHcsoY5vuh64hizgsaFZ0ahDHkevDyNt5UXpw84gXesCkWFui2i9tmtSFi61I74Li0rSZr6LNlzYMOoHZTyNf/+Alv/z8jvtfvtXvYY25TiaswO2oPObC5dzWaNOnitLYktq9NiMOIQVHDMPWYIVwdpQqDbqKwke3AU5Slerc2Rfa+OgnaJ2e6M/0/Uf8Jb2+/XyyxlapXNVE7vpKQc+74J2dG97qXrftSa01VV1tpdv52ramdFnNpjODENRRqrhm0QKP6WUGGPejCJ2E9aZxm4Cg/9AZIL9rkfu//PrSTcZnn/4S5yLDOBJDUAvZYeDF0yvWqqPoIV5pMF8a7QZ7KwYqUgvOa4fnJuOtOu2CH96+5e1Pv089PXBcMu9mE2ZFz5QCgyW6llLJ1qSIj4xJk7mjFGpZWVYNrYk9w4Ozu0FwjuAa97/+Kd////zXNBzf/KM/Iw4D4oUQnY5LcyavmVay2b/pmLGumc9f3fOXP33Lq3cricqzmyuSCO89e8Hu6ob986dM108Iw05H37ng8kw73tHmky6C3UFtHGNCggX+lEpbF+2ExeGnCe8ibl2JDiREJA3cPTzwr37wfb54/Zpvfud7pGnHj3/yYx7eveUwjhxevuSjr33ExfU1y7JyeXHF+89f8r2Pf4+PP/6YYb8nV+3ph3HHNO20uPKOx6eOju6UYjGYbeTj32vVmoyqwi0CW+HVqm66zjlSiOrKURslZ0ottFYZzD4W2zSqCClGbeYQlvXEXCq5aqEfCDgR8lpYlhPldEs53arTWYzU6jjNd3zw/hPTeahrRbOCUZGdLrhUMVyMGnKFdEa2Pv7VNvJlmXH2uRyVi2lUKkiMrMvKvBYantHcMpz4LeBMWiVaYVcNhC9Vp2vB9/G3FTe14rwWMuqDH3VTkEDOWXUKoOnrznN3/2Wf2L+er6Wo8LvZPfJOSQSuVkvMFnJR/rAmfxtiKUJzNv5GELEmDcxysCeuq+B3TIFYA+uqThnqIgVN/IbOqCZCRfZqMarTle6W5tDGwuOND8z2M8UK1PMEwoTChrRJEVYnZpmo0zKl7ym9pp8/wdv0y9BJZ+isd+q/roJyE372qWuDFrSAaU0DG6VVxiEY71fThU/LSY0qxlG1VfZ8duBFxGkgnz/rB0QqIUTm0x3DMDDuJmqeaWVlf3WNC4m83OE8pGmHCJR51n13iLRSqCWTdjt88KynIz4FhsNe3Z9Kxg8RP6jlbKtNG44QlDooDYLq9LoYUUGNYpPqiI8DNa/8/Oc/4//59/8B/+yHP+aUV3O7UfRYaqG1rEBUa1zGyN/6g6/znY++bQ1A3VJ7wbIyBN1TnB7+WuS5ragR+mFryKWBKm6DS9QiM1fNLRliZIiDnSGyIe6tqvZMRaue0iyQkT6h8OaU1a0oteALQTnbUosircbg1Gm7o3k2kKTbX+q5q5NCj98CzL5cefDX86X7hrdpeKFVdU+LQX5nUnTW9KmmRm1mmz1L1QTMzSaVUHJFJCMuUJqAVJJ3eBLeJwNGdVKiFDQ9O5OPhsA3A48y4LTwNxtY57puwe5LUVc7b0V5aU2nhSbsjdGobdLALJlxnhhHUrL8FK8C91IyuTWEYmGxCiBUo2f2DI+uBGpGIyqlUqvZ9rtITxiP8RzquWVbiJpD1Lpy2EWcPICoRhfpz0SnbnXtQDfXOCPleiS77Vr0c0BE9XSd6dCq1mwvrvf88FdvwRnl0BWSOappyK/pzppR5Pp0G6x41sltrU2pSl5tjoNlZyn9XvVVTUSnpdLIRe+hFvrY1Bi1h+73UBEApfLKeSp/5nqyGb1oLdr1VpaNIeczaEucd04trkFZG61qxotRSnNRm2FvoL0T/RmqKdHriPd2TWWbxHvTlgTbU6vrlLM+jXjUUIjRrh7hys7c20AHBTq0OdeF/7bXl24ydKTV8D5ycXnJtN8pvSANTAgtK8XBBxMeVRM0h4BLCQl120DpF6ApMnz3xW/J97eU1jgthTVXpt1gyI2hmB4bO6oLhBsvuHr2krZm1nlmOb7Dt4VWKovxYF3Qg8Lr+azOQk64//Rn/MV/81/gfOTr3/0ecRhxwZsSuBKcZ7+/ICWdaizryqvXD/zgk7e8vitEadyME5f7Ce8Cu8srxpsnDFdPiOOkVfh8RI53LMcHtYMMET9OpMtrXBrsZxXaOttfq47yB02blmWFdVEbtHRgxvHzX/yYn33yc54/f0ka93z+xRcsp4UxJg7XVzx7+YLrmxtiSlxfXvL+i5d891sf842vf4txt2OpDUmB3ahuEWm0XAs7dUSg5a7jVk/vGN3Zqw+gCXWtFKOJRA+tFjwNZ9Me1dwIPuniX4s6LaxZhWgpRuPknyca3Q6yF52d6hBcUrqJCVlbWXF1ZhhH3DSy5Mq716/ZDZ6bq4Nuxk2DFUspjyZpOlruyKAWsE6LG8tGoDXevHnLF1/8lvl45ObmivHyRoVzuQvIR528iJCmUZ3C7HnLJW/uEt0tquRVUZuim6g35y4njsnsDMs8E2JiGCZ1TGqV6BOT6URyVr99ZVl9tXMy5lXRw03wKIrIJUOQtZhSQWPDKcWlamZIR1Q6zzaaPaUTzVnZNuqmSK5rFekaFq97jzfhtU9a7OuUwm0HQQ8zExFyyzr9EL9NUHXCEEzX4QghGf9X6X0Oncb1IXOnVfUk796kaM1w3gsRpd/gzuxm1XQEQ1t1EtdqMwtIvV4qgYrKFXZq91ulmFWyY1lXLTBDMFQTej5Ep5v16W0txfJkhJIXrq6vEWnMp3vGYWDY7SllptXMbn9JjCPrwwmHEHdq8pGXmTAM+BRp60pZV8aLAyIaNuljxI+6/7VifrsBtSY2pzqC8pF9bYhr5u6nuUUhJKRVHu5v+Vc//gl/9cmvbU3pFa/STHtTKTmrCHxdee9irw2u89qgYqeoOXjZhaC1uiGgHaPQBlG2yryLSKuYSNSuqd4/LTRqg1KLTnucI1oKO1RrhCE42dwvuu+9FnWyFXehu8o0LTT9Nj3pH06LqOA9Q9RpmKtN0Vqj44hNhoNlxTh/Fnt+FV8lrzhxaq1KR9EbMVg2CjoF3Qb0YntzrQZOKE1tiFqU9ULMWVHW7C+coyKUspKzAkxgtCUCPhdwZmrjdEqIqMtUE85J4k5Bk9I6Nffc3Kh1tOUoidru0qdqrtN9KjFEDdOzLyWtGv1JsAxpur2p3tuOPTvW2kyv85g+hNZmzs4jK577eq+t4qszQDnZ9F1NU26uMmO6Y7W1pddQAWUv/X10R30U9G1rT/VCoYN/IjibKvU8DEGnHB64PgzsxsDJMj7oOgDROuEsMHBGg1YqUd/P+96LCDGCj6bBEqfMlWZ2xN4ZyNu2a9CaWehuuo4+UW6boceZENbn6Ao6Cdj0xa6tFiZ0J7kqZwqUNoxB16BtOmpuEGhVwdZRhBgSPdPp3LjoYvXOtJ7SZ/nnPWwDl5w9E14tvp0169UocphDX99XxJ6BTaexrQ+3NY5f5vWlm4ynz9+j5Ey0QLDgvVrYiiIz2rVWVFuoRaIPQfl6uSJl1WIv9MA2oWYVFN29/pySF0oV5twI444n3/wu733n9wlO+PQH/5K73/xSR+vO45owMeNEHQe8hxQTY131AUfH/7U4qtNFNHpvIyaIzjH/9hf8+X/5/2B9+Ht862/8MePlpY4d0bMnhAh5JQTtoH/9OvPZqxNuOTLUDNPI5c014+GG/bNnDLuJaRyIriF5ps1H2rLQ8qINxnRBOuyVUmCdssxH6ulOb2AccH6ihQjrgm+V6GCJiRIGfvvpr/npT3/KzZMbrp484dW7t9TlyGEaGC/3HC52vHjvAy4v9hzGia998D7f/fjbPH/+grQ7kEVwMRBS4uJiIiR7QB6vFFu5tWohF7u7wrmJhao2pMU2hZAGfUDp1m3q2e8qNrK3HAJRHDCYCLeJTjxqp45Ev6XndmRJ+gwPjM+aaetMco5huqJJZF1uOR7v+c7H73NzdSCkRCtNw9VWW3MmimLNIJqT0Q9c7yBME6UILlR1EpFGCo1oBWJIA9H4kqpHclBOSFmpwTEk1Zd4lC9Jq+TTYiN41ZOEpIWGeMeaFUUqpbKfIsLAcV5Zm2ePMwesqNSqpshSsenmtPtqNxnBm+OTocmtKboSLeHbeU8URy5VnaIqrGumlBXvPNGmmiIemqOsjeA0WE+DsEzwhqE2Jq6rNgFtHZUWPYI1cNfE46LajgIsRde3iv20QGxOD6ZuUOC9IwXDRkUIOHz0RhPsCJKGSWGImHfnHCE9eP3m8OTRSW9KIx6lf5TWm2SdtWFZNGqbi6K5dl31QOmhW8pHx1uxi6a0NhHlCouCQNIUsdTk24JzbrMPjjFxf/tKEfndHmmFsqg+zEdNCJZaiNMANPJpBu9Ih4kyz6zHE2lU2mi9u9eiOUXqmqEVfBp06t2g5aKargAtZ6RiNK+gxUtI+JAQlKqUa+XN3R1zXrRYKFoY9cO3c5GDM6EpmgUEup9777akXn1Jr842RFAMpRVhQ/w60neeqJ3XdrNDeogR0kAumWy8peA7//0R/3mboigyXUQpPcF1J0XAGbXJJirBe4KLG0Lbmx/NODA9kIvWs9lUxsbUrQmFQhC/NS9fxVetBY05ykhbcQjjoCANPlGyZryIc1SngmgNINTCzZkT1VortWQ8QupVl3byevZYcZiLnlWh+jMNCHAoqOokUknbFBWxKYrp8ZwLptdqNn3oQIlOXYJTSmDw6jank4fMkpdt3dXacKVTp9hQ9C1NnnMTDEr70eBIBfUiQbWPudi5bDTkGHVCCJszlXMOamGXHPvdjsPhknlZeJhPeDxPri95dvWOX7+e1aTFeaozZ0BRLUpfrzoRtnqvnovz/useFWPvxoGDofHnKUzjyfWe55cT7x6UKomFsHZ9g04zjPbcpwO9XnFn44TWhMF0cr3R6rlA3RVTnd3UWlzrlUapedtLdKpsT64Bs48F0/pL1Qp9Z3/GGiHncWhyeac8dZANgWhGMlt4HkCAiZFu3uGdZxpGxjSqhqSUs3mAQKv9v/fbd+hTCeh0MlsiffrkFchwGxXNNjx7375j9e/dpOsdv2yL8b+iyZDWyHnh3btXOBd4+eIFV0+f6uJuRR9IuoOK2yYV67JwvH9gPt3RRT/OaXqkC5Hj/T23r18hpTCXRhv3fPhHf4ff//f/IxyNz3/+Y+YqvHlY1B1FhNE7qI30xWeIj+RcGKQo6i7q9kJT7lzznuOstpYpKT8tpkRwgdtPf86/+Pv/OfNp4Q/+zt9h2k/atAxJDxhUrPz6duXV7YKvMze7BIcDS6uMuwOX1zfsDnu8FNr9O4qDWiplXfE+ki6fqgYjJkI0+7s1U09HKCu4SIsJSSPNBUpeqctMXWcKnhIi9w8P/PTHPyTFgYvLJxxPM61kduPIEAM3T57y8v33GIaB59fXfPTB+3z9ww957+UL/DCxVEXAYwhGDWHj220ve2j0AVc6kaaWnn9PmrCuKzmvijogxpXXyz0vannXSiO4sG1YIipuayIk8+nPtbKsmdYK0ziQrJBb18JsDkuAIR26rvKqTmOHww21Oe7v73j75guGCM+e3uAcGsxn6eGCMyvZoj+rVsZhQIJnzQXvhCCB0k7cP8yKctXCk5sb8jIy7ffQVspaccOoFDfjnYY4UFqjnmZKCUzDQIpRRaKGrqmbh/G9RUWBOeukLjqIMdGcIlxLgVOZVZsS9R6lwZBbK87UieNLP9t/LV8Xh72NbFXfVY1Kd1pWRJTXHL3aBGuBmXEORdJTUs2Oj4iY44Y0olfqhLozdXBL0atcK/OaWY0yoEWjTghicJQKOYhSLSzhtwHO6x7RUaFSZWuUN5TInXm4Og1RIGNdNcGbjR5huSheHeuSIfXOmhascI0hMqRE9/8XQ6CaHdal1t/RKhG6wFhsAKAoYJh2eoj5iABzLrhS1KbZgaPSw/hEKqVlCzVUwOj08MDTZ89Yl5maF/bTDgec7u8U0Bl0dF/zvB3m+TTT8kI6XCineVm1eRxH8roitRJ2e53yrdqoqANSpRWxxslpRkatOK8e14Kijt485HM+4YNSh9aiIZtNhMo55RZs39hOVLdN2Z0BB9Ia1Zmgk3NR4DaesSJ6nXP9eMoAmAGETi7OwWJOaZMIuGYmJaLvY3tAf1+xQ7/rt7wIrpWOk6KJ49ZQ0/D47YwV+/9oa6f297YzFx4VG4ihqWxnr4g5QX5FX91WWtpKcJWUEikNQNCJcXWa/N20wdIA07ZdH+/VAainqvvobWJo5h4hEL3odLIKten+4300kMFok667HemESp8+3T8638Sh+1l3KvPO6WS/TzWd24gCTRq59gmjapKC04nrUiqNYs+tZi0E70heDPV2iOsrw6YTqCBY0LTy4BzFqTYnmDmFcvgBEQMsFPFOYWQ3TQxptL11RKRwPB2Byn4MgDo+1QrBpqhbHWEslu2eGV74WJchIoxD5OKwZxzGjZalBXEg18J+HHn/Zs9Pf3urz1rrwanWsPT8Ccc2oen/bEWL1qS1sh8Tw6BhuI1mN0qpoqV1o4ZzvlJ1Dlwl+d7UF3qMAr1+2qZG/ediRbh/9N01QVtzXBQck9580HWqTu2T++TFyaYv8z7a+zRaN/tIXkGX1r+ngR+dLmb3oU+B+6/1z3V2kuo6EQEj7wliVD513ds2+e3M6I58X+715cP45ns9KHwXwdi4y8YvYi4K2EeNKZJz5uHdLe/eviaXZRsrTuNICBM+BY63dxzfvqXWyrIWZH/NeHXNL//qB3zx0x9wfPUprCf2SdTyq2nRmWvmdPuOMXjG4AkOCmoL2cy2r3lv7keO0iqSlQOcS6E1FYrPn37CX/y3/zkihe/+6Z+xO+wpq3HmQ+Dh4cSnr2eW08zkKuM0UZ8EXF7YHS7YDQnWE+IrbQ1qR5sG4rhHggaq+RCgFcp8pK4LrjVcyeYyk2g+UX2EWqmnE3U+aTNixfCvf/kJp9OJy+snuBhIubKLkSKFJy/e4+b5c6bdjpurK779tY/4xgfvc3V1yZAmCInqwcWBEAPTgNKfHr9EmQrqKqGLcQgOn9g2DUSoa+O0mPgS44S2CsYzX5aiHG/nTbykb95qY7Gk6iElO9hBUAoQuM0FpbRq96cxxUQymkfv3HdpIATP6eGe2zdfcP/2NR9/84MtoFBEkUodvaqd45A8Y9LDRr9KJRcdmYsIPgjRN5t6BC4Ol/jLS900jdPsnLecGJ1auP1Eziun04llrai9odPrZg5TKURcHDieFubTA9IUiezJ6oqyK5d+GEZqy+RVQ5IQj2vq2OW9Pur9gPwqv/ZJbQBrc6wFnGv4GFiyFmfBCsJxGNl7TXaXjcPuLNzS2QgYcGFDcpQ7q2eHihszy6posiJNxk014ZpDHVeWrDS3GBzDoC5Xm6OVCaSrHSb973TEzzZg92hsX5tSOnX565RliKqXiDGqTsB1jqwzfq3ZIzpnVAmdYulE/4weDSmcG3DnWHNlXrQ5TZYXpKJB1WZkSzDGkG/nGrRMCtrw6Ji+oUUYrPOCnyZCSJwe7hiHSIoD6+lErZn95RXeR+o6U2thGPZQhLZkzUtykB+OCgLtNDYyn2ZcDEqntGliSKOKKBs4H8824v2ADoHmIKm5LK0uKNtJKWopVq4OE86hOjNRzjOtk0fc9r/OLR+m0bj5j6yg7G8aiqfFmRoKaLHVJxmuT5wMOVUtmq7PmlX8r5bVei62jQOvjUg3IsFhqLEWpx1p9L0qsM+kwt9o61gNT4Y00MkQ4rwhloo6CGx0E0wD5NxWx5hmSM6J4o9mOF+5l/dE53BNiD6oTXJINr2x+9eqcu6bsK4Lzglj9JpybU2fc6pNjMGQ36pNXuzi/BCRnLUAc4HaHoee2bSyCuLPLjwx+G2aNSV1c4rekYaRkBJ5XakPFiDY3ZRsqgjgTavTfwY4ijRKU8BPYGtOazNxujUxzswxYlB02jstWin6GZs4JKp7XauKqOv31M/cnTtLbQru50ZpK6UWYgDfMsk1GpXD5Bk8Gl7YGr6JGar0z9OzKzosb3/Ty79Ne9UBzGyprVHWnskmfs7x7GbPPnnuXT/bmzVw+p/47X27fkrBgs2NymhyhzFtDmzdOanfT8E0ISJbg6ZNZ8AN5pDquqapo/ra3KtGwqaiRpVqHWC1b95MF6GARzecqeeJ5SPwqtGnJmq/bnEZpv0QtVi2xsLZedMnOzolOessuhVuvy4V04PQ11KnvMn5HjhzonI6KQe30UL9Rv2yHu1LvL78JEOE3eGSyxQJ5kzUigp5c1ZEMmzFq3b4a55Z15lxHNjt98onjVpQxTTSWubN57/h+Ppzypo5zZn5+Bk/+0f/FdFZbIyDyaxuqzV/GnRUWZvQcmFsHp88uZgeALUdjN4yPESLYmwEJk0R4VIbpQnzr37OP/nP/++8efWKP/zbf5eLq2uSWcu+envi9vZILAsXT58zXl4TTyvu3Sum3Y5ExZdKYFRbxJBg3OF3B+VBlxVqxSm8Tl1mRR9ro0V1jGpeRY/t+EB7uKOI0FKiVM+bV5/z8HDk6x9/jPjE3ZsvSAH2lwf2Fy948uwFYRq4vrrm6x98wAdPn3F1ccE47q3BMG9sG8l3sOFff9UirEXRlRg8j8Jw9f4XKEU3IN3ItCl3QC06KVANhE1BhmhWpcXESrAbRoLvycaVnsDpnaPWosLd1pQbHjxT0rTP02nW6U1VTcM8z9zfv+PNF78hBHj27AneB5Yls2YN6ArRE1IyQXBFmk4OnEMnHXnRiUppxDTQCOS8mP1oMAEYjLuRlNKmU1GbQhMvh4FhhBAKMQZFuwxFcf5sXZpz4fbugSEFdtPIbhgYxwkROJ5OgLAbJ4SRNWZd5/3Q8M4yOrTY/QoDkACMQ0R8gCpE8aq5kbaJEb1TjUZQkxQ1bEiD8odRYTzodajFzAREKAZ6BOfItZpoTmxqOkDTaUPXAyH63lUqp7WQM+CaUZz0fXpDIgIpdqSo87XN3nnbsbUw9UHzPZg0u8NbwRGM/6yCymjTCL81KsqX9f3o0wOlrzOz2e30l1KVaicCpTmWrOLSxdkhhIWKOS2ChhRJ0SOtksvKImq+MKSB0TQwQwoMQW11WxPyslDzwtXhipozy/zA1fUzhmFHLZk8H4lxh/eRdX1A0AlHXTPL3QPD/kDDsd7ea8jlbk+elb4Yp0ktMrMCEjF6atFmyAVPGBKCheRZXkFphRAjw3gwamLjD771df7ihz/lB7/4dJvmYPS0x4F3VYTkE0NMekbZUdBpSrguUMUK9GoIqKKEDuyQt2fbKJhgEhKvIXsduVYnIzGKjmo3gnOPAv2sKDVAtAdsBedprutkFFPsHHZjV9NMGLQ5AnqnFtombhXa1uy01ilkTls1522dfrU3kVI0nNR5lIZYGrUs2ozT70s1pkrm5mKys8qcwWpjrcVynM4hjerio2hzRfU9DS3MpECkmcmE/x2kuplGT59paz9c/xxCiNECYA2lhm2apbz9ugEDfdoEBvpZqFpK5uhjRTAmlC6GxuvkygCzJgxBWRvd3ngwinIXXS+tPQIrdIJczA5ef7YKj1sTShGG0KyBF8Zh5OnNJRe/veeL+4LDUUvGeXPCc/rZVZsgNvHtHH5rHrzahU9maGDDA30ejR0RBEQcz64veXG154t3JyQXoz9ZGKAP2+SoC517/EA3bFBtp3BzvWc0UyJBaw29pNIfJaUs2rPftcXOO1JQcNRvhZHYHm0TMuc2F0TnziJsvQ4dzGhb7dUbw26v2xsT763Zw200X823OVse99Tt0s7i+v5Mq8mRarOq0fc2LYZN72q1nyjngYy9pf5lYF0XfgfTerRmdsv4bY1+mdeXbjJ2F1eMw0AwkaS0yrIuZvulPMmH+xM4T0wj9qyy36kDCT6pk8ugGRvShOWU+eKTX3D32aesxxOtCbvocXkhTANhOhCGHVMMmlngoK4rZT5BUR5hq55TraxZDxlF44XJe2LryIBeEA/4jkraYsq5UAROv/2UP/9v/gvu3rzmz/6Tv8fTl8+5vT/xy0/fQi6kGBmvrtldP8HtMrVmdkNgcjAYMORCUqvZEDDjYtQdpdDM/SREfaD8MCIhKG80F9yy4JaTdv9xoIXE8e4d7958wc2TG3aX17x585rDbmSKKr4/3Fxz/fQJ+/2e64srnl9dcbEzS1qvPvJ4zK3AkWyi+bjL6FPFGB2gwVPROJWPX4KOj3WTrEgM28a4LivzrEFYnV85REVF1pzJlsqrY2N98NTHXZQqFaNyks0pByD67olfOc4z96cjo1ejgNP9HW+/+IzT6cR77z3DOVhXc8kwBxGPQ2pGvKcK5KxTuBgjMQXGMeGDiqqrdNGYoguyrKSkHvO1oQJUzNO8FrO/VW5vjCPeJ1orLEumO58IUIqu6bUoTSumSEgjpQrMi4W09XWrY8sYI7Grj+0wqeaQgtE7vtov5aUG5whj0oI2Z8bolZJUG8uyqNjbJI3TuDtPDWwC4H1Qx5dmvFlx1LwaEuPxYWDCGcr0aDPFnE3EiramqF8boKO/3pobrVnP4+WGozZDknHGs9bDQ5+Pth2U20QBE8s5o9F4K0BER9LOBJPdMtAZatRasYIQOyiLcdELuVZqc2rz28ya14rgklVEunh15SpNG6EUzB4aQVpmYSGGwDRqWngMOn08rZkUA8f7d4r64zk+3CvCGDSzIi8LjkCKo+knhDTucM5T5gw+4GJgPS3kdWW6utLvsC74NOifW2aCD8RhoKwrtWRCHHA+btxinFHivCOGpHkn4sjrCUflO9/8Jv/X//Q/Rv7Bf8dPfqUC8D4RqFiTBjhRLnz00C2m9Tfcdrjq63zw+kc0tvN0QRsGxao6/UnRxub1GW5SDe3D3sssZEWFmQFPcer+pblMEXoYmfOkaDir8xZOqTlNHcDrQu4uWu/PQoiKYPe0d7GCRS1IFeX0TqdAdfvsX83Xsszq4Be7fbDggjIGpGJibc3bqWY52jsAcZ6eWyTOs9aqEzURnIn2Y2MTgev0wuhUeKVctorD6IXSp6RsDUgv0JHGkAKlVOZ5AdHnsYozOh+I0z1f7WLN3KRV3RMMhAh0JzK2iUfZKDDaQmIIeMmFNcPilefvjM2h68fRrU9jcDoF9pHWVJsicg577dbHaoChz0Dsn0FUw/L8auT1fdZpmijY6JK3vSKcm1nRyUGVrmPS50ytagdi0HT6nLPt0wq6dOvw68sLPnxxxY8/fYNeRtnSsnVtmyOH6A/r1OQNkK6VYQhc7EbE6oz+wcQaxE4f8vbzm+koNGTVTEJ81zi4baIk0l3obPoYok1LxejSOk3pYJUYvbLrq7QjMx1OK0oNNTqxt+mGiIncrSnt9Cr7BvrnzbmqmDvZ9vti1s7ePnfvcQ18b82oWd2RynUXTG1quzbG0Z2yTFT/O0Ldf/vrf4W7lLoIOYIi3T6idaCN6WPaxkAa1FdUUBU1T6NUFKUylEUMYXzy/DmfjBNuntkfJtzukuHJM65fPOfZh1/j5sV7yu5phVYyD7fv+PznP+ftL35MXY72XpHmPBLUaYZaNY6+VaYEKWmirrO9uXtF56xajWqjpPLmC374P/xD8rLy7T/92+Qwcft6JjZhPFwQk9r3TgMcxpEpOZ1kCPikSbZxHNSP3jl8041OcoY8K6rkPC6NtDjoAqqaAO6KPWAx0UKkLAvz/S27aeLw9Bl3Dw94aRwuLri5vORwc8N0sefy8pKnV9fsx5FpHCEGGBLFwu5y1QC5cXAq9n68LgSkwpqFmPShp9mEwmq63t4afqJjxKYuDyl0a+HCySgbg9fgxOA987Iwzwtr1kh6XFKeeDWk0cGYIimE7QEpORN9YEgDOM8yzxznmVwzI41lfeD2zWecHu7Y7Xe8ePaE4CqtzHgfiM4Rx7hRr1KKiLmCYF28944YB9IwkGIlr0WtRodhQxM6VzrEQQ0tWjUqj9IcdLzscDHY5g4163f1IRHTQEyDOkWlxLrqhKJU5UMXVCRem4UGrsr39IZAdXRHN40udhMr/L66r7WUzU0jBq+JpS6SXKK2uFHCQoiseVYB5bLgclF3FRNzu2CuHT6qgw+Yy1QhOU/Sk22jSXUaiRjAoGYE5rbkHYN5myvq1DfxtqE/6t4Rda+x7V+/h+VNGHret17vO7INfbCsGiEBzJ7Ugte2x0xku89CdykyVK0LJtGDQic1mGBbcyY8Wuh0h5SObtZaaaUg0ZBSrZ5VO5ZXoJHiiHNKLaBBXgu76wsEOB2PXFxc48Qxn+5pZWYcLxQpXxZciIRxosynbVIhTWilkMZJ6Wan2a61N3cgwY2Rkguu6r2lFyZFs0uQAiGS4siQRsCT15XWCjGMjNPEn/3R3yAFxz/9i7/kX/38V/zm1TvVrRiFQNo5XTnFoNffaBwijk420nViWU5YM+9E08S3NqRbw+oa6gUJsP3zY1G4M76SmZFulIRelPQCCKfJ4ZtjTZ86o3S43IRGI3UXI/sMVZo64th0uVNtghejv+r79ZwVTUBetwbuq/pKwdHqSmkVPySdWhvbIQSHrIUMxDgQotueEa1523aWgdKr+pRfUPvfGHRSr8wQNY7ITScgpSh9yFnT0oXHKUYtbB85LjlrdCuNVvvkqRs12H7U9J9j0KYRb+tH1FWv2lnrfwcp8agTeDIhs7nqbWtSi98mosGXrZEr5wLR96bF/Q64ocGQZ/e0rkHTvQ2qD0CgVrV3vbncM4R7TuUsFAyhId6bruCMzneGYp/4gv568FBsCrKW+jsNcYrBbGcdL28uuNoN3D0c9ZmWLuhuONf3iw7B254qbFPK6L05YeZHwm5z9zIaUrCmgv78o8DAVg84v00+sWagUW36oOL+0H9br7QCDtKpqt2hSWuLPpECtumEOldixgzaONZSzto/rzRKldE0m2ZrmGPo4GbVP9snnt7199XvGUNkTINRMRddtwgEs3d3nCe7vWlDz9ueQddBti/z+tJNxuk0M44JSmEcRsgnsrkfOGC333PYjzjj5+dswkajBuAy0gpIUBGfU4Hid/7Wv8d8f+T288/YPX3GxcuXDIc9l1dXXF5fsztc6ijOLB5bqbz7G6/56Z//c372T/97lrvXAPgYtInB4VIkV/Usv50LU2nsxrihRO7xgYAol1MER2W+v+WH//Qf8dvffMr+63/CMD1T2o3RClxtuFy4GidCW5DaCLsd6bAnpoRLmuTsWoWy0pYTLpttZ0iID5QQddG0SiwrshyRmikukMdJF8rdLa4Wnj59yiwNWU5cH/Y8fXLD0/feI40jMQauD3suxpH9NBGS+s1Xi53Pa8Z7zxj4NxsM+mhMg/d06mIC1n997VRRXmfTYqXbKCrvUrUSrcr5ITDBY86Vdcm0BtOQ1O0GLZDy46IJG+3XSm1lQ4hrqZbQuppXeON4/4bT/TsQuLq+4r0Xz0hReerBwTAlxumCh4d75ocZ5yPOUBwdQRZEKq1klmWBfvg4zzBMBNOSdK6kBoE5mlN0QjCUE02VdbhtjOy9JyTt0HxMeCJ5eQBgmqypNKQ0eN2sS6mb1WFrfkPDvDcKmbmy6TPkSfuvtrvUuzefE3xgmnaai2JhZjEGImzIfe7XxhA27zy1rMSoLkOOppNDp/astQn4iJeKM3SxNU1SdT0sEqMiiXbXtVlIZNPmTTVjvQDx0DQ12XcgFD0oJOjUrz8obitUvKGP9mWtruiI27n40N90YPoLrCEy1xT7c+XRODsETzA7b8EhriHZNBfizC/daYPbBHeuNvT53GQIitA63MZ9Ps0rJalVZi5ZBeJeCCHxcH8PTUjjxLrO5HxkGEe8C9SiKGYalPpXcyYOIyEOLMcjrWrDscwzUurWfEjL+DQiBQSdXLYU1B1J7Nqb1/8Yk7lMecq6Uqr+jDjsNAOiVb738Tf4+gcv+Q9fveHPf/Aj/vkPfsgnv/kt724zaxNcg2EaCEGtYGvVNeHQXBJQEKXftj69CE4pi07Epkt6pinfWwuGYJzR0lTTou5DdbOFHIfB6FRskw/bcHQ99kbIAAzNItCwVDqyLEbxxex1zRhAszGMAiGVVtzGLMAZBaipxaoWB2blKmf3ra/iKw1qgeydIyU7h6qeNc6rFWm0fKfWdB5aigIL3e0rxaT0RjdYgWjumE2BilwrrukESQs3YSnNzrPKEKNNChQMyqXRnDNqYkSztk0H5tSyVGmO6vi0IedeXc6cqDGBbx4fI2sp5NYRZJOU2yS7WZPcheRF+1TdI/wGj1hx2TaqSzCNimoW+i7UTJQerdFpNrHtBfB56peNkgqeOB64uh643N9yensyimBPDIduogFidO3HUzgzs6Cxn/Q+lNrOvH/vtv2rWAF82A08uRz59StHtsytWDMtmDZpA27OmTadGtbtvr1NAzuVqI8tO8DT0FT3GLvhghbWMWjB7206rXXTOQyvSdVQ1WDPeNNrzuMZqRS9nF6bl56K3gELEJNdK6uiGkjWNRW1VaWUxoBPwcI5E61Brqudf7Y/oWtNs1wseV4sIoAty3xrnnQywUZpC86Dd+fskE6zaoUWlL4ZCV92kPHlm4z9fm/jYuWotSabe8Dx4UirQrgOnRFph7wdXOtqPPZGyHp4xKj5Ajcv3+Nv/5//bxt/WupMrZkYEg6YxoHFwXysTFPk4vrA7uLA/uoJ0+VTPvkX/4S3v/q5NiGcO8IUdUGcVuH2tJBLZT8lUgp2qCuSEJxQnT0gJn5s85EvfvlLDulDXn54AdOIBK8oe9bJhFsXfAQ3jqTLC9xur9MUOz+kFtaHeySvSIgM+4Ny6sxejGb6jHWFdUZcIKM2hjrehzRNFJTveLObuLm+5vrlC+LFBYiwGxIX48hgXfSQRqoP1OapRQ+mMQaG8f8Hh+7xeScNmhXXjn+jyVANS2Nd8zaJ6odWLY0117MPO1ByJpfK6bSQqy7cwbiQPS/j7MnfC29hySulVobYbfy02KytkJxQ5gce7t7qAxUG9vuRNA4kH3FOU7fTMOFCUL3MkIiD2r3VrM1ACZDzyrxmQu0/vxl6WdSpKKnNbghnqkxtxo+1pVMFdZ06x/KCbUjSGmW+V3TUO7VGbko3CTHR3ac2dyHnNpqYNw52CJGYIsOYNOm1qNOJyJd8sv+avoLl6Mw5s5RHVIOgxVStitr0Ju9Mk9JjO9eiLjxZ0aAYB9XPuGD7t9tcQ9yjfd73Z9u6vJgGXNNxsIq+9SApRWl8rk8EDPHWe9mQpmBJF18qGmbot42tdQPAfniHhexQs6lgBzt86GGO+p2bqEmERyk/zkejXJ25t867rUGLKWzCbpzbCibsgASoZaVWa1pr1YbEezNbUGSxNmEYNVxrno/sd6a9KAuXlzc48cyne3BC8JqiXdaFFAekwXK8o+WVME7URbMpfBwoWd30fEw6XVwXcBBcw7lFm7M04puCPIrUmyV00EkiaGFRSyYNA3G3Vw3CutJKZRz3TLsD+/0FT68u+MOPv8bPfvUb/tn3f8gPfvoJt7e3Os32Rk1E91h1cNLnSZrQXDVnMl006ulk/ireKzffikPnz3uBMwRT6DoznShJ1fRnF3WaUGt3nevvw3bIi+v2nrrei1GoxKZgQ4zQhNIKVGdAiO43xahVj5PEsQKj2t7lnIqkfRpsovHVtqlLw2CUDtM5eF3/pVTWdaE1dVTUZ0DzvKRWklNdaDSNVKvVqD3esjQKtXrWnI3O0kgxcZgGhlpog05LohWLuLBdz27ioM2NOYFJZbZQwKUUevq7Fq2BGD25aJBg8GKeLA5cIMRe1FuIo4gZf3QgUNH84BXcaw3NU2rdtt3+rHPEmBiiPu84NpcsmpBSZEiDreFm2USqV6nSrNnp+7A6vTnnGeLA1X7k01equ8IAojPngT6ipcPj3nnNOGlq8nExTZY/ok5YzaaztZtf2Fp2XnhyNbGfBk7zosh8s7+C2o/bbAKcmg85H/Be8CGy5MK66prXIMJiegn3O9SwTiEKwZuOyW0AouaK9AmEUKuZStjXrOasGnx3JewXoAMMbNOWfll0P7B/7v9rsukyvVHXhxARH80YJ9v1MmAGNbrrP28bVDZM02Gic7FJTad14hlT2poyMR2KeDXMCT7q/lEV+HXB9sXa1Ezo33mTcTjQpJHXWQWNMZDNzWLaqRtJro22FnwMmvBcGtP+YIXeQj5lXNSNvnMLh2Eg3FywZuHh4V7FLD5ymhcV57aiG3wrHI+6Oachcbi44Pf++E94+vIZf/EP/z6vfvx9O8jZfJ9jUNHl4jKn0nC52xY6GyV5Q+yU+5zb+ZloZq0ptaIGeJ5WMvnhXoXcTu9sGBMSIs1pByol67KqBVmzFivDhAyTlQ3g8gzrircEbPGB7AKNQFgXyJqIJ8OIi4mdd1ztJ66fPuVweYkEHQ3uh8B+HNR1JIRNkKo1R2NMkXGyXIfHC0JAslHGzAUnWVBN3+O2P1p15LquK6tpLvwj0XepjSWrENWZSUTOhdO8sliAnC5YLaRaVS3PWirTOOq4tzVO86yUq9oIo6JTTTJVzLavVB7evaYsK4SJkispBY7HmRiSURCaajPWDE7wMUKr+Jr1Pg8DrSaWGIi1C6g8p3lmzas6pDml16WkThRDGsz1R/A+bkhly9XC92RLhu/NFw4NRLONXprqO4qJanWEqqYDpTRLp1VKTmkeVnAuq9WyKaCdjwR3tqP7qr7GNNHEUbBm26xapXabX9DEXuhhcbo/2yi9F/fO4V2llVU3+jDorKoVozbpJrnpLwwVwlJwkUZAiLGL+Zo2D6gzFMaNdoiJ/gK55HNia/BW5JyRMirbIXXmvCtivh05/eTd9iBFJ/sh55y62jkXFeHsljLSjyD9GaWpBTAbUqXXJljz0JFApdgNSPPU6qklo1zxgXHaKWWqrGD7RfSeZZnZT3uW40kzSMLAuugU4+LiGk+grGZfK46WV+qy4KOmBpd5xjxfKKcZUHvYvMzaJIWAy5nqHRJHpftQIHiq3atotMGaC+uyqvXvMCnvPmdazjrpmDR7KC8nWs6MaeDDDz7k+fMXfO399/jORz/mRz/7RL9fAIcldIsitgYYanFiYsft8NxoAvpnvOv0Kp0ENWlqPWvrUWcbPY3XnGJaNV2ATtK8d0hV9LMalUsnDYEe5Km0BIynbo24mKbN/tKvoAhn9Jp/1NFb75THX6lIsHDQUiFo4rxSs766YEXNClqmmGy/FWgO54I13k3ZD2h6fYgqgA4lU6tm24yjBX42bRRKVXcyT8QlK84QkumWfPCIBDyjFaXnzIdabAJiIECpYlPzyloL86KW7E00CycFo3x6DaUrtXGcV3suPSklXXtizWnrwIQ8mkTaLLTTH3GocYUGkXrbO8dhsGcpbgCEczotCAaM+GBmGvb/wRD5vr6SnKd4oBa8S55BYEhBC31R3UG3f3Xeaw3jOi20Oz9VpCktOsVISslcIdsmPK9VKewpBKIBSC4knl1fsJsG5kVzk1obzM3K2aS6o6ZsDUGI+s/zsnJ/XOnUOOeUFVPRArznF7XWqOhz1J3COv2qU+owbcnW8AGd5QDQpOC60QI6+TTylf0ZtwnLt6Hmdv3Z/hsRvW5OzD3MIgW6y5RU1br2oUmlO9VpXauToQ5A2XsgtmZ0z+pAngckONMVmoGI0+mKOE0I73ZS6pIlXxqo+NJNRl5mfAwqyG1F0TZpGqg0aqCMd54QTR9RGzF5YhrYErudGO1FL2mrhXUu4D1lXqnLg1ZkXq351pJ5d3urhWvJ5LVwnCcuDjuSD4xj5KNvfxvvHf+iCm8++RG1rkpnsYNhTIEyDjzMC0vR945BCw/vwha4Jjho3tIxhVKdChJrVreJajeszFCBQTMOnPc0r6IbmU+4NSOt4lojOk+YDuQ0kNFNzreKX2by6UhbMs151jSxisfVxs47qhdqSqRQCTEwuMDVfs/+6grnA8nDEKKiAEZHy01wtSIsCI4hDex3CZd+t8EQEcpJNzzVBDT15o9doPpotVegaNbJuha6DiHZKL+UYpqLBbzYg61jwCVrUnoIUX22nUNq5Xg8cjzN9usJ8KzlxMM8U0pTKk0a9ECvVf/KK+vtK9b7d4Rhz7zCNAhPn1xrgON8T4qO/TTSbRx9CKyrTTdsMqAFWWMcB6IFcoEWayWvFKkUERJe8wJOM61pvsswBC4vrwhpoKwLUrLaJrdCLlmdq5JyJb1D0RkRhMoqwnEurPNMCI5ptyP6tImSxStdKDhnIngtsKWuWzHQbJLyVUcgadW0M7AWaxqswCpNqT+1qpFE10R0xEfRm04J0IWaK7hWqItqCzBB3RCj6m7iuNFLEAtn49wEdMRcRK0ul3Uml65/MUqRHSBLXshrJka14S6tstmF2rFfW9kCufRX61a0PhYN9ofS43DO3EWabLq2fqh7Aw8UlDEKagiU1jm2DinqUHN297OcBXMFEQ9qQBEoJdBqtmyByJgSNEWzlqUyxlvujzMOx3w6st/vQWA+PZhWZjLR5Urwo075Fk21d3FQ7VxruDhRctYmME3UIpR1xcXBDvmKI+Kq0KRQxONJeBGCWUbWqmLQmBJxUIexbOCTD5G42+OHkbrMJkYXpmmi1EpeVi6mke99/C1ePH3Kqy8+4zAGuoFlvwtKWVGaW9fv6P1227RC/8+QazojWS2Tc20EqRvqqCCCPs8igVL14F5L0cA1dw4EK/K7FpYpBloVc/jSSctg+sZSCtXrv49JTSvWXFnWmaVlxiERQzKnJG08BkPs16IOf3kpCl5EvxlrfBVf/Vnpz0M09z+kGSc+mJuaUmSqoE5SVlzWWlkWKy6NjRG8YxqTZrZgaLpNopa54ZzuRdM4GSgRNF/DaZCoGjIUahUQLZbFKS12Gke6l4pDm0Xnu4hWtYgn3211MdMcb1bHAcEsu6XpdzEWQg9v69NI7z27cdJCGt2/BmMLBKfNhFiR7XvZ27UhtsduaLb0PApNLG9mMNHQMNnZAINzY6AJUl5Ub9snvU4eNdutUUpmzQulrMQhMZhdNlWnnc0aq5ZVw5gMyPESuLzYc7mfeDitKnBflu06ENjur+6Rinh6Ub3M8b7x6t0JMc2NSDCzGd07FRwI2ySqt3X6MofKosV6a+eJpMPglK3MOoMNIFsgn65Zs9/tkx67Rv2cUApUVLpwUa2Il57+rRqd1idKsFHuXJ+4GEtG15B+hmaTkhC0Ce+U9CGmTV/WGxOdYtgnr2rJr2vWGWW8n5l9LX85wPNL7zQlr1vMvB3ZerA4R79sOWfCkOxBUlu/khdqKZS8aPiLQFk1kTOvC6sFr+ViRWwKlFx4uL8FqZxy5u7+gXXNtFKZdnvuDnsudhMxBK6urnjx4Uf8rf/T/4Wf/PN/xi//8p+xvvtClfDBmeBPj5Z5zYYa6YVzm41Yte5eiMDSqi2+piNyB22daU4LvxgGiBG3m/BptHC9Gb+eSE03EZEKMVJExd/OVXxZkHkmSFXRWgyIDzg8sTRF3FvRZG7vGUXj36fomfZ7qgkGU62MMZB8wgNrg5VKDM3mjbpYHIJ7vA4EyDYubI0iRekAJnb9N+ZfopOMZa2cloUYHWMcSCGCVE3WXhdW8xIPo1IbllxZcqbUahkBuk5OuXBa1Yt6SAknjlqqhiVZ4xnNaWotmfvjkXlZKMtMPd1qwnzaMd++4enLS4Y02kMWoWVOxweGYcDHgcHbQYMmtgrKW3eiSE1IZ/eqMUXqOLJmS4X3gd1uYBwipapPfS6ZV69fs592pKjJ095p0FK3mluXVbcP49mqqE64Py2c5pnklHaYc2apszbBw8BhGi0J3lCcUkzEazqQVtVJhi8vtvrr+vLBb7bSWigomqyNvY6/syXDeivKeHx4+GhngK5Xka45qISUwCVqqyylkuuJtWRCnGwc3BQ0kGI0NS0SRCxXw4ImpzHhfdSCRNiCmmIIpH00nnzPZ9BDuPP4NbegUxVAi9JmIks9yKs0oo9aQHiM829J91kP41wq3kMMkQpbARzMVAFUL0RDm9vWpxidQ2xxOM7TVSDeaeNVWzEqT2WMiZgmnHO8fD7QmuOTX33OaTkxRhVdL/ORmmcOF9d4PDkfca7hGcjlpJOIOFFLgbwq3QmQWhB0slrbiogi6q6sPORCFXOosyDDYRrZTQM7duaiAsO0Y9rvcD6wnmbKuhKHgbTfK8CTF6WltkYaJ0rJzA8P0CoX+x3gmE8z+3FgGrApj6fDwX2yFDq9RJrxu89had4C9rroU5Pg9T5k45J774heJ3SIFsHOK3VCpE80KqU6Uoh4J1sYmutr0xqehDf0GgQtsrJksEnKac0E30O50hY8CjZdFi0ShqDNhBsGYoy6vktW5LiV/60f9f/NXt5EUirwV1vmVtXkI6ZJQx6bbEUgTbVd+r0NlS+6F3mbJsQY1SQkQXSBIfx/qfuzH0myLM0T+91NRFTNzJfwWDIiM6uyq7p6eqrBIYYY8IEA3/lHE+DLkCBBEhiQYHdPdbGruruyMiNj8cXMVEXkbnz4zhX1HA4mnUBzUK6JSA/3cDNTFZF77znf+ZZEaZqExxjJRQ5o27YRis4I72X1rlpjIvpEiJ3ixMAIwTMDNnb6qGE9hpP6v+45zzNDpOtcu6HOY9+g091EaVaUmm4RbE+xkE41FO5oUo4f6jimos2MBPSbfqD19RDIa28uVa5TpRXpSRoCuswsZ0ye+0ffM0Rudsl0GNWic8YUkuFO64Np0DhNE96pbqy9k436JyqYsVJS4PXDmTcPJ3562qitsa4r3t2c12K0fdvLBEBHhOhgznv+8O6ZUgp3p1ltQGhmrBGxhDC7MXKadCbqh6HduwXXHbRJ/ti+9mgy3BCG26T++LqhRbUF7sJxzcf06ZiaOI8OCKNBNunDGhxUr6H3cfZZgxtnxbDnHoC7N+q2xzV3TMb0827Ayy1zylLQzWhGQYUcn5E+iJx/+vXJTYbErsZXm0TRkYioWPATuqBZAt1tXeU0EhPPzxfolVcv7kmTRHzdbk5p3dTwTlOQ3tm2jZJXTtNE85hLVSDMiT0X/uN/+h2vXtzx1ZsvWJaN0zLz5hffsNz9bzm9es2/+z/9HygfftSN8p0UPHMKvH/aWd2OYzKHLHcsTDAEwf7phhxgYjyfFegDjh68HE6sqewl4/JOqFki75joKVK9o/RK3lfm3qHu5rLkYZqoXZxZuiO5RqCpI4+J1B2+V3ytLPOEi57cG77pXsQYcR6qg9zkwlJptGy6gjA4o3YDO/TcKHl4QzdoHR+wlN0x9r+tAVpn23a2XaPc3h21FOJwTKiFUgslmzMSQjRKLux7ATpTdCQvKtm2Z2qtxJCYUmKakiEncqgKQRxBB1y3jefLVZzmLocm/Mxl72p4U+TpupK8Z4oOHz2t2cJ0XuLyUjWD5ZDqAAEAAElEQVRCN6TSt66RslGlStbh1PDmQCZKTErinJ7OMyHNrOvOu/fvef/hPdCY00y9ymc9BM8yLxIXO9mcTkHCv1bV4IQQefXypTlGwLZe2fcLS4rU4FmvFb8H5vmk8bkVnQ2Ht6Cn4ESvksD+8335MKugLvVwTsLVA+kph52k0JVk4XX0Su8F0CjaB2lmtPkFjdRdEHxo67q0wp5XcCNBfkw6AOcsXffmUlJqk0ObFXkgAaUmEEMUbmFV3dPwdthyWBF7wtFAVdvbZElp9ExrloiNyasYKq2Sa2Hdi9W+2h8DCPEPk/i+BsbEGI7iNHiMKjipuHDj/eqwUT6DDqpatR/EkHChU9vObvlG0XvS+cSf/fo7pvnE//H//t8TXMLHO+brhZQip7NnXS/UfiXGCd8btexQPaFXetsNAQv0/cJ+vdBCotaNdX3ishfeX668/fCWHz8887Q39pqRXiBxPp/48tVLvnr9mjcvXvDlmzd884tfMLdOfb5S6k6Y5qPBKOtG3lZw0tj0WtmfL9AlWt+3VdqvGJmiZ56Dgr+slsAsJkelpMLGHxNGqwI53L6sGRm2xjDCETUNHVOMA+Vr/cBuvOOg1ckRxw7zqoBQb4YBfhRWXiJQB0xOzmG5NuN7W5HRbi5iY8KFc/SCTCVMD6dw1ICfEtE7a4w+tUT4J/jqAMrW6eic7iMELnYgSIzLKGp3at5pRWeS87KVzZtcD4NzzPOJaZKjoSZ2Hh+gtZFTI0pQMxtpZX5N+B4lsLXitjfpqFxv+OEKKKW1FWz+2OtyK6JZjYmMWfXL7lp7Hmiq0p2aq5SSslIMcOqGsntfgAHG6DIpp2U4qTV6V6HYRmqp41YwN6MGoj+rg76qDsemcdrTei10A2i87bV6pu2zYdpOm5Z4HzUhcs3qKukkFMqq+xF8l4tSreymXWmtUbbVGBQRR+fFeRKdzAX261X7Ya3EmDgsZ632MQjrEDh/eNp5vmzcnxamGESL7d0oSCMjQ+u8NZu2jomMNWpj2jN0DOGPXL9GwwZHYzcmT9ZmHCnoXY6m+ptjn8HqLDtLogyCWlN+0Aje8XafQe/Nj0lLk3NUZzAB3GGAANK19S6galC/ulFE6ZrmBO/lUhXcQfsdzcWYwngD+z6Vuf3pM9OB/HhvntSeEKEUpwLRedy8UKwY712IbAgT8zwTLHNACF3XFCMrd6HbmLNUhan1Wni4OzOnxJkzd+d7unPkUvnp53dMaSWlwDzP+DjhYmJbM9P5zL/4r/8bnPP8zX/7vyc/vRWlyzmWGHkOgaerQtimKaqpsRsuUMGJnmIC31JNgNQqvtq4PyX6NBMOfm/D9YrbV1peVbDnQmcBsyGld1yv1LzhnWNrjhVPtktbcuZUK4FOCZHivJwqQiD2TkiRrXXSZIhDd0L1HRQazSmEkNKhZpbTWQ4J7nbv+iYUsRlFKu8bnYavHj/Nmng0ZDndOm0tbFZcl26oMtpEJSrv7PvOul4pOXNeJlwXUnzdN67bJjcHBy54cq7kLDensUF658gMj/9uXELlBGx7phsvM0wzIb7msq68//4f8Wwk38h5pfkI3XGeI/OikMcQI7VW1nWn90qaJpSJko9GsVWzvaWJzxkmWm3s20oMJxPuaXG2prH5FJXx8P79O3LNKvJCYNt3a/rM6eN0z3mZmKdkz630PQOpisGTTndMk5Kvf/7wSAiO+/vOPCWjcQ2ajLih0QdcLdD2T16y/xRfay5c93zwcGszFNlhY2ihL94p1yAFUZ/oCjlSQS+ebUxJ6HhF4+U+XICq8VkNqekqJqIJib0h/dEQQGfEWLk2BXK7jbdHsyp9l6agKgA5EKVqTh6N4cKhn1trt89ZjXpTSSEyxSDKIUobXzcZHvTeSSkRk2XpOM8yTUwpmagQ9pKptdiEp5sLjFLFU5AQEDgoisEL9exuhDt1SznfuV6fNDGjEuYZ5xPLPPPVV2+oDv4v//bvePHbH7lbEi/v7vji5TtOUyBFx2m+A5zld1iw6Z6pCFDI+0bNmVwbz+uVd8/PvH164u3jE0/rCj7awQkjN8T7wPl05ny648X9Hd+9+YLffPcdv/r6a75+9Ypvvv6Kl+d7WqnkyyO1FuKykKaJ6/MT2+WZ0irzsrCuK83AkVYL0VXubF8cZIbWEdXso+dzIIi9jzvs7c8NxTPUt7fOiNMWwDICxUaTrPsg5yg1e6IBS3RJ9wca2lqDYJS7jpplVXtH0ZOGboOhEbkBQoNAoRwMT3AT2anxqV0TrTEFc24ixlsQ2+f48mFiNH/ByyqekKjdkdeM87rm9KK8i9ZI3hHniaFZKTWTy229bqWylY3em91rDv3AQZsDMERaDpo71Ay7Go6YVOi6MBBxrFFtDEoLfbiQqdnHd3qpH1Gj1DA5m3DqR46RWzeDGxNF9xuifgR7HhME+7LhEjUaBtwBoh5I/DCO6FWgJ7fJ8ZjoKhq50nIZqiacM8MOm0x707Hp593qD9F6BHII5Q/EJCv4Vgu17PgYybVx3Tau+3oUtAIEoQbpE86LqLZMmvz0KiBxGG907Lo56RoGbuq942kr/Pz+wptXd6TgFcaqll2TyK4aUE2mNFTBa90x9oQuCrTsxa2R7SME1RmFTeBxM1ALmzyNCQdg69zuKTeRvCames60+5hFcW1HE3MAC/2mzxE9U/uwc93CX9sxnZAOtBoVE4jBaHsGinUDHj62w7amudJMxXDTDpZabp/lT7w+3cL28Z3G9nimeeHufKdiDqA1E0YV6IUYZ+7v79n3rI61R/ZceXp+otUCVPGKiyzd5mXhdFIa88V59t7wPoGPnE4LZzvAr3slpRNff/klwenCapNwcpuw4uG/+F/9N4QY+Nv/63/L9fvf0qvEoHdzpNTKuu+03g+rR+f80Z3W2vHLG776+q9wp3vwdhjkbPiioazzoqC3WrRhtErPRV27D/SQqC5K4N2rbkpexR+NC+DBhMNyOqm4GNlDZG+Gd9RKc2JAlVZJpTDFyDKrEFHIXGHv8smPTp3rnNKtw3bQa6eVrOYA2PcN10VNSq7jg1OAsdYbVNhz5rpd2csuFAXHFBWcV4qmF8/ryuOqhu9koXpbLmpgeiWYS4xQftGkoDNNE8s0qYjLmW3dNM2JgeC85ZdkodW9W+L1wuXndzw/vuNX376W20cUFaTkDLMshlvRU5pSpITIh6cLuVSmuJNCIKVoo2NHIIJpU1pREXdeZlKKOkBaIU2NXgrnybO2qAPDNeZponddp/d/+F7IVgp4P9n4+MxpmeVU5ZU+3ro2wtO9DrucM0/PT6zbzmlJQhoaTCnKGQUvfnluVKe11/30qUv2n+QrV9lIVqPOAByUgFEt4e3AaAfvVMI8OSolJ4c6h1AonATDrcgDfS/VtDk3iln0Shp3YVy/TozmNmeFSG2dLReu+04thY6jNihVIvM9SvcQjG4zGpHWdHgO2pUzHrFzndkOU2WzxIMqA1q7zxeN/lNU0vwyT3SnPIQpJeYUjHqQ6DS27Fh3fS7XhQ5qcoJstv2wrrTiKk6kmCQiLjvXbWXfM+8+fODx/Qf+7JffMMVEjHI+a60xh8Yvv3rg//yvC//w83u5tL19pv/jD3jnLD07HsFNuRZNpUuHVoUc12rhgZVu4NG2buz7RkyJaQoEyywQ5STSHVz3ndIdl1x4+7zy737/B+7PZ7588cCvvv6a7776kvt55tVp4YsvXvPi5Svc5cJ6uYgacZJl7uX5WRQ1HOvlwmn2B20We8w8Q8w90NjbId87Ck1Dib1yGLNnzkZIh388Q3qrAqPZcwsSvsotRkV99J69ZNZ9hy5r72mSLbXyGAq1d6XEWyWnCZjONiHgzSgSH7dHlVp3gk9qRoI3W9B2kPhD8MSDJvr5Nhm5cQi6nXe4Vmll4/H5UbqiedYe6gbd0uPTrAbAiungIwRHsQKzEiykzQCEatarPcj8pLXBEtGEoY+CT3t6LTs1B/ByD3S9ipbtnO3l1jXaVF9WAKIqT1Ow57LYBLSNUZs137r3CswzYxkrNgcVZxSxhtihNlR76CEwph9fgxs2xvb8dhgp8xjdyTkOMXvwOvN8iJRajgZHBTTHDAQ4nn39u5l3+C5QoXg1Y1Xg754ze96tqLer3+VoNFydBi0/eM8XL8/cTYF3O0zTTG/NnoOg4YwfGhWbAnUJmFNUVtXbx83cnPT+gveWYI1dM46f5bw39yib0HRvWWeY5oTRrenPWucw4qDjxtKj47xAJPoQZhv1qVVzkuKY8kTnzbCkH66r9DFBhynZBGnYUmHNpN2DkVESnECNWquAE7Dpv2rd0oeI2yZPwRttV9qbeIAqAku6Q9lo7qaX/ZTXJzcZT0/vLaEYTvWFsjKchxhJy6wxcW02XvJ4HyWIyrvoPL1zdzex7ZpNTSlSamfPjWU5MZ+SkHDFWmqTJ3Bds33OQO3qrlIcDyQMPqGoVpWWMzEFfvPXf40Lnv/w3/3feP+P/5G+PpOi5zxH1r2YsEbNkXOe0juNxPzqV/z5f/m/5otf/Jrf/u4f2LsEqc11U/c7HRzBy+WpNTnWWEBP9w7SpOAa7wit4fIqDmwXJ8+jQqtjkwfUfZfgyGi06XtW44Fn7RnvEgmYvQLsOo6tiUKTWyP0TDIOsJaFdfSlQa3Q5HNcuxorj5NY3yxT1TmhPIxczEHC7DzbzTva2QO37huPl2da70wp2uTE2+KVU9JsKGxvlXXTczDNkzI9QmDbN54vz1y3lRQip3kieM9l1cjUgbnbeK6XlXc//0QK8O033/Dq5WsbczpqC8SYuFrwX0yRZUqUUlW82fuIQYK0UqqSvas1lr3RUcAQMUCRq0vNciPBO6FkVePvECZSckqmzheCb5zOd0zziTidCDGRa6FdOylL+D6lIJ2SljQqpBvL+cRyWpiCP/IemvMEp/FwMAyJA6n5vMP4Qgyc3Eyuhd3GsCmazgLNlsX9HRI3baZt5Ff4fiA4baCzvWutmI11sEyMZuLo6rRZT9j82g6e0L0mkt74qnRwlVph3asQ4KiAzd46uWW2XHCuGFqmt4wbh/Sg1Wgdeqe1OsTqwX5OKaJHbSZujEl72hRFuUghsUyzoe7myGZ5Kpqs9uNQjEENl7dCVDQfG2sb5xw0bX6+XDRNRIYY/uGOVy/uOd89qIjGUVum1cLLFyfulsTz405rkebBdUfpQnhz78omArCmT+dDsQPNDlVnyeTov2OFmX4/tA4yFAkxihYRBOdsObOXQumNy77yu3c/E/5GjoEvz3e8vL/nixcPLK7z4nTm66/f8PBwR91k/uFj4vn5mbyvvH4djvBQnZq6X9H0NaMIGxa0x/u0Bs55axrs74qB6ax+1zM5aHLN6DG4W9GCuQ/5EajXRSn13nHyMzFESs167rxlQIQgFyA3kpYNYXVeZ5IVPMKTPNUavpFRMChzuVadSz3g4q2A+lxf7z98YJkVxhjM6amWisdxtyhktdn1tnacXtX0D8c4wJDjihzgrJFATUltWXtxE2qrM80k/zbtCF6pA67J2UdfszMyMmRAkUiTMS4YjWeT06IV4DJM8crnKBtb3g1E0UmRbGK7Z1nxpxRIMTFSpJ0O5cNKd6RgD13EaCqO0QLD4tWmbbYPyz1xTEO81SGdaO6bcsgCnIIyhwGCM6dAjzf94ED8x2Xuo+fAeTldtZ5xBjLsJePy0MYkptYtt6xZiJ70ayEEvnjh+MXrM+9/fwHice1GI6ZzQ5/L2YQFh7EqHB+ed4LzLJPcUKnFACxNZIJNZ0Zj47w0ZYodUA1F78e9uWkbDNDFmC+2ZnX9NQkYd0A25PbsOA++HfpECfFHAyjK1riBwShLpRaSUcDaoG8dTd/4WhhJ7A7JEnItaspGtohR0pRLYkCG96bVNbE3tn/ZXlhbVzyESRs+5fXJTUZtEq2meSZNp2OUEuhCEsza0TmhWc570pRkxbc1XICQJlLC/M8TZd84A8uyEOegQj1NnM5nOo59yzw9P7NdVrksRQlyY0pKvC060K7rzrY/UmrhNE3c3Z2J08R3//yvePjyG376h//Eb/9f/w8+/P4/MvMERr3a9kqvDecnwv0bvv6z/5Lf/Iv/ml/8+s/Bw/vnd/zw9J5WCy1qO+rOKZW7d0KtxKbE2ravuFphivQYKChxPNVKqFnOOWGiDYV/1YMx9Uoo4jNea6O4QmwV17PpNyRKUsfdCKhrPagaOOZ5Fhe6FNIp3TrQceOaNtecd6XH9kbyQbQRH8xdQXx20U8q2yYOtPOOiCeFyBiR1lq5rCvXbWOKXuh/jNRSJNTOGicqiEr6iHXbqA0W75lS0GjW0m7BkWKSyLU2tl0BfMkH5hRo+8a7n3/k8d3P/OIXX3C6uwMbe8c54YMKsv3xmW3fWPNOaSeGNZvrFWf+uiUX1nXlsu201g0ptsXaZV4wpcA8TaQ4ibqCO4wJOiZW9XCaO54TeUq8ePkFIS2II3uj34EjxECIahq8/ZwhYk5JZggOZxuhN66xqplgI0oVwWPj+nxfU4gQ4dQTdTah2zgAe7NpBHSSbZyNvRaC67imdRtiVPq3FXHeAIDgxPENJbDlQrFNvlrjUves9HkgpshsjZvZf+MdTDEwT2Zs0CsuWpBfDLQyUMKmg5Z2HKC6RzJ8cL0RfSD6YIn2NwS9HQVKYJqcqB2DGhYjp2Uhxcl0Fl5Cy67QvXXbDvQohHhDUungOiVnquOwXmytCSX0CvcKQZMRmqhjZU54B7lmHp93Rqps8I75dMfD3Ynfv5etdPfao2K4WUX22nDB9ADOa78y/UxzImL1Xo58IN3rGxVDf2DWriGIcuhG4eQJ0RNj4ny6E0BQKlvJrDnzeF35D3/4UQ5WeSWlyN0y87DM3E0Tv/jqDa/uzpxTIIXCi7s7oxsBhnQ6azA+upPoibEJhtdBrcPVLK/RgTuCq1w/nB0P1G80K86oVs4+H+bcE5znflnIoVC7nKdUDHVO82TPtAW4lUoKI9dgBJs5ohf8MCyVe2901yl2/6JPtwLIYQ5LCpnzzpv7zmf6ctqP96cnWof70ywti+VFDftRkYGE6jovq9k973S6OW9JEFxap5aRd6PrWKuKuWpAhbNp/scBZoM+Mpq5Ws1ZzUw8sMlorpWYKkPkW2uGJuG+80GukF3n6nW94j06b510PHutB5I8T8k0sNIwCOfQfR7i3PH8OlePvbWb9sMzhMQdN/oB0ETUnqVomTZtGOI4dxOZoxphWI47723r1mxGoJAFTFphOn4/gvhG4rh0K51tX2mtylnRG0V0mpRZ1IeVrRwip5T45Vcv+PsfnthMlP9HR6KtVbk7Ho/LkXv18+OV63Xj4Tyx+MjuB1VTbUPwztgOtpadmljaCLcb1KZ67P0d1WRDE003UXQfwXfuaEwG8KA3ZtOw5uzn2HPUh77FmkCMCukCzanRKcN8wDlNVUs1t0PbO83St5re2XuHb47d6PL9I1tjZyL7oTWaYjouXHBmdYykDtX0PB8bkPyp1yfvNG+++oaUZrNUFMUmBI3neyvkPdNo4iZGiTBdUCJpXq+8+8OPlO5489UvZJnqId2dNCY3qMuHxLIEWg202kzQYgd26JxPMyFEuVZV6DYSo3dSkvC21Mq6bszTxMPDC168fMOv/vwv+bN/+dd8//d/x+///b/jw08/8PaHP9B//oBbXvLqV3/FP/vr/4pvvv2OhxcvSSmx5cKLVy/5+ekD1EIFcgykcFIaaxPS6WvBbVeCIau5VY1EnUL0WqtEo3sobC9Qze8l9cZCJ7dCc4EeI6F15l4JRvcYY/YwukYHrWZclc5g3zPeLcwpsqRoI03zybd0m7qtXNeV3Co+WPAOHMUO6RYH3mrjcn1mXVdqrYbIOlkkJhXKuWRrBApTmEzwKteTy1XWdqflRIoSB13Xncu6H4e4Q8iB8+J8ptSYp5leYd021m1lhNX11nh6/MDPP/2A946vv/yCKUVRVBpAwzcnPUXeRUsJCVB+QS6wl52lycmpmRuMw0KMQiSlycaaWozzFFim6TiIc6lKLPcPbDmL7tMajkSaI3GyrIwxMrVCwL7lQXdwlpOiYk4OGsHG8A4b0bfRF0oPoKCpWzEZoufuUxftP8GXULlm1MOhWZKioVXRn1QKNkqDdRflJkyTpojNPMjRRjwO+RA9rjVCuyHQZTVainG4aZ3uJNYvdQc7RIkjUEk/d04Bx8RlU2gklkotRyFHJx7GEa2L9jUCsYITbW8IFUcCr9BmocnedyY0Sq9donFaZvJNwZoxMlJ65QQHIKQRJBCdzUDjY9tbJc/bNDPchH3yztc+UhvQJaSUi1vj+7c/spXKMsWD+uCd46tX9/zd79+Z8DUg11NLwnY2Y6tq8ryXRWj3nmq2y6MmDz4o6M5r7cdxbrhhvBEPzrYPTcYQs7RV85SY0sQ0RXpvxD2T98y6XZVUXgveCxz4cFn5bdEkhn/9r/kX377kf/e/+V/w9ZcvOC0Ca5zT+dXpNtQaFNhbqRKcEFmhyVbco2nYH9Fk3K2RGKieQL9w8LebnQta492E5noWzstEad0sZk2z5UVTCD5QWuf94zPed+7PJ7yPDOefUfyNxufjojgFj1+050zB+Or2d6slIuec+VxfOWees2gvb169YpkS9GB6gFtlGWPC+aQJfm1spg+qtdnkPBFCZC+V3SaFCrwLopl0zSW9g2gMghR09vdeabYHqSjXs1XbHyP4pTfavtP33SjZ1RyRtM5KFQWuN4XPOh94uDsZVWtMAbtRPm1fa5jphEAYZXpwTFSb/ZzWh82qO4pmuT0mNdV2xuTaaNWonq4RQwYfD5AneDVtdEdwXW5wcRIdM4WjgJZMpB9CeW/W5H387zAbUFOUApwXNQN7MTdKH5mmKCoUUHKhNqdCH7m4ffXyzKtT5PvHQu+e7sK45far2CAm1yb6RPSV4D2Pl8L7xytfvjpLSO8HNdcdZh/0sY5tstCdKK/O2fc0Ebf3dJuMa42BFvrYT+zvfERXa6YR7tZIgAn4h8OnV25KLnq/0WsKAeYsiMdVR26NUvNHbBSn63ScM3YeBc9ueWzBy1in1GIaQHMk9Em1Zt3Ytl0ubVG5OyOYcI6JFARWHRQ3f9sz/6den9xkTPOCc4E4zbgo9LuWTK/dkoll9xlsTN1Raia1yIfeBT58eAT3Ey8f7vSghkAMST7oScnGEqBUE4TDFBPLNBEnPXzjOZ3PJ3FOLeiF3iRCLgWH47QszKczPibwjtPdzBdff8Vv/vpf8fj+A3/7b/+Wv/1//vcsywNff/dr3rz5khgmrs8rexQfO/kZ12DfVvoUzTrPEM6Ggr9aJRDUdKCFWprG077fOngHso31gzDTSLUQWqY4FBLoPd5E8NE7mjNHGOHjQgrpYxKvSZIHV4vq2ikRYsSPpsG4k7UWQvL4LL3CPCUhcLWIL+qH4wE29hcyRhubklxZQojSPzAeYqfvY848ORdzi9DGG7z0Fdu+G3IvCsDwKt+zQv4kTkVi1HVDCcwq0p4f3/OHf/wHnh7f8+rVS169enl8D1DhN6VEabrvS0rcnTXJqk35FJfLM5frSs6ybqw1awwbHZ5Gr1mFASp48r4r5yQkau+s205rmdOc+OLNa9zykuv7t5TtWc3jCJY0n3U5OATWXUmvrTU1qNEyHlzXJKfpOvberOky62NDVmLyZEPiW5Obisvw5lMX7T/BV81Z1A/GGL0dBVl3zjIrRsZEJ8RAmmSb7E2n4VwwZzM1i5r4qJlzPhCAaDtbrR3vhXLSFVEmsXanIMG1inTQAREsh0LFYvDuRo/4yBGl1awGnE4revYLhbtF04IpxqPeGVkIfbxPHN5pXyhVRYeLk9Z87zQLsax28O5FLlBqIDynaeJsAajDTY0ONW/WLKnhwEGzRGSN2uWW0/H44Ene09FazQbcOJuEnE8zv/rmFf/d3/6Oy95ooZlbYDg4xSMYUoCQRMndaG4avUv8WXphOLQ4h/16M1aQu4mDBrUr9bv1zhxEnwpGMdL0eedyXdn3TTQrCy4bjjmt61COwF9+95q/+PUblnkS775KNHvQROzHHlUh4w9G4rw3n/+hDcKakxEoCyb/x2G6DWHhCOSw4qqLYuYR+leNLtuatInSgA33n5tAtvfOPJlmyK6VRJwW0vVRYTNNCV+9QJDe8KUyRTnd6ewxKp/Xvfmc3aVSFAJ7d3/H3emkM9nwxtaq9oDgj98PGkoIkXmaZaNsBfleCpdt12TArom3+yxqnDOKm9EgncdFh3dJLmpwy9po/WhWSlWz23q9ASF0vfco4xw6JCvKGc+X094z9sDd0OMUncTK3qYJDNMJ0X0NQGckitcirSEG1gXvTaei5zuXyp6z9q0mwwnnh2NUYJpma1wrtVdy0RllbB4Z/6TIlIKGl6Ydd/4G8gCGntm/OrNOdaKyLkvk5ctXTFOkWIhxNY3k5DVR7nWl90Jp2kcCME+B13eR371dRXMahbz9uHFvx6vbmo8hsuaNnz5c+HV+MHpqh2af23VAOobQw9GYuVHIo2mTMJRb4KaWoE10gGEhqwZvNBr2bHIDNoYGbNRGY30Hr1w2PTtGl+RGBfPe4buE57XL9jeYKxro2ZFxVjMDFWXCdRw9CPAopYIPcrLcNum1oj7zEIqLAihNqjfjiTlpyr7vu2mY/vTr08P4SsWhrjfEiKeaqEwuTNMUxT30nlYUHlRKVQJ2a5zOJ3WLNbNtmWkKkAvXemVeFpbTwr7Lh3qEqUxTIs2zRlWtI4lAPTilwcZoo4NNk4rrWsUlDMHjkjYAHwLTPAuNjIn/4n95Ii1nfvhPf6DuK++//z3r/Wt8OBGCAmwo6hz3PZODg+ro20qdJtJysrCajjfNQ8O6+FptJCgb2m4PgzfRccMx9cbsGpFG9kGp4r0dCEmjyywKG2P1iei0wXZ0zYv5SU8mGpU2InJwTq3JiCmS941cCqVlppg4zbPlfQwXiC7HvFYZ/sujS5+mRIoTtSszY9uzBbpE7k4nQojk2g/e+HlaWJKak3XP5FLAdeZpZllOOOdZt43L5SIL2KRpiGhVK60WphBp+5V3P/6Bp6d3xGni17/6Bd9++wst1FaNs6wFvD+tGqn6RHcK9ZlSxDk5TT09P7PvV9l1RqHFPsipQs5njZFyuW6F1j33yVwZ9g6tkVJkOS34KTG/vKPmKM/wWo0z7Siu0mvBuc4yeUrtbFtmb5l9N0TCe+ZpJkY1zSVrdJ5ms6CkjSpcvF9ndA0fD+eiz/XVelGBaZzQwSUuw7/eDWvGUVhZ1kkt+IEn9GLBTju0LLOD+WRjbjXq0XtSTMxTNZ6rtBmyVsYmTMP9aRQjgZAWiYQtg0CF47gPmhDWVulVI+7aGj3dRtgg1OfQrNnact28x7H0124OVyEZPUzOIFsutCZOdjMRXi5V07cQ8N0fCF8rlo+gEZoVSVZAG3e4wcEr33K29SIb0xg8rjSmJDpftUJnPHO/+PILXt8vPP3weFhNtyahtusWbOigews8axb85JQfUIBWOuMDOh/URDL+yFDAklnmhZQmcIOGIjrhcloIzrNtO5fnR677pjTgacIjK/FmwurWBie98+pu5l/+xbc83J3Gya/nj5vgeywl8bFNJGnvKTjZU/ruaAjZPpLcbTLZ0D40DC2cQ4Xa8XvRVLqTXXLtlWRT32ACYFF+bxMJb0XGMBg5zdPBlR7BZt37o4hzVsF6B5PX3pbr0B1obwy2z1Wj0/yRleZn+Hr9IPDQxxm6XJ6ypYC7rmdcTgje7FQVRLdEmP2CQuRu93NKSZS1JrvxGMIBgLQ2xNC3AhIAH9Tkg00TzZXImurWuiyysWcfaN4pXdvMQaAfWkbs+dpK5bpvBuZBaUKot9yJQW57so01/U8fNC9R5w57Ze+IzgFquFJMJMsNK6XyfF0ppeKDY5lUa/WuCdoyJQXlOq3pNe/sOWvNHPuMFd6m+RrFvf94wtb7rYs/GnRn4vvOMkUe7u6Zk+Nybew52z4qUHJKJxqwm5lLqwbAObg/T9SyHXvKmDp0/DE9OO6ZrSXvYWudn95f2XblHgWb8tyCELuBuZYPYWe7w/RbKfJxGvewk3XjZ9rHbq3RPzJXUD1lpr4fdUBOP1T/vTWjXZkWpAtUA2vs7BO1pjMEb2BBvzmHlVJsWqJJu/Yxz1CQOLqm5TYb8s7dhOqMqFJ/WNl63EED1GMfSE7Nav3P3WS03thzJW9PR5pxadU6WHVcr998RUqB56cnyi6RUl6vbPtKnCbuzmcFqNGQZXUDJ6/152eFQ9VazYpUo7ZmTjGyzMqc7k40HPmy0lphPp1MxNapWR+6Wepuq5VQixqP5ozKIkHk3f3CX/2rv2JaFv7w99/TW8a1FT/PpEWd+FQdX755ye9+/pG9VFYTInG9EtNEq5WMFbx0FZrBEx242ghlwze5T5UmalX0kR4CiU7A0Xxgq5DdGO1BGKgcGouWUmil4NpELY3mOUaPtWSIkTlF5qjkdVVFUQ1EzdS86zDrJlCsGT/d24LR/e0d+pa5Xi48Pj4CsMwTy5SYJ9FNctl5ujzx4fmR2ioPpzPLLG/xy3rheb3S6UTnOE1JmQ9lOK3owMQ5nteVp+cL277xcHen5wlPbtUOSG1Ej29/4u1P34MLvHxxxzdfvv4jtx3vlY65Xp7VBPvAcj7j08R1vfJ0uUgkXLX51r4T48yUZlt4ginUlMhXmg4hTLTuWNddTVevtnF5Wq64+kEToOnElp/E94xyLSqtsW6ZmjeWWbSP2uRCdQTtOc88TSynhdob2zXYxKdYUJGFMZkYSxa23jb9T12x/zRfHawY7wdHt7UqXnTDnFoqey3EEIhBWqTWyoHK1VqMj2zUEDdYo94O9GaamYTzzmxo81FoQjfUSl/jYmByiWmaOM3yUHcYra2rCLjRaRy9efGukZ4BKr0negzEFOUIkjMhJoI5vXkcEVEGmrlr9e6FEuaN2gqtSpyXLShPDia3IDfnPTVIUJ6dM8oXBzJPd0ZBDAeSVqrEf7VLTNlLESI1JZZBO+zdaIAF87Wj0nlxf+JXX73kH396EsreKqXKDtfHcLOKtOmRM52Zct70nqqBL4eeoQuB7fZ5FGom8GmaZ0JKpBhJ3ksb02CvG+t2ZS8b3qO0akPq1LCqCVPQonRPv3xzz5999w2neabbxLtak1R7w3V3FHoY2igamTzyxe0X3UxielleQmBkWLSmLJtq2qvWbK+xZ2ykUscojve6bax7Pmh3AwFtXZxvcAdiaJf2QGWl67ilweOdFXv9QKdd1wQ8humgRbXebM7irNAym/Y/Gt98Xi+HwoFdLrggmtSgNY4wslw2K/rk+OWJhJiUbWFUt4ZsV6eYOPV2K6QMce9VzULp2NROInrvtZ58lavjkVkABKdGEsuyyVVU3oaoimUrTG00moGE8jhGUahjybNnu2txIswztMZedrY925l9o0GpZh+olBgEKUCKMuSJQbSZUlRHrXumFLkyLZNYCt5ow8s0E52KVuUIDQ2ZNcBO1JzenenKksIP827NA6KRtYa5ANl1dQzNZ7N/eitQV6bTHW2eDSCWrvPdu7fE+ExuCufT9E0AborRnCg7e9kJSWCjqMXW6B/7zWjG3TH1ePuc2Qu8CNG0b8FcClUfKrSwHyLvQUfVFFb7b+vBvrczwKyaaN5WlnM0A8vG3zs0KtZ7edt7HOGwUT+CXcfElwDeAOhjBei+AJbtI/H8cKYKVivQu4EmHPpFGM1hFJhtky+BpGPkpH0lBQg+kg2gaGCOhrJIj/3TgIpPbjLGN5/mCYcSMFtvdOdlLek8vTW2tfL09EwtO7kWnp+euF5Xznfn48A7n+84vXxJiongO90Fti3jXBO32ntybmzrFR9W0jRbF1wUxOZk7dlLocYiN4mu5OViOoi8K5MhhMByd6Y7uQ2VPbPvm4W8OX7xy29wON7+7keuP/3I+SGTlq/xKRHnyKtXX/Dh+ULOz+wu0PeNkCZqyexOU5uWNyF8MeEmPwbZStXdN7oHwkSpnR4kGPJN1o65dzJBNma94fIONI3ISrHCG/a8yZnLeHrZUMpk3bHG93KWGIJG6ZW6NW9F1IOkws3pybvd4NLJpt3oXe4o8zRxd1qEuJfCtl55ujxx2a7HAgneUe0hLzZdSOZekEvjsu3k1jjPkxCi1ti2nXXLjMR18dqLhP90lnmmrBsf3v6BWivTfM/L+xMv78/mN68ma70805rs6V69fIUsTx3X5yfK6L6tiI3B4Z0OmuY82WhaYUpGYxEigoPYmiWdioe7nO8NZbewpZToTRkB27YRoyxUe4cYVRz56Agp4kKy+ynzgzQKK3S/Qoqc78/HaDpluZqsa2Zdd+NDRjT9d0fGw2f7MqXhllVET1HIU9RerbT4IipUrZUWvblhGJLT5SIVfSelSfkhTjSzOgK5FDtLus306F3NubOgLu+G9kWo0EhevzstQtvNqcUhBErAqArs3m7GCj6rae/Ns3fHZStcrqvyPZKoPilowjg810UvrAd3OtdsPGblV+RSqaVRm4WC2Sh9HHa1ZkrXXufgpsnA4bvG4t6LdlHq+Ay6jjlnvO+cJjmw9S7b2FD1nIn2mDWV7Y0vX9+TAhT7vR+NUquMBOFugkEJ2D01dNEE7dByPuCGFaNzdr9EP0kx4c3jPZeMT8k83mHPK7nsVmx7UpoO5K4NeoQThaGYba7rnSl6/upXX/H6xQMpRPCd6q3IojCyERwfo67NqCDdEoRVFIXB6moqWP1oZ52Q6UYUvcZh1r3aO0uthxNQRMntKXau2yrahyWzB8wtDXe4FQ1+fwie4ZDz8Xt1TmDGbbLSj/cUuj/QZEZab4XBi/fHgvh80Yq9iaKnhGNRJOdlplXRuEcD5d1wYRM1mKI93JmDmcIuDWwarWET8DEoJ951IgIpr7uAjsknTcxox1l3iMGT9upYO37kUlFp5t5WLMwvBG92oDB77SfqTTRZoE9ywByhuuauJB2ITXitufDWPLbWCK5bthAsRo9y7qO/57w1vWqWfXBMaWKeZtVjQcVzLjv7vnPd98OIJASBF86mwLRbjsWgK92GhprgjQnHsJJlDDZa5/m683jdidNMrZ0pROIyk0Lkuq5s+8Z1zwznJcD2BWx655T9VRvV1YOC2VuzZ9+oYs5TvSdENSOP10wunRQn/R2sMQFzkQva521/HXRuTXkFNFjFfXzuQ2dhPYVHDb+x3TmUOm40hva1XnXfmEG74BnuqgOIU2N2M4wZU9MRKuy9p+bMumVSjJyXScHCubKuV7FFpslYP96YAso9a07GPKPmG3tgbQXfNNXwztzTapNpSPQyXvnPLfw+LSfupwTesz5fCXvH+ZmOI29ZNrSL+I5piuS8Er1nPi24EHi4e2BeJFY8LYvCQ5CFbT8eUkPV1k3i7tYJrquQr0o9dq2R0qzkSyfHCMeGtaLKRyidrclKrNVysGa3VQnPtVZKyeIeLwu/+ctfk5aZ3/7tP/Dzj295fLriY+B0eiBNC6d04nJ54rlt3NWMC542TzCbg5E5Nrne8UoVoxq/VonByEY2TeJgW8NGL6q5fDKEsxB6EUplB0+nE03EWWniN7dGiEI4GR2+dfm9ZDCudtvli79uqxqA6VbsHLvveLUqDqfznE5ngte1Eee5UfaNx+cnHq/P1FpJKZLisMizzrp35pQ4zQveB3mHVyWjz1GN6JioQP/ooQ+s5UqpRc4GHS6XD2zrM2nSs/LNl684LYtGkbmy7xv7noXQBVHn8rqz71njVkvG7U7F/hy8ZbTIdWNZEimqmGm14oNnSo4QPbsL7D3jvGOaRPvCkM5WC89PmZzVJDo6ea/ka6Z3xzyLztZKFt3j7kyvFk5WB9dbh9W+C71KKREnOXT51mi+c6lXni/PeO8oc+JuWeRQ9Yliq3+yr15JTtxQ55Vaj00YN9PptG6cfdcPq87J6G1DADlsB4O/uYOVfJWgeZoJPtKjO9DyGLxEayA3D2s+5SSWLOdHxbFvolvq0DEEL0iU3p0zTq6hUzFSivJ3UpDGorSO9/0QdLZaKEXuSTGY8K5YCjiYbqtZyi2MwBBNDxDKaOGh4vDqMPNWsAcf7JA0jn6X+06pMiSI3rPtQvmnIG7yljOtZlp3/Px4MR3GZIJAkYpS8Hz31Ste3k388LjjfMVFbBphtCNrfsUrN24zogSWatQc52leCFseqKvTweucI6UZUJFf9o3sPd0rfft8PuvvNlEQnLs1F3R0Lfdsk1394Rf3M7/59guJdDE+vhWRvgkU8eNz2uTnNuUaTZBxk8PglxviZ0YNYIGiUcVeqcWyhALeB7MoLuA8S5LtLjj2slNztkIL2kcFWvA3b/oQpAH07oZ+OkMpq+/0KscuZbQ0o7jpuWyGino/SB96y7VbbfRHk7nP75WHBXlvuFxkQBMG5U33Knh3gFjOBbzX2dacCbfhmKppoG3EmkF/swmdIm2cuS4pBykZk2MUpkocNzGwiX5D8ExWwD1frrIlj2nU2EYDytYoNmsoOZysQgxsVVojx2Ygi8dZSJxqAtlhexoxOFJINwo55khkGolmDIMUtd+VJhdJ3ytzFMjivIpnTRpEPcIsOnTeC5ToWLgk8pbx/qbBGNO3gcNje1LHQKM2cjs6T2vhh7dPdC/d0BQ9i3NM081g6Lruh2mF681Mbcza3hultBbt3+afNSYY0vfZfuEF0EkrWXle88HIGeCdrP2hddEwg1Gg1Gjoe9UmZ7oxRbSnw8Tb3hoNUfV8B9rQaJk43NZlNbcqUYEM1HDcgmGtRnIqJ48pG4x9Xt9nTDnnOGli3QQqO/t+IUT9ex+AWh8SPjVDzpOisxpSP6OD0Qk3gXYfmVu0WqnNU0M7sk3+1OvT6VK1Ec2su+aVmgun+wdOd2cT3emhq1WuQ70WlmVhmSdyadw9vOT+xQt676yXK7nc/H1D0E30k9GeaqcRWGyx5KwgNfH57UI7R5oXWnf4YFoIs7/M+8a6rpQqzUJdtwPpd86zzGdy0BI43z/gfeCfnU68/uIVf/tv/z0//fYHlmmhhpnpdOb+xT1rufL49DM9b5xx+OlM8hOtSX8CnZA0HehW7Peaca0J8aobLQR6mOU8ZQhqnBKhB0KTF3fEJhKtU100KoIoAM4N16FMNLTWBVnNNeOhe9SBi6uauVwuRlmAvkusGuZl2FvcXtaslFKYpsR5WZiSrMx6LlzWjXXfyWXH4zilSPLKOnm8XpU43uWOM88zDdjyRmuZKcYjC6EZAhtcZ5knphTprXK9Xsh7JgVPr43L43vmeWGvnSl2vnzzAqiUrCVbSjmCz/ZScDmz7zs5F2IMnE+L0UCKDvAuDrr3suGMaThQVZoXmhGihJYpnIhRU6ohUg/OkZZZbj2XC46Cj545iSYVSztSmzue0jzPl2ceLxcW03IE0BjVGl01SZ0YM3HXaH7fdxW728qUPL0VAro3vkqk+zm/atnNjlr6CRUL1YoszxSVdD6cTQCSj1Z0eWJwOCLOhNNiMVjetgMokiIxrHDBo0lW7wHvFzDEnZoFdrTOVgqX65XLmmVu0Y3fbeifDuxgI3cTcg80H+VzdK8GRtaUyo6YvIR647CvTULNejTnpuFCh8UUg/YJMMG200TEe4Mc5Mgm5xkV1lrG3YKUGnSluiYTTQ9xcvSOZUpspfK86Zrk0rlcC4r8UYBYsMRi5zxffnHPL796yY+Pf7BDponrbfsR5rrSupC8DoP+q6bQABbfNHFg0DoIQiGTvs8yL+DlzlNrJXqt4Rjtz5qcvkqzRFofNG0sxdBnVFjQ+bMvX/Drr19bI6mCUdRcCd4bJpS0/cgP6mSHkUMz7CN1f2XG0RDyOArDEah1uNiYcLL3zhwj7uwOm8mBJCcrfIbzC71b/ommKyEMl7KPCjbn8d0ZKONsqoJCKVsl192YBh81DvbvKqbF8w6m52ltcLg/z9f9aRJ1ewBW/eb374OKu2j2sHL38grixFD11s316KaxAW8TOgMK6uDof6wPu2XOOJBWtHc9g3WXNmyaiWkhdAfInTGay6J3neY9tWSbeEGmsOYd+ljbiWmacXhmmzTSjeISI855UcUMWe+9SzOaG+k8c5oiybQiMJaiogYEzgj88DS6D3gnRLoWFb3VJi17yWxWrE4pcHdaWGZFFzRr3Gre+fC8aRrpNtVgPZq2JVit348GxLCFo5i9rIV3j1devXrAOcd+3Xi6ah8ZGTB4T0QNU62agOSaFVxr1CYtf8cYpQgj0XpuplNx9p6C91y3nZ/ePR37jHPSLXlzkxxT19t6EgjmndMeX7VvV9tb/FirR0LKzblOtb6dFyg/qFlx3w4d70dmGfQb7ardABWZYbQbGG9/PixvvXfcL7OxSqS/c17MiuFWtxVNNuZJz2k/3uMwkTBdWrEQ1a48uylNeKQHwhqL3jvb0Df+idcnNxn7vkvAZmOZZiPqVhc9+LWQ953np2dyKSynO1JKVjgI+tqvGyGZY0jUonbm+lJLJpkGqhk3W17wntZUEIZpotpYvPVmVqV6qlzwlJp5//4DrahLFXolFN4xHnxHinB3d4dPC2k601uhtcxXX3/JvMz8Gxd4+vkDuVxpFxU7X7x6RZpmHt9+z7rt+MuFbqhqqwq5i70TcjbBjDkCFXnXd2eHbOiAHI5Ch1YanUKgQSuEVkk+0CxvZHB2W7Gb3x3JBfCR7DqtBvyUDr90DM0qZefpcjlGasNhJoZAsIkUYwrZGr0WQnB4b1hA7wdPWEidvLpTiCTQlCMELjlzMVvAk4Xgtd7Y18zlcqWUyv35nnnSvdr2Qsni0kd7P9W+d0DuU5dtpdWNaTnx+PNbfvPNl7x88eI4OLodFicvJ6JcKtm4qjGqGNu27YYGoOcp+khMwUbCcF0vPD5+YN9XvPPc35159fIly+nM3f29hGZ6wqh5pz094kMkWEKxcxYkhyckOQwph8FxWiZO54l1XdmuV1EZ4hit96OAaB22vUhMX2Sb6IPj4f4e7z37tg4YF+ca1M/XehJE+wt+kQtJa0wxULryS0DuN653K2SFSnknPryEfaBn0tINDpRXyGVDaHjvukdt2A07IfOTFajeeYgq20uXULY35Rb0kHAu0vJGr5tobd4dokvpZMKxn0iQKMvtGByle0pRSnvzELv5K7Rxz2/uIzmLJijr5WAHdrBnxB3iak0Mbck6jfMxxzFZdBZqqXbg6P354A0FbMxTMmebwDR57pryGZxr3N/LHCGXQkGIbYwCS+YU+GfffcHf/KcfuJRKi0LzetUBmVywqZImBIMH3B1HpkaxKWeMnrI7uzdyb5KWouD8QjPENeCIKRGiCvKSixoxJ0tWnMw99iyA5xDm9kaK8Je//IKXL+74GNXvtZrA0rQWXYe+swnAoKSN7zMsrcez1b0z8f5AHLGmpFuxczMsAO1D3uglI1UXhBiHEK2B1tdFBz07K3CFhge6TemCaTA4nHuCc0axGnSgKAMCm7IMx5ox2el9FHY3utUxuPkMX7IVrfieJUq156vaVNj7wBQi3Wvq0VvBO2UzGXdZjfHhUjdcKju+Sy/V7PmoRc/ZoDf5jtlo6/qXUqBXoudA7kdT6+hMKXA+zeQii2HlZBio4K15cZ5B/4kxMaVIsr1umF8MM4ROJ9n0sLYKrtOqzANijExxklOU83pmOgbmmhlAH/ED0krWLhF8zdfDOn3YIRcr0IOTU14tmeqKFaUCQdqgpzmsEB927UaRwug85gJ6OK6hXvmyZjXAIdqUs7HvYiQEA2jkaKfQztKsZjIK1XBhG9qCWis9dFGB2tCtcJvsxMC6Ov7w9sK6rpyWSUX8oMAeIIg9a6bL6g5z/9SUNuBpWD6c46DW2WU4HBT1PUS3xfVDa/k/5lrX7G7X3seNY0w1xr4yGoNue9ugUNYq4Cr6YEyiYuCd/exjL+iU1oh2JirHZLwvs+mNqre3vLOXhvNiEkQ/GjpRM/0nMi4/ucnYtkwucgCQcGhjzxKqBgv+GUFn2TqhUqrZpgVKXtmzxH0xRsq6awP3HlxUEq1tGME7CYpjJEyng+/bSqYU+aRH44OVkvFODj4/v/2ZDx/e8vLhnodXD2x747pemKZEKTveR1yIXLaNimNiohaJGrd9x7PxcJf49V9+y29D5e2PP/P02+9Zlpe8eP0Vr19+jWuex3e/4/r0gQospxMTQGvkPZPZWJySVT0NiuxlmWcD2xq+WLHovQWvNEKXYDA6IYoVJJ7q9vh1yNuGi43mHEuc5IwTOy1GoTD2gPpxqHtHtn1vjoZGTOmmxbAF1PbMdnlmeHg7K5icvd9SVAALxfTMUe1bqZnrehXP23lePNxzmme2fePpcmHddo3+vSOloGyNAx2RLSlAyUo290FPbbMp2E8/X3Bt59tffGVuBkXXwA5KCWobpzkQSDw9X82pqJnFqFBgjXMluC0U9q1zuTyxrZuQ5FbZa6PWneiBVnFBDiBKQnV0s0ylyG0imWh+33da98gAxjPPwaYs1TirsJVGIxNrJIZmaFK1gz4cxYPz0Eth31dolZSSEP8ut5/gB1/88311PHup+C5tVe2R3CBX5a/03iUq896KrkEjalC0GWOFX7RAIOduFBehPXZwG8rpXaf3Qqs6zGpp5NasSBOqoZG4UM66r8eUZQgnU3AHpWI4XjkvweTkG95lOwY8JcKWZV+8Z6GiKSrrxzuHCyoCXLdE4VIVPGf0QefdrdESZKpCsY8wNjWje94FPJgzlyZA4L20Sb5qmpOiXJL2Utl2TfqCNz2E70yTrum2b2bUYMU0nmWO/OoXX/DqfmF7L71YH4qs1tlbRlaycqgaKcG+GcpeTLQPQvlHEW6C2RCMkmINezA/e28otFDfQbNoh8lHKVkaiFbsuqjgeX2e+bNvXpkDj5PNYjOaZIfuhrixH8g2PmhKMfY/N9IvBjgqC0jtrR0X4tFcaKsdExxnE3Pdt0Ff6gg5d07XXMFn1b4HUKvWtRvF1yieGGUrImVIU6H3reuv51bASrMiTrSyW+M01gzGo/+cpxgAb3/+AdebuXBByUqPdt6Ra6aYZsL5QDUHRmySQXfsecUPTnmr+A57rYZmK/2b2rjmqvVbGsFom9FsZJ1D9811o0GOiZVNVZxE/AnP0jvOZQGjNEjBJmsgS2lnXPqZ+5Nc8kamxthr/ih7qculspSs8ysp0yK3ztP1ylSKmhUL7vMx2HpsVOSYVZtpr7rqtN3cQKtRpkUNkuC6R+XarNzW8tBjXS8X0z5qnWi9jNmPVtGxzv4HzW3t8P5JQGSMMyF0SlERHwfzoVoIXnR29klvoX3SH9MM4HBV6k0TRwaVs2rf8KGbfXDk56eNPVdOJ6Oim8h7vL1mxbzKzNGo+2O9pSnhqjItrINgDE01zeR2LmF7RG+Wa/E/5lpn1whP69Wcqfrx/TjWvd5j7dJk4N1BlTzS6cfvO8d+1rr0sw93C8PIxJueaejbvN0f7yBM0spVoxZ2e/5kr3szSfiU16dPMvJOaJ6SCzlvbNtGzpt49NNCTJNQAwc+JXVq0RDzEHCWarptWciA60SUrqmFAzHGo9iIxpGu3XFddy2m3rhcV2qp3J8Xcfec+I95lwD3fL4nTWfWbSPbdL51yKWx7avQKwfrmpmnjWlK9iDofzF0vvzigRR/yTfffcFv//3vePrQaDkzP0R+9etf8eHlHT/87u95+vBOD2OKpFbx5YIrnZIm/LQc9IpBq/AhkpsQl+BE1fFplktS7YTmCc3RWz2SuV3TdQoh0qts1+iN63ZlBAUdEfBNzVIIQVQKQ7VabZxPZ07nO9x5YdjLdQdsG/nyzIenR6GrtRGS3kOv+p7X65XL9WJieVEBphTZc2NdN7Y9s1holpNKSKPIFIhxYkqJVhvb1TIwokbI3ks/c11XctnwzpGzkNfa4P27t/zm21fcnRb29WIHgIpPWRZe8A7u7s6czwsduFx3eqlKIjakZt8Lz5dn8vrEq4cT8yzKzPm8sMwLvTuu60opyk14er5QuUgMfL4XSlCaphcx3hLbzcJty4V13XS/nDaewbtXTkYnxkoMhdMcmUNgmiIxJWpzh6vaXjKPj49ctyuzGSBM08xpTizzcmzUn/NrigHn0zGREiBlMD9DhAvDDvXmkNSM1gDYhkkPELrRkMY43vaTWqnIiAAvbrQyJ6oh1Sb293L2EBe7Guo2aBRqJELQ0SnakwnNceTSZBONrKe1U3uWQ7zs2HdrknKmVDugALnm62AqtUvn4RpQVCCiScjYHBvGzTWkNFehqM3oRTfUTG4pnY+sN5u+fzekPJdsuhdntBDHaVaa7t05kUvm8XLV+y+N4Bxf3J/4w/uNVnc11E5aBKWpa2+PyWwanYeB0tFve3TBEE7wJmRVo6Np5jLPTOeF4EaRPXK4m0miBp1KjXgtGedUeJdWCTT++Xev+Pbr1zYBFqJcqwqjEALeDtRaG52qAgyMBuLZa0XmAt1E95p6tY4oqwZuNW6I4iBEdG8HtZdWEJuY3ATwerY1MY6yh+yjab4hn0rvjrrnpvUDwaXd3zKCxr0daK4KLpt0URnsNE2/rORzzpy1Pt9GY7s+myGJpzlRdr3BqqU1XM/03fSYNn33Np0E6fnwSU2AF6BxTjJV6e2mGxiT7BD0PFcLAg0+HTqowXGPPto+VMnbRaYUaSY6p5rIB4Lz7NVsn9sIhRVFNx6GLMAo9MxNbGSk4E3s3TqyUe60FrUecmPdK2tbmVI4WALRTCdSlO5zBA5Ky6DGR+FqmVK76Qb9YTrgfJCpQdn09y3vZYh+x9oarlHjKT7yIzocrbIV7ipyNen76f2F9x8ugD8mn5rqqmFpVVlHwb5Z8A43Bab5Jmr/WOfR2jC+sb2PftQkAjUEbDxeMh8uGw/3J73JXunebKdtAnObBtrHaM2GTt70OZ4YKq2YO6Kt89tl0C7sXLAMJCvsbT/36HsFu1bOK2CxVWVUdOyzNVvXmJW9c0wx0XGiymGGJ047UTM6IIhmFQ/2B8fnGedYoxG6OdxhTlp2D+cQ6CGqEbKJi5qW23T9U16f3GSs+2YdZuDuNMsa0Lql7hxxORNxrM/vcFWHszqu4ekb2Kvnsusiza5zH8GRxfO38LbeuwkdVbBqcrFSjNN7uVxxTry62jqnZcE1CZGdP3O+f2mJsBejr+xKzHXOXDYKyTvmmDjP4cjWcD7iQsBRCKHR7+9IcWL9LrPv30N5plw659OXfPfrX/LizUv+7t/9DU+PH2h3Z84+MlFxpVBylmOKWdu21um5UqOJlK3nb90SF0OkmJYjVijem0KvSoRam1ZbgeIDxe1KGQ4JT6fkjVaXY/rQauWybVzXlYqEnikEfAzc4IQOpbFfnpRN0ppNGcTvcHRalsNEyTulZkrNpOA4zRPBJ0rR5CB4b7Zy4s73PQMSds8pkdJkh5pZvfnhFw37vsle1EmUtq0bj+/f8f33v8O1je++ecOUAhilqjtHzZmyZyGHKbDtKpqUCgz1cpUrTQcfPXte2bcruRQue6V7aTmccxAWSqlcNtkgujBBCOI0UnjxIhKdpwZt5sE7QpgpRc3XsG8+LzOlw7v3H4yGog3YoaCsaHxQN6Z3Q3xvrja1dR4fn3h8esZ70Wxyqbz78EjwnmVZuD+fef3iJadPXbT/BF/LcqemwisIrlYV/84OBdE+RlbD4KhCiNEmpk2uK+Yc1mv/iFdqxZQfgn4OqkltsO+V2oqBCUowjV4NdTNnEOc6wesI6NYAmTG2NSPDtUbaG2dFdIwT2HRDloiVViMl77dxfuv0ADEMNF1Tkj4tVGS1G5ycs3DO3Kf0zKvgBHpXw9T6EVQ3wjRrrQzRKcg0Q/qRbs8YQP+jVGIfI605Hi+FWlemaaJW0fduBXXgq1cP/O3v3pHtANM6lsbBmYBAzY6TTqypwXaHEBNohg66GwdYQk4nvUUu3J/vmOZoDVAl7/thWZtrZctXnp8vtLzrvGyadrRWeLUE/tVffMuL+ztS+ChgMQSkHRn0JZ0Do0DXvbdUYwd5N72g60QT5Y7gQdkDe1yvorR6MWBFYxgmJu0IW9MjbJOSLkA62GRBhLGO99PRMB6lUdPMaFAEx/ro1jWMKYh+FVW2MyYr+tzdHGmOUuAQfMtU4HN9pTTRcKzbzlazGmW0JpcpmhudikmfklGoJLx3CJV/vl55vOzcn06cltOxZxAUgOq6AJFg00YZAQRRbk0f5l2zgqxZs6iLr209s++aqho50grneFCfxtemECh10IQKcZr1XFA+Mrjw9h5NZWFFZDAKTooecqP5YQtts69eZaJTPdXsse1htcLRmmTn5fRpiHkM3vZcb+GTXXbBbgjpta5D2G+4l4EHR7gvcFCQxoNotccQYT/vjct14+FuoQXx5TUl9tBu08ax34/Gf9wD+OgsN+oQzgT0reG9pqtqeqRNCMFz2Xd+ev/El69OcsSz4tm7gdg7PIFWb2tSYczuAAWClxV1cx5XCq62g0rqjP4moLcd9wmbSg3Xutr03I7P6Zw0RN6mdNky55zzbKWQS7HkeTUatTbWfcM3GQRF23fgpiVsXVIBbzSt4VDmvCN2bxlD3ej23ZqVcQY7tGMZHc0mtzffxj/9+uQmo7RGTInldLaFpHHgum/HQxdChHlW8nbN5JKtcZgAz+Wi7IIUPenugZ2J0NVBBxrP5cpem9BlJHL1ruLuFErTgbu7heu6k7NNRLyCz1qznNUGvRfC6PSsgB1+7L1rABnSxPnuTAxRqF4IhJSM7nXV+LA17l68YHp4yw+//ZHrKo3Dq+44Pbzky2/+jPX67/nw/gPu4UEODnTIs75f1FbRyk51mTpJaBR6VVHf5bXtfSf4SOgdXzqpN6oLbAhxi06CrfG477lQXSWlTnSdmpOyMHImhKTNw6LpO03pw60Zwq8k4N4q6/MTH96/O9a/B84mxna9U4sajNaEsrdaWOaFkUi5l0ztnXmeuT/fHSFGtRrXOETr0hWmthl/ep4mQor0romEaFpyb9q3lR+//0d+/uF7/uLPv+HNF68JMUKc8CEIgaxVglDn2HLj+ZJxbud8SpxOM71VtusTww53inCeIz9fr/z89pE0b5zmhbvzAj7jOpxOZ+Bsm0nk7jyrWbuszLMslFuveKNCaDolB46cCy407s5nWqu8f3ymU4GI644UIvM0EVMkeeRA1SuX52d+fveBZZqZUuK8TLx++Q3deZ6ennHbysPrhWlaIExMwf/RuPmzfPloDYZ4pLlk9lxFLzK3leADU3Q0V42j7oghEUKyXAqrWTtmdZsPtFZBnZZzYWvLNY2L96rNNAWve5Lkt04rlAC9J3IreLNsbA1ZSDdHoUsM7psJ6cQXdjYx7F0FtwfTeDWU46GMjNaFXqvxjkeKaw2OOntRH2tmjiYS79pzB73HfJJEJ8MxmRC0FHMycZ6SM9mmNa43fPTmYiqv+VzaMQmRPkPNf6kN7yK9Fa7rlVL1E+WsoxDIL17dcz8H3q4d3C3HIeIsq6Af6P6YzAktFce9Gj3olvqLMjGmmWCZAs5BKTshelmlt2Y87Mq+7lyuV9Z8Vf7R2GtKtrDSzq/evOAvf/0Ny5SsAVJBRB/zLTURh9VuqTcxZa8ERoFuomxnIYNVegfnFVDFKLTs3muKLEqBUFCNNJqN0Qf9rWFTFT+aFVsSXQ54R+q0FWKtgx/Wv4asOrt/CkdsR3MzqB5H+3j88jGdxFDm/78s7P/5XmG6A9epvZi5iIq485yY06x1aUDeACs0QU9459iKo+HtrHQChbwyAXCe0tTQVhOTp6izaSD1gxIl7NIaZgAsi8E5SmvUqrC43oyOgyd5z2QTVLULzdaJNGG5dooLeJ/oOdObspqOzCDLBYpBOHkp1tjgjNYr6/ge3DHN713Tv1vwqIwU9ExrLcRJGVatyzkqmv7MwTF5vBlyDHriR9Nnm1Yc12jcrLFR2D9jjxjNUy6Z66b8m2B63NH+jilEGMyLbkBK03odrm+Hfbe9B1nYDpqS3s9wY/LOk1LksjneP64CUyYBQ4IejDbn40EjGowF9WM2TW/mLmZ7gfojj2+dHtrBahiTETBw0QySlLsl1sbHa1gNTlDGWK2iV8WI8/5wDJS/hGMK0mJteVMTYDqU4Zg2gE1R99Rc4xzduGTBQKRem+pI0+54u1bY9RvUKm8XQWfvqBj/9OuTmwx6t6JADkLOdVL0+LDwdFn5+cfvzb7Pcb0+s24bHUhRKE1wgSU6lhcTS1II1b4+s8wBFyb20mhdln+5Vp7WwtnLwcj7hmtD5CXKQO06lPb9KuvXqEyCRCdOk/nwN7qfRHNwTsF11qpfr6u5ICTmeRIVxixuc654n1hOCed3Xr95QS07j283Hp8utPYT/t1OmGZ+8cu/4KeffsfT889kB3dzx68rOWo864DmBsKqRqznapoeR3aB7iWqmbrQ/FakzdD40BNdJznFwOfej2lF845pmWXllnfKvrFR2JroOq43lnnmflkIriswx2sBtpxZny+s626UFThPM0tK5vhkCaS18P7yzLZvLJPsaR3aREtRYNrD+cyL81lps0XNXkoTyzwRkJ7hepUmJ5rOwDnPtq5s23YwN3OuvP35R/7w/W+Zk+fX333HNInO5GMgzgvJB2pKpH3nuisdtPZsOpAP3J1PvH98omzPBz/zNCdePdwzzxPvHy9057i7uzfUtvL64Z67+3u6FWrbulpx1Hh8vrKVeow5cy1EL8vbZQ44l6jTxLbvXC+aQpSSTZQXNEGyzIR5koe6mrhAS5UX5xMK9zJ3pTRTSiGFxPnlzGmZWYa9oDmLfc6vfc924HiyNcJbKULI3UhuDRZwhqYeTnTHXDfjETc71I1O40Q5a1UUF/kaBGMYaKMfvNwUgkCOlBhp8d7btKpVXCtCAFuF5nA92OZr42IP3Veql4A4OGdicCW9385UFRLzNFNbUlCcG57r7tCSRC/E3U3K3xhMmFzHZMUugxugoJxyvFcB3JEGKwaHi4Z6V9GLvJeP/LBbLFWOTzFGSwEODHeeDsQlGeIJfYz1e2cPla+/fMk3r+95+9v3CpT0idbkDNiq0LhB/8mtjRASoXpdB7IZKB5ixejlnudHAeUd275ZXo03umFmXa8Cf/ZsfGGZepRSFZTWG3fJ8dd//g1fvHxh18poW3ibBlgBYjkA1IzzUZSa3o4CyoVA9wMVRdemVfnmGyLr+o1zf0Mgb/Qu86rC2wSLjgo67Lmk22FtHlZGc/DOqB24g6etAknPQB9Fnn53UERGY2RQ8e2B6YcUmVF8daPbju/5Ob6W5V4TZLfZVKyR/BC0N+ge52XTDJUky0aqgRKl3XQUakf0a7VGuZpmYTSM3lmYZW20rmDPUcAq62Ug607nujUi3a65R/oqOfeYVoR8OJ/pMWtmQNBpeaO6Qq9VX+tlyNJ7oVYn56Q4E0LSeZ4VytnixFakI9mL6HIpdELrFtCmPUl6jEJvAutimoghSfdndcrt+VIz003j1m3yXJp0mnspNqjsBy3wmFyiYnq4Jzlnv6+ym40hiJr5vFJzZkrSZ8kOW/qFGLUnVhNO9yqjjKFFqx+tI9Vzps1rZnfr+vF7AB+8ch5S5Hmv2pPcjYJ4Wxamrxlr3jlD853ehwmn1YRJG+F6kJ7TB6JTMvgIdgT30Vp1x8YeDh2WtBigafrw8FHTqrU/JbkjjrOj2z40J7mQRcuTyqWSm1gwIXgDR0wj5nQvh3mJmEidZNMi1Re6XwMUGldlZJ0E1KR/qirjk5uMN69f0xn+3XKT2ouuxPPzhZ9/+hHXK6e7swmgKtu68VyfSWnhdD4fzj/ESHTqtrtPOqQMcUzziZSSxE89kJujlUotla10tn03QaYs3uYpEeIMXQeS7EG1mL2PeCexON5DlbCUKK/lPSugp9TGNA2RrTYOgtkdts75fObF65fEeeP5p0e26wdmp4P6xcM9L17/Fd///rf8/Id/wG8b+Gd6TDh/NjTuJk51XaJkWlfQjrndRDpT19RiD5GOEoJTgNCybqwTcpFNvOeaWn+PkLb1eoGQeC5yijmFwOQHZUm2n/RGL4WybuybQgm3kmXlNs8KxKJDU3Fy3TYu16tNQZId3M4Ez3A3z7w8L8xJVKXB70wpqpCzacW27wAWTGb2sU3Wn8O14OnxkZ9/+D2uN7786mtevnyJC1GaHqfGiK7vE0bYmQfvKtf1Sm2Np3Xjuu08vf3AixcLc3W05nBeFD/nAnghRSpMC3sp3NOlk/CahJUsnU7eKyUXoQloCtY6BJpRMgK17banNvKuDdINNLKJy7ttV3pLLMsMKBTx7j6yLMuBJlcrKuid168e+PB8Yd0qte7iknp/E+1/pq9mo1nnkyFbloxsAXl4TYmqC0YnNFKBIVft2Kj7jXvrAjF68HKrkvVjo2T5wMcwEfwtmTfGROmOaoGMY78aqeJjD4gpEAnsZVghCyFqjeNAqB5Sj2BueSUXlH0CKc1Er4J523e27VkCzdoJXsGMOJN2Ouh+8Io7dGemA/6g2ow8HLn5fRTo1xslD9G3Z0neRvmBFoWQgwqlXOQe4+iEILOJlKbjsFzc0LvYE91hq5XzHPjnv/6Kv/ntzwJ7qlCyj4Hz1uphQTs4Bd6LpjqcssDpXngvPV5XNkihUpvuxVwLZYectafTHfM028/T3teqrH+1/zm+fnXmX/zmO6aUVAhgZKQuCoPc4AaqLJBnCLpvz6buezDKQbPmzHlNZUUHs3WNBysqvB3krvUDyW7Go5abkFD12nVtW6sH3WUUmfpXexZvf2IAsf+j6UNrmt5jBSBWAB20lDH1cDq/AFFLTbj6WXcYyKFL1t6N4qWnGuGwagzMca3LtnlQelsfE/ZA90a9cUkUHUtZr+aaptZFz1lpoygcAllbl2bzKZ58NTqiNf525vdWDk1GbY1cCy0Xo6yIKj0oLd3Ow9pvmjAfEtGrPb9RpqRBk238zbo4mcbp6jOrBQ631ghV52VM83H/a+sHOFBDwzlz6fJOjQxjYoEV4qLrlCwjhmrPbxvFsKEg1jKhH/PRc2yvW56GicSd58Ozgm9TChLZj3s1TtWm1eyc7lvOMv+Rc56/NfreH+vOftihC3O3LY0YlXK+7WMacnyBaWfcR5PBAQyYk58h/bKStilKk3PdoCCp1/LjwsiswRwl20fLtDsHwcTfVFz34/hnuM+Nhq/Z/Q1hUE31tmPwnOaT9jQ7uzTlHYL2flCzBtVTrlT6xN67w7QbL2C7NXc0hmMLGn3jOIPdR/vWn3p9cpMxTwreSyngeqX4oOAqox6AZ9s2Sn0Ud82QpHmWKNwN4QvYotcFybvGuSklcBPT6Z75fE/br7RWCWa72HsjdYebJqboSfMJ7wLz+Z5095Lnt79n298y3E+cc9wviegbe1bB22uR7azZ6OZ9pzZkl2g3E2c2bl084d4q87zw8hXM84WHc+LDjxfK9sgUGz43Xrz+muX0l9TW+PD9P+CvF8K84M5nFODWcNERhs2gdbUuTDifFJLTCpN3BJfwQUhvKEW2uL6LSuUdyTVK0ZgwAL4r8fK6b7hScT6TcyF35C7hGtE1XDdnJEMtt23jeb1SuqzOHJYdgMZ0Zd+47huXyzO9NeaUOM8TyehYEkKr0J8sKXTdlFOhRa0D2wf5euMwmoo2hVKybEttFFv2zLu3P3N5fuR8/5JffPM1y+kE9vNk/2kc0y50ouPAR+Zl4WXDMgig187+/F5Iqgvk2tkfn3TdfQLXreHSIq218Pz0zFyKIWMSZ4bqKU6LUg4mnWUKpKi8jFI7rmb2baPhSNOJ5Dp3p8J1W809SUWjnyLdaZTtd9HMJK4f9qnViq/A8mIWZeqyAk1i3axx6+cexte7IfBDMNgsPyCFg4bgfBCaaF71uj7ytQ8DEW8V5yR4jk60p2SuL7mICqBisRru4owqAJ2hF1BTEs05agiAI57go/QSzjMlHRDXLStEz1BT72VcVGLDtSHeE91piklJ7VGUjDYQOtpBFWhAr1WTzuNw7gcqNewrO02aNKMcCV3vphOw8CWn5uk0z8xTOtx3xI82fUevhub241kqpRr1y9O7rCKjG+UUSJDZWGLgN7/8mofT3/HzRShr8YMDbUgdtyJCwlTxi2nSPHTzvnfe2T8qDYVe6icG741upSbK04/74IPsgve8f0TJqiQPf/HtF3z7zReHoUDtzrjkcEPimjVku04JJ752r5qg995o+Xaw02Xu4MZz6r32D6yowjC/rkLD9Y5vKjBHJk7Hy+nGgJvWR8Hk/r+u2YEadp2Jf5R7cYzI7LnrVsr1jxDVMa1BmgK8BX+NBx9nt8r98ff+zF7dCkofIr7fLIyjtywRlBXgzQGwNSzIEtPaeEo1+6Gg9GuHM81CkaV4Lrd8pChUunVlmKQ0g4Odfrix7Yasjz1gCL1FawMfBK6sWcCWc455iqQQ1RT1LuMADCm3PaPjKR2CGxOxIe7vDP78YDx4L/BumczKtRQDXTuhBbzP+sxj/+mOvTljVohyJo0bpi2yZwcZTVTTSGg/0xrRVFbP3GiFDx0WRqtxHz3bcJsI2n9/vO48b5n0dKV30dqC82bu0j5C0PVeNIlVsU/7aKLHrcHQ95ao+eOXPCmk17nm8ZluSInun/+oL9KkQ9uBHCYdshqmybES1/FddKJmz5gAkQAfOUiNKzCakXGdei1Ep/s/GgxJUOzvGRAlr7GxX3SrncyNsNr1liXf0VgIoNPeMML41ECNfWKI3XXDRwOlSblNYh140ygeLdkxtfrTr09uMh6fntj2nZf3J+7OJ2IwDqN3vHp5h3Nf8vz8KM6p8+Ai5/nEvEx0nILc9k23IS3UPuzYOgqtmUhTIibj8TtoNeN7Y1pO4APzyRHSRO8SzW7XC/t6NdcDG/M4cc6GuOrutLAsQsXUYHqm6UQM0ny03k0c1Mn7qgPHhFYNqLsK5PNp4fX9wrJMfPhm5T/87e+4PAqZDCGwvHzFL775Fc/vP3B9+omwXllKwceJvm3Q+iFE83RqKeCCWRoKN/EOaTn8JN5m2PA5E6pXgT1NJMsUiK3JCa8rP6N02MrNFrg5x6VV3r17zxzDLdGzykEl541WCrVkhQeifIHklcp73TaeLso8CT5wtywS2QdlmlQTYcWoR6iWypazkm/tAR8UsVbN+z5qqtIxZxxDC2prPF+eeX58T4iJJXlePdxRcmbtsjQedIqOKDfVnDKcDxbUuEg3FBOnZcK3neQd9y+/oDvP4/OFyyaDAS25aqJLde2y78zihtqEQqiBpgyD5z4FuWV5H8j2NefTRIgTcT7JScqKAFn7Ci1Ik2hoYIFHJmRrVSFjeynElHh4eMCFwL5m7pZZfGDnzI1E3/NzfqkZiCoMuiNFc2aik7crtTfSNJOrJ5nlq9JRZRrgLNxMnt5Kxo0+yVbSrm30gThNthcAyFUJ59hKJl936I1pilSn0MVk+4F43P0IvnLO4a04rm2g0o05yuzA+yD03Eq8KQZL3VUoVctZ9V3Xz8A5otk/bnkXPWgI7PrIRrCCtkFuxRy2Ctd1A4cdYDqIcm3gHKcpcbdI2zPFGWfPNlboDEqkN3oWXfz/lR0J4eWQc5yvzh+Ff2uNXOGL1/d88+qOnx5/ooaIq44WgtklNhPIik7kzIZiJJPrsFPxHEIkuCA6hBNI5aIcwJw3fQqauAw3k8GF1vHqj0Oy987D3cR/9Ve/5NXDnRBLNBkrZkE8/n7r1dbajmjbVRMymw4pM6NaAWVlu/V+2XKiuhMQcZpn5aTYdGVMDGpreFc1Iemj7LCJtXP6ve+4brqkNrz8vdaBIZgHfcN+vhyk9PWjxjgKLFcOlPZGwbKJX++WS2a0QUP6b1ngn9+rtIo3tH+keuvf7TO2qn21N4EGcTr46JUOTQ1maR23F3CFRmCvsuTfSjW6pu5bHdfbnumRq1GazAMsUk1TDxtnJAvQ7F37v6/SWJWmNTDFyDJNzClp/TRP60kaUgsZrM2Ke7S3jb0pegmHR85G654QNA1RJViJrtGiF8Bpbkiz7WkA0S+UpkI++S7tmOM26bOnBMdh9BBNS6L6TPbAuTSm5I8C1tn0dehfj2fZGiN3VPJu1Mk8XlbePV7FtuiVuckJrlqa+eAOdZuWKKlyTEPaR8WvFc42GfLN0V2z/UO10ij0Q/Dk2ln3zP1pOoprDR/0czRRVn2q92A6PBfs7bcD5vcGbHugdKP0do+r1fJ+HGXfjdJlelWviZJ3Ts0uY4o1gE5rKI49Tc+/9oJmD6UYF87owXjITk3HLT/oNpUxQ1qFRFuTMoCtQedqDEMA7b0KHixjZ/noWn0aUPHJTcbleuX5emUKjuV0NtGcHrLNgrROy2ICQHXh8zLz8PBgI/T3FNQ57hVCcrgQjS6jlOjgIZqlq8KdGtt1pzMxTTMpReK00Gojb1dCLzo4ttWQLeUWuLgwLwuYDag3MWdrcpXxcdZFaleoxbiWxl8umZAmUnC20KtsLGOglpU9d+7uH/juN/B3f/tbHp9Xfd7aCXHm1euv+P7yyL5XSulUJ0qCq0bFsM68MXjjwZBJS+V2HhcdyUci8mX3XptjiRPeeZaY8L2JsmPiU9eUYXEpBdeqCbWU+n29XnFNhRMhkGtRuGIt9JyFwHkJGR1yr7luG5d1o+NY5pm7eWaeJqpWNy44piTkNAYVButeRJWaEsu02OjNnGhsTK3RsIkpTYiW98x6uUrLUAvf/fIXvHn5kpBGxePZi3yml3lWd930vntt7LWwbxeeryuvX73i7nTiyy+/lJg+LWz7ypQSW+1y13Cdkc2J3YdgzVKjU7JtqlGUme5vPPZaNSma52AHWDua4rqvtN4VrFdHYWu2cG74WctOdN+L2dzKFrC0xjVrSrUsSUh6nCRINKpUoxP3zxeBBDtwk0wZWm1E38AFTS1ZKEUNnp8iwUeqNWvyAN+NViCeM26UspY7YA5C0xQI/uZU0qvoJSfv6S7ifIZeWSYFvpWs9d+aDp/WK71Uei/UJo1BLYXoYFoCU9Q/w8GoGSLk7Vnt3ZkryGaHm47sYYHbQ6LUyvN1Y8uZFMRy7V2hoqMwbx1liJRquRDVaHvFHPsirXtOk+c8JZYk9JRWKa3izFBiFOjuOJxuXP05xXF2Qa/05k0ToQNbwmgVL6d54pdfv+RvfvuTKBM+4JumqmqEHZgzmPMjgEr7RR9TAVsr3lyxTDbBFJNNs1XQqxHXFKOZs9egEgXv6dHTqlLP/+zNHX/+izekoGnEmNa67mhek6BRfzUGclcpuVJ6hV5sejSciUxmb8WJ3rCuWWsKXn1uhRQTMU3ixjujrVVRwIQyD/exIRDHuNEKU+yDk292wKMTHOihMyhShZLu2M0RqB9/R79tOIaOxx33uCNU+pie/A9Q5c/xlbdNdq/OmTao8nx5JjpIHlrdBVAaBao5cfgdzqYg03FtRw4A1hDUQVuygk10KGHowWqSG11I92I8l84yX1yH5AMpBkrVBFxCag8IyEgp0YBci5lAeNMiqEmnQ8BTnYrh1gaA2ujNkV073I287TejoPc+ktJkxhBiKgwtWPKqiZIVzUwzY7rams7HQULyNqFsPUg0by5YtEaKju4DpQSmIErQgM71/I6m2h8TxGbTuGG1POzDc2ns2wBj3BGg2MpuoIozypIzcM4gAMv46B/dC02uzEjGjap8rDN3XMcQA6U3tr1Kv+o0vT7WXBtJ3LcJonMC1r3Dcm1s72wcTnw2qj0Ss7Wux9pTnpbAheFa1g1k0td7+z8X0DTLnk+B2XpG1dcEq0/tWYlOC30Ap8FRTEtI79YMfwRecLs0nW4Tt07HaMmj0bAObjQq4Ey77o6G9U+9Pt1dqqxMvptNaKMCpcLz5cJ1XXEmcjzNEYK6/XmatKAC3J1mktfBife2GatICFFBdfsmcR9OwSk//fQj33//Iw8vX/Ptt1/z6s0bQm/UsurQLZm9Np4vV9b1qq+lUdt7TqczL1++ZEqzJYT746HwXhe/bKturHGL97KKIjVADKeOs4Ae5trxKRB84v7FC7751c5v//571n0j7jOhOx7uH7i8fMP69I6cMwVPaN06XX+Q8kKKKiic0xiwNVowhwjryafgCc3Tx5/FJOcHHLFlgmsHz7mhDcdlm4x3pTTOMdItt6IZIreWyoenZ2qp1lF77k6L8iyaAn2er5uEnd5xiol5mo5NpnYJJKc0sSyLKHBGkwoxsswzp9NJCKgloGObosRFlX2v4lp2TRHW67O87+vO65d3eAMJWzV61y4u6JQid3dKaV+vF7O19cRlZp4iU/QE13Axgk+kZaHTLdG4EqnEaea8LJR9VVFhbhLetDB5Xdn2ldg89+eFu/uFYR34+PTElis+6C6FEGx9yG/cewVJxilR9iwf65LZ1o3oPDFog5tToJZdifBdg9ApJKMGylHCS20DbaDAjhCnT12y/yRfsgnt4hRXhWgF79UshEAIJ6O8OJxPBENjN5vgBKeJWG+dPW/kfbfRsw7KNIpVwu2AiomAIxCIqbFPmT3vMqpAYMeg4fn+x5un8+CqKAlKa1ajHAwZky5CdK8QVNC3LkR7K1kCcoeJn9Vo72YucVlX9tIooTHPNmFrQo9qg9oKpcJeNPVxIVKLnKKc96QoU4O7JbJMooBqK9FaUTqx3KG8N7rIQS0w1M6PdF79PJ2xXmFQ3XQNVqTOMfGrb15zPyfeXatcVGq1AjrKojOoOCnNCm3vFORpdB2lDXucNTLOIW2Gg2VeVIzUethat46sZIc9hHe4aphy70we/uWv33B/N1GrzEZUF3iaa1A7zibVY69V2FW2grGouHPOQkgTzdvV8Sqy9DtvKKcBEa1S9kaolSlVUpSAHXseWm1AtSbDMdJ+g3dm4jB6FwnIweObUMlbUJ8d9Oas2BnoraGR6jIM7TRy3cfPrhXV/eNii9F+fL4vqRAdvnezH7/y409vmQO8uJuI3hz95oVDs9KxPafR6iYQggFEoHXaNXH3SRQmTeUDxYTgell+lVezOOgyYwo5nxLRGsraqgr1XlW0+0hxtqYIXHed4SkEfQ/T2oxUaFE3A2uubPtwtBrknk73nh4CyUCaUsyFak7M84z3gb0U1vUinZs17XG4IqH11JCOQO2F6EgKuLwZFzjnbg5VrZJbUS3l4Dwr3LMNtbIblbDQ/uF2NIrdkdMFNn1qcn98cTdrSmV3uDntzzGaJblp1XCBeZ6YUwQ06RUFf+xrBwHK7pfW8fhH2ieB4cUouUffHpyFv96E7MHfvl6Yw2gaAsOmtgs5sSax47oFgdLpRSnrHX9M4lWn1uOaYPXEmMyNKbwopd3yfUyMbvRT7QGHEMh+bxa0ds6OfffI0cH0KdwCRznAp6F35KPv6Y5pzbGNtEb1mA7qT78+ucmoOXN3Xtjzzv7uLfO8kNLE65cvOZ/P7FkFqwNS8pzuH3AxsT8/i+pyd+bOOPZPlwv1utG7eTEHT6+FvK/k/UJIQojW9cL18sTj43v27ZEPT0/8+ld/jnOOdVdgXe9CKlOAMEc+vHtLrhXvO8/Pnpp20jwTU4IeZPW6XjW6zDvnZWZZJjoSs1/WKxFzurKx1ZxmIdNMtK4HszvPy9evqPvG9//wA9v1A1M7k9KJu/Mdz08fyKWwt05sleWUwEX5u+8bfjkR0qIbWLUZ+TDhpxPVSwwWSsG7Tg+e5BMtTqLf9E6qVY4VziswpXZybeKPdrlETCkdHNVaGyVnnveday7kvZBC5DRNagoWhb1d950t71TTw5zmmdNpIcaJvRaum0LnUgycl0RMgWJuFsFpTHx3muUUsxaua8aZXVpw8mTergpzVMNVWa8bl+cnPnz4wJsXMyE6FY+Ew70nzIFSPa0WfNKimWJUyjAQ/EmN6rrqgDenqFLe47xnCp77JdFYZF98OvH8qAan912pzJOQ7HmOzJY0n1LEMXIOGilNhpLIpWFQEro1Uh0OUW5vQnBGumpJ5jhWKyF4zueFeVZj15oOjWlK2qgGOsYAUm5F2ef8ar3Rdjm7lbyTS2FZTsSYbFOVLkWc4my6qMwUIGDBeTRyE2+6lGa8VPBUUq2kUvBhRynyI5BKSNwUHMlFTmJ60jsEF6ltFN2WZ2Kbt3OeNo93P3QQI61dk4wpKSdDAIG4uc5V5ilBj3YIauS87hKI7pv0BLRGc+DdZNbddp1aUzBlq7gEzim4MlPBqRl9OE+8Op+kwYDjgPdEktcUcSBt3Wlaw/h7jCMJoyRhh7mupZwx23HGCNGtvHxxz6uHE2+v71W4VCCYRai3/BuCppioCNQB1wy1swaSindKLh5ZJbRib80O9dZu66yh9dVsqrPv1Jz59mHi19+8pJSdyyr0WrSvj36Ooau6D1n7giG2rYma4kM8pi3eDbHnOLuF8DVb5855hawBrRbWWigxEEPSdQyeik2sm113b++h6t+9Ez1lpEQra0UUO+9EdahNYazD2aqOCYdTeFZ37uBUCzE+WpGjiAQrhs3tiG5F8n++Jf0/+yuXIupYk33nljPn04lgoWRbXnl6LpxOhfPpREoTpVYua1bb1+C8aK9Xzkxk2A8PZ6OcN0KXriM0E+QiJgbdGmvv8V21ZQwCGWQ/rUT6YYsv7rvZIXcZzpTLBnTmWQV98DCFaGygQAhJdRGe4CVyvmT9Gj2i0eqO6o57R4yeOSWWKaneQeG+Kc70XohGZaq9HVkOx3Ng09MpRhXMqJ7YmoKQ+6h7OraXiRo1p8TLh5O0P63h3K2RHc3wx9Qb5wz4sLMteIWXPtydeLg7ieaEwKRaMzXLYKaZti4GT3CBlBIv7yf8zzrvZRPeCC4c16S1phA+A1IO/Zi9n1zhshVNzkM8dGKalEhn19H6G6YRuNHeB4aphCaZopeqcVCB7yx2QE2WQGK66VQQlW9kBI2GxrsoGhPmXmcg1UHfsnXeDCDxphcZE49Da9UFjwyb2hHix3F3sMa7Mk6CYYZx0+N93FxpguFt7/n/Zf/45CbjfPdASJH5dCdOYBC/fJoi83JiW3c71Jp1U540LbhSdFg1R+lNiPW2aZRYCmVbVby3bqKrjW7J3O/fv2e9rjgH+/XKfnnk+vSO3j0fPjzJfi0EHs4n4vyCWhvLPB3IlQ+yqZtSwseJ4BrNNpZSKzvL4UgQU2A63eHXVaFrTSLfaZqJywu2vXB9/oB4eQFPIy0T8dtvmOeJf/z7f2R9zixLwSv1T3Z1SQhZtQ2s7ystZ6blrBtYK5TdxugeoixiY2uEribKeY+PCiiUT770GN51mg9kF5CupRFCJ3nPKYaDN+x9UPJ1LkbjqKJkoMyAZZ7ktlAyuWY6nTQlUoyc5oV5nml09iLNRfCOOUXmJD1JHZsqaIMLgVKq2eR1gvPyke6dkovsjat47nvOXJ6fePfuZzyFX3zzS6ZpFspQmihvSHAXDPF0zhGmeHBwc97ZtpXhhhEsOVShYvsRzqSsFLkM7Xu2UXJn3TfquhHClWVKLCmRjPdZcqZ3Z1xrW/jeFqc5OigzxjFPE9u2cbmsNr5uxwbhDSlVTymBunNCdIPrSpX2Q4DlRd0O/BFa6Q2V+5xfnUj3XQ5rgDfTCNWTOlyH49QIGMPJxSe6TqNSLJRopHF3g4V7s+KYauO8iMuFFDNTLUypWdK82Yz2eriRHJ7iJpYOH6FJQvXUNLpgvbGJM5M1z/jAjSerZ3BxC8NVKOedyyrB+b7rc8Vgri8xsKTA3el0oxJ2WYWLb4sVzQDhECsuU2QO3ug23Q65bodXhL7Tq8Tm3d3G3frlhvg1K3b1ewUcDqTdOYlacylc15UUPK/uF9z37+Sc05wsxD0SSNphG2OwrJ0RUKdDPyatoWBJ35iWI0ZvB57c5pxRPQFiihDk0ldrMy3ZDi3z7ZcvmZbEh8uFFIKcY6zgGwJ7umgpxaix3egoByJMVzHvOUwmuuew/Wzm5jdcvm5iSV1KaboqxdVDP+adbFQraqy9C9ZcRMaUQk2D2UU6Xf2BNNLRcxVU5Kip4HClUnMy9gO9keMZpdsIDoY2Y4AVDW7N5mf6qkZ9pjd698Q444L4/M0UEmGamKYF5yPrurPnzFYb3WtC7J3mCc45XDCgp2oiRXd4ZqIXOp2cJoGlalpdXaGaVsrr5qkoRN/D4U28rOlsN9MDamOeNN+qXc11SsmK1UIzq9EOlpkizdBuBjQOxQZMwTEnab98CDal8zg0zaytU7cN0M8NTvbd0Wqd67ZT2s3kZKyTAbrkpvMm151tyzKzsElCaQIs5xQ5LxPTNPH6obAkR8m3glSNuRaZ955SMsPWV1TQ8cw2zsvEi4cz52kR/b1VgvOc5gWANe+s22pZYFVZFr5ztyTGRKBZjeltYNFbpXmFzw2yaG9Dr+TNtKPyvBajEWknGHSqW6aaNRXO69yyhqH2Lv1at0kiYwK748wSt7cy2EZ6VrwA3xuYYVNdH8xWFtwAh2wKjZ37zsAYzIhGXD5sDWgu4YwKO5qDkcreuzJIhqPX0UPYGvij6bbtK3b3Pprc+GO6dSPbfto+8slNxouXr3B05tMJTciVNL1uleV0JqUgSlITcrVfL+RtVdfeu0Sy+04xcXKIkWJovPeOeZ55Md3z+Jh4/+EDrXXOpzvmb0+cZll/Lqc7tm23ZMyVGM4oe8Krs8QR04J3CuHLWYdKCIHQCs6KTR2OEhRdLldcr1Q6T6scSxyDY+1JcySmWTe3TDbu0p1rTZqIL754QW+Z73/7jn294s0VpXaEwnnAR/Hi7L9hY7HQG65WCObkMA6EUlRUxqTRsA9Cz5y3QD9zbQlK2U4Uu1ONyTmWlJiT5X8MigaZhtchGDonswCOcWQR6CBWuqfjNE3cnYToFxODeRtFn6YZH4Q+dxsPRueZLPCoGQ3B6aMSgkbLZS8SwUcd3td14+e3P/Hu7Q98981rvnz90twy5FfeazcLQHPIqYVcmzQUvTKZjYIfQXVNaGW1yU6t2Q6iRLIJROvVnNCKvfeuKYy3DbBBcRL9p6iCQQfIoDI45OMtOoI2uSyajNlcplmuYeJyO6LDRK2GOBy6LXcELLWOoUU6vNIQZ1qT0p2Niz/jlwtRz3y6oX/OB1qvEl8HZeD0Htj3hg+JIfw7igvnCXHS+DbUg0o2CuPB36Vb8Wa0m1KURN/BnhE9Sw7lZ7h0Q7zEkR5BWdJ+eVuHzid6K9Smxrp77Sm5ZCGj3eF6FA2Pbs2JcnxwDef1WSdr0lOMLFMihUDHU1w9gpimFA73JzUanlYynXqg4VprtwPc2zPlSMqRaOVopo4DyI0JmT+KAsDoXQMZxzQAmhad5oXwOvLdVy/5N//hBzZztxINyBp47y3RulN2aWncoP2ZT7+3aYASdKWbSVOS5W6V8HGZlY9TcpYGD+kZSukWwFi4nzzfvnmgds/jJRN8VgZKkCg/2N7Q6sehe9jUywqiQ8jp7SwJx2cZh6jzFkzommmtCp1yK969mrxq0+9u9sMx3lzCuoEKAwARD9oj22Q1vL61oym63akxaYpAlZFVs5RykcH1GQ0EqR+954F0Y01Hx32kHfp8XyEEm0Bhz1OXxboPeD8x+Un7BVA2TR19mrifHFuuxBhJKarhOzQclT1vohvFJO1YWMBcmEA28yZJIHjTBnXHtg0DBz3pMUSZQcSEYqkUhjYFR8CTpol1k3PSlIJZQo/nU2LzUfjl2ihmwfviHC3fw9Z9k63qoOF1a17yvqmOcbe1m0KAEMml8nRdqc2ydUajZXtCx5Grwghz3uVEFzyBhnNBtGznOc0T51nawXMSLftpLx89u93arjHJuE02gEMfEZzn4WT28kZN7b2RzWzjcJBq0mWFADEkUvR88+aBh9NbnoxKJrOMZs++moo6JgYjdOijKrv1zofnK+u6EV23QhpNqdzYH/wBwIyJbkcCf2+8etd0Zqt+2u0e3pqMYWvd7QzRZqKw11oKhEBHGp556PawKSvSCYXOoevArqfzntDsv6OGuLZRQ9r1Plyg9F792HusMXIMRyztQYdmYzQi5tY6vsMx4+j9o9/9T78+3cL29EDbr9Ta2NedVjY6nfNpFvo3T/jWqXnTAZM1ln56vrBVBUbVvAH1QCynNDHPMykqZfp8krj44eEVI0NhFI4SSTmerxcuT++E4tdAyYV9bZQezF1o0ti5yPfeMXG5XJiTxy9nLuuVknfWbWffntnXZ1opdO94WrPShqeZ+/sXxOnEXqE/P+rGOB30tQoFb0XODFOa+OV33/Lw8JL/8P/+Pe9+fqIjK9ht3/HThE+ThIil4aeJMM0Hr1gPrzjoDidk2zQMPSTpC5JEwLJU1KaF73Qv+1iH2Xr6QPKyWItJFJHaodg0xQfPPGnMORltKDivUB17OFOQPuDufGaeJ0qWDV7vnRQjd6cTJ3P8KrXSS5dDjBsohha4nBYwlwqJNPd9l2uMd5S8c3l65Ic//AMxNP7yz7/j9asXtKpNI9dK3erhfZ9LlvDS7CTnaRbdK3mWaQbXjV7j2ank1pimhRjtvbnAsmhK8u79W3IpRyiTkl2jHIDM4aaUzLY25uSZT2fjqjaJ+muHNEbkUPdMKe0YI6cg8R0m6PX2q5Jddeh7JyQ8+qDNrKMi25CMIZLVAu/KDPmMXWEAy2BwRsvRdKebKUKtjeY8zSVRKb0yTWiilDhvrkRA6tbcGfIUYxy4vGWUKDncx4neLRm8ZKNa9D+ynExmEKE11Gk9U+GwnxzCSGeaLn2/bramER+nwwmvN8CsJJsV6TnvXLedPasZSDEqZDEle4+DfiP0ci+Fy77jasUxk5bJxNTmDDMvOhWaComG6QSqLCpdVS8avMOloGfOrr+zBmAgVP6wPx0HKIZqGTXC8kO8d6RlZuoLX33xihQD297s+feEaIJx1MTnnKmtiPYgJIKUkv19ca2DH1x500vNSbQLS/Q+nU/UIgpRaSbULirIqJlvvrznF29e0DvsWWP/PQt1DWG3gn0UNSpOQ/AkrEA0kMCba45z8Wg2nF0H1QeG4jWFyOaRc2EFSxiOXTh6+MgJq1W687KTNCMCupo958UEcNj1MVCq1WrPrznlMBzBbkWg89CbTTJa1QQJm4SHGz0Fe1aHpfxAVT/zHoN5EnWwVjg+TbQ14lRYeds7R/Db4KrfLQvTNAGO7uLBMChlJ+ed1uLBhAghMmjUvRVpyHpnikDzNmXI7MWKTqGPRJv4x5gBTRyUDzURguMUA5OfTGDuyB6KG2GNBmQYsDIlnUW4mw6M0WCYU1U0C/luew6u2FRL16LUIstel9k3UZ5rQ+5WU0I1maxQSqkKPm2ouHSQ98LaGjE6lilyf4qc5sQUZec8R2kq3l2H2FlgmPrlfoiouxXAep8DTOu8ejixzPNxL71zlN5lsV8r+17Ydwno5zngY8IHz5dvXvOX3z3xb/7hrUCZ6M1S2oBP5wx0FGAzGnJswreXyt/94w/86k3gu69eH9Oc4IZDlpgynoj30k98bN3a+82C+9ZAOQNCK71Xup1DMQQDVEyb60Y3g12bwlaglMiUZmkvXTxMPPYmlyzvREk7DDT8mLKYQsI2/44zrZk53g1hOhyTiJEhMtCS0RQOl4z+0deNpmKI+VUs/mduMqYpkduu9O7gyVmuLyEGWFdCmjQe7BqniQ4QWE5n/JZpJctVpimk6ny+A3QBruuVvDl19svMcjpRaxUK1B09qzBd95V3796RfCHOkcv18bCCnZcHQoicT8mEpJHehfI714V8Bgmh9j3jgqe2wl4qrVROpxNfvl5MCKQCcVzgashZa12uQNnSwntjPiXOp4U0n3h4uGeZZ/7tv/mP/PDhw81iMCRZp+aMxxPSYnay5mblHC3OkGQ9OTk7Yjr0EHHTSYh3z0yM0bsz7/hA83KNouh+pBSYggrmDuxV4T8hRSKO86wJRUoTIXj2fZe1nvGZnUtqJE4LOHExszkwLEvidFqEJnUTfJtThcLxhDwcJ5odmI1O7Y3STGjlOnnfeffuZ9brE//s19/w3TdfkVLkUneKiT9LG8IxZ3xH43aHQG+Ny7rRqiGorsnyeJqYJseUM7VbKFqa6L2ZlaGnnhdc1SFRkShvhCI52/ynNI1VaQHGtsB1llNzZjOqSPSOOE8UPHVkD2CHQcnsljQ7DofWIfjAmQUfIaEcgFG0tOOg1DPYmpr01j9tYf9TfdWyE5xExM5jYETDOXHmqaZRCElUg6YSujk5Rw0KT6cTrJkNQc+8jqhGyxLU614lvDXi2dCk1ppS5/10aH6GkE+o/3BysYLcDdcWGC4wwYOPi9HvPLVrQivXtJ2OJlt00fZyyQQfWe4eTCvliQ5zDGkHcLFl8+inE32QrqsEYnc2LWtHoS595TjEO86NNOkCrdJQBkAwX9oOVqiM2ttyV2ytDsec1rFntJtRQ1GhZo36/Wnibol8WC/av6z57oa8tWr3Ek1ELQMU6EchJrmpmpzWmk0Vb1z38TO9CR9d67QumlQtO0vy/NUvX/Pl63ttM+Zmte1qALoh9iE4C98KMpMIymSKZqM8hMEjXwPnj8bDOXGmu01imgWUaqImUCYGb58rHNMhmriOun5FyHeQ3XIu1e7hCGkNBCfdllxwB9WEwxnGtSEi1zWEW6MuaoUmHM47UUasbRyfB7g9ywxa3Oe7j4jCamiuswmR+C/0WjQFjpEQJ923oibB445Gt3ZHd0FotBNSfB+nw3QieEgxCZxrmhCEOEEt0Ks9i4XSmgUU2yTC/le6o2aJwl2p5FCYWmVOs4AtK8Cr0aCiD/jgj8C90ST17khddE2apnytazI6zixv9qcOaRnmNDHZmiwls+076659towgTicDnGVORD8faz04h3eZyTkgkkuj1EhrndOSeHmeOM+zGQxoUjItMy8eTvzjuw3QE+oxDYFzRzE6mh7oAo5r42GO/PrrV8zJnJ1swlFL4bJmy94SuEBrPD6DDzunWdOoP//lGy5b4XdvVwvn03RyNBnOGrNWx1LQs99KJe8bHz78zO9/XLg7ySVT9rLBpuyBWBWY6D4CEkbQIq3hfaLbhJFe6XU/gJDS5PhFiPje9OuwH7P3okR5OU623oyy3kixykzEB2toG63q+3kwsxMLaLQmwyOgQaYaSlaHjmtVdFkDzWSKbNOOw6bXniCboA0b9YFyemcNiNAX++v/md2lvGvEKO50zuboM50o1VGeLsS0K83YHuyxUUbniEuQ4M3N9FY0wVhO+DjLhWW7cnl+4v2H9/iLGoMYI8ucxJFkdMSZ4Bt7Ft1lmpXWGcLC6cVrJg8pmHuH9Ws4r2K1mBuCFZnee06ne+a04L2CrDDOWmuNkFRwlLzZAWxdunHFa9mRQ3YEFwlpJjr49lcLfp75sK789MOzbqKXaKhlIY1hVt4ErRLQtfRppnuhsX7wTW082Zvh1x1cAx9s3De4lCGKrhSCrlkSMqck6WoZFeB9IsXEaTa3KC8rRReajBHq/4e6P3uSJMvSO7HfuYuqmrl7RK61dmMHMSSFM9yEIkPhA4WP/J+5jMjwhRyCMiAGM5ilUd2obnQtuUSEu5up3o0P37nq2XgAEiIckU4ryaosDw93M1W9957znW85CCGy5oVtu6h46A0mTx0jR6GvFgKj1DdKmoukRYPTARqdczhdpZp7iA/k9nS733n+9JGUIn/nV1/z7unC6EP5AUWaBuVjREeinIoSg+gMY1DrwUvd6aMpKC8aOShdeJFiVk1Pq05rkHj0uN+pdZduxIWRMFFDWeBNa9sQk9DiUjUtaf1c7M0902ew2FF2PXc9+SRujsHHiX62PqjO22hdz3NXIpsvbh0yk/2IowujVVptP3bJ/q189ar09BA9AK43zPIJMPVWXMytsXetADI3OPn0psOWMegm+9pytLdiegx35WqEshNyUEMdZEHc29wLojbSk//sNtLYqdko5dA6TUZOCyFmJbiGGXQHtYjCKRqNmyz4s24hkKL0Fst6IcTFxYkD882+V9GKmhsW5BRZ4mR5a1JRe9dBO4Z0EOGN5oCHY8XgDRGiKJ7cXynRmRPuH+p8ehtnQzCNCroXMn0ikDhu4Hvgusj0AdB72nfSgJSkH6je8ISg9dStMUXfZjOzYk7qVCS11rnfD9ZVwa3B3nJJihsAyKVKBeP7h8Sf/vw9D5sO1NLgtlfurUgwj/IEkiP/Oei6rtkD0NwC8ixW4dTkzLU/i7c2oNdOqYdzy98amW5q3JjZTPamrRhdOok6OtY6aUjHg1Oe9K/evAW5n8E0F1BDJ52NurThT2fwZnI2i2YTAzbe3KXmBMf/f29vX7egdOGf6Cv4BErTONUYMjpWMRVikGMc6FzMK9M61kL0c3bmuMipJ6Tohg2esTDU2AaLTot1BHpoyi6Ab2GN+L40CzcAd02ad8XBEcCfHwFuzcG04Wf3EgKytfQpW5feoPXqAJka30Bwa1wwSwrcG+2NhhjlpTf8Xu+1u1OdXLGyT/YvS+ayLGq6mvbRHCPXbdUaDPNJDrLwjoElBbe20LPXh9bvZVudhv7mevY2IX3bk2fj3Frlfr/z2ZL48t3VaYViItz3XVPf1glDWtNhUtt0n5BMsOnL90/8L/9xIvx3f8mf/f4TMWWf7HjtMpTMHkM4HSE1HTn48PEDz999x+vtS25HI1D1PIVASkEZTFF1THItb5oAz6m7KNQuHYmaiyJ72tFFsfV9pk+wIM7FKtSn+8SYCaL5hEFOm+HMUYtO2ZwGHMH3kdalT8GZI8HQM23hdAkzM592a7p1TjnOB/bf2jMEj/6ARTGfY01guvcYUx/273v96CZjv+20Llei4txooxHXjeOo9KOenFyLmTAG9MqSdBi32ljXrJF/94sa55hmsO87H56fxT80Y9s2nq4Xnh6uXK8Kz3v39MjlsnK/33m93chRo8yQVgyN9epopHUlpcyyyvElvN45ihKm+ywATPzNuCgVvA9xONVkN6zsWMyMMs6HpDsvUG4Sxro8cn16T1gWXl5eYTSWNfPF5+/49a9/xvd/+DMVM2l5K3Dn2M6bjnHcCZfVmwmJuukqJkdOzuWWxaZG7CpKxjBsydowTfa1S4iO1OiwK63L479DigvLmtkuF0fM3zaAPoJGbGOwrRpdppRVRI3ghYooDjmJQ3+ioX1gI5AWOWnEGDhqoxy63iFG930UcoFTDGqpvLw8cz9euF4WHh+uyvMI2ly7u/EYpiIF5ak8XBQ4VlqnlEp3rcZRDswWStXUYVuz0uJjICaJTVvvSmjtbtUXswSoKXF4wmvykB6zzmLieLZRVCzRKYfE5JPnOqcNrQ5KuWkS5dStiezOQiYEoTk5mZwrRqO0ytgH93HXBtUq5o3ew1V6mOZ0otF/2g0GQKuvjJ5kIxmT59vITEABeBBzYlk2zyVpDAIxahJ1uJbGQCLErmZ0OLihZ0Y6rJzccjZ6o9i0bgaR7mj/9J7vPjHTP53SCq3uQkWdpx2j8j1mA1hr9UlfOemI00xgUrhCkPZiWzbdyyGbWB30UUimc20tNFl0d1EDhtN0StNeG+gseSGERPcipI8hf4GQlBzuwYa4eFONhiN6XUXxcET7LaRpUjbfCm7GbJCny5YmPb1LS7Mt0xJXmhVr0lqEGJx3DCHJ0rG7GF26AHSwmaYPKUZSULPdumiZ5oViHxHwa9E7oxV6K8TR+Ltfv+fzx5VAP6fVowcYmbZMIMMbrhhYswCYNWcUvhqwPl3cOJuq0wkHpx+d/PgibUcrfkCrmWitekGnYlLUS88IsOBZQG8ILajZK61QmzdCSZkGKhL9Hrnoc6KxfTjt1Ce65nfu1BA5leONYvmDxPAB05EKm04xP91JxnVb/NPrTLXR6W1gccGCrnEfKuI0BVPBFGKS8Nv8/OoVusI7Y86i7R2HppkMajFGXCAI+GR0CIExIjEFkheEPQrRj45+i5IoMCOYEfPGwMHOUhh+72vTWo1xThtd21MPABe3A0ydgehArXsB7lkzo1VNbqOcoc40+t4kVO8O+KZwrgGzwJLT6Tg1gOJT9su2sOTIDJ7TtVJjK/RbwJrugHRT33z3Lff9YKsFluzPfDjHplPbNvfH19uNP/7x96xt9YK8n0YfKSZy0iRwvzudMoERKU5RmtPnEOD9uwt/8vUj//Rf/Lf0uHG9PrCsq1uZ29mJjyEr/Jfbjdt958OHb4j1meF0qjnBra0xjkaI1YEHUU/zzEdKTvn0mq5WUZpmqjciXugeIIB4NhJMLZpl3Rf/zHPSO8EDEFOotZkxJraFrJd9j3LN2Zso2wFN42Rj+HBITXMIb+YRpubYzlYQJp3MELAynI6L7zGTlRJO6uX/nycZ+/128oXB5PHfK/teGAbrutEt6pBrSgfMObGsbsXmhxNBgt5aG7fbjT/84fd8/PBBfMgBeVlkf1jujC53pJiFmoU+yMvCul15eKznATd6J6RIi8ZxNO73GykJddu2C3nJWDReXm7uWNKp9ZAvuum9WHR03rtP3N+6uVtEG0Ih3j0+8P6zz5l0ppwXlm3Vw1ka+17YjxuvL6/0dhCvjyyrqDmjd6I7JtBFy5nCmmhCca17CvcwRpZQzHojBTkEKN7dD2+mxV3QYZUz3dGvEIyKgaN226L3OcO+cP71cZc+pbXGtm5crldi1mMxurr+WiTQyjmSnDvZgf3QFEOLTshr76JQlSI+svIDZGdb9gOjM1pjf71ze3kGOp+/e+Dh4ZE+InWXvaQ8woeP6bS9LUvGYvKQGc8fMNmNSiQnCkMtDYhs5m4fBiGogcgpkC0TP8/Ucvjvgtf74anbi3tMy453Sc6LrOLbC93l1ANMq8zWBza6WyJvfv2aI4jdf1cFC6S8kD0PI9kg0SitKAF5EcoUaLy+fNKGakaOKvRS/NFL9m/lS/qn4Ye+UB5M7me9uLNZztR2wHCOfDTMmlPNDj37Pskw32fmBFVJ8hWGmuIxBtZkrjAIoi06oqDmop2NL12NR/Fpx5Yzy7YRQtZUweQU05vcXibfeCDqW3DEKYRIypkUkyNLDRsF2aIPz0PILijWxp3Sm1NM6tEPHx0eravwXqLspgdq5IV6doev9LFsqPzUISH8KrhA1c4Df5xiZTUc81CcBwqOWCmIUGgrcjlyKlTyTBlRxBq9NUYSRzyiCU7nzbp3cpznddLUqrm7mhy2amsc5SAnpwkkL9gZjFY4hmykr9n4e7/4jCVnWu2EoD17yUFNmNNsS9F7z8m4bpktL5qkDOP0ATNPcXb3G5vmD0GWmeaon412Uh0misoQMakzpCvyIizaW2ESQ1YjfVISfnigF257ZewHS1492NTF2nP6KSTHWSf+vv251fswGG9I5HCh8WwARRuLf6OAwH/+T/c1HNUVci4zNDuLuNE7tVRutxfu91fAuGyrnCJjlpkEKtlj0GQ85SiRti2MkTWxLoXWG8mCGv4+GDG+0dQYXkMAQ9S6NF18esBcW9hbIKWNsKwS9fYqECv/oCH1yfaZ2g1eoKsgjIYyHNog2JCm0wHGWg9gWutXZdwwaK2w7wetD9a8sSyZxY0R4nR2G5oC346De3HTG4MY5HLZkVVyioua2DOXwTNyBox68OG7b/jjt9+zrJmUE4mFEPT81lpd3yjr+pfbC99++we+++4PvF++OgNpm5+VyyLLcbEkKlZ17g5LRFtOy9c2pMUKAS5bou4f+avv/4plWVnWzcM1o9cG8Oll59PLK/uxu8Nm4ZefX6itiAFjdu63R4VSByKu6j4kNybJKbxlEs0Jljc8cU68MDci0L4evUGYDa7ZpEWLFlnbnFg5MGIRcGDWVMvFMbCUyCmcAHH039HVUdM9xFTVoeuEfrDUtUSC9i6rmqhOKjjmdtlKS2+OBqnBdbAJTotj48e9fnTFMjDxAMdgicZhgVIj+yGkbByHOIKj+IKIJzre+6DXLjvDaNQmhOHjx0+yqX29EaKxLAvXdZEo8vLEen1gWRIxZY6jyPY0JLc/TLzcXmWxxiA0MOuU48b9OIhxodaF7hzE2po3GMOLE23e4sZLqDtA4+9l8S7OTqqBjU6OxsPDA+uynA/K6GhC0uWE08fg06cPPH96oY+hhF6Dfn8hxsByuZKWFWsH1F3XLMopJ46KtUKvB2O5EperrnsrGo/5gs15JeTMYZlAZLVATtOjflIclCZuAQnJPSfgzeNNxXPvs1nKXK4X0uWiP2+VVhqtCh1bcmDZFMh33JRvUI6CWSAvystIKVGOg15VhBCUmdK67GybaxFqrey3O/W4kUPnVz//ghTehEzrspDSoLbkeKG7MLhAr1WldLq5DTG8FXmtV0pt3O+y45wiThxpyjG4oA9ids71gMdrViFgQoxqK45utjPZeRAp7tohlGio+HVLO23ARU3dthFSpJbjLKiTTV/2QKmD3joxZdbVbS1NbkKjG/XYKeVOH7BtGymvShsNPw49+Nv6ynmjd0+cxxN5h4ooJcXaSQsqJgtCQ0FxM2l34MYCSROG7iLuUh0UMI2gey/0ruyEMGSKYNEbvJgFULR+Ts9gEMPgEhMgahSW6UTRIYZoVa0eMJoSYk0TmERiTDRrZm24W0dwClxMi1OUCmZz0x6aUg7RZTqiHwyTXWs0Y4tetDJIafGmo50TCAgetql9bW7+YSJQ6JC2oSJZ4OgsFtxd5Jx6qHjSYaspqNy+/HtdDLgusqA9rShblxbpDCR084ba0W2dDllz/c1JypsIXYWSwCEFhomeQM4c5Tjf35fvV7767EHNAH7YJjUqDNmQxpjpXYJ/MzsLF63hacXZwJqmykPAROseJNg7vRTM1HxEUw5IQyS30Tqns2EIZ7NVqEwLzBw4+dvWfPoRfuA+FSIxFG73nft+Y/TKmhMpJ2b4pyap837JDnwEc7G3DnvHl/0eydaVWVuYCsW/MfFg/vPTfNXqoXDeoM9nIHgDOG1aj+POlowYM9u6uEWrg12GdBFOeZELoc5XUGYMDFLOp1C8NZlPmAVKObyeiF4kan8qzsMfjmqHmN0dDkJSns2csJm9hbnOvW0Wi+AuibWouc1ZhTsyJjGbIbAHRzncLER1jvYBPZvrksnLRkqrJn4uth5D67XWSmmDVhtL9MkFg9qc3eFuiCklp/OgZ6wNpwwN1iXy+WPi++//IKqaGdeHB7BArZqmPL++8Pz8zMvz97y8fuB+e5GrV2+UstNq8UJbzXPzrKmjyPZbVtgNi0XXMybkOKl1tW4bn79/5C/+8Ad62zmOl3O/AfjwvPP9J9FSxw/WyustcrsflFK9hpoUbzEijqo9bAzRN4/Dp2J2ELxeiTEqAiHGc3rdvUAP06zFxPFSHeFaSxODpBXd+5mtZUAI3gCb0yonoOH7dnRKoEAT0aMIRiSDB8u2joeqat1MXV1wpy0vbWkmbcg4J63j3MP+xqQD3s6T8eP3kB/vLrVuCl26vRLMHaICPF41Qh8GOXS27cp2ucqX+vUZi5WYErf7HQYslyv7rs62lMYXX/yM8JVGe+ImBnKE69OTFqVpwcaglMw2OvfbK/f7nZeXm0fCC7UxvADAuGwXZXGUGSajJqFFOSnlMJT4mzJpuYjDNzr7fpCXC9RCHw2LCzEvpBQYx51t3fxg8Uj5YXTzja9Wbrcbzy+fqPXwKccFZyGT80WCIlP3T62wbuCCs1BF9Rh5ISwbtkh4nfpB7N0LrsEImlDM4BkZoIlD2HzkX47CUIfEkiV8xSkPDBitCRHomsasSyJO140+oIjy1JrE1iltxJihDdHSmqwuU47kRQejChUDJKAKEWWEVGloSilgEs/f73eeX595uGR++fOvtJFbkDNW1Oe43e/cj92peX4wxzeBbxtCVvV1beQ5ZixrJLxuEvvXNmilKl25NYILLWMyubT0IR2Lox63/ZXnl0+U4yDHyOWysS2LI7DOVbRAHUI4pwgTAnttcLtr41t13VNKXlhpUR6lnIgDpkNoW5QPIYpGJ0Qjxw2LcrZa182t7X66xQFITNmH0UuVVWKv1OPOtgRiyG9mC10N3nAUf+ooVD1p4wvOi5WQU0XYui7eEEy6CafFq1kiZiAt+vve2MnmEcZQsZici4y545AXkXKXqeQgbVaKovmMPmlTQuLUTAohkpjTQzRDEOhhcpITnUZCUrXElXIcszrUNDNELCnZV0WmQRDn2NCe0+e1GjpIpkB+OM8X46TqSdPiEws4D9wZr1Rmcz2gVLmoSRwuapY0GYGvP3twEXdkZsUM5yWH8JYFETHqUHE9/eAtTAH/dNRSDg6mQrHXQg0Qop0Upqk/ycH49ddPXNZFzenQlNn6Gyc+2BTQqlgM/js7Qg6rN09zgAUqUmttwAHMnCVvBAfeVBrbulLm5GYo5XlmEYmK69x3a/5s6kqnqGmdxKLS0HWT1S7r4F6KHGkY5NFJOZ+NgY3gTZDWAvamvTinSbhuY2jiaj5uCf4Z+0SgGRiRH6ba/9RetSt7RoO5MVkcZ9EUbRBG5f3DI5dtOV3FwBBTOlKOg3q8Co13t0L8+QDt0TDI9kYXTikyg91a0Z4xewIVm5neG7XstHaoSCSdpgK9N/38sNB7ga4cGAvulNdmeGvTXkN3SlMS4BEmcIvvNao72lACvc7q4UL0yJIj63pRdsbQNCQlBUa22hgR4hS+O4Uap97UwZlxlmNWMTwmMKF1rwGqntVffPU5kTu//8NfUmrh8ek9R+18+PiRT88v3O83jIMtS78y10/xPK1pJ4/hBfeuor52arNT74Rb6U7lU4gLKcLD9cKvfv4V//Vv/oLSNPE8FaADUat7P4dENqSNfN0rn15vfr/f9tgQRY0KQbTXUge3+yFpQPfwxCSmxhoTKUXdq6Sp9/xFNkEG+0FOV1QIaRtqZKo3GLIylrNeBNGjTPuiKMHGaJ1mAruS8Bz2Us+cJ3FfgoNJ8/OqIeg+3Z5aQLzeGH7e4OcHhu8900LCBfUO+KrWhjctx7/79aObjKd3V6E45a7QmrxgoXowjCYLfUB2epQd6s5eXm48PFxY1iRxYkxsW6AdxmXNCsxL7klfKzEvVLdinejX/bZTapU7Ryl8+PiRj59euO27bzSdVo7TGeDhcjmR8ftxpxx3eq+yQOxNU5EcWR8feFgfWC5XyBvDjGs5JJhph1ONEq0KUbi7JW3KkdE6tXRCDNTeeX7+dN7MnJxSYfLKN3e8CDmTlkwrO9aKRErrVYmRPt7qHXrKGruhQiZhhKYFqM1G7hjYUD5GD/Q2CCnTujQF85VjZAlRFCCfLtEbNPFPW5dFbFw3mG5Ktbrtpa5/TJm4yEp3+GQjYIygxsam7ettZ7+peYxJKIJETNMHXAtpv995fvnI86fv+Dv/6Ndsy+VsMLXRG2NUZiKpoUmLghYDwxp13znK4TxFJZXmnMnLKhQxRT1XbdDrQUUj74qcNZjo45Dt7CiVNKTz+Pbbbzn2V9ac6BifPr7yEiIxL7QRKd25sUQ1HciiOUUd7H0M9iKL55wS67qSllWc1OOQZe1q4lsGiVbFj1TKeloiIV+EJAS50tD7udh/yq/1slFKpfRdPOoBS1pdtuNbl4uaAZ9IvD2LcyNU0R4haA9Z0kpKStEVXWI/hYi1FWm9Yib1SqwFzAPTHLVzqJHg6HpnbsgVXPi4hs716YEYswT4A6cBPNPHYM2RELJnc0zkcjjqqkO0VyFv0ncmbFS5UQ3A96x4iitlKxnwyU51nne+OqIaGcNT0X/QfHa6j+3VXUz+/inamwePO6bEIfFsdTR05pG01pwX7sdL0C4VYubnXz1xzZFPu67lSf/vTfShIZHsyd02iSgnmjdpRaMH8GbCkKuPuNGyfxwMTfX2O63ceb8F/vTr96LIOc2ktX5OcQSm6MGZz0wICULQVKb3c0IzD8sQAhY1QRu1nVM1q+FsIIY3CGamKUvyRgRHvX3CECNezHTl9PikfOa46Pl0qiddDabBkpI76XVq1fdMukV0G82zgfHprA2f6pnWha6tU10NbE6KLPj+8Ubt+/Fkh7+dr7epDD4p1H1JQfvF+4eNddn0mbuK2pjySeu1nIlcld1Ud/ajYDH7nmxqWkOglYO728abO8u1Vs+JKqgYtCRtxHCDhl4LRG/ke9G9nPqOkLAsM5hpBiIxu0CrMeRYuOQLKa9Cqx2qbL25AcOYWAQ5JonTkzSGk77MaASao9kdRgRbvEkdp34ojeGTHFEw2xjUpt94yZll2aiO5DML9R8aOITMF59/xbvLhb/89lv++Medf/OHv+b7Tzv7cbwBlRE+f1pZF3Vn3btDaV7dSMHXrcJ4VTekqGJeqdszx6f7viSgIafIr77+ksfLxrefXvBLA8PpzW7BP3Uicy3sR+X1daeVwvApzBkCy2BNiSVF7taoNTBGmoMmNTEmCvbm4cRK7DYHjeaccU40pxW1ABdNf3dK2V0vqLaoN+W2iQHhQnNc2uoT0zbUaE+XutEbh4Mb0+48RH3WPmmxvq/J/VX3ZCa049cKOzEob7wFcuCNkmxxdW3sR2Z2/egm49h32X26OCpFOaBMb/VgJqF11EJM0Xj39MBRGnHZ6LVIO5AjMSy0FCnHnWHiHt/vd6w31uuVXkUXWZZMbfDx+YVgxrv1ERuddVn59Pot/+o3f8Hr66s4r/XwsaCSKD//7PF0OtLN00W6Xla+eHfl3eOVy7axLkLxbcl0AgXDemVdVpZ3n7HfC8f33/Dy6YOuwxlwE2lVPPCjqAkyLwJjlH1eTJ3QO+3YsSURlgViAnesISkvwwyoO6MVzJILVbPoDZ6kzegEy5AWRsg0qQOxLNQ0JiV9TroFoEI7qiu35JkDPvpTsJx8j/XQeyhXa4wqgT8mx6hp/UiIECX+njqY5LxpHLnUWee87gCtSizdqhbDXjv3/eDj80cYB7/62RdctsULleEoTffPq2ZBadtzxAv3o3IvshYMoDAcMx9t+3VjgtlaXCkFrL9RckKI7qalYrOP7tkYEiE/Pj6QY5JrRKuUPri93olpIyQ5W4mLKx2Pk4RJ7oxmximwEme7OZqiQz+nTHKbOq0vz3UxXV9V0xO1cXezKg3ST1mVIUT7TbQX3R2luqNOH4bVQYqiMcVomjAwNzk3nRidctyhyZ5awmLPygiDYIVudl7vN/5zJ5gfVKbDR9OIaSmqQ+YoBUZlmLi5ozfC9cKxR2LsZ9HYx4CwONIPrQ53DCnMJO5xPo+Nmc6LNaf4cdIjkin4M3rexMAIvWMkv1ZvyP68VjhqZU618FKd0Rqhw+nyNGtc3lx5ZoieeO3dD3Q9j6XXs2BvvoaiO7elAF89PbBl4+Nd/dkpJO/TzvFN7Nl7k3A+yUUs2lsarUT0KtiUm4IX9Z3RVKiXXXzu3hpfPT3wpe/t57P0b1lWHqUzkjKTzKLAHgsQJAaXrkrXURx6HdLBmx9NGDvBkXILosZFn7xMat1JxfS7NbxYVM2vps16p5nCZ6NrenSQSy8zKaLD1Oi1Lupebbh4MxB7OguU0acurznN0K9Vl1bSvHG2v4E8jvPeA+fk6af6UsFlLqAF8ymTPtNAFaBoOJw0vSiTiK6CL6VIyJke1PDvRaYgtRaF5nlo5ECUoe4Up+6sCHyCBJqMJDOaGUevWquL9gSnDbjpiZ4lEp5r4SGV4w1MiyGQolvpWmZYPieIvU8t6aRqRmlJY/SMHGS3OoZP3vRZQ1pknNBF9rMh0xHcPWuYGB3YQmtubxulhVqCdGzdqaig4rP5+mboulwfrnz9xTt++8dvaK3w4dMrt3s764E+5Ep634us4e1tH+oOFNTppGbTjVLUZNGh3eEyJ78PgxiMFCIEWV6/f/eOp4dHvvn44vuuaESajLxN8oYX8IZoznvRNEhAn84oTQA98DRK8/p0yXDV6ipO/1+WwHVTqPHUPml3FrjR6i7abDBCl2YPdzjFAUrR9v3a/sDBrHi+spnJZCa4RteiU2Z1vjAUXliqT1ejst6yawJ1zqmJ0zUX42S4hlZ7h/ahMBtHnT7O2rA3XMrepn38yD3kR9crf/zjt5Smsdax7zxerzxct3MUPZ2FgvtohaZrmdZMWBdaVH6AWZDmwQxq5fX1xroNliXDcNsxV8bfb3eeX1653e5c1kzZFgxIeeV62Viy8akd1N559/kXfPn15/Q6sFbZtoX7vfCXf/U7jkMagj7gZ199xZef/WPevf+cdVnJSyYvEvuW2qnHDr0Q48r+/JF9L9RaCGkhrxulHHz8+MmvivQGeznorbIk3YyUH/niyy+4v36AIl/3ZZO39HBHqdHdFSXm0wqzDyEywTeOMDrWJJQdMUHKWFq1KZidI3Q56ATGcCFpr8Qgh4ag6gBc7DbMoONJ6Ik1uRg2uXtGn/aM4iamGLDF7ToHnEK0lDTFcLQdH1sHXwwgekar7dSsjCGh+e3lhQ8fvuH9w8qadUh05y2GgK6Rb9ASb83Cr7KXwt0nMNPxYAx4vR3s+8FlVW5JCIGRlvN9BJPbTWtCAkbX1+dnEIJppLxwfXwSEuHTF4tJzUCcvH0jmiYlOYryYu5wZESJ02uljSbb2aLU4VabjA1SdiG5Gg96FWY9kY5gHEfFGKwxnA4icsf6adOlXl+eYVqzes7FdHaaFpGymoRsohYCvrE5Gjs0a+itQ62U/RULkZTXU0Q5nC4lLUPyhmU6gmjnrS58nKjWRM8V4jnc4aSjGJoFbHC/vdDcHa97EcowRpCwWm5Q/XTMOsfkMWlK2asK/xhIjm4pwdm1GcGfTXArSj37rXrIoC0MojvXwLIsTs0ShVH/VD/HJB5sHe3J4PaL4yzSAkYzPZsD5/qaF9dDU5V26laaJ2rb+TlBh7UoJZpCxm7gmoH5u2KMnj/hHOPoSJv9YFLih9i8I3LaKZ6loqn5P/jVl3z5+ZPn3eisllhbBX8bCsY8auPhElh9f+3gYJRSeKcoXlbI/QfNn+fxWGDYOMXyTBR0NkXd5jBIBeicVJjelKG/27sQzdYLMbQT1DgndB4ehzc94XwazUO+9DxOt6pgXU2GhdOFagw1gqNXb5TnfVZxLQQznDzqPjR5/am+eh/OWnDE2NkfY7gVda9uiSLqYAzKDhCa3emjEkdg21Zaz7TbTqiHzu64gE0q7jgF/JN6Mp8TtXH9XN8jZEJc2WJm9HKyK2bujvQGu8KCW5PjpKPc03UshIzAOulqzJujAYy2k9Lgsm4u7J6hwLvKQS8uY9LeNt/XLKZPSowzTrpnTgHUemcGxI5hECKByHAmQkCTkRHjmRfWmze5Pim7XjZ++fVX/Jf/3W+cAuW5LyeIogbitjeumwTJZgqeLbWdU7+B9lEFwanAThFRnB2ETSGyuh31EgKlD2otPDxc+eLdE3/+1787TVn60DneHEgR5dz3DiR1uh/FNSByswxOB8M/fzTO0EJRs9Pf0HutSyKnlT6M6mY5nYr51GsEc/c9nzSYhP90TZompZFzejHpYNLYaMIbSMjVNMasoOI+nFEisM4scJTCbd/Zj8p121jTW4irGuO3KY2vmnNdyWb4TTcys4bmtGk4sMKY+Uo/br3+B4Cig3dPj+R15X67ox6hUI962oJeLxcJs9cLMa0KrjEp1vfboWfaAoQFC0M8tkVuL3lJrNuFPgJG4aBwe37hKIWQRJ1qtcp+tRfeP6z8nV/9ii/ev2NZIl9+/RXb5crr6yv92Hm6XrhuF/7jf/IPPQ1Rh+K6XXl8uLJ6Idx7oHYjUKi1EYJGRrUWxr7Tq0aYSxZt6n575SiV0Q/WZeHd0ztu95VPzx8UBnh95PLwHizz8btKv+0qSvOizeq4KTRvW4nrRYdaOaAWdZHYSYUI/oCfQm7EEccCAbleRC8IehtOkXNNRXB+fxKnGwLUBsWzFkxORXFdsGWBFKFWL8Cic4kHuMBIp+mAqoKkiX1BEqzggYVDuosxXSUGx/3gcGFV7YX9fvDp0wf220f+5B/+Q5Zl5X4UISdBB2cMepiFOJqLpJuPqos6b+eKRm9qOkqAbbfCILCuCwvKxpg2lSYyKtYOuiPgKUaw7tQCoagWNnorHKM44hKxkEhL4NjvlLKzrasoWlGZD9sq2lZtis3qrfpss2K9yAY1SojfHJFq9SAGWNdM7sbr7U6rAAvXy8bASGvGYuZ4/Sjr5n3n/Y9ftH/rXqL/aAQr4a67RqEiW81tInTDmscGjZmxENHVHTCERqaUgGkrq3TtE3ax6M1fA6flzI1xmGFdIVggodwsmeXa4nWlaWnkLIDj5Xbn2w8f+fS6Ey3w+LjxcLmoye+DUoQoGR1bstNKo6hO9WDN8mDXxah0k1YqEBmGZ6YUMNzfX1Mw0YEMCwXx/SXGjJMrTiS2TqwHybUEk1GrSY1hKZw0KrN5HzzoMEp2jhclMb41ahZNeoGm7x0x8vHl4F50vfDrNiloWjNC6IIFOt7AeIPRERo6iWlTwGmeVzODKJtp+tPqQW+F9+9W/tGf/ox37x7O6dPoDpz4z9G1130eTgeIJpqXWfVi0f/u6Dqkk6YhPzxMuzuu6ODXfton1cs0MWjDqW/za9gpLJ1CdkOak94rFSOkTI7usT9cWDveRMwwvCiY6LZoYCEoO8GGii0wTWejtDt7gzL0+SJOn5pW5UO0i4A3V96Q/FRfRylkEriAvls6DQP0iTUhKMehfJTcGdV1cw5A3O83SpVJh4tY/JlxPYKP4q1WLNs5tRreSM5cG2Ow91esNk3OQkDJ8TDCDFl0ml00gnUYBdpgBBkgSKztZw+6n8XrjxFk6rBE4/3TIzlv3ux0PytUbMYoZFrov5KrS6vMZO3hxgNET20eRXowB/Zi8rWL0PEwKqPDUUV7D/EtQHhmfcwpWQhyBPw7v/oF25J5+XR7ywnCN1K/bntp3I/KtrzlR+yliq4WtF93X38xCOgUtTLqWe8DS6Lob0skhcio7txp8PMvPifH5Inbel5ad8qqIHpgglYCAZ5flYCuqbDebutuRjLc3MKbsiXJPIYYFCA4rWxN2rBJY9LvcACgdg6KTwVQRtYY59pesyYOoqdqz0yeBdaaHDz3Q+t1mgWkqKbFvQGJFuluOBLM2I/C6/2VmvNp0nHq74So6Tn4GyYS+uzKmJoTwbmf+3U7bd/HeX3/fa8f3WR89dWXEiZ5t9VqPS/KsHi6m3QCVhutNBc+6pDSGWTUogKv1UP/7u4JNpLbTwY6gf1+YAwVWxbIQUhUL/qd7x6uXNeVjy8vvLx+opWdYzT6UaCLv3yUyLptxJxVDIboh0mnFBWtwxb6/cCGuthGYNSdJQenGhir++xDJDB4Hs/su9xBtpxZl00iXz/wUzQetszTY+LDyzOWFtJ6cccSz1hYr4S0wBi0/YVedtGQ4mC0QUrOwrQGyFVr6ISTqLoPaTV8M5SlZ3ABGu7u5IenT0pwly+6ErNDCpAz5MQPnxj1uUO0n5x5U7i5dahNmoARk8b1vQ1KrY4Udh/9y0qwuZ6gtUY9CsfxyrYl3r970CjXecQnOjnHdEOpmbPwmA4e8ObakjwLI5jk7713KpHYRbsJ0RFKglvuVe+X3BXG+bzKZBhCfPu0fvSRPKJP5BTJlqlNNMH9vnMbB8m0+B4vq6Z5fdCQeBsXeRH03npzakqvRGvifEajjK78DKaDWD6pLC8vz3z/6UXi+fbTzspQUSjUbLp87bu0UoPpYmInpW++mtMQuru/zM09/EC7JYqO3JCExTR6PZwWOFzs6GvBmpeA06llhiY6su1iakOZDaNMl5RXvv3+A//FP/vveLhc+Y//Z/+Ix4cHNNWsar6dG74u0ovc9wOjcd1WFncOam6ZKsQygosFS6tu5ShR5ExdNfMwpl703tztSla5SrA2U5bMuqw0Lyw0JXJhalCwFAghHzgy/zeArckBCWdz0/qbjsD12fQBMWWsdke4koMjc4qu6UKzuf78a/4DRIGMzMBBgD40QRI/HfqhMEQFjw1+/dUTf/dPfs77dw+aTnu2zQDXK+ieBqfZ4ZMQM1HpovP2K4MeYTRpVII71IRgTsPQ/eiewTJ56nMP1PTeTnoVbjV8Cq+ZU6S3YiLF6Ne5U+o4JzwnUeaHiLO9ZR1oWqLvt9G9xZ70Gb2HYMaaIjluJ/963kpxr4040W13rWruTvRTfJWOivRhDC8mDZiZN0cplLqz5Ug01RUGb3twVyHegHgWanp1bwrwr0cz2gjS4ahb87KunvdBep0brdxP50vwNYMm36D9Spku6KwaboXuxfZoPmnqohjG4NThPhghcnt9ZY+7TxycKeD14JhnrE/ozmrarwk+gQljlybQ8ZbAICXlYvlfkBbNefddF4UR/ffMnzukSdOfAwy+/Ow97x8e+N13LycoMreVfq7xwW3XRHS+t8Hwfx9ul6v1FZHbYkDGEMOCpqe+pvTXpNfYtpWHy4Vf/+Ir12U8iyobODVmk0zqH+Bskp5f9xO0mRTnCSZI09egTXOQuVVqz5v5P80nG7W9hWcGp3i15lov8Psa3yixPk1Swnjy9yjwy9y9bmpaWh8crZHgBHPOPJ0wPFh9EKMMJRT4WNkP19/45Dxa9Ob3rfnTrmBnvsecMM9mbK4vnbHac8OP3EN+dJNheaOWV/b7ndvt2TUYm+cnLFgQw+x23wm2a5xUJ6dORd4UyPZWFB6DREwhy151v905PAGT0VmXzP3+yncfPjDTBeV4IuHyse/KfUiJ1Va2dePp8UrOmVJ39lr5/pvv+PjhE4nO09OVd+/es24XGLDXxsvtI0c5SFQeH9+xXR9l3+pirhkfXzycL8XAdbuwpIV1W+XzDjw9XKkNjv0m0ReFh8fAx9814nIh5lXHQ2+KgHeOL21nHHch8QSCZRW3o8FotC6UP6Xkwm09cNEP4xmWooPQx8NJlmpn6zzpS03CLfNFbU51891Dm7Y70ISoFFRzVGzUputQq9O6wil0pjsXvWrXmUV7bZOGod85auc47tzun3j3+MDD46MKHSa3WmI1elexHxMZI8ROaO4v7Zz3Sf1YsmcYDLkCdV8wvTXK6IQezg2jSzWlw3pEOXAdhyMm+CY/x7RgwziOQqeTcyRjXLYElile5BwNqgVxTaNbZYZIysEDBbWVt1Zl3exUnzAaOWjLa0WCwRhM97wqlwPEgy1HkwVuCjxcLz92yf6tfLVWGRYYJh1FTEgQ2SXaFlrYwOaEwu1U3Y2kT14pnRQyKbhjUNHPbUSamaejV2hN6fYxeaGh9ayGeTavwx2HZvo1PkWTCDQBjMpRdmLoXC4LX3zxwBfv3/P+/fU8IEIIEHSYRBuEmBljkCOseSV54zjdRlqrsnvw9dcdCasuuA5hiCrgFMrgDkX3/eB2v3mGj/jd18uFh+3CZZVFbxwevDQiIXTXX+j5AndbGUP8aHTW9N5pQ7lAfUgUedTC6LhzilDOvRRuh2iqU/Q9naI6EIaEjTFBL2iP6rLjjSFqAmBSsEU/zAZ4XaTqR1q3g+JNomH87It3PD09ct2ubMvGXkRl7cO432/c+k4f7W8UnLVVQqye15OJZtyPXQ2IiQLWWtGBaq5N820tBHNavSZB43S4mU3s5F87jaA3tbaqXs79VRo+82JADckP03LjbCRD9IntdCCbjXP15towi+QY9bwOPaeBqmdkakRCUtbUEI1u+DTmLBRMyPBP+SVqlF9D80RkL9FySiwRv/+ug/K7ZUHavNYdUHKQLsTgWio9M5pqC1xsteNVmJpDb0Zn4zJ1eHgTV44Z2CjAgT6bEf2M4U0lqCqKQVPVAcyE5pSyu2VV4qL9pZTKp0/PlCr6Yk7pnOQyhNYX1xSmpL+DT0rC6KIokjkb5w6dhrnLJCDLfbQuZHwRsJid7qxi1ZaN3hVOWZoAooDx7umRrz57x3/zF787aWVaKZMCqE98lC7tR1RTHYOxLlnGHyYh/xKMNU4apIMOA3IUUi+XSBxcNJaUeff0yN/51S/4+Rfv+ePHT2cjUuYkWNjW2WjM4Lr7UQkh8vhwkSmJrzUMAeT+vYYo9SDjI/0wt+xG54VcEdWkTd3TW+DnOK2GW58W2BHrDvoMBSxGBzcnm8OCGzwMabVa13RWDoNvoAMMgsMQAlmkj+6tUbyxVvK5mpziUy+GgE9MoNukj07qpWo8NRb4tM9R4B+1Vn90k/Hpw/fcb68UVUps142Hh4sXpbrIt5sXCi6Db61z1IOIcX18PAvTojNeXH1Hf2o92I+d3ru6tw6l7Hz4+IFv//AHrg8bOWd6q+y3g2+++Y4//PEb3r178uZgo9XO0/URxuDl9UXdeu8k9z9+vd8wg3VbuT6+x45KG88aO3X49sNH0vMnvnj36A0REDK9NW6vL5RaWXJiXRaWvGAh0UbguL/KbnFogZTaeL3daH2n90MH8TAhYxawdCGERcLCVog2xE1vGt/TG20/OEYj5QQhg0VmSKCdY3wtGMOoHSqdHMJJy7H8FsI0WmdUd2yaDUsMbw1I7Yy90Gr3bls8VtyhgCaEfVKtQtAUQ6hKcyHU5IUCpnDCcsgZZ4zOca+is1jnyy8+47pdgeD+0I3QGzHOsbae6JlaSQBbM8ECuZiE+cuKBQUwlip3iJwSOUZHal2oN5uo/nbQivlVT0R5Lm6NwhuRzvV6Zd0+5+On73l9eeXl4/fkEFjXlRgCR+2EJB1AirOoG07fCBDk9z/wezsR2iZOpiZr6UQxk280fQzu9905/ZCTkLDUjSX8dLnUIOQsOI8+BoO4MC6iCrSh5NVgb4c5A2q5M3rFPKn2h0LqWjtHbRy1gyM0tRzcj4MQ4LOnJ7cDxQ8FPRu1Kl29NI3vWx+ayI5xTktCMG8gNJXI2WBsPD0+8suffeG5JTIayCl6ArxyWjpQumGjecE3pMPxe3p6p8/Pgppnhosga8eCc3oZrEvjennAiISYyYsIlKU0jlqwfX9rdAwfmwefDvrvMZweoill77Nx4+SNKx9GNqECCQYp62AaDPajUkrn48v9LIbngdOaDucYhZyrMHCU1sS1noUBzDpL7y+c+KD0C9VzeLq778QQeLpeKKVxC4eLfgM5r05VUsjlfuzUcsjbvnVy9qmtyaHuuiaWfOW2F+7HneqFJ8M09ejK07HoBWmYCdt6LoNboeJ6HjkmRsIwN6pIZNyoAS/qmXuLo4XNp5z4bfGGYjYJ2vNmaebPhBeo0TUCizec3i8L+HE6SPDJXjJ35HFrU1EScYDpf8xV/j/ua8nJKZYCXG1AN3diDBFIlP1FCfFDYbL4dDxP4Mzk2NdGx0whrynBEQ56qWAyG1F5GE86W2sN60AvjubaeQYLGB5K3sYty0f1qSMC46z71FXvSYXk21oZzClFO6fpIOrT6+3O7/74Lf/yX/0VS175J//gT/nyi3eYDS+OFc8bcyLnhTYGpewkG1y3VRqD1vQ8RDfLQNOBXu4AhDqblu7PZhBKjsAMS0mZNGOlx0505z4YPD1c+ZNffE3+r/6M4dS94NNS+wGQUHtnPxqXzafQMXhwpUwXREMLWE7n9E1DwH5OBG974XYUHrbgdFHRjr747B1/91c/51/85rcnpUsgjqBOfKp9zjMG3A7p5B6fHikeQ9B8QjvXZvRJy14apQ2uFrgkgcy9q5YVJUt7qWr8H1jmOrMDRAk3GuaL95xaOgjdDAGhvb/tkQRCmE5ZjRaM2LtAK9cDjvOeOUjC8P7TRX5jnjFv9ECdiz6xGHpI23QvM/3+Gfg3gGGD0d9CSH/M60c3GeWQzaIcnAIhRY6i/Iq0bNRS+P7TJy458Pj+PTEE7veDzKCVnedPz+SUKBGOJjFwcr7hvQk1qLWx318x0418flXIzOPTgxoMR9CHP1Bff/kZj0/vWLeNJS9clkVi9BjZ28bTZeO6LlhUgNW+77S6yx2hFnopXJfEw/rEfhzAqwqX1vj4/InRB+8eHzCLHPuN27GT4gM5bWI3UKF1747VRVYfm7XeCSlxlBuXVmhlh3oDOmndCGmFftDuxWkZQshGV+NRaoEwSIscUnobDHS4Sghu9B4IYaENLc6Q4hledq5ondrSY/Su7IwhCghL0hPQ9D3jqBKUBm0oZ8y485978dyCYCftQpSEQd1FLYgpEJNRSuHYJdgcqMCqRfkoMRhPj496a0MgkQpwUzMVJtLjhyhKfb7myGdPso48mnEUt/PT9qENNARNt5Agezi/W7SxQZj83S4b1Lwu52YkGqBGo3kJXLZMzBvbYnxcEn/2m9/w+vzC0+OFz949eoOxsObBtooG83IvtL5jo7KkxLIs7mykQ6i0zu7iU/HcOekk5kivuduVuSd6d64/TJ74T/e1rtuJ+BFgmLEskcHCUaS3mX7pE/BLMXrkrZ2BTTllBkMua2YENCG13gk0rktgu1yE9A0klG1QR6UUWSsKuR8etmT0oYTZ4cVzjEGCbVy8jf2AztXPRnhOPPqQW9HRm1Dx3hRa6dPcHAM1BDVMNovK4ai3OQ1q/m5TGNdsYJIEhgwjsBAeL3LDKwo2vB87ex0Ma9w9WCpNAbLh18HXwWy8HSmrvcs+FUF9QuaNvCwQGinA4i5vZUikue/1LKqm6NqGDh6hvJ1pl62CqdPR58spOqHDXDQtVLKPNy93HA0M3qxccuDrz9/DgNv9Tu1vjklyyBM4dVkzuw1eX3f2WshV04XhOqicEiEklhhhyRzFKVIp02Km1UNUqCmWNLk+ical+22oSZ78eRy9JESaqcBQrpMEwvMsDj51+5sgoLu5OI0H8En+GxVH18QblhDOPWCGLfpbED4dzYd1bnltEDF3t/KCo5+97U/ypYmc+bThjVomCluktIOjHizBCCPRUJZWLYUPL8+kJFvWuOn7BWiAhUTfFIDb+nRnmjQz80BQb3D9xB5jNhrDwQU7z+Pq1vdLVL6KmbvJOTtiDFGIDy+sW3+bzszk7xiNNIxaD2rdPdupsK0r20V2tQLNDItSoyxZYEM9di5LYsmL28PLTWmaGctVDWqvHoAKFlyUHZyCPKCXQ5/Fp+05LyxpcScsp2f6ZOHXP/+ah8vKHz+5nbjcC05UX85Jg6M21h4c+X+j+PU+tTWTaaFpYLCA1eOcAl/WRaGYo586tuHNxC+/+pItZ+6liKLf5p6k+9bd1W2Km++HbPfXZSOnH0x6m08QZofIidX45KC7jnYCJlPvpf0/Ds9VGTrnTmbDmHRJXY/5jE1dV4hiBc0GZPi+Ot8zpsl+dXF7zulsxLrvRWdN443S3NeZXwte143CGMEzXYZP0+0UrGsfwwEqaQfVI0/X1n//60c3GckLppgSy3Zh0Dn2ndoG9EbKmXVdCKMTegWLxBBZHx7Zb4nX1xuj7RzIpze5//KWAhDJKdD7zn7rvN7v9DHIaeWar9Qj+QLp3PaDHBO/+OWvaAxyDDw8PPD08MDj4xM5ZwjG5flOikYKxrKs9AFlW3h5NspeeH2987s/fMOSIw8PVz697Fy2hffvnoSQ1epCuUZaMp999p73vSnXwxsedbsKsml9cN+r+683hbhtK0bzQMDKqPeTSz4nDHh33RlYDgQbSiFmOOpojKFrNOZ4yx+mEAOtGzYiM2U4hume8DYNmFSnkzKEw8XJD8CqBmP0oU4/BOk4vCUevZ8e4IZoSRN167XTq9zAmOLtLjecVqs6iAatCO3oo5Bz4vHhcnIaU1IatkUJGUOSc8dAY2RMYXkpRkYtJx0hxsDRZV+Yt4UQjFbF4x5OdzEbJPOgvpRY18xRJALVqDowkzBbbxCghcFx3Pn4obMsd8pxcNxfWddMrQvZkaJukf04CKOypAg9UI6dvdyJoxO2iz5zT2zbhWXJhKLAtVuRO0drOyEpxGe682iCFpD8wl27QiSkNAdPP9lXI3pDqeyJ0u6nu8rwQLnkTnXJN8IY0jklilFhcSr6JRaPZsQlM7pTQIIHDPkhWYeeIR1uB/fjxn6vouOlCIu+r5RCtEheHzhqd9cwCJawoMyLMQL1B65ECk1yalzzwLZtpQ1OqoaMGWSfaVGJ30oBTufzN9y6VGGkwV1p5H62pEXaoyDR35ajtEwhcNzu3KKdPNk+OkcbNJIOkXZ3+mKi16rr5W5MMUViSCdVDD/YY5RAPA8jRYUF5ryQQdaZ434e0DjaGVxArwQZO5sD/KibjnPCD/S1PlwrM+YRDYNGb+VE08wdnv7kyyf+9GefsaRIHXJ/qh7+VwekMNSAeYGfl8z9fnC77w7izUNX0/JAYNlWojf0wy17Q1hPRA8Gk0fyNmHQnnlSCfzrk5IzuixrZ5M6Bbk27JySmgMqs7Cy+Qy5NmRg55QJ07k3OfeD4WnoszDxt2tq+IY2C/DSaDj3euDBgSkRUuCH9vg/tdfMXknzjPJmbLRBDfDpdud4ubO+u7Iui7JLRuc4DlJM5LRoz82bNymuUXC6K6zsR0EZJmqYpYnqTkfRuTtGJ6V4PquHUwi7NxhHLazryrI8nJQ4BX56E9I0sbsXmaYoLFLnKV7grUFOdGtYyDlyvWx88f6RlBaWvMlW2gt+udo1GspgyC5SFnVwOk4tDPM8ru7uZ2OakahRT0n6k5CCB53C6347z1V45XpZeXp4IEW9hxASyZuML98/8Re//3iuO3jrqed+OClTY8js4ra7GUv0yYRp/wy9Y6H7hGo+1T7pHl5sN9duVhkNffX5e94/XLh/8BT31s81MhtDxpuD3eu9cD+qaG/bRl4WjqOw78c54T2KQoHPkGEGtR4OikoX2sc0FtD666NhfbomjnOCK4MT1y9PsMqnj+GsC31fYvjaR9R2f98BJNpmSJZAPYEPTSfmRbeTFqgGSfoNpX7jFGF3PDTVy+a64n4iEX7V+5v+bmpif8zrRzcZ1+tF7iCjskSIywNbXri/vnAcdwy4ZGM0d2Y6Dg+GExd6WxdPcC2U+3GiDzmvpEUpvY/5ievTE68vOx9dhxFsUMmktLhP+2A/Cnm5sF0eWIKRc2RZV8ZovN4OIcGt8XxXxsTTQ+W23zn2gxzlCvKb3/4V//LPfssvv/6CL7984g9//ESrlXePK8uSuKwr79+/I6SFOIY0EEFjv3I0WcKGxBiNkCL3287rfuiBpp/inmWNHHdPFm2dmK+68V0oO+bBVwQSwcdoaiaUDCnB+cAIngrKtDtcMqwZUDNiaJwfkgdSuVtUL+10WZIdHyfHlAGjNLpb/KaQCdkTYasmNRyF5k1IiD5q9/5kNNESpljMAhLel+rWlwFa0CSji0N9WdVkbKv0C0vOCi4bokulnDA6IS20WllASExv3I/O9x8/0Il8+fXPCHfY96G8kzXz8fmF+66AMjNINiAYOWdm7sIlZEcThZRK8N9F5erKCHl9feV2h6frFQsa6nz+9MBlzVwuF67blYHGvUsO3iSI14kZdS+OvFde7gdH6zyOi+h2a+Z+HNTiNJ9uxNaVJRASIQzWZKQczk1pFrtxOhP9RF97qUxrxVKEzuWU2daLo/mVdc2s20qOgXJU9r264QBqJHo5ubLKKfG1aYHaoTVtiwKNHBFGrjylFgxpnFJKbEtiDKN0FW8pJVK+sA2Nrpckj3LMaA3Z3vZ6Js0vKTtCfIhOExTAOUzc/MOnprUc9C6Ti4kU9tHPn2NmLL6521D+QQiXvyFwz57WK6aQQUyUUdmSYQ9X9nJw33daqewtukOlEPI+Dmpt1GP35OqF67YQowIgc/Jkc0crz4wAN3aQtW1gW1Zu98o3H29q9udoPhgKolJ4oZBfATFTnD9F3W8biDfQXigPJFZvTp8c58Sx8/d/9QVPj5s3bGpKo5nWg58lo4t73Nog5YXHd4Hb6x3cdAILsss8VCzl4yAvyVF9t4n0zJW3t+h0Mj/sRe0IJ43TvNmy2XT4uSx8pzPa8JwhJd0HU4NqYWpxBIb0Xk4NBpPm4b9zTrpa62DNnw+TDaqj7KJG2Hl9JoKpfKGhhp5GqIEcE8sp9P3pveZEatJeZwRCbwPqQQCFn5IEZvgztaSF6/ZAbYPSBnUYEXHq5Qz3+gZ4TG1PVAEZndqUWNVcdAcVnKrTfYKQuswItryAbcq7wnU6yA76KDu3fff7aSftTU5CbmzRDcsmgxLX4UQv6J8e3mm0NZvUoAZp6lWjBbe4HpQWSBE3M5jZB3Y+UxYGo85Ay04rhaNM8fATOWt9PF4vdLtSqhghpTdu7gjVhmjBwYwvP/+MX3z1OeG//0smzn3ml3Sf/wyoVZSp2ppTI7szKPT+jtKUd4Ma5TVLZ6T9L5xU2jKnsGNglgjB+Oyz9/zq6y/5/YdPblox3dumcZHXQH79Sut88/GZ21G5WiTFhbip5lRDVOEeKOUQW8KLc2uVmCrJAnnN5BS477solg7K9jmzNTsbTYKaC00q/f//DcoUjKA9l941BfH3K53LG4VtblQzswTcVC4ksOjJ6nrOYlSYYe/VNSoODg1pmWp3TYfpzNPV13M/hqjnqoFnzs6Pq0V+dJOxbg/QK61qMVDuZ1p364HjkEBvimelnleK8bKuZ2o2FsjbpjyChwdCXCllp+w7yTopJ00AxjsOz5NInuYsqpTB665FkDOXdcEM7ntl318lsO2D7z99ohyVz96/Z0mBT8+vfHp+4eGSaa2zrpn/6H/yD3j3eMF64dP6yl/84ff82W8+sm0LX7x/x9dffc6vf/kL1s8UkJVDwOIi7UVeJHYekb1UPn56lmDI5sjPEb4cZcV734kdlrzqgGkF6l10gmFYzO5+gXNr3Zc7ZB+vSvDda/UmYdrfQUouHgMYXZxRX9gyodFYNATDkt6TZl6c2fZCMBHlKovKgiF7uKMCUQ92UMKtuVZjOKqkcD69h1I7tbQTHZ1iqGGigHzx2SPbpqY1pxnQOER1ibIUrLUR2k1vwgK1yXKv9y7RFRDpXNaFaJwJwMECS06Q9HzYkD2tvPKNfa9vPNrJZBiymaulEMOQeDu/82T7yGXbRF/jmW1RXsqybEzP8ehOHCGI2hNc4Hu77zzvBy8vrzAGx33n8eHKsq08Pl6xW8RsVxEzMyNcn9MYsiiOATHcwX7kov7b/NpLJQY1paXsQu5Tdl5t1zp+PWj7jWWV5qb7VMImFOW2xSdq40iLHuVBHUKqp0Xu38xCmGN49IzGwLJkIo7yEdXsxUhvheTp4/I+nw5Ub2m3Xie4s5IK9YA5rz+TQ6CVnZ5VzNgsYIHahp8RRvSGOMa3LVniP8+X8FG5TXegWmj7XcpqHHG8i7IhDVA9jTcGuG+9UznqoCMnrDVHlo5fK7Ej05KZrmrBFNiEF7N9wB++f+Wvvn0BR9LnfRAdCgcwnGgwPKTQw6BEK9L1D5r8w5DtY/e1Or9feTaDHIzPHi/aG0wU0eJTDKOr0BsOegyjtcGxF1KKXB4uAg5aATysKunQLFV2wzMhtxtO+3BxZEqOfGp9N//zNgYZO3NQzGkPp1jSmyq8mOm9CzSJCSMSo1OpnLPdupysJho+vJOcU4g5OUlOr9M0+Yf0h/nfM3+mnY3sLFTeqFiDNhq9/3T3Ek3KRTmcoY0WE6DpVoxykxw2uHtu1mWV+9lrNWodtA6hNzWAPoms9WBxt0gNSBrLsrB5PtexV0odjhI3UhQdR+5SClyz5DkUiArYcV+VPhhI81RaOZveJWu91y6K8bZuhLxRjoLZzMDK/iypEOxdgXrRb2FrFRuDNWdRvoZTmHvHmpDyFqD3KrZDjOdzLfegzrokZh5PipGcM2uOrDmQY+bhsmIpUY7CfV94ud0ow7iVzr00lhSw3imt8dVnT+QYuFV9xgBzoKl/MYWg7p42F2Jk3RZgeBCtZ9r4ZKMP414HsSnkOUWIAzfu0AQzp1Xaq9F5euj8+mdf8i9+86952YsaDdx96Qfouyawosy+3AtH6TB2Tpm6NwYWjOt2oS6Zfb9TjkLbC7nJ/U+avMqaMtE2Yincj+Gi7Wnm0M6coOny1Ft7AwO8aVLIpiYU0XCK7sxRm05owU0M5nTUg0E9ZA+fpIYoZowE9UN71ATfXJ+akqYXTmJhCsjnni+tjIPOzEnNfG5+3OvH52QMzoO17AexCG0/yq4Ob+ig7X14mJF4bfI1vlDu8jrftpXLdSWtF1JSqFTdbxz3nbRlOSO5RVtIStW2EElBglnigsUD6OT1gqXAy/MLKUXW7aLkcKqPnhRN/3K78+n5zuv9YFsCOUQerg+EQ4jkEhO//PpnfPb+kfu+k13fcdku/OJXv2BbN0/8VF5FK8rUmEF99/2uw8odpFrRiL7XSopwf/mO/fkrF6zpOo7RGbUwWicuKyFdGERGK+peo1Oqgh5I+gx8k51tSAukLK4tsAQVLGFWzdh54OrMmnN1JPo2m3Y2OsQmzzQ4VBqjGhu3vFXB4SFPWcFkvTZP9Bbv2aKoH8dRzjCe0fvJN5VFcednX37B9XLxRHJ3UKlqICS6c1SKIWqWmZqursMh53wio9fLxrYtbqEc+Ozzz8Cg3l7pAzW/rZPyqkXYqrvImJAVU4O15ExKT4za5BkegjQ8rbAf4mkvyyZb2SBUsdVK7eYalUH28J1wyF3tdtf/rusFUMbA8+3O2hQ+eVkz1iulqXBVwaLx5X60cwLoldxchD/pl/ziFTa5xPlMdepxU9jS0MHTWufYVYSVboSYPY16gAWaC23nwdHHdIjykClvOOcEr3fIlsjMRkAT1yULwJhc1t5lN3gcnf04BG44pWbapcaYmdaymq7McbIoMzHI3WrUgzAaFgYET2324rX3waIKlNYrvRa6zc/io+2gzJip36BVPyP9wOhCoErr3Mudl/udoyrJNwVZZ1qQf3uMkCxQDMrRnK5w0Fo809aFbKroWl1g310IPYXkz59e+Zd//nu+f9l9guTTtj4c2PJmOdhZyJjzetsQapiC3OGCB3y21py7/RbMOHnFIP727779yOtt5/27d8Sc6MdduUlBs8gQEF84RlIYlHbw6eWg+x5yWTOjad+eJ6Q48INgXRSRLFS6tkIc/aRXYMEPbBW150HbYVj7wZRGU+QfCtvNUfHaK8GbkHDynO2kUTR7W9p9KJOjB3WxrRXRFLx4mIYQonSJSmynzS28efu7Bg/d04g/W4iC9VN9mdPIoKtoL1W0GpN1bKefdu+9iU6ZSfQWuO+HF6cQRiQOCNbOzCLZoUOOcFRlPFGz7xEI7NC4Xs2kN5qB7FqZ4Gedc/iZxSEMn3JMAFJGMTILiH24liKRlhUuYDRyQPtdH5T+Q3vbiIWsCdYobkqQiVnrPVik1Z1aCq0VwnBO/9A5PAXVwQE6c0GwrckNJKLssUOUDXyIhLxyIOOZ3pfTKKK0TuuZ0Suld96/f2JZEi+H1yw2wRG/f958H14jLFm1Vu/SMU6r3+5C70klbE26kRiCEPmhQnlJWdfMa6SQI7/+2Zc8bCvPd89nc4mYExiYA9UxVKSXY1JYjaM2GV9UTXdikPmKnotIscbrbfcYGqMvnX1HDAyTlmXNSZk9FrG0eNDfBJVcSB/iOdkezDpNxbwZshC3QLNp+KA/G17bzanw1F751T3LvFqO82tyh3ITjqHGeOYr41RP5Qm9JX6LlukgSXARuNPaJ6jyY14/usm4vXzS5pvs3Gzvt5t4x4j21Mdgv995uGzEvFKH6whGZ91WGAlrldvzC2kvohWMJgTZ1LGFFCFEkge7mUgpohzUgz4Cl8vqbhyJVnZeb3eW7cJ+f6UeN7Zl4f3Te/q1EWNUQZIW8mpctivXNVM+3Xi9V9Zt4/OnB5ZFhbPFKGu4qAdmfXwgWGTfK8f+Sm+d0hT0s5dKOXYwff5SDo4ijnlOkYfLhXeff8Zv/+Vv+PTd73j/xc+EpMWkg3AfjJCw5YJFBW/1+wG9ENJVFpggmkUvEFVsgWFRyAxDXHZcBMSy8oPdjbenT5/NZiZGafIabzC8kbCAuCYBaTJql15jKAxPxbc3K7XSj4N2VMpeJDo0O2kVvctmrYx+Zpscx50xCg/XBaN56jVuP4hG2x2OfadpLbLEwbYunnIpS03DyEum9q7AomHc9p2jFHGOx+B+u1H64H57JTB4fOrklIl0WcdOr/A++c6GhUyzpomVH+R5yV6kKtBrXWRjXDtYGzCqGtAkp7FaVOSaGXldyYsOoY6nn9fKfT84jp0lRf28Jn6qcmZEdWgNbrdXxmgsedFmZD/9aUaKidEHMQjdTTGxrCsYHHeJ5oZN+onu0RI1zRohOMJVfHec1D23UxYMooIz2IlQA/SmsXB0KqGNDj2dSKShQgNvJkptHA1kFSkwZLhWoBYIcSGlhdaNHozoE4bE0IPbK71XcfG9MZrvSS55g1oO2qhEOhYjpRXqcReq6fzo6JaSAJPPPAPmhuPaR23ca2ffd78WUdTSnEXTwQEF5D5z33deXl5PvjElOFVI2q/7ITS4dTV7G5C9Mfv4svPnv/8obU1wWqd5w+WH96RmDOf9Kil3BX+/0myoaFeg3XDRpq59b29BcWPAXjr/+f/3XxNC4v/wv/knfPXZo7s3DXALy9O7PWl9Puiqct8LR6msKXDZNhVrRTq5OT2tRU0l5gLpmBhD9ElR4AJm2akPbw5TYWZhAMOkFekexCgXtXDaiM57qCG187WZVBJHZbtCFqPpMG+9Uw0X4c7neyKOmuSG0M/plvl7C0PUvj4a+3GIDeAi3Vlotv8QKPJv2etyuWjCNzo9goVFu6aDYcMb5hgTKWbGaNyORh9N9GZvTC0ovTkFI8inmhSNMQ5a3XGSiuqOXikNZA+cfQQXsPFmnQuyFq7tBzlLXmD3LpAppUQakSVDrZUUA+uSWAk+tZ2otkCE5LTKNlwzKTKYppJu+WoxnTq3bIE1ZZaUaIfRF2dCeL6H7MDf0HOBEdEpi5oczO8Nvn86yE49dnq9k+hct5XXfT/ZJvvu+T198Pn7dzxuC99+esWGpnYnRWmKNHGgrnSWaDysmTH0OUIQLVMMp+qFrtGCG7PQ6DZ8+qypi9EgDL8f8POvvuTrz97z199+YtoC26Qu+L1T5yda58ePH2l1J8eFgLS+EeWC/dC9CYxlXakNbi+vpEPBqWNAfb1TSyHnzLZtriOcWq/EdEZ8+1m6H8GbzUmb1XHxtp9qX8SZEj/QeSEanpm7VnkzO6ed87/mxP0NxOhOjxuk2L3ZdJBTsAhaDe0EQiTO73QLJJKYPTNz6t/z+tFNxvPLjV7vPD5dSdeN43ZXc7GufrON2rqSkNcLllZCfSVYJ1DV5cWVcr8z6nFmXWAK9oumvx9LIy6JtC6sQwdxtMDomZwjterP+4D77Yb1yi+//pxb7Xz37e+hKU49xsyISR1oUNPw6fmZdVm5Pj6QtyuPlwuXbeHp6cGRZ7ko4JkEnchxu4uuU8VrnZaKreswTNF4evfIwPju+w8M52Y+XC88PFy4v95IcfD84Y+8+/xrF+90DwmrELJTpQLtuDGaUPPhD1AYgzGqUJCu5OOwrMSYVXiNzqjyTA/RsN7dCl+FmY3pWOGWs5ie1trhaFC6i8G1aDWLjD71kNuVHG3cgz0KSRKS36l1lg0/GLPhxUYyQpvWbYPb/YYNuQPd77uEpxaJ1r34k0jrXiqlFnIILJvobW1UNRXOYay1cb/dfYJh3I/Ky+uL51F0OX04D/OyJHJ+wdYLpQsZVGEkJKrXxlEOjlrZsprYECOhFOczitux5CBL4THY76+6pkGKDkNN3xji4NMqS1idNuibnBdWxVB6/F5IObFk2aMO9PmVgjpccCYxW3ZrX20oP93XcZdltCVpcZZ1I+qEJ6V88uODhxVJVCnP/1qbcktaOacTw3CB7UoyuUHhrjDRJiUunNz9Ny2ET4WmjXav+HCLGJAJQxJiSZc95np5R2dw7DdvqJ1HXRvd4tlMgtNfuuyba1dzZUHj/NEqMUSKa0WCN7vdEcYYIi3Iw712FzeWcrqizeZDmgfRjKpzjx8fZO0cfNSf8kpcrs411wF3vdzZlsTt9SaHElMoWXIaU4wJiwspck43LMr6s3ZZBsvKJmGmk9CiUDkbbj9p+OEeqLWydOX+QBQS68V182HqdFfSHqt10PxwMzO+fz34v/5//hUWIv/7/+TvCWjyBkPTpCZapEXWHHm6rly3hftx8Hq/E61r6vn4NftI/Js//5e0407KkbxG38t0ndd1YXTjKPWctCk80AvGFmixMYYO2wkdjjFRW3ewcaFk9Gm0pgsTdZ4UCG8c9RO079fGwF3WhhpKC649Au3r/rXZSM9cEPBgryAqrehzeq7bmP9m3vz+NF9PDw/nZGAM1z4VIerDKR/R3iZpot9W9lIIQeBfTInWCrXcIUAOsCwLeVl8SNIpXc928P0pG4wgWm6pXcDDbB8tnEi4OOv9NFwwi25EorMgzGbPnRyDBaqDqKN3jt7Zi3Ro27qpuGtNgaQxg2V/HrxcH/JXjFHTnX68YqPLDCHIxjicmqvhgusqnWiXxqCOKFQfZZmF+b2j0nxq1Fs7HZKOVni97+zVJyBDMyQLxmfvnvjq83f86z988Ds2TRcmco4K19G5H6qpgo034XJQaOa0g9dv19Q6JAdXBt6QhbOZ60O/aQBPT098/dl7gv0ljDn5m2/HmBkZePPzet/dYSporXhC+KRWz4wmaUth21ZyFvOkukas+4hkL5XSXkVnc7fMFAVeCBy3t+k3Kt6DGdnsXNfnOOKHYxcHUwzXxoZIHG7MY6aGbsy8jgZo4qNV7xlQffgAXjqO7qCYqO7BJ8J21pb9dE+dw8NG6Z1Sg0xTfsTrRzcZcZG9H62LGpITMWcg0KtERtvlynp5oPdO2V8I7iXdW+V2HHRPvQymD99qIy8LKS+kYKQs/pq1ii1y8YlOA6oVjqMRXIvxci988933XJfEsq0swfjTn/+MECPLumgKYIFRD6Z/8OP1whLNXYY2LtuFcuzc9sLz8yu3+y5+WqtCEs7AIiHzwbyJuj5xe71z3F8wk8VkWjLlqJQkBwj5cRuPj488ff7EH377nfzWoxIgj/snDOkLJu+6Dbm/jLAR46LRWW8MGr0WjftCIgT/M0CHhvjWvRZigd4zYwSFTZv4uyFHuUk5LYqBOM9V78mCinw5k5gmGHul+7RhFn/4ZjK62FRYJCYjx84Mj+nVE0ON00Gij8H99sLTmsmOnNA6LQQqYHXHLPphqM3j/dOVgCwr24CYswpA52GWIVpICJElR/q2cBx+qNhsfIy9NL75cONy6WzLwvBeatItRuu0etDKQQsr+15YVw/S6oH70WVfbECQReW+7xyl8fhw4bKtQowtUJvCA+Vv387Jg2qxHwjOzBgWuR+deznISYu2D4nieldxIoczIQgt/LQRSIDLGskxn7x3TCFpYcmUWl0kq4JdqLPQ9taUHN88JGo4/3z49ejDnBriNJFxMNzByUKmDeeme9gZ/vNHK6K32LRh1XEYLJB8YzcLpGVl2y5qakx7RE6JkQKlyKlFVKdK8wYx2JvIsA8J7grOofZjV45Esn9clxWlcAvJ2oscTo4q8eGJ8FsgRNleT71Tb+JFb2tmWxbMx/wWO5FKMwm86YFC4vH6wHVdT3qZO9FrLW0XUlp8yh6IQEwSgPauENTRlb0gq5U3v3tZR2u0HmyQUqCW7jq1ds4y2gRDfFIw3NRCLjcufjU7pzchGM9745//5vf8R3//Z/y9pyshZI5SOUphXRPrupwC0WnjuSYd2C+3Oy+3g26fqE55vd92UpX7YEwBRnLjkuo0FmWD9C4XPYAQZNtuXZzq4AX9nEhEC4SsZrm1QivNDQXkysLwrHVt5ielrw9N9jqRYR6KaOHk3WNvtrqiYw1vLnySRGDm9s4dwnw61dv8HSrozOKJVv4UX4/XCwQU6BuUYbHvxqfXO/tRVWDHzBgSBcdgPDw+YlG8CNAZ3I6DZJXkrls5r+SsqWotzafdunbag9zeszYOpyGdzk1BtJ0t5nNfC05/saC9XtE4aop7bzACDE1mRytyr/JpSwpyXRtDe0NMgTgStR56BkfyiUTQ5DDgSHkFn3rI8l+WozEYKS/KJms+pTGjDtFqWjeKB+RFn4zAdEAbJzUIZL1+K53bbad7ExyTkdJCJ/DuXefv/PLn/LP//i+1RTgd6Ie8ChBV6XZU9qKsopwia87MkGGjuzbJXbA6mCn80MfR/NtTwupal+tl45c/+4LgWsw5FphNoas0Tl7A634I2c8LNoz7flNRHgWYTLphsM5xq7zeD9VWMZGsKxKhNZ88qFY1G6Q0g/Gko5M7afLnxgcFFkRZbZ3kv0NmfLPJNZ/qT22earfgE6IsNOjUWvQQ6F1NwlEbwpzfGiUbTr0aMwdjXoc3Mfk4r+k4qa3RAGuun1Mj9mNeP7rJWCLEbaG1yv35WbqF6wPkjf1lZ/RCXhcdenslRmPJi1NAImaeJIsQ8GCwF3kpPz49yRnkKBot1XpakI7R2fc7L683Qsg8PjwS08L1kvjqs/eM0Xl+fqGUztPTE4++mYhzrWCTo1TZs6XgUwkJDEuF2614+i3EtHDsL+z7jeO4s+SVy+N7lm3juN8ZQwKeut9JoRMvi0aF9zsvz8+naIrWOOrho//C9nSllr/ktt/0mZrQ2JQXYlqUqCkDO4XkpEU6jRAZ5aD1XYF9QdSv7G4YcjdI3hu4sLo2wbtEalOBFD3vYnLpODpUbcbDxM3DgJz0T++M42AcSk3uA6WFzhTxPmhFAUMSzqnJar2x3w9KEbWqFj305g4f++2Zf/QnX/L1V59LL1MKtUOpsiU1R24ftsS6PkLbOY6D0irr5crDwwP7/c5+fyW4KBrPwwjD2HIiBY0LQ9DUo/WZ5AxHbcRQdZ1T0pv3MfWybuScaE18yza8YEIo7pJVCJU6CDnw7v0TDCN5QUFXuE70Ayck0dbMtCEwRFeTrmBR8eKTisOdNoqj68NTmSc6o2jfQA1vG+pP9XW5XBnOrW3d6EeltRuregOOo2AmT/b9KDpo4aSSyB2jc3SjlAPrjXXdpIPIkWQSUHcPiBxhYFEHSq8NGSoMt5itlHJnWxaiyYs95EhwcwGLUWGNqOHsXePjaHjx6Tzw4Kh9cKeZVtH0SsiQeZE8kag23qYWKgKMmBywcXpVAvZDe1NpQtXXdSGE4CYE7bymIYo/vS2JZdlYc3ZHmeAJs077mQ1qMNJ6UZPQDz9sxkkPMeu08oqZsS4XHWymEf39aNQmKphwBzthrta99RsSOffRziC80SuGaH8xAFGAxHB6oNA3idW7/DU5ydSObgaLfP+y8/3HG5e/rwR1+f+LnrotmS0vzikXwldbpbZGKY1Pn27Y9x89JRmya6JaLYTgQY8mEwiLQSGuUdNJWaAWbnshMKdnwYW0geny1IPr7UAgg5lbKENi6Dnz9Pbh6Kw4/Xgmy1uzI4OB7o1YdHCl697b216ghg5NXFF678wakEGCika5x+gMbD+gpP3UXtXDaseQi6Oa8Z3Xlxdqq1y2lcuySvgcGtdt43LZAE13WqtUYLleAA/XM1nAWtXab27xGoJornuRVWqrVevXNUPDNLW0JnvnPlu97tMog4CmD33AaG+hm2pey0nl8dsHBjlEolNXzALbdiHExLHfoCvgszblTuETnToUANiaHLba0LRVe5fYE2K/aM0xpFEU1Vr26H0MenM3snpoLZg0hCosh9vvSr922RSSrEYjk5YLDw+f8R/943/I/+3/+c/5dD+mpPMHdB19xmGw18an287RB9HHHKLvJGnVugOvY+5NXmjbRPv1T3PwSBqVRrDOL7/6jOsqk5hzlGHzl/ODRnuIVnkc1CYNZ+9T//bWaIWQWFJk6welDjVIe+X9YyYvC7V2Wql0xNCpTRPzvCYms0gBsk5tDNFdNTn3UJtTGuCMK8DlbkPgmlzVuoNTwSe6w3+EaJoFAbF5WdCf6ixo1XPZ5gT6xJy77yfB95Lh+57WgY2O41+k4PkpP7IW+dFNRi27imJLovv4A2qhYhRCHPR6cOx3jr0wMKHLHhoSHT0eGKVWatl5fnkhvM98+/Ejzx8/8tm7dzw+XRnNCE0bvbyjI5ftKseX2ij7QVoW3n8mB6DX2528BSwvPL++MsQYZjShXK+3GyklYo08PD4Rt4vC4o5Xpj1jCokQE6+jMnph3TbMkl92+b63MdjLzu315g5L0wnBE3oJPqYVytQJDCs8vP/CqS9KGT5uhVEqKT9gMetwOV69OHGnKYvO+U30dqOb9BghL/SQGRON6uXNWWBujP7g9NZVR3fDWpAlw+jSYhQJIEOU4JEQpXazAaWeQqHgnPW8KBCPoclEjEKQRm/6egBGfAubCbJSrMXdeerO6JWHh6uKABqNt4KDIBvN1gYPDxsxJj58dyM4KrGsC+uy8nor/PH7V7Yl8rSt9OBJvb64AkmTmzRoI2JduRO9G6MXrEOOGnWK++6BfSGyrVecwS63nj44PNAnRI1Rx+iUaqeTVHXkc/gI+I064tMaNAoWR3dgMRCDRIJlgFklBRdjTUoL0z+800c5UeFTbPwTfrVaqMeuCUZezxG/MbhcLphnlPQ2NDGN0M055l2F8FF2Xl92GIUtGSF1KJWjQE+JkRYPzmrAcVqyzhPcZlHsGgyG+NI2G40gVn0cXsi560pDxYBG3RKf690n6mhY03MhNFrfMyz6IWkuVgds/rm/pWEn2h/c+38M7egpiUZ6WTOPT1f2e6WVg8tlZebRZG+Ql/imJUshntki3ZGreTBBcqGwgWVGb5okR2+EAGrxbA7Ht2KiVXHbjz5dpXw/GaKuBad5EuKJqoG791RPGnZ6FkP7VO+ThtpOF5bmrlEOqzEtNweD16PxP/z2j/yv/6d/l21dGSlRc1bDflRySGoOTJPO1sQ/NkePP3565np94Hq9iCYwXLSNDujWh0K+0Oe2Vr2hiKzrctJq+72Qos64nKLrLwyiEMQ52QgBrENvRkPgSwzTOlJocvf1riwGfDKSnCoXnKI7rWs5OdT6Oc7j9muqQsWLjjFQZTB1CnJ8HL0Rf8LbyP3lRXqZGLgfBx8+fnQvE9lAC9mVg+TCyr4f1LGTo9tL97eJWi1O14lyKZRWJ5Lzwr6Ltnu7y+QAL+5UEzSOWrkdld4KSwxEGsZBjpFlTo78vFQ+zrQt1dqvrVHqXTbYQWeGxUCMWeGQrhVUno+oNqTkIK25E5N0HJgAjOLW7Xa6j6lgLmVQDqV6n9oAGyyufRhmhFZ53Q/2Y+eoigqQyH5wK/qdzembvXWWHLheFra0AHo2cwq0CH/6s895vK58vB++R4pN8sN8FhtQihq4bVk1hUzKVxuIHjvcTGMgepPNqhjOqcGccLfeTgBgy5FffPEZP3v/xH/722/870xq2/xfvY8UAl++f8AYHPvOMYFVUwCrRM5Ngagx8fSwcdkWXu87931nycbD9YF4+YzvvvuW5+//IBepGGhVGrAUjGVdBJCVIueo2FybFdzEJNKTvdVWKuI0saI5QBMdRAlMGtcYc8KtOz48AHXq1LTPCLgJqOabdDg1UYaz0H9AjRpggUgUHbfJZlhYtM7Jt5npv/v1o5uM8IMNzWJGdns72YwYhOo1R75bH8S8qTeyzhKH+89n+r57KBQ8PDzQeuevf/8HXp+febheaW2Qt0yM8gCPvdGzi1fKLsV8DFg5iKauN+eN7oV+OQ49bL0yk6NjiqQckY+7aDL7/c7tfofhtqMBrBcu68p2eRTy0IWE3++vTq3xjaJ3GErUNAssSzr1IvSq0LWYicvK0/snGPBf/7/+Sxf+Nt8QxXu2uOpwbget3An5wvBDuveucJRl8dF8xsK0qQNz0b0F38hIBMt0xGGP0YjZMzO0GnUQuQpIFGltDsz8heEAgalxGG0G0PiQ0ZGOWrv7kwcsadOqR6Pu1R/ut4Oz0Si1sCyJh+uD7OtqpR5NSFGHy7Lw/vFBFLwhxOjp4UpMkbxmGQggEfjlepV4KiwQBjENQOPtZJEYNvCC4aiOBFqglRuX7SJdRO26/sEcDRp+zRYvFH0gZDgfW2i2OJkKHzyqFy+eDHqiE6YRq0Xx64fZBGR9LxjY0CaUPGBvDKHjpWrhmtsqHtVFYr3KV+InXByArpW5IDOmdAbCWfRCtA/6UCBTXOTWNsy43++87i+EMFii8bQFcrpo7SUZJNz2ndvzqxDyrgDHjmdPmKZ6IUYWH4FP//SjFDBtyiFGUsyEVklBh3jtw03Y5k3Uxnzf77Q+SHk9qUyzEYwml5dWfc3Ne66/fdIPB8Z+VI46rVPl7GKIhvB0WXm85pNqkLaVbQlcHy/s911e/VGWu9ECNIki73ujNKGRtVbxgR0llMfFtJcVhzykwEiZt4DAqELIDytqobbBy+uN0oWOwhBF7QcNWvembe4TvVUwTe1qUb5B8c+pt9tcd+PttaPwZ8BdCJjzl6M7Zf23v/2GP377iXePj6QY2ZaFe1FI560ORugKk3KqZgjD4f5ETCutwX5UlqRnIsfwlpI87cdD8gmkPn/sQ89ketNOzYAzrfuuycPoZ/EfgowsCE4vHe58BsTeiTFpGuvI5XTWanVg1qXHC0avKnBjnLSI4foTO9HcgTtf6SnxTCtNtbtPaKgexJiWk/L9U3ylaBwFPj6/8vHTB6CxLReFdgLluNNb5Xp9T8yJl9sLrcPjwxNrXjjTit02OITkuTnKtgopEoccnFofrOt2WoYePjXpo9Hqzjh21mRsKbOGyiiV/YCa0ltGAdJ4zmRnULHcqufBeEAfnokzCAIUQ/c12imlnNO5t8Yi0uB02tOWMs4mQ9lV/rNtPluNGINryhysHP73XANU3F2PAcvlIvdQt+gdXWsyx8S2Jpas5iA6Mj4Q7evLdxe+/uyBv/r2A2dxD2czrCbHcc1+sKagqYO9NcMpmGiuPulT8Gk8bb6Nfq6ZEBOt6zyWhslYsyZ4OcqdC/N34oyAlNxCPwTutVKbm/J4/SNDGSW8X9bMuiQ1kFln9poCH0x6oKMU1kUW2fv9gNFY14WYImME17A2n8i6grV2GqKZx+Ahxq3JAOkHZg/BAubmI61W0mjkmARGY6oNYvQrxDkhh0lrasxgv+DPBnPKOUX+5la1/5a+S82PgP4xZrsHbbQf2WL8BzQZrXdGaZ7Wvfgh2MlbIG4rtt+F1tVdxV7O4sv3BXmEx7MzzHkRXSdoCvD+6YnP3j1pgQ07+dqtFIY4Nxyl8frpkzYGM7pTY1oVjeg4DuowGJGjVFopAOeCsm5EGvvtxu31RimFjoo880Zk1CbEYEQ/4HSxy767g1CUK0utvH+nKUrKuimlSHCcXN8Qo8mtJSQujw+EJbMfB61ISJV8NGajMRr0VsSdTPLb10M+xaPND63ETGYMvWDj0EYxUfQY34r7IJ5kyBIt/03/Nl/s8kR02wKDoSIF3noRLWZtLHqei9xZmmgaMUKMRjkqxz5RoUj3RTpHcr0PHq9X3j0+iMveO3kV97L3wXKGfhmBePY8R22UQ8nL++szvTe2iKhF3kRqsTnag9Hd8jGGwJI15QkMWANpuShh9H4Qhprfy5Y0dakaiU/d1RguRNUFZYygiUwrxJjI66qJz1CLERxNGrVSkrIGYtB4UaKqcd6DWr0h98TSnCL04QL/LrTbEUett6TR9k/8FTzzRkCJT3yixvmNoZDLIipRbXC/32i9ctRKqZVLVlF52RaJDUfj08sL+17Ji67ZvstC+eHhwsPDqmfCBY5HOdh3TZXu98Lr605Mgcd3jwQz7i+vGJF3T1ceLplBoPR6ikplwSt3l9LhfhTCUU5ebN07MSWWqMnfmPk2wKA6Uu1W0H5oH1WONCmpUTAGSwos6ZF11UF5HEXTAVNjtiyZe775vqOJxZIXGJ6C7RPkY7/7hOTAxuCyXZ0C1GgePmYhcAy31zVz1zTRDHNUsnJplVIOvv/4cnKjLboLG25xGQOB4HSq7k16kDZuVGo9uO+B1Ds5Z2Z5zHCOOt6IzSkJMHMojEldGvzx4yv/zW9+x9/7018qJycluQM68ttb41ak4ymu7xgWCXHh+pBorYtKN1QoqNnNxBS45E3Iaxdd7b7r3jRPf48hkGJgxEnj6yfRoDUlKTfrDiB4un1X0xB9xGxWz2aMnpxGGSDKcjyZQUgcVYGmBFOD4q4uymXootym7EJRAToT3p2mZn3u913PfIoqqC38dMP4LG8cLzu/+/Z7coLP3z1xWRdSyk5RUXF/HHes1TMhvfXOXoqbE+hSLQ46iVqm5lfi5o5wcd3H2oobhEhAvqTA02XlactnjVFq5WiNsu+UKtfB7bJiIRHrtKUOLDmKztSHm5lACDIqiUE5PalXb9qhTE2k1wy9G6UeDj2L3RFO8Y5C1EaLTlEyB1D198DTyoNxHJU+9HssziIScjRGCqzbQgiJdhTSoiasHJW0rDLtSIkcs68JJZ/PaezDwwNff/Ge9S/+Wu971hpoqjeG9EbrGnl9vRGGnAbHqRmVe91RFPQcY2LJC1Mj013jUDy3ZhpmGF3hgBZ5vR98eLnxcM3nlBbzNZzlIirDosGf/+E7/pvf/BX/6eefc92UBN/cBQ5gXRKXZXUBt4uivSm43Q4+fvhESh8EaMbgrnWFHBwcQMV+skCO0T+DvraXCqOQnHpZezwnlbNpimPaIGsq3scg8wb+T9pqcGpvGI2B6PUjak0Ei6qDfArCCVpOUxmnXaJJqsisE+Bxkw8EXvRe4dQs/7tf/wEWti+ydl0vpPUqtGr/pHwLp+is1yu1G7UcjF7kKpIUPnTUxuvrC/d9Z2ASywaj1hs5RtZ15bJtLDlD06RBXNrCy23n0+udsr+SYueolcvlIlGfJdISedgyxzAXI7nbksnret9VjGe3kAwehpTTejrb0AdpySw5eUy7Ro1mRlwW9nuhVm3aRz243e+YBR0wR/UNRBZ2r3th3O/w6ZkQA88fvmfQTu5cPYpC76IvmHJ3dMUPJOTFb/2QfqMXQlyEHgYTtxKhr6NJ9Goxyts9TC9mFcvgAjN7W+TMDSsgqtSEGUZnlCI01G1tYzRCNk06xizgtWnEIAcpBidqyETwmsTLohUOWilc1sjTw8r1stBW+WorXFAP8n3fJWBdlJcSU2AJuhO1SPzeR2NbM4sXa+bczDHUVMQQ2NEk5Ch3cl54uKxEGxJAWud6WRlmvN6kH2k+Neitys/aUdTuaIrhIWYDWj2w0aAcEip7j7YuK3lZmHkkzT8bIVKICvmKmlCBEF4bCt1rvWNV9JLWZ3CWCrFt3ViXBTxLYZw366f5SsumA7EPNxuQZ78cxOB+KCNk9MZtv3G/PUtb5eLkdN3IcYOOF9E7xYv8nBLN4BojtQ1yyiciLmcQIU7D3Y00gap8892NvF14um48rNq4cxRq3tvh6bmeWh08HGkA20IM+HTS/fGdG2w5syXZHw+LEu97zkUku8tI9MalEJzieVmEtOYoMEa0gYLRWdYNRhDnvlWWmEUtjfJmDwGaxgzkHIi9YT1hQc1HNKRfcVOG5XKl9+oWtw3rhVEHhOQ8ZE0H6ShoqxS++3TzJvgHB7uvgZlu2x0RVSOyYO5IM45dluKmZjp4+KgR3KKzO/r+ViQHC/QYMadejd4oY/DP/+zf8J/+J/+Ed798xHolOXVz0jn3Pri3wl4qRxvSWKWFYLK6DEP0rKM1wiFarSHXmMfrxsN2pfcXvvvwwlEqOQUs6t6nGBjBTvqGrpUx8y/6GOJmd4EH0d2EmlwdtA669D4qWoRIhujuaP6srUsk9IHVKvvQ3gnuMGju7DKdqWbQ5HTD6aZwweB6oe5uM43A6HKy+am+ujfEy5J5/3jlYVvlGDdEdQwmwKp2FaI+HHa6khrYGIwc1aDqFeTw2OVq1jA9N7VR7ndeX58pZad62LBdFgUBu4j85f7KfhxuOmNYE716DOOypLMhrb3zcjswBrU0nl/u9AGff/E5wRRQt+SFz54esbxQSuWYZ6lJlN1H4HkvPpWQE1M71PgvOfieJ3BydPNPZ35eCnDci+iFmJHT4nkhg21ZeHpQZldtlTECW06s20If0p8qWTt4XkWlVDUsR1VmGhi///Y7Pt1ufPa0EnM8w5TVHMjgoTsT4/fffuK2H2zbcRrP2BA1LTDBVjfI8Ayr3o297pTmSD+DlJP2WBTu+fHlxjcfXtlLY11XliTaY4w/QOyByOBlL/xn//S/4ov3T/wv/sk/EDBogy1rSnpSMWNyAMwNSdyt6bbfOT5V3r1/R8qLKOpIJhCcVdElYxUwO0Rbiv5s3G4H913audUpmNFNJYbnjzEbAwc0a6tkEjEnOTOC06ym1fYMwhDVblqS24BAd/qlu9OF2Wi4vTOatoj93nmzt3VyaUg/ehr6o5sMiU38wK47ab3QW6a0Rtkb1IN1QxZrVQ4wAdms1R4oh0ZuhJk+HVlW8Q7LvbHlSDTlGtxunSXpoBu9cLu/chwKFklpZdvkRlV8GpIYLNtK2yv1uDNaOXmytULvO6XtjJxZEP/QgtCzslcJo9MqBBtZdg23iyRIkDkM9vvNbWvFz7cxKPfdH5wsukKvuiZehI7RuL3eaA2hZTHDKXT2grQW6nEwuokbGhOhV6xrcoQFQtq8czRHH3yU2oZuY9ADJn/2oe81k74ixCmIUc/Rh+hHGuGcAmh6YZSDUbof8M5fj54Q/kN60ABLbts51OgQHZ315+REMJz6dX1cuGwry5ooR6Uiq9Lnl098+933PL1/Ij0+AklTkOFSj9GIJqrUfhwS8A65JKSYxARr8oSXK44mYX2fgXiVNUWulwshZmqTy3SO3gxVoZ6yf6tOERHHPKTpxKLFJ0F786nH3bmxxpoXp6xMwXaHkeRpPYzWfWw6JDgejhzojgY1JWMwSAwzT0NPul4piVaZDE5XsZ/m6/nlUPAZBqiwbENocfXnvUkRCb3wcFnZ953aYEnRqY2J3goxBC6XjYerhN+ldqojZnJtS9zvdz49v3Icxcf5gxgGeV24rgvrpqnI0yWxZbnJjD5kSlA/eXpwOItJOasV5D41qKbGPkRRhaIfpLi4M7oVr7m3ewjR0UpNcfro5AhL0IRnXVdaOUjubFSOQquH9ia34GQMmhkWFtISzya794IZMiPoXTaqOWMp08vNbQxkCTx5uXNE3trhfGnRttoo0rR1D0YNEhEW52SPMSAMF8fyNjofwx1d0FR0DJjNV6ssSYnWXX/d36fzvMdwobp7x7sjhagDMohgdCwk/s13L/zrv/49v/7559LL4c7xrj0JAT+Iu3O7DboDEyhle9ApzWAoIJBeiUBfV47eeX7d+fT8KuAhBFpdebguJBM4cyLRpzKTc6rQaofaHIQwJpVhjDdOuyYbPm3ACD0ShxsGmBFSJnuzZUnGB8GR4zPDYIhOONyNSj9KDWyKiWGR0ju4EUmtcits8cc5w/xtfN1uL/RWeXq8kkLQeVs1qZRV86SeuXMZ7vLWd85oeFSE7Uf2nCZNi/QMDopPmBmNVnaidXpArnJxardkkmIhsK6eDG6BUgrpknh8mNSewXEUN6DRP0vW2ZlS4NOznIy2nKXt8GlVbcUzgcJJAZpnzHVbPANFaGo9Jushsa4ZJq2ldRkwmAwApo1975Nkp8TnaAoDXPKVZYn0WqktQBTQkbMmPDkIwBlookvXtLD3zl4OyiHHqd/+1V/zzYcXTa6XheyfdwzkntQae+8cR+Wvv/me55dXvnz/JOYAwx3qNNHtPbsovtGriWKJpt+TuTGtuB21gaEw1dIar7dD9/iqYtvG8GgATR0e15V37x8ox+D/8U//Bb/62Rf8yS9+zhhyE8WCm40AdZDcfEQ6S9WTMa2EHjiOxpKN7NOdJSflajU3gzDR2GqtWNN1TTGcrB54Aw1S7/QoBkXvE0xSDUFvBJ+GBgcMpNdwmqtb4bc23gTxPuGUYYmdTVYAtxRXzTXMqZ0WvKF8A9ynMYn927bA/47Xjxd+dyOMxvH8wlEa71LG8qoU2hB5LZ378UxeNxWxvUrsQ2TJG9ulc7lk6oD7vWCjUYoOgosLF2/7nf1+p9TC4/WBEKIOPxpLNN4/PvH49I7teqUdlU+fPuqAbZWINv8lBpYki7t6iDuZUxQFA3dC8pF4LeJupiqaxVG0eWzr4khDkUCzd0orlHIjBPO/7/+xIK5cUvDSmhScYiMQQ+J+DL79/sbH54N3XwlRbK2zrJrk0CaCNwhpJWV9PdAZdReFaNk8hM+5/r2KlhbjWfiaTds8e3vwqk8gYlCjUIX2jeoagiT0hmAqCFo/P1cbGvnbbDCcktWbRvVxUiViwOY413mWowvBmXYEtYmTjTd25hv8KHJzeL3f+PPf/o7PX++8vr/x5Refa1zXqtC8kIghsjw8sj1AKZok1eNQMepFVm2A+SSid6c9dG6vheXpgXW7UJtR7jcsJPIahbIed0Zr1DFYIly2C/dD9BCG8kV6lyvJRMq08KaATxkgAdguF5Zlw1LCeXCAEf3QywRqgBaE0g4TMr3vd0pTARZMzckUwJUuWuCaolCSn/Dr+08fTlpb65pgDKfjzZAzc7QxpSxEZxaO/jPKcWff7+QcuawrOWVKFWf5YX3wzTHwervx7bffc7/fWdeFx4crIeqQsnnALotsqbNG5717k2Pm91opr5paikYjz6NpByhr60BnzUZrRis6REowRnIjghCItrizkTn6H4gWWOKDF5xBNoZpJSY1CjEohJAhyk4papaiH5BGJxlCOxun09Hh+jDR+AcxZcwzOUIwct5UsA/xhGFlDE3XlBDUmWnGw5HLcnvlvh9yJgpBhe2AMaIXD4hS6R7zoxVaOeQeh1Fr5eX1xmUMubG4nmBmRZyuUjiVzikc0Tgd2ib98vl+8Ge//R3/83/4a6UFj+GI53QP0zO1LjKzGKWfwIU0Mdq0Jo1CLnzizg86L7cXnl9vDGBZVmprvLx6sF001jWTl4hVTV+cGSbRttNWexOtVI2dgtWmq5bZgBEkLB/TfUwTVQua8rV6gImuM3r0BmxOvJ1/HmWg0NwCmOHZIsitKuSFse+Y6/n6aNrDf8JgRWuVdV15/9k76J3b6yv3eufVdZYxBK7ryl4KEMjLQm8H5uJkTYz1LKWYnA+vggzzNeRnK6OTYiDHTSyHRdPRYHK3q+UQlWZdHeGW8xNmpCSL5W+++Y7b7S59YU7kRZSbyeB4fNi4bkl1ylBBehw314os5JNXMaAr4ykHaOrEGW4E0Ez6DcDzWyKYDF6U3J1P6k5ohWyNlAKPDyutFhkXmDRive7e0Agwa6VIEB8XL3ZNtYx+m7smavK/Hwfff/zE/SiYU7xjcIczBxN6l7611M7L7UbtauStye2ttn5qH6al+bSbn5S16rQ2IeoCY5URo+uxXS5c18zo8Hwruq8UELuaECJP64X/7T/8J/zjX/89/vjhE//3f/b/5j//L/45/+f/4xNfvH9HQpTqMXVjvbFXCeyrN7aETFogxOWkYlpCOhzX+DxcohtdBPb94PXenHY0WBbRIFNU89f6IPr0nemaFYzY1YCGYWrCgsxMTgAsJhICOqKHVTI60Rk05QfuinrORZkcQzrjMLWK/jPn5IRgU0rm+mGwGNx44N//+tFNxuV6IYAvXLlNresiru5NzYHj6BpBDgXWKWCmsmWhKjEGUuzst51vPz5jXZqMHgIfn+/YKOQkGhIWOJo4tsk72XoUWlK+wbJspJyc41/IOfH4+CCNQDm4j8r9XmT5FszxLm00KQQMHXRjNO77DTsCOWV3ORDloLZGXBfySNSiMSd9UIfEwmb6nvryif0V6pKY+QxLXnl5PfgffvM7Pn54JeVFYYSjkR/eEeJCb2/+9xajU0kaRy8EL1DNRHkIp1iAswudwktNLhY5Ko1BCG5Cj9Ok2mAc1Q1N3HliNhCYivXWoKvnDTli0SB5M9KHG/HMsa082MekSvmhl1JwNMfHtObeXMEYvbLfbmxLPFNGW22kmPnZz3/Gx9c7H/7yD9yKAs6WCL/6+c+4PlwwTza3kFjWje164bgXXl9euN1e2Q9RiVoTB34McdIHGlcng5fnF44qtDS4cCqHiLXCErLEvb3pMIjGHgb3ozBDgRjDE33tDMgyOK1o4U5IiRQ01Tq55HOi4/aRS0DcU9P9K9UYKWOY5yso2CnG5CLmRgiZbkLrf8qvTy+vQm4kpaT3QYywZD9KHWHRNEqF0LrIu76Pxu1VOoJ1SaxL/oHgL7CkDCFy1HJal14fFp6eFtacySlzu9/pDLZ1FQrFYKaxyp3Fk+HjRPzkzBJjJriHO71TmgTqMSZH7BuRyMO2sOYurUTv9FJoQc1hwFB2laaIyvGQZgeEPvehQ7MfmoL2dviBdoANqiPSFuR0FKzxeH3ySacpe6Y1yrFLEzYgh0beFnqZqbzSAslaVtNQM2RpPQSotNbk/hUiIS0cXTkVr/fppDZH925vOGC04aCPntnWZAJhrlnqQ1a817UpsNIzbuYUJPh6UAMmQeJwdHIggw5R3zqlw7/+/Qe+/fjM+94deZYDkxyclH0SQySFjtqcLsvRiaZ6ANXwxnFJ0U03JLq/rInRN4rrtI528OnlTorSmC1rZsnRARWB5DkaIQWMzFHd439w0mzkPqiiYSKwmtxoupNi9qaUs+Ed/nzN+Z85TWuCXAbklOlZxUevatyb3EOExDoFbWrBlMr+03xln/rllCilep6E9v6HTYYxj5fMw3WlVDEIvvn2meZUtak1HBjBDt+fo19/WCzL9sAb2hCne1hgWRZ6V70gQGBy7kW1ikEGN61rOnu73+mj8HDNXC8bMSX2Ywc4QxrXfPVn2yl1JjEyTk6R4F/21s2Fzn3ImqHTBETkwO3eGB1qqZAFbmRPZg4xed6BO5OtK8E1F5qaSdMim9Pq4I/R+y7AJSbXg6kAnoYN0s96blAwUlw4joNvvv9IR/T0r5/e8Z/83X+ABeO3f/gd//Kv/4q9HefkMgC9Vu53MQO2y+b6kQ5tWvwmBoEyCq9HkX25g4m1NlKOrDmJAh91XX/x9df8/V//jP/+r/5IrfByq56xoRrWsrQVT+vCzz77jDbk4Ph/+af/gpAS/6f/3f+Kr798r/3ZtN8NoB+y274dRfXEMCwkggWIYqYcrcHRqfWGGaxr5v3DA5dto9SqzJ4+WBeFvqaAmBXW50DB17qA2jaglUrqymWbcQQyitE+U1sht4M42RzedKlgDFh0Z1EH3zV5T+deJLvs9JYV5ahR401f29s0S4iuWfr3v350k7HlzH0/xDPNizjRh6y+jtqovZHdAnU6IAzLKqRH5/n1EE0lwJIDMS1clpVSdkrv3G93Kfk9JCZ1cRPHsrHvO9YrpVRS6nSTA8vDU5r3nlZ2hjXMZnjcoLbKbZcvcE4BI572Xm9p0yu1Fvb99TRfKqVwubwjrwqvwaLbjoWT19j9UBjmfP56sG4red1oZRfyVxt/9pvf8a/+/I8cPZGXVehkoL39tQABAABJREFUXsjLFYuBdki/EpPSj+VO5EnHQE4awaacNTWwwehBqFQvpCA6hBynJHAPqny1Y3pTNIsJMCx60ZvC2/eAaFPuhBJSxBJOAzC5L1WJjnLOxKyHXy4y4oOmOORk0oNz2N1pJ2UhDGaMVil7ISWNcmtrXNaVP/nllW8/vvDHP35Dr4XrunLZVtbtoswCE/e1VnEulzWzLAolXHLi5fWVw8e40w1sGM4bHdxur3z3+294vgmJXbeVx8fH/x97//IrzZql92G/9V4iIi977+9yLlVd3cVqXiyJNk3JAGEa8sATA4T/F809I8CZpgYHHngge2wYBjixIECmANGELIqiWiS7RYqsLnZ1Xc/5LnvvzIyI9+bBWpGZe3/fYZ02T7HrqOOp+s6+Z0ZGRrzvetZ61rPY7/Y6vWXR7dfK8XCA1tgMA+I9h+ORUqo1ivkz0/ehU+lKG89lyGmaCS5oU5Y1fioZtcFONvBQc42q/w0CPga66Ky8eQkwajL7W9scWiu8+Lo37W8g9P7S+9QFlYaVWqhN9aU0aDZ/JHhHSRPzXMDpohcsw7/dagXjNKmEaNN30OBwPDKlSYdfied2f0cMGtinlEFgOwwMm52uETmdJ9KHoH7mThZpiz6fgGXos5a7zWfeoY3szjLYzgWQQC4VkWSbqDb25arvYcnFZBKeZE3Ty3BKm5SjjytCzlrF9brosFgtt1op6YSgtohaTVvkEhpBhRht+NakySjnIWg/WCuZ0g7q0tc4SxuXjNYSkApig6KEeS5qBVqySsaKDn1SEr1IU3Q9dmLTZS0ZslSpxAmdwL/zWy/52fsj706J6pf5IpqBu1Q0rFyPWJ+Xt6BHK661Vt48HHjz/p4QHMcxqUOXcwy9Z4ja8yG2PjjvORxnlY9Io+B0v0LIWStlp1l7srzXoYb73QYR4c3be9KsVtZzTroW1UKaNYGg1t5KPFIuuNqMQMpZPqX3s5wno9emTeLeer7UfaoCxZITKsOoZsQhNjCymbxWQjwHINj161xEYiQ3dXhsogmgRfZJ08sjFyVl31ZUq0SNxxPv7g8ql6pqj/zJq1eELnA8HmmlsO0HTSSIMGY1MxC0kTfGqDIrq8CLqOy2VXU4UhKijfJqeDLrDC7RKrPzgd12oFZIuTL0A8F5TuPIaRpptm9/8vqV9kHVxpwz3gmbjTac57IkEjkHb8FIC/Y6Wy0Xk4UmSubRrDY141tRR6xtb6Ys5ibk1dBA3CJpbgR0bpB38dKfakS01EVuZpawJWswWlWiKO6EUNl0PYv7nHNYhXVkMViptXAyeWpFeL2746/+hX+P3abn9//FH/CjL37JsZ1sphd8+uJG+yZDsDXUkq0mX9PrXPdxq3PSxNEFR/C9unrS1KLYesWC97x8cctf/yv/M/7hH/whv7xXyew4g5NAI4HA4zjyT//oR7y8ueM4Z6Y88/408p/91/89X7x74D/89/9d/uL3f9v6OhdvpSXTr1UA7b+wfG2BYgmVZF7Y0jJBoG41afn+8cTj4wmAcdJ7f+jMgaxqQqLVak3wRjTA+ha1t84tjfTX8kuvSWhtXxOrhDUjiWL9JKZmqbpeq1uXKmGcWV1f3P20YqFGFJ4qjpSzxmFF4+uvgz9R43c2lutFKFmgOOJmYJqV3WiVQjPhOPXYDTa5UTN/GdcghkD0S3PhlrlUDveP5FLZbVQj7ZouDEM/4EQzlY7GZn+H3+w4vXtDmicdjrIZqM0zjidS0pL2sN2x3Wy1afz+gaGLOO+YphOLg1WM2mDcENp0pNTKaU7k9/fMWUuJOiAwELzamDlb1533NBdQ6W0iT4WatTk3Bi19jmTuDzP3Dwe87/BRsyCumRSg6qTpljNx2DFsXqiVZJ70+02Q0OO7wazPsKzWYhOrWRmHx0s8l9GdVRO0s9s027md+wxwYFPLAEvjIUZErJxWmgmYbXMqanfpTFKgdbmqc6GcybWcuqjogLV2vhFaU7ckFyLNec04imcZ1BeiJ4ROA5aaCUHY72/MmUUlLMsk0lorNU3MJyU8mKSji4F+o1nIVmcOOZ9lA1MtTNOJH//kl+Sizdqxi7x/+xYXPJ9+8oKh6zWLGCLeBbMGDWpF2lemebIgNOpCY03trQE+sAzgqtUsBS3o8E4DR5XoF8RVpGiVr6LnG7ux1ed7sTmsqiN36uyWTO63uF18W7HbXDYF5x256CyD1habQVE7Sa863II2uLWiA6NA8OIp1UFulmmPJktRmUBP5JQKqeh1U5NeO00auI7cHHMNaqqQbSqw7wGVwZ0nije9vlXn6sim5UUczYQC4tVhJZpcEpy+PvHkBqfxxDyNOJ/PG7r3XgeAodW5ivarlYJqu7c7Yr/leDoxnR44HO6N9Ea22y1+u2OeJyMrA02CSRBU56/Nw06NB2xjnqeZGDxdP1DKMlH2aWlcROWTYbFHFEephXEcLRjTRkbMQeas7bW1aalA5FataBfwYhN3i8oNhj7yW5++YEqZn759OFubLxsplpkXp+dTnFWqwIbaqTSg1MLjaeaX745sdltKrkxTBnP1GqI1aFv2v4+BViqHccY3te/sg27Ss1NXp5I1CHx/f2IeEkPf0feR/W6g9OFsaFGK2qVTkz6H+DMxVIv0YiTCiHE0pzFUd+39kqVUKQNLZUJ0XWipWrVVFxidWm+WpDxt8G4VqmtIbUhLOGe2maYBF0uCaR21EWME55im8dd/s/+aoMGtZnKjbzyeZlUcSCM4neldi042b+J4PB40wYBKi0GDJnGevg9qemBrUbN5RJqFV0cj74TsGk1U/odo5TN6pwNvaYQYAU+ugOgU5jEVahNibzMuJEPRdQ+3sdTeRKnlLA3VjPJiSW9rj92HS5/XYm/tYk9sQdcdu8/GcSJbD9SYEt4ME2rRCl/wKkEKzhGcmPpEM7UO1DWIwmIlXUpWIx+TOHknsL1FwoDQmOsyZ8pdrlGHJvzsnv6jN1/wP/z4R/wvf/fPaW+HyWRLbWy7yL/zg+9xe6MN06V5TnNBKCZlVEfSaoljlderbS6o02mIJqcUaBSNnaqSub/0g+/x/U9f8PO399RaGUdR96ym0vDWhH/+s59xfxr57MVr7aVwjjcPB/7z//b3+YMf/YT/4C/9Of7y736Pzz+54+XdjfX76egCPS/FEgCoBPV8jwJonBmit8b5E3NKRItH5ylxOEzMk9B12k/TeUzSq/HaIoefsT7i0kDyuTG8LnOLaiUbWfW29pVzfKaxg/hAF8K5/8PeepBm9s3xPKahLX0rzhO6XpPqWNWvLrHLr8afqPF7GHb0oo2T3rSl03g8a4e32x3eR+b5ZBuOWJNzhqoWkx7URzg0HXjlHNsA209fnzvZW1VtMM7jQ2TXv9BejWlkOh2IJSGiU09L1cpD6AZ66QlRS6hpmklpYoiB7Sevgcb944Oy4aLlep3W6um6QAgvaOI4jTOn04F3D/c2ZK2oj7pz3Ox3F5uxXKhtJiVtqutjR+y36tTgdXOJHsbTzNDtefnJXmVdeSJ0PdB07keeVLPYbfCxB7EheDhciPjYKcmIUW3JqlhjjnpDNzpoGtzosLeGiGbxRadxQdMAwjkL/IP1YTSBrCU0LKugG7wG7xbl0XKmmUzHd0YmHLRlCq1oqU28PudZPnAmGZwzlNVs4SoZNfQwPWErDH3gs08/oes1mM9ZB4/N44ngvUnjHGOGaTyq843vOZ0mdR4LKjMKtnSmolWrNI3kNPHybqszA5zQ6WhwTlM23SKk2ZzOQqR4R67a6BtDr4R0yTDZYgca7BCDTajOZ+354lLiUAmF996C6WZNY9V6VJrpqIta3NlU8MW5x1nQVETnu7T67ZZLVRyxE5sg6vCuIXFQfadlvbvYWSMadP0W573aUVoAWmvhNE2mp1ZC58+SBnXr6HF4V0wCVc4Ws1WiZsSnmXk+UXImdh2dRmSa9XFa/s5FByHRVOqHaGIBcWTrH5CcwXud4tpgs9uz2wX6ceY4J62y5krKs1VwlGyCw0ULEKyCELrA/uaGTdfh4oD4SE1HqjRCFPp+IIYeEej6DbnAnAFnk6VrZcoVHUCoFQXdENXmOifNdjkb5tlqO1dHwZotHUjslVSVwjwX5lmDDFk2UPS+1cSP4MyZBx80CHIOJ5GGrhvegmKAZKR6t+11sq4Uqqjrm1jviwueGFX2oFoBMWvMZVK13jPjlHjz/sTtzWgadN1oRYRhsyWIqHbb5vaoL77NIAmOPsqZKGUPCSVIORcOR3USct7RDT3BDXhRr/v7x1EbVG2Z7KTX7GWFrlumbKubD2bR7axq5FxDMPlS1YpGcI3gdW6Gc+6qOdOSWa1By/ayi86pgkvVCWczIgotTWrQgpFNy4bXqtbGmKxjsQj+NiLlgkzJ3PZ0aGcx+ceX7+7PTpWbzYaKMOdZdf11kYH489Tqvrs4DXUh4N1wlok4H87EUXwgdhum2STArRrxntSMwlogvFuSDY0eXSfmpFXNLniqBHXRS5pgzGnCh0DsdHivNtguhjnqroQTc8v0tvdnU8AEnFMrWXWq037BqVTqOHI8jjiXjcCqqQgC0qomAprOuooxst3s8KFnPDxQkpqlBK+zJrbDDeM0Qm30/QYXBks4qxuSd0Gr0rUwpZk//ukXfPlw1OpZrbw/Hfn7/+yfEHzjJ19+ycEsfnOuRHOCfHf/AKGjFEcqGSdCb1a/i3wWGsHrHp9zhab3VHRC81Etn3Ml58TheOLN23v+xz/8I94/HlWKZk3gwQlD74F8lib9+O0bfvHwwNZH8lR4c38kl8ZPfv7A7/3zn/B6v+F3Pn/BX/8rf4H/4C//eT795BViZLLURk3V4pxKDEbpq87RLmhPc62NPjj2mw6qDjsMHsZxYpphW7VHoje7YHtAgoALSrjUqEL7T2urSHDaw0WD5ixBpuuKN/lftEpxadaPe80tbB2wiE3VOp0a71Tr89JkdrVqkhihhdy+4UqGC57QaWZJmr45c8paZnE64Ilacb4hVr7t+0jY3qjjQH3QHo00I3jT3AElE6LacDUgzcrSQ4yMczbta68BpQtMs07NHvqeoQ9M08z9wxHnjmy2G0LsKbkyZw0guqjNljkX9vtXpq3XcrygjX8xeMRFJHSEmCg5Mc0jOSeVUlWd6LkZeua2LO7VMq4a6Kj+33y4s7oiHI8z0wQvb2749PUrzXb5QL/Z6aaYJiVonVY5mgNKIc8n3RSN0Hhz1GnzfF5YW9XMhEqJVOcrYlOlRYcw0RzYRacJcAei8z80IBBr+AaqZh1EJ96o5s9pIyoWaC3yB8z2Vs5Zl6ySAbk4pWi2dxkMJGf5mAZuAi2rdWkquC5YRjroUPJSyHU+b4NpnqhepyR3potfmoaRyHGaVFI3qdI/BiF4LSl3XYTo8LLR4DAXdexAMx/DpiKuwwfNTjinG5bIMsfAiNCVvVtjmdpqZMOOB9GJ1seiNqm0Rj90eOmAYll73Txq1cqEDiKr58BNBzE5q6p0eMv81KIWorV+e4MDUILgzplbzd5ErxUKhLNmvhSTfFgAXppKyZap0d4LJYgOrZKG1IKQz5Wgi9Wv6FRbNKjTGRdWSWoViR0SBjIBqlOXFefO8qcanBFAc/6wXpG+izovRSmLHpeLVu0KBJ/xVDaD3tulZJ1ZYTNcgvd0yxwF0Sm/MUa6uNEg5OE9SGHoIn14odeI79SCtGRqk3PGUuUTcDwcNGjxwnbore/EslxOhzUVywhW9Pr0LBas9axNb/ZadQL3Iu0piBT67tJrRFuEljrfSIfNmTSrFeqiZbXNUkxu4Lzjs5c3eAumnPcq1RRnx6lB32Lx60SrXdXmb2CW6c4211LK+V4Mpo1PSbPTc9KMrlZvlnUJk6k4delDzhm72AvFmRviVPCuIuZsEYMjxI79TnsbUkpMs06e9kHlqrkUfHNWebWBWIBUky2JZiY9XpMYNicl5UaMmRi0+ok4zFvCJMHNggd0D2gVgjoRCrY2OS5Nta1RatIguVZKTqaqUpLnw7fXQEIdmhLTNFKayRFNdpRPM6c5k0rjNM5qnT+OJoNq2qyPWK9bJSdTCTshmusbRtKW+Si16rkXNLhLOdFyQUT3+dg5pFTE6TW29D6oXZtW/bygZMUtQxqrGiKIx/teLZabXr/eLcOBvVXHM4L1T4oDV9UwpiStALdKt7thGAb6OfF4mpSk5EbKkw0S1muwVe1tElT64ryw3+3Y9huIGxB4eHukphHvB2LUmRjOBVs7tFrTZEl2moy0JGop/PEvvuTv/sM/4CdvHlQOhQayj6cjv/+jH/Kz+3vmlEmpME4JKY2/99/+Acc58YPf+R1ub27ou47dtme/3dDFcJamATgXiV77F+tyLYvQnKP3gbkV3r17zz//4Y/5Zz/8I/75j/6Yh+PI0EXGpPL+46gS+r7q+hLRPef948g0Fo5jOrtBtdZIRTiMM3/85p4f/vQNv3zznv/D/+6v8erVHX3UpGCrI3OrNsx1SURrX86UZx2LII3N0LHd9JTSGE8nBAhBGMdEqYGctN9Yhzfq+U2pIKWqKypYw7euvbk5gnhTt+j5EOegiq08alOsk7ux/k5vpE10/o/HpNyLYU7DWYN/plgfkFZmfAiWJC2mSPjV+Nokw5u8xwVHzbqADl2DCqHfasm+ZqASu077DJzavDUyqXim8aA3G7oxOhd0mJ3zlKRa31oKLgSqBNPMFlpL58yQDtwTKp5UKlO2zJCVkZpXNjn0gWYDn3LJage63yMiHB4fOTy+U7Z8s2O3H8hT4jBmZpuiW4teiK1BMMcp75TpTVk77GMccMEx5WSsNlKbcBxPnAS++OId45gY+p7dZkvJM2HY0G12tFJs8rmWPVXb7ai5UmuyKkCzC84rL6qNUmacaBYC0QyLypJMAKj6KV0UHeeLqVmGBJNGnDf/WqF61RWKKPUNVu0oTZlvtRJ18Ei39MEUWlbyos3kl3+6eTvL6MEyaVnJXwXX6KOw223Z7TW7ktOsMw+yljvFgsSz84Fz5juu2aLNdsv7xwMPX35JzhOn05HTaSZ42G56dtst+63OmPAiBC82RKcxThPH05FpLvhOz8+UsmrVSyGGyDBs6V1gmq0qgfr/exXPU4ykLg2UpVSidwxDPAdZOl036JCmNFKrP8/byClTa7YgTQcReSMyS17Be2dD+oQqQmcZkm8ztDFfG55d1QpS9cHeb5Wt5HRUCz44Z8BLaYxzZp4SUInR0YeCOLVGVWcfq0zaxlTFQRNyW/ooKtF08jlXpBtopq9/OCQ2my1DjEy10rWqtotOM+RVluywNtMFaeDFytWNkjQizGlinkeyTej14myIFKShs2CnIGj1F1SoILHT/hRzTNEqarJehEBtmZqKNoTbzIMmopIo9L7rgmO32dm8GKHrOrxEUhFKtrk5bZmSa3piLtXL4AMuRK0o2SZezUvdOei6yM1WnfdUIqCVUAF1MGmamFC1nwZlKlNul+QDWgX//NUtXVRpxDRNhC7iQ2eJEiXtLSuh1MrzrNUDI9kijttNxycvBl7fDWbjqsFiH4NpmvUQUy6cxmwSrHiuqDpXiUFJo/bc6dCv5kG8DsxEjK4Wm8wbAruoks+U1fSklkoMVvxlqdyKPZ9mHpceievz3VlGXfs1mplSZKJdYypX0eDZ2fsTgtdKaVEbZY1EhEJFmq0fzeSHpZwbyHV/0mCqIsRu82u+0399qFTSPDLaTIYluPLmWpdy4d37eyVlVWmeBkaLrEYJRylCLt6GY1pcUTVo9MFBzrSq5KxZP0wuwpwhzRVxjTFlwpTPyg3vIASTWXn1aRPdkGlUgojJrBrETo0GSuNxTAz9QOc9seqcnNB15NpIqVHbpbIdJCDR6b1VijpO0c6vz1HYDT19P6i1+3SiFm12Xtz6QAihqLy035IblMN7pCb22w1tE0E84iM6Msvs1xeL2VY5Hh5J80yMKlf+5Zt7/tO/93v83X/0L3j7eDJpl4Ygacy0ufKQJu0JypXTlOhE+NkX7/gv/qv/nt/7/T/kZr/ldrfhtz7/hO995xO+89lrXr54YXMuunOA7GNPQI0wQHChpyZNNj4cT/zsiy/5wz/+GW/eP/Jy3xO8cJgyxzkzp8w42T1pDc1pTLx/nMlZMyeLCMT0axqjlMpP3tzz//5v/oDf/Z3P+eu3/54m372zfsqKeHW0866RLCGV5kLJlYeHiZQyfa8y/RcvbqySMfPL9KAJCkuWOBepS0rTyVmB07AB0zYnp1pPhiZxGgF3kcSzDNGeqc2flQDizBLfShrn5GmtVLG+XmYbuWAPZA5siMoug3e0r7mG/AksbCGPJ3zKhNjRdz3BRWrSUn3cbmg+cHz7S9WliXA6jeTHEykVpjkxzYntoI2KOrBoZtMNWpb0QQPoLhC6jtag2+9wMfDui5/x/u07RODmZk839BxOJ969fyD4QB+1LNdOJ2rO9E4zd1WasvjWVEucJ+Jmz7DdcTo+ggjzNOOkkeastqU5n8nF0GmmyHshikov9rc3bH3H6Xii77VXYp6h7x3Dbm9e5DNv3t3zT//Zj5lOM/v9HX03kNPE9uYFrRSO7++RltThaNgTzQ4YVDbgfUfsd2Zfaw3rrtncBcuY+E6H9HkHLdFaUdPg0nBRF4nWzC0qoDuu17LjmTlYOdauHrVzv54S7oNKJKTZUAdBrVlZJKJq6eotS+m8Zv5k6S0wOYVJ0eY0s9nuGG5uEafWr+M4ktNsDU96bF3kXN72lh2Gxng86gLZR4auJw8wjpUadRpnF5dhO6qBrKXg+4EMzHNlnk6knJmS0Jw2jovo4lybMBfVLnZ9pQ86XLGkDE2YpmTn3p2bSpfZCSIa3PRDr85V6DXXmt7MrQinkki5WqZezRKq6M9zSRwOJ7quY7/dMnTaiByrNbO5Qq3L5N9vL+Y5W8Xo4s2da6LzkRDVWKFZxreibkwAIfaEptezDtssHE6TusN4p/rdphn4qUHwNpTS0kHRibpPiTblhdCdF+pSJoK3GTbWjFlr0p6ZminNgdOKrTRrppWA80osRHTQYowdtVbm6UjOieY6QuiJ0sAJzewVaZ5SkiZWWj1XXXKxLBPoz8tsvQ9LFtt8z5v2Pjm1h1L7Qyf0/Y4YvenVlbykAo+n8dzQrNekPsbiarc4kYhocsKHiBOv5fK2bEpKqvebTis37TI7pNSCNJXC0tBhgXUpxi+beQNZ5mDAp69f8Mnthj96czif15JmSkoEk38kS4Q0IxatLTpifU9f3235rc9f8NmrW2prahziPdteAxCavu9ONNjrfKCLqqOekyYPxIZrLb75sw3k1NqOTgP2TvsIva2dIo6uUzvSHCK0avpxbMq5JhJaLnRNiNGb/XGz8m8zdy+rhDrLTjYjqk2la9rTYaSqKvEKLDblVjkumZIyzqmxiPPLjB4NjqZRM5Vq36lZbH1Pl0rftw85JeacrY/Bhro2PU9zLiB2Dquez2LDMtWeGJuL1FSmZAYT3rK0qiBWhy6h6fveKqWpXGXYdMRpZo7J5q8k2iJlAyMqKp1VaaKcA7M+qupBZ0w4nO+VuLiZXD0igSqW8KoNKU3X/KvhdyI6P0UftiHoBPNWM+PxXm3XJeAFutDRYmMTg1XMNSOohTHR+TnoMNFSdUI1Ta+ls5PVmOzv9NmKkRVaI/pGv1NZ87/40U/4f/2Xv8ff/e9+yMPJ5JVLJRM4HGd++fag1qdeHehe7QaGoHLAKWXePTzyxdt3xBj4yc+/4Ke//JS//Bd/wF/ygU+HLeIDpTVqSbpeZJU6NxFyeqSkxJy1ut13HS9vttqn1SrRe4Y4s0+eUiKHceaUC+Oolb9xbqSsg/2aWH1WnClfLOyx5MlP3x74737/h/zFP/c9nYqOnGf/1GYS26pDBxv6+sTW8eNYmJMNOfbgm9B1ajKh17VK8LQ9ztwlMWJh9/BSlVcysiggvDmDaSyhCh2NmyoNKZqY0zlQ9bKuusXwQ2NHWarZtTLPKr1UEqLJi2LrI1zcH38VvjbJqIiNawfvhZwmqg38qaWQTve4GBGBeZ613CTacFhypjZtNlQdozUiSaGPO5W0tEats8olqpbIw7BjTonHh0emeST4wP39Pe5w4P3DgcPxSPDBfPcb283Ai9sXhGFzXkwaqv12XpuvcpqIPrDd35Jz5jgeOTwmlR5YBrHWQhc6e5O0WbILat9VKoiow9awGQixx/uOaraPaRohJ9I08eUX99SqC6F3jpbRmQtlYj68xwdPv+2J3YbgI9N4T54etYEzBkK3VetLgZRnajpR0oi4QOwGQtzo4wJLF/LyPyxbobP81IZWb/ql9BCgWmZc0OrFQjLkegMSy0hcfa/pTaRyKt2OEbRJ25ymvPNIubJZFMc8J7xoA2tOmbcP97x/eMs8TTY8MdB1A32M+KDP2KpaxOl8jpk0z8wW7G83W4JAHxwyDFrpqNm8qk/q3LLZcJwmUq74EO21aH8HziNes56EDDXYoliNaNbzFPFWKl60/Fk0baWOXlUX+cUmUIlAPdvoqV2l1xJv75ldZpxnSis4Gl0YGPqOEDrevHvHmCoyLTZxYn0GNrvEsp7fZjizgQw2VOpCCLXpdpHseKscOatOxNgx9Ik56bWjAXkPdZHK6Ka7uLKUoo3WHpvUvWRsxCkRDR2pOubphPOdWlMuOlQbtiRZ0DFGDamZ2pw14Is5jakflO6lao+ay2IHKOehaaVkmk2bl2YOKbWenytZJjtbZtY7lb6ImKzLnIAaanHZELO4tMpN8PTBE6NJHu2Pc1bpn/e2AZpErJZKLumstz2Xyptm+INJV1uzQXjOmxwMbncDffAcbGBncAHwSn5Lo7mr6lNVMmiqH2qtuCjs91u++/ln/Pnf/ow/fvNDajMbX5MF0S4TjrVxC0CQurhWVbrg+N6nL7nZbjXwQjO9Xad6/GYDwqLz9EkrBCE4+qiV4XGCw6huhsEHpAuaIc8QRJM6VO2z0D4Rlb80yyZ2XYdzHac6IdanqPr9xR1OZ3XMlhVdqrrLyRCsGmpE21ZtRLQhd1EOZPsdOfe0VWv4dLizV76Qa6Ym7UfDmjbFAoFcNRjWNjub0+K+vcmKLgb2uw3b7ZYuRmpJahmdE6fTSCqVMWWmOZujnMkbm85YcqLN2F3fMwwbOnOQE6ckPmWV1cQQdF4Ml1kUznv6sKFuOtI8U6rKzppd67SiAZll+7G+Uw0I9T6LzhG6Xg0ophPBDzSJZ+nR0qivniyatBOBMulQOR1IqhObG03nskigpJM60nlsrpZWeLR/SismOet8iWUXyXlJbDTrd1KHs2rrqmr/Lw6HWqHX7H3stngn/Phnv+Q/+//8Y/7uP/qXPI7J5JcLzzX2tfReVu3zGlxl6CKbXt35Wq06XNnWocdx5Jdv3/NHP/05m82G0G3ZDAkRTY540UodluhIZixxPI48Hg7sNhu+8+lrpkndkKaU1dEvaXJviIEpZQ5j4nScGWsDCTS5DKoTkyfV2s7Od4gmCP7wp7/kZ798w3a7o5gMV2VwqnYIXiuZqjxVUlFrI6WKIxODStwnp4NjN0NPiYE5Jco8k6bEMKgjqiYntOoazDWiWVVBwOIEj2+cjSlq1vW3i9n+RgcgiuiwZmvVNaOfCQla9W7LTWaJnNb0caTqMGy9PjWJvJCxX4WvTTK0Hqi3nI6FV49k6bf4OBCCyp9a35inE9N4QLz5RVe1/wyuMmdrWqKy3XR0XYCmmrU5Z20IbpOWY95/oQPxauV4OulwI5POzLOW8ue5IIw4B8GrNaRYeUndV9TKsRsGSqukccJR2Wx3TCnx8O6R0/FIQaUPai+3o+9Ui6jOCUo2xGs5rNpE8zLrlFy3nJtW1ce+FX728zc8HiY60aF/JU3c3r1m2O6MLEyE7pbYD7a3Fs2amk2mdyYfQKhppqWTOlsQCP0OH3vNaNDs75JmN82hQqlwhHaxUVQy0IyQOKPmfkm3YxYp+rmuNYj1dCw9GQvp0GZYAdRvvprF7dLcrFUNvVG9D/T9wEG0uXcaRw7jO7WUm3RR2ga1/4wxstn0Z9/wmhOlav/PaZp4fHjHEAMxdoQgDMNAqY239w9M5rMt3kMu5pXvmeaJVAqD93ShN0mSLrQaxziEZfJ5u8ouN5UuuIGUCzNC8CrZ02BCBweVdGISde4IscM7dR7pOpXYqUuUZ9N1bLfCnLQs28Sx2WwYuo65wmFKpOPIYcpM84k5z0xpZrPZEENn1Zavd2P/pmK3Hei7gS4E0/ZrZn1M1sTpg860acU2NcusCPiuY9trE/acilEKsWbdWT28rcSs16AGcD7E88RZ7cPSAKPHMUo2stkxjSdS0sAOC+p88JymidoqXddpX0itgGYTVXZvlcVaKSXRmsfFTisAFty3po4ni5SQplKiVAuz3Tclm0vfMhHcLZUyy4LbNRmcM9mDbmyqovPU5jTL1NRmtTaVJnUtUvJs8y/M8tAkJiyWhuhwrCaeYhPtBYhdp/dxU4vI1y/v2G86Hie1rFwqezrwiSVUZpH8ia2rLHImVFKyGSJ/6fuf8w//h3/F46z7ibpMmXOSmI1o0+rHuT/E+kW6Tnh9t6PUynGc6GKki5r5y1XlQGlWy/XN0DEMkYWfBx+Yk05uFu/PxD14x2azDGKdVc4qWnHzXsz6sRJCpO+iynyLNprWCj56DUoFdXeqVaUmFbVQt6qFNrMu1TwlsVRtwk25UB30orpuVbSZtS9KvgoVVxslj8QuWoDjrX8gX9Zp7eK3oNc89V2xQCL9em/0XyOGrmO7HTSBU6uSy61mlHfDaPtF4jiOPJ4mclWnqZQSVEcYevquN3lrbxUCvX6PxwOt6jyFIeoAS+/9OcVWmpiRgadFa8pH+zempGYzixPSYh3rbA1aKtzOq4Sy957oqiUyHPM0Mpn9bKkQoqcklW3rDAulo9HrFGbvNICPsdfkVzU3Sq+EqqRZSYi0cya6Vf03F7XVzmlGc5J2PfrFlEDviaV66kxq7KwHdwkppjnzz374E/7hP/sxh0ltYZdrWk1NLu+bUQ9dM8Bmn2nFrlofL0Cx5OT9w4Ef/qufkFLi4XDiZqekJuVCF6L1yiU7N6qiGKeR9w/3jONklU1HFyNL3WfookqWwrIGOOQ4MZ0yhQxNEwpncwS3OLlhltJ6/PePR75485btlMhV7bC7sMxHKeYwGkjzfCYBS0O2AEN0dF5s2HAhBK9DGoOnxEArmhy6qKedvr8OOi/mOFbPp1cl5Tr4T4uiGqNMVqXybpEMawLKe3W9WlQcuWZVpuRGdcukegc1U6vTJJLdBDEEGsv071+Nr00y5vGk2RQRqjjVjnkheo/36uZTphOtFroYybFHvCf6xrHo8KzoHRxPLH7nc4b7xwMOnWI6ztmkOTA2QY4jMepGfbO9Ydhuqa1yPB41gY7KbXLKdF2g6yI1T8xjpTZ1bwldR/CO0AU8jmpTr/sYiDGQxi05VboQ6INmHmMc6LpeG8bTiCzZgCZaYbBMUi6Jd+/fAo7NZkvf9zi55Xia+MUXB4J05mVdmNPE/sUrvPdMjydtOOoGNtsbvHOk6aCTp2sj9hu6YUeInWYT5glq0Yxb6In9DheCuU5kahpVwuSdNnCLozXVU3rOkZzexM6yg8UIhml4lUQKmOe71vtR2VOwv7MBMCr0xQb2aGOk2IKn05o1eFGSFwihMGw24DqOx5nXrzu2rTHEyM3+jlxmC5q8BYCdDlSbZmKIRO9VvtQHpCZcq9ze3tL3+t72XWDK2ujXWlMNfNPsdi2Vvo+0SbM4zgZCqi2mBrMablXlWV6HRpamFrnDZgtO8GnGB2ezPVQCUpo2XpWkLjZTKrikz9tHz95phtk79VtfguoYe6LdeUEqrSbG02waas+cJqacKFUzNKlk+mhNvO7b3ZNxM/SqSTW5GU04nA5gjnKh08F5NHWWW3SjBXc+fzRsGqzKWeaUNWBv6hhTq86JWCxYXclUJ2BWoAWPs0BeZE/KlTyPuJoZIvjmLLGg99jSyyPO6TBQQbOI4ql4KCMV1eiXFgmd+uVLteDaSEXJmcUmVq8d7TMZ54laTW6IZpqWZruzRWJbJlh3NmDO2ealsoY8zdRWGKdRK4beW9NmoOTEOE3M88ziG+Cdp+87uqhJhsUFpzRPFY+UCWnVMvnaqN4PO273Ey/2G37xfjRnI3M2AespknP/lDraQF6CDVuzpakzzfc+u+O3P73lD378xgoYulGqZbBWQItVeTTjpoFIq1rJ2G11AOFpKkypqRRKKuJ0HkZO2isXxDZ575mSNnZOSacVi23AXa/Wnl1Uu/LaLckXlafklKhltgZ4bcIN3vPqxQvGeWY8nez4RGVQDtWum0nInJXwqVNWJi6yTrNHdznhiwaOFW0urlXORgI0laFVM0SoQHOVltp5CJyYw5ZeRdhzj5yb8sXh2jLd+us5w/wmwrlAKjob6/30iIhjv9dBZ95HvNNrYbvdsDcZdGmONJ+gblV2Zmt0DNZMjTDmiykDaMZcnX7iOUjsvA4NbeYG6JzYtZnozZRE7XJ1qn0pKmWqJes+44NWJ3ywxMeeNOucLi+NIQjVkprOBYK/9EWleTZr0UJFrXepWtUvU0J8R4jLDAu7Ropet8t057ML3TyTTeevQoaGNK+S5dbOVc5zqsbkhFNOHHM+z2Z4ODzyB//yx9wfTqa6XuQ2TU0VrnMOVuVThYXuo2K/owkV/TWd3+GZppkvUuJwOvGLL96y322t4mSGEVahxoLiPM8qU0WNH+akla3TrIYpm97OAWL3uScGz3bo6e6PfHmYmFtV1bq3yng1CdVSbWyqdHj/cORf/uinvHxxR2mw2/aaOHPC4aSOYzEGMBMGtX69pF5CEHZ91JENZn6y2fQMm0GJQGj4YDIt0Pe46H4gzdneJWdVSROVZ7lzZdSMPCSAqMuVOvtpkr42HaYYFhmwaKW5lFkrf31QI4laz9WcUrXHy7uqagP5huVSw2ZrFofCMHR0UW3cukGbydI0ndlvjIFhu1U9YqmUNELOYBp4FzodZpQzpynrBS56swsVWrFJvo3DaaSLgZvdlhB7juNI2zoqlcPDA7vNltxZVrmqC8BQVQvna6O4TOsjfil5gdrC+qhzNmLPdtfUjs0FlqFprlVdrLYbYvDMc+JwPNJmzQo01yiISl+KBtG1au/Jz3/xjvvHpJky22imaWQ6PkJ2OmtkqUS4gBNPzoU0nfCxo+sGdQ3xnjqPlFmH4IjzhDAQQgdebLGplDyZf3/UTJn3KC21cnqrmjY4R2mLwNCY6PL9pQ/DypvK5HQQGnGphqBVjNZMN3hWCaqf86yWaqoFLJbtLTqdPfT89Odf8vlnr1Vu4G1KJj1d32vgPk+28HcE0emf2G1zPFSzsFNHj9YqORV81dKxBifNnImssVYafbchhI6Usym7LCOhTEkDusVtLERr9i1nCYwOsdGpujEocZlTZi4FCR0yQFczKVdKVUvQJUDKxeGCzhfReUzNgiZt1C9FyVjNhd43ak5UV5m9VmFEPGku1DISvW5432YMwdH55VrUhU+z99ZYmbM2PwaVAonNEYg+ImIZ33OA1KBknBNrtNQme0cjmjyi5NlW6YozPbyIo9rQPMRRWyKVDE41yo10zjhRoIsDXRf1urL+qJwLyXbQJl4HpEmznoyqTXtNTQS0cqGyl1oTKVWamQqMkwX+JmOptTDPCWjn/gzNZAb6oLr7hUAvFQLvArXMTNPIOE6M44wLga45xnmilXJxJnMOaTppduiC3k9BCdk4TYxZN/84dEDDi9M5DwitJoYofPfllh/+7C1T0Ypxc5d5L9pAe+UqJ5qVBJXZ9tFr8IXwyctb/sqf/y5/+PP3TOb+JGgmU5PxKhXQieFWdTQ51X7o2G8HqllBlip4r0GhiKNZAEjNKr11ajCSs0pa+uAJOHJWmZOaBTRrAjYL6asMJk5oRIrzpl/PkAvbzZbdRveIcZ7IaabYgDdQowARla3monaUpVZCdRQqKY0MZqbhHTi8SYZV/qGVs2QSOltr7X0sVWVgrlS1wC1axReviTm9Q9SFTANidyZzWlX7diJ4T9d1SN8xpy8Zpxk/RorNxQnOqd252c5ubRr4NArjaaTWTBd1HpI6zal0bZ6TytWCVVCt4l+buTM6h7dgG5bArJmEWh27XOgJseCoVhWotBLPshZxEJxQmycllb+lPOs6KE7lxk1JYzUZTj/01FzIXocz5lLJDV13yozUmVKzzqIxeabKGAELjHMeqeg1c5p0jahLUsBsm4soya9F90OcDt5ttTGPs1mtJh4ejzweDjw8Hnn78MD/+K9+xjSrOc/iJKm97hp7LJWRZk2ctWR8p+t7MEtpJVwqoY1Re3IX+VTKSqzfPxx0TzcJszeZbYxanah5tp4vI0pWjW7oWum909EAIuRcGHo1Q0hZTVr6LvBwmjnOKmluVlGtS3KvaY9XCMKm83z5/gFEScjh0UweQJPldoxUjZO8Ndwvhh9D31G3A6XMzDGwHXrtLYxB7/mmFr1d560/UYlfqTDWSrQ9U1VN7Vx5EVtvW2vk2tB5I97m0qn7X6maAJFaKE4r57GqYYF4NaMYpxPLcD+9F7ytx+pqhhQj51/jfv26N/b+9oV2uM9H1YZ12rFPnVVW03R4UMmZNI2kov7VOl8gqE6slvONV4tmjhfdcuz7s/908FpCfDxO5s1QwEpj2jSnRGQ7bHn58gWPx5E3b35JroXDODPnquVzt5AdzSLmOjOOB2XZpr8uJdFFT0KtAIPJdTZ9Z8OQIO72yFA5jSOUjITegqNCP2wpOZHmmZQyb9+951/+6OdMU6HVjBdPzhPebSnTyRyQhN2rzxh2d7jQAaJZCTRLE2KH9532I+SJmiftL7CL3flgFQd1RKpFFwRlltaUbBMzNRVZMRNvJRxVLpWN1i6D+RafPUTlUmdWYcRDlnSkkQzRGQ4Yyxev/7Cpxt57nG94H7XZe9jzePhj0nRk6APOejn08azFQ5pZfWpj6zRNzNMMqJtFKRPRd7SasQHO+FrIszps1FapuTD0vcpbcjVnHcfQdVrytVkUKatfd2uq7cwV0ngywQ3kqOXLFirBeR0v4oTmHSIBV6DgaUX99ee5Ms+zZn5j1F6jqs2I4i6ZXm+15lILxXo4Go6+70ye1whZmw3nVJhqIXgY+kEdk77F2AwDDUeqeh+Ps05LV2e2ZtkXvY6XRlnV3JcrKY6zrEu7ZMEI+OjwPp8zySKCdB1ifUiLFMd5DS6bNUOeTiOn8aRSlVrY9JHeKiViTuc5mR61XjSpy7TsOauzzxA7Oivnt3wizSea98RuS4wdhE77frxm5WMI9MMAAimruxBgzk+6+bdq8xKc01ki6L1bzRnKObPglo5SEvOcCMER+l7tvK3BHMukhdgTg6fvLBhAN+AY1N2sK9Uaor1Juqyp2crv+03k89c39MExZq221OY1yUEzW2vLT2ATwd3FUDhGzdLm2ui6jv/FX/o+/99/+q/40RePNH818Vs4S8VApSeS7XPgbtezHXqTU6n7jmtqfVyLx8VA30XdqE26KKJOfDHq/V2baqR1MCYISsDEMsfVGiJbq9bUaWOFbOJys4pURGWVre8JMTJPI+U0UazZvrOqczXHreVciL2+XPT61OZezdAGMynIOXN2rLrqx1r6ZxrmeCf2GppDKNrG4hZrYc7uSq0VWsmIfHt7u8TrTAgNWAupJB6PBzqvUrzYDXR1Q+xAKFrZqVoFUglKx5wrucwWgGrlwlkg2ao2hYvTWUkyF63Uo9VS/UwNSZoF0M45JPZQqyXWVGoVfUDw1iuoJMYH7QOcSqbUzGk8cTweKKXQdzqMWJV1VXsPUrbrutiaaGS8NnKFPkZipzb9NY2kPFF9oOs2em2Yw6H2ZOmKFnu1zdX+oUyaJ7QH0RKUCH3oEBw5z6SUOJ0m7h8PfPnugS++fMP7hwfe3h948/5B5Z7o+V/6EBfJaqt6j+nw4YKnsut7XadsgPNlfcMSDYXFWCKGqMOcazobrqg0UhMP0zRxHE8a1zm7t6sSJ3VoDHTB0wUl397c23IpVLs/95uB7WbDq1SY5pmH08hxnDhOSasQTeORTd9xs+l5dbtHaDw8HDQ4F5VOJpvL5L1XmaVocqXrVF4LjRi8JRGajksIXuVuFm71/QA4Uq6mBjGppei1Wc0NpTgbHFkLMYqZG+i1IzmZFG0Z7KeOUC6oDKrWogYdTYlyq5pYCy3abB4sWeI49/kuFXnVvZ4NOX7l/dqWLp0VK1asWLFixYoVK1as+Abw7U6LrlixYsWKFStWrFix4jcOK8lYsWLFihUrVqxYsWLFN4qVZKxYsWLFihUrVqxYseIbxUoyVqxYsWLFihUrVqxY8Y1iJRkrVqxYsWLFihUrVqz4RrGSjBUrVqxYsWLFihUrVnyjWEnGihUrVqxYsWLFihUrvlGsJGPFihUrVqxYsWLFihXfKFaSsWLFihUrVqxYsWLFim8UK8lYsWLFihUrVqxYsWLFN4qVZKxYsWLFihUrVqxYseIbxUoyVqxYsWLFihUrVqxY8Y1iJRkrVqxYsWLFihUrVqz4RrGSjBUrVqxYsWLFihUrVnyjWEnGihUrVqxYsWLFihUrvlGsJGPFihUrVqxYsWLFihXfKFaSsWLFihUrVqxYsWLFim8UK8lYsWLFihUrVqxYsWLFN4qVZKxYsWLFihUrVqxYseIbxUoyVqxYsWLFihUrVqxY8Y1iJRkrVqxYsWLFihUrVqz4RrGSjBUrVqxYsWLFihUrVnyjWEnGihUrVqxYsWLFihUrvlGsJGPFihUrVqxYsWLFihXfKFaS8T9xPD4+8jf/5t/kb/yNv8GrV68QEf6T/+Q/+dM+rBUrVnxLsK4hK1as+DfFuo782cRKMv4nji+++IK/9bf+Fr//+7/PX/2rf/VP+3BWrFjxLcO6hqxYseLfFOs68mcT4U/7AFb8evHd736Xn/70p3znO9/hH/yDf8Bf+2t/7U/7kFasWPEtwrqGrFix4t8U6zryZxNrJeN/4uj7nu985zt/2oexYsWKbynWNWTFihX/pljXkT+bWEnGihUrVqxYsWLFihUrvlGsJGPFihUrVqxYsWLFihXfKFaSsWLFihUrVqxYsWLFim8UK8lYsWLFihUrVqxYsWLFN4qVZKxYsWLFihUrVqxYseIbxUoyVqxYsWLFihUrVqxY8Y1iJRkrVqxYsWLFihUrVqz4RrEO4/szgL/9t/8279694yc/+QkAf+fv/B1+/OMfA/Af/Uf/EXd3d3+ah7dixYrfcKxryIoVK/5Nsa4jf/YgrbX2p30QK369+MEPfsCPfvSjj/7shz/8IT/4wQ/+7R7QihUrvlVY15AVK1b8m2JdR/7sYSUZK1asWLFixYoVK1as+Eax9mSsWLFixYoVK1asWLHiG8VKMlasWLFixYoVK1asWPGNYiUZK1asWLFixYoVK1as+EaxkowVK1asWLFixYoVK1Z8o1hJxooVK1asWLFixYoVK75RrCRjxYoVK1asWLFixYoV3yhWkrFixYoVK1asWLFixYpvFF974vcf/v3/J957vHcIUGujAdRGa5lSCrVVam3QBBAaUGsFaSCVaZxJc2KcEuOYEIEQIXpH3wdCjOADuTRKzjgnVCDNmdYAL6R5xtVKjIHtdiB0kdNYmKbKaZwZTydqziDQWqPSiNEzdB2OxmmaeTge+dkv3vDLn72n7wO//f3XvHixozbP8VR4+/aRw2FkuwvsbzvEVUqaebh/YJ5GXtzteXHzktPouT8k5lqQ2JFL5eH+xOmYSHPicHhPLTPDds8w7BAqfWjE4BAaNRfmaaLWRt8FNjcdcejJRY/j8eER8Y1xmvnyi7eMpxNpLpQ5s914Pvl0y3brcc6x3e9oTni4P3B4OOHFsdvuaBWmudCq5+7VK1599gqk8sUv3vCzP/oFpWRevb5jtx2IwSOSCMHTD3vmOTMejzQHD4cTD+/uoZ64e9HRBc8mDgxxwDuH846UZ1JKbHZ7Xr3+hC52nMZELQ3vPQ+HkZ/88c843N/T94FPPn3B/m7H0HfsNjtu716wvdmx3+14sb8hpcK7t/cMMbDbbdnu9zQnjKeJh/t7pmkkzZlprjwcjjweHjiejhyOR1qDYbNhs9/ifSCnCSeJ/a4jhMD9/cibNwdAEArT4cjh8cTjYWTYb5DgKDmx6Tq60LG/uwGB7W7D7c0dIoGHh3se7u+hQS0VpFLrhHOZVhO5Fj777nfo+x3TWNh0Pa3A/cMDeR5xwTGXzPF0z2YY2O9eME+ZUiZyGXm8f4/UQh87QhjotnuKi/wf/+P/669jLfi3gulf/D1dQ0RoTci5UHJBsPtCoNTCnArHUwIcu31PDA4nDsRRq64/Upve504Q73ACrRZqLtAa4gTnxVYiARfA6brQUoXWaDRKKeSc8U6v01Yhl0KuDRFH8B7vPC5EJATSnJmPJyADIM6BCCL6uXMNWiXNhVbt2AA9DMEHj/MCQCuNWiu1FkopiBN8cDjnaFWoTf+utQqt0FpDrp6z1EZOhVJ1/RURnNc1QUQQB82uz9aaHadDxOEd6Aqrh9Yqet6aPqmgx1tFqLVRS6O1gkjFewH0/cB5kAgSqCXR8oR3y+9Azo28PD+CvXKkgXOCOH2HmgPnHc4HXHO0CrVVWrX3qhYAnA/Uhj2mvrW1NUqplFwRmp5v0dfhnD4PQC2NlArH40hrjd2+J8RArXZM0kilkOZMyRmw4zmn4xqtgfN2zAViCCBQSsE7wQVHLpV5rjT0PShN98Uuevo+Is3RaqPUyjTPPDw8cjoeCV4Y9h1C4PhYmObM9rZjfzMQnOC9BzyH44n3796T0oSExmkaySnjfc/b+8xPf3bP8ThxOJ6YUyKXQs0jUhL9diB2A/+n/8v/7Zu9uf8t4T/9v/+fWd4HvXJ59rl+FJHzP0Rw9lEAEQey/MnTv7v+nj0Qgt7fLI+5fI1+vdxvy/OI3WfLutBas39LjNTs2tbvPX2uj39cXtPlV5fPl2NZvnd9bJffE+QcF9GWl6lroK4xer8s339yXtv5J+fncaLrlDinr9np18vr5/qcXR3vcmz2/w8+v7xEOR+fHtry+YfHY799OU9XnzsnOKdrol+O1zndh5zuK/reffj8T47l+bV2fvrLtbi8z/p7Tz+//MHVeyvXX+t/vurvW7u6Ru15rz99fj7O1/uz92P5+vqeuRzj9eeX816/4jh+99//3/Or8LVJRvDBLqrlRqoaXNGgekT0xhGqvhDb2l2wTaQ5WgcOR4iR/U3TjbJWEPDnoKNSc7Wb2BHEIZ2HphtQHzq8CH0X6PpIQ0hpJknSQGTX4/xAjE5JRm4EHwg+0KiEYaJ5Yfv+xG99J/DpZ3fcvtyTEoyjkoDvftYTImx3PRLgdDxyuD8gG6Ftt9zcbthsNsylIb4iwDwXjsdZCUbKlJLookf6Hh88MehGleeJ+TQp4eiErhNygSpQmlBSJuWJ1mC360gl8/CYSDnT9Z7tNpBTZOgiw9Cx30d9rTTmObHrhP1nG7wf6PoXTGPGPRyhwW7wDAFycWz7npcvdrRWuL0dGIaBEKMShZKhKFELXUfznjoWjgl8a+Rcic4Rg6cfOtKUqaWxv7mhNDgeK48PidvbwG6IbPZbxAXCuyPHU6LrO+5uN9zebQheEDSQu73Zsb3ZUlLhdDwtlwbOO3BCqpnplDg8jhwfR2pJzCmTSmHYeLrhls0YkbdwOk04B602cs0Er9dmniakgEcIvmPOjYeHA8e39+SUaS6w29+CL0wjeBcQF8jZ0XWOIB5XoR8CbbtBXKW1yjRNjMcTaU700eHpcC2TDyMuC0O3Z9dvKblQhsQo0G82+C7yyy8aOU20Vtntd8CGVBLjqZJPI9RAK0IaK0m+3bMzNXkwIE4JhY+2GdMQrx9bbYhUNn1EBBwVqiBeH0MvB70mmkDFNmu3JDcauAZeN4ZadbGWlhHcefE+ByGtIq5SuWxOrTlSKkhr+AEkNoRMSxly1eDdeXxweOf1mFs1YuN0XbLbKHaeLjikCU000Eew1+mIwVGr6HoqDZbAe9nHbG2U5nCtsnAm0McAcN4TXLDNWs4bmHO2FjtHNeJUUoFWqU7wnvPGoySi6d+JQ5w+gBen51MKraAbWtWAHCqlQCtKADDuQQxUJ+RUyAWEgLf3T4mMnkMfHK1BqSipEvRacEogqU0fu1ZqazQcpSm5SFnJlXdLQgtarRa0VXxASRB2fkWTTuJg2HUgjthFJTpVoFVKzbQCpeh147wSCuc9rRTmueh7L57WhJLBe0fwV29LExye4PR11aL7m3dCt7xP1YGHGMHHQOgCd6/2eJRAtircbJ09vxKY1hrRB1oThtjTbu7IeQbXCH7UBNMx8csvHrh/nPAxsH95yzwnjo8HQtfovKchlJp/Lff3vw1cgqHnROMpSTj/yCnfrNIu5IJqydCvCNQu8aBy1Utsf4UliL7+DssNhd2Gl99rjYbgROMmQfReqXL9dOfg+HyP64szsmI/kiUYFUT0PCzf098Tuz/Ffna9bOiLknOcbOdBgCa2gj49N5fzcvU90aBfzk+gMWB7QibOsfOTL56cFz7y+fk5nhzak7fryefnP2iXJ75+4c9+9Rx0cyGh14H+UyJ0eYP1IZczebnGlpe/EKnlfXhyGO2aAF1fNvZ410H/V8zIvr4GronP8+NcfvmKkz4hGMvX16Tm+vTq53YtLPG87ZnL8T4nNV+Fr00yQDfOWvXUKhvX56tVqAWkXTF6PKVq4Ftyput0cfW9EhKxTFDJ2TJ5+ljSIHoBp++Cs42wVSGGYMShYrlBWms45xj6SD94ip2A6B0heBwC1TJYJXMaE/lUudvuuPnuwHa/YRrh8P5E6Dyffr5nswlE7wkhchwnytTIsTB82pNLsgONhA5qTRweZ96/f+DxMFJrobZMyxNdF+m6Da05csqU1pgOE9TMduOIXUfsIk08tTlyc9QC0zzRUmKIA9BoDkIX2A6Rm9uekjMtV/res9kNdINnngspVUoCUiNuAjTHPBbKXIjB0aaJ9z/7ktBveHmz5cW+AyD2noYjF0edOk6HA3nSID2XQi2BUnXxEOmYJyG2Drnd0e9vcd3ENI3MtVGrY06NTRW2mw3bTYcPgdKErou8eLHn089uef3qBqExHUe88/RdhFrJY9IMcFZy4XsHsVGkcHp44N3bBw6HCRHoOk+ulUZhO0TER3z0TLlQ0QpZLZXDIRF9pu8qfuhwztMPgXhqTDnxeEr8/JfvoWZevX7FZtMRe3iUgqveKgmOYegByCnTxYp3nt2woUpGpFJzQWplt+3YbgaomVZm+uC5u93TD0qguuh4HDumXMmp4SWSWuLh8UjfV7z3CI2+27Abdnot+0C/uwEfv/4t+xsI573d27pYOWlI0Kw1TjRrjcc78E4XGAd6D7eKBBALwjHykNNMSjPBaRaxVg0o6lipKSMNvNdATjR9T82ZeZ6Zk64/IkLsNLmg2UWnFQURXPAaq0pDWiAOG6KD1hKgGfqWjQjhcEuCxZL87irjqPvwUpFwOOfPmUByo5SsG0FwtucUq0CAiP1e0w1eSYFVQSoE54nR4byt08vm4Wxj8R5PVbKwnFeWKEnPuZIg/VbFNiUneNGqENXRiqOWrIH/kr1Dg4BSHdNUaaMG7MfHkYDj5d2Oboj6+kvFNdHqgHNWzcmasLLs5bn61LQyUZuSiFwruRZqreSSyakQo6frAoLg7f3V49WDarZnOfFI8IhveAegxE9aJYjQxNvSro9TiXqd2rmsrYFUJcjOk1I9k0AnSi7PxNULwTdSzpRaLZsqeHFIM4KmMRkeofORVj1OdN0T5y1jriRrzLrZex8Ax1YCMfaUouetiwlq5HF8z2kqFITddkuInjS+ZROEzz95wbDx3N+PvPvy8Ou90X+tuM4c60fggwy3hXtK6M6BoaUSrmLR82N+1dM9IRFXoZxcvnNdMZFn/84BpDjkfJW7SwVDlhXj+VM+DRqfxs+XgM/oytX3nrysryBIyxPJhSQ8e54loFbCck3uOP++PD05Tz69JhdLFeUS1F8TnqevV56d72W9u4qnv2Z4+5ETsBBAOL9f52f+oGrEk58vQfc5MLdz1+xkPSWBnM/b02N5ej5+5aF/gOUYnhHE5791dU7P5OLJz+Xp+/nsidvVx+tfO38uGu9/HXxtktGWUlVuWqLPBUGpx3JgSgiCZpVKo+RCmhKlFLo+4JeMHbpxFCspl5xBHCFEQgyI2ILeGk6EJkJtukk438j2BrUCpVZaaSal8LZBQec8XewQPNRGjQ1Jic1QCJ84QhDd9Kqj943ddk+/DXS9x4kQvAM8JcNus6MPEULjNE4cDyfGsfL2fuLNuyPTXJAQ2dwI0zRR54z3jhjAicox0jxxOE2Mj0f2m0DfbemHDh89pTladbRcySUxp5npMHKsCQmOLnpubgcCzipBjrhx7DYR7z3z2JhmIRVhTJWAsN14pseRIMLdJ3dshkDXRabU8KFjt+kIYUsTT6mFcZqZxkyaCmUqNApI5jTO5OpJueC8YzPs2e82bIeBuNmSqufxVDgdRrqu4lzHbrvl0++84PZuT06V46GofGDKDEPPfj/QxYGWC37wDJteKz3iqKlo9jNN+M4RBuE0jcx5JqfK/cMjp9NEiJ7aIjkVEJjnBhRSrnoui5BM3jGeEhOJthGib0y+kCuklBnHkXlOTKUSBIZtoO89LjiCj3R9ZNsPDH2PC56SKovMRzSdjVTHzbBnN9zQasO7RnCQ5pGaHX2IdEGJVA0e8Y4xw8PhkfE0M42NUh2nNPL+3Yk+dmw2ke12w6Yf8AK73ZYXr1/RD8PXvWV/I+GdN3JQsOiNZgkMsYXae0dzUEvR5INJVUopSCsanIrT96EWTocT4/GEA0Lw+BhxwdNoZFsP3DlybpRamKaRx4dH5jnRROj7DbHfEmKvqWcLrsFZMqyq9LM1fOf1+suNmmaapuHPwfySVQ9Or1/vRROWJo2o52pEs8c1MhW0YKALuQcHJRdaySptcv7J8bQm+GAbZdISQ7PynyBaHtVMjVYDafq5O58NNCOl/7CgtjSVsLWqlRznHOK9yrBwNCq5QEn1IncSDXZKFY7HmWkc9T7wwm4Tib0eQy1CE0eTQqFS5kKe8zkj76JHQgA8rYGr+vY7p/uAsGRLVQblPSCVRlXCJoJzAU1YNzyqkgN93lygtqIBVIPW6plYLVIzcU7lTJbFa6VQc6WJ0MWACwGRAFa1j9ETQrgELa3SqlbcSlOCJE4jkJwyJRdNgInK0EptZ6mb9wHvlQzXogk1ae5cufM+IuJpDroOmoNUMhJmtq3g749a8XCNTXTQCneD5+6zl3z6yZ5SKuQDoXW//pv914SrQsbyn48HTA3Lwl4FmldB0iU8P3+LD75YyAIfIQ/2cZGlKNl0V4+pd9mTZPqHcfqT1/QBSfjYMX1wsB++7ieH8ORTq3A0rQIvBMOWIzvk66D5qlKC3ufnc+GefbyuCJyfU55+/gHpsCP7CqKxJFhol8c6h9hfi21cHvVjp+9CKp7L057+7UdxrpxZtv05wViuMDlfiM+O7INvPH09wlW16erHcvn66WcfIRtXf3l9tT8n5G2pQtnracv3eCqPevL5N13JmOd01qWW67J0q7rQO9XnlrZcCLo79NsI0tN1UfV6lpGslo1a9lsvy0M4zVKlBAJeArVAKVpu9l4IHrsYhCACwZGLEpOAWIAfCM7rKuwgePDegoOmGnDNCnrYqT65UUkp02olBN3Qh67D7W9JKdGkEnyCHHh7f+DtuxOHKdFvNgx9ZDydKHNmf7tltxVSKjw+JkquIJ4gjf028Orljv2uI8aARE8aE41K6B15SjRmmsxMOeFKpN/13OwHzfhlLflsdp4QhcPDyOE+gYs033CdZ7sZuLndkebKfrvhdr8heEcTR2mOUsADIQZyc6RTo2RhmhKnw5FaE1AoUintcmF773GhJww7NjdbfOd5eDjx85/eU/LE59/Z0W+2bDcb+hh1Ay26yTYE8ZHohJyFx/tJNcYO5rHgNp4QHD56JGUe7h+prbC9ifjgEJco1XMcE6dpxuXCcdSb17tAmqJqn6u9h2hGcxonpvFRg7nSyDkzbLTS8fB45N27E8fjrK8vana1Zj1uqufu5pb9oCQo5ULCs9/t6PrANGvA0HdbhiGSc8WZBPB4OpJLUF26eCUk6OLTqiDNn4PA27tbut6RysQ0J7zr8AIvb2/Z9B2tFLabgf1msOvy2wvvVYveaqUU7UNoV5tHCIFgunOtijaVSZmmpuZGs56HJkKphWbSm1qhicMFT1CGTzeo9tYTNCldslY7XaDfbBl2IF7wrmPoez2/zaKCpnnPZkGg7sQVySOleltxLcCwxbHWRrP+A2loKcMgTixzrtl7fchiVQ+H14VNs9vBQ4hUhDIvAXXQ60tAFi2h1HO2tJRKbSpJXYJyECUnYrVfZ3/DEnzpa6xN+xpa08x5SZNVgVRiIs7jYgcItahMCRHENFCtFMR7thut+o1HcK3QxUDsOpwTSq6kBDVXq1JpL0yaEynPQMNnj/SCD3qvIOj76YIShlJwpVCqIHi7lkx6uxAlZ5m7RRLn0cC8OVytnOV55yvPklYLOQOkOt3bRK+pYn0dDYeIR3B63Xih6ztCiPoYtVGLEsnayvkjWYmdvul6ccXeej1skRWU+VyukUpNWnWJ3iPe+HZptGIVD+9UetOUkFIKmwD7LvBiI/QhsvutT9jte7x4Ht+PfPIy0v3Wt5dkLAHdmWu0629fR2VfkcZ/HqQJH/ze04BTLIlpEsSrz2XR87N8nzNh/dfxgOcB5a8iF08rBtfVlGtKI1e/f3lNIk++yRK96ul5QsEuh3ZFNOCaxC35czHJq1boFpJx6Ue5IhTXnz8hGpfjOr+Gf00g3j4WcX/wXn54bp70rvAhnr79zQjX5Q1q5x9e9atcBeSXD9eVCltPLHhayNnXwfX5X17omeC1p8fzkVfyBPpaFrLzIRm/9Aq1J18/IRp2X11XDy9f/2p8bZJxOI7E4C5lacvyeXdVli56UM57WnAE32xV9Nr7bRetw1OcIBG8FxrxkpRoJotw7Zw9y0t2zgneOZBw3khACKExW/OjcypPkAYtl/MeX7NuolIF3zSL5IMGMrY70Kqo3lccPnSIeJyHPlYqldIa/ZxwLvI4NXJ7RwM2Q4/3jjkXXu0iv/W9G4Y+8O7dkZYfKT7Tb3q6TcR7Yb8bTBbhSK3S2khtlTkLx0Oi5cqwEdiIymmCNsjjYM6N4DwigXlqvHlzpM6N7U3HeMxstpHdfs+wHbi7CdzsBoI4pilRUyF2nt2mQ0T3tjJlXFM9+mmceHh4IDihSUWiyQpKwzcYukjKjV/84p40N7ZD5P2b93z55oFh8BQcPkamKfOLn7/j7m7LZrsFJ+RSyaVBKcyt2Maq1a4YHLe3e16+3NMPkd1+QFrj4eGRdMzUEGjeM9fK46nQxNFHoZSRkirSCjUWhm7RyDdACezD+3tOj4/sbrbk3Hh4fyTlRq6FL794z5dvT8xZr5suBroY8T4QQ8er2xu+951XdFGYp5lpLmz2e25uVec8jTN502nmsTXqfGToPaHr8cGRSs92CHTRE6OmHUN09IOnGzy3dwOVZrr0yulwZJxGWnNEH3n54o4YI2VOeCfU3DhN09e9ZX8jIeIQX7RSaVlcrfprsNjQ9LRKUqy5lgq1Ij5Y1lk1/TTw4tgOHX2nkr5aNNAvueKDSqRCDGcJE17wWejE0W8GnLfsf7W1TNAsdbXKbbXm4qoBhGa6TY8qQnNGNmrRIL9odULQZkPhIjFVWZQmPnRFaefvY6/33N/hlCy5HMFrIsd5f94oRBrOGYG3YN+b7Mr5pXfOfvcc+WDN8Xo2nHPnhul5mpmnRKuFIFaZWTJ0lumvVat33guh6847qTZma/9A9OBdJLKh5FkJy5yUmDST1WrHNzStdMgQIDntgRDBSQTxmsTyHh+08R6T2brqqMYKWm3UWmhVg3Rx+h6X2pjHYhUSYdNviF4POTh3LhmJERnxKmRpRfcPrw1dqp8X8E17f9RUwIIseyzvHC5oM30rDUelSqbljF+IA0Z48DQxKajXrLeIhyVpJ3L+fSf6WsQ1lYE5ZxUYJT9UIEN0ji5Ehtjzndd3bKNmUbdDR9c5+k1ERPtHBj8gwSHxT6CU/g3DJbi5kktdxZ9/IjwLfj+abX9SwXA8r2hoILv0elzkKR8lOMvjn1PSv+Kon5OVa1JxFZE/Of6r1/Wxl7vQhOV3zp4GzyL89vQ/Hzm0C6ngyeeXY5Jn5/J8aFeR/TXZOP/2Qm7O/7WYznoS5ZzMfpr6/4BsnA9ALgTw+udX5+Xpa7d1U6N0/Z4F35fT8iHZeHJ+zuTiGVn617zlH8jCjKicOc+ZuOhvfJ1qwvP38en98yHBeEI8Gmc57JlgPKl0/Gp87ZXGibmQtGqbnbFYr42ZDrmUpXHkel2WtoMW0ww6wTWHSNQmN2wTK7qIe6clb+ejbvit4JyWqkMIJmOQcxZLbUrquYGqVs1YZiBEr1n81mgW2Ipo9js4la6U0ihJLwbvrCztvGasmuCi4IIwFe2r8H3UN78UtlHYd0KQyovPdtzdveL2ZsM0JvLk2H//htg5uiGoPnbKJt2ouBg5TolprpzeH3g8jByPI87PdF3GeyVzrWVOx5noIHbBSEPlcJg43k/sdoO+F80zhIFOOqQIXRe0ybA1kzZ4dpuBru85HCZOhxHVokfSYebN2wdO9ye6LtBIDDsNhl3T8n6NPV++O/L+y3tdUNhRa6UfOrrtQMqNrh+otfH4/kg/VFzQZsnTaWKaZs3ctoJDG/JjVEmSd5od1O95+r6nGzqmaeI0Zg6HmfePE+/ePdBvVLIAnmbvVRU4nCZabRxPE8f7B2ppnB4fgMZm0Mzd6XBkPD4y50KtGecK1JkhBl6+3PPi1Z67ux0vbu54+fKGu7sNtMzj4wE5TFaB0kpECAPjmMmzvp5h8Gx3PS50pAKxOV6/3jEMPbUK81RUItEmRAq73QDOkefCPCXidsOmC5TS2O123NzdIeIZjydKStQK0/TtbdiEZYFX7blmgbXi4JbM2fJLoq2RVVPseEH19BZN6EJbca3R8ASUXCwuRs5Zv4O4c8ZOH9yclc4NzxrQN3Gmhb8s6mLBpmvag1ZtY1vcYS4aXUtQ10V6BIhDrPJQS6LWqr3TWGDpvDX5GhlA16eKroNSZ5wF+iFoRafaGtaKSpnUzUyJVbvaPIueMhWhNZWmlZKV0JmDU/BKMNKcGaeZeZpJ04RQkM4TvTr94Wz9M6kWV+ey5EotRWVqXklBOo20IjT0nlh67/TUqXtXjE7lVaXivaNzkX7jbWNviARKBSmV6B3eBeMkTftCglf3qSbqapgqcylIbSp1dB6plTk3vvjiwHia+eT1C17ebU12Jud9SFApUhOt0CzH4LztAU4dvnLVBIm9Q0ryrHewoRVUQWjZLl/R7pzgPc4y6ktFaAnIzv+c9mm0ovuc8yqx8EFPXK3N3K8s6yzN9kgzVvEO6QYQoQuBF7dbQtD+j1q1p6cCsnGw10Ahl/+/QvLfIHwsk/qUaZzjw6+I9c/hrXz1x+fuVB8jG/pI5xvwXDk4VxCepNxt/eIq2D8f7eXgnsT7T8gEzwLk69+Vp6/rg/9e/cqzkyIf/aw9ebwnv//BOVrOwVX14Ml5eHaOnr6gjwT/y+Nfsvn6fj4lF0+O+6seazmm8+99BQPTBz4/6AcmAMuvXMmkvopgXA7p6dl+fjleUZYL8XxSsdBk1hK3ckW09LefsDGeX0fXz7Q0nj8nTdek4rK3LUk/Ll8bx9Jq4a+hkrHb9rbAOfuHlqEt1SOiC55qaR1iZWmx/ovzixbObg9UOZelnWhWMnvO+mExi0TxEIIjPitLl6JNvyqZsKCx2SZOO0sA8NpcJwJl8YRcGGMTKz+rJCEGr9kjk2dIwaQQDqdWNtRU6J3js5dbpFXubnqGIbDfd3R9pGYINbH5dEPc9pRWSWmm1YYrmt30QYhDR2Vm08/MMTEys+k8ruuorXI6TAQvZCrH48hmCNzcBvAabB4eRg1wd6r7v/vOTnstfIDikOZxLpBTQejY9ANdt0GzhBknntAFchWOY+H+/YGSE902aIZRGsE7QucRIsdJmKdMCI7bF3v2+w2eQuwi+I45KQHdbgdIjb4b8C5Qm1r1TtOkUhcSnYNhG7m7u+HF3Qu22w19F9huBmLU8pNzHjk4jnnkOB95eHjk8PCenDy1RJwXNpsNznseH468/eKenArBN1qZaTQ2u47tfsv+dq8Z1TwyjXped7uOijYfD7FniBvmU2E+ZbpXPbv9jmEYyGWmtiPjOOGdJ50y4gI+Br2ugvb4tCb42FFaICfYDR196BjigLhAH1UieDom0pQQmRBx5KyX4+3dBh/2zJNan6otrt7kFqFSXOVbDbHoHkEkny0FNeBr2kxcVGOvC5w1CC/noXHe1BBvG5o+dKMRrrefemm61gZp/Shohe5a7tCaWDWlnhfURW+sx9o0j5EzOc3krCTIx2CW1CYdas1MMFD9e1OL2lYKVTQ77RZSZf9KKeSUqCWpwUI1ItAFPT9izcu1mhwnU+1JBN149eyp9XdtGgSFYI2mRW1uk1VPQxcgelprpDlpxt013BBszRCaCzgX8NHjolZIam6UvJwj64VDEzk+eHLK1KK9NiIgTqtDiBpLSFVJSQyO0rQ3RkT7aOSsBbJKS2omc7UqBtBE7dDP9qBNN84xZd6+eYBcubnp2d9sEOfIufHu7ZHDwyN959ntIn0X8MsWsNj8IroPVIe0YoFJw2yktEJvCSpn124TR8NRxIjXnGlV3bc85j5W0WZzK3Y5H/ExWnWpmURYwAXdD71VYlgqaOqolbN+rC2Z9abQnBCjN/WVngePo/cecR2x0x6Rec6klI0kLwHSt5tgPJHunOOz9uHL+iqCcQU5f7wKSD9CMsQtVScxO2R3Xj8ugfvlES8EY/nYnvzGV78D8uyYn5OEjxOMJ999Hmw/OY5nj/mclDxlNx8SErn+cPX81wG1LM/9NPB/+kjXZODq8Z79rD2xlBKu0viKJtcP95HHenoOnnzv+ak+P+bT52gf+dlXEY3rc/r8mrj++XmXMmKxkA25+u/yci80iyffe4LrX3h28O36i6vTeSYX1iuoJKKe3RifkJDz7+vjLBWNr4OvTTL6zda0ydZIqT2v1NpIqXEqCXGOvvNEM5AJ5uV+KUuLlaVVyqI6Y3PbsLXa2YsqJUO15/LmbmJ/L+KoQGi6cbcEwUgPmFyKYM4wS6Oj3RC1mhxLy9BOrLMwiEm0lNjUpk3bLuj2rW4/HvwG5S3Cq9sNIlUlNg7EXy7h/R6LcxwPDyOnh5l5zgzW7F1zZj5m6lj45HbLrm9sNp5xnpFQOZweaOk9Q7/hYA3ZXpkY3TaQ5kTN2nPx+vULPv38E/b7gTJnKIv0J+Cqo/eR/ScDm02PeHVF2Wx0fkj1nrfvRh6PE61W9jc9d68Hgi/MY1KCYs36p8NMy4mXL/fc3u3oo6eLO8Q5Uqrk6Ug6PbDrAvvtQN9Fa4icSTlzPE244Li57bnZRV7dvuTzz77Dze2NyoFKxYnHo83oKVUeHiZ++cUjv/jiHdPpwHYb2d12iBTmcWZqwigzX37xjrdvHnBeXbhub3aEzuF8Y7PZQHPMeSQGT+ki46RBQXTCq7s9t/v9WZMfvMd7bTwep8z9w4Ef//hLHt6+53Z/4vZmzzBs6Qbo+kDse8QJuRTu3408PMw4afR3N4gLOBfpuo6h08Wl7wIV4fH+HoeaFuTSaMXR7bb0vehMmSkZaesoLvB4Gr/1JKPZvAKdySAWILsLURB3yZaIZXW1a/pcvgWMXGhFAKcBeMmJnAsg+KURt+m/tiQ72tJsfnG0a5YtVrmNBf+NcwKlNV0B1MIbgq0XFWvqNtlLBVrW6oPQmKdEre1JY7B6tOtrqLVSivYQ5ZQvWfRlnUrZbHovMigswCm1nNfHy2bekEWKKI7SvK51TYPZzuaE6JwSrY6EGLQhu2oFpeRCVSsvKlXlpfhzsCzWrN5aQ4LJupyAKInQ6vAl6NCgWfuQKA0vok3PDSDrTJGFNDZ9P5tzBLdk9d2530KrQNrw7paGVGlE37HZDHjX6PuAc3oeWy1sN4Gb3S37217Xd9HXsLiVQbXeFWeJKKfBvtfra/EncKDzQhCqzT6p4smp4HO257OWF7FzZjK42sy1ynvEBVqtmDjLDE6qkixLbpVSybmY8UHVRvxSyUUb8WNQkog0yCrz1d40R98ZUfSeVLWKrOYG6P0k2qj+7R/D254GUL8i3vko37BzcpY2yTNiYd9feg70/F3LpS7zFT4gDtdP+LVisedH9yx4fkIa9OsnFYzzr3wspP7w4S/VliticPXx8nvPvn7GFp4H7Tz7+omM66OE43LEH1aAlvVGrCLVrkjH1Rm/Og/X5+rJY8n5RT8N+T+4KJ4RjGcX2DW5ePL1FU1YXMrPx/TkWPRPZXkIIxxaPZfLEy6fizxxsFp+Jkuwf32wH7nentOlp/zcEmBGNOqZbFx9/wmxuPRjnMnV18DXl0vFSM6JPOum1dlgvlorY0q8eaNl6U8/ecndzYawlKWdnMvSYg4ZJZmF4+IQoj6PVNP31lwso2QVBxHVo7JkB1Ht7DlnqfMLRPsm1V1EVIDrxAiKNaa7qifQWbl5qchQRZt9S6U6bXZsaFnaB7WFxAud82w2PZTCvg/EqCXwkrUJuDS0i91KT7k2drsNw6bnYM5UaU5EVMqw6xybXU+WgWG35ee/fMvj/XvSoVDmRnVKonrv6aKj1Uo6FeoMr1/d8Vufv+b1py/ZDFsNCDph06ukLM2FGAKb7ZZhv2cYepzzHE8zPNzjkuNxLrx9d+D+3Xs2g+fFyx19dJSUKakxnwolCk0Kp8cju97x8m6LNLWw3Owi3eDJ80ydO4LPSJnZDgPBt7MkKfaOMHlubrZ89tktu+3Apy8/4ZPXr4nBk1IitUypmdM8k0tlnGa+ePvIT3/2Be/f37O76Xnx2Su2u4FpPDCN9zy8P3KcJk7TCK4iog3FqVTyKasuPAnBRagQYo+rnocv3zBPMzF2fP7dT/ju56/P71M39Aybjjln7h8nfvKTX3L/7oG72x23r27ZbwecC9RSSKmdA+JSG+/ePXB4OPL61Y3K3WLAWZ+Hs2WhxcZm2FFmEFFLziYFJOClUw26RGpfzj7+h2miHCfKtzw6aDUrwViyKss/60nQysUlq1JKps1qeKCa9Wb2pEvg6zSAst6Jkqvp8525VGmOUs7ZIdGFtFZKtmpo00Z/73Vugm0VemDN1gURfNR1yLuOaFIizYKja1ou+FZxQc0mqkAeK00ivo/KDyyorE099sQJodMqiFZZ9HTUc3+HWBVLf9edFy3RzHmti9esuu85tFejahhbKjgJxE6Db+es4oKztdQqyU6vRec9DV1jHSrXPPNa8fjOKk7L+9k4Z92dd1cDupR4KJnTGRpRTH7mzOgjBN1H3fJA1oC+DFmUs2HkOVHUrEt9WcODBG62ju3Qo9K3ZtbRlZcvtux28TzMbzmuZd/Qh1IpkfdoIswC11YbxVKGWlOzRlkLDERsDIvXwH2xFtZztjQBe7P4XWYyiG3e9UxqkaIVc6fWqs3mglSrzi82yA0I3lFyJpes/Ypcmsmdc7goNAmUDKlUxrFwGjPew7CJ2qPk1Jo523vyrcQS4D37+vmXlwrnR2LJZ5CPEYznpMJdqhdPGpw/OL7LEz470q948suvPAmKuQ7On3///NNLQM3T33v2UOefXYL6C7E4kwG5euSvOIaPEoqPvMYnROPqceTpD/kYwVg+ngNyWzsvNMFWhqVH49kLlmePLeenfHICn336dF37+NdX5PYZ4dAHe3q1ybNjWb5n/IGlZ255fWdScfUqz4l6+9iuzp9cHeb5KOTqGFlIwdXn9svLMMhqFfzzx3pNNOyvrioa19WNr4OvTTLECac58+7NI1IqN/ue7X5ARLPYb98eOdw/MvSBzSbgunCecivirjYJ7ceoVpY+36hNaNl6LKws3dAAvuLIogs/JV1ll6wC0rQpcimduRDxobMs3kWigNNskW+a0aqtWrOm+a5nyxi1es64VS+05nG10ZJm/KTqUCNxWupvIuRUyTmry5V6I+KDbjihC/jYM791jL98B9ORmxc7NrtBGzZjx1zhcRRKekM+zUhpSBFqRj3Uh4FWC+P7iRoadzc3fP/7n/H556+hCPNJ+ybu7sz56DQTfGGz37LZ7gm+o48RFz2lwjj3zLnx5Zv3vPviSyIz+5cDQ+8p88x0mElT1R4SI4eOxna3oe868piUdHUb3ZxroaRMboEKOF9JZSQXTRfv9lti7Hhxt+fV7Y7tduDu7oZh6PGi+nkXMvOshGGaEvenkbeHI6dpZHvT8/KzO3a3L6jNkdJIsdkn0zzpRiuNMk/kkrlPEzUXNkNENtD3AekDU07Mh5njKVEy3L18we/8zu/w27/9mu1uwIfA6ZS03+XwwOk00/Udf/Hf/QEv7jaqc84apE6nmZKyZoBLJVdUNnfzgt1mIKXEOE70caA6RzFHpZwzXoT9bmsN/xkfKrHrEQnaHOxs+I0zvXgTUm7M+dtdyShJgxvvver167LQQhPN/DqcZfkLKesE75Z1UVuGo7WFAyzTHpz289BhmeKl9ydYEMtlojWa9Fjc7JpUXNWKkkrmHeBBvAVvnK0wa7H1AJtZgc6roGhbmPNevUu90PuoDdv2XtalWUKauWDZ8LxWaCRabuecStX2YcuMada0NXOe8mrV2ppX+1y4apIvOrCvKlUKOK2mieDaEoRb1aLoViZGfzWLb845aLLbyWKZi1n4Xk7mMhNJCaEGYd7rvVxFexmU9OkavMjirLgEaEVCD3zJolVa85ZUUlK5/BNRyWq1g1sqQuooaIGSh+oFCdAN3uzDZ73unDoPaqXbLYI8aGKDArWi1ezMLzu4LucNikp4nVVetBJulrkWqJ1dEsXRmjdZcD1bsi+uipyJT7W9TkkZAnivlROriAWzHK6t4ULUqnEuxBjwYakc2bltjjln3r8/6Awi39hse/o+WH9IABGm6dtLMp4ENx8lGMv3Pk4t5MnnT4nFVzV5P5no7a6IxznEbueAr50/+fB45cnXFnyeWdHTo5MPjvTpZ9f85kMe8vyH8vR3rgnGFVm6JhwfBv2Xv7u8sKtz/RH5zPmYP0aOnrzk56zoQkguDyt8KJd6dp6u+NDz8/f806dXxzWhuLxx7WPfv7CMq7fZyM4HVrXXpEcuf4/t73KZV/H02ri83KeE4/K9r8S1M1b78Pgv/RVKMOoiw21GMIxoLNbq1xWNSz/Gr4FkePF4CcQuElwjWFl6sTzc9J79d27Z7buzflw11pwP3i2bOyY98NoYiJWlVbmkJenSdB12TtvKc8o69Mze1UUC4AjgPc2GHDUruZ/1V4uLS1VXEJzquHWT1YCvWXNck0qVSms6b4Gm+tZiDiZ10TQHjx8CrermMiUd8ldyJnae6APeNLOVxmGauL9/y8OXj3RS2Nx2bPc9u90OCZ45C/PDzOO7E/nxxG4IbDc33Oxv6LdbmvM67G4aqblyu9/yO9//Dt/77U+R5nh8e6IPgf3Nhv3NAOIoWWiSCF1P1/VErxlxLNhpGXIq1Jz47PWGzz//Dqdx4nD/iAd1NUoZ1zW6PjDOlVIF5zq60J+bE13ztIRWDeZK9TqZ+zRntZx0jugDm2GLu41s+8DNZuD29kYrQhZAV5OszDnz9t0jb9498v7xxOFw4O7Vht2uR5zn/dtHxmPm9PCOVid8VCeuNAvROapDrTer5/WrOz777ms2w0BrQsqF431iOmWij9zd7PndP//n+N2/9H1evdhSS+PxOHH/fuLLL99TcmJ/s+P1J3fsdj19EPKYyVOlHwJ+787Zz2nObKJnu7uj6zpyrjy+eySdEqVPFMs8l9YI3qslpTicD6ScmYo6LjlvFbbmmGfIp9mkNh5pjvQtDg4AC4Q0W+2qBa5SqYKZQRiZaI0AuC5Cb9KnJaN8FfiplaujNacSzQDLxGewzL3tVJooMsmSjywrdpP8hIQgGpjr/a+Sn9rMblftnLQKsGTJzlVZc/uoui04EWIQoGplcK4mV3H43oMPpJzIk5JVms7nERF80LWxWBn70kei7EoWcmVBPfbciyxs2dSa036Ims06tWbbSJYZGIIEJRYWB1t/d7NeOzlP1G4WG9dWyXOmNYjhQtYWR6tCO0vBqAXvmhpqoO93RRuZa9UheKELhL4np4TkzMVXXt9zEc4yMa1eLL5ctuHZnBLdcxyC9qL5EHG+4l0kh6RBvdefqUTO9HLWQ4LIObh3GDEQbbLPWR3LGmjVbWFeJvlzzoinV/KhFS5vtsEOila6a6lnkiFLAOD8OQHaztGYgxq0uuRUuptqpjWhiyCuGiEGbL8sWd+HNFem04j3Kn8d+qgy5FxBCvVaevEtxHWo9kSDwuV86OeXkHahA5f75zqYXh7YMhdn4sGTgPz6MT9+MFy+OAdk+rWFa0su/PK3FiS35Z6145BnH89P9ZwwXH3/Wsr0wfeuj/Xq/HxAMJ59ff2xcbG5XiqPS9/acm6fBNzXr+EDwiJPX8s5ELd3x77ZQNeD5cw+u2yfvRuXiByuzqmcf/DB71//0TWpePL51ZM+Ixof9AJdNap/9fN9HM0e/8nHayLzse89+eOr710d/5O5Fu2aZHAmEOeqxplktPP6+NEqxq+DZEQJ3O52bDcD7qosXUvl5csNu5vIMvQimIXik7J0bWoF6MFbRq7Z90Vsg7d6tNiNpxkha5ALmlFz9v451J3Giafh1YqxlbP7QC2FRV8mtlkIVdON2PPX5Wecs3VeVJ1bMqRUEbPCRC6yK/FCE888V06nxOk4kudMN3iGbST6oJuOOE5zYjzMHN49METYvrxjGHqiiwg6cClNidPDiXIaeXk3sL25xceAuEjoelKBw/FIyTNePC9f7vnk1Q1D2DCPlf0+Eryw2XT0fc9cKpVEzo3pNOPdBAM4HKXC6ThR5sLd7ZbdzW+RSuJwOPFHP/4ZrhS6fq+/9ziR55lxSjycRoILbLd7hu1GG/GDRmanwwxosOA81DrTqsoFtJcG+uDoNz19cDrDAGEcC42JNCfm6USaZ+Z55ssv7/n523fMcyJ4ePFiR4yBL395z89/8jNaaWy3kW5wVGnEILQE4jybfW8VnRd89tkn7O/2TFPm3btHpvFEGjObYcMnf+ETPvvOJ3z/B9/l9as7onMcppF3Xx559/YRJ5VXr2/Y3+yVRDxODHd7+kGlaCE0xHmCi3gX2Dbw0bHpIyFotWjT9VArMVqDslN3pC520DSDEbqolZ9SmeeJ1Cpdp/IqcZ5WK95H+iDsNhum4/h1b9nfSIgTxDjAMsVZwiI3sUi/FZOYFJbGCbHJ2Brs1ivS4EwGpNIot2Taz8FHRapq97Vnq1nW37LGrQEmEQJU87sQQLE1x9lANpUIqmOVs2ucy8ZmhOYcKGL9FajTlO90YJ4LKlEqSQd3NiMsWnLlTIZCcATbDM7N4u3y2Jr41ozrkr1yEp7IVBf5kfcLg9Dz37w6A+qwLdHKQVMXPhyUkrUvoEEN+hwlq4tSrTrFWrPnSnQ0p1O12pYW+Rn0Uc00RLwOaC1a7V2ED4WKb9qjlLJQUsO5Yu5gSn6qODw6V0alWeVMVnQttyb0RQ7lTJpbRSs6TS62veK1HFYsg+gqixGkwxnRUBLkWqWZ3bA4IXZeG+GDrl+apLFjqEJB3wZnCa5m1uC1FatgtOUtwAevfYROSe+SFLNtHRFUpouS59oqKWk/oXfabC9OEyc0oeKYS7LLPvPibmCzjQQftMKcs/Uc6uXadX+S8Oc3Cx+VKD0jG8vvPW3elksAu/y7RoOL884lsH8STtXFZthI/NWxPM+An6sqSzDHEqBfgsHz8mGP95xcnD9ek6fnL/3qmx8SlUvwfgnwP/IYz87p5Wsl46fTiTdv3/Hm7TseHh+ZpxnvPbvdlk9eveLlyzv2u53OOLomZWficHVMzwnH9bFeSiaX8/O8+fvq/VjCZzGScO7bODs0LYG0nD8/yyLt82Uo4SVA/5BUtA++/yzIv/r16z6ShehchkJegntQM4aFPDy3k12e6Ml19PyYrj75OMGwx3j2WNcE43LZPntcPv4a/6T4+nIp1I87WOCPg9ocEqAf1CovTbMOnnNLRk6zVyqbssz39dAqTFoEyFK8rgvfv84+aEO2E91ExBxnnG/I2c0KpOlk8FqaLewayUit+rvOQdWmt2Vj1fq6XgDBFqFS9fkWRteaZuKc1xxhRRvDxynx7u0DeZ7Y7jqGIRK9x4tluNEBVMEpMQidJ4aoMxOqUGYdniTVMXSe733vBf3WZDs+aBDjAsdJG5uPj0diCNzub9Visgi73ZZ+6InWsFxbIx0mvI8MW0culS+/fI+A6aE9gmezG9hsOxqFcUy47PjeZ59yutkwp5k0V7ZxwzRNPNyfCJ/2dNsN25sd4Mi50HWCuKYTzoMjBs/QB/rocM3hXMSHXhsPT7MajXpHSYXTqVIZSakwjSOuqcNNqXAaZw4PjwiV/X6g5cT7+yNf/PwN92/fsdn09P1LusFzPI1QIPrAsOl59WLP3c0Nr1694ublHbk0Do9vmU4TeUp4Ap++esHv/OC3+M5vvebmZkvvI9JU699qxruisr8hstn0OoRQhO12Q/CBeQ6M44FWKiEKXT/YoDQbGOkgOMH1jjRPlFxxwdOZXC1GfW/nlDmOiYeHR8bjgfF4Qrxjd7uj3241y2z1Py/CpovcbL7dE78t5j4386r2pdFasUyD0w3CrGURnfStlVCdoNyyuhIJev0BNG/N42bNKWK9GkWn1zfa2bP8MrfCNre2VD2fkhPOMiV1Qkq54J0O+nSWQmlLYOK0cVilbe28YNOUO4gPOhHUpJS1VpqOnz43Vdem071bE52R4bxJsvQYVK5k8Y3Xqo8qipol/m0ytCVRFico2nK+dDt2XiyTb8mfbLIkm02k75Nex61UctbzkbP2WC3GGUvA7YKu7c2yYfNcOB4mhs7Rv+iVlJ0lWTZMddE6LRKi04k0ZWorxEUDe7VGtypWRdIqgPajaIKoNcw2F8SqL1pUqWfDAD2Xy3V3CeQXoqkJSCN7rZ0bIZdrycWAFw3unfcq2fWiktuq//SXL+R1GTaZl2O98DydjSNohdJ7TbgVlYuJkZqFrNDMGarq+W9WbipFKyOtqjnAaVKjjhgD+23H0EW9R5qw9Mcguje2+k2ED386ODu+nb9zHfxdBbhLVl6uCAfPvj5fBMvjXD5/mjVfCO3V34k8+Uv9pJ2Xkq/Kij8PWK8D6wupkMtrsO9xdXQfnJOrTz5GNC7fvarQfNVjXF4K8zzy05/9nN/7x/+Ef/4vfsgXX77heDqR5gwiBB94+fIFf+EH3+ev/M//Xf7in/8BNzf7szz+muScX4FcfXxOqJ4cqa5Xl0ERT8603Rv2qa3tCyFZ/ntel2ymTpPrTLz+79x0bS/6Odn4KJn44JOn503smJb15PqongT4y3M+/9oe+7r68OHxPaVbT67X88+eVhw+mInxsb9diNxy6s/vx9VjiVwqsb8CX5tkNNdsobSGbDQ75XywgLjiJFByBlT7Ki5aed1sAT8oS1sWySoNtWSV8lSTIixDpZbF2S+l8EuVg2ZOKR5cE1op0Mq5GVHqRT5wKcNZxkgusgN3bkJvTDlTCnSdDZ4Kegy1QAFyzWcS0kXhZr9jM+iAu5Z1ovCShesCvHyx0ySlD/p3TWi5Upzp86Ow2Xla2xG7QBc7ZdhVg5ObXWG/6TgeJ0SE7bbXYBYhBK2chNjhREgpEUS42e0gOB4OB95++cjx4UAIMAw9rz99rfazXihJiNLY77bs9j3H455pnJhH7XMoRqYqjm6zZRxHHg8HxrHp/AwPsumIwbPbDWoBnAuuBV1sYuTnP3+jk8RzJXZ6yTk/0USb0HNOvLzb0g2RPFemVDg9ntgOnugc82Hm8f2RmhKbjWfonVWchKHr6W9u6GJHFzwvbm54+eIFt3d3hG7gyy/u1ZI2etx+w4tXA59/9hnf/d7n7HdbvHNabaHhd8J3vvOS3S7gpbHZDdy9uCN2AyUVOqduWc4J03jEO0fXqRzBm+tAs2n1rWo/S0pZXYGC4GIk9mpLWguUCY7HiXlO9jeZ2PcqSfSWmWzoNGUcQwyw337dW/Y3FMvqV2mLUwNY4KjBusWjLNkmHdpXKKCbbVNtvJyboLU7tjmHVj/aktTSPg/RvqtFMqnN1Kpzt+XFNrPL+nD+oThaK5zGiV988aiZu0+2Wt1oSxDfzn+CWeEuZfOlx0JEzFlLfyaA95qyWOYY+ObAKixOnGXWuWxCoKRqsc1cZAzLjuR0Y2u1XQLfpmYIXptD9JzpMo6uZkZexJ2rxSXr+u479V5tRQ03HIXgrFIil6bYVhqlmWSpQR88fhsJwUw9UDdARIghWkkebXtZ3sOaiR1UrKHZAkIxG8Nq51SfN5gktlHRWUxUq2A4bxUoDVVCb251BWOXSjycBZ+XAdxNyai9/mJGA+cC23kqVsMHreJ4I3rNKjxnm2S79qqRDH0+lY429HfnlM8Wtz4sPTZN3yunMzqcuySqatXZHMEv94bua86GCObSKBJpw47+xS39IEgaqfMMaLN3KYmck1W3vr29XUvy8uo7H3x6CdavgtxnJOMc9srTxzhnke3es2j4kqVuT0kA8GGG+asy48vPLy/mTKhlebwnhOjqNXz1ozz96VXA/oScXAf6TwL/D9Fa43g88o//yT/l7/1X/zU/+qM/YppmJc0m+dN+1srPfv4L/unv/zP+y7//3/Af/q//V/xv/zd/jR/84Pt0Xbycp+vne3buPqzcXP3sTAKeveTnUX57bgP74et5GsxffX0Ops+//JGnaU8f6+p712/vmatgVRIuiZDlSnlOMtQS/OoY7YmfEIwnHy/H9JRAPHnFHydHV9foheA8eaVGkLDj57xf6a2wJObakyrevw5fm2SUpoyQ2mhOM/XqHW1l9trso1UbfEDTc+hK7pZCMOdsm2ta6sbK0ohTDW3UwXUuBGqFPKv/eEMD/YpayzqWsnQ5y6VU89pMfiWEGPBLqdRblq/abVbVz1ybTfV7xfyCSy2mgfaUUilZM4xVHFPKtFZxNO5u1RrWIaSUSbWa7KHRqLggBBfwolpg7f2sSHBE52hBEDylVqYp4ZsnVE8uNkSpaRa2Dx39bUeMgRi8uvSY5WvNlZwT3vz6g/Wd4IQ+RG73A0OEEB0xBnb7yDDoZt68p+8DuUYqld1+p1nbUSVgtTXGKePiwPb2jndv3rJ9+4ZaEzFq9UKc2iKq5SfUolPJuz4wzRkvjmOaefd+ggYhBIbNBt8FSqv4oN79rovUnKnAJ69u+PzTO168esGcK8fTxNu373l4954uRnZ77WfxvWO/3RDwSG3c3Oy5ubuh63pKqfhWef1yS+z3NBH6zZYXdy+43e6Ivtfqg2XBQ0rclUoX1MK26yK77YZhu6OmClmvMy+oe1bQoYHBGjVpGraVpHMPWtPH6Iae0EXEO3KqTDXTCkYwPXu/o217IKkDTIwa1DVwwWuAiBBjj+C/7i37GwlthF0WdRvWuUhG3LIw1kU1xdIQuwxlEq+/68Qc5EDvt1pVdrTMwanLjlYvm8p1IIGRF7GKqjVBO6tYLruFVjOLzpoohZQyJRVcsNdiWSquMpvaaK4JDAeILC/4Si5Rm81e0D/1ThAJl6D7vNPYumtPoat9RdqSKVSHldowaRlnouNsx3bnCermRiSBhlmEC2btKiors+dy4tUyGyhNsysi4LyjC4FluvWSrS9NifDSs9YN4dxEX5qc5xPp3IugVQLr3dO9Q6tGYu871gfTLElVsklxgyOEaISoIZikzplsTBuaLHHFea6FSNM9rCz9OstGr+9hNZeuZS6FGhQUcM24ifaeFCf4YrIpUSOQYhUhWj3PjtLCkCPA2XYd4dz4XXMhZSWMPl0CTOeAEJHobO03RyqarpOhZ5mX4py6SdXQgfRsXaT5iO8DhUyrSQc8lmy9GgloDEN3aXr/FmJRQ/zr8ESOw/Pg9WmG//L7nFeJsxnF8vn5Oloe/zobsfzl00BvCQovB3V1LNdfX68dZrRwJhoL2X4S0D1dy66DzWu+9ISYPKkUXJONq0e6+p1pmvhHv/d7/Of/xX/JL778gtaWoaD62rU/Uyi2RkxT4sc/+Qn/j7/zJX/4/+PuT5tkW7LrMHDt7e4nIjPv8OZ6Qw0oFIbCQBAgCZKgREotUWZstWTW6m7Tt/53/aGtP3RLsjaami2KBGkECyQIEEOBGApVhZrf/O6QmRHnuO/dH9Z2Pycy8753SyTUuDpV92VkZMSZj/tee6+19ne+j//Lf/Nf4he++jMopZzuz43zt63UbK/ZydFuQEDHZNtzfvO1b/7jHuDeaaJxs/+DOBHMaHDnN9d4eg23lLhnLcMx6hbg6aDCx71hm325+beV8rQBFzfA6/ZU3ISyz9rF/v5Kz/KT9wFeq2139W0fPwIP/AVUMio7DlNYgZOOpRi2V2BZujt9ePcl5051X3cO8nHBw0ISiIku05El57ROillgEsjZ6YM/uuu600q0Vtry+crPcwGaKBzshq2BzCyADX3xQzgZQsRuMcgmfw4sDSIa7/Phuj40VBNc3DtD3lPkDTPk4NE3r5x4zeFWYWooeRqT9shUpeBSO2fwKRVWckQAFVRrIfwkTktK8oy6YlnYSGvaMfu5LKw2pFKgZYKawcVxcbZH+dwrcKtxjoHzsz12O4ofWzVkSSigh34zZn2vXXA5X7FZlykevPQy7j94gCknPLzYIalhF80RRdica5kXArLmqPOC+TijHStKVuz2BVYbm3Htd3A3XF5e8bh3OxwOR8zHGVfXM3YJeOcn3sLrr7+Ms/NzVHMcDjOyJExQnJ1NuLh/gerAYg05FUyasZsKHjy4h/00BRp3PHzpDM0oei/7PXZlh7P9Oc6mPe/V6PrO21igdkBRdh3Pwd3G0qDR/NHckIviYrofAXMMVimt9p3YY1ECR02kVwAEH0tt0cuBD2hJAs0TRCaoEiAzA81SdC87N2MjST8Zfl+8hdeFwEFjZCTISDHJkXPPjmn8Bu1Qw4lJwOpEt8R2B6wNZzrvUfvoveFRZRVIScwihYOQ+zpuITLaHEyZ8PCRWDGc7Qu+8PbLSKrIakB05/agO2kWQDWSMQw44dFXSPvE5BHQErC0agwsiwRlKo0gw4O/zwE9MvshrB5ASiIwR4yjHQioAxI0KBdWgDfWt6T/xLpqhVg4S4kEiGZChqYcrBold0izkYxRpVGDCnV2cI2xtEA0o7njMLM6zT0EUqbORDSBHcwrYA0WmfqOk8T6sMiKQjOj/sEcpWTgTDH1+8V5frbm9L1xHhBKm9DgsPdEaBME6JqStgT4kODYq0Jy+JapQ0LwziktAMniWJqj1oY5XAlTAqbMZxau3KU+B6AL3ttw2yohG+k9XkSYgGkqgPGYLOZHCcCkmgbwEJmQ9vchZw+gOqEeZjx98gTv/+m3kOsBb73+APfONSx1HSXTdr6UgoYXuZKxjUJvBMonH9wE2vFaNt+7CTQAjAxtBxqny01ayfa7m1DyjtirGwWM/IHI9pYdACNehAWyjPtUTjazCV1jzNoe/+kh3QY1d/26/b61hh/84If4zX/9W/jw449YjRQJOQrHM7XGXmaoESRnmDuurg742r/+Xez3e7z6ykt45+23WOX/FKCxgpsVaJyijPGxW+f20+Lccco6rTLoUryOPrL5HRRsNrVu+CZovLHcukN8s5/S19FpWzEF9O1HxX3VRvi45+4EFjd/3jj+ZzbHu+PhGNsdrzcHs7m9Btjwm8AD2DxMn7o8v7tUUagB4t1uNCoWcT9oZlmaNo1g4BydvOljjyHuduve9IY6R5avC3Ycw3kkhV1livI32VqsiAwRHaL06w0ZFlkjnjRmHoHWHCIpuudGBkx81Y3EU9pPvEY/jJ6lVBV4KmjGxkq7UrDbneP+S/ex1wZcPka9uuJ+JGV5uxlyznTygNDatjWkBJSkpOkMexAGqDk5xZUAxCrQKp1rws8+hTNP56gbKKSkW4pFJlRoeejK85d3cD9HWyqWOkNgKLlQBO502Eo5o0SzsOvjNY5XByzXR9Rjgxhwcf8c9++d42xKmB6cw+/vqM1BVLCMDaOy9HK8o00TSAEwPFDB+b0LwHnOIYLLp9e4PjzG5dUVNB1w/fSA813Bxb093nzjdbz08n3sdnuCEneoKx7ev48EwX6fsb+3x+OnMz567xPMecHLD+5Ddwm5TNjvzyHuqLViAW00d7s97p8/AEQxlR3KNDEONIeoQRIpBbvdhGkXNLmU6eXfKpZ5QV0ckvke6YACuCEhBcDkrVwmg84zrq6uMNcZqAtyZJOrORgD8YEopWAqBaLMXJrXEbjmQkGtBmA5Lob5RXeXShniMZlqJysCBAXBBQnradegUEk0sFMGyZ1C1UEzx3MihdZIQ5FM8wUJYTJA4M4KrATIaJDILK/Z5p7xj0knxoCSM6bdxHGiWlizBjJRiWPS0AJEFqv5miEDxmBPinxUVjtQSDSX6KVzgqP4CX4m5UwdQDN4rVEFYgVIHEA1SFQioKR/uktUOXxkDV0A1QKdMiCkRYpouOt63yIzWOGuJYpoVmcYnbJVBrVJ4UHHyoBmLEvFca6oxwUlJ0wTtWpuDhNWh1qrI9ARUXa4N4dkJrLgAjX2iphyZgVYBBo8656t5AgrMflG08VxT8Q5gEcCJSqEIVbvl0VSguYEl4xqBrGGXtDqiaxWSblLiaYjligB8rmizQtMMeaxrIq2OCuztrC7uXI+yyWP/W0tqFNCqq70viKtIaeMnBWOFlWzsM9N3E+UM6QHL0H392GLQ+aKx598jG/8/h/iPAvunf0kzs/usTIrrGIPPU57vizkX8alazLG7+PFHe/FL1sosgUaN77GxW+Hk88M4G4utzLK667J5oYTR7jYAL1qwedgpSFCohFgz64AOEkl43Z99k7QtUETxDC3Qdp2DZdXV/i9r38d777/QSQ/Mjzc08wE6iAoXo5wP8RmOX67cW7/jd/8Hfzcz/4k/sF/8TLu3bs4BRfPAhqxn72S00GZyBronuyr3z7hd14l6QG1Y1QNRsTvt6lYNxa/9WIDOG79UQJgdOG53Pgb98PtBl3KNzSqUcnAuBefp5pxq3IGrKj2BLf1iQgd9dx5zqRXeLzPGz6MlUZfj+dYnhtk5DKFG1M8LCHK7IhNY6IxYaVgLUsLqQyBmawZ0Ei/qktDWxpEGiAsO7MZl8BUYCUhWQIzuYYlsuSqIYxLPS1AOgkrE5zgW6uAs4NtrQ6oMXgP0aKqQqYJEEOzOaoFBDs5J4hkeGOGSyQDaYKUC0jaASY41ooP3v8Eky24lx0pBHswfienhN2+oHkmwLD1XHHSqizBZ4UmcobNwayjM8vBnl7s2SHSswkEb7vdhP1+4kCEBNlHU8Bo0KVgJj7nhJQVtptwPBbM88yyubTgqxPsTKHpaMWxaEO6SLj38B5E2dF6v98jpcTrYnFtA/66JqgpdCKVghSCNizuy7RDmnbQnCFusFZxdnaASYbhEbwZLs4v8MYbL+O1N17G2fkuzn340GdBOisob++w+/gM108vcX3V8OiTa8zXC87ucd9SLijTHmdn5wSL84KkCTkX7Pd7lGnC9WHBcnUAIGyo1lpYbSqSKC7u7eAo8ZyxCtZBHQf9qCw0Q1FFmSY6wCBFNYS0jLk5Ky3ucG8UfGdFcUCbsPJWG6ZJkfcTbZuPBB80GWBQ0LPX0gyLBcf7BV4knLWY4FkHOJFVjyDORpji5KEjegCMTH6zaF4Y4aUAvWGdmkbHZgESB3ILqg37JISmADpEs/Auwo3JXCIZAbAhW1RMvAdmxowyEodP7hefTxWFi8Z41zZc3+gP0bn0KpBEAFyrQb2xAuE+HOwQ+go4aLDQSBsd/TZcWOBJNAawEAozGa9AVupeOlAIsMGxzkagPgIcd55fptcj24Z4FgGIIKUykkuaNDTzFl0nEhuqtoYsjnsXCXbOIEkhgCHG+96gL8CdJrbfiMzf6poF9IoXt5XQwjK2Wy2qeEjwOf4PLQwiOEEXhDtKVjQkwNjSMgXY1dwduTLMooIVTQMFxmRPRIamMY85gKCEqgCtULzdXQUFgILHqkHxk5zoGkguGMTC8dARpiPcd9LbgikA8PwESOwOWs0FV7Xh8OEjuF6jtYrD9TWevv8eiix4+fWH2J8l5KRMpgHo5HbSRP6invC/+KVn+fsip//B6aubv9z69dZyCig2wR3/ePNPn73E2DKey4j4ZPO3DjRuN/9bqxlj+7IGlHdl929u/O5zcQcYAceFd997H9/81p+j1gbJBZImqBawWWw00FyOABJ77aQEzQC0ojRHmSuePnmK3/ja7+Cv/MLP4ad/6ieRUgd0m2t0B7Dgr2uVqR/bM3HAiPW3Qf+aoQcQfdlsaCRuip97MP3MasYztgm/470h9j4NxMd//QZFKqrdp9UMrOChg49xH27vx9PKmp9sC+Nc9l9WcLd+KSK48b91kXHSu638ep7AceSzHqRYnt9dyjMHwZjMgZh8rJESLeDk6sCysPdEb1bEDtiCtkQ372gwBk1IZTvJIbSDvZxkaM6S+VIb5mh8lgupRZq6a4kA3mBtCSEgAzugVw0Ac4m+GDOz0MiorbI0KqtnOk9gimDB2TSrnCHdewly/hLmKliurvDJ+x/i23/wRzhTw0/9zDt4+cGEEjSydLaLplRK3QQMHt7u3I8uhhdkL3DX0akYQh2ENzYTE5C+APEARwluyqxXBFkKDki9MdnIb2wGJlLCFfNMKlNOglzYBTaB+hjVhGmaoA/JDU45A1AG8IlUk+oCdzqcqAgkr042KkDZ7QAoaqMBQE7kL6eyg7liPh4Ab7h3/wLnDy7w+luvw92xywn3zi/YlVyE50eCB6rdUtPjnlOULHj11Qd47dUHONsVXNw7x9n5Oc7OzyCaCWANmHZ77BNIWeLpQl1mzAvtddnLpaHOxk7bOUGk8DpVUiMErJAIGIhUdxznGbXO8DYhp0JnKgC1NhyOB1xeX6EZG4B5ZMdTThCnmF2lBHBkM8ulGubDjCQW2Us6r7k5jvOCw3FBq8vJAPFCLgYOnL1UHIkB0nL6yDzCRF4z3QQVLRIdIcpeB3OGdSloQK5C+9DRl4DN9kam2x29q6c1ozuRYuhzIkod9BQfCuHAPJr5QnrltAOQMMbo2TjtwS6iuMuxRgM00VwrkjLruM5EgyD4/UHvag7vlYNEDVLvzg0VWqvGuNmBUt8HzZGJbAYslRn2xt4RfaJnESQCHvREAiKwUaSyQ5oKYAsD7xEcab+SgEhUC5gYYeO7ABkqI4NHClWIxluNcxrr8LAYjovr/To2gYkwKeXOaxdK674HoShB1zcMJyJhz5IkgFXSh7gVhSfOW7ZU1IUTtxaOBW6AmCBlRUo5aIsWQnK6Dk77CdjvGEDYapueikImgpZqFs0mU5wDi3gkxb2QQmthq6C+VlTjuAQAkroOg0L8x4+e4oOP3osGgw2tHXGRDviFX/w8Xn7lAe6dn7EfD9Z5wCNgeF6qw1/GZVvJOAmk+t/He88eKzfx38nnbluHIgK+CO76mxtqy+kaTvZigAiN59AsgEYfs/rHblQzurnC+O4mWBwRtIwf2L66+2hP/3ozAO3HVGvFj370I3zy+BO4kNYtqQBSoLlAdIIZtUDuimSAtpkxm8wopaFMGfPhiG996zv4kz/9Jn7iS19AyvsNvtkCnw3Q2P7t1qHcvJ43zv3mWt68rh4JwkFREqxOU4iRa6vLuGs5wZY3PndSWQA6guePdVAfcW2MqZ0iOsBGp+5irWog/j6AxRZ0AOPz/XMnMCEQ6NacYMyusm739s27nmt+7rSS4XFw8pwo47lBBmLiXMvSHKRlIBvuVjMOgMymM1s3dlnYS0FSgfUnzlqIHn00yGuVGZ6UWK2QpDA0yNzgdUFzwSICRAOu1ifNsFfULLQdVTb+cycHurqxchDb69m6pAl5ElCYgVivQrLAkqJNO1jZwV3Y1Xs54pP33sP73/8eXn/tAZovEC3UWYgGxz8sF40l82Vh0C05R3dZXuRWG0FH48RjXkHLyX7DxQQUkU9KCZItnEdIXU8S3XXdWW0QCyedCmvRi2N2HOcGa6seQMQgPsOqoMKR8gQRx7Rnd1hxlkcBREUoujUHoEQPrJtjqbQA1hB2anR0BnbR0Tbx+41uM2XKOL84x6u9LNoqsvK7gAQoIpWptgXHueH68gpi9IDfne8wRXVCI/PPaERweXnE4XBErQse3DtDgkKsIedo/DVRi1GtITnvaXeHLRUOCsEhYUXq1AeVEi45LlgOMw7XR8AW2NSw3wtKUTRzzPMSzjEOsU7rc3g2SAFF+SkN0WuziuP1NerSMM9HqDhayTgsx/7QYJ5r6Dso3n+hl9YDV6Bbaop3bVJQffrk5302jeHRHGgtAvieXGCw2e1TBZzMe+M4bxHwpxV0ewT1g+ueFFZBKmif5HpgId2RyTDmemWFq4ul3PqMzyodg3KCnu6Q17Nabj345SHmEPb3cXR7xCopbLMd0giaRUDL2MhoGihKh2kAfic2EIIiVuEayjQxGHZAxhY2p9CjQZ57jLtAj4osBAnatR22VmVcej8LahD63cmGfICbxrjA59nQgmbGDXcKE9SDgpvQQCGpN+B8V6iBseidojzOQTXhScCwrhRStrQ7eaGDIB53Ypw/rqdmJgFWN6mgTkb1hwF/oSOcN2irUHe07rjcaVsqQXdkX5YkHJNceE6zcuxwxLnT3uOpBxE6bunA3HChRoQVdo7/BqAt1L+JLXhwZjg7T8g5A67I6R7OzvbIJcMXG7oWi4BWSwQXLzBdahuQrj9uAI3te8841N7krd87J0FdfPF2VtlPfu/rvh1vbf4gDlOFuqObEvD6RqB287ubfT/tn8H1ORg4ejzL3r+0TftvXtwZr2/e34b88zzjvfc/wPF4DJDDZIVmNrd0ydSO5R2gBe4Cb1dobYFZG5UzVcXHHz/CH/7xN/B3fu1XcXa2PwUXst2u3Nqn0/07Pb/xpOPkwm5/vYlHtiB0E3Dzha9g7zMeiRM60gnouPXB9cemWj/wQK9eYAswNsBi87cOTjrA7eu4CTLG/fkp+9+rXh043L3/cSL6Kel6kh6T3XG7ftby3CDDrK786ZjguOMyLjozVLR+rUvPFIXHiji8pCgXZjRTABaiRJADGw+PKANunnxOPNOuIKnA2gQG3j2wpBDJM8A+rTp4824AmkG8UUNQOKl7lM40qBPdd1BD86DCCRVCwe2jT57g8Y+eggLwivl4Dbv8GF/60sv43Juv4MHFxP4YnL2CF83O5apRCWiApIQcjbgABLeYlIo+KfaMZs7sSNyP6fpQUeuC83NFnrRL5zGalIWdHBBNCK3CQLevFgJFaxWCRgvgJOT8w2BzRWs8z8w2cnJjojg6hEfAl+kdG7EiJz6XhpQEKUeAJ5zscwxCqszeTJk9Io7zAndHkRx2+c7mVFkJMjzBzEkpagvMFLUKRDLu309ImWXl81Jwdn5Owa05lrnhOC84Ho6oS4VmwVwbMC9QdVrqpQR3x2IzBd6RuRZNgAvm2aGpIalBwICE0pngWoaWIgHQkqFTZnCnpOaZN6RScDbt4WY4XD1mha1VLHOCJY3724OXvoCK3QazA66uj4Do4J9P04QyZezzxO+9wIJNAEAHg2C3eD54HqAf64hHz8/NWOODIhQckvi8rSNfDxpAbUN3S+rBIiO+6KXTeyCAAaWWoCaE1qYXj0U2JhUR7IlKAJW4diyCjgw1gHguCSo6UFEFpDhESgQbNnQQPYlmEuvuXqhR0XARVkS9sZoTWU+FsOIFVj87hICHnXJdMF9X2OLraTOMaggpa6TvuHgor+MauPP5RUS9dYZLY/dol6AG0t0phUNfNHQI+1asVQ7jWMcxKia67f9M0BaFJ8HVccG77z9CguJLX3gV074ALVEorxk6ncFqRVtqTMDM9qbCMZjCcuG1QQ/sEI5M4Hhpsk72TlOFZtHl2xocBj1yYlURIMd4p5yHpAi8OtrCpBjifmKXd/ZDAsAeGWA1OiHsy83G+A303lEU2HOQ4VhnRv0ddYI0qLDK/kpijpcf7JEmAgxFp9WETgZA9YrqNJs4HrmePUrohl5kkNGDHj6P/BHnDTgNKoF1/Fi/fmt9d56OmwHcHRnl0wjyrtX3BAQz1ax4G8wJOnzjOtchAV/39fp6PCfbuLGVTVVlTchz7FyJQJvTcXOJCPQ4z/jk8SO0xmcNMQwnDcvmRF2q6QRohtUjfKGpTJUlKF7dSMXw/nsf4PLyEq+/9sqNffiMUPVmML/BTx1g9HFR4pnpSIygxMeRnlDP+u83gKnjGeflrn06eev2m759dfO+8LvoUX3i2/7eAUhsxXH6/rrCTwcYAzMEGVPWY/VbX9gADF8/v/451tKteZ9zCHl+kFGXdcLztTSu0rnSDDjJoefkh8b+GLR2J0XKDGi1slGUCNLEZk7eDOoawSrQGm0PaxOoketaduQ99/bnMNrIpsyJxdxQzcN9hifM0MtFOSZm535J0H2cWfoGp8++sFQuSjvbea64fPwUV0+O2J8VqFZMbcHn37zAvQev4+xsjyKJFZMeeGt/Zi0y4ZlVgs67tcoGgVES7Z12GeRkmPGnsmsV5sWw1CPmY0WZqOFwMFMOMTQRutpEuV3EeQ0keNxGvUhOpOKkPCGXzM7UjWLjnAtSTlhmw3JYMMsCzSs3OJeMpBOAtfmUCjODLoCUzAxGojGANQZoYvSz38gzkVOOjCsHNoI6wBpQF1a2ulPFslRoYQYFCFDiQC4F+z2b47EgxqydQLDbF5ydT2BwE1nYoJ3YPKM2djJOOwVS4r3UDKQv0Smrx7asgiFK9Aj71Yr9LkWH8wSBkQrYKkQcKe+Rzl6CaGZJdr4E1HGYZ6hYUK8QvHTneaL5LStxmnF+fo4yxcGC4Nz8RfaE4dIq+e2SmRFDZPeYVu5pDLsx6scg3MeZGGvW6J4D37hGHqAijCPGgOhUz7iGi5CTQkUaVSx91T3b60DXRnSrVVQGjohnjaLcmCDgwe/HOi6OqkafEBHAKkEdJ/sn7vBW47iMPVKE65KcYqIJApKS0ikZ6LSiTpkEYlKKoJp9MoJ+kXgc/IegroIOUgjA11rsB5CmFBNSC+DW6UsMog0cV0rieGoOJk8iyTLYbi7I3XY4gp8U1b5mwNwUjoSUBA/unbHPxiRRNeV3NBWoFtRWaW1uYcWrCe4ZMnG+GUE8T/06YUcg7t2AxBwQUuLgQU3rALDJAHvJ2RMKIW6NaIU0zN4/KiqxSYUid2EBjcfbJwWKrplbaVE96Xa8HUSzB1WLCpkoqOUQhTe6DDrCLleoERPB6P2BrulL5M83N6ha9DcQpDD5eFGXkcHvAeYGaNwMqNdlk6oeIPp2LLvdyAjkTqIxv/Xfk1d3gg2OUaRl+5iLhiYAkVSNZOxWI8DhZwUap9vpweeNXd8cYh+/PiuE7meHhg0zIa9ogNe4B8O4YLGVyqkq7AuWSLV2azikY+i/DI8e0dyFG5GxrZMNP2PvfPOvf91jHFhpPBsQdsfxk+K8Us/Wz66g5HkAxl3x9N0A4zbEHK9vAIgxdfnt6+ibC+19jji53rerGncBDcGqnTi9JzbnsJsunQCMDc3q9inGqu/47OX56VLKSQkxKfWydB//iXJ6WZrxgIVbhiigOXivPbBK7PGgGpVvJXdfVNAssRphgJoDbXNRgGF9qKADECcsnrmsq9jPhOX1ztflCYtB3ONhhwI9EAEnZAh1E8tc0ZYF9y8SHty/IMiIc5s0oRR2VK3hnV+NjWqggjwFZ9osgg4HM4ZA96fXmKiAqKIA8KZhnKO0fnMOMiUp0l6h4LbEnZkQ9EmzZ+TjuCJgE0H4W4cjiVC8yYmmB2OFga8qqs2oc8XT6wOaN5yfn+F8V0BYY1hmWgWbebj2kF2twsBDOCNzUO0dZi0qH5EpTEqaQnccy1HNqtGkqoshD4cZBsduX5CKoHnD4eh4cP8e7j98gN3ZDq066rKQYudCXUUigIKE205bLSCpy2EvjpSji7sprw1oWmC10eIxBoDmDRDHlAvgwFLrSgsToef90rC0hVQr0Gtfs7G7t0yorWJerqCyIBfSbdwrxAkuFMBut0eZzgFlEyNVYzXnuEBE0RCZ1hd4mQ8HuCXszxJk1wd9X4OwnmLxiFY7TQaIQS9Qbefsg9fI3EewFW9uviNgNSEyWjE5ju1CIB5dpLv2wmMgjcy+CIAktDP1DjBkJAo4wvg6dyFoOhJN8CKQ7/eZdKCzyQ7BBcmYmGnKfeqYhzvQxdjOxAQYyGpWALQ66naxzJjRfptaIBA0ZR1N4eg6BfSO4aStUr/SGpMXAKuQ6vH8RmBOuplEsgaQtCZ3JILrDA1RNQIwBZ4EAcYw74CgugMV0Dzh/nSBl14+hwhpPsux0WHPGhQLTBUihpIpPO0UU6uhcVGP9CuTGW12NHNWjhWkkrLhUnQsnyDhDNjBT6ectqVimRvq0ZBKYwNFiUkYwrErJY7XYR+O2uB15vVLbPbZ9YputPxlZ3XSV81XIw3ibZZPewYZKQxCkAa9plf6PZIr7m3MkZBO8wIAgujdlJGqMbEDUnBf2MVXgHEbaODuqOizVxqrXuOMExDim0/dBBLboO+uvwOsFMI3LA1dgQZWrrv0pEsP9DbrkX7sJ/vUg891owNOdXqS40TY/OxFojeNrUG5RoIk7ieVXox2CBq8LfC2sN/UVACjY2LJCVYrnj69wuPHT+DAJv2x3eINgPCpl25kgNafd3x4C2V6de/mv7ti5Ltn1me9exeY6PfQXe+uL1aB9hY43KxsbMAHfLzeVtBu3XtbwLE5wGHogQ4q7jykMS6P83oyh/aN/fjJiedvxjecn2j1SYDQBUxrCZxNidgsLznL0g6WzszDyrU7m8CotagxUERHb05Ahc3lHLDF0WY664iQEpA0oSRahzqoueiDK0BAZK3BwaDVAVJbOvfZO98whcNLhSg1DxDqGMQF+5Jxfj4xeA0Aov1G7ZM0cQ7mpWI+LgCApGVjk8igxJy9PsQNmhPpTI2Bxnw84pPHT/DhJ48xzwtKKbh3cY6z/R5T2SEp3YY4D3IgElgADKBng92BpTqkWtj/Ul/hnbYQ9wk97oXWw5qjEuQwBa6a4YcfPMbTJ0/w0sv38dprL+Gle4CCovHWGlJJKKnAGrUaNc6XheVwBxpu7C3iEaSQEocQmhNhpgi4OIhxkEu54PzijFmSLFgWQcnRC+OlBzi7dw8CxfHqCldPr5GToOx2I4uqiOAIpOVpXFt3do9eGgd6F7piwUCxfY3JOgYiB6lmLTJNrTYcjwt20w6a2IHXmvEz0Zk7pQbMj+GLQGwJulp3FQJyNjTrg2W4y+SJIEbooHM8Lpjnyp+HhRac3Tb1BV5y4TFK7iBhPdcAehqc2os+ToTPOTMSFoG7oLvKIQFi4brlPSPc9R19gtSOHWKS6QLveDasAiDFCtYzYBpduvnM9TI3PPpuRL8FrONxAJ1+vxOYi9GlShMY3IkG64759p6oYfDBZzprjvEQsXKP4HhE6cRgTlqDCJ3b3Fvcx+wp1A0wVuzVAxiMCWu9p4TjSIvzrhzjrIWlcDS0Akgri71Dtzk0l8ic2RCR0/spfrdwYEPQ0ZbG6xGOO1YNrc18lsHAvFcpNVz1lmVmE1WhlkYjEQNB9H4NfY4LpDIZsswNdV6QxJGyr1VsTaHfyICwMuugxkwlwZMMrcZ8rNBaMU2rlbgIgUWeCoHA7gxpd456dU0Qg5jgw5zE+71VFDlnVlZbQ6sV1ReKxSEDZIgoTOis6GGznMMJy7x3JW883wEq+TgFpU9pVZ4cUCQkjUqodLvoF3NhUI4udzgBGv+htnALZfS5c/P3u4K88dv46hoQ9+en6w1X/r1FJjnmJKINBuC+VmfWzce42ffJsd0Z9D4fA4z1Xb4jsL553K0ZlgrUBiQxDDfRSIioOLJ6zE1HXM9HtOMRJWXs9zsarez2eKpMgDy5vMKHH30Ca6RUnizPul4bDHHXIohjke2HbgKHmyBjde3i5wQnX7gzfv73Axint9Bt6tMKItYtrZdy87nNdzCA6Wb7G4B54ow2To0MacjpKV8BW68MDpS3eZ625zTyFpvvf/by3CBjuZ4BB+kh+wLJHVBgpKe8PxQOTs4iI9tCjJI2O94vMCcgdtUG0hTCIu9BAS0NU1Zo9ItgFpm2jRpZJToFMXjgRYoqhQgH4uGrvwY2EsE10JiVLCyJS0wIvivx2XhCHXHy48EPVJgVaGpIKpimbo1pkMyAYlQro7eFq7Kra1Ycrg/4zne/jz/6d3+Kb/35d/Hxx49QlwUpJez3Ozx88BBvvf0mfvanfhJvv/05TGf7sIPzcSNQemLjuL3xNQXzCs7PvaLSp34bIIdi8IZWHctcMc8zFIb9PqHVGfPxgGMRqDurNtYwocAndvX1apiPBEZJ6MAyMLEH/92Y+WBCl31C8sSqA1DIiZ4XaiEUyLuMVBKWajjOM1CBh/ce4MGDM5SpxH3GLLMLS7a+EDxkNZgIkncuJkaPlMgbRQAGiElkmgFPoaWpa1nSHKgQNAfm6yOOYX+rKUPnI5rK0Kyo0m5Z3JCkQgWoYHVmqRXnFxfY70inOM6s6Jk5SsooZSLgNdaGyNMmJaacT+wqfD0PCsuLupSzMwSXiG90qlQIgYOIDm91VDC8P8ves2oJIzLvk0gNaksYOgiUg2EmP988Gps1UI+liWNUl3a0yCQL0KkrpNHx7y1wD+9fAdzCGtdh4WUvQqtV9EDC2FfB+vbie/DoQGvgxJ10jJVGwQRPi0e1A0DPdKMnFhzsQm4LHEJnpgjErYZuAxFMp/gnK9j3MQaS5mmNzjKkRDGLTwAV40nYe3tUZ9h4smtJOj2VQKm1ijYb6rIAOiMXit9TjmSGhZW5WSSOFJ4yAAfagnoM56VIMEzJ6KjUTUWWJZq+YiRveGroRpcnPo+1Lhzb3JBzB55dwB4OgvDQG0qANgldnAWlKpyiWJAalbG4EzneGr+7tCNwqOyLA4upjkDAqsAqb+GU8yZRlVDdYAvvn1RSUNsSs1eQYWhi1ljxEdJuam3wpYU5CtZnKgCaqCIXIR4P16uerOjamBdyOQEYt0OdO+PF51zv5seN4LBv+DSoHK/8DnAxgIgDGhRFM87/ESxKgAgmF1YjgFNB+O1gd4CLmNG2oe+o8PQP3spEb87O5qWZ4933PsSHnxxwPWeU1pBST/QYvFU2RbYF89MFx+srHC6f4nD5FHDH/YcPce/8HOz5tJ43jbH6syl6m7/firpPP8egeIS96/fHaVsz9icV5w3Q+PTF7/z1LorU7R28XVm4DTBwAhz6/bC+7ld2A0ZuVDnG1k5e92P2k90a98OzlgAWEvPQzWsl25+3wMenL88NMqiP5iTdFmYOKBTOfDgabfrMSIexuCkRWbJUdtQZSIvgmyJHAz/nS8VybKjHhlTYmIiLM9AqpFCJCtK0h6aMdjxC6hxAJLJaUCr14RzMNXMiahTlOiyEluGUoglaEqw4oJyAkoTtXwgqrfaydEO3b+1nWVXRIguh4tglQZNuTabhHBMcRje4JtRqqFVwuLrCb//e7+Kf/pPfwPe++0PU5Yis0TU6LnbShD/94z/Bv/vDP8Gv/e2/gV/55V/EK6++hG5PBncsrQFCO8qkCovOwwJmAZeYVEphzwxR+ryrxLlqfJLZsMqxL4o333gAyD1Yo2ME2oKBKVUGP14TnbmmTe8A8kw3DzkYUKuQulWmjDJNSCXDILDGxoAQQS4JnVkCocBdIdhPBef7PXa7HUSFlpBOt6Wziz2WecHTpwd4M7zy0hlKoh1pSn2ASzAIlnDCqjX45x5BlhtMjPfw0tbz0TzElxXHwwGXT64w5YL9rsAyUA1At/nNGVlZi1Phg9pU0RxYmuN+KdjtJvZecRt0MS0MeMx5P4nzGUo5YZf30JIAT7jO1zhc3jXIvUDLCU3DR4Ysot/g2Ff2kXGsOoyYsaXz4bH+FEFX5/OE8qYJbTifI06SFB77Etba3eggEggqgBRZ84aRkTcH5sUwHxz7fUE5K5xwK4GQNSYvUgKD0g58gibURnZIWLn0CPJDE9GCFgWAIm53jjVRDegVUZ662KcG1LmiLTPa4YiUCyQAlTuCnokBJASIKh3C2YRbXGrFo0dP8d57H+Kjjz/CPB+wKwn3zs/w8OF9vPzKy9id7SmXiXVb5bPC5nE0eaDjFs0MrDagWphRAG4pAIYO4XmPdXp1SJIjF2rbYIZWqVVicKBwVbTWO4NHgihTHyFGTVSr1IyoBojrbni5j6mZyYGkkUjivVGX0AkF9RapU0MEeZqgosjRFJDVky4iTax4OCmbS13AKqrDcoqqOp/XthCkaqKFcWu8JrU6lmpYZkPOAkxdL4QQogd4g9DCvYbZAGjI0WqFqqLsEim6WoIShajmCmzKjMYt6MpeYW3+D/pY/6+5DJH0htJxd1D9Y653RQgYIGETHJ5+9vQ7t39u1hH71YNF86A6R1JBBRi6zEhiYgSXpwHfifNV35HNfo5zsQEaA3Tdib7WN5a64Hs/eB9PrhqWSgYANIcAnL+3ecZyuIJdHTGlM5TPfR7f/ZN/h+vHHwH1gIJXcX35FMd5Qd7t8dNf+RJ+4ie+gJw+o3K22bf15TPmuj7uby6XbOaEfm/0nx3Qnwq+n4FOn7VNbACG3/Ee1ms+7pl4cws0TmlRcfk6tsD23xZcbL534z4b2/Yb++E4eQ6e+URsnqH1sxv5wPjYBliMc/uslZ4uz9/xO2eIsITu4pwYXcPFhaDieKywpSInJ3cVfEA0lU1ZmpkVc/qpSzhEOZjVqscFpTWUEgWtyAJiUqQpAylDz84pqq10jpLuItIvTNhWpkmp2XBaxdZlRrMlKDqcILp9UHN2sbRmdC9KjFKaORyR9c4CxGDA+EhYJhelRaEq0AwZ7HFg4UaTYvJXAaRR5Pvk8RP8i9/8Lfx//qd/ig/fe58BeDjqiLCczmxFw9X1Nb71zW/i0aNHONYZ/9l/9ndx//59oLGpX4YD0Mims5mfBy3NgkKB6AfQm0UhsqoZTuqKKBZzQA1nSjtEN4uuvN1xB5ExY9DQmkcXXIuJndk1Vnd8ZAdVHEiOnBIF5LkAKaOa4HjsNKM+eTAry4aOHq5jjZ2OQVqb5nBhCc1OVoX36lYu2O0n5Cwj0wV0AMwBnv034loaGCiK41gN80K+dlKHO/tntFqRsmO/T9hN58g5YzexuV43IXCjtqOFALl3UF4cmJugNQaYFoFj0oSSM7nrOUSdAdChggkK0QKaE9H5Ss8dJf8vm0D/0iydxtSnP1tBBjNmtIDVFFSoHE3vZPP5jiD6Ig5Ii8FR+DeNSka3GEXQYxygTkwxmvuF25xEkqKDH00casUc2RtsYlNFzZmdsBNdwFKLxnIicJB+1SkOGuNYz4qvKrzom2PO6goCFFnvht0YjGgCtFBI7JG5EwGbEUajN4CN/KTPSLIabgE8t1GdYAJG0SB4//0P8G//7e/j937v6/jOd76Hp0+eoDXqjc72O7z66iv4qZ/5Cn75l/8KvvT5t3Hv3jmd6SITqD2dKl28zHOnhQ00d0o6InUTIdJvhiRd+5CAxCokrV+x0bwxEWKVphXu1MNkoWsf3NAWnFDIUhhVWLOoSlCvknKhiYX3cxLuUypozXE8zmjWkEtlN25VOh5zJ1mxgoSNZ4pKsgIexgW+QJOheNeskBbbAzSVxIpCJpKVzDnHIajtSE1Z9B1pC2KdiqUhbItZie/W8CKGzNsinhOMwh71eIWJtDjgjr09AGHOCaQavqDLJnAbAfiawv0Ps34//f1kuz3W9NMPbANAj+hxxHoxvrmnU9F3XBcfWg0ZQeVqsXvjsDbR6fZ/PTof1LGbPz9zEZgbrq+e4tGjj/H6y+fIZQdJO0hiT7MkE+elYij3X0O6/xp+8L0fIl09xdnZBfbnF3j06CkWc+xU8fnPv4O3Pve5qMx/+rZvXYY7gn7ZvjOSmAEuNsDizvcGbap/dQPe7tyDzb7cAT5uv+fbW+XkHljvixvAYfu/mwDkFihZP3eCd24CjM0J7MfZY6ublb+T8zmSa4y7+1sCrFUgbM/pp5ywzfL8mowuNDM+GFpY3jVjEGbWoN4gqWMxdjjV8Ir38JBnozU6R3njBNLpNEmZSUxJIhBmNikFDcUa3WmO8xMADrWKHPcuO9g2tIWBnGYFjGXkjslaE9QKBqAp+hVIIo3Lna/NsSwNdSE334ydya21cGYKIKCdvkGL1iIKS1MnSsOcNBlbKDJWldFp1+qCP/2zP8Ov//Ov4d0fvQ/16AkCofYiZ04UArh1akXDRx9+gH/2z76Gz7/9Jn7ll3+RVKOA89HgHHmfmS0Th1VqDEiT6oFcA1yGJV1W8nwdCakajnUGKjugiyodpTa0gn7jKbh+q+yY7QDWXh49K9jvjwiIlJqcZg1SSUGh0BsMPGIsHI20ONOjqEYfkIalCoqkcaMnjQciCR7cm0YzNSa0I6hzBFiM3ReE3TAb7jmA2R2PL4+4fPIU9y4y7p0lTtoZ8LCP3O0zppyiISIfyFbb0Bt5ZbDbJPoCiGBuXXSqqK3hcOSgaH1/tHdxB0Fv8MIlJZ5jc6gBEPZAmXb7531k/3Iu0RipD2aIoIzPDSuO7HgduouUgUQ7UHqvxgAb52yTauGgqkrhb3DOO/9ZArDH2eX9k9Kg051Qkyyyh93KDA1lAnLhPUMqUbhFwcIKFut6QSolHCHwBvVhbmEsEROOtdGQidk2JjSYnIgxJsW/Hpj3WEIFqfBZ5wTWRZsATKNS0wGvYzSactqifv9H7+F//Ef/M772G/8KTx89AgIWpaRoC3C8usSjjz/Cn3/7O/iTP/4G/vbf/Ov4tb/91/Dqa68wAaMCkTwygyLMdlpQxARCAwMtSG1Ba0cgeif1odNc6PQVwIrBv47gGP19JzDIOUNyCXMGQ6vUhxGUUhydgpKbXADhuNoTG1YbbFk4h2nimLI0dJcwawuqV1afE68j7b0bKUxxXZlQ4DUVNKQcDTS1wFriOQAgqRAkmiKBWkYIK6S0UI6mgVkhTeCtoS0OhLXx0nhPJiXYVM2k/S0zEztRFVbtIm9GJj7ARcwdAU68WYyDhudtpPWXc4kHP4JnH5D+P/RmToPI22Hm5v3xePmtDzI54AEgNgDEnePGNmjswD3AxtjCjb4G/d+tXwLV9ArIzZ99GyfgLF7nnPDWG6/ifJ/5DKiORpGiBNi73Q77exm7wxWunn6I97//LaTDB3jp/g737t1DKTtMExs31+MxaNrcVG9KevP8jCPbvD+C9Vsn/caV7rFwp0H113wx4omBtvuXtq/77XTnFb69U377l2fcA76CjS3AwBYw4O5/z/pf3Ct3wYrt3vepse8rE3C422gsKqfdBtrHB1cAdwIw/qJAhqQEt4q2WHSxjpvG2IUbIshTlJHDMlF6Vt2DPmW0+ZPITEq3SE2C3IXAsLBB1eH+pKBOollUI1qFO61OvQ/+cRItbPokUahZw3pyWRrmucKb0yK1+1MbB1669lhoQyie7M5YbBJILrVoQs4Fqpml+sgciFIG6SrRlbihOLAY9Q4iZUyEl4cr/PbvfR3f/e73We5Oim4LrKLhjsQmc6OPglUcl4of/eAH+M3f/Df4yS++jVdefpl5VxFkZVYwpRyTMF2obPj2xwBjbIgl/d5SUpaYm/Og8cTEHsjfgOgQPK+2u60BrmE/GQ27omeHgHQtODOFpHOFZmShgDqXiQE2wikLAvT+HK03UwxaBDK1ETU6/RoHZ5VwCXLeyDml6Oa+PmgtBm3ZWAJ27qOqspdGA66fXOPjDz9Bmw946f4D7MoEbwoPigQkGnQZL0cNQaiDIlFJicGmAsu8YLm+5r2byClPAnirOF7XdeD06AYPB7JAc6G+pHk3IYOCTj3NumbgszJCf8mXVoHu8dyXGHypiyodaYa4W8hJ65NvHzY73QwbnAGs6+0uUXHezBrm62scro9wZ/+R3bki7aJi0tNbA4nSvYkjfkPvfcMeCgrJNKlA1x9pimDCgj5EjYHD43nysY/eBdq1hnOeRiaT5yDlLpjurkSROBFurgfyukloNOcYZi7RxC8oMjHGkdPPbbz3/gf4h//jP8av/5N/jsPlU+Qk8eykoR1RbeGudMQ3v/Fn+OTjR3AB/v7f/09wca+M4EP7BO4K9xgD3dHieeXIHPurGsGyh00sAHOoRGUJpDRqGDWwj4hE93BFLgVSOOYgOXzPZyVOPKDBZY8qeVYZVCkAQ5/Cx5/AVuHY7zsdi40NJZJpBAqKfT6Lrtset0CvKjiKsmu4SILTggsIV0OXFIkODhrUf/H7dOdaABhSSTDPiJYsbBzbDMe5obljNxWc7TNyzjSZaDHuVo8AG+jNCX00WxU4OyCS1heNbpfou/EiQ4zt8uMBjNO87c1fP/PbgWv4vQDv3dZ/sx+M0XwIaaUHaT22HQEbd+LOgO3G7yOw3Ubf28z2+MmDugtg9M8RfMZ4NN6nbvEnvvh5/OxPfRlPDxVIimWuSLpEgoXPtsJRkmCSiqk+wiv3E1KesL84R95fYLc/w65kuHnclut5uet8jyH3eS7GjfPStStbgBEv1tcnoGK74TirJ5Shf1+g0UHAFgx0cHHj/QEM13ntZDsnb29uVrn7/e0RnvYE4RgtzzgNNx8Dno71vtyu63/J8mM048MaCKSeBW6jgW/npGuImiSs8+jcwuzZfFzgUlGmCs0MIrU7kpjDagcYmdx8FcATg09vEG3ImQnGLrZlbEtBoYIdcg0eYkfa7JpbNHVrAZQoWkQiN3YxgVMdgG69DyHdJqlEA788rC/Hxct5dPEcD3lkZi0e7Nx7WsQk7t7w3gcf4A/+8E9xfTjScjdiITgz7FMutD4FkCVDLcOqQrxhqRW//wd/jP/ob/4KXnr4AGUqSCUhT4VgqjbM84w6H5mxQ4p72cjTRvByA3yZOVLzsHc1LIcZyzIPm8sWnZE1jn04yjjLuwIK8BHe7RqD1nxckAIV907BdNQSzMcKWxaUknnOYdFBtw/UAhypsTEnJUA1YUrR7BD9OOjOsiwz3Bt2u4KspLNIGABwwl5Is+mXKqomHhNAVsPFXvD2G/cAOcfF+YQpZSxWcawVCYakK92KqJ+AkTzvuFdFUZ1OUoerI3ZTxm6asEuZoE1D+9EMdGoT+urnxAwtAFss3K8aal2CApZDSGwwe4FpDgBO6rXCc4a8g3SAOxBijLDuGOrrvki//oY6G1KvMPbhUjAqiifrcdLpJKVh2eyhI0M86wAg4Ug2tFx1RmtLVFiim3RM8ObOwM6EwKMDjJTp0mQU63fXMoJci+8zIZM1huFwB+r7rKF9cqVDUweacKflao+tAyBZ142pw1NU/xpd6Mwqmjmurw/4l//q3+DXf/038OTRY2R1iGZkpQlDyhOyKua6oNUZMLof/eiHP8I/+v/+M7zzpc/jr/7iz2N3RvOF1p9Zt+EEZa1GL52gy4LWnaxOskKlkuEKjhHWnaRY7VMAU0rkcY+MmiKViTSjpcJDhK3dQpd3BE+fCUhfY/dyRJWRAQmtrTlHOVJUDtvS0MyQNNE2d2ZpeCo75GlCKopW56gK8DJpjp5F8ewz6WdQczQIjguTYpM402Rm8EgoWW3RL6rChYk2Npc1WKUO7Pr6gKunB5yf75FeJqBLIpBS0CxhnhfU6wVNl9C8MFDr7mkmFe4SQm92fndvzwz2XsTl08Keu//Wb5YACCtMi8XviLr674Jt3DqABmRQoIa5QtxfvbPySUO4/hr99brSZwdyI1yNseM0UO1ZchFftz8ABlYw5AKRFn9btQr986++8hL+1l//RXzy9Arvvv8R5nlBxhUUFdoUbWYyQAE0F+zP70FSoTZROa5e3H+A/dkeYo7XXnsZ01Q+5Sqtx9ch0qcv/Xyu39oCi5OfmzN3coU7oDgBF7f355l7eRdQGoAB6BWK/odemegXrV+9UckAxjUbuotbx8yj6Lus2/vwDnNgxqjdQVE2Y+TdS783BmDZTtN3nAUmlj5lhZvluUFGPRxJdc6R8RK632g0Lko5USSnijYv8MqGZy4+uPsAszy1NqSmdH7RcFXpZezE6kUvSXcBpGolNVsTe0lE8z0IJ36EXa6mxMoAmF2vQatISeG7jOVI2oJVZviW5qjBoy9JkEoBRFmKnykUVUlIOQW44kNuYVHITrwdJNXg4zaWpftEFudLRVFrxXe++wO8+96Hsaoe2PBhJ41JoMJGg6YOpISWMmah0PTJk6f4zg9/hJ/7+a8iTxFchU6mNQb+ZZp4sxqD8bUNAc9v59i5RCM/B+qwYnUgejJ49AlQZW8NTZFxcMCME2YSIMX57pa9zGKEe1SSUcKnBewRix2h57vgN0s8CAxEhjMyGFiz+zivgYBBWjNa5y4zO7BDWtj7Km0gQ9Dbeczuvgo2o2zLudiQIHg47XBhE1ptzKSKYHFHqzOSJuRUopeJUAuS2O1bE/l4FPM3zEtFC5H92fkeu30ZwAzKwcXMhzCWIZiiVcfxeARAAay4oS7sE5JsYjDTGgPRF3nZTRhXN6hTIxPJsuBpZqePwlHS7YM2AnRBnLqutE4eIuhWQIAkCEin2ZeCvQjpjo7huONRTWJCXOEkSlMoXivMKt/rFMvuFCV8/gfzNUCBuMHrEgEpNUs2tuGRNJGxf10n5fGsepggjCaB0TUaoWug8VjXJUXgGfsCLHEuA0s73YS6Tfd3v/cD/Ivf+C189NEjFDATyNOlyLlgmiaYCyYBFm8QU1RQp/TDH/wIv/kvfwtfeutzeO31V0g5qjbE7r1iTU1E43wRx6Ex9iA8v11JpfXw5XcBltnwyeMj6uEar7x8gfN7ZzSq6Ck1pe23OSlr7kBvtMWKChMzrggw4XCh1qMnVBwOEzpoSdxXZLZxjMm7HQ0ijkIDAjhqnUlbbXTWY48SxNgp8IqoxnjobiKBsyycExTwDaWpz0tmDTXmt2lK0KJolU5oCsVuNwGumKZCQCxRg5boI+WI8+Dolrk9WJToEdhquFCB10hDH4gX2FyKyxo6jiBIcOP3m2hhu8gGO3jHHfDtV26BC27zNGjdfGETtN6MX3UAjNU4YM2292D/xoF8ypH3QXBLucE2uN1+foCP0+oLT4+HfTy3mVLCFz7/Jr7w9uv4+PElDteXaG3BfF1hhz6/E5zlPCFN58iyQ5uPePDgHBcPzjCll/HRKy9hUsVP/9RPYr/bbXb8zqO59dvdV477Pw5f1hrWSQXjzs04n/UOvjbvjWoTcOf5u2tPToH6Zp8212BLj0IHEcC4XuPzN7ewxTEy8iycbzZ9LiSOd7weX+ggQ8b8ulbQnn1vjXF2+97pH9f9e44Gj315bpCxv3fBCamzC4IGJcZAqYub4cwIWgIczNiKO4pyIDXRaJwGZgpjX3MpSGdlo+ckOOndUTXCR4jC1ACQ92eagrFAihJaSDfF4ZU8Ww8utihF2KEwQK0V89JwGfa8FxdnOD8vyJ2HmMmvrQsdZDR59AZxCGj3CAhMU2gtmDFqYzLqwneBKMuRh+b44bvvoy7LyYVXEeQkoTFYxYzq7ECtwUV3o0f1J4+e4jhXWjMCMBiWxgxFmaZwomFZ3txDC8sMIoR0prawMoKY5FuLfhACNFg02QqBbLelM6zBfIjUJbPzMDte8+Z2U2ppUkIDQeZ8POLy6SUOlweUpKgFSDoxs5xDiA9ExofVCOnl/wiaVAQ0LaPlZqszAZ80zMsRZoY0V4qlhXkq13DvicoaJ+XIF5iHa5ZQgNt8NIgsRbGzhFLyaLzoLqEV6d2MlZnCamhLUEzaDIC+9uTKM9AS7RUzhwtdypoxK93ccFwWlEKvTM2kisFYLewDxwsv/M6FwXK30HSj9Y4j7HD6B/txrmCjB9rWGBR0NyjN2Mzq4TnvNwdBQW/GN9bbB2iRcDkKAKIcu1yZ9Ei5IOcEKRPcSMVR+NB0eAQJ2iuZrVO5WMVlVRcwMKDsNEv0LKZIHDf7coikoPYERSE0DpIImCARNEdFpLfs05Sjw3Tcm0lJwTGDpwwxxw9++C6+9effY2Zb+6TFfkNTNNFyB1ol2q8x5rgDthzxjT/5Bt7/0Q/xyoNzSC7hvmZQBMVVwKaF2pt9rqfbGscYOhjTsnMkO4wUz+vrS1w+eoRpAnZnBSmcbXhq26B9oYXeIikQFU/pINRIG0Po3LqW0BoBY7UlKB+Z45soUtFxDgk4LJ5PQ1tmNjqUcMAqYU0OHT2fHB5jhwYeckxTVLIbjSU0MYmEsE62rNCpBIU3TlLch60ZsmZM96ZI7hA0d4dHVuMSkkzojom97wo0QAj4PEg4gyF0JnCHLS88yojl9Bm/HffcPV4yiPURxPn65o31+envfjeo8fHlGysMmu7oOt1/xvxx0iDuBGzcEQ7ejHVHdBqAYxMh30rSOwi6HWNb7h2cA2t6XLDb7fDyw3vIRZFqAbzBTDADkGoQaUhgbyctO4gv0Nbg9YjrJ49wdXkFQPHmm2/gC194Z+iZbi/PAoDrYW2OaHNeeYC3eqNsAcYdFaE+I/BU3AAdp6jhDrDxWUCDv/Sc2FptirgtwMTNFfsGdQzwcbLFU9QrG8RxAjLGsZ+C1fG6//2Oy/CpEcUN0DZe3z74Zy7PDTLKtB8lFDaPYXzg0oJKwwmVIksNR5zIcsEis8LGSAIOks0cSyUNYbcrSKVAxGDLEg2IIpjLCYieD3R0IsXGnbaA14cZ4gt2UbZ2azAJOs1SUevCiVBJq5BEz3KL7NYyL6hzRUkJu93EjtQKSNlhaQ12PLKHQ2rhYOLh3sEJo9U6Jlt60EeXc6HC0SP4keQ41hnvvv8RamvIupazck6Yyuoy1ClYZm1QHSDBzwebDzZncGqNVIrjzCzm2X6CKpsHeuodz3mLeACMGoJk8oMbllZxdbjCsrB7Z04YPQbcFWK0eVQDPEsE4uSPi1IwbwKkEiCmreVab0BdGpaZnblTovjeI+uZw7aVDb28x1sRBzIj2RzQBkjicJ4ErDxNipInDuZK4WfXjVhUaaizqRA0aFLUhdqOqWRO9gYADOw0yUiC5575xkpxSikPUwKLDLFVUmsyTaAgMNS64Hg8BoCk8sJq11Y0BoPCgZ0dmwUFO9pyBiUv5YnrLWyoOHX9xou8LDXmxMG/XP82qIqbzwcgBMDzJRxLJC6SbL67Dtht/R0dKHdHNWDMXvF9D11Pd6ZiUOZDZ0NeTwYkwb1y3YqxAZWYtILCuXXQIpUiEhMeIvMcQFopcu4VDtIqlQC4Cz89EgVwUrJirBClIYCLA8bGV7SspIaDYzNi/MyQJKjm+MG7H+Dpk8s4t4CoYIqxJycmNZIKFmFjTjoBrpfhww8/wocffwJzRzLjs6IJKhQ59+SMZOoG6nyMRI+hHmIcTiFaHw5/PC8lO157eYf75/exnxI0KGtjshVFKtH3pDX2SUqkN1notSSsdBHjySBgqoDCckOSHCAxb3Q/CLvvOXRhBnXafTcRLHVBNx7ImdVLjUBxcO8jAdF1H0UUTRwLCI56nw/SuAhsCFp5z9Z5CbpZt+fO4TwXlfKlhaOzDWG/7worKwbYfESrC6oZphCF5wJ0t7Ee8FgzqL/Y/XZOlzvDoGd+Yvtm77TNZTP4REB7G7M8A8jE9XfZ/sQYr7egApGI6+WEU6Dx7J0eldAYK8b/HNj2UAD60OSnq+qHttleC6DhIpCgNyZVPHxwH6VMWKqhHq5YidMJ5qQep5wgaQq/jgpVwSdPZzx5+hgfvvcuDk+e4K/90lfx4MH9OK5/z3lroAM5+fXuzz4DYHjMz94pclvYcRMv3L12f9ZvW0B0s4Kx+SiHdN/8w/pvRY23Dy5A1VD+9GuIFTT2BO/4/J1H8BnLZ3zv5Ew95yV9bpAB9+E37GF/Z0ngGta2wkmW2gJmbhwN6qt1FmMKVj1SmSgIjqvfrKHOR7ALah3ZZYIGRQUHYvYfwChL07GE/FlmIvuEArgHTUGYTUZzitM1Jk6jc9XFxTn8DJj2E20pxaOczI6uDuOEG3SvXn7pmVEzgh4R2jfSrje0FuHfvsyAQfDk8hIffPRJOJxIWNeCVYyUMZWEkhNtWaMJTo1zRJtKAqCpJKQMQBrM2XTKayWQU4d4CfGhwCwEkuzwhaVGv5CRZeENM00UV5LasDqwOEKArBRkp0K+tGrP5JJLDRdoiLSdXc8CaDLiSynh7HwHM0EWVnaS0grTW0ONjYkDkij0N6OdqbsGJUDCdIhWkhIUieYOM9oEiCYYDPOy4OpwRFuOmA8H2mEKYK2hTAX37l0glUw6HhyIzLGNKoUgi9ADf5kx9EhKMLRE3wXxPl84sgK7iRUIrwsstCh00iLvW4QAh114o1LkwFwbMhQ5uJRTztEjJCMl6pJqe8FBhlVsZjvEKHnHByMP5AhaFQdQAjAff+9BOGJi9yGy7tvQ1UnO+tsjvTPWq2GlTSoLK4ealBSpzqGojcZV0a9n7EMAju7iMzJMnXYVk5mmPAAlN8/93QJHiXFvDOZC0fayzHjydMbh0PDSKw9x//6OFVJxOjS5h+5IwMxjY2URiOalinle8P0fvovaDCUqp7ucwtLUIdao23JhNbVrRzaZtloNh8MMQYamQrAFBY0tcmivMtIUVY7qcT0qHKQAijmQJtSqsEp79GkqyFlx7+IM9y72cXVSdBGPayQcw+GRtBImMKAKZAfTL/wmtxnmDkLw08yAlpGFzUjh3VqXBTYOqLxnSrctVBpU1D17VKiyIkHmWoNAw20OK3COymUT63cZzB3zQjc+VaBMFOdbQ9iNN9TQgaSsKCmhlGmAAjPDUh3TrmB3tmOfKKPrIUSoFYr7qjW6lkG4b/AOONe4wP35p/4XYrkR+8uNn+sva5C6PpuIzD+f6dMAVk5+8OVtoMEYpycvMIBGX9G2ajFex/eG+xFOA8ZnAaYRtPYh8GQEWQPA7Xv9O51t4hK9gkTC+CXGjsA+5/s9q52NCTNVQEuGg0k2SbTqXo5HXD29hJQdDBMWGGpjrPPg4X3kHE02f5yQ91lxdl9TL9MM8PJp617/5ugAkPHNSh+7c/OfuUN3zcQn7k/jZ6dJrRdl3ebJhTwBJOshyEnfE77Vx8U1Uf1ZAu279nd88mbFYrsOv3Ennez7Zy/PPdLktHIZBFhL6GBAyMS7hRi3otkCtxoOHxmIcnouYBCeMqkEkoDI/C7XBw6ySZF3JcpsFEhZY4WgDwJ0dwGSCPa7jFYj2xNuVQpBVnDCc0EJXm6S0FO4jErGlAsz1FnRy8keAm4tmcLvxPetRUddODCcoICcSbsJTTFvmGYQrbDmOB4rPnrvI/zgh+/hyeOn6D79ZCJF8zVhVnFXCnJK7BsS+3KsfKDIxxZMU4a6QXxhhh6RSYdSNxG++ezky2OmvbAFGLEIrgpKLki7jAvdMagxfr5Zd+eiQJ/OV50+FXSksET0sFglcAgBvvWgmAHblHeAT/CWY3/z2ok7gJRAwoZWgx9bgXD6agawmtDvQ4lGRkAzRW0czNWBuRoePbnCo0efwO2Iw9U1rDnu3z/H+fmEMiVynGul3lZ4npsK1AnguhWvugGeRpBrwuZ6tfJcqYIlNbAHilrDLkv06iA3f1kqjnOFFtJSRCV6M3RATE2PpDx0SgSbDAYFBPTp3zcj9P/nxUM1K6HpGty0Xm7bjvgOAEE/goe5gMO8AuYjmHfXMUFCEKCiO1hFogJr1hBADGUSFQ8hGK4Vx+OCulSkrJh2E0rhPjKw8NOgIPIccHC8aJXPQ6cNDYpXBCZBYeJxB/2nURGinVck/bOIYyBNsR4cT6+OuLpu2N+vuNB9UB0YxGsL/RF87UsYASxtvB2X19f44Y/eQx+7NOyrU0ojKAdCVzGycQR1EhnAZgZDCnvaKSiBjGI9XJ1qPUDmmUkpM2RJQHboWWEFEw7NCXV2mjJ4Q8sObQVl2mG6mFjlvq6h94hr6A736ESupA4txxnVJCyGeb+g85ZjvIYokw8cMSBhS9aD916Jl7g2IomUrozQgXC885Swtdf1yooDA1ZqacT4XU0Jks+gxeHX16jHa1zHvTVlwDxFw1kZSZ3ef4Pd0WnoQW2bgCMmkPc75N2ez8+yUB8Gai1yJrWz1mUE3WZtOOGJCpIWiGRWnP83tJyAik22e/2A3PpsD1u3dBkBTnUZJ9tYwcVdQIObCcAf6+ifexZF6pQm1YHG7fX6SSS8UnHWql2vZGwCwjsi1qHZgQSNWteAvWcb3ZGTQkADgrpUmB2Qm0FToUbUHG2Z4fUY/WwEtVXMV9c4Ho6YcsZbn3sDpRTc3ov11J28f+uc91RLP5myzg/j9bMBxhD0+3pOB9AA7gQYz9yVHwdonACGU5pUrzz1t3z7c/ztrptPBjAGApyqxHwEdHfTmxWxft9sHeVO7qUbz8oW3I7HYPs8bI7reZfnb8anCa2RptN5fB5Zm5VHzfIyhcUxWHe3lXiQvTmD3MqHQh1RrlNUqexPYQbNMpAqbW5jcm62/q6ANEAb7RMbaPnniwPWwF57FFpZA1wpxqtL96dnV/BSQtTr1ClAKRTXXR6ca/cEj+Nb7Ii2zKho2OWC3TSh5yVIWwgO8GJQWeBo+PjDD/H/+u/+If7sm9/B97//o0GFmFtDNQE0o4T7CbnRbCJYo8tvmnlOVRwpJ9y/uIiO1uwh0oLz2wXSmqSXayDJkDKte70JnVlMWL6HI2cKvnaF33On9e7cO/eadGZPuGvJ+qC6Y/jRh4UsVGFVYLWiLjOBT+914g63wqpP31ewb4qE4NXj3smZ/SZgzMi2cMSqhuiy3PW9AvPIEDP2g9mM6+trfPjeJ5gKj/H+wwu8/NrLONvteA87dR2MQyMIBQNOa7w+EjqOvNshqUKR4tq1EJNGNcsrrB4xJWDKApEJAFBrJSBZCNamskeeJoh5ADJZ42NhHxhb4oFKfLM1fheqL75ec7skBe3iYhTrNKM+fhkACD8XWiH0nhqOCAYTfNNYTFRCoB16nOg6rSZspglwvOrZAO+UHI4zOdHNrhsHmJGa5+Kbyd+A1pMRkZDwFnqsxvtX+TlWYgh+E6IJGvlYpDnWhZW+xAqcQIbmB9EDQ1PC7nyHNwqpM9NUoEJtSgv6GR2xWIkYtq0pMv2JTUWvrq7w9PI6xNi+9spJiqlklMzx2s1gsjY4lQjou0DUkVE9QSpDd0191uyudV3M3Rv3cYzIklg5DJCg4mwyGPqvnjmFsBLMMb5FYC+wJlE1ZiDECq2hzkscU4xNtH4gIF0aO21LBTQmfBVem9bomph6MyVuJyXSQNNO4ZLhC5Mc3OewFO5V7aC1eVBnJYVNrxTkiwcwTVjaRzg+vsTTx9e4ur4GvCIB2O32ePmlBzi/t0NJCfAdOpFDApCaWdDrch+AR0WOQSuPVcMxI6VM8xKEU5s53Ctq5XMj6iiTkor5v+lFbr2+GY72gGprGHF3JnkDFjagARHgbRNkt21j123dBhjr7+j/sP3XlwimV17NNjKNX09Bxil1ao1qRWTzXJKyPDLg3hjvRHKEPaA4314/fQpN1yjTGUqZYEXRImGQs8DqFY5XR1w9eoTl+hJvfeFNfOEL76DkgjEpby7CM/DEZy4DxKFfg7uXm9fxBJucAAa58b1nwIvn2r9+7k8D8RNQ4X0rawJq0GWfZ0OyARgx3nV6+E3a3al1McZ7n7JqxB2+gmnfgLyT43w2QLu5/BjN+BSeQEEcgN7krFNuNLH5HqCobYF6gYZ2gX7nHp7/AnTbWlGgJB6QKgwXqMsCWFuzcQa4GydoCcM5dw6YYZlk4uiCmNYMx8ou4DkLkbSwbA8H6lKpC1BB2k2RycuDCwszmCimaYey3wEudBdpjWXCnJGSos4yLBr7vTG62iYFwOZJyAnuCy6vrvEHX/8j/NGffBOSJ+xKgXjFDg05Fex2ezw5LnBcIifFbmL5u7WE6oJDA64rMFfH/YsC04RHTw94/eyCDiy2XhPEFGseHX69hWMTQYxIULsSf3fneVtEkDzsiZtgOTbM8xIVjAQUZojV+00MCBKNbhTBT3Z4q8HFrshJRia4O5QSDMkAniYcuHs2lzS04Dy7ht8773hWmKjz4WfTaq2rPbgD3BX37u3x+puv4OI8YbcvyHmHadpFMILIHmY+jOHF3xtbcXOR7YGAYlwdLkCqhlT4GVFBM8XhsGDxhv2eGXCHwIWNFaei2CUN1y9mjHLoP6IWhKlktBoVtHBLcqPfvsNDm/PsgfVFWGRQUggGhjK408AEiNLUoB+ZkzKnmb7/2sGIZAbn6IAB/aaMFVlcUxn6hyHk7CO+eGg8MoPb4thZaIl8dZkSAJ5kFY4rA/gu/GUVN9zFrAPgoCSE1cSg+rDDI9spoFug8pyodhDCTHunGk4lY1ei87kLkzUhOK6VsWfZlXDg4zPqEZw/ubrEN7/5bXznez/A1fX15t7nBFVSwsVu4jMu1JiJN1SVtcqqBLtTUJs4+PP8tEqClwQ9J+f4e4jTObGtDTRdKMxOKkhnGQ6CC6+0MV8uZ1p+DzqmDevofl/0a1ySIp9xTEN0SQeYcU2lQDTDF3aRh5LWq8KEkUEgyjG/VYO78l5IwmcutA5oziZ/mUm13jKlV7c59KQBctino6EeLmGS0JYZKQkuLnYok3IOWtjhO2WlDbmk6Ocho0cRga2Bc0kKK2MMjZJGpR+97wZLuWEZnnnviqMo6a1sjBbX9AV3wgZuBply8mpkZOXmX8bbnxpw3VjlOqbcABinWWMM0HEz/h2/b8DEFlOMlze+13tf9DlphRHjE4gsw93x6TjGFXxsP3oCZSRohk6A0RodQiXv0ZBx9fQpUrrGFNX4PO2gZY/dboJIBdoBXq8g3vCTX/4i3n7zcyN5Ozbmt7d74yQ/420Zx3J63Vcq2PaMrL/fOFvDzXOckdO/P+u95wyot8H3FjS49z31Uf1mrsRP9/WuCzMW2d6G437ZggvtRiInx89zd/chxN/Hz9NtrdqiH+sknCzPDTIur47M9E0U+8FHxwROsC0OMioHnL9tiHsdMflpL1lHtaMgLE4TG94FsujlboeFoDI2FaVucbAEPu2Q0w7LPKM9fYLlOOPq+gD3hikLSq5hP9ozdgmmMUCk6CIb7k8lJ7gUQLsdb2FAKczKpUR+fa9+NFvdlJoZy4pu0TNkCn1DQV2oVZAQXScwuJxUkCXh1TfewFd+4a/i3XffA9qC9773LUh9gJwzLq8P+ODpAddLCz/+iuP1Nb72td+GiuJ/95/+xzg7LxSBdnqA0wmF2RWeL/VoGBW3koqN/hUiIcqvpEgpaLW7HGa0uvA4khDIoKGLUnsWUKSLaum6ZaGXKWXloLuz+uCZAAABDNeHhYF83N/8m3tsSwNtAuRAE6y6GAzAstCxSROiqy6bE7704D7u3T9HzvyeLRj0rqVRRNl7I/QSccoF0AjwGw/So8GXhLCIPvxxDMpzvsyG66uK+fIp7t0/x/2XC8pUqJ0poY8xRzM2KUvCipIbBmvo4nwfWW+6UFmjLWVKFNI2WNCyXuBFe3QjUZVoQ+PEhdd5qI3daeKmifx4+pHy85E9Jh+ofzYsPTvYUOp0iD9OAYaM7JGseo0xZ0ciBD7c1wQUf3P3PSx0OwUi+qZkVlNZbe1DdYDsQNmSGfyKCTQbg+zYAYKdwt04HoDajTK4N/0BpvA9qh/qECSkooNyw4qvA+r44IMP8f/87/7f+Paffx8ff/QIZg3HGGtTnnAR4GA30SrZ6oJrGK6XJfZJoRJC65xxcb5HyYIyUTfWQl9GmmQajk0wArRW6yDaijN4aUFjYnWJ2fg0RTLDWXEWtXByCtAHA3umGFTpAoVkYKKkZ4ZJETVrQKPDlWR2QO8UUoDgQcQhDWi+xBxFxyYJ+Y4vfAa9NQ5v6BoVRIDAhEdSatlSSsNh0N1Q2yUcQHLDxfmE8/PCZEFjBQxw0vFiXRBWQpJmQmRr8EhYwdd71Nyjf86EVAQ2R/8OB+dOj47vkDBQcfT8F4dp9jJ5UXHG1qEJPSuP0/dGEL9+a4sx1ve2Ue/NGMpvfCxsOwki+uvbgRdjvJgPt+DiWUE0sWtEpQKaQdwAACdB43ab0kPPQTk9+e5aauEfJWKfG+drqwtxAMdlQQ36p+Y9dhcv0Y1zPuDqcEXN0L5hd5Eh0zmyClAqkC5xcV/xc1/9ady/f++kugJfL8DN41v37/b1GZdmHMvJqVtXvzlRdwONG+u7Y/G7Xv0YsfUpVSre2ezHKvZelTR3gpibv8tYewjYb4AlX0/Pzftmtc51rBWvdcWRusc4N4ITI6+T/dyeS3m+E/PcIGM5HgHQqlDyChQAZvNaNYgtzDx1aoGCPPc+oTgdiICYlJIiFU5cjDcaKDjmut0dLqQveUfz4R6kmiGSkHRCOr+AaUZ9/BTX1xVPHl9hno9w48T40sMHePnVByi7jBS2id4tYqP3hYelIpSCJgAMMqVzgpnh7/GNpgLNmX93ICVjtimCQE2chLmfjvv37uOVl18aJdOSyPufEpn8T68O0JzR5gM+uTzAWkNOQEXCF776V7GIwp9+hB98+5u4vDrgj//oG/jlX/oFrq8Pds0ptJfIVIX1Yat0VWIWWTE1UhoMtpmEnFQzIpJw/Nqh7CaUoF+wa3tdnU06XQiAOJ1UgACAyp4ajCnjfAMU4PeALoTdzKimfsNEwIXwYub3ZVx3hA6D2c1lqVgWWqAmdbSqw+5RNaNogoRgnLzzBrMF83GGm2EfglNJzBTaGGwt+oeskSc7NWPcq3A2HTscKi6fHijshqPC0ABM0Zwo5wQzoFqjy9ZS2SytOswWTLsJecqYCoGwqISWpkYQE0J06Zz+F3gZIyCTE2HthSjprB8IzQpEkDpXz+Nzm8xW7+Micc2AABqtkckZ9AAWG/hsdmenQLObIC/WEz9dcgQTTtCjGciZn620i05d+6ECQcboO8WHAt1Od5kXXD2dIZJw8XA/GlV2cD0swUno5zOWciQLEMYZIdHUdeBPkX3s3Gy3GLs25+b6eMSffevb+KM/+jOUMuEsNeymCdOu4FgrPnj8BCKON0J/ZiqYHThU4GoBrmf2gCGQSnjy5Anee/c9vP3Om9z/yMaRqkbw45IIosP2nOee8wJbeUk4rjEBlYTJmxwWur1Sg4a4fgYKrWnH3buBp8zmm3SXCsG+xK3VWiS3CNIA3Uz4NkIqi95GLIwHZ52zMrc7zm30/+hUl7jnBozURK3NQqtcRHVXk6BZgjl76NCJLiOXjE7bakG7y6ENUZEQ8rPqQyoZx8tmDVUVE7h+88ZqmKZIepHyZxYVjl4RU0TvFcFSDc/TIu0v49ItUTlUywiY0SvUA2isy+3w/jMAxuatgTGAATDWJns/XhA6VjwCQt+uGD0ovblLYzvbnRo/YsyK6HAb4AJ9/9a1yfbc9X9Yz5vXiqvrA/urOKC5oOzv46wuyNOE68MBx8MRhydXuLxecHV5iSn0rK+99gp+5stfwK/88i+wQ73Z5lKsO70e31rR6ccyAMhdl+jmiXkmwLhd4VjDZL/5Fm5/6ub5e77lZD/uuAbbnx2QjD26tZ2793NUnOJtiRvm5n6eulj5mnzrr7dlt/i5gpjhY3V6vk6v3HOdk+cGGbspxWBq8MWIeSQjlSkyLy2ai5GrKkkicx4Tint0HOVOaqZVmkOZEa8OmCCnPI6DQuquCOUkVvIUoI6UgTof0Dx4uTBcXEzY7R7S37w2tNpwtp+CSpDDfUhJc4msgcFhQtAiwkCzXxAGtolN8VodJXlRuiyJBke/GanjALrTFCycP1Tx8OWH+PJXfgL/+t/+wWCGqAh2CWiPP8S3fvdfoUFxfX1Am69Ri2KpjkNd8N4Pv48mCfdK17gI7t+/wJtvvk7tRkC+HjPRiSp887OyZweck4/L4Is3q1hqRRNjLjU6BnckJUmZoZDoyy3hkJM0AjgL5511TB/3cdy3RqP9MY56oOau53GLbvGpcDs9ux1UDAYmnbKEEXAhrH4lJUy7ErQVHwGi9KcudCkMVrmClDNkT4pYzhmldC9+QVs6ealnJAkYe4w7Ag8nJU/NIK0iScPZeYZcXKDsJjRQb6OJ2dI+EXbbS+qEFloZR6bRhduWyFzS8tQ3TRHDGvoFXjw0CHRXC/ebHKUcYL2BqvNejN4rjPoCiIJVAa81qExKHYZ0oMFgkJxiG92V3RyqGbuzoEKm3gwUoTFagSSiqCrAsCT1Rlc2uKEtlWkWDa3YmCW6+Jn85lxSvxujaqawuQ5HsWB8rhOBCYBDCJ6NdrBhy2rmEUgY6LnqgDFo770y4KCj3nYyAVBSCuofTTymKeOnf/4XcTSBzUd8+L1vI9UjzvcTro4LPrmecfCMBsVZTriuMwzAxx99gv/+f/iH+Pjjj/Hf/B//K5ydn4UmiduS1kbzzRbdv7vWpjsLwgXJaefcq9e954woe314ikaJ8fwSbIVd7Gh0GlqvlAFUeJ153t2RNIWUxwhY4KwmrjWVMN7I7G8hHBdSyet9aWEpHLEAaWj8XSPbYcbGmeYNWIKLr3TMQqKGg+VLxHgXFRmPSTzG1lYNNjumoEZJ2lT8PDq2LwuWZWFvIzjqcWJSQth9GVBkWhUCnkZjx8GiDY0RzFGXBed/EQ/4/wpL1zJ0ULHNzqP/Hj+fY22bAO7uCPa0iZ2ffK6DjTuj1ZOAbPMx2ax7bP/5Itk1MCUo6KsbVdd+FmJM4edO1z8SKQHQbr5uteGTx09QzZjUzUzO5ukMeZowXTzAfDzicHWJw+UlPvngfcAMX/7iO/i//rf/FX7mp7+C1197FQA2IEP60cYpv1lp4o6O3heyvtePfOgDtmn2cWJuAIwBPu747PrJZ8XxK0j5MZa7QMX2dX/rBFzcee03x/KMDRFw8d55Fu3vLoBxVzVj3JJ9Zz/juen3yfMuz+8uldfBGeFI0CIDREsz8lk1xMn0Dhc2tGp0XmEzJEDTRGF3UE2w9IyWj4l+HD3DvRAeZ+RpAtxhc43uspUuG27YFcVUdnBMIHWIN7UG99hqi0wV0XnSHKJNVmiAyLg7ucTSwcQ0QZLB5j55B38fOgJlumqFhWWIkd3ZbbXWhlIKvvrVn8Fbb7yK77/7YTSVAoCEfVZkZ8+QxdmQ7WxKWJrh6nCFxz/6LjN8Cto/iuKdz7+Dz7/zTmgEHICjU7vhgLewpovKCStKgNWFjjMCQKLvgtB7PyXExOSROfMYwJmZXPuCBLcZOm7IEeCrrg+V9aDZR6DFB6uXDLlu6wNdcL9hzPw7mP3UWL8bgp9PwaqKAxkoUw5QWaFQ5HBoIm2CKx4Figjc8zQxCAq+kjUEzcvivNjIBI9IsFd9goOvCDHfLmM3CaolVogk4ep6wfV1A+4pfGJ4bAI2O4xSTikJU9lDM11kqrMfQko2mEQp9CuOPqm82JWMdlxQF96DeSqQiUHDmroCGH3HrylRAJ3yuAbogavz2TUzgj0IHI3gea6Y54plnuHLAsBCFLtH8R2Dg8bGZsMq2x1WF9SZyZCcFblQG+UeFJ/qA0T07Dv1YwF8YGhzxTIbUikDVOZccHE/oztZDThkMSYxioVbJRc6xtXkhc0GETm+mFTMGTxTZiBBsQPWDD2iEmg420948PDBqOBMWZDg+OTjj7HohAcX57g8VMxXT3FvX/D0esYrb38Rr732JvZZ8Ojd7+NH3/8+jrXi0eMnuLq8wt/6W38dElUEcYGEdmRcRQ8jB4ukk5IKxUpcJJo8IzlYFe0nRKjR0w4ktQd30R/D+mRJ0TU0w51dwGs1YDHkRNF+UoXJStkVpEGv0wjO4YYiCsguaIk59k9Ds8b70c2hFomHMK3QTPppa5U9c9oSc4tAC5MmTEiEO7YDtLelmYYbSLELy+2lOlIjmKy9aupAswqrFa0uaNFzRBxAnVlJFkFdDPPckDKdGTWVEXD1R0lVIS2SQj92+v0vz8KGhz1IPQUUt17fsfQjvwkpnr2chGE3kr+ftQa54yXX54jcyWYdA8IMILG+3q5n45aLkYGOSsgWhJwcQ3xhW609AWqx7uvDAe9+8BGp0zlTY6UeCQLDVHY4P7+P5d49PPn4I3z07gGHecHZbsJPfOkLeOP111hh6/bKm/V7/GfbeXx7alabVvnMKtGdofk4/GdVdG5+6fTcb9/zuz92x5bvWuXNbfqz3799FLe3cGPnR2+eG+dItm9sKhc3AQZvu5WWN1Zx10MxrtFd9/JnL8/vLjUV7mirwQEGtEW35KXCJQIi0bGPJygygnAzh6SedwsgEqnDyCUG+nUADJA10uJDtykJFAv2AV8HbaiF0NlqBVyprchCkFMbS+zu4enO/YVL9FloY8Ko1tCs0cO9LnFAFs4xGpO6U/zZjHSAcdGY3azNUZcZy4HCv5/58pfxq3/tl7H869/G08ePUBswV8H5VLBLCSk75rBVLDnDfMH5lLArgpJY+bh2YH+2x1/5ha/i9ddeizkwzl3PeBNlABa0qeBvOwxLbTheH1ArxcVlR4ennOl1vywNrVpkIZ087/0FkM7gQgqYHZ7AjxSQdltRAFEh8UElaI2dimkpjMh0GtR53wR3LrzzDSkzWNKY/MmwikyPIybMmDQlQK3zwcrhsjUmbgiWuQKSKO4GmyH2pn/qDtEWEofuZCOjERbpKn2b1AUhLI8tHDmS0O0nJYUhYa7sx1JNMT99ikcffwIzwSsP6fxjoB7DWoWUjJwKppxgUFwfG55ePkVJwP2LMyRNqJXVp9yBhmCIPl/UheGbAEnYkNAqsBhgJfoUxD1sTgpSF0L3jHCrgDdWAjIbZ9oyw2YLPjy5xC10HmUq0ClBs1KoqGGNLaR4tiWe6VxIw7E+53fuvQGu4QQVTk4O3m8hxO0Q2ntWSRXTGauccLB/S0rQFE/KSEqwMpJCnE7cxGeXeqNIwLR0knHsY2RrLdz5jE3tQuvER8VGVebB/fv44he/gP3vfJ3+ViKYpOHpD/8ciyd8WCuury7x4PwMx6Xh8voA++hj5MOMly7OcXjyCFNWLJYBn/HSw/t45/OfR8kT3DnWaWiUOpqnPs9BvUWM4yoxOWLgSAKBnqSQ2HfOB5AIpiXuAyg0R/LCKhM6ISz32qKNToKWQn1I36UUYUuK6yVCHqcZYLyWWjIkun1bC6G5SBwXYs7jenrVtGsNvTGhBXiYVmSoFpgAgoaOmNXp0gihs5+D2jkBkHP0LVLhUGMcf601LHWB1RoUV86bKYXZSop1Nx/U1FoN2pYw4aCmRyWFRo5VEn2BLWw7yAB6rNOD5ljuysRuAjzZvvWcS4cF294Kazz3GRHXyZ+3AMNjepMVGICV/l59uBkYj0PbZv1vbuxG4L5udv38swBabQ0/ePc9fO8H78FBFzJJCUmosazzDNiCUgqyFiy7hCSAmOHy+hrX19fhAHcD8G1ATAcQI2G9OTjZnCN+zjfn+AY83MTS/UUH1p01sb3uJ5+98cYWYJyCi+e7S26CkNvg4ln7cXv9N8HO+h6PZwskbh+On7x+5j9sQOqdB3T6R9KHHadQ4/mQxnOPNBqZxCaA1RmIzCEtCHtZG/AUg3g8OJ1bLOa07cyCsisc7IT2pR7Wgi7d0jYy4NLpCBx04R6dm0mhSlP44XfqgTSIJdRm5Na7h5OfAELh7DIbtDZoalCtCD9FThpRGVnmGXNlg7uUFJ5yOB8JlsqBYZoyNRlgWZpXxaKqYJBKNxZbKhSOJII333gN/+3/+b/Ga6+/gv/7/+O/x1KPmKtj8T3OEgOm3c4wKfDg3gWuDwe0Zjjf75AUOCwVCwxvv/MW/tpf/UXcvzijzSE4mbACFBlFN6h5NMuig5YmheoEzcqGfC0sL/sDb4IEZidz2QMCaBGk3T1cz8DxekEJJ8UWg1bnMI+b1jl4kgIQ7zrxhLgP8XQP5BDUjloJKtHtN3uNX/q97GOAYl9FdixfZtrbll2BIcHdMC+kfC3NkYsyYLPGibhkiGtcs+CHx6TVG7G1cHfSiDpX8VrY/wobfLH7N2CeUFslOEoZOy148FLG8bjgyeOn2JeM8/O8DqDhRNQsw6AwURyWIz7++BLne8XF+Q5TOPSo9udLgOTo3cZf1EVzoQ5KENF8jzbBIaM5UOk2xLFDiCQ9qheCEPoEb97AcaRTU4qiYMcOtSkRINLHlQmQ4L63ykagEkYV5O0rIBOQuz4DADbmFcbxLJXChnwnEzYgRpqKonOd++Gl7lobt5FiVOlkFY5L3BtO8jxBQqONtIU7E7pGI/QnLnTXc28Qs/Ecwj3crID9/hw/+7M/g9df+0189P6HaEYK6KQCqWzm6SXjbJeRRLArClx9glSvcH0JiBty0HpSSvipn/oKvvLlryClstG6EBTqsJImMEgROHRqKsfZoBVF1dD69RABSgkL3wgIVdaxoKuXYy4xI+JTZVUwpT0paomqD2w0OG4kQbqxUWG1GuCHVQaT0Ea00J1BYMprqVlHUNTvXVpNk4Y6xgcBPPQTjoWZ4MRg0MzW4CtneDT0M18rHWz0SdomDVIIHktSWO6VCVKnxG249AkEssvQ3Y7UMRcomOU0IlomTpROZqpd1/BiLs8CGbcXX2PRNcK9FXhuPr0+P3f9cQT+Pcvua/VgLHLr5d27FqDaA3LIdrdO92CtmvD+Gocia8B3l53reGcbMG73aZxDnr9mhvc++BC//bt/iI8+fgQpZ0D0X2CPsz28HlHnI45mUHXYcoz73fH40VP88Efv4QvvvI1pmtb9u0FrGyBDFGIW13MFXeN6DiAUgXoMC3ddnxVo9GvYr72vAfmdgT9OgcUNkDHW8RzLs4DFs6sgzwCENz43xvOxndv704FH1xr3z33av/giRmzTKyPSk2a+3leCoflZE0mffU6AHwNksGNquOMshuQelQty/M1aHGCMmJKZMQkPfBeBlEy/+FKwzrqRLcprkC4tqEQSPuBJgeBWsxEeLVlTYWOY7kDVV5nBzA25uAp4BBESGaiYf2tkp92M2c/Grq6tLWCAF9nWyB+ZAW1e2C9kSWGRGF7mvgYMg0KRFIIMz9FgSTLeevstfPGLX0AuGdeHa8wCHJeKMhl5xMJAJqvSS32aIKlgsYpDAx688hp+7W//Kt5+563oRs5+FKw8rLoYQW8vIOGtQ+5zVkU622PnFn0sFtqvk+uGlCNrqBlRV4LbjNwMZ7IgN6Xryy4cT+LJb9G0L+ZM0jks9B2SRtdhCGDozj4xHMT9Pjqzu8b73u9vCIKCzv9Ak2BpjusDg3sPCh+7P7cI1sgLdyeFy1Xo068df0oYECQCJhdIkuBn85ph+0CCNBOPh3p41JuhNoObsvdATrjYF+D1h6jHI514Es9BTo5FJDrLKxZjILXfTXj9jZdQMpAnZkERE1lrfMbUTxM/L+JCjvvmvPbJtRngM5/HVkcwzlE+LEghWL2tHYgxp18fVqM6gAng2wB0MbRQBNuWqLCVEhz8zUhPP1tObFY57hgrhal/zD1oi5H4MGYfEUJ1j+eBTdU2Ddx6Pipsc5UPA98OcbKKwKOhWw+i+4DVq5SSwCA0adDqwuxBZBxrb/QICPKU8ZWf/gr+zt/5m/if/6dfx3x4imbMZp9lBbtALNiVgmYNJSfsS8GuKJICtQnmhUmlBw/u46//tV/GG6+/to7349h8k2AKgqTqWhkyR20Vy9I4h4igTDw/CgbC3ug0uPIbZaPXIYdQBGEzywBeAnimqHxp6JYMS+yWoLWKZhVudMziBJPiVlKgNSxLG4YbHn2ZVJU9VlRZjdq4o3m4IIpSc9hqjL8yM2hrGFVdFxo5LEujkB2KJAn7fQYN+NKahLDGe18croKsGZgCiCqtrK02Enzj3Bv4SHj0f1EPeosSBHbjjVFI6oYLL+DSKcCfvjjgMnoQ8a3OZR//OQnebnz7FnTYFg5OKxnxmc0z3ge2dTdPyCabday0njXw72PaRo/aAYZEpQOrpucUMNyxbI5XbnyIa2KX+B+9/yH+0W/8Hn7z330Py+w4S47UGlyOsW2BpIJ2uMKyzFAl2O70508ePcFv/fbv4XOvv4p33nkLu2k3LFUlEi8eYN1FoEqqske1+KSjdT/nm3P7WUUF7yfS+w9Hr2qMsbePRb5+6RRvPDuY/+yixm1A8eyKReh7NrHPybXr78PvfL0Fnn0sGvMl1vn1mQCjz72+fqXvV//bZk9jH9e35eaN9CnLc4MMCuhIo2mNwVoK0IDou2CO4LGyBN67+rqxgV/OE8u0mod+wSQ6nsZnRWxUDWi1ZwOhUUTsfPY0QTTDlcI7pLDJ7R1Sw0WjxVkUa0jJsNs5ulOUBT2BTbQq3Xyawz3xIdYuoOaglhQoOyCRG9ZjmXBPCeTMCJSfzwVpkpjcHL3pmOQ8AuZqjuOyIM8zppIwu+DpdcXcHuFwOOD8bIfmhsNcsbjiF37pl/B3/+P/CPcu7lE87KRrLceFjcAMPbJiB1gPOkVqSIliRLqESfCKO+JFUAQis+bKCYoRIHaZVQANoaxrohVjo45AFaSBaL+JgZLZ/Tv1rsIjcxPZvagScACnA4+1GVPKKEmRpAvFAjmDtrXNekdygZkCiRN4kt6WzSPDaLBlob+8O2oEnprS0IOTqtInbAeSbMCxdLyDvgcjKHbEfUnazXD2MoPVBQmGl+9dIL10Pyo4rIy0BGTNIU+mYDNDcHY24eysxAk3dp4+Lsi5QFOYHYi94IoMANsslWGIwLtl7eh/grjPLDQsbrRrxVrlkgCSlCkJHXYYQQFukTTgCCpdl4MI5qOyt9o4gusdkZsFrWllqGnqATQ1Zgg6ijVO/B7JjOYV87HCRbE/22OaaF/Ne8fRNT1MCtFNjKCIQeUICJTWxWiGZkeOc3AAtG0TsGeIR6KHWXbl4x82n72i+cV33sJ/+Q/+Pv70T76BP/36H2IuDWdne6SUkYvjbMp46d4FjvOMeWmYdjvspwRrFVfzjGPws3/xF76Kv/E3foV2y14BdDoiqynwoC3VdS7gdWTjwOvjgidPrjEfZ9y/2OPewzOUKSFpiR4Xgi7u727GBBG8vh6JgRHkO4AAAAABjfc4IwKj0dhPEiz0M+I5RPadfglMJcEzAHRNVmPVRQTwBPUGTbTLNTpfjPFr7f0EmFfUpWJZqPmh8xQTL9XAyr6GBbdVeGJPJY6DrKRUl9BjAJaM1TZJpC1vRjntfP4WIMej0p9zfCeqHdI1MyGgfYGtsHs/kVuB2zaYjHFmZMGB54tUn7nw3uzAAFhX1eOtrePU6ecxPn8aHEbCqve0WXcfXeO1DeS2QAOdxhd/GFXVzX+3y21MFoGjG55cXuHPvv19/NN/9Qf4zT/+Po4tI6eHOJqiHAzAAXAHZbSOpTnmwwE50SJZwrp6rhX/+Nf/FX70/kf4tV/9Zfz8z34Fr776Mvb7fTQ81vWejIQi+0FFoOFrlWjsYh8AYmy4AQk2AMLH76Oy2IPqcV7Xz4/Epq/nfbvuz2xgd3q5bv8B21vtM+65SJasQGMgoHU7vnlvc19tWRYn23kekPEpS4ey3L/tj8389HwY48eoZIABNzvDFvL4VaNETx9x9T6JttVfHN1Wjw9nWwzNF3itoAsT7Wo1MWvGMrtGB1iL7FCfOXx4+Fp1VAhs5oCiCUAjDcWaseyclJl8H540SJkdnPvMQuZFguSENO02F4/ceWaPY6MQSCFIoU2gxQQmkbnvZekuZCXgcQhqZFxr9WhexRukGV/P84y5Zmg5w70H92FtRlsaDs2w2BHHpQLlDG+8+ToePnxA+8PELFm2DKt8UKUorAnqsqDaJmZSZU+LsAp18xHkGAy1sUtvswbYgpwqXWIAuLBxnKQUlZGYeLUPjvHPGJXRVIv0lZR5bR0rmIGSbiQhpvUecQYdhF2Loy8JU4UAgNYYxHutAT5pHUxgRDF4yQpFAUIQbEbpeTVO6HWew2O/iwcD6KYekACOaABmBosqiEpYqfZUIDwyhKSKJHVY7s4+fA5FSSdMKTp7O4L6kuOe7tS2CDYl3Ge8QdQApUWuodHBprvdvMiLO0bJNUs4b/l4Xvq17qeGsb6NknxuQn48y28RQHGybK0BLbA8euk4AEVkoL07r0m3TBawk2QXTkdmPHqheKflwEnDyWm9B8K5R7RPboDDqDtSHwGjRUbbI93sAMfLXqXdjBcUSoeTlAgEpHm69GSHwyLY5oqU1D5lt2cmeHg+VQTeBFkMKU149ZWHOL84Q3XH9dKwXxrOQwfT+9uJO0qm9bLBcaiGq8UwXdzDr/3NX8Xf+7v/Md75/DvUNzgpbaToGHwhZZOUqAarfSxU1Oo4XFccjgtgjpJ5LK1WJFV2tZYOMOIcpaiGjAAsqhyQAO0hyjLwM2px78SzIhjjXUoOeO8EHhWP6OEjAMQqAKAZqx5ulXOAGdAkaFQWQK5AckEupGf2eYAd4zOBwTxHM1LSt0QE0IKdFqRpzyrU0tCWI5a58RxE0sIikeauaC44Hg+ohwU57XBx/wIm1AclAaQwydfmNsxTGHhOaMZkEcdrjvOk8mE9py/ossJDYI3MN38Z8dmW138bZ2zpTj2Ij2/dCGiftfQgVsY41hNpGGCkAwN+Dtv9wVBhrGuLXTpt9Bfxx0lgJwNgnIKM01cnpyYWM8fV9QHf+8G7+M1/+0f4l7/7x/jzdz9Gk4Q87WHTDlUl2tK0YAgYYBW+KOwAqM1IaGgpI59n1KXi4ydX+Gdf+1387te/ga/8xNv4iS++g5/80ufxhXfewquvvoSL8wuUnKl1LRnTbkIpE3IG52HvCRtH76txGmBjHUM/7aqcYhGeWd+CkGf//LTXp+v8dJDxactJJWCLRHEnfH7mNrzfd1ihRl/liLf6Gz1O8+3O+2qJuwXAJ3bIp/fdTbDxWcuPATIQfv0Zgp4FJN8dNgOILqet0SPcGyjQYPCoSs57sxl1qVBhINlBhieBpeDx9qw3wCOOZk8A6OIRAAXLkUFkb5QGTvLzvDCoDzHkfpex36VA0TEAmMGxAEIRnggnaRFl9hAOaxXeLCotccFsRcfSReA5Bb28jgvXs9zeBXy1De1Eiqxcc0dGNFZSxdN5QZEdUnIs1XBYDIfDjHv7gloNZ/d2ePWVlwmU4pqoUuMiOIPIkW9mHYNP2XehawhRBUDDGPQEIZ4GAGUFCEFfYJ+0htEnJHWeu454MHA1wYxVSKXLFVoaNzCpVPTZl0TnKA7IHCS9kbNMAX9Y2SI0EeGII/HouVdkZVNDuEEyaU+98gBoCDyZAZbUaSQ+7CepNMUYrMx477EXSFTNQpzbBxgTG4GkCgExO5zHIKQZInHfR/q7uQ+HMoTr1tIalmZo0ZCLlK4FZoZpWikTKQm85JNMjVXDbC9uBhKIDMmYMAXRKTHGCVtnw4YIFBzSyBVzZ1kfCzsXp0nYHFOj6VgLCXbcM96i+WTPdPcKhYPPA9K4BxFZf2sN0j2mo0/BiA/MWSXoQZoLIJkBchwXxZIZZbcJmgM8k30XTm1hVtGrm51n2Gl4GOFiXHsJqpQgqqJOI4JaSSHSBPNO1WqsuuZMxzbwvqY8mw5NSzMsdcFxERgUR3O8+/gSh+OMKSuAhmNtuDpWXFfDV958E//7f/Cf46s/+1WUskPvK0KKY0+wdLtpxITVqzZ8jpI2nO8AOZsG0Oz8euvHapVc1p5syimeWYc1WcFp2OHympD6Cdjoup1UBngjVYNVcm8hutWomqnGeSRF1kVQa0M7zkjSgkq74Hi4xnKcmRxJE/Juh7wrw0mQjVfDfjYAadoLypSRM13FWnO4Ky163WB1RluWSHQAHo0XSXPK1Cq2sMclVoMheh4JXX9SVpgdIUYTgE4/MVvgi2NxgYLVZOJSJipSfnGF326+6aH0qZ/s/98sYyY5eW/8bSQ7oonnpwSYN9/sLZU6Pa5nEzbWKH1QG6DgBGB4cOC30eIde/ms4O4mhezWpyLwXGrFex98iN/5gz/Fb/zOH+GPvvV9PH56haWyC/0yTSi7M6SyHyCsa9kI4BvMc4w9AseOQ3bKsEnhreHR9YJ/++++jT/44z/Hxfker73yEG++8RpeeeVl7HZ7nJ3t8fD+Bd54/WW8+careOP1V/Hqq6/gbL/rgQ00KH2++c8Wb2yhxxrNbACn33hvXdtpVh+nQGZ7yU+v/006VP/MHef8WdfvjvT/0O+N3Y3fHZtkQI9/th+8+07wzX9v77PEqvzk11MUunkext0p6z+5sc+fsTw/yBAAmeJJiWCN3ZgZYorSWlSdZWlm4TLcORFIrIMUGgCgMxQzRoHIjKDE0SCISRNgcgs9sOfkA4Tl67ygVYd6b6kegWCigFlFIzttQTHgCTZrIUwWNIuJBzPcBNNuD82RvWqNNv7J4Y2VGHZi7g5VE5NoEbj4CGKkw0mIkDrg5lAIdrsJkjIWB7QZruaGc1WcJQA2wxcHloZk1J6oMBB48/Ofxxc+Tz1Hz/JCmBFNZYIs5JDnTCoZhBQHF8U8s0HUbjcha4KAwbAbb6MSgkvpN2ALXjkIMnKeGLwl9gWplfSs0SVcBEUp5hSw+7HDCR4j2JBwYXpyuWBeFux3iikr6hKZuWjkVd1Q1bBzQS6CLL2bMG9YSRr2yWFjDHbl7j3ou5tmbaRk0T2L3Zo77Y7OMD1oA6zxXjZztNr1JDx2D8qHBSUuicPRnYMwMtQtePMjMx87Ym7Rf8NRnefMmq90N2vhMqNIWVgtGpQ+dvDtFSDR58uU/KVdNCoMrQFNTvn23qtZElIFCZ0MM18JoDYhnj93DUcBQZIEz2Es0N2EHBH8Ch2eOhDtoFr69tIQ/6MtpEJFNYsabN6XvWJi1aPrcli4JkHnCAl0gMrgURK8uAOlc/p7xMig2iKwVhUghytS4gRoraEtM+brawicNrDR6JJC8QbzBjU6w5gQ0Kfu9hSJBQGQ84T9/iyct3hunlzPkLLH2dk53Clmbu64PBzh5riaFyzN8eZbn8Nbb7+F/fkZRvUnJV6n2tYAWTstkk1ZO9jQDEyTDjzZc+6iGdAUImhq4qS70qkCtYwJkNUAQIw0MtESWoQKld4YtUGZCRjPLUGFQIvAU9fT8J9bQz0csVxfQWCQkrEshuX6Cmo1MEiDLUe0+YClNWjKaHVCPUR/HQGm3Z504DjfjqD9hmamNdDtzgBYZf8TtNDtkEriymaDuRQgZzQAqTnKRPtdCY1IzgV5d4784GU4HIeP30O7PjDZo6RzLVZhxxlLJTAm2Ilmnj4BJT3/5P+XbDFbkxEnsdGdyx0R+xYMbAJQ2UR6PZbrUGC7Or+NXJ6xztMAd8SNJ7Bj8/pTozZZA8LbR3TnsqXruAOH4xHvffAx/uRb38Vv/cE38Pt/+l18+MkTzMcDWp1hlaBajteo11dI0x4pUz/bt2eRRO7VDXdZ471UUMqe4501eJ0xLwsOT67x8dMjvvnDT1CmiS5/uSAnOmc+vHeOL7/zOn71l34Gv/JLP4+33/ocdvvdmAtw4zi21+Lk5/ZUOeePNUO0npMVYNj4/TYgvRmc39z23dWU9W67AQlvVCrGdZT+Jxk/Owjo9ClWFzqVzG98Vk5uBuKSm3vmA7ycgLBxstafA1Jsk28BKLb7emMln7r8GONMUAsUvHCNWTRH6LyFdB2WfRPIG1190YnQG6duS6iGEHhS62HNh3hORSBa4JqRp0K3wRbvS++yy0DX3ZCSYCppcDVdMzRP0FI4SR9mLMcZTcEgJHjeHoDFIKjVsRxneAUu7jnKvvBhaoZUEpA4mbHrLAca8yU60hrUNTLbuqFRIWgXBDjqjmqC65liysVJ53p8pNDv3i5DYajzNZZ5RgKDncujoTx4BX/v7/49vPP5LwJSAgAZ1Ch4NUPQgCqa8XrxmihqM3z08WNcXx1w//4D7Kc99pNiyoyFNLL/KOwI7s1g0qBuYNUqQ7TwIRTSHNyoA3lydcT14YAkhvOJtJT92Rmms4lVruho7i0DrpirYvGKq0NFrYYpJ9SFlIOz/QQHAxwAuH++h2pDyYbzsx1y6D2YqWS2lxbHCZ0b3RveOcIes5KXn+Arl1cYiIqGrWbnU8ezyA7TfIiIt9hduE8+Jhg0sdoavJIeo3BIJkCguJP/eD0cIXNBagGKR88ARUns9k1AyZ7nSSgzp984ea8vuLkU2rzwvozpFc3Rm5Mxw6cr5z460w9OfRJ0rnytFagNniekqUDyNLJuIvFsJ4M2BrxwVkHEg8KjiOpIn31kJAQkCQY1Z+MixQmrwZcGWUBufQlbLAG8GiswKhAhqKV4l1arop2uGCOIV7jN0QQzKjAI0ws3NK+o84JlvqbNswOeHaXE+UuKMhW4lFh39HgQaqfWzse81+/dv4+f+7mv4l/8i69BfEFSxVwdtjTsCq/FXIGnh2vcPysoSbA0Q552eOfz7+De/fukGBHbhF24s5IC2gr38yHGY/EO4hCnXMI1y4ImqZHl9yXE2I5e+dZIao3JTAKwRUVAE5NRqeyg52dAKWhXl2jXl1CEs5TE3CSsZijCptpm+DITYByusFxfYTkeQvcBeK0B6vhdZ3aBGqmSkJKwUWlYLKsY2nKF49LCKYsJHtW1j5FVVuAuHjzEpOdsYltyJIkSUFgNU6UpRBI2cwRA98AI7GypMF1gx5njjCVoOUMCxd7NCJJgZAw0CFr0plFl3x4HsPuLe8z/Qpdm7SQg3wY+29hp/c1v/hW92iCb9/pnAdJmrUsivAfsn5LV9h4PR5jZP38nCuqBYtCCZIyGMQbdDt62me7nCvFGUE2WwIcfP8K/+YM/w9d+/8/wjR98gE+urlj5nc6Q4vi8HQbdvAMOn/ZIOdOtL+IEhWKZD2jHIwCHZoJiRQpL5QTxBEsJSIU9dOBMdjbD4ckT6kELx62Pns749ruP8Fu//w38jd/5Ov5P//V/jr/6iz+PaSqfepR3UtpGHE2AsTJcTj93olHYsPL0SVEAAQAASURBVFO2J+/TQIaf/rKCC5GTn0xSdjpSH8e2d2OMz7IBDuvN9KnHvr0XtvuCuK/8xjf6Cpks24CJ+PO6znXdMnZ3/HYDcHz28vwgQzQyVnTUUEQ/A+klf76mYt4GJYb8ae6e1cZmQqpozbEcFogtnFhbxfF4wHy4ZsZfC6TsUHYTB2A3pJKZLYqbPQk1IikrpqlARMP5idx9sQqvFa3OkfELgNEsGm3tYKpE78lJO9opUiFHP5cdtOyQd3t4O6BdPQZaDRtRQXNDq+zAahVImpGnDBFH8vBezxSmJwDH2vD9j474nT97H0+vrpmFakK3JWXDvouz/RAlL7NhNsF1c7x1/gAPXn0bhox25IRskKg+xPlv1C201oLDnZEjst2dTZw8Hbi+niGWMd2bkKbgwHt0244Awg1YwaGGB30E0uHSlK3gDI5UBN4q9RPQ4P/SaYpBHSCSYSJI6rg4y0iy43cAaGG1aZoIFixNbJaYCj7+4GMkb0ivPQSmFMHJeFKYlRxTRXQglzQS0yqJ1Y6l0iRgBAW0PU1DzMvso0CAnOFOMWuttBCFd/4/M855NJ90HFqFqqKUDIkstYHCTfOuHGZFR4THyecnaG9Opx11ZTPn4b6EcD9zajRcEdTxF3bx2hg8dp9+47ll4OdBdwFpZq3C2kIpuKaud900vUxwYaVIPQSFADg6xbCvDq8VdWZ2PPWmft362mIybb3vQvR50S7I1nV8Do6qeFz/nFfQYBJ9VeiYMlKh4XgkIdm3xvtBxGgdKww8O5XO5iPqwi7n3ZQhpYzdnpXQlCd614MUS0lrxUB7FaELQx1rkgPANE348pe/jIsHD/D0ow9xOVfsi0KwwOcrmDuKL4Cyl4Y5UBvw8msv48s/8ZPYTfs4VlZ4vYUWLyhMHVjzeewzYKdAIp5d9n5h0854VtygsY/ICSoJOUfSqI9LQceCOSsLfoQKzSzSnl3HPdFUxKEMRN3GnRDe6HyulgVWD2jzEe04YzkeMM9H1LYgaeFznnRMa+Y0PKnNSM+jhzZUnG59OWxtF/p0IWy9mZxRAAubceYYExpdEjUX5N5hPCxlR2NbSXAoVNgwdlmuaTkeQdFyuESdj0xeiaKcnY3gSrwi1QUpKaakqNVQlzoyz25gY8kXdNl2kRYgMr4RXCGCn41GAv0ewA0x6yYK6wF/NycBOG85hyeGs5tM8Pa/ffEe3I4qBW59qu9v30inR61ampuRm9x43aO/T4nwTjL/hvc/+gT/+Gtfx7/4g2/jg8fXWJoi7874iWbQxNjJ3dCWmWAWBsyR2reJcUxPDgmQ8kR6/OGSRif7c0hRkIIKCMJWXEO3BEaltsxox8eoZtA8Ie3PUUK39cnljN/47T/C2X7Cm597HW+/+bnY5iYYxjrbP4syNwBkF9THdfH+vwEwMHrenGowbp3IE5A5Xsd1G9dPgrbfuU7h9iTjptwAxF4hiD/1UXPcrzerF12MfAMoDxC7uR0+BZv0G/Dk9lmBhmxWF/snY89uAKH+77OX5wcZmkGhNiBgWVdF4Mpuq7TzU06MtmZvSO9w1GXBcnUFrzO0JFQXzIcDsBw4/arD6xHWZtR5hkCRbILXzGACQMoF026H3v3V4WDDpozF2aW3hj3iNBVkTIBrcFgTB3RQH9GDBBeFOpC9Cy0lgKQg5QnTg1cg5xeYnz5CfXoJd0WOSaEtC7uwumOZHQkLalNmuVIGsIdmXqLmwHc/XPC735vxvY9nGBRFALjhuBjg3Kcy7SKTJTiY4DpkHjXt8L3rCZ9f7uPtexXZntIrPrLASSRsTpUVISMlSNRQiuKlhw/gDxOsCVptSLAQETMwYBWJ61Lt5wzBudbIHlaYO8vuOWGSCakozqxEIB3BtRnmpQ57SdWVypbUcb4T7FJBbYq1Gy+G8P/+2Rl29x6gVeDxJ48hdUatMwQpHD091sUbXvuDIBu0DUSlIqE1UrDoexwBX2RLO2DuASU7BPvKx1dhgN8zrMGtJ22BAVGt5FHnqUTyinQfC1qeW+/wS0pUjnPLTXIwVChUEzfLUkkEowUSPOyU0meMIH/5l7zbsQLQjyW0BimlcJgCYGEcYQ06KE0x0CoopA8xNz9esVRm5rWLbIHgD1fMhxnz9Yxpv0e+oFjYQsPhFuYTQfXrTeFiGBiUN2+851yDDulgx3ADkytGME6qVnC5PbKCS1w0IcgQN4IMNCBIfs0d83HG8foIOLDfT8iFwnApXQMl0FQATbDF1mHeozIb+Trv/3HuP2N9csan/R5pd4ZLS/CjIalil5gkYHW0oiTHoTmO1XEwwf7eQ9x/6TVAy8oJlm7fqkjdJFs8AtlN3skd3paYyFmx7X0rPMYgdxpPUNwPCriDTtZtsN3aoDaQkEgjAHODLAK/bJBjhi+hZJFE5y8PsbY70GZ4NbTjEVYPsGh6KEmBzATW/sFDAI56uI5KMjgupgKd5piIe+DAarFGU07JCSWDhiOQAISZlLha0WqvxCrq7MjCZqeaCumlIfruw1g/R1ZZ0RIPe90eyHiLZqQObzKqrb2hbE4JZbdDSoaUCKJhwgSevLh9MowZrxH0yLCqjYo0RizV/zMCsq0GogdJjPlXgNFjLu9xovU41ddnH6eB57q+FWCcsFO85x02+4M1OL1rWUPKZwR0d33vBGAATy6v8bXf+zP8s69/Bx9fVVhUy6U7lEkDph4U86CWwyX1qFbRFu5jwhSAObbhToq2CurhGm0+8PudVi0S86xDJNz14KjXBCVubJhsjZoyTQVp2uFyPuKf/+bv4me/8iX8J3/3b+Hll14i1fk0vl6D5ZunBL26sZkzNlaxAxig06V8JFf7X26d0hOAcffPATR63xoIQi3aB+mTqzl+9vs25pz1Htzuu6wY4/RgsUKu0x32dcdvnbMb6Hr8TeL3k59Y3x9nWO6+9Z61PH/Hby2QfYGc7TlgXj2F27IB1czsuhQIlI3gbAHqgno8Yrm+xnK8wny45iChGjdYZHETg2MHoCUjF4rLc1Jo8HZFAbcZy1yxLBUeE4jmvGZ5nE1l/PwCKd1HymeQ4BWyV4MA2aKEzrJ0lihrt4ZWZ/SO4dUc/slHkKsrOoWUHdIUtAwVJL2OLBwBlwW9g0YMApEKhaKVl/DupeAP3z3iWs7w8NU3kHNBFcHZlDBHQHV1nIFHjwCAnblbY+DiDcfrK7z78SW+/Vhw762fxhv5EdL1B3BbYDazzO6KZIbshuYGiYZxOScgJwwdQePxqVCUnELwrCmY8Gm1gmzgjenhzS61oZoiZw/nJ4nMqsKR0BxodYFgXjOBRpGph16kizKtGXtXJA0tBxjcLw67OgBwvPpwR6DYsz8dCEZGQiWYTSoBPjnB92yuBUc/yToI9CoCLTbj+yGOHRSQLsT1EIRrWI5CxkDAzLvi7GzPewmkNqlj6FtSCjTkwqpSgKRmxpgUilwiK62ZbMTWIhMbhgdGAJlSDNwv8CI5x8wdo1rPjoQAl/TDqJj1KungiG0GyODRdvpIXWgFmkoJi+Ko6Bldp1xBymPou9pSR3f3nAo0+zrQjkBCR+WTxg1GMCIC98QgTxVSCvdpo/kAKNhd5op6qMyMl94zg7063Dz66ZAus8vnKGfndElL22qMjuMFAqyG29g2iulTpLVwVYsKQC/Zf/J0wb/7zid4fFVxXGh3vc8Ju90ELRN8nlGNdt6XR/blqWa4rII//tFTvPFxxduvnCMjNAK9C7b0YCImROMEPhBPZJXZsboBFuDQLLwyDMvhiLbMAKjrMGV1c228FmOG9cAMQCQEbDagHplA0ALS1FLoLwxaWPHy2kihSw562WpQ3jL07AKSznDxxltwN1x/+C60XW8me45rXWgPCK9boqhawOQNAGhOUcXIg9bZlobWWjR8ZWaXpidBLY4xdl5m2MGQJAxQUmE1K4c2yJ1sAigF8MpgZjkuAcKVIKMtTFAsDQqJ5mjA8bCgLq0bcb2QS2sN3VFpDdCY8V2zyRhx3Taz3R/PETIJcGo9e8fSB4VNrDqC0jtFAvGl/qucQpt1nTe/EsDDNx+5c58+K8LjSNBawze/+y7+5de/g0+uay+Q86+2Nh92qwCoMS1nF5CUUA/XbLoMB1oLvRAYhwmre94qRBTT+T20ZYEtC8FHnkibUs5XtLjNfH6iUsLF4HXGclmR9ufIuz0kJXx8XfF/+x/+Cb77w/fwf/gv/h5+8ie+xGrh/4+7P3uyJUnS/LCfmpm7nxMRd809K/dau6un954hZjACGRBDAiTBB4ICET7gD+QDScELhYBAZGaAwQxmMOgGenqv6urq6syqXG/eJSLOcXczUz6omrufuJHZ2SQg7EsXuTdOnDiLL+Zm+ql++n2e/N2ertsIbwu+QJZqwMnFa8kKPwdNtOJ2gKG3/n7i8dXoUiJItfHYTKTNwWatAD2/q20dXEHy7UypBTpv/nbLsa87esuTPg/LenPcCiyWCku7r9q91oaofOXx3Lb9jXwyQkxIN9jEKEe0zjbhryAYgjHRKQWdJ8p8JI8jeToyjyPzNHrQ55nkEJ2nq94gV1eZWotw6YIpW8UUqNnVmVxBKHS9mdLVQlBz8c3FKAg1W8Yw9glJyekEdtghRmsmQRB36Z3mQpkL0VVutCp5vEKmIxLiklnU2i51MIrUkFCEecqmfFWNOoVEShWOcs4TEqW/5iIOvPed7/HGu9/l53/yb+gi9Kmjqvdj1MrszZdmymeyitfXBwNU3cBl7Xm4f5lUZhgf22FURSrEULBsuRC7niBufOhyjVSlSDbqkogtwBWrFIQmGxsWfxIWTwKWXoemsiPBG7K7jlKVPFaaHUgM7jUhkVILRSej0IVmKoVVCKopKYVgVCGpQIE6j4Qk7M8GoHdVr22mwoKa0LIGVjJZblCbRCA0I7bo1CVvyEzR3rOEZopPurpJGWy+xzOMEc/SqAUOPtrtGMt6/UMIhM7la8WDIzfvKh5oqDplShsANKBdi6soYapdJrXp+6gvcHQALDQelgvFmirEm9sFid7w6xQXXxmWf6qeNXfqROqak7iJAozHkfE4k7rEsB/oz/AeGLUFMRdXD/OemdqktlvgFpfY1uJok8Jua5W0Gdf7NNqEvWTGZB07qQsOgu0gZQG41attls2W5MkU8fkzu8t5K6Sp96+4dHKt1dlcXpFswVLz47HfmGvgi6eZP/rwyE+/mFBVOqnMBZ4eZ2IaOReh1MJYlMNUuZzKcvqfPXvKn/7V57z6gbK//4CHw0TIzxDNdnKa94QYgBaviDaQ3NTpgiZb1MV7ayalTNkqGHk2ypQIIib+YbRRV/CLZkpqFJb2d/V5wd3CtTN8IS7yIcGSK8EoR1a9jEb1yMaFEal0qbdESxhMPTEIu/05ZFOKatdZtRpQUcWifstSRm+MLblYgiUEryAMLYoldgYyykKFiz4XOugWCHEHMRpdTpWUErFPBjI6+w5RJc+Z4sa0hmutIoevwykG0tneqtvehyJeXQmxvfbFnUfMHFOWe3Uxnlx5J7b5PN2qHKfbGoBufS/WIMoeW1+GB3hKi15ZA0xYJ6/1O05CVm0B8fqq5bGsNC37QOG5XV33+LajeO517bOnOfPnH37Gp8+Oy/7Y600VtJ0ybbHOPFGO1zZ+d2fkMRgAaUkeERfBsESdrVXZqNnJaIa1rPeAkJx2Gq1ynScHNNudVbQU8vHAlC7pz+6Qzu/yydNr/st/9q957eUHvPn6a+zP9ks15OS4ZSGabU6s3a82H/t13lyXkz6MBjS2dKnbT/8JsGheEwtdyq9h8KSYYrFOAzo3r9QyXE/AxQowZFPFWN94C1jdjITb9r2dju3gk+Uc+ZlsP33H2s91xLXzu4KL7X3y123fGGTUMsJRCTrZ/FStGbVxmYNPaPjvdZop09Gk9LQYXzkFAnv6swvSbiAfDkid7GYu1Zo3+86DMTszi4t2SESxqkWMPYMrERESqesQMLfuXElOuyhFUKmWKSYueu61FMv0awGX+CsqlGmyZvToA8cD5eABgpaZksFoQZU8jlAKcRhsNe6tEdMka22BVIFxGpnmYhUFgdfe+Ba/8w//Mf/1lx9zePRzktN6WjzVhZZVr94IrFw8fIU333yL1157ld0uwgAl36dMmaAzIoUYjHYVUGrcUYYLCgI1G+iQ6k2agO8LwYBbUTtsG5jVk83uMaKgMaEaqMUCmpB6vzaYtG2tRiWKYhOLRquuuAeJKciYU7x6A27fdaARkWq9oRqWIF49iy0to1vrsi7apGEGkKJh5V4ui0sLCECL3UxN8aZosaxyiC6dm9cFIQjBezGq2rlsWR9v70WoJnqgdsO3ak+eTXEjRrFsuVNHqmdUZtew7zq7yEtJHrvmRqXIFAfWeLN4iEJwt9+tpO4Lu5Vi4L6tF+oZ5QbsrKyxPqeNvtZ42GtA0FTrQohIsibCWos1uWohBAOwFiNaBrgAWiywre37FCzb3pyEBZZmdI8kBASbD3QBtMalaDz5VqFplTHFpYiljSf14FeIXbAbC+u1WddMH+tZvYctI8iJiVXjFuPnw3yK1sU8xGDO9FVRer64vuBHTx/x8XGiijUGJzGZ1akUnlyag+80Z45zpip0noSoKhwOR3KNPJuUj44dw4P7nF1lGJ94Y7MQki9yLt9MyyT6vQCKRJNcRZVcZyRUU8tCScmkK6fZAEPso4GOis35XW/9FrWBjOhZSKtmSqsYtn0oRvKQtEe6C0Qn6mjeF3bOnNLm/iVaC7Vccayu7pQzAe8LESwoAyQ5fGsBRDAaoxBJVIpnc1PfW1XFF3PViuQZCTMmeWtN+rVkB602R3axJ3XFmra958aqmh6IBCVJRKIFcy07LWb4RPBm8diHE/wefH93u0TtDZy/qFtdKhlhDc4wyul2E/CmW/t9W81orxDWIHUtlrc5Zg3APMN1I0H8dZWM57c11ltJXY0utQANGnKR5967+W/5um3z+k3qznGa+PjRM47Z5wexrLpV54zF0cBT6Aoxd2StTJfPiN1AGvbez4pJ14foyRKfJ33NrdmrIcH6kJpsdZC1iiHiY31jArkcjtqcPF3b98Z+IB+ueTRd8Yd//CP+vX/w99jtdiBOed7whqSJaNw4/1+5TDaASKNLmR/WX3/1Grioy/ldgMYCOm3tCmHt+2gAY73yC4Rd/m0BB228LtUvXUDHrZSp7WG1DNjJcze320DsFkTY78u1kfUtcvP133D75iAjj2iZqFOA6K6jEi1G0NmoADE6v956ASSIZdJjhC4Rhh1FE/sHr9Ff3OH60afo4THRNfDNBbJQptkyeUBzk0zJFFNqsV6DEIXQdYTQmaSjGBe1FAMRzaxNYiRFV1+xaJOqlXmaLVsUErHvIQTSEKAfCLgJYOtrwMyiSnbKkHPBRbCgula0mvGcxMQkMFeh1J65Bh6PhXGy/UpR2A3n/Nq/8w+5fPYlv/9P/3PGJ5+TglUtokCOySoa2RoFU9zxK7/593n/29/mpYc7Lu6BJKH2d8jnd6gFNFdTOfIxUFMk9kYTMtykhPlAPDwhzk8QsoGIaJllo0zNzGO24N3pZCYB7NK1BMssimVe8ew83rA77HqInWcmsydATI8+SjAw4pzqGJSYEkGsimKThwURzdQKAYmN56jL/Ks4V9uDifX5utyFwbM1GqpnDHG5WA/qm1u5qjf3ifUdBaCYsoyGQFBxWojfxhvetICLCVgVLhDM6yKYzO+cK6WKUVuKNdPVmGzMwNLUnUv1rJm66IGdg6pm4tgFNZfqsGZyXtjNs8/E1mvRZtd2HT1b5Fz8xTeB4M3aAHqqTCiAmvdIHg3sdSmx2w/mKFtN2ccWdbGEReqMnhpk6StoZW37/rpWK2JAMHoRbbH1+eo5ICLRADJ23YNUD278PdECbwPS+GtdFrzCEhX6BNPMFxsVECBIMnoXWF+Btn213jM8sysRZvaM3V1GuWI4O+fhK69xfuce5emnJIHB/RLmXClqnj2dL5RBAlNR7r36Nu9/95d46ZVXIXZc18jQ3YXLL0xdzas1MUQH5dVd2P2YGjis1iMhLlNuyQrvO2n35ziS50I/9EY1rE2Vq0NCQkPxz4veJ4YbArryW1PFaQauFHdnd7lNF1ZIXUQlWhN5LUhVM87EXNQtWxuIqfP2ENd8k5YUsD6RmIwSJSlACJafqkplPfbgc1/LADc/FUSoIS7zAFQkGbhrfY21zkbDqi1bb8ITMQYk9OABKupN4y1AKeryvmJ9SiniPF4LyOOL25MBLQxXFoEF+JvGPut7dAswTvsy7Ms8sdD+7tWMNQTcvnbzjAef7cMsbGxz+Bp4Qvtee+1ybJsD8su6gor2+CTIXl+sKMdx4tGz6+WTTEDDjodqe9+SKrbOR6NNXj1jfPaYOOzodmeUeTKp7kXK205WaOGjslDfLXO/+ousinpqvVClGQ3dvAZKnUaOT76w/g5VpgJ/+uOf8eFHP+fhwwdmaqlKM2teeqzXk705/pNLYlUXD/xbsk7bczSWxI19On2wgIP1vLMWGtp8LQ00bGlG7d5lDdrbv+WT10d2eds80QJ+Xb5Mbx5gO4X8f7at/UgOa5bxvZzOE3DcPM2+EvHc2L4xyCiz9V+QgvE5RY0aFcSUYmJiURYJkZigZlk8JVIE+kjFqxEhMuzOqJqtuROWSbQOxYzUglGaVKy5N2CLTs5WLekc9bYmtlALUQtlys5j9QWsBQ8eSIaYiJ1lM1MIpK5DgyAl+mQNoRRKzkuG2nwU1gkjpI64O4c0UENvQVHsyLFj0o6aBmroOBwK9bpw3meeXk22sHcdd+68zj/8x/97yuEZv/9P/nOCn4cY2mA0Cs2UK6+9/0v8nd/8e9x/8ICzs2TmYz6o+8Emj6yRUq0nIggMwfq5ElB7U/DP5Zxjtyd8GennTxHNdo1Q5uOI5hFcu71N3jEG+mEwEOLDzbLC2STwAssiVqssZXzUlFhqLZ499Iyz0+zxRR11RSisepGrOSanFlyp90I4JUGXO7r9aA2vugR8S9zXmnbbJF+dh7mRITbef6BWU10J4J4VDo9a0IsFuibh64sCwas1pnwWBZIrDhVtx4c1tgX7vCCr2kRVLBiQAk1dB7UeekzZSp17H73/42TxewE3xcCwYVwL8BttcWn89kC7ZZ3bRG0xo24C8IQ1V/t49AsfgtFRontOKOrSig6cO6NPrlOzLj1IzdnW5nQL1A0HtPvSs1Ob0j2hZTzVvsKvu9Y2EFle2wKZUosFqmAmoGENPsXBT4gdQXqWgW9sPwffNskH7w2hBVwOonF6zHFWvnxyyTRPhBB48613+OFv/QN+78knyPHKvI3E6KhVE1rNzE8dvaV+x6/85t/l29/5Dm+//Qq7s8R+ANEL5ukNNE/UPDLniUh10YpIjTskDiTJpFAIOlOzNVxrkyAV8y0K7gBca2VfIXfZrl2M3kiu5LmYa/dzS56dS4rfpa2XqlWgY6bmS/ser0DVpFbZTtFHpEsIeTWrlZQDcTFmlWKAkSBIVaRYRb9OmbkWQrTm9jq7/xD4HB78evnc5QpmIQTvFbRjBO8VUSEXNXnmWpnnJtOevAfO5geJToESgRqcuSVWrZu9oTYKSCDWNu6s10l1DWpeyG0J3Nbqniz3J0uwt1I/7J94SrYdeZvjm9HuTYWppaKxvHd9HQ42TBluDfpWgNFouD4HbP2AlmSRJTBbVnybtLD9Oj3sJbftEfHSTH6zmVdB1RKleVERa2qGvp5tA96FwuzVWRFKnpmuLtnduefn2MECbe7ze0GDG/QqmjdrcHSamotx5Gm0Hg9/zhts2dL2VJU8HVFVhv0ZXdfx+aPH/Mmf/YTvffcD9vszp1W7RPkJtef0TG0uw1KtqLVaL4n//pwhH5vxws3P9rGzua7tXescb/tkpsKenG3jsFXdfNyeoI11YK+fw3YMNFqfj4FNNW4LOAwgrAe+HRWbM/JclWcBuMvxrPfFSkMMiFiVOYSw9EV9k+2bm/FF59hHcY+pRmMIEHroLwgpUI6KVneepqm1VF/8CqVm6uNH6PHgLqVCEFMpULFMdAoJOju4Ktb029RkRCAWqyjE1BFiRytbgyI1g5jEqy1UYWkAtUnHaFN9sj4Ok9ltrrXtJsZ7MFwJpaFyxJRd4h3KcB/dn6G7RIwmw9ikWwkm75sEuvNEeqqMs/L02ZHD1SU5V+Lxint39nzwg1/ix//Df02+fkLUGbAFH5emLBTe/c53eeutNxivn/EXP37Cxb27vPz6PXad7VMQAxRN5VOwWCQC3pJKh/U6znvhWl6mHgaG+XN0NinHWowv2fT1Ldazptec3aU4bmC7VqsUIBh/PVC0kifjkVc1M7uqBS2zZQWjR0lqPQ4qZfkeO88eLCFoaR7A2RqBBSrB6Sreu6MueRr85lfbbzPNs2wgLcuLuQoXNYWVigEiy9iqqQMxG5hti7GoLepe8bDM4BrIIpZVjQFkiNbj0igzInTRy7Da1NbE+lIWc0pfHAPUmt3MT5aAthT1M1C8R4NvfGP/bd2MXqlrsNxFll82rRlNYtCodo364Rlq6tpYWONSng5aicmz/8FJEJ5Ji8HLzsH6kyy75muc4okEl7FtC4OCZpu4i/dAGHWzUbzEK3kOTEQQbyBXVVdPsYMKwfoDWga55EIeZwQh7hy8Vl983K9v6Sto91s1DSlUvXE3sBj+EUDtczQNTGHgehYuS2ByR/ld33F+/xV+/d/59/j0Zz/iF3/0r0lBzB3cKzq5KrkESrUQ6O3v/wa/8+/+r3n9jde5dzfR90ISqER4+VWaYWDOhTp7H1kSaoykFMiqjEUJuZDmA/H6Y5iuqFW9L8u197tEEEsMmS+MLcIiJhBSS6bONv6tuixI6tCAV66LL/Z2T0nz0QkOVPHFNDSw6WuGuM6OV5RowWWTJhZb65YSsS++VoUVr5wopc6UOaOTNdGqGlCr3lJjCS67d20oBKf4JatE10KY8YAt4GLY5Mnof13fuOxWTYldInSJXCBPDmq0mJniZLLw0nlQo4HYW2Wv73vridEXdx7ZUgeXvowlgFsDxRYkNjqRbadA4+R5ttQlOPESaEmHteSxPA9spFLXNWIBGbBQyhvQXEAHdcn8r5Sp08/hxnPbqsdzEaN/p+om8db2vwWjYveceVJaX5KEwNBFUgc5wAyMzx5Rxmtjk3SmGhW7jn5/x+Mt8XPifZwunqOY4AKqC/irpTEnOjw0hioOsJcdt6rePCJJ2PUddS786Z/9hCf/4ClDP9hn+r27SpaffMJz2wIwFqDRwEWb/Gl5q2UstJhBGsD08dEM8pbrug3yN2MyNOC2PJZ1v/27tvjl67eGKLdAYv2dNgx16U5hK5N8gj/1xoMTgLG+VFgBtUiwRKjHN0VX4YVvsn1jkJF2O1sovYFWp7o0XhIioXdePWI8+GrZxC6ac251B+XoQbE5SYNIdLBgfQ7q5gqKLSbWKBcIfbAoOthiLOIlsFJQdSWSaNlw6SKU1pCLlcXBjLKiLcgBC/a0mhJTKdlL0sZZbAtgaNkiEbRGDuEl5rMH1D4yDEIXLIDPLuPYtpZg0Aj9AFeHyu58j1C5fvIF/+Zf/1cEKTx4+DJvvP9dfv5nvw/Fs+je01Ap1HHiyRcf89GHf8Gf/MHvcvX4Ex6+8R6//Jt/n7fffYP79zqCX8hNuLYUZQubmAXTv593kUnuIQelyx8jmG8I0SeSpuii1vtQKkyHo6lz9d2iGqV4PKwVNBPcMK4Ud/wsVjXQ2fseqjXlGv5Qdud7+l3vQRoWJIp6c+fsKiwGBKoHHTWaoc/TyyNVK3fOdwzJgj5VM3OsCqnrbYzkebmJjJHgwUMxKo5qRVyS186bOy8j1BoW40ctFuDWZhaZGhiz2dsU0sQzNJaJsH1qQIPNpCg+WdqxlqqM40x20z0JwdSwaqNROajXeusk+iJtpVTP4jaAJd70g//0BcCD6OaLIi5cKmLNhjmbbKvJZru3AcGzPJ4lE6zaEU16VWr1KgQsDdVOubPxatQfaRK72Dhpzdx5zghQZKUXGAg1/yBUid2MdNHli33/mgSajxeplRSF0Eeb/zoTZ9BmkLNkj6CB8tboXWpAQwLZWd9V6CwpAcx01BjJ3hc0z3C8gvN7M90XT4ia2Q0D3/3+D3jyj/4j/suPfky+emL3nLSmRUsmzRXOXv4W/+B/8x/zne99nzt39zbHCk1JmD4JGYEU0KFDCnTBkisJ+6kKpYORxJR7RAZS/jn1+IhSjhZs73qj/zTPiGo9LK3vREKAbPeSOK4SEZcLdspVkOUeFfWqkPfeLXM4uH+NeGXLqR2eN1SvpEUPEJokb5mzUaqgrea+PohXygFVU6BLvjZh4hlJxJrPfdhZdrDFfQqaLbAq2daobImw2PekoWPPjvEAWmaXbrW1sRQlzNWq0JPTe7UsoLlLlvyoZSbP1sNSkqApWaDUYtwXcFtAxRZgLJntFvxsorgWKN4EF0vs1jLH7Wk5CTrVyfDin9nGUqNOCW2tXDfFEyXVE5QC1dd24BRoLEm2DZff0K7txwYotASGsGBqz26v39sCyBiEXR/XvnW16kPsBoIkSpzIUyVSOO8DeyJfTMqz1JHOLsjHK5JUdkPH1fUzM889u6DbXazATVrg24JqiwkN9DcAZccYYiIOg/XU+LyuGpd+O/FAPmilziMZA2Y/+9lHfPSLj3nw4L7T5o1BsGTZ1wM/Of/LY5+Lt/+MKoX3rd0YX7Bc66ag2cbPCi6WDz957wmgeA4Mt56/zbdsQPFze7EBrnaOdXlnk7Vt+2Dx5k3QKadnou379jVNBfDGOVv2UHzs+zHo5vE3QEfA30RdSk3xRksLAjybFAMSFeo1dRRDxtHKcubUaw3GdQm2vGzkPD2hadvjXN7qplZAnYEKpZhyUbYsUXVTQG03onqA3yJpVaT696fOlECqBYoBQ2RVBXJ1tY6ZaZoXAyi7wT34jBai5yxcyj2ehgd0KbHvV0pSqxb43rI9/Vmg74V5vKJOV9y/6BifXPPki4948uhT5ve+zzs/+Ds8+exjnn3+0RJXFIzaE4Lw+NFjLp9dg1a6JEjo+Pjjz9idXXD3zgM3lGMRS9sOknYq23Cr/iB0wtV0wVD3JL10yWDLnEZveFSx6zHnTB0nRCpBDSTMU7UG0iEyDErESvVa1CaI2RQtVF1lprOmsZIr82TmH/t0h7jbo7OBKdScsw1AFioZcS+BQPJrLUyz8vjpEa2ZoevonPpSaqU4t1mpC5+aYkpCrTld1Ho1LFkpm8DTem3KNiMVBAnJglyneUi0XhYJ0Y3hLIsqMXi/he1n8e+tLasj5iDcJOpVhKLK8XpmnLI7CjstTK3pe0lT+IRVNo1zL+KmjkxPJqpGl1NdMlsiYgBjrs4GqC5par1X0zRRqi3aXQep78xoL0bPnvk1TdYwbOCjgCc7cIMoCbaQh5CsYb8ZRzXFmhAIqqbsVm0uujkrhygGgrNl7sypWkxIwSlureCBYsZWtMbxVlEpJkKgiswBqc091+bJWipT6Zj6B+ThDBk6iH53yBr80/AM0JulBkqg63dMx0u++PTnRCYevvwSD177Fo/+6trpgcWOURJZA3nKvPLGt/ju975LzUf+8sc/Jlfl7W+/w/0H5wxebA7AILADJK3zjAuzLrFRD+QkXF3smeobSCnU688pNVNKoNZE1Oj0hpYU8P4BV4RCKyECrkKlwXsQ1JIBGtXAnn+vm9XY/S54ydFAfGgqZr7oW/+dKcNJSoTqVBgs41nnslzzEIzuRDCJ8BZkhpSsAU7UvKMq5oORgldXfXx54Klt/Pe6ZJet18wTTSky9D3dbiC7J5N9dvu8bD00ve2/qadZUsTyROpVoOqVeXNmjuJqPy/otoCJNo9sQEZDcM9RaTZAo/3eArmV7m6DdQsclo9ovQ+baoY6yGngdJ0XNskSVdYV2CcCv0ZLEA7LOrm8T1ofoNNmtvu1fFPLZq8BYgMZqkrfJR7eOSPyhNlRrmsw+Bw10Ivy4M7Aecx88Wjmih3dvR45HqnDwJuvv8R7773Jhz/7BV8+uTJ6etpxHEdTwMTBk7AkYy3vVgz4ltYvZhRzozPOVM1+GlpVw9bWCkg3oBTyPNPFwJPHT/n008+ZvztbXOIAowX0twX824B5ARXOvll6MbagbhkX6xgKmzG1gIMGMNuXbB7YccpzlbbnPquN4Q3gkNOBuTzbQOTye7vsbSjrSgdvYHQBmqc45fQcbUHxCXBa36BwcvztnmpVrG9YyPgb9GSUsrriOpoPEjzzXkEy2xPd+OomSRm8JO2LJitKUk+ptMYcGl9NdAEf6vzU5u9Qp5mWZVdXHSqw3PRglJcYhVAmmolUnYvta7IGyRQSnU/MefJmZSdnK3XJ3BeJXOZzri7uo8n2aR9hLys9CdaKQQMZ7W/nCV555Zwvv3jCzz7+kPF4xWvvfJ+cM5/9/Ke8/s732d17lS8+/iuCZ2dzMWWZWisX917hrXe/y/HZJzz+dOaHv/n3uPfqQ7rUrT4RPigayKmbi9smIcdf1JYsHRKH7iHn82O66BLFurph22JYSEGQHpsUPTujJRtFgmoKPsZnIoaARnOmzsWbKhU0ChoiKUbCznwhus6kg70Y4FmFJi2qplhBpet2Bhb9pksd3Lt3Zk34IszZpIst49joWpUOiDGiwTPbODUqOMVBTe4YESK2T8ti4UGJZViMK59ScOWouslMNPnZ4ouFZzNCsDFXlRAqQcxUMoToi4Dv+2xuwl1KdLt+aQqXlm2srHLCouQX3PE7DQNm0IllCFumTxWKSQgbiPPj94yNslaKYh8YUlwWtRBWgIFnpo2GIJ5caCIBNp5afNEoMNZDYXPV2h0Jthrba5Ikgip1WYMayd5eE2JAOlwaO1kFpQUqqg7QvQfIezBMptZVghr4QaBGDzqCYYwqTGXH4/iQeThnfy70wRmluJfN6V4vc0EuyjgJL7/ykMefHfiX//yfcvXkU97+4Hu898u/wfWjT6jTtWX/gzVDuyMkTx99xi9+8RGPHn3Ol5/8DFXhyZNf450Pvs/b7zwkDJEoK6DQzX5sF7ZlThRICfT+GbO8jUiF6XFz4XS1N6cnVktihBiN9hMDOtu5kC56NSMuQMLOcTG553ZtVRZVJvXen4CDt+jXrlbr//OAybKDrUcDa97H/T0kEpJXzbvkRoKyzBmRiNSO1jdBFbfsEKL4nJbbYuWdZL4mtr428cpVbTSSYP4qSSLBDXGV4GaSbb3Dm8FNAtnAmS7BwBLsejDVlANf1O2kasHt4GILMJ6ndcjzv+r6eFWjsidWfw1ZAznxekf7W0PTrXOxrZMNOIgD0wqEavc2WDzlzIEtHAGP/fyJk36Mr9kafaeBjLdfvcf+z3/BPHpSWDHHewmcDQOv3H/IxZD4/IvPeZx7ZHeX/aDceeUl7l0M3L+44OGDO4RuzyuHkVqU4/HIl59/Tq2QqzBlJWdlqqslqJntTeR5NN+MEEx5alGfqxaHxA6ViOaZWmcDw+d3CfOIjpfmW4Uyz7P7v6Rl7X2OXtb+P80B0ahRp2Cj3gi0l8G1rL8L2AhhAwJujBvZjqZNMH4boNgC3xug5eu2U2DJAozBY94GEpYxeLM2d3qIy3Evx6/rafN5qT29VjDWe47/pehSS0BVnC+vINEunuYZqY0vb4dYqk2AwRfxxhbzRLMhu86rHMW5pJ4lFL9JmvEVUZxjayeBrnHmWYyNui4uiB+xYNL33BNICrE1gKpnJIUwJHadKf7keTJ6DRXULKfqXDnInsfxJdIw0PUWuLT5pc0D20xCC/CbjkIQuHcRef/br/NRn5jHkYs7D7l79w4//v1/xXj9lP2duxzGTJkP9MnkVUstyO6cD371N3jnvff4qx89QV96hffeeZkHd3eIf0+71A1gxM2F3eRQUN+ncYSugyHBs7Rj5JyuXvqwNIO8mi0409Ys5dQyy+xh2fiiHK5nmzCHROrNsTyWjtQl5jxxPB5N4s4nyCDRzKqCSdrN4wGd1aSPtTBOE9dXowkNBKO3XFwIKbqSikBKkbsXZ+ScyVPmeD1akhInPjTAXyvFohHWeFaI4lWVeWaeIXbR6VVmCgiwgghr/g6xEkr1TPgmeyBWdSmzZ1nokZDouh7poVxfo9kHgXSoJFQNJEuIxFjZ7QdiMtPEUsviqh6DudG38z7XwmGav+kt+7dys8qgLTTq5ntLgqa0TJ71RYVoSk0nZeaqRs+MnWW1N4kLl1kzD5clgWH9EtaT5VkYHxO+ei+gT6uN0waCrEwcabS4ljUzdbW0RAH2nP0sxQwrK7MfhxoAdYGDEDuiKCSh5sx0PUJRUm+GfOKBIog3VgpzTTyWB1z151ycCWcbgNHuc6vx+m5jp3XGYunrJ1+anPj4GJHC40efEWLg9bfe47P3vs/P//T3VpU0CrnYvH755Wc8+eIRD15+gNbM2b1XmWrg57/4lPsPL7gz7Olh6Udv4KL1g91cgtQxmwSY9jumw6ucMyOSzXMmm/N5bSaKuaKJpRcv10pQMUEPMY+JmCxAq3l2756wNOqrClLEwEirCiGWPPCmby2ltdcYCM2bfhBtY1ZInWWcDfyaUSzBG62zUX9DSq4yZe28LI2wNj4QtZ4QVaRiWV0fW6UWJHvAoKbQWD0jpIiz/wwkBNQNTbuVMtHGsyv9NWd4al28eywY9iy5vrgV0ZYpRlgDnxvZ1pOADpas8Oapk018hdT2AtX1OWm41SuWNOCy4cfbhyxBXgve2twtyKrKoywsBcDmQlHvK1xBQptTTpWmbgbRLWBk/a2B3hB49/WHvHH/jGe/eGq9OGJRwFmovHn/grOzMz7/8jGfPJs5+r3y0oM7/M5v/BL3L3q++PQLvvz8U3Q80Ffrsaw6cmdnYLsUi/XmXHn8eOQyT0ZZ9nUyhwg7S5w2OVutxSq1zveSGGx4uuBEGQ+UPNE5yKvVaNCl2L9GlzqpMGzO+m0gA1Y/DN2CjXbO23jZjB3hRlViGUBr4L8ZQCzvkhXY3gQb63jk9DvXq3sbnNm8B7ZUKdnEImv1YlWIWt65qVYsYELbeNEFGK+v02VnWtWwgah2XP+zgwzLsCZIoHPxHfCjqGpUgoBNoiH5IhBohkUBq1aom2DRFoO43t415+UsiFRbXGJAvLFYAI2mId6GVK2W4YxdPM3YVON1G4VgPUFhWVycixZN23nXdZSyN439arrStcJxLlzO98j9Xc46YdfDNDmlP6wLOnjPg/++XfCTX5TXH/Q8vPMmV8fKsycHHty9YL56wi9+9iPO7z+kP7vDk8+eoMUl2oD791/i+7/0q9x/6YKf/Vlh2O242AV263i3S8BpFWX7tzZw2wBrMq4xWGP9pV6wYyJKsZuvzM5vNilXG68bRQZMUaLvzV1WFZt8o/XMBJeQqiKkXDcVpoaSg1OFKnWafDG2UEXE6AhzzXQpkPoOIpRqPR8UNYGAWmHOVKcQxBRN9haBEEynPkZKtnFl/UNq1zXYZBok0EenT2zOlFVUPBAGl5a1TLNUV4IShzQq5CkzThNpOKcb7tgaVa0BzjKzBnJFKiLZMrgIVDtXfc+SkcyzBRcxOEh33xFbXAJd9+IGBwALb6i2xuxgRpHVsnuWURejc4TgP61GqOq0tKAGKHKbHLPJlNbq9LaIhMQy3gJISiefZYjTg7haUcnk+Ugei43hZKpzNqRk4TqFRa7UAMDivl1WMJNzZpqtlwnMVbfMmRgiXd+RRguOc86M17O5O4e9UbuouC05IBSEp9zhsrsgRKGXVTVuu63vaAGRjeaLHdy7f8af/clHTIeJN9/7JabjyLMvPmJ65Vuc3XvZqHqa6WKk1Mw82z39ymvv8u63v0+SzPTsM77/a7/Fe9/9LuOUuXuR6DffvZ1f2u83t4rPOwJdEsb9Hao+INTHSyDVZJqbSWFTWJGgJOelVq2U0fqZTMo1ODuuZYf9NN6gQqgnGUx607JE6tx4xaicmosZkroCTkgB0c4UVRYvFJsTqNavkUteKwmps/FWi/UYtU1sfEjzGfBAsPpVrqXavDvbGI/RDkQDEIwq6tJ3UNt9klBZ6ZilGJhNnVGERSHPprYI4hLr0StHm317wbaTzHAL7m4CDI/ItkBj88zyaNHg2b7eg87te1oBYW0MXwPKRq1c3aDXsbcGsTjz0UGnA5AWHy1j1TPJ635a0sW+5zTz7I82v6vv5wpWHtw95/1X7/PTT55yLAUJgX2CN+/vOBsSnz+54uNHT7m6viLPIyEEDuPExx/9gvEs8OnHn/L5p5/RJeHOnTOm45Hj9YG+N6DdPM2maebwpHCYrpnm7PGR3V9lHondsPSjiItMUBvDgIX6prVQxytSDAz7HYIwzpknTy+Zxokudcv5b9L0sD0X29PTroc+/28LMDY0owUCbEDr4gF3A1xsg+wT6pPHnCcg95aq2s2x+ZXw4mYwv+DldaSs6mQ8DzDazLy55Vt6bPX60BVw3KjwiFiypoH6Ldj4Jts3BxnS0bKC4k2yy43ZStISFh35RYlK8KzlyksPDdBpk3AzY7yABaTBeyNCcplBz2yiELpAUA8gBCsZC5ZZ96yCcbnb9NEy2/6ikDyQbXbyXpYWCzxjaMjQVFcuR+EyJ4YY2HXQB+9ryEq3qC2tmbvC2qOhrInaDlsfdh1cpMBL+zMe3nmb6erXefb4My7SBd/64Accn34GZbIsdgjcv/+QV994g5hgOl5z5/5LJAdcN0HEzV6+9nxtj9WajBOQnLceY2Ae7jLlkYFr66+hrPJzwrIo1lJduswMqOiF1Jn6U+q812Cp45mqFGUGLdSs3qMAsd+xOzsz6kyt1qFaM7kWOj+ILvnnefBdS3VpXdDa1GbcFdl9VlQS4rQkCUaNIFRTRhNTZDHhKfvM6LzlRsVrfiBtzJZamOfCPM9QqnmOFAOhsesIKZE1MpbIrAMSejQan7SWGdVMilCIyz1Qa7YemrZYtb4l7NwNuw7F+4n8eI1TbVS0s7Phm96yfys3Gx029sQzeKguPgOhKboEA4sElwEFFopJcXBp9Xaf0Kuft0QYesscuuqQ0QR0KfmqnVQ315zRMqM1U8aJPE6W2NBuzfr4nGIVDPfJiBtqXanLKxEWGpe4FHJLpljmstr3maQYKeHPqyuz4EG10QGeTh1fyp64s7WwViieeb+5PDWRh60gcofw6is70O/w7OmR+w9eY4iBP/u9S+p8ZHd+Qa5wvL4y+iV2n3Zn9/jB7/y7vPP+B3z80z/i/sNXef+9N3ntTqBKv1RL22J0M8nx3BKkMKlVUeMAfbJjvNJz9mkkxNnWguILmBbL/qubprquf0UoJVDmSlior5tmxNKAp/1n65LvkXiv1FypR+/PqZY0ITpFrWarzPa99/aEhd7UgKmKJ6jUqFY1F+ZSQBK74cypcGIgwxMOZJNER63/xyhzAanzkrUWqWi0Y4nRU1YBCC4M4JSrWtTZADY3q9OrTLp2NsAooGqVvNgHB8cmCS+bzOaLuG2zqAvAYA3alr+sQcryvuc+a/l/E5bekhleYgtPgpgSnniFSpbAb3tWW+C2UJwcfFgeQRfgsA5Y1u/1TPOaIdxmrG8BF/6+myDjbNfzK99+gx9/9Bk/+uQpSSKvnHV0sfLx51/w2ZMDTx9/YVYCLvd/PGb++M9/Tq8TgULf7enuXBDvXHB2PnPnFei6hKpRomrJXF8eePrFE/qgFIGiVpmcyyX5eCCkjtB3ri6Fx4ItgVeNGq3GRAgx8uqrL3P/wR0Oh4mrp8/4+S8+5fHjJ+x2A6pr7+xzVKL1JC7PKQ3cbUDGjVPexoc04Cprz5aJd4ST1932sw0C2TxextjXgot1n0+wwGYc3vbydf/XA3meInUCt5ZzwObfdpxugdcy9G5U7xYA/z93JSMOu2VxNwVH5wt7RhZcFrKp60SnQyFeHnMeeykb10e7Wc1RGugbzw5i7FyK0uhZJVuGJ3WmFmMLgKvFuGSp3fDVeMXRM6Va1zKhFqNlK1CKZZZVyXm29/gN2kBQLsKTaeAwK0OZ6Ej0CWpWpkNhTAlJz/dlrBd1VXzaLsBBICVhd7fnu7/0Az78yx9z9eya3/gH/wFPP/mQJ5/8BUGUFCLn5xfcu3fGdJ05Hq957fydRU1m+z1svqeFPI0nHYDZY6GrgwfkKk5HFkoceDLfoT57wtkOujOjooimBexYRr4Q5qYiZcaJYAaJZTY1KI2FFCORSieKJqH1Jpj5nRC6Hf2dl+h3A8wjOh3QeUKzUUxSMtBaqsu2anMGt+81bW7PdIoy5Ymrw4iMFaSj7wcGhBi8GuYymaWaeIBVzCyoq65DjwhZPOATbzrOyjRlSs30fWfO8sVoecSOqcAxw2EyMNKVA4Jw56yj77xnKfWEqVDmzOQTchiiZ0uF2CZdwYwDvXG5zIUyFfcJqMvEF8I3u7H/tm7lMBrIb03tCBZMhbUHo5Q1SKwNELgMtbp0cRALmFysgGqKOzYfNfDipm+1ZXwKmk2xquaZMh2Z54mcMwEhxkg3dK4aFUy+uY5Y5SqYbKja+wGbJLZZMXwqwhqRY/JG/uATtLT5zea41DJREj3ZsqrJSFXGAl+MO/K+46yHeQLN1tfQkgctueBncamqLvOQwN0UOH/znOtXznjy+B539oHLRx/y5aMvuLhzh935OVfPHhno8fF158Er/ODXfpuXXnuVn/3p7/LK69/i5Ys9vaxxD6z7ETe/t003z7X2leLVZRcS4yA7rvSC+/LMX6yeDBJEbPzT6A1Arso0KSnadWp9XC3j2ECebr58kaX3MWX8bEtsmOm6ZfZTl1g8DLRgEtj+K95n6ICWWhbOfZ4L4zgSYs9w5r0QIfhrTF2v5Ik8jpRcSamj2+0IXQSXUQ/Rqnet58/Mbu3+aBLYSqMWW28ks81X6iWiZh47H6tVhx2YpD6tPDWRZb184bebQZzcHgDd1pNxgj90/eUkZJUbg51gPZ0aIFRCDTZ0qAS1x+Jzk7YMcAs2ZRuU3jiAzbZ6NkBj1UubJ+wFX3tCTjw/sAr/+2+9yv/27/6A8Z//PpdXV0Tgwy+e8eS6cjgcIZjhr6gH1Fo53yUe3nvI66+/zJ27RuW+unxGPjxlSCbBXEumSqUGYU4jQaALwWjCqowu76xYlU5mrzou0tyCqs/taq8V4N69u7z/nXcZ+o5Hj58yTTN/8pOf8d/97h/yKz848s5bb7Df71YqyQ0w2X5fntH1Uq7nSKH9pK2tviZ7zGCKe6vfxXPN2nLbzxvX9hveZg0crm+/kQhYxuE6aE9xqd762F+5AVmcAomvABmNYqaekFgrde0c6Dc+tm8MMvCyWEN06gDBMssuM+mykaqCED0JHVjMiWIwn4zZVDHEGzUlBqKXpGtZcofeJITrsHvTZrQKBzEialnsNYVflxO8NN+251HjXHv/hxbX1G/6w0HtM33QahWuxsSlXJBSpeR5SVh2CaYRjlOljyY32ioWAq6HdBoInKBqVuWV+/cveONb7/AXf/qHvPPt7/E7//j/xL/5f/1fuXr8MV3X8dIrb3Lv7hn5eKBMR/puIInc+pkte9n42In11EwK46FyvD4y7AZiwJuIC9IFjvMeHQWmJ+zqjth1pNRoBXbg5mBsJd2avRG/VnfNbQoTwd3fO1LATcFsYU9DNvGVLqHTZJKtZULnyTicEpFohlazKTvS7wb6YW+OzI7QrHzZQymUCpdXI1dXB/JcCLHjpZce2nqqheQZQ9QzfT6OWiYkoGjwwGOqHOaJaWq+Aj2xi4QOYh+Jw57U7Yn9nsNUGB9fkutEDJYt3O169rvkYmbFm0ltf3Mp5GkCLdDbFBgDJh0s5rMy5cI0zpZBUZiO1uUdXXUmBTf4e4E3rcWrU0ZdkmRJA7t5fGLValz5WZZKR6NXSQzGqe98PFSjuFjlze4K9e74uUyUabLr4DFbyeYMLmLzlQGWSHJDuND6ITYZJYmdKS8t2s1KnbMrltnYaQ3iLXssIsQu0Q09oQWvnm22c2CiBHj2sAWI1V2xUeHpMXCZE/fuCWe9cChKnRR2JuhrqZ3TgB/WeWD5u9hcsOuFe68kzoY3+fLTX+bwe/+Ks3uv89b7v8Th8WeWQAo2d77y+hu8++13mcaRw+GKt+7dJ6W4fC6cJlK+amsApKqxXLu49GRbAqPrucznXOhIx5GmuEOIaLBziKrLXmaTci0ZSWIJqEajddNKgglMtHXWXLBlMeuTtkimBGoVWnX6aC1WPalga8TcFlLry6pz9SlIF85p9TlxNwRiqNTxgBRHgdlofNUz4rFPEF1tJ6jPZQlvuADsvm80zSVpl+34q2ZUTb3KVJorQrIKhagnLPZrhcYVs+YxEzLEpIRYHF8EXuSZRNETU7INpLglw/w1QOP0zX/tFpx5oQQ06Mpu1LZP1i9glGEP+Kqrhy1Bqjx/0z5/gEvSczFiUz15myI0fdpVppY1CPTjHoaeH3zwJp998SX/4vd/xGeX8CxnVAPd/oyYOqc1TUQtfOetN/j2t99lGq8p8zXz1RMOz55yvL7mcPmMJ3mki9HESlKglJlnXz5iOlxhSVph7zLeU15l17U1XJsT6xouN2DlSeTzi3MQ4XAcraq666kh8C9/7w/485/8lP/kP/7HvPfe24uq5imFic35tZ+ynMfbf+LnbDHR88dboCGuErjd763i1Hb8fe11Xb5S28Gv0OIm0Dh9y9JvfNtLn/O62ICFRnNHcTPC9jeryN5aydien9v35msO8HT75upS45G1NGk3V20r8YKcZc2+5Mo8j6Yz7z4IhGS7XGc0ChI6LwULpgQSlgPHG+VwsKGlMk8TWoU4nNkCPbfXgaqXpOeJmishJNOfT9EDgeLaytWkFps8beMdmAyIUbC0Mk+VR1cwERh2PaqVnAuQSEnIMXB9yGTpkB0kkZN+jFbdaM+1DGMDHe1vuw5ef/t9PvyLP0HzgX/n3/8PmQ+X/E//5P9OEuWNt9/nwd07fPHoCUGEiztnt5apGshplz9tnrdksFLGEZ2PyJCoOVCnQkKhDwQd0LP7XD/6mDxfszvbU4edZwgtmyLSGtiy9xmYIZ+0YNn56jUEIgLiJj7JzkbImTgXm5XHAzUI1MLh6kguyvn9C4hCLgdyyfbdMVijpzfRVsQDArg6ZD7+/BlPnzyhC9B3gf0O+lghuxqFmGJFEEHU/AlS7AgpoijZG9XKbJJ5dTYfjJBMSUYCZJTxOBMVdv0Zu+GCoCNDf2QXZqIkQkikfiB1yahS2YIPRIhB6IeEhB1KJTk1o6JoMKgzl8KcK4fDzDxlui56MNEyPnYhX2DlSQAzXQsBkqkwEVv2eKVEgWWWGk1F4srBVo+qFYWSrRLVQINLwqoHpfNx5PjsyoUH6mJ4GELHcLZn2O9IvVH/YjK1IPDMMM5xbRQ68OCvWlXWfTsWNNKyaq5iElxJTBpPH9DJEhxmTAXaKVH92BWolvE7jiPXB/hsfsAxTdxTq66mCPOYOZbOTp+ssUhLaCznmdOloP2MAg/vDLz13nv87Md/xO78nF/5e/+ILz78c66++AhFSannW+9+l4f3H/Dl5x9TpgPn58NzVbQ239Qbj0+avtWa0o9ZmWcl9nadTWlWSF1knDuuc885VwiFELpN8rjJ2tq5jTHSDxVxA0ZbbuxoF2qArjRY85ZxGqVXApu7esmzIwwHKEDqzMC1KpRslXtdzD1dWMILAgGrrPYpoWrzpE5H8tyoFmqKWdh6Eztfi6rf92Jy7BSX5lVT2DKMKYRkikBlsrFcazZs3nnlq9j8RcDmyNRblrhVCStITuQ8Wz+JJ4VaGan11LxomwXbm0Ddt+2vtwGN9qqvY3nI5v+vflHwHi28ym9PBdUFWIiqVwbE/rjEo6135Ob+r7+chHALePAk3iakPtlX2b5zBSZ+xAzDwJuvvYwMn3B5fSDXTAiw29+h250zXT+jzEfung28++bL3N0FPvz0M47jka7fcefuffr9HSqJ+fopXZ9MOr7M5PGwSCWrZ8uDwOCU0rm6iMF22wTX7U9Vjar55ZdPOB5HYhS6ruPO3XN2Q8/ls0t+fn3N4XCglOKmqA1Y+bUW1jhV1nOgevN7T4Noi3PWqkVwulQDHTfVoRZ4cwJqvnprgf9yrXTzPBuQcIo4bvmMr/p8PfnbCjDWzz0BGC5IYM83ULFWdlrFo52bmyBmUVb7Bts3BhnGbbbMUOtLbAe9nOdWrnb0ZAZ3syvkBFC1wD9Egvd3WClc/GBh8dHAskVN27jmwjROIIFdLmijTBXLeqovCHkeKVNGQqRjIEoPUo2MEMWa6JbV2DNFGMgxQQRzJT8cK5e5J/bisoWRaZy5vo4MO/uIkjPXlxXRnrOdLPKW2wxRu+3buNq23CnWq/HmWy/zxnvf5dOf/Tmv/Z3f4H/3n/5nzE8/4/Of/jHvfPvbDOd7xl98TkyJszu7dQLF92PzHTcX/qowF2W6zlw+fUrWwn6/Z7wq5Gmk250RE4gGjvu7hP0d+jgiMXIcJ6hKikYRCAJdiu4/Id5jYFkdW4SFkp1OEFhoA63HFrUFPHaJGHvApOnq9QRBF4m7EMQXe1P2qW6U2GaMkivzXLi+vGQ+Hrhz3vPwwTm7oTOn7ZQQoiUbizVbxpSIwRtFxahitWafnawpuN8n9hfmdaFAzpmrw8iXT6/44vEVqb/m5Vcr9+8f6UPlLFrDZ5BgogZlphSn34ggyc1rQqTre+sJqbYAlJqpKLlUlxqtLq4aXOCm0vfea+DO34pQyt8g7fa3cAsOXFu/RQuGlnC5enCfers5mnqDB5kUyw6XnI3HiyJ4RcAV8ATzLonBFJtKycyz9wPFnm5/xu7iDsPZfm2wzbo0NTRXVjwgbWVmPCOtwRayGMUreiY1LSEwTbNl33oXvlCbWyzTbnK1tVSjG06VMhloCcESHNM08ejRY37xbI8+/Jap1JWCENj1gk6BwxH6vbWFtLjfWntXGe32O/4zs1Y2U4BXXn2dl155javrke/92m/z2S9+xh/8k/8HebxiuHjABz/4Vc725/z86WPLLp6dNSP6k3Wu3ni8pXCB5YHmrExHqzp2Q1gupWK5nbTreXbYI+MX9HIkBFN40iYLXduReFYOgWpGn1SWRm3xSos2Na+WGAk4DdEB37Cz+3ae0MM15XgkuG5/y1rWahTHMs1IbSAWryAopQoxCcFRr2CJEDB+uTEwjfY454x4n2E7eEnBqnhFQSvBTQS1rrQEiiwVCzQjmu178KSP1kUNsdRInmcguIePqW8JeLWmkOtMKa0B/cUFGV+5bSgtp0H8DXoU6y+3zqbCrX9rTDNR0BBOgjKLrO254PObqhqNyu+SLeVmVSuSW74JGmi26ogHWYuU7lfFtFvqjoeCatYAzy6v+eOffsIXlxNZvU/N/WesSlK5M3R866X71DkzHa548PBVjqUs3k318VPqPFHmI0UTIUdqncjHkflwNAsALCFSK/SetAkF5lIpLcDfxMPbKgZYnPns6TPmceT+g3vcvXvBvQd3TWBhnJmmif/pD/6U4zjz3e+8z717d1fQ6DGoHVvYnIsVaZzE6BvAsVWRWoGGLNWMW0HGBmzcdkFOaUtLaL5BPLecg805+ptuN4+teoWiVVyfq2wswIL1cTsvJyDwxnHo1949z23fnC4FNIUhu8nMuMzurVbyX2+AgHhJ2rJGVLGMevWStEKdK5on2kWy7FE1Iz03TWsITKjsdpHUCTodXZmBha9tJWklDh3SHFajeFYn0aRHqeL/LJMswbLFmpU6ZYrOlJp5ekjMJHOpjB19gnmeOBwiEjq6JNBHxuOR8apC3bHfB5LHFZmVRrBR6QTsb0uPhgj39z3f++EPefLZx/zsR3/AD3/77/N3/4P/A7/3Xxx4+NrrIMLhcEXXD0iIy0LeLnNb+HXzuDWBqkKe4HjMzHmm6yOlTJYJECHFQMGawSVFwtkDOnlKTMn4VFrpktF1jOYRCCkRukCtwRbi2XpmqphksfXA2CioRZknkwZGrdE51o5uCBYEhsjFnTMQy8blyTwjglRUgvkIVMs+S2gczEJIlYuLjt3uPjGZ50ZbTGIy3wTT6vaKSFNqkmjAy6sxSE8aLFsdl2ZrA8gyTYSpcjxmPv34c+6cH3j53kBfhX3fOX3bZJ1RpRiqQdx5V0NEnRIYmkpaxeg6mKlcHrPphIce6QJDPCN2R7QcSU57IFj4Jt5H8yJvEhNLxNZ467k69dIlrEM0gJE8ZC6+amFRnsToFBwHAN4IixSIjW9qYHV3vqc/632iDFbhTD2xG4idBWHW1O2UTxGnTfqd5J+Fi0SoeHALS+aLvicGNwm8tCrW0A2+cAWaLryBHVOZSr01+M/jiM4ZCdkoWcDQnZPOHyD7PTG51PPU0Q1ACFxdH8gMpLO4CErAabjSJLTbXADrIiTAnbsDL73xNs/+9A+4e/ec//D//J/x9JO/4sM/+lc8uP+Q7/zwlzm/6Lg+XLHb7Tnfnz+3pLQ5J2w+t80/efu9c2U+HkzitSabq2cTzpBgFYCc90zTjkEm77dzNFfyck+HwZrxS86eXFLEeFAWWHhFQnW2ceU7pSEjFSQUC+67Dok7GAKyu0Ief0EZDz4kxdzfZ1eM2vdG6xLxhdppUs0wL1gCypcf4+PjVITqAKHamibBVPVqrUgubhhroMGa/tfsq3HGE9Lv6M7u0IWIjgfK8cp6SQSrGlf3zFChNqfVatUyU7Kze4RiVNGSZxQ1P5EXdFvUmljgw/ObB5zbJ74x0PgKkAEW16iPfHFlr0XpSM0Lo1UygvfELEnBhtI3/2T7+7KAq49/e87kbcUxxg2IIV95BpbPO45HfvcP/5x/+W9/wtNjsfHvPj/zeKCWmV2ovPXyPV595SH7i3MevPYax+OBZz/9Mx4/fczxcM14HDleXTGPE5O4o3hnx5tLu/dY6IEoRFGjwwch10ouliQoDVTAjeDfqhcPHt7nzbfe4P6D+wQRns5Pyblw9eyK/+K/+uf84R/9iP/Lf/p/5Id3LozVslzhBjBOAR3Pfc/pORJs7b8JNLYKUw3NLOBle/7bf7d9B+06skrO3njdKVXpqy7mbdvzV38BMv5vK9W7fbxWe+1dJyBj/cOt3663Pnv79s1Bhk/6SvV9rxvEI2hINinSStKm+lGzNX5DK9EYtSZ0ASVQcjbZWPetsIVDLRMuIOJNspK8BChQjArT+Pmq5vQs7sIcxBsC28JQrBISG6PBJUUrlikKMVgfwGGk5IlJA0/HHt319H1HnwJ9J5QckTqhM4Q+eTWmcLy2cnQMZ8RB1v46P3W3cZjb4u9Ubl595QHv/fKv88f//X/Dgw/f4s0PfsBPXnuHYbenZDhcPkNE6PvesgqsTd7bSkZr+u6x3j9woFErWa3ZdMqW8RqGnpCiyaZOluU6lESXM0NfreoQk+vSm1unFYOc8oIZ74HJNQanI4Rk51SRpcpUZjPmqaUSU6IbjnTd6g8hMTLPtgh2KRK7njmrS79agGALqGfxMDpSHwI1V46TZbVjihacqGUymqGjYHz5Uiq5KFktSIwhelbdr0+1wNCqNpXzsx0vv/KQftcxDIlXXr7DxbnRohQxHr2Y43lEUM0EORrVAkhOmTEJZjHAIDYy6qzUcSaroN0Z3e6cXYJyfEq5zsSCUwPUs7ktrHuBN/e5OKlj63r/W/a/bNLiXvsTjI4XowX9ocBk96vOGaFSAkYFqZasUC0WxCb3NXAOvtH+rHnXwobgKkUYn2hp/hUHF63UbL1cpVim3UwDO2IXTGb5YPNbTIluNyA79yrwW6Sqc7O7hHQ9ghJrpbTsUIx0KdDrni7dZfbFLk8T14eeQdzEr1bGqyPX7Bl2ga7ZanCa5dyCipujZh/h3e98m49/9ueMzz7lh7/5O/zD/+g/4Z88+YRX3v4eb733HuM4cnj2hP35HfZnK8jYfl77zvbTCKX2uCrkUTleHThcX7E7O6POPdOckVrZne2YA0xVmGOk9HeIXbUEjo8NVQfaWHLDPJCEQkGlLI2aISYbK8XvFcm+SNr6kKcDNSv18hnh8ilxOCf1ZzQvntT3S4AnmHdOUFeuAhO7EEtMUatJtgtLI6tusjzS7AnVerK6FAmd+XvYnGEJOwMlBmhN3MLeX6uZR0qIhH6HnF1YBT4mdLSGdUmB0BtIDhUWkppW692o7fhBqNQSkJiI7k21+E69qNt2cMMS7J0GlrcBC77m+eef2jZr680byhOsyy75XC0qiPuESW1ZcNYs+wnSuB3M+MhdflFpQjbC0oCxBRg3wUYLah243jnf8cHr9yi/eMylUxVFlTJNBM28dG/g5fvndJ0lS774/DPm8cD5/Ze4ePlNHn38c85r4X6eefL4Mc8cmI/V1uw8r+OtJZ8XI3RczEdMSbGoLsIPweOwok2JTzg73/P6m6/z4KWHKHA8jhwPE/M0U0thGkdiEKMdby/cDWCxBQpfuel6nRvAvwkwTtTMGsC48XMdMDw32bZeMBxgyI1g/vmG6xs71x7dnMSlPfk80LwNVNwEGDerSHpy/XT7Yad78/yDr92+McjQaig9eCbS3LZnQJdAOSSTDyUkZBgIMRHyTB0P6OGAtrJhK0kXNS78NCNOa7GBZmWeklmlPC0CWEewNxsjQimVeZyMMhGjBWUta56cJFAr2njUGhwoiStBWGAR9z0hC9fXhesSSCFivZlmbNMNPePxivGQkbqjZGtYnsYjtSpdjAQGUif0q2jQSeWhYACgAYRmrTakwHvf/jZffvoxP/+LP+GN936Z17/zy9x9+SVCB5XK3fuvcLbbLwGF+Oc1KkQDNU1CtwLHYr6DORfmXNB6BBG6fiBXqNNInmfm42RNa7u71MMzql7TO82nOSKLs8tUXDO+ilcYEiGp2RR4r0uInU8ikLqOECsihTxOVqWoZoRXyoyWDgmRac6ghdgJXTegUiiKyRYHazZHVy19so+LEFzmskIV5mmizJUUAqmPhGQ3+DxNHI/WwJ+GDoli2vJ5DZQq5vzd8gwpRe7dPaPrO8bjZEZ+CFU9K0lbAIKXqC1TasGCmxDFZA2q6hU6sBUgRkqE62cTTx99RuyfcO+iZ4gmQRm76CAaU9kRz4a9wJu6YhgaHEgYCLXnExI9Y6de4cBfh19nsHt5minHkZJHSpkXh+TFX8GTIKlLRBGEsASCDo9ZGm4lLUCzRceWid5O8uukLCH64u2qWCmiLiawP+ud5mLiFDTzwdn49TFZFUOi9R3EXs092jNlVQPjlCjpjKHv2fdCyRPzODL0gSEJ2kUOxwNXzwroOeEs0gUr0G4D/m2CtFUWWmgZgNdeucfb3/4BP/vT3+et97/Lr/2vfouf/f6vc/Hwde5c3OHps0eUPHL/pTcZhrg5F6fbzSRKm6LnrEyzMmWvUKFMXoXuYgKFpFCwbO8oAzXukOgAsBa0GCWNmk0RMAhBvf8vWkU1xA6RhEokRLUJT2dvurZxYHGZ0Z/m8RL0ETH1hC4SoxC73vpoxMZfozY1HxRcHAL321Ft9yMu1W4AwjyBvIeHapLoqgSndKnz93EBDfGKrzUxWyN7LPNiYDodDpTrg1dECuRMEOs5NLse99xo3kQOOCQFfHZCRAnakWjrnr3vxd1uIoz26/b3m70Xm4D+xvNy+pJbg/4tsjAyt7JVJ9JtFUOMIdEq9wup5gaVaw1Qb/lGBwnLsepm5/TGW56j76yPVZXzszN+61e/zwfvvMEf/fgj/ovf/QkffvYUvG/jpV3PKxd7kjTpdetXiqnj5de+RX/nHvPhmqdffMLx6oqnj77gy08/Zj4e8d5rDlfX1lOhugEXTi/zM9YC9eQJoxjTktWvChIDu/2Ol19+yMW9u+QKh8OBw+Ull0+fMU3Tcgquro98/OmnvPvut4jn58+dY+ulWGVov+KKb07hCjJuAxi3gYrbnjN62+bncyWA5ylbcAo0lgHQ/r8VYbAZEzcHhH1/1cV/fX3sYANOx+6yD7ftpz6/L19ZcLll++aO37WsGeGqninJfjMI1EzV0bK2vZjOeDqDIRDORghfwPUlYHJ9NpAzIkq/6x3lBnRTki5Nm96bLxWBogvoEDWpS/HnRMyZGQmeLVJ3dPXAwxvQ7ca3hvQlW3T3AXR7mEfKR18wPsNKzM7t7pNxpmM/EIrxEu1ke68KZvqW546uC+Z4Lmt81IZA40yfnFv/ee888Mu/9uv83r/8b/jLH/1burNz9rsdZYb5OPLGW29xtt8tVYx2AbfzjrKCDVWYMhzm2VRrnP+fghBRcpmtcTBnVJXdbiCGM6QrxPkTEOMSx9D5OLZr0/pkRAzEBbExEbD+FWOxCBISaReJPagmUt8zd6Nz3Q2Q1mpVqDIemaYRtKK1YxesSTLPpvqfkrjhmYNdqjv3WhP3Hq+Ytf1TCOr2XO56O40T43E2Gd0IgUB1l/nYpFBDcBWX6m7TyTxADpnpWMhzZZ5ngjezVTd1jNFel5JV9UTsbwLUMrssqsWyDbRZFtPOgdQr5vmS8ixQ+mT9G1GsOhdtslR4bsJ80bZajMoitAZVhUUhyIIgaT0aOZPnTC3qkrCmOGTLciVFW4krslSKQnOVVW+W7pI1+Veratri3mqJbhQpwTLFLnONG1FaQ7lVLGxBrMvnennN5txsEowUA7bm5aDEKuASo82Op/V3tV6PEK0pGadn5Ul5Nhm9btcHuhTo0oDUmXwcDRxjdJjD9RFVIYYLwmBjuindtVb6thZskxLt+T5G3vn2B3z2iw/58R/9j/zgN/8Bb//Sb7E7M3WXp4+fMB4P3HvwqtFAN9exUbHaPLRNcGT/XRRyrhxn87XpS6Go0nulp4pVnOpcCMBE5HqKpHKNzrM1RVc73yEaFRO1aykWvdB8LXEn45aA0lpMstpPfghC3PV0Q3KjUVtEJVj1qcwTKoHqSbLg4wyfx0wESt1VXAjSGygI+GIvC/gIeHXCyTVVC3WuFG1zjSzKUZpt/xTPcobOPk8sMKNk6nGklkxyahZilC7mo1Fy1Feg1huG04B9nEaX3l0qr1mtMPL/9d38/5utBTi3T4VeK2gBoP147jXL/7cBi6+hILUmWPE1bgFxrQdj6dWoi9y1eDX2JCPus9hXT+c2t+kSP67gRrb77z8X1arTw1i+bx8ju9cG9rs9f/Hxl3z48SNKVfoID3aJTmarCiOEUJAQKbnw6V/9BSXPfPnZp3z+6Sc8efSIzz75lGdPn1LzTOo6dvud+bRUJbtcuMNbYjKVKcEqGWDsgn4Y2J3t6fqeEGxu7/ue/dme3X5vFY9cnAqrRtd2GlmtymeffsZ/+9/+97z7ztu8996eeFv1IazVjFuu/Elc1pI8YalY3KxgPA802sduP19P3LZbRLZc0fXR5k+n/RF1E8C34P/03ZsrvHyOLAcjy2daQkGdxuYAw+Prm1WTbWVlPZZTELL83UHUNyxk/A18MvpICNYgq6V9KViDnZ3YMh8pR0UvnyFXl8TdObE/c8+FYu7NvlWtxBSIXv4TjL5iC7fTZGqxv/lCD8GM8NoNJY3+EEjRgpbUmXmXgTW7eAZAImhvF0SwQVuK8f5DtDUqF3KuPL5WcoWuzEjpEJLRs6JLXUqlzkfGeeZwHJnGQtFAlRGVQDfsSWJrxZSh7zy4ZK1eNNWprRKLINy/f87Lr7/Nv/5n/09EIvce3OPdb/+AYTfw8quvmqrMZmBsp5X2e8bW3Kn11pdCdplYFZPRDBKs5A6EbiDse4Z9T63CFF5iuppJh08QJuKZGemAyYWiBY2tciU+2Jw+h1K8QhVErTkyRZSIGeX1qyhBCKYIdhwZx9l6N0omz5PduIo1+SrmOIk3eTYDN2mNVO62G4I1c+Pj0h2YqyrZgw5PM1jlqyYz6XN6m4pS3JPi5JyqsOs7upcu2O07CxyKfV7bVzOT7q1K1+RWwemAxatA4k3vceGvRlHuXETO9hfW35Jn+5uNXEyb330bXJnmRd7EAx1VJYpJ2EqIaKioyx1uF4KaK2U2vjpdJQ4eSdPmOOuzkGA0GlMcsaA9RjfPi8EaaqvRqgTwicQ/xxIFLGO5zd12jWzulmXSBqyK2txq/VM0KyKJbjCQiAeJ5ObHUjy4VJcf9cXLe0tqLRyvM1fHgJzbopGSeW6Mx4k8jYxejRUqNU/k8ch0HIihow+y3FsNBDRg4QQedPs3gYf3L3jv+z/kx//23/D5xz/npW+9w/nFBV0PV9cHzu484JVX3zi5J9r62EZiazJ3u1abgxTmArlYT9XxcARgd3ZOqZXDlJHgPV3jZOet63h6FYjlSMjXoErXdYTeaJ2IB/q+2IknnRb7QVEU6w/TWi1YdEM9y6RCVBs/qqsZJhKoHtBZpdCpjXbzL8akQnAJWq/oh+CtRB4IqSVytFQTmHCueM0mX11d4ZAuEbseJFrFoq4VlxCTV4Lt/X3qSMmSIaGBGYBQPclWl3XYljsbl8Y0NKpgbfLJJZOzNaX3vNimnrdtJ6GBZRNO/nYDSayP5NZnHUisHgGnP9f3rRWM2zLgXx2cLjv1lUBjsz2frN7s/BawPP+i7fHt9wOv3jsjkZnmYvLdoaBlQotVA8um2lY9fpDY0XU9KZkst4RArso8TlTvJTOiQTSKedfTDUY3NzUjD2rFQMYwDAzDjr7viNFEXpooi9ZKdiNVtBBcsCWGQEbNJ0yVJ08vGaeRpSfGE0atVy7440ZXO73GN4HGWsVo4+frAMYGnZx8aosv1moXLCZBt15WXdaZBRgsAfyNIH/7uCUhvmrwtMqIqSnRFKWWx7dQpJb3nXyMLqCiPWapZHyzWORvYMY3QPCGoQixVNDZMi1qvQmIkXfyPFOOl8jjR8TYE3qT+kupt0XfJ4DFc6O0krQfZDM6al2u0ZpeCU57EPGAVSxLJcHM95oJkoqVzWUN9nAFJESM210qyghAHifmy1+Q58z1HPj8aSJ0O1JQapk4jpVaEruhN6lWFaaSub665PPPv6AbLjiPnSl45InDseds78ZxwiLr2MBBBSY/+duFWQWGLvD6t15nf3bBZ3/1Z/zx//BP+fSjP+e1b73Hg3t3Ti5Ye1/LIm6H8oStv0GtqXueJqZxhCGiwSg8IfWkmCwbMQgahFKA1DHJa0gZEQ6+uFqjGEEJ1YP44s2N+A2CUotlccfDzPH6EhFlOB+InTVWR1d9UDXAIsWubQqRsB/QGplHU5KIXaDbdV6NMMOtzp1465wpXrUo05EZay5DoJZs0rotMyBGI1AM9FCUUmYsG56I4jKZ3tQrGswMErFxopUhmaZ9wAJJdW+LeToAlX7oPQjyKo+D4OBBS6mZ6TgT5kKfOjMvrJUQlJSiS+ZGkqNRAxjiFKEmq2rn7UXepBuIVmbkRK5IXALU0ss0R8xuCIRQrLKgRmcTDd4bUb3Zvmmc20KFtKqP/ycWWMYBUAOhNpZbb0j14GytMRrNzfooqk/UebbeIvXGfsR11KPte80gXU9w9TVr/lKo5iguauPOZHSNmrMAIczT4PKYOWZlqJlkrSKEmOiGHZJHtJo5ZKvy5lKYpol+iASsgqo+57TWBuHULG/7b0iB999/hyeff8yP/+C/5/7L3+LNh++6SWnmjXc+4P79YZMIsa01lre5rYX6ojaNTxnGbNVqauVwnAkxcHG2R6jM82QZzlKoCl2fkNhxqA+4vrrmbj+b+3b0LEC0mW9RjvLKTy0VKTbXa4Sm4oX6WuH7ZIuyG9stR2L9GyElC8ZLQZd+hvY+x5I5UKrJXFMhhNkCoiabXCt1nqlaqergsLNerFJmcp29yuH0XKeqSBCqm5VSK8Js/Yie0MMNwsx0FiAsQBUN1ClTc1mrnaV5KYiDblNxq1qRKktF9RunIV+Ebak8LOHi5rftg9Mnbsbkpy+7nRLyPODwOQuvprrR5tL0HRptbRuXbu6mbUC73WFpQW8DT5tja3/gFFgtx/UVcaeI0HeJX/neWzx6/IR/8W//gsvrkeN1x/nQEcKMyc6HRdDPOJiRlHacnd8l58w4TUzHkSDC7F5Vse+4e+cO+7M9w24gpW6RvK5ugptzsXsTIXWdu9rbXG33XqVVodQrP1blSBY7CEtz9hocr/SoGOMKLr6WLvX8hT95hccCm8jbmBliP43q2L7bKjdsqhOn9CPdgP8W8Pvr/LvW9+jmZ/vjDSBwc1Bu0e4WcziouNnvcZOW9TzIcJCzfNUKLhr4uUnp+uu2v4G6lLhthZ8sjJpS1BZ61WoDYejo+riWpBUkukxnHgnFGrMJnq1BPPhPJvnppW4RIXQ9uGSugeCwgI/gJlbiN3ctxWQtPbCM0RYPMPUNvH/EYpjOM4gYdzKqBS0Cj46R2l1wcbFjN0S6zq5alEpHRoowzTNV4fpw4JPPvuDVVwfOaiXnmb7vyPPMGIRhFxm6FQQ0mlOjLmwvU6Mx9AgPH9zng+//Hb787K+YDk/55C//mPsPX6OoWPP25o6om4uYN5/ZCjlVlZw9U1sLQgchocGat1NKDH2g97VnTkZNqNJTeRuOHwOzAQLBbxLnJvv1b1nNVs5UrNkSKX6TFevltX5ZU31y9RURa+CK+x6VZPh/r4t2c2yylLPfwcED0BDQ0Bpxs2cbjGrQoGWlLh4h2jKZySax4p3FilWzUgyEPrraRSBIT1BF64wUqKWSp0yMkAbzVKhz5XiYvVHVqQpN1lcs4Oz6M0KwSpjMkxuuZXJTKIriZlp2nDFCTAaWW3ajKE61qIuSxou6yW6wMVQyTBM62cImrWoTDZwhjVKSSNEkaXGlElPuciqfL1TmBm/ywytPyBITeJOtd9ra8w3EecBl2WqfsIOYAIAKoSlLVQWxa1fzbFNgxT4vYr4GwVTsSs7W/En13nHrBzP6pqI6UzEZSfpkeZEApSpXszDlwq5map6Yo5LEgagk6nRkOh44HI6Mx0LqIcSjVcjSQEowFsNPMa1zTVO0q8vR2ymKAvtd5I233uMP/od/wccf/gXHwyWE3yaK8ta779DJ6Xx1E3C0x20OO3r7QJktcz7n7J4TkWmc6DBaZXRqUkqB3a6z6xh7cvcWZUoM5THBm/dbZdNOlrK4gGdfTEWNmuaV7+D3U8vcmaCgzSm1rWFOHpdYIGVKKdQ625oCi1ljJRC6HYRAKQHNkxvP2pkMMRkddZwMAFKZxeZWEVkoTCY01y1eTE0IRf18Bd9HqSaNq8XovmYo6L09ixmXrZltQWmiJ7JU/gMEV2qLySRygyUxtsoy/3+13YjTT35uXvTV4OP27TawAdwAGGusJ+YEa8pjX/Xm5etPd3rpC2hf0NIBsgKRFVPI9lO+0TGFEHj/7Te5ONuTq/DPfvdHfPr4SN9H7oXgDAxjjqhT90QCqd8xnF9w4ZTT/dkZ0zSSvZc2pWj9b011tBRyMcPSYEYuJBWKH0dsyTM1VoC6zr1gY7mJB6mv56XYTSLB3jMX5aNPPue//Rf/hvv37vLee+9Y4iaszt3N4+I5asLXBMcrNciBDnh1eEu9u0nHk+c+YwsI2mPdPr414LdXn0rJ+nPbz/M4a/lubUnNZWfX72AjX9v27atAxvK9N4CGf84JwLhR8fi67ZuDjFwwPGATVC2mDw9AEAKtJC1EGqVBXOoP57qLN77Z5Cwu6SPNeC844GiBQ4hGpRCjJ5hRUaXUQi0sZTYR46jO40T1jCEpOYhIbhRj/RUGhqzpyOg+pqAUYuRahbE742y34/xiz34XiVJcj99uLq2VXI1nPOZC6gdi6ijZJA9zznR9RaoHiNWCnqqe8ZN1kYdTd/D29/3Q8f53vssv/up7fP7zn0AtjOPI5XG2UuXmsmybLiMr0GjiOSVX8jQxjUZXaIY3LRuzHwJd8ridFQiVJBx2A1fzPcL0C+I00hzURdVVXKoFEGqfV2tB0KX0eX4WiX2i2+9AIjoX6jhawFiscmVUl7agmlRxSq7cpK40pgruuKlYsKFBrBpDJQ3BmstD55zjjOpsQLdaA2/NriLTJVInFA9W20Qh/iiFhDrvGxFSPxDKzFzMLyRGoztlLZR5RMuMdIOBkDGjFJsQCfRn56R7LxH6cxKmS69VKdMl4xc/p04H8zqIXuZ1RSxpE6zLLAf1nwFuGqK9cFujGc0zZTqaEVnqIXbu4swSAKqXyURAuujzAjZ2qlUzA7gnQbAG/+iTb+uCtnSc02psHFmfhHqTY0GxqkDse2/aFwjqHgb4PCR0YsmJWnqrlhWrVNRiBo64ZHZs/ho+wRe1uVOiVeyM4WJgShBr6q/KcYKnR+Mrp6RM85EglT4qfUxGcxIoufDk8WNqTVzEDqp5CI1dIsZkalNhBQTtvp78EvTttPjPJHD/4QPu3H+ZJ5//Pn/1Z/+Gw7MvePPd73D3zr6Rh07eozd+b38/4gpTAikEDrUyj0ebn0ulSKALye7d2NH3iaG3SVGBsyRcSsc1rxDHyo5LmgxwK/2LtF6ISpVMdr62+vUNIZh0Zsvat0W2rotro82JWFWsTTM23tY5wU6eMM0FlY4YBqOAhiZdajRdLZEahVqjrzW6nKCGbWNI3vvlSRg8IUPLgnvlWyHPdkylqFV0O6ObWqW0WB+kO6OHBIhXRBQDx9HmM0WhVKplKpyGBVpf7GTFdnsu0FuC9M3fb2Sub/2MW7ZbaSHLzeCfvGm8XVStblCmvnbfl/dud1qWwLGNR/trC5pPg9520H/d6tCy/g8f3OO3f/gBf/qzz/jos8d89mSii8KZFmJV66tNxr9QbNx0/Z66z1TNxBhM7ana/Llw/6up75Vs4gUGsNvdZFSnJjrQZPFb0Cv42leE4ka2qsbCyOPoUt3Ccc7MpTLmwr/8V7/HnbsXvPTSQ155+eUFXFiiISxiQutVtGu1XtbTa3uq7rQG38vZ31yjk14Pf7y8e/M5yzypK4BYAv7tY220KXvXrY3ZXwlat7OwLMDgRFFq8cfYHOsJoLgBMm77eWOfvsn2zc345opQIEKlLM214qo5PkJ8YmsrnJ/4asFkiIkaKlaSLogb/C33a7ZAdZ5nCz48m1nFQ/CqZgbjPPuYxPTTQ6CUTKkWNIQT5XZvxiLinBkPLLzs7NzaXIQnZU935wH7LrDfJfaD3WJ5mimGasiaUTGOeCWyP7/jC4ANtFwKx+OIEEjDjurNo7PHN41aoGoL/zZL2KgHQYQ79+7z7nd/mWePfsHh2SM+//lP+Nmf/4Sr197g3t1z7t6JdNIKsWuPh8f/lFkZj5X5ODLNIzXPljn0JuigJsNYC0hSqsoSkCjepxCEKzknzpE+P7MejtSTYod0wVR0ajUAWoub0WWjxvUJFQvYG1hYuNQh+mKrmG+FXfeaZ1MKytYk3qgvlqrz96opZRW/ltYLLuSihOLmXZIwlJfNtVuFGO3ujV10Q0icalUWE6yaQaJTrBTLREWTTZVqvSQmjywwTgQt7Acz+SNno8pEU9KqVaglQNxBt/PR6BNpJ8jhnHmenBKoEIzWpZWNqpFlv5diuxhAfJE3vR6tApZnC3pEbOxspDhqLua94hXL2EVzOVZf9LJJLqsH71RxA7Lo1TZhsQYH/1nXicbPsfh5ri2DXb0vDBMRyO4Bk1Ii7TqkT3S9geGaZ2o1ypvOGdFA6Hri0JsXiFoFL5e6yGfHEGxuCqCt8ddFNGqFy6lnSnsu7l6w30WEQopCJxUpVgWbS2WuyuRZ7loLc57otKfW5qq9yYayVi+2yQ0/I4DNHXfPOz743i/z5ad/ST5e8ejnP+GV196k2Kx/0iTclrNlztn8rSUpcq7euF0QzPumASt1rnRKkV0ndN6v1hIuw06Ywo5rXmGYlSZfLVI8ke9eFlhiKqS4BJrWvySu3BR8nxwQxDUApPVeuQiDNeo6DVeiN/fbuhZQytHpjsNA2jnQECyZJtZbApEUFPHeDGeGGFVJcBqd8deDCBpNZTHtrDNPvVopElBvGq6T9dIZXcx9drxiL30H0ZJwOruPURUP9oTQRSrFvKiquhCGVXUaO/mF327BDjd/3kAbt70VuBlzPh9EfXVYtQEDy79GnWqmcF8flC0BqyHfBTssNKobFKlbUNRXbqeBsm1dSnzw7uv81g/e5uMvr3h0rXQp83qEAUsaB+kWg0swb5V+d0YzKRW5ImdL/uZi4Ldkp8s3xUDFXr9RM9OaPQFrNFUzMhX3m/HA2NkxYP2T+XAw1oKqKVv6MT158pR/+d/9Lr/6wx/w8ksvWZwpzRNrBWrb078kSsVih21Abx+7ffGasW8OKct1uAVk3HruN5+7AIVNRWCpFCzf/dVg47ng3qsa64H5A+V5h+8GKpZ9MPCwfs8NQNM+n9Pnt8Dkm2zfGGTM48hCuBX7ktAQqZ8YC5c2iAwzIdIqSCxIKpRaKMWEW+3jHAVrQLoBidHoVzmbghCgXpJWrZRppFbj4+dJLFgNweVsTbmqUS7U1UUqmD9CZlFCqsVM0VDbpy/nC57KXfpdx8WZ0PVCF6EPUIbekq8Fz7aHJfN1cX5Bl6yh3YwKlYhxka8PmWGXGLyloW03fTK2lIaMPRFTInV7RCJlnnn8yV/yP/3T/xvd/g7f+ZW/x6//zt9Fdt7rIfZZs1psTTZ+eB5naxa9unRJusicJ+Z5ZDwGqNXUH+hIvZjnmRrAGBQmgWuJHOSCPl2hZBvH0XiSCpAiMlmATrZrgMuPlprJ+cA8W5OnOrUhRTfPC4E8lYWKQlRqUYK697WIUwsAGl0PaAuwZwxLzehYMW+MRNoNNrmHSAiRLnauclEMTIl7LYhRG0zSzSk1uYJ4yTcKkpWQBPHmthACVayqsdt1xNiArKlnpN6kMHMuTFNhfvaEOE+QZ4SChAplROYjKUVUG63B6Du1KEvvEGu5s/qCRXixQ4OSzY9FVJ1Diy00Lp1IxVXaJutdSBGtgZDNsVkI5Lksjt8SAqHrPJuLVzAEvFmeRmuJRsexC+vaJ973EaT1cQFlZhonDpdHslNVdvsdqbPvV89Cl4xVUiIQeluUU7KKC0ods2XgslVWQ0oQ1SokCNRKFW9QLsqxDDzRe5w/uMudi56hEzSPBr4lEoIYCK+QEcQX0xbMTuPE0M9oitRiC2sTm9iufw1YtFHUpqUuBt557wM+/vB7fPjnf2iUwlK4PFSGQdlvOeCb69nmsiaRKw78c1Um7wOrOdN1O0DJ80zXD4QQ2Q9CH9bPa8p7+wDaCVf9GU/nezyIzwhBQS1JYp4qAUhGX0yrO++i+CWKaPDFNhqIrZbtl+DX2ilY1mBqfPAQeqO9OW23Vkuu7YbA0JvOf2xN6KqomiAKNoy9t8oFTbCqWVVPfom7glegWwGxVeuNCYBLPIuPU9tFc3wHyy4HjTb+fb8LJo29bTZvqnQ6mxFqo/bk2apvpRRWGZYXb1tj8k3gvf3DTahxCxjZbl8HML42nPIAVtYU0kp5kmCCFP78+h26+c5NkCjbwHgh7SGs4GV5nX+3bPbjrz+u0+3i/Izf+uEH/I8//gU/++KSzw5ClwovXcz0BCRNCzBuQWjsB3Zd71NYRq+zieLUiuaZ4l4WtiYmB0q+D86ZztlM+Uopa5INo0FpKeScV2XGWg20NMdwXT03VEG08uiLL/nxT37Kb//2r7OLw3KubE6ws2Kv1ZMe7OcD9jV+ZRNktyz+ybnfnHC5OeZuBbPrF59Qpdp+LAH+Nn7e7ItuwcBG9MaTjzf3aQETrACjjbrnQcYGfGz2r523du23P7en5K/bvjHIyGVcAcRJSRov/9rkpVVP0JHVNYJNlDovB9QyhgKGdNWyXyUHUuiIHa4HbqulBAsYSgpQMkWzqdE4Z9Ak+3SlQbUgzUuLIURiF9ynwKRrq4Jm5ekBPtEd4WJgvwsMHXSuCJVESMmTy7NSx+CeEwaU+r4jpmQZfXW1IayhW+dACsKsgdCZJ4dlNO3Ga5N8G34NhFqc6X0C7TVBCDFx/+FDXn/99QW0bDOJQd2k27zxSFSO05F5GiEE5tkaEGseKLmQQ+ZwHBnE9jhGW3wbsyQCXRLG7g61XhHylTnntgUQV/NJHcUbcxGjLqXQIbMFx6gpBOXZeiiyKtk52cWVykz2XZnNMZAkLH03FMvoS1A0BIzBH9Fs1ISiTgub3btFzYwxTxktmRwzXe/NuK5EpNmVWQRil6whUg3QEoNXZirTwYLUmAJdiki04wlBjHO9NGqrT0BOsK8VKSPT00+RZ0YOTDEgWHOpiPkrrItEXLJfKo2HOpHzaBx/1APnvyZt9bd8e/b0CYqw2/fEkGglXVucrScjCHTRPBQIYbNogzUHWjUUlNhH0mAg0mj4gilT9B79Zu/jcR23uvYCrRkkm38qinilL2dr7B32HcNZ5wDYQMPx6kg+zHRDR78fnLZpGcuaTQrSxp4tlDEG4+OjC+gxI2gbM1kTT+pd9Pxl7pwldj0MCbTsDZBFMbpcVLq0qth00XqYai2UYpSpmDqGFJonIQoM/rNVTxsrbV3e7Xyc37ng9bfe5+c/+SOm8Yqf/+WPuPPwNZ699hoPHzzg4f09KchJNQT/jAqNBcc8KfOUmcaRebxGREgpMM0TeZ4I1SioJUe033DksWscWLHYk7pjXw7sQ/Zgx4BBwIMGmqR5S9f4DnlvtN3RPs4QpNpCLEEWWfQQV7qUNNlQFwYQ7OBi1zlHPKx0D1Ek2UIhcSZ0/rmK7UDsIZmRLJqtQb0UywptqH9a8pKZNjoURj8WfF4SV3S0vjhjG1s1p2S7J+ZS6PqelJpeoVX9a54sCAkrPAwxGDXxRd9uOYQl3HN0/dVHuYk2b9m+kg1yE8MsNxC0yoPc+NkUM2XzBgXPpt8ADqyfswTot2XMt3Sqrzimvy4IDCHw+qsP+MH7r/HpITNl5fOxEELloUyEbiZ0xX2jbK+tX6MjdntiGpBw8LyNgYbq1WVTdVrJ3LXkhUKVs1eJ3T9nybQvFQz15MAqv0qDcEEWxaiq5jVTS+HZs0tUdaFKLSBD1nOxAK7WrK3YettAx80A/ETqdUEZp9drAzAWKtVyTTYXp+3HTQCzDexZKxjLd26rH+Br5Rab6vrhKAsfv4EGrctngi6U09PjPd2vk+e2gGIDVP4XARk0nXLBAiLPrayrv59Td841ZF/9Na3i4UpCYvxSa8qpbd2gjuZlELqBYTc0JtPS6FuzOZfGrqcXpwsUPCiz5soY3RxOjeveaAmWLYrWsOce2YqQs/L4MjCGjrtuote7Ue/NeaQdb9XKPOeF76/YxF1L4ThO1mwsgV4mJhTRAbJ5KPQ7cWC0Gfjt8z0IqMX3zsv1qet59/u/xvd/9be5/+AV7j94SAxNMcl2bFGuqiY7l+eJ6XjN8erSuLoSOB4vKXVk2g/0XU/qenIpxHFiHme6vme3T0sCWItTH+LAZb3gfqp0EZNv9BuggblSTeWm5oqcJYbdQEhQSqaSzZciJBvkZVV+sqGhBhJKIU/miyAxoO7mi7JxYsb6aII1N5YSCDURQiUGAw4q1RTDjkfyPCISFlfg2HdWFfMqlwQxd2YHihKsz6fmYBNjyeS5kEfIsTWUWUZTJWAC+laNKVrI+eDNvZ5dTCa9ZzSq6De5yyyrLxQKEJFg2ePicrvzODKNR0qeTLbXpTbvf+Ob9m/f9uWnn5KGgdTdp+9NDrtUXXqjEEEqpND7TRhsjnCpThblLjsfadcRus5uAFffWcz1wB97BFBlAzaUlllrzcNGaTEDxvOLHRIDqe8IUSjzyHgYOR6OlCn7uIwWKKCUeWacRo5XR0SUYdct/VNCcMAMLRpp2ckaE1e656p/if154mwnpM7o0EaHDCYJPRqoL9moODEmUuqsRyzPdJ0B/XG0hMK+6cN7n/Rior3swVqFaBSnrgvEbqBWJY8jTz75KX/4L55wdu9Vvvcrv8Od3/xVZEiL2ERt71W7HFotaVPnzDweyeM16sEvQJ5njiPsxo4UAqXvGYvSRc/K+fKSfN9EhZp6LkvPkKpVZpxiZFJSTuEVozlBXDKduBeKoKY8CIQqkF19isrib9GMIbGAhWrDrn2fytpAakyr1hCu1PFoAKBMlryQSpWA1kyoIKRVUEDEJ+ptVIrPHya9a8aDJu8cO+/3CIL4nGLZLqOIBTUq6HicOVwd0CrEc0tEaDFDtVqKz7EG4tV9ZUJ6sSuisAmubyIJuf3pkxcInKa1l/82AOOWMEphTc3T0qTL/bxI7ktApC734FKSb6GS34gtbNuCotPM+Ba0yMl3bk/AVx7r5rhue+pst+OX3nuD3//p53z67MhRI5+PIFJ4qRsJ3UANLCay1aVlrR/XqnBNzSmGQBFZ1UE9wauugFfmiTJbgrbONuYbjTrK2veldQ12DQkYaAlg8s4unV+mTM2ZGIS7dy7oN4pVJyCvnfAlG+K/S7vW/kDXE9QkpZsv2LrdBgpXAL+VwLUKw+mV0dsC+U21xKEGC/i65d+yk1tA0XZjc4FP+zzW71m/f1Mh8b8164fl/G8A0frRm8ffYPvGIKMfdiclabYnUa3hTd0ZqVZ7nQm52JFvS9ISOmJw3nIty6Q/DELXd4SQLDMpjiYxtR9lBqlGXeksc7U2mVtzd6M+mC6im15VW+ibCZea1iGiwmHOPDqAnPuN1AZetWRTozIds5JnZZ4n5pyZxwPzdKCLgd1u8CwX1FIZp3mpvBi4Dab3TmKagN4WMMXin9zGjFri1cCmgZEQO2I38Nqb7/Lee98hpERWYcosaiSzmtQlFeZsTeLHw5Hj8RrFmpfnPKNlZjo+47Lr6breGl1LJLviTsqFeTKqT+cmYl2M7HY9x3qPLMq+s9ZOLdWUIyRYCXXYky6MKx/VaFhKRaeKZuNIJrGxQt9kGdeboeZisrSpOF2uMB8OZA/OJHRmiAbWvxAEqSZhqdVoeV0yQ7U8z1QqXRfpOiufhtgZV16M0zzPmez9DfOcXe5R6LqOmDoEQ5mxC6TeqHU1V5P4lZZRdTnKivFSa2bOhZozKQWG8z1pGIxi1YLpjedFWUwNvRJXlTmPzNPIeBzJ4+QVIqPcVLgx4b142/mdM4bdQBeDCwUYWAz+zxqXnFcf4or2fY5QNW57XzsH48FFd3zS1QrMDkxXhaHVhtZn5aWiEYmhWpY7BPv6EM2AEVPiqfPMNM+MxwPzcQRsnopeii+lcLy64tnjJxyuDuyGHXLvYnF5XhRmPPBXsV6fIJGjJr4sF+hZT58syRFbJU9WOuQ4Yb4spTDNM9GlHSnGfZ6n0XrPxJReZumpKRA6UFfIS2LVoe3i0JbHGcNgKZjaW04dqR8Yzi54670PeO+DD+i6uICLvHlvrj5nelKCkinjkTwdLZFTrYfl6voZZ3LOPO85xol6dc2u7tEh0iXbm4JdqiCwTwbsr/PARZ3ZR8/4RwMZ0qKGNk7U5gQbJLLs4BK0BbUKWM3UrAgzpeB0jEwIZpQXCL6mtSDPAxd1+mZphlaVPJppYEqR0JnRn/kLeOZVTGGMCBI7rNwBbWVRMd56nZX5MJPHEVHYDT2EzjKuXqSRqpag8nGqUYgq9GL3SHI5ZCSiCa/UlCWbJcgi+vEibzeLuUtIfjMI/2vef0vofYMWcvON/qP98bmvWQYcTeUrOJV7kT9tC/2KOZYdke3ObYPk5U5rwSub37cn4LmDOnniNvAUgvD26y/x1kt3+eJqpADXGvn0GAhx5GG8ROTcKKkCUCjzTJmuII+IJ+qMoi6WtCnZk2m2Xs3zTJln623Nebl/bHfF/DZwVyinAQVx5qt67xN2LmI0FSsQarAEQ993vPLKS/R9jyyy8Q7M/Ly4d6fZI/kp0O25gSWzvxjW1dY4vW2Y3oCI7fVaQOYKOC3ckXU/2vcuFYwWrG8ARgvsfZjcCjIaLt6Y/i2YmfUA17G8+Vw4/X0DQOrm8+vJdzWgsY6dv8kU8o1BRuo6n2xDO1dLIsDKugmlUusmY+dNeRat1WWys333IFwMjGiFkJL5BNAayDGuavSSdICQlLDpnpamoS7WTGxp/ErT2be72ekVmj0OUTP2LfDoWeGYOy7EJvGa1dxzsQXebRWoGTddypRpJB+vYTowp45pHOldbjd4YJOzKc6UMjPnYAycav0A46zOl7YbyHsPbW0MmLy+BHLOfjWF68tniEDfmyqSC9JY43NRP4fVKQoj0+GAIvRnF5YFu37KaxeJSwJPrp8x7vf0/eBqSYXkAXrNE1GVMpl7Zw09fUzUbuC6nHNWjgTNLk9ZLXu2PyOcnbG/OLNrf3iKTgdqxV3c43IT41WFmOJyrtCKxgrJKxFBXE4yo+q8aGmlS1lvVO/noSgpWZBaXOlnGAanFRjlIKTeqloo8zSBXCOzBSk1z36sSp4OxGAeIubAWw14dFYBqcXUs7p+IHR7G2OTOfJO80yuR3suWkBSijWBl8l6CGJKftyKaiHXQi3qEpaVWmamaWSeJkpzq5dky4xav8qLvJ3fOycFU9ghV6OTeF/VorLj/jeLChkATs1sWRfdNK5WXfk1LfvVNEGbv0DdAo1oz3uGOUhc+sKtyti+31R5qpbF/duSH+LracZ6ait5PECe6EIFnTleXpnL9WBeNNJB8j4kEe8jU+HLy8qVBu55FbUlu1uM7IfuiQcll2x0rNmqFxICNReO44iK0OG9LhKoGknVQE1Na9DtZ2pdjlqQ4xN61/cEucMHv/xbfPeHv86Dhy9zdn5mPSCsfR3bGKsUG+vzNDMdr62SoYLGRC4z0/HIfLjimsrZ/py+N5XAPE2UHNnvO7q+8YxtDjQ/CmEMOx7PmSFdO8tIHFSwZmpEWIU97LEkB60ti+wNo7aOVfLsC/EysLzXI7Z+LkskLP5L0aiRwZv5Q850MViw3w+mkmYDklCrvw/jmU+F0Amx0TabN8uSGbbMboiudjj0SIo+Z3ozeLB9F98PiykqaUjE7swTeMmrddAayVuW1qrILrryAqvUrVSR5/7CLZH/Le/X06BvCZw21Jk2jyzbGtTfjK/WYPX09eKR3+37uvlcL2ushnItYL3ljXLy4+aBne7FLdnn27a7F2e889o9/vijRxzdKPWg8MVRGfojfZ/A1RuDCLVOZIHi1PN1rrS1DFeZqrmSW3/dPJsprVYv7AhFlUMuHGf7zj4KQzJj5Xaifaj7lfVg3auVRomyJvb9bu9UqeXsb07Y6XnRzRWzj2uB6Rpw8zUVhBabnlySLWj0StfzdYx1d+wzdInvtkd4urebEXdzSK5HYN+lsEhc63pcm8M7ASq6vnAzZjbn4NbNoeHfYPr4xiBDuohgwXy7ScXT8eIN4YJaSbpg3LxGcUBAw3qwzskVwWjm2IPGtVNg0UFXdblImyBFCpVqWbsihOol8dCucPC0vvri4QuEy6WVOVOmGS3KMUe+vIoUCahmyjRBt6POtrjRkk4KXYApT9ScmaeRIVTu3el4NFkjdZNdtZI0TuHycluZmSfjknddj2KUDFRMPaYX21W8KBMgq3B1feXViMrV1RWHKZP2PV00znpV28/YezP7bMFvqdDvoJNAUaGME/su8dqu57WLB/zok6dMx2vyMJBSJIvpVhc3sVo414K7a1dSihzrnuvScyETwdHQNI7olOHqwLC/oO8jkq+hKe84paxNxU3hBQleWRCfNBQwCVj1gSHF9kmkmIpYTIg6OBHjMs9lpqL0ndFaqlpfjiR1I6pWefPmTCriYy2miBApVGcxqMvfWt9ErTAfZiaZGM7O6XfnrnQU6C7uIhcv2dB+8gVhvEKDkLxCUmplOo7MxwwqpqZUjTrS9UadMmUaM2ibDiOhVkJ0ygZ4oIiP4bWn54XelvkAr+L43CFxCe7rXExFbi6oQjd0hNQ5wHTqlGewWzXcFErw6oWw+KkArdGbpnZymlZaVDho1c5cjLqiNs+ElEgSzW80io/VyjwXyPPS8rE76ynZHHPzPMMhEIJ3XgWQFIi0IFAZp8ynzxL1oq0N1iTaiU1nCkzFqpslz8ze7zEfrjmO5skzdAOkxOTVFhHh6GN7l3Ymt2xD0Oda+9dap1W9EhG8yTJXUm/ve/1b7/Ktt94ihGDV07L2cuSsZhYYTaxgmqvJ6I5H5tnkrrt+R6nKlGeSZt68O/Dp1YHD1TOG3c4oihKIUshdQtWqe3YvBlK03hQ0cZzPGVXZx7woTC0XUm2OsgaFLXySdX1eQIaYv4padb0ZOIYC4n04IqYoF6JfWHH55CDePGrGdopVPkhAMpPT0DJG0krhN3ovstj6pLiXVAatiFZPlHSEbjA6U1t81Oi90ta3sCr+4GIjrdrSvEIMhTfgvfY+WiKuoLzIKnV2XEumtmVyPRZZKHNfHVefxGvPqfcoi6eKbTZPbxLH0II6WtC6qX6cRKDbfWtPybKv2+MJIdjrXaXzNERtx+xBbtufhXrBspYuu7AJFL8OaAx9x3tvPOTe2Yccnx7texCuCnx+DUM/kZL1e0noSAlSl5hH2z/rDZrNP6gWo7Fnb+CeM3WaoFaCxwBzrRxy5ZiVudZFTDFXRWLknbe/xX7o+fSTzzhcH5b9bv42Wk1SN8XIlDOpS/RDE1+4cYyyXtfTfgu7Xq3nY61gtOe3QXoLxFea+wom2s+WxFl/rhUNuXHd/fr5OiW1Qgim9imn19xHBq1/lHYdbwny9Zbf2v+tWnI6Hr72FlnO3wLZbgK4bwg0vjnISOb4DcFL0tUDOL8B28mtaiXgyXwpxGVSl5K0WGAcPHCynk+7EFqxbJqwNAGJVqqXpGM03wVLztS1JO3ZfxMc6UxhQ8GjFzRUqJVahPk4k49HtMLjfMYlA2kYkAA5z+Q5MEsk7pJRFJJl6ebJTLim44EyH3n5zp6X7+4pv/iSp9PIGDqCO5obog7uCi1QbPHuYoROPaAKdD10yenksnKke4HSGUIPIaGh5/r6iqeHmeECdsni0ypWabFDFWsPGCNDOCP2O/KcmeaMzIUUIxf7gaHfUQj85RfXHK6eUWvl3r2INqlWEWs8VzOBC66kRIJKx/X8gDNmYjiSNFCKqaeUfOT4+Ak5KCmaJrwNHO+rkNY85lzH2RpgpXMCehK0i0jJaHbHXTDueRgguJ694Is/GJ3MtOFLKZiulyu/iFJbg1iplHywht5SKNNMnidbnnzhjcn2t5CWXgpnciMipL4j7c/p9mfWBNzvCCQPik3Fq6oSu8QgirrZmvhiFIKp/oTo90kwMF1mU1HbD55N1+JVk548Z6NNZfPeqIIpErzA23wYiXtZMsUhOB1OFcTok2WazD05KyqBUhLNAcZih+r5A6VpLjdlkmbyqKpLZhAAFecAA2J9P9BAAx6feZ8E0PwLiNEBri0KESHPMznPVjVzM8UudXS9+bTMUyHEgpAQ6eiGwRWJZFmgVJVnR7iqkT1Y70Iw34/aplZcJtYcJY1yMM/Mx2sohXncm1t9SMTUuWpegZrJ00SOwkxF+o4ysfRahQB9v7qiD9E8NHKFw+HKsuqlcH35FKEyuLJaxnFaW5yxbOTkTZzT8UieZyR29N2eoJjC1OGSl847Xr/zMnz8OU/nkel4sKx9EPphMEnaWgh+vFVBQ0cX7R46aM+zsmPQkRg2tZSmUtEmDDbeOtkzdMX6WFCvhrnyUpecWpkzgstwK0gCqlBQaxncmAGqAsW9LWJykNxkNyd7juBmjLZfEiPdWVgj1IVubD5QUmZEZv8e7/9ogUVT4JHWrG0AFxfEWCp0QSzx4q7KWovN59GVPARHknafbRRFX8hNtVGQ1rnDAsJWQWDxJfuaD/EizymlpC6Z3gZY1qDqNMDa9BFoXeahZZMWh62B5jas2z5aejtCMxiWJV49eYM4rHLqXqNuqTgA9uNaP/+W4PLGFmLgzVce8PZLd/nk6ejZ9EquypdHiE9mUjxwHhNp6Hz4iit1Qp4y0/XIeH0wr7KSvXfM/hkrQZmrMpbKWIwlsRy5H2QF9hcX/KN/9Pf51V/+Pj/92Yf86Z/+mL/86V/x5aMnHMeRPBsoN1aI0IXA2X7H+dmZAQVPXC0qXZtzovX0Om8buw1ssDzf5pSTrP9phsquly8ea6O+3Ppvfe0KKBv12ZKJHg+FYAuA/QVPVZ88v20lWnfkdJxsr/1t2Hf7+61AQ1hAdAPK608f+f9zgwzi4BWBdjPZhCWJddJ08yp0PfllVn9LRHX2DIpnhaJnfoQle0Tj6ldFsmUKuxTRGAh9byVpXy2DlrWMXYrpmEc1CdPg+TqLQE0KspqaQRp6Zo08vdwj3Y5d35GiaYgnz9yPkwGiebIURJ4mjuPIOB7opfLKwzuc7QdeHyeefPSY4zHR7wKdHQy7PlEkkCXQiQEGSb1RhbpoooTek9qGVGvAXHIoih1nCCYFKUrfkv/+2uY5lsSFS4L4WhIgR2Iw+kTXBbouERO8fP+caZ758PEziip9P1j5EgUxp9oYzb3TYQEhCsNeKOGMw3SX8zIiqqQuLGucBjWpSbEAfXHfjK183wIso0LlSUlURJOBwxRtaGhFavH2fECFPBfjwwto6YhJnEpjVLFWji0t0BLT9Q5RoFbyNC/KCupjOASjv6S+N4lRxfw0HF4gQthbf1BIHcdp4jib0HBAGXZfEkMkXz+lzCOut0XfJx/v1tAWEGopxmN3kBRSXNxQBeszqgIleza7C6Q4+D6PzHPmtknuhds80wUGMIOXxmueUCpaMxTLEMcQUEm2QOXZst5d9F4N2SQ5TG3MAuxqCmbZZD9jdP56kw4VrxoGX0jM6htpd56bgkoIS3VBnXec+kgQl2+cWLjxNsaNC6zJKos7/8yUeluYNwlHNJNn+OIQmInsyozmzPEgnO3M1E1C60VWymwNjloz0zQTdeZOqhzzgWnuiF1r8rb7TtXOF4dGr1MTPcDGXAwmAbmlZCU/1uPhYJUIlMvLS45TIaSOGGAH5GS3XR9bD5rSdQlVN65MpppRVJgnqzynKNw9S5yd97zz6j1+8ukzjteXpJTIIVH7gVpMxWbraqxaiJKQKOQEc91znZXzdHBJW9bMoWUW8DTiUj1FLcgpo8kdx2QKboidpzIeqWW2KlMDnHivYDZueQg2R5gSSVqSE436hiihrh4XomKTs0sJSksflYJVRRLgtCeAOkOZCN5M2+QH1d0XxaVAvWFordbFZDze7J4h6vs9TVALEjvrj8d57dVMdCWar8wLu23LAj4n3kxgf+VMqesDDyM3ipi2NtiyW9cgzD/c1l0fnxbhbzLCKzCxF9tr2hBdNzl9JKfPiJz+3P59S8Bpj5c4UPWkqrEFG9tj+Krt7sUZH7z5kP/xZ5+777J9dlbl0SSEZ4XX9JKLO7amU6zaOx9Hrp9dcf30GfPxaEIvXsnPxbyO5qJMpTJVpegm6t0ANbD59MH9u7zzrTd4//13efvtb/Ebv/YrfPLJp3z084/56KNP+PDDn/PJJ59yfX00OnHa8/prr3D37p0NQNgESL5tKxYGKpqKVYsHHGCeVDZWELqcx80V3BYyLNz9awCGrMdqQ9jiWFuCgvcO1zXOplWOdfmiBjDXQXNK/druqN7yeD39XzMeBNh8hziouA1IfZPtm4MMDe7yVnz1W1FZu6ja6kxgJWmwCkSKprJTgDK7MIzr3idXCwmuCBP9RimKFDup5n0BmuKmkSZB3fBlgZA8cCiZ1lhHtmwQWgm1kIKAJC7zjisdGPqO3a5j10WGhGW0GiIOQsnZTNtKZponSs7c7WHogDJx97zj3i7w+fWBkAYkdt5XoouZnFUtelLfk7pT2kv2i9Ayhbo5s6qVnEfnfl+j87g0ogesWRNWxFl8fDYxkxhAgxjAGVtDorlWv3r/guM48+nhmssrAxldraR+T0hC9IyaSeeK9zZA1wuHy3vEOjKEJ0S8sdU9ABpYF8IiJ4dzJS1TUJA6W8XLF3OqIgXQaKZ2jS4EaPEsfi6UeQKBSctGQtazSbVYhrkUn9wMaHR9JEXLmne9yaZyJu5EWnw8GfBrC7tRvJq6hDWXaa2U8dr05btAHIIp1XhaIfWDZZxd8KC422kQCCiIKeGIunlltcaa2IzjgnnBRIlOcFdiiAxdb2aCIaNUUv9iVzJ25zsXffAm9lKsejBn8zvRQoiRFBKhixCSadSpLrKjrYEawKgmiolDQIgKMRF7dfABYMGVzizLcsuL1NqCDHOEt4Soj3tv/M65mBFlEDPkE6NQVTVZZZtwjbISYlr20TC7/96y0p5RezZFnmajzolAySNkKEXIGbJXvcpsc888T6bQMh25kyqv3d/z6eXMk/FIJdD3vd1vMZFdLUmKOUZ3LRsr0A9GQ/LWpmWtMtlgcVBs89ZhnHg6Kd25qz1h9+Ri1aIgQcgKFbte8+R0g9lkmivCLkXO95ZROT8beO3uxC+eHjlcXVqT+diR9mZYmX39KOZ8aUZ9AoPAcRKuc8+gB7qYXYRE1osp4p2doU0egCApEbQ12wOam4snoUuELpjqXLA1rlQDqxaX68arh8ULSaSBTBcRiWHNkmLrH100QFBZqw7tg9IGJBMQjYjvr/WZucpVtM8wCWsbuOrJpyVrE1vyzyqEJpAhXslo66pd9JjdwLIxrl7ATbE1b6U5sVY1NnSpr4yrtf04BRirO7I3/W7Ahf20WGehzLQS6PJp7bNv/+IFOPiPLR3q5G/Lc+trG7Ba+kn88fLn7QH/TYCGf+/QJ95/8yVeOuv59HKypIxXAuYCnz2bGQ9HHl4dONslyjhy+fQpTx495vLJM6a5kLVjrpYQnGYTQcl+HpfE6fYofQJq81AXA2+/+Rqvvf6KNXjHyG4YeOmlh3zvu9/hOI48fvyEjz/+hI8/+YzD4cBut+OD99/ljddfQ8HFaPwD63qebgMYa2P35nkcWCzReKPB6XLtt+dt2z/Tqic3A/CbHif2w89Go0uBJbdaZ7oDDfvWDRhZSGftWm/BNpt9bc/e8vibAI1l323/12KAHUsI27H/9ds3Bxk3dkpap2Q2W/nmK6DVF95o3hZd5yXpscBSkvZDDG4+JobOrPjgk6gDGaPwBMsa1IrqZNQWPS1JEwJpN/jN6LxVFZvMRQnVDQDJjFn4/DpA6kjJnGe7LtBFJVQ3t6vF4sBsspCKcjxcE/X/zd2fPduSZOed2G+5e0Tsfc65U45VWVVAgQQxFDiAANkk26huks1ms0k9ymQyyfSmN/09MtODzNQvMg0PLclIkzUlkkayQXYTTYAkAGIgasiqyqqszLzjmfaOCHdfeljLI2KfezPrFttgwlVcO/fE2UMM7h7u61vrW98aeXjWIXmi1EwvkS893PP0+pppHpFuQF0qUKoSU/TE4cH4uyLkAjuvDda6Sr0zFAMPwdtYfVGbp5GbF88pX3l/WbcUq7VRgUldlIcW0YDiR29SsTlncslLjZN37w3cHK+4un6BSuBMIqGHingOgHncUwJJfk4Vcp+4yu9AyfTh2ob98rDhE6En8Iop3hCbYVhQ7V1xp1kr7W7wxdAS94MGkOxeQ8thiF1w8Gb1UIIommeqCDFmYhGSKqVYPRMqFmFJyWoqhI4QzduqYjURarGcE0uuNB8R1eUH3Y9QNRA7G+dNWbWqOLUlmUSpG8JU86RrrZbM4/LPXWf87pb4LbQ6MJZYTkrmiZwnREyhK/YdXd4ZzSvPVlvhDd525/ccQbt+91KlO0CJUK2yTsHzGVJcKGbWH151r9FEltXEWvTUEGiLstVSqNEpVdkAR1iKl9nE3eidIkZ5JEYr4jlbYkTs7NghBLpdj0l5wyJAIGLyinHNPzP1KzWekSfczgSeTgPan7HvE2dDZNebJ32eZkIU8mT3Vmu1COo0M49HUj3ywdvn3D/rkDBy/WQk54EQC0OwWi7aAGuKiEtV930gYzV/tjSMLdBQtTmiVpNRPh5HYlJ6/0xjpLanNclqN0enGBFAs9LFSE7KFAIXZzu6ZI4CLfDwYs843fD4cM3BFbgI1l9d6twplUACc7UpIUTY7YXp2HGTz3iQnyKhQEpN7xYPrSygvdWHMOWyBAXLBfTQa9h19IPrlTudjQJpNulXDTb3htAK7nl0vVZfV3yuqnXpb3VeuTYHV1ZPqtHVOhY1+rE02LZ82SKXuTIfR6qriKW+s+rgDWhUo2hqNiETKwCYICU7btch2emF4kAmiq2HrfMWmZ03c1s8+dry+exJXOThdQUHd9HG8pfeBRirolBtXnE/9Cs90rKFCbAFEMsrS2Ru8/3N77v7pxe6GoXL3z6vsYANn/e2YGLjuj7l4m/bQTYvGR3ng/ce8bNffsjTb37G3ECsYvWi1GpoPL8ZGaQieWYaD4xzxzy8je6DCeSUwny8Yb65ZD7cUnWiKUnJnVPfbToJwsXFOWe7fWsti/yLEIeB3W7g4YP7/NTXvuKAwN6z+jDJaYVCFZujl8iPg4ZTILnNwdi8zimN6tRo386WJ538+RGMRgduk64faqU/+dpUAYLvt5zDLQDZ7G+GxjZR6C6gOBk+2/Hgf29Hgzb/hyHW1RnH9p44EScIi7fpi7fXBxmtTZ2PRxNgtxnL6CBHMwhjap49T0geR8o8IcmKMhkiM4OtFC9aJck06T3c3mzQ5i0SwOPHSHtkQ3AjbhOSzo2OZfkjREH6ALWH2iF55va6csNA1/f0XaCLVigtJVxH3QxMhcWTb/r4B97eBc6HzsLUxRRE7u8GHgy3fDpN9Duj7OQodE5JCC0Z3PrP7Gjv1CTrfN+aeNGvnyejLfUDNU+Mh9HqYLiufIJFmi34AdpxaxXn/atLvJpaT/WieUEgobx3lqi3I7c3l74gGUDrUg9dZLcL7MIKfqZsA6+kgdv0kK6MRLEw/zJQlfV+tVohMZJLlHr4X319dgWtpVK7R5ost9aiSmaDVLDghHHk+51ZNloQp2TFUuhQVEwutmSrCi5UQjLQq0GpZsISQnQNfWv5WooD19V+ldg57SuizlVvlYBLscJZyOqtidrGPpbDky2/I4iDXsE1xn3KiiaDW53WZxOSGRQSxKgqfSTWwjwFpsP42o/sH8tNkq2VUY22ESxXJ3oBuWWmqwZQxQGFjaMNjWBRCmrjTJ0ho2idvXK6L1BelR1VNPhns4XVU7SoRXUHSePjVolLhNDmHkWzGR8Vk4+NqdE7gzsb6+JEWZ4lxOeKvACfm1F5MSVCCgxDx26IJDGKoDonu+RMnrMD3Mo4HinTLQ/7ysPzHTEJD846Hl5NfDKPlH5HyxtIrdJ9N5iCXLIlvt8IMi0F0tkuNha5K9WKWNY8QqlNQRWw3I1NIKM5C+kFDg4IcHW8GKwY6T5B2iWkiAerOz7od/D4BU9ub9CQzEnQ7azQVwhLtCCmFTMgRnGcj2eM48iuXiO1LEFrm2w9LqwtmpGtXUvx4ojieXvCEgWJyftK8QJLREsQ9HHTxqDl4CxJ4MEjVh41UtSvU9GS0cnOu8h8toRtEZv8iOt+zeg0WqJsVvJoxpkGAGMDiPPbpBakFFoBXBvLJv9JjEbD0ujRE3zBCTQZaLfo/kc9xv8/3RZr6M5Ly8sr6LhrTG0N7i1d5hRg1FW0BBxMrI6OxTYQMedaO2QD79o+y3KdW3BxF2isUdmtEej0p7bfTtEsxhVh2L34dWyjFSf7dxtiJdwvL53td/zJr7zLb333MdNobSjibBGglJGpRKYsaBU0RWpoRfQMfIeY6FMiDnvS4Yb59ooyHqh5NhDt93MXcAi2Bv7o08c8ffact996tLAiNr25GLfR80cBzw2pC7gAjziGBuB5GWC8ap82FvTOzzIMTi56Mb63+3f6dwUY0uz3tfmluWxOGFIONNoxVsKUjTvvl6VPZQM0lp7e9PvnvcbLz8Z222ApGwMsucameCnIa84hrw8ymhXbDACTkzIjD/HaFVhCZxRagSEFJEVSHIh9MknbopuS8jbHtmq9SgtJY8Za473Csoja93xCtSxjm7Ozq35UL9KUAou8YYi0AhUTSr/bW32HXtgloY9Ocep6qBkRYS6FipBz4XBzzb1UefvBGd2+94zwDBLY9YH3Hp3z9EemhBDEKASdGxpFlaiFXKxT9sO62I8u8jG00gve1J4HRN8PpG7gcLxmOt6ah13jog0i6kDD2WyqxusfZ8sHMOO/EgWjF/VW4MlOEHgQI2k38/HlkRdXz0zTXuFsf875PjA02vBmHHiRb6Z5x5hNbQLFPIS+iLXE2aqVkmfj2ifrx9CMAbVIkQEKNaWw5JQ5pyE0z51QEa8oWlNEgoETaUlaLZyHugFrVZZrtRoT2wRfq4FhHmwTjnE6TRvLvvDnqaBk8xSGZkjqEuUIMVnkwxGVeChJROl3A2BRCbSgiLH2Sl69qyksUa9abey2cxe16F+srSmKKdGsPfFGbibXWwxsV3Gb0PIXpD2r6hOr586AVXSvtVVG5mTyVlXmOS/GFuLFEadKjJHd2UBwD7/Ny2XNu/D8B/c3oUV8US8LHbOpkBEMrFcVV4/bzMUiQLPiAxq3pjk+BwlVA8/Hjhx7hj6RotBHS2A0g9iWlOb5KjkzzSPTeOAsKu8/vKDfdzY3xsjb9+HJ40xRA0ZVnX4pgZBMcU1EKNVTCliZMm2uaaanRaNn2qqax1vyVOx6zC20ODQqMKsfT3CRCMv1qJicLZixbUEJM7JNVtZkgz/oe+rHT/nMgca9h3tKtcUgeFGtVjPE4+B2rg6u8j1CKfTMPn+0NnaDWtWKYpZiFN2Ky51Hl0SHJeqdOmuN4lntDVxs1JnMSPAop+Byvz4ZxgTJxgZtbdJiQ9eTriW2GinNiKy0KAi1WDR2nF22W0hdskBJi24YYrbhVQs1z15fJtkcglCmiagV8SjQgtC63p+rye+JrcX0hm7rvLskgWPzv7qjR5tFd2Jss8wpqiz1AE4ARmkgoyzG3SklBnNYqZ4ADTP8zOgTXVDGSwBjmyzcPMTLZWpdrnNJ5N7cw2qkbjzXIieffTXQ2NC5msW+XvECii5cvVJrNcdYuxqfvxqBhSBoDdiDZaDVzLNqzrvUw84qcJeuN2GUMjvYNxnldgVtp9TKp5894dPPHvMnf+aniTGu7bDY0u2Z9Nd8Xgptfq0sQENrXWpmLJStL6BLbatjrxLGurbd4o7cbNtxcSc6dTJuWj+1619Angs84M3r/dLAhR0yIFp9nG2oU9qU5NY+bX3cwMUWSGwDep8LLrbDY7kPAzsGNmQpvtja9sdtP0FOhp+2tsl4DUkjIF0kRVd+KmUJ34U+mc7yNiRdlTj7YBMltJC0u/gle+G+psRDdQ4tjjZxKVTQucCc0Tlv6BNqoe7FxeUDpVbmLEzpHmf9jn4wbfpQVz1m4+WKS6cKZTaN964cefd+YthFpDPdaAuDmyzmo/t7Hl0VbvKEJWuLGU9eEyAAyaM7CwVALKJe/fxej2pJeel3O8Zp5HC8se8db8ilMmASjLPjqDbyFQvkTLlxiY1f3BRnYrQkUZJROGIodH1mqJl+OPCtH13z9MVzzh59iQcPOnqPYFRsgc/AXO0nFxjnSlc7dhQvopOXaasi9mCoV1JWhew1B0Qt0BSN8mTeaqu5YQ+Uj62YfNG3qp47GVyKM5h3uGZb9gUDDWIPrNH2vCAQQKM7iOcLSQLp/EotUT7ESojNjBJiMYBRso2t6sZsLUYnIVg1+eYBDyEQe6+yKCAx0Z+dWwRNFdVAybrKtrrpVtWiLqraco5RLygotRDjREp23zW7lPMbvFmUpzIdjhyyMpwN9J3l1tAM87Z2tkms4nksBjJbRdngC3ytlel2JI8zKkocEhIi81Tpu57KGj4vs6ndNcMRCbQCozEIGi1yoKJL3lhbFCTYXGVUDPdoaqNt2KKmBaoU8/T5dbfq9IhwmIXLek63O2PfC/s+eaSrotloe4a5rfr8nA8crq+Q8Zp3Hvac7Yxmo64QdLZLnHUztzXbOPKFOQheOd5EJrrEUiakzZKteQWPbNSKlsIw7Ky+zzQx3h6B+8ui0xaMLVBpv1v0srGIcqlomYlUpNh8iHsXBWUYej545yHjDz7j6uYSBM4uHlgCeYzsd8Lgtk1Um4OOGCDMKXHLfVK4Joq7XNQ9Lu3Z9zyYdV3AqU15cZoZbcFbpeQVaCwuVAO9zblg85mDjQY4UrLIudSNEZ/M2CIY0HFgutIm2rUZCNLZcu8Qi5xLSB7kMNQoixxuIB8zeS4M0ehw0iIx1WXjKz4POX92KcjnIFx1MWbfyG2L7k/+UFoUQfVzcJRud9Tn5o2R6X1sCl1u8G+90ydqeKeGZLuSFvXYKlO97Oleee2rcWoRUHV6ggKNl3/3+hcJVGAb6WgfWsHUK3JFTtzpbRU02+cr7z/ip999wLPbJ4u7EILJ12og60jV2aOCoNLcFG5jtbElisRE6HbmeE4DJU/UPJtIyjTaGs3aRqrKi6sbnjx5QSnFhWd0yTfR5ZI3kZ1gtHSVYCIqYnkVwdkvLTrwyhyMhRZVnYa8GQvNQN8Y6S9trxhg2/FgL7ABGIvFsUSpZHv/S5+0qFSj/Xo+YvU8HHe2u4axX/ed3t8CjU2L6efdTJuWTjBQG69h+R3ERU5aPavX2F4fZNTq4WhZvUUm/g5knyw3IengYduATYCxYw1Jg0gF7VZEZyurIeFUHcSIe4d9v6o93EG98qpV+Tahdw9lNyUOZJ1IvfW0VF4ce3IcGPrAMKzGfsCSoovbmXNRDocjx9sb5tsXvLNT9n2izlZVvHmtCREpsD87552Hyu2zmVKUWL0cvWvWgzKPM/2uN09oNVs/OvZqxnz03wY0oj0AeSakjnka3XBfk7yzG6Y503KV7ZaDUdVyNupDiuJKYALFFk4JYckTuXcm/NT7HXve4t0P3mLnA2jaXE+pto5Kc8CpcjiOnNcbK6DjnrmSlVwqQbzoYBSQ5OIonmAdgkdrxIsW2gMfsrKotqQI4otorUhL7PeFYHUjO+846MJ9NkDgiZ8agIx4USsDG9mM/bgRHqB6rqhR7LohEeeKzmU1coMl02ZV8nhkPlpVbruMSIiJrussybxLxNSbIpJEYjawXMpkBffmzHHKS8Xxbsk/MJpdjIkUrQI5MRKHnvQG2wYANjWY0lnzaNuLjfYoLCpB4n1dyrIYBQlUUUScWmZrIP2QiEGsijrmeUm9yceK4FXgMcAi0Shoqdso99jCvXisNkaM+HvNzSU+qdfmDUCtjsVxIs/ZivPVaoU9Rei6ZOpEXc9VfUjc3WPoe/YdDNGrTIuJY5idXNCsLqk9M99e8e5OuNhbzk6eTBISASlwngLHUlza2al9Ltyg1eYGb24ARhcx2sXV3kiK1yQqDLsLcj6iZabmVWyiORsaCSGKzQ9tMT6Oa9JldWND1T38Gg3854q68IOoMABffeuM7z++5unTzyhVOb+4x64X9i1Y3poZDxxU0CiMc2DSjl0QB+4KZJARSbMBSB0gd5Y7qC065h5Cz8FqwiDUYkaVWPRXc6GpjwGezzOboENzIIVCKJZPZaClDXObUzSuERVpSmbqs33z6C40zLrIiJuvwo2VZZEKUCMx7QgXXug29T6G2/suelLB1TRYrO4WpdHyBZbTG7DJyS/WOIKDvo2N95MfeAUFJ8nU/lrbTnAOHj1ha+xvjMFXnelzgNDWwF3O/SrLUFmiYnJ6JSuWuLu/+VQzce9uD+6d89V3H/J7P3jGoZj9YuI64pFdt0bdQYM7ZNrhzMQLoII4EKl+T6spbePwVdeQc+Hq5sYiod3L93/SEnbwxXFRqylxmong+824rneUo07oUrpELhZQoXfb7BVd0Ghfsibhb960NqosUsNbsKS1RU1OqVnbYy/365+7ezm6BY4bgITq8t7JR7ZNJyu4PH19BTKCRYiCGCBuCd+N7RFe8yH7yRK/Fz1u89BYIp16dCO7l1acxuT6rC0kHX0xbxP63ZB0FcufANSr4Nlk7AZg9NbaeKaE6uCgGpc+eqRE2oTgE2o2/urhqLwoA2EX6TqvrIutD50IQU2y7eYYOObK1c0N4+UT3t0V3rq/J3adDY5pgi7Z5O4TfIyRhw8u+MHlJaVkcjZOck0zWix6IALFPdFdh1MZnBfdmmEzCIx7mIyCoJhiQ1HOWOo5LVW/A6BFXTTFzlHyvMjJdTsh9AmKR4IwZKqxGQbCxcOH9Pc/4OKsIzbjAxgx271WrHZBBp0z4+GWMB0gFYyigqtAWTEelUoJYjUiYiGEbMnafVqeHsN/9tlaKpotqhDbJN0P1jDTDNpkaL2BWhhnqehb3Avk1IxW+I9g+RYUBxpupAZAOvPGFEWzFWskCHGXkD5ZyLZ5CbMQxCBXmfOSn6E1LypkkhK17NBaSaVD+x4JkZSCFzVRJEMtlWmaON4cmfJkVDbZmbpEgL7v6PZ7utRjtVIc17/hid94Lky3T+Y9byHkxixqC9jiAgIV50yLJYXb+ubCDyGYmtvOeMJVK1WLP//B1YQU1AQDgif4h+SqOwhaskkvNtlAWY1FavHnsy75C2t1W3ul1Jnj7YHj7YHsRfyq13qw51gIoSNcfMD84AFnFzuG3So00ZbC6nNiVXve52livLliT+atizNStHE8TxO1VBOwqso+KjLPNl+qLrx8UaMTRhHmKngKiTn7qz3XnYckZtwuDcL11TPAwEbJE1VNYEKByZ0jp/5LGGdXlA722/KVjKcdXRWwThNlPlokUCFi4Oqs7/jg0RnTZ9cUGTi/17Pzlak5X4raNbZc6lKhVGEqhV3yEy8MtRlVKyqGRuzqWzVgZRvGqSU7mPDos8toa7GikAslBqwGxTTZfooe/fTFWsuSy2eKehZdyJNS5kIkEyT68y00qWVcYc0OanNZU+RbDIuqSLXnoGYbexIipQoyFRcyqxbBaYpaTgAkBKTvWOhZ/pBtfTRv4rZ4i5f1vu2ugGMFqM3Y15dR6+KtdSqIrxdtW4CAbHMvtk6I5ZMbmtbyEkh7/Yt/oBmqzUjU5dnyo5/eP9A8BK+MY7wENPTk241+dHcQdClycWYiNZqNPVI1L9GdlkO5NKODoRYpWI1cdUegbpw4svZFi0zcubRxmvjRJ59xPB7ZDf3dRt7cPGsxQhcbMixd20LpfvFGMXxFDsYmstGM9LXjXnFCf0uXcaQWNKx1VT3dRK7amLmrLHUKBvSVYGP5ade3AI02KtZrftWPn+jkDnS5ljYm1ze3Y6HRDAXcmRIWgLFG7+60yxdsPwHI8HTk2lraVTZq07Z3NZ4goG0C9XtwdNkMQXyg0h4AseRXm1DdS710tC8eMa1h4dAoJxbliGILgDrSXqOPa0i6zJnPLhN537E3PGMUJXcCJb/0XgXZK7kk5jnzcIAvv3NBv9ubG61WqLNDdocpYiH2QWZ6CnN7CJfKVZl5DoShN8OkQiJSUVIni/ES3dby+n3uKRNmX9jm6chcCq2Zs4/1FsEoFTN+cCWSWl2i04x2qb4gbido3BivA3V4n263Aoy2wHvpEObW5aUwH27JhxuSFLpdT3RuoKZETpm0FOJxqtCsjPORqoW06+l2e7q+d9UUiF0yT7Ka+1IRCzioL/zROVq+mPv87bQ0A7bEZF5FMS6tKVhZ1K3mGc1HN8JYcnJRtUBcriaBO09m5MczUueKMrGy0LEKiFaCZFKw2i1Vo9GqUEIfSalfwomqUGbz3trypcSU2O2H5TqGOZKiuDFmOTwhJuKwI6QeUV1CzXlu2Thv6rblMKsvwm3wYkZRixK2ZUiijQ0xilmQZNXccb3/2NwFQtRq3N/sORriMqWh83nGaUOu/oYWyjwu0agQnN9c7PwWEavM82yCDlW9uGPxCreZUifGcWKapwUDmpFQmzYZGh4Q7j1it7ug74U+YRGMAEFsXq1VmMbK7e3I4eaK+XBNLKYmtd8PaM3M08w0TmjN5tWPkbMhEo/VKAYlU7XHFLLEamzEaBSmaPceIz4XrH6jXF2NLgRUrRhmrYVpHK3wJ2boR8PjIJaTsWA4tftpRa20GhiSms1hMBc0T6aItESYI6ETQtfxoOv5mfN3qY/e4V4ni6R3AzLNEdPOV1DGORPnkXshe76F03e1R4tSpxnNtwherDDFJS8DiWaYy4zqbB7HsAoNLAhRleoKdE0mNnaJOPRWsTyY15aWP6QmDiCiVuOl2IIe+k0FcbBosj8PiEUlxKuLmzJj9IBDWZN9fS4HWKSR2yG2kqsujavVHCrLouKNqNvClG/gttA3GkBYQMXLhp1NI+qskkZVYZ1a2lrTIkwSWnqfA472wc35X9qBZq8sHmRdP7Ty2rfUk81PO34zYLV5oP2YG9DQzqvLOU+90a9O9tbT94Slzsf2Jpohee+sZ0jC1dGMdsXyQLf5IqaoZw42c7ap2zuy3HOIHZVgQ94N5kXtbIlrLGgIxJywx3EyupquVKKTbevl9/upWgnqBX9rdcnVSrlj2J+AjRMVqVdRBKyNZHOiLTBqfVUboNgCDNtZIh0nfQRLnlUDGNv9V/1UdXld+MLPLaDk9C7uAOO7IFk2jXn63WbHtHIE7Zl7XYABP1Hid5vQHGAwQrQEadHeqjRlG5BaKpRpE5Lm80PSc1tw3Owoxar9al2UpUIshFDQ5BGOpRM92UiSnbcWlz11I9tl2DQXjoeJy2Og6+0zWgI1wFyFTnwx87brRHjvfsf+Z75GNz2g4whajfvXpN1qxXIQsrVJjEZ/YmKuOwcx5gHXInRDXAZJxMKCxm/zCUgNNNTQBgUudSrm+QPyfDSvaxsOana3K7cZ3iHSI4yei2HexIzkGYp5+A2V2USBe4jndB/OBvrYzDUbbi3VuBTIs52vTDPzdKSM1/T7gs5CDUIcEmFIRqcqM3XKhOIJZCERc+F4e02eMloP5Gkmxs4lGIOFSLWYe1Vt4aRUpIu2cKZmfJoSj7cCDXVJ8CxRTNGFFgmrglaL6FgBwd6LiGwnODEQWwqH45EsMxepErqAJDNQqYrMglAItdJL9Fw4pRan83TRjSxFQyCmniAGVsyLYgn43a4jnu/ZXczoNNOKCBUNzNlAUqmVoJXoSj3UYAD3Dd7KXIh9XAaYdad5Z5cwrQtI2FMeUDFaCurPaIgQO/NngPWLWPvZmFbPlWmqPrLQB0vOVvBQvO6FRw+ie0RDxOavbEXc2uRvNU6KzXHmRkfLRK2WKN2lSAjDZq62Rbdqpmri0L+N3HuProt0QWx+iLALkEQgwlSV20mYcuXm+goZL3n/QcfF2YBqZR4nptvRqsQHKzaZusQ+Bna3gaPXk8GTK2tMhCBGXZyFJLIIICwpKW5TrxoZQgyJlHpKVcZpZFYT8fNA3JKfFVmnde8G96lky8dQQarTWSWYfzgljz6bw8A8aj3sH3K+v0/o4klNjuzHrfh0nhWdYT5mDtdXhHxJHTz/QSOQQHeIdASZKPlAqdlAV+o8STsslMyQgtVj8QjpolMvlRDMgVbUDTDpLHewHxDPv9JiOYFIJPZNhNzGLbFV7+7NMaZgi6E1lLj4hjYednSBge0i3hYH75vka+DqbPfPhWA1dqQ6vSqwJKETzUgp6su4rvL6b+B2kji9iURsjbr2uWVOca+UunrgmjC7vteqMAd3bGpzgNw9/50/1o9sPrt5rSUoi883rwIby+dPDOg74OIVp1n7UjZvbGkyp4BlOUf7zmI1Oz0mRB5cnLHrEk6G9O/UU0DQPOZLFMbXY7+f1m6y+U9ECKkniTDO43KNy5WrzQufPX7K5eU1Dx8+WG/p88br5r5WRSlW+5H1Wpck/y3YoP0+3WS7J6evnYI3Wa79JZBxcogGqtZrPgGkyzWsFK5lfxP1YNnHp5FX3NNJBGNTGf7zro/lrdM7b4D9RLa2Aebtd754+wnrZHiDR8U8QAfsaYxQu7U/gk1uxmvEVQXcMBTz6iwh6ZwXxKqKgQz33EuMhKSY3j0IFrITLxYlnlg3z5UyFWIs5nDWxiWqHiW2Ct7TNCHzSJ6ESEdw2ZIoUMLKOY5iDfNgH6n7h5RxJtw+R+ZrtLhBKCASvTaCLyjRitrcTNbZbVhVj2hExOVqbUBVsZoZLriCiC2qQnOkrV6aUjLH22vG42Qpw16jYc6+nqgdb+gxr2gRbiWQSyWPIzJkkM6shdCZMV8stFjoOXbn9HGVttzOm3NZaVI1V/J05HC4peSRpIXpYInZMBi5W6JL6Hr18OEMOXtIFzq66yeMz5+geUZrpbjiRJnUqprXahz2LhGcdhdzssXVi0xZY3klcdfYN6tcYZNfYe5aA4a1KtM4G2c5mtrZutKaDKaEgNbEzWGmm2/Y9YleOhgGNPYwTQtQUDV1qeRF/EoGwRSjzKlZkM4MGyEaL1ud6icgyQoyhmhJozXnJS+lT4FcMvPtkRIm+q6n66KBjfhmF+OreUZcbSjQ5HttXJm6S0GmidBZFXat4lLE9tzZ4lHpOosINaBsz497cFH3GvtI3qzVIYgpghVTTTKnrxt1LWyHAfBSrE8EIXSBfuhIScnVKtmWHBB2nuCLea0b2FmiTxNzDRzSu1ZzxumJ0pSCsDmnA/ogPDqPiJ5x8zzy1q7y6DwSqMzzRMkzEgLD7ow4RLrecnjCrJwNcGzJmCUjmqhFqGJ5HDELWQNdHwidTdSNebgkgPucWmqFPKOy5rK0J6Xi4MJf3MjpY14/Vw/DFvrkNCTBUJV5GwsSFYqamtJcmfYXSIjs/Tzb+adgYMZVzylzYTrcMh2u2ekByjnUSKtBYQt+WNQHdZq9BkrxtQpQK32qRa2P1ZxfQSLEHgm9R3AzEk3VrFWaXyLqxQFdLmtidlPFc8NV3AFliNiTYJqjrmwSZosV6lSXRLbzYf+5h11pY9qjQtXu06IayRJvNPv8GFmT0AMlV/JxZthHi+y1KMgbuK1RgdXaWWDZ1nBnCzTYtP2p0deiGYBHpipBoxltqxv7lYBjGal3DdVmCLohas7YlZZ1F2ws93Z61JO9U5tu85cuUKL9wRcBjW2isZweCdXK1e3IMdeVgYIs7bLQlTdfVpT5eCCmREg96wcWS9g/K1y88yXe++mf5Ye/8+s8+/jDpW+sW8wh8unjZzx99oKvffWDFUy/qunxvtNNe5i8lH2l1vVeX5KmrTTq1BY7Le2/AV4vNbniILVV4NbNd+70zRds6/hgs0ZtIhqc0qpor9Fea5PvKcBo9UK2Q34BGO2etpG+O+3ZXrUuE0/w9mjG5t/r3ufrg4x5tIO2ZG5NaOm9KNANQb3GhYd6F28KCuKa36h5ZG0FOg1Jz/NC7REVq5kxdBaSliYN2VJVdAEQi0pIjKQ+uIpLXEef2ANda2WeRoYyE7RHUEo2ZSGtMIpRp1IL2AhOGxLi0FHTO4QbYLqxBaktKu4tkhCQJOy7QLm1hM2uH8hOL6ulUGJBomnCpy4wu1cFtWuozimOgl9XXbjiQQLz8cjh5gYp71gytvq64iOilZlQv4EaInMpJKkMnfeHeERAA6IZrZWZPSUlksG37XRlv5fFPTMfjzBPMI/sZWa/64meGp7zTJkmU+/BKp6nPhHKbItf7In9jv7iDPJkahBEq2g+j94nmTKPpGS0hBA7YkjkYAZDUa+4i5C63op2JfN9LutBFz3yZp49rZMVFxsnU7sZemJJywJe1WqbtEnm3sXOKoV3WCRqnq1+ymzZ9SEG6J0S5edOPg7No+iNt7B+1IwTdcrhUjgM/xE31ixqYdGYwJxnxsNIiUfY7yyROf2EfoE/ZltIitYZVYtQmLVbPUnfAYGqKc9halDZZUBVjd8O2RTplkXOxSYWAyPSCvHZIYNHO9xbXCqqs1FqvLq3ND48gdDKTJdKmQ2shgJgKmVdDCRVdNAlbwpwoQcM6FRLBi9l5jgJJe8Jc2YeZ1LoqQE6f86rwuwOml2Ad+513P/5rxOvHtDlF2boBiv016VIDJHQN5UPi8TuwgHmiqBLzkjXJVPVclvMlMzMvg3gClQ+17ACDhElzyOx65nHI+DOF/9MdmZbVftuaY4SLG8CsVyHkjMDMyGawoZ5bBtNJ6AhkLMydY+QfWLYrFm1HQt7VOZiVAopdm3z8ZoyXjOcWW5bWxOsbHozKspCGdKarS/ztIyNkrPVP6qZLpnwQj8MpOEc4g5CREKHDK6OGBbL365Q1LxTroKoOS95iLIGEbzBm1Hv66esgAFJBiyqD2jx95OLUqQOwmANPt0a9axYQ0vj/PZe3E9bzmPrIK9DJErngQ7UAdObui0Ag8XbuoCNjTEFZgBvgcZd2U8bOeIrX1NMcoARI2ueBMv3FuNv2VYjXrdz2NaIbJ5gCadggyZX/QqjT7bmHneiT3es7oUDxnIN6/7pZ9tf28O1/TkXPn5yye3kkYmWVwsuKOHgfDmHfTOPN6A7swG9VReDGGuPEDu+9kt/gf/sf/a/5tf+T/87fuPJD5lGr/vUwJ/A7XHk5vaWWqtF51559W2v3XeLZIsXVPX5vIGMV3j7t0X37Eiygost4tgY3st5W6Rh886rW/kVm37huydjZ4mytGteAMYKRpa8ks39LbYvnIytBtC3752Mgy24Eln/bmsrm6jh62GMnwBk5IlFWap6SJqeUI/kaSTXmYQVSbEqrO71CeIh6bRwWk9C0tHUY8wJXYlhG5J2ucYWksboKN4VNhHHSC8CMpjnRnFr3Sx3UeNxE4R5vOV4fYnUwlk9I5ae2HVWxCXKYvtpsvlewDxrTmeo+7ddpfDAUvipndOTi5MEqJlcCrlkVI23nxW6EMhFSX0kpVbQx2hSYFSk5A8aFWIQMyjcc1/yyHR7S57VcklUiBtQhBsNRWEuRrWpeWaQma7rWLPEre20CqVEpm5HcnTVHtkZp0U4FrT0m0qeJ8rhmjpe8db9jt3ZzihZ3t6aTWlMFcRVcuZ6i96ORmtTBSk2PPpoCbElErpIGHYMpVDzkTofoShBLQJW8oROSm768wTi1DH0g0U9JC3jAe0tmiViEQpRglRSFxE3zlSbUWJ1KsqUKXkiBOFs77URxNfpaaSFQ0NsicM+iYXAydN2d8bxhBkDG60YkdkBbfJakrrFKxMT6EJc1DFKnplLJmraGCtv5iabRQsszK4lL4t5m/TFVb48SOiA0J4J++3eAVVM9SuZDehgg4ApGZVqlB1f4AFvfPe4FyVEUwULMS5ybyEmUgMozZhp1EQakldqKA5gzPi0Qmh+jSJISoRSqeOM1BnqYM+Yp4sd1LB/ilbQTjGMmbqEPnoXPZ7D1SeIzIsueYggWq0AnJ93PyTqzYxyBiLM82QKXrFajRBAg1XllerKdg5ymjFvVKlo0SUU8szx9pqSla5f81nmQqtBRwV6F9GYi3DUQnaANY9HUizmzXeJYkEs/0ELpcAoO+rFA85EaMI1bZvdvqszhKrkrJRp4nA4cjgeqXliGAakj77we1SrGTlOyVq45BYqt+PMZoibdLnRAGLqiN3AIltcdXFiLY4xfCxG6zTBgIDOmZonJKxRFKKvg9gYtYQuo0gtjrDgkXBxD1Pb1M8TAqTBoiumBgCSrPr8Vr2xjWvxNRoFihdBycRQYbCq50zV2Ahv6PYqgPFy0q1/tnmbnZLUPNBN/tO+b6aiEFYVuU1dJFuzGsDYTPEvAQ01mqx/sFFe2pdCCBSXng0hLB7m4BFYAziwQiTfbxbvF3bZaswvrzSAdOf1xfDU9d7bdhwnPnt+zZw992dx9FfUVaN0cUno+striywNtAEgtmfy7+PNFVePP3E6/SnMabVNcm620wpSPveulyjVpm+8nxvQUFo/2vW9JFnr7IKX2od2zDsAY2v4w3KNJ6CSu32xfa+Nu5MzvvS95fcGuJ4eq0U47MU1ob0u17+eYnuDsjw76zOzva71+hbn3fL6FmC8Hsp4bZChpdjku8bGDf2nnpAyeQlJu9KT4pZp86yZOzygq4coWERBSzHeO260LcmfgUUaN2d7rWmta0u0c8Td3tOW1dsmWUtGEhEoEzWPzFPgGJRUMwN7UkyUAtJF82WYjUIMKz0giqBdoJ4/QqYOqUeWkLRza6GyS4FIYc6ZNE3UGIkxUjVRqzL0ieBUmc4j63OFyXPEe7fBbF0Ojl8i+/05tWTm6WADyRPUXBZ8QakZk6hULHEthkSfNlGl6skVYjVNphKZdz1796wu47DtuMtynu2epjxTxpFdUB7dOyN2A7VMiGYEozDV5Ia1L+5FlXk6Mo0jqpbk3fVW1Tt1Ap5A3fsiq7qjHG8px4kgVkujFEuwtciDUot7S0uwycnlaUUSoRpwQASdCnkcmY4TpSh9a+BSqF6Po6pX2JRoBd+mTJ0nytRZAqarZIRo1pQlZoY18bK1VvGOE3VDQpbcDy3Zs/mN/ofGdTEM+ANsxod9PSG9hdJLtUTeKpGS60/KcfxjtUlIPhSNKqUSoO+IfWcJs9VzKfD6J3glY48ONG1uiU6LEkPlhhmdU+MAorpSgXkNoYh7hp1OE6Ql/9m1KZWSDZyb0l0gpd7AnwiklT9bXeVOqxUJFAcp6nOfDX3XFadQxwPz8UDuO8ZRiNqRixnWXbeOAxcXo8Of5+GMMr6DHm4IGP0mWOUPS1DXCjGwG4RAU8mKxNi5wpV51WNnFNXMWj2oNNAUDdiM4AtVXRag4+GWPFdCH3Dct0RPm52ylDMqQIgUnZmmzHS8Ybjf8mUaZ9vpi7kwZ2UcHtB1caFsWT+wULSqR1FzVqOtlhkpE3m85SwVznaWB1FzoRyztZErM9VWvFKtKnbAnF1dv9F9T4P1qUDsei/U59QrWK0WVxIDf75zdd0PsUiDiAtKyRr1UKCGpcChBG/sAIu64hLNr2sOhbBy2Qi2QHSbHLSurXGYFVga9co7pTWmi7OoC2ZYIS9dnH1v6nZC2dgaTGyAh39ORReg0YxR+7X9ww3cxZxsBu8aBTEDr55eiK4m8AnFZSOVuhQk9uM0QFGa0yqIqcq1+9gkZDc7rqlWvcqoe5UJrsv/W6P07oeaYb1B9iKM08zVrUX+DRqsh9KlQOopuLKvOqtjeWvhnKztkzM/+L3f5B88+4Tn3/tD5mlqp11AAsB+N7AbBk4OsL3bO3hrAZI0g99GgznzVwP9tH+sL5uiYPuaRbqW06znaNGwE4Cx9rNd/ybCpSv4ONk/aR3WPmjt4Psvg8V2qAYu2FzPnfG2RGY4Aa3b56PJz26VohoO2YoRnMQ5TqIe8orR+OrtJ5ewxUPStXVWWYww1Uyd1YoLYRN9yTOHw9G8/Am6FCwk3Z9Z9dcQ3WBrIWk3zsSNwQCURkuxgeouhpVr1sLlTRaC2uL+i+d3GDp6Mnm8NWOiFnqf1DV1xJSoMVDdQI/BjIXsHRW98WvXIXKfUBOisy0ORUELMVTu30tcPIdn2aIZEqLT8GXxtKUlU39drPuuKUr5aIigXmuk1szh5pJuOKNUtQKucfnYol3vYjk0WeEQTLlliDtib4uj5rwYwyqRqbtAh7iAlWU4K55nYM2Z55nD7Q3z4QadbnnnYc9u53k4IS7HtO5rifd+tArMxQoc+lQuGii5EKQQkj84ZV7nr2yJlmnYI/1A1EyeD8hsVdVJXtxOq8nHqlVfj1SX4jRQNd5OHG4O3B6OXN/e8PD+OQ+6jqCeaOxre+oTqd8xjdeU8WAJvnMhJOOo16rEVKhJSbvBaFoB91DaPWo2364VlvOO3fDEFw4l7RENps7Roh0anLZjVqpiXvbUm6GrVdFWeOxN3UJCOk9Gq1jEyV3YUgrBs4drK1RWvaimtKhR9Ufd/m6VoWubaCnG9Z8zWlxiVBXNClIRiTb+giBdcke1+CJiEo2ao4NLNzsUkOBVmw3MBBFEkoOU6gIVcVEbCtUNToGBQtAj4+GarouIKL1AigkNQhH/bKupJmtuVAog984Z5/eIx08JUjd1ehz0hMAwRHapcpwzk7dLcUOiAl2ywqPNVprMhjDKZVuBitUACSJUb5P59po8Hsm7C1OWYp1ym5O/RTvnxQYTS5ovM11sxswyOdkFUKC7IF5c0IcV+GQ/QmENvGqFki0vhdFyMbp65K2LSB+gjhOlGLVUsUm75IqWTAhtUvWxR2dFSYO7YZoSE2LzWAXNk+XMNOO/+TNDwiqUKnq0oqv0TulNiaUwVtPxna14pjhzc1npYV03SvMINWDAQiXW4pG4EJCu86iIrGubYAsBrAogiGfLV/eUiUVUmrSY1BXgvKnbCb1ohRQba3kxkhab80RSyoxCWQx4t7nvWk0NRS/gwhyJSyXx5X1YpGubXanNPsLGi0khUp3aKe5Qq0teTbs8L9e2WogvX5dv+oqdBWDo9q1X9fVidrJQYIBxLhymDBpo3hJbjiwfblXM3Kzv7rSRuAqc0Nb/tpYVi/RNty/4+A8eM109Z81bXa9JBN56eI93335rqdz9+fe7ueuN8WLNaB2q2/5YAIGe/n2nWZZHVFmj3ycn3Hy/rTt13V8+wwoE2jUAnNCVFqDcxqJuu+/lu18Ot/nQ5hzrR5UWeWiPSwMUi1LUCcA4BRvL87MFE5uB+PoQ4ycAGdK7l7kqkH2eUk8yNJ48tXpSZSZnJc9ueHoFNxGrHBnTzjxG8IqQdIsdODc9BKQXkNlD0iMiVo13SaJo0rJWqMFb1EPSwR7os4szHj044+PnR2qIqCRSmpnGA1oysXYEVSR1RAlGZY1QfW5uofwkoClQy56YC43z2rxFfZ+42CWevCjkuRjG8QFVSiHkwNyqQuMR7zbJuYER29wlfvJSjBNdK8dpJgP71ly0qW91aEk1rjgSCCFR445SR8LGsyVSmMPAdL6nC0K/GTPNDLCChzBPlWkcmY8H6njLoz08erh3A664Qd9bF3qhO2ChAURVel8cbZBb0m/wauhmg3jYstjDWmaLilUZPbkei5B5wn5IiZALebb6LDYfKWWeKWNe8iFmT/ZOvTJoRxp6QtejWsjZckVC7EnRChPu+o4qllxKVZOW9OfZdKLdw67Vq8wbuDG+v49j8YZr+/j1p+ATUqHmyb3gxRMB22eFxqtv9AdTBAoQ8cKOb+4WU/SF1B8qX6y0qgG7E4lB8GoKIEYxCNKtzUqjxAlRqhu2Nk9FFxqSJCY5O5eFq9+Swhc7Tex1LQZQVFq139WYsUrrwZdxL+bWJEdbMpUYOBHv+kYP6ofEWTrwfD5wuAmUalSA2vUQhH4YqGLxidizFORc7NIQkIdvwVUl5hfAyuOObgcnUfZx5mo0AJKySalqFYYhLhLdMXpwWGF0Zzx66qNVQGJHDJFpPFCy0R9bdGH1eK023FjMYLK8MJ97qBZFXQy9tUkldOTuAWlIJ3NPYM3/CGKUqbkoc86M0wzHA/PxhrOu8vBib/k1WYnJcudATOktVFQT6Ax48bzotEqiR1eg8RZDq3kEEIx3vi7eDaisEUktk4HYWqB3tTqPulMtUlNLRWKrliw+OReXr71jHLf1rCpMJt5roNadFDQvsdDqaSxor0VMfV2h6srBleT1gupayKQ6wPn/g22NP+iyv/UgwyuMsmW7AzgAtlEDbQbs1qRqq63NyYsnHFOrU1GPxIrVNanrda1J3z7Py+bHL6dZhFvjcHlzY0i3j+vJzt3XrDVWY1v9+VvPuxqcNm8ejxO3Y3a7qUm2VmNOoF7rYj0+QIiR4d6Dda48oSeqC/yYBHva7Q2oSBvD6+QgPnf0XUfq0uJRb/259PPnDF2jFbWx0Dp+bZyVyvYyyGgG/xoJaWPCx9QyHawUqS3IqHfv2c/f2v3VogFtrHlbbufIdvknvc0mouUON8Tz7sRsO1hYl63GRVgkaIO/1ih6nADME/rhckq5ewWvbvwv2F6fLiVWnKWMs1P6naLgIWnRSi12YyEGUmeDsoWkq4cHU98jsfcFGtrAB92EpN3MzWpJCiGYNwYISZy+2pK7cWnDihVb88m2oYJqH4gx8JX3H3J7/JSrfISuo5SZMkGpyk6EFJPJvNaOMosFRJwy1ckCfagIc4jU3JHKAaFxw80Q3qcAdWbOhZ0YzznGZAt8NTUCUajbkLXYGhU3XOl935GWhElTqxmPt+Sspta4vUXWfUSseVIkdh2HKXJ9OTEk6Ptoyi4KMz2hj5xFaGVvFONoz7iH0kOLUmY0j3Q68u7DM/q+Q52aolRqFXJRU8GZJ6NApGRrZ7Ak7l2Mpj6hHlGpG9MmYBVsgz2oUdz7URXm4zJOrAKlJ64H8XFmGv2gzHNGp+xF/SBGK1oWNdCnHV3qqLNdp9ayKCZoNE9kSB1WY8DVt3wSbsZR9ToJyOxTcLBnPYoT3bu1M1uWpbJ4H6VNzqNr7ws+Zt0L3iR3xQsLOpUr+uRwwit5EzfVtdDC8oyW5dlXtbyfPJuRHCSQUlwmRYInM1MdkGLjKOJh8+BU9kAr0IQC0WkJapGmEHxB8YUDbGxpFAc3unjvas3kYpXeSy2EKHSd8fejAwlL9K6uHhUWUIwIMQhnvfD4xZGswdTNuiOCKWTNOYKYJG+NlmeVvWmasd2nRLl4m/z8SMw3aAM8HiIvVS1SOymERN8PWD2EjJaEOjhtFH5VGMLq3LA5RzwZXynziErgOB4N8DhT1qija8RB8TnHHZzNTkrdQNyf03XZwLnqahgTKOGMenZ/SRhfTO4NmKFAndVqkIxHpuOB+eaaVCfef2tvtWayIlQD+C6VHRJOrQMNFqpsjyIhWZQK99TiJ1si6C0arosjzVCYOcrMwmi0vGr7XsF8sURKq1JfzZnWJJqzFQCVzs+De3+X/I1k1xR8LQze8G2ta1uV9Zqqd2C77iZVmBxUbA3TxViNuJLBm7k1Q6+xAdSN3+VZXs2hxbe/GGx6sv8Kl3F7Z9lODHegyaMoNs+cJBJXn0PEaePiIGNDQWmR0wYkVlAhp4bf5r3F8LwDNF6+yGaMs0gjG86w/bsAI7iamYhQVXl+dTCQsTyR7ugKxj5QXdtU3FmkMdHt9iZuk2da1L4Z31qLReVULRoYApKSlS/YgJ+2mZQ9C/Bpb7V+WwHhnYbQ5b/lWyu9qI2DU5DRDqzNGXgyalqDA96P6sdQHzrb46w5FGyG1l2i1GqrbZDlZgLcGPVy91vrfQmgIazAx+1rDW1Sl6VvrZ8dTG77vI0/2ADf7d93t/8w2+P1QYaHpPM00/jSJSuaZ0LQFcVKQtKOLiZXamo0h8AaklYLSUfr1jaRC8ETLwNoQcfJXGRdh/gPVaAlc+dqBmVRk2Vs5OAlg7sskQBUOb/Y8ye+9g4ffvyCm/mW4hXGQ0rEmtE8mpEThBg6VGVRX5nVHFCNKx0Q8rAnHgvoLeIJFloKXZ9QtUW6PSgIltQrXo7d6bnFkyij2FpitWmtY6LnnyzDtBbyeKBkZfY895Zb1vwrfYIarMBfrkKMgaNGCp0NrhiRhN1bfMhZfypb+xLuKzDP2eRq65H370fu7Tpbb5sMZ1VynhmPheubI4ebg6+NQt913Lu3Z3+2I/YdpN5ybCoQ/LGNm5MmG/wpKiZK1UKRNvEEzy8xJ78gMRk33ZV9YgyEM8thsNoImVpmK0qWMS92tbHbJXFlGnyBUI+OCSGqj7PqRend25N9cVmkvIRFJSAIdAOEzhI0q4MjdGPAtBCxgceIOvXFDIlG4UJ696jaYqo0KtVrP9t/LLdaZity5RWRAZtjgz3XUjNlnpiPMypCjBGRzip0S1i9RsvEXpcJ1uYaW/gtX9sU6EIKSITYahWU1rf+r9piKV4YUrOdo9SZaRyZ5okpZ25uD9xcHdnteh48uM9uv6fvB8vpym7YdpnQdyCWn6GeiPzW/Z4nN9dc15Gae8YxUqoVXdyJ2EScevKoSC+L3dhwWBSg65j378LlESlW3bnlNxSt9MGUlebZIg9RxFT15omQBkoO4MFf8ShGq8vThrKIPVtais1705Hb0bjTLWdLWaMtjTlh3xcKTSAhIfv7FF6sUTlPoq9EbuMFkmSZe9px22YOLMhzZToeyNORerwi1pF3L3ruX5zZmGjhnlYcluo5U26YpQ6b8HCjWzzC5Fvz/uOcJoXVS+ibhYftrSjQD5bgP83WmF0w2lOrtRGi4YXii/YSJStL7jgCmgVlJnUdMhREvTKsqOddCEvF2HYdzWHRJmdwcOI90nhnLZl1eVbE2gGBWBdv55u42d3oSwbeWm1bTz7b9l5pk2739eX9ZRPcaXDyktkhLt2srly1zeUgrOdtgML2t+Dhzu/Pe6+dU9YLPcEc0mypdn0LKlpfk63hue6LCNM48cPHLzhMmbue91Z/guogS3AnI7AA9rLS/PCiyq1/3KEYotNVnbb6sgGuzMXyP1dKud+XrH2zRFUWR9GrO3MFmS+DjO3rG1SxbbmTtr4bAVkVnlbg8RKgwb+3bUtetZ1GFE4H451vyfp7AX66BVMeOduAi5PK3RLW3MYNgP1xIEOXDji5sB+7vTbIqOOMJKHbddapnp+hQbB0Qg9Jp2SeZuImFOQ3HqIbFxjNBF1XqiV8bTx1cjGOfi4EBwnm6ltD0sVD0iGZJxDFaEuohYhPMqNtsr7/7p6vp57vffQpt8db6CszSqe9GSwJVDyBWaKpSbkd2fIfEq4ymgLz/h7dHC0R3DnHKpbQqgikjqxidIgQLcnTO7Hl+sXol+kLhMKSD9h1AzF1UDMqYvQul++t2LOd5zaB2ZpXgzVRl4wGkIlot6M/j6YqEiqlDsiuZ5BT2drmoysKx2NlPmbLwxhveHuvvPPgnGWJdv55mUZqzgxDIg3nnN/fLcouAqbqlNxTX2aLOi3JbkZpq3mCUjzJ1y4oSECTOFOgQojE5qlrQ13VImxe3RkxYGXVc63PQ4jElK2RscaOcWdjrprJVEthvJkJ0ZJmDRjbIiGx5Qz1hOjnCSAt0S06xGtJ9UFsHHoC86JGI5vZIXbEwYwZcQBij0E7pyBF7TmpxZ4LgPzmVuoFPBGycU/dim4DUOtiFBlVwArOxT6Rus4Tq126unkz1epqh2oOjBhsjBvlDJA2uUJTVVu4hdWL1rkRaE+sRapqLQZOSybnslRTDgErqJcsQmFdF0zAQKvXi/Fk8hYmQDgbOr70YOD7z2dKHmH216OQakHzTJ0jJQVSsTYprPlWzT7RizPy9Bbp9lNLenfpbNHKviopVLJYwccQAikmiwjhjweePuWPWamrSFEfAkNnanYFTARBC/N0xINq1of4tO196qkzXq/HgGHf90xl5pgTuzBCVVNeCpEcduj5BecNXPmxMubImVseRlVEC3U6Mh1uqeMNj7rCw/2OOlmlYZtHlVJmqJWUAqHr7XlV9QTt4NEAH2hNhamNuUa7U2/sVtMCsahEntB5tO8Wy7+wujcszhgIZlSVsjRuSD4pVx/PXbBIqOczltlkv3WY6bWDOhigEKcANyGMXNdGVrE+b+BDgaas18BWqbh2ujfu1snhA4k3l3a5RitODXptaLeNzNUG/ZwD/dgzLccw+hMru6d5vpuBKW2/nhibi/pPu56tIbdYdys95USCV7afWTdxxaS15scX26J+wYsxuaVINS83wPPLG775g8dMta733oxfBzBmUm2semEFEiiqheIFYz0+4/O00eVNPrqtYRsIuDFeb25vORxN2lbcM7+0vbbzn9z1chBddu8Y+m2/febO+61PdDkRJ20r0gDRcob13wZwwPr75Px3wzAnwG89v2xthJd/rfsNxMrn3Y+cRi/klBp3AjKW+395f7ttbouX2v4LttcGGcFXIqN2JLOtkj/UTdvRH0aCq/K0pag9OI0/KsHPvAlJa5v8N79bkpqoh6Q39BP1AkpuBLZcA9MqxwtO+WQaE63qLyly/9F9fkYr3//hEy6nA1mEOSXyPKNVCGpSpR1mSARXCinq076D+ihAEmo4Q3JCphu0Zm5uZ1cyGszbFqJVLY6eTBjssmoFUWWeIAR1pR2nLgikYTBlqpypXtQqZ6Nu5OyqO57onVVNhpeVa25AxIqHjVOmZlvsVBK5vyB2ru/vP82YiQKTQs2Fw9Vzpqsn3E9Gk0p9b/k3zrsoVTgcC0wzZxeJYd9byC548neti7Gt8+SJtS7b6MWrpDrlCDPUtLSCZRFcsccGkPWptKdfxPI2FJIY4atWGwMmENCM+4CE3sCoz7Sxj2jOlmCsVgSolMnyWhjdNrDFI8ZE6gdizGb8p2AJy/X0uixqNkOp1NlyQSx6JCxqaH6f7RFf5SbZTLyKlEKdZst5kmCSlcEmljcbZNiCoVkRiuWpUNBqDoVaIKWBmHqzp2IiDQOhM+nglrxqQFtXqcLoSeCq3q8GRgQDt8ui3LxEzs8tuVjBuVyN8RZZcszEJbn7XuhE6buO++d7+qGn7wdLIE6JEJtqVfDpSY277wZhA7ePLnoO08xnh1tUgj13EUq0pP6cEikNi3BRVnsWKx5BBRJCuXiEliPkFxahUSGo0nVCTIUiwWtYWDHLrhXD82PUutqbQ7SpuIGM2ArHNeBXqzl7WAuFtsWmjcNWLbzZMiWLJZ6HxNWUuN9lhOaF76hnD+mHsKpStWP6jvq0kQumQKMFnW950BfevhhIMZBzpo75xJgIgbVYpY8Fyz/w2W11OwK6SleK52hIMOmsFmGzcDB1nKxeiECM2eZ0fH6q4uogNjZrVU84DzZPiBlFEl26NMqSdyZJSX0idh62qrgXyw0Rp1hpmc1pEzxyG9tYU0d7s40zigHplFxX2IHENK30zZZ4/6qE1jdoW8AFK+hoxu+JwfjyN19hHunpALy7NfvFwdpiI24AhyxAI3JKw3wZZLxqa4adbD73MhhhMbLNDl5rfpwCiu2B2Tz5LDkhK4XGFQxL5fs/esxHT69d+erOMaQpdAWrlXHn/aZsVGsxtT1gESVw51HzpKsXXV16YtPkqnB7O/L8xeUmQt3ue233pdbJBkm2eWmhkXJq5K9G8qlhvu7qsjzo2imOo7aRC12cSGtehh/3VQDji7alw1skQ07b/u5Ht3+/ajz5fd7Nt9nS4trrJwD39KCvnJcterS5mtfEGa+f+L3bQZPiCcZfXlQukoeaK76C2WuicXkIbRXahqTlBDGax9ZL1yczCu34s4WOU3CD1VsgRnNOtQJYTevQ4/emPIQV+cM51ENC+h6RwPm9M37mq4EffvqCT26O3Cj0fU/q7XLm0SoRB+mJ0Sp1Nxuxrb+pNWAQatcjktC5cHU7oRLo+p7UD3TJEkIbpb7VnRD8b0yisZKBSBQhdlgYPTqHsSgxRkqZydk05osqKVkuRC3FcjxkO4Awr+w8k+tInQNlhme5Y75XedhV5ihLZKLAkuSsWTnc3HK8eso9OfDewzOGoXn4sTaeldvrA/NxYj8kA2NVnUoUXOVnps4TUi3qNBfTqU9dz+5sZwZ4VYgRidEMw+LhowUgODjYyue12UZAYln4HkGhaEFr8XXUgYxEtLpCUHKjP3ZE9xBGVbp9tMNXU8fRebYozTSRjyOIGbLdfiB1PUJ0MBVsvKfO3bmCFO/YIGtyJuLhsLLeS3bA1kCXqFEv5kzIBqBw2zoiiwfijd4qqBpn3aYUk8Cmqk8X0dS7FsaIUabUowQtsVZVTXUuuhztbFSrmosvABBIJuQgWJKmG1shJqP3FJffLmbRN64qEq2vQyB6fRNlTU4MBEKrpBfcEeKLjNaWwG7ufQnGtU+ifOl+QuuRx8drZq2UFJmnaKWHYkJSRyfBmHJpo44CIEZZql1ivv8luEnU4xPUa8rc3hSTOx4GKsaxrsFAEmI1R0r2oxliQdXVrQBb9gMxRLIvekWVeZxeoiPMXncuJuijzR3NphrF5qYqkets0sE7l13N6T70Z+xoVIgVuDRnxzwreVLyNDEfbsg3Lzjjli+9tedst0OIlFqo2aIHIUV3bgWPpoDM1aihEi1PKiVOV0Vdn8GiTqUqpt5WzeCXCtSCxIJ0JiCgOB2vqTaFzqwf91gHsUj24oFdVJ7iAjiDWLShkF2fJNh1etafRepWZ0kIgvRusEm194pZXZb7KZYLkLMZc32Cvkfo3flRVwfd4vjbRDresG0bvRBVFvFS925bVG2Bwz/+eJu9lwzR7XZigC1Qw87uQMNsr63Ru32AT4+4/etlkHEKLsy15uvdtqDg521yaj6uVJyNN1tkSQo+TjMfffac2zkv97a0rIvztEhAi06ItNcwMZOaqSV7PhLmAMbe01psfcdy3MwJ8zKFTYDb45HvffRDKwPQdSdG8ILXvPm3idiLg2cTsVgjSV8MMpaG19Z2G5Cw4Jw7/3y+W4HNFlg0oLG9alp5ls91FL5qHNxtn1f9dTpu7EBhieKvwHLJyVm8Qq867vpKG+vbIoXLk/Gapsjr06Xm7IOjkFKAZNEKi2u7Uek5B26pLQ9lQ2pLJzZru8Gi4lGIyUPS2ZQ2mgTcorinwTw6xSfIgCtnyLLYB5GW622efC8SU0WtIBECyZL/hvv3+GrqkY+f8OT6lqrZaBG9MB2FXgX6RK3Bos9+m35q2rJlYEEoKVCH+2RJNonXVpjOFsNaAl2wqEUpEFC/VnucQ3BPqDdLDIGu35P6c6bDFSF2i0JC369gJxehFiHfHqmoAaq+o+bKeLhmPl4TzjO3txPf/PB7/ObvfcihDvzMz/0Sv/Qrv8T77zwkJqNIZKzuYj5W5usXnMuBD955wHDWmWNiIW8rOpuy2P6sZ9h1NhhLpkWjxJMhpUUUgiXGZa0IHZJ2SNdqrxQQ9XxIdWDqHj7xc8ZwOsu0EK6aiYRXho6hY9EDlYgMTkMYTXJYaWHECNFzRLSYcpF3cETpS6ZMOzNeayFPpmaFYLxT57SFGAmpI/Y90nfNOepruXtSLSnA7QhdvKRkXUoIeNU5CBXxCuxFixVYdI8mKN3rPrR/DLfYZDirtXkeK/Ns1bdDEKcbmaEeuugAM9ozVCpltBomWmZLY1GFGj1fbKLMefF9qAo1FILYvNASntWPX6rVUogipM49SKqWYhPDAiYUl5TcMFJwLqxdqxrFs6hVw25iGEGIYkeoLg6x6wJffWtHfD7y2fHA4ZiYqxI6xXCOoLqnS4FYTSzLS2FY+wG9CHXomMKXORwqXH+I1Jnnl8qk5+z7gTQMBqKTmGqVT5FgU9NcFLIg0RwVKlA88lJK8ZojIDVzGCdcnMsq27udWlSN9droQbCoqIJQq5JLo7FENJ5Tzx8Rupe9dW2FqECeKoera6bDFfP1c870wKN7nYGZeVw81OrysppNVtR8XNmpTELXd3S7nTkBgjhzzcE8zdngiMnUQwyFjbAkmkSQPtF3waaoED1H0MGLNoRVkBJQ7aw+kMnyUeYZRIn9YLkgbU4LmRh9uV6cDE7pmgvzNC5gufMoXpmtwKGUQoxCGgak33lI3dZCLRYxllohOnVrkcllnWNex8v6x3Q7gYpuIDSjsBlpr5ImPTW727G2EOPV51i+vjH6WTzPd46yUIfW/QVwvBIVbGh3dyzLl5+RlyuXvxJwNICxARpbGtYp0LCfXApPLw+ethTWeza0YApRxSL/S4RmuWWb21ruVZNkN5UtjL1Qq0d7sShyK+ArL4/Fec788EefcRxHzs7OWGeGTZu91JyC5YGc0tSa6tP2C6/Aew3CsXg8tl3RuvGlaMYpXWoLNk6+eOfK7bALCXYx/Jsjco1grVd3MvTY9uf6n2zeW8HE64GMz92WIbzt71ff2+dtrw0yDtc3qBb35HVE97Av0Y0Whl0sfL+0FpIOEcETXJdiQmqraLaKuPN4ALBE7GTBeQMyYnIr7jlsA96MO2t9FV1DgQrSpOM6MxhiO2dzl4l1Sp8SH7x9n7MOnt4cOBysqGAaztAYyGNEGJA+EV35JVjtpVXS0dsoijD1idqfUS+fkqeReTwYihdl1w2glosxTzMlZ0Rg6AdCtOiFVflmieoH8YUVZTzeMh5unItsn10+4xXGazUjuADH48zHH36TZ5/+kOtw4ObZD/nON7/Jk88+Q0vlk9/6Nb73e7/Kr/71v8uf+sbP0A+JUmGalXIcOY8T77zzkOF8wCCIWv9mT6ivhS4KsTMQVZwilJJpx1etpjA1nINEQqkQJtIgpP0FXNxzTU2F8QbyrZ0jtEGsrApUwqKyYqiOJf1UlVboTlI042FxPwhEU/yAQplmJHvl7picggQ6m6fFuNweZuo6UtxDX9AyUdLEPM3EZMpZeZyssvE0Ghe96+mH3voyNd1wB9YtetE4J03NJm6AeF3fs2JzQqzBczrdiM7TGw0ylucekzXMkymIBfEcrrBVw3C6XFU0z+RpJo8TomZkWVBNlyHQ6lTY8GnTok3eCi6/KAutxYqDBmKXCFHM46asHH61uaZxixePh/Ek/dC6zknqDg1XHwpqtTZqsaRUkw6E3ZD48lsBeT7xyeGajNJ5/tA4jkiI1N3ORLh8Kp1ZWJbOZhKkg/zW+5RyC1c/ZCzmRY9dR4xxUU5r6WkViAvdTlf2aVGKOw9SSr7YRnPWx448jdSi7q31ICX+3QyrSpMtkLWo0ZmmA+V4Ta2RmxvluusZziNnspoMbU1vS1YtynQcub16hh4vOZcjD84SQ3LaaLH8GFusq19/tXnVjYqUErUo42xjJZSMTNGBRotupLW4qwhNeEHwZHKveWMUYVl/e0V4GyOd94i7mmIbJ+5g8jHKOHvoJxqNKUUDJf6zJGkv0QVTrLL3oE4mu6wlm8y6tPOwzIXSIrbN8bcsUHXT0G1RCSxUljd0a7RRdSO1JWBbFGNjAPk6v9gjiwH3ctLx5ugvv7Sx+E/yJu7sLcvOap2dHHObaKxLB9oLr6S/bE59klDOqT188nnW69ty/M1vJ6/80aqMc9nMc+vJg0fgavXEbl+TTfVyvV9zBotfY4vmOgiRth5uLzT6aTYMBUxd6vGTF1xf3/LWo0d+D57ztG3kpV03LaHry9VFQV6JKu5siizT2CuOegL4VnUppRVeRDd9+9Kx1wN9Xh/bqw0c3H3d/5dtt6zgUfzA0v72905Bxcv7P3ZTlsT3JQ8IHxtL5fcfv702yOiGDgmDLeJuAOEeqjUkbd7shTLV9lU99GykU5XgLjrWkHSolhhXnLsanCLlCbcNAaMgQW2RjcFRc7EJPrZcALEEWSnmKV6SjFu0xRZ/8kzNmRjhnbcfcP/hGU+fX/Ojp88Y5yNSM1Jn5mmANJB2e/Znkb612qafqipPrwq//3u/z0cffhMwjXOpE6lL5OGMffcuIXQWUsyZOWdiEOZ5ZpAO0bAkac4zzrNOlDyiJZu9HC2ak7PlxGiFeSxM07R6H0XY7zqunz/nO7/xz/j2b/8683Qg1JkuQBc7VJVy/ZRv/8t/xNMffMiTv/0/5xv/0V+k7xLj1S315hkfvPc2+12HHK9MHUUVNCDZgKRottC/UwIkeFRBxfMPy+KJFnfJpuT9ubuHdDsbJ14YizJtFkWv6eGKKmKEaxodjraYU4z2UWQZd0uCmBtQVhxSKccJLUpMA3Rn9oiMR7TMlDwTusavd5DSwhFUz8Ktxj/3yEUIkVo65jkzTSN5PJDHAyJClxLdsCN0aaVOeGK7JDM0Frll7kye6p4krxwco3mrUoAwv9lc6jy7Op3T50SUmKyeSxDj8kenDeESfaXl2ZRsksQSCCmtdUkQYoqutKEumVh8HxsTzj9uNTpSFKOVYIATUbTOBj680mXJxUCD5z2JqJXkEfOaxeRzoVaPmJqhEFN0f1Uz5yGESEhGtZIU2XfKBzHQvxj57PqK2QFORKDvKbM6KDDHRgt2bQ1yEdjvO8p7X+dQZvTpJyAu/6xKacXcojtnKhQ8AgdoCPitO7AQYjew21+4x7IQY0/2AqhDt1lsq0Vjp6Mp8nV977Qf4fb2wOHmmsP1Jd104MnTmX//ze/yrR++4IOf/dP8ub/4y7z31gVdsLYswNSc/6Ny/ewJ8/UT3t4rjy4GRCzPBjzvrD0m1cP3wSLoJVdixbz8KaDq3HM3F0xGNiOec0eM0PVrArVWwwyt9lJLcG3gtDkEqsAsqyxf9RR92XxWTJo2hAh68ITwYJHTmGARipjsuwqt7gooXYlec0GdFBCMOtJ3HhG1aMxaH6MljBdWURV1oNFCcMqiMBLeaFcFsBqCtq+L+tNJ0bMNR337pRMDSe/8/blbG3st7/HzDbXlPUc4jcq1gJtN8vLWmf+FRqisw/Hk/tWOp5wCi7tF30LYeLhlNTpBKLUyTTOlOdg2jbOo+Ske5XBZWrFzmLFdF5laO5s5ABvAMGVNv1ixMXgK9FagEYLwo08f86NPPuMrH3yZ5LlFW4B1uqm38RpZWK/5ZUrWqzc9ue8GMJbx1eyJU47UyRX8uE2ETftvIgpbENBGziuBRjvOaR9vgUa4+/pL4KK9t7n2L7x4Wdvm9TDFS9vrJ34LZvTVyjQ13eNA6ju63QCSLEwccK1uo0WIew5xvig1237BieZiIekh0nd7c8LEBF0yKs0SklYDIyWiePKxZphHypiRrMShX7yQ5mH0RDv39iy8dzX+6nw8euKv0qXEEAKPzgbidODycM18yNweezTtIe24/+gtZH9OrkK3WfiDwmdPb/ln/81/w7/7tX+A5gP9+X3OH75Hf3ZOCHDx4B3+0t/8u3TdIzeACkIlYB66qVa0JHa7ZHUwSiVGeOud9xiGM46Ha4IEHr31Nrsk1ClznM0DMR2PjLc3zPOIoPT9jqELlHFkvvqMw7MfMVdlPwxkUcs/GHagMN/e8KPf+x/4h598zJz/t/z8L/wi5eYZX3r7gv2DhwgVPV4byKnG89MQjOKmrv6TEjJ4Ds2cl2iR1ylEymwejjaBiWvLF7NaFIXDredieKM2fojnMy4lztVUgWgekjzBjHumMwEx76rnS2hIlt9TQUUIQyKe34eze+jhCj3eIBg9aanUuyTPWJI6xYxNexjFPKcdSErEYAZvt0vuaTWlq5oL8+GATDjAbaoaAZVoyc1d54X21Cl8m1VEsIWp+riVgqSOFN9wkDFOnmojxNTbwulOhRB8kozmVW6F+VrCWeyiyToDqFA8F0ncwWD+DF2K75U5L06LlCJp17l6mUWKrOaGg0CMyifFijvWXN1DDoIatapmQlVqk3nNYSmkbOkXVg/HWAG2RAVpoCmtKlcY4OxEeP/ejvM+8+TmyItjZRYlYGpT6eyc1HX0O6GLi8/PpjM7DForl8eZF8dIzTO5XHO42Vviei2c7y6oVShabZ6ZJmII7HY7t6Vlkcqdjnav83RkzhOUzFGfU7N51aOk5fGcBY6zVdmueTZwrhEJicc/+B7f/843ub58wfGzD/k3x6c8+dGnHA63fPRv/znf/be/zC//9b/Dn/3ln6MbksVIK0xjZby8pJsueeci8OCiR6QwzxbBkOD1f9yLr7VSixJCsuhNgporgepTfSJ0yUBEjETUIhSt5oWAhRbdCC/VorStyE5qc447QRrIaA6X4kCkmArXEuZpkp5NPrAllHeDO80chCzqhx4ltuJGiAR0UKR33f4Ka8SkLIbJkuDXLABt5+pZCvhVBxtOxTWunw+eN3hbIfzrbVuD8fSP1zlXM9waWJGT/dOzvLzbPr9QnRx0tNoVNuXryWc/7y7UgaIxlnWlTC1ujVMj83R/CzDW61dVrm+OvLgdWWWcVuAlHpWoJXsUw416p3k3V702+TpkBVFiwESi5eK24oUhrg7pFmxo910Vnj6/5A+/9SG/9Is/x/n5GUsOxE+wKQ0b/fgvtnbTzdjYpgy3efvOl9bd7Q0sL8ryMdm8ZkVlT5Owt1LC61nv3tAGPPvv5divAh53r6dF/DYPwF3QdkKFWnDUq/JZXheY/wQg43h9taBCRYkhWvLxfISaid0MU3SjKa6h29i48WKGYvSQdMZzK2yyF1c0EZU1JN0kb2uC4AZoq36snqCXAjEE9DjBXOzzqfdaGxXBKrSycABbqK8SpNBUT3Se0RjoYuCtRw94+FA5zpln1zNX0zXHeeI49KQucna+I+6EGmxNurke+R/+6T/hd/7J32O6fEIMMN1eMn76EVkr4zSzv/eIL33163zjL/xHDMk4V1lM1SGi5GzXMkk1D6QRgHnvKz/Fw3e+xMff/0O63Z6Hj94x9ZsyMc72wM/HW66eP+X26jnPf/Ah99/+El/7+V8klwyxNyMOo7SVWsghErIZB3k2T/6Lj7/J7//Lf8xPvbXj/XsD99MevX1h7VxGSjapTytuJ2ZQ50LsE9L15nlGIHqhNDXDPST3tlX1qsmKMMN8BcXrSFSFafRcBX9sGsKPnUc6WHJcUKe1lGL89+Je53kmxUTo7yH7+0jXm/xv6NEq9NPRWC4xGoWtZEscFoi0xExfnBe5RyAIoU9Gw6qABjcG2gNnxmhKPTJEywNttRg0o7msQgTVchCmOhG7ROwiXR+JtVs8Qxb9WZ54yELVTCkmjtAKJ76JW+w6e/acphKwAnA28TZzKbhSSfYFuNWbcflbtfatuZCzFccjWk2IpnBScnED2AytWiIarPhd8MVQVFAtlkug1b39SlPKa4BaA4RQKHNhnG2hDT5WjOli4gQhRfPYYRGZ0FQ9Gt8e0JqtKn22HKIQAvfPB/Z7OLueeHZ8Qa4jZRphnNhf3Kcf9ksEo7JO2odc+a3f+j1+/zd+nZiveOti4Hl4RJ4njruBe/cfcnb2NWLcm5OgmEpdVGGeJmLovZaPOIhSzvY7A1XzhIiN1xhMmCJ3VhIiZ2U6FKuw7t64kgtn5x05Zz787X/F7/yLf8jV5TNiPjJ0kSTBo7BXfPRvf41nH3/I9dX/km/8xV/h4mJHPlaOV9fMl094MBQenvVEqUanmyfKbGnpMTUuc+NCe2RLDPRXF1YQdAV1AquEtOVwmApT8PXFPLNky/cTcDGTlmOIRwiaUe9GexRMHqyuxvuiioj1VnGgEWQFMe1aGi1l4cfiwAQkeMRCXMGqredhMxLUHG+2jrrjJiQYegM16lGN4tfbnH1lBp1g/0f1lP/Rbou3f/HSv86mtFJrd17+4r/bqTbfbFEMQVajeotcXhvEbMZA+5uXbdXTb2wBhvhv+7t9eTE6F8Cy/m7RjPXBMBbGs8sbrg7Tej8NEHn0QLHaF0aZas89LnJh9Xpo8uOtGTfnXvIxirtJQkDzbLlsHh3YmL4cjiPf/eiHXF5dsT/bL68vE6Fva4Th9O+2v/THa2yGExwcwUoVwqyW08Osfb4Mgbtvt3c3+y168TLQ2EQclkvWzzXmFwBxEq3iZPDcHYa67Rv8uLq+tz1XAxsrBln3T/NOfvz2+pEM57mXYtSnmISYZEHkNqcaJxmdETUlHkkJus7AhoLxXMWpUM07462xldVr6jxND7lmzONjt2nuN4wepU6RKQ4yWvVUFEqCOrE0d+gW0JNKXgxLLYJEN0Awbv8QhPMHhavrW3709EA+XDIGSKpoHki7wPVN5l/9k3/K//D3/6/cPP6Ivh/oYueTfyaihJq5ffGYb/7rX+Orf+JneOfd9+j7noyYvjsKxQzkPE8ocJwmci6cX9znS1/7Op989G0uHrzFW++8b0ZRtodzHI9cX7/gxbPHfPaHv82zb/4GH0ni+vJvkS4e8uzZE+Z5hjpzLDN9N1CTGPebSgrC7EbVoAfe2VXevuiohxeMxxd0fe+5H5b0X2pdlL4CukaqZqf85OpgtHncgi1yreeKAgWR0ehRS/6OT3qbBcQiTrZQassJAZ9JLJEsdN6fTORxoqaO+Oh9pN8vVWDrzUweD8SopBhM8346guaVJyrugVSnLnjip3iitlUQNla8FSNq4w+YCzpD0UpwA1NihG6w3Iq5EHNxUFQI48w8ujRnqT5ne8hGWbxDFnyzNhSWJnmjt7TrlwXMflk1b6M+WTSBYsajhbz9+Xc7K1dFtBo3XQvRKSW1qHvJzMscQvWvKk1QwNZBpYZKnRXBcqLM+2zzWNMTJwrakrsFgkRiHylztyQ7m1e9zV8WuW1lF0LzTIHxk7N77IoZ56ravgICQ5/40ls99w8zn17e8PTqBgYr1FbmHXMH4ip3GZhz5Xd+6/f5x//n/yPXn36Xvkt8Nwo57pF+z26/572f+lnu3/+fcnG2MxMrQHLDu5bC4ebAfj8Q+0StlYTy6NHbvPXul7m9vqTWTN/vefTwIZHKPBZqCORsVdnHw4HZwcjZWSLFwO31DU9/8G2uP/mQuVSSC1C0+klVlTrf8vTD3+af/V/+98zz/4Y/86u/Sj3eMl495qzecO9B75Qvm/NjFM/LUVs+OqtjJBJQqaTUEfoeQiSo5/CZPrirOrnyYVtCW52JaHl6Os2UcURzJXW+Xg1OP6rYdeTZlPKmGaEiXSQMe4jDagC1gkcbqsbChKzzMjcutM/FieHzyeIVFlunWjJNCHcYlS5y4fRhqo0rakaiA5xm9LVS7EXsg2QDQT+pW/iP2bY1qhZz+cfOjSul6NRIeo222ACLxXCUjbG3PearruPzeU4v3dXn38vWRGwvyQI41pc+D2isP6FRZgTKXPjs6SXXx3m9pAas1HPVasvlsuglvs6pVndgbCIcrVaINsn8Bmo8GpKnFawsd3Z6bzkXvvf9j3n85CnvvfsOLGDnTrL1nSa+u6+v7W/XpfXXbL5NJyy5Hdt+MMKXbjpMNv8tpoyPF8EBxgIu4gL6QogrjalhqbZ2NeAksCaOb/rZ/tg8B6eDZ1XJkqVhdNNILxUSPAEbG9utfWbbwK+x/QR0KUuQjCpL4SqbGy1UvYSk1T1FLSStGeOYb0LSc6Gh2UaN8CtfvTrFw89GiLa/F97r6pVaPotYODoNLNWEt09rq7mBe6GDQO/GiwR3PrXOqYudm3rh0dAzdD0ffXbJ8fmRMt7Snd2j2+35zr//A/7l//O/4urjbxJjMhWZoKQuUatwGK02REgdjz/6Dh995w+JAfYXD6Eb6ILQB1N7mabRgGnw3IyUEOn4ys/8HD/63oe89d4HXNx/iMSOqWTmeeJwPPDi2WOefPgHXH//d5kPL5h27/D02WdcffQ9Lp98ArUwHUckBFJISJmYJ5OdzU5Jefj2O/zVv/IX+OBLbxNTtDyQWgwHdpGu25vx59En9euUJjeTTbnJFsNWDA8DCAqtYmgLEYM4yEyLCpUNNPP6qonkk48TOY9AXbz8xv1uzAOvop4S/W5n+R7Jkx+nTL25Jh+ukTohA2hek8clbrjMom4EuCXvi7bNJ+YtNE9HRWMbQwkhgQoJi/SIiFFtaiVqQDurHE/skCGYPHHOdMdbp6A5cJtngtgEXbLx5mNMFilyQyR13eIRf1O3kicPDTevf/PiWn6GFTUvpvRWiys5sXBNlUafMqM5UqmYMReTVUYvNS9LQCUstCf1pGFjpa3ODUUIYlE3jYK2qMpGiSdIIKUe7Zx33CZ4pxLkaou1Vovu4TTARt8yAQzzWHW7nVPvLeeo5sycZ0Qiuy7x5UcDu3Tkk6tLDpfJiktyH9kFcoDbw8w3f+vf8U//b/8Hnn30TboUmWehIOT6jGma+NFx5MXH3+XdD77GO+++Qx9NHnVSywWTarVASg5Ud3TUWkm7PT/9p36Jjz/6DvPtxIO33uPBg4dIntFQOXitnfFww4unTzneXnP1yfcRhK/+wi/T7/Z0+3MUZegitVamUoghEUphHg/UaaLME8++93v81j/+v/P+oz0Pd8KjLnPvvCNQzJnlyfIpGu2pzgbGrbbEsBguRChVmW8OkIX+7IzQe3FVAZHoTih1w9sMH3uuxAp2lg6VgqYAXbQIqkSQDNnHZK2rFHJWIkdiLDaPOR3EvBotTy26dG4DF8JSoZwGEtSiE02aWl0RStLqUWi1osoquKHziM6ziZ04QLeEFDX61mTji6aoSPB8EzzK/9pL/x+7bTHaVmtr/WNrF7KJXZzY89s/tpbpq861/mz/eCUlZWvb3T2WyCr/KW6cNjrRyfVswMLdY8LijW77vnOKb5rB2VBEM3Cb8dvodt46x2niB49fcJhb7Yo7wKniaortNa9RpCZJW3KmlnmZF92LsVrG3iC1Wo6qaj0BGO26Fz+7t9PT55c8efKcUgoxxjXYd7eTXmpw/9Rr52Msp13bkNXQZmnL04MJLGIYTVN3afe74KK9JrI6oDYUqUXspF29tutvlDhtAZ/N9WB9vY1q8NKQsXvZgIt2vXaKBgxPgcbnFjN8xf6P215/pqkm8RlSokbnrqObwh6yyuN5mNikv5sn5nNC0m1gKh5SFhbZkxgNoGhYaDInHoAWOl4KLuHlr536QmtRn+Bbu9TqXPfOanJsQ9KCHdfcjq59rez3ez54WHh6ec1xuuSYJ148U/7dr/8Tnv7wW8g8odHA16iFmnta1WmVwDwe+Oyjb/Nb//wfEQK895Wv8+Ctt5EYKKN59HPOBniCmqHtM9r5vUf83J/9i1zce0AYzridC9N44HhzzfF4yw+/9yHf/bf/Ar38hPjuT/P+n/4rEAJPfve34fYS6syUZ7quQygcDzcWdeoiJWdSjHztp7/On/gTXyed9dYVROpsoEJcUpUYrT28mBTR+65Cq5xNFy3U34rMlXmZREWKe/+Ne7yoRZVGZcMNfDO6Nc+EUOlSqxTqCmIxOhjDH6yAqFohLhG4fWFdP0+EmuljRkOh5EwpWN2F3vnPrbKuYoZgCxPTxhm0laVVdMWvA3VFmioQEjHZM6CeU4MEdK7MU6aosjvfEQZrx9QF846WmTAXtyOspkl1w7WQ0VlBjXKTtCPs3nCQMY+glugtSRd1k6W9nQJjXrAmz2gVSsVXgu0ioB5QEh8QVqtvE/lJikaLdFiRR/XziYXsJbiAWUBFFrUQUVmiSE3VxehTzn8OvoioGdLRC5pYlLczL59HdkVb0p3QCt3VUsjTRHXq1Dxb3pJ9N3KRArrLPJ1ecHyhRC3ki3uElPj93/p3/Np//V/x+Nu/QwwBiVZ1ojrQDyhD3zPevOCH3/pdrv/cL3Pv/kNC6sgaMNkMRdWMAxGTfx0nE0h46933efv9r/Cj732Lt97/Cvuzc0rOJrhVC9M8czhcc/XiKc++/y0e/95/z83zpzx9/Anv/olf5NmTTzkej+aIipFh2DPnmTKPXrjPjH1VuH3+KXL1Me/ef5tdb5FkqzRe3V4RX0g9AqOWYF+n2eWkK7lkbq5vOFxeUeaZ83v32d+7T/E14eLBPfr9mQEHkhnh1aMB3rfSJWNDlYyMIyEXj5JXixBQiV1Eut7qtbQkWsWM/jxDyaiWRTJW+h0So4OS6o6svOadNUtZYAmBNaca6s4yfy6WRHGT2a3jRBknYh+J3p8GRASdZnTKPlca8IZgsrttnn6VJfKmbM2A27gFX97aYn6CLk7e+TxzlZe+0Yy302jAK3nvpyf4D9i+GGQ4PFneV1gATHtxCzRaNMN3F+Cxgg64vL7l4yeXFJdkb+8vY7ORCJqKqIjnZ7g9VuvCrDDqqAEGo1Ft2tjrbUhMJnW/uc9XUXDGceLZi0tKrSbU0JzKJwautm/77y2tx3//GIN4AQvLkV421u9Sr9bvbKJj7fcyNrZ/rwBjrbS52xA5AAEAAElEQVQup0DDv9dAhrrz7fOG6Xbs3QUad6MZ602sksdbud/TH2/LO9GiP3KQ0e17qxAdO6JawpoNMnV6UlizElsmYYtUIFbYbBzRoqYw1HtVUnG+vittlCl7SLogXSQOZxB768JmoLaQdAvRLfOJ809FPETu0YtG25Ft1ASWAknL51lHk1qIkPbwBLg437EbAlMpXN6MfPfjJ1x+9hHTPJs0pFo4ULqEamU8zq7gEri9HZmuLvn2b/4L9ucXhH6glpkH9+4RtDCXwu2UXc2mUhTO7j2yAnzTyO78AVnhw+98m2fPnvD08accrq84HI786Aff46Pf/0Pmm0t21zseHv8V+3xg/vQjpvGWwzgRU2LoEiVbLYGYeuZcGaeJYbfjK1/7Cvce3vP8QjXqWPHqnFMmFJDO2klSdCDU+iOwWH+S7EfxBEm3AlVBCmaFea5NK5i0AEvfRCyJNDnvuamstIkp+GLZ+hYxABScGkHxc2eTgQyARCRbTgpUov2C4EppW/AgZnBS3eB15Yzgxg6I545Y0aElkpbEVKP65AaojdEkya6D2bRIo+cNhUjQjnBm6myaM/H6EgmjSXXWYh5UBZ0qNc/0qrzJMCPFzgz+WqnTTA1C1zcAC2grDikg1SWqLWeDWi0fSZtMbFgjHNWom8ErywKs8qNqtR/yCgBarkRVyFNGPXmyVqv8LS6HK0Hc6x2XBduGgM8TZas+xfKdJdIKrAosxaIeY2Y+jkzHyW1Jf37cQ1g0EqTjwT4h08ST28+41UzOE9Oc+Tf/5O/zw9/7daTMSG9iDkl2pBgYJ0vuDjGhtfD82Wd89skPKS7L3e3O6YL5d6ZROU6T54/YfcaY2N17wNd+9huUnHn/g6+acR4DcynMeeRwOHL54hmffvsPuPne73B49kOOnHN5c8Pzf/dv+PQ7v++yt5lh2BH7gTLNBAqh760PgZgSX//qe3z1rT37zh0YNa+6/06ftcKNhVJNMWueZo63M1dXl6QOppK5ubpiur3m9voaCAz7PSFG9sOOt997j3tvv83Fo0eEbkBahSFVz09wB4PndSme56EBSSzzlBI8emnSm6ou1ZktGmXmjimbSVWkFJiMhhWKU0fGaTFKTGnM8grpe0gDksNq1Jm1QYusmyPPh3YXEE2IVKOdOigyoYyCVs8dKkb7WxSt5mKURGbCwz+SR/yPfFs9xGwcQq/e3KyyD259RhvLTU/+fIXx1NpeFnfTCeDg7ldfdUGKeaTbm18IRDZG7hfd3El0ZPvyxuSVL/5dtfLZsxd88uySooUmbays0WORZu9hAivu/TZ1QGsRrUqdJ0Lygr3BjiJeOCeEaM6Bkr3e07Zp1FUAT189HCeePb8k50Ln0tpb4NAARfPwbz39PwkbcDsSZJP4vuRmAGtifmvk9YuyjrBT8LkFo/7eNoKxgowt2Gg4ytZIJdi61IoT+QW9Ckssu5sXT8HAetHLObTR214NOBYAt3k+dLP/Ottrg4y4P0dVyeMENZB2e5PTU3U2VLSc6qw0SdMTDfJohquIcfo1uUwlASSDZrtZCgRPqKwVmUdCKaxqH21x8HBcMCUqmpJGbIapX3i7plaVVzAaTBC7/UWj3BOQclnyKXQaKeNM6gLSBTQU0k5I0rHvhb2eE/7Kn+fpd/+ATz76PkksV0Ln2TBWnbm+ndjt91Arh+MR1c/48Dd/jarCxXtfpt/tKdPI8xeXPHn+nJvra46HA1/7qa/z1/76f863vv0tnj55zPWLx3z3O9/i8ePH3Dvvubx8wXc+/IhxOtKlxFmXuL695fDDX+es/9d87eF9Hu0S03hLCIGHF2fUnLm+uSaFYJV1pyN91/Honff52T/1C6RhDy69a23dmdpOKWaIF9fCbpze6n0cgicp4v3pBnZgMRSWiJWUdVy0cX/iodD1u7Gz/qUY1ziENWIlWH/WhvSDAwY750p1ATCJ4xgGw0CKGf2qUF0bHF/sHVwsxwQWzW8E6eKdyJc/aLVaXkotJuXs/GwJRuUKgHNqbOzm9n2xMs5dh+wGMwxSIHh0rtZMzdloY3OmlgPnr/vQ/jHcJA1IyE79wMCDG+XqC7eKgYWg7gnzMdIie+o/LAa/WH+rupTxxgMcmq0WkQ5CTP5jfSM1I5qA6Lzm6uJiwa8pGAhYkjpYh2st5GlkOsxmSEYz0ptqHF6QUkU8OlMQqX5ONWlGp8FZ+ZBKjNFACpEUO3bncO9s4un1U66e3/LRJ4/59u/+JsfDDUmsBkYUZdRKiB25KiF1jOORcnvF93/nN/jtd7/Ez//5v8T5/Ue8/e67pBipDsBnH4shJjQkoymFng9+6me5uHjIe1/6ClM1xak8jkzHW47HAx9990O+/Zv/jPLsB+j5O3z1L/1nhJj4w3/5TxlfPGaeJ+ZS6LqOPB0Zjwfi2Rk5W0HLEIT7Dx7yjV/4Be5fXABQqTQeuIhFdRChZi8OKJbrNU8GdG5vrgixkvpE10dK6ejmnjxnpvHA7nwgDnuO44H62WP6lNhdYGvJJtlaS0azSxAHy/WSVizLA+nN1q+lEJY1Q/xFNwAqVjnenWZaMiFFUuqx4WDzg6mXFbKCipkP3f6M7v5Dz8Xw+QNWB8a2eJYEJHZImk1dr3k8/T1SMPUe572vxqpF9ErOaM0Mf1QP+R/15l7hZvK/BDTuGOYnQMNfaFWXfyzAWM/i7Sjrae+CjLb7qsMIiwoUfpxmwrbikqegYj3uCY7Rdi/b+zg94SlNx1/ZHHx7vJIr3//RE57dHH2GNWt/O6TUKeAEs7uMfmprrzntbP7IhxvKPNLtzwkxWf4VCuIOw1oMZJcNVapRve4AjPbbDGA3gtvn74Yq7mwnQOQ1KVNtfDSMYdfkTiLMoXAX79n4sS+0eFGr1baA0LAFpMEVFK0opyV/i+/LuuY0w18C1e2dgFC39MmTvl0Rx+fgWxsry+K1/l3rCjTWuiLqappbgLGCk+WorwnkXr8Y39UNtzcHbq8u0blwcf8Bw/kFc7FJ7OzeOd1u7wWO4mKom7fZvItWhXqmlIyMlVCyTZguSypaicml/twjuCQWe0haM1jCbLbO6wdbCLJRsaTpiodmZIrbii0hzo2FloTnGussVfqci1+zeYhqdmlL8dC5HZY8c9EHfuFnf5q//Jd/lX/w/3qMjiMiwnEczXPYddR55LbmRTrzMM1cPfmM3/0X/4gnJXFb4Xy/J+eZTz/7jJvbG3LO/MW/9Ff503/ml8m50vV7Pv3sMb/xG/894+GWb/z8z9FFQeuRIFavQiRZjYs8c5wmfvj0GVd9ZJ8CX37rITEEbsaRuUKIkTxODEkYhnt89Wf+JF/7+s8gkmhVsxs+VxFa7RGtbLiUFiWS4Fzg1OqfY1rw4p9pVbpbjg0ODNrjULPJ3nrOjWpZpGAJnXsO1SInbhSIeOi/6dtX62uthZJni7QlT/4XgTq7MRqI4sByHlkkH1sGruB0B+dFx0BoKjOtmF4wg9RcPcEmZfEwMg6Cm2Xi97o6QRp1sKCjJ4KKQMrIVOyas0fjEAgdMXaEWAihJ04zZT7lsr5pm4lE1EUS2JzXNkdY7YJWVySiNSIu94xPgCUXSjV+vGB5YbHzyBo41dHGiB3PIxQtyukGolHubIGIKdrY989TMzpn6lzM+xixce7iB9QW0raxSs0etPXioNEcGm0oVEy33QoHClEiYYiwMzljRKjOte66ZAuyBKQaOLk4E3Zd5Oowc9tPvP/+29x8+j1Tiyo2d4aUDPBUZbcbONbM4XBgGie+/a/+W/bn53z1T32DPI88vHcBWjlOM7fjSMmVXArD7pzz+4/I8wj5SFbhww+/w4vLK66unvPsyWOON1eM08gnn3zCp//+m0xXz5CLie/X/46zOlKefsw4HpiL0qWeGOB4vCXnwlSUyesPhdTx7vvv86UvfclnGrHoadeZH2ieqcWK0FU13nepmXma0KqcnXd03UNKnT23Skzq8q23nG4Iu7Mdw37AdIZ9PCwrrudmoJQ8c7w5QK10Q++Ay2uvRKha3GtqsuPm/PA6NyJIZ0oxqoFYKlpm6jQaFRJ7j2AV3YMIsUtoP1CrJdDncSRf3SAhkYYzW9NSc9q0+dLXs0Wp0eetEIAEXXOaNBtEnEY8r/ULKpjA78Yr+gZuq1Qnq/G87L/m9pKN9DrtIes/WfdPLLsNlnn5lHf1rQxgvIRT7gCN5bW7x94axNtrlC3QWF/bArL2nWme+eTxJWPWFVgD0GpeuA3WZN3FivLVPJth6jWJUJAUKbcHsgj9+X2PpnoFcFgp8yct4lctaw2MlptRa2XO2YtvsgKSk2+2v3R9/Q7N5yfdluTqrcqKbFOut225dopwZ3xsalQ0FsQpyNjse5SjgQxrMlfy9FyYFhFfr+vVQHS9j/W/U6DhppSvqQugWPartXlT0tsccGn3U3T+hdtrg4yPf/ADbi4vGW+vOdzcEmJiODtHgN0w8Pb773P/7bfY33uApH5FV7Uu3mbTlrfK0IJSRQi4skyjzhAXyopUnLZS0TlTcvYG8oGNInk2YFNAipr0CqMt2oolCidBUkCGHfR7pNiig+dMLB704BN7rIa+pScFAc2YOshqfCJC6BJnF+f8hV/9Fb734ff57X/9b+yhU2W+neiGgVztfru+4+xsx/OrA588f4FcH/jkMJNTT/elD9gNO4Y+cbgtBAo/+O43+b3f/teErmMeJ26uLkELu92ed97/CleXzwghkBxIlTKjtdKFSDfsOByPTLczX75/zlwrT15cMc0ze19Eu75nH+HLP/0z/Mp//Fd5+O775qFfVEl8JPpDU5FlwrBIaDEbPVaLMnjfEMM69FU9O9uP2yqLqLC4BrXYQpgLWmajhBxH5imThp5uNxAlbSYhU/UJYbPYBq8+X3ShMZmR3iSQG9AUM/6jgrRiVJ6PkVvkoHjwLTpG9fGZGkWrHbM9gAGSTzRtYZdo47nOTn1w4BZds98rFIOrS80zUjIhmeykeW6tCnZICbqemAbCUEn1zQYZYFx7E3WzZ754YnTQ9uhZ5XUJ0dp/ycnKVMx7VnLxAm3V1bySCQIAqCJqidppN1h/R4ucwGZ8oouhuNA7kYUGU3JGEUK1KAV4ccil7oBFPdKQPAJhhl9IVtQRV7wSsNwJAFdpkSbRrSa9W10WN7R6KeKfFYECXQg87Hr+9M9+lfC3/gb/9dPP+NF3vwNAzpkoRkko4y2zVIJWixrozNWnH/GtX/+nPP7kU8qwp+sHDjc3vLi85PLyksvLK/I88Tf+5n/BT/+JX+AHH33EzdVTvv/db/LR97/HPE+88+ge3/nwQz797DEt+fRiGLg9TNx89m0++tEP+er9c+5F5fr2hmEYuNgP5GnkcDyQYsfhcEPQyn63Zzg75xf/zC/x7vvv0O16zx9IhGSGSZkLJZuKWCmFPM9M48g8z0QRhv2O/nxP0d48rQg59h5YFUDoh86T8JOrgxmNtc5GyYo+/89z5nhrOSQSIR8P1Fk5v3dO6jtbb7RSZqN6hs7mE3Vvuv1q0QWBYkBZJxNJ0cZFD662OOwIoUNqIZSCjFZsNfiYorgDoqlQtSh9E09ZqL+2XoK4eqOYw2MxulyworKIUkgIrtr7Js8jK+f9lftwYnWd2l96uqevfm/57sb4FTn1oi+e4e0ZXte2bcc8ucjPMxpXD7Zs/1ZOKVjLp5sBfPf3+l2beZUpZ55dH5bg/UK0apKqIbiGTzOcTXilHouJwzgbQD1fQ2KkzCNlOhL7HSFGy6PK2ahSL0Ei+29NGjdRENXKXCqXVzfM04zudku7tfyNk0iF/33HJl5oQXLa0D+mb/yXbP84/cirwKA9myvACK/YP5Wr3cjWnnT4KjW7QKcthUnbmFt/N5VXo37fHeNbkNGOtwUZysuAYy2seOdga1O85lh/bZAxHm8stCuOMKdbpvHA/nzHsAvcXL2g5EKUwHB2vhYd8p5uMmdaTF6SbUh6SbOwBpJSCOb28TbcJIIqaGledRu8setMeUfEF3WjKdRS0XmyBwKl2+0ZHgTztKdu9b63kHTj2wczJiW5kVwmN06zN6zzrpMQa+ErP/11/vO//be4vj3w8be/RSfKmDPPX7xAJXA7zuwq3Lu/oxsK33tyycyEdgO7wagNYEmS/TAgKDlnrl484eLeA7Rm+qR86f0v8/Pf+BW+8pUP+O/+239EntXUipIpL+x2PW+/95Cu3/P4s8+4fP4Zn90euZ0rSZSH5wM1JKacuXd+xpe+9lX+zv/if8Uv/vm/QNztgeoe+/ZjD4LGQHBlnpaQqaIUUfPU1UqZLI8g7QaCU0MQQaobee2BaKAuzwbempRkLV47xQy/br9nONsR+w6RiOrCe7EhUXRVV0kVFaHW2QsdYucO4uplnuio6os1nLh0arVkyqILjojFPTBTtacksC7iyRYfi4Q5VawZAJupoRV+RPz7y7W4F7SrVtp9Gqk1Ixk3dk27v3hianD6mKSE7N7kKhksidAhGHdXYqvRAFoq81SIMRBTQV0YoBRTbVJ300b3qBUVDymDKTVZJW7RQoyJgBXRs+k7EqK6qlWAWO8YGRapoGCe6NJkkx14tGRpaSDVuO7NEdEWD9qP2vwlBGNvdl4eunoEVcwHVrNiifD2tVJmdLQFO6WAJItyqEt677uOn/+5n+Uv/pW/zD98/Bl6vCXPmVIK+7NzqlZurq9IXaLrEi9uj+iLS/J3/pDvfOe7fOfpJaMEHt67T8mZZ5cvOB6PDLsdf+7P/Qpf/eqfpO86bmPkBx99l9//3d9iNyQenf8iSSp58or2XSIE6FKHyMjN8cj3piNnQbi363n37Ayh8vzm4GoqcDgeuNgNxNTxlZ/9Wf7sr/4y5w/vmae/zakxIEXphmTUo6XAl3VU7DpSgK5PVl9FI7VkB52VokocjC6n2ai8EpSQFM0jWU1Zbx4zw35Hd7YjpsD+4owYEmkfkcORuY6eI9IKkRXyWKAXUrWkeW2F8JIg0a+z4EZX2dBNWFg21mi9RWlrgV7ph97mP4lm5NUM48xCPW0WzeLgijYPtUJ7zegICcS9xaVYJG52JSA3aEyKVNbc8zdw2xYte3XRuTY/r0bVXePzLsLQz/PMtjmeBtQMxGq1BNpwYhze3T7/PTn9b6NQ5K+dYJc7QOaV59A7f8vJR15pYyvMc+bmOLESfraHFgQvbOyfF4waFVJiHm/Jh5vViaa60IBqyYRazM7zv9UVp9YrFpZK5SJIN5B25yBCvr0i55HPHj/lcDxw797F8q1FZtUBh0Wqq+2p2nzpxviqnnQaMVraZKEYyctN7Ma5OVXkBOQZrWoD3hzMGU6SO6BijVgskY3QnBOrGdLGaQNG5tQ1ENAcURY9MqfKKQWu/V5f2ybTb8d8Gykv52C0COfnoIcG5E/+/vHba4OM84szQJjOLCStWqgVzs7PGM52UKMPyMbBb95au60yzxxvD6BKP3RWn8CjARLUQtKe4Cuo89rbZGIIOojRUAysZMp8tGq0ImaI0hRJTOYQIrUW5mlmPh6ZDiMx3ZB2FekGS9QVINSTxX+Rvw3NeBSWkHRRmua6eRkjEeFP/qmf52//3b/LP/h7f59PPvwWCEy5GGsmJuM8RqfaSERD5MH9h5yd30O8XsL52Rnn+70VEauVP/jdf8sHX/kaD996F8kjDy/2aB759h/8Ls+fPOat+/cI0aoMl6LsL+7z4K33eP7ss8UYmIoya6WLHUPY8/WvfZWbp59x/2LPX/ir/xN+4c/+adJ+Z/foITrQlQPsa5sqZpy511e8crjZTZVSZqbjkVwm4tRDzaS+Jw7BaSO6Po248dBoRaFFC4ROhO4My1FYCjkme6DbQ1CqUVpUjY5SC2WavXhboUokxIyMkdAPhN6pVU3xqhYbm61Uc/WEdFpoVwxM50ydR0IUQhcJsbPHbyqoG5Zsf6SB6ro+OFpZKvy2hFPBaDkhut0gC0VLPAoSsOszQ2d2Cp96pO7N3SQ4ZaW4UwGahwFx+p1qJU8zWoWikOeCakai17FoSXLD4I+nAVNFvAifTZRVZ+poFZ3FNcm1WJJ30LBOvFrXIFtVowNoJYZkSigbTxJVbVoTz7VxKqEtpu5VKq4q5fOItM/4pmD1MlyqOMSIoCYDWZU6W7SkqEARtyODFw8U9vueX/nVP8t3vvVN/v1v/gZJYJomcrEozzhOxFzY7XcUAp8+v+JqzByq8PyY6YYerXv6viNFoUsCZeL3f/ffcHa25+b6kuNx5PrqBaDcv/82j95+n48+/hGAScpK9Hoflb7r6Pod0/HAs3HkfB+5GUduDweyCveGnjzPRAn0fc97X/mA//iv/Se89/775vH3Okem7mbOKFGr0i4Bc6KUZLltwaKaNu9YVfc8jaCTUdoqpC6ZOIWFG9BSyVqRbL1QZ4tI5XkmTDY2uq4zYBoDu7NzdsMOIbhcdkSy5dOElCzSVQUwGWBm0BosspY9UiWV1Lcq6OacKOMM45EogrrMuvTujKvhji3pa9Iic+tzjLrISmO2BJ+3tYI6NSpnq3afJ8iztW+XkNRT5xlmU8t6U7ewyKGvUYsToNEst+ZYUlkKqzWvN6wqOifbhpKzbNXzAf2d6vNWCIEid03zO1b89tWNkaa0fXVMcXeGeBXQeOWhX37v5HzbF7fntq3UyrFRcDf3Yk3j6786+G3GaHX6e+rJ3JCPt4C6kEEipA6tVih3oUxtQMZLFyGBuDunv3gIAvn22jsq8PTZC66ubnjvnVYro/WhrvNy3YCOBi74fOC4Rr22v5c3Ttt1MdJbZ5jts1ZGXyCK20pt/G0ARvDCey1fYxmv9qPtf4/st/yIquq/6wIyGlNmPeed0Seno+glcN32GzXtBIi1Nnv5WP9jttcGGWdne1AYumFlqRDp9h2xM8WNENIaks5WY6DxYOfZeK8xmtcn3x7QAuf3zoldXBBayZUuJeisWVTMA2gPo9giEzHjXnyg5WJKB0tIukd2e4iJUCr9LhP3e6iFmHo3qDOeoMBp68omMVnMCK4CSwG2Ntk0TWlFq5C6HT//899gngr/n7/3/+DT73+bEALXc6Hve2YCHz27QkNkrJXd7pyHb79HihEthbOzHV3fMfSDJ1Mp8zTy4vlTPv7BR9xcPmeeJ66ubsizGdj7szNi7KhVSX3k3v232J3dI3/6MaqFLjV5zkKhYw49v/iNb/DWxZ4UhV/6M3+GUGbq1SW49Jwl7Iup/SSn/ZSMFHF99dY2asnJzFRRK5BVjO+reYSq5vHILufYEu9D9ORGV/9SRzG9q1JUkxW2c8lKTSmw1F5xzLfkQnrkJagaOCgzx8OR6Tgz7AbOHt4nnV/A0BmwzOICBbhx796HaAmbi9JDVCseKFjfdx2igdrEAbZuCLXE8CY0oFoRqW54NipXXdpuQW8hrGAK1nHnPG7zsCfPO4HP9TK8IVvoB6dwFDe0Lb/Cblkd14tFqjwiGYKHcUsx1VEHDRKSP5KyUGQEaPkwZZ6MdhYTqesIRFNvKpWak9NdDFSIq4iVUiilOogxEYRqYVMHfl4vJQgheT0F73db4LJfq0WfQgx2PyLmudayOF+QuvowRLyAKUQJfq+FOhWUQPDnQ9UkeL/05S/zn/yNv8bTH/2Iq08/odPKzeGWQmCuynh75O2+5+Jsz9PbkR+8uGFSIfY7IHA8HolxJsZEl6ymxOWLZ3z6w+/RD3vOz/d86b13uX9xj5//xp8jBmE6/it2/UDX9XRdj9ZCL4H7D94idgNXl895/vQxj68PvLg90gXh/r7jZpwIKA/P97z/lZ/iL/2nf4M/9XO/QBcjNevC2ZZWtb0Y6LN0Oa+nEvG5v4fhDJIQjjeEw4EQLM8hdD1SldT5vEU4wfvmRbWE+ygJiTa/qMvGVq3UIu5fsuevNoVCxCJL7TEMHindeEzLXCBXYgzQucGxTFLmAa6NPiyA6CJ1vVQGBwMM4nlrQRdniOg6ZyyOsGbw1Aw5e95iE0xwZ1FTyVMlRgEV4nIjb962NdJEtsbQljq1+gwVPUm6Xj28rwE0fLrWWl2BrS7nr80xdHp1L+0KeD2FjWEqa9ctr+v6hSV/Q08PySsu9+S1z7ULZfN7NTCnKTPNvnapbtIQfG1rDsHFHsJEErLJTIfUmUzzPFI0r0IxntytqTNnXR5dtlYX292chInu7B79vYcISh4PBmB2Z+TDDS8ub3j+4oqilbjUVNoAjE00Y7vfPuPduVCJFk9/m3MbOD1pSt0Y23ca25tPXgKGp/kY20hGAxsiroYoLEBY2jkaEHZnSwNPjaLeAEbd5ricdO0XA4JXDpk7QPX0WficUf0fgDteG2SkYHrf2bPdU+fqF1nd/jalEy0TOcN0HCm5WEh6tyOkwO7inNQlUh9QDuZldO+gJRBVylgIRFPw2Oost5B0UKf3W/VkC4O1sLJ1jghom4gjhNSbx6hacq6FpCcYnQa1GHz4b+dLCyw5CrU2ZGXdUAzclGmyib3CsN/zi3/uz/Lt733I409/xP5cefz0lhc3E2NVbmdFyRZ96AbO7z1i2O2Yp4k8XjPfHJjnmS5ZvoCE5BEj012peKg8KP1ubwVq3BOqmFeilol7j95lnCYun31KGY82gBXGMRP7gf/i7/yXdL3RKWrJ6GRAIKZkCdUiSA5o6pEYFh66bCSJcaNJS7U1r0vADmgLmxCjAwfs5ZNo0XYGdprEUtCqUZCqenI0rFVq1SJcMdkC7Itn6py+QkAjxDqBjCAZkeI5NdGq+Xo0ZgnR4LUyYiB2BjrN/kx0XQNB7kWtuHKLR1V83LWkdq0t/Nvu08EFXr8FvA02+UDVjNhlXzcPfCs+GVdv0pu8iRs9RG/j6sCsLWDVjYgoNq6SkIJQa7JnzZVNqtr8EKos7SwilnztEasWkRAJxOCaVJ5aU0umOJApvmCqU0yqqhd/qlZ7xUPbxTEfYt71dUx7F3qhSg/TWERDrdaCVWLeWD84AFFLhLegXAOa5sUquZBnM2pi52PfPXxd3/ELv/jz/Kd/62/yz//B/5snH38EwJgz/f+XvD/tkWxJsgSxI6J6r5m7x/L2XCorqyqrWdV7N9kckmhiPgwJEOQXfuRvJTAcEAMQA3KGBEh2z/RwekFPT1Xl8jLzLRHubnavqgo/yBFVNXOPl/G6i90Z4H2I5+bmZnfRVY7IkSPrAedm+OVXb/DyRfPk8pRwsxzx8tVHyMnzPlQFH3/yEoAXSdwe3uBf/nf/BH/6Z3/X18e64faQcP/Nb/DLn/8Vbg4LXvzox1iWFaoJD/cPMFG8+OhzfP3Vr7GdN4gIHopTf7ImnJohWcMPXx3w6Y9+gn/0n/xv8Hf+x/8z3Ny8gFMBaXFkn5MqCYbkUQnlOh4eVVGXfj7eOC2ivMV+PqPtO1QVx6PXCzFGWEQUjUDCEysThwrVyRSeNM65bBIFFGlokJ4Q1YyVwMXtE87LUISpTqlSERjFBzp/OuZ00PyqQY2iKJtTOayaJ9PW1p9VCLxDEtnzlDgOdKHBVcceVSvHeHLhxAZoi8roqQsrwBjR/UCPQZe69kZfU0iGsThTR2Dxe3DV57aw8ff4ld5pV8cfnmoJYzGOyfN7YYvJMD6j9s8g6ciw++NLfN2BxjuO9+tBufgxYQwYgDf3j17pG/LkNoTg+MLAJLBttaCcH1HPjz7mJBT0GlrZnHK6b56DZNZr+HSAAUCXI9aXH2O9ueM8q8irO7P3x7cQAA+PJ3z561+jlgpd5BJQzP/aFY3qgi5FQDCZHk9qnTwZC+P3kZPj+RXxiZkqJ/2c1+e+LrYnF30QjWtTw0S0qF2Ai0rGSL0AGd9vFj8FwO/6zNMgxiXdrD/HexzvL2GbFljbYayC7MobpDA1oFnF3iolu4BWKupWUXT3xExJWNcFKXtl3dsXCbhpHopWp4m0vULVGP1QFzQMA9+YeIydIWmBpgZdFACTJVHRzhXlfPIHU1JkVobYO1KzMZssQtI0AsKIVtJbtDHpV0auAvXUa6leLbdEVeuM9XjA8dXH+Gr3pPa8rvjN2x2luXRrVsWSV9y8eAkRweFwi+Vwg2/3DQ9vfwt5BHJSrwINeK6JAWlZsTMhWBh9aW2ELkvZ8O3Xv8JyOODV64/w+Q9+hL/87/85/urf/EucTxtMvPr4/+Of/DP8r/+T/xg/+/O/AcBD6xYD19A3VGsC2faw/RzMaYOoF3kKOVlhUiQakCS5PZBYK2KikoykeqGxHZt7pbEW49vcWCM1DoBvpBHBiOrxrJBrZQda82QxcuBFFHk5YD2uUHgSrJ3Pnu+xF2ChgT/PdCa0QYGoViqRo+Id4ddWbuKGy/wV8wiIRyaY6N4LDtnwXsYRuRpiiGRNBxXuObXi9QBAD1o+HBxY/du4En6fDlLa4jlFBYpMIA1vguovrGNRNz519XyfWiv23aN9ZkKBCOP5vN5Cm8QLrBWUKhDxsev0zUrVEoIRqtK5ypEiRCFUAU3OwW11hOHVSG/aXAXJ8a8gLck/D0bBWoM2RWq+thj1UKUbGj74u/HbbNRIMUZ8AOxnTpIGTw7PCasm/E/+4T+E7AX/xf/5/4T9L/4Cb9884v5cYJLxzfmELx+/we6PhtvDAT/4yZ8AZjg/voVYw6uXr3wt92aGtYZf/vIv8fDmDd588xVubu+wF8Pj4z3uXrzEsniR0X0ryMuKtBxxc3uL3/y6orbCQoeh7Q7ct4RjPuDw0af4x//7/wP+l//b/x3ubm4hdQPqGdI8ed8Bf4XU5kn6cAeTVTigFIGaQZaK+vgW97/5Cg+/+Q2SVCwLsK4rJaqdyuX5fTTqFFC4iphxv9JwNKj0nDHvQgJARPRJmVsdHGpW5W3NxS7Ex0w579jPG2u+ZFhzQlLZC86PJ/dssh5JTityUp8DzROzrYor6lnzCAvrUBkazLxGiOcSeYL5shwBa9j3nX4aAdCQaNg0MZRaYHvDuh6Rb0j1rORz5w+32s5ImAUugEXYPYwuuLBEe94rPTtygOHM7Ba4XX6jh0WGRzwKuF0b8uRdzHdMwKi9yKdNnwfBy6WJH3/6bqBx/VjPH1ffp7XYmuHrbx9wogro3AIja8cBdI/8W2RveEJ83c4eRUM8A89h5vUwWBNj2NV+9rQccXj1CZabOz+nZi902YC6PaLVDdYqTucNf/XzL7FtG3LOnXTyBGAEOAygMYGRDpSmbhJcggH/VACL/hATnQhss9bpet4Wcd4AGHMy91CNGtGM674c1xzPMJKv2wQ2auwL7emYnnHyFX65QgwzWIg50ycOQMD4rs8///q7j/cGGYebG6Rl8fCYeeKdJOfTXoxOqu4smpEOznENwxVQtN3QindwcokZaim7EZaS0P4Lzzk9WeabTSsVKOYh6WR90Q/g0A3AaETziAMgQKmwtnOUhscIw7jleSL/2/8YBocAQqO8FQjM9fOVnFuDb2AC3Nwc8aZl3L+peNgFFbk7z1NKON6+wM3NLQSC7XzC4+M9zqcHbKdHpJRhlpwreTpBABzWlcZLZmEwlpMyQ2mGWjbs+4a8HGCtYjs9Yl1XfPaDP8Dj22/xmy9/ha0Jqhn+m//uX+Gf/tf/Df7oZ3+MdDx4+6l7wFwD2yBINLZtbMS10rsJJlMKukxrB+GcTItHDKQ12E4DfFlcmnhd/XsNgBQHb9ZIFwjOZkSmpPeTAwEZlIIAKQVOJcqeROwVvAGxhEUEVja0LTzaFbrs0Lsb4HDwKEkrPi60oeeHKOkZxveaUdo3fDBERDQ6EGHcyCcSmlguv+XANegQvdCY8XoxCLl6ilF8y1C2gnreIArcELxI/nBpDgA8d6YQxJkh6HLBCxUF33fQW2koiCpSL1rkSdHG+WkgALACcY1rr7kg1sPafZ3iLiXmhaIMBjVxAy5zvkMgkj2nKEkPeDXKFYvBaVWlkPrFPmTNj7h9X7C1R0aHZgiHANeY8BgCAFr1IdW8LfJK7j7XxIaGsldgV6SUcHtzg7/3D/8B9rLhP/9P/1N8s/0Kv/52x9YaHqu6cwNeAHU5HHH36mMcj3e4f/sNzm+/wsPDA5Zlwe3dnRdJdesM6+GI9XiHvBwgolgPN9h3z/uQZjifzzidHiH7jmYVNzdH3Ny+wn2tTJoGAI9yVlEsn/4If/r3/yO8+PgLAEApO/Y3FRnAcqDU9HYCmjsDgspWa0HdHXCpJmgr2PaCr37+JWw/4+XLG+RlcRnj5IYCuKlHknOvFt9/elP7si9UfeNa1oqDXEkuXx3OqXlHZUHPHuGuYRAUbFuB7Yq9NEAN5/OOX/7iVyjnM9abAzQlHNdbvHxxh9u7I9YDlfPgOYlpSUjZxRDEEtC8rVor2M4Vb988orWGVy9fQEVxPp+RsyLnBcJ+zimjQXDedmynDTc3FTccw2XfkFLCerN+sO6KSJyNOfMk6TVsJpqOI3F59oSjrzlxXACNS2vTTX0bhvi1sXjp2Z3vx393cQMH063JMFT7B62vDxfAZTzGeD3f9e+IbMu7fjFDqRW//voNthoOrjgfoy2iMGuo5nPcrPZk5NivokUv7rWfa9z6JcGH34k9TUOUoKHV3ZXP+FylVPzqy9/i8fGEm5sb/243wieK1PwzoqPX4DI6hLbFDDSiKb0JLp5oRDL4v1DXC5AZoCvAzEVy95SHMcAJnuQIzSDpOhk7ohohQBHy7wMI29W4uIIZMxieQIX0dmAbxHug824C8qP5JnCP9zveG2S0akiasdy5uo1VKi3F5tkMUUXXa1vw5lj0qofKFA4qYBT6ca+tkRbj6RD0srQwONk5taGViqQKS/REMETXPfCBGkrl4sJQdRNXDyplSrJlw+qoXKk5Q2rx2gWSERWf/eZZ+6NzaqOxFapeXLC2hpvjEZYW/PrMBEEVwDy5My8LlkPGx59+geXgBfLqfvZN0QzbdsZNvsHLFy9wPB7w9Vdf4Xw+4S6/wLosOKwrB4O389u3b1BrRWaC1enhDZb1gPtvDce7F7i7e4XTwz3wuKFCcdoLvvrmW0/EXFavtr2DPHig1YqUPTRvrM4tS4JU96oPNRPSmwjyIorvKkgsnLjBvRlWWYynAUxq9c5n5c/gKQedKgtc6Yeyo+ng2vRxDkTySPXr5DSAYnicIodCgNYe0TY3PkXhylY5hr4B4tEp2+Gc72PCkJLXsUoGLcomalOAHyT3bO5nRFV0UH4WKbv88UZeapuSvJuwlgM60GowFBYgE3VDudVKwGbvPbl/H49y5gLZGhVjB/0A5vQUoI3urM2xbgIkFIgkeQRTnbvYqitxNW6AnW61OFVEkACwojTrdFhuHG4cuIywxSYjqp4LQNpS3QvxEEEHJRuVxRZN1COLe0VTp3p5zobL0kIFiIrz1iiiQHlecKMQ68MNCs/RWDwa61S5CkHB9nDG49sNh+MBdy8P+Oiz1/if/uP/Bb568xa/+D/+Zyhv7/G2OLhQBXIS5GV1T2D1ytR3Lz+CtYa3X/8K7XR2qpMqNClubm/HVGcumkFQa0SRSq9b0Yp/75Mv/gAfffpD/OZXP8cv/uJfYjtvgGaYZNRa8POf/xz/9//rfwk1weG44vHbb7G9+RqvbjM+/+IjFxapFXY+wXa/R8dnCarAvlXU7QzZTjARfPTRLVRusebc21kIQruqm5H6FlLlADyMEYn4sQnTFGJEHVCIZKdWKnwdYpQBAVbSwnXBgNqwpoR0zKj7jsf7Ex7f3mPJQILhblXcF0M9P2JvDRseUPcNZi9R9oN7OwHspXofZK/cviyKnICybV1RxqvVK3JWLMuC9ZhIffM1UJo7fwSC5eDjR8XzB3rdKfG1/kM9rr3C3eDvdv4E5s3//rSAm8/78X5n8D8BGP7yOjoxLP+BJabfp9cRWRI64YDwiE/7FqQPQ/dBWX8gg+eUXNz+ZFi+47Z6m1z8MpoG277jV1+9RW1z29DJEjDNKlor/FfRrDjoCAW1MOhlOgVZFhe3cOUdjzwol+yms5nqXV4x3AF+qRW//PI3ePP2AR9//NFlCzwxyJ+nUl0AwrlfnkQXLLoakWPnUQO3K5q6YEjUD7vAlNzCwq7UoEmJ9khG9P0AQQR0YaMaMEvJ9gjGFMmopGXOidvXP3t3XI3Hi/kyRXGCcSKIKHREZfzbT39ezbvfcbw3yNge77GuK0SDtuEbrUCZF21u+mV63hofMjzhMakBCJPalF5IMaXaztQAxo287L4oGrCfdq84flwcAIgDlu1c8Pj2ASkJqVmKdVmRkxfpEjOEqmqroUAV0pAejm51R+FCXsyTRY+HI1pr2LbNiyhR6z4lRVJFBbCXHeVcXPv97g77vuOrr77B6XxCrOTuETBoWnE83iLnQ08ke3i4x/3bbxCRG6u+gR+OB9ylO5TtjH3fsB4WlLJDBO6tWlZPLH/zBtv5jJQUeTni/PCA8+kRrz5acHv7Ejd3L3D4ZkWpwLk4aDtvG2XXWcae+SWtsE4EuNSYuEcfBkgUv7MJ/DHHwQxSSlgl7vVPBph4/oKyPkSrLIKoNLbPBGDu4RFlwqaaRxi26gnf9OYiBeDk4rwkqk4RXFx4L9zosMWrR0OKj7ioxh3eLTWgeRE2F7wiLUrGOa0Z64A0Fv6Cg83CnTpFUSzz9spCBRhGhIIOkrx4oNfkqIC49xIqqK1h23ZXhWkV276j7cWNibww96dCRbF+8b6z9vfviHyHGFcRVob4eLM2FER8kQ9aE50U/KxLFfKklX0kcENKBSnTmz05dQzK5Sj1LibioWeJxhcVxyIJue6eyCgpOx0nKe+Hi7NGro2vH0k18DdBuFsOnli8+e8qANWi/NEaIK5gZALmD3DesaZLDFnR5gXg1iPSuiIlw0fLgp/8yc/wkP4LPLRHBAFZxfNUDscjjrcvIRC8/fYrL0D38Bbn0wnLsmDJCdu+4fx2w8P9A3JOfbMrZUcpTnsFgH3bsW1n7NsZ6+HG27kWHO9e4Ec/+SnOj2/w2y9/hb2Ojeir3/4a/+S//M/xN764w+3NLcQ2qO1APqI8NBR1R0uPYtGZIFmRDwskKerunlVRxZpWqg2yD+kqlWXUH8GSkVrre9BT3xudUGLolbEVY50R0PnhlEhXyGkO+qp2YQyvz5Khi6/LKS2e71Z2WC24/aEXqS3VVZ+C+iSasJ831FKRVbBtW1+b39w/4nBY8OrlEcJ8uHU94OXdHRLliZe8wESw7QXbXt3JZ76zLmtGXlydq7Xq0TpJyOvq8+0DdlU8qS0gGH3b7WifcyMvY6q23Q26mQozwEUYyv39i99x+X5ca7o3G7/QwDM3Mp3tSG6+G5ThZJjP2HGAXL15fRvPRDEi6urfZUuI36NHYvy9Zob7+0f89s3juAC/Ixht3GK/j7Zq7lwzq8P5Oj+AGY1i63aWxxOt36DAOi3U3+K8FvE6NMlZGw4+Kt7eP+DN27dum4hc9NtF1MIub+eyYbxt+rPNCmU9kjGM5wlyjnaO819NHen/pFddEI7JaIMnVCm7uEJ/ll6roj0XwfA85FZrv68AFSMHpVvZl6Ag7gPx2u2jnlfiHr+eL/QcoHj63jva+up4b5ChSaGkDnjV00QqlCGFBjBAuoANjxzggz1Teg+NIWnBRUi6f5ozy1zxxSJngnSVJhXbVlHP4nzUJHg8nfGLv/ylb3o3vvkcD3d49eolXry6xeGw0unU0GDIS4YmN+wUzG/YBFIN217wzddvgdbw0auXUFWUsvuCnTKNocykbKCVirJXbLohLRnbdsabb79xPr1Ir9kmokiZ4ceyYzs9YD3cIi8L6r73wSYqOD0+4NtvvsaL21uoODVsWRZs5xN2a2i1YN83mAH39yH35gmPW62QpNhOj9i2DcvhBmldkfdKsSbDm7deVdwNX2USO/MgRFFKxappVM0O+UQkB07CZEN3B3SPMpT9BHMPvQgQHmexKQqkgBWnnjEMC1FoXun1JZ0qpC6icnx14AIhiPGBOS0CMqIkkR+h3le6Mvqg6jkZiVW8NQGL02P8vpgYLjROSvVaK+ezP8Ya3s0yKp1a8fOlxDHOZ60V2Aku8gFYD0D2uh/YNljZUMsZrTWc94Jv3zx4Mm1z+poCePXqJdKy+kJjFaHZ/qEequIFy0QBa779WOsemhGp0b4R1erc9wbQiSDda+XThnKlXaGLDo1mTqNqTPKuFZrUE5e7xCkNTaqDWTUm1kX00jcOWzKiYmtfoiymgREk+z9duCBz3TLKGEsArKDYVc/baM3Bpiaum+qy2Nb8NSQK9Dm4eZkPuHsZCYVO+1IDSjWcCdK8HRQmhuWw4nB7h/Vw42NJdjy8+QowoOxeo2VdX+L169c4nR7x9s0bwBpyTsg5YV1Xj5QCOD0+YN83bOdz32S2xwd8XX+BZfkpbl+8wu3tS9yv36BthctAhqHiuAI/+eErvHr1EoBLXIoZlqTuVJBMSmjqRocQwGukIxFM+vPB+5k5YaIxh8GARYIl9TwqEfTCdZV0p5hKZvDCdWOf8dBCHYCHxpWrQwGCQqCRvf/N1xwRwXJYkZaMct5QtoJlXZDXFa2546DROGutYU8VtVZ6rl3KvbaG25uMdVUsa0LShJwW5OyOpcj3qdrQLOH+fsebb++hU7X7jz9+iaN6IdOc125UOOidwPeHeHSayMWboCehbxuj0FhQbFxBbC429i6K1CXQeHq1y19HsTez6w+51d8ARIqnkzwG5L00QKXb+/zjd7TD07e6k7aFoUm6WAc8/rlaG3799Rv88uv78I0grGib74cOHsMwYsPxFoplHQDxXyOleRjtQb9B7x+hHWOtuaiPKhTJiyhr2Fo+Tu8fTnj79t6j1CnAAZ6JUsRNEFBNXn2ZahmFGmGoSPZ2A5j3606JoLU1jg1RHWv8HAXoIAK9zSdEc9Vn1gFG/2fotT2uFbP8K890dAcUVwDjArxIB9mRk/ykeGPce7/ViSJ1sc5evHjvKAbwvXIy7uh94UIliRutG1oaeQsAuvIGrgaAxCLnSdWiC7CQB9zmkHR4nxZ/mOac/TUr8tE9+uXNI/bHR+RFsIrhk9e3OG+JYaWGcn7E6VGRM7CftxGS3ivw6PdyOu9Y14x1AfbT2W9TE25vb5BTwvH26EpP5MmDSNBv0WUAj4cVhztOODQkqpyoJrQuSScEC7mjyfN5w3E/o5QzIAvqdo9IgK/1hK9/8yVOD0c3ulTw8PZb7OcTyr4j6Bw7k4OX5QCBOH2hNSTL2PcT9v3EPnM+u0FgkvDtm7c4PzzixasCWdZuIFl10FT3HUk9ad29eplDhUWgZKcnvwB29qRoeiE8l4HTJ8UiqwOUKI23rJC2oBVDqTus7G6L3ySniKzJv19bNxp7joSQMqUsbofWJWItkrEhcJkpovcAI2FYVGNthGm6CwDbETlA/l7zaFivEaLohfW4gTjogavHGGVdqhsoPrmlF3ATEWDNMDXI1iBbRitnbKczTvf3OD0+4PbmiNvDDcwaFIbWii/CosMb94EeHhnnMljdO1x2p+CUrXi+15Ipi83iekzeNK47qg5MrFVEwHSAL3F1uqDItEowUDwSuBusFuTD0SOTpD0ZqZ6e5K19U4zQvREUAbGwJ3IEfVMVUqSCtoPYJIKeVeH0gvCnWIMV8+hhGLzqBmBSqgEJAKEgQYy/ZkhiTBmyzpE+P5zxL/7lf4/ffvUNuCNCYFiyG6gJgsPxDoebW9x/+UuYAWU/QVPGvm1opeL29gbHo+d1oRnyungux7LAFtfBL/uGbTuzjkhC2TeoZuz7GefzGTcvgOPNLe5evUb79lucCjdnachJcXt7xMuXt7DmNLRWPFlcWVgPiD5gQT0oQEMx6LgXPsCYXxUwU1ioHcZo6GIOkRMlcDMvQh+xT9mUN1W5TswbqbepR3PE970OTkH6Z3UHHMFRPhyg2etvIGdoU9YNgK8btWBJhdRIB4PHdoPQwldG9lW8Ro9qYoDVjVrNCxSK29sbpJzQ0LAXz6szEeznHW1rWG+P0KOLBfijqtOqPtCjG1JhfMllT82fC3GUqDXQvcMBNNq8nl6vrfb0rXfeEyZDPd50j3ioF7Xm81ya948SIM/c+H5MIOQ5I+9d9zWoMP758KRfgAwDzvuOv/rVV/jm4dzzAziheB+DvuPRjfgvnDvOeri8F7tqz+8+BBPAohHsfk6nknmEWHDeNrx589bXHPH3zOD7YSiKhkSxceWl9W6g2TmpPM05Ej3x2zza1MtxId4PUQ50UDEDlEsVKY2LTf10CR6iueb3OvDFqLg9wPEzO34/vzG6LZirk3eV5An0DCArF3kiAxAFzWv62zNRi++BLfrx/pEMkKcuQim9TCyQfbMTdFR3eURILbxNIBdHMSp61+75teaVVEUTlTQYkqYBrjkjtQU5ZRyOC2rZYaXgxd1L6KLOFaZyTCSmb6eCvVQsKjifHnE676jW8Pb+Ecfjitevb7nHZ6wp43CboSkhp5Fs/fi44Xw6e+E0OOXi9u6IvDBpMHTMtbjSSc5QFRfzgLg2u7r3tNWK7fSAWj/C6eEedX+EwVC3oSNdasXbb79FSk5pOj24BzF45yYuhZjywRcw1nvogxUeJs/5iHW9xfZ46olrb+5POJ8fvc3Vw/ZYM5JWiGSkzCQl0ka4Sw90jqAsFQDMzZHcHTdcPvqz9ERJjqTYhA3quu05wUrxSZtJd2DUCFp5zjYiGV5MgONHHXg0V6QBDFZ2lG2DmWviK4tzRW4MV3q/t1qckgf4eQGOV47PBMhhQVpXf6YwWOgxDJlL1Ia2baw+bRBrSIswGgTAmOTezKUmVYH1ALEKKTtyTnj16gZ3Lw843txhySvqdkbdN+z77uMpJaTlvafs7+VR970PjcaE1tYMCjcirVa0tkNKQxRPTIvnfYnmLuxgdTi1hdxmFx5ISDm7YafitU4OhqVWtG3xeapesyARNJp5xXhhRK4P80RgHhssk/Q90OFRl56ASgU8tAbbwynhKlK+9GsMfffuAxA1cuwFJpWAxOgMAAwMZ7PWBlry6Efz4oQdzLOWx8PDg7MRGdFJSbCuHuFpBFNl33zt2c9+JXVv15s33+B4c3AaTlI0ddnXsm94++ZrtNqQUsLXX32N0+Ojy+DCaaC17GjmkadlPSDlDJjXB6rw2iaAYNtddEPFk7QVVBBM6gUJ6Rl1r3vqXj6A34ndftp2DcZthBuLEOhFLl9QdcUjGkEjM1JAJIQZDP6Z6u93JwNA5wLHQPfESv9zeBKdikBOuynVF/uH/G9JIOsAwDid0PZHNAOWw4qVwgHOafc+81ykIQAQ41NzAiwh5xU3L25QrOLh7aNTsFr1fTRzsoRin3b49dc4q//9Hq2DxbHdPGfadjBBkGEtjDi+Zp7oON5tIL9Xaz35+uSJJv2uWe12Unjiw/i7BEty8QOXEOTpXcn4hPQFjGCjA4zx+cfTGT//9Td43MozT0fgHhHCJhPekvFMdjkXw8B/5u6eHN3QBvdRsImseeSReUZNXQTh8XTmnGBkJhrLJm/9teffhknytNr2DBCkjxODUmq6IYpu+t/xBJjMOQ1h8lzbv90kmu5rgFx752v/PK7G1AADZh2X8UEDGs4NH/f3FFRcPAvmv8X3xrNcAo3vv268t8VinJCiThvozl+ldrfGIktDrVb0HRuxcNMy6F5jcLMeIelYCFABKYWqLxmAeQiQjZLWFce8eFLcXrAcDtAluz5zCZkvN77XtKBO8oBp2VCt4nDj3NbjcUXSjJQWr+0gMr7PW9y3hvv7M0QdZap4leqjrUh1RV6zV5ZOziMeKN1/pjQBMPHIz765TJuI16JoVBKIsG7Zd+ju7SWq5OX579WcUKMpqgtHVVPpVV9Pjyfc3GQcb+7weP8Gtbnh/eb+EW/efAurhUEB8r9VkI6HnobRjSepY7M2eD8qHFhIQy8OBWAQ5WOTp/HV0WVs+F7sDrYim1PounHfKitbx/X5p52bQjIHFomRlVpJtwDksAJiSK2yGrwBZUcrJ0haIOth0L+4AA+KFf/FBZVTZImoBQaloqJr4zv3mgmxZkis7ZDy6jkezDfiRJqMGPdcL8uK/MkBrRWUUnxOmXvsNXmCXoHhsCzINzfvO2V/L49Woz9dxMGZbQmaFbIYrBTSJOESydyAE7nvXaGD64pAoMnBggjnXoA/htc9XUaQFp/b0rGk0I6zaeGNNcv7rLWGVs3vF75ZWTMIVaCUuTyclSyix4U8gxAFHNp+n6rhE3SVusZIjTA3yTccQXjBpBQ3iKrAi576xgxQoUv82dKyMOLld5Mm6cRQKTk/3rs6nmSU07fd0DlvZ/z6V7/E4bDC0BykGbDtGwSuSiSa8Ob+gVEl+jS5TiYVlHJGrRVpPXSP32FZcC4VYp443lrrm36iEwdg29AjicjNssF27145tnQYKe59A4FmGnM61h/j3O65gQA1jxFJ22g7LXc6N8DvDF1trg9MAm1hZAGRXC7cC4cSoQCafe4j9jcax5ooYuH7aCpAMsOyZEZqJvqp+V7YilNW0kpRCaq/eJFSg0qDbA3YDW0rqKhI2YkCVgtsT4GOHKyk5a9zWv97PWZVqMCCg1FiF5+7MN4msNETep855Oo8IOAff7v68NVp/J6uz+1jySAePUXYB+8LMp6HGRffmOwL6Qbp9Lf4xQwPDyf8+pt7VIoZhOy0f5hzLACZNHdbToUmvD2nvbKbefHcIQv7zOGTF1GQldDB21jkgi4F+Bq87TvV4uIB41vcBeTqagNnDFusAwT+zrzNOIfpGDMw3xdMmTc3tXGv3o0rA/76aeMenkQx8CRaMQDG+HynTD0zTkXg0fZ4xig2OMG8i+jFuwBGj2DoJdiYAeu46vT/94cb7+8WzcoNWT05UpxPLRAqs2CAhe5xmnj7EC744YKspBvMt+peLCU1wMyrakvQFLrHiCHIpMjrAZZyrzwJEaQ0bSKtoO47Sik9JH1jjZJsMRW8xoMk58trtwqAtCwwKF6lBTcvbmHScN52tNKgS0YpFVY3pKxuUFq+8MKJCDf7aSCab9qtFUjKqNXrj3jorHbObm0NeynT2hBhYpf2zJQzra34xAzPhVH6cduAG0NeDsh5wbbtEBH8+jdf41/8i3+NP/jiR1iz859VqUQSlbdjE4tj7t/IDdCgUgkBh3i/Ruw4gEdCBxZDgpZjplc6FXSPWytwaSqOGSenOxWikt++OAXBasN+fw8rG5bbI+TFC2BZoNagNQPWYPvuqlkpqBHh9aR3c0GPTjjoBUUHeD+ldeMyEsBbbWjF82t6tI4MmqF1EPQ/oOetRF2MOkL1kjw3SVgYspm6kakZeT3gtBecHzesueJw/LBzMjqFEF6HwJ1mEX6GG+FcfFt1WkhSGpWtsnIuh05yj7GKEvRrV+qKqrNWYqFU2vl0ENAYNRlzymltLoUMgJ4t5nSU2pWrVLglEgj5dG19ieugujICaL4ONRga1y1F9jFQfSOX1NwmLhX1cUdryvwTpxNu5x0qGevNETl7PlwiUxCaoOvijg5uJCqKnIQ0USGlacPDwz1OD/ee0L0Xp0b5gMf92zc4PfiGrSnDzFDKPhlowFYM63pkORnW8gCg/Oy2nXFz+xoiqRs5OSmsKUr1Yq61ulHdxRFiPQ8DHCAPukXh7hg8HDNKCeI69hawE33H5f4RG2V0sHYAEk4VAHRSGGtyMsoQEQi4w8n5buG8EoT0sgdog3pljLIyYhDrGtsikit73ggMkhesL5nnZYyAxGfEr2ulwuoJrVZkXXztI0XMgYiDuJwWvHj1Crcv72BSAKtIYlBdnBa7rKzdY3ScfJhHgLoLIkn4beL/VzQV60Zco3F3HcV47qBRPdkJBvi4fvbT/SaeBRpGh4DM57jyFvcj3r94b37n8h7m78+A4gnw4L3dP57w7cPJE7sBBxGxJ7OGU0T7YJfG7jBEue+FfcL/+WNe11u4biyvseFF+oyMClfbi6RsY7TYmuF0OjOCNT17mBnjAafzX7XNZFBf0oF4PjGYKYK+pFQG8bEyOkDfda6Lc4527hGHGWQgQIf1qOUYq1M0wy5zN6L3rY+NyDmJPDyOr4Ey+r3Or59EY6Zs9evniWteYN73RRc8vkfit3uKQg0hpCTdouKFGxdGgXPUSSHokmQ9bNimlgv0LH1h7g/CBB53LHkkY0wg9wKDhf5A473z4phAbLVCHk+om08ILyZFbX16pxCDCgmm6kwdGsheEVaYH2zYS3GVq23HqWxICtwcV6Bl2Dm8nAQWIi7GKRxYzdDUIKao5gmttewQeA0LH3SCxmhOq54QnGJPY1945NvpAz4op8gJbfay7zg/3uPFq4+wrCtRvCeJvn044V/8q/8B/+gf/H28fHGLGgWdSkJuK1LKSJHzUDNkCcBmXnNEzCt5ZuVmx+JqmZ47mW+4W17TaOKGPwMLr+g41csoQKEhboyWJFIbgA4e6nnH9vCAen4A6obMJHKUOl23uuTpEuIDMsaeqtfu6PdjTNjegHKGtQax3Sd2ZbJqn5zAcli88GBKbrDunqsiIW+7V8A2YA/p1tK9mrF4NWuoDxtqKdAsSCx4hpYhtuDmBkhygqKhnk7d5voQDxUmOoMUS/H51Qqgi5K26GuKJINL3TaUVj3Ks9ETnhJ0WVwCUUaLGFVNNMBG4U7E8Jy16ixB0s8kAIoOw48dBd9UPDdIG0mIXJA9QRwOEAC/hkY+Br/HaJmr6VUfPy65BOhCLQRzqehISm0NtQhgGZoFmgz7vqPuDboqat1RtrMnZB+cYqRagbp7ZNRAFTzpaSqB1WvZoZtiPRywnU6AeeXeMI6aGbbzeRj3EEru8vsGQBKsNRSuAwaDwqV/Wy3IKWErZyzrLfbtjKZAEkGF4vF0xvm8+zMaIMWFFzTlTk0TNFQm/PsteP94m8EdDELDv7oH1o392mXVJQtMDdZoCBGViq7AcvSq4fUE1M37u7ZRdBPN97EwMMNQUgGQHZyUwoic+HrXN3iuW5ZH2geBa4+cRpQiKJdQ1uggmrIAIgBl04AlId8e3ehSJbiAj2l65QXi8+Eo6DLbUSgU6nLe4RRKyWsWfaBHSJ3OkYhBkRkZO/YO421+H3hqRPV3BUzIx6Vk6TNHXzp4D+PHAD1xfKfx/RRV8Dvz7yNCgcmo7UAifr1wEsb9+7r48PCIt49nzMGIeABfj5QRjGHw9gelnRU0p/H+U9T2rkc1+NpTd+6x3NfDUHclNy/yZ2bYgwLfn0+etuOVBTya6ApU9N+jXbwBHGAYkg0FKwnalI0+GEY4BqiY/01PGUDi4tknWtR1zY/GfxHVePLluG/aeXGdPjoDfMf9CS6iLRfyzzJHd2Q4wp88yjXY+H4o4/uBjJQgoPxnuJhEJgqUTEYgR28YbTGag2/fB+4UkrZI8rQOks0Ak9o3Qg9JU3dexAFGFgzKVWxIpC6JQA5HrDTENScaJZwgEZIuzImwBl1WVkSlsVwBNFe7UvNESlsamhRXd0nT8/Ye8gmjkO4wc5UGAoL4J+rVvPdzj2D0BRKUg+uIjPKeEKxUezF6Esai6xOmtYp9P6GUcwdWKqwEWwq+/OornGvBR8eD6/xTccU9lsUXkeb9ASvc3IxSntzIYqQX5k1Ydt64AO7WVxpkTBJP2SUmMSlCCcED5fbco0cww2JnjVQmyQmSFw/1qwLFJ2leFWKLe2cfTz4uGj3IAlL5EhLtDYT3Ra8pXKRctAZZHoFN3FtqlOzrgNhBXibIxbLAvatwQCGJwMuYsGsEU3AQQo9MLB+1NJwezqhlQ14TVslYbg7QfABgyMcDbl5uTh+KQNAHeqSIEsDnrgTOrALbScFJYAI1+njXpFhUun5Ayhm6HjvdxmoolaF7Z0RXeqeZ49Aq2s7Z1Pdr5gOQHgQrsLYj5LlFE3Ki1pc1Fpz3hG33iHv9m+7F7p5P5m7AYOJyu3sziGTkJdT4XDWpNKc2nk8b1vXg8zWFhK3hoCuOB88tsua1NqR7Yg1Wd+ynE06PQ44yFFhjE7Xmevf7DqA1lO1M3fsBblw0w6Oggx1pfamuJliXjAb/jtMFBn2tVcPp4R55OeJwc8TpIUEZbTBR3D+4HLdvXq77bnWHtgXSGAll27ZafUNMFJUg1UwINhxEOXiMnPxWSgwYQHd32gOMYMKjtMsKrHdeH+gEH3zKvguAYe68cfEGrnWREyIAluTRtRoa+pyUjFgx1I+eL2bmVcwFft3I+4BRvY/rviZGw8G+deeNqAKHDGlp2jfFwYlod8Rh9aKvYD5GRFsFgNStA7d0PLizcP1rmND/AQ4LOmU34IZBFkb+bBxfRjS8cYN27McwogbAiGjJYAfMQMOmb11QWjrAeAouBgD6tzgCQADdgOx3IBIfmD7j/7swFDl8zYDH0+YFI7mHMzbbf/efpEsxV8qZFMyvvErwtrimzK05XRvdghm/V699EyDZt2LlWlT7vDKQQt9B4QQ04goytc3V8/b3AlB0cDDaKLqJrmUv5gp0pTu/7dHe/Tzze1f9ctE28doGJapTpALgtEvAYX1894dE5I/w5sZ4nJL3hyPeGQIBhNzJMGzU68T16MBBl5rHz+VzfR+Y8d4go3uM+LC+iyXPYgxKgBca6A8xV+51+VJw0ydVJYw9zCHpSMyiga8RqGzjwWa1lbAWgsfrxGl08GOA5AX5xeq3xmJFCMoEjWhT1nAgP7uHtiMcbv5seUl4+XqBSUNzYr4n+Ur2RF4o0mGZBgQfkSFBP4y3nHBcjti3vU9mgVMd3KQV5glXV4eyhtqAnBcOELCS6JwI5LxmgWDfz3j77Vd4+fpjrIcjTg9v3HtaG377zRu8efMWn3/6qX9eEgvGjEHme1eBsAq4gNXNlX1n8ybMDZZl7wH1gn4AbNtRzif30t+ugK5wr2Caal/4OHBjYh1jrDZojAka62Lim3VTpLzQ45ugZtCVLr4GNzpR6RXPEF3QtxJhf0Q+hk4bfywLNF7cy+lUHVca8klpDQ6wSu0GhbXq9xBStomeSk2QYoM2BeteslYevcKvJpweN5zPDS9awvFFApYMPbDN4nof8pEWT7jui31D5NgbQM8KoxkizomlPnoYegJjkSMCWaVx6iegAW9AczpUbU4dLKQ5QgWpNqTUkGT3z9Fa9TC/OywU5lE8VYjSaKE3XZcEwQLko8+DtgNiLklbSJMTN95L3XE+nXE6VRyPB1cKMutroRXP+1DNDvjhVcWXdaXPhuMNimaGnBYA1gPJMKCWB5zP7plXJnP75hxeqgWQhMPxBm+//hq1VaeMYmx4zUaxvb65xPkbKNYQEVlXl+o2gxmkeWT29sVHGMWnqIWvCfcPJ/zy57/CH3z2KVQMtVIak4AzwHus3yknJr7HmkQaLKeALxsVtjeU045WvcihVKNxzzEUe3ItkO3s0+988mhlqERFzlwAidpQ6w4xc7W7rNzrFJIPwCoesWQtDFHjPJ/WF/G9xkqD7R6ptEKHR2KBxQwq1zUghxckNvzK5SicTwAkwdC6E0OgXdaTqJBApHmh1/MOICNnQ91jfMDb6MVf47z+93jMVJPxOkAFutHfvcEgXcq/3B140xlxEXm/ABjWHRcdaHCzHebyfF+XP3vuzgyI4j5gvcsuTdH5uDLswguNSwO3G8DDysdk8V8Y3maGh9OGcxkeqyDmuPfe506nlSGGFfNFm1e3ny3g2VAfN/AdpqgBkObiH2QHmJAiTynzsAvcYXOZx/Lk+fvPS/Aw/4z7fPo39O9Hn2kUSSVF0y6iKJdAY/5drp7dvzceuQvzXADfa2nlKYJ0NVLn5x1/kzF8rp7HscIV2HgGYIjMbftuwPT8O999vH9OhiQakO6lkawwNTf2yDOX4CLno1NnygmoVO6pUbwFAIzGe4ASvq1uILqXjiFpAg3/tEGkMFrBSEPjApEnxSEQfPSBqf0cTtuKkDQNSxEPSb+46V5m5zoDwVWyQiWIZaEsaoO6C5bVxoV4ZUOCYM3umZMAUoIxAC2axJP9Uh4Dkm4T2tu+UYddWar/PS/ZN3HxqEwK6hTGNVotkB043d8jZZeiVE0QVvz9+us3+NUvfoWf/uALLIvLI6okXjMsPk9LRXhqqMoQA3f8475Gg7uVAkNDXhaYiXOKy47ttMEeGpJm5HyArgfIYfHolCn7y/tSVkYIGHESYW5OUKpMPDKS3JOseQXa5n2jCwwJggpmkMNpAgtC3akneDeOEzOOVd5HPfvvpaKWQp6+uvd334G2d0nEZXHqTvDQO7jAxM9W9XocYZgxuhfRJ0mklTQHUm07YX8UZDtc8runRetDPERYENFiiEUiMHy+pIj0USFI3XvWusEgPXF6qDdF7ovxfL6+uFO5obUN9Xz2gobwBbZWg2nrkcxWgQaXTcxropyh9LXDYn43IKiaZoBU5lAx2raXgu3+BLGG9cbzGupW0YpRma6inCPBWdBgKLXBGhwwJ69M3kpBEYHcLK5SVx28e5J8Zgjc2wzN0KDYd3r/DQAiad7XWLFQskpIy4L6UHoSNhC0S7j0aTWYVeaehK9GsColuHVsdLH5tmY4nU/Yzo94fHjjtRk0AXDDViB4OJ3xVz//Bf7un/8MxyVDzZzWBDoozGCaIOmAlFf3KrbCPQaumqURUZBOF0JtEGP9o5BpFYXC8zI0QK2qg4vTGVaLg6xWIOL5Wqaj/pFZ0KwaAEYfe1K3n1+ygy7hPuHRb0UPw8OjrdiLj7+2AxAs6w0k5MHDu4hGmWsbLAFKt4cTJKImVndY8UR8hPqiCLCX7qmHkLma/dyiguW4eB5TZk7HB3pExP8SRITRbqP/gAE8JjDCP/TzXYIJcG2S/jpsOMH4fQbX83FxTx1kXAOiy/t7koA+2woX788eeUyAQyY8MYOMixP277Ta8Pb+jI3Uzc4SGdaD52oYOJQnoMR6MQhVxQkkzY8xjPdngE5vK7hoitXeplZZN4ug57JtxznDKL58HX/7LoAxvz+1c6Ck67brvvDLdh35Cpdf8GERLTKMf3f+gk6aq4jFNEYjB2TO4bg4LkMLz9oCMY7nHJE5Z+SpQhae/pzO/u+6Urw/yEhAr9JoTHpUYUhauuKJrBmyHp37qgJswp05AYm7dKP3vVV6iQOokMokBmSGpNsIScd88g2JxeRA0FDgRhv4p0haAtwY1VjIF/SKsG7tAdr8ujnACRALdXjae3Gb2MQaqwFvO8peXZs/NWyPj9DasKQ0oViZ1iXv2FYryn7GY/MK30KubWMiZqBQVUVmKL/U5vK4EXEIh9fkUzGMwWnm8pK1VKrKjJDj19+8wV/+1c/xj/7e32H9jsjrwISAyVVXsG8YrufvkbTpFlpD23c3wMlpabF2EDTWuqOeNxQo6lKQa0Eufl6RAEoK7D4GJCuQlrGZxsGFTiIi5g87ckPCOIwFxuJ+M8cf6VtCehRsgEtDWJIIwyQta1edEc/7hmiLnEv3aicfNwIZEbGL3EoaRjruP3jZy6KwtqCVHYfjgaBwdQEEM1dLq5Ej8O8+6f9DHpoTVBoFythHav6abaT8KXQUuKjBCJmLjHkEKvdERdSIOgoU1nxRTaqQJUGRuF+qg43kqlaqoafvtXt0WbrqCCgp6hROp1T5ZkGKETdqYSE0E/i4rebef3Gu/MrxozRMWjWUUj3nQTwyosylEBXUveD+7SMOteJwc+Dm7ipCYcBaAyJh0lJCE4+Cmo1IhNCIcL13xbIcIfLG7QczwiVBE486xNgqtbmiFwSlusNAQsGrz63Lo7WC2hpC6ndozA/D7nEvWG5ucLy96YXvDE7tAQxQhaYFogunb5uiyrR6EsUmTOCS1A1pcWUxRyZcDyXEMHTcpLlwCFRc+E4DRzSnNPko9c1You+5nwj3iwYAuwOLhJErFg4E45pUDdg3p5iqYslOw5Xl4IY+FbRQKeFe+GxzQc8QSuE622pBrV4lXMQFAPIhksExaMnEKWlRWIiJmEDASsr5A+VKAehggev+TDkZEYynYALwdePCNxwGO1/3T42Xz1ydhqSRhnkBJC4BzXMg57lIh8WePy4wXX+Aivm+r+/oXb/GwhSWQW2G+/OOnZLw3YQA0As1mgsECMSV7YLNYebUyyikJ7EevuPWeG15ph19vvveb0YRjFo6UIv7dUqncXt4PjIRdy98mK60RIlbb+9xH2GIz6b8E4N+Pq7uP/CIob+YAIZMgZhu9XG4tjFewDGAASr6dXq1duk3KxfCOX7WoHVdt2vYcKO90H+/vJBc/esffDrm3t0c33m8v4Rt2VHOxbmyHFgQpZiUc26tNaRaPWEWAE5nr0EQRVsSJs8ggNZQ6+YL+kpZP/MPynL075QCKVyoEzdwJXCJOgktwfaCdj6jloK2G3JySVq3SBiWEANQOqDxB+Po6PkQcI+ZS6l40bgwIgCAKlDDW+XJ1GEUaU443hw8h8WMPOLomJG4bq3hfP8WaUluaPBoBCauE+0GklHusTRgXRckSnkKDWg3FmzqeQ5oca/P+f4N1uMtzo8PgBWYAQ/nM/71X/4ce6t4ua7onL10NcBEhle+Lz5ARzhhOKsisZ0skq7N1bIg6oWployyuxc7LStSXnya7BukeaXN8FKFx1Y1eZXszEhEp2pFlIs0BrMBJFjEp5P6BeiUriwDWIgMno4BnaZgBK/0lHs7KGlX4hSacPNE9KVxVRF15MF+gJknf4eMpgh6oQT1cSdZoFWR0uqebBpVyjoxEsDuoo8/zCNFpJFAoaMmoVFIA1asRaYxQDUg5YbuY9M3O49U1J7M2aqD6u6t0cwsqEspWaFX2kRhSd1IVc/5cTDaV3uguUHX74sJua6UpZAs3bBeLCGpoJWgePm6Ic2onOKSu203YNthdYPAaT45KUAAlJYVhgI0w77tUEk+v1qjzK9/TihlpqJYcu4b5eDVGj36hu30gMe0UDEqhBEwNiP+oqpO34PT1qoBh5Q9EiIhd6h9YzWgn+vxzTfIy4rt/MDppRS1AEoz79J8QDrcYlRWB1LQVUjV6Du3GqN/01yOg2u3hAxuYhSBTg6PMCRAMscS5ywlicXGWjMcKg5KKI5MZ5ryPGys4KQL158Yv2FxiQ6ararX2THWbcnex+M5DKg7yuMDbNuQ1yNwA0+ErRMlJaK4cKAuqjAL0Dclwkui6IlAjHK8VpFqpVpbuGa/06T6vT5mwz2M924A28Wg7N9xW83758L73D3S/H+sS+NPuBx06ON+0q6+ABfPAYxLkIH+mq/itBxKl3vwnNg93el0CL//PNCQ/gYAE9TWcP94Rq39QRB7S4C1/l83gkP61505LVTKfucRVn28nG4MQidIdZXG2rgmABFVMX5GRS6uNkcvZjt4LGmGnmPS7+N6PIwmvQR+eOY1Ls51AVX72/55DUd5o60HLgsywNNlMv10X70vfD1xsKLMW8GgeLN/VKh6GY/Y4vmkj6NoZ5nafbT/5Vi6GFcil79fHd8pYDAd7x/J2H0QpKTQhRuuuOQYTEZRKgHw+Ai0x4uQtIpvpJbIxTd67XttAqDDv+GGY0g6u6c4xWJPkMFmsdqAbXc6hFXKsSbgcOgbR59M0S5dvhB90/GJz0I9ZYOV3VVs1LXJJSX3gEfClNIkyA5eTJqrwZQd523rHRtb5qUs2FQUxhpyWlArIzucjCKClBJqa/jsk9e4fzzhTErE6Gn/bEzdPoX5flRHbtZc059t1xrwb/7y5/j24RGf/YAV2NPc9jxTM9jeuOHV4fFX34TDUO+Rl2UFNIzv6t6DtALLAWoNqWz+9KSTYfecDzP43qsK1EosYW5QheEQKJ5UBps216h1AHGQ4XQS58WDxqyrVUjfsKU2BzAhvyOVgAUjd6J7BvmTnhc3ZpiLUTl+k1s2FgZTImWrFljZvFlD+CCFMQXA1AEV6Pltbiw3M89fkKD1AO+3sP8eH3WMHw8ht6nNzWmPEku4jYXOvL0tePziG19rhmqt09a7cgxs5HeIwNLiW4MBlnxNadVQqv89a0LmuOkTltc15u90BwHXvlwFZgRFVPSprOJtpQBJkVi3wyMYvhb5+uRjIdXkXkGjI0QFAhYCzQm17nh83NCqV8s+HhYyReXCwy1MnmzhooNdbCACQd13nM8PqHWDakLdKyoqDdYY55yDYThzDUqZNMpoH7MuQTyE4ppf4/4tatkQFeqDdNkMOJfic4Ref2PUOBIPW/HosJkBWbjkB3fV7yk23hhHTG5B1462McY8/8upvk59KIDtbh+GGphkz9VLRqUnpV9KRjgWwg2cG3fUU4k5GTzyqIkTa8DiBVidbkUnxM7IxSySQl52Q/Vo1ez8MLjjJCXPrVG+GbWEpDm1s8HXlk7bpMEmCaYGzQCLt6BnxX+Ax7uN98vIQLfVeFx4vac/yNXvuPzL1av5RsZ15mRdtMlA7zQuTPeKpz/7FuPja6azXACNy8tfGKjPfwBPmHGlVLx5OLFGRlxbYZEDxIlprfrMNTeYfb2lilsrl4b2dcuJ9Fv7TkMVcAaE5n7LYpfGbUi8KmYb6tpgnh4Yl6DAl0Tha6GxL1MkAxd9+RQM9g/w8+3yufuD+r1V2qCe3zL60BidCJARAO7ZVok6IGGaSNAw0SlcY22QYRtx7Rn2JrptFv8Ce8h8Of6L/faizy6A+PjM+x7fIycjI6/GyskBARXqRRCmjvdFPiauABB1+dmeXKBuUbrakYfpzfgZNbinyI0yD0mL32oOKRG/Ngxu8BcWhMrZa13kBOQDqU0CRO4EqTyyLOPJy96NTuPEarWgtg2tNsieIVqx3OQR/vKHcqNY6J2yilYbyrbht1/9Fg+PJ7abDxbXlULvrEi+8Vx1x9xZM6rsvaKpGyeNKisJKS9ItaGXfg/DB6PQ38y98+StipwXnM9v+8UNhtaA33z1Db5989YfKZSWAqVoYpsUYN8ddNXioCkx+NcLZ2nnEbv90QBRSFo9ApQWhucJLoJuxXwaHdXR+obbvcARKRDptCygsUiOoe476u5Jn76wKwTZc1Cyj73WDKV5UmstxQ3VZshJWcTxCIiy9IcQVHLz7rHg6kaicfx3z2qjjcMFDYLzuWB73HC8PWA9MroCI79amD+UxrOa+DxqTAhrDRZUi715YIbBFzS7ZGF9YEcrxcG6uuk5gjSehyChStZiPHtF7lCda6QpGsCq2EbJZ9aw0NS9u6IJSRNBucCWA1w8wT1mUcRP6UgwE2BviDyPXiyqNYh4/RtRRrICkBe/d1elKk6fPLuST8queuaKWuzX4snsYVnkvAA5eyVgriuNCespJ59RKcOqIq8rZHHVLVVBK0aKQcXbt/f46us3nrflZm23jcd64M4C4aYrKkxHCqMcPXp6WFd88fFrmBl+++YBWROlcX2DDMZUGDrGdWzfzjha82iwCb2fPjdKqfjtb7/G/du3uLu9gZWCulcIfO02AWopjO4xxy7kWOFzy5ffQfv0RiOHW0iD7XSucBRQyjUikkyU9n1FfC4HKEnqv08Gx7ACOejA84B7S1grxjUxrDqJ+7NoXLcTGimbrSCirWnxfAmvU+TA8cICMfRomZ/XnH7ceE+SgUUdVFEhr6+bIGVkqv0xnHQf3nEBJJ4DGD2iEEbl/G3pXXn1Lp77w2xOdcfHxc1cAoyoLRGvuyEZAOQKmIyTDENwGIjzPu93M86BnoDO039Hg13+UmrF/clzM/uwjnuIe22CkY9h6AIppMx7cjbbh0PcbRnpfTKio8DFi5ge4rLadduQlgOUtHbrINk/2MVoZmDI9hjA8RpgXD14TGGZ/+7fk/6dqa+uAcb46zT2+Nk4Gx0vIoIokBzf1ul+LgDGdceFHTdN1XFco4sBdlyCPeY0AQpi7sdvcjGe+wbxZNDLABIXffiO17/jeH91KaUHRJ8JSXfpz2j44K1GSBpMArwKSZtALXY3clpjcHXXpPaHvmgcERoi5O7rAgG1wHstBBvtV3eUh3tY2ZGPN9BbLvpxnajRYYLExGprIE+bQKcWoJjLKi7L8JrBn1VrgxbDw+nstKeIlkhQNbjpJh+krv7qfNkYxgCcAxlUAD73L3/zFRLzM0RGJV+BjMnMMN38fkqLU5VaQUEBNnrU4QoTb97eOwBYVrYZ0KvUmiftG40fCcWYFO2m9Jxx4YgN1LjBGTfw2gA7D09j598r1VX4XnW9fxODKRMqNTZubpI9cR8cg+qFw1AYUjSoueJLaU71OJ83nB4fsG+PaPuOfS8oZce6KI43R+TlBqILliVhWdi+SVxVxjLzLwtUBMvhgLyurBvD5wldWXNu6el8xunhhJwTlmMeOUFRqS+oFwHuckYyYSpQ7V5tqwW1noEsUFnca/7h2gZ+9Hk8PHgNhlI2lK0iLRl5dXUxXyNYHIk0FAf6jGARADaeSMQpT8qifElC4Yh/10zgcKZhl5DY36A2ukt+Orh23jGrkidDyoYkCiu+AQtpMZ6sWDyJsTgdU7N7sD0FLQAQvL7G7pLcHdxIgtJRYAAkaHqMeuQssDp4tswqAODPXmvFL778Nf7iF19yHnoVcWZ4+LU0cQ02JE3doVHRRojdWwk5Z6SU8Hf/1p+j1oL/6v/9z7im6LQMBx0hvjkMvlJ3kkkL+jZrglIr/oe/+Dl++Ytf4tPXr4BW0PZGefSgRCTI6mDON+dQ/eIe022UcEAYo5kFKOqRyS624ODPqbXw9aZHCPrgY16goouJ0CC3iFZyP+r1mCqRcTjEAlh0cQbQgUInRK+VIU4JCaOtNiAxhyVnaBGORVwYoRIIsNPI4h7Ro6f+wQBI0SdAp47Gnh1qjxNF94M7uqF+CS5mgNEFNWZ1qG6U4juMJJn+f3HJixfXBmcHGNPrmXI0gwtgvs9+O+OiweYIgKHDidhtmqD3YLx+ppmePc5bxeNehwrtFPUKtSOE2lEzpmMEaGLeRAvgb1ARvHr5Aq01/PbrNxetZ8+0JQY2crYLo2oeUaXDA4YZCC9LRtLLsX0RmerNYNPrd7WC9L1jBh3PRpie+RntNP+MERGGvYNbMnxM0KZoVECEGaD0x7L+Y4Cxa2DQSTwzdQqQLoeJMX5iYM1LxwQsrl9d9NU0RwZlb/7M+8GM71Hxm/KfEaY2UjhUAT3AOft1MgqLP5AIDVGGpEPqz6KuAKbBJKMB5wFlXMwLfNGOgm9NuNjPIWlfVG0vgFRurKBBJ7CsDGkP711sOh2gJEGXrAwnmXEzjoJGCFAVAEhdIUh31Bphanq7OXGsNSA5uOqLkozEzMpEyVhDYu0U8URQU0M+pItODvmxeQEN70IMafcULBDsw6spglIafvHlb1BFkZdlbDxJ2JYB4A7ufTb2oyZ0icYYpdE+BhaiA0EjfCzU4m3ZOdcBUAxIq//DPnJ4YpalALAVaOWCFxqLesrZueOldBWeVitqM+wN2FiVe8nuJZHUIHvUSxGYbaj7GdISkrkylXG8NAPOpw1v7x9Rq+HVqzvcvbzB4XDwZNhMtRtTCFze9pga1pcZy9Jg+3k8i3D+tAZs1ueIb5beZim7dKclhS1MnoV4PQjN1Hf/cA9JPp+Fdpr3k9dnaHCQb+L0GV8aaJRRGclW3wCVm3Yz9+RL86rWvrA6wI+aKIZGj70wKuFS1E77JGCAU1Q8KmmQ5ia6KVWKxNcuM/PoksDpNXR0OL3A5++yepHAVqyDEY+yJlLndjqaGT1EyEXWvlZo0O7MQbQX9ItoXcW21W6w1lrx29/+Ft/eP3DjvBwjwfM9HG78HJGwySTuRi9/RFcb643883/1bxDFBZMqbR8dORnTdxxyRHSksX6JOz3GRm948/YBv/3t17BmSCkcTwmxfysBeBRyZdiGjinDoAIBUeAQzaUwBZzTSiDQKsEG6FCqsNKAEnl17Gs0d1JZ4xoVi29Ba4VLnBJUpKH4lLn+Re5Q1FyKiEYUGRXxfauY56vtBbU299Aui0c24ztB0xKuwWauuJVDqY7R/B6Z4ecBApvSwReTUtABRmyuF3vuh3dElflrkPEkRwNj/wTCkJ+dcpORNBmQlxd7+jo+OhuKnSplGBEMM6o0XXqtnwKDbu1jpriohmOP4BPTM4o7LCWMX7FxT9/ZdoZtL3g4b36/Uxs4qPZ7a3R2+T86vhh5b2VHGLYA8OLuFv/4P/p7+OWXv8V/9f/8Z5hzGcZxZSiHQWs2tUV8pg2RD/haeDisLvssc/Ri0Imun3EGBh5o9PnVK5EzP+dJHks81zuBxuXr/rObgtGHbli2KugVzK9u9KmCFF1CczSjR0KnxlPr9CjRwZQCwHXOP3+hHjX9N7XeBGRG68v171cA/SJn6D2O9wcZbRqQIgivUjcae50LeoRS42YXSiBE50l8cW7a1UWeDrIYBOGxruPaLa4/3ws7OSgMFeN+ZOQ4pGWBWoKuQV+p0zWBES6UPiB7dXJJHo4WJhKGVCFrbvCLEBWXNFUBmvUNP7rEuMAbXP5QKdVpvMceAp5aZI5MjIVEesS+IwqbFtRYsIz8/lZGYEcAMcFeCv7iL/8Kp4e3eHGTMTahoA/4M3ryI3nPoSoVkQVx4NQVuSIZOzY5gfd1kwE6Co0D43dX82FiAFpiciQ3i15TpXn15rJ71eNCXXwR1+tvHnrd9g0jmGWsYVKRV0GSo09jGc/jDk4vXigwjxRB3eiDQUl0u8WK2oQiUwWteDVk2SMqw5wdhueXJEDbsD86NatvGOI5SdYcBJuQ7lNc2SevVPkyj56ZsHowJs/IB3wUbowaksU04packRcu/HP9BAu+vo8DjTWH/SjNDbZW2JbcNpIqxYdcxa42oaOaYEW8/gwMSHN4PjYxScwH88MIIoIG0FXnEgGmCr3thhC26Nr8EpFaRrSSQCsryYLGQggexG1AkMSjD5ErZdWr5O6nM8pWkJJ6CkEpOD+eOpgAaHw0wCtp+397OdMfMHmxY6ObhC+4UuGvfvUlRBSHw+LAoi840U6xgeECdGTN/XzzNmpm2GvBtu8epUleQdvbwD+n3WiOyAkLNgZtygyQPGpDUABE19XbeaKmBciQnGGluLR2cYW7WhuMDrOkhpQWSF49eikAaqGGf0PKKbYQDKPCIIUAKNq9VgIL7wFXoRPusobBqRYkMc/Zyr6eihkpkdxnOZQsEtZl9I/vj+B+1UaeE43AvtALyNMgeGkEVn39+zCPS4PvKcCI9yTy6KajG1CzDRFG+pXB6XP30nKfgcXFz8A2kzxpszFWZsN1Ps/1vcWrS4lR7Yaq2FRIUEFH5XS/72y00XbnreC0F/Ro3eWVu083vJx+rw2GNlGlhl3z6uUd/sbP/gjruuL/9V//c5y3/fLaMXnksi8c50+RGtKxzKa2JUA4rMtghkwGL8Iw50POEYwxNhBLFiIvYtyYXZzhWaAxnft67D0dc4KguVusj6ROvTOvBoib6z97VNtsFIGcERVZOIZuHvX7lOmUHOzoeRnz+xf98+wvlwAdAwDPf/tdx/urS5lThVA9N2LwQw2wfTI6ESTrcdMVTGhmFCA6Wnzggsmf0pU5CFrC0YfmhmqMujl0GHQnSOfaWvNJYJHQncU3pZRZwZkgBmOS9pB0KFZFCFGqg6LYTGJxjxEnGPcDg6SE2+MNtdlbn1vGzwawAMDcCvQNwJsvNljzjVX4OQ2992hb648NgDVKvH0uOp/KVFBlxVcfhJX3/+WXv8bD2zd48dELoLXOn5aoWl13VrYVRFEyCYAQ+taZSZy18ZHpFe60oEEpkL7BNfSE5laYxGjAkkYUq06eNxVg8chHyuI5tK0gCvOFt8VA4yF7Kydg5Oxo9kJoyasni6h7wRGF/lz6FACkeGKbJMF6OOLulRIcTEUTIZAwPnWMA19T1SuQ757Um9YFSZx7b6XArDiFnBQGivfCihddExoGFmoo5jkLzRTL75ytv79HZSXnXuOC9BUvsDdJQkpEIvxvaF57BSk2A68wXesO2zfvY1GKxrkWvPs+PHpRSwVk81YW71dR9dydoEx1tRjxMZoZJeQ6Iy1ooOobfND+WgPExxaSj0Xsu3OUo9hadqPOXFfU55Ghez29GBy3CW4qIj4XDIZaCsr5hLrt7klUILHCs20urhEuiuFNYFMZIz4AIC5JWdmeMn2mUzum5c2lyaf1TcMTPDZ8AKQFOCAsZUPKLsVspxPGqubX0azQNUPyAqmtGwGYbtv9NjqswmYo+86+qdC8OIUuBEfUHSAS+S4sxIpmaNvmSe6bK+LUsmPfzhxrPodTUqTlgOXmxiPeZUOru9PMCCRD0awRnCo9q6OOyqTeZG4EImuXv/YxD+ZSKGVvGc01Q6cLJ+5bjITbXjwfTuAAK+fL/WdaewChwcM1OpSxYN52Kfm8unB/fmjHMOp9Gxy/dK8yzPsWuLSqusE1eWJlMs0msyUkUIf5Nn3kAmAQSLRxJxfF1mYwcQ00ME9V7v0BgGTQpTyRmPaDWi9OB5EnHvJ3txp6JGOrjVbG5XJh1tAYMe1/jMhMdSVIY60tH9OKTz56hZ/+wY9gzedRb/KLY7hA5scV8XxTwNwRWgta3bnHej+nlLCuK/eNEcmY6Udz217n6Fw0wHfYxe8DNC7P36brXBr/jTbbWMC6YfzOI9onQE84RMUmk/ni/oku+kv/9gxc5rVaMLUdL9ijG5PT6PKeY/0fAOP/ZyAD9AQJKgRHXzzDu6QYIV6rHhKuhQtALL7+mTkk7QO5oLXKlIioxaDu7U7TQti46KoNBaYGenGs813RGrBXl7RtzbnROfviquY1GOjh8zasDEgkyKIjuVyU15EBnsDNqyN5G3SeCfCsh5WqTrEKyhhB3Elzr3WhV2MvPIbtYvG4GK6xAMmQMJw/2MOKqljWFeuyYt83aM7Iy4pSz2j0oH/77bc4378Btk/9GaLGg07GflBPfHfyCdBXJRkUAzQYnJLQaWrqixoqsCzNDbf4atSLqAUilMQT6fS63jDavF1iw6wVSw4agKLtDba5bn01w+m8wZpiPa7Q1SB2dmO/JUjo/ZsQcFGFx7PEO2+9Ja/eLeFNFu8bNy69XxUEVlIRqkQCcdso+zUAMD9HUVtF3c6ou3uhtbmhfMgJ+bACXFpMEodSQ6tOH2utomwVQPqgQYaVgpp0OATMsJ031K1gWQ843FDaOPjlDYB4/Quzgro7PapuruRkIHAWOimm6ICBhqAKNAFl29AoM61phaaMpIsDy8mvAAC9JoJNvxvQ9gqTRh+FdseAJkqHLsIUHS8HCXgRPImK8qRJCSMMUtvYFkiP6vk7BANb2VG3E6xUqAnWJUMWRVq8cFwTRYPSrh1R0Gjf8K61UpGXFY1qbsOcuDQ4XYjBx7Sqg2nD2GB6CgBm+EBKlfi8qvsjWt0REtD+CZfGLaVB1GthmDnI7+sjnS3GNVjCu0l5SxNSjlolcPM1ywU4wPcEAqccAg1Si29PVEXUBdBVAKPAQmFBSIEXWDXve2cncT02QUhlS6zt4UwzX0MscU+MNVkwjHwDB5f4eI4IcPfgBj0scih4LqUKXgFV6cT3n9nJF85ogz8cduwPb2B192hRdsUpNV/njHSr9zMRfh8PYQQM3QFjYUB10CF9w+xBi2ujaP79ylDvRjaGcY74eQUwLhK/CTaePd737Y6HRjQjjLz+dCq8ju/zkY/4jsfxdmCz7LXCmnTH+fiOwVAQtE2jE3jUBNpQt0ePwvPISfGTH/8AX/zgM2yl4JOPXuHx8dd9FZpb/NLep/MsuYOnVQNsd9YFczQC+C054e72xnMy2C1yHWEa2PLiYv0+goYLYChM0aAXe/Y71wDFuz7iwldANz4bKnL9+zJOAMOzk26ggvnq7DPeX6/3Eest6VLkWgidqzOovcjZ5fgfv7/fP8zfn4DGGI+/+3h/kKHilXpF++LqnutKb40b2la8InI9e/Kz0UOYGB7XZYXk7FitMFnSPALQ1ZuMW2WlZ7nTpswlZKOzXF7GF97kmwYETKZVJJhHXRKBg7Zu3KDTacR5ujD3LpfiBq7mAVoUBDnzgGkDePSQtMAVnRiut+r8OjPSDca2bADy4pW4W63Y93NXJuifi3A4nMZTw+VgcF+3aK9mG5M2qD7KRMpaK87YXCaXlb9FNgiM1cQNZS9sxwwJnrOae9T6fesAUlEgKh7EuJkntr2I2//WUAtweiw4vb3Huihu7g7I6+IUJ8DLbgg54cYaJikD6chOCmPP3KvbQE61Xw+qXuVXBVJdwvO8FcCctiHk1KvsaJGMJQPohJdIo1ovvaG6LLBWiPLV+9IMYlNyqMGNhRaeee9/42sVypC2htoqSnFwfLg9OkcfrnGdMiliVkhNy65UtgMN9MTvlVGAd+xUH8ph1SWH3SJCLYb9tON8ekQpBSnrABnxD+KR1NZgpbGCtjsRGqNXaPSyB0hXz4PQnKFZkZCRFgeSyuRg788Y03QgdKEJOHgGECIW9VxQzi49GspEZp4oLZpJd2mDSx87Xxg7hkFtkdS9Sd4u3F5iM1BhDRCn+AhzGJKqK2bx+p5fnPB43lH2qOIdMNjgxer8OpnfL2zTkB+X8IjREdTmCCLPljQMOt+ktd97jHtPZPek8czCiHAniI0k07IXPNw/oJXGtdmfl5YcosGE+RqO7BokeQI8lMCAQMCaV/vu628xBIVXIiqNDFVGTNCgosggPbR59FWCBhpr+uLF6kTz1IHRdWkAjF6jJyrNh5HB+w/Jb7Dva+wdATonh1W1KVImHjleCF6buECHcg4FBQ/GiDOBF2l8rVTUfYeqQXZXKDQBVHZ48bMPV6UuJNzDmyyW+ute4DCMy8EpvjD3vJsvAXmfgxfG6zDangUYGEN3tm+/e5WWd39CLn48+YZwEJp55DfcAy5UMz/3ldHNk0gVlGoj6Xs6X6dYNiBEcBoMZhWtbCjnB9TthDD/DcDNzQE/++Of4NWLF/j800/w+acf4y9/8evJYJ+excYl40WoAcIa6YkbWijMwT3565Lx4sUt7ZCgRA3UNNTEri5qYW0906D9lqw7Ay9Gw9R41z0Vo6mv1xd//C7L28HC1TtPf3uCcWaAEX8Z5/Ehr06liz0NGGABgy71u0GGXkUsZmDx9Of7HN+j4ndyze+u0OGbsjWDsCJx3Yp7+sylXEvZvJaBuYctJUVaj8jHI0Ssh940xwbNQdQqGuVu1bJLRoY3Kbw30QVzSJr1EyDiFAUr/n5IiBrooZexWHODtW0HNvadUmYzjt6ngSJdBcH2HZAN0opfg5SWbduncCbP0TvRB4KSqrEuK/Z8ZpEr8dC7JVQCLGWG7O4WZ0fTHWcZABk0h2YNSbxKdSyCZS9QcaADOLXBqn+n0ahFWl0xKztFCtUjUtaaA8Co6xA1DZor5KApRrKRDC9sax2ILDmhLAmn0wlv37zFuq548eoOx5uDN26lp9UqN+vKzSE5kDUWpRKB1Yq27a7ARUpW0uQVnZeEgx6xLF6EUZMbcqqePNtI1VFGq4TJpE6dieiBjmTu7n1wI9eHVh6d2mpX4uidzXCzhFqZinu0aRRozliWdWx+MWaBbsz27aQ1aBNIOiDrgrbWLirwoR590YPXZUmqUDtiyZ7omEQcTEhllE9J1wMAz6fAwmgEXI62bjta89oHqqTjLAt0GSpgAnjRPHANIRiw5vPLotYKqGBVuBy1YWDCGjSzQGJP1gU0EQRtUaGZUtjNi6NJrw1EcFXpsEgE0KT2NAIeDfOPzoklH5xiZU4xU0YpfYwDlgTf3t97roO1/rw8CQBfWzQ8/zB6PlkhHEALoQtu2JrUa9gA3ZEReRnCNV2iP6NPU2aBTQc0LS/Y9x0lxrS5RO39w4NLYuNAJag0vPkhKMH5A84dEbDkTYNFMcxQsesiFC6U4FLpPEfmWl+BkEL2DVfHup4ELmiR+6Jq8ZmLmkQ2LMr4XAPXutajT079VC8SyOrdZgbsLKSoIAULE52J12mCXrgTSpEStk+oQ1VPxkWigqFNaxDrGS3LAUtevEYRLS6R2sf4h5z4rdybPeeJRibl0KXTWIBhIOGp8Rd9HMACmIy7S6DhH58MzglcXLjQn36NR7d4L64zQ433MdkE3URCcPaDMCMAC83LdH4bNm28J3SCTvtMtNuo6eaVpLukfymo5xPK6Z4Vuccdffz6Jf7oD3+MdV3w6tUL/MGPvsA//W//FfZSvvOpBEIqWHIw0aoXUt13yobXftO3Nze4u73h/GbUMBwLfLg5IftJe03XvDx8zFzFft/RhzN0jPkEmF0CWDbys8/eb/lJ1Owdl3t6Yr/u5PCw/mS+t6Supha3cgUW3gkytL+OmncjgoH+/Tjn9zneG2S0vULFYMuCSEAGooBbhZQKNeOCnTyJrsInZPGNVUSQ0KA0GhXNkyDVlXmkSwBapxP4RswFNjYBAD1HIsLGSiO4h7FpBEQSciQCNnqZ1O/fPfbZveim7sFSAIioR2xoNuy/ZQGaYXv8Bm0/QzW7IaGK7bxhe7zvFTElPGrcmMyE9RgScsq4vbtDqTtOD49oYOSDC1LjgAp06Y/nlYarNUhrk6wbOAHp0WlRiM+9Ds0aqjntBvSCVAMTUaewfZdyNOfBl8p+MYKM2Nw9ErXvhry4ZCe1Pv1ci2+USQw3S8bxmHA+HfDNV9/i66/f4quv7/HixRF3tytuDjdYDgukt7N5LghIfSsFkZ9j5gWCWm3uDYVhl4a0LEjr6u0dnmjA2zMlGrbGOhg0SDqQYKC50Qg1oANaJgujio8JTTC48SHhvYzPQ2EoUOx0DAvCo5lVkUMVLcCFa+N2Awl66AaLJJcatda6RzZJgn7gICOvDixjPCsUh5sj1pU0NmXV6obhTBAwqT4MfP+biDnIWM0LOIr53FpW9/5yLYnDimJy4fmGTG+giLmcMgUbjEZLOBaE4FTNx7iD7tikSc9kpfswSDRnN4gMnixZzUEyc4nEnObg8rRw2kNXeIHPH6hXSTcMSkRIJvM7tTV88+YNI8cczaE6JwNkr+sCs4a9CLDz+8J8AguDy993KV9/rxmQAuD1Dd77LnKYQOpnFPi6vbkDVHE+nfqmFHkhtTJEFO0n6s/UEzuj32NecCx0OpmO6HJEI2AwI8gIsY5msB10JngyZjesmjAtgYLAMhwZqAE+kwOAFLxxjqc6OxYwImKACxDUSvWxPICGeZtabR7098UXOAwjAFmYv1h8/FPQosvhGhjNC6nkBFkmCXGJiWPQxVkHknI3gq1ViBUHsx+wgERKjFzQ6DQjjY4Sq125Mo7YDsI4iqk9AYTZPu3gIf5iE8h4R2TDps8+f0yQYkILv6sXJG4o+tcmY5k/VEI1Ty6e48JgjltrDaXVwYqIZ7WIbHr+lsCFTVrZUc4n7I9v0fbzfHIkFfzRT36EH/3gc6SUcHM84qc/+RFub4745s3b0e4XDzMO1YyUFj8jE8r9X5kKlAK3t0fc3tzSPh9GtD/CDAquGl+kz8vrm3nnd37XMXUj6OCYe7KbHuN//SoyXS/G2Oifa3BDo94ujfqgd4WzTMJxFWBp2u+e5FJ0cPIcuMAoizBFNDA918V9fY/j/SMZtcBU4NR5eoIRG0ACMm8SBoghQbFgwaAiwL15kQwMA8ACbV3L28/neddp9FF4z8252e65YS5EDJ7wMkVOAdrwqM8zr3NfCVCUIft18eskNgk9gg5s6B2zOqhCcMoSmEzMNGCoAGtO7v0z+ICI6/Wn9GUi54TD8Yib7QZv8xuUsrtXHz555r4UCe8C0JUfwM2CCUgq0oFaqxWKBIFLvNYG0nXC8+jPWKvT26zukJ2h+wzPndDVKSYc0L3djF7ALNBW+oZlNAx7kj2TzVspzBEXHI8HnI8FX331Ld58+y3ubo74/LPP8PqTBXlNo1+awfbNvdS1sbCeoBf+E+tjrewbzkwwNYNLh4pz1tOyekiWKF+SG7NmAAo9JiLuWZQwCAwoG581+TiiiIDV3QH3koFDHvejoRKTgaqkmlFRCHOULeYTx6ROz5xYSKsWSNnclkw6OLAirib0AR9pWdGpOQ00hhWSHeBKColm644E0ZiTNv10gzsZPdPJIOo8cy/4mAbFseeL7b1oH5InTbfmcyolha7q/V8bveY6DH4EnaB2alXk4Vh4nhPXvwY3atfs1yLNa8zbBmtuUEYERTSS1gcVBGHEVAxlK0bfWgtOs6KVglKKR+VoQMm8rYVIgwHH4w3KvqOkHTsBbBfQgxviDWGQYyTis91dWpgGNYxD31WzWqsOjAHUSulXdSdLY6Kpe8o8aiCR9xXGsTU3NroENkbED+YR66AfKelORvosvJ8l5LFjh2bxQWCSRTaQ0kpwIEDkSTiFsXnRTvNaOdoS0Hw9c0O/9jUX8P631nptpZ6tGTLbddB9u21rDUCFbAax6qBYFipVEDyFEUyaVSfBtebRcALwXvuDtFIB98aeMzkccC0A4vL+W//v29Gdbj1qQbABf90mpTT/wvxyAhrzZ+L354DGOwDGPC/G967QDYCOeOawglz9/p1HLEIyGZnT+c24p9mT03abmENSGO1r1jNX4AI8scY07nPu3Gsbqe91n6IF/r11yfgbf/wTvHhx537FnPCjH3yOVy9v8c2b+9myZgNP4EhA2yuSvimo0EYEJYD83c0Rh8M6tfl04ncYvNIR2dMPvDesuERs/cz9PQFzJmK9HQ93hTEuztmBK3ABLi5ycANEhUN/Ai8y9Xv3JHU78xJkXAOL/v5VFCOiFyGXHMBkfu7vCy7ieO+VRpfBVbaooAoZ+RAMGLh2M72vrAYO5UKnuYOHUJC5DElPs2KawLGIS4Ofq3FzCdnQCEk3o+e7esVmJlyHTKDrAgo3+9b/HhuU77bB/S504VEuMcCSGDe2hmU9UtFm6Ub/qooXL19gXV2e0XOzaBCb9ByAnJy7rKpIKSOlQI7ubW/cFMLYUBHsXFRpjfRFFqC3UpzSoCljPd7QCB+IWDWj1R05J5RaYQBOp0e8+eYblMcHZA2vF/sqO5/ZucI0knP06+LXXLwtQlkKqp5bYox0nAu2hw1mDUkFy3LAZ1/c4NXHr3F+dF3/w+0d0nqgoV8n4FRQiudCoPH5mP+RuLlKSjQWXdazlorzecdemqtS3ByxriuWJWM5rkMEgPSMPpFVRm5RjEUbP/3eFlhtEC0+BgoN4S5vzH+Rr0JJ2y4WgIrO124Jne4BApJlcaBhDTgp+eXi1J1W/T7zh8qk9sOsUSVEO3888n66GWU0oHvC/djEPYIEGnsxp6yrg6H5uJPUeo0bp6TEYgz/OUklttZcwrgJ0pKcVhhRzFDAZvKjlTYtU9bXKVGnfkHg84X+kFj0Hdg4IE3GLUlcicqpRmwHi3Hpa03QFXr0QBUNDSWMdlVPaC+lr0FyATHA+xUsOeN4POJ8OmGTsxfntGhvoJF4oby3sIjdKGn9XBceYTCxHF5YUDUhrwu27dz7WnhXBq9qnpO6AW6NTiH3XnbJ1sg5EI6BxMgFDBfF5yDM+WukkonPI2NifqwXtG9abajVHSu1eMFOgSHnxesIcf5LSkhJSMcxRp7a2NwbuoNjmDPWgUsUYhVNsGKwrTgVlGpexshIM8DOJ+SWoTh6FD0tHENbty292KB7eSNZHw1cn6OvOL4jcV3i/gg0BIAalWv/La2F35MjJSot0eg1zuFQ9lFcJsAC44mfpUZd/34FNJ7L07h+/U5/erf6ryz+J7+/o0+u7OmhNkQv/Wz50TIdp5VhR01HCVlkBG2K9y+GhopmBbXuqPvmObONtVfmcwnw6uUdfvqHP8a6rv4EIvj0k9f49OPX+Muf/5prxvPPJZpY5T5sNy98OqTCadeI4OOPXuF4WEd7v+O55ib/zjb1E/Xm/V3HBCsu3hxJ2ej9IJf/u7xk/P8KYFxExoDRj7Ojup8vXtnlNfveNsCOBCChU/k5lagZZDwX3fjrOL5Hxe8wbIFemAWgAQQmXXqu+1jVyTOGQVB9ckTiag3PXIJRNaMrEjXr3iK/aPxzYFB3BzkpCazkATQMaLvfm1RQ5YhGb9B4opp13dlJpFVV9rxxUQ41Lc2XIWkqGrkXcfH9LvizBqBWvLh7iZvjEcDXXOd9wXO06M9frDp9oMVkotfWbDg8mWvRYKi1Dep+eNFkyNf1waQuuXo43mI7Pfgj54xmhv28uYwt9yQVYD+f8e3XX+Pxm28gKSOnhPWwQMEcjZAUrnx2Nf8HY2I8i9+V4pWZ4dWFDXDFiNqwrAmaElJmonpacJsyN0TS1CTxGRqlHYsnWRfD9nDyyBhBakpwY5sGflqB5eAAo5YNh30jPsxYDivyYUVK9JwG8C07ZBXvW1X/mVlk0RqLTwIXiZnqXnU5HDiGC7A7B9q9p7x3iTosQC+OZcbXMjyLsXy15uC5lkGhqht6jRdJTOh1oPghH/vpAcF984rXlH5Vr5a+lx3b+YwkCcfbG8/HAo1RSnB609kENLhhEjhKbNyGXijNJolTEXPjFJ5YXbazF3E0F6BYl9U3zvCidwATUdKgFzYq7kmnSyIMn2aupJdmIwCQlGDMWwiZUY/krFSMKR5JAee2OMBVyDBWICxk5+uriuB4ODBVbqwHfg03OnLKSDljXQ84HA641zcQCUplJHgObxcQPOdYF+e91O9BuXlZbVgOq1NEGQkutULV71MDFZphyYo1AfX0AKPoUik70JoXt6T6kRefZDsngjeLqDQ8sh7zqtJgi/W9NC/qqcz3YDt4e7OoJ40nBwOLqxAuq4MamFMnWYPF89fc6TQkIYU1WX1vkTYEHtyjHup6pO5URjXEIKY+5gXAzmhKLYDs6JK8lvrailJg5Kr7IiB0XMCrnBOM9eeMOihd9dDRtm933Rv4PWfu78+hmvrYjMiFj2MvugkquQ0qCTAsu3g5g4l3vcYwRsPjfB3NuPjM1Y0GlhDAngCNp8fzRt2EMsYpacfSvJRudj41nq885SLKfM8EsTqet/k8NjIP2r53kA2zTv8e9yr4weef4odffO50Tt7Oq5cv8NknH0GTYBKhGjfPF5oy0nqEpuw2Tq1OkQq7rwXt8og/+9M/ws3Nsbe3xE8Jhawws6Uv+++w83ubjPa6aK14uCc98OQ5prVY5j6NC8u4n+uTBbB4NioWFxyYYgAMmczQ+OVdj8nvBeWps1cmkAHIBUVqvB7UqcvnN1y98V7H97BYJO7cbzT7Q/aiR01JdaKEpLnSzxySNqndI2SsIeBqL67C414cInTKxMYU8YW+OS+489891Ow5HzJ4lvzRzLwQytYAWyB54SKbfEE3LsYNvZDSkKJzj5E7fmTQaCBcoAdtB2YIyXyfaHd4eeeRBJo/Y/DFAgf3fO1lJ1fZvTEVo+CXilz0p6P81PFM5GeMz/lACUMn5QxrBWXfkNMCHIDHh3s3bOASrLU1lH1DhN5MSQkprEatGZCV7UZvfIBMJmojZO4i6iQ+DjQLluz6/xKgoKKDCiyZm6mBhSZ8SGoGlgwVwSEJ8sHzgDQfPCk7cmbI0QZtiwTvxyMKx2JyRZbE2iw0mGx3cCApO5CiGplXFtfJA93I/a4jkpMykA7e/6kCubhRE5r3AHqxwqhcHsZqr/3iRoy/v4D8GvQE0lIAPgMgQM6uxqVujH7Ix+n+Hvvua8CyLliWBSmtgCpqrdj33YHwcoBVglyz0Ue1wvag1PhcFYJta9WTk1V9LQFIW4PPie648FwyhaJunjCek0cTVDNUEiQcCTEOumFGQ1MFkOzyrsYIWIwVNU8yn6MBzb160twBAnFvnXLBF1LppOc9cHz3jQA+ZhoANBouTqNZ0oqXL15ws4s1yhj1YUVuG7LTy7Igp4Sdqi5+EHxZI7d9AJax6XIzDIeSep5GYnQt5wWqgrptUF0AK+486ffloOZwc3TVpOTiC5kF9DSAIJ1WPao4e+oBdN3+5vsJd0VGIn1NkMbPhjQ1AJEMtYbUKpaV8w6MhupwQlitLvNLiVCo07SEogIBPt1o95wrTyoHcl4ZhPHPKBXwfBhTBZC5HimN8YEGUjTpkQfXj+ZODJfo9edTceEOtNajMf07EbVI7hiz6ufoACNAzLtkVj+AwyvM0zijMTpTeawZo3L8Pf5Hx8Sgq7w/0HgOWFz8HN/sSCD2ZGBOEo71aHodHxvm5MVx/d67Em/9tPIM2pn+DsO5VKoQ0Y6yRoDmOZtOIablwryMXsCTt73khJ/8+At8/NHLqaGAm+MBn3z0GmvOVyIlQsDlc1kieqjaAX+szzPd7bNPPsKf/NEfImcHI92ef+45Z4Mcl97/3jfzcQXI5Or9GRTNz+5XMdYzcqA7f2QGGlcXfH48RUSD6mAOCHQ64fXtDMBwcZkLAEKLPaIX/fUMMJ6PZMwA4/IWCDqu5IN/1/H+IKOHWujJMRqTOUEiCgDn3lYWv3KZyR1qLtealuwbAUPgmfaDiSNlaeTE+g7HvrLeSAaQ2uBGeWxKjdr5Fjkb4jQC5OyovZyR+2Z0QFebarsvBmZg0oIjagSCF6fBhBxh1zAPpN3GYOfirsnw+tULfPTqhdOeanhcmhsj5IdrStOGbuOZRNFkqhDZw6IOmqpVJEsXxkRPPYqBrsrk8gP2raHWAtXwmgpqjQWZ9yaK5eYGy83RcUX0t7HRQwEmgEXlRkUJRRHP+0hIgKUOrHRh4aegns0jsxk9kDEzvL6GK7Ns/JDr2+sxpJPzyGGIc7U4B6k3GRCN3B3j+0xkl/i8sR5KAnRh9EGmPna+NFfFadEIIMHrZQUke5J7SGDG2Ig5EbKU0V+RZK+TARMIVfPU1qmDG+daurH0oR+n84bzo0cqrBaoGfTgY81qRRLgcFyxrAdoUrTdcyDkmKnoFHz4NjZDKlAJBLokAsGgrnHDKsW92zCviWMLJGfkdYGgwosjUkEpVO4A9P6kEpWVOTrhfSZIQ1VNAWkJUXm60yzVQaqhMnHYAPEaHwhHSc8daVznSLOEcUyQUpUAFXMKTq3IecFHr15jSQkn7Ohkqat1Iwoh5rxQoYcOFcSU4ian4kAIATT8Ux414WPSwRL0zLwsDjZ477XB+01BGqez/3LOuHv5AsuLO8h6oC0TTovWm7WDiogghRxtlxpunssAG5KyIfMoBJkGnzeJgiHiEfC5oKBJJN+Xbo1G0r9EcT8IGqpfIkdxvtH/5GL5fhRy2obxTLWQ8rUQTEYx2+RrSOSG1ea5SXx2i3Dz4uqLYuYAVnx56NLr1esQ9ShFV6ry3BKpFZr8ma1XSn/GBvpADiFobNx/VZX7pxtM0AZpnAWUgb+2iS6Ahr8Bu3xxsUf6798BMN4ZxkAHFBdAY/5Mfz3/fL5/nvWOP/upAXi6TSj+DKdtR23Tc8d62lXKgsbTLupWzPd7OKz48Q+/wM3NEUHrEQiWZcFHr1/0SOuzdxcy4tnNT2tkdASzg865nBJ++pMf4LNPP0bQaaO5rsFG97pPrxF/B3ofzJGp+ScweqLv9zFH5Lpv53alg+i6/Z/rI7v4cQU0xl/CJuaZLs8b78j4y1N52fkepp8Xn3kawbigTGm/0kW7I/aW73F8j8Rv0DijkVQLC+aNkvdGmpMRYNR9c29TipB0pta3e9BcycWNS8+7cF6xRAKfiNt8LIjk+dcMR8PQzCUvNSWYiKt3sLNEFLocvFRJVLmvFcDZN/xor6j1UXf3cJsvyI2bPUoZ9JaoxMr7RHDLI7wnbii8fP0SX3zxKXJKqLUQRHjisdsdDa1WbNuGbT9TbSUqerMYl6GDjRgUrTWUAuREikWAL3Kfw/tYy45mBcvxBfayAaIoxRcKVcVerHsDc1YsxwPy8Yi0OA3InbeTgdR2OK2p+ECwaeLSUykddGB45C3TOCAvwqRTnLoBnsSvUXageFG21gwpH6BrJgCYDPI5Z0IEI2uVBloAgVZ537zfTjGgYbdSe74G348AIayr7r3mph1KM80A2xmRUHQxAAkeefN5QR41dgIsVWDJME1834sHYqHB0tiOUZ03jClRyjDTM1+vY9Af1rEcvXLrkhQ5J19OtFK9KXstnbx61FG8VoTBoK26lWpGRbrMGiIVxsiEOz/SkCul/LOJc48bWh+OsALZixdfU0GrlFI0cSxHGcygC8AAK+YS3dW8Bg+lU1ViwyRYnWsYWKFxCyCAQUPfJATG/HJGRy3W0VAsip3JKVnIi9eXUIOWHVY3LKvhs08+wuGQcP8IGtT8GgAoa3lAsG0b9n3zxGb+5x93tbTGeT/oKOHRD2NEPDEcboSnvCDngwfiqKoUEeetuOOo54ppxZKzK8VIhjT1KOA8jyMZPCKP8bdQ+wpKHKpPzYVtYjbqmmhCjx4qaVeNVKmu3hX5HIwceagILp9NJ1Xk5qgg1cw+EN8/Yj0zxSigCGAhwDQbhk1bAJA+F44pSnTPUXDfi2wYNZQ2BtdjC3l2cG9cfT1ysOFrf6sV0nbItvsKVhtSCK6Yt7fVhla+F43h9+oIvj6mMeq/9/+Nz06/DymVMJSeMR6vr/Vve5OxJyIuNYBGGLDzFbphpzFXIlom01qBPq/72S8MSW5XUT+Cb4Sj3cxQasObxz1cCxcPKuB9Ghglq6Spur0Ryncihtcv7/CTH/+AtNLRljkl3N7cIGqZjAaYDhWKRTgonlWljPLfgOH25oA//eM/xIsXt/0e58h1b9r5Su+I8nQDfry8AI38sv+4akO5aqr5sbxd5cn7z/3+rrEU7XcdOL6OJvSA7u8CGh2HTjSpKfrRTSXhuJPLa3a/6nTtaL3RfuN+f9fxPdYZGyFpFXR9d8ANIBGIGkQylrUh14JWPGIg4vxr9JC0F46pkVAc3idWTtaoUxAc4Zy6ca7IkDUhiqx5o0aincFc55QcaefQu9vDJgOxTUYA8wIEkCVBoK5wGx6uwslmjfUcMABGUno3K2tleOj95vYGP/zB5zgeFpw2Bxmea+FeaTVBLRWl7CilYt+2vljE5B+RDH9/ySse8NijHmFkX6LiYQycHu5RS8WyHlHJ9c/kP5a9oMC9pDll3ByPTHyk8R+LYKcMDUqF05rYbw1M+id/q8UwpkckaEQxMCWASNA0YhMVwDJEDfmGdKDuFYxz2xTFwDA4jGDQQpebfQMAsqArrAR3P+padOWgsEwIOGC8Z7Z9RA/inAGgqqEr3JQTTyHT+QlsFqBbEWLA+YzyeI96PkOyIq/abdHu4Uw6LQgKLEfIcRnG1wd8vPr0E6AUCOdCYy6Eko/fq9gHH7g5CKxbg+3uoWvNC6pJdmqmWCLI4MLH/JVrVR2bJYSZZCjMG0iinBENrRZPjqSRqZGALpWGnNM0eu56aoBQ9hRUmLLWqSnG8Vta49vqtBulERxR21BGgiLSPiTGbxQJBCiq0FxHQBTLmvHRR69wezziK7l3ONVI1QmJRRqzPkSZPGz0AoPbaZMewASGfRubmoOwuFdQGjfh5u4FanFxh1LcaZKSz4XadqfM0jjIrGvjUcxYx4Ce1wZGBCPyGetHLYwAoX9Hsg6xhHAWybxGwM/XANsjisE/mfCZi9OJQIeOGo2K6Acd4iZhgDmBfQIRdTyHAaG+2Mda5CGWnTlCfPaww0hZ8FyskNIFot6KMZ9DE+mSosPwIc3OmqFuTo1Fqz1fRnSBvjpClsVzO06P2E8nWJUPFmSEBHIAjGABDFA8QDJwadxdmKYCT94FfJ5YAJGw9tCTrDEbtZcf4fel//7s0b94BRb4M2rfqLrTttcrmBgNA2D6F58DGfN1wkYIkwUwbHvDm8eNf52crfGT26RRDMOMuUQWV3SnwQ+/+Aw//tEPPNcxQIZ4wdC72yPWNU83xFeTw7RLezOKYaEqxxxIEcGPfvAZ/vRPfup1ry5A0Xj9JHIxvddNmHjEPh5semabv0jTR94JNMZQmJ8L/1ZHgKUAAfP7Gk5kiejF9fVmMtg89mgTPXdPMn8y+uLyI2Y2/W2iIH5HBOh3Hd+jGB86a8g3BUq/+mo/pF+lQIJDSoPBoAwHRww+MVdDIUJvN/tdVCF5ePNBpSPfCavbdRGS7vrhbvQ5tzYN4zCkRaGAlY6QhZ4kC8M3qC/Bd1ajkejePZ8MXi/CIjejute7NUPbd2hjrQgFlrzgi88/x7quAB47YBiylGwq8s1LqaiMNHTNdPF7U/Goyr77Zl3QsGJC4LQKeojNYkEA2r5jN6CV3e3d5eAJxDpyOI6HBXd3d+45znni6rqhE/SUbuzvriZ1sUkGCLDKyEPq9z9AS/M2i6TxfpNzHws9h/Dzi/igE0V4jXv7RfSoR0rqqHwbi3IUXuy8eo5dekM7kMkEFfGMNPwQNCVgGApRD8QCGVTahWk8ZwCdSFw1go9W3dCwHcqcJuytj4dWC1rzKnCxEGtePMJVSAP6HpP79/HIafU2ZZKmoEJaAyT7Bl+n9gMo3OBRTqtAqQ2lFCgEy3EFwCKOjYXyFN6uWd3DFIn7FtPWIEzi1eR9ZJRORfNIQ61+b5oWzwGLjT9lLHmFNaFQhRFQe4GrVoqHnH2R8nFrHMOqLoqhIM0zDADphiKaUdLW16Re9A8V2Ha0UiG1wSjlOmRtgZcv7/D65S3+6pe/GYZ4jGFz4Yht23Fza30jEQEUHkEzafRgSf+7teZ6+gsQm21EmmMu1rKhWcPNi1fuNHmzM6rq9NFSnPoQlchTJN633fuH1dN9VDOXolMg+S8o2qGW1Nf1WIcD1Ac1ivO7Nti+wRP0d+IPrt9BUbCC1jx6DU2+BhqAFrVz6EyhtCMby38qBiAwrn/N1wCrNA4vauPwc5TNBjDWy1jXSCHteYE08AyuOBhbLmJJE/EoWqmQqlBJHlyhSIEmAdYVOByAqFnS2qjq/gEetY6E5Z5DSVDaet9OxlCnNY2104evz70OLiYJ6Bkzji/FG5d/+d02pnQDNS5+YSAKuo3gIEMINPTKyJwAxgXQmAHHfNVudnbnwsNpw9vTcMh1qlRzBblG6Vqjo8Zo+/QWNGBZM/7kpz/Gp598TFpUzCVfr5fVc74wrn7xei7C57TQ0sF07NOHdcXf+h/9CX7yBz/sLI2oej3YKvMDx98uAYZNKMOn3wAaT1Wd4HsvjGNAxjWnR5kdMe9z9O/OfSNhvk3ggR/TLiE7zKgLYDm16JMW4P9cxOP5+xmRiu8aucw1ib7tIJ5/nSOIv+N4f5CxLGMRDMNuoec7TSFp7gjWk7PDG00qExPkeki6/xPP7QD14iN8znA0AL4vft0OQsLw5E4U9xAcfc/GpMEHKo9UJnKTC0yJ3OAQWxRvEwHWDCu1bzqtNtSyA9URfaBaWQ/d66YGfP76NV6/uMOXv/mGJnUsZj5day1otaHsO+tfGEK6U1TR+gAP+8M9ba1Fu7i2tESiKwMMYNheGIkp2xmlbFjy4jrUAKRPNODl3S1uX9zSwzeMh370NqQBHQbAsk4gQdBrkkDQox3dGAn6ghEE8D7DMxiTSOghlER1J+kbfk8Anjfotvs5dOnAwWrrhqoQKGJdHUSClKagTs1jREDDJYq4kUYVbTDHEHt0BGwAXifAVQs0blNb8vuLIOdbXCSDw58vtR3tvHmOkcXi14C2w84PiBoF8uI7Z+rv9VEfd4gKcZog5RWSKf8ZinMwqLCugSbPIWou9WrwuWDFdw3PbRJUEcjG7l1X5JQgZqj72Qukcaf1pFGBMpejwpw6dPZq2SLilcgpZSoQr1HQ3JAVUY8qiYtK+LoQM5yLcKgQiI8RMTdgHYcy4kLe8fVCbVyPRGntaIY7caoDGgEAr/js6lM+/19/9BKfffIxRP6CRpWhWkM2z3GrraLWgrKX7rAQ5rKouCyuiDodqJHWYfFkl5ths4aE4UV+fPutR0s5h6zsEKGylCY6UFx5LvqlbGcHhqQzWadk+H4gOShnQJ94at1X0I19A9fzoFYCnapYK8B1dswzn1N9kxVFygosGbJS4IKqeCiFUuaV66or0HniduT11bHuBqht5kIkKUDkBE40T2tsotgJ986gj/hAcCldFqf0yD4BcxTwDCeGjxwkZOjCnLiyA3txB8XpPCKsKUHTgtaCQ/zhHaV4JcmLvIrJYIz2i59PDhqQHVHMdSzm97hmiJFyZKP0m5/ieq+8NBjn9y7BwNOfKjMfXnv0orMZOkh5hgITn+vXGbfUTXzzuMWb+xMetlkpKmyf5jT3urvjoOz0t7l6p1PZ/R5evrjF3/rzn+HlyxddVIJGCVRdKvu7DiEjwcFNofKaO4CjOT969QJ//+/8GV6/ejmeZQIa/nsAjWEQPwc8xmv07z1RdmL/AkZ5YEzG+nSeABrjab7jSW36/5NW6GtsHzcRfQTGWLj4x+99xxXHPfJGef4n37l+wwaBLkZ4iMp3WyT2g4gY/vWDjJX8vOCex10qINk9CXsoYcTzsYO6QoZvJCMkzdB2qF6kQW/oHnQCkwEHbTI6O6egL9Ces9vgBqV5HgV8kxfI8GJjJ1JvowhMa17ATmgUD1YSoG7g19K6hG7jWpTWA+TFrUsgnk+Q0yPujivujgdXW6lefMt63gSjI91TFczosZmPIlTDgxgejxadTE9E4mAKdF5rQU4RIfKB4NQs37BMDCJusLx8+RK3dy/8Qa1OwyxWNkzGuPimmJR1IYxe/TT6xwjiDMxhiIFOg7lW/7zSKIhE597eBT3J20D6QPVxFipPsRkXXywNO6kGrpfv1Cpe0zKgt37f5YS+Wqf5uYyJ2jLaoWx+L62iF+nrVaQ5HsNgiGiYTlE3hMER4xBAUwhoVERUIuobqLdtkgRdOKnFPKoHqsx8wN7HODwyAR9KpA2ZsSDkXhHJhi6I4Pz/0tzAVmFtAa4xVnak1pBW3whrqWh7QzIBJLmsJftCNUGzy7j6jbgH3JWMDFh9TdKUnZbCNcUgsFIp/9yQloyMA7rctrlB3itCR9KxgEn/zDWrzWvqiI6alhxLvlkyahH3xeiMV+ZWN/zBBZ5KL1H/R9BwPN7gh1987jVwNv4dQC9Ax8T1WoqDKhrdmjzXy6lS4sAJcNCHoKaMzSR8qkPe1kU7XO7bi2+mlJBSQqsVuyp2GgFJgdvjAYsmPHx7D2uGdV2wrCs0otDwNS4tC+Wlo125RsxUxim03x1GxRiV4jqaxesqNCBk0QXiTow5QkoOfKwjTpUtaNXldW1rENmRDgcvwmkRubSxJvVcNJCmq1f3F8CAURjxvXOMR4FFLqM0pMMN9HBAj25vG7BvXIu4d05cf/+YeBvVlcwBHcIWKUFkRQagbfl3msf/IY9SguL61Mh53vC5fs837iheNtNjus1iLLLWjS8CjAAdwAAa46x8cUFuGdvoBBxmcNCBBlXkOk0mfo9oBsdBfOYCXAx398UzdxNbBG0v+PLrtzjvzMmICKGBObF1opq5FLjmFXm9wVY8L1PEq3z/6Z/8MQ7r2tujcd2I6MvzB+9VI49Xeg5GAJXAVH/zb/wx/ugP/8BzyWbQNNnk/rv1Npnfi765pktdJHrPvwdY7aBSru30J89x+WvMc3v6uasx2ellBLHPnfkCXGAGH3jyvPMxQCX/92R8Tr/L0+/5zyligau1fooUtmfn2tPj/UGGAR1cBDWKIWnUHSAKViZq99oA1dxrYpUKG0JaDtC5g4UeugAEEDh4sbGZNP4EDbemrnKkMjzm4VkIYEJw4Iss70mtv2+syBrRCEji4Jq5itwYFoEWIDXXUw9lF5Q6EqVjkCZPbnxxewsVQbGh/BTIsDVW226z19qPWJCSJNIYQpnCi0l1ybOLkDDoYHcKkai6oWDoSjKV3tiY2ALDJx9/jMN68D6I3IsWnjK2W1BQoA42e9uEd5CfTeoGum7c5KeIRtdnL27AlwooK1yHl1AVXh3XmDxdqR8v6EnaNORcWODsLdoMZi5fmigX2SeQGAGDOVUpB4AJA8HQI2GxGRdDl4+NAo0FNAR0ACuJsaejHcQ3rmEYceoK78V5OB59sUYxAXooVYFDRlSP73Qv86R4kHLyQR8S+Qy+m9Syo2wb6mnvkQxrBYbWGXa1uWNDo3hlFqRMjy0pTgK48wKAtYpy3uDcVjjASF6jpUckmAPQ1wB4XocuSwfyjffS9h11d++8wTzngNS+saDLSBbua5CPS2s763C4IZE0vPRhIIobjSl5/QdGLASNY55zIsZSVGXtdDzFejjik48/YqSgIMwgr13DDd28LRsjZAKjJDjXp8jf4Hhd1wXb5h5vY+ROQ6kpvFwC1FZQthNBRoPmhJwzKoCcE7bNR62K4PXLF7i9vXGw0wpSMqSmngNnlTQeA2pBKtmT3TV3pSVZM7BEnZoNvXaJNVI5Mea2xVrP6HjFyOtIpIcKwRyAkIS1fQNqdf+A+nreQAGPukP35qAyM2IpSqnYcS5JjNhKQtAAeyQqul6muV8LbNvR9h3lvLvox5Kh5vkrVlggthRIqxDJ6MArx1qD8cyhIhUAKn6yynL6gAUk6jvuPahH73dwnTYZYx7DhOAnugmA6/fGWaZfJjPu6vUwGMOAVG4Z428AEJWXr73X4bmdf78AHU9AxlPjddsrvvzmAedwAl4ADRrrSsodhAUkBbqsSMuCei64Oaz4+3/7z/DF558hpdRtkVD4uojAPNcZ8Xc6WBrXfL8JZ50cDiv+7E//CK9fvXwHYIkemK1kXx8v6FLz52186135BcLO79K0EDwpePjM88x/7aDzdxrgl2NVrn/OACP6/AlMmC88TmDv+sx07nd/wueEg+9YRu35f7Fu/o7j/UHGTr59WtzwqaMytu2FFZ8bDFGRdxTFEmV0YMmQA9WlSuPiuVOCr3mongoqHlJjYm1tCOUmGOAVYn2CSFTm7fxnoXwhPxshaQiACmRSaggkJC9I+UBjEQ6Y2gRQaLEKowSKjKTeBlYcXEESf7rRK0vGy9cf4cc//gH0n/63bI9Ag+gosJTSc3SiYJUbIuIpD8IEIBk86duboy9Q3VMRyUN2sfjVWpDzAQ0OZJJmci7pOTVgXRI+++RjrJlqTDxjl/00mwzyiRaEuDwHajjsDKMPYoSKXCZOVuZ0WHOvXJVL9SSAYGN3z12rYJFvHwfJRQHavqOVBk2KRLnSqCQtPQ8DDk7KCVZOgBUIFmA1HxchoRuysgJ4w/Pv4XmMiEOB0wZz9tehY08jGCXogo1RjqCJsX0CxMVYE3quq432pdHSPZIBjmOMh/HwgR51O7u3MCnMNtR9R90dPIqwcFteeiQqN0Ol51JzRs4ZibkXpRTsW8G+e62SlLMb8OYOhGrN5VZzQjIFpPgmkMSTzveGfXMAAFEmMTog6TihOoUxvO0axRunSKOPd04AJjF6YT3SmsL5wDyLC/WjcKSIRxPcDo151rdFDMAaG7QNg9wA1Yzb21sc1oy3Dy4xFXaEEUi35rlf1qmrIH0seXFKABUjPF5KcSdIc1lyTyVpI4+D/0lklPN5WmvYt42F6TxvxaxBU8ann32Cjz77FC9fvgBAOVlTqNFISZ6LJKzQbhFlNqd/pX2HHA1YEmmfpDp2EQgbDq5Yk2KOazgI+K8rTVE6szbs5zPq+QRrDSllpLxA14yUV68jUBra4xmaBXo4+B5VwHtsLCjm65IuBwcAAKy691iaRxd67lCMmb0iCvapKtLiY9nqBmwFdS8uIRxD5byjFt8TluMKXX399Iia5wY6NvWovlWhY0f7ZT/Uo+6lbz1zDuMMMq6N00tZUw6NC1oUxhzG5ftBk7pQNZpex0llXGyAi7g2jUadX3cFqWFUzvd6rRjUr3MBMK7AyPXRn9vwcDrj19/ee54V4I4cNKqWgZETRhQ1Oag1ZwuILhDZ8PmnH+Ef/N2/iRd3twQWnEdAl0LtlLWL+xj9oBT4CNlaACzICqAVfPLRK/zRT/8AK8e098MwnUezWx/LQV276GfDyMkIlMFfn6NLxVohZJaMWhjo4OX6oeY+BzCo6DNa/Y7japROgBEXoLT/7VkgbU9exn3HW9PwmW/36jRk1DDK5yacr5UjwoVeDPqvny7VV6bint4SUoyALOIc2kLPTPDmsyviCLzyNgIQBCCxSpDhG0ndKiRlpEMD1mWEsGPjEOncUk/CTpe81NkQFtIZtK+2ANhY24aynWEKLLd3LpXKAWjFoxNYMDxVBjd6VCCFHipytpHpAeiULwE04dXnn+Dv/N2/if/s//J/w045Qd6k3wc51bUUDmLvOO38/1DIjw1R8PrFHX78g8/xl7/80r2v6jUqBKkP92HbK1qryCkhLwc8Pr5hiHJUdVxyxg8//wzLwmTJvmATJESjTMmSTkUK48oQiY5dphX8TC9g5waY7TZkjyMqVXfKE/P6kWAe6jJKGlYrMKvcHAww92ZrXodHUWKjYT9EHYrGMUNOaX/GADp9XMuIRkW+xRw9CwCsqwOi1IB2YtFC6QskahTRC+MxaDU0CKN+A3juYoNS5ZYzx62g08SiEniAkA/4cAUVN4LKTq96poKTxVwVz/dPvsCm2txmEvGxrgC0ITMJ39ruFaahkDX7XBQ3XAFGTaiCJgJGOsyZe6JYbhbPwQD3MjMoaATk1YdIiAIA7g2OYROewHnuxOdbdXELM2hEbSWiCoZmBfvmEZJlXTuFACFe0Wu9SK+7IYwAG+WYjY4dheDVq9fOh46NrhkZpW4kNRvR02at88Bh8EiCJAhppj0c3j2P3Gxio7Z54/KIiKq4/r03ElrbKaftBvi6LPji8y/w4uVrHO7uvLHDEN4LlLkzGjLnjGjYvqG2oLUWJNshZ+ZFpMU3xogEsqI3b8z/zblVISxhDUJqutUdbd+wnTdspxPqvgHmhfWWg693mhNPXTxKlgRLA0RckMA15pk8r76+mhWqE/LeGTFKlihDnMbexk1ckyCthy6Da1tBOZ18n0gJumZfNrYd928eUfcd67rgeHuD5XiELgtgyjlgQGOEsLg8s+YMWWJ9/DCPfd8nwzwiApeRgdmwivF/zUz3oc95FW460qVGUnjQpDDm/zMGZBj5Fz+vQMZcXTloRVGbYP7uEztyOs+10tQMMp71UPOcrTV8/eYBv3nz4BFalgGwSUxBjE6QpkAhCCmlR+kO64K//7f/DD/72R8h58XHqxqDd7EYhi32rvEljIYyJ8MaRTXcEd32R3zy0St8+slH6KUR+ll7B/SzWQDB6QqR22pBiUO3uhCU8id5BQQkoSY2WQXjvNetOwbYMOi/J7h4AigvzncJLK4BybirZ46I7AAzPnvHOa6/i+GyNrsAFS0KoQbV/z2O71fxOzinQKc7dfpGLN4VTusw8YTbqBQdDV+bAwsmTxsTiSUnzl0WRtqbc47T4L3HYA/P/bC3XJrVQ9IYtpiCxiuNtOKVntvuHilLIF9aGI6uruDSGgSB4n3wyxqVhDEM8pDyxWR4N4FIRr65xc9+9if44vNP8PW3bxCRcomO46bZSnVjCeiT3p1t0aksyiXAqxd3+PM//inevH3A24fHeaoNEGBwg4mLWjOvW9JDm9aiYfDyxS0+/+IzpHUZlKggjEe0pPF51S7neBTuqb4YOyAzgH1rpUC4gHglbRrvAQL4fK79H/0c5zcaVZ4DIVRb6saCwfsk7teEimOTFy+od018XDQZFK5Qjwqplrg3qaMtA1z12ge8uVKGYkzcY1D2GttQjJTC4F6DQHVhlM06WO7XicU+ibdXT2LFdM/yzjXlQzmEtLkoQikTXUdZ5M6DatMCKG5UN/KGpYIgMyMvNLitMvLH+ZqU0VBv//CQW2toGwAY0pKgS0LK6sXt9tr/wVx9Sg8rJDxq1xXczdiF7mSJZ+MApaHHz5VKGVVfo1qrqHXDdjpDE6vfAt2YH95V/uz5Tz43JUAItfWhGT/44lO8fv0Cv/rNVyyxwM2AkYtWWU+ncV4/o2KDMLcCTFzeBC4HIAEK+9DEDVnAWE+CqjDWkBQ4HhZ8/unHyMkLGCKlIcigO5B2SCmuPLXTc2gFte4euQaN+eyGIEB6UzXmVLO4l6EnR3fdfYEXYQxRDwCiycEXa/MIBDknaMq9rZSF91ppg7MOv7cG7l+xHimg4VQQtv15R9l2lBoRJMOyLFhvjkiRb8HGdhtRITnDrKJtBWXz4pW1FizHxVXpDKjbDtt3tLLjXD2PTfMKQ4lhwWgacxslQZe1A/AP+ag11Ct9HHj+QqhGCh2b6Gv2E+MQ6O8I52oYpk/yMrh+i9FojXkfxl+cbQYKYST2e4wohhJsTO/rPPfGrT2538n1HDNxwhtPgcrVd5sZfv3NPd4+lm6K+bN40UdRdRtlAj1ohlZ2pyXXgk8++wh/7+/8GV6/euVrTmD3aGeWHIjlq6+DFzdj/W8hIS6yuh0AQNqGTz5+hZvjYX7k9zi8lwddigBR+DebPvbkq7FHTw1vY1z0Z5wN96lt57E2dANsAhzX6yYu2uU6cnHxtw4w4jOYr/6d5sA1wLg+evvyM/55m+aNTb01TPgO0N7TGPkekQwdYWgDcIFiaOglnfIxeGvRvqGGUhr20wl1OwHNoHnxkPTiNIjWPLHa9g15SU6vskyPrxsnlQXUtBX3eoXzru5srwrk6DAmGtc6al4IkBZX4lBx2pNtG2p40jiB6nnH+eQe8MPtAUuApszCTO6WglkB2s6wuZH3avj41Wt88dmn+Bf/6t+4fWs0rqRBIV6oD4bj8QanR1IceofT2yDhbXCQ8bOf/iH+9V/9Am8eHnrrBzqPkRD0iEyVqp1qL60ZkNSNARG8evkCrz9+7VEoUfSGnCQ1e85NN6yBntwd3n4RQL2mCLYz2r5zyPiCj5QhhzDU3LA2M0itI2G2gREoNxjHSgqMIn/oYyCMciuVE/HgzwF6/zsw4PkgLNoVE58UvNqcuteKA6mIwCRxI0jXkWwa32ule8b93p2u06/bnwcx+P09XfxfI6AJ2lRT9IqRAfDCy5kEYCX10Qgf7tGK5wIZvHBYLb5WaBKIulpaM0PZjcm2Y4GPTVGaQtKCRVeoNAgUKbtSkeao7qzcELjpNaChIWoaeOVmdR9I23E+76jn3cFAMx+26+qRgaDVNdBgo8duKpbmdpz431ql78H70RQ+j5M41ah5DkmSjJtbJQ9ap10B6GA3FnZKqUrnJpJSNFEDP//sM/zw88/xL//1X3hwjP81KktZWxH85/ivNfdU+eW4odhUWyOO2IgBxDifPyfcWFPO2M5n3yIq6ZkARAwfv36JH3zxqdfQEE6QSJrW1Y1icUWwurscsJEuOwDAAklOb7XSfK0xY96ZU3oFQbcTSKsMro/Iqo8pBZrL1zZrEM1YbxdADgC8RoAYgSqUICTEoBKlirleR04gZIDoWlH3HftpQ4vK3NZQyu5J8ohhmlwQQB1ciCRf92uhpHVFs+p9uAGF1mVrBcvqhVQlZayHI9LiyeaGBhFfwxzEE1yFcAXkgwYaXQpeZNBHbTZ2n6O28JijC/18fqoeybgynzpFhct4GLHD6SaXBqLMEY3pH+gQ4Ouef3FlSE5POj/0MP7smb/jWVO2f/e87firL7/Bw6l4xNg8lgGCNGvoPjHQMDdrqPuGtp+xZMXf/vM/wd/5W3+GdV26kTn/x28RhI9bDF9Fd0gHa0MVWFxEQ1NC2U6wVvHi9pby/99BA3v2Me1iDGAsjd1GGraS9YbspqpMa5/M77F9e2TgGjwNkNijJxfjZe4zfnp6pOfABabPXFKkvgfymvoyvjcNo8uID/rF+s+IAvmtWXekqgqMY+h9jvcGGV6QjouiFYakB+o1mHuKxY05YWTBN68GVFfN2E9nD0mXjRvHAcvBtdcFCisNdS8o245aFLkZxHbPkVXfnDyKpmTxFNheuaGxYrgI0pq8qJ+GbnrtICklnSRYuRk8nlBbRV4zNC2wathOOx6+vUctBY9vE27u7nC4vUXKxSMWqhB176oXkxFAElNABC9u7/CTH/0Iy/JPUc9OG3DqtUCKUxRaq1iPB9zc3eLx/ABBcju7o8ZIjAJevniBn/70J/js//PP8a//4uc+KDUGuBsLSVKPktjiuRlCT7AywhGb2xdffIGPPvoEONwB+QaAAvsJaGdEEbQeqWni3vTmfWll9zZg5MNoyXlSL0FLUubxhFEh3UMvsKEsBdKirCE4oN1YDzWgRk61GhWqHOgY+fqyMVoCbjyRmB3AOOmoDNz2odSk4kpZSH7OzTpjZ+oEdDqTLmPiCtAzSmO+Ba2mwf+ntEBNHEg0+Mljjw86FziJTQmmgm/fMAqN9RN/sEfZN1eYguHx4QGP92eklPHy5RFJFdUqcYBvwuH106T8XoJKQl6yS1nDiH8NPW9BjIE4X1eaGcq243w6oe0VaVlxuLsFBCjbRoPOFavyYeWmp5RvzOgqdqHWpjKkkmn0wYzUOaDTgKjaBPEaG5I5pmuBNPeoawwcIeXRDD13p/LzkRdkBpM6NgQNI9gNgpubO3z2ySdYUvJkeZvHnm+eOWdspJYYmAjOgojG3AkYHHjA23AEVkIDj0B/slMdSAjKtvX34rMCIGnC559+gs8+/aQXCYQVYHfDzvF7BUyR1gPSeuQJdjoSMmShxzOcDuJyyDE/XZGLN0uBEbMEaQLd9+GVNPhcFkDURUS8nEny84sgRY6feDRAmAfgrFnttrrSKRCnHK3hlLu85K6K3WCezM6lZD+dYU1gop73kSrPbVBpyEmAJqj8CcBruJiDh8OLFYm0K5XsIgUsqIjsP5sIrBq0NRe+YHRWOpj9gI/3tLfClB8Acxj2fd2OpX6WFJquEdSkp9f2F4PKNH12BjTT6+uow/OG9NP+6eOXf4/ZGDakRR7JM41zf/+Av/zVV9g77ZZfDIbAdA9B0W6V6mpm+NEXn+J/9R//z/GjH/6g34sH5EfUswON5gI18z1MV+wAQJfVhVpSQisusCHmid85Z1xWDZ8AwbNPOD5nBJzdaRLfNZveewcgi/vDNdiM97Qnd8/Xj+brYAMRbZ36qK/18vS78Vqu22wAjKcg9HIIP/Mk/VMjInOFDaZ7nq93AWwEUEtui4pHqz2v968bZOzcPBb34lvUJaDGt1mlAojLfTpTiZ4da2gbk8PhiiOSFvQqponextJGMpB4SLKZh6QFHopWFYakSS2qFXVzbnNlFV9rDcu64nBzg3TUaSOC0yhEXU627Kjbjv18xnY6U4bNK/miCdq+IUkj9YbUCFDjvzUkuIfcGGrXNQOsyAoRHG5f4mc/+xO8eHGHx9NXcL9c8yRHq6jNJR8PhwPK3R3yN9/2yet2LJGmASkJbm9v8Pr1a9zd3bHvfdD3TQ/gMxTU4tSQnBeUWqDZFVqsuoxwzgs+/egTrMvRh0Hyqu2o4ht1qb3PJahgdUcYNGEQ9IiBudGhUZW7F6wKDvTOebqgS78CNNLDUG9UkzKem5QKJM+BgADWOKYAZENaZxdBcNltRNri/oT5NWg05LmwdpnMil4ssBcM5PfCeohIS7+ekD+/ouvj+wf5d/66TyACfLb4exSppCoYEEZhQuSS2L7B9gJXtzLoJ79rtv4eH+qLfoMBqljWFXnJThdKAmGRzpyUG01EDIUODh8XPo/dY2w2PIRB12mxliRXWNrOj7h/e4+6Aze3iuVQkUxYO8aldFUS8rp6Uc3u7tFOiYFwod2ZR0aHhqbFN6SQe42q7VNiJ8wcr4sAUTvIL4BOm+ugYMq/6YpVkbeDvpb1SB1fHw4LPv7oFQ6HBefdHS6eduTrTLOKnBfknLvXr7WGap4f10BqFe8sqTLKMUD/hRcweOX+FyYHgn3g64YRmiw54Y/+8A/w4u7Ony2Kb9U2jHkwxyzAnUxzC0GpHOuLJHFK7QzEW6OTgBEjLkMuGEGaWdDx1CCWfB2PaAwSm59RgLwAaBCcSQWWKc0qAI1208L7P0HUk3w1Lx78tMbyUu6kSNlrlLTdOM2b01JaQ1ZBWvycUguyKGRdPPqmCmuKlDPymvzeguKqDUlZ6wWKtjcagY15JYu3Q9Sm+v+Ho6//0sHGDBicf9+6wS6TsQzMxtYEBjqQiN8JXuJv/1/y/rVHkiTJEsWOqKqZuccj31nvqu7pru7pee3sEgT//zd+IEGAAAkQF9x7Z4c7u7Mz012PzIxwN1NV4Qc5oqrmEVmVtXd52Ylrhazw8HA3U1PTxxGRI0eaEbOPcPDT/czy8LWOYLQdHSyCVC1/7X83JaQBGI7wWBU/vHmHP765b+d3c8VOZfui5TYJnZza6OkC4A+/+wv8/ne/xbzMTcbU5fcBKvFpN4Te8zDsvxAQpxlpOUBCsqjf6R7ldIdJrGp4p235vQz5BT97dAzVVOkv+uOiWY+cQrsOwMW5+2PzMYUdWL/40T7b7+WnL/1AtGA44YOzPBJ5+6ljp2K6u44bUXsDYzRAVMLwjPVDAxm/wMjIq1FbSIsSndogV+ZhaFGoFvPO+eRm0ltVhaQJ8zJBxMB8qQa4HTxYgSiLBEhMpFA4ry6Qfm+Gi0KhJaNsG/J5NRUYJiwW1h6IzbgwedVAT5UGgRVby7CkdB+RFkVxXiFQMR8mSFoQ0oQpHag8Y8W8JICKWE51cLCv5sSOEb/65mt8+skr/Nsfv2u5FRYuNHUFozJYgrZv6oVRI3uWJmgKibg6HnA8HnE4LAhUUwpeMKy5Yny80FtAr1xVo5WUWhHjhKAF18uC0w8/4pAS4uIbkNp3S25JyBpdNYKAg9cTFj1soeMK86ZUwJIPCQoAgiwHAbnXnPCowQi2fFgrv+cVfb02in8mOchHpyup2oAMnCWeL+EJ/FsBVk/QVvMQOl2sju0Qa2Ok0ai8QZ+XjZfP9jPK1or8qRsNAq8O7+pBPS6tLA7JWiBmadt3JPV8FwHU//6ReyDdQAwqOF5dAUeYmo6LQkANnMWImKZmeBlUtQ2qlIqcWZyO9KfAnAiBMEF3Rd42ZLW/qxbMywTMEfOSICg2t0Loz8lqcgMuxQhYBDbbWiXR1qiaN4io0XeEeR+wiCasNdCSIVCEKZG/zHnBodhEETxs6Sv2aBzzsHUVEOYUmOoLKTGAzTUB5mXGN19/juvrI358ewdP1PPhKyI4HA/YtjMT8ENzkFSgeRirVlRVxBQRamht6VQEznvWDYpSTSiDy/5hXpBVERCheAeF4Op4xK+++QpXxysDQ0UZZTSKqqRk7agVwQGOmiEqrZ4O54cwD6pKd47UYhK2xXOmaKSzL8Xr2MRo08/r0yhrkgAQZW0MRmkkUE46XuaM+djgfA9AWwtisPVEra6GLyehmJEowdY4SdESsA9Cpe5suYhVuVxxjZ0mpDAZKygGLplW5FABlGw5PnEWSJzgRRx1Y74IhHuE26bS++EjPR4DZj/3eQf6Y/K0bTvaQLZvY0J06jTlnfHgETAM57n8HdhfQ97f4gd/2QFbbW1qvw+u6IcYWC/fACAoteD7H+/w/Z3RGOFGkBc5dschSPUhLRmMhi7LhN/95ld48uSmORm0AXevl9CBp1ep37VMwWizGbtxPiAtR0AF2/YO2/0dynbGNFsEw1W42gar/gx1d85992pzcFz2FZStdcz6CEJuUL1DnN7PCsthG6IRDQu1daGfK7Q3Lg0E6df4GdNALl7Ixd8Gc+EnDY33GhbNeeQ33JvcPse50OSepffx/3B1KUuwUgCFnDSg1TeYEqQEYNvas7XxRM9vi8iZSodLw6Z+R6w5sZGqKwhV9zfc1CN6BwnM22Z5GwDEvJZ5nlviW15XmysSuOFvBmKCsgagIomxcXK0DcU0ooEwLVgOyTxmIDe3bLCKvHyvKuv72WYb3KgRW9g/efUaX37+Of5f/9P/bFEGDnYwdLetK969e4sYDazU6qoPdTeJp5SwLDPmeWZyqy9wllBGX0af/Oy7NCckTcil0HjZUMqKlALmw4RcVqynN0hZEINRRDCl5j3WXCG5tJxjG44MlUW0QVo3r6pMmcUwAWmxvvD6Fh7lKNXkadtGR9ng5jWNnW7UgD2nd6Gh1upucGzEYA8RBOLNMBnmUIvAaB9ItRo4EaBVCdbC4MrERS3Y+VwJGaRSDIuMeX2UgIS35VKlcwGQO5UKsAXe5xHrmHCg8nU1YJMWIFj9Bsv9cKnhj/OQmNqeHjihbfwKQT8/6JKj4KZVM0QjJMKMczcygprhUWEc+6IoeUPZVuO/q1WhjTFgod77lGx8t2JCBKMV1cCZsOK3wCR214wKIIXJZGyD1dKIBJcioH+rR6hqUUg1WVhJLg6gLVegTai2oDFvSDxiigGkKKQGACzwFmqPAKi1HAKkacKvv/kan7x6iX/+lz+2zb+y0F7ejF50OB4xpckiHChUWbK5FMUMtSC2HhRytmOIw7rTN11PLDeJWz4vVVzfPsPp7RuEkKCx4untDV49f2naCqWao2qeoEjEDYwuRssXs6TTghAqxKWe1XKwLM8OVicjkAYJv4eBEx1Cn/+uptQoVZSczQWVlbFNXceS1qWpW1kleJ6kPV8gWLFAOyng0tMuVFJNNASqVuCQxfpCKH0/F6NKCaMcNUSLqKXA03ER96ryAgpY8D6p6mWGqRmDJsWrZngGu0ZIdi9aAS0bRDegfrxGBoBH0PlPfGzYK3c/IYAruA1gcYwmCL8OoUOiGSqjUlQ3JkYq1o6W1U7p+3+/xuX1LmyM8R00Hr3v+M3jvifTjPDvdD7jH//5j7hbC+eRXcXWLSV7hMZDtfwfL7AJVTy7vcHXX32OKVnRZW+Te7WdXuW/n9cN53XDDrzaFRFCRJwWpHlBCMnqwtzfody/MxU+6QUIQ7B1suGZbi+09j889n110dW9/3/yq7q7lkVYxdYMOhd39TPas0YfV6NRsTMwhquPkajx2u2z/ZAHr0YL6H035J/r39nZBeJG02gI2Zqzo22N+OvBGP7544ONjLAs5OMrIJTtVAvj22JJj0kgYHBqQOBCCG2WrG0onOghWe2BmO1PhfkOyW7CvTFdN56TMRlXOkqw/aMa+BABF3NY1KEoau6KTWVbUaoiBaGyiQG6FBNCEshEYKikaySnVAhCNG54S9nnuc2AqtAgqIEepZggIeDqyVO8eP4CMUZsNML8ASmMY3s+n3E8HiESkIIglxVFfRHw/VKwzBPmOSEmB8hqVC4BC26hbSwSAjwZfJqMIrGuK2qdsG0n1FoxLQm3z2/Ms1stuVJrgayValG2adVSDdxJbJuleG0I8sxVrVhViJxkXg+g76gddEd0kF42NHlZBY2N7Ddi3y1GtTN1IViuzTyRIlOY5+E0ito7V+BoCM3STazeXQuBbOptdMECYb+WAqwbxyoNHphFqkUt6VQUEoMVWyuKOE2mWe+qP1EMBLnHtYHLIZlcZ6Cced8KIDIVRixpPgQzcEq29nzER8k2lgLE+mjY8O3xGWitWaBCCp0y5wlixitDxB7phFjuUdkUebNaEICJKnggS1QRRYx6IhYN2ViwTxj1CsnrF4A0IwN0CqMBxpAuqFQDQHGWJ9cIiQGSvUhgoCQpeoTNI2vt4H3WaoWaEZmuFJvB36dSBII2yqp5yM3YevbyBT55/QqC/wnOCba8LoFqwfl8QgxWb0RhTcfGbUOBUsz5EUMwY8yVfEIHWWyFAQ6uP65oJzTQ8rqilA0CO9fzZ0/x9Oba8tc2BeICORyMkpSrRReDIEYCqFxtPeZ9mzrX2URBVIxuVTczICdbb0tViwTEBJnMOeRrixfsdGFw4iLeSkDVgKCmTBZckMFrcHi0qdX4Adcybp/K9SFw4OxU4HS39pkBZI4OLZV0P+6rFLVQgd2D93cUBss8Ym7tsKrMVCBcLaFXa4FUgaQZYXavu7cZ8EryFmn738ch7V+nMVldKsMi2vLcbFw4bhuBXWhGRSCVJ3RJWmAX4WjRjdHIIFh1LnuDl4rBO9zxTT909wPS56oL8/oHHsN8qoof39zhH/75e+RmTBG8c/2ywmpKBb9ic9QjawCePr3BqxfPAOF3vKXEF9rmU895iO+p52T5bja2qxbk9YR8vrN8Wj4Sl84WSBd8UrR8GQfG7/Ok79/W/auLr1xi+100Y2ewoK0jErTlZfjjtTFAU0KG183I8BuR3mccGN1eUWBIth56bf9S/cza13DHEg/ubjBKPCIx3tqOYoc2PDDcz64Vob364OPD1aUOR1tkN1I7GldYuckJoHEIb6t5XRmSDqxJINQDr6y3YNJzLg9LT53dof30wnkO0ASUPA3k77PORFFILYhQBPKKQwrAJIiI0FItJJ1Jr4huMStQJyt7ENCoEwHM3VDtxkugJzUAXj3WZDiF6iaAEpirZEgwic3rq4VO2fGhM4EGgpwrti1DICh5s80DvunwGiJIMXIfG7jTuu+uQBpELSw6KII0Tai1IBZykqlwZTkb0VRJWjErUgCyhVArZYG9kJhRRmCbIswYExFImhCgVKoSSJjRKsODlBKXm7UsSwMAnmCukc869896TYFiz61ko5lBKyIqMDOfouVSjF4pHy9OWyJ6JGBBzhAh8HckmkgHDPQW1wxgZd+E5kHsHlM1YIhiBhCUxh4Hide3aNV3x4V3eHCBXBMmCVsEQ0hXYzvcQJeP2wNZTmcTKAgBmibEODX70IpFZjrpnaJWenSjmlKSb+glV6iVjyP33J5vmszrLwRzQRjhKwVbOQMhIxfFejbaUJoTqU/g2A1QGP80eFE05b8KGtxsEz8PaqwLQaY5VNxz5HMFpNgY8JWQYIpuNo/MoAdKVjPEXDlKhpUfQKv9U7kWRwGS1Zs5Hm/w6uVLBAko7BthYnXOBW9++BE3N7c8jVh00x033OhULUIcYzBnh8+d4DBtAADE07UWTNOMaV6QtxXbeUPOZ6hmxAA8f/YUt09vEY+mGuMFODUEoFpBRi0ZIRl4KNmecyy8/arI65kGJHMgPCpEcBbFsn0EgRFANeMFdskWgeezkCCQFBDmGW7QI8YeVeUabPs36XC1QOD7X+z/oFwvAiCpRyEAtMhq47CDdK+KmjfL7wuJe4iyQ9m5wvtUdHl1p/cyqmviBtVk34NJOyMxYoiKS7l5dbD03z+NP56jIyZuC0NBvP4h+8H149JzLuN3gxsaoVGW/W9jQveDKAZAA5JAvOXv2bolba1Af99fjX/YfUYu3xg+Y+9vueAf/+u/4R//+AMBqQ4AEz23Vgsq61HVsqHkFaoFMQV89snLRpWq42W0jyeaUIgp4ssvPsXrV8/x3Q9vH3kgxBWkYpdtNcOFErq11lZ8dXxGztQwJsjj9z32008aGu85Gu3b+35naFiuYJOa578LQdshsiUX44KGBtD3hUu74D02xuVbP3UPD+5JgffWfeGdyoWhMUboHjZC3hNBev/x4UaG841DIF2IG53TUgAu+kBPXqzcOK0quISAUMVC5ZEJ2VBTvWiRCvB80g2WZuoRZDntRjIgFs6WoEChtxplgPI+ZGo7T4wJMgV6yQhAFYgOBiqoPmR5B11bnhZsNllEkWi65UHgZSVEFaobsK3QEhDKhuNhIh3KE1PZd8Y3wno+NSBUm6796F2goQFgPZ3w7t1d82D0AWeDIsaIGBPSPGE5LDgcFhyujvC6BOfTPVQrpinh+niFEGYzCHwjVG0RK6lqCYiuEsW6A80YLmh1I0SkK+hIBGRqHGIUJmcCne8Jo8ehFp6XhogDKwJ4ePJrgCWMRXoom9HGZwYfdz7piX5cxcZHg1bgnO3a3h7Pp3DDpCopT2rJ78XaaJK8MAOD+SjuXZyiRTQwTZBIIGXJSuxXmBXbVpFs+SEQSiJvVH9JVuAxcAyWasYKeeP4uNlSEDEnQIAiaIInqZoXTIA0IYVEdbo8iENEqIql9dALvG0btvUMhVX7bsmCBBIBkRoDNPwZ5agEyDHauhBQmudNswDJvu/J5CmoqQCpe89sValK54OYM0OC2PPJmQnTFSVvyHd35iSYZhadLoghQiaPpPKcYUKIASmoKfSliJ2csw51OprCEdfcaHTOFCMO84ImrwrQsR5QqlXxVljkoU0fbq5W3duAa0oRMQZEGm8CoSrSQGMQbQZGyRnH4xFTDDgst9i2FaWsqLohasCzp7e4urmBzItNDRHU8xl5yzi9uTfFLS0IjU1rQC6TG+6bY0ishh1T96o51aPdUCUlyH+nE0Emi4CLWGSkZHhiq1ViH/pS3YhT7n2VT11QigClGpUr2rqppQKroqpVNMYykyan3dlQOK99/wqAyGotjNFEKDyUBrE2BG1t2NGURSBiuYxSK3SjQloVBEmQmgdjiXuOoL9uEbX/HRwebRi8yQIHUR027/bS9vseLLYIBp15LcLhcrT87P41jVThng6FBs+DsCs/7pQfDQK9/Es3Q3ZAdf+5+9MZ/8t/+Q4/3HcFRCukVqCsJNoiEMpaYSWjlhVQxWFe8OtvvsTheGwR0V07Lq4XQsCnn7zGr778DP/xH/6JKlOtG00BLVt9FwkW0QjTjJAS8na2KGqMdJbKg36x2dyBvY59dNEmfaQ/WkPee3TH0F7SmxFWGgiXqZE76txgaDQ5Ywft3D+8z/2tHV3qZ6yIdprWqnZnP2uANKNiuFyzfUbDwsfu8LfxZ2vIBxwfnvj99kcgBCqCWvKwkC9uYX4ht9n+SePo8R8EWgMQLGnNC2/Z3fCpkXsNcDEGga1Ta0JAC1c7p33YR/yzHX5XaFYrWqSVCqCKqoUb2dQ7kvKhWs1QEXrItFZbxGtFWStrMVhSozjgFW28brN4LTSPbDkaz588wTJNeMPkdVuALPejJZP5wBbTrHbPeOPiAsgl493pDm/fvbMJD22DOdDASGnCsixYlsUSN6l8EpMllrvSzPXVDZ4/f2EbYtM81gYA3LsfPMLkspHOaY6w8CUt+x599ggXPbbOix4GbzNmnDYF2HlaTQhwc7RziQBI5lmV4IYMn7HI0D4aJlwwTbbFDZUEV7WSSKpD4HUrmAhOI2IrwCaMlhXLNUoKL+KnmymalfOGWqpV5ogBaZ4waQASLYEA0tmGZaDxcQqaxaDVaGMEPdjOJqvrMpqVBo3f40d8TItJR1uy9wTEBC2CmouZiyEiBhqlGmAVMwWizlVXYKsurMxkb1uTylpNfS7a/EJMCCF141AKYuSiHJQRVZCPT9WoWk2ZzamRAI0LMTpOqIg1tA1MBIixsJgUJ0GMCFVQcsHpfI/v//g9zvdnXN/cYrk6YJonHI5HBKlAPUNorEgymmjUYU1R2HxxsClqfVKLtRmV1Xk3G1PbhiWN0S6vFWLgsirM0FA0yW+PylnhT5fMtrWpjpu0bzwNt0d4Qn6IATFFzMcjDsuC0yng/u4NRBVzinjy9BbzYYaHPjQXbOs93v74Fqe3dzgeZsxzakZMkGqqeSkZPVEtsiESIJMZYFoK5cstYqNa2VVn4OQF2+jAqD5/SJeE2Hwr5pRq60ZQYJ7sOxS1glZIyT7iEFstCn8eFo11lSgNGZECGk65AwLgAnfB+kBCQpgXbnUTawYN+WgKts9eCyWbLeeCzADeSpJouTcVHAccM06/jLD1tQYuk6NP+iM7GgB6JBrxU19C34o6WBqgGdHbJVjbXWMAjGOOx/toUpeUk8cSl3eH7n82KtLuM4/vAZeAW1Xx49s7/NMf3yJTSKEbFL6ecB93cO3zW+18z57e4OsvmY/xnuteNutwWPDq1QvL6XKZ76FNJa/GrIjRtvhoMszmJA04Hg/2t53XXFp7vXvGnvVIRyvG9zNtfaz3Lv8/3lTDYup/1waZuAE9Drp9vHh7h7Z1gSFbpW3Zf9wIurwdETcuOAdUobv54J8bPjO8ankmrWE/dcj+p4xn/PnjF0QyNgD0MFYFZLaQNIqBMu/xaso+6r6DIIgpALNvwPRwPxqSZp2FmodOCEYnadES2ywRUpvkzUBxqo8qwZ0AqKhlg1ZFdO+gwM5bnQbA61crKCda0YrPKayabyW1IGfjFU6+WfG6qmiyrUqDRRUhJLx+9QpX11fAd2/4kIxS5MV4pmlCSNEkeZux0q1dVUUuFfenM3588xY/vH2H3chQo2ylecJhOZiBQTWtlKZeAdxVubTg+ZMnePHsiRkCxSeQDVvXzQ8xMEoBRhPouS8G9qwFtfe7e8kUTKKuNABCD944Vcr7CmogCjCKgP9TBwXcHLywlLs6G/3Jn3NomzdIa9BqGvsBpD8FB+ugwTG0faRCeWXnaYGkA1xJp54ytvMJdd2QN5NNrmWDQjDPEyQfYB7eMz3wysrUwfIygrZJb5RD3oYXBkzRFKXce+3Jz4lGVEvy/HgPlalFJoRgr9SMvK2oNSOV2Ke7MpeqmBc4aIDQw65qdt+0RGhUbGtGPW1c0I3CZFKokcnaoW2evtagdsph50ubcaeqTHysnN7KBGdFFiA4zVCiRS0yqy5PCSEmCrcIJGXINAHnDad1xTmbAyOld7YJZ1NvubpZMC0z0sJ1LTP3wIEkaYmmxlTaGBeqM+GsUIkIqrg+HjClhPN5g1Vr4CYeAmouyPR6r6wRYv1s+S8tigpXwNMdILNohnkZzVMXMM8zpnmGKjDPE2JKFpllte1lmfD8+RPEmQpNpIHWzertRKmYAhCFeTOJuVuVYC0kS5AWgQjXk6E9AREaKnIxIynnCj2viClhmmYalMFSKGpgehWBe/TEc857CJADc83AtSvCawQJnWBS+9phlYsThUSM3yVagW2F7w/q+RRuHrtjJCYb614zSFmDxWXhazFZ52hj36BF5t0zzyMKJImJjngdBIkA83ygsP3MK7PDEt4/VuLlCPA74B/+Pn64gWkHiw7stK0xti70/W+/wnb2vH/WKdQKAUIlQc+xgLTAem+NX6Nf5gEGvvC+NyzrLdDelvHzl8doaJRa8c//9gP++Ye3JlON4V7Zj06lU75fy4a6rdCyIYaALz//BF99+Rkpo96D6Hjs0gCCRUGvrw6DkXVhsvk6bO6JJpkLAFNKuL6+aphld4gw0V07sPaf6iC9RyAedNX7cPHPbKkXEHv4zphZYdd+8MVd/+z74pcYQg03DOfaKUoNBkajll18d7TXdrSuwdJoRo/20Xb5BH2Yf+jx4UYGFTzMyPB2uafYQK5KAKIVTFIAyJk8VoVIZSElJT5MgG+WDdhZLoIqq1OjIkRGFaolJTsmjHHqIWnTJOR5lAu2bxJKb4/YZ1OyyEHzyAmaZ52eSQR/X6k2ZZuKqBX9c8+hlF67wPJRYosAOO0qJMHL16/w7OlT/OM//UsbnICHS21jjLEr2thG73KY9i+XjHfv7vDHf/sTfnzzlgayKcHEGJFiwjLPmOcJ0zwhBOvDykq/MQUcDgcKMQV89cXneP3qFXnf9gxrVZPLLNzcJECKA5racywUjAwEbmL0tuXcOdCsUKzCauFRSLua7dmLdOPDo1fuqXBwPUar6BGwc9Owc89+zmZANG8yAHo5zbAdDJbqHG1a8bX0opHFDB5xI6NOQJiBGlDvrYhkzmcIodvCnBCJRt8QidC8IZeKvG3YthWQinlesByPSNNk4DeGlruCPIxDL1xYPbmYv7d8JS9t//EexXP8nWKgtXlVa1WUrSCEwrnAYpcAtKoljVdAQsQ0T0izFdosWgCNiJhoYPgSHFArFdOoprSj4qnlgzXGhPOVlWtNoUIQfSExePG6ijhFhHlCYPKvFhukDbhUABqwHK7x6tMj6kur3py3Ddt5w+n+Du/e3uPtm3tM04Sb2xsshwXzkho9U4siTRMOVwcsxwPHDEGrc+qbcEGEVEWaJ3zy+jWWecbbuxNaFE+8ng4RkNgmUmvfqNQBlNr721ZQqlErIaSQiclLOk3E16woVtvEprUZjzkb3e24LHjy9AnCFNs8DjEgLQlXOKAeIhINl5QiVZui5YV50dPJjQvOm2DGjooZDVKq5dVJQWXhT68fZMqI3DQFgFcRD8kihkraZgs1CNUObW3TENAcIyFCgnPIFSgbpBDAO5BvCjQmk27XA+rqOUQFkIiQLJJueW4FiFTSgoFicUdb8PNTDaV4osoAf7iGaIzQYvsPYQMazlMzPiRWhOnjXUdcxWwXSdj1B3DpWW7RuRYNbLtwczDwkx28YnxLmxPQbH4rpBs4Hosw90vEEu8dwGltKK0S6Pv1dv+8zRgNDY86uPGgY5Pa/x8DyQrFum74T//tB/xwt8JpwOY8MCei+Qdt/9Qto6wr8uke+fQOdVvx5OaIv/nDt3j98kXrQ5tH8sg+dAGARdp3Bge4/QwBMlhiVauNaRhV6nhYEOgU8WfZH2V/du217vtU1BQ5LcFemoE5Wm7vG/0joBbYPsUQz8PbbG14ZMzw3s25ZWPRhCeGa18898vz76IF743aPbzu+LGHxsZwZu7BzkKxuyQF1h+bG5aDkdNff9ga8sFGRt0yN6VqvE+cIPcZjVMttgEIVTesloUAK2VBMYSjVU1RykPSScxLVDINmICoDiTN2ID2zRVFUWo17nKbaLR8XE+d1pnECWFhh8apg1fn66paIrBr48/JJmEukNGTKAEpzPYIypAsI8PgayFpSx6spUBCxfXVAc+fPukPxu+NKiRONfDEP20PWrlJBlQVnM9nfPfdn3A6n21w8N7TlDAtpiAFwP4WAlIUfrcCwgqateLqsODrr77Aze2tASpP8q61Ubx7kif7P6+WZ8I8EZkX89CCi3li3+ZR8tHAnG7K8H2CTACiLbyqtW3kthbQOxgIuBWoq1EaZHKQKGjVsAGCOW68SgOWRlEXE6AqVktsL1xwtXkvBTyvd4AAzYASww1pCohpQvDEdATL7ZlmoFi1eqAiBkFAQV4rcinIoUDOJq8ak6mWiUxU8AJaIT6P3MHHld8rYN7L4b4/0sNDxCZ6YHQ0EaPzNTluFdRqcraSojFWVE0RKhfEKEzIjvTqGwAIKVLQQVBKRl4LtpIx1YBZkmFtCDy/RYJRFtXnUtW+8MbYa7mo2pqRBBGWtGi4M9pmqTLQmQzAaqE8qgakabJCaJpR54i6JFwdI87nGcfrA9YtI5cNd9/d43w6u82LIBFPnj7Fp59PmJYCyQWubCfGM4AXgnOlIojgxasXuL65wR9/eNtBGIAWbRauLdUNiroLkJlTo0JYy2hq4BxwClBwRa5g5/XzaFXEGLBtK9bzCQLg9uYatzc3EOaggapgKShirEBhLkJVUlCtT3UKEH8macxXABpNk7liiooIQUgEGsmeodNYDGCat1lLtVwrhUVGPHesJVtzIIbAqKpCi1Ej7bmzBhDoNPNE8EAQ64aQ0Dhx2icKUCNEGamHFUYFQMdJMZXiyO9VnxDW0aoCzRn5tNl+MUWOW9j1JgOSp/sVyBXzbPQTi5qw35hP8BGXyWjgs3louQdLf9MONzQG96xtvdwnHD44uHeHFnCxzNp670XIqpoDzQoj1mZ8V6HTwvePIaIxUpT8PJfXaYBzjGQ0A+PiM7vWXZyLt/zm3Qn/n3/9AWvx60kzLJTe2loLat1Q60aHsKmWhSD45NUL/P63v8LhsHQA6qIWD9C29yFQa8X5vPV8jOFw6V9HsLYH2zVVgXmarA6Y59epP9Ph5vzrzeAYjDXfC7gejbYJhEYH3O7wnlM/M3x1Hb34O2N+vF+OHU/mH4eafc3q/lxGZPTyHA/O/phxIW287z/yM8Sl1leXxgapfY6Th7a1KMbwmMfoX1dC+7DjwyMZGgCpbTMpa4GuZ8Q4IU0TIAEKy7UQgkiT5YMt9g6sPSTtYWjAFvkUgZwMdDi4U1/g7bsSrSiRhkJqjAL5DFBBQ91aFybJscIpKDtnHHkxe8erKauF9EVBTqw/BUq0uvEU+WCgQKhQidAQKQmYHRXAEzIVgNYMEcUyJdzcHPtDBHh/gPOrzTtowNvqIdtDtJoeAVUVf/z+R/zjP/0z1rVL4YqYkTLPs8k5pmSqUfOByV2KabIo1Pl0wnp/h6fXV/jmyy9wWJa2kFXPX5DAtdmMj0rJUXEQxXobEcr+g3n30tw2/pbcSBqSEHxY8qMVzFJkaNmaJGUMFpXxSRmS1dYo6xklF0yHK4SYSN/SgWbEPq/s06JwjrTEZApUBX3cgZsFk3PFNwaEgVLAyIzAIiSzQGRGSgJUAgs3bqKfszKAZd5m0QQ9LkAUTMuBtRWCJQgj2NQLNDQ8AV6HcREXa2/NaLlK7oX7qI+KIBExCIGxtpU5unILq7ObJwhNIKIgk4NfUdYNSu93CMGUhcQ8R2FKFBqryDnjvJ5QUQ3sk+8vDlDFVKMqx3YQmDPChRpcdEFrizCFlnPkc5BrozhP3jfOzEBvoXBNZVmHiCkdcTgccfOMFKytYD2dcLo7Y83VmIZxxtX10SSmPbm4wvj7LjGtDmzBhPWIJ8+NCvmP//mfG2bWVtWYdUNSxFkVhRQpQMlglLY5Ov4SCITJ35H9bc51o4yJmoSw1tlya7iGVS2YUsCTmxtcH66BjWuzABYx9HXTq1A7MLe5KJ6fBaAjNqfY0qmUZgCMLtSApl8/hb4HSaATwum0jMxWBROq2LdcMyq/EyfgONuzP50Q9QStmz33PFtU1quTR9t7zKnGSMeUWrslzeaYKgVaLH+mPTdSthoFB76UClyFCrUC5zO2+zts5xPSNGHC3FQNESkkUCvmORjbdAo9iksjrotrfPjW/+d2PGZU7N7DMGxUu9yokrdPw03g8s49kvHY6uoAy76jNoykUndAUDnnRYWRPGYqVV8rHLR5ZGKMYPT3HrQbHez9HGVq589Wiwr/2/dv8U9/emtCGZfWk59T0KNAAjgVLMaA3/zqS3z5xWcUiSAJh0pFrShdR7HtqNWo3d0QGD6jSjwWd0aExASXB25R7PHcF893/3xM3l6g0EAjEOiCPYouf+t9SJz8KFxutv3+r/LgVtknbsBot0eaXetnuIysPfJqd4fNAGD/jEbGY52wi3Ts78V+yMO3B2OjWxNo8+Oxo80FvPcjD44Pr5Mxz6QrKSopPgCseJEjVbHBLAzpQ6uBzwSgsuAaeaRQGLDKBSBgMEPGNhrxJOCiBsKKJf01ANs41hvgCj4ZqCslRVGBbSONhSHpkm2DbudhaDMkArtk4E4zIKXxgG3W8h6jQENEPisEGTGwHzwfwEPSM2txoGI+HPHi2XM7lxfbq7B+VMuTiDEgRVZR94WIvOEAu/x/+dc/4U/f/4g3d/eYk3+2oOaMnDczDLYVudgkrqUiTQmlmGfi/u4OeTvji8++wa9+9Q2mw0zPcoBsxVQf+FwDFaMUVJMSRojEnq+iQLMiZ6OwSbjjIDRwHtJsCf6MqrSwv9cZ4X4XI0j9qEAhqAsCKYAkQZys/+t2gr41b7VM0cC5e//dS5c30KLg7C42xEXh6mhmmBoNBGLFgVy2WKKNPy0KFIHkauPLJZrj1IxITwgFtCnyIIpRWoJVNT0uM+VFU/fi+vh1/U9S+Fo19FqGhZXeam+7CFr+ykd65PWMabaki1osBwuoVmcnCALXEoF2AxJqUaLNQGGpK3QTpDRDDqSguTqae2ZCwrQAEgK2rWA93eP09h1CEExzxDRHq2mSJutuV3GDdIqaDICASl+KCq2ZY5zS1aQHdfUnA70SAtO9fH0EXNAgxKnx+AGBzop6uAKeVTN8IExbo+JS4KDz8yOg6dxDzUOdzLN9PM64vb3uG48WeOQN6KIW9qPTo8wbZ3SoApOM7pQUe34jpTNKhNcRiQQNuebmUBCtOCwzPv30NW6f3jYqg1ezto039vW8ASm21etEOF2hAZXgjbE1OzNS3uYN+Lw2+yVMRp1wqiSkGYZSK5BptDggVe3e2tWMe6HaYNudhWtDOgIHGiZbsVxA95S7cIPns4F7mwhanR6/JVXo3QmaNyu8ebG+6WbR9RgE6erIqAkNkwoEKVCN5oi7nUkB9HnE5Hfl+BPboz7Ww+lSD44djhpBd0eTSnVEh0kdpzvQHwF5/1u3M/oaU6s2z7woRVJQUaq0HLAqteM3YoiRJjVg/m6AeOv5d4987Nrqrbp4z19t64b/5b/8ET+eNsNC3j8SIKho1czV6JQSFKpnk64tG66uDvjbv/oWT5/ctP5w4G1Jyt2ca2pFttggbxnv7u6a4Xb5VHq9kWiR6mVB3I4o53uDWF5/JDjsHoG3H/xFe3TFix0HFeIYNSehoqnTqRs9HwCRR6/9DqQrekO0n7PFRRTEwNKSudvPofmX9zae1g2snaiAv3dhaDyWu3JxmYf35tfU/Qd3UTPdj6n/3uPDK37HGUBBTGIKLapAsuTiFpIeOL9aMnRduUl54qpYCNg/D20gosmnsZAeUoCECUCkTGChdxGMivgC7IslqQPBcieEsqXWLOlGSa1Acj54fDDgNBeU0wnb6R7TnBAPE1pI2nm3pZrGflHMi0UP2qYI2Abg/G9EHA7X+PyTT7DME+7vS394CqsLkDeomsZ022gvJmiMgvvzGW/f3WFqsW4PM9rkstCnQoJi27am4Z1SQt42vP3xB4gqfvfbb/Hq088h8xGAQuqGUAM0uJeHhgF15CVRR56VsCM3T1VFEEWum9UpCZFdbIAMKUFjoAY8PWrcPIWJ3TKp1V7ZFBoEKQVgitwDzfCIVA6qeYVgIkfZN20MoKXSsNAOTvKGluxdjfvZwsJCik4kYCsuEztEFYonaDtVQ+hNBlwfX0TJimA0xNcACgDYGu96SIH5TaFHdtJk/xrX2kEKx1zhCpDig3HxsR1ls4TCgrPlNykGah5BWFCoLwusk1OyOSmsvkYiRUEYdCJVJVSEENHkZqvVtdBsz7xqQVkrNAcEtYqziLYZ2TByAGxRTssjSlZHT8xDX4oil8008mexgp4+7+vUqSsBCIHqbyIQGP3IXMwBja9SDHwotClhSYo2FxsFysazL5W2ORhty+e+hABkAxCxAsd5tiZpRWDydgAVYtTV/4we6LAqSIDSaVJrN0hs9NG5UKsl03ttBrVq4BCjvMUYkfOG0907QCuujkd89cXnePr0KcJhtorVps/M9Zp0RgIUj0p3I4OQy9XmAmm2SkUoV2QDuJdwTOWCeqZc78KpWBkd97FGYQvA1q5abQ8SKDAnyHKwabuerX0pQcLMKG2xsZnP0LvNmln6s7c2VCIOzvMANKVECYxWVkYyB+AYxERV3BhhzpqK1cBw5ieKmmhHNQ56AKCUMjbnkUWjJEUbpynSmKLi3kd6PABVjx2jjeFOLe4JDub8Iwb4HdhjeOF/N0eBoge53CCVRh80iehABbSqteeOwJftC+NCB1A3RjJ2xkYHrnjs9c7Q6MfbuzP+07/8gNyoy60l9p9f3xXquGdZDmfF6xdP8c1XXxgF2+EKsZeKe++9q72Ghf2+5Yz705nKdO1DtLe76IcX5oMCdTvbuuSY+xFQ7SbH/nV3klialALV+r56tNPbSGNob2juj2Y7NGfD+G4bEWgIXXqfuiHzPhOm9ZNDXx9VNEBGJ4n9GAwM/vky9+hSUva9M0N2P8a72LWvD6fx9e4Tv9ji+PCY6bxASoZUT0wTW7RcAlTEkoRV+8JYS3NWWf4Fw74xodUnmGZgmi10fjohbifzOK1cHOJstQcSJWdKNY9RqXZ9Vv6GGDdeKqhsRElH78kQ2+ajzvP1SUC1K9s0Tsine2jeUAMgm3slxIyTZMDkcCuw6rLkDjapRG1Y0sCkIGrAF198juNhaWFEW3hs087rikL5THuWuvd6tEVBu4XvY5KbZ16NXlQ1I4aIHAIOxyOW5QAR4O2bH3C+f4fr4wG//fWvcDwemgff6QlxIlXBNdWDc6FT20AlCsG3LV5pErvttbRkrVpZdddrXjhn0at6TjMsUV7cuWr3pgzvTyZtB9/wZUKclOPAk8bdsNA+rphr4bcElxf2yAaT3poxUgqUMqmmHmQUkEZ7cqOvGcOCxr0HaMj4dYQecLZHFJaU65+vBEo9+dXG8pnGDfsVPq/4bBR2ba84/ktkHf4MDwc/uRQWIiOQj8Y5N4xUiK8Uuinzlawat6gAgfkYrAWgzGmxzcsSoL36d17tM9M8YZmOpD2ped4hNI5tHXB+fM3ZwLAy5wKB464g1QpIgmjotTRari4NRzpcIo3CXfEt0kTVayV4zg9IuWiRA547TFwsKussKFWNC3I2oG0FRZ3SBEQIDgfWoyiVtq6peAmvZTQbzgenGqiTdfoYN+zfHRmulW81GoBWULTYWp/ShNPdPd78+B1QK54/fYJff/UVDsvc6UHuTfc+qMUAeZBOO5JhzrSIlvR/4saJAwkuuhq4DjDh3+dvhc11sIBaGDdoN+LoVKgApgU4vqQB8P3QDq7ziEBdUc+rtSgEw+7R1kiL7jIS415VRwo+HraNrzej7l0dEGuBSDIamAiwnezawYxAU71mQcoIA1TssrpVK8hnFiOcChSmAqRMOWCulZIhV/9j5/b/VsfjRsYI0i/ed3B5gY6a1GmjK11EMRo27xQhBeD1sjyx2FkMEgRV3OdgkUg3NEYjw6aXe8CHqz5CmWqGyHCOfp/+ySHKIUaV+uP3b/HP399bu9WBMNCTLtkGtervSgdbCOYo+OKzV3jx7CmAQXIV6PftWyuBSDfdzMg4n1f0mkL9CNOMOC9mXAAo64r17Y/I9+/adey0jqvQgXa7XP8bAOIm9kFV82OjUvxGmi2wi8i0COnjx/sMhXa0k/afLafwwZf5pvTXDh26gdE/0wwR8X5Aj/6wb+xHtxx6dOMnDI0H97in5I1Gr8HNfhNjzRC//Q+1Nn4BMZMLv9OChN5fVmBFTJDKkLT4pDN+u9RiSiEOMtUWS6liHpbNgMAuJC0CW1E3YD4av9U3gKAdTDYpU6cSAC7VZ273BDiPtyjqeoaWirhMlnzuQDuAxb8MkITj3G4bxXh+YQM3kYi4pKGPaUm50ot7D4IZU6KCTz/5FJ+8fI7vfvgRFlqzpCRLkjrhfL5HShPcu1A9yZ0gpVSz1mOMSCHCk6DdC1NKRjkZ0NeoOBwOSCnisBywnk948/13KHnFN99+g9/8xTeIoQD5xEgQk6SnCS26UzMHGhcTieZ9nZNt4utmoGECYkyIcYOrrwQxINgjC5yMOzoQN9/KMTUzQdI/E5I9O0atZAqQhYnmmR5MfwCklaAV/hGjQERhVMRdi2reUxGIVggyAgbuvFDVhtKnSK6mpfY3r9bs9wegJao3V4PPEw5GSo3anOAY3ahKVuiNxYbmWUzuqVU0DrlLUZZqkcDjh8/aP7cjJkFlnkktJjuKzGJ4YjkFOAMhBaSYGMq3nbvkYpWhNUOnyXI4YmgFkto4qAV5XXG+P2NdV9SSISFhvjricHUwbEtqVHDjgmuJdbt5qUPgGHAwW3OjtXmEBDBlMwGaZxmqkGTjQMtG44DjW4MltUdGfRO9VeDz9sW7uValtQ1SW4THnPKCEEm5EgGqiQ+kdMCLp8+RYsRWPIICFtmyiJrWQnqBdJAloD3Oclci6NQUhanSUM4ZACQgkAOdQsK8LEhpwvf/9i/I64qUkklgfvEJohbgfOa89uiedqM8lx7pdgcUfF6NEfINKKvN4+XAdVebU8vmJuVqXY2JYLsZ6Ak9B0SlbQ8ioAgJ+71uaDlRnofT1PQEmGYqWHHdAdWoKkGtjh5ej3YBTR2vnNHXpcgcIdD5cII7RlrEpwJG3xQ0iiilfrUW5M2YA1OauJ8ZtW99e2KRQFNKNNZqRHz+v2Ym///vaMC9uVrpP9YOnMBP7EHu/veH9KTxc5df0wasuo/JxqgDPJdK78ZFbYZ4Mw5Gw2Gc671Rbc8fm/MYZUovv8dj2zL+87/+gB/u1wHxOuUxIIgJJdRq60ApViCv5BNUK+Yp4cvPP8Xx6oCGOIfeGw2sHhJwI0yRS8GWMy4PCQFxXpDmBYAir2ds929RznfNwZrJZumGhBAOSgfc6K+hihoCAljzKFjEs7I2jU2V6uaFPROg5W49oHQNxselMetRXX+3P4oL83WIcLTuY/RH23PA3sC4MA1abF/G1/5d/vRoz9jW8e+P2gDa/z8MwT4+2afax7u9fzn+FZdd977jw42MwgrJ3QyGrgX1vBkbZQaMr1wAeozMoxJ6ZDZEs5y3bB7C5QCZD+bFclpKnCDhwMWT1JbzCbpSacQ3IKe/OBKG01qkv0eQAi2mjkS9cQgMzM1Hu5+82rUElkwKmHcwCBdqGwc1F4STbzjmwWiDdJot8a7RILghBaOK3d7e4MXzp4hB0MQeeNRacLq/x+Ho3id2Mf8nDNtZ8Mg8pI0LKs5i3y2fyNkiGrUWvPn+O7x78z2Ohxl/81d/jU8/+8w2WacZhGD5BoG0L4VRdHzjVhA0d044gkcPCNImGg0AJ83WFz6XYHSPXiZ1qLgSFc/ZogwKllSHeWrrMAZ18MaBIEnsnLULAtTNuOFxnqy41hSpCmOfDyECNRsAk2pJ3WI8eesP0rscmITYaQ2Jf1c1Y0YNCOxqf7hd44PfdfGbV1OHB0YQ5VQpp3wp+85znGo/3cd6pCm2RbdWNenELVuxKAAixagfa0CdigUDIxdo0j9qqchYgWSFPb0YqBZBLkbrqawnUUvGtlk9k1ICYpgxH82YFETLBUuE1dKfoXrE9XC09zMjo6x1YtFZN4qBNkEnIQWHVMbsybxCk4bPmYAIpDTajfFvcaDFKYbzA067M4YSI8mB4zkGVBQsxwM+++wVDsuMdbVaDaqKWsQipqrsN49MMPmVEpeVgEZEEJs3Ea09HoEVAUrOmOYFV1fXuL6+gdaCt29+gGrF7c0Nvv3tb/Ds+bNGVelRCq5YqsTszKsB190xCbya/KMWi/jWbM6UUDbOqQyByUMiLQbWm4faI4ge/DTTEnQ6QdLgTDDng82xDLz7E7rDiBOvKc5Z7RFzumzQzYxZG8OR0SWPsojticXUoaxv+dxdgGTLds4I7l2hR3qaA8gNLjdSuH7XAt02SK2I08R8xk6T0VpQs0KjR5C6jfIxHnuKCOy5jcYF51Ovvnz5Gg2sdcBJAOjgGcDPiWw0lSh1R4fyum4AjIXX9rbExR3hPYgQ+uj7uv/4ziBR3J9W/Nc/vUFujlh3Y9CD7nuuz/lSzchYV9TtjJvrAz7/9BOTrh5b9nOoUgCtlpNxPq8Yi835BwL31FoKtNicDdMMWc/QklnnprT7tuZ3Y8MXo7bTjhEON/oEjS4l7nRQp4WOz4oytx5tbs10x4AOLfd2dHWsh+ZrI0TBIxvY/e7uG/TPfcgxWjbDmzL+ne1r7cTld7R/uN1bH3cjJK2tT+wvP/3z548PNzK8SmrbWCtk4OP6Yq5qHjurFM379XsmaITLw85H4PiClJHvQRF8W/h9gykKPW/wwnxKz7cDfK+B0Yqp+QrifHdScaAFkibI9ZFtpYeyda1aUSMRerLYltAfpqoiZzMeopjilFabGNg2IJzIMbS+sOJxk7VTC64O9MQr28xhX0vBej41Cdrd+sHppgqkGJlgGbvEmy9kwTS6lX3gCgt3797ixx8sivHZV9/gr//6DzhcHannrSwiJgRbk7VZxBKfi0BLMSpU4/IqNz+ga7fTm7+t5qVvhQdC35yB/lzyaoPCFaegQF07kFLAQl1Cz7FCUaymRAA3Y8oyVgX5IwBqS/AXRoI0V1M7cwUzUsFMicUMLWH1Zyv8a+0xukyBDWJ+j8MCqvSeiv0U3sPGTXz2KEyw+wixRygaedupheieTTeaWtKHkjoFGqvok+kjPQLnlNMXowJKuVkLEEXLlQgRuVpeQigFkZ6cNEfUaIXyKuvU+IJoBecsCpVEcAAAWEHEWtQMybKhrLA6O8kisBUKLQVxsuR8daNxmuxZwrzYEq8hNxFyOplXPg5jInqiLmlFuQKYgCnQx8f1TKKBQHH6AjcnHwtOveBzbmpDbd8wq8Pk1zn2HXwCliAuAS9fvcTN1QFv37zjsmgGRc5mqHtFXa112FR8baKBQdGG4FEEgNEPWMQpKhXagMPR8rt+/OE7nO7eIsWIVy+e4y//8i9xuH1ia0zh+VtitBle3jWWpFn6Jqg2H8v5jJrP2M4n5O1s0S8I0rQgpKlR6UIQpKkiLrM5HIrnQcGAhnMzK+uftHUmdhBf6fiI/iz4z9cBDYAwou7S03CjzORhQSlyK3Lan511okdqp+6skNDyN9Qjl5DGGEPgXuaRNUqRQ8/wfI0YmJTPyK1FoBMiAmS2PErAElDj5IImH+fRC7wNYEq7h7gDVDcs3Ljg2g9p998pU8Oexf3rg6U6PToh5P23ppFmddnVY/MbVebij49ZJfrIywsvuipwd3/Gv7457Z2Z4ti5YwZ1qmmx9aqsZ+h2xtPb53j96rlFvtraMTSJy47PUQe2RlYwB+f5vDVDq91Zw4IE+BIQZk/6PqEUqzF1Pq/t3psROPYbfP2UHTp2I8STrr1Ojo4CHujrXKesaevU1pu9g3cPrkdSMBg+9rkdpY6RC/gjbjeDRw52DM/5YMA0yDiOJ3sNHz6+j9BQHu1WvTxZewRDv/BfrXX3O+Ddo60d+AUGBvCLjAzSZJybGt2DPWEXjvZB5yFp4SI9MFnM6+2LaE9sa1aW5r5xzgs1yXmNjSFpXstkYn0jCB20AdZW7XUbFAY07bqrKYe49zgRuGY1sOxA2j3OFeYNzdms8Sk0hQatBXk9cR8wIBlErDhVTMYRLJtFIQSobRB1AydnSwC3ytyCUgetZiEznHzJQK1zXzjFZfJoPSsU02ySsm9++B7v3v6IOSX87je/wq+++qxTOBzK+ChdMzRFFjj0GcEF2T3qyJ3m5An9Xu9ECoECDVJP0Ha3GYvy2bkDoBOgyTZQpyJIMEAtBPDax495PoIhU382BN6iwSr1gonYc0DUCEgy/mWmSkycugeKScVmzABls7EURMgRr2iceOFskWSvCwGGRzR8vFUAoLxlW10YKfKoiBJUFO2RvlFTfMuM8kQaRzSQQuyRso/0UILMWgoyf1aXsg1C/CWIkyXHm5yqgU2TnXWjuyL7BllhtKE50u41QBkXQUwBpTDRVc3zXjeTyTZ7J6CoYjuvmAHElKzGQiKtZzu3da1VaJ6tsntLTC6lbxCWYWzXi5wDleOrAkEUgfV9mra6KItgmnErhaC+gRcDo2MIXDiGmXvNApIFLrn7/PYWz58+wT//t3/rmF0UpWy4e/eu0TkgFyBIQGNAzKkRI3OrLPfCnRjG5VajSc0zggDv3vyA7/71v6HkDbdPbvHbX3+Dr7/81CQ9q4E2q2AN9pd565uh4d6zzNBxzFbDp6zQuiEGpVJbhqoiaoFoRPR1rCi0npmczjUieJQwMJ8BaJLQNpFt3WnKU8XWMY8EuFS6O9jc+LeNpi2TVuh1gUjic6EjoQJeoV2iGB1LJ1tXguc0BuYFJZS8Im8b5pBs3jfH3Gb7oiTLaYsBJoNt1xZ39DhGrX7PVjAuSEEttl6G5s38OI+RRtOOy/sZwOBobMCNDv+aMlGXDkw7jRsaNg/00QtcHu9FkGOToO3/F0m/GIA7bMw5aNbLFmj/bTQ2AECr4vu3J/x4t9JvNWAN0muERqpXlFethm02KzT76avnePH8aTPELj3YDRAP9+WH0b/PpEvJro1eY0trBZKJVcQ0o06LMQhgioP3pxMK5feNSSRoIH4A2F2raWdldCMAFtGwNWv0wDt49nV4OMcjhoYO//MIWPv/Q3tg7HG2UR75jGBocGt3+2S3mBuM2LVzHE3SI3AyGl+7i/Y3lL8r++AxA8PVBncnemC0fNgi8sFGhq5nOPiXNDePm1/IpwK3IgO+zQSLRlfhx6X6prIB7/4NrQga8wOMxkNvji/GdYOSXw0Hgt55TfIBDEnb98UXcTC0zJC0S7EahSUY6AsEcRMtSQEXdwLgYgt9hCWiGu2GqjTUjjd1Xvt+jDQE7G2kKWKeJ566tkfkgydvG86ne9SaUYpLBFuv1qpQCZR288q9Pkh9IVBT+gqCKc2Y5xmCgPV0j1oynjx9jr/83e/w/Plz44N7gmowL63mAt0ygif2T9YfIgIkJfBXbsjDIKuFxgAjD65GsfMCuYHCt5zq5Jt/jDC+HZ9JOtj5ymrPLrGqb+NGAy35PMDGoieEV9IOPL+CwMboCAU1VGxnegADTPkqJUCspgJUkSqr8TKxUmIGZOqeZoG1a5Bctj4jyAxCDEKjPAC0wtgHTuEQu1+BGTROJfEq6+7V0ApsbtAUYPnQWfvndzTgXMxzW0uFauBjFZSsUGRATIVEq+K0WSg/imBeTLK20Avny32cAiSZklLNpM6oIgqLljEEnkVZeTdjO7/B6fQWpWZspw3TNGE5HLAsR6TAavfZgSTXu0YbrY0eqK5wVAHL3fDXsEhBkeYUKWKbrQ19geePmXFAxTa1eaVSmcQYEDCZ0dJcifznU6sUFNZSUVUcpoTbq4NFfD1HAEY1W88nzMvCUwz0EH4oSICKNIdG8DwmABgMjkCaVkoR6/mEd29+wP3dW8QY8PzpLX7/m1/j5upg/aN0hNTSdPtFAlJUtChhqy9iP13GOM4JCQGAyUQpKYrCQnMe3bFnFHr0zx0ICubKiBn7UbpjA+zPon3drz4H2Sblc+U9dMW5QRgiCkRIryxmgBQ+V6kFQVgTRJwGVc34bNLoEYgTtCq29Q4BKyaPFPOc6jlh2wpJzImsCpfItcg578UdOw5WFQiN93sBHj6yY0z63b23e8PBJuFckOH3IerRIng00pzy2wByB/v++f/OVgNN1chfu3FBDKX2Ob/m+6704H3t71Wt+PHtCfdrhjKq2go+cs554V1nAWg1pbq6rZhjxGefvsbNzXX7jj64qO5+H/9USsH9/Qnb9jAnAwC0lJZ/ITFyGsVWo2wrG35884aiFkAbvBeJ0z3Det+KHmXg2zL0K50FI1jvSp89InSZ6zIaGZeHOIDzv8verGgYr73X/y/tBNKNiuG7u3Mpx6JH3oD2+qGhse8WffCwaGDUIYpRte8HalHv//6xvj8+2Mg4/fgGEkyiLc5AmMwDLaXz58AiTVAu0l1rz0DrxOQ1cKPehaQJOJ1i4zKizrPnIZFcWIJjF9wRDzkK7Hq1dgDbHqxtOqOFJi0HIXM02sbFAg78rtXiSPRqS+L1KwBMCBIxzwm1sHKuXIakTc1lmmZemwaUW7BiS0vOqyUs7cJ5gLO6bdO3a4edd8bOo9W41jElpDSh1oqNkqGfvX6NX3/zK8zHK8jEJGZGpFArRCIkEazH2KRYjQpFuo8qUJy+44YdwX4LjTrwhtGiqMrVvlOVnkpGLRAbfUIRoYXUFIFt2p6A7ZtzoADAegKUETBW/UWa0BKtqZlt57KoiWpF2Vas9yeoWrJxFctdkSjYtoJtXZGmAEVArcA0RRyOR8TpYOdLCTLTOO2rwX6hAY2uktES3z23BT7eFS253akiTv2KEQj0vgcYICk8Z9sEP86j5EL5QiCJge8qVhQub9ZHk3Juh4CqBfd3dzjfn7BMC6JcAQGsKGv1S2JKWGJArBGlWHI4lKpUITCMXyAExsaMUJTtjHdv73E+36OWgiARx+M16u0tllIwHQ9WaR7axClQClqNFI/e1gzNG/MvHCRTRlTADSQ0LxyqRSAkRaPsqZpohlaoBGzbBikFcQmQaEmMiKUUpAAAo0tJREFUpWz0ToOOHLTdxwwZoNDo0loQoJhS7L4gXlprxbqedpvVPvZtG1sk9zg06WZbmzuX2OZ7iAEhJqzrCW/efI+SN1wfjdP9m1//yvLCskUXRSyy5EIW5iwuUF/E6XGURC89tEU9bA7bXBIWSrS8hdDXKd97IiOATXWOhmLg2p5CX9+dWuCbfa20BGF7ktfPqAXQDaDYQKvtQUU7A/w2T2veULNRPyw5XgCxXESoRd1CSra+QVo0FloQAzDPjEwUiqp4d2uxccrxU9eCyoR5iQlhSV1QwKWBE+mssVD9kTSyj1ilrnmT29bnL/acdHusg6HBZ2xvueqQe24Bezhm+O0N7z4/duB/oPT4i86WGqHm2HiMudLtewJpkYz+d7mYm/tj9ye+zkXx/bsTzsx77PK9oX1GKQhQOTe0UmGqFiyHBZ++follmdu2dmlovA98KoBcCt68fYt13RzGN+AvMQ7jno6fgC5lKwG5VLx9c4fcjBQaQoKmBuq0NJVuQFt3+t+s71r3Dc96bOzu6Q3GxBjJUH5Q2xf8cx1D7npDuyHwGCVR0UZpO0aj4lG6FK8q2J/XXyvQpYXxyPPRfo7eTKeOjYbFENGouvv8/vgF+ST4JZGMbWtsJMkKmSeT/BPYYuvZZIV35ZKLCvSQNHMSvGAaCiCDRGOz6IZw5RiSnidYsqNJ8VlBOG4UdQhJx2AGDetsNC9XFEASyvmMfL7HLIn8aAMKltjrRtFk4DiIUamSe5y5zLgHSSokWxw+QEwhS2Bed1s9LLQP4PqwGOhBt2SDc/fEjAT3UNpGXFFKQVXBs6cH1Gq1K0LzTPjD6RjfPcUxTXj35nus6wlTmvD1l5/jk5cvELTYJuoLM+kPMk0WTUgTWsSCCfEAurKRP2ef3Y3mQ066fz7CNunid8sB67UkALtOUaAU6KY2KhSoqlYs7cD6EZ6Q7nK6vjmXbIbL7txMrs6bRaGiGSqSAJSCKQQmxFcGCYopTUnAPAXjgG8r3ry9x/ffv8HT6yNevHiG5bgaoJ0XALMBRC/E5tE0cHyM4gOqlpSuQKOWOeDxfm2J5nwuYQKCV/h2ChbBULx49h/ZUbUiKAE4bA7XmpHzilIqYkg08CqSWF6ALglRDpinCWkOJn9bCxQBgUIIKVlyX93Ma26FIH1Mds9dW8dDwLRMOGSrQL8Bxifezrh/Jyil4ghg5tiV4guuAV3VMniMC6quyDlzWbCieF5N2pzp2dSgxEGlotaMuNlSXraCUioUAaiKFC2ahhQgWlG3tisC4NCI0oUsgtmpFnkRxClhmkx5yuzb7h3dttWAL71VtTplQFAJ5FNKiDG1HBrxPDvpntEQE5bDEcfjEXdvf7AIoQiuro743be/xRdffQmR2aI4YvRaCQR5pRpA9qgGPaqajRIXmHugU2SxPKfQihkJLQ/FDQZFK/gqdHC1+jjKeiaMbLc5F33B6Z1awe/6XLRq4HU9o+QN6TBTTt3msYnDZdR1RV5XVFUr8Ke2Dpry3gyJkXVFSLnwKO5YC6RY+xOFPQDYGpYmzvuA4PshfBwrx5TD4tDvBdKvESmAUnI3vj7So0t52v+6ss6FkTH8vqdO+fc6t9wShekQCoHPsHe0Dq/bHu3twWhYaPutN/jyBjAYeQ4Uh/k9sjTed2j/OYLBnAt+vDtjq3UHjP3DrorXJPK5DpW8Alrx7MkNvvziNaZpavdlWxnBtuq+rf3MgALruuKPf/oRp/OK/YesQG1aDgjTZGszYPgpmOPYqLGK7398g207D2MYDac0mW3xe+8GZet1B9vw/Aw0A+693dktjMGwwGB89JwO4Xvd2Bio7b2pD3/i4VDA0N73tq2ddx/JQLt3Ghhse5sP7THpw98b1NwbGtUpbdorp3f6WXcwqXy4qfHBRsbxeum3q4He/D6ZzaPHpxkpocfwfTMYslN00Lw+NMPQkmidA1u5UYz1EJze414/LcbdKwqpGUGc78tFCLkDQFEwOw6IESVX1POZNCcWR6PiAcoG5LP1TqaULNVbZIpNF7st4uRei1SI83kZgkIwL5iI4ubmiBQTzrq2h+RYtHEP28O3fjeGUMB5LZinxGI/btGO51AzvOjZqyXjdHeHmjNunz/FX377Gzy5vYJ4QjWc1lQ7MG7GE59PpcdLE1BICfJxNU5aNzQ9jOl/S6RYtWTfYXEKgZEN8tlzRVSrfG75MTxHKebtDQpk2EbpHeRymEppUUg3gCQYEHAwIRZxMcATkZbFIjdK2kQFokSk5YDtfAcNEXFKOKSEFJMtLBUo24pQM1OAoqlXMRm/e1ZlMEhjB0fNm6R9TJcNrUCbq0wVIYDlR93eJuj5mA8hMqsVKDVj3Vasq1VmXo4HTLNJL8cgBMKK5XCAjl7nmHBABGSyCvBQ4qfNAJcYQK1FGTVQowxRPSlEQYwJabZ6GynO2LZsVeAp5xxiMqnHUiHCOcJ5p6WaehmB/radsZ3uUXOFhIQ0B8Tkz1s6PSXAopAhcHMvzWNnkouWuB5TQJqTrbFi8zxMVJ2jx99r/SAyOgMrRgUtKAKkZca8zAS0TPcUOkLUclM8JC4w469Wc2yE4OtM4FraRSY6v93WoRQTYoy4v3sHrRUpRjx/9gx/+P3vcPPkCdI0D4Y4APg8MR171GJrnyWr8Tk7MA4sAluBLVgulguQuBe2bN2xoRY51CqWu8d13yifjHJ6FLkO0WgXnwjoe4TPz2gOjpCMniVOxXJFRHCTJtc8RrECpgqOxUja7IQwT319VKsLYzSozYyvEEn1Va4Hvp5alF3oJPMaRTJPCDL3qEqIaNHlWrkuwvrBnRhhBqYw0P4+vmNnPIyGhgOfMWLRjAt0Y4PnsGfHStEAggRUGnEWheye4T24e+R4L4Lctbx9uDurO43HwfMvoanoxet1y/jx3QmldjqW3adR5bRWkxCn0IgpgmZoyQgieP3qOV6+eIEQww6QuoHhfXXZRv/9fF7xp+++x3nbHvSJxGgGhgtsoNhHWOMIIUBrxul83tGtmvfe13+4sSFtbXP4xJvqzxzoTKtHH9DYR4/8HCMcaoabG2ig2mGnIF60Az8xLKSPU/9dht93URDt9zAaGM1IdgNDRsnsblD0RzW8voheNCGAMZrR+rv3VIO9/befPT7YyJCJRoafO5lyUqOmVDcUnG4UAPXFunbg1xIj2RkeX6zaebKeUOuh39KvocpkwLwi5802RYkIUYzDTMpFSOTVS+qgTxTQjBgUyzKZV6iSltJoRzbpIArZPCRteSCSEkJhDQWn7gSqHDVZwcyoSDXVIphqTpwSntw+wTxNeMt7r7BNX4MHVxniMwgCwEC3MB8jcJH0B+0DeLRcRQKmNKGWjPPpDjEEfPLyBX737a+x3BwtQtN4vtoBkNIgiwCaBCI3+zTb5gaFRZ/Q6UjOD/P+9Ynisy1hmFBqnrmSO1gADEz4GBCPWIAUlcyI0jRYXhwPiXVJ/PwOyCv4TJWO59qe7bZtyGvG4eqIuLCqbgNARg+ZwwFpmXD75Bai0hRD1nWFbitUMu7uT6hVcHtzg8P1lXk300TDeUXT6BcaGokAwHnUbuA5zWLzcc/6LGEAC/BnougJqh/nISHA1ZS0GP2jFFN7SpM9j1oV82I1CHSsgu6686VaZXhY3gaKAfYQFFUUMVYm0nK98gWazhBTerI/xDThcJ1wgAHtwro/aToAIijnM4pa/o6qUbHyZoXwrJZKQF43aLa6MRKssviExdYgtU3UDQGoomR6GatJflsOebTifYF1XRLQoriuVufebzpkFG5EWfKm+MarAVOacTxc0etbmp/NN06LBHEdUlOYKrUSj1o+WaDB3D1Z2tYpwNo8zTO2bcXp/g4ignme8Pmnn+CLzz6zgom+lqlPQ841UnpMzc+cTxJNsa9RNhVGz1TuNQFoxTC1cL1RoG5wKU7AaokojTsRUong4CozDSaYWISvU56k76pTyvGTK4Q5rF73CS3HhLTOGCCHg1U0F+U9uhhAgDl0Yh/HStQwGjLMK5MQSZPydsWei+PeKKeqOoUU9mxaTR0+K3PE0FNRWIsnMbrzgV7IP8ejGw9OfbL5bFuPJ3aPRkcfs90o4RjBUB3a91dSblqEAQPAfS+uuoCTw68Pe/ryRJ6wu3/7py6nF7/YkFWczht+uGchvBZ1AZyDZTlRpX2/r8MZAsXnn73C7e1NM6psFuyB5z5xev/z/v6E7354Y/mNjzTa5J1Da3R7jqE7T08niwq7I9V7Qukg8c5pEVC56GMZX3Tjrf94/MG4V7/dk3LFU9CzD84prt1+gkeMQnv8g3Xwnvkm8sjvl2/yPI77xvdcSaspmwEtx6c1hC/Ge+v//N7cWWJR/+rrzcWwbnPp8v2fOH6ButQCy3VwnjmBuS9ytXYFHDO50FSCGj8eaAo87t2G2AZeC8q6QvOGdFwg02zXoCcSW0Y5nZFX1kqgGlGAcbJTWKAx2amVOvD07KgQNJfSflqlbt5+KaRXEbh4MTQAEhUxcPGPkSDd/+7e/tA3hCRAjdaztViVaygmjXj25Dm5jtInq2/mQZCWA2op2Lbcnl8uVhxHJJALLH1QN8tX4B6QGAPSlHD37g7b+YTjMuHbX/8Kn33yGQQBWqkuoXxm1fpe8xnSkig9OhPQqn9FbljVnyfzIfxcDvat0wio6ZVT9nHJ0NPJqqkLIFFaVWQ48NNqcsAIFkXaMpCMbidpsqiTG4Q+FkXQaAIFNrFr6OOtsP0pYD7OSEs0FbAgtvk72Odih2lGbLOIkYickSCoJVg5n1YMCzDvKSCZz2aFjZO2WChQJzPWAob3g4EnEWu4G2n+XLvjtV/vF3i5/iwPV+eCKQDNIWE6zkjTgiQV5/t7nE9nxJQwzwSb7rGHbfxRK0oyTrFCUGEe5JhorCdGG2l1Gsx1YGZ9u5UKPZnyXJqT1ReogFYDHNv5Dtv2I8q2shpupbd/qGMj0TyGYhW2p6OJLZgWe2xA0jj4sPPQyKglo8I2dqtUnmzaSLUIm0eCnbWhZVhbAUCNcrTV5ukTRgxEFUkmXF/dQCRCYZEibXhJEdrmV5sn3upjmEx2cODW4RlXBuc3A2makKaEt29+xHo+I4aAw7Lg29/+Fk+ePLNIEoU6fKWySCSLy3k+HoS0ymL5GAI6nbgeQOhwQje6SX0SBmSlquUcAJxjThviuFMr9moeO4GwjgmKO7xcLKICG2/QDdWqXAfRI7yMNJiAoeX7yHFiIKF2cO8KfNn6sBtJ1QBCCJYjJ5bkLVqB9dwNjZhszSsFECv8aLu22Fo8eHfbOuYRDV83YqRhas+759B9nEc3Ioa8REhL7t6pTw0GxqWxYdDEnDkhmMqc5W35a6CHk+0YefD7PvwZxPXAYhj2hg/5+HD9/gt2r1UVb+7O+PHuzD8NiJy/tvoU0sdPzVbxe04RX3/xKa6Oh33khmDbjY3HDA0QqJ7PK968eWeR2csukf7sbCnyn6HlmgJAzvkicdz34uEnMYcbhERruwjR+LoPgdHAkN1T8MjAGLny3A+o0LZgJEfM+aiP9LTbdO+xOXdHf3/88PuzIcZrXFwRboE1Y+OR8z2IQPGZ2me0wXSPdPjpd3TD3bV//vjwnAyvsFwKgAxsBIAVEEdCicCyycqSO1+xpwxE6SFpwBbYKoipUq6TzdpKC4WPuDok8+6LekE68u5DQpxmeEhaNNgeVQu0bi1hTz2PwHnxQe2eFAQnPSSNZWkUGHF+KwRdRYb/tLJwc7TibymhVaZVIGDCk6dPcThYAvFuYEnAPB/x5NlznE93VsgmF9Og56LnRWz2jgk1BQlYAm1KCTFZ8uv93RtAK54/ucUffv8trq+vUdcMyRVYYJt8u59Ag7t7eJuhUMHNy5MQAzqP2TdjjwRxRAaCfvZ9S5jNrKEhrsZFOhVK+54CJiGcK4T5NForZAMaB9uNB+/CYB7lZvhuLJoXhBEQi55ISMCSLC+lOsDBcB7AKCueOwSqZQWgZqTjgcnsB0zXN4AqlXfQomziY71UJrwHu//zCiRW61Vvm1jb42Jjpq14rmqmQ5KxdOD0ER9pnlFrscRfmTClgLhYFVjRDBEaDC3BNpmiXAWQko2bWhAPEXlbcX93xrZuCKKNSdeSgYt7soV5ErQlo1FVaim0kSvyumJbs0UlakWtBeu6mfdbtEW6jEplHvq8bli3jDRNiNM15uWImCb7HJ0rogGRtEEFJWZZnRlSLTldAmVFa/POAULqps0rxRAF5gYrGCqHN5vK6E7Hqys8e/oE05RwOvt0MAqIfT20rzQaAIAYA5O5YwNTCvtuGCgpIQSrtaGK0907QBXTNOH50yf43bff4nB1zXvIhq0jHReeA+eRX/e8e82cJhnO+SkRmI1e1SKAlPT16uASpNec2NXP4T+2wwIfbtwovZGMssSZtFm0PafJSyuwi4x6DgcqsDH5WoC4KZ1uQml37ZRg/44M9xmU/cFnSFXEVohQK8yxNxhMqn3/FK7Fwj6RQgcN29vAGH/Pamthizh/nIfnJD6QpW3GxZinsQdI/j07lCVHzNCIIaCqoNZKP2LdSXlqVWjUBujd2y2hX9/ZBt6/o5/p4oX7CuzcDat30FovIgkPgP14cDL/+O6E+7Ve7G0C30crHR0QmHR2LahlhdaCpzdP8PmnnyBN6aGBMVxzfO3bmRt1gVHbh6OLERMqS9qS6pjQxrsXFs65tCjGz/L+d+jd+9HXl0e7iC/MxNHhDw6uH36JEQOOq2aEePvUDadLU+L9bW94trVJsVfkfOxGvZ1sT6tfpMRuP3/pRjsbfm8FCysprBqas75HBvtnx8rjH3L8gsTvk1k39OppoGes2CQL0RQxLHkqc6BxY6wEVHEAsCNQhOdSOChzDzg9cwJLDDocEY8HGA/PIhnWU9FupcbmEB9MMuvANPPnBEmk7Lhrz8PzHnGRSuUroCmAgOd0ZY4x5JyGyECo9n1lxCWZl0pSxfH2GvPMCI0DdO61cZpwdX2DnDOLSwmj3RExTsaRZhsuH62qqX5JCDgsZsSs5xNSDPji88/x7e//EvHJM9vwS94ZF3Y+S05EQC/2BAfDfps0qora84TTp8DJ4dQfGqE8t/UZ+zUEyLzYAI2zAYKara+8ZoVWG2O1QuZgGvBC8JDo9S806pyH3LTwSZ8K3GidxkaAaNQppRSuwh4y0BKywTEYPJHUvagRmFzxJQJ1RvK/k+6kzgEPHBulmEc0DmN9OzMAZx5bcYARs4ESj6aJGxcEOUX7s/jIczKmaUaumepCBvyQs9W8EJO0RakoulrXT5Px1JWeet/MRJGVBqgEs1ejyXzWki1prVoUMsXJ7F6XTiQ1J4REw0NRshkYpVQD1DEizYBqogwsuBZZOyzBLiJOC+ZlwjJPiCEghdjAuA4CALaZ1x6arqBMslWZVwXKulm185ytMGd13jHHdzWDyOjVNs4EatQwj9Ko1Z2YJOD2yTVi41bb5qSkQqVlBhTYSmkRENs8mYsBMPFvAGzoG6KI4LAcsG0r1vMJIQjmlPDVl5/ji89eI5Hi49uuMHLdCpxpQavw7dEMN6Jr7ftGQp/HOszHFCxPI6OD9SamMKxL3HvEc7SYc6F0fEg0D7itL9wOZbP55o6LFk30/Qo0Dmxdi4P6ITx/L022phXLF9PsfPiNCoJAnAXh6mDCIermnEKpImfBpArLyUi9b1jk1a7RQaOtEbEjWzeOPPfNDa/I+/1Ij8v8ixbZcD+rDJ8D3mto+Ng0Q8PGT+Acr1WgGiDiNcAIyt3YMEsDTksKFDWAhNaeh+pCbiT01+Pvu0Jormqm2hJxR2Ok3Zei5Y7Uqvjh3T3WUgfQa+c2/wQphUJsBotq1GwR1SdPbvD8+bPW7pbk/Vj/7373+xBM04TDYWnAtGMnDGPcI0F+G3Qai1W86RKtYfcMHx5jf168f2ljtPYMDfbRMBoZD08D73f3+A8ntQ/58tXuuI/Bx9rtPaDjG2MZBr+z3Qd2N0OgX7s0s6cZ9EEx3C+b0ZZF6f5grhFaLRexAm2f85B1L2bZx3U3NH7++PCcjMX45uJh4OZtQX9otUK0DINTu9e7BrSQdKZ3W4QLt1KVyjcZRgfEJBNRFLpZh+LAkDTlAQHA1Ic8MiJcVAEIkzZTANJim4xrj+czQ9AEgmEyo0VLpwY5MPWBFUIHlo1ji75S+WZTSldVCmJNE1hEIoYelvNRrBaGW1eTsPWIgktIhibTuJ8JQmBhp+gh8PV8j5JXXB0P+PWvf4XXX30DXN0i1GzRFXP32kK2mVdfUmSRJyquFEYdPPfEIzcqzXAyAE/Fkq1AtzPqZtEbk6rzzc/BdN/k4XQSV5iKAFAhNQPH6MgEzXvoBf4E9nycdyhi50wJCDM34QmN5qWV3uDA58KxleLgpZS999NpF23ycwGwbG+OWwECxwtoWHjSZgR03YB1BdAFDFzHXoSeTIUBj/M7ABVhmYDlAImpeWRa2LUp3gxA5yM8QkiYKBqRtTRo4NHAqGpjUSuQV1RUi0IwYtQAnVaEFDEfj8hbQQic66gIkxBvKoKH4iEMzpmBLdEUxuq2oazZvGdQU6uKkXoOs1GdWPnWVPIqgDAssvb5NMUWbaylMFeMm6SwsFS0ASe1Is0L4pRI7TJPqmFLrnW1GFBvw97XRvthOSfmaRVVygLTGAkCiYrDYTJjZbfjCWKacX3zFDmvOJ/PcDEIkdCjpv3J8Ns0GAioEtWr3r75DnlbMaWIq+MBv/r6C1wfZ5TtHjFNOynvumXkc0YhuJ9mKm8VgVZbT0IUhClZX7nR7WsewbkZnTQSVM2Yr0KjwEGJL7rg+qt9vQY4F5k76OuE1L6eVDVg7wpVWrqREirpW9yMaYCqSxOHxEgM+hoWFSVvuHvzDnmzavVxingiz5DSZJ+PVsOgkCGQlsnaXgtckayBNc/NctxG0QLLuWA/uEHi+SakZ3V1wI/zeK+RMYC9hk0dRT5maAxg0Iu2+b+Wk6D9faMEmSd+V0vAjQyP5svYv/7CDYSHhoYCu6Tb970G+nf6QHbSEVBqxfdv75GdHuN7B4zaU+nUEcdKulkR0FwQg+DT1y/w5Oaaw2wPbPc0Iz/8Am64AcfjAa9ePsM0Tdi4j/pXKg0af6/5gQWMBtkeF+OQg/peJDsaaQ8NIe2dDAfeP2dk7P/m5/Yb6M+q94lfi+0cL9fGluw+6yf10/az2t7+WJDq4f0N1MDaK5u3uj6jiSkDhtg9QqExXanZE5qYSFCnzmr7XGhRQvz/0MgI1POfBp60L268Cc0ZHjhqf0fXQbfCepO971VynWccYAv6GJKOdn7NmWG+gJjBgRCAmaCywDqkGCBUaJeQjcCucOC2obmmot+DqygJWiKuCEPvCU19hIChy/8JF3z0EePygAEGZJ1KVaxNkWBpHDbKKIBWA0W+mQtMvSUM3kXehV+9T34AMUarmHn3FrUU3Fxf44tPP8Ecg9F8GBbrice2WWmukLBwY60m/+r0OFRTIwmxh/y98J2WvlpUA/DGY3RDjEaGJOsLj0SoUlWJzyibQYl5BsC6BP7+ejYllylZUUAu6s0oQEWTHZZCL92MrkIlZpTUCi9kZWpVfNaKIRJSaSjAzjHNdk7NwEpjok0Ifq8KwDobSE4roxGRpIMNcqW9Vot3rUfOtFboWiD1DMVqAgZQhMNk8sJNnECA489O1z/bQ6KN2RgCcgj22Go1O9bBrQBaMhOkjQYZYuBiaGOt5Ew9iQqUDXkr7emkOWKKlGCNZkxWj2aBY6ICwg02rxtqydDAHCExB0ZMEYGRBpuPHNfCInXRASYg6FVSS1VoVoSoCKwRI3Ru2FJp4HU0MMpm1xR6o7RaErtpyLMqNj3V0qLCLpdKM6DQESNWL+N4OFg+l8MQNaAjIWJejrah8HwBwQIE0T7fdtfd3sl8jBhwOBwBUZzu7wBVTGnCyxfP8e1vf4PlsHCDs3lcsnnRS6lY70/ImwHsGA42DYttieqAyO7G+gOUr3bKIHO7KiqjShRVaNFXwJXA2qbrzgSf81TyajV4ALgylUdelbkakrh7ex5i5D4h2iO/vl+5Mt88d0cNw/3CSHDNBWkKkDlhWzfk0z3iNY0V5ivFKXXjoIk/2N5mYCJzndrsPoRGObiOepTXP9v6JXAN9vc/ziN4xMq908NPNAPj4c+9AdJGGQEhpUkHQP9AfUfVKNjNwBhVjvqe3b2/lyhsb2Dsr+NbcqdI1YtrD1YDQXMHywBQSsWbOyZ9Q7phCjOAa91QUTqWUEUtG7RmTCnis09e4ng8NCextkbt72Ks/zX2pQjMsfn1F7i5PuDudNq1WWtBzZvhMzHcY22trc+87VZY2B0Uujd8WnseoZn5z97RY8sHoD0i7v6cHhZ1lJ5sfnkM65XqeO7930bYYNSmixpFQ+ToseOx90W9/k5AldrnBPPBOobs/d+NbG/LhXHt+S1qc4G3jzF60cZ5ix7+/PHhMdOinT/qi5YP5qaDTnBNb6FWNW9Tgg3sxJB0A5/oIWkFGk/V+yUKJBqgj75oKtAKlsUJQG4eai2u+byhZhvA8RAxXV9BWK2cTwKFlJyQAiT4Au1J7IpdFfAa+kIPoReLNyDghgADzlVs03OPfTM8FDGa98+P/rArCjek+bB0z2twzyIHofRv9sdroEkkYJpn1Jqxnk5IKeLVy2f48rPXSOUMvH1Lz6DPBIGgWM6687rdo6fF+qOq5QbUCi0JumXsNMqd7kaDROYJKcy9bzwy4O7ECnh+hLr6RNVmRLSkT48EVRqcDiTgz5/nAs/fDMPCmTP2sHvylMZIbSkgXaaXhmKr1gsrHrkcgO3E56pmII8RBVWCm9j7gguGTN5mj4hl3hPMcHWjtxSIJEjiM1VBLRUlb4AWSOBm4kmeQYGn+GiPst3DcotsYdRaCBiZA+ASrWL5Bs1mD4CC/PdamepTEbRingSqBFv8XqBogfA9CQYM7IQAYMaKaEUI2tZ6s4FZiZxSZcbyjGTzVaiYmpPC8ilaakEAJATEZN7uGEiJC6TqBFNWEeJm3wDMOLBEat9Ig1hicEsKLrZmilPoPJLMaLLmYh7+UI1KVQpSiBaV4ZRvy26wMZY3UictnbupStlnuy8zNGOjmjESApZlwfl0j/V8DxFgnhI+/eQTfPH5F5iWxb4DqzdSVhOyUBGEFBFREZIl6gsEVRVxNkoiit1LZUFC00WY0ZwZzA8LgIHyyHmWzFjrtAPmN9QKrFaTw7X47fl7HhiYH8ij2jW0FIuqVp/bFci+J3jEhN+v9nxlErQ8q+p5X2jrTIjA8XZufH+r75LgDia40RRpxHhuiDtmdFxzeB/Cdaftx1wDhfty20vpWHHnUfdZfXTHQxqU7N938LszQobPDECrAzCgcd2xB62tMjJGStMg3gJvQjcs+s9927uB0YGww+K9hOhwTfV91D7XvOZtK7cXW6m43/JA7dfhulSgY3+p7ovwHa4O+PSTV0jJ8s3cuNhFNKRDsAZbZfgpVJf77DWeP3uCf/nj9xf3rubMqdXq4JAC2e6M55rnibVieoSgy7PqTpjtwbNSbe3fRYBG0L8bAMMYkW4sNGORe9G+N4cOGZ/JI3958Nvw3PYRs4tz6NjzI02ORlgAahUGWgMjEm5oaBc+affTb9vnAGggK++795fs7LPglKwLA+N/eCQDKykmachRuAxJq1OgBEYpAFrBMu8g9wApPeNeaK2FpMEch8dD0sbd94UctpCLwGlXZc149+M7Sy4tGek+4kkQqsdIC0nrVghACK5bSJrt1GLUIo9yQBi1KdjVQ+Dm74X+AGUBOTDKkhvd5+pwhevjFXayjbD7ytuKdT3h9ukzxBQH69FAUk/uGYrRDIPPEjEDTu/eoNaMq+MBv/nVN/j6m68QD7MBmlLsQTXlEzEvefL+ZHsrN6IK2EZ9BtYVdS1m7AWjV3jOgqotVpKSnS/6gAjmcfNidNzA23QlR7TdT97QjJPMa8Rk+QrLkZukh42KtcOPwgiMqo0FJjAZhYCUkawmi+sKLNFqXNhYnuzePdlTlJS6M8ci6VWuzuLjJVD73pO9oW38NwPL6WWRY9f7oJiBJa1P7O8BFvXTzM+WjY5Ki5B84Nz+szzW+xPaFtXUngBAWPrACkUFznsDvoB5+wtqhnm50oSkQAyWn6UAECJMQLQbbB41EjonjFWitji7zLZMiNWWQgmCgs7oDLVaUIrzXQdpXItmJOgUhoiGdCPAk5pjQJNBAqMVEQNdUS0/JEa0KBjpPUKVOoYggCa8YBGVpnoUfWME10zFMifMiVEYWhhOwTAqZmqb27oVzHNigncHQG4KjXZ7mibEGPHDdz+iZKvfsywzvv7qKzx99owb/OAcSkbNDALInFr5GvOzUXRCTGFLmbdXshkmwWmaAgopcB5Wi/IoxOZ0JvXVHiI8t0lUUdYN67szUoxIy8R+pgMDBSihR2kFMOUnGhYecRfORQ2dZtu8kK6YRsdSzUMkWPhwLKq1LMmuqYrpmBjdVMpODs/XwbNHxDXyHiudWIywe06G33e7hz0c7FFs7mHuUPsIjz1Pf4xiDH8bAOUIsDqAfAgEPblX0YeSe3idLtVAYTXq1GWEYQSKu1ymASSqon2vRS4eqVHgxgZ2xsxFNWlpl8aWK5O+e3+4mWDnrw0o+jpQSIt+cnuN1y9f0LMNglzdGRo2omTXjyIOWvl+Snj18gW+/OwV/uM//BNy6XK5Alvffd6IRKiS6eEANgiWecY0TXSuXgJvH9f9+fQ+ra1vx+iPjtNgnA+7Zz8aTD44dPzG/himV4u9au+n8RqX3798lv103t/7z3WcN/Yk6PCthM80NFqNnz7OPXriy9hoGHpQ1g2N3pfYGepuwOySvx/rl0eOXyBhS0+hYzynmKgwJK0MJdNA8E3QQ9KqaFQShYWjiwJSzYMN0lK8crS2UTGEpNHdmvOhhc5BGkNPBlfMi1UO3tYNZT0jRvYa62bExaRoLRrnYNU3eF6nbNYm8XtnxKNyI2g8fjCpGH3xHgcF6RfXt9d4+fI5Qgy2eDST1haB0+nOEsMFVmQQXWHBw1rixpsPblWkFHE8HnF7e4v7N98jAnj+9BZ//3d/ixevP4HMCwE98xHoUUXNPWFSYREFp3f1jO+2kJkDzQ0R7eFYqlYEAJZk6XVSZEh85sbsntM0Gdih+oq0vBM+h+gjHb0NTY1K0SJNDu630gFBsn7x8dWe75r7Ru25Oe7tdCMiuLFZLYrRjEpBU33KPkbYlpZ4i95YT9b2gSGwsef3IBXQaI7I4hS+2mR7BfRqVoto2EbzcMH62I4wLYCaHKwpGDkwIgCqpnQUgiBINEAYbU3ZztUSw0NAorqRpQapUZ/AaIUqFOaVl8ikNgUUAUGSAfxg0Y0gkXKzSmBhibwpWT5YDIIYFNEL8pXY7Gfn9Bu+5NoHFtGLilb3Bw5QFVpXYAACWqzmhnIt1ZJJm6cC28RdoKpRVoVrp1aLWrhMuBsmboQXxZw8J8MPM2QrC28tywwQ1ETmYohLfrdNhs2HRTRijDgcGMU43SMIMKWE50+f4Xe/+xY3T54AqNBc2qaWpggrtMc+Vs8fMdpYcAGHCoteTwlJWJAziM0Bz51LXluDfaurJcxvG0Rs7ORckFhsESFAc0VZV+bJXCEelkY3a3laDszoXTXD1Sqwi1OS3FmWM0xOFjYQRG1PAOVm24bg68wCKPfAYIVj7X4ofhGs4GGjdKqiqfv52lNh149Kehjb76wn5X6UnOLL8dfWXEfN6PvoR3o0j60f0v7X3xqAVItkjAYGAWDoH37k0D1orRYlrE0FDuSu/9TRQXEPSAwGxuW/6onmukv+rnQM+M0NpgycFLPlgvNGWl/Do7b2tKRlQU9gLxm6rRAAr148w8sXz6ydvq89di8eUXAjY5ANFqpKPbm9xm+++RL/5//r/wO5lN4DzKNS9SrfYde/DvCPxwXzshiI5lbewfcoWYuhXx+JAvl7aLC8P5KxB7nQNZUwiozsZGhbQ/ojNewou67+sMPHQ5+T+vCvO8OiR2v6dSQAobqkvtKv3SMaHUI7/rBGdipfb/t4fl4dAHMx2EctL0PcwPmw48ONjGVqm73tOErwQ2BA2os0OUVFU4kKDaGiebTrEJIuoYPQXUgafUC4J2aKna7kc8EXTS2Ik+DqydJC0vMyIU2Thb2YLC5Nb37wkjnQdqMhpr44Kz8L9NeKrn3ufLwUbPPyDTCyvdy7lqsDPnn1Css0oWxmRHBqQVWR1xW5kFqgyoQeD135w+7dYq8DYkw4Ho/I6xllW5GmiK+/+hJ/8etfmycxUzqzGGdXpjDcCztQ0EL/mk12UmKCyyWKK4C5l65619h5TXEjQM5qoJmJ3cq8CQGNEi82p1ZBF3Mi3UDcvWnX2KR7cFUZpah9LIgbtNr/CZ8L0jDDuCKoUqkmwQzHAT0pAYEr0FTSLlT3kTuPpLnF5WpkxY3Tii7TqYMBSrUrT/gO4GeG+eUG8OShTj6fnAAtfSv52U3tz/uYlgOU4hAh2sKlMIeFVZ11QO3FmTi/EJDShCq2xghpVRbJhM2TWgfjTinvyr81O88VvPi3WBCS6cTXza5tWM2BnB/mxZaW+M81pBYoo50KU6ICZRrbJPVxAjPQ63lF2UpbK2veUKqaVoSarGYMAVECQo4mouAFNNV3JG8bDehSoZnRzhAgccLtkye4vbnu04Ubeq0FuWyY59k8X/SMhsFQdsUad3K4RzNGy0e5e/sD8rYhhoB5nvDVF5/hqy8/wzwTZCcvDggiOaN8Sa6IiRK508y/swZQ5YYf1HIhYujzszKCCBZLVUse50NAjz4AopWU2dzkeOeDXUu8zpHnZziScNxah2uNkuUAGl2pc+OG/YwbQl25t7gh4dGJYNEkVXRlPndeaTdI23d4vQquf+6s4B6c3YjwDnYOqO2t2Irl4U3B/nn0K2fe4y+eun82x6PJwD9laPBPlwZG+4n2gd3vNmcG0CpArWrQR9T8nTug+HBtHnBie6dFLx4YGSzS+SCa4RGT8VaHtnOLW3NGbtLywyXpk2hrV7tGQa3GTnj54hmur44Esfv7MEqNvScDneiBdC//zcuCzz57jWWecX9ehz6F4ZDq6w3VpIoCRYl5BFfHA2aPZDQE3ztz3zrvO+z66vJ1O0nrl4sIWAhMouYcc2f25eV3d2PXF7l4/+FDv2jv/vf9j0ujYvzptF67DuEaAmGPUhWz5Qlpv+V9JEN2c0PRz3nZ6s6okeG7brR/mJnxC+pkMNLQgJx57IVhY103rHdnTFNCmCk76p4WzegSsX7jFfCQtLNFQp8A5pXmoi6xXc/VU6xQVeb56BUDEFLAvLhSlCIdJzDb1BZa33EraBww1J2oUOX36AnutZJiw8nrEoEeaxp069tT9M+KGqidLMQ+TRO+/PQTHI8H3N2futXIhSznjLxtNjn8wQvMUi3F+N9tKHgYS7AcDzheHfH9v/0LSl7x7PlT/N1f/QGvXr5AWTcA57aoCILlJ7cKt7aJmta8afwjuweOxh4BAFK0ytTVB7wZbsrk01qNwhRKACSb0hhzWTykqskmf9k2xJQQ5hkSufG3IV87kHOPW+UGrrA2u+SkRwucvqBqyf2++oahWnmEGcfVnyH6mILScAjoEQoavL5xVx/37LfIcalAl9X1cToAAo8OVea6eI6Ic6abQlXoASRXv0lmZLRx9RF7IAGgFjesFUEpaKCAwiT0wjSj5gItFYVStyKCNEVEymQLyJXNFRKlM0M4D1u1atZDEMA28FJNwhU2bwOdH8KcqhAEWrmYuhHYvGHKKEuCYIaQAmPDtcALQ2qsAOLgbKntmfl8qW3+mPFothC9/NESymO02hlBmKvA4qTq66L1Ju1ubiPRBo8ZCAm3T5/ik9cvYRWNS7NPtFacT/eY5snWHlWAXkNrCVo43DEJexbTNCHFiLKZRPeUJtwcj/jrv/wWL5/dmjMCVpCwMm8ptDwSGn4pDGswDXPrILSCqQhmQKL3oalK5ZasKtMEDRF1y1BGK4MIpmRqYNu64XxfkOYJ8zwjLQfLcfEcDEYW2rKzAyPJCsL6GuOOI3eaQaDVnBziEQetAJjn4vaPuRf7AFWgSWT7vW0b6rqaYhgpfOJ94eIWAluf42IndodLcIMpmAFxWm3MbtWq0NfZgKG7XlXhQiQf7fFebKOP/HF87+Lv469tO+ggGkDzfdnSK3ztSjygo1D7yQZjwz3Rfc8e+vzCWeRAGdqBpb//84fRqdetYMvuDO0T1xN5ld7nFj2otnenFPHi+VPMy2ztHXn87Qo+hqxTulfbIq6jsZEAvHj+DNdXB/zw5t3+Pof/CwWEaq2onF8hCG5urjFNU8M/2urj7Ltw3417480NjLrbL/djQeE0UoHT16sEhLYm0Gn+2IW9XwTWX8N9Neyhg0G0e47vNzQuKWo7ytfwvWY8Kel8/Y7s++L3N9yy9FyK0aho4/7iTkdjvCt9eR2UiwHyE8cHGxnldG/qUQxJl1pN+WiyBJ2yFWynE8oJONxcIR7mtsm78hB3L3TNc/PcqHruwUCVKhsgA3VF6hCSJmh0g0CiVVOuXJwDGGKHSdeycFHLhah5oLg4mFbzDjFpfQcumyFB8JsSECYD42VjTkPoANDpDNDOx4YiSsDnn36CF0+f4k9/+sGWBrXEIldycN3/qtpsrm4gq48V+IiI0ZIH19M97t/9iBAEX3/xBf79v/87HJ8+aZuKbpavULcVeTsTSFHFRKLJp16p1RE5HJqDtKmzQKyPJZCwbkZck56jaotWhYZolBEEiHsGAXuuWzZPZLVEfawAYjGKhpjqiiX1i/Wj062y54qA0adIyd0h8qUKLwbZnqEyp8bXeBW0IpECNG+kb9hRYLr0PhbomS0ZQAEmbQtSK4jVxpw0wGdeEPaT1D4hKwGUClok0NGfgxHPF5kIzsZ18gMn9p/rEdumDGD0hqhzYW0NqOWMWnIbXy4LK9XmkUBoCPTFUgHAi/jF1DYIhYFPrRZRUi2sRg2EaSLlSOlY5lrB3C1sK/GZdIoNsm3cMQEyUba79OgsZBAbKH18aYCqUQXDPA9ha3ATEo5nwOu72GIeoUWsMm/dUNX5/hZZCS2huaAqOdAx4nCY8PUXn2CerEAnWwGtFTlvOJ1OUK3MlXZUjLZRNVzBzSnFgJQi8npC3s5IIeCwzPjV11/gb/7wexwPszmPqK5Vq7VFQ7SNyQ2aapXTyzlbcno49Dnie4VEvuf7hJixpUAQVjqvSiwvtm5Fseuj0jMq2LYNW95Qa8ExTUhqFLFmBMCjFe5c4HWbLDaNIaHRHwSWx1Ft/dcAzIu1reZuWERwH6CDptBRINhH6QkUJPg6XWyPpeHZ90r0fiCtsBkMPUzV12bADKo0oTk7HMV+3H6Kh0DzPX8YE2tFaHxzv3XvvFV0hr1PAGZjv0+AR2lNw3/jldvPHSjUbuA/cjsPQJ9IO+uDHIz39onidN6s3lA3kdje0r3bBM9aS9uHpznhxbOnmFoh0bFtu1+InwlWwxjBcLUjQZSA25sbXF8d+j35KSBc18wQlxCtPdlqdsQY8PTJLaYmvd17TABSOXU8YV9f269jm8dT7M2mB281TPCgc7EvlDdmhvCKzdhoVkAfGYNhMJ5TvXPGETx+ZnB6yLAkd6lk/yEPbqP9+JlhM35Tx/ekv36QfUEjRvRnTs7jF1TksUHpi2FdMzbJCGtEiMYfXw4mtdkoCc3IoLUYMABB5cJ7GZL2RVXReLCVC2NVMzyco+sUK6e0eD6IjrfGsHZhhXJUSNRuRJQNjQdbC8Gqy9bS++yeqkovW+YmvxqnEXOCzHM3nHyjLGoc2uB8zooXL57i9cvn+H//wz+2MdTGtYAhQ8dOBN4YB8DwWQAh2X388N13WNcVt9dH/OH3v8VX33wFHOY+mXNFKBmaT9bmnNuk0LqZfGpQk4mV1D1kAQTULNYnGdAz4MwKUpaCZqBsqKXahr8s1teeN2Ozw/IWPVGyJUiLbY6l2HsuSdkiA8HUGhEIOgaQ0DzGQwcF6VGxwqKIkYm3dficf8nHpdNcfGx4IqbAnqNv1lKGkxAItIrj/pN/awpTwzhuCc/RzqVqgMRrq3Ahxliky9U4PnKEEFwwwekmIMBVhRbbrGQWxGBzKfLzxklGU42qADGXUau0qgFpUaRpsTWI3GQzEIIZE6gWQfBoQFt7PMEcbYIJga3RXMYNegWKAJmOFM8zU3B8VPu7n0wAIJocbZgt78DXRr/eQPPy8wEg3RDQWlDOG0rZUPSMWhUxJaQpWTE3GF1MeU8hBhyXiG++/BSHZcbd/QpAyexRrOcz0jSjQR8R9qmpTPV+YDeJYFomzNOE+7c/oBaTvby9vsLf/c1f4/PPP2dlcz4YzRC13Bqzn21MK50RIhatMeqqjwle1B9uk4oNXAcJ2KOZV5YPGBAmi45Y/o2tYxoqJkRsuSBXq7diHanMqeAaYchlb0A4v8QdFPZFNKcUQagE6Xlfvm44CKI0sTkeKtqi7vtgM7AFiBUiE4UAugHZisT64DK+DnYOCcDoxi7YEQBQqa05zJoxAhpAg0PsozxGgObv+LH3yDwwNIALsGyfE9+fdPidf93x+/1RuNXQ/t5b0ZTZdgaGz+/9YW3z/Z7f93a5ARSEFCMM+95w7/TYn9eMorYfqfb7t+3yAkwq1xYRHA8Lnj25oaLT2C/99U7R6z1GRnOaBOBwWHBYlt01W5e2a3hNHqDkFbVumJcJtzfXiKPiG3yn9f1W2k00KpdZZ/yz9n6F7NJ7+3o8vNPuYd9PvbP2/b3/w2Ubx79qtzHU39Hhq6Nx8cg5Zd+ake4nEhD4b5eMLa1797f6iw5vo62/ymvbHPLlj2vzBxy/iC6lpHWEAMxzQlVgO2+op4I0z0jTjLQs9EZ7tKGCZQV39wAAIqQBtARcTzrWHpIuHDhNN1wBFo/CCArGRRcgqNQOHrcVuq6QaLkDvqmbTKG3E6Zk5HUgWkE9XjuIUXHWDagnSuYWhCK9EJs30f9BYRrsJkn5/MUz/ObXX+P/8n//f6Ku225QOk0qThPGyrvjUBm5cSEEzJN52tfzCQLg9csX+Nu//iscnz6xTdCpYjBDSeYI0QPv2XnspW/mDpQi79t3JgfpEDR6D4SUBoEgAiUg5NoVoQQM+XOjbGpkwwBV2/BEcjdGqm+QrlTlnn9lQrhrgDqVwUE/x02TIgY33UAqGOz5bbnf147ywu8r21UyoKvNEu9Dv57AxqFv1gJ6P2caxG4ghN6GEDqtqu0YbhhLu0ctFain7vEEgIkcdPmYwQEaVUUFZvgDJvfLBQ0RCPMETR7EVAPlg8pczWo1NEpF0IA0HxCSUQmV4E9RabhWA6iJY1IzpHDBdi697/JjMTcATfDBjUDw8254V/dm29wJdIpIA5voVCCXOY3J8rQAKs/lDkpdr9dz3LyNTKgUXiNIQslUiBKlnS3oFe9tE5rSgq+/+govnz/D9z++6wFF9UdhFDQFmOBHUIVLnrHRnK6vbzBNCd/d30G1YkoLvvjsU/z173+Hw2E24y3Dxm8uCGC0JwTWtmPdC6UzhxRJm66c30hUU1LywN17b/NOCJi97ogl45c2V0Qii68GpLDhIIpSBvqug0MvztfUbtgGX26qWh5YgEW33CCplZRRV51Sc3plDmp3egSuObWY3eJ5iR75LDQ8WhTWjFBM1iZ7nhPvEXRCVDQVrBFp+ntt7aMB4wZPsZwjTwyXSXrC+Ed4tOiA/ejv+/9HECcgUwKd1jKAt31+Rt9bR6/0XqnoIpoxeKwfRC/Y2P3P3t6HUQqLnjaDI4jV+9rVYBg8y8NSVVWx5owyqDd2GheaQGaLv/C6IU24vr7Ck9ubRnsa+6hL/squr8Z/IYxUGpuHpjhHDOBR2l3U2eixLQG8ZtS8YUpH3N5cP0zu30H43hdOEepRKW03a0swKVENcTdTA8MiZ/c73utj8PznMDWbeJlEPY6B9lweMzSG0+zPe2FsDH3eX/uKIP1WH2u/txG+Rb33qmypECIN0skAuiH788eHRzIqzOqMzmOrLF5TcTqtiNuG+VgQUkLUqX/Pdkc0D29Rex2VoMzlXjmofONw+UAPSU8Li9u5twZ2jqoGYltkpE+SlrjJ3pAogFboanSYpl4Sh86DDKBzCDF7BWk3ZmxnRphma1vTZtf2d+dxi1M4guLmyTX+6ve/wfGwYF23B89WAKQ0mZdRY0v+9o+pWv+FEDFNEw7HK5xPb1HyisM84w+/+xa//fa3pkPd1hh61UAwExw103NTFC0qpGCfM7m7eXpr3/DCjOYxqt6/Dm7oidNCI0G6V69FBvh3p6KJGPAKjoLQn4fSSBupaJ6Y3XKyfYYJyDPoz7XJfvLybvgiYifb68ZP85ZUWCJnNlDhajgq9ISWvvnr0Le1oMmKqv+NfRDTAJg2fpdtKkzIhBj4rhm6cZuoahHDKZnHFh/xESh5nE2RDDEaDo/S67WoQIR0MTf+mzGoAApCsnEUILaOxITI+Q2twPmMQqWVwAreGGxRf94K/45i592Vaoaze9ljhBf7bNSi6ueJbDulin0YyXBuJWCudFKIA9nSufju4a7DEw6B49iiOhELIBPSuiFnoxXJbCIVQvoU1Ns54fVnn+Obr77E//yf/gt4dgDm+azF1mtxxTfuVN13BVg9k4hpnjAvM777478gbyuCCG6ur/BXf/gtvvj8NWRY9/oayXUhpe68DwnA3MYCxv73+xUa+IVFEhkNDSKWU+OJ4o5DPHchRFIs1QyDecayRM6lQgPPI5ouKkEgXrcO+jkWzFjKdq6J+WqjqzC6gAifmSoArumBuYBNgdAXtTHSjcEZRvqpR+I9Eqra19hSoLl2iqgrvIRotGAURovsGYsrjvleWioGGcQPn7N/ZkcD/EBbP334NNC0w06jZ779770Gxvje3njoCcb+fo9S+M+eF8DGXuBJ/kYD8JIGFQJltolDupxq/9rDR2c05XUrVLtyQM4IjM9NARpVioZ6XA54cnuD29vrRndyAD569y8lXkeA6++Nr1NKOCyLFV3Npbc5eMFR6xsJYg4g9sfV8YAnT266QtLlrQ6PUXe/jwaHdxR/f9SwGGhh4kbF3rjYQ3vtPz8QXNst9rHSceHFnen+dx2fwdDWPjYZvQiyS75vr7u58UiD0IPyevGH4c59i3Tpc6eLafvih68fH2xkxESAE8WAM+kdaQ6IuaDUzWRXnR61ZTTaCoExZLKohkT0kDSL5CnQ5PZccYMd15Pf6PXxjTQ48AdaQq0QWI4haXqPJABaLLm7qb+niZQW7ZuBL/S+MQhBamFVWAHAYjEtabhQalQc9ETzFo3eUi2IIeLLLz7H09tr/PjmbQtrWjgKNvGnCTFObbEZcbQPAgmCNFsF7fPpHkDFs6e3+A9//+/w/OVrqwmiBshAENcAkAN3VQPEG0FutGTacj5RwUUQpxmyLJBpMWPK+99bE4aNMEQbUSVbxICqQGZbhA4Sq+d0EBy49n1T8PLCdcr8DEvM7RKyQ9sjq8hLQCvEFdguB4LuTUzBjAYhDaIMbYKPE9IkQgXiRXSsAQB0z2YIHQTQa+gyyQ18tEWeYDJFtCr1DRTSGIFwbgnEK90HWI6LGygf8VGLgX+tgpisCKEl+5oikoE8AvsptJVQXGp4ChZgm5IBzXXtxir6em3F/GLzQivUPutH8KlQULaMkrNV8OZ6E8VqVyBRmCDMjHRkG58AdoVD28WttW0HyxUtaZjCDcqcBC1UyooApEJigoQ0eKSkG+gKjm3jMCNUpBQg88yx4SA9dudIiLi+vsHXX32JlP5vyJ4XxysU5n89jJo6DQKQEJBSwvHqCut5xen+HloVcUr4/LPX+Pt/97d4+vI5AnMi7AyZEWMFpslyA3z9rKVHRZkn0oUWwDltwLtupSlJ1bohF6uNMc2LeeMBtCiU942vb6XY+EgTRElLDNbPTc0pMGdBAZc+9w1UYjBDtwglg2FjNQUaKmx7COh1lHToX28H3yuDsbmryeH37mtlGD6Xe4S8VssZzNWGE43KMCXI7E4N69N62lDLirhEhOMCTHMr0GhRInzcid874L//CWD3egeO2tsO1uz1+40N4fl0+DnSn+ynEivsknX9M71Bu2MEvL6ENONegH1RuOF+3gMeqypycU9abaC9fZcwxUGuRzFijHhye42rqyNkBLf+D8BOpvYD/gHANE2mNOfNbuu4/1+7ISBia58Ydevm+qobXzp8fui7vtReWmDKIKXtv/rgI/vPD3ZGN+D6o2/HL54twzMfjdSHJ9MH595dWrzvsXsuQaQpMGJ4Vt72/nkMUQ40Q+wnmz7OHV+jOCaFz63l+HzA8cFGRphc+hFwrmdIgimsDElvPcTVTHwunFpYW0D7HQeQFpKNmu45AIB5kTYDos2Srxt5+QBcbSMmS7qu9A45F94BZ+PY+/fEwnMJ3WuMSJAKAKVX4WoGBNrkRKCsrf+tLVyVEpKltcusTH62VmjOpvaRAp7ePsHrl8/xn//rv7RNxlMYFQIJyYp8KTWPWwiwb04hWOXd+3dvsJ3ukULAV198ht/95i8wTUxKh5L6FWzzDvSabWfodk+QL5Y/H8Q0wM9nbKd7lHWFVEWaZ8RtRkgzJC3mtXXVIy9K6J0sIJ2JG64X1wtAq1DsEaem1sKoVitwxxwGCVSD4iyJsVFHQP178JF1rfvSv0vPIKpYJEIjcJiYg7MxerXRyKh81jQwfKA5tcKVthwcTFNfkZRGkyeGM5G+AUQ3Wn0gjWDGDVLQIHEjOZvUp5KaF2CVn8WVqz7iY313x2ra5v1P8PlLJ0KiB1iVhedJL/M8BgQzHBZWX68K5BVaMlDMO69SW56YyX0WlFKRV5ONjdHyyGqtKKrYSkHNG2K1vympUTKRyuPUHnc2QBhFo1Hq7Tf0xrEUmx+lOUkIImrOyNvKKtRWoVxCxLQkbhTBaDMANNtYaZumq7XFCTJzXhBUG+WR463YPEwx4fNPX+N4WHA6r80Iq1qR0gSVgOVw5JLXFkqav9KEJaaUcLp7A60bQgw4HBb89V/9Jf7iN3+BdDiYYaysseFLVcSg5ATShqq10eVUufla1XNhtA8ArFZFSMlq6uSEvNpzrNU8/uK5Y95up1Z6HR8H9C724YdH05PXrRGYdPdqc8/XtWC1iSrBfRBlNJz3o7WvT37+lh+IfTTcZWfd6UT6lIqPfTDRPPa1sNKp0u6n7wFaHUDNXLrc4WY5QzWfLV8vB9vffB+JHEdafoEv8s/rGA2LMdfhYW4EX+8x6u7ohsUeYDvYb9Cs4UPt9kvnw+yMDgzt0t4Qv2Dvdzdu4PMtoFLG2CIafOZeJFDbV8begFdrzrvaW94v0ub1CHItGhihVfH86Q3medkDVg5r5/xjeG2Gx8Vr9M9AgDQlHJZ5QMzsU2KjboTZhUJMCCHieFhwOCx7Y+DxB2c/GgXJ+3EExh6N1fZs+zPfP4/2zFtLH3QzHh9El+UBx4+PNDvsxub7DA3ZGWBoBsZl3sv75IPHtsvw/0fvZeiHx6cHx7IIP97ngUWMPsz0+gV0KS6WXkcgAggTwrLgOEfUmqG5IsTUF1qvRupSrw7uHLCpWig8lx6SdkPGQXwagJUCzTsPULmJXvACLvr8pZbuPfKQNIYFn10FFogxbq1RZzQTdFLCVXxDShYF0aJANtUGSaCSEtvn3sKiBPahUYYkGui8ubnGp69fIgSxj4t9uarifDphK4pSeig1SJfpFFrrKSXM84w3P7wFUHF7c4v/8O/+Fi9fPLc6Fz7lUjJQ7tz/CgPexYBJVS5CBGyiFTEJAiIE0Z4nFLqdyFFOQJwgZQEWr3mheyAWI1rtEs+zybVHPcrWN1rf5AuNvtGr2eoZ+PghQE/RoipeBTczitTGKvoi6/3vifiuRx/RoyrK6ym9nYh9XEDQ1J6cDuftanQPGlSurR04rXwSF6qgOc2rFtOwVzVlmlYIkCApAk4PksKK4I121oHgx3iUbNspFCbEkARNUc4jEhXQdUU9nZHXE4JUK56ZZiAeDPjnjX1aGsgvOWNbN4go0hQQxOgluWSUWuBF1VSkgdMYAZkC6mZGdogRSKwbHgIjrwpV8yrrukHLxvwmo0kKk71VCznGNqaV0brOuw62nTQvVLZk7ZiQ5iOQZlt7amEekMI15a3AGgyMR7Eq2oHjLmfz3CcaXR5xqwrkjKfX19zwbS226WQb27wcADmh1ZhojhM0p8/h6ohSNtzdvYGq4rDM+PzT1/g//Pu/xe3NNYEtAK2oavkyECBF08FvgFzQwa4b2KSoCWB5f1uGlMnsuZIRkQAkYJ5MZfx0gjt1LIk5wcRAcs+b8UU1jdHT2sEHYjdmlEYhi3wq1ZnE66QIbd5aAd3QlKZ8t/UaOY5yBOg1PRyQ9qitrpVRFNjzrl2WWHGCwuoG1JJRq0n1RlQkCYgz2QQhIU28WFDbVz3vIwbEw4SYbM3U8wqEDU1SOcOoiuuGYWf9qI4xP8LB6lgPYV8b4T3nAB41KhyQNwUf/3D73u4XN2cejWaM7WlRE1WjwwwGxi6iQRntttdTitRBHgii99Bx7Ie6R4yqENJ3FbljSwqjRC149uQW85wGI8NA5JhUHMZoRggNmHvBvNHLLjCp66uro9GlyKYQ/6/t6dbQAMqTB3NeHA6HR4wp3norftdhuf9/9K3vvOze94PB46+7wdGNq4fAfDTe9qfV3Yve5+NHDYp0g+OnjjHS0KJY3s98Bl0yGHvD4+LfRQc8vIr+XGvQlNcc5rgRZEb0zxiCPD7cyFCCg0HtQsipxrwg1gSEQuAPeqsLTKloSAL3egawCYVpAnLg5grIBFtIp4B9oTwCEc8FaAuAAX7bTJyCpaTOoHu8/TtuEPjGo4xeeI5AVqCoYeTVHmqcJ8gCXse85uX+jLydMR0i4tWVRS8S0NSRVGjkFKMMxGSAoBQcj1f47NUrTClZtV96HLRWbOuK9XQ2Oy6EYWL0ZMwQAg7HKyzLjDfVKFhffP4pvv3tbwEA57s7xBARp4TGlXYVIwipJteAFkRXK2GugYSERAlHAZ+dZtvIgtrmmwZ6kq4E+QDmCZhnA4NpAI55tX8tx8VvxJMeYWPLBQICDUJPvJcwRKv4GUr1seQwWmE+B/ie4xOYH1SzgQSn43hdDmp197whJVVLzIhJoYMhN0bhBiuNMwetGvhd0uaSjLtZWzDMA8555MDHjd+qRl/TYuDVeCaM2Az385Ee8/WtVZyuQFriUFCN/bcWG2/byuJ8thFoqRAUG8fw+c2Fjs/QKOimzhYIMGWyHCejPzHRmGpxgZt4gBXGrIyaNM4/zCA20QtB2Tac352wrSskJcxXR8SYEIJCUXE+r0CccLi6MZph40NbIqlWt+/7BikSkQ7XCMcjPdhGdalbtltLk3ny7eMMHNq40HVDuV+BoojMlzIAEVu0QFHw5PYGT26v8c//+ic4vUMkYF03lHMxpao4AGeuNQKr5h1DwOnuHcq2IgSjNPzNX/0ev/mLv0AIweqPqCBvBXnboCKIU0SQiAg39onWBdCizeYAN+BaC2tv2LRBZK0TVSvyyiKsaZoYNRCmF/h85Jx0o6YO85DFEtv7vmNuprg1qjBVLZC1ItQISYxIHw6c124occwWOm1EWGeJRp8LUfh8Z7dqVfNUa4VQparkDM0ZIVUUL2qqnjOzQbUiLROdcFZN3uh7gxBH2/fYX7WibqUrskm1/TTNAAQ1F6ynE47/Iyf2/6ZHz49wYL8H9XUIHvh7j50FaJGFBpD1geHRz/Ke1nAMN2MDewPDP+NDocPa/fV75EHQohcinRe/A4vdMHEDow+3egGytY0Vy9tKEC0o5zNQNjy5vUais68ZQw8Siy8BrrdzMD64aIgIpjTh6njYdbYOc8ehqnn7DdNFfmeapv6lB6+wB/Xvw9LiHxp7Ym9EtHv9yZ//645uWPy8gdG+g/64x759rP/7P7R/fsO+hr/v/A+JWo99WLhc7pW8RMaH8NPHhxsZsy1Q5hmmaoZ7zaoMr7nAZkXzareQdCbgVHgtBOHErJl5HkEbt9eNmdZzTYecALES9DsYUya+VQJUQQ/XVxo4iU+CSZemb28eI8s79kiKD09+togBVyYqhwgkctQ0r5DgoBeAL3JeMLBoBwApIS4LPnn9Csdlxvm8oqi2jfZ8PqHAtft9IAyTWNWMjMNi3O6ScX084Hd/8St8+uoFzqc7nBWY5xkHXCHkhZspbBPy5wTYc3F6E5+thGr5HFADwlzIEcWMi/naNrgto57uoLoC1UCYrAnhMAHLATIf+NwjAC4aOiQfhtoXVkNTjJIIx5d2b6XLSoobLgroZlKi1UBhU8z3XIwmjcl7CIyuDNS5FsHwCaPVFjynJ7SkceWz3OytrAQXQ00PeNuYLyJAk24GDYrAce9lOgXdsAFs7qzV/pXSqC+VhchUBSHWj9YDCQDpeIRum+2hczTAXCo6LYDPJEXEILCx48+UMrPK6vWAcdOjJeWGqJiTzUkxro49o0RKnhpFR1lzpQGDUlDyipItCpnmBQCBfVUaNwpX6QlQpAAEtd+3LWNbM3744S1KVdw8eYKrmxssy9IkGr3onUKp7h0gYQHCjLAsEDGFFRVFSAJkQSmKQuBei7U/iCDNCUFSA70KoJSCmAETX/Cxrwgx4sXLp3j18jn+4z/8Z7YBFjU9n7F5ANCHKr2iDljSNAGqOJ3uoLVinhJev3qJ//D3f4cnt0+AYqC1qmJdN2ynE85bRoFinhOujzPm+YA0s7BdVdSNzzsKXH4YgRsof0Lc0HPjwJ6BKawRYEc1xxYTm9XrXLBAaFsLOJ/NGILVdqKST4sqsGZQnGdGgmHGrngEjTQsp8+5s8Sxg3ANa+px3q/aFfy0mg9kYu4REqJUIFYITMHLbCNFVCFgFUxXR4uwtY0ptPnQctA8YrxtJnW8ZcsrSYl7EdfEuCBoxPQznv4/52OknuwMDM6xBvZ1hFGXxkaH+763ajMshkjDpUd4h9oGnHLx//cdj+YE0EECIQVODaN0X4SMDe/X3KlO8V03ijyqIr4XWWRCWbunlg3b6R1upoAnT24QXb4WpN+gGwzeJ5dyqd0w6yDX34sx4ub6GtOUcF4pI9+QcEtFh6JabR+1tWqaJ0wp7YyzbrRdPm+0101SWB92VYOQ8Kc+mnq7p/Pg1fs+xanJyEpXXmqRajf82nP88Pn2PuPtMQPDPu+t6gac/NQNvOd4bEkQr2MH9NoY0o3nDzk+3MiQ1KkJ0Jas2SIF7mluoWNSTETQPEwOmrOpBUkavh9hdAP1j8f+XDy/oHcHGhfaHyCNDS0KXcmRDwJJE2qpLOxl4fzmLcoFWjfUmhGDYgrRkqlTskU9snuUURUqkJgcZkIUej/vNyBs3DQJKraMfH9GXc9IU0I8HKDL0SgWy4JPP/sMNzdX+O7HN+3eqipqFoTkk7d1m9lWMDrH4XAAFHjz4/eAFnz+6Wv8/d/+DV6+eg7VgpIr4hRJKznBcgyigXgR9r8ajWoKaHkETi3KKxr33BA6jQzmd6ACoUJiAbaNBlKAlg2xZMRMY3Ka6Xl3ahE3yiYIQIDpBeqECdFVe4J0JR2q5v6824aagbxBhfQbl5BkdEPcyPHhI0OkC16NnOOnZHpU6FnxmhYhQIMrZwyrmIqd32l0Lpvb8kKkzxVUNPpfLkbJ2DIQI+VbSSUT2PwJfq8CSLQqyVKYk94Skz7KQwDrN8B3JfvnMr5UBRPp/Q8Req2HMXg+oZ7PUAkIBSb1KLDk7RGM+cZGAwPbahWWi1XA9lwwRYAySlq2AilqPOHY62ekWXAQsUgMFeMqbNxV1tURKHS7R7kPKBIQZs5jNTU+Id9aEIGWmEwjlsnGomJMsHVDLuehGq5J4JpPRSBIiCmgyma0K5BapwKvSSdxwrPnT/Hp65eIMWDLZlXUUrCuK7ImxJbro+2xCDe1eZ6gWqBlQxDB9dURf/2H3+Hb3/0WIgHlXFC2CpWAKAE1Buh9xtt3dwgC5KsZ11fXOF7fYqLrXJQ8b1b/DlqZj7D1CCW4fwQ0J8dYmwAxWCI21OZS2QDNKFVQi1o9PVZeV+ZntYKEng9RNqx390bLShHpeIVwOLLmUe6RVVefkwvHSxOqKKYYFqKNr3YPgOeDVM/FEuOfC4vASgyszm1J7TFGxKZGVW0+kJbXojHuLWnFawk4uQdLUKSD0V+kUSwJrCRC0gHx8PG6Kgg1zYh45J+DUsdBuzyK4bU/DwP42o0N7QBudGc3+gp/+2ngaH8fz2Pgbw/g/XVzJj7mXx6jIg4sH1xOkKLs33ckDNY3oMSeasF6/xbl9A7hem60pk7PAbfpwUM+AnA3PLwdO5BrhxfVOywz3r67b/chxDAiXunbInaV9awOy8J8lMreAJwC9lMGRh0Mzcu6Jm509uBGe4G9sabt3i6fT7tbPqvWH8O4UlVEjai8dtAwtFFaxObnjgd5FzAD7+Jx75+FP6exrc2IHh/Ne6wOffDCHxkNjAd/ev+5Lo5fQJcCmrHQvEvVgJsDqgch6QpzldVOS1GgEDjGISQdD0c0zrrg50PSrvIE7BYCD5/aemqJiLVmaC0I5HC7kQEW5oIAaVkQUyTtKXbPursGnJ4BFr3aCsp5RVW1olKlUk4zGbDOgOoJEFgtjS0bKE8KQcDLly/x9MlT/NN//Ver4CsEycH00l3XXbhA+ICb5gnX1zfQWnC6e4tlnvEX33yNX//q11gO11ZOvqpRFVzSs0qvXuvJfwGdDz/WdIi85/Zc2c+JIFlXjuRqoXvMQKmWNN7mkJD2s6IpRaH2xOYW7q9mJGy2wEiNcOqYHA7W5pypCuTgXtlXYOqNkJZiYEKrUTpCsWupeAJupQoPvaQpoHnRc4bmFTlvqGqLXrMnYB6ukCw/JQXKCkOZdFaBMJsEb4u40Rhqyek0gj3ylgvqmg3gcrxLCvY8UoB54O0mzYthz0UAAzMf9SEdOLb6JiDN0sarZnNEKOmYMlGi1T24gG3aApsfzMexfcLXAh8gyjz+AjDyhRAQEGw4RfcOmScZilZo2oabjW0JRp1L0fI3rKaNEKeYItzN7Q1iEMzTjBhnozpFGso0QCzHS/s6VysAUzqSxPGQTXJ3WgRJUr9lttvv3YyI0PMHYP0xrosSEw5XN/j8009wdTzgdN6g8GrcjBbIsJGKbaA25CKOxyPe/vAnQCumKeHVq9f49//H/xNefvYlUMxb7oIfEcA0H3G4WnCbnyJvZjTEaNXNa2HOSowOH9hQguDojpBIGu5k86Vs0Fqs6vtWuZ1EW29BZ0OpUOcsR+tjgRUxq0UhLOJZtaKcz9DTGdvphLu3d8jbhpQCluM1DrdPEJNR4ExJcQX0Dl55HsGcUDLWdVLm4TWhEO5ZHuGXwpQ3AYpCa+GYZS6IGwmSKK4h3UEhila7R2KrIWIGRmSuWWafqS3hGB0f7Nua+3pe8cHVev8cjw4mCTThdp8769BAKHBpZKCBdvhrX7cV5q2loWHTwQEo4b86jcaNtn6qAXaj5U/433aREQeF0r8nIHbx1xzb4z23trNI3wCQ3SkQEKylUjuOhjfVDPByXrG9e4OynjA/u8JhmfeecQjnFtvqF3jUe966B8MPhBBwe3uFZZ5av9vcTAiNwqyoeUPNGbVYXllljaBuZAwGBXT/7AejY4xmPTQ6vWVDYUb0CIRTzcb7ETcj+JwuSFfdFJThPbYzXBhAXiRV4bkxl0d/x6MXD2hpbRz1Vsquz3cP2u7B13Ts/tTucJwUOrx4X/v2JvDw/Z85fkEkwxZT9ShDy2kApIoBAkYSoFTDgfA7lH6NtjCGZerSfB6SnmabMKU8EpKW/jpGhr95j5Sc1GKhb61qIemQwKxsRImQslpbk+MbH4BWNTFeHalGg/6vaufrRjGljmryrPW8ctNkQRnPGZEIpAWChEkCUM5cw6iKw/u4uXmCZ0+fkheOttiFMDEpVPuGL+ZVcCnJq6srfP+nf0UtGcfbJ/j2t7/Bq5cvEafZohMqpKvBaDlx6I/6/23v3XokSbIzse8cM3ePyMyq6vttOD23njvJ5a6gFQRID3rQox6k/7lvBCRwVytBxEhYLCSutMTyMhouOTNN9nRPT3d1VWVGuJvZ0cP5jrlHZlZPtTAPrEVYozoybh7uZuZm33cu32EIUlyXwMemW8cUXdUp1MGiBXhO3DwBEobWF7eTZiCIpxcogQowQOADLMWLEqoh9aKNBqsGsbwSzKDUMe4cex0zUJ249UmflNZhLjqsCQDWV5A8AYN6WJiKb855QC6KtsxYimvd6+AJ80orqmaBDsMqBxlW9rgeFcCUSd3VQYAJ5zpPPIhS8xjseryBwZDyANUEHTZ1MBJJjJD8RvjXy9x6McHwKvkcs0DNi4d6wDwpuplC8oA0DFD193s8aFfxkpWAxL3kP9bHqOc98W1hASOENxICVTd4KCWaLUghNkDcBCoZoq1vfBDBkDPGYXASmhQmCTq6zK4nE6MDbLSK1lye2HUCko95FPpLHjaUmLdjW0UiAGuxPs6lLjZgXGvhFnw/KFSA1x49xH4aeSsZb9+EpBkiToC2xtshj7jYXwLWcLi5hggwDgO++Y338Z0Pvo+U94A9hU4JisQkd7iFXhNGVZKCAhXP6zAaU8LYZNW9eo7Z+Jjp/RSlV5OhUHXBfPRcNZXk97wJjQUCE+XaH95xB9S2VFSGuDWrKK2ilIb5cEQti4fJtQrUhNwWzMdr5Dp6qF6oxomr7EkaADFoJHuHu4hzwOeii0aE96QjPQWBW6zLwWbF5dBDjjIGIHIHo/ZOLTCb0WW3heszw+gwpO61sCBAEToXhCcEU2qDzS+vulQAId59K5jDloCEt4Nf6YQDfX0I4Bsg8w6JCJAmK0AFGD5yp/Pknu/cAwi3xGL73BiudU8YSt8VAwOJMR2Nv0nPy5TTCipta5U3iCQ087DQ+foJys0zwBpyUuSUe0E3PyesQHVzddu/++duvRZ/qygePrg6yctwz7DL2rZS/N/ij7EW3NwcMC/zSjK6ZwrP+dvujP8d0oEVQvSREvTj31GyiovdgHw5efMWeI/xEdCDQg9GIzHS0zl6ByfdOtbdKt5bsiGbjj+NdtnMqluDtRk9ufVrG4IRXp8t0eh91cPCgChUefceuL99BXWpkNIraHRJo5lbTYTWfSOYE09ajgVyfnZAswLNCcPuArLbczFmbD7AAmcBEkgwtoWsWgXq7MCizOgKKqFcZXRJ8+ZTuFpBbNiGBFsaRAfIMEC7u5uLfmZYT0S8OxJZE90j6Y89n6aMpCOwdUdHLG4DBAmSJj9uwrrhkDw8eOUB3n3nbeScsJTCYrFM1hYH7MrFTqBIacDF5QNcXl5hWY64fvoFVIC333wTP/jB97G7GOGx45tEe9A6Hnr+sSey5glgrIocxe7U4+ST9P3Iw1M4/gbvk+09kmMK2eqW62Fsyuq7GagMC0riY94W5h60lWgBvkGXBViO7lXJE3oFZWC18rXiVuGonhy1PkJuNiSTK4tGtobaKpJk5Jw8xybqMaTBPWqDQfLgoXICBxVRcKtQUSgPDvDEWECQv18q5ZR5/ZWJ5lsiY+vdqzlDzWBHVz5a5oq6VIz7CSkrVAk4IYCoD2EeCCRe4taWFZDxvjaG5hmA1hz0q/jG3+YZWAqk0asB7cWbOq9Qki9KOa5uiAowZAZL4xpV+cjfpIyyaO4iQ8LaLNKtNbFx+3oh2Y8tISdrDYl1C7qlUt1TZpTHbVzfpCk8hcC9wpoiBBHdyuweP645lYULTSitKmiUN9YUZCOxDqB5sjwLf7bjguPhGl988RhWDhgHT3Y3WsI1jxtrl69Pqm50GcYBF5cXuH72GMt8wJAS9vsd/vD3f4Q3XnkAjdDRxPASFsGUCOtp7lHQPADGeO+tdRhONNrsKmspVAejhkaZ0esSMTRWGRsc62KrDWnwe0tE6FmsCLU8yncgqsUrsufDlwUwwzhltMGgx4aUE6ZJkLP5VsDhluzGoTROgCQ0Xqd7TeiNVRK9ngdkNKY0XzMS/LVYKyoLlkrzsUv8Tg9H9s9bVINv7vFtraJWruuAh3s2DxFMhZ7qPl8L10++VKPwK6MFtl7El6zdZ8G+N2zKVrvr1hMQWCqO5fN2A9w2hqMTwrBF4cbntoaqnKob+edOHjvZuEs6ghCt1KSfYCdN/QWTrbIt4pfHyGOz/gbPyNcyKzPK9TMsh6c04ADzUrAUGiboMZP47xbIlltHPf3rFtEQ4MGDSzx4cLl6DyioUcsRAO/DiF4xoFnDzc0NjscjWg1j1Oq16OTQtmFQzyGY3fNxek4bntbJx/rHeh3hu7jdBzj51Gnzc1S0IBeJXoxt2FQf1PvbNjzrDsm49wtBPFY+8XzsH3Pt9mcClwTB2JBz6f9bGUf/+7k/dNJemGTY7KoZFjNbedFm3ANc1xwwBwrLETgeMR+OuH7yFKUsSClhd3mF3eUDDz8Jw2ybAXtGaw5d0ilBpDH3I1zTwElBOSZkB7BQpaWyGVxetjqQDOlaWoIdPOpKYjo45t/h0YgTrAyr0QRkoQvV0CvERiJiX8gJyLvLm8enrr6oYPfgAu+//y72+x1ujkcIaEndhknZOslzGpDygMPhBjfPvkBZjthPI773ve/i69/6FtLEBO/jAig8URiAFIXzwOSAt+cbJN+rWFQRlFH0pGzx6w7tdcA3+1jAIuZYBAhVqADQ7rf1a1XKT2piHgjjnOMcBCQKcIK6FCzzjHK4gZoX/BrG4nHr2aVzPc/HgYNr7rNzR/VrCgsiY15EDIbKoSSBaCCpzRuPDsGKgspmm+tojYIBDiQEVFHrRFpWEpd4nhtrIoZMounzTYr1fhlyQq4FVhvqMiONrIdBotLgnqc2H6HMP3n+IvISNIL7vqg3L67YzBO4RRSaR6g2iFUniDAIGgkG1x6Rfo/Z0mBtoYqx1zmQpAT2lTHwgDDh1urC+hMCmIfoiCZ6Y83JQ8zl4Bec36IJGOCgmmGAaWvR7gim+D1Y4cekpdAlaV0lSZMCMd69tgVW+dOuGlQ3mxewFPf+efSof0ZAnLpUt42oAKWhLgvqfMDDywmPri6R9FMuZS4u4ZfYWMbGQ5+GYcDDR4+Qc8Lx5howwzBk/N577+BHP/gAux3vMxBkWd1sTOvOIyKe5Gxwid3Y3kIaFgkJo9+vveaOrlEivcCgj2cW7WCF+hvoFtukMNDTTIOOJIUODuAFQGuClEZMe8E4De4UrwtyTlARDCkjaUYKgxMTst2iCUDNSVrs5KoQpM36p+u+keD3f1IP+wL3H4I+dK8O12U93StsKbDjAV0hi12TRFhgMhQZuWahotf/0MQ91KV/0Xi+IdebsqslvqQtQGZYtF+YZGyJBcFUQLdu5Waiq/8NjjVpONlEB/e30FoQCD5DRCH49+X0M31pWV+P5POO5Xiu1s+Pc7ETDTs57pATEsVKJIRSeCatFizHa5T5uAJJAPO84Pr6pn8u5t8dL0Uwqb4mPgf09r4QXOz3ePTAq3dbCLSU0usD+Q8pdBigw4R2fOb1jEpF25Dg+0nG+vfpa9swuvjO6jvolniuCZ2wbQeT1/jlIF9uPUj/TdXNPNx4MRwjb770JX23Da87yeu5Q/g28+hkbnWadDps6+XRrLRpdnpvgP3j4Xe4h2C8GBJ5cU8GfHDMEjSHvCAAa2iloZYGpVJAaRWlNiyHGWXxf7VWmCWUcsR8UKRhdUlbqxA0VyDRASIGzRn3uqQD2IcSEFoH/L6GK6SaL/yJwdUQt1SnvuSsve1SLwy3moG20JjkA2ShcgRDGgfKknLzR/UFmzzGXetAxPq3uQJWvTot60tYqZBkyCnja++8i8vLC3z2+RcQVeRxRPUlAbGChTyZ0oK+lCPmm2sAhouLPb77wXdw+corMCuw4xHteINWn6EyrCSPA9I0wHJ2QhbqJyqUo2Xl8lAhWQrPmbKwTRhiRSBwcrcCPfkxtOG7JQXwKrvNlcmCkEQCN9j3zQsVtnlBKQVlPrhaFyummy5Mzh2AcU9rH2tdVHD8lZXbtXvbeg0FcbnIJMJE/k24lnIu9JuGcyxF/oqgK28JrY3gho/YzBW9Wm+szgO1++M1Vf5J8hoWS8mQYWIitCHto6I6+uf64rf16L3MTTkGYaU3tzdbAyQl6OAhKb4JNA8BNPPvaF49S612WVErDWVhkTa4gpXuLyDLDByP/v1QIGvoXizJ2ckr56wU96Ba8zwAn7Ixz2McleGCNIBwKoNAt88ZM6AJK0cL3KLeYM031qhE7uTVVjW8aPF7Rg9h9Y3XxCCtIiVPIFfXzYZFsUJxst4SkFPG7vISmoGvHW/wzluv4y//5hcetjCMBCytb8FJFNO0x36/w35/gesnn+N4uIGqYBwHfO+D7+CtN9/kOIqTet4TQqBtZoiEfWmgHDM41lEzpHU+1pVUDOgqbl1QRNfNThSaRiCAQ9TXSNrDcEWE6oVcH3LuWwZagZpBxwE5TU40a0EeR0yXlwzPFKRhAkbek9bccNQoCmEO+K1FUUQ4KU4OUtxLxryPssBKwbjfuzcDYewS9JzFmDchWEGPt7UGlAZrlFnuYiMMnVIF8kQv9OLnGR7CPKxgMNaSMPh04pzW917CFqBzC8D745ZkAHceYZvXQKLR134CUM65NSxzA/rMSARiZebaFPfulksGwdiQjC252AL5IDbxmbtWYoba8PdBgmTcsiCCcfBcos2i5DgJhjovXmBXHdRHR7phYQXVcdwVnEo/5xNwu0G4z4Oa4zCwsN46cNH3QoGWNHgh5DoznF383mq8v+56oG49bkjF+vlb3g9hv22JHvu714HoIUCyucbwnK7AfR2jTWhSf0k2868xGlg7wUiqd4f1Oe2EZJz83vr721/vcyqeCU7eX59s3tjA4biX/GkQDTyXYJB6vNC1vDjJoOKRL+50SafEHAwmNqpALUGaT+pWK4YxIeWMMjekrJgmRRoMw+iLqzVa+fKINE4wTbCmXVNZIoki5AgjmU0SkKhmtXFJS8jb1gXdoo1EAIqNS5o3IHXNjRtcs+oVXkPTvbukFYYFskRMpldrlQQmKIKrXOuD6UX6/BysFrTZkxfRDHm3w5uvvY7XX3kFH/79r5AZc99DMAQrqMUaO1iXiloLsipee/QQb7/6EPXpY49vnI8oy4K6LFAxjDuXxoRkoDbU2d2TxDw+bCVDQ72kNthMgB7qYYhaHbISim6F5gIb0r5dj76dysDOLn9sEXNO+VZpSk/KArGCJBU6CGSYHFyKuFdg3AFXj5xkPPscKEfvGx3WDVMFvfpx5H205jHM22q/DVhVh7hCR+hd3JFBHgLcdwtseHZiIbcOYAGCB1Yx9gvUdcfpC5msqlmRw9GP614LJj45EAa6BKa1hlbKV7MM/GNrzWD0LAqJgyaGr0kYCrZAiICSdXT8PYKrwvmYBILkhQvBEJ3BjRUO0nkf9srJ7oUwMdYPyDyvugJUEVjaADFagIMYo63GDzfqhxc2cVrQ85lYq6bOXEtYIPOkIJWd3lvG+Rxhjgav5cFCcYlF19zY4zlYUeDLBuHt6EIHeZiQpoTX5yPe/9o7GMcBbTFAM8waSQYNGepERVSxHA94+sXnaKVgGDJeefgQP/z+B9jvdn5CId0cHhhhOGR1D45E2GLkk3DtlrYA7eh9ETlG4sYPAdb7qS9S9DZHfQgShnWH1FtjUwEpiERqT9IWWBWfD6E+17zP0jgA+0s3psxHnze7Cz+vkP5W7idR+wm+D4aAiATBMz+3cpjx5OkNL8MwJoUhreulRgivAdooKpD83BYagVL2UDprfr0peb5KGGkiJ66zqDDETN5vLcidrWujf8FfLy+vgMSdcKmT51uywU/f92jWl/wOleTkGV+SThTCIyFi6/0GgbJmUvcEoAccnVTMBlYwGA8rCAx1q/sueAO0hWGBK3JHEIJpzMhRp6z3FNCWGbXMkKRIw+ThqHlAmw949OASb7z2mhfODDDJ89jYwu+c0imofQ7RMHgit/knNGVodoELz80wNE2eG3W8hrWC/W7CMGT3ZHSisD72q4qnzyEdwDbE7PQcbTsEBtzb6UE2tl4NbLwK8d6tI4fSoEBhyTpZUqUX9r5+imvCaV+v+Tv8P+fLlnjEuW7nUj/C837s1i+fnEVsR9s+vtPW/IwXaS+MV8S4sWTdaIG7G1uzIqPBZckUGUqXdEZKglpnFFrMc1JkzV78icX9ti5pEYNlFq8KDwUSesJoKFhxo7VGS/cw+jmFy90Eq0uaVpyozeD9BFuqV0QN6xCVUjSbW7JSpocjrH0Mp1DtCd/IdEmbAosgrF0QSqhiAdAgpUEbYK36hpoUr73+Kr7+tXfxFz/9GTRlGDxGPLCHL1q+iJblCLm6QqOpZMiKt954DY8u91iePfH4RiaS5tG19PM4knQp9263lhnMw3MKY91jw4cwCavA0DwZOSdfxhroLQozjR/DmgGLb9wyiCdiGsGhFDjwOBIkepkgZK8VYJI9eXMQ5slkwLzmwZrrwXyMRk/TMnulaAFkx7A3gVvyukvc4m70yuAYfG4Uxnh3mk7iQOJHswXnGVYgmBiqF5Xje3VxPnaSwjCSurEkYXO8rQdHCaKEv7OxtG0tDDCj0lJDqRW11JebZGzWDpfwpMeyBmjiPapAB0RB3pvw/ZizPo6afA7BMmCUBa4LrHgxM1Xf0Pz7iXH2VE0T83MqTjDKPMNa9VoKYY8whmvV5pZzY0hVX9hlDU8JAmKG1mZoK7wd1nAYM66nvdZQgIbNqh0WbwkvbIZm9/qG4pV7UcWnEeslBOzp1m91Arcb9/j6u+/iYr/H0grcR9ZOZqmr1+0BKD77za9xff0UgGHICe++9Qbee+stSPNq0YLW1dGsMPeF4yeJGxA9DFGgMtS1VuZEC3+ESgl63yFIN8OyfP1lVe8Ine31mVyZxgjyJQhG0y4iIhjg63dDWzxcTlPMwYFEk57YGC8qkUEGRD0nGOg4V+Y7cG8wQGgkSEPCbr9DyoNLorfF52N1qU2lelYznjsJqeSBfep9J2P2Plj4w43raSuseC8bb6oiwox7wH4XIgkPtPh9ty1q+hK254ZLxX/9fe+3U5LB1wlK7fTAd36ry9puHwkFV5Ii7O5NVkbsP7y5TsDpCZCM89xCxLvo7RQwb97fWLzHIWNIK9p0ZbWCWmc/t65Y5CGpogkPH1zi8nLfFeK2171dHG6rHG1++uR8NvwGS1lwc3OAmUGHEfniCnm393BE8fOryxHHp59jvn6CievMfrdzcL4lijxmf3aHcKz7Z6cbvc+4vsYWg83YyXocuXUd4RDslLGTwLXP49M+jn5kJxSNS5xSXcrX29vN1iOc9u2GNZyc1XboOQiy/bxsvt+/ct982p6DrbjD7N4+jcs2hk+hX+9vb1/BkzF2CwyWZQ1Z0QQZBygTFcU8lj7v6JJuFYOMsItLt+JBoMMEGXer2lJZ1sWWIVBmgC206kPB2nROPpon/ZUyo5WCiTrPEFlBTBRCi46nPKx/pvV/hqhDIA54pryGpOQJklpXC7LaHKQM0xoWZHAAHQv+FjBEEl8iGeEACZWcLh9c4jvf/DrGcURtwqJ8QHdEhZvVAM0Zx+O1G+pTxm434r1338Errz7CMA6oCqACeUy0FpDkVN5sTEA2gpJaK2opSHlAQ3ESkhOrlqurzmhyax0LVqkwZ6S7lI2uzSMMBjWB2ghNg09AhnyISThFvODiJvHTm7hVNKVOdmJyO9iqwPwMKEz6j6ZwwGmNBfJmfzEOsbWmBsDpuxNWgFLKJp5Z19h4TQwR43tBUBzZ+j+soNLnGUFU1FZhXYI1PIGfD9Ic87NbQgHPE1BEAbi4yVOEQ7zMLTwBMFiXamY+UNRNifomsRP0cDOGjJB8rwmsDHmIzdoWJwyHGctcsdsz4bl6TLrQQAE0yhdXVkiuKCQmUoFmglbVE5hjg1YnNWpxHG6+EV4n6DLSUfAvQgMgXnNFIkm9uLdXYJBhXD0c3fpvQNSoAXztASV7l7pas2PbVKHqUsxFcR5sinE/4ffefw9vvPYKnhw+Q6msqYFT8DGOI0opuLn24nuqit044t23XsfFlDHfPAFEkUIpC+GhTE72UmXBPBCNW/cc+NxW90qA5xdhYWFoh60kozV0RZWQi90aEHrokaHX2zFh7lZmAj3vvx7TSklw5u0g8p+srGv6fIQVlynXISOKlgrg51RjPAwYeK2lAc3D4HIacDkpSaALA/TQ3+OMWhdoUtRmqG2B1YX74g46Ti7Ba4BICE9wbvWFIG2Z4UpUsVFdjGvuuT4kZsp+eHmjpU7aFnrf9mw8n2DcIhdf+gMr/NwC0ZO/o4hoz8bekobnnbXE4e9cyQoaw4PiQiCGFdh20B8YAcBuGjCRUBoVzlordN4pSjXUuqAVN6QAwM3hiGUpp6CW82r7Xz+3e8zXW4N6nD8EGIcRl5cX7iEdRuRpB03ZK9nXirYsmA/XaGWB5gG7UfD6648wDBknnomTnrtLMLbdGtTxpF+JV2xFyidEA4i83tu/tg5IvwX7dd5HNFZQju08kdNf6x/Bl8+S/t4JQX3OZ3BKhrbkIuaqQ9Nb90LcK+y7O56je05wM3u/5OzX9uIkIyXGe3J1mgnkc/bEXPFNU0NFg1Zds+Zxd/u9bzDHIzCOrjAlyQkL4JtuXRyUhbubZKFZoYEzwicqlsOMp0+uIapISagIRKsZHPB3l7SsibrS4yebF90bPElXaqFVnIl8ta2hEwBBH5Wbhh26+kvzc3fJQW58sfB3y3n29yrDuwgqp92E33vvHez3Ozy5XlAqBx2rWy1iRlspqEqLqgouLvb4+td/D1evvIJ8OSE3IDw5sg030AYUn+QinpRfjwXl6AXFUnYy0Wr1G0kFkoeevyAhKSxgrY3kIVVQII9QLZDSUNvsssDNYMrNXsEUNF5P0lVJKsBDxCNHrk1mH4fqVcRCzweEfKvXBSCACWBaCkMNsB6r12YRt+YFYOiRLkFuY2OwdcNu5vNQgK4y1pZuoUAeaYXX9TdhtBpy7s62kgzjNTPfwH+T49SAHhq3teSGpZXXoPDE05e69fwVhn8AHSBGvpBILEuVBD4YKkgOEmC5x8X72HhuD6QSoClSytD92IsZyqgOdgH4SkpPXOM8gkDzCGseQqkG1kdJvjhDIGpeIdwakiTPsSCZtEWocOfHFWNCtWQqVmnfL6x50cxWXbAiGUiuBJ6MtJkHnNYOoH1O+1IYIgcbL0ANr5o5IRcPJdXdgDfffQPvvfsmfvbLzziP123cAFc5KwvKUshfBDknXFzs8M6bryErUJYDYMacd6519AZ4Xpkij9mdyeEFHvIargrr97GDX3YIk+2tGvuJ6ySUBiGGF2YKVkjypPKmvk4kCo/UWMNJHHrBvFhnBv/5UK/RvPYfaBhYFrTSUOaGTEK15mYF6SMxGtV/B8XXWY0wCzeYmLV+68em7CFpoR5IT0l2UYsIhbBaUVuDjpMLFvQQT65jEA8bbYuvg4Wks2zRENfhBr+ukN0Or9FL2uzWk7AbYfvveQTjK7f/fx0VgK7H/n8pIFuBnv+k75EqiigIabLWdQAY1sjPxmv73YQH+wlJnqA0NwA64Ew9fK4tC5abZyiHa6gY3njtFVzsd75G+qn0yz4JEfrK3SC4urrAN772Dh5cXuC6NFiZURfPkQuVv5QGyMUDpJzxzbeu8M5bb7j6o0h3xsV4bg69AfLbXIK17/1x+85KFHuoSH+3IZnSQ5w2ZDUoyK3RirHFVgJ3M89ujfV9I/+l3Sl3P3FCJraMx194/rFundMp+YrX1seVuJ0SprXa93OYx5e0FycZhRuagfkOACzDk/9Ady8AbUxcK5QndXe45AmQYY0R7Z4AuqhDa4+LhC/jq0s6JpaYAQoMY8LF1SU0DximzFhVDytpzfy7KaHBXYZoxS12AQ5ZiMoVZ9RJk8uzEARW97Codg+IhOpSgMQAPZQ17BM/Focs/l63dAfAFIIp4I3XX8UrDx7gi+vPYZRb7NNAgpcL1W+8eI2aYb/b4dWHD5FzhmiGJQeiEkUEBZSBnAnzzYHNYUE9LgzTVaSsQBoY/xshJLReBFmJOz08NXFWIeM6TMgtE+j5ZubhZuw3XodsLa8NG0UZcBGMIouMPy8eHrDV+4aYA6TagAWrzGyiJbzRilwdmTk+3SY6RlJ3WPOyf7dEvDXWjTnYiFG+uZgD2QZXLhsnII9+rhGaNyRackmYhCErQZDBxPUGrDkb7NPwwISiWsh5Mu5eetHEl7iputcpwUnbXGB17ou2d1FhAT2sYVFBxJoBjDm3WlzAJ2dgFHrZuASmARqCA7XwNZL/BnSClwwQL6QpECRNaC0DpfTwCDPrkopm7hFJIq7uAyUvXVBbQaUctEpCzoN7a1Ko3lUuLQs9gOZqYVwLrXg/WIRvBSExoDGxHSK9CnlYvGMTXdXswtARZm3PF7m69KJ8kJ86AAEB7waczcdr1s4Ql25NCa8+eoj33nkbQ84MS4owK4aXBomwKOIV3iaefHF1rB4CB1uJQzepc+0X5frM+9mUAh48btTuCW+XktBL43MnDbYcgWWtUbTGRXQUyufhPee6shSIueUvDYm3p633cOR1QGh8MRq2uLbDPZ9WK4CyjrnBiWvytRwiSM08bFgATC6Ra0uBNOOWYb7OIHdA6fsPyWgOApUBzOh7T9R36SHGIPnkeYYR5KVt0onxtq3TmOFSHTDh1rr55Wuo3HrSt5+ttf/ebzowDRjWz2ETqnP/OWzON35W1NclChq0ELCRCCuXvk+HV+Phgwv85z/4PTy4GPEfP/ocv35ywMLaYa0VVBoe6/EGGQ3vvfMm/pv/6p/jzTffQErpFtEJWB4Y9u4Vn9aYiI5Zv7Pf7/HP/ujHWErBrz97jJ/+8lP85sDaHMMIVRL4MkPmEf/lf/ZDfPc730TOA7vM52qQtQhHc4d1rBeC+/bEU4KxfqTDtM27AqAZa4+crA3oBPZ+HL8Sjdu/u3oF/J/1z9/fl+vLzycX21ccpsUcwHqCJw+bMDPbPF9Pdv1Uf8NOHjbW7t8y95/fvhrJKL45djCbN4BN4AtgZwmrLnKPVcaCrugzHz2mf3YlI8l5Pfnukuaxb7ukNSHlAftdciuhELwZ/HGZUVuBVqEAjbsIRRQ6VLcOqdJIsLgVSTagWuDWogwg5G8bY+01NpMA3pxIESsc+Q1xnZ0dgd4B6QMuInhw9QBXlxcw+8xjF2UzjXgTGQStLkg5o9UCtYqcEi52e6AJ2nFBWWYIFHm/hwwguDKs8oUGKw3SGobBpR2F1ouoJ+IhVeBG1TwHYjMmIPFYwzo8bKMTo4bYTUk4EqXqAsJJ3B2bu5fAUaqPXRNYm5nvUWn4ziRz/r1WPXTN7aHc/DUBGV2IoDXW31ASvohDjkqoQW5TcqUWqX69Pb+Cu0u3BBrCumMoQDt6srKqS7AuR1grkOwFAn1OJfhgMLRK4M9jnuTcrfBrXQACBTDMoWys/Kx6nF574bv2H18j2PK/K0mbOUhVgjokWqQ5H2NMej6QW5GF9SEAhx2ImilUfvMwlY23KaV1rbLwnHAji8RHFYhlT/omvzEzKEUcrNq6sIf3QwXNzPmKeCJwzskT0NPgVm00NI6fLQtqqWgQt+QlwKwAsyc0R2G7WDtaNdSlualABVIEKSeoUBGOFrgOQlOsOVFngetQ9T5rYbEiKA7ZTB+S6kYNcUuqasLbb76Od95+E0PO9M746yknpHGATBNkmLxvaiHxiTAy9j3ivsPqOZLoQ3BdXa2yK9HnDj8Ma94OIs/jSEEE3k/Ke1PE5V/r4sU3mf9ntblYR/doi6/bsvRlOvCLJmUFeK4dGjmE4TUC1/3CUM2wBJOEqJPGRrKqzMMSYf2muObYQ4QJsvTOJVFY8r6y2dcVX38bevVuAaAD16YgERxJytz2HKEkYEIe1tCzl79tiYW/YBzHFTjdBo73Nbnnrzt/yvr4207IJEJyfM/agtT77UQbghE/pAIxQTOGymIlGPeRjMuLC/wXf/hdfPD1t/GTP/87/NWHn+P6+hrLfMBynHHUimfLhItHl/jRB9/Dd77xdfzBj7+PaZr4u0bYcZqfEB1wX2x/nPkJCCepGvKA3//R9/Htb72Pzz57jH/xx/8KP/mz/xevP3wDr77+JsbdhJQHLDdf4ItP/gF/9+Gv8IsPP8Ll5SWmKdTvDCE5G4aCkBmOsPLbxOHk3GxzSnwiwMZDEvBok8+zmVXPbZtb7d73bg/yHZJ7u3/vnYEnE+6+n9tSvBMVs81PriFQ64vbv7+s3fnNk1N/Mbrx4iRDQ01EHQBEzDgooddZMC1RijUBNirzxkYfLumloiwblzSCWOgaVpGzkwxU/60iVJMBhBukBVAIfqNAeB6SubpM0sllG5PHtIuKS0IeG7IJsJu4wYW7nR6O5QDY7OdT+AOx+cHQlYsaCBbDJR3XAxiteBKJvmEVs4TLqys8evQQtf2ig5a+gYAARww5J1YJnpGS4rVXH+HRa6+6JZ9KWp4Xw00v3OKZUrQCqJiHlWUSjLDuRTx5ItniwgiU1evE3AAHe/x8KKYYw8K6yotv+g6WEmU8jQSGJCzCy2rELoVHSxwANlrzI0wmAGdz8uqbP2BLBRZKTEb4DAhiSiPIF/dQJXXgFWNIdS2PZpPN/BN/LcJBNmMpaXZyYZyT9UhwBDQraMcKqwmiCyAJmkb/Ow+rggw2x90CgaUw5KfRgjqjHRZYdW9OWLxf6hbdbK7AETkWEd/vRIBhMAGOjF6nPDjh5Hh49W3zwo1SOT8qrBjq4kUOBdkdZinmHwAYw/EIYINk+26zkm74eicirMNC71rE/nO9gwiSFaAmmPHcdPB7E4pWvV6FQFzVRRTWZqgJ8pChg0u1NhaOVE0UUPA5l6QiUbTCGIra43yptNSaoPECE2V2Jaz8tKQ9eXqNv/3wI9Se7xEATIjlBaoJrSxd8lE04d2338Jrr72Gab+DFZfG1nHo66mQLAdncEGJBTKM/Z52Lxxzn5qtSeFhaADWdSRqQ/QdjWvyoCs4LouvSQAibMwj1bxSvNQKiXAhhiw1EhExgak6+TNdCQKYNE/Dki1LN05IqBqWTT5EDz0ieQXDYUcPA/Qijeu97njB1vXdbONtYj9FoUnx77fw+PQQiXVMPc9NaYxgP3LvW0Oi6ImN1mtDvRhAeGmaBVAMAHVKNNaPveD6KScP97wlz+nCzjIIvjfW5O1H7vleX9o7oPd5qRJERe78A3DyfMwZN8cFu90er75i2GdFOQDLlHAcBTtt2L8y4X/47/5bfOdb38DV1dUqrUqALS+Q0LslIlt4fOL9EME0TZimycNCzYA642I34rXXX8NufwFDw7UW1OMD/P2vP8b/9K9/gloqfvzj72Hq0vfrlI0keZdW5X7YCYOdcIPbtVJCYvZ288xcFmbthfPuuebNbRM/t408CXJxQnhPO21tt8KO7vS44Pnv97Xg/i+vOSArsbot6xzjLXG85/38vSFSMQYv1r5C4vcAiCcRgZZsKzOwHHhCYWmWvmaabCYhXbWGCE1x6cQ0hHSa+WIdm30A/gRfwIsBltYLbrT4oXg+QbjumivAKONsxcwNRmqrS3p2l7Q2t0BaM8890LQu0tHxPU7anGw0At9ws/ficus1AkAkpVpbPG5btReYRkoQ6paLJIzDhC5vxu4LPCQAkiYMQ8Zy9IStPA341rfex5vvvE0lHWCYSJ64cVlYcSnxKONEwgFX4hIBFnpf+jVzs40q1RGrrAzrKZH4zE1ySO7xacW9AELFLXi4gJo4KATcUq/11FtUGebQr5T/VKGZfR41MjZjI4CTpOpxnmVZ0Kh0lbMgj4l5Kdux1JU0mBDM8PdDVQbc9Lfyqd0bwjAEGUjQ4CCkFgjjtBMy81I8Plw1ORCqzX8Pw0pQVQkQBT3Ur5VN3DRJTNQaUfccvsTy9gDg90JOCCl36XMu7h0BshNXo+fUmoM/EYVIhhNHAK36fRsLfY1q3oZaGw6HA8qxIMEwDopxyu7Bi+UxalUAsUhx/Pk8Qpl6kj/Jh4YVXte5UmdXAZIgQLxnfBGiZyC5ito4ufiFgflFDiRFNtv0dgXnPPbeUbfqJ/W5xfvHGjDPHhoxjAOGnpNEZTWrePz0Gv/wyWesJ7LxXphRPUeRVDDPC1pdvD7GkPHmG69jf3mFvN+tgJd5W8KcFjMDqlsYa6tAmZFagYDhm5EzETlPpkxKByJ01oqfpySuG83QXbv9HgXvl8W/HF7MuN0jBJeVtyWIoJl7q0jeupelK1IAPbFcze/XUmG1+JAmrqeV45F5jvtH/lvPvljzh2J65JH8iPmCce4ShhV0+woAEplQOHFSJsnWpPYeXsa1qpr/duSZgSF2xT3CRN7ocrYxlzLXs/9U2gmXsA2IuvWx5/CLEyh3B7s9D+jxQW69jljFAtAFJN6+e/vcTk+sA/UQA+H795GMO8Xi6DVrtUBagTQXrVE0CCqGccDN9QEf/epT/OB7H2AkqV0B+dqZJ2FA9xC2O93BdfM0UdyPc3044LPHj3Hz9AkOz56gLkfIboDCsJtGtIePUOYDfvnJJ/jjf/m/AQL8+IffwziN/ZhrAnNnHHdGZs09sJOejSTnbuy+NVqtGd+yTlCfb89bQff9POI+Rnn6znMB+m3CcM8H+va09Wb1126fDfNkwXW+tf53P36MmazHd24hfamBrMTSgK6m9iLtxUnGcgCsOnHgxtbmA1Bnxpl6KJBRBz/CZBw01nWDIKO61yUdHo8AWT0ps951SSf3DthydLIh6B4CxwexcQgQCdBgPQxawyQp6x+5LGPK4guwmHsHIHRlE2A2AtQAraw+7NauTdKxGTcE82Opg35PMm2QhW5zSShLwfVh5nn5Jt3zthH7eUJSwXGZYdaw30342rvvYZp2DnjF1hCUBrRlwfHmBq0Zcs4YdhNkN8WUQpc2TOIkLvHG60nzHIPaCJLF+7uHo2yIVST567iOnbF+iGQnCMYLQVkt0xGqEl4JhPeHwC5kUhKtjZt40R4r3xpqcWApqmvqRcqeawOsFlP44dakb6DLVNYjunQlqzj3cIONh64DGsR8YA5JgoOXPCE1giM/09VSoPDP1oi1T56ojpiPEfLhQNRDEc2LMNZCwPufADiwuuY21bZOyda8IJq6EcJKwXKcUUpBrYacB4z7HdJuo55UFthyRCuzx9TSAl3NHHAvhbUzDaUIVaHcMqh5cGnbiLPvc9JjpGxpMCg0mQO98JJFmF+cgyq6QpmVvtybOUCNhGFXY9JOlBPDAdZwptQTgr0vPL9JgqSAm0T1MFBJGd0LwQUjaaWto7HY9NDVyNpyxOMvnuHxk2dYQ5UCDnitomk/waxhmQ8wVKhmZAWePL1BKQ0T1Oc5a+9YBdpCICwVdTFYK2idHKIrq0o3Pvla4nlThRu78DZgaNP+0q9rmdeFMLxIYfDpydokFghiTiMB4p5zA5VU85CjHPOOi2x4TijnuzIvrvUN63p43/uxXjK0CSRbXruJe4VGDY/N74YRIyRrDdz/eO7N9x/RBmDppNx3bEXUevFQzNE9bdUBJScLj68bj1FnYvQkv5zNNv+22NfBE1/b7Bfru1/W5J5nDrLuVVQ6OfQtL8QdPG4rWNu+duuU+s90whCvKW1lEXLsIZoeKgWG/63nebnf4eHFiI9+8wQ5KXR/gePhGnL0bfxgDT/5t/833nvnTfyTP/gRhoE5ECb0YN46eyO4lFud/TykLNsHJwVPnz7DZ599gVorkioGbcBy414ETdhfPkSt7rn75NNP8C//1/8du2nEBx98CwML9slJXob1frqTf7EZl/4oVFe6c3XrOQY2vTdHYTs+J69vXuyTb3NOtn72vhl4cswA+1/6odtnvvlMkASOZQ8dJOluNMDFY2CTE6KBdWi7t0q291aElT33lO60FyYZ1pYeE9uMuRnVGbIvXhXW417hVscAEyYOVPuNtnFJFybVmtGlrBtLLtbkYKXFz2i5HAbvgOaTNCzvPh7sAWXPNG4GcGtdqHMIwYW1RoXBSiJT117tQAJYq/I2vi/rY7ccxWiAHovEQXdQ3kpBOy6wMiMPbmWc5yOWUqAphdr8uieIYBg9jn9ZZijgsdHgJBoGWFPgsPRNrAGoUVFZuWHNhp4fsMy+yUTSYYD42zdMvCQ4JRhLdS9IJE+LeqhVeANC4SbAs4gjDd+J0VVxwoPSiyPGpq2rBTOkTCNsIEBZq2jmXqshO4HyiAZ1y14miKNSRS9g1TaW7y3Ii/c7+KDnw2OyGLpDkBjzaxgAGfu5+hyi5ysSQuN4W+naALYnRQIpKUoVIgyDe5zqAqmhwNbwle7uf4TN1xF4n9QNODR4IcyjE6/WGmotKDXuxeSFM2ceI7knqM0HLIfZp1N2TfJSClopUPFwJFN45VUoHaYMSyGJNIY51uNxjXQkEG0GaPXEZQmwKbJajrt3j4g66RoSZO71lKhVILzuHj+vfV6bNbTiFb0hhjYXtIUFTimTa7WilQpdEtLs89sAGlRcuU2U0pWVv20NkjLqYvjo409xfbPmWYWTT0RcBEIF8+HgNXfgOU2lNvz8w3/As6dPsB9H6OBkNyp7WysQdVCtyeempARLbkTRpJAxrfdUR2F+L5iJe4CSeHjZOHmOVG3uPYChJ3sbPX+Z8rSxqfchaOtEIylwsrbA5dMzupRuYv5PVwBkh4BGBAiQ6ZkNcBUGLwX3PwB44vO3HCERlhT5V8C6jmxD7RKw5mPw2sJooZW5e3G/+L7halthIdnsN614/ymASJbX6GPxdTlxDQXXQQsi9rI2du4mFGZlHdiAxK+4Vt7GcrK+dFoYbdtWSLY+tc07sp7KydptJw/9J8NTT9DoaoLbXIyVcGiETG3/BrDf7/DaoyvkDz9DyYOHQ9G7CzxDnSZ8/Onn+Mm/+b/w3rtv42vvvdtJhDWchBVtvQfrVX4Zw4iu674cNDN89vljfP74C+Sc8PDBHpc7rwmzHB2LjMOEaXeJiwevopWCX3z0a/zJ//J/QFTxnW9/oxONtfJ0EKLnN+/ylWj4N+9hgdY2Yffrdcf/43oDDt79lfufnnjUtuMf19HlZAOLBomKw/CMb/3ENvajhzzFZzkHfP+s/Of5gKV6IedSCgqNsw57XcmuFn7WGirrcpVSYWaYlwXWDHNZ3NPdGg6HI/7Jf/3ff8kIePsKORlhORKoNe+kLG7g9Z3Oeya5XrrfoWF5pTWaBEAidpV670YtZw9DoCXYxDcSSe6Sluwu6fkA35y5AlDy1PNAuJgaixb1JF90lzToQfDJSuuj2SoB2MOm3CLv55IIKDMtTM1/o2wWl26NYl9kYeiXbyBeZFChufrvF6/8O0wjdtPkiaDVIFPaSJgLhmmECvD0yeeoZcE0DmhmyIlWRfg5t3lxQDGMSOOIy2mKgVnPMeKKe80Q0BVvBOQ7XguLPYUpMuvqgYiidSmS/nWz5mwAgQCIK4m45dZo/Q/AwXMKZajwsADrYhLkJ5LpW/Nxg7mqUPdYwUNP4nINvsFOO59nc1QJ38xpo0Ww54Q01oPZUd2IIKBhBfixWCzNQ0VyRk8GCrLZx57XESSpGQkUCUeQK2yO36qT7jahe3fCcxQhXi9xa2UBlobEe6OZAVW8ejWrEpt5XkRSEk9j8ca24HA9w6AY96MXMaZCTxonSM6oBy/8mJJyHTdEJWsTVp0dB2AayHcLrC4ohxltKcjj4MnCBNO+KDck9XXGlc0oZCBcB6BurY57gjK2vTQDFaZWDyDnAom1oaHVI+abG9TKxGSLmGdBE9+y61LQqiHbwHBQt8s1WuCc10SuywDB4mFbUNw8u8HPf/4POM4kGfQIONUJL0/DcrhGawUpKXJSPLs54NPPPsfNzQ1qLW40iRuMy4h7j5PnzuWGVLmt0PO2FVBzUufjZs1DpHzzVogViCSYLPRmgjl0yUF5eBa7m9cItgMw1755d1CtCS6cUSFSkRi66l/hHgSLC1mJBDwfBSONJ1FvAk6IrAFtLsDxCSR5/xmar8ldPRE+1iGFTvXDrpgTe1SEhtUgLk46bV6w3ByB1jDuBvdGx/nVILFc28mLOgIhEDvxvBnW5PkXLKT1j7fdBezdwvoVCMY9vOL+d7bzDlgtwcFENu/3LcsCpN9z7ht2tEL2mNenxEE2nguI0BEWaxDcA9q9HEBKgqyA141qqCVCTgFYhUqFAfgPP/1b/D9//pd46803ME2Tg/bk96Wfv+cpxKla79fNFfVwZD//7vXpJNujWz5//ATPbg4YhgGPHlzg8mKCIcLa1T0aYkh5wMWDV5EU+OWnT/HH/+on+Od/9Bm+98E38ejhA4zDwGvfdGF4N+3k1ft6HQ7aN+zRF8A+DrZe6D1H2pCGWz/Vw6zCG8LIlWaNYUr0IMRZdO7DmnDw8gLhaWjNHPiTKJgZSvG6S8tSYLBOFJo1lKXysThBKAXHmYTA/DilFMzz7N83w7IsENXu2YC5cTrn7Aqt6rK+0+hKYKKCcRwwDBkpZZcafoH2wiQjJvg6qSK0iT1WDKjmYi69AFpYhQkie+VsDmxo1nNh7Imt4fqJjSKGXM0lJ826ZXl1SUdsNMFqWMO7K13Xc+obCuCJgCQYIAhNBNKNADpc4ykDrBq7qqZwgxoCbCeeOC3fSFiTB93SKTuSIU3Y1Yp33nodV4NgWRa02VCyV0RXMZSl4Ml8g/nmGlld1eXmsKBFkiS9QKLM8xhGf8yUgWyb/uhKTrSWg/1ZacmrjOUNghBj0ITham39/hjXyQUzNvatOhLAsWTCc0g8hvcrUIpGHyXfcGPz78SQ80wyXIWqudVT87qZb+98iRCIOH9bLXjgGMW0YtiGv+6AbF2sSLCQ1lUBRrJSaEWcvWikARK5IxFKFgmr3QvD6ybI6jkwcU7Rv6UCGqEim/O2zedf0pYG3kM18obM8zRM3EqeU8+RagUwdet9LbUXeIYqWhEIfIFsBiRVSBakUdFKoiBQFNBzS14rM1oztJSgSq9YrSzSVzFMrJtDA0hjwcrlMEOO9IqYolXFMGawcC0JZZBJHq8CCG+jtnXONRLsCLEE3Cu3zKhlQS3WPQuSPCHcCgDz/hIIVFLX0G+NVcBrY34ZvbUEtZJJBqzim197B2+9+ggffvLZeruIwJ27CctyRFkWmIFSvsD1zZFWscb5KJTd3eSqscaFhIElCb12m/1CBVCDLd6vrTD/yDg+YowjVyQd3XPaDRi2wTW8F3hPW/UQLaFls39EDFFRXnd7mEbxWIZkBYnRjBDcsNhXelI/b9GtQAbXeBnU64DWI0HLAJe3i70pjAcAbOl7Wmse+itqDI9bxwEhaU11v1Z87gMNDZOHv4URRkrfV9Zu4fltQpMhM+dcwyrDq+ua8jK2Hgplm6cbxBfGnROYeDtRW/r0XT+3AcjbrQ2bJGP/RUSOAEsF+8uNuAC0PgfpwD1qTSdnwvOJ/wT3Eow1/wInHo/t9wzA8TjjydOnSOKqh2VpmJcZ8+EpyvEGdZkBGJ48u8Gf/fu/xD/7o9/Hu++8tRKEjptiv7ZNn6wYrZ8D0MkPeE5xRSYOnA+HI2qp2D+8xO5ij8wwTmuFandA1ga1AlXDbj9gGDN+/cVT/Mmf/hv8h7/+G7z/3tv4+tfexdtvvYGHD68wjiMiD7eTvT4nYny380L4sS0RWglSEIQaFn6C/MjvDTDeiUD3EgSId2/BsiyotWJZCpbiSoLzvKCUBbU1FHoM5nl28lArCYYTjnmhmEf1SI1GufFeNM9srSUigsxSAUldhjip9j1EVZE1I+3GTkxVFeM4uPc6ZYzDgJRTf8w5Y8gZmRLmOWc/VlLHpcritC8Yuv3inozE2PqwxokgzCceAhFVk1O/byWAfjmiu6RB0BlgNA90SfPtUCtSl25Fm4H2xBftOkOMuRI9JpcEoBIsVy6+CnQLcxy/A0rtFmgLN3Zx70qwfQcMsVi7gpHfUQEW4eCBZAF5WBe/yCWJ8IkcNwIcKOfYfBWaZ1zsdtgPGZMCSym4OR5xNGDu4V8uE6vTiONSUTHj8ZMnqGXBYDtIHiD7CBmT9ToNa4hXhCiUQtAzeB+pAEbSE4nIUAJ6g5MqWz09W2LZpSPVQUGQsXDVU0ErYrgdzQTxah0v+PyKMAWSEc0cy9bXOR9LBXTabMxcXCixjNZgBLFOjkgGbC36CKEkbjNYWVAOBw/bS0BKA9JQ3RosDAtJcKWcMBcmEs4l5j1BpSZgzJwXgeKwzkUDOgEL0tQXPCNwsNUavhxWMBCkKr/cRENUgYEbrzFsiX1gLRTM3NKrCkhWFBPHrFmRda283RjD26qhzTOU4XhpoCJUWq1/xqTw2hbgCGQ0aHJCo6Lu3eAuXZeKWmYspWBZCmqpTo3nAtVMFTa3kAcYkbBklcUriEd+kxkUGT1EysQ9mb01ABVJgHFIKASIou6e98hC9+xo3N9c4EUNgBfSBNyAE4U4RYWKvw1lvkZGwz/98ffxB9/7c3z4yWNa0q2rWbW64Hi4Rq1epBMAnh2OqK0hKYFNt8CmdU0N5S9r7mAMsIy2hjFFcrxiI/bg5FnAQqoqaHDBBhdAsJWDR9J3rDvgcboUK4lbAOzwoAvccyAKzYPLfFdzT3wQl8gpa26YaM3XDTMBWkGK/MIgWJUkImf32I8Dl0v2yTLTGwmACec+oP59VUGtvj51xaquCNI6CZCUkaYRmp1wSBcgIdrrNZvgr4XhIiqsx2/2tZpreZeBfnnbai3GGg4TLcDwBkB2EBwf2bKNjiHW46wqPOjOoO2hQVITKj5N3bMQX1qrKrO6/J3+5h4JdAJ7Qio6kcD6fe53EvseNo9x3oB7Db54ii+e3TAE84jjYcazp08wH2/QWsN8nFFrxTzP+Nu//xX+4q9/hlcePcTFxcUGcvNat94wXs+2PsbWu3L7fOJ9TYr9fodhGAhaB+Sc4EIQwDLPKLVC6jVGPUKyoNgAlYJ04Xmrf/OLX+Kv/+Mv8Oabr+PVqwv88INv4o/+8Ee4vLhAs0brv4eJttZQW/W6YvFebU4ezLqXwOBegU4UiNEKRTgWhgUZ4MSguFdhXhYsLCLt5MGxbeN6BnrPDejW/qQJqoKBBuSUE3LKGMaMabfrgH4cMlJO/JyyDpqD+5QSMkF+Tqm/PuTcgb+qQDtujPGwk3HslJqfVXXDlHJv9UdgDc1bQ/TAufhVigK/OMmQkUA9VHk2VB/KcPcKATyvoMvQEoxGMm3EnxKESQCz7vHgcRMAE5S5uktahVUpXYceg67ehE4e/LcsFFBYIdtd0rRQVd/UIxm7HWfM1wdYrZj2E1LKGw9LdRd3JIorOhDxngbv7I37epsQGAMcng16Mvoot4aPP/oYP/2rn2FMCZYEgoqB1TzLUvDFzRHPasMwjmjwYk4P8oCb6xu3BhZ3fXYSo8mrl1uhhyDGgOcSuvDhjQHQi1pFLkoQAIpT9e+5ybj3y6rQNDiZgKx5HqG0EjHHoQ4FHsOk14Dom6ZGUqZwbAUuo4te3PE01KuuXpjWOlBAXVBqhcJDQ8waXcrKiK8Atwa0heSqwYqgNfH5m3jOR54vCnrid9SIAdwTpup9lRLJFq9jzTD3vgkAFv2ulNc1AoAozEAJUoSdqKNNnMRrv5TNxMc6u1JPF2hoa90K0dzzHxoSMg0KOrGWTq/7YO6US4bUrefmOQzJf8cL6VVAGjQrnUWF9oggAWA8svezu7r93NKQkIeMJOq1KdIIHQbI4ODPPXy2rjni556k+ppYXAq12/wMQKprf6hALEEzMOWMQQS1mX+P7nMRQRqzbxzVoFFBXDyfZF6A+WjIGRgnryGUhgE6JPdw3Hj9FxVFOR5RD9eoKSEnpUJIQ5kL6nwkNhcclorD3JBzwrwUmFX3DPWQxIqeb5SGvgZb8c3XSZJfrzuGCOprgVqDhrQnCaOpQNVgVry4ZROf68NEb0IQUO4n1ddwZM/jkwgD6onpvMfCUNGqS2gCsFqwHBc0AOM0urhCE1gVGBIsCJDArwG02pkAwoT81rw2SB587jaghwE3AQq9mEbgHwpPefC5WuvGA+ZksedSqACa3dtRlR7m2ENIymMfiiKgkculQhJnXF+UIiZcUzRI/ctMNGzzaP35vVe0sfgjrP4do28Sfjd/r2OySXDdgLP1AKAPwT+rDG211ijJbd2ifh/8PjnU1kNx4p0QDrdQDXr1Htw5pgHNDE8PMyQN2O13OBxu8Pizp5gPBxwXz1OzNEEHxbBPePL0Kf703/47DNOIf/r7P8SDqyu3cW1AafRTl3YNYyyvowNai9EIAmV9ZL79rffxg+99G3/xs7/Dh7/4OYYBuLjcA+a4zo5PgeNjXO0m5N0rKOZu4tyeQtozmE7AcIGUMn7xN3+DP/4f/zU+/uRTvP3WGyhLwVIqDscjlsXDgQ7HGa26Z+FwdC+KE4kILY3oAzfmqCqGwa36OSfsdhP2uwlDztjvd9jvd5imCbtpQM4Z4zRhyA76nTwpkqrXR+KxArArCYaDf79eDVCvQSz9ueEWsTzBkYL+8oa6bklz/H1HsrZFwvb6OoBOLLY5PiGXvxUaiDGWzRy8j1Te11488XuhRGlYVpv1BVFyhorCxN0/UGERPp5EihwIahHTWhQASrbStcqOFd/QtAmsHKBBSGQAevIw+jHY785hlsbaAg44oHGzErxuNyEybXO5K1+ElV6J8FRsO7SB7/G5gYBb0PXdU0avYB4bRCQ7s6iaW1cNH3349/jVrz7GbhrdAlILqjHnAkBaFArFsQrqsWG/84m0HGfU4wwbjt6dpdAwN3BSNPRCgRsy2L0XjR4dYbxzxPybrdg4QuIM6BV7Y6MXHi9Wu8Jci0x5TVAu1827KzCxuhKxUK0S8dePR98QE+jJ4HdgaMeZYA2QYYCMnhRth6OH1+QoyujkyUOu3bJgOvQYbwlrcuIN27ygGKAhLISOjFIU8gLB5EzLZaymJGoi6LHQ0c9J4WFBBJQa3rvNFhHEOkKijJ+L7OPEWG3WQugA62VuYRGL58XBltHz1RW0WONAw2KchDlIcd8pUNwb0XNtjMnzjTG7XH9aeBbC8lg8L6xWij7QpWYmSDRmpJyR00TyQYu7JmgaPKSrVthSUZeFTksH9zIOPrdagzbzyKhW/RbQkHj25oUd1dfCJpBBWGamoem6sQsAzczraH7touJeWBGYJBRuQlPe0QKeXE1JKobdiKUU/OKnH+Hnv/wQeyk4zAcUgofW3HKnyS1uRVkXEK7gdn1zxPXNwU9aee+AQ6GJXm56dyNcKAiVGcxqj/P2cLLion3J57gkIR43tLl1Y5WkDKUnWrYy4Ztq1hL7ULfu8/0I1/KR5bLMEDQRZHidJN8GGhXL2K+ikETCGwazlMLpRCKKNSRG1X9z5toVnnql15oSxUCcUhgu4vSiuB5DLSNsNUJTVWDzAcAM2ZEkhEGlJ603dK9IiCnoOl88v5H3zzaX4yVsK+B9zjXcAl1BMrYVkrc1JmyjHGfiYXftltX31gmsf4qHS7mmpleqcbxDeN29+uhL1yk024LF1QJ9Kk27IRy3rm9zUv3I0zTiwYMLyDji4Wuvw1Rx+PnfQ6c9rBRcDAMOxyMuc8YXn36MNu7wVx9+jJwz/uAH38XF/gKRVxBhPLWFtyDCMv29/lqtKC1Ch/xxYa2iWiuePHmK9959A7/4h4/w+a8/wce7jFdffRX7/R5ZFaMA6eIKu4sLDPsrLFVwXBZY2eHhw0e4eu0NQEd8/umn0KXgN5/8Gn/yP/8pdrs9GqyfS3gjEg15Dv4TLi52eHB1gYcPLvHo4UNc7He4urrA5cUe+/0OF/sddiQS0zhiP00YxnGTg5A6SVhrlKzqS+ucWMPw7NbY9FHbzL2VR2zG956Rff79uqn9IZu/T0gGNtjklGSvIXlxbTEPV9J7H7k44T+/pb0wyWi2dBlCB2wboBQu6WH0mgUNUBjVNrjYgkC2FbTmQNYMbmFCg3aXsTDExxd5VXiS5olLekHXa4/NjB0OYwXeiMMP97BFOE5FJzEq0MkwZnUgt40zBvrmImGxC2WSbQKxgotKW5PqTvonCEahsZobsCpQDeV4hJgxJEEwpIRWCyOUDCaKy6sdRAfMsydG1gbMxwPmZ0+xiFLj2ZCzer9pdjWdQnefNZgpch6gF6OPeuGO2c+dyd6RbNuvGaxRQhQSszXAXWW8ca0OGA2ATAQe9HgI4ApNxcPOIrxIFMgKSwl2c0B59sxdpPsBkiegAG0pMDSUeUErFSkrMlzz3sNSClox5E6W4OFjSRDywyJpBSICpNhsG69bEyCZsdWCzrI8XoehWEdu6urkqPC68uhkIEISGsc/yIcJoEESZPXu0brezwtwJaytpbHQexTengxaJV/itiWxAkCsq0xbCwAbc1AIAqUDVI9pI4gK622X7gzrcYTieLiKIjvpTgJT79NwWUdl+VYjAXm16sTy1uDxsbFwS3Md+ro4mDWer6A6uRUH1p4vYWiN1nkIRLOTEXjdD1cqcgIDUQ+jMa8aD3MviP82k6sj9JLGnpQHXD2ccPHQLXIpObmQCAfKrvB0/Ztn+D//3Z/j6RdPsBsUA61oaIabw4LHNzOaCnIeYJKQ0oBhcFf6Ugqub46ozaAxNgDWonqslSMkUSRSFnVMKBoRYMTrgygNA+p5CjBeI40+1jxHpTakxGRPQ7+HJIolhgFHgJMcp8i/iDDFAN0pQSRDkaGteFkKEXdUmofoShhYSFS6pDb7XbL09U+k+jpT12vogJKqW6CHC+HBiPy/QqNSmVGroRk99W5zhIogpexhfcvsXKQUr7einmhuVCZb01bUc8NyoqDGZk8SWR+fB9BfgnZCLsL7cM/19F14Cww3Ftt+LHVVOpBgxJGMx39eT4VVP5p2iz/XktsKXmHn6Oe3sg5FeCjuhkqJ3rVa38aj/nsepvPmoysc33qAXz9+ihk7tPZ1zEvD0gzXjx9jGEfkISGPI/ZTwne++23s9zv82b//C/zmVx/jjbfeQikeEuRegSMOxxmVqkTzsuB4nFFKxXGenYBUF9sQht/s9xPGccA0ThiGhN1uh29983188xvv42I/4erqErvdhGkaCeBp9adR79n1AZ9//gU+f/wYZg1X44hlLtCbZ3j1ao8f/fADVHixvwglzTnTm5Ax5IRpGnF5cYEHDy7x8MElLi8ucHl1gWnycxsYtqURjqQMQdrkHJyGH2ElD7ZK/d5LdmUds3tG/BSwbxB7/L16gwJxbU4A2z+3Cmt37wM7+YzvC11SpHsttE842eb/9HkXJGP9e/W0/PYm9lxzwLmd27md27md27md27md27md21dv+ts/cm7ndm7ndm7ndm7ndm7ndm7n9uLtTDLO7dzO7dzO7dzO7dzO7dzO7XfaziTj3M7t3M7t3M7t3M7t3M7t3H6n7Uwyzu3czu3czu3czu3czu3czu132s4k49zO7dzO7dzO7dzO7dzO7dx+p+1MMs7t3M7t3M7t3M7t3M7t3M7td9rOJOPczu3czu3czu3czu3czu3cfqftTDLO7dzO7dzO7dzO7dzO7dzO7XfaziTj3M7t3M7t3M7t3M7t3M7t3H6n7f8DdyU9ilimOA0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.figure(figsize=(10, 10))\n", + "for i, sample in enumerate(dataset.take(9)):\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(sample[\"image\"])\n", + " plt.title(int(sample[\"label\"]))\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8a6n-uLoqLxA" + }, + "source": [ + "As mentioned above, we are only interested in the samples that correspond to the `humans` label." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GnB9tYL4qUaO" + }, + "source": [ + "## Extract conditioning images with MediaPipe\n", + "\n", + "From the [official website](https://developers.google.com/mediapipe):\n", + "\n", + "> MediaPipe offers open source cross-platform, customizable ML solutions for live and streaming media.\n", + "\n", + "MediaPipe offers a bookeh of solutions that are particularly suitable for live and streaming media such as: selfie segmentation, face mesh, hand tracking, human pose estimation and tracking, etc. You can find out all the solutions supported by MediaPipe [here](https://developers.google.com/mediapipe/solutions/). \n", + "\n", + "We will use MediaPipe's APIs to extract pose body joints for ControlNet training.\n", + "\n", + "ControlNet training expects the following:\n", + "\n", + "* original images (like the ones above)\n", + "* corresponding conditioning images (segmented parts, pose estimation, Canny edges, etc.) \n", + "* captions that describe the original images\n", + "\n", + "In this example, we leverage [MediaPipe Pose Landmark Detection](https://developers.google.com/mediapipe/solutions/vision/pose_landmarker) to extract pose estimated body points from the original images. Some other MediaPipe Solutions that are relevant for ControlNet training include [Face Landmark Detection](https://developers.google.com/mediapipe/solutions/vision/face_landmarker) and [Selfie Segmentation](https://developers.google.com/mediapipe/solutions/vision/image_segmenter).\n", + "\n", + "For a detailed overview of how the ControlNet training workflow, refer to [this blog post](https://huggingface.co/blog/train-your-controlnet)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i96e5GwprAPK" + }, + "source": [ + "Below, we write utilities to extract the pose estimated body points and draw them on blank images to serve as our conditioning images. \n", + "\n", + "All MediaPipe Solutions Python API examples are under `mp.solutions`.\n", + "\n", + "For the MediaPipe Pose solution, we can access this module as `mp_pose = mp.solutions.pose`.\n", + "\n", + "You may change the parameters, such as `static_image_mode` and `min_detection_confidence`, during the initialization. Run `help(mp_pose.Pose)` to get more informations about the parameters. The official documentation for the `Pose` Python API is available [here](https://google.github.io/mediapipe/solutions/pose#python-solution-api)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "8aXOF0R4VW2n" + }, + "outputs": [], + "source": [ + "import mediapipe as mp\n", + "\n", + "mp_drawing = mp.solutions.drawing_utils\n", + "mp_pose = mp.solutions.pose" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " We define two important variables:\n", + "\n", + "* `_JOINT_CMAP`: defines the body joint colors.\n", + "* `_CONNECTION_CMAP`: defines the connection (connection between the joints) colors. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "JOK5RMiMWEAB" + }, + "outputs": [], + "source": [ + "# MediaPipe Pose annotation for ControlNet.\n", + "from typing import Any\n", + "import numpy as np\n", + "import math\n", + "import cv2\n", + "\n", + "# Body joint color map. #BGR\n", + "_JOINT_CMAP = {\n", + " 0: [0, 0, 255],\n", + " 1: [255, 208, 0],\n", + " 2: [255, 161, 0],\n", + " 3: [255, 114, 0],\n", + " 4: [0, 189, 255],\n", + " 5: [0, 236, 255],\n", + " 6: [0, 255, 226],\n", + " 7: [255, 0, 76],\n", + " 8: [0, 255, 131],\n", + " 9: [255, 0, 171],\n", + " 10: [0, 255, 37],\n", + " 11: [244, 0, 253],\n", + " 12: [57, 255, 0],\n", + " 13: [151, 0, 255],\n", + " 14: [151, 255, 0],\n", + " 15: [57, 0, 255],\n", + " 16: [245, 255, 0],\n", + " 17: [0, 39, 255],\n", + " 18: [255, 169, 0],\n", + " 19: [0, 133, 255],\n", + " 20: [255, 75, 0],\n", + " 21: [0, 228, 255],\n", + " 22: [255, 0, 19],\n", + " 23: [0, 255, 189],\n", + " 24: [255, 0, 113],\n", + " 25: [0, 255, 94],\n", + " 26: [255, 0, 208],\n", + " 27: [6, 255, 6],\n", + " 28: [207, 0, 255],\n", + " 29: [96, 255, 0],\n", + " 30: [112, 0, 255],\n", + " 31: [190, 255, 0],\n", + " 32: [23, 0, 255],\n", + "}\n", + "\n", + "\n", + "# Connection color map. #BGR\n", + "_CONNECTION_CMAP = {\n", + " (0, 1): [127, 104, 127],\n", + " (0, 4): [0, 94, 255],\n", + " (1, 2): [255, 184, 0],\n", + " (2, 3): [255, 137, 0],\n", + " (3, 7): [255, 57, 38],\n", + " (4, 5): [0, 212, 255],\n", + " (5, 6): [0, 245, 240],\n", + " (6, 8): [0, 255, 178],\n", + " (9, 10): [127, 127, 104],\n", + " (11, 12): [150, 127, 126],\n", + " (11, 13): [197, 0, 254],\n", + " (11, 23): [122, 127, 221],\n", + " (12, 14): [104, 255, 0],\n", + " (12, 24): [156, 127, 56],\n", + " (13, 15): [104, 0, 255],\n", + " (14, 16): [198, 255, 0],\n", + " (15, 17): [28, 19, 255],\n", + " (15, 19): [28, 66, 255],\n", + " (15, 21): [28, 114, 255],\n", + " (16, 18): [250, 212, 0],\n", + " (16, 20): [250, 165, 0],\n", + " (16, 22): [250, 127, 9],\n", + " (17, 19): [0, 86, 255],\n", + " (18, 20): [255, 122, 0],\n", + " (23, 24): [127, 127, 151],\n", + " (23, 25): [0, 255, 141],\n", + " (24, 26): [255, 0, 160],\n", + " (25, 27): [3, 255, 50],\n", + " (26, 28): [231, 0, 231],\n", + " (27, 29): [51, 255, 3],\n", + " (27, 31): [98, 255, 3],\n", + " (28, 30): [159, 0, 255],\n", + " (28, 32): [115, 0, 255],\n", + " (29, 31): [143, 255, 0],\n", + " (30, 32): [67, 0, 255],\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we write a utility `draw_pose()` for:\n", + "\n", + "* Extracting landmarks from the landmark_list and store landmarks' pixel values in a map.\n", + "* Computing the mouth center and shoulder center, which are not in thelandmark_list but are needed in pose annotation.\n", + "* Drawing the connections between landmarks.\n", + "* Drawing the pose landmarks." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def draw_pose(\n", + " image: np.ndarray,\n", + " landmark_list: Any,\n", + " connections: Any,\n", + " overlay: bool = True,\n", + ") -> tuple[np.ndarray, dict[str, list[float]]]:\n", + " \"\"\"Draws the landmarks and the connections on the image.\n", + "\n", + " Args:\n", + " image: A three channel BGR image represented as numpy ndarray.\n", + " landmark_list: A normalized landmark list proto message to be annotated on\n", + " the image.\n", + " connections: A list of landmark index tuples that specifies how landmarks to\n", + " be connected in the drawing.\n", + " overlay: Whether to overlay on the input image.\n", + "\n", + " Returns:\n", + " (image, dictionary).\n", + "\n", + " Raises:\n", + " ValueError: If one of the following:\n", + " a) If the input image is not three channel BGR.\n", + " b) If any connetions contain invalid landmark index.\n", + " \"\"\"\n", + " if image.shape[2] != mp_drawing._BGR_CHANNELS:\n", + " raise ValueError(\"Input image must contain three channel bgr data.\")\n", + " image_rows, image_cols, _ = image.shape\n", + " min_length = min(image_rows, image_cols)\n", + " draw_line_width = math.floor(min_length * 0.01)\n", + " draw_circle_radius = math.floor(min_length * 0.015)\n", + " idx_to_coordinates = {}\n", + " visibility = {}\n", + " mouth_center, shoulder_center = [], []\n", + " flattened_landmarks = {\"coordinates\": [], \"visibility\": []}\n", + "\n", + " for idx, landmark in enumerate(landmark_list.landmark):\n", + " # Gets flattened landmarks as list.\n", + " flattened_landmarks[\"coordinates\"].extend(\n", + " [round(landmark.x, 2), round(landmark.y, 2), round(landmark.z, 2)]\n", + " )\n", + " flattened_landmarks[\"visibility\"].extend([round(landmark.visibility, 2)])\n", + "\n", + " # Loose threshold.\n", + " if (\n", + " landmark.HasField(\"visibility\")\n", + " and landmark.visibility < mp_drawing._VISIBILITY_THRESHOLD * 0.8\n", + " ) or (\n", + " landmark.HasField(\"presence\")\n", + " and landmark.presence < mp_drawing._PRESENCE_THRESHOLD * 0.8\n", + " ):\n", + " continue\n", + " landmark_px = mp_drawing._normalized_to_pixel_coordinates(\n", + " landmark.x, landmark.y, image_cols, image_rows\n", + " )\n", + " if landmark_px:\n", + " idx_to_coordinates[idx] = landmark_px\n", + " visibility[idx] = landmark.visibility\n", + "\n", + " if (\n", + " mp_pose.PoseLandmark.MOUTH_LEFT in idx_to_coordinates\n", + " and mp_pose.PoseLandmark.MOUTH_RIGHT in idx_to_coordinates\n", + " ):\n", + " for x, y in zip(\n", + " idx_to_coordinates[mp_pose.PoseLandmark.MOUTH_LEFT],\n", + " idx_to_coordinates[mp_pose.PoseLandmark.MOUTH_RIGHT],\n", + " ):\n", + " mouth_center.append((x + y) // 2)\n", + "\n", + " if (\n", + " mp_pose.PoseLandmark.LEFT_SHOULDER in idx_to_coordinates\n", + " and mp_pose.PoseLandmark.RIGHT_SHOULDER in idx_to_coordinates\n", + " ):\n", + " for x, y in zip(\n", + " idx_to_coordinates[mp_pose.PoseLandmark.LEFT_SHOULDER],\n", + " idx_to_coordinates[mp_pose.PoseLandmark.RIGHT_SHOULDER],\n", + " ):\n", + " shoulder_center.append((x + y) // 2)\n", + "\n", + " if overlay:\n", + " output_image = image.copy()\n", + " else:\n", + " output_image = np.zeros(\n", + " list(image.shape[:2])\n", + " + [\n", + " 3,\n", + " ],\n", + " dtype=np.uint8,\n", + " )\n", + "\n", + " if connections:\n", + " num_landmarks = len(landmark_list.landmark)\n", + " # Draws the connections if the start and end landmarks are both visible.\n", + " for connection in connections:\n", + " start_idx = connection[0]\n", + " end_idx = connection[1]\n", + " if not (0 <= start_idx < num_landmarks and 0 <= end_idx < num_landmarks):\n", + " raise ValueError(\n", + " \"Landmark index is out of range. Invalid connection \"\n", + " f\"from landmark #{start_idx} to landmark #{end_idx}.\"\n", + " )\n", + " if start_idx in idx_to_coordinates and end_idx in idx_to_coordinates:\n", + " cv2.line(\n", + " output_image,\n", + " pt1=idx_to_coordinates[start_idx],\n", + " pt2=idx_to_coordinates[end_idx],\n", + " color=_CONNECTION_CMAP[(start_idx, end_idx)],\n", + " thickness=draw_line_width,\n", + " )\n", + "\n", + " # Draw mouth to neck\n", + " if mouth_center and shoulder_center:\n", + " cv2.line(\n", + " output_image,\n", + " pt1=tuple(mouth_center),\n", + " pt2=tuple(shoulder_center),\n", + " color=[255, 255, 255],\n", + " thickness=draw_line_width,\n", + " )\n", + "\n", + " # Draws landmark points after finishing the connection lines, which is\n", + " # aesthetically better.\n", + " for idx, landmark_px in idx_to_coordinates.items():\n", + " # Fill color into the circle\n", + " cv2.circle(\n", + " output_image,\n", + " center=landmark_px,\n", + " radius=draw_circle_radius,\n", + " color=_JOINT_CMAP[idx],\n", + " thickness=-1,\n", + " )\n", + "\n", + " return output_image, flattened_landmarks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uzVPY2VksKJw" + }, + "source": [ + "## Map conditioning extraction\n", + "\n", + "Since `dataset` is already a `tf.data.Dataset` we can write another utility to map over `dataset`. This utility will give us:\n", + "\n", + "* the original image\n", + "* the body points overlaid on the original image\n", + "* the body points laid on a blank image" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "RrJTam06WE1M" + }, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "\n", + "\n", + "def determine_pose(image: tf.Tensor):\n", + " \"\"\"Estimates pose and creates an image with just the pose body points.\n", + "\n", + " The image consisting the pose body points serves as the conditioning image\n", + " for ControlNet training.\n", + "\n", + " Args:\n", + " image: A three channel RGB image represented as a tf.Tensor.\n", + "\n", + " Returns:\n", + " A tuple consisting of the original image (`image`), an image where\n", + " the original image is overlaid with the pose keypoints, and an image\n", + " with just the pose keypoints.\n", + " \"\"\"\n", + " image = image.numpy()\n", + "\n", + " # Run MediaPipe Pose and draw pose landmarks.\n", + " with mp_pose.Pose(\n", + " static_image_mode=True, min_detection_confidence=0.5, model_complexity=2\n", + " ) as pose:\n", + " # Process it with MediaPipe Pose.\n", + " results = pose.process(image)\n", + "\n", + " # Draw pose landmarks on a copy of the input image.\n", + " annotated_image, flattened_landmarks = draw_pose(\n", + " image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS\n", + " )\n", + "\n", + " # Draw pose landmarks on a blank image.\n", + " blank_image, flattened_landmarks = draw_pose(\n", + " image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS, False\n", + " )\n", + "\n", + " return image, annotated_image, blank_image" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iyqyL9xpXTkq", + "outputId": "b6a8cf79-a164-422b-9589-47609a3cd14f" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From :8: ignore_errors (from tensorflow.python.data.experimental.ops.error_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use `tf.data.Dataset.ignore_errors` instead.\n" + ] + } + ], + "source": [ + "dataset = dataset.map(lambda x: x[\"image\"], num_parallel_calls=tf.data.AUTOTUNE)\n", + "dataset = dataset.map(\n", + " lambda image: (\n", + " tf.py_function(determine_pose, [image], [tf.uint8, tf.uint8, tf.uint8])\n", + " )\n", + ")\n", + "dataset = dataset.apply(tf.data.experimental.ignore_errors())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Qu8F-B9urxJz" + }, + "source": [ + "## Visualize" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "rX7WHH7nXabL", + "outputId": "2bdd9bdb-ca85-4b60-f92b-55b456d2ee63" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAASXCAYAAADLd/nuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Rn13XfiX5OvPcXKnR1oxGIRAKMYgApRplUli2ZpizZfh7ZsmxrxvnZfuPwlmzPk5/t9d54ZnnGYcZhPM/2sufZcpBlWYmiKIqQRJpmlAhGECBA5EajQ6VfuPee9P7Y51fgm2WS1UCjGijUXquA1d1Vv7r1q33O2Wfvb1CllMJJnMRJnMRJnMQzDH2tH+AkTuIkTuIkXthxcpCcxEmcxEmcxLOKk4PkJE7iJE7iJJ5VnBwkJ3ESJ3ESJ/Gs4uQgOYmTOImTOIlnFScHyUmcxEmcxEk8qzg5SE7iJE7iJE7iWcXJQXISJ3ESJ3ESzypODpKTOImTOImTeFZhD/uJ7/62txIzKK0YQkQrKEBKmRAzjbeMGkffDyy7HqM1p9YmWGsZQmA8GjGdTll0PYuup5SMLgliYEgZ4xuM1swWPSklIDEdjVgftzhn2d6bsT/vGI9arNUMfQ8KGuex1gBKHrTAouvoh4hzlnHrab1Fa0XfB4YYoUDKmZwzpcBiiPQhoRWMW0/jHWujhqZxpJzZX3T0Q6YAjdM4o4kxMcSMNwpDoesHNsYtI1OYmkzKhculQfmWeddz7sI2O/tLNjemTFuPVhpjLaO2wfgpSbd0QZ6rlEIpmZQCqhScNWgF5IgiYkgoZQgZckqgNBkI9fdijMJoxfs+ePfVz5iTHHnWOdJYzZoO5BdhjiiljvT7vWBDG8jpWj8FAIcRPzn0QRJTQWlFyZnGe5xzxJTo+56cC1Yp+n5gvliSUqEvCe8C07FmNl/S9QOTkceQKTmiKEBmSJmiFJoCOWE1OGNx1smmEwIgCeidRpWELgqjNUNKhJQxxqAUpAJOa9ZGDSMvG4c1RhYPmRgz/RBRSt6cgiLnQsyZfgigwFqDMoa9ZY8LiZwzIQRSKVhjWCxlE8ulMLYGnyOkhC+KFsdG40kxknOiDB2zkLHOcebUBsYYYipYa/BW0ziLd9APe3i7JIZCCpGhfuSc8NbQjDzeKEpOQMFbg/OKlAvdEEgZQkqkMBALOGtR1jzDtHnmcZIj3zhH9tbfwH0v/YPccvmj3PrY3YRhTh8WL5ocOYlDxM1vgd/y5+HLvwz3/AykGZT+Wj/V141DHyRDjFhrMMbQWIPWhVgrNG8NUFAl46wFEv2yYzEHRWIIgZ3ZgqZxjNuWFCMpRbyVxd16gzWKmIpUSsYwahzOGFKOspEAxjqM1SitIWt0AaUNSmm0hhQLOWcaq8lZUUpBq0IfE5Qs1ZBSpAJDiMSUyUUq6LZt5N+APkSGALn0xBjxRhNCxFhDTpllHyi5oFpLsdCqgtFQUiQGTYwBXTJTa1kWxTAEjFFsbUzph8C4kU0ixUBJheWyqxudxpSMKYkSe2JMOOVwSmOVYhEGChptNMRETPKhtMEa2XRyQV5LH33ld5IjXz9HcA2f/OY/xflTb+PBtW9lcu8fZrJ8hLtO/XXysPuiyJGT+AbhWvihvwm3fye8/Acg/GW4dD+c+2HI29f66b5mHPogUUphrYUCfQjYrMkl46ymZLm2G2Bt5Em5YBQYrbDWsbbeoOYL+iHS2AA5kkKgjwMxZYweoZWiKI3ShtZ7Gmfph4gxBmsMWhu6ENBKoY1BF4UiYo3BWIMqGa0yKWdCVKRSCCGS6iYQoyKlXDcUhVcaQqQP0sZonCzSkBIxRiiFFBOLrkcr2bhsLhij8d5htQIN85QYeYVxDm00JQcMGU1mYhXLotgeMk5rmsahRh5Kkoo1JZICazQxRbTS5ChtC601Wmf6YWDRKbxz9AlyyYTlgNaRnAu5FLQuaK0oKKBQKIR49Nfikxz5+jly/k3v5MLvexMURfrXnr3Zzczi9SzSq5iYj74ocuQkvkG86zvhj78TUPCvW0h3wuRWaL8ZFh+41k/3NePQB8mk9ThniSmRYqbkjNOKsbfEnCU9c5G+uIK1UYMxilHryUrTWIXRoEskpyCJnAu5UCvAwnIYUErjrcYazX4ILIfAqG0ZNR6brfR360ekYAyQM6kkUoqEEAlKobTGWEemkFMm5kxMGWstKUvlaYxGJw0lkUvCAFoVCqCVwnpLoZCSVNHeWfog3yNbjfGWlAuzbDlVCoZCQWNUxipNLokmDVgUrXW42kkw2jIMhZw1zjm0KezszRhyJGQYovTljTHkrFiGQlaANuSYSCGhtPQtlVIUeRNR9Xvm+uejjpMc+fo5MrvuJnLjIMPaZegVbKmHuNl+mv2SXxQ5chLfIG59KTQOytM5Uhb3ErqPX+sn+7px+BtJSZgs1YwxAIWcCxpQpaAKOKuIMTJf9BhV8FajvUZrg28spSCtDmPJOYGCQmY5BJy15JxlKFoKJWdZxLW6axtPiAvmiyWKglKKmDLL3MmGkTPWOozzlCxVJ9TedS6YushTLpRCHdZmnFEUDDFGYk4YIxuUQpbZ2nhEKYUYA2MvA7AQZOModYPb7wZa16KGREkD604xdtIeKShS0SyWHcZojJGhbjdEQsrYHMgZQtbEnGt1rFG1SrbWopQixIRSilwHX6pWpCjkvaRgrcUai9bIvx1xnOTI18+RGz/8i4SNM1xof5DmvrOoNcXpJ3fwakbK6kWRIyfxDeI//Cs4dR3T2/8I6/fdhFpT9I9d4kLev9ZP9nXj0AdJjomh1EoTuWqnXFgWCDkTYsJpLRtG/Zo+RIaY0KYQhkhGoZXGOoeK+eBqnQuAwvtVzzvhlTmo7pbLJSkESsl1mCtoIGsNqhRSTlCk8nLOEWOkAG3j5TWGACic1eQCOmYShZQVSiN98JgIXY/RinbU0LaC/FFKs+wHWaQtrE9blIIuViRMySxC5uJ8YNI4GlWwJJR2mOmEjTe+mb6P7N7zGUrfk0qSVgm6HjKFlAtKG5wxWBS5VsZa1V4/kHMGBUZpcpGhttaKUqibgrzrWisUsskedZzkyNfPEfXURV7yr/8BN4x/kfPD32Z8zx2M3A1Mfs9vY0PtvChy5CS+QeztwN/5a3Sn/z1bt/07zt77arruRrY5ReTytX66rxmHPkja1hNjJOVIRqo1pTTWKXIsQJFBoAHvLVopQckgQ02lBQ6pVEEXaJ3DaCPIk1IYYqJRCmUKIQSs0WilmbYNQwzMFkuM1lhr0FaRS8ZqjQZCgJhWG06mGwL9EGi8Y9w0qJLp+kAMCWMMlFyhk4nlYsmwWEAcsKpgtCINc7plg59M0c5RUiKGyLLrmY5blFI0TYt3nj4tMcawHKSd4Z0heou98Ua46QbmTUsaF1hfJz11QZ65fqwgnFJaQsyCElJaS39/VfIW6W9rraVNsao41eqjVpY5Uyi1Ij16v7KTHDlkjnT3curJ/0Re3EHUN3J++070HV98UeTISRwu4qXPoy6/H1dejeFlTHgTuxyDGcnIaQZla1WpGCrcsfEerTWz+UIqIpB2g1a03lEKDDFhrcAxUYKxF2hlBCy5SHWlSGgKWinoA6YuCurCibmQh0DjDFopwhAZQsBpee2SMyUjn68gxkSQxjwlJ2KBUP+9HyK7OzuUfolXBWsUzmgMsvBIgTifYaZrNN4ySY5uiKADXUwoDbkU+mGAktFacPrLUBicxd9wK6PT1zFuWobL5xiWC3RMgAxl5SkKMSYoBVUENpvRWK1xVtfPKCgUKNCrzUD+5uk+vVGklAgxQ1FoDof9vtpxkiOHzZGM3vwZJjvfxyRvMtnq2d3bf1HkyEkcNgoXyr/gJn4PG2xReOJaP9DXjUMfJF3XoYyV/rCCpDUxZpZdJ2iaUhhixBjNEIKgd5Ri2fd0Q0LrREgJrRQj77CVaBVDZL7sSDFBzpBkgNj1kZgiJWe0MaQsGP1UMfvWGIxRxJQoGYzWpBIpQ6Sgab20L5Y5opEFHVIhhIQG5vv7lG6B14rG2lrd1mu/UqjVAg0DbtwyHWtyFwhJqmpB6wzE+jNpJ7DXkgs5Zs4/dYEbz55lfTzBdxu46RrdhW1iEvKYAihC1ENJJemsqtWm+qr+tWwI8jkyNFVK3qNSZA7QWkNIGqUE1dMPA0PlVhxlnOTIFeSI/xKnT32Cs+e/D77yKvzrH3pR5MhJHD4W/CaeX+Z2/iDn+B4+yxeu9SN9zTj0tC1kCDFhtaZtPBvTMdORJ4RALoXRqMV5j/OepmlwxtBYTeMcqia4UcKyHWLCW8u0cbLhxEiq3ItxYxk7AyUxhMhyCIQQ6vAUIZyBtFBSxhmD916YoErXhZPRShFzIRbFkAVNpbQmpkzXdTB0NFZgo9Y6fCXQWWOlytXSG1dhYOgHqVKVZkiZDOj6fVvf1K/1GGMpddiZc6ELA/uLBXY8wZ45TbFeCG4ocoEhFWLlORgrzy+VsqBrGi8MaqN1bQPJBmK0kb/TilIyQ4yUUjBKalClZNM86jjJkSvLkf0bfgOA+MBpXDt9UeTISVxZPMb7UCiu45tRz2NFq0PfSIrW9KGyinPBGUnaUhPbG1mUWikmbUOMIt3QGs1CwdhqsmuIKVPqUJOcKHHAqELjjEhiIPBKbzUZh9YN3ujaC1bCHQiyQUjIALYURUiZTKFUJjJKgdaootBWoVNCoQj9gNeg0BgjG4S3Cq2K9NFLrvBIoCS6+YI8mqKNxVqR/DDW0DhHPwRijOSSIUtrQRuDcxZUIWuFGzW0p8+wHI1Is3l9bI2xCoOSSlfLYFoOoSqBYesQtcjCp7a1U0mEGBiGgVzZ1E5LZa9QNI3H+kP/aq9anOTIleVIuO5R8r0L7LmXkNz0RZEjJ3FlcYFP0bPNGd6EoSWyuNaP9F+MK8gkRcoQc5LhnbeM2wbvsiwaDcs+0vWhVpgimWE0jK3iznXHhS7zVIjElNifZUrjuGW94aEYWaYCStGHhFGyHpwx6Aq1zDmTkUXvvSOlTNcPB4uqcQ7rLKnIQh+GyAonr+oipICpUElbYZEH8FFbiVoFUoKYpEXhraHkRB9zbWloUIVSCjmJblHj7dNYfaVQ2pBCpCx7ol+QtKLd3MCd3iTs79M6ByUzxFKHqRVNozTKcMA4XiH9tZb9ruRS5Tgiy64TxrJSjLxlNJYKX6QzQm3iH3Wc5MiV5Eh0lwnjSzRPvQQe26R9yexFkCMncSWx5EnmPMYmr+QUr+YCn7rWj/RfjMPDfytDWWsRextyoS1F8PRKEDLa2Iouke5xH6L0xhHuwNmR5cJ+IFZdo+2+5/p2nRunDQ/v9WhjpBqtLGEDoGQQG2OmaRusEy0rBXjvyUDMoFNB2wpgqWJ7KEWJ5QCbIjBTy2g0og3Sr+9CxGgF1tR2gbCi8xDYW4rIHpVwlnI5QMRIsVvq0FhaKVlJS0uoAxqdCzlEjLFYXRjfcJbukcfIcaDrBxa9SFc0jbQmun7AaC0tDCAMgzCmtcJag7OWEjKKLKzpItDOECMhCvcgpSzopra5ellyyLjaOWLI7FzDHPHFcPHNd6HO3sD3n3s/w37i4UfhVPTcud/wUXuZR/rFM86R0gS6l91L86lbcI/dQrn9yWOfI1c7VpewaxbWwnd8C+u33sz3PfqLPHFuySe/2HFdHPE2NvkVLnKZZz6LCsx4hPexxWs5y9te+AdJTKUOQUUCY0iZeR+kzaAVi24AYOQtqv5qC4plH4DCY7sL7rxujVu3Jjx0aV/IYkpxed5xqnVAIVZSmNYWpRU5S5tBG43VQq6yWhNyYYiFIeaDKi+lgWEeD4aL1B4yyOelumk458jaMqBZ9AHTjBmNRqS4pHGOZBSqKGmjALoUkjYobaTsKwWlSl2ciZRk0LsiqVmjSBSGksBZrHMs53M2tzaZXHeG7VHL/t4efUgs+4BSSfrYRtH1w8GsgCLfA0pVqG1ovZPX7ntSzgyDzB4UqlatsFj2eO/Y8O4qp8rR5sj29g6/e/IUF6PhkwvHpPFHniNPvuutfPFv/VWKTmxvn6WJl/kb/+//zPf883U25y0fmI74K+tfflY5Mn/pvWx86ntID2zhvr059jlyNeM6D3/upXC+h//tEeivBS3mPd8NP/G/smczH91+BS5c4u/9+Id497/c5Pphwk/wOD/KPaRncdw9yvu4i7/IGd7E8+Do/C/G4W8kOaO0oEBSzAeLI+dEjFWzKCUaQ4VuQuMdul6lSwjM+sjp9QnWaB6+PJfK3Vi8t1ilmKVCY6SVIHwD4RV4o5k4SzcEZkuR/+5W6qcpiwS4ogr3Kbwz5FKIFZWS0aSisNpIb1kbOiyt0eQcIQ5MRi0UIZ51IRJTYXPcCFltNcSsm08pGeFbA2rVUhCZdO8MiyEQnaNojW8alNEUBZ2z5FObxN2ZyI9XQcchBBQW5yzOOdFwSnXzyJluGIghYCq8cwiRbgiEWJVttbx+KcjgOWWmk+E5SZijyJFbr2v4g6f2ecfuRdLCoNI6D/jxkefIbHod2Xgwj/HwdRa4jo+89aV8/z/bRgHTYjk1brFeP+MciWcukNf3cF++A5YfPfY5crXiunX4G6+GP34awlzzxDb85O41OEnWT4NrvipHzvKb73o5P/Qvt9HAJg4NPBtVs22+wJzHuZnvpuEU/fOQmHjog6RxFq0EzqmAtl61h0HYx433gprRgnyxWmQZrLHEJNpAi26g9YaJ1tw8Mux2PVM7IgjcRYa10oPAWbDaory0RZQxaCtS3kMUgpq1hgRVJltUWtvGsz4Z04XI7rAQjacVkiolrKnMaa1ovUeVgC2BrpPrvrCIFRkYtY20XbK0DWSjgFJEWtwag1byuilGZmlg1DaEXLBAzoV+sWTUNpQ+MhqPaE6fIj52TqpWhLQ3XwQGq0EZUsrYyqFYyYuQM4uQsGbBuG0xRh8QypSSQesQEtYaRm1D3w/s7c2eg3R57nNk2Q+8/WVP8I61J1E/Z7EfX+MPqh3+wRtbvnTEOWL+/RQunGL9zsjmXYr5xmN88afv5a/csOR1szXuXtvBjdyzypHULBjWLzB6/GXkL59h9KrtY50jVyMU8OffDX/8jaB+zuI/vsY/HOAB9viNZ7VlP4P4yQl4yZH2mzJPjR7i//i7H+JTw5Lv5Az/jnOEZ3mD6Nlmjwe5kXdyHW/hMX7pKj381YvDM9udfOqy63FGQ5aeOEWqnNYbpqNGKsL5knHrRKoiJak4XUOgYCnEFCFHfA44EvPlwJBEQ0gWT4FsSVo4B8oYuiGjUIzbhsZ7hpgOJB6GEOj6gX6I9ENgd39OLjKNFf5CoiTRSDJK5Mwn3jDSmj5KGyPFSD/ESneDUjLFQhcjg3KYWlXqCq9UVuGdhZLpu55iDV0/sLfoyGgmgPaOYi3taARKYTJMT58ijUd0e3t0fce86ylZ+tkFjbOmttVk4Tuj8c7KexgzdD1KyaadtKZR4jkxVPjrqY01Zgrm3dFXm1clR0ph0TnyqxT6pQY+pBiT2bi4z7A5PtIcmaaLqF89h9r+Iv/D/3KKub6f/9Be5jOucM+pJaVk2tI8qxxRY0142aO0j90BX3kJ5pX3H+scuRpRgPO7EG4Ce7tBfUhxGngt5ugPksWTcPcTqO17+ev/4zoPzHf4e/0FPk7i4+xelW+RGTjHh7iRb+UG3v7CPki0Et2iEMUfYlmvzUZXAliVn7DWkVRgHmDUinucAkbjEdvzBRt9YmPiQY+ZTEY479gvWvDyix6V5XaiNJgiG4DWiYryp2kc1jqs1gwpCrrGWMatBhUYQmTRywBXUDgyADVVckIpaakMxrM/X+BLIgHeaLIydWgbCblQtEPVAwUEd994Ryl1UFuy9KkBlKJtW5ZdT06ZsljgjaHxDYuux2qwBtz6Gm7kpWWjNN57VH2dWD01+ijqrCmLKZbzHp0z82XPflqyNhkxaj0xJgriRhijiPalIKzuvXm8yqlyNDlyeb7gA5/d4vJ8yu137vOOH9lGFZhuNcRPbxFnw5HlyNodH8H9w4+ye/s+H/377+C//4vfzaduupfPuYevao6o1zwCH86Uh64j9/lY58jVin/0y/CFx+A7Xj/w3/6wwSrF2b2I/oUjNhY8+z74+YfZvXPJF//+O/gbf/53cjef5lM8eFW/zWO8nzfyY5zhTYjf5vPLAuCKjK26IE5rjXM4b2hHIiK36MQRbt5HIX0ZGfiFDDEWSAGtCgHNvRdm3NA1XLcxZbw2Zba+xe6tmzTGkM89xfDIoxACRRliZfVqLZsUFOLKZ6EUUopo4zD6aVVYXXvcOYs2kUJVRVVNzqLXhNJkbUjNhP2dS4xMIDpLN0Tmg/SWnW8ZVfVXay2NswfqsDFKVTsfhgP9JqW0EN+0Za31mFQo/QDtGIym6EzSmjQEhpgqHNUyHjVYpaqeFBhn2JstBO9f0T9DECkQUxFLedXyiElMl5RiY20iVfcw4K3FHEhlHF1crRz53JMLLs4bbnj8JcQfVLzthx7lt5clX/gXr+XDv7Z2ZDkSXYbpHExh96bApRs6HlEX2F92VzVH8sY2etoxeuhmdvc3SGb32ObI1Yo+wPs/A3d/oaB+bMGf/nH4SwE+//vgF3/+CB+kyTDeBePYvSnw5HVLHrlwCa7yuGafh+i5yEv5FqbcxD6PXt1v8CzjCngkQvgyVhziQipYq5mMRxRgZ3/BsBzQxrAcEt5qinIMMZBCFCMgrYlJ88DOwGPzPaZ3nGbAM93YYOPUFoyn6LV14qOPEbYvo1KsfeAsLRJWbFwZYhYEdaO02KcqJUgrapUqVaYR3wktA8g0BFYCdq5pidYS0sCsExmOPmZa7/DOV5KXQpPJKYlWUq0KY4HsGvrS45xj3TacGU0Ye4/RmkVJdJd36NoWYxTZFHSW1ksXEzlIO0eDmCA5x7LvMZWtvOjEoAmg6wOjxjOtw/+cRBwwpUxB453BG423Xv6+9vyPPq52jmTGj1/Hm+1jeJP5/v/LJ9luvp17P/oawiOPP+c50jyleNVfHbHz8n1+9K4fZvNDb8b84X/G9meevGo5Ei/MWfOG25ol073TnH/vO/jiux87xjlydSNE+LV74E9oaKfwF/5nuBzhE798RDeTxyL8/idR7xzzQ9/6Q5z9yFu58Qf/IRc+85mr9i08Ldezxc3sciOv4Pv5cX6CP7GCcjwv4vBaWzWpR62rrQAZYJr5nD5mQhKpbnHBzoQgpLSUM0VbiqmEKidVX4cidJGzp8+ysbnFfIhsnbmOvL7JcOY03fnzLB/4Mn7oGTVehpWVSayNrgqtQh7TgNXCAZBqUpz3VrLaQiJLKEQuw1gLKEFqrm+ynO2T0cRlYDJqaK0RVjaySeR+ILiBbC2x60nG4Le2OLW+xt6lS6i9BbdvbjFtPc1kKmia/X3M9i5x6xTDtMU5T2Mtexcu0C86VB3GppLxXuCcORdCGPDWsD4ZkXMluBlD2zi8MygK85hZdInppJVNs4gXhnMi3dEP8ZrYqD4XOfKhT21x/c99Gy9/1UXWXv4FfuiHf4b/fOt38ekPv5LdR3af8xw5/TlY+0TLh7Z/jXd+x2/jh//In+DBv/R/xxv1zHKkaZj6M0wv3MLWV76JrY++glOzO3h0aOlRrD95M3lWjm2OPBfxwQ/Aj/05eNO74Jt+EP6H/wD/n78KP/tPYLbzHH/zAny4o3y44yef+o989z/+Pv7Mn/kz/LE/9seesSimQjFmjVfyJr6Fd/Nq3spLeT1PskGP4lbehGdMz/MHLHHogyQUhYqZ0g2ioIp4RAwxkrMsSr3yxlZK9JVSwjsn0M6KICkFnFFoBf0Tj3PeiqPe+k03EWNguZjTjMfceMed7MdM//ijjBuHIjFf9sQVyUsLJt87R0y1IkXaFTkn0V4S+AyLfiClSMmF1nucFjVZBYwmY5rxiH4IlKFjrfHEGGSwmRMla6ICN11Dj6Z08znX3XQjW6dPMdaGcxe3Sd5TciLHhEsiXUHJuN19pg8/xvLmG9Cb6/QxES9tU4bEogvSatEF3XV45/HOE7VYuDbeQBEhQmOkwu77gZTkZ9TGMBmJ78WyG4gxk3JgCImYc9VUOtp4LnJk+fCT/Kv/722cfeVredt3vYy3vP1Xedd3vJ+bb36Ij3/gt3PuKHJkPOYTn/wYX/j853j37/xBPvHrH+RDH/ilQ+fIkxd3GOWbufPR38IN8zu56cJbmMyuRxVNMj27a49x4VX3EcL1PP72z9DPzh/bHHkuou/gH/8DsP87vOePwB/+7+BP/Y/whnfB3/2/wbmHjuY5fuqnfoof/dEf5ff+3t/LT//0T/Pe9773Cr5acZab+Wa+g5dzF2/ne7mZO9EYehZ8hS9yN7+C5xb+M//8eXWIwBUcJKYa5IRUDXEKpJxIuZoDGfGyRimMrqJ2ABSMKrROE2ISMTtVTXhiZHH//aTlEozCTab4cUspBR8TrxxPedy2NNYz5EhvK5oqJ5EUVyKwN18OIkqXxb86JVlo3rmDZ9BKo71BOyeEsChcEYwlj8bMF9sYCpqMqoVELIp2Y5PTt96OKrDcm3H2lpvZPLuFjgm7O2PDN8xywjgLWpGSsLKt1vjGs9zeoV125OmY5XWbzB99gtj3UBJWC+S0CwHrPG3jaagihzmhaqul5Fyl1mWcbK0/qIS1scSSqnFUrC0eBcpc9WS5Zjly3/2cWyz5CK/nySe2+Nbv+lVe+vL7OHvdOb7k3sinf8bjbPuc5shuyvzd//Xv8ff/3t/nR/7on+QTH/51UghfM0dek1/HGz5+FxfcU7zj/h/h7ParGMUNFJqh2efcjZ/k8vqDnLv+EzzRfBk91uTxlP3NdeZfOr458lxGDPDT/wge+Cz8yb8Jv+V3wMvfAP/4v4MP/DtIz7HY8e7uLn/5L/9l3ve+9/FjP/Zj3H333SyXy6/5+W/gjXw/P8CXeJQ38m5exztY5zQazQ4X+DA/y/3cw0d4L1/hcwz0aAz5eTZohys4SFzt/cpVWxLUOk8umbVRI/IPg2DecxZ9H61Wf85VD0ijUegKRzTGMjEKLlxk71O/iXn5HWzcdCMlFeabm6ydjYwvPEXbeE6bFrNzmSf3d4g5Vbc3GTLGGCCLFEfUmpQUKDEB8qOW0WSN0XQNtMJkhdrZAdegtcY0DcuR5+IjjzLSVBMhQCvWztzATa98DaYPzJ66SHNqg3baoiiMKbiUGTUNOUX2Z3vMUOSNTeEptJ7LOzvMlgviYs5w+SL9Qw/SLxZYXXCNEMv6oS7sFIlJ+BAis6FFEj0J2UxbK2ZGSuGceIoPKWOrf3hR4qbnvScXBCZ7xHEUOfLZvTu4cPF38e3f+QFe/U1f5I0/+mHc5q08/mtvJO+ffk5z5Dc+8mE+8mt3823f81t553d+Dx/6lV9i8+z13Pyq17LuHMvLO5z5ptuY2k1+z7/5EW48fwtz4H4d2Rs9yVdOfY77tz7E4vYHYX2BdXB5Z4fd+ZzYFcmRR+KxzpGjiM98GP7SD8Cf/p/gu38v/JV/Bi97LfzbvwuXzz+33/tjH/sYv/RLv8R73vMe3vOe9/BTP/XvscbSeMctN9yIs5bXvfIVjPOEP3X3j3PH7JXMgXvpeZyHuIcP8yF+ht/gbi7xJIn/f2Td8/EQgSvxbK+yDMaoOkyMrDUe0FXZVHSTQoiEGGmcoFhykYGn6E8BpeCMwdmGA/HUUlCzGfGBr7AXM6duvZU+Jh51ho2X3kpzaYetZkwpman3nNvdZqfvyEaRU8Yo8Z1wxuDHnnkM0DS0a2tsbp1BO8No0hKWPaeywp06DShSGFgsl+y1lvn1Z+meekIqVWvZuu12zt7+Muy8h2WPHo9hYw3lPd4b4nyOTtIiCElMh0becXF3h7W1NdpRy0zDni70ywWNEZkO0fWyGCOESIqi6/tquJTIiEKu0SuOg3Aw0FqkOFLEGo93RirrXBi3nhATS0Qa3Wp9TdoWR5Uj5+Nt/HL3/Tx16Vbe9pZf5XW/5yFue1Pg4X/7W+DejWefIwXc1mkokiPLrmOvtZQbbuCn/o9/ypve+jb+2//HX2fajGiaVqDGSsH1NwKgk2VY68hPFc5t3cf77/yXPNp+nqXaZuQd8yGw1q/R6hdfjhxV7F6Cv/nfwL2fhD/0V+AP/Bi89h3wt/8sPHA15uD/J6WSlZba1vo6/+Qf/SO+9V3v4u/87b/NzRvrbI0nGKNZn04BmQnqaAif6snzwqf5KD9e/hpf5FPss30VHu7o49AHSR8j1orHgXFO0DUFYsxCdKrMYF0hiCEmYhLooTGWxltyEbkKbQQKWeIKpigyD3Zvj/iVr3CpFPzGOutr65z3jnY64lQxbG1uMozHFBRmNsNaQ2MtY9+StSKGgYs7lzm1to49ewbaBt82NI0nxIBymtNqRCodyhguLZeQCxNrufONr6ef30m3WBBi4ux1Z1nrMzllgoKmaaAd0WxtUWLAac/2fJvGeRZGE6P41DWTMdsqMXQzurBk6DtUzrhRSxxSVcbVKG1QyuAcGCuWsShRs0Vl+iFSirC+fdsCoFTBaY8xBq0Vo7YVdFAMpJjEAjYVjAJrj36TOMocuVgKH96+ncfv+6/4lm//Ve545QO8+s/8LO1PfifnfuPGK8wR8UcJZsH8pvM8/vaHOXPvjdx+7zfRd4EbGo9yDv+yOzFKc/89n+GVd93F7S+7kwtPPEEaBnZ2d1FKsXAad2qDn/z+3+S2J9b4Yvy3LPMXCbM5uT/JkaOMnOGn/gHc8yH4Y/8v+JZ3w//yAfhbfwL+0y9A6A/5Ql/1NrkJjF8HWz8C/Uc8r/7Km/Da8eo776BtGrbW12nblgc/+xleedcbecNrXsODDzzA/rzno/fcQ4iRL3z5AYYQuOul+/zud/0F/uEn/yc+9cDz10b3MKHKIaEF3/n2N0KtfJRxItGQ04H7W1M9uGNMdEOsg0rBshsr/fCVNpBCNpTViV6QfrjRIq/dNw3ceivrN96AH4+5znluf+ICE61J1tHNZxUBlAkxwBDYHzp2FvuM2xG3nL2J+dCx7RWlbXBNQ4mZFtiY98z3ZyKHAnhjSSaz3BxD2zCfLdAJtpRl3EdSiqQYKcZgNqb4m69jb3cPd2mXsL3HctlxeT5jr+vQjaND/CLSIMQ5ZwxGK0atpx/SgUChs0Z0nYoM57thIOXE2mSEUpp+SAxR3iCjpfpUSlUZkoLWhrZpCTGyP19I6waEU6HEWvXXP3H1IIjP5xyZbhq+7Ts+yje9/uMYm3niI6/jwf90G/2jWwSTCHoBQ2SWO7pXPIHyhTObWwQdmL3+ERhljDbkUcdDZy6xazPNfMz3/dP/munlUwfeH8sUSM6ws1himoayvYvpepmlhPBVOXKW1H8fpA0W9/0tFrPzJzlS41pBjsdr8KM/Dj/wx0Ua66f+N/i5fwWPfRaUBzuWz9MWbvxWsG39s4fbfsfT/+5Pwd6rYd9DMxvx2//Zf8P08ilmC7GRfuTcOfZmc85dvMD2fMFT58/z1KVLlGpdsAqlNH/gD/0EZ86+gn/yj76P/f3nuOf2LOIwR8Th1X+LaEcZIwSznLPIwaun2xEFKvyy4LQ6cGxLJTMMlZSFOUDOOCvthn4Qi9WCQZeIW2byo4+ymxIbt9/KouvJ1enNUYjWUooYF8WUGHuPHpakmGicx2mNLXAGx04sLNMcYyxtKvR9j3CgC23T4o0lx4E2alI7YVgG7NAxyiupC01WYrVahsSwvceosWANtmkopdC2lv3lHjlEhsv7tM5iimwW5EwpisWiE5ay0eSSsAqMhpKlQlRKo43oIlmtcCNfnfoCo6pZFXNGFYHQAuQUoWQmrSdEzTAEihFxQHsNyGbXKkewt/KRn307+ktj7vxtHye88x7W3/Y59h+6jovjnnhqDvV37sYBNOyAtIV6JyKTKMq8ZfzQWWa3PcXkomfngW2WIVJiJIaBPG6Ipze42M2x25c4k42QGZUi/Z9yxIwEGjxqLDk2JzlyjWOxD//wx+D+T8OP/j/hrX8a7qitr0unYHKzfJ5S4DeexiGUAmHGQUHTXYS9j4F9m8KeU/y7f/N+8q7hoccfpw+DoOby4fgdSosUz4r/9EKOK5KRFwtPjS6JQsYYqRyNVgf4faUUzmgUub730setLh2CyNEGq3laKK+IkB8oYspYk2mGDp54jIt9x+zUJmtJcSMa34o0hHWWkDMqJ3qt6fuOkbWc3dysLnoFmzJlZ5euUTRr69gIJSa8dVil8d7irUO3DTkEuvmSSYY2KVzT4CnEoWCaRoQGS+YsjiFC0JrBGdpmja2z67xkPuPxBx6lrxtoqe2YnDPKiKosFLrqk5GVOnhPtCo0VjPvei5cXtA0nkkzonWOSWMx1lRBQdlEUkqEYSCFgSrLR8pidqRKouSIsdfgILnGOXLPkzeyfe93svEX3486Ncfc+ST5whgeH1OUIiwj7jdfxkZzStjtQ6b50ku4uL1g10PTnOKOueMNr7mH9cuOp3Yiyfd46/B2TB4OlyPX4dgGIuCcYWvjJEeeD1EKvP8n4LOfhD/7Adi8BV72W2D/Ydi9Tz4nBXjkFyBWI8Ic4PG7IVXwVVxCWij+1F99GWf2x/z3v/kFlv3zcwB+lHF41JZRKKAxsiGkSupamRbFJHDPlYlPKcIhyLUKtbVnS5GrkjVGUDNJUFLiWSG3gLxqWYUBN18SLm/zqPWM1jYxiwVN0xJTIlWnt9AteWpnh5tOn2G2NyMW8WfYXS7I/cDywi7LUwOnpxuQxD3OOUuKidkgfhmN93TLHp8LBi0zlUpqc8agAOssLkVMFK2nnkLolpxdjtkyLXuNkL9SLgdyHSLFAdopUZ+tjOIQ04GwnizogreWIUTIYkREEX+PLgx16KwYtx6tHDFp8f5OWTSmtOhG5WzwI5lPHHU8H3JkvLfJ/J+8jo1vOc/2h29m9OBpwrZiyInLF85z06nrYDRhWOVIGMi9ZbG3y+KUY2u6ztr9pxhPlnhfCM80R0ohKTHziic58ryKc/fDv/mz8MbfBR/71/CVT0D/Vcrs3+iCoFWh/5Rm846GM5sNj55/Fva3xwQ5d+iDZG3ckFLCaABFqMxg74xsCDkTc4IkME6UkM9yKZScSCVilPTBcxYvhVy1KmSJQMkJVq+VpI/rjMIsZixRPNQPeOtYa0ckCr5p2B96gip0qnBxOScg+kK+bWjHIxaLBRjF7NIlLnSB05MpMWcSBQekMIio4PqU0BjRX8oZHxPWe3zrcFox9D2N1SyWCzbW1+mHgcV8n+l4ik2ZviT6GKvVqrQ1KKCUqQxi2VytNWglEuDyHkgrYsV5WJ+MDzy2URByor5Q7YGLle0QE413oJV4nwMGizWWXErtsx9tPB9y5Cv9gH//iLUPv4qUwTewP3SSI4VD5cipsWF9vZBY0Cd3xTmy1xnCdAM9nGMxu8DaaHSSI8+nKHDPf4TP/ByUZ3CZyAUef2rBm19zmjOnntlBsrHxErZOv5Qnn/wcy+XOlT/E8ywOr7VVCqWI7IIxBltZw87KS8ScUVkQNivxOJDqMaHIscrHa5GeiCkL1wD4aoUzrRVO24MBrTV65Y3KTjdDFbg820VrA0YTVCErRVaFRbfgwtBhjSEv93FzyzAEFrN9HJqFdqy3rdi0Vm0lPxqR18aUjSnWQDfrCa2nCQmVMyVGaDyjyYSJMyznM0oM7M92aKxj3I7EI6MfmPUdSimMBqtNJeMVrLEozYEHuJL/0BfZWDWiB+VdNV/6qrlCUYpSqp947fMrTd2MqC0hMTMSSRBFHAZSugbX7edVjuhnnCOzxYizBaaTgSFceY7sd4WMIyy3aY0+yZHnaTyTQ2QVDzw6I6bMK25b5zfvvXLIrvMjvJ/QLffIzzVT8gji8BIptZLKpZBCwjtLiBlnxX0thCRWniAD6pWQXpaqUSstdqdF7EyVgqa2MkIIxKp0qhTVEOjpdkhh9WdIpUjvHchBuAnaaFSRxZUAXJXg6ORa73Kh1BG7spaR9aDBek+ZtqiNKeONCd2iQ401ZjLBa8O4C6jlkrEXrwetYHNtSo49Wim21tZpvMV5R98vpdWCVI6rO2spWTaLlWPgQXshV29z2UwoBePAVXOklTyHMoJrqkW+cAeMDHl1JU6OmlaIaVl86L21dVM52jguORJzQykwbgt73lGmoyvLkfUpCxSNdZw6yZFjGZf3enKGM5svfN/7qxGHv5EocYBri6Bu2sbWfq4kuDUGkApUaSXaVSXLB6K6uhqnmprApRRCElfClbfCECIpF7yVanXZB6zVOFN/YeWr/bYLtlZdqUJJAUJIGKUqHr+ypFNmfzlnMV+wtuXBOdL6hDxtZRA8BJbLDmWNVNDOUdYm6GGM3p8LuqtktDWcu3CJs6dOQ0p43xJLYnuxZN51KK0ONtMV9NXVZ8hKVR2uUol7ppoq1Z+pUFVZQWOqy51wWUqhKssqYirEKC55xsjNCqUYkmhXabOSHjniOCY5srM7pustTdOhNlvieHJFOeK8B2DUtIxH7UmOHMO4tNPzxIUFt980YW1i2X/G3i7HY0hyeK0tpQ6uyCuNJLliJ1ms1qAr9l0pIIv6a8maIYpkuFSPSSChRvq5OUmVqiTPRXxOPY25tkYGq/OuOxDhU0pT6mJaeUiItlPCWbF7TSlXCe3CtG3QCrqhY9l36MYTt9aJjWW6NqHETNN6FotexO4UDH3Pdg403rFwcJ3ShPmCyxfOk6vfA0qTgOVywVM7O3RDwHsnnIcq+6G1ONqB/HwKWewCg83SM1cKayvyJgvRTDYRhzWGiGyorZdZw1CkfRFiIuUsfXDZitHIe2HtNdDaOiY5slgO5GRROpDHmvEV5sh2tw6nFG1+hHySI8cyYizMl5Hrt1pab674INk8dStaa77y4H96jp7waOPQB0nOIsC36kkLwaYQsxKjKDQ5J1ptGI9a1ppM3y/p+0GGq1XQr1SYpzVWqqJaCa4W06iiVRad0E5bbwkx0g1Rqkkj841SIaF9H4l5ZalacEbjjKUrQVogKROTsKoLcHmxx6RfYGOLN0oEFq1hCFFIaSGwmC9oWsdyviCXEcoqehWYzS+z5T03jCb4piWnhCHT9QOX9vfJBRa9eERoCiFEQGCd1ohPvDS1pep2RmOU2M2u7GONUjTOVCy6ADeFiKerKGKhdQaqwGEfEkOIeGerjLg94BAcdRynHLmwv8Ht0w4fLxPDqSvKkenoLkDR2oB37iRHjmEU4DP37fCal23wytvXubB94Yq+/sabXodShvns4nPzgEccV0RIBKqkRa3GszrQQnJa0YVMN+uJWTFySoZZytA2upIHswxhlWwsFDBahn/a1L5vVTHVSqN1rcKMuNop5M+FwmzRVRtRGdw6Z8hZMcRMLoEuSBU3mbYYo0U6e4jM+wWPXHyKDVXYPLVJTgnrrUCKc0BpSCUQosJbj0aB1jx8+RzNmuP60SauL3g02Wh0jiyHji4nUIUSM9Y7tNKEEJGOQkGpUoedusr0SKsm5oRRlbwXpc3inUUpqSyhMAwBhZIZhKK2iGTDjTEd9NtzFp5FyvmaDFKPU4488JTjlutBpwXbu7tXlCPT0QgyGMSQ6iRHjmc8fG5GiJnNqb/Wj3LN4wqsdrNUN/1QeQAG50QfSVMoaYCcyFmu/CSNNU/3ebsS0Cic1YRYCDEKcQ3ZeForveBlWHlpSwdXhopCqFKVoCXti9VCkapzCEnUTJXCWjH4kSGuJoR8QNRSwP7lbZKWjUFbA0lhhoRC0cee2AfaSYt1YnC0vbfNeDJma7qOaceYnQ76iC6Z2XzBo5cuEVLEW4N1MnQdKldFKSVw41xIWYhmCtCVczHEjCuyAawgsTGD956CIg5J2hMpQy8EN2fl51KAMVKZxpRk5oAgf1I6erbsccqRS9sLUvKs2T2e7MMV5YguLcyhKHn2kxw5nnFxpyfEwmvu2OAXPvT4MZl2PLM49EGyN++IMZJSEvis0kxGHo1ANrtuQFcToSEUclKMvEU7GfSN2+ZAuG81AHXW1ErpadIaFFIudeRK5R/IkLUoqaS8c4xG/mDw2A2BPkSGkLCV6OasISV1sIGIcJ0sNmUsyzQQSZRUGPpBKlyUbGRNQzNq2J/t0bYti+WCtVNTnLIUZejHI/JyG5ZLLu/tcWk2Fz/tnKVXPUT6EClZqkpnDdoISkjwNSv1VgO1ndK2DSUX0aBKCZOivJdFhsshpqe1qlLB6FI3U6kwVZUKH4ZItuaaDFKPU44kZ9leGjanGZ0iQ88hc8RR4hpKRfKww9DNT3LkmMZsEXnkyTmba55Ra1h0h7vhKaXZPHULISyYzZ56jp/yaOLQB8l8uYScaRtHiJmkCjFGliUfyD2YKr+wXCwEiTMesbYm5ClpRRhQpV7bkaozZbzROKMIWdRRlVY0xmGdxRqDLQLbpRT6kOhCRmxRSyVuySajG9l4ZPEYcpFKNuUKD62wyaIU07UJQ4xY43CtJZVETJGN6TohBnQBkuLy3g6tbzi7dpoUAkMM7KNoFdD3nN/eYW/ZHeh+qcoBUCisqwu4kvKcEVHCUqAfAkZrGuep3Qn6EJktOhRii6rGI4xSTMeNkPBKqeilFRdDeuvKyDvqrVSwSl0bRM5xypFUFEPSeNUzcpD86FA5EkNmiFsoepLaYXGSI8c2YirszwN33rLGxtSz6L62idVXhzGOG298Ld1yl0uXvvIcP+XRxOFnJDGhSibn+iU5E2MkhEKpbFxqPzflSIyJ7X1h8k7HY+n7quqTXgT7n0ukbSybE0/jDHvzgZDFpbCUjNKmMnsLCX3Ajs45VdiobArKaFy1NYwpshwSjVcV1qkZNV7aBzHShQy5SG/bKC5sX+T6M9ehnWY8GcvgN2d2+xmPXXiC8WTM+mjC0PXEIWAbix+1LL1i6DrO7e8L0U5Rh8zSt1ZKeA0gUNiSodQNREycZBlrLRpIQ5BK3piK2FGKRR9qe0ZaNTnmA1/yUgqN8wcw2byCjDpXB6xHT3I6bjlyftZyy+YMFS6R1PhQORL6arWsYOkV4SRHjnXcc98Ob37NaW67ccK5i4c7SI5jXBGzHWoy1ggxkVOumH3wzuKdxznHEAL7syUXd/ZJqTAeNawc8RrvMEqjVaH1lsmoJYYgNqBJpNu7EEhlhtGGdtRinSdVNI9WCrSjHwI5BBorPuDi+mYoKHQRk5+Cwmv5vqEU2ehSgpgZNS2z2YwnLj7JjWdvEPOllBiGQNaZjY11bjx7A3kIGKVRztK0DTFF9kNgGDr2+g5rNVoZspVKeqUpteIn5MoVyBU51A9RYK+liG4SUi1bo0B5tLHIADUS4kBOCedkE5aWjMYY+7SMRi5Pk9Nqg33FGj/SOGY50g1yK0r9Nk/suUPmiGYIgmDbO8mRYx+zRaAUOLvVXutHuaZxePhvirSNx5m6GJNUm6vBHVCx/rpyCBSdjyyHSBcizlqBZpaCqlLjpRQxjoqJFCONVUxbB6qRFsVyUVVMe5SGyahlCDDvomwEWuGNZtIYlDYs+wjGUIAYEl3foUpmfSyWqSs/a6NUVQhWjJsxXRzY2dtlc22DbuiZzfa5/obr2NrcFLG8aLDGkZSCDLPZPkXDTtcfaB4pBSoJtyEl+XkbZ8m50GdxBFRKhAxTFp0w6x0hhAOnOoXGWS08ihhFpNBokqobjpX3zFphcMfKQ8g5U1DCr6g8jtUg+ijjuOXI3uAZkuHG9cLjF9WhciQWBWhQexSTT3LkmMdDj8/Ymwdeefs65kNPK1x/vdDGobVlZ+fxYyGPAlckIx+xRrgXfRCY5sruU5Ds0oro+oGRd4y8RTGqiq1GnPMUqFJJYlqhcmG+WDL0vQj9FUl2lBj9rE3HjFtPFwvdELAKkiosFktiLoyaBoxFaUPrLUPFy8eUSSkw9H2t4iZY5whRMVRyVwoRVTTj1rPerLE/n3HvA/exsb7O9VtnaLWnREhIi6SPA+iMN5ZxM6HLC+ahlwoSKpyyihGW6mUChJRQGtpW+vcDCLS14v1XMhUZVQUIdX0vqg7VVw2cU8pVTqNuzsZULSsZrqba649JDKCOOo5bjsSQGJJh5Apnt06zO59/wxyJ6TQ5TzDmEZTSJzlyzCOkwu5sYH3qMOZwB8nZs69kY/MlPPDlXyPGw9o0Pr/j8FpbIdL3w4Hkdc4rl23pSScKQ86EELDV7lMBk1Z8t4XILNf6nJLAG7UixcIQhKA1hAAojE14U5iMGnzTsL7u6IfI5b0lu7OO/fmyyktkKJmUInMtPeRlHwhJTIG0kjbL/mLJpC2MvMEaRR8i3WxBCIGUE07lCjU1WGtRWuOcp+s6JqMJIWesN3UQrHDeM/Q982Fgrz7Lakm2ztVBqWg8DVEIeuPGVUXbTCzlAAYrI1DRSUo5U0JGazBG2iMhJbzRVUZEtJcK0grp+gHnDG11xKOymZ0RF8KjjuOWI/P9jp3OcbNfYMseIZZvmCMqeNIghmi6mJMcOeYxhMxDT8x5513X8ZLrRnzlifk3/Bqtpc16nOIKDpLAsuvQeow2BqcVJa8GeJlSNBlqworkBXCgA4TRDDGTcq4y4wVHlYVAOAeTsWglGQ3eaxrv0MaijaUdWdaLvEYIPYvlgCIzDD0xDChKRf4ojBIJC2WEqLboerquZzJqMdqwWHYM+5a+63BNw3LocM7xipfeQSCyjB1tadBOpMFDCEz1WETzjEFraFrPqPXia5LzQd87VqE9pZ4W11sZGJVScFac8QpScRuzkliX548pk4YoiaagGyJJi4aVqwKGq6EpGlIs9CXSOPlVFgrjxpPc0XMEjmOO7HVnUOsF1V9CqzPfMEdWpExrDM6e5MiLIR5/aoE2iltvmhzqIDmOcQUSKYJVH+WMc06u/oivg9GK1gmk0juL9w6jFc4Y5suOWT8gqq+amCFlMAqcEcvQVK/53lkRtFNCxupDxvWDLCbrmExGtI3nhjMbdF3PbD5nPltUktmKfKXpQ2DZR9kwtMYZQz/0zBcLJqMRRkk/P8REosONPKe2TtG4hvV2g2W3YD5f0nULTq9vMWlHaLTIaAApCR/AW0/j7YFVpq/2vNQ+f0rpaaHBKHDB1fqWavlpJnPOMuBdyYSgiijfeidV6Aq+qmUDLoUqxa5JUQhpIO9tKjLUPuo4jjmy28n7eHqiGKbfOEdKXpEgw0mOvEjisepHcsvZyaE+37oRACF0z9kzHXUc3iHRWmKMDMMgWPuVl0QVyWsbX6GMqkqCS1VkjKZpvKjAplyd4RQhKpxJWGMwSq7lYRDHOYUiJLmWLzvhCUycDB2ds6xN16Fk5nuWXQuLPrGMwlkoORNDoh8ixhZsEox+2zRSkSKaTq5tRdo7D6w1DeN2fOCb4Z1nfW3Kpe1L7M1n7O3tcd3WaZzWpMYxxEjKibGzGAXUStFo0UpKqRCz+EiEmEkxU7KlaRxKG3nOmA84DIVCCAMhZsajhqxV3XgMGVn0ChhSEXSR1rV9Ud0CV0qySEumHyJt4652rrwocySaKX3aZWo7pr7BVIXhr5Uj5DfIz2wfJaWTHHkxxFOXO3b2Bm67aYJ3miF8/Zvey1/+HZRSeOD+u4/oCZ/7OPRBMmocu7OBvu9pvBM/A6txCO49RmETlyKLNVeGMUDrfd0YMvN+OBD1Uwd+CAKg7/r+QOHUaCXY/lLoug5DIuaC1hPhD1SSmzYarbNYmhaFVQWlckVDZIIShMqobfDWHkh3t6Pxgd6QUZpuuQTfYLxFa0UzbjhdtlBKs7O/y4XZZW7cvI4hVXmOUtgcT/BVeTVmqSyLFhQNuRwouyon/AhTPTi6fiDExLhtsdYSUzxA0ayqzxJF8FCqSIWrRLKUMkaBt4a++nusBq0xCYehD5H0VRDco4rjmCN9VPSxMGoG+sUC59XXzZGzU1utWtNJjrxIYr6MLPvE5prHGsXwDYBY2sgBno4JYguuSEYeKGJeFKPg2p/GqAuL1oYgqq9KVF5TytLXTbkqmxomrUdX+OeqfRCTtBhCJZZ5Je5x3oraawyRWezldUtBl0SOgb39GfNlTx8EyTPymmnr6BuB9w4RKLJ4crJEpJ+M0jRtyxAC152+jsa3GG3BKYzVeOMhQ+tbjLPY1nJdOc2j5x9jOow4e/oUTecYj9dw1rPf7VckUKFtHEYpukGkPp5ewIVlL4iZZRdRWh1sklYbXCNKrbGq5zrrRKvKe1aWq86K1/fKyKkfAl0pOCdyF0UprNWUosSS9ojjOOZINwT20ybrXGas5wQ3/bo5sr8tB6Nzjiad5MiLIWIqfP6BXb7rrTdw+01TvvDg7rV+pCOPK2iSCoxTjIUCQwg4JziUlZNbCNILpw4Ec86kJFUXaBkg1t6vphxUpLGa8qxkvHPVTIpRWgFKK3b3F8wXS5TWbK5NKmFMtJPQhtFImM9rk5ZxK8zdeReJtTpUSkTvll2P946QIqfWpkymE3JMxByZthPSEDFevCCUg9l8H2U1I+e55fqbuPjUBXb39rg5aoz3XL++yfmdXWIqdWjKQetANkZ90OMfYpJBvbegZFMIITJqXSXKZYZeZO2lEnW1Qs0slollP4iSbikHvw8qmsc58TofYkTljLomXLPjmSO6McBldBlo2ubr5oh3jj4V+r7nVEgnOfIiib15QGtYG784506H/qm11mijCUNgiFF0gIytfVi5YisiWhVCBSyW2t91RgMVnlgEJlqKxTtLKYUwBPoYcc7gW0tRiawcJWvKAN5q5l3ksQu7hJjYXFswaRtGoxbjRZivcQ7nxD7Ue8/GWkKbjvmyDlRX/hg5k4fAfLZPTIEUI2EYMNkw35vTNg0hRYZlz/pkijOOdtRCyjTOc+sNL+Hy9gUunjvH2fE6N2xt8eUnzzHLnZgpFdlERe4bWCFzqtZU6xy2bUhVyqOUjNVapMK1wdoVkU/aFUkpETwcwgEHwRgt76kWGQylFN6Yg6qTg43kaOO45shuXOdGo1hLl3ny6+RIjoqd8Qa4ffzy0kmOvIji81/e4Qe+7WbuevkWH/vcpa/5ec6Pmbzq1TyZH2d7+5EjfMLnNg7f2jIabwxBRUqucM4ciUl0gpQSnaAQZHNQWvq1uZTKchYoIkCpbnVaKZS1FDL90JGArLX4UeQWoxy5JKz2nNpYQxnNuQvbDKmw2bY0bYsxBkXBebnmh1SwTjEZt6QCIXVkBL1SjCzYISRUKjS2QRmNthrfNPjGk2Omyx0xBpa2I8YBpcEWzaQdsez32eoSQRmevHwRD6y1LV0YpEWTS90MEyWrA1VWUDSNwEG1EmVXKtwzxkg/iPqsNeK7UXIhhUgqmWU/iGpttUw1CP8hVvc7rbXIZGRFLBplrNjbHnEc1xyx0fHmD92G213jF793xLaxdDFRsmGZvWhj9YZHXzLi33z/PjYm/q//EpqTHHnRhOoUb/6VW3ntI7fyya3Chakc0sZYXv7y1+GczEXO3b7Gz//YCJa7dD85hvu+9qHzQopDHyTiUKcqdBEhmuV8gG3XQKKQq5GR1vqr8PEVD6+NIHiofguAMoa2HRFyYTnMCTlgjcXognOR1nlS0Yy844YzawxDz+X9HqUt1gpaR2Q1BAkzW8hiffr7GbQWWQ6nNdNRw4KBl4ynjBMYFJP1TZRWhBDQRTFqW4zVWG8pJdOFHps09mLEdR3D9gyN4sLujPOXd+j6ocIsq5y5NRV6qSg51yGpKLtqBf0w0Icopk3GEGJi2fWUUvDjhlEjRjkxJuZdIKYsFSsifWEUDMNANwzkKkNelhkNNM0I51vyIRi2VzuOa47c8kjD6z56AzorLp3yfPA7T1Mqu7DUeWkI8JWz6+ytA8XwyJrnDSc58qKJV+2e4fUfuwmL5n9+5+v54Hec5oCBWqMA//kdp+hOO8gW3ngH3PfoNXneqx1X0NBTB/1pEKbtKg+ritKBrhJV00d6t1UIj4JWBVuql7fW9e/AOof3DX3oSVkRiiJRKvJGFlNIS7QpZBUoiEFPGrc4rUWEMQmbegjCFm6cIcR8ICAoi5YDbaM8RPLuPmpjQsmJMAjE0jeWZbdk7Ef0iw6rDIvlgt3tbfpzuwzdwPb2Dpf3FzyxN2fIkdvWNCNvccagnKKxsvBDjLJYVfUVT4HZPLC/WNJV1dbpuBE5EFXw3tI6i9FCXAtJYMZGiR96XA2mS2a26OhCgjrMVtWGVseEUv3BZn60cTxzZH+8TlYjgg/cf8tA0HuQBe6c1AyjDP2w5OzHH6D55jegU+Lh//gh7n300kmOvEjiCZZkGvbp+Nnte7j3U3LQpxS5//7PEqrS8uIXxvDaPwspwq9++ho+8dWNKzpI5Npcq01FJZBVCYwV87YaDpWswJiDqrMfolT81bBo3DZEo7H1dbz3TFljiE+7vYUIOYvSq9KRogtFJSZjyKWnH1oa71j5U1ijGVZDTK3IB2QuKEUw+SixWv3IfV9h48lLbD1xnlM3nGF9fcp40jJZn5BSwFu5jTz25FN89vMP8Pi5CywXPUUZchanPABdEsZ6jJVePkVkNJRTUFsLuaKW5kvReBKDo0LWYqgkm68mpMKiE3KdvLxibdxitCJn6EKUdkcpGOvxVd4j51zl1y3GiFmUs9dCguF45sjL8xYmvY4PvuIRPrp1jvEgObLZbFBK5sknL0mOPHmR8so9lj/4Cj7JHHdp/yRHXiTxdl6N5RX87/wyf+fzP0X5/Nf4xMeAX/4V+OE3wW1rcH7nCJ/yuYsrYLYnchJMeqn4/KzzamRaXe0UgveXa1yuCrtGiQprXLU5UqHxDhCbVZ1BaY1vxmhXcEn6xySRyO5DhzYiOiToH9k8QgikJBsBCMbeaE1KkVJMfX2NQZFyRQrlyH4f2R0Se9v7PL67QH/lHNNJw003neGOl92C9pqd7X0eeegcDz78JPPFgNKGXJRwEoyVhZsyJQqEdNKo2vMuxFzx/bmQizrwuQiVbSzyGVZkzTGAkMv6PlKcxTmROa+qIRhdCDGz7KWS9lYY3tqoA7ZzypmcI+DR1mDd0UNyjmOOLC4veO3udSgsP7n/WT7zuctfN0eIBbRC+wbbNCc58iIIi+Z38kY0lg9w/8GN/L8YBYhJsPLm+Bzkhx+2a8UwpEogU1UbSWpN4ctKn1t8J6rFp/oq6XAlr5GSOLiFWoUppUSLKMrGI17bFm8VVslmsLO/y958X5zzVME5K62MIdD1/YEiqsKilLQmnDF18yqkkhGso3hiz7oASkPJtTq27M179u5/jIceOS8e16kwxEgOEWUMJQa01uRU+9xJrq1aaZZDZHMsekoxZlb+D9pYvHNQRKgwV2l0a+R5ixJF1phSbUkkQlIHnIuQpV1hjKp8i3Sg5qqUwq8sY8fii16och/22kAQj2OOTLPhlfE0T+k5vx4f4sn7975ujqg9kb0oa1Y275McOfYxpeXV3MR59vgEX/nGX7BTDbA2Rs/tgx1hXAEhUTFqXCU6ST/3aRE8OWiVqqY5yLVb6Vpp5SRD00oyS7kwW/ZorbDW4kcOi6JEqQhRoq/krYai2VrbIITEvJvTeMu4GaGVYTaPzPZnQGHUOPraCx+PvLQMiibETAii7GuM9O+HVHviKLEcPWjFiLxB6oZKpEu1P1PZx1o8JVIY0EbE9iiFZaiwTK0IoWNZ0TXOgbEWhcJZj3OaUdvQWC3+2VkIY4t+EI0kZQ+GzykXUBkQL4vJyNE2FmcNOUMfMilRNw5k06nQ1fmiJ6SjF+Q7jjnypngzt+VT/MfRF7mg598wR9yvPkr/x+5ieNdN2LsfPsmRF0G8hZdyO2f493yCp9j7xl/wi/fCX/h2+L5Xwfvufc6f7yji8GWJUqxPxlhr6IdUB5LSVz6IIlIYgrZZ6Skh1/gCtlqLTscNi65ntlwyGbfYpqUqZYh+UIGcV85xGWctG9OpiOB5h7eNiPapSK6DRqtBKfFhmM8Ds0WPsiLXnVImV72h2bwjYdDagl5JcFSoKnWTyplilFSoKaKsQ1tHjgFKQRsjN5osSrVdEujopLFYBdCxO++ZLXtCrM/sGpyVQakzsrgT4m+Ch/xVm2qR7ohsJBSUkgrSGEgxMu8Ciy4Rkzz3pHUYTZW+SCy6QDXVO9o4hjny24dXoVF81j5JKhG+QY7Ep+V/T3LkRRLv4S40ik/zCIlDHM6rRNbHB+xw+BlJrSxzhtYZvNEEJf1dkGpzxaYV9E79c21f5CLXeWs0p0+tc0bBE+cvM1ssyMqQlMiB54Ige0rBGIWu9qBr45aUEkUZhpCZL2YCZRw1OGsYtV5aJznTh0BMEeogtVRThxgLl2dLMg5t9IEngKqVpTyzkOdIgrEvOaKKIaeINkaGs9rWnydDKfQxsbvoydkKzt9aWl+IvYjsWQPaFUxJqBRJSRZzCAGjNTFnilbkpMlZCHqN07Re3g/pbSdpwaTIMOSDjQRkYByimEGFIEKG4RpQBI5bjkx0wxvjS5irwC+PHgT4hjlilgm6iDK6cv5OcuQ4xwjPN3M7c3rey2cO90V7PSzDi/QgSYn5MjNb9qy3nmyykM5YKYyutgfqxrD6F6nEVu+ZsYbxaMR41DCbd5y7sEOfFO14Da9lgJhRhIpcaZ2BkmmcY208ok8FHRNd1VmSfrnBGisDVAR3XxAUTCwJay2b61P2Fx3L3FNZcJTVILhUAlyKckOp/eeSpW2grfzb6u3KJVNSPDAQSlnx+OUZm60VRrG1WGuY4EkpQ46koaBai9MWamvCKU1IidliidKG0agVT+56QxoqCa0LUoEbLWS5XKQStfKodVNUNE4q0nFrCfHo2xbHLUdeEbZ4TTzLo3qH+/RTh8oRfd8l9Lk5w1uvxzcK053kyHGOV3EDr+VmHuYSX+Lc4b7oi+fh0R349jth6mE2PKfPeBRxBaitQkiRmJJ4HaAoStWElca3rro+Rutqr7oaqCpK0aB0JZJJm2HcerQ2xCRImzDIgFMp8ZvuY667vJROzlqsg1IsYy/kq5QFGplKYdkHhkqKS6Ww6AeMMZzanDAZj3jw/C4hFbQTNrsQwRRaG0oOgiIKgZKl2gXqes3S2qoIo1xlzrV15CCe3F2SSnDUNJQizG4jbwcrQb0hqLqpKZxRjMeNEOSWPTEnpmOPsYZchQlDTAxKts1UK+cYM6hyMH+g8ixU/V1YYxh5h74GgJDjliOvidczLZ5fbx8imgKxfMMcSdLLo0xcVU04yZHjHK/hJazR8kG+wMAVXvGm/tjcSq5Ia2sIUfrJpWBKxih9MD1d+UqX+rnGSKtCUlnaF6oiSLquRxdJfOscsagqypdQWvq9VCG+WCAF4QxMRw1aFdEYepr1RhcCuR9Ydh2lDj0XXWS+7Dm1PqVpHNuzBU/t97KhVd8LqHNSCsoYVIYYB9kIUkSVjLGWFHoo8jlFa8gRtCGFAYVCG0ssgv/XdeNadILAUUr8IJJSdUODUetQFEIUc6GzWxsMKeGtYTkIBNRY2Wi9E+jnIDK1QMY78R8vFGLMB5yKZRT5DBpLY44elXOcckTlwrsXrySS+YXmXtIhcwTXQEigPThNmi1PcuSYhkLxg3wzgcTP8JuUg4T7BiFoDjlI7PGAYB9eIiVn+opzT05QJqvDVGmxQT2o0NSK0azqFb22NIogUPZnS2IIzLuB2bInFVE+tVpjrCUXGYC33tGMG4yzlCzQzxACi14kMrSWLWgYIrvzJd3QoXSp1qSa0ajFe0fMhYee2iNkdbCJSa9eVWa0HCYUccYuWqFz4sz6mD5k9pOum5xZQY5Qus5YcgFViH3PIg1YJe2y4YAPoA+IYyJXblGqIVO4POswemA8ahg7hzGaZRfphkyrZIPQFeXknRWyn1HVBU8RUyKExKIbCGnlkFd75uXoK53jlCPXlzXeEW5lV3U8oC9BlWX/RjmiQ8H+2mMMf/T1pDdcj//QYyc5ckzjetZ5Jy9nlyVf5vzhv7CP8P4vwZ/7VnjLLfBLX3ruHvKI4vDwXytyEkOUtkXjLKooMmDrtZnapgBISdoJzmqKol67ZbPZnfUsh0QXC90QCTGK74TR6KDJK1xP7FE50nqLt0aQOkUGjSgj+Hml8MZilWYIiZBFIXY6HrE2GWGM5cnL+1zY61HGouthIJtaolTsPZXHsJqfbE5bbtia8PD5XaCK7KU6RM2FbIwMiHMQxFcRLkLX98gB9fTCzimDlgMsxkRMgvVHaRb9QExZNjTn0FpTUiYMhcYalNJoLdW69Na1KLiu5g06CRehtilSyiy6SIiHrI6uYhynHHlVuIH13HJ38wCPmR2RMTlsjvQRtKL4Os85yZFjGa/hJjYY88t8nke4fGVf3NVhu3+R3Ug21zfoQ2Fnf59SyoFia0bw7EYL2eyA5FcEqljQB4tQYJaJfsiULrBq0ooOkPSGUVq8EiikmFgsEmGwgk6pQnWr1xHZbxmcnlqb0LaerojtqNEKpR2LfuCJywsy4hfOil1dMqrqD+WUKYqK4pJ/P7s5xlVOAauhqhE4qzEWckSJS7dU19ZDCigyGXHAG7UOZwxdH2QwXBI5i/x34z1t04BSdP2Ai4nGO0aNkxZEP9D1kVjUChyEQtA9JStSFumMmERuw9T3MirRb4rXANt5XHJEKc33dq/AY/j50b2gFSqVQ+dImcvwtDQKleNJjhzTeDd34TH8NJ88fFtrFYuq9jnxV//BrkFcwUGyjjGWxjuWy8XBRlEKxBKFTKY46D9LNSUS2TFnnBFmchdqH7dwgH0fj8dsTCdoY6qtaCaGAXImpsgQMzENDDFjna3VaN2EipC2lDZMJ57N0YSkDH3XE2Ng3i/psrRBShYki9K6DkiL+H9rXdFbspk5XWitFjvYarikjCVXwUGljQgBxgTGSEciBXkuJceL1gajDc45ijLExZKUEhRpN4C0e5xzMjRNIi+itVSUIWq6PjCkQsqyGWsS/SA+EzFl+pgYQq5VfVW6tcJqLofBs1/lOC45so7nu/qXsa96ftU+eDC7OWyO6F95EP7i20jfczv5P953kiPHMDYY8dt4LXt0fJAvXvkLvO9e+Gu/FX7HN8G/+fRVf76jjkMfJGvjlvGoYX06Znt3l929fUHQAChxlltVjFobjDFSkdaFk0uhD2K8sxL1K6UwHrWcPrXB2rhFKU0qsDfvCEHTeIfDE0Ii5UQshRRyhZEWyiCqryKzUcgp0uhAMzJ4Z0gxsuirs542cmhUpvFKTFBrkcUQGGcGrTAlsbM3l0FlSijtZQBrpQ9PKdJfLtLTLwDaQJF2i5AcFX2IeN9grEHrDqEUlPrzZBELVJrWe4YQWHTDgQ0typBKrPj/KCQ0Bd2QiKY6C+Y6Ws2QQxItMK1QZIw++ivzccmRW9IGL4tb3OPOcVHPZDZ2JTmS6rNbuQ2d5Mjxi1vY4g7O8mke5gL7V/4CoYJB3PGAzh0e/lthgxvTMVYrYojsxoiqchWrDWK1IYgWEBWaWRhiYBhiRajU6g+Ft4ZptUBVSkTorAZnFNZWCZNS6INoIAECKy2IBHguOCPD05wS8/0ZcRiw1pBiYDEEQB+0JIS5oOozG2IYBNIbgwx9Y0DpxPZsCZSnJcZzoqgqk6IVZdU2UQpqlaiVRqv6s1MIqjCEcMAJWA2VuyHS9QHvXe27axrnCTnVNkVhOUQKmsZbnLV4b6W6p9C0nlQKXTfQ9eK0V7K0j1IdOGt19Gyz45Ij39XdgcPwy+2XWZpMDumKcoRQoIsCF7da8u0kR45V/FZeh8fyXj7DgmfAA+mjkBLV8QA8HPogmXVizDPylqbxnDq1iW8ack703UDKqWLhc+USrEyLMilGYpKqTFHVSHPBeY+1tko2DMQolegQouidVuvRlGJtc6gDKGnK1YtCQcpUfoKQ4rplh3OWvUVPLAplnXxdTuQ6I9FGEETaiFz8yuJVpUApmZAr56EUyspJTtdWSaJWnw5VxEe7lEQqsvEpRYW0iuy30oqiLZAhZ0JK7C86xlnEBY1ZEexEjE8+CjlldAFrxddbGUNRSloTJaOajM6JeQwMte0hh6XoKR11HIcccRl+e/dKCoVP+yfl136FOaIf2cV8eYf0hrNwZg19uTvJkWMUDsPv5I1kCp/koWf2Ig9egi8+BW++GU6P4dLiqj7jUcehD5L5shdETaiaPtrQjsYYrZhOCotuyWy+IMVBFnYWuKRSGoyVoWQR/Hypjm0xF+ZdYIh7Qg5cwTu1CAAWAVOhVkSrUuXGZRUemPhQxBBJ0ECZmCGHwt5yAC0M5pIzxhi0MuQUKKn2tbWGDMpYSuhpDAcufcZoULWNpY1IyCtFShHjPDkljLVY0zIs5vQh0Svw3mO1VM9KG4rSZNIBobEUWHYDOWdGo5HwJFKqf1fwTg65bujRSuOyp2BoTe1xa6lqvXWMXEPrlywrYU0pRYiJxfLoB6nHIUdOs8FtaZPH9R4fNw/LbeBKcwQoKcGaJ2vxVjnJkeMTp5nyUq7jMS7zMR54Zi+yuolvjOAYyPkf+iBpXF0klRGcspgLhQKjxjFqR+SiMMbQ9z0hBGKGprFsbkyZtJ7FsmNnb0YIgZJkoaTqO6GUbBCKDEWB0aQkNZtRSlRTVxwEKvaeTExVNlyLTPkiRvpYQGuWIaG0PRhQlgLKKFQxwkTWmhLjagKM13BmbU2YxRVWub8cWM4HoczVSlAbMYLNOaFLxe5bSw6KxXJJiBFrLNZqcgrkUohJZitayyahkOHpEDNt41FaMwwDMSTIDqU0bTvGO4d18u+qynw4a9CVeqBcZtI2LNuubiqF2aJjvuiufra8CHLkrf3N3JTX+Yn202yrDqWeQY6ksrJcIbPibpzkyHGJb+FOXsIp/gUfZpv5M3+hlfryMfAlOfRB0rYNrfc0XkydYozszpZ0XU+dEOKMQTcN3hr6EOlCYjRq2dpcZ20yYj6fMwwDiyKVaImRlDMhRpHJcIqYIKqMqW0KrRRo2UBaowkx0YWAz2LDmlNEa3DasugT824Q8hqKiEYpg9HS1sip1E0BrG9RCsKQIAVKCmyMGyZtK0ZKZmUmpLCLnlhKJSTqgz45ypDoQbVoY4hK2g6EKAZP2ZDUV79WkU0GYXm7ymlJWarWpmnxvhxsDNZZjLYH6CdRsy04A945qdjDwMQ7NsYN+11PHwZiBmf75yxpjnOOfEf/MhTwqeYJjG+eWY4Ujf3gwwxvvoHwlhvQP/fASY4co/huvgkFfIwHrxT0+3TkAu/9InzL7fCul77gkVtXYGwli1LlhNYWby2b0xGxdWiEANaHSAgyLB1SYjkknBPjnhgT80VPP0hbwxqNd6bKjEt1mMpqcFkoRVWfBpHbcFrjrSXGSN/3YGXxpzCQVWE7GnbmPfM+4pwjKUMpDq2e5ooo66EkcgyUIlwStMhSeJXZmI6wTlzpCrJJNd7RWEMMGVQClSnao6tFbI6R2C/Rpg5VUTSNp21anLVSOBuD0gatDc7JzyRwTEPj7AFBUlckz2rwqpSqyJuCKYVSBMpJhbOiRH8qGUXbOraaVnwv7AjU0ePTX+g5Mo6Wd8Tb2FZL7tb3C7z4GeaImgUwGjXxlJROcuSYxJSGd/IKLjPng3zh2b3Yfi+3kUlzdR7uGsbhZyTzBdkbojVYK1Wnt4aVEKk1RoaFOmK0YgRY2wv6ZNlTSmZvf043xGq0o3HWEKoQ3moIq7WisQZvLbpuJEYr2tZL37gk4tBD1ngrrZSUC8teqtsCssgQNM+qr66UEtbxSrIDqXhzGCBFNqct49ZjjGEIkfliCUWQPq1VzEOiFI21Tnrapaq+GnPwPa3zTJp1NtfXGLdtrSRlOGy0DEG9NVWgEKw1tI2vaJ6Vz0T5qmFqls1Sr94fdcBWTnXInHNmUOCGSDOyjNsGayxtc/SbxAs9R14fb+SOuMV99iKP2h1pVT3DHMm5FiqNRltDKSc5chziLm7jTs7yJZ7kYS49uxcbkuCymxfRjGTZLclJ/DiM85xam1K8ObBDzRlQ4meeUgKtGDXNgXeENZqNtQnWGubdgCbLnEIlIVOVgtGaxjnWpyOBaubMZOSFK2AtwxBYOkvbNJSSyWiscRQlPg7TqQNkQS5Cog+ZkpU4ICqFMiI3bqz8HCVncox4VdhcE7JbLjCEyGK5FKXWtsFohdaWouSZjMlSXVYfDLHtBe8Mp9amTEYtRmtCDFC5KtZINd0PQdBiSpGS9PBHTYNrGrTW8t4hPfWYMoEo0M0iwn5ai6SIVORS0Cgl1b4NAetl803p6AX5Xug58up4lgbH+5svE61U9M80R/QXHoPuQYYfmOJ/UoMghV/0OfJCj9fyElo8v8A9DDxLsMJnH4LuAfj9N8I/t7B44YIfDk9InIzoh0AXIqmfV+asr7h0EaBzlTG7qpy0VkzaBoogRUBhjWMyzigE8hlCkIUZMyiFdxbvvRCoSqEfMtYCMbK/GOiTZm19A1USO/v7XN7dP5ApF69rU/vMWX48vdrwBWZqVqz2ItWAAjbGo6pcmyqKRuObBlUsk/GIZR9Ri67KargDiKnW7oDcmOOAMmDIpBgIudANA84Kxn/FNUDJYlcgBLqgGBR4q/G2AQypPpe3WlBmFcWklCiGiI+HWNmWLK+TEqSk0VGTWYlSHm28kHPkprTFH13+LgLrvG/yACuzs2eUI8YRfts6tDPS6xXpzacwH945yZEXeLyEs/xJ/iADW/wc9zz7F/xdN8FoDm9u4R1n4FeefPaveY3i0AfJ1saYCztzfAFNIefEfNlTWA0KZVEPIeKsFgSPUhityFmQNa23MuSrm6/yvrKF5Wu7EBhCphuk4opVALALkSEkFn1Ea83auGV9IgY/l9W+mPYEqcpykj50SFCUDCxL7SNrQFlH6AZKjlAyTsO4bap7XMEYjTaG6WRSTYIsRQUaO5CLSF3klFE5QyUn1s4NJcmml2KojGIFViRBQkhSSdYFvvqv1YqUFP0wSDsDga+uVIm90USjBU6KsKR1yTROJMJDSJScibEQtAyOi6ozhSOOF3KO/Nf99/Ga+BoiiXXOEMMDzzxHAPPRXfgj16PPD5j7Fic5cgzij/N7eB13EYmscQb48rN7wV87D3/2FfDEAj6/e1We8VrFoQ8SZ60M/Yqi9dK+mPfxaYOieq1WSnwjlv1A66SHnXPGqMLIm9oWlGHpCnHz1QJ/Q+gpRUhYuQiXYDlEukE2CK0F7ROiZX26xubGGqUUFsuOvf19tvfmLIdEzppVc14rLapCSgtHgac3JqOhD5GYS600RYLbakVMhUUXGEISDxKEDV9yEnG+UoQLUDLKGHIM9MOAqsQ1KmdB1e8XY6qtMamKtYYYBbY6DDLYVUp64tYKRFkp2SiSplbQtdKsCvbFGkpWlEpiy0NAqSTtvCOOF3KOfMY9yEIN6OK4yPxZ54j+/DamewDzWERfjgL2O8mRF3T8Bl9kTo/GPTvY7yo+8xS6+zI8NCOfXz7717uGcQUSKQVrDcu+9pUPWgUVYpkF3dI0jpIz3SCmPaPGkXMhlQKqHLQYdBXBs0bkrikFU3u7IYpzoTMGaw2LZX/AHNb1BjDEROss7ahhMh6xdSqzmE/Rj5/niYs7B89dsrjdGSW3h9QvIUs/WRXhFfTDgFIaY0R/KeRc+QjiQBeTKM2WGMB6lBIimdRzqlqlisNd3wWc0XVzhJwiChmWmkYOoZwLhYyqPuV9kD65SGSkilbSWGerfEgmBPU0iSmLvlOh6jYpMUUSCff+oIVz1PFCzpH3Np/gX7Sf5Hcvfydvmd3Fp9rfeFY5ooNG7fUUJYfPSY688ONn+TX+Kb/KD/EHeAffxqf47LN7wa7AzhJ04uDK+gKNQx8k+4uBZZ+IOZOLkM68rV4KRVzfvFUYVUiK6mcuw1FjxGMhFcUQIwrpcwPoCttUWmGLZn08og+JZR+EjQ6MvWW5hGEIKCublSqJnJNIRGiFcx6j4OzpTfYWHd0soMzKYx2RfS/IYFzXDSIX0YEqBa0LjTNMxy05J1IueGsJIbDsOnKSBa9TRBtTe+h1E1CaojJojbGKyXhE2/q6ucC4sQjGS5ETLONQPVCs9OFVRTRRyCXSmwGrwTRehrgIk5lSiDGSkJZOKuIfb6tfa6hKtCKdfvRZ+ULOkUjmZ5q7ec/yPbw+vhajPanEZ5wj5mJBfyGR3uaIN/ToR09y5IUemcx/4L38Ln4/d3EXBkO6Unvdr44LEe5ZwrumcJuHr7xwvdsPfZCs+tK5yOBOZ43xUplbpXGNZtw6FLDoBXXirJVqVAkUMaVS4ZZVHiM/nchCHEs03oKyhJSg6INhqwCvClYVDCIhPmiFc4YwBGxl8U4nY7bWJ2wv94iqahppBSmRo1z7tXHkHMlxoKiIM5ZR6xiPGkatF7RPFultTSZGg6rcrZyCaDpRxRtLPZuMofFjrt8aM2k9CkXfd5Ajuvpp17KaVbstpUwfkshWoBiPhFeQc2IYenHScxZKwJKJZNFK0oqipcrNpWCNO6j8c211XIvy5oWeI5+1n+NxfY43xTdwIzfymH78WeUIBWiQVabKSY4cg/hNfpPHeIw382Zu4AYe5/Fn/6KtBvfCbjNeATe/VMOdzLIbmC+WxBiqfhH0Q2Bnb04/iJ/1EAKxDhVjDHRdT4iRkbe0XhPDwGy5ZHc2Z9H1FJBrOjJ89dZgrZK/U6Ia693TXgriZy2vO58v6YdIURpjHZPxCK8hx56c6sIy5kDaBKTKtNXbejxqmE5GeC/nqqoY/mEI4kGOAqUPpL9RUFIQ7/co/6dyEpr6jDlnYkoMsbAMSQa1lXls6pxA2Mvysy26jv3ZjNAvGfqO5XJBN/SEJEKHgjyrw14lqBzqZhaT9NWtNTTeSYV/TfLyhZ0jM9fxofbjnM6neEt447PPkbpR53SSI8cl9tnnbu7mOq7j7bz9Wj/O8yYOfZCEEDGqkFOg6zq6Xj7CMAjWPkmroR8iomkq0gx7syV7syXzZYdRhcZqGmtwRqNKpu8HZvMF/RBQyhCLJhcOiGzeKqbjhvXJiEnb4iurGMQBr+t69mdz+iFgraMdjdjY2ODs1jq2JJmHpEyJothKKeQom1dRmqZpqraRKKnGGBmGQD8EZsueLkRyqX13pVfXD4EVUzC+oaBIMZKyyH8PQ6QLkT7CkBUxi3JrH4vMDlAHA+jWW9bGDeuTlkljKGlgOZ/R9QMhCuFMKanYZYCq0BqslnkBRVwCQ0y1/SJF7eo9Osp4oedIjgPv9x+kUPiu5TtRIT+rHFk9w0mOHK94L+8lk/levhfDyZwJrqC1pbViOnKkFARKK+UOfQgooKlVYMqFsiKgpcyi7xiPGjanI0aNI2YxdFkZF1mjKGTmiwXOWUZNg0ZkHVaeFY1TNEaRGkcXBFK6WrgHDN6cUVrhrWNzc4M7nWc2PMy57RmQKUWzWuM5iSR4UppQEUL9EDFaWl8pJYYY5e+MwTvLqPWYbklCHQg+rhZiyauhKDjv8Y0nFYVLHFSK0mavlWEpeGsO5C+8FTVbTWa2WLLsE0UnMXhCWPi6tl8Eblyqk55sFMYoUCJlntOKTHBV8+RFkyOfNZ/nEfM4bwlv5EyzxXlz4RnnyKpzVArCRznJkWMRn+EzPMzDvI23cZaznOPctX6kax6HTqVx6xi1nvF4xNp0zOb6hLXxiNY7Ssksh55l19dFINpBaBmyGq1onGUIgUvbu+zsi5w2StE6y9rIo1UhDL20OlL1lE65ks6klTDylunIHwxhFeDdyvdazKZKAWMda2tTXnbLjfK5qmocaYM2Tr5WG5T1zKOge3JODCEwX3bMFh19HzBGFvJ41HBqY53WO7SxB5yIQiF2nbDlq7+JMhbjPE3TMGqbp6tjxQE0VSt9ILDnrQxaNyYtTeOxrsE4V0lqWngwtW0CVQYjF6mCc6b1hpG3Il2es2yaSQhvRx3HIUcWuuND7cc4XbZ4e37bs8sRJSdJ6k9y5DjFjBl3czdnOMM7eMe1fpznRRz6RnJ6vUFrg/cekP7qqLGoUlh0fdVDKoytOZBsh1yF/GqUwnK5ZNFH1sYjxqO2LnpTq0sEZVN7us7og8WXciFW2O6obSggvfbK+FUUur7HonFeNIS2NqacWWt5/NK+OBnmRNaakqIcKKUwpMR8AFVk2NkHGWquTcdsba4xahzT8QjnHHuLgcf3AyUltLWszK2oMNBSMl0/sLm+hrUOrTvSXKpm4UPU6lrJ4NgoaJuGzVPrjBpPCAHvO/xsIX1yY+lDFBMnBWL4JNWxVgZrdX2PFH1QdCEevN/L/uiVXY9DjsSceL/+AL+PH+D7wvfw8+37n3GOmI8k0rc71G0j9KPxJEeOSRQKv8Qv8Yf4Q7ybd/PT/PTBPOyKX+uD+6jvXYdbPdz3wv19HPpGYrQgSGJMUuVZw7iSomLKKC2LtVTJ79XnWGsZYqIfIqBovSfnxN5szmK5pOsF8jYdNUxbj9EQYjzgIFitDgaoQypcni1IKbMxnTAejchF0/WB85f3eeKpHbZ3dumXS8IwEGNkYzpGUQ6kTErOaNeirRP/Bm0YQqIbBpadeGRYq9lcH3N6Y8Lm2php6xg3llvObmCS8BVSGMgpykcciGEgpcT+bE4MAaOrS53VYgurMpaI15lxY1ifjthYn7K5sc5kPBIIp5KfWSRYNENM7M07ur4XGXQrkFpjNM4ZGm+kys6ZIQT6vkeVhDWwvzj6pDwuOfI5/QUeNo/xzeEuruf6Z5wj5bEBPKS71EmOHLP4LJ/lIR7irbyVG7jhmb/QEwHlFeqtk6v3cNcgDn0juTzr2Z8t6QdRT21sC0XoTtYaFBmrNUOMhGrEY40hG2HfhhDJRghU01HLsh9YdB2Nt+TcUtAoVej6JduzJaOmQSlHShHvRHHVGBEALCkzbh3jtsFbsUEd+oE+9hgtjF5dKzWjpdcei8A80Vr6xGXFnIaEZqjtktY7Tq1POLU+ofWWECN7fY9Smo1xw6lJw/ndTgQgK/qrKPGMyCWzv+jYvnyRtckEbzUjp9BZUZLY+rZNg/cN3rsDyfCUEiUGhn6g63u6PqAUuDpwbiv/IaUkaJyKSNJ18+vr142cYtpoupiuSbV5XHJkX8/5T/aj/Ej/X/GO/pv56fbnn1GO6M0lDbvigqcdoF/0OXJcYpddfp1f5w/zh3kn7+Qn+cln9Dr6VE/Do3SnesoLmJR46IPk0vY+i2UnUMdcKHGg5IS1YmKkVptBjMSYCRq0kuQWDEpGofHOs7kmOkuLbpBWBaoK+2W6Kop3UHlpMfuxCtrG0jaO+XzJYtlX61yNNo4xCmsCkOmGAW0yIVV7XWPRWYlIb+0RC45e5ialSDvEOcd4PGLcOsiJ+WLBYtGzs7dPionN9Smmys8rqlxKEfSL8Q1xWFCUEOv29vbwVnr2WoH2DW3jGbUNWhmUFuXWGBKqomqGKo+R0v+Pvf+Otuy6zjvR3wo7nHBj3QpAFXKOFMEgBpGUKIuSKOnJkiVbtpWeZfnZrXa/tt8Y7fbr0W17PHe73d2WLbej1M5SS1awlcwgSiIpBpAEGECCyLGqUKh40wk7rPT+WGufe0FSZBUKKFQ4H3lRVfees8/e+84119xzfvObFhECpZYMCk2ZK4yxIKHIZHqyis1vjbGMpg1VbZClZlLDuLZU9YVvbrp8bMTxRf1lXCN5T/O9/JfeHyCCJNCctY3ooeNNP7rOIobPfXfJxj8/iN4ur3gbuZzwEA/hUbyXH+Y3+S0gw5yDdIpegHf8dMUyFQ/+oOLI/wacetVO91XFWW8kprUMewVb1jJuGiLLJTDslzFyQlO7ltbEZqdIVPFE4QiwPiC1iEOMetnO43ZrmFTNTFNJKcXyQsHSoJfGjzqsi/nvTCkW+j2sdVRtS5l1hc3IZxTEvHtrA8HFQqySkmGp2ZgYdppQPQQZx+4SC5z9oqRfFhR5QVUbpuOT8XOalvG0hhAYjSbUaKTII43Y+TgRD3DWIKTCAXlRAtBag/SSQa+kl2coPKausT6gdBYdpJOEoPEu0jhN6q0o8owQ4qhZayVSQKYELjjq1uOcp20bxlUVKbXWY1yObjTWOl4L9YvLyUYelF/kKCW3m+/mJzf3cSr0eHbx5zmz9L6zspHlN8JVt1k0cONhxee2xdxGLjN8ms9xlIK7+H7+Cr/HKQZ8jp/lcX75rN6/cjccvDM64eufdRzdumQfSM5+IwkpYoQkPyElzlnGkwmq0bMhPaTuWa1UWrgCqQTWOYR1aKUosgwRChpj2BhN2RpNIAjyXGOsR6uksBqizENI6REhBP0ixy/0GU0qSJLiATA+NnVlSpBJhXGOadMgBCz2cjZHUwJR9TROlXNRbFEolJYUeUZZlLEIWTU4U+Odo24i88X7wKhusDgo4kyLEOJQozhG1iGVxri4yBECax29IiN4R9tYnI33q2ktvV6fosjxuY4kgBCom5bRZMqkqrA2TRIkyoL3Uq57UreMKotxPtUPGnRyvi54hLMIGSheg2E5l5ONFAzwKAwZPfMW1gBd/QXq/JN4UX9DG6m+PODMR0tu+K6KqxccXwD83EYuK5QMcVGchiHvQgKv42d4mt/E8o1FGDceghMfglu+Hw4uRpLfZb+RRKmeKAc+6EeV1zhvwtK0BqX0TC4CHxBoVJpv7rzDeY/2PqaRvIt0SCnQAkbjMdZalheHIAR1a9ia1BR5hg1RxA9AINE6jmXNM4d3Ls5ekIo8iPi6lCPOpSBohXGeTEoypWmDmG0e3ZArIcA5i1I5SsnUXW3IlUzplpjGQiTZ7djfFZ9EkoSHSJLe3lmkCOQy4L2lbmpcFmi9pA2xD2E8bZBKkDmDdhJrIwvJWMt4UrE9njCaVHgfKPOcQS9Pyq9RcG9cNZEWK+Usmo/DouKMjdY5wNO+BtTOy8lGntVP8jvZg9xjvo1NIGA4sfh+0C1tbb6hjdiJ4MyvD/j276x4Og+zn13pNnI54Wke5rf4JN/Ed7MJeFqe4FfPahMBsFM48Yvwnf8PsIWY0cUvRZz1RuK8hxDHmyqtKfOMTCuECFR1mxqqonSFMYbJxKEzzaAs0VLi0lOAMYL1rRZj2jhJLzFRJtNpnJKXZRR5QZHnSKmoG4N1Hq0kSkX9IS3jmNCQxowKISiLqCVU1fVMs0irDK1ACcmeBcOJUU1QGiF1lCb3pPpIpHRmqqFpG6wndTu71NQW6ZI+1Vc6GfmoQGFBiuggdI4IgTwT9PIe1kbZb+fAOE/dWvIiI9MyNdI5XFA46xhPa0aTivG0jlRZ55k2hmkqiHYd01IJhIozJUDiXcB4AdbTuqSwm1R0LzQuJxvxUvCEqDHA88BYHuFY+SuU7dnbyAtfyKk3JGXmEdrip/6Kt5HLCQ7HE1R4oo1s8zwP82/P6RhHHoDqDPTygMrBX6Jlq7PeSKJuUZy1nSkxG98ppYqc/cSDNzqjqpuZ6mpr2tikhcdZj6EbshMXYExTyNnY1Ml0St20WOdYGPQAgXGessjIvMLHKjlFphEIWhPnUAQEjXEYl5RlSRPwgidTgmv3LlK1lq3WJw2j7jEyjjIN3mPaJi4yAXXraduW4GKaRkmBY6fxDe8TA8zjrUPqHG8NQQla4+h188q7FE6AvB9HpRrnsc7jgoi9Fd6DkJS9Hq3zTGoT5ZqUwiFxASSSYa9k2I/Nfa0NjKctLnotgvFAdEghCDItvtav8VXF5WYj3aiAAJzRn8CEbVQbztpG6i3wBtauMwxvqNj44uCKt5HLEZ2NnOIjWLbP6b31drSRfTfB8p1w6jOvyim+6jj7wVZZRt0ahJBkecxzh5AisJTqUVLivEBrhxKRsigEqdkqNlopKUBGkT3rPFoIlI5PCABVa2itZ5LYP/3kgNomi8VIKenUZAUCr2Ouu6qjJMZCmaGFp6ob2raNSqeZouz3WFso2Tq1jTfsDPURcdb2sFeQCY/zLc5Gobs2TZbzhDRcyePRoBOVGEDpmRSIFHEE67RpUSJKhOgUTSsJWmuE0mhEqg/E+dveCYqiACkZDhfoD4ZUVdNRy+hEYYe9nDJXtKZBKYHz4ILD2hYb4pZonE+zLC58/vtys5FuMiMETHaCYS8/JxsxleTFhzNu+NaGXqbYmNvIZYxAw5Fzflc7gRe+ADe/B4pLWLLm7FNbAerWIWUgz0OU5JYB62O3b6YVKk+T7qQgSzMoEj8WiLlzmaiaUkp6Sqf+izT5zjqEjPlb4zwhWAZljvOOaVVRFhqfxRkOkqhu6lPkRnAsloqVoaY1LU1tMKYi6tTF9MogV+QiUDuDkvlMlgICw36PfYslJze2ObmxNZPa1lmMGgMBa0Oc3BfCLBcuQoj9DYQ028IxqWqcjQOQXIBMC5TOkUVBr9cj11E7yVtHXU2pTaISiyj6tzTsM+yVCKWQ8UMw1uCsjfpOJs7nlgLKXBNyhWljQ59zUdNJigvvJC43G9kpfQa2s49z3TnaiG0CW8cytGhYvdtw7LPFFW8jly8C6/zhOb/LtbB5BLSAfa+Ho596FU7tAuCsN5KmNVRti5YyDuGREFwa5RkCLnh8FPNJvH1FIaIibBIRinlkKRDOoWQUuutmeDvvMS5gPVgPrbHoIqNf5klzKHLqja1QIrJ8fHCYuqWtGqT04BR1Hagaw3jaYq3HA8aCDzW9smDfUp8jm3XaCEKUOxECKSRrK8v0igxjWqqqpixylJQxX51kwIMX2BBnSxDYEXBMaS5wqZifo/OcwaDPoF/SK0qyNFaWAFpJgo0quZPaYLxJUt+xeFsmDSYIBB9og2dcTWlai1aKxWGftV6foijQWjIaT3jh+BmMcQz7vdm0wAuJy85G0nVZsUnLyZdlI09/pOSNPzpm3y0NQi5e8TZyucKwTsuJl/Xexz4Ib/mLsP+OV/ikLiDOeiOZVDXWOiyW0USgRJJsSGkE4xyhjpGn0lkccSuimqlzgSLLyHMVhx6ltJD1cZqbsR7j40zuEEh6SgFjDE3TkudZXFTeAYFeJtAi5uMz7VkcZHEoUvBsVw3jSROn5xGFASOrKlAWGdf2epwYtbQu5cGJqYatqqG1nl6vx9rKElUT53AHQpp13TGD4iIO3qOyHGtaUAVSZ+A9fQVLiwOyLKNX5AwHJf0yp1d0hefIHDLGIqSkP+hzZtywtT2OcuAItJRoHQBD09bxPrSxoNwreqwuL7K8tMCwV5IXBc57yrzEe4WzlkwrptWFnwF9udlIh0a+QJu9yFZVnLON1Ns5WYA9pURlWey4v4Jt5HJFzWFqDr+s907XIQNWc2KG5BLkQJz9hEQXUs62S1XELmTv3WwmdwhxYcfoUM/ma2sZ50srKWLHMwLfzZQOAqkV0npwYdZ13ssVpYamqSBYRNCUeaSUlnlUS1VFwUBlWO+ZTqf4EKiqBmsszsd51YooIwGxM7js5ZRaYQhInSGFwHvL5qTm8IkNci1pWo/SRXzu9B6kosg1UiZpFSeovMcZEymVzsQCfHCoDJq6oWlayjxO/9NaoQUIb5GpTmB8PMdemXNw7xK9PGN9NKWq2tic5/wswq6all6esWexZNDvU/b6KKVjpO89dd1SN44iLzBC0LbtjgjiBcTlZiMQ1/R2+TGCsGxOwjnbSInhZuCa927z8K8OeeyB7Iq2kcsRAVjngwReHuWqr+Fm4NAPw+f/HTxy/yt6ehcEZ72ReB/IMk2mwBjDaDIlV1EgTkqJklEjqaM+Oh9ZNkVekGuVZL8j88SlGRIB8ETqZZy1EMX+lBQMi4w9C8WMPSOEoCg0ZZ5HpyJjr4DOc6yx4C1VEyU5lPCxR0BI8kzNptq1xtKaMcE7RJB4F4X/EIG2tbxwch0t5WyGhQ8y5pS9J8uiqm2R5ywJyZH1Mc7H98bRsNEB1MZwpp6yMOxTFnE0a57p2MuQmvVC8DNdJKShnyvy1SF5pjh+ZkTdtHGqo5ZolaNVoFfk9IocCNR1g8eQZxpbWFrrqRsThxwFsC5G5Rcal5eNCJ4OQ44D26GKDYNtOGcbWVszZEC+5LnhzorHHyyuaBu5vJDxNAucBEbUL/so+w7EJ5J8BW55/WW+kUQl14xermmNmhVPM50YMip2Miul0YnOmGU66gX5OM/beY9SRCaJj2qx3ntkiJ25iJgXVkkltiyyNKshFjC1jqJ8ATBtEzWWvI6qqqbF1HWUoSAwGBT0eiV0Gk0upk+c8ygloxRGiI4qF5KrhjkmTd6L3daRQWN9wDQmpjFagySwOBxSKsHEBUDOlFgRAhcECwsDrtq7ytKwT5nrmIaQUZ7DO4s1NsmFyziqV8T7tTgomFaxIdKHwKRqqU10Aj4YjIv0WefjjPhekTOpGgKC1jpin18UP3T2wgvyXU42koW7OWHfiACM208mFFcNs3O2kc98sOS3/sUCOoeP/87wireRywmaeznJWzkNVByiayU4V9z/O/BrPwtZDh/51Vf6LC8MznojWVtZpFcW9AuNVinvTUjUzpBGcsQoEnY0kWJk2XWCg7EB2y1an/7uo9xFnufkeZhRQoNIDB7vZtFq0xoKrQFPqONxmrahNQbvLT54vBDsWVpgaaGPMZZJ1TCtGrxzkZqaaZTQ4C25FOwvAjcsSE63kpMTg7EhpmOEIDiL947gA8ZbtkYmUTUFwQakVAgV292DsxSF5MZDB1hbHsbJdkrGtE5IM7WDB2+RMp6Hs4G2NQjiufUKjRJxbkRjHK2NvdOtEMjWpw5qQSYkrXHYusVYh5SCIstmLJ3Ja+AkLicb0cUJWv0U0l1P1n+IPQPxsmxkawv+7f+8hlIC7wKEK9tGLic4nsfxGHATLZ/k5WwiAJMt+Pn/jqh+8PIO8ZrjrDeSa6/aGznwIvH6U++EdbEQKkR0HC6kyFOERHEXuNRUVtdR/tq0HuviQpSCKJ4YAv1eH4SkaRq8s1GWifh476yjdSbOu8hzMq2p6gata/I8R2UZzaShah1lr6Qo9Iye2S8yTGvItELqjMXWIPAsFpqVXLBawGIu2GoMdV3FomxyVM6FxLuPztDgEaMxIu8jVaR8Rv1niRCeQZmz0MvJkoqsdwIts3gvAiDizAiXupiUVAQRz1P4kHSTRBTZM7HrHsCLgLU7v49MpVSQMYQQpc0FFu/jpEGbBjddSFxONrJQbsL+n2Qp289y/xlWi+xl20hkWc1t5HJD4DQbfBeS/TgeP79jdV2NlyjOeiMpMoVzNkaWIsToSnQDdmKu2SMjhVNnaBV/JgX4IMgyT7/IaI1lfWuCsw4tBP0izqnYnlTkWlOUJV4GrDU0tSXYVKQlcvN16pZ2iRIaqaOgs4IgFUVRsDjsEXxgPK0RiDiSNNP003kuZIaDiyWDTJKJwEALbPCcHI8IPtKBg4zNdJGRE6NdmQZh1a1F04DqIQip8S7WSgaFRgSHaVtUalYMSqRNR6TelTgnwqVO76IoYrrEWrSSLA5LWhdw4wpnWibTCRMfn360VmQ6w9qY+mjbliKTLOR9hNI4D23SALvQuPxspGKQHSYTioHWcxuZ46sQOIPjzGt9Gq85zkFrKy6UEGL7nQ0xn+29wAZQSpDnMf8di4UCpVNS28UGNKUziiLHWM9kPIk9GCJDyMj5d7ZGeCi0R4vYU9DaGJEGYndzrgRCKnyU8cU6x7RuyFzsGs6zKK09qVqapqXIFIQQO4i1pKoswjtyCXiHkoKNyvDcxoRRbWIndIr6Aknm3LskUQEhUVBd20IZnZEXke5JcJSZQor4d+8FwacGvK4DGTGLIIl3Kl1fLET3yiwqtApJv8gYTSY0bRM7xgGlNUUeB0JBdDJVazi9NaXIc0SqKbTmwov2zG1kbiNzXJk4exn5EIcPRTpm5P43rcW4yFwpC0FZdDldRwhp5ocArYhNf2lOd6+MonSjaUUgoDONVrFgGoJDK0FR9MjzkqZpqKopAdBKI1V81Lcpl+icx1mHTRpKPojZ+TnnsMT0iVQKaz2j0YReFrWIhIDDmxNOT1sa51OPQpSPSM3JSYU20latTY1zxI5tvENlUTUYKRC2jQVhSGKBFmMFuZagZJSJTh3acUqjSI31sakREScJSiCXUC726RU5jYnRuCDQLwoGZZ6ieE+u+3HeRpIZMbbFuagqe6Ext5G5jcxxZUKE3aHPHHPMMcccc5wjLmGZsDnmmGOOOS4GzDeSOeaYY445zgvzjWSOOeaYY47zwnwjmWOOOeaY47ww30jmmGOOOeY4L8w3kjnmmGOOOc4L841kjjnmmGOO88J8I5ljjjnmmOO8MN9I5phjjjnmOC/MN5I55phjjjnOC/ONZI455phjjvPCfCOZY4455pjjvDDfSOaYY4455jgvzDeSOeaYY445zgvzjWSOOeaYY47zwnwjmWOOOeaY47ww30jmmGOOOeY4L8w3kjnmmGOOOc4L841kjjnmmGOO88J8I5ljjjnmmOO8MN9I5phjjjnmOC/os33h/n17qOoaSaBfZAzLjL1LA3qFZnva8sKpEdOmxXsPSoGUCCmRQhAIeOcggBBAiMcUSqEzTZbnSCkJzmNag3MOhEBrhVaKEDzGWqzzIAAhkEISvMcYg7WWEEAKQZ6X6CweT+ARIn6mFJKil5MXGUIKnAs46wgBRPpfwCMlEAL4QFkWSCWomwYhA71+idYaEBjrMK1NXw7nPAB5phFSEILHOUtdt0wmDcY6JKC1pCwzijJDaYWUkl6/oDcoKIqM4AN1ZWmmlqZuqesa7wJSCnwIWOvwIf5bCIFQ8T5lWiODJARASXSuePyRp15hc5nbyNxGzg9CiAv6eXOcP0II3/A1Z72RFHmBNQaCRyuFEILgPRKQIRC8jY5ACEAghERKiZTxdQ7wwSODQEqB1hk61+hMI6Ui+IBxDusdQkmKPKdXZAghaEyLcRYICAQE8MERQkAIiZIqOifAOhPPTcbF0+/1KMseILDe4J0jWHA+4L1HCkWv10PrjLqumEzHOGPJ84yhFuhM4bzEeY9zLroTKeM5eAg+Xq+UAgEgQvyZczjr8D7E8yT6xhC6PwMiOUKpojNVSqIyiRSK4KFt2vh58cCE4PHB430A5OyzotMMhOARQkaH5y/8gp3byNxG5rgycdYbiRQCKQQuCKwLNK2nNRabKcAjCIgQCCni6PYwIQRBiJ1IRIDSiizXaK1jlEkgeEfwDqUVeZEz6JUMyjzuhtOAtSYtQkGAWXQXo0NJCDuLERHI85wi15RFTpFnhADttKVuapx1MyeRZRm5LmYL01lHawxKSYSMCzfLJBkxeg54nPNxEYZ4fUpKEAKBRymRrlsSvEzns+MUpBIIGUPgEKLTcM7TthalFSKL0XkIjkBI0XW8/37XvbXOxc+RAqUDwYfoQmfR/IV3EnMbmdvIHFcmznojaZoGax3OOWofsBJGKhp+ayzeBzo/4EM0WiHiFyJGaCItYiEkCPDez6JE7z2BgNQKnSuKIkuL22OcxtoMJz0IiScuuuA9wXna1uCsRSLQStErS/qDHpmSMX1gW7wPONvijAUhUUrinKeuGoLfJM9yjDXpOi15luOcwHuBlAop44JuTIwgvWcnkow+Il6jlAQf4uel6wu+c5khORWFUvELBM56nPI0dYtpHdZamiZG9gLQSpEphXIC5/ws0u6ibSFUur/pnPAE4V5JO5nbyNxG5pjjj8VZbyR1chLxsdljCax7R2Mcznus8zGyJD2aJyOGGJHJtHggRnnGWEjRkQCCD7gQCNLhXfx5KwVKxK9Ma6QIgCCItHC0IljPeDLFtgahJGW/oNfvUZYlAk9T1/jWUpQ5w4WCvFAolSOkYjpt2NzYZnNzG+fMLAWAgBjMKZZXhijtUTI6P2sc6TIS4vUIKdBSgRC44DDWYV2KTFNYGYg5bAgoJcmLDKUUQgQyLRECWmNoaws2UGY5Wii8D2RK0QJKClyQCBGPJbVCZTGPjo3n4rxPn3NhMbeRuY3McWXirDcS731c/RDzuwTqxsxywrDrQTk9asd6ZEClx3shu9w1OOMghJQjT4cN4K3DtoYGgfCBItezIqnUCgAXAlopBr2STEq0FFTTGqEF/UGP4UKfsihxzmJag5KCxaUFyjLHGIv3mraF7a11rBVxYVkXF7oqkVLjXWBru2ZaWXo9SX+QIUV0alJJdJaixQBNY/DBozKF1hKagDEWYVO6Ztd67dIYSinKMkcpiRQBJQJIifek+oCinxV476lbM7v3nR8LKeeuM43OFBKJtxbYSTFdaMxtZG4jc1yZOKcaiRexdgdAAK0kmYor3LqQ0q4duyU6CKwDpRIzRqbURsC5kAqCPhUL42KSUiKFTLliGb+kwLtACLGYaIyl9Z5QFhRljisteabwSlD08pmTME1LM62RUjAY9BkMe7StZToRnD49xblYqA0hMn3i+UmKYiGmY9opIUjqWuBcS6+nyHOFUpJyUNDrFeBhOq4xztMb5mSZpq6b6AhdoiClLykFZZ6ztDBkMOyTFxneO7xtQYKWgjKPvxJhBHmRR48qZEwXmTayfWKmJzq1xOoRPkR2UUoR5fqsf7WvGOY2MreROa5MnIMlpSJegBjrQKYkuVb4EHA+0iRJUWVk7AQ8AiXYKZiGmKKYRU8h5pJjVVIipSLLNHmhYwEzUyl4FQQkxlrqpsWaGFmVeUawOVoprAhkmaLXLyjynOAcQoDSMhZuM4V1Eud7DIcDRqMxUmYIqRHekRdDlMzwzrC6uh8pV9jcOkOWFUgJAjsrAvf6Bf1Bj+ACzkIWYDDoo3OJEJq28TS1A9HO7l+mNcvLi+xZXY0OBqjrGiegX2b0BiUyz7A24ExAhZiWGXiPMS3OW7yAApBSk+UZWZ7hvKetaoRwSKWQOkNnr4WTmNvI3EbmuBJxDpYUvuqvIfJwZrnu0CUwhCTTsUgYCJHrr1UqfsZ+AeMji4dZrhyEIhVCM4pcoRSJrqjI8gJCLGra0oGULC8tsjgcooB+WVB5y8LCAmtre9AqwxuP1oqyzNCZRIhAr9zL1bffxDPPPEfwnmPeMZmcBgRKavbvu47W1ABcdfXVrK6ucPLkCXq9HtZWLC326PcL+oOCvJfTVoYiByE1/V4/Rs2lhqFEBo1tDNW0nlFie70+g/6AXq+HFLC6tEx/UDJYGFCUOUorjPU0jWW8NaaZVigfcNYQJCwSyMseRVHS6/cAmEwrzpzeoJnW5GWJzotYrL7gmNvI3EbmuBJxTiHJV2ZUnfcYJ2a0wu5VWmuKXgkCrN3h9iutUDLmm4WApm4JiZEjZCws9gclw2GfolA4a3FOEIRCEGkvWkiGwyFZnrG8uMTy4iA2wPUKpM9ZW11j3979SCRtZRltjylKQaYVeTbgphveiJQlzoLWimee+yJSKpSKvQpSSW678S5OnjhGU9fcfNNNhOBp24bBoMfiYo9rrt1PpiXee0ZijKalKHsMhtFJBOdxq4aNjU1sa9jeGuOdS4wdhcoKyl6PXpGxtLTA6p4VeoMBQkp8CBjrmU6mmDYyhpRO+XC3QNCKsuxR9mKxWCnFYNhQFj3qukFpjZAaY18bRs7cRuY2MseVh3PaSHaKeLPGXtyuFATEnGxe5hRlEZk61mKMxUlPhkZKjZQ7zVkhEuDReUbRLyn7JUVZ0utpnPMYEwheRk6/9UglGPRKyiKn3++htCbLcoq8gBDol30G5SCyWLSmLHOKUqG1Zs/qtRw4cIhnnjnMddcd4vEnHmVhsIdgG1b3HEDpIb2yJNOS1dUVzpw5zcbGBktLS7z44ossLS1STQ1Ly3soy4xgHbkuaPstRVnSH/RRqVgcgkcrycmTp9CJxlmWJVJphFIgFR6JC9A6j7IeREzhWOepjWNStYwmFV7rSEUNArygbh02NLTWU5YlWZazsmeV4BKbyVqa1ryyljK3kbmNzDHHH4Oz30hSN3LYnb7Y/bPkKOKizZAycvC9i6mKmB8PiYUTC6OxepkizTKnNyhReUZQEqRCSQ0q5r2l9bSNQQlJWZb0igyAqm6ZTGusi3RGUzc002mil3ryIqMoNVlWkGVLPPLI40ip2Nre5O47b2Exq1Cmx8Hr78Jke+j1Sp586jGsiWyjZ597jn6vT9s2qUnNc/z4Ka655ioypVlcXICFQJbFnHMiI9G2LYIoV5FlGUWvYGE4YDjsk+UZgZhumFQV61tjirJHUUSGjveBybRmY3OLqmqQuUdpGSPIIFA4rAu0jcFax8JwQFnkZEWOwMdejsTOuaCY28jcRua4InHWG0lsEuMrOmK7JbHTC6CkQiZJCrRgYWHYZckx1hFLqxCUxwlLCAGlFUWvpCgLsjwHqTCxowwhVJTHkAIpPUrGXLqSksm0Yjqp2NzcZDStsc5x5tQZ8kyjswzT1OSZJteaECQvHjvD8eMbrK2tce89t3PrfsXr993O9VetsLiyhy+fyXn22EluuvEG/uhjH8WYlu3tTdqmxjnLeDKmyHOefvJ5Bv2CxYU+g15BXuRIpZLkhcU7z7Sq2B5PqOoGnRcpX92n1yspi4xMK1oC02nN1ngdLSX9fvyZtY5p1TAZjfGmxWmBDBqtJFLLVKgGIQIyOIKzBCeRWpBpSaYlhAtfSJ3byNxG5rgycdaWFFMVL+Wpi0RZnDWVpUKqIArg6SKL9E8t8M7RtAZjI58eH3DGIryk1+sz7Pcp8gIlVUxXtBZnHZnOybIca+K/hQo0dY1pBE3bsrU5Zns0pm0NEDhxap3WOsqySNIQYI0hBMt0eozt7QnOGzCHuGZ/xs33voHlJLRXixEf+/jjLA4HOOto6gkieCbTMUVesrmxweLSMqPRBmurA9z+VfzSIgOGaK0wxtC2BmscW1vbrG9sE1AMFhZQSsUURXpN7I1QSK0JdUvV1nhvaBuNNfFeWdMiAesssStDYJL4IERxP+Fz6uBwjabViizPQEbdpwuNuY3MbWSOKxNnv5F4T5h16wakiMW9KCPBrEs25rwdynm0kDh8VGENIuW6FbhI9cy0RiPI8wytNSII2tpELaOmwRpHluXkeR5TBs6ilWIaxZMw1lM3BuMFKI0UMTd8en2bLNMpKu2cWYmxjsl4zEJPo6YnaacDlhZuoN8r8c6xIMcU7Rn2q5a+cmy0NdfuHfLMi+u0psGahjLPmEymvHDsJFIpprVhMKkpijxJbXisC4zGNdbBwuJSzHlLQfAuMm3GU6z1CCkxJhU8g8DaJOTnPM6G2CuRjultTPvEmoOPVFmt8NbSNm3q1UiUWilwr4GPuPJsxM5tZI45OJfO9hBmuW9BlLMoMo1SigbwSebBGkPTtCAUVvuZtlLsAYi5b0KYHSMqpkZDtzbKaNjWzrSRatFGmfEUYc10/YSMgn5K0euVs45iiCJ6OnUUG+OBqD1U1yMkjrsOFdxyQFNtHOcLn/wo977h9Xih2Dz5HCuyYu9wmbfefYj3fWKDa/Yvc3prwua4QuO4d3/JJ7YCW9tj9lQt1gUmkxqd6dSBrBBCYq2nLHtonaOzjrPfSaUHTBvlNgTQzzJEkROEiL1lAWRw5EqQK1BCzKJ766Kyq1QCaz3Tpo1NeqIr4AaCC1j3NeoUrzIuNxs5cOMijwbDi08+w83X38GNfot2/DA/+M4vs1Ct8qZwht96qOL04NDcRq5UrK3CwQPgc6gFPPcI1601/OT3wfqzcCPwqcPwG0+AvYxv98tOksqkbaRUbACLXcrgrSU0LXmWxShSKSDEVIWIj9rW+KgJpCQ+eJq6iTIZWYZA4lN0ZY3FGRPfl+VorfE+OiKlVJwtoaN4X57pmeSDlFFwLwSPtdF5TStHVVUs9DTX7Rvw7Isb9BaWYTKlCYGy38NXI/YslDy14dl7zY3cdPAFrlpbYHO8h2ePvIgMgjsPLPD4C6dZb1PTm/Np1kVASUmWxUKylirSWVVslpNSonTMkZu2xRiDNzY17JUoqQhJ2U9JSaGg1JIiU+RaopQiACbpViGgbQ1BCIz1qFkzX+y7kBdB2uJStpE9N+7jf/y+d3N67xAmBxFHl/iRF77A37v277G3eBrxqadhAO/4ZsEvbd2GOrHGA/ZFAnMbuWKwdw984F/DzVfD9CAcHqL+7b/g717zN/jz7wyITwHHYHo7rI8kTx8rOUyF/VpklEscZ7+RdNeeor0ZPTPlv11Ka7gQwLZkss/aYslCojt2yq0hBMbTmrGogUBrLdPWREE/6ZAi4JzDO4tOXchCCLJCo7MoGe50lFmVIqVTnCPE1ujULe3wxKjMOZf+DEgJRRZ459tej2st1daY1eUVVg4eQHpF2etx9y3X0XpFvjhg8a13cGp7wv7VIe1kgAKWlhZBKtqqYWtrjM40bdPinJtFuVmWkef5bCgRgDYGIaOMhTEG07Z458iUoqqbmA9XGqliBF9oickVbabQSVLc+UDd2sTy0Vjv2Z60UbNJdEq5ASEl9rVwEpeRjdzwbfdx+sDDVGoE/tugfx+fsVdxZLLM2tUScgHCU3jNj3408ENH9vPrezS/uHZmbiNXCq7bC7c9B4MnIP82mNxH75u+naG9Ey8ewcuADJA7xa9yH4YV/hHP8L9wYYeJXQicU7F9h30TUw4kdVHrPc7vGijkHLmW7FkecvW+PeR51Auy1lHXLac3t8mVRGexKWpzPGVUN7hAnDchPAuDgtXFIYN+iVZR30hIlXoTopZS3Vrq1mCsx1lLVuQoFSW3ozxGwLuATSkVJWPz2+q+A9xw7QFErpCDAjEYsP3lx8n7A+69+UYW+wNOb23TK3M+/cUnyDjNwb1LtMbw2edPcXy7wqdoLy76Non6CbzWUT48gDQy3bt493ya1uec36HDBk8nBR4LqxkyqdaWWUam4xwN61zsZjZxMFS/X6AzTd3ENJEzFpskyZV8bTqWLycbKfoBIdchOO41z/L0+1/HM/9xhX+2/yf4Kz94O3ffc5Dx0vOsH824/tRxlqznXXaFDy3Ucxu5UiBGwGkIGXz2A/DxW3G/exu/ve+/5dOf/cf80ce/xA0FTE7k/MKpJfaS853s5Wd5hprLaxM/d60tSJPaFAExM96O1kmIOWxjLSrRFYeDfsz5WstoNGE0meLKnH6vBKDIM3rTikndYJ0nV5Kr965w1d49KVqVL2EEOe+ZVA2b2xO2x/F9IBiUOVpHRo/3DikE1kcn1jQxDz6ebvOlR5/jlm96HaKXg6kIPjAZTajGE8ZVS9ZbpnGKohxQZJpCOlRZcGJjzJePnKC1Pmo8pQFEQXb5eQ/eoVXskvZA07SJERQHL7VtSwigdAYh4NPUwBBiBC9knBtR5Dmu32c4iP0QhchorYO6jSNcrUsMH0tVNdH5+OgM5R/Xy/Gq4/KxER46xV9/3S08VI756+Or+Jl/aXnk4QEfOfhe/soPWkZqmfXlA2yIMSe/Zcra507zwetqTlY1X37i+NxGrgR88Tj8g0/AN10Ff+tB+NKfpHJ38cvF2/H+v6c18ElAUrGfJ/gBDvCPePay20Tg5WhthdiZHITApJkQcc5ENwFO4r1jc3vCma0RK9uLKKV36SrFLykVRZ6TZ5p+r2R1eZGqbqnbFq0ke1cW2bOyRL8sZ+qr3ewfa+Oju0xqqTJFvbvnW8ROYQk2NqFpnUaNIvnND36M73zPOxjuXYW6IpiWrTNbNJOK6XiKZ4PWWtq2RRFYWujz4YcO8/SL6zQ29imEACrl8zOREZyIczgCKBHQSoKQWGMwzsRUhbFYayDNEo/T+jx5mqeNjHPGhZQURcbKQsmBvausrixS5BnGGLZGUza2J4yrhmljcMZgbRtz8D4ORfKQVHMvNC4fG3n/Bz7BP/uOd1HsXSa4CXdet85Tj+3l+n3HEGbE+plA4yytafninZIXFxy/96Vjcxu5ktA4+Nt/CFqCk8CXgBupm88j2UYi8AQ88C85zL/hKO1luInAyyy2x8gp5pWNsTgfo02IxulDYDytePbocUKAze0Jg16BVopJVbM9nuK8J8+yJFOhyLVG9RV5UiQNAabTOg032iXal9IFZ7bGrG+NqJq4+FwIWBspjz4VNaUEY2xcTM5Tt9GZfObhZ3n4oUf55ne/FdHrYacThGtZWFkGpSNLyAfqpkXrDGTG6VFD63x0kmmRCwKDIkcrZo7KuM5RgJBQZgoyDd7hTOzaDsFinSN4j9aRxaNk1JnSWpHpjKLIGZQ5g17OsF/QK3K8z6PzIQ4nauqGYA04jwwBL+KN8yHm/V9LXA428uWHHuX2d9/L39nzK4j/c52/+2vfxj32Ra75lf1kIefoD21Tm2gjRuu5jVyJCEAf+FvL0P8fOPjzv8nCsS/z/zr+5ynJ+Fv8KifZArhsNxE4l3kkUu0aeRpoWosQIhYqO1ElIv0wzzQB2Nwa87Q9xun1TfplQaY11jomdY2SimnVoGQsPmqtZiNIQwizoqSUMqWKd6InYy1boymjaZ3kyaMDmY0l9X7WYm2MoWnTmFdZIBA4Z/jt3/s4973pXrQMtMfP0Gs8x9dHNAb6y4HWeaqqRmvJ0VPbjGuDdy6J98X0TK4li4OSIlORbRMkxgeatt0ZoyohzxQh5LPvGWPSvQw4B00bI3YpBXmWYTOPSU44hDjdr8yzxH5yjKcNdVVj2gbTtoQQpdBlqkUY67DmwusoXY428vi3bPNzK+8nXB+472e+mTt+7pvZ+4F1AM7sGVO9YW4jVzzeO4D/9zII+Ct/7lv4sz/3U9zwP24C8GWO8k94/2t6ehcCZy+RskP2p6NqKiFTdBibqTKdJBpElGiQUsy4+m0bhfk6/T7nHKPxlK5/LS6gztGww3ff+UhCYuB472nTmNJZ14KIA45iaiRqKHnnZ2NFCSBVINMFSkl+96Of5U++5wu84Z5bkBsj7PFN7JkxQmlMv2RSNUymE6b1hBNb0+SIPKBRSuOswVobWTBBEqzHETAuRuLWGFpjqdvImHHOz5wZQiFVSH0NsS/ApqazunVI0cTrkSNOnN6YjYwt0thV5wKtMTStSQ4p3gMf4hQ/Z8xr4iQuRxu55dPXcd1799BgeUf5Zq5+zzW0//AjYAOnDmzObWQOeKiB5yzFYo+3Dt/AyrdezQvZ74HxPMjTr/XZXRCcPWsr5Qw6To5Wil6RU+TRcJVSszxuN1tCa0WWqI5aq0S79PjgY66W2IVrfaBpHVUTp8ZlaVxql+f2IaZFpIzzKrz3GOdpmpaqNVjr8TiE86neG8+yy4d3Di4ESwg5QghObIz5uX/zG/yT//X/w8LN11LUI5aGGb5XUhnD5uYG29tnyHLJpI7UzXisGNW2rWd7UpPno1hUDgHnU9e2cxhraVtLa2xkK81y+IIgZOxnELMmcBCR0RQIuOg1wUNrYxSqpEBNVaw9BGY0We87cfZ4P5UEVWjK/MKzci5HG/nQL9zP797yVyl7mmuWrkLeu8pTf3/K5onjHPbH2d6a28gVj0daeMcRTK6Y/pMzZO+6hx+7/l/xzJNPc4TTr/XZXRCck/rvDrEzNkTleUa/V5Kn7mWdnESmNXkei6czAT0VpcFFSFFbiEYdue9QtY68yhBCUuRRGdbaGDV1+XWlVEqVeKqmZTytEJMpFQbjfMotdw6tO20xW0Q+gE8Ks2XZ4/c+9UV+/Tc/wE/9pR9j7aZbGfunOblxhpMnjzOZbLN3bYkzW6M08yJGb1H/aEd9tZOc8GGHwkkIWB8XcLxfzJyLTGmVTom2gxQSrWKTnEqpGiFE0qGK9y6EKPnRpTQQkGlJmUcnHF+ryPNs5mgvKC5DG/nQ/V/i237j0/zUX/oxRNknKMl4WHHk2JG5jcyxg2MOj6OpG7TWnMxGHL5CNhE452J7iuJ2kgWzRRM7hrtJeDFl4ISY5bO7nHa3aOPC2dH9yRSUWUYgSWQQZvniLtJzKUfsQyB4B6RH/xDAu9mi9GHn2F0zXDfC1bkWaw29oodx8OmHHuXHR2d44dgRjp85yWh7nUw5rrpqHwjJ5vaIIpc4ZwmEVESN12+sY1q36TN2NeDBrOir0jlIQZLHECgvUnNYchLpNVpKtJZoKWfHypLjlVLgfUDJ2FjW3YtekTHoxUJrnsdO8TzL0Pq1ijYvXxuZbjQs3/ZWytV9cxuZ42vife97Hz/wAz/An/gTf4JHHnnktT6dC4ZzG2yV2B4x1xqLdq2xO/x2YeMikCJFP7EQ2v07RlKK9MQOREfjEbH4l9IUzsdu5qgEG79nXSw8RoeUBiY5j3U2faV54CFGlULGBjVShj3LMrIsi/lw1zKpxmS6YH1rDIOc6+68AUnF4cNTPH2EzhiPtlDCcvVqyWdJ0SzQmjp1CIudVIYUdJNLfbpPIoBPyXxP7NyWXb+Dj+e1a3RTcq4BGzzCR8pq8DGnjWDmNK2NeX2EQASPJOozta1J91l9Rb3iwuFytpHlchkhBMPFBZZXluc2MsdXYXNzEyklS0tLr/WpXFCcUx9JF7FB7ARuTWwoM87vRI/EKCvy91N0KUhUS7FjvLse2aNaaUgLLxZJZw1V6fF+N7WzK0DGw6QCbEhJlRTZdeeslOLQoUPcfscdZDrDWEM1nVJVNd60/MB3fhO6P0CqhpXVFdbXN7BBYkyNxFFowe3XrvDJL2Wc3IozJ7yzOO/QAXSaIZ4lrSMP0al1jBqfzh8QTiBEzNF3ekfd7egiUjfrewAQtOk6uiJsp+7aMZSmFWyPK0SK+Lvjef9aUDsvbxsRvgFv6C+uMhgs0JpqbiNzvAQPP/ww6+vrXH311Sm9eflSfnfjHJ9IIJX+YrNUWtRAoiGGmVPoFvJOhLr7OGG28CNZJi6Yzgl1iyF8xefPFkD3ol2QMk7JY9f78jznzrvv5vbbb5/pGYnZ+z23HBjwgz/6fcheH9G0DIYLXH3VAba2R6yvT+MY1qLg2v1LvP2ug/yXzzybOow9wTusDanpDZxPMuApbRO/dgqeHfNodn6d0yPmsQXpvkmBTJHmjj8NSVIjvMRh7r5H3WTB7tjuNXISl7ONsD2B4Fk9dDObj3+MM6cncxuZ4yU4efIkVVXxLd/yLWitadv2tT6lC4JzEG0Mias/C492sUIifdIn5okU8XG9U1qdNdB26Yr0Z1znfudnXdWRr6SS7jqN2X92/i12fSsQ8+FCCG686Sbufd3rKPKcoihwaeDPZDoB73j7G26hv/cAwntAopeX2V/mmCefYEuKWaqjdUDeZ3FxyOaoiQ6SOFOiahpao1DSxLy9EDsFVNFl+rvrj2cbdjk5v+sG7Qx/YlZI7a6xS8nsRPzM3rPz5WfH9uG1EG28dG0kz3PKb2gjQPBoren1CtTcRub4CjjnGI/HFEVBWZbzjeRrvlgpgoqG3i1ya11i1fhdRi5mdESRcghC7DxWKyVQqks97CyQkBRYnUvsmZBYLWlRzHxIelsXpe6EZek/QlAUBTfceBNKKpom6gx1s7GzLGdlUHDr7TcgQhvlDXSOWFqG7TMMh0NWlirUNOfI6YoPPz7i2TOO1b37EGqD6bSmaXbSLBClznE7BVzYWei7F3w88V0RaNh1/emL2XXuek/3t+4aA7P3x+g3Uma/Mgq/0LgUbURoePHuh3CrE5Y/fie9duFr24hSIBooFhmuHmBlvD23kSsEQsOePw35ITj5f4Fd/9qvG41GfOxjH+Mnf/Inueuuu7j//vsv7Im+RjjrjWTQK2aaRSEt4C6HGyBpC+0YqJQiitbpmAOXqaNYK8jzqBOkpEgFwtQkZT1t6xN90eNclJOIc366RUX8TBEgiF3rKP1AxL+u7FlleXmZEAJ5UcycStM2CCHYCI4Pf+wx3ukEqysD9OISQisQsLS2SpblvPDYET7+1Da1GHDNdUuUvZIXjh7l9OnT1HVN27a0Seo7xYjRGcycWITYFXkDBLkTPXp21nX33i7a7C6ra9DbHaWH3dcc34ygY+GEXQ7mwuFStZHJdcc58uf+kJBZ+pnkug+/hUCUX7n/44/xpjawsjpE9BdQASSCpT1rZHYyt5ErBMNvhht/AWQJ9955Kwd/9x6MsXzpiSewznFmc5P1rS0AjDEIIcjz/DU+6wuHs95IemW+4yRSh7EPIeVtd4xbyTiZTWtJlss03jMZOqC1IC8UZaFRiWtvrMW00IpAN241cVTwHZ00JOfkA0GACF0OpHMg4qVKNgGMacmLnCIvEEIiWoWSbSwySsXHHj7C5556kYMrfW64dj8LwwI7HnHy5BmeemGd506N2JgYjGkpez0GgwG33HoLRVGwvr5OCIG6aairKW1dz3LUs5z/7ohyVz5bQKKvCnA+zucgRae8NPcdaay7Iuv0wpg06iagR2cR39NF4OdoCa8ALlUbUdMcZRVOeVbqZVaT4vAeBEcPr3P8hU9TFBlCKW64/Tbe/t7v58h4wH/50GM8e2KbcRtw1tDvf7WNEARVU81t5BKH3QBqEBlcm13D3bfdBsCb770HIQR101A1DQB5UyOE4L/66Z/mheeexTnP1mjE1nhMrE29NKXY/aYuZZz1RhLTEgIHdN2y0KUmJEqlSDIDnQmUjo1TkKJJ46MERIAgoly3kjJJOViaxmFNKk66mFuOjggQiTqKmC2UnXxwmrrn4xAZ3xUohWA0HrOyssLi4hKT6SSyhLICiHO+fQhMqoqHnz/FF589gTUGQcyP13Wd5C0cvX6fxYUF8qKkqqasrO7BWsfm1lacwJcXqSnOpVSLn+XAO+xOR3SKtGnpM+u6SNfqw+737Xy9FNGR7KRyUlNdiBH3axFsXqo2crUbcJOA4tkVeg/exBEb7aCfabQQuKah38Qo0z/xLHe+6RTPPP0CwmbcuGcPh5aWaK0jAGNrsdaycv0t7DtyEwfWr+LfL/9bjuaH5zZyCUPXRBt5YsAH/vvP8bvNFwG48ZprWVlcoCwKbr/xxmgjdcPm6dOsDfr8tz/+4wCMplPGkynOOb789FNR5blx3PDZe7nN3cE/5mc5zPOv5SWeF856I5nUu4pG6ak4GrtCe08WYi9ASJGndYHWRsdgbScSF2mOXTSqpIQA1nlSC8BOJDuLZndyymrW1EbKIXcOArzYKTL6AMsrKxRFwXg8oSi2KcuSIsuoqoqmsdQuRg3OWmzi1vf7A4wxBKrY4OZjc5l3nu3RiIFzCCnZt28vdV3TmBYBZFmGc5aqHiXF1h0H0TGBfEoxzLIsu6iaXXF6N3VWBDGLMEO6B+ErshE7DiKmW2a59nOzgVcMl6qNTNsxpbasVIrFUrNV6Rhh2ig62TQNbRM7lheqhmf/6T/n1PHjDFX8nDzLWB0OEEIwKHKUlKxWV/Gep3+CzMSJjT936B/MbeQShsph0IPlJicLhsMnNwA4dvLU7DVaR3e6trzMP/2lX8K1DXfdfDNKKsoi56Zrr0UKwbd/81vI84zVF67iPZ//cTJXEAj8d/y1S/bJ5Kw3ko7hEXPeab6DCAjvcU5EUToh8QgaEzWFjANnd6KvnaJoLLBKsauzVsQ+AoGYRVYyPZJ3tMfdRcpA6lgmNnmJbtEBMsBVBw6wurLKtK7YHo3Y3NwEAnleoLWOY06lpCgKbN8ymUxx1iKlZHl5OT6ZTMZYa/DS0zQ1Smu894xG20gpGPb7SNL4UucYjaaYFJmmS4p/ppUs2FnBsyhzdk3xvu7GjgPYmaLXOYbOSXf3pIvGYxDueS3o65eqjdQ3fR6UZ/nxRabbR5nag19tIzbayGhaMapqvNI8v7nJZDLGWUNZFCAEa8vL5FqTnVnnjeUme81+RmVFr1finL3ibeRSxf63gsxg7zN7OHRgm6ePjr/qNdbGcQbHT5/m+Okoj/LwE08C0S7LokAA+9fWWF5YYLlZ5a7wHq7lek6xccluInBO6r9dZAQQXvJo7UMg2IDHY13KW3t2tIR8xzQRux6vo5PpKoNCCAh+JqNB2HnUhwA+DokJkl3P8TH82onWuoKjYFJVKKXolyU2LVyBYDQazaK2OEBIsLS4xJ7VVabVlPFoTGtapBT0ez20XsB5x8bGxsxBeefoD4bkeQHAeDxCCEFRZNTNTlQePzMu/ujkYkQuhEDS5cTTuXeR5+6Ikx3H2FFoQ4gpHKWiTIZSSX4kCfV1kwetvfBe4lK1kXxfjRcBaSXO+/OykS7/HTz853c+w7e9fz9lfQsiiLmNXMJYuA6kBGlfnqxMCIGqrgF49uhRAJTK+KU3fokfeuB6lv09SBSeS7O356w3EpVCHCd21mcXOXURorEhzeWO8CFEPSUfUvQTkiyFQIgQv9JrZcrlhlQM7CLHbkFLGeKgIL/TmzDLKYtO7VRAEOgsYzAY4EOUvYCoqtq2LUJKSAOHtNaEAFvb26xvbCCloCxyekUJITCxBiklTdsSQsBZx2QyZs/aGv1ej+MnjmOdRWvNcGFIIMRBSzZqPInuf52DSIJ7MhVCO6bOS3sBwi5nzKxA7b2PQ4kQSfhQpWMlzSUhCQSUcynHfuEN8pK0EWkJtx9GTzSDFwZspPTl+drIvn03sH3NGlsfdRzavINVdwAWjl/xNnIpQmZw6DuY2QhsviLH7Q/W4JtvZOvLjrvHb2UvBznB4Vfk2BcaZ7+RJE6/6oqbaXnvSkfvYo9EeB+wrutMJkWUAN0Cj05CSjk7UBdp7Tzldd9PUeuuHHe3kKLDkbMFNRgusHfvXlaWV2iamuADbRs1ngIBR5wOp7RCZxkZAtO2NG3DxuY2bVNDCNRNvdOZHQLTto0RX0pvaaVphUyMojiFT2s185+d3EcXNUoR0zUi7Dg5L8TMce5G5zC6+xCjTEmRacoin00J7JhR3Ztm/RnhwgvyXYo2sryyzPrARN0qo9KTAOdtIyCwuWfzUMO+x1ZYGh/gWP/5K95GLklIyJeY2cgrCVuEZCP7OMhNl/9GojvJabnDeBGiy7gKnI+y2M65VATtBORIj+1JG0jsLPpuBQQf8Cn66oidnZ/YeYyH3QycgNwVjYqUD4Zer+Se130TeZZz4sRxfPBkWaRu9ooiprmCx1o3y6krpfHe0Ve9WKAXgaauaduG6XSKaVp0lsXueOfY2NxkZWV1di2ZzsiURklB2zZMxtOX5Otn6Yd0xS9l7QiE2BlD26UuuuvvBA2VkhRZnO/RK3O0UjjvaY3DJxHDTlPK73YcFxCXoo2cCk/Cwhb5M8uIVrHQV2z5khDCednI5tYWXgaO3zZi/2N97tl8F8/v+eIVbyOXIpZugsFBsE8UhFqwuli8IsdVUhMUHLtli/2P9Xkn38/n+PArcuwLjbN/Isl0XKQ+IEly1zLmMFwAXMBbN1M7/SoH0fUX7Io0O3S5XWD2SB/dQxfFil3vEcTKaZczSf0EIUpJXHXwEAcOXEVZFrED2nvatqGqprRtE89fSZaWllleWsI5y3g8Icxy2448y2nrJiqqhpjeaJoGaw0CwdLSEtdeey2TyZhTJ0+xPdpmOpnQGtul5L8iYH6pg3C7WEe7suQzJwghjZeNsyM69lKW5klAlGKwLgr/ORdm0bySEq/ka0LLuRRtxKxAU7SYjRWC1Wh7gtNnMqRU52Uj+b7rkLLg5OAhrPpWbtt4M+9rMlozvqJt5FJEsQL5ArzweMPtVeDW6xZmv6vzwXU3vIU87/PpE/+JO/kLfDPfSY8hFV9dyL/YcQ6pLR1lrUVIkt9xbGnwgWA9Ivi0dlNeW3Q8+O4RXqbFEwj42Cw2Q5eKeGk6o/tbLDKmAqsQiEhkTH/v8iaRfnfrrbcyGPQRUtC205QLBrwjpHkUQkDbtpw8fZqyLNFZRl8ppBBsbqxHsT1ngTggyXuXJt61GNMyrBZZX19ne3ubpm1ig6OAsixo6pzJpIo9FZCizpAKxCkSTLpTOwFhYMcyO6ZRos4KZtfovKe1AusMPiTarEvOVco0hVAghH5Nos1L0Uam+16M5358Lb4kBIJ3BMR52UgIMRV1OHuE9cVbWNzey2pzFU1/ekXbyKWI1XsAAWcefmWPq3WJEJLHzYM8y1u4hpu5mht4mi+9sh90AXAOoo1pUUpiDjfNcgiiS0KDkAGpNAoJHhQ7NM3d0uAydDEVsCvy7KKx2bJI/wkdS2fX9yKbRc4WUBBdYR22t7dn0ZdWKp5nCLStQaWxrsN+Py5U75lWFU3bpGKkiNcgFVIKiiKPMhdNO5tAN51MKIqCq6++GtM2nDhxgqaukyy4xxMj5Hh58docnh3RvBhLxyJrd60CkqRHCp7jvPEQEM6ntIxEKTeTQO8kQTqKbDemFXiJ3MYFwyVoI1x1CgTI4/sQIvYEBB/IivOzEeciFXR5bciJWx5j32du4LatN3M0f+LKtpFLEHvujX+ufxG4+5U/fkvNJ/gdfoq/zZv4jst7I/HOg5AIlZxDAOdSo5eP0aCSGpWLlN9lRw6iE07d9SwfHUKcy905iu4BPr5EzF6365+znLLsCpDda0J8lF9fX6c1JkaIIurdSKnY3NykqiryoqDs9SnKgqIo2NreRradq/Fsb22xvb3FeDLGtC2d2F0InqKI0hlbm5scPvw8CwuLtE3MkVvnaEx8vZIxfQApJRNiQ5lPnd8kfyA6R7d7Pe8Ez7P0hhA+Rde7ZnMnRx2L0DLWBFLkubsX4ULiUrORIAyL5Qaq0kxO2Zhqc45pVVH0BudlI73eGiFYzqwf4/P9J7lLvIfbTr+FDy3+4hVtI5capIb+ATAjaDZe2WMvLh7AOcNkfIpP8hQ/wf/A2/le/hP/lJbmlf2wVxlnvZFYt8NNh+gkdiuxAiid7ZqZHWaP1Z3q646AX/wzaiEFOoJnDLbSLOquRBt23tvZ/ay5KhVQCVHYzjnL+pkzlGUR0x0C6u1tQoC6ruIFa41WkqqqQAi0zsgLj1QyiuyZyLqJhw1RObhtZ2mAuq6ZTCa8cPQot95+BzrLGC4sYqwlOI/Pc3LdzuiWnngfXGrKc67L5UeEzi3OnAbAzuClGGd3bjOkqDM6FynkzMnEImqnNCt4LYLNS81G6BvUDWfw6z22nhC01wW0giJX52UjTdOytnYX3rW07Yu4RcdocIZD1a0ss0aTT69YG7nUoAew900wOQZnHgtUb3YUuSLLJK15+X04Qkiuue7NtO2EF198GE3gBIe5mXtZZA+nOfYKXsWrj3PYSCItUridzEHwYD24kBZ1Chw7RuKOY9jhve+WxI5/YefPXY/wXWbbI2Y8zpB+FiM4EieH2Yf6EHjhhRfQWjEYDBBKElxsMMuLguXlZfK8oG0NTdMglY704BCpof1+n16vgOCo6wopJb2yh3eOPDk/YwzWGNqmwVvL6p49tG1LNZ3QNnWciqdVYtHE93QFTysdTgq6OdydBLoLMWshZSfxkRwhKZuRbpCAGGGnCLNLg7iQtKqSM4KdVMaFxKVmI4vXaoJ02FHGseNnOLUC16xZlgaK5jxtZHZt3lPuVRy/+nFufeLt3FLdx/rC8SvWRi416H58Kmm3YTSxPP/ihHtvWWbPUsGLp6tX7HO2OcPn+DDfw1/gdbyDP+A/vmLHvhA4640ky3O6zuNAjKSEgkwENHq2sDvaYmfUSgASZEgcftEVVxPvpmPCEBvTOkdA0hEKXuClIPg4WztGmvIlLB9CXHCSgLWW1hjs1tbsNUVZsra2Rln2YqNWlsdC63iMS9GslJLJeEw1raiqiiyLdF5j4jAiqRQ+RZ/BO4K3nD51iqXlZXYy+DshYjd7u4sOu68QL22WagnpXVIw60Luom0x86Dp3zJJhEgJiJgWSnl0qRSZUrM0SeeILiQuNRtxB08hl1tGv3OAQvXJM4MQLf1+Dx3652Ujzll88Jw5fZry0B5O7Xue2554B/esfyufXnj/FWsjlxr2vQl6++HR/wt8C7Oo5hV+mgsEHuEzfC8/xbv4gct3I7nxmv3UTRv1ZIJAqmj0sXito2BZCBhjMc7G/G4qPFrnZ0bb0T6FiI1XHUMlSmREJ9Fx3J1LEZRzs7SFkDtNW92M765oGEJA6YxrDh0CBNvbWwwGC+zZuxclBd47irygbVsCcfbIdDylbmoyrRmPR0ynE5xzNE2DgMTCMUipqZua0XhEkWVIIZlWUdxxdXkZ09SYtsU5i9YZ1bTC+bDTBJmoyB2ls4uYCQEpBVrKFKV24153ovPOcUYp9piuSLVkFPEeaCUTsYAofvgayF9cajZSHIj+YLG/h+WbbqEonwFayqKkmfqXbSNCDllcOsTW5nNsbZ3iwFXLbN9yhPaBiv31dQzlIlM9uSJt5FKDiiUvXP3KHndh8QArK9dy8sTj1PUWAA/yB4zZ5Fpuu+RowGe9kRw8sEbbGurGpFnPMceqEwsq0zoaqInS60JEoxdC7KJsgrOO1sRxpi4EmrbFtGa2WLq8dgiB1jjqxmCMiTlpsVNIhS4PTMoDxwXVGy5SFCW9/oBD11yLMYa6adjY2MR5R6/so7VG6UBb10wnY6q6wrsobeFdpHESwDpL09TkeYHSmna7wRqDlgrrHKPRNkeOHMFaw2g8ZlpVtK2JDXfBIzwE0Q15iqq2Id03KSVZcg67ZTFCCkNDakaz3s1IS11KyIcQO5/T7yZ0yrayi11fG1xqNlK88UWCk/Seu4M6hKirFWA0HtO6/su2ESmWKYtFzpz6MpubpzlypMQdcBxbfoJrTt7J2ta1vBiOXpE2cqnhuu+NTyJHPvjKHrcohhTlItPJGZyN2msnOMKjPMDr+VZu4h4e5tKZrnjWG0nbmih/HfzMkAWxYBqCiYqmXcoihBiBolFakwmRJt0JrLFoHRkyrbUYY1I06dEopIy5Y5B4D0o5rCUVNndy6iEtpJByx51S7IHlPfjgWd9YRwjIspy6mmJNSwCUTNLx1lBVFZPJmPFohPeOrj+hbePwK2sdRdEjL/IUiU7jwrUO7zw+WCbjMd55yrJHWRR4Z8mLDLwj0yo13XmMJdFgA0pJMhWbyLRWKVfdNaD5na7vLj/epSC8QOyMcZqlkToCThd9d/n5C41LzUa8bqDVuLGirqbUuYchFBomzcu3kbK3NLsn1kQbcd5yau15rj/xOm6fvonHlx+4Im3kUoMegK2g2Yz/ruqodtArXlmpFACP41Ee4M28h/v41stzIzl87OTskRp2oj4fYoRpjIkSDJCGPWUzvR+tNXkWBeSiD4kKrrZzyulR3jlL0xq06l4bYrMfpMLtLtqnkARBZEsRkELS75f0FxYYT8ZkOsc5x2SywebGBhubG+RZZAx1qr1ZplhaWmJxcYHtrS22tjZpWwOAVJphr48gUkankwlVVSXmS+wYzrVGKAlSsra2FqPiEHDWYpp25tA6pky32EOIKrXxtR5LLIDalKLpBi/FGds7Uwa7QvPMCXQ+Iv0urHMvKcheaFxKNlKpDYY3buKOLjF5JrC5vsGTo4Zr9wQGaoNTPjYovhwb6Q9zEAJnm/j0lGzkzG3PYB9ruW38zfT3/bsr0kYuJZR7YO31sPFlGD0bv/fFJzd5+zft5c4bl3jma0jJny1iM6LAmJcW7O/n/fwIf4038G5+if8dhz2fS7hgOOuNZDSexK7YmXjeTm67blqMcTODJqR53FqT5Zoyz+j3Cga9kjzPybQi0xLlPWrQo1/mMY3hHS7pG2mlkCmfC9FB2LTQukf3LkqVIi6KcrBIWfYYj8ZsTzbp9fo45xBCMBwMsNbS1HVsKgsB6xxtU5NnOUvLK+gsn0WapMjWmJaqqqiqOmkvxWs3xoKQVNMpp06eRIgoQW6tjc5BCCZVk3LevCR1Y0WMPgXMjhfohA53F0/jzzMlZ6mZ7r6HXa/ZXQOI912S6bPvNX2lcCnZSCtP0xsYmnU9s5Fevw9MsDYy816ujdx44zuRUvP885+gbc3MRvI9j7Kx8CIHR7eypz7Epti84mzkUkI2gKUVGD8L3cNb9/s532bOm26ONvLkE3/4ku8/zZc4zBPcxn0c4mae57Hz+pwLhbO2JGM9zkWdqljQi3O5jY3T7boICZgVQ61zCCuwae42QpBlmlyryIEPScpaSoQU6CAJSfhPJRHEWT4cZj0Hs6gsHUQpidYZe/YdQKfhU9PplKqaMhgM0XoKZGidUfZ6KK1nbJcmBDY2N1AqjnQV7EhUaK0QUtKalqZpZ6wjKeOmIaxjPBqjlabX6xF7nmO/gtaaRrQIkbRkZwaYvlLxU6nYs7DTvQwzSY90jrJrKoNIE02FaSklWsUcenorSok4WCm78E7iUrGRLFfc/ief5mDfcmZcUuUFta5m9zjP8/OyEaVi97xpG+xX2Mjx1ae4Z/M6bt9+C88vPnbF2cilAiHhvX8D7lyE6jSzp7xXCjLZiHfmJd+vGPMID3ALr+NNfMflt5GMq2bnMZmdYqb30XFGA3/pLt11CjdGwCQyVOrGoJQkeB/nFqfIryuixsN0ktk7LJydBjaX8sluh82iFGv7D7D/4DWY1rK1ucn29habmxvYVIRt0jAh0xqkVFhrsW0zuw6XnjZCiGJ4QiTRO2OYjCc4Z8m0QkrJsN9nZXkx6ho5P6N8rq6uxOY0E8f39sscIQTTusUYi5TQKzKG/ZJBr0hpnWx2XNjppYic/xjBd7M0nHOxmN1ajHWp+U8hCEnKI96PIlcURXZ+lvEycKnYSNBT9t27iZbQ33eacXMK59Rswp11Uerm5dtIfP3CoGRhULzERg4feph7nvl2rq3vQC9nV5yNXCooF+DWd4KWcM1d8d/V1oX57Pt5H9/PX+Q2Xk8cb3bxs+vOoSFx57F7N7pi3kwOuwuZiDMdfEptGGOZNu0skvIpJ9zN3O6mwnWfEedSvFR3KP5IxNu66xFTKcX+a/psbGxS1xXWOWRKe7TGYNoWnWcopRlPJown45gvNoa6rom9B12+OERGDmDaNjKxmobFQR/nLFIprju4nwN799C0hhNntmhTM1l/sEDTxDRH8J5WChTxOnMtGfRyVheH7FlZYHE4oMiz2GmvY3qmuyddWsZYh7N21kgWGVEt07qhaQ3dDA/nHG5GA41PAq9F/vtSsZHh2kluWJpy+IWcR3/xFqabAdNWyIX4e6+rmjNnTr8sG/EhsLJ6HSG0HNijKTjwEhvZvOYFJoMNbhu9idVD+9iUJ64oG7lUsO8quPMAHH0Wfvd/emU3ESEkKyvXYsyU0ejEV/38Ye7nJEd5A9/OIqtscfqV+/BXCecwajftjCka6miWXzUTWohZJ5WSkl6ZMegV9HslSme01tEaEyfQpUhPsKNmalLnrRACkRgy1sbitrE+zZlI/HgpybOYMlhZWQUC29tbrJ9ZZ3t7i7U8Y3XvXuq6xqXxuMF7rLNUkwlSSKx1TCdjnI8SGIQwW6zOWpqmQWvJvpVF6lQcveGaq9i7Z4W2bSnyjGde3JgVjkOKEqWSSKXxpqZXZPSKjOXFAWvLCywvLzLolWitZ41zIeXz7WxWR0Brh7ESZ90sj99F5UoKmtbGe9LJjYsoixFEyo1cYFwKNiIIHHrdY+wb1Dz822s8/5FV9u9fpa5rKttg3JSr1yQvTJaZTqbnbCPGwv4Dd4Kv2LvsWSz3vcRGGFo2Bi9y8OQd3FDfzUO9M1eUjVwq+PY/DdfugU/9Enz+P+18/4UTUyaV5eZrhpEB+jKaOpXKOHDVXdTVFuvrz33Vz8dscpSneT3v4g7eyKf4wHlcyYXBWW8kkb/+0pkPUkp0KuJJGSXDVTJOLQVlkbE47LOyNGRxYQEhFdO6oW4atIzjQDvH66zDWBsF6ORO41Twcb5008RIyzqPkIIiz+kn57O0uo/l1RVG29t0EwylkIxHY/bvFywsLOKdo6rjNDshJWXZS1TVgM401TRRhLtILQSCUjMRvqq1lEUOwTPoFfSKHCUFK0sD+usjskxz8uRJqrpCa83W1iSmSpxjcVCytDBgdWnI0uKQYb83y0/HOmq8ZzH7nrKxIcmZzyTAFTqLHE7rXKTJOk+T+i3yPCPPdGr8i3MpLjQuBRsx/hS3vfUw023FJ35j7SU2IoMhsEGhLAJelo0Mev3ZZlkWGZLiJTZy/PQxHtnzSa4+eScHztzJA/t+n3AF2cilgMXVuJGMNuC3fv6lPxtN48a8vJh/ZZb2FYPF8HF+m9fxLu7iHZfXRtKZcJf/jlPZZCp27oj1yaQDlClJkefkeY7OsligTiqpuZIUuUYplfLg4IAoDxSLolFKI04y7Iq33QS+PM8YDnr0yoI8Lxju2UteFFRaI4nnkWUZ1lpGo22KomTQH1CWPaZJE8uaKGERQpSp0DpLPQ4uOTxNIWP0pqaa0WhEbRoGmWB9Y4tekdNaQ/CelcUBe/fuQypFnmdsbm7ivWM8HlOZdnb/rPM0rUFVFbKRqYFOxsKu2Bn2FLzDWotp2+g4Q3QeLtUMqrqlagy1sbgAudYM+pHxlGVRAqPL919YXPw2ctN9R1m9eptP/fbVbBxbfImNLA7jhhCFGGva1p2zjZhJm3pZPNW0ommnX2UjJ294nqce91y98UNcvfgxnlefuoJs5OLHt/8ZuO4O+M1/CYdftVr3bnGbr8Zn+AjvwXIXf4kb+S88wydfrRN5RXAOqS0xi2C6lIVKjWGRTqhmQnTdHBCpFI2xbG5P2R7XkX7btmRK0ivzGBmlGdN5r0gF0yh3XTeRBeNDZAENBn2KPKfINb2yoF8WSCkxXiBUgbGW7e0RW1ubUTQv5ZwXFhao64ZpNaXf77G8vBSb2KTEutgRPZlMIrdexWZFHwDhEIg4vEgIBsMh08mErWnFC8dPsTjso5XCWodWkqZpYvNj3VJVNa2xZFmOL2Ln9Zao4p+jaZylnRaykJIsz8h0FiNZgACu0wzzHo9ICrmpEdI7QhBkWUaR7t+gX9LLM4SAxsRC64XGxW4jqphw67c8RDXWfPzX9+NseImNVFVFIKCUZs+evQihztlGer2D9Pv72DzzWertDbQSL7GRXA7JH383tVfkrHBT/a0cX/38FWMjFzsWV+FP/QyMN+HX/0kcc/BKY23vzSwuXsUTj38I006/6ueKHnfzl2nI6LHGXXz35bOR9IpoxJlKej9pxKdKCzvTiiyLPQSxOKjxIXY7tymP3DXsETRuWiOFoFdkZHqIzmJR0XmPqZsoquc9WZ4x6JUMhwMG/R5lkVNk8XOtdYxrS5MKomfOnI7zs02Lt5b9+5exbU2WFzR1zYnj23HRh1g4FTJGzbPuZ5L0NgGp4/mEqiYvJE1KWXlfcHxjxMHxlJXFBbzI6C8tkucFTVNjjGE0GtEkZVjvHMN+BgRGk4r1rfFMH8r7SEsty5xeWcQZ284lHSQ7qzN4ooSIkoJeoekVOTrTs1qDIHZQj63FOhcj0cZ8o1/pK46L3Ub2H3qKpavWefwzCxx+ImCa+iU2Ys000ZUNR48eJoRzt5G8GKB0zubWadrx+KU2Mr2W4oE/iz12J6fllKr/EI8Mf+uKspGLHa9/F1x/Bzz4B3D0yVfnM/J8gM4KqmqTEF66Uy1zO2/jH3IN38FJxpzhU3yGX3x1TuQVxNmr/+oY1fTK2ImcZ5qyyCiKInHVJWWRxShUx+lxPsRGtGnVRKNPi9GFHZmRgGBSN7TWIaSkm8udZTmDQZ9+WbI47FMURZSKkDtSEdY5prVl4sdsrK+zubFBXVcY07Jnsc81V+1l7AtU3mM4GADQNA1NU8+KvyEEJpMpSItSOjrCPKcsyvSzCZNUmFdSoZRiOvE8e+w0xXCZcmUvxnmqumIyHrO5uTljwzhrkXiuWlvGWsf2eMpoWkcnkOZZdOkerXa0oKyJjjWKGMbpf0pJiiynyLPUSCawNqYxnLVploWnNZYmpTMuNC5mG6nlNte84SGcFfzev19ltF19lY1kwz5NmNLPtzmwd0hti3O2kbIoAYFxu2xkeT/h+I1k9/955OYhRoPH+NL1/z82w+PYUF9RNnIxQ+fwPf9PcBZ+7efAfo19trWeIyem3HRogbXlguNnXik1R8kB3sY7+Kescg8neJD/yF9gmyexl8CQq3PaSDKtKPKMsiwock2/V1LkOUpFZkyeR+OVUqG1RgC90jDoG6y1sVhqLMZFjr8x8dG8qhu2zRQfIM81SwtDhsNB5NAntdPgHG1KIUS+vKVtDV4O0CKjrmtCiEyeIs+4/cZD6LzATAKKgLE2MYUEeZaDFGipkFqR5QXe+6jemwr1WmmQkpU8J88ztrdHkf5rLYtLy4giZ+pzXFXjvadtGrY2N6N8uI9PPd5ZhoOc1aUBVd3OqKwEaGS8jtjBHRvOlJSI4PG5RiqZXitQOt7PMteUWUwdtcbQmNgzYFKaojU2Oo0Qkoz4hcXFbCPX3HmGa+8+zlOfH/D4ZxYocr7KRhrjmbaSpWFgWCpcm5+zjZTlIhDIMhDFgNosUj76LRQP/mmwGWfW3sfxQ/+KqTqMq5orzkYuZtz7dnjTn4CHPgYP/MHXfo1zgfXNlrtvViwMspe1kRTlIgBNPQJAM+BWfpS38n+gKHmCf8eD/B1GPPdyL+WC46w3kgN7V1FKMujHAqZOTVJKKgI+cdyjDpX3UXRPSrnTVxCidPW0TqyaFEH1ZHQEtYzCfGWe0S8LyqIg0xLvHU3jZnpEcYRriqpsoFhapppOmYzHWGtwznLdgVXWVpcZtYKi1IQQYo656yb1SarDeQKxkNoVbPM8BxHHxtbTCc5atkfbKKXo9Xrs27ef4WBIa1o2NzejJH1waRZ4wKUCvE/F0IXewqwLWgjQSpJlOuooJV2orqajUse871hJs3SQJtN6JoXvnMO0ZjZ50PkQNal8wIY4tlZ8jX6OVxsXq430Vhe4+098EfB86N+vUU/9H2sjXX9Ir9+jVf1ztpF9B+4DIM/PcO3+2+h9+qfIT74DI7c4ec0vs3nNf6Y22wR7ZdrIxQqdwY/8tUjm+JV/CO0rLBu/Gzfd/C5CCDz91EfJWeKd/HNu5IdpWOez/F2+xD/CXQJPIbtx9jLyV+1FqRRhJuprlLiIzBFrHXXb0DQG4+LCQ0TJihhlGqqmTUVoPYsk8yyDoJMKqt/p4iXEsaoBGmtn0WoI6fHceoqFNaRUTCZjqmqKtZZBobnx0P5IRXUWKXOc99TTiqkfx4KktTNuvs40RVFSFiKK+wVPW9VUdYUxFoEgLwoOHTrAN73hLpwNPPn4c5w8cZo8z5mMt6mqGiFgMOijpGRcTWmbJhZyBz1Gk5qqbmjaWKTt6gc+dSJb66htJ+AHdFRZKVOzXZzhEULApz4C5xzOBcyuUbVRFiP+vl4tauKlaCMrV084cOsRzryY8dTny69rI6bfQg82N7fYqttztpFrrj2EtdAf30r+wE+gTt6CyU7zxMG/xebCJxn4K9tGLlZccyu84d1w/DA8/CqL7naNrWvhPu7jZ7mKtzPhRT7KX+QIr7Be/QXCWW8kOuVotRSIlGu1yWDj6No2/tkaGhtnUfiU5+5kQ7wPFEWG6hrJwk6nrnV+JqHhQ4hF1yT/UNctTWtw1uzkjHXOwsqeFHFZlIpO5toD+yiLHOcsIniauiIrSrIsozVQKA15jpSCstenLEsIge2tLcbbW0yn09jJLARlWbKwuMg3ve42vvt73sHCyjKbW9tce/0BPvz7n2T0+HZKoRiEEFTTKVopgg8M+wXXHlhDKsWkamiMIQSS+nBM9YQQZvWBto0iIjLRY0n9EW3rUodyIPiZ/gjQyYf7mURGrhUy14kddeF1lC5GG1lc3cNtb/8UOrN84j9fzWhDcOf1e/5YG+kWea8sMbJ3zjby6KPX8tCvLCE/9iPo7ZzJyhd46uDfYcM9hXBc8TZyMUIIeO+PQ9GD3/4F2F5/lT/QC9rPLfOmjX+AoM8LfJiP8tOXVCrrK3HWllRNp2RaY9tmJs/QTbdrWkvVmOgkjMFan2SskzRDYkqVZU6/LCK1Eahbk4p/BmtdTGNYR93ayPQhCfulJkOlJP3EXsmHK0gJR184xsmTJ6nrmqVByb61laiSmqQhdJaldIGeOYS6aWYcfO8cVRXVWbe2tvDe0ev1Wdt7FTdedx2vv3Ef73zDIQ4sOrbbLU5sj2jbmjvvuZHTp0+xvn4GZk7N4pRi/55FrjmwJ9KDnYvRdYoWu85iINUAXOruLqJYYZLEEJC6tW28nyGgpEoigbu6nO2O1pJOkwgjbfbC6yhdjDayuG/E9W98mFNHcz7xm4vf0EZaFoBNFnuGzTqctY28475rYLPgY/9lien71wDP2vd8jM3ev6Z97kUYxaL3lW4jFyOuuh6++yfg2DPw/v/wjV9/5MQEgEP7+zx5eHQOnyQYypsYPv1Gpk+tgTM8yN/mYf5PWi6QkNerhLMPSYSYFeti/npnul332OxDQMpI8ezyvUEJCAqpomy1Tjlot6uYWjcG62zq7fAoUcciYpLQyDJNkUfnMBj0WFpa4E/92J9lz/59/M7vvJ/f+a1TbG1ucP2NVzPo92IPA4BvmFYTBsMFggzUTQ0hMJ1WWGfxY0/bNkwnY+q6od8fMFhc5fqDB/mud9zHW994PctDjwwOakO+sc5wss10tEVwhuuu288zTzyHlIJerrhq7wqLCwNWlxbItEYqMbvWOI41Fjx3Fz1tSvHkmY4OMNFXpRAxz20sbYrUu9x5N+c7djcDgtT8Fxsii6J4bbqWLzIb+cEf+zP0bvsV6oWKP/jF6zjzouf1t+/7ujYyqjNYgCyMmFb6rGxk0Av84j8+xG/9q4MU6zkHlysOfM8nGL71czRHhzz1rJ/byEUKIeBP/mVY2Qv/9/8B68e/8XteOBlniBzc1z/7D5IZB/mbHPI/g3t8L7U+zQP8bR7h5wmXyMyRr4ez3kg8Mgogmk5VVFKWJVrGNEOZuPxK6zT7IOZuvXM4183Zjrlw69xsJgJBAhrvFZ2aa/A74n8iyVHkmYozF4C1/Xu54647QAXuuPMmtrfexIP3f57lxUFiZ6VZDNkA7SUbGxszjS3TtkAU8VM6R6ic3nAP2UAyKAu+6y238f3f81b2X381MlhopoSqwVQ165sT/NYmAzzjtqWZxLpMVTW85d6bufbg/pijDnHIkFIyFkqtmeWjvQ803qQ0jifPFP0yJ8sUudYUWsX0g5J4J5DpvpkQu6wJITKjiows0zsOMYkiKhVrCp0zvpC42Gzk9rvWeHHhI0xNwcB/CzfdeOwb2ojpN7AX2rZhMhp/XRsp91/Dp54p+M3/uMAXf34ZsSnpDS13/8jzXPumL3BqXM1t5CLH3v3w3j8N0xF86lVQIhHFMsWhb2Nh749y4Evfh5xkbA4tg299mEff9wsEf+lvInAu80hMfETuRMqkTCNPtaBUmiLXFGluteyGG4U4LbC1dpYjb5LEBEIg0uvKYkfcr1NwTXqxSEHk0EuJc56mbbntnrsY9PscO/0iW9vbCCnYv2eJpm1p2jaNH/UUy3tYu+Ee2skZNk8dpqmm6DLOzWhsoKoqxuMtxuNtVnuSv/qXvofv/uH3ki2sgG2h9YTG40cVm6fPsL5xhvFowmTScvrMNg998XGOndxgUlUcO3mG6w8dQCjZic7Gwqj3qdO4S+XsOMBMK/JMU+Sxt8InzSjrXHytj/IfrY2OVicKrdKKLA1/6rSmZqqw3kPw2NeA2nlx2cjV9Ib/NdeJF9g+fDft1j7275l8QxtRYh3YBFXSqqWX2kgpefdP/xD6+3+A3z+2yH/4F4s8/vkcvy5YWIHhJLD/bVuUV59murnJ6fWtuY1cxFhZhV/+dbjvGvgPvwrPPfoKHfi2u+CeN9B7vmDhxp8ha+9GbCmm+0AejTbiVl6AV3TCyWuLs95IFgYliB5ALOilyCaaoifO5o6RJERpDCnj91pjZlz2TrVV6ziwR6bO4ciTTxGn6JRioybTrAkrzVe4Zf8C4cwzhGMvYtdPMd7aBheVWUXkZRKCwLVTPv/5T7O2/xCPPPYMdTXFe0tbVzhrUj9A4HU3HuTv/NU/xzu+7c2IogethaoiNBVmc5Pt9dOcOHmM6WTKmdaz3jr+8KMP8uXHjtAaR/Cep4+c4O5brmMw6MeoOjkH53dSD02bJC2cRyk167no5nY3LhZNu3pATJcnzSotKYucfr/HoN8jT44lBI9L0bVPcurO+POe4PZycFHZyMEJiIdRwVNOPeOt0VnZyL7BlLffAKfPnOahLx1+iY385f/6x/mb3/wjPOd6DJ+FpY8LZBtYEC1jp9n6ri22/6dnWDj2IvJxO7eRixzXXQ933wu5hDxOCjh/7DsA//q34NobkfdD9m8E1A4/3WDslmY2Mvn3D+LD5fE0AuewkSwO+ymKjN3IpkthtMkBpKJeax3Bh9hhLKKoXuy+DUkaI+ZoszRjQSmJFAKdJrZppeP3VExTdLpMPtEbcyU5sKdPLiYcKj2HZMvnxhOyvECnyDTmjVusb9ne2OTIC8/SVFOcswTfzW9wKKX45lsO8g//5k9y+523xSl8xgGOUDfU61tsb26wvr7OaDRhfXPKRx89yueePMrDjz6XtIokQirWxzVfeuI5br7+4Cw1E2eN+1muP6SZFkpKiiIWTZWSyYBjIVkphbCxzyLWGSKLR6rI0olKsCSZl+REMj1zNB2L6bXwEReVjSzdi966GxceYOVTG7jR+KxsRDnHtMlZHsTfidxlI/3b72biMkDgTCD3DW+66RHecPAZnrxd8dt/dcjjt0mOnS64/d98gcfmNnJR48tfgs/8Pnz7t8Jtz2m0sLTf8F2wPTFMK8vachG11HZLBKgsTsFC4G20ketWP8nKyifY88a7ZzbC6pvgV5bh1Oarcm0XGufQ2a5nj93d9Li2qWkai/VxRrkn9g2E4LE2VfgISXMpSmZoHRVduwURZ3xH1dY8aSl1I0UzLWNzGYDzIESSwc4RSPTCIvfddRNPv3CGB58+SWstykdRvbY1TOqTbK+fZtJ4hNJpTkZixYTAd9x7E3/vr/0EN956KEaGp86QHbgaTM3WsRcZjSbU1YS6sbRt4JNffIZf+8MvMW0MUe8uOghCnLn96DNHydL52yRxEUJAIsgyRa8somRIHu+FSKkYay02SaQb20WmJvUURLZNlinquklChYZ+L07OK/IsqeeqWQ+BD7N5hBcUF5eNDJBnBjCF/aMtXjeouH+af0Mb2RwH/KmMm1XGoKh506038tN/5gdw2R7+4OOnqUbACoTHLLde/xC37f88261kbVFx27jlJCtMv/gMj372adzcRi5qGAPj50AdhXsLxT17PZ89/o1VGte3GuxxwW3FMsN+n9bBwYM3kGU5ize/lQfv72MP7NjIm/c/gXf7MfYMw2ePc/K2m+CJw7A1efUv8gLhrDeSJs2fjrz0qErq0uN3XmYzCqWzFpKRzjqWhaCbc70zR8ETpEqP5QqZ6I7Wdo1UDoJP0/PCbAZ31csxVQOriwgJS/v28x1vvp2TZ7Z49Oh41t1sTKSbSqWRGcQCLeAcUgiyXo8333k9B/f0sHXLkaeeQQDXX32QzecOc/rEKXSWx+Y5C8+9uMEHPv8Mk9YQUn6a2ejTaHyjquXU+hZLC8OUntkZrNQvCwb9krLIUUrgfaR2tq2dpSrqpmU6beJ0u6bFJMeok9ZSlWnqJvZhDPs9Br2cfq8kJi3ifIQY3XcR/oXFxWYjYriGGAmK3xF879ajnLj7Dr5UtV/XRm6se/zIr9xNESRb37VMdfcBPvOs4dPPHMYGwd3ZAV4c3cyxEzkf3vwmjm8u0z49ZL9suO+Nv8zH3rCC+sz9hKqZ28glgBOnQYwES7+X83NNzp9mwrFvMNr2VrfCn/u111Og2PiOb+H0LWv0+0OUUjQu0J58gi8+t0q9fhUfnuzYyOTFwxx7/m/Ad/0IfPwj0F4+opln30dSNcxGps7olmkMaBbH2EZCjU/89RhF+eBxPiQ1U5MUS5NWUeZTb0A3+ChGq13R1RgTF5L1GOcQIbDQL9nYGLH3moME50BoDh28iu944608f+LTnBlVcWyrtUxrg/UxVRBS3j2K/lnWFobce8cNOGd48GOf5AMf+wLf/73vZu3YMY48d5hef0BdTTFVw9bmFh/47FMcHXny3gK2jpFECC7pOvkUV0tG04qDB9biZpVp8pSeyVTMYUOIDWSzfHiMMI1x1G1L1bYpxcFMdl2nWRsqpS6MsUyqTnLdMK1qyiJL/QNydv8vNC42G9mz922IT/w28o8y9oQzfPehKU8P8q9rI/e0C+yblgjgnlHGs3uGHFoMHDlylEcef5z/+fvguls3+C0x5h9//u089PlboBHsu+lBnjx6GEKByjJU6tGY28jFjT+4H35mOUP+UcbbAvwIOT/L19dHuZe97K8HMfA8GXjuqm0eeuhTNE3N0aPPsL29hW+BpbfR3vH3eehEtBFhf59gtiFMQVxem/jZd7brxMBJqYZEwowicmnEqncxmuw48U3bRiZPyv92zVOEkLqgTZwvATNKpPee1kadoK7w2iGyVhwnT25wq8wJZsLG8dPkMnBo3x6u27fM88fPRAflPdPGzRrfgBnTp9SSv/6Db+Ot993J7//+R/m5X/tDDu3bw/WHruahT32Wtm44kOWcOn6KxYUFnj56is8+v0lQGt/WkS2UupPDTNspKtNuTyrKXLMw6KfGsdhw1jaGumpx3mFdoDU2XmeKrm0nGZ6i06C71E5XTI7OWcso1GdaQ/Cx1yDPWto2CgdKGXs27GvgJC42G7n5Ng0HLAw8yIK973od1x1+8evayId76xzROSsyQ73d8efftY8P/+Ef8RvvjzZyz41X8fjDD/BN/Yaf//YRP/rId3GqXeT4+inq9z2F+LFrad92FfrnJMLPbeSSQLKRSQv3t9+4AP57PM9zwJCc/+8Dv8DhB7Yjy/ArMf7PcOoLcOgjoK8hUMNnj8KZKXz7zfC//gHYy+N3cNYbSZ5phOgkuiPvvWlaAiS9n9hUFdJjc9uaFEk5XNJDIuwUBnWmZjz22bztFHnFf/vE/AEpduSzq8Zw8tQGIAnOc/TYSR5+5Enedt/dvP2+u3no6WOcWN+KDkUoKAqEtTgTFxXB89433M73ve11fPB3P8Df/7WP0fjA3/q+b2H91Ek+cv/neOebX88LJ05z6tQWWVHw4S88yemNdXzqX3CmSdmXyD4i0SljhztIJSnKDCVjJNq2LaNJRV23s1RO1IKyWBdSRB7brKPzVC8phIaUvhHe4yAWl5MD6ZhNCJGcs0tzOi58xHOx2Yg4PUV9wcNbtvDFEH3DPt6+tufr2sgotFRiH4cW9vDmNyk+9L4P/rE2Yutn+K/e+q/ZsHfw6CP/gs8cPQGtwy/nONeCdXMbuchxfZ+ZjdQNnHgwQPX13zPBUrGXnB6bviHe8T8G7bNw7IegfBOMfh0WJ5EVumcA8vKpUZ1DH4kBYWfOoGkaJlUTu2lT8TBKWkc2iBQiNUXlqQEtMW9UlGnQOspgO+ep6obptGISqsSRT3ISqYgoiKmQTrdpPJ5CCPi64sTJM/y7D9zPixtTfuS97+Db33Anv/6Hn2HaGhoD1iQdDDwIhZSBu269no8++Cj/+3/8MM9uNPzEu1/Hwb3L/OaHPkaRKYb9nAfuf5TX33kTDz93jAcOryN0Ds7ArAs1zHj9QojkIwLOQ90YqqqdqbDWraFuYr1Apl6Ibh6KlKCEIhd6RnXtzKvTqnKJZZN4AnHuRJFR5tmMDitFHLPa2uiYfbjwTuKispGtdcTRj0AOoQw83Rr+8BMP873vfffXtRErFZ/Lj3Ob28snPvoY/9sHv76NvPPum3jqhffzO6eOILL8K5QQ5zZyMaOXww+/CUQNvgwcqWHzLBi5BscDPMv38DqW6bPJV085fAnqB+JX/NTzPu+LEecgkRIfl51z2CTd0A0hgmi4eRqp2un5ZFmWZk3HqNKnqCxSEiPTxvmAsXEcbdWYOGu6bmdDe6KT2BH3c94x2trGb4+wVUVTV1SN4T//0We5bt8itx3azzVryzzwxGEmXhNCEed+O4N3LdZ7/tlv/RGmnrKxPeam/cu843W38NnHnuMLTx7lh999Hw8/9jjOtrTVhN/+9ONMQ4bSDmtaAgJEKqB6l64tTsvz1hCCZXtcpUJpvEfAzCkgBEFAEAKpFFJFtlOktaYUBTvMpygrwi7Z+5A6k2NevXttm1IfzqZ5E69FtHkx2ci4xS++E+47whP5Hv7G+wSn/+iL7Nm35+vaiHUNz8l12Az8xr99iMfE1jnYCLt6ESQIObeRixhVC7/6Kbj2u+GDX4a//QCsn0X92xN4llOsMeT1XMtznH71T/Yix1lvJP1+H2MMTdPgiNFNR8XM8jhbW6m4oFVqHOsiIGstrfWRrtjU2DY2Azrvo5hf3VBVDa1psdbPct4CEFIiJbNCYgA+8InP84Y7bubeu28hyzIWeznPnNzk373/U/w3P/QeDqwuM6meohYCmcdxtzov0bmgbWrOjKYE51hZHPDffN9bWMwCv/zhz/M9b7uXfr/P/V94nLfeczsf+twTfP75UzgviBmUQHCWYM3OUKBuVGbnBBA0rSHLshkzRtBx9kX6fxdPhqR/JNAyDS0iIFOqBqHoGgNCiMO5XGLpQHRCcY5FmI1fdSlad18rZ/sq4+KzkT/F6+74hzx34svY8vdZP0sbkdsZAmi9YGXlXGwkVoUEEJzZmfcxt5GLFv/0g/Br98Pp2K96Toi/o8snPXU+OOuNRCY5i5DkK+zs0VgglUMIgbPMFriUEucddd3Gx3YTqFtDNa0wbTNbQEnxKC2OOIpV7cr/hhBS/js5HOc4dmaTf/R//zb/y1//C1y9f40f+tbX88jhU3zuief5uV//ILVx5JmmtfF8hVR4m7jz3sZ/O8c911/Nu9/6Jn79/X/AqGq55+Zr+dX3f4RCab709Av87kNHMULjXAXOIpXCNjGBGhJ1Mw6CTZuKiN3acbxsFlM8NuajY2Na97KkeSRFcgggRIiRuBQzEUIxo44ye7/v+gDSGNngQ4xG070Jfqfb+ULj4rOR3002su+cbER0jxWBc7IR79TMocPcRi4FhAAntl7rs7j0cdYbyXg8oWmaJGMRqYnOORAtVdMQQqRlNsakgmpIjVOG1jq8jykK7x1SgFZxMeXdbIS0MPI8R2ud5C6iaJ1MeeaOaQOwOan5/Jef5HU37mdpUPCWO6/jtqtXefjpYzzwzDHKXFMF8K5FiDxuIHiCSFGjUpzYHPGvf/cj/KePfIE80/z8b3yI3/nUl1joFYx8xkj0kiNUBBF7AXTZw5kW7wwE4jF9XKwCorBeppHxJ/GzUs66E8yTKbqMr83SqFixw7wRMWIPIU5z7O5j05pZ0dkl2fDYALjTGyAg0UEvvCDfZWMjHQtMinOyEYQC5xFKIssC7+q5jczxUgTABWbRwWWCs95ITp7eTBIjITU1gSdGU86ZmfS1Menx2fvkFPwsQlNSkCtFnsf+grLIY9dtGhOa5xl5nkV2SZqY59PiCyH2CexievLRB7/E1QsZ27XjySMvsFgorlodcGB9yNGNEdp5pM8RIRBEfHQNKSLzxvDYkQlPHDmOsRYp4PEXTuI8vLg1JesNyQd5TGMJgdQZqID7/7P351GWZPldJ/i595rZW3x3jwiPNSPXyMqsrE2lpbRUSVVSaUUCSaA5glG3QDRD9wEGzvQwnNPAmWE50ANiYBpQi+kWiAEG6SAQEhJSlVSqRbXvW+577Ivv/hZb7r3zx13MnkdkpXtGZniEh30zX/jz92y5Zv67P/vd72+rXCinI7HD2LwFag3dNENry2icx+J7rnS6y9xOfdXWtJnJrWS0gl09JIsuXFhrUZQucseX0rB+I1d/qhG54y1OISDNnOK51TgwMuL/FqaqePLs5V3LiBpkpJ+9QvH992DOHIIvnG9lpMUkNsfwsefhx98CjyzDF8/v94heF+x+RTIcIcBXWnVLeGMF2kClDUVDOYSJGPhit0THl8FwhehSpZDCWVNF6SaSBWdJGVs7a33kSyy97TlmIeCly6t86EvP8k33HeFzT4156uLIJWNJydzMFJvlCJsLVJJQjV1LVKlSDAKsq6pT2ebxBdZntYYy5SrNXAinrqjKHFO5rnxSCqx24cBCSjCOwOh2OwiZOFpGO0eqVMr3ifDXLT1l4R32lefQg+VYVhW6qiJNY23dNS84T4Wwjegex9SGjHIpiCG4txIHRUZG0tW8ColHu5aRsoRBAanEKEvSysiBxZCiIcN7gLFORjIF3YPToXJPV+LCK12msUVQGROTpQJV4RSJiElkRrilu2xG1miDtWWkOIyfaEqFXIP6eIDPE/AVTn2b0VS5sNHPP/0S1XjIQ8eWGNk1tIWqqlCjnGSrQhQ4xa+UC081GiFBJonPBwl8tvaT3U1WmSikUlgkKkkxWiMq1/lPYMD6yJqouADrOtRZP2YgXpdzkuLLeANKhsSJWOhQer5bSoFNlbMgrVsBpalL8kt8L49odnpFDC7XwnVqtPsW2nkQZOT3O8/zP/FdfHd5H7+RfW1PMhLMf4F7CLUycjDxu3yVv81P8F7exH/i8/s9nH3Hrh8klY891740QyizEOr1xNBFnOxrX9E1CKsVFg0IYxCVa8FqQsJVyO507gtCXaJQi0kIR3mEZX6aKm9RufDI51a2mR85Z7izEvHlNgxCKKyPYhHCjysvsbrCVJU/p6cDjKv/5K5FIlUCUmCqCqsrl2ynDMZWdfKc9G1RhQXh7tPW9hDnANUoIUi0cl3uChEVQ9Kkb6Qi8cUKhadOlVcuEyGhXiEpKbHUDlUEvhy5c2xbYfbFkXpQZKSiwgJHq+k9y0g0UoUnoloZOZCo/Kr0BAv7PJLbA7uvtZWXaN3of+AtSOW734V49qrypS6CAINPoHJra+V7SwgrPA0hSRMRW4M6vjxYU05ruE55zroMvRmyNGGq36Xf66KUZH049gXunMNxNHblN7ROwTgqSvlAfz12CY1SKXRVhojLuFQNFYIRzrKtqrEL+zW6kRdhnXPVaowv6QGQFxWrG1uRSpASEulDXT1doaQgyxLwDmWCwvP5FcEnoELvDOkUXMzHkML35HaWudGuZLvwjlhr90dJHBQZkWmGO7J4TTJSo5WRFncHdt9q11ti+PlrjHElQywxzDAoB61DufZANwgkLkM3VQqVSFeTSUqkko4b9svxZne42tKUfsnuJlvoP5FliePQtWY4GjMYjlxvb18+w1jPDghX3txUhYvt95FbgYoILV/DOa0x6CKnHG+TZD034ZIEY1zVWuMtT6EczeAKQWqkxb+HSCloi1VEqiVLE7pZQreT0e2kvmy447WVhESJ6Fh2meDGKxtXjlx4haKkcorCaHRZOS7dGpIk9Tz6ractDo6MGE8F1Z0adysjIb/IaA2VbmWkxV2BXT9IrHWCF0syGO1KPjS+BzehUyWQnvMNFpMQltS3AU1T10s6NC5KE5flHDq2CemcpdZXicU6B2Fwfgbrtqq0t24rtgdDNreH5HnpaBUhXc6CdccyVeksS1P5CrJQ25i+tIRUCKudQ9WY+DK6wmLQVYGpcqdU0MTwIG8KSgEdbyVG5ShcbaQsS8jSlH7X9S3vdTt0u5kvGS6jcjK+4VKY5JWuoiNVqvDnsl5RuEgeXble9NoAsdz6rVcSB0VGSl+Y02FvMmJzV2NDCuXyPloZabET+cHpjBiw+xWJj5QJrVKjo9NzxWHJrLzwJolz+rky15IsSeh1O/R6TevKWXpKBcvJxLpEwnfZC72sQ7c9Z9VWdbE/7fo1DMdjBqOConTUghQCrRXGNxayRmMrl/9htbMUhVIuPlVIBBVgsaGooC4BgS5zZ0GWBVYbb/G5aByjq1qxCUmiBGnispCDdZz6Et9KSbJE0e106AUl0cl8Myjrw1iNp38sKnEF/qqqVnoI73PQGvDNoLxD1uIqvyrpQjr3Q0UcGBmpingP9yoj8neehZ95M+Zbj6M+e66VkRbX4788Dv/9d8C7TsMnX9rv0bwu2P2DJATHSEkiBErVTlS3THbvTMhaNt7CTFxS2XS/x/R0n36/5ygKz9Ma73Ow1tUAyosSi0AmCoSbAEa7GHnXFc51fxuOc8a5rx5bVhSljiW3rXVL+0ooRJJhfTa7SlNHXUhXWiJkBQsEJCm6qpziKDWJAInB4igNW2mw2vHgPoNbKUdlGF3W3L7wSWO4shdKCjLfMyJNladnPP1hLZUxrnCfcU5f5UuxIyRaV55+MShXA8T5IIzxlnxIUJMYhK+wa72VfuvLUx8UGblWbnNebjBDl0ymFHuRkVHuHNunZ1GtjBxYXGWTc6wyQ5cURfmNKgDvxLh0K9T7l964Ad5i7PpBoo2NjkAXsGQRotllzQZWgRDK6Xht6fle1/Iz9fWVwCdV+aW61to3KqpASpS3ZJ11ZahKHR2kw1HOYDhmOC7Iy8oX6rOxcB0WhBEYAYbctToV0mVAJ4mLxPHnlcpNWGvcmF2RPVACRJJGOkGoBGUrKmN8iKrG2tAnA6zWqExFDl9rjfHOeaytK7NSxCQyV3tKOcrDZ2270E236jHa95fANyzCUSAS17+8k7p7WVYVpnRKVFuwIWLoFuOgyMh6WnFJbvGO8hhLecal1K9QdiEj0lv7RGXdyshBxAoDLrLOO7mPw8xwgfX9HtK+Yg+tdssYWRMcdW6iUHOx3gLK0oReJ6Pfy9zy3EfRCEAbX89IBKcpsTifkIJev+uiq4SI3d3K0vXXHue1khiNc8ZFSVm5EE5trF/eu0iVkKlMdK6DVApjNEKlWOMfJpWzzISULtpehOW/gDJHpF1cT4nakna5EMLx5p5mQSWx5EQokKeNYSRcxdrUNyFKfOJZlroM7cT3Jk8TF4lT5AVplpCEUrJh/Nb5BZSvKeXqVFlKoyf6dGvP4+9HjsBBkRECdYZwwRW+Y+NuZCTC0srIXQDhX3c7dv0gKSqNhMhzB8WQZQndzHVey1IXw9/xse9ZltLxDkTpnaPSL+2FlATfaAjrTBLnZBVCUlWaXBcUkaIoYgVYZ2WGyJ/ayWstWOGUvAFCUyEhFNZUqCRzDxJbYYVCSJc1DcLlFhAqyjqqwSpBYUN3O+uP5YvkeeepEDiL0iuiqjJUnmbRPipoLCvH88v6vqVeSSglSaUkTaW7Z4nPHUhTp9QI95uYpSw9heGoHmeF50Xpe0yAlCo+9G4lDoqMNFvQipA8uEsZafagp5WRFncJdv0gmel3XClrbxX1Ok4xdP3PYEW51p+qEXGTuOQoa3yOgfXhlM6CktKQKIWxblmujaEqS4bjMaNhznA8jtZlXrge1qUOpSr88lzUCt7Bxh8CGx8C1hgkEiMV0lZY4Zb/xhP4xmeuWyzdTkopBbn70isEb2ECeGUUjEGjKyD1JSuc9az9eUMW/AS1Ig22cPWbSinItHLRTolyxfcS12LW2LACcnDJZ+5niFQKkVLaWF8ZtpHxfQtxYGREyKj0hRAkam8y4g5rWxlpcddg1w+SY4cXSBNnEfV7PXq9Lp1O6pbX1rUCdeWqnYCGyBzll+XWOJoilLXGJ/pKN4fA1GGj43HOYDRmnBcUReW55Dr8UlqBUAJhLcL6jOSgI2zt1HWWYIVUPawVvqmQz1D2jnZjXI8RwNXhMhpMRb/bpRApg5F2yWpZhh4W7lzWlx3XBlcvw03IYG0LAZUQjsP3q5hgZQeKIlIW0kXxuJDXhCQGAIC21hWZBB+N43wFAh/+6ngaZ40qiZQhGzqNfPmtxEGREVefpF5ZGMuuZSQoZ4FAysRHT7Uy0uJgY9cPkqNHFulkaeyD0PFUhfA8dVGUaAy28l3frPG5ARJrrC/lIIHgb/D9zz1PXMV6TJrKF6SL4ZxVsFKJlEGkKTyd4CJQaisyvJc4WkFIgVSJi+TUlaNGtAZvuZmwvzUoIVicn2GsJavjEcaHnUqVUhUjrDVIlTQsOkdHzM9OMTs9RVlW5GXpq7E6ZZUoGbORQ6JZltYZ2I6u8XkRxkUnufBVA82sfB+RE/MavJIIuRSdzDmsk/TWF4Q7KDKCFRSi9ochdy8jyYtbiEvbmG8+hu2l2K2QM9DKyEFDzmvMB3nyKpzfcOG//RSGu2jLeJtj15LU6/XI0hRXc8i1PrXeKgrL9GbkiTaWUlcgnNMQ6mzb2F+a0CshJI85x+k4LxgMXRbyKC8pqlCTCYx1hQAdt2xjxExQIgKcBYbwkTPOOjNVhVBJTBAzpgoqBStktOCskWSJZGFumlElEKtjpEjQxdgdPxTt8+W4HecOqVQcWVpgbnaaoijI88IrN3e+NFX0u1263U7MWu50XF+N0FNba9fgSOsKXWkynweBEC7kFFzF11Au3NpoyRrrIoo6mU/mS269kjgoMmKs5nd6z/Ad+SneVh3notratYyITQ3DCnu4j1G2lZEDCovlv/Al3sPDvJ3TnN9L1NbGyFUAPjINycFYFe5aksqyqqNwfJiniJPSZem6eeloAdugD8D6Sq8KoT1tEDlbrwCMoSgrBqOcre0BW1tDtkdjRnkVo23wCVVAtK6aCGOpCwNa0JWP1FJYq5ESrBaOK4agpiKfLHAlKKQQpCpkBZfuVNaglMIIiTWVpy2c9ZsoyfKRJWZnpijynCLPMYFysJYkTej3enQ6nUhThJLf1hhnoRrtqBicc1klqq6e6++/s8a1b+bkyoYgFALh6ZCMqW4nKuZbiYMkIzkVGQkn7NyeZUT4x6cAX3urlZGDiLGXkZMs7vdQ9h17KJFi0JXvLS2lj4V3UU9SCqS3moxytIOxrmudVBKVuFBN46utllUVaYrKc95VqV3o5ihnNC4YF27J3lyaNwPthJDOGWnrirJuXHUOAj5ev7IaLRKUyqgqV1hPWON4byGcEvGBfMFpubk9pLIC6ZWRFILKCkBijctoFiqJjbKyNGNxcYF+t0ORZZSdLHb6k9KHdaYuS1n52lGJbyxUGeO72xWMiyK2qC3LinFe+hBW7ftXaN8PRdLtuLDZkCvQ6aRM97vMTPXJ9oG2OFgy4h5AVvsw8V3KSGmD98L7PloZaXEXYPdRW1M9TwMYlwwlZbQmpVQo373OGsNwOKQsC885K7SwFEVBWVRUZUlVFpRV5dqxFo7nLcoqhm+OC5c0JVVCppzj0jk9fTe9kA9ggxfWWaChlIar3QRCuCk9NoaRD890ZSQC9+27x2nfyAifuwBsbA0ojXV5yz5qRyQV1jtP3bWLSJFk3gnqLMXg2BQuvDWEaYZcBX8ObQxWa6pQ+sK65LvYPVAbXGkkRYLAau1as3pn6VSvw8Jsn14nc9vJhH6vQ7eXke5DG9WDJCOulhdORqTctYxIJ15+deIjsloZaXHAsesHSeaX18YKTw24ySZ8vLqQwltDrqRFpTXSWkRZQOVi/nXlyllX2pAXFaORi7wZjOpSFnUGch0CGq1H7+vU1KGOId8AHzvvajhJEilR3kmaaMu40BjPIwubIH20C+AnOuCt50QmWAtVqTEajJTOyvOrGQuuXperPQEWUiUZDbYpcxUzlqVPKnN9JFIsrpqsq5fk+mHgfS1p6kqGSyHJMt1wEOObPHmaxBjHtycJnTRhpt8lSxPf1laQZCnWCkp960M7D5KMNMN/vbd9dzJiqxiE4ar9mlZGWhx47D4hcTx2b0StJIy1PtvX9zywLrJmPB7HbF4xHLltDN5KFRSlZpSXbI9ytgdOSeR5EZOlmn0SlJQYv4IwvhGSCJNaCKSwXneI2K/BFcSTvpQ4ZMKSFBW5dVnLgZqw+Nh+o0GqYDyS+SxrbQwCV2NLCqcsrO8rIZSM9IExjhffWF/3iWBOeaVpSqoS0ix1IxROuWit4+/SU0CpT0DrZlnd6Mn7BirtrFDpw1W1vwdSgEpSpK9LhXB5MQjhHNu3GAdLRvzB7R5lxD80EDjHvclbGWlxPbwRREOO72Ts+kGyuTmoO735iqyWOsmp8hE1ha++6tqj+nwAIZBSkaQpCEFZasZ5znicM/LKQftQ+zo7uM5wDhnPCJ/FC94xG4r6WRdP7yd/6BPuQ+ixFjJpKIyKlWOtlK7vhJUIUj9W7ZyeiYvXF1KSjkp3LKO9RWrB6EhdWFM7hje2tt11JspHxAhXNmQ0dq1dZehp4egTpVzJjXDdQuA58ZCRDFK40uMuGc+AsUhRRzIVlfZRT77+Ei77O9kHR+pBkpEXk3VyKqbJEHIPMlIY1MdepvqZt2AeO4T46HYrIwcUz3GFMSXTdPa2Y17B7z8Df+5d8E0n4A+ee2MGeAux6wfJxmAE+OZFIrTy9O1KrcvELUPdo0p7mqKKIZnWT/pgpVa+a5v2K4QYpumdllIJMr80T9LE7+uf3l6JhImidV3VtdKOH9cm5Ci4XaTRmNK66CGpsEJQ+eSzEDUTjIReJ2N6qkdVacR66ZSTNDUBLhS+wEYM3VRSkpeaJHHUSCZVbGpkjKaqLFWwMIWouXRhMVYidVAIwlvnFl35cucq8ZFBoc+Hc1IbY9D4wAHjci+kSrAIVHLrlcRBkpGnsxXGsuL78zP8k85HXWGU3ciIEYiNHFIB05l/SLUychDxBOcZUfAjvI1/xO8S4gZfFRZYH0EqYXqPD6HbFLsv2qg1ZeHKcYeJbW0IjHQKw0WVlC7Kpmouz32xO2fGu4J8tR8S6XtVKCVRECNWXBawoxBcrSURY+MNRAXkeA2nsJoJXgGhBIYkcZVPtV+VhNwCTweEek5TvS5zM9PkRUma5YwLi61CKXN3HUJK1+cbN/5+r4uKTZjcz+DUlbX31dEy3uGKDePX3o1rXdlvX0KjKEuEECg3QnJfIl3YWklYXGMj6akKi6CXF84KvcU4SDIiNWAX6NiBGwdmdzIiBPbICHgBjtfHb2Xk4EGRIlgkYxOJQO/2QSKB5RwnI3cZtTUeF1Q+JLOsnHUX+kQIIdEWl23seyNo7VLJAk8bFALW3UclnYUWJn/4MnaNk2FZ7yxT9KRz0SkJYsZzsDSN8Sls1i8eRHhJUiwG50i1RrtqwLaO8AF8cT2nqKT0JcMtICVCC5+QhtsnhH1KwdzMFN1OVtMswaoUYkKhSiHdS7q8ipCcZ9xBCWXHi6oiL13mrPK5BiFqyWrtuHtvdavEma5Gu7yBojJsD/PXTUh2i4MiIxbFH8m/ixn7EG+uTvF2/SCfl0/tSkbsIYX+vikQ21Q/uUT6bySMqlZGDiD+GN/HDA/zFu7hHbyJz/H47nY81ocfXgKxDX/yJPzykzC+sx/qu6e2toeuLIOPqKlCcT0/+wP3rJQkEQqRhUnqo1+kjGWysb6UnneaGk9bmJDNbK1vkeojpCzRyrQ2pq/FbY2P4DFeMSiveAJF4IYgSCtLKVzmtUbHtqXNmkTWWra2h2xtD10ugzaRdw9axwqJsDqS66mSdDupoxa0QRvH/4dzh/4T0teVcgrDooRoxBZNOk/LYDlbA0URKaLKh8OGyKUQDSWcl9YNUwi3crrFOEgyEqr+WnyFaMWuZESslKiPrlK9dxH5gSuQ+6z1VkYOHGz8d9eklsOVMfzeRfjB4/Bb5+74hwjs5UGyNXRvGndMuDW/C6NMfB+FRCGV8k69WHs1Roso5Wak8c5W7cNAjRf6kIjmYuYnlUFQRLXFaRtjcpNCSndW6ctC2BCe5S3ZoJRU0kHn40hxOWXnjrOxNWBjcwuLowJMpV0HPWfixYgvKVxjJCkdD+5CUx3nL6WkrCo6WRqVRbP3eJam7l6FBDkp4nFD0yHjs5ldqKhzWBfaukKFpfaKUKKbfcs9/1+ZWy+cB0lG/vX077OitjhfnOPL8vldy4i0huyvPIE6rBDnhk7eWhk5kPjf+U+ssM5FrvFFntj9jqWBP/dJON6Ds8M3boC3EMK2taRbtGjRosVN4GBUDGvRokWLFvuG9kHSokWLFi1uCu2DpEWLFi1a3BTaB0mLFi1atLgptA+SFi1atGhxU2gfJC1atGjR4qbQPkhatGjRosVNoX2QtGjRokWLm0L7IGnRokWLFjeF9kHSokWLFi1uCu2DpEWLFi1a3BTaB0mLFi1atLgptA+SFi1atGhxU2gfJC1atGjR4qbQPkhatGjRosVNoX2QtGjRokWLm0L7IGnRokWLFjeF9kHSokWLFi1uCu2DpEWLFi1a3BTaB0mLFi1atLgptA+SFi1atGhxU0h2u+EnP/irIEBKiRQSKSVChOeQjdsJIRFSIIUAIbDWYo3BGIu1xm8jAIHbRCKlQEiJFAILaK0xWqO1xlrjvwvHlQjhthdCIITwxzcYozHGYK29bvzNYQoh3HVIiVQS8OO05ob7C7cTwo/ZfWKxFr+f9ccU8frdNRJ/xuOEcYR7GV+iuQUWMFpTaY2uKqpKAxYpFVIppHT3vqoqyqqiLMt4v6wFi+XdP/DTu/3zvi5oZaSVkVdD81pb3Bl4xbnSwK4fJMZoQDjp9bpBiPoE1lo3iaRFWAF+ErtJ5HYVcRI0Jxvue2sxcN1EtoioDKKCEO5I4acN30tFmPB+VNT3oKnInAJDiDhh/ajcOcNONvzjxxvPHcZt4znc4bySEKI533cgHKs5qSzWBsVj/Wkt2hisMY1rmDyubVxV83TWH+dWo5URWhlpcVdiDw8Sc91nQcjDZAGBtM4StNZOWFDBYmvsPWF+BUXROHi0qJqW28TLbycApARrnZVr7cQExlosAoT1w6zVVdARTaUlvPKwotYggslz+1HXB4nja9wX/4+tN4jKLSopQVQKNliwxo3fWIOJ1mzjvt0I8W/hj3WDv9cbjVZGWhlpcXdi9w8SrXdM8jAZ/IT0E9xKibQWIQUgGxRFPbkm4SewjVOptiTD9o1JHT/3r6aisN66DUrCYhHWWXIiKApsPUHjEGycsLKh+EQ9g2tLs6GgbBhVsKbjOP15/NU1DN2J48Sr9YokKARjDNbUvzdtylc0Yv2xw9j3ZUXSykgrIy3uSuz6QRItosaL8Bm1ksAYrASsdBaPlBOW3M6ldzx6nAdh8jeogsaW0fJsfoanLhrviYrLxPELr5AmTx8+m/xmwuK0YTyTE1yKySNFu1Q0rL5Xupfxl3qboCCM9xdExWvr49LYtmmg23pD//mtVxKtjLQy0uLuxK4fJFJKRyWI2gkZ+G1hrV/iN5bk1Iaa+8JNU3Gd9eX/CbojWpDUFuGEtRl3+saWF3gLsz6N49Kb5/eWKDsns7cWA+UQvjQ0uH8xYWXuHE+4NxCsPxDNe+T3aF6PvZESvv5m7TiuaVj7teW/H0qilRFaGWlxV2L3DxKl3LwNESSiVhK1xcmO5TvED8OEC4gTq0E93GCyNdF0UEZnZvOYtdkWrTjb0BJOPzQUkr3uCJMHsk1HrEdDUQSlOXm9YVdPhcRxGExjQO7rpgUbvrpeQUxYmQ2lZax3tPooIttUFPuAVkY8WhlpcZdh1w8SFa1NGRWFYNLymZhRzVnjJ0qw+NyE9ZMIC81Im8bEmoCoaYw4h+s39aluSBT4AQlbD2unArCOohBWNIzNHZZxgAGkt1x5JV6/cQ5rMRY/mT0lgUXsCFfdeb+Il9uwwL0iCdx4/TKTVuY+KIpWRhpoZaTFXYQ9rUiAmBsQcgBEFEwnwddNUgsuarH+PFiX4Tc39xsOynDcqFp2EBXN4+2cDDactF7Ku8N4u9bva4Wov2soG9NUDN9gngkbLqwxpOYwGhM4KAjTeFlr3H1UEiusp4UmD+L0ZVBG9XCDVRryLm5kXe6HimhlZBKtjLS4W7D7B4mo+e9mVEw9jf2UjnOs8W9j0rn8NBFp0xDYiAABAABJREFUiuayf8JAxU0GEY7TpCvi3LaTxw/7hskUj0HYOY47ROhYYWtd0qRfGohzt0FPuGNb7/A0jpnx1mVUDkEp2PDThWvWE9srElFb7fW5gzU86UCNVjD1+YQQbjXQGNcrWsBvIFoZoZWRFncl9uxsb1qGARNWVuON3fGpxSKts1YFIjpjJ61PakuxuXz3E6aePPXP62EnjyFcaOrGxibrm1tIITi0tMjMzDQS6W1kMzHBJ63bG4RUWpccJ4zxkzzsGzK0g6Xp3zc46p10iZ/pkeKYoB6uI9avv2L391AIIaOyu1FOxxuNVkZ2nqKVkRZ3B3b9IBFSxmW/swx3xrFMvo+25g6htl7whZikKm6EMFnC8p1o2+5UFH6MYRTR2nQTbnt7wB989KN86jOf5/KVFba3xxxbXuan/viP8p3v+hZHHehwXD+haShDGwcRlVm0dm1t+dW0hJ5QBrVlbCcs2hs5SCcjcuqbdwNmwt9DGa322gI2vPJdfePQykgrIy3uTuyJ2grJZQGOQmiqirAUh+YEjgLv9wqT7boEtIaV1VzG39CqtHbnJ40xhB2h0hUf+shH+PDHPs5gMGA8HrO5ucWli1e5eOkKs7MzvP2tb67H0Tx3g29v0hWicf7gQDbWoLVBG1cDyljv/mxa09dRE41jNhSEmYiwoTGeGkFBKGmjYxshnIKQjQHfQrQyUh+9lZEWdxN2vyIRQfAaHHBYVgfDKFhYwWKCxmR+ZYH3X8Sfk1tMmqs3/M6Py/3vRieRWGlZW1/n608+g0hnSDJBWoJSIwQ5K9dW+Z3f/RCPvukMSaK80pJIz9FPlLNwfE28hqiK4sT2k7o53IZF7W+i+xGt6Np6v44zNzVP3rRcY/FCBAjbVIn1vXuFW/xGo5URWhlpcVdibw+SiJ1S2FiSN5fdFq6b8ju2uQG9u/PEE9asuIHCEN7ZGKw7fIimxbK2tk5eGrLpw5BOU1bnSdQmiXTa7eWXzzMej5mZmUZIgUJhbcwouyE337Sdm5ZpUAhSuCgbsTNk1e9/Q9iactCNqrbG2JgLIIREJQoFCKViqoJtKGVHudh9URStjMQLaGWkxV2FXT9Imkt3EI1J0nw1FECwvprSKsR1SsI2vnvFCeRPdMNv4wQWkQqpLU9LUZWoNCXrzGKxJGmGBJSSWAt5nlOUJXjHbozQYXLlHyzmnY7Q64bsLVaBnShjfkMlEegd/2+wMp2SqNDalz3X7nNX6TbdEYHjrVRrwFI7bvflSXJny0jSX0APM5LNq3QS0Jmk0K2MtGggTUEqyMdkCWCh1O0zefcrkkktEZfeNWxNV1jLK8auT1ij1sfq3+h4N4C3XkWgKZrjazpm/febW1ucO38ZKSVlmVPmI/r9KdLUTTRjLUVe8OxzLzA/P0eikgnDMpx0goqxEPo57NCc7i4JfFZzI+LIJ+bVW+08Xn3vXL8MTVUFRaHRlbM+lVLOIlbKC66I9yTo4+sifm4h7lgZuXCFS+96lOe/9wcYV8u879P/jr+7+s+QX4MvfOoIHxqJVkbudgjgx94Df+ZnIL2Xb/3wv+Jv2H9H9lTCZz5xiH9xbY2zjPd7lPuGvftIvATGyd1YrgsRAiUNRsqJOkbxOGG6REVh2Dnhw6Sp9wlj8Edo8MmBrpikVdxYL1+5xh987LNMTSXocoNrV64y3RFROWWpYvXaCh/44Ed421sfQ0l1nWPXQlR6Rtfx/jZci7dum5b4hMJqWpzuoJ6zd82WmFAQk9ZmVdXNm4KDdOLeeMPaQk3n+HOH8uq3EneqjPyH4gW+/D9+C9XUFajezGfn/wJv+s1/x7HHj/KeC8d5Xzrg//2BP2xl5G7GD52BX34/zKVQneHifX+Hd/7mhzj2m0d5/7XjfD/rfB+fYgu93yPdF+wh/LeeBk4ovb3TVBDKy6/1yiJYadRcuOsM549jLaFT0Q3sUnf8QEHEieYVwoRlGUc5cYSF+Tn6/S69mWl6yQzrK9fo9Kcw9iJG+xh6JTl+fBnpo1mahQZrCsZP3kaHPXftdUkQ23S6MklXiIYyixaqdQlhxr11iWj+HFobdBUie0zN8zeP5/9jh4KUwjmQ98Javl64E2Vkfmme0Q8/QDWlwV6AwYjTFy6TqorhKKOPYMoq7jl+rJWRuxVSwE88CnO8ooxMk5AioX2QfGNMRJU0rMhgUUnA2mbnOYcmjRGsLD9Lan78epN0giaJSkiI2KK0VhbhPBAoBuegFSwszPOd73onn//yVxDasnx4AZl2UUqSCscuLC4s8E1vf0u09gSAlL7Xg+/54JWD1hrtf8brls3yFY6eEM1xNixNEe5ffVPxo47ZzVo7a7PSjZaw1kalSOT5462K98j6n0rtsJpvEe5EGVmcnePHzy1x7ek17OaI1Zc/xNM//6382rV/yLXhvyDrPs9Xjwve/473tzJyt8JY+KXPw8OHYHsEWzM8/Y+/nf9w9R/wwtovkPAkv8NVVin3e6T7hj0/SCzNonY4awuwzfajNCevm2jWOJ9EnNfe+ow6oklTiNrCnLA0G327g+JwOiuEVoZB+YtTku/97u/k8qWLPPfiy6S9WTAVyluUSMm3f8e3cN/pUxij43lk4O8bYZZVdG46Tho/Ga1VLhTU77ezuGBUECLQPEwoCou3NO0OZaSbVq1XCtFqdUcKVnfgL4KCE3Z/yl/cqTLyk4ffzPYv/Uf+/R/9LPrHf4epM8f5E+/+OezGn+GPz/49Hn3321sZudvxibPwI78M//ow/PHPMPXIf+Cn3v1z6M0/x3fxN3iajf0e4b5iz42twg87YSSKCQuxORGsVwYGkNZMbi/igZtnYSf9EA4XI1uigmhYXaLBm4ua9Oj1uiwuLvLE089jzJjB2LI9rqiMIUsSlpcP+8nevL4Q5eJ6Yhtd89DhVStNH53kxxeiYWqef/Jywn0Mis2YQFdoH4HTbFrk6KLQ2yNRKiaVhXGK5u1qWuH7gDtZRo705yF3n8z2FFIICixG0MpIC4dhCYWTz1pGDIa21MyuvW26qhpWUL2kDtSDN4a8oqiX6WGyCC/NQYjjJG8s72sLipqyaP7yDWHjv83oFICF+XkG21tUxZhysEqZjzDA7Pwcjz7yMMpPvubkmuS9HV3RTASLL28VGh3ea29dhx4Q4T7VTtKqquqXLuP7YGGGqCOpJEmSkGYpnU5GmmWu54cQDet0Mtw0NJVSvhLvrcSdLCOLM/Pc9/OKH/q1t/Gry7/Iyz83w890f57VxXErIy0cKuAvXeWxf3yYX13+RZ7/09P8KH+f57i03yPbd+z6QRIsrqggwosbWZ0E87CmH2guvXcoiobCiN/7/xrEMa+oLMIgbG21xmQ3C0nWJRdTbA5LSm3RxlIZ6PX7LCzM1UqiEcViaVAJelIx1JbiDl48KpJwj5rO2MlEsrKqqKqSqqwoq9IriSoeX+CKICaJIk1T0iwjTVM/+V00j/aceTMnQOyjkrjTZUSszXDigws82L+fzz98hc+K5+m2MtKiiUuauV8TPNC7j888dInP8dwNgkDuPuya2tK68u8ay+Id3G5TQdTT2RfuE4AVE/SDkAJioT0PW1usQTm8mq1pm6+gKHytcmMtq+sb9OaPUYy32d465/hraxn7RDOpZFRUCDdex4DU1ma0JP2ER1iM9uO1tWVtqCkNJEgjnGMWopKIVqduWJ1lFRPLol9BSlSSOCWRps5p6y1LYy2iyY8Hqz8qiVsf2nkQZCTrzzV2amWkRYvdYNeSZCeWyDcIxWxw0+H3mpf1hEWY9DsUhasN5K3OUIo8OgjrY0yMx6uF2nlqI18RxqiN4eKlK3z9yWdRSULWyZienkJJx1lfW1nj05/9EnlRRmNWxOPXREj8L/L+deSPadAbrlWqrcuBm+bvtbXajOxpWvFhv3qyB+5beYvYlwGHyKHXt7/uoif9+1uNgyAjiVeu4dHVykiLFq+OPZaRZ4JWQFzfxCjC1olakVKwONOsSW9EakJM1EiK542UBThFUNumxoIQPhrH1M7Jqqq4trrOl594nt/77ONcvrJKp9sjX7uEzrfAK6LRaMwv/st/z1PPvsAPfN97OPPg/fT7/XhNUvgJKoM3tBkjbndY1TsQFKkxmOD4jEogXFt976QQGCGQEqwJdZj8ffZKKRQdEQKfk1A7WZUKikT4e3PrHYAHQUa2Ntbcjp5Ca2WkRYtXxx47JEKkLSZ47AaV0bREw4S4gXU6SW8EBRR3nNg9fGTjvt7KFG4bXWlW1tZ58ex5Lly8wuPPvMCXHn+OK5sjRHcaIQRmdQM92kKUY3RnBiNyyjxntDngP/6X3+dDH/sMj735Yb71nW/n9KljLB9e4vDSAmmSIGO5iWCFWke3RCv6emURLVVLTMwzwcMLkd+fVBS+gZL0UT3BYvcUikXGmyIE0RoNCkIpVatTc+uZ24MgI4cXPbWVZJjudCsjLVrsAntakQANBQHsEPLIZIflfKQ4akqhGWEjmseLnzCxvTtnYyA2ZCm4YxdlxYc/8xV+/fc/xbPPPM/W2gpFkSNlQtqfRhmnTYrBJqYqUWmGTHqotI/olFTFGKsrtgrLp7/yLF969hJZJ6OfCN5+5hR/6qd+lGNHjzZOb7FWRasxKrfoAqjVibVMKMidDs9A30ghsEJipIl8ibDekg/HMhYrd2Yw15Zm4pVEcHIbe+uVxO0uI//5I5/k/KGvs31tg62PCwReRhgCUAw2KYYn3SFkippauKGMfPnZyxxNjmA6Qx45s9zKyAGCSGD2vWBzGHxScqPI3t0lcwoOscQmmxQUb8hYbyfsrdUu1BM6CDm15RnRsDIjXRER1ERNfURuPFqsnuGgQXuEiqtCxONba/nUl5/iX/7WJ9nYGlAYgfEmqKt7VCFK5xiVSlGNB1hjyPopQkpUlqGyjHI0pNhaQxsN1mDsLIN8xH/9vRfZ2tri//KX/jtmpqcR0iCMRAjTuBr3T50zEJQc8bqbVEXT7hbNeyEEvh4s1vM3oQZTvS877mVjX5+EhxBonHV6q3G7y0jxzS+z8H9/jvkK3voLP8TRF+6L/hYQYDSn7r0XgONLC3zP2x+L47PWovMRxhjedOGd/Jnn/gceF1/nf3j5T7cycoCw8KPw0P8P0PCWf/Z+lp+/97ptTj/wAACnjh3lB9/9XTc8zkMvvZX/7uW/zON8jT/Lf8M222/gqPcfu3+QhAiPMHuh+abGDgcfBIvSbV9z5dQceOC/vQKwjeMEp20w6GprC/K85CNfeJrtUUFV5JT5ECElSbcP1rhJJiXWOyvT3jS6LDCmIkkSpMoo8wH55ipWu/IG5XAToRKSbh9d5nz6C1/lIx/7FD/4/u8OFzhB09RKQnod5x2nE9Z34/ZQK7gbhWUKWSvhCV5bSUB4Z61zaktrUVKitMIogxC1rfsNmPk3DLe7jKTZGJT7+3XnU6b6Pf+gwj+YLNsbG3z5c59jdPEC7/+mt143dGEE3/4bP8bp6h4Oc4iH0jfz6S98rpWRAwI57VYlSOjMpUz3+9dts72+zpc+/WnKlRV+7H3vu+77ICP3v/wAyxzlDG/iC3zuFox+/7D3FUkwpHYui4MFGH/1oi8aDPcEXyyiUTrR9VMIMG7fGC/vLcaoLARYK9gcDDl7bT1arNYYxhsr9JeOujIZKkFIFytvjUJXJTJJkCpBZV10kTNevYKNYatgjaEcbCJVgq0KiqrgIx//DN/1Hd9Mv9d1fHZQEE3L232Ctd6J2fis4Rpw/LadfIWb5iKSnKKQQiJ97oKSKoZ1an9fdFVhfAin0gptGsttISbyHW4VbncZyf9wgSMrKX0j+dgvP8/Vy885GRHCZaWXOaYq+Se/8mucOnqUJOuiizHjjZVovQvg09fO8nf5Bb6QfIXH+SpF3srIQcHmb8PSJZgRKb/9Dz7K5XO/d8Ptev/8F7jn6NFXpLg+sfISf59f5LN8gcf52hs55NsCu36QKKlq5dCkJWqmIX62k3kNXG+T8qh/1OZrbU3WdEJMGhM1qxEmXl5WFJVGCFCmoBptY6uS4cplZJrRmZkn7U55S1Z6xWRRWQchBfnWGtaCTFK3IvGTWBc5erhBpgSlhpXVNba3B3Q72QTXv9OJPDHxG98HWzkoiBjuaRrWpr8+KZ1yUP5niAoS0lWetT7HoKoqQKCkIlGJCw9t0kevyuG+/rjdZSQpKhYqmE8FX1m/zOrlKsqI0SWmLNFlwTDP2dag0ozB1YuUw23ARhlZfPB9vHBZ8YS8hk0KpGll5MCghPkKDvUVymqG4xv3GBmOx6ysrb3iYZYeeh8vXFN8XV9lfBf0Kdm1SeKqmE5Gn3g/Ya04GpRD3E+EySJdDLuUr7qkDsqojrPf2ZvaHb+TJmRKMdNJmJ+b5sEzD3H/mYfodxJElSMsGFPV2dXWgjFImaDLAqGUe6ioBKTyk9iNQJRjUlMxk0p0WZLnubdKfakPT5uF0MqYrBb8M83yIP6YO6/JTHzvrM1IVSSJ/+koi2BxBp9A7JDXyJaO94gbEkpvOG53GZlOZhl8dZFiPmfpkeo1y8jC2izWCF60X25l5ICh3IaLH4ViPmfxsdd+nIUNJyPP8dXXb3C3MfbQkMBGhRATrKyN1mNTMCeW9Z7rruPdIeYJhCPb+vcQjTPBfVvq7xrHn57qcXJplvLYcczWCmuXL9CXmtmeIi9K1lY3WL+2QmGso6r8UcrRNjLNUEmGqSokFiE6VMaANSS+OqoxmixNWJyZotft1IlfUSlAk5YI/H5gnye4frwCMeH+7YhY8vcxKJ66tpOM904IH32TJNgsc39AlcTEMusV1P5Zmre/jKjiaWxieeTRJTafSl6TjExfThEWnuNLrYwcMFgDxRbYxHLiZBcYvKbjzFzJEMAzfPl1Hd/til0/SEywJnfUE5qkIRqTIzgEI+9dw+4seUHNp9cWZficqCVE418AJSWdTPG1515koZvQm19iemGWTBq2N9bZunqNPgVUmlFeV5Ud5GOSTg+ZpBD7SbiyKZ0s4cjhRUaDIeVojFKSe+85wcz0dMweVlJdd02BfnE8tfCUTuBanBKNVnTj/jVvgxB4msIpIynrmB2EK7anVEIGjsqAOjdABCPfXnfcW4U7QUZOdboATM/OcPT4/J5lRCCYnjkCm5CkqVfcrYwcRITEzb1CCMnM9DJsvc4Duo2x+zLyISvYhiJ1rqZQ0znqCVxcqKGLcYe4aieEPApRKwFwE8cJeW3R1orCW6Jh+0Zq8/nL13ji7AqLC0s8eCRlY2Od7bUBIhGMNtfRRU4iBf1MYQsYVwaL8U700vtO/BiNQQg4dmyZo8cOc/7sBTAWlUgeftNDdDqdOqnLKwkmxuiHhyc2hMU21ciEpe7u4U4FEZSrU0bO0mzuLyQgnPJIksTv5/t+Iybu237kCNwJMiK67r4t9Quqwd5lJEkyTp18B+JxQ9bpkIpOKyMHFA/fO0u3s8Y431vXQykTJyNP3D3h1XtakVivIKyvXuoK09XORCElilpwpZRxcgQFwQ4FERCoi8Dh+h39d9SmXWNfY8FoSyZLOkkHk+cUoyEoy2B9HaurOHFSCSSCykC1gzKwFpJEceTwIlPTPS6du8BwfR1hLVqkAJGDVn4ChzEHGiKGkXoaw2JDTcDaOewvJuwHwVAP91BOWJs1n06kepSQiJ1VWxt+h9C1T+9D1vKdICOl315Yw3BjbzKSKcWfEgk/8MI/Yem+aRZHX4Jh0crIAUWaSPa6KJHAT2nB9z//jzl83yzLq09xN/S82v2KxNMWcYZHXhvCyprwNlhOgfuND2brKYv69+tRH9BNErwimhgNFsuh+RkWp1L6sqDXn6Y3NcPlsy+xNdhksDWIyiWMJZFu6Z9Ii0GgjWumlHU6HD++zJHlQ6xcusLW6hpYS6JcX/HLV645GkGFXt1+BA1lEx0AIvyQvmhtwxL1CuC6sNiGpSlkozYVIebfNKxafw+jtTvpoLXUCv1W406QEa2c0u+kMJWWu5aRE6cE771njn/4cct88TswLvhv7xvy4ae6VK2MHEhM9xPuOTrFky9u7mr74yfhnXOS/+WJPkv5B2Bc8Ocf3uY3Pwf5AV+c7N7ZHgTPC7AUEqsaXd68oEcqwP+sqQ23nI81kJjUNzVPLiLtYXbUDYqWnAVhLf1ehzefPsxzL73A1toKAonWhouXrlHmuT+mRGQJmVRYaxAI0k6H3lTfNQPqdulNTVEVBVcuXGb9yhWfxOVOpI1he3sQK6vGyWgtzSghAGEb9E3kx30UTeDwRRLDNCepHHxlVl/Z1t0hiA7syYikppKqo3FoWLyvjd+9KdwBMmKePkryHV9hcN8mBkNxAxlJM+jPpCwdTzl5puTQouQv/fmrHO2sMPOj0/ClBLugeVkLSmMxopWRg4RLH4M3/3kY3b9Nv3tjFZl2IOvC/CG4/zFYmoe/8zfh+JRl7sd0lJFni9hU8UBjbysSj0BLxEiSoAKC9UmUVZriHpbxO/nvpoJw81qAkUhpdmwXj4y1oJTkj73/XfzGB0tWtoYIkTA9O8vC4cNUVUXWyUizFCEExljKokAIQafTJUlTpBQo5a1Co6nGQ1JhkVI6i80PfGZ6iixzURiVL+9dW5p1QpwMUToNXj1kEgsrQPp7JwRGBivVRkUaSlg0J7gNvHlokhRLjesJp7YxTqEEq1jKW9+06I6QkZVpEqCcLTh89BAn5RwnHyrp9AT3vW2LuUMjjtxbcOy+LbIu9GcrpoETXpGPf36b3kclzFR8/XdT9FPujK2MHBxsvwyJdTIyN5OQdeHeR6HThbe/B5ZPwamH4fQZ6PRgdgmmLdwDSGEZ/fw2fS8jX/71G6+pDxr29CCJohuX1RDZXVvTA9HaRPgCqPWy3ilnwc7bK6g1TM0lSyYY5LiLVzIW5mdn+OH3fjv/+fc+ztqgoj87y1FhKIqC0r+sNgghSRM3cYzPWG+ONR+NsEVBmijySpOXGmuhk0mmZ6ZJ0xSjNTTapjru3E104cxFBK4eUpMP9xeFstJNeimRTarBP7RCK1enZ8LNarZh1XVuQGxp68aitXMIJmlCkqaoPQR2v164E2QkPf4MpwTIpTEP/gnN7HteZvFYjkrrzPXtdcn2muLyCykvfGWefFuynFjmZod8/DffxF9eej/V8CL/6TP/kWGRtzJywPDAW+GMl5Gf+fNH+LPvusKxeyHrEP9UG9dgYwVeegq++gkYbcLRFI4eg4/+lzfxd+79MYrBBf7TZ34FyPfxam4N9hC1ZWJ/Ayf7IlIRztJsCHfYx9aT24afOzjbJppzqvlZrZ4aykLUmy7Mz3Ly6GE2X7pCZ3qB8WCLMh9TFgXgKBBdFZiypCwqP6Gsa49aucgiXZWURUllXCte6UNTpRTMzc6ipHSRXY2BiYYyiJExQlx3Dc2rEd4hGigdS31PmhnQ2ElbvnlPXeMj38O7Cj2+nZIwNen/SoN4w3C7y8ipk0uUj71MJoCjA9LDYzq9kq/8wSz5UPDMZzusnINr52H1osAYKHPrZASLqRJOlsf5+NbfxlYli501VpLfbWXkAEGl8JYfgkwCRwd0j5VMzcJHfx2GW/Clj8Lls3D1vJMTY6Aq6/2FgIfTE3z8w38LU1Us2atc4r/u1+XcMuy+1a4Pj3VRIyJWEY395IJR1RTy4HCMllWwmuqf0KjRBNBQJNg6kucbLQ+VUtx74ghPvXgOqtyNyRps5ZypVVmSj0aUeYGpqkgVlNpNetmYsEmi6KQpuqzAGBKlmJ2d8a5bd6lSSIRqRCIJGSeyaOizpiKsqWkxqUOEiN9OKoOwV4MmMibeX2ssRluvICrK0tcL87SPeI0x8DeD211GTi8f5dMffQTRHTJ9vsv6pw/zy/8oY+UalHm1Kxk5tfxeWFMIK1mUJ+kkSSsjBwi6hI/8U5hehOODQ1SfXOKv/rkLXLhQYnbh67AWHj7+ffBSgrCKOY6/8YO+DbD78F/t6hVJCdY38ZEQravI91ILcfyvGUoZlYSzmpz/wsSJADdQEgS6w50BQZ347CfdseXDLMzNMhiMsKZEFwVVXlCVJeV4jC5KrHEhj+PKMKoMpTEoIeglkm4iXUa7lKRpQmktujRkWcLiwlxNT+CjZpCRZ47j3uFg3akoooKYcLT6a8L6DyavO2wuERhZKyNr6/7eVaUpyyqeJ1q9txh3goyIrz3C1/7hHI/NXWAmKxisGsZb413LSPlwxdr913jqc7/M0/wGoqKVkQOGJz4Iz30c/tKfWOSeo5LhptjVQySgeLhi7ZFrfOIP/jmfH//qGzfQ2wi7X5HoKkaLSCsjRVG/cNK808K87tXo6+2pEOm1jzWudMP1SuJVBF4IZqenOXPvCS5euMD22ibb61tUZYXWhrI0FEXFqNTk2kZHuhCCysJ2acgNdBNLpqAnJWm/RzGEY0ePcOz40UZMf6AnJEkSyncrsDby0EZbLIEfr52cQkok0usIEemY6HwOliQ15RM2EEIgTV3aoqYvDFVZUZYl2hhvbe6PkriTZOTlSwVvf0BweBYuXSp3JSOFgUIZtt+2wYsrv0dyRdMZpq2MHEAUQ/jqM+ucuWeWM6dn+dRXr+1+59Sy9Y51vvzV3yA/d3ekt+8xasvGJT8TQkyDDw+bNZTBK70AV+9UNPje8D0TVldT6JtOShFOryTf9NgZinHO1569TD4/5fIAdOXapW6skm+uon23sh3kAZWxDEpLbgU/+YPfx9sfe4TV1VVOnjzB0uLiRMmPMJ5YQK9R8FF406XmtcM1BQu5VnoiWulOMUrvfA73OFqmYY/Ardv62NaGTHLrs6FttEJvNe4kGfnMpy8jRY5aOEJ5+NCuZISkx5Fjb2OwfYl3vetB3vTgu1sZOcAYjTVSCjqd3ZfbT7M+J05+E5sbF1hZef4NHN3thd232g0WJbUyiBMm8tMiWkGR725YnpPHErWiiVaWBcN1+zTDJAkTqd4topt1uP++03QPLTMajJHaYIbbKKHoq4Sk0yXf3sAUY0xVOOu2AYvj0s88dD/vfOfb/XUEhTdZrdUKF5dvrI+uCZZlfNnGGGWtEOKgRfxMND6LYwlK1FpngYf7HZWp2zwU70vTFON9OvtFW9xJMvKBzyxR6AvMzmSITOxKRqRM6HbnsHbMffcebWXkgOPFiwPyQrM429n1PlIm9HrzjMcbFMVrK/h4J2L3ja1EWG57NCaxMbgaP9gJbnvCkbhDSYSf9acNK/M6JYFbjvumPn7z+jtqS66TJaSJQqUdUFCMtt1xpERlXdK+QUtFObJYk9d8sj+G1oaNze14HTqU+2jQLp7zcB3ojMVIN3nrEiE20hxBGeCpito+rikQ6a/LWupzearDCuEVBXVZ8UDmCMfFq6TuA6KULzuyD0riTpKRwqQYIzi1UCFEuisZCQ81ow0bm1utjBxwbGwVVNpy5vQMTZumxfXY/YpEhtBNooNUNC0fA27FbSeX+I1twtK75s7lDblywpI87mkRyFgawn3iv/MTKEy84FTURe5i6b0DVVgQ0mUe6xgB1Bi/n/jWWMqyxFqDNoHP1tH6IyousSPhjJo28L0xAm8dI3aCIzXcD68kQh8JYw0aIJ7P3+PgV2jeI69rpJQkiR+PtY3eF7v9y75+uJNkJC8qSiNIhAFd7EpGkrSHlAmDfIuilZEDD2MsRalJE0miBGX16k+SLO0hpSLPtycMo4OOXZN/sTRDEPNoedWCe0O+u3GMerktoqUUnYcNa85YP9Gixep38/vG97UOmaQ6vBVrdEU+3PITlqhQjj34Zg6fvA9Hs1BPQJz7syjLup+G0S5T2SuLkCEcxhh+31k63ZVUdyOtlSLeag4vX3wv9Nxu0A3xngal22yE5L9399Dtn6QpaZqSJAkqkZPhsrcId5KMDCvFxa2EQ9OGvt2djCwffYxef5GXXvg44/GwlZEDjq1hxQvnBxw/3OfQfHdX+xw78Vb6U0u88NwfYkz16jscEOy+1a5STfs9Tl4hDTFToLH+q/nXepJP7Ctqh2GceH6Shf2wboo1lY5oKiC/tPcnROD7MQiB0RWmqlx1V5MipHKPCaOZmlkgybe5HMcZ2Ht3DKVUY4LW1mRkqb1VHUp9C28dhvFrX9cIQFrhqIdwfK8sYgVX4bsKSuHqMNV3rb4XAjB4ZWH9PfZROjt7eoiaV7/VuNNkRGv/7NAl1mSvKiOhgZSjh1oZuRtQaRMf6ruBIMjIXVBgq4HdP0gSNWFNGt9SVBoJwrjkAQJDFEjpoDQa9IWt+XA7oSRcWYd6ORji6ZvWq8GYxr6BGhH15BsXJWWlMZWjtJJOz9EjxoAx6CLnuS98jHKw0aAQgvnnJ5n/tGlF15sGa9Dx0Wg3/a21vhyFe2HByqBgRJ3xHThvX+er2Zq2wb7UqyvwDmmnJMI1B0Xg9pfx2Pv6ILnDZOSZq4qHD8M9R3usn3t1Gan9NrQycpfgy0+t8c2PLnH62BQXro72ezi3LXZPbV23rCZaWxO8rIcQjVLXDcsz/Gt8Qla00LSOL6OblEXgw12XOhscmw3Lzvh+1Fobnjt3he28QqoElaRk/WnA0VzGaExZuGOqdMLMCG+1MTz5zHOeAw+T3L+aJIydDKOsaxs1iuTtrPyKK7nSbJPaLMK3c2I3749pHDtQF1Hh+P7dSZKSpAlpkpIm6W7/tK8b7jQZqazr53F4sQe8uowcPvIwxlRcvfJMKyN3CYrKrUgOL+6O2jpy9E1ORq4+8waP7PbC7qO2Gg2IICzbTeydIIKCuIGws4OmcJ+BFdT8rp/kzhnosoIDFWE9hTFx7hCdYo07kDRUleFrz5+nMhqZpgilXI0tXaB16Y9hkDKZWKqG47sEMMvXn3iW1dU1Fhfmo7UpoinoC50LCzus36ZiCNc4AVHnFUSHp5xUENdZuv4+1zx4rSDw/HfoyhejpkTtcL6VuNNkZKBTSiNY6FvsLmTk0OEzGKO5du0ZqnHRyshdgLXNgqI0HFno1ovnb4AjR97kZKR9kNwYgaqoSzvc4I6KHe+t/xn+AsG3GPoiQG1NmcbkajgIlWzyxDVH7fo6WKwN3DsMxyNevLTmjmMs1lToqkSXBabySsK4JCzrk7Fq70g95stXVjh3/mJUEpFywQASg0FYr8j8Z/5J5MM03bGUVP4aGo7SHYpBICbum2386+67mXDYYmsrE0QM5YwhovtIWdxpMrK6LckrwdHZCowr6vmNZKS+0FZG7hZcXhkzHFecPjaFkoJKv8qT5C7FnmptGd3IRG5+2SBvI/XtrftaWzg0KY7mstwGnhzhFULd+zou7UMEj3UWovI/3a6WoqwY5C4r2ZQlxmqnDPyDxRiNkAqkclpFKoSP/HGDcyPIi4JrK6v1OAlKMSgFAUZipVcxviFRaOQEMk7kOH4pvcJrKIdXgr+eqKAa9JCzwL0ykIFLV4T8iaaz91bjTpORqijpXOhx76Uu81XOitCUVXFDGcFaV6LFlzVpZeTugDGW7GzGfSuzLIoeK6pA628QjSWbraDvHuyh1lZolBOogmAZ1tvUS3vq75qUcYO6mOCIGyGcwTHowh0TlFI7uPTmGUQd0mkso7ykKCsEoHWJNRprKjfJ/TJfJilYi5AKYRoPkaDcrPOTXLh42TuLaSgw40kLF4NkLEg8bROcpEJGq7NJTzS5bhk73HknPz4rmcn7BbXTOkTnCERUDiIqz4aluds/6BuAO01GpgfwQ7/6MKfHGTOPvIlf/95ZXjz/AmWRI6TElAVGa1544Qm2Zzt89c+c5KmLX2djfAXbyshdgfmyyw//h0d5gDlmHnqEX3/vDM88/zhVo3a8tYbnnnuCwXyPx//sPTx98WtsjC7v46hvPXa/IjE6NuqJgtywLHfCWUY0lvz154HL1b6DW+0w9cdrOAilUki/FI+RKyJQUcKPzaDRnL2yxrhwfLguC6zRjq7A/bEFOAVRlS6qS5eArS2zMARjefrZF8nzHCWlv4amtgMjbaPsRa0khLcom1RL4LljZ7taN3hdayeohnCmCcvc2LjfdUpih6XZ+NPcUtxpMkJRkfhyU12r6HV6vOOxb7mO9nnXt72XP3jvEh9/bwrFHNm/eQD14a+0MnIXIEGS+pikvkjo96f49m//vutk5Lve/UN8+L1LfPy9GRRz8EsPwR98aR9GvD/Ye6vdxkR21G3jZ9gg8txEAa8pACaogEClB+rBNiZe/CL80cLCwg0g/jGlEBghWNnYdhE6PofElAWm0piiQKUZRlcIq8CW9YWwk8p31MnK2jpFXtDrda63AkVjx4nQU+9Qtp5aaXyH112B4jFhwvsCfTYqzh01m8IppS8VIur7ijEYIRDSIoy30hvK9FbjTpORa2LMk51pZqtZ/ubGf+GZ3xpzePEQUkhXGaEYIYD773+E0dRxePd7YHUT8aKzNlsZOfi4yoivkTDPIn/5uf8Pj//iKidOnEapOuJNCMFDZx5ju3sCvut7YHUDXry0f4PeB+y52ebEk3iH0y5YjIGTvk4xhAnTtFjdnvi9aqXiJ4oUAuM5cSEhltWmpkmsEBhr2dgeOapBgq4KqnyI1RW6zLFak3R7fowGq6sbjMMrKwGjcU6eF3S72cSTJjAzk5OwqShclA5YhJXgAplcY6QJ+qWZl+Bmfgjd1EY7ZWEDv+4sWOtJE2sNWtd5AlFBSONKfISy5fuEO0VGstLy6OgUl9SYr+kLlBswzkfoqqQablEOtwDL0099GfPlWfhzS4gXLsDLV7C0MnI3oEfG23iYC4z5mr5IPqp49tnHr9vuySe/BJ+bg//+EDx3AV5qqa1vjIZl2YwqsTj/QgxHtHXWrbPWbPy5U3m7j23ct45AcdaURGKlwdqd9YjqxKqq0lxc2QRcfSOBoBxsUeVDF8WjUhcSLFy+QOTm/f6q08dagR4PEFg2N7dZW99gdna6ce2i5q0b43YWd1AQwluQvpZRsEA9vWCb9AW11Y7F5RgYlwugTV27Sfg+307x+lwJq913DcVjpUKmjltX+1n+4k6REf83sMagizE6Ea8oI/LaEPnF5zDvPAGnFxAvrLYy0mISV7bgs8/At94D9y7C8yv7PaJbht0/SILSbdAUUcAbmzRj/uNSfoLbDVyyrT9pWKSEZDLvYDXCKQJrncOyrnQajulm2GCUc3VjG6yNtJY1GlPkWKORSmF1iUxSbFX6suYCoRKymQVkklLlI0w5Bl0xGo+5eOkK95y6vlWmCNxD45riJQVawhqEtCCkG6+UCOFCUoPCiIfw16J9nkRInnP3LoSCuus32mKsS8oL99Z4JaEUJEmCYEdr2luFO0xGlsc9pmzKl7hMPt7CKPHKMjK1gK4URTeFrqM1Whk5+DjBAlN0+CIvo3mVsieVgWEBvQSyu2u1t3tJaqzX60gSh2hNNpf3E0vysJ2d2GeSuQgkeL1BM7SxmbHctGjDa21zm42BK2FgqgprNDofgXXtX63RVOMhqhrT79b8ZjazSGd6nrQ75UrP+zGUpealsxdiVdfmde2kHeL4ab4mL9A2ri+SNM2M5KqayHwOtEW4Z0EtTVBCTa7cuBpRO0uz31LcYTJyfzHPrOnwJfkyWphXlREhZTgp0MrI3YAzHGWePl/kRapXe5Dcxdj1gyQ66YKJFCdoTTmESRDj45sJVhP7htcOYRaTVlyAmxh10b6mszG8Lq1sMC5cqK8xBUZXLrS3NmoB+IH3fSd/+k/+uCvJ7SeW6nSRSTLRftRYw0tnz1MUZRyj8NfmImJ2KAoRPKOythDDdUfrctJOtTR7aldUVRVrMblJ31CQ8R77PZvXNaEw63tyq3HHyYjROw8CvLKMCKmg8YBsZaRFC4c9dUhEBD1ga8OwYUEFx2Zz8lgbsp3B1/ALO04omfo8/idhMlmwIXHN88vxCG5cRhvOX1mjrLSjPbR1D5LAEfvDSyE4feo4950+SZomFGWJLsZubicpKu0gksRFdwGXLl9jNBoxPT3lx1hPeO/7nLCYA5UzqRzC9sLrwFoRBR+BK0Y4WUcqlNyYCO/0Fq3TFU0tUVe/jcerbn0b1TtNRmarFI3h6+JCPOc3khG57f0m8/3IULUycrAxTx+N4auc390O6yP3t5vbXW2ug4I9rEhELegEC3Dnq7GtFMhGaYZ63zj1m/+Es/h/Jy3O5gTQfpkfX8ZQlCXnrqxijEVXlacEXEZ7U6FYrLfsairCPXBAqsSvSuoaS2sbm2xsNhrUiGBJN6xHUY+aHYoh9OfYSXWIxnXdyNp0TtTJooTXRTQ17lwYX6QytEbvQy+EO01Gvm/0IBrDk/JiPN83kpHexy9DptDfc38rI3cJfpi3UmF4fLcPkt9+wvlHvu/MGzuw2wx79rYFdsLGLm9NK6gxmfx/NRXhXnH6NywmF1Uia6pjQrlIb3VNcr46vLRmNM65vLoF1tEQwgbnrW2YrW75v7k1YHswcIoC0GWBzse+vpHyJrHDaDRmc3OrtiLFpPJqPqR2Ysdlv9LdbFiIgce29T3ecc2Rygj0RVMp7+Tk95H+vlNkRDXFfzcyYgM1Ve/WysjBhtyrijTW/WHlK/5BDyT2EP7b5Ffruj61YPrIGVzUSVxWN3hxIE4aIXY4W/1xlFQkSUKSuPIXUogGp2vjObEW4f9oW4Mha9vDekJZ7RsaievOnSaKNE1QSkIB1miK0TaduQWnZOL2grLSbG4PotIKKs76lY6LJKqt7GgRMknF1Pxagyv31nm4D4HuwJr6nlrfX0Lgyrk07r9rnCN8lnRdp8mVDEmQaj8icu4cGUkMzOkOW4wZUtRK9RvISHKdcmhl5CAjI2GBfi0jLV4Re8hsxyuHeqltsRMVV92GtRUZJ4z/Ny7vGwhOVymVL3ctSVSCShSJcjST1iKWIA/d35wl6z7b2h4xHIfeENov3Us3EcOggE6act/pkxw+tMTUVJ/hKHcTsSpjSGltUbrrHA7HSFn32RDxGk1tDWLB11OyOKLfBksmaIJXNDmjxpy0GL1yxLdsjdZ85NybjYskie83EcqFK3nrww/vJBlZLDs8lh/hcXmOs2IljucbyUhzNRUupJWRg4slpnkHp/k653mZuycn5LVgT3kkNQftOFosoHDWpa1zAZqWVnw7sYxuTAxErOIa+lI7gXfvBUFBiWhN7jTkBqMxpdaetrBYrbG+qJpjuNy+8/OznDh+lOmpPsuHFrm2suaOYTRVMXbjUQmOXnGTMi8KV4a7EdO/06HZpG1qP0DgFUTj5ytYgN7SFNY22qn6vvPWRp4fW/e8EEIglEs0UzIoiIaS2I+s5TtJRkztP0OIOL5vJCPi3DpiWEE/8/u0MtJiB85twHbuZOQuwq7XthOOU08fGNvgY8N2zW1iL2s7qSOaEMQwSOWtzSb/XVuyjUnj+y+Eznejce4aHhkD/qfRunECQAiOHz3M/PwsvV6PE8eXCVRLNR5iyhKlUqS30sJ4y7KiTviqVyvBim5GFVlvCcdueY3rj/x1o19HbZ1G+3HivjTvZ0hACyUxglO3DjWVsS9HM4z5VuJOkpHlcorUSs6KVcDuSkbEsyuI7RL9fQ9CqloZOeA4zjwZCS9Rr1hfFU9fhY0x/ODDd1VS4t6LNkK0EpuCHKwh/NLe3kBIbbTA6mPdSJR3RuQ0DuD59HpHi8v2jZMStyLB6Po8Xk8cO3qEfq+PVJJ77znhazRZbMg58T0ogp/eApXWE1x944b4Qwdr0qsNYzG4+k+O5/b0ihCu2ZGu71t0CGs9mfdga8UbaAlwQhlKggsh6hyMYOUHhWMnFfetwp0kI28ZH6FvMz4hn8X4P/aryoj2gRiJjPZJKyMHF9/Eaabo8Ic8vdvHSI307nmIwB4fJFFwmZw00ZqK3C2+O93kxLJBO0/qiXCQsNHE09/Gf2unpTtOfWxjQhazsz6rfOR8JGECCze5Th4/StbpIITgnlMnSFJFUVaea9bo0vjsZdE4e0MjNRQj8ZNJS9tgEGYHn+3V3k46J1BAxtdOMg1LPtwPKQTWlx2H2sKsO+nJ6FiOlql13fluNe4kGXHy0cCuZKTxIAwtDlsZadFiDw8S6nkdE6jCFG4qEL+8l0Jg4/RoHKdBiDd8lpPfRUVST9Awb2oF4r6L09e6iaKLMdVoC5pZuxaSNHGKIUkRQnD82FF63Q5FUQESq41vhmVcJzytkZ6bn7Q2JxVFPe+Dlefem0AnCAFS1srPUzjW2pjvECzNSf68ca99H4nrcg1Ccb94uxqUkWgc5BbhzpGRnM7YkFPxorgWN31VGTHGj8k7uqGVkQOMKTrklLzAtf0eym2PPYX/Qu0sldJNyus6xBkBQmJksNfsDkVhd/CNwYraacg1lMGEvDcck34HZ2xpdFWg89zxzJ4tCLtOT/U5efxY7Ka3tLTI3OwMG5sD18fBmlijC+sVmIBOlk5GHO2woH00JrY55DjuwH+4VVHNZRuvJEKGsqMvglKcVMYNZdD4fcKS9YoikBfgLO9bjztDRmye8wP5w4wpeFxeiHu9moxQVsjLA/RiBzvfRYyKVkYOKASCH+FtjCj5Gud2v2Oh4cImLE/DYh8ubb1xg7yNsPsSKYiJqBRwQi+srJOh/GQI38XtGpZlCE+EG1lP12c3+w0d3yslVsnamWjdkaWfqdZoPxm94gr6BFhanGdxYQ5jNEJIpvo9Di0t8PL5S8gkc/tp/yDxp5dCMjs7g0oSonLyww+6wjaUWFN9iDhu4r4hzn/nfYhbCAH1LZy0MJstU0Pb1Bspi0Ad7QPuJBlJQpxJ4xCvJiNiVKG+coXqpx/F3LuAurTZysgBRspr8HMMC/jCOfiz3wb3L7UPkuvgqYjgKA2zxPHNfqlvTG1JWhc9E5VDPFBNgNRcrqdBJpQGjW3wbVUl0iqEt3KdhRcsYBHMTsBz2GEbAcePHqHb7aC1BmFIEsWx5cMInox+EWO0a3jlJ7BSkoX5ORLf571JDYT7IBr3JCqGcKUNhTChHCbuBw3OPXzX0DpiUlEE52kzb6Fuz1rz4PuCO0RGMiPpmZRtkVNSGw67kZGJe9vKyIFFh4Q+HbYZ1zLS4hWxp6KNUSDjMt66RDChQQsM1KW7QzIWO+mIeESAiQqptaXUfDWViUIp54DE4BVFTQOgnakWq7Q2rNrTp44jhKCqqmiNHT96xCmjQK4b7ZITvdUspaTf78V4e+foNMHfOmEBiobSCNcbQl9D/w2nXCyIRlXisH3UETYupdwdEI3rDyVCklpZBOXqHa3NsuG3GneKjJzS8zyil/l9+ThX2Yr770pGmnRaKyMHFqc5xJs5wQf5GlfY3O/h3PbYU4fEYBVKGdp6QmRdrcVaef3SfAdqKzJ+MqmAvHXpvreN/ZxVaq2sj+2X+eOiij5XIRRpfwZblS4hDkiThNOnjlO3H3XnOXF8mSRJol+kGQkTz+stvBj/j1MWUgjXrjTSCM2x1/21jTEI7bhtI939mTh+JPEjMUJQrZNct/T3PiSTJSgpPTcuo5IIzYz2C3eCjEjhSpk01ka7lhFucGtbGTl4CCaKudEfvMV12H1C4kTUiKknTbTSxA4bsfFe1JO8aVE27EmaP6DpdGwkuTVfjbFtj3IMoLIOMklBCFSnF+mImekpTp442mjs4ybSseUj9LodT7fgJqJKnXcUZ9XmeV6fL0TLNFgFlzXcrF47aVtb27DAd1IKgfIItI2UPnPbZx8nia8pNfly5S1CUl6tqK632G8t7hQZOSLmkTbjqhruWUbU5y6AAPOtp4BWRg4qjjCHpMOl17Ia+dRL7ta+6/TrPq7bFbtekVRaI61FSuutL/e5bRTKi+IvIIRNXe/gaygWG7je5pSfDG1sWm1aNyqgRiUFGwNX3kQmrhS81RVVPgRrEFhOnVhmaXEhOmAFTgEcOrTAkUOLPH/uMliDTFJkllENtzHlGK0N29sDx5nDDkUl47GafH1QAqHeVBy7T4iLisZbypPWd53ohmg2flIumzuUCYn896Qj1f0/6T+4lbgTZCRVHX5u48dIeYQVPu/8J3uRkY114CzmbT2QopWRA4gExV/kZ8l4lFU+tfcDrK4AZ+EdTkYwB39Vs+sVSbOpTmj3WQu/bXDIDk3uNi7tVcMqah58x312hwolI+pGPCY09QlWr992azB29q5PvjK6xFRFnIwPP3gfnU4Wy0+EUhT9bpf7Tp/A6gqjNdnsPElvytMYbgybm9vXZRXbGIZZK4imlRnKXuzs0GdMHdZaK5empSknrMw0SUmSlDR1P5MkIQl1pkKJkEZDJHe/3dH3IyrnTpCRQ3qWtw8fRJDynuqd9Gy2exmRhvJPLYNYQ39vH3O638rIAcRhFvg23o4g5b18Gz06u985FfCz94BYgx+YhXun3riB3kbYw4Ok8j2jfb9oP2GbPbIDQsZs08qMS2vpeNyGeVafxNYKItIWdtJiq61N59DUxrAxGDtry/oJWunolEyThIceuNcZwLbOCjbWIKXkgXtPuRNj6UzPY4oc67OejbWsbWxSNRok1ddaK8VIEgTlZk3sYBc6201Yye7m1PcnWI0yWJSenngFyiLw7kI26jsFC1PUiuJW406QkavpJh+YfZKClF9RH2LIePcyUll6zwMY5EvbiKt5KyMHEJdZ4T/zSQpS/i0fZES++51LC19YAQy8sAlXx2/YOG8n7MFHEpoUNQvLNXloMeEUhOsdqcL/J0XdpEhKGWeY5RW4bhN48LrOUPh9azDi0toWzdIXVted3+Zmpzl14mhjIoVlvlNi995zkm6WuUFbg87H0fq11vqe3EWtGKJl2XQgNyreVq67XhU72ulY4iL6Deob0lAUO+P+m3x69Cw3ePja/zDhi4j+4Fu/nL4TZERoy3RxkhdR/L78HLAHGbHQ+8gqavgC6qVnEaOqlZEDCIFkjgd4EckH+czeD/CbzyEHzyJefAaGd0cXyj2USLG+xEQ09ie4WiGc8SVMM9a+6Wj1XLcgRpFYG5RGM0bfNeMJx3eKqKk0fIlwr4hWN7bZGIzq+BvrwkrDOe85cYzFxYUYflkXynNbnDp5jCOHF7mwNkCXBUmvTznc9F304MqVFcbjnE6WORUnawUHvhZS5a5Na68ovDU+SV3U98Tdstoin1BeO5yx8ZoNrqSG8GVFGgomHCdsi90fBXEnyIhCcLxYZsSYK+IKsDcZ6T5doC4b9Ld1sFMSsaFbGTlgUCju4R6GjLnM5b0f4MkRnN1CfHsPOy1h4+CHWe8p/NdPV/8+zFNRKwu4TsCFd4xaa32RPuKk8HvEfV39HxDCEopmhH2bllVkDbBsbA8pSo3VFlOWVPkIWzkrQEnJWx97mG63O0GdBIUksMzPz/PQ/fdw9pNfxBiN6nRdHooxIGA4GlEUOTATnZuTnfAMla4bOWmtqXxZi1gePPoGmvx0Q0HsdIjG+xf8AE55Rr9Bw1reqVia0T/7gdtfRqp4bwSvQUZ0hUA2L6aVkRZ3PfbQ2MrWnHVzSSwmnYLWNvqlW1xhuDhJLHCjEhdu4htrXbOg5ve2VjI7QzuttaxtDrwzV9cKzE+QbrfDQw/cR+jrHbvsCRG56DRNuO/0SeQnv4jVGiEVQioMBcIKhqMxg8GQw4est1b9MWgknxlXXK/SlaMqPF++89bFkFZR37hgAQefQFS8jfsCBmPEdYo45iU0nNP7qiDuIBkJI9yzjBgNQtWXZ2llpMVdjz00bRa1w9D/jK9o8TTe07CevIV53fEiT97gkXcKeeOEzfPjOecra9t1yKYQrle7r7U11e9x6NBCY3zNCBYRKZTDhxbx9QVJOj1UpwvOTmY8ztnY2NqpFyMPbbyCCFFKWmvncK50dDrXPbSb8Tg0PAY77024xJpbn3g1oqGazZBqq3a/cPvLyPFymcPVIk/Ixxkx3LOMUEL2uIIFhT3TaWXkAOIUp1hmma/zdUaM9n6A0mI/O4BFBW/qvv4DvA2x+xIpsmkR3VioCYpBiMgPu4k5uSSPNIRo0BLRsmpQHwKwDcei9K1GjXtQ6EpzdX1AUB+6LADjFJKBudkZZqenJzvXNYfuDeD5+TmSNEUqiS4LqvGQoBXyouTa6pqzZBuT1sJEqQmzczJb4xVluC/+Z1ALO+ideLm44VtP8Vh/rZEmCvfSm7BWugKFMrgN6pu4uz/s64g7QUZm8z7Tus9FdYmScu8ygkSeB/oCu+xWHa2MHCwsssgss1zgAiXlq++wEwZ4sYC+hKPp6z6+2xF7rrXlrMcw6Sbsv7Chc4xKaoGO1l1tXhoc3w3ewRq8sw3hDpaqlNKXhpeOBhEWbS1FpVnbHrnJoTWmqqjGIzexBBw5tEi3163P/QoTZ252hm6WorVGpSlJd4qiLMA6S3J1dd1RMF4RBARlEMJPQ9hoUILhKsItqofRUBAQe3/X95XA2ETFBHXiXvNanIIwrrRGg7jZDxVxJ8iIjXSSfc0yEla84TCtjLS427GHB4mcVBSIWlYbgi2sACkQSJTvtRAmuwjWJbbu9NbkA3CNggJTHvjgyPH6rm4CZ3UWZcUgL9xkLktMVbnwXT+hji4fIk2TmlIJx92BqX6fXidjIx+TTc2QTs1QbG+AdfWVNja3XE6Blddbm42e5DuVhbtH/meD6JmIurE77oBoEBmR7zfe8RuUta+fhKtwbJBIa5hQDfuxIrkDZCS0yy0oXrOMiLIPGGzHM8OtjBw4WCwFxWs/QO7kTHTkDeXpoGHXPpLrLbYbWVZ4ZdDIVI4JUUzuZ2rhv9HrlcbQtNSKsqKoNEZXWFNhqiK2UHW89hJKqsYEJVIVUREh6HY7TE9PgZBIlZBkPaRKvLPWOVPDmOq8hbrtaeTsJ2e71wmeqGjcvhuFcEbYemTX3S8zqTSsnbRwQ7RSoD5uNe4EGXnL6GEs8CH1odcsI71PpVCC/eHpVkYOIN7JOwH4IB98zcewv7MJhYUfnXu9hnVbY8/UFuAdgw3nZOwRFCZE2HaH8F6nBLz95y1QcNU2RZh8woUz7ixoF15FWaGNxfgERF0VsbyJUpJDSwvUZmZ9Bn8RcQhKSdIkAVE4BZckiCRBlDlgKYoizlvnDA1a5npLUUqJVW58zfLhMcFO1L/HfSeOI+J9DHaq68ldfz+xj/D3yza+FeLGZvUbjDtBRk4Uy86vwfi1y0jpr7Er/V+jlZGDhNOcRiDI95LRvhNjb4J0xV1xm/fQIdHDC2cI4RQSMEFRBMVBpDeMtbFsdV3+wU4c18ZDu++sMS6xyrgJHkpO7KzyWpYao51CQYApijj5szRlcWGu5pEFcekfriOcP1EJ3W6GKbcBkCpBpR30eAA4qzaOsWGqTl5LQ2kqd/xmpJILCRWObgiVXG1InRSOrBFNq5yGNRoaUdT3LSraptJyvJG/p/tAbdWDu21lpNle9mZkBAJl5963MtLibsaeqC1nxNRNeHQj+qR29k3SFnG/qCQaZTNE/IfAfjTDO+saSjv29Uv2Umu09c5TK1xTKpzC6PW6zM7NxvE3wySbdZ+EEHQ6GfeeOo7OR+5zqVz7XT823Yj3pzlGGlaeCApA+vLdzT4Ute8gWJwhL8C93H0IzPfEf2E/GbYVE9c0qSRsHON+4E6QEWssGk0l9GuWEbRFaCCTrrorrYwcNGg0FTdR3kRbV3crE3tKsrhTsYdWu433fpK4xDDcBI3E6w6et16bu0lOk95onsBbmoHeMNZF38B1yiHQIJV29bXAWaSuu6E72vzsDNNTfTepxSQ37fhhEcMjlVLcc+r4hI9FJs4Ba4O1bHZw9Y0J2bA3PeftQ1Aj9+1pi+v6QdioGGham/4VlYbTsjEUFnwms2goCjExkMZ9v4W4zWWko1MeyR/knDjHU+JJjs0uvSYZES9pkucE5Td34XCCvVy2MnJA0KXLYzzGWc7yBE+89gM9X8DXx/BtU3A4gcsHu+bWHjLbidahW4aH95PJW26ii5pKMLVFRjhEnGAuGHEHi9w4Vn1qS7BA64mqtasvJITAGo01VRzm/PwsaZKgdRXHHEbg3nvLze9w5NASCoupKqRKXHMr/31RuExk5ZsdhYnaHKBXZ43vGtFEE69XuL9Boez4LN6z2IPeENqsBksz+AsCuxFKiNxy3OYykhjFsj7CNptUVK9dRooKoaUrGe6tzVZGDgZSUo5znAGDm1+RVGFFcvApxD3V2ooTTIBAesPqBp3frHUtKi2xGiwQLXwQcTLFpb9tHL9xvjhzmlao1zqVccX5hJDRCg04tDiPEL7/NpMTFSEQ0nqr051naWGOXjfDVBUqyWKYKOBKWpQliVITVEVjlDtga6tT1M7UJqk+EXXUsHzr8NnwlaitWCsRxl6nkCIPb5xlLex+OvhuZxmZVAyvVUZsWSFEVp+fVkZa3N3Y44Oktnx2WlGyIdiBwgg0gzcXo7A3QxCvJ2tvbJk53p1IGVg8bRF/E6isiyld5NWhxQWsNVSVyx4OPcRDPSVrDQIZmvQxMz3NVK/LVlUiVIIpxzFjuKwqyrIkSZNoWe60GsO11VRD+KK+PxNKr3HljvnZYW1eZ6UKjLHeijSR3qkVb10Rd78VxO0qI6lNkEiXHyB47TKiS5KLPfIHBPa4QlxsZeSgIMVVL8jJr1sF7wkW7AsF4u09OJnCxdeQIX8HYff9SMKbhtBP5gHUTr7ruGpvfTUb7ASKIyiQJm9+w/P7SWFsbZ1WlY4jk4lCppmjVKRgfm4Go42rZ1RVsfZQ7bF1iidcWK/XYXZ6CmsNMlETV11VFWXpayPFWkbWO3ht7eg1OxzKUCvQhtK7PsTV3sAfEG537XCVMliek1brztDZ0IvjVuN2l5HHikc4pBf5qPoIlaxeu4xoQ+drKUxJzNtcLaVWRg4G3sE7OMxhPsyHby4h0QKf2EZMKfcwOeDYfT8SL9DR+mnEvkdrSuCWzF5YHZ1Qc95xosdErWbjo4aZtGMS2UbETxiLsYZRUWBjnSWFKXKwkCQJszPTUSGELnGq0c/azbWaE1FJwszsFHawjRAS1enj7cCoGJr2oXWcTFQ0TsHV+RLRmm5af42JbKNiEOGQLuO7/tWPr+l4lQhpkEZgpAAj4jZR09IY5i3G7S4jmXD9QgoKkkTdnIyEgfgfrYwcDCQkcUXSYvfYw4PELfOhYUVNKIrAb7sptGOeNY4zGRY6EenS3NraODFDboCzTN3Et8YwykvH90pFlQ/R+RCLRSnJVN9ZATHcUilUokiSBCGkO4abtRjjVjFT/T7YLRCg0hShEmxVNsp01JM20ic++xoESoG1jfDLhpaw/h7GkhnWd9MIHe9oKC33C5H+CPcWGxW0NPL6BLRX+PVW4XaXkWYNrJuWkTBwr59bGTkYuEE4w01hws91gLH7B4mxWOlvyk7eWwgv6JOctWj8I/zP0KtahFLXou77EGkFaqVgwfkqbG3tNZfmQkiMLsg31mJ/h0QpssxV3Qz0ilK+z7VyYb2x5lGDo5/qdxFSupa9RuMy6XAUQH3p4Y7UlrPRkZaIUT6E66jpEWvqdqvWWE/jWFcPSbpig/4uRhoH0fidQGG4XuKmNsAbb17vqbB73O4yIrZd/+yc4qZlJP2qQIxz7Hd34JdaGTkoyHBBFDdFa3nYTw2QwzG8r4f93zjQq8A9UlueBoA4IaKCCO8b+wSutvm9MQYjDGg/sbRG4KqkIoRzjEa6wk2wYJ01+WJrjFNQVlCNhhjjQjjBopQiUSqOUSrZsDidkiBkUtv62qan+s5yLUpo8MdNDr+2NkWkT4wxtdKUctJqdsMF4bbVjV4RwipHcwiBDBx2NDjD/awVBAQ+XWKlKwseSZ+GYtovc/N2lhE9GvFdg/eyScLH5MdvWkaqw6vI5Hn4Dos92crIwYDge/kxNkn4CH9480e7N0emL8B3WcxJ4OzNj/B2xa6d7aGHQtNx50TUNj6bjOGP2cyRDK6FXymX3auUilx6OBa2VhAxmSq8TKMBkLV+5SBIOv1IM0xP95mZmUGpBJUkTjlINRE1hBs+wWoUQnB4aQGMRqqEtDcd6Qk8tx0qqk5EyjSOODk1I98Qtwvb1k7PScdutLQb9zXSHs0l8g4fRLwc2zj2Ppg/t7OMHCtPcSb/XoYc4jv1jzM7PXVTMlI9OoREwyGDfaCVkYOAUzzAm/kjDDnEu/nJm163yW8WkGo4bBAPHewH965XJCE7WEqnLKQxWOEsobDcjvfdTz6BQEiDNd4BGAhb4UqBC6X8MSXGW38hSS1sKIQLWqwpAhObBblJpREyuD6doumkKd1uhzRLkUJ456kfK9Y5QCd4d3eo8ACRaUqVj9BVCcI571WiIt/vqATrSoZLg7WhQVOtDKKPwFvbIFyJc1NTOJOiVVvz8S2OmpGhIxG1sqi5chFpkUjr1G9vKW5nGamTwpwCzdLspmSk+5tL5P0Nqqe2EZ+yJCdbGTkoCA/pm4X+RQ1HwL5ksZ842Dd7Dw8S33FOhxj7ugQGsENBENbRPhJGInyfBhk66PlQRQCjHWURLNRId+w43ISisJb7ji3wyMkjPPXCOTbHA6zRTPV6PHzmfmZnp0mSxNcx8k5ffJJb03oNJhpw6sRRDk9nrI8HJFlGZ2qWuQx+9Affy9TUlI/k8ZNbSKwwzuJr0BbCG5mBv65DM8GYppKpb9pkeGb9e7ihntEJW/vz+988dePT+2oLerd/2NcRt7OMPF2c52/M/SxHN4/y2enf5VvPPHJzMvKiZvZvn2R49TJzU62MHASc5Tn+Cn+U+3iED/Gfbv4OvQz6/6RrNvEAQ9i7JaygRYsWLVq8IbgL6lK2aNGiRYs3Eu2DpEWLFi1a3BTaB0mLFi1atLgptA+SFi1atGhxU2gfJC1atGjR4qbQPkhatGjRosVNoX2QtGjRokWLm0L7IGnRokWLFjeF9kHSokWLFi1uCu2DpEWLFi1a3BTaB0mLFi1atLgptA+SFi1atGhxU2gfJC1atGjR4qbQPkhatGjRosVNoX2QtGjRokWLm0L7IGnRokWLFjeF9kHSokWLFi1uCu2DpEWLFi1a3BTaB0mLFi1atLgptA+SFi1atGhxU2gfJC1atGjR4qaQ7HbDX3sCjH9vAdF8738R/vfwRXMbAGvrDyxgBQg7+Z3dsVM4ZvOcEWGbtVWmHv8gRTbNcO4+RHcGVeXIaozpTmHmDmG7UyBFPVjcr6kAJSGRUGgoDRjrnrDhvAmQCDAGCm04Onia49kWiRmyMNNh8dRx5PxREMqPUgAVIP35/FXY8LkAlPuuKmFjDcYDyDLIpkEbbFFRbgzQWlMUOXlRsT4sODdOuCrmyGWGUopOllJpQ6IknSylkyYolQCW731r59X+rK8rWhlpZeTVIMR1f6EWtzlsnJSvDGF3sxXwH5+cnKw7J61ozgNoaAv/1tbvha2PNTniHZ/ZhuIRO85pm8fauWNDIYnGzpOHBkABSjiFYSwYDTpu445rrTug0RpTlZgix5Q5ohxwRKzxHWe6zB46hKRETM0iVArWgMy84pCAARtUT9Cqwh3cGqckLCASKHPsYIje2MBahbYW0h7GSgalYWWouVhk6P4MqJS8KJFSMt3v0u0kKK9/3nHPrZ20rYy0MvJqaB8kdx5284jY9YpkOoNR5SZSPIH/KZoyj5N7JWpFYJhULMJvG46l/Hvd2I7Gtg0jtVYSfn65c4oJjSUagzMTO9qoXMqiYri5yXi0RVUUGK0RQqBUQrc/TXdqGiUVGI0uS4wusUZjjcaE44iUc+YQH3pmk2MvPctjp3rMHgHb6SHS1A9a+nPLWmFNDFa473ozzpzNx1AVCFuhuimkPZK0C0hsYRB5QSoEmd7i7NUVLtk+ojdNkqSUVcFUr4sUoI2Fe6Z3++d9XdDKSCsjLe5O7PpBstCDTg7jCsYajGhMeDwF4bfd+VPZWoGEz6T/PZXQUe6YI11bkM0D7LDR3Fe2PqcQ0Z6LuiAYcvjPy0qzevUam2vX0NrwxGc/yHDlZap8m3w8YjweYYwl63TJun2m55dZPvkQR07cz/yhY6SdLu7QwbJ1KtAKuKJnWB31WXtxyCNbVzm2PEN3fg6RWlBdZ30Gs1VI92oiaFkpIU1gcwzSIGamoTMNKOxwgM23sMMRiREsJAXZVEW2cYUXVzfY7MwjZMK19W1E/FvcWiXRykgrIy3uTuz6QXJ1CFjQfraGSS7E5KQOk7bJXyOgryDzHPNYu0ndTSBVbhIb7Y4JN6A07KSCCOeVuH0SAT0FA41jB5paylo219b5wh/+Dp/43X/Pi099GSUEh6Y7nDx1DyNtWFldYTAYMM7HKJXS6/exFvpTM6SdKY7d9xbuf/TbOH3mMXq9vp+EboRh2WcQnC+nuHax4MjlFR5cuMTRQzP0Z+ZQ/SmEVJCkThFIBcpbo6iGVhWQZLC4DFY7CiPwKGaMoCBRBm00SbdD2unTn01Y3Nji6dU1rog+hczi3+FWo5WRVkZa3J3Y9YOkMg3qoUFThJ9NWsJ96H/a2n9Z+Q2U9JyzchPaGPd9pDoaSqapLATeorROMVhACouxsFVY8tJitXGUiHGq5uqFl/ns7/0KLz/5GVbPPcUxuc39swnHpytm9EtcLDPOX7vKYFxQWiiriq2NBCkl68lVOp0e25urnHvuqyzf8ya+4/t+gqXlEyRSREUJ1r23UFrJRTPP6tURp7a2ePDwmMNLi6T9KcR04q6grPxNCwpiByeeegdomcNwG8oKkQ+g0yFNOqRWYlFkqkcXSafbZ3qm4NnL6zw/HDES2b5oiVZGWhlpcXdi1w8SKd0kCAtuC87q9D/Dh1K4iWz9+0yBNlCYyf1KoNTUWsArDxOs2KbJ6ZkCYy3WgDWWwoIuNbrS6FJTFAVlqZGAEBZ0xZWLL/GpD/wyw7ULbK1c5kxnyA89doKlqRSMYVxUnC41cpTx4ZdGrBcVUiYURY4QAlEIyrJkPB4xMxpw5cILnH/hCX74p/8S99z/IKn0hIoAbS3WCKT3Em+bDl/bSji7NeCxzSucXp5hVlhkrw9KOafjTvoiIGjfJHOa1IxhZgmhMkA5Q7QsoagQuiS1BbNJxUNLfbps8cTaBptpf7d/2tcNrYy0MtLi7sSuHyTH5mCU+1W3gHHpPp9KnRxr4yiITgp55SzIqQyW+s5SHRZun2HplUYFiXKGV6UbVIewVNp6B6xAWccxj3LDOK8YDcfoskBYtw2mwmrN9uYKUkr6M4usr1xk7eo5Pv+x/8rK+SehKlgcnOcHzyxwz2KPTqJQUqC1YXuY8577FFt5ycfPbjK2BqUUVVVircVai65KrDV0Oj0uvPBVfuvf/iN+8mf/R5ZPnEbKmiMw2vHjpYWitGgLI9tj5VzJictXefPRVY4tLzC9sIiaEQipIXUTv+ZmGmailDA7D52eozCQYECUhVOcozF2PMaUJZQFUyhO9TVyPOBr64ObFo69opWRVkZa3J3YdfjvS2MoS9DaKYA09RSDriNrBE6ujQEsKOWsTYFTCNpYysptOxpXSKkoSsH22DAcazbX16g0XHjp6xghmVm6D6RivHUNbQVZZwohUkajDcrROjrfRuuK4XCdtbUr9HqzmCJnOLjG1UtX+OLHP0SWSBbNgPefzHjLqUVmuimJkkghEBjKSjMuKs6vDfi3X7nKM2tjKplQVhVVVWGtRUqJEIL+1AwWyEcj7n3TO/mRP/mXOHbqNAKBNu7eYK0PBSXOd2tBScssAx6eHfHQ8VmWlpfJOl3o9hBZBjJx2lbI2toMsN4JOy5gOIJ8C7TFVhW20piyYpyPUDKl0pBXmovrQ97yA995s/KxJ7Qy0srIq6EN/73z8LqG/45GgHWTvaicZZUkfmKEgym8V9Rx0kq41KrLl9epqhKpEi6eP8d4POb8xbMsHbmXUaEgXWQ83uSpz/8G/d4M5889T755mTNv/R5mlo5x6exXMVXO1PQcy6ffyZWXPsfG5a8y3LrC9OxhOgsPc/6Fx7FGMLd0ivPPfJznn3qJwfaQ+V6HhxYN9xyaIUtVnIDWaBCWRAnSRLI81+M9985xaWPAppWobo/RaERZFmitkVJS5DlSOari+cc/y3/9lX/OH/lTf5m5xSNRMThHsqMurBEuggeBNpZ10eXzqwlXh1u8La84sXyIrjWgK6cokk7tYG1OuPBeFzDYIGqgTg/RTVAoesUIrEDmBYmFk1MLu/3Tvm5oZaSVkRZ3J3b9ILEGtLZU3tq0OOOorKAoLKU24LfZHlZsjVxC1qgY88kP/Vs2Lj8OyTSlThhuXWZ95Ryzi8ucecsPcs+Z97B66XkunnuC4foVhOqyffUZisHL9KbnMarP9uZFut0uo63LjDbOsbX2FHmhqWzGUucqUlRsDkZYzvLyc0+wem1EmqQsYLl3YY6pTuK4cW8NumRiidUaJRWpgjOHp7lvcYbHV8dk/R5VVUX6AmspijFJkjofqICXnv4SH//Ar/HeP/IzdLou9DNamFF5ej5Guid7aQUv5lOsPTvisfWXeeD4IvOHlkhnpkFKhJSOooiDDIcRMDXtvtOAsAiZQJFjrUQqhc4rZDdFWkNPG241WhlpZaTF3YldP0iurQxc+YfSkJcVZVlRVpo815SVpqg0FoE2guFwm43V86yef4LDJx7g0sWXeeZLH6cqcrJ+n7IYUuaGPB9x/5sG6GIMOmdqapErL32dSls2rq4wGo9YWMrZHg7YWL1Gp98lHw+YnVlke2OEZcRo9AzF+Bqzy2/h/MtnuXruSVaujdFakwk42U84NN0lS6SjK6SbtMZYpBLIJAELKTA/1eHM8gwvbpUIpUjThLJMqarSRfgIi7UGa134jS7HPP75D3HPfQ/z6Du+HRuzGYiKRPrkCKeUbIg2ZdN2+NzVgpWtSzy8sc2R5UP0Z2ZJpucQna7jhWCSE5cSpnpOSWjrM/QGMNh2NJFMqbTF6Bw7GgLHXy85aWWklZEWLV4Ru36QfOnxF1xopbVobTHaT4YQkiNAoDDGsrV6nue//hHOPfsFZp6e4eq1VTbWNkAKyspQlWOSzjRC9Lnw4ufIuvNsra5w9fIFRqMSmShKDUUlMUhmZk8wHFQYUlbXC/LRNYqtMVVVkqQlSZqQDrboTC1w+dxZitzx1lPKcny2w0w/83w3GGuwxiKwLgRUSoyFQltGpWG+m9BPJRvDQZzcUkoMBmstxriUNl2VZJ0u2+tX+OInfod7H3qEfn8aEEhpfRKeiPkTwkBIqLA+7KgQimdGU6y8sM2Z9W3uOXaI+bkhvZkFxHQf0clcXsGEg1W47L1Kw/Ymdnsdm48QQrls6gp0mTtv9S1GKyOtjLS4O7F7H8lw5D2nFitsrIUEgPWpV0Kiq4LNtctobch6M2xtbjHeWCVVCiPAaE05MpiqJO8PSZI5bGWw2jK/eIwLz30dO9yg25sBU6DLEUeOnEIlb6LSY6g2KfMB+ajEWuGOV1qK8RaJ0mit/Jgs06lASsnFzZwrWznz3YSlqZR+Kr3D0zAqKp6+vMUz14ZsjjUjDXlZMS4KCivQWiMQKKkw1k08x3hIkiRBa82Fl57k/AtPcP+ZtyKQaOsKeQgEw+0rjLav0Zuapze1hEq6TETdCLhoO6xdzLmwcY6Hj21w4ljBjF5A9Wah76mMVBKUscsjUFAWYDSi24MkQRoJ4wEJqQuNusVoZaSVkRZ3J3b9IKEae2ehwWKxCB8oYt0y3ttXeTFgvHWVravPMty4yHAwZntjhSLXdPopVheAQKiErDdLb3oZYTSzC4dZXTnH1NxhqrxLmQ9YPHwvC8unSXoZ6eBldLGFkJLRsKAwKWlimD/6KEun7mdmZoHesOKZrzwbI0M6SlJqy9XNIeOipCg1p+Z7vOXELFki0QbWBmPyUvPm5SlmehmVsfz2E1d5fLVgOCoxxoV6SiG9c9QgE4VKEpI0pSwLBltrPPGF3+HQYpduf5n1ay8i0eiqZGP1ebY2LpCkXeYXj3P4+DsQqodLr9aoJEMlXQqZ8GSRcPbaWR69cpVHH3qQQ8uGTiawnS5C7CgCIgUcPowYzoB1DmJbaWTaRVYai3pdBaWVkVZGWrR4Jez6QVIWbhnvnKhhSSwakSiSREr0aIvta2fRRYWSXYabV5ianqfMS6qxAdlhZmGW/swCszMLDDevsLRwiCzp0e91OHbqPnpTXWy+TjazzPa1ZxltVmxvrjG7cIK5Iw8wzr9Ip28pxtskSQ8zHjNz/AiXzz1OVbpEMSklJ2c7PLrcZ3EqQwqoKoPWmrKqSJMMIWCuq5g50gch2Mo1eaH9NHTF+crKWZtSSoQVVMb4wn2OHx8LgTWaCy8/x7Vzn2dx+VFsOWIwWGW4vc7W5lWK3IAdUeYXycea0dYakjHWVgiV0O1Ng1T0pg+zvXGRJ5TixZce4Tve+S5O3/8AU4eWoNdHJD70E0+uJwpmpmBQwnjoa0tJjC2pijEdDr/+EtPKSCsjLVrswK4fJPnoKsZYF8opHHXh/IZuSikhKKVE25xj9z7IkYfuZ1SMOHHxPOsXL3D8vgfIOl1Wr15h+cQ9LB4+irHOkZnNSDZXXmRz5UWSJGe8pbG6QnYzxmXJ9Nw8h08dYXpuiblDy1jegrRw7eJZZuYXWD51H5Xe4sWnP0OVD1BKoYRlJoXVYcUL6xWJEByfSUhsiUEwO51SlCWjvKIoDZd1ny+vSLZySTV7HL15iQ6Gyld8xflOMbbma4znmIWUbG2sc+3SCy6Uf7TFcLiGUl260316/aM+PLSiLEqsTdkebFDkW6gkZW1lnbzQ9PrnsNZw2RguXr7IpZVLvP87vpc3PfwmZhePIHs+nyBNXNxsGJQS2PEQO9wAoMzH5OMhHe59HUXl7pERKSwGc52MXDUdvngtbWWkBagEdHXdx4lyrqm7Dbv3kaxeRVvlJomy3qJz3+WVdRy4tQxXroCFbGkRowX93gk4NMXqtZdYvXaVtWuXGY/GbKytU4wL5hcOk2/m5KMh22tr9KYtUvboTh2lGIzpdKew5QamMmyXa5hiFTQMC8vMkUW6/WlGo3W216+Rj7eQSiEqTSol49IgT38TK6s5+XjM29/9rZz96K8zoyRSSLZHJeNKMKokh972XRx94Tz9lSuU3WnOrm9TDceoIo8OVCUVJaB9kbx8bNE+SSIfF1y+dB5rt9F2itWVbUCydGSJI0fmGA80W5tXMUYz3B6jkoo0la6siDcet7YGYC1VZdiwW/xh/km6vVm63SnuBeYWD0NlER1cxI6wLuE5S2BqCkZbmGJEohJs59aXv7hTZUTc906e6x3i4vxRTh69n+fEIn/8yX/L8dFzTka04NSbhnz3t49Y/Pxhhpc058aLjEYbvLReMr4NZYQOjNdTzn8Ujr5bMHX89pCROxZKwpkz8PBbIV2GR94Nv/IP4KnPxk1+7Hvgv/1R+LUPQLkKX3wJtrZdMdPbNaxhmsM8zPt4jj9knfOv+Ti7fpD0V5/EzBxFYyC35DJlqDUixLUjyDqCsiupSkMiNhkVJeW4oCo3yEcbXLlwFjAwWCfrJghgPJYMBjDa3mZq6Qj9uWnM8DK2uIQZbmKUZVBukOclCMXa1Yxer8vGRkVeWJRyHeySTpdiPKYsCsqqYLaT0E0kxepF7qlKkhS2zj7D9rikP9+jzAuMseTaMK4Moy9+mHsoIYGPvniORGZMT08zHA5B4KxELEpKjDYIBEa76B4pJZXWbG1XJFnO9JRASY3RBdXoGusrW0iZMhptAy6fzPlDM8qiIi8K5ue7DLYVw2FOVRSAZbp3mB9+/08z3LjG008/y5mHJXOHD4NK3D1XyoV4SoGYnYUkQQ0HkOeYvHzNQvFacSfKSCdL+a2f+AG+9r3vY1wt8vmrM/AizEz3eexDf9WF9CYV3/K9Vzi0XPBAdhauwcbzTzCckfzKC1P87U+7TPPbSUasSfjIX0h48TcFR7/T8iO/BeltICN3JJSCn//r8LM/DfIoXJuBF4X7I/2tnwJdMjcNf/cvwGMPwB87A/YarDwLo8vwS1+Dv/Wp/b6I6yFJ+FP8Im/lj/IcH+d/4QcpGb6mY+36QfLME1/lTY8M6ShFWQqskGzmBTmCtJMwlSTIHORYI6xhsCbIR4a1q+dYuXqF8SgnH2ySZl060xnDjcvMzk6Rigxl1knY4tDhQ5jiIiN9EWNL0p4iSzvoaoGhyZnqdcnSjGFe0e0b6Anm+x10UbA5yulgWS0KjLV0lKCfJUyNrjDXS9GVYf2ZLzCXSbppyijPkVJyaLbHKK+oDCjVpbAgEkOHDiBiEpnW2od6SqDyjIGtg2ss5MOKUaLpJYYTh/tUBYzKCl0UWDlkqq/Jc0mvm5FUKYlM6E/1MFrQ66ekR6AoDLo0aNvj/e/7KR584AFefCbn/PlrXL1ylU7WpacSbMfF/LiyuS4GVXQ72OHI53JUZK9JJF477kQZMUcP8eS3PMa4K6Ec0TGCsuiRX8oYjV22uuzdy8vXOszOP4EdQKY1C6VhoW/42dNDPvnMIn84lLeVjIhxxtZXOmCh3AIbDI59lpE7EsuH4Ce+H+Z6UI6hAPIpWOlG2nZ56QHWNjM2tp9Ar8OCgSMGmIW/+JjiU8+kfGBlvJ9XcR0WWOY+3opE0mUGRcJrNS12/SB54PRxUlFx+doWL5y9yuGlKbr9hE5HcnT6XmRluHT5Gn0lGaHYyjWYkrTY5tBUzlDkiFKwNRgyXC+ZmZqBYshwLWdWzDCDYXo8xlaKDlOkaYq2gqkkYXq2i1xSWKvJy5Lz+RZFVZColH6aUBqD7QoyKZyTUwjmM8HSVMZ0NyVTAqEU3VTSzRI6iWB7bKmMYSZN6Wcd8tJQakNZgkw7TPemSa1ASMlwMKDIc4rCPXysVSQqQRuNNQZr3ML1oZNHuPf4EfrdjCQBYxRbowqRVHQ6kGQVWozod/rMd+eRWFbWR9iyw4kjR3nHW8+wvLSItRIx/WYOLd9L2k2YnZlBnb4Xa0tKXZANxyijQEvfTFw4B6u26NEWw2uXGY8LpjnzGsXiteFOlJHqkRnK/idIi9N8+x9s8Z7f+m1+Tf+f+drgHXzSfA+PJl9irf9NfPYPz3P1c4Z8y7J8aJ2zZw3vntlm6co0vzA/z+8P+vySWeETdnXfZWR0VXPpr6ccuQLHf1rz8F+0pH2g2n8ZuSPx6DTMfArGp+FfnYV//m/g4b8H3ffAyT/Gg/YL/Oh3/1H+4b/+Ki+ef4rBpuEn3wn9Lfhv7lecWFvk/3tqnt/KBf/b9lU+yVodFr9PmOMQf43/lUdZ5j/zy/wW/y/GbL7m4+36QfJ/+Ikf4SuPP8OTz3+Gy1dWuffkEd7+yH1oU/HIg2eY6nd5+eJlnn3hPM+9fIVTs7C02KXIF7n3+Dezsb0BQjEal+T5mNE4RyaCte1txuMxa5uaJ58e0c0SLJbpriLrKKZ6h9jY3qLX61FUFZUxHFqcYWlpHoyk28kYj3MunbvExjBHqQQlLCemMw5PZSz1UzJf3nx9mJMYjTAl0lSgLdvDMfP9Lt1UIoVlWyt6/R4L/QUqlTKT56yurrC5sRHLUQgBnU6HPM+pqDDG9bc4dmSRb3rbgwgkvW6PY4ePkKYdDKCkojKGUT7m5PIRZmemGOVbbA23SGSHpdlDTPWmUIkiTefpLT2KripIJFP9Pt1ughEaUMhMQVeA9HVISt/7T2uwgjIfMxpsvWaheK2402Tk6HyXr/7Um8mntpgafJE/9oEPM/XSNf6P6d/n7638a3712b/M9z/yQb65+yGO2qfIRz2KSvOl547zkaspvzk1w7eUOX/2suGnLs/xPnGY9/e+yHNivG8yUqxZzv7VZcaf63Dm75Uc/TnjaMXbREbuOKQS/uK7YG4Aa1+Af/wv4Klr8PJfgTd/BLn993n4sd/jied/nQ988kNUPrji//nbbvd/+hnDj88V/CO5xM9uL/EjnOa7+ATPsH+Vl+c5xF/nl3kH380/5f/Kf+YXMTfpxdn1g2Q4GjM9Nc3S4hJHtgqWFpZ45MH7fIkITZGP6KeCb3/HGR6+/yTbwwGHF6ec5TczS6/bASHI8xxrDZU2XF1bodBjiqqkrAzrGwWb29sURYHAomTGzFSP2ek+QkgGwxFpljI9NU1ZjhjnY6RQ7o8nC77+zMsUGvqpYqErmEoliQQpBcYYdFlxdmOb0Tjl0kbB0nSG0QrTTUlUQpYo8lGCEgJrLKUpSZIEGUI5kxRjnRO52+1RlGWsd6SU4pve/Bh//Id+BKUSLIKiLLAosiRhe5SjjSFVEgskStHpzLN8OCVRypVE15qqzBnmFb1DwgXdFBXT8wvofBsrQKYStHCVDlPhOz1ZMBqLwQqFTKcR6a0PHbnTZGQpEbzzc+e59ugR3vTMKkdWBmyWFcXKc8x+5QoXth7iDzbfw7d+5y/AUoHaISPrWvFbos/hruJP4FsLJwlSqH2RkfzSkAt/Y5bx57qc/psjjv6Mr7V1G8nIHYfSwG88Cd98HD7+Mry87j7fOAefuIThzXzgE+/B2r9GdYMormu55X+/ssG9rPHXWEJj0fu4HpnjEP8T/4p38N38M/5vr8tDBPbwIHniqedYW9/ixOFZjixOMzvd4+KFiyAkZy+tsTDX4b5TJ+l3u8xMT2HMITpZ6kId84JzV66idckjDz1CJ+2irWF5+RRSuSGEuH6w5IWz4IyPx0dAUTpeu/L1x8syp/JxdgZD2p3mQ595AaMKMqtJhXNGVlojcSUuhBRIJSm05fBsj04q6XZSVOIL4MmEgZqm0gNWrl2llIqs06HSmixzHeXG45wky8iyDOWdyMIYlBSkWY/SuDwCay1lqUEYytLx5VK68htSKbS1ddho5qzRstSc/dqXyXrHOXLPYyRKYI1BZB0X/VQWrjdFKl1Zjco0Oj8ZbFGyvXqFsqqw4taz33eajGSi4Ft+/3m+46kVDg1LVGEQUtDPRtw//1nWRkd5ZOlzHJnJUUn6ijLyS4e7fKWs+HK+wiVA5OKWy4je6vLiX+2x/WnF6f9HydGfsy6d5DaTkTsS//IL8LvPwNUB5OHhuwV8DDhBWf0BsP6Kuxvgf+Y5nmCbJ9jm+dfo0L5ZzHGIv86/9A+Rv8qv87++Lg8R2MODZG19i2sraxRlRa+b0cv+/+z9d7Bl2XndCf62O+66916+l96UrwJQKFgChKERABqRFI1AShNSU9REU9B0a9Qz3cOIHk2HZkISRUo96hBbo9BEx6g5bEmhICFRGlEkKFoREAiS8K5QKO/S5/PXnHO2nT/2zQQIgmJWVRpkVq6IjMqsfHnvue+ts/c+3/ettRTTuebJ587y3Jkt3vS6uzkw3mdze8bhQ2usr46pqxopFcNBZGUyYWd/n915y4HVIWVVYZQEkUdxs82QABIDJIk8ThmTQAhJTAkXAoKEViqbS0iBD1lFHeKQA+sfZ+ACu5fO04WeGMlisZRASqJQVEWJ0QKjNdooqrrItt8pMnOSi73g4vYmm23ACclolPMlqqoCAYvFgrquMYVBa41SClKiKAoOHzqMMhXeO5xzWJ+bryFGpFwugkKgYkJKQfIOYRRSQAiei099ke0v/CcOPfAOYt9BXSKKCqJHmDL3Qi7b6jYFiOXQugsQFamfk+Z7LKZznjl9hlPv+ZZrQpLbmSOExPjiDJQkLDlSl/AXXv/3+e77P8ix1TM0fwJH+tGIX16Ddp4wvWHezm8oR8K04sm/Jtj/Xcmpv2U5/KN9zn//BuTILYmY4PTX9g8i8H8G/jHwFH/SgO8+nn/xCsZrXynyJpKfRP4J//013UTgJWwkf/p934Z1PcGHpa9cVviurK3ztrdINtYmDCqDUgptDKYoUUojlUIhqGVNUw/ofcT2LTEGglbLspHO9g1w5c9xGaYiydoDYsDbPFPgRXZphfzjK4uCECJ1M8TExObFc+w6aK2nNBIhssV5u7AQJLIs8EFTpkSsEiHmX89ue148d5rt6Yw2KJrRMGdMWMtgOMR5j0AwHo+ZTFZYLBZ0XYdPjmFdMR5WWNsRYiSS0Nrkz5kiiLRsscS86C1P0m3X0nYLtp57is3PfJgyLIhbz5DcAsYDCC4vCCGBM2BiPhkvHAmXhX9SEF3AzxZYDxcuXWLatdeMJK8WjsQEi84inESWkQPl8ySfiFF/w3LE2wFP/lfLTeQnE4d/DIQx37AcuS2QzzJADzx6c6/lKjBhnb/Jz/Emvv2aP4lcxlVvJAcOHCClhFKSELKZnVaKu+7OrkpG5Zn/sIwevfy1JHAhIpRCykSlEkZLUso3TVqWnEJcusamhA8ui8ZIy3ozKCmpS4MApMo17xxpnevRu/sznPc471G6YDv0zPrAsMonvbbv2d7viRjqcoWwN6U2Ahcia2PFdut55vyM/b2WLmkOrq0w2ThIb3PehJDZ/M8UhvF4TF3XuWmrFEopjh48wMEDa5AiRoIyGq01MaZlZoUFIUkIJDCbz3j2hdN4Hzg8qjj/6Q9TuRlVqRDdNn62TbVxlGQ8dD2p0mAMonNLLyoJMZ90CT1u+wKL7W3aKOmSIazcfU2JcrtzJBnB736r4/HDiTd/UHDIryG7jnLW4YJlfWSoLxxmfnGTabvzDcGR9vltzv29Y+z/ruDU33Yc/gBZqPoNzJFbGhr40TG8saT+X1rq8wqtDdvbu3jv0Si+iXvZZMqTnLvZVwt89ZPI9dtE4CVsJNYHtJT5plhmUDsf0SaXDmzINeCYoNB6WYIQxJQwEoRIaKFAJJQQyOUYZvYEkhTLkkVK+e9SVkksT2j5JJrt6LLE1yRQKsebxgjPnz7Lzs5O7oNIwb6T7NnARson1t1pT+vh4KSmFh4xHjBfzDl7aZ+dmWDLRuZtjxWG9cmQE3ffjS9rdnZ2QEyYTmf44FlZWcEYg+1t1hgoidGahx+8l/XVCdpk8z65jGoNS0tx71NOSVUS7x3bu1OKaoRadJz5+G9jFlmAp5VARIfrZlAoRJSk2kLrScllD4akif0c2y5IPpG849ILT7O3t0sbJItUIIZr15wstzNHLpxMfPC/jHS1xJ84zA/+5iP84J/5L+gvXeJDv/IvOfboYb7jw2/lbWLB/+nY/5vFZHFTOcK04tn/boJ9UnLqpxKH/0oCG0j2G5sjtzQeLuEfrsNY8uA3PcT3//rD/MCf+VFeeOEsv/RL/4I3fP4wP/6pd7PLnPfwt3iCszf1cr+6nHU9NxF4CRvJcDjMJz2RG9ZSCrTPJ8ZaSlKKKCWJMdextZLEmCecUsqxqnlyZelQuvR8uFzHzi6x8cqIbQwRKbLISyiF1hpEXhQSuVeQT5uS2WzB4089y97eLqPxGCElXUhM+4iPWRA2qAsUjkZbDAGjFM1YEFPFxYWlcwEX84TXyYNrtErTdx3j8RjTFuzv5/HS9fUNFvNFLs9oTWEK6sLwzre+gaapiSkSI7RdT4whl2CCJ5fYHSlaZEqcOn6c7T147A/+KdXsImUh8wKREhGJ1CWIkD8zGmqgF6S+I7qe4CMpwHx/G7uYM53tMZ1usXAJvX6cYdFfF8LcrhxZ2RMc2BRc2kgcf8ZR7V5idThi4zVv5A8e+yT1pwpUMAxFw8E0QR6sbhpH0nxM+6H/Bs6e4tRPRQ7/eHZKvhU4ckvjvIcXPdxl6D8149mnT1NVA77ne76PF174PA88bmgokAgOMbmpG8n17ol8La56I6mMWhrS5QVAKUVh8sRIAqQyeeTksutoTDn5TeTmIV8dIJ/IZn6XXUpTrgnnjmJeKFTKJ1q5XGiQMgeAI/LZ87IxXoxc2tziyWefJ6VIXVf0XUvvAvs2YX0kpsSoVtQGVIpoGSlLQAi2FpGFjbiQCAnuWR2wIww729uYsqKqakLMUauHDx2mbVv29vZYXVsjxTxRc2h9hfvuOsre3g5CRIKPeO8IIQ/6+eCJwZNiJMZAFIbUrNCeeQ49PYtREbMcM06AmRyh3jgCnYNCZSGZAKEDpAqFBNHifSL0C4qiZPXQKWwUqLjH+oYnsXPtWHKVuJU5cmAb/tv/u2BrFU4+fYEyXuDS7/0qR+/573jTsVP8dvpHLI68mefZZnHkInOxflM4ItoV/K/+BOLsW3I568dySfBW4cgtjfMBvvMMHNM89tmex/xnOHbsdfzUT/0USq3zf/jsT/KX+TZeZJPf54mbdpk3oifytbjqjSQiSCn3G1KCEOKVWnQuK8h8oy/Xghw3CkLEHNy9zMEOIZ9KBZdveEConEgn5NJOYrkokIAAuuSrXhhiyP81JYnAsy+c5szFTao6Z2g77+idY88KOuvpeoFc2lQoY2gqgxCCnTayCInKSFQHx8YFmz7x4pmzlMMhRd0wm03Z39+nqipiipw7dxZtCuLSiE9Jydve8DDHjx5DlSXOWoIImKqiVIoYwnJxhZg8trdcWtSsDQ8gh5vsG5Xr5RIgIYoRB7/pBzArq6TegQLhQn4B5SD2EATCS2TI/2a6fY5UDjhwZJWiGC6zv18hM14GbnWONJeguQSFNjQDw6VHP47vFjzwtm/nI5Of4T8c/TWQih1f3xSOyH5C/A95Ezn+N6cc/isGXCCFW4cjtzzOhfxriV/7tV/jb/yNv8F3fMd38T+Yv8nf4l/dxIuDCQduSE/kayGv9guFKtBFhZAGpAaliUKBMgilSUjScqAoRojkpmEIuYwRIvTWI5VBSLP0IwKWeRVC6SWx5fKEKkEVCFMhxLJWHgXROpCGiMLbbLn9+ceeYDZfQILp/j5934MQ7HaO3gV6H3AhkhA0paE0ClSBKUrWBoZKC8aVoveJM1u7jFKPT4L5bM5sPqddLHDWcvr0aWazGUZriqJECMGgqfmub38na6urGG1QSlNXFUVZUZU1uqhQpqBqGqQesBNWacYHGVSaw/c9yMrxhzBaIaSiWD3OsXf/ZdbufQtCLXc+60AEkvekNoHzxNTTzrbpp3tY69ncvoj3lxgN8/WMBiPGg8E1J8urjSN7Z57j7Od+j9WjJ3ntu9/HuJJ0Pt4cjiiD+OwPIc99E8f/+12O/OWIMLceR243fOELX+DXfu3XuPfee/n+7//+m3otEsUP89dvSE/kj773VX+lpHeBzqflAqBA5tzsmCRSGRKKmAQ+gA+J3id8EiTyaVIqTe8CLgRCTEQEMSRSTESfG47oAqEKhDL5lKokScjsVSQEsqyhKJHNEF3V7M8WPPbUcwhgf3+Pre0tFvMFUkoudZHdzufrdtnvSIqIIFEIz9h4grO4EHAhsTPvWdGRKCXz3mIKgxSC+WLBuQvn2bx0CaU0g8EQpRQ+BO676wSPvOZB/DKffDQcUZYVhTGUhaEuS6qioHeJC3ODLEasjgeUhWayvs5D3/sBJq/7Lg69/c/zwI/83zj0+m9BXh7flEDvSCEvFN5ZXOvpZvvsnX+OvZ0t9mczBmtjVjdWcympKCiLEl1U14UwryaO6Nhz4RO/AQkeeNd3EIS6KRx58Ls/gHnm/4j84p/n1N/1HPuAzjY5tyJHbjN47/nFX/xFUkr84A/+YO7T3QRIFD/CX+f9/LUb0hP5Wlz91FbvszBM6VyTFQIpBDGGZeJaHssESSQAcplZrYgpp7JpKZf5FJfn5UEoRQgJbTRpKfhI5OZh8l8JDEKZbOecgBARSpKU5oXTZ9na2aMsS/Z3dgkhEGNAq4ZpUjwxhaF2NIVCpMS8U7nEDsw6x97C0blI7wM+eJJQnFkEDp1cZWN9ncefeILZbMZ0f58ErK+vU1YlXddhtOadb36YuipwzlKWBVIblM6Li5SC5CJnd+dsLjR1PaBUkWFToHXWU6yevJdm7X9PURWIQQ0Lmz9jrvGQIoiYVcnBO7x1tDubLPY32ZtbVF1y7OhattwQkoUTzBfQeX3D7fhuR4489tHf4L4f/Ksce/itFJN1/Lm9G8oRiaL/1deQfv2NHPwLnsMfiNCLW5YjtyM+9KEP8dRTT/Hud7+bo0eP8sILL9zQ97+8ifxV/i6/yj+74ZtIvoarREyJ3nms9/k+DT7PvsdIEiKfHkNCmYKybqiahqqq0EajtEGbCqk0pqpQpqR1CUyBqGp0XWWLa0luuuq8CAljQBuENoiizJMpSoJWJJF9hz73hUcZjwZorfDeLxXAYTl66nmmV3xxJ7I1t1yadjx3acbzmzNe3JpzZrdlb2GxLnB+aml94sl9j64bVldW2N7Z5uKFC7mmHQKHDx9mZWWV2XSKc5aVUcM3v/lhqrqiKEoAEjl7QmlFFyTPbkV2/JCqHjBuCqRMmDJ7SgkpiN6DSIQYswJfiFyiEPmnE3zAzbplvT2w2L3Eom2Z9xGfLCfuOkgzGFBVFcYU+b1FQnLjfZRuR448d26Tz/zGv2MwWeO17/uhG8uRKLjwTyue/9slo2/rOfZ/nSFkvKU5cjtiNpvxwQ9+kPX1df7SX/pLN/S9L5ez/ip/lz/g1/lf+B9u+CaSr+Mqseg6FosFMXhs330lQjQJgnPElPICkq5M9+eTYsrTONJoRN2AKbOxncqnP7zNb7D0U7oiBpDqK4FI8iuXKUR+9RQ82xcv8Ohjj3NgdTVbg0vBofW1bOMdcwTqwgWeDDWP7nj2W8fOvOfczpwLewumbU9rHc/vtGwvHOcWkT4KJpMV2rbl2Weeo+s72ralbhpWJitcunQRyAZ8dx3Z4OCBVWbTffp+QW97bN+xWMy5uNvz7JbAqQGTUUOhE01lGDQ1TV0hlQAJslDZ6iOlXJpJMYcpWQtKEFPA2R7btcx3zrN/6QW2t7eY9o4jpw4hVZ748SEQYkCmyLDwrDf2mhDkpeC25Mii45Mf+kX6dsEbvvV97FLdEI7URcXePx9z9qcHrLzPc+p/2kVMwi3PkdsRKSV+/ud/nvl8zvd8z/fQNDcmefIrTyI/yR/wa/w0/yX7bN+Q9/6j13KVqOua0XBAU9eU9QilC6RUKGMoqgpTlgyGg/z4vBwHSYg8jqkNkMdAL1tY1HWV/aOEzGUIIfPlSAXI3FS9XNuAr4yYCAlSI1TB9s4evbVUVZmb1YVhMhpmbYKUCLKRXxCSWVIEssZACfI4aUrstJ7dzrNjEwMNSil2d3d59rln2d7ewrtsDlhXNefPn2c+n1NWFePxmAOTASlG5l3H/mzKbDZje3ubF7cc57sRph7RFBotE1oLpM5lGiEiiYjtexAJqQXe9RAdMXl8cITegw8IlQgp0s5mTHd2mM2m7O6c48iJFSYrE6RUQCLFkH+l5WJzExxGb1eOPPHEEzz96Oe5//Vv5Nu+/duuO0dAcel/rbnwP06Y/CnLff9kQbHBbcGR2xVPPvkkn/nMZ3jLW97Ce9/73uv+fpc3kQ/wk3ycX+enbuImkq/nKlHVNYPhmLIZYoxBFyW6rFE6O4gKKZGmJCmFc44Ys1EeQi6NBrNvkNZ5FPTyuCdIUIYk9LJxmksWCEEKkWh7ku2XYz55MiU6S7Q9Z86cZWUyQQiJsz1VWQEJKSDGiDEF3nuEFGAMg9owKA2DUlMXmi4kZg4siuMjzYMHSnyM7OzucvHCxex1JLMh4GKxYHcvWyGEEOjbBXZpuqeVQkjDvE/s+jF6corxeEilYVApjJIMm5qyLFFK5AfPRNYNLE+J3lt835Gix0eXPauiwwfPYj5j9+IF9jvLngscOnGY9fU1lJIoKbMNh9ZopdAqi9bU1Y9RXDPcrhzZaz0f+lf/Eikk3/G930eA68cRXTL/F6uc+ckBg29ZcOTvb6LG/rbhyO0K7z0/93M/h5SSH/iBH1g6MlwffHVP5PImMr3JmqCrppIpByhTInUBSqOKAmFKhC4QurxyWhRCYMqSJC43PcPy1Hl5BDTfwEB20xPL3yRP8h6cyxqAGCB4LovXUkqkEPNi4T3B9py9cJHhoMG5nnJ50jy0vs5gOKSqKsqqpCxKmrpGlg1GKepSUxSGPikWUWGKkrsmJW87McIm2O96Fm22eT5wYD03PKUghIBSihACe7vb4Du2dnY5e/4c3ofs5ConNGsnmYwbBqVCSygKjZCCstBX7DKy+lrinF/Gs2a7cNs7vPfYvqfvWrpugbUds80zbJ15iosvPsVoYjh6bAOl8qk5LxS5ZKPU5V8SY8y1ZcqrnCOnP/lh5rtbvP07vpfVQ0euD0eUYfrPV5n+zEEm73Ec/X/uEgf9bcWR2xkf+tCHuHjxIn/2z/5Z7r777uvyHl/bE/kpfvymbyL5uq72C5VGmgKkwHuH95etKhLe2mWjL5JCRIhczkAIkswaCZTOegJToOpBXlyUzsE7l+0stCEpncc9l4tsionoPKHviMETvc/K3xTRWjEcNHRdx3jY5Pn44ZDFfMFi0dL3PdPplBgTURfYkIN+5l4xc4lSS06OFa8/UjOuNE/u9MQkKIuS4ydOMBwOUMtT8aCuGI3GhBjY2dkhBMfm9i6f+OyjXNjcoY0DqslRVkZDtBJUhQIJpjAgE9oU2QojJlLySAWt7XHeXVkErXP4EHHBMVssaGdz9jYvMO0W7LUdzbjk+PENpIiQcsaEkmJ5uszN+2wOkhDxJjTcbmOO3F3Mef6jv8xoPOF7vvf7KMvq2nIkwe7/NuHC3xtTf8ucE//zDmY93nYcuZ1x4cIF/uW//JdMJhN+4Ad+4Jq//tfriUxvYjnrq3H1D7cCUsoJYEoXqLK8/L/RRYFU5bLkmq6UHUKIV6aSQIDPNV1CJIVA9I54+SYRCmQ+rcqizIuJKfKCsAww8rbH2WxTbnvLoM6z+F3f0/eO8bCm6zvC8lE/LEsM0+mUzkemLtGj6ZNgWEpOrhTcfaBkXGrO7vecXUQmq6ucOHmK4XC0TEMETeTuIxvce889TCYrhBDZ2Ztx14mjfPmp5/nsl54lFqusjAY0pV76O+USTVkUGG1yLoZz9F23LOsE2r5nMV8QU8QFTwiOGC1aQwiOva0LbL7wDFuXLuBU5MiJQ1jnmM1bur7HeU8IuXlNSohENgNc+k3dcNzGHBmVis/+zn/AWcuP/dhf5v777792HFEF9uc32P2HByjfNaP5fzxPHPS3J0duc/zSL/0Sfd/zYz/2Y9R1fc1e9xutJ/K1uPqNJCWSj8smXT5lspw2EkpDYUBrAoKkNEiT6+NFmb/eOZJ3kOLSviJC9JASrl3g2gWh70kh5K/zjuiz91CIkeBDtrZwPbZb0Hctw6ZCK4G1FusshVZsb+8gpMQUBU1ZIpWkXczpnWfPJrQUrBRwcKBYrRWlEgQSnz2/IOqSY0ePoaRkMZ8BoI1hVBru0h0jN8WIbH1+cXuHzZ05Dz3wIIdPvZ7V1QMYI0HmU6wUgrIoKApDWWiKQpPIvl/WXk7tS9hl8FbwLudWeIfrLd1ixnQ2Y9pbFt2cEycOIpTEhUDvLF2XJ4Vm8xmz+TwvGi6PoH61BuOG4jbnyC/+xkf53Y9+lHvuuZv777vvmnCkUCW7/98Ru/9gjcl7PEf+p20Y+9uXI7c5/uAP/oAPf/jDPPTQQzzyyCPX5DW/EXsiX4urFiQmBMIUuTkcHAqVH5BT5IqRVZIoXVzJfwCVFwMkMThs3yKEpGyGuU+gq/xorwuC6/HeEX1AKomS6ormKsaEcw4hyH0F5zBFwWgwRCuFlJKmrkkp0dQVK+MRUmm87VFKkWKgbRfs6B5DQV1K1PIuEkJwdrfjYi85eOgwRWG4dGmXxWLBysoKK5MVpE5s6J4j0hFKy8XDB3n7N38rr73vfg4cPsqDDz5EVRUYky3QC6PxIWK0yj1jIVBS0VQ1s6Ilxogs8kRTb3t8XRKFYDafk1IidC3z8y8ym83Zns85euIIQte0vUdKQVVWSK2y/biQEBMx+qzG1ppk83tOrj1fXtUceXHf8bGPfYxvf897eM973sN/+shHGI3HL5sjzkb2/reGzZ+uaL615cQ/nKMmJd12cdty5HaHtZZf/uVf5ju/8zv5i3/xL/KJT3ziK/2+l4Fv1J7I1+KqNxKxdKaVOquHpZBLURi5FCEkGLGc4V860KVIdD2u6wnBYvsuZ583g+ytlCLJepTWKFOhCkhpGT3qLIRIDG5ZW8+P5ikGYgLnHEVRYLSmaQYcOXyYybCmbVtWV9coq4qdzUvMFi1d71CyZ0d7QoxorTFSopSgDfDsjqdaWUfXDd4Htre3rojHhoOGSWNoVc8h3fP2172G1773z1GWBacf/zzH3/o21tdW0FpilCSSMEYTcEiZNxAlNTIlpMrmkTF5iGbZQI14n8tBMUamsxmLnU3mXc90f5+1jTHDYYkyBiU0wbV4H1Aq+1m5EHBdjxQJrRUqBISQV9btG4lXA0f+00c/yoULF/jO7/xOfuZnfoYY48viiLaai/+rZvPvNYzf6zj49/fQK1npfjtz5NWAX/iFX+AnfuIn+KEf+iH+zt/5O1y6dOllvU7DgO/nA/wV/s6yJ/Lj3zA9ka/F1Ze2tEZoDaSlm2sC7/JiEPyyBJF33jx+2ZOWDqxKK8p6wGh1g2owyfd7jMQQiCHQL+ZEb3NzMAIxYXtL287p+47ZfMb2zja7u7tY63JMhRTUdUVRlkgpWF0ZszIaUFcFw+GAlcmEtZUxd584ymQ0wMfIPEC3zMeQUhIRPLtt6YVBD8bEGNjd3WE2m2OdZbFoEcHz8CRSNUPSwYd49498gPW1Cc985N8wqAwbGxsMBjVG51NvPv2K5e9zrnha9gTCso6/lMthVD4xXh6Ftc4x27zI/OJ59mYzxodWOHFsg6ZQRDslujl1VVMYg1ICLQRGKUbDCVU1pCiH2CiZLTq63l0PvrzqObK7u8MnPvkJDh06xHd993e9ZI4IgD9Q+B8aIH+yYfW9nnv+SYdcCa8OjrwKsL29zW/91m9x9OhR3v/+97/kfy+F4N3qW/glfp2/zU/xieWTyDdST+RrcfWlLWeXs/bl8n8sG6Yxe1QpIRHkXOjQL5BKLFW4AiGzSjkJkRcYAckHpAShDCkZiB7vctlimWBETIK+6zFFgdaK4APalMvye6IqS7SSjAc1AjhwYJWyKnn63BZlVVLXNa998H6c7fncl58mdgts4Erux4W5YOYksqqZtx02Jba3t5aljkTf9/SzhBxIjm2M+Ob3/xeMVw/wuV/+Ofz+eU4+8H4GTY1WEik1UuXs78s3r5SJGHw+GWuBSOTvUcg5HEYb9mZTOrc8ebYt88WC2XROMyw4eep4LtVYR1HUFFpRVAOCs1mDET2LRUuMjrKoqOuayhiMkhh940c7Xy0c+bf/5t/y3d/13fzp7/7T/Ot/9a/pZ9M/liPH7/uzGCXZvnie86dfYH9rh1P/6I2c/NQa63VC/zcdYuxwu68OjrwaEGPk3/27f8eP/uiP8v73v5+f/dmfxdo/3kVASklZFBzZWOeBu+7ixMYR/sqj/xde+/g3sWDBv+EffMM+iVzGVW8kznqUKRDR5hs9hfzPpUJXCmLAWYvzkabMI6AkQYwR13WUhflKc09IkJHoPEJIRErEGLDLaRsglyiWC1FvLZI8JplIBOdRKud0N03D2toa0/kZRoMBWin6zoJYsDedceLIEY4fPcj6gXV+/1OfI6opCcmeM7RJsToQLHrJ7s4uqq4AQVVXTMYrKK3x3YwuDnnd+/48dz/0Wp78vd9k7/Rj1MMJh++6b1muEFk9vIyGTSIhUkAmSUgJpbJgLaWI0gYbsogspUgIAec8cT7DnT/NfL5AD2tO3XcKpKYsSwbDbKnuvUemgC5L+r7F2Y6UPFpn8V9MIFK6Ule/0Xi1cOR3fud3+NKXvsTb3/52vvmb38HnfvfDX+HIg6/hiU98hOn2OapjD3Fhc4tzv/0f6Ba5t1EPBsjXrTN56j6at0Sq18VXFUdeLfjN3/xNvvCFL/DOd76Td7zjHXz4wx/+Q38/bBpWJ2Nee++93H38BIc31llfWQFgOp/zVP80x86/kY8vPsaX3Odvwid4abjqjaTtFtTk2jFaIsQyGyJcnlcHoxJaLS0slgVYKaBsakAsxzktUhticFcsLaxzeWzT5zLGZaFUihEp1ZW0u5QEEJeLjUDpgkMHN3ju9Bl8CLRti9aa7e0ddDnHdpZhU/DQfXezvjrmzJnT9Lszpk7ihWagLKt15BMXppAiSimapqa3juFwgLOOcVXy4Du/ize/69txtmPz8U+QYuDI3a9h/ejxHCmrFEpnl9vL1xZ8IImQm52XRy+FJAqQUuFjwscACBaLBXZ3h845gm2574FjeURUQrAzCBohDQlBXJaGlC4wKWega1NlfUUI9F1H2y0w+sYXwF8tHBHS8yu/8is88sgjvOdP/SnOfOHTHH/knQwPHObjv/cxdrd3Ufe+Cy2z5cpkPOK+Bx/krvvvYzQe8bFPw89tnOP7fqjggVIT/KuHI68WtG3LBz/4QX76p3+a7/u+7+Mzn/wk62trnDxyhNc/cD8ba2usjEZIKZnO55y7tMnnH3+cLz7xJBe3t3jzNyme/fF38i/+f/+A2dOzm/1x/kS8tMx2IfPJO0Fcqo2FFPjeZdV2sVQvx5zWFrxFaXPFRynGiA+eQpulbUbMGRTi8oIi0GWRcxycR0iJEnJZV09cMepbGhwqKZhMxhw8sMp4NGB3f8poOKTrWux8zng4YDIZc+rEUbTWfM97v5Uv/4dfpJEdSnrKIrHTJ87tLaiGqwitGY8nOOfY3Noi2p53f+u38I73fQ+D8Yizz5xjtnkW06zwwLv/NIPRCNd3SCkRxiCDR6Tl+OuVezQhtMlTOEKglqfO/GcFMTK7cAY7XzBzgWP3nKQZTUgi5aRZoZAIRLIkofGuQymNUCVFNYKUG6cheKQQDJqG0aAGoa4lT+5wZMkRZQyDZsBjn/88i/mc73zfe5k99wxaSh770hdRSuJnOygpePjt38oDj7yRFCMHDh5ClgZvPWcubpHWEwcOX25Rvno48mrA5dH/T3zsY8xnM/7cD/8wYmsTLSVGazpr2dze5pkXT/PZLz/G0y+8SNt1+GWippSGw8feyCWxybntL9/kT3N1uPqprSu/SXTzGd5ZlNJUgxFCSWLIbqSCXBbPN/Hy5BnjslGaMKbIdfSU+wfeBbztgIhS2TrDOwskUvTZPinlpqt1PcF7rMuZHVopyrLkwNoqxw4f5OKlbUxR0tuezjoOHVynqiqCD4wHA44dPszi+FFGO0+htKQLkscvzYmqwDnH+sYGdVVjrePixYtM6op3vftbOXHyFAiBKmtGd7+B1zzyzdzzhrfkfIxorljCpyCvlFoQQMjfAyUVSuQIWbKaBOcibdcSF3OYTWl3thmOBxzaWCUGS+8tZWEAhbU92mhC6BBCAQYRI0rEbDwocpxrjJEQPCiJ7RfXmCqvXo48u+85eOQ4x46f4tDBDQ6trlJXFU9/8YtM1g+wvrHB+voG6xvrKARf/uivcOLht/K6t34TpqxwyzRGIQUxCvamifFIMhhktf6riSO3IwRQlSVHDm5w/6m7OH74EPecOMF4OOSZRx9ltLrK/nzBM88/xzMvnuaJ555jOp/T/zF9E6kU4/Fh9vfPM59t3tgP8zJx1RuJLGui64kJqtGY4CwiZfdUJSQUeaY/+yaF5Xy/QKZsyicvp7FJmb8mOKQ26Mv6gbbHOk+Y7mcL8hhx3kMSeN8jSBitcd7hvCMh0LokxGxNMR401GXFxe1dtFJUJv9wC20oipIQEluXdmi3N1nROdZ1c+55YrsnOUAZmrph7cA658+do+97jt1zD8dPnqIZDQjOMTl4mHf8hf+a0XiFqmkQRCRFdlSlyOUVkTUNApn9l2LIHlAIbPC44JEx4VMiOodMiTRaRcXEPfcfzTX+lKiqkvmipSoUssyaCx8SKQTKYunamhLRe3RRorS54uWaJ45ufFLbrcoRow2mKChDYuvSLovdHUbNCnZwkL5Y4b77DvG6ZrQcR84CwcdfeJF/+xM/weraKn/txz/AW97yZoL39M6xdvyv/rEcuXjJsTcNvOXhklIrJOlVxZHbBUZrDqyscO/JExw/dJjX3ncvB1ZWQAicc2zt7vK5L3+Zn//Qh3jh3HnOXbyAv9zb+xNw8OCDjCdH+eynfwHn2uv7Qa4Rrn5qK+VxyygktayQQhKCo533qGV2RPSOoqpyOh5imZKXSCleEaClPNe5FKOJbO1dD/KsfGoJy3HQFD2lyTX2ohxSFdmltUx5nNb5gNF6mWcRaeqKwWDIY8+8wKBpCCH/+wOrY1KCz3zqc3zs1z/EPXEHlKSzga2ZY2dhcSFRrh6iLGuUUuzt7iKl5P5772X9wAGUVHh89ssyJUVZoo1BiESSEiESxEiK4UoWxmUrkEjWV/iYo2NTgj5kG5D+0nna7W325wsma01OzwNCylM7pTEIEQGFMRWFKRCEfIpH0jtPCAkZE0LlE2dOfkqIeONHO29Fjuha8KXX/z57B59l47fu4ezZi1T3vo3FYAJCEZ2lm895+rFHudhazGCIMIYvfuELPP/8c/zw93wPB9Zy+qD34U/kyHwRiBHW1y6XlV5dHLkVISo4+JehHGuOfPQh7l+/m2OHDnFkYwOtFJ217M9mfOwzn+GJ557n/KVLnN/czD5wL+P96noFKQ3bW89d409y/XDVG4nv5pAiMgVcm51MQ7wcd+oR3ue8BCEwRqNMgXdL3yMXaMbjPN4ZIsF32f57OS9vqppmOKYejPCup10smM9mCPLCLKVanu4jzlq6vqcoCoqizDegj7zuNQ+wvTslpchkPGK2aJmMhhSm4HOf/hwf+5V/wwF7kZUVg0uJ3Taw3+eatNYaUxaklNjZ3mFra4tB03D/ffcxWZlkZ1qZJ4eMKdGmQOo8EZQu1/u9z3oJASmmZWmGpf9UIsaUBXoIUhKIEMFHCAGZHEeObixDmkSeutGK4CPO9blXnbLITolEoTU+JkKI2apdf2XaKUWXJ8a+KujpRuFW5Ej65j3+47s+CTLx9rXv5YHqEaT1pJ0XmV54gefPXeL3n73I3AWqo6c4cvQ4McaXzZHHn+kAOHZIvyo5citi5bvg7n8EQnve/u9PceJjr2FzZ5fPPvYYX3jiSc5evMj23t4fW6p6qbjvgfcAibNnP3dNXu9G4OpLW0IgjSJFCNEzby0pJdbWVlHCEJzL7qIspzq9I3hPoXW2zbA9QZCbfj4LrARxad0QSSnSLr2BvO2QSqOVJPiAKgxFWYHQIHMsq1pmUljrKQpDVRbL2rDkwMqY3nmauuHFFy/w2H/8FY6ELdYnJYVRbE4tLimmLjAoDL0XWOfY3tqi7VqccxzcWOf4ieNUdU1MCSU1kZj1CiZ7RhEjQgmQghT8FVV1Ip/6EmmZy50tQFIKGKVJMpBSpJqs0iEZDQumsz12Fz1VYWhKQ0WOg7UeqrKiKBQ+5LIKESQ529zZnhQjRmm0ligll1ZVNz5G9VbkyKBt6HpDkp7q8RconjhPiWVzb0HfR7Z3LYVIzKR6xRwJzjObR0YDyXi41Mq8yjhyK8JdABYCDHzkQ5/lhQ9+7D/b43glkFIxGG4wm15kf+/sNX/964WXZJFCSgglkLrkwGqxdD5NSK2RxK8SmEViysI8IfJYbPB5NFYqTYoeUliOywpSCviQ68RKSpLSlFVJ3/eUdc1oOMqnOqEIISIUaJWbl17kUkBnLdP5nBfPnqUwGoGgTIKP//ZvsLJ/hrVJQVVobIDWgpaKXSdQ2tC7gNvbZzqd0TQNq6trHD9ylBOHj6J1kcVpMpdYlDE55RBxpUQAy/+knFvuY87TDiGXLaSQy3+fPz9xjt/dpZvNmG5dYuPYmLpp6Fz+vvQuly2aumA0rDBFQQgBTW7EKm0gQogRlfIkTtYhiPx9NwZTFteDL7cdR468eIQHflaAnLP++45SxuvGkb6PvHjW09SCsoyk9OrjyK2I7pOCt//P91IOJf+vf/407eL6bcBFOeTY8TexmG+xmH/jeWr9cXgJpo0JKSXBu+XcfiZmtkZvMUUBQuSbQAiit9i+RwoQStMu2uWrQEJgjFnmOOTmtHcBrTTogESRoqftFkil0EWJtT3z6R5SSqqqpDAFLnisS5ACo+GIF89dwtrcy5hNp+yfe4HUXeTug4NcSyf3Rkqt2OwFQZV4o+hmc9puysrKCgcObJBS5OSx4xw+cgRVGISUJHKDTS1Pl7kRIknkMVbItf2UliaFafn/UiQlkWvfSKSUqBCw7YJub4foO7RZQRtDLSRNVYCQtL2ndYlaCmQkx9Pi6DubrUMQWXoQI307Z3u3ZzQYMhgOmC2yVqK6LpS5vTgyv3CG+hnJuBqi5YKEuG4cOXMhsGgjr7u/XD5p8arjyC2JBGvnG5pKI65zhMuRI6+naVZ47Iu/TIz++r7ZNcRVbyTz6RyjJWkZLZqSuCLGE0rmGnGK2K7DOpdPjtrQ9hYpHHnUX+CdzTedkrTWLz2F8kkeH/G2pa4rOusZDoYURcl8loOHirKkKMqlj5PA931+dHeJ3kW++OUnaaqSs+fO0U33mKsF9x0aUBhFSJK2j7iQ0EZzoS0pJoawP6Nzu8QYGY0nqKXdyT133c14ZZXClJAiWsqchLdcBAlLq/SUwIdcz0+JJEBpSQg5wOnyFFcKkUhCCEGhNGr9EL0qEG6HqiwRCcqyxJgCF7KQsXeBEDxNmV1bU0qElPsBRqmsWUmKGHOZpCg03jm63qP9jQ8tuhU5Mr3YItMJEDJzxIbrxpH5PBAijIYSbdSrkiN38J9HM1hDSsN0eoEr1Y5bAFe9kQyGNdE75rOOsizQ2mRL75DLEb7vCDHk+rfS+RFfClLKj88x5ayIhKA0BrMcR/Te53l/kRXJdV3ifUQv8xoSMJvNSeSM85igqkpiyDX0FLMf0/7+Hl/40mN42/Hks8+zqiPHRoZRqUkpsXD5JhZKsO8kMz1ESuj9LtY5qirXuXf3dllfO8C9d99FXVUIKQhBUGqTxyXV5SkgsuVl/Kr8jSRApOwdJRRRxCtPJ1mbl7UOSmu8NnTOsro6ziWHZd+zdY6+60kpMWoMVZEtxUMEFxIhgO89hYFBqVBKIXWB6vL3xCjFqFGEeONJeKtyxKh8cm9dIPh03Tjy5ad6lIJ7T5lXLUfu4D+P+x94LyFYnn3mozf7Ul4SXoJpo0Nrw3g8XLqQ9pByHjQp0TtHCB6hDERHYQTeOvre4XzEe4dc1sP3+h4h5gwGDUVhcNYuBVuKrnM4ZxEi5TKGUGitCTFiVJHjSZe+SwDeB7q+4/c+9SlOnznL9u4espvz0JEBB4clSmUHVyUlpQIQnN2H1uXci+l8QUoJbQyz6ZSqKimN4Z677qIwhrgUFUq5HFXVcimgzpYWLO3LY0qEmLJR43IC53KUabqsL1nqArqdbXbPn2Pv0nkOHryXui5xPm9080XL7t4Ow6amKTRKFzlGNli00iglKVQOS3W5P0tyjro0OB/pnSMFz804a96qHLmimpcSbdJ14UgIiXkbMVpQGpaJjq8+jtzBHw8pNXWzirMtfTe92ZfzknDVG4kqq6VOQqGkopRLm/AU8T4QU1gavTouO4RobfCxx9o88hiQlGXBoG5QSmJ0kRW3KnsihSRY7O3m95ESr/JIY2GWOQ7B0/d5Qen6fNJNKTFfLPjYxz/DznTO8y+8yCMHKk6uNIyrgmGlqYym0Aop4NIicHa/w8WOBZr92YyyyCfidrEAEkcOHuTQoUMkcnlEG01CIGS6oshm6YGUDQTjUrW8FJYthWsItVQSZ+O9GBN2f5/5xfN0synFqKbtFmgtSQmiTxgJg7rGe8t0ukdIUBiN0SJP2ySojMR5z/6sRQCjQYVJiUXncD5QFZrJoLzGVLldOWKubF5NqZHx+nBkf+44e9GzcUAybFJ21n8VcuQO/ngMhhscOfp6Lp5/jP39W2diC16K+69z7G1voqRkOB4u0+kkMcJ8NuPShTMs2p7haMx4vEKRNII8z14MaozJhnKwzOowGiEls/0pMQbcvKXrOqQUOdtD6WVZxGPKIdpo5vOeeZsbssYYSLkM8tGPf4rPfukJLl7a4oGx4cGNIWvDmlFlaApNWagct+oTT2zNafsej+RSn8f3qjobNRIjrpc8eN99DJsBSYDWKmsbEKBy4zeP2Uii9/gYUEIQw7IvELMmIKV86vQxZFfgZRM+9XOKuqbSBRurJeNxvVRjJ5ztMEljCpM/ty5IyFwCEmC0Yt7m3kJTFqyOCyICKRI+Rqz3WOfxwWG0ZHBdKHN7cWRYm/wkIaAsDc5eH47sTyM+JFZGS51IfHVy5A7+eIxGh1DKsLd3Jlst3UK4+vHfGKjqCiFEFjctT1r9Yk6hJasHNmhCZNQMMKZACrIwbDHPiW8+4IKnrmuCZznayfIEFXION7kkhMgnJa00Lgk669Eh4Jwl+hapDFoovIAnn3mW//jRj7O1N+WuBt54eMRaU1KVy6x0ozFakUg8sznl0rRDpIhVJT72TKqCRUp452iqikEz4N5Td+cRVCHRWiPImhBUXgByExViyLVvoQw+2TyqSu6RpPhVymwEiXzqrEcTbFHT728yHNWUZZGFaDIn/U2ne+zu7bK2ukpVFBidBWhGa3rnEZBP3gl0UZCExlpLTJ66KtBKEYK74gB7I3FLcqQyCCkQMf+srhdHzl4IeA+njkogvGo5ciuiKhSFkcxbd137SkeOPYLWFc8/9wfX7T2uF16SjmQwGJLSMko1JbQ2DIzBdQtWmlGelIlhWcfuQMB4Ms41aCHwPkemXkm96y1FWZJSQGnJ+miVmBLtfEGMIIlY2xOVBFNQaI3Wwzwz7yPPPPMMv/KbH+bJ589wsNS8cV1zYFjRFIa60BgtkUoQSZzZWfDkpWmuQ6sSUdYYl6iUYL74SnN448A64/EYGyL1suYdYkQVxVLPkOf4kwDn3dJXy2d7DJln9EPM9X5E9vTyIWsGorU46zhz+gXKKqH1BKUUSkb293aY72+hlGEyGlDofOKMUuCsI5a53C6VxgXydI9MxNgjUqAwmgSUJmGdpuuvvVjqduSIbiTJgJgmzmy314UjISTOX/KUBZw8lv2uXq0cuRVxeL3mwKTkI5++SG+v1+YrOHjwQfp+xosvfOI6vcf1w9W7tgmJkDo3McPlk3f+vfee6Dydyw1O53oWO1s0gxEHNtYp6gF91yFkbmRKqfJYqNZIQOma+azF9R298+TZ+mzkN2xqIGW/IK1JMdK1HS+eO8/vf+ozPPHcOVbGKzwyURyUu1nxazSlUctJF8HW3PKlc3v5JIZm2AzYtYKVlRVUUdNevEjfzjFK88bXPUxVNyzajslkAstSy5VQ4uUkTvQB5wMygV2e7rTUBBJeQBQS5/zyBJNw7YL2/IssNi+xv73FQ296Dba32K5DCIFSBcPxOoKsso/kCRxEpCgN2hhSAtvbZZaHhuU5tmvnxBAYj0a47JXBoLoJYrNbkCNSCgKwt3DXjSMiwoVNj9GCqhCvbo7cwdeFEHkjca6l77/x80e+FlffbFd6mfMQCd4RnCU3BMhBRoBUAmt7Fnszvviv/xn1oGHjvtdw/OE3Mzl0mLLKRybXW3RRoMg2DcG67GgaHE1V0lufPZNCIDrLeDhAlbmMYH3k3KUtHn3sCZ49uwW65lve+lrW+4vIS4v8GKoVWku0FCxs5Etn9tBSMguGw6sTLlLTlJLRcIQDDsbI9haMhyPe9+3fzsrqCjF6nLVoQZ7EkXnMNGskVFavL8d+ffBImUsbIUZ8zA1XF7O4TgtBbOeI6R6ExMFjRzl0aCOnBTqPDyEvnIXJ6u7lIlpog1YSoTVd7+jaFrMcHEgxYFPuz5RFCdEhoiNX6iPqJsyg34ocESpvJPutu24cmU5hZy9w4qimrqEPr16O3MHXx3hyhJW1k5x+4ZMs5t/YsbpfD1e9kXTtDNu1CJHr0c62GJGo64aEQBfZ8bQqR4wGNfNvfR9P/McP8eiv/iJP/+5vcOz1b+aut76Lg3ffhyk0zvbZbE+pbKFBAKWw1gPZQiOEmMc/6xqQhBDY2r7E408+xZPPn2V75njTvfdy77FjTAYPsP3ZKarfxiiJkgIXIk9eyGN0QdUcPHSc0aHjbG3P2BACVRTMF3PuPXUc7yynTpxkvLLCeDJhZTJBa7X8bHqZNxJJKSFi9jgKIU8oOR8pi2yS50NEcFmLJtBKZWv1+ZRyOGahHJO1gpQiWklSFHS9JXqXp4+0pi4Kksi3eW8tbj5FSs2g1svsighKIIUipojUNTHU+BTQBnRKWHfjnV1vRY5c9mcttbpuHGl7QWdh2MhXPUfu4OujKsdU1eiWEyJexktotnuUiIQYKbSgKsdIIkVRksgWF1Jlq4gYPfd+09s58uBrefGxL/Lkb/97nv/Ehzn/6KdYe+ARTr3lXRw8dQ/e26U9hqFuBmhtCAls3xODI0SYTvfZn86oqob96ZRHv/QlPvnZR3ny9A6vO3kXr7vvQQ4eOUqhJePq+9l9+uPEneeJrufMjiUgqVc2WDn8AMceeJjPP/0MVVXjfD7lGZFwznP04GG+49v/FPO2Y7o/Z311LZcGhASV7S9SyFnX6XLpRkp8CLgQKRM5YCmK3DheTl3I5cJRNUMWsxl7O+c4euwkfTvPo57OE4O/4lAbZcTaLtufAwqBqUqsdUz3W4oy+yoZrUFEhCQ76dZFHrN1jsWizerqG4xbkSNbc8cQhaiGHHrwnuvCkWdezOPOdx1Xr3qO3MHXx933fQtSGp59+tYSIl7GVTMpJrAugMypc8YUKJmT6ZQuc8hQ35PPeAkhJc14zLH77sP77+Lx3/z32NkuFz73+2w9+2WOPfI2Dr/2TawePIgxgr63TPf3QChSjKTos19TSljb03cdIXp663jqhYu85r7X8tZHHmE8aJCuQxcDxvc/zOTwMfbPPsWFF58FLrHRTBgduZtyMOKFCxc4ffYMRVnhvEcqmAwGxJD4373/B3jHO95ORFCZImtBRKIosrUEMRFDQuocsuRjAAEu5BKL9Z6wNPNIAry77JOTUCkb821dvMhwWFJVNVrl5jJICqWwwYNIV5rR2VrEXImT9cFRaKjrCiFkFpRJgVEagiMsBZEQUVpR34T698vlyPF77yW67+Cx3/qVG84Ru/kCcJH1Y3ezVr3tmnMkAhc2A0ZDUUZax6uaIy8XetmCsrfeYf1PhBCKw4dfh7WL5RPJrYeXUNqa07Ut2mhUmW8UrQ3RRsBfqYWrQiO1xlnHlz/yq7zw+7/FrG2JzuYpF5Xw+zu88LHf4OLjn2Xtvoc5/Lq3EIXk4qXzFEXFgbVVtDIorVFaM6xrgvc8+cIlfvv3v8h9dz3IO9/8FhqjKYuCerJCoRX0LVpJDtz/JrrmMPce2WfuIyujAed29njsy1+mKivOnj/LZDzm3nvvASRvefj1vOtd76AajZiMJmilcn6yFAidO6jRx7z4kefxY8puKNYHpJDEmHAhYIzMhoIprwE+BMJsn+nmRRazPR58/T0gNa21lIWirPJoJz7ge0lICe8DgYgQPjdQY2I0XkWmgM9FeIzO32cpINvXR4wSIDVaq2wrcoPxcjjyzO/8e9Z/+2c53i94QRxi6wZzRG1sMN/7Vcq6ZseHa86RGODiZqQqBeNhfrJ5NXPk5eCAgX/8MKxo+OuPwlO3WUKwUppDh19L1+2xvf3czb6cl4Wr3kiaZkBVlQhl6J2j7XMjVZsSpRUxCmLwSAHe9jz1u7/DUx/5VTY3tyiVzI/WSrHf9hRSMhqUuNkO57/weywWC97w3u/l4OE30FuLEgJT5KarkArvHE+/cIFf+09fpDYjvuWR17M6HFCtrFE1DdiO2M0RKSGrQfZhShFVDRgHB1Lz2GNfoqxrzl04R6EVD9x/H6ura9x98i6+4099O9VwwHA0QddmmeWwPAJJwTISA0me/Xe9zZZaMS8MVVEsLVIiBZre50kcrQVdt8BtX2C6t0U1GWLKapk3DvPWIlJAKY02mrK+/HeGqsjfL6myuZ8UWStQRL90lc3iNR8lKQZiSriFI8acey6FYHQ9GHONOdL+zgc5uP0sArirkKT5KpNnd7lwrEGtVNedI6KsAbDW8djj154je/uJeZs4dkgiJPhXOUdeDt6zDj9yBJSAP7cN//ZpxdvQ/DKWrVuwn/C1WFk9wWC4zgvPfxzvupt9OS8LV72R7O3topSirBKzhSP6nqoYIvUyb2Gp5nbW8/jv/yce/eVfYGt3nxAjwiisjzmLWxj6EBgKicihHcyff4xnPznhTd/7I6w2DYSIsx3z/X1ECuzuL/jwHzyGt4lveughDp+6i8mR46QQcNvnSa5H1UNUWeFtS+hbdDOm3N8nFhVffPIpPNkywnvPw697HesH1nnNfffztre9nWI4omoaitLkACKf8AhKkz2YnAt466gLg3WO3nYUStPZCDGihKD3OfNBAq3zKCnwzrPY2yK0+zgE6+srNE2Ta/s+5MCjJEFAcJ7ee6yz2UE3OEKwdM4jjUEWRS7jKE3wjphcthuJl23IEyQP0ZNior0Jzq4vhyN2r+V4qjlctTRVz3t/Y5PxLPDkbuCz72rgOnPEtOcBOHfhAp5T15wj83nAWhgPBTHe4cjLwe/twMd34e2H4b4jgn/79IgHkPwsmr/KnFs9nmswWKcsh+ztnrmlrOO/Gle9kfRdx2A4oq5rmsEQUvwqlXGeVdeFxlvHxaceY293j1SNWD90mG7zLK7v0UVDPVqh39/Gu5DryUqitefCo5/gkzHxlu/+oRy5iqBuhuzsTvn0ly7g5j13HT7IkbvuZnzoCNJb+u1LxBgoVtazKGyxT+gtSVfIfoEqCl44d44Lm5sInRP6Xv/a13Ly1Elee//9vOGRN1EMx9SDAc0wZ2WkmPAh5XKABCLY3iFSVhVba4khO8Ra22fVNYmUAlVR4YOl7TsGRYnrO5KdoZsxsb3E+uooK6atXRoKJiqdxziRmq6dc/Hcixw4sI4sC6TS2BBpyuzHZHubG7opN2ezSaGEFJA6u8AqWeB8Itkbf3u9HI64apXfO3If33HqIzzQ7MBvTmCmUDERXMDH68wRlbPTi7K6Lhx59sWsND9+5A5HXi5Od/D+z8JH/1v4sfeAeAK4CMUyXuBWx933fgsppVvO8fercdUbiVaS6f4Oo9EAtay5xphw3rOztYV3lrqqSDGyc+EcnSw5+aZ30u9dYu9Fi21bmt4hnUWL3JaO3mOlxIVI4RzPf+qjzPf3+ebv/2GGkxUSidOXFri2ZX11heHaGoNhDfvbBCFRdfZXIjjcdEYIAV8McG1LcD17veX0mTM0gyGLdsaDD9zPybvu4k0PPcSD99+PaIakoqQZLEc3U7oSIWGKbAPedw7nHHWhiCEwX7SIlIgp4GK4YksRYkAryW5rETHXo23fUVdDLl44x7Ax1FWRNQHeQ8oxsyKWaB0I0SJIHNw4iDE5ZU+qglJquq6jqUqqKtuOuAixbUkyhz+5oGitJ0ZHWZYooynljV8kXi5H4uICbk0ihonuv17w6C8d5JlDI1IKRHt9OWKvqAjBiHRtORID03memlI63OHIK8AswXQCcj2x9Vem/KOfMfx/5v0t/zQCguHoIClF5rNLN/tiXjaueiMp64rJZJxN67qOrrcIqUgpYoyhrgeUdcX5Z59m+8wZuumMFz7+OxRVydpkRBjU9Is5XbfASEEnskhNSYmIAW8jnet44hMfZXtri3f+mR+mnKxz8cIe6wcPMTl0FOl7CmcRSSBGk6xiXszwizkgCEVF6C1+tk+fYGtzk/VDh7GLGSePbXDk5EnuPn6Ce46doBmtYLVCXZ7/zya1eJ8wS0V8Comuy0uNBOaLjhQjTV3Q21wDN0pjfZ+1ACFgraMymrbrsH2LXeyzdeE0D7/2ftq2W1qAKIgSaQxI8DFrCiJQDUbUhUEbTYwp24AoQxI5RS8BznmcD4wGA5RWCB+oq3ppYy+vWJrfaLwSjjxVHuPBU+d4tGv4zOEBRkRS219/jmxtohNURvPQfXdfU45M55az5yOTkWB1ku5w5BVg2sI//S34wPvgn38h8A/m4TbojkBZDjl58m3sbD/P5qWnbvblvGxcvY4kZZmMdZYUA1VZglKkEKnKkpQSpixYXT/I4Qcf4XBhWDl+giN33YNWAtfOefITv8fpL3walyJSCtqQkDYyqHJ5wXtP21qe/eJn2N3e4vAb3oMsNhidWM89lTZRNDVmOACjibYj9S1Ca9Al2B76BcFU9Lu7DAY1srecPHIP60cOcXRjg/XVNWRd0Yl8MxWXJyBTwlrQUpCrHYkYItH7rBwGFosWoyVKCObzNtuFEwnR05QNzvtsb54Me9N9Ujdl/9xzjMcDBrVB4amaks46hC7w1qKlyKZ/PqDLGq1Vztte3iVCJpqqwNke6wLaFGgZaOqaCARrcS4gpaeqSiDSdz1Cyq/9EV53vFKObLo9tp79BLK8cRwpC0PsYW1tjcMPPHxNObK722EdHNpIIAKlucORV4J//Gvwzz4C++3NvpJrh7IcUhQNp1/8FN73N/tyXjZewhNJvXRjjVibM7kl4HxEKYW3LVJKJgfWeO+P/1csFnOCsygJIUQm6xusHjnOypETfPkjv050HUpJ5p3DzixNne2wpVQE57l0+kXa4gnuesMBQrtA9R2qUKjxGC8EtAtit0DUg2yU181J7QwXczlFCiiqmvXJmIMnjlNXJQeGQwpTElDImCjL5Y0UE97Hr4QwLUsYvnOE6KmLCmc9XW8xqmQ6m2NdYDSo6fueELKmZNG2pJRw3uFdj9vbousdh1dXQCyT6pRk0FS5+Wkqur7DOUfX95ASdV0iRRa1yeU0Uh8CSubJtxT7nM8hJFJJIgkvIjHmZqoxOjdx441vpL5SjhRmg7d9/103lCO6qrBTqJqGA5PJNeXImQuB3iqGjc/9jjscecW4nTYRgCPH3kDdrLK5+VROyrxFcfWCRO8wKkebyqYBBHGZLBdiPj2m6GlnLZ21xODpupZ2MWc6myOFZGUy4f63vJWybvjSh38DN92mKQ3b+w6h4lLEBp7skdX3PT5FwnwvK4WbCdY60myKihFZNQQBup8h2gVJKqLWVKEl1CWFgNW1NarCsFpXSKVpQ0DYjpWmRCxzl1wf6L2jLAzisrbMRmbzBVoJFIn9xQIXHImS6bzNYUgpsT+bU1U13gXavqcqSrqupV/McPMpQRiGw4a2bfEWyqpGa51LNkoxHDSEGAmXA5lioG2XNfeyRCkBIeKDJASJEtA7i+0tVZnbjVVZZkvzGLKWIUVivPFli1uRIwmNBYzgmnNkf5oV7ONRhxLVHY7cwR/ByspxYnCcfuFTN/tSXhGufiMJjqhKyrrBhzxNE7zD9n32GpKClHraticEv7SLcIyaCmM0u/tztnd2GQ4G3PWGNzFY2+DTv/yv6LYvYKRgf9bS1CVJ5mwGKRVJSKK3xEUgDYcILUjtlLiYkUxBKArkYor0HU4pLAnjLGhFWRiMBLTK+QzG0EePD1CplG++BKH12YI7ujwZkxTRR6Z7U7quZVAXOOuYzWeIGHHWMW9bVsYDnLfEEJc6kmUWuYDpfI4W4E1FWGzivKXQBcZUKKXo+h4dAloqIBJdhxaKZBRGa4ZVxcXNLfb2d3HOoaREG4M2FePBgKKoMLokeEtKgf39PQaDAVoZfMxJrzLdeB+lW5EjMpXsIJBCXHOOXNhsEBIGVbrDkTv4ujhx6psI0d+yivbLuOqNZHfrAqYcsLK2ji5LjAAlBFppvO3z/L2NIASD0Ti7iypJSoJBCXU9QZBdURGSjRPHecv3/whf+O1fxz33JL3bZ7b0/5HVhHsefhdpuIYPDhRErQgkZN8SvSeWDYSAsPt4IXG6AO9RBObSIKMjJoEMgcYogpS0zqFTzOFLANbj+g4XAoXKZQAA23ZMFzNEihgpmC3mzNoFK8MB3jtS8hitaLuOqswJe3vTOaUxOVI2RkpjuLC3x5H1FSaDBinB+YCPXTb1EwIlBdY6gs9jmkpJur4nxpj/LuWAoulsj6JsqIRm1vY0VUlRGCgKfIhE0YLUJKlQCGJwORf9BuNW5IhY+l1pra8pR/o+MF9IJqPA2oq6w5E7+CMoyxErKye4dPFx9vfO3OzLeUW46o1kNDlAUdVIKZEx4GNA6wK0wXVz+q5lZfXA8lRkgEhVVcznHSE4mnGFD4neOqzrSSFy6MQpNv7SBzj71BM89+jneepLj1MMD/Gat30rh4/fxfOnT3Nx+wKuyDVp5XpE3xIApyTa9+jg6XSF9x4TenzM/kRF6PFCo1JEpogPgZigVNkyAykIfU9nW5Q2S2NACTExm8+IwTOqKqSUzBaLrNCWkr39GVVR5vjYRc9oUC9rm9nTaGe+B9Ez39/GtjMOHDiOlIqiLFjMZwgpSULhe0uMicVijpICrQsSgqosUMpQhoBSI4J3aGMoq5qEIqYcnqUkkALKCEqdFz0XIs4HQooIceMHI29Fjizai0Cirg9cU47EWDBvJRtrnqrUdzhyC+PwegUCzm9e2wbNYLjOZOU4Lz7/cUK4tZ8Or35qS2mcjzi3QJComobgPV07pWtbnLVMd3dRSlBWdbbKlsscBFGijcYIQdNAInsFSSEwVcVw8laOPfAQRx9+jtNPnkEJzXR3jk4K1/cEI/IpMxXgA1HmMopIkRQCXkW0gDIFWqmRRIRI+OSRMSz9jDxaipyKZwwiRlIKeO8wxlDUFShJ7F2+MaWiqXJOt3OWpswZGL33rA/HOOeyHYUpmM3nS9v6QNd1xL7j3OnnOH78MAc31lFSElzO167qmpQSu/tT2m5OVRgKoxAiq7/b3lPoSIyejYOHcn2+W5DI6YExZj3CfGGRQlDXFd4HhBC5XJRHyYjhxg9H3oocaZfK9tHkxDXlyPbuCO/h+JFAYco7HLmFcdeRIQDPn5tf09c9ddc3UxQNTz3529f0dW8GXkJCIoTgc6xpAoRhsZgxne4zX8wZj0aUVUVRVsSUsM4ipabv5yitKb3OTVgpkdrgbaTvFqj5nKQK+t6yfugAWhvOPHMWT6QoK5qyYbqYMqxKlJhA36HLChUTsVvkPAlpMDIb5fUkTLKkGOl9xNqWru9JQlKXBUaS07FTznEQItfuRZmjYdvZnBQCK6MRSsHmziZd3zJuVtmbd0ghKLVmNp1RFQXOe+Ztx2Q4pOstSkg2t84jhODU0UNUhaHvLVIp6qah6y3eO5QEWWiE0gghUVKjtMT1LRLBcDAk+ZAjiHwAqZY56HmR67suT+YoiSlqQkj4LjGfLZYLz00oW9yCHAnLyaVsa9JfM47YXiMErIzMHY7cwdfFaHyYGAOzW1iIeBlXP/6rCywWWZbUgyExRMI00FQlg6ZhOFnNSuaUEEJSlSUxiSvRq1KpvEBIRUyerl+wWCwIMc/VG1NSliV33X83o9UJX/r046QwZzgYsLU1RezsIFWB8JZkCmTfIZwjEvG6QJEnZGQIqGDJmUGSFD297VDG4EM21MNZ2q5jumhRWqGLMlt7x0QInkHdUJUFi9mM6XxKZTQxRnrbM1gugjF66rJm0XYUOusN+q6FGHC2Y3UyZHUyIAZPCIFExPY9iITREqMMRuUGr7WW4OeMmhGiHOQfjFaQcgKfKczypJ8Vz2k2pzSaRGLatjkPY5nUKAgEH7Nu4gbjVuRIWtpsWGcJwV8TjjRFxZmLEmMiRw8KrLV3OHIHfwhCSO66+51YO+Ps6c/e7Mt5xXgJpo37tH2P945R74gJ2t5SaI0RivlsjjGGPLUuiDGgpaSsJSHBfDFHAIUx9H3Hzs424/GItou44IkIlDE42zIcFLz2Tffw9OPPsrs14/Chu9nbPcfe9haxLHHMqU2B8Y4oWWZTBJKUGCEoSPiYIARCH+jaBVIoBA0hBlxweJcbraO6QRXZhrufzfCup1o2Zdu2RQKDsmDWLkgpMKxL9qZTpJBoJfEuawhiCBATKTpCCBw7tgakPFEjsrI7Bsm8tUtb74BPjl4KvLNY50i+oxmOKYsK1/ekZTqgD7nH40P+Xs3nLUZrmlKjlMBH6Pqetp1TlQalCtRNsL+4JTmybLbbvqNdLK4JR7SqmLeR8SBntE9ndzhyB38YVT1hMDjA/t45rLv1xTFXvZHM2gV1mSdBfIwUVUPhLD5GRIL5IruNTkqRBVHKIKuaGAPtomexFO4N6gpJYjheobcdi64nRBCuZ1CXGFUiywalBXc/cIonv/Qsodvl5D338+LpF9mZ7TF2HlnVKAXJBWIlgHzKVUWNFnn6RUWHDJ6+7wgpUSiIztGLnv35HG0MRVkACTvdZ7q7S/CRRmnsYs58PkWRKJRhp8+fX2mDEDCoaoLPedtKKWbzOYLE9uZFop1zaP3eXIf2Hutz2FJRFEhCHom1ltl8zmAwYDQYUqiAS4l551C6QCu9TMQL9H2PMgXT+Zyu75FSUcpsH56Iy9frCDGyu7/PwhT4OLrhFuG3Ikcu+/5ZZ5nN968JR5w3zBaBe08KpAh3OHIHfwTD4Qaj8RGefPw3sf3sZl/OK8bVl7aKkrKsERJmiwUXzr6IlIneWrQuKYqSQaHw0RCX+QeqkBhRoLVHeUWIKYvGRLZMFdIgVB7HJEXazhKSpCoTwUequmH92Bpnn7vA9tnzrI4PMTUl+5tnSdMSORqiEmgEyUe8UZRKUStFQJKEpBCBuQ+E2CGHDd18ims7XIxMBoNcBmk9e1tb7M/nrA5HGJHY7xbsz2eM6zrHrWrN+mSCD5HClBRKsb9oKQtDipHoHN5azr7wDA/de5SybjBFiS4K6Hr2plO29/aZz6cYGVmdTFBySJIGFxIHD6yjtGaxWDCdt1mQphTG5BKQ9Q4hclnISElVaAZNnSNYExgzzopy56irCnUT3C9uRY4oma1XnPPI7tpw5NGnEynC4QOReXuHI3fwR3H06BuQUnH69Kdv9qVcE7wE919FabIhXKEVzmWb67KsKaoq6yuiIAmPUoZ6MKQos2WGKUrGRYmUObPbuY7FbA+jNWujIS4EpMxK3lyRCtlSIiXGoxHDhwr2tubsbe1x7PARXgyB+d4mTTNEkOftIxKlKyoiRVlihMbYHpUCNoFKEbxje28Pl5beRaMBqV/gusRsPsX1PTQNs8WC7d1djJQ0ZUVrPU1VoaViupgjl4Z9gkRpCtq2gwQ7W5cojOLgxgYuAL3Fh2yeV1c1Wi3T6oLFRUkXyToG4VkscslBK4FFMG97Rk2BFBUhOIqiZCQUznlYxtT2Llwx0pZSZJfj+QJIOH/jJ3JuRY5onTcSbUxOULwGHNnasQgpObDCHY7cwdfFyuoJUopcPP/lm30p1wRXvZHs7G6h1QGkVPR9z8pkgtKKoqwxSjGdTUnk+feyrBDRE/oFly5dYLSyxsFDh7F9x2y2y2w2pV201INRdifFok2JSBGRfBZgBY/UBqkNSimO3rVKH86we+kik+EKs71dbO/QOpvlsQz0IfbEoqA2FVokrJA0SmOSw0iBD5HOeuoyT9+IlJhZh2s7SqVQKbE7m9P1lvXJCsoYiJHRYICPef5+WI9yg/Oyl1Sf1dt7u9usrw4Z1kX2P4qRutCI6HImR3Ksr04QqqS3ln5/lk+VMoGQuJAzTsqyoG4avHcIoTDmsjeUoK5qrHNLLyXoup6270BoEJKyrFFSZAfFG4xbkSPlMo+kGQxZGQ1fMUesj7x4HpoK1lcTxDscuYM/DKUMp+5+B/PZJufPffFmX841wVVvJHVVkRAopVhbXcFaj1KSajgi2B4pBbNFl1W7wdHO9rGu58zp81SbF9EyEYKAFKkKQ3CWGCzOG6qyQqTcJCyUIBaa+d6cRkQmwwlt2yGV4eRdRzjz3Glmu1OMNnRtRzkcEHqbs6kBRUQUDQW5Li2qGqM0VbQEpfE+MtQFkzpbUUznc3YXLYUyHJhMCCnSe8dwMKCua2Z9R2k0VVWyvz9jVFUoKVnYQKE0bdvT9z3T/X32d7c49eAxgneUhUYpiVICXedGa/CSlBJ9OycBK8MGqQvaxYy92YKqKqkLlU0BSWidew0y5SRw6/yVcVXvHFrJfLI2BUmIrDOQ8iu/v8G4FTkil832uiwZ1/Ur5sjm9oyuh0GdCD5QmzscuYM/DKUMTbPG/v65W16IeBlXvZGsrh0kxkBvWwbDAc1ggLeW+f4e00WH6xZIKSiKksJoxqPDzNuW8XgNKQSLRYfr59lOXOZsCu893lqCEnjnWMxnzGe72BARUmP0BpWQFGVBDAEjA/fed4yzp7fZ2t3FhkBSBdF5RFWjQgAESSh09KiyQZUVQoAWhqAMMkaMhEldg8wN0Kaul/5EBfuLBYPSMBlOcga3UowHQyQSiaA0OXgoxQRa0nc9KSbOnX2RtXHBgdUVWuvpfCAlCFNPWRQMS4PRiuA9MWXFtylKrFuerKVAEXFO4O2CsswqZmcjWkmc73Eh5QWVBCmw6HqkUNR1gZI6uxCnPBEllrX/G4lbkSNy+URSak1RDV4xR3Z2JdNF4uSRdOUp4g5H7uCrsXHoISYrx3jm6Y/g/a2Z0f61uOqNpCg0i3mP84nZrKWqsmJYpMigNCQzpDAGXTbMZlMWOy1FWTAajSAmpvNLWNvhvGM4XqcuDVQFIAgx0vYWHxPGlNSNJqY8ZbOYz/DB5xqwEqxuHGJldQ2L4MnHToMyEEGZCoIj1g0acuypqdBSUyYHWqOKikbInPugFJ1zNIMBg7qmLit6a1HSMBgNqeuK/UVLU9VUVcVi3qGVxhidJ8KEXDqyBtp2wXS6xRvfcj9lodibzZdz+6ClxFnHrnWMmoJBXVJWFVLqnGEfPSl6QpJ475EyoY3BJ0kMnhgCMSyjJ1JCpJDFls5hfQQhkUqhVELKLOYTKeH6a6vCvV05kpYJiSUJo9Ur5kjbAUlwaI07HLmDr4vB4ABCSC6c/9LNvpRrhqveSBbzOb11eG/p3fJEJxKlUQzLAiklMQp29/e4eP4sPkaausGog4yGQ44eOUJv17F9h5Caru9R2tA0Db5tcc5nfyBTIpRExkQMWSSWUmJtdQVjCoQ22N4yaEqUlCghEVrkRcFboIG+xQNKqOU8viAllRu8ZYHSOgsWtWJ1XOc/+4D1Pc1wSF03eBeQKKqqIkTwPlIWBUIqnPWYQtG2lhgC+7s71KWkrrKfkxR5gVMqO8z2zhF8YNYlrAuMRw2KgBaJqixZX1vF+ezzlJAYbUgx0PYW53KuR4iRQV0ihcClSPAerVS2xbAdffR5gSCb+Bl940+btyJH0pVwp2vDkRfOSyAwGaQ7HLmDr4t77/s2gFs6EfFrcdUbSVUPQMyASCEEWiSapqbvWoTzpCQIUeB9ZO3AOlJI6qambgbEBDFGZouW6XRGSh6SZzQcMfMW5x0h9BRSMBiOkabMOrGUkEojUmA4HAGS3jnmiwU7OzvoskImT1VPEMEhlUEJhQgdqZ4gZTbtQ+WnESMEhZK4kPAJiqJEFSWXFb+6KKmHAwgRZy1FYTDaMJu1KKWomppu0aOVARlo246+79nZ3uT44VWqqlqGCeUYVa0UIQa8cxitKI3GKJWnaXyk7fwy7lRitCQBu3u79ESqMmeb2xCJVyZvEkppTJH1LN45rAsUhSalnEORYqBqagpT/LE/y+uFW5EjyKVNiFSvmCM+Ss5vwmgg2FhVKBnvcOQO/hBM0XD02BvZ3zvL9vbzN/tyrhmueiPx3tIvrR7KItevhRJICpLUgKQuCrQWJBJKSCKCruvoO0tdl5w7f5EvPf4EAIPBgLXJgEXb473n0MYa9544wsrqBGEaXN9j6orp/j5927G3t0cMiUW3IEVPURi0tIjg89SMnaNHa8jkSUIidYGKITu2mpqYBEbkhmREUhidhWbakDpH9AFTliA1vs0bh6lKhFQYpZBGZvNHFxASrPM465nP5+zvb/LW1zyYM7kvpzPqbPexsI7OeYSUFEVBU5X5lBg9TitijIiUiCkvTKRITJHd6ZQoirwJioQiYJTCWYvWNUJItC5QKhJjwntP1eRSnlYyf/+uF2tuI46IpSuvUOUr5khImnnXUxVQFiLnpt/hyB18FbQqGQwOMJ9v0vfTm3051wxXH2wVA2VZEZyj6z1lFSlMg5SaSMJZD1IDAkmiKCu63i6T78A7wcbamPvvPk5VV0ghaAqD0oYkBMPhiEFdEZIk2RbvLDH0yBgwxrC7t0tpDFobpCw4dnzC7oVnkEqD65FKIbTG2znKFEghkdERtEHrEiMSUkhAZnGW1ghTgIfoY7Y/H9QQAiSR3V8LQ7KOJCRKacJlT6QYaRf5pLm3s0tl8okvhIiUYJQgBklnO7quQ8u8YOzPOkJINFUJIjdOQ+jRpkKIhJQFQgq6vqfQEucDWktKrRmUCiFzI1bFfE1RSIKzmEIRyZumKkp6H9nenXLy+vHm9uHI5XhTVWCkfEUcOXspMm8TD50USBGZ3eHIHXwNjh5/A81gjS987t8Qb5OJLXgJG4lUhna2T1kYtDJYF3Bhnu2pSRRFgWvneNthjGY+28eHRPQ9u3s7xAR7u/tY51BKsLqySoqB2WIOwVMbxVwI9va3gMCwrinLikQeYxzWNaao0Co3MNuuoywjphxACOhyiPA9zvagK5LrSDohqwYIGAFC6JwOZwzSaFCK1OV6tSgKEJLkPAiQhYEA3nqEEEgl6eaRGBJSgu0swXtms10ObqyBLCBFJAKhFMkkQtQYranKCiWznUVC0DuHIMfOphjpFgukzG4dgoiSEmdbKqUgBrrOY0TBaKBACGJKOXc8OIyMyCTRMp+AEYKudzdFtXxLciR6AAQeI+Ir4khrs3XXoM4piHc4cgdfi6Y5gBCK+XzzZl/KNcVVbyS276mbEUpLpFAs2gV1aRBSYbs2x6nGsFQeC/quZb6Y0fZ5xNL1PULAcNiwNh6ztjKhd55DGyUhJlzfMZtNUSJhXfbHWiym1GWNj4HRcAgiEmPA9RZrLRGLdx0aiS4aUj+FmI3xXDfHDAbEANL3RC0JqSIlsRRjSXAhny6VRJSG5COhtUglwGhS1+OdxxQGUl4wtJZY63DWYbscv7q2ukbKCRcopRHLsc+6KlkZDeh9NswTSwGYcw4todAaBxQCILvKpuiYDAbYbsqZc2dYX1ulqAZoVbA3naFEpK5r6rJg0bZ01oNPuRQSEsHm0eTyJjRSbzmOtDNCcAghEDEQo3tFHHni2RYl4d7jmuDtHY7cJlBaZNfn+MoFnPc/8B6Ctzzz9EevwZV94+CqN5KVlRyDKnVOcdMCgrMkFKbI2dBIwWA0AQFlqSnKkrptEWS/pfFkjfFgkDMVvGW+aEkxBweF4Hj+7CZNaTh7YROi5/jRwxw/OmAyaEAaEpLeduzOF9lPyAi6/SnVyiopZXfXmPIJTQgBooAYCb3DxwqMphAqLwLBE71ASIlY3lCp97ncYUwOR+ocEoFSkugCKUSkgr6zJLI/k9awOhkzrCsKo1A691KMEYjo2W9bqmaA0RIhJfuzOWo5SSaVpFJqSVJHcA5nLR2BYaVRhzdoBmOk1JhCMxg0OOvZm80oC0ddliy6fjndVFAUkkYrVKFQorpOlLl9OBJSz87uszT1AZryQI4BfpkcSUkwW0TKAqpS3OHIbYKqVDx0aszmbs+Zi4tX9FpKFTSDNbp+n/42MGr8alz1RuKsBwKx67HWLadsUrZZUHk2vdAGQaSbtzTDivFksgzagdL7bI+REvO2pW8XOB9o6Vl0lklTsL62SlMWHFxfBwGj0YjJyhqut3S9Y9F22ck3LidPasOFp04zGq1m3UhK6GpE9JYkCxAKggWZEDqPRRoRECgIiRQFQgnQimQD+JyJgVbgHMlHjFEIIXCdJYSIUgJrAyEEemsZLuf+hcgZD22X+yh1oUGAkBolJdoYut7SVCWLts01dp+yfYcEhaKuGkbDAc72JKCsBiQk1iesS4SQo1dNUeFjZNb2VIVGS0GIELyj7RJNXZF9iW8sbjWOSEkW/gmTy02vgCPTHs5veg6tCoY1bM7ucOR2gAC0FnR9IrzCRMlmsMbBQ6/hwrlHme6fvzYX+A2Cq7eRn00ZDXM+dVlW2QQvgXM9MgVQBussfW/RSkBM6FJTN7n5KqXAJ+jmc+rSUKghZdVACljnacqCA1ISQ2TedmhJdjTtLcE7irLEB8dwMGFvOqMyilFV8cTHv0Ak4V2bp3C0JtgpyIYYHd73FFWDVOYrJ0wngQJEQugc+MOiJ/mEMBIipD6QIvlzWo9fqodTTIgc2421HaVKOJc3GSEE1geMjPQ2kmRu2s7nc1KC/fmc+aKl955Sa8bDAU1VIITE2VzWWBmPQeb+QlVI+rbLXku6wEdABKqyyDYafUdnHVJKTCFJLuJczq8obkLZ4pbjiK7I+pGEQL0ijmzvOEJI3HNMQ65a3eHIHfwhrK6eRCvDM09/BG6zTfwl2MhrYgiUlcklhGUzUytJjBFFZOHdkuy5K9hIRSKPykqpqasSBXQuUlYNkkjXWgQgdZFPn60FFG0/RypNMygIKRBcR1UabNdTSIkWAq8kpjZ0XUvVaoYrG0QiUWbdCN4TiCRZQkxItdQyWEWSEl0W+cjROQgBWRooDFhLdA5kPo1Gm59EVFEwnWbn1BgS1racPLFCUxmsDQgpGQ+yJ1QIjroZcGlzi8ooJJGmUIhUUHiBC9DZntKoK6dSY/LJ0kdFEoLeRYqyzkK+EPI4pykQKedo1GUW3C3aDucDKeU67jw4WilZvz6cua04IgSAyE+wr4AjF7YCPsBkrHHO3eHIHfwRrB98AKULZrOLN/tSrjmueiMJIYCswHrqRuNDIEQoTEGhl4rbmMk+nc2oqgqhNMnn+NJuts9oOERJCUIwnffYfo4QCaM080WLdT4rfZWiqVdAKvpujvMeay1lUaKUIiVFURrq0ZDJxgZd3xPiEKEMqd/LpnRIhHBIWSBVSQoWoQQpFiShUEogjEDESAqRlMgnTZlPygnQRW6yOReRWuc5/t6TlsF6l0+HAkWhE3VdM2gqvA+ElCeJCqNJIte+s5pYE2JCqRz76oLEJ4kQCR8FwXmCd4QklrndufErhUBJnS1ClETk4FdSyq8VY8J6T0gghST6/rqR5nbiCImlhUjxsjkSQ+L5s5aqEJw4qHB9e4cjd/A1EBw//mb6fsYLz338Zl/MNcdVbyTtoqUeFihd0LYuk1YpYvAkrWjbBUIo6rrESIESMN/bwXvPxZ09Ci0pdM7jrgcj2naxHEPsmbqWuirRKtfKRaFRSi2tLwRd1+ODI6U8Gqm1YW86pe975ouWus6nMVLEW4suahSJ6ByqqUgEUrAEp0BqtI5IufQkEkBMCCVBKvCWaHOZRRhNtNl+wxhF10dQOTALKdAC1lcHFMYwn8/Y2t5EigNX4mQFkaY0xBiRQmRvKKno+5ZaaupmgHQJ3/Y453De4kMkVxwk/rLiWUkmozHV5Zo6kRDBhUgM2S/KeUdMiWFT54TB5VjrjcStxxFgmVWSOeJfFkdC79nZD5SFQAlBuMORO/gaCCFYWT1B302x7pU17b8RcdUbiSkLuq7FlAW2t3S9pSzLPIefFFVVYJ1lf2+PqirZ2dujNBqpNEZEJsMxg+EoO7SKxHhYY62gb+dIEZBSopTE9i3WLhgNRxRGkQRIEkYqYgj0PmBi9iBqW8dzp3d46N6TyKImBQ8IdFERfYcUEqVrSCmHIBkDssgnxRRIGLARQoIqR+gmnxBCIUoJKp821TLIKiWxzLaQS8O9RHQWWWicd+zsL9idzZkMG44cPERVNVR1g/ee6d4enXWkFLKjrUxMZy0uJHRRopJDS0mIl63APQJQUpFSYjafURhDXTcoIhFBmRIx5vQ8IVpizA6vLoBRN97+4lbjSAotaWkjT0p5o3kZHNnZC2zuRe4+VlCXgo47HLmDP4zJynEOrN/L889+jHaxc7Mv55rjqjeSFCISCLbDh4hSEiEFUpX46On6/z97/x0lWZqe94G/z10TJl1526bau+kxPQbjAAwGwAwMAXqBS6yE1Ur0ZpfaXS6PiCOeFUWuKGmPuOQhpANSEAWRAEhwAQwwGAM3ptHT49ubalNVXT6z0oW5935u//huRFV19/RkT3VXd2XFM1OdGZERkTci3/t+732+932eiiIzdLodGuuJQqOUpig6aJ20f1yIiBjxweNdy3uLlKSbakzWz8jygtF4yNrGJkWRQYxkWiYJCiR2YxMZFXmecX75LBc2U0WpTYFrxmR5h7zo4MfrqHIek2UQmtRBJDOk0ExyByESnEBmCpFJCAECIGVLuSTl1KxQhNbvWxuNQCJlUlS11uGsI9OGGw/uYzga0e12kFIhVbtBGklqrtqyOUg0TF0NOb98AQEUZcGOpQUyk6OEpCxKqrpC6yRgEUPAeUdVW1AWLUU7rJZcAn0I6LYzKoSAqz0j71h6o6Nlm8WIW9ngjq/tRnZL/AMNqpTfU4ycXw00Fpbm02T5LEa2DwqvufMbexl5Ry/rsjb+3tp2d+y8mSzrsrp64g0+wrcHtn5FkuVoYwgxoJVCaYMUEWM0zkNTjxiOPVIq5joFocxSIAuBycrUvZJF6sZDXZMVBdVwwEK/n7jeEIne0Z/r0+12WVm9wLnlZaKr2bW4QCUUWus0jSsVVePYHNTs33sAbTK00Xg7pOgvkM70mCQtpCJY2ya0LGkSSQdRgyNt+mqVntIEiBKRSyKCaB3SKMgkNAEhk5cFIiXIiKCyltw7lE7HZ0yfGGE8GpDnOUIIBqMx64MxdTUiM4IyM+hcM98taeqKOrXatJazBS4IiqKLlMnXXBDBgnOW4cYaeW5SR5CNOJ/sbLWSdMsO3aIAIbDN1ZdfuNZiZO5Ly9z6G7tBCn4r+wqb79+LNjlSKoSI3HRgF/P9eWJMi0in22Fnfy7FihZgPcpHntls2Cw9h/dlrTL8LEa2C/6EO8KP/tFtBGDlkw/w+fIM3ofpz48de4b19YtXGOPxkOXly1t7rW3Ycfs7qfqCl0587Wod+lXF1udInAOpKDsFCoE0GePhJlU1pqos46pBCklmIlonC1BlMlTR4dypYygpGY6rJFuhNfNAkWdYa8l1htAFG+trWNtQ16mzpzCGvNshyzNM3k1GP62u0ZkzZzl2/DzzvZ1IramHm63IXgfXbKDykqwoITpCsBjTQemciCV6DzpP5j6mtRwNAYRKMwO5IjYRoQzCAMFBSHy/kCpVkkISAsnvwRQMN9dpmgFKCjKV1KR8mPDT6TViDIQgyY0gMwU+BFTUZJmEGGicxWQRozWjusHVHqnaZKw1naJMLcjeMRyPaKylbixaa+rGAg1FVpDnGi22/Kd9w3CtxUhc7IBRRAWxq3n+zOrFKxHgsedPXvb+jNZ0y5SEEclvpH/fIf5fHxFceMDzY+s9blGdWYxsI1ygoiHgiazFmjvuuP8yZ8n77nsAWt1lSIvGcHhRjNF7z9c3X+Dr/+X7eHbxNP7TDp6+mu/g6mDr6r8hIL1PiqHdPlIEiJ66qrCNJdeSxjq0VDhXUzUNommQdc14NMZ6R9VYmsZitGSuV4Iw5IUhKzvYxtKbX+D8uVOEECiKkk7ZRclEa0ghEAKyzOB9YGVlnY2NMQudQNnt04zW6e05CMHjmpre/C6EEPhqiNIFppxDxCQvEZVOukdSgSRVczFpFLVaFG03j0gbsb6dNRCR4CJCCpQyaS8mBDY31hmOk91qp9NDytTtNRwNqUcDlhbmWVroc27FJl0o5xg3DqUytDZoIVsNpeR4V+Sp86iqLY2Huhkz9o6qCfQ6BYXW9DodyjIQgqAoCl5aXmd5Y0Btaxbn+mip6L8pIbN9YsR//20M9h/AhyHvv3cP94ks9TlFi9KGkxdGbIxb2RIh2BhUnDxzfpo3nPf81sYJnit2QyF4VA/5yKCcxcg2wu/wAp/gP9Dg+frnlln8xh6kvLiQHD58hLm5xentfn+BgwdvnN7WWrP7Jz+GPbKTVSzctwR/eBXfwFXClheSbrePEpFOJ8lSu8a2l8p5q6AqQCgqGwixTgY6IjAaDVmcm8MjGYxHCCEYjUasbw7plIFur0sUoq28It1OF++T4VG3U6LzjMHGBkSoGot3FiE0x15aRSKwTUUzHlBmOXnZxzVjpNRkeQ/fjAneUfYWUSapvgqSw17aCw0IKSFK0o6tACUhJBMkMgkyghMkV1KBlAqlNZnJ6XQXuLB6kj27lpifm0u0jrNpaFFJgm9QMUOptBApqQgxIJWik+dp6huBtTXWeSApFCulKLKMXGsqa6l0h7ppWhHEgFERrdPgW4xJcyqTEaMi48YT19bpFCV73qSg2TYx0u1TvyMjNDmd/gJzRY5vhggMednj0MGDoFQ7kCgJXuNigCINJIbK8fHhKh23yjh4/ozdgdKzGNlOcET+iJcmNzh79qXLfn769PHLbifp/otpVUrJwudvhtFPJrfPf/eFN/2Y3wqIGC+9mJ9hhhlmmGGG14eZkPQMM8wwwwxXhNlCMsMMM8wwwxVhtpDMMMMMM8xwRZgtJDPMMMMMM1wRZgvJDDPMMMMMV4TZQjLDDDPMMMMVYbaQzDDDDDPMcEWYLSQzzDDDDDNcEWYLyQwzzDDDDFeE2UIywwwzzDDDFWG2kMwwwwwzzHBFmC0kM8wwwwwzXBFmC8kMM8wwwwxXhNlCMsMMM8wwwxVhtpDMMMMMM8xwRZgtJDPMMMMMM1wRZgvJDDPMMMMMV4TZQjLDDDPMMMMVYbaQzDDDDDPMcEWYLSQzzDDDDDNcEWYLyQwzzDDDDFcEvdUH/q+feRoESAEhAkiEFGRa0ykyyjJDCkmMkRAjUiqKTCOkxIcAUSCFQEqJMYrMaDIjkAKsB+siALbxuBBwzhMiaJUeK2V6vlZMjwMBMUIIMF5Zwf/G36XbnKTxkSgkShukNhgJIkIM4G3N+H1/k7n3/CBKifa9QBQgAGNASpAikmmQCgZDQaR97wECYB0Y3f7+CMGD8+ADmBwKAy6As+AiDEawOoahBQXkErSCUQNNIL1+eyxBpNvxks9/8r142d/l0tsxtu+zvfP/+MBW/7pvDK7FGMnmIns+8Tg6D6x89h241XIWI28ihHj50b39sbQD/tF/D90u/N/+Fpx86a0+oquLGON3fcyWF5K6adqITEkgtIEtEKxvCpSWKCUBQYygpSTPDEZrhBRopdDaYKQCmZ6nlUIoSQwxBbgUCCFQUoIQeOdpGsdw3CBEen2jFUIKvE9vLoaI8xHvMvLFO5hfOYcXgSgkUWp88OAcmZYoZRiFLqN8N34QMRryDKQUKB2pxo5TL51nNNzkwvIZzp89y8LSLm48coQdu/cgVYYQkGfpPa5tkBKWjNgGGhfpdwQqCpoGGpc+Mu/TB73UBbuRkkEuIRARAmhPrklySJ/yRYj0Qafv25+JV/vbikse8BbgWoyR3m2nmbvveDr+EwtsfuWOWYzMcBk+/qPwH/0f0p/goQfhn/73b/URvf2w5YUkxoYQBCFEAhAuKdOsEAjbnmwyghQ0CEY1XIxcgUQilUQKAUJglMaYLCUPpVBaE6UmEIlREBEQNUKk5xEkohHtOXWxrIoxEpXCHfoQC8sPY+SYKCWBSG0dELBeELxnrXcvbu4QdhxQSqAbiTGR5dOn+dS/+yX+8Hd/DWtrdu/dx/ziElIqmrpm3+E7+MgnfoabbruLzECMAudT5UkE5yMxRuogUKNUdRJBteShdSAUaAF1AOfSuRwuSQDES5LApR++uOwh0/suv+OSm29RorgWY6Q5tUQ9yhDaM3hhkbGdxcgMl+NrD8PZFSgKePCLb/XRvD2x5YVkOHZtZQSImII7CiRtlUiqqrxLVIBoA3tSTU0qUyESLQAwRgASISRpuyZdNegsR2clUmm0yVBKIINsny8QMb1OShZiWnr5/Xez8cwt7Bw9BgJ8BBk9ACFGhrFDc9efQM/Ng0zVXSPg+PPH+Xe/+P/my5//dbyrufHIHSwszJPnGU1dMRqs89Af/gbfePgL/NTP/T0e+P6PY7S+eJIjiDKVio0H0q8kxvS9aB8Xw8WkECIpCbYn9KXn/DRRXHLnpYnj0hxw2fcvf5GrjGsyRtZLnhvmUFjUco9hmMXIDJfj+HH46jmYm4enn32rj+btia1TW5VNJ/cll9ZSCjwTvhiETFVYCBBCurQX7f1CCCapYsJdey9aOgKEEuk5VQ2jQUthSLQyKJOjdEZWdsjzEikVQkqklJdVYuQd1g9+mPlnniHH4bwltlXx2EfWDn6IePBOnBBtrousr27wqV/5nzh97HFUaNi3c4nD+/ZSuYaTx04xGo2oqjExRJZPHeVf/w9/B5n9f3n3hz6a3hhMT+LL+Oo4/dH066VUY+Ty5wgu8taT269249JEMUkGr1aJviqt8SbjWo0RH9OVQmMja3tmMTLDK+EB91YfxNsYW15IQnAg47Rymu48Rgi+pQ8uIWkFKVnE0CaINsHI9iExpoSipCB4gZhkDiHwThADKCXwukHYITFIxKZCqgwpNDrL0DpDINFZRpYXmDxDHHoPK0//JjvtCVwIND7go2Zg9uJu+zjSmFQNk7jzh/7g05x5/lvsXFrk1lv3cs+8J8vO8rULQ55+6TTr4xofAgKBVJpq+QS/8a/+MYdvuZPd+/a+JjsQ2/+85vl6CVXxcoiXff/yx4jv8MS3irW4JmNkaUjs1biXFtnw+2cxMsMrsOcQLO2GZ74J9fitPpq3J7a8kHjriL4NzPaED+01eJxcurcV5jRZtPcLMbkMF6kyVamDRci24po8IAqEFkiVuG/v078YBRCQ2iGkRQqBc22SCooQJEIa8rLDjk6G3HMP9XpO2e1QFPMs3voOfLGDJ9QCFRcv79fX1vnjz/4qstlkqZznfQf73DLnETQczATFOOMzz4/Y9IHGe4RoUFJy4umv8pU/+G1+7M//Jy3l8sqT8hUJIr78h1xGVwiYVucvpyh4le+ntycf3eR2vHj/1ca1GCPZwWXoOHYsfpCbPvGXZzEywyuwtAfmluDk82Drt/po3p7Y8kJC4ye0bktsT4JRTL9edqJEcWlBSmx/Hi6tSAVEmQrXSfLAp5I0hJQo4iR5CEn0EEPiSLyTbRUbEFIQo6MeV6xt1ty99yZuuO/dSKnROTSq5MzaiIGB0Hi0UUgBLzzzBKeefxQlHL1mk/5NLU0iBDt7kp+6ZzdaCT79/DobVlHXNTFGhGj41hd+i4988s/Qn5+7SEdcQl/El/EY8eVV56tUoXH6n2l+fU28vCvv0ue/JV2W12CMjOce43l+GYRhVDOLkRlm+B6wdWrLWy7JDEAkXcxzSZJI94u2ZIqXlD0R2faQhynPO00abe+iEAIhYnvyi2mkxyhApGSgVCAikG0b6KTcEm3GEcISiFjvwAc2qwqf1SzXcHr9LGJtnSzvkJcdnnn0YTbXV4jRY3OHZAc+aLROSalXZPzw7bs5PfB8c9XhvSeEgFSSsyee4vRLx+nO3c3FzqBLEsTkDca2a4fXThKvSBCkjyXAq1eP34HuiBNOPHDVcS3GiAtp6bO2Zq1urihGHl1zLM9iZIbXgBZpZmi74XVQW81lt9NncUk5KdqTnIvJYnLip4emn128Hm9vT7+/eD9CJCqjfYxoXxsBwUGYJJLJY2RKNEJAHQNOeQbDAUXZAakZ1Y6XVsbUpkC4hqYesLEWOfb0N7G2hhgJtgZiSlztme5i5NzGmP09zbOrFeuAkhLvHOPBOmdOvMhNt92d8tTkBH/Z10uTwavN9VyaT8Ql1erko5g+r82lkwr+5Ukmpd+XvehVxrUYI/QtAHVjeWllc8sx4pGI4Oks1uzYtcpPrFb8lXLAv3pc8LvH1SxGZmgvpyO3HIL7boHiLPz0zfBLj8Nvv7C9/gRbvyJxw/ZSOg19OevbS/i2z0ZIJBIlJTaEtkpK/5vMBEyShpRymliAaSIRl/w8PUWiZBo+E6TnCCnTpDC0yUjgIm07qQBfMYwDljoLBCw2SKLS4D3O+XSmiUjwDltVBO8RQrBRNRxfHbMyaJgvFHv6hkHlqG3g8K4FbmwKzg5P4gKE4IkxMNzYxNk45fFfjaZ41WTBxVz5atTFpT+/vMh8tVvTdP0qr391uYtrMUZE24sjtfquMbJeWx7acZD6xjs5s/R+fur4r/IXPvabdIY1PxBBrhs++PxN/HdO8s/lcfwsRq4/SAnvuAuO3AU3fJTdX/pFPvV3v8EtGvgSqA3Dx166if8Gxz/jGKOLZPA1jS0vJJub53EeLO3ldIyUWhNimjhGCgQpgUTaE1ukf1KkFtDJ9bcUqd9fSoUPYZp8pGglMoRKrxMnFapASTVNIFJKtJQYLTFag0hzCT6C8rZt+VSJikKgC0OuwG6OiEqjpSLGSFn2pq8ZQqQwhqgyaiTro4oQoNx9mGENh8fLPHW+z9pgBESUFGyuLXNh+TxZXiClAqnaBCfbqvCSPYEo2gTQVuEI4qT/MorpY6OIr8gc0xNeXEwIl5/+8ZIkcWm6uLpJ4lqMkcnQpNLqu8bIyQ88wL/8b/+fuHwvcfkgF76xjz+X/y5yVEMXePgAC9+8hZ8Hns1HfE5Wsxi53vDDH4Rf+YdQ7oPlg/TeeycLSz+B2hxCD/jqARa/dSv/kMizjPj/ceatPuI3BFufbM97xACN9VgbiBEGTcR7D6Q+/FxahITQXlsbKelkBqMlWgIxTfeu1o4YBDJKGh9BeIxRyHZgS5KqzYkuk2wv1YOQKKWIkPSYlEGp9NouBGKU9ESDWijQmUYaQyYEIcspjaAaXKCRBi1Tkir6C0mPSwrqKFk3i5SdHnkmWV9+ntJI5NpJDmcaXVj2Ls4js4L19TWMVqwvn+TsiRcwWYYQk7mFNlEonWYZVNKSQqjUvSMSty5biQ+kSM+dzBu0lXlwDjse412DUgpTlKgsax93WfrhVZNEBCjegBDZOq7FGKm76wAYv/+1Y0QJNv/iEWzvixD3g/ppnn74bv7Jmf+CT972y3QGG3jd5U4VGRE5ZdwsRrYJdh5IX5dPfZcHCuDnboO5L01jZOXxd/JPf+//zlL5zznz9Bm6zw75GzhqAscYvdmHftWw5YVkJVtKMhN5e0keEzERY2hjMlLHeNmlegUMBcgpj534WyfjtGMltAEtRDuENmXFL158R+9JQwP6IoceQXmBDKlCtSEdwz5tEFIjtCIzgoBC5BlL/S7eb3LOTsgUMDsPYjrzNIML1E5hNs9wwHSh9oyJiAiZCPQN7O4oDu/oUezIOXYsghBsrJ3h9MpZtMmmRyxhKkqYOori5YNn8ZLTW0xO7EsSRPv+vHV4Zy8mSaXahKbbh0yI8PQ3SGljQpDH9Ef42MdfXzRcIa7FGGmWvgXAvP0+qteKEbeB35HG0hZWn2Xv3/06T/3yR/kn/u+gP/o09+5+jPVO4FfuX+OUzDh+VpPPYmRb4F3fDwj4xh98lwfmGvYAODj1JPzlHax/9pP8I/d/RavPUDdnkJzn3/MgFYFnGb7px361sOWFREjNpIpJCUK2J0DaUIpEwiRhiIsnhgeI7dRAe5+YVlmJqkiJJRAmNdQ02bSJQrRZQVz+GmmbtK2sRCQKwaCtaJUUKFMg2+Prd3osZfBCFZls+ha7D7B0+A7OPvkQNqYTuqMiQknGVURLwUZVM19qOkYxr+H5lXXKsqRpGpwdstEMUaEBBCH49DWGRMeEkMQLY2gn7NvkMfnHZGM/vf/YvrmYsvD09uSjS41LqVIVU1ooHbeUF2c1LuXFryauxRhByDR5H/muMdL7r7/M/r9t+eTj57jw7R5P5+9CjIB1x65wA37pNCtzjidWBhSzGNlW2FKDW+Xg730e/tID8B+ehE+NoPdhfB1Z8IoPcg9f4VkeZfPNPtyrji0vJFJPhr6SsF68pJoKbaSn2L6E5Z20eMaLwX+RmU28c0oDkRAvkZJoux1Ee4k/eQYCQltZTfKFmGQj0SaOGBkOa4INRG3TxjiSUhtu6BoeqzyNSPLmJs+58V3fT3XueUxoOF9LrA/kWpJpyahp6OQZQUii98hmwHB9QH/nbsbjMc1wg+AdQikQ4KJvP49ACK5NCOGyarNNp+nrlOpuE4Joq/eLRSfTAnL6lwipI4mQ9oQBhMDHtkMphkvoi6uLay1GnKs5Zs5wjkhPHmNJ3/faMfLYBh/9B1/m/n0Zn/6rv4p4zx/xA1+9m7/+D3+UhW8UPHvjN/n83t9huL4xi5FtAmXAH4LngN4R4Evf5QlfOgZ/fDxtxv2tVfiPn+W+P7yVX/3Hf5EbT3f5RX6fv84vEqZRvj2w5YWkyLM2CTClJsL05H9ZAnhZp02MkeADtmkIxLQZKiSIxHNPT5SYKrUIqTqbXJ6nF5u+5jRxtHRJDHE6UxCIrI5XaUYNmVRIpQljS2YyDsyX7L+wxgnVQUpFEJ69N93N8J4P4M8/y1kdObO5xp6+wYbIoMmgEWyOh/Q7Gj3exARPUeQYY1jZvEBTjzHapFM/tEkBiKikHwWtBAiAaFVx/ZTOEFKl9xxjoh4iiS8nJcpUwYf2votkTiQkOkhI4rReapOnEBeT51XEtRYja/E4p3qPYgU8P/fb7D79ye8aI+dl5IWwxh98vCEc3OTY7hr1X78HGSTdzQWyuU1MaGYxsk2w82Y48H1QSbj/z8ND/wZ8812e5CMsSPjPDNx5FLe3Zs//+H1kSI6wB42i2WbKXVteSBYyfcnlXToZfUiJQavkJ+FjaDtcNN47rPfTSiv4SHexj5SCjcEYoRS+TTRSqukrN87ifWgTjEytl21SSZfraeMxRoih5eBDmBZXUgpOVxuMNoZkSqOEw/mA7MJSv+SO3irnKvBSJWpAKvbc8X6Onz/G6armxSDoGM/GsMEHQW4EWoIPgdJI+ow5e/oUc/MLNOMhwwtn2btjz1QKZFJhTuiLOJEI4SLX7UNqJ/XBE2I6oVOy88T2M4sEph+eVG0FHpAybSQrqdNrt51QF/8ygunmwlXGtRYjd5/rsffkhzh28A94vPskN5SPstQ//F1jZO9Zwbt/L/LwD0X+VPkx5n/ho5z4+V/mq+bTZFWgTzOLkW2ClRfgG78G7/wLoN8NS++A81/dwhPXAvxvG/Afz/Ejc9/P3L/4KL/xn/0Cf//Ff73tFhF4HQvJnsUFskyTZwalVLpU9gEpYK7fo9/tEIloJen1cobjirMr62wOK0ZVQ2Mbdi70ufOWw1T1mJNn11jd2MSFwGK/z2A0Znltk7VBQ1U1eJJOk5YCrTW9sovRGYsLPfJc8/QLJxnWFQiZkkRb0gkpOV5bzi9vkMuIyfOk2RQ8WZFzoCu5KTqGC7sYj2uEUty4fw/16Wd46sFPkc/nLBnL3jItQr3C4INiddTQ0ZI7lnI+e2odneWUmWbz1IvccvcHpkqDE34bIVtzJz+t0n0MKbEKIESsb1oVXE+IER8cUusp9z05zaW82LEzGbpLg30wSQahndBOewryMu78auFai5GVcxvc9pWfQywf4an7/2c+f8P/h0+s/b0txciHfsnykU8LPv7n9sCf2M3TX36Klx58iY6bxch2gmvg3/xV+NZD8IF/Cu//x/D5n4HxVrp2/5tV+BfrHPh7HeLf3MUv3P4Qj754/E0/5rcCW15I3nnXnckqVSbeusgFRc5lBj4ASoBWgrLoYsMOGhcZVwGtYKmQdLVA0cXdsnPqoqeVwIfI8qDhxPkBa6MRy6tDvA/0ujkL/R4Hd82RK8nOnsEDX9wzz6NHT7KxOcR6R2MbQjtvIIucjc2zbJSasinTSTOGbHGRroZDrHDL+z5If65DDBGTGw6UDSce+xLPry7TbDZ8YJfi8GJB4SOro4aNccNimWEx2Hqd9bVVpNL4s8cZXVhmx76DKGMQBIzOCDFiXdpI9d5jncM6O6VfYlS44IjQSnU4YiiBxPsraVJiwSNJ1SVAiKmVNr1GmFI77W4EWurpvsTVxrUYI3Ol5sYn38cD+hwPvuPXePjgL3PXS39yazEyVBx98Pe5/0/8Jyzc8wHWP//pWYxsQ0QPT/wS5Pvhvf8A7v878ND/A+J3u7CIwIXAb3/qt/nbf+tv86Of+FF+9zO/ezUO+apjywuJsg1Zx6TWRefIC4OOgl4GRgkG48ioglHtiDGS7zJkUpDngoVcIoBSJC9qQdKcAUFULZeuBIcXCg4vFMQIru3ikW1VNZGCmGyg/vj9+/noXXvZGDm8D4SY1Fd9COgQGHzz64RjT+GCRymFEgpfDWnsAHvhJZ7/o9/hrve8j9vvuIks15y4YTd52We8ucbTqxvooPERdnUspYbFrkFrhR8lSmJzMMSYjG6zibCbLC3MsTDfZ65TMNcp8DGyvD5ESIX3gcFwTNM0BFKVXrlA3VhsCDSNJQpSJRoSF66kxHqL8xZi+hyCb6mMViRJhNDOG4DzNtE5IflrTD6vq4lrNUZ88Nz7yAdZnnueb930m4hTPeJzN28pRrqPP8mPrJxjftdeluZKlGAWI9sRER7/Z7DzHXDPX4PVJ+GpX9zaU59++mlOnz7NgQMH0Frj3HVMbd10oEfVCKxNHHU9jAQtscbgRGRzw7G+PmZtfZ0Qoa53Yq2j18/plAohYK4jU5ulESjAE2kCbIwDLkT29RWy3Qw08mKUB1KL6MQjwghQQrCQKxZy9cqDjZHN3gf41ktHseurmEzjnadaO8emlnQ7GfXyCR78zRO88NRd3PrA+3jkG09QdvpsKE0QkgtOorOcIlf0s5ZnFwKlNDsX5ji5PmTHjiXm+xl+7Th3H/4E/V6HEGqUrGiair39wLgaoY1hV0ezOUibrkhFr7/EsLIMxp61zSHWB2JwaCUJQYLKqepUjRIDw+EIER2x1cZ1IbWJSpFE4KLPCVHgnE3T20K+8nN5k3FNx8hYc/cffoSTP3WUx+7/De448R/hj5vvGiNNNaYebrL/znfS73dpRqNZjGxTNOvw1Z+Hne+G9/w8rD4OZx/67s9bWVlhfX2d973vfXQ6HTY2Nt78g73K2PJCcmBHxqiBwTAwGBlcBO8i41EkzwWdXJPv7NHvFljrkEohQ2S40TDYSJugo47GaImdTxVqY2E4Dpw7v0zwgfzIHqyNzHcESghqB7mJU7XMQR3xEZbKlGQM8GotjEIIevNd5u65nxc/82vkMrWihn4fqzKyTJMZkKJh+dlHOHfiBZ56/CnmNazhyLKMTaFopGGuhLw11Y4RFrPAwYUuQzRlWeKaht0dTefUI9T1BqsEVprAseUzWNcksydSa87Y1YAihog0GUhBUZSsbm4QY6DICjZHAwSSQ3sOMG4cC70F9uzYSTNYQUZLt9ejsQ297hw753dQNUM65Rx147mw0WC9xPtArrMrjY3XjWs+Rlbg7s9+kq/96V/l2Ic/yzt++2eR6+o1Y2TsI2cfe4jbfuCnWNp3iNVjz8xiZBtj7Sn44l+GH/1NeO8/hM/+KahXX/s5TdPw+c9/np/92Z/l8OHDPPbYY1fnYK8itk5tCehm0MkE833DuE5DXclcCKJPm57zPYPAYDIoMoMPMBxH1jcszgVsEFy4kLYJUwejpNNZxDnH6mbEOtgcp5bG4dCTZRJBQEnBcFQjpaSeL2mcp9CCPJN4H6mbgJKBuY6hyCRawOF77+ORP/os9dnnkULQLw1lt0wnqQRRaqT0BN1w674l9pSKRTHmq8+9gMoKzup57hVrqIlNLJGuEfTLgp7VrK+v0ysderTC03/waxzyJ5nPMvK976B3w72s1gO8d6xvbtDEgM4zTiyfoZcVdLIOO3bu49mXXuDCcJ1IYF5GdJGxPtjk+MopFntzRFnz7IknWej1sdbz9Wee4tCufRw79zwHdu3jzhuOsGdHl5sPHOTo8WO8dP4MS/0+77/nnjcxbLZvjPRePMBtD/8QT7//sxz94Ke48w//JFKK7xgjZ9Q8g9UVTKfHjhtuZXTy2VmMbHOc/H342t9PC8n7/lFaWOJrTCzGGDlz5gzz8/Pcfffd1/dCsrkxSm2bKtEEhjQZ7ENMnLiP2MrjvSdGSZYrxiKQF5pMS+a7krqJOO9pKkfjLCAxmcYogXeOldMjqtpRW0/VWITUZHlGdBVKSooyI89zzq/UhADOWgTQNI4QHdE3aCXIsoxOp0SKQHH4blaPP01pJHY4pOzPIYVA6bRvkpclwRiikNywbw83HTzA8Qu/zlrdcGxtzEoW6PYiCIHRikwJFkTDaGOT2gUWF5a49+47ueHAIda//luY9Rcp/AZ7dx3gS09+g9rV1KMBu3fuRRhDs3GBe265hwubF3jvXfdwx8HD/PG3HkIqzfe96/soTMaXHvkq77vnXTz7wlHefde9nF1Z4eZDhxmPBix/5iw/+/Ef5/e+9Q0+et87uPfmGzi1vMreuRJzwyFyo9m7OM98cfWrze0QI25zzOFHH2Bl//OcvuPbLKwd5sanP0zU2XeMkUce/CMe+PN/hQPv+QHOPPy73zVGstUTFH7zuoyR7YDo4YlfgP3fD7f+DCx/K91+rfH3z3zmM/z8z/88P/ETP8Gv/MqvfNffodG4a6hNeMsLye999iGE0iAUSut2uKvd2Iwp0YYQ2xkBBUREDJiiJC9KrA3UtsG7QAgeaZImkIhJ9MJ7h3eOECEKRWxF6sZDh62G6LxExwXGGxtEBNVoDCKQ5SVNY6lGY4IdY8ebSOnpzs0n6mRuN7ZcIm6eJIqI6XfJyxIhFHlekndzKDpkWUEIcPjgXj7w3L38xpceZHkceFR4ljKDFKk/vzCKQ1nNIjWVyOj2ujx19Cgf+8GPoW78zzn5zT8k6A7lXJfCBc4sn8E5x/Or5xAqWf098ejDkGl+9/xppDbYusITePH5p9E6I4uBh7/+IC54PvV7J+gWHVxdcX51Gd9U/PrnfpsD+2/g0aee4olnnmJ9uMFoXDEYDTm7ep4yy5jrdPnv/i9/582LnO0cI6td7vr9T/LlP/2v+NwHfovb9mzwoUd+gjnXJfrI4vxePnj/O/jyY0+gpOT4UGEbSza3A9fZhabhUGy4aaTYFBn79+/n5MmXeOBd7+LGvf8p6t95Rg9s0vxg77qLke2CZgO+8Jfhx74Ah/4JjG4D9892ocevvjgv9ro4a9mzZw83Hz5M8N9ZPv7m1dv5udFf4vf5HP8L/5JwDUjNb3khGY1GRBTOBdB6OvTUysAl2W8hoG1FFEoipMJYsMurjMcVPkSyToeIxAeBznKUEgRn07VhDMSYnO1kdGiVJpG1zsiznAvnzzEa1fgQKefmaLxENBaT5chuSbQ1KpsjRsfIg6+GEAIL9/wgF772G1Ctk6+tUHQOIZVGZQplBFlhyPMOzgb6vS4HD+xjx8I8y2vrvLg24oE9BVo4TBPpFgU3LSneMwj85vExFy6s8uiTT3L8xAnuufc+jvzQn6OpRqxvjtizsJP1pk4dOHZEJA025nlBWXYRyuCcw1qPkJrF7jz79h7gxOljKKWwziGlohoN2TG/xNL8EsP1C3zsoz9EnpUsryyztGMnx0+e4MLKeW7cfxj9vGI4HjIcXX1z6e0UI4udQ8w9+x7Ovev3OHfr5xGPznHjSxepoMMHDnJof5KFlVJy7vQplm64m9Ftn6AZjthN5E+9u31w21X24Gc+y0d/5c+x+5lbWDrvOf2nnr3uYmQ7YXAcvvJLsO+/hH1/A77vwAe56dFXpwuFlKycOc37HniAv/dX/jLj4asLNkqv+P5f/bMcOno7H+Qj/D6/x4s8/2a+jTcEr2OPRBFbETikSkNel/SiJxG5AEIRBMgoUSrDNg6EJi97CKnSdLP3NFWFQBKkSNO6E2U6IkoJojQ468nyDK0K6soSg0RrjQgCGQN2OKRxkazsEYgEG/AxIrVK9JXsIkTElwa/+x7s6S9Tj4f4pqLolqhMgxJoJdDGYHUEEdGZQQG9Xh+7WWOMZiE3QJKb6BY59+4TPDk2HBsMePHECR5/8mluvuU2YvB459ESdiwssWh7WCJmNErHGCNCSlRuKDsdNjc3yXyJ0QahulxYH2CtotuZI8tCahe0kWFVU9cV/e48Swu7OL+8zK6lXSwt7WRzbZ1eVhCCZ/fcEq43T2PtmxIw10uMhKbixpdupXvbg5houFPcxdzeJSYqvGfOLvPiiVNUzpJFz5f/919g5+I8/tTzFO3efuMDJ4aRNQshBG47chvNewLuKNgc5JJnh7u+YmS7YeUzcOivKmItePazZzlz9jtfPTx54gS9uXleev65qSDByyEAxWH+rLid9VhxgQtvzoG/wdjyQjI/1yEKSQhJ+ydKlaZtQ0QqhbMNwXuk1m2PjEQo1er8gFAGWu0kKQSZyZFKo43CO4uzFq0VTVPjbYMxijRAEMA3qeVTSbK8l8yBlMZkHaqqIc8LpJaMhkMiiaNfv7CSnBGJBB/p7Lsdv/4kpoi4ZkSW70Fmhk6vT1l0EUJilACp0XnOgT17ePixxzmwtMQ4wi4tcD5iYxJ+mu8YPnRQUy9rzqxc4MGvfZUPfujDGK1x9QClJJ0yA6nxUSOzDkr6JNeiDdIYgjSYTk4humhtGNqcKkqGtsRugNEFAqjjIqsDqJtIUAucPLPKYDim05lnXHsGdaCTzzEYrNOZ203TOJa6nTcnYq6jGLl5/WZ+6pfeTaG7vO/Od6J258SQYmR5Y4MTZ8+0MbLA/tXH0T1Bx7eaXhFUCPi1yMNtjPxA1HTe23DmSw1z5zK6zxk6u6+vGNlusN9QfP//eDuujvyTX/oK1m5JJ/g1sfrxB7ipqTHHd3CQ23mCr7wBR/rmYuuijaUhoojIi5UmJoniCQhZSg6JDw/TE1lIkzSAkESRRs0ikOV5krkGvDeEEICA1gopOggBwTukMmhtECppJ6XfrYhCkiEoO12U0vjgyIzG+4CzNfRLyrJgfe0CHugu7cLvu5UdcQVhJN7W7F46hPeO4AMmM2RFiW9F/jyRwWDAqhKsL5aEXk6eaZRShBjRIXL7oufJlSHHqjFfeujLPPCF9/CB930A34xYWpyn3+tg4nkqn2OMJqKQMiYxwqjAKTQZhZaIGGhGAaklhBJrJd7KZOSEZDSEEEtsozj64gVCiKwPziAlNNbS7zpGlaFqSkKAUX31N1K3W4zgA/s5wurZo4wPX2Bu4eAVx8j8zk+S33CIzvEc/9AC/Z9Zua5iZLuhrjwnv13zwD07OLCr5MVTV+4xEgvNqRsqbjm+wPfxye21kCghiARalfCWsmAqCBeVQkiVkka7sZqQqIxJBomtNwJJaqj1SaC1H9WYrEBpnXwavEuV6yXKpgjVCtSpqV6RlAoRkjueySSi22V+x26U0nQX9raGcpJx4XDPfJp+N6O/sAMfA3VTocoCrZM+lIieLDOsbWwSgY3NTZYHIPbP0S0NUklCDDjnkUrywG7DY2cl47rm3//WbzK/sJM7bz2E1BptNKWRVFETRVJ/JQaCrYkyJpVQAiqCjArhJa6x4Opk7tRuTAt50XJWCoEdNwilaOqItZboPfVgAxfS30VIia+uPv+9/WJkJ02YI0ZP01RXHCNVY1le3WT5yAWsY6YAAQAASURBVJgjX16geaqDkua6ipHthgg0LqCUQKsrH/AUQmKyDufbGLktvBOJettvuG95IQmt7kScbHgyUREVKXFEQQzuok5QmLi8CQitHPjLNH6in75ouj2pYr1rX5+pRDa+9VKQybkwEpKaqhD4djt3ogyROGaF1sl2VKpk0drZe4TlY7uwfoV6tMHYVezYeYC6rtMfUGcoZZjv9XDWs2PHTrA1JwaeU5sNea7pGImIAqlARcHhA/t5l9vD0ZV1XIh87ZvfpNvN6fQ6FHnG3qUCOYgMhht432Btg3QWGwMBiCIjWI+XBpl1Cd7hfSRikTJLnUkkzjwlVsWgvoAkUmcFtjVKEqTEiTJkRUvBXGVsxxipqlRhWusYj8dXFCMvbjj27ruPgdqg2tVBPdKjXO9eVzEyw2sjz3scOvwAJ8bPc0Bscg8fYBcHOMvbW+xxywvJYDgAEZnYBV30gEj/ERML0PaniZ64mCimyqRSTZPExIsieU60ntVSp2Qx3Y2Kk/8D6eQUMXVBRD+ZCJ4I0onpIYkIPtbTQaHJ62X77sOd+QJNtUkIHay1NM6jXMRZj1aGA/sPUuaGuf4cuxYX2T/fw+xfYFifIaPCKInI5+juuY3dRx7gY8dOkT38MM8eO8765gYhKqy1lFlOmcGuPsxlYEPGaOwRsgRpaJoGpTWj4YDRqCJ6MKZEdwu8dTSNI4rU2ZTUWn3rO55k0aNLm9RaK6RShAjBW0ITyYrydYbClWM7xkg1TG52AYm9whh56JuPo6RCdiPhvevET83jvtqnfO/1EyMzfDcIpJCMWOeP+Tp/jr/OA/wQn+JfvtUH9prY8kKysxtprQ2Sja1MPti0lMCE157QGcnUiNY3IV2ep+TRXqKJ1MKJlAih2m6dlCSE1MkelLZHJ6b5gygU2mRtS2jiui86AyVJ8YmPg9KaPDcIKbFNErkLEdi3yLlwEgYvYLRh3NRU4+RvUZYlrqrodzrcetNNrD72JDJG8rkd3HDf+1nqd5DD8xRZRmfnAbL5nWxaz51Fn127dvPP/+UvMhxuUnbnqJqAkpYyy7iwPgZRkmuY272DYMcIAj5IpDaM80hc6hJlRt6dp9frM64aTpw4QySjqmoiYK1FOYcQoCS4epNIxCEQqt2f8A4vJWFk3uBQuT5jpCiWGI1eYnPzAibfeUUx0l+6jcde6DAcHiPechgE1L8/R/mh6ydGtiNePDXgI+/aTb+z5XT6HbFj581keY/njn4BFx4lEPgIP7V9FpK7D821/C0QY3vKX7w0nlSOSd5QTKtQJrfbepDWi+FiAoGIBxHbrw4pZUt/iDbZJDOggCIIR5BJajvKON1UDTEme1ENQmmEDCgRAYkxKZHFmKQ65g/ezeoTx1DBY72lqhqkkNSNJS8TB3//nfdw/NRZbr7hRs6ePcezx17iAw+8m7mde+iUJSYvid4yZzLyomRpxy7e/8B7Kco+e/buw9kKrSNzcz1WNiNkfVzTUNcRQUlwNd55lHQYNDF6iJFCBNxwHREFXQONrxHKkhU546HFKTB5B4iEkOGcp2k8IcqLzntujLdX3xd6O8ZIZrpAZHX5KL25m64oRmpRIo5lzPUiOz6U4f51hJdKemGeorg+YmQ74uxKBQLuOjLPN59evaLX6s/tJcs6rF54kWfi77HGMoe4jTmW2HgbtwJvfbNdxtbus+Wkiak7p00ALRV9cYN1SmGk+0X7dZJkhEiy15MqNem8puEyMfHmntxOu6mXVLMXN2O5+CUhCqJLNEWsRPual1fBu/uRcX8HGyun0CLDeol1ntF4BEqR53Pce9/9rI0qbr/jLh77xtc4t3qBY8eOcdvtt6OdQyiLUBIZA8ZkZFryvve+l6X+PLsW5xgMM8ajZQoj6eYRn0cokiGRUgapeol6CJ4YAtoYYgitu1/aK1hY2k09rlhfXcF7R88EnI94IWkahzIKpwWNBKlLpE5zFd7b1PVzlbEdY2Rw6jSQ5kCuNEZUTMd4202H2HlLh/UHHMPPGeJTXbq3rF4XMbKdcWnR9L3C6IIYI87VLHOGR/gSH+InuYP38DCffQOO8s3BlheSZFmaTkWpLvpFpwoSQEwN7cPEvS3SVpatEc8kW7Qf+aQGnWymxnhRrqbNJUx8vgUpWUxywwQhREIIl7nOTY+5tTENLQmejkEipGRp9z5Ov/QCZd0QgqJxGcPRGKREZ3Mszi/yiR/+BMJbevJdPPLUU6ysb7C+to7esYSRDZAjCanhVSnuOnIz3U4XFxtyYVkdjtmxdyddvc66l6i8SAcmJEiJVCIpv8aA0IYkA+LRbUeSIJIVht379uJDILiGLC9S5dzaszZ13SaGQGOb5FsRciaDc1cT2zFGTp54pH0/isaFK4qRY6ckSsJdt3TQNHR/cMDw00vIh3bRvf3kdREjM7w2brn9Y3hX8/xzXwQiX+Q3+QH+NB/iJ/kqn+Pt6mq55YXEB9/6ICSOGWJSrGj7/FPIylRJkpJKqjQFSqQTNkSBd57YJo0YU9uiIMlCiJbLnmy6TqrbGCfyGpHGOny7mXjxuX6aZGIM+HYKOtHradMxXDJKKqREZZqFXftYGwwg6zHe2MA7izKGnveIMKY7t0izuknW7fHAXXez0VQYLUGm2jiLnigFCo9HMN/rUIeADA0KS2jGLD/zTV56+PdRd/8kizfencie9j2mYjsZQU1aV6Vs85yk/YxCenzwRKUxWU6cVKxSJOkPqQg+YG2NAJSSk2L/qmI7xsjS7v2MXvw2IUbWN9avLEYSp4cPDTJI1M2b0Jlj8wsNpw/8Cuodn9z2MbIdEds6540wClPKpN1Cn1QHjvIIQ9a5nw+jybC8PVu2t661NW5QMtWIoe3ZDyH1/wuRKkyjND6kydxUFaYNTUgURaqILN57pJQopQkuDV+FdlbA+9R7L0iPj20FJkXq+nHep+pMCBSadiqNEEI7mBWRIqI16HZq2ocwrUgTfZIq04OHD3H+W48gVExaR1VN0zT4ekg0OXGwgoqexV5JCJa8M48MDh1dKwESiCpDhtYoKCYnvm6WMbQWP1jjxBf/NxiuMeocYOHAEYQ2EAWItAmcdA3byn3iytR2biR7VNUmVdlaq8o2GSZPCVBMO59Eu28gJnTS1cW2jJFDt3Lu9Jex9TlE0VBV6nuKEV97NkbQKyHTjlxlDPduII8sEp+cRx8dMZz7+raPke2IU+dHLK/V3HbDHHkmqZvvbbo9y3vMzx9gc/MM4/E6AC/xLEd5hNt5FzdwB0f59ht56G8YtryQjKsxRE/VCswhJJnJMVkOwVM3NUKANjm0ySHGVsZbpYq0sRZrLb6dAdA6IyIIwaOVng6dEeX0Ai4l+Arvm3S5LiSSdJLnmUGrDIg0TU0kopVCyaQ+q6VEa0WMSTwwhNQZJGU6Aee6fQ4eOMDRE6fRumRoLd2qi61HWFMgxyOCyZCuwhkB9RiKAiMiioALDhXAEhHSMarGBCReCryrEbZBxkBhJPW5J5D1MkYvEkiT18S25TUmbl60/0ucTTvY1/LqU8HDEBBcpC1IDyUJGeo2sXBJa+zVw3aMkV6nQ5blNHaTEDzD0eh7ipFBI9kYSXYueDJt8U7g5RjxnnPw6BF6Jz/E8ODntn2MbEc0NuB8oMxVu6f3vaHI+ywsHOTMmccZj9Omfc2YB/kd7uODfJAfu/YXkuFwgzwvyExO1DGp50pNJDCux6yuLlPXDTt37UYrjQkFJksncF2PsLaZSoDneY4UgohjOBrhXI3WGSbL0UqDMe1mazoptEonRIwxybkLgdEZIUJla7RUaK0IIVWhsrVgDXHCKAqESN4YUiZV2kQTSA4duoGnXziB9xWCwHCwie138KYEb7FSQj3CIhHOoYInxoD0HitBN44gJFp5RhbyLGNzs6IebrJjz370jfdTnXkCM3+AvrDs7Nc0QdI4SRMkLsq0+CCIcdIiO0kUk+Kz3SkI6XtBIHpa2iZdAUxdZ9tN5/AW5IjtGCMhhJR4Q6Suk4jk9xQjLrXaSgLK22mM6HsMXkJx8iPs3HF028fIDN8d3l8upvkoDxIIfB8/zr/lf6Bm/BYd2XfGlheS3bsPJj46JArBxYiIkapusM6hdRK/q6shsugwdg1VlSof7x0+JMpASk3d1GTa4EJSLi2LgizLyfMSHxwh+Amhjg+J6y2ynNCeEiGExAsT0+YsyYI0zQekClNLiZCC4CNSSlwMyd5VSEJMxyuEwBjNrh1LnF3ZoDAGV1eMRptkyiB1hh+1yS2Azgwy+OlsQ9by9FoImgBaQDUaM9jcZG11kxtvuo3dP/gXCPUI3d3JyvoQTc3CHBAjLjhqG6ltpHLQOIWNghAkQaQJ74BI1SS03UmibX26OP09oSkiINq75FtAW2zHGEn7NpN25Pg9x8jaZob3ght2V1TjizFy+L5dXDhgkcMj3Pehv8pGsb6tY2SG74zde+5Am5yjz/zBZfcf5duc5gX2cSNzLHGek2/REX5nbHkhaZoKosPIpNhajwbp0hqBEpFOkSNEQVUnTwljMiBgnSXEgBQKhJgK2jlvsc7hnKcS0Ie2TTOm54SA0RopJEolIT/vHNZZpITcaEx7KR9CwLuGiCTgcc6m1lEEWkuMyRmM6rShGjyiFf7TUmG04saDezi7so7WhkwLqqpiLNdwWR/jHcLkZFpjsgydFRil0n1EkJogBYUQNM6jo6SuG7QCaxuyxSWyhZ24xtHvRiqnKH2FlgEtIjqDjo6tvpTHBagsVNZSOYH1EkeSBfFx0gkl25kHCAREvDivMe2qjVc/SWzHGFGCKTUWfIMu+99TjIyanBBFq8lkpjHiTYX+0Iij/2YB/v0iB37ObesY2Y6IQFV7uqUmM5Jx/b3pYs0vHkq2CvbyK44Rm3yBz/AR/hof5S/x6/xXhLeZe+KWF5J+J8fZtCmZ+GNFQKC1Io8Qo0nVaGNxzrUUAmht0kCUHaculKxI3TcttSQVaCWRUuKDRUqJllC3FZ5UmhgFRilUptEydQTJVjJDK4WPDY1r8C0nLKcbigJJ29VCQMmIb783UlFmKXHtXFpgodtBKkO3U9DtdjBGYYSgKPoYKTHlHDJGRJ4hlUEQkDpHRghS4WMk04ZhPcIYze4dXTY2B7j5Bo0EJcm6HfJiH6PROtKukYkxRkWUSny1kGC0pMgSn+1coHaOxkLtBbalOVyUabgMgY+p2k6dTInCiG8RZ7EdY6TIMnbvPsLa+kkMAzKz93uKEY8B0p6N92IaI+vrQ04P4AJw4V/N8chzGUd+PFLdu0p/YY1Osb1iZDvC+8jjz6/z4x8+wI0Henz7exxKTDMkAede3pkl2KTHBeDD/BdY7uFxfpXTfJGK8/i3QSfX1jfbRwOsTyJ4WimyLCmVOu8h0dQ0TYMUkRgdoNE6gxiQkpYLT5O1o+Emw+GQbq9Pt9tBS4lzNTFGMp2lxJMZGusYDIcopeiWHVR7BSHarhPVajK5MJkiSJywUSpRV6TqdlA1WGuBQPSezKh2wzHinSfTht07F1jdqOh0u3Q6Gb3OHFlU5FkXneWEpkFmBc42SNVueYZAkAa8JyJx3jOuGowWLMx3GA5HONvg84zaeYLI6OUZebEL55ewzYhhs4lyG+Sybqesk+CgIGB0ShqiTPIfPkaCdzQu0jhB7cEFiQ0SH2Wa7kYQ3qJKczvGSNpLSJRbv1OglHrdMeKF4YXTitzAnnn7shgZ0791gCrnsTLy5B/lfOsPBFm3YPftu7n1B0Yc+cA6ew6v0e1c+zGyXTHRa5Pf48cqhOSW236AutrkxLGHL39tAsf5Bu/kT1MT2M8n2cOPY9lkhUc4xm9xgs+xzjN4qit8J98bXsdke/qEdGYQQtC4wOZwhFQS75rELUtJluVtDz+MxgNihCwvplO0SkqWFhfp9zpEBMZkLcUhp33yLkSUUJR5qkKdc1R16vjpliVlXuBjSgzeBUIEHwTWubYSTfy6MQbvNd42EF3bk58oFEHEO4c2BqUlO5cW2NxcQascowu0zjGyQCb5VZTOIcSU+JxFFyVKQJA6VcXtLJ5tLAv9nE6RMd+r2NhcI0hB4yM6i0RfYTKNVpBlBc4bXNOjqgfoUKOixdcbhGaIq8c0owF2NKDeXEdnOcXCLvL+AnP9OYRMrbTWexobqB3YkKrSMJ38vnrYrjEykXZZWphjbM3rjhEvdNsNli6CXh4j5hPH2fGumtj33HGsz7GHlnj+jw2nvq058bU5vtTrs/u23ey7c8A9H9vg8H0VWq/j7RBXjbDjAc1owDkPPQFz3XnK/tzbMkZm+M5QMhVePryStvoC/4LneZBNVuhzDzfyE+znB9nD+9nHR3g3G6zwbc7zDV7kNznP17FMJHAuufpc2gWjAdT1xdXvDcCWFxLrA9FbtJTU1uHRaFPQ2MQrN85hbY0UUJR9dJaRF522fRGc94SQfB2kTDyuDwHhmnYzk+mmptGKMssIUSKFYq5X4kMaIpv4gHufOoGsbfDB4ZxrJ5wnlWdES0lou1Wk1omHl7LdbIwEJM5HnGvodwtMGLJxfAWzaydmfgdClejOPNQ1Mi9aJdn0WsJbRN5Btl1GwQeij9i6pr+3g1KCHTu7HD+5wdpaRKqMLASqocY7g5Cinar2KAEyyxGxy9Gvf4mXvv7biHoFFRp09MhgkTHgaos0GSLrMH/4dvbf/3309uzHaEkn01if9husjdi3wL5gu8bI5DSc65e45dcfI9XQM6xy5joBjX9FjAxPbsD+gFIZN+ytuefjjmaUsX5a8dTvZTzxuZwzT2S89I0dfO3f7mDxoGX+yOOcHgfmuy+x97bH+cqR9/LZH/kgO9eWOfBHZ3lf9Rg/unSKA+94/9sqRrYrrnTivNNZotvfxdrqCWzzSnOsgOM43wBglWMc53coWKLHYQ7zY9zIT7KT97CXD3MPf40NnuM5Ps0KGSOe5sLCVxE//JPUf/1Pw6mT8B+OwqO/C4//e7jCY4fXJSM/QhuDqxrqJm2WSqmI7QkqBBiTuO66qRmORmitMCZDK40PMXXaSEkAtDIIGYnRMx6PaOoKSNyx6fURQpJnZctpx3YSN/G747omBI/Rklx30jBZdExEyX1IsheCgBQBo1Xa6ASqpgIlkDHim6ZtwY9IKZDVBU7/8edo+iVlWZJlOVleYrpL7LrrY3R3H0LpDBEDSmfJSlVqhK2RJNdFERs65TyCSJFpDu7t8cKxFSqrKDvddEWSZyijCd6ipKCpxiiVYUzO6aceZO34o5QqkmtF7RwaAcUcvh5DVUFc59yJ4ywffYp7/8zPMb/3AIhIpsGoDPL0GVxtbNcY6fb2IYRkbfUYspp/3TFSWcOgEuyed6jYbDlG5g9rHvhZy3t+RnLqichzX1xg+bk5Xng457Fj93MeAfIDrKx5Tj2gGSwITvX388ge+OOX7mfxK3+BW5594m0VI9sVT7+4gf9w5O4jC3zzqde/R9Lp7qDf283pk4/QNKMtPCNSsULFCst8k2/x37LEXdzAj7OD+9jLh9nH30QjCMJT3uw4/4mM+iYBh2+BzY/CDZ+Al74C6yde/xt+Gba8kAiSDkXtPI21NNamytDkaJNRSEVtaySREB3O1oSQPLsbIfHet3IOqVffuqatHiVGaXS3m3ripZzqISWnubRpGkJAxID3DucsWilk+1o+JlrDB09hNJkxmNxcMr0rqGygqmtCcOmKLgSUUmRa4UPSgwo+4KzFW0mUHm8H1GOBG67QHLqf+f1HEEqisxLwSF3gmwqkRnqHd47cpGpZkGYcOmXGrTft4My5NS5cOEc1kOg8RxuDyUzqtRERGyJjF9HlHMMammjxrqJTGAotUeMBRoHzAhcidYCz585x23iElrTvgSQ1Agh19Tnw7RojnbIHCJpmiPb91x0jxAZI/Pn3GiM7borsuOEcvoanH3qOz/2bnNWjf4aoBdJB91OS4Q5FHIE469lXv4i265w9F95WMbJdsTlyxAj97pVJyb98hmSrCNQs802W+SYCTYe97OP/zCJ/kyDAVZHytxTDHZo4As44WH4axm+MovCW33W3P4/zER0DZVEwrsaEEBjXFfWwxrQzAkrp1P4pDc67NOkZPYGAcwEB5CZPG7JSJe5YJvmHEJLTXfA2CecBCIlt5S0gYpRAZxmNc1RVjVYubbCqtKlaWZ8mgkVEy1YpVRpcsEBM3T9t9apUWkSsc1jnWV8+l35/K5cx8RFX+Ry93TeitEbqDIFH6Zzg264c1+CjxjpPnut2wy1OtaSM0Rw8sIu9exYYjyqGwxFNM8aON2l80oAyeY5Asu/IrVw4dS/Dlx5nR09QZhoXA94HbAS0wRLwRRflLYPlc4gjt6CkSGKGMU7nBK42tmuMTDS4nHMMv4cYObuZEyPcvNdfcYxIKbnxHYt8YP0PuOHJL7KjNyIrPE+fv5ff/sc/waMb7+Demx/jP1/4eVSWE99mMTLDq2Pf/nsQUvHsM793xa8VcQx5iaP8Azr8Oi5s4p9qyI5+CPGN/xOx81HI/hCe+vPwKjTa94KtW+0GaKwjeEtilVNffm4URV7gvE98v1I4n3jmQiUl08Y2CBEhpI1OayVF2SGEiAIQgqqu0Co5uQkhcMEzrgZkWUoozgfqpiHTiiwr2k3DQFl0yI3BBI9q6tbDIuK9gyiRQSBVEuWTUmCkBtJGr7Uu+bZby7nTZ7hw7Dl6WrUT1cl0SciSnff8KP3dh9BFAcFhyjmCrZG6wDZjdJbj6gaEQJtkpiTlRNocYho3xmiJme8yv9Br74fJNDYxtaw2lWX3rp+m2vwBBudP4aoRWbeHykpMltGZX2A8HPHsV/+YpT17ufHe+6ctna2/ILQ6UVcb2zVGrEv7HhtrawyPbb7uGFkdNO1iId/AGPlJqs21aYy8s9vjp9WjPLNueedNaxj759+WMTLDq2Nx8QaEkDj7RnZdeUYTSZUA4+bfwvFPQ/kBqL4K/o3zN9nyQlKWOZ0ix7qUKLxPVZ6UCttWTFKlTc7oEj+slSYGS3CRbqckFEXyc5CS4B11PXF1SydrjFCWyRM7Mwa0IjqbXrMdEkNoYowUeYaySXQveXMnCiT6kCaffSRIhZIy9fZP/DFixDmL8x7fekysrI5ZPuPZd+dH6IiKHE+n6CKlYumGu9l9490obQjOknf7xGBReRdXV6iswLkGqRTa5IQwxnufdI3EZOZLtIqtrZheiJMRBqZSSUIgpcL0DZ1eCXt3Eo7cnBKOkq0kRkpui8DO/fuTqqvSTH0CY9uwmgzLrzq2a4wMR2MQgugle+/4EF3ZbD1GqoqAQQiH0eJNj5G7oifGPoL+2zJGtiuCj3ifrmYnVgavB9q0MyS+eXMOcIKwDsPffcNfduuT7eMRWmuMVDg0QkikMiRxV0eekfYZQsTkiS9XAnyQKJURgsP7CqkULqTKUShJcL4V5JNtK6anLBKHnZmslSR3gCAzGVkrkR2Dp5tnGCVw3kFwEELr3eARiJZ+EMggkW1yca4VFQy+bT91rK/D/v03sHvnEt1ORifrkQmD0iZNNhuDrUcU/Xl8XaPygug8SI1txqmTKkjyvMNwuJaOgbRhnOiWND0dhGyH5FKgCSEu8daIl8wdp5NckBRxY4jtz1tNECAvy6mU+uQVpEyZR0QI8upnie0aI87nSDUPYsxN9z/A/NzSlmPEoTl6ytErYP8OQ9Nc3zGyXXF+reLkuRE3H+gx1zWsD7a+16F0zk1HPsRgcI7Tpx55E4/yzcPWqa3o8SFxu1IIkArnAtY7VKugOq6SplKaPJZEIVhdH+CDo9PpovMeQnukHac2UCkxhaYsi0tksDVZlqO1aaejISPgfdJTCtETvMd7x9g1+CxHSYWQBqMiWiuIEIJPyaM9qRCR2jm8d604nyQE2NiUzHX7LC0s0O2UdIqSLEqM0bimIuv08bbBFCW+qTBlh+gsQhl8PUSpPPlMoBBCY20yEjJGI6TA+wmvr1saIw3ApfbWdCLHyQZyu/Ge1F6TeJJoyexkvtSKFE6SDCElBSZVbaI/aDeYrza2b4xoYtQIESiLnE7R23KMuGaI90lBQUh53cfIdkUMtDYHF+nKrULQzpDEtmvxGsSWFxJtyqknRAyOKCRKpY1G6z228Uk4Ly9pXGprFQKKwmBUhtFppiAiIOQgWv/oGHDOUjc1xIhWqSWzqsatbIXAaIXOMkKwEDyZzhg5y2A0wjQNZV6CBKMUmTZpgzQEgg/4mJRYkzWpwlqJQBNC4PxqJMt6LPU79HslZVEgokWpkugasryDq4aYvIMdjyh6c7h6hMm6uGqMEBrvLcrkCBHplDkXVg2D0QadMklSeJc2c0N7DCGAkg4pU4qQUiXTolZsT6pJRdra0YpEaU3MZgURMdEOF5dOXovpzxPN8wZHynUdI12M0XgrKPL8dcXIoFKMrWDvIhSZQMvrO0ZmeCX6c3spOwucOf043r3J1NabhNfRqybxMeCbihgdm4MBeZ6T5wWF1q3BUKILSjOphBRLcwvEmDZZg6vbnv/kKaGVBCkILqRNQKkYVxXD4VoS9vOBfq9HpzeHdB4fI9E7uh2BMQUL8zmmHSLLdKpMvQ9Enzp/hBAYZYiE6dCbdw7vI4NxoAld+r2MvNAoHYlYlDA01Zgs72DrIVleUI/XyTt9bD3EFB2CT4J/gURJCCGQwqCNJ8/7rA9WEDKg2kzgbUC1tEyMInUBubSB6kOduoyUTsKDvnX6a8nzidz5pGhOA3Vtt1LL+U+qTNF2ELXDMW9EfLxObM8Y6fUNa2eT4yE4lNBbjpHNsWBcR3bOKzKTgbjeY2SGl6Pf30tZLnBh+Xn8m71H8iZhywtJVVdEb5NRUNZP7ZPRT7VlYkzOdnWzgYgOYzKiTNpESkpiTE50KJkUXRuHFoEYPcPRIHX7xIgUgrJTYIzE+UCWG4aDdZqmJssLsrzEeU+uDZkySZ+p5ccRMYnueUtoZxKSlHZqn9VSURjN0DVsjKAoSzqZIjeCLMsSVRIUMjd4W5OVXZpqiC4KnKvJik5qFRWqtXiNoDQIlarEGMmKgtEw+WwHz7RbxvuUNGTbgup8sqJNiY0pXy+VIoiIjMmyNqnn0vqITyxYUyk5cQScbsYS2+4fptXn1cR2jZFuplhcuomzp8/j3BhZbj1GrE+aYkpKpJ7FyHZFBJ45tsnhvV3mexlrm69jj0QlrxofvrcZkrcDtryQONckztWDrx1CpU1Oh0jy30qRyZws7zLxxA6tJLePqT4KviHLSzKtpgqtIgoW5nfgvGM8HiKISRq8KEhWqh6jJJQ5UimU0hAtvgkU3fmk7Bocta1a2kNBjC0dknwxEGlDs2m5eoEiBEWZ5eQ6UhRZK++tkUKDt6gipxkPMEVJjAGdF+1kNIlfbxcRISJSp44ZqRV5nmFDhrdDtJGJg28bZEJIVWeMsVWyTfLeybWONCsRfEthyAnJnZgLZPLNEExpDSlaOoQ2eUg5TUq8BUliO8dIp1zC+4bB5il2Ltyy5Rg5ejZDELjtcLL8vd5jZDvjwkZNnilu2N/l2Omtz2fcctsPEmN8hQ/JtYQtLyS9ssQ6jwtJZtsog1TJPzttEAmkUjAR3iO1YwbvqW2TKA2pqJuku5SmmFMoW9cQo8f51PJYjRsyk04SNVFwJW0wal2gdJpIdt7SDGrqesy4GpMZRWFyUneKxAeQWrYnHSAEPkY2xpBlHSSeTmcOLRuKooewSftKCDlt43TVENOdS10+SiGkIvhA0vUOSJMjFUQpkT6S5walS0b1BjlJhsO3G2jee7IsR9BWmzHRN8GnTd+0IayAtPnqw8TpT6WqRbYbqiJOimtkkKkSFQKEn/pyvBXV5naOkXWtAAjWtol8azFirQMhMRlIM4uRGV4JY9IslXVvjXLvG4Gty8g3FqUURabbYS6b9IuCR4nY+kekS7QYITNZ4maVoBAGKdpJ4Jh8sWvSpp8LgcY1Lacs0FqzurEBpMlioyRSxGQ0KpMeknQWpTKKzGCUxHR7dDr9NM8hSCd0yzrJ1i7VtUNl3ns2h9DtG7plh+CGlPM7CK5BRoVWBlcN0XlBM9wg780TQ9KJEkoTvUNIhfAOaXKUSi2uUcjkjKckWmc0tcfoNJMw8cUQJP498eKJaAitTlQgtt1MAqVS9RljwIZEBynVtB0hIiVOpZFS4IPHCZEokXYKfOI3frWxnWNE69YqV5nXFSM+aspM0O9kadP8Oo+RGV4OgdY51Xid8fCNGxC82ti61lZbsSkpaBrLuHEoKdKwV0xVooxJYsI6Tx08xuhEM+AJgen0cfC+PXk9CIlH44MjN5qIZHF+ruWIoXEWFzy+aci1Q0tJUXSIviEEzdhW1E2NkAol0nGE0G7MklojnfdYnxJZ1UCgT5FpvB3Sm1/A+5rMdJABordkZQ9Xj8nKLrYeYYoOQiQ5C4EgugaVdYgkX3IpBR6JMaml1RhDVQlyk+TDJ/3/spVAT3avoNrKss0IqZps5x8QEilAIIkKYgi4kNoL40RXqp1Y00pCy5cLIVHqrWnH2c4xMv3buYbomy3FSEOH4+c8/a5gYU6mK5PrPEa2M7xPRYF+HRpmedHn0A3vZTA4x/rG6Tfx6N5cvE4/EoF16bK+U5hpReNC0u7xPlDVDVpCpmM7vZvoCz/91/bMe4HzHtcOXWmTU+STDpuItZbBuJom6nrkETEQ4xilFHmW42w19fTulJ1EBbS/x/lUBUupKLSmFBIpNaeXx+TGIKKj25mDaMnzOaQHCCiTppNNXk6/Ej2JvwptP79BtItI2sSUKK3w1redRoqIJEbfziJMhMtThakVrT+Gu9hJ07ZyhhiJPoIIl2ySpkQSQ8C65EGulEKINskgCVEhRUzUh0jUxdXGdo6RfXvv4oWv9rlw8inkbT+8tRgJkYtTAWIWI9scz7y4AauSd9+wk99/+OyWniMQCH1lQo9vB2z9HQiJdR5JJNMydYMg8N6mHncpMaog04YQU9+6dZ6mShuc6TRJJ5kPaZMzRFBKJzE579kYNPgocM638wMRpTVFntPZtQsRapxtkpx49Km1VOcgFd6ljgetVKry2qptsmlJ6zPRWMiMRitB8BWm7BJcjUQjUQRXo7ICO67IOl28q9EmJ+JT4/3EtlSm6WOkTCqqIdmgThRsAUSMSZRQJmtXHxLnPTFnim3FGNskMmnGjIiLEguxdTqYVKSAj7QbqO1ro9N9Iu0rYNPswVXHNo6R4pvrfPJ/voOwo+QbxZPUSz180yBNcni8ce8Oylyn10CBgEf3lPz6j23yo2vzSC1nMbLNcc/6bn76f7mPM3LMk++9gUHn0s838sILTzMaDS57zvCdN/O5PzOm/PRz0266axGvy9gqtJuoE4E5iNMhqRiSfpH1nhgiRikEYJSkcZZMaYzOEk0RIo1tGNWWGAOD4RitU4WWG023yAkRcpOhpEg98SIiYw4EbJOUZFMffUruMTiMTr7YIYJzoR16k2RKYZTBuYALkiJTgMdkPUK0IDtEn/hmoTSuqVHGUA/XLvLfSqZkqGRbeUaEyRFGglBgJIxTdTnp7zdaI9uEKFUSNYwxEl4mFZ2G+AJMhsym061pdCy0CUgKOZXNiDGkITMvWsc/lSrQ9tjwr3RZe7OxbWMkWMyXTlMua8IFy/EvHeO5W7qXvfevPH3isolmqyX/+i8e4MWbC1a95W+s7WGXVNd9jGxn/HC4gaXNkgXZ4c/eeh9Hj3Qu+/mHPvQjFxd/wBnBL//sIZ6+KcKORfhnPTi/fpWP+o3B67imCkSRhMkUqRe/8ckTWojU229EpNCq3ZgUWB+SM1twyTmuTShGSTLTodNJcwbWdlEqeZ5Hlzp2ik6J0dlUrkJKQQwK5yJOKjYGQwiOPM8o8gIhJVU9prYWKSRGp9792jaMqnHiiIOktp4+kSzLQQS0LpFCJHe8uiE6hyk62NEAmeV416CNQRBS9YlI3LRWQCtroSE6T+rGDCmxtRWhdY6qbiiytouopVVCiGTapPO5JUBS73+ctm4m+fKY7o8iDc0hUlkqUrtsJCbpdZE6zhLdJojf6c/4pmKbxogpcZ+4Gf7tScK+knf+yXu5t5vjmwphMgiRExcGjKr6YpJWmjuD4cUYuNsXzEsFsxjZ1vg1jvLX+CAvxA3+yZd/ifprl1KHgiNH7qTb7U/viYB7ooEb74HHX4T1rRhavT2x5YUkbQoG6ghKSQoDpZBEmeFcUnptnE8quEohlAKbnPG8v6gJlGQgJkqraeLWyDiV7w6qDfEI0TdJXC5EfJD4IABDFILaDrD1mMFwRFlm9LtdlDLTTcXapoquyDOysiAg2RjUIDzO12jdp/1Tpt59IEaPEApfV6gsx3uXrkhcg9QmdeNkOWkxAaFVegtJ0wJfNSRqJkle0Dr+We/JRU6eGWKduH3rA1LIVInKi5usWqUNZqUkut1ziDGZL8V2mCwN0XHxNrR+54EYHEj1lnTkbOcYsYdLwq13Ic9aDpV92Jkh1DzeO8q5ee50TWo59r6NEcmv73iYnDX+wfDj5D4SZzGyrfEkF3gMw/54C+df/N85zeVXF08//e1XPulP/SzUGv7+L0BzHQwk4h1GaUQmiSFiQxp2SgZACq0kWZa8y0OIBF8jYkTgUMInvwcfkKQJYykliLSpGmLEO4sQsr1MTwEugRgFLiSBvca6trpyCG3I9FxyxAuewbhCyQatdGoBbU2OlFSUeQeBYHllQPAOISWj8Sbl0g5c8GRSYasqieIFh8kLnG3Ie6kzxxR5S2WZ1CasDUIZJu5AUQmic0glQJImj0maU2WW0ynK9DiSM55WHayzhBjRUk8lLqRsTZRaXSQlU7eTj6GVp04Vufcu7Q+0fxohBYJAjKJ9LlzGs1wtbOcYKTPcoiB72iMGDrG/fO0YMYax8kjGlFHOYuQ6wIiGU6zzDm5gns4rFpJXRUdDGMK4fvMP8E3ElheSGCwIj5EmTSGLSJYZpIj4qGAyhBUdTdMgBDhnkcK3HDYgJdZCYy3apOdOgltKiYgh8eeIlByaQOMcLiT71KpqWqVdkSre3CR/hxjwvsZZS+MTB52ZLPXlC4jR4QOMqxrvIs6OyXo9xqMNenML2Loi0zm+SVVlPRogjaEeDjCdpOiqsjLNMcjWT+OSThpCQAjwMYnwScXUVU+Q9lak0u1xBiICqTTeOpQSrYhrpDDJ1W+ywSrbZCclhJiq8JRQUuWdFGMTPz5RdhWIiwqwVxnbPUaYbIATab5LjJyVNd8ya9zlFzgUuxBnMTLDy7C7B/cfgCfOwom1t/porghb32xvKryIhECaBlZgrUFJRYhJNVVrjXeBGB1Vk/y6lUjUhPPpfkHqs/auxoXQtm4qvHPt5XhMffGkJB2QrQFV8nzQiLYLJVIYycLcPFVTY60iepv6/NuKS046YxBIEXDeY0yGMRne15RFLym1qpzQNEit0yZtUeKbBp2nxUXmOd7WCKUJbRKKtFPwOmkq4Vv71RiIIn1GPgSkjKnTK2XJNgEGRITcJOlodOspEQOdPEtzFOFSB7skAxLbjeu2ICVRGokKSgNmLb0R4aKLxdXDdo+RyQfvmgaZzb1mjFTGsy4tR5ymQBGin8XIDJcj1zBXwNFlqK5dWgtelx8JSdtHeKQMNE3q/zdZ6ooRMeJibG1MEyertSI3hlHV0HibEkD0aVMUQUBhK4eUSVdVCtBSImXi2DPddqCQppu1TB7aWiZ5cWM0IThyFXCNxXpHr9MlMzlCCqx107ZJk+XpfQTXCtlJYrRIVUD06KLANxZT5C01oQjeJWMm75BSE0NIDf6iLSmFbDtsArYa42ySOq/rGuc9ISbD2QjTWQApJyd5aGmaNpm0EhxuMlfBxYlmH5MUBiLND0w2WCFOW2WNaDdaI+1Cd/Wx3WMkvKMDXxySP+epbnntGHkkX6cSnvfbXemKYBYj1wUe4jl+gnfyHm7iKb7LgOE79kOp4SvHuNb/GFuntmROEwNaKIQURG+xQRJdUh2NhNS5lMhXlIDCqKnRy2TozCg53eITCIxJ3U/eO2obqEUkEtDSk+kktaEkFFrgY3LXs8EihcB6jx9XGNmecDHSNMk4aWF+CaNzQmhP1thWsESsrdFz/SQlLtKJ5W2DkBLf1EiVZg50nk9bKGMICCURIRAVQGw5ec/v/uEfcfTYMQSgiGgpWCoEh3fuRys9rUIn71zKdKwTgycJ7cyETfx9WysK0syBj6GlPFICybSmcekzEFKg2ooc2g1V0Sb0q4ztHiPugEIEEMfHCNF9zRg5pkdYEbnZ96jqZhYj1wmOchaN5CZ2ffcH37AImYajK2/+gb3J2PJCMmocUoAXAqPAmIzGBTbHddvTnjjsTMnUwhlTd0iIEY9EyTRYlqkkpFdbi/MhtUsKiY+ipRMm/fExSV9M1VlbukKkzh1IHLOPAR8lRIU2JUIKXHBUTU2R5Yn6CCElD9tAVEglcM2I7vwCMTi06RDr1L0ljcbXNaKtZKVJXhVCyDS8RkTGiA+Jfnnh2Av8zhf+mPXhAO894/EYOx7yQ++8jXjf3tQhA2mGIl6cPp5seDrXqsVKkXw4oiM3Jm1Gt3y6c0lOfJIUhEgzGEkqI1X1IYD3bir+Z96CWbNtHyMhKbpKrVLh8R1iJBB5Vg/Io+RG3+WFYy/OYmSGyyGA23YlSuvFa1dja4ItLyRL831CIF2WNw2F0eRZhhBgVKIBvPetTEbS+alszahu0sae1GgpqAGjBUIkMynb+iyItrPdtF4U1iVON88ycmNQUrTSEhqlkqSE9x4XXHtCgXUOpERLRW09dTNAEigy00qUO+rG4a0lxpymGtPpdfGuQcQ0OS1C6uKxjUVmAofDZIoYJlSBANHKfQSLj4HGJ8XbGCa8u8RkqVL1ISYJddJJH1teO0JLYyQZcYNESpGE+bxLdI1Mn4oSyXNcad0S33Jqk+pDILYKsLEVH5xcLV1tbPcYMSplXm/da8ZIAL6er9GJijuaLmtxOIuRGS6HEPCeQzCy8PiZt/porhhbXkg6ucEFkYKz7cgxOtIrSrTSICD4FOC2cTQBkIpuWbacdup9rxoHAnKTPKl9BB8SRyylIASP1ikpGCVb72oNbdd78rhOsuTOOayrqa2jcUkBNfgwHdTKtEREi1GSfqckU4LNpqEaDnF5Tsw6BOtRQhFdOplt3aROHqVxtUOXhuAiQiSJcCkl0UOQDiMKDu7awbvuuJUHv/04jQ9tMkmzCaKVCBGCi8khpkpz2q8jEl89mU0htDMqgilnLgTotu8/+Xa0bZxiQoG0JluxFUaU8rIJ2quF7R4j9oAi9CTmKcugsojMvGqMoCRRwGLIKYWhN4uR6wZPcZpVhjzAjWgk7js1NAiRNvxWR9Bc+wv6lheSweYGRVGSa0nWzZPonWsYj2q0Ti2W0mQYnSMYY1RDJ4pWMyiJ7zVO0u8UaNWOQsVUGaFyaEXkvPeJ9kjX922FltRgI0kbKXHaccpLN9Yzbod5JhPDxEg1HiFFpIkB19R4b2mahhBgPK7odnrUdUVhSpQyBGsRUuOdJ3oLSuLqGqFB6raX30a0FhiV4RrH/NwCf/HHf4S7bjzEF77+bR579llGDWRGEoIjkE5imMRO6vISYSIfnj6j0A6mCalamYt0lofQdomJ2HbfeLwXKNlKtYdE60gh8aTvYwiXdPNcPWz3GJF7cigl8qQl2Ejg1WPkeTHiKbPJD9f7maskehYj1w1OscaIhpvZ3TZ1f4eF5MgOuGsPfOZpuHDtTrRP8DrmSByD0bhtm4xJlZQUuI3zyKZGtVpJSfkodd6kDpQIUiGzJORnnU3aQKTqyNvBRcOjmLp/0pme2h1TRwtTJzutBJHUPeW8p4iSKBQhODKtkyZTjHircU1FliUV2qoJNPWYZlxD2WU8HNCfW8A7S/SR6ALBeQIk728nkCoggsQgQQZkZgCJdwFlNNEF5nvzfPCd93P7jYd44rnn+dLDX6PfMS1tcbFtU7QbnFoInJiKWbRJInlQ+BiI7TS3dalSUSolPtdqMgklkSK9nmolRaQUqJioI93uQVxtbPcYEY1Pexft39/z6jFiBdQi0A3JrXEWIzO8AplK7b/Da3sQcYItLyRaaZwDH5NMuHWeiQR26vtPJ2ld19PgNcYgtSI4B63pkPWBqq5aGW3RXsan6stHUoUZPKHtq584NWilEMQkDOhj6goSMvWuTE4UkXwXjEqOcNFoYlkgiOQ6mRRtbNSMhiPmuj2s1rimAaWR1iGlwYckTxEQ1M7ROIePEq01/bk+c/NzlEJhsgJXNZiiSFxzCHSLgtsOH6SjNbI5g24H2CbJIbbVsxAqSXm3FTMhtAlVIiM0zrUVJO27F9N2zUxrrHOoVjLDe4cxpqVpFEEpqrrmregn3O4xEqpWySCCrWp8Jl81Rr6wNMCKyI9XB2YxMsOr48M3J6HX33rirT6SNwRbXkgqFxnVdkoX+BDJlKab68THilR9WR/ajdCGsR0h4hCjFVJJvG8IIRCFpHZtlSrSxmr0qbryEzkMn2QulJJJzC56xnVFCBFtcjKpyHRG4ywheIwClWXkrRBfplT6PdYxHG1CiCz0+9xx+8380m98CXXiPHt37qDfzclMgbMBaz3WOerxmPXBgFMrK5zfGNDEJDM+35/j0N593HPrrdx6+DCHDuwndw6tNc7alAxDxEjo9XKKLCfEViZciNa4KcmWK5USQiRx9RdphuS5HeLE6CngpW/9JTRKaHRrKxvbIbOUQAXOW7RU9Dpl2lS+ytjuMeLHnvcvFOxZzfnCQy9w0q29aow8+TOHiIf7nDt1joFanMXIdYQRNd/mOHeynzkKlhm8+gP3z6XqwV77+yPwOv1IpEwWnlKIJLLXDjsJpVEqQ0hBJtLJbQPJX5s0vKeFJMuTntCwqtkYDogy0USxqhHta02kRzKtmesW0xbGwbgmROh2CjpFlzwzOOeI0eNJ8tpJ0dVAjGiT0diaqtpkPBqytGcXUSgy45AavvXiKbIzq8h22joKsC7RGnVdUVcVw8EAYwwmyzAmp4oDVsbHeer0OZbmH2G+U7Jrbp7dC/Ms9kqW5vsYpahGm+zdY1o/DojtTACiHbKLARnTxEDLxLRcdmBiUySQVE2dqmehqZqaMhdopVNlH5OrnyDgvJ12FFlnMVpTZtkbHCqzGIkCdqkj3HhhD99+8EW+2Tn9ihgZyyEvLnrMOPCF33mQ46sPz2LkOkKD5wQX+BHu5Tb2sszRVz5IS7hnL6xX8MK13/oLr6drq8jp5Fnio4PHe4sL7SW2FBBSS6SS0C0MUkpWNwf4CM5VaC0oQ5o01lKQZxmNb1tqlU5dNCEgo6fINLnJWnOkNAugVYn1njIz5EWB94HaOqx1lEWO0hohJDKGxCP7gHWBzGQszktGVcO59SFKSvbunOdbz51LLZEqGRyJCFoKrEgyEkK2SVEpQCKkRgiFMRll2UGbnOWNAS+ePkfT1IjoEd5x6945fvr730GZz7dSFWmzNLZtw7TJICm7irbz5mJHzUWZvUgnN8k3w1uMVoQIG8MRZZFDbDt9EFR1QyOgyDJUm0Dq5upzr9dDjEzteb9DjEStGBwoyOvI/KaaxcgMr4SWcMce2Kjg+OpbfTRvCLa8kHhnU6XkLdan4TIfQSlDJGKdZVwNyY2mKLrkRqbpWh+wNuBqT91YEIIi71DkBVkUre1naumsbcO4GlPmOb2yRKrkKhfbrhwbPM4H1jc3cM5RW9vKYQgkl4jTBYfzAevSQJtuLXFTC6rg5oO7yb/+XCspAVpI4qQPXyauu2lEK9A40SUSaJNhtKEsCpqmYThO3RZaG8Zji60qbtp3iMN75gCmVIQUMm2axpCMjGKSzJgMwl1UaU1dSD5c2v6Z5D8mlWuZZ62Pd5uAJJRK4kIS+suUTs9/Hb7RbxSuhxiZQLatti+PkbBQ4kvF/HrAjWpGsxiZ4eXY0YV+noQa7fbQO9u61pZ3ND5JUfgIg8oSgyczkkwKiJZMpSEo7z1Ga+Z7PQbjMSK6VtFUUpYFC73uxb54BLSubqZOzm8bowrrbDtolqXNTeextm4TSZ3Mk3Qa4tocrrdaRyqd4FK3Okap46fIsjSJ3sqMd4qM3QsdXlqr8L4VzWt79b2QSTNKKoRILZfG6CR9oSRaS6xtWj8I1VqXBmzT0DGSd91+mF6ng7V2qtIqlUCL1sWvnQuIMmlNhahwQbX+E44YI0WWszEaIkh6UhO58CR/LlI1jKBupTGUEORak/Zk37oN1OshRo7uGvADz+xhvsoQvVfGyGBfTrWoufnREXFsZzFyHeIhnuM/5aPsZf7VH3DLDtg3B//hURhf22KNE7wOP5KK0pTJ0c1HjIIoU7gqbdBSJw4bCL4hBIdAUGYKrTttWCftoLXBEK0MIlTo9gpACoGMAa2gCVBbj6AmTiaSvUsT6ECnKBCAMTpRDSJVWz745IcdXBpSi57cGKq6YVi5NvlDp9DcemgHx1eOJW8M7VExXe4LJdBa4VyygQWIMVCUBbTvUCtF7T1JsVXQ1A0xBG7Y22f/znlCTBLgmZAElSpC0T530oXkIfX3y+QWL4xGyOSRpZVqE5tHkCaTlRRkWrUzBCmBqZiq/CSA2A6mpTam1NF0tXEdxMiZ3hiAd63s5It7Tr4iRtb6BiLk49jOqsxi5HrDc5xDAB/jLn6dr7/yAQutBe/q+Koe15uJLS8kLkSid0mN1Qe0BInCekdVp01V0zrfAcRo02kRArLt+5dCQPR4m8QOFZZcRWJQKJ0hpKLQkkxnjOqGYdVgdJL1DiFS1ZYiz8i1Qst28zGCC56qTkJ8MYLJDLKdWq5tqkLzTCOExofUIXPk4E6+/OhxfHSpZVUEjDEoqVHeMZlfSButBikknU6RNnB9SjhCQF1VOG8R0XPfkT0Yo2lsM90kBRAy+YSLiSifTDSKbKeroyAlynbDNcZImRf4ENrhO4ePKSfJlkcXElQAlML5eFH2Ik5+79WvOq+HGLnUw+PVYmTlXakK3ffYcBYjM7w6PnFH6iH/zFNv9ZG8YdjyQlKUPaJQjOsG51J7om5lFozWNK6htpaqqUGI1H7Ycrh1XWO0plcWiOiIGmzw+KixMYnKRR+QMbUvGpm6agauwTmH0RqjBCEvidFDTJPKPqbBQecjQkiMydKxhYhUyafa+vQ9QmGbJvHiPqB0xmIv59zQo3Xik20rfOfaIa/YUlx5USIQFFlGt9uhqhqc9QzHA2xTE5xjsaN45+2HUpIUgrT5Klq3ukSDWZ/aNqUAIdpOIAImJsOjib/EpDtHK0XUGu0VPiSfD2RAhtYlsJ2nSPIXEGMyfJJC8lbYqF4PMeL85e2aL48RBMgAJioEchYjM7wSUiQzmm0gjTLBlheSxjo8gVHdYJMFXeuCJwjWtoqsAt/6TsgsVZZC6kRrGEOE9H30ED1EqJo0J6BUwKhW6iHW5FnB/NwcdV1hVPKs6BapYkubpD7ZtIZAsv72SAJCp6YIgcC1pZfRyVwpUzIZDEVBXWbcdngXZx57iRiz5DAXktteaN8fQiZ/cWPQmaaua7TWVHXNeDyCEFBKYmvPPTfuY++OhdTBI1IHj48g4iRRRITMiEQ8vp3CBiVTlanahBpapz98mqKWUiDQBJlmJyYn/3QDNl6sK0U79T2Z+L7auB5iZKQttfb0K42M4rIYoZexdiijv+zoHBuljfZZjFx32GDMiIad9JN8/6UyKR2TfEieW4HHz751B/kG43XMkaQuldwYjEyXyS6mjUzvHVJplIh0TI4WtPx38neobGRzVNNkkkyBkZpCKwoh8YMxVWNRIrayDokqyIxJG96k5hLrPCH65O8mUhUYnKNqEkVgfcAoyVy3R2F08hQJ7TlDUn3VKkO3lq4+BO655QAPPnYcZy1GJInu2A6WTcT0EjcvEVFgfWQ4GhLD/5+9Pw+2LLvOO7Hfns4599435jxW1lyowlAAAZAYCIICBZEiCVBsmi22JVuywwqrQyH/0R3tCLndio4Ou9t2ODrUilDbanXLlFoT21RroCxSpEQSA0GAmKtQhRpRmVU5D2+8wxn24D/Wvve9zCoQr5BVmZWZ94vKeu9O555739prr7PWt76VqMqCRsGoHVFZxUff+yDGOpnop4AUaNpmpo+EVpnpIxRO6ZtwaAw+5pSG1rnALAKEUQWRCVFp9rlnSHGWqhAvMZ2Mlx3E7fAR94CNvLow5Gqv4fG1VfrBsrXLRpLVjFYt5TCQ2nZuI/conuMir7HGR3mYBUo22VULKS2cWIarI/D34BVJWTh8FDlwoiECSTvatqNpayASvcd3LWhF4UpM5v5joW4arFHE0EJmRnnvcUZTLfRyJCiFbLRhPBkTghcpDW3YHE5AgbNTLabApBUpcVKiV5UsD3pUhRX5jJgw2s1y2k67vDYNKSkSnsP7ltg3KLg07NAm94kYRcidxWqalzaasiywzjIayUyKwuQeAq04tW/A/UdXiLGDpIjaAoHgW+qmwccOZyxu6viUJvlI17UYW1C4gpggtK3k3TU7XcoGZP62z2mKOEttQG7OS1kCBDUdK35dLv9W4V6wEUlZicO+0UaawxWh0hz6yhaxDaDnNnJv4o+pPZ1cgUEJv/atu6arHd7UqN1E6GoSWjp5taXuOjSR0iq6LjDxeXGqiOtk9GhVFFRlRWUKKVJrh7VTCQdhpQgvPmAykwUUZakJwTKajNgcToQVUxQsDxYIMeJ9x6BfEqM4l+V+iTOGGBPaWILvIPmZxhJkeXN2FGGNVhw9sMj5jUv44ERSXJss8SELz1gjjBoFUzJq13VoLKHrCM2ER44fZzgZEmJLYQu01jJwqevyVDpJ75hosFoomCEv8q5rabsGZ2xO2UieWzSiRIrdGGEtxRiJSmZsJDVl4BiCAmaCf4qUVI5Eby3uBRsptcjhp8TrbGTrsKXradx2h287GZI2t5E5duPRg7BcwbXxXcV1eFOijbbqyQpKAVSULmWr8D6SXMWCDlkYDxQRrQ0oQ9vKfOoQhWoJSvSS8gJSypCSHC/4loRGGyfSFlGE/RZ6JYWzOGPp2lYE8gZVnkOR0CniO2EBGa1R1hJTkOgNUT6VjmEvkV3o6FclDx4/xDdeuoTRCmOtTNPzHpI0kdm8eMmPl2WFUgrvPXXT0neJYwdXuLIxxumxaEYpUWMtnMUYizYWreV3pTVKiahe09SQZM44MYC1OGPQxqCU5NFjDLQhSESZpUFEBFHjEySV0GgpsqqdKPN2xJr3go0oa9msOk7UPRZax4bbsZHxsjRHLk4MRVHMbeQeRSRxiS0OsMgqg+tTW0eWpNB++ftocN2h2PsViW+oqhLfdaAgxo6eK4lRYU1fFl8u7hkFMTRonbBlhe86bPAYU0mhMGYJDd/irEEZhTOWmBRt19F5WcjWGhYXFihchdVIGqBtCcGTtKZuAyB5bWEzTh2Uxyidu3uZ6TPFGPBB/nVBxP+WF0o0Ed+2cjWCSF4oJG0AYIyRedk2ZjaNEvmPdsKjp5Y4un9AG2Br1JBiQ1VaVpd7VFUFGJJSuRHOYm1JF6HtJnSdpClM4XIdRkbHqhCERTRl16jMwCGJzH2S3oGdQUXSjJaE9UkeXPtW28rcRtqWWhu+c3CdJy4v88DGIheO1DMbufh4HxPg6EvN3EbuYXQEPs/zfJLHeJKTnObqzoN/8hFha33+5dt3gm8D9ryRdM2IFDtCFP68sYbKgHIyCKppI1ECMtq2JsWOsihJQXLLSSHDdGIgeok+y7LEmIKYFCH4PG5VY52jcIWotWoFtFht0daitKWMO5z5vnNEZBQpeSBQCAmVZPhRymHYVGIiJbnsbzs5hjVSvKzbBuMKjHUEJewYk+UytJaIt+1EQsVZS50iNnkeO7GK01A4R780xKQhJZYGfawp6CKzEa/OOQkDUx6chQjwdVkSvMzpHB/ke+pipG070fcq5E+VkOPFKNLq0yhaS/dAzoNb0m24br5XbGQaySulZzairIZSo7uEZW4jc7zBd2s0VA4af9dIo0yx92J7WTFpAz54rIR0jMbbpJAn1CVkAl4uMIImdA1d22BdD+MKmeCmpCvXWoeyFTFFjI5Ck4sBbQ1KS6RojKi1yuwJiWCnXEZDlsZWSZguwedmM0lb2GkuOYHKG0NIibppaH2Qkacp0esVDHoVzbCRlJYy0vmc2Tgm5+kVeZpdlvtWCfYvFhxaXcDHRGET/cJSFpV0FhtL66ENHlLEp4jS0l2tgcIatBKn5KwTx+U9ZVlk8b2E1g6VoG4bYhBnIeSbmAc4ZZ2nGEhKHI4o5ErPxK3GvWIju/WxpjYyXtJcOVWwcrahvCBXKXMbmeM6HFmED5+Epy/AmbtD9XeKvddIrEN1CTB0MRF8ojCIAmpSeN/RdQ3aVTjXI4UW306ACLEh+USIMsENFN63pLZGoVjo98Ho3GwF3gfa5KUoGCVKdNaiUsAaQ+EKZFJeED49Tnj5JJkeF+Q8p2kordWsl0FrDYR8qa/Yt9hnqedYHzWzVErIqquucOKocrRqjaJrE+OmZjIe8iOPHqDf74FC5LqVwtpE4QoCmtY3Mo3OShRcdy0+T6eTtIroTlkjaY2UIpOmxRqT0xUBrRPOatGFaia5mU0YTWSHEHMvQSaOioP5fiM+30bcKzay7sYkFAe6Pq4YYowmGE3SChOAGBnXzdxG7mFcZIsEHGVl506r5aqk9XnE592DvTcktq3Mko4dbeiwxqGVEX0kJZGbMWAI4pCjRFcqkWW2d4p805kK07zt2YuXeO3CVU6dPEpVFDRth7MaYx2KQOksJE/C0PpI3Y2FuZNygxUjrJWphTZ38cbsjApnZzOqlRK12ZASBJnxTR6gJFCzKctaa5QxoJWkXFKQLmaV6NqaQkU+9O77WVpalE5ppk1wnrJSiNBsyF3FCqWMNDwGjw/gtM4OS6OmKZX8r/YdWpsZQ2daU5AmAWnOm34epRVtdq5o+U6tsqRw66mF94qNnF5uieoEH7+s+b3HPwdacfGxiq5UnHh6DMxt5F7HU1zGc5w/w0/zP/AFOjz85EOwUMD/77t3FWML3oyMfAgYV+JSRTfJhpoUXeggd+G6vBC6gOgXEemVhczKDpHWd0w6kfmOMeaRp+Jcej1Lr5S8d1KSdtAqUhYVRltCCPio8NEzqRuUaoWhU1RsDYd0XUdVFOxbWqIqS4lSE2iV8F6kyUOURVw3HW3XURaOUd3QRWn+mo4MUtqQQsTlxsRcryQlGcPb1BMOLVScOHKYhUGPzneMJzIQK8SA72rKso/uVYzqWprNUt6cNLnbOOfkIyRjdjSX0CLHociNZlCYQqimiOMJQWizKYmzKKyZFWrJz8Puvdf0rcK9YCMkzZ848wFM2s+7ri3x0PZ3OV1doy0AlXB1ws9t5J6GRvMX+EUcB/kYn+A9PMw3eQ4GhfQQbN99c2D2bElFUcoMbAwxVpAizmqiMsSkZuNBYwoQPFbJuFMw1F1kNB5lhdaEDxIJKmNYKHss9Acc3HcQTZQ8dxLNobbzhAhahdxtzizFlKLP2kySv259ZGs4YnPSMG47DDK8iCS9ADJvRPLorihE1sIY6mZE2wXpTE6RKbVe8uAJq5V0HqdATFGa6VLk2P4ltFIMJ7XIj1uLVhVb2yO6bpuFvkSMhdEEZXOaRRrJSAGTUylKSVHUGC0zM6by9SkB0+KvtF9Pm81CTDiV5JwhO8NMp532NdwGcue9YCORyHOrZ/n4+ce5sLDOtf4WcUHx2gfX0GGT8pqe28g9jkjkyzzN/4JP8xKv8RoXYaWAX1qB9kU4d/dIo0yx541k1AZSbDFa0SscIbT0SkvnLSkpSB1KS4HRO+i8NHU1IdB2MgK1dJZeJawabR1WidduvDjw0jk0gX7lSMrQ1CNiCDK8CEl79MsCUxVoI2kN5wq0UljVQL9kfXtIXUdSCnQ+0rUdvdKx0K+wxlIWlgVjszy34ZVunUkX8uLM0hjeIxqqKZPtIyFKX4HvZMbGQ8f3Ya2hDVHmkSeZUW6LihA6RnUjz810Ymss1jqMlVSETwlnTeb7g5K8AwoROowoVJYZCUFmdQSi6IAlGSJlbIHWMsNimgNPRNouUtpbP0b1XrGR3zv1DM8tn2OtHJFKy9VHDFcebUkGLj2kWP6DuY3c6/h7/AZf4WkucpVrbMLHjsMn9oGr4cdX4TdP3+5TfEux540kpYjTibKwpOQJsaWpIxEN2hECqKDQWkTvlEqU1hKTFnnuAXlCncg+NPWEztjcABbQxuFDwiiFRaFjQ89qdFniyhLfeYLvCKGjjgodEtrDuG6lrhEj23XHpOkorMa5CuvAWc94PMLHSOEsVVnSrzSSeYanXrpEF6GwapafJ8tfdCFiUsIghWJZrIEQIs++cpEnH7ufXlXMOqPLoqLuGurOM6gsGI1vGpq2pSzEcfmQKaPGEIJ0JavcNq+S5LGnDswqRTKiVSX/cle2QmQuVBTBQwUxP5ayk/HRv+XGMrcR+TtHlTizdJmYFL2wwL6XLYefN4wXA0e+muY2MgeBwDPs6hX56lX43EU43IN/+drtO7G3CXveSExqcdZRln2RrFBCi+3aSNs0dF1HSDJprl8UKJ2wOoJyM5mL0LVyaU2ksHIJWJYVSiui74ReGxO+88QokVqhFbpTkCKKmBk2MG4axnWH9x5tpGvX+8Dq0oCFXiUpEy1OaDzu4bsGoxJFUVKUPUmRxMT6cIJSJivQCt8+pYhvJD1BTAQlkXPbCqMmxsTXX7jIytJ3+Own30tMCmcUvV7FiYN9NoZDKaj2+1wZvoq1Rqb/WZ2dTKYXG0MonOT6tSJojaaTGkCMaCNd30YpIooUPE4rKVAjKQ6X5UKMUnhkEp+PorJ7q3Gv2ki5BZ/4GwUtLWmtpp3byBw34koDn/k9qAxstLf7bN5y7L1GYi3kpi5rHXVT0zQtkUjwHU1d07UNZtBjEhxGK+oYZ93hIB25ZW76c0YG+cSkMoNBkbQTWe8USQiTRlJK7WzRJOUyI6WWImJZioqsgl5vwEJ/wKCSyXEgYywXFxYg9nA65Q5gsLZge9IxaVpAehemC0spIHpUkoJxTJ7oW9q2JfpOnq8VL55dQyVJpaQUKTNdOMXE2voWnV+TiXVEtLZ0XsbLGqtpu8D29ojCaqrCUTgjE/s0JCK9osKYQnLhu9a7j4mZvpLWmQKaZ6Nrg1JWnO20oHoLcS/bCI3HNh2juY3M8f1QB/l3F2LvVyTOYY3DukJUXZEIrWvGNE3DoDSosqJtG0btmLpu6fd7MrNaqCOMRjVlr4fWioX+AsYW1J1IY3c+MWlGuTioKJ2BFIidx2aV02Yi9NKycOxbXmb/iowLNdbStC0paYxSjCc1k2YMKdGv+lgrLBZTFDgrDiSGwHB7i3Ebch7ZZCE/n4u5kXo8lJSCUgQvsx+YSnknxaWNES+/do0fe9/DdL7Dh0TdNjJvw5ZEr/AxUvUsvbLAOUvdtEwmLa6ws4l+ikQIwsRxzsxkLRJQOnEURiuwhuCDdCnr/KfLDsRo6RtIUWZ4V656y41lbiNzG5ljjjfCnjeSuktoHwiT7ZksQ+wmdO1ECoFFBUlRlQUxJfq9Ht5HtocjyckahbUKo6FXOpEKBwoj6Q/tNCEoYoJJ0+Hy7HRiQBuLtRZSoCwcztq8oBsK60Br+tWC6DjFjqgMihKSx1lNUTgUjhQDxDaPg1U0nWfStKKQqrVEnEqB0oQQqbthzjVbERT0HpAuaY3QRL/+/Kt89MlH6BUScTZtR916lDYUZUnbdozqDt+NOLBvhXHt2dgcsTgoKa0mRIRSoyQCTTGiSmiyxEXwLcY4rC1w1qGMo20bGf5kpn0EO3IdKkQ6D+2s7+HWYW4jcxuZ497EnjeSc5euiFIrUJaidlo4R+kMMQV819IrHTpPc2u9p2nHLPSdNJZlvSJj8hQ8bUEljJbcbhciTucuY1XgQxDnYl2mjkJZ9nKhVuPblq5rCOMhIUh6pKoWgCQyJjpRuJIUpt0hIqGdQotCYVzFqBX6aIqJFOQ5KQR820g/Qd0wKAs6JeNJFTL0CiWF2BQTL5+7woUrVykLB0TRlyosne8IIWGtgmRBJzrvs1yHZmNzSFVaFvo9lJb8Oa6g8562CxROgYdEwkWRK3cqS3/oqXy4pihK0IbgI2iDUQmfFG176/OwcxuZ28gc9yb2ntoyGslXp8y7d5IuqEeZt1+gtMuzIhIhtFhX4jR0IaBNgfct2kjncEIa/UKShZBSpCh7lNahjWO7btnY2iLWQictMu1TK8Pi4jJ162nGQwb9Hs4YUELXjL6VLukEJKFVxihKqCRAScQ2bjrqupHIMylSEhkNpZBJftZinOXBQ4s8/epVzHTgkDZo63LXc2RzOOF7566wuryAc4ZDK31JufQhjaR3wIdE2zRsbE/oVY6FvqPWkbpucVpTViWdjyglziAphY8QU5BTJkLXyPQ/JTnuFEX+PMYoUhrGENEoFXOPwW0ots9tZG4jc9yTeFOtrc5qyqLAaJHzrltPTIamDcTQ0HQRbT1Wa4kmg8cnULqgC5EuKKI2aGspjcqKrAHtCpz2mBRRKdDvL+Zi5wHqZkIMnUhgILO1tVIUVmP6AzA2K6dGQqzxzYhe6ej1BvgoEnUyN1wKjto6Ykg0bYfVEWug64AkPSTaGkyQaDIAB1YWSacvkZIVSQons71D1xGDBwN1I8OJCmVRSjOsG5o2MB1raozCFo6uTbTb4vT6PYmc21Ycp1IK5zTWyPgsrZUUX2PEt54yCwU6o0B1xKxFpXJvQ4iBiMry6xKl3w7MbWRuI3Pce9i71lYeCykzEBIk0UtCG5Qt8R6GdYtWIiBnrZMmK6UpnaHU0okcInTREkON1paIwYQkiz8L5U3GQ2KIDMoBvcISg6dra3yI1LUMiUlJZlv4xpPypXzlDEsrK2htaLvIeDxEIfIXKeZZ7FqjsiJqYRWV1YyaDh9EClwEGhMhidjdfccOMnjuNcZdAITu2aXpON7AyuKAR04doN+rcM5RTAcK5Z6Epu1wuSiclBbHlfPtiwsDYuwxlfoOSWESeXRqmjWehdztnQi0PmC1qM6GoEnNhJgqQOEDhBQwxmQG1a3F3EbmNjLHvYk9W9K+5UWqsiSESNM19IoCa0oRxNOaGPoiODed6gaAxtoCbS0L/b70YnSeppmQpYWIqcM3Dd4bjE4YpUm6xNpShkn5GpRMJNwaj/HeY63BaCOUTq1lLoV1GKWYNB0xeRlG1UqjFyis1TRdi48iOV64grIo2L/c5+pwHQ25oKmYzmlQCo4eXOHh4/v51iuXRXFVS0ogek8MicMrCyI1n5T0QxjDoK/oVdLQGFPAGEXlCqytCF7UZVNos2SGYTIRBVzvA03bYazBGdDOYK2GGPEyAhylRVm3azt8iJRFQWik4zkpKcyKVPqtz3/PbWRuI3Pcm9jzRrI66BGVYRwmOS2hKYsqjwiVhee9xxiPs2VuDGMWMSVlgUjTjPA+UFiLsxbrHL5tJK0RIcSGpAKdl9nWikTnO2rv8RF8snR1M5P4XlzsU+TzCSGysbWFT9LI1TY1ShuW+gX9qgKlGTUeiLicHrj/8DLPn12TmRe5V2Ha4V5Yg3GWj77vQb5z+jIxN4lFEIeSAgdWBjRdYFhPWOgnFgc9CgNF1WNrPGHQq0gxURVaJv1RkmKgDTJ1sXCOsiwY1zVhPEYjfQwh5rnbCazJVFelZlGzD9KQ14VAYQPaWpISiqzIkdx6vvrcRuY2Mse9CZWmU3rmmGOOOeaY44fAfETaHHPMMcccN4X5RjLHHHPMMcdNYb6RzDHHHHPMcVOYbyRzzDHHHHPcFOYbyRxzzDHHHDeF+UYyxxxzzDHHTWG+kcwxxxxzzHFTmG8kc8wxxxxz3BTmG8kcc8wxxxw3hflGMsccc8wxx01hvpHMMcccc8xxU5hvJHPMMcccc9wU5hvJHHPMMcccN4X5RjLHHHPMMcdNYb6RzDHHHHPMcVOYbyRzzDHHHHPcFOYbyRxzzDHHHDeF+UYyxxxzzDHHTWG+kcwxxxxzzHFTmG8kc8wxxxxz3BTmG8kcc8wxxxw3BbvXJ/79b8nPlCBB/t+u27vuI9934/1veHv366e3d92nvs/5JEDtfq3a/cCunze+5vs//IZvtvt5KV3/Njd8nNlxSbt+v/FgN/z6Rs/5vuc3e58bXnXjd5jxV37i+x3h7cHcRuY28oOg1K19vzluHim9keVcjz1vJFrzusWegKRk8Uxvq3zf7gWcsu2oXatp+hp1w+u/n3N4w9vqhmPufqJ6/fNTfr/Zwzec+MyJKHWdr5k+R+36DqYP3riYdcqf/4b70w1P3O1Q3uiDqtffNXszdYMLmt5Kb/SaW4i5jcxtZI57E3veSCoDTeR1YZLa9Xva/VPtetoNTgR2nMuNi3H377uPc92C2337DVbDjRHhdX5j1wmHpmZ86Xt0ky16y0fQ3RZ2+ThmaT9aqZkT2u1c0q7zmTrD3eeFuuH93sAZvu4z/HHnvvuJ130Xatd3kK5zym8Y6d4CzG1k57xn5zm3kTnuAex5I3EaAhBzWKPULkNMO84gcb2zSNet+huit/xYVLsWlIIYdxbmjQtpFhF+n/tf95zXRXiJUE8IGxdYO/MN/OVvUDjDWtCk4Fk89eNUx56kd/DY7ASm55ZuOJ/pAp5+9hsj2htPauZo0vXn+sdG2Dc4yZ3PLq/SSv6IIX+3lU6UBmqfAMOtxNxG5jYyx72JPW8kCSjzZbvPRq61GKlS0HRiqJCdxNRBwGz1XJfimP5+g4NICZSGyOsX/Y03Zo/vdkavcwq73oNEqmsuPft5xi/9KwY9RalgoagIyTBpatZe/G3McMJ9y5/BVm7HG+52irvfgB0n8Trc+AF2eYOEOJm467i7I8YbWRDiHBIGcAo0iZDA6YRR4KOi1JGeUyilMHvIa77VmNvI3EbmuDex543kQJV/iTCJ0C/g4DL0CugSXLgGwxrqDqwGo8HH7FAUGAWN34nGUoIQ5d90kU8j1ZTyIknXr71Z9KXEOU0fj/m5M2ewKypMu5wGCUaXX2bt+d+hHa7RcwNKq1ioBozrGltKKuP0M/+WhZUjHHrixzDOzhzQ7mjzdZG2en26YJbj330uu+9TOV8+/XxTJ/kG379CvhO76zilTjgNhZVXGK1xWn63vVtPyJvbyNxG5rg3sfeNZDEbsIK2g4UeFE7SGCrAoQXoa6hbKB30KvABugDOyqKOSpzHQk+cxqiF7Qm0AVIE78XRpLATcU66nCpBnE/p5LWrA1k0owY26nwMJL2yUMlzhy20fmcRhwhXfSCMLqL9NnHbM1hZQI23iK1HxURYXydujvHdBOsMSu+KJlWOCHct9nSD17jOSeyOgLPjuzEG3B2Bz5zgjdEpU9+oCEjU6bSi56BfKJyV7y+m/PdQEMMbuZq3F3MbYW4jc9yT2PNG0isSIcJkkiiMIkbFaAwhQEoJpcEqWKxAa4Uz0C9lYRotP2NeyF2dCBpsgsNLinG9w/jxHtpWnqe1LPKY5HeVxEloDVWR5DUotkYwbsWxrAzgxLJc2tcBmsBssTURvnJhwlplKAfLvHt1mUfvO8Wg36PxHoDzy5eZTJ6n3ryEJqJ1ziHvjmblVyI7ke40F250fixH0ynuPH/qrK4rOHNDRAyzusAbhp35aK1KEBRNo6CZ1gzSzKHeDsxthLmNzHFPYs8byctnNvE+4n1kaaGkLA0pKVKcLmiFVprCGRSKrlO0bSIB1oi1xyCLp/OJrguUhWZBaVlUXhyOMQpr8jEVFKW8v1LiHCaNrJ3xBLoOUIkYFVZ+ZTiEVz30K7AGqgIKI8fWEVSzRb9XUKnEodVVDq+usrS4jDGGyXhIGLesVH22hxdZshFlzWxh71sUJ9V5GFSwPhRHMOlgUIAxksoxWj7Pq1dgVEO7i8mUkhSkp2v5jdIc8oGv//5f/3xFmyTK3rlHcTvT3nejjRzYt4/VfftZXliiMprJeJM4rtlXVWzObWQOEKMzJkcGHmvIOVhJ294L2PNGcub85dxMpFjfkmgyJkWIYLXGGo2zlrKwWKNJShHzNbQxGmsMVmtQUuhLKRGCIsYClCLEiEKhFWitsUahcqF2d4FWq0TnI51PkOR9jZYnpPz6thWnUBaJppP0ie/k9RsbI0bDEfsXF3DKMmkTy66PLR0uKppwicJWnLz/UU6sWrQRZ6MU7FsSJ7G+LXaz6MRRNUGcBkreN3ZiR6sV7Bvs5Pm7IA5mI6dqpnUBreQYEWZU0Vk94Ia/ww3p/Otv5ztmaZZbjLvJRi7rho0nD/Cl93yIzf0Ps3Rtlb+6/Xl+Yvy3OXFB8wuvKk6/7yc4NLeRexeHB/AnH4GP/Rzc924443jv7/8t/vNHf5/wdAXPr/K31q7yuavd7T7Ttx173khibNC5SBeCIgQIMZGSYhIldaGVRmsljEglG7TkzCUK7VcF1tp8vIS1ll7pUJJ/QJEXvTU4a3BW53x7JCW5NI8pkVIkhJSdgkS51mqc1XR5obQ+sTVMeJ8IKVE4TWE1xcJhBuUKS2XJYn+Byfol1sKEg8fuY/3yeVQ35j33HSMd3E9VSuRrLTgjn2V7LJ+1bsQhWKMoLWxty/ekTaLLefd+BVUlEaAPcv5NK9Hv5SGYBD0LkYSPELmhH3mXB7iuQ3vXw7sdxXU9C7ch/X232IhaOcy/+gsP8sqjlqSuAU9Ctcy17x7jt157luX/7v0sn1vmvuYbvPqZMboczG3kXkNh4Fd/CT79MOjjwEdh4yDL7z/In37m5+n9/ffDuWVOrZzjp8y3GYa7e9d+ExuJVCRTUiQFWieJGCPEqIgpSbSYC3gJcQTT7288UWwNFcYotM6RIQptdHYuGqMtzlpUjkiddVhj5TGjQUvYJw4q5mjWoI2cj1aJRJpRS2Oc3k7oJqKUYlAu8hOHDqH7jqWlJYbDgqbxrF/bZHu7oejv44Dz6IUlRjUzqqlWsshDkgjT+xwt5iJx02anCHRdQgFdVGyOd56rtbxWGSi0RJgjL8eM8IYLW+36ZXfNdpaH/z7h6O1IX9wtNlJViwyWK5IOVKFBx0h7zdJ/fkTjK1xbYpOi5Sij1hHmNnLvwWpYLuVycbIN3QQuKxZeGF9nI1c3HO098D3vfSOhJqFISUnkFDQh5tRDipKvRiL4Ka8+qumCzRFoUHR+h3kivVxq544kd2o9vUujtcFog9IWYwqMKzGuRBuLNg6jNAqDSmrGWsnZleuI9tOGNrV4gKP7jjIOWzjX5+Sxg4SuYTSq6feXWFjoc/7KFhvFCpPm+tRBzDTUmNSs4zrtyj+Lk5A8REowqeX+3YybmCD5HYfi82tmkaK6/vm7PcMbBZLTomva9bua/n6LcbfYSK86wP/jS6v81skNfrJdYJ89w3/z9wz/6u99ik+f+G3+n5/9Mo+vfY8zf/5X2EwFqZ3byD2HcQd/6V/AL7wLvngJxv8jjP4jfvf0L/Gpo7/F/e3/mXfxHL+WztPeAznEPW8ko1GQVERUM2OOXqLPEBMxIk1OJrNrMhLyXK1l81Z6J2+eoliy1lwXTU2lJ2JUKKXRBhKaGCQK1dqgtMG6EleUWFdS9voY6+T5Wl8vDpedkQJYPsTV+36clQtfQMeOXlnSEvAm0ikw1jCp9rE92H99h/Y0IsyfKakdyumUlZN2/dxtOunGn+n6+16X536jBa6+z0Pp+u9u2sdwO6LNu8lGVsY/zl9+5gusrHh+57Ev8OVf+cesPvfn+EufW+Dx+49w7pf3c+3B++c2ci/jmcvyTwH/wSL84q+z+reO85d+v8+YR/kv+BxbTG73Wd4S7HkjmQzDToSoZIFPG8Om6pBKC+vG2DSLmpQCpRUxKPzsaFNLllz6NDpSmpyykMgOpIFKeXlTpRQhKkLsMEbRdWPqsSKhMbZAmwJjLK4oUWiMKyiqiqIs0UaYP0prLh95jLbbZrF7jlG9SZzUuPGEznu2jWZc3Ucoyp2FlnZ+vG7B7/5I6frFvnux7tb+m2HXQRRv8Dg3RJa7Hp+lLXZFm9N0hrrxhbcId6ONjM3X+GsP/EvOP7HFx//zM/yvfuYvUv1by6UPHCX8+NxG5gAOG/iv9sN93+Hhg/8lf/Fn/iJl/XG+ytf4Nb50u8/ulmDvEimdMA+mqqewc3k8XQDRQ8ptuLPUgZJL+5TDzh06qJotomlkmJREmsaIk9BacsNqqmekFMpI3jx4TfByPKUUIXQoNUFpRVMrSJqYNEo5yl6fwdIyCpULuAbVP0pz9RmqdozDY1WiKg1bvqYdrJJuuO7fvQhvjBS5wQGkG5zKddHkDVHp67/o/B7XB8tv+Pt1d+5yNLfLP9yNNnJoreD91w6zfczzyd6HKVd6tL5m85GluY3MIVgL8Ec1vSMLfLL3YWLfcLq+wtO8ervP7JZh7xuJb4Fp1+z0zl0/Zgp98hyAaZVPKTXLc6eZV9lxNmnmeOS104bbaWSrtPQgKAMqimMAJREvmSrqlaQr8n3k1EWio61rumaTlBQxSRvy+Vef5uhgjXbo2b9vBbVvia5tWL+yxrOvfIP9+x9haWX5dd/DNFWxOxK9Ll1xY3S5+/Ebo9YbI9BdjmN32mF3RPs6T8Xr75vevNW4O21kk//i3/4Y3ccf5/0f+gW2/s4XOfvMi3zj2hb7N+6f28gc0AJ/4RJ//r/6Jf76X/nP+L/87P+Jv/sP/j+cZ/12n9ktw96L7d5fb5i7sTtyylHazCns3JKnKrXrFrusWZLgu3zN7LWz3G9OXbDr5/Q1yijQUeinSuXQlZzq0CgUiUQMgbUr5/nKv/5HXDmgefjQMvsWKg4f2M+L5y7z4oVrfOnlyzy+rfnJz/4KVb8vDoqpE5CTibsW/3X5b5gxgnY7jdfd5oZ1vuv1anrM3V/T7pWfdn11+XVvRP281bhbbeSRwyv8wsd+CdV4/tXXf5Onn3tpbiNzXAc1gV967DPUw5p//If/4p7aROBNbCShHc0cwHQFp9lylwU4dQY3Gv9s5StAabRSs0WmcrRI/jlNYSg1+x/TDgIJImXBo3NRVZLmpCDOIcyeKxFsCJ6mHlNPNpkMr9BNtrl47gxr65f5/Y3Il89cojKKo0s9zqwPqSNMmsAXf+N/4MIrz3Di4fdy8uH3su/wScqqj3EW5wq01rPUxu5oU36VZrrpHTMnsttB3LCib1zgu2+rXZE5192/69mJWapj5+9ya3G32shXXrvMxyaegQ/80699l3OXrsxtZI7roJRiMBgQY2QyuTcK7Lux542knaxhjJGGqDR1B2K8MYmLSDGhtTgAZQwKCCFglJYeAmUAjTFK8toA6MzAkeOhFEbpWTpCXqdQ6JlTmDqKqeSG1hqlpTt6GuVORkNOv/oyVy+/RjPeoN8vWVlZ4d1PPM4Dx1Z47eVnaLoWZTRd8Lzy7GscPHqcpm0JIVEUhlW9yVd/61d5bt9hVg7dz75jj3Dg2IOs7D9G2eujrTgMYwu0tcIUMhqlNKCzb9y1lG9MW3BjBmLHme7uYN59lDearLf7OPJz99FvHe5WGzHOSH8KELWhabu5jcwxxy7snf4bE0YHuhBJMWKVIvgofQIxUTqDSmBItAFGbcCHKA4gQYwRpbJ8uNFi0FpTGIMzIjOBUsSQaEJCJY1C08UAGowxObGhMUa0mlJKmcYpEacxmpQS29cucv7V5+m6CWVVMt66ynDDk0JHio/xU3/iUzz77DN859vfIKFompae1aCEMuocvOeJJ3j00Ud56tlnGfRLlN/i5W/+G57/umb10AOceuLHWDlwHG1MPgcjkbTRaG1RxmCMzY9blLHSna12zlei6xy1KoWWPEv2FQpSwrctoWvRSmHLCu2sROjXuZc0S8vMkACKt8xQ7mkb2VXVVsrObWSOOW7A3um/SydJKRFTnIVNcjuRYqJRO6GU3J+7lknSPZwv49vMtI852jRaYY3GKjBKEWxi0sWdxi6dsraSSF2ovHhU5jQmH2Q9aI3qIttnn2Pz3HNYDceOn8RYw8a1Sxjj8L6jridoY/lTn/5pjh08xOe/8Ht03nNsdZnLdcu+1VUeeuhRTpy4n+3hiJQ0bdNy6sFHKUvHme+9zPmXv87lcy9y6slPsXLsQYwxTCPvnTSOdDNP6a+R6dc2TXXMkvozp6DQs9QOiGPt6pqYAhrQzmFdgTZmVypInOUsysxdaykm+BM/8UOaxQ+HO8pGzj+HWeo4duIUNhR/rI08+92nOXjwIKdfOc3lK1fZtzK3kXsFdh/Eifz743Do0CHuu+8+XnjhBTY3N2/Nyb2DsOeNRBkrCz3uOAgAlSJk4ctpsJNSzIsipzNSzE5CnAqz+xMd8jqVWTYKRNxqV148EHfy2rteS1IiRpTfuL56lo3T3wE/gcJx7epFVvcd4MCBQxw9cphPfvJTnL9wnhdfeoknHn+c86+e5tM/9TOEdsygLLmwvk1VFiwM+hw9coQXXnyeA/tWOXxgP2fPfI8YAzF0ED319hVe+tq/5sgH/iRLR++X80rTeE8Rc5ODyHRE+U5Syr/n5+b7Emrne0kpL/Z8rNwRnr8m8SHKiMPUBqX1rBdjGoDuRJ631kncSTaSHruA/WvPcXG8zPv+4Z9hlQdYWV1haXEZReCVF1/g/uPHOPvS83z2T3+GAwf2s3Z1jR//sY9TFBajNccOHeR7p4fX2Qgxcv/2SVITea57YW4jdzAWPgoP/fcQLin2/9/fTzXqzx67cOUqF65cmd1++IEHOHz4ME99+9v0y5J+Wc4eG45GTJpmdluheIL3YLE8zbeJszbWOxd73kiMSagkvH0JHFWOKiXq0bNLZ0hpJ62Q8mPXLQKx/nzkbNDyQmI+jkLJAmD6XhJNpTSNNvXMiaCgG28zfPmbhHoL5ywpelRo0N2IP/PzP8err57m4P4Vrlw6y6unX+bDH3gPx46f4Etf/BxnXn4BQqBYXOXE8WP82Ic/wIVLV/jSlz7Hn/3lP8u1tTXOX7zEtbVrKCJaI2mbZpurz/0RxeIyxWBp5rwSEKKfOYWYAinG7F/lc0eyxhORlPL3RpylrNN0kKy6PoutUCQViUqhiCL7oSDNtD6uS17cUtxJNmI/fgVODWnCmIXH1zhuH5G36oakdpsrz1xj7TnDcggM/JAYAjZ23L/kcnSf8JdfYZWaz3zswxhruHL1GofPneSXnvrfoZPmrz/81/my+urcRu5Q7PsM9J8A9Zjix8+/i+MvPjJ7LIRAiDsbwOqBAyjg4ZMn+U//8v/+uuNcXV9nezSa3T509iT/69/9jzAY/jy/zO/yb9/2z/J2Y88byeqgn6erpZ2oianSKruipjhTdN1xJLK4Z5EUyCIHoXomSW10bUuIAa0N2pjrGttIEFLc5WRybJov+303od26TAoenwLloM8TjzzML/zCLxCT5sjBfaws9Dhx5DBFoVm/eo2HH3qAI4cO8i//xT+jnox54ol3c+L4Mba3t7j/5HE++eMf471PPMI3vvVtPvSnP83p02d45tmn+fpTz6C0RqXA+OqrrJ15noOPfRClzewcI6KNhDbopEl6WhiVJW+UIoQwi9qTMsQUJHWRI0ylDSmmHK3HGVtphxkVZ0XolKLk1Hd9X7cad5KNmG8M6P2K4uil43z8wGeplfSY9Hp9rlw4h68naGPo9wekFPnd3/wtzr3yCr2lZaqyYjwZUxQFSa1j8vd/7MA+Tl0+xSAsQEocag/ObeQORv1F6LVQfrfit//W14lbT80eO374EMcPH57dVmfOsPE3/yYXX3uVjatXrzvOoX37OXXs2Oz2/ZtPsKxWICVOcN/b/jluBfa8kRzZdxCtFCEGvPcE7/HB432HD37mQDIxXxa4Uvgo8t7OOorSEVPCaI2xltFkQt10JAUhRAb7FlhdWuTa5jaN97RdyAVSSZm03tN1fpY7jlEKqVYbin2HuWId3fAaUWl0v8f73/sE2xvrnLt4iaZt+c53nuH8pYs88si7uHR1iw+8770cPrCfo0cOsr62zgc/8CT9wSJ/+OUvUxTbXL5ymVdOv4zvWi5cOM+73/Ug9584xLPPPcfWcCybSYSy6tPrDfKkPFn8IE5NCsiKEHbSDyFFwMwcrUSmoKIlxiDpjJggtuJEct5f+isSSkuUrZUhkWsB2QHtlFhvvZe4k2xksDrkAZu4/6mS0bUN1kaGpm1p2zCzkbIseeh972Vpoc8/+Sf/kPW1dT7z8z8/s5FqZZVvfOObfPD97+Xa2ibLyytMfnqZbz415sBzlu+6l+XKeG4jdyT2H4eHHRx/5SB/+6XXOH9lp1Dy9Weeef0L/uE/esPj9Hs9ysLNbp869GH2PfYZ9j9n+DbffcvP+3ZgzxvJqUMHMNpgrZ7W+aibhqbtGNc1jfcYbdBG0+tVFNbinJUCqE70yoJ+VaIUOGsYDAzjuuXK+ojRpGM0mbC61OOh4/sxKnFpbciwbnB5GNKFa9u8cv4qa5tb1G2H95HCOlaWF9m3vES91ec1Z0hFSYqeerzFZLSF3bfCux57V06vRPjmN3n6219jdXmJWG9w4vgJtjY3IHmuXrlMunyRp5/+FiHKhL7NrQkxaUIInD/7Kg888CCLgz4bm5s47cAWLC8fZGVpFaMtROh8K2mJWYSoCSESYiDGhI/5sjgP++5iR4yRECNd8BCFGQQSlccUUUpjpsqFJJJK6GmUOUWOXLU2s4j8VuKOsZGypFxK6ASm0RTa867H3v3D2YiPTDrQrsI4x/mNi2wf6LBpQK9bRBPnNnKHwi2BTmA7Q1WYH/o448mE8a7eksWVIa/c1+GeW2CBA2/Fqd527HkjOb7aJyaZT11WBdY5xuOG7dGEkbPEmFheXsYVjv6gJAHOKvo96FUKq6FuwYdEDFA4OLDc577DfXweSLFkoETyuQ+vVLPCYQLiQwcYd6cY1p7NcUsiMSgdg8rRc4aNrTF/+OsrXNy+irEOaw3NZMgX/uCLPP6e93Pq1CnW167x6IPHOHpgkZe+d5oHT53AOcvB/avEpOhVFU0zZmV5keXFBapej1MnjtDvDVAKRtvrrK9d4cjBfVxbW5doOiRsbFkeLEpeIiqgh7GK0hkqV1J3nknTobSmblrG9QSFRKABTdt1RBKt7ygTpJiI0UvPAeBTgBgw2XGE6OW9knw7ykhNCKVw2ubJg+EN/45vJ+4YGxleZeUTm5jWsHB6wLdf+x0e9EtviY1877VVxquepKCn+1hr5zZyJ0LBqZ8F0xpWzi7z7ocavndu+JYc+v4HP8ZkMZAUlKn3lhzzdmPPG8lj9y/JnAglM7JjgPGgZLun2NyGpgmUDlRqSY0ihkiwijZYKm1xFYzbyOZGy9b2kLIqOHBgAa1h0JPGrJCgVVDu8g6exMjDgoXFwrBUGI4tCSNiFwmIkdVUZYHWoI1EYf/iX/8WL7x8moOHPse//4u/xLsff4itzQ0mdeAXf/5nubZ2hXZSc+TQAXq9Af3SsLK0n8/8zKf43iunOXjwKHXTsLW1zh98+St8+Stf4eM/9iO8eu4cRWFF5pzE4sBwYNHkJrNErxqwvNBjcVAwqAo6H9geN6SU8CExmkwkMtSWpAzbk4bNYcu4rmlDxEzpnUnR+kjTyWuD7whdC8plNg+kXC/wARSGGAI+eJxxb/h3fDtxp9iI0aC0OHQVFc8+913++ef+m7fARv6IYfdhHj32AEnD+7Y+ydMHf39uI3colGFmI0qrH/j8vWJx8QibxxqShh8PP8/v8j+9Zce+XdjzRlIYmXUNEuiUDqwxLPQrDu2rUHmWhNGwNYHt7UDderomMBkbUhSZ8NJpSmchwLUrNW3nsU6uIJYWHYWFfYvSOzCqE1ujlitX17n/+H76laWywpjySd6vBSBxddgRvM/NbQkUXLm2wWg8xq6t8Q//p3/CA/ed4OTxYzz2yKP889/4DUjw4Q99kLZusMZhnOGr3/wmS4M+3nd881vfwFrLU995ms//4VcZjUYMJyNWlpaw1qFVwhrNex97kB9593FSgn5l6JU9zl66ymvnn+Xqtctsba7RtDJu0VpH49ucI9f0+gOUdVhXsbWxhtaWGDyTpmFlcZVeucigcOxfXubqxhYmBVxp8d7T6y1S2D6RSIwDhhPPpIn4EOR7uMW4U2zE7etwR1vCiwPShuPYgZKvPr9+0zbyla9/l5/57K+QGiEM2OjQirmN3IHoHYbFUzB6ytBdVdx3ZIDWO6MLfliU5SL3nfpRUidsvILqrTnh24w9byTdpEFbhyJSGImE7JRNKPVDdC5w7hvAUmUYNYa6EZIiAQyKxX7BYq8ABWWeVDmaRLaHnsmwo7OWrpOcOQp8sDjbZ7uG7SZhLWgdGY0TVZEv8VPi9CsXGG1tAJleGRPbwyEKqKqKS5cucfXqFb7z7Hf5w69+DWMsk8mEP/rG19lfQFCOVFa89MpptFKcPHaUsxcucunKFcbjCVobYoq0dUtaiDOaqiJxcHXAex9cQSdofOC1cxe5cvY5rl14lfWtTay1lEoKz+vrl9FFxYWNa2gUg94Cg8UVzl69xHY9QivFoOoTUuTc+hkWegscWtnPxhZURUHdNFw9t87K0jJpLXLf4RM8dPI+Th27j8lkzMtnz6K14cmHH3n9H/Ftxp1iI2Y5YFdb6u/18Z3i4GpBvxdu2kb6/VWsLbnUvcSlquHk9uP020WGbntuI3cYyhXZTK5+19M2kcP7KtF/u0mCglIa6ypOj57mRNrkCX6UZQ6wydUf/OJ3MPa8kTz19acpywqIWKtxhUMrjSsdxmgGiwOKoqCsSpSWHHbPgKsSPipCSLQh0jVROmqVDCOyBgalwypL0yY6H2iGns5L/teVDqctm9eGTOqOtovC4tFGCrWxwznDlYuXqet6VwFRzRg9kGd1x8CknhDWAvtX97G2sQFo9h1f5tzaNlfqyHC4zaDf44tfflWOpWRjcqYgpUTdtpRVTwqcviNFWF9bY2Nrwmg44stf+iLf+dYfEkkYV1B3LcuLq7iqRCXoa8MTD72br3znj7jv8Em0MXzg/T/K2UsX+doz32BpaYX3PvIexvWYtc0NFheW2LcwAG1YqHr0CsOv/7vf5M/9yZ/j333tq/x7P/GTLC0s0IXA0rGDGK2xOvH4iUNvubHcLTZSvKtGGahf67E1DixUhn6pbtpGjh59N1W1zAvf+20aPstKPIRRkj6a28idhaUHQVlYez5xbbPlwErJ4sCxvtXe1HGPHH03vd4K3/76r/Ej8Zc5yDHs3t3wOxZ7/gRnXz0/46YrNZXB0EIvVEnmZhuLKxxogzIWbc0Onz2vuJh/GqNJMWCdo+wNiAnqpiNE0WnS1kkhUUVSDPiuE3qkMiSE+dN2DcG39BeXOPPSszTNBGUM1hi87+i6Dm0MrqhYXFzKDUSKfn/A2sYmbSfz+EqjaVpP2wYmdcPS4hKuKPG+I0ZJAagscdHl8zBm2uimeeHZ7/L+D36U8XhI23RobRhtb4ASR7F2+SzKWDCGrq35o/XfhpQ4NxqBs1y9JI+H8TaT0HL53BmCUqyvX2Zr/QrPj4f0XMm7Hnqcze0N2smQz3/5ixxcOchXv/0U3rdsjrbousBrl88SYuA3F5b5r/7qX30rbeWusZHlx8com9j41oALVxo+8Giffas91rZuzkb6gwNo7ZjUQ7638C2OTR5msdvPptuY28gdhoMfBOPgtS9EztZjHjyxwIGV8qY3kv5gP8Y4Ol/zFF/kId7DKoe5xsW36MxvD/a8kXjfCv/c6FmqgBRIqZktfKUtrijwScl8bmNzM9hOp7HWQJKZENoYjCthu2Y8GtGFSFFVhKiIaFxZCR0z+lkDllYarQJWS1dzUfbxTcer33uJGKXrXIJZ+WgxJNY3Nuj3KrQRbaKNjQ3GkzEoTYiBpmnxKQnDxnuuXrvG8vIy1kyLo4rhaDhTmkVrfAjSXBcjZ189y9nzmzirOHj0cZRdZuPaFZpuRPANKXpSCCSlqJsJIXlCnsLX6w+wRUXTdBSqYeAGHFjeR2+wQGU0rpCi8XB7k4Wqx77lVbY2rvHpn/gUmxvbFEVJSIlXXn0Zpw1WG85fucD2cPT9/pRvG+4IG0kRdCJ1ijQp2Z54EonRcIjOwpA/rI0cP/kxQmg5c/pLvLt3kCL2OD58nFerF+c2codBGQgttJuwHTqRlXkLSkqPPPopQmj53suf5xiGHgu8iw/xEt+++YPfRux5IxkMBjMJC6WE8y7qE4oQ40yuQimDRWZkK2NzM1WWfIgRSChtRdVUm1nxquwN6BmH0hrvPXXToWISpk6E2bAgIspa2hApjSP4RAyequpLI5bSTCZjyqpCa0XXBba2NhkOt0W+POZchILCWZy1jJsGv0vyYFLXNE2N0jrz8KHzHoXCGENZVsI4CoEYO4bDTdbXNqUYayy9wTGMWaZta0KAEDpSCIQUGI/HtL6VTUiBKQqqQYVXI3ppAVv2iLrPuYtr9HurpBTp9Xu0rWZYd6Rxw8JghcIO8H6Tk8cPM2lqRisH0VoxHo45eeg4bXdzkdMPgzvBRrSJLHx4A7/paF5c5KWLF/nE+xY5vj/w9ItrN2UjTRvwvsH7MbHsSCT6cQGlmNvIHQTt4MSnob4KV74Bzy5u8nOfOM57Hl7hhTPbN3VsV/Tpupqm3mbMkERkwNJbdOa3D3veSBYWdwTLpn2x13fHiippwhDRsqi1ydIXsjC9byFJpzFKolNlHFKFtXLE3MnW63mMsUDCdw1KKVmkbYsrLCkZtFZYq4jGUlgLuSPaGkNT15LmSJKqUFkCA6SLOqWUI1fh3RtX4ILMA5+qhscYCVluY6r9ZLQh+E6GJSFRc/Itk+EQVy2SYoO1JW2X6LxEzTFATI6QAsk5XCE9ACiDcY6kC8p+RdSLOGfYGGm8WubaMAgzqTX4sEQYGaCjScu8dOYSo3HD0krN1mhEHQtKW6KqVZxPDJZ3RONuFe4IGyFiFkR2RGwkgIJeaW7KRqreKvv3P8La1ZcYjy7zyolv0Zmax9Y/wueO/JO5jdxJUFAs599nax/61c3VMvr9fRw+/DhXLj/P5uY5vsnvM2HEx/hZfo2/wZ2sWbN30UbrZpd2avpvltoWDSWF3JnQJCXzPabzq0Xrp0BpRcpRnVJaBgZpQ1IapaRRKiUoU4k2mhgCsZDoNKW+/IwxN2PJ3ImEoiiL2ZWDdY6yLKW2kU9SKyRSRmWxuyTphBTkvpgIPpBIeTpfzJ8xT9GLkZgi1pocVWt8Gwkh0jQTNq5dZHGpQbs+3kdCguBb+aJCQEXQ0aO1I2nJ4ZMSeDkvjabSDuUTzdCLrLpSeCDqiNaWzidiciSvOH9xRIyJp7/7Gm0rxWRrIvWkyt3Pt76AdyfYiDve4A40TJ5eoVQLnN26xObQc/JwRVVoOv/D2UhZ9CmrRdbXz2CsJulA1AEV5WpsbiN3DpYfgsFxuPAF8CO44mvWt1tOHR1QOE3b/XAcYFf0qXpLrF17RXp+8AQ8mh++a/6dgr1bUp5zPUsT7s4Xppkog0h9q4QiQIoY9FSCL3sVDXpXrJo8xDwZTyOvz9Fp8gqQxSo5SoU2FgyYaElI0TWRZrULyAOOlMrMIDleIuXniv6SDAyCFD3GVIToadpGxO+y3nlimrpPWfdPUlspJbRRGG3wIZJix2Ix4uDSMgsrAyZ1y2Q0YenQPjY31mk7iGhCKAgBfPCk6Il+QkgQTUlEoVJEKUdCEZpaJOtBInCVI+F8dTXytfSyxAFN29LERAhKZm5Yi69vQ9riDrARuxwxg0BYL9HRUreRpo0sDWzuEwg/lI0cO/5BnOtz5pUvYLRmu1jjwvILrG4fY9Cu0lXN3EbuEJSrUCzC+ALEDkbRUzeBlcUCaxRt98Md99T9H6EoBrz04u8BiWtc5Lt8lft4jFUOss7lt/Rz3ErsfbDVeAuU2hXlq/yfmlEgp54jNxxfj92vy//Srp8yEU7n2QmSTpopmaKk+qUN0bczNVTZIETSeTQaYqwjRU9V9QjBkxI5N89s4U+Lvmmax4+RlYU+eq3JNY84O76ZnUvKszQSRVFkkT0Z3UpKxBDomYIFZ1iwkeWVCru/RzVYYrQom0/rPePRiO2tbSZNw3g8gcIQEng/BizNZIJPDm0r0BattDgTpCeDPJo2KUPbdnR1SzNpCEScKyXKDwadwJW3fvLdO95GxtucfHLMCaDbWMZYUSe4eK3hoRN9rIGpEvGbtRGT6eHj8RpFUeCTx6uOhXYflR/QhPHcRu4AKA2PfRROKHj6VbkvxsT5KxMeO7VI4TTj+oeTlnGuIqXEaCQ9I5FAR8M+DrPAyr2xkbzrWB8fEyFfqoeQ8FEUWafa/FNpbEgYNZ2XnZ2DmjoEKYomyGqw0xxkdho5+azyjG0puubfTU4rTY+TjzEctmxuruFcgW89TT3GT6fiZWdGfr4UfHMGP0U0sLowQKsNgNx0RJ4NkWapGFJCWysMGO/pTCfjZI3Fh8hYLVLuf4QuepqmQxEY1UO6ZoJG0iwpBnra0F/oc3BliZjlxL0PaFswHg1lHjgFvYUVev0Bly5epW7zdxVkZkXbTmTuh4qQvEyZSAGlHcREaCLaD27OMn4IvNNtxPfO8b5feZVSQXPqGi91+wgxcfFaw5OPLHLyUMV3ht2bthGtNCdO/hhtO+LSpadZXRYbuWAv0cew3DzEtXB5biN3APadgp/9T2BRwXs+AF+2Qgg8f3nMh57YxwPHFvjm8+s/xJEV9z/4cZpmyGtnvja79zXOcQrLYZ7gNV546z7ILcaeN5ITB0p2T4GejUbNv09nTqSUL/inP4Fp6XWaMN8ZIZoPxvR+ZkXOuMtxJKVIKqGUR6kkEkNJEZMiJnhp6xob65dJQNXr09ZjJpPx7L1SlkzRWecIQGmDNhZrC2JiJsGBUmjIQ4HyOeQI9aGHH+fRhx/lxee/TUqJsijRRlG3gfOvvcgHnvwRYtS0KaGUk5qM09LrEDti8CQDXdeS2oDRkHyLigEVG/pG0e85bNWnv9gTCuKyY2t7QtMGTGFpmg6LwroCpRK+6+i8J3SRmDogEUNLU2+8aWO4WbzTbeTymQ3uv1LSW2lZe7FgPBRF1pBT3tbqmRYW7N1GlDL0BweI0fPAg49y4tg+vvfcd6nHx1lLjve99pc5u/z03EbuAIyuweZZWD4EF54RvTgAnwt5dibV8OagtWFh4RAxeiFRAJYSzaOsU/Bz/Jc8y+cZs/aWfI5bjb33kXQeRZ6LrfU0HZ57NkQBI6XpEKNEDOI4dgYPJWYJZZCoctddCmY6TYmEhFDT3LnPPzUy1AfyzgApcfrlZ5hMxijAOcd4FGUeRp75MHVeSht8lHx7SpHOS5S8Ppzgo9yOMc2iWJVfLEIoiYVej0fuP8V3n/m61EqUwtoC3dWcffVFfLtJUZYo15GisIGsSaTUQYzYSrqcQxDlVa0tWi9IFJkiKrOVJFUihdbDhw6z/wCsX72C71q8k45ujCjC9suSrnN0PmFsjwR430G69cqu73Qb2brWUjy/zIMPbfO5ryzRdWIjz7865qc/Ao/fv8BTL43ftI0sLh5ndd9DnD37NSwTHrn/FM8/801G5goJaIotkmnnNnIHoN6C+qvwwPvh9O8wy78+89Imn/3kCZ58dJWvPnPtTR93ZfUkBw8+wpnTX2Y8ls0i4NniIgnY5iqe+i37HLcae95IKjdtHMv545h28sWzZ0n4qEizlEWK04l3uyPK66PTmGR8qFE7u72avdfO6NWsyHRdVNr5wHMvvUKIgV7VI6aOpuvwMZBiui7K9dONBXFmwQciisvrm8QQ8T7kNEoSJ6a00IdVjpu7bQ4vgdYaHyNN01Iqg1Jw9cplNtY2OHDwEAoL2kl6ZVoFtnmQU5Iis7YSg2tj0E6RkieliLVuVsydUmAtisNHj5BSxHcN1jmUMsQgmmJN0xB8wIfp7xb44SKnm8E73UaMa3jkyQ3qiyVnXyzwsSPlmSIpJZz94WxEayu6XOM1YrvJ4SVAw3dWPo9e+9O8uu9rBNPMbeQOQG8BPvQTsHUaTu+aXdV6sYvC/XDfmTEObRyj0TWm82ESgT/gX3KQP8cX+W1axjd7+rcNe95I2lYYHhGhPmotw56mCzbGHe69tVaK3eQFtyv3rdCzvG+ISdIHOWoMMWa2So66yO8TQy60TtNT4HM+YjypOX/5Ksl3dK14neA9wQe0VvgQUXmxTb2ZyseISSiYG8MJSZVcRzNSXJeWAVjoFRzet4SzlknbYW2BMQZjAr4b49qLLJs+TTB0yRCSQSJmkUDHGIyWzm0pHpOZQYqYCjSS94eEsjmxlglKxohaqDZSp0GB1Q4UonqsDV3XErzH6LdW9nqveKfbCKmj6HXUQ0U9SjMbWd9qubzesjSwFE7RdulN2cjxEx9Ca8vpV77AidUdG1kvnmbNbFKsP4k57uY2cgdAG+gvwngIzc4sKtY2Wy5cnbCyWPxQFOBT938EY2xmbO3gIl/nCmsc5idR/N9I+LfiY9xy7J21VU8AhY8BksIZSSn4KL0UPgSUtsJiqZssIQIgjJSptRujiUk6mVOSDmadC5veB9quI0SPNRZytJ9Qs0lvWinQIsERYuTa+hqbW1uQAhqZaW2MRmvNwdUlcSAw20SmBfRp5Oe9R/UtKl/lz9g+TNMyOWGi4PiRQzx430kWB33qbouicKyuLHHt2hopJpaKlgcP6jw5r6XuFJNOMfGKJmhCtESlUclkhlLe4JR0RysUTJ2tkoh96tDkrLXk6JM0802L1mCQrm7pBFfa7GIz3Tq8422EMMuT7baRC1eu0rSRowdKeqWhbsObspHBQKbcpdhdZyPrkyFJdVi/ijWGRLznbeRORddF6iZw4nCffmXftCrAwqLMdw/h+te1rBNoqTiImqVp7zy8qY1EG4tRhkDM6VURMYRE23V03UiKhwpa36GNo3CVsKm6RvSqtKLq9THaURQlMXiCl3x0005nMEiBUGlD09QivGgdWisKVwh3PjNZxqNtuq4FldDGzCLZ5YU+H373k/yDf/5bOyNLlZJMyLTEmxQpBTZajVd65iDS9DlpOutafp46cYL9+/ezf2WJq5tbgFythBCkKS5EjFZYo+gVhiVEmyvElIcPtdQd1NlpdMkQkUUvaTSJyHV2CCRIIc4K0jN2U8pNc7lrXwgBgDIyE3zXBngr8U63EaUlDTb9205t5B/+i99iOPFoVTGoDBvbsFcb0dpx36mPMhpd4/KlZzn105+d2cjGta3Z5hhCIKbunreROxUJ2B57tFYMepaN7b1vJMYUPPjQJxgOr3Dh3FNv30neRux5I+n1FwGFigGTm55ilBQFKWGsJZYVIYG1BYo4o212XctwPGR7e52YEvs1dGi6doIxFh88bdsAUpUtiwptNN53aBXQJKwp0FqjCDIdTitSUpSFlaJuLnw664gxceLwQQ7sXwVkE9A695RMozxSLggrtttAr1fkRkahkUpeP6JUAiXHWFzoUZWO40cO8Nwrr0GS/gRrDUkrrLXXsX4gYbTCaEVhE4Nyp9jsQ6DxgcZrmqnTiIouaVKSlA0p908AU3aSlAByLj1Mi9AiGmhQs3O92bkJPwze8TaSv8lmbIkhceqI2EhKiRdfHfHehxY5daTk/NV6zzailcLairbZJobmOht58cXNWRDirCFi73kbeadD5f+NtiDdkL169uUNfuRdqzx8coFzl/dez1BKYV1FU2/T+Tu3oP7HYc8bSehaUvQ0bUtM4jS0NmgnqQofhMWC94R2TK+qGE1qFJKLtlqztLBITBHfdZRVH0g07QTvO6aNZ0Yr6rZGKy1CiQoKV1IWJTFG2q7NjBWdo8Kcy46RruvyQocPv/dR1jc2ha2VozStpkUSqZMURZZS0RprLFVVMh4Pc3oEuYpJkQCQEtfWNrBG8/7HH+X3vvxNlILJZEyKkcoVLAx67HYQ0/TITn0mzWrRWimchYUcHfsQaH2i8YnWa5oAXTB4LBGhsU6jUZVTHeRCbSLkKFTNyEq7+stvGd7pNnLkoS0GKx3f+DdHiF5fZyO5lopWMJsQsAcb2X/gQRYWD/P8d/8VbTu+zkY+/wcvEXWLihqCoarmNvJOxyMfgJWD8K9/FW7MXnU+zr67N4P9Bx5iaeko33nqn9G1129AiUigRuPQOCJ3ptrAm6D/tpRVJbMeElSFRRFJKeebkycpjTOGTrkZRbH1HYU1pMIRrCKEyGg8QVtp6DPGEGPC+xZjLNZI9BjTVM5ENK7qeozRGkUkBI9VFmMMlXOySRhDSpHhcMzKQo+P/sh7+fazz/HIg6fYGEokq4GyqqSnIXiMdVhr2bdvha7tCKHD2cOQEjEXdSeTmrqpJU0QI75reeLhBziwskTt46wpzRjFQr9Ccg0xF0/VlDqUF+5Ofn1GeM2PW62wLtEvFEolQlK0PtB2gXGbaIKii4aQVBY8FPnyafSK0tkB5RTGbcA73Ub6SxHjEm3jX2cjW42n7eDxB1c5v7m8Zxs5eOgk1pak5IUSvstGVvdrRkvfYt+1P4Ud3ocZnL7nbeSdjoVlcMUbj9R9/vQ2dRN49L4lPve1vXeh93orOFfhffO6x1q2uMDneZj/gFWe4ApfvZnTv23Y+xVJEh0iq0UHKYZWZjN0Qkk0WuOjp5k0dEH6OJy1GCPMHaU1REMIHVrL7ApnixzpmZxC0nS+YXtri5RgcWkJa7Jj8C3aOYxSBCKTtsH7jvFkglIaYy1FUTAej3nk/lMcPrifn/zYh1hcWuF3vvIcScHq8hKDXo8QA8PhNusbG9R1wyOPPMTVq9c4f17YLr1eBSmxtr7O1WvrhBB41wPH+fiHnqR0hhNHD/HQfcd56qUzWOdkToSz9KtCpuwlcRQRiTIl6gQyw2jKRprmtac9ErP+CcDqhC0UfQeLVSLGRBcjXYDWQxsUbdD4pAloYpSmvFku/DbgnW4jKqv4JhKP3H/yOhv5/DeeQZsz3H/8AD9z4H2EsDcbWT74pwAYbT/Hpz76wRts5BjXnvGQNDGouY3c4QiZ5LBvuZhRGPaChx/9FCnBSy/83hs8moh0Oel454o37nkjWV1ZQmnN9nBMPRrTK1xWNW0oXElylhikE9dkxdUuRMbjBq0Uwbd474VRgiMpTdvWoqjrSnSWCjdasW9lmaZtcdZQFNVMbTclkecriwobPHVKdMEji89gjSUlePT+k8K1R5HcAo89/l76vRJjNMQgnc/TSBBJA5w8cR/vf9/7pSAPeO/xIbC5tcXG+iZ/5pPv50fe8ygAhTOcOHKQb71wBh/kiqRflfRKh9VKOIQpC0VO9can0WUI0hNBgjSVBmH2fJVZRXKXhEVGK5zVlLkwO6XS+hDogqfz0ARF68EnjUcT063vEXin28iUpaR4vY088PC70XGDkpZjqwdAl3uwkcBW8xCtj7zn8Yf4zMc+8TobmU7iTnMbueNRN4GrGw0riwULA8v26AdTdZXSDAb7CaFlMtl4+0/yNmHPG8lo3IioXfSMJxNijDjT4kOk7bworiaZje6MoouBNoi0eNeK2F3dNMQgMu9VtUBR9GYMlBADPnR0XYvWCuMcPni07zKNURaHs4ZeIZLx/apPv5rQdi1dF+j3+xijWVzoMRwP2RqOubrlqcpSuPlKtJikuW1H4ynEKI1dWhZ8igljC4xT7C8qqt4ilzYm1HVNWThQiqVBj6mgI8gAJKsVWkUpbGYlYpFPR3LXKc7y1ORGPAlHVXYQ6br867SHIB8ASFndVZ5X2kRpFaEg5/kTTdfQdJHO3/r89zvdRrSV/HPXvN5GynKB1C6gu3MY5Qmq9wNtRJsCHw+h9ZgDB3pvbCNxZyOa28g7H1UeqdO8QS29biNXN2re98gqC323p42kKBc4ed+H2Vh/jatXX36Lz/adg72ntlBUzlKWBUYrghd5h7IybG6PcFoosLWPOGtpOxksReb2x5iwxhCUUGa3tjaEzVKUOOcIMc06oKdNZikl2q6hnkxIKWGdxQ2W0FrTK3qEmHIBVxbEtIdgZbFPr6y4tlkTlMFZi1KJqX6TyuRJqW1ef4GactQnFElJA5RFwdmrQ65tbLKyOMAajdUiBVIWBfWkzg4HWfgq5vLuTgSsdJ7BkSRHDYk4CwgT0wT59HRULvan7Bymnd46Ow6jdwqnOkXQCmMUhbUMyjSb5Hcr8U63kXd/7BqmU7zwlVU+8LHX28jgyjKPfDty+n1w+Zhw+mP+86TEjB0VYoQEayslX3nviAdfgQfX3RvaSFtcBBS2OYhW6/e8jbzT8RM/D7qFr/ybN348ntW879ox3tWeZ7289oPTW/cf4huf7Dj47WZ29XgjhryGAhY4yWW+fDOnf9uw542kblp8Jx3c9WRMv99n0B9gjGF1WaTV27ZB6Y6IRhtL00lUqrTFGUtVWsb1GK0SwbciltdJEXUqzU6K0pCWR64aben1+rKMtNpVNJTIrm4a6V5Xkt5SSuG05I/Hk0ZkUrTFx4CesrFIs7x0Xp6CTMlQmboqRUpAaeouce7yOoN+gfeKuu0kJ911ks8OkZSkvyGRdZjU9Hi73kPN3gij5AxSjj6nXiInOKRQnRk9MQpZYLcu1dSRqiwtFfPn00aK27ca72Qb6Q1aPvbQiJMm8b53TXDmehsxyfDR3zzCg99Z4MFvDvnV/+0Kk97unPXu3y3BKH7ts4d5/uEhh692/If/yML49Taytfg0vQsKs/4kITx3z9vIOxkrq/Dp98GjFj78fnjhW9c/7tD86S89xke5n7+/dIr/1//mIJPe9/8Og1H8z3/uFF96MmLftU38GyVsvH6YyVm+yEMo9vNJvsf/9639ULcIe9fasppJU+OcY9/gEEqJMqrSUiIK3qMtaDTRdzjroFKE4KXJqvWZsimDh/qDRSmwIgXaJgbapsYYmTaXtBHZCy16VyklYoQUPCOl6FU9UoLhaExEsbU9ZGt7yJXLF3nmpVd47OEHsihfRwqtLKgo8h2yYAPTBZxmaYF8Q2faZEoyCxxZ+mcvb3Df0X2kFDhz7hznL1ygaRuCT7R+P23bkqoSZQxTzo3ateTTrtz2rHCq9IwiEvN9elfeXCE5f5EIifmI05FP4kin4oghR58zjbFbjHeyjRw+1nDsSE2h4YEHL/Dct17hsYd2bCRGS3DSOR6sIhrI3atv+F1qwHn5/l3o0DESbrCRV89eZO3cz9ECafPDrNT/+p63kXcyHngQHrgfSg2f+AT8479/PXsrkZjgUShqPJN2Qq2+/0YSjYKxMEb9aGtHZvo6aAb8+7yGouPTWA7iufJWf7S3HXveSIqiIALWFVjn8hzrKFGhMlijMUoOp9CE0OJsInQN/VIG6nRdJ4KHIeBDwBiLIuF9R2E02pks8pdQWmPyjO6mrQFFVTq0toQQaJsxxjguXLrCxuY2W5sbLC8NKKzhpVcvit6QNcTgiTFSGI2yelaAJEWR5s4RIch7ap0XeB6j6gyQZBri2taESdPQdS2vnr/CQq9iPBqxubXN+qEVRqMRvcLinMNYx3S2+DTtBZJbV0rYM4ppLlwiaFHHff3AJhXz7Pkcne6k46bJFvmnp5uifl3G7pbgnWwjzz8buPCM5uEevP9vG4b2JczPfHpmI4HIS+8/zCPf3Mer77EUq54iBUghX8WKc5ZmRBmg9Yt/eJ5X7u9R+DFlTDQ32siFa7jqGGmk8F6xuTG8523knYxXXoTzT8O7FjUf+dUePx1bfotulr7yJH6d8/xZPs0/2fp3/M2/91s/8Jjxtw7AH/6nMPoe1K9vRlQYTHWMVCsUDvUmhta+k7Dns9bagHaEEDG6I+mIShB9K5TPQibEOQ1l5fABQnBY40hJ0fkOoy1Ka2zOc1tjiKHDGoVWWnLdzUTy5SFIpNp0MtRHa1LocEVBVRSQLG1bc/q1c5xYLvnkx36MU0f34b1n6eARSmcBmV44TSVMWS9aKTofqccjNFJEVRqKoodyWRBPiQx6RBhGSiu2hg3rW9sMKssvf+ID9P7EB9kYjvjKd17m5csbbA63GfR7MtI1D71C6Vw3zYteKcyMcSMquCjEEYC8N+zKhacsN57rQDkXrphmOqbJubgTwf7gzO3bgneyjRxbghMeir/W592/73hs5XtcWdtit41cPaZp+iscOROwDGniG9uI1eKFF9qADeuMK9DGvM5GfvInP8J/e+L9jD8Pi3yVujtzz9vIOxm9Eo51YiPv+0LB36Xgo2xymp0riW9znjUcP8bj6PCbdPwAKf6rm9BegX1m9ve5DvsPsv0nP4D5Jqxd/Dd0Wxfe4k91a/AmNhJQKeB0pFCGGAMxN5qhoG0afNeitdAxtbJgksyh9oGiKFEKxnVHTBIZaaAJCR8N2mjQBa5QNE1NjAFjDEVZUBTk2QvQ7w0oinKm+PqLP/lhBh96iPuOH6LqD6jrMdvRYvQ0+krXhV4KSRXEpNjcGqLCmH5p8Tj6C1ApjbXTBa3z8+X9fVSsbYxYOrrCx97zCEeW+4Sk+MgjJ/i3T72E1nLuKXqKoiC5mOdJSFQZQpQA1Iriq86ihgoyv393zUZm/E3nxU8ZYmkWYQJpqlI7dS+ySe4kS24t3sk2sm+4xuJrCXVNCABpdQE1qNCTdmYj9ULCu8TCpkKnH2wjroVjVxVnDifWl2BhtGMj8eQR/s4v/Ie8xDKLB+DQ772Pn/nQ++55G3kn46eegMWzzGzkSops3/AtXWGbCS3HWcmUnR+AcQtPXYAPn4RTq/Di1Z3HVveT/u4/5fLDR2n+R9C/+gRsVXAHziV5U9dRRhvh3muwWtG0gUktC1GriLZFnpUAKYmyq9QBE20Q8y+KIg8EEo2hdijKvWUxoOitEELH4sATUsyUT0/nRYDPGoMxLl/uCyX02OoCC67BJc9o8yptE9Flj/WNDZrOQ+5AzrmA/EkS1hq0LemabQ4eWuD5s1u4coArwSRm89in8irGSHH4/OVNjq1WLC71mGxvY51iqXR86sNPUgz6xBRouziLmK2VWRUoCCFJaWbKrpk12uWzSjCTQtf5fNNOFCm00zBLh8geNxXlm0a0KZ/3TdvGD4V3oo0cX7Uc1d/AfDfA8oT0o56Nn3qca8lfZyPXsWoSP9BGbFSsbsNz98Gwn1jeZSNr993PC/39eK3Z+CB8+9+c4P/w0J9gcaDveRt5J2KpB//Hn4fei4iNfNjz350JXLt0k9ttG+DVdfj0o3Bw4fqN5P6H4fH3EnuGjQ+C/udPwvpj0Hz75t7zNmDPG0mKgRQDw3FDYTP1Eo3JXHitXTZk6UhOsWU8meBcQVGUInORo63CKFR20gf37Yckc6ZDkMKUMppSWykOBiAGOW7XsbU1ZFLXKKVYWFigX1a4sg/jTdrJmCZYCleKaixZODCJhIZRBqFrKawxLC4MOHP1Ik0jgoDjyYSy10cVxSzWmNZKtFY4Z7mysc1kUpMWCrZDYp/2LJWGaAravDK9aKATU0cXAsbI5W8IcRYlk8/N6J1RvtZMJwvmnzozhaYRZXac0+hSpRyd5k5plfTMUXwfpuHbineqjQzKJcblezEHt2QY92qP8NDDr7OR3RuJUuzJRg5tSP3i6iqcfHXHRj525TU+8tJZPlc8QLoImwdKvn3hQT7w5Bng3rWRdyq2a/i9Z+D449Al2Op3/LvRW3TwF3Lx/JED8KXTO/c/8034jc/Bj/4s6SKEk0tw8ZN390ZitMY5S9PWNJ1cVIcksxqMMSQ0zlq6rqVyBlcOqJImRS+X3zESg6epW4JvKawG20NrGeQjZBNNBLrOIwquifFkRN3UeT630B2NTsK5T4Gr62usaUXPLrPUK+gDoRzQHywB65DfmzQdmItEcEqL6qoxjOtOOP9tQzMZU5UVOu85ILGczpvPJCouXx0S9i8TEeeYioIaR/Qil96FCNaBs6SU53CoaY6/A5xEoCi6LvdFxIjP72GMyZ3a4bpubDUtyKppUkNUjafSH1LR0ZnNc+sTF+9UG7myvs41/bMsH/0Yg5+P9LQhrp54vY0A0YCKQC54/yAbOXVRUkSvHUl88KkdG9m4sslfcc/w1NkjhEbz4/ed56fedxrvPfeyjbxTkRL8J/8A/tZBGK9DF+HSG+gnJqAjYNBYNK9Xz3oDfPU1iUw+fB/8va/t3N+28N/+17D+o+AtnP99GP6zt+YD3WLseSNpOk/TdqCkqOhjwmgoSyuNYt6LQmuM1F7hkkeZgqQdAS2MKGfpuYoUg8xgCDIzO8RcUIwRW5SQYr4/0qsWKIpKegtIFM4xZbZ03tMrZVFZ62j0AsLcWcQ5u9NwleIsI6yUUPoUUQrA1qGtY9ArCEZmW3RtjbUD2PUaoxXaaKx1XN5oGHlLkWpCl5jogs4VqChF2xg8yWS6sTK5zAkh12ralCjcTEWJEAMaiEoTtSJ6iUq1MSh0TrsEYQwphdIyBVABUSuM2XEiCRkqdTuGFr2zbaQg2SXGC0YaJ9/ARroqce7hwKNft+y/oLl8KvxAGynbROGFWHWjjfzCQ1f4Zyd/nRWdOPi+hs2qzHTSe9dG3sloPbzwA2rd20z4fZ7jz/FR3sMJvsL3fvCBtxuYtPBGEylf/l34f/+4XFZvnIH0+j6TOwF7L7aTKJwUPFWKIpBYN4SuxRpDr3AYa0TOPfOlhfmUci9AyPRaS9IWA1gnC2o2bUyp3Jfhc04dAp4YAykpAjCqO5zVKCQfbm0FgHMV1pYSsVrLeDJiPKlni2Xa/ZszW9lJhRkNc/9Sn6u1TM2bTEaURSmDsoizgrvIcli225q10QYPrfZo25qh62Gs0FuV0lgbREtKyyS8mN8/BJlxAl4cg9Kz3ENAotEYA9oYCBraViY6KoXJufKkFITpXJX8muk4YSSnrqYkgVuMO91GIpHgEjqCCXuzkSNrhpVtePF4oikUerJjI+ujdZ5c7RHbms1icW4jdwESUNNh0bi9us/vXoLXNuAnH4KFAoa7L3USXH3+bTjTW4u9F9tTQKWsPYTMbFjsOVSyKG3ofGDSdCRS1jmKdL7N+dmISpHQJpKxeB+xTi7dtVZUhZPHY8QCXililGiz8x7fNeLIlWZ9UyboWZPzxYgIY1WBCwltHFolNCqPIc2d6kmmyOXtZMZwkagUjq8OuHJ2iCkr6UHoakrTJ2cJIEnqxlqLjpYiBDZbT+36RG0heFLaYdH4JCwiNa0JzMbKSlQYvEJb6UaOMaK1IRKIPqGUx5ipCKGMqYUk8unm+vy4IuCR20Zrkk55EuBtwN1gI2nKbtqbjehCxJmaYnpVMreROd4ACVgoZ/pqdxv2rrUVwRpFiuATtE2N7zp0TiuFENAa6QNQEHyk83KfVjLZTRPx3YQYAl0qSNbhrCNFLzO6cxOaUBi1zPpO8tpe4dDacGCfJabEpJGIrW48hhad51ykkAjR0HY1XdtkRlDuGM557+lCFm0umQ9+eP8yT59eAwaSp25anCuFcgqzgrs1hk4ZzgdDKvsolVCxw2hDCCKqNy2GqlktRqOVzMxOKmEy6ybEMGMazaCki9v7PJMcuSJOQBc68DvH13pnWp/VmpgjTXEgtz7avCtsZPpnkJ3kB9pIvyh58Lzi6++CC/sTJ4ZzG5njBrRBiuz/yx+B9xy5vuB+l+BNFNuRtAOR1IkRb46GkBK9qi/MG2cJKRE7jzOaBVdIwTUELBqweG9AdThr8SExaRpSksayEKPMYMiduzGBNpaqLCmsRWuL10GonspjrCUFS2gb6rpBK02v6hG6GmKiKiwptihyT8mUX5+dBAgbRmvFwf2rlOZlvO9mk/Z811GoIk+YE7qksZrWaC5v1xw5vCgNc5k6Ko2LOqcOmL0vKs2i9BATIM4pIVFsyLWVKb9fNjqyoKEU+slpnJgQxVulsAmiiqgIKcuyay0F2tuBu8FGxgs55Rb3ZiOh7VgeFnQmMayY28g9gEtskUDGFu8FMcH5TagsHBi8red2u7DnjaTzARXBh44QPEabvHgdRVHikzAdvA9CxbQSBeUKhbBEMlEkoum8zPFoOxHjs8Zg8+LqfB7XisLk9xtFJVTNFElRCptlWTJYWUGFHkRP1zV432KNonSO5YUSkqQ5QOUIcxrNCmKKOONYWVzgvkPLvHS5xlmZqOeDx2JFiTXdwN5qAs6YPJFPqK/TqFLSJcwcECh8lvXQRkT0YvCgRAIj5lB4Or9cvjFyOk5y47sbyhRZAywGlDIYrVAYSRGFSJfz4rcad4ONvPZox4/+TsWp71pefUA4OT/IRo5ccagE5w/BEy/MbeRux7/jGf4zPsvP8iSfY4/1jacvyuS3J4/Bv3zm7T3B24C9j9pNChNzlKQtPgRKayisoqoKJk0nMye0IuQOXWKizUVLraZkxGknrxQAe1VF8B1GCc0SpQkpUlU9QoiMx0MZj5tE90qrPLTIOlGDJQGOFANdV+ZZDEKVXOxZtIqva76apjKUkkhYK3BG8/7H7ud7l75DiFLINdZm3SN2qMC56N74OOuIVkqiYpGrz/SYKUk/pzEKa+l8EAlxrfEhXpeTB3IKZacTedo7APIdirz9NCJVhCRMHa80JoacA7fi4HbnaW4R7gYbyTqNlI3as40cvhrRSXP+gLx2biN3N6bf2hLV3l/07CXJ/b736NtyTrcbey+2x0hUCqWiNOdphzEiaTEaNzQ+UBVyuDoEjDWUJtFTBo8I43XeY5WhLAu0EWG9GCJB6VmXc8pUXWc0hTH0imVZNCkRQiePWUOKHToPAZIoVBGS5sraGsnX9KoelTU4LccUwlaapROm7JUYItZoqrLk/hPHePDoOc6s1SSVZswgKZBJMXNafA9BUixaJ4xSOGvQyCztqeAeaaeAm0g0bUuIgaosSTHSZvqqM7KwJX0hhWdQM8c6jTATCaLaaT5TQI7Au076CZwJaG24Ldqud4mNCOT724uNlHWiXyuCjqS5jczxRtiqYX0skc5d2MKz541EZZqiMw5NAi1S1soUoKU5jBiwxlAVIoER8uWzy5PlCmvlkj0mYpR0xbSvQClFitKspbWMnpJJhoAWrvw0/9t1bZ7LrYhR5ct9RcRQVgN8q2m8F3VZk/AxEDPHPndqSS7bmFnE2PmI0fCeh49y4eunmTQdJke0xux8TSKIFzEKKufoQoc2VjqVCRTGYjO/P+U+iJhpnfmLxBqLMQk/CfiYiErYSBqJZKfsn5jAGo3OMbXJo5Akys61HuKM/imqLlHqBspwq3E32Ehiqk68dxtZ2ooc2EicOaoYDRS97Ti3kTmux7lNePkafOQ+kUq5PLzdZ/SWYs8bydJCH5/ULEqPCboYUT6g8fRsnGn8OO2IUeifhdPifFVJTKK02ratlCyix6qItmLvUVvqpoaoMkslCsslSLokxEhS4mjqGOiCNKVN6kaiP/FdlEWJUSUqdCz2trk2CRJxzqbPyWdSeUhDiJGma9AKjh/ax7H9V3nx7Bred7lIer1sdwgBVciC7tkCHxIRhU8KHfLzYi6GTqf6JVioKlRmgYUY6ZUlhYt0vhM9Jaa6XmbWKKeVsG9ivm2NIeiI9z5PC9wdQec5FDHBbaB33g02ElwiWHC1fIV7tRGQ5uTpRMO5jdy9mNDS4FmkJ8HMXi8vElBYsHdfbWrvNZKuJSmDUZGidLQ+MRwH2q4lhQ5FQMUOnTV9QpRF1BWFcN2VxVpDjBJVNjnK1HqakgjEJFIZpEATOrRSGFtA1spKuVgeEjRdpPEe33XC4iFJUTNHaguDBZq24eDqmKvDLWKIaD3NHydUygsws4w0AaMMicSx/Qu8+No1gg8zts1sPnuC4APOiLMyxoGSaDJmCQu8l59Id7XofO3krbU2xCgdrDo34E2ZmDElKeQGEfSTKFuRNKSY8Hkgkc6KujKZMeUrJYUiElVC3YYxqneDjVw75NlajRz7nsXVak82kkLksdNyRXL6mOLdG3MbuZvxLOc5zVV+gkdZpGKTyQ9+UUzwO8/LFcnH7odff+ptP89biT1vJDEGFJ6yV8mSCoGYoG07VNbrt1NuegwYE2k6j9IGUfcWlVUx8Tw0yknxcXtc0/opvTE/I2UWUCuSykbL4tdahkyVTiIrH2JmxmRmikr0y4JBVaDp2LdYoJKXYm3u+hWZCIkitFb0qoLF/gCjJQo8eXCJ0mnqrssaTJkNM3VSvmOh18t8/ogPkbbrCJmVU7oCyHnwlHPXWmNUFC4nUndJviMlcMbMCqWlFe2l0hmC0ZLiSRKthhyto0AlUYeVlE3KrCayo5DHbzXuBhuJxpBUQrETNe7FRvrjRNSacTm3kbsdaVaTepPqAFdHMh5gpff2ndxtwpui/wrnPhEJpNhhaBlUBh8Nk6YlBk0bwOboKRJogsZINyAp+Z1ZCClhnczfnnYV68ylF/tWWCvKiT54Jm0ElVAqUlojMhMaqkJookkJTVMlRd0FfBhiVWBxULLUM6yPO7TRFKqczXUA4fUPqiIvQFlYB1aWOLTS5/TFTclfB5k8F3KaxAfP6qLMCG99l3sbJI0QoxQynXXZiQWMUlhrUUqLllJMTIv9EpkHtM4dzEmcZOdzYZnMxsnPm1Jbpw2VUzuWw2Y9qqSyHMatxd1gIz4Z+TKn/9TebOTYxYjrNKePwgfmNjLHG+Hb52HSwUdOwX//ldt9Nm8p3oTWViBFhVIOkxkizhZ0XUdMHjO9jNcqR6aRonCMW08zbrBGg1K46XwFInUd8DHis4BcYQ1aSd9A54MwcZQmJo2zkhNWQBcCMXazusU0XeHywkgp0YaIR5OU4/C+Ra5tX8N30mFNdkIpp61KZ6jbJkeuCmcspw4t88r5NUmLFB6lddZzkgVZOEXTCcMmZulvZ6bOS+dCaJp1wxu10yMRgt/VTS3UU++FhRNiJ7RZV6CnM8mRfoWQzzfGSGEdPojz0EphjDiZlLKYH7e+kHo32EhIZpbxTlm6fi82srTuMdFydWWn12NuI3NchzProgz50P67jrm1940kN1nF4IlJQ+ywpgBVoXRHWUgXro+Kum6Y1DX90rK6WKAX+yLMF1NWbBVdoWHd0PoOraTjdlh7jEqi5ms0fhoU5gVljaJtPSApj9IVGKNnYnWSV5arhi54OZ+gWVrokWLKiwwkLx0gRlIIDHqinRS8p+sizjr2rw4onaFta4oyS3qnlOdsW8a1J8ZE23SzpjqlNc5orBbHRQySnkgRH7rZXA6mKYe8qGUYkTBrjFY4M3UO8tw0TeVE6WcojEGpTHFNUx0mYSz5IDn3oPxbaij3io10KrKx33PylZL+Gmyu7s1GVF3QH0/YXpgwWl2CzbmN3K0IRF7iEp/kXRxnlQ3Ge3vhpIOr5+DoGI714dweX3cH4E3VSLyXBeFcQVWVkpNtOlLsqGuRhihsgeuXFCZJATQ0KFNgjKUoHCEmulbYL3bQQ9GbRV1dJxx5k5vKUgKfY1sN+BjoleRoTs248JkqP0sbeN/RdQ11F2g7T11LJGlCAiWRqYjuNSJ3UZb0ywpvA6OmBhT7lhfYt7LI5bUtnLVUvT7WlZLPt47LayMeu28/BqGOkqmoiUSIntBGQo4krdYko2ceLyGUT2kmk8WtrCF2PtdvhGE2zXtPWTkadvoPYpoJDqJ1zotLDkP0xG497gYbSQauHS55+LtH2HdxxJmF9T3ZyLBMjHobNGXiix+JfPxcb24jdyk8kWdY4xe4n/fwIM9wbm8vPFHCgXVYcvAfPwH/8dfumquSN9FH4ggJ6DyNl94KlSRac1py1PXY02iXO4Kl6BeTp+s6tLYY63BFhTaGkg5iRGmbaaIaa8FZoXRKITBRamHzxARFsrIRJEk7xBRJMc1SEDHPsEhI6qLz4iRQckmvohD1ZumQCMYWhCgR7qSp8V1LmyJaGfYt9dicCOde6Tw/O/P2L62PSSnLpntmY1G1UhhtZ+fGlLMfZS4Eadp9vBMpToutUlCV4r7Wmb+jYCqBb62o+7ReusN1UrMCrNGGqbqxuk0e4m6wkd7Q8NAzjwCLPP5Nw7dOXdyTjfhRoD/RtKVnZdvi5jZy12IfS/wZ/j3gGH+eX+Z/5g/p2MPV3bVG/i1aeG1412wi8CY2kmHdUJUVKinaWsajojTaOFKURq3CQhNk7rQP0znaUuyzKmKMR9cTIOG0oiwrlLao6HEaSmdp2pam7SQCUwrvx1LXUNJcJWqoQmucykPovCq0VrnJSoq1RdQkpTG1/JFTlD4GKbomkawoCrq2pm6aHLUqCm1wruC+Q8ucXWtFlgM9K7obA8ORx4fEQlFQ2CRNddagtCEmJZRXEjHLXIQ47UWBqQVJ3l6kKoTyqUiB7OSkOzzEmMevTgX9pDGNpAg69zmk3O2tJXWk4LZEm3eDjQTl6ZykvNrSo6zZk43srys+9YUJ/+wzL6Gjw+hjcxu5S9ERGDEhAduM9t5HcnYM/9c/RP+dh0lx7W7aR97ERjIeE2JkqV9RFgXKWLQp6EJgezzGKOkCnrTC2Q9RBOgqZyiNDOfR2goVMiZ85xm328J3VymzoqSLt3QFbVSQhCrZ+iT57BSJMRGC0B211pTOAZG69XKFIRK0kJeLNZqi2PmYMXipc2Va77Qhbjge4pxjaWER33Y4q7jv0BLfePESHcIMSpktY4ylC4nNrTH7F6ssoaIpnEUrgw8B7xUmR6AwbWac0j2njBp53CCpipRSzvNL0diHkB2gfBaTUxZGa7zvMLpAK40PHuMcAFVR0Haerrv1+e+7wUba0vOdR7bonb+fp5/4NlHHvdlIMiyOFTqNaItubiN3MbYZ8U/5Oo/wMf4xnycQ9v7iy2OII1i4uxhze95IDiwvYYuStqlJvsVkWW+tLUv9Hj4k2jx32hopKIYgjtpoLUXqPAjdT2rqLhJiwGpFrywx2uCcovWBzdGYLtcznJb+A+n+lfu0ygVHa/DBM540OGsoyx79skRrzbipiTFglKZflTO1VaYLdNpHohIHVpZx1lG3DQmF95Fh3RF9oO8Sa5OOaE3Ot08DX8X5q9s8cHQlR41C2Uw6YvIgpk5NpyvKG09F+KYOccqecUaRkqQsdI4TNSK456OoFXsfZGSqNhRWJDZ2olKN07nPIAV6ZYE3t56Rc7fYyMUHrjD+guPg6WM8/8iLe7aR468tMxiXvHLyCh8xD8xt5C7GH/BHbGP4MT7Ob/Cbe3/hl8dwxaM+sUCysJeM2J2AvfeRhIif1GgNSek8pCiKXLjr4ZzBWEOvsDkXLeNP6y4KLz54aRhTikFpgXLmDFo/oSwc/bKaUSG7GEAZ2hAzGyVhlAj19UtLaQ0hJZrOU1Ul/dIx6P//2fvzeMvOs74T/T7vsNbawxnqnJpUGixZ8jxhY8AYCJMhAUJISAjdIYQQktykSaDJ3N0hoRO4uaRz02SkSZqkSTohDAnTvUCIcSA2GIxtPGBbki3bmkqlGs+w917DOzz3j3dVyQZzOYWkklTav8/n2KWqffbZe5/fet93Pc/v93s2MAKLVUuKEWst1sEQ8lhHppzqMGVDyaVGfrBcsTE/xrSZsFwu2VssS09FBGdgCMM4rc8iYjHG4Lzn4sGA8zVuVAUpQkoR7xxWLFBxLQxQFWdKAGge6xdZM2b8sxiQLGOJ42rmkoJC1weauiLESDaZ2ld478a5E0VGm7XEtodYggvr8fR5I3GzcGS1sUQFpgez6+KIhAqThP2NDpysOXIT43EeJ5O5hetM841avm7z4KT8+SbAkTcSbw1935NQrDV450FKrTerQo7EXJqGOQVCyuPCPaqkNNOvFngjNJM5TSUsu56QEkMIhBhYdR3WOuqqZmo9RgwiTVlshh5yZHdzWsavSjlpTSpPTEURE0JgCIF2GKicY2M+Q4xD9RBrbInN1ifUKiknQkycvXjIxsaMnNO1230rOkZ652vRFikrbqzLe++4dNgRY6KpKpyvRonl6IkWKbHlOeHGcLwinpHiXBZICeIYRmjkE1JgtdTK0aJMmjbV+DiwxrLsOio/fj5a7o7arscaofK+fBbxxh91bhaOqBaGXDX4HZUj087ygod2+dBLH+PiiQWbB/WaI2t8Mg4S+tYF8oe24WUN/PoR4lWeAzjyRrI8vIS1lhgDyQjqq3KCsiXFNWqZCZ3HizBmZdkFrFFqZ3Em44yOPoOE956t+YzFqqXTcjK11rE1nzOpq9HvYVARNCt2pbQ9HLYd06YezVhlfkNMkW7oWHV90d0LZO9JsQOU5SqMF6C51mEUSh06I1w+WKGUhNjiNTHX0p6v1q9zLgojHWdse+9YLgf2Fy1N7Sgx8yWBNY/f11QVJgZSzGOJgXHqneLEYMe5GteePz9RcgMdG6Y6vt6rM1WUxpeRsjLOpjBS6v5lISl+i6sBfjcSNx9HuC6OaFR8b0g2E11ec2SN34oMLDNUAs3N0yc5+jwSsbRDJMTMtLnqUC4zukFYHB7iradqpkUuS2ZSmfFxZjwhFvW75kAaIkZhUlmaaqO0EjWzalv6mDG5xxmDc67Uuo0yGKEPETSTYsloCjGSUklgdVejyCs3nt7K6fKJy46xFi3X/ttay6WDlmEYcO4TDWvloiwRHE+4oa/q+q21ZAyPXz7k2EZNEFO+f1wErJaLuKlqookMIY6SzqspTmUVsuNCoJZxjnhgSAGDUPuKw9WyOL61SDu9dSX1VgQRwxDLvAprhMo5ULk2L+mG42bhiIFsMiaVEuj1cOTOj+3y7k9/mI+94CJnHtxec+QmRSIRGSeoIp+wuR8B//UQvmkX+fw5+vbl0/cibyCOvJHM5jvYbsEkB6wBxJRmJwmlyDStcSimKG5SSTMto1IDQ9An8oSAcrOd0ZyJSa8ZpDQPtF1JWq2totmirsIITCtLSK5o+VOH9x5VQ9v1NFXFbFJhx4s0qzCkEv3dDeGJN3L19y3lrsSIYdUHQhiofI2Q8c6QsyUNPWEYrirvr+UZIVocypVn0cXiAUDH0+sTLmQRg5gy0c+5Uo+25mrZBBQlSTkti5ZZEZV3pceAjE3gBtVMjOmah8WPmUzGWKxTQozFqc+oHdVrFrwbipuFI4tjh+ydvsKJR08yWU7p/XBkjmwc1AAcbLRrjtzEeIiHuJd7eR2v4wQnOM/5I3+vng3lk7/15ulRHd2QaA11VZGzUBkhxB4xMg7+EVQ8YixJhXbo6IZUnMVyVTmT6GOiHQaUMsBIEGIuyp7N6XSM6bdITMRsGJKOZYBUIjGcx1ohxoEQBpw1OCv4qiHr6FhOA0mLgqfEZ4wXkxFiNsWMCFydkohA1yfOX1ly2gjWQIwl6txYw9V01jLERMfySjmDOGdph8TVudvGyLUmaYyxXOw5X/MwAKj40YhWpu6JceMcjTLv3I6x5VfvfiZ1Q85KMIGkiWtZxFpkA0JpTifh2kwLLZ/iU0SRo+Nm4QgW1CgmWWTsVRyVIxv7DdNlxYXjhySX1hy5SXH1jsTjMVxnierhAS5G5OUTtBbon/sN9yNvJP0QMQj7ixWVRLxRqroh50hMgJRmXznzKJWjNFmBPlyNeigmQCcl8htNyKiE6mNG3XjiMoqzwqKLhKhYE6m8QyTgjGVzvkE/9KCJSVUxqwEtmvpgEpIV0YzJpaE+qS0Tb+h7HV/dE1EVVxX4KY6nQw04QwnDQ/CuqI90rE3nXEanFmOioR0lqpVzZSRszhhTGp7OWUSK0zoDIQZyLKYwRMaJecVxbMahRVmLgqmomq7KX8tiGFMaG8Cjq/nq4zSNmUxloUAENTd+kbhZOPJJl7VeH0c2DmomrefSzoLkykaw5sgan4SzAS4nuKeG59tG0g0BzRHFklBiCFgPMQXaqMwbQ1PPSGppnCPEfnysoet7NJdFphiyrjp2DX3MrFYDZlTzNM7hvUMRnInEmKmcxdsSLeGcx0ip9YrYa41UI2P2EoYhDsWcNjYn59OGnc0JexeKQkL1ifnrqOKd4fTxLU7ubJUZDjmzbJcgkZ2tCTxyOF78Ja8oW4NIabovulK2GQ+uxSswxnU8sQSNC0S+OrOjeACu6vtBMJhyesfgxnJPDGFU9mQMZaHQa41VubaQPFHjl/Gkeq3/ekNx03DkE5zlwPVxJBs29xvOnTlkOe3ZXk3XHFnjk5EodyWvncJJDwf9M/2KnjSOvJE4a4gY6qrBSlGBJDJiEpsTh69qMhCHFWIsVTUpo4lCpHaGnIRlF1l2A5WFuqpwztNUDZWvy6k1hnEBEXKG+WSCldH7oYL3npSUxeqwXGwiLFfFIDapy1vph0gfEkNMeOfY3ZiwNa3Z2Wj42IV2rGRfjdMup89Z7Tm2uYE1hn4Y6PqBtgs4b7nlxA7H5ldoUySN6ak5ldwtEC5cOeDchYsc357jbJkx4bwZDWIZMRbVxDB0DKEog7z3WGPH8kZpRPuqxuHIuZzMjQgYwYlFpczmlpzGnKUnGv9ajpgl02r8XV11SN9o3DQcUaXdaNk6d6z4Nq6DIyZU3PrQFh+7+xLnjx+yfXG25shNivOc52W8DHu9cfxB0V9dIm/aKBLgjzyPNhIrgnEeKxlNA855xBRJo7MOjAdVJk0ZRGRECSpkYxBjGLKhrmoqzdcaqSkrw9AXyWjogZIaa22JybC5JJ2mGBFbAuystcymM5btiv3DBXbU0G/O58SYmDYJYw0pU/wI3pGzMps2JbK77CSlPJASQ99xy3zCfFIT40DXdSzbjr4f0M4ym9a84RV38Iu//lG6GKmqarw7ifRD4MLjj/LgLaV+7a2hrjyVd9Tel3GoxhJiIAw9IcVSGkERX40LSNnM2r69FnVeRq+WRdAaW1JwnQU8KadxvkUCTVePuMi11mk59l71QtxI3DQcAc7d/Rh3fOBObnnwFs7ddfa6OOKX5dUv/IrF4mDNkZsQivI23saX8+V8Np/Nj/Kj1/cEV8paJDv2ptjOj7yR1N6OERQgtqILkbbdp6oq6mqCSMRbqOuaGBJoxolgvSXbCc65UX9f3Ls5dlhfoeIJoS9N0jHSIcSBHCPWGcBh7JiDNPRknjjJbcw3mVYeayCnRDcMNJVjWjelhyGgKaIaWR5e4cLF81RNjVhHu2q5sneZxx9/lCk7pDQAmdlsimppAic8GNjaaMj9Ze792GNMplNEDJf3O/YXS6z2fPGrTyEo3RBZdCXvqXKG2jtEikimhPWVwUbGlC8xjpgz/Tiu1QhEU/KYvLUgFmPKWNWQMkK61jg1ziGpGNbUlBkToMg4JjY9A/S8mTiSUyqTFPc6Hnz4geviiBGP+X3wy8c+yKO/ZNYcuUmhKBbLhOsfnatvPkSCwpdtwg9cfhpe3Y3F0ZvtIZDGMaPeAprYns/w3oG4Mt+hH8gpklQxKHUznp4Q+r7Up5MqQ98hJNyomcfXaA7l4g8DMQWcEYzUXDVphRjoQ5FoVt6zNZ9ibVUWnxjow0DtHRlD2we8c0QxkAURx+7WlHPnPsr+8oBFG9jb38fSkmJHd2LKMHSoFCVPNyTAYMeGqrHCrad2+NX3f4C23Sdm5bGLHTmXBW//cEmOAW9LumsXDHuHPaotk8ZxbHNGXdVkDMZajHVY61HjCKErTeGcqKsSr645E3LGOsbmvkUw5KtR6PpErHj5fHIptX1C0VuegTXiZuLI7JEdPhu4fPkcl83Z6+PIZQtJWOWOy3sdXtYcWeM3IShERWqD3gRVxqPLfxG8EwxjXIMrev8yMyEzqSuScyy6oWQJWUPfd3S5vTai1roKayzJUDKM+iWYHldNESPkVJJWrfcYNxm19mXkqLOGSV3jnLuWW4RGjGZUErW3ZGtRkXKx+op+iGQyKcPGxjYbjeXeB+5jbxnJqsxqw+aslEj6EMlSXoMRqKoyFdHbYj68/ZbTVN4TUpmQd1VGGZNyuGwZhoi1hrqCeVMxqSwpF6noxnSCGD/mHo05SaMnIqXSoBYgxFgGMjlXVEIpAoa270AMk6oCI2gqktic81giGssWUvo2qCLPgGn2ZuLImXN3A9D1A1dnghyVI/pIZPZxy+o1hrQDcjGvObLGJ+OBHj7YwRtmcMLB+ed2XM3RQxtjkVeGMbo7pUCtCc1+lEYGjC0mqJyFTqGizMg2VohhIIQO6xq8n5BiR4odkgMaWxRHSOWUl2Igx0OsCPPZDM2lZIERcs4EVQYtTmVrPaKhBCnaouRBEykKxjiGviXnTF1X3HryBL/+4UcpQ+mUVReY1oaQEu0QSo1Zoa7cqN8XNqYTrDEc25yzs7nBY5cuM4Q0jjktJZTFaiBrGZyVcjlpT5uSByWmlF26ocg0r5rClKJK8kZR7xHAWXctGryu/Dj7u7iXV33H4aoE811dCIwAUmqsOedSshgXn2fihHMzcWQhCxIJv5oSY74ujpy9chkJoJWgUlRha47cfDjkkERim+3r/+aoMGiJSnHP/V7Vkc8kSaEPqTh0jcVgGIaBtl0Sho4+BGJMGOOIORHCQIxKSBAT15qgzpYT5NWcpNIoLAY/oWj6VRUzSnQ/+uDD/MaHH+CgbTlctRwcHtJ2HW3fl/TYNIzzvZUhlos0hMwQEjkn6vGEaozhrtvOkFPxgyhKzIwlCqXyDmcdk9ozb2pqX06a3TCQFU7t7vDiF9xWnn90EANklC4ktrY28VVdRppmLZtNAutqQjIllTVnMOPG1ZdBSaU8VpzI3loqV6LC234YPQEZSHhbJgr2fUcMZcDS1TDEnJU0jlxl9AlcVe7cSNxMHHnf5H20puX1h59JP+Tr4khOysavJPIM+te5NUduUvwqv8qCBV/IF15/SkAG/bkD2LTwxtnT8wJvII6u2ipHm3Ixi2WIkak3qCb6bkVVT8d4C0+ezOn7tkxz0zw2KcsPG4bAkDJDCEwqj9iq1MTDQDskwpi0653BmQxS1D2Vc8QMakuMu3dC5TwpJVIWhpDoQ1fiIXxVQvq6Fu88m7MZG7MZL7nrdiZ1RbfsyztRpe0jMSspFbWOWIdKcTmjQkZZti0xBu669RT2XTImvirZZLIqizZwbHuHIQ70/UCIobixcxzN80oJBMw4U07EMWYSiTSWYJwt4XyfGMcSYsDZ0ozV8RRbssKKqklUYZzVnbOSyRjjMMbzTBw3byaO5O6J30XbXT9HzOMJjCXOdc2RmxTXZhpdr7P9Kh4LYEC2nvvKrSNvJCkWOWdMSswZxJNFqFzG+RkhQcCiQ4eVYiqrK49BCLEi5wExZZyqIDhTI6bMkli2LTElsgoxZcDgxNE0NbdO58XdTKkdtwGGEElJiPFq8qqO+UWJGAPTSU1T19R1zWLVctj1RFW2Nzc5sb3B5UV3LSW16zPDkAixaPe7IdIO6VpT1Ej5uRjH7becYj5pOHtpMc6JKKF+VxYrhqjU1RTnGoYw0HUr+iHg/YpJPcWaCauuHWvWJWYdvZrkqk/Ei0vxLTixiJHxVF5O6nZssio6zvoYCajFkFcWiKsN1RtfAL+pOLI3Xtpa7lqvlyP2bVeQlad/nWX6w2uOrPFboW9ZIItc7ki+/9Iz/XKeFK7DkOhgnCsNMur+haRCTBHE4IlYUpHY5kgOATUeMR5r6jJjGyFJiahQVVIacNbizJjTJMU1bqWc5PqQEbFUtujkN6sJQ+iJYcDYchGJwKyu2GjK8CnnK7wr0eWVhb1ly97hghAGTu5u86GHzmGMA5FrU/W2NzZoqjKnQSiDf3IqzcrKVzjrMMc2OXNih3sfvACjM1hEWLU9MQQymRgz1ijeew4XkXSwoK97NIPxHisGGU+QKFjhicVhrJe5sXnLOJL1arRFGU5U8r5SyjiKh0ClfA4l8SJjjR3nzN9Y3EwcufjR8cKWMl/+ejnygUcvQVbi7WuOrPHboM/FKPpC95xXbh15IzmxewzNxYS3v1hhjaBaRqY6XwGgsaWpKpqmoRtdtDFRBhNdC+LzOCs4JyUJtqrAKKRAznGspUeiuRrznTHGE5OUC1UDXhJ1U1PVE2KKxFBUQL0arCpDGhAGQOlDYtX2CIrznrtfcBtve8/94ymtlAdWXXFL177Eb2uKBBJqx6AKU2rS3jteeOst/Pw7PwwyTrVDWbY9IWUaX5UgPynlDrEVUSOrPpBiJC9bnDNU3uO8L1EVY2nVjIm3xXFcTozWFINf1nK6jDESx+l4opBSGUNrxoUijSF/miPhGZg1cTNx5D3vfpTz7jy7cZeNtHHdHJGP3I+7/BDppYHujZssP7rmyM2GJUvOcpYTnGCbba5w5fqeoI2YCx9HXhPRLxb0zc/dneToqq1uRT8MLNtFkc7ONhBbnLfOelLoyJQTkmbBWE/btQwxEWKkHwaGMDCfTJk2NZIz2YxhdTETYl9kndYwtQ15jITQHCFnQkzkHBhCLPO4AQndmDGkqLGQEvuLjrYLQIl6DzExqT3b8znO17z25S/mh37mrSyHeO10t2gHskqZ6IcQNRTFjC1ZTeV0F7Ci3H3bKbw1DFGLQVhKuGAIPdaWHCdVpa4ajPEsVitm0zmrdqBd7pOGhLWGPGTECN56sGCNoqaUJawqggVJGBkrsEbIVnC51OXFFs8F42lVxgyplEZDmrnxpLyZOPLDP/NLPOiu8NrVZ3M83cKiXV4XR3h5It+yhBqGP7jC/uM1R242LFjyABd4I1/EaW6/7o3EvBLM7R00gv96w/CWVAZfPQdx9I0kw7lLl9ieN9SuIsahOH+HlqaeYkh4X+FsVYxPyYI4RBIpDniJVBWQluzv75Nipq5rjDEYU8Z+WuvKGNW6wYihG0pu/xASSa+GO5SaryYZG5UZxKDjECDRTF35ciITxfmGzemU+aQha+LE9pTtjYa8WAFCSoKRRGWFqm5IKRNCR1U3eF+TUqLvO4xYjJT5GZPaUtdl/nhVObBw7uIBL79ni26IGGOYT8p7izGwt39IzkoMkar2xJjx3gJCNwxozgy+BBEWV3Op7VdVg3cOYxx2FP2nPJSFY8z9MsaO8zsM+ROasPEZUOTcTBx5efVybu8+l44tvrD7I/ya/Oujc8TDic/uWHolnat43ee01L+04NylA15+9/ObIzcT7uKlvIg30XOM38fXcy9/7VoD/neCqeDWL4ShUlYPKp/xxfChz4fH/uvT/KKfJhx5I4k5s7W5CcBqKM3ApKVpnfIhglBXFUYG0qpjiIk4dIR+RUqB+XRCCUtMeGtx1hUJ46orEddJwVg2ZpOic7eelMFYz5C0SEXTVQmmPBGd7RxdN1B5T1N5Tp/YJY+NT9VStrBG6Pqetlvx0Nlz+Mpw+sQWIkLfDyzajr2DQ7Y35uXW35Socs2ZPiaGlCntWmFv0bJsA9tbDZNJjXOeE5s7vPWdH+L20yfY2d4sMtcEGiMpZ5ZtUSRNKs+k9lyd0phTwhrD/nKgbXsmtaeqLN6VeHEFnJlgrRtr3EJlLYMWk5lIUfOY0WQmGKzVMqP7GShb3EwcSS6h4lggBHuGdmGPxJEomXu/7Oe558wFjq8sy2+/na0/fInmr3+UN//rt3D78mvZ2Xr+cuRmwkAgUziy5DSeDQYOfsfvMx7e+C/gjq9VLh8kfumrlfAXhN/zbw3/7evzc3IzOfJG4q2j3tzi0pU9+hBoKocTw+FyRd91IGXaIGJxzhTDljHMphOyVqQw0FQeV1UlDiNGFocH1L7EYzjni5ZfDJAxWk6vMWe8AXFjEzZFvCuNUjeOFK1GOac1thjVckI0Y13DpCppqckaJrXnyv4BiuX1d7+Utmt59wMfJsZICKVebq0rjl9xrLqOVdeiORcNf91w6y2nqZxj77AvUeVzz+e+7BWcvbLPv/+Z/8Yf/4ov5MSxTUA5WHX0MePrGTFGujRghsjGrMFaz2PnLzFpPJUrHoKUEyFCjIm6KoscqsQUqHxTEnN9BSYzhGEsq1yN4hOcKUGEWcts8xuNm4kjq/44b1ZHANpLX8aZeo8wnP8dOdLPe86eeQBXK7e7yPG/+iAX334ce9Gy+NO/yo//yJyvlj/wvOXIzYXT/DyeBEz473kD5/lv/FV+p/pUcxLOvAmqBu5yysv+T3j/jyntffD5/87wi38889hbbsgbeMpwZCapKu1yxart2JxUVFUFxrF3cEBISlW5cUhPqcsaGbX6oSOmjLPFDyDOkWMgpcx8vgEkspprTUTvfLGdjfMWoNTEK9dgpp5VH2j7ErtspDipvRFiKhdNCCs0l4VCM0wmGyX9VItO/7DtSZQm7u3HT/CO++5ldz5le3ODgIMMTlxpEjvHtKkxxo0T6yLHt+bceWqHd3/4IWoHCPzce97JvJny4cfOcd9D5/i8V7+E173sBZw+tYszgjWZJIqqIcRMSpkulBN5tzcUh3Ptx/fvSuJtTNdUOzomFXtf432Ftwa0DDpy1uOrqrj1AVd7GCIhhk/9i3wacTNxZLp8GcvcjEuC4fTsdrY3u9+RI661vPaDX8TPpZ+DZc/mZ7Ucu+dhcjYsXebSH3kz/+e/fpxPr1/NHRv3cOrk84sjNxNO8jpaJtc40rA76vn+/2P1GLzv/wV3/EE4nuGuz4Xb/jbEqHS1svVvhbd+s3L5PXDuQZ4Taq4jbySHyyVd3xJi4PJhpKnKQJ0QSn5QTokkQl1ZJnWDSnH8pgz9oOQYqH3GOYt3Rd5Y8oRKiN4QhnJilHLRX3Xkiq2wDFgxzOczmiZz5XDFsl2NDudifJs0E6q6YegXCDCfbhBSJikMfYtB+dgjj/OLv34/y27gHffdy7ypWKx6ch/5kZ/5Re5+wR2cObnLLad2mU5mTJoa7xxomUXzyCMP87O/8Ctc3tvHiLB/2I1xFRdZdpnFcuDBs3v8+r0PcevuJt/6x76UV730rjGXq1zQQwgcrgLzqWfWVKzalsWyKwtr7Uv0tymqnJAAUTSWHJ5rU7ZH+avmjDiufW9KxYZmrCfH9DTQ5fnBkf/27gc4fumbUOAxIoeb/44D+6+Z/uyZI3Hk4f/oePhdZzh78ZD7Pr3nxV86cMfn9Wy/cODEbs/tf/FdpIP38K/+lxfxFS/5yucVR24WCJa7+QMocJbAWb6P9/D3UY7wmWa495/C/f+yOHne8dnw8t8PL/kSOP1yeM0Z5St+ELrL8B1/GD74K0/3u3nyOLohMUdmsymTSU3fB5ZtzzCUE42OMk43lhJiVoxJOAPWeqyr6LqOEIcSjRHLSc5aS2Mt1jmqqiGkRMgOzQMiDhWHNxbnGjTFckoNA9vz2ThboifHULxVYlitFhjrSNmwvxrG2/6MaOBDH32Yf/JDb+HDj15CVbloFlhrcBoxE+GX3vkbvPN993LLyV2++I2fzmte+YpyEMhlzncfE3uLliEETm7N8EY4bDsW3cCl7pAuMl68JW/1kYt7/OwvvZcTu9uIceU1ZkNKyhCVtl9ROWE+m7CSjq67apIUvDdlTKpcHbcKaUjUYwxDNeYuaYacLCm58UBtQExRD5kb7xG4WThy7uObnD58GQHl0cnbOLf7XRyzyi+98/LRODIETk428NuWw9/o+JV3DvzqHG79/JbP+UMrXvIFLRyP2BPnn3ccuVmwxQvZ4tMJKA/wX3g3fxlluK7nyH0pgn3kF8pXswkv/wp409fBS74cZrfAPZ92k20k25ubOAPOeqwR+hDYX7Zl0lzfUnvPfDoBcSxWC5yxTJoJxlgwBp1PSDnT9j193yOjtt24iknT4Lyj6wf6viUnECkXZ1z1OGexkolqMNaN40Nj8QOEwLLvSTGOg32UlEuaqyCIZmIY+Om3vpcHzl4qC70qSYtCxpqMNTCEAc2J8xcv85ZffiePnb9EU1WjZr+YDw8WhwwhMm0qrLVszRqWbc/jewvaPiDWYazh6gTGjz38GO/94EepmwZry9hYA1ytR0xrw/Z8wmxSI1JhS6ZFGbjkTJFtCmBsMd7FTNZATKkY9JwjxnIrrVVDzpk4upqt3Pj6903BkUf30MNv4c0645S5zNntv4vTDmvqJ82RD/6nmod+oWH1Fw5wFfzaT0857p5fHLk5YIFv5S1scIILfOh3sYl8KnQH8O4fhPt/Fg7+Z3AV/MJ1zst6pnD0Zrur6PqW/cMl06ZmMplw6vhxQowslwdoLpF6KV2VaFpQA1hEQYxHNTKdzKirCdaMuUBasn9Shq7riDHSeIv3vmj8h46Qy6wLSRkxFd5lRBNDCrRDoB1ikUeGAAjWFp3+3uV9Hjl3gY8/fJYPfORhjCjOObKWE1kY01yttaWZ7hwhZh59/CJ7+4sitXTFFDYMfUmVjREjwrSu0aqogOaTmu3DlkuLlkU7jnV1Fkviwx/9OJX3xKxkBWeEui6qos2NGYvNGSd2ttne2ixjU0elzqrL4+xyg3MlBTbERDJmbChnQhqoXKZSrrnJM8UYh9z4ssXNwBHJu4TVm4gYPuYeAnmYxshTypEf+a55+bwM2OPPL47cDDCcwvFVLDHs8TFaHnpKn39xBb7vrwFS7iifCxC96spbY4011lhjjd8F1qlta6yxxhprPCmsN5I11lhjjTWeFNYbyRprrLHGGk8K641kjTXWWGONJ4X1RrLGGmusscaTwnojWWONNdZY40lhvZGsscYaa6zxpLDeSNZYY4011nhSWG8ka6yxxhprPCmsN5I11lhjjTWeFNYbyRprrLHGGk8K641kjTXWWGONJ4X1RrLGGmusscaTwnojWWONNdZY40lhvZGsscYaa6zxpLDeSNZYY4011nhSWG8ka6yxxhprPCmsN5I11lhjjTWeFNYbyRprrLHGGk8K641kjTXWWGONJ4X1RrLGGmusscaTgjvqAx/9tZ9GjJBzJqdECgMiSsoQU0SApBlFySmRM6ScMdagKhgjeGsQZzlc9IQc8d5gsZCVi5f3uHJ5j83tDfoA01nFZOLZPzjgYP8K1guHC8sj5w64dGVB3y6xVqnqGSlEvAQ2NzxZHNkJoRtoh8D585doasO0Mpw8NWUYIqHtqSc7LA96NmYTJvM5fddRNY4sjuVqhebEwWrg4rnHObXtOXP6JDklxDgmkw1uOXWMjOGRsxfZ3qzx1rC7c4yNzS2c9RgDvm64dOGAEHpCDKjJnD13kRQzOSuzJuN9zaOPL/n4Rz9OZS2nb98lDZH5fJvtrRmz2Zy2X3K4OCR2LZPKMJnW7OzcQt/1HHYd+4dX0KxUVc3y4IDKGJr5Mb7lO7/3aaTOmiNrjlw/ROSG/rw1njxU9Xd8zJE3kmEIKJBSwkrGiEEM5BRRDHVdkTXT9z05JZyvkJzKC8FQe4cIkKHxFTUVTVPhbUXSjKsqztxyAiiPE1GMdUz8lO3NbS5c3OPxS+fpk8E6y7FNT4qJru8IQ+DY8SnTjQlthLZvOVzsgXp2dudYlK0NoVtl+gGcrZh4z6k7tmhqj4qnOnGMRRd5/MI+3apnyD1tl6mncybbu3TJcuXSJU6c2OXYsS2srenawM7ODpPK4Y1Q+YbYBw7aBfXUEA8OOXd+D2szBot3DiOOdmjZ3zuknxqaqXJl74Arhy1nTm7Q1BOmm56t2QxMReUqBNiczsvvoVtR2czGbEpdNRyuEpWbM8SWGJUzZ25j3tTsnti9fsY8Saw5subIGs9PHHkj6bqOqvY4Z3DWlJqYWNRYnIIRMFikFqrak1NGYgbjyCrUdYMxBs2KykDOGWJGCRhg4iq894i15BDHhaOmOTZlyJE+GtDzHN+cMNmtObZVs7/XIlZw3uKs0MXE4aMXWF5Z4mwAAURwYmhXicMrLZPpjK3tLU4d32Zj0hCDMp3NWS57UOH8+UvE0FFPhcZZDjrDuccPmNWOYVBuqSdc2Vsh4lgsO/rQs0CZTyZMpxO2j29grXCwaDl/eclB21E3ikNglWmXKw6uHJBTYrU07B8ccuniAc7A9vacMydPccdtx+m7Fb6qMaaibQOaIlVT0XYTju9MEXGkFJhMHSkrQ98Ro3JsZ4c0RFKITxdn1hxZc2SNNT4JR95I5hszVBVrDSFE+hiZNh5nBFBEDFkUbzyCI3uIMUAGMZZm0gCGFAZsyNe+R6xgjUFyxhjBUG59jXeIKgbBVhXbG3Ne/4oX0FSWurFoFuKtcHDY0nc9VqAbIulEwohyuBzo28ThsuPE6U3a/cDWfIMX3HkrjXfMqobGT5huz1GxJF2wOthnseo4tuMgR7w17IWeYyc2ObbVEGPCWZjPZhhxHC6WJA2cObnF3XfdyWw6ofEVRhwPndvnsccv0EyFdpFJCc49dplJ7ZhMLNPZBmHVsnfQMZ86Tu5ssT3fYmtzjq8nPHr2PLVZsbW1zaSpMbZib7+j8RXbm9vUdUPbrbh44TzkzM72FlVdE6NC5bi8OHh6GLPmyJoja6zxm3DkjQTr2L9yyNZmw7KNPPLQ49x15ylm0xrjLCIWomJsxlpDjIoaRUXJYumHAAmsKN5VOAfWVxjKwpMxQCaFSEyZYQg4Y2gaD9mxPZ2xeZsjqbJadaiD2kI1mXD20fNUGjh2fM72sXJybPf3EOthYsidcs+dd3DHbafxVGxtTgkhsbm1zWy+waobOGgH9i/vcWJ3giFyuIgMRmkcTCtLUzv8HEwOVD6RtWVre8rWxowX3H6a0ydOE2LkYLHPuUuXefixCzQbFfONbS4/fpYrV64QYg/RQKqYT+ZUzZTFuX2aeovPeeNr2Nze4PCw48GHLzLd2OTYRgNZyTEwDIqRVE7yCEYMlas4tnWcPgaM9UynDSlFssCwf/j0sWbNkTVH1ljjE3DkjWRaT7C7FufKKfGuu05SVQ5rZCxFZJw1qBiygqiCylg6ADRhLTjrMFoudkVIKaM5gHFoVmJKYDKSM0OIWGexJuG9oU2Ow4MFVS1MJg1Zlccev8j2vGJjtoVgOXx8n+MbE2499TJwDXsHC2pnuOuOW3Cmoqk81jn29g7JCEMIDF1ge3PG617zQh5+pKJtl0yrCXt7SyaTCfP5HGuU2CdsJQyxpXY1J7Y32NqYU7uay3sLutWS85cu8/FHH2Nj09OuAg/e/yDTmVLXSmNrjm1scMedt9OHxOOPXeLM6TO84lUv5u47z3D27CUW+yt2d7fYmE9pKk/OPZXziHXMZjUhJEQVTYmmqmmqCd0wcLhcEGMkZ7De07j66WPNmiNrjqyxxifgyBuJtcLUeMQaJpNN5rOBnCLGVuScEcmICEmVnCMpDVgjiHPoWLqwtihzyEKOgRgCJmfESlH0GINRhzMGiOU5DShKP2T6PjCdOCpvEM0IcMvJHazzkCH0A7eeFm6/dRvvPAnD/mKJMcKk9tS+pvI1XTewte04d+4CQ3ueEyePc2p3h63ZlN2tOYcHh3Rtz6qPiK/Z39vD+YQ1DdNJRSUOMZ69ywd0q57Leyv6IbG12bB/uEL7jslkzpXDBZUJzKcbHNuesTWdcvttt1JVUx595CynTx/nrrvu4vTJE3grDDsD0xqOnzxO7ScY4GD/EhvzGVXVkGMElKyKrxqq2rNaBRaLlr5d4f0mxggW4eTW1tNEmTVH1hxZY41PhuhRtF3A5d94C6jFVQ5rHTEmUEWMIaWEasCIEJOSUkRzxjmDtZYYEkNIIIoIhBDIOaFaDqLWOhCDkLG2nDrbviOlgDGGlIVlsEznUzZsIoZISANZE9Z4nHV4ZzFk0EwISsiJPiZSzlTOkcKAMRbUYrxHNTOEgRh6JpMa5ytUFUVZLpbsXTnET+fMNuYMqwMq70CK4mjoI3uX97h05QoGYUiZPiS2NueIwOlT20xnUx47e5F2ucRUFSJwfHuL47s7pBiJMTDb2Ci1bN9grHCwd0jMPbPpFCOGmBKZhBWhcqU5vVqtQAzWO4aQyTlhrUMkk2IkqyLi6EPk1b/3jz3N9FlzZM2R68Na/vvcw1Mq/63qGhDEGATFV5ZhSOQUQBVNmZCVECKqiayQIjjvSEkZhgFXgTUWA4iBlCLDEMlZQDNVVeGr4i0oyp8aMRU63aXvlcfPPQYbholXrDFU3jNELY/PijgHuPKmUkQkggiK4m2NMQYRR87gXMX21oyuC7SrJTmWn++sI/vE5PSUZjrDOUeaT0EzKSXSJBKGgHeOE7fcUrwEBwsev3CFrc0Nzpw5gbcWawR3W8WF85c5WLZ4Mcw3ttjY3Cb0PUYUVzXEmKlMImtmY2OCMkFVCcOAiMOIUFceZyoCgUhLiANTJ1hjiSnR1DUhRIyBurLEnFkNN16Rs+bImiNrPD9x9GY7ggE0R1DI42mIlLDOIsZgnUNthZGMxkCMAyIZJaNxIBuPQdCYSWSsr5gaTwyBGDOiCdWMtyBYjLUsU00fhP2LF3j4/nvZefVdbE6mGOtICTT2qBhSVDQFFFNOqZIxGIZk8FVp3HoMKStZFDQy9Im+C8SYmHgg9hhr2drexJiymOSccMaQsYSgNPWUphGmswliDF03sLt7jLteeAdOoHIVOWWG2LNYrDi2NeP220/TTCfkLCwXPaqJpnaoZiLKEAaMlFO3cR4000waYlT29hdok/GV0HU9ORs0ZkSFqqpRMXSrFe1qVU7wAoqAOdKN5lOMNUfWHFnj+YgjbyQ5BlQBMRhrAEPtBRUtNW3rGYaEFYPzpU7uvCHEjHfgtys0xeItmNZEVbIIGhMOg7HjKTQrmhXjLSlnlvuXyFzkmE/c+oYXU1tPTpA1A9DUNSKCyQE7OqQRg5gajGXYX4IMaCoXjwJCxlghR6hcpmmm+MpDyoixHBx2qOmYTRucNYSYEGNwziJWMCIIHlWofQ1kLGAspAx9HxkyYDzTuuHY1jE0C10cqBuPMQ5JGcmJGBO5Kg3olBISA4oiQUGhaVz5HIcWYy2zndMMi/O0fUtIWm47tS8na2Px3pCTkrnxi8SaI2uOrPH8xHU42xPOu2IIu1rmVDDeklMmK6hmVBNxoJQIbI13Qgrl9Om8oTKWSMYiaBayDKhLgEXEoGrIWbHOkVPi1PFNrDEYA6KGlCLLVTuWGRyGTIoZNYZVF7jv/gf48AMfB+DkiRPcfdcLmDXbWCkvWGG8iAzWeayU5q6IwdYVIWYuHi45ODzgtjMnqEz5vklTE/qAJoeximZIUXEmUzcOaytihhgHqqZGQ2DaNBw7tonzDftX9sEYrBEmlYw/19KH4vo21hJDIMVEyokhDoQ+MmkaUCGGWNRQ/UHpO4hQVUrfl/r41uY2IQuL5ZK2G+i74Sklypoja46sscZvhyNvJJoTKRRyYhxhSKCxRGFYh61qnPUkMiH0LJcDvopYMXjvcZMZppqg7QKrGVGDGmiaulwcacAai1hPUsWachHFkNAUyRpLacTUNA3klMAUB7XkzN6VQ374P/0k73zHO0EV7zxG4NTp03zd1/9RXvKiu0kxMIQeY0vDt+8DIqWWr9mQhkDIys5mzdZsG6ORlATjTNHlW0NCEC0Gu6LZd/i6ISQZlTIOUSFHodmYU1eelBN1U3FwsGJ7o8ZZC0YISUlq0AwxJdoQ0RSKRDMNxDjQ1JYQMsY4nBEsiT4qzlXUVU3sW6y1WOMQozSTCc18xmrRPo20WXNkzZE11ngCR0//FSGEREqBoetQHRCjGF/06ykmkpZyhjEO7y3OWbx3WOMIQ2S5f5kQBnJKxD6gmsEYYoIYwFiHYsnZ0HWB1WJJt1oyDD3GGoz1+Mozmc+YzGZYU16+EcMv/8o7+IVf/GX6tsMby6SZ4lzFIw89yI/9p5+iXR5ijWDFYV1FEYZqqc2nhDPCZFLTVJ7KCZOqwjuHsxlLZli19F3HMHRkTUVVkyNtnzhcBparltD3pY5vlKZ2pVkcI0YztRV2thvq2o8lCh1d4IJ3lnZIXLi4jzVK4w3z2ZSTx3epq6YY+cTSJWV/1ZNzRmNmuexHRUUudwAiOOuoxDCdTp4Ovqw5subIGmv8Fhy9R5IV6yyoQUSpJg2CgEJKMPQBsQPeOzRlrLF4X5X2qyrOKqJaTm3GUTUWNUJMxVeQUmToMn0qZQRrXAn/s2C9G0+5gqqgMRJDaejaUbb5q+96L2GIOGfwzjOpHJogdob77nuAhx56lFe84qUghr4PWNFSyzaCwRBTJveBMARC14OWcCg/BgmqCHiLipJixBqHtZ62D9APNLUrJjsRYvAgQu1rBCWEQNsuaWqPNRWKIeceK4IiiIXNmaOptvEGVqsWbwTJYKyhahpiyqzaHlJkc9aUMMRcYkSeKH8oXdfROHckyd5TjTVH1hxZ4/mJI28kk/lGMX5lQBVrSrR3JiKqeA9JKRJDkaJASZGYUkk0tQ7wpKz0w0BtlGyE0A/EWNzJIUYWixYjlmM7WxhfMww9OYViVJNIRghDKmUMwFeGRdty7vGLiAjeObwVjEZUI0Zg6Ab2Dhf0faQfAsYI08mErAoi43MGhr5czDlHrDOIWFQVZy2uqooeVUpSrQJt29Etlngr4Kf48TFixo9VGBfSjLOQNRGHgQgMcYAsqCreW8BSW4e1pdZuBOxo7stZ0ZjQHFBKr4Fc/t5IKamEXPoTxvqSW/UMKHLWHFlzZI3nJ468kXhXFChZIBsl55J5lHKPN7bUoqViyEqMA/HgEOsM1lWkrKRcNOxWirQyScaIYCsDxiMkhgEm9QTni+xRxFBN6nG2RQQn5eRpLZiKPCQWixXvee8HOTxcYQScM0ybmllTMfTF3OadUHkD2kOOpTSShBiUTCKOaiPvK7aPzVFNhFhC9Lx1+MoV01sqGVAJZeh7rLFsbW1gScUMlku0OeO8jRAzzgnOWZybEZIhi3D+4kUO9y/jnWVzc4bSYNRhrAXr8HU9lmqEkDIxJNBQvAQpk/oVXUjYqqJ2vtTle8U5YdrU1M4+I3qc5wxHasdkOmFWecKwwlldc2SNT8ZYEiVnjIBIUdut8alx9NKWGlRiuc3WMgcCsRi1iBZpo2RorAE/ISYPmsa5ESBKKRFYT1ZL163IKVDXVXE7hxLk10xqNBdZYz2fojmXxcklYg5YX2OyMq44PPLYOf7l9/87lsslcw9+OqONmW1rSdYyZIpap+0xVc3UTwAp6qHYl2TaZIiAjAY2gBBWWGNw3pXSSy6blLFCHIoHofaWFGuMUZyz5VQoUlzYtvgLUsyoZoy1WAsKWCMc29liOp1ReY9oLiUYW8ozquDrCVYsMQew0C6XSOiYzqYolnpSY32NF0GM4q0gOSOWknqrN95B/GzmyL/4v36Qx188x09P8+Gv+Qam5jhvuP/9/PnDf8HsHcKbV562W3PkeQ1n4NPPwHQb/uSfgWGD297+Vv5n/h13fGiDH3howX8825e7vTU+CUfeSJbLJXUNRiwgpD6W23KhzJUQA2KomgpbOYZ+QLOSU4asYIpdzVVTslFWl/dZLA6orOXkqR3m83nJ7rMGKKofMQaVDDkjk4paJoASwoAI1NOG+XwLEKwR5o3n2M4uB1cu8/FHHsFO5mydupXzD3+cX3vX+/mcz30jTgxowhiLMQ3GWKoKUi4lln6IWCmOYOtKJAeaSVlK9HmOCFLkm2NPIKuO5YcyuAlRVAzWGrwri0XbD0hUnHOc3N1FSWhShtCBKnVdYV1VWrsxITrWt3MmhsDisIfcU803mU1naIa2D2SKw3tjPsEaU0pAxmLlxk9RftZyZGOL/a98Eff/1degboL6zwDd4cILPpe/8rfez2t/7oAXbq744Zf+BvI5a448b/E1r4B/8QfBT6H6QtAd9j/zq3jD31rx2ncc8FnTBe+f/Ar3rsIz/UqfdTh6j6R2QIScwHqME6xhNG8pQz9gPDjxxD5CVjSPuhdRqrpBkxJWK0DZOTZjc6NGxOBdaWhWdQMwjmbVMh61rtDRgOWMIyfFqLmmdtne3uJ1n/ZK3vZLv4olszr3IMtlx7R2LPYukboF3ggve+mLccZiVMewWUddO2LKxGFAAeMsaCkTKEKiKqfEPGDs6DAY6+UaMkaKMS5nBRzGG4wYUo7leH3VnOc9U2eJMeFHtzXGI06pKjvmUBliyKiWhqg14+KrmcbAzvaEkCsu768Q8Vhb/BLOGUSEru2pvUOzgJfifLvBeNZyZGuLe37vZ/BrE0VyxIRD8nCS7csLdi71kAyymvGSO1++5sjzGXcdg5kvuT3DAYRP5kg+rMnGAeuN5Dfj6Om/zYTYtxhNmJxLeN0oOTTOYLLi66o4cqVUFVIspQC4qh4BWzusghFFNGOsRzWxWgWMqzBiiTHQt0uGEKhaiyDEDL6uUS3KHoclhEBlLN/wdV/DQw89wsVHH2JjNmdjbthsPMu2wxjh+Jlb+azXv7bUsEM/uqcjtm6w1pIqW8omAsZWWFveQLal9m5CLFlRQnFFZ702a9xCOV3myDDkUubIgBhUMxlISUlRsdYRYiQrWOMw1iDiQRJihDhEQDBSgtLECs55rFhksDi1rMIBi8WS+bwh50CWGsFw5WDF7rEp3viiDHoGKuDPZo78VfNKPvqjP8Ph+z/K8e4+3nHX7+PiT76c77n0ZXzpqf+bx16yyee/4ZVrjjyf8S/eCc7CY4dw/s3wRd/IxZ95NX/30TfxCv4P3sJ5PpzX3ptPhaNnbSlktThfYU2JAb+a2SMqNNMZWEceZZ3WFkVLTiVtNKeEsXa8KDJiLb6ZkQGTAvhIypA0EkIC8Xgv5YIF7KheEVFQxRiDrz0xJXZOnWIyndIOkWXfg/VcaQOiECN89e/7vZy+5TRZlb6P5JQQMg2Cqytq76mMJeXiGBbKCc5oj/cCtibHTNRMTBnIVN7hnEPFYLSECMYYyUOkqRzGCFmEPib6UKSrTWVwlFN4HCIxCsZWpQxiDZWX0uQtr+DaLyfHiFGwKCd3NqmcwYqhD5mYM2Icp04dJ+dI1w0Ya/DPxCLxLObIGT3GK/7tR7j/Ax/g4rd9lO7PvIPpV+7w1V/wp1joZ7HzNbucWnPk+Y2LK/g7/7XETf9Px+B/+C7kq3f5ut/zJ/kAn8nP8H+tP7HfBtcxj8Qwmc0wYsuQoSjE0BWtp1okZXJqEclEMRjnin6/6BBLJHfXE8IBmgUlE9VgrWdSm1JHToGMINaOJYyM0VJ/JmaMsfjajz+z1IZJSo6jaS0rIUYMjiFBCj3TzW3ueuGdYyPT0KQJOQaSKlJ7gprSjBQwIqi1SFZSDMXgVtWoKYuXquBEwXiwFKWRFhOeQcmpeAQyUpzaGDADQiDaEpfurIVcIiuy5tIfAFIqqbkxlFBCAFRKGKCCWFcceQnE1mSFmBMpKikOuGmFNZbsHTmXmPQbjWc9R8QQcqafKthMM1mxWw28tn0t589M1xxZ4wlsGrBKM1lxqom8mM/i7/FjnOXKM/3KnpU48kYiyHh7HhCRclFnD5SAPk2lwTj0AU0Dfd+hCVwzxXqDc0XZohrGuQ2G2tbkrIS+I2oJ9sumRI97V1M3NVLXpGEBKRCzEDUW57E1eGexBpZXVuytEvsD+Days5FJoaOLyste+mpOnb6D0CeMVQSLakKMJSS4snfAtJ6yNfO4ypWI8KglosNWYAyaE23X0XcttXfM59OifEEInbJoO6xmnBESSkjKYrni2OakjDv1DptLtLpIKUuUxFiHjiofKcsMzpZgvpDGJrWBMGRElbryZAxJSy3eWsEZiwhUxhYHtnGElEpC7A3Gc4EjBz3s/h8DL9l5Dd9y659lpz3kfW+4wgvvWnNkjREK/IM9Xnn8Zfxvr/6rbCyu8E/5cc6x90y/smctjryRGD8p9cNhRVkyPK7x5BRJfUu3v0eIA3EYMCSGoSXGSNUXCaJ1jhQzGCE5WwL1mgm+mWOqpkRTWEs2jmoCmmIJzJtskVLGTyJD6Bj6nj51OGfR6ZyDNOMdD1/mYBCMKFfaHussQ0i0IbGXpzymJ7lnMqBhUU6Q6sgIdV1zy5kNUshYU+SXKZfIcwVigtx3uMqyuTlFN6akbEh5wCRFNTPxYDebEkuuWur/vmZ1cJlh6MtnJ4qTEqOOMYgppjulKH+cMxgMSRNZDCppjDgH7y3W2lIeyoqaIkvNCaBkRXlfYi9iyqiJCOX0fqPxXOFI+9jA3zz2l3nVS1/PN932B5idvodv1i9Zc2SNa5BLme++5X/ijS/5XH5P/Ubeywee6Zf0rMZ19Egy4hrSUG6fS2xEJnYtoVvSDz1SVWV0ao4YFOsSYg1VXRqkxmSMq4qaxETIgAq+aa7lAFnxpCGiKZJyQg9iWTzEgRpmsykxKzkqQzScC3Ps5kk+/XPexFvPPQA5EEKZH+EEXDMjb5yCXYvsP4ZJkapK0EwwxmFNhqEDKTJUSQPWCimVenMZSlryoDIgUREMRoQhBoxmvNNRVQQmF+/C5OQumorxTMhlxsZolshRcVrKFiXWXMcegRSNuoKTEoSWQxxLI7F4Lqwt5Ylc5kmogqMiJUNOGaOKaxw8Ex6B5whHjCYmkwmqmWXYY2vNkTU+BWazGTlnLrZ7z/RLedbjyBtJWO4jw6rMcLC2TJqLq3Ky8Q2z3Sl+6wTaryCsxoshgpRhRgYhp4RvpmNiayh5RM4XVY5AiAPeZqQ2iJ+OWUmZFBKKxUw2wdUYVzFQs8oVw5XEpKn5PV/2VSwvPsS9v/wzeFGG6NB6g8/5ot/HqVNT8tyhs7vpyz0/lSsXUYgJrpzHD5dLyF63Ikpp1FbNBHyFFN0NRmypb6cSQ+GdQwDnFNSVk2IW6qpCXFkYsmY0RkiZTCohfCTECiELMSvkq2Y+UxYmU17j1SwkGb+aSU3UEnGuGrCYa/HhyjirOyWcA2tv/GnzucKR+9/+n8tmhjDb2l1zZI01niSO3myvKtQKOQxIrqFqgIBxirUWyQldLXDGYptNVDKKklIuDUTvSSGWjCFT0lVNLLHfmhSxltracsqMCSOCqzxZYNCGdnIL1eYEcYYEeBE2VFmayLINfPxD7+C2F97DIx88TlrtIc4i0xlxWPHW//yfec0b3sgLbjtG4wyjnQ0HZCssdm8h7hvYewSR4h5WlL7vMc4jpkStWGeIsUSg51xOmqqKwVBPG0xWsmTyMCAhgjH0OdN2AxvTmpzG7CNTBjKlDDlmspaBS5ZyYs0iDFGJMeO8wQg0E19czapkiaixJYvEFKNcNwTEFAd5iAk0s/s0kea5zpHLD36I+eYWB3tXymz534YjHCj2EnCHW3PkeYb5fM729jYXL16k67rf/nFssMMuj/AQRcj9/MSRN5KUc3HTYjAuoHFRLpy6wjtbbsnVYEwJq8spURQ1oeQt9T2pH9CcSZSUVmPAOU9WA5LLvASEYVWUPWKE6CdcaU5RT2cc84IXuDppWhE2p8rZtKBtD7ly+QJbZ+7i0Q+9i5wz9aRo7CtfAgGLN6FsIoarRrnyWtpmh8ZepKk8zviiIAodmhOhC4Scmc0UiyWkQBw6nHOAYrzD+obQtsTY08eId5a6npKyMoRMPyQ0FbVNNZkixmBCjzGJIWUyFmMcOjrBnThEEsYJOQM5jRMCDUNK5QQvhkymW8TiJbAlNVeTEtONN0090xyppjOW/iN8VN7N6/KXMEubKDCvIu2Vh9h//EEWl8/zys/4PG698y7e8ytvR1MkrhbE7Hjkvvs4/77LZVFuJ7zi//25mI86qu8R+CNrjtwsaO6B2evg4L8I+eBqeU84ubNDU1cA3H3Pi3jJS17Cf/uFX2Bz0rB5260AbG9u8qI7XgBA1TV849v+MnfGu/lrfBv/kR96Jt7OswJHb7Y7h0kl7ltyhhBQ6xBbAvI0F5misaaE0fUDAtjKYp2HnHC+hPoZbynZ4iUjSa+OZtUy9c7VNTH0pAyXh23MdD4OTlGK7qdABI7PPa95xQu49fQub3fC8uCAxapDcuCe138+L3zxPUxc4sW3bJQaNE+UAUqpWQkBrPcs5RiVXmaIscgoVctoU2vQJMSoNLOGqXfoIWiOiBjEOWLfoSnQtx19X/KOvE94gam3hL6jqjzG1RjnSCEUs563gEGsRYy9VgtPWRGNaISYhT4om5MZThKEWJStBhDLdGpBIObIpPIIShdufPzFM82RhVzgO/gDPML9fPoDb+Kz3/yVZYAUsLiyRxMGbplUbO7soCmzubnF573hjeRzD7ACPvbg/TCWio6fvZWXvfONSID+Pynh98uaIzcB3Al4yU/C5MWw++YX8pqf+OJxCBnsbm9fy1Hb2tkBVe44fYq//I3f+EnPIeP4z91Hz/C6X3o9jorfzx/kx/lREunGvqFnCY68kbhqgqaA2HKqFLFgLOJ9MX/lDDqUYDkD6kGMwzhbyhDO4ybTkm0hgCQ0lnGkmTEqQhM5BhCLryrCYDmIFWdKvh0xQu3KXQWUPqwXYXfm2Z1uY7/g8+najr3HHuXRe9/JC+68C1JgtrWJvTb79eoGUv6nDZQAQCssqx3c4RXmU0rwnzHYISAIzkdyTuTYY41QubJoxCz4rRO4HIjdikbKfAhrq3L6lhLAt2wHln1kNvdMbJkYmFXHoUZKHno6yik9x4xxFmMrIpbDrmQ8TWLG1Zmq8nSLFUYyVV1j64pExokh9qVk4c3RdRRPFZ5pjqw44EAvoGQOwnm6donJBldV3POKVyBGaPvA2Uce5Sd++Ee5712/zLGTt7F78jTT6YSXvurlzDe3RgOk5dE+Mv1hy+HbLbsfg+pFa4481+E3oD5e0v6nu5bZbILJhn4YePcHP/hEz0mEex99lIvnzrHY37/2/R958CEuj/9tk2P/thfwpY+9idPdZ3MLd/EIH3lG3tczjaOn/4ahmLHGpFIxGXIihx5iQsUiJGztwVpMGiPFQyT0AxlhvjMHUtH7d0MpgVQVRsMYCS6I9SiOrJmLnQNfE4ZINfccLCMbG47KFJ29Kc9WMpBEuPXMSW69/Qxf9Q3fzE//63/Ii1/2CjR2zGenYXzc1fNC0mIWO9xflvwksfhJzeEVj1x5nKoZ5aaiqBo0JTCQVXHWU29sUqHkkDFDT9/1JAQVR1LDpJmAWLLCYui4cGXFtLFMmppuOZTRpwK1FaIIQ5eIXQnYU4H9ZWDz5GmcETbZx9oKZ5UUEt4IdeMBRYyAtXTtwGrV42yZhV49A33UZ5IjwzDwvun3cZIr3PmOU3zF4e/nC//8txRVkwiurrEi9H3gzT/384Rg+djHPs7L3vglnLz9Nu66605uO3Pykzjyli87x+Jgxat/4jh8h3Lin8U1R57LEHjNn4MXHYPZO05x5Z/3fNcPfx9Qfmdd31/3U/7c13ycFK7wqp+4nT+r38l38icZ+O17Kjcrjr6RpFgOhGPmt9VyW1wmwynkWOrVIZK7gZRKeaPEVZRM/7xaIlKiIFQU1YQhgYKhqFkQQ+4Hlv3AQdil2awZhkg9WIiB/SuBre0JlS1O42uvD2gqxyte8xo+9pGP8qV/9E9x2wvvZtkuqSbVtcfAE3ckXa8sFksmE0/ly4yG1Wwb2x2Q0ZJnJFA1HhOL6SunckJOWRjaFlDqqcPXvpz2uoxOanIMiC15S95kzpzawjlLXZVIdAGMtYRUpKL1fMpsS9AcuXRlj8cee5S6nrJ1YhuZV8TRqZ80UdU1k9mcmDJDCHS9Qn2MmgVmWCKa0Hjjb7GfSY48nu7lXfIDnAm38eJ3vJj6VMJWHm+LJFe5Po50XeLipUB8g2K7gcOfqJh9EUz/OGuOPEex9SJ4yTdAelC46/97CtqWru9+17Hwdb3BzvG7+IB+kH1/wBcMX83b+Wl+hn/z1L7w5wCuy9lurCXngGhGxGHqCUw30H5FPNgrQ3ZiJg196WlIJmfBeQ8IGlqSZsIQEHc1qK/EYRvVsTbukcmUts0EcWxWlsrBsFqBxvFE5bCbHr1a4xLwQBThzK2nuHD+AqvFMbaOn6Q/d5bpZFp+FuPdC+UP/ZDohgFrSzBgXB2Ca4h2wqyKeF8jpaiC9Q7jAGtKaF9MuMowtC1DV+ZLpJQRElVVk2IAEkagdoZMhWoihoC3HmNhuVgRVah8icSQZBCBjY05d955GxuzGjGWrILzhqoyDH1feg7G4m0CIyz2OtrlARsTpW48Rswzkgn0THFkVkXes/nPaeUSb1h+Oyl/iPMPvZ++WyHTzasv7ro4MgzK4jCxtWVovnWP9n07XPhOx4lPX8Cta44812AqePW3QbML7/huuKeFe27foKktq+53t6H6asrG5mkuPH4f/3z427yIV/H/4Lt4L2/lLB97it/BsxtH7ra52hf3sS2a+TS0rC4/Tnv+UWK7xDpBxOCsoW5q6mmDr2t8ZbHOYr1HqgpTV1SThno6oZqU0aO+aXCTGbauwTqiClcGT0oBTT3GgjWZg/0rLJZLlosl/aD0Sa8puAKlrO6NcM+L7+HxRz/MB9/zq2xubjKp/bU3K5Sy1pCVoQ8MXU8ek2rrScP2iU3yzp1ErbBVja2asiC6CnEexNK2A8MQsc2MydYOfjpDxdJ3HavFktT35FgUOM6WYUfOeep6grMlAmQYekLoCF1L6DokRZJGkmYMhs1pQ+UMcRhYLQ5RCVhncMaSwkDbLgjDQI4DxzaEU1vKxCrGeoyvQeqnmivPWo486H6e99b/hhPhZdx18cupt+5haPe48Mh9v2uOXLuLyZl4esH0Ww5Jl+HwO6dsba058lzDmS+Al/5JuPQ+uPffKvd+bJ/5xPGCW2ZPyfM/wof5V/wdtjjOX+AfYHl+xc8c/Y5EbJmfQKk5i4XaGjR1MAwkKYoSkeLyLcXphHE1KkKOiqaM85asmX5ZIiys8yW2G4pc0SjtcsVSN9ne3kAk49JAHwMXLl3G2obptKdrA1NfyhFokcsX47OwNZ9wz0tfwXve/mZO3nIrSa/+2xOLREyU2dghkJnj65qNeXFdt35O4FbS8Hhp7KdM6HtCSii5SC2tweYGQiCPg4KmkwbwMAb8kRUzTsVLIQKenIWUIilmrBFMNZZ1rMHWFainTNgu/YCkZY5EM23o84D4msnWSZIqsVuSD87jvKUeo82VcuJXvfFli2eCI/Ptil+Y/VMAvuDg21leNJjJLeSUWOxf4uTVF3edHLl6WteciWFg46sC8acyq/9iaX8INr5xzZHnCq7ejSjwK38D2gvw8LkVxggbs6dmwVeUn+eH+DK+njfy5Xw5f4Kf4vufkud+LuDIdyRhuWJoF8TQoVnLzAW1qLiS7GpKXHccT1HDkOj7SN+uGNqeYbVkdbDHcn+PbjU+TyonspgSKfRl7Kga9swJjp0+zc7xDba2NsDXxCwY11BXFTFG+rYj9EUGqYzrl44nSoE7X/RS6rrh3nf/Eu/6tV+njelatERO0C0Dq8OD4gHoWzQM5FEdVBmhd3MWbabvV2UEp3VoioR2CbFFNJFSIMaIsSW+POdAGnqcKSmu1jpiVEIa74JiIpsihW2ahmYyZbaxVSbpJcjhCSlpPZvQzGqcScwaj+SMqyowDvUTXD2jmc/L/HJjMcaSsyVnUPIT0rYbiBvPkVNcOfFrPNK8jTvj53Fb/3kY17BzyysR43jsI297UhxBS1kNzURp2f2bLTJVzv8jMFdYc+Q5glu/GG79QnjsF8stZk+BAAEAAElEQVQXwAMPHxKT8poXH3vKfk5Pyz/nb9Cy5I/yrWxx/Cl77mc7jnxHMqQOsmDFYUwmaSKNV6cgMBRJpogZHb8R52p8BWItabB4LUaojF67iMRavK9BS8z3hYVlVW9wcsPQNILF0HclR8gYwVe+3MqvVoi1kCfYxlCPcRZlFIUUA6K1bG1tsbtzDDAEVYxC7JXYrujaFW3XYl1mOZmCdTRNhfUGawyr6jhTvYAxBqkMITo0WHw9JeVE7NriOh4/o5QTKSZck7FqwRictzhvCcNAGCKaAsOqI4jgqhqJY7O1qorfQKBvi+rDO4sRw2Q2LQ7wIaOpZbjwMZzzQCzqJzwqhhQDXdcT+iVg2HxKqfLs48h04zI/1/wlajb40vSdaLAYI9TzHarJDgcXP8bB5Utsbu9cN0fSUO5JFLnGkclLpmx+s2fv/1nx2P8qbP3dNUee7WhOwBv/IQyH8I6/CWkUZi3ayN7hwJkTE5rK0g1Pzd3ZfbyLf88/4M/ynXwj384/5tueF473o4/anW0UMxSlqZqJ5DTGWxtTptupKRdpDswqEFNu4bFlIpx3TbnPdJQjn1IMBflqCUE5vzJUdVHDuLHcEIZYTqjtIbmqQBxd349afMGZBlWDNaVskXKR9hrruevFr+TWO+8kKYQeTM6sliva1QpfT5h1l1kdrJjPN/FVVWTFvUA25GabGDtcOCDEjJvvUm2dwvQL4tBiskG8wVW+lENCJKZY0m5TwNoaUYugGBUmTU0YevyswVgHztOtVoShI/Qd1hicr8FoiQvJip9MsWIJ7ZLFwQJfO6yfMgwDztlxrkREc6RrF+MCk67p4W8kbjRH3mf/PRe5n8/Tb+FU/xoeXz1KbA9pNnfx0x3avY+z2L9A1UyvmyMXLiyJMbOxaZiZcI0jsz9e0/2i49L3G/znK+4L1hx5NuNFfwy2Xwzv/8dw4d1P/P1iFblyMHD76SmT5ne3kWxtncFaz+XLD3K1GJrJ/Djfx2fwJXwl38Sv8DP8Cj/7FL2bZy+O7myfzkp5AsCAFcHGSBp6UlBiCMVYZcvkOGuKMzmGQFwusc6QcSXWAgfWlshxBA0D3WLJfmtY5C22wkDqHFEMAsRuhU0ddxxreGyxxE83cdaSVOm6jspZlApXlxnhzoCzZRrd3uECDDRGyE7RZKjyhKk68nLFHfUm+4cHXN67ROUrvLWoMag4qqpioceodUkKLfHS4zgneCkzve14OjQqmKaBGmwoMekZLY1l59EcSmqsMSX23NXkXDbIHBNGSqS3qqIaSYNi3YRq8xhuvoEo5NTjU4XmRL9qi9S2rhFnSbGU5qyBqq7o+zIB70bjRnIk8Rv8iv0nzNjlDeHPkbrukzgy3Xkxy4v3c3DxfqZbp66bI3v7Jd335MmKu099AkdOVOz8Dce5b5hw6W8JZ37Ksthcc+TZiO2XwCv/InQX4QP/HH7zjcH9Dx5wz+1z7jwz48rBcN3Pf/LUS/F+wtlH3/NJf3/IFf4l387f48f4Zv4+9/Iu9rjwu38jzwEcvdlu6mK4UgWxkBW0qHCujjcVMmJdGZhzzc0MVQ14j5ES06CAhnJxEBMaI8YY9thgOpsxbRyaAt1KiDGwODzgWAO7GzMuLS7T9YG6qhHjsK4uqp5KkE/wlgiQU6BdHmJFS3MTQQzUtSVEoeoHamu59fic9uwV9i5fJIswnW1QVwZTCbme0R7s0FQB5yKYjMGWkbDWFMOdlmmAUlVgBDfOIu/6juh6vHcYUfpVyzAEMIr3BmcrJtMZKood5a+kXJq1WFaH+9TDIVbK4KSmqcgxYI0Qh4wx5cP04tDGojkxaSxWWrLe+NvpG8WRyWzKL2//M/bNg3x+99dpFmdYHO59Ekfs5Ewpn7V7vyuOuLEMZq2hrj6ZI5svF+bf5Lj8v1c88LeFO/7WjPbYmiPPKgi8+i/Bxgvg3d8J+5/CcP7w4ysQ4dhm9ZT/+Pfzy/wo/4Q/zt/k6/jf+EH+Npd58Cn/Oc8WHD0joXjMACnpq92AGMqFHlYICTElPjvHiFPAOMR7RKpRISLgbMkMSrmUMGqL8TVRezo7YzapmTYGmyM5Z/quRfsFO9sWmwZu2ay4/0pPYoPGGJyvECvlgoGrSYwYzRhjWB3uF+PbVcXWaIcXEQQt5QUJnJ5bHty7zP6ew9UzNjcdTQV9hlWzi40rGtoSxaTFdKfGYHyFUcqpMeXy/kyN7QMuW3xTYZspxAHne2oyYYgYo/jKY22NImhOkBV1JVdKrKGOkaypjGc1Dmtg6DvieEIlZzCKcSXPihyw3rA1mdKtVk8xVZ49HFltfJiPTH+ck/mlfHb7zQxd91s4cnlxB8Y17J99N/b1/931c+TqZqP5t3Jk37H1J2ac/9Gai/8ezt4Hn/sTu1i/5sizBTuvhLv/CFz5ILzve3hChvcJeOCRQ7o+8ap7tvmv73j8KffV/Ce+l5fx9byCP8Gf4eV8D19Mz+FT/FOeHbiujaTIXsqJ0dZVyUQi4zdmRT+vSg6hXKfWklPCOINgSu6ECJqBOCAZqASpPaqO1jVs7cyZ1QYniqgl9C396pCT00w9n0HKnLA1ZxercrEaN4bmKcmXUoQz5U2JlHzfoV0Wvf5Yu09AHyCkTE6Bqqqo64aqnuCbFR++uId1tzGphISQgCiGw1xT2x7NiZQUNGGTkI2A86gKeciYyoGrkKxUlPIGoS8Ll6tAI+JLAJ91AuLLpuZcmUeRlTQEJCZyCkTNxFCC/3zl8ZMG0VQGHKVESpEQFUMPopg+46vJGE95g3EDODLdibxv858R5IDPHv4ePm9ysHr8t3Bk80rP+WaH9uAssT8gTY9fF0eumb5z+tQc2bkNTgMfFVILIRkOzZojzwZMtuENfwnqrSL3HfY/9eOGIXPlYODkTsN04li28VM/8HeJFUse4zybvBjPBMPNm0lz9I0kK1iLZgMplftyY8EXZ63YEmFi7eiYzYqxAAa1HnFl7CgxlC9rgYSmQNslFrrBfGpoaqiM0A6wd/6ALWnZmDcQIrgKP6nZ3VIu9oGcIlARY8YEoa6Kf0GhNGiBMPTElKgFQoYUx40nlYvQzXwpZ3jPbMNxz7Edpsc2QIRBIQQltAPDckGatGjMhH4AlGQc4m2Zr2HKHG2CYkyFzDYxXQ9hKAusMVw7qpoS9ZH6gLGUk6I4whCwjaNq5tAH8qDE1ZKwXBLigK1qJpM59WyKrxy572kPDlgsFiWYz1s25pt4XyHPhCHqaebIFYX3HvvDrOxb+Ty+iNfydVza/9QcOXl8l4c3bufw3K/RLy8TN3auiyM5jYus5rFR/skcufjRDX7tN4Q7XwOf+X2K1APt3pojzzTqOfy5H4MXfh685y3w4X//2z+27ROPnl/xupftsDX3T/lGss3L6XgV7+M9/CTfQHsTz3w/+kZiHEgCuyiLQ7ZFjjkE1CR0zEzSnNGcy53CMCDWYaumLAoiiKlImjBJEacwdFzeS8RJLuUASn1hXsPtZ3aphwqbVmgakBDAJiY2IZogF49BypY4JLy1iIFoyq0/QN8tCSGgTIixrHXOSvEnhAHJCeoiLU1ujt/YwYkQFGJU2k5ZHewxG5bQCH42wdQ1mjL4Kd3igHC4wLnq2pATnzNmHE6URRAVxFhwHiOK0UweEmHRlthqKRPthiERu8jW8RomE0QUHyN+pyoVCmtRIxhXlTW7atg+5ZlvzsgpMyQlX63PhKf2ong2cKSd7rMw9yKSMbwb6p/n9jNf9ttyZPP0p3Hw2K9ycP4+tk7efXSOZGjbjLWwvZFKJP4ncMTNdnjrPxUWS3jRX1TqlyiLi2uOPBsw24XTLy0ajde/Du57E7ztJ377x7/3/it8xit2ecGZGWcvtNf1s6azXUJoOX/+vk/xr4ZX8S1kZvwC/5BHed/1vZHnGI68kWjoS/ZRNqS2w1AhTQ3OQQplkRj9jTkmcoxFp99MSrUjFYeXGgfeIxYQA5rp2pYhHzLUlowjeqi9UDcVpt4lLy0m740nSKGuLGkvEFMmpoRDwFqigstjnpaCqhKHntXhko35RpkhLoJmJSFIKhJi8R6Nid5uUltBpZjDwgDDckVY7jFrivy0X63ISfF1halq6s0tJK4wWIaupe9aQpdxrkaMIaniXEWtDWKAqgJjyTrQdj2mKsOGYowIGe9AY1+a1YCbTIsMVKWcWK9idM6JtfgKYhiYOEPXtrRdy2Q6fWoYch14ujli8y4vm/59zs3+EVv213lQvom7mn/FpP7KT8kRsRMAlnuPwHVwRCw89HCLiLIxCRjrPokj598vvPfH4fSr4SVfvubIswlXHoYf+Tb4yr8Cb3wt/C/fD9+l8Laf/NSPP1xFVJWTO811/iThrhd+DikF9vce/S3/epzXcBd/kEu8l4/x49f9Pp5rOPodSRgAD7mCHIlpKHLEnAlDj+RIVTVIPcdVuXRdx+lwrFqu5r4bwHgHUvwDmiKGyHLvApDKPIiqIk8MphYaUZhto84huYOcaFxEU0fX9dR1XULvqnKn0acSzmdEyiQ+VYauRewTb3YZyoGsqYvUVPuBqDWxaZgiqJY1LQyJ5eKQCR1b23NMDkAep9gpq4uPEWNgMp1gJ47Jxgb1bEpcrbCuJqaOHAfCkJA8LppMUIXl/iFDzExTImVDzoKQ0BAYDkqKrqsnuGYyBoQBmssAJRRiuQAEWybmWYfBMpkZsmby0UMLnjo8zRxZ7V1iky/l9OaXcrD111nV/5aPyp/idr6D47M/hbjjn8SR6dbtuHqLy4++B9FIXdkjceRqdQmRkSNc48jgG37xHwn9Ej7vL4BpEsvza448W6AZ3vkf4IM/Dd/2PfBl3wD/y7+C7/8O+Knvh/433XQ8eHbB/jLw0hds8v+xUnpbR8QTI/Z+899bXsX/iGPG+/nHhJu0wf6JOPpGYiH1HZJB41Aain0ixnKqM9aMp8eijccIqmOeUtPAUJqJat3YgA2Id2Asu8dmXDi4zGrpUYHpbA5mQjAG8UJjIDdzaDOSFzSVUJtMFxMiZdpeThYdh8mJlMFBghD6li4MWCmT8mIGTSWzSd2UMBzipKf3M+rKYoABiEkZVi15dYVbjtdYC5mKEAMoOO+o545KBaNaGsNkiCXym1zGwtp6jDFPGSXRHh6Ukk7oEGuIWdG0oqpnuGZC7k1R6AigWibsjY5u7LjoSgYnSFbSeGWYUXhA1pJI656Bxt4N48gGs/zdVJuv42D6t/i4/I+0ch+3N9+NbatrHJk4i6m2aA/P0S0uM5neciSOhDwqmIFsJ4RhdY0jFz5ked9PwJnXwEu/UmnXHHlWYnUA//Bb4L53w5/9TvjW74E7XgL/7K998mYSk7J/GNg9VjOfOPYXT3788C6v5i6+6nlzNwLXM7O968hZy9CiFIrW3lS4xiHGgPHltjoN41AjCyahXY/UVal/p0TqO6wfvQIxA8LmxpS7b4cHzx0QWkMywiAG7yaIVawRHEKqZjjNCIKzptzaW1ukjQopaVHkiOCtGaPJM91qWS7GMdK1riCpZf+wQs0EGsHUGzRjEzaq0vWJ0B5yZq7Mao+KEIaOto+EMFBVjs3NOWJcOfmJlNkZ3iGmDDNCLNbbMuLXZDRH6gbEWKrGollKU9eYIpcVj60mIBmxRc8jFlBXVrVqgoaS8SDeo5Qau4wOQE0ZYvFd2WdAkHMjOVKbORPzp6nMcS42/wOPy/cCcKb6LmqdIgi+aqi37+HwoZ+nXZxj58QtR+KIjDdLiNDmCjUKjYDd4O3/RBgW8Dl/UaFOhP01R56taBfwH/8Z7F+Cv/a98If+fPn77/0b0C7Ln4eQ+egjC77oM09xard50htJuRv5Vhzz8W7k4Em+i+cGjryRWOfKuNpmrD3oeLo0ZixJOERcCYPLCU2xNF5NBg2lgznOYtCU0RDBKjkbbF2zu7uBF+Hj5xcslkqlpabtXEW4mqJhLTrZIi+FVX8Bd2wKtkKcQQ0Qoc9K8oCxOF+hCn0/lJinDDHlEtmh0IdEjIG9Q0tVG1y5LMkZDi9dYiPvcXx3BgJ9F0lDYmtrilRb6DCgYWDol1jncXVdPo+siKuwtaNc2Vpklimg0ZKHobi+3QxTW7CgMZBjIqWBNEAceoxxWO9xdVMUT96WBTgMxeRmFMnjyV60/A7Gz1WNYEz+bW68nz48ExyZmT/MKWu44P86j/O9LO2v88LJ91MvT7PqL3DsBW/k8OG3cHj5AfTu1x6NIzGV8csKQ4zXOHLuIct7fgxu/TR45R+AvTVHnvVQhTf/h/L/3/zdZTN58Wvhu/4UPHx/ecz7P3KFL/yMU9x2csr9Dz65MtQxXsOd/CEu8Z7nzd0IXMdG0rUd1oKflNMeoydARcc7aQWniFhyH4jtosyXMPbaxaO5GMAQRbyUKKWYwAZELJvbG9yN4eylPVaLSG+Ezm2RJh6thUYEC/RuSpehCR0xTJDsCMM428H7YiyTkkmkWi4670rfo1uUiXVdyDz4wXdz9uDjvP99v8H85B18/h/6Gm594Z20i8AGLSd254gHYkZSomo8ue/L7HERpJpAdsh0G6YTZFhAGk80YgAz1lAEzQaxA9Y1gEBdo92A5NLstwzYyQREqGIm9S2x74unIQbUOKqmxloBLeNsMYLIqAwoOy3eV2UwVNdxo6dNPFMc2XRfza2TT+fx+r9nIb/MR/la7mz+VwY5gzE1Lgr7j32QoQ+Q9XfkyP6llsUi4NzAR88+ygcvt9z3ww/ykbd8Hd3K8xV/UYmy5shzBarw5h+Ce98Jf+c/wKveCH/vh+EH/ia89c2wWEZkyNx56xz5taMZE5tmk+lsl8ODxwmzCbzw9czv3+b29h/wKFMe4B89b+5G4HqytmRUci5aXNNgXHEgX4vCSBEduuIaN2Uut3FVqX3jIQbEeog9mgKmrkulw8cSv20sue+pTObOkxtcuLTH4X7HpdUh091T+ONTkoXlqudnf/Q/8sgDH2Lj+Gm2j5/iM7/oy/BOyolWFW89OSbm8w00Z5rKE7rI0EcO9veoK093eMBbf+T76Jd7TL3n8kMf4d/d915+75/+K9x15iS33nISs7qI9qnUsm0uBrts0avOeLHUjYFJuTNS7Uvz3mQICXFlLCopozmgMWDUgvVoEFISXLOJ9oclAkQ84g2Iw4pFnMc2DTb5MuBotSQipdcwxpDYaoLxY9tPDLimBBM+AxHhzyxHbuXW4z/EOfu1HOfdGPe1nJq+Hvnf7+FVv/YYH7r4NlZvvILz09+RIxfO73N4mLHzjr916508vH2C0yfh1gdqrM1cCBcI+3HNkecSFB75CHz718J3/RB86evgy38UfvIH4Py3KF/yA48wef0GP1hb2v53DnCczY+ztX0rD5z7dfrv/b/hFZ/G/PuFyXdP2SdwifM34E09e3DkjST2K3IGa0zJS1Id1YYOqevRPCaFnMZhqsnYUK0AAa9QeTQ5ZLUEUyHNpJzOYkCtxeSIZAG13HJql5MCl/ZbLl8+x6E5RVs53vwjP8h7fu5HqJ3h4r2RaDynz5zhxa9+HUEh9B2kgRADL3jRyzn78Ec5fvwkQ7vkypUrfORdv8zewx9m865XsVrsE9slbjLDkFgdXGHv/ndw/Lbfgx50ZI2kmIqKyJhiCgMgIXZcNTXB6lL565zR8XPQlMlpNbqHy1fsI9XxW8FPyG2PrSIQS/6Tba41QpGMVBbrHViPMQGnNaYxxZ8hkIdI6AfC4T6+9lhXZK8lK8qU0swNxjPNkcqc5sTk39BUb0Lqc9yRfpXmZz6EHBr0l87R9y25mv+OHHnk/nvRfA+XxHJuc5fgay6/Co7P4Vj9G0zlAxw3n7bmyHMQjz4A3/HfwWf9PGzdAX/0MyxNVSPnBpa/fshGdbSN5BqOn4K7XwqTGYevhX4O3fLtHOo7nr438SzEkTcSX3nEleE51nuoS8QDUNzIQyhKG+9RivY/p4RUCbAUPYyMoSNSrpukgClxERiopjCZQbYl4E8jp6oJ9aU9rlx8iPsfeZy3/+QPIEOLm87ICN2w5Jd/+oeZbGxy+pYzpDTQdgmMY757mk97w5tQ3/DIow/z0Efu5wO/8FNMz9zDo+98G/1ijxgCThOV8xzbPsZnfearmWxU5D5gKo+pxou3BNWCtUjVQI5lkTCALREW5Fyko31Hjn3xTThXLmDj8Y2D3MPhAjMsSTlirUWqupzaYyyfJeMJFcb6tsNWY68hl/KL1BXNxiYaenL4/7H331G3pVd5J/qbb1hr7/2FkysHVZVyqZSFEiBACDcGDG6Hbhvjxu3QbeN2bt++Hbl9bbfvbQ9w2x7t22M4AO1MG9oGgQFjQAgQEigiqZRLlatO/NLee603zPvHfPd3SqhKOqUqTtDZzxhnnHO+ndZe33zfNdczn/nMESmVPJ/ba5wnTC4/aXE1xMgDjzzJx3/9Br7rD53l1H6CUwlSYDh6hgc//R7ufMU7vmyMfPzdv4Se+D7SmTn11zLcCvMPw6dugG+7+z28+S33rWPkGsYDn4G/9H3wA38T7t4vhzGyeXfljtMznrz/WTgB7wPvBe6+GCPlsX9GWZz/nTr8qxKX7v4bI+My0U02KOJM8aFixkUuoGM2DjZGKJk6Lqgp48qI8xENzTajubtSzQ2VquBsHgPOIfhW8UzocgElcXQ7sL0B7CSObG9y/rEd8uBIpTDmwsff84vgItu338N8fsBjjz/Bi1/6Ck7deAsf//Bv8ODnP825M09y+sknGQ92Ufdb3Dbr6En0XjiYz8kxcO/rv4YTN95g3cXVo7lllc6yPAnWKAbONolarVjsgxWPU7WfR4/vt9pGokaDqzOap2ZEqj1Hvb1HsoFPOIHqrOO61ja4S+x81GrHEQMetSw3ZUQdfroFPtKFC9ScKOPIsDfncrebXS0x8u8/fhufeufD3HLbOXj7PsvPBx696wj3f/hdfPhT579sjHT+KK99m9Kd/yz3/rv/wCePfTd7H7iN/SCEO17D8RuOr2PkWobCT/8kfOcr4CVvAN6+z/5nHY+88HZu+KiHZ2Nlcvaz8A//Dbz8z6H338N+EJjdCs+uSf6axyVfSD77yU+xc/pJnA9sbG1x8x0v4MipG1rWOACVMoy4cWwNt0Lopk22mCjLhOYRnBjVUZWVZkT6iJ9uNeO+lf6y2PvUjOQRh3DnbTfwHd/17fyLH/oR5gf7jDmTqrKo8Is/907mccaxY8d57PHHeOKRB3n169/MRz/yfgRl98I5dnfOE1oD2qeeOMftR2dMnDLrIjfeehvf8G3fSYgbSC2m0XdQx4RoRUUQP5r2PgQbxISajjIn2/QWC5aLAxShm0wRHOIcEr0ZAmq253Y9greCdK2gFc1qnd4OqxNE81ZCXKM+WoYudk7wNvGOxUAdDhDv0aKgHXE2IcwuP21xtcTI7/mu72D+8Y8jN52jfj38xC+d5MLJG3n0M+/j5z/w6182Ro4ePQLAYhy4+RP/J8flXfza/v+B27iJb/9ddxK7uo6RrwKcfQDkNVC+Hv72Y5ETx05xz+17TUd3iagZfu3vwvt/Fm55J/jjMHzgd+6gr1Jc8oVkNusIN51CVdnc3kRrpqYRF4xrnV/YxceA95EQAjVnBBDXIcETYk9NibI8sH5aB6HrKKUyzhdMXITZBuJWmVVAptF4dU1IVVysvO6Nb+HChQP+3b/+l5w5fYZFgeIC55Nw4vhRgg/ceced5GHOg5/+GKGOxN5cYU8cPUE/20J84POfuZ8HLiy58+abuPfFt/O7v+PbuPvlL7+4FkOwDaoC4lEtpGFO2U/44OlmW7aQnWtZp5kT9m41cyJaJl3N00vJ5DSAgi6W9NtbSBct08wKmtCSqFUaNx6QldA/BDR4y1xbT4H4gIigsylutMck9o1DT1dkaNHVEiOvfeNb+KT/Xh49+7/x8JNLfvy3el49LZw8FrnhxAyVLx0j2yfuRMQxn5/ngQsL7rz5Av/lvf8rX/8t/zHf+i0vXcfIVwn+r/fA2++Dx8/D33nXyJ+4YcFdt26yvRm/bD/JbHYcEcfBQat9DZ+Ah74B3FEYP/Y7fuxXGy75QrIxmxFdR99HYt/hu4603CcNmX5jho8RH51p/4tQx4TrBVIrrgZwKBoCiKBUJHb4SWC6sWEUyDi3hjAw6WhoRVgNrUt6RAu85W3fwAc/9CEePPPrPLEYWZYlR0/exI233sUw30OzeWidfvJxdi6cx/tdYmeSyhAi0+1jnLjhZs48+Tgjkd//Pd/Di198N3W+YzOxvW9URLVNyntcsU5lceB8bFlfO9i2gGU6QZgatVEK1BH1griAjCMhekpR0nKfbmxZa/DmM0W0JjytVnuOE/v1tGyUaufVirc0Hw9BWkaKFrSMVvhd9Ww839FyDcXI7a/4Nv7h3/8kv/qr7+PBCyMnnhy472jPzbfdxtnzyy8ZI0eOvxxxnv3d+0GEkch/9r3fwotffAMsLlDXMfJVgQ88AG//n2HMkIrywGMH3HrDjNnky3e43/mCN+F84HOfeffFH+aHgYd/R4/5asWlz2yfbdL31swHDoqY86gPSK0EbyEZuoiqElq3Ls3GIc8XOKHJHZWqCsPSbrcrtrmoIs4yLOknbbIetkDSYF3BwTGJU8r0CI8tPUsNdH3k2IlT1KosFwuWB7vErmO5XBJjbH0DwmKxIC/2mW5uc8ddL2FYLDhzYYf7P/M57n3Nq6yQmROiTarqQEoyDhpvBcoQrQt7NBWR9DNTv5RkfDTaXAFN+iqAZgFRXBScOGLXUxZLZLyAO7LNobmXD0jsUd9Z34XQsllFitrnOGwDLRktqfHvApqpNbPYm+MdTLe3n+dQufZiZB6O8fCBxciFHeXk6Qk3LxY8slh+QYxMZ5vEaFPyxnHkobsKH3/7eW4ud7D12JF1jHwV42C4+O9HH59z8x1bvOnUDfz4mc9/wfM2NrZwrlnKCDzxksAvvOM859/t4P7LeMBXKS7d/bck+kkrzWnTyHub02AZmdk/CHY7zYppVOtSTssF6iDNK+fPnkepzKabbG1v4NSkkOJNU5/GgcWQ6Dq7DQ/BEVxoVHMhTibs7c9ZFBAf6PqOGDvS0vjnnBNbW5ugGe8DzlnX9c6FARHHztknuen2ezhy9Bjl/C4XdvZs4px6yjjgXMX1E1wXLbOrFUJsDrXVrO59Z1nzcgEpocW4fboOGZNZVnQBxJvuP7ReCgXtO5OKIqyMCllZvrQirS4HiNKy1ooEsz/Hh/aaHgrockGuib29A5aLBaLK1uYGw+4Okxue73C5dmPkhZ+9kW/7hXv5+gD5925y5k6h73vSmJhtHscHWwoHU8c//pMv4MKpXW45cif3vvcE5fSFdYxcB7j7Uyf5to/dy9eUF3LTOzLnjtu8FhHHLbfcQYymcpvPPD/8X9zFp27chb/6DfDuf2/T8q5jXPKFpOtnuGDFPa0rA75WCBUs88KD723mxJgAhdghCn1wDPtzdFyy0XtSruRxzmLfON1hHFiOickkEJwjhI4YHD5EhjFRc6Xve8KkpxabRa04vBO89yznBwhinb4l88TjjxC8ubuOw2AegBIIITLonHFc0E9ndPtzzl/YbbYSnU3ty6Nl1a6zYmYZbEhT6CwjVMVmp1aQhAZnHdgpE/op9BPsBxUj+iNg50SHhfkfxWAyUVXLss0uEHLGurpdyyKNpqi1WJMbCdcrdFPoIiKVsjNnOd/He08QTymJEC8//301x8itO9t0g+doEm7XY6RjZjE/mSr7e2cp2aY2lj4Sz52AUxM2LiyZdlMWcX8dI9cBbt/fosNzo5vxupM38dm7Vpo25cknHyUlu1ikTtAnjsCNM3j4NKRn0XfyVYpLvyPBmsDEeaQzeaYoqJp6RUqTMTZjRLRQqyKlIN7hcEw3N+gnUzPwE7WGrJQYlwOxC/QlEYIjhh4fjI5SCZRBGdOAOscsTIjTKSFGnHPE4BFxlJxIo11EchoZ08DBsARRMxLEM5nOWiYMw2LBZLqF9+d4+NHH2T97jtl0ioseP520zDC3OeKm9bdZD2J8c5OigvHPvuttI6mlUSyt6EkBjTafI4qdu+USXSyRfmIbiDh7rmYb+OSdceMpo6lSUqKURNVK3wV02tv71gwI/WzGqWlHLVBTYn6wxyRc/h6BqzlGfuHEOf7Qk6/i0emSf/vIz7F4JJHTSBqXLOe7ZjEinslkg+lLvwZe8kZueu9vMZ1s4v3ZdYxcB/jnfJq/xLfw6XqO/+Gnf5DxKebIOztnyfkpg8Bu+d3wyu+Cn/w5Sxauc1y6aWPXI+KN010tEsEWEzTtv9kyKECT1mtVm8uNQ0LETey3I7XCxONqRd2CSWgFQQp1LLjocDFChdj37O8ekMsS1YSWiIizIUQOVG10roLNWdBKyYWDYbDjUej7CbUdW9XK4mCXYydvxjvhwYcf54nTp7nlxhtwCWLs8K4ZL1W1Pghvs7S1URFAy0BtoJCIBzEjQh2WzXDQGZ+9LKT9XZxUXIw2ldFbBziIZbGhs/cdFzDOYVwaFy+eMJsQ/Gab6JgtI81qdIkqKSWGxYJuY4N+8zihn5jX02XG1RwjZ93IE90W03ycuvsrHMguw3LJ/nz/t8VIy/rZY5jvEmNcx8h1gieZ8yAdW9zOeOGAs+w/85M1A3vYEJg1Lr0hcSVhVGcZkSj0Gwgd5LFNt2sDdWg8b6mmW3eAw9QpivUNeG/FRhHi9hFbZDiUhMSEoObqmxWnwvbJ47ZBpEzFE2PEyUXNiaoSu779GxBrNyg5Iz4w9d7MALHDGxYHdqsfPPsHcx599Aluv+kmvHc2RVErlAFxq7nWBa0F3VuYBbr4xulXQr+Bn0zsS7pgI1AnHJ4HIdAfPQZ52Sw0mpLH2wCo1eZqdeeKakVVqTg0WVOZDx3inWWonUfFGydfCjUVSiks9/YJsSdOp5b1X2ZczTFyEEYemlzgzRfu4ujYc7aJvZ4xRoBhOWc5z+sYuU6ww4JP8Djfwau5ke0vfSFZ4wtwyReSmpN18ZaRqg7vA9ILqgGto8khETQl43NjQMLE/JbSAMFUI4qHIZkNNsGyr1Ahms5edKUwETTn1qnbirK5UsZErYkuNOqkFW1rySz2d+xYa0GcEENo7uUR71f3qUql2qKa74OaUueTn3mAt77xDfgYzIJ7ZX+uaoXLlUOrNvtzRnwQ0phRWVLzEoraRLoQcF2PxIlZgIP5QxHBR5qWE7xHawKK8eC1ZbfiTfYaq82P0GpdzyKoinGyXg/9kmLvcUxxzuNEbRaIXv5d4mqPEVbNjeK+dIwUq0kU6jpG1nh6NINYrvNenBUu3f1XgT5a17E0znZYmEKlDMY4tIIhUkDEpJlOEG9zu0VBkzVfOSe4vrNGqmGAPEA/Q7LNpah5pOTRRo/2Ear1GsSJZ1gO7O7vIYcbQ9sitOKdbwVeIYTAxmxKysUUMO3nThzWMJwx+6PKZx96xIrB3RRxYpnlsLRj9WILd5WxutYEF3s81XoCmo+UFntPSgadH2aOabmklopIxEcxe5dxoCRTHoV+SggeFxxSFZWCxIjE2IqpSk5QloV+GrB5sQ5ihysFgs0Uz/M5vvNm+fR8R8s1HiMrpfGXi5Fj732ch/74fZx96y3c8Z5z6xhZ44vxs5+E//4d8G0vh//rw1f6aK44Lp3a6qZNfqjG1VZ3WGh0LgCrwTpqj+HaLXujLYoVCMU5mE1sgZcKuXX11owLbeiRgJv0thkVQAvibYKe0iFVGMZk8lIqWgWlFdXbGEStFRFh92DObDJpm4Rr1t6Cw/72zi4qp89eYKlC13f2HVO1RdqazSzjVOOdwf6fxzbrAYgddBEWc3A2/U9LQnMl54QToWqhpIFhUVkMAzUtGFMihEAIgUkXEQlUlL29BbPZlK0jmzazQwK1CqhSR7XPzc1vqprZoQ82dlhULau9zLjaY2TpTHXTVQ/umWMkzK2oWjbiOkauM8wZAWH25Sa17C3tjmR7clmO62rHpau2coIaka510lJtKmEQKG3mhPMXb70d9reXNlSn/dFqUlBVdBztbiJGRP1FRY/zxhML4ApI35Q+ahmfD0z6DtScVFVt4YoI7Z/t/3xBHcU2Fbsjca7x3E5wIpw9d56dc6fZ2uhtc6uNMnBi37cq6ppmv90CaRXbOGu2hjCPWXYgjc/Ww8fIUHMh14wLjq4IoT+C77t2jNWy81IApZ+24Ua1UhdLcM4aooJjmC9t5nwBEXu+F0HbSNVaCzVXuucYHM8WV3uM/NqxB/iWMy/h9edu40M3PNBi4uli5OK/1zFyfeEn+CDfw1v4j3gFv8HnrvThXDO45AuJrRy1zaKVS8tyIA1La9CNkVAmZrqn4CXaIirSioel3coLdFaUFY/RGc7bLb+naettAQor5U+xjKoW8L3dxkOTXVoG7L1jMu0ZhwVOPE4KIqXRWYprdyNK2yB8QIEYAt45xpQY5gusApvMkK9r5HVJbd67M/6mFFJW9nf3idExnU7My0gWxhWEmR1rM+zzPiLB0wehHiyYTHqC69AKwUfEgQ/eirDSzjVqnwfGt7dNR7xHJJCKbTbeT5syyYq2aUjUcUFO+QpsEld3jBRnPwv4Lx0j+gXfaB0j1xESdjca16Tfs8Kl35Gott6ylkmlhAj4KFZgzQmSgBacb5KYJv9UrBgpIpaRevMLIj5F6UPjy1fZqbpGFTSJJYG0vwPsk0slD0t7/wbvAtvb2yznc9I4kKXVQoBalVorXq3Urs1botZqfQztGNXagu2spAFUEBW0VkrKOB+R4CBGAsrGZuXs6bM8/ugZjh/d4sixbbPvLgfUIYEzWWsuBVVTBnknlKq42OFoczu0tr4J68GwDvAVPeLNprx5JaEVj0lScQ5KtqKpeBs1nBW6KbG7/IXUqz1GVj1ErtFVzxwjF1+zjpE11vjyeBbyX8wrqAJekOBwqvg4QWtB3MoYDiuoOrFbf62Hnbi1FMs8Y0DHYt3NIUBsNhq1mK+SV/MJWmaTLzadYuxn4DwuJ7a3Ng+VKoKNFu26nq6LzJuARhVQ48LVqig48cTQE6N1V+eUcU4oObF75jTpphuIkw6Z9I17r1YwDRFNCa3m9ZSGQq2OE6dOsXXMXGxdPzMFzjAyDCMhBnwIdMFRime5WLJcLHExMtvcIEymxpOnZAu+i02S2VRAap8vGeg7cBPAKBSbYyGAKZOYTG2IVFV0WOKuQEJ1tceItIuG1cm+VIxcVHd579cxssYaXwaXTm2thg05tU0BM9ZLKSM14zvFOU8pGSnJNoOqFznqlvEFVeo4WqHTC5pHPD10G81kboQhUUtGVU1dF4I1aAUrejocN9940mSMKwoDJedsTYeqh3RFVftcVSvG+yD4EIhdR05LnBNqqXgHy4Xp/zUnZBQIU6MKam0F3oriEFW63sPUCsi9j+BaP0QVpPf0R5vPVAy25hHiMWGT3Jxue6SCLpdINzG7cGLLvEfrAo8TU//U0igNsUJuLm0zVttcpBWli50jcTPL0i83rvIY+fz2BfbiyMnlhpVjniFGOFR6NcprHSPXDT7Cw5xln9s4gQ2M1i//ojWexR0JWJaYxsZnC5SxNUuBC10bJ7o0W4thwDcFjniP5no4q1u0gGTEdzjvTZXDYLfuOUNJhxkmaWwbQbPrzhkR5c47b6MLniFZRltKYblcoLXinMM7664WTEY5xagAVT3cgBCHSD38fpPNDbqtLcviREHyYWFYRKwDWaxwKq5tgnE1A0LM9qIUJET8pFmFu/a4KuAQ110sNtdq/Qi6omqaqR/SGtH0sGhNGTj0ZioVdZ66HNGSmtuuGfWJqklkr0C6ebXHyI5fMLrMy/ZupCOQXXnGGLEvJOsYuc5wln0WJN7MPXQEllzfZoyXiktPSWKTN8ZmUteUT10IgENrRpqzq+vEbr9DC3gNOLdaUCC1IBrBOUS8FWdLsUYqtQxKvG+bRkVTotRs1IYKvo/ceuMNzGZThp0DtM3+TimRsxVPxYllku0io01nv6Iv0rCg1krfmctq13m2jx49NBC0yUpqC9jX9j2wIUZYY92h/YfYcYnrkKjNEqMVYWtFa7Y3zEvLFp2YzXjrajbfpEZTVECibS6CZZDaOpulNpmRzbIQTe05FS0Lyphx3uFV0RCRjecpSi4V10CMrCDinjlGWjOg1kIex3WMrLHGl8GlX0hWA4QCkGmyTDXVjVrRkBhMoilYZgiWNa6koAXL8Hyw7Kwks86OvTVr1WyWGVVxwZxiNXgYMzVnKCNhOoPJlO2NDbY3Zpy7sEutnlIKOdudxkri+9upi+pW9IVlmFUrKSdUKxuzDba3tmy2hKotch9afwAt3faA6fItI62QlqAB+t420FqgYvRLsQ2pjnOjeqpaMunEeH+qZa203grnLKsktc+2DRjXhiQF3ySupY1n7WzzyCMqitNVp3Vu73OZcZXHSC213YnyJWNkJdtSXcfIGmtcCi79QrLS++fSqIVmZe08SHcxGx1G6jiCKm46RYM3/rgWs21wAW1+RuKD0RgiKCN5HAjTqRVFhwHtpClSHF0fLt76oxy98QbuuvM2Pv/w44emjSU3OWXrmBZMunn8yDbDmA8FPKsaSggdpdgmcfLYETamkyY/bTSDNkrBt6zZqdUuV/YIora42zxyib1lgmm0P7UcVnR91x02rYmIDRzSYuesFMs4V6P/VIwOCjbPgpTa++TmBOsbrdJ2L9d6H0wjasfUhkhdVlzlMZJrJkvFqZhB5DPESP/EgtmDe+zds40e36Ccn69j5DqBoiQyDofnS9ifPLwDnzoDr7wZjs/g3PzyHeRViEs2ilG1DNMmvGFNZ84jIUIX0JwZL1xg2N1l5T2U5/s2WyFndEzUcQk1oTmh4xKtCa0jOi4sewUoI3l/h5IWpP095mfPUcbBFon34Cp1yPT9lPvufalxv1qt7lEL3ttwo5UL8NbGjNe94mXGva863pHDBi9LTx233HITk+0tK17G1fjWDL60Y1yiaQHzPXR+0DJOB6GHrm9zKKKd0RCQ2FkRVcSaxCqtsNpDN7HHu0njuyuMS5jvwXjQaAqxzchpKyCrbUC05/sAYUKb69oyfCs02yZy+fnvqz1GDljwwe2HuWnc5q75yWeMETcfCfsj43akRNYxch1hjyW/wP3cxUleyW3P/MT9ES4s4MRGE1Rc37j0PpIxmVa95DbfwwLVaUbHSh4X5GFpKpraIUAebT6C4Ane4YKjpgXDYqTkROwj3eamSTODw4swHsxZHuzTzXrykFguBrQW+tlGS6AquIiEyEte9BImfcdisaRkU+dsHdlmuVyaGEiVjdmUF91zN+/98P2HozJLU3e5xr/nnLn1pltx3Qba9bDcNbfalbVFKS0DxPaUaPJUcdVOobNhTtRqxWUaFUPr4s7V7oaKtgyzURTOwzjY4o4Ty+KpVkR1/qLaxkegUSWrTJT2nmg7vkanVA43YLf9JRbC7wCu9hjJRRlIeHV0mFLq6WKkKYIBcM4RQlzHyHUCBQYSAUd8Nv3a1zkuXbWlCWvEarMm0sBqMptqwXcdcWNmQY1Dx4FOpi37kVYAVMhK8A5xNrc77c9RMbuL4BSnpfVQFXyMHNmY4F1EsWJiVcG1yUgveMELOHXiOJ9/6GFqFYZhyYZutcl4VgeZTadsb2/jvce5cGi9IQ4mfU9KCSeVSR9IZx8jdsE2gVxs/rWAzdg2VZGiON8j+KbTz1AcuNZV3eov6pvqBrEeiBBYeU8Zn+6bHLM+ZfG381Qtg4ax1Re0jZn1EATRANI2hsrFjUMV6KDvkXT5ZYvXQozUleOt6DPGCK1uIqhNXPTrGFnj6bBSPqxx6Zfc6dQ4Xd+41ti1wl9BcjZJYVG0FfikF1tcq1gVB8Hh4gSXCqE2/lwcJVUrlIrg+55Z15sqpyl9XPDGPScrkgKgldnmhCPbW42uFlIqjMOIqCJa0VrpYnhKL4HiXDAbcITpxgy3XLI42GE6jXRTm/9NymgxrltCvGjb4bzRJKE32uBwcWPDhipWVEYgKWU0CaibRtDOslLF/jRljQpGc3jf5ncrOg52XguQzC22oPh+gtDUOj42bt6Bn9pG5QOUaoONvpzp3O8EroEY4fCxZ44R3YrkI09Sww56a09/Ia1jZI0vxHaA42ehG+GWHh650gd0ZXHpF5LFvtGx3awV+6rd2ldt2nuH82YIR01Nz14scKXdghMaLeuQIiAFHQsUs/B2MdqCAcjY6yu22LzgQm9+QdWKl6Fkjh89AuJQsb6Fkgul2VrUWiklc+78eUqthGDzJzY2NpltbDCdTq3I6YQTx06a8oWKYqNfpeut6JlHrEMayxxXJn+udWk3+w78KlNUEI+f2PexgRceREzmOSZgtH4BMGVSGo3jrqsCrX2PPF+SxoTvIi50qCZcTJADQoDSbECyjVQltELqlWg2uwZi5GObT/JdZ+Cluzfwvu7TTxsj+6/aZHFHQcOCx7625xWfTusYuY7wHj7Df8k38Sbu4V184umf9OZT8OIIcYTfdzu87/TlPcirDJdeI6nFbrFrRqVldnECtSBpQIK/uMBrad2/FcoSEUctFSTgphNswhuWfbmKi8EKjLQFpuVQBiAu2AKoWJOXVlP1iCcEuP32W1vR0CiG0DK2WitVlf2DBQ8/8hg2g8YznU3Z2JwdTs/rusjR7U3uuPVmKIlaCjUXfCdIxi5QEkxxVCuSM9QlqoNtCt2kyVhDU+C41hRXG0fu7GdlNYypKZp8tM2BAlkvDicShX5KPVgyLg+gVoL3OIS8v8diuUAEpptbhD42V1wghsOMmK6Z+11mXAsxsusB7uCe/TNw/FefNkaO7FRcnRP3eu78YLeOkesM56jAHbyG1+D5d5Sno68e3IFyABcE/u1Dl/0YrzY8iwuJkHNBx11i3yO+s1t6rDGMWs2iwnnUecAjvtjCSfmw0M24tIFAqaJScSEi0TUr8YqmbAur81YY9N4m12nrR5DS5KQOKQM3nDxhdY9qnxWCbRgV63Df2T/gY5/6LKjivBC7aBtU4+THYcndt9/KyVMnjU4erZNVRzHOXwdLJl1o38u6oR0CqWWZdaSOCVExBWzw5DTi6wz6iPgmw0yjZeKNWtNa0TFhvQIevMPcajNuGpmEDVYXSLKzdgEHBGfzJ3ywoqusZKFim0POQL7szMXVHiO+wLeeeRvCcV6/+yZuWv4kn3WLL4qRs6/PEB7gRT91jJs+fRsH6xi5bhDwfC+/H+E438w7uIsf4dN88YVCvmmGdA+i//BJ9Fev77sReDYTEiebxGD2DOIdYE6jOo5I8CadPKzdCZoGhAx+An3LQks1wzrxSJCmXqEpX7LxyyGgCnk+QM2EPkLwVCfUlO2Ow9moUxcDt992OzFGxuWCnIbm8cShjn+xHHhw/iTTSY+WTBoHaq1muwHsXzjPa77prfRHjiJ1xJcBVcFFb3JNVVw1eXFZLFpHtIMQcCEgwaMysfcbKj4EcIrXgpYRyU1VI2q2HitFjtgmqDnZIgdQm5ciqfUW+K5R+mpdzd6oOStOq1EUK/O+6r6AHuEpMzYuF67+GFlyf/9Z3sYbeaw7wzl/HuoXxkiRzGNfo/ik3PKbRiutY+T6Qabwfu7nP+abeYDHeJJzX/ykCPKdR2BZ0J94msevQ1y6asubB5BWRXM2piAXu2WuBcX8jMQHRAK4odEJrWmqaAtcWwh0glQHPtqUuMXSLCGCqX28YFRIbl3MXbSxqyJobNYR4rn51lvZ3phxZrmg5MTiYB+t1Uz4Wq0khIhzjqrKsByIUQlHPIv9PfoAr3rlvYiOiBNktmFKnFpAnRnlacVpoYuxcduOwx2xtOwYbbMpqi3UYPMlRCvkwd4zmSRTE8ikgyA4gnUdK+Am0HUXi6Q52UZQWzOaqG0wq2FKylO4c2fur7UAjWK6zLgWYuQXtz7At5/5Y3yyG1gwfFGMzG+p7LxI6HYcJx6brmPkOsT/zbv5U/xlPsI+Byy/+Al39/DaGZzJ8NGnefw6xKVTW14wb6A2CKhWVB3St+xGMdqi2zROPMZWOATGZPyuqC08QHGNTzaljKymvaF2W9/M8rQoNWXII94LOQ3Uut8adCOdFKb9RVnv/GD/UPSiWB9AFyO+WUkcimhq4fyZx3nLa+/j1ltvsmMUbIHGYIXclNvm5m2muAuwnLdF61tncJNwFoWyaBSCs+csE+qCjZd1Ypx+Lc28r0CMrdAMgm2+FEHxiI+NhminpbastJ+2TaJrvQFLrDFAYbm0X2nnWyZ6eXEtxMgj/UM8Fs/xwoN7mdQpC5ZfECNn3yDkLbjxvQG3Xznz5DpGrjd8hs/yeZ7gNbyeDTbYZfcLHpdv3oZjHv3JHdgrz/Au1xcuOZLS3i4+RJw3/x/Ain6IyQ27VhgszSqgSSLFOdR1aF0i0nhsMGO6WpulRrY/DjR0Rov0jbwdltZz1TI9X01bbzlrIXohBLPEQCC1Dmet5p/kfcD7iBNvm5sKMV5Uwrz5Da+nn0xY9Q6YzXawBdy3gnFplyXVQypjNYHP/m2Ge+o71HXGd3dyUcqZBxt2FGZG1VTLGOt8yXKxwDubpzKOCZzgfaTf2LQiKbTOZji0Atc2mlXFNo4uHha5KdosxAUu8zjpayFGnkrmrAQZqxgR79l/uV3wbn3P1MwX1zGyxlMhwOtn9qv+sQvrNpKGS6+R1GLDcw7naltXuFUZB1OaSOXQG2hlvyDVNvl+CkUp2eYoiBjFoXgkWhNZWRwQfGca/TxAsPnU0kWboaACzhFctgVRK9HDbDKxuw/EpKZNtVWq0vcB7/1hb0GtFRFhcbDPqePHeMkLXwAOBCtUmsLGQVqAtCJlpHUK+0ZZVFuI7ikFzJwhFdSNzRa9WWIolsGKZdWUgKQROocsBiZTZ7WANk9ib+cCmuf4UnFdQIPH973RQZ3YZ682KBqv3grYuIlVlEvmC3bMy4RrIUZWp0VpMaIXYyQfEXZeD/1pOPaxsI6RNb4Yxz3yTVvwUIJfO7jSR3PV4JIvJH62abfOodk8VFAf2qyElom1hi+toMMC6dtteUrk+R7a/LBCP2mW3djgIjHH3hBckz22hTimNos6ItIZfeAiTIyT1pKYbGxz9OhRc2rF2ZwHJ+hyYDWb/bCo2P723rPYv8BbXvV6Tpw6aQusYOoYp8bDu2gZs3PNMwnbIFzL8HyFnNFhQFHEC+IczgmMFR0XMFWrBaBtQ3Etgwm20L1tptJ3SKnEXjk+7QFHTZW8PGC+v8tstkE3nRqNEtr3WVEhhzxevdizcOgjdnlxLcRIdrATL3A0H2ejbHHe7x7GyO6rYLxBuOlnHJN9z+JgHSPXIyqV05zmFKc4ytEvpLbeugm3RvSfnLMayRrAs6mRpBFKtpGfahu0lgMLyGrSTOlaAFdM7qnVXEmrOZuKa4vD2UI43Fxc0yyq2uucazUPj2sWGrJaCDTKIEYk9EQfOXL0KCCowmRjmxg8ewdznIIXby9pNRTXrLm9KG9805sI002oYrJNMXsP60jGPqsVVJFoG1tJgLMCaanWFxEiVrzM9n0Vex/jZ1rG6c1AT5dGZ5RsBn2+Wqbr2yjY1s3sNj1dmdGVo7Ypp9KkrwvbHJZLDud5eLO8QFad4O2cXmZcCzGSKXx088O8Yv/V3D28mEc3nziMkXPfYN/jyGcDUtcxcr0ik/k1fo238lZewSt4kAcPH5Pfe9Tu5D4wX1+Hn4JLV211HUhngdwUK5LbDl2LBWqWFqRGL1AKKhUdMxI94s0yQzNWiK0FiWJ2EgChGqUrTYvf97ZAVS3jW82eVrXOX2+Gd120YqRNP7TpcyKO2CSnqxklYIOMlvMDbjh6hLvvvhuZTM0qI2dTGPXNJrxUlB5Qa4TTDIsDdFhahi1iFiC+jT7NoL43I75SkLHZYDhlZeRHdG2jMP5bxmXbdOrhxmFzJZwVpVuTm0KjTlIz3Wvn3Rl1o+MBDAvrz0BxkwkiFWbPY6R8FcUIaKufOGKIiBPKVJnfLfgFnHxvWMfIGod0+CE2HPLyCexX9Kd3n/5F1yku/UKSMaWKuObdk8EHU9asskOAqm3EaCtIOrWmqKzGJ6OgI8PBAcuDOXESmW3bLbcWNfWKNnO5mm2hWMsxK2noYXeuVlxSjmwfOfyVp3HJ5uam0VorvTxyaFnRdx3L/Qu88t7XcfzYJiwXaGjW3v2qGDy2udejHVNvjrVaMjKd2rCg3LLe0orAqULXaO5cbAPpJragV+Z8i+XF/gBnKrKL1iCNqvFi31/aRlCKUTWtaGqDilonv2K2+KlgklGbhc6imoHf0ecnSC4V10qMrGa4I2KNjCLM7xYWd8P2x4UjpzuGYR0ja/w23DuxP++dw2fWQ8GeikuntqJv3IEpPzQlKxjKagE3JUjKqBus3uhbk5lfUQIBhgGphdg5fJxgi8M2AxcCh8N4VOyxUi5SCCpPoQSskCmd587bbyUET8qFnEbGYXGxe11t7K6I0MVI30X8pOOtb/oaQgjUNOJw4IHYOqOLIKEzKmFYoIPJJ2spuFJa93EjnkMwynna22KmwmrOc2lyzFUmmQfbEEQhNKnrFzSIdS3jFMtOc8tYS/NIivKUzNsUPxI6kGJZfoygk1Yz0OchPJ4drpUY+dTk42Qyx/OJwwvPhbcKdQI3/UrHxEfCOkaua3yAD5BI3MiNhz+Tbz0CM4f++AVYq36/AJd8ISkH+zZkSM3eIS0zcdLhJx2M7axqbc1OzrLEnC2AbQU2TrFAnOB8xFGsWCmONmP1YjEwmB2EZZzVMtus4NXWfi5WzCTwgttvY2M65cLe/qEJn8Fsw71aptr1PfO9HV7x4hfwsvvuRUJAy0A9uAAiRoltbBj14N0hPaHjEqpN1tNSzO6bZtE9VlSLUR8k6DtrklNgWNrxx/5ih3Fe2nfWVgOQp3xn3wq3PraMe1WE9bZZOrFzqcsmD23KJM2tb8BB7FtX+eXfJK6VGHkiPk6Vwqvnr+dn+GlyVzn/dQ4/F258f7eOkTV4iIcoFL6Wr+Uf849hKsh3HIG9iv7Mmtb67bj0O5KccK5SauXgwgFdP8F1zfYa2xgkV9Q3JYsWYxiqB2nKHSm2X2jjH33rQh4HqAl1rcuXCv1Gozpa1rlY2kLpOnDVuPWs4Cu33XYjN990ip29fWsqFodvdZKVFUQIAe+FcTnw9V/3FjZOHENcxPUToBn+HY7qLTbq1Udk1bOgGOefRpj0reHODPi8GMetK+WOD0BT7qhv1Iv96LAJTMQ2wZzteTXZZ1dMVuqtII0my1IFk26uuqJ9U0ZpZTXDQoeMLq2PRrpw2dWd10qMrCBt3O5wszC/GzYedUx2HCWtY2QNw2Gd5M4OXj6BTw/wRLqyB3UV4pIvJKHv7TY+Kz4rWTN91YtZkATLEKsZytEmzR0O6VndmodoCyM6bCGJZX1JLegnbdDRqsELsZ8Hj8SIrrp7XZNJlsLmxpS777yN+z/1OUAQH4jdlFrq4UKJXSSNS267+QZe/9rXIalCNG5ei0IdW+dxZjw4j6gQNjahnxn94pvxoKNRC6FlwxyqcGQ1ka64RtXY8RkVs3JebUe0TODVNtPcvq9TjPIotrkAhx5JJYG0yXqKbZQOc5B1zrj70Dj22jaOy4xrJ0YMJsX17L8WNMKpD3TouXWMrPHFkK/bhE7Qn9uFnbVc67fj0ovtIha4QZgdO47W1BbqKo2yjlu0wJDR0Flm5ZtNdikt24qtSNiKi6v3Dx4tcujiy1io2PwJ6Xo0J2oacJPOFoBY3UODJwi84PbbLtqkzBeUanNGjAkRptMpi92zfM1rX8PWdEJdDsikt4yjiC02gFLxUk0VtNy3eRrdhhVbqUZLiKlujAcvbRNrncNCuwtydk66YFLW3CSeNA7f0TLMxm9L48VLe3CVTTapK7k1rq08m/QplIWP4FZW4WrvewUswq+VGDkXzvJE9xi3L29ny23xybft4zLc+htTajq/jpE1eJIn+Tyf50W8iCPhKHvfeRSSoj+xc6UP7arEpUdSMF8fKQWkdYrXBGI0hWppzVAepKK5NHO+9nppFEQaDwuxpIz6YFbZAjUXal4SqPgumpdQqTBme23N6NIGClEhz+e4vkMmG9xx5x10MbAcEvP5HBemtr5E6LoO74TjRzZ50xtewzjM8V6IS2+Lqyh0PXiPloIPvskxi6lqVNDFBWouyKLDbW0ioQdiyyzNNBDXWVYs3hZwKZbJlr0mFXXGnYemsNHG4dQCmtCa0WxUCOPSxsWqIF2btpeLbS5iF0irlVpWKjnDwjYtRdG0bI9cRlwjMXJQ99jxF7hreCF6Y8/+vfv0u46jn3HM1jGyBrDHHuc4x8t5ObM7j7D3NTM4neGDiyt9aFclLr1GQivcNQM9crZu3RBgeYDNScBkhl1v9YlVZlSxrGlcWnCXbNmqb7RFzbbJFBva46YrqiDYgisFUqKOCeeddQKHKfix3aJXbrnlVqaTCcthBAm4JjcNwbN95AjLgx1e85p7eeELX0S3MTM7FaXx0MpqoJA4B32TZEpTzdQCnZn6KcA4wJCMSojeehyaaocsaOyt32CVidbahhIlK6Qq1GKf6SatZ2AcKMsFJY3gg33PrjfLD6Gpnoz3N168QCmUVK0XLgS806YWbb0clxnXSowMy73DY959PeSjcOuvTkln97n3lesYWeMLId+4BScC+i/Pr00anwGXfkfShg3VCq44asnUWqgyMt/ZRZwwO3qcEB0s54jzSOhQCtKkiaratPUZaL0E0YEGvO+bpr/RIOIBh9IWSSiEbmLNWGrdW76b2TcQuOHmU5w8eZwLe/v40JliUoTJdINabO7Dm9/yZiYzm7Kn1RrSNDeeXSqSWzEzODs1tX12Fct8Q+sIxhkVUQOQjdpA0VIYD+Y4gTjdsEzVASSc79uGUUwWm0eqpdgmCZ3OCH1HyLlRFuWwD8IsR9rn5uYe67FzIJGSBupi0SbhFdTbMKjLjmskRnZ2D4yGE2H/Pjv0479QYVzHyBq/DSLwpg1ghLXs9xnxrEhScYKPkdosv3POLOYLSl7gnFCHnpItUH0/sUYtL42yaGZ2PkPoLatbjQ3tzC1VEUjmnVSLqXy0KD60hkIPdBHJNtvCbCEqNcNG6Ljr9tv4/MOPo04QFBErps739zm5vcndd97GOJ+Tlwu89/Sbm2htnLsTXNcb/bBY2AYmYlkoGM0ggKhtejK0OfGN168FHZe4kvDRpgIy3Ya9cxwaFPZT2xRCQrrQJsWKbSQr64/Y2WetOp0pT2lGwx53jpXgByB0vVEsKFoVKZWaxitCW1wLMfLgQ4/zia1Pcs/wSm539/DAufPMfiNxdGsdI2sYFOV9/Aav9m/kFUdezeOP/Qr6K2uTxmfCpV9IerOCoBTcJCJic7Rj36FsWJLWz5BuYlLEatYXqxHVQianTEmJ/sg2pixxrafMm5plLOhYkODxk2jZVi6mlgmr2QseorvYpSzgohJr5d6XvYh3v+/DjMX4dFBySSBw+623cGxzCnWk34j4rj/MJiuVMoyElbpI1foBtOAk2nGWRK0J10VYcf9lNPsVbyvWbU5xbhMQpAqMc2sM6wOQYNGKzd5b34AWK5xqNZ+kVTHV24aqbSyqiF6UhlZnHdKriXqOpvKxorY40Fz4QsP0y4RrJEZ+5X0foeabOJNv4A0//XY+evQD9Bcct794HSNrGATBcxtn84288We+mZ9PP7OW/X4JXPqFRFvlTj3SfIskZfOAm0whTrHb/2BBmwakVAtcrfbaVfftuERTPaTGVTMu2ihSmfX2fCeHhUP1HYTOwl5ck0ACNdliBPCOF9xxOyF2DHk8NGmsjYe+47Zb2Th21EafRvsMHQZ0HCnLAR89vm9zJNqYWNEm0cwgMeC1ojlZQbRJN8U5Kyo3SwoVrECsFalqC7lk1AWz1RhtE5AYW7+DWKYo5dC/yezIa3O57dE4gbKEzlmh2kWb363tfIpx94e9Dd0E76/APfg1EiNb/RHyPT3vPOPRf/12brnr/0Dy7jpG1jjEVtxi496TvPODFiMn44Qn1qfrGfEsLiRtYXqPajbueDXnw9mmQc7UcUBihwvWFCbizEdoyITYEZrmXyjUajYN0m77a802r3oyMb65C1CWSEpWQFxZSxTLzLRZkluR0XHixHHj0FmZNIJIRevIrbfcjFOHjgmhObn6gIuVvtvCJtz5lm0KXzCqtHNGkRRn3PjKksM5xDWl0apoWrL5GflgMsuikIpN8CsFWTmvVoGxbZ7iWqdyte+yOtdOWvF6SR2W6CLhwgQJE+PWxdtwJSq6GJrUs6CD9VBc9nzzGomR8Ppz3O8+zvTXfw91b5PZJ1+A6m+sY2SNQ0zfvMtnX/tpNj4IdW+TjU/eA3I/azOAp8elX0hyAhFqHnF1NEmmqmU9bXGQq81aqG186IpqWBUknVhnbzVqwnXNbM9ZFktRK7amlRFfscJpo6mQ5p9EW8RtBrimClWouVLaHGoR8N7jqYQYuOvuu60nII3UITEudummPb5vxdnDMac0GqAVMsE2AL/qd2j/l84WpWtZokg7nR6JXZN3Aj5Q80BNNu/bTToz1fOhNbdVo2WkmcC5loH6gLgJKhlKwk17KK1qrMUKqqsBGytjwDgx+4swckUswq+RGFk+4Zh/74/i3/W1LB5aMP385/BhHSNrXMT8Mdj9pn+B+6W38uAHHuGRd//K+iLyJfAsiu1qvLDTphixIT2IR9TZ2j2UfyaIEc3Bbs2nR5G6Y2u986ajt/TUXlNtBrXxxmPjvFcFSg++hzK0jLNRBEHMr6gqgtmQd9MJUouptFzAeVjO99jenBGC3d5rzrjY0fddc9bwrUgqFxe/NhuM4FvmZ8d22HGM/Zc4MSpCaVTHU4YU0fhpzbgu4vq2+BGz9hAFHSxrrs2wL5jflBxOtIPDYUSI9SV4jAPPqVEidqyymsMRp5b91yvB514bMZIeCHzmb+8yecH34foNyv7OOkbW+ALsfQre+ec/zGT2uzhLQoc1r/Wl8CwaEm2TxpmiQZdLyya9t2zJ0jRbwJ1H7FnoOEK+AJoguJadgq5mLIgtLCkZ9Z46JNCC78wuQqvZZwjVstI2i8E+zj4HL9AJ4juOTSL5YIdxseD8Xka84FxgPj+wDaWfAXLYyGWbQLOzUGcZZHX2/5xNUulbn4KP9v1Wdhaus80hdLaYV95eaiZ9UBu9YBuspBHNg1EYK6sMF9CSKcMS5z0+Kuod9NF6JHw0Z1nFNtjVoKfaJKhtA8ElO4bl3DYw3z2/kfLVFCN9JD+sLMo+Q76wjpE1nhb7n4N9llf6MK4JPAvTRrsiCxgHHntUG03RJtlpyqDOCq2HIz2dNVjFi9p+u1Wv1GHEeTGeG8Ey2vYcCW3hteYqaOrGYhmeX0kgc1O1wMOfewDRymbfMY4D41gZiAy5Mt/ZJe/sIFrxsbOXqs0Ed11ofkQtS6vSNoamy6/a+P1kx7DaFGgNZwXUO3S5QGoCH9GUKMtlm/on6DC23gMQkmW5DlSqMSZhZpvUSpEzJIjVsuq+fVdxzahvbHM82qZkM23tZ9IyV738GdQ6RljHyBrXJUR1PZRgjTXWWGONrxzratsaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnrC8kaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnrC8kaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnrC8kaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnrC8kaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnrC8kaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnrC8kaa6yxxhrPCesLyRprrLHGGs8J6wvJGmusscYazwnhUp84fu5XcQjjmPACCOzsLZlMeyZdIFdBiyJB8A5qyjgHzjvUezQrtRRyTngHORcUoYsTiJHl7h6qBQke74WcMrUKguC8w3uHaqWUTAweFUetitaCAEWVYTmiAj54AFIqOB+I0eNQVBVRgIqKkHKllpEQPOInEKbosEdwhZSVqvYapyBecMHjQ0ct9l0EpahQiqIopVREFVX77mmsDMPIZNqBKLkW0pBQHFDBCajgvccJ4ITFkKkoXQwEF8i5cPrMWcZhST+ZMl8Wjp+Y0fWRs2fOs3+wQ9HC+QvK5x+5wLnzu6RhTtd7/vcf+ue/AyGzjpF1jHzlEJHL+nlrPHeo6pd9ziVfSFQFCYHY201MzZmNaYdzIApdEKp3jCmhuaCqpFKRAUIfqaUyDAO1Frp+QlEPOMTbQu82pkCFWnBOUASvjugdKhVUcASWVaniUIWq4FtgalHEeWJwiDichz5GxlSoY0GCAxwVRVzAOUd0imZBa6GkkZoSqSq5FLw6ZrMeKRXnIJdKriC1Qq1oyowVUqnknAnBo6oEX3HOPstFYRJn9h2qUsqA8x7nPClnQCjq6H3EOUGAGhyqSh8CwXfUqMSbgp1nCQhKzhkfA/HUhOHocR4/fY4nzj4EsWdjc8bm8cByMT7rgHmuWMfIOkbWuD5xyRcS74SaR3KpgBB8IETLmkoukC1Lmu8fUHKhn05wwRNDBBWGYWCxWBC7nhB7YrSNp9SM80IMkZoH2wCqEsThggeUUtuO4CBEj+LBOxiX+BBRFC+VqgpqD4HDh0jnLQNEISvUkkiLBaLguh6tli2KA5yQUkHTyGxjhuKoqqSUWS4WiBd00uNxhC5ScsFRCQjOWTbqRAliC3rI1a7mqrjg6N2EWAtay+GiV4TpdIpzjpILRZeUXMhjRqLinMMDne8QHyhjwoWIDx395pRRC/vLzLTzHO87tm7dYHPWsbs7/I4EzDpG1jGyxhq/Hc/iQuIpVKQ6BBABFzxaHRJtMXmtbG1tkotRErHriDFSVekFJhtTRAUfPKJC1UopwTLTlBFx1FopRfHeU9UyWUdALYEDFVTBOYeLPQhozqCW5YkIBI9jRY0oITjGIXFwMEdqJniPBI+giBdEImhFBLb6iIYKWsjjgPcO72G2uWEnQgLeC10M+L5SVBhTZlgMhBBYLBOPnL7ADSeP0nce8Zb9FlWCU7wEKkJKI1oq4rzRLOoJTolOcF5wPuK9I3iPq2qbEKAO1HmoFe9g2kVOHT3Cm1/zYmJwOAcVqDc//8GyjpF1jKyxxtPhki8kOI+oWiAGy4y0KuKEWsCJw4cADmQcjXZwHi0KFLxgVENRlIQgGEHu0DyScyF0EXEeratNA0KwRVlVGcdETskO3Hu8dyBCziNaCg6haCVn481R2wSqRKoWuhioBXCBOOlxzlNLRZ3ivVBKxXvF9RuoCFoF7x2lFkJwiHhKhuBAfKBqJaiQHSzHOSEIWirDcmTMI303AQVQfHXgFOcFTeBwFIGMoy4HpEJwQggdPigudIgaZRKjh6qkNJJKYVwMOBEm0w6plVnXMz1xglQKBwdzghd8dwW46HWMrGNkjesSl3whKSkZLy2AD3gfqWlkHEZqqXTB4ZwHJ4gUtGQQsYVYLWssValUAgFxHnEBRVGJTCc9AuRFpveeEgJVBXGgKOIDvmuLH+OjHbaJ2GK3zwsY917UeGYvSilKcILvFBUrYwbnqXicN2oElBADPgSKKhTjtBFw6ttm2IqfDrwXtNomM+s6JjccA6dsbgrb2xuUUoghsCpTOXFUrVQqSAEFcc6ySyd4cQTvKOrIpVJKQUvBS0V8RBG0Kt4JIQo5WVYeIwTvOBiF3Z05s43AdNJR9fJvEusYWcfIGtcnnsUdiVArQEFzQUTwVCQ6XB/QWqi14CQSux7oAIVScc7jfCSIUrVYdhoi3ntSGqmN5gBT8FRRWzRALQW7S6+UMQNWPO362DYMQZwQXIdI26ScUBFqLZATWrNx1y6iAiVlaoVSKyknEKGfBHDKwXzAO2U6DZRcGZNtRnHSk0rBOwXnUfE4bNGv+HnnArHrcNJRS8LHjpIrSGqbBJSSKaLELuBjICdFFUQcKqDVzlEplqF77+zcK3gfcN7bhqEZ8UrKhbEpnY4dneJEoBoFc9mxjpF1jKxxXeKSLySCKV6qKloSCKCgpZJL2zRMy4k4Z4VPTIVSS0Wl4ryYXFOkBbGwszcnhMh2H9Fqt+lY7dEWSfCgFU2JGEwNJCK2WFbSS+eMG672niVDrcl45ND49TEDBXwgBPusWjIxOrz3KNiCrhUXHOBxDrrgECeWPVMRPIgnZ0Uwnl60gPO2iAVi5ynFQS2IKFoVJZNzpbSCc3CWDccIwzCSS8IppJRRrQgwpkrKHu8qzikhRrQKiCJSqUUpGljWSL+9zdSNlGEg5ZFqJ+OyYh0j6xhZ4/rEJV9IbBnaLbY4j1LQorjgEQ+Is+fUQm38tzjLBl2Ih/p+rUZBOHHUktma9YgItWREQWI0HX+xIiilUmslZ/ssH4NJIKvlpy44K4IilvXlYhwJ0qgRT5CAMoAIqoIL7lD/37WNJ5cE3tNvTFgOibwoTPqAj5FaklEWVVCUcTkYXx8i/XRGkEojum0zcUIuSs2pbYz1UIoqDqRCyhmlUnJlPh8IvaPvOxyeUitQcRRyyow5EWOjLlC8c4R+AtIh2zcyLgqf/vjHuf3EhGNbkS6Gpma6vFjHyDpG1rg+cenUVtcbZwvgbKF6X2BVENXSaGS1TFIqVYRaCj4EnAQ0VYqAcx4Rj4rQxa59gIDYwjZGuoJCVcsEfRRyVpDSNPgt4VUxVZAIPmLZmJNGlXgoSgUr8raFSq2gig8dLjpEFRdMKVMUuthY9qqUMqJUxDnjop0QVemjp4hQS0KpeNvScM6hVax5DPAIPkZUHVLABSCP5DyYWih6ZrNI64GzpjgRJPZQleAzxbemOzVljojgQ2R3qew9eY6D/V3GnSfwN9xKDD3OGUVy2bGOkXWMrHFd4tIvJBXjEkRBC9KyT0TayhNUBMi2esWhpd06q1KrKWlEpWWuingP1bJSBSiFmjNaCjiHiwGvghSHesV724AqiglMK7UWox202GE4DwppORJiIMSAZnvM9jElOCil4kJEnKPmBN7hEDQXHJ7gsPeslVoqpVbUB3Z2lmxv9EzDSlEEpRTLtn2AJi8Nrm2WWlFn0lJRcOLxMRJiINVKzUp0Ea2JiED0ZFWqWjbuxVRBomoS0VJxwZNzoY5LNtwBR47A3W94CQ4hj4VEwfsrQICvY2QdI2tcl7jkC0lOidBPjIpYkdS1omoZp4j9TFWtmKkQvKAaLLP0AIL13Vq2p5qNh85YQ5YY8a1OTd2D3X67SEtzjeMuaTRu2TnEVVCHtG5gVUFV8a3JS1TxMSIVNCpQqeNodAuZmtXULbkSg/H7TtwhV+9dwEcT0SQNTGZWOK614lxHLYW0TBTn6CeOKkaJ1Noy0FpB7NgqSsmZMRc7JhfwwTqh/WSC10rVapuVGudei/H2goAESq34GKDCZDppdwCKIEYN5QU1ZYKPz2+krGNkHSNrrPEMuPQaSYwtuzJOW0uBPKIVxDs0eBBnMsRSLCN1DrxDC6aW8QFVs7iQ5t9SxSGWytoGI+abhCo1Z0AR5+xz2ubkfEBibK/JaDEbCu+bMigVy+y8NaZZu4C2ImW2zwc7FrwVXMVRVVqzW0XF4VwwFVJJSFPgHJn1psNJhZzmZmfhPVoruWSorRhaCiGA99E6vH2k1EquI8tFptSB4B0xRMKkhziBcYloQoptEv1sRs2ZcVgSg0d8R1FAC76zjFNzRsWyf+cjExVizFeEtljHyDpG1rg+cemd7THaYhOg5LZBKIRo1UFMR6++JYZit/TUSikJckK8t8W7UrmokoZMjB1OrNCKVBSPF/M80mYXoapoAsQytqqmUPEeSlHKckkdB/ABqTRfIiWnkf2DBe973wf4yG99nGG54IZTx3nt617FPXffaRtSVaPwxTJoUSEnJQRT/1gNtRK8UMcEojiBopWixsWXXBABpeCDJ/R96z9wDMsETgjB41yg6wMhekIIiHpqTozzszhRvI9osXNXgTEp42DUDKWSi1JKQvPCKrIK3TTinHlaudmEmpVxvAIWKesYWcfIGtclLr1GklMrmNpCQhzSeXDR3EypaDI5J+LsnVVRLYzDiHPeFCdykTd3KJPe/ut8ZzJMZxSI4HBa0JRRjD+vVXDSvImcFWKLQtWKD6ZkKWkkNJ6j1sz+wZwf+pF/xbt/6ZeNwvCBqoV3v/vX+H2//7t4+zd/fdP1e1Qd2SWqBrQmvCjOA+qgFKge74RSMl4icaOn5EouQtgwlZEWJfStAS4nUw6pNY/lapLW4IPZe1RBaiFEj5MJRav1HjgB7yipGsXjIA0DQ15QFTamM4qz7Dx0oVEWhVo9NRfSmIyTv9xYx8g6Rta4LnHpFxIfAG1/g4hx2JRyaDpXcmmZpGVpqkZpdLOp8dmt2cqJQ8R47KoF101YCWXEySFNUXOilky1Cik+RKgZJ9kKoKqNerDmKu8cuSRUPLlCGkbe/Svv4+d+7pcINbG1tUXfT0njgt1z5/jXP/YTvOSl93Dnnbc32SnknFGpeCe4GHG+I7iIlMLOzoI+wObWRpO3Bpxm+miSV61Qg1pfQLMYF7VmOVWzNc85Mek8mgtFMctxNWsMLZXlYqB3IMEzpkQaEiE6Ss2kMZFSZTrprRCbYFyOBN8+X5wZCl6p/oB1jKxjZI3rEs+is90yLqktAJ3JKtHCirv2kabDL6bGUUG8J/YmBbWOXLP4dt46nL2f2cwIETPJU4VxtNeqeReJWDczbSEIwRQ/1bK5GBuvjllDWDObID7w/g99lOVi4OgsMu07+uiR4thXePLx03z6/k9y+003UMXhfUe/MaOqUsYl8/0lEhLed1a0ZaQUhWoFTHWKUAm+o1RtzW+WSSut89iJcedV7HtLZbFYIFrpJj2o8e3OQQhC3wdKzuYY23nLwHMmpUwMHdNpOGyy6yaRWs3tNddKP+sJHagINV2BbHMdI+sYWeO6xKXPI8mpFUr9SpxvssXcOnO1QDH+FwRpHDfONy5cjK1ozVokpZ9MW+HUirNUa9Aq1bT4tRrN4DujGkpObfE71AvpoHD67D433Hic3gc0K9Sm0ilmDfHwo08QvDDpO4IoTjOilinXUjlYZiRMCSuHV4y2xwdqyCiFYTEnRM/xI9u4LlJH25CkKlVgvkj4CE5MiYRag130AiWjQBfMN8rNerKqqYpQpGA0jVZ86CAEFhfOM9/do4+evusRlBA8se+gKY662QyhNen1U1Iacd5Ta0VE6CbT5ztW1jGyjpE11nhaPAtqy9uCd2ZHcSjtFBtm5NQ364vQ2nPb61a35PYfxHn6yaRNrrNsjdYUVlKhlswwJsSZxFK14EWtgquAd2bkVzL9pOO2W44hTlpx1RGnES/COCTe/8Hf4tzZ84hAFwNb0wkiQkoD3oMUIcaJZYgVxBXj57UCjkk3o6gS40X/J6/ehjBppQwJVTH7i2ybgYTezktJ5t2k5gVVaQXPGPCpICG2nrfSGtkigrc+A8w36eBgYNL3bMxmrUFPWudzaF3hq27ySphtAOZySy10k0v/1T5vuEZj5Oy589SNKbHv2ZpOcOsYWePpsDGD5RLKmhb87bj0SBJ32BMg0nySVKzpy3fgVy3BAl6tAFqrcde1EroOnLNFJQ7vzA8IsKJozfjg8d0MP2kFWYTFwRIJ3nyHmhkdrkMqSJsUhzNLiFIE5wNaK/PlPv/0n/0op594gmPbM0YXyaUw7SLLAkNrPDtz5jQpLZlMenxwuNhRKuiYcFRcVXKtpqTpOlZEvWptNQChm/SoeqjlcIP0h66uSs7p4ilMFS1mXgjWq+e9w0kgpxFKYmvWM4n2gtBGyvazjhACuSp5TKSUCdGm4mnFei8qWLIv5JzpuMy4BmPkn/zov+aTLz3GI3/++/nEjuNrfvp9fA8/xvHhUZ78qOfdnz3K+dPrGLmuER284z74/v8Rnki4v/fjfI/+a95wPHP2/o6f+EjPB8o+hetXT33pDYnzOag2PXuw0aYoBNP4a8poowKolXEcGYYBzYnYTZh5DxW0dQnXrMQ+mJJkXFILhBgRtcxRVQhdx2Q6ZbXQXPNHynlpGVpomVnJaC54ae+nFe+F2caM6IXNSUecTHno8ceITpmcupWTIfLY44/zi+/6FX7Pd30bm0eONipGrFjrrMgZRIgKVYzH9thG6fDUYP0QKp5xrFAKXXBoNb8ofIeLQucdLkScDzjsuH1uxnveU1Km1GznVqCmhIiaAsnBsByQ0c5JzoVxOSelgTI4nHOMYznchG0eSECvQFBfazHiPJz/06/nU2+bobPHONC387Mn3spf+eC/5+t/8374wBv5zrOb/NhPfYLl783rGLle8RffAv/jN8HGWdC341/wu/hjH3qYt73/ffAf3shfKDP+Ih/jH/HQlT7SK4ZLvpCE1tyFVjOdS8UWVfCHluGIQ9pC7vqeOJ0Y14yzzUME1zyAvK+IFkrOiDrjdrGPEB9bMdSbPbiWi13KrYms1kJernyczLRPRVshF/rY8cY3vp5P3/8JZJiznO/jtFKyMpx+2Ab7OMcr73sF21tH0eY4Szs+wVRGKRWcYJmz98brixjFoOYVhSoxRlw/NR+kOpJzpuaBogHXZJp5WODbtDvnnfU2pNQM+0waazMlKqUKVTwR20wRoag97rsZrutwWo1z7zAprLMGOuccIV5+Q75rLUZC18Fb7kanZ6BegKWg53vimKnzKZzfYFo833LDPWxsrmPkukRw8DW3wSxAOQ8DyM6ELhXKfIqc22ALzxs4yg/xENcr6fXsaiQomm1+w4oj1mQuri5ERO3mzprKaus69oho6+6NbVi2gGbKkBEEHxxopuZCrULRQsqV6WyKUxv245yzkaSAFMX7jkqCklDncZhpnW/cMKJ8yze/jV/4+V9k9/FHmE2nTLyQUiKGwP5yyZ133cV3fMe3Er2YkZ5mymizsqsK84OBvb0529sTprNJUxWtjAON2hdx1twWOhsNWyvig/GoDgRbrFIztSZSLqRk8lWksz69ZpMxX+xQkhkOVvHGpTs1G5GcSDlRVBACsZ9AyTivyGjd3b6bWFN5KxRfdlxjMRJE+X9cuIfPfuQT8MtP8rlP/CcMv+74q/oDfM+r/xzdTad5/dEXcupPfi0+rGPkukSu8Nd+EQ5G+I05nP39pPc7/mv9Ae478Z/Sl/u5j21+gM9etxcReDYXkiadlBBonhfUImY3oUodEj42jroUxHkczv5ulhlIMK47j1AU1HoF1Np9cbHHUQga6CZttjbgnfk3aTX7bx8itarZeteCK84eA6p4nDO559bmJpPJhCeGEfGRVD0lFXqFeXF83x/9Q7z0JS82yagCVQ+9j1QhBmwQUPBUnBVH02gd3GZRiw9dGzZk5LN9V48PES02M7ukRB0HhpTQYUHKS5YHc3w3IU4mhBiJsUdqoZ84nHhKdbgIaUhoti5pYqTWClWJ6omb29S8gGFAgcV8H9QTu0AXr4CP0jUYI6/a3+Zrf/BjfKjeD//t9xK+/WX8mT/1nbzyp/4Qf+fWf8U9/9038uLXvWgdI9czPvg4/Oc/Dq/s4e99L+HR+/i+P/md3PyJP8Wf4u/xd3ngur6IwLO4kNScW5HS9P8iNvgHVZvPXRI5KdFPcV0Ep7hSKGOF6nCdDVmwJEgR7/CxBzAvpOqQEKEkKIL4DlxT9ihoHSm5bQS1oGRyGhHAuUiMnal1vD+kUCbTGXfdfQ+f+fjHSSkBnsUyUUJmevQk97zohcQukHMxVU0bBauqeBeIE+s4rnhKzmRVc1kVG2lKHikFfDclHDlOnu9DWiIIoZsguZAWeyx2LrCY7xltUwtFM6UmpAIZVArzxR6lVELs0FoQ8WwcOUHXT6xgKoL6SI8jD0uk1jbrvKObbVFqpiznlJIo8xGdzJg8z8HyVRsjL7ibd774Eyzf8DDh1Y9y5B/dwr0//RLeEb6Wu9YxsgZYUvOfbMBbHkfTkxz5R7fwDT/9Er6D1/MD/OSVProrjks3bex6k25qRUKBbAvIbrvBRXurtFzYNDofyDkxLgcmGzMoUIseTrPDBdPpp4xKG6Ja1DJSr6gmxkVqJnzmpeS8JyVzMe26CfFo08lXmiRPWyO1GdWNpVK6Tc4uKzd3iq9WvDw9h9tuOcaSTYo6hGxZshiPbkOTMlXNmK/qSBpHShqRaJSEqtrMa1la8XYngQRUG1FRM3VYUPOIdIHp7BZCP6EenKPWSkwD1ErsOmLsqKXiYiTEnpoTaSxodcTQNUvwhKs2nIlarZltuY8PnlqVUip96JCJTearRZ7mt/g7i2s2RuImk3cWtt4mfO1db+Vrulfzkf5+3nvqMV69jpE1Vvixffy3bvOOl3wjb+hezXvlI/yUfuBKH9VVgWcxatcyOOMXvHHOgnlWqKlwakp4EVQ8w3JJSpnJzCbf5WUy1WPtzFzO0RQwWGHSCbaTmOZdsVt11YrzDvGCuECcdra5jKPp+kVtQWILSMRsxZca+M3PH/DAmZFaC2f2Bzb6wv4ikYty5sI+H3hUOXbbTWzVx8HZYCLUuGQXHI6OopW8GK1pTJVSG2ffTRG89Q7UAnkAKXZKJxtQl7iQkax00x71PXEytWzYtaY8FfCe4MNhNu9iby6xw2B1AQTEW3FZC+I9Psys2JqSZd4Vui62gUbOBjy12eWXE9dyjGx8IHHzHxP+4U/8zyz+5pI/+6E/hz84xRvWMbLGCu8d2Pz2C/z/3vf97P61Bd/6776bc8POlT6qqwLPorPdrLXxAdGW8dRqipuWcoo4VBQtGe+EfnuCFlORhMn0cAaFVpBcwAviscKjNI29VPABVytYQop4R62tNyFbgVCarJMq+NAdSi7Boy5wkKecr8rdL38Vn/jVn4K0QGuhD54+CPfc+1pe8OIXUTa3GfaWlOUenmr9B6EjSIa0RLN1A3f9FsMw4r2zuePicAJmHG7zM2opOAUtCSfWr9BvRCoF1OFQXD8DJ1QKJTfDQScojpwKmgZrUgOzdm29GS44SJVxWNp7O/B9oLY+DU1mgeGCmQZeCf77Wo+RjcERsmPpCzLVdYys8cXYrbgkDC5zwPJKH81Vg0u+kJQ8tsVRrcu32N/qPaLFdP9qapTQrB7wHiZd2xWAooeDeHwIaFVSSugwEJwZ/mkp+C5S2oxt8SaztOKsvUZC48prJVeobkYNvckfXWT0gb0MMcx5zRvewkMf/no+876fp/NCxjM5djPf9ge/hxtv3KKfOGR6E1pvZMhK54XghFSVOj+AJx9AypLYd2xsbVj/AlBSxqlaA51zplSqakXZvGieTzY/3DeDQecc6oQ8JmzUqs3oqDlThqEVpa2PwprQBMXmWIhzNnK2QkoLFEVCIGezTF/NtlBVNre3CPHy219c6zHy+P3vM88u5zh1693rGFljjUvEsxtsBaZEKfVQbllLAY8tltoGCoXO2nGd2K15aW6nbd62Q62fwEPQYLwyrWgaTcLpndETWtQ2HnHUlIGK5IDTwFA6LkxOMdmeEBsPL0BEiKmwsTHhN3/p57jxzrt47JMn0GEPCExnM/Z3zvAL73wn973xLbzwrhuYOYfr7A0CgAiLrU0W9S7k9KfseyLkVMAJzpu/kevMztxmXFTLqKszOiJEyxxLpao5x4qYTFMVfPRIF6FCnExaam0ZuOaKlmYv4m1mICiz6YQyTqlaqSXTT8B5bxJTZ/PPbV735e8RuNpjJLhK67N/2hjZfewzLYL40jGiij8D/bawXMfIVxeMNX0eIJzkBLvsMjI+H294VePSayQirdApjX7wEAMuRKPEJeNqMd+gYWnZIII4hRCtt6NkalkyLpb4GIldj4jiQzD/oFKpNTHO5wyp2pxsVSbTCaUWpAqTrQ0kOIp4znASP52w6cT2o3asBZgGpaYD+smUnTwyOXYjZx44R6kjx/oZXuDG225he3uTjkO/QJ5aflQV/MYG4/wWKGeoZmJr5yFWqlHvhNAGNDlvx9CmBGqjVRRvjXBoM8sLlGzzyGup5JyZzDatBlCah4W3Tbi0meOaCt4p1VUIDq+eGKJN4ssZcYJzHZpsRKyNur28uJpj5NPuXfyc/BO+Mf0BXrTzWiqQFoW90w8iNaN54NiNd4AIXddz86mTHDz2ebp+wuc/+H6Gh2bW3gLc9OE7OfmDdyD3Qf3hdYx8tWD76+HkH4GdHw3492/zhbtBe872Ns45NmczvuWtbyWlp79IvOjzr+RPPvgX+Bi/xZ/gj7LP/u/w0V9ZXLr8d0w484SAGJHStu1sVMRquI5559lwnpwHpFSkJGrOpOWcWqrdxgO5VqRZQyg2N6KqUhGC94Rpy1qpeAmIBCoCKXMmTSnbPaF5ZqnlfEYZA8emnje8+h5uvfE4/+Enf5TTD93AAx/9DYJ3vPZtv4sTJ0/wipe9mBtPbtBaFL7wIgKMGaKHHX+ETbek0+Gw2Ko1M6aCECAWy6DbxuCcAxw1Z2oZkWoZIw7URbRaZk61BrvlsCB2M+u01koZB/KY6CZT2288poYSc8ktRSl5pNQMYhl/zSPOjXY+Y7R6wmXG1RojY9nn7/AX+TQf4FcvvJP/6If+c+JgsuJalQ2tzIJw84teyGJvn3FYctcdd1IvnGYJPP7EQzzevqNU4c3/9vdw4rN3UB+D4Tehf9s6Rq51uE248wdh87Xwot99lG/+h3/0MEaeihgjZbEgDUt+99u+vvUGfSFWMXL3g/dwEzfzCl7Ne3j35fgaVwyXfkcSvG0OoQdxqJSWfdI46koto0kUnafkxHxnl3F+QKmVycYW040p3cQjzgNm9S0itjBypqaCIpRS6fopcWsDHRNpsTDOG5s8d3pnwZO6xc3HwVdlrMLEGUMClviJCFu98KI7jvPYfa9E3ITTn/0Y43yPl7/yVaRhn83NKfKUq8fqIqQKQ1aw9gak69mdb3C07uGbGsnmXWeQjKpDm8JIySgRR2cOsLWjLpfWW+E9w8HcurnVFEfOeSZdQIcDSrLnVcEyasx23aE20kNMwTQuFhCaHTnVrDB8hCrkNFLyAYgyOfH8BMml4mqNkYXO8brEVTi1c5w7b38JUi9uogLs7O5zcDDnx37kh3n4c5/i637PH2ZY7PLy++6lb7JlbX/6l53gsb86Eh7pKL8IJ792HSPXOuIENibgCkweiXz6Ew8Z/fg0+NT/8jf4yP2f4Pz588/4fu/a+xz/441/j/6JGffyTbyXX6V+FbctXvqFpJ+C96bMycXM3yYdqLOrcq428S3bLbfWSuw8vttECHTTTcuminHE+OYUmxO1ZhDwXUcumXE/MZltgTpyMq5YFYbFAeKEg7GnTKeMY2Y6iezsJWQrEpwQ2oVhxTBEgbvuuZuD/QW/+7v/NB/6pZ/i9jtv5+HPfZK+cforSqw1LpNVOdhb4GOgFE/fOYa0SV5YR7TmbGNhZ1PKmBCpeN9Zt3PNRs/UAZlMcBtHcHIO8kBtc79D34rGrUDqmn0HZCuKSkWcJ48Z7wJVaztIwW8fo9/cou5fwImaB1OBWuwW22kljQNV9bI3m12NMTKMiV8/+rfp5H7e+su38sYH38S3fvd3IyIXYwR44JEn+K0PfZQnHnqQ5Sc+zgtf/Roe/twnedEr7iMGfxgjFfjl8xd49x96nNf/s5s49oM9029U+q+RdYxcqxB41V+C+14Kx375Vso/3+IH/vmPPicHmf6tX8e/evMZXvdPb+Q/fewv8x5+lo/ynufvmK8yPCv5r1RFy4jmiosBHRbUYh5JK93+OMxRLIvyToj9FCptXkSFNoRHS4aqja4wXyEXO3xW+mmH6zrbTAA/mZgbahepKmjeYDaZkIbENHryYs750nHs6NTGsMphszMqws033cDnP/cAN77pTfTe1C5bW1uERno/ldaqwGKpHBzM6SeRSdfTdz2j96T+CFPZbzO2FacO8RHfBcT3xt9noZREzQfkJ3dwLuKix/uIOE8MHUbGWWZtY2PN+lx8IPhmfNgm+JnNkk3905IYD/apueBqxvWh2W9Yr4JIxYnia8+VmKR6NcbIY+VD/Ib8Y7aXN/DS+19JWpxnPr/AdPP4xRiBizHyxjfRuy8dIylVlrMKf2YH/RsneeKvCHf8NOsYuUZx/BXw0u+F8RFh42eP0PUdm9PA3vwr77MJccJyVvmn23+HP/bYn+Yv8Lf587yDOXvP34FfRbj0aps2eaWPiI9NaVMpiyVlPkdLAiouRLp+QjeZ0s02Cd20OaW2QkRtjrDFOoRRU5GkcWScH1CXia43yknH0W73a0FLwbnAOFb2B5j0ni56xuWckgf2d/YYFpWC0lgpzELQZjm8+OUv49yZJ7n7la9lHBM33Xr74cag2POdQlFlGAv7iwWLxZyxFIb5AlczB2XKwe4eZVzivJjFt1Z0LOi4IKcDSsnghNh1zDY26Sc9sXV8KxjvLU0YIoI6Ty6VcbkgLZfUUlgezBn39yBl8jCyPNijLPdxTuii0EeaE65S00AdF9RhiSbrdC5jpqQr0Gx2lcVI7Cu/dvSvs5CzvObgT3HEv4j53mnmBxeeU4wcJh2v3qf7w3ssPghP/M2EK+sYudbgIrzh/w2Tk/CBv608/unE0a2OrY3np8fmg7yLH+fv81Jexx/hr1qMfxXi0qmtyQRdLtCUTf/fGq7izDqQtSqESgiREEPrQhZETdOv2CQ7SoGuMwlnwbpvS6am1OaIRHyIUEajM6jkNFBzoesCu4tKrpWSlsz6CZoKuzs7FA3sHWzguw3EQ+fb/B4saT15bBsnlY++/5d46aveyIvveTWrAslhpok5n49jYrlY4iUynRViP2E2CaQyIYU7mKQnEPFm600hDYNteE7wLoLY3HHVFc/tKS39dVQKnioBVxPOZettGJeMzT8JqbjYmRJHBVVpBoSWhQZvvRIqEXUCIjgnuGgGiEE8X1D8uUy42mLkIXkXn43/ntuGN/DiJ34fTx59Fxce/U32dk4zO3n3VxQjQ1U+/9BA18FsK9F/7y76vk12/kHg+LcHuresY+Rawo1vhtvfAY//Cnz078Op+/Z49YuPcXSr49HTi6/oPZ0L3Hbba1ksLvD46Y/xL3k/r+Ub+X38WX6dn+VD/PLz/C2uPC69IXFvbsN8RFFJ1FxIY8J3Ad91lFStIS1EJIoVM1d2Gdi0PC3Z/JBUWcwHUJhtbzLZOkIalqAF7yKui+RxJKdEDM7sIUQYU2GX4xw7dZTOFYIW5qUyX44IlWGxJG1M6Wbe5Pa0ArpAEHjJS1/Gpz7865x+9HOM+hp61UNqoKz+FCUNA6LV7Lh9ZHMW6ZyQgrJ75ATDTiW6fVy1YUkueFMMtVGnWivViAjLSqviFZzrMLLaKJt+tomE1WyMHie0DmgbwCT+KYteC1Rr+sMFqxtooTp3qI7SCmk5Ny5d4HJrcq6mGJneoPy7o9+P18gb9/8CaeFx3XG0Fp78/Ie58YVv/IpiJFVlZzfjvTLtBY4qR/9y5sk/1vHEfyu86KfgYB0j1wS6o/Cm/w+UEd7/v0BZwJkLA84JL7xji4999iuzPxFxbG3fRM5L5gfnGNjjh/kb/HX+Fd/H/5e/xLeyz4Xn9btcaVwytXXmicfJmilaURwuBLqNGb7vrSahNiMhTKN1K3cdxAhdD6GzZizn2nC5hNZE1ztyWrB79gzLvQMbJZoze+fPk8YlXrChPIAW4YIeoztxE8dPzjhyfNOKu+IRH3AC4zAwPxgoSdsifcqXFOHYieMcPXEDD3/6I/zqf/h5dg6WhwVXVchZWRwkFvu7BO8ZlwvKsKQWez+PEL1wQbYproM4wXczutmMuLFNmGzip5uEjU3ibAvfTXHdDOlmSJy2BrtAjD2zWY9zZiZYckEciIuE6SZxYxPX90g/seJ1LeQhQ1FCiFAV580CowyZnDLOO2pKtpmItmz/8uJqipGHTr6TJ7oPcl/+g9yTvxnxga0TdxP6bXZOf4485K8oRordAIFCCBYjk69dcOQPKAe/ARd+FKJbx8i1gHv+IJx6PXzmX8LDP2c/+/xj++weJG45NeX5PD3v5Wf5Of4FL+V1vJ0/+Py98VWCS74j2djszDPJByRaZoWqeRuJElbWFEqTTBWIlnlRTZV46AwrwnTao1VZzhfkYUnX9YzLBXsXzpGWIxvb20xnU4IPSIhkDVxgm2Mzx7Sz/uRBC+M4UksmhI7FYo4LgRg8bhbpJuBXW4UCIsQYOXXTbdz9whcymfSUxpXXopShMB7skVMmjQOL+QU2NzYIXc/GRo+PDq+gvmO3TDk2WVqHduvC1qY2Ete8j+qSPNigIupAjME6kF0A79Cc0eVghoRdh2pBsqlpXGcSWrSSlyNlHAnTCRfTyA7nhD6a7YaLHU7NXpyizVPq8uJqiZEwe4L3xr/LhG3eUr+PNJrlSug3cGHCzpOfZrG3wLPxrGNkfyczDJXZhpDyknHfYmTrL3QcvGfCw/+T4663gt68jpGrGbOb4b7/CsZd+K2/x6F0czkUlmPl1lMzm7KZn710a7Zxgn6yzYXzD1KaUm5kyQ/x13gFb+aP8/28n1/kIT75PH6jK4tLviMRBanaJIhKHRakvV3S/IA6jGjJ1qGMUmsmjSN5uaQOA2W5JI9LSk72XjjKaHRG38+Y9FNKTuRxwWxjwmxrRsmKEqnm2MeZA2UsRj+Edix5SCwXBwz75yklUxSWiznzxQFpzCwGWI5KrkpVKLVSq3Lqptt4wV13gXOkrIyjMoyVg31TE3WzTSZeuWXDs7+3w2IxZ1gmxnmmDIVp51j4I2SZoj6CROMMVE2umhJ1GFonsceLtq7otoGEACEivsN3E/ykQ4K3DvDgkaZwojUwBydMNjYs+8TZXVgINmZWpA2KGkFtaJLzvs0qv7y4GmJkKJV3x7/JaT7ON9f/jpPDSw5jBAIbJ1/O8uAs5578zFcUI088vs/BQeHoMc9GvBgj9dYFJ/5qpuwoj/3XMNF1jFy1EHjNfwPHXgbv/+tw7qMXH1qOlU98boejW5Ebj39l4uijR29jc/MkTz5xPzkPhz9/mE/zQ/w1NjnCf8XfIvLFDY/XKi45kmLwVptTJc/nqNqcBPXBbsdDaD41Falqvj+1rBozbH4EIGrUhU2UU5x39JszwmhDipwXZqGzBdBM98ZcOTNOCSGTl4ml2rEMiwVpvs+ts8rZ4QD6oyCeYUgM3YAPntitHFjt8MZhYGdvn6EqGx5qOwMpO6abG/hxxrg/5+hWz8lp4LOP7zLf3WHSd6DWDRyiR/vAfppy1O82fxVBVEyq2gqgqJ0HJzbYSEslpxFXFK8WRK5vwVSr0T0xGJ9dQUKPdlPcpGubT7ZCazMBpFbaEG6biY4YVSSOZyPIe75wNcTIk9P38CH/TzmpL+LV43czLpYXY2Q8wHVHKGnBwe5ZhuHZx0g3td+XOMeJ3xYjx76jZ/PnHXv/xrP/T4TNP7GOkasRN74RXvSH4cIn4ZM/wsVGsoYL+4m+82zOIvCVFdyfCT/Pv+KNfAvfyB/gO/jj/Bj/+/P6/lcKlxxJcbqFn0xwfcRPJ/jJDEKPi8FM51SbFUalFKWWQhmLbRauksdk1uKqxtNWRVQoKVNLJU4m9NMNYjfFhw4Xu/YLLpwfAnSbbM8mSM2Mw8j+3j4HB/tsuiV33LjJiT6TS8H7gI8216HrHCGITY4TALONGBYHCM1tVmyOd/BC7BzeO7rg2dqcELueO246AsMu589fYDFmMwv0MJkKdTJhSAEtjSJwYtSMdzhv/3YbU+Lxk7jt4/ito3Tbxwgbm61IKrDyPGqLvR7M0cUcygAYl03NlMWC8eCAvJxDGmCxT9m7QFkeoFTcbIp0Zm9u730FLiRXOEZyH3n/qf+VJPu8efFnYW/6RTEyOf4yAHYe/9BXFCMh2Hmd9O6LYuTC/Dybf2Ug3gqP/C248CuQwzpGrib4Hl7//4K4BR/+QVie+eLnfOwzVmS/74VHv/IPUhiGL+4ZSQz8A76fJ3mYP8B/w8v5ZtyzmHh+teKSI0lrYbm/oI4FJ86UN86ho5LnC8b9Cwz7F1jsXGDv9Bn2dy4w3z+gqFIAxCbi+S7aBuAFF6PNo+4jeFvIpVTG5ZLFwQHjcsFYhJ26zebmlOkkmk05ShpH0v45bjk6IXQTTmx1ZlUuF2dBrEy0iq72m4J3QkkDJRXrC2DVuGhMAQK1JKIo0kVmmzPuOLXFuHeOvYN9nHfMOpg6CFE4iEepdIBvXZAJctscbdi4fUppszoavaFqvlEUBd9B7CF2RlmsOiprhmFBnR+gNREnplYiBJva5xy+twmAlIq42CS38DxZmD4rXOkYOX/0vTw6eTf3lG/gNemPPG2MeLCO8GGnnednFyMPfG6BCNx2W3jaGFme2mP6Z+ETj8Iv/V545MeFg7COkasFt30D3PL18Mh/gE/88NM/JxejN7c341fU9XHX3V+LonzmU7/0tI8/wmf4YX6QXW7lv+Df8LqvguL7pdvIh8Bkwya3IdjAIbBMy4l15yLEiaebbh5OiQOxjt3OFDklj9akJUAZSGMhF5vkVsrI/u4uwzDaAB7ncMdeTH/zMWYzb1bx1THMFyz3dzg1UYIo8509nCoTCZY9em8UwUpfXyAGsz6ppZgkMifQyaEiJ1UYEuSiaE5Ip5SDA0oemUjgzqMdp0XZ6K2bOCsowqjCMsMsCLgEHKBuimjbfrRS5nvm/+WFMiaTfo7WlBb6iis27U/EU7JDasJ7Z53dbYaF8966wwtm064e4hSzH0nWe0GBLrCaRni5NTlXMkYev+Pf8NDW3+AWtvmG/N9TU2C5f+aLYuTIkZt5YnYD5x/9EGmxR54ceVYxsrtn7sXUbCLc3x4jTlmeELIILOHgYRhUWJZ1jFxpvPl74R3/A+zvWW2kPoO7+6OnF5w+P/CSO7eZ9J7F8OxECbONE4A1oz4THmOPhBKZcIzbntX7X414FoOtKj6YZ1IZR3DJGqJUKArORSRGE4xEQZLYIJ2uM0XUmMy0rhacq9RhJCUbf5rGlfoqIbXQBSEUZajKML2JzYlnMhGmThmy48nTB0zrPse2I4v9A2op9NPI5gAHKUGtlFJIg+AnDhVpdxuWgdZcGFPCAUk5tPoGyCmZS2q2+ReWvBU2TtzExuZxggiDwlihDMrB7j4xX2DmevARTTPyfE6YzpDpxOqeDvsQPK7zlHHAzyK+b4OFklFmIE0aa/5Uosaj25yU1uBnAyvwfcBI8kZRtEKtfb+xucteXlypGNmfTXlo838j+8/xAn0Rt/uXcfbg6WNka+rx/Tbp4FGW81362dazjhG7wCVcTl8UI5KO884fEc738Pa/BHd9jzLf26dbx8gVxWTbfh833w1PfBL2Pv7Mzy1FTQJ8w5TZ5NlfSAz6jBeSnmPcxn/Ggwx8lL/Fu/kHX8H7X124dK8tTZQajN8eE6qKz9mSoVopmnFWKcXFiPjQ3C7MU1fLSMnVsiYJSAd5TGZsN+no+olxxuLACSUXdhZwFk8tSi6QRJgE5c5bT+DnDtk/TegjIczw0bM5VA5yoaQRndjmlLMJYCpQWydvGpc2dQ/zB6yN0vKi5GKztV0QXOhx6hizUCfbTJyjYHXhISnDcuRg5wwnNpJVZEtrNNBKGefUNJiUOA1MJh39xhEkTgn9DLxZfmseWkZZuJjK21xtfGvY823ilnM2TdB1MN9F64CEtjlToRY0JUTVNpXLjCsVI6Me46bxO3nQP8iMRynhndx56x9+2hjZGiqbJ1/Ok2fvZ+f0p9g6dsslx0gplZ0LiY0N4ehWedoYef+POD7xi/DmPwMv+X8qaTly8Ng6Rq40lrvwof8bTt4B99wCX/ft8DP/J09rzFj+/+z9ebwl2VXfiX7X3jviDHfMearKmktVqlJpQkJCSGISSGayGWyDG2zws93dnrppP7/X77k9tKFtt93267bxjAHb2AaMoRGWECDQLIQkJFVpqnnMrJwz73TOiYg9vD/Wjjjn3qwSmUjkUHl++bn33LznnDgRcddeseK31vqtmPjiU2vcfcsStxxa4OzapQ+msq7H7j23cuHCs5w5/dgLvuYu/gSH+Do+zI/zEf4W6SVAMV6yJdkyG6o1iNP5BhIDzgkJl8vklfONUWUuQuNz13BbEKpfqjVkKHsLOloUSN4TU1AnYhymgKKJ1JsXGC/0iWlA6EPsC73CYZf2UvuICydxVhMcg54QJg1NCMSYwFmiZMoZsAlA1WfHm1tKFRhR3lzAB6FuPDRbGNMDY4hNpOrtY1BqJB1y42IzDtQb69h6g8HuAb6aZEG+QEoeg8WWPaSwlL1FbJHPX+5YluhIBPUJ/b7+vh0M5SO4ALmQtp3apaq6ESn02MQM9ODqtsQwQoqIWKS58j0CV89G1rj1wl/l5ua72Fr4EZ6yf4FbC9i39N+8oI0Ug70ghq3zz16WjXifOHeuQSRh0ugiG1l7vOC9/xBWjsAb/9tEqOc2ci3hV/4mPPQL8D/9/+Cv/BM9rb/6IheTU+cqYoIDewbA+Uv+DOd67NlzO5PJGt5fPNN9lXt4gB9hi2N8ln/ykriIwOVobVmnecEUMSkRYsQ3AWMsrldkdVcBIyppHaHoG3wTiD5inWAkK8A2OtM6xkQdEyFFijLrJ6GzvK2xDAeR5vx51s45lldWiXGIGIcrBSuCXd0L4pF6nQT0jcdXI6p6CCjn3SuEOmyvKogpUo21Z6SVna9V5RxjLIXLizNGku1jFldwSGdwTaPqwOO1sxxcMhQp6ehTo+qtiMmlqT2skCPGHkjMHiuoDlK76HslxECsG80lWEvytcqoi1M13JjAe91G0OY2zQSLRqW05aAWTMhT9K4srqaNrJ9zLIc7WA0/zYXlP8lT9i8iBnatfv9FNtJfPISIZe3kFy7LRsa5DUQEejtsJNgV3vO3hQvH4Lv/Cazelrhwfm4j1xJShKc+A3/rT8Df/Bn4kX+sv3+hi8nTz28SQ+K2I4tfsc+3DPgq/joLHOaD/AXWXkINiZdObTWNVo2IQSSqgFzVUA6H2lybdHZCShFjHaanEWjhtPYfH4mhITYeMZqLGI222ByNGG1V7Nu3h+HCEpIMpgjEoqBXGHb3A2e21jDWsChC6RaojcE4oTCWenEf/swWEkZI9JgApDwD2yeiE/JcIqIVjBh8PWE0GXc6Q55cbi/gihIzWCH4dYxY6sEeSqfVNj5BExL1uGa8doZFGbNrYQjWEILHuQRlAVYTnFqQo4tYcGByCWw1JqVGF7Sgizp6jAMkkXyteYaUSFEoF4Oe+7LU/oCsiKssjM2eLqgTiRFsAfbKR5vXho3sYr/9d5xZ/AGeNj/CgnkVbvGebTZSuAFusIfN809Tb21QrCxfko2MxpEYEgsrBXZQEPwGRizVYA8P/YLl0/8F7v1WeM0PJDa35jZyreLMcfib3w9/8z/AX/qH8Min4fEHt79mfbPhzFrFwb19Bn3LeHJp56rfW8LagtHovP4dZ3Anf5Tb+C6e4V08wouUjF2nuPQLSYiQGqJoItWaksFSH9frY4qCWNcquWANMTT4SYNEHcijcxDAh0BT1ZRWJ7eVZcmyc6ysJErXxzmLMYYYIqkaI9ZxeMVSn91kvGWorWVcFLiyj7Wt4y9oVg5h1p8D75V3tw7T62lvQFBJDmchicE6jcyaeoIHpQNSorCq2TQuLOuhJCQLxRC3sEyhhZr4lBhPItXmOotpg8O7+sSckxERgqi2kYgo6Z4rcmiC3sI6rahR/S6P65VI0acb/BQDYpIKGlLorF+XKYugTWw0Ezot87apLEVVyi370DSQclR6hXGt2Igt9rK//AmO9d/CY/KD3Fn8PHbGRlx/GdvbxWTrWaKfkMLSJdnI2ZM143HkZfctMkqRkEZQDBlvLPNr/6uwsAe+/e8n6jC3kWsdZ56H/+1Pwz/7APz1fwt/7Xvh2Uenz48ngfXNhpsPDukVl34hOXjoPgbDXTz91EezMrViwAFey99gwlk+wl8h0nylD+mq4pLLNow1RD+m2twg1LooXFEiYmjGNc14osYZtLEsBU2uxqgRUGg8NIFeLvE0ZUnRGzAYLNIfLiFFX5113VBPJvi6JvlAaSK373UsssnWxgU219eZjDWBWycAoRwuUi8cYWOrpopOHZfV0aYxQj1JTCpoYjsgCKpJTe21IrJuoKkTMSZCDFRVxajynItDje5Ek62NT1w4eQKzeZx9wwRhQghjop/gqzGTjXXG5y8QJ2NSPcllrwXitAdCo8EGO+xTLC0hi8vIwjLSHyKLS8jCIgmjPWZlH7O4gOmrJAYk/GST0EwIdUWzsU6sRmCjbrtpYDzWRrTYiqNfWVxLNhLHN3Mw/EuqdJzH+F7i8PltNrLr5tcRQ8Pm+olLt5GsuxRj7Gzk2IVlfunvGM49B2/8M7By89xGrhccfwL+3p+FfYfhR38ebr5r+lwCPv/EGs4Ke1fLy9iq5NHQ0984dnMv/wtDbuIL/Cs2eOIrdQjXDC75jqSpKkQSrizyPAhHEk2okhqK0hKzKqqxDh9rfNVgJFL0tMHMDgrEQPAV0UdSSPjGE0XHiTprSBFcTmxb57BFgZPErdJwZnOTc5uJsTPAKovLDucElwSKHhfCkKbapBpvEXwfL0JVN/R6pXYIR8G5Uuc2NBXOgJHEaKwijUWvz9MPf46nP/8pPn36Cc5t1Lz2m76N13ztG0nWsXVunYXmLLuWIDQNSdChRSlpojRGrBYUQYqkyQRxNanXz6VhqEyICJh2GIZW8YhJ4BzS70PjoRho41lTaXOasRRZJhwMLOhFThB0AEuZuXU7JfKvMK41G+nzNg4t/yTPux/iMf4otw7/dzZkD021hdgFoq84d/xhFnfddUk2Mtock4CH6gm/VXn2vv8YD/4fBzj/lPDK++ENfymxeX5uI9cTPvIu+NE/BX/tp+DHfg7+xV+Bj38Q6houbNQUznDkwJDHnt28pO1ZW2ixyD0vh3t+hN5vH+Ouz/4/6cdX8Qif5TP8wz/Iw7lquKyqLTGCEYcxQEgE3+QkldEBO43XLuUYCLHBB58XwhBrtbdDjOoaGWORnkPKQFM1kOkjsSo2VxQFIrkkswkYgYOrJSuN58Tas5yfTCh7hymNYWNji1/59/+W5x/+FHawxGB1L2/+zu/jwKFDeocxnmClBzGya88ennk0Muj18JVWd22ur9NMRiytrvDgr/0Cj336IwzLAucK3v0vPsepk3+S133tWylHp9m/ACl4QqhJ0WILh5QG1+uRkiabVcsoa8qWVrn/aqKjYZ3VORHVJomI7S9oBJPlL7TWNKolG1XNRaxKh/QX1blEtJrH16TGQ6yRspfH/cWcbL3y0++uNRu5MJlwoPd2bjY/SZAfQMx3UNf3cu69r2HvscieXsP55z/HkXveTjWOv6eNPPbYFpOe4d/ec5CzqwWL+2/j5c8LNibC/nU21iYM6rmNXG/4yLvgx34I/sW/g196J/zfPwM/9dcN9z8xZtfxCbcfXuT9nLqkbd35sm9g0jM88hd/GFYLit+G4Q8KcZx4nodpGP0BH83VwSVfSHxTY2yBdcqrpjQdg6qV7Qks2JS7jYPFWeWyJQUkJR3xGQzGqFS3cQ4rPcpeQiSRQqLJVT5JdLwqgFjtdq4mI1IUDvQcpycnOX9cGC2t8J6f+Vc8/MF3MegVhOCpfGT/4SPs+0PfRcLifUU1Vgd20+338PRjX2D/wSM0kzGj8ZhnH/k8T33s11i97QHOnX6eerKFYwi+pp6MeOSDv8LX3HOQ3Sv9rgKzKEtiNPho8E3N+onThLphsLTCYGHI4upubQJLKponRiNz0zQQG+17sw6idjEn8pjaoqfRp59oFClGlTVSApdndUcPdUUcjXLyNZK2NpSDacdDGnfFiYtr1UYGK69mYXEvdvgYtx75DHd/8nHse0rGC5aP3PoU8euF5Ovf00bOnegh8RAhaB+Hd3D+Flg5fo5dB/8p/QtvndvIdYqHPgij52D4Cvi+7xB+8D8vYN9TMPlPz/PwN67kasTfezuFG+g1eoeNlE+d5Njkx9CyjZceLv2OxDlC47Wm3uj8h0KyqmjUBY5JWOtIEawpVe4hBlIyuLJEJBE9JAM237qLMVkJNVFPJkQfVe00aRIypUCoaurKq1MpwDrLTX3D2vh5HnnoCzz4/l+B8TouLRAwNPWEBz/0a+w7ejs333YnpUmcHzWILSiGKzzwhm8iuT5PPvMMZ0+f4NPv+QXqyZjTteX445+jHm1ho0eKAkmJ++65g90LmnJPSRCxeF9TVTUba5tU9Zi6qdhcW6M4W7B7zz6MJBZ27e4UWX1Vq9MIVhOh0WJEU1TRB/1qKsRWWGN1vnaEkAJ2uIBbWJk6HTFQOMywD36EhEA3oik0pEnA+zHlrj8Qm7n+bOQzF/j8p5f4Q99Tsj/UiItIShRNoDr5BBtnnmRxcc/vaSPr6Ztolg7j3ydwAOrPwPMRDh79Db7qq9LcRq5jrK/Dj/4N+Ds/CneUCVNEDFA0gVtWSvas9Dhzofo9twPQNHKRjYj7OUY89Ad7EFcRl95HIgljIcVA06jTMK4ghUAMNXVT4+saY41SD0nouSFSWMQnlWMwgrWqZBonI0ITsqSGJyW9S3cDjUJFhCgGwWFdSblgiVHHnooVjCT29SKDYpUvvvZVfPL9v0VTjfEx0XjPM5//NL/1sz+B7L0JHyInTp3kllvv4IFXfTWf/czv8Ngjn6Uab/Hcc8cwoWE0nnB4qc+QhmHp2Njcoi4ch266iVe/7rWUwwGmKPBVRQw6QrapJiwvD4n08T6wb+9eirKgHAwoew4/GSFG8HXI+QOh1+sjJhFCohwOQQpMv4cRR6zGxGqi9FDZh94AaWpNyPpaKQwld3TwUZnF+wqU6mhqYlWpf70KFTnXtI185Ot494+f4wff9gzm7hHc74krwqRY5xd/9t8wqgdf0kZ6dsADb/h+3MYT3PnkO3l073ez9dBBNhHSgV28am4j1z1++RehP4Gf+ItQzthIsUcY9H/vocSDwSr7DtzN+PQXqT/4b+CeP0189GY2ERgauLQ0y3WJy2hILDAx5l4AT4yNVrP4QEoNBoNzZTdfOoSGarKlVIc1OrBIhBQn2uMRI8aVhDyPQgpH0R8gGC0RjUkH7xgDMRCaPEshecLYEySRxNDvFbz9D30zzz72CKeeeZrK64CrBsOHP/IhLkTD6uouNrY2OXviOMNen2eefJRqNKKuJtSTEaVzFGWPY2sj9vaEce3pW2FlMODr3/EObrrl5q5Rzhnl511Zsrh7L1hDM9pksrUFKVGUJRINoaqIYQLGUPR69IfDPJLCkCRhU47QQ414IUZNVNtSqYkYPCYGbL+XpWkTaTLSKNxYLePU2avqqKuGMJmQYkTKQpvTrjCudRv5v3/6IcLJ55BXBE5Vid88czNbgz5Pff63eOL53pe0kd7SMkVvhfXzj3PgoR9nl30nH9v8VzTuMG/7htu4+Zax3j3MbeS6xqc/DdXzsPiKxBNrFf/2kVVuXlrg/jtWefbEl85vONdjONzNqZNfpP7Nvw0f/U9w8N3gDkPzONtKuV5iuPQLiTNIDAQfpmShTRTWkXyWfQCsWMQZnC3xoYHUQDQ0PqqCq280MWotvV5EjJACOKdjWGPwiATlipPDOKdOxGr1C1HAwGRSa3ezS+w/sJ/v/N7v4T//1E/y5LPHGAeokmGtSew9eAhnDbt370Uk8eSjD5HqMbt3rXLmVMUtN99KXTfY3pBnn3yU4+ubFK7k4MoCf/x7/hu++hveoeX+KEfd6qkYscjCEtWkJtQXGAyGqsaaICXBGoMUJlMz6HsFQOdxGCt6PEYIIRAbr2J9PhG9R6zFTcYwScQmdziLgAQwBtNXGiaFBgkqVJlMwjqVEZfelRfku9Zt5M3v+H6OPfMku4qn+Q/rK3z6fMnXJNi9vMDx88WXtJGYNOGdSBzfGFPYJ3jd0p/nu/7EX+FPfdfNONef28hLAE+fgXd/Ct5yL/zo4/CxY4m/nCXlLxvjR+C5t4E7CpOPfOV39hrCpSfbx1VO1KnxpRRIIUtXOJ0TEtG751hps41xAsloVWNMSIw4Z8GVOnfCOXUuJuGrCmIFYrOWEvpZSeWYTVudQiSFiLVZaiNUTLYCd7/sbr7j+/44//yf/ySPHz9P5WuGCwscvuVuYvBUm+fo9XqMJxWjzS36PuKKkqb21E1Drwjs3n+Yk8eepImGMNzNra95M5tmkc2tC+xaXUCqMSloxO2bCYwnbK5vMOhZXZyu6IIOYywgegzOIla0OqkosepJaHWPCIEmVEzOVVTVhLNnzmGsZXXXbpaXF/R9bcdzVN59MmlYWhySSDjrsMZR+6B/i8ZjreH3YfpfFq51G7n9zpfxhcmP8OM//RN89NF1MCNe/coFbt2zwMn6JiabF17URsLCCsePBtz6Os4VNNHQX9ziLW9eoir6VHMbeUmgauCH/xnsWYKTazDobbK+5Xng5l38gn0GH178rmKw/wgnbkmcfuwJuj9y84R+vcRxyReSmATjtPYmhtjZt28qoheMEWJKEIUkgi3aKhSNvoqyj0uJRCBFIaagt/ZxeqsuVheWMTqNTheGJ6aIjS6Ln0aMcxTGqcIpDYFAr19wzytegVk9QHVsE1fA0souUkqMtzYZb22RUqJar7DG0B8I1hVsrG9QV2OsKzl80y2EuuL0mbOcu3Cehz/xPlZe8wCFCdSyQmELUtD9dcYRvWdl16LK5olgbIlqgpNLNdEpe2SnYLU/IAWvciIiSOGwvZJh6XDFmP7Esbq6gm9UcbSZ1IS6YWs8ovYNy4sDyrLPysqAsiyZ1IFRVeGssLi0gHEGa51W5lxhXA82ctd9D7BeHGaSxiyK4bXvO8rtx/cwehk8eGA31lq896zuuY2llb3aT0LkV773Np553Tlu/SQcfegwZ0+emdvISxRNgBMX9GcJwmt+62buOL6bz644Pn1g2uG+Z89+jhy5FYBohPf90Cv4ua+7QFyZwC+ZG0rL7NJ1pJMn+ICva+q6wSRNpqYUiMkpbx0CYhxiLNaWKigXGmJTEUi4PP9AjGCSBWdIbVVKUPnVtlw+kpAQNSgzhug9MQZEBJMn70nhIBUsWE+Kga2NEafPb4CxlD1HrzdAgLoa4ZsGIbI4HGivAhEjMB6PiDEx2dogeM/y6i42NjUrtjQsuPnQXkLTYKzBGIcUloSWs1prs1ptQqLRah2bI8uUtFwzJRXpi1FLMn3M58AolREafR9QDoYUvaG+XmcG4kcjmtqzsLJITBEjgrW5X8Na+k6lNibjCZPJhMWlRaTXuzpO4jqzkZv8Eg/87iGWQ8G3DRfY+prDxDwSOOUphQCTnmHztn34InHhyDL37N3L1pqOUZ3byEsbR5olXvXpw+ymz9+46+387HdPbSSE0Olp1T0D9x3FFwnuvQmGPdj4ys57v5Zx6dRW7bvKmbKvjVspJJzV+dMiBlwPa53O6Bat3ikKC26ItTqtkChYJ5n39YRaG80kRYwRUkza7eysDjdK6kgk6x2lEGgarcwJoxFiCorCYo0gRUESg3OOIsuYjzbXaKoJwTecOvk8hRXEGJqmwTeekAyuKIkx0jTa3d4rC3yI1I1HxFL0S2UgxOZOZf18AFJC2kjZGBCrxqVZU3UKIaANFE71lKKquxJbEemEFH3EOUSshvE4cAZrC0xIGNOqCjb4SY0bliAW2+iceoNgTI6WIlo+eoVxvdnI2SLy2ELNq9eHfGTxFE8+eZIYPClFNtdPMhlv4n0EcSzveSWn/rs3c/vHHmOBgvW5jdwQeIZ1PsU5voFb+LnNB3nvBz4JaIzx9NOPsLWVS7EE1uqvhR/9Y/Af3nlDXUTgckbtCkSTF2vURalicV5nfyQo+gNtFEsBpX81GouhIcQ8w9sW2lUbvfYa2AiSiMkgqKovXftaoKnHmGAxYmmamqqucLaHLQwpV500kxopDb4akVKksFY7nkPQkuC6oqkrmqZiYzIGlMMOUej1hzrX2liaumawsJyjSGFjY0uHZKWEcT2wkeAjhXM6KMgaJGrkmhodVpRyRG2KPizvgnqL5Bu1vAjd+AFTZEeRI9+kMygSsQ23YeIRYzGF0ddrXItz+c9mBULEDQcsLfSJ9QSiTvcz/SvPfl9vNtLYxHODJV61ficPNu/mqUefpmkqqhewkbR2EngWs36GsjeY28gNggmBRyj5eu7k157/RT70/KMv/uKzx4FnYf3MFdu/awWXIZHSw5EQNAI0Rr9i1Cl3RgSTx6jGFLWEMSV8NaaeTBDrKJ0nxTGYAucMtjCYoiCliBULUpBiQz2pEKJ2qU9qer2CKIGm8SAayVprcD1HSibPqhbqJpJi7oBOKL9s1LnEPB9jUjeETBW4oqSHOjgS1JMRC0srypOHxLPPPU+1tamRM5s6P6LokyTlORA6pS6FSue8u0zLiFXdpK1NYl0hqc76SYYYas0juAIpFpDolc4o8rwID2FjgxQjrrcAhTqCdkyq5NvpFDypjnnGhwoh4n1u+hNornxFzvVoI9qkVxCif3EbEagODpEmIsfPY3Kvy9xGbhQI6ip/Dx2Ao7tUjfn59SuxU9cULvlCUhQuN8zmskZrICSshRRzpBW8LkjviUFvp60kSmuIxpKMw/Ucpuhp1KltuUgMxJT5bWuVYw4Ja0uGRQ8Roa5qMFA6BxiqcY13kTIP7ElYHaxkJFMMKp8RY9QhSinlCXxC1QREDL2+1eg4b6GajJiMNmmvLJuTinJ5hdJa5bIRSFYjaTLHLQbEYfoFYhLJCJieRuWhxqQsiRC1LNSYPF8iJSTVrRY+GJc/tlZxv8IittSu7c0NTNlXhdigSrkx1uoQC23MwxaYvg4/SpHsdK4srkcbaYtrYnxxGxFrWXvVAezE0//McSZpmbmNzLENRuDNt8FWDZ987mrvzRXHZcwjCXpLHqPW8RcupxNBJcAbInnmOYIx2r1sTYm4HiFGEIu4EkHncyffAA5TGIwtMR5iqHUKXIq4siAhCEK/1ydKT9cmgu05mjpBUSKFIYXI5sYmVR3yOyDFSD3ZQkTwMZAEnLPs272L2ofpggWSgK9rxlubSBJSjJxf26SqPaaQLNORSDQgJqu35q+srpqszU7KqRMwiWQSRKNO1RqSjtFCkunKZHPtKyBIYaFQhdtUVdnhARJIbbWPczopMEU6xVhTgkSSLXUMxVWgv69HGxkVWvm0FHoq1fICNjIbhzZNzbia28iNhAtZaHGVwVXek2sXl3xvmwCJkeA9Td3orO0YCSFqpNPrYXol4hzGlZiijzEuFzZarLUUPdvJZ+vcBU9KjXLHjQ5+SL7JlEYJWFzZ0/ykEYwtAKNzLlyfhaVFbGFpvKdpGp597jiTqqIlma1VrSJrbFdd4Zyj7PXolSU2J4BFpJ18rb0Pmag+eeo058+cU44atGzSWUScRohFoSNMYyBVE2g8yXtSrEipJtYTQt0QfUVKURPRoc5VOKqvlIIneW1AS96TfNDz0zSkplYn0Rt0jicfBLgeYgqkKDUKzVGtzj5P6LyJK4vr0UY+sfsYAF+9duuXsBHZdjGZ28iNhXfzIAl4Bw9c7V25ZnHp80i8xxpRWQZjMKLNY9qImznnJkDTEJMnGe0ViDEqfVtYilRSlMobm7IkmZ4uMB9JoiMPbX8Ra6JO0xOLuEJLOGNSyYy8sDEGHwN+PCZFjyssdTVRZ5ASCRWzMyEQUwBUOFCAcxfWKYuCsiwxYjCZxxYRbYrLjqPxgWgENxhoiWbOu4AheU+ITdZ8AinbwUQBGh3c5JuJ1vqnRNHrY3sFyde4sq93TD4iuFwCmxe106iUQjQYdYUma0Wb7qgbbcprX59DgRTVQVGUSBRgu/O7ErgubSSX0Gp0/sI2ImYab5m5jdxwiJn/NPOz9aK4dGrLN0TnqGuPbxqWV1cxRQkpEcMEP6nxvsH7BgNax9/vU5QlNkZMUWi1YWggCckKBCHFgK8COIcRi82VJELLYedKFis6OjdqHX6MHl9VWCO4sk8SGFWZQ09am99eJNogTWT7l15A8oISwRXFdAwqgveBqmp04eWeBYzVfQgG6xpS8qpdJG3fgQFjsIXDlgPKVOhEU1vkORSlzosQQWxO9MegpZitLlI7cyKXkZKb+MQ5Us/SeoaUlV4lBFKAZmsLY2uMEQSD7P4KWckl4nq0ka5EN+OFbWR6IXGuwJg4t5E55pjBpSfbez0wwoIrUE04pyvZWIzpU7iSgoCvA4aI6SI50ShUICatlBGnUR1Zbtv1TO5YTsTJiBRUZ0kEaCIxNqqfFJLyyKLNhP2yl+vpNbpc29wkxYAYQUdiO8pewXgsOhc8tnWV6gTaRLuBKV9vnXYDTya5t6TJtf+i3DcRckMdSZTv7ko3A+BJkjpHk5IhETEkpSdImDJz30E1qXTWeYIUlIIQQ/RRJ+L1ErgSCVr+qbkDr9U3MWmUS0IMlAvL6oB8Q7wKtMX1aCMqU6IXpBezkS4jD2At1pq5jcwxxwwu/Y4EkGT1NloMjW9wIlqdEq0aZ7S4MkBodGibTyRr8iKDmJSnNslRlj1AVVvxUZOAUZ1DO+FNB/5YTFEqX5xQZxI8kZBr77WUNMRE9A3k1CtJG+EWF5fY2linyZGn8sNapZNSLo7JDkWQNi+p1IqAJZGqCSnoAkWMdiU7kzuPlcZAkp7NFHSbIdFUNb6e6ICmYYEUQvINodJt6WA7gSSEEBEDxgeizxx+WZLGI8xAwPUh1KSmJk0qAkG7qFFJDUlBq4EkgE0Yc+Vvw69HG5k9TfIiNoI1xMLQPzPBTQIxmfYNcxuZQ+EMlA6eW9PKrRsMl3whOX/qFNZYhguLIKL6RwuLeutcOtKkIsaczAPE5dvzGCB6xJUYEWLyehvfODAhlyqi1TqSE5Mp6G1CymJNFIjoItI1KRAlC+BZjElQN6wur2gSMVMWItDr9bB2WnmTMqUBtMWaWNN2w7suSjMCzhn6w17+3Hb2tdMoOkuGa6QZkMLpIm0SkhvTSmMpSpfpCC2NhdhV2Yg1YCwSBWuTRq4JrBGSRKQo1Ts3DSkZfW/0iAVnLClGqCfZOagDo2lyWeeVdxLXo420aKu44GIbqY4sMrpjlf0fP8NgkojMbWSOHbh9D9x3EH71i7A2udp7c8VxyReS4fIiloQ1ESkKrNPFE+oaCKQYsl0and0RNdJPKZIISPJYkzBFr+tkJmpkFxqPkLBFnjuNQ5whxZroPfiEsdI5jnYCnQAUPbAGmyYcPLAXZ81UK00EH7TRjMx3BxIxaVOaRrA6sa83WAAi0TcaEQv0yoL+cBGkUGkJMahGOBAb8JqupZcrhYyBsiBhNdlpDIJGyjo61emYVKveTtqThOQItu0T6CGhVi4c0WqbMC0YANEEM0AT8LUn+gZBcIMhEhJ+NKHY92XZxmXjerSRaSL9xW0kAsnkcmVj5jYyx8Uwkv9mNyYu+UIyGC7ljmCN2KLXypyYAmFc09Q1zhaIcUQXsL2eloI2arwpBsQJsdH500pH9DDW4Rb7ukiiOnJjE5AjSZsnvJGUGmh5815Pf9d4HeoDHDywl0GvYGOrIqVEkxc8gLUuizVqrX80msRM0EWfxpX4LHcRfKCwRifKNZVqRSHgsvPxHkzMYnt5gRuj5ZrVuIsKU0D3u59pmsaT6ka7mDPnn4c8a0WNtZrcTRrNSllqRN+oPIY2pWVHIYZUWEyCZBPig/LhMRD9lb+9vh5txIfcDCjyojbSQqyd28gcc7wALj1HkssLQ/T4UUUMjSYaQ8QYh3VCCDUikVBDiDo61RrVT8JmAT5jKcq+8s4h6Hz0Xomjp5yzK3LVS9IqoBiz5LXRaNM6JDWI17kUyaBcd+HYu3cvS4sLrG9NgET0Qbudc77EG9EF20XB02OrxlvYosBaS1kUVGNYXhgSG8/mubP0B0MEiy0spuzp/pQDXdQhZB6/0dJQl6uIEki/r04ASHU11VvyNaZXqmx4jPpeyY4meI1Uc1RKTITxhORymWmtPRWpLMBZbdSTfq7iMVBayt2rX1lLeYnaSMq3JiLyJWxEv8emoZ6M5jYyxxw7cBkXkkBMMc+VVj0hY8HFqE1/zhJTw3hcY10JJC2zNCCpIVSREBLGWk2IRjDWYhcXNGIzRqM2ZiJLq1IbGEMIIXPDTiMuot5OIkqRNA39/oClxSGcOE1M2lPgfaOlwLk5MaVETAmTdP9SaqUtppx5iJ6UAocOHmDv4cMU/ULlyn1ArANfaxRdF5hen9RGgDEL7IlAO7Qoc+T1aES1tYlzJb3FBWLwNOsbuH4PiUarbcRDCgTvEUnYfgmpgSp088z95jqh8VhnGK+tgQjD5SVMUWqfRtUAVifvXWFcjzaS8kVCkC9hI9PLydxG5pjjYlzWhSSEQPCRsmdIKRJCzmnGBD5R5ogM0fGnYi0RdeiIpehbkq9pJhUiQrmwoOWVKfO6IUHpMkthVFI7hFwCGfJcCm1sI+rYU9XstogTFpcXOXrkMF987GlSjN28AG0Uy7RDQj9LN0WbcBSRnOhNmiQ2cNstRyh7fUzZI6WIVGPCpKabF241uZmqsVYKWaUbUmiIjVIaJgSCb7DOMVhZRKt3MudtTI7iwTqVBq9HGzSNJwRPvxngen2d31E4oq+ptsaEUFOUpXZAG0v0AWKlfilJnsFx5XWUrkcb2ZSKynqWfR8bfy8bYW4jNyA2GDOiZi9LOAy+k2eeo8WlzyMJnqbx+BDoSUFKQlkUOszHuVypAi6XOqacuK6aiq2NMYvLy9ikNfHFcIjNwnoxKTeeQo01FpqsPWTU2YjV6FLlMGKb1JhGc7nJS6zDieGWm49gJUfH0VOWBZt5/0PSLvdtVY/thQalMlqn0StL7rrjNoRIGm9lZwR2OMy9XgZcCYDYBoLX8kqnWlE2tNtK2kfmSjADsFrTb+oJKWmznnoogEgxGODKhI8BYwVf531mgrNQWJ2yJ8YxXOljMp0jRFJU/SdjgkqYX2FcjzbybO8cp/qb3Lt+gKI2L2gjflEVi4uNZm4jNyAe5gTPcJY3cAeL9DvtrW1Y6evf58KNNYekxSVfSKRw9ItCK1dQ6kErSEKut29UiiQPHmqqCU1dIQYWFwYUVstBRbQ+34RAbCrNDRZZkdVkXjpC8g22zFIX0lIaSR1KhFYyG9vT2vkYEIGX33sXZemYTCpi8PT6Om60rutuNkVROIyxXTNaiokYAriCsj/A+8jyQp+bDhzU5GWZK4xyB7EEo3neZqJ8t0GPO6RctZOUhiGBD5p0RhDX7rPqMImZRp5Yp2WpRY34QBm9Ujel4KtGG+hKQ9kfZk0rQWei576KlCAaTJGj8FB95azkEnE92kgIuVGQ7NJfwEYufPUhkjPs/e0TkJjbyA2LL1Eu/ba7taT6XV+4crtzDeHStbZGEwrnMGWfRCCkRJo0iARIhoj2A6jUt0CKOKd0Ed4zaQIhRMpBSWENKak8t0kGay15ThGStY6SiUTvNdqkRkypzW4x4ENCg1XtFcE6UlNBYTh0+DDDQZ/xeIIPgfF4hHOOJlfapAi9olTFbqfDkBKqp1OUBUYiMVTs2XWAlV0rOuq1GOA3R8pFp6QLvgo6vtcI1pncxWyQYgC+Rhvl0GqgXk8jU6NDjlLw6thSyEOcDARPstlxGPWCiUicTLBaBoRIqY7Go9VASR2TrxqsK1UVNkUkJt2HK4zr0UZCjF15uF6kXsBGrAAVxDC3kTleGCahNnJj0l6XIZFSUhQFSSy+brIuVSAFQUqL94mqUTophoCzqsrqnCX5iCMRo1FJhyZoJY3kQhafMC4nO43LtfqRMyePEQMMFoYU/QHOGMq+wxU5umpVWCOQPHhLKYayUGnxmAx13Wh1T9A+hpS0wieGlBOsBiNGmxf7PRYWFthaP8fuXUv0l5dICTZPnMRPJgwGBUXpEHGQIkW/p3Mxak/wWnopozWsLZSeKHtQjSFUSGy089joe0lOhfNiIMWGGBLGldod2xqjWEyvpyqyOC3/bHzm2RNgVO3WB1TnqQERknOk6kvGT38guB5thOiQtIykASZwkY2kwrBx/wh4lPOv8NzzxR4Lw7mN3EgwGIRlhAUML5BXKg28XoBH4U0D+KUrvYdXH5chkVIQTQleF4Qg2hAmEJqAsY7h0gI+NIQ6IKKOXIoBdmCBoBxy0q2lmCBGjRYJ6tCto8tjiWN5zz6ib6jHY86cOE7jI2VZAoJzJXsP7Kbs5/eIgQjDfp+V5WWOn76AMY4UtVcghNDJZNSNz9GbYMXgnJZzOmtxzhF8w/79e3BlgWDo9y3JqZMUV5CCQUqnHLxJWvJZW0LUixY2AUk7spOos4goBZI75xNGq2ZCRFLElqIURqjAR2LtwaC5hZgz1pIdojhSrPOoCoPpWUKdVG3XoI7oalRtXYc28orRPRyuXoVNhledfTnvWvytbTYSVh2jO3SOx8bLe0jfz23kBsPX8Gpu5/U4LN/Mm/hP/Or2F+zuwf3Leu5fvwf6FiY3lo7ZZVVtJR9JIeCczR3BFtez1JOGpqpVAtw5bOkwzjIZj9na3MIaS1EKtuxBVP0g0+vn2/eEy8N4xBT5lj3myXFQFIZhucDy6hJNiExGY6o6YF2ZZS98TmgakMhgecj+/Xv54hPPalSXewJCDDlnKdSNpyx7GDE4qxcSAWIMhOARIkcOHkR8AhMpymLaLGZ0Oh+mldSIpN4AsQHXj1NePkRoam0SE6tJWhGVxkgJaTYgiPYZDCxS52Yy1yP1HSYkVcE1aKVSCIixJKcSF81kjCudct9loQqwJOXVMSrsd4VxPdqITdOovBXnnbURN4m4+iRhvMyd/2GCTPoEO7eRGwmWXM2H4F7ojmSrRibPkzb2wN958Ia7iMDlVG1VE5KvSZk3ttYQEKhBUtJIMUFKVudNJwBD9BO0cVcN2mSiWxuqLELEN9p3oOWNFkLEFgljA5K0RNJah/GJ/mofCpcrraIGsTER/ET/1CGwNBwSg1IjQtRqlTyTxBpDE2I2C73QtN0ExlhGmxssDnrcfecdXVWLqs5KzsZKVsCQ3KugYniYrOJa1drZTcp8uG5Dk5sJhgvIZBN6fRJGm8wmvm1EhmCU4jA54SqGlHl3ygH4iiSBsq/VQMlHGDfaSyH6Ganlwb8SFnIZuB5t5FMLn+OjK89yx8ZdfH74DDttZPOeyOTwBfZ/eJO9nxpilhfmNnKD4f18knfxOV7Dq/k4j1z8gtcOkNvG8MufI/3G81d+B68BXPKFxDohxkBde6QGJhOKoqTf7xMlEn3M9f6QvCF6z3hzk6pqWFxZ1Q7dVh8pJwCl14fkMbGGgA7kweQilXyLL46USzzFolSHMdoILJZE0IlxxmCsRsD79u5FSNpZ7b2W+MasnUTKsyYSKQViiCCBsmfo9fucOnaSO48e5uiRA0hTg9VkPD4LAhqjA5ZSIow3u/p9lbvIPycPAcTpXAydXKfjZckOBazOxChaxdZGJUCI3bhaUp6EJ9pohq903/t9ld9IkZQ8vmpwhUCsaaoNEgZrDcXyLV9Za3kJ2kiVRjy48Bh3X3gjh0Y38fjCo9ts5OzXaT/JwmMJE+c2ciOiouZDPMQbeTt3cBcP8+i25+WPrGrg8JmRFjncgLj0C4m1Wn7YeHztcWVJSELVqNAeAnVVa96h7ONKx8LigKJ0mOSJjSUWPYIPOhyotLlk0mJ6A6gqQLeTUlDlV2dJQZPhyjm0gnQpawppaaSxgiQd1GNs4OhNB1WYLzRU1YSicLn8VEszndWxrhG0Gxp0vsRok3q8xetf+yoWlle1iS4vfqwj4TXx6T1+vEU9mRBjwvUGWGd05KtF6YlW/jxGsJKlLDzEsU7JEwfe58jUqMMEnZ7XKtoalcMgRGLdYIqk1EUMKkSYdEBTURh9nYciCTFEjLvyseb1aiMh6221Ip6tjbDsuPBGwVSw+4NpbiNzXIwlg3zLMowT6VfWrvbeXDVc8oUkeBUGUoogkmKNTYmt9TEmQVkWyiv3egysjj111mEHjhQDPk5YO3We8WjEwnCJ5T17cZqYQGzmh2Mk1pXW+ye0EQ1DCglTGMQI0SeSrzAFpKA8fMv9Rt8QomdlYYBzhhBgMh6RUj+TV9rYVdgCax2CJoIxgjHCmZPH2L26yKvvf7mOLkXHwEqISsVIq8sExaCng5ySQOFyLkbAGsTnJoaiyFFmXvghQmo6yQ2xliSpO6+xqQg+qnouCVOAiCUVTud1N41y76GGMFZKLiZMv9QI3fW0Mc9r89uVxvVqI8eLZwgEjkxugYWpjTQ3OZrdwvBJWHxKMMtzG7lR8QRPEAjcxV3bn7ilhAMFfG4Mn7vx5ONbXF6ynUTTVCTAlT1KZykWBkAihIilxFhLqGqwJSIqukcKuMIyGPRIPuB9xWRrxNBYjCRCoxRUxFOPthDjcK7Uqh8TssRDQ4oQk8HaAlM4IOkaJOlEPcA2id6gR2ENdXYcTa0ceYw6fU/HpeoEOxFDUZQ4a2mqCfe97tXcdPQWMA4Rgy1EOWqill+WhZZa1oHMXuToEFLyEHIljDUQNYkqEa0zL3TAEE0khUaj2CYQq4pQVwgBZyzGthe+LI/hI1ZyI1sKGq0mQVJCXG5YUz12RCz0ro70xfVqI08NHiNI4I7Ry4i7pjZy9o2OsAi7PyaUaW4jNzI+y2fxeF7JK7f9Xt62DCuG9J51qNJV2rurj0vvbLe6UF1vgbJUKW3XG2o3rVHZBd94vM+zpW0k5sgqJYEoWGNZ3bNKXTfE0LB2+gQpeYIPhJgICMNBD1daokBhLMZEQuMJocY6i+sNdQxp1jJqJbpTFuwzGBaHy7jcJ6CtBFH3LwSMK/VuJE/BExHKssdoa5OyKHj1K19J4QqNeIlKLziHxIApjDq/YHWuNjHz1JUmSfPYWBBSk4cZpTwzvlciKUtV5MogvcKhF7OlRSRX7ZAKzeGECE7UKbXKsa7USLjMHXTK89CWzCLZmLs5G1cO17ONAKisvNqI9B0X3iJIEJYfnNvIHC+AniDfvgIe0ke2rvbeXFVcekNif4E4GTEsLOIMEj0pNoDDuh7WQYqRpm6IBLxvEKAoS6UgcEhK1OMJdeVJRELUvgExVgcaIQwXFyny1DcRnaEdgiclg9gCX1eYGLA6Pg4k5FxjQpwFLCu7dzHo9zm3tgHGUfR6VI0nIThX6ELUqwgiQlEWbF44w6G9u7n3ZXfqZ8dIsoYUdYBRCijnnmqtlLGG5EVHbNYGKVSAULkysuS3TJVei5JOwVCLjXNTmVaT4SP0ehAiyXuauiLFSLE4UBok5eaJ9hEz7T0Ins4bGqAJ4K58h+31aiPr5QbnyjMcbI4wiIsEl/C7ha2XQe8ELH9xbiM3Os5xjuMc5xZuYYklNtiAfQ5ePYCnK/j4/EJySdCEdUFqPBaw/YLgVbvImAQpYgw4a0hAv+coikKjHs1f4psJTVVlEb+SfjnIelcRa3O1dh7RKhFMkTBlSWGLXF6ZCFVN9MoNq34QSJEXXV6gvb6j3+sBghjHwtIq40mFDUklxnMZZQJcqwUVGl521x3s3rWMGKUomtEY7z2DhR4pWsRqYSqul0fB1qQ6R7xYNJQ0JIk6rzvpa1VvymdHI6qXpHNalWZo9PdauTOB1FCPtgjBY0zA9XvZIXZTkPTRV/lzwzS6FIGyZLsy5ZXB9WojW+WYtd4Fbto8yqIss2m2uPAqIQxh73uhv1XA4txGbmSc5zynOMU93MMCC2ywgbxpERYt6ecvwNkbr3dkFpd8IanHm7ogjSgdEHVhixVCrQOEXFFSFE6lJyRrC6GT8iRFrLOUvRJECGgCtLAFKXmM1WiSZHBitPPXiHYEF+h2Go8rBoi0FSfKEetDodFbDDig38tjRklIHuQtGJ3ZoL9GgLLXY7y1Sa8oeOUDD9Dr9zMVkbCFQaxVqe+iQIqC0DTYUOuCtYKECALRT0g+qex3CIRxQzHsI8ZDVGemUueeJLpdImATIgWUhSZao5674a5FSBGxZXfnBAJOaRqwudxzxoBb6XOTuu7oK4nr1ka6eSNqK8Yazn0dIMLyZ6FXzm1kjh0Q4I+s6rn86FamDW9cXHr5bzlATMIYq5x23QBJDb6VYbBWK0iCllEam6tpTAGFxUrENg2p0QobBIxEoERcWzrpwfa0FDIFUqh08ltQmiOEhLWi4oC9HnnYxfR2PkJZ9tm1uqq9W0FnfWsJqM20li46nYonbKxvcfvRI9x/38twZQ9iwBjBhEhCtJHOORCwpVJjqakhJlL0OluirrQvJZKdUZFLONEFm5JSPV3UqBF6Sho5ijRAgEKQ2NcGNiC5AnxDEtUG64aNuzLLYhjdDqL0hSsQFaf6ylnJJeK6tZHY8MTKIxzduI3daQ/n949YfxXYTVj9pJnbyBwkEp/gE9zP/exhDycOnUXetAAXAum3Nq727l11XHK2zYpgJUdeUmDKnvZmRA9agKkdszEHPWVPk47OaRNVClrhUpa4YR/TG+ji0/F4ekEXHfiTmkqdRVTVWCn72OGQ3tISg5VlesuLmMEATEGoG+pqhK8rrW7xDc4Zbr/1iOYkY2Q83tJJfOrNuotIWRREX+OM8NWvfRUH9+1GUiAGbVTU/KTOFAdd5BKaLHyXy4mDJnRNWaiDQdja3NLoFsnlnhZsSXI9KHsaaboij1A1UPQzp14A2YGIyXRHVBmMqiL5Sss623OTy08JESZjuvLRGKfO5ArierWRGCMn3HP0U597JvdTHQS/C5YfgqXzcxuZQ/E0TzNkyGt5rZb97nPw21vw7FxF+dKrtroqFU0eii0o8vQ3SMQ6EmLEuR4iWXqkqbWTt+zpwmqTjG0jlOshMZFCAykroxalUhAYvf02bipKF7W5iqbJeY7YXRRIEVzSslAj3HfP3ZTFe6jqhpA1iFoePqWEGGG4MGS0fpZ9u1f52je8DmcFmgqbkqqwipkuciOQXK7Lr7WLGfTYZHo9Lt0AKbW8WBOvKFdt0G3VY5I1qhnltYOa6NFpf1b/IpLlL4IeX8rSIhgLvR7Je6UrWsrOWn3OaJVPSinnC64srnsbyU793FshOWHv+4WF/txG5piiVU+T71yBUki/eEFrIW5wXPo8kskmiKOwqP6RK3SsaQxKPxRO5SfqCvFJJSkQkq+IFRgjOs+7qbE5IWn7C1AOdcG0inkpgWQOvZ6ANMSxznUw1uB6uiiTri6M074ErFFK2BiIiVtuvY3FxQWqcxdIKeGKkpCrY4wx9Ho9YvCEpuH1r3s1t95xa5bizmJ7XQWNNsvhG1IehEXjibEhBcEtuC4Hk8uIKBeW8sKPeoqdzVG50U7kSivIxBU5ap1JBKdMPzR6PpKx+nR2lGm8CT7ktgSLGQxIxhAnE6RISNFTKfGcA7qSuJ5t5HzvHF48e81B1t5sMBWsHp/byBxTnOAENTVHF27FfOsqaZxIn79xmxBncckXkhgMXQATE8l74mik4097faRsFwJZQjxgEC3fFNUSMtbgklGpCieQPLHaotocIc7iyoIQGkzRx7lCu3tj0uFDvsGUi0ChSUtBOeaYwBmir5FJhJ5DEJYHJatLi5w9d4EYwdge1tY5RSKUvZLx1hp7dq/wDW95E0VR4KuAD4FyUGJa6iB3U6emIfqJTuoTwQ6WSHXWfyp0klBqo0siRE/CIDZptBmDNpg5p5PUUtDos13NglISCeXUJ00+1QZSQ4hKnwieXq9EeqXeZYVKq3xsIlUNEjw4R5jUl/7H/QrheraRJxeeoLITbjn0cqqjwvAp2P3M3EbmmOIhHmLMmNfd/2bk7l8hfX4En7kxR+vuxCXbUW9pOUdGEcm8sCkdSEErga2qpg5XFCAlmFKF4poJqdLEIyHgfcSlMjuVRof6YGjChLULG4gYVnfvpShKYkwYC264gPQHuqgC+ElFCCOsMRQDra2PMWCDAWdZXF7k8KH9PPb0c0yqiihgrZZVOmswKF3y2ld/NXfcdjthHKiaivWNDYyBXaurlMOhzpXIHdImoQvTqdyFOO1CTuKhmeiwrNxIFoPqL0Uf8PUENxjmZH9QvhshmVzR0/LWwWuS2tdgEuJ6Orai8RjncFaQcoC4nt5iW/3zpaZWhyW5ptmW2N6Vlwi/nm2kaRq92bHKIO35mMGNE/XcRubYCSdghfSuddia55ngsjrb0SgziVK61YToG7AF1pmZtH3MvGz+uUlZPgKlGlyB3q2rpLVYR39BlWBDjCwvL+Ks04FBklTiQbISrM/RWtmjMJYiRaUMUtIKnrIHotUpRdnj6JGDWv3oI6Y0CCoR3h8MiKFmeWmRb3zbt9AbDiEmBqWhvzigaTzGFKSYt5sigoHeAGwJBGIzpqkanC2xLpJ8RKzJQWNDjJ56NNLZGOMRw6VlBovLGImIbGKLvlYhpZDzBaqVRIg6IbA9f0aTrsqzgyZvo6auPVp9Yw1mkCfuJUFS7HrPriSuZxvZCJucKU6z7+Qudp1d4tCn4txG5tiGLbY4xjH2ndzF6tlFzrxn/Wrv0jWDS7+zzTpKNBUpqXKuoM4iJU2AigFizPJBFqLX4UZWcs26UXmShNa6t9FR4TC2wERPIYVuWYKOOk0RvEaQWOWGJUe90QeCSfiqxhDzbOuIAUYb6+xaLHHG4E2ppZoGer0ei4sLnD91nvtfeR8vu+tWdQQ2IcHpPvYHug/R5yohrf0XW4D3pFAjCZyxuXEMnYaXEjpzu8F4i5FIf1DiXKTXMxSFQLLaF2YkJ/2tctzJgo3g8rYQrcQRC8YohVPVucwzZmkP1VIyJqkzKQ0iOeksVyGReh3byMR5nu+f4DXPvpabP7+HfWdHbI2PzW1kjg4bbPAkT/JNz76NvZ9c4MwX5/mRFpcu2pgF3zBGG8DKAmSg0U4UMInUeGLQPGAxGGTeF4gGoUD6pda0V7W+qJWwsG3NvGg0J9pAZkqj/K5YpQ4k5goXTZpKDNDUWJuwrsj9CcofL+xa4b5772ZxcchG7ZTSMoaFhUWq0SYCvP41r2I47KsDCpoQVtkKZWhS9BAm2llsHcRMDZiEmBLbM1qLb62quNaV9gcMBlDXDHol0ZfIYB/SDizygdSMlaII6iiMgZQiW5sjeoM+RVrI51TARN1+iIBW7EjhtJQWgZhlNlwxPX9ojuFK47q3kaxBtf+hHvH503MbmeNFkX5zA87M+3BaXNYdCcYhvUJLMdEySrVVA+LBGIxJ2lGcPE3tKZxTgy90IaZJRVNVJCIpWZ2IZ2tMrqYCl0e25sR4nicRq1o/s9dHoij/W/ZxRdQFDurAhNykUHDzzTdz6MABNp49g5AwxpDEsL52nr0ri9x582Ga9QuakEWyLIcuziSi9fu2zE7J6AyMttImeq14MQZ8IoUJrVy4GMAVJN9gXAFFH7GRFLX/QIqe7i5od3aKSBSGS4uqBRUa4rgCwIcGMQbbG6iabW56UwehTrsrQZVcapvLXq84rmMbWT9xmt/4Ix/mzp97Pfe/6w4+ef6huY3MsR0lvO87PsZX/+q3cM87j/Lw/PR1uPQLSS4xTFWN8rLQylJnMSVSsmrkWT6iGA414szcOVGH9Lh+n+Qb5XCTzvhOQBCDn4yJocGZAlv0tCa/nqgEeVFgCx0aRIpEnwgxaamobaVPdJFIaFjevcLBg/t5+OlT0JaWVhNEDIcP7mfP6iLN1jpWDHYwIFGqU8jdwHos2kRHDB1/L8lp9CcGikKljZKKE6ZmnENVPSdgECKJmEs6lf6Qog9llvmoVRnWpKQKtZl3F4HCllkaA2JVqyMte2B7+ncIlUa8IQKNnvuYrg5tcZ3ayJG79/DQd36Ggx94Oc3mEd74oT/O5172Xg4f3De3kTkAKHfBnv+3cPcXX0+zeYQ//PBf4tf5ZUbMu9rhci4kSRe56vQ4xJZaAi962y5FD3FkmsET64Zma4QVcKV0i5eixEiC0qG34UapgpgAiwkTpTlsT5O2IajEhoCxQqgqVXVF52Bbk5utkvLhMRlc4YBIM5lwYWOkVS4ASbS8UoTbbz3K7j17cEYw/T5S6gCiWNc62zqh+5XQiiOj/QsSCo32Cp2HTZ0pmJhIcQKxyUOYchOcc+DbpjMwyUOlCWiM0cY66YM02sTXVOCsJpElqcKsHrw6Gx9Um6mjJdzUUYugsz41gr3iuA5tpPIbhL/0CV5+4HmK+rf5xE/9KZ7ffBmrF76O22/dmNvIHNgBvPU/wcFvTJT/5mN84qd/iOPxtdzBt/MQ/+Fq7941gUu/kLQRVIJU64Chpqrxjae/sIBdAEJDmIxIKdDUDb72iAi9QR9XltrAlTV+UoyIKUEKTf5p3SSSHUcKylebotCuZYwuxhAIKZIajVwJESlUbCIBwTcYU2B6A9a3znHi1Lm8+4midPhmjBA6KsCWhSYxvUpehLom+oDtlYjodrVDOC/4Xi/vh3ZrY0Bw+iiJZErwIQ8q0iQose6YhtQEjTCjkJKBcgBFQqLSNPQH2pAWPZgs/xG1SS0lr04kqQigcuQFuFz1lJSuwYhG+Fca16GNnN98jgvLp7AWHn7ZJ1jqbWHGyyyefzuGX57byBwUi7B0u6ahPnv7b7Or2MBWq9zGH+dz/DyR5mrv4lXHpSfb60rzmKIdwimqxIWkiB9v4usJRWlIPmEKi/FjSttGgtI5CD8eawWVhaYZIV4QW2Ba7rrVDiLmenxBooeQiKFhsrmpyUfRKqzoA2UYgJFOsA/vKZNl7dwGk6rJ1LBgJTGejCgKx3PHT1KPxyp5IbrYTWkxdqALOzuq1HhS4zO3rsqz4kpdoLEhZQl0Ejp0KJElMnzWiYIUPFphI5pwtUbpBWOI62sYKyQryvXHqD0CvlEO21oddiTarOa3xhSLAz1HwYOf0DWrSU6+6vzgPxCDeanZyOiY5/S/Oop/tWX0zsjh5fcxjK9kbc+7ePbEc3MbmYPJafjofwdHvwOe+MlHeWX1C9zEW3iY/zi/iGRceh9J6aDRSB4iNpczSoxgdeZ5Cnq7bMRQ9EuSiEZwTYWMpVvYCagnNVVdYxCKoo8Z5EqcmFRewgcwHoPRqCwFJHmKwtD2Z2lflcO4gkTAj2udB2EcMYw5sLrArYf28+m1dZIRxlvrxOgZV1Bnkb2u2ifpFEVIWkWUexhSVE5ZCu3KlroiFdrIJcSs6ZS6ZKvSC4WmAEIgBrBWk6rRB52iJ04rnELU5KgRIOrgIk0sAMqFaySurxEDbhi1OkhyKSgxJ3zJ5y90+YgrjevSRlYW2ffMnXz617VR9Zmb/jqyr0ftNjjcvHxuI3MA8PxvwPPvBVLFe/lz9FhlwrmrvVvXDC79QhIBMdonkNDqGxHKhWGWwraacEzqoE3hSAbCOCJGiE1NSIkYAkYEW5YMFlS+whY9YgiEeoItetjCIsbjm1pzmrZUaXJKymGpOY+YaQ2nVUHRC5QLFD1HMSghRc49t8mF0ydw9SZ+HNj0jY5RNcJoNMHHqAtbBMqh6jZ5n9VaIzGq9IUplVZJocFPKqTRcb0pJjABaUsws1w3MWGdgHGYxusCtw4jSR2LaRO0UaNPojpbU0BZ6mtEyzNT8Pg6R6t5QmCqxurICLmPwEAskMKiNa+to7myuK5tpNrChxkbCcXcRubYjtQ+BCacvbr7co1BUpr3t84xxxxzzPH7x/zedo455phjji8L8wvJHHPMMcccXxbmF5I55phjjjm+LMwvJHPMMcccc3xZmF9I5phjjjnm+LIwv5DMMcccc8zxZWF+IZljjjnmmOPLwvxCMsccc8wxx5eF+YVkjjnmmGOOLwvzC8kcc8wxxxxfFuYXkjnmmGOOOb4szC8kc8wxxxxzfFmYX0jmmGOOOeb4sjC/kMwxxxxzzPFlYX4hmWOOOeaY48vC/EIyxxxzzDHHl4X5hWSOOeaYY44vC/MLyRxzzDHHHF8W5heSOeaYY445vizMLyRzzDHHHHN8WZhfSOaYY4455viy4C71he/5z/+cRIKUSCkBIGIwRjDGICZfk/LzKSUEQYxgxCCirzPWYozBGgMixBiJIRBiIMaIAGL09e0XIrot0c/c9hyQUiTF6efq/k33wVqrX85hrcXMvF+3KcD0/+02YkykFPVY9YC743DOURQFLm+z20/pXg0z+6Hbi/nnvM2Z/UiJmc+cPQ4AfTQiiDF6vrtjT91jSpEYp/t926u++fIt4svA3EaY28jvgXaf5rh+MLWxF8clX0hSituNN4GYBBj9ObVLI6lJJ0B0kSLbF0Rr7PpcIhmDYefOJqb7n9CtCxARTLtq0e/SrcudB5/yv+l28ra2OYrp4haZvl/yq0mQBKTdofwctMdlEDPr1MjOst2Awhghxh37Dcz+nWTmLdM1JzOftd1Bzh4rnSOFq3GzObeRuY3McWPiMi4kLxAF5QgpSdIF1EVtdJGhMdMvmXlsI7w2QptGXemiqEU6B9H9Yvpj6yxEukWs+2jytsAYi7FGo942qoRtn7vTSYgISVK3YmX6YdsXa7ud6ZlSj7LjvM1GjEkMO31i999t25Kpl2o/iJ0RZiLFSOx+TsSkX1cacxthbiNz3JC4zAsJ04BtJ7o1PxNVdg7CTh3FDBWh29nuAGTG0XT/7xajTJ9vnRGCBp8y6zumEVt+n2npk21RoUw/XqbbhO3HkUjbn5/Zp5mQUCPM9tO3ReZ60rrIOz8qDTR973SP6cLOJGn6u5Sj5xzJp6hUSIxBqYrsLGJ2HFcacxuZ28gcNyZ+HxeSF49iWsewzUFYi81OYhpF5qhpynUw6yxkZtG2i6p1CNOFmt/zArfybRTIRe/v1nd+zY5/3TYSIql7jW5pGpXKjIOYjTI7uqaLBuOMk9geVXfnVNKOU5pzCy1V0kWc08ATIilBjJHgAyGEnEeIxJQjz3i17kiY28jcRua4wXAZFxJmjH9q9DAbsLVRZk6W5qRp6yjayG1b5LoT2xzEjHOQ6ULd6VBmnVPHR8t0/9rNdlFft9h3OI2LHI1MndhsNN3uW/69blu/zVIKOTtKIm3bf2NaJ0Hmw3cQ4LSxaRtZ0jmflLcdUyKGgA8B7z3B+xx5xqt4R8LcRuY2MscNiEu+kChv20ZearlG2mob/WJbRNbGX7pQYopq9jt49BSnac6dicJZykI/l+2/zw5jJ1UCwtbWFk889TQnT53CGMvNRw5zy81HGPT726LGbdFqpjSI0IWnLbqIb0pFdA6vezJ11EJLW0xDyZwnyPx463PbBX9RfqGlQFpmY8ZBtO8JrVPIXyFGpS5y5c+VxtxG2oe5jcxxY+GSLyTWtS+d8rQibXXN9kitLWOUvBJijNmJbDf4KV+ct2jMtFonl43OrlNS6mgIZhb61IkIpMQzzz3LL/3Ku3jsiScZjSuaxmPEcu/dd/N93/ud3HbrzdmxMXUSZtYBTStuZqM8UupypDEaUswlpWbqJKbH1THh2zjuGBNJYt5G5qtj3OE0ZyPy7c5idrvbyz81Ck75/HEVos25jTC3kTluSFz6HYm1wJR2zktyGrnN3OJ3PQKSiHH7c/r89OdppDd1ENbYXL3T3cPTUgJTqkCmlMEMhbC+uckvv+vdPPXscxjXo9d3iIyZjCd85Hc+yZmz5/lrf/Uvsm/fnu0UxWyULC+0v3HbgtcILynHHds3bncMbQms7rtATGAiKWX6Jk4jxraSZnvU2b43b6vbX91s7F7D1Nm1Oz7L2VwhzG1kbiNz3Ji49DuS1knMGGqL7RHhTEQ0E0XBducAaCOa0UYwga70c7YprXUOpNnIaoaWnok2SYlHH3uc546fwPWWEDfABYGNC4hsEnF8/guP8uGPfoI//B3fso2+2P6VusW2s6qm3YPYUQQJYzI9w0UPtIuc7pzk35GIIW6jHtqGuZjY7izak7eNzmEbZdI6N424AbnyPQJzG5nbyBw3Ji75QrIzybgd05XRcb85mmpr2KfRU7tBkCjgsrNIJv96hsvO/HYkdp+TmYuL9kNEO6CfevppQky4sqToLxClTzI9zKbBB93Ob//O7/KOt38Dw0F/Gj7PLL5tDjAHnmn6bcdRt1GwzPy+4xi20TKxcxbbI80Qppz1C0adqEPoksVGulzC9GS2Ub8hme0O9UphbiPMbWSOGxKXVf4LM9Gm/occ2sxwvq1Rz3C07WN7G64PavAxYmIkSkRi0IRtMjO8b+oogLZcsS15TEzr7kFv4zc2t5T6sJaiMERjabwjOMtwMKSwllMnTzOZTBgOB5l6oVvQwjQq3pZgnXECs/0O7Ydvcx2dz0wzjpPueLrz0UlV5Cgz0yDbJTCmMW6MUSPwJFPnlh8E3c+ZD7rUP+1XDNeljZSGuj9ERLDV+bmNzPHCWBhCFJiMLr5tnuPyJFLAdEslzdIFF72YvLhnFjgzkWg2/NZJaKI1IFGIEjFttNTRHdNFA9lBCEz7sHRPfONZ36xpPJQIhkDwY7Y21hitbbC4MKQsSzZHYyaTamb/d5Ddafrbaalo/mTZ4SRalmCWmtj2ffq/lmZo+ex40VfLg08dRXv8oJ/b5QB2YJoPENiZgL5CuJ5sZH3fkPW3HCbse4DnX/EGwvlF9n/gd/kfjv1dPl82fPzk3EZueNy+C95xNxx4Jbzt22B9heF7Psqffexv8cTjY971BfDzegXgci4kMSEmm/yXchAwsxCmi6S9jW+Tf2rsCZFIlKA0RYz5ljsCyrfPct8X8d876JOt0ZhjJ9ao68SiLfVFzRZLK6uceu5ZSpOo6oa7776dXasrF9MviVnlCtrMqhi2i/h1Mh6z0WaabqTd1qyDaP/l4+8SsbNfqXUQ+bk2Sp2Gv100vC2RnD9jlu65GnnU68VGnruwyaf/2gNsvnYvsAAchGaRN3zh5fzAfzhA7+AG7/y6PXMbuZHRd/ATfwTeeitwALgfmkXefGLA//q+d9M7+hj/ozvGP/3MVd7PawSXnm17oUU6i7acZcd7tr1BZjnr6RKa0hozt+otzdHSHzsUT7dFoPlxcWHIrTftx9gCxFCUQ1b27MfV59i7bFnZtYeyLBj2ehRF8QJHMRNpyrTiqNN+mtGCYpayyPvZRdLbqIr2Fy01gaqvtg7hBaPOmah0ukMX7er01LcRcdu30fZKXGFcJzZyy5H92Lx3vY0tepsjlp6r+J//0S+w9LtLFB+8hzctJnqFeYGjmNvIDYOcL+PMeTh7gf6TW1Mb+dA9fMu+HsX8FAKXcUcyizbSm2HCM1qTzjzszGtE2oUfEUnEHNZtE+zrIrrZ7W3nh2npjnYfRBOKRoSicHzDW17PsdNnmYzWwW9iRXDWsrxrL0ury+w7sI8777wV6+xFx6XMwzRuJEeWpCwSmL9atqTdJ2OmEfbMlvSnGerhokqb2f93Dmp7wnr2WM02CqXl/qd/hfa8tcdxNXEt28g3ffVrefJfvI/nXn6KQ19YJxWf4DHewIdOHOJVPMOT/Q2eXX6A+1x50XHNbeQGwcTDD/8ivO1O+K2noPxXVHf+UT504hCv5BkeCqf4B5+taebUFvD7vJB0kO1uItEadUtv5ATfbISZhJhSp8LalnBuT052L99GWbS6RLMvkZx4TWKQlNize5Xl5SVOnjzNJAqGhsHCArjI+fNrbGxscu+9d2PEsC1kY+a/MxGngZlu7ZmXpvaFkRhlZhNp2za6mDrtjJhfwGG0x9Sexywg2FImL3TOu0ezw1lfKz7iGrWR/RNHevdxxFiOffMJnvl/PMTf/9OHeeM7fpDPyYc5ePD2uY3c6HhmDX7ik/rzDzWkf/jL/P0nbuIN7/gBfv3UO/nw6ONXd/+uIfz+LiQz/Pds5ClJSC0pK/r/lqqY7WiWGQrE2lnVV7P9te0S2+ko4kxcK6Klo8ZgksEawYowGY8R4+j1ejTVhPG4Zn2jxjeRfXv30DqsbQTyjmPsjm8HUoJOMY/psaSLXjTjdy5yCjNR9Mz56CqMRLY5T5Oj6tnzMY0wZ5zIjAO6qrhObATnOHenJy5NCHc9x/LNp/nBL76BxxcK5jYyB6AJgNf1YKUi3PUcKzef4S+c+nr+Hb/Gcc5f7b27JnDZfSTbKANmKYZpjf30TVNu1uTnZqMr4CIHcREN0i2gF+C821v3Ga43xkjTeOogbJ49QVFYBguL9Pt96o0z3HLTIfbt3TOz0HccJ0xbAWYcxZRWYJtTkJn3z0aWO9Hx4TMUTOyoDLbvh0wTonbGUXTT7WaoEC3pzLva7WLnXq8orlcbWfoXwqtvup0/OX47Rx9e4em71+nfdMvcRuZQROAfXeCu+1/Gfy9/mMOfX+RdfJxTrF/tPbtmcFlaW11SMS/8nRUhpItv7VuuVp+f3nrLDiNOM/+U1ojEaPJGMoVgtT4+tXQG20e1GiM03jOeTCiGK5RNw9bWBmunz9MrSm46eJDv+La3UZYFIXhaXp7O+Ul3TElEo+LWYaSWRWkXO9A2wW1jKl6YMtgeNbfOInYOkNll3TmjHRFqnifRzpQQIIogGESmO5HIUesVxvVqI/6pTf5J8zd4xX3387e/+S9z35vv5A292+c2MkcHeczzT/3f5KseeA3v2PV1fHL8OTzhau/WNYNLvpC47CSmC0rRGrYuqExbzDz7Je+eOyojvz8mUtYrimwLIrWBLEm3ENsP1jUuXUPYmbMX2BhXFP0lhmGZ4dIS461Nnn/qSb77HW/hq1/3amIIKqHdRnWtZpNpFWqZcRDSxW6z/HWHNF3cs0nTnVDfkqa0Qvvz7Dam37JDiqpDJTIjtzGVAe+OPbWy5zNO+CpUk1yvNrKwvMzicBmscNvX3MprXveKuY3McRF6rgQrPCtnaeYXkW24rAvJtvASmF2srbHPPHOR4UPnF9geD7XOJOYIazqDoa1AaemJnTGUzOzT+bUN3vuRTzKpA2VhcEWPenQemxpi8Dz59HNsbm6yMBxmNdrMK1sLYrFMk7QJaVdq97g9oUu3uKc0ynYHsd1XzPLSO52IdL/r3p9Sp1Qeo3Q8/6wkuMzkFrrcgWnppCsfbV6vNmLihEG/x/raGo88+jivuv+uuY3MsQ2DwYCFhQXW19ep6/pq7841h8tQ/52VCN8eRc4ujItNMycsty0MybfZmYJgdmGlLPMAKWnVjFamzJR+znySAHXT8MXHn+Hnf+2jfPbp05RFgfWbSPD4rYpUbYFx/NaHPs7WeMJbvuaruPP2W9i9a5WyKOj1e4j0pnX1IjtW+HaqIb5Iv0K7/zujzel/08zxTstYO9o/bT+303LWiBFR7jtHnSlG7dzu7gBUZ8kki2l/f4VxvdrI0QO7OXr0Fn7zvb/Bz//Sr/L0s8/NbWSObTh69Cj33nsv73nPezh9+vTV3p1rDpd8IYlx+63cRcu+vW3OEY9JRoX08qLoFkerW5FEh/jsSJ6mfAveBnqztt5x1BmN9zx7/CS/9qHf5b0f+RSnz5wD6yiHSxjrSDESak+oIqlYJIbAb3zsC7z/dz7HrpUFDh86yNLKCof27+aBe+/gq19zP3v37s7VL0wjyG0HPSXEO0XWF3AUs4/ZJ3THoI8t5TKd1Lc9Vp9Btx9TSiNns5l+1586Pv8q8N/Xq40sLS3p/otjk97cRuZ4QbT9SHNcjEu+kDRNM3OLPK3KmUXLJbdOwSRm1F1bM2+TldIlSKfvmy6sbOvdYppFIrE1mvDO9/0uv/GJL3L6wjp1Y0gJ6o0L+MmIYrCIsY4YPPVkghiD6w0wPQjec3oUOfXIM4S6ougP+a/v/13e+IpP8Ff/wg+yZ/fu7dFath1BuggvxjYaDIQQu4W8k55oE68tpWBmylenxy7t1vVfWynU5gf0xHRhq3QOYsd2ZIayuArR5jVrI5/5POfKk4xzEn6njezfsxtjDMeefx5TXmwjroZbyjt5z/sf5HVzG3lJQkoob4bqacBf/Pzhw4fVRo4de8H3l/S4iZt4hqfxL7SBlzgu+ULim6YbLDTbYUyXwJNpYk+M0g4RooSZW/48RhSmgn5GK3siqlraUc5dSCXboqeUo7z3feKL/MrHH2VSBWzZp0gQQ0NKEV9N8JMRtuwDYMuS2DSEZoIt+9iyh7GOyYUzNFvrhGpMDJ4PfvKL7P73v8gPf98fZs/uXd3CnoaKbcCZ9yWpvHcI/gUjzdkvYww2WcSCiO0coBG08a1lShLT9oPpJ++IP6eOdqfDmaV3rjSuSRv51CMUf/nT7HvDKQbvvoujv/wmfFZwFecwxvKHv/MP4ZxjdPok3/r6VyPGTqP5yvPtv/l9vOH0m/k343/Lj3/yH89t5CUGcXD7v4Rd3wrm5/Zxyztfc9Frvuf7/wRFUVBduMD3vv1btj1nguW7PvLDvGHrzfxT/i/+Hj92pXb9msGl35H4Rg3dWDV6axBMp/UqIp10dxs5RpI2nIFGYzFeTHWQsuy16RKSvxfGk5qPP/wcTUyINZikHHnrjIr+UB2SMeoUUiS5/PnBY12pdyu+BhLJN1QbF7DlQX7p1z/KnUcP8+3v+EZthMPsoBRyVJi56RgCwauT2MaYz6i0khLJWMQxneiHXLTI00y0KbPbax3PdBdyI9/0q3PY7Xm9Gnck16CNhMWK4avPYVYblr52ndc+fjOuKba9dhAa1s6d4/DyMuV992x/bmOJt/7m17GQVnjz6A3886V/PbeRlxjcXlj5eij2wt5v7/G15159kY0sOcvauXPcvGc3g9e/fttzg40lvu63v4EFVvhGvpn/k3/IhPGVPISrjkvvbN9GBCs6M5Q2+pn+VheDzqyWbdzD7G09OqwoafNoQl5w4E5KiUjUIUfApKpYH1ca1VqISTDW4cqS2ExIpsD1hxhjEWuBskvQppQwzkFKRO+nF5rQMDp7gl5/wEc//mm+/i1vYGFhAZNUo2mWm46xnVoXCDEQ8uxr6egYPXZMoh2MN9tUt00lVlrOuo3XZ89u6lIGOx1FR2XkxyjTdye46BxeEVyDNpLW+sT/dDd7fvjzrCyf51ef/yDHP7QFiNqItZjf/DCDn/6PbJw/R2hqxFiK4SKkxPj0CZ7Zs8SfjH+asHUIc66h7o/mNvISQnMSzv49y8v/jrC8dI6f/fR/4swnd7xIhIW/+/fYWn+BJsQkPLU64IfinyNt3cwiu+YXkheDsa0sdlsdY7ooZ2raLS8O5AYoMQYTEynPSdDgSxOQs5xuS3ibqNPb2uXQNXe1Sdf8HpujKeMKrBUKPMsUVL0eo411+jYwGUX6q/t0H3K+JIUAInpnUvZBRO9Mgic1NWLhsUef4MSJkxy9+SYd8TrLQ6Od0d57fAjdxamjazJ1kHe+y6GKSJb6sJ12lL5uSvmk/LoppPvUWacw62RnI/TZMbRyFZoErkkbiYJ572286rZNLnzrE2x++2c59s5Fti5ssLgwYNKojSQgNg2+nkBK9Ff3kLxndO40H3jdU9x+ZJPbP3yUd9Tfx3+2/2BuIy8lJFj/95b737qXze9+nuH3PsWjvwTpMlpFfuutj3HnUbWRb+OH+Sl+9A9sd69FXHpnu5katskicV2WcyaYTN0tNXnRRJIRJBlM0igtJZ1F3XXtdjS3kMx05Gq3EHLUpUFXonSWI7sXePbsBhITy4uL7NmzxLPHPLtuup2X715g91KfM2fOs7m5xdbWFhOBrUYTwn4yxjq9awFd4EEPkpRgY32Ds2fPcfjggVyLL90ibSO5EDxhxkm0EWTnAHZw5poTMF0OYSdP3elPkRAMLyTNoachO82UOgehlElCgkznYFwF2uJatZHNiaX4yGGGrz7J3rdscOs338bg2APbbOR8GHJh72vg+IeIJ57ZZiNiLSfvHnHL7yzzlvjd/N/pn81t5CWG8+s18TeWGL5xnVu+dZP9r4eTH93xoqVDcOdb4bkPwOnjO55MUxtp/jD/kX9IxehK7f5VxyWHJFPhvIurSqYroU3u6YJvF0P7vjZCbWmmdg51DJEUYje3m04WIi+Gbm51IISAMfDqOw7Rk8TARg4s9Ti1PmF9EhguLLFv9yoXzpxjoTSsDh037V/m6P4lhnFMGG0wOX+Kamtd99dYxFjtgYgNZWnBWtbWNqjrmqauaZr2q+l+9t4TvJ+WdjJ1BM5anHMURUHhCoqipCgKrHN6HvO57PgKPVBg+/mbcto5kdy+lNSdlxADIXi89zS+wTdN3s/mK2cll4hr2UZCtcCB3z6E60Xu+2/PcvDIUmcjSwt91r/x77L+N/8BGz/xX6i++s1Mzp+e2ogYLhypOHbzaW4N9/JG+Za5jbwEceJYxYHfPkQxgFf9VXCLM0/aHvzxn4R/8jPwyx+Bb/q2i95/4UjFczef5g5ewRv4louefynj0u9tO8PNdMVs81fnHITZ23dVJM1Owtop9dFyvjORUmf4OdJkNppi5jFHW/fdeZg3v/wwi6bhmZOnOL92HluUWOOoouXInXcz2HOA3QcOsHf/flZWluhbYWATfrzJ6OwJxudP00y2CPWE0NT0eiX33HcXq3v38IGPfYonnnoGHzzBB2KIOuZ0hlduHaDNTsFZi7MOa112CA7nCn3Oufyc3V7RNJMPSGmq8jrtOXiB8xOnjrPl4lsH6oPH+4bGXwUncQ3byHPnEyuPrDJ4coX+a54lvvrJzkZ2HTiEObQChw3pyE2Y7/n7FHv+NJw7SDhXEJqKaBK/1P/XeGr+mPkR9u0+MreRlxiePTFi5ZFV+o8vcsu3wx3fM/OkMbB/CY4YuPkWet//f7F49H9kKK+i5DAgRJP4xfJf0lDzx/gf6DG8WodyxXEZExLZxuW2df0aVZosJ6GlkMZM5a2ttbqI2oXjrH7NOI3pLIVpKrBbFED2UDnKNRhrGPT7vOKOm9hoLKM6srj7AIvDIa+59zZuPbyHYc9SOsvWxibVZMJofY3Y1PSs0HcWQyI2FaEa4+uK4D2+8Tz77POINTxz/CTv/9DvsLm51fHSejy68DWCLCnLHmWv10WUrig6h9A5hy7KnMkhzHDq09Gp26PqbRH5NqcQuq/Zhrfp+3UbVxzXsI08cdYQJo5dv3I7TAr2fPsTDFcjpbNM1s+x8htfgP8KPAiD99/K/oW/x8ua3+Suybsp/E0AfD59jI/xHo5uvIIHxl/HyeMn+ODcRl4yePr5LfwWDH7uIH4L7v+LUCznJ5sx/MLHpjbygds4tPwPuI8P8HLeR49bAfg8v8PHeA/38QbewNvpz9aQvIRx6TPb03TQ0E7KYkq1ziZS6V7fRqqAljvaSLRBa+bbCHb2tryLviKqWiozlIhGaFVd86kvPsW49mAK8BW3H9rFysoSRWGYnHqeMNmiqSv8qKIajYkhICR6VjBiqUPAB5UAbMeXLi8vc+DgAU4ee573feC3ObR/L9/8trdmqsFuS6zqzir70DrE2dkQs9TDzqiy5dFnq8m6DXbf9Zhb7n2nA0l5DGtLYWyv0rnUv+xXDteyjUQKxo1h+dxunv/8XaTXfIH6ns8RnjmEryt2jX6Zkz/+MmKoGGzUuM192HQ7jjvY98gP0Bya0ISG/+z+MW8Ib+eHTt/B6toFPrb223zy4F7e8o1zG7necXatYmPk4UyPp38J7vh+uP274eGfzC946j/C338LxibsRo2M9mPTHTju5MBjP0hzpMKHhp/lH/EGvoW/ylex4n6d3xpO+N82GsYv4WmKl3UhAaZVOLNCedkztA5i6jMypRGFlCtEYoxEawnWkmLqItSusiflby1DIanjf6cjRGE46PNHvun1RPMp3vepJ1keJvYuLlKNN4lxwOq+w5w/fYbzZ86xee4spEgTIj5BEoMxiZ4xDIcFZb+PWMvKyjL7Dx9ic2vExvom1WjC4088TVXVFGU5jZ67hrXZ6Ntsi7K3UTqZ8+/6CvKibs9rGyXmNOlMldIM751QeiK2Uai/yNmwwwFdaVzrNnJy3XDHvgn9D93L+L7H6H33g5jfXeL8F8+xee5RDvJBxhvnCLHhfDwM5f/E3ngfg+OvY/NnV7ml9yc4e9N/5Gn/bv7YmZ9msNnw8ibwi1uPUtdvnNvIdY7Nkefp45vce/sKz//bHke/o+L1PwrPvx/WnwAmH4env55IzdnUsMFhav5fHOR++sfeyObP7uKI+eM8yP/B75Y/w583/5nBpOT1wfDoLev8uyfTS/ba/fuq/9vOdU8XA53T2MGFz1AYbWljm1AUOzOwSGY9TPYS+Rc7P88Yw55dK7zx/ltZ7SfKOCFUWzTVmNHWFhdOn6KaTJiMx1zY2GKzDtjFJVYPHODALTdz8OhN7D9yiEM3H+HorUe5/fZb2X9gHzF4SBErCUPiySefYTSZZPolc9jOXkRJ2JaCMa1jaPOkXblRe4JmyJnsJNKUbogdjx26yDKE3JMQWppiSldMf5d58BgJPhD81aUtrkUbWd+KGALFcz3Sr78OlkbImz7f2cioWsMt9Fg9sI89txrkzn/E2dv/LGtv/PfY3Q23jf4bXnP8Z1j8wY/hfuAR0kLE3dHwTa9+EPFrcxt5CeDkuQm9wlIcG/CpvwPDA/DyPzfzgrQBqQIiNc/xFH+Z3+HtPHXPP8bubri7+VN8G7/JwT//2c5Gijs9f/3PJvYuv9inXv+47FG7XUQ5Q0V032esf/vN9/SNXURmLTZHSN3i2eFcmB2r2jqiGZokpcTL7zrK937T6/jZX/0Iq+sbLItBehZMwa69h7gtBvbs30dCu6NjCPim6TqOjbGkEKnCOFcQieoihQAknnv+NB/+6Cf4nu/6duW3ndWyVtqgMM0EyEnfSz6WGYfZ7m+apS9iph1i6spc40zk2DnbTF3slAifTTzPJl+nSdirg2vVRj78sQ8AgQHrnP3o3bg3fpbVt5/hjl//KvY8ut1Ggm8o+oG9N404cPMzLH7Ncfbyfk798htYOjih+V82SV/fQzYMnzke+M0vfobv/M5b5zZyneOxZzZ4x5vgloOL/PpPX+DePwN3/wB8/l/ku5IZiMBgMXL0ZRUHX/MsS8tTG9l3GzR/ZmojDz9h2HgJc1uXdSGZ8tDTr+08BVPagend9+z720jRGEMyltlb9akzyK+bdRDtJwrd6wGsMbzuFXfykYee5OmTp7ndrDM0PWxvkd5wgd0Hb8I6YbK1yXg0pqkq5dVFMCngJxOqELpF2ybdJ6MRTYjEpuJX3/M+vv6tb+K2W49irZnSEHHHAp1ZuLQ0zEyeYPY8tYOHOueQHUWc2c72Y88J15m+hOnjxQ7iajmJa9lGPvPwE2zVTzA0W6TzB0gfuR/7HR/m8J99CveP7qXeGrFy8DwH71jj5nu3uOt1I5Z2BZ762AUefX+g/1U/S2P/D/7dP/6jxI2/gPzu17L54CH+z7P/M+t7PsDXfu2b5zZynePJ45usbTbccnCB6gPC5/9l4g1/F970d+G9fwokwW33wT2vhXtfB6/5eti1H579ODz6/oB95c9wevy3+fH//fvwa38e++k3s/HgQf72c3+FSfOJq314f2D4fdyRtJFh/r9sf76Npi7O5AnIdG6ENRbszAKTaZKWtsJntgRyZp11Kcf8w8Kwz5tefRc/9Z4Nnl3z3FpusVCWIAZX9nFFD2GTGBpIAUHwVUU1HlGPK2IIXaIyxaQNcUBZqt5OU1V47ykKNxXPi1GT9DFCnFIP08l67TFvT6i2TXrTEs3UlYzOzpKI+WI3ja6FtKNyJ3WfO3UyrdO6yENfQVyrNvL6B+6iOfUMPVPTjLewH72bXfc/zoHXPs8D/2CNm2Jgz6EJxibGm4bzzxt+5509mnMOk+Dnf6zkmceeIsb/ndGP/Rm+afTd1LLFZEXmNvISQd1ExpPA/t19rIEv/ht49bfD274D3vw7cFTgpjvAOdhcg1PPwfv+C7gtGCb45/9fePgLjwM/xsb/8uf5Xr6bCRuc56Vdan3ZFxKgi/x2+Ada29wW7ch0vXT/F3UAhp3RUcrR6NQLyUy0BdNIc5YWSQnuufUgu5cGnFof4c6Pub1f0h8s4usJJnlE8h1HXdPUDdVohK9qQghMfMSHxLC0FM5OT05ZkBIMBwNWlpeVuzdt5AdI6Pajjf5CCHph0p2fOoncL4ExiJmhMPJhTM9D7kWIreOc0jSdI8jRZecgQktj5Nj9BZ30lcW1aCO333yITz2/xN7+Ocb1Om7NsTLu0SsicmST0eNDHvvlVR56X4/nH4PjjzaMNxru+yrL/a+DrYnHh0jhLA/2/h1b5iST/jnOFw+zOlic28hLAFUdefjpdd74wF4O7R1w7OyIwXkY9GB4D2w9CP/138BH3w3PPgrHn4Smgje/Fb72rbPX5sSH+QnWOM4aJ3iOB6/mYf2B4zIuJLqIty1qkW1RzWx1ic7WTkypjpbDVSNWZ2Bnbq/1satoYcoZ50B1avatk+icBawuLXD3TXs49fkJZ8aR4bkRNx8c4ooCSFRbI6qNTarxmKaqqeqGSRMY+0gddSu333Ub3/pNX8tDD32BZ55+jo3NLWKCxcUBZely1YzumR6nLlBNgLYLdRopXpRwNtPqI80F5HOZNab0LKQsET7lU6c8e+ocQWrzzDPnX6SVG586liuLa99G9u7ZhxufI4nn+dMTVn/rXuxgwqnfHfLpf73EmWfWt9uID9RR5SJHTcPBW47O2MiH2djcwiaZ28hLCOfWKorCcGjfgGdOjHjfj8PCHnj0ffAbfx+21i5+j7HqZ2aHuzWM+RT/5Yrt99XEZZX/thHh9HHbC4gxaelh0EYoEjCjuSTQGXmbXGzlxLuqHqZR5qwTmPmgaXQ2zdjirOFVdx7hdx45QeXh2TVP1ZxktSecO32B02c2GI8D41HFeDyhDso15w/DGOGB+1/G27/lG3jbN76Vc+fO88STz3Ds+PMcOXyQ4XCYKbCZEtUQtDpmpiomZk58Ntm8TSgv9w/o/qsEfrKOWVeZ/WI+/pnzPOMg2ki1Oz/ZEdlWosReeUG+68FGdu25hY1jD3N4qeE3n/BUvzHg6Y+9gXPPnebU86cushExBTfd+iZGW2c5deJzfOc7Xje3kZc4Hn5qnZTg7luW+dhDZ/nCr8FjH9SexBeCtQW33/FmtjbPcPzYZ67szl4juAwZ+bTDUUBnotlo2wXjve9q2HcK0HW34TLVY5qtqe9q3ZnlcfOqm4nIWkfRQYTbj+xl71KPY+dGhGg4tlZxrGkITYFfOEDoe9JgBGtnYXMdiR4yVy0ITe0RoN/vceTIIW46cihfZAzWGEIIeWlKV4LZdRfH0PHWKaUptTOTOJ6KGWaV23xe9QfXnsruuZRi5zXSNgfRnvP22NWpGFHn0HaKX3FcBzaye89hNk8ssGvQIAjH1mqOnfkSNiIG5/rEFAixntvIDYDjp8ecuVBxYHcf5wTv04teRBRCUQyIKRJ8faV285rCZdyR0Bl0y3F3EWH+f0wpC8Spo0gpl1MaVXVtk6jtqCOZac5qHUWXWIxxxins3JfZqJdMn8DCsMct+1c4fn6kA69MjyYEonVKl8SIKwf0l/dgiz7NeAs/2SQFTyLx5DPPUVU11pjpdD4N+whBF6nFIUKnXRSz1ES7zzuj4NlEqkibiJ7h9kX5cEltkjkhMWlOJ8/+7v7N0hfMbD/7UGMEaw0u9zBcaVwPNtLv9ymKPrsHY4rC4PnSNpLy+OB2m3Mbeemj9pHxxHNw74DSGfy83+b3xCVbUmfQsxUm+oyS0+SimRkBvnZgUUtXgC7UmOdG7CxF7KKw9AKLbQbT56ZPigiFcxw9sMpHHzlGikGjtfyxKYXOqYgxiG2HXk23efbcGqPRiEG/N6VMuhKg6eAiQfLQouwgYphG4mmG68/5AFCaQyPv2Dm11rF0lTgzSdL2K3bie9kx5s8XI52z1LbS1MlzGGO5GrMmrgcbca6gv3QT/dFZ9gwqnq2yDbyIjRBi59RTYm4jNwBCSHz2sQt88xsPc2T/kEef2bjau3TN49IHWxmzLRE4dRJ0C1my9AhW5SG6ZOr0JXQljeitvToUkw1bpq/dRvrKbHy1jT7Rz51Gb0vDPgZRGiE7kkgk+pBpLFHpeOvoL+/CCowvnCEBa+ubXFhbZ/eu1ZljS0QDxOnuIHSJ01aOoiOtZzj8lFJHa3Tc/kxSmR3OoCsPTa3DiKQcvSsVwrbotU3qtseutMVUyv1K43qxkWT6WIHd/YpnUv9L2ki5tIAtym6bcxu5MXBho8E54fC+wfxCcgm49DuSbsZElv2W2dGiee0YmaEkzExnbZ5JPTOjum3UMtZgosGamDny9tZ+dgmkbZ/TLa7sgCTlAC4ljp9dJ2ppila25MXl64kmGl3ZOZjbX/VGCj/hE+/5eUiJ0XjC+QvrWlEze1y5ryQlugT9bCK11YNq+W6RPFs7tq4tf0/bjmLmQV3jtM4/dZ3MXc9Ajtx3JmR3Oo4ul8CVdxLXi408fgr2JuG23Q2fObHwJW3k1gdez/Ke/WyePYsIcxu5QfDwU+t4n7jvjlXe/8lTV3t3rnlc+h3JTsqiiwxbykIAjXKSGCRF5b5jIEa6GvaYck17jqBi1MazZCPdvOp2wJGZicxgSiXMRpuZnwatoT91flO584iW4nWJTbSwPyWERAqBJz/9EeJ4q6MlisJlyqJlmfPHkpCQdLxrVAeiHcTTqLDl9VsahPZY40zkmOicQOtQ2gWuhzXzia2j6JxRzKqyGlm2lTetSGFX0gmdw7rSuF5s5LETY1iwLBYemxqaL2EjTz/4O2zcchpB1YfnNnJj4OxaxfNnxqwul5SFoW5euvImXwlcerKdNtLLC2iGVdgJtXm919fFA1OjnYkhu+RhTi7KtFqnizqZoaAv+ow2wlLet25qLmxWaGYyznyeUAwWiE1DasXsmoq6nlBvredkZKIsC4bDQY4W8+dmTjuRSEErvLrFPiN3YWIimoRJGvrqIm/LPQOzEWTrJKbO0LSHn8+rYAT0m3L4NiWMtTinwoCtVPnOqLM95quB68VGTm/U3NQzHFxsGBaByeRL2EiI+KamcH1EmNvIDYK6iWyNPbcdXmBpoeDshepq79I1jcvuI4kpItEgTBdM+3z32pnvgoAxGMm0RoxEY7F2Oot7W0PWjq92gWoDllIUmOlt+exgpLPrW5xeH2lEaVQ4L3qvC8kVxKYm+Fqpk+CxrkTMNOHeeE/deE0C52Ptjq1N3kamlMTMNLyIOoj2te18k5TiNjpCI+Uul7r9WJlZ56R8vhIuFwW0irjqJDQyb+md2XzE9vzBlcN1YyNrIx43PY6u1Bzd7Tm/aV/URpzrb9vnuY3cOHjwkfPcc9syL7tlmY9cOH21d+eaxmVdSGJqyw5zYjBtj2q6G/3UskV5AdBGbAbaTt2OephiGkFOk6NtqKmOQrpkZbswZp3Ew0+fZH1SqfOSvKiN7mfKNd6hqZQKCQEKtPQ378dkUnPy9BnuedmdkBImQmQ6b3tW82i64PW9xkBM6jWlU2nd7iBSaqP01oGa7ljbJHL7rTuzVl8/G1W3k/Rm6YlpBD/zd7jCuJ5sZKvRO4qFMoFJL24jesvR7fPcRm4crG81kGBlsbjau3LN45IvJOogIklMjjglL9aMmcU8C02K5koecmVNXiipe8zxaUqdo5iifX3etmzn4rtFYwxn1ka0dfWCEBut4QemPHII0JUGCykGRAwpRbz3PPn0Mb7ua3V/Y8qOiSyGlznvmKb9C7Pnx6RITCDRME0aT5VXu2NIs1FlG222SeT829nk6Myxzs42v4iemKGUroajuJ5s5NhajzoIt61O+HDU2dovaCMzUTwCvpnbyI2CR5/ZYFIH7r9zlV/9yPH5DdyXwGV1JCkHniPHNC3ZbOmF7a9USOsg2sl1O16X0pQS2fm+9ndJWpogbV88xmSRPENMsLY1pk2AphS6ahaSlkiS8gUmCcYWGsHaAvDdgv7cFx9nXE0Y9PvQJXGn+9mWX85CMn/TRqCt48t70h1P91rRSiRrpjREV4qZHadGodOOb9Mer7W5csl0+wXtOWT62VfJ6K8XGxl54fSWY1AESglMfHphG+lOpF4s5jZy42Bz1PDcyRGLQ0e/tIyreWPii+EyGxJlRxyYughyeySZ3zMTSZlOiI5tr5l1EK1hy7YPyUst0x2aZzW51LQtZTSMxxOOn1nPn9pKbXuir0GEGJp8F5IjWmNyYtWTou/cweNPPcup02e4+cgRYusiZqLjzg9sQ0uNkCPJqfMRpNOKahPEZhsFoUnRTltphlPfWQHVna84w7u/CC2ykxK6EriebCRESBd6vP58nw83Ez6Hz1VkQpixkeQbql4g9MLcRm4wND7hT8Ob7M28YnCCT/pz3XMh+G2vrXqROLhxLzSXeSFhaqy0WkF5gcgLGGW27elifmEnMX2cWVwzhG5qn0/tNqe38q3DOH1+TRPtgIiFEEghEoMnhUCoai3LFEMil2cGrdCZ7gxsbI44efIsNx0+dJEDezHevtvPlJA0dSbKwLT0zsVRo7Pbq2u66p24c2hRxwpNPwOZNqfFKd/e3gnsCOuvCK4nG3FY3vJrt/L1xxe5bTf88+/bx6QUYgw8e+wpqqoixcCFXQX/5b+tSL1A/ev7kQc35jZyg8AhvPU37uAbqjv4meVb+ad/ahdVTynJxx//IlWlAlxre/r84n9fk3qJ+r8egM/ceA2Ml31Hov+Z/j61/03T37S/k/Z9baOaudhJtE6gXYjbkomy04kopg4ie6EEjz93is1JRctVI7onKQRCrU7BT8bY/gBJFmPBjze78LHdug+eja2tbpxpSjMOgu30QHcickJ2mmCdOUnSRpzSUSy2S/66rlQTtO8leAgkiC11kY+xdc4xaRScyBIcoZPgiO2xdPt3ZXE92YikRH9SIghlhFIswepExnvvegVl7mZ/8JXLfOx2zaG4tz6Ae/DxuY3cIBCEQdVDEPo4BkUfenrn+JrXfA1lqRV9D75ymU/fsaBv+oZXwmceu1q7fNVwWRIp0+am7RRG54ZnjLM10W2VK9ucw85PkGkisXUSZB6cVneJbuGYGacVUuL46TWtiGnXlDVZayhSj7eIviaFBipwvQG+qbbdjYgIUvSIMbC+vpE57hlHQUsX5IhPdu7/NBokAjMDhwR1klPnYKe0RXYckEg5OU3S5Ksea5w6Z6ZOKjEdktTKsneOdObCeCVxPdmIN4ktd4CGPv+f5Q/w6+9+D9E3pNCwsrKHXXsPEOqK9fc3yOv/JGnQw777Y5iyP7eRGwQNkXV203CA/27jp/j1n3y6e251dQ+7du0BYPSrJbzuz8GwB+/8yNXa3auKS76QOGe3O4iOr81OoBWMm3EUrXGnlDBmauyzLPps1ChTDzF1FqnNeiSm7+5iWb3zSJGNcd29l5yAJKlTS8FTb5xHEGxvgHGOMHshsZZycRdiIgF0dwAAKbtJREFULc3mGs8eP0kIQftQ2kqcWSkPZhxAmyAW3Vmt4mmPazpAqKUqOs47S1i0+59SVsXNM+ND8F2E2Z3H/G0anW+v9pneDWzPU1wpXE82ImKx9Aiyh6fLhsl4RLV+FkGYTMac2zhPM9rExwlsfg1i+vRqg1lcmdvIDQRDD89uHk/rHZUFcPLkc5w8+Zz+p+dg4xGQPpw+f5X29Oriki8k1rptDkL52tTpCE0X0JR/FdoZ0jlKZcaQaatqpNMFEgxJtJyyfYRtQewUrZ8AfAhc2BzPRKmGlPQiEYMn1BNoI7LQEKqxqgPHiNiC/uo+XK+v8yPciOeOnaCua8qynPLLO/oDplVBymtrKacu+JhSjs5Bks1S6NJFm87ZaXKVTEXESPAqrd74huCn/S0XR45TTn3qDVqntd2xXElcTzayu+5x/9oqjwwu8Iy78OI2UuiGxRh6wyVSPZ7byA2CfSzxem7ncxzjSS6lIfHGvcf7fV5IQK0zkNqFvLMJi+wo4najnX0UMVhrSMliEZJ9gQof+NJ/HxHGVc2ZjdHMCxMhNDmZHrXpMN99xBghTLr3GusoF5cwxtFUY1KMHD9xms3NEbt2uZmpdlNHMc33SjfZLma1Wo0A1VmqLIUei8zQFs7qvIopx97y2J7gG5q6xjfNtsRtx7bLDHVkp3M6tlNKGgVfaVxPNuIQBsFyoZxQpfpFbSS5It9cCLbXJ9h6biM3CByWISXn2KLC/95vuIFx+eW/MhvhtLnq7aqktBUhbfKxpTHa7/m2WqM0i7M7nQekndFSmu5HNKISHAaExJnzG6xtVd3zoBVZ2lzWEIPPu5PwIeTX5MWU6QGxFuMcxpWsrW+ytr7O6urS1PG156GN9GYSopIpixSn/HPmW5gmkqcOxdj8+Z1qa5YSDwEf1Fl476eqrrMRrjFdUtomhzhIYmij99ko+ErjerKR+9dXGQTLe5f//+2da4wk13Xff/dW9WN6evb94r64u9zlklySEiVRlijJpiRLBpRIseEgQOAPChAkTgxYQALkQ5B8CfItQII8kQ8BkiBwgDiBYthyHMmSGFGwooiyRFOkREqURK6WpHa5L87OTE93V9U9+XCf1bMiu3fJeW39F709012PWzXnnDr3f8495zyleRMZkTiuRkbuLDzKCebp8Mc8Ex2WBjfF9CvbqyrhqK3OmqqiKq1QG1OGHhJ2g9QwxH1S4+GV1KclWuoiGpHkP3csz5P7YnY2s/8nr1xiMCrwXIZvP6og9GuA6N35h4gfC4DOczLTQrdajEZDlpcH7jzWCIgWtNj6SopY08h7e6ZSzqvEdvtzBsT3flAJTWHEVpe1vSpivwoTjGx65xXxAxWNTuj94Vqz6rqR2AhsJRk5MOySi2KkqjeXEYn3Xmc5Km9k5E7BYXbTImNEsdFD2fSY+kFSOUVLUy19vwXvKUlqGNSEeKvYqMe/2VahglGKqirjVDsNBCofOI0/p42TjAg/u3iVyhj8GcWX7vaT/WTMkzCmwhQlas52TNQ6wxjDcDhCKUVmS6zW9FZBQhfYYKkOymvjAp7XT1vE2oecOPrD96swwViEoKjzKm3xQVsAESQ5Xhb6bsfjR8pio7BVZEQBH7m8nxVd8K2FizB+cxnxA1Y6g0ZG7ggo4FM8zBJDnuSFjR7OpsfUDxLbtzhSEz74Z5w3ZzvAEQJ8ViciFZEqmacCjKkrbeB4PUKw0BsFHakAp3TGGK7dWInREfHB3Xqto5R4qMEYyuEAdu1GKR3iKuOiIPTKDh5wvC6d8tAKjPvZuFawgT7wCq9UMj6bIurTMmOOvyur4a9XK8TYkvie5lHadQtMPdmbpNuuuc51wFaREUTolzmruuJGNqodOxx08jPBlbJvZOTOgGIHc6wyZpHVt978Dsf0MxJXJVf89NqnOibv4Hhsp8DuA/vmjlPjyn2Ht+Q4cWNPXXiFSbq6Je5sUVbcWPHGwE75fb92YyqkLCCkY9rhpMMTEapiCCjnMbv+2SJhHULoKDfxihSZ9Zzttva6ooEjbOtTP0k628VXDJhC9DbDGoHgzWZh0Vrofa4936021DRsFRk5MOxyYtDnmfnXuZytvLWMhCtsZOROwRF2cy+HeIqfcokbGz2cTY8ZysjHdp5eyRG/JiAah+CRpeIqLpiaGIg0yyXN5lmjiN6Dcsewx1HY5hMwGhUsDQr7md/CGx1T2fUiN6Mraq6twhRjZ1Di98HDxXuKfkdPu8T9fTprvF8SjiMISgsi2vajUHbbdGW0v4daaSRLjuXugYhMdCCMRtP/q9M90/5l3z5sFRlZKHN2lC3GqqIy5ZvLSBil2D4ljYzcEdjJHLuZZ0TZBNqnwPTB9iR7xHqGiXfpvCOIHlZAMBDJlN0bm+Bx1hXFpnxmqMwe0+pfNEj+uADDcclgXHhnDoxBKhdALUtMMUKJ5Y49VWDH6f5XYMoxVTG2ioelWIL35mgJbyAmx2kNWZKC6YPJ4tNAXaTGKDcGjdYuU8l72Kni2+6xbmwVdgm0vXfKB0/dmIIT642pMxIbFUzdKjLy2NUDtIzmiR0/m0JG3KFEMEVhDXUjI9sen+AcbXL+F89s9FC2BKafkUwYCDs1d8LqCs1ZbYLUI/M+IkJYASwucBgoD/c9AAo7LXf1hULA1ghgoqFwxx4Mx4yKEn8mz8eL6/ltijECnL3nbq4v3uCVn18O57Fvlq6wv9iML6UUnU57QtmS1FW8Ito2sN5A1XL6xW8fi+uJy+hJF5EFu5dQJFHx40CtkUgKEdb9TDxpkaaSrje2iozMlzkKuKFHby0jk/exkZE7AgvMWRlp4iNTYcZWuzGIagUfIPZDUHj2wE6zFYLBGouwXyUu+8TE4KubPEbP1fG8zkigKoQKSas0KxBRrI5KCu/9irgV6/bdjEeYskBrxaOPnOMnL1/gVW8kEq9YZRkYYzl+Y8gzzVy3Gzy61NP0Y657fbE8emog0kqtytER3lBMeoPWHmhQghaF9zLd3UeMJD071nLxIXDrttmINQJbQUZyA+9d3MtiNuL5zhXM6C1kJIUxrrROIyPbGTkZH+YM11jhe1zY6OFsCUxftDHLUcpglEEUrmBcDCRCdDSDB0miNG7RlMHSD7+QdXSels9mEezv4miRUK8JS4GXxmCMm1mIL69dUZUjxiuLiCnpz/d4+MGzZFnGn/2/vyAkAok9n85amLKkHA0Qqei0W/T7PdKsocncfb/WIHjT/tqR+mf+vvjrrnmbfj9V2z4Eb+2lhz4Unh/3lXJ9mmeWrU3v3AjaYivIiBLhwKjLQJdcZvGtZSRBVRaYYSMj2x0axRF2M2DMZe68kvC3gqkfJK1WK3hPplIon4Hj+GIS5fUKFVM406Y6iaYpP9/3AY5JSKBFMpxXp6XGqRtjvE9rS20YMGXBePkG5eoyInD0rv3cffQwxbik02kzHI2JTxFNlrdsr243g+nt3EFvbg5jDEpFYwCJ8rnobsLSuCF7dVdu/N4TV5GvTg0G1GIJPiCqlUIyhRINOvneGwrlF7RFQzGZJbTe2AoycmjYY0/R4eu981xbvTqFjESYopGROwFH2M1+Fvgy32eJ4UYPZ0tghuq/3khoKqVRbnGZz0TxHuakgVj7SnVKBaVRkvK4dWjnbdpNoyESESrxPLLBSElVjSiHq67onkEpuO/0SfrzPQ4f2seunQtcfP1qOL3O7EplU45tGXFTsW/vbubmOs5I2NGE92TMwSD+IqiwR1B+u6e9jsmMHO2iqHWOG0Jo1bdVVT7YnHqb2YYbh60gI/tGLXYXHZZlSDEavKWMpHOGqpGROwJ3sZO99FlhFDpgNnhzzPggqaiqKInGGJslJbHqaeoJBm8zNRJOpVHWTxWJShcI5wRRSbXjov1x7M+jogI/E6lKTGmLNValDaC28oz77z1JlmkW+vPs273TGQmrgnm3i84yxsMBpirQCA89cIZOp01lqhCcjOsE7LgER4x7JU/Gnf6kVP3d7RwMqg8SKwVosKUJk14aKgmQJnSOHZMvOW4XoLk7mtAn64utICOPXt8PwDe656eWEbB/alOOGxm5A/A496GArzUr2qfGDOm/VUI/1L+L03T3Wzolt7/gd7K64qf+zhMT/6uKJR0mAoTpdFycEhgj3BiMYuluY1+mtO11lVLsXOhz6uRxtNa0220WFuaTkSuyVtvuU4yRcky/1+XhB+61CucWjdlzigsUq+j11rxFCWMMXTG8YUiZDrflGvbGGwIif51y2THbRgdDsaZ+Urj9da5+vbAVZOTQqIsgvKKuTykjhAM2MnJn4Ai7McAFrm70ULYMpn6QjEYj6yElK40j10vQhdhaCKcJCvFK4r0ybxzWKIQKReyUK4Q3mYGSopCKK4sD681WFaYsbVtdX0ZChDOnjnH4roOuZWnFXLcT9rdKl9tZTDFGTMW5e09x6sSxsE0IeopYA+He06Co97K9gYicefQWg9ZOGAettb1PyvaiCEofBuB2Ub7/Ocn/Kh7WOKPsA9YmzehZH2x2GWmVcGqwgwv5Ii+0L8OIqWTEWnHBlAU0MrKt0SHnPg5znis8x6sbPZwtgxkeJG8WdEqn5U6pwncSvEnvqXnl9HRArXx28rtPUfSGwjb6iYZiMCy4eH3JGiu/fsQpR96ZQ6TkQ7/0Hvrz84i4gnbJKmR8wyFXIqOV53zw0XfRdYYkpq/GTn9iuZMa7bA2VTMaP9z1epojDbOG++YoGe35bW8Awi0UxBlba3/88T39YdwYqZXUWG9sdhlpl4oTwwWW1CojXU0nIyrOFhBpZGSbo0uLMxxkmSHDpurv1Jj+QbK6GhQ3lKhOlMAqghftxKVy/LZQby/qF0T5onKeriAxJNaY1OsFRRpAsbiyypWlVVzCaOgXIat2IdvhQ/v5wKPvJs9bti2qziIvrHDGJ8OYEVmnx45ei3tOHrfnFUtZiMsW8p9Z+iIxGkkg1N+LFKmX7AOo7ot4nTejKib/AJ76CV+o2ld+bLbSrgmVeNcTm11G7h3sZnfR4YkdP2UkxXQyouNK9qw9x46dnUZGtjEe4ij76PNFnmXcNLOaGlM/SIpx4aqJamyiJaHfAUGhxa2RitNpNC7bxip4Wuk0LaHtc9wnueJJZQneH8Irl95gMLQNiZS2BgetbWbNeMDjj/0yhw4eTMYXmJTkgELW6ZB1uvR7ip07+msUHW7uad40XdUY8KVAEq/a++GideDSI2+d8twEAzJJYUc/3r1q15LcuJsZmXXAZpeRfeU8HelyKV+hLMfTywjW6WjN9+mXRSMj2xgH2EWXHj/njSZjawZM/SCxmLixznPUbvGTiCDaIMYaDIX9PCiKjoul6mWtU9rDnscrkjEGrXGF/KLnVhnhp69dpjIugKkzUFUIiu7fs4NPfvzDrvdDbAgUV0rb8WftDq25eVavXybXGa1229Y7CsSz10RHDzgy30wYhzQTRlWCzuzqZO0ecgrXYxzC8dIrTo0Dta1Sz33COHmPFXtvlVijpLXBZNlsf9q3DZtTRvpVl8++9mvAMZBnZ5ARQK2CFsRU5JpGRrYpdjDP5/jbwL0odk2/owIYANUd+3Se8UFSh/eY/Apaq4QQCAyF9U517IuQepuWCvDBSp/pEzN+fDaPMS6ImHhhq8MRL1+8bs+kFGJcMLG0tZNOHj/Ovr17qKpY+K8yQlGUeMXXWU67twACxfIiasdefKc6GzB1iu/Hk/DXEsaN/9J5oUSj52kdEgMZDCLhwLWMHmqHvInX6Y2EcZRKjCOAXU0goif22ThsFhk5ubqfB5eOAS3uGt8FeTmVjJhHdmGOXoFcsfogqO+rRka2Ke7lbt7Hg0CLY5xAozFMEUd67x64+xrkGj6yD77wyjs+1s2G6R8kN3vSBr42Ggl8xgrWgGQ6I8tz+9JZ8DR9nR/L2do6SL6Zj5+WS02J6rhw8SoXriwivqqqsf3Zy/EQqQpOnThGlmlbP8sdQ2vNoUP77YPHBSRFDNVoGKrNeoUTMb4K+U3HsoZSkGjU/LVrLdbrVrhUzNhL225qJhQ+MQoCStkAKsn1B0NqIObEErx5tZGcxSaWkZe7V3mps8qeccl/7n+JamU0lYzInha0AQ1mbwtjho2MbFO8yCv8iGscoM+/539M9xAB2NuBtgatYH/3nR3kJsXUD5KYBjnxOQTu1m2YfOaF13HcmVeSaCQ8jVD54kbiPTwJRgcS7lcsZfDCy5dYHhaura5tNmRTgMd02jn3n70HEXHtVe2uWmtOnThKlmWUVYWpSqrx2HqXWU673abVbjkjoSDpgeEbK9khJrxHuCUSaAUcfePH6+9fpG48F69d5ow1DcHX9ExJcu/FfR+CrIr6D8p7ucpmo037h30bsZllpF3mtIsjfK/9Mk+3XpxaRrKvX8GcvwD9nPZXrtDu7WlkZJuiyxxznOK7/JBv8/3pd3ziNdRLL8FCjnzhZ+/cADcxZijamAVPLOpFwsWaREGIDpIRg6oqKk9RaEGLYEujqbDmIBgHooFIjxeNhbA6HPODC5ddyXJXMr4oqUYjysESp48e4vTJ4zf1Ult5vOSYSSRgKvrzc7RbbRu0FwGycI1GYu9s2w+eOLYJ3zNd+IW/BmP3MSIh0EpiBH0cAKWSXhNr/w4+TqCUC2S7ExkjiHL1lszGmIjNLCNzRQctmhdaP2a8OoOMlIKuriNGIaOC/v5GRrYrFlggI+M5flCPO70VCoMqr0GVIeM7MxNu6gdJ5gJzKrg7qYEwGJ+t4hUe4nfYmyvakGWZ5Wclc/2mYwmIySyXtAGQPx7Apas3eOXqMt7DM2LTf42pwFS8/5FzLPTnJ4yE9egGg6FdjSz2M6UzwKDynHarZctJaH+thPNWVYVSFVQK4+ue2y+DyE0QD8k9MogBg+1N4YPE6ebpgjqf+ho2Sb18FVnykJ0kIJWpGZUZ1OBtw2aWkYcXz9Cruvy4/TKYciYZ8S+VNTKynfF+3k+fPj/khxs9lC2HmR4kPusECJ6U525jX24fbLQbek7biAkcuTUUoF1PislWqvaVUBek7/DiK1dcxzun5ME4GbrtjAcfOIO1Wc6TQ+E71C2trFiPD1B5jm61qIoRpiqtpxfSTKPSitg1AraGlDN44ntlTHqa7owxWuqMKDbF1fHhIe3TZxkpz5nrWhOosF3tJP72CkaS7KDg6cvksNYFm1lG2qYFQMF4JhnReW65bwSpikZGtjG62PI5RbMQcWZMT21pjVfSeiYKpEocP8PREIJIBYbQLyI5ajyeRM8yUAITRkJEKMqSF1+9hjFOiTONjIWqGFOOVjm4eycHD+xzPSlMJOJRGCMMVodhgHl7DoBisIwpxpRlfJiEDBpPfflLEj8LipcaKsAm9yUsMAvXYI2lV3odvEpwzHXkx3X0OFNjRe22i/OaY8rqpMe+3tisMqKzjA9df4QVPeBb7T9n387pZSTrdl31gxJTlI2MbFMoFL/Kr7LCCt/gG7PtrLHORsUap+FOwQwxkkkFd96Rit4ZIhjHwdr4aD3rocZpRzbCOk/Oowq1in7BfsuDET+/PnAxRKtMUpWYoqAYLHPslC0HbkRCPwzPP5jKMBis1v/WIuTdHlmry3A4oiodxykQ63bYQ2jfJ1wpdOglnhQp9PQKSdDTGZlgIGSisB8qMWR4JgalhFCAigkawt0fE4yDoUpLtjvjvN7YvDKS0TEtjBgGw+ucum//1DJSnYbqiND+E0U2bjcyso0xxxwGw5jxbDuem4MTbeS/X4flO7PszPTUVihNoWrZH36K7af3+P7nCMZEj8tJPinzEeCm9H7qLinfm0CAxeUhy644oEKDgClLW/G3GHHPyaPkeezjnZ6rKAoWbyy7c0auOW910HmLpeUBw9GIfn/eKrLBt3lAoVwWUeZqMUV6JfWG8XRL4O0nPHEVWXKfuhQuV6ngaRsDSluD4is/BSfee7yJgfBGwrPjG2EiNquMHBzu5cTgCM+3f8RVc4lPnLx/ahmRjoIWZCNNphsZ2a44whHu5V6e5VmucGW2nbsK2gpWDNNmDG83zERthZXGE/ywdrRAqLrrFEMl02cv/DXxdTFZ32/C6ozTmNRQOH0TEa7dGDAujTuHoSrGiBhMOaadK06fOu4CtHYa7wvmAQxWBrx+5RqCoJUmn+uh8xxTgs5bDFaHDFdXI3UCKENtbDpTN1VASSgDnwYa+nGTBE79hYcXgKNHJNwpCyPYZ6Xyd7VmlIyx6yuqygQv2RrZ5D6uIzarjOQFzFUdlrIlVKuaTUY6XUYASjcyso3RpUuPHsssNzGSW8AMMxK/UCyz/Kw3FN7rVNS8y8gTi+cwnB8UhTdxspzwq9rn4Vj+ZwOvv7ESyqIgxjUnEqpixO5+j8N3HQTslL4ylVvIZsezvDJgcdH2YBZA6yxQBirPKYoB43FBqqgicVSBu3aD9p53vGZrLIw4GsEP2vhriMYw3oTE2wzxBUtbKA3aaIwWuxrZncd68uLO5bxOt6MOLVvX30hsVhk5u3icXDKezv+CnTPKiM3qc+NvZGTb4t28mxYtvs23N3ooWxKzzUiSVbdrekAom/Uft1cYndncer9qHFcOwylGdK6cR5oIvPfW0oCgIFxeHAT+2hgTFoBV4xGHjxyMKZ0TTIFSilaek+euvpA7h9darVtIZcegk8KA1Dw8/5lT7MRQ+O+sOagHQJVydZlUNJIh4Gns+tk13qZSaBFEO+ZEx30thWJ/ytw6Br8uwdNIek3Q+p3HZpWRg4O9ZGSc52UOH9w3o4xUdiOlGhnZxjjGMScj5zd6KFsSM6X/hjTDX/CSzAqr1hpjMiRz/KybviPUDAxB+epTfmMq6ykm/RKUUhiBN1ZczwsltsMdGmVAyoLjRw/Rcty3uH28siilWFjoc+zIIc6/chHEzmICxeJomTzPbdDYe4+OM7lppkswEi4omgREQ1qpN6LOsHjb4z3HNYZQopHIdAahrp5GO2OntLJL9TxtpBWZkfCzTsqLrCc2o4yoSjg+PMhADbioXuPEzDLiA6+NjGxXaDSnOMUKK7zaNLO6Jcy8IJFU6CdSDzUa0QKS4afWpqrQprJGw5igRN678ry2VxbfK8GvEAZCxk9lhJWR7REggDEFKNurXUvFieNH7HeeZ3dK5YsAzuUZD5w9xf/99rPWeJUFSmtLLShotXK63Y7tSSGu17jv9hf49BiwjNcSmyv5fhn2C3e/tDU6qYFQziAG4xIoC+8mKyS3xs7/kVTmW6g6r1IE0dqtEbCHSRs/rTc2o4yo0nBmcIIltcyF/DyPH/+k/W5KGTFVGbdvZGRbIiPjQR5kiSVe4qWNHs6WxIzrSBy8cgCTHqfGl2RwBRG1RhtNVVU1z8rqWd2TM36bpINbyuOWlWFUuIwfI24JgKIqC7rtjCN3HQiKl2YO2eqymkxrTp88TrudMxyOXc9um+8ilaE716HXm3PesoTMIG/EfOZLqH3kjh/rRLnVzuFeRW/U3i3PbXg+3L0bz/PHVFGfCqRQVJ760LFHRaYVYCu4Zu7I3rv26bbrjc0oI72yy5zpcF29Qd5WtyAjsW1zIyPbEwss0KPHNa5RNs2sbgkzSZKQCnJU5NrL9epeu9hJhX/ij+UNRNhEscZHSj4YFyXjsgKUW0xmHwKmKuj35ti1c0fw3pSb9meZfeWZrS67d+9uuu12zLhxXRKrYsTC/BzdbtfRC56KiFS69wajQqfXERXdGwPnbOIDzfYmStjHZwyFXhihsq2KdiXch+itesMZj+2oCuW5b+uRbgQ2m4wcX72LQ6N9PNN6Ft1ndhlJpgiNjGxPnOIURzjCd/kuK6xs9HC2JKaekRhXHylywlhlNFZpJwOHyk3FgyI4w5LyyDHHPnpKIoLGGxk3F3cCPypKClMh2GOhBMGgUOzdu5f53lxcs6DjyuDM97vQmvm5Odrtlj8pKNB5hinH7NrRp91uu+/c9fl/6bX5lcYJBRN5bjvs1FikSI1M5P+Te5CcJ9Ou26BOjm0PgvXmCeeQ5CsxNgC73tiMMjJnbFnvYTZm7949s8uIP7BWjYxsU8wzD9A8RG4DUz9IYg68qSl36hF545D26q7lzaevUG/J72un99p9r7UEXhqsEpSl66znP9EKKQ261WL/vj20O+3Y0+EXvLrdbjASSkeaQec5e/bsIp/sGueVFm8gBGVYayC0Nydvcg8n7kOkMTyzEbOedOaMhE4Nh/VCvefrfw4H8fEETEizXU9sRhn54BvvAuAbu56+RRlJYhyNjGxLfJyPo1B8ha9s9FC2LKZ/kISmQkkWSUo5gFVyJ+he6e3O3rHyShK9zkn+PPLhxhXs83YiVvlF7IplhUGhwQh7d/XJ89wqmVOwzHHSoUSHVnTnunQ71qNUPugpkOVtdu1YuDlv7K6l7k17Q+Fpg4SaCBdcu4Hhu8hx105iDZwrsaF13UvWye2Mp6iZCHsU3+lVTR7/ncdmkxGNpiNtBGEsIw7dgozIQasi2VXdyMg2RYeOlZFZS6M4qLvc7PXnd+5CxumpLTO5GtcEI5GmI8Y2qb5cBkkg0XuffvNE8XwKplYok0zTnUelxHukzkvVghLrGRYri+zZ2XdKFWs7+eBpyJjRmm6nw47+vPXw3DmNKRExzPd61hhWKqxtELeoK+W8U0RbOEFvEIObdl+FmMoZmLUKHDjsxDOO6zAIHm/Nvb+JobC/K9IaTOuFzSYjPenwyBtnea31Oi+YZ3lg53tmlpHyMbsgsfNtRdnIyLbDPPM8xmNc4AIv8MKtHeRjtl23PLH09g5uC2GmGIlMBE1riuPm0UYplBGUMtHj9ALulEep+s9RsRS+iF8aZFUoRAl5psnIUBSgNGQwXlmiWFlkbq4bA4kTfHRUYmi3Wuzds8vFRtqIMZSjIdV4RFEUlEVpdSykdEptwVwoCz7hldrS34mRTJRZsIZGGeVSStUab1Mp5YxcfRGfCkFdGwfwv6eI918w4o3K+nubm01GNBld02HJLDJYvXpLMqK0zXqqxuNGRrYhNJoePVZYYWSL4TS4BczwIIk8tg2O+ul3VGjCVN5EJQ3ep4peH7H8dqoMgO3c5tkOT4s4xWjlGXmm8XWHytEq45UbmKpkNB6HgKNV1sQAEX20LNMcPLDXKbJdEY8RUJqVlRWKYhw9REmvMwaE7TjFURw6nsNdaxb4/8RQaGONRFVh1FojgSIsEkvH7D3YeG+V/8Lde8LfwRaDdVVlN2JGsslkZE+xm27V4Wvtpxma4S3JiIuau7E3MrLdsJ/9zDHHEzzR1Ni6DcwUbDfG9rcOU/okqHoz7wnlgqrGuDx6QSnbKMj2VPA1f+L0PlgLEiNhj0grz2jlVmlMVVGNh+iWXRzW7/Xqhied5CfHVErRabctJaAzdNYia1sPst1uUZYFoCK/n76Q2PBIaesZawJF4L3N1GPEXZ8xGqVsl0ATqrDWaXK/P4mBxRuIQIus+ctEQ4Edi/d81xubTUaOLx9koZzn2vwNFOqWZMTOKoSs1aFqZGTb4Qxn2MVuXud1zG2U7r15mc47BzPNSEI2STKlT5VoEl7xvTFA+V7c0YuqT8FV+BxUmDV4L7XTaTHXzhGpqKqxrS0kBp1l9Od7ZJkzOulqapxzFp1YWq2cvNOlNdfDVAXF6jK5Mhw7cijy+hKNVAwax+sUDUY02tj+GtovDlMqpJWCSoyFz8DRwfgkl+3/S4zaTTxOSGK09b+FuC5KSq2N4a4XNpOM6Epx+vpDXGeBC9k1NLcgI70usmeA4SpFZ2cjI9sMOTkP83Gus8B5Lt3aQTLQO2+g1BC1p7hj7+vUDxIgpBTWDIbcJPuEqJCqtrd9D/8Cv+0TVuzn2tczckXofBA0a7X55YdO8tWnf8LVxWWGZcFwvMrp44c4c88J8jy3QfSEBpHaGOyxPvyB93B9cZlvvvAq7W6LVv8gC4d2curEMULxPNziLm8oSOgZXC8IsFyBIgRbgxYntq+exumNZO2/4BGH+5bSLu67NCbgj+WP7R11Hy/YKGwWGXnxmuGjF/8yI7qcWX039549PLOMXOi9zhc/8g2UqlB/o+KBq6c5deJoIyPbBPfwEH+Fv8OIHvfxETS/N/us5CToTwxADeh+TuBpWH3lnRnvZsbUS5JivwMSLyf4PbVtvcdUD6QmeuN5dPFeqy3Y5+smKa3J8pxWq0273abd7tBpd+j3ejz+vvt515m7uefQbk7sX+DcmeP8/d/5LMePHSHPc7I8q2Wz+DGHgSnFffee5q/9+q+xMzecPXWCh86dpb9jB1/5+rdYvHGjxt2jJjw9d+31wHLlFtMlGTvBJkT6I3wpE3cs8Ofxvq0JplqL5WqElZRFQVmWrmSIP0d6seuPzSQjRx6c4409lxgjtPfdxd/7u7PLyGc/+hl2np8nH2ecef8N7v6Xz/Ht/E9ZHF1vZGQb4CI/4yWeZ4zhOnPIrTxcL4F8T9ADePhj8KknNCf+KuS9t3+8mxnTz0gUcSof3m9CVUDNKEQO2n6f7iu+B0OiWZYD9mXIY4G5LKQ8Zix0M3rdNtW4zeKK8MMfv8z9Z0+TZxk22GvC8ePA6op3/Y1Flpdu0NEVLUp2H7iLn/7sJ/zBH3+F3/zMJ1no98OuKVcd1jYYMCHrCFe6QoLBFECJ80TdNda9xeiS1pzOcCfsuazhtDx9VZaUVUVZlhRFUaOMYuaQULqihqffM/Vf9+3BJpKRbOeQz3/i33H4i7/LysVHMc89w333qZlk5MZryyz8kwXe+xvvZ/+jP0c//gOu/9aTPHnpIh98+a+zf+VuSDs80sjIVsIiV/kcn+G3+CKKv8Q+znGZ7812kCUof6NEnVMUn4be7yoe/6+aV78K3/mHhmvPvDNj32yYYUGi/8GRCzelKqzC1CfgbmcBEbsSSkTVFCp1k9KslmAYfO6/W0DYzUEhNmiJ4clvfof3vfsc95y82/XhdimUygRVDKNxc/vLV67RauXs3T0Pyi5M6+/cw09/fpnf/8M/5QPvfYhjhw/Rn+8FQxCvh8QYCBiojKEyFbqynL1A0oGvoiwryqKkKAubQlpWrsCfLaFeVZUzAFWt8J83FFVlrHdp4rtSKiyoy/OcLNO0Wi3L7+czsZZvCzabjAznrnP+9P9m31N/i5/80f3c/8GXOHXy6Ewy0hm1OXH1BHz5FOMfnWT86Se5dPwFvrTvn/OBlz7GiZXj6KvnUNJqZGQL4jqX+Br/mk/yH3iEz/FlfhuheusdU9yA4pvC00/Ba18SfulfaI5+EvY9onn13xjG34Onvwqj1XfmGjYDppckid6U945CMPRmHK2Irc4ulfX0jLKlI1xGDVoTVtb6Y+FW7eq0hEWS8w+srA5ZHQ0ZD97gjauXGQ2HDFZW+OqfPcWhQwfo93p2nYIzNiKSjE8FBV/oz9PptlEY2i1NNVxioVPR3b+PG6tLfPHr32ShN899J45y7OhhRuMRo+GI0XjMeDymKMqah5dlGXme0cpzWq0WWVZnDTW2BauvvJrnGVmWO4Vukec53W7XfW6PlWdW2fPM1lPyxsfTHpnWzjhkyQpnFWpJrTs2oYxc7f4RzH+Ml155jOLzS/z274xZmO/MLiOZpnq+T/XcY/Arl8g//X32nP08pWhWn/4Ub3znQwxHjYxsRbzI/+Qsn2OJ36TLN1jlv8CsDxNAKrj4JPzJRw2nP6v48D9S/IN/Cp0K/uM/hv/2z97+sW8WzLCy3RVKdAi5+Dp2WxNxZb4TWsIgIUiYpjzWM3PiMdOmO7VCdAKiIM8zjh05QKlgZTim3e4yt7CTy6tjvv7U05y75wTGGFaHI0Yjq9Sj0ZjxuLCeqLJ9M8bjMQ+fPUVXxuzfsYPWrjny1lFWx8LyyiLzu3bx4+ee50tf/hrd3rwbv00L3bGjz8H9ezmwfy+7du6gvzBPv9djrtdjrtuh025bDzm63iGzZvL++SZOHsGLlbqDaz9LM6DseDJnQPzq7DQbab2xKWVk9cf8+a6XufrqGV76wqfZd9d/4qO/om9PRs6fQ37vGJ2/+YfQLvn+S0/xf37/MiKqkZEtiBFLPMEztHk3ff4VBT+g5Fu3fLziBjz/b4XqKeHXvwr5POw97Ca62zQ+peRmJHaDBg0aNGgwJZpC0g0aNGjQ4LbQPEgaNGjQoMFtoXmQNGjQoEGD20LzIGnQoEGDBreF5kHSoEGDBg1uC82DpEGDBg0a3BaaB0mDBg0aNLgtNA+SBg0aNGhwW2geJA0aNGjQ4Lbw/wG+TzsnxHRUawAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "num_samples_to_vis = 9\n", + "fig, ax = plt.subplots(ncols=3, nrows=num_samples_to_vis, figsize=(5, 15))\n", + "for i, sample in enumerate(dataset.take(num_samples_to_vis).as_numpy_iterator()):\n", + " original_image = sample[0]\n", + " annotated_image, blank_image = sample[1], sample[2]\n", + "\n", + " samples = [original_image, annotated_image, blank_image]\n", + " titles = [\"Input\", \"Annotation Overlaid\", \"Annotation\"]\n", + "\n", + " for j in range(3):\n", + " ax[i, j].imshow(samples[j])\n", + " ax[i, j].axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xmMaQsJTw8FL" + }, + "source": [ + "## Caption generation with BLIP-2\n", + "\n", + "For this section, we leverage an open-source and powerful pre-trained model for caption generation - [BLIP-2](https://huggingface.co/papers/2301.12597). This model comes with [different checkpoints](https://huggingface.co/models?other=blip-2), among which we're using [Salesforce/blip2-flan-t5-xl](https://huggingface.co/Salesforce/blip2-flan-t5-xl). \n", + "\n", + "🤗 Transformers also supports its predecessor - [BLIP](https://huggingface.co/papers/2201.12086). \n", + "\n", + "In the cell below, we first load the following classes: `Blip2Processor` and `Blip2ForConditionalGeneration`. Then we write a utility to generate captions for a given batch of images. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "f90f1c122f39450c86883ef808df91a3", + "04e34bf48e0d4d75bb85d593aaefb472", + "f8641a16fb954f4ea71245dd60c1068d", + "0ee38e6e5d7840a2a61192b8525ca224", + "030606273c1b44deac4151a7e722f14a", + "31112b3d02b645708a5edd5573a4c951", + "272813e80d8349518f6f54eed9e40aa4", + "3283137ecb3b45d3807fa2a920a6fe79", + "70a5f206f22c4bfd98676ca54232a1e4", + "08137370444343348a5333f04a8907d4", + "cfbcb4aa9ed04496a115e018a5b53708" + ] + }, + "id": "W2qGNAcnXunS", + "outputId": "95cf3cee-a5fb-4044-978c-36db7edcd325" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f90f1c122f39450c86883ef808df91a3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00 list[str]:\n", + " \"\"\"Generates captions for a batch of images.\n", + "\n", + " Args:\n", + " images: A batch of images in the RGB format.\n", + "\n", + " Returns:\n", + " A list of generated captions.\n", + " \"\"\"\n", + " inputs = processor(images=images, return_tensors=\"pt\").to(device, torch.float16)\n", + "\n", + " generated_ids = captioning_model.generate(**inputs)\n", + " generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)\n", + " generated_texts = [text.strip() for text in generated_texts]\n", + " return generated_texts" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vtKtHGclyHds" + }, + "source": [ + "## Generate captions and serialize\n", + "\n", + "In this section, we first batch-generate captions and then we serialize the original images, and their corresponding conditioning images." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VovixW1_bhg-", + "outputId": "a1287d7b-950f-4b08-9874-1251c787e396" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.9/dist-packages/transformers/generation/utils.py:1288: UserWarning: Using `max_length`'s default (20) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "496 samples will go in the final dataset.\n" + ] + } + ], + "source": [ + "import os\n", + "import hashlib\n", + "import PIL\n", + "\n", + "batch_size = 16\n", + "data_root = \"data\"\n", + "dataset = dataset.batch(batch_size, drop_remainder=True)\n", + "\n", + "os.makedirs(data_root, exist_ok=True)\n", + "\n", + "\n", + "def save_image(\n", + " original_image: np.ndarray,\n", + " overlaid_annotation: np.ndarray,\n", + " blank_annotation: np.ndarray,\n", + "):\n", + " \"\"\"Serializes images to `data_root`.\"\"\"\n", + " image_hash = hashlib.sha1(original_image.tobytes()).hexdigest()\n", + " PIL.Image.fromarray(original_image).save(\n", + " os.path.join(data_root, f\"{str(image_hash)}_original.png\")\n", + " )\n", + " PIL.Image.fromarray(overlaid_annotation).save(\n", + " os.path.join(data_root, f\"{str(image_hash)}_overlaid.png\")\n", + " )\n", + " PIL.Image.fromarray(blank_annotation).save(\n", + " os.path.join(data_root, f\"{str(image_hash)}_condition.png\")\n", + " )\n", + " return image_hash\n", + "\n", + "\n", + "original_image_paths = []\n", + "overlaid_annotation_paths = []\n", + "blank_annotation_paths = []\n", + "all_generated_captions = []\n", + "total = 0\n", + "\n", + "for samples in dataset.as_numpy_iterator():\n", + " original_images = samples[0]\n", + " overlaid_annotations = samples[1]\n", + " blank_annotations = samples[2]\n", + "\n", + " generated_captions = generation_captions(original_images)\n", + "\n", + " for i in range(len(original_images)):\n", + " image_hash = save_image(\n", + " original_images[i], overlaid_annotations[i], blank_annotations[i]\n", + " )\n", + " original_image_paths.append(\n", + " os.path.join(data_root, f\"{str(image_hash)}_original.png\")\n", + " )\n", + " overlaid_annotation_paths.append(\n", + " os.path.join(data_root, f\"{str(image_hash)}_overlaid.png\")\n", + " )\n", + " blank_annotation_paths.append(\n", + " os.path.join(data_root, f\"{str(image_hash)}_condition.png\")\n", + " )\n", + "\n", + " all_generated_captions.append(generated_captions[i])\n", + "\n", + " total += len(original_images)\n", + "\n", + "print(f\"{total} samples will go in the final dataset.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qKiC4evYyaDb" + }, + "source": [ + "## Create a 🤗 Dataset and push to the Hub\n", + "\n", + "For this section, we leverage 🤗 Datasets to create a the final dataset that is ready to go with our [ControlNet training script](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/train_controlnet_flax.py). \n", + "\n", + "Finally, we push the prepared dataset to Hub for easy sharing with the community. To be able to do that, you need to be a registered Hugging Face user to authenticate yourself. If you are not one already, please head over [hf.co](https://hf.co) and register youself; it's free =) " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WkGGxZjgzSOj", + "outputId": "d153f0a2-ff10-4cdd-91a9-5c4ec6cc08f1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n", + " _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", + " _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n", + " _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", + " _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n", + " \n", + " To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .\n", + "Token: \n", + "Add token as git credential? (Y/n) Y\n", + "Token is valid.\n", + "\u001b[1m\u001b[31mCannot authenticate through git-credential as no helper is defined on your machine.\n", + "You might have to re-authenticate when pushing to the Hugging Face Hub.\n", + "Run the following command in your terminal in case you want to set the 'store' credential helper as default.\n", + "\n", + "git config --global credential.helper store\n", + "\n", + "Read https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more details.\u001b[0m\n", + "Token has not been saved to git credential helper.\n", + "Your token has been saved to /root/.cache/huggingface/token\n", + "Login successful\n" + ] + } + ], + "source": [ + "!huggingface-cli login" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VEvALWiZ1agR" + }, + "source": [ + "We start with a generator that yields a tuple consisting of:\n", + "\n", + "* `original_image`\n", + "* `condtioning_image`\n", + "* `overlaid`\n", + "* `caption`\n", + "\n", + "Note that `overlaid` image is just there for convenience. It is not **mandatory** for us to include it while creating the dataset as it won't be used during training. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "ZiNk_gOYze4Q" + }, + "outputs": [], + "source": [ + "def gen_examples():\n", + " for i in range(len(original_image_paths)):\n", + " yield {\n", + " \"original_image\": {\"path\": original_image_paths[i]},\n", + " \"condtioning_image\": {\"path\": blank_annotation_paths[i]},\n", + " \"overlaid\": {\"path\": overlaid_annotation_paths[i]},\n", + " \"caption\": all_generated_captions[i],\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 218, + "referenced_widgets": [ + "f24f39de5e8f4e218d3f0c414b731bf6", + "653da450d3ec423f805e999d1cbd80ee", + "0efd109c9b0c46cc9faa113130055be1", + "001d75de3bf140ac9465cd6de0731d2d", + "2c8d95804615493999dd0636fa897391", + "d2f5e782b3be4dc39e81eec66c59f950", + "83a115db2d90472f92c0e86478d02399", + "2a3632f9caf54bf0bb23e10028c3076a", + "d4894288486f4355b8126a099f3e8903", + "ac39cd7b5d3d4d5d9428c175e48f95eb", + "905f066f87b647f597116a466d1e0bdc", + "d85cb5294f69414b96e7673888a6148e", + "fbe94bfbdd6549279c9e049369187f58", + "577446816ec8476488cbb87c594368fc", + "f64e1308bf374a12b0dfc8944be5d681", + "a03fc6763a174e72bf86c29ea526f86c", + "339380ad88054628a39bdd8546a89c12", + "d117631207134a708fa82869120b3bd0", + "959dd96d24424176b5ca2f797d31d1c8", + "3f46aa8f44d04fc99398698395813b85", + "87e264b576904567a8c81c555f4c7a18", + "4020ba7308b640a1b44f77312335eb82", + "d16e5742d98641b8996ff8ab05656407", + "6429588f3bf64e3b93b30e1bc91dfd73", + "08eef7c942284bac80fa5777eb8472c5", + "28b9016d032e4f539c41c5868c27e240", + "a066dadcf01c4ccf8ce5a9d321023ac4", + "c18ec4cf13df42e29b8e7dfce38b90e4", + "2c95f5e958864a13a209df16238a86cf", + "60164baff475471ea736eb4937b2495c", + "82c8c2d5246d4495b486eb29c86d30ec", + "3eb88d152aee4b48a52a4fe83bd3d90f", + "7acf70ad96c54e2f93436b0fd9a737bc", + "39d1228ff9034ff6b4d24e91ad89ecd2", + "e8cbe9413f5144429af39db8de504b1a", + "828a8aa5f45843c1a934ea0855fb0833", + "ca1923f5882f41cf9cdd9e03fc73a2a6", + "9f2230b8fd8948ba9fcaf4606ecb6d67", + "0dc979a6847946bebfc9a51e2ed556b8", + "f6ed9fb9452544649b300e6e6a1036b8", + "a9283e6ab25b4fbfa91debb44aef160b", + "ee543d392fbc4797b25521d95b114963", + "e3dff982e6b5447799b1fbd48c33b5f1", + "a4ec7a1577b1476f8177bdf56ea5370d", + "e4b03ce4c56049fdbe4c45e082a046a7", + "f93250a20f35446bba13bf79d6ae0791", + "a9bff6ee4a31496392eaaafaba46b3c9", + "d57cac5c01e643d79a8a505d7e124beb", + "758acba7b1aa44f8a760d0248e07b8f9", + "a912fa34318a4c8a85e45e3bfa33b5f9", + "6b971b373fb84caa9c355ae58fd2d178", + "fca696678a97472cbe2cbda527c8a7e4", + "74eed040b0624110a48b1cb46c124d68", + "ae25a42fe79b426bab94899b3089b59b", + "80497f7dd515449b989417bee32cf12b" + ] + }, + "id": "zkfsT6uq07TB", + "outputId": "676de93f-5a37-459a-c1dd-c5283cf0ba9b" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:datasets.builder:Setting num_proc from 8 back to 1 for the train split to disable multiprocessing as it only contains one shard.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading and preparing dataset generator/default to /root/.cache/huggingface/datasets/generator/default-c340e697ab6fb52e/0.0.0...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f24f39de5e8f4e218d3f0c414b731bf6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Generating train split: 0 examples [00:00, ? examples/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset generator downloaded and prepared to /root/.cache/huggingface/datasets/generator/default-c340e697ab6fb52e/0.0.0. Subsequent calls will reuse this data.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d85cb5294f69414b96e7673888a6148e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map: 0%| | 0/496 [00:00= 1.10." + "and an Nvidia Ampere GPU." + ), + ) + parser.add_argument( + "--dataset_name", + type=str, + default=None, + help=( + "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," + " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," + " or to a folder containing files that 🤗 Datasets can understand." + ), + ) + parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.") + parser.add_argument( + "--dataset_config_name", + type=str, + default=None, + help="The config of the Dataset, leave as None if there's only one config.", + ) + parser.add_argument( + "--train_data_dir", + type=str, + default=None, + help=( + "A folder containing the training dataset. By default it will use `load_dataset` method to load a custom dataset from the folder." + "Folder must contain a dataset script as described here https://huggingface.co/docs/datasets/dataset_script) ." + "If `--load_from_disk` flag is passed, it will use `load_from_disk` method instead. Ignored if `dataset_name` is specified." + ), + ) + parser.add_argument( + "--load_from_disk", + action="store_true", + help=( + "If True, will load a dataset that was previously saved using `save_to_disk` from `--train_data_dir`" + "See more https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.load_from_disk" + ), + ) + parser.add_argument( + "--image_column", type=str, default="image", help="The column of the dataset containing the target image." + ) + parser.add_argument( + "--conditioning_image_column", + type=str, + default="conditioning_image", + help="The column of the dataset containing the controlnet conditioning image.", + ) + parser.add_argument( + "--caption_column", + type=str, + default="text", + help="The column of the dataset containing a caption or a list of captions.", + ) + parser.add_argument( + "--max_train_samples", + type=int, + default=None, + help=( + "For debugging purposes or quicker training, truncate the number of training examples to this " + "value if set. Needed if `streaming` is set to True." + ), + ) + parser.add_argument( + "--proportion_empty_prompts", + type=float, + default=0, + help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", + ) + parser.add_argument( + "--validation_prompt", + type=str, + default=None, + nargs="+", + help=( + "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." + " Provide either a matching number of `--validation_image`s, a single `--validation_image`" + " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." + ), + ) + parser.add_argument( + "--validation_image", + type=str, + default=None, + nargs="+", + help=( + "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" + " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" + " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" + " `--validation_image` that will be used with all `--validation_prompt`s." + ), + ) + parser.add_argument( + "--validation_steps", + type=int, + default=100, + help=( + "Run validation every X steps. Validation consists of running the prompt" + " `args.validation_prompt` and logging the images." + ), + ) + parser.add_argument("--wandb_entity", type=str, default=None, help=("The wandb entity to use (for teams).")) + parser.add_argument( + "--tracker_project_name", + type=str, + default="train_controlnet_flax", + help=("The `project` argument passed to wandb"), + ) + parser.add_argument( + "--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over" + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + + args = parser.parse_args() + args.output_dir = args.output_dir.replace("{timestamp}", time.strftime("%Y%m%d_%H%M%S")) + + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + # Sanity checks + if args.dataset_name is None and args.train_data_dir is None: + raise ValueError("Need either a dataset name or a training folder.") + if args.dataset_name is not None and args.train_data_dir is not None: + raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") + + if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: + raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") + + if args.validation_prompt is not None and args.validation_image is None: + raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") + + if args.validation_prompt is None and args.validation_image is not None: + raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") + + if ( + args.validation_image is not None + and args.validation_prompt is not None + and len(args.validation_image) != 1 + and len(args.validation_prompt) != 1 + and len(args.validation_image) != len(args.validation_prompt) + ): + raise ValueError( + "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," + " or the same number of `--validation_prompt`s and `--validation_image`s" + ) + + # This idea comes from + # https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370 + if args.streaming and args.max_train_samples is None: + raise ValueError("You must specify `max_train_samples` when using dataset streaming.") + + return args + + +def make_train_dataset(args, tokenizer, batch_size=None): + # Get the datasets: you can either provide your own training and evaluation files (see below) + # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). + + # In distributed training, the load_dataset function guarantees that only one local process can concurrently + # download the dataset. + if args.dataset_name is not None: + # Downloading and loading a dataset from the hub. + dataset = load_dataset( + args.dataset_name, + args.dataset_config_name, + cache_dir=args.cache_dir, + streaming=args.streaming, + ) + else: + if args.train_data_dir is not None: + if args.load_from_disk: + dataset = load_from_disk( + args.train_data_dir, + ) + else: + dataset = load_dataset( + args.train_data_dir, + cache_dir=args.cache_dir, + ) + # See more about loading custom images at + # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script + + # Preprocessing the datasets. + # We need to tokenize inputs and targets. + if isinstance(dataset["train"], IterableDataset): + column_names = next(iter(dataset["train"])).keys() + else: + column_names = dataset["train"].column_names + + # 6. Get the column names for input/target. + if args.image_column is None: + image_column = column_names[0] + logger.info(f"image column defaulting to {image_column}") + else: + image_column = args.image_column + if image_column not in column_names: + raise ValueError( + f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" + ) + + if args.caption_column is None: + caption_column = column_names[1] + logger.info(f"caption column defaulting to {caption_column}") + else: + caption_column = args.caption_column + if caption_column not in column_names: + raise ValueError( + f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" + ) + + if args.conditioning_image_column is None: + conditioning_image_column = column_names[2] + logger.info(f"conditioning image column defaulting to {caption_column}") + else: + conditioning_image_column = args.conditioning_image_column + if conditioning_image_column not in column_names: + raise ValueError( + f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" + ) + + def tokenize_captions(examples, is_train=True): + captions = [] + for caption in examples[caption_column]: + if random.random() < args.proportion_empty_prompts: + captions.append("") + elif isinstance(caption, str): + captions.append(caption) + elif isinstance(caption, (list, np.ndarray)): + # take a random caption if there are multiple + captions.append(random.choice(caption) if is_train else caption[0]) + else: + raise ValueError( + f"Caption column `{caption_column}` should contain either strings or lists of strings." + ) + inputs = tokenizer( + captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" + ) + return inputs.input_ids + + image_transforms = transforms.Compose( + [ + transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(args.resolution), + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + conditioning_image_transforms = transforms.Compose( + [ + transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(args.resolution), + transforms.ToTensor(), + ] + ) + + def preprocess_train(examples): + images = [image.convert("RGB") for image in examples[image_column]] + images = [image_transforms(image) for image in images] + + conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]] + conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] + + examples["pixel_values"] = images + examples["conditioning_pixel_values"] = conditioning_images + examples["input_ids"] = tokenize_captions(examples) + + return examples + + if jax.process_index() == 0: + if args.max_train_samples is not None: + if args.streaming: + dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples) + else: + dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) + # Set the training transforms + if args.streaming: + train_dataset = dataset["train"].map( + preprocess_train, + batched=True, + batch_size=batch_size, + remove_columns=list(dataset["train"].features.keys()), + ) + else: + train_dataset = dataset["train"].with_transform(preprocess_train) + + return train_dataset + + +def collate_fn(examples): + pixel_values = torch.stack([example["pixel_values"] for example in examples]) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + + conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) + conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() + + input_ids = torch.stack([example["input_ids"] for example in examples]) + + batch = { + "pixel_values": pixel_values, + "conditioning_pixel_values": conditioning_pixel_values, + "input_ids": input_ids, + } + batch = {k: v.numpy() for k, v in batch.items()} + return batch + + +def get_params_to_save(params): + return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) + + +def main(): + args = parse_args() + + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + # Setup logging, we only want one process per machine to log things on the screen. + logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) + if jax.process_index() == 0: + transformers.utils.logging.set_verbosity_info() + else: + transformers.utils.logging.set_verbosity_error() + + # wandb init + if jax.process_index() == 0 and args.report_to == "wandb": + wandb.init( + entity=args.wandb_entity, + project=args.tracker_project_name, + job_type="train", + config=args, + ) + + if args.seed is not None: + set_seed(args.seed) + + rng = jax.random.PRNGKey(0) + + # Handle the repository creation + if jax.process_index() == 0: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + if args.push_to_hub: + repo_id = create_repo( + repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token + ).repo_id + + # Load the tokenizer and add the placeholder token as a additional special token + if args.tokenizer_name: + tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) + elif args.pretrained_model_name_or_path: + tokenizer = CLIPTokenizer.from_pretrained( + args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision + ) + else: + raise NotImplementedError("No tokenizer specified!") + + # Get the datasets: you can either provide your own training and evaluation files (see below) + total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps + train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size) + + train_dataloader = torch.utils.data.DataLoader( + train_dataset, + shuffle=not args.streaming, + collate_fn=collate_fn, + batch_size=total_train_batch_size, + num_workers=args.dataloader_num_workers, + drop_last=True, + ) + + weight_dtype = jnp.float32 + if args.mixed_precision == "fp16": + weight_dtype = jnp.float16 + elif args.mixed_precision == "bf16": + weight_dtype = jnp.bfloat16 + + # Load models and create wrapper for stable diffusion + text_encoder = FlaxCLIPTextModel.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="text_encoder", + dtype=weight_dtype, + revision=args.revision, + from_pt=args.from_pt, + ) + vae, vae_params = FlaxAutoencoderKL.from_pretrained( + args.pretrained_model_name_or_path, + revision=args.revision, + subfolder="vae", + dtype=weight_dtype, + from_pt=args.from_pt, + ) + unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="unet", + dtype=weight_dtype, + revision=args.revision, + from_pt=args.from_pt, + ) + + if args.controlnet_model_name_or_path: + logger.info("Loading existing controlnet weights") + controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( + args.controlnet_model_name_or_path, + revision=args.controlnet_revision, + from_pt=args.controlnet_from_pt, + dtype=jnp.float32, + ) + else: + logger.info("Initializing controlnet weights from unet") + rng, rng_params = jax.random.split(rng) + + controlnet = FlaxControlNetModel( + in_channels=unet.config.in_channels, + down_block_types=unet.config.down_block_types, + only_cross_attention=unet.config.only_cross_attention, + block_out_channels=unet.config.block_out_channels, + layers_per_block=unet.config.layers_per_block, + attention_head_dim=unet.config.attention_head_dim, + cross_attention_dim=unet.config.cross_attention_dim, + use_linear_projection=unet.config.use_linear_projection, + flip_sin_to_cos=unet.config.flip_sin_to_cos, + freq_shift=unet.config.freq_shift, + ) + controlnet_params = controlnet.init_weights(rng=rng_params) + controlnet_params = unfreeze(controlnet_params) + for key in [ + "conv_in", + "time_embedding", + "down_blocks_0", + "down_blocks_1", + "down_blocks_2", + "down_blocks_3", + "mid_block", + ]: + controlnet_params[key] = unet_params[key] + + pipeline, pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained( + args.pretrained_model_name_or_path, + tokenizer=tokenizer, + controlnet=controlnet, + safety_checker=None, + dtype=weight_dtype, + revision=args.revision, + from_pt=args.from_pt, + ) + pipeline_params = jax_utils.replicate(pipeline_params) + + # Optimization + if args.scale_lr: + args.learning_rate = args.learning_rate * total_train_batch_size + + constant_scheduler = optax.constant_schedule(args.learning_rate) + + adamw = optax.adamw( + learning_rate=constant_scheduler, + b1=args.adam_beta1, + b2=args.adam_beta2, + eps=args.adam_epsilon, + weight_decay=args.adam_weight_decay, + ) + + optimizer = optax.chain( + optax.clip_by_global_norm(args.max_grad_norm), + adamw, + ) + + state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer) + + noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained( + args.pretrained_model_name_or_path, subfolder="scheduler" + ) + + # Initialize our training + validation_rng, train_rngs = jax.random.split(rng) + train_rngs = jax.random.split(train_rngs, jax.local_device_count()) + + def compute_snr(timesteps): + """ + Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 + """ + alphas_cumprod = noise_scheduler_state.common.alphas_cumprod + sqrt_alphas_cumprod = alphas_cumprod**0.5 + sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 + + alpha = sqrt_alphas_cumprod[timesteps] + sigma = sqrt_one_minus_alphas_cumprod[timesteps] + # Compute SNR. + snr = (alpha / sigma) ** 2 + return snr + + def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng): + # reshape batch, add grad_step_dim if gradient_accumulation_steps > 1 + if args.gradient_accumulation_steps > 1: + grad_steps = args.gradient_accumulation_steps + batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch) + + def compute_loss(params, minibatch, sample_rng): + # Convert images to latent space + vae_outputs = vae.apply( + {"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode + ) + latents = vae_outputs.latent_dist.sample(sample_rng) + # (NHWC) -> (NCHW) + latents = jnp.transpose(latents, (0, 3, 1, 2)) + latents = latents * vae.config.scaling_factor + + # Sample noise that we'll add to the latents + noise_rng, timestep_rng = jax.random.split(sample_rng) + noise = jax.random.normal(noise_rng, latents.shape) + # Sample a random timestep for each image + bsz = latents.shape[0] + timesteps = jax.random.randint( + timestep_rng, + (bsz,), + 0, + noise_scheduler.config.num_train_timesteps, + ) + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) + + # Get the text embedding for conditioning + encoder_hidden_states = text_encoder( + minibatch["input_ids"], + params=text_encoder_params, + train=False, + )[0] + + controlnet_cond = minibatch["conditioning_pixel_values"] + + # Predict the noise residual and compute loss + down_block_res_samples, mid_block_res_sample = controlnet.apply( + {"params": params}, + noisy_latents, + timesteps, + encoder_hidden_states, + controlnet_cond, + train=True, + return_dict=False, + ) + + model_pred = unet.apply( + {"params": unet_params}, + noisy_latents, + timesteps, + encoder_hidden_states, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + ).sample + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + loss = (target - model_pred) ** 2 + + if args.snr_gamma is not None: + snr = jnp.array(compute_snr(timesteps)) + snr_loss_weights = jnp.where(snr < args.snr_gamma, snr, jnp.ones_like(snr) * args.snr_gamma) / snr + loss = loss * snr_loss_weights + + loss = loss.mean() + + return loss + + grad_fn = jax.value_and_grad(compute_loss) + + # get a minibatch (one gradient accumulation slice) + def get_minibatch(batch, grad_idx): + return jax.tree_util.tree_map( + lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False), + batch, + ) + + def loss_and_grad(grad_idx, train_rng): + # create minibatch for the grad step + minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch + sample_rng, train_rng = jax.random.split(train_rng, 2) + loss, grad = grad_fn(state.params, minibatch, sample_rng) + return loss, grad, train_rng + + if args.gradient_accumulation_steps == 1: + loss, grad, new_train_rng = loss_and_grad(None, train_rng) + else: + init_loss_grad_rng = ( + 0.0, # initial value for cumul_loss + jax.tree_map(jnp.zeros_like, state.params), # initial value for cumul_grad + train_rng, # initial value for train_rng + ) + + def cumul_grad_step(grad_idx, loss_grad_rng): + cumul_loss, cumul_grad, train_rng = loss_grad_rng + loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng) + cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad)) + return cumul_loss, cumul_grad, new_train_rng + + loss, grad, new_train_rng = jax.lax.fori_loop( + 0, + args.gradient_accumulation_steps, + cumul_grad_step, + init_loss_grad_rng, + ) + loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad)) + + grad = jax.lax.pmean(grad, "batch") + + new_state = state.apply_gradients(grads=grad) + + metrics = {"loss": loss} + metrics = jax.lax.pmean(metrics, axis_name="batch") + + def l2(xs): + return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)])) + + metrics["l2_grads"] = l2(jax.tree_util.tree_leaves(grad)) + + return new_state, metrics, new_train_rng + + # Create parallel version of the train step + p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) + + # Replicate the train state on each device + state = jax_utils.replicate(state) + unet_params = jax_utils.replicate(unet_params) + text_encoder_params = jax_utils.replicate(text_encoder.params) + vae_params = jax_utils.replicate(vae_params) + + # Train! + if args.streaming: + dataset_length = args.max_train_samples + else: + dataset_length = len(train_dataloader) + num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps) + + # Scheduler and math around the number of training steps. + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + logger.info("***** Running training *****") + logger.info(f" Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") + logger.info(f" Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}") + + if jax.process_index() == 0 and args.report_to == "wandb": + wandb.define_metric("*", step_metric="train/step") + wandb.define_metric("train/step", step_metric="walltime") + wandb.config.update( + { + "num_train_examples": args.max_train_samples if args.streaming else len(train_dataset), + "total_train_batch_size": total_train_batch_size, + "total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch, + "num_devices": jax.device_count(), + "controlnet_params": sum(np.prod(x.shape) for x in jax.tree_util.tree_leaves(state.params)), + } + ) + + global_step = step0 = 0 + epochs = tqdm( + range(args.num_train_epochs), + desc="Epoch ... ", + position=0, + disable=jax.process_index() > 0, + ) + if args.profile_memory: + jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_initial.prof")) + t00 = t0 = time.monotonic() + for epoch in epochs: + # ======================== Training ================================ + + train_metrics = [] + train_metric = None + + steps_per_epoch = ( + args.max_train_samples // total_train_batch_size + if args.streaming or args.max_train_samples + else len(train_dataset) // total_train_batch_size + ) + train_step_progress_bar = tqdm( + total=steps_per_epoch, + desc="Training...", + position=1, + leave=False, + disable=jax.process_index() > 0, + ) + # train + for batch in train_dataloader: + if args.profile_steps and global_step == 1: + train_metric["loss"].block_until_ready() + jax.profiler.start_trace(args.output_dir) + if args.profile_steps and global_step == 1 + args.profile_steps: + train_metric["loss"].block_until_ready() + jax.profiler.stop_trace() + + batch = shard(batch) + with jax.profiler.StepTraceAnnotation("train", step_num=global_step): + state, train_metric, train_rngs = p_train_step( + state, unet_params, text_encoder_params, vae_params, batch, train_rngs + ) + train_metrics.append(train_metric) + + train_step_progress_bar.update(1) + + global_step += 1 + if global_step >= args.max_train_steps: + break + + if ( + args.validation_prompt is not None + and global_step % args.validation_steps == 0 + and jax.process_index() == 0 + ): + _ = log_validation(pipeline, pipeline_params, state.params, tokenizer, args, validation_rng, weight_dtype) + + if global_step % args.logging_steps == 0 and jax.process_index() == 0: + if args.report_to == "wandb": + train_metrics = jax_utils.unreplicate(train_metrics) + train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics) + wandb.log( + { + "walltime": time.monotonic() - t00, + "train/step": global_step, + "train/epoch": global_step / dataset_length, + "train/steps_per_sec": (global_step - step0) / (time.monotonic() - t0), + **{f"train/{k}": v for k, v in train_metrics.items()}, + } + ) + t0, step0 = time.monotonic(), global_step + train_metrics = [] + if global_step % args.checkpointing_steps == 0 and jax.process_index() == 0: + controlnet.save_pretrained( + f"{args.output_dir}/{global_step}", + params=get_params_to_save(state.params), + ) + + train_metric = jax_utils.unreplicate(train_metric) + train_step_progress_bar.close() + epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") + + # Final validation & store model. + if jax.process_index() == 0: + if args.validation_prompt is not None: + if args.profile_validation: + jax.profiler.start_trace(args.output_dir) + image_logs = log_validation(pipeline, pipeline_params, state.params, tokenizer, args, validation_rng, weight_dtype) + if args.profile_validation: + jax.profiler.stop_trace() + else: + image_logs = None + + controlnet.save_pretrained( + args.output_dir, + params=get_params_to_save(state.params), + ) + + if args.push_to_hub: + save_model_card( + repo_id, + image_logs=image_logs, + base_model=args.pretrained_model_name_or_path, + repo_folder=args.output_dir, + ) + upload_folder( + repo_id=repo_id, + folder_path=args.output_dir, + commit_message="End of training", + ignore_patterns=["step_*", "epoch_*"], + ) + + if args.profile_memory: + jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_final.prof")) + logger.info("Finished training.") + + +if __name__ == "__main__": + main() diff --git a/keras-dreambooth-sprint/Dreambooth_on_Hub.ipynb b/keras-dreambooth-sprint/Dreambooth_on_Hub.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..81ecad92be009b319d8525808cf92c04fad6e4c7 --- /dev/null +++ b/keras-dreambooth-sprint/Dreambooth_on_Hub.ipynb @@ -0,0 +1,6884 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Introduction\n", + "\n", + "In this example, we'll implement DreamBooth, a fine-tuning technique to teach new visual concepts to text-conditioned Diffusion models with just 3 - 5 images. DreamBooth was proposed in [DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation](https://arxiv.org/abs/2208.12242) by Ruiz et al. \n", + "\n", + "DreamBooth, in a sense, is similar to the [traditional way of fine-tuning a text-conditioned Diffusion model except](https://keras.io/examples/generative/finetune_stable_diffusion/) for a few gotchas. This example assumes that you have basic familiarity with Diffusion models and how to fine-tune them. Here are some reference examples that might help you to get familiarized quickly:\n", + "\n", + "* [High-performance image generation using Stable Diffusion in KerasCV](https://keras.io/guides/keras_cv/generate_images_with_stable_diffusion/)\n", + "* [Teach StableDiffusion new concepts via Textual Inversion](https://keras.io/examples/generative/fine_tune_via_textual_inversion/)\n", + "* [Fine-tuning Stable Diffusion](https://keras.io/examples/generative/finetune_stable_diffusion/)\n", + "\n", + "First, let's install the latest versions of KerasCV and TensorFlow. \n" + ], + "metadata": { + "id": "CxCo2Sx5oYP5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GrRLwS-IPzGi", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2b332694-23db-4ae6-da2f-a80e93ad4cb8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m615.8/615.8 KB\u001b[0m \u001b[31m28.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m588.3/588.3 MB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m439.2/439.2 KB\u001b[0m \u001b[31m43.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m82.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.0/6.0 MB\u001b[0m \u001b[31m121.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h" + ] + } + ], + "source": [ + "!pip install -q -U keras_cv\n", + "!pip install -q -U tensorflow " + ] + }, + { + "cell_type": "markdown", + "source": [ + "If you're running the code, please ensure you're using a GPU with at least 24 GBs of VRAM. " + ], + "metadata": { + "id": "bEI1BW12qKil" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Initial imports" + ], + "metadata": { + "id": "GhufITnU5N3D" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zt50YWhpP3QP", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c295c635-d94d-4b4d-b9aa-043865dc0ec9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "You do not have Waymo Open Dataset installed, so KerasCV Waymo metrics are not available.\n" + ] + } + ], + "source": [ + "import tensorflow as tf \n", + "\n", + "from keras_cv.models.stable_diffusion.clip_tokenizer import SimpleTokenizer\n", + "from keras_cv.models.stable_diffusion.diffusion_model import DiffusionModel\n", + "from keras_cv.models.stable_diffusion.image_encoder import ImageEncoder\n", + "from keras_cv.models.stable_diffusion.noise_scheduler import NoiseScheduler\n", + "from keras_cv.models.stable_diffusion.text_encoder import TextEncoder" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Usage od DreamBooth\n", + "\n", + "... is very versatile. By teaching Stable Diffusion about your favorite visual concepts, you can \n", + "\n", + "* Recontextualize objects in interesting ways:\n", + "\n", + " ![](https://i.imgur.com/4Da9ozw.png)\n", + "\n", + "* Generate artistic renderings of the underlying visual concept: \n", + "\n", + " ![](https://i.imgur.com/nI2N8bI.png)\n", + "\n", + "\n", + "And many other applications. We welcome you to check out the original DreamBooth paper in [this regard](https://arxiv.org/abs/2208.12242). " + ], + "metadata": { + "id": "JZjE4Ri7jhVW" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Download the instance and class images\n", + "\n", + "DreamBooth uses a technique called \"prior preservation\" to meaningfully guide the training procedure such that the fine-tuned models can still preserve some of the prior semantics of the visual concept you're introducing. To know more about the idea of \"prior preservation\" refer to [this document](https://dreambooth.github.io/).\n", + "\n", + "Here, we need to introduce a few key terms specific to DreamBooth:\n", + "\n", + "* **Unique class**: Examples include \"dog\", \"person\", etc. In this example, we use \"dog\". \n", + "* **Unique identifier**: A unique identifier that is prepended to the unique class while forming the \"instance prompts\". In this example, we use \"sks\" as this unique identifier. \n", + "* **Instance prompt**: Denotes a prompt that best describes the \"instance images\". An example prompt could be - \"f\"a photo of {unique_id} {unique_class}\". So, for our example, this becomes - \"a photo of sks dog\".\n", + "* **Class prompt**: Denotes a prompt without the unique identifier. This prompt is used for generating \"class images\" for prior preservation. For our example, this prompt is - \"a photo of dog\".\n", + "* **Instance images**: Denote the images that represent the visual concept you're trying to teach aka the \"instance prompt\". This number is typically just 3 - 5. We typically gather these images ourselves. \n", + "* **Class images**: Denote the images generated using the \"class prompt\" for using prior preservation in DreamBooth training. We leverage the pre-trained model before fine-tuning it to generate these class images. Typically, 200 - 300 class images are enough.\n", + "\n", + "In code, this generation process looks quite simply:\n", + "\n", + "```py\n", + "from tqdm import tqdm\n", + "import numpy as np \n", + "import hashlib\n", + "import keras_cv\n", + "import PIL \n", + "import os\n", + "\n", + "class_images_dir = \"class-images\"\n", + "os.makedirs(class_images_dir, exist_ok=True)\n", + "\n", + "model = keras_cv.models.StableDiffusion(img_width=512, img_height=512, jit_compile=True)\n", + "\n", + "class_prompt = \"a photo of dog\"\n", + "num_imgs_to_generate = 200 \n", + "for i in tqdm(range(num_imgs_to_generate)):\n", + " images = model.text_to_image(\n", + " class_prompt,\n", + " batch_size=3,\n", + " )\n", + " idx = np.random.choice(len(images))\n", + " selected_image = PIL.Image.fromarray(images[idx])\n", + " \n", + " hash_image = hashlib.sha1(selected_image.tobytes()).hexdigest()\n", + " image_filename = os.path.join(class_images_dir, f\"{hash_image}.jpg\")\n", + " selected_image.save(image_filename)\n", + "```\n", + "\n", + "To keep the runtime of this example short, the authors of this example have gone ahead and generated some class images using [this notebook](https://colab.research.google.com/gist/sayakpaul/6b5de345d29cf5860f84b6d04d958692/generate_class_priors.ipynb). \n", + "\n", + "**Note** that prior preservation is an optional technique used in DreamBooth, but it almost always helps in improving the quality of the generated images. " + ], + "metadata": { + "id": "Lj12_v-W5P29" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dTSJSBHva3FE", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4f99da07-475f-44de-9fc9-3b5d6b03b2f9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/instance-images.tar.gz\n", + "5556967/5556967 [==============================] - 1s 0us/step\n", + "Downloading data from https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/class-images.tar.gz\n", + "9093120/9093120 [==============================] - 1s 0us/step\n" + ] + } + ], + "source": [ + "instance_images_root = tf.keras.utils.get_file(\n", + " origin=\"https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/instance-images.tar.gz\",\n", + " untar=True\n", + ")\n", + "class_images_root = tf.keras.utils.get_file(\n", + " origin=\"https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/class-images.tar.gz\",\n", + " untar=True\n", + ")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Visualize images\n", + "\n", + "First, let's load the image paths. " + ], + "metadata": { + "id": "LO38MVgG5VgD" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LwL4KcZPSbpP", + "outputId": "b186c062-7168-416e-afe8-4dc7c0e64f2e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(['/root/.keras/datasets/instance-images/alvan-nee-Id1DBHv4fbg-unsplash.jpeg',\n", + " '/root/.keras/datasets/instance-images/alvan-nee-eoqnr8ikwFE-unsplash.jpeg',\n", + " '/root/.keras/datasets/instance-images/alvan-nee-bQaAJCbNq3g-unsplash.jpeg',\n", + " '/root/.keras/datasets/instance-images/alvan-nee-brFsZ7qszSY-unsplash.jpeg',\n", + " '/root/.keras/datasets/instance-images/alvan-nee-9M0tSjb-cpA-unsplash.jpeg'],\n", + " ['/root/.keras/datasets/class-images/9a2292f120100d6890d176dd24e80c91e947dce8.jpg',\n", + " '/root/.keras/datasets/class-images/fda86efe881d46063528e5d04cb4129ac3e0a8e9.jpg',\n", + " '/root/.keras/datasets/class-images/b2e9dc379f60c198bac758c9b7d3101fb8b585df.jpg',\n", + " '/root/.keras/datasets/class-images/95f289f89787fe6bb894519fa431e3ed31814e19.jpg',\n", + " '/root/.keras/datasets/class-images/17b9ea0913cabfcf11cf41363de0a21c36f2e170.jpg'])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "from imutils import paths\n", + "\n", + "instance_image_paths = list(paths.list_images(instance_images_root))\n", + "class_image_paths = list(paths.list_images(class_images_root))\n", + "\n", + "instance_image_paths, class_image_paths[:5]" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Then we load the images from the paths. " + ], + "metadata": { + "id": "gUA2XZlRuQIX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1jo5kgIaTAkP" + }, + "outputs": [], + "source": [ + "from PIL import Image\n", + "import numpy as np\n", + "\n", + "def load_images(image_paths):\n", + " images = [] \n", + " for path in image_paths:\n", + " image = Image.open(path)\n", + " images.append(np.array(image))\n", + " return images" + ] + }, + { + "cell_type": "markdown", + "source": [ + "And then we make use a utility function to plot the loaded images. " + ], + "metadata": { + "id": "Bm0FB93kuUnl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "_mavOcLhTKRP" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def plot_images(images, title=None):\n", + " plt.figure(figsize=(20, 20))\n", + " for i in range(len(images)):\n", + " ax = plt.subplot(1, len(images), i + 1)\n", + " if title is not None:\n", + " plt.title(title)\n", + " plt.imshow(images[i])\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Instance images**:" + ], + "metadata": { + "id": "NjD0kS-ttLnA" + } + }, + { + "cell_type": "code", + "source": [ + "plot_images(load_images(instance_image_paths[:5]))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 239 + }, + "id": "V-fwNGDPtNFD", + "outputId": "625a3a8b-9d66-4bef-e59d-c7f2a6cd2f45" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAADeCAYAAABlo+Z2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9SY8kS5Im9omqmpm75/KW6tddXb1NF9jomQGaAE8Efw9vJPg/eOaB4A8gwL/CCw/TQ04NpqrrVb19y5dLLL6YqQoPsqiYR+SrBgiwomdMgMyIcLdFVVR2FRElZsYGG2ywwQYbbLDBBhtssMEGG2ywwQZ/fEh/7AFssMEGG2ywwQYbbLDBBhtssMEGG2wgsAVqNthggw022GCDDTbYYIMNNthggw2eCGyBmg022GCDDTbYYIMNNthggw022GCDJwJboGaDDTbYYIMNNthggw022GCDDTbY4InAFqjZYIMNNthggw022GCDDTbYYIMNNngiUP7YA9hggw022GCDDTbYYIMNNtjgvzz45n/+77hxAxEBzAABYIAIABMYDEoAN/kKKYHB/RoQkAAGAUwggnxPBGpyujEnAhqDWC5HIn0Vg6H38PoeQK5DY9htIJLfST+wfzIcEKU+B+hzGGDSjxwIaPKDwTpm8vmhNfnMx0L+LBkDy3wIADGQM7g1ubIBXFnHywCzfJfIccaV5f0sz6ZC8i7WibDOmFnw0sLQG/v0mp0efXW947nJP9ZxEJE8j2U+VDqafH76nVynuCEgEaE1fTD166npLbQeJ/tcklwEBpCAxqiJQInAOaFSkiEwkJeKdF6AKmtIlHT9BXHcFO8QGjSa9EO09Z0EQjxY28dixBKJgoBf/u//YU0eClugZoMNNthggw022GCDDTbYYIP/34FR1YHX4ATU0YX5sYTWmsQciEDqwKecwKwOOCd3jhsYKUGCBggBEg26aHRHA0GQ59lYNIhDMXiQ6OEzoH63Bh/AACXygEUM/NhsJCSk0MxP1/vBMg4iDRJQuF+BADS9Fix1MRaosnFXDVIluT+OW2IVcWJ2L4Erd7xbwMejEPLMBAlUGN4skOK40/fJ14r51Nfw6vJV5Ip0DhL4aSAkpwXWK2RYGsRpssYMQiNbQwsE6dj8JRoUYQITcOKCVzTieAbeHBs4E0pO2E0JL54RXjwHhjpjur0gnRdQ0vFZ0CwJHmS+IVIXKNbezw/wrYEnljv50fBMhy1Qs8EGG2ywwQYbbLDBBhtssMEfF8yBZQ1+mMtvAQtmyc4gaJAmZi4wQEmvbZIdE4MBxEBGd7BZs3ASxBn3jIemGRpkOS5+DwMSIJFXyfsBUEog5h4kAQG5gGoVZ92fr8Em6sEJydawMVq2iIZNGss8U9LMH0/deRB08XkbLsBgHZcEqBRflpUSsmGIQiACFl/SazViwqSZS5p5o7lIEtixZ8AyhAy/Gmhp4bm8vgYAWquCQ81YkmCRjUvxTj0TB0YjvgKAkoNntCg5AVVec2wJv78DPnvX8N3bG9yfGUsFpkKYl4bDkLHfJ3zyswGffJjxyfMJH5SE4f4MowyyABhRyA5SPChOkqVbkQQQPSvJhqdIaXrfT8VqtkDNBhtssMEGG2ywwQb/WcPv/8f/2jwc/WS11w5mRkrhb6ydAncarkCcivV3ax+q7+z2z9fX27Xx8X10FJ4Rn+0eiWQckJYbBB9sNVq73HbgYTv+0WlKwQGLY77eFY7PtXIHTx5YTzv+adkQ7nSrA2zjVSfVdpqZZVefzQG/eq65zp43QCGDQp/nvpvOP0EcJNZMCne2rsZqDqP5zV7ZEb5TJPZrw3z6QGid2REzEB5HVXd4NUPhOgnhfX//oWt/+b/++z+wf/9HAhtkM+faoxaeVcLMFh/ptyiuiZIGR/QbDTLYegHwbBx5rPK2MQz7wvYABczZT0BtEpRRwvISLU0XsSAHM4BsAQrW0iSlUbveMipgQSj28XVGgDOTBKWCbGH0eRofJ3X3mwanFDeacgIvseEEJrkGDVoKZSMJUQ4Enrc5axZJzDTy4ITh1UWmzCwZerMG31pYEC0FkpI0DSD58pFFRTRQZDzHJigeykqjAyjuwaAmmUJzLvj6hvHr7xd8d9Pw6tiwNMalyvzeXRi7lHG/zHjZEhZuuLnNePsi4+/+5oCPpoz0473KJJZ4V4DOr11eelCP2fUDU1/rWI31E9J1C9RssMEGG2ywwQYbbPBfAMSd3FUYowcLAHHkHgQ6bOf86pEh7tET4EPavRvs9slqI9t2ZuHp+tfBILbeHX0KHlyw8XiGQIjU0IN3Ye0gBo/Xd7+5rfZ3fRd4FXi6el4zZ7k/r5mfFTHGQA+b6EfUSzNIHULfd3b8257zKiSjrpj9zf7hVZuTjveIQXt2CNLEYEcyx/PBvdAd9T5maz1BYfTdx12P4jrwck1P7qAqhCqbFdhzvTQmBItW6NDxpfjhEwReCGQBDm5a0pOk9wg6rzZmxz8Rgygpz0iEgDSixqnfQ8zgBCAlDYZYUFHxJlEAd/YFkgRtlSeRQ9+ZBHmXBnqa3WdBXl2TBAlCSNaEBG2Qmi4DgXLSXicswY0GCfJUj3aA0Zz29S6r4FkFPBMHOm6WLXQl3zTdhJAkYJBY5MUiOJEEJJYSsyAfOUQokwZLqAU5FHgShguW+VhfIPmHdVCip9bYzPxP40gCPHuJw81RLvkMGaCkY20AGqGB8OOF8Okrxn/8seLmVDFXxn1lTAkYMnBaGLUB961iXwh356Y4ZbzcZdwtCYfDiP3uAjpX9OXoQtFLxbTsStDVJ0NOGwh0Rn7Pw3K0Dj8ZqPn8f/oH9uKyoHTYQ0AmiamPGX3hACghwyNjNrhVCpD/YqlD+nwyQjOlwx6d8u9UsMu/cIhV1JwPEHAVCov3sXxn6VxrjRzFqzKtjbO/1LSt/ErScGitOTiMT8etdYBducvOgUxRla++zhaZg4Dx9+ncLKWvj4Ek4ul5YWtDwESCR3xZ7wu7Hp1vNaVvpf0dgXDiZUOFfHZqGTdzwusL4aYRzo2Q1EDJmbBLFT8vFR+VikIsQoy4p7ZZFJXZlimsh+IyMi0F+lspbXahfJ1GZx/Z0v/V//Lv1l9usMEGG2ywwQb/IsGsyetPzXEz20r6B/CDQMpDy8kcBlp/ao6g20T6Hohdss6m6bZW35nVZ6X4Hv2uQQwVN6+pOwatX2fzjeOyD3n1KbtpqH9dBU+C2R0eGJIerrApwxM/1+auJRvqUzCx9hpZP18c4O6qrRHOD1auB8Gin2BZO8HJJAYxqa9IHohbzTVMbO20q8+SruxMtUVnzrjngiMXNDV8Expe0oI9V3jM4MoVMX/JCIv6Ajg0jisfXB5DXFiEFj+y5zht0YP3PylgBi+K28aaCWID7kRCyfxA+Y/dZwsZFlnDUtZXBOu1XfltJNkyTOJMx2CX+xm0xh1p9g0DWsJEkhHiNKJcpNclcwlJg7bEPdAC9gCPZFh0X85LYggSRJGXh+WP8op9nJL5gk5T3FzugAFOXQoyAGTtDZSsR1DPBOnrQ+qPxSbBhOZI0u+SBZ/QM+IMI843+oE+yPsDEWnASvnB5Y2VwvUslThvckzpcxSHMyV8/qrh//mh4tUt425mVGYsDdglYMgJ58oYE4My4X5hXFrD85LQGuP2WHG/r3j37oIxFZScMFEN4ZB1FqEFbFfZeUpXLs4sIG4+fer3vg9+MlDDujAxmgeIsHOmN0Go6UYUYmFrTWOfmaqyP2OdoAYaKMFbYVN/ju8dUAiSNAsoRGUXtFDQMo+lN8q0jNAEY0JYUWCqwG/h+S6so/iM2k+VEPr7oUqKHaf92qiNnOAebAsoUatCNuHrKV6QSKkxTJT4nZiSfhee1ZcGtrtAYewEaDas/u1DIo8i94ZSIiCYAVTGuRJuW8E3x4Rvjox3x4pzBU5LQ2OgJEIpEpQqmfD7kfDzw4BfHhZ8MDTkRBpNZRcS1oAp5P/5PF0a0NXypCAAlCv6DlJvPgWCpBBypNINNthggw022OBfOvRNLrjJFksdrp3DGDixjUZSB+N9xnW0KbxJqDv/1w5zDzV0e6zbhP0d5Nf0F8Fttvi8OFfb7Q+m9PpSXr/bbMuwWe8Xx/f81CZwtzw976MHRjzSYP6CzcvsuW579aCE4sL8hRUC1T7ntV3XbXW5hvTkoDgp0hGyuShxfnanOdTujJGcGIOMu5bx5WXA90vGmxPj/tLQkFCSbDLuy4i/LjN+eZjxjBYkLc1heojLbtsjZEvxaiyIY9IbyddPHHL3zVY3OOKfLKyDlcl7dzg1UAMSS+kMQdfTXU/BLTenEMMLgzQ7Sp+UCEACtdaDHiUGRJRGiGB9aggxaBQiCBr8s4F0/938Q3afl4lAyRofB3pOYc2hJwhRAmVoORC8RMmDJBIOBFKWgI4Ta6B3IwOWd2sSkOKu+7CymW1zYI012elP8p0FrBm89o1sM7+Zvwtwa+4fsvJUH1bgP1ZcZh2U9bgRArhy4BSH4E786lL3xBCVoup/njjjV19X/Pr7BfcLY25A5YZdybifG6YiJVVTAjglnBfG80JglkSEZWkYxoS744I3r094+fwFOHW6lDCEyZ7gizIjUep0y/ATw4A4Xh+xf/4++GeVPvFVqqKjz5zikGJmaYwi/IxSQpaKS/fejdq7XltQYRVECEEMJaR1YMNqckmiVlcyXPSQBSuU6Jk8uNMfpdziEU2bk2W6+OvgwR2j+ivh7wyg7+47IiqEjOktLOl1kvJtUF2wel2PKmpo1r5XDvZrLINE6t+UeJjQj4szNRcDYh3nAHtqm4AoHFe26DV2PcJjA2RwlTS/y5Lw7Rn43Q3h9bHhfm6oTWRgBSMRcFHmSa2iMbArCcsC3J+AV/cJ//bDhL/YL0j2/lUL9iuipoA7FZBMDOLemApBdgKys5K8aVl4TNzN2WCDDTbYYIMN/rMBsyujf9MTE94XgOk2Ug+mPAQPePS4A1YOh+8IBX/QO2/wyuaj8Lx+/9WY/VQWOba2O7usbR8oJqbDjFN3XaPNTBEra7xcz7fxAyvMnwFz9rhf1E35/lBqWK3BGo9rnJFm36xKpfS6Fm6+npM/381UXmUCRXMvWUlT9CUB7b8hi9qQcIMJvz8XfH3HuDkzLsuCWZ2x2oCcxK4+JeC+ZHx2Kfg3uzN+ub94sMbGbk6tx1f0v4SeTRNxwub4muHqG6sdV5aR3zGgQYmeiv7kYF0FAGiE42oBafVniFBouU5SXwfil1LgZ1tsK+tRvvDAgAVosj4yEdBS98iyDUd9ufRgcUDWgBg9QCklRd3fZLvW/VLNQoHSfDYfjpwupOiDAS+j0ioMSzJglrIugjcJvmJrP+Kb7T3c3A0N3ZO630o2X6M37cuiGW/rE41Y/GpGz4RqnTbB5u9fyVa7NdmY9MMgi6FBIvnY+vt0v3sdBBK0/HCX8KvvZvzmhwoGMA0J59rw4b6gNcZQMsCM2ggpAfeXhjH3LLxaGTkR5pnxtlU832eAGJc0YsQpxCb0vVfBoyj3es7JlVyF4hS9hPV98JOBmt69uS+YRwEsMAOLgPXB9Iokm4g+L3Kh1sJp+M5DNNZ0ye4TIookp8EIe3PnU8GIX0YqV2P3ayFW8mquHvDwGuDu6feJY41kI0odjAgCU7ba9OxhdCziztBHCJJCCbG/VFLRJMuHVCjLAvf6TC/BIr3XiT0gxiLDugY90qdakowJJJoIbUjHqa8wAeHYORmLMTAB4MpoDJwX4Jt5xBfvGn44MubKWFp/a2Vp1keJMGRJQ2sMDJl8/S8VeH1s+PeVUH424M8OM5KnMLKuawgemdJfrY8JfqPVBs8W0is9wgxbFtt1UZp41Ap5GvC7/+EfVN6b4AZ6EM6EnqUiUo+ScxDJYTlXm08PQDGieLYq14ecGWQT93JdlwtAP9bv6ukpGpMA1tKcVuvc1z5klwVF7MmRUTFezdHXvU9vZdwh1Ca7jIDtNjyCHWVtN+gQ0jkNH6nLLZd3YRFcvVLYgVB7wAoafS2uURTGaMqOiHqjuCjXTLzZ2qcuPm1GvqPqI9a5mbJtFuB9P0T9YfIWFHYNwwMebVQZkEBer+1Ywt/+b//4hDl0gw02eGpgmQurqgr93Ixv2xQz+RydGIdrvQI1w8zGcPmpVpc50yJIV7qGXV7re01MJ7N1Hhdzq/ealgpKjk2hrhwJ8kDHSvebHUHojp6/ttuAD0rFCX0urrvhfSk4dTuhI8xKkPiBHjNM93Ig0759Y9fdD8uQCbagWsSP6qWuzyjodaxcmogqs1tAmojNhBMN+L5N+O0N4dX9gsss77zUhsrAOCS3G6YxuX/96q7i/zoXvEyMT3az492bsAa7VD5TrOl30fQG1jYI60ak44fEN+iONIIJHNo8PDGQTAzJbuq9c4Ptoj/NCZYTmvrfklmijG1BlUay12ybz7aZD8t4aB1BVoJCnZqEDjzlxX0vwMaY5HoN8kjGDHf5YE1ynShDNYUKnetjwcl4p0diNevELgKEMlNvUCsEIF/rEdxi0zX9m5UEQhkcMkgDeF5WFeRaDKxICEomrTGejmuZTA/umJ/qEeswNvuP2Xv+iE+eOk8GAzE2M44yIfoRIkNkfWslfHsD/NPrhm9uAUoJuyzPPAwJL3cZP95XHErC/dIwliQtgTQ4NxCh1ooLSaD0uDB+Nghh3J4ZLw4JjVJvQN7c2+j+QiJwjcpF5Zf1DSLtfxVNczzQMCv46YwagtaadcfHjXZf2dQlm9KULXhskMPVzkZnWWCC1CPq4icNntixaWbQ99AT+wJ6rxUvqYpEbAQRGMKwqD1yokBzAnuAJmXUqC9c25AzEOs7XT16WZNkq3TBSP7c67GuPBdnlD72VexlxUgNoOxKTE0CFTZKHFHouOaNjNDfZQYDYDg2+UQ+nOuaa25Aa5JB89Up4cs74Idjw7kyGrOkgGqQJGdgmDJqlYDNNMpDL4soopKA+wsjJ2DRfk1fnho+ngijN7qiaMusnT105RtrnwGWlElT1KulFs3sSi0o6Z/0Qp8IrAwOVfqRJp1+0YVevD7yyBUnBeifqgkHgLuQCTizd6VY7cjOKT/9dHteJPYQfEIY/3U/gD5/9HV3Bc/hSu7frawdpQvuqdNw3FJQ2oEX0YtCGWaU2jx4hUsPtCr/eO+ksC1JcY4kyqePK842KK+AJ2a4HR1LLmMWnAW2RL72dSQiz8Dzsk8E1IFEF+gcY83tOoVb8B1Xm+J3fn0PVr2XNELAfJVN9y+ALzfYYIOnB9HGsd9oJetiOTh1cWv2FNbaMGbfuGO5grUhEfyObqDr+9YBHhsEPbz3Skk/PGkqGOJXQZ6VvWAjY4BihvkDK6ArqB6w6Xq690qE6k+4PWr2Qs+Cob4pFnDgDww2m+lyq8wgv2s9LHGQwvxt2h7kkYdYyUa0HaOjZGNYlagRwI2xIOM73uHLU8E3twtqa6iNkRJjrsBuzAARLnPDOBDmypjnhqkQKjNKlmd+Wwd81CpK0u0uo71gt/U1gU/M5hd17QOrxhyVgA/YPCAZ5g+I5wkB9eIAP+UHUNvEs2As04PEbofSJAl3Nq5IlICW1RDVNQQHetDT0fQvs/UAIEbEiKC9W4y+O+2CALaSHYae8tQ6LbkQCe/VYJEForoPqT628XvVRraUPDjCansxJFfKS2cSaZBF7a6km1rcPGhgJpYEqtQfrc3HZTLxqu9wl23U6a5XZtj0LNtFcCE2KLttS0RAXVvDHvxW5iML5lpplw3B5LGLsi5RJLDcVC4QGhrmJeHLd8Bv3zbcngkLAyUDuSTklDARAYmwH6V09cWUkYjQGjBXxpCAxg21JeyyVIHssmTXXGZNixky2piQz7ULDmfEXp1hdnIMoCXdHWhG27yW3Y9uVir8gR41loZpDkMUpBSQrG+1QakkZ6lzAQM4c8aPNePVJaF6iibA3PCsAB8Uxj4zDlwxAAA0EsgAMl8PDF6YGCPEUYb7pKOgk73sFYO6sFTKW4WulS1sZwMhGyBeQ/ZU9ufFY9hsQRkN9NharDxecsViFNoVeHgLAWxNkE2JafRYZ6xMZrPNsIwjEyRuB1hgzGruvDeRXGf12P5MXVuuwKUBb+aCX79hvDrLOBsBhynjvIjAyZSRBylByplwOlfsEmFpDeeZMRXxV+fGeDYlnJaGTIScJLPmbseYMiTYoq6xO77czSfBAa5bIsFW3owJJpYj25TJO92QYS4EC54urM04UwSxNXbHyz8bur21fr7bapZpZEEK35dY9y56j7P+vsE0Xl/NYD91wek0Bm1g49SXmuADuhKjQMdmUAYG6gEdVabNeLkPU77q9/X3B7w6X+qb7dkmFmm9UmJYcBBjPVBo+O9NsK9Xmf3/niIfdz87OgB4wFUUnX1Bq2f5703eF9fXJ+wGeLg1KJu4e7fqYH9NBx51vhaEAbN0pbDx8NL3q7QNNthgg8eBo6w3242xkp9dFbEGPa6DMXCBGtVWtNO6HegXIwrNmCXTTeaeeSOfX8l1Wr/H773Sqa7KrnRHt7nh43tgzur9Fjgyndt1Xf/ZUtdVffPTMnNI7XZ1QBnwHQdNM4kNWWGWnelMs5mJxTE1/ZLEPhXV3jeLIoJYnx11dZ9etCDMjg6TCzqSIWVOpzTi08uAz28J52XBZWGUDJSSMM+M3S4hZTkwZBzVcb00EBjVS15k9/7HJePcEkrmla/UbYioclcje8QKCGsWFy4Cm41gFz1dzekBEa/3itac+SbwwJ39BJHa/d1RRtNqBJt4sPV9EzcyT0Su3ceSVMBgCcS0bt9JW48WFkYHY49LeqQ0t755mMwW41Wms2dk2Hv1OdaeRo6k5z7MaEMpPhLLJiC5XEPvEhKnZ8FKlzVJX8TXzNAtTZuWdapm9rKmwMBuIyK81+xJAqNVy5zRtiFs3+tJXNyrHnw43NyGNZnVmYSAJmbrec747DXw6buG8yx0UDJhGhJ2JWNpRhjAi0l8evEdCcdLxTgkFJIEgSEz6sIYiCRTTuXctMtYiMApg1t13FyJlCCf2ek04tRatMRGyN7r5z3w06VPANz78k/YHRFpznpNEUo8Tf7NLeErOuDrM+HtXQUzY16knrDqz9aA5/uMw1hwyBmfpAUfTA0vBmDQujjKpBO0lL60Ig7PoLGFdq2mw7JoZlRygAYh2IUZ2TyNl4xbjNGNSqxciFY36nNdo/br9cjD3oDI3tSjo3KPRTr5yuElZ/R4uQim5koSHmRgx0XP6tFTlPrkQzmT/FvtJsDmbMaFDVGOMru9EH79jvDDDBwvEoSBNgcuQ0adGyhl7AthaZI1UxtjmuTaUhtKYRQCLnNFq4zz0jBkwqEQlsr44R64eQ583BdBpsYhNdGUkS1dVEpaHmbLzCrZLEhjz1mtru1uPGGlBiBSY2d8BH3N8Djm2ojU+1eCoZsCQUeuZDfjynD0b4SKu6EVFAX8sc4vjzW6dmUA5UkOhooFbBHHcjV0+9UCd27x9e97ymkXD2DLcrEhdb6xz5ydzGAku69PjpRNend/0X/X7+msv+bx8JEvoBvzYTogeiD4neZ9jp2mXbbpRAwdFYT7mvBmyXg3i97NxBgL4SVVfJQrxtxf4jIjKG7vXLYyDtlsHJgkXPHVtSHZ0SOjjynb9qWzfdCI73nOBhtssMF7QWW3yeBuK6ixjC6jVyVHrhew0oHhAnsQzKHoseprWbXS3Fc6tf8Rn9F/j+8J96r+X5VA6c1uol4NPD77Othu9q78bjZsmBvQd86DHeybIaY0KOzUe48L9OeZnWCbDi1kAqvyaBb4Ykb3eqnbKc1NwK7PqSerdnO461PHATEIUsrQCH3jmRk1ZXzXJnx6n/H9XUNlxjgm7Irs0jcQDin5hiQgh2MsS8NQElprWGbJvBmzGB3vZsa5EQ6xNjzaZIAGErpXENcmaMA+h/C5r3D0S2zdolP9FIEZXFvHS+O+66hEQc6HPYBHhF6qTjma/TLf1vQwEaNjw71tpOsNDHj9E8l9rHYfeam3GNXU+KpHTl83Z5DY44ZYG1ZTN8KUTqmy2risDYMB0qa1Qvc6pCSZRfZe61wBMDhrNKF2Y815ws92l7mbz7eSEZBTjgxf8grl/wp/J1lJjxCqxru7ke1lacF4M58gqTMi5MjeH4Gica9lYi7HkLCyxZt6zNzl6s0l4/evGV/eMd6eGYdBS6pYbMahJPDMHhxrAHY54zI3NGoohTAWwmVpyI1AuWHMGXyqvhl6d2p49/aMD3a7nmVlMrIzHYCeUWhy0HomrfQA42oz9jE90eGnM2r8t+YfuHtBmqGQNKTlHNUcSWcUfMYHfHUHHE8z7o8zSkmoKsBOl4aiBHl7x3h7MyMR4bMETJnwJwfCX+yAn00N+8JImZEytOZQnRwjJiL9O3RzMElu5UhOw5Lmb44XwRBrTNT02lhaFQTfyl2k/rvfb9+slbcwV++e1oVrgh2r7VHZIKxl7OoWtb4QRiTrecDf1+VIsC5YxsVkzcZsTv20KM+ispm5xSEZc6ea8fUd8E/vgDNLYGbaCVM0IpSckXNCoYRSMpbKKEVPzFsahkmE17Ik7HdAq00aELeKaRAFd1qkEd6uaPYOC6lZCUTvk4KwJtEQUUHKlkupTBSvsGhvWLfV8v5EhPOPDUH06k8V+ugBtS4wrMzFpmSUF2pJbZchAjn1rXFB1BuyAcEgjOuho6R+SyBNp9c+qCCM4xCc7ciH7SnRV4KNI8ddC71rGmH/LyivteAMs1iNB0DobcT+AYWgj7XGWgeYeipqt0axwq9n5UDX0gyslUJYG2w9s4bjp34Vk/BQBeFtG/DFXcK3J8KbU8NcycsUd4PI4jEP+JMp4++fLfj52FBSN44eLTmDKfWocFy6BKX/MFjY719h+QrrHX/+19NlzQ022OCJQizRcfPQTThyPdGD5H0HWh/gwRpymWs6qqf4RxEXdW8Mtjw0L0SxxUwWHUS3ZUGr967K0hFlc7f53m//dyt1FSwwc2gVleq2QLdKTVkz4pzWr2vo3VltXutsbylL574nrKprpeNM5lv5jikWfQ6Zww3tPhKazooZY/agjSRqVy1bprmXCEgAACAASURBVL5peioTvl0G/OYdcGFgnLLbF0gJw5jBDCyNMe2kQek0DUjq8C+XBfNlBjcgZxYHW8e8gFZ61DdmaJ291DcM19dlknKqhysZ9GycYyeRhw32nhLYlLQ/i2TEyBdm73Hq1zI3IEsGP+l9bmPBsmwYxOq4G09QsFfY+DmBcvKGuwCcyVmPsaWUgkGaut9ACKVZ3e5ZIZ7JezZZ816XRdm4KsiYaj1TzTGhnjSgPWzkGOzmPz3IpO8mlqhon2swRnv01hHqJz2lJGzb0BssW7aL2ceNPQPbH9miTQ9fO/eHPWFIxxMTD0KAy2JmHqxRg59bXy9moFXgzQn4j28qTlzQwCiaVZVSQkXFSIR5AUqWtie1AUMCciJMI+H2VFEysB8T0pnREjDXhMvMQCaUxqgsiQVDSbJWWXxnltNouozSI9GJSHvUmCCzzBkN2AS5A/NtfiJIA/yhjBqGRJy5qyAT6j1aZ5+Gk6GaNB76to746r7h9esT5rnh/lyxNGmqOSTCXIGq0pkgXZZbY1wuwJKBSwW+fMf4eE/48x3ho4nx4cTYT/qe3BWfZY3YEX19t9uUEWtCCXXkuDLUNEzXMr12hsM1rqSd4TtTwDxIxQ9dvb8jVYSCNRHrNX8xdNzvIX2+N8OyFKlmFG3K23APV2YuDAyMwm1ONm5jPlg6LLmiNmEkpUnAl8eML28Zb08AlYydKjBKEl09zzIXq7mVALkES2oDXj4fkRKwLBUNiwTuAIxFsl5qa7hUQiYRrF0pBQHr0hGWJARrDuZHnycANQpK9PWKf9qz9acniD1xWJWXAFg76Lz+hMIV4RYP0tjnV+jyzKNulQYeCbuLppyMHn3HYk1LYfToR3E+Um0YrBUTZj72h5ZgMFL4kUkr3+oXj+0qmf1nf7D/wj2bRxUm24Dji2FY7zxLOgfWYxU9y40NF/3GZvdFmaEBaMtU8kZtui6ASqnU+fxB6iSLwXpBxhsu+M1NwncnxuncA7KlkDcurE3SRSszvjkmfHsc8F89b/hvXs4YM/vJBK6afC5ApMXerE7WhLl/vwrWUFfGnT46/b4f/jnX/PHg0//+H2TrOKWujI0oGEFuBzownqGAF1K8WGSy6f3Z+KwFPkM3iLCmgxVvXYPSpbAWaefqUHpGfX0ey8CLZR42gBaulfKN9YtdxsSMs/eNz27oAgCRfdb3dF0vmxf93S66Ij69QTV8/JbhJu9NHTfhvkDpV/buw5KW6u8Vfk3u+K/Q39neLa31/K1ppNEERbrhPgcfW9CZvUl4fBlCXILQu0/GjBL3CWDS7cHYrvSO6ZS//z/+w/WFTwrWauKxoXJfV5Nf4drH7GpfxhX98yPv6BzKLA0+XbKyvYqx2ifUZyXj98g4a9WqcrkHgijc72PhvqL9HSGTWNeR9bpO50J71o3DQwkc9I8FkaDv0PJjJoiNEBwcEw0mPlz3s2VAQG05+dztdJu2Xk9XJe+rTZMwZ8GHhjBI5UAQJo0y3tGIz08jvrqZ0Shhej4ClFCXhtPMGIaEqpo5F4BywrNpEP92kaqBhIy6VOTSkEBoNWHRbISbRvhTCiaVLhIDDw6GUK5ChObrr2NnDjMw5rU1iYYN4epRTwq4huoFEsHFFoTzGSpVmR/gBQjGL+x72oIDgKsQD1FzYc0M1Z0cZLETiDy/VQ2EkGdp2elNbsNlOUAmlezBJdYMHssY6XJE+T5rlk3ThACT/dG3IQ42QVpbPBqQYj3lSpw2Da5Y/9dWnR/bisa428CqO4DWYzhKlJ4k4GVgV3RoimsVkUYI7Ng1FGSSYlntQ6FV5VXrrRMqeOTyrne6zGyoC/DVW8Y/3RJqKmAQUiak3DCNGZeFsR8SdkWCLAmE8yz0NWQ5ASqTBF8Ok7ys5ISZGwoTaJCWHW+O0nZjzMDptCClvSQecLQxCIwmAT3FUXSZbG2NxmJbhBXd/QT8dDPhFB+gBkTYdeiShsPnIsTf8ojPbhm39xfMS8Pr+wUJUs5SmTGVhMOUUHXxTosgY8yETNKvRPiK8eMReHuS6z7ZJ/ziZcafTQ37ocpJZkkyZJwmNPghv1PQoJqHkXo0tVPYyspRgtCfJs/xiGJnKWcyz8xPmXJBGrus29/cj1LzF6CnqF1r2N78ozMBAb120ShbOnibILlW5nK7Zu+IpHIB4u/Td7AJkdowM/DjJeOLW8IX7xpSIuyejSi7AsoJtTJqBdAk0FIKYWmacgZCVgcvlyQNlahhaYzdWJCJscwyhd2UcLkwxl3C8cwYsqSNxnJISxdzJW1rDDMKuvKLhuvKMHM8sivE5qhmfca1u/P0wJvEYZ3tsEqVNWEBJTOPYq9NgLWPr6VMq8/Yu8cnrLM7utAhN8hWMRP09GdzXNcyvwtn/+46+LkaSihXWo0wrLnxrJ8oFy/ibiAZvuzL8D47LQuAd0eOwzSnCSBnYY9VodMguMtOC7zYHJz9Ak56dpT81cwxIwSaDL8RhXXsGWhHLvh6GfHZfcLtApznBm5qXKaEkhMuS8NY5N3nS0XWHYm5SjDns2PGzybC3+4vSKS7nr42fDWSuKwxbNU/7Zk1pv9DCunVE1ZTfbCITxiodYNnpVYCIwKuR4nVEExXGtxOdACcbsGEVs3QSRIPWukH6OZKp0HgKpXe3yDOUDIijDR4tcaJ1nxk8lHIu2cngEwK2HN8ojApvd4ssAfqH6s+eH0G/IAG1mQhV1L/6Ujr43Dj2odn43BudYO2z/06QKX4tP5xbgcJxc9MeFMzvq8Jr2rGzSKPmTJhyMDPacFfDAuecV2reReL/V1eZqmOByutyMjXeOpz9hHKNS2OPdgKq9+u5F4gT0u/B67kaLcy5XtN6/eA3ROFx8qQuo7sgbYefENY/yDzgo71J9H18x8L0gS6Vb0wz8DNzJgrqS4XH+7lBEyZMZbOOza+FUmGoGPn3+t5Y0XHnZ/WmT3GqZbZ2XvE9GeyySJ9kfzJfopTfFoCvDTJ7Dd3FVT+xB1064NJiLKPgwyElJ0k43O92XZ7HA1kwgnhQ/TecKawAdKigAsXfMd7fHEkvL6fQYUw7EcMuwmNGQszktr3tQHDWFBKwTglFO29QQCmMWE5L6jzAuKMpTZwld1+5m7PdvstYMz0I0uOfVopEMW323pOuGGh9WPTLRQ2yh4xpZ4S8KL8YqfNNoJ5vA0hg9vXFZqlon6MJQ1k1b1VLyeS8p2k9FkgDGapON0Y0d979pO9K+k42HxHza6R5VEe0Oa/KSVZMj1tqi94nCyFF1ivm6CvjKXNj9V3MqClSdRLmGysmcC1upTvNqlwpvl6HqzRcKuXEno2kWaYsWb3gWPEXvkNsFYzBOGhiEtSXCEcFS5ZMXqvXcPKjxqhpiDjHFUQPDR91lwTvnhT8asfKu4WwocfFNTWF6wRYRwzcha/NIGQUkLOkgAwNwnKSOAb7p8WFh6d54TzueFSJVGgsVT/zLOMIWm/1bhZ4qWfupyxxYOvh9lzCR49s3jc2rZ/CD8dqFnpdVMQUXGHdC8TOhWYKeGL+4zvX19wPDdcFmkaOxbCfkyYmwggbxZKhKxGbWWp8xwTqbNAHi1PifD9kfHmUvHZlPCnzyf8fFrwojSU3OQaJRZShgspF2qUqfA3p9YMGlNcIcTfd9JphQd3vjxAkBxXPSoKgJIHbmThzCKjLmMJqCnreCoSN5FT9hx2MkdPPGVYkGatGk3p+qycyX1nEbQaa7/VxgYwN+l03wiXhfDFPeHrI+HNUQInL54NyFMBsoybSRot3R8rDofsGTRAAlNCyoRpzLDGRbUC+/2IsSRczjN2I6MkoC4iWS8LY+iXi1AiqDImV7i+y2xrRWG3kiMG5IdcQi78jPbi3/KhOdNPV7NR+I3MWA6u2EoIBgNL9ffaoKROW3plf5LzBTy10cv03Hzs1zUfCrtR4cI7vEPuMSHGUoqngk4cEr7iJb1Jg609vbe/exVM9QJ15QVysRr4yKerxk3ApdlH4Wefr/Klyb3gkEf93sdtD+k4byk4hVGJB3ETTTi73Tvj+7gCJajIO6Lgm2XA7+4Jdy1hWRilEKacUBuQs6T55gSkS0UiwuWyYJ8S6iJ4zQloylvfLBl/0RJ2VF1p2qDImW89BY2+OL7XDdY6z3URawYJHsI/97MnCMxh/v3TtVYmXMlrciJisacwI+EtBnx+JNxxQSLgvDCGRPhgqPj5wHiZK8a2SE9CzyRx4eh19d1JE73AlkZoKmBtpfpEnGfDWqm69bmu7rla0C6NTRjTisa9N5XT/zqQ2cOc68XvMkoDUjr+7uO4wkMXiNFBX6+FM7yvEXd0IPCt3sCU8AYZX84FX50ItzPhuLSeCcqEMRNqZXydCn49FPxlmfGvxwsmDc5FObkaziP1jh6UCXxzJTj0MSHFAF3mx5R9m2vPtrBrux6NgYxuW3S96jfYPJ4wrHThewJw9l3c7LB1MX2zyoq8lm3oeO7LypCNMaHPVqVXyfcXwu9uCN8cRWVV7ftQmzgtH08Jf/qM8MnQ8MkI7Ac5FRNkG4RwOrA5+ASjlRD0F5yLOIxxzVcxI+4Bi+izOOh378/hfGN2aqdJCcRAHbUuX2KCmw+TybMl7B7PgKN+yWrTSGl0vYlEntnQFzDo9iZZ/EeM+IIP+PbI+PHmgpQJL14ckMYBICnHz0PCMA5YKmPICbkU7HaSSVOXilIKpmeEepmBVDEdRoAumG8rStYNkFkCNdarkvqQHM8eFPcAeAh9u23aDbsVLUbFQv2Z3dZ6wmCLsjQ0Uk+N4JvwrMqBwuabZ32ZQGxKhxbUAERGWjkUGFRJgjvXPYKY/ZQoAFoCxH0dKkt5FNQOM23mdiC6renBn64kRYxwaJaMLrIJfUNurRX7D7chyJ8J0wVqfZp8Qk6g2vqcFLe9185KOvT/WQbTyx5Z52qbjTIfsnwE6w2k2Uw+H5cL6L5Z635JtwFXzHr1G+tzoWVWwMzA719V/PrHhh/vGYeJUFJCSoTLzJg0iFKb9MShLGVOS5VgFWtwrbWGnAhDlnL/BCmJmpmQSPrklMSohSQ7rgHDqJMzGjBMBub1RIJAU0llqPeKFqKRDVVfzod2TYSf7lGjspT9DzMmTXNbNN3/A4hxPxO+f7fgdG44XhpSAj7YZ8meSYSii2UBm/2UZBKLZNskCHKN+IYMTEVSDys3HBfGcam4XxhfFeCjkfCXzxM+HFgMn8QatCHYdpRFu22hYrQLijgY4o1UNM3zIfpIGY/D7kDnS8cfGJUKGhMSMRoltJRBRChtERwMOxzzDsyMUhfsz/dI1CyLTxaahADWyvb69zAHZRIrt1jFY4Kh6gKEO2G1yuDGOFfCd+eEb+6BVyeWk5gS4XDIKIcReShgJpxnSfe7VEIZBww5i17M0mytjAUlJyx1QSFJUXs2JuTUMJ8vGMYMIkbOhPtFfuaUsMzNFVpW2mrMrvedMKlTpQgi7sckm0GuOFkZqLCdHDPAyHFxvTv5FMGotxuVPtP3QrIbTcUoOtLVdbF+199mcof07iZ9TRolNCbhbYY0ieYqgRYzCL2uXLMHzOj1YAxEGaoc8b4ua2YKs7AME7326rIea+2OIPnPbtA4Z+v4CPCdhM4fsP/EcDTFEZW8G0SElGglpG2dujSDl0JF2eGP8sdaGYbOKshi70ugVqwpxhNnfLcUfLaMeHsW2k6FsN9lMTAo6UkVDcMgdc27/Qhww/1Rut4f7y6Yl4oEkqMNCXh1Am53CbtcNRikAw3OiWdVhPGtzEdX0O9RR/z45w/Ul766PXLtkwGKajfqmNVF6FyswMIrUYxzA25pwP99HPH6xLg/V0xDQ84JtWmZ2j3hdyVjlzL+pBT8xa7iT8ZFdn+7aIQdDe/WAdATWIxF+xTgO0QcH8OP6Dm7h3zcERfvE6bOm/reBw6j/dqCIePCAT2JIMwnjqM/ovOI97SzyXftbUhS/Hc7oDvbfWwMYKGEtzTg61bw6Y0Yh/PCqE1OeGmQzDQCYW6SGVES4ebS8I/HjHeHCf/t4YwxYtJkiztxfb6rDALqch/+04YX8d11xCozZMWIfU6RGNaxIw5PfEzPyMuTlq8/XYjBJNND8jnA2gA+yDXwSg/1oKA+Icj6jt+epdJ/kjMbM3BaCP/pruDzU8LdqeL+0sTGhQRgKwu9nSvwzVHswUMh/HwH/NuPGB+PkrkMwE/c7RD0mdsHpn3I6b6P1u4JNBbme73avWwV2jOkM2MPkriVpuJGaTop/fipNyT9HOw4W+NVgmYBrm02e/GK5ZXe+umKfX1J38VsdohjCFyBhYHXvMM3dcS7Bbg7LyACDocRwzQij0UyUVMGOGEcCwYQKCVM0wDhUMbh+R77/YD5dARaxcSD7GOigWvDcllw1pOgWpV/KVNU7QhkqGZHd2pNfjFC+DUEchgQhzBkZVxzodsSTxUawFoV4PYNGlCTbw6gsR+LLXYA+waEZZiIfaob5DlLFkxjOb3XCUCynIgIyOTBFmbWelUZS+T3yN/djQr6O/l/aqcF/gOCHjRZQF3HxmCcK0RrguyG34r3fC6k/3ELh8N0HHFjPeQiyCqPGKhNDpUIOmH/GqR9VZWXVFFHGbEu5Q+BIxd56rcl1j47ya+NNroqP/fPbb0BWc7LGfj9W+C3bxg/3MsYh6HYcmHIGe+OFS/3BSVDZAuLrThrMIOseTFJ8GYohCFLWdSUE07nGZQIC4u/S5q9NJaEly+KzLNkpw+oXmWXXHq6HvQ9K/Je+z/hixXfPgZ/4NSnUGMPoxXS9MWY1mnfCvHdHhuOJwmw7AbC/cxYGmM/JkxDwmURh45SAkGa0e7HhNO5giuDKyPnhA93CcvSkLM8Ohep1Zu4ojXGsjDmC3B3ZvxwJHy4S/j5PuHjoeIwNpTMUj5F7JFSJ4JVhDmaRNZ8VgiKLadLtd76flsY8eCYCJoPg0aMcx4xc8ZCCZwyLo0w5wF5KNinBrSG07DDaWbwsiBxwbNEGKihEAOtISXGoV6QYZk5COsh87pWrm6AqLID+pi73jORD3cIWpX0rreXhC/OhO9PwFzlyDIiYNolDIcJZRzQGuF0aUhDUZwRxmFQIgUoZRwOO9QmWTIpD8glY5qEiU7398o0hHEs4FZRlyq1vEvFpTYkFgIdtZ5ZguK2m2d1nkaB7LWpXQh1Je+yzz9fa0gXpiZd15uRTw5Wq70yEvu3q1RnXqdhR6O8Z5sYfawNdwp4Yi1HvEPB5/OA7y4ZC8tu8VIZCYyPR+CDHfBxXvAiVYythT40fWwc3uEm1hXOr41EudfGSA9uWmMhKEbuP8wINy4wo4CZQ5RbeFn6dih2MoG4gZSm12/Ue9M6c6jj1SbZlavZlX78qPGnKqn4FDM4gzb3OV6Q8P1S8NtzwT0NoJSxe5aQhoxlYaSSkXIGQUoPpz2k/pqlyfflvOCgCn1ZsjhbtaE1OV50KtbdHz7GSBimF2LQygxNMZz63K9NaQ8UPLbQseb0wXI/XeZcZ33oTwpzXgsjnZTu5q8eJHz2724LXp8WnC/Cw5eLGE6pyM5OKVJufG7A7+6Bz04Ff7Yf8He7Cz7KFYlZDC1Kne8dr52mVm93g1B0vVVBd8OTV7rIaQJBlnYO92n646NMsW/JaMWMRc2hodVjDF0rEb++gMOfBH8kxatiGYka3r47EuSRXKD3y3MXSniNAZ8uI368AKdFjLaUElJmjDsCkpQEZ92RvcyC36U1LWUhfDdnfNUm/HU6Ob87kgJNrBjEdL+t4TXfeACG7SLhUI7Xdroz0Unx/usFW9ex9ueu1k++XGeOPT14rPQpZhw/lmUDo0EEfCn+KeD0YVDL6MvoSdLoLwvh02PBZ0fGu6Mc93yeG+7ODaWIzvE+JMTIJLu+b86Mm5nw9Ynw51PDv34BvByB3QSUwXavuy6PGyI+Dt/EIy8zCirsQfnSg7UM9GmZ6EZaLE2YYH0gnexiIJ/lGtuYqZxQKaGgeSNeIyqOAzMOIfSSkk7iMHePWQIW0ICQfW86ysfagBMyfuAJ39eCt2fG3emCeQEOz0dMLw8oQ8H9uSGljFIyACnpp0SYcoZkzAPTfof9fkBCw5KAVIr0xbgw5vOMXAins24+k7Xx6E6q6U5PSgg4XfOj6tNAjBSww9f6w0Af6u96qqDp2IaDhgpCAuUmARqjhwakbPQXdFFTHmjKi3qENuWuLJgg/Y5cL6sfJ5EELakzounMIcEgRg8kSGcpbzdg/1uGCbcH/GFraW1JQehBxisbnsG9ebGN03VyP5nKg7BE2oRZP/MyG9WllhnUTBZI7VK3p/rze+84Dv3myINfYCnvanYq1iqA1fWMnWJFNkfDUdDnRpM+Du8bZDTe0BrheAI+/ZHx9T1wO5OULFHCbjeAGyEVwt2pyqZxE1un1YaSM+bGYCRJluC+1ctMchJx7UlHOUk7gJKAhQlTlnYtjYHjqSIPCVgk+JcqnCdJ1xzQ0jeNEF3tCXT5aLgNzb3j79fw06VPgAt03/1iDV6YVRGiSVwZy9zw9rbh5pyxsKQT7YrsNBNJY599lsY/jQlLAy6LTEQaAjeMgyBnqRWHkbAsgo9xSGjEmPKAMhCWRYI19bLgdGn4+sL44a7ho+cFnxwy/mxc8Cw19bO0zjD1gIV8HKOJUcwlJSty5550O50UH+K0Ehpl1Dxi1mDMwoQlJdylEVVqtrAwSQMjJAxUcBoymCVt63iZsTQpn3rDE8YEFM0yGYjxDGckNGRmZG4YqSGjYmizHu2mtOBMJXjsmQkQIeTz1LUzRV4ZywLcL4TPjwnfnYD7RSODRMiFME4Fu5d7jOMgjvqlIZeCpRGmoSBn6z8DCa6VjJSLlLWlhJQTckkYClAXOf2LU8ZQEpZ5weUk/TGS1h4fhox5qRgaYyQ4MzuDa+RcMmI5fC4XSQZSiGSbMheN3bWh/a3MBkIP5jxhnRbLfJjXBmiP5EcrDIgS0jMc0lXOWPCgCMFOUD5ZQPiCD/j0Fnh9t4BoQc4JrclOYAJwnAm/v2lISDgUwl+9JPxiqHhJiwQgffesKzBZ2yszIyyPfU3JxH2M3AdaDnjxl6AHZsXB6/das187ivGORtymCZeUMVNBLhk0DEjjDmU3YmwXHH78DpkruFZkVKkBbqKYIj1ayqiVU3ldfNMeJqqo+y4kuyNmOxOrHuNhjRiMmTNe1YTf3ia8Xgi75xOm/QQQSWAmJaAAQxGjMhGQivLcIvzW6gJmIO8KLqcL5rNm1pzYaUBkMdT4VeXSdbbiPTgnbkCHtdIPY9mTrsDaGI1A0W6/JoYnzJxYh2r0o0CTblp3WRyuZwBc5dTEf3xb8O3tLJsALOW/00A4L5LmWwEMJcluLUmjy1YZ39wzvj8W/PlY8K+eN3yYFxS0Tk9eGno9UBunGnhx58x/sfT7eKt5Q5pJF0XPY2LIwBum2s4ed9REvo/ldfa56jDXaxGfumPJ/XE+Rjeq/TlYG9QBvNcDCBUJN6ngc+zw9ZG0jIyx3ycABakkNAYWa8q9yA765VKxG4HzqYJZ+CknaaD/5Qz8YkoYQ9BFWMTmYAPkOGSfN8w+iQTnE0J/4GpitO6HtFofeWFPsrfsRRtGz1+VSy3dvhvrDwjqCUHXjeYQyOdrh0Nm+FgZl6saevye1WZIVE1JNvRaA15fCJ/dM86zyNU3p6qOCmGepRlmIhL5zISZpVeCbuTidgZ+MxM+vWV8NDL+cg/8m4+Bw0hIyXaupGwgGQ/QegLu9Ol4Xb4+AnagSJhmt6N0tkTsO//MCNmnJCeDJuDCA5rqoZwTKjPepD0unLFPDSNVjG0G5gWZK6hVcUnV8e4b8WKkcWVYVq3b6Ml0kQs6v8fYojFwmwZ8xxO+OjJuzwvmKpnrh+cDpuc7TIcJ98cFtREoJ5Bmwi+aWV5ZSiKmZzvsdtJrcZ4rKGcMBCwzUOuMWqWvRUniQC4LYxpsZCZHO0+5xtQSvLAKwXbHA9p8H8etbeDHqgOeDrCmZffTniQg0dx2MFUhjrcL7KQVE4m0JyHLcdWVe9NqK50LJWeq4fw+SPtMAdJxeDd4HU7TXWvTMQWO15T01Kh0Xciiz7DeJSZfmmbskJRrEWvXGOrZj/6csCFPTLCDCqJOFrqh1YlQ4QIZQyjnApSXkmbJJh1H0BVJ63VWpbl6OhaZ1iVII2i1eR367h6Mft23QsiudnuRoCmNOl7xS9/cMT59XfHVLXBuhIWB3ZDRIIHSpTHuZ8bpwhhKwrvjgufjgEvVZSNpIMxaTnpZZFwlSZxhKOLrVrUzcgKmktFaxbmS9j5vePt6xvzJgoUXpMX6R/VMGu85xX3DKeYLrWSo64qOVj/V6xH4A6VPvH7BA0jwGmkdDSVpCLzPkm60sEa3mCUAkSXzJGc5urkxcH9ueHdu2GXt8dSsTINwe4YcGwvGXIEySErxUqVp0OFZxjJlDPOC092C2hhvjw3HmfBtyfhZIXw8MHaJsRsJpbC1VpGUUZd9HeE9Rf9amYsya2oZ1QbMGHDME+5oQE0ZJyRcqizEUoFUpNEYmDBMWRiuFDR1xOSQpKRHgCXNXiFwBk6aNv2WEjIAXhZkIjzLDTueMdGAQztjhDic2XjAtBqxZ9REIJ+L7CreXyA9aOaE7+8bZpYyo8bShub5yx04Fwy7EZdLw7wwGhKWWY4trAAuF0ZKqpRKRh5GzI1RyoBxkG54JQOtzmjaSZ1AqHOTowtbgzV9Twk4XyQ9lJm19Kkb5tE2Yqspt7m5od5FpfoB4fuu6Ah2Skkw4uyLJw06N59X3EGza/okHttJ8V0pPNwNdCHqr2M0EL6se/zqdcPtcQEguGNYGrbQcANjLGKIvbswfvUj4zeZ8Oe7EX91YLxIFc+1p5QZT+ZArTZvr4ccjOqVGgyO/+oe80GiLa10DZIeLJWBioSlEe444yva42YpcgLSUJBbqSvmgAAAIABJREFUwTQ9x+HFn2DaTXh3uUf7aI/57gb1/ohDmzEVAtDwYb3Hri7ISWlWFYMVp/Zlsay9SLhxmqQ9QDWlNzhaDMIMwk0t+Pxc8OVNRSXC/uUO08tnIBIjsgwjGksPk5yzBksLxt0Abg3j2FCXBciEcchY5hmtVoxjxnxmO8wAROJYsiprU8RqDzwwGD1d3RQzrlgp4mG1YHGR7O/AtFdi7H2xnacAPRnvMYO7GyEAzMNYGXYEPTVxLvjxJH3BKBFKJt1wkmb8JcvpiZQJRFnQ1KQX3HypWJaKry+M714nfDyM+PtnCz7AAgL3yr3EXv+9Gp+Zk1fLslpPNTDV7OxGF6TUl+MNq8B4f26rPbPusdIRdwztTw6ss8po4EB7Oo+Qrt1LCKOxpPf5nGOZWjexmAnv0oBvMOE7HrCAMO1ljebGGKcBzIRxKLgsFc+GjPPpgmksIAJyvsA6JlzOC3aabTNXxg0Iy0QYnWJUvkWaIdg5AVcQHAKO4kQ/9X5WdPXAjtcH39iiByGsLkDAEpSPw9uCPv0XoDyD3DIHJ34b9ab93e0MorW+lesem3PnFq7y5/EE/OYt44fbiktjHGf4aXuZxDEatX9GY/k8sW4OMqEkycqZF7Gr386Mm4Xx1Qn462eMv30BPB9F5aREkiFA0ow1qUT2wF4jWHtFdx6u6cQnyNpjQi62TDthKdmdts0zZglqSpVDwj0NmFPBHWdcIBm4I2UpYUkZFYT7nJBzQmbGhS7YZ8ZYZ2CeMWDGhAU7XkDMYgur1FiVuvs8LKKDBz8XznhLI75eBtzMjNtTw1xld3v3fEQ5TBie7XGaGxYm5KGgDBkM4DxXZMrIwx7TbsIwDXrsr2TKpZSAJiUVrTWXaXIyT3O6G0kcdNlONakTOIfZHXafkskxWIPvh7xLSrDuvzAC/wf0PFVotqomzFRAqT8lG3pKv5qxYkE7ACKTFt18bFVPYKoSQCyyBnZqGDdIMEdMN8gbzMZR+qlN0c4qg7mf6qTr0fTkJeFXtY803dMDa9Yv0W1seSnpSUdWQuOBXxe0IbMujGuVHe9RYx2rjcEyasK1D9142xjR59vQwsmPj9rZ3OdjY/B7Yb6lycT+DPbzTc0U70rIji2HPbJKGeqrd8A/van4XjNpzkvDy0NBbeJPX6SfChIRpgLMjTDmguNip0g3DKXgtCxgJpyXiueTWGg5qXxNQK0yssoWg2hoteG8NJQsm9BjSbi9W/AszSga9zB8936gavsSgRNrElKPLdh6halrlhP9f8mosXbtfRXkTwkC9NVRwiwANcZAQAHjYnVhxCgpoQzSIyHlJB3TxyK7hAPjOVvAsuF8vCAlwuks6feNGadLw2Gf8WIgHM8Nzw/aaR2EUrTvSyJJC2fG/dxwWoC7BHxXCAXA8yHhkx3hxR7YZ8bAVVPoqCONAcvscdGp9GaKaE4FR4yYKeGYJ9xQxqnJ+3MmVDBSTqIYswSUQJJFxExIg5QXnE/S82FpEtCZawUyyXHV04g6V89qWZhRU8FYgLec8I4LCA0fpQEHLCjUcGgX5FZDhQTBmuV6FFjn2FiI88cT4Xe3hLtF9PZR08CkVwyh7EbwMCCPAxppyldhECeUSXbnZWeIkcGYpgH7/Q4pZ3F0Sxax1OTYwspSx85VU86S1O+3xqi1uSCTlDTGPjF2FNLvLLvLhI99FghfGIF79NaMTVKaNseEAmU/bsc+bVg5H105r75/n3C++up698YVitM+8I4L/tOritPc+XLI1hw8YRykqdd5bs49zw4FyyLNqb+8k34aYyr4m+eEv9oveJa1n41FypQJu9nSPURTOGTK02Z0bX2YTBTSADdpf1ybNGu8x4AK4Ngy3mLAbc2YCWipYAn+M5UCHic8/8Xf4uXP/xL1fI/TN7/DUka8qwmXNuBmmDBlYOGKH2jCcDnj5bLgA7rgUCpGrlLnSj3zsCM+rAWpODfnSuk2rs8FhHct47vzgK9OwP0sQdFnhxHDs50YEUwYxgG5jNKEHYQhZ+QsmUHTNGCezyAwchkkHbSeAa5I0+CKeJ4rChMuNQZ7yY0GU7RR8Xoqt66BZ1q+z7A0Q1QNAi9HCwaCm6rXtP2EwWSSOz1k5Sfybd/sjQZ0p3OGZq7dSsnwNCQsevrd8/0gegSafVgIh8OIeWEsizgAkmJPyEPGkAnzZcHr04L/83XCL/Y7/M1U8TwvKIm74euM7sOIZOofks5HdvZ4dV9cT3eDYzkqm9km93AlfIcJcymyOQDCbirIKaGMA8YE7I43KOd7NWjQS3n9hESYiMf6JDh/izEXjLZkH6PrQjM8g4qEBaaPnPANj/j8mMHTgOkwgCuQh4wGQlsY4zSiNcko2I0SCH3+4oCUgOUyo2SSLLp6xpALTueGQpCM4MY4VcJhwCpI3TPx+hzXOor6InUycyaxeZpjHRZPbyFI6nvAGQO9X9daT3Bs4q5yenWSGKFnRD1hRjVTKBrVa0R2hK4DXDGYw8EBWjvCEWIzYag9c3dhfHtPOC2E0yJOdzFbK4tgWBrwfCSwHsub9T1LlXcOJIGDMSfZFZ4X/HhmvDrJcbV/vmP87TPGx3tgkpOl0Uv9GV57YTLVd7E40FJcf3KZ7iX/oWyq6dHZCwqONOEMwm0qWJKUC81MWJBwMzMWzcxNCzAUIBfZBZ9KxsxALgWXMWEuA0omtOMZ7f4OGYxxvuBFXjCyHLpRiDHyjFz12HItTem9JdltP6aMYx7xXSv45ki4VOD+WHF7XvBsV0BjRtlPGJ89Q8oFc13w7PmAaRxwmRn3pwXjMGKYdhjHUexaSnqSqfBrmytSKiCakbKUxYxDQWLZFFnOIvoPdnYIW6UHaclZpCPlbzt0wDZWIy0/JLjV2rmDHjeyHqXUpwFtbkGWw21CK3NtykxE7Ac2ydHtDGQ9GQrqBDctnTLntzVwSr0FRpaMFKsCACAZLok8QGOMSyT3E8Xv9LNGEENL5CknuY9Klp3pnGS3mxmg1qUL93Vy/9NOTgpBZHf8QSHjoq+p951TXIlsY7URdN4NWtIFL9l0/W79e1zv6X3WR5FFzvuhSgywleSmZJFGWYjG/TSjaO9alozZFh5cIkuaEtpmiP3bGKcT49U74DdvKl6dgEsj3M3iuA3a4PeySHbRR88L5gpciDECOM/AYUwYctaecYzWpKJlP0ibldtTBTfCOBJarSglS8IACDlB+uvOjEyyUTnljFmDNmlZgm2x9kWinjSECR4tqBjWlQ332mLmJ7jzDwRqqNsD9ozEuuqm7cKXTZrIviwVGYzKNnEhoGFImEZpbFnGjGE3IpeCcWmolXE5VQz7jLLf4Xx/xiFV1CoR72f7hP2uoBTCPksUKyfCUAQZKQEzMnZFTjlJy0VOM1maZugQ3p0rfjwlvDwm/PxZxs8mxmTlNjod773jx1pKvwY04EIFCyXc84RXeY+FSGrRGzCMCZSA2iQgkwfJqMlZfxbp4zGMEqhiBsqYASRMKWOeZ8z3khqdR+kpUUCY54pxkF49yA25EJa5YllkV2XJI3ZpwIiGj5FwaGcMJH0JcupMZ8Qjux2EW874cUn46si4rxVnPTY9ZUIphDyMKJOc7pTHAdKviDBOWY86y3Jk2SKZMNOuYBgLch6wNHhGQUlibAyZ0Nrixw3mnJBgdYQJXDJoEmOkzTPq0nBZGIcdS5kUya6SED65gR1trWCPw3ZELaWw7xX12vpVJLlTfPBSnq7BCcANb0CEpzknQMAD+IFxujJiHI8UHksRPQBLdtw/3WS8OVbU1hUpkaxtToT9JBZI0c7rrbEYMrlhniumQQJwy6Xi1zcNv7vN+MXzAZ+Uip+NC6asqaAJchINzK1AN1LiTktcHlVQZlQ2o3f9vTbCfSu44YzP2oQzSSd3huxiJs3uQ5JjrBMB+/0OL/7yr/HhX/8dds8+xLsffo/84jnaPSGP7zBgwJAJp/OCVDJuZqCmCa8wIeOAj6nhQxzxYTtjj0V7bUmmGJFlQnQBS+pgd2IWfp2RcFMzfncHvLkQjrPIv2eHAeUwYv/igMqEWgFKBaABKQ8o/y9179bkSJJkZ35qN3cHEJGZVX2bZnOHMsKn/f9/ZUVWlkIuZzjs7uq6ZWZEAHC3i+6Dml+Q1Re+MddFurMiAoEAHGamqkfPORrcNklAQmScJvusXSRGA1LRyu1lIcRAac3YcM7jO4DqBJxT4jp5YQWRdO+O7B/FCtIcuwv7v18WcJtRoqxn0y/3m66//4uffb0p57HTDFsOd1jL2yP3vOzxY6eqo2CSgdoMfHHeIc4RB08cAtKnHfjgCRFKsYpJVHHica7ZdEVT3yIi/Ple+D57fjM4/tNYuUjBOWVlxuraXdxAJN2Stz35PxSx/fzc4ue6Evq5UZFtelhVmPHc+hSFq3q+J3FfsNftHCkHUop8++F35q1UZ9rLJ8rLKz7PfGh36DKFqRdp4ugJMgeT7gPjYY0Hx2SpPw7Xp80dlldTIYvnL5L471fh86KMk+Pp3YC6YIz3GJmXxhQ94oTU6bkmAaYz0lpvICnLfe6yNCiLklsjOityN8erLZYdYtJxz62fiD4efrJ+b22e6a65f1iXh+iwdqMfJFaHbSrHtbn9lX7m9yaIbt9fC/x1PXy9e/NRqgSP54j8le/tj33wYli75H/jvW5h6qAB1AbfX9U8FjBj6XsxQPDcdU0iNg21AdEJ58Gz9Pz4NAhLbZ1N561okN5U6zK70pT/flP+NMOHpPznJ+V3J2PZbQVwWxkx7Cat8OBbo8f1sN2T9b/63MduZt5EeJXE4iI/uYmX0j3NmsWQ2uOID56aLW8dEyxNkdJoTnpMtL8Sxwg+oGnCXd5x/e576vXKXCOnMEGtOFFO0njSO9+0G0kV5+21ub4PtNmZUn3izQ98r4Efs3KvheutUiuMyeOGRLyMDKeRmMxn8TQNlAYvb5k5N8ZxZBjHrfAPKTKMieBBWwFxeAmghVoEcZ4WPWUxgG49Vy3j181DZN13orLXvLbY9kMU+cVmPp4Au0n6kVm8fr1G5vUz/qvL9eu4+hmia36PbtKlh7W4SZz2unO/kezFs+wghKoi3sB08euTCXiMzYHu7DJk8xExsKHbRqybuvbvd+YKaqwurW2LJSrZfjN65DSYB8gKbABIZ1w5h/TF0Vb5lnTZ0vr+VrBxZbTtCPz6arfpSNLvz3r7rPbrf3Q9s7xAn4IkXZ6zbr4VdH3c7SDegKIHtcnqR7reqTUE2c0yqGB9/VsRcqzT1s9LcdiZobVxnYV/+6HxPz4rPxd4WcCpSZWm6HHOd1ULDMnztlRaE6YUWLLyNJkdx6drZgyeOfe6WoyBfF8q2hQf7ZbEaAD5fTZlwPVWyVWJorw1pTQ4Jau9RSD0evJvhjldmyzrjdwBtz2t2mPKKjv9gmv+cP0DM2E72bUv/JVGvGU6AscpCdq5fKcBRg+TdASk+5OsQL7RjSyBDMERhogLkVLg5fON4JTwHGi19Q9e0da43hfeZmUavHUJvAWK6I36JD2ExGSF4v26ICIsRQnOkPu5Kp9yY74KP5L4TYq8k8YgGRPxWGdPHGixhVmrcNPAaxiZw8i1CfcqVoSKI4y+ywMAB7k0nJrcp/bFHLxDu4+Lc46cC8454ukC4uHllXnOBmT0QO17oYVzRl0NXTYWbaN4VSrKVWFxgVmEJ+c4aeOpLkQK4l33A6LTrYUfNPBDdlQc1WeymgQreGdSrWEgDoFhGggx4Jxwmyu5gqtQa0Fco1TldE6cLhEnNoVkKT3gescwJbz31FoNnIuBVjoFt28A7xzN9/Fqq+QN65AIcI595SmbP9Ix/2YzEZeedOwL/0GHf9CeKsLm3KZ70rKvel2z1a/6+rLQBfYD/BDk9+KKnd1wKApWJH5/3v2/12P+Xh0/z2tRZuPUV/kizm2gYEyey+BZcmNZGik6xuQpzVvHUJUcCqmb1f7x1vj35nmfPP/hBL8dKpOr7OPkORx0sLmatkMR3z936d2XdqjEcoU7gU9u4HsZuIrjtlQrdNVYB+qcAarFEhsfbM8NT2cu779levpAjJP5WznHMATK08j9bcYBU4os80JeKi74/hrgj7nyvb9wYeDXOvOUF55aJnqQaGbYraoBNk4OjAA7A4oL/KiRP16Fj7fK2918tkSU8RxJl4F4OqPOW5LQQeHkdm2n64mDC8mSFCcM6UTwHmiU+0yMwVzug7LMZcsLvbOuvxfrLFhQXhfOGqi21AZY99+hUNxaytsC3LOA/v1fyKd2VPHh58cO91+TdH4t17a11v2HbnrmI3tluz+637111bdurGgNCUsw0+CJyeGDJw2JNA40VZZcjLHaA2wpDfFKTImSG2G0GCsO4lgp98wPufHji+N3KfDPY2GSbOeAO4AWD/d4ZWj09/HwTvd/6BKIhnBvjlkd37VIDZ5bExbnmQtbQipicSk4S879aWJ4/57Tv/yfIPDx3/4LcyzcWCgKf5KEBGXQyrdaeNY7p1aIPSHaPW/oiaDFgpX9sXYIj+wbtZeNIszO87NG/mcJfM5wL41pDIzPI/gA4nAu4EJAaiWlCAree1wIhGiawVZLZw576rKQUkAuA/MtM9/rNjyhaXsElNYET/f7ukuy2facHF73mhgfr62IWfM16R1SWdfkXiRu5pH9bx/D3n6bDky3L/bv+ntbV/Arj5vrWt4Xil1HPHgr7g4A34OMZPv68XeOz2WXLUitjVaM9ZJbJwE4Y8Uglp+lYHlQ8M6kqs4GcaQO/tVuiolzBOlSCxQfBBcMuKndl6LVxh9vmT/fhd+d4F8uwm+HyuBXyb8aA359/6u3y1qgCkg/T7ZTyfwIrJhTqAJFA5+DNSdeNFoBFQRt9lsV82Obi3ksgk0htGdazyqH6xKS21JI0faR84EwjoT3HyANyMefuSMM54l5XriVxk+c+DyM/LpeudSZIObvqAjqA815fvRnvldvDH9fKc2akuIgnkf8OBHHSAhWDpUK81JoDVIKPL87GcsmN3wfkpHGAXGyMXm0+38tt7vdm1opOVNLZc6VUizWRyuHesFt9/GYam7b8Nhd602Mw2n7UNI5edxw2+9v39jX+dcbNTF54FrQ9vPGaa/FdjJJZ764DbTZalPW9942U1rnuseNYIwVZ2tcmyLBGwPCCeqdAZVbPaGs/kd4NUPcbhJrOKBubBKRDrKsbETF/HZKo90r3AvuFJEpoatJXP9sW21r+bKfGao8+AIcc/QDAr8B+KvU6SCd2Rivaxz0hxvd7PCR1u/1Gkhq28aYE0e29sx9ttcQwwP5ztg6fZ3Wtvvi5No/C91eoxxjxV58bPEHUbQq1wX+yw+VP73An69KipanOi8k70jRM0bP3CDXxsvdmqrJe97mwmWKDNHz6TUTQ+C61M2826k1/730WlcMvCnNcgTXczMPJA+fFvssBiecxsCvfjMxOsXnyrFpta5L8wc67LGHPdjf7gZaHX/AP4yZ/5hR44S+1NnbVVsmBLQH9B0HPsKHQfl8XSlqpgcTJ11rb+ABGAPHD4kQB4La4Tpfs+VcpXB/vZO8gSchBu5L5ZaV1BMN3wscQ+2FGALizUxTAb/YNKElN1yjm3rBbTEq3OKUn5Lnm+D44K272Pc4xVmBehf4icRSbepRrn2DOUcV66IZLa0nQWI61dDpj7fFIpuPRnGKqEkRQiAMJ5zzzLc7MQXW6RHBC7mskglIyTwIarGA5oKNDMuL+dbkXCjqKG7kRZWX5nnWyqDK6A1A+Vwaf5o9d933+63TUYMXfHQMpxF1gZDiZqB2vVUDu7rEDDVp12UK+Ggg1f1eDNWcrIAYxmRMmC47kWCbo6rD9UJk7aKXUo0llAu3W7bgrTbNRFe955qgrofXCsb0tb43Bg8nSdsPh3bscu/uc5tZJL1TuD3t/n9f5/UQhx8Lqj2HlocHP9a2e8J5PCOOdfX6tSq8zGYgrShxpXeKkEYz0YzJRtfFzpgbvZLiTtcOa5DzjugMtI3BzPnyXLgulf/rU+W/Bc/vz5HfD4WzlG3a2RpwtvfVQeFWO7MjwAFtozVjonxqgT+5iRcxI0OJjtM0mGxBFZ+8JVDJW8dFlVMKiPNMp5E0nAhpwnk7Kqdp4ra8Goh4Gail4Rzcl8zl/UgtjZJtv48pcLtnPvmBP98c79zAf/Y3niUTs8kfvBfUrUbfxqTAOWaf+Ism/vRWeb0VtAlxcAynAXWedErEccQFu+8hCvNSSSHg3c4W8j4QYyKOkwFrsY/Qo9FK5TjnQ4HWDf1icLTiULW9mXoE6qVCX2PyePavtFketub+4xVw6Qt078p3OEP14XEbW2NfwQ/r8mu+9j3UE0N22GbvpvSvO2i8M93YOvGGuVkcnoZAGIy5OE6JMA7Gtol2NpdSjaHYKjmbA38c7TXkXEhJbGLfKTLfMnXO/Otb5fs68Icp8WufuWDeU1uX7Xh2KBvwoetjtkdIN+QTMp5XH/gunFia4zVbzPJTsOS7GaDbmlKyGYbmZh336cM7nn73B07f/p5aC+n5O1SUku9cfyoMYyDfF5Ym3EPk3zXyROY/snDSTFjPAy87m0GwiWydyaZOHvNgEbIEvtfIHxfH58UMCn10XJ4GxqeJMFi3DucJwYwKx3HsjSczGx2nkVpNTh3HkWGIzK8vaM0QjKVWSyUG4X63ZDb5/czaQtv2jfXey0MTdT3mZH9I/299NLJsG/VxS5CtU7yeqbKxfg5/lOOOW/O8o0TzsfV/+L319X3Ve3PN0XgAWr7EkrV/GLvEaf16f54dOJbt99bn2O/FWmBbcdhVGngHWY094LsiIzhhnCLeuc0rIThj0cQusRm8mWFOyUzfW2s0VU6jNfWcelx03G+Zi3O8XBd+mOGnBd4Hz2/Hxm8G87E5qSDecrNtrK/amhHpU23YEqu+XgxkukngLoFPYeSnGiAG5qJ48ThvU1hu90pM3oDbDpTG5PrEGMsNni7JWII9jywVSm3U20xyAT+MnJ6fcd/+CjeYhKQuGak21bWUymfMDuAsA+8pfJBCs/EbXJ0xaW7F8vN5rihi+bR3+GlgmBLOOUptiFrH/nTu0xPHATAbBsUxDCMhpG01NRoxeFSU1nLP32G5Liz3hXk2TzARk/afpTE53daDrZdeEh+BQFs8D99bU1WLFA0eHruyoY4Rta+8Y178NV962ItKl8GwFbbrObiBTqo7m8btm3iVjZr9QZeViEDt+IdrSOjRS8Q2pBorxnnPCvRsU4v6z2Bnj7YOarr17x2AnPVaz+R2L/bzBpLcLsGC7Rzaz2eLR4YudFDH9elSut6LPXGy9ypfrIVeJ60H2ZZn9F9q1iQUbVbZO2fopO83/lf/DOcPtJJhuSJ5sUZgtEaFAtSyf2BNbWpxDLam73d4e0Vz7ZTRuhsYd5ngHqOUVuxufb4Kf3xT/v1FeMv2vnO1qaNKr7Wd45ptWt4UPbk1TkNgHD2nU0IUvvs509ShpeLFMfc81wvmaQXEfgvNCNnYeDVjOAEmn3Id8I3OAPBh8JxCQXL3BzH3563e0rYlRrZGav/CGYCzKxUOjfVjgrzKuf/K9feBmt5d2+POMRIfotux44DJfJ5CT5gapGSMFx8c3ttBH7psyXwVrKtWgZgS43hiXgrlNqNVmW8LS1FS8AxJmHPh40uhlkYKwvunwNPJE0LX5zvzvXHvJu63Ql0yQ66UWvG9a5gLLKXhS+MK3DJ8SpExOi7BBH13L3ySPt6rmTO0U4hDMPq1l65Nxza0uH3iUY9781IRGqXSu2ddahETKU04HxHXWSw5duqcGUiqWiEH1rG73jJjdNTWKE1JyTH4RMkVLUazK7Vxr5WrJK4BBpRzVX66Fz4vjaWYdFJVWUozhFdsLOR0GkjTQBNHjAHnHbk0vHecu5zFOSHEgZjMD+M+N15eCku2ez9OZiK3gkxODGQaBofWalRAhSWbLGZ5m1nuC2+vs8m7sLQwlwq1cYlWRK9F+n4OPpZvW4nYDzuOBdFxQ/SEwYLXUaO/0hwPSeomf/sKL9U9uToE8q0YtAfxsHuPxWO/jin5Dk7t7/sYNKM3812ws9336W3DGIjjiA9WiLVqNMGmlRTsJebSiHEdWycg9rUPSkyRUgrpnrlfM//6Bn+eIx+GwK9D4V1QBlEC3XFfZEtDxDnrVuaG9L/VGiwqfCcT3/mBa3N4HBKM5ZWrMqY+FUmM2uqTZ0SY75k0BFyIDOczaZpIaUJVmU7vWOqNIGr+S2IMlCEFpilSayUMwd5r8OTcOJ0H3t4yPgVqFP7vHNDS+Ocw8z5YUEiiGzPpVQM3HK8SeMuNuVUaQhw9cRohRuI4kqIZHq8+T2D+X6oGEovzDEMkjRM+DoQYCf1cymW2mK2N2gs15x0sNmkuxMByzygGqL4PNn1uB1weg83/SmH2VyeoPOzlL9biL1bqF9/8urfm9mZk7c6tFONDp/TLt6Br8q0QaIxRyc0Z89Cv8dOKGrC1H4P5vPmQCGoSw1YbbjApxHxfEGkMIQCV4AQk4IKnJEcImdu18F/f4H/4xO+T57dRmVwltLIXsGtesTcr+w+MHVmxsdUfifwURt7CQG6CRGE8e2OCBsftXnj/PHJ9mxlTYL5n8r1weR4IKRCCYzy9Iw4ngoDznnR+Yr5+ZLgMdmZEj0P5/HEGdSxu4JXEmcwHXfiNLiRtG9tSi+UnLtqbaZ31I05YQuR7P/HTIvxwK+QKtTZi9Dy9GyEla87kZtZmzUGF0zSaxLpL007TBNInJI6JNA2U+9WGK6REc475dt+YxDE4qOVQrPUyoHdCd2BsT+Yfu5KHz0UOhVgv/u1hewIvByBl32lfrMH+GmR1m10bGiugsT5oC6j6y734Fe9Lu9buru4FMv1lPyYYbPnFIdV9vPRwDn6Rnyj0Fr7l6l2aN3hTQeBgKbJJiM0TQodjAAAgAElEQVS/0Uzf4xDxWEOzFMW3Pi724Be2VANpvHNMo3DLlsO54Exip0CtvHNKLY05N76flZ8Wx3/18CHB74fGuwHen8UmEUmX3yrQxxDbojBUU6uSm/BG5AeZ+LkFCJ7WPbPGU+S+NBBHDI4QrQ0QUuBpNKlgDG7LKVxphBio/f753sgttZE8UBZCSqSnD8ThHa0V8vxGfn21XNKD5oq2ylwbrzfhJ5+YSATvaAWaepqYx+Vaj1asKZnOEz7F7gxgEtLpdOrTSAMKXK+F260yL4VxiCARnElPTYHTaDWjrdJKNc/FrNRSrTAUmOdG7d6Zv0uF5AzpFNiaFXtsPUAqK/BwLP57DruDhnub5ehxxXpmrLnwtpz/F4L1/6ZrK+D761ylPttZuL70LpVzju38PIRVi7nr8cXBELh11rIzZYAZpCoEbF/5/oud+a3bE9NBIlu41js2wGL3SpPtXxHQun6WXedx7yb+NZixcXA7tWqtSUTQUm2qEvJX5asPsWBtAK2UyA7wbOtgfez6PljBgrqmJCABHc7IZMxyfES/+Weq8+hyQ8Jg+XWvW1fZmNZqy6qWbopcybla8j0+4Z7eW3I635C3T+iy2KFVOtum2n2txf73Oiv/7aPyl5vwaVY+zY3B21Tk4B0xCLlqV201vjlHHFaLh+hJQ2CZG5/fKrfF/GLFCfdicfu+VBu1Lc0UO3iqNmq1yU+uy8KCwLUraSy82b2+TJ5aKs0ZuUSwvGKDQXp41W299rigBymw9s9hXayHMLv9/G9cfx+oUdjaJ9uGP7yydVcoG/Nh/Wtnt08h2tglah4uYT2AGtDaxuZw6lGxyUc+Wqe4qJh52u1Ozsa0GYbI09NIyYWyVKMc5l782yRaG20dhMtlYL6b1GgUGx++zHmbajLfC4s3SvlnbbxVz+fR9P8qQu7BUB3EZN9f/XE22YXz+Gj3I0g3F2v0BEcZk81mb1UZksNpNZql89sI3zAMpDIY8p5tMlIcBC/CMluBepoS4pRyNy+J2hdXAcKYiMGzLNnGkQXHUhuLKj/fFl6vBoKoKsu8J2jRO/zkkA7OhOCZs33GzjtO0ffGnJk2+xBoTfn0eebzW+PtWkz+FTwxeO5zxcdonRWxzyBE0NrQWhFp1JrtTGn2WThs3NpdlXluNnK9ND74xu8mS2wtMK16VdlofQ/ACrI5x8sGUOzAzL46+ynV0XbZgoBsz6MPkeErvA40R2BLqtagfcyYH4pkOf5kf6rHOlr3B1pc66PTu59Tlz2lKRCTJ8ZASoE0DtRtJJ7DBSv0aqm4YDTU220hRqOcloZRGpMQNXQQ0JGXxu2auS7Kd85zSfAU4Nsx8D46Ripeqx0wqpZIOiEXJSvMLfDvjLz6geaceejEbuyGmZHF6FiKWjdM17HacH6aCNGStGGaSOOlAxmR0/OvuP/0b7SyMATP6+uV8ynatApnFOSmcDnH3kU0jftp9IgKeW58ujeSd/yrnPmzeIIoT14ZnAHYn4u9DjPWVnwMDN7jh4gfBlyMDClRmzKXypCieVXVisPuw+UymqmhC6h4XEgmJewHkzEATeI0jCNluYHa55j92r2XjVL9FGyE4THP2w1/92Ty6OFgjCftf3NNLLbdB1sKA79kzjxev5yw8sWa/squB8LpMQgru8QAHt7sw7QH7cU8ltfE5DpYbY/zKYBo71x7YhgA61JHby2eWkqvtwJ5nkkp0LQSvHCf597ZFktyLo3755n5Xvl/34S/RM8lJX47Kd+0mah5p1VXaItuJoANaOJ4Vcd3MvEpdqA/BLQowyka6yc4fDRvOh8dwxgZT4NJCcfEMNh6TcPAcLng+9QynGc6Ba5OOJ2TsdduBVUlTh4vgZYrt1x5aZEfiPxA4vc6M9bKUCpjhPVMrw3rjkbHNU78OwMfZ3i9ZfOsGDynYcDFQLhMpHEwunT0xtJRj+8gLNieGk8j4mw4gk/R6Pa1y5+cp0k1OaRasydEY/Fl6RR83YsTYBsAoLJD7iuo8OUG2eRGO9qwE2i+BEAPe3RL29e99AWgs0VU2V+P7E/E/kceysx/vDn+t1+7F9bapT4Wyb1m/0VDaD9v9jNur832zf4A6KhbTzgEA/FELU7MHUcMTgjBkUL3OkrOWKou0IDx5I0N1hpOHMtSabVQu0mmd8a0DMnWtg3HsLgmwbEAYYCQK2+vmYbyujTmKvy4eNIb/NMs/P4ifHMSkjMpgW45lo0Ib6rciHxukR9csjgFOBppTMYKdcIwBebcqKURkjUGSlXy0hgHy1m19QKoF1N1aeRciMEzDg56Ueyjg5YJaSSdLkzPv8K/GUtbxaFlIYVAq4Wmgh8izjmut4U821knzcyaRex8dN4ZCBYNbDHmqZCGkZAiISbE22jeVoXWHEupxBg5Xd5xfnpiGK1wRCs1L9SSe37kUe9xYj4591zJS4HWcCheK3+IeY+TXyRiX8ZIdwRtdJdrboBE3++/6JQcGug7aLuuw6/3WkGaI3tEj3usnzcGathZynbGrXvUmYTKOlGbNGfzAhFF2u7FZIUglqv4hka7V25lqQiYRHdPnPfR1Ap+PcMPxfcqB1rPbxUDU5aGUqB4iIpE7exOt5/DHQRw0tni28TQ/hk7ez2P5rT9Hukq79VNMrGZiAubhYi6AGEyH0cfadMTTBeIIyoe4oQ2Y6XUqrRSaKoM4wgqtLxs8aAVk/zVOQNKqxlBbFS5KiGOhLND/Q1kxvlMzbYnWm7URfjLS+N/vMKtOV4W5V56AzKYpcIYrQG51Eb0jedTRDEJuHNi0xWhe6Mmgmv4YF6TsxGL8c4xBDvHYrC6HJRcpMMYQi2N+1LJxcCgXMF3ADkFYYqOodysltV9zRpAc8BEtjV5SAB1zZH7aj3El/2z/du78x+M597pcxsatMUp9wt0aPX6cMEx+Eqgmdt6Vq5L4fnZgTMmRxwjzjujChdbFD4K1hk2Y09FSKPR950TpA2AEnwjBsjFkrS85LVWo2mD3mVeihluhxisi9Zs/Kx3wvWWbU9VRWiUYn4WrmQGgTAkM87FRvTFaCbAIQbe3mZLPIMgPTjGGLi/LThvvju1NKI3Ovo6kcpMq2wKh5sEp0JeFnOSHwa0jtAyogZWrH41wxRN1pA885wJKXVn6kIMBrCo2uJyfZygbXZluS7cS+M6N7yHnG1EnfcwDUY/F4QQbJToMhd8CIQYmM5Dz8u670BTSlFuc+HlTZkXYwKkEInjiWEwZsGQAk4siVi5srUW6wp7j1S3nS/eO4oWllzJS6UWRVqDpvzhrEwn34GaLZtlF6zuRc9ROgGHhwKrdnTfXIcumDMxh4153Je47aevPPFcT2DWbWjv6XhUrNfjOfJ4IDzgOLIKW/b7CjC5hqN367Bix3tvIIW3DpoPVlCWJsQQATGDU7XEDQV1AW19nLfYa9ZW8d4xnCygpQrjJZNvCzVXfr5mPonw4yK8uwTenU+888qkhaQFFw30eXHwr6+ej7PgUkBUSaNYceh997QyELM1ZRxCf6fGIinVzIylywdamRlP7xEfcc4jal3L4M2geBpDxwYrw+DIiwXsBpQC13vlNHqaKm+vheu1cDp5Bu9oYpN9CsJclMlb4pGbjfYMvXvhfd+b3huwKx6lg6hTsC5DcAyjAS0xBvPUulWcV5JbC95glPNaUW3dO2plnym0Rs4LtTSuNzNQzItpkJ12WXNfQxtLfgPnj2upB6Nti+pWKR5308Me/BKI6Qv2SwnUuuTt219vyrkmnIqFSbsFh0kVHF79un9Fty9XA8PRC752Y041aZCPtp5StPNafCCeTiDeRlrWRs0ZEWOqahMWqWgH02stxBhRLWacGW3agQ+B8Hpnfl14WRrXCj9n4dfPz/wqKk/5ylAXJGJjJwvcs5C949VFfnSJEiM4wftAc8J4juYhl6zpkZJnXoxpO50TK9CRkjHdmjqmDtKsJ9Dp+Rt+/p//T899HTnbpMQQPKqR1my9Oic4LCb/mIU/zZ73Uvk//MKTWvdPxRMmz9V77iFyD5G3e2Uu1hW8PA/EMSHBE4eBMCSbZhhseg0VRIV5MdbsOA3ENBDSgPeeEGP/vOu2Zn3wiHpataI0DpGWC8VZgp9Emdzjata+ybapSm3fQ+vq2cq5te16ONO3hxlh8AGYWJlEm/S3L7rdg/AAOKyBpO83Vd1iDGu8OTTo1rD8dUfNHZx69L5iO6MOUZPH7+xAzC9xYt3+Xc+nFfA+HlfPg5Bvdv6eopDb2gAxxupa4/loeZVzvRHaJSDiKvfsmU7ehlz0ud/RKDek6FhKIThQbYxjRFBqMAfGliuy7NG9AP/6Aj8V4UMN/PoM732zNels8MRNAp9wvOG5BsfcsMmmYnHQRYf2CUgNSFjjz3fZZgLmuTIvzZoY0IFOexXTGJiXBmISqRC6bLE16v2NWjOI4/Lhn3jDAGjvPXW50nJmvlWTRcRIDI5cbJhG7dNEl1IZorEUGvQxym6TjKTpxDCNXdpvhu23e+N6q8xz43y+kNLA5d0z4xRJUahlptXFmDPempK1Zmuy5kK+Z0quzPdi+W9Rfp3MEHpbUVuOugMy0hfXVmB/CRAewJtjOXZc34el2MGa44++3t25p/f60LjY1Rp9LzWwSUsmDVqBblnrDaQ/xppNJjOzX5QuvdFmtZv2vFa75G/NVxTLv7aG7/Z6ZHuOlQ61eeiswMre+WV11xUx5rcuVi+uE5LEi1Xhrp9DvVhXJ9uf1V4P9fFiSDP53tGPTUTMC3R9jvUgUUU6e0WrgHhaPFPCGQ3JprMOJwgj4gMiwZ7DD0gUyu2N1uNjrYWWK2W+A4oTG39OVVpr5JwpOVt+Xc1yZIoeXQpUQUi05ih3RauQr8rn18pf7srn2e7jnJW5KNELt6Uxno2w8XkunGLgaYq237xnSNb4QY2xn/HcCsxVN8ZO8AaWOy8430hinpm1VsuxBVLwvN2KSbdXgoUTcBafRYRpsgma7jXbRyp7DF4leWuWKg9bVjZgbzV53mL3Ia9tuseWv3b9fTPhdkgEkN0VHgsCa0JtO+ywcQROo+ODb/xI4MNTBG9uEzEIhxYSMVqRR18IVdVohcFTW8GFaCyccSJfb9zvM2hj6NOecu4GwNqI3jp53ktfq8qSjRETomO5K6VV06COMM/FzH5VLbhFb2BMaaSpH+KD+T0gxvLxwXO5TNbxplFrQbXZxKPgWHIf3dWUpZkeXS3m4FeNII4QB9I44aKxaErOOO+pZbZ7qwoNfKexOukUrW7gWnJlGALjmLjfFnKpDMnTmp0aq9u5jaGDFKEWNWdrZ6+pRtMLK+azk4sSx8B0ORMHo9d757shly246zXz80vj9Va5nAZCHBkuz0xPJ4YxMg2BlhekzUjLtFJpGOhkqjTphndGk8tzJi+FnG2ygagBQGen/OHJvHi+DDD9vHy4joZ/227ZQBe3bw5WsKJ/3dhNt/Yq8PCX/n9w6f6PxZP+unvFuFE22ZPSY8L52IHV7YCxW2TfG1zjfYQfSmfXdM8FJ66bBFsnzsfIMJ5NltqUGJpJMYLtefWR++2GeANTa62bdtZ7CN7ke5qsKM03Q++X3MhN+P5z5vO98fF54vn8RFQDhFuufCqVz61RvHC/N54v1uXWznRZ5YreixW4qQM1grF8ZqVmA41c8CzXzzifcM5GBtf7R/LrD6bXFSHGQKtGd76/mB5dMVbY273x7mmgAT9/XrjOlW/eJwNDs8k4M2YUCXCdTapSi5ksS7CuKFh3oqlNjTtPqbPpGlWt+I3Rk5Ilu3/5cTZ5hgjjlDilMyFEYwm1TK2ZlDzaiiXWSwZtlGVmvs/cbwvSGq2ahEZVt4EF65oyEEIfisMtwVwLuodFxuPjHtvObPtMjjy4/Te27tfDc329CSc9xJm53CEJ/2sveR1d2a9tj7ZV/uRZMNrv4O2D8N58KFzwxGQeRPjBfNoauFS5vZg3ivjA6Xxhnm+9EBKKkamMAdYgRU9KEVUDX+M9m9RH4fu3zNsUuJy/4Z2rjDXj1dbwz3Pju0V4vcHl5PBVjaY8mlTVe2HocSV1ZuZo9BYDI4MgkzUWXPCodlPU8UxMIwDL0wem8xnJV5almLFyl6S2ZlOUxjEwjoHPLzNFlaWZOf5HAp8Wh++F7Id3iZg8b1kJCC03Go5hCviqxGnAxUQczAT/Phec97gm3T9DKUU4nwfGaTDGmg9ISDgf8DFQy2wxtTQzffWQizVyGCPXXLp/XiF4ITQl+i8Ktb4DVi8nDhT/7Uzn2Hj467vhUQrRE0t3AA4Oe8q8SDhUf4e9q/YfIvoQHtdu/Rcv/quPmluzQg9fr1fPNTZu6kOicWyC7LHz4bmhA2T2yN7kBwUXhEuC0QtFTAHsO0vVCk3Lx6DLiYcREcc8154/OSQUXLKGgfm7zZScTZLozcRfnFCa5eurrGccrMm4zIsZxquZG9fajMl5azTXmPH82UcuyRG9ozaliOfaTDIk3oBVCTbtVLqVwTia5DcEe7MiFt9XFvQ0eZKujR3ZjHiXpeDxeGdnipNGU2tUtFaoeSG++0i5fMv0/FtanW2Ed/Dkm3B7fcEFzzDa43NVvHe04ElBNoAoNxtiQsVAUNelFGlYaUjMs8W70hq5CuI8p/PIeHridDkzTQPeN1rLJneqxViJIVDzTL5fqTmTF/NZXJaGNyoDVeE/pGp+5Fs+Kw+bdI19e/PtuNn2OswK/74AV6B0fboeoFVX4LT/cNNYfcW7cwUmDKHqtezKXhEemUjH86nXCLrv26ZtB2kOB6X280zEShBaozmQZj6jrjmkT2QCYZ0KuMqMNhN86AoBu+cqgkkd+cV5aHhg/5zr6vWHvZiuNLEkiy7XtbxhA8tdvzHrE69gziHx19b2eNEhA92mjQW7D95TZLT/qcepvW4HlvMtCz7ameV8RD3bWO7WlOV2oy6WN9ZSaWISP1RppZLnQimN+60zZmphViXfSzdgNlVJuTvKonx+Vd7uMBf44dYYg3AtBlu2Zqz8WuFtNq+Z0xA6i8ZbowZhWWwo+3UWcnZUNZ+81BuqqzQsOhB1eG+gUlUIOMYEpZjVyNqYLK1xL0rs4Pl5dAyn2FUhB6B09Z1Z9+EhCm++Q7o/ZiOy9DWBcLCL+/v78h8wauwFiACydiDWVOL4wmQ7C9YDI02O97Hx/bWQZ8EN1s12XWNvCKYVJffbjE8wns7WcRdMajQYxdt7822oMgOOZbE37QWGITGNgWUpaKuoCLe5MCTPdI7dSwVqNo1oXawTMOdiI2izgpgTf0gwjJ5hjKgaZTN5SIPNbHfFNmZKkTbrNtHIeWeGuMVAoRVYqaV2xop5P7SmUJThaSQMI/H0hAsD98/f0+pCy3b4i1rRJk7IpaI4VGBZCtMUqJ0+DXC/LyjKMHi8GDul1RW4gBAd0xSgKS+dnpazJbstKdPo+ijjNYEzE+Zaleu9MVczlwzO4Z0nF8GHgfPTyOn9e86XC+NlIoRACl0akzz1uoDYCG7RuklnynyjLDN5Lsy3O8tcuN2MUdNWB73W+OcnuJwF2VbojijsI84e9obd6w7AaG9fbyKm7RBfO4fs5lr7Kt42jeoXgfJrvXoSvdI7j4XvQ6KOva/H2nmtKNcc/WAsecgBwNgUZ698NxvYGoJ1p3BmNS5uLwRcjMRppFal5IJvjfl6xWQ3gWGcuN6uJtFFqMW03rF7SDjnQZQpDPhggMqpFLQZmJdL4/W28LY0Y20JSFVytg6fCFxOnrdZubxzTKNRrudczadl9QHwfepM7xRrq1sHoxRHmCKtLv31YIDG/UZrDecdy30mBGG+ZT7+8ELJjSbC263xzTcnXq+Zn94K314Sp/dGoZyXSq4Gqop4MxNWe0/aIBcz5n5/STaycM1eRJiGCcUx52bFLTYdpDX49DLz40fT/4bgGKYL07v3hGEAMT2aBTgD1WotvWNvXaDaNWvaGstSqaWZdEWU/zjW/ln1dfGwqvpKWpMg/gZI81AYHgrTLUDtSdjjtls7aXti+6C7/xqvYyKGgVyt7ffv4aWvnbov3r/DZOw1K+ezGXXar9t+Xf2gdGWLgJ23wSM+MX0YyW+fmd/ekOA4jQPz/Upd7lZYVCitEHrlUFvj/HyijIl8n8n3BWrro4ENFPwsiR812DQwV7lJRkLjXXK8zEoSGxnvo8mDWmvk0qwLPQyb/wRNN4C31j5WOBdEHMv1M8PpnXm3AXV+QTSDmoSp9Bmq97mwNi/Pp2hmf2Pgh58XswCIQi7w8015Ghwn5/mYYewSw1K0A8lCCJEhmhS54lGMFThNIyq9mAyBOEamUwIct1uhaWYYjRnkunRlHXlPsNjXSkFEqa2S7wslF663bB3A3JjEEmpj4vTuHA8pX18m63460NvXnx9Ah7V+W9fK3vlbF2aPgWI3T/c/Yb/bC/svF7T0omcNGb/cp/su/Zox1O3SLzfi8QyT7d4db8XuybXew5VlJIfn2H/Wv7N9ZiIQMPPge7dbC10y65z9Le8hDbYWcQ7FDOCds/sfXaDdZ26zsWbG08jtJlzf7tYocULNxlo/JWEarNCsCuNg0vZhaNzngpfGcpuNhdeM5XK/Cz6Jjc6mmeeMN6bp+WmgKNtrXT1xRIw5O6TOSu2FVoxCyYAYUCrNJL21s8tqtQZnXjqjtlt21AK52PfQSlvuLLdPTJffIGEA8aThRCsL4t4YpxERKLkw32ZuufQaw9imzNXsFJzJJ8AmPGqrnKeAx/H6mqlNyM28E+zcmpienrk8PXM+TQYSl9mApBBRZ89Z5ivL7TOtmKyj5D4NRy3vrwWeQ+PbZHt12x7rub8make2DAfQZY17D8t3f66VD7d26FfGyBaL+++vDMuv9jrsP7u0S2jYgRu0AxUrG9h+tgk8oHumfGn8fchP+u+vpAOa1bpu/V5newmCekHosuPVBHhlAm+ACRvjRZuaF47aWdC0sH5CK0Dcmtp47EZXD3hjvaxgjXe7X86aTAgHKTnberCjaCVIiIFH9HxDPU0DTSKlmWH+ogK5IL4ZUBMD+nrFD10+eB6MpdIay5JR6bYYwXN/e0O7e64LoefBdi9zzsamDcZOWqcg56WxLLqRFNqi3Pq47Ft13Erj481YNN3vm+Qdc66kDrQYw8aTujImiLFaa4OG57YIBZNZzi0Tu6KkdQJJ8Aba0Ip9vk5I3sDrXFqXJLceO+113osiEUYnPD0PDKdAXGZCaQhua0ZuzMy2x4sjDmJJzA6srmbR9hEKbRMw6F+Ju/v19xk166LYrvWvHyL7WqT1XbJuCOeE30zwb2+Vt5taItTpWT7bC6ylWlDyAR8duRSG02hIvTjThI+O+V5MB8t7qr5Q7i/c3yrP58AQfAdZArWZK/xpHJjOiTQEfMDYLbcZEO4KLWfGMXF9nU0GlbV39y0IxxSIU+xMGvNmEa8sfeyY1U19akwMVrTWbo7qbJLN/V42r5gNUWh2n4bTM+n0njBc7J7ke7/XlVYWY5aIaeaqQhoiNReGwQCkNHhaaSzLsgVMFJZiSGZtxjJazazayijAxpHNTXH94OjTHLktlRAjznvut8LL3SzSG477QnftNxPm6TTw9P4Dp+cnhtPEcBqMUURD8x3qArTuSzCAKK5V5tuVMt9pxeQXtRcBpqkWCkpbrOP0mxPbZDAz4uxpoK4J6LYA9/W61jr7f2y3XraJNDsl2Z7rcBiuq1z14fm+2ksO//FQ8K7hG1aWwt4Z3MGqx4kWlhgcJWRr0EcE57R7lUif2GXmYiG4Dd22r20ymDNnb3CR1pQkkXx9o9UFfOD89EwpleV+3c6Z2qxgDF6615RwPkdyjJTcmR6l4JdCaUqMZtZ9n5VaYSnK8znY+GvvOD97fvo0862YCelptM7CdF6NPw0w1lKYX2ZqqQaONhguI8Pl1+Cidc7rgvOh78vCOJ64zjO3jzO368LH795oqvz02phOkXu1+/ibDyMh2D6MXmhNGKJ52FRtNPXcbgaGznOl5sYQDaJZP5VaFbw3H4wQjH3YxEwY1cxRf/pY+PlTZjqNfHj3nsv7d4zDgPOOlAZEGtQbjkqtxUxl8VCcOf9rIy/Z5IdVcWoB9V+mxmXYk5tjsXdchGviuCWN9t2tU7wXL3tXfn9Uf+wx+WLfx78ETOVhv35t1wGPQuiJGV+8ZO0J5/FeblW2cQBPzny95rtJ+VQtnngnhNBHfSrk+YZPDj9cED9QSyUguBCRMJDvbyDK9PTEcgu2l5wnqu9eRZaMlqrE0XTq4oLRmJfMsjSu9/ww0rpWY9CKWUrwzXPgWoSfXiq/+83Qp1VZ59F7v4GdKZgZfmvVDMlFKUsB8UjylGKdOJHOLmgLy8snHNZhE4xdl5KjLI1cLS6/vGRyEz48mWz6u59mbnPj2yfzVBMHRU23Lj1ZXgvn4A28veeGBM8wJnzwzLmRYsDFxDQZY+nz54W3VzPaHqeJk0/ElIgxUsqME2OsWlPKk+eKNjXwqxTqUo3f2b06cIpzPf40OEqL1qXx9xsGu4TwWOht+/K43g4x4gGn6DnbxoQ7PsWh+WGFgWzHwA5G6MM/X3vYBNg7z3tBt92Dh9yix9K1gNS16Osl8OYFcTwR3eF32R4nDS4RXGtE5yjYyO2GMrBODzO0Qpt1fp2ziYqtGdDunJqPhMwsy4wWe8w4pa04jDSGmg10z9aYjFG4zY1pjKTk8LF2qYSnLjM5l57TCq2YB0NpwvVuzLeYTApyHuI2TCyXhvTpaClFam0mb3fd+BhhOnmuVztDWPMuhBQ9uRrAkwaTcXpnZ4NzFtd9MDC35TvLz39iOX2LTxPD5Vcsbz/ALRgDMAj327yxYYYpMN8WSrZhIyk5rvdibKMOGtWmjEOiLpVPtxsqnk83eJ0XTlPi+d2F0/v3PL17z/l8IgZHmd9AK8GHnnMPzNeP5Pmt+3tCZyAAACAASURBVAYZm2a5LyyL1Qo0+yz/KRTGdNh0K9ByyLXs+wdQpgO3269AB0n3/b5zUDuw0//mvvz0YUN+1Tlt33cru2/POHbgU3rTah9xvNekK4PrEEY7ycBt+3oDc/o9lON97GfwOppt9Q8DjAkj3aBR6bG77/O1EBf7vNQLUs2XTLzbf9crWjuDtjTEy8HbpBorJrhdObW6UbPmElaHuTWntz9p92f1wVFrsCmRhUhWT+3NvaoLealIcITTQHu7IinaGZ8LJRdOwxM6Z2PElAy4TlpolKUbB3tj1rVaWNk0YJYnrSqBgCBUlPsyE4PgxNh+t6XhxFNdB9fEUbUxF/PgKrUxBsfQx2fn3qCyZqt5et1zz6vE8mAVA2lrs3OnSh/SEaT7RnZJZVcAaPdprNXWSqlKcPBWlTk3brkxBeEUzd8ynYydN7TGg3hprS3Xz4heZ67Fth6qrUN82E2++xrtCpe/l9P+AzNhYTMTXi9hQ2PWRPTBUE6xTq0I58nxTay8zsrtbYEUcNVRSqZ1I7S7gzgKaXLW3auFlMycTFykqENcMLpmN8cUn/j800eu90puQho9786e56dkjszStdQilHUKhjPzoTQm5loppZi0YjYtqzjh6ZIYT9GmDy0NH72BGdp6MbrKNUyjHlNkvuf+3rshFIawDYMZknlnDuWlj+rywRGmE+H8DpfOzK8/9GKxUebF2D/rhBwRYrCu+yChmxhWSm6UXA4Jhm6d9eA8eDNQW2YzXTRvGGPO1GpLZ4iOslSWLvM4jYkmgdstmwGT87zeC6UJc7EA7r0npYHp/MwwjgzDyDidSUMw+UtdjF3hA2kYu8FqM1roMlPzTCm1BzMrjFtVo9jSkAzSlN+nxjeTmV3uXhdbKbcBD8eYs5qFPYKTBznUFu/WxGvbNmzb6fAcX8S3r/Lag+4X+/NA19ZfPHZ/349BW9hZc/0R2y/bPRnFAL4QHLelkUYDJUPVLpWzAsi1QmsG9Pk0WFHiA+M44a6v5HmmlsLpMjKeBu7Xm7FZ1CjZPlgBB5AzOB9wDZRmNGdx6Jwp2QJUdHaAK42fX63T/v7dgG/KeYDv/vLGh+fIOEWmy8h4nljmBR88tWLBqyeRJTcGD2XJKJ44PpkksQlIMFaK91w/fYbauL9lXj/fuS/N5FkFfvj+zu9/6/n1h8R8m9EWSFOkqUk97/eyJXK1eErXsNampORJob8mzaizezh141XrJBiM40Lg55fGz58WWms8Pb/jV7/7DeenM5fzE17MXJ2aTfa03BAtfWKXySxrvlPuN+brrft9VZwYo27wyn86NUI67hy2/felQeEvxosi29SjNbF4qDkfEq79h3txyRebcK0E9asGatbX/Xh+rJFaDzF0/7as32+bEp8LFadCmSspeLRWtNr499YaaRw2KVSrGVcLPp5NllCN3RnHEz4E7m+f8M5zulxYlkLJmTzfUJ2xZoTFuVKNwdqCcBoS+XbD+8WYMDiuS2POwhCE3IcEDMmYX9++H2iqfP/9jWmw0dMhOPzJ9lzJBkhSzBD15dPVZBDiDLjRiIuT+T6EgVYzaXym5rLF9JLNq01r4+XjG9o9Y+bcGJPjNisfXwtDEJ7GwH22M61UiBGut8o4mKxpiIIbIq2uYUYYp8kKumYx0Ma1wtt14fPHTANyVdJ44vn9t6QxElLqbJoIbaa1bAmsWrNiWazopukmiSjZZBb/5DKRtbDon/1abLR9kf9N0HIr9PRoscAOiO6baPV+sDrjUcZEZzfuU0LsPP1SNruWhFY/HmPFlpX+Qpb8tV3ai52HYo4jSLOluA+d+PX0e7hvW06+fg6H2CvWfbV7sib3isckRyEGbsVqvmrYHTHG7knVC7e+P0Ly5NIzIC+kIVFrAbUR2KdT2rq781LIdwNblqUQo5nney/c5kpKXRKCZ5g8NQhhvrNkG/UdRMyIc2lc75X3zwMhdNaPM49DEWHsEkdrwJpZsHRWgcgu5U3R9ltKnvtSGZN0JqxjGgK3uYNE2HjcWquxf7qxar69gjN2nY8jLk5oVcbzM/eXn3DBLAtqMcasFyi+UCjWxGkmg5mzMdw90m0RMlqEW3Z8vmUqjsvlzPnpmeF0Znz6wPn5HcFBq5kQB1wIBCe0eqeUu+11LCS12gwcm2ufZGUmq/I28/tvyg6+sO/nR7n+EZE5rM1tlAxbLraCC3vTskfZrSh4XKNfHAVf5bX60hylSv0HgHZpkHxRHGs/yw6bWbAm/yGv2OqBzkzrP7DHrywZweRQKSApojZ20EBS3/d9aRAd0plZIoI6Reh+LeshuOoZnet+MYecZQXpWkeG1DxbqFbvaDU2hzZ7Hya/Arwz2UxTJPpeZ9uf06b22lSpzTNXZ6QEVZaSme/dd7AYG3xUY5/rLROHRL1l1Hnk8wvh7EjThXn+xDSNzC+vCOtQEIfT1hXbso33DkNnEwk0sQZTbspwTngn3N4yzZn3lhcoczUf2j51lP5aS6Ob95uRb2vKZQycx2gNFTEg2wbe2MCc1hylgyy2txTXCRLO20Ce2ioi9rxOTBGgKK3a/+h1/jpYJHSfyjE5vnkfOftGeM3IKp1cm2+qsALzHRBap/FuLKpDzDhadKxemL/wSvsr198HahBEbeLRQ0emszDWqUeGBvWN06lFNCVOwh/O8N0Mc8mEMZiRkoJWm+ySqkmI8rwwXMy8tpaCeEccJhurK4rRHQXnC+JsHHApmWW+UVrl4w0+XzPRVcbRU3PtgasRPSQPwSsmN3BoczRMqpCiJ0SjeA1jAGemaCEYHVQxGrfviefSDQ2ts2kAjjjtkiUDT8tSEcwTRxT+P+repEmSLLvS+96og5n5EBE5VCXAAoqgNJoLrCn8G+SOf5QLUijCJUEBhRQS3WhpNICqyqqcIjLc3cxU9Y1c3KdqZp41LBHQRWa4m7m5m9p779577rnnaGR2znZeuvR2QFlHjhFtHHE6UUpqyKi4U1UUFk1WmZgyNq8zkvJ7ZUpIUszU9AG0EnbB0uikuVRyUaQiDiLnIJTY3BaaqPNLlySWQqpCGX+eMkuSwz9lGfey3jMcdvTjyP6wZ9jfMYwD1gIlUWpGaY3RTpDhEqlpJsVAzlGEnpV89pTC6UUsuZ2RjRqXRIyZn9+B7/QWrNZESV2xQlTbkNeH7gbiqEvSWG7GeW5nzC/Xira/Ljz/+O74174kDvy+d3OVaF5t29/7PFqCvn6jXdcAF0i86U3BUwjVsBsdqRR667fXl8OxuZ3kiHYWjAAb2ggd2PYV4xxxnlFknPVY50gxklMmxSCitsgolLEG3ZLVnBKqatJSsTpzDomYZO2Pg+XOG3YFUqkcT5HlY2VwMvqQpkCsrdudIq7rmsYOzEqOL60F0Dy+zIx3Rn6fUq27b6TTry2UWYJklsB4OiZShlOA5znz2cFz32t0lZGmYjIlKHxv26iHCHlPS27sANts7MVfPE7LZmjlrEEZSwiZtIDSjiVBqorzEiloxt2ewfW8++Id42FH1w94b2V/5EVcMdKZkiLGSOeyxIV4fqGWRE6y7+ZZ3m8tUkh+2cHD7pJANYX322RqXS+sQEy92rPrTr3s0+uC8+JcsAa9S5F3nde0HOsWm/mEE85KFcDl6ty5VNByA9UKdOm6vVdV1uRTnu9UpdPiZlazdJrDHNk5Q46B2nVY10lyYTQpTk0U0KHaCG7OwkLTxm0NEvmMJL4qZykpkKqMI3W9FleGCpSMMgalTRMwhM6Kk5/RChNhjpXnp4L34m7kdOZ+0Hx8CnycI3ejQaEY7g5UwHmPMol5OrUOqCKEjHWG2PQqfL8XB5WSsN1enJSKiB+7JbCcZ5Zz4OX9mZzh4ynz8Njz6+8DmsoXbzqMFu0dq/OWQIZQOE2J85LpnRKqe84o2wTOXYfShr5z5Aoxw/EcGXvP6ZT47imgjOHusOdw/0DXDxhnsL5HIzpPqiZyE0cHS67ykZdcyCmTo8z061oxFD5314D5ZUTmOhKtgqJ/MBz95IG2xrbXqazMStRV8+LqOZIwXv8Vvw8jldzueuuv377Ai5920HzdnNhyi8b0WK9LuruKD98eOJcx4/UH2ESaL4LqLXdef9Qo+l5xbysvS8UaODjDOUljbb2ZWgtrtYQoIu5OY5UWx82UUVUx54x3Fmss07SQquzPaUkYDdY5/OCoWXRfUpbHfacb4AKdF0BXupGZTkViayrOs7BxVDtDrHGkXCgLIsSLxtlmnNFyyWXJKJVxTtxRRfhbctX9biDEQOdEXy3GTNfcVXUTQOuHDt95zscJraW7brSiLJMkIApsMynQfmB6+lEap6WQY2vGGk2KiVKh663oZsyVnDPeiT7XtGS6TnE6JRIw7EbevemoeKq2DOPI2y++5O7u0OpsGdl2yjTQJlGWhZzOVOS+xpiIQfR/Uhs/abeVvxozQydn7grCXm+i25V1yV2vuiLbE7eYqK5AmusicB152sDH9prom6LwU742P4t2I9pgjzyoYW0oSm52dffWm6HYaoGt+ahXpo663LvW7FVGkZ1mMZZkHHkciRk6Z5v7GTgK3lqR7iBjlEhOSINxHWtqzGFWMKn9fq0EwExZgNuVkq64akSvYsZskxdKRFZEokFBVVITqhXkWeNCKTLdniHMEIoias1xSVSajksRNmkqMJ0TexUxTkZ49wdItTIcemlCuB7MQFwmhnEQvckUCXOk33UCbCCgRmm5h8gSFMnlaxQt1c7hveipjsYQpoD3ljBFYcc4RdcZbEw87BwfjpJ35BWsQZr4o7doZJQxRAFeO29Z2gTMtETRnNFtPWjoDHRWS13eUszeG/a9ohTRwVJFtRGxypLKlp65Zs+ea8X1DWhfElZsoFCqfWzlp3WSfCCXfPa1LuFK5lhZNNeOxn/s+hNATW3KN9tJQBUViEaFv06l1VWF2w4Lo9gPCl8yL1mRz4GsDd4bFAXvvNCbYkGFiJ4XukG61lVDDAGtLd5aVJPG1sbjxx0FxWla0C8vpPOZ88sRb8RO7/vfnsip4i10FowqiPZwxigRyuw9dN4wR0G/vRbB2ZSqWG2jmCcRGK45o61jmiKlM+RcMUa6e6ueiTECapW2AFNMxKUlZW1DWq9BG6pSGD8AhUJqgU5RUpbAiQgdd70UW0sI4lqjxSUpxGZP6q3oXizSBbedYpmjCLKWJsikRUTO+IxxFu8FVFpSkWTVaGIsaCtia0aZ1ilVpFLFwthZhqFj2I/sDjuGw57d4yPj4SCzx+Tm7KTxrqfm2ISsCinOor/TCsIwL8QlEJa4rbKUK8spMs+Jn/eVt3uNMi35W3mAWzZ5nVheJVavlu36pLUQVKsVN2zg4k33i9pYp2shebXuP8FrTSKvu37X/5cEs80l/x6wRsbIbpPr9b6uz1i3dG2d3sFU7lTmuwWSMRjfRofqFlnlb6N103LAaIdxDpQi14I2nnlZqFVYG7UKCFlLYQkRbzV+GDFKOiWNCU5Fk0OmJhHoy3k9DCu9N40lIqLiRsFgIS+Zr7+N7DrNZwdNmBPWKtI8YztQzdoTFM9P8zZaWHIlTJEHa5tOQCtdlCGFQEmJFGWvhlCYgqydVCqH3uCtIPwa2HVGHgvCJvCdxYtkFEOvmZeMbiKvriHsUTftDq1JBVSuzEsAIyr9Iv9kqdpxeHzkMB4YXM/h8Z7x7oD3Tj64HEjTRKU5U/QDmkJJC3GeZKzmPDGfFxFlXxPBUjAUvhpEQ6EiCeAalETF/vKJ11f/vtmM9fI5bRaZtOJT3QaodU/fwKlXYry36/cTvlZdtw2c4QLWXDc02lMkqbsU5bX9rNNwXyNP2RAXJfa3vSOFhDaBaE+gNX7Xo42laAskahWXMIPGdCNhWUgxi4NhA1PDInPi2ji0UlsTIseIspoaC2FZsArRToqVQhvFaGDN2DnGnHkoAmq8vCy8HDOdh7tOusk/zgtGV3YPT/hx11gZksyaBkKhKvMUsQ5KOAmDzhhqEZBIa4vznvOPH6g1Mx9nzqdICJkQxKnhH78+87i3eA1hSsKMzSJwvuTKHApWyx61StE7GbOKIaNyxXpHN4xorXk+JWguWTEb/vOvTjw9B/aHkbs397x5vGO/F1bp0HsRFo0vlHgGysZgTSFRUyKHhbTIWOEKaqRU+ZmtHLoLMLPWZBJ66iU+6XVtwHUFtoaoFWPYwNKyrr2t0msxcN1v7betyGhrCF669+tCvuzyC1gLTQlse8oVznSz5D/dS93ERImRVwkG6uax2yzjam+/fs1tdI2NrSNfqC2XsUZxcBUzS5OsWhHtFWc++TtEawZq02CyVjdBUsBo4pIx2nA+z9RSmKeAs4aqKqaBqDllltA0Uoo4pxqjsE4JU6U1A3MWHRDTeeZcMCbzfMrEJICNt4q+E6OMYbDi8qSFYV2R0a2usX1iqALmlITvDPvDAIiJBUDnPdMU8U4L4aCUxtSTRZ9zwVpLN3SkEK/iDaiaRL+x2Wzb4Q43P1G7Z1KKaKvw1tL1mtNzwe48yxzROtM51XRvRJ8xZTEP6UbH3X2P7Tpy9dh+x+O7z9i/+5LDw1ux/k5iiqGVxMQSZ3IO1Obks45oij5IJSxiT1yrGBMcTOarYdVQWUGH22sdG16dira9u64fvZ4Haz77Kt9bV2Bli6/rPmwnRyv0P+mouXrRyN7RDTxty0OOq3XEaAVoFKi6Af4ruLNaL8uLKpS7euHtdeTOZGP4Llt+9VJ5/5LJpXC/r6LTh+LNnSPFgusM+7uet5/vQVkO447OQKkZqypGFXScoEbxlqaJ0q3gLaCckW65MYJGgFjNtzNfwyXfaeNUFYPSpYkOV9BVpk1yvYjfLYVcNXGpnIJmLlBVphSYYhtt1uJqbK3GOcXLc2B38Cyhos4RpTX7z3foYU9BE5YjShmWaSJM4kS8hMhw6MX5Kcj4UG3GNSmJM1uKkULFOovzjpQyRWyYZUx5ySxzEWaON9RQ2Y2OD8+BpeX26/laaqVrouVQyNmgFNgmMmyqgrw2X2V8aXVb93aVypDzdPAGZ2QPaa0xKKrO8lGxSaOKjmou8h5QDDuHUXCY5gb6qKvYfIkZm6ZZa4JRizSCXm25Nfyue7FcT4yUP7w//wRQcxVw1nW/0Xy4imBrllDbYlKgNFVX+p3hF/vC81NFlYo2QrqcFgkK2hkGL0Ekx4WgNcZVrO7wzU63loJRkrTZzjHYjpQqXT9ydp6nVFjMwhwTyxzJUVyUpkkKRqMqO6+4Gy3OGbqdEZpaKQydFJvWSnK1RWglM8Mll2a3nfGd6G8ItVwSzFQKvrPkBtooJZRT7x0lygxvTg0JzdD3I7bfY61nOr6n5izonjXN0qzQdYZqZTawVOluuyaIlHLGOfl7lFJMc9jUzac5Y5QI+hKViNlXJKBoi+s1Nmvm44JRUk4LsGToe8t5LhQKzhp8EQTSWAfGo1xHfziw2x8Yh4Fx3NM5TyWJjXgB4x2CtIowVa7lwlpsaHNps5DzKaKo9E4znSIpFnZO8+8eC+MonZGqXi++uiW662e0WfldIzhqTVYvgerWohTWUYNNk6VekrPttT/puHaVPl4lnZcE8+q+vHqO/PQlEVgf2wK+un2gaYpjDTyYzLcTqBgpRjHPURzDQsD1HtP5LdmQzmBEF4dS4uRWqsL6kZfjRM0Fo6FzDusqe+UvyUWVUYdVcLiUjFaG+eWZFEQscJrzxoopRRJP5+SgrVkQ+ftOcVwy/zxF3u0twxAIp0nyoqhRxqCpxAakDGNPKZHpNIngYI6U0iytux0xZmrKxEU8Tq3VdL3DGIsfJEC9ueuIYaHvLP1gKVTOk4xDhJA3AWHvjQBHuYpV5HZQC019jpXRi1te1zmK6ijasrOKUA3d7p77h7cM/cj9wyP7h3uMtRK/cySnMyWLjpW2DqoWJyAFtWRiTKSUWaZATjKKGnPm5SXwYOCdFztL1SrCrbGnXm8O+byvXQHX9bPqqKyf6S3C016n6TysKE8b098K1/bktr9f6Wt8gtdln72Cs65uzfUj7ea0Yq5txMaAeGsrv5rqpmmSojgn1FLEUS8E1L5RkKlQs2h7KbFz98YLW3KJpByZzpmuV/R9J6J7CnIbBS4lY6yX12gsmjifpXsVxHnBWLHdjamAUdJhBqiFva/ovvIyFf7j9wuDqgy24j/O3J8XoT0b3fSeFC9PQUaLUMxTwFfD49C3M7oIk2yZpZFTEiUXwhKgVKZzpBbFMVR+9xz56sHjlYxO+FgIc2R/8OJwpSWnzRW80/TN4jwXEVntrEZrYa0tk2iAFCoslY/HSIxwf3/HFz//kt1h4P7hHV3nUS3W1TyR44nanCeN0qQwC0s2Z3IQxlpYitQdzZr1F33CNCB4Lb42YGTdE7xKtS6rqa21n3bjtpn3m2deL866JZs3wofbPlc/iakbvnOzZtnY1fKr1ljz6QbOrQGj4Fa3jZt//4Q1xO1Y5+UsbF+ri97NFmvbvVNqfVyo+HdeWCAmK2IV10PXrGJjzAwNmDNK4bzbChelpGlWiyYUQDvm00lYW1kAk6G3WAPOepaQGQYx1DAKiWFadCJrklHjkkUjSithr86nxDpxbppGRi7iJKWUjOJrrRrTQMDjJUguOvYi7LkkxbD35EJzQ2Ub1XdOGPKlyPhXqeL0uLJyQqz0XccMOK0I80yulZoi5IA1Ft0N0rjMZ+r8g9QOIWGdaGRoA2GpeGeJ56Xp5mhizcIWWjL7vWU/OnJVaAz7t/fsDw8c3n7JePeOzneUkvHdAFnLWHZJGOuoWVO1phoNkU2TZglSHJdaqW2k4gsd6d1l5PBmUW1BQLV9VLlOeTf9pBX8u2JoXjuw1evYcbXvVzOYm9/zSbc4JPCvjUa5Wn6wFsKqRcotBWnvW9eNnVKvmrPrJUCnar9CCaPfWP7hg+Lrp8RpyYQIU0h8/c3ErtNYrTn+OGONfHbOvPDbf3ni8e1ApXDYOw6HgRAjD5/dMe4Gqqs4BSYlVD5DCuggmi91BVpk0Ys2TG1ncXNrkGmougF/UJujU6X53W/5GDFKwzOJY9lcNafcJq10beOUqonlihtaKgXvFM+ngjpLk9RZQ8iRt8aye/cVVIjnZ3KIhJwaWNomE5QmxAWt5KDLSRh0ksYJuyYvwqipVcYYtdYsUyDmivPymdRSsc7jnOXlJXCeDYPNjeECpSiUaXupgbXOCpCyTqr9OIlUSNdYNOs475ILRouzqrUKq+Xsdc5QEAe9kldjkoartbxTa4VTmlQq3lYGp9jVSId8RiuTaYsPpdVIW8m0ji+32GpAlVcx+ie56xUL8w9cfxyoUdf6NO3/12NQ1/9n/T4XVFeB8Yqv3hp+mCO/DpmSwW/AQsJ6zXSaqCfF7n6HdhGNByoxLmjjcG6HdaNYX+smUGhlRi97z24YUUUWkNInTqmgyOQiaOeuNwxeNntIFe8FaFmCLMJcgCIgSMpGHDUolCw00WVJ4sPutFC3lWqbQeGMplYJcjFEjNaoWqCKWn8KctBopTDeYPoROxxIKUiDKkdyzjhjmgNWxHvdbISFodN3griEJaK0IiSZF+y1Yhg6UkyEJVKaQFVJ6waXwBj0auWqUFMhKyWCpVqB1ttG2+07lHGgLG5RvLxElpA5PHSMj+9wXc84DnTOY1CoKvPHtcgZqVfVc2OhJmpTAS9WE5ckLJsqDKB1uSxLIS4Za+AXHbw7tG5LLVtA2hLWtat/FWw2KlldE9C2UW4yJS6vsXUWX8Wv6030Oin9FK+rPHr9El4lmDcJc90S09d19u0BcUkOtnu9befKo4fRymid7WQGP4TY3A9mUJXx/u0WVAXXzSjt0EoLi846KpaX9z+wzAvHY2ToZbTRd0ZcmKocpDkmSs4oCuRITI39isyZzqGgtXTJC5VlFoFRrRT7UayAp1DovWGJlfNU2J9nXO+lE6cN5+MitsJObP/60XN6mUjLJPagvSRCrr/HP/yMp1/9J1KssqarZjf2FGUY+x7nDL/57oX3HwPWJt7ceX755yMPbzqeXybOc8S24mxZ8lYoaWMwRpIL7y0lSVIdIiir6Loe/ECumpphP96ze/iMu90du92ebhwwxmHb2VWXIzUFjJVEv5SFmis5L5QUBNhaZsIcmM4ixFhzJS0JbzW/6BK9ra/xhavVdLXuXrNibp74apFeBbLLYmzAadurl7W8BsX1+2qTTPtj3Yd/9ev3bcb1W3A19iRP3gQQr1k2rcDbOxgoTCHjeokruY0xGCsC/cIKk/FdEfhtYn9VYaxn99ij3cjTd78lnJ44/xgxRjEMDqVlxLcUSXRzjNQUsVrGCWrR5JrwTsteqxJ/tUK0cmppSZqI3+96efx8kibAKVR2CeIU6A+d6OLQnt/G7cb9gFaK+TxxfJ6puWlc1YpyHUrBcjy3v7HKCNNciKkyxcrbneO8CHtm54Wl1lEJPkvxVhR9p3g5Z2xzflFrFxzRwSpaWHQJxxwLGY01kkze392zH0cOD/fsH9/QD72Ip4aJEgK1Rqy1GNOjayaFhTSfoFbieRJ2bRSmTS1ALtz7wp1jaz7QYtbWIb9KqW6bBlfn8Rr7VjbWtux+z7q7AVmausVVDLxhkiLxd+1er/twLaTWP2gtLOXPV1tj5VY97hO81Fr4re9X/u4bdt9NUFyr5/bVdp7JZ1bq9Vi2vPxWM28ptCQVSlfuHYy68pIqSUvzcloiKLjTAqr2gxdmpBGnvljAWhHUNJ2ldw6RzDTUmAlh4eUYmM6ZVGE3GN6966mNbTDFQlwS8zlidKVzqjmeaTSOFGZpuCnNuQEv1oi2jejOwDwV/KAAGZ1yzlCSxEZrJKbtBsOA4eNLZNx1dL6yLJGamzVvTAyDI6bMEkTotx8cxvdiNZ5FD8S2wlWWXmWeAnE5AwptPV4rTj/MlJyxRtP3Tlxfm6Oc93D8cCTHLLbhcBAMvgAAIABJREFUTdM15YozSjSujoHdw0DXO3w/sn/4goeHn+H6AUWV9x1nSos9lUrOMymeyTkQQyLGJO6Woh6OMhodMykX7tLCn49JmCJbt/02+ZI10vaNWqNgA2a4CDBf9/BvlEivzo2rpd3wmQaowY0cwKd6qRYPr3Pwy+jgSvu7OjKbOsJ6jwpN4B4aWYBXjdn15hTOyvAfPsDvPiR+OCamVAXMbKPzH08ZqxPeCDWhd5qg4XxKfPvNiTd7S3js+UGf2O8sP3z9xMO7HV1n6O4HfO/o/B26B10itoChosIZNc9CpcgZdPt/KQL8Xe6GnKm5NLkLqKq0j7uBHUqTXhJTqByLJtZKQpHE2xpjxaH1vEgzfjomKmAHzTiIecA0ZboOjOsJIeL6B1JYKPVZQBckl57nSK0yzmitRSF6PDFljBP30ZQSIcULw6wKoy8sBeMNe9uRW6MyRwGelYLpQyFkMdE4hUxI0DWyhzDoxHDGaphCpLZ7QxM9RykcwkoPWWzKY6hYhdS6vaZ30jDsnCOEuN1+pxXKKpYo+YpBpAG8rnzxxvF2b7gLZzZfm6uPR+k2grYe9nWNKU3HS4uI9TbqVC5gjBwFF4arsMf+8Ob8k4yaS/uyth1Sbw4NsTRbRWsuScJ2SGgYDob/5m3hw7eVWRXIRQ7rXDm+BFKu9DvPMk1oZ7BO0Gvd6F4lzRTj6fu+oYSNnUNlv9vTdwPdeeL88tRm8BYoGV8riiyUrwz70eKdoI0yGyv23J1bg4LcrJhEBNA5CcLOanSjp+acm8uDOMiAJuXUbLjlo0ypEKOMVHSDo8pbRjuH1lZQeaokozSNnjBRq8zVl4au19osRI0VsKjNFldEz0JEkhUxpg3pW6bQFouAQ6kJTMnMryjpPzyM5Cj2jgIGVRk10hpjLCiHd4r9nScVsNZyuLtHa03nvdiklSIDuFlBjhjVktAqoxVpOZLCmRwjy7yQUmKaAvMchaEUFDEkUhNVHVXlL0axyFtdUlRjU8ihJBnPT5FJdcFktmffDjXdVn8rWLOBoZc8rDbAaX35TzjfVNt/aO/p8veuQVq+eA3l/LR+vGXb1OunXk6mdrAcXOWhJn4XK/EkjLeShYW1TGLJHs9Huvu+/Va518ZZUJZcoBsHbL/H9CPH776nniZO08zTMeF9xTlxk1JAzYacCrpKMDPGkJJqY4UyrqeVjCtpLeNUY2dwzoge084Tq+LpKXA3WmIovHxYqOrMEgr7Q8/5vMjssdXMc2jBSBPjglJalOKNxviRwxe/5Lt//AdePi7b7PScKnMq/PBj4JwUv3sfeT4mzueJmDI/e+P57/76nl/8fOTdu573749N/R9hyBpxsxHxOCTxUpqqNMY6+mEEa6jaM+wO7Ps7rO/phh1jv6cfR1zf4axok8T5mRrFDl1rSy0Zo23TkJJMp5RCiJHzy8Tq2BfmTC3wzsPP+yLn5LrnXm0GtQUnLolje51N5JBLAsk2HfdqfW3fvmSRW9e7XH5wc23bCtlPd3PKCMT6BVfnVH11vy5J+fZc5HHpVkNv4edD5R9n0fAavGGZIs6LJbVRihwCbuwBjbaWSpbPXmk5B7Rjdz/g/Mjd25mX9z8wPX9gWhKdt62rbSk1oY3ouq3OSyhFilL89F1zS0IaFEvO0g1v3SlrNFYrUhIHBgU87BxKKcJZHI+SEjHD09MESNPEWoUfHOFpIkyB88sH3P5RuvT7tyi3I4aPLMtCjiJCaK0lA/0gFGOVE73TjIPjvrdSOJVCDhnXxnjfHCxLrE2vrTI4AbO8tSht8caIle5hEEDYDfT7t/S+4/7NWw6fvcF711hBCapoP2mlUM6hMeQ0IWOfmZISORWW87Kd1/EcmU6RP+vEfvQKKpFE72rNtBxU9sN1z2y71oyj7bXrl2MFI667dVcvvMWH9aUKt38LW553HWjWJv1VWLgAR4WrKurfynULwgA39+z3HH1bx7+y7vVVFJJNX+N1w0SKZcnfDp3mC5+Zmk5NVsLeri33nE6zOPQah7UiD2CNMKWrkrE5ay37u72c66XiUqYvhWlaKPPE0ymwlMjjvWfo4XQuTKdEiQWjKmcqzkhHPMbA2MnvGDrLHCvHuVBQWK/xg8f2rjHL5b7oqghFLObFaltyzJgKxml2vSGFyMdseHzsWE4zKUS0qjx/PLM/iDOct8KGUWrBGNGVEfKANFOts5RFNC3C+dhAMIP1XtijxrGcj8IGLQpKoe8c5+cjpo2ahQC//RjQFUan+XgunObImzce5zyHxy+5e/Nn7HZvKDlTohgNUDK1JDlflCbGiRROVCU5fopNLBr5e13nKTETlol8DvylCWwE43Xh1LXNeGkubutwXT9wBcas+eofyGkbK3WNmepVLri+zkUr7tO96vV9UrWp6myz7/Kc7bBZv24PK2lOyENqu2fXR926bzPwwxl+97Hy4ylzXsTpJ7aR0YPXeCVslJBEPiOmTEBz3ymcU8xzJn974rBzfDxGhtHw9M2R7z4E3jz2PH45YpzB9Ybd3dDGs8DbPf3jPbZmdImQMjVnWGZUbM6KVepCefv6cs4UqFp0cWquxKUwRc2pGpYCGYndWcl+NNU0t17J0bWDOQBBxp6tFRZ1ipF3X30pTnPK4IZ7Th9+1epBTzgfm8aVMGtiLXiriTFhjdm0uS6mHBL/YsyiQeoNXdexzJGoA/MpgqrEJq1xt+soWfHNsmx5YFWQayUlyT1Kriwhi1teEk0ds/49uX1tpJ53VotgexWNv7U+6Dvb1oFuBA1FjJnnlyQgs5cVl0qlM/Dw6Dg0Ns1PWKvqqhbdmpGS0Cv0BStZa002lcaLqP/NXv3jO/NPuD61FGAL5quAldqQPQnUMve+7Zo1arWvtYXHB8t/uyT+vxehJomllzgi1VTIMbFMEMMTh7eNqlwyXWflDZYIqsNoi2mjPJ0RBfiUK2Y+ixDwEiEllsmRloUUZ1QtWCfK8EoXvNNUC5qCrolUayv4KqdTZHcQJkopFWuF+qmdxuhmjZuE2WO8F6qU78ilkEIUG+3BNzp53jaNQkYyMpBz3NSrp/OJ/f0jx+mFnCu+F2FDpaVjWZFOSslC20xRKK7UyrwkTEyEBuLU0izOUha6aZKFrrRQvt88dpznzPNTQBcJqjEprGOzKM1VyS0sCusHOtehlKbzBj+M9H2Pc06EV5UIq6nWmlNaUVOipkBOgbAElmmmpkpzgZUOp5IxrlgExba28u+Hwn4va+UGbtkCm/4JwrDOfa9l4WXZtr/n+nvqtut16Vxeiqb1//XmG5/qdRXkr7o0azBaw/Ia47ZU+wq4uZ7VvQnur4Pi1WWs4ouh8Lu5oHJG11U5XUCUFfjLccFoi9YabUw7wJUIpCmx67X3Pd7tmY8vLIvYjca4EOdZEPy2PnRV6AKWirKaYexRVKbTmdIs9qwV6+vdbuDpuPDrb8/8+odILZrP3g68O+yoFF6mSC6RyIRus8spFg6jl85YLIQlsSyZN1a0P5rEJ9o4bH9P//Alv/31B+Y5MxfD+2Nhro5jTDyfFv7pV79jWSJd31Fy5r8sC999mPjv//qev/7lAecMpyVjzNpYKTjbkjQFVlvmkmVMzGmOp4CyCrev7Po77t59ge9HjLF0vm+sOCmIc1qgCpVdOydgqmrnbZZR0NiYNGFOWwJRstDijIafu8TYlYtQ9R9ELOtlbV1tI8UFrFmX6k/AnrZ85bmXFbqCRiLKCesM1LWGxGthz0/tuiTJ13Vzvb5bP7kVrEllrYj0vJxXWsPbTvFNhlBlfWqnefl4xnpJQmSsLbdjoDYEuqAoqFpE80U7zM7T9Xv63T1h+Yrp9MTpx+9Z5plTs+GtCWypWOQzdN6hqU2QOjfrXdGBUlV0NpRROG347sPMx5fEnOFh9GgN495SlsSHH2fsKKL1u4eB8zGIvo53MqefM0NnRJduYzxotO14+It/zz/99teEpbJMibgUSRCsorMe5zRff3PkP7xPGJV43Bn+6mc9+15xapoYuVRSrQ2cV3irJWYozZLExtc6z773ZCx2f2C4+5LD3RuG3Ug3dHSdk5Ewqlj1tlEIdBXHw5LJKZGzsIHCNDNPgWlu4yS5UFKhN5U/99LIkebG7wE3WidhY3yomx3FtWaMXpmPqEv3oa6gZ311tsvzttiwpmmrCOk2NrWiFOtCrtxs9gYeyZ/X1vRl8/+buF7rY92EVLiwQq8/nBVwXkE1pW4ev9EWurkuh4J38NZl/tNLFvazd6Qko7BDsagq7G6qnNcKEZWX2KCbg6klJLj/8nOqMixzJKWEmxfifOb8fKSzilTh/VNoo5MC8pyDCA47XXk8GPquQ9UoY3pFdCGeqKK5qDTaOfrBo41qjmwS40u5jEfJexetDGckXyy1cnqJfPNt4e2jQ4e0agITlsgwOuISBHhtLHeqCI6XIq51GTBWzsOUEimesP0DyliMH8hzIJxOcg4a0diiKsJ54fw0EVLl+ydh0uUK3z7L3uy9amMnGjfco40gKkq10YqSoSTZKbVQ0olSIiFGYpgpSZzk0rxQEUAptZy/hMyf15nPRmmAAm1f3q6GTYR01aBRl82znuWypa7z4Ku1VK+WXr1kffJZSGPgsnzXAP0Jb87tT7vVwLt5vJ3flasc/xrgWZOKljtslcTKOqowJ8U/vi88nzMh1VY3icGSaWNWuYrDkjNS53RWN82XyuhEuNYoRYmJKQl7JRXY9Y7TKcPvJt59NXL8MXD+OHGeM7v7kUpmGD2HO2FAUz3Wge8P0vDWCpUiOkYZUy8Sx0stECslCWgZl8opaSYFqbkLllzE8n4FkdGUli/FppmYs9SEJQug6bxMVLmxFx3FksF6alUsc0BrxenlRIkJ54049ZbCOURyAz9UgWVetty/ZGEObvpXRhFiwljNPMmeqM0Acrd3UkMiUhuihSeSB6koYim4IiQDDVilmpOybCmLwujKOWYMmk7D4JSAZFbTOYPT63lUCElAVkmTZHd1VhGyIrVYaa3ii5+NPO4UYwyoFfR71fRe9cjKarJx1ehQkjW15dwiwibdcVWjlspG1/kjW/NPADWsO2M7FLbiVq1BaS2gWwJwhWQKxb2V2V7x8zeGpyXxTzPU1ASSkNGiAnQFhp2nxsh8PAlqrq0IAWeDLQnT79BuRBlL1YZalcyYmwMOjfqs4K1jPi+cTydePr7HaRH/DSnTeU2phcasBqXojEJbxdBr0Irnl0BuXXXXSbHZ3XlyLcKM0Zp5WuiqwvWOlMX2zzons/Z9Jwd3zKKEj7gsDZ3G2Q7jRhnp2t3j+gGoGG0ajVyhteY8iyjZMNgNgSs54704ScSQGXrHy8sidqVVhN2EpSMB3XVQvYwXURGbxmzoB8cUqlicAQnNOWqKMVjnRFix39H1o/jaD+KQ03ce5y3WGTlQgJxkHpFSiGEihbMU3CGTskJpT4iBlKSb7ztL0bC8zOQkG+cXu8rnB9E+UOt5e4Wis62j25V86XpdBa4t42pt7dYC1LUFQXX5WdbNg9qQ3KvK6o9ujX/9q27rl1e3Zu3SX9WLV8n65Yl6S8r/cC1+M/6kRPfoflDcvRR+nDO4hBkcYYp4Z/FDh1KVEhaM6xGx4QIpyX5vgdC6norGuB3D3VtCikzTkXmamE9njh/ec/z4jLMSJHddh62aWhIxla1jL3lOJQbpCH93mvjf/v6Zf/p+AUTB/V9+jHz5+R2Pg+EuL8yxUk2iG4S91g1OVOjtyjSRTmFZlcbauVZKIuWEP9xx9+6B/P7INz8EfvUhUqycK7/++ntRoPcC1tZaSUEO+//zH0+MRvGXf7kXMKuIELKh6QBQKVnje2EfLUvlw8fEHCp3bzqcGalFaoWu69FKN9FVcfaRPCWLPboCeWYWkDfNxOVMWs6UVIhBBORq61ZU0XvjUBM/8zLqeanLrgrE66JtXU7XReQWM64KN1rqtW616ziy7cn159WVEwJXZ8C/oWt7j7cA8mv7xZttu8bNjZ7d7ohW3PnKlwl+HSWwy5gfnD/OTcPiBdsNKNthtFhFq/Y5lDhJEaI9br9Huw4fEz4smNMOu3vg6fvfUo9HUGCUxqGwyqFLJJ6P5Ip0kLPEEWtlLCIG6AYRuP7bv//I//UvJ+asGDrH3V7zswfHXSi86yGlzMenIMKozKSY2d15GWWKopUxL5n9QWG7sdG7BRzdv/kKNdzz8sPX/Ph+YewtT1Mlo/luFkbb1z8oXo6BmGQU4e/++YW/+bORv/nFKIl4hdzGaWuphKAwVkQWO2NxzlOqpmKx/Uh//5bd4YHdfk+/3+GcwxgDFNL0BGmSBpBx5JrBWEqNrGs/tz22nEXjICc5o0qFX7qmQ7LulVdrvFI3LUo5vGUl1VW8qa2X7fxH9uUlV7wGDtSWUK5rE0QT6zpUbj/Tusrt194Wee2RdRRKgSSx1xhO4ZMWLb1xi2k37BpC3f7ym716+Xctr4GYCxB2HV9XgG0tvq8dJZWBQwd3Fj6mikUahaWIvXMslVGLe5HLkj/q9YysAmBQK/1+jxsfqKXifGaZFgF5lgVlDOc5ULJ07GtuYgwtl1z1HOZQGHoB6jIi7p2KwmhDRtyjtG0GGEZhjWmdYGGll4x0sI3cPaM0RqkmVJxwXqFz4Tdfv/Dm4DAlQS2i/5hEw6IUmF4m/NCxhMCyiLCU94q4RfmK1kZGtKygH93+S0pJHJ9OeCf3b12v5+eJl+eZ53PFWsPxlDknsRQfmmZPXALhPHF+ecYPe1Ls8L6jUrC6mYY0B9iYAilFjPHUTlNtBU5oEmGKTKfA+cML5++PdOeJv7hLWKe2Au9mPazx9Dpn2/K4pj+zrUX1amFyAVvaeba+1DaG0ZqX12v03wKCuulibVQ2Lu9bXz9nPe/WwvcKrOH1vr3S/miv93zOvH8pLIsYQTwH+SWuxc2cwctUMXsvhfwU5bzzViYVhPBbOS4KbyppLuwPnjkU5lkYL/U3R7pBXI+MNXz7z0+cl8S7x47v6o/c33tCaBMPRrF7HFvDXGG1uIzpHLF5EdDyHMlFsaRKRXOqitAa8Sv7WfSgIKGIs7gpouD5HBgHjyIzBwEuX06Bw87R9T3zDz/w9q/+PUpBXmaq7ZpQ/0QpUr+OzrDMYgrTDx6jCrVkljmLlqsz0oxg1UquDKOVhl+ppCB6NtZq9Cg5RY6Qq+Itin5Y2B8NL8+RKdT22TVNrAKxVhkFU4oliP5rSBmnFaRC1AIcifuxAD+dE8aPNYqUpc6PWfInrTSnEDlF+XsfBs3dUOkPHQ/3jr7O2Gu133U91tty8XLsS4y+dj5t395+dmuCcD0SxW1O/XuuP23PfVUkb4UxtQUPtSWUl4OIrauzJRJK0CfXK/7yQfPxm8wPU6UfndD+2weZS2WZE5UZPxT6qjF2QRmH8aLnonJAmw7lein22ox8oeD6nv0Xn+P2O5aPH9HfCy285EiMAariux8Fb7S6iI+UqjgngkM5ZVH3HjTHU2IcDL4Tcc55CtjO0fWelAuDbbSyXLDGsqQoVPWmGaOUFmvhdoacpozpdmA9drgDwNge6z3T0wdBMts9DkmCsbNy0E/TgnOarrO4TorKWitLKAxjTwyBnMuF7tXJQl1dLWKsItqoFZ1XKBx5FpemkCAWg+k8Tnk647GmQyvHMOyY5hnvO6wR62CtaB1PqDVvSU+uSRBEJbN51veUogjLGZTCWVF0LLEIaNNQyK+6wi/3Feeapmhdi5u6gSwKKYJ/X5i5dNq5bI5159ws/OvQdfXANpvfwuKnHcturjU5LK0tKt3Q6woatnCvXt2rV9c1u+b2+1f/VhIoh07xX+8Lf/dUKUtCO0NC8fI0NXFQsAVxGap+A99ULaiayWVGaYtxI248gDaYELG+w6gnaq7MvqcbE96A1hlMakmhCGyDaEOpCnERa8AlFf73/3zmv3wfCDGxRIHtfzwt5Krgi3t+mCpf7RXDUOhH2SdKiStTSYoUCvvR8v2UcL5voqOJlac47O54+OqvCCie/+//l37UYApzEKeMmCvGOFJOW+JlrCOkxBIL//Gbhc4rHu4dFRmt1Bq8EacoaiGmQtd5UioUcqNVj3RNRDHNE2WYsd1Ans9ChVXSeVQ1U0pCId3gXDOlBMIyi/15qkxzbLaKRpKOIkWkr5m/7iOdl/WwNY//yJpY186lwGlv+6byuSRgm5XlDSi6/q9ePf96Ga/PXX/LHw9q/+pXpRXH1yDN5R/rCbceU5f4fxktkbcrJaHRlc9d5usgn1UtMr6jTeH8fGZEYbonet9D6dHaU2tBWwtUdIlS6CmDMg5rHMoYUBarPSUlrOsaey1T548QX6gJtOswJVOtWOpaUympsmQZ1zgeA3/7D8/8H78SMf+cC/npjP/R8RIe+fyu4zgV9qqCDoyjFcFAY6ioNjIrwOj5nOBlIWUR3lZNPLHkwu7xC77/zbd8PGXenyrHCFkbTqny3dPEb77+lpyTiJ5rQymev/3nIzkVfvmFx9s25oukJ041hwhlSEWxvASMMwxvRu4++68Y9nf0w55+3GOs6NYpIMWIrhWlrWRPNWKtE22flgeFaWZZIqmNUC9zodRKSQUfEz8bEtq2vOhqE2yW2VzWxC3ucot0rlvjda99jZ/rPrtODtcNqtbftyaT68LjkuNJzLyCG9eO4Ppza6eQNU6rRvH+9IPorctT+x6KuuYZa/4KW6NejvOrZuTNa1yBOT85m+rlYQ3aKh5GwzufODXNJTygNecp8mbwUtzpTG3nORmUcc15pArD0lnRqaqVErKwJpXGdx0xJGoWR5ZSJAfMqaA13I+esbOUErGmEnMQK1xr8E70IrwVEr/8DqmSQxAmnTHi5NT5pvdSKyHCea6UGhnGViR5iWldp3H3ju+/P+F0RsUItTDe9XT7XswxciZHEQsuVJTRrfFYmeeI7xxKFREVbuu5373DDQ8o9Q3HH0/inpjFLWaZE8si7//5WDgG0eXZO7sJlCoFaTpz/vEDfT8y+I5SemqxlOYmlPNMDqeWwxjJcSXTJqdImEXbx3mDKZmdyvy7u0w/yAbdJhbVVX61Md4UAsKuelCw/sQmMFGVADJrOrvGluvGY12//2o51vXl2u+t14P9n96lDNv72rbW+reXlt+uG7HKXtyK5MaeuZx1XM7IbfPJaPfLObPEyilIvtZb0RztrQAS3oiwt2vuZqAY2n6otVCK8CWqUjgtTBqTKsfnwBRlYqNzwvZ4+TGI4YUt9EZzTJXf/PbE3Wg4Pi2A/I7DnePj8zNjb1DAvIidvCoVS8GojFUKZZTYfRtF5zXeQSwQE1QtYtzKqI11Op0DfWfpnOHlGOgac003sFZVaUiePj7zmApxmci5cnjzBd//w39k3DtCKlhtOR6DGBhkcRn2neTgInqsyFHcALVWhBDZ772Ah1oRmrB5jBGqlnsSMrkZ8vS9JgXNbESSxBlxd0JVAY8T7LwCrSip4Eohp8qo24ROkTEnU+W9dd42MxORNslFHPFqERJDqYW5KOY2NtU7qY3vPhu4v+8Z0swuBlS5nPVqZXk3dbC6Nlu2MHJdLEkkV7VJtaC2fA5FA/zbWD/ruv/D158QE75ChTb4aO3dtLmt1XpsnS3jghpvP6aUKCpbzeFB8TcF/p8fMu/njLUVUkF7sN6QUoUlo10V2945gS/YIgVTnT5CTtjSRm5cL8CAUmg9YKyIlholIsX3PPLy8ZlUNbEWXs7Hpt2kGJ3m84NqdG5JpGjFqLdwmgrDTm6EVpqaK88fTuwf99QqgS1nsN6xuxsJ84QxzcDcyzjYcsoCUhmF3x0wXY/1vRxGJTLsH5nev8cbze4wEJeAc5JIjKNrwFUrtpFEXWvNNEVqVZQYOJ0Whk60BmRUrLLMkXkWHQ/vDahm+2jFjlspGRWpgFaG2oSbQswcDh3dMGCdZtR9W0iiC1RzAStUPI28Zs6BWivGdlDKRqFFWdHfyZkUEqokwvOZ+XnifIo8mMJf3xeGYYMEt8z0kq5eaN0bgv6q2/X7nC9uRYW35Xz7vKt1ugEZnzI19OpaAalrd6fbBHJNMG8I8+tPb/++3J7bxPTy72uGHK2Agoed5qug+DpWVC7SdSuV0/OZqsGmjBl6tPOY0qGMp+SE1VYOyjSjfd9GMzpsbygp47ueg9Z0XdcAyEicjtRwpi6VnKJYV7eOeylFxnZq5cMx88OxkFIhpIxxvj2v8v3Tid04YJQhVXFrGntLjIXpZQaEyTYFGZHwd+/Yff5nUtwq6aRXpXH9nv7wFtzvUPt35A/fsB8csVbmXBnv7pnmI//D//Q/8r/8z/8rz999QGuN7w+8nM887Rxff78wjk38tch5IRblwmjIMbJUizEaayvjbmA/9uzHnq7vocJ8fMEISodxRtKvWsQdy0hRmWNg7bxr7Ugk5rMU08YY1nlEg7iNfMXCfmhgexP20zQgcJuTqNxsv/bYtsIu+efVYpL4sCatW+FzhbugoNGAtm+9frE1wtws5U/x2t7kpchdLe4vG6s9d807tyT+9vH16Ttb+NLDd1VsX30n4vMxFkJImCViTh+hZPSg0W4QUT/jQWlqPELwVG1QSlNiQmuN9Z67x7eMd/fkMBPPLxRVWdJCWs5QNGhLLeL0sIRMyRXvFF3v+fvfTPzdbwNLypzmpf3tmhQiv/3uiV3/GcczfNEr3qUqozpaNZ2XQohCw5bk1mD9QE0LtRRyipQsIqvD3R33P/uCzyP86usXfvMxYTpLLIXfffsebS3GOckRcmEKAaV7/uXHxOOoedwbRsGtgOYmgcI7y/vnwhIj/X7EP1qGYUfX9fiuE/eKUqExAzWN0tYaEjUrcg6ktBDmibSEjXGgjQUVyaWISGXI/IUO7Dq1bYJNv4TLmtnAl5VJsxVfsgdfRbqbbv11vriOTKibqeErUGc959fXvlq28lHwAAAgAElEQVSCqwjpzffW37O9SvvvVcNO3f6KT+66dbO6yrLX5ONCjdkuuUcXXYHrWEn7se25N6DNzQPy8u3D9F7xswF+PbdBxyKfc8qV88sEyOhpThGbk7gTtvxNayN6FHFGuQWwos3Sd/R9z+Ss2NIbxXKeOMa0gUzi7Ceim4fRo0iUbElLIpVMyrJujFbsBsdu7xh6J3kAhXmJOCujB9M5Y6yiGz373mBtYgowLYWPz7LuO1M59IoQM4OD9x8Wcog4LQXaWCp3bw+kJWJsIeVALjA+DOQkjb+UCsNoWM5njLbUklC2Q2vD/otf8sM//wNaCZCkqSxRGifTUnieCucghiKqVqYpyNijErdFcoDlTF4mUlwoYSFToGhqmslpaqZDwnpNWfQ9YpDmrzYGVTM1JvIp8OfMPLh8YX7Ui75FXRfTqzX2moC2Zvvrelr31Aag3m5ybtr71A2LqVWhdDtH6qUw/GSvotaU/zKCuTIN9PV7Z6sTLgiW2izTL6w5Lvnvep8qzIuwljqjiEWa2xpxWVvPvUxzHStQg9jUy9mrmw6VMNBqlaZJyIWHQTTaShGgxSjN2BlCzq1+LOycQmfF8ZgxWkaMQ1F8eIm8ORhOH2Wq4jgLk0Mp6LxmcJWHXmG9QXeSQx8XOduN1YRUyFlAn9oYa1MTBX8+JpxrTrrt/p3mxGcPHUuszHEG6/nxu/f82c9/ibWeML3gd48cP3zHbjewTAvvvz/z+TtHwTBPEaMdGEUKIssxjE5MeuZK14t2nbGG43Og6w3n0yIgjJO/QxtFjAVnNb7T3D90gMYpxfElCdGgSMNmNAZvxKq7pCqyC6WQCgxakSgCZlfdztMijo9oMT6xhgosi5yF81L48DJTSsEZw9grHt8a3v7sHpMjh1zw6ZocsAKIDUjdRhlXhunV1kby8k3CY4v1l8nZ/5+6N/m1Zc/yuz6/LprdnHNu9+59774m82VTWZWmKKpkmcao5GHZwgwYIjxnghASfwdiwAAGIEsgZGQkS5SELYQsBh5YAqtcZKWrsqnMrJevu91pdhMRv5bBiogd+7yXmRJMLjG49+y9Y3ex1++31vqutb7fyU4n10vh/4M891lSyxhoLh5fILVzoLlIsCdHuCzka6e4emj4a7nwZ9eZ3bjQrBWW3LZ12KbCVg6ZUa9wdYM2DpRsloQO0JAVygV0swZtgILVUt3XWrHarKEU+t7jauGRKUXR7fek2LOuZbPeHzJtq6isouvS3Dq1aTVvXvWstw4bFe1KNNXvXu1YX67QxlLVBussRSnaVcvh9naswGmS96QkM3clS5u0a7aSmLqGGPbU9YbVqiH2OzbbDa+Pb04tk1k223XrZM5dF4ZDEOPfRTZrw5tbT1tpqkoTQ8IPiRSFjKoStkKm1kCtJCBonIaragRUNAlL1TiMNtJWmxNayxiImje5sZ2yZJIfIEdy9qQU0U6PZMWe4AdSzOQIoff0+z2UzHrtyKGQdwWjFO9cWH5rFdhWQqQ6g4GjXZ3MbMpkRkBCLe5fgjTzxs0pS5w7f84XwClAPQ+r5PXOzf5tPspilS8hmGmLKOVXfZc58j+9zvTILPu4SJr1BGBN0aaiqeEb68xur+lSFsBBFYKH4dCjNAx3NxhjSEYIWIxtgYyxDQZLDgNwK77YOJytMBdXQCH4gRwDw3HP0Vm6m0zXRYZeEY8BFyMqjxxMY5LyZi9Eo7kU6roh5kIu4iyUUry5O/LewzXCegl9L4RnOReGKBtqVIr26gHf/Bt/k/Wj9ykwJosyhqGUYX1h+ei7v89xsHzy2TXd4YYYFFW1ornc8Iuf3PLDH/yA7nCUa6oNzaolhMDlg0fcHV9z/WbgweMGZ/Uovyi2F4PMZLbWoWzN5WVL067ZXKxlXwKMNpASceip6hqFyCIKIG6ECLEoKNLlU9AoZUlBxremINJ3nv7gGY6Rd3Tg43XEujJKsZ7b2JRQngEkpcyBzXL5nf5YBJBqUctbJEVqDMbud3up5Y4wBqD3A9i3+lAwz8iPe81093TX5CPn67f8ViPQPCXBGnjfeG6C5jBIq27Vil2nVPCHA0pr0AZbbcE4KAVbOUBLN9XhGpMzaIu2FcZZrB39V8mEzmJL4eg9uCuiSZRwi4pjp4gfye+1dFW+vhn4xecdOReOw4B1FWXs0NJK0YfI3b4XYLbWElStHHZUUvSDzKbnUjh0YquPH12BcbJulaMUMK7m8YffI2TD3c7TXgdWq8BNlxhCko48I6PDjFLCzjl6H+hjxZd3kU2jiMngnDrZU85jUirgUWVljLDf3dKu1pASqTtCTigvSowqJ0oJ4xrS5BSJKTMMA+Pb0w9BiMCdRVlRnfJ94NIPfGM1Ap1Lf3YWoC3Wzn1ftOyk+ZpjWVSTt1gkiEvC72ndjfePnvTsdU52LAWayTcuscYyfT5VZgndCZR9uw/FeXasThvYEnBiCqrVWUyy5BM5C3vLKda6/3bzY2O0birFg5XmySHzIorvtCNP2bFPGBexzjP0HdZZtDGi6JcSpmpwtiakTDreoeyKdtWCMsSUSCRUDuR+IGgh3lXG4qxU66UrJpJLpK00OEdQiTAUjjEzeKnKt+uK7UVFVWkZAy6wbqUjxQhNIjEkDredcNFZTWM1l9saiuJ46Lk7BL68DuiS0DGgYsKHjLKi/LK/7alXDSkmtLYybqSk+JlzpGkbwhAIQ0CVAyEMY5LnQFvs+gHWVXTpgCoI50gq5CSgV+fzrPZUWRmZ0GO8kJRC5wTJC2g98k+VlAjdHSkeR9BAOn7yzPYvyjXNqsWqin7/mhISDYlHdcbYc6xvjlEXC2u5Pu8FoaNsM/IiY0K4XKOTCuIs281Xx3vkc499ORPIOJ/wdh5l7joav+2sighLYErBzI9VJgebQdkp2VVAHou1atxr5f6Ui+SQyMhSk0XZKI18YJWW7n+jTjLQKE0qAuRoFMcogIvchqwy1hhCFoCzKPGPMQnPoMSQUowwStSLkkZG8AsYlblymniMDLGwHxJDFACosqLgpooh1hrDONCesshFF4UPhVggJMQmlKYPEWMM3djpDdI91LZGiuhodoeA1pau8zx7vuVwcyfy16bmsP8Mt91w81c/p6nW5CDE+GTpqPNDxGppJFCIsE93GAihYJzGJou2jtvbnsrJ+FLbOhHlyad4Txux3fWmEroRI129MWiOB4mB3BghhSjKcSlEdMnCR6NBq4xXhaJkqoQCKhVSiWgMIYJXUYiTx857nxKttQwpY1Vm3SoeP92w3lTQZ+pbKTrN3TQTIDPZKmILM1eSXOLTeTOozyn2G5fzCWgts1+REeL/l0DNKZgE7r/IPGO9+DKn/j3mBHt8iRnw1cJX8/CR5bs58ef7zC4bSkzY2lBVFtc4lHUUXTGEQr7z1CtDVTkq57BurHSRIQbS7hpsIyRICCGURlO5mqAH6pH8VumCM5FKJ/pDxCqPVbKI9/uIc4q6tlSj7G9GxqLu7jxX1jGESMlQN45UMpUWZDBFUajywVO3NcJnkUd1CkXwmZigpEK7eYKxIoNduiDVAaRFM8VA3VpGmkNCGAlHx2s7acjvdgNaw7ELVFZ4bGIoHA9e+CpyGdWqpHKZJuK3LIl42zYyVoUhBMvtsQCZttI4a0FlSoxkJRUD5yrcpEwTAjEOkAZyCfIbDIqiZWYzJWlX9V2QmWGtaeoGckc89mSfaCrFRy6xdpmJr3SqIC6NZnZms21NVnmys5kUcfGcaVFMpy9Z4LlvygsznR6bu2ve8kPNWeDivrNbE4fP6fzT91uCWOrsFc6SdEDlBRg2vadSbNrCB0Pix0GTQ0I5TUoZP8iokrERf9hRSqFqIno1seUWjLOj3G4iD3vc5iGmrWQOPUZxgEbAnNpVRNcQXCTYTMYRIqgg5KY5KTovxHA+Zpxz+JQRZvfEf/yf/6d0fuAf/lf/HSllLlcaa6TSEELCJ4RXxiia7Yqn3/tt2osrYk5435FSQBlRbNNao13F+uIR3//9v86Q4JNf/hM+/uAJ+z7Sp8wHH7zHj/70x8QhjNXszO7ujjG1I6H55RcHVisrBOVF1G+E5K0gTQSFulXUq4b1xYbV5SNstUYbJ7PyVTUSRIqKjgJKzkAeE8ZADAMxBmLKHLuBoTuQR1WMbt9TYsKkzLM681s2UI0gzZRPnECDUxX9DKeZDWW0k5lD46vDD9O9p/FZmMYtppj0hO9MvA+nDzHN8JcpyX2LA07O/GE5+T5GMGaShmGRSC/X8bROFwGq1lBreKwSg5aATRUhyKyNJiSFS0KOmVLEjgp+qmSMrTG2HRWbCtpZMAZtrRDjV47Q96ffHpH1LsoyDELinWOcPprITJfCzT5w08GuCzRNQ8wI15LVXD685ObVDXcHz9OrVmTAnSSSvRef6+cgUqGt4dGHH/Dkt76Pa7aUArkkjK1pVoZcFOtH77J995bqZc/DcKQnkAysHzm++c2nPP/oOX/8D/5YgEwKq/Wa/RA5DI7eF5paRmwViDqNyXT9gDMVdd1y+WhL04rKxbC/w2zG1um6EgBIKfHXWsm1jx5phRfwOeYiAazRpKJJUYgGc8j4N0e+2XjsNPJ0v4hQTmDd0hrmdXcyJb5yAqcVN/vMs6LG4kVGIO20BhcnLSrzc1f0uObUbK7jOxUpQMnTp/c6Z8b4/81xr0tpzhVPJ3zlz5Mf/brd7tznyh+n3xakK3XTat5rMrtO4UF4HIooseSQRB0ld2g1xnHWUDlR8XPG4awhF42uKuyqJWcFvZcEsl2Tt0nWsqsIqVBZAXtQBX88sD/ecnvjsSphVCEEGWEyWtO2Fc4Jv0bwkVISE2+wNXrex7VSJDLGwOCjyP0eA5W19D5w2Ro2leWLLw58+soTY+bdB479URSoXKXo9wOmMsKVlotwaBwOVJdP2L9+jbGGrvOU2LF/8TMePP8+hYKxFttcsXn6Mbdf/J+k8fneZ3b7wK6H/SAKNU1l2K4M24uavg/sj1HEMHKidjVtVQv/TsqEfk+O3QxA5jAWaqylsoacI6kkiqpQxQttQd/zUeNZjXLK97u8l/5rNq/xvnmk58y+5Cw17sfzgyP3x2R/zH7i5HuXxnpWaFXAWwyiTl0wOU87ybinjYDNfB5Q9CktnYDUE+A9+pQxWZ5GpLIuaCO8M1YVugy1Vdx4UU8siD1bJXyZRolaoMS9kuNsKk2MaialdxZsEWBniJlUoK2lJKWVoh8kF6ut4ugjqEJlFI1RtAZ5TlYcQ2ZlFU5rKlM4jspMIcGuk4FSqxQXFEJRVI0dCfGF4qJoTUgZ5zRxUgOOicpKh48PhZtDpKoMtdW8uvHYjWNbQ9crfAjUG8XuzUs2T2qa1RodOlRluLvb01aauhJ/WGIe9yGxL6MUQxBQar8LPH6nIQyRmzcdq21FVZtxfFKNQjfSEKCcwjrL0HuiT/hBxg3r2rBaAyljhQeduyFQaaiUwpmCKRIrT8TC9aSgqECNo55ZQUlCCF0U9FmuY86ZFDNpjMGaWrFaGfwQOL65ZasSpqSFfo0663aZAdN88n9Fce5Tx5HDnNIJdL2XhwlAc7YAfuXa+LVAzeyEzyLphaeaM7cxuCinxPDU/XAvAB3/N7Xm6TtQdOIn+0yXMvk44CuLqR2ucdh2Qx+kWmysQ1s3tzenlDBOYdSIGoceYpDW7nGRaC2InFai4lRXmqZesWkSw64nHHuIgsLVBnLMvDkOOKtp145CRmthnL++7Xi2vsBUGjt+xpgi1hq0gRQ9WksQm7OMbWnFSLBU8IdAf9zjmg1aG7R2KDJhuAMyRgtRXN1UaGB/d6Rp5DMoLd9lv/eUIguwaSzHLuNM5tWrAavFyKf5W6MZHXkZSeDkuqeUhbnfONpGY3QmJZFItS7TtEKqmGOQsZSmRZExyMLxXUcOR0oJ5JLQ1uJjRIhhR4WcUnDOoNCYbUtlA2F3oAyBFDPPq8TDOmGUkKHNrdlzRDrZzRSFngCWU+BzyuzuVwDPNnW1WGxj4nMO2Jwi3jPEtHBSvXkLj69UUDh9n/vuenxUKgzq/Hr9ull7NQeXcuHVuIAnwixt4NlF4fYu80XMqFLQlZ03wv4YQHUUDEo7TOUxph6DBk3VrKQTTmnhr9EWbTQ6yXtXzkG7osRAbNuZbyoehVCbXEbCP2SEaZCxHweELMSeRmn+2//yv+adZ4/5zjee8v468egiEXKmDzLnqo0VRLtuuPjGt1k/egZaRp7yyINjmDpHZI1ZV+Fyy+Nnz/nw+x9TR8+qM7x8c2SoKj768H3evL6m6/qxcl948nCDLZ7LjeX69ZHrm4GqEvW1GLM4nSKVlJQ8dZtpGst6fcFm8wCUQRvLMHUOKKS1OidiGJAyU6IYTUwDKQUKSjrcUpAq6aohdHcMt3v80WP6gY8rT1stwNCySCCnAIYTtPAVEGYKGNVp9n86a7bGySstfMCkFjfZ1K+083J6klLnBL1v5TF30ozffeL2mKuayw1r4UcnYOrsWkzAacFV8D6REDUvI+QusBqViExdkbKQ2E5BQBltI0cv7dKuHefsExorChKDF7+qNNo6ktbUbQsl46oKr6RTM4dAGcF/iszlH45p/GkU1jri4KHAgyeP+Pf/w/+Af/j3/wF0A7pkLmtL5RSHPhFTJgxJqtvjTHpjKy7eew+M4dgfiKWgrZXA2VTUq0sePrWElPji9Y6/+OTPCF2kqWtKfcmu7/jhn/4rGffSUrWr25o0KDCWbkhsV5aUZJwiZ1F3c3mgbjWbBw3tuqFarVCmIvQDrIsUhoyRbhoKRQlnXckFpcW/Ki1KdjEk0sgLohTEwTMcIvkY+O0m8milRlWRxU9/ZjdT4n9KQiT2XPimqSNm8fQzlznZzPJmuf/4aQ2d+87xvU7Z3z2U6OQrphjr7CsozgPPt/JYxq1fc0xfdTrrXvB86l5Yxif3YpPl+ePveQ/hRsB5xbON5ufHzDGLEqbVZSTvLhQSzkmHyHDssFVFztLVrSi4pqWYCqWlA81aB5WlrqRburQrStFUIRCCjOAbY8Q/u4pUXVBSxfF4IHSjSlSUWLFZOeE61KP/iAU3JqAFSaa1kfEFg54rxZu1hQJ+GLBa4YdAionGgCuZLmb+4rOOd7aOFBJNUnR3PZdPNqMggBArpxCJfYdSjISrIh3eXb/iePcF22pFRrpYL55/m5c//gHh9oA2UmQdkpCPrmrLN7/5iCePatatIaaM73quhsTnXxw4dp6QgnSm5kzodqgSCDFgjHTtxxRFZcoa6ayJPRCkCHvoGF5d07x5zaXpUPb8x56tpIjtlGWMOxYc8rJ4cc+0Fkta1uz4YmpJuM+Yey2fPBveCRw68+tv6TFLF48GNRd3xn1zJmee4/hlzLE4FExjKhLbT0GKEHk3ppAqQ58KGycjNVqJWMZUKDJGUVsh1W6dJhfFjRcy/wnE8RFWVrhOlJYS+5tDHv2vFKIrKwTFwnkjqolZgcrSwVNU4RhZAB+wrTXXfSJlWY/OKratGrvrJJcJMc2S5DFJ51gJ0A2JqhJVYTX6upRhXRve3Hgu1o4+ZB6PoI7VmdcvbvjXfuf79GHg0lqMq+h2d3if2O863n+2pl1XWCMdMxTpzFNO4gNdYLeT2LbfDdxdB1YbS1NJPj50EWOVjCAlUbUTPhst4jRGqABKAm0Mpk5UdeLu9UDfjxQbWa6b06ASFJXRGHzKaFXwJVPD2Cgh3I8+BbIxc5fb7dHLetDiu9aV4nJVcLpQV5qHa03zZodJYn1zKDbmqHPBouRz3zDFXLNnnXykZh69Y+KdKqCVKC3OPv6r4cDy+A2jT6OGPXmBHp2thFPgsMgAT+epxbc7/yRFFXSlePrYonXip/tMRENKGDJa51FK2wGFHBNdgr6PVLWlMoaSD6TSCcdKEeRQuxZMhSoJsiClzhqcFeJMpS26slBplFd0fcLnU2dHbeDoMzddz3ZtaVshJYohcvNqz+NnWwFqnKilpCidI7ayozSgHXXfR4KwcZOxlcFUDlOvkSpHjZS+Ayl4UhS+CDuSFq42jZAy9Z7eB2kpU7DrhBzq5magdjCEjDVSBZlY71MS/hzvk5AYZqmCWCeVkGEYRlJhTUyRVWtxTo+BgCC3hULwHlc3kDMpBFIYpCU0eVGoQqHrjLaOYfBUSuOcQZsCZZzLLIYSjvjbO0iRZ5vCezZil10yYyI23c6TzczJzZQ0LtPEE0fSEnw5BxqWfC1lDkq/6qzUV87/+vPewmPihlqCLyw/+/l1WXbQzH8XTtd4sUjVApyRR8r8UlMy7iy830TuDppDMqiYUJWZ21hjLKQIZGkfNihkfO6IUhpTrdG2IlOkuyYLk7wqhRhFqtcZS9u2EHpMOVA9bDhGQ+eFGAxVuNkFdl2krlsO+0GqfVqhsDRas1WZ33r/kkf1keJ7SlK0mxVPv/s7PP74e1Bgt7+j2W5p1lu2l+9QNyumXVRrMxMll1xIKWKM49nzd/m9v/57fPKnf0LjDCYNXDUVf/Wy5/GjS7pjRSmFbaPZuszGRi5rODrN6+uO1UokzZVSuNYKT42W9WpGsKpytUifV7W8f3LknDBjwpa8dOaRE0pn/OBnda0cZe92zqGVdLb11zLOsbLw8SZwoUZBxzM+o8kcymnZzbHfKVk8mc0YeYwGMsWjalzb9xNCeeoiOlWn91czfiPAzPKzAMwNKW/rMSNbp6xvxpoW+9d0nfTisQnsmh6DKWEXP1w5eK4i+6LxShP2Pa5xuFWLqWpiGue+UWMbsKillBRQukJrcfklylhuCZHoe1zdEkKibleoEiF1qK3DhIrDG00XBYQwlYwn3O0Cn7zose0W46bRQEPKkTefv+Tv/xf/De89e8yHT6942mYua0/dWryPFBSusrQXLc3VlfjPtkGvL+iGARtFUEAFAV2sCbiqwVYtz7/5PVSz4tPPXvJOlzn2idf7gVef77h5/Vqu26jUcPP6mgcXW2LKvN4FrrYOG6GyelROjLI2rKGkgaZdU7VbCoqmaSlzMDYlDwK4lpSFlyYFhhDJKeE7j+96lCq42uGPA9FH4m3Pu+HIB62MVMvvuVhQk61POf8CKDidUkaLWRQZvg5nmOI+xdhyPyY704Ipp/ebLfD0D2P6MyZHcoYQIo6PT0t8+qyT6Iwa33QMQLmXRL5NxzmgsvSRZb45X3tOvlUtfp8T+DJel1LOrtkp7D4P5OX5cp21VqBhU2s+bCO3BxGzsBgqp5ApRo33gd2+58IYht5j6xYKxBhRQ49b12hXofKorqgL7apm6AaGUqgrR105qbqPnz+ljLUSQx9SIYeAPyp2XRyJOCVWrJwSSoKcJHbMGTsqLlmjUFpxPA7kXKicxRklHWMoVq3FD5HoI94H/DFiNaytZuU0IQrI04cRXJ4ScyWFzhgibhSrQGmsE5s+3O7o9rdsHsna1NqwunqX9cN3OO5/QUnCeaG1pnKFB+9esd2uuO0yn70e8N6zqTIVmba29ENk/+oLDm++wBDJOQm5efQCgDcN2miscRgj4DYqgobY3RFefU65vuOB9hi95DG6Z3eTzzzroDtxmE23ZgvSo92x2DPUwoD1yV7n48yuFw57GRt+3b7xlhwnLpkpoV3sebNPlC+zBImXj0tsKuflsSCoyJIYF4WyhYuN5eGtp+8L3hdGfBCtGcmEx6kMJQBJM3aAgKJysBsSiZHbNGeGrIg5S7FDIcC+EhEAo9Us/y2fU+xWFclJjkGEY6QjRDrCnFZ0IdPasaNnDB6MVbhKi2iEEc6VmKRoUlA4o0TRuEh3nNKFokUlSi6sFHF6n3FGut9JUsC9u+3Z393w7gcf03d7mvUVCs/2ouH6zY79bmBzUdEPiXWr0Vp+qxwTRktHuzMQ+8QXX3Zs14bKKmIfCX2gKEWzqmQsbOTKKYhAwdTYUVCiNFdb6iSjkesLS05x5GPUVGOeUBvpTc85kUYVZ7Qm+ChLIxeGUghl2mv1rFyHEtL7baNYbxSXjXTUPNxamt0d9hjAgM4TxFFONjkFvVMn+GSTSn5PChP397xmT/Qc8pxSEL7XcSmfRNx+dVD7G1Sfpqn5xQaiRs88yVYpZkfFvS4aNS2+s5dcej2wleLpE0NTZX56l7i76wh27PBYrTDO4pOAC1KVd6QIvmSMkrkunQVIAYUqR7RrACHLrNsKrddipGThUPFSbVcwJkNStQwJ7nqRF9u0hsNQ6FNk0wgp1O6mR0XPxaOe1dWGatUQUpKfKoLve1wt0tzTOFNBFltVV6jmCpRGG6mCqlJI3R2x2wtBY+2EjLcUSd4AP4SZBfvQJxqjubuTILAkGUfyHtatHtv3pNo+DMITMCVUISZSEolsrTJD7khJSyJYa9rVFTHXxCDdCRRJkCsrPAY59PjDHSH0eC/jFAD1doNZaZELnls+E0plrC2koePw8gX99RETIu+sBkzOYzvjvH8s3NQJBOBkJnMIORnzTBa2OOP8/3PQRZKg0abL8nmj/aoJrFkGam/vcVpG5d79X5MRnx337puCd3W6uaxUnAerC54CVVBaNuzLleK7OfITbzjmAiFhGpFyd01NLkLiZVcSWJWSUEWTwyBJhLIoY2WHK+KOjVbkmAh9R0mZylXkpsbQUrtEvlXsY4IihGKv7zy1UVRao0rBGsOmdazbhouV4xtPGp49sJjo6MKAvbziw9/7fR5+9D2UrVHKcPVc4/uBfuj5xSefsNluuLy8Yt2uBQQFSsmjuoyicg2b1Ybvfvs7dC9fcHzxCRfaURvLgybx6jZxXDthms+eB1XmYau5OSaUgs4nbm4GHl5VtE1N2xr6IZESNI0FIsNwGFWnkrSZRwFVKuekgy0XRoY1YuhRo8xrHEdVco7kElAktAp0dy853u6J+54PSselGzjt73M2sajQLeziq+Y2r0umzsZ5zU7B09Lkpk6TGak5vWSzEb4AACAASURBVNyc5ExPGHeEiWCwTInlvarkW3gomCUXy7yznQM0sHDsi6x7Tnyn618KZQR9lNIoXVjbzNMY+DQJ4KFH4lFbNSjXMvQD+ugpxVBVMiKsdY227rT3FbBKEbSihII/3AlgUrfYylF7hakVtHAoA4oiEtch04fCzz/d0/uMcpJIDd4DYKzBWcuj7Zqn24ZvP1/xoAnYqQpqNM5YHnz4EU+//wc0D57irKM73JKix1U12jiMcXNAl4sAo1pbrHY8fPAO//Yf/k1+9H//KXdv9vg4ENYVrX3E7e2O3ntCkBGkq5WlMpl9L9wYzigGL4SCGig5kZrEZnvBanNJ1W7puw5rzahuJJW/NAyoHElF2tdTFqJzIQWUvdE1FRpN6G7JXUc4erb9kY/bOHciocrX1K0WXEaLwoRU79QCLOJ8nUygzfTvjPYsH1bCMTOjQWXk7J7AlylNHMPOUk4S8dOHGB2iGlUdR21TprGKOVidzn97hWXugTSnNXnW0TCfd14AgdOWdtoj5RqcTpvW9gm4mdb3opYp727B1YrHreY9X/gySZxmKFLQ0AmlHTFLbGqTjDm48RVyHIjHO0wRdbZSpHARjcI5gzVaqu7asLlYMXhPVTlSCqRg6GJPXyJOFTqlSWPysbqoWW3sKCufCIMnBgEai5Nx2ynOqCvD8RhIOouKoBZwxw+BofMc7jz7LrHetlyYxKvbiEmRWAohF0xWUvBMmWo0uxQzRQnXotKauhF1q+vXR3JI5OFIiZ5iG7R1NKsrLj78Nm++/IzbV0co8hmUgQHDq17zw5/e8ItfvhGRAZ35zuOab71TU42Ey8eb11R1JQTgSNKkKkfVbkUlT2XicCCFW3I6kv2B8uYF+XDkSR25KlkSxOXaHn/ws7H7hRFN+dTUhc68zuV58t+YZ5UFrLO0yXkrWIKCi5Gpe378bT6mbgXBJZYXchGHwrjn5vP1ihr9ZJlvKy2CLiUj3Qvj66wa+OZac+2ht2rmYJsUbaVjR+NzoZH2NeHsLJo+ZerakJJClyK+L2e0NsJ3MvK3NVaAxZiLNBUU6ZRLRQuJsBJVo3Vtx5gSOi8AYBcLjdX4IROLdO9UThGLoiryu6ZYsCOgK2C6qCEVpVjVRvgZs9jFdqU59lNXmqIfpAPleIxcbS0lFt4c4Ud/8lPe/2t/Q7pR0FS1FCofP2j58ss9tVMcDgMEIf/VRQQwcpGudmUUf/GzAw83lsYpfBcoIVCva6qVhRzxvcLYsQNPSbwQo4xsCZdkIRcrgkJWwCSjE8Yiik5ZwKk+ehxjl3sudAlySrgkm2VCRsyzgr4orEk4ZxiSIitY1UI54EOmt4qNNrj+iLk9jODe6C7zNPY/bd7jB1fT8i6zZZYyTS0s8tCFq54aC+b8doxl53jg1yzU3wjUTIju+f4wIcdl3rAn5qW5sjAutpm9e4J81AKnGVE0beHqgeG3m8LP7xS3x4Hu82uMKjRP30NrQ8igjKZqRIUopREGzYnYDYLsIVKeRh+ks0YZ6qZhtd0Qho6hP5CSoQuJPFbCFGWU1RVOmdYpfBZUv7FCOLbvM5vGcLXRvL7xhCGNEp0yg558IelAvzvCpZLPVgp952cptM2TZ6yungghqZHFidEkP9DvjjKHrMTYlAZjLCEEVEn0+8jNbWC9rvGp0B0CzinWjRYUOEmVLxRQZIKP5LFSqLTC1VPQCTlJYOGMwdWKlJJ0C9gGk8z4u0aUMmzWG7YPH5BTZH+zIwYvbbBlnL3PBTUE2qZGFZlVzHEYyZATaTgQXn9Bvt3jVOFdF1jpLB03AEXPiYiaDfYUQBW1cHKlnBn9ZJQLIH18TI+2Njk4OD06JUXn0dcJ8BgTRHUKXN/m4+sbfpbftZw78K95vpo2F5YbxdcllifgZu6UGK+j1vBoVQjF85NYUXwk7jtS43Bti3MNSmmGPmDqgHVagksj0t1aS5UuT2DrmKjqccPURlRkXLNBqUwOB4L3DH2kcorjMaJz5vmmgpAJFy2g0EZz0Tg+fuL49kdrUvD8/K+uefr+Qz747e8T3Yr/9Z/+c37y48/wnccZQ3fsuL2+JfSBy8dX/O6//h3+6O/8LT549z3pADIWpTUxBvrhgNGO9fqCy3c/4Cc/+CFP657msuW9h46nW83+7sDgE8MxEWOWtuw+UFlNHxKHLrJeOZE+rSRJsk6sL6ZEf7hj6N/QhktSOGJtjVbS5UfOFD8Q+wPRD/TDEVPXmKqWzqSSoHhKOpLDDr97xXAjgf1Dk3jXhDHYOA/ozsC+sz8XgPyUTC7A0bk6PycxE8Ky8EQL3pn5mCVEp+fcO2/0j6fg81ea9FtxzEH6dGu5BBcZ4TmmOn7fKak7+w1OQb5SQsD3bp0IPvEyanSf0IeDjDDZGltVpJjIWQgNSxiotYOUUFp4acqUfI/JZhh6KR7kQrW6wqhM529I4UjoDgydEOhmA7tbz3HneXK55k0pPN403BwHrNHUdcXVuuGi0fzON9Y8urCY6NE4IQ+uHE++9R2aZx/woxc7fvkvf0nfDTy6uuDyasOrF9ccDz0PH13y8bfe5+P3n2GsoRQIvifpgLOWb37nY3ZvXuLSX2FzzUePHD/82R2GzcglV7hoDI1OPKkLL4Pi+s5jdI3WSNVdMfK+TTabcFU1/3RGaeyo1lFSkvFBJdX2XESJRxU9dsFpTFWjC/idpzt46v2ejxtP4xajSGVMBqYA8IRZnjzQnCxMTvHU5XKmyMRyKagp9pNg8F7SqIq02EuHnBo7HsXPTa519qGljK3eSrqKiqKofPK/I9VYPoWop++X33KvORPuwAxWMXl+uW8ma72fEKtpdHiZfJ+u3By4q4kbA3n9Mz98AtyKAlsrnj0Wuef+NnNUEtMpqzCVxbaVFCfLWBtVQgNQShJ+mpwpwYs9GVH+lPJyYWK3dm2Lq2tQMkJfyKgUIUU2raHHknPDo6rF1QptAymkkYdJ/p6+sx+idItr6RygwMVFPe/50kFQSEkxZM3qwRq1hmQqVFV4/ghKLHT7juE4YBG/mPpIbh0xJGIsWIQ6QGmFqitiyqy3NcPR092+JA4HbLOVznTg4t3vsH78F7x+8QuJoZVm7zOff97RXNb89NNrbu4OjJqs/PO957Mbz+89b6mNIvleOiiaBl212KrFVBXGOnLoCf01Yf+CcLwh9Afy4YDd3XHlOy7VgKXAWCSaCuNn48OL/fyrEu+TCS1859IPKBBGqPHEeeMonG0s96r8Zwnm17jdt+2YL8Xys6ppjzzdWZBOq+VI6Gn8mvmaTD5OXltGYQqAUTy8NDw+RA5JgJA+imUYLb+PUUWEHop0OGdGjlOr8QF8KaymUR11ElqurSLlxJDVqACV2PlE64zwoilwxkoHjtHUtcEayZNbb+n6QOkiez+BcpmQCtf7hHWGqhGfbZ1swlqDLoV+7EzJGWKWUaHaWfIoJd04xa5LrBvpiB2CqEl1fty/tObNTc/ty0+5ev9j/HCgWm+hZPrOYzW8etWhSmFbKXyfiH3AOU1VW6xVfPqio7aKxglpsxvHmlNI2DCBxhqtLFVtKWOhoG2F0iSmjC6FbDJNUWgdUApuCoRjRKPwx0COaRIlJZc8Lx1rRqWuUsQfG+GIzUrRRRkPe7itqFaa1UVF0yqiz2hdaFqH6XbMc4JZrv18LNGU2WcvwJgCZwQBY5y39AdzbKeUgIcTSJvHvePXrI3fANQw+6HlHOCpBWgK1Dl9uDNkl1OFcHJmnD8+t7arQtvChxT+6giDKugUUXmgqhROKzA1xsqcedUIwV+3O4ygQQZGKU0iKnm0rdAqY+uKarPB7qCyidJLy2WfIt4nme1DCD0BLjcG10hC5iPs+8zL28hFq1jVshl3t0fsusEH4ampa4cAuAVXOWKMNK2j7wJai3OtVttZOaaMY0rRD2P3QJa53CFSrxzdvsP3A9EnDl0hx4JVlmMfeXThWG3tLCsOhd0uMfSRpjZSNUziWHMq6DhWGCYDGzf2UjLGWGKMHPavMe4Kaxtc7dhsr1hfXhKPe4bugLWWzcPHFK1FpjBnUgpQoG6tFNpSgHTE+4Hij/SvX+BvDjhVeG4DD43wcJximzIjNAVNUXleD7NVzUHpyciXx9w6dkaOO56vTn/OHQGwcJDl3gknV1YW/76NxzKwBr4SCPz6hoPJnTO/iphE4atPHN39lAR8zYcQiUB4skocjpHPg8VRIEW0EuJgXTXElBh6jzKVbODZo5JB+T3KiOx0zlkqIUUCTW2MABI5UtUN5Ip9d4s/HtFje3CKicoo3tlqViOQWDnDxbbi4dbxrY+21A5++skrrIF3P3yf2z7yP/2j/50vP7sh9D0hBKnSzJ2CitvbO7785Qs+/fINf+/v/V2+9eE3MGNVX2tNPxwJoUcby3vPnvKz58/Y/+IvqEzh8VXLocsMWroGYy8ts/tD4tCLo1lXWqQJjRq/e8EazWYlAFaeCthx4Hh4iTGOYmshSw0yxpKCJw4DfpQxlt8vk4YbwvENKQ2UnAj7W4bX10SfuLSFD/QRW+L8u+tF0nKyitm4xiTlnm0s288KJyBnspq5uoUEkQqk7JVPVYXFKMXZvnAyvSlHOjP6tzoZBOA0Mjbtt2eKFuO/ed4Dx2eVMXlexOFzS3wZA2+lcLrw3HlyKNz2huFNxumMaxyYh+SUCCFIolEKQ+iwOWFNi1JGQFFjRa0tBoECsnTWrB69A80FaMdw2BMG4aexBmLIHHYDtVU8v4CrHOmDwdmGalRXe9wWvvXE8lvvbzCrhs/+cs+PP7lh1Tj+4N/9XWLV8I/+8f/Fn/3gU7pDRwyeXJD1N8YZRhsuLrf80d/9Q/72H/0hbd3g6ei7PcZWNHXNN773XY6vPmejK6xK5IOh6zMv96CKEAI+ayXpeaPg9hDYtoYHFxV1bRiChFraKPZvPmN99YTQrygYqrrBOQmPcghAJvqeXISXJ6VC8WEcfQ6Qe3Tp6HcvOby85vjFDR/nI9v6FP5MWMfMSXFycoDEQopFwqLGxGu5jtTp/3k7ntZFYRxNWvQxz3Z17ljPKvyLdTvdWcYKPhPAM6V/ekx1Ry6J0+ddOIi3120uNo7T9z0rBM1dEF+z1933umc35VqdgzSL15/f8gQEKQAthcpHK8X7feYnfSEk6apRGty2xq0qtKnwubDrErYNNLXDGI11Dsjk6CkxghqLbTHhjCGpMMrfis+dxvcCA+3akayjaiIXD1qcFUWcvk+jb82klKSzJsEwyv1ao2grMwNXMYrPriqD95nOC2Ho6vKCT14HfvDjG17ubyhZUVvN+88u+fDxFhWygDa+0HQJt8l4Lz7YVZYchZ8xpkhJomIavWa4fUnwB5qRKD2GgXb7iIfvf5tf/PATdkMgFkUXC4eYuX6x42bXyfjDmCtUxvCmS3x6k3jUZkqKGKNYXW2x7RUUCN0dwd/hj1/i96/ob2+5fX3HzesD3c2Bf2PludpKZ4PSUNRIBzABJ4oRkL2XFy1tYrajaUGPBZOpO+QUtMr/ukgSOTvGhTnPIezSl5cTaDGZ8Nt6FGRkuyz2wekazl1GehytVKAXyxKJQ2eASt0bQyunJQ6FulI8bRTXAXYRWqsYZHLwNMIGhCSjSs7Jh7FG1ngKmWOQFzRa8q1KG/YpE6PGaIT8VmsuGuHubJ00HDijWDs7gkEKP47/pSyj+s5lmiKjTy974VtaK00sAra0xVAjAPnEV6OVjB3ujxEfAFVEZQpRlzIaKiPktrVV7IGm1hy7SCkaoxXXXebNmxve+bhh9+Zz6s0VxjWELkKWblqlRC3VKGlAKDGTYxRu1LG54dX1QDWOQT5+3AjvViq0G2Hyl8+cKUpGFFGagsbYCY4I4sdSJifDxeMafwP9UWTAK6UwMOav0pFntYBrucjoWF0LSGOt4RgTOhW2rWW71rhWAJX9XSamxJMnNfW2Qr05YRxzHjDazjJOnZbYxNW5dAHnf09+Zcw1x2aTZaFgKrxMBZRfdfwGoEadf8LJic0rY/ogp+R7QqwXPu+0YCaSxQkJVcyI00QWtV7BczKvoqa/PaLUC9yTh5hWUaLC+4BxGzKMqkIKZR1V1aAQYlBn7CgRKqMZqb8hDwVNwpiMs4meQug9pcjok9EKYxXaatqLitXVmqp1hJCwrzo+//zApy8jT68cxsHhELC7I8oaQsrEEPF9wNYZbSvisSf4hDNa5NP6I3WzQRmDsRUpDOQUyX4gjwS/Vc7EwWONot/3+D6QkmK/j7S14cWXBx48WvHk6Rq0wlaO6D3eC7/NZu047Ib5mudxg0tBWuONHhOEUvB9wFgrSXYxKJOom4ZmfYW1Dle3xP5AKYnm8gGqqsA64RMpkaG7wx93aBI5dqThSOxuCcOe6BP76wP9y1tM5/neQ82DTUFbhUgFi7MpKo/GKoaiJxRSlRl8UWpss11EtnKzzPKgi5Dr3HzvOyd1nkAuzz/5vK9DJN7SY/Rmy8B+dkVlibuc7lNzQHDKsefX4gTwzOtyvhzy2suumtOLyPs4p/jGOuKOik+8Ru96grvBGIWuGqytgTK2NhesypTSk2NA6wptGqnWmQqMiPIZLbxK1lqxm9QRu/1pk85iQ40TEsHKaH7nCtYbQ7PVbC9rtq3l9aevKd3A+88uyXHgf/mnP+GXP/uSEKI4GqSqoa0lpyS8VxR8GPjzP/0J/8N//8f8Z//Jf8R2e0VdN4DsPzlL8HpxseV3/+AP+MGbTwnhiKLQNJrNtuLF57cMQ5J1norM8o/s9lVlZA9TiGM18r5aKZyTisTQ3WEtFOPmGG29egd0Q0oJtKKyNanIXLLffYY/3tAf9sQQOe6PHF9ekw8DH6zgo1WkcuWULPCVVO2enZ0njBN8QDkZUVmsoGlG9xRsqXHvn9bv18zxL2xMJL9Ob6MWj4uZvuXrc6IEAea1Mnau5HK6zpmpA3XcxObkeDzhFLvPGFyhzFRAtSk8TwHfg3cbcogUv8e4NQVHHCw9lkZb4UcphZQGNJYSRN5eG+FE07O6iSYcrknDLcPNp4TDToK8ypBjFiW0kGmdYtMY1qoQY2RAs1pL8vh4Y3n2dEXbFl6+/IL9zY6LSvHOOxtiyfxv/+yn/It/8XO8D0J6WorI/y42k6wSr1+95n/+H/8J1hj+vb/9t3CuomnXDENHjJ7t9gJ3+Zju+iXrC8sHz9bkwfP07kjfJ/o+4TR0PrNyirs+0Q2JTUjUjRlbxxU+ZY5dx+76E7RO2OYS5x4DhRSOUlHvOvq+Q1uNbVpQijgcSf6anHpK6gi3rwmHAWLkG9vCO54T+WA+rZ8yubJ8shOlpLA2pVjT2hGzGDtkJnuZwL4JbCnl1No/B5Oy5iZ3tkxozrCGaV3Nb7jY2O/jEiOArs5eY7GJKDWDk2/z8ZV6xP3rck9E4D7/ndanbvLzlynwdcH2fE3KDG7M61oJKX+90XyY4eZV5kVQNEgBwg+R+gJsXZMQe40Z6TBPEUKHMTVKCehakK5MPYNCgg5O3IcxRJQtmNWG1eUFJR7pX/8lJQo3nClgjaXrB1IIDH2Qbk8r3DXOGUJM7LpA7QwOgzKadeOo24q861EqEQL82V/e8X/8yy+4vuvJulDVNUbB9SFyfXzAxjmeVgVyYAiF/VHA4KGXTlDt7tDOikDI6IP63qNudwS/n0cPjbZU7QXbd7/F4w9/xN2PfsHrQ+D2kIkObvdHzAi6mmKxxhCDRwF9zPiYOd5dM3SvcHtLjj3D7jV5OBIGT84Dx92e492B4BNtrVlfOC5cwpg4uTcmsYbTXn6yqfvdzaVw4lpbKOjKg1O+hcTJU0I3B7OLBT3b1uk5M0yzePheuPZWHmOK+DXHKdYo4xinGvPOMoqRoKb1p0eQpizi2ymumMAeME7xZKN5dUzEorlNBYoocqZR5lqpQjvGYBNZdsxJRmqAylkhp07y2/YZfBR+QaU1NyGzckBSVFrWZe0UuSh2fWaIoJBzhMRCyHJjkm7PWDLbylLFwrrW1E6JHwYOg+R0aytKikKgK4TBzojarjMyJmRUofdlBFsL1kri3/cJZzV3R/HnYBi6PSVHjt0Ou93g1i3XNx12JCEHUEnTOHFizimqWkTDfSx8/uXA7TGxqRUfPq1lL5oKrwqaizXaQo6FGIvkw86ilDRgxLEbDhg7YjRVYzCbijD01JVFh0SIkVopQhlHwiwjCCY0IJWV0TWhd5bfUZXM8eA5vJGOwIsHFe9+45KLqxpXFewIyk3rUZWxY2dqQJnCkyl/Kic8g/F9Csw1/zLb3LgGp46uyfmfABIB0H9Ndf3XAzWLDeBUFVhuKotPXk5PWhLnTF9okvY57UFTs9h5UqgMXKwS5pD4rIv0IQiJ2cOEqtZg2lGhboXSDldX6EZUlKrNJcY5QGNdLftcDKT+lnD3Bf74GkpAqURJHsZWTT2ig7kU1puKalWjrChHxFRoas2DC8v1bWB/iKhWpMr6u4FqU1GvKoJP9EPCdoGr7RPM8Uj0vSzgLtJcKVy9ZpqvhEJOgf7QC5t8SNxeH0VhI2a6o1QxQ8pUBr54eaSuLB99aBn6QL0SdLJetVSrQu09MQqz/+5mGEE8CQJKgRwSXZDk1mktm1uMGAO6NjhnWW832KYldXeEwx6Fodo+IMWIdQ672tIfb+X3Sh5dPOHwGt8d6HY7Djc7+k7avn0XGA4D311lrowZ1ThGm7kH2s0AzMhVcyISG1WhOFWpzhzePEpxlnGegqIytZgt7lomhIsnLEGO2brfZq/2G4PCe8HodHtKFhZuf+Hj5bHF915WS0+vd+KsWb6n0uAcPG8j9PDSK/yrA7pkTG0xm2fkNBC8xWmLso6CyMdTAjlK5UzrgKpWaGMlx0kRkif4O4bbnxO6W0AQ8xg0tdHcFdh1kabSaGOIQyA5jXuwJhwH9tcHLltN22i++OINf/mzF4RhkI3YGD74/u+M0qWKw27P9c9+TgqBMo5f/fmf/Yy/+NFP+Lf+zX8HY5xUGq0oXITgscayvXzIB7/3B7z58z/h0HmaxuJqSWAPR09B2k0pYCsjLZ9anN32qma9rmSUMma6mLDWYFymlIHkd5SRzFgrw/GQqZtHGLMmDLf03R2u3RD9kRQ6Djd37O6O7G73DIee2HkelMhHF4XGndvGfctXLMxosbTmNo+vnLToHjmFiV8xyFOHzYL74b4/WQapk70ujXTqeX2L1+YEpCyvhGzHau6auJ/MSqB/70tNGfyyArN4ogJaW/hAJb4cQe9wu0eZGlUXrDaYUpFDQrUVWmti3xNDh1IWFRO6ajBK+qlK7FEqMFzf0e8+o9+/YiI/rCpFUIX+IKSBIcD13YBzhoeNom4M7VYAoc1lg7Wwe3PN7ss7yhB49nDN4wcNL17e8a9++CneD8JBoTQPn79Pvd2OYxtw/cnPGbojUBiGjn/8x/+M3/7OB3zr4/epmw0pBjp/xBjDO8+f8aMf/4DQJ642jmsvhJBGixRonwp3XSTEQm0nYk7pRLVOsV47YpLrGoee4fAKTcanI2FncNWGnDPDENBGSBy10fT7Fwz7V/jjHZRC7A/01zfEY+RRCjyhx+plVW7iVpp+63teqEw3TpDnIrcfl8WCjHB6zhgFCukmCx93StROtrh4z8m25idM8BCnNb9wEOMKnl/n1A10Mlb5nOrtdpzlNHIyqcucuTF1+q5fhzid7pWLMxeNymK/XD5t+fdErK5OD0owD8ZpLrbwvVDwN4V9ylirqP4f5t7kWb40ve/6vNMZMm/e6TfU0NXVg7plGVsGg2xCajskR0AQwYrgHwG2bPxneOE1G9iwgGAHhCMIBJalFm7NLam7qqur6jfcMTPP8E4snvcMeau62zv/zubezDzje555+D6xVIeriDKCQ5MTDH2CJoEKhBDQWaO1I4ZMVjK1pfivKGTaU05SHWOqFrdpyGRuP/mC7tBjtIzYNiVDXzlFN0RImabSkgRgmioqzxhiwlWGpnG4SuzSFBW3N54///zA//mjVxwHLy0fbYVtGtymZU/is9cP/Nq3P+Dnw55nVgt46F4qeULnebzrgUzVyuhxbSQhmmNmf3fP/otPuXj5fVKWyawxZc4unnP1nV/j8uaex+4tTW04YPn+b36Hi5fP+N/+p/8Foy0+BJ69eM7Dm9ekLOCqx2PHw/0NxgYGpRj2R8ZuEKxII0Gqy29ekHNkvH8k30bcOKze7xJkXwrL8kwCa7m9Mqm+SiwnPMys//K83yRA0mL3zgy9kNwsGhQs7f5fT9PvyrYOYJIWhprvOOUZjJYJdP+kMmmpaJMjV65BiYTPAzJ0pqngzIFNUBnoo1RlKBQ+SuWjMxlNotKG2kGjDUOYqiKlfcmnVHCkBKQ75Fz2Udx7TZcVG6OwWUngIGdqa8CAj5mHMWFVwoJUhpjyOCiOIXFWaVqnaCpDUxeAb6UYfaYfAoMHcmZIgttqjIEoNpnVGY8ipgk/R6aoDSHS3UaeX9XFxzU4ZfDe44cj2+05Q9fRXF5ydtZw3A8MIeG04n4f8ZXCGamEUTrTjZG3j5k3h0hlNRcXNdXFhj5mwpg4sxq3aXDbLa7eoK3F9wdCCELKUaqDTNZiryhFu6mkTbnWDEbTHQI5wPAQBfvHaXzKVLUmTAlQI0HqwyAQIm97AX5OKcgUN5WoKs35zvLiZcWzD86oKosejjN95JWMXqpi5JO0JTIn15TK5KQWXs55boCaVWH5m7Lg/GUF6MmnLcdMmZpfsP3y8dyslP70Ry1iZzFBmbOIikLEE3MwOXSrIE1eKfz599WplGLbZD7KgVc+0z8eyZt2nqZkqoRSCevO0cZhqw2q2lKdPUcpiMFTbXa4dkccO8aHzHj312jlCWGEHMl+ZBglw105sE5RaSM9dEZzfBzJSpFQ3L3uOOwHzmvFMMYyTUOjbMBtHGGU4IrVohT9hpLaUAAAIABJREFU4y1j50srgxBOClEmbmTQ2qIspBSxtuLhZi+Bi5QJfWA/SPnaNELs4SijTN8/h8PdkeaiBSqss+QM0QfBwtEa11S0m8RxPwISCY4p46P0VxoNKSb8mDE60ralV98ohuMbwnhfpsQ0KJN4ePPnbM4/Qusd/e1nhP6B7v4tIXjIUlHQ3e05Hjo0iu3GYBMMWdFi+GALrlJlbOFCV9N/C5LFVIm1ckqmCptCd+uJRdN5Tlot1icvx341SJlXR59eayl3/ooV+u5tq6WYg0yLdl/tk0+PYfXUT/T2E30/R4yXFVu8c7WACk0mChOorHOZb2qP7eE1DclH4nDEtge0EWBTU4wrUzdYpYlDRxgGBKM/oENE1y2UftvQf8k4vGY43BK9x4C0FBoBItvUhrtjkCloGaxX7Iz0yg6HI30fuLxqqNuKP/g3rxj6nhQ9MUYy8LMf/VtSEAWRgp9Bq61zdPtHtpdXHI8juqRvnKulmoaBFCMxBuq6otrt2Lz3AfX+NVZLKebuqmW/Hzn0QZS5MWy3FU3raDZGqpEqGQGcsqDUqyx8GrxU4mgDZJmKZUwixSNjr0jhLYf7twD47kbwAbxHE7i+qmi0pVea0Vq+lQNVVTJ0Sp3ioMzv+KvOXT5hrvzkxzUtFvyLEzo6le2LwzrR7Pr4qbf+KVFOQZqFYL8CUv8ubVMAefWIpxnQtYP4pN1lVuxL9cSpxCs7z7oVzkxk2D/yphsxFw1DVlRXoJUlJnG2jjHhnCvTCBVaR1SSsmNljEwMywNh/1NiGhgPt4TuIJWpWu6nrgzDkNg0ln0fud8Hdm2W8ZoqcMgHnr/cUTWGGJMYd8cRnTNnrSV4z//7o085HjrCOJILcP7NZ5+VfnhZk/6wFzwYrSAb9o8P/F//97/h+9//NsZV0EmmLPiR9957wc23vkl6/QlKSxVbU2tuDxKcOQ6lXNoKgGBd2pvrSmOcKZVs0i4cfE9ODaF/g+8ylTuDlLDNjqbdcHx8i6Im3N0wdrccb+84Hjoe7w/sbw8cb4/83W3kW+dQuSXQMldMFaNset8zC+WvUvOJD5dPvl3pPPkh5cJ30wlXbLoOOsyA+Ug110kQZq0LTgzVzJRUO3GeZlyzpWT7Kcu/i5s85krCTdGVXxjSUiUQoxYWzqfrCV9nZ6xON+9UFnZlgixJKdBO8ezK8Pdz5E8fEvejQj10VDaDBnv+jJgC+4dH6vYMZQQzTecsyYzgiTL8D1vVkBWVMRLbLng1WkHVVMSxo79/S+wfUUYTUkQBwQtAfwyBECRTr5VU8ig9VamLTVtXFqUEk7HvA36I/Pgv3vLp7cgPPx85DgEfs2A3JcP4ODI89NjG0lnN88eO3abh08fI4BMfv1BYI5gTzmr6g0cbhbIWBOmAtjF0x8jx/pbu8TXby49IKFIM9N0j290FZxdnfAyo6sDv/3jPdhjh4V6wfWIix4ROid12Q1vJtCpFRqUorcQp4Ye+sGtCI8nVEJLAG2QgyrTV6f1N7YaaxUE7sWdX9LESBackUsrvslLL5DQ1c+hyrgynQZqvhmBO/n8SSHxntzXrTVVtT2wU6QjLpweV9Vpj/sw4U+SCzbWqQET2rc4M7x8zPxsTBs3WwpBkum7IGZOl4mpXQG0fo7Qq1ZW01PhY/CoDKEXEMAQpBVZKKmuGKCOalTUMMeO0BE/2Y2YMkTFIIn7rtIB/p0DOipjFMti6Mn1KS9XI5KcMY8SW6mtnFa9vA/0wcrWRipqqsaSUBR8xZIgZGYwk/DoGWZ6hT1RW8XBM+BQYjyMxDlRVQw4esqbeVOwfB1JUoBV9EIiKYKJU7tRF/mmNMYrdeUNuG0J7Tt7VtOcVtc3s7x7p9zdsrjrOnj2jalrUOMrUxDgSvBC9cQaQLhVjBQPHVQ5tDPsvjoKrZzVYUCGKalIRlWXIkAqKfRC6CDmR0SI/iz3uvdhW1mm0NVTbBnV8RMmM9rnYZUlqMwdDZP3TogukamSmPZ1VGSI02WhLUltpse+ngNBi57G09/2C7ZcGauQGJ0lQlHzOq+iuPMBinKdZQK2fME9OQZb2gpOfM3M/4WydKFFarU58eAy8fnjgp18ecI1j9+E1+voC07Rk5aHagNUQFPHwmhxGQv+IV4r2+cfY7SVxuCdnX/roAtH3JD9itTBlbYUxQkzs70fGrAgYmm2NqypefOeK/i9+ynjo0Sgeu4T3CW0Nm6wIYyTmTAigrcEfHlFK4QvTOleEROnHAwFpE6NcE0LEGM04RPou4iqDD5lQXt5hHzh30gJ19aJMyNGG0YtT55oGbSNh7CFnqqZiHCPjENFGAj5aSyuUDxQk60xKMkXG9wesM3iTybmmrltCuGF42GNchVKCeTHefcrx5g2Hx0fqbSt9+ilhVOLZsxZXQfd4wPkeO2Yudopn5wZTCx3MBmYpTyRPwYUindVKtZU0orRBlZDMOuI4BWJKcKBQfTGYyllW8YupGgemzycWVLmVNY7Eu63TZpu6MFFZorkCZj0Gcu3fzcGdJ5/X533qNExrOp1jUfwrA71MuEEJiRvgvcpD0DxEh795kEDi2SVZZSIRbTcEpUjKkLyAhGUtJYqZjPKSOVDhjhRuSXEUQOsxMHoJsjaVxmnLOEgJc+czYcw0dRbsqMpw//kBlRPnz844f3GNj7ek4PHjQIhRRl9HW+STINLnFCCD6CZNd3/PD//wR/zTH/yntJtzIONsNdNLdzygteLF8/cYX33K7WcD52dm7rk+awx9a0t7g2RFmtZQOVEixlqUceQwcuy8OFM+oZVnk2u89zhr0GS8H1F4cnik24+Qy/HKlHasQOUEgiRWhj4mKp25qMBYCXyplRI68QczBXRvCr4JOOK8/6QH9OL0CED8xMOzvSn0+FVqYmHK8tVUabeSEWtn5qtebH6neTOvxvrkTAm4Lwb7vOZrcbZq65zPs96vMKwADJZFKRa/0vCsiegw8vZess7JGZmUtHkmI66rljB6Uk5UdVMCekeUUhjdQuhI/StyHkjJk1Mk+EAsOsyUyYPnO4fTmuMxcPCZ/RBpi3xty+je6d66w1hw0yznlxuq8x23D2/wo7T9juNQKgQiMXlyjGity+8RFNR1w+FxT3foaJpzrK2p6hYF9P2BqBTPv/tdHuIBf3wgZwnCCMaGEOLGadrasGkNKNhsLG0r1XreJwE53ChqBZDk+XNmHO+ATEye/d0dsXugaltSigx9R9/1aBWpTaRqFNfXFd+yPbaUni/jNotuKrx04mbMVWbr70sgnKkHfjnPmlczk6G32FRTMH2ZgLJwyhpncLomq+vLeU/tveneJ8NTsf569TBKLQDG7zBz6tVwiznxUAyEac2nbWq3WWTWSjbNu/3qB57jql+LQbCsvNYaVWdevlBgI396D4ec8Y8DldujNy1uUxOT6DZrHGmaqdGPjEdp50kxkcYR257Rblp05QQ/MAVyCCg2aFtTtVuGh8R2W+G9gjyKHE+KISZikKBJjDJNRiXQtSQkc1L4MaC0wShN8Jn97ZHX956f3iZuj56UoWk3ZfpK4h//3u/wb//gjxj2HVFrPr8/cL57SVI9N33mvaRxbcX92wO7rSHlzNgFXJ2I3uPDFJDMvPnkEy6/9Tn12XOMqdDGsd09o3u854Pv/zp3r77k5uFv2DSWLz674fPf/yE5SVJGK8XD3T0vL89xNlOZjFUyWS74EWJCqVwAUQ1aC15QimnWUGd5pM4BZYptmZ7y8ExEXwk2TDSRn+w2fT8FfiZfbw7Wr4P9K+qZYhJqdV7xyfIqT6dOSPid3FZrtVQjlBsuTrToi1zcBfEZ5uq4tQSdjs9L+/7scKsk62Ay5zvFN46KPmaOQXACdWkTdmVQSzcG6spIhbPK9CPULlNZaS+qnOY4SOtR1BqjoPcJD6WKQ8CKVamC0bMcNygyMUvgJASZBkVSMshzEqZJKm+6MWESEjDVEJDAw+gjZ1WmyobjMeKsAHF7r6hbwW3rBwmCtI0kJWKMVNZw6L1MiguZ87Oa4/2RMHSYxmDrhvbyms1uy/6mY/ABV6ZMZaQtqak1be1IJB4OA2jHlwf4fz59JP3ogUji2WXNxx9e8Vu/fs5lHAmvOnL4kvZih9tsSFF8YqUDcfSMvZfq/NqRskxmzgSac6mwyVajHjykSDwOkDMbZ+n7SEyZhwAJXdqJNJXUR7CpNUPMWJ3ZbCxnL89xmxb/8EB1fy/juKcx6cW/mYsD5iQFM81NPuqkQxRqrpbRFByemSQLP6fSHpWyYCyx0PkvSz7+aoya6YbUJIjmwp65dHQprZsMhpWSL8bPuvpucuzmB5vuryhQuW+FNgrXKl5kzf0+8OV9Qrl7hsELGn59h2u3uPotZJnkFCO4upHJF8dX0puaAioHrNPEMZNGyZjXZlr/TI6yWL4PsNmQtjseVUMOmoum4cWvfZvxLz6hezxyHDOjh7YNjIP0u0efiEGUbQihGJkFxd5H2mpD8H6OmkXfk3KmP/YSScwiFB7vOi6utzin8UNmGGHXWo6HnqsPL7BnW1RlwTisM2hjZcJHTPT7gTjKbPq6sRinOR7lWUOU6VbS8SSEVTlNzooUAmHsUEb6F2OIeD8AopSPdz+FmDjePTB2vWT/VUaZxBBGVCnxVkjFDjHjdOZFlXFWCHcex53FkVmUz+LATMygJiJfBxWAgiBVBHAJ+uVJUa2qP9bpSpbAwlqVzhnsyeCcbi8/UYrv6DY/5/R55Ryv7z/nWeev1qM8m14+L9O1ZC1PLHKm97XOIq4nX0ze52KpKw1VBS/1iL+PHA8VY0yoBPbcoLUhpojWFdiNBC+aFmMsaezJ0ZNjL8GZ4UtyHjBagNvEaUgysrBUJrS1ofcGY0VetRuLa6yMCN0PNLVhc9ESTMVnbzvBxig4VmtnSeUsyhU3a/sYA+1my08++Zyu21NVDca62XEx2lJVDX33iNWO3dUl49UWowTcO4RI3ww01ZSFEYE9DOKMbrZWRvsajUkOowP9EKhLxt8Pns2monZSUQgaP0bGYWQYBmpnZLShTmgSIQdSVjhjyvjDzEcmcF2VIM2KjmZFMX3QqmCnMMvqmZ5K687aVlwH4VkFd2adkXWR6HmhE73SK8sFigwoF54t18lRPO35f5e3k27MSb4sbLNyvNfbKkANs3ybbNXJ6Cw/TctbjpT3cqkC42Hk85sedRipn2+pz0fc9hH8A6Z+Bm5Hzk7uIQ2Mhz21ekEa3gIHQCZTiPORGcaAVmJwaqNQIVFXmoudw3SBg09SJRYVm41FGUNMiq4b2d8eySmzazUX710z6Jp9lwleQHgnvks5y/SaKRiYkpQCK0rwNvOH//oveHvzhvc/+Iiq3sp+KhP8A+e7S26rLXn/iLWSGLnc1dw9jkzB46a27LbSalhVFmu1JFtUqVwLQaZhpUCeQEdzpvOvibev6fadtCiHHlQm5cT5ucVow93YEfeR2iZaV+RrnpykKdAp/y9zIdY8sMif5f0XB01NNHNKKQsOoJqZUS0HzppuZm21HEtxN+fKOtb6Q52cYzrxFNSYrjsnBOZrqnKdd9sbzKu1mpM5Jx4uTP/k+d8lY7oo2KVMHk5e4+paa8H6dTczc/28KVWA+S8Nv6Ezf9kVORoTav+AritMZXAqEIcjptmQs7TmxSRAvCojgzhywlWO9uoZMQbGMBLDEb+PhOEO0kBKPdYJHkSIhqEbSSGIfViJA2dMGQNcSGMY4lxlo1Wm7z2Hh5HXrw+82QcOY6YfPVVdg1b40aOd4r33n/O311f0j0d83/P5q4H3zs/xR8+gMj+7DXzv8hJtbmhbR13gB4bHnmwN7a5h6CN+CMTUE8eeNHaYTSs4GFqxvXqJrlqGZDh/78D3e8Mnd5nu+oq7m5uZ0LVW3B87Ptw2Ui0Ts/B/DOQsoMoxlrHBRpcpirmsceaMONu0a1U2U04JlIgPt+izr6OERQfnmd4mwNzp+/XkI9lF/in1G7JvqXJWE1h14dG8utAvQaL797+tmDMX33IGFzYygWlJgqyMkFLxmfNUiKPWxX+IrwqyYLJOEyZqtTF8dAF3Q4SsuB2lZVYBhwEqqwjBYLVgwlS1pVICHmzKJC6V1TzZT3nFEFJpIVQ4o8pUH2mNGjzEJJhpToE1itrIJEZUxieZ0rRxEizaj1KxUzuFNVrwS8fSalX2PfSefki0lbQwWyNBCl/8vClA0MeluuP5mSUkuD0mWidByWEYua5lwiqqp643VJst2+cvcD97w/vPS7InZMaYQGmqypLRfHab+Jt7yBheHTzHMdGNAzEmfnbT8//95IF/9YeWf/YPP+AHf+eM8fOeax+pLgP1ZofRlqQzWUdcZdHWABmnDWPfk4FmY1E50ZxXhJxhALJFZwEhN0YRC98NUWRUaxVNpfEJsOCcxjpN+7ylOt9g64p4O2IfDoXGhIPFtSx6eQWoPxMoC5DwNHZ7FXWZhwXN6nmSAxSdfQIXw690NX9FoKYgOk5O33xGNSsZyabmRVqtrqvWH4oRcKq88iI8Vi2Xk8OUUSijcW3m+Xnmdq8YxkQePaZxMoY6HvDHYxlXpkkxo/JIGgy6NyhrcE0tvaZZFE4OXsbopWXxvE/cHBN12/D25yNfdjc8dJ6LizM+fO+Sl89qqmfPiD7g48jgM4/HTHvwojgo8+FjImclys1qVIyEEKQKRk1OsYwpA0VM8sSxgCsdBog3PWfPJsDkSBgz19dbti8u6YNis6mJGfo+0e8fUDkRU8LkzDAURRMTIUQ0ipAkM2KVYvSJEGWxnRWinkBRIZLSIFmFLEjawXckH/DdyNgFKBg7OUeUgqpSBC/TpYLP6ILb4WLk0mWMLbgMk4IpGZtl2tdiaGZ58czEsNoUhfBPMn2FtKbgwIrylmzCbImdnq8YVl+T7JA9p5E77+q2Zs2yLbJiCaDM65yZjXPZiuFdjp8V2UnghXnfk3Jxlu+F7fNpBmQ6VilqBx+fBW67xOs3nhA8ue/h4gLTnBPTgG6fY9wOlWOJgkdgxI+PEHsgoM3iCEhwOEvZZVGQKcEuWboxgVFszmrqbcPN5/cMIXF+5lCu4tXNnofDiDIOU57BWsFQCllWx1qHshJgMMpQtS0AF+dbJhDJXMrD5Z4ENd8ay5D2VE2Lqw1pjFjnqJuKs+st4xDxPnEcIjHD1a6h3Tqq1uIqW0qrxSGua0Nl9KQSIGWpcIjSA5xTLH230A+emKOUpxd5OgwREGDkjYq8X8WTaQZrOpmyUfNrm8hjfsdPKlgmPbP25CbnTq0IkZUjchKUWXmSKwWoVsbtiqoXRVfe/0yf7/A2g79OVQirx5ol1Aw4ucivOai1ElkTSGJJ86yqAYsRW7hTG3jWKh4D/PRmQB8T7Znn/PnA7gVUKUB/g7/LGLshKyVjuG9vgIg2kWkKHzmTY8SoMk46y/26SqOV4vzMQc7UBWxxc1Zhneb8ektIibs3e/oxcVYpzi63aGv5yc8euLk/orWM23auAhTGSMuxBGg0rm5QSCVbSglrHcMY+fzTT3jx4r3SfmFwpqJpW4IfOLt+zuef/ITaJIwVaMazjUUryS62taFxBmPL0ACjJakxiiB93AfajSeMHmsrcVxHCebG0ZdpOWI/GAM+SHWuMoqmduxT4tomnFoHV5akwlrPCT0s/DZtky5btyjNbKJWDtfa+WLZKU/XXLgYyPP11HzsCh9ultuTnFnakZeLL39nh/IJXU9jhGfif6e3Ey+ufJPnd7ZSZvLLyhaZqpKWkavM63JyyhMWfoLpdrJNey3YLwqFcZnnW0UXE5+PmnAYIESMcegrjY+RrCpMzsQomWRTCaCwMxZrK6wTXJo0HKk2Z1h9zmHcM+4/Yzi+xVZGWo0UaCNBCJUTFKB+nMY5SSDGJNgaRmcMJbgZoTtIdetPP33g5w8Btdlx/dEln+4/wVWVTGzKmTAk/sd/+T+gtUyqai+3nF9dcdgfOG8cOkfu7o78+C8/470WBh8xRswcnQUWYOx96eCSNi6ZEGnJSKWMcQ1VE3nYHzl/8SFXd3vUZ/fULnB9vsP3A2N/JKXMGDNtbUSWKsXQB8ZhZBxdSWAmRh8wCoyWNYo+kQ9HXN/hpkDNovqkDWIVGBD/7UloZEUrK7+u/L8kOhYOKs4di+9ULLc5WD+zZDnHXClWLjBbb09V67u6zYsJk/1x4l7mUztGiGRiWzXbxXO14WTbqFz2U2SkBTgrOD83fHfM+JvEMYBVMEbBMQtRoZCJTMknUJ66cmKbqQXXKweIKUpVaZZyY2M0Y0zE4t8OQfhoU2kqrRiDVK2FUsnT6CzTkmR0H2MQH8YZymRjMbqcmYLssO8ig4e7LnF/jKQMz9rMWSMUduwD1gq8hUqKwYus6WLGagnsxHKNvg/0fWDoemy9IeVEzHDx8iX3zz9lU2ke78TeHQqOTEDzszeBP/l84M7LsITb48D+2C22ZfGl7lLiD/7ylt3FOb9x4ahvE9VO3k4CTOVIWSqnrJPeYWUELFmX1jVtgsCU1BoqR3NekUOgHpNUEqbM/qanvx/pvLS9BQTvq1GKTaNxW4e1CnwgjQHT9Zg8+UOF+xKlInaNNMVsB826L686CSZncuKzybeaP88KdGFEVbwyxdLu+DXbLw/UTCebIK+ni01KZfUA8/5qzrmcnmvtmC+nWQ48UWKTqCpGi8lcXxq+u7UcbUV1tUE3TsqbskTRlBHjK6VMihCiJ3mPqx3GGRnzSyamOGPKpAwxZHzOPAyZm1HxFz8/8Fev3xBixMeE05rL7Ya//xsfcX1mSUcBPhtj5jAmhj7hrYApTtOjnDNSnurMLHTqqkahBfxMabSpMLah2l3w9tM3kCVQEzK8uRsZjACZkhOuqnDXF/TR4lyNNxtiNsRxYP/gOR6PxGNP8pFNIzk7Xabl+LAIucoZ2trQDcUYKO1QMYmSJidy8OTi8GljISvGcWQ4Shm7c4aUBEDKWukNzskDSr4nYXXmWSPAsrOamgxBKH3tk4JZtdJNVTdJz0bNGiXlpDd/dgQnxPTJHp7aqp7Q5kKgS1DiazalRCgq1Lttb06TZVY+G6x9YXnps1EwWwWLMzCPJf1a+3GdRZy2YkasnIn5l1MvdHHCs8JouKoi4Xbkk7/tSV8e2bzY014/UF+ck/s7rEhswX3RUimWciSGQwlAJMGU8R6Q0m+ZaqbZbBzWBqk2UQqMxrU1N7c9n70+snMaXRn84AFN3VissfhQsodlfeagVaENZ2tAEUOk3bX8zj/5j1Fao4qFJv35gZwn1P1A3z1we3tPDNLrf3+/p601uTFcPGu5v+3ZWkVWGusMrraCZK8VTWXxPmCsOLI+yUjHcYwcjiN9L6CG0QeGzhPKuETnJLPpjMY6eT/dPtHtD6TjwLWOtJa57fQkaMpKFamJrNaSfV0Pk2dRPRl+FKel+Hjl6GWHOUE/8ePam1FAnuhprQ7WHmLh+4mIy/jhryfad2Sb2OoJj5ywxSSH5myMgNKtn+00dPZ1fLow27Ss1ine32m8bQhKY7YOqxPd3S05jigl6PJDfEvdNDLJR2WM04CR7LIfGLtBsMqsGHMpZlxrMM4RfCCMkXqMaC/GXLOpqM82+Jw5HgNfvOqoFBLIqRxj10vAIye2F9doKzg089ooiIVeTDEg0Ya22Yj+sxZUIvgepTUxSnDSaIM1ms2m5ezqAv94S+UMF5eNYEohGG1aS/m4sYqmdWgjmACPg4wvrp1m7AMpRipb9Li2dMeRXLDYcpKKvjBKJVwYEzIANdOkyEvjpaJ0eit5JV7Tae3EUjr9pKZiNuQmB2OS409azp/Q1AltZFDzVIlV5IBTrjr5Ii0e48xv082vBn/OLRmTh1nuVxcDNq9Lvd7JbWUbPL3PWR3OxsmkTJmwISY9kfPkCJ6c+UQhq9XL+cU5n3W16nJfGkVVZb6xy8Qbzxedoh8Cyj7Q1g7VyuSaFAeMcZA1xmpcs6VqNjjjpDAjBGIYUMcyEdVCyh2usqAzVaNLoi4Rg4yhVwqUhhAVMUVpz1XgfcaPkRwFr8WPmYdj4PZh5JO3Pe12g21rzLbB2ooYg+BJILa2dW6Wia6teXh1w9WLKx4PPedV5tlWoaLHRzgehXmq2lI5jXaGXGSE4OUobFUJltU4YFxNNhXNxvD8hWF/3IGruD0G9E9eobklhHO6YyVrnjMXtaLREa0yXR/p9z3nlxvqyqBzQmeRh/I2IOw70u0jL3VPU0mv0xqjSatJlC/VapNPNL3ppzblqoDtNGmolr+T/FgEhV4lOicLuciKCR8N5u/liK8Ght+5TU08NfmIi3yZ+CdnaR2agVcnUcWScJpsilnE5eWvvJLy7sp5tYUXF5rHh8gtmX0U2geBwzBK0/tIg4KU6AePNQZTgOUVlClI4oloJAjjyoS2wctkqMoamZJkBJx7DFHGW5PF91Iy6r7SmkOUZB5KWo41Cp0Fmw2tcFlwRa0xgjGqHLf7kYdjphs8LzcaZzRRw6YpAMVFH7WN4fYhsqkV21pwdWJSdGNkf4jcvb2lPb/Ee4/ShuZ8y+75JXrs2Jwnbm97tNJcXDhe3QU+PyhGbahs5q6LHIeRuq5xdYWrnASp4sAH3/kGf/nDP6P6I0v9Wx+TQ49+dWCXFfXuXOz+CKYS3o4pYJxj42r6hz0oxP4IcOwCSmUqp9CqkcE/o/gA/RCxh8B+9DweBIx52xqqBI3KbCpFbRX5eIB+T/3wIKQyTV/LhW/WujBNfnTRo2kdLBRaSTkVSbGyrVcJmafg11/nR/2i7VdU1Ky3ycJ/wu6zxb58MRmhJ4pr5RTONz05w2o5/YmjN11Wga3gOkdCiuADtA6tpX9WK3F4tJM2oLELjKOUVlunSGEkalcCOVFm1sckGWYDMcChT/zkNvKT24Fu9MSswBii0nx5HLn/45/y6998wcVf2M5cAAAgAElEQVRZwzZnbB45t5rjCK1SRA+5NqSkhLmNWSoMCmCjVqCURhtHCh7TXlKdX7E/JimjKwb8wUP3+sDucovRmtS0dGbLMTkON4nhywPnFxupCAotahiIXeLuTYdTcN6WUalOSyY+ZqrGYJ0EQIzV1I0jK3BWIvCSZcxikE6GTC4BnxRxleLw6BnHEecMYOhzxmjQKkOM+E6yjmc682KjMA6UKYbmBPZVrL5lOsSs3eR9p9XLX4NyomZQMIowVrODs6K+kuZa5zGeTlNZsmLlVCsGWjtYX1dt885sk9JZVdasg7VPg1Fztm5m37wceLLr6TGzTz1lEFl85nlTi+ACTg17pN0GBy+uDIPJ/GTIjK+PDBE2IVJve1y1l4ltk9GjNTFFwV6pLIlMHHsBApyDvTIutHKGcYhS8qkzXYLj/YAfM73PPD8T2YB2fPTxt/jB7xj+j//9R3OQZimb1XNwKuWA91Idt7u+5Hf/s3/M977zTVJMjGOPMUaqg5JMWpPeSUobYc/D7RGnBOBxH7yAoGvFbufohoJwXyZshJDZNlaUTBd4OAQRgUnaKc8vaprGkhMcDyMxBAFTLq9Pm6kFS9Y+dIF06Bkfe7aj58NNwBoWgp8cxHW2L+cTsTuz4DoQUF52YiGExTg65bmpqmYJ4OXFEFtbp2sn5sSgUsvf1W9LEOhd3lZYWSv1J9/AFMBcMrDF+Z2MgNlnXgz+PJ+3vDv07CieVGFo2LrElY50WmE3Cr2zpKxIvkPZClc3VBlS9ozHHuesTFnTmhwCaehQiAMziYDKaUxlcbURvWo1dW1IGerKUG1r+qi4+fzAw8PAYxf56NJiW4uymuAT3/7WB/zD/6jnhz/8SRnZKTykS3Wp1qXGTSnJluckLYox8tv/5De5fnbBXC+iwGhDYsSUijhtLdpoGWGaErvzGrWXoQEpyWSLqrG42s34b00l1XApS1VojomxH4GMc1ZsjBAwKhOCJ3WJpjYy1ruL9P1IPAxcaElQnARAphc+VYqtvuKJjlE8PfRJuFSpJ8dPjgwz76ZyLSYD8uQe5JozN5+YbCuncvWd3MWqJXaOX6yNNcH4PmHJd1pxwlrgKFZyZh14mRw51u9Jnmsqtl1ZGF+T1HiyDHmtl8sFyoJOnaDzjuV3ZQRv6eNzaZN93WfC/RFfW3TbE9ot1VnEujOqukVbQ3N2hq1aXFWRQmJ483PIA+37v0byntg/kOKI1hltlxtKKWNUwTZSAiDsnMIkabfAqhnUvjsG9vuRtw+Bbki8fRy4bg0fvV9zExWd7/joxSV/8+nPsdbirMFM9GQU1++/gD7w8Ufv882Xl+BHDm++ZNwfqSrDOCqysxJYTZnBR3TMZCWDPlKMgOfm859Rba/Y7F6ijEVbS86GenOOdQ1aKX7rt38bw79mf/uAumr4bOzpB2ltMRlaLWDB5Ez0UqkzDl7aPbUEqAmJNAbyw54qRbYmMWfCy6ucs+GZWUZNLamsaUgh3QJf4ZHJZ1qS4EvlGxIQmvVJmklouqaaeF8vZ8wUuVFu8gRm4h3cTlpJ5Jvlt6f7fcVlkA8zH6qJd9f+atG5uvxS7BCloWo0H1xp9mPk5xruvARZDiGTQ6JVii4HQjIok9hUgiFaIYmC/TFirWbwMl2wthIosT4JJkySliStFDkpVIo4JaDFISaczvQ+MWboCz6SLgC4wSkS4quRpaLMGiWJ/SgJOkXkMMLNGKm0pjIZTaB1msrmuWJcKSVTnqyiHyO7jcJH6S5RGo6PB+7vjjzvO6p2izIyyvX5d7/NzZ//OZuzVirDQ5YWLG0IOaJdRWs3fHr3JUZrjHOoAlzcbBy7i2f8N//df8u//Bf/gj/7gz/jP9/+JrSOu7t7qs2I3SSsccLHxqCcwyRDShFjLJvrS3zXEYeR3YtzlM4c7jucM6XgIFG3NdF7KteyaRTb1yOPQ2AY4zzgyJCljUxlGgPN0KHHUSp681LUsLSuSwveYjavq00XW1pgAb7eJtNrc3fl8k6+51z1tfapnmz/DoGaJXKyGI4Lw5xsau0ErLhLqdLntWK6KaPPdMNlYSYQvBNHUFatquC8H7nvLXlTo2uZlBIT5JwY+0HKnyZEdqVxlS2VLZnx2BEPR0F+T5lYxkH7mHjYe+46wY/QxmGtFYDgGEk50cXMX39+w9/9znt43aBCYhsNelSEIK7LtgBsClq+BEBiyGhjMLbC1u0qG2+w9Rnt7iVjzAx9wmhwlcUTGUfYPyZS3WAi/PX9HV+8eeD16zuC97RtxaZ1XJxveHnmyKPH+UwOkdErdmOkrgzOSXlnthLr68cIKIwV0OIcM6ZSczZdT0IsZbyXccnBR8IQcU6RkkKmAogil2ivZFvCQ081el40ibbKYFgwLGY7cG1wFgXGuk2J4tAtBCR0N1kzuRii+URBTgL61Mlbk9CiLL9iVKlFpC/3xi9lnH/v27SeenJeV47AyhicMEUmf3A+mMVYWGyJwuezY7jsPxmZ60TqIgd4stjlb3lduShNbeHlhSakimQt7nmDO2sIKZPTCFnj6hqQ6Hj0EjWfgPpIgsUUo/CUVtK2BDKOd8yKLmqU1dzuA9kHMbaUpr3Ycf7t71Ffvs/v/uCai+tn/K//87+i6zoho1iwaYqhpYGsFdu25eOPXvIb3/2A2mhUSuQY8MGDNicCWYKzmbc3jzzcdWjfcbVz80jGcUyMITP6jHGGaiNVgFUteDd9H7h/HEhKk2OmrR1tpdBK4X2irR3VrmUcBpLMZCRFcZS0VkSfUDERH3rSvuMqBz7eBjY1i3HC8m7n4uHy/iZFsvhsk4KaXvjyek/9OrX6bQkq5EUbzYTwlUDLzPey38TxUyD/1IF5lxlytc1TcE6N9IVFpIrlq3azKmuWyvFlPfPXY4NMJbeSQSxqslTCXWZPn6Tkuaor0AWTxRlQa0yWUg3mB0AmKOQoFaejF4dE2g5VqfRSZZqhBDU3Wwda8+ZmgEr05xev9pBTwZircE3L2Ye/hr3+kP/iv3wJ2vLHf/zXpCA8F6P0/2ut5yCNLbx0dn7GD37wD/i93/sHNHUjNJIiMQRiGEk5IlVAI33vGbpAGAOtUzx/viWnjDURlKLZVrTbSoKkVjFmQI3kDLUzWKMYxkDaC4AhcSR4TwoyurhxRoDSi2EYBo9/6OD2yItNwEwAUPlrSHx2vVZfyrIuhhrMARm1nEo+nwRWJ/6YiGrRZ3nltIicLrp15uG1rhP9kPOES6VW/D9p3fW9TbGFjIwQmS/D7AjOyubd3OYWkinxMOuqlVOYFxlXvmH9ULPd+sQJX2dHn5rG0ytYbI+8iEZWtvC8fgX3z4JrFN++UBy+jPzVlz3uzcj2vOH8Rc/FiwCbAypuqdoz/H1HN3TkmHCN0H/oAjkdac6fk8JeEgTSkCH6ICepDE2J4BO+DyUQKkFMeebM2dZx2I94H+mHhA+Jx+OI1Yqr1rK1md028Omj4htXDd6/5PPXt8QYZ8f4O9//NpXW2DNxMGsT+fDlGf5S8Vd/+teE6AFD7RSRTFVZUgFWdXZKzGoOXc+rP/8TqmoD39S0SOuTMk5sDWM4P7+i3e74D//Rf8JwfOTnf/NTKm95+yATZV46ad+KJekXx8TxridvHM4qQucxZEIMmOB5mXuuKy/gpCXTp9Ly3lZFaYv+LMbSwvendiezzTprPib9sGCS5VnGywWW88526qoleObTk13Xbbbv6DaJrVXQVHTe0iEwY2qt5cxJonXNx/L/NLVQ1kCCkPJGyvAbrVBWc/G84pth5Pg20ofEHkWlIWTYj4nKFJ6NEvCpK4GHiEgFps7iD1ldOjtypnWaTa0JScZ1jzETVZKpUlqqqgfEJgwhQoKYSwsU0MXMZasw5bmVYh4GkZGg0MMx8OndyP2Y8FlxHKXS9EWtOfrEdpXBTUhQprGSmLQanAYPbLRl6DzHh0equsEaGXBhncc9e583zWfcffZz6soKzmgZThOzTHBtLrYc+5FN20jVawjE6DkeO67I/PP//p/z7MUzrLMEU3H9G9/j4c9+n/0+0l5lkkkorfHDSAZs7dBaKv4mfyWDAJg7U6ZAR9pNQ1UZSb7kmuPNnnxVcRw8uTM8s5amUmwqzXajOKth5xKb4wOmH1cyed1lsNipEpcoARtW7flln5wRWBUW/0ghgW2l1TLATa106Yy/VH7Lv6zq8t8FTJi8UkhfUykz7zrtW36bweVEwJwIqidMNZV9ilHx9G4XM0cZ2FUJUs/+WMlaOYdzApyb+kAYPTHITHUBQcvkCQhsHPGHgThGcswlsg0+ymWuG0NXn/Pq/iAZ/VXG3RhD7wOPx8Bu4xijJSDGZdMo+t7LaG9rStRWWp98SOz3kRAStt4uxGYstmqw20vaXcv9470ARMVM1pY3A9BrmTL15pFXb254OHbSr6c1973H3Cvs60d+vq354GqLCrDTmWPvGRrF5XmN9lKBEGLCp0S9cWwaS06Z/f2AVoqq0lQbh9IB57SUflbSWpJMFsT1EFFOIpxNWwlYsRbk/zwGbM64bcXLJnDh8iRNTom9vM2p9WlGY1MJkp6FryolhBLAmfZZaDDnuJhNajG+1s7QSRCBqS9/obOn9HVSM6C+St7v3LbmoxOX+an7NznRy7t4Ot0KtXy/NrJP1mHFw+vqmkXAPd1nufz0VwONyVwzcpMUViuM02hlCBGMVQQv4/qijyXrnuZpDSlGyNKOAYK6b4w4kIfRM3iFs4YxZ759bXk8aL687YWXs2J7/SHt5QeYtuN3thd88uPP+Is//VuGFCDC0PcAGGto2wanNFdnG/7OB5dcbiqaqiIGjx972s0OtCYlTY5eRvvGQFM3hEPH8W7PpjG8edux21ouzh1VZTgcI4+dYFRZq3CVwVUaZyWgmrLivotcbBzOlUVNlEkUkuVz1jKOgRQiRMEQCFEwqpQPXIWe5/XAxmaUWfWos3ZAJg576rwtlTFrfaWUVB1M73U1PXQij1n0L99wYkBONuayi1odvPw43d/awF2ChHl99ndzKwtxEt+aePArnvzKuZu9ZKH7Oaa1SnJMztXywp5iEAijNQSeKc2dT2UktxbDxzgBxiSSiRJMLzxGghiSVJaQsE4AHJ2VhIi0S0oFV1ZgneboM4PP4uj7kbPGcb0x+CFJAgVFe3XJxYe/hqo2vOc1//V/9btEH/jTP/0JAFoZjt2h+KeZtqrJCjZtw0cfXvP3/t7HnJ/tqF0LWTA5ckqkGKRVUinIqVTJGI7HnsPoOd9azlvL6DQ+iT0wjpHtrgbg2Hl8FANs3wWuLgXQu64d0UdGP2C1WvymDMmXINZxpLs5YEPgW21kY1mYa8rozrIzT+RcXuIqVLJKVk3kodXkQJ86dQuvrbg5/wJ+KLSjy3EJVlU5swvE1GOvsiqm3lIlMNHUTMDiNUkFzWJjzvuvyftd3dKiuBaHcDauT/+WHVcf1tLuZKeTLa8Wbq1D5++zmD5Pk0nzOdWU6JTjjYN2Y/h4l/miD3RK0w8J9TAS/B315sjuYsDXjzhnyTmSEvjjHc4aMnDobjm+/Vu0AVOJnZpysQXKhDSZ4ikt/+SVg4tgWKgCpro5q/Bl6mI/aCpjuNhZqkqjHXxwFkmPHcO5ZVu/YD9Ia3xdV9RZoVOmrRTfvK758GXDrtU0Fy37zyte3Q1l8o5ht5Og6uCTVM36SFYlqKg0jw97Xv/Nn4ExXAH17hpjaow24izkTI6BFy+f81v/9Lf5o3FPfLjl8kLjj+Kkh5BxBQLgeIzotx3xOGKQUdyNAUfiIvQ8rzy2zN9eTKpcir6LEzaJ8MUFKvs+edkrwjjxfZQq1TOcVONMrD7p2JkSZ1ZWy06o1b5FZ7/LAZqyCd/JM6gia5QuzvOEDpxWRQBT8mkV0JoTsitHWKZETTaqKtUjpZtjhhDIUClefuBAK+KXHjXCUUkgYki5YMwIYPwQZdBLaKWlSWtDNhJQSjnTVKZUXUurXmUUYwRnFN0oiYmm1nRDosUQ4tQ2kxiTwEpUc1JA7DuSJpRggTJQGcXtMfL6kHGV48pBG+DYB7qQGYFWS3AoewEgttqwqWSyqStYTaVoDGsyKgZqHSVYojRWKUzVYI1he3nJ7c++mJVhVRmcVZjGokePrWvONmcoIn0/cDz2tG0DKbO/7bAKHqKAFY9+5PzqJWff+w6Pn3/G46sHzl6cU21bqkbLECDjJAE5DIz9QBgDqlTCOlcxdHeoJPzrXMv2YkNO4DvPeBx4dlnT1Immgm1tcDbT1pqLjWITenQ/AOv2pRVPouZglJqUudKnLYiFRkFkKFPQthyjjbRwT3GG+by5tO/NxwvZp/SLefRXY9Q80V5f1cVrZ2+tvfO8f7n7lTBZnfLEiV5rrUXzr2/DVIrzFLDHe94+1iTnMM/OybnCaMV2U0nLwFgybf2ASZIvSmMgeympNkXgGkCjebHRDJ3iNovTFAsAr9HCPjnJiMIv3tzjXl6KIlQGY8BYzdWzHWgpw4rIOw1eWoG2mwpbOWT++mRWCxZA8D27Z5fcvDlgs2LoMzch4JVCG4tSijf3j9w+HtHOYJSSUk1EaIQQeBMS2jg+ut4QfI8fRxH62lPVhqbStI3DlShkP0h70zBKBjUETSrVCW0jRnlKCesMyWciYEwx5tBoMskHMSZDQI+e8+7I1kbqSqKIU7/f7MDPBHnaLTsLWTUPryevkKWF0NXcE5/UUhKuZgW1EPtEeouSKwbZKvp5SmFfNbbWwYl3dZv7I59UB+WvfSKYDcBZyeeT9zPJqWXLJ2t18svKGDnh2cmKmD/Mp2JKEWsFFyoQo+EwRkwEDFLC6AwxSFDVOU0IiRQSIUuQIgeZamSMCLzHvaepZfxgjILPYTM8bzRvDoEfvxpwRKxR7J4/o9nucHVDC+QY+N1/9D1c3/PZ6we6fqSvHF0/0jYV26Zi21jevzjjGy/OZQKFH1DWEINnHDuUQtohoieGET+OeD9y/eIZ9z//gvGw59mzhpwjxyGhjMZYxe6sYvST55fpO08wUVqgNo7drqYbIvvjyMYosk0lw5/AR0I3oBRUtZVsQ4ioYSTvO57ZyPMqUFergMfqbSyZKsU6gLMirLlzbR3xn2hu7eDM5zstrykZQHiKbH/ieD658FwCOh3HBNS3dpR+GX2/O9vEF7ORXHgtlx+niROTHFSz9b3m5SdybbHBWbCC1PRF+e6k+YyzOHJ4fcvQecz1Dne1Q7uymkZjlCQSQJFjlGlHMaEQwFBnFbFMQ+z6xM5J5ZpSkJRiSIZAZrcR4HxtNHc9HMYsvealDanZnlNvzglZcXm2xQH/7Ld+nfzwyBe3R7Rx1M6w73qsMew2DUplrs4a/oOPr3nvYsO23QAQY8S5SgJLZPzYzcbS21e3uOC52CpClnZIX6Yd1pVU6LStTHzaH0b2XeQwZLaN4fJMdHkqveht63BW0z0exdBKGZ9KPVqI2H3HRwxcucDWFIcC2W+xV9TsJBS/YjGPJl5iCR6InzYrzJXyZJHVFGPvSbBg/c1kT83bFIhdK7aVp6dXdlae9AQs55g9zrU9lhdWnciXr2mDege3U3954bP1e5ufIpf1/Ipt+svOeSqzngZjBGt09Y7U+vNU6aoWGlBga8XzK8Ovh8xno8JuLdsLS31eo53DB4/2iTF6STRsKwm6pogfA2EYsU7T7CqIFplFK85IirnYeoExS2A2hlicRKEba8QpQ8HFdU21sWweRmoHOUmLRgyRqrGcNZlv5EgYE95rqASTTetE6I4829V891nFe1fw4cfX9AP4+y/JCOZEW2nqSpOVgJfXlZUhIiztP85pYobXX7zG8yfYzYaUod1dk41FS1+XYNHlyPbsjOffeJ/7z37GzeuHWQ/GXOx8BZXJnDVaWsBiJo0BnyIvbeBZI8DCJ30MJybOYttPNu1UfbbGo1pT0FIlvvg3qxMuFWossmJRJPNuIvd1XtHsE9t32fMEJuDd3IqNOunD1fcqf9VeERl0uu+ccJz5R7EO4iwHMi/85IyrWvPyfYcCfvzG82qQ9qT7UTOoBFkGvjibpKo0Jbo+oU2ibWScdFOmL4WY5rZ0pZCgP6ArQ9aKwxBoneHw/1P3Hs+WZPl93+d3TJprnqlXvqvNdM9gMAAIEAgyqFCEVlxpoYX+WG4UoeBCCy1IChJADDCcHtPV3WWff9ekOUaLkycz76uamSWLuXjmZt505+fN9+cjRhQ9YQwc+xBQRlOo1KKjJbViKSF1i2hJIMQRVpVms418f9Ox6wKF0fgIL3fwrISw86yWqZPD6ARX4QZg40IJvUpTsnwY2pmcoml2rIoCJSlQ1Ox3dG3g9MkD7s4vWB/VCdA/GJZR8/OvnnDXCVq/pG1aQowYaxBRLFY1ZV2yu7rj7uYuvRPfs3/1TxT+BkhJHdd7LKT2xhjHduYYIyZGtDHsb25oN1u6fUc3TDQ2BAQPSqhWSxZHNW7X4vs9ZSEsK1haoSg1q5Wm9h2qc8MAgxQ0iRIgqtFGy3buYbBjpjeTETTaxLm1arSNh2m086/HTJtzIh5s53AvSX5/+6OBmgNlEhlHo8UhqDI61NNd5KtPv3LGHRlbIKZe4GyMz42IzDTTeeTwB0oSCNiibdn1jhADcrRE1eUw1i05eF3n0DoQnU+E0LYJRNiFlLBUcaz8WNeaxzHQBUc8XnC+6zEmRd2VJFC1sijGzHdpFH2IrBeWohCqhUHpAZ/GmpSdiFAvSu7uWorlKgGrDZgvzvV41xL6hnK5YnGyBluhe3jd3yFtes/f/3hO23mOjo+pjo9xbYMb2jWs0ayXFctFSaUDzxcBCZbLPo2Pu946TnQCGvXBIlooS8UAmo9zgbYLCYtg0yOSJniULo19Cy4Q+kC769ESh0lZISFzhzQrviZwHBuWpUPpaZ0OMEviYel+av+Ko/+ehG3uoVWTY4+ajJeBltJQEhm/mMuID4MGOcgwmJRxbrj+CTMyO0PyJ4/877od2nIzYzNy710Mx48/pk3U9NnIfXLw3+zvyTIZHYbxEvP3/xEjVuXVTru1wHHs6C5uUrBwXWNXC0RrondoEVBxCAj6NL1MhHazp9m07HeO7cYhSmhiCvLUhSAhZSx+f+X57qLlUQmGFKQsV0tsUaElT5uBr77+glpp3l/s+E9//y0v37ynN4GqtJwdL/nLr5/z4tkZTz5/hFXCbnODKOFodQQx4HwCDA7eD8ZjgTGWzeUlqqgoK42ynqq0qYS6T729PoTURuIjru1YrKph4k2kKhS20BytC3Y3gd1tw9024BvNqtJYDd22pWs8iyoZz+I81vU8Vh2nNmKLmbjMMc9hKWW+eGPQJm0ZKyHCQY/uZCRCzKXwc1qa7U8nmxulk8MxktZHGCtnNGSGi5KvP9F0HE4nH6GyT2ubZzTzc01ybeYLzhX/8O+8fWUUoQeWvIwvaPLnZdydT60VPIg95zcbvEqOTSj3SW4qQbRCQsJgca2jqFPLYbvZ0Xce7yPXW8++6zhbW1znkZhAdJs2BUwfVIp2SH5cXPbcbBy6bais4mhpqI+XrJ59DpKSGFob6Fq+/OyMf/8//YJX51v+67c/4nyPdZpFUXBaWZ4cVZydLvn6xUOsImG6LRYo0el++wbvO2Jw+H5PvayorKLd91xfB05Wlqq0sO8JMVWUGC0JT6dQmFax6VJSobSaxsNSC4SAhIDrUlWBJk3F6PuACoGw76hCz7PYcap6tDkc/SJDJnck8xkrxPniDIt7AFqYaWdwGsYvZUt/+DPMsvPTsssBKc0n/4WPCH+JjO1OE6tOnCc5WJRPmMcF5+OGNoLRmRweLiqZgD7/B9o+0HJZvzLXr5Otmvy/me06x9n7iHQ6nLAXDo7I7J5hBWRsRWNwGJJjViwVXwSD30QaFSjFU1cKVWqcF7o+pooZAzEGlIq4PuDblrbpEAxKUkJTqeQMDtYTXePwnR/oKyUlfYDCpOy793F8FyEmzCpXG5RVbDcDPuE2UN52aGswheFJDadVpBVNVIay1LgAx0vF86c1Zak5WQv92vL3320pFhXLCHVt0GWRWpEZgFkLRdulpIuW1Eoikipld5sd15fvUKZG2ZKiWqVKoBhJE0phuVjy4qd/xtXvf0Nzt6WNls1dS6UFo1KFhIoRFQLL0hIH2+OZbnlcBYxNNkmuPPsY3kucLegYIxhk/lzUz2kmknhrFO+z4+dnzrJjbEcchcpMt+TLjxc6tNeIjEXsn+Q23KgipqRBDjSF2dtTMlb9SZ7aO0sMT6eS0Sc9sIezLTQLRh/Iy5iKAR49MWn60HvHRRuJJrIJwm7AhPEhYhRc7xxaaxYS2e17tLVECZSkwSriJQHem+SHxUBqgw+pOlzLdPtaFH10uJi6PPZ9sntF0roZiWkUOWkC2aaFN7eRv3/T8PKqT7QhQlFAbQ2N85RKU5swVqUVGu6a1LfqSYF1q+GuTclAH2C3aRFSwMT5fsBo01THS7rNHanJJ7XkPzqucNayfP4YvTzjl//Pr3h37Wmub6iriqKu0Uq4vbjC+0jwjr/4xZc8fVAR7t5AAcdnqQqnWJZjUl0bg8DQ1SIoa4giFMslguCaHhFh1yQsWmUVdRdpb7YEn+REoSJFBUcLQ1VoqgIq32H2+0QLqcw0xTVCtjizA5h5bjCiYfI352pxhIuS4ZR5mthc6R8KjNG+CzLyvYj80aK3PxqoyQSdb2NqjcgXThdPCxcmY3K8uSRMc/kkgzJixlOpR3pScDI+3T1lF4c3OzjwxgQeLjx979i1Pe37PaEoCIuaoExqbQqR4CKhH8p/9x14P0xgiHifgjBlodngWGh4oXsuWsW6MqmiRRvKwuIjFEazrAsuzi+pDHRdKos7OV2kMdRK6Loe5SNVXdB1yYHrOzcArApEj0iqlNG6RFdHiBIeP3/Im/c7yjJNsdmHgLt9N90AACAASURBVBfNz/78Z8Tg2Tc7isKm1qgQ6PctVsPjyqFjT4XjaR1pOk9XKpo+YJRgtWK9tpw8qlksdIIhiGnUmxJYVin6CtC1juuLpKwrKxQmlXoZLQnROkSi90lY+EARPGvlqaVH6TjB3jPRQSQO5YXZnMwKanJkhkKde4pv3gY3MMus7eHQVUuK657vOAtWyPjZRNuTcT0ekQ3ne8d+qltWMPNEafbhYG6sT4bAKGfy+xmc3xHHYLRQYz7oXjJo6PU9YM8Z184+n743sxSGgwoVOe22vP2xoT1a4o8alDWpwlUrtE2l2b0L2NLgY0oC9nvH7qYjhNR6EX2grBXBB0qr+PGy4/ym56t1Muych82u4+L3L6lPfsmDr/+arnejAXB0csTJyQmiDDf/8YZ+wK96/vCIb754PNR8Q+y7BHCWQcEHAFRt9IBNE3BdgwBN67l5/ZZnL06xpUYbNbZkdq1PgHMlLAqF6yK7291Ae4n+god236XxwH2gUpGFhtA79vvASSHEpsM2gXWtWWpHbTyFiigrQzBzCoTmDPyBG5H5bmBbBqyKyWmcZHB2PMnOwzwrd89AHCte1KiWhp1ZZzBzVmP+0nSyMaCRrj8F+GQygPkfYRvzv8MTHDYl3p8YMxySfkX4YKwr9587O8uH2jIOclMJBISyhCfecXF1y+35HVIYIhFVF5iTNTGCR7CVQbxHvAcX6PeOVxcdlRVOFpbSppcfvKdpPUUhKB/ZN4660vx45Wj2nkICGx+JOtK0nnWI7C4vsasNUlRpmlJZgnc8+/I5T79URKW4/S+/wltLaRRfPT7hb/7qK1YnKx48O6MsS1y7w/ULkGaoXtvSd3tctydGT7vbszw+IW63LOqCSERrYb20xK1LGDhasW96QoxE53l+WtK5NCVCK6EToW8cbdzTNz3NpkWRJjqG3uObnqLveSE7Tio1gCAPa8GMfw7o+SN1a8Jgxg+abOAFNT9SZNRhMTtYIytMOCvTCeOQLZ8yewdyd3bxqeU8T4/JulBm5ptkBT15nVl5CMkQleG4wSHK/J+DuZ/iJgce8ezzcWckZ1Ozo5gefXqX9xMj8wmVf+jJ50GdsZR+hCKZEpf5WJUBqHPli07tDqsjxZcEvt0E/DDlJE1lStSU2lMjfdfR7VMA1juPMWBNHPCdBGUsWkFUGXMqBdmSXksYj8DYHgWpikXpNAc5hEjhI4tlQd+3xBiTrm0DSxVxbY/VigLPcS0UC0tRG/res1hZ6lJY1BCbG/bXd5xaR3la0rY9xmgqC6uFShgPMVW6lYXG+UjbB4xJ2DVRhKgMu7sdZnGHV5ZTWxJjzhqm9QrA6uSMh199zc2bc8RHttJSGqEy6ZktkaLrEN9TG+HEOB5UcXCyc8Jg4K9ZsCQyTB7Nts6MddIn83qp/CPRQGahg15CJl06kmW+XDisDhnpee6bDcpXZs7mSL2fLmuS1yqq6Y1N1TGze5/ZAJJdjuxLZ9tsHmTm0BbOW7JlBv8k27CS7B1dK548U1gi6k034CQJQSkCCZsmJawVyqQJnUqrFEwhJexTcEVGH1eLQpmEhaQlTR7yPgV8UqBGQISOHERKmG+XOxCbMEJtmdqRK2t4v/P859cNv7lo8cEnCA8iqvU8PlqwrC2XLrBwcKaTnNm0CftJq8CiVKktKqqxUqfQkaO1QYJPPqISyrKk7zoWx2tuLy45enZGf7tht2+wFTwqa969fc33b/8bf/blGT/75hmvL2741S9/S980OBHq5RIjil/8+Zf83V8+48juUiBLNK7r0YYxUyiSos0iahjtnX0VhZIUJPM+st258R6jD+yuN4hKVbzGKKpKYYCyVixLKPd7VNtNiZR5tnsme1M7aOLHXOkytsdGyOBsIQYyXMGIrR8nviWrYD/x6aR7Ga+TZcIf8zn/eOvTzJmNksv65t6gDPviEIgYhruqqWz9wFzNmVVh2j+XL6PUuh9inu+fXoIYoTBCEcD7Htc7tlcNjVd0LkXiVWFQhSEqod/2dG1P9B6JaWywtgm1uy49+66niJ4vyoalKdgrS68V1igKq+mdp29bjhaWlXZ89dBwtDKDARuQCGbAzQg+0Dc9feMoqiV2cZTehdKjkFdaUx8/4Omf/yU//NMvCe4a0QUvziqut1uOHxyx3+3SmNGhhC72aYTi8VJ4XPQc656z0mME2jbSS2RVCBIVVamoa8PRWc3qqEAbQ9d0qbIHqMuk+KJLQGgiwqK2SQj1nnbTEZ1HKWFRaSDhYOgQWLiOM9o0flVBlJmZOTN00nqpichHnhgUm5qVdGbFOiq9ae1Hc3cglg9LyKZzHARpBpo7OB/3/84KdKYYP/VtppunJxm0mfoDjiB/yFDN/Dw78eyccQZWOp3jY+ed3UdeQ2EoK8ymqGSRQr1UfFZELvZbzi83SX4o0FWJWlZIYVHW0LcJ9LTdtRiBuhC6LsmWUkfEe4xSXF23EANPl4pCQecS8j7IOC673VwjtqZv9rTNLvW9AosSqtISbnf4IJSFwfcdN9c7VquS6D26KHGuZ3N9SVlVKGOJQXCupWt3hBDY3V1hCsvy4QM251cc1acAHK1rNre7oR1yqMJxGmMNRgtN6/FD20R0AYkR3zr2O0epYR8Cq1J4iOOk7zheOqyJKJVGHKvBmsu93cAsNhJHJZKXf5TBI6htxoXK2fRh7Ya/M2eOdDP8OQ/ijfhbH3FsJlnw4TnSH9M44ZT1m56BzPtz5/EPukSf0jbou5FZ59bmIOmyGJu9yBxcY7YOKZM7Qwaay7cZ/06pjqmK0Wp4VDrWbWS/b7nrYH/T0Ly9Q5+usA9W9BuH37UpCdA4up3jQQHKpF56YsS7QNeBMaCisGs8dSlsG4/yHkVg03hcSOO+jdU024795VtWz74hIuw3G/abDa5p0EahxPCzbz7jl7/6HXfDSPDHj4+oKgMh4LueUPaYqkJrTVGUtDFNgpCyorCGvt2hRLi7uuXk8Rm0d5RG6J0n9AGrFa0LuM5zvCpIgMiBwgirusDVnpurPZvbiGscYZHkR+w9XecpO1jgqWLgqelY2QywnNZz7qBlmygv/5xMc9/7uEsmwy0nL8blnTkjmXzGWM3IxJOeE5GUHkWmqXuRVIKthnscnHhG0gnTeea6OTJZppAuHNIBUdToAOYAU/IN1TBmlimb+IlvOUh1WFcoB0uYM/JwuJzjO2WuLrOSzMJxdtrxomnc80g3g80bZ7wfpgkJ5HLISALRxcBqpfjMR85JFSDexzHYEogDLiMQPUpFxKY2Rq0geo8pDBIiLiRAYDdg0vRdovfU7pAqUXoXqAY8Qhmy2qZUNPsebQyrdYEWodn2tH1g1wTOtz11oSmGNov+rmUZoNl3LNcFhYZlrfDe49ot7WaLdC1pJgtURZI5IapUwTeUxIkCEUXTOZQPKGMo6hIpKnyEpnV0VzfY6ojlIk2x894NyRWhtIavf/EXbF+95s2vf0O/KChkgEEgIj5w7HsemkghwqKMGJuWYqxwyks6Sz7PbZ/MFwemLrl1n8k2zonbTH0HgYQZpWWxL9M55tUhI53NZMIYQIpTki2KTMd/qtuoCzmYHDrZjOlZx6peBuia4dFGFfqhYTyeP/9SAwTDnHdlHJmVeE7KyNlnBdYq7KuWV3voYgLe9TGiRVMWAlqN05uaPRSuZ1EYqkIlPDeGACoBF0EkVa90PuBcAve1WuEUdESMzjQmA96NGtum8gvaNoF/fN3z9jbBV3S9x1YLXN+hteGqC9S1QgRet4p1EVkbwWjYNBGtSZPflCASsANYfjdAWuw3d6wfPUMNN6O1pliu+OKv/oLbi7fcvXrNzffv2GxuWS07Hqw05ovHfPubHynEc1JqfvL5E6xJ/rMpF9iq4OlZxXG45kmVqonafY8IWGsoygKlEzaNlDWg0DESg8M128QVRlNUFdXCcvpowe6mSW3HSlHXlrIqaHctzkcWq5q6itQGzGaDartERzEOgb04rPtU2ToMbx2CohNBxjzRRJGCRwP9xXFM/IcJmQhDUcjMH8usPQ/2D4SfR3t/bPvTYMIH6Xpmxnmc/slXH0afJWEVZz3X0yk+xj+jcozxwNk/sE5ySwyMk27GyJVKo8+0hWIwyO4cXKFSYKZ3BATpPWHfp9Ypq5CyoChTL2u1MLRXLS7CFwvF80rRW8UmKnbO03Ydq6MCWxicg6urjtKqNP47JABGW6Q+Xx/B43FNSxTh0U/+HLs4oahWiCiCd+NilfUaqiPOvvoJNxvHt7/8DrusOV2VVKXCUFCJw2pYFI7OBh4v4ciCiQq39Ql53KXsZtd6dl2gKhSrpWV1VLJYWmxdYUxyDPc3e/rY0/RpEk2qLAJr09hyqzRVrSmMhS7Stg5xqUJnKY4j6ajLJGyGIVaje3Bg5MwXPDt9w2/J6fwMwCSZaYapWIMROe8Plzi1MU3B0Oz8zJyh8fL5+tk4/ZD6DuM5837eT98RnINVylCRMVoI4665ATB/pvnf9z2K9J7G1zn4hVOQ5wP/8GDLBsIURZ5fZqrtUCqVaT7RkdMy0nWO/d5zc9XRXG7QJyvCgH2BTnhShkhBpHUeawxWkrO736WRml0Pj5fCvosc1YZt49nvOvoe7i4voDpi/egFxMjt7Z7L82tevnzLyx/P+eH9FbfbDYW1fPvDW84eHtO5wI/nd2gRnltLuVxTV8vBeAi4zhHwlGVN8D0PHj/js89vuPruJbpecXm+49HjBde7BKbmugT02HUBvUvAyVVtU6VBkbIl27sWFcE1Pa73FKIolFD4wEp6zmyP1mmhlVJTMm5O/qPRMltPODAqRyNRkryeTRgd6Wp06vIZ8kczS3Tiqll7U1r5ie+zBUu64Jjtmw6e0WHm6elZEinFyX/8Y+mH/85bDngB03Nn3omZd2TaPRNf0zZ/L+n/OH6cXoIMOiS9usHbnp9E4qielYZlLdSFsOwC29ZzGzQ+ePzFbUouFAbRGhM8i0LY7yPBBfrOU1aaXeOxViExsN87FpVm2wSubnuMURwvNPsu8PRBibUG7yKF1ShTsr+9xKwfYayla1t22y2+9+y2Pf/ymx+5vdvTdx3HyyO0SRWxvu3o2h7UnmKxpG8bQkgg48E5YnQ410L0NNstnQvsN3vWiwLvOmIQttseazXGpgkRt1fbVK3nAR9pXKDvPcFFFipS21QpW+vAN5VDYsuJchilMKTWkty6m0vS5sHK+77WnOdycmFsRZwvr6T1O1BVTHJ2zhKjM5Or0eSQpvL4CeH+6NqRLD60zZAhwM/sBuKkVof9itk+IIYhSDzYe39IJ3wqW9Lzk06cs8toTM/fS342mFhyfE+TkZ9skvniM5N5c6NoOrfEuX6Wyc4Z7Or09QlBKF9H28jJUmg2nt3lJtm1ooh1QbEsB0kRWSxNSkREwXuP957Q9ogxk9wIAUIa+atSsQw+gjFpYqjqPM6nwKsuTMKdUIIuDO22SyOtl+n53LZntVSYQnG9T3oujRgONLueo5NyoJUEXq40g+0CVWX5zQ97gqQpOsELFINFKOAFEE3nAlrrJKesSiO8laU6eUy5PmNRLxClAU1RLun7PV27QydgO0QJX/7iG3YX79nve8xQoRJDZBV6HkjgpFboIk7tNDnPNOi8CXtsYsxwIHfHhv20cmPghIP/567OfCJMpsVDczWO7E6YcKJkdOpncmZGvqOsmBvin+oWSS9D5eQGUzB49msuG+dmwzxhpNRsOMlgl4ShgiG9xzDNMhkM3IwzlINaCoiF4uiZ5S8Wwur7jtUG3jrYh3RzRkEfw6CzhNaBC54+gIuGXQeFEcph6q6QUmK9S+O9E0ZyAsgnDpOYhgqcILC2giYNx+kdiIoYK7y/dXRdquzp+o6TR0+x1YL3r75DrKWoCnZB8aCyEDwu9CiJaBHWpaJxCXzfiKRqU4Fd56kLxXJVI0pjbZVajmJAR0tRLfGup2obmuUt6ycPcds9zbaBds/pymNjQAfP0sJRKbw6v+N4vST6O9ZlzYvasQg9u7sUkOo6T11b1HpF3+xRpsDUBi0JEFzZkm5/h6lX9PstMXSEENnedQSf1jPBNEZ8H4jWc7Q00DuqIiZMntsN0nSzjp84ZytimGwnEZUqZeYdQ8I09SlnrAMTvMd9VmXyI+/jOU4Mnv3NfMz8+x9ufwJMeMbYc0NhrsyzEh8M8smJVgPxR5AwYJBkRTT9OJBZMgu+jA9y+BLGVyCSrBAZlNrwAsUmwKRjE6gaz34fiFHo+8htF2l8GrcWCXSuT5HCSlEtDOtS8X7j2bWOUlpKLajYQ+tZG02h4NHjFYpAe6ZY2tRP2feOqkwZQNd6fOuIKAiB+viY489/il0cEUJAi09Rw8F5Ubbm5MEzcI4HnzeY1ze0+57TleHBqeFffnfJyoK4nmOEBw9smu4SPc12h46BuzvPbtuxacOguISTdcHqpKZeGYzRlGVC0O5iGg1sfCofq+s0grFtU1WOHTKFrg0sQs9a99RVj/MRJRErEavC0C5xWNQZJ5GYiHTEnRmIZkDGnuygAahZwrCWmajn1SBxMKBUytTFe05QzMdMhqcMVQJj0HSk4vuG8ERZh4azHHz2KW7pveXHmO46v5JRLX/kGQ5ipwfN1oeKfDzHzGGfnyMLl/vXkNnyzKIFM6GVbzwJRmWgNlBWsFwYTtrIroNbero+VYdpZfCSAh1d41AhDv3lCTuJEHizcTyoFKdVcsrWOnJ+0XIVFOVxx5Ouo+9atnc3XF7dcLNr+cdvf+Tlq3PO31+xvd0kgRg9v/r1D7x8f8uyXrJ8sOb5szMWJ2tsdQ1EFqsVZVWltgzfU9gS1zd0zXbEvei2W+oHC7rWUVrNbtfT+2QwrKpkaO52Pa7zGKvSqGMBK4Fm72n2DgW0XaTTAV2lljFRyfGOQUaHjBwkmcvP+RrEJKum6sYZH4bMsRPvTIGEeEhQTA5NJCufA+aZgqlMbR35mDgYJqNde0B+B4QzI8f0/YnHD9Xip7dNRvHBI8z4S5gZ45B610dDO46GwigPB4NzZsozjVzNfJreTxjk5bz9LUJytAUqrSiLyKoLNG7PTpnUiuNiygx2nrB3iI+pDaFUtK3HCpQaNjuPMYmavn3V8PzUUg197mdrjYqR7853LCtLFwVzeos6vqMqlgQ0vffc7Tr+6b+95u31lmaz4+Jyg/Oevun5h395xbtNh7WGp33g+dNTFqeeYgBXc/2evt0RQ0vwHf1uy/l3rzFtn6ZlGI0PgjGK1iia1lENEySESN84epdosCo0znlc7zFGiJ3jcRk57TtWeI5rPyUVZjhAByAVo46ZrUlatdGNJ04tL4fxkXzuOKOL2a65rJ4U14fbgeU50ZvcY5XJcTv8Xn6ciS7zQUOmUBiN0tF3GllxCtJ84q7g6BDD9J4/vs2eJFczzOTb3ATJh340YJdfCln2DQGZmb08XnGoPJWohuEK4xmGJR2uK4qqhs9tZLP3nN9s8cZgrAYX0FajC52qQAe7tNsPNSEh0jcdIQR8iMlOjyk91vuUjIt9SG3HCtZnxwTX49oWpaacr0hq9Telpdk7ohKsUaOMVgJNnwKhZaFZrS12APRWRuFDwqrrOkfXBfb7Ht+nEfdKp7ZnJcKuCWybwL6D5QLK0lCWUFQlu87jRXP68BHGllitWB2dImRcJrA24Vp17RatCxbHD1ERHn/2HfvLG/b7lGV/UXieVYFVMTjUI5hLJA4tahMN5V3jqsx2jvnqqX0t00yYLWimm0FAZzqa78LHUXiPMnwQ9IP5faBHx/35g4OBGpOO+GS3/DwxHlQGj9toVwwHM/DzLJg64kDl74aJbw7lUmrfk8yHQxtrAvNNyniA5UKMojy1fF1olj80qAvPRVA0IbU+1QYcEW1SG2/rkm/V9YFAxMc0Lbe2mkDCBt22juhSJUzrEg6jkNp1dUyjuysd0RKpC5VagySglU7tjlqwClrnsNZy+vmX3Fy8o1otUGj6rueyaTguT+hdTxuFo1LY9gGrNZ0X3NAqZSX5bZrIyaM1p88ecfrZlyhbYGyBtSkJWZQL+m5PWR+zXJ9y/t13bK8v2G1eIdGyNI6vjiO//O1bvvhszYkIX52s2LWOVSm8ON1xKg0VhhAULkJRGJxLbVbGFqgi4UyhEuyIKE1RrXDdHkSlgLRSLB8cIyQcvtD2FBpC8BANynsqWsymRbwD5w9sy3jIKIOOVMMggMH2iveZcfbReI7JT4xh+n8ekMkgw3G60Ai4n4cLpcqdDwj0YPsTrU/3jXRJIfL5E88kiMwYLQ6TWQ4y+rOUzpilGWoa55W2Y48Y2TCIHBwwvrWZ0T6OaksgSKIVi1KoVwk8eH/nk7L1gcsWmg5skcrRhNQLu14b7prArgcXPSa2KbAT4LiueXCkefL0hG3bw3mL0QHnPIUVutZhdAJdK0vDdtciWlM+eIhZnKBtynQkQogoZQg6sFw/QEQ4ffyC27s7nn3zgu9/85qzleH5A0PoH7K5uqDrB2yOveJ4YbA60LeOpvdsm9Q24WNCHD9aFhydlNRLQ1FqFosi9fHFiLWGBqEfRqcaAaPAlIlQ93cNtRas82A8RdFTREdt7xH2GEmMk1CcGaKjfx4BwlAqnJT7PIISidP/w/EHGci58zJcI8aJzrKBNNIkhw7NYUVXdkIPiPyeBvvUTc20zdkyv+9shE5Bp489R/ww83fw9/T8c50Pc705f0eRDzFr7p/+4+8zv/bxfpVgCkHriF3C2qceVJTCi8dH2OAJwE0Utnctq5XFRXBR2LWBz2vY7GMal0vk2VnFLmhUcFxebbC8x7265NX7LX//6x/5/rt37Pd7Qu85Pj7m4cOHmNIiq5rLV+fsbzfc/fCWH79/zcvvXvH5szN+8Wcv+ObLp3z2+TO2t4GisHREQnC0m1tuz8/p2jBkdlIwarPtKIxgtGDIMjuyWhjckNXfb0ICXOxS+0nfB0JImYlFmSZhqBzwCNlIiWN5JYPCnTtowqQDYm6vGHDDcseqOlyRMet8QB339FY6T5bjcdqBjBccjfo4GVdjWX6mi1FHTYWjM0zTaZOZAv3Et1zdkPURHHIaWT7J/JP8Mwdppm/JTG9O1uwgt3LZfv7GWFI/4+hRB8fUwizpnKUIpUSOY58mwEugDx17D1chsO+F6ALuPFKsipTB7hylVTgX+eF9y1GpqSRhmr3bRp4faa7vHMeVpigV66MKROj7Hn97zd3O8dsf3vPr35/z7T+/xPUd9IHjo4QV5ZzjzcUNL99eIVpx9uMj/vVff0lRlZz0HfV6hbGGqq6J3hC8RfnAw+ePePvtS9pGuIuOulD03lMVim3j2Gx7ikphUdgBQHTfeHY7j+s8fR+orWZl4AjPI+OwEgh9Amcd3//s/WYin5JLM0DAIet+MH575EkZHe/Jn5fpIJmSH4o0YetDEZqPnRHQXIQz2V/M2WbQE7nsX+akNrbgzOy1gacPdPrwrGlPCtJk+fDJa87hoT8mRkZ8Aj4mYw7X4MOgTHYGp4Mm2ThAAoykcL8teRCCGXNKZg7pzMMeg96STqkLYa3B9sJNE9ld3hF3LcEqvEqTm9AKkZSI8yiqVQkEUCGB2fuh5TZGnEvOprUKZTXKWHbbhsvrjlIFtFaoZQEBvE9C3NqU5IQ8PSlNWTO9YiWCMgkbSgb7c70u0Co5aN47jDHs2pACOlpYLCzrlaUuDPtty27neX/d8cPFnqo0PDyteHBSsVJm5K3NvqW9vmXhBWzFowePKY3FuzRoJASHsSVaW4Q0Pe7J1z9h+/oVV++uUBJ5UUaen2hMlTBEXOPRpSKz3py9YBYIOFRSgyMXZ0ms6ZtTNbiM6zmdJn7k3Hm9D+k1B39HVs1G7dwonCnseXImfpS2P5Et3nub84BLHIIpYXj++6DIOVgzBrznZzq06WPMKWIZ2kUjMYQRd3D0mePsq1rQa8Xzn9aslh0/vOt538I2RjrStKIOUAZcEPqBt7SW5JvphBtaao1zqV3R9Y7gUzWNjyGBIwOFVhQqUFthVSvqpaIwkrAbdfLruz7ZfbVVhKE/r99co7Vht9nRtw1lVbHtOh7UBc7vuW0SjmPnI6VOk3yLYVR37wNlXfDi519x9Pgp6wfPQSnKcokyJdbWeNdTVycE12FszfL0Oc31Ocb8f7z67Uu663N+9rxmc3PHmenYl4GuD3xxpBES1qLVCmtSF4qyhrb1LBcaUanqT2sDyiJao0yBUoYoCroG1ztELEhHuaqTHFEQt2kyY2lScMsq0iQo1yG5ZXdOBgc6bCgEmDN51r+joynDmG5GOhq+OepEkSHwxxSIDy4MkATTeUbbb6DvUebH2WCmj2x/svVpuM0xcHL/WaeXkPfMUoPjzYRDgTTLOsmEOjmeVZBpcoDMPj/k4sNbDePjH9xbDhxUVSKQpYGFBC68IuoUqLBGaLsE5rS0wt5H9n0guB5baNaV4XiRxnwdHRnCJtKZCCGBtPWtQwTaPhF/3zm8j6nkrVymXnvfo71HqTQ1ChG0tYBgihpjK376r44wxYrzNxd0fceyiPyrr9e8+XHHZqt49cMVfed533RURtAq0vZD8EcpShtZVJrlyrA+KlA6jdxWOvUnhwB97/FREKXZ7HokBApJjFtqQXzA9QGLo1QRG30CCh7XcjA0Zooqo87n7PvEFNmCy0Sffo/jf2dG61yW5q+ocWx9rs7Jim62wgOj5MuN1DIT+vOpT+M+4YBBM52Px2cP9xPdDiuAJofgsM952uY98NP+D6zN5KDf0+VjUHXyKuZ3AgfBGvnItaZ7mJf4piopDmJkgYiYlJFTKiYiUJJ4yEWkiDyqU6/wpgfXOUyheXnb89VRAh/bdpGzlcaHyMJqto3n+/M9312/YrG+5nLTsdM1799d0+87CqVRlaHtOl69fp2qC6InIhhjsEBt4nq1HQAAIABJREFUCzbXW35113C93fO737/i3/7NT3h4usDQUy2XiFJsNlt2N3dcXW+oK02z67HHNU3rUMpQFJq7TUfXB9Yrg5KELVBYIArtzoGP3O0829bzYGFY1ZrSKLSKGNGHbz6SjOBcivkHgDzjfNmG9YlM00ZHPRVnlBNHKhltwfuRB4mz8s0s+mVa4fFeB6NrsrtkcGzijLbiqLwyUaSzyCE538N6+eS2jH0xCJvRwRWGMaoTL4yyLMvQyAD1Njz5wWPmsu10XhlBEA/fhcT8YyajYXpng4CVXNgZU2ZKRYcBtEojdRsPt33E9B5xPmGQDK3NAbjeek4qYVGksZ6PFiqBflrhwdrSRcWb84arcI5631As1vzD7y54e77j/GJDt91RlyXlYsGjJ495/vwJ78+vaAHZ7ti3DW9fn/Mfvn/Nb759zd/+1XO++fIRJ6cn2MJQlAYlqXTbNR1FWdJsb1lVNd4F+i61cyiV6Ov2pmNRaxRQVxot0DSOfRvQkjB4JCgKGzBEROLYnpFeo4ztENnZnsvKeXVp9vDmzlQ20SZT6MBqnH4PJx6DrnF+BSYmy8s/46t5O814xjjxX9Z7I1UEQDLjDpp5vMmsv2e3N7vm3EEcu8GYdO0nuY325Fw2MSYvsg6bTJeYKhfnp5DD35PhMj9qamm6r4vvX59s3MOYkEq3M6yHkinYHWIaRTbIT6VhoSO18TgXaTvHbh/pvLBH6KPCaQ1VwXJp8CHgek/0geT1JWwaH5JTxdCutOnAKc16ZVkUacInMY3pBghGo0Jg16YWJ2s0UWfshoRNgwwVeZXGFCZhzijh6HiJ9wEfJLUgSqqwWS8LlgtL8IHz93eUVlNazenasmsdnY9cXDVIiHhlcCjKpcHvet68eUXgHav1a/78p19ydLxis2vonWfftJydHvPiyWPqssLYktXT56wfHrO/uUF7x1ElKJvWxtSK6CG6mKoQ1Zwn7tPTzIYapcLhoTFG8LO/D8gl0UdWaWMD8lQu/cEl45z3ZbTA0mcjjJnMjp+u87HzfSpbEiuTATKJvSRP41gBwwCtIR8amfmLc/k0k4X3reMcmJXczyipEpVRPzO9Y0kdGycvCpanhsfvOr6/9LxpUzA9iqAFFkazQ+GGKS2KyK5zrErDrnO4zuNdqg5N46HBKkWhIl2IGBVYGMWyEhZLGSaOyeATJR3rfGq/enx2xGVX0N1cQ9vhfEg4VMZAFLb7noeLIrU/RmHXpZarRalQkp7dasXxynD09IynX37G+sEjjC0oqhOUsRhbEwkUtkw2oykx5QLve2x1xDNV0AbFq3/+NcWp8NWZYHWgtXBxmyYI7xuPc1CWCq2gqkyagtoHul6w9QJtS4IPaASCT+9Hkg8QY8Q7IThH17pU9eShqCuC1SxKjY2e0kRKeuTWjfp15i2OmDIpUZlo48BvJPukcVBtSZvdDxpGDv2d7CPNYT1Ey1itDqkqM08pG7EXhyqej8qW2fYnKmqy85q5Y650ZDQuD73imUMX45gtHXNI2QkeHTzGCNTh+XM3dDIiDiLKWakNPWNjv/Vwj2PMyidmU1bQBRgfMaUC42g3sJesiFMfYV1pqkIoHOy71Be4rHXKZtvEILubS5rbFqMGwE83KD4SMJPzksAWlcLWFcVyDVqhlCaPDMzEgKT+47JeD7g1mkfPP+PRF8/47f/7SzZ3isrueXhiWRSBsC8pS83l+w1959i2cRiolBzUFBgyWKvZNwl45rS2aKXwPmCM5vam5Xbb07lIZTVWhHbbcXXTU2rhdKkoLdQhsgj9YLDmJb3vgM8pPBl6Q1HmobqK4xOn9U9pwpkQlFTqO2mdTD7jumZnbcYr43YgdMes2MGNfiih8z+jgTYZsjkTepjZ+LS2yXf4mLH/EeftgwDOzKEYP56cwwmILr/LScmPQeLp7LP7monFfPqZcTwFcWZOQHZq1TBdYcjwiZkZ00pQGqyNLK2wLoRtl5SA95F9G3m+SKBrm9bhXMoA3u49r649ew+brkUutxw9eYSxhp//9Dmb6x3761uMwGbfs+scnfOEmKY5JbA1RVFYnj07o5fIk2cPOF3XvHp7ydsfX7GwKbCkjeb3r6/4zW/fEvqek86xXBjC9R5jTJqWYwRrFa4P7HeOeqFZLTXepayO6z1tE3AuDMsTqQtY6shSPFZ8mjqVl2MwIMfR2mH6ZwqIzio4RoMznSAPPRgn82VHYXQis7K7Z6wKYyl3ooc4+XXj0IWJD5OBGsceqwMZkgMHMqPJzPf5uNGSzcfw6W6RSQeNW5ZtU4n2oQM9KHk1lzuHWZx8woMWwvQBjMCwcVqne4Z+ThCJzsQiaTqinq0jKahvFZxUsHUxBTtihBAIUaGssLnziFYcV+BDHICFEx33Hi42nn0IXHeO7srTxCt8EN5tHFEMbrdHKyF4x/XNnpvNHb/7/e8AGUZypvHBehhb/9vfvuL69obLt5f87V9/ycnJAl8YjFE474l9x36z4eS45upyx+lJhQh0LrIo9TCem9FoJCQ2SdnN1MpbWZWw65LVkSwQLciAY3Gv/Gyc2pPXJtdijKbSsHYHgZN7Yji3qqW5M+l7ajjBlAXPtDCsW17cMWCZ25NkdDDGq2dZne9fUlvclM6PM5aW0dQb6S8HWDPOUgbEmtNWlu+jDffpbvN3M+onZmpweo3j/x/ImrnszTpyxsfpNao/aD+MIk2m84+BbVHEGIalVfdYPyZ6HCp0shwBEBOxRrAmsnDgXGTXRdoI+8LQauh3HVEJprCp1anzKKsprErg/D6w2XqUFpZLy/KkQOuU8AjO432g2XdoowjB07uAsYp6Ybm79riQ9JZVCmMUPqaKG1tqirqg2fUs1xVREvhxjLDdOZouYEtLtdQIkWbjiSHSO8/JSQFKeHYa6FzARaGPCccmivD6suPdD9/x7v0mYU2FyP9l/xNFVVCvFtzdbGibjuOnp/zd3/yMf/+//BuWVYFdrnn41Rdcv3rNsktT7LTNhDAkH02i9YyFMS1/HHXaBPCd/ZnDNR/xKfKPw0Fx85Wd7Ojsx8zZfThqlCP58yGBOfFkOkdWyYMBQGp1lk8a6DuGmV7PsiRkzpj8h+xAQ/Ynsm1yT/ZFpnczYyTJU6VUVoj3DKoD1ZrlcPosCqAV9kjzsFYcn3qOX7X89tZTFiAaChWxotmrNKHI+ZCGW3Q9MQrO+dGuVpL0rUTPyg5BIknBjKJMCXhr0lRRrZKaN6LofceDQiFlxQ83W8x+C8FhbUVRLfDBU2rFi9MlguN0odA4PEKhobaCaNLYexepC8tyUWCspVqcoosltjpCRBCjU2BkuGfRBtCIKVC24qEtMUrB9S1u84bgA1GBUcJRrVhUispC79Lk5BAi231HYQ31wnB8doSpUqWbLitMUZEjxjEGYoDgPT5GNvuAxJJ+t0d3AQsYW1KeLqiXFTZGuHqHGBnB7Q98wdHtUAOrT0GW3B0yM48H1RaHrw4fKBkKSQYZLzLQ2gxXdZrozXj5OHx3PP28le+P17r9iYoaRm2Sbj5dPQ4KO/VxzqtlsuIYHkjSzYxEDodl3fNjZy81zv6fMv3TW86CMjOzzBktDFEzkWSAyuH1RCdgtMpE9lFQPhA7N0Zr69JQOZ9K6zQURg2j2SKmUHT7jtC14Bxt67BacC4mwDUNZZVKy7QWitURpl4gotP387uMkUgYnCFBRA8gUSWnDz/jb/7uXxOuL+j7W4wILgSWi4JHD2s8sFiecPn2DrlrCSESghCVSj2SxFRJUBrqpaVaFAk/RyLNviUCR+sSoxUhBPa3Db5P/crKSDLmQqAgjiMaD6PT3JNlk8E3Q34e1hoiARVnVQCRw17dmBXfTDqOX1ajQooDCO0Q3zwIImQyydOJpluOM5q8V+qNHAQLDjNpWeF+4kbnwWLkB2fmDOQHHgSNCFPb0+E2tsvc2304BnJ2LDNDYna5w5sYKm0OTjijnJH/YyrRnunU8VtZCJIcRlMoag8rl3BtvAtc7SJHOgVbnYe9izxUKUt3tfG8ve1QSnHVBH7+zRmfffOUp198RlVautstV6/PqRQ453n54xXfn99wu+14dLLkycNjVGE5fnjMydkaMcJyvaSsSi7Pr2h3Bddv39FuNlzd7fn23Y6Lmz3RBf7sxRG2LKkLoe8d1mpcCEQSIFyM0LtI36dqoeAjbRvZbB1tH6mscLYyHFk40z1r6SnFTYonMtE/MLXVZ8Uy49Hh17RGk2eSufeDNsHMC5kGxl3zRZ8ulKveDmli+Na9MZgTLdz/bPZ3rizJ1TcyM2g/4SAqZIyEqf1leu05s5J5d3h5o9w6lGkfMuR03vGDg3cxVTjNCWQMiueAEDlIk512Gaf7aInUWvBoTkvhukujgE2exCSp7fvzBxYbPaJSBv/IJBDv7y863uwCjU+jv/d9jy0LHj97wvHTktJozt9d0W0btMC+M+w7z13To5UauqvTxLaitKzXNVVd8vTFQygU//zP3/HVZ2sWpaaqLD5Ezn94Q+88vuupS5MyloO30rtUPNB1kbrSrCpN16UE0LbxNF3gbG1ZWI1R6cXHwQkaDajsNPiIpAGIM1yhWVhuLruYrdUgi7Mzn1qGZOS7qbJKxqQ4MRtzo092yB/5oAO9ORvSxL3qSAUxJCd0VOmDkzNXH2PUaK5LchBIzXh6vOy9KppPmjenTT645cF8nulTyf8PMiePU52Zo5PcnOnPD4I0yf/Kmnh2D1N7GpCmdAkTTlXOzjL+mfaNplicRt8QwaSKmKIUiiqNkHWhoxOHQ3BKs0dovOD3jv4uEkTYdWm8b22Fcmg/Fh+HKhMoyoRlGPqeGNQAFCz4VBiALTQES1VG+t4jSiisBiVYI9zd7KlWC4rK0DR9+r6kVsqjVTkEe3v6XUffeiBS2gR6vKw1xpaEANWqopWSbR+42ATebxwvf7zl9nqTWkycIxLRWjNhpUXe/PiG3/7jr9lcXPK//a//M+vVEavnX3P06PeE73+P1nldR6vqgFAOqlXnyb1Bxk6BtgOCmgRvZsq5jTQqtIOLTe04mVRUPvxQThxUJ8/oSGBw1SYGPnC1PtVNT1Wo80TGaH0cgHcPvGfUIchr3rJazPJNpjVLv7MfqQ6NqHh/HYdpa/lYmN6zEeyJ4YWJ1G89LzeRbqhOtAVYF7ntVRr04pIsL4YS5hBSYZxREGPAB7hpPOtCqItIVRvqhU6t4pKmQvmQJiXFCJWCR7XQqMjOdRT0KAK+2eG1RRcFj1clTdvzcK1RkgoJrBKKND8HbTVllQZyKG1ZHC+ojk4QZTDlGjE22YezKUdjMF80gkKhMOWSs89/zup/f8g//J//gf1v/olFWYAJCcjfwKLWtD3sm5712iIKylpTLxconQIyypZoW+FdstclpuqdCJSrUwTFYtGitabvW7q7O/ztNT5G2s6gNaAiuvXIPiV7lMotSTPZm+3HIfA1+qAwBv0yP8cQJp6ZC+G8xXv7Rn9nOkaUJLwp+BBNBkZa/4gwGLc/GqiZmH/2cEw3O05+GhZvtCtlUmijkIoyArJlI3QyJrMGi8QPAjlM14ARiyYJsHnWIhtSiYEkp5jHtzjcl07jBRedZ9uljBo4RASj0xQnaxS9DNkALdSlpig15aIgxkDoHcG5pFSNJAIRGbL+CkNCpVdlhS5XgKReu5mczgZbivoFRBSiUpDp9METTr/4gv/6f/8XfvGkYFlC1zuWRxXXl1sgslgZumG0cNMkJVsVCms16+M0jltpGTCdZSh3TYxmbapc6BqPkYAl0kcIPtA2yemtihR4Gp2FkbKy2IwDQcvoeycReug0ZBDgUQaOfkESrqmodmyAGAzFURTPlm/Woz0qn0Mn5cB5yRccWzMOKHs6/n72cU4vn/B2XxjkLdmY95RW3hc/OHI630cfeTBd7u2bt0Ed7JvbIZn776/JuM5xOk6m3mDww0fq/i2OQhUFWiUcmr2L+C5wutB4n8C5Cp2AzNseVoWwtIrbPvL0bM1f/ewxT3/yiJPnj0EZzOcvCN98TnN1xe37c54+PeGvO8fNzZZFXWDqCrNcYeuS5ekJDIHToqyoFjUqdPRfPuKH374k/viO016x6wPWedZGsSgtVano2pYgaoxVFCbJrsIqjFKICWnk42CsGAWnS8OjpeWh6TmKLQU+vc/BCMsB83FhZywzZmqziJ0dNpeKo+MeGYME9041/T+I+zh3HiKIZ8wU5D2SncSZiphKfPLJDw2rD7b76z8n4I8T7KexyeCMR5IzPjMCJ0dtcuDnwWeYdMPhFkfjU+4zHXDQujG2jk1VHJN0jVMbhZbpFFnGDk66kUipI6USVEwtQbH3RElT2HoXeXik2W4cCkVZpnNs20jnIm9uHX2IlEZztCr5q7/9msXJKccnRywqy/5uw8XLt9RWY43h5Y+XfPvDBZvGURaas+MFaMXyeM2jzx6yOFry8GwNMXD+9j0/fveOQkX6vuf71zcpQycBkY4HS0vbeepFyb7tKAw0bWA1tDtpJXREbjaOtk9GaKkTKGQpnhrP0LkxCw7G0dmKjqmELb/XufU147nRYbjnKMSZTs18N1YF3/MVGPgpR1cO4u+DLhUmByKE+Y3f28a2ukw+h3Q28vnssRjJaVYFNjxFfrZUCj7YBJ8wa/7hBEw8+D0GaGZ+3GS8Tt+SD/6Oo81z/1ju/Zvf4aRLI2OCar54ef8w1psYDzD7Rt6d3TMR0AmLo4gRGzwhQkskek2z7enbSOeh8UJHannsXcCohNUSYhhaC8E7j+89ttBYm3RzH5PtajRIlQIjRqXpp2qQLW4IaFqrqWpD3zmIkqpUdFqPEGG397S7LuFF+ciyShEnIdIFSRXqVlEsaqp6idl3/MMP1/z+uysuLjeE4BNwp0iy0UMghjC4Lakyoe88//H/+M/8xc8+49/8u3/H4sEzXvztv6XbvsOY23lOK71Wyeujhqx+nCA6P9CUciC3J7MnOYqjDr63VuMl5zKYiYdGWykHdedjmmWkigMZAwwttlkQ5ec47Ez45LYYRzkzfDDJRwnDb/X/U/dmTZIs2X3f77h7LJlZWVt3375zlwFmMCB2koJRFCjKTCa+0KSvqkc9SG8ykx4kk0wyUQQBDUAAMwBmu0t3dVdVZsbifvTga2ZfDB7VCpu5nZUZ4RHhfpb/OX6Wc8eoNhkaSe7lqCFpJlc1zZ00OKJZ8NbVnCMZixM+RfrEDZZ4XQCsNeCE4Ub4tAsM3yx89bDyNgh+CdwYw1UHJyM8roajj5GqNvFsCIGgMeJGiI//tHisM+xc3FxQojz3CJ2zybEDL687umMAXfm9T675j+8OWCcMxuJsrN3ived6sHy2Uz7dOMKyMvlYPNgYYegiTwXrcOMYC/q6gRBCovkQcVzIXYoBsYhYYpCGwViLsV0859byo//0T/jTt79ClgfEQN8bliXQ9w5YGHqLkSRXiMEAYg3G9YgbCWKKLvPLhNgO2+0wpiME8OtX+OWEIbC7u2LtV6wI4+6Grh9hekafvsUvHllCKQidkVd8J2kCs3PEVNWZmmgjR6cXRyAZR2ulvUQvualG3ARJtJT1cE5vEj4sVNzYuLU9/IfHPxpRky/WnPNepAqVoRoDoGGxKDRDaEB5YzRrnbwzC6IIkhapmPJVBiYfHCn3zPSmCOfyiNkDagWs0BllG+DKB96FkNpzxQl0nWE7QJiVfkix0gLSWbDC6TAznRZsckRZEbAW6wSMwXYxN9B0A/31C9zmOr2zKcZSCNHjH1DwAS3OJ6HrB7ZXN/yT3/2n/NWf/RWH43u2vcW5uBJXu46n5wldA0MnrF55cdvxPAXG0aVe8pZlCTgRNsaBxuJVKOw3NpZ9U9DeMh0VQ9y9vx+Fl2PgvguMxmfbK+4eagyVK+tf6KANFWuUVNopLmkVbbE0CeS2kyU6Q+tOVfEuSjU4iqI7Q4Hxy2a/ulDgWfpAAUI0nvr8XU15qs8Tx/nQWPp4jjKbLb/QGnjFJ1x+lzaapSjAdtTKz0VJNTLsg6PoSznjt5I2df5ozRqm78QkAySUfNGcN6M5RF/TS4b0fsQdw40Tdk55e4i7DM6k3QkTHatBoXfw+qbjbx8Dvu+5vd9wt7NsTUwhwvVc7a9Z+45+GGOrPx94eXPHi/fvUBTTOYIYxqs93WbL7uoa2zmWdWI6PBKmZw6y8tnnL+jNyrjfsR87pm/esNEZP01MwbDOnn6MqVld72Ka5BpwNqZNOWeYg7LZWI5Hi7PCq33H7dBzJQtdlqOhys8iPrPsz2xJnn89w2mXjroC7rT9Ni1Z49mp0drpmpBpIwNILYApOmdSFI42N9X60FGRtYi4odeL3fp6Zj2vsZw+yqOmueSnP097qY+feBGSkRvPPeM1SSDyQuV+eE/ivLdKGOWyMHFz27SrGMeWVMxOm4cUjcCyF8UvPuryznKcDNcbW9pvBx/TLpw1DINgXeBpmUDh81db/vV/9iM++fIzxts7+s0VflnoPn3N97//GcvbN5zePfHibsvv/eg1b94e2F0NdK6juxrpbm/Z3d6whhXXdXTOsRmE6X7k53/5U37yi/f85a8OvHt/5Iv7DV/cdByXQOcMrrN0XXwfZ4VpiY5OtYbTFOtrPE+BT3aWF1vDnQ3c68JOVlyDMVq903bmLrWTEoituqtOdDUK+IDP8soU500y9ArvlnMrHzcY8WywHJiV/18is/KYVY2eGyVZviZZoBeyPBcVb2W5SijPcfms0ZH88erNOgnpmU39WIvxp7XO8ibNV8n6yvK24Ikq4wpOLrtXRSLHU5rx6hNpeZA625qamuYFlyr3yxqnAc4UdErVk5C+N+UeRhQXPON6YlDH7GLEy6TKMiuriZ70UaMR2juDn5ckl2Oqf1g8Jx8wLvJ93rSxRtiONuqBXpnmkBprWLyPddimp5nT04QScfKkK0bhcJxhDYQ1ypHtENMxJi/sk/wJCF0vWCeoXwHD07Pnm2/eVdrPwq/B2tIsshhhCcr/8N//L/zxv/xXdNtrdq+/R/f558ibp2Sr5PT9NKXJIZudrq0xJ2nulUwnzfq061uej4Lzs5FXWoC35Jno6vwdLuR4Pq+9R6M/VNsT6g2M+YeNwf+vj2jX1skrZQ/azY5SD7P+XibBtOdr4ziTunZ5bKJDrzi+mnmHdto0jpv5PJNYlpPZttwZ7vue/ZXhzduVt0flNK8EFQ5GuO8CjyvMKqzqWFbl5APTEh2M2XHhc+0pEzvwLsk5qBrri9KZaNeN0YN8FVae945g9jzN0cEyHQ9oUIbe8HoLN53GNF+JRfTFmFhLdVXC5NnsB/rdhs3NdTSjVSGshLV5P4kNeqDqFCTaSIJBjaUzlpvv/ZDf/pf/gq/+3f/E9HzCdX1y6sQooWnyWGOj7CQWFR43qXiwsXWTWUHVl2uNcwy7GwyB9fRI8AuiK3bY0TuHsQ5dZ+TxDRwfY/0dmxeW8tzZASMf8FNjFwYSz7dRalK7QtFE0JKnSCp95WtMTVGNkTYV9bbpdLV24D/MG7/WUXNGmHnABpiXwfPvLYoMpLzmqmAy3X+XMKNah2XiIpNQd2LJ/+YBz98st1grwjDfqpFm0asa6HfC7QrTU+BpgWDibTonDINBrdIPhmmF8XpguBoRYzgdJgiKT4L2+bCgCm5wdKNl8WCsZXzxku3LT1ExuH6P2K44a0RSKzE4FySqBBRjO8bdlt/6nS/55v/+d6zBEmbPftehIUb5HHxgMxiej55xcFztDaQaOaogVkuBUb/GwkwxzTy2B/NB6SyIE7Qz2F65GWJdgl3yyJoMSgNoDt2yDeBoYrRr7mwNTSxgIgtU09JNDfHVRsHQnF9EpjZk04CnYvAVZ0t9tkJJcgmLWnq4yPPOD12Uwa/hnI/paPlGM8+1qC7O3pmTK8tD/Qfen7xUea7Pb1ft+2aWhGachsWz8sznFiMot81rBFULREthPaL/JsmBzsFuULyHbw/KFKICCl4xxMKgEHcNxrHj8zvhr99McJwgBKwu2HWm3+5Zju+wbsQ6Q7/dphTHjqtPPsGvM0Gj8rvaX+P9SlgnnDMMXYc6xzzFgsXaGa63jjDPhB34xbAdUl7wDJ1oKtyrzHM0JAUgKNNxZV0isJ2WaAS9uu65341sO8EGEI2VMwpPFN7SWr4lTWtuCQhN7Zpm6SNbx3UuOfRSIx7r4Plj44zNH84K0+bvMxrNACr/m4V/GvIyBYrEoxe64dIpUeR6liUf65HevaQvpPcvLJmNwSRj2vpqH45Do+eSnA3/8OlQ+bkejQJO65npqMUW8avqCDQCVgKjKG9PK8YJg4HTZLi+sYwbC1ieH2N7TBD2g2XbGXYWFuv40Q8+5fWLPfe3W7rdSHd1i1fPMOxY5onlao9xf0/wgburK/Zv3mH7DhVhvLnBjiPj9oph3PD0+JbgY1HGrbvG/eA1x3nlYQU/rdxsHDc3G6bjxDSvGBsjXOfZ44zg0oZILjA8rcq2Ez7ZO15uDC9kZrvO0UnTKpzofayRSLQ6RS/7J1SJmx0eiQE1r2V2CKicsVrGVlK6YLZgjvaO5/pOKw0Vcsl0Rv18JgTKmMk1UFhXz87J6V0q9e5nG4Ii5R5aB+GjPc4cZ5pSwS5PiWkCkX9Ncb7UEPUWkzfjkemimcPE/3msootbDKJR1xlNRg+Uc4tBKCTDRdDSgCPJ7HwfIrbVLE8UUo4RWBAj2EWxqnREPh96oR8dblIenlemVQkHz6IT251n3DisMax+Lek/w2jxKZrb+7hDPU0xCs1INCiNSXXbBIwTDnPAmqjnIEWedx2n04IV+PZxZpo8t7uYJn+371IzDLBpDq1Vxo3l5B0//fkzf/PTr9K6RNxvjKHbjXz/d37Eqsrf/fu/YJ1iqoT3K96vnI6eP/2Ln/HLX33F97/4HOMGzMtP8e/+GsMF7mJAAAAgAElEQVSceKIypV5g3MKHWrFjbawR+els+S8MvqqME32hZ1EyBY9mlWDy2p7d4ZLK0rmmPFd5UGmM0jNd8vEdbWZZTcVsHM2tsGxrBoXGudrMYZGT6XxJui/Oc5a96dqgJYo7BYtcQJTK+FL+rmmSEqvx0993vL623B+Vx7cLf/P1ymGJgFlUOK7Cu+MpdozWaGfFKJsiGcipqSH4vIQ4Ex9MNd7LCXRBsKvwys38LKxEMy8whdj56NYFbkfLfpAYZWMtzhrW4FGNkV69CNNpZuM6xldfMs8L/bLQB4/6yMdiTLGto60f6VfS/GbMKMbSbW95/fv/JZ0b+Nn/+T9yeHrH9c2eoMrz08R+P+C9J4RA1wvd6LDOYLsBN+zAWjR41C/gA+v0FLukmh5QjOtx/QYNDp2eMW5ItSQNJgTC+7fw9i0SQl25vOZB03NHOtK8UdVwU04ZjKo5R8xI8XlneVDsn0b/ZVktVTkUORzdGKG6LxKhq4bCx7/O3vzHa9SYJIgKgE7gI8WEVoVThU3MtymcVpUZGQhcAIzmUSNlNjPSuo3LGDX0toD3FBXa7gSf7y7mW8R7GmcYt8r2uHJIzgwxhs3WxpDMk3KcPTd3G6S3iDE8P55YTwveR5Nz9Yr3grVCpx43Doi12Os99uYehi3LuuJ9IHiPGIvRyEySjWmJSrrI9zRf42bLi08+5dv+T3n/NHO7tTw9HjHAduM49YawrLEiv43Acxg7xJqU+x4Nw+m04HOlca+4zuKcQ6ywHE7MhwUjsOuF+zFw1QU6icUV87zG5YxpZZrTHDIITfNfwVtDbkVp1DWU5NHU7CSpo0Qh1WxxtTagEsN4m7vWtacxTs4AE6WwqcnKsmXK/JckJitGb9YUH69SqzsuytmOWuLRWgw4f9kCiBy9UGe+Xtzy6oVelxag5nvVaLCzWgVnxnkyBwpOzcKyPk/m81y0Usj0ULi8OINFlb6D/Qhf7oTOwRQ1G2JM7BglqZiuKJ9sA10QlnDk8NXXyKsrZHnCPynSDSgGv0zsbvb4AE/v3tFvtxigT10ihBixY0VhnTkd3rBMR4yAn5+R03sGCdh1ZrMeeJgmZhy8h26wcYn8yvZq4HCYmJdYHM6nXYvjYeW0KEFjKuXuesvu1TUuzMjhEI3BnHLaApNwTqUV6peZzZlSZ4ZedpS2u0+ZJtoEnTPQWQaqdFI+yYWiMWn9c/E01VpDJ4/RCOhIwmcuVkp9BgFtUxg1//aRHgkQn8Hr/ODl33zqeYQfF2tXIqiaeWrPyI7Wcs53iqy6I9wa2UIGL1RZQjrRKFYDWwOLg7mLndYIyvG0cLt3qMYw9L4zcadrDWwHx+sr4Q9fj3xzVI5v3qLrS2SdMBodlJ0dWOYTXd8RJstwcxPTI8YRO24JCqtfcePI7vqGdZ4QUa5v7nl+/w04YVkmBgufvdzzdFxxp4kxLOjqGXrL8ThzPMzc7nvevj0x9pHOh94ixNTDzho2vXB3v2O7EfppKtlgkhByMdQyn3zH+mZSNFmOtSuYJ74saNZdiZ6bTajsCGgdaSWaJq1PppXqZKfQRXqseGWBbFn3nufBZ+5tQWVLF63KyMZIPozGoJmWLvP553ju4zzO9H6r+sjYMs9zE33wIQz9jlHzQE0EU8HOFTeX3VSTZHrmySrcko6sTqI4RiPB02IX/Z6dSUjlaStnuDKsyei10fjauI5gHKuC9Suus8w+djvs+ljYdJlWglBSfjpjWE4+ljL0qRNjIsZFY4FiVBkHQ0iGy7IqncDpFKNzTlNgUHB9YF2V43FFvcauTk8LQ2fpesNoDeuiiFG6weI6g2KQYeCrx3dMxwUgRSIoYV2ZngM//fMfc3h6RtZYUiAWJ1c0bY4uJ+U//vgv+OKzTwnqYbNDbUdY5pICXJaj0Eji/2yYFXnbKsgP2b/IjQbLSiK+M+dusgVycfFam4UzLJXvpiKxwHv6LKqEC0xe7aTzZ/hoj/K8RfXHz2iZH86nG1G92AfSmGqSbZc8z3K5rkUKNBsbFWsUudAU9zfGFP1b7AmlltlIvKVAv1Nu6Pj0EHgzB5YgnILifWBjhSVdsuuiJlg8zD4SW2dg20NvhXmN9WuUmIoYU4fi/DgjPEyeDuW3tytvO1hVeJihM8LtVnixE17uLe+fl+Q8je9oDAx9LBS+2fTYvgPXE1L8dFjmOFEmRsQU56VqtFcJCLbaAGmSrethvObqy9/ji77j+e//jOnha5yujLsR1RA3NjXh2MS3YsB0Y9KxsTmP9wuiHcEvMbhgOVX7PjmOMVGeqvfowy/QX/wMOcxoyf5oqUVTdkhSYKblB0E0ELO+Eu/5vNFxBtDIX8W5qM6ZLHfbO5b/6nmEa4zqaZV2gxO+4/jHHTVab1gUeXUnfcfmiVLRR3qJ7zLeLoBsOUQqYC/Kv4Z0FyAQzlM5yJ9awdko4jOlDGAEOxputoaHt4HjnFryDobeEHcIjY3GX1CcNXzz9RPTFNuULquiqUI/Ilzvtsj1Ld1mpNvfMN59DxWHuAE7bBHrqmc9zVNIYCBWY4/Pb40BHMH2fPblD/B//Mf81f/2v/LNmyNjJ9xd96zeM+w6dBGm41pC55BYxNLZGDkUUhQNqrESt0JYPcdTZNr5sPDuYWbohc+2MZ+yl2SMmrxMkYARjV14co5+cmaokHYUK8yrUb8GFU/jEUjr2IAT4gB5DrIjrez0J/B3ZlwQaYJynjS/RI90pFEphn9OvxIxNdoregbK7mVJL+DjtgPPjxZBltlp/qag+Lp7H8+L89jwcDON1ddcAX5ZBa2AtqY9aVRqjXRsxy1tnIlrUuoqJOOygCJq8HelDy1yJAs3MdBZeHkN5gn+9ghranU4L4Ec+a0hcLcfYZ55npTw+Mibn33FMHaY6Znx5fcJ6wGjAT9NiHFsx46gC8Z1CIGwnCJ9BM9yfMPpdCDoynx4BFX86Yg/HJjePdGtM3adEZR1WTEmOnIR4XCKtbCWFJ3WdZZ58UyHlcUrSxL0t7dX7D9/SX9zg5lPiB5gPaCEFFmj53LuEsE086dKibg5JxtJTWCUyyPSv1TlUgZs5HdLappTA7Sel2iryG3bXCSZnqpc1kww+e9007N886SMSm2ej/jIjxv/+I5nrZNa3w3qe2W2Lg7ZMmodQqEa4vlemZnOF725XQEeqtVLkOVyARcKlsDoDK4XtqJ8PcPjrFwZwc8rfW9jPnsI+DXggHleuerhi63ycjSsyzPf/vRn3NyODFc3+OkRgG7cx92kMLPd36Aop6dnXNeBGHo7Yq1DUJwzLIcHbNfjxBOM4MNCz8pgPC865ebe0gGd5M4zgiwLRjq2Qyycrwqno0eB94eVoTe8uh3Y7zbs7UQ/h+JM1NDik3Ptc5l5LZlWm7XIsq3Q+Afr1uibRP9n3aFaq6qwXRMBVQDg2aAkQf8ddEKDw6pcKAVRz+iAxKYJY1W41+CwlrLyxsCHsuSjO6TuF7ROrItTGpFa+fJsqvNUJuaMQRLNuZojprJAa3VuGlcpxFGnPf8d5zPSRrlZinBKa0VLI3lhILaHqTofBfWxWURIDv+NtaiNaU9g2HSWpYvOFwTwih0M6qMTxKf3W2cPEnVa0Phe8+IZexs7JwVlXWOr8L4TptOKatR5fvUcTwHXWd49LjwtM4+HwDp5TqsyLfDJbc/Lm55pVYaeNCOxa6obesQ6VIR3z2tZHk0tiTV4/DyzHI6lRmZMb7EpsnxFFGzX8R/+r//Av/qTfx4jhVQxEqMHYtRQmtaQDbFKE6V6UOLhM7rJfNLo1AyN2t32thZcoaHmAtPSVJYhaW3PEFYmi+RANh/obE16Po4ZRf/Hy6PFqWky0qsO60zfmn6PF+R/qrMQGv7QwnFpbuplNS6pYo0YswyXwQTkpymf0/ciYKKzQbPiEKKhbwS3gxcvHD/0K98uMe3usESnzTHVCzUmdmgzJq5TZ2JTDPVKWANG46aj90rnTHbz0nWWvhNOE6zrym0njFYJBrYuYslrZ7jqYxHiWIMVrBUkWOY1EDQ1Mtxs2Lz4BDGWfrtHjGNZjriuh2CTl9YUPBG70i0EWRHTFSdNtCUMuJ7x+hOm918TrENRbN/TD4Z1DRibna5xCrtxg5+PmNMDbvcSDQvWDXE6FcI6Iy7WqdIowFCUdT5hXYftOuSbv0V/8hdwmOJ65qjjQldFesfVl0b+N7RVHC5S5XIUJOGcT2nGT3K2djO+dCzm6Lk4YI3CNKVky3dA+LPj1xcTzo/TAoBfi4/1XMFJyxCZS+qOwtl7nwmrDCCqMCzRJ0kQZWYqY2kDjDIQMmncIhjzgijZ49yPws7Co49ODT8HxKZ8QR8LIQ1d4O3fvWFdY67s24PntII1nvvrgfuXV9z94Au2L17F6tTdhu39Z1g3sN3fYVyPMbZp0R09/dakwlgppC1oMkgVun5ExSLDnlc//CFf//jHnCYfleAS2AwOs+0RObHdOI5T4HBc2G676IRZVvCBefUlfNm5WPxJBdZpJSweY+B2FHajo3MB0TWjRrKSjFOXCE8kplV50BB9WTEdNhvtkKFFMJ4SZXGWdtNSpZZi08W2yJ0PyhmlE32ilTaNRwr5FJBZmK65ZbqHlku0MGo1eLQam83YH+fRzkHmkap0IH/OqDqFcxc8l9egZWopRkczbHP+2d3TPS4ETVmiLOg0OQPq7uS5TKqAUvJLnJ0YhawmT7iIxHb3VqAP2E64E+WbWXm/1qd0RjgtAe+F0+ORPvo/6daZ5atvON2MbF/dM7/9+9QpwmK2e1QFIx2Hb37JeH/PcHXLcnrGT0eCX9H5QPAzkcYCYZ7ReWZ5PmKWBf/uiXVaGF1MVNoO8Vm70bGuitdYbV81FnIMYggmuv9Fle2248X3brm6vcOOA8ZHp4808xTXqQ3LVIpeUG34poL376TkZpet3ayNrKBVDGR+KUZHOs1QDLSSE5+ZOAF7oQaQFj3SPlemFzJHanNdE03SKL3s1PtYj0sgTrNG+e+CUjj/Ti/4NOu89oXboAUl89qllj9PwqiwtyGGavW3T1G+Mio4o7ghdm5Rgeej0hvFopye5kgjIpwOK52NmwRWAzejYX1a6QA5PHH65g1XN3cs84Hu+hW6LoQQcH2fUptNrN1kbYpojAB1PTxhjeIPb1n8yjI9xzbhTw9M7x/xTwfGMLOyxNSO1FVt20djdV0CjwdPZ4WxE94eVuagnFZl6Cx337tn8+oFYXoihBn79K5GqRVGupjbrFwyg+QtzmbuhBb7NFN8sbHQiNiKGbNsLWlHFH6o4jbOUci3z7I+G+j/AA0WVsxLX5wL1TVf+a7eOz+TaVjxTPZksqr/+SiPrGOqc62Zi4tlDhoSr0n5vZWTWr4khRi1N2rkYb6kDd/Job7Uzb5yWaKr1oFW160yfi6cS1q3Vp7UHfD0V5+uQeglYJkxGnCm46SOwcDohJPA8xxSC2HHbrSpqGk0FgVYNdZYtMbEEgAaI290jR14rImdo/Lrew0QlMfnlacZnh4ixuycYYewpO6Nm9Fwu7M8nzxjFztKmWT0rotHjyu28yyd8OLlnq4fmU7P+HXFe880T6nVvWCdwzlbNiv9uiReNVhr+btffcsyPUcD3hgk+GR017UVIyW9v/i+y/K2m64f0lckDU22h5Rrsh5t/bCFPvL12q7x5a9FElSiyJ8uef5Cp9dn+DgPI4ZU/rXwhCasowWDVFGb10SSIBQgUKPJ4zlSO/lk/Bh/IacZ5SMa26b5O89XXb/MUmUzugUwQWO90Vx3yBk2r3q+3xu6r2eeV8MmxDTAKxVOq+IDrGo4TlHWXI+GjQUJgc441hCYl9jJN5qz8T37jcP2jqslRmP7EPAKpyWWthgFBidpg94wJofNvMToneMcEGd58fkLuhf32N0dthsxdsjaB1RjLRgjBIkRfqKhzJO1QzkvpmTFuTDGYN3I1avfIKwHnnUiPD4g4jDWJxVo6PvUdKcfscMWO15HO9jPLMen6KBS6K/uiJ1wcuOZ+K9xHVYEMz3B+wf843Mt4Jv5OG8It4pWK/9W9rqgjZYHC7HlgaTwcuVvTVCgAWYRHMVgjyzYlZKieAa8FEqph+84/pGImiaFiSi4zg2z5jOVkGvIHY3mSSeWnfTmaA3OsltAVYIJwLZ6TjO3JIZpd2bLTm5ZszYaoIYgIYIdLHd75eHo4477tGIGi3ghdvtSwpydHjCrYXu1g2kBv7LZb3n1T36Lmy9+wHD7KbbfAkI37HD9JnZ78mskdAERUwp6VWLwjXLOHbID+/0NL159wvtf/oTr/YA/nfBrYOiF42mhc5bNposywRmGweA1KrWwBE7PU2LuGMraW9DVo6viJ880BzYby9XG4nqLiG8Efl23ohIynhAQq5lO07JKJYXGAGhtgg/02oVxcbbjV8RF61UHzeHCmdEapRibh2VlSImmKURkSEyTzktRHuRdRSHdINPWh4r44zlaLRz/zjT0ARrPZ2Z+KDsPZD9IUnp5Lqg8qedrV0bMu4RnzFzXqo24KY9ThQJ1heugNYcz8Ufq8iR5H8vEh8lOC5NaM/YDfLqD5WhYRVI7+pjbHoIyhRjQuelSeOPzM48//fsY3v34QEZg4bABcczLih6PzKe36NVVBOzG4E8n1sNTbB3oOoxzhMOBMC8wL/jnE7rGehjdYAlEXnepC103pLREiSBVJLYQF2dZ1sBoDPu7HbevX7HZ7dBlgdMTzHP08oeqFJpVrYZ7xhRZrOjF5lPeqcs/XlKQ0kjKc94vwDTzeTEstP6bf870VKy3hmcp7ph65CKADS0nKspsX+5ZAe7HCzjLLnucdDI4PwP3SS6JZGAa37XsvNKa+e08FCVXhim7rOX6uB4VhsR2oHE5LvmuuZ/XAj5FAFPdqyJwMwo3M7yHFI2RdwJh1ZhvH8dSwuq5crAdDMd373n/05+xv7+h218Rnr9lff81fl2w21tMNxIC6HJgmQLd5gpE8NOEzs+sy5Hl+YH18IzrB/yy4A9H/NMBWRbmh3esQeMDsxAkdsM0xjCdVjorqTipMgV4nALGCJ9/esP9l99j3Gzh4OD0AM/vKVqk1R0JYEig0m8WbYkmz2GWFtxyRqt6xhaVwbL5VXNmGt6Vilvy6Uqhq0JjVF5paziU+zZyt5Bmq6DLeyXjqOHVFtNp8x7xVtKIk8s4g4/rKHNZnrnOU9ZzWRde1gepxt85pK2/t5hJyrq2ODb+2Ao1TzW9ExVJ0nkixK1BSfXZqsGaH6Ktm1QxcgPMlLixlh7AmOxU92xRBjxGRlaxeAtvVRkMbAbLYIV1CSX1KXeZFXJnsehIsQLLyYOLRYNBWabA6kGscJiU50kRY3F4XoxRFj4dPb96XJhW5bQot1cD3z4tfHrXR4evxMgBN/ZxKo3ANOH6LZ+93OLXE10/MHeG6c0DRtKmiO1QjfMmCT0450AM1nW4ruN2v4vOmxBneN7csD18E6OCvUIo2REUWEWUi6FJcSi13WhxVZXzUmyoLLc548V8nbQE1pKWNhIk022iqdYPeIYGG92QeTeUjYKPV29WjAKXz1kwoFA2karHRkEM6kNxGtcoxrzhVPVvxZja3oBWV59h4vJ0jQCAEnmRbc8Paw0Rm9fsDZ+uHV+9WcDGDfrFK0YMa4DeKVfO0MUEDkQkpfqs0elpYY1DkQOTRWJXqHHr2G8tsw9Ma6TF3sa0qbE3scaTSNKPMePi/Wnh9nrg9fdfsfvy+/R3r+jGK2y/RUys5+SsizVyRAhrTD0KSCz4a02SAUtcFWNK4+aY/RDPs/2G8eYV8/aO+fDIsgb6sY/dhac1lihA0JDKgrgxzl8IcY5Oz7hhIKwTYZ2w3Rj5Rn2kCONwncNMK36dKVkZmcc0mnPaKmaJ61Q2QYqNch5hXPGuVhHebtA09Jdbvde6SBRaLZI3PU+U5VlOS1nLtpzBdx2/3lFzYUi3HuSy6yIN0EsvWKhVJHm4qNIue6TyrOV/0lgVwMTz6kvnkKRWGLVhfuU/FGY7AyFpSRphmcOVxtGw71YOE/jZY50QgsH7ELs7iccaw9UAX50MczD84Hc/x3jP/uUtw90rzPYW6baIHRi3N3Rd9DaaRADrMqHa0fVD9aiJgJjkuY/C3BTvscN4x9X1Ha++95L3z19zeusB5XQKhDWwKswBOhs7XOyvBrxXno9LDAcNyjT52FlGLXPyfLpUvdtZ4WbXcb3v6Xswfo6IuxhhJIXXkkMjhaQFPGXVm/OlEGtbH0aKeRHPSU0UKwBtFZBcDHyR8qCXNy+nKUal3FczLbYkAckSCYmjMyCNOZgfsU6jGgIX+r3xCpfz0p/Z9Kt1Sdq0ijzteqa/ihJqh2sArLT/EWpO/Vkr5u+YSEmg9IMcfSodIDESKkgqHptTCdIOYkKPRgLjBoYgqFrGXABtDYTVMx1jbnoQWFOxXnn7hP1//prt/RXdbohd3aaneM/F0wVFj0o4PsRX7iziwfhEy3JMNapiOiGrpxfFbB2d2+CDsioc5sDqld4ItrOsa44WizWlFFjXgF2Vzbbn1Zev2d/dYa3DpvaIkqJqoIJCaBRCS6gt9si4QStQz3+3olHPLj2X+a0DL8vj6EfLSquOm3N7c62wMlJjqOT7SXMDgdSYI4cYnz9XrXtRKPQS035cRwaSWUc169CcVP+b+TD/JBVI5HPk/LJ8Yq2nldkp60pNACIhl5LCUvj4YldXqOlpiZ9FNUUiKmJjy+7XO2FZLKuJO+erxsL0vTPJaRd3/6wVegurD2w6YXn/yONPfsrtb33J/PwQ58IIOj1h+i1+WZjfv0G6Dt1cY4cNwa8sj9+i8xGfnJUh7Yz7wwFZV8LhGYeyqrJJwTmjMzwtyskr/hjTD49r3NU6eUWMcP9qx/d+8JLN9R7xIMuMLNO5yP+g4ETzqXGckFXLGRteyl+tKcLS8GCe7sKhUuRDpqVqCEYZ3pLAB3ycQWV7TuafDLcu9Ub2HGl94lyQVhOGCarVEMk3Lvoyqs8snz9m1oSKUYtYadbuzJjVD6+tR7P5V75KK2nO8Q5EnFM3aVtndZqzJuURhdwZ02AjHskbnCF3NNI6VkjOAFE0GbQR70h9xyKH4n1yz02CZ2sX1EFYYWvg68MaO6GqZegttpPY6jqNtYSojvvBgsYUCu8V7z3SG4yBafaINZwmQaxw1StrADsI1gjfPHnePC90Eo1QQXg6LKgI875HCTxNym427C3sdxYvPbq55vr+NV+4iU8+e8HPf/JL9p98wubqhuPDe8IypxSmqDtD2pgTDK4fUZTFr/zB73wWHcUmdapC8W7ELKeCbRsFVjagueAtQviATOoGbD2zpBie0UBe8kpveVWz8644BcrYCVg133+A+MqGW8K+eoGtP9qjysT4V/23RL4UUZZ1a3VcpV3pGqwg6TypdkC7sVvYM+u7bIeVTIx8/3SfEq2RVq9tXlPsjPhFdBolJ461DLfCJyj2wfPeB+YgbFy8z2lW9pvoilqClGYQwcfOT5LeTQhYsSVyJXjoesP2xnGaPAfvWVbYDCnixAjOxLRfaw3TFDjMge124MX3X/Pq9/+A7Sc/QI2L3ZlsdIgaawg+NqAhBNRagg8Y18X3FomRTxIpzBqLkFt253fusG6DdTu63R3r+1+mZ5hQjWldvlOG/Ybu6kVsze1njFiCX8GvhPnEvE70IRDCimz2WLeJDmMBO4xYt0EfH9D5GNdFY7xNXjeCVAMnEVPwjU42Wm0QYwqvVEd8JsbcDa5RlEQ5oa3yT7RZbN6saEMNPYi0FJpMWUXEfFDjpj3+8Ro1mQhbVJIeMptOraAouXsFvdQXipvwUog6vnfzd5qYMka5X0KhFfFSwuOzApNmEjQ/XWNj5OdsVkHS/dxouN073h0WDjNsduCITpPOmJQzGhi7jhvX8bjC6TDxxW98xubFC+zVPUswzM/PXO3HKDOMIQRPUM9yfIoefaKH0hHz+oyxKHG3MxJ7noOYS6u2x3UDm901z31s6TadZgjKMgc2o3K16xiG2Nt+mlcEIXjPMnlOTzPTFN2Jm9Gy23ZsRsMyB+Yl0FlhsxkYtgO9mTAhpFZwVRjluhhxdlvHWBV6rWCN5YmSd1LCOZhJRHse8N0omCw1G2I/u0H5dKFxzmgzXyU1/U9CBDPnJ5NzBsnA+My4rMrw4zwk/e/Xad+snJpr8rt/8G7ZQXj+/QcjZ/5JSrAafilwXiUCVZONR2kUWR1QglBL68dzTYj8XFYw7RjWd4HsUFMyllIwBjcYNgtMS1ROaoTOWmYjWIUwLRyWgHriv0HR9Yg/znRjx+7TW+wQ2wN2PhBCiJFpUyyq5k2MVvMadyeMxNxiv3qWeWWeY9SNc8Kw6fAYjAp2L8xBkc5inKEfo2N2HB3eR9DVbYTrruPqxQv29/f0/QYnBrdMdP6E+IUKwS+mo6F5o+dgEBpukA/ppFU57Rfajp/EdIsPiyEolxe3LKMXg7dPk0VBK1fy5yZsuX3+pE8z3X3MnJmfXBqgfS6zKl9msdWIrzr3l0ZBOuk8jaoOezaL2YDOjrBQT827/QX8fpC2Eccou5JJZouBYYBrEd6rAWdQNWiAINGh4OdYh2m3dUynhWWKdGCN5/CLr3Ed9FcDdnBEJ907VGIUqPEeZoM/vsOMA6hg1gV/PKZCvaCLRhA5zyyPJ8wSNyJ64sZDbDMTc/F9iOArAOPo4tzZQDd2fPabn3D7yWuMdfj5hFtmZJkTIIuT0MC98yVUKpZJC1XmKa1fm14dT6lOyBp1cU4WmsbK4f75y6oFNUOpxhiri1bFvBQsVodvuD05VGvUY133SymRr2pTABorqOiDigv4/89xIeuKjDQBcmclaSihAfzftfuZUynkYiISOxVMU9YRQSVU3FNWKjlbUpfMQi1qk87LuyD5wXN0hak0lt6npeW80R5au98AACAASURBVFnX0WPE0PmF0VgmZ7jbwOINj8fAu2XhahPYbR1IbBPsQ4yi610sheM9dJ0hOOHpsDIvgd3GEDAcJ7jbCov3rB52g/AU4BePntMSuNl1vDt4VgnMqowmRqC+eZq53/d0znBaPMO0Ind7bj/9nP72NfRXvNcH/qt/+y/47/7b/5l3v/oVw82efjNwWpfipEEDtvBCYD49ExD+4J/9kB/94LOYQukDBI8sC6wL9D1MU9Snac2jDI2MXdiyTnL+oirLVlBc0lnmF2k3uFvBUhFuduDXv1t9Umkr+xdKFIDkiLh0erMb93HrTZLtlJwVRfDFeS1RB81kthv5l06tHFEROatMEtnxEk+WUs+o6Mw0StlsyhshzWJIceSl70pOaLza5OyT5JxXJ/S3jtdby/6dp3vnOfq4Rn0PxsQ0KEHxQbBoVGUaCEEJXrAu1o3zHp6fV27uHKqwueq5PSnv14lNUIYuRXB3UY4MveMwex5jYRxuXlyx/ewz7PUr7LAHsThnsdayLDPLdOI4zwTv6fuOvu/p+g1WA8GsOLNB1JEj1nLou/pYNypnjBjr6He3DHefc/j5j/He0/c987TQ9xbjHPQjsZKwJSxH1HYYgef33zKfTlhnWKdYL8e5rsy/quL6Lba/IhiDLCuKwUh6llbrNWqr1onKNCJkTNXWkIIs47XI7kifUflr2sFWnza8Nc6FliZIlECF3HG5sr9WrJDkcdv96buOX++oyS9G3pnL41bJU8Nya9hsEUStUMkccKYoMupvPZNJgbVM8IFGpZm0/FUL6/Xs9Ap22oDyKvTECNudYT8Ik1cIitOUaeE9xgqb7QaGDRs1fBp6rnb3uPEa01/h7ZZ3zyt9L0z+IVa+RgnLhF8nTqcjgmF3dc24s1nkY10srGRt9EYaY/E+hpOJtWiwONfTj9ecjnNseyiGoLEQojPZODKsa0xbmk4r87RyfFp4PKz01rDpY0vvZYlF3lIWBdvB0W8cnTVYv2LCUifN0BQ6qlCxgfqN15EzgZnTiASTiDEtvhT11yyMRG9icgjFdt31bqXlZ/O5GHKNsouPFiM0cvpAvKe5YNv4b3QHBGqyaWMutnl0H+3RPFwDGs5YTqXwVP3QrBs5JQMugX42Buv6NeGgBdFLqpXShF/n1DRIXmQt/Nca8XW2W9pK17aElQktR2eV1Mm4k5LljNkMDCv4ZWENqVaGEwZrsZ3jYAzr08QSYjjpwcMcAu8mxZiV+8lzez8y7AYQYV0Dy+xZfQJqxrCoosQ0QUU4HhbmeeVwjG1NjRHGwdKNgtn0dLstfd+xMQbbW4ZNj3EO72OB7WXxRf9vrq7Y3d4zjld0xsI6Y8KK+LUs95lMa6ggOy5CnmThPPImr24D1lpxXNaugKMGkDRjVF+5NoATYnRG5qnzowIirdHGWUdQDYmLTY+0wo1LJsvqC6r5GI8SbdrMY+a/KLNaJpXSfSD6uFv6b+j+wkiMw2fDIPOjVp5PsliyjE0RD9oK7iI2CoW0X1cQQQWxRqG3ilGDx2BdbN3p5xCjgFSRVVl8YF6VNShWFI+wnmYOv3jLOljG19f0uzEakz4gPqBL3MiwRtDlFJ9JFbNGx2nw0dEaVo/4FWfgJHBz1XFaApOPu/0iwgpgwKvSD5Z+08XINhH2r6755Mvvsb2+jTS4rnQmYPxC++oVXghn/+i59CqfW7Ell7NZIxnbe4jEZ7yk84x/G0opBqNmo0TPuSDSUGOstXzWOFpy6Q1taKdyYrU/qqanoeF8jTbP2mJDPniuj+rIBmyr3rWROEme0fBE1mEfrF+jHz9Yv4xj0+cym8XQbOdcUjHSbByGhJ2aXdyCr/LN0/OlzY3yDmd6vomezXqhGPPpvsnx4qxhGHo2WLbLwvE04+uwpb5a3wtCTNsNIXY+XZeQOhZGp82K4bh4bjaxRsyyKL0TjBi+Oa44a/iNvU21NwTbwewXBLjbWL73aoN1hn7j6AeLGzd4EabDE5tPf8gSDEM/8vr+jn/7X//n/O//x4/5mx//NWH12CQrs8FkU1cYk2TfJ6/u+G/+zT9lTOlU6j3m+Iixgi4GnRcUwRgtXbIyrV/K4LMipXl9NNFRyy+Z4MraSaGJykaNzC8EVH8v8r4l5aJPznlX8vPROGolY6aP+Egbc7G4c5uuRSnuXjCLxiiE9GvLzJQNxDTPrRw9d9IopcmsyUa2lJvUIDcpa4GG2Io7j5Z5SaVEemeZkWVMKdHgDNYqOyt8sTH4RTk8r8wLBFVOM3gr0CvTCqgQVsUajbVAVXh88gQ3s7/b4mx8x2WKRfD3G8tMYBwMzlmGwTF0wvMp8PXDFLHormd3f02/iTz1/PQO24+MZsvT8YmHt2/49tt3PDw+40Pg/mbLy5srXt2/4PruJd2w5VIfoiE5aSKhhgBItHPFONxmj93sOD18y7gZcZ1FNWD7HhD86SluanYD6j3Ht79kXZdUXyfqbxHw64yxHRAxh+13iHHofEg5Y1r0Zo7qjs+ZEFEoABaRmmaWZXsFxZHnz1IZY+5X7rMdiSbU39G6zjk1strBFYOfRVUn2+vcYfvdx6911GT9otTwuSxzyr20UebNRWdhe2c7Li3MPv83vkPJCs1asN4wS632fTKTJUYWyYAmgVttGE7rLmGRjRKvd6Ph5sbx7FeOs2ItbG18k3kOjLcjnR3pV8doNrjJoL84EdaJXz4/8Oc/e8v7989c7zb889//LTbjwM/+/uc8vH/k3dMB6xyff/Ypf/B7P+Llixc42+FcH+tdJM+dqhKCjwJDQcTQ9RuG3Q391S3z3/4K1sDiAzc7x27X0fWWafZxt0RJYFbprDAYEztApffvnME5kxSRcH0zstkMOBOwp7kombokdaewBfLnXu1zYs0hujGcTM5LvbTgL+mtmCqTI2+SUVEeoCq0M7qs6KfuWEp7LRHoSG3xngs4nx2tNhWQWsiBs4ihj/KowK9guAY/l5QviF+26PtsjHqo0gi3Zt2yuSJ1CE2CKSs0k2VEmfKswDgHsvHHijka4FmWtZBgAsgJ+OS0qtZprCJgHdptsAibcMR4mFeld5Y1KMNgkN4SjIHniem4sCoEY1h9oDOGN4fAcTnw4l7ZXG/AGMQJ1iohKGoMnYk1Zqw1Mbpt9TxNgSXE3H0rwiwWN2xwV1s2L+8Zb/YY4zCpkLdN3d9CCByeHmPLRGvpdzv6Ycuw2UdweTog/Yjs9vD8FvE+Kpq8UGdU0Mq0OoHtpt8lmMsntCMViKGQu6rl9Srr3xoB9a9zUFo+NGCxxVI0dKZxF7romIYwMj237/edZPyRHS2tl5D39Evk2Th/5/4YRTRvWGTXcrPbmtF2HYYqI+NAuYbhmeokpS9l8FCWNT1LAibJbV2poAUYkiNqBIPQI5hVWIk0HUQYdo7FK1Z6/LTy/M0jxhj6jhg5FpSwKMv7I6sqn3YGK6TdzBgKPae89fguycBE8B7QwOl5YVlj1yZrYmTa7mpg8tA5ZTquqBKj2TrBdZZ+dKjGYt6DM+zudtx97xU3L+6xtiMsCwbF+TnigwZqkDYNagRTome5kLut0yIvS/6QjS2oa5nlZkPbZzwctGCWy6zRkq4a2ji0+MBttinpfsVQT5+z7P7Aj1TIKQntxvmi7aRUENBcfMmNHzN3UjJukYoboZ2TijHr9GgVrY1erPi+GvXnMrXFrFJTg8/UoUFCiplUTf3PW76vN45rXkP0Y0qwUjhXC5WVZy1yO2O6LJDFIEaLUWN6hzMdm0XYzYHHY2ynPa2x89qQ6l0YJ6yr5uBWbG+52Q4sx4XjccV75dV1z7zEjY7tYHl3Ut4+LHy6MwgBDPzqfWAYOx6fV/ZDbL19mDw/++rA6/uRza5n2PT0u5Hhas9495quGxmHPfMiBK+8+L0tV7uB5Xjkl3/7S3zwhbFMdtIYi+sd23Hg3/wXf8QX33vJfn8FQfHHdzhdsHjoHXrysfyAElst5zSJovdahqn0IhIL2WbsWsychF9yp9Fc+F21pR/9BzhGOd/YrIvapr7VJ9QiG5AqtzPePh/nIzzyMwZp7IhM21SAa6Q4dOIG0AcStMjyko7dyq5C/4CaxENUPpVzcZ6vadVuTt3Nm5WKIiHyVPgOOan5eRBMF1tjq8LmLmZShMXjF5iePM+HwLHwvdL3hsMMT4uy6SzjaPEaUk05xTlhs3Nsl5V3c9SdLnWIMiKcDjPvD56tV67vt3RdjxfH3//qgeP8Js6aWn7yk1/w8PTMN2+OvH14Zhx7rnY93//ilh99+ZY/+sOe+3HXbCbldwvEBMa0fEHB2Fh+wFjcsGP7+ktkfcYvnn47xs3VbkAwiBsQsWV9u+011nU8LQ+4LuJlsQ5jHUhsxGGNQ4H14efw7c8IT4fU6TXabTXyMK936hrlqTxn6uJ+yNZNVCsN7s4AlOgovJQHLeYmZD0dLznT/4keou2klyrhg+MfSX2qD5ZDnApoy2tVvM0VludctfybtHx06SwpntMMzLM7LM/XGXLiA0fP2Q4FTQ2aFoTW+8bzcpQQ6BoFvvcQnOPZB37+HOgGx6rKjQsM1wNWO8IMvXb0ux3u5Ses84q+eebx4cSf//nfMh8mNCg//rO/wQicno4EVaZ5oR96/ubTb/nm8cB/8oe/zQ+//xt0xVZRgnpI/ePR2nHAutiiFNMzLYIuytDHgk7Pzwtu8myvBtQHlsnjfWyh+PB+YvVRwVoTu3ZsRkvXO1avWGMYtyOu7xB/Kk6tM7NCcjO4doIrcK3h34lOTO7opXGX2NMY7FJ28LLRHWnGnIGfCiQbJkjK59xxcq6wKEZeBjTnEPjMYJJKe5qVYSaeBoR9B/d+REcN4cuCJzswzh67WgmFl+paNNi7ocUPJYbSfnkOG7IhkH+r9/jOIYo3KfFhiqKKqWm5p15jxaQaGW1tjfwsGgJYi/Yjst3TjcIYYHleGPoYxdLlKoinhb21TGOHO62sS5Rlbl5Y18BJlWUR1nczn21Ghm2H6yS19ZVYC8daFq8ximZaeToFvAqucwz7jn6/odtu2V3vsEPPcHXFsN3RDZs0tyE5YwOKoRu3uGGg63v6zRVjv4mS1q8EFXTcw4vvg3HoL/4KfX6mWar4ufxRlWdJHW3WNNPKudOgEczNotYAOq3zXYy9ZnkUzlKq2qGpw1e21LMv41I3O7yNcdi+5CXXAx83a1Yh1sgnKdPcclJNjYl/F5Wb5rrq1hwL2vBbo1iz7hSiTK7s3iyGpJTsdEOFukMkQq4xk583Xq51ncSg1uJcx9D3EGLx7q4zmK4jzCub3chpXglWWN4+E04r4PGqGGeYAbHCu/dHAoHxZhcjchKgidGeGtuQpjlZ1+iEeXxeeDqtsd29MYwblwp7O2Sw9MNAbwx2M2D7DhWNYdgCrrNYZ9i/fsn+/iX95hprHPP6iOkGcB3aOWTx5EKkRV2cF7Yrc1pEawFb1bGWzO5CqEVXNtCmsqyQN+yqp4hio9fd4QZ3kVm8UpSWpcwOHCkntlsU5Qot/6lQqniPtHlVaXBYpjsuaLc9PmLmvNCN0uqjZl7jBxq9lT7rxVjNrmXrKivzK8R6M1UYF5lXI1HjBlEZSrOr1hQ+LcZFyCvb4pxGFCSGLnAm7ZSVKPVCys0aimCs4IaefrfhqjtyXAJzULre0HUxEqDvYlvfdVWsgd45bG8Zdz2qMHXR8dW7+HQutfB+ewq8PwXuRiJODcrfvZ0RYzAs/NFnGzyGv/vqyLIGti6m8b97OBIUrrue0XYMVy9xrmddJnpnuBp71mXhN17s+Ge/+RI5nnj3dEJDYF5WliU23Bg2G16+fsHv/vbn/M5vf0Yvgp9Pce6WE/74hASP4PHWRCbyqcFHqR/Z4kepc5oRcpYFpQ5V4/TNa1SmX8hYJzoT0q+VKc+wdvmiodXvJEdNvJ9ldnEwN6r5I958zBkY0uKERi9KmTAKPRf+NTVaSCCVmNRC89mBleu7ZHyUeUoSzow/NVK1PErjgNV6J0k1bYqspuqOLO9LBEb7zCS90kXbw1iH9AHbw2bvWH1AVxAjzJNndHAvwnFRZglYl+zbhCddJ2xHxwtR5gB9J4x9bCJjU3qlNQacY55n3vzd1/zlG8PbhyMPb9+TgwO+fThyPMx477HG0o89D8fAL95OBOn513/yAmv7KJ1K96JQrq9CNM23sbh+z3jzG4TjI4YFCSshnW/cgLghBleIENQT/MI6z1gba+041yNiMGLjNRI7PhnXwfSIf/MtpDICRmJES9HZhX4q3lGVVL8rbRIGU+lKGxXcsGTcgI6ZH8VJ2urMRr4Dsd6xNnI6f9ZWGtAmJ/1arfnr23MXwy8BhBZiJu1RlLnI2Y1i+NqHSlzkHJzXR26BT/v0abZyWekyUPpPm5KVBmmFUWsEZM91WAJ+iYwszmA6g4qh74S7vTKzICYWP/MBjOsZGVhXYeh7zHYLxmCGDqPKX/z7v+LnP/kVYVlBhRA8zqbQ1bw7Yw0P75559/6I7Ttev3zJOI6xdHcDvDUEggZ0XfDrijWGzfaGzf6azWag21g2245xY9mOMXfYLwG1hnWJBR6fjp55jYWoOit0Ls7d8eR5Onr6wXH/asdwe0M39NgpgDWJYMMZGCxCql2vLOAyIMz1XIoeS+trzoY4B78VBZ7ppu+i2qz8znfczwmr6LB8iwt9pKJlJ03yBYEi4Mt7RAmTumZ8vEoNuJiPy2c9W6x8QfznLKy76qJ8ijSXx++aCJj25MK/2VAI5e+Skna2kElrNc/c8noBr8nJKsQdrbgsmpFn9ZbXBGRsP+DMyEYcq31iDaQolrjz7oaeaQ70u8BmDbHY7+KZ3h/R44SEwLIGHmfl7ePEy8ERQjwPiBE2PoZ3Px1XlqAxBNYKbuzY3OwYrraM+x2u7+l3V/SbDdb15FBcIw6vISocK/TbPV03YLuY4pjXKjslY8itBb8izsbidbmoI9Hjn3PTy3okuVznuwKEwiDQ1JzJzJ7qIujFtRkgZVpqwZOcEUkDQmsUQbv5Uh2L5zK7OukbetRaj7rcu9FDl8FxH9eRmaiZN2m+JoE0Wv1YuUibYWrIvCR/cgSWAS0gMac8tTun2cVeotck8rGKllrgrcw84/f8YCJFYGYQbZzBdBs6ulR3UZDeYoaOQWL3po0zWGuYNz3T88o6LeA9xgjLYWJdApMXwvsF6Wc2N1scBusswXtc4rmYfhh4fJpZVuV5UVRizRlEWFVw1mI3I8PVjqF3MY3Y2ch7nWNdV07HE9urLf1mw7C/ZtzeYV3sHmX7DaoQPvnN+Ko/+2vkNDfE2KxlxaBxLU0FaXXnLHOA1Jogkh3jmjFjYdO8BsVJk3m7XQuoEVHpvLMoZal6wBQaknRZy4gtTjqjtAtapLB3Dmf/UKGm6I7vUpEfsTFIofVWN9XZrg6Vs6/jH62+S47rashVnRZH1op7JEf3NrK4HVIhGwElkqB0uUlrnWspCKnWRrtZVu4GqQixUlwISCodXI5GdOfaSdL3mJuX9P1IGA9sV2VVj1/TVpaxzD5q+Pi4ElMSrGE5xYLdRmAcLOu8cjpFS+XhpFgR7nvFofy/1L3Jjy1Zft/3+Z0h4t6bNzPfUGMPbDab3ZTUFCVRpGTYsrUTDHtlwLCXBuyF/yCvvTO8sVeCYQjQwisDsiQ2ZdiQZEokm91dXV1Vr96Qwx0i4pyfF2eM+x6rvdNzoOpl5r0RJyLOb/qe33TmCL98OfP6GBlc5Lf2Ixuf9Pl+Y3jxkBaaz65Grm63RFUe705cPRfm8xncmUUTRvPOEo4HOE/81R98h2fXV/zpL17xZz/9nHHwPJwsm2Hgkw9u+N2/9hv8rb/xfZyNnM8Tzng0TITHe3Y2Le6sBmxM/evK7k8VBvbylgW4D0+Vv2t5Q+Ufqb/XBWAHUBuWvuC5KkKxOWBo93iLnStt11Jd3EkV673HEY6a0Sj5OatDs7OVWWm2IBF1AgwpsNbrn6IPSzCiX1dKTNk0RTeX8rgypFbs0wWVyDQo42RjWjWudDKaT2kLkvYedeeh2AIhYgScQRx4NSmzMoLbupTFdgyMJ+VNcJzFoiFgrVS6DoNhq4qTVKpobcIB3sAn1y417h0sX3x14F9+feJnX5/TpjQh8ng44ZzldDznBtwWO6Ymwg93B9y44R//sz/jg6cf8eO/9gPEOLwRBFfloGZtG5MT9oqeFJDUX2Y+PCSnlLG4cYP4Dc5vUrPyJTl8NNdcTucZkQXrLMMwIMZm8huMHWE6EV/8FI6HLD/rwHWa9U7+Cp9RkkUKAKLSqq1zs7yVjMvCEPmbUl6ZsKtJeKwOl8voeryc+UXzGh9t9y9Npy/M8er45tKn4uQwSTGmATuF9dbRl8eQHyrVwFaeVa0gsPURqVaD1myYBlRLb5LL+6qgxFaDWBwHIaK1uRMp7Tov/pZzeg87JIEPJxJjDJbdlfB8sUwx8vIhKchZBWcs8aRs7Mj22VOC9SznCUU5h4Wf/Ju/4OHhjPNDzQ46nc6pWVL2eGpUeDzw+HjkH72545MPbvl7f2uHaErRNNYmoqum7byXc9IvRecbWKKiIXItEW8ty7zgrKAhNT4NU+DuMXUUt87iXaJdCGUeI35wbK5Ghttr/NUexBAJqL9Dw9LKf0p9dEnB1WL0u2yMjublGYsDRrLyk+KokmJmem5plqks8jWPmHglj/FrgV/znKt0UYTiLKgs1eLSVSBjAhhFmNQU5RvRX3vff3dHMd7N7l6CznJS9033nom0ZW5b9EfKorIb4u2bN5u3rrmEEomX9ekr8NqMYLObhbfKBRUQ1UEkNybORlEFgqa+FiOIs7hxz2YYCUY4Hs+kSKFBrMM7x6BCiEJYIvM8cz4ekyJ2Nm/5eyYqvHpciDykLTrzY/jBEsUg3jIFsIPDXjm89wzbkfF6x+7mCjdssMOQvP2Stli11ieHrKQtRwVD1IC1NkU5VAlhxllHSd1EDHJ6RO+/gvuv0NPpgsqJCFL0aTfPTVu+xQpvK27Nc1tlpKNeTkGuwFKpGXTVGNbxmnzXAp7qvOloaspZq2K41g6rPEEPXLXIcgFrvOdHZ/mLfiwy08sZ3We1D1Rn5TpZLA3egZZCXxp2pxOyrtOastsoIiuytnntUGmvA9JNMqBs46u1MO4w108YA2hcOM+K23rsOIBNtePLothtZHOTyp7CFJkeDszTRLRCfJyYojKrMBwX7CZtlx1CIMypz4QRCEvk7rjwMKWmoGpSOZM6i996htHjNiPGe8arlM1mvEeNIDYtIsdxg9tt2e72+M2OYbvDj1dprqIyn85A6rejIcAwoNNU26r1y6LLJVANEhWGLbClzL90cliwDRlTdRCn/FYclrFj8oYP14xvisO1PEp9QukWddSdmtaqf+3Eq4/f6+SONVoZR4fVkNberePr9/2oC2la+VofyyiLxFKuUrNQSyCyLjzq6d20tN4VxV3XiJP1etZlVa/WbK3Y0bplxTTgb1AJNXhas3FKmdqKEbQS7tLGlqNH06pKDDFtx2sMw9UVTz8SxBruv75jOgeMCuPosD69l+SdnaZ5YRhSsNEIhDny+DAxGOHlIXI1CKcl4iVl1N2f4YuHwMMUeTqmoOLuauFqP/Ddj0em5cTd48TtzQbuT9zcbvIuqZHj/WtOi0HclhAXdEl9q7ZXW0bvGbzh5vaGu7sDn79IZRNPn13zu7/9Cd//7ge13+voDCwzy/EBWRYIEdEIS3ZD9U7aXE/6LrNTHONiSgZLt+YoQiRaF/N5sstihT5b8S3VQrPlxWFed729NILVYdzsSm9wLoZ+b48W3CvZ1b0Dq5ujggcuQKZmGaoL6oytYsx9ZVRZL160k11Z05DiKk0KrrPKdcVCjGvnEaz6l9Wj6ooe1PQUlMozqRF2ak2hRhDXdLjbWjDKdlbOSyQGcK70bwmpBEoVE4XBCKNLmt7byNXGMN6ORGP5yc8O/D+fHZKTZknN/8/zlKs4UqaMc8I0TTmQLZxPE1+/OPF//snP+eH3v4P1Ia1ZjaHNSJohI6mHVVJNBpzHjTv8/iMsAeM8MS6EeUY5IjbvyKZCeLxjOZ84n87EoIwb18gfZjA29bzZfwj3X8LpsXN8apUvkZyNWG2TNHr3pwv0DYALnep10spjdU2+ps9JzsQ+SKlGUhOcTFfJ4/Rc1IbqM6Tfffya7bkzD9U3Ky9ZUp46yy4dG3f3q1EnUwbqUEo5eitZO9O37yQ3euojEVpSl7pLtWRCFCXbv0RIvSbsIGgUlmMWiE3evUIgqOEYPY8hYrzw5X1gtGBmBwH88y1uf8X51QHjPdvtln/yb3/O56/uGbwnxIi1DlXFDxuWZUp3FwGTy5lQ7r56zT/6h/87v/+j32JYJrwfcH7AmESOMJ8J84TNPWys84hGrFH224Gr2xHvDGFaOB9miIqJSpgDb+5PCHB95bjZOaYpcp5SZo4Twe83XH38jO2TW8xmB24gLpvkEXxwxPtXaZvuYi2MSfvcZ2avGRA12podGhfAcUVbzeCwADtt7NnYNTHSCsyUuePCCPVjFyWbFW4BoSVKEbUTiUteLUo71w8XyZXVwvX9PPrMotXir85Jz//rTKRiUNKflSjvdIhJI80KkNfLOlywaqhQ+EGhpuLSQE/NjqFdX9iK/h60tG1TF655bElebV0WUDDjBs+WwRjUPbDMKdLnNlvUJC9+DMo8z9jZJSeOWA53B6ZT6t00nSfmCL+6C/V9rDXYKWIcjGpwg2Oxnu31FrsZccOA34wM2x1uGHDDkLcndCiS6ubR7LgFJKbIvzGUiGnM72BNOiceH4kvfg73X6LHQ2q22um06uReT3chMSXjrTj2S8Qhzau2Rndv6eNiwdpY5EVZaqHSlQt0TyBGm1h1joLVqJ2FlHLeBc9dduUvR8K60uT7fRbOlb6SGnmBeP0uTgAAIABJREFU/u2p+CwbibecOJU25XPtzu9GyxdVc1w0Xv95GjA72GqwXldDrI7SV6qzpcmOCdYYhmEghgUZSFFAYzF+i/gtTiwbkxrJh3lhOp0w1mGPR6xxnOVAnCeWOXJ/iGCOLEteqObAjhghinBckpPUOsciCziLu9owjAPGO8btmLJnhgHxA+Ic1udtRI3BOMvVZsu4vcI4l9Kos3IvfZbm4yPx7hXucIDzkrb3LICvzo3WOUl06Oe7sy/5wxX8UG3nFTqvshqL0tYcdMpcnhcIZQeXlaP7L2M7aYuPWh7QnnB1r15A2zVtqOZkas/es1XBxf9/Olr5ysVnK/vW5HPlxK7ZbWV23kWN3h7n1Pr8veZs0EaXwgtUlduFOvN/xU4mBVwe6S27evEsUtMRO1r3KYqa/o6qKBHCgjWgg0cQNtZyLTAtC3I8p9I8Y/A+BRw0RoatxY3pwafTwvHhjFFlMwgv3gS8gbAoNkZChONRCXjuFnicldOijHZGVfkwwv7pht/+zRumCK9fn/niqxPHAN/+9pYvXzyyuxnwOrJw5np/zWmaOB2OqdfMEnDWY2Ri3PqEtTXy0fWGD59dcXx84N4oyzLx8dMB1QUvEaMLw3zALEsO6KZehrqkzHKCNujYE6tQqfzZy0I5rRnZRKuVye5tRDm3x0zkBaJQg9o9hK18K+0eXfkPPW91g76N8N6fo7xTbykxDcNAo0HNPy26VZq9LPo9xphNa8GLeTpMVuwl4z8asOl2NenbdvhTcwaraspqLjqixy+qaXvnGFu5fnmvS4yDtgwfQEOs3xmberBoUHClpqrYAzAWRo1sVTmG1NsN8i2DMhhhDnCaA9utI4ZIUDhPkTFG5iXwWS4xlJjC484aTBDmc3LaqLGILCAQQsAYy6e/8W2+/MWveDzPTMvCaCRtb++GrDdzoKH2XE3vpwDW43ZPGfbPOJ9eYYcRnU4Yb3KPVkNYFowbsOMVfjslG76dCcuc+VtqY2K3/wTjr4j6BTifaBJCWu+hOaOQLHfFiDdM2vypnYB0try2ASm9pbO+A7POlkJyUCX1AmpbcHfBSmmr3IInqlrocYR0w77j+ObSJ4qxbtGABty6VK/u99VR3Vek7vSsPVdkZfQWPNDucmlpxXX0ai+12adyxN54lXukrtjGCWFSiBG3S9E/NVLLXM7H1ED0fgl89TixJRuaeYM4cNfXnO8eYZ4REeKy8G++eI3JPXn8MDJc7dk+fc7h1Us2xjDeXnM+HDi+fMl0PLAsgevbHV998ZJXr17y8ccfM50PEANuGJPAa8T7MW3fHQKikbgocV4wg+F0p8StQxS8sxzfnDgcJg5nZTTCdrTsdg5MaqK4ufJpoWst++fXbJ/esLl+ivMbRIQ5LOgsjLPiMGnPgYsVuVIWGw2hFRChIg0YKNkJkOlQ6C5SgX9TxitmWRF3bVLkrfOa17NFIsu5rW1GX5qlNI3fA9D8pLkLrqhZO6Pe96PH23EFw/PjXzhgukW2KC0IKBdfr3qPVOTBCqR0xrJeSzul1XIWFdgZv2LMtF1XMPAlINKeTvX38tAC26vUvAwB57HbPYMZcKUBrzFYawGD2IAYyyxJmccAoqnmVcUwBUWjMk9pW0QxaeeoOcIoFjOOmN0Wt/GI87hxZNht8YPHjyNu3GCdx7qSXQd+GAFDiCn1LzVZSwYKIT8bWJN+xiWixqJXzxJwPD0i0xlikrm27Xw313JBi54mGShWK0WXapl5fQ1EpX2XCdCcLEWGix7IH8VsLUpmSCbSiscKMXt+XCn2/rR3OWy0gt7V2ui9O3p91LKPKrmK3oK356L/uXrJUlbY5KHquDzZl1VrK3GV7mevM+otsnugZyq00hEUo2khY4jYzRaHJCe3kSRj4x5M2rfXWp+idTYQUTYo1pmKkU9HQXVmjpFXj6E6DwvY8s5gXLLNai12t2G7UcQazDhiB4cf0i5qai12GLDjmDLZTHLsiLWoEawf0ttECCH1uDFiQWCaJg5vXsL9Hahlv92lxt06rzOTMlgsfyTw3uZU6k+p09eX2aomJ0wK8sa8y8iKZaiNgrXT46pVZnqUVBS8Zrog613WNdtZ0/FX0UcVV5WxOlHutfvlIi+/yqrMq+McikPqfc5EZYUV6OSjYIRLe9l+qgChlF12IaZM/NUuIaodz1TAms+jOW5zwKtlFCu1pLfYP7KDkLXsv0tN9Pa3Bsd6oe8dt/nRoip6OBEe7+H2o1SSoIGNwM185vHNPfO59IYSrDNAbvIZA8u01BK7AMxnIapwvRFe3AduPIQ59Yu6n5Tb/QY3KIfjxB99OfHJw8wfDobNxmK3BqPpfa+vBiREfvWrez74aMQaj5kn9k+ecp4mHo5nXr5+JIbILz77klev7vjsV6/57MuX3D88Yo3hs1cvefjjM0+fXnM7ej69tlydPJvR4mzkKh7Zvvw8ZdP1s1jsmubZV81tZZoMkfVl4xZhJdTVo1ZoWLBl+lzyFs5SdpOhOGob46XbFP7Ja63ilO/lszeihe9Wiv6dZva9OpJKy4ENJTlPotbG8i1bqFzQyoXTq64NqAC1/4b0WTH5fC2aq7PFRci6bNP6fdfLQ2MpIS5yBeTeZqVdS8lnuAwqCZKyoHKjamNMdcRpVHRRjCtOgPy8IohNvcZGA3sNiBHOueRCQyBEwXlhNMBgCHNgOk8YlN3gOBzOPBjDaVG89xwPB8IycTqFrG7S/WIMTOeIXWZCCHzxs1+wnE/cPr3lX/7rn/Kzv/kjfvRb305tOpY5YefsqAKIIaReQJGEcUvGSu4XuZzeYHwKnqZSpzn1YQxzyn7fP+P05mswETfaFCjd7DDDHrv5AOO2qVRKBbn+AHNzR3z9MjlXM416HVz7k3bT2a+UahWBUHvLUOZDyzpnnVmTNu/Rpr/zfSSme8aC75TcoqDHs53tF02l7KJ1I4V3Hb+mmbCsCNisepqMYpzJzpS+jUwpOSnWX/t6whX/lTpEKrPWEWpTLGpmThu3NzxtQrV4VMuRF1sohClirIFBKh2yJHF+VObZcjiBOs92iBwfFz7e3eCwhCUx4vz6LhEmRoI1/OkvXwDKsiws93fMy8zh8Z7p8YAbBu5fv8RYS5jOxBBSFFKuWTTyk3/xb/iP/8FHxBCY9YTG1EzYWo8azZ5WIeqCMcrV7S3OLizTEZ0DcVpSSriCt5YQZ653nutrj/W2evswBmMdu+d7rp4/ZbPbI9bnbJmYtgueJ3g8wzTjJKIW+m1by1QV5d+XQFH2gNdG97rTXR+ZpSm9HhDWyHqTnW/kySJmQAeqGghaI9r6FWW78L5fUV2cZpS7Lud4nw9dz1cRr2Zf2ns3vLC6pAEC5a3X7rNj8pmxegjS4OtIx8XTdU6Y9ll79qS7My1XJRjt+v5d+8aVdUwBFQN+RIdrZNxhjcVbD8azzOe6RbikFWCqj5VIJPWCGnYCxhC9I1jHrDBNgWHQ3DQx7YZhLbjB455cs9ltMdbiBo/1KZtGjKBiEevTloHGYCUZ2xAjznu8861xuk3RhKTnDIIiOYwjFmRzDR+O4CwapgQk5zc14t5o1gxC/aGNmH2yTAXxHR0KqEuqvRO+bICSji3Mk3V9f7OOHtpdkptuZJArrYttt9qQ/ID6Fu91PES3qMlff1Pk4X04esl5K0U7fUrJSpLuPNpyrMlKfdcOeFejn1Za2n1dyZevXbtuoQD4NoXaEa3o6f6c/JnJZYbnc/pTLG7YkEpnc+KvdYh3UHalyXbXegdsiDFgQ8RhkBggRMximJdITG3Sqv4dvEW8xSOoMeBSmaAdPMNmxI1DcsAYi1iL8Y5Uu54cNCWyZ53HWosxlkhENe3KoRoJIWL8wObpx+j+CfPDa05f/YytPGCsIIvWtZf001UyHDpF1Fc2pI8aEuqb4sdaSsxbstDbxIQ3m4O0fl9v2/GOSHft+nhrkZB5IrFb0yMX1mDFl32ABS55JT+/XGCE9/bo3678XUgh1Qnc48hqP7vXXwUPunGAhmPrV7Kaz7Why/9UG9jpui77qgY4ih0EpOrtdq+0CExZMisZL/o8XyCaMswLP0eEoC5lce+usUbAb1jmmRAWjJ1Z5jnreIO1yWGzzIKJcPXEM+9GpuPE/fHE073weJzZusSnG284q7Dxlu/dwsM58vNoeXMyvJqUP/rZkR+ewPozL+8DT29GziGy2w5s9pbjFHj981/ywbe/zWdf/5Q3D2d+/osv+OzzV5jB8Sd/8jOUlFWuQfFYliXy07/4Cmtfsn+y5aPdhv13b4h2ZLdRnviZ2+kVJi6pTMFkp3dZNBf7BgmvdDLb9++sLH+xHmmRfAFkxSuaBy0lGmUfhcJ7dA4b7Y14zzdt6MpDRSWlheIFRoNOQb1/R+1tSTZJJah04TxtjbhTyWyTgWIjS5kJbzVpl4JHig4DsPm+QdM27Z2y14t7lsCTmIu1Rl57dJVT3dwn51N1FsXudzodrRDngHF5a+tOTZSzxaYg+sZFlikwIzVRbpoDYBlc2rL7PAcejwFB2O0cM4af/erIODim04LGhZAzyUJ+09SfJmHSEALLecIY4cXPThxf3TFuNvwf//xf8ld++zfqA5a5iSE5SkRs6oqVoqCUxaCYgc3T76DhTAwzogtxOYEG4nxCo8cNV4gYxuvnhOkBPZ9w2yvM5ga7uUbsCOJTJs7Vh8Tnv4liwP4p+volOoXK5++uEChOm5RcUFqktB3ZqPzTcHUK3ta1h5ZkgE5vV5ta9MW6zMog1V+VzunwQR7qm+Ibv6b0SShRhmaoBFpLscpgK2CPtuhCOaVzmFTBqy9WGPni/uUNuhpMpZtQoEnL2jimS4uBSvc33rT7FSqI4fwYmU7KXQyE3chvP/Wc3kS++GLi2f6auGhCkSEQHo8J6NjUDMlbWOY5R5oiy/mQMnVUWc4JeBfdnQKPhvPDATts+Mf/2x/x9/+jP+BqMzJPJ2KY6xa+xXsPyvlwj2FhergjWsN2dMz3B8J5ARGmOWIEPni6Q1zKFAi5ca51Djt6tjd79s+fMz55yjBsUolWiEzHR6aHA3I6swuK11wuJFQvf+LdahHSlJucZZWJWEsxtNGq7C6keUDJBkwLHenAX4d31qD1nYy5igwm5dJ/C8XLWT/Qlk5eFkjrdNL2bxWeb3yGf7dHevSmJOq/F1g6nVu+L+ij2bVaAlXldh1xXAPv3uJnXqh10+3e/cy9fb2281YroIYh3o0ltEYqKv+NG8zzbxGffQfGG8Rv0uJNA0xnjPOEeWKZJsIS84IN5tS0KZUmiTBaR7RnBgx24zkcZ2KMzEuK7Iuz+NHhfIrib2+uk1xZh7EW4xzGJLlN5YrJ0Fo74KxlWRbCElJGQd6yUKxLUX8xEAMxJlkWY7GSetXEeWaeA5bUbNgYB7Fsg9hkr+joouuk1LOvpKynXfez0CWDyroILYJYCVQAqPZ9LjsbcUHzCrSo9qNflGjPurLiDgrY6rgs//cOZnkPjwaI3w00y/x2lqujz+WirOnMBkabce+ntbBBQxgt4linPj9ByobM81xksXvO6iAQpfVnbE+ctthN/GuNTf1pSpZGZ9eNZEeLtanhd8nYnBY8htN5wphAXFKEMMaIsY7oHW50uVx5wA4+O16SvLlhxPrkKI0o1jr8Zpsz49JUGpfKHRFJ98/lj3UejEGthxGWEBDjWezAcvMMfz4Q7+6REBtfGlLgR6Tp0qxDe97sVV7vElvZNl2RqbJzyahJc985eRrzZF4oNOzk5EKmLu3X6u/OyVTtcD9WnqSkUnQ19Fsv+Y53e5+Pv8xZ0iKeWowjII3/u8zQX3+Td/xZhLjLEEg/u3vnRXnamaTgk3WZVcWuaig5AbW0pgxR8bWSdtCkiW9MThrVdIuA4eh2zH7LGDPPqcE4z3h9TQgTkYcUdAgxlQYWGzc4/OCY5yVFk61j2HmIgflh5mYwhJBsqTjDgPLRtXAwM+YUOJ+EF0fl65Ny9Wbh7nzm+c7zi6+P3E+BjTuDecT8xQPjboP78695/ebEi9eP3B0n7t4cGPfbtOOqIS22RVIU3qbMH+OE292O3/7eB3zvuzs+2s58ML9mN98nJ00JCASlhbWLcs3ZTtroXyWkKe81zS9sq2pnC6XojJIhpe0aqcRrH0lP1FbWo2Udg9Z1Tl8KlfihfxdZORHe12NlJ9+l/6Br4n55FPSgdSemqivLWFWfFSOR7V6prMg2N5UAdXPc2UVRWu9OchZqCcB1OKzo6uKsQYtIl+fJZXblXaJi8k67fTZxLaspL2QM1kd2BKaT4agp4KdBU4A9KhsrnOeQdJcRxBm2xjIvgfk8cbp7JGggxLjCJyYHOMIyE6aZkpUZ3cw8nfn429/mp3/6Fzm4mBw7RpSgCwIYUkuBlJCQ3rHvCfb49c8RiQy7p+BGLEKYD9mJEQjzGbe9RoJJAZftDSIWcQPGbbHjNZjW/1HDQjGgxTlXG++vUlQy/fr1Ttnx0mglWXGgFXZqKK2X18J7rXV/dfSUdXvvlNMuAFcNeGeuJdE4vpOn0/Hrt+fuRkyKoHML9Zqpf6lsU/oM9WRbtArN6kkbqqF7jw6MlNO0ClInARSUUCa6yooWsCFtWzaaJ1SA5RCZ7uGA49lvPueT/Yb708TrN2ee7Dds3MB5SWnZyzRzfjgQQ2DrLebJE/7Ob32Hf/2Lz7GSmjCl1LeIqR7TSAwp40ZV2Ywjx8cH7HTmxXLi7s1rNv4ZSI72LROLMRjrsdZj7MD+5iNunn3C9uaK06t7DucJG4XDKTDHtLuTtcmzOricXrYkwDs83TPsd2z3NwzXN4y7Pd5vUIUlntDMINM5YCMMahAMEmPrmF6cMlqnuqP3BRlrCVRmgjLZRbHVUos1EC2MfomhOlZYrc3aov4iygQVWFXvaeXWLCyVd5pCrQxZHZHl/Pf0qI0Omyy1cr9e6rTSrYG8ihdWfxfCtoamf9n7Z3kv6iHLab/YKCCxUx4U5K8otW6gRJ9Md209v92v0EI7ftLzhNx9DeMO8bv6QGIcxmlS5oXGLjFFDKUJmhCDQ0JIdbhLZLN3OOfYLYElRJao+MFl0Jd6zhhj2O53IAbjBlQVY1Ij8JgjC6n3jamRBud9Z6wsxnlEbHY8JUNmxGGsx4ghxNSjCo3I7gZ7eJka14UAxFWPp6rPurnUHlCW+arznz9SqXQr0bfKMp1uT0CwEES6+7Ryh0xW+sy5esVKtmL/TaNtLicojvzOq7MaK83ThSJ4L4+L5+tAl4g2Hkbelhn6OaNN4grQt/lveq3MaFHAjUcky0vv+KFc0T9qD5Kzfq++1AjqDOxv4OopsnuCdWO6Q3awpG3nAZN6LS3zlPsECGIEP3ggRd7GXcB6j3GOOQTMkksPgmKtwY8Ovx2So8Y7rM+938YR511ywlibynv9BkUImjPgjAUxiM29c3KWm7HJoZpKGg2IBSxizng/MDnH5Bz64jM2hzODSN1iu4LtQoTevlX5oOph1XJdc/pXrq7T3pUi5e/qZiEdjxey9Vq5isk7SHnJS1FbCdSlrWz3b7S/UL1vsUd59sKbb2Whvtc7snWU0Pb35TtBr0cLvVmxwKV5rPD04vd6fgW4zUnTBi2yKVWf1h1Ds3au23xruybJaLEEBd+k7xJk65xCaMocpo0ZFA52y3F7jR2vUJN2K4XUG3HYXhOWmQj4cWQ+nxHS5hgqgsllYH6TekadZnj6oWN+OHE8LIiJDDYtYL+6nzCqTCqYEPhkVG6fC58dDMcgzEvkx59eYZ3lGJTtcWGOgnOGiOE8Rx6+umO/3zI82XE9OjaAc55nzyyPp4kQlfMSspMGtqPnN777EX/1R5/y13/rGTszcfvwBcPrvHFGRwEy9NNC7pj0NWoo2f2VFTJtGszRxhP1w0zDy3VO/hk7mqWPpV1byyw7oROtz5UeOvPx24y2NqGZveQ9t5vrchW6bGizCvj1mKLwvXaGNMHYCkpWei4Fw2jOHgXJWTQiClaou6StgkU0pVsbtHf20RbsQpv8uvpvukbyAiXtZtrsR5LN5DAS1VRDWJ672O6enkZwFnZ2YY6WKUS8hfN5xojn7jBzf1ZOszKOwjyDvzJcbx08voJlYclODjEGa9rOcKlHTqhzpqqEEBjGDfMc2W4Sfl6WGRPBi8Vmx4mY4hTOWUN5XUwUxI5snn6X8PAF0/0L7DCCpgwY6zwKLNMZxOK2e4wdkrMm43jj94jbpoz1sIDfYa6eE15/Tjyd0uYiNeOcyhtNvqhzXqs4TFH5AiFhUF3SzqpiQKKpGCZPTs6eL3Quk5b1rBEILRFgdV2XCl7uXzR3rDr93cevcdTUe9QX7WZgddN1/WB+iFXEjk7Y3rkaq2AEKNov66cCRc0KFFRPZwUy2chUnr5wChUhykpgOcH0qJxmw5PfvGa48SxiefUm8OzDax5nIaZevWSfJcsSUjfsYNkeT/yHP/oe/+u/+L/54uU9RgzOWpxzKZJY3kkT+EyLv4gsgXlZ+J0ffQdr4Hh8ZBg8qjOPr7/man/DZv8UMY759Ib58TXnwyN2e4PeH5nuDiynGectDmW3ddjBYGxKYfXDgNkI4hy76xu2z56yuX7CsLnCDyNGDMu8INZj3IDxIxjLSQaGOONMpPZEWCnF8rmsBCD57nIKD9I1S8qLhuwVSGADTAnJ0y8eCpB8BwLqePAtAHTxfVIOPV8VRXh5UdN6vTMnrs58jw1bteXdM0r+oigqLQojfV4WXOUsOuWv3XXN+jTPfltwdGUZVYx19fcqSsRFqVuvTOpih0rYGFta8Qr/m/xbdVCZlDa2LHB+QMOSyqCy0wQbc28qixkG4jKnCIaztSTJODARTAjcjtu6w5pC6idDykgzzhJVUvaMMbhhrFkxxthc0hjQGFg0NWkzAlFS/W3qWePyojFH9SlN17IhoxjESFxSieRyuMPevcTev4bjiVJG1OxD49QK7Os8rw17BeuxfJTBYqZR9R1Uh2oPUrJxA4wp52rV1wnYalugtrVA9zzl5M4eSNMklAVFR+KVSSmL5oth38ej+VXyZDTmRzv6yYUjs16nBTxk6ekAQWde09/axmmRnPUMaQUBTc+uf1/Lv5S/u0hhUuU2dTMctqnEryxoY+o/EVXz7oWWEFLmlzWGqOmniGOaAhHh6skt0zTjxhPTHBhzRGwJEWvAGmHYjnVMJe1wYZ3HDh43DqnmXVLkX0zqAbWEgMu9n4wxWD9ihxEjGfCJRUxyjoZlIcbAEmam4yPhfGJ6fCS8fuDpHLkRizNat+yVosuKI7tEOetCQbJMRKqE1UBEL5sr6mReaM6dXr3KReSi/1NFmsMd1v75TukWuSxOm3K/7vGSbEsbp3/E6szRNeaq/XP6hxOpqvq9PLSbqx5slyzBDjw3W3qRFdeL10X6e5UhKTRdzWR7DL2ge/d8bVG5/qydk+c/b8Vdb02ja+WrmLhWTVW4dYiIYbIjB39FHHfYzRY1NsmrkBpzy4bh6jaX7D6mXUSXgHepd0SMKdARQyBExe+23OxH5uuJRQ32fCQeZ0JQlgAbIuezMhjYOsUL7PbwZoqcouHGC5987xrnHXOAl4+KGgvDBrO/BhXmOaS+cccTp/sjyxwYvONwnPj89YmvH86cl8gPf/gtvv/dD/ju97/FxsyY+ZG9ClsTkRgpgYayqAKpnlKB1HetLOg7omgX2KhiVvDrim5tsjUby9JMupG7lVg0Z1CHf6R3xvcGQrKZlvpRta+1RL3oJKn8/T4fGrQTkVzyVUp1tWXwF3vWt8potrPMYZ5XkVwaWs7N+jjLeqKzJqd+P1ZRhvlZ6pUZoBQ83HCNNr1ZgsBlbNPTm/pcdelTevKUD3KWh6HpIg2x9oCpOtiSSqCWwGINGpSHx8jLN0e+9eGGxzk5W5YFlsPMduN5fu1wIsxhZppTbylnHc60bFgrhu3tU9wwMh2OTOcDzlm2uyvO5zN/9w//CmkDjICa5Nl0Pu10KpFU1mRTdrjGkGgSZkQG/PYjCMr57l9xfrhjs7/G+IG4LIgbGK/2hAhhnjDWQ4zYcYsZbjDDddJlMYAGCCn5QXbPsM8/IR7+nJJ2r7mkRGu2Yqy7gPXBihaUT2VlqV+UdNnJfeZjV21QMDUNI6VrmkFNW7Cv+SLZ0T7DuumVd61ry/HNjprs7aMTCIrCEYEoFVB2F60ZvPCx9ADgbY3R6g4pnFzlaiUQl9fl79LzxCywxRrTrulBTFTCOXnfrIWrjWHjzuh05LzAxhkEy/76moevEuFjjIQpbaEbbWQKkccvPudmM/Jf/Qd/h//uH/8T0NS81JXmUJoWbMan3V/8aHOD4MjT5zf8+3/vb6Rtts9nnCiqKQtms3+CH8ZUt7ecOd294P7lSz77+dds3YCGA9ZZlkV5/nyH88KwtSCW3dM945MnmHGL9UOq89/u2V7dpl1nSIvQqBGxHr9/iuKYDwdsODGK4CUr9w58arVATVk0MmYnTa3b7egP9AsCKZFg6eh6QaC2+MgGqo63Bq39IT1/djzVW6iinIvZS2VZa8PZg91vEpz34bhMWOmXWVXuIButdWp1UxCdkcvnpp8ZpKy2hGQtT5e6hnLrdalHKX17SxbLH33koavVri9BLuUpBlJJwfBxhP0tunsK4x7cmL8A5zYY41mmE3FKDU1jjMl5qIKxSSatt10dc07lNLbmJRiXFnhBI5J3ZTO55EkBmx0vxkXidEJEUk3/4HDW5cWkZKdO63KfbpcMQNoiEURMLtfYpWZpy4yeHojjFXG3x4QFpoLKCk93hG4fs1ruFXAY11PdCNrkvF7Z0aik1a8WEJ1eR6FsZd7WMmt5ro6dyjPFyJFTjNsNV3q/8HcGYKXs9X0WzdYU9vKbsihrMtpPSiyRs+79RMr5nQxSxu4DJFrHqg7y/mSRlSNP4+UkSp3PrbC9AAAgAElEQVRwze7qUlqjqqn0dxwRv0lAKQbEugTCNG3vW+4VJZUWGkkuC+tTM3udF8btDj9uURQ3B+ZxwyaG6tgJeYtc1bz1qBGsd0zTgvMOxBIAZ2xyeJoSDRWc84hNkUHnPXbYYNyAiKXsTJimNxeTWEecc7mx9yzTxDkoZwaYDd4NjNbglxm/hEqz0viYAvQ7Mha41Nuct/i1k9cS4Yudg4Y8+9VS1fE6vukdLb2Z1abiU8/AdSCi9wa+K2O0qJMWSlkfVYVXO9EQ3aXz5/08tK1fyXMUaTt8XDjGulU0JTutYtUy11XWm0MM1vJKtb1tjhK53p6sFSSS9qxJUXb6vtjU2F996TSk6dlM0ACoGKIdwG2R61vsTVowJYwolfZi09a6GzFYNzCfj6gGJCa7ZZzHWUOMio+RG1d2vhGuP7wlPHrO8Q3T3Zl5CewHGFNlFM4IG5/4fPSReYk4mRlNZHu9wXmP2waunt2i44bN9TOs33I6nRDx6dVDWghO5yMxRP5gf8N0Xnh8PHD7/BZvA7vdBj3O2OmEvfsKHu9JC71+orno6NCEVmgy05vKddtN7ea+XF8WeG+ReI3LMilbknQZWFZ2MLFic+yt1HxZ5K/sfmLQFZR6nw+TNV4/1RfYEkivVrIc8ksV21kdqt3/acNhWdnSlQO9KO2yfukCmA3zpGcru08SlV7R9dn7lUmyc7+3+QZptgiIZZOWrHsEqUHJ0tdG+/E7taso1gtXopynyGdvFmJUPnriEI0si2ZMJngLcQlsx4GHkOxyyaQWTf9b0tpQjKLzjDrP7uYJ7jyiy5njeeYPfv+H/O5f+QHT8TE7LnwOWqbNPDRGCIH51UtMmFm++CW6zBjvGT79FB0HzvcvMXbk8MULjncPPP3Wpwz7Z2l2zYAfBkBT+ZT12M1TzHCT+qrmbb9jVHSZCK9+iX75p/DqV+teTmWdJyk/Kl46zUs/qiK92RhooaJQIxdSdqIWhdjW9pUli90Tam+asguX0HR9zI2xk/5QpPTyk6Zv/7LjGx01fTrZpfWt9WCdUVpHHPrzG+OvkIV0f9ewzVqQpH+OAhzXD0lpFFqH7Ywq3e1q06NJka6GcXdr0LAQz0cOryf2H33APM0cObIsgfMcERMJhzNhCQlEWsvDmwe2X3/F3/rkE/7w+5/wz/78lzjnqqd2CbkxVBYqDal502a/4/f/8Md868MnxGViHAZCCDjn2F/fMp0eiOcTYTmxTI+c714zL8LdpLx+OPF73/uYw4sXbDeOzdXA9mog5lWSiiHEtJPMsN/jxg3GekJYCLnZU4rmJ0C7hIV5WTgFJU6KiQZVYTAWT0gd+G2fGWNSbVHhi1hAi1AjB2vy1FNXnzfOaFdoAy6r6y7Yr2eT+ploJ3jvulN/TQdmigXrDaAUL+h7bNpyGmzfULBkJEDDFUnBdIvlImdl4duBzAJIi2XvS9FW/TDKDfIAyc61ND9ZE3RNkr7WVoHcE6V+VkFlkf+LMcsDRc1KMfFdWJakxH3id9DkXHEDZhgx5yNhPtchosZcZqSp5jcrcm98p6pizoAxSIggKQ0SJPWRye9eHKAeYZ7POO9YYoryiZiaMVMatEFAxOYyW5NKp4oDJ4MrM4yYcUfY3DAPbwDPIMnRS1jSvBXgH9s0F1BWpt50hqeRQtYR/m4xWHTnpW++B41todMh1v55Krjs9H53NPnVClgu+bAtIy/0/do8vJdHVS3dorjOfPf8zRlCNoH9Qk9WyvHyfdcmuT8x/60d2S4zrSp4pKOP1kVCytzKgLQ83KLImzfEkLbtZNiDT/1pVALLMhGmiVJ3j7WAVIemGIPb7nCkbLYYAn6j+GVENRJyaXDI29SrksoT0ZRFk/vIFEC+BMW5lI0WloAdfXKqGocbdxjnMc5XRyq59l6yDBtJ56KwTIbz+YxxDrvdEr3ncdjyWiw34YS1eavXueujl6fmLaBVnd9C2Va7fdwbsTJM79Is5/YBK5pdlaIP0wRlKFodBnUdoqCmu2dx1K0YqZPNrNxj4ZsKJNN5zSejdO6jBlhFLqfl/T4q/LwA7+/CsvWL9tmvQwVv45NMnM771RyGGdiXjTjeNXkV7UsbLo/1Ft4qm3pULJM0qGYvQMxlJAuO2e04jHui3+L3T/FPPsD5oZaGGGNTpoFNOxySs0iX6UBcZiw+lSU6hwhJdgu/kVyNy8Ynh657wB3vcC5gHYikBapKxBrh5soREZwHezwxPLsFgdsri/eK8cKw2bCEwG4zoghu3KUGxyGgcSY6YX97zfHhgc14hXeR+e4l0/0LNg7k4Q0mxgIAarZaLQmLqwnvX6WVG/dyq9qy0JAqM9op+c7MFYPcaNPbhA56SVc5UPKYK14rdqGwROUZveCdpuBr9sd7f+RnFVq5D1qD731WDUJysHa2E6hrr0IYpZngas8qTGlOtN5h1uQs59d3Tn6FnPHSKgeKQ46MJYtzrjT8rxBJAafZIdgCT+92mVMeMvFpYzTo9C5GcN5gWHi+96goj8fAaVFuN4ZwImdeCsMw8r3vfMr1T95wEsuwmVnmheubp5wf3hDCgmra7TTMZ+I8ceYVxliCCk+e3vJ7P/oEsyxMj3e4cUtcFuzep92frDK/+JzwcIe++BXx4Q06Twlna2T683+Fubpm+4Mf8ItXX3J3HjBvHhjHrxmuP8BtbkgcHzFugx/G1HfKbjB2zLoul1y6Ad08xeyfEV/8KaoBQgA19Tw00Sp2O0ElumrNHC92rNrrTG6NZZ7Jva8Ko3R0KI5d1dYmMvNxpXv5N4GgGhA2pjVuzpe8pcv74/9D6dMF2O4GlGx53mnYmkark6MZKNWSjMzwaDuNi8vSd6XhUgYrK5BKHa+t9up0NcOY0890STs/qYF4jsiYoxQYwmJx2y1ms0UXQecjy7wwzxGRyHyaWBoKJxjLq1/+imfDwH/2N3/IT/7ilyxLoPRSCBpxkiMU2Wu53e3423/wu/ztH/8m+9GiYSYuwrAZKmQb3JD6UWhkfvM1b75+wZ/82eeE0SfPp4cf/t73ON4/YIwg1hBU0VyXb53FeZ/r8HPaF9noiq10i0uKZE7zxGkOnKNwmD3GRp7ECWcMaKCmdZpizPJcZq5LDNplyrzFb6VuesUhQGtcXJh81dCvsc7FVT2MzN/00eLCQyumWt+/QE5ZpThmY1Dodfka79UhtQKoGoGiFKoyb0qgXENj3zRn3dSU5s91oVcNA2vHVilZKgPXZovU+60cpbTPk2Mm/6nt43a/pPRqw/AylkIpOdDOa6QR1I6w2eWyJ4vYIWWwAIubYTlh3EhYZpblRJhmREMq2bAGY1wuz7BllhCxxBhSqYekBWfUmBsHm2T0jSVqwEk6xw0W60eiBkaf+nE0wy+EECj1tuUneRwxNhuIWBeuEYjWE88nTFSicYiZU/RXc51t7EBlliNTSdUvqqj1uGnudUWzygYlesBaYtLCvS3UEqjRSse3ooadTNVG5OV+muWvi4AUi9L3FSsPJe8Mq72/0FP6MrD0CStBK++Xv9OKJi/OLylKJQW8OjWbnirzWend6VLqsOW8cnK+oDhbKR+XEonWC6Eu9JDk7NjfwvYGM2xRv8k16QGsx1jPMp+aI9/mciiT0qDzCg2JEWs9IgYbR5Zlxm9AQ9qBUDUQlpBlTtM9ECQsTNPcmDmXOg7DmJp5DwPWZdl3KeutRiQpPC+IcbmZqiaHTt6VbTodCQqy3XI+nXlYIt4NmKhsl8CQXBlUbq3TWrmXsl1vC3Jl2nW8XsB506v5Wu1lovG/1vtWBmt0kwzk5eL7y/NZXdKcLtIivlVllJOzyPY2o/JU1j+SP6jOqguV/74d2cR0f3X4I4vDKi2dMn0tuNOXKxW723/Wq6veAV1bdNW79/dvmQCt+T81u6BDOk03UjRFV7h4iY1JkdtEZ5Po4xwYR7CWeXeD+/BbbJ5/mrblFkGImNz4PmpArElZ4jGVUhjnWaZDKmsspQ0IbtjWRvrICWM3AAzba3ZPzpzlVwzzCc5nwunMEtIznYOyG2HwBj8YdjuPPN5j9nvcdgvLhB0Gwv3XGL8Bv+Xx1deYm2cc3rzBMKPTwjwF7k73WA3EZUq9spYz42gIhxlDKhMZbd03mZU+7BzrFe7UPjUN9pRNMXrIQ2dPq/MdMj7rrq+ZW5l+Zc2ixVI32dQVA6UHqiU8eoGvlMYDhTEq9ijnrPXQ+3hoWSfmxXW1X5lOxeGIUMvSqsNVym555XSt81J6dBU6JDtASjgoNdX5utqTr/SiyfJZTWaBMv3aQSVld9a1cH52I6vGwyXR4FJn1/K6yy0tO8Eu9qUA5sJv0/3C7V7Y7pQXD4bzojyclO2YTjgvkSdPtuw//YDdhx/xX/6nnv/+f/oJhwkGB8e7VylDSQRnLDFGrBhCDCCpr6Oznu9/sueT25E4T5jtNmWMC8lZ44XDn/1rwlefoccz8Zh3MY6KkYgVRc8zy4s/Jz6+5jje8s//5CU/fAI7/5rrTx6x22cYn3rQpE0AbM58N4QwpWkwLq9rATGYYQcf/AZKROMv0MO524iHunboPHJ5SlcGM81ukZnaA6rh57JVfHX6FR7JP2LG5Dkk2+HZnoYZW6kQQ7m0nXAJofvj1ztqOseEljStbI2bwyaDSIG6r3z7Jp1npC2mi2GUbvjyBax0S3qEYtBKBKLMaGPqqsY6S1y9r+WEWs4RQQ3LMeKfZjCnoMYkA+U9bgvL4WWqYV8CVoT5mCLyMXvQnB8Ip5n5/p7vfPc3+Qc//j7/8I//LUYUkRQhjwrOGgZrGYaBTz5+zu985xnPN5b9ZsCKQFwIk4JLi0s1qToxHh+4//KXfPX5C168OvDy8czvffeWZ8+2DOOAsCMsS6oNdpYoBrvbYrzFjdsMVrveGHbAmAEQptOBeTqzLEsSTGsxkiKUDwzsWHAhYNBSTZL2mJdOMdKyLi6BCyKtH0YBivWcRp+VHamGZ+3wqYpyrdnal7zj++5ZWkpk47O2kClGVerzJN68iLa9b0dvXDoTrbByptU00hUAl7aYq/ark5PLI8vO6i4r5ZP1Qyf6UkDBW4uG3mlX7ikdwCkGrZXblMjXKrlUBPEedtfozUdoVvBVr2QFKCIYO6YgCGBFEONTU+EsoyEERFNJU8oIyE4aBOuHpC9QNJCNRPKMW+n6zNghl00ZXOYd53x755gcuJr5rKaditT/IXnZl2VOO8jNE9PpQAwQ7YAYj2fGEhANVbtWR11xZFUeKOTOTN01ISyk67Bj/i79MGvS1i/XYtdo2y/26kAdr9WzexBVx14D5A5TZUym9e92w28ya/+uj6Yf+wXWqkHspVnWBBxXY0CzW6sxuvLTDgD2jYrLtVUHltusHF69rK17XTQ6FQCjydFyOqHnQ3IujjvEeTwgYSLOZ4wfWeZjypCJMWXUqHb+vyR/xjpCDBjxOLGoLqjEnBbuUVmSo0UjISrOewiOwVhCjNn505oKu2FM9s55TG4cLNmRU2SglC6WHdEKnggx1+p7x9X1FYOFExHuI/fniMYZFrBRSxCzW2j1VE5f1H76WrRWA/9tD6ms04rdKvqyOuc6XS6NnpVrVrXkhY40cJnxWCzOqXxZbGd3rNnZDppjVTO/mGYUqU6ZMmZeOBXcpauB37+j9NlpOoeqk1HN2+62xVb/LlLnJF1FwQk0fqD7/S3ndX+U81d44+Ka9WM2vdjfLOtQWTFIxl5GGyNCigwjRDFMwxXz/kPk5gl4Tyx7CUvKAohLSIsTk2xejJoz1UasX7B+l/pOLCmLLuHLJHsKmOEGjcnh6rcz57vXXH84sbx6AS7plOU0M08BawwPJ/BLYG8s7jTjo4Le46xBvEcOdyAPKYJ+uoOHV0TOuNOR5XTGWou9v4PTiEgqjUQSPY+PieKjFQZSU/4+QeHSlnQxojT/UVYVZ2/xd8EqmRApCyNhoFT2nRfYFB1d5KjRMYlPk84aFCn6oSzQTfdgF8ea3y70SlX372+n75ItKSu5q5q1riMhy0tsdi31H9PV1JTM0JUo9+q36OfieJPCDyXbhYZfhIrRVlA6y1R1XOfdkOp0d3Le7rk+KpbSd36RsVsBaw2ticJ0P2N3DuMNcRb8JFwby/3pzGmJXI+GbQAnaXMYEcOPf/AR/81//rf5H//hT/jiq8fcEDzd3CC131sqJ7bcbkc+eLrnr/3GLU8GhzMGIxDmtLPqfPeS4y9+Bi++wG93HL98CQgaFqxNzfvnGLDLhLw5YJ/dMn99xx//5E/4zh98h+d//XcYbj7OAdYN4gbscIW4AcGk7byXE1if1wjZdoqDzVNke0c0v0RD5NJXIKV0piNcdXSXXfWK7o2kIJhACShrx2eJ/xrfoJpb4qQt06MmHi44rW4v35cjZLvc44Xk4Ptmm/lretQUA56BTcdMJUjazu0Sd/pmVhU8lOHKd53tX3/cDFHVPNqiwVqeqMt4qMIgq79XeRf9aiGPYQSMkywHuYN9FBCTgCGKxEg8n1k08hgVrE2ZK0OqkRVjOb58xbjf85/8+Hf45794yd3jCY2KE/Dec7Xb8+x6x7c/vuVHv/0pnz6/ZmuV5XjAaES9w7ur3LA49aY43X/F+dVXzEvkn/5fv+TPPn/g0w+uuB0insByPiEaU3PADBbcOGB8SlNN/TCS4XTjBuu3kLN7Ygz4cZuaLbqZsMxsrvfE05HTy695xHAvnoEFm7cw63ctlOI9Jq49i/WQqvjI9OydIJldKsnWZXQZVNRU07aYpYKsdHK/JeW7jzLWZcZXe4Y+LbQ6Bjrw9N4eRQ5yZL2LG7c5UbqFdlsoSizKIoOGmimR5+qdtrydkwaBUi5WIkhF1qrUaVFSfWJwmdw2Rj92AfrFsVYXO2vMnD4bdujNh8j+FtndgvO1J0y6jeTaWUVwCLm/jCqqEV3STjXODaTIQdp6VCTtvuaHbdYNMxiDUckLQcs8nxExeOeSE8g6jM3p0NZ2Tp/8wMahmhovlq0FTXYsqZYFdv5fCxYz+N2e+J0fIHdfEx5f4A+v0FdfIcdslLQXqjJF68mq+vSidUmPA3sRfgvvFfrXl8lGqsDWCkK6u6/QTHmGtSNHV8/bAeOiDmqttlzQ/i1s/V4dpa9TfcSip4rj2jReF2CdmdTZsIIWVxNz4bCserREG6XxT/9Mq5Uk69+1S/ulANwO9Bb2Oi9gT3mL64DEgMqAFo98DggYHYCUaaMYrM/bZmdnr/UpWFBMh5GYI1LJ0ZlkKDfvFskLGHCDw3qfek1J7kNTSo2NRYxHNWXxEAIm7/SYSgsd1qZMGmNiTfNWjXg/IsBsLc4PxOnMNM083B0xIXK2DhWPIbCLAVd0J81k1bKHftILyUp6uyQgrBo7uRAqwS5BfU+jvFJUzZmUxfZ2wS/qwqzDSp19Kza5sxQXErnmKaUr7ehs7ypjoGvUsXLIvqdHmpe39UkRxsvmv7KalPy3aq9yV+upy6BS77i6GLouAIp9K9eu8VLL1mlY6/K58kN06UxVp+Q+kkqC5dGkHZQO0XKYFwY74De7uluL0Hgk0d92TnnB2rxzW35HK5YQzmmRZTyIYK1FYypvFKMEBT+MbK92nOYrZJpRhSUKukw8zpFTgDGASuD++Mh2Y3jydAcxYgafHKmjh9MDYZrwKuj5DTYCc8AYwWjELslWi9nwcEyNy8UI42bIfaBMCmh2PKxaHKYtk6ZfOEkxrBUvdo7v3Dev0SNJVDIBubwrSmovdNFDo89Ab+sUsu1oclwycirmusRihROrLuiZM/OZfFNt3ftxGFMLtSsekg5TNGDa9GWfwViDq13mby+gffPhNqaARDR23ZY73F+cL0X7VZgmBQNJSkKoV3RBkg4fSb5P05u50qHo59CVwfRjacmu6jFd4r/lsGC8IZnjpDeefHjFr76c2HiDdYbNxnI8BTaDwQ8O5zzTvPDXf/gx/+1/8e/xP/8vf8xPP3+JiuKMYVpCsqExshs3jM7w4fXIt68839qPbAeHzGfiPCDBMr/+msc//iN2o8e6AT2fWR6PxDnUfj6qoMtMPNxhwpnz51/xnY8+5om3fPTxBv/kCWa4ReyA9TuwA+JSeWNpRiy5JYG1mxyQjcggmM01wW8QPyLPnhK//AqdUrpKKgMtmYrvYH9hVdETCVXuMJrktpTgxaaHswloOqLwqiQ517JjeLcuSixTqNjoSqkW6vjlXcc3O2qKd7gDkMlTZOkkhdovo0yESBfRrRamHVVgOhDRg5Ni3PqZvQAxJr/sSkAvj1rK0Sk6BGyaTBmy8lJBSTu7pNTuazgeMUZYTkdkWUCVkx7ZDANTCMS4YfAei3I6nzl9/gue/NaO//rv/13+h3/6rzgcT8zzxLNnT9gMjt//4ad8+1vPefbshpudZ55mhMjgPcN2g7UGYwRdZh7vP+f06ksevvqSr16fMIPn0+c7PrmyfHyVtmW7e3mHWGHYbVK0Y7DYccRtthg3pqnKC8IQIjBjh5RdUzz/hUn8MDBby3i1x4piTo8cDpFNTNH7QRRsoTW5WWRPtL8cmtU03o6WPS81XutYoA6Zflk7g7JJq+DhXfdv9yyLyCoiHfhpz0U35tu/v69H8/NepNtfTkl553qhNvEiA5V6WTNAa0BelJT0Q6zAfTWpWQekVN/yjN1z94ASKvjo36z+q/1zthvG7KRQFXSeidOUM8JGEJMXk5oyY7JTpPSuiRqJywKWWvoWYiBVPqWthr0b8vUR71LDtFnOuGGTAKxG0i5TDlt2n8k/RbJDRwyaG8jEsJDKD8nnCakMUXJ/GkHjks4z6fndZocOG+LRMr96gZ5OuLsH/HnpVKi28qee4N3f7/J7V1Jd8HnFg91vtQ9SuTBZ4G58baVRTbVDtwitcqirEzqa5nsVm9A/l3ZjlX/fc/nsZqc5aYqtTB83etQsiPxF0XkFFf6/1L1JkyXLld/3O+4eETdvTjW9+QF4QGNqNMkWm2pKpMwk044000IbfTot9AW0k0krLVpss16QFCmySVHoJtAAXgNvrqqsHO4Q4X60cD/uHrcKgHYsBfAqM++NwcP9DH8/o7GU8ZWpVAGD7WqettPw9lO12H/VgY6aLpcqEs3/r4X0yjIkRW9eov5X6HsOdb6A5WwsSZpyePLo8ybP+1y3M5YObMWYmtMOc8RZjAsh5GK+SCnIX6LRkqaSmqiEzYa4LDgRfMiFjF3I4DOhIDktMXfHyHTkyvzWlEMnuSME4Fw28sRlwYWRQXKtOk2J42FmWXK68q06UhqY48I7KXLuNGdEdkuEWJQc9dk24fU8snOjUkdZ797hLYVWcnh+E3hquErsmSfrXG+7IpaqF/JHTXdWVWGD6zBUP3rTHaafqWeUd/0tDpC3/rA5tP2Za/JlVQi/6qlu7k2+dq76+s5FR6rxPfY39f5mXDcMo6f3wHT5GqOczndv2FWruSDd5zaWgpM1eGIYeJgueZANh6jIciTMM37KWDCXJwjWUC2/Ryypd+JKJ8VcuDtq1sM+bAhhzHLI5JUqGmM2jsTEMi9sJs885sjT6AcOEjl6ZXc45tT9CMsuM9RwUIZpRmNifvVAcMIwjfX5SZXjktdtd0iEIBnrKgzjgN96bg/KMHimIfO5ipDIdel86vlNV/y3KtKrHTJpjNxtTd7kLOyM6WbgKw9o52qVv/3f5gFvhoZOlxevW17aDp+tsF65ptf1QkWJbzWurTKSmoqDlN+r81A6HCEVP5roa/ReIsSctPfXDltIOzffVilh0kUhFhnnTsp7dKBXpRSRqHJTqiipGUxS1UN28JvRDa08ioB4V40B5ZXK33TCuk1VnBWS4M8dqDDPipsGFnGM08DZVjk7yx1Qj0nwDsYhEAKgjoTy0XsX/Pf/7Y/5i3/+Mz7/5o5ZlVeHBU3KwxwZg+NqdLx7NvDDDx/x/tMnXJ5vkRQ5fPOc5eaGV//yX/Doeot/712OX36J32yIux37L15CWkATQQRSIkgkBEFe3BKePeXv/egjnn30EePjDxGfOw/jAuInalkVEfABTQkfSjFhM5wZ+fuADBMpaun2VKbedJrxczWotghQ54TqNxGLnGtFhaXQCaXofGY5w2VFL7YlramSa1le6E86zNvrhAq3fjtz/p7Up6py6o2zBTA1QpM2KT1NrRVK6kSPSSehznR3WEXswqHl+o6o7TxTqsjq+zYhxk02ES3uwAbqvAkFhcGhm0vSMOHFw+aM8ckZ4dMEywFwHDXnoM2l0rxDSXEmJLh5ecfw+af83R//Pf6Hf/hj/qc/+9dcP37C9nzDO1fn/PAHn+C9cHE2MR+P+dkpsRz3CGcsu3uc9xxefsnh7jl3L16w3x3YPez40YfniFzwzgZIO+5uYmn3ndMpwmbCjWMORx9GhrML3DASzrY5PNwHoISA43KBRXIB0yVF5vuFZV7Y7/ekw5H5YcZFxxmerTpCXDIBG5gxZVCI7BSY9Kt0Sk/9Z73zuAqvVR0NKmO165tgfO1oF6zuXzdCHYhZ1VzpWKQPnXvrjx4d9lNyGh6rPRykAv7VLYztigEk/942A5VvtcH4IuvqDdoQshCrZGIPqL++zvc9bWgn/Sp20e4MBzKMRIS4u2V59YKwvc6t5sNYUhwcOMG7sQCbPKakMbf8cyNA7QQV/FC9hA5pYdvjpk6OCyPifTX+qCb8MBT+KilMzmrQ+FwLC186wfkV4LO0K4sWU00k9TnKJgDikRiJ84wi+GlChrFtrCjro41mi3vvBIw1Q7Z1I6oKsGdnW6HTpSk3E7rMqbr65a+ms+o1Nb1Eqc1KGuCkEU4HVuwOYtYe8xLXhe8I4W1mzzeRt31RftbNsqUM2xykk41Y/5NurlbYrU7g6vlVdnapU2uXEAUggHbMamtVebtEzuEFrh/jvvUj9NkH6HCGhhG8J6YF5kPu0uA8eVMXcx0v5V0AACAASURBVGruEhmmLX7a1HGq03xOTHjxtcNDCCNxmbPRJy05mtPnItpCYBxHFMWHnPak5O99URyGCpzL/C+lblWeTy16qtCm5JbhbhzwKbLMB44ICWG6uiAtM+nhgeUw82oW9jFwSImP4syFqtVL7vSXrH5vacJtPdd0QF1MWfEBtei6SFfQssNL1WBeb9N0oxSss8ZDHXlonntBm3Gp35B2arTGCVXyyGe5NzjHzPP4th/mrGmKpUfbp0delF589XxMt75rY/SbBFSTX73Tg4ph+zNNn3byYMXLhfO16J2TxzV8k+r4VSGKZ3YjfnvO9uIR0+NnjBdXDNtzfBhLV8L8rGy0nFfdVJUcKZONnYLzA6qJ4+GADyGfYy2unaC7B+JxR4oLSo6iSeqI4vGbCSeOCbIxZ0nMyQwKjpudcndYeNhHvBO2Z/Cwn3P0jHccIwyj55hyUzrnc0rypImzqexTXDHQqJQW4YkJi9DuOriUH7XmH40fmrPvtyyrrd9vWcvMRdKVAlivq8mLKutXGym7mjqIKvOF6jRZwdmqizsdTZbxNoa38UhdC2qTX6nQWdORp/KsGLzc6qNqoKkXOnPad/Ks6GHEY23fNKVqNFktYpW7ZOxUW3SxJozCIwZdIGO9Sme9rKkFOu2rdfRjW2NBkuZU4tJiOh0SfnKkYyodHIUojnvd4LfKJibOzkcebo9MgyMlSPMR0cQ05UCBOUW+/f4Vl//wE55/84ovX+z56W9e8uuXO0AIInjg20/O+YOPHpOOB5b9keXmnruf/YqHn/1Hnr33BKeO/aefs3txx/aDd3jx1Q372zscMPg8J6MmglcuhgmZArs58v0//gFPf/AT/OZd3HCOG0a01IlMJdo1r7XLKdQpocTshC0gUONMvP2K9Oor9OG+dPFt7GM004tsKZG24qTArSKvVjaGphu0/86R10Kk9NVZZyNUOWAOrp63UzcI4///jzj297bnroOsf69TWKqpGFMO/dO7CaB4nOrgTdw0kCJi1c5N0uQHrSZQT26v0IoNt+/a+pjgNyZIZbHINVciRFXS2YB7/C6ScjHCFCPju48Y5JfIciRGZS7hWKTIvCwQrXAwTCj3X3zJ9aNf8qff+j7X/91/xReL44sXN3zwziNCGBgHDwn2uwNJE0+eXCAizIcju/tbjvsHbr74gi8/+5xxdAxD4OnVyNlm5OJiy/72lodv7tFZ2V6OyAISAsP5GW7IXWLCuMneRU2kGHOoaulw4VyOhEop5qiCIuGcC8wxctgdSPsDw5CfvUsTr5KSImxZ8KRar8Zow5FDZlVPFqdfQzpwZDRTU5som4UC/PRkjTmlKaOn1z9febgoYZOGcSugyhtW+31t5Vzf762uUVPaA4qUAoE2ad2QDVhbXSkrilfcAHXe2wXd5VYguBzS/VtPrnBgHX1T9VY3p/b9erNPW2+KAqSTb6x1YVW8QJom3OOn8O63kct3kJA7m+UK94ofJihGEMRSOxSnklNqiiFBJWEutFBAQkqJFIXNeEYXh1TkVz7Hjb7MrcP7gagRkRy5kzeH5TwR8OuWfhlYlzoj5qFLCdVsABLnsyGnePzZbDluNrjNFr1+ii5H9P6+zFUvGGmAs0d9cjKpZV57R83KKwA1PaffG4gBINUKLKqEXeXbd3Le2dqbwnsDT/X3lzYeI8gcUqorWuENt3lbjpV+LPLGPu9lVH65IntW75O/z3TayT2Mz7vToMlTMclXpjSBlDbcK/WpUHOltdCgyWcxnbseUl47B8OEulIgXxyEgIjHu4CEiZSWvD1MMRchnAKlhUyhzeztzMbNEmgUNRtZpYzeeZz3xGUmzce8gQxD4Y1mDPVhAifF6Jn1OKp4b4WEO2OoE4TGk0s04yVlrvNPNwTOr69Zdg/ofOR+mZHjAk5Iw8DtAl8BEo9sSThvqUi9sCzMpbZB7qXIajGpaRX9xqDf9OVmc20dssrOuKNmUPVUUYC/SS7N7+lcTxltcU83nk3Emg7V9plADdVeCROpa+tO6OZtOyylr0/jFJsbeR0319gIpV53yhsNR9SLTr61f9sGb10gXSrJ2G1Sv6KGj3hNjDdjLL3MscfZ55nOowpRHbtFuX+1Y/RbwrUWXCgFMyqWsitOMlB22SHZUjlcjp4sxVhTStVIY7wGyvxwy3LcczzsiUtkWfJbLW5guBrxqvh5Yd7tOB4W5DATjjNpiWwmzyEJ+11kicoYhOP9zH5RnIMh5ESF/T6WCB/PGDKRig8cl0jwOaLP0iMBkgssbiAQELfAspwYNag6v25tUtOBVVcardTU7ZOrzZH5BgxVa1YUh0bbzhTmRhGxelaWlmV36M7u2LCvqWQyh34I5V1+l9f+P/Vhhl5t05APNR1aDE2lmGxzqlYI12yvanjyxAheFnVdh6phH9OHlnWgJpctXdl4VbRmddjtFXCn3Zmg3uM1I5/te8sGv3aMOqnDoyWyRgqO1KS4jUOCg6jEBAyOWTY471mWxOU7V3iU29uZYcqOjuWLr1g2Z4SnHyA+G2KOKI8enXM2eN5/Fvnk3Wv+7N/+is9fHbg95GLADw9HJCrx5XNu7+65+ekvCHHh6vEFu4c9L14duD0uBBFu/t3f8sWLBzajZ3Jw6ZQzp0yjY5oCYTsRHl+g3/mAj979mPHsUcUEqdC6opCs8UahX7Godd8Argg+bODsGh02ufRBqdUhqcPBtiAFj2qnazMrFv0lSttwSCUK0XW0qdqa9ZsY09ndIpsxvuY8GJHRXVeedSrXT4/fG1FTNVT5W6pgsu8KRxXg18J/baRSB/ImGdFeALQ39xqz2AZ7BXyphpfKmP2WRUFq2lb5PJVCK12Yk6HZlAaYzog4VDLA88OI//h9Lj/8GfcvXnHQxJRmlsWxxAURYT9n5Te68t4xEf7qr7lQ4Qff+oRPzq/gJ99jPL8kaqac588/41//u18ynQU+OjxBneNnP/sV33r3mpsvv2T/sGc+zjx9esYffOucq+3EMIYMWIvydC57JaaLba6d4QJ+nHDjBFZIsXhGUorZYExJFyG3OE0pK80wbticX/Po3cQ4Ol599jmHm1sOy8LsBXxgKZb4c13yGKy2tWGNHnDYZ1UI9iCip6cmZKtCqUSuTQBWnjJmM83Tk3a3Oenpqqv90E5odJJlaRtHG7vd+u1VaiA1PLONV4s8kgKw7aVoc2GcUnV+8dzau/YsSJuBdT5m+V0qdGvL0l/c3URX69V9p6uTsLUssm99r/LaXF4hzz4iXT4lOV+UV8INpeWuc6+VY8nFRS1tRFEXS5oRudU2BYCqAokQcscKK7QdlwXvhBgXrKU2mA7PxYRtLrzL3W0skrAajFaT0kJqVXMr8VRah6oWY+qykOZjnpEwksYNaXuB3g7ITqAL81yvVwOCtmZSQErdmK6tCev5hSZjqwIy7HnqLcwcdQoGV3bzotj6Z2gSTr1gFUv1Ss0UYmVa49e3tyjiWg/130j9V7vY6DrHBhKrAawcqTOGrfRd8+bYlPXsWdSyCf/1ZsKisarybdcYaXSlLduYH+7h5Zeo9/A4G2cYsnHRi0DMKXwiLrfLhtyeV6kFS30YC69ltezHsXZ4yiBqLjoOBqt7EzJUsbRASoqTK7wmIgzmjS2hLiKuphXagqSY0wZdifpBhaSJuByzoVU8IoHN+Zb93V2upzPNLDEig2c4H3h+57if4f144HFQBm+6pmGZsrJrMSg0+drrGbXIm3ZxjV6xysXa3cvSyosY0Z5fVgU1G/Yy2bR6sEGgwue52GRLlWm2Wl0/oyOXqkPNWPNW60wyrUAzPkvDAKd6tGLPghVNtupqTlvEouGfXv6tj05JdhiW7rGnarLfN8iKogpnvuE5fQq0vZ9SIkv8QMLl1vXDkKNQTOcAqglfsKMr0SgQYMj6kBSJyw6nOWXRHK3Vq5yygzDOe9JyZD4eQfKm0qXA5ZPHzDE381CB+Xhk3m9Zjgfmhz3Lbo/GhEM5luiZwXmCF3ZzYr9kow1RWZBiKBUkwXGBMAgLilsiLgQG71FylJymhKjD4xnCiI8zTmLWTXUtCigpTFR1Uj/thRZaU4BuUe2cNUFVQ4NYig2dXC2nrpqt9HzUFCMNcVGNRVqJp0XN9qXNmpwhb0bf4qNwETU0ApDiDDYcu07xP+U1s/AU40b5vurh3qADlZeNhmvqabHOiXf9JGM0AZnW6Wi/ycJGH5TPBNASDVONc9oWyVLwBanRGKnotZXzRYGkuMFDUuKS07Oid8RhIowTh+Oes2dPiLt7fCi8uiwc93uGl69wF09yE4BBuH85E3fZOe+D40qE984n7m93nI3Co8Fx8+KBX/27X3E27/EXuS7cz25nfvnFNxxVuT0qk8DoHLuk7GLEOcfF4PijreMPrkfGTcCPAixwfc7VD/+I4ewKioMzl+RwtWuclrW27o5WxoPaNTVvapeUnbOcXyGHuwwobm7z+tU10LZ+pn+tCHTRmfQ8A+2zFR8WI1JxlPTblqoDlFqjsD5W+6L+tpoZnIl0Ovt3HL/TUGOehCYgJCeza+EjZwCF+rAeFHUqvin66o7QKmlqNylMyeV7psKsVj05v5irRG4pWNlYZCioKbB8nmvjSPY+dapAPDoMuM05jGdodDmX0GWGvPzTn7C/eSB8dYuMnl+/2HEfwTthTInBeXaLIikyayLtdqT9v+XqsGP63g9gHHCDZwiBw37Hn/35P+f/+Fd/zXfee8xf/puf8fy4Y05Cmmc+ebzl6szxg+8+4b0PHvPkvSum4Jkf7nl4dUucl9wSTkCDI5xt8gz43PrUDTkaCPEFwJaNq7hS1CmWVI+8PE4c+NySfIoHlsPE+ZNrxtGx3LyCGDm4nHssUfExsiHhXGc5LvRuQqoZZFitBUCfc28UtnJPFWKuoLamapRze6CzIu1TP8Hpc+yGlVTzHMjpV2Zo0gro3tpDurmrfJXf25V5snXuQUCbvib+K8zodnnVONalOtkXoj1wh2pNLpecnL6eT+2GTL/Z1PW1VVq3UVdvhmbPmF48wz3+ELe5LLSfc3ItxNXy0vvolZRiVdx5c1lqXZQW26lUqhfJrUe996SYakenHH6pQH6WC11XGci8Vt4td49KiIFZMy6UtINczFSJMRLTvHrf/MxYjNeCjFv06hkxeJbjHvZH/P1Dl8fcLe6KB/Pv7dYml3vlUv3vDRzJeuNo1GM6YQ00Ggnax00mdO7IngdPiMH4XrWnA4sC617OnvF7Vdt/wsPkHQ1ES0XPwhqEF/1YgXxHBlXvdX/Wr4oeLj8N07w+lAz8XJV3WgFEbztsS511ZW94tdOcczAMedMWJtLxCNyjywjDgBvGXHcmjFBCl3OkWK4LlQ0rHvFDwRCJMPqcY25ypThBUlwYxrNco8a7eo6iJZ3XImZKmpONtUQYivhamLivLyDOYSkP1VkTDf9mgOmHXGB1Ojvj4eUrjnP+PAL3s+LDwOwSv1pyOPk7JbKmRkokM5R3Ewg5wkltjqXxUKV9e4e22HoC4iqfdJ9mI4vJyA6cYjq358/1xkW7f8G6VrQIkfJX2+/1zF3+zp7fhOX2///laJvvbkNVjdOCGcdOjWhysiZ1Tno5Ci38nbYuLS2m03ydos5GuE4nFv6v+LuOT7uv+6gM2r0o0cMJUhDi9px5s8X5M6azK86evcN4fo2ftplvkuKHoRQDTpkfvMe7IacMAyqlwHdQXFpY9rfMy8wyZ6ONpkRaZubDLtNMKE7DYcBN4PxAWmKl9eWwYz4biIeBw+Q5jgGWheWwkDSnNR7nhSRCJHeFmzV3XFxizsYUKd1qhGykFVc22DnlKSUlla6ziwpRBA0j6birMEoSa9lrGu9Ur0qb35zaWOZa13zXTrbPtJBEF6GmbY2lu/fqSunkfq9k67PbuO2aqlar0aZQiFCKkb2dh5oQrHXcsu5SZ/pIqFuGdDqHlPfuGpzUae+waud8UrS17SahWlKesAhMmkPFdXIBVnxegxOkLJYtRreQStZ3rn6gdWyZdrStr+ml08mxsfiMQ9OcHejqYZcGjhFkSRyPgtuco86xfXIkPRxQlDTD3a+/4MqP+Hfew282TGcTx5i4v3ng1e7Izc2epMpHZ4GX+4Vf3R74Dy9e8b/8jWNwytOzEfDcLYmbw57gHFchMInw7Gpg3G54/sU9Hz95xDQKvzgc+cEkDBcDLixMP/kDLv+bf4LbXEGKLMcjTlx2msoRSkkCTKcINZpa8GtQ4kf85jHx/Bnu+JK0v4Pbl6h3tM2P9ja/rpaXZryUKLWLSnZCUdJSaEA7GX669+kjZdVIkXa+nDhYoJPjdTwdbZ16QLvj96Q+0RFcp3GUNTPVGgQFDGnJD+2NJJD/tsnr6iWsDxOQhZXU7mMK8WRwHWDIDNAReQGygnkQy3dJwSsSPOoHZHOOXj1Dh7NcZLS09FIS/tE17/zT/4Lrr19CSJz9P7/hr//1b/j6uHCelCgxg7yUeNDEvSj6cODw7/8D7te/QZ+9Q7y44je7I//r//03/PTTr7mctry4PTAvZk2E+9sDj7/9hMdXAx9+eM3Td664uLpiPux5eHXH8TATY2R7dZ7nLjgiwrQ9ww+5yJKmhISmzHMnmrKBpfSlF2VZZlJaSLW1XJmSMOR2p0OA4AhOCV7QVNonxoiPM6FaK8s/FfidarRe8VEFkim15lHqQEgl9C7Ut4KbNxFyA0n911l5rc+vQAyLMLBz10DtFMy+jUcttHbCPtXj0oP+qr17hWXKRdsa1htK49mVEKB8J9069iKhm9tOHklRoE1jtaiBPLS14affrFelW+6pTtBlIR13pN0t7F4Rwgb1Hu9KxIxITq0QwTtfclrzvZw3o27nnawCVXPl+pRKe+48lhQjMc7AgAikqJXPzFJuStyZx7+uU9GxaSmd2HLL4Qyi8yTlugAjMeZy8S643O57ORL9gSieAVhSJO3vM/h0LgPmNQdVAFA38HUVWzpFG1wjksw+DSy8FhpsiqnHnoXxLRRci+yv4cV1w1EuOEW9FciUcPCUz20mxGYwUDFAK2tyfAsPG3sGBCdM2uO4fjPfzbOdbyHWbd7ewPB2T7vvGreSeaxbp/bF6sm9rG0itYEHCQ7dTDBtc3E/JbfLnLY5LclbZEspxKd0EWIJq9/kXIDSJlsk4b2lUYHEJTtnuiE653GlS5RFiebfQwNSSC5aTJPlZrxpNaBMx5TUgnJ/49/gB9zmguhHhvEcAS6ezCAwTJ6H5694eFi42g6M556Dczy8Uj6PiXCcuRxKPr7Y2mcQVtMcej4wrrQxmS2zWzvpFrET2VU/VnVY6CHXEy+83vHZOn60o5c8OZ3hqCMtWeu/OldQPb+9UdlkXw0Se3uD3epR90U9fKjzmj+oHT/KIljrbj0VZd069HhExPZWpzq0HWpAvpOnuY2gfd/un9MjOseKPbeKhRNioX0PjqSwT8LihOBLdUxx+DARxk2JMqN8XvSIlkL7Jd0E0zkxdzBMmuvUpJTQZSGWtHo/TJiTIaaED1a3SgibUh8uxjp/NS4hKWnOOjuixCVmnY+ix0gIeasbccXZko21SQScR60ulfc5os8Lfgj44AkiyJJTrJbFMwhNPhd51y+h/b5avVS4t6ytFCKyyA0KNur1n6qJHa36q6YmVTpYk1OlU9OFJ3ivptOuqMmt9Hx1Dtgn8voVb9WhpgOlW4MeM4IZH5tTyJwbWtdSbF1NMbYNChYBpvUvk8aF58uUadTs5CuZNrlhky14OVY5cPk5rtJBOT918+86x5gp3Q4vr8RnXWc1xA0lS0QU0gzLUYniOEZhN8N4NRLFk5zL9D+e5YjQIYJTpovE4fmR209/wxAd47N3Mt+53BTgp5/e8OsvX/HF81smgYc58rObu6JDEoeo/ObuQHC5juNYgiYOpTPTf/NP/kt++MmP+N/+x/8ZrrY8f/GKTx8W/vj7Wz74w0+4+qMfMX37J/gp69f57hv0uEMnKboodSCmOM0lR7mCpTGXRgGaI4l0OMOdv4fuvy7YIzNmn1JY71UCNernIuCpa6S1wI05hIwv217BOYdG08FSC5FDppG8jkU4qNTafy3lv0d85V21oYPfdvxOQ41twgwYVBIVGmCGDmXQJIlAK4TQIUkDGt2onCl5tbfNObpZeLcKz/n2a2VnoWttj6ErIq8TJycTIR7OL9DNJXr+LjpdE/2InxxRG1M4P8B2y/S+EPcPPPrh+3zfRdzPX/HpN3ummNiW3MFdSgRgPkT2e+VvvvmaT3/6NZ8fEgdVNn7gurTF3owj87IjxkjwgT9475qP37/m/Q8uefbkiu04EI8Hbj//nJvnt8xzYjMFDrsZvxkIzuOHgJIr3XsyMJaUu2sYUJZa0joTRTIDTshezagRVSFszkEXDvcPOH/PeLkl3j2wxESKgHpu3cSwRM5VEa+1M0Bb8IpxGnD4HYflXrazut+6dT4Vyv3zGsrqP2ubYJP46/s1jVfJtQh3LR9KJ3DfxsNAA5Bfc9X14Q0om6ak2ga5v1mbiBpJR3cuDWD0sUaZ/wrQXymxJnPtfjW2rqva3oBxuSZ2F69elir0VBUVnwuZao68c8XQAq2bi7gcSWbuF7U8V8nRMBaxUvdwEtpzRHItiyV7CnMkQEAIxLTPhbsxDJEQ8Sh9i1MpY8mpWSnlUPGYlhzJRrdEtsFVsAiAZT6Q4pILOZY0kJy66OD6GXK8RZYZHvadnKPJWVP+tuk/Xe8V6OuYoNuoowYSO87Udj1Is/WU79p5WmmpbTql6ZPeomA3lO7edXy98W8NuN7ao+c/e2HjpQ7553mVGhWlBUxU45q06+sm3epLVYXW5lGgbCT6T0zOvebLWe0t3wQS+qgK8QH37H149gF6/T56dom/eATeF+Fpncyk8nqm6Vb8T3xAwlhTd3zpwgYUT/wRjakV9fah8F4BYOX+Pgz1TZz3aCmoZXzlCj+ZLLTINZsHe2kRh3e5o0TUJVNqsTZETbx89cDx/oHdfkaGkYtLTwjCNAVc8Nwj3N07/lYHHuvMo7hwIUpYrZuQ0UxmnIZF1vrJPtO6cVwF1BcI1X6vjNmxkTi7vpf9+W/BDAfl3kKt11LXX0yeve7dWxks2uvVX6oB6bfQ0ltzGFtanQKb0k7HVVFTDIHSJmb9bq+JoB7j9tGHnaGwFKJcx9mbHqVdu9K/5T7F4HgakWfPrq3bixyxdUkI0Y3MbiCFkfH6Ef78Ec4PBQuOtZBw1omZN8QPTVabviz/CTk6hpGMMUVYdI9IdiAu81LTEschlPnMhlrVSFry5s4PA2k5Mo4wqyL7A4HiADmGnG5cpmWclOOcsvMQyZHdIRcWDmPAB5dTnEOuS+PDQBhCSZP0JTrPE4eRmDbM8Ry3LLhZm0xtShHjUvt9FRHe0YJFQ9ZdPub4sOultvHOcrfIyeqt7xjQ6OoN2OzU8bgixlNa7BRyn7X+Vmc+6fqF6vYRENFqVLdUYOOE6taxyItqgyw38K6UvnBtmdC2PqdQpP6q61QZBZXU8K+Hfp9RsW7lP4rxoMjUIkOqM7rbg1gEXZP5Gbfm32ycgsU/iIcwOQRhSYIrc+LHkeHSI2FAEPw0cLzfsznLmRHpxYEvvrjj8PyXXDx+SVTYHRb+8tcP/Pl//JzzEHh+e4cvUd8eVyNTkdzCW8t7pZQYveNq8FylmR9+6wM+/Pb7/OGPv8PfvLjlV4syDAOHq6e4P/z7DB9/Bz/mBjfp+MByuIc45wYdyx4Zz8t+NfORGp4oz6udG+v+ocyfC6gbsuE3xroWhn8zDilparZfVdCoJSvoBEPZbx2MMwdk1gfa9iJVzjc5XMA6ZqRtRGaUUgyC0kdvrmnv9Pi9ETW9B1WEVXHDCjpNQxvDrJ74ZuDQWK0Nv1qbscHbdactLamK006rT1QbhazGsir+I2SmHTdw9S5Mj9DxDMTjDRB6D8mT5kP2ILqA+IDfDDz+9iO+Nzp2vzzyb3/5gkkCl06YFHZJ+WpRfn6AT4/KnHKe/dPtBhHH9fU1l5eXLDHy1as7Ls4mvv3+Y/74B+/w7jvnvPfhNZfbCUfk9rPPuXt5ByL44PCDJ5FzdhUlFguNJ2/knGTCqVEEYrmdBmQ9wzBmSSa5GKqLC7PuWDiwxMh0cYnowrJTZJlJxwXvHTEl7lIg+S1p2XGhkSEknNjGO0++9gux0jjl00JHrQiXnJz7OrXWInUdrl15e81S3dMc7RmVcXvgU8ci7Xcbtwnctxly1tetkiS/hFbfVAUNsFYGbwYF/dx3QLK3BFdw0hRYK4xHlRHatYtuisxA0HqtVvVHVMtats8spbuuRPDw5B3kg+/hH72LXL9D2FzmVAiotC5QQydxDuv8YrSaSkpGtpw7rD5NTTUST4oz3g+IG8pg8tjCICtjUIwztonMHp/sEjUFJyK5wKlzOa9fUzb82MbSFGFZp5QSYZhYgCXOxOOe/cMtx1fP4e4Vsn+B7g85HbEHX51MPGWjZj/Xym4nuKgjB1NC7es1J5gWpLHU6Y2k/d7uo1VRVjtGyjJAOsDTURyVqIrxzMDmyT7yLTukm2+ocrGTjf2Gveqvkw1yZT8x3WV83fFTS8nPf5oXh/Vat6vlNZC4Gp/pyTKoSgv7mfj5r7OR5OpdZDjLOke11oypsbOSa0fkMGYphszCd0UB5LpP0QQGaZ5Z5plc2yYXBvchlKKqLa0wg5tU+M+X+Sp1NtDMr9IM1m1z1E0dFKOs5M6JKRHjwjIfWZY9h90dx2NO3TjOERcGRBPxCIdFWdLCMAjT1RkHEV7tDryMA+/6hff1wHVc8M7wZiccC8/l6bd3klYjzHjZjF3VaFNoHq37hpUus/WqmKlzaCiYBE3lecaavYjopHQFkM0oyhuukUpDdYwnH7+Nh2HLFhlEc2Fr995l7is/9u/VfV43c+WShmkypwAAIABJREFUKhOTYRatKQtmcG6OkHJy4cds3ISV8Fh7strfasSUB6bl73bbRvcaPMvlJcv2EcqAqmOzvWDz6D3G80f4MJE012/KBr28jUU1py4aYaSUazylVPVl5SF1hGlLigsuTAxnOY0uLTM4TwgjliK3HA+IKLmjGXnjlrTU086RNIqwmLGpROn5MSCaWIDgHV5yR98QcpqjD4EwhhJJ40sNv4yJl5hyOmKMMKfs8MaTrJRCmbeVIaPTMXleO/y0kufrkzVqu2bFh6vlbjxqa2jLdrrkNjYrL2G6u49gpotgrbq3yZ1KRm91tFvhC28ZFO0bMV4ofFr5r0a92aYXMn4zOWj86yrPWzRTXZ+yvxSoEZ05FZe1obZ8DuQ6JbHMfe3e1GSFVL5Mpa6aK53SinyN2eCjJ7Ihy47mga1RF90caRQ0kusuAccZjgJuP+NDYhxzBAp+YDjfMh8i6sFP8PSjaxKv+PnnOz774pZdVD7dCz9/tXCcIx9eX/CP/+Rb/Plf/BWzOkYPs2ZedgJBHHNS5hTZeM/l6PlgE3g2jIT7A89/8XM++sm3Sc/3/PTrV3zyzjWf/N3vs7m4YNhcEDYXaJyZ776BNJdOqqWuKqBxruU61kolkcMRjJZL+QDJ57rpCbz/B+iyJz3sc7c6NYd7KwxX3WA9czpFohR8uY7oNVluyrGvK/Y6+XYBJdh5Leq9v6+U80WkxKZI9+3rx++uUdPFhUqJA1IpBhU1YdMRZAWSzVtutTFUFEldLnlBHxZ6K3RhQkUzNCNLAyzGYWaJ6kO1V3qvRxXSTqkCdono/pDz7EfNNSFKLrwp64SgziNqnSsE8Q632bC9PHBxceSzRfj8Zs8hLjhVvMsxQElzcb7JOzabLdvzLfvjjN9M7JeZFy9ecXk28f2Pn/Inf+dj3n3/EdePL7h+dI7owv6bL9jf33KM2eM/bQbCZiJMATcM+HHADxMulELCw1S8m9mz6YYzwrDJtWssvFxzPQznWyiW9wM65rlxIhz0G5YwIcOG8cqRHh4gRtzgWe73PBxA3Qb0wGWaCSjO19lt6yu87gEwutL+p4Uu2uI0nFTPqcLVxHC9U7NKVoNLG4ucCLiqscpDagCkyVm7j9h93l7EKRZW3xN+fUc7qfzs+LR+3slAaIo/t58rguZ0+dTmrAEWS1Gsj7V1rDGkdkVFud14qdfS00tvbLD1FJDNhD57D/noR7irZ8jlM9x0ng0sqXjuO8XspADySg9dxxItIaVls9d73jOQ0qzcfcCbnCmfOzeWzjNavIbZYp/SAuSQbue11HswwFBaAXdGmUae7RytQCFH/6QU2T3ccfviG24//wzd3fNuumOMCymmmnK+nvv+vv36dSRgy9OPoAMwUtdwDSp7OVo3HTWSSOs6vinU09b2FN+2iBvbJJQ1EINP5Y+V0nuzbHkbDunrd63Qps2p0SPV4JlTCaWdZnPepaeuNg5mhFatUTRA9vhpB/A6mVmHlIzGAfS1IYrmtpXZuWEAhtwuPi5wd0MazkAegUxQCnLmGlE+80a5LqVYjKSSebQU4takxRmSWJZs6PRhwooGKtmZ4ERxLndV867VoHLOl1QNT9JY6SI/rwF5e2vvc7FCLWuS/+fwCHM65mmMiXk+cvPyhp//9S+Q/S3z7ojOR4IkNl4YBpf5WkG84DZj1vUx8lw9JEfQHVtdaq2w7NiVJnOVhnfKGLN9WBBrEysNVmbjpGZP6glQXDkbKoObzDMQ1unN+rVUGrBIyyqXaM9Zz2J9ajm/6dJejr/dh7ShZtEFNJXT20BX0yjSDC5N2K7SCatzp+gtozWx86q8Ld7iLhq1Lk7FQe5EODdMW9et/76FpNf3yd8JUTxHArMEwuUThifvsrl+xnB2WXgxFT2ZI+AyPSZYtX4sZljxSElj8skT40xwAdnkHJG0HIjLnPcDKeHHTa6bCJAS8Tjjw4RKLjFwnBfcMLDMcx67C6hLJMnYO6aIhGLUDQGfYhYtLjs4nM/NNcTlenEYBij/mTwRJ5CEOM/4lLIsigsupVpLot/TVJzQM4A0Pulbba8cznVPWBVkPXR1n3x+pUNKJ60Vqba1XMnvepLW7+30NmyBEx3c3+PtPOQ1uyRQ57u+RQdGGnkaTjSnQ6rpr5rMAdiwJNLSp+xeJYeC3hye9VYTDtXBbEaaKvua88UMvlY8FiXzk+nWYojp9yqQu+tKpT97fId4tL03klPw58Wxi44UHMMUQOCwn0k4CB43nbG5OrK7PXD2+JrxMhLGgfvlBUyRJ8PI7Rc73klZ3hx2R/7B3/+E2/sd/+b/+pSraWRW5W7ORca1pO2PznMehKsgXA4D0xj4i//9X3F9OeGePuVGHf/gT37Cn/69T3jy7hnT+SXiwmq/rglkzBFvy+GeMIELE5pTOIridFhjIIuKabJZsoN23JK2T3Hze6SLz9HzL2FZVgZyk+FC06titp9ouMnVhkPm5FJoNg4sql3rMuQ1rdqg0kJe33VUbB52W8OKc3X1zRuP35P61BGMAXeaAKv6SsGJL8V/s8GmbuBOiaw/6jn2OlKlkG0aasi3KcBUZ6UKtjphdQJWj8YMQn1eqETQ/Y508w2LP2MezpGzi9yGU3PV+dw1wmcvgXdEybl8jBPjo0u+8xH849vIn/31DS92iTnl8Lwkwtk0kUr+2uIcR+8Zzjw3d3fE/Z7tZuSTDx/xJz98n48/esLTj95j2kyEIMSHG+a7lzzsj4AQBk8Yh8J4G8I05kKo0yYbacJAmDa4UqtGSuenPs1DVWoI+RIXJFnNkFLQdFly7RqUME4QzznOS555nyMIfJo4LolXS0LCBpfgIs2I61MT3Mnkl/l+46f0dM1a8poRrv+su1+HDaGnU1t8OfnZ32ql9joAa2Fswu8Y8VtxNOO9nry7rDS7Ac96naHCVJhL6N6Z119Z2sPq5r3OulALLFR9082b2lmdcO4U0cqYZwowtVVrgjJ/INMAV0/Qs0fI9jGqmr1zzpOAMEyljWIixpwyYWvpXJXu5b3suaW4dkp1wrITNBbesTBLqaHh1h7YvDbeeWoxWIRlPgC+PtO8Ja5E7riSV982Vtmoo6kVX7W6GUzn6GX2nXiU9PJrwl1C73cFrGs2ilS52S2Fbebp5tFW8mSdLdW0rZPJ+KbaqsxfC9emmMqfjcf6AfUbiLb+jTY7pVqpqynFPqw8K+63mDeB6v0snjbj0xUQ1fZa2skce+tev642DHVKOxnXofVkRujUxlFFQseq0Mne1G4vUFo/S5MP3sHjx8i0he0F4fpp/h3yRsxCiCV3acp0nMpGMKdT5M5rbvVyWsbs/YAvYeIxRsYwVpqVMLYORCmuII0ZZURby1btvaI4lJLO4bpwd81h4855xnHDLELSBfaOw37HkI6oF9zG5Yg8hcFLiQgCP5QNoU/4s5HlsLAk5Q7hGw/HZc/lMjOWt6ytYiuPaZPP2sB4DqVu4KqlJXa0AK1dvVBTKGrgsTQQaGtq50p9fLnGnWA1bTSy0oAmn41/6wIUelwZkN5e3mx4UWsUWBND2ubKiK8z0Fe51r3ea8HitRVvZ9yvD+7o1kR/gzs9VbMW0I0PbVNQycI2Pp1RvV/4JMKc4PYQiWPi7Py6RKAOGfeliLdi3RR4XSJEV7qkRNHgpfKyukQIQ74uReJ8xA0b3DC1Wo+U7lAp18NxIUv2436HOsVPZ8T5gEV5uyFHzRAUGSK+RPA753L3GjpZOnj8kB0y3gt+8LgSee58xroJwUuOuCMllsPM5uGGsHuBOx5gibX1cl1Tc1hoHmtdWwUrjr+SocZcJ4VHjZaqnuuVsDYyWuUV1JQKMMdFw6XGedLI0/gP0yFv4r1GFJLe8PXbchjPJC12Sot+K993irOxR8eAqk2/6eq2ZQZMBrOCgib0jN2dGaELtlLJ61KxIJRufIZJuiGUh5t8XRFKeVaTQTT5ri0zwYwZ5gw8lavZoZgdfnMSovfElHi4OzBeb/Cjz1PoPDKdwe6eaSvk7mvCcHXBBx9FtrvI5vwMzjeEX99yPEYedpG/+Gc/44MP3mH/8YH97Y5FlYtBWVJit0Qm5xic8N525GrwDE7Yp4Q+HPjen/4J/+e/+ku+/Uc/4Dvfeson3/uAMHrcOOT1Oe6JDy/RuOS05bjkMgI+kJZDkS0lil3zPGpKiM80b6RQknkbJnQeDVu4fAe5+gK9u28RTNVJkiORsHktkbnqE5S6M5Ri7i1SWdeyv4IvaEZ2G4cifc0aM/7aXqFXs4WBM1QpdfN+h9r83RE1XViZvUBNn7ComjJw0QKWsvunE0pNMGGhjl0O0sqbt2JAWqEe4yAxhWWT2EBFxTBSZ6F7kabYKrYpBYcQiPNMPB4Yzq9z5wqAFEmaFZaFUEoYs9Anp0Y9nTb847NzZhz/8m9ecXtY2KWcE+yHsdQpSiwpsb+/RzRxMQ2cb0Z+/MkTfvT99/ngg8d88J2PGc+3BOdZdjc8fPYL9vcPOHFMG0eYxhx+HXJtGRcGwjhWpehDaWHmB5wLhdB9Bn3V9VIsuc7CxUtaxXwseqp58o+HHfc3L9jd3JCWyMU24EVQ59DgiXPiVh3IBiJc6EwIWiqlN29DnfETL2D/VQ/aV1bu6uVoCMaMdl2AI2bp7HPoDR6JCc0O+LYHdqGS7Z9uYKefvWVHiWwz0FZb957MdI1EMuaoc13m8U28grGclrBuUy5vmo/G3/mc19TKao7FACcnWLRuVrSBWAO6KY9D73bo7UvS7hXp/gy2j1qqQ6lnIeS0pZbykAFmSqkzEGUviVavi3n+HaJa29d77wt9af69m1PnTkCR5E1fKikbMc55HEarXV0eiDZSECFF68aW6nyZ18W5gWlzwXF3l9Ofbu8JSblMqbXn1rYpoK5B4Y0CQNr+eO05r9zQ8x0G0rUDgicAsS1wM+jX0GxDp72hqAOLVfx3QrkMyHzMFbz2g1OgJMO8Hu719hxSZ/q3fFP5VNoCdAq8vnK/QL03kDZPFdy3hocIvbXTPjPcUXS61WbqDzWZ2t3LCt1uN8jj95Fv/xFcPkPFo8tSdH8qBQkFcam17e2LajvLMYdaWJwSfeZ8LuJNjmrxJfRdnMupVpJTDHMx1Zyym1LElQi0ZvR0pXtbIneSLFFvEmjU33LFEi1FcRgmAObpwHsffsz11TVff/4Zuxdf8zAv7A8LD3PEifD4amDYjKgqF0NAJRdq3d3vOd7t+MIF5iHA/MD18Ujo+K1NiFbete+ML51oTflqAO5kMaEYotrmvdd9Bh7rk4U30OOK9PI5nXFifWKTz2uaaVK+N+S8zUfVZQbAG3DsztKODxrOwOitn6OTjbUVHO7y3NYwuEamtnv0+4DVSHUFfZvMhW6dTE8WuW0OAgX1Hnn0mO27nyBPPmZ8/A5h2uYaFi4gzpeI645DwoSIkOIBjUtOdyo05URwIRQSs06J2XkxbLY5jXBZ8GO+Z1yOOc1RcgRZ8IE4H3J6kuZnz8cDbhxxSZFlQcXjR2GI+V4xZZmgqmx88fwfl0KTeTziXKlN4wlDwHtPGIYaeaea8e5hjoxJ0JJG2WosliVPdEVE6da9rckq0t+uq1iTOveGdbQ/1zDq6VrbhpMTrNzRjqVF1oguU8Q2wKobOrKwPGEtUVy8zUfDC0DRLaAF39RsxeKAWMmZKt8MYwir1DDjQ1UIZhAp85HM+ZPP02Tysq01SdDeytUThesmvnOYmHCp9bBM5FfM3XBwS9HJPJbQUldHakRQnSPDcALJO1IUYkxsgsMPAxLG3BzGebA94uS4f3HL+dUWGUYefxy4OGRj6o+nicM88+p+5q/297x8fsenv/ya6/MJ5xxXwTGQUetuSSxRmbzjevIMg8c5YT4mts+e8c/+/F/y9P13eHp9yQ++9yHj9oxhGrPM8QPHl5+z+/oXuKE0HwgDwSlORzSMiCspiinlBgGqpbeP8UYpUyD570Te96ofs+FdgbRUEFWjgpU8v9X4VfRqrSUkJ5HGFNpxtS6gSF5rjZ2xzZSersWx7c3q14arO7JpRnfDML+dO393RI1aq9kOuRUFlBVC8ypnQV48zx0d56iXPIAWCmRj7auhdoz32uaxQNLaXrv7ukq18oX2W4L2laLV42TerYgwD2fM22tkmHI3CvF5XOLxAeKcijIYMV9eKgaE6fKK9y+u+afXl3z47DP+8q++4m9vj9zPyiEdMa+Ed8ImOC6GgafnI3/0o/f5wQ8/5vEH73H55DHOC57Ecn/D/ee/5O7FS3a7I2HIuf+hRNGoy/m3LgxQaua4ELIXwo9Yz3nnBygthntjmR/GEn4mpLQgcUFEORzuuXvxG+b9PWl/ZNnvScDlk8d4FE8iHg8s8x43DEjKc3C7SO4ctUTONRGC5toElYB6Qigr1G+6VmCn+yHdDTrS6Os0nIKl0yLT/QAsYmRdr6B5CIU+DLKN/423fIuOuol23eStdwNUCaInDNMbb04OgwqmSlp6oqGCws8FHLRNYLmqgsmyITQJIGARIGpgpi58gyipGIXXTsViXDnuSYcHNOZihOIDYTrLxkmx9rCpCj9fCpliyo1U56BFDHY5rLaRtbkSENwJfTVzYY3SUxO45TKRahwCLYW9G2jMm0+LNsih2LnrE+Qip7520piXmWHc8OS9D3kIjvjiG+Z0id8d0XlZGbVseaQCNzPIdWPXpmiqbMbAT3cv6a+TXsTWj/J6WZhvuVENf2iytlvIOo7622sbFCpIq4Prvyjy/K0/KqsYvVVoRj8P0EBhNS5bmt4JcK2/WJ0t+9i+66KrWP2qVJIg6+n67Eo/bb21oycB9OGAfvU5STx89MMc2SaCDCNCSXlKrWifpW5oERnimvERyC05C+270gVKldKhUIoXLacKJs1Gn+yFC2ha8N7nTmqZ2fIzvAONILmguKu7sGyQyWHbKUf+GnATRTVv2kIY2F48Ygye4AUflPnZJce7e3YvX3Dz4oa4JPzks94VZYktpDmMA2mbWPZHnssZEcEtkW1ShpLjXzde/ebflrTOu9RTRE95tN+QFEOsobRirG/iq57ceQTJQLhsRFJ9tlXLBPNs97JMywIZOZtmrTd/E4u/hYd2PJD/fm1rTAXxGH8VQpaWUteMg9QaN70RvF4rbY5qugxa76u4E5o45dXV3V6XCcbkFdMI1iU1AfO04Xj9FP/kA4bH7zFsL7Kzzw9ZZ4uU1EHB+RHvNpkn4pyj5F3Khs4eqsVSPF+A4gixSNC8LyidmWLEOqg6cXUvkI4HXOmuGFFwDj9twHl2hwNhM1Xjz3yciSUib1kiTrMuHbxjWRJJ8wYnjCG3Wq7hEw4Vl/m0yJFhHBkdyH5kYUs8vMK/fInbHwpdN0NbW6l+vSjtdOvXjQfyZBbdqh0TFj6vZSTgNZXYrbCJz+bs6I7KZortwUxudCRCs9xKvcj493dtBv+TH7Z0FSwWmWYI8mRKWgp5+c7WS5p+q7WbLOiga4XsnOG3LmLJMg5tIH2BRF3j2ExmUvhBqu4Tl/mBVCSLkypzNRYHa6EXk6k5vUvbIzvV1QpPS4WqyUFcHAdCLup7dY6/uCRsc1fGVOQ24mE8Q1DOrq+J8YAEhxsDo/dogkcS+Ml3nxGS8Pz2yDQNzEvk5mHPty7Pmecj2zGgURllIQ15vI/fe4evb+741Ys7zobAl58/5/6w8MkPNnz3W485O58Yz86YLp4SxgtSPDDfPWc53OGOjrC9JM1HFk2EjeA0dKioOFJL8Ecl7cLj9j8nDvyIDue4iw/h/ga9eIx+8xWy5EiZZqOgcyZQ6QIvrRZgka8rS0XZr5jDMxvtmn5MACVbC0oh9M7hWQZ+Umyz8aQrdFu7Jr7h+N3FhMV43gbVvHj1hPKC9uI9CKyg1MCaNCDSg86MLYsis6KRqYO0lXNWb1gBRLcVXFnDoMms1mUkE30CVDzHaYsOW/z2qhY1Shozsy/ZU+iHIeehu5SNNc4R54XDbs+42XD1+JJ/9I/O+eM//i6f/eaGX/7ia/79r2+4PeRomncvRr779Iz3P3zCt378PbaPLhjPzxiniWEc0Thz+OZvmV99zYvPvuD2fsZ7hw+Cnya8GWOGER+KFyTkosAJweMJYVNrAyRVPDl/LwukoYRUlxkXAR8I44aUIuO05dGzj0nHHfG4z6leGVmT5sh8+4rjq6+BA8tiIezKMcGyJKKe8X7cc0EkFI9EtVB35GERMFV5UchAa5xWt75GQacbG14z0lTm63DjSlHabbX/WwoNlScZIF3R2lus1IDX0Fy/kTvdTRuQXF3blFbFor33z9ZBdcU/K3lS572ta71WmhLNfGxK6QSwpHKBlmfRwq6z0DMclNDjETQVEDZmfo0J1RkfrEWwlM1flZJZ8JMNKank89vGcVVQWtqzG72WjgNmjY8RJ0OdJE2xDDC3F8702CJ5LGon01ksd871ANTQmUkyFXKZuKyEwjCiGvFOCGFke/UE/eAeffEb0me/JP3tL3G7XVECZUIjGeB0BhMxuco6xLLu5RIlcvBEzhZeqqCosmLnWey410CHeZTE6KHwWSvu18Pf8jDbuFZdY/drPN5vHt/qw+q0nTDL6ajzexVAbXNY5qq7jBWjn8TIrjB5AZuSDLi2qKiqjrWBXLteOhC4jhYoP+eIHnbItEHGCfyAhuwsEO9rwURzR2tashESxYkvPGLgNhtZ0rJ0fN/XuOvwgYEmzZ3XTHAIEFOLbhAcpAVLrVKNuZZN6cZW+TjFvAkU1/i7eiszOvbTlmE5sMw7HIlpGNleXvHOdxz7hwfmhz27b77kcP9ASkrYDPjgGKfAQXMufzzO3KaB43jBh+mOq7QwdIaO+qNuDiGnjbvyiq7x2ql87QwprXNTeQ/TZ6ebm9Q92Ph3rQrro/KT1s+iePykP9Euts2QNH59W4/6yv3LuvaFTXWd0xNkrXVCO/xRNsBqN7ZUNEPxZVKKlqlSoK/hV6RkXbP8/WuL0pHAGvOu9/XlBUqHlvm4kHb3ML1CgbA5w49U54ZzjjCcZSdePBKXQ+HX1gEKoRVI9q27oWopml/TjJUUI5qW7CjxOVItpciiS76fRXV7ciqj9xkbOMcwbYjLnCNYcyEadJ4haY7CEcmdUpdUCiDnmU8qpYNLHot4h/PlZ8jGX3EC2y2qiWW/J6qgwTf5uCbsOo8WiVJrldi3Kzl5KjM7/Ct9JGW3h6ppchQ+6x7d0UFPAuWGK1SnRmv23PIuVXd2elZPdMdbdVRZWDbFmJMVQC24ezVXFbtAtk9qiyI2PIdhygwokdBHN3dKE1vjLBTa9+XBJuAKXs11jwrn9gZUM1hiG3/J14dsGKmR/Cek1hcubwSjRbRLHU9KieQ8sw8ckoBzRO/w9bm5XlNMCR9G/DBBnAnbgd3NnqHeJ+K852zjefLknB97x+0O/vKXt6gEHuKBzx/2DKqcnZ9z0JkokYclcbckfvoff83ZEDiqcrc/crGZ+O5H13z3o2sePzpjc37JePGUMJ3jvGd+9ZJ0vMu/Hw7IfoffbquBt0/zbSl/5SPDDgUv1O+k/gMSYLrCvfcD5OGe+NmnkOZubUqqq3O1xEKlOYNg5dnVIFsYzwynhpVaVJutVb/uNGNcz7xr8UH/lyQqVn7T8XtSn4xWipKuE9SBhdce2n72HoZahHilEbsNd5NkXSVsVj8rKKnn5duZR/C3RsNrpx7LPdR5DsM5R93kTkgltUGLRyIuB8TqV5Qbp5RaGJoIy3GGFJnOtoybienJNU8++YQf/+cz//WrO+7udux2R6bJsb3IYaGPvv3tHBg075D9PfPDDWnesb+94eVXXzMvsc5JEo8Xl6NjXGAYxpya5QdksOgfcp6xJpz4kvZkc5zz/XC+1KcBKDVsEKILnPmB5XhPdA6ZzpvC0ZwSdry/Jc0Rbp+zROWwREJwpKVYj6eBZYYbTZBmLllye9LqeTpZxB50mpU4D6sslBTZqc1Ad7KufTHWXmBXEFU1VLfB7I0SPerppOXrUTlvsVKj6I7yDisQ2M+XKRloSqMKO+g3xC0Kw4SMNsNNL0S1wyW2RifFL+raiCnNls7SewDNRtEP2cSz9qdrVp5JHMdj3pB574lxIYiASq0fUxU0tt5CLWKqOaInpdQ8cDSgq5pyS+6k2fCjpQAqFm3jSKkUSzRFWgrF2cYUl8fivRTDUMR7XztFKdm4ozHfM8aYN5ApkVKkn42UFB8GlIQnp1S67TV6doVTcK++QXe7PG+WZ2uA39JWxDzvHUUXXpAOfKp2E2E82F9VxbddUNa881hUWuANkY3dRsLAVDVoSHe/Co6MZnPUQ9uwmDPg7T0aQLYPoEmpnlGKP6WkBZcPybTrKh++dn87LXVXFJBmCME4rk+NedNAX9scavMwqmY1I1OAR4+Q7WUuUD9OyHSeUw5t2UpB7WykydUfs9c8d3dqqX4n/N7tmlVdqZ9c2gFr6cqSlhLanKAUNMybtgXnPDHNJWLNFYOOAXAqSM805xAWlvmQIwvcUDZxebc+DBPzcmC6eMpwdlGcFtlxFGNkvL3hxWd/Cy5wf39ENTEmrTVrnHOMmxxpekyJZUn8xm/Zs+fpcmTSFt5fN26dTrQoxVog2rx5lROlrnd+qfRaSoMWIX2Kn+p13ed5bvOTU6GH3D2yM5j3ilZP7tkLFe3sxW/pcRopVuWPzWs39sw7HUahRc30W+UVW1XDWYeEO35qC2DANf/ubLNSPpMVTXQjsj+KVxdLdzL6LrWLFCE6x70beHVY4PnXHFUJ+3vOrp4yXcLgA955fBhK623r+uTAKaqBUJpraFoqrsypv6G8Qy6+Kko2wC65ZqGSOz0BpLi06DkpBUA1pxjH4uTIxtsDIo4wTjl9SkF8Tn+MMTtBXJEV87xUw1FKCds4u+DxQyCUNCicK2kgeax+HGF4REjTHqVSAAAgAElEQVRncBtyPZ6HXVeMuS5j3XRludQRRVuazKplrXqn1OlytQ1d7ygxGSX9o1dGtxUk7bB0UwtZyWvVw72UsOuku8Xby5xW8LeHnBkvlbpAr+05TV+VKTRDoq2dNAyS7aed7PVFRnZFuKsj03R39fJXRFVldU686KOVjZ8NK0n7yDLUa4Q1K7l5Gh1cn6OplJNYL7wipCjMOJYIhzkxpbz/HTYbVDU74WMuvI3VjAM2l4/Y3zwnDFbHFLx3XJxlw+h/9ofCsij/4ufPeVgi+5LF8tWXL1lSYjsMPCyRh+NMTErUXAvy8dnI5fnA3/n+O3zvkyecP3nCcH6NHzb4MBHvX3D/1c9ZDneEYcIPiaiRALkejaU0lRnIrpdO160Ec8YTaoBUsvxQNyBnj5HDDXr+CJm+RJcZrLkkPT5qc133M86iwrUaacxoUyOtFilFjss4zR6QWsROtvWZvUHqulUDo92itF9/czbI+vjdETWVYAyJUQdok1dDdVcCpQn0laJZ7RTs1CaszEBTz2sIvu4tjYkUai5pvZfS0mO0EbUUt4YaeBU4+Ik7mTjud8SHGzbTlmF7iQu5H7sTIM6w5BCsXKTXIdJKQ7jgOB72zPsdYRg4m/9f6t6lSZIkufP7qZm5Rz6quqZnBsAACxC7skKRPfFACk888PsfKDyvCJe8QHawALpnursqMyLczJQHVTUzj+4Z4La1LlKVmREeHu5m+vjr+4akQn79FR++/cDLpxfrP+EM069X9Msf0Otn+nFzId/5/p+/47h3vvvxyr4ntstGwxhIh8PD9iBlGz2Y82ZOm5RprVHrQRFTagE6YwnTApLDmxXjTbtUtudPSNlo96s1ZnMFuz1B3p+hVW7f/wNbEW4iHNUIzHreQJdE081qkLFU74yOCP2cQvKAU4ZTxdMGxyYG8wgyhKXOfR1M6+8PgBt0txDv+JguNLny/erAGQR+vs5XeMyJ9TqW5azwH3gz1kmde4c2mJ+ZEfhfSpBViMj0AlZmI9spANd1O0capkEW9zpfWTJnHhXY+CH0UjySb7W4Nj67OM3HY02haSDQIzRiWSziBpV5wPuANap4xL2z7Zep7CPzBbym3wyk2TjbrtB6G3Wy2Zs1lmKpqb3ZNUrZPEKpDmAjZdxBhmRsglTUrXau759RVbZSoMP97Sfk+ply3KFWsju7gteGzA2U0ufWTbAjzPKXFRWeQSOnU6ZRMN7z9Zb4nnDMLeR5AiUS6nXys4yfvpLjg/HZRbkK/OmmiV/PsfYVGbfuz7KoPKdVIfIV0FC3LjsXp9RgpYc1fTQOwHqFB3+Nc5woBsDp0TOO04V0IQlxUuda0e/+QPrru2fIdGjmPBHSLJ9IxSYlivNSPYiIzzByjfztCb0cSbs9eCpG8+ZobNAzA0X4ufTuenE6QlP2e/L0iFN2Tlhd2ocuN715eMZbhiYDyGefNmMg00YS93ajHdbcX1R5f7u58ajcf3pDcmK77FwuBRWhNeV6azyVjXeBP1RBk/DNcedDV/JCxzOT84yzrPQpHDSOkWSqQlDUjedAOHGBkPGDVFb1FoJxbWX0wNNBKQvGnHQm81sWwna6f5AfX92x6Knlvu2FhbHioYWJS5dTTo/o58Q6Dj3KopJHda1fc6mtmkGNcTnTTX4fa8ZnnD+zsBYRPWjKnq2VxCGZ1q2n2vV65SIbz58sWBd4uNaDyKyJGxDyoDtjNS9VxDBoUI69b6WD1XldUiIncbbrQx+nZFlsUSoVZVNlu1gpfs7kbSPlTNoa3G5orag0Epktb+MeLsUyZmNscMiClK3HB57hl3MmexPzMOrp0NSnuoY+C/21qp0BZHyRTwFkmRkxC145ZY0TujL46MQ19ouEro4KgUlgQ7wvOjKIbLBrBNoCOAWmjts+KYbTC1/dMXp0+e8xqcuyInWUWMcxMpWinInoPYPjHccUY3KiMjJnQgumKN2OFRL/gLoStbODJyUz6SjBqB0FonxUQ7DG9/hz0KFLX+S9Tn5Q9X4qcx3C8TcHwA2OpBW7z6fnwuU3r2yfPnH59jeUZ2vwn8rmvRbtITv4MIxOeXr28sMMCs0DDd9cntheXvg/X5943YX/+//5jj/eK9eq/Hg7uLfGT/fDKjZEKDlRJPGaM7/7cOF/+U9/wf/6v/17Pv713/L0za/J+yt5u9Du77x9/w8mE/LmGXNlIGfrQ5cGRgB9cJ6ErhecyU/BiVgbKRtcPiGXj5C2wbMxfSucb6NlRPDKkhnlCz85dcBR36vkjkRvmCReLmWzSOw6qZv8Fd/TuKbCcMiP3dRx93860YR/g6PGrmKoQQfxLOm2vlIaK/Ynv+wxtc9JLl4LJnSBE0wz63oXZeRCWZcJUIP1QmDFZ7QPRh23q8JdE+9HQ7SP9O3e1RokhldXbNyf9GapnTCMklQy/ThMcdROrwfvP/7IvhW2/Z+4vH6g60zparWDNt6+/z1l37l+eefeOl9ujdqU672xbdnkP8L+fLEU0dFYUYZHNpc8EIA1Fr6Ygh4ML54mmrx5Ek58aQj6KQzM+VS2F4uSqEf1e6Pdblx//J73P/43Wj1IWXh+ytTW6QpV7LkOFRqZnHc2VTIHT72RFifK0FcSwnBFJgFWH6Lw4RF3gDIV1dzz+Hk2fk5kdybM0IPDOaO/cD0Z1/wf51iU8ML8891lGtfqbIlmcydkwGS48asridNrDBsoIMZyNytr/qw+c/BYvKznezg5e/yKKqBPz6Rf/Zby/AHBnB0GlIf0NR5JaU6i6d2NMBl7r93KIEIohzxrtbLt1kSte4397BuhhB+/t4MkZZEpxputHqRtH86gyPyRXGi90toda9RY/f69ZwZp3LtFF+w7c9rIT/voZYMoab9QP38P7z+xHfUkR0M+DYdcKKCuVv44gGmAQTmVuy0Iw9Y8IgZx3V8Q8Cc+0TP5BG2MNP3xgbPsNkWlLFaoXeNhSsUki6+cOWN9Vyewr/MIYAR2BvRsSbsui8bJfslx7XkmqzPb99IGIIWgm2AgPhxwL66lqPUdiyyOYVgwNzMJ7Ls5XurdaatDa3QqkqwfxOwDpkDzGn6b/CIOtqLHWasVQ6FG/9Fs2PgYzJPQRj+bILTukyJsSaPxnHqpr/fESMUcrO2wz/hIXusHZZF5xRqQR1aOAa5G6/E3o/cGItT7Oz99/1/5/N3voTdeX5/JCa7vN2SzaODbl4OmytOW2J43Wm10SfxI4cYFKcrWDi7azaVkmz910WhME7rR+Sgw5cJcM3vlQY896rUQjUGWj3o0DB7Xv51wMti9DBUapPeA4043Ok76So+BMaagOkXql7WRFVSHs8S35xREiI+cvNicFaDvc6yTLCepxjWZvD1kxvn2BbWmwYu8Dkfv4F4FTdBSpqZCyqaD9o+fePn2r7h8sEh3TB8E11GBwTzSa5wl4ztSZJ17mWxkqxotWslv8nLf8YAOEIzf3HZwJ5Si1kRcBWk2uTF6K2aUVAqlHvRa6e2gHpV93xxX66BlGSV/kJKM55Lkjb4x540ky9art8b9VtlrR1sfWz7aMizyMvRX2D9nUCMn2Wpm0nJf8sgTOq+ZHqLM/tlJfAydO94PLer0NxwVD9ef38cCsGKB+GqPwADBWzMTcuIZWZ59Hb88HMTCkFnzKrFOZwdXmENpBLb9u31ycfQcQtQzuRZByqqzQ91HCYoscsbpR5b7XmTMOb927n3cfxrl6GKOniZUEWoXmkJPYg2EtwuIZ7mlTGudVIq17MgbeQfoUA/K04V7PUCVejS/R6G8vPD6nMnbhf89J/760wv/+b/8nn/+4c73N/jjAe+9kyVzq51PBb7dOv/Hf/g1f/effsfv/ue/49Pf/nv2b35LKhdLGlDh/sPvae/fob1R9gv1uBElkL1aOWQuZejZsFXiyc+0vmQ+iQcbxfA1dNguyMtfIB9+YzLU90OdiEZQMPSgimcD+jlZPMNU6I5HR1aNy9XRq+hB5cafJ7S1bveQW4svZDjWz/T0ePz5ZsJMYh+4b4kcLLph/q7TY3VGon5SANjAJUNZzs+MZ4hrBMLABeAJ5DOil3Yt32yN75STYlXgSIW3ywuI0Grl+tMfoRRUO/ny4s3HzNuYtNDTuRxBxUZ+dk+tMVtQaffG2/UgyY33n965v91owbBijHU7Os8fnnn7cuN66EjVTEnYLxu1K9tWSDmz7RtSNlKx8b8pzYZ/IjKiiJKKNflNCUjex8b7Bfi6aG8eicmWJkYoJkb0Puedro0syaKF9Ua7/8Tx5Q9ob2yXQtm8yala5/3b9YADtMEV+CE9sSGkfmPXPpw1sf/DLF4U+WBJlVGuEXlYRhcy6GqNHDwyxKOTxpx5k3aCAIY/MMo+NBR+fD4U5FeMOIVFxC+gkYEkJ0uyZNIYUw1hkZY1Gyw6vuAxKZO5XsCwHuLDi1Gq5//GB6M/zQA6qKcB6unM4FjbBs8OE+Hz+5X3f/h/udyuvPzl37F/+Bbp1rcpl90zVlby6uaA9QlPMpqYLo6b1qjNuoEl71MVi6KLp0CxKld7XW38XzJF0H28d0yOSikP8BQRgZw3ej/caDQHTe+d4zhAIOfdnLMpkSTR2jFkai4+TvW4GkhOiXvaQApJZYBJW2NfPyf0sR46WImVeiL9P/hkkXQTbA55H4QlJzpacczc9aCH1YxYcYqODX/cfUZ0cX0t6GFmmXyVh0KE0H8pU88hKCOw4ODe5FDsQezJ8tElCj903HJpWY2DIAe/h/5LnepESP28ytPxuIAPBWpH36/wx++5P/8TqWw+pSGT94s7J4NfrBSht2NkjY0szw4qSj3u9FbZnz9OnS5uJI6JLObEmdDCMmJ6awjqvS7CAb0QoALdzhkNvSMAEUum4pMMrcSqaafkQtfgU6vPklTo7Q6tmaOnV/anHe4b7a7U1kw/+0jZX326cK+d+63SVbgfCodyScK2FX5sOwX4VA92OnkxBpx7ZwakhvEgs4Z+yM25aSewPzZs8v+JfRf5PBrd+itnfSrrt0yAKfP3IJa45qMv/ms9wjAZLptT4MIeKw1MwjJxxQ5df1kdO0O9Os15ryjitFXXjr/jhYmTNRxkaxn4+iUPT2OvLIGYBF2E93zh0EQXYduLwcGUyJsZUXY563c4jCPpLro6CQ9mDF1oDx3PaPigOz0U76PRRyBAW7Om/75WIYe0+3hvW2jyZo2NizD0HNjr9bjT68H9JlxKodWD4pNwlG6GrOKOI5904zpHZJbLNC9xESDvO/1+52hwqJK7WuNRbOLaSVIOGahTTznOOvPPZL2p6xat5/I42kec9cHjjs6tnhjoIUQik35PH3D8N2Wmv/04pfKrPMwIj8xGnUttmUP+XMN5FlkNuAwcus/oTII2VJEsS+bNBER2fftcCmN9QaDDuaMLhk6gsjoj/Uq+4DOzZuH35XviWY2XFhk78Jf4tvo+esZHV6vmaCmham0AcrbSxf352YfKZEZWckpW2r4EfPJ24bi9kbfC/e19ZJa34wpvf+Tp27+m7M9s+86vfv2R//Afv+XHf/wDf/j+C99994V/+O6dH+4dJfOf/v63/E9/+y2/+8tv+Pj3f8vz7/6O7fVX5HKx3or14Pr5v3L/4feIqvWUyxhWSJYJT0oWND0OytOr4eLUyd5XdfKRNTBHwkkthoEE66zs47xVGp7e4o48GXo06GG2wSDaEc0WDMlKOY1NPfMvzWxg20ZFvb1eKoneFK06CdbpM/hPB92teNApYJQRnPXt4/Hne9Ssf8h8wBUfygCAD4CeKSTWqOLaV2biz2A1/0AEyVg9ytOrdgIUOqMe4x5OBuZidqgVQV2fXzlyoamANnJOlm6Ziwt33LhJNAeHttHJRxMW6M0jWj5NIr5TrMkhR+V2r9wPrzNMQu1K7cD1Tm1W896aUvZC3sx5knIibaZEc7HpTWXbqa2xye4770rShU7XTvZnzWFopjKMXLAGbF0rpezWKFiSd+LHoqJdPTU10bXSekXp5G3n5VffctPG/e2LyfvkgtAbtZnytQavvSSuwF6V1O9swTTBWIMomFJsrXmRoAWGMpojFB+IKwiJn2drzVMWZQkjjVACVIyyrF++xtd66GSMn+tfnQrsZ6E6AGaWiAGeh4guDB4aDqtV869IdSiiX1i8tVxt+cjoNeWfn97laYtMPheiEfb9cuE9b9zrQb6/0487qFoZYNnIxYzF3irqjRDDuTnTx/tiBAYPGphMyevqg7diJHA8TtBmOGLGvXo2TevOe2kut4IkK4sSX1e6OWhas147++WJ1s2hhE+2yWXzKIPTau/0dqC98eWH77j/y39D3t7QlCkpIa0P437u2QICBphYonIylcm412EQjpcIN8uCYQav/oxn0vpZ/65pgwwlNt5Y6WbmpC6ya55mZGxOmq/bIFw3n7HAkU0Y2VKhG9f+QeI86VrcN27GzJlXntdAEO0DkER/kehzMY1DPQGFhXmd35wATg4/+57eFP7wE237PbeXT1Au7N/+BfvlxSc1GdjrvY6tVc9iyV5mETq+3qynUtmfIIy6ANAKnUYikQRLk/bywdC1kmwkcPbRu8OpMnjcAiu915ktg5diaSenMso8FMipjBTl5JPjIjW73q/U48r9+kZrd1pt3K9XjuMgCVz2zNNTJifhOCzTdHOdaCnVHRXIItyr8JZt8swmSvaoZgxKDF4fN7Z64jzyp6ETB9CXweojlXvtc7KqPplUhjpwjS+GwW8hp1Yx/wgwF0Fzsj304Tu/tiO5wTeEXdzv4hg2eatLRW+sD1M/LmsZI2BtLd14QB2mTRl2isDDquSYDrppEOj4b3D5IqunjDB+n7zcVbhtO5914+iW/b09PfP88dc8PX8AtXK+vO3WY0oVy37LliXqjk1tkJJaHxwspGykZbrVgg3NWwK0ge0BbxTOwMaxrr210Xw8bxvaOin5OU1ISWzKEx1RC8BUEfaUaMdhjYx7I2WozXV8TsOYysX6U/Ue0fiZzxkZe/fbzdoQ3BtPjj+Sr3GPUpaR5bpuksyfwym17Omyd7P1mzoGmIp1/D8YdO7dKWgy+C42ferHQYO/BAOHR2ieiq5ZJl/roafHG3KPM748vz+2Y6lGd/7RWVDQmxvmY5T2ogtPvCxeQjuXd+CNpJZtobLgb8ZaD2e2NxgbpWyrh3bgHv9zzaxajOLhZHI5YnxtJXsNG0Vf9mf60wvlwzeQsvFWbxZEMQ+VO08FxHhO20HeNlq9U/bNSgvVM0k//2A91j79DU+vH9ifn3n++A3f/u3f8O/e3jjefqLeK0ftlJzYP33i9be/NVrPG5fXb8jPr1aa1K5cv/8nbn/8B9O/SSibBUBSKqTyhGbL3iFZ5UfHHa3gTcZXILoCUxk0EOLRypIKSLLsov0ZLhf48iU+MWRmYKfQcQlBso1Enz2SfCNiJnxJhrE6s6485LI7eSWCLoTeXzJvIgHBaWHyZfCwTvnyC8e/rfQprvlQh3QSIcsinFND/cSI3I07P9/UUEADaMh8KGaJbzBkbE4YAfMa4TWb3zFtS6VtO1fZOBqUD8/kDx/Znl/JT6+QDQj22ukcZvi0irZGzoWum6VSH8kNXFzB272knCzNuze74yTkPDMXrCQDjygI0oTq48MkiTlBciIXL3mScCCZZ7TW6mVazRwzXpIlySISKSUk57F2w5jEvNTUznG/Iukg70+uaLzRsPoUHG20al32j+s7X/74Hfcf/miKzZu2dZ0CNRfrR5C3RPb65KvaeFOq8FoPNm1jTxWgu7ES8qvFOurI+tYUdDSF6XDKDdqewjt02+Qf35Uk62lLMGPVCBOwDSP3f4RD12eApS0+EZF7HD8atZP+16JEdCo4BnZlbFKAkBUoYu/Hcp8TsEOh+e9DTi7KOBSRzOyAMFxDuoyvS8J129Ftp1wuXD78iss3v/UUbnOyAgOgidjUB8skSycQFQZNb/00lSl5X5k1EjfO9/XR5fNr36NIjTXDNI27j4g4dNpxgLp8UCWnQuvNjLvtyTNsdIDgVArhyU+50HvjqHfutzd++P6f4Ls/8tKEHUvpTmFgL026Je5TFsdArPdwUjLeX2l/9J7x54/smaFwln0NGXgCGys+CTowIlzob5DRok9Mfc763fm+/fp1w80zsJ6HxHvDCJ5pvAoWfVcb12h6u4+zTpdTmT2qvJhbl/21bwmGis84qI0Xuq5LP/bP/EJTuc+eFyZeDuD9/Ur+8hkuF5ROLga2YhRulEVIToinX9M69Xbj/v7F6+iTNzNME1E/lNkEgEw6+wpYQ9EE2kwf5UzOeVKERPmF9YTS3umEo9SyZC37zUqiE6YvU54eRomM0na3cqqaafXOl5/+yPf/7fe0z29WMg3cPVK/b54FhKDNmghra6ScOGrjvcImQi2FmwhfCqSb8toaNAu0rJE+EzAySilW34I4UFUJg0FP/BXOm1U/pJB5OqN7UwsshsNYA5l0sJwbZ4WPI2hvvcDXrD0jKu+LMXDkagha1vhQWJyArV1kYLrAgGfes89M9+rUisPACLnoMnNVrfNGFgw7XlzA95S6A9IAkBPkhGwb28sFnp94++kHbrcrr7fPfPyLvyfvT+64CGPCMuACR5kOtEa85gTJ8w5U0Fbt9Rif20IXDsFE79Vfm/jhOG6UbR/XNDy49l4spHpYNql20EzzzAEbFrDRm2WtXsq2wL3o9WaYL9oDSEq0AW/cCMuF2pT64xsfb3d6t94RhLdDoz9c7B3jOVIYVKoeKTfdvuKF2KYVZoZNEs7okQUnDxsfv8dggJWZgp/9WqNs4meBzFWXT02D6Pl6X9kxtObP4MG6Dw/BIeffsSbjNb9ELGP0RQv+s87pbmct3+dydUpFnbLO9e3AwasCxZ38umw4Eyetx4CTYnQry4XCxpaQKZ7u4VXG3K0oEJWMXJ5Jl2frp5YTab+AZKLMh97pKZltmQraK4GeJGe0Wcly73Xo/fr5D7TbO5dPvyM/f4M8Z7annfa88/Qrc/Lacitps/Yc2/5iDYHrO7Sd44//wu2P/2LZ49rRwOeloB2aVmh38vbB+kuWHUTMaSN5BCaNrzQ6DyGk4RNQg4iM5A3fN8mFXp5If/kf2e5/oP7n/wv98fPsPzW2wzGxyM/HYi8BiJF9JXjfK/V2ACDZMmukGn11hTFdMe4zvi16RDpRp0FQ8ZVnHfR4/BscNWs0bwoCe+shHQ9G2u6aFRigctLsBAt2meXkdQSe6rkmkQAhS+qtTgE5U0RdYMv5XlWEtu1ozgb+JEEuyP4006hFpjz0EgkEjuOG1jvamo0FBPOGpoQkG4XWHNiqWOZOLsnOteDCSNOszRwaKafp4BIsPS9bposZnurZPoU9lVGbO8sqDFSijGwYQbxeD5o3MTZQYYys2qnHnXZcyduFrhVtlomTc6IelVrv3L/8wJcf/oW3P/wLensja6fkjGqzRohA0sy+J5par412tfr8rgpsJOnsqZLUUuwFncI0trw7kQ7hqgMTjbyLNUMkPhsAav3TU9100OxUZgs5n0DNCvDjPRm0+qcZ57/3Mdj6QWmhcCJ79MS9p/MCfw7FIuOaNlEizpXzB09CZrl2GFruCJjrL4unej38s6q0qWORn0WVlH7ZODxb5fnb37K9frRIdSnmdMT4URBSuqDaxqSKtTlvXnhDUXfm6HCKRNQtAOdUtGehGtaThqOnd3IutGaTYIYRoH4t748RmQH2pmUN1Frd2bSR8yIoRRASx3HzhuF36nHjuN898gctF245sx3iwwdXORvYTgYwkPVRImqMO27S3P+RWegv/MzZv9JL0Aw6HQhOI5Hlo/48QTryM2JYqFQtrX06TVew/OgO/PqOk//0EYQbgY+sshGBkcEqo/Z+ODoleOn8PXNkZejG+bn51cFYDj4lsNaM2K33Jn7/00icay1FuLdGKkJ+fkJyotU7pMy2vXojbUNQOVszv14P2nHnuN9p9xvl6YneO/vlMjDALGGy5wwamcl9Dqowh8PgP/owSLw1qDk7nXdVIz3dZRA2rSZFejh2rk2CysOpufZvu12/cH37gff3z9zefmQrUF53pFX6vaEJeveAS7Lo5+Wp8PL6wpcvd3pvlC0jrZHUykmqFN5aQnNBrm+8dDNKR1klMsvYYC7EgosiB2CAwRX9E5gp6MTX1enSRPpDAGPo2rgWQw+vHHiSL8HjJ30TF/k6j1N5ltha00MwTpk0UtJX4M3chxk0Cvy58MnD46+ZhYOtHtKdhvRenDPRGwFc7onrQnVqlsC4QeYWkOsqfM5P3KoirZMFcha2LSOi1OMNuW7ofiGXZzqdJMWb7spweqDGm9YbMe4jDMnoIyFDjplxFQh8duaNa/ZumWq5mA6OAQBdBD0ORjm/dhSfiiiQtmKDXmoGUbayUW93SFByGnzStVkZAlNHK+asEZ/o0pvy/vbG/XYgrXGrynNfZGdgyqD7sV+xrzI32BlklkWENPJdl6kfxXlzbSI9v1Gtx17YNfF98f1DhAddzPuaMHXSQthleqJ2PV3r6zwGkfmzO8Y44c3Qb0upE8x1jWyH4bxyuTeUyfKP+VOyRKGCD9N1BeQZ53PBpzScQT2vqnD5MTCwyAzoPxyhz4dLbcV8USrjylq7UitcW+buzqB+P6jffw+/gbJt3D5/Jt0P0vMr2+VpDJAR73gc/OncgSSbiEa3DNWk1rS5HhVpb9T3/4+nT78lPb2StovxrCcyxKQso70G9Uq9/0j9/B2kzO2nP9LuB2nb2D58NN3TG/04sFrHRDtulnRQNgsi5I1oy2FZfrF3ccdMmRRru+DP6E2nIkhv9HbQ7u/gg29YJ4qp7104eiKwGbTg+xDkIWK3nURMH2RsLXJHilqD4Jbo92oTpvq0qyR0zJrBZTsy7S/Fe/T+AqH48ecdNeFE8AWagdBzKrYpfqbjJ9QAACAASURBVE41tTAXZFVgZwMwPscg8gms7Brd/z5l6TC/A0/7HIJ13VSJzWZsYk2ZnmzstaVXRtTY78XTqm2sVzXF1KqlMnm9GuIdtFNG8TFlbW5uSpmunaMqrSmpCK0zsmsOx4+W/oln3qSRwkk0REvmhDGAlfzyia6d3RltAG61qESsfyjS3mOxO0IipY39kjmaRTtGqpkrUpHEVi58Oe7c37/YpIve6a1TtXPZrZeOorxfqxH60WlNkWIlGGiiCtxL4ZaeSPXG1g9y0E2Am9gX26ZFpczXAqCPvhRDz2lg9UEHQ3GGTB0ZJswS8D/HDUyBOQzcr/XQoeJPGbS2disInM8w8PPQh+HUmoeNrl4Ai/dHW888Q0y74HxXFppdU7UZ+xUA5ARCeNj3uGEXyPX5Cb79xP7xxRycubDtT94f42LKkj5H+ikjhbu1gySeEj0iZ1OGlW1b9jt4JqLQQQ9LeZjzkpmHc5FM8FpDbvHJOK0d09BMNlnDTrdJBpKK9Q+QZEA5ZQdYsT7Ctj9Rj4PeK6VsfPj0ifzXf8WdRvvD93zeLmzHgbRKGj2ZVi1gizqieX060mVd58U4V6eF2dRSlg+Eapg8PJH8ShdnkBJOfH8szlG+QK5DCcz7WJTF1Axf75HSop+QwQcqOsWUhMKJT80nxYF48JQOIckCFBen2gCrDAbSuMhydZh4U4M2Fh4829eTHkI3t+cn+Iu/Yv/NX7F9+sT28ivy0wdLte7TMEue4dLb4VlkMnsstcb29BpCxVLRU9zxeXIbvY8Gpije/DE7XraHiJ428dS9WbZalDvZ+idKTtxvN3KxflK57Gg0MHZ+ERdQ1UsMW6/kUtj3Z+7lC3l/4vXjK/fPXzjeKtd7Y98SHz5eEFH2PfP25cbRlG2Hjx8vtGaNS69fOtd7Z0tQe6dKRjPWW6Arl+OgqJVBDQgUuovJr8NWmIrQT9WBw5CVZx5k6kIRFsCZemINeA1aDIx2Jo3leh4W0Skrvub+URLKx+XMiJiuAATmcAs/zNn+IOPckbIajKEhV+fM+O71o4SDI97pU8b6S/HeOag5v8NuW5hbragofSvc9iekCxHqDYMye2lv7we9ZZSbNf0cDhpxDOAlwo6P7V7M4EvJDCq7TrUgRIvsP1+rkeGyEp6SSyY7Pl5pMmWbMpUkoSmhatNMk4j9TWa/2NjulBLba7Fy/nqM3iKW9dM4agW6jfbeEmWUQ3mWe9kssNrgXROvQA7ps074WmmixxozdN7KhsGXA9fMKMfAMDI2XBb1rAM7rMZiBDUCU62O+pBrCxUwkJ8uYyMW3TKf6uvlTViWW0PwLESyrF8KnUqsowybYCzhz/pTTowR9E7vpGJ2lnjvo1UuzOxhHZeQ05cwSqXsI6MUYNigMgQz09lAZJvrlEETfrkT087tKhxNzLmfbMpZb536VKjXhrQfuXx84enlhVw2Ut7Gd2mrQ59OehVwHtZkE9WsR+PMLmqt8fb9P1oPHG9WLGkjPz2jtdFu757IEPcqXO8Hl9dvUBXa7cpxu7G9frCsGu1QK+Wyg26kbJk80g6SNnJ6dp4xJ5LZtTNTbZHEJ16YWzv3zRy2x8DSa1m1LAs9yCGuvzptxr7M30+yLLmsEoUXIWcr1ap/qOiNUfpk+nNm6Bmbm+4JCEYSmG0xf/H4N43nHo+2ADpdGOhRkc9sBieK4ehZmcbfXkuIVGcbplXxJRkRjsEy7oG2U/26oh7pCDS6CjIgJSoJFavx219e2H/1a/LrR/Llhbw/uyJqNNQmQR13Hwlo0To9KtosqjHSPBfvvXoDuXp0mprzIqXkkxRsoUoxYuxA9tFpsQYxYcVkfbIohGLNglk8uGCGXc4k74HTWiVTRl1mCCIGGAVVm2RTtv3kEbaVrdxvN+r9nW2/8PzNB7K+09/faO9X2tG53TvX+42Sk5dsgJY06CQXQXqCo1J74SqmjHLvJK8pnvscpLCCpAXOLABkEA2272sWiEUkFnrBBVMoPyYjTgJmKbl5AGkLJX/NR2SsGJBfXC4O8kdt7aMAGErmnPkGoYj87QC1i0Absqs7HB1RnjW7Qtcfw5k2Git62q4gzsbB2zqmHUb0SgSaCLe8UWsjd0hlY39+JcVobv/+FF3vo3kaOD8XenT/8mlPEb1LKTOa9aODbqJHzePCxWdnk+HZ7NTKMiYI0FapdaZ/27hQb1SORz97s95Y/i9JAjLVp0NF+nXZCvBEu+8cYKUXOZH3jbptfN42UmvsqCepLxvpRDEUzSKwV9muThN+9gQOTAwpy36efTeu/Jwm5+vLl7BERxyoLFiW6ZBQ1wcQKd7x8rjkI+F+RccE0gEcF2jtoG1G4eOYDQhBvT3CWtbwcyfVY9b8aV9OXtlzqQuqzLGucro/Pa2xmPoQs1+ObUefP5CfP7C9/pr89Irkza4fPd4wAGb9aqxvmbpDBRWb1ualSdv2RPLyv7RGElMatGM9aDq5ZDo22QkVulS3hboDrOZM2FG1rFcZvIY5RhW/VgGxpsFG5jNyJCJsZbegRb9TjysiiZfnj8ivvuWn+xvbdqelgy0neoeffrrafauSi5WAvb9b/ynByiLLVrjsmZKEdrtTrwd3SXzJG/r0hPbO81FBzNBKBGhcNzgwjcvhh4AZC60F9tKQr8KAYpFWHzJhNURmubmeaGlIBTnT3S86Z75mtTl0zZRYiCxOTjumcbNmWJ+jnkOcLvJu4fSfq90Fxqx7ZiL+QdDqctJSrjW/Pi34en5bT5kvT89ozuyvT8jzE7IXtqed7eWZcnmm7E/msEHIZbfebssdj95ujtUiw0ZkNusNZ8xYT4l7MrnW+uwRNx2A2HeljESJb3xXKSPLVXImqZVtEL3mckGSLg4dC7C0WqxMyjMDchLyvtG6jXPuqjS1bNeEOX80CZePryiV9t3BTe9sNyvPFx7Id7ElzpsZOvScxSqPHwV35tl5admueI7BX7IYUrFmC5ksXv55jjJKn04l20Eb5yt81UdkUps5lYZzED2rM8tYCONgBgjDeTOM6njk7EJrfmTIN+tJg73vlbh2zoJ/NPCbDB0ZIvNnJW8LocRnQm6ikWVlcmXgoOVjg8NDfns2zc2xcslCyuJTEzvteoW6sb280Gq3TM+F96azOTJ+pgNQxFoF2HRTsWa/3tw3pWQVGapQD6gHvXXym2Hs49488Ch0L2MWheP9jbLvvm6ddtxG6VNUc2QPmlp2TqO3StJGkoyo3U8qBUjDUbaWh51pZv6tqCUvbBckX+jtvsgex1sn/pKR+a7+2vged6ZYsuXynWPqkzuSPLECgZwTchH0UPSu9HelvzfoLgP9vNA7gvsLpPvt/OmRbH++mbAyvIwDZK5taoK4FDS6ig80P3XPQHq6CjUZpyMDR0zh5g8TXaGnQpuMecK6DwBzeLZ9c3Q4UjJ5z5SSSTnT68GWCmV/IW3RSNQIpR93+nG39DWdTCU52zhBJ/qOWGNibBpUbZ6WmhMJq4FTbCPjnu3vYunjWIaONQ+2vjSkZDX+I/Jodbqzf4BH/UNxdku9bnWJ4I9RiR1L7Va/pvfkSJZmag0X7d5KLpbuloQsjS0pR/mOg04lenqYsMhboTXF8lJN6KVseQZVrfFVlWRtCPw5uhq9RHAqIgqLfXeKHs5oYgDCJS3yZ7onkOig0AWIsvy+SGzkpGVX39uf83D+9z7OgHCFF5OBXEWg67osygcCV+lcAyYSD5oHHhw6Tl/zMvNiQwO4OpIZcZ1OmLhvzzDQ8de44ij5UKhb4Sg7KWfKvlN2a4DYNaa4zOjDWbB71BKL1itz8ksYcFqrYy43lLvxUGS4jDViFTbrEeU9nXaYcyVnmxTTarVmi5LZ9st5bCm6ZNckSt5ZCTqnzWqKHQhEzX7OBaGjWkk5UYGqiUM3Wu58qzcuGj1zJkAeMjdWPiyT4A2ZpBHPparWLP6UirsK+PljZHUt7HQiq7G/sbm+v0QZkEw96t+j4/2HFV8jWl/rkQIw+t+rehylfS4LAziqYClRwW9KOGjimEZySICzEBxrvgJM8Z+x58OwfASZvktDf+qMBm6Z/vxM2ncrFc4beX9GJC06qNHqjVpvROZkShtdGpIL+8s3qNrEp3J5sXrymCrjGaRWSrj0w0ievi0JWcCH4ZLmziSPoPU2oliAlzQmn3hlJYqKmHNXMilZeXE4cNbD+skVNG/0fONoN0Qre0l0gZRh3+3apdjUxsvFftbaae4Ie3s7OO6N263xcklmQCJoEg6Fu2ResveW86bmgx4GlF/31YJWaxbxI31A4DGm7nSCOxuUv6BDFwNxvDUYeqG/wGwaklHc4S6PyuKrOk4l+c4Xpodcny2yC38//h6ktdSQWsHS4mBdFnRy6FByBG6VyBBez/XXV809rrDKkSi3AcyQnSVEx37hJl52mATpyp4zedshmbFESpT9hbw9eWTds0DV+N96bfgo+8g68ABiO65TF4ScjukqWIZN792i5WKRcQRa6xbtd5yJJO+Zgb82BzuklIZx19rd+9NY+VUuPl3K/04pIdWClK1ZEDKVsmBlu8+cCjkV6nGg9eCmnX5UtMNbKmySee71wRE3UdYZR55lOCgaCQmxT+r7JrHnS4bWYul3nTz5oDAfCFdGqfKqoxl/ywDX6oplvP4/0OHhO5fZU1itmRBhF4yf8e7AtDpKn0zvPXxJ79CtQkFTQNY0227Ig24M7LSoCNt758s093WVAOGkiWsN93hk7oSdhst0x3qiWNlf69xvwlsT3rrQtFvVhUIjUbslDkjekCw2fVCgHjdrDB5OotDj/hjJW1iog7VZyh+YX4czP7C09bKB436Qcz45rRB3+HTIyRwtrTXLXDvu5KcXaj0oxQfmOFbYLs/urLEJw6MEut0t4y4lC8ZKdoypRLb6KBEEII3AXSch+YI8fYP8+u/If/cT+k//CG9v9Ot9lj0NeDzlmMncpeXBwNEnpUkEdWPi68jkypAuAntCX4X8Selvmfa50W+ux/vUFqM8L6pl/oza/FfGc0sgS6fD+YAnGgbzkMfvocyHdnsQMLqqITt/NjidyjIoZwLMAAJ+7dVSiBV8ALLGCLY4XRJKolWbCnFJifL0bApLnChTplVPW0qZtD+ZMvf9rL369Ajrq9E6Xh1v/1rz+0/Jxn/qTHfqYiO6JSXvr2H1euYcSKP5opQ8n8Gboorg/WuyKQQvcxJmyVMIst4aHXVD02oPu6ol1rgkMoCdQLOB6V6tw79s4P0her2i9WbRimwjv2f2Q3Kvd7WsoNS5XSv3mxt3zdanZOFIhVJsXGrx0aqG7oKellThsacr0IyMkbn1jylxMuhtLAOLHerXCHPRBZTq1KxBTmle8euFmzidL8+7qOXJStMANkHnZwzDWBdkys+utf42eTUE2ilXbWD+4fjxswJ8DsfAz4BysK1dLS3rrmB9pS47XHbK08W+xJun7duT36EVjoqk2dVfxZpWe98IM2zUSh602b+u0JvXxFrUsFUDqNZDw+SERv1XGL1EX4u1YaIpHPt52MjB3iiluGFoNBeAE7VpbRJZPbKutSmkALPRQLXpQa83qDcEaHebHtdLppLoFHLufKoHl1U5A7NnV/y+7rsMS8Gca+uOz1+nwl+thuVzZ4Zb9JuisbPBz/MrCYoadLUyXsiGJMt58DWXV8SaTgfffDmOoH07NfhQrVxBg6Zn9I0wDJiyLxZ4gkC7hp59Dm5I2R08irzVdrCvmU6aAHkItJLh9QXKzv7ygbRdzBGye627A6csT6Sym4OyVbR1tudn00HtoB93M7ZSNr0C5qzJGxpA1Hn1JNxFlgYjinpPKGv+f1iZoR4+dlhGU/34eBhKKW/exBhLWRfBgJ7xcHxhGKoBVJM29PYT4rKjt879bgGK+6hlxpw12UZ2lpK5PCmtVZ6fC7U2rvcDbR2typ7gDtxJ3PbNSoNrNeNfwwG87KPq5BMByyyde3nKcPMU7jBEBjZaWfQkHxbaZNokAZBVZHw3oXdPekd/fqGv9Fj50pfx3INLB5mhUQ6gC9P4L4IOx+DsmThlY7xvpBxYembp2BeIY8+Itgcdyvl+ViSvQHJcvMqCZBizJ4F9I8rltXeO93eenj9S9gulWBNQCScNYgMptCOux9ooaTrotTLGbmMBRnPMMso+tLv+bNUmomUrN+xEGVX0oTLqCkycfEJi9HMARkBDJJGkmFG4QfNyfcueTcMpZHo/k72c2DJtkxuk1rQ/9r1sF56eXrlv3/OlNej4mG5MZw45GgstxHCD2bcu6EhP5w47ZVXmC52Bzsoq1UWOw/CuB3aanarHayMYvmiSBfYzsqgjQh9cucqFr1htgtO+P+JJNwFOFKg3AQkcP1pz9CWLJJY1RcnZ/I7Z4yyy8d2ITmr4v+vsnanK2WEXvOj4LIQqElczegm8mFa5jadUudyORvoysXR8h3al3uHLIbyrUFt3XlI0WfuMpiC5k7Pdcq2Nbet0US7bDkQGOAvvCdo6vdaRSWO0JjRtJJkNe8XXUlmSNbC/Y5pqrR3JYgNoyJDUyvSrYV9tFXolSUZFvORYKWWjS6JsTyiJdtxJeUfKbhi6Hsa/kswR5bhbtSFqwzNWPRZBXsvOu6BP36Cf/o76z/8F7gdSG2svoUETMgyQSWi9T7nf59snEaw6MoAjKI0AXkaHNxzOHxPpKdFvnX5t6B3rR+UiXrt6U+QzdH48/pUeNRPg6PL3ekV9OH/+ElJ3OmkWeXIi2iFMVl0/9drp2hrIPkLuA7izoBDXtC44bdKB0FKiioE42XZv9HtwXH9iKxdSsWa7kjKZZNNZUkLKbuPLjhutNtrR6B1UsoXWpDPGA2ZLXO5esy+q1MOYSx1gKTbCk5JNZSUTKJZJI8485rQxg86cb5KyjSpdmKj3ivRko8zUCCznDCitV1PKOVEeavFXIheEUi4jGlpvX2jXn+C40o+Ddj+otzvH7aDVTsqRSYTdq6innfqaCaSc2LOlrt65kFRthLA3Wk0SSnDchm3fqInSCdBjf+Nl104mT8IBM68zgU18JtJOXfCO8o6pBOO7pm/xwRHxFR6LPiIcn3OdjPbDobKCiwANRowPltvy1PNcmY7URRasCzQb2a2MHNHfRdg98LE8bIEZi1POSBZk8wh7mn2XjutnKN9zef0tuezeTHsCnwCOdm+W1ZVToreKICN4ogK93h0cWsQ9lw2STgfNIkSbd8pHLXqo7RhrkJOgmoZDI3mPqVD4vXqGzBBqeYK94WRU42PtlqbtALnVg+P2hXr9iXr7Qr9fKU8bcmw0Gtw39L1z74mahE3Vu+hMCR0GwywbivXSER2I8xAHiytqOuNXpqdh/jtHrAelTZoYb85fpgNp0oCutORp4+FEON3L13qM/liT8Ffsfl4NWdYUxrun1zjRkv153sehGyM4AlN3wzQKwim0ft3P7mm5NxT2guwXyjffmENFEmW/2HSZENopueGayGSSZ4lZzXhdDK1wxvQZ/fNeNELQjXpfKTxQoQ7UcALtqGZavdHqYZktm5VxNB85Gs+sAXCJnmzKiNJhGbSunc3xo36Pajq1tyvteKPXK/1+RXtj3zP3d/jpzUqgnl82aleOt8r9Xtm2zMtr9u8Uau80B3Qqwn4p7MCelVtTCp3UKumAoit5hxw/YygUnzqjLlNCRk3n2nmYwiSoCZWmw30YJf6Vv1TeNO4ocNtCq6Mf2VecTQOLfgTDVqGfdMGWRODNDjl9dq7p+VoPCtFePLULOOHjn52+Ol89E1UZQQ5xOTiVvt9flCaiqGRueUdTYXu6UNVxZErsL89slwt5231SYhn6feIpe25zhGRU+hiaYY7WamX2Aq3aBJnk2QHGY21kZ5e8jedJKZ+y5KzPok2aGT2opI9hAIBnVMzVz6nYc4ZjSNyedqeNjdhNQz/kbbfvVB1Zer136nFQ652ShK0YviALd0kcmkjMYIRiCY6anG88+2VmIU7wYv18eNDvcc5Zjxqbylj7UeEoU/ZFr4zZI8j/jhNXnbzoh7E4c+nmrytg/AqPNWs3pSi7fZCEI1g0+TWRONupC6aC6RzpAtlfjqlaSaf6HcEVe6t7OZ0g3ojXhKw5hoRRyz/v5ux8g+l0dTvLT7XrMJ8lhLoq9EO5VeHtEN4qHN0cKqVY0L4101YpW9lRJ1IRsBHdKXG/XUcVRvKJaUkcF3d13WD32ZpjRa9eERHPCI7KCx93r6GLhegNF5OCLStEkWLdG/X9Rj2E54+vHLcr+/OryY/Ls2X2SaaUZ7NtvXVHvb8h7XBHcpRtua7piox8hInVZwKinTt0mMvH/Jt/R//hO/iv/0jIOGuirIN3phMq9kJGEGdgYIMcC43Iw3RVW7PBt2C+jwRsvm4XsbK9Qy1jKn66LfbnYo9/vvQpIHZEChb+D6gYzD/sjFim1QFzuqgOYTpHhOrPhUvwGhApz6uxHulZJ8NQ1pPiWhPUN8lsl0L58EL55lvk+QP5+RPl9bfki02tmIzWIW8ksDKe+5XerF1pTIhpqpAb0pUiYl5KtdpBydk70CvkThbhaOHkECiZshdqV3q3tDVL9SreBG2zhm3utEkpDW9nTuZCTVk9zbSZzEnWFb+rWvPGehvKUnIewHdOfNDBDL1XUt4oKL2+k8S8lzknmljZ1n2uNNqV2/XwxnLC4Q2FVS3LqIiVPtFN0O0OPgbvsaZ8yjBkTuq5Mwz9dUs1PrMYG8Gr2kEyaEwEcYeexNdMZBKEdKKRKTjPAverO3QR/A9AfmHGeSy63UDjg7Lvg6OXk3yFNSJNKzg/p4YaRvfPrRJnySUfGRXhPnY+jvjhcGwDM4rltxYpzfsz28sHnj78hvLyibxZjwxtzbfaG5J6LXvvXlrTGzFJqC/gp/v47rxd7HOe2TYm7xAgydejVYSIyB+0eiOamaaUB5hszYzKlIR63J2X8YbkyZ1HyVNUvRmqOzljXQ1cwnF/px3v9ONGb9ZrR2ulXm/cbwft3iiXQq2V1i8cKKVXtt59ZDdnShl7OJYL1r15/DPOj/fkTGJhP8R+slh6J39p3Iesl9PxppsJ4+InEnZZMJ7ka2ZNBUn6cI+Tf8ZjjPfjuZdrsKzpso7nks9lcR03rsZzfMmk4cH85y9ibnGo+rh26Fn1XhPaG6nsyLYvBCBz/xYeUK95l9p8YqFFyi0lu3Mc77Raef7wK1T7HLPtoNYCER4xF0uXTp5a3eudrneTH9rJebN+N7Uy5MGyDtp1jqj2JqUpIpp+b5EdF8ZCb3eO60+04416XDmuN+43y2YTlNdX6wfXvKYzvq1W24h66YYHunLUztu1Iih7FqrCXoR772QVLrXbZMQQoWEATqQ1NioyWywTxJ5pYdvFuNFVlJ+YUeEkv5O/H69HI9nToetPN1qHLpjft5YIfHWHRn2K/YvSnCjJXo+ZxTJyicb/oddUNezA9ZN+DpNHQlCuezGciXFvMvGRr/HImvV/4VpbebQ71tYkNBJHU9JRkX0nb9kGVUTfp95p9YqKUPZXV8XZgw/WTDgWogN5SzbttNdhmLV2J0m2zDFtxo/aadXOydnGZvfe2bbietCwZ/fphzB7xCmdpPa7OXrMsDSHSzGdF84jbWO6VM4bOUFtNh+3q7phatnf2ZuSks1Rm5KQi/H7cbeov6TEEaWQuZF6YxuGrG/V0D1T79kbiz7yfVhLgAdhpSAXGS+HI33lXXtt6gHTze6oS1O+zItM3TB4dtzNvJHo4/VVK02Y5TTdA6ZLQ5+R5bEyqU4HhYRxPS42zzNbYDpxRtb1oiEAI/jkMiGdt3dNVpiN7Fm2P+RgKNTFPl3AbUhzEZYMrPghaFX6AdcufKmde3UHScIHzZhjpWmmOl322wGfb5De6LVyeX01OzGbPdjawRDLqtiADdOrtR3Wt1HdXhKhN9Nf8WhWQcJocBz9b3qHeq+UizUjx/X+9nThJkq7W/ZsrT4J1W3ZfHm1cRy50L0lgZWeNbTdab2Stmck2USoiQEtM4/IUlJB3ZE2SprcMS15R/KGfvwd+W++oLcb7Z//5QydRIA0+UN16NNVvo8AcPSYmWDXe1La9TpYP6TmtCWeFJF8fTc/ySdIScZ8BBX6Vf9sjOPf0Ex4SQd0wlwdxANQTJ0/6c4fPPo4LYiBaczpw89fQPa6fHRpfjiYIjxbsyfg2YpIgm5WQqFgfSiasqWCSLHJFMnGheVizUmbT3waxlxKlOdnJCXq7d3QWbKoYk/JRo85CE7FPJOtV7sFT+fOkr35UCJfCqSMNaQ3x0wq2cqbUrEsga1M4ltcr2uviJlhxGCgSB/c9ufh4UvRSwBj7lD2qp3Ij2n1Tq939P5Gvf5Iu36mXT97Zruw74VrP7gfnV3EPaFQtoSkjffWqb5/1mTKFHTrSu3QR28SN56HEeEqTPoQXiOl2OlgAFhYBOoD9ai9fsq2Er9Wh9FUcXjcF1qLCPi0iFZK/HqPB2fJ+GOBlsNBNfjo/P4pjBCGgAurEZkWN54cOJwVTFzGafIhl9wUaew7Yz8j5zx59DCcQpN/FTp0d56kbWd//camxgDtuAEJSid5OveYlhZfnPBoSKR5ZugHxkeWermuh02sUVc6bRCWRnS9HqY8xACrNQM2GWnKTzwTxmQMwP1+J+XsNfrZFUlxPr8sq8Qw0qIxYEqZsm0InXs9cDev97extNZSEvVaObrQu032kKakrl5GAY/Nd1fjf24SDmRMXoVj7exDP8ttcdB4vl689yDTFxqdNlBEjIfZQaSRDqeP8/SEZTzc/Nd1TPkMBsq8F4ED+dFHZRjjATRw4BGlJTrWyOjVrjfE1yKjzsB2vrga6cZ7wlpGNc8N2pvfq45ALN/EHBxFBFVzOESpsDlz0rInRkMlSgpTgiwU2WyiYq/cPTPl8vyRGbnyhpAYMtXWHE+Zkwb6/3gb/gAAIABJREFUmOqEGn9GACNFP6kWZUgNa2xsP42nynD60DvqoLz3ik1EtAw3VdOFx/0NtGGZstYfq+Ybx/0dwQcGdOV+dKQpT2mjqfDyHMYp7JJpJXPURtmSNWTMVkJc1XTiUZWshefcKLmx06yJ2xCFE8StzdtNT55/H4aNc9SwG2SWxJ+4UsIFP1+ThbaCHAKMruBK+9lZQ8jvr5c1mQqIE3iItZhAYn2UE1Mx13Vdo7mOY61CDrjTa5XtFsWV033Iur6xL2NjdNKDWHBvIGE/p3XTGflSkFLIl53t6WK/l2K8Ugp5u1D2Z2/MzSz3Fhw7KlGW1HsM2hZ3sljvGcUNuMhcdexZyg7iJUdRLu9IL9YlotLJx2bTE9DcuLTAS86Zpp2SrEQCv4vwM9d2gCRK2Shlc5lomFNytgwc73mFNy7uvXG7fqHervRWLdMG0JS5SWbrjp2X/R5FaLFVLkMt4HOCi2eVFGnwk2IY1LTS28/oa+7HyG7QuL5O+oyb8vPiMyMQ5YQ1/g/HwVd8TDeTDUrozR0zi/NQl9YXIyt7NFP2pq2DKXF6i/6DDB4PjDuCi0GXvlaBk8+4GbvOsF2mRD3nLp8eyrdMvRwmua9ksS+yndSPznHAexdu1SYJd1f2ZcuU3csEsSa3rVsJVD/ubPUHcslcXl9HBo0ebrd6bZQk42G8txsIpRTXf2KZqL2jrTvv9zH5NOdIRZIhx1Ao7ghWsUbfXdyRkxP3m5VN5lJsMmSsa7nMUqgczcCVUnazuyWQ3pQtogpZph0SJZMmmVBdHGnRjn97pV+/Q1NGsw0Q4t6GHA2MKxqVFjJxlQbdcPIzGEabeniOKp/yWpJYyZbr8OBHkx1WeqVNSJpIl4S8Cn1T9Bo9N39+/CvNhPXsiH2UKyLWmyYUzEqpa4jndFF+pnQmEwRIdSCAsBqLRiQhcHRe6lEAhaIMYKrQy47sO+rZKFor7XYjP4sRUrZGTFb3atE3i4aZgZc8lVNKR+qB5opEjXtrlhHj3lptnS6dlK2JGuKRRi+/LJsRrmXKZDSJKdBi43lNmRZnOF0mxWAb7QTTah0NkIfBRCjCBppIZQNxQgwD0NOszBE1vYKCov2O1hu93mi3N9pRsQZOyrZn6mERj203g7M1CN2WSjag3WzknfTO/VZRFW5SLKWtK3s/hvNu5FS5EJAAOE5D0+e9EJLIQjNTCQ7RF4Jc5vs6gGRcS5dzf4FWZWHQr/CQkAqhxJZbNb4IWlheXM+INTqBRDnx+GTLR7i6vDn417WiMgDoKQUUv74ruhScvn7fYtwagMQMtiSky47kTGt3So/IfBpZZyEs4Rf2TdyBCR6ds271IUUGaGYCaStrqtPpI7iRqX4NdQPO+2T0vqyFUA9rSNx7AN5GkX1m03iPqJSi19N8dnUe72qKsx036u0N7eYMPq437tc7rTaO24G2Rq2dLsK2Wz8q7bHWftUFeAwHitO+iGc1DVpSYoCHpJAnOssDFnY59U4YSDy+cwLNkMfBbtNhuKoK4Uyn8cb5WVaK+hqP0JtrD4PRQFvmGgS/nPtjuPNg0YPzmiHjdKzlYted1ycM7WWrQ/+cRaksjRvjMzJ1uoA878hf/prnv/lb8sdfWRPgene92F3H6OQVvFE9gtYbImIg7LjS+2FR85yRUiz67U5JBvlY7X9vh5cvWHq1unEVACtnH+GbvCwju6Elw6XstBwOz6fxXCLJs+zONJzE+mpISmzbE8etWm+dZiXPI0jkv21Z0C683RrXe+ev/uIDL09PNFWOw/gSEXLJPCehRBq+Kr027u8NmgU0Pmshp0pqnaRKHiCJwSSTV3TUtk/npetCXegsXg+RnaY55B0WnL1WmW6fPPepwfvUBFFZkEYRfDCLrbguOudrPAZOskUZPfBkzV0KXpjPM6Kqcc4aKWeudZSbhZ0+e2nJ4O3zvUzeXY3MmBI0+GJR5vrA2yZG7P5vVbldKynd2XOhdSXvO2wV7jd4/wnSDgrl8urjuj0N2Z8tee+N4YTxsoaybdHv2g0+u7/Rk2nbR0mV1SnYOkV5A+BBxzSyweP5RkNhmWUskSFSts2i8t6AtWs35wziuskyewRs/Hcup2z0flS6Vm7Xd3o9EO3kJBSXFzFa3Cr1R01AkMrPZCY45k3xxjqt5U8wgMpsSSKTfM4COmjr4bP+eqiTGXNx/boMAIt2BIHDFtX7NavMcYxSTg00L5M0WfTc4BPirIeSs+Bk/0APfl/KZeIkwpDusBj8iO/zGUT598rpEqteHsZ6yNQVAj0KSMHkZ1Nah7sK16pcD7h5n8+92LNFtiqiFLG+SklgK4nLy8a2Z7RV7terD6cpI2kgJw8gdi9zEusno83uu9Vmdps7O5sHRJoI28Vs35Qs0NB9opo5YzOpGOZMJQeKZnvabSpVrewff41iVR54li2ksRYpF7RZqX8qmzk5ZJZBju0I22JsQlro2nWqeuZut4CQlAu8fAsxsjymNo3AvLpjKFSDy+mcxu+h94YVGemXipUfd894Cj0SDsHQDdl+lzYd1iqCHjYxNqVCejLnzp86/nwz4UGMoYbju4MIZyyFZVGDdBdH6ALOGYB/zRKZgFSmIeEbMPXjVJSRovkz2bOA42lQCL0p91vlqAba8n5HW6XXSurV0qq33RWEbXakUGqu9HxgU2MqeSsIm3FxU2QraPP16IJK5XhvlvhRvKGbd6ZO2aIaKVumSdmyNT70/jOSi73vRlw0JE05lKfVA6oC9SCVC976iHWsKah11Y9mpYuRrJjgMjzW3QA96O1ujRlD9HhEotdGP8wo7F253ht5LzxfLMW1Ho37YentMa6tdmXLiVwSWjuHJLp6szuEvMLAUGKuwM4U4fsx1E4opZEETEhCSSvdrDTlp6zOoJVUFyoa1KO/QFtf1RFi4+fHg913fu30vDL4Od476691BSaACONOQpHhAjTQYwrv8dlYiBciojbvU0a0aAWfSKK/XOjbZs6RVsmq1OuVdLlb6jaMiAne/Hc+T6RwCoGScrKpEb0fQ4aBjwTM1uC09Q7O/3aZdn4On4oRo0dbM+Ox1sOV+PTE57yRN49GomRvcmhp34VHdW/1/t3v6eA4brT7DW0HetxG5l4phV7ybKCXEo3Oe1V2ETQnerL7tKWdQOIXtpRJ+TLldjrTxTAc7O4WI0LmZp4wyAN9BtA80YQsvIkptDO89M8u968PPPyVHWH3ByWGsRasF8+uKCk8Ygv6nLjQeWyR3YO0Fz6e0Zrl/XEzBGktq7nKRp1nnxBqGPEmr1sqpNaxYoJ5UZtg0b3U0PhMYiS2KqSYhGQT0cq2U7bd+M17V4j3vdCwfgTo1vBQNoFWUa3G32NU8JrqrhYJlEY97uzPL4CYkRr8ljZy2UZzxaEHfTHXxpHdR4b2erOG+t3KDU3mGYCrtVNrN73X4ZsPG1IKR618fus8P+02HdGDICVZacb1ZjKptc6lwOVpI22J3Bu5NfohHtmbgnCgL6cFAQecvpXhqHaANnY3LTSIGQ/diWs0iRy0OsMZ61jweXmdRo9M+R4nGeZdSnW+0kOWXyLOkYJ/hkU1eUDGI08eEWYQSBe+tb9tvRKhG6dcHfqRKUftdTMQwxkUwSqJe1kzhCObI15xvao5cds2miS2LZMvG2XfyU8XytMTaX9if3qlXF4p25MFCsMYksiUxUbkOjbLObmEKpALeGNQRjkiNoa7tZE9o+go8wUvXRyrH1l49pxp0b+xFhKBAufvyJoTlOYNxG3Ub9CjGdjRlDjF5BiJqaZK2S+G5VFqgrfPn+k+MKQ10/W9w2fNbNKQ3tl0QIZx3wy7IwhJh70yoZLOLQ+CWzBR6IZHdPmn9NkJvwlDl0vgKbu7R1g3Ay1rFOAr5kuYMioexnoDzTHdJzzxkNU9S0X9JZ2/jD1EXLa5o955PrIPg9/CiXuyV53Poz+bOXQ6Z6cSzsehu+18wQMRg/eZokaEXpX7TXk/lKPD7VDem/B+RCuVzuUpkzL0Bikb3acEGev3eRyN+uMXLh1evvmG/HTxbDXj5XqY3izBm93oNII0YWtGFcnkN0tASJgtaNni9qg5W/lTztHbJnPc7uxlJ20baTusWsWDMenpxZ0eMhih+XCBkRGGGi7OG/gYb+uZ5RhKO4J/H+FgdxxwyoZz3nDHlHq2j+C4xJ0zXSGPTfFD0tjDFVeZKNYpm9dpX52RiT7UQfbv7+4v8abN0fJFfSqf3tU8MdufZtB/NaNmeeQJCGVJOxsPFycuoG9ReiFoArTKfMYRhYiFWQX7aisOJlxLnMZ3T6DBADouMTvmNY/a06ak7ULaL+bNSjHOrw9FKN58zK6fSUltxKFaPW7VNoy62g67ZraR3b1as6P9Umyt/P5a7+SSkeJZM2CZM6VAtrIn61afRlftlMSnvpi3srVuZT+SkFT8vDQXJta4C5L6/0/duzRHkiRpYp+amXtEAMjM6u7ZFdkbSRH+/9/DCy+c3Zme6arqSgAR7m5mqjzow8yR1dUrvBDrIlUJBDz8Yabvx6expp7RGJlZmWxBiqqkXg+0YzcwJQVsYtaIKzcOfI96aGXCUrT0bb1oVJXt+rBsCa0ZlARZCFQ7pCVjElfKk1E6OXwn4ee0E5R0FspuaMNtmqC7eD2lJSsXHs7SFIgcF5sk6VmZfqYj1NapF3eWNwISV0YfqhGGhTe+558Dk3Bya3YYrgjZ7wpVhauC4JNNCvUFdkNmMuD9RizxfX+4U9mqyRqmBC4K1Jn3B/L1CcX66Zm7Ub49o7UmuaFG4fT7fbXEWnoP/AW2v+dimUBvBbRJNmJtTH7kvCDlBUAG92M4d6aQO3d10PKY9ARzUMV4wnvzE/lYUiBKIk1RgtX5zJRAy4ouHUfdcf/+M/7+t/9Evz/A9wd6Zyw5AUlbVCgRjpTxkAVLbuZcm1KL5aYTncxkFBmfBMTYbKMXd3DNrJloYMoUq20V9mnQ1WycDCIMupodxfFYp4JxZU0x4MzPy5qm+0ynmTxxA1EPQjjHZjyc+DGW5rxSce34wWW6XzZ2eKzjXBYRAhJjfc1blWBZmjYNWlH19QYhQnt/B23vSM9/AiGZTiKbQJiD55yWfXS3CFDyYrBPyk+c25RA0ApQBfDVf1nYHDq2sdXqpHU5MF7asmhde+hbrZZcyWjHAcolqmmUzAzrzgy8TDauGAIWzSByq2i9aWuENEjv4Hrg8dvPOLYN+2PH/tCSbohgyRmdTM+2hlqVNlkEl3XBWhJEsvb9g/D1Rds02FoyLoWA1hVz6ujgpaC1qhOgaGB801wi45s721z2eVDMlLQQAcb0EYTTiXBORrWIjK2fePisPKKlf3oErwARGXrhMx6Bh/bhncbLui0af5mCKjJ9k857EZ9NssnLmD5420Mu+gUo1nNcaVSUY3o0o/pQzRBAMkEuBVgvYCxK8zlhuV2R1lWDNLcXlOsT8vqkk88ME6JD5bwnZd2B1YClOZmpAGDFHiwX9F7B7UDrzRKb06QY07ls+l3xMXTQhNu0EYxK7siqfer3dR2cSNC4ofFwkEUEZdGhH601JXW3g/05vErVqFNbtJS/23EgkQ4W2FoHWFD1MjhAqAJcx1bGBp9/Ngqg8++OqxdVpO4EBSi/m1XurPpezzRxprXxkV5jPMagFjr9T8LGVboe+J7Ew87/jEfIqBAuNOAKLGo2r73MBu9sN7ptOdmaZPYM4jT1byL5690Rvqfu+vmjTMlHDfLrCRR2ymwDeeBTQIbBEj4KnMYR4L2mCtCY8DgEjw5sVa+YkmBZMpZV8Zg6EXrVux/V22hhbXyCy2VFLqP7QiccK4h+Iq8aYk1+MEMloo+6J/SmU3k7eyKSowWq2bUUUFxxVROTtVfptWOSVM64vDxZYkBUF5cFOmFYA6sJBLEWqwj8toZEBaWs1t4U1l8ktYS7BT10rf1nEbFgsoEbp4K0PKG3fwdqRSQWDQA9OI1ctlr8wcenW1DZjaPRdTfbdM6OEnpxdCiqthESs/Mm2yqLnUta5EE4VY59PP7JeO7zv3G43gmFP9mVwz6YBIwLM/pA0kN4heEw1mWUpc7nTmarC73ff1rfPL2QCIFrw7YxMhOWvwBluWnpVjJ0a8+EMwPEoYTUsLIeWivfyr1BckNeVYlxNZasFUKE5bpqaXYAhBKSsAZpst6Pipan5WXRyhebT6/tENbmOk2zieAFaS9wWVb42LUxJrGDFh2xDZ8vL+ZsOpjwsCRC4PmOJFPy/aio+wBKFdEI69FUYePooNJRihvoCeuaYy971/XIyKCsDm+TFa1ULK3i3OagmT5FJReTjl6Y7cSvdKNvmQZNzJF1TEwy0erplFmHBi0O5eiMSJPQ/pTHbCXbB/EehPHSZO8T7z+MP/2aKxAzBNxRD0vFriNxm3HQZPDmQBf5wXGUJCELBAJi+WGfwgAN5gdwLUBR4F7NPDQkawP0tkF/3RCgPsLPg0NB4xrYibWy6rMxjrif+EurzjqYa2TmALJMpL+18lfOin0hSZALQD5Rg7IFXhhEBXldw0hzSahb4AFVywh0a6Uya0HLUQUlFyzLgqenJzxqRVsyuGppeSkZ6ypotWFjwi0lNBBWTPQetuGHCrWQozKtp6+dPqVPTDvtqxvmFBe2e5jBOItiGadEW43vvIwnmqkhAqkyE4uWL5+qzT/ZEasYvIRpXc7sdwJe9VPZzrGpATTpsgiWnZyEOXzt6wnL3Iy9CT0b19LvfmwVlPlcJPDR0B876KkFrY82J7EWQYEgW5Bu6Hd/VZ1KAxAtIOnImg0BQUK3hkHU/QVMtxkPJVtDdSIberdpLqIjecXbM2oF94Z1XUGUo+0R1h4hrNWfLt+U9DkMf201TuCmuIDSGtZS0AuhFwIvOgmyHw21NmxHxyqEsiZ8+emGy1rQmhrJZtuCoMGZ7RBc14x1yVpuzkDrAqkMPgTUCRfRSVFO+3N7dyKvVLaVnSpr1KmQoQQnvjzvsD7RkO7Ob0GoQQSDVacLTfcDRB1Aux9h0jWf8AjW8/cAYr3CToil8KDUaIeZgysjuj1fmX68/vRZOPXurDuzmiF/clJdQ0xV5v7pLItFCDWv2IsmHnGxlgdroQWz4irmAso3tUWLgm2mvCITgWhUXTseTLIATQRtyIA/7a2KJTcSJavWYsPi0aq1bvgNKWeMIR2DONxh9c+Fu+GumSPleHNTgBUE1LppcCZrMjXnohV9OcNHdTsQee8cE1vrvgG9KQAyd5Sc0ZPa4ZCMLoIjZ9TOyJido4kwhrUxyc3BSS7GyA0hi7TOwbmoBgJGi8wccPAfJlNM/5uMV8EAxRXViRKYOEPBuJz4xJbsdJjzmqCJZmDYZC6XrErNWCZsKOfZufhs+AjK3JqcThOmzeDLsZbjnhqQGZcADEONvfrNHsv8y1HGBGu1Glt2qpbDeMZeNVC4V0Frgr0B1fYsJWBJwOXi7fXJpg2rzso5aUCeGJc1Y73pGGttISraKSFAztbKb4k/Pg6QdIAbpLPxsL5PThlH2+19DeCfGY1ZYS+yYiamrPhVvasPqBXpBb0aXEBS2A2pzabFZRBlxWSkBOaG9tixPn9RiSIdgBYx+AKFNGJGJrfrUyQ2ARr6z+iALRAlNokKwkjrFXK5AiVHwYY7KgEMPU09dV6b/cCR8HUfxXmdFJ7BqvedTiOAJx78SRDDsPTZ4pKNj50+22wMno9/Op4bNCswibIhX0YnwnCLJoEjdn7ow4lA4/qzFz0Z8HFFkUmpwZjGWDeCDKYQ3DmTD/eAVrn03kFFRxV6cKb3jtSalWsXfbfYHGdQqPFGOumJSTN3y3oF28YxaXCjlIKlFEPBZ5SsUTnWofdaNZOzBo5ElVg2JdPtHcjeLVu1TMo5niMVLwfzdg8GpWKMknRtRFusKGUIa+++G6jTQgOimB3cD7T60F78uqHtG6Q1kBCO40DdDrTaQYmwlISVgPXpCetlAUHCSTz2hqMqxk8pyaomOJTQIQRQQUkZhXooojlQFHvsDpmVIDpZRfhGppPjO7NgRHxwLk3EUHwfaHjm00FXn/OYWGX+JPAC9FABMF7Vy2/1jSM7MWca/IeT8zatDY37jAvrl2bFp38ZBoyfRwx1QDF4NZImcVvdRGbBxsD9/UCrQL6uKI8HytcObg39MDBhkWhT9B0li9TP4IABlOhGlgfjRHFniBK8vlS8/YlSGI3+/gOA2x5YJLBmyCoLdFKDjgN3RzSZQSyibU3j8HXQjETnPjITpEFY5dPdeo+TYtE8LOBrwN1IhFT0OVtasF+vKJ1xbW3iM98NCX4ZhqctyWwI0cQbzk+YWCiiB3GxUyDBwaiCXl3m08T8gN/4JAvO5cyepXL6+7ym5zAY3bCGk/RYg8mYjKUzzAdV9GSl3wgHxQ1PigyS31EM2HL6PBxCaE81RkVUGEEzn3swzNtX/B1EII3B24HiWapczKDO46VEAXUd40ENUx7PTkmDM9AMvUBschMHb0XFi02fyWVR3rRqtahII22hdT2dLXCkE+DIRpMWcGcsxbLxKauxKt0yesN5jDZuCwj5vhA0874sK3pZkfOC24WRhHFsDa2ztgFbW/JStMIogXC7XtBbQ8kJvXW8Q43a1hQ7bj9MviQNskK0gm7rjLdecTkOJGbDE5CxzlEiPj4arY1OchLgzLN+dBkdDoh9IWgh+HFovrjb+IJSpCakp/Yef5jp1094TKZsHCGC/P80fR4iioYR4vwR7ePyQSG7LDvLKJr+N3JAJuNoJKbc9jkt4yRf4ylIKyQkJXTKOFgDogWEWhv69+8oN81qF0pItZnNZS2HeYnx2JpMIPiggJGkPFcxUMpoTXk/WUWMtij5ZB2lp86iFXfW0u9JlNn2VLnVrU1McajYJtT4BmTDuuqd0VqddEtDzgok7O2WuSyYLAmzoQtAit+WbIJpfWx4+89fwfc7kk1s7TkhIeNNFizCyAZknnx/jcdSGrbMONTunkeqz8QlmOwmp0AZvBgyn4bzfyacc8VVgONOPA1gOKCDrCb8UNfhn5c5I5jnfMeTJWsVlsFEAviUKHbQZQ7pNBx4wwsRmdbXZKYHcBzH1O6EKWeFaFUx3amDAFz3eMuNP6P+kEQCP4x1vpG+n8tRLQu25IX6lE0IlTUxwACaYeMsOaGLVW4ycNSOtBaQACVzBEVYOva9ouQda8ro2QDwl0WrQlknHfZ6QI7dArgKFSDcFaAJmgCBCPLkN9WjobduuI421bFr6yB7OxRrkjIvGlJIpShfllUhBEjvw70qmHm5YG9v2vq0XGwrBOgMKrqWXbpNgyPTzx3SOigLEhXFdJF5A2A+OkO4Gf1Yu2/rwFEnWW5kZLYJzF4jsSooYqsocjJwHjO6SKT/dR7+I9yOcHqYyNXkKybaDDZPZOz5/xGjxkv2Ahkbk8EANyinhXJD+6PeciPSH96I3kWquwZiAoWMk+zuQ1mGTe/GpIyIs198Yhp3QqIkyVqL2MrNAO1pBTfwwYAZb1pypcj2lDIIWl4NbrHgKWkwBpSQy6IGmkfnuCMxI6fRKsRJXzwVLdGsVcvNStFWpxgJ7EEF0bYnL+dMNMCgtNRc37HuD5T1qg4gi71jtvJXy/QbBo9nGgSWlYzJVl2VXK/orWJ//QVvf/8FfBwB/uShsuPQsrNbzrhcLxDpo41FRKOGAFrXDOhlyTqx7MGgkiBcwC1DDi0Pn/XeAGEyuvLUskesaSIoo7fhXAw6Oklaby2w78XEolnzTc6JX5ZOnPS/wDHZ42FvuwKagqfRAo7JMI3VG/+fPxk/TsZjOunMH8BSdQvs/GmCSTIp5iNFkz8mTyXjol/hnFFNxoKB5emG5XKFtlQUE0XKb44BQ/aSbFk+0/hhULrzSMa70e8ugECnjgn3GOlAhkcjZuC6Q+VGj3jrI4CyXAMskRLMeNWMYw7HkONf7h2OXq/Boq7g4UkBEZkZvVVIO8B1R3284fH3n9G2O6RVQFgnsK0ZT08r1rVgfxxYEkDoaNTRM+mEEOPR4Tv4vg+5PPZ6BPcGJg3CMQYwAvBuBKVBLn+AiXaS/RAtCY1gPZ9pksaP8QwRbPrMvGn+yGzvTT6w/m4yRxIGGKvLQTttxhcQ/7983K9hmX+sjIln8XMY4/t+OQnT9hQ0H3argO470u0ZvGtLLO8P9FxUV+ccuzWmrXX0yGyZJCEClUUDKKaPQBTtT2wBEu46ZUnBiGG6Ng0DG2rMlnyFLJo95Om923Eg+/RGM5DgExiNb71K1FubpTf03jQDialCrne0o6JuG3o7ANGs4rE19NpRjx57WzvjX//6ipwznq8Ff/r2guuasB1V7Q8RZAKQx9QPMbw36YIijAJCvi5IUhSLCoDjswUNhSs8SerJybcXHPsf9pSnszCuJRMdTQbbHMzDoI5wMoKWzZHyQODk63zaI9rmx8sB8/thenyZGBkI4RNT6rw6wnVjGOa2fsnt0cnWCAFgd/IANUYl0sjWfxAIcLt2kgs54fj6DcftCxIL+GC0psMtci7IJMhLUfvOHDUqF+W92dGZrkkTsLAHWLRlt8So32XRWk3u6uRp5YvyFPdu1d4ZI6Hos+MwjHluSGK1ndINbNwratRop0Q4dm1byDmjWStyytmwHAuQtKImRcBXdOxtgCFropWN70tJuH25Ydsf5iBqtruDUCgHfSgEpfEtXE3Thz3QxI//FltmPo/ruVPVKSwIPxtQgOFfIGzTExsbYqnzfLRdTJUgP4x1c1svTbT5iQ93hp0XZp1J4RuSVZkaDQlFZ5nbkUPzmlwSZUkms006pqCNBbW9xQUweQ37rmte03IBh2K6g8T8ZP0SIYX+d7NGZEBYaPJZ95cFOJpgO4DHwXh0AYv6py52ctFpu0SE2hQ6w8FtU0roXvFXGXlhJK6QeoAuK3JKCvov0GANBHLsaHul2DRnAAAgAElEQVQDwFFFQywILWMlSV4J0mrTIgM2WIvU0SoAr6plAbp+n1kiUUimQ9O66sCbpEDHyIpPl5eM5XIDRNBbVVgRKJZjss+Sj8PmDknqK+oUR6v40xsFo0RVOquM8GBNSgv45SvksoL2agkf3d+PwNI+ejsmnxpNaTu2WLWX2NABxHk+gMiV6qBlWPDHb2D3KgC6VXkR4MUu/+j4JxU1rqKHRp8K5sOZGedjEO/0/nAHOiyFuEIYH3H+5IyTge8Mx1Pi+77Qfm7EkUIg0YiembACEXoHcmdz7jTTIICWRB5bCIm8rKBcjG49U69o8chZDUtOkKQ/JwNE0nGASVGzoTg2lAklq4GZLdK4H5uO3bXevEQAEpntI/ByT2+9IquKYVYQNmGdtsG9otUNZdW584A2BqW0mKLUT1S4K64MfMqM9QdTyujKfQCA5XLD159+Am/vqPumE2YgOA7DF+jA629v2LYDT0+rMgxrz7BmK5VKehM8DkUTR++4kuBSsgI7lYR08EwkYQB9sB6D5uZ2ESM0WyP/yhBw4RSJCrIIzHiGP4wjGiTJugdRCv2ZDc4PrKc8Zj2RH9opYjywr8cP6zlV3cDOMcN+djjjdh90IZ1vB2dV156qKN0gGwoxykGHKxAZIBeArQvutaJQRjka2lGx2stHEKG36IVVQ1rLtJMH/VxMOoaTOWYQtnGgNlkqZfgIBbKeaDbDkBJjnozR66GGYSIUlLieVq2ZorBnoqJ8yd7yB8+8URhxjrKfsyLrixhexv7A/fvf0PZ3vP/yV7THHY/fXvH4fsf+rngdQoSXRFhK1iBo9yY0AxSOzN3YO/99djRCLstQ2k5no+8ecc/zMTkPxmfh6nlRk7OgBV7JKe8HWvYALabWoMG3gwg/5+FArzK9WDiIfg7897Hu7rC5GQrPFPonRNrv7PwZQT//fSqtDh4f+nUsWQgC5T03SkMvD5nghkYSAXKGtEMzcb2hb29RdQNMU9isdVeiok1PSe1AKmsYMpQSejtUl6VirYna5pcJJpt56H7YJBpmHTmcClKSqJDpvQYORs5Fq9D2B3wsKTNrBetyg5AFRnuFtyOm4iO+O1rbULd31O2O/f6G73/7Gdv9ge2+49ga6tFxNEbtgi8vC15uC26rZg5f7w3/z7/+jOfrgi/PCqbcWdAqa3soEUpJeDwapIk5tsr328FYOuHrHBQ9EVeovcGjUzJitrl8y8n3yAx8Nv5233FYXzNPzTYanT6ZK0Xmtizykz4va8YCjYYKtjWZZEs41lYhQlMFJs5y1BMSIIxEndsXAp34YbpQK3CMt8j52Z7DHcKgdYp7eGmjBx3cLmEIpGRIyXjsFe9bAxIhZ1L+gU4fLAKrhFuRyoJEBSCzW4mAKXCpgRWe5EkoDACKB5MvN6tW7dDhSkN/JSIFEs0F2hqc0Ls6R9425U5ur1qB3nvVTD7YEhgc765iR23glHRyKEN0IIhV0wQenCAkVyJCNzuaWJMzOWes6wV8vSIvGXkpeOyH4vmsGVyBxIJKCQ2MYnJo3pMTjWDc84TLdjKIxGzu8VFKCB7yGqSwQV3PCk7YNr4YIZknWy1s3UlfzEF7r/yaEwWf8hCJNYxHVW/cVCVFcD2CowytrMAEnGV7w5OBKoahqLdRHyYXCnr3drRowxtKXH0wayMmkAVnBOhe6TQZ3I5J6jYTPKRk+2GOvqrFZINNBbmovdnNTl8LsC4JX15WpKLXYAGkW7CANMiQTO5E8rErzfd9B0GQl2yWoKC1Q9vqpWNdClpt8NH1ORFa05bhAMoVATf1547W4xlbPdRuNjnpVJlyQpJkMqigC5CXC/Ll2bbFeUHXOS0XvZ/uii6P4TYmCwJJb+qH92bySEGNkTqE0zkI6cEZ6eb7ZnC3oSHPP4GuN8hRLag82Toi8dmoegJmZpm7g7xaH4bVw+wx0jPz04npBqOS0+NJCf8xc/5xoMajRL6MrnwmY2EET5wwh0LT/TaB71ULYe/bxZJeLNYllODsGJjFTvPnzlCTIhRfj8mSEbEAClCPij0nLEhIeUFZFBk7J0W3J9KInfSOtt8jig9jYCFoyadvck6AFGQL0HCtEHTN3oluaCJCWRcdKQhoqakQcspYShkYOSnpRA1BOIzacmHEDasQkBZtFtqfuxi4pj5TLouVpU7gUZP1xL0DaBExDdpgLXtzTByuFa3O0UcBd8WnEYiOA5Ydj/cH1oWwLrpOnQWtIUa4JQCFCGVJKtu6gEmBTws8mCZhkJx4xDlwRGKc0ILuZ70W6PuTEtN/zSByA8y/PBk/TsoBoPrJtdoPfvLsCcPWQn9CGIah4Ec5vZfbDXwWuxbRabyo17zpd5y/ZkGAyRl1TeuKb+JRjFX1qiXmsb1iL6cVp4SOZEHQhLozeq1o+x0rCCmtiAkzRCFrWDp6O8zwHIslPhrQHFxujNo2rTTLGchKF+oAW4uS/w6dGOWjtQGgs4+utyBqq0iJNS7BHV5lkLqCKgpIgRwN8yaMKlYlUI+HBYY4HFLhjlIWtE0VZtsr6t7UaAHh8agol4JuWY9SEiQZkj0K+npBbx2Z+IQd4fQTe+HBdRp7MP/9FND5yF96wllJ+WeDBCd9ROMr8f1xmaANLzcZ3hUGFX3iI2THeT1OTx3JjFFVdKpOp7E4QjLlL9ysd8NyuuRkGIiVzkmA7mHsATyIpspccZpoOs2NFYnvUm9ojwf69sDy0zBmZprqrUKkhlHtzyTmMPEhAL2r01gWawE2XjxFslJk1AHPjHXFOgNFEFWvn5BIANO/GmyxAJBYxQurE9paw3K5amaPEmRqswge7h3cKvb7b9hef0Pf7+DWsC4rdnkgpYyn5wRcGY/7gV/fG/ZDK+72o2NZCwSEl5cVhYDHo4ES4bJmHI3ROqN0wdO1YCkZkhOWtEBax+N9B7WGVhMuAlwjSjr2l8MBwIAhC+9m5s0h/b0qGXBn/CSBzXk4q1gELcjpXkYycBnvVM7prAs+6xEBlIne3HaYNdPpZPssnEMTXL6ModV8r8jX3IJo5lSNceqAN3EHJhsQ9qs6lkNv6vaOk4h8qzW3zAz01lEP5ZlODV027KViva3Itwfo8gXL06oJvJTivnPVh9rQHdwdn5EiADIHAFjEKrS1lbeb3QjAMthkU91i5fS1vDo7JU1aCGuCA15dbzIjJbR9j+CY69wuTbEZs05HVUwaa+OC41MYvdrUOK8aBzRLv33/Ox6//oK+bQC0XVHAyFmraWRn9LxohZ16BYoL5dgohp0S5P6DIeaB9NGeNNtV83oKLPPuPpLvA31oqXPSPEVop6ARDVoJOrcA7vxMAJ3aiT7d4YluD3hCacHFDUQC4DbUVzY9yGSgnsazbl+Zv+K4R64OiTTZTUJaapNk7EHIBcVQOyWunDezQAusQ2MiEp9p8CvRaDme5TaLAgZvFdg6sDWgdULtQO3A00q4XrJOeILgOATWqARuOjbbK6iYBTnr++37gTUnlFWnDlJkbcVHaWhVjgeLLADRW8WxHcga4UVvhgmXgO1xoFhbr/qPhC4NSEmLDSCK0wJrVfT1SknxUq01UQMiQFlWtK5dJ2SBYjE8KyRvP1Ie0qml2lXCXRM9bpsTrGrO5JTHGXQWVgOsOk6LGi4Qm3QHOZcwU1RowZKaPNrQw5eZCdV4iGXYbBj/m23m0B/dCk+63pemzMAI/v5j1vgnYMJegjlfyJqOeLrBZEeHUA5hhFjEMBuMcN0QG7LOmG7YgcOhsEhbnMkECtRFQMKAnQ4TptIFyITL1xfg+oTy/ATKKyiMvklRW/sRWEdx8yGjhcJbkZJlHaBReiY1gASw+fJeOQPNclv/PjnAEuvM+bRoBo5FbESYCgYn8gjA2HqV5QLNUmTDrTGMm4kR1BnVSGSHETBBAxCGveHgcAIHjNNINdeKen9Fvb+i7wf29weO+45jr6it425GZ1kUNHK9ZFzXqwHIsUaHu0RGeT8YCdpnL0w4dgVyWzoPIDDCxGRGYkH5toc8aCW21m1PJ5Ro0xtnBVBU2Kkj6xzOkF1sZCBmhfePwZ0+xfFRkEyvMEsW58EIWvoaxB/n9jAE06miRCh3mvCkhH3fEM8QS+rWO6xUdDJCTo84P5tfwy+SE9qqQr4dgtwFiQWdgeX61XAuOpiTVXC5YARy0pG3rVW0ugPGpyIYLU1QI4DrocZArZp1JwuuRPGMQCvPbKKE0WuyqLqONOxhYNXDgptWocNMUJyoBWW5apm1l82aooEBmWabxtFaBXPVCWzbA9x21O2BdlS0aupagLIkXLjgqIy3u7Y8QbTtcCHB10ygxbJ5EcEfso6g5fkRHDESiXJq3yFjIJnl5O/S4rz30+dToCHuMZ0T8VicDZo50DMCur7XPz7CpznmJMNsQ898Snaa8xYQ/fTBZRPvjaC0DFrHh32yVQzDdH4egmFD+Uf2c4AeDjni9x9iUDRTxwoYKF3bGGjai849nBN1vlTO5FK0jFkFOTR7uSOvKyCEtK4qlsoS7yTSDFOi2CslCPoZbK+zfuYOJgx0uykmm1iwR9ciaRvIsiJ5+6J0A0FOaPsRdBeVAkhYLzfsvaLtQGtajVOKRNsTgfBy1arb42CUnLCuBS8vV03eNMbjbcPloiCQa0noBnC67YoZUDJpppKA29MFxyvj/d7wS8p4QceXLMhp2FWAOx5wI2ti0UmfQVWiV+gOyT0Za94qwR/sMds7Vc9jpHfgPczGqFMdz3rz8zKnyNQ8NtmkMytFFwQhZFGst0z6yq0KbwcLewajRGdkNOFt58FnxmQiZ44L2eZBh9MbePUFhVxpXbDtHdth7fSkbYaXteDydMXl9oLl+qyYhaJYSZQYiVh5ecIqcDoY1XBqt84ONAGa2LBKhGwTUn26mldV916V36a3iBW3rHnKZVS1pYQkGa1pwFWnzRjuG6yV38Zzw1qtBF3bnOBrKZFszTkrYHBv2O6vqI876v0dx/d3vP/2jv19w753fHsuSIviyVFWzKvUEqR5TcbQYVHxKE45Q7GK0Qb5WkKGzeSii/DjZMxpbwc46vmIiqEBHHeiQafhEdAbl3Q+noP/n/IgpasIJn9UoxZsOdkatq5EAEdQ277oLURRJKB7JB02GlnPU4w/ryabfAFSrDRdQ4rq0dNeTOLUQWL1nA/93/7I4sGyoecPBioEBzQQL5SQ8oDSaI1RG3Ty6ZJBUBgJtj1N5pOWJSNdigZVRKdAkfl2npxcLwva0WL6WbfBFbXrtKeIXxu/H4dh05j8c2wyb00W7mAQyqrtlAydQtp6Q7re4JObKCnGK5UCKisyWTWr4TiqrdxByOhokLYjE5Dzavax+STcI8HD7QAllQliwRzH7SIAVBakclFPvTXbfwdDt723Cn/xPZrtT9eYnhciDSKN0YHDmE1JK2uCvTyYD2gwNpNi+DkdJjrdy222f3T88Xhu1+aTVfzxJeKZKN7dyjinm9rf6KS05msMK37A4bjSoun+pJvmBqn3i9pDBFNNXyFjREDQKYPzgvLlL8hPX3UkNmCAnxZ5t4AGcwN6tzYJBRYr66JEYROaUlKnSnrXPj8DFiqrTWMy5Z1seoXixmRwAq7PTxpsAesUKKIIurBARwCLgqQiL1opQwmXi2YiNWMogwms8kcbaxtaPdQ+T2MWfe+KL5NSwZJXBTw+dvR6oLddcTDub7j/+jP6tuF47NHO1GrDb+9Vy/FKwu3pgutlBRHQjwNcOyRpxcyxaa9iSlDg4EToh2Zi6tFx9LD5Ql+d8NfO1IPAkDFF6ApxDsLMNEesynCAkdLEOJOim6qxIoMh/mCz4fkJj0lXDedrenxMazid4Jm4wZMyDP1p0UPfe0HWdJIv9Qz8Fvcx5Xm2EwQzq8eyzg8fXycbV5jAueDeMrbKWBLjel2xXK+gsiDb1AoCWf9si4tK0+BLzgU5L6jHNsq6DSB4jAQkcN21bzYvETzViphx5FxUQRqQnJZfEyDq+PWmYwHFcWcswANhUFpAAHrdw7EMfBpRo9VbpVqraO1APXYcjzedVnF/AzcD9T4qjqNhuzfsW8WyZHz90xO+fbmAjwN1q+isEHa7JCzdFAUBPzDWVIbvGb7ILoTRM9Ha7yoSDWS7++O3ccU3CmPHZ05fETDFoKVRrYVTFv/05T9QaJ/ikJm0Z3kzxA5gvPXBclZ9ltxmGEmN+BviIie2m/gyMtMjIg3AS7Jp6Ec+PehpL4azCBtnK5CcrfTagiD9MEdFs2ndSu+zTUarxxGYM9FK0hVEuNcNpazoxwOpFBA9q0FprbnZ7INEWVsHpVvyhE2VJvTjEfcm2Kh7kPGgAolSzmboWYVaIuVVZbwovdYedK2m6e1AqzvasaMeB7at4vvbhn5UEAvq0bBvHd369mEBnpQzlqWgtY7aGXw0bNuBx0Pw8rQiEXBbC66XHHuwlIR6dHDVYQDpWlAK4W9vjJ0y/s9Lw0/m/MUEMMIAJKS5eUJOLBLl/EFdXlnp9CcnfSrGf7O8ljOJfLjaBxUZOvTz8ucI+E7icJYnrvZPssuNaQKmgOa4qP/VM+5WL3MScjTODX6ef3eD1W8x3cu/PmVXBAJJCfV6xZ0TmhlRmpNUx613wVEbVgP6zbkAeYDuMneQja2OFgCikZgEwKKYEOSjcU03hL6wBIZm0mFgpP5KYsaYANxiHbnrOSlllXSpaFs+yIKq+nwZKjOy4ciJQKc+6mhFXQPuUY3n8s5hBNQn0PtzPbD99hv2779he79jf1RwF/QuuG+aOCRhZIGCurrfwO5X6H5Ebs+DLZQs2SEmWina2H7IaUwJiFO7E/D7uG6x736v2W5TYvkxsUHTuRLX1v34gWM/1eGJi7klfH4fEcB6+qLBQmJtJPy88CnM3gWpD8ZWAaE+nt7TK0/JFKvbZ3oPG98dwo/HWuoHZ1Mk9nW2nUaRAhFsoiGhseBgwtYFewcOJjyqQhSkSJzqc7aqbbMAgUlAi9LYsmiCI6WMcl0hSwFyQVkW5FLAR8NwrIaM0eBqwrFVZFI7VpquvRD080zYm8KD3J5XuElLGEGoRASuHcvzFdkLD5InPJpOk4sKdii8gA0kyOWC1Cu4V+20aIfydKsoa4b0QyvTuyY5c1n16bkDqAYnYHaNtVUCon83vd4fv6Hf/w7e75qT6DKGJFoSjJLBgEx+kcjoBIq1o/jDCMIbzczsGZThNOhlhSyQTKfAohNJYLP+AWv+T0x9mioQ4mMZDp8TOY3yzqHtpmMSdBJG94eTQnJNxqQMAjkbBWdjAkIjQwE3YADHO2DWbPfe75DyK9JyBZVi2W0nYLZ+ebIsQdeWJBG048C+b0jLgrwuwHrR7/TmlcOglLAuawCUMjdz0CpyWVSJe0VOkshK+LSanAuEtLXKxwCnsiJlBWHUzdVWEM28H0ikqPqwliWY8gKsEtAcRgeyEmZ0aWDLrnCrqPfvqNsb6vYGaTqS+zgaHnuLvpSSE74+L3gcrIj+IJSl6CjUo6HuDXlRcCsRzTqmrG0YnQW5ENJNexJr1fK+C6Zyf89cfaQJF9pm/42sIYbimbIMs5wV/76TpOO0OH3KZLDJMMgiwvqpDzrxgL+xC43ZQJgjwmO9YIWd45jlkl9zxpAZgazzObPFERF5W9+T3JjPG6utRth0ksoIBfxOlxUv1wW3v/wJly/fsHz5LyjW80oG/hmGrysREXDVEYO5rFhWpTuABriajQKFWEuTEOrjFQs926QVq7Yj7b11QSTo+pLcIay4TmLZiOPxDgEis9h7Q7lcdczvceAk1yw7xDbhiaVjzsIsywUJgpoIUne8vf4GbhXMjLf3A7/8uiEB+Kkk3K6Lvr1NJ1iXrHgXjXFp1kEdxo/umfnNvlH6aEYf894A0Io5e14tmjgbInCjluzbU4m22UkTEdj/3PDyD2VQxkl/fHT6ZpL/xMdQcTTK0KfXCkMsRA4F3wg8oyhnvhXXa65z7WIn5T89g3z8cNbLZsRjbjuicTG7uBtYeV0gP/0LKK/oj01xx2yaA6WEtKgx15tOZCvrFZfbM47toeXqvZohbu/G0CTB8cDly09G2x15uWgbhTAIGVqthsCrgzmHCu4r6O1AXtZwyHqrOg4YqrulN/S6ww3/BoQBllKeaNAAReuBZqCmArUFrpcF6dsLjjtwbAfaoVUMP79WlGKmOQFfcsJ235FzRt8PHIc+08st49gbJBGWS0FjwWXNKDkhJ8KSCXTNAAt2EuS/vEBY8Mt7xf/VCv6P1PEtAysBlCaHhKa9dL122m6yN5t5y/9EJmPP9t1JvJtaPZGEnXdKrLj6neTwZz7CJJj+nfWUY2h5gFtmprUAqYNO+rhgyGjRcIczvuzZ+LiBj3MNDXha6zMfEwbmr9upApKETgTuhLQQ1ovikVXWCTKHVaBes4IIs42k1+pmhveAKC4Uj8pOs4dzmaYoCqP79A3715OLSBnICyBkrY9i+s+Tg3XY5SSKF+NAwRYU8sJ4ncSWQKQB26EPySarIUBKPdAs1rKYkmN8dH0Oa2FsTfm57Tt6a9g3BQPnzjga4/l5wdevF2QC2n3H8ThQYYX1sy4U3XP1caxlKWww16cmU3myJQkfVNiZE13jBu/yqFcLOhgR+FOyW00561qIKzI+luWIm0gf7MJPdxBFwMqDBl6tFv1Cdl7ozmz0k71VH/qeJzVGYRuFCSuAWDFZ+IxzwHTeP9+RCHz9/iKSd1xAeSbanvwEUT0fHmeisBPU59RqtCUT1sXo2u7ZWCtrighKMl3bFSSfSFAZWJ8JS1nRjgNdHTHFcsvaBSE2UCKZvb2uGcSC1hzAG3h/ewDCWpVDwGVJCu5b9TnKUgzjTIOT3gKZlwJaViN+Wx8W8LGjXLUyNqei+yYGqZJK0C1ZBR9RQt3uyOvFsOouumad1MdNi9nfrPpdhh2ryaMG6Ye2fHGHHHfwcY8pjwCNoBM5wbjtazRI+BBkH+eN7gIPzOs5Mu2zJnKNt0V1yeggIW2DCpvObJp/Ytf+caAmDPnRQjMbf/YXf6JJ8/mL0elSZ+UeK+ViCXFRo17xXyQ+QiA1+cnzNU+/DGdAIKhd8L5V7NJRywLJGdftjsvLM/JFy7Y08MTooowjrJU0RISyLKjcIa2hi0Xgc4rINkRQyoKyrAARWjugODI6096xNDRgQ2Z86t+zAR17pkBBmFYgefbAnUbT2CKglLEslyAmPjYkKwPzDGZEpJPicXCvBsrEiiwOWGDKDDcWPF5fwXVTJzcR9kMVWmtd205KQs6Ex31D3Q9w60js1QXKgJdFMXe8ZC6TOrNlzeCnK6g31Kojy02n23ZNNBD/DuEcgng6QUl0ODKY9mO4Q8MNOWnNKQg0zrMMCv64FO3/94M8hyqmwH2dEO/u2VE3pMcbOncNoyHK3WfeMgdEzr7bOMT5eCg8AIaM71c3pRqsOVqv4vtA9GwGn7MBIK8regPefntHurwAUlCPTa9hPKXVZNYeIYgMHCDgtgPdSiRTMgwmpRsttbQRpFZ+3R53rE+KrJ+W4eiAtSeXe1XB3A+0/YGcV8XDqQ3t2HQUalmtt9h6ertl/GbHUCQMzMWDvqJOM3NH7w3r7YuCq7UDRITX7+94++2B+9awrlkB4jrj3//tN3x5KlgD+VDp43IpkJbBm9HE5JiEnWkfuFLx8b8S541rRpBzZiEgvnPSAbHz07mu1HB+zpPD4pZN4B/JuNJk9cyO1ac74sX9feXj48cv+pojwBqBGzvNg9Oh+vy6NPFd7Ou5filOF/0tJnW5wRvqU1tTg09F5Ul0tzcBv2/Y/+M/sP/6QPn6Fddv35CfnpAuF8WFOXbk5aI03hlt35CXFeu6QiDgpJVu6KNVkNuBfuxojzcUIqT1ouXRCSDDhYqAatd/pR0A2QQJAP2o4NZGkFGAtKxaUXBsyq8qaAABaj00kNI0U8cigXWhrVo68rf3it42kDTU94q+b+DWcGzafrhVRmPBQgnPFx0heuwVXBuAhJKBkgglJ7y+VvTjwNc/P0GrDwi1MvatISfC07UAAgUb7oKyJNy+XdGa4OedsSPjv10E/yUzvjIjR6sNBevFZk88+Hvaa5x2bncN+vM9F4my8JMCdR6ebLLzdz+xzkTEJ1S+++vFks3Gs1c8TFVsk5ibGFk/cy3q1b+B/TbOCmdx+p6Tpv88xK1EYknjqOLCwK5r/M2MxsD71nA/tBV+vSqmYRNYq13XUdzJALhzGdrZsWVIZYB01T3d+ERtgGwPB6tGbYpR2BtSLijX5x+TMKItv8QjCKw6xjCpmMMZV4ePDVhcdJCH40sYoel45gww69he0+dl0jfCrJW2AjR7j8f9FdvrK473N/Rtw+P9gfv9wNtbRe9azZ6StZkQ4XLJ6IfggYSrAMUcF99XTuG2DLntFpW4HeYCWbTFwSll4iGvhIlWM7frTRefcGc+qMtYZxlkGTarK4WJpsLqm67zGQ/KgMGKIWWFfvBmBJ2WZLa5QAM0BMOLcaZG6EkiBPaWL5SQgJqtmLitSYEj5Un9gAYgqxIWS6yPshIAFLwaJEhDGKY5seACxMrtlN6B2jXA4jHdtQCLZKRgc0bdBdvOOA5Ba47RI8qn9iwpA+u6gGtHTTvSctHvZ+1q8AEV2p7D0coa2HAigBg/J8DxT5clg7tgaxUMwrJmtNaQiwIRl6UYPgx0yMeyms2YwMbjqVX0Y8NyfYl2RsWOW+BQJtr2DLDBFCgQufpl3BpyKpZUZSUSK6LQ6hxbUxOkYWO2DRCtiu/1gPQdSyJQJsVOTTjZof4ecbg8c9wj32K3kc2W8iQzTfzrOmOYa2romYViX3cbjEfA7g+Y848DNTAHboR24yGjYoXsBonGdI/pbaNs1ECdxAMtgvMikAubeaEwSg/tMxdis8Pj1wslaR+RjFI3ZCCvBZflgqN3fP/+hsaMtGzoN3YAACAASURBVC4olyvyelUm4NEO5M6sf16sAkc6g/ctMF/yekNZL1YhMzZBsSy04qVHD6+2ZPh4PQ+SuFKa7S4P3GipuWimB3p/R8BWhe69tAkWzo9IeywTWxTSHEFuHb3uCrbGHfXYkYiwlIL3d/1My0I7vt9VqT3fCtaifYtEBM7AkpL19RLq3lFZsF4WrFfCeinWYyyQTkBrQMlIL09gdLT3juKODMzYkSgeDF4ZizKMqLCpgngQWQ1Pcs0hdhvmZoaSG1VOKxZx94vMpPVpD2f+j9YjxTsMg3AKRgV46OlVB9u64LJfyf8fBoP8jkAbJ4fjOLd1yIfTadCm93CH0Oz2uzD2x46tHCiXK367P9D/+lf03nB7/4anr3/G+vIVZb1BQFrqyWQVWwdyTuZ8McQCgorFoIoqUVKB3yrADdyGYdq3NwMte9asuykJ4Qrue1SXgHUMMbeGum9o9dDI/bIYho+oY5kKynLVoGwuQVcM7e9XEWVjvMsKYeDgO/b7q4rVpm2Ml7Wg3RTL435vSInw/FTwfCsoxhKUCc0i9h0Cfrqh90Pv3QUpOY1gMujMYExhg4zNMsPyh5glzfQj88fxUxjvzq7h3Z0o66PKmJ4JYcyeaFXm+3zSgwBgZK7P7+kGOuAer8TCD2fOuZvgGVyrmjKd7KCuZMYmYDeR8bNncrz1CCzxaGEcOM/PTD/1bhMR0vsD/d/+B35ZfsLTcSBfVuSnmzpVZQFEK8i8Lz5BkwecVMlJazoRpixAMz1Wd82E9wbUHVQWiHSdHAFA6jt0Qkc1R64CROh9g2fVpTe0fcd6vSqdCoGEIa2j7Q8QJTX6mTU4QwlcmxnSPIGguvNnwd+UQUjA2oAvX4D9gfq4A8LIpGCPl6Xg19eG997wclNAb+6iWVAhbLsGY3rr+PMXTbjUqn34bv5wZTykI4sHYEjBIqs6kWUB+nXBz9cMpArhHc/CWKAYBIzBmx68GWRGJ5si+ea6XRR0OkjHmZ5s38PQFKWJCDpiEiGiFR4jmPF5FWe0SlOIGbUn4wQEz9mvg3nDIJn/AMyTY8SzIm6ruKwXgJDCMQonXcZ9QaMbcVxdfMvgWWx/HLZJYrISrrcFFazJw1L0v0RI5Yrl+hPK+hWpXJVvuNv7DfuRfWpT1sxzPTYc+wPCjPVyMf7ryItVehNpNXV3fDZtaUjLYnaZBmIiOWs2u7BXy3hFl8EMwJMnDehJnW9YC7LLrMSahbeEyymx5NPlWkWvFfVQfSytgXvHsR94fH9DrQ177ahdq8keO+P19cB1UbuzC6GUjIYL2tZQGiN7ZGayM8WCpTMUBGFuKJCBAQVMynJq3QdGm5nrAL++KU2X9xCxPK0l4E4RwElvj2x6tBEp3fyvoTMDoFeGDNLXYnPKobhqbldYosfBwb1VPwZBJZ3wlJDApG24WqTJKrNgleW+ZiTxecRdyPYmWl6mjZp9hunfKDJwd8X0sP/OIDRJaj+CxtQ5x1ARQrLJbL7V60pISVBrQxEfdkG43rq25YIg1JEWoJSiflkZQNs+ujrnpAl2D5gKA51BLKG/hWDJecHtumD1CjomtNqxWBV3MagAQNCOXde/d6TrLZL3ERhICXm5oFuxgAdje29azACDBLCCBOGuWHZQu11sClRaLgoOzO4Hu+0yrCyVaTtAmshlTuDbF9Drd5BUPTUJwB4YjU2KIKo+80hshz6M4IycE2Xz38zW8kNgEAOidv+ouPNrnAzqH45/AiasxOXy0I1t/9zPGmDB+kj+J3IBdBIRo/1JRDDwgCdT1pXd9BRemhVG7mwLRNQdgzEwjAoRQs0LJCUtCSsZpQDrdcVyvWlGzUeLgmyEKAPWaqA+cD9tRj8qIBawOB4BgpWXEucpBo29RZR1GhCpj4SztcteWmL0AuZQRmTBFaICsaoYWMsEAFApKNcXXQrDwUg5RykYW4uIAsk1yLRfPmUmEWHfHmi1gQg4jo5t0/d3+2tdCE/XjM76PcqaCTy2hsehzLdcNIO6Hw3MgnUtuFyKRXJ1WVmAY1nxWK9YtodmLSZrKLZ29m5kCs7NCk05ZhgzRGGQykSH7ogGLU5RGJGZmPz6880/4REaBEH/Yw0wLY4e/rlHftVA87XwNRC7tGe//D5xlVE589HQn+xXF3w0CY7ZEP74HpExBGnmwkDejq6TVKRvKCmDkmB7vCOtC9anL7gm51s1gCllFDNEHSzUWy0Enp1vWhZNAFedDMPWKig2KSaXRSdZlAKxkb2QDj7e0eumYGY+5r51tG0DAbher6CygojQdm2VLMuK6/NXk18M7hsEYlUACT0rmr4aHZotELsfuOPvf/vvkKbAb8tScLlkrOuK21PBdq94HB1LUUDSboEuyoRlSSiJQMhgecaOjnw/kKQjxtWDYkKBG0Xz/p322I2fmR4mPjlXn51pT3+dlehEvm4gTSQQMjyIEKHETjLgkx7jTQfhRzcYjb/62WOpBoiiazBgllnKwDJZB1NI23GBg3f92ycHk9zYnzyDD5sqJiPIfycMI44Y+7aDoW2FabkgLVoRRobpJuKtfARIBnUPdBpeRDsg9YCY7jmODVJ3AxPtaFVHamsLr6hzS3lgS4m2KIkk1P3QSU7MWtkjWm7NwoorRQnHftdq11JCZ/qkRc3gLzbiN6HVBu4V+9tvYGG0ekfdNhzbjmQ2Z++MkgF0wdNKuD8aft4bHgeDRLAuGSUT9p1RCHheM1oX/Pq3dzx9uyLlC26XBUft2PaG375v+LJmFBKtvmuMfe94NEFeEp7+/IRSEu644d+kYSXBn+sDX+qOtSvAPwk0UzptZ+j4ie5cD5wp0GWAUY//PPcFDMHgRpDdA8ab3hpDkE/NnCZrgm2iYfxsb8zHXJ4eDsF87rl61G4U/Bct157AA0UJ/bgCwqb54fY8rulL74m41hhvbxXtdkFaMvYqyB0oOePpTz/h8u0vyNeXUQ3gslo0AeBBEr8Pm01a1iuEFxzbHe1oQKagEVcdeV20XdAx4Yi08DTPTUMEkR7koYlPiiRKbzvcXNGJqAYZYI43uwxg0YmJi8kBH9dr9Np6Rd8f6Gazt6Z27PXpi+5E3VHfXvF2NHQWLItOi1rXFJI0lxT+G9KC1go6V6RIFAxp+2O1tds5Q7nNpwwz6awrPQAHC7xrMnbGvaCwXwatnumGRqn59Ffnzz+wcz/Zoe/JIZ9C/HgVE9k5Pr4diKoXd5CRSCdyAdEB5vGCRNMEKZ6CKaDRMQa7sQMD6110PyYe8r/5cylPwrCL7HAQePNdNUkIVE54cMLeBT6xqHd9oWSFC73raOzOABioh+BtYzxdgdvNAoqLVoP1ykDuSJmxLiXafIgS+tEMa8kCXYY1pVXiqo8zAWzVX6VkDQA3Da5c1gUA0Kq1OOWEUnLsRV6KrikzyJIh5fqkiVCTeSkpuLEGZhJSWs3n0OpTr5jJZUUuky0cNp8VS5BW/PGx6b4WaODZ9n2ED3xiakW/f0evKmN4uSiPVwQ3cVRKmUwlILFuZrgvrlaJTsFX9c1tDz1wHAp28lenKjwXduK+VARqXd/+/vFPWp/05T+KJM/ueUZPMHpwaap4+KF1CbOoOxuIgX8wGYq+GIAHaXBaPJixeW558mf0Swg6EtpSoh2nWgVKax2vv/6K29dvuLCWPbvbIIY2L62h86EbbIQivSHaJ7r25EvvSOsFjRfFlxErqU56ZoZNTzAsmWxGZe8thLE6QzYu3DKJgIEd96a9wBAQd7THXZlsvYBE0O+vatiyjiYmsvKwXBREmBKQtYqAoG0YlDLKctGWjfoArle0xxvq3tBr14kUGfj2UvD9veLXv+94fd3BDCzFeusJ6DujJMLXlzz1UxPum+OCWLaQNQsktYP3DkjCgown6ZaFdII2Qh7bGU7DlKIZGZUP9O0BG5qIgZKMghy7DruDOpOPTwWiKZDxCY+RKfVnnH6jj9w1DMWPbtkpCjsZU/69iN8MaRWTnMa1bO/cwLDnE39O+zAK6AQBwhkazi7j/qMQUO0UygmSkpZb7zv4t7+jA+jCeP76Z1UMZdX2plgFVxSs1WIJgHSgN+ubF/SqeBZ5XdBrhXDX8k8QWn1AekW53JAuV0AUpZ7bAVRtrxAA3BhoDV0E3AiFGa13cGMsRYHd6uMNtD2UP02og3Rkd78fZnTqexIRqGglXckJz19/wve//iser+94e3tg347AlaCcUB8d//nXOxIElwTcngqev90Ay5bsretr5wV0EzxXIDOPKL5nD1xXeLAYGIbKrEtmmoJ/xzfPHZgfFY7yk0y0+MMpZy8llK4ZOybLf2zR+4RHKHfDlwgHzX+eqiEJEdB0VgN0vTzWegpO+RrJ6XbwSQfAOH9e5rAR4pdQkPHj6d/pCuoU6kYv1xX05QvyekWtDXQcEEoKDJoyWAR8GJ8Ia1WoGU69bqov6qGZeUCrOfddDbm3VyzPbAY2A71qJpUyUBYguWNo180Z13RTcFRKaMem2G2HgQ2KgMqCJS/wUfdgbXNMCai7Vubs93eUiwZZuTfN2pFoW9b2wPb6CrbpGLdrQSLB2/uBWvW9fvp2xdu9IWUdSXxdMxIRvtygTnQXLFlbno694/akMvb5VnC7Fnz7csG//9srUm1YSFBIsF4KutkQOnBLwJkgaYFkwfclg9uC5/s7boaTNzCmBndE+9pEFHPVxiAtD5ZSEM6I3U+M73YZjMatAjayyDMRf8ZjxrKzh40Vm9flpEMlKj9PCxeV3bMsolHFbXqIYjF9ac9cKeLrLvNNVXd2YIwonnqQRavrHo+GBx2oknF7ueByW7F3bXeqe0WrDa025HpY6y2bE2HOrnhrpr0ba9AjLStyWXF7/opjfyjwt+z2rLABG2TBloqcM45jR1lvQFk06RnVotPq0BS08oQRdwP313fUBIvaZylna9XQKh6SDq6GR1UPAALuhnkDBR4uS8KyAq0dOLZ3LOsVpRQsa8Hz84rLklCPhnowbivh6ZaRwKgHW0WM7mEtGSt3LOa0joSK+QjTO4VOSrqPJjkRst4E70wpZ8DSIEFdE3F+Nt6ddONZfY7ATgTgP5x1er7PfCSMCod4DcM8iTVEdGGoPkvRnfDRFg3Z5czMAsoCzqItUDRVoyZbSSL12cxu9UBKjPSJAM0k7wCVBWE3YWBYwfWzntYbsLeE2oGjCxoDtQ88GxZowJ50eqewBmPvu7ba1sZYDu3sqIcGMy+3gkKE2/OKvK5Y1tVA9MUKBMSCHBYEiymOiofT3dDOurT7ptAYS1Gg7N4NcFjUfyMG0BicCIWSBRjNlgR04tqyAtZOLDBftm0o+RuoWCulInbHGnHXIGsuBUCC1APcqiZGfVgOQXFq7PD2KekCzz9K28D1Dq4bmKtKeDLA81Qg2Kz9yeE0LFjDokOB0lSFFozmBSJTsDZN/GsFDdo9J+GCONcpKWryOqg32htPhvXvHn889Wny4U58zjLAI93w5PEwUzpvMjQlxo3pbyPi7HbjXFrr3x0vGU+l+oVcefof3RCZrFtzFveSUUX72cq6IJeM2ju2+ytKayiXi2JKJAUwExG0o4L3QzNnAOpjN2CnKbpOQE5JgRCPh1bWlBW4PYHWCzwzFQIXFjFNTviCEiLfenlZy1chHbK9K2ZFb8i5oG0PANpqoQDChHp/1fck6IQMUmUhNtow5xKLl9cbUtaJVK031LpBKwgK+q5VOwlAyWZOsIIIUwK+vSyo3aOtgt4VBLkkgAqAzjiOBqaEkjPWSwIx4fXtQIFgzdDATvfJHIx7E/C6oibBSoyldxTuyPiRbge9nI2i+InC7ggqCaVlBKx/H8prMIx9g5X5ZiX7eQ9/PnfoZGYkUxjuZA0DMASPG6yYPguG/ODefeh55uk6I8uof5T5Onats9Ex3WqKOkcFHBHAABNhWQtuTys6JeRr0eBpykiXBZm0N5dSAuVsrUqaaePWrZVBz89l0UCnBZhcjhJB2ymMVoQZBEbf75BeUfcHeFmwvPwEEIPrAYC1Kq13c14TRJqCj7cDrVdEeycT+nGg7RrRT0sJoPFad7TD8G5MUfSqWDSUFZyVcgZSwvr8Fe3n19jnv78e6B1YC+G6JsXaOCpW0gj/++uOo3Y8XzMyBHsXNFqQLgX50nHZHii1hVHxkddCEfmGC424lxuemMhtosUTHU1HGIqjB+90l8Fuk9AXmp5Nn+NUuflJjyhzDUPZ/2d8OQPRhJ4W6CKbfpQPRvx8/VgiXc/o2/9w+sdKVbEvR7DL/hSOqut6HjIldigJdtjI+/ff8D/+7w1f/+u/4Pn4F1xfvqA8fdHM4LEDzChlAR86Xl6rSNVI4dbQ9kNtCMuGlpzBtWL/9T8A/jPy9aLrwBXOb2m5AmkFSPWKEIGPAyAyfDabRJUL2v7A6ngW+xZOrnCzgNEOfqid0PcdwoxDACJtG8GyIJWCy3rBsmagb6BWsb0JHpvaBK/3GomI7+8PrNeMXBKWnFCKVkzUZk5xAo7K6AC+3FYIC9rB6FWN2Nul4H/73/+Euh24//KGtlXsu+pXJuDYG9anFXlRYEgiwUN0WgjlA0vrWKeq0oi2nXbfaWf6zWjGA7Rkf0+/44QMZTG+x/430z1zNdinPZLqHG9RUflLsQ7+MQI4XT/zdfMgzAgem6E/Zd+1NcN/ne1SDL4b0dCTEvY/Y+LJD9FT17L6c0poDMUNfFTsrzsEwLIu6K1jPyp+smy+Bi0uOimGtMKbLdAiwlbVrbfs+wNcd8W1yTpxtCzahqCYbDucENyWlVrBjhtBvlhnWkiUNAvt36UcVZ3MDb0208UqK3s9kFIBSHA83uD10iCyIRtZJ0ElBUtlVuyp3hsyZUjv+PXf/zukKfB/WQt661ivBZdV8Hjb8ctesSTBWqxN35c8FQ2+QnDlcyX/sB8ne/KkyixtRQiHDaCQq7FmGLYQgn9wYjell3N73gi0U7AnyfjiHAwcdPqpORMAAqjXKz5jIg5JVB+kGUdGAKSzj0UTnwRf2rRCdNGqxQWA0R6BIGmqKHR56GOpIVFRNtCOTfQliuB22L5uK1m1h1ZOyEQHDlatAiYnGlNwPVGsTa3aplcFJWtgLxHhvnesrBUmSxbDG1VQ4MSqL0kEOWfkbMD8JYPZrGzSKaViSUVitRuXkiBd0G00eFkcrJesu0PXlKUjU9LAB4sN0yAD9LYiBC13sbilYbpaRbt3lyAVs9mrTl+khAxG3x82RU40ScNa9V4uV7W3IabPrRI+1E7SKsG2ox9v6MddOz9KUXt9uQC3G7DdkXi2z5JBrHxogTVdF+La1kKMPn8ogDEGGy1SMNDjIQdPwZ8oUXfd/Y9t2n+KUQNgEJELKZdkQlEyNkCxJgU/tNx4kEn/6J/stY0hoh06rjEMiJBa4p9OmxRySSbFqQxQlwKUjLwWcKEYI5pI8PLTC57/9Ccsl5s5IJolIMroaVOFdWj5Y2PtwU9JwE3Lu3vrBhw67s9g7UIvRSPEechWIkGO8wWUrSzO0PZFGAzt1VO8nAP9OLBcrwAE9fHQr15vcMssFW274l6NqBKkVgNJJKBrsAetArcvWvEDRqaE47iDe0OrO6Q1bO93gBkvTwvuj4r/l7p3W5LcSNI0P7UDAPeIyEySVV3d1bsjI3Ox7/9KK3Ox3dNFMpkR4Q7ADroXamaAB1lVeze5kJIKph/ggEHV9PTrryQjE37fKvNsUyqch+ACwWMJ71DZbruZpmKjRnUOXC4Bd3Ws7xvbmsiieFV8a7VSEVZ1lGBjTa9SuJSdadtwueDO/slJdrpcnF3Q38GthwU8/3dvNTv5nMMJ6pl8PXEyfe+H0JN0x+2fHXE5qYV99iCw62rZgsOPOtvOf0YDDAegr193PPunRR6+3de9q+25YNgTMz3QP/0KCBQRCoJEzxStqixtgxYKIXouT58Ji1XUXcvCO+fNSLQKem3tTz5ESrJe/LLvVtUPHh/8qJak+zvOOxOHYq2NeU0jQWGtfQs1bRSzjfgwmeF3bWKcd43rpiWN9tScRMhpJ1yfQMxw2WQ5g6QWtSro/X5HtfL06RNhnikp8f7bKzEGfv7bxroXQnDDqDhgig4vnpoKOSs5Z7KC1Mo1mmxXFd6dp8bIkwhP3IhtEtY5mBh+YnceT8/OHJCjf/v8mJ2c0VcnCTo5MN2RPPTvaHk67Yin/+5y+fcN2Pd4yMfrPfd06em1vq597eRAnx0J5bMtpDmIyjmJdSALH3937JAiVik6vyic4BanfZLT9bR7UQxqrXMkviwW0Hl72OIc8fqMiwZnZhLKtrLfV3PK1BIyNRUj9tbKFONoa9JaSO83ptlTUmL/9b9wU8TPs30/9FHgFVgNlTc9me45R8mGNtVmu1NKBnEvGc3JkKcCJWX81Cp1JZP3HUolbzapJufWEhUc/nIhXp9wIRDChcvLj5Q9EaaZ+9d3C9wm4e0GeOVyjcNBW2ZPKZVl9laYANZ7IkyO6xLIRUl7aeiazOUS+PZtHQjVMAWb1jM5vr3tpKTULTM/L9aKKWo97qr4eeKVZ0ThS16Zmnc51FBONu302B+dud7S0lsHmt4N+ThHjCf56vv58Mn0CASl8r0eXXcQOCYznfYpGHU+KSdPvX1H2n12HIPtw6cvNz3X88no3+/nOtbeNk892efjPFLtvXMG6TDTQq5wV/CTt8BP4NPzjAZvrRMo+77z9ut/kXPi6cc/M1+ulpBsLbdePM4543NRbbweFvg6tTZCF7VRACi0lmC8G8GVah62ttwTswPR1saAH+OGz4FzlxMtVpzQWnAIVQt5veO8EZc6cRR2Q+c414qYthA1J5xXaEM7VEFLZt/vlGRcck7g8vTMr//5v0j7zv19JaVCyTaZVGplW61gMgXT3+fZdOi9CKtM6BxQLcwp4cvhaZ736u7H9KT8owd58lPP+/3pJAcxMaPY2m2fDPLStnZOB4pknP0w1U3OT7rZre3vTcT3dbhTrAdm43qsNNqum852BIc7OZbtI53wVTitYxsMQQUv4WifGv6pnGxx47uR0zMW6BOdjmxLe1YDTXM8kBHQ90tNSs2Qi7BlZS+WzHcCe61471n3SipKFGVerAOjDyXOGbYCZTeOtKwwR6EMPhcONCSWELV8qY74qSODBGsf1lrwaCteZNRZHDpPds7SiIdDjCMhlgsE71AVvLfBAYZeyjDFdt+W6Onba3+2CqhmyEKffqyqeB8b+sXskHWMvKNakLjg52sr8iScj0aknBMuXoxqwPkWBxn9gXMBH6+UtXHitd45rYJ+/hf49hXRTE+m2nUxwFtHLKKnmOaEvITxykiuqj3/ih5xFiYztvX3BI/Q6dwsH9KROGfP9/fHP0nU6DBiYwRof6sc7SljpNyHTWA47j0Z08+g/Wb6B0fUSO3fOX6+e5vjNSPx6b8v44MPxSLtLVlNWYMnTAENjsk5igqXLz9x+eHPVprvm6D3OIwYEB9x0bL+uq/obozVZS8WyLUgsFZpaBzQvTTCowndN4iTtW40MuIjPOmbUVOaBkU1gqSNWi3rmd7fcc6TacSHxSZP3d9vBO8JT082yiyv6LYNAjGrbBbSt68A5GRTbfxirRxuvqDOWjNUhLxBzpnpcuHn/3i1ticRfr0lUlvL+16JRihDEGfKSCWnOgxwqUoA0l6YgidMns8/Xsl7YXu9oXu2gLlCTzFLBQ2BMM9onVHnmG93I6U6OUAPSYPh9HSZOgnnEemZgspZqH6vjF0+j/N1B+7vK87//sOcO/mYZzkfcta1roNd7tqf7l0fnsNh0LvBOXkCY0X08UfHZ0ZZ6aPR5eH7D6786dmZD6YMsLH2Pl6oKvhg7POff/oTaLEqScu+O9/7bx0Vm0ghcaasYtV0bNJYLYa2yfsO6kc/7XS5ULIlLCmm4yUn0ts3g3J6wXvTrY4qybUOnifvJ2oRajWjk9fEdluZn674OJFysfZFcThvrSIuWAuVtnasTz9e0FrY7je291dqStS0cX9/A3ckmcX1EYe2xrd7Rkolzp6XT4vBRUtlTwWnlVpsbd3kcdcrNXpe3l6JLUC1R9YevLMH0XLdD8FB95EOXTnE7PyAzw7OSQyP3xpm6/eyO9Sxi9jha45/fM/+pg41OCrvoyX0g7Hvx3mNRhXvfONDYdoDUY4FOnvqp2t4OFw3rh+QOvr47OTjd7t/K2LJP9QCBeD68sL1yw9YdTuMwNVPRjJc0w4lWTtu2qkpke4rIXpC9CDmqPqWjKEU8rYR6sT+9obUTPz0jIuRfHun5tomRAguZJvCWBQJwVBltRKnCyUlyv29/e6GD9aKVHZrddRiBOPpvps+cfD+pS0hqZD2xLMPCA7nIvuWKaXw/Dzz89/e2VJhio5pCUyzjSx1TlgmT3BwuyfWtbJt1trsnSEEXV9DFaYpUKu1SoU2knUvhfv7xr4nLtE4ebJzpFoJtTLH1h4pyp4q9+JwfuKqGd9auqR25/Nxz+7SdA6EzER+sAsd0t0JOVtiR0cyttkMYdjnPsnSXLHv124+tNCffMoP2jO8NLun5ht2BYFml5SRMD0h4aSjjOS08gOVNAwvg/Pl9NaItWp/TY5gciijUtRa+ivW+iDPc2sHNiqNGD3irX1u21f8vqGlsG8rYepTTnv0KxYs1WIcEI0DMZdCiBHSjrrc9oqMUViD1EbYCcOmeufRtOMaitWHjr5sZBu1W3da8XC3da6VvG/kfSOtd0Kb3KbVkDBOBBE/CERLtmvs8YW26VIp7e25tKcoFlBen575z6/fqFXZUuW+ZrzCc3S44AgtKNtT5S6O2NpiBMerOEoIPDnhkpO1Qp380jFCmp6sHELSAnt5sIOP+mgPbNi6k+07pPFkmxHGNLDTB46k4XGO3+3nYqHk93qI07HfKFiSpimFogfa5hQvDp/gcEzt367B4dpCDZ+lJX6cNw6UX4gF6AAAIABJREFUkZzsCyWCYIG/oercSMRZssaebm+dMamzhJIq9OmrHaV4bgfNWUn4AUpwLXnhW8uw94aMm729nkslJ3jdtVHHK16EEKCokoq1/4esuD0Tq+KLEpq9EcWQJD2pV2sbnmGTerXpTS+o1L35ss7h2rhzHwM4u19EmCdbt26zRYzYu5RM2TZ8Azz0zgQaAfCIQ7SiuluiTATnAqWh4spmUxrLt/8CNeSehAjbNnhgnI/INIGfKGkj+IBIbO2hCiVRSyKn1QqlpwmXVRw6LchyQV+/DbmxhF7TsVMCQoZN0yE/Q8w6sqdNrunPureBmc42mevJaT2f4/B/h6/7D7Ko/58QNR2m/sh3091OGRvTmS35VIxtBufkeLa7+Fh10PO5W9bcNrB2U92plOOmfn9zR6uFqppiOocEj58jMkdLxsQZN0Vq3ojTQq0ZVSH6SC4W1LlpsjaPEKjO4VWNcDQnym7BnI8HOVNKuxmUDNW/Qc74l8/gvYXIJeEkoLmMB6Vt6hI4tFoFPm8bfpohF2IM4DzOO8q6QUps7ytxjsTLjJZMev2NfL9b5V4EFzxl29nbxAnvxcY0quJe3whTIF6eCddneH7BTzPT5ULe7uZwxshvX29cL55lDtzedqbZpmekolwmG0eaK1ynQFbLCudszqtgHDZpz1CVZZm4XK03eH+9oRHyvVK2yrqZI3oNkRQ8qh4PuFqJ9/Xo/Rve1KEQh9fUxfSAnw4J1WYsnfxeVk7G9jBuvT/x7Gh9h8ffIZ86jIOeXzx9r7928h3Rh6V8mChw/DEfvrsXTqB0Xfv4Ezr2DDl/efzAeV8YtvTxBe9wS0SCx03B2oG8VQLjEtnvX7nOT5TtjpaMv3wCHKp1GGHbL4z0uhsVcZZ8LduNkm08Lt4SkTYRJpHvb1ivfEUaTHS/363a7c3xtBGlmTjPbfy2GuGoc1Bhu2dKUcQ7mwQTIM4L4CjF2PQVSGVv010C83KxJWhQ9rzuvP76C/u2cV83SqlcLoEYHTkrXsGjuFK5zp5ttX7iXJQvLxNTdJR9R/edvGeqKvcMbo5IEFZXcW83fMpn6idGkqaLgXRL8ihG52d+DvaOoOK0r3d9PVeTx3snXeuepp6QAWcZPhm+7/mwdrZur9ywWyOBCY/recqW2JpI+35bswaxHhxazfHpAN6hZh+e0Yfs2NgPH5Iz3R/W40zj2pseF+dwcyRMjnhdWH76Ky4GQ7O0LzgfjWR4mql5x7UZEmV/pezJeteDIWec1gYHF+bLhf32btwyKOvrG2XbEe9tDOhlxseJvO+o3phwMOlwxAJzS7qC7iuokvfSHL9K8XYdqtqKAbC+34kxDnJAwbgucjGUrFdlffuGn2e2+50wTeRc2G4bMQiqDheEl8+LIeKKTXNYoqe06v6XHybSUzAUattfXu8Jq8Bmrktoe6ewbZn9rkQPl2tko3C7FSPkvzjCHLleI7Uqe65QYIkOL5F1V75JZaqlBWL68GA7V7ue99mmXYPL4SQPg7x2JDVO9qEFLB818Myz9P8D9fyQRxmGsP059q4jCd0C4ZZA6XuZnUfHZ+zcOnRtrO0gbZdxrjHR7lwoquMyUPQ0kabvJVbZrRUSFo8a0a4FV0v0bHsBZwGdU5ifroToyfsdP03WVqsNbFBrQ2Nb+66hUKygmNaVklLT2b1djyLOW+uTs3aHUssRnPmAw5PevhKun1HXJzy1gJA+ZlesTWFPwwbkdSXvKyI2vZHUiirBWoYpxmVTa2nBbSVtGyWbnqScuK8rKWViDDy9PCPOs6+J2+2daQr8+msefDgi5hcvUaBACIIES7Raa4WwZqU4m95q/ScOlZ0plQMoefZLu4B1OzViHEbC3uTqg3NFl8ejQDL2/eEWndrtHn/6wZYMM3sYz5Mv/D0rp7S98XSdetKnh0jZ/q1j/4a+cMPUNhlxDfVwHpXe18sp4xxaj2diQIB6cFW1xMcIX721NTk1vkVpSZ1BNjsSrCdHu9runKvFKgVlN9q0xiGvAxThvJCzsldlr7CVNvClKFqUS/TkVnxTVwjXmVwqE7ShGb1FiOHLlrQbuKCU1npslyZZkVyQXAm+cee1tlyK4ieP976Ntq4WI+eMxMluq6HhNBWKLwQfDPESJiqNByZtSDC/wE9PRvSbN2puwzlQyv0OZafsK3W7WfJmfaPor0iM+OUZna84qYSw2HfWGxqLFTz7VOO0U7ZvViQSWmEnDn3SH/6CvL/Zft4TSJ082jEAoSOR3hCGB3qytTQDo42cR8Xs8eN5PxiIwtq6ILSO6xub/985/jFHzTBKfPiB84cYiZRhgM7vfdxJ1KzW73qlD9/Bbr9/dyR/zr/ZzNjDdbTKezPAnaxUp4g8XVleLnC94KfZqmg+tJalwvrtfxEvn4iXH8w0ukCYm3OHo+4r4iMFoVaoWal7m2ShSogCYtwqdMO3rWhOlgWcpmG07WEpWi3LWJK1Rbi4ULbVeuZzn3Vvm7/TSt0LdbfqQ4wOL1DWO5oLtVRj/86FEAN1MzLTbiv6aEhByamQU2K9f2VeNy7eKi8hXkZv73KJ3N/h9X2zFpMlEmePeMcMeCdcokOqjRHd9kzajUgR56gKOVVitMz0/baSV8GLUrLBTWNwSHG4pI0JHTxW3dicp4rj4oT5/WabIAcyZlQXzlG+o6FGHmPKh8rDIc4nZ/KUHGjG8Q+N33d2dD1vJO5HnNudOhjBtp6+1dfo5FcyWlDozqA8nvTs3rf3+8cGMPDsmJhXcDweZfAedPLJh33iuDoz1Ap4T7hM6ORxXvCzJUnEBXwIOJT3X/4n0+Uz0+c/EeQLIkJcnhFx1JqtelBAS2VbDYFWqvXThvlijlra0FKN0L8FwM55tnW3gnLJNp7TO/b7St4T8Xox/ohcrIqZivXIN8e9pEpKDdHT2ptKLsT5Sphmq2N6j3hPaElbHwN9itx+X9nffkFzZo6W9PFO+PHzjI/BqoJbZg7Wirh9u3PfjQDOibDvxdoWNaC5kjarmBgpaWVFbB3nC7EUfLVKZ0dcSH+Wg4joEJaPsc2hJh+f57kVotsIPnzp9wbusAPH6z0YgrO8f78Op91CgzY3pP7DZiIyEKEt9uK0shZsj43r2OOs+kqzw82Zrce6/96kfkAeKe1i6oPT3y96wHO7o9FlAcH1yvMyEZ+u5O2V69OV29f/ZH56xk8XFAjz1UhLgVpW8J5SCn65sH5dW4Vd2NaN+RKgtLaK0mT/tlJStokWVHPeaqVMVu0vpeCnG7khA5w49m+/4eM0JFAr9tltQxF8mIkxkrNBvI1EPzJdn7i9vqFqCNBcjHjw+vxEWCbCHEm3N+p2Z3t/YwmQgrAl5eU5Ei+ROFlwu++VyTu2vQ623j3ZAjsR/vwvX9iTsJffmCdHqZX7lnm+2HWJCPf7znvaeYoWAD9f4H2zYZ6lKm/3YnB2MYd53QoBZRbPe7zwVHae0zaCnM4304VjFNL0rI0NGdL1uwciwkCMDOERObqalEGUbS0r0oLf79howil47f/WD75nf13Ofw5/tTnvVbVRD+ijzTydcvxeM8LtjMdzKEfLTJ/KYurZ1v3ku+jwbZqOOgxZ7l3jERQIbgSVqjZ583KZrUqdd+I8c/n8U0MJCD5MlrTIlmgp2drXi1YoGR8nCx/a5FDnG5dD2a2omApuWfDe21CNVKhpJ7RJMPX+2qareZQCdafsps+qxfQUBXWkdT0GaYhYMFkauW9OpPfWposg3jXCZPO/c6rWOlwr4r3xU2nl159/bm1XVoB5fbsTJs96t4ArBCGKQ1Nt/qvnMnmMIlJx6vEiFIW7OooTuDgkOJzbiHvpUY89G7HdexDUdrHosvCQJ+iIHXl47yiQHPKmLYA0n+mInY6C2mMR8qMGDpH/zlUTYZDgdp+eeiyb0viz2jofx9lXZUzxAZsW9KB/yiAj/rgZiDtsnumoO3R1fMj08uxb2zAl93AN2vYGUUGzTVHaqvFJ7RXuqVJVKC34FwezN39Oamm670haDSUn9tnoHakqr1tlDsLz4pgmT86KFnDOE5y19NdiiYtOM2Bd/obG01you3WEaLa2/ZotgRnmgI/GP5PWnZoc/mm25K/3lGwonfnTzHZbD2S3iBU/SiZ9+0p8+YKLs01gFCj3b/jlkyFbmq+a9ndICc2bocfXdzSvlLTBsiB+MmDEdje0zL6BD+T3b4Trj6S3r8Zfc33GzVe8D9TyjuYbpRj/XOd69I0rzn36Cff0H8jb22NsqB9bhM/u6NG+2WXG9a6OYnIhYO1jQ07MJpyLntoSetae1+Opdv5/AHb751OfGkHlyPo8GDNtG8lhhHoAeRT8ZXxU2sVbFaFfIL8zlMcFf+iv41CrY1/qLimHA9LPEz36px+ZfvgJ+eFPVOdx0zxaFYxELRMnR5gm/HJBcYQwodrgnH6iON8EaYd9J8wL223FsncZLRBnq2iUNpe+5oTkTHavlqjxHrfMNpaXSlnfP8QkOliuUXv44rz1Dso+eIGsCljJuaLJ+vsFyGKQSNs5HPuemSbrLSyKjTjF+gZLUeJs/b75frMV9J4YZxDH7XYnBEfKRgL56Rrxk7c1qUrw1k9vUDplnhyegAPiMoGTRnpo2cjLFAziLpasWX/bSFuGxiZepVFnOcs2I5bcyu4ZLxBvN8gfnMyerezOZE8qDtK1ZkJHJHTSuqaFD2FMk8U+3eEEfv4+j+YNnnNV0Kt0jKpMv4/+/gPS5fgnvc4vY23sMEdeTgqn5yU8VunkbxyM92cHwvaR34XX48sNitluraqStkx4hhCNyd4vkyUCC1TNxGlhmgJxmghxxsWrEQ9ixtr6QT3u2RzZ3CrsNW9otQqiOE/eVksySuf9aqTjQNps/GhOCdFKuhvxYpgmS0iqVTe1bbq5WrtDzgUXlCCeeYqtHWS2iqWP7PuKR1q10BB3ad+hJmq269m3uxGpOse8mJGUYAnSSX1LJNkTzqWyJWUOME0B7x0xGirQaWG97+y5EpwlbJI4VvVcOiy7ezI6ntxIXPUH3quBQ/zkw2NUGb32531ahnSdPy3Hs2+2oqNFxnHypywWOlWXP4y3/a6OYQ+tX/tRQfTkYLd1HxUVM4KDi+BUKFF6m8kBp1bh1NLUTnlS1ZPqHWspGJ9LOZ73+G5zjPsH5fQQxTvi7AlPVyRGpmUhr682OcE7fAhIXAjLs43UFYcTT93vTJ9/IL++IiGybyve2T2st40Y3Rgf7WNkeYL9fscJpJQsSXNf8aUM2dCcWyXRCie+6Y9V4itlTZZQna3ipy1RWkrFxUicFuI1IOKZnx0uRkoqrPcbYQqEKRLnQN7N5pf7G2W7kzdD07xcI3ghxkMhQhDmKTBPNr77eo0tAZR5fpp5+ekL91X5+dc31r2wTI73e8IBl8mz7zb50Hvh3hIwJRvR5H1NhMuCW2QgVjUIMjWDWQpbVe5h4pIToZEsPjqZzRLUbkf73q0j+Lc9WDgn8QRtaFSG7R10Kw28MyxCTy58x6qpcCCF2nUPBO3QWk68MX3v+eBUc/Jd4dBB7XvdCa3UPqxwVNz7D8nJ21BFRoLo8JGBUbjsu0O/Uhc8NVpiVJzDR4+Eiir4IORUiKHy6ac/cfn8gznnEmzIRCf1tCgLERtVr8Xa/LRW4mSV6CrOWqfe33BO8NFQoDYFtbSA0Nax7hbw5Tb5LTx9RqhGPJozJd1B1bhuVKhpo263w29zjrLtaFUbdLFnezlEVByO2Cajmi/rJ09wjpR2Ap5pCuzbTgzKt19+5fZ2M7+civfCy3Mk70bALaUQVJBqQXkppnOqwraXhkQXolNKC/gIhqB3bFZo6e0Px8ZPNwJD3tyHgH9wVujpOx8EtX9+2MVDuQ77osMXHK8P3/AkzyMw+qMf+06Ojnw5uwEnFEz3LQ+9BfNZT7CalvwauELvkFoPvp5zj9npXEfhsCVelcYNdLo+5Ujc9DhWjucsHM744X8DVanJHuNeTc9icGQFVUfKlQqUIpRcmbx0Ll4DebTr2ItY/OVAxDFFswelXWtcIiH4VoDM7ZormjKad5OWUo3brdq/S8lo47sttVJSoaZs+4gXonMWg96FshfmlytlSzjvbNhOEEPIRk+YJytM5Q1yQu9vaLThGdSMiEe3O7X2FkiFvJHefqW8fUPfv4FA3hNhMV9ZQh0ABnKmVmtfNC65v6HA7f0X5ssTbpkIs297tRVdOhGyjxFqsUSOE9znf0HfLQavtSUs1HwFnBv8ZSpC1TpsJp0ovdgeq46RGFQOwR0tcEN07D1p/ogVQuRAUz4Yk98f/6T1qUI9ArGHeA0YVdcqJ9XRB0cVzo6jjtOe+3vPfiw9y/7xeLiPUYs8bUAfPuuAlwX/1/+O+/GvuOcfIAbr780rWjbKfrOr9pFw+QkZU5ECOe3GGu8MmVJWJTy/WMvPt69U5yhJR4DhnGFWQ3CoE0oyQxdE2H/+G/56xSqZhqIxqLWharTDtXK1EaeDvV6hZMQJNRsfR913aq7kbaeumyWTYgTnyEUN4gXMl8WMQau8aFVSyvgYuLwsSGijw2tm//arKXctuJqR1sa0zIHpElrLh1XNrErnzIFuHVyXS0SXRiQlQirg1DhuBNj30tpDKtHBNEcKynbbrR3LCeqF1L5TBLLzrCzIk+Jqwb9vLeN59PXZs5Yhij1YHEJ1+I70StghKnr6czhUR9vO93+caXqkVRrOenIO1IbhO1c8RU6OwrGxyENJUD44pe1HmiPROWXGqU8KbcGT/fNo/Ty1Q52CU0QGgk8c+OvM9csz8YfPxE+f8POVeHlqRtkIt4007Jnp+hMuLEP2a+3EvsE2YR+Ynj4TpgU/zezvX6n7zVoO3USgUPa1OehCmGckO8q+Aiaf3YiDEZPmbGMEXXN2RSxZUqsFNstloaoQ54V4fcLPi7VA+ogLkdmHloQJNl6Yiq87+faNvL0Np1dEmefe12yohlLNOct7Id13JBcu14D3BTcH65dGeX3biU5xjSBORMhg+4RALcLsZmbZmMZzOPb5IQd/9LxOQQwn2Rpq+SCp2nP6VnFX6BX+IUfDudQHMesnOnS4i9Ef2Ijv5Oj62G96rKecpGiU6uFRwY77sgSp2diuR6c0zu/s+rDPh794+Punsk5vyzrY/to+8IdLqqgX3J++8PJ//jfk04/4y4WSd5Pf4JmeXojXT0iYcT5C1tEChdCmsi245Uq5v5LfX8lpA6VVssXin+ApKPGyWPWsppaM0TbysxUL9g0Jgf3+bj3rxFZYaS1PDROec+Ow8OD1GPsp0hKk04KbFmotxMVao/va9PHpITruJVkQGxyaDYLuJo+fGsFp447KxXbCENzoOb/MCy9fPjM9PZHZeXqa2e4b7/fEMnlu94SWyuRhTebAhrbnBg9bqnjvGvzcCBjNb69tz7HiyXovVALPOILWxjOlR1Fs2LSehDm7kOcor713Es/DgbMPST3pYdfdvyc+39thBq79w7LretKlcQ+nNgijVjmhX052bZyyfa7vU6AP3cmK2TXt6GCO06OH+nd/5UAuNdt4vn4O3fZecEskvEwUhBA9qoZq9t4RAyxPL0jdSe+/Mj3/CeeMlNp1El7E2qGkkfH7aAHNvloSJRdQm5CGWgGzwWFskqEIOWVqzYQQLHAT0JKpuyHLw/UZKNa+1KZMoVaZL21KYy+gKhg5fq3UrVL2zL4lxHnidUEmBTE7aIUPQ/BM84wPjm19Z799I+0bcwRdHN/eM08XG4ChFdLu8CiTRPJvN7YEOGGaHUtwqBeKE9YtkZPptohQnbBrIPnCHGyqFCIHEk1bbGNZhVPwdmzWZ/Lhh3L7+TMwiKvt60oftznkpyfWh0yYEB3FkS5UJ9TXd3z0+NCNqWE82jilocV4KDBqa0vqZlSbDzn2ps4zA9BXRRoCpo+pb+9Jvw45ruc8gMOdkzSut7u19pjecWJfsgvKhbxXdnVs7dnkYhP79iLcUyZ4xxwE9ZasUdHhC2/ZOhiCCInKjCODJWuccM/K4k2eUirUAkS7ZieAeoomdEvk9ztly8fCio6kgXNCCM5QO9GxrlYgJCpVFd0zqoU1ZRDBLzNl23BTMFCCVPyyGC9csdZL8oreXwmfvpDTHR8uVL3jagJpIIG8U8tGXd/Jv31FsbaiqlfIO9uWGmLHsa93aiqs74npMuFf3m10+BwQV9G8sudMmEPLpdhEY/HBWuBCwE8zohn5/Cf0P/5vNJeRbDPha/t7QwiNdtUuV5w/d6KCQJuf1u2rDFnu+thE7LQdNDnrpP3/wIL+k0TN+co6quZ0jLKL3YUpxeGgHsJ/gnhLV7JGvjss/OG0nx30068fG1LfeDic4MfPmqLKn/8N98O/w/ULxCtuuoAITjNQBz+M+BnxS/uSHBtAO78LAcKE1kJ8/mT3UWF/eyXf3y1A2yqLeLxnoF9qaVOa7nemnBs3TSW/vzH/+MWI27Ila3qAR2Pj19raoqqS26jtSrFq4bo30jcb5V3USBKthSmgPhCWi5Gvql1/KYW0762P2FkwipL2lbS9oZrJORkkfbKewdDIgI2A6xA8K+IKLggRR0kVL8LL5ydSUdKrQc5D8CZ+nejtnljTztx6p8PkScWcoLJX1ClTtNqfVqVg/dLRB4LfIY3QY8iMdgnrotgMZJeT/u+j0eBRlo8CVzeAZ1Dld2zYWgtDdzL75nDYHD3+9Mc3WhvOLubplBx+wwPi7fwxqacV0rZFtH/bzMGhwiMLXT8YvA9ReK/W9gkXOkf8v/4rT3/+C+Hzj8Qv/0q4fMaFcJA4AoizADA+WbtFLfT+dgFDtaD0XlA/zUP299dfSfdv+LBQ9oAE18Zvt6kqviFzRG2Td9bKoDRn29t6d3eoVOPG8dEzxcWCbAksT5+Mu0OLJZKcJUidC4R5scrnFHDOWbK33qHMeCmUFNk3cF5tzGJzOGqF4ASNYnxPN3gvhcl7auPQUTXZ3rZsQaoY7FMdSDa+nqpw85F5uRDu77hST3v66ZF/cJYe7MLZoTq8pwffU8cHD4iInr98CgRHYHPWZ7oun9t1vl/dHNd8dvyQFpw09u8z4dr4zqFoOiK2M9i2O6Y9+O62Tka7TTe0feqh0ILMk5EcSaRe/WmMsFppweSH+7lGpv/233F//b8ILz9SKTZh0JlH7OfPuDgj4hvXm1qQ1hBrEhfwyaYWLRfy9YqbJ+rtDc07rk0xqU2HxAlla+2A1Vokcqt6pb2SU2F+uoyxm9aSbKT+WnVwVJVkzpnBjaHmwnSZRgG65kRJyfrovRqBqQiqxRzGmkEr82VBKNQqzCGi9i5T9EjwpFQQb8jRaZ7Mprf2Fe+doWHmK8/xifffbuz73xCBdSutuqncG89GwNoTk9bW5WZE4e7nN9xfPuODZ0tm+ydnpJKgA/7+q1+I5Z3Ynu858BDtifkPSmaChTTCyu6OHcLY9drkptsIFZCqLalxltO/73D+7z/O6D49gt2Tn2tt1uNDLan5dxxpPdk50QeknyjoaWpTd/qP/LQ0Cz7wrGPtDzdGzj8FmEzUZqy1kdbrVgiXiGAEoE7EKr24NhU0I2Ulvf8X9fKF6enPthaN/xBxaIh2fXmnbKnxwxjCBox/hpyoueJ9oCPHQQgxkNuQDdHafNeCbiuaNmuX0tYuViuaMznZXuGdp6i1ztdcbUqpZvZbIqe2QuLwc2j2F1ywlugKhBjJtTS5VLxTgldyTdRS2VImBkMf9DWjVoI4airc10JOlSCet/fM6uASBNHKFD1KJYlQandBHW/VsxQIYsHa8LyEB73rnJ1nuRvdAee4x3Vk1zjF+M7x8HW0u4/vnSVbT9fRFHSYmHYd33F9AxcGgU/7e4oJgTHeWqS1W1baHIimL21daebQyVEY6udtMWo3f6encopNZXzeYhfG++dz9al6nUi9J4x6os5sjLJtsBahVNN3H4TQfsY5b9xIwH23oqB3NOSG4h0Eb+13n0IgVbs513jPaMn6dS3EWyG/lIaqUeNKyxm2jfTbG+Vm+kAfTOMs0YsTqsF78MG6Qi7XaDZZrVAAVh4V68Oi3FdrpaJio3jaMI9ihX5rNzTUDs8vtj5lNwqRdLdJTbUYv+r7qxGWl31M41pvv6BIm9QczPfFUfaCoHz9r6+4X34jXmdKGz7z8m8/gof9vhnCaLZpjDSOqRDnxvc6IfET8sP/RH/+fx7N4EjKnVBWLZEziqfIIC8e8ZHQUPx2PLTp9YSrbTuPDvXJTz4j1j8e/zBRcw6sTMZPZ334266iO5tijuaRRepB5elrJ//cNqqjl/D3v//3rusU5HVlaSSdVHcoHMfCuzDj/ZMtcoMIo60SjliGHICWCOnOSZgItaDZRuw65/CXmf23QHr9Rs2ZtCuCkST2sXFm1BzUzP71FxxK3nbC06WNIzOoV11X6/F7vtoo0RDRSlMsUGeTktJ9Y193+hbjVMGrkSXHCcTGk7kQDXpeCuo8IUxImCxgdNJm2ZtweC9sm0248aKkqixTwEUjYXbhZOBoyRqsIi8aQJUYAsvLZ8JeeL9n9r1wuVh1cW9s4oIZtbwVnBhSyUiJjcshRIcPjuDFii9J2aowqxC05YvqKUgcEtgrDyd5ecglnFuZGrx7VBzlhMZpxm0I1vd72OSF80Kcqu7ajTYc/9eNR/ewP1b2zkFif83UqnZnFEX1bBmPPUdppz05IT3ReYyJZRQxmr9m322qDwLeIT9+If7rvyM//R/46yfc/IyLxi8lYrwv9P3IUt8tUEtWXVPjiRKEnNY2BrvYxtlgl9PzF8Q79vev5sjKhWlajLMm72Ykp9lIutsG67wDD84bdDzl2lBqEziPjzNheQIfLAETF8R5UtqJ82K8MDFgxKs2KSbOi7UzCQT3hHOV4oXt3dB34b7aCGIFHzwpZTRXolj1w80edsenzzOpwC9pgzARAAAgAElEQVTfdp5mO1/J1arBneFfIedKXjPqJlw1B3gm8NTCtOEj0Y1TF5ChJHR78EEgTwHg3xHah0TL4wcfEjE9sGx2pH90TLUAPv7893TYXtTsSTN0j+slY68ZdlWk2UwAHd+3fzaHs/uZnEybfXw44r+Da/N31qo7nd4UfNCR9N+iXz/452f007/gpmdwE84HwnU5nGYx7ieaI1PrGKPRHCUjH3WNg8PFhen5M9k52O9GMOiEst1bUtTjpwnKRhUZwbSqOajTPOOcoxZLPGpJiJ/wPiBLxM8Xa+9Sk+N0v1tAGCIgNvmptrblasGoczaJDaw9OIQIZUGk4IMyLY4lr+RcmifTRpVGT5wn4jy1/c4hMhtvnATC5Ynw9CN+eqKkneVy5bYXclWu0TW+DmVqxZDoPFXU+t6rGg8HkIry7ZYoCJO3oDHT5+cIeyrMwG8EXiQQNQ1hPGLFrp+2/5/RqbX5XgNt1T93FrR60r/m8mmVoad9j/+uTWe/yOHT9q2t28Wz/e+O6hEAnqul5wTz8HsdQ+66He76edjmXqXtFfheyJSBGv5YwDztBq3CLLgYkEskLpG4BKanKz5YMsOHaMn4UpqMWBLFxZkQPL75g95Heqm45oxUk6mMUEsh3Tfqfgc1VE2YZqp39CmlrpEIA2i1yS/UgrRqfS0FakZzxk0zTDNoJd9Xa68QR9pWcmun0Kps7ytpNXRAyplpWQiXaG2804TEyZCpjeAUEWu1KIn7+69oTa29wmgI5slTijkdU3TsqZJyZdsLLhdr4/fOkqreMtV7sjZhGlIuaQVX8cEDyl0873EiqKHQkUO9ficnLQOgTQeHKT07UMM5OjX2HNmEw//qnz3ZYhPFQxaP3z8roh7i/70ecvgV43Y6iW8HALTPadMpqW0j6nbvwZ72va/5FuM35ARo7Wvc90Q9KDuUEZBLe3bdHzkSue17AtIY+AWTY02FdK9sWSjQ2rZaXrghWoM3e7N38l4VGhc4pdh0pd7aFIIha3yGNSu5mk93aQksLZn9/UbdVqZoXDJOIN9uaDYkT021rbHpRwhiLU6zxwfX0HL0m6MmxceOwK2UbGvqQ6BuO1Iq6hxB1IbZeGmk38ViyyDU+xv+6QfyvhFaAJDfbpT7Dd1u1K+/GPIFx/5+t7hbwU2BAtCmPW63G7fX1WJjKiKevCcuX54Rrbz+5994+ssPFt96UDXuLa2KxAAuIPGCuAmkwrS0xycP2/3QWrG10XK8KE2GuhwOeeMcfHUvjmPvPn+/x0ZNJrq/q1b9/cPjn5AJ9x8VWr/SsRuhD9vAkN52JceG0FdATq8/VixssXRsZKY78uH8xxceivL9vXooKE2AxTkkTMdI3BBxwYh9VSvS+Cy0ZlTzcVfagxuby96ZoZ2fLJkRAoRAWBaELzhR0tsbaKFU2ihBbVBuU7K8ruT7hncOgmP/+ht4j58X68e/G9u9RpsKlbbUSNiwTadaP35ppIvOGXFcbmz1LkbCPON8wEVzPFNOTQbMsPoYcQQjVxKlptVQQtNEaQRxinHtVFFCDAYj89ZW1clKDS6nBOdHf+N8vRKermS944NlFt/eEpfZMsQlFfKWbUpNU45SK1UtALaqiW3UpfYKsE0bWZcnYt6R224IiZNonUTINskGm+wj6WyfPgeWh0Npcthk+6NIte9978dZu44ETH/nuP9RUWkO6qgadkewBWn0YL3bvW74pcFLR0L20WAdL7WH4k5bxWkzgp4ka/FXJ7HtP+oE+fHPhB/+DXn6AaLx0oiPIKH9td92zrWkTE+4tmplCxads0rhfn/Hh2BVN6DmHbQYr83zD5T9nd5j7ydrUcppI1yfjZtiLYaCEePiKAX2lC1Lv8yEyzOKtP0lGtrMW1tEKZXp6cWq9d5amLwP5Jzw02KJnfasXJgogoXH3uGnb7j4Sk67TbYoyhw8F+cMsZsy+XZHp4x3gZBh/3XHbS0Z5WQUi0vp8ExnRHPV9tgsnjc/8+wnQilDfjov2eCv6ZtuT8Sd/KZ+nFzORwFt/9ETpuO10weP/v0DJWkq2qsRx6b/PRMJw9nQ9zU6M37rsJPjNk6llK61D4URaZaz7Ylns2d6fGqH6u/ao/7jwLJfXNdlZ85Ih+naZ49As+4bbHfqdocwEZdPZpPQ1qpbD+dDHMZ1sVgw18d/+kDNW3NkmxzOFwoVxPgqxAlSsk1jm2c0bzbFCZgmq47FJaA4UspGYOsVFyb8PLe/FyRE2yeqTWwLqg1dIISGwsmrtTXG5YKfIoWWCF03XPTGZcMzYfLUPFFSZNIrpaTG32H2sNRiCIYpImL67fwMLiLTlTC/4Pxs+06phBh4uUxkb+iB6xIpDaVgxKgNXdqJUtUc7MsSebpELov1/HvX7HBVJMC8gKTCt73yi5u45EyUj8WxU1sh0GGTtl23vyL0lo2jNfFRtkceDxCnx7SUds7vWTvlHBx3d1Z668oHp/TsYQN6Mmon68qxSKd714evns57vhgd69nt1jht+8poZ+F4X4HqBHleePn3v+CennDzjEwLfraqcZgWmlNsPiPWIuTCQrx8wYWIjwu40KanVXyYKGnHx5n55QvJBcS9saWVdDdORmktEoCh0UpuFXdtRU5lW1ecGNlmiJ6ybeyvr4TrhbBcjQcnJQrWRlh246La7iviHOvbzvq+t+mkdk/hekWmmXh9tjarYvC/MEXjn/COslfiFEhrsgKhs8TXFK09bJgeB0Fm9tsOK6w3wUV5aCv23vROMH80VXBF2bIlh2sVfnMTF5ewMSNNnrqtbAnmNuAK+fAcu/91REbH8z0mQnV/To5pfxyomI6AO+RN6MmErr8P06X+QAS/p2OkqPq208aWH1Pk5RQbaksGHq8PePwo/Nl72hCmo5W7Eex2BL39zzhHXEezdMepxwnD72i75RmYgO2bqnXwM9ZcyK+Z97tjrQ4VS4anAnvWhrg2/2xLdu7JWwtw2lurnYdQjUZCW3J2zHxALcEoYhOiUmG97Xx6WdCs3Fuboo3pFvbGCWrFRTUEuDOu0Xmycd6d71Ccsq82uVBrbfGUIZjmxbFtDTEqFXQHgfrpifr2Tnhx5JLxwSPq0Jyp77/hL5/a1NZA+vU/cQjl9Tc0GX3H/toG42yZ/b7ig7cR4qEwLTN129jfVoJ3pJTwc2B6mo33tVZCCEyzIQoNsW5FSBessIQEcAs+fMKFJ6Rmamyt2aHnDE79FMIhM677X+c9vcWovQsH81F7a94IhWq1ZPI4JzRheJCdqt3H/uPjHydqwIy7nJAHD0QYvQraNxh7uWc7HysOnCX/uPBzBQFzEh72luHcnoKFhwvs/909+1NVuAVL5lSKwbFZUXHtPau0q7bRorUg0kb5Otd62g3yabwxGyLGF9MPP03U+WLnTvswUGjB+Xb9rXpnif+MK5DvG+46n5wj2PeM3xO17/UV8I00raFZ/DwxXa1iX7JNmhIfiddrG5VoAarWaspXrfVJfKAUg6y6eUKcI6MgBS0711BJu/F7lFJtc/MO32DkAG42kGecgpGyljp6HP284MJMmFvVhY2SKjkrubH3h2Dkh7VYpVCwv7mAS5ltD+TiCGI9mNoSbhuOOS5El+gVh7NsnR2i4VwCAx0D9N3/8L3OQaOc5P0knt+zx9mMzHnKRjfa58set9d1Yhir4zyH4w69on7WtD5hws51go6fvnr80JlPozkPx3ZxcLk5aUk3Gaqt/TpFQFybzDbhpqslWMVRtSBqTme/aOdju5iGgHPN5a6N80kgrzebjFbS2EtEik2O8YY+y/u7QblbCxUqxKfPNuavKkhoLU7WhhSXC/HpBW2TGHycBvLFEiGO6TKTs1XcvFqSNKV3JESmp88tWaxjIf1kI0X9/IwLMxJmQt4oaaNWG0/qsOpn9d7amhqZ2f3XOzFYYtQ7IZfCFAQpBpPddyVh1aEYPNEb58buA6+XZ655J7TqoD1qfZAduoN5CNODRJ6KCcdr0n2jY38++ZaP+tYDSeWk33Lo/HDkTrwa3+PRLq1X64Z/117t1b8zgakZ8XaXejL29J1KWqDRnIKuO0Uf1nyQkfYJFv03j43vuJjeJoeCF7Qwnun4pNCmwvRrdEbGrYqfr6Ot1ceJ0a5VHc4ZVwViCBTFWh9qSWjJ5gSFgPBEwZI5hJaErcYzs3z6wv72lZISpVaC922UaQFc426ZmD79ZOdywVACcbbfkoIU8FM0EsUYyetK3Q2ROl2v+GmipERYLpT9Tt024uUHQ+cwI9NMSe8toVoojTun82Ah0nhqvPle4nDTM+omxE9Gbi7YZLkQuXz5wvPLz3z75VecF/bdEHK+yUjwAg0xs+7KPZsglMYr5Z3Jh7WoGa9braaTuVhC6s1N3HUjlnqq3h+qfP43XbbaO3pqFbCune5/PX6nn1gf+AnrcNW+12NoXN98uv869M8MUUWP6TEdBaGPqRw74eP+1NeymY8/8IH1sa3qxEXzO7+Z473xHNt+Ip+uxL/+BfenvyDzBReXhty64MLUpudUtFprUs27tTmFK35+BokNmWrZXENIZ7y3UdziPPHpBT9F/DSxxYlyfwOsHSJ4h9ZCzpmSjAQbteSlTfs0EtN92wyOWiu3v/1KvN6ZP3/BxTYoAyi7tWSUXCgpcX/fcd4RL5ZEDRfjecNZoSb6xiXlPWFeCK1IWaZInQN7/JmyKSIz2921a7bk5u2eupgSo8cpyFMYfDelKvvecgMN+eudTYcqDlK11n/nhR1485GL7IZs5/zo+p59Mor9mX8wkg9PW+RRSU8+7FDNIVIn2RKaj3JCvcmpKNmMc/2OSfhd62Ma9f6z79GQGJwQDkrfB9WKeRxflEPTW5K+nbDziJyGj4wBHCN41cN37T5tQ/SItFLxqS2r21xp16R7obwV3t6Ve21NAN7Z2osSo/F4Uk3evBNrb6o0ygfrup2DMDfemCpCavxWl8nhq1CK3WOtsMzCy/PEtiXynpmiI0ZH5+JxMZBSIbe1m2MwpFiuxGhyUZPaJGRpFCzSRonXasX3QiO4b5PHkvnbKRV8WFuMKtQpNh+4oBl0f8c9fcM9fYGccKpsP//Nnl1OoJXbz2+wrezZEqtVxHRTBUplv9uQnT7hOHi7hhA9MtseIZO0lkiHnyISIn66gg+4+RN++gEXnxE/Q83I5dNAOZnonJCM0vhlapeF9n/VGp9dk43aFb7BnLtn2mvPHW0InFrK62kvOKK2j9CU8/FPW59QHdkflcdQ0OzQh+BwVGEaAsdepF+Z0g2inO0/3biND7Xg5Vy96WiADhHrN9YNLaoHjCnY+W1Eb0ZCQdVGv1lmzzZ750NzaoHm2JRsFepqmQvwgtNK3hVqQmum1mLM2losWVMulk3LGRdd6+s1A4g41OXWjqEGNS+V/O1mgaRzbKv1/GsxeGXOdSxjRY2l33sjfQuekmojr3JWbUTYtp0wzaBWSbRpMjRkAVALflnw02TVS3cl1IDWjbJDuIRhfLXtZDkXvHdMi7VTDRIujIMHxaozlx/wfgZZmS9vvN7XlvFWYgCK4qOjqBn4ojog5ClVZMu4q8l7AevDRCgqJISbRBYRM4hD2LohhEe011mIOZxHPf59JBz0MWA6f/H7tWkj2WSHHkHSoVr9k/1/p+q6juXSbqx6FeawjDws2MPvyQeP1x3OLAzndVyjHK+d/JhhaPuuNn5NzLg6Z7xLiFibogdwOD+13+7tCs2JltI4KgKVMir64hwlb1Q1WGfe3ka2HTGYuIszXo24rGyKaqFiHBcuzrDtw3C7EAgh4pdr43+qTLPx0ngCKWfidAEgbSs+Tlakycky+bVyefmJ7okMR0Is6eSnZ2tRnF5w08/k9Rua97a2aveSs1X14xOhcVZc9t94ejXUWc6Z6Kz9KW2FlCurxbeQKn62nw/eylV3mXifFz6NaXT9+cmJw2EwWAwJ6Tr491RFaAbqrH/9PeWhan/Ixh/zXfSigD68+h0eTYjlHKiNNzj4ZPoKtjaUB1U76fZok+hO4ygz6lE97HaxL+QJ3Wq/8XiB55biXqHEq5ntB5LKdp5io3d1e0fF4abFKuje48NsRPfVHDfjvbCCh4ogtbUWqxrvhSpltz5yFzxOF1wTkrJvuJIbD4cwPX1me/uKpqO9wDV0jJ8m4qcf8fNMyQXx3tBq+w4iNg0qRtK2ApW83sm3lbiYrc73dyMpnu1edFsRtLUQO3A22tOH2dbcCUGVWldKTna9JbVETQA/IeGCOGtr1FobCa0lpZw44uWZOC/kUilbZrvtfH4yfo91TcxBWIK08eSwlULG2pMVI+avFabJHHRVm7BYqqELtrTxXoRXF3nKmdBQG6OKz6lNuO/22t9v/kazB4eFPORSm8N6NrWHvH5sbfw+jwfU2Hix73mHvXzcZXTolHN61A2hff5kg0UfQKJS6Fs9ihto4Y9LNeL5czHqFGxbAKDIFJC//JX4r/+D+OVfkOkJN1lrLeJwcRk2ckyoqa2lQRwibTJM3q3g0ZOOtVA6z1tOIMb3NF2spWp/m1lffyHGuSWiBNKNHvV6541zKSml6ZxD2ffGPVGVsq5s+ivh+kTObfy2CGnPpFzQrMTJMz8/WfuWd4R5scp4nEbhVVywRFI0cnCbGjdTk8e5SnKWPPJus3bFNs3g5SVSayVtCd0Lta7IHKhF+XrLOAfL5PCiSHXkXAyB4OyZxGBRbG5B6S3OrJp5WtfDc+pbMG29DZpIT9ooNgG1b7GjsPwxgaPH+bp8AvQRv71IejaI2pV1xEzH3yaC3+3xkKDp2YKTolkbkjRfUw8e4D7soccGZ9uKjjXpbcH9HANRKFbIUjl0+OBxO5WEOnICrIBeHn8LrN2p3Ar3W+W3VVFvrUOu+QLeCXs2nkEnQmyj5lM1hEwplsSZvf2ejwLF9pMQLY4rFaLYRCawIr5zwnozxEkuSkmO+GUhp4JvaBznncVgrc3KeyPtLkXZdxvfjUJqpPYxClM0xGzpBYPWOhVCQ+CItW/tb3em5nvI9Yp6D9EmmhaE/PoNrw710RLBouy/vRGXiFZhf1vH/qscqConBkiotdg0t91AEl5gngyF6ztJ8DIR5ytEb10tMeLmz5aoCVdwNjVOnNH16/WngZ467KEYB2DrWMGfeGeKIQpHQkewRFKtFj81WTAursahxEEZcsjJCQUthsQa7Xt/5/jHiJrfGePjh6RtBn+MOugbRd9F2nfk42uPzujD/wt2M+f2Ezn/6T/e/la1fjK1/6ZW9O0NcsbgXL4RedrkFZAWCFprk811b+1OvvXeqhpnRYNFIfawtE2hoFby/W4QsmWBKZD3FVEjRbRsoYJU46KolbLtlNIg4lopt5VwmYmNE6bk0kiH7H7EeWKI5hAvC+I9tUCYTYDFGSnovieCd0zzbEkaJ82gWbImbSsinnBp0PBWnhN3oaR3qzqqomXH5zu1GoHcpDaBSny03kCLokE8wcU2xeaCDxdQIa2JtNvmYLQFStFqI/Kq2jSsbAJcsrJna3+aZk9oo0elZf5VIYhQcGwusMeZkMp4/t05euirf5DTPxA1jv28bdMMZI2cX3kMZr7vo2unXftAgyqjzQhosLzjns4Vv1H9P53vbN1H3257/QEoc6rC9sqqBdVjS6MHlSMAH6R4diGHE2G660a/7/9L3bu1N47s6JovIoKkJDuzap32TM/F/P/fNVe9u9daVZm2JZJxwFwAEaSc1d17z03n8Hkqy7YkigwCgdOHD5iuhEAIk1XV+gjuaBUDI0vFnESHXweglh1apdVCECHf7xYYSmR/vBOnbNefNyNHFSwwm2YCzarn1do2ejIlJWuLEHcatam3DjaCW7oYLcnbJBicfH9Qd7HANCbS9auh9KqNC+zCKzEeFRBNqASSCBJna0usNh0jqlUWat7g0oxQdb2Tvt+ZU2TfNqSZoyoBikBpam2ZMVKaspUKwVAJqo2MsMXklYzTxt6DhfHo5Uiw/LCXn2sCx+cPGTg+of2f08fPUO1npOZJHnluA/gZjzHueCShhgLxlFD213RkkY/jab18rQ/0nDy9f3xFX3Pv0OjOxNMJu4afgsLxpvAcuApWnJFa0d//gfzyV0S+0KciSYiEaTE+mBCN7+K0b0qcPHlq7UF5f5gedcelNaoTfxOitcQuYgS5zm8RYiQtL4g8Ti0aZnfm16+QErVkhEiIEyXvFqwGm2gjrTkBqqF4ppcL5fFg+/Y7MU28/O2C5p39/RutFuZf/3JKOE0eCERkWpwMPBBaIZSVVjOTtyfXVgnJELJN1b4/NKJ27gHQFgjTzHy7UbMhV0WEt4/MLy9GnExTcm4+scrGBd8rTJu1PobZ2h3ua3ViVp+wlQw9nHKl7TvfW+LPIkT0JALPDp14oscFwV896becevdddA9Zeka16R+L5k93jMlro8DYncpTcKtuS8e9K2ekdx/b7ScYOnoE3OdF4+Bge3aHbY/zto6BhGunxGxHLbkeW4Ap1p9xfUEuX5DphbDckOBE9XGySWi9yOFGVoJ68Q3Xu+oti2pITdePmq09McQE1QqSPdM+3V6RIGxvvxEnQ69NMdDyhtZsqJUYkeZTV4qRmaYY2HK1SYmq5PwgFSVdLhTXFVVL9NTYmKaJNE1onLj8+otNe3RC0RAjtTWWL38iXW4etDudr1bXWysq5scbIb5T9o2SdyssCqhG5mWmPlZKragI+9ZoH7YXVdfBft97g9waacY3WntuISZ2lO/hylIyc658pmywPfRHOex/GxHVGUnTfanz58Rlo2/pahyPT/XwLmQdLuJ6yieZ/1kPM++nRVBx8fWkVLddo5O4/3DYwJE4CV0vMRnxeKibRAsZu+zgI5i9AbSvFwxdpF+b2PoO3xqPU5vQ9sb+rfD+vfF9h0eDOVp90RCefmfiY7W9la5kZVqs/WgrNrpbW3NyfWvHM9CQFa+DT/VMwVCXczKUccnKY7Wi3a+/Xnh87NYqi1h3xJI8iWAFzeTLV2pDJFGLoqEZT2lVikAIhmBRcP9VaUUHkrfTYQSE/e2DVAqhKU2U6eWGzLO3T2fKv/9P0vULmgstGyp1+/ZO/rYyTWHsSSnNZufFfPr7x8ayJLbNipNpMW6qkgvJYwUtheX6N3v08WZtoJcX2wvjRJhuhHQzlLoE0AdMN1hmxFGtYNw2crKJnbQdtQ6T4aee7cYpLzJgM3K0Ew8IZdNT8pHhFwCG1Pn/TCY8tKf/z53FYWy6QOtBtoQplmlEd1T1tJu0UdE5n9f+9YRILzCfHYGgZ8TQ2BD7XjQWUxXt5GaqY7Ol2hz3TowrobdFmVPXoeKtFnDllTQRVCnbfSyCxGjjBVsxZA7K+vHBcr0QUyTNszlc/WF0cuIYSS8v9ug2b+EJxlyvzQiHmzoHTVXiNDHdroRpMdLQycjTVHEn1LN7CqUUFm9H2j7eabUy314QLNtYPt5Qhfkvf0XSbIFuwNivgyBpoUOXtGZC+YCWaWpkbIIFyurBtyEZFjQkD55tUlV3rGOKZDUkTatqffS+FtUNdu09+Q1kMpLVFIOPahVasZYNm5QlZEm8X16Ycmbad2svG6mJs5d4ElrkKeBzoeAPA0r0OSH/dJ6f8FB+7MWF4TiC9buOYziRz16DitLHPh5Gvev44aGfyep+WMGTLbM/hNOpTt5pT9z0a+xf6ZUOEWzjfPliCZJaoBZCOiDn0q2siCc1TAfFycjVHU/EuWD2B5p3QoiElCj3N6sWqvXuRxGqWo9rzqslb9Ur4SHQp33EeaZsG3GakZTMkSQQ0+Sk42FMwBAC+7oRL1e27++UfSfOC8vtBYmJOM3k7cF0eaEnBMM0W3JYgk8zEERmv08LBrUVaztpjdAacanU9YOyPVBgfWS+fX/weo20pny8Z+ZoE6KWyVodQxLiHJmSnTP72NFahX/qzC1MfKn7SAp8ToAeXGL9AZ7k6diMbd8YDuLpLcqRpPkkP+Ekw0cS5xmF1UXqD3zfn+fo9u4U2Z6rrCIMlNJIYp38dP/1ON3naojrqJx/hdNzYVQHxas7fX87H+oXo+1IkNl+wDGcCoG9wD/+jfZ//t9I2SFngncbGio1gsRBxqs4esw5pMI0U/cwgtNarE1YMYSNtMrldhk2LUwTmqNBrWu1Fsh5Rh9lrOV0vVplrjVkmkmXq7VPtUZIgqiPAq4V4/I3x7DlyuP330GVy1+/sn77RpoSdd8Jyduht4ehR+eZwfvlY4slOCIhzYTusGMOtDohhZbN0xhGtNqJzsERCpeFaUpQG9fXSETZ1o3knBrWZt3YtmY8PMBWDI07L2bnJVh1U0WMNDIKudrvMQjvJfJNJua2ET3I722vgkB1CRI9oWOOjbzL61EMO+RypHR6sMMJDc2Txv60x6GDze3VWfsO82d708kpPyVpDg9UkCcd+2RjOar5Y7GPrE7fEMcXitvkEWRy8pVPzwdvuSMkiMmQX9GSicMf8LK/OJLGeAjx7xEvdDVv+zf93N5/Z1oWQ5O7TNe8Gfpsmrn88hdafoCuiExMKdGytefWVszOqqPTm9JyGWsTnY+wbDtpmR0V1jzAsmQrMSHTxOXr13E/rVmL7749uP3lX0jXV/fje8uLEMNCmGZa3mzSnCRD4pSVmDcLsJtawjdnpEzEF6Glwv3x3gftjCBKm5G27k0pKtRiU29mCUYrINYi94gLj+lCLHfic+ZkCNPQJz098k8ygh5xzZMU6affT2Kkp9cHcmQEiPxoV/64sv5THE+1ITjpCocff/Y7pCfBzu2bri3DN+5FV47PitlmiQfaQTrnFzIQ3v07zwCDThp8/EmRqtQ1s79X3r8r3zbYKtQmFLFJSqJYUT1b8l1FLa4LcFkCpSlr9sJksHbWaQrMc2BerOW+ATi58aSBFCLL1KhVyUWtC0PFW5maTdBt0MR4UoSI7IXlMgWxLhUAACAASURBVBvPk0/zWObJCo2+Zt312nNzJKcnKXwtLT5z2otgExljCkZtUQvl407C+FNlmi2G3TP5/iC/vXH52//l3R6Nct/J3z9otVKrtf6ajoKocv9+JxCgWYtkTL1LhMGVpXicaJVWQIjTi6NorF1SwjwmuRoRuvOSVvXWOcePDgSVyZqnBXwb7EgY/4Oa6Wi9KwCcy1P7GbpIjkRsG8Vne3HIZTj7iz8e/8V47uOwAKmru1+I6iGwzzpweKU9bBxvPCd7usPZQdv2erdnIyDsJ3Wn4mmP09PX98BPFaaIzAuk5JUGy7J3BbSLioOwV7wpL4hAFUu2CF5hX6xS59dpE1ugbqs99FrZ73emizHq48IsnrRp2aoZaZnRdiUJlK2MhbW+O59ioTBfDMo1Xa6mzJ0AtGeAxRE32tgfuxEHbzt5y0bANk/UfUWYrbJfKun2QpxfvCJpAa4JSCTGiymiB8CxZtr+Rmv5qDx5P7NIhGDr2OHs/oQN1TAv3L584fHbb2x7Zo6Bfc3EVkkR5iQEAmupbFmpCvESvD+4Z7V9M2huiMXgZjsz27yQcvFAkOF4nkEAwzrhzTzubB2TWOzlBvRJFqY8MnapDhH/aY9nv7Kb5qdAt7cKDht2jqt7lb5BT7A+9Wg+n56OoEM67P1zq6J/sZ56OrXvBd0DOh1j0f3Xfn2l+rOy/osBv2+NEKEjTmzjC0MfRMSTK55o6cY2TTRt1pMabYT3/vY7LWdrAcQqBnlXct5JU6KTJoIldHuQV2tjWWZaNwbOA2CVyOzoNjWjoZX8ntneP9jWzO3Xr6DKEpK1fUwzqtWq794WIcHOK9qG3oUwIbMlQYkzhITWnbI97L0D7WMQXgnC+0fm9WLT01qthloTg9xC5XZ1aH6zsd97bYSm7Br4FhZuNR+GQc4i0x2Ys6N56Bf9WXcdOleizsbrWXDHr+2scO34aP+5e7vDX/tZD+1LcXjKHaU3CH496DuW0b2CPsXiZLRt+c4K0/co/6jbhU+W8XAG+vmHd396nx7O+3heAQsUBa/YCmxGdm/BVMJxe7Y3O+KtP5UgFsSIO3Td+YxpIuedmCZqq+THGzFN7B8fzIvpXSsNvK1PvdouoohGc6Yq9DGYrRRSmgg+6rNsG3G+WOvfo6N3GlozWjbK40FZd7RkltuN+z//7ggGJabE5ZdfaNsd9gcs19GjHq63Q35bJ543nru+bh2ViyohpBF8WmXUguWYZmrbWG4vvH75wt/vf+f+aHy5WctIb0+xaqIhi95WG5X6+johAjkbQjiA8TU0483oPIK5Kutq+vyvaeFFKq84amnYNwsmn3IEJ0U8J3XGOFI9vdYDHped8Un9yW3m03HC+T0FY4y17EZKhOO9TzZPT7p5HOfpqHr+kBzeR1dn0e7TyikPJEiwNsRhds/XXBvkYoi2kAjRSfb78Inx/bYvhD40Q9WQawSXSWe6rZEQqhUCtBLTxPb2G9NyoWVrsz2i6MZ0+4JOsxUV8sMR3JGYJspeLeGZJiMfR4e+TjODI6PzPvbEVojmi4MjWtMMRJ/QZrw4Cky3V6vKq9rkKufLkBCsvSNMSFqQdrXhH9sb+fEbaX71NWjUbaWGlTS90pYdXXem94J8f6DamAIsc2DPla1grSjXRLra91VXoRSErBAIbDHx0ok9+jPw/X0Ul+BAxPApThofc4mRTz5texa+XuzorYjP9pUnIzkmKvKjrP5Mh8rRUTESVp4olPN9dj164kvte5XbWstqcKr6n1pcYCAhRgXl+F44JaCf3nakTMfyVqU8Ctu3yscHvO3C1nlmYqBi6JQUZLQozSGQSzVO0aw0GqqmIyEoW1Euc+DXv95Ic2TbsyVU+3WJyXotEIvxuU1F0RaxlqZACoF5TpbYiDZ8gtCIkxUnQzACYvOvrHWn1EZuMEVbb8HGfl+WSHBUkoeIhBQopQ/tsDaoVitxiSCNer9Tt40wR8qcKbkwXa7kt0x++90H7oi1H1Z7lrVUphjJe2VeEuv7Sq0wTYG8Qc0FQZlvvvc0Hxcuht6rjxXmmdiTuJKQdLGYVcNA8Wsnk04zzUNhdbnpejZ0z2lRrFvHW5msX9PDrDZasQciXBwN2Thsi9PHPMWop8LJk534g+M/T9ScAzz8vHL84YfTnoLAT3HkcfQNxRdimPkngyfHv3r8MM7ZP9Id0dPmY2gatcSaV/hQaw9gNoLSDtu2jLwHR2JZSInJAqU2GhCNg2YzyOVY3CDUfbWpK6XaWFGU9HIlxOBOZKLFgKi1SNRSSZcLGSW0B2CIkxCt8hYlMPk0qXi50qdNTcs0qhGIZ4G10fYdaRmtsN93pnmG2li/322S0u0CEohTNGLkVpEWjl672APdQJiudGhtcCJEqbsHrFbls2DAH3IIBnFr1ZxXNSKq4IidVpX1Y0eWSNBG3gsVPUgTg1UjVPp1mLKZo2o9vP167JkLVYQSwtELeJLDJ7bt3pd/UgZ6MOmvH6NwT3Ksp//kJw8GOflOHO1a3YEcG8Hxbs5Ey39UWTnzTanKCbDjTofq0Luzgz+SuF039NNXP1+G/T76hY/94HizgkTPhFsGfbTEdKt5Ci7FOZiszVOsFaMp2iohTqTLjf3tn2jeTJ5Uuf/+O1MIFhD56UrOcJlADdHWDVMIwVqCvNVJ1TiWTI8itRl6Rx2O3LRS952WC+vHB2UrrCEwXTLT7YWy3xGtxHkhLRjaJ6Qh6zZa2Dl2sNdR9aqntR1KSNS6+TOxlqrLy43rbSHfH2xrYTH6AWufyA2NwaqSVQlVjWzO21hqEbYK7yQeKfFayjBSh3wcMnckBuUkCyeP8/Shc77Gb7ALGYOkmlPA19EmJ2cXF7H+3T+vu9n9Rx3O9nAkxz/H38bPfX/yz/Y9a8C9cTTj8PQPXe8rZ+sr3ooox9c8XcuxcsPvPdneo4qoXnTy9mMRtBZ0X9HpZn3vw5afCjYSPMHSR3YLpWymD9VgyjWvxvNwv5NLIc0z2/dvRwJmfdBNTQhGwK0lE5cLLX9Y+0OfLIHdW1nvljRohf3jG9Pl6sjXaq0ZeTd0njhvxts769sdFWH9WPnTv/yNVb+htVig+eufjRNuXugTx8TvVcF0UaNPvapeOAjeMoy3jKijacz/sBaxwHL7yvV2ZUoRiY3v31ekVALKJNa2uW7NiBylBzBG5Fj36q2tRh5citnyUkGbjRUOCBVhV+E9JC61kjrR+h9YtRG4DJ/Mf9ZPG/nQydMnXW77Col8Srj+dEd3Zk/BYH+l68Kw/cOhPSUz/U/D9zydk7O7fKzzs6k9fJDxsx6fG3qkVjVuTl8wpi4GQS8zOi+G/hR77gTnQ+wFBrcTIaZT0t8Tiz79sP89ThOlZeOUqjuq1u60ffsnaZkpj3fqtjHdXlHnjJvmxUi7y2bttKvZNHH/dL69sj0+0ND5YWztQgyEafJWe/Hg1PzxUm1QhXphsvO6ack+LWphun2hlp0435x70Yt5obcNYzQBISJXt5XphmpB825t0JOSLsV4dOZMSR/E+TvzlHh/f9BQpogHof48onF8WBXfCPuLB/5bVX4PM5eU+JJ325M6ggp9ljPpvtpJVvq2PwoS7hcNuzqk8EigwkiS9g8dzYjKs0R5EvkUu/2Uhyp9wtOB2hPjN+qtS064azfahj8XekutMtA02lue2oGWUOnrIEPvxj/iBfDg1zKCgAN12scp96/X3MgfjY9VeW9CkUAReC9KVOVlluFnxWDEwHlzagB/3nuBGKxonXwS0+2SmL+8Ei6R4AV8MMJhBEjRUJGtst9Xm5DUesusIVPmZcE6RpxKognpMlMfu02D8tsLKXQQnnEaFkMBhWDF8700ogoxCeqcLUGUlAKlWFE0eBdLK6ChQVVSgvztHXk1BGwQbAJSzmzbbjywxYjEt7Vy362dN8XA/sijhZhmds+GTfS9pCG4X7wbH2vdHzY2vGTiKSYy/bPuELS3SSqy/Ipcf0Xzv/uztgQ5XowZfGKeEJUgn/RSXTa6vHRtO8VaDhDo7dQjJu0JyK6Ojsr/j47/PUQNh/qPX47/+QI+/7+/oxPLPp2vbzgjqJQRcI1g2YOjw2E9B4+cgk+1jHr1boXmfDPuLIW+NXr1q6M06IEetuHTnUwp7rR6r2AyRE7Z7sa3osb83Pad9bc3qJX4l6/UeUKrfa60084rVvEPzfhr5LqgeyFGDEkShBSn0Ytrc+jFkjT9xlsP1gRpzSZAoFR3QFvN5PvOvu4gkfm+cXm9IeGCtkp+/514NZK2PtbOklYTYARzEgMaIiKLk6+2Y+/z765lH44oGNePYiNFJUbm5cIyT2wiPO4719lYzalqLU/O81ObslWrKKUUSVO0QKNBdeMSfXNUlFrgIyxc5U6gMGiehpLoEKojecGRoOEUVAwBOzlgg5XbN/E/SGb8NEcXezdqwxBxDnm7s2AfOGgy5GTsjoDrdOrj82fD7tWHEXzKSQc5kl+H7/rs5P/gJJx1HQaqXIIgyxVJM9BodTcuF2yD1lZ9Kstx7z9cu0DNK63s1lo4z+zrOy1vlI87699/oy0zIQTSy80gnI8HgZt9vhbSPFHV2idwtFfZNuN4wkYwdrSehETL9l6t1finSkZrZd8y6/obf/6Xv1kb1LT7VTdaK04Y32Xx2I9ohVaLQWW9DRFMD4PzZqgYO77mjSlFQrDWBxVvOxRLXoWgbE5gF6K3eyqsm1VYIrDlypvC38PCrJXZHaeRiJGeFD9t3sohB0+C+SxRctbVLiRdT08GuAeL6q8d0Uv/eNf1n1g3kdEyJk/q1XXSsWu9mtf11z46PnfyIu09Jyj40M4nNdfhfA31O9vjT2v5fH2n7+l7Z1CkutO8bZborF5d722xLrPNZXKcVKyVocWAbsUg29pQHxkM5nC//es/ePnzL9RtR9X60vv0nem6UPNOCDPjCqOhd4ws31oregFJFcq+ehW+62JBS0Zoh2NK4/72xva+ogqP981aR2Lk9dc7l683aI3UGsuf/gcd4Yk76xJ7csb32xC8r924Paq3WTe1NpMgEZmSO+cFTZEvf/0zb7/9xrd//m4+iiqtNkozsuWmOgJBgoEoVM1mRh8jrM2KN4Lpey4No+Sx1siKsqZILqbfQw+77vVHbhvQES2eiOmHnvUW2c7LoB3X03X3k534SY9D3vXTPR7VTvmkr+cE9fPJ/F3d7p32yeP7/kjpTuvqJJTyaV/sVVaz68cjUoHw+gK//g3CZL5fLQdvGx1ZeSCghzcQequAJ20koCWj4gT8+wOq2VtBKI+76U8zPrT8253L61e0ZXQ3svCYErUJ8+XKfn8/EkdAWC6WGEmGpEmzI+/cZmqDKcZRBIwRSqmkOZK3leyk4MvrFzvffKXPJ+7nARsG0DMqloRSq6LHGZ1fjOMNaGlDSrF2y6na+r1/s0BxKzzWnSUZsq015+mojhBslhQNIdAwMtjF0aiTwt6EVSJXESbVo51Ujud4yNRJfA4T8Gwr1ARKkME5eJYiOZ/tpHrqMiUnez2Q4mc7/LMeHSWjJ/Qp7sM3HUXm471urUZx4yhKCD3B0lE5YbgrQ6nF93UYa2W64m9s/TnJ85NTpT4y21vj/aPxfRf2Juyt8aji3VNKisESHJj85OKFv6oOjDtak5dkJPTG3Wk6OX/51fRZbGrUeac1zs+NtCw+NKeSdiucpymOGNd2aqVmQaZGuTdqc4SM6ki0hCAQD9RQQKxlagifjHaphhH6ml9uMbL9rQ+BaWybMsmdy+sr6+/fWb5+Yfn6C/nxQPdCdZR63Qvr3WgDPj52AtZ50URZLhMikVKrPRQNlGII0SklUoq0bUOW6SmYKNudFJK1PsnFbHVoBsIAJ+KO9GSOhUM9N9BjPx37uXC0SHVdGvuzI33NHzjyC31f721TiCCtb/Amo53HU56U/8fjv0jUnB1DN1qfDU8X+qFUOhSIfiPOSzMcb07OeP/dFVTFv0M4bTQn6RznPGzi02Ylx98CAtNkUxyiEX22Wgwy2ZW0O72n7LSev6cWtBUjWQtCnC/U9W4X3hpaCvX9jbpmy5ym4FAoMyYx4uNInWDaH2JcFnJp1Jxt+SbnepmsBz3SrXNz1E2klHpUxdQSJSKGUmk08tuD/LHSWuOxNUrO3u9XmV9eoL1bC8i02H8xmUFzvh7ry21jAwty6ukDmrPiGZRWxrM19IIyKrfuLFwuE2UzNE1CoVrwWEtjK/aE0mQCbdOhzPC2PnYOcz5FIToM+FGF78uVv2xvR8HfH/ixxchJxj6bpuFdcSjMMwLMCLcYQeFPe7j+dDTR6c9umPR4j9p6nwmEe5vKce/dkHfMgv3VnEU5oR/6t5z3Anlaw3Ow2G0o2r/B/tiN5uEX+/Mr1TilUAiJOBkyzDbY4qSlfU86b5mMb+/Z6VIy5fGGNNP7fd8o7x9s398JX27c/16Z15XpZbZA72GEw9QMU6Jtq0G/sXWre2GeJlqu1FqZOgl3nNgfd6QpOVebHpULKQXy48G+V+pf/wzaqHknTTZ2KcTobU/hMAp+K80TKLXsbicDrVrw11q1tkonhlS1Ufd5r3y87yRtNuZelDVX3neowZ2CAqkqWuw5NCDnTGiQVfiQwHuY+EV3UpcP6YasP/uT1Ay+la5/Xb7OAnnCv52q8ur2Qk+Bkw7BOO/IJ+Sk+r7z/4ND3QHotz0OGS/2G/YPdNez68n448mJ7Ut1PqFyxsCNv+lZn/sXM96n41r8N38WdkXiyV9Bc0HyjqQJLTtlFaYvV7cXbYxWHXuRWBUxxMmKFttGutyoG0jdYccISVVZf/ud+XKhlkLNmcvrhWmOZK2kZaKKWPtSy8TgXFBqPBfT9Ua93wnTRC2FtCyGqmuVuj6smJGzcdkAZd2QVq2iiFJXm+y4/vMbBaHeH4j+hZYL12kmXG7My9Uc/ujBbghM03wgaYguxwqtDiLjIJGQohGcn2QXVVKajUxyq1wiXC+RsjtqplQeRblnl/IQmZfE9TZRqrdZDZ/LgpH1kW1iZAw8PFHz1uA2BV5CYm6tX6X7U58q+86t0ZEb3Rcbu6onFLrs2S9tyPg5eS9Pgv4zHj3wcN+y892d7VuveALPWRo9VcMPfdTubH/S86OK6vtA18Rz34vw5BtbBfcUZJ+ssSioozY67Ew9+EDdfwvRThsPlGZP0owCJU64X8vgz5CYrAiXd0KAGCPrb39HxFtvUfLHG7I9SJeLBXlio3BrdQR5s9bfg6MKJwTHfc0wkLJTtFZh1KaU5t10Z1131jWTlsTl61dKzoTZ7rGUzDQt4zmG1MeMgxCoYoUck91ATFdaSGgrFuyGHd02WjbOqF4IzrmaHIvFDbU2WoV7Nr0PU6QpFGWMUw4SDCFeGmsTvsnCNVRi3e3v0kXteJZ9ZwcrbA1RkcMXknMSAYZcjF28v89Fc4zcPhUxFHgykb2d9T9Wiv/2oyeR7fbd1xhr4DoqB0JiZI3H5w+3HnDOszDOI72lvZ+3dWoE20PtY+f3nHwToLcYa1V0L+R75eMO33dhbYIEITdDM1at3ObANOHntnHaeroX1cYyWzdBacJ9LwQJZJ8K1aoV9Zlmu/fhNhmXqtZGmiZarQM9GvfsiPY+EaxZQdHtFyGQpsR2X0lBPCa1mMuKM8bFlKK3Z0VDj0m0XcjQS2bjq0L0fGlTGTGTFe6VMPsYqWYTDmtpTHFC9UFIkfK+U9431vtGzspHrqgGXpLAZEikshWbEtkgTgrY/QQUrRNl3wkpGVFMf96tIVRqWZF0oQUrqB7cNK5bIcJ8Q/l325u6blrARPeVhjckPW5xIXV7Cd0/ZshW1zNPCx2JGFXr+lE9AVL0CYzyR8d/nqg5rPq4aPRIsnTteCJslZO73gVLekDorsHJJg0F6N+nMMZUte6U9pYAPZSRw78cnx0OvUDx7GtPHLQKNRtZ2QjOj17tngBRv8FOnov2yU/W2xqDJWKqet9sLbQts91Xpt/fmC4T2Y1yukyDTKpDp6JPaWrOD1GzZVjjMrtRCyaIyRzfumcQyHs2pfSbNwYPI1hrmOC2agiYx/tuTN4K28fKr3/7E/PtO3GZ7dyXO2lahnHuBr0/FNtYeu+dwwF7daC3hI0NNNDUjV5MSK3eyhFtK3WOGfrkLLVg8Z4bRRvL60ScIltucM8si1VauvHpPCCtmYPREDKBGiOp1C5yQxA+j9oeaYTxzPWz8J1SDefzwNPEsZ/w6MHUSLYMnewGr1+/bU5PiaenANH1bDik3fk8vmeYiIBXKeDcljKSMSh0Pr2Tno6feoKG7rj6tXby2j7tSRWlj9DuZdzD4aTfe9fd7ryEQNBAE6+M+QjSuj9gf1DXB2XdTF/W1bhqAlAz6WVBqyVzSylGxL1bi2IIBypQixsLMVhu3Y1To9wNetmvUD1Aq1t2FJm3QKgO7qUQvBUTzOqd7i70lgI1tJyEYPuXNho2yabteSSSzJkWooghZbAk7iMrWxWrPkgcfFTe1UheM5orqSm1NR4qbNF10IoYB9c0p6BiRG79ufZneBatXvHqjuhZmjgs3GEseH5DF0c/d7+On7hqT9OjVnEOcN1GKYy2ouGQ97i3b8N6XqnDyB95FnMUDs/UHL+zc/+cdO16frSinY+zM2rXqs/n2gp8fLMkQd6MJwJDV8bgAVjvV3LIuVZDn8R5IUxmY9L1hSaKlo04z8Qpcv/7b9TlAT42N5QdrjNpiZC+ksuDgOkyYogxilIfm02KyVbhJwgVjF8uBHR7WNUuZyMCFZBWqLkwz5GSgreOK3nPlArft0xQ5fXXF6bLhTDPpOsL8fpi+1K0tkMjPZ1QNRvUaqU1J0hWJ1jmaJ/oo3SbtpOuCJc50kox+LvAZQq0AFuxcamC8HpLPp3NdOn9Xpnmzo8D25qtR3+r6F6YopAb5KasOxRpVDW3KjgBp6cP/PEKZ06kPm3zXCA7FxjNLdSnoGi01p11+Gc9pP/vdM/976NF5ECfHO+Qw+bJsRimJkPh7dxPS9ATLvJ0qsEb5b/bNnjonfi+2EnWVc3xl2ZJWQ2JMC02mjt14nm3kXLC1XYfDHtOfYCFtUVEC/pUCWkiTQvl45ttRcF80cfv32ilMC8T8vUVqdXanHxf1rbQx9uOPapaETM4YibEiTAZkX6taskVhZYN4dJqo607OTe2rVK8TUNCJC6Ltck3IwxtjoCwSZAJ8cDwqGQ7eq81b6tKfddFNCGy05NarTVLvC4LU4qHLW0efrgfFVIkTGG0QlU1jo8lWnp8z413iXxLM4nGpZbe3f3kY573dPXn3f3Oc2L0s6uGeqfAk1T5uZ8dtSGzXUcP9PSzb/zTHSK+T570pItUL96Hjgb/fB/qNtWLkaJDf/qKGK/nKXj1LIV2Mlg56XdPcoXea+QonaaQK/m9cn9T3jdL0mSFvQhF8f3f23ibUIr5UcFY3bG8idnIINheXQ19g8As4r6l3VPoROAwWmkHSjPYfYVptlYlMZ82iLVFtlytRWnf++0BjnopzblmqvOxGWJmcpLe6IN3mlosGVLwSUa+nmposzgZLUhxHskmnmgqjZgi27qTLslI+4sVW2pT9u931u8rJTfe18rbai2ZaQloC5QiXLGJx4bYhZIDIRRaC4Q9Q4D4ekMkDZ239mtba2tRVqL0/dzlSwIaZsLLX2l//39Ge7PJIaDt0MGTLzcShh4Dt2Yk/4wClX+mNrOrPTF+9rta13nfs1xH/zNgwP9i65OckjNnR687iMf9/PDJvll1SzQOczSlw/T69/Dpgk969Rxjd8vmTuawkW4UU7D/fLFCnAizjefCN31Jp5HdckBcbSJUQqKJZMnmEIZpRssO4gkIxIxRAKqN2i6/ffPEBoSvN7v+OZIuE7Uo8TIbyqWU0QtnLNqFUhoT8zCkTY0xP4RASokYhZYdcl0Mkira0JIJYizf28Og3dZitLJXZV5mpily/esvNK2k9Z1weyXKjT45x70vyyyqce4Ah/E7PZOOvKnNiA17gqg7Gr1neL1vkDMJRdT6Fkuu5MrIjEuymffJ+39rbYiGYwIMjCRozo2wV3YRViIJC0YPGdQhA4d4+OutHf6RHtnLkVH/Axv2H6vNf//RH0eH7pnc9xqpvXJ4n30t5VgfdxL1D85pvzw7kc/HySkf5zjVZ+XkNClDfqRDTPu1jYSSb1a+EahXpY3vyJ5w6EnF7pS1auOnnWPp3IZhpxZz0PxcMc3k+3favpF//ycRJWCyZqWyAnsgTon9sSIB9rfvhClhqLVo8q6WkDFuJYN/l1yhFPL7O+HLK02NILyPo29VaVkpq02bSpcXIyL1c/Tpc58JYW3tfC/yMeN4K2afxGYjvc2o55wpuznd1zkizSasFTVYq8ZAboZOy7UxBSOZK01pVYnBxkk2YNXO73UEJIfP4/Ljz1G877vvEUNve9Dvotf9xfMY7o6oGX1vT/LXT3agjIY1aec3/1xH5w0aJq/rWl+7oQUy1uZs4w59k/Oid//hqZCofv7h7J99ckzz9QcGfn/tZNOHqks/xwmlp2pZBLEWn3D5gkw+FSa4HDrJt503+P1ZxjbNV9qt0Eq2sb8Aj3fS7cb0ekP+59/RTcmPjRSh3a1AVonUx4N4vVHe3kAr8bIgasSCtGaIt1zQkJEYjTetZMpmxQOtBc0VrWpV8WpJVsWKIhIDlwX2vdlkDVW+fXtHtBEn46ipr2/E1z8R54vdY090Ao049h5xpGnogaIqMRrirubdHMY0I1MhhsD6sVJLoxblMglla+ylkIKwlsY9w20JVDUiym335LAqpSjXSyIXnxjpUxTXrRCxn3NV1l3RydrYEHxUtPiUS/5ALk5YytYRAIq24CSKJttnvrM/lP+f9Di07/yXvi/hMiwnJTonc05+5ukk518Fr7z+wbd8ihsZwbnqgUgXOYJG3xye9w3/qMhIxm1SSQAAIABJREFU0hAS4O2HWMtIn4bUbaHdpN1bJ7y0gmREK9T9YdZ7Wojzhf37Pw3VGkC3nfLx4cahML++kFdLOs6XmVI2pwZwm0EzfzYb8q1pY7nMY//vAer+8AJoKWi1gsa+VdbHzuNRuH59Zb5crFiHoNWmR8UT7w6eeLR1UpDknBwFpVJr9m3UWy7dyY/zxQqK2miPOyFGcm5o8X2gKh+lkZsQok3xEZTUlJSErVSbplYasTVQyMC7RuY0k7Qxcfgkh+gcfq30R3JWxVNSp1f1z+Ar/D1HsfksnfZcnzjjT8i54Xf9rIejHsfhz1hGAue0RkEOv9HfPnyEQZLotBme3BloifFe910HqbXriu/nrWF7oH+xIFaE3Bv7Az52+F6ER1VaiJRmBPDWpgXfqlKq8vUqpO7OjOs1RJv6XhpweggswW6IroNXzNwjK3ykGMezrzkDMC8LtfRiXhpypFqeJO64F6i5sm7FLHXzRBJWjDAkjSdFnfeqJ4jA/tbqwIswLQEypNnQbWlJbJshXKK3KSqCNNi/fxCA/O3Ox/tKUeH+yKzZkK41TWT3zUupbCtUMWRPleKdJpG6roTJ2qAnsbgej4NQJYY09r7WjCS9b6MCkGZYbiYL7VBC2zOP4nBfvsZJt3wRjYZER0dJn0x97Pfq5zYfV9wAaPd5O5JLD3n/o+O/JBMee0R3PoF+tcMpfPYnTUi6I679tp6BPXKGlPmrXZClVyHppukExVZ1hdWxImMDFB2CyO1C+Ou/INcvsLzYuL6eWe+9Zk5AJjE+3aPgJLudYckrpHG5WqK1mnIYF4UitTEH8U1/tddE0HuAIEiJkAwy15KNDWXP0PvmVWnbZuRQMUI0IWy1ektER/dMRiCsZgi7oddSPXA1az9FIQdY90pReHz/xmUOTLcJmSc07+j2gd6s91fElKsHw4gRCR/P8SDtkphs81J1FI8lkvoDCyFaVaY0pDmUm2ZTrnzCxlZhq8JyDcTZRnOX0piKZaJHAQAoRclbIYkQRCmlche4xsRFCqEzco0++0M2h3yeDZT0xMEhi098LafN/DmN8XMdHTlkgVVXgmdr8FSZOBkmOb/n6aTnH09r5kt89AzbGumnzxzneK7GHlbw03fqERRof1lxRFVDnKQ6ThebaiGOGlA5euxVTuRfHI9aIE4zcVpAjcgziMFfY/PRgoaIJCWxMYR7Jrxc0ZyJKZDfMsvXG2XPyHWCUskfK/PtQqtK0Z00T2ip5F0pj53pkmlYwlGbkrdMrY1SrU0pXW42sjAtpOsXuwBvPRwB7mkzHbX3kKzPuHTopuNRyYRpIU42gjxvGRoscyQ0KCL8nq2iPkVhXsIY2z5PRthYcmUrmdoa02z8UPcmbAhTeHaGDnk6/q4/CMKzc3p8zoMDOcnPMJAnb7R/X3PnKLhhOzu8P69qHs5Vf4790s+6wZFcgfNedTqG/ribLX3pxc/X9YpTotlsmKJuR/uadYf/cCOONezVcH+pHdc8jiiE6wty/YLMF48hghc+bGPohLq+CI5us5HRIU7+nY0wX5luX2gf37j+6U88ln+lvn9QHjYlgikitaBVaPc7yy9/Ys8V3U3GSa4LtVE/7pTHyvTllVoLqLVRtG1HYqBsmREctcA0RZseoTAtE9tekKI0LVzECXqb8v19Zb48mH77jfkvf0PrhoRfANxZlX6bdl8h2qSR4MljnLtNLVkUJKC1kh82se39+xu///ZBzTvXKKy7Iq2y5coyGcl5kI6+Uta1AMJySfzydWHdrb25lkbOFlhuq7VF1qZMYrQde1FaOJGiDl31Xz5VpnuxykTVZaKF48WTrh9lgcNZMxH7QZJ/ssPlHw6f9uwgnN/mumF+2qmgc66Q8vy34Z/2gKD7E758T3aZ5tXYk4d84sewSzx0diRfFOdSqQOdEmKkD8kApdZMSAsdeXqcxc87rsuM7n5/R2uxqUsxsr99I397Z//9O3XfqFsER6BKDNTHRmg3R2pb65OZJkuqGGebB71VnVepOpIF82NbpW2Zlitlz+xroWyZvGam+ED+x6+GemlKKTvT5BNdYvKkbzj2nODPS0F6W149pq415zg5HpwcvoavzbrZHpKbYpNIOwmz2a2YItU/35oj39SIY9eixCi8JmshTpzUy1syDj/z5GOdEy+94CHwHDHZczrQVc/t+r1tiB4HWUfq6R0/qPpPd2hHGkj/zy+4I/rpSYNwrKCe1+kUq7RTp8TpPV3+ezFdlYPzBmAkf05krx5sKyZP+dF4bMr3Ch8VCJE29gnzr9bSaArX6bATEiA0JSI0tVapBkwA0Qjhiyr3rfHXa2K5zZb89JH2/R46T0wtxXhMr4tda7OCe4xxID1SitRcx30oSkhWXIgibNXIgFtT6tqYZuN3myQ6J4stWkyAhjF5tVb1ln0bVhGNXI71UUlTYJ6EaUmoChLF0HRRKN+/k2Jk/Z//oL49KBW2vVBVraCoQmmN2e+hlkAICsFiv1qFRGV2Pll7xljQoP4UVInR+Wekr9pho3pnR3eotKvlIKS21wyBZCuv9cdWe22O/D/lOkwePaHjz0BwBCPdb+ufbx4TC5y3pT84/tNEzZhCcTLwytHL6+6jKcK4gGcExnBA9WQTYbQ4K6526ufqRw8sG0NExzm7AfsUJY73uLGUNCPTCzK/dtyvJ2ASYbLpROJTKo5q4OGGII0wz8SLkQtaL1yjZWtxGC1a1YxPRKBUf8COtkkBskKuJgO5UPfNKvh9tHCCuhW3294uUawnmBjNmJTNzrtu474NrmpK17lorLdYSAlSE+Od2Cv7/UF5X4gvV+rjQfpSB5TUjGt0IuOISCQ6GsEmAFQGrKyLAuLBI7RqoyLBzhNi5HKd2aZIzrBvndTZNtatwt4aURO3eTIum2rEppdLGACfPdfhrGxbZvZRr601VoRdIqk1oivTER/2fsJ+tXI4TV1GRBgsbefgxN2ZDlv7eQ/XPu3G6Oz8Hbp3GOqTxuoBi/7BfVMzKE+q1V/qe1WHoY69q+88pw/p00fPSwtq2engm2g4nUpiJP75/0CuvxDSTLq8gnTclEBIh0PqXzQqkT0ADgLVIpU4XajrO4pSs7UJlccGjmqb54llsp50a+sopBCpj8106v1O2QuUTEgBKRndA3XdaQQIINURep40TZfE/rApN2WrlFKJIbAsEyEZ5066fiHOV0KcTu1crllytP4JBn2tVH/WhlbrLYiDhLg1ai5cZqte7Hum7YV7tcp6SBGJwhQD85RIMVhiZook70Pe98b3qkxaWaZGjqBOSHx+pm7tul94qjL09/UgplcQ+sfOOsrY/+X0y5PYuf0ZcqzHd/3Mh572Ex1/OPYSPenbeYfRpx9OKJkREI948Edd65VCjgTMOUkzPjuu8Q8WUvXpGsZ3geOzs/GTxRmJk8GtJx+R2+/FE3FPbQg9sEJAG7XshOnK9MvfKB8fXH/5wsdv32n3jRAXyBUthWmZoFbavo1xonXd0VIJy0xbNyjeVujJmXApbG93YnI92S1ROr1cqEVJU2K+JNZ7RiQQ5wVNlSlFYlX2vSBbpSo8Ph4s98cI1I591Voq+oqf71VEiByJHNWCarMkUrGfe/B+WRL/eH9Qg3JNltRC4b43iu/rKQVSEv701YjDUzJejNsSeKuVNVeuc6QGYQ+wleqk/nARa8Pai9LSGYh1kiY9SyNPLY7jnYOr4VkGP6NSx57/EyvpaJc97VGc7uwHvegVUHhuBxRBgrdbSG/iPZKp9lk+a67rZ6O3Jfb2akEGLdeR3+2RJIwWSrq996em3eeaT0kaCwIGUrz3VNKTxN1BluPZidBKpm4f1PWdFKMh075/o7y/mc3eobRKe6xmT1q1qS5fbogIJUUkRaQ1G+udM7UqaY7UvYJAy5ni47xTiqyPnZYreSu02uz/pbHvhetNSVN04nslEJyTJhB9PHjobftgBUcsbrEBFNnJhW0tiIYCV0Dz7pQGdi1GR8Agdo0C94IlpCSw58bk7Q0KZrM9yH3slUWUOUBFWGs4/KguCh0tcoqRzH5/sgVjH/dYy+1rT/w1/dRGdeZKOgVatl6nN+ohpz/rcXhBXbZPTuTTTdvajNiy64P1CXmPWNdV10xv3xmn8BhNYLSdmP6e90ae/Bxyo26Nx7vybRe+70703B9hCOzZ+FRUhBgDW23Gr+LdI+Hkqjc1XzymwLpV9iKse3U0j7LfM4viKMqOINKh/2cuVPUY1JbNaTW80K8ui60eRr0WRfdKLYbc6eHmVivTZN+VpuBhs7ebweGDyin2ACPajgHxCVWlKBIDaTF0T5pnGxhQK+3tzv7bm6HR1FyL0ixxZJMPYYoY8k6dQD8YoqeKEKrd27YLU7Pujh6btloh76SXxIh36Lw6p9yEmsJLwxFX3Sb4e1xpOu+fuaK27ufuG3u4ff8//aNqCfh6sh89CeTgD0FG58qQ4f/g+E8TNYIOWVc/2VM/5MnLHHtBdxTPPc/9Bp48UTMOQTEOhHPCqmc15flzInKMfuyG9mTLhiPfr7kad4vESGfOljhZAsedr171FPp+LwZtbm7YYiIuF7RYRSvMC20N1FYJ02TEv2pEfVIbItWYsmP0+1BolfrYmL7cqFsmf3snTsGc3GRBls3ibOgeDSGj1ndohqFZHy9K/vgAVeLlgvFse7TTTOlDShCrOaRq7PUNYdsz+f4g3i60fTei024Ugl2vxGSCGQKtQ/eb7SzSistSh417T6AarPoQfkvqzMvFWj+KsiSrRGxbZS3mPE7J28H8IS6LVRXX0rgukxlMsSotCDU3cs7EamPsSpc5l7Xee/lJgF1AnoTvcCrPTtXJ2RqBzY9J1J/nOFeFYGycPxj9fvsjEzKiR7tndwg/0Y0c/uFpPfCPHaZUnje2T9XJgYLoAbse1/AZpSHqxJmOpOkjO0fFQzklWiO93Qk5HNCxR8lzO8a41tZo224O1l6JEdqeqbs5hwrUdbMNe/de9VXR+4PyocTXq/Unl0ptIDFSHytODQNqerqkZNOeHsZOH6O19+2P3fYRCaMiGLx1qd9H57yw9TvS7CI2jQ1VawmTYG2PLdpEjm01I642aU1qZW+N3GCZAunLwvXrwnJdfNJGo1bl+9tq/BbV9sDH3lCBb6p8n4VXUaYgo6KFBzqnx8wBwZbhCHSDeOTyusN0euqnuOckWsPBsvaM7jD1YMZl62d2OVtXODnQm97i20RtT+3OGhyJUTkpIRxO4kDGnI0bT/a3o1CPwQfnVrTP++IfOAUnu96f5Zm8GVX0/mFjstOETAthuow91sbLH1wY49rH6Fy/PkeGtZIMVXb7itZqrQKtoVultJXlltBthwDVE6tRoK2ZphtJhfLtDa2N5csFXVcolVIK9b4RrotNXXJkmxZD1UkQYpxI2eR2uUVKVaSYHZWUUdmQ3Kguz7VWS6i6k0pTGj6Footnq9hkjjb8iE76awMEwpgY0ac31dqYo7U13ffC5E72Vs3Rn6P1/98Wg6JfbwsxGUpnL43XSyI25b4WZofN9yrpoygZ5ZfJ5cS3ys5PQ3/GfyS/eryq54CpuSx19OohGm43f7DAP92hQz9gKFCHivbAQ7vd41TUObcQdhk/7M5/fO997fq69WQNRojp5+ktxN1Ods1t7tOKy4ZFTuajhRiRNHuyPz69x/Sxk1xbsl/HPQtQvUXd7aRCq57YKJX1+2+0dUVXG/27l0qaIlGU+nFHZ+OcaFVp7x+GDHi5Epgo68ex2J3TTQsSI2XL9u2loiWwf2zHRLV+z8X81in2xRXjirrcrLjqxUTkNGVuPNz+a4SgSCiIWiuU+QnWZlxbpeWdWjL7tlFy5jJHqkZahby1Uce7XCNxthii+HzkOdleV3cbh2zjl22c8bsEVhWuzfyyz/W+oTl6yM3hGh3tsEfxu39O6Ahb7W0UA9nqqFPBWszVzJA0nIPlD4XzpzrOvqTgLSXBi1Ge3DxPserr2JEsYzz34ZjYfhtcr5setra3b/rD6a4Gfe3o5th1rjTa3tjfK/cNtibMMXBXYa+WNKlik4p6oiPnRlwCMTiCzMlua2lj/4zO+WjILeXrLZCi+XBlzUM+glhSyGxoQKtPIKvFkjROP3E478aH2mVLJKA+/aq5TdqzccKsW2XLdr+z92jFaPtVU+OmiW6nalGa2OTBRjvQNAhlb0Zf0dSQZwAS7bnVjK6F8v4g/9s/KB+rTTsWSCLMEpgCpGCJmiVCc7+4T2aXEEgxGDdsM5+idoCEOGCgFULdaftKer3Z8++8PlEseYWeCohHjEkQRwN23ZOB0uuy0H3dz/v92HtPvq/isUvtJMenAEtgjHzvRvQTOfb5+C9anw4Y3nDWenLe3sDJqhx//hSEHcf5hW6KTtHy8D971sv+3HvDzkSxPUt4fNah3v08qmbQ/DMhTlaNT/NgpbYVN5jymZzS0BS2EZuDFZEUoGYzEt6GIWKt+zlX42FpzbKm+MQLVc+4BaRUUkrkXCFXf+g7QayHXXIxBEsU2p6RebKgEqU6MVS5GxdGa80IQX0stohYsIiRnFn1sjGFSC52bU3FJ0YYc/6s1i9PrzaEOJI0hx8TB+GWhEhAnIk8DdIvg3QHWs30KTQtF9aPO9tjA7WxdHh/+1psG44pEJeJGCP3x87tZbZJHw223IwYy433vhekFq9cwIzvSREkPleoztXnQ479n5Os9NaA8VIPUMZer6Mr42c89KRHIzl6uoHDXvUXuq7K+NTQaRgG6+zIdsfuWWUPZ1Wf/izHV4wq4UnfTxn5YVz7tage64/QHt+Rxxty/Wp6HYLr7HEhliCMx/W4g9OaJw99DwnujNpbZDiOWiulgtx3cvwwx/DlQnusCEp5+7CM/mVBcxmT2zREajM9C8ld3oqNtfc9p5RMy74XiBCnCTC+GnVixTRdGDtmT9SImHelvf3JeAB6wBfCjIQZQwdttLwjEt3Rbrz//s4///kOtfgkOCdevU5cv155/eXFnMlqBqXUyv2eqdn4sfJeqaWyNmVZYEu2faUTL4qciff64YGgJVZd1s6Juf7UukKdFVTl1HrYP3rAkp+Mi+opGfGDlv88R8fSuuMonshTlNAdZ1dLgZNXeD7HCBVdVzjuedjjroOutN6aceYA+uHS+leLfFrnfuLj++1//oYm6Pu7tc22ZlXosltyf5rHLjOOro+1EsJEYXvKM+EjtmmZeZ5oJTOpQsnEMNEeu9m1bSde36nvd8jZ2p4C7P/4DSmVfN+YUkBSpGXjqWk5o8mmVqQYzZHNlbB4nzx45VSIs7Ushej6JoFFZBAQb5snVtN0alE8Ruaq2sSr5tX2mIxYtdVsa93JMUUMjdC8PaxZm4UIvMzCnhk6X1T52BtfboEpJaZ5YblcuL7emK4TtTbCfWO725pOAX775wetWbtzn8K41krIynpplAQJ8Sq/BR/n4QxdBIJ2HfY9Oeh4vVuRz7rX91p1gf6Z6/bnRPFQkYHQ9mvvdmwkVE9+57BScC7RDxt6Tm5+VsHa903/pr5v9gXutvj00fH28/csV/NPqrV+t9aIQUGSc56l4/xjLzB/1SaS6fiO0eIfoJXd2u0FKDvl3/6N+v2N0BpzgHkKTFOwlrxckGRkw1UrrWETDvOONhux3ek761qQ1EgXQ6HUUpwbrZEfG5fXiyVOXKlqU1IQ9nW3QHFajMw7RCM8Xm4+sVQOegLhQPyenJhBcK62F9WSzZb6viW1sCmUUrg/dvJWmCLsalwhsdmI7jmK+xG2ltfFke65Uh6Zt73SJphQ5gRbgyrqvB/PfmnvSDqLVm+hOOTz8KcOt+7UrtMz8r0drwvIqdug00voqTDwM09kExGbiOP+g7rN9FcPH1Xk0N3z7fREuL+nJy3ktCZWdO5FfnXeLT+Pv691H7oH5mqyVe7KfYVvNbBWYccm81XMh6m1cVmi5VElkAJUGh9745fFeAINuNLb1+yLmwrLZAmJ2uD9bkXCvGXTbX94oU+wUmsBq6UMf6lP5o0porkM5FVrzYnoXdDU1rE181tzNiTP21pIQVH1sd4zfk8Yb1zF42T7eynNOSJ5uiaRnnyC6WLTWfN9p5VCIFG/v1MfKy03tAlTMBTNxXOuL1PkOgeWOTKlyFrbwAP2eq1isWzwZ23TF4dlp7VK3T4I8wvhMtvjrc3seCeQpscDFaMgcTSe+2ZKl5MO+3b912qd3s39rIGGP/ZYtYdlT7kX6vr3uUTrU3Bpz+Y/82j/18iEO+wKjguBI4kjmCN3Wqzj4k8XpKe/qbU8tWEYj6p+v+ynJNGnYxiw4+O2BL1PHAxm1RqhVYIs4CRkrRVCmuhkDYMIsQu8QAiJyjYq+H231LwjIZKWK1V/JyarMhytHGrZ2aZWua9AbZYRzZlOVFVzI4lQmzuk644kIWiyHnoRWt5te4/BGbMbHQGkeyHejFFfPNsZgkA0qGhqitRKrMmSJ/Xoj5WUiNebtzv5tIBuGNzBPrKCxoUh9HW13kTAM5WuJC6QwclRS602Wq1a60dxuWlqjqiLMRJgms2xmKfAJAYDLNXgeyFC2YXVg9zWHxXOph51GLJeyXwSXU7G6WQInwJKP4EhS7oc/Jda8d96dDCJJWLdAHXyOY4qzpO/2JMp4/fTz08YzhEXH+93o9InOtmSnbyIkz669nY/wp1F39xO3z2MsHajJdY6WDO0gmo1MtA2+SZrLT+dVX/genrpyTcF8UkWMU34PDLfaCNt2wdiTQEtle373QjUPKBq6wa1UQpMKdNqo+4V1Q2ZE6UJTJNNknHyhz4ZLYZAy8r6KE6aKCzXxYM4Two7kbD2IBwZE9YM0jvgT3bdfYP3BEmXYZs8M4NsRoJYipEOqzuKWK/u9ZdXvvz5TyyXmW1dqS0D1u5Va+O+FqIHn7VZ29XfN/hrEvYozF6J6lUD8cpwFwkTrSOxcMiBv+bOzki2OBihi9Af7fEyZKXf87MY/se1h5/g6Lbdf9XTgvRpBOacc9g8OSWYx9oeizKQbYfxHXp1/tvpmxhIAGy99f+l7t1+JEeW9M6fuTvJiMisa3efPn2Zc2Y0GkESMNLDAvvfL7AQsC/ad62g0e7R7Vz7UlV5iQiS7m77YOZORnVPD7AvqiXQXZkZEQzS6e72mdlnn9X9VW2nAZov07sfbN/sMElAxhHKTAskShosm882N5pjKGLr0zJJxbu/lD53JSTSNHGdF8rTM6EUIhWqELVSny4olbIWytMFnVdjygwLcnegPF2JyQBnfr5uwD2IAdUUXGTX13qppGABkp5hRUACYbSOLqVUkmfcYwg8l9ko3H4/wUtMLNEm1D6RzSZWxyAtaCFATCPVO72hVi5cVHl8eEJLZV4rZVUOSXheqmU08fa/ITCdJsYXd5zevOb4+iVpGMjzhVI+sM4WDLpeM+dLYZlNt66syrpk0371jHtVKEDS7Vn7LNmcv8bC9gla9wHFPaT7yaHd+QifuOHc27VmMnQ3x3sk2BbDNkDt0/rTIejn7Jvhbp3tDJ66Q96YNft9cg91bzS8/PUe4xaQ0wl5+QUyHJGQuoabdTdqV2SlHhriDr/itqXvEJYIACQOxhwv1qSiFhP/rtcFFFIUxmkgudNRcQZ4zrZGEMpZkWQC3RTQ1eZjnVfI0TGwa9Tk6uX9dph+jTXWyMWuL8bAeJhIBysRTtORdLgnDJOXMm2lXrbdNdtoNrRlyiUERO2/GKyFeJUAzs5Jw9A15YpqJ7gPQbi7HwlTJKbAOEYPwsI8Z6YheKDWHum8VBuXRZknoagQRbsmXBvzxpq5YZfK5qj1vb/Nz70t9T1c9u+TLUHdMNdmFm79sZ9JY34yR0/CRCsTat1FzX5J17DpNkQbHhFnwmyLc3NL7Q99CLsmngNZbfujjWP3FdTxlie362paLNcsfFiFWYVVbTyjgIpwOATSaP7LEL2BQw2sHnwUgSBKFGdmabs+JYqSq1iJXQxcl8qajQmKGEOutbKvtXSJDBsXS57XMvcAfJsX4lqsKq0DMt6K2659WZXzUllyYVEr75PBWJu1FKoKZcW6KyposWWnVc2eRIs/hxDQtXY7QC6UszIcJpanK+nlifXyiKyz+7HtqVSmKAwhUlDGJNydEsej6dxMOfL+YnO+ON4JwTQlxZnezQWpZUXyCnGg5oV1eWI63Bn2dtJGzcUJBo6pGzjyiROkjd+GzdrcayvvxsTtYx6t1zm7bUm2Obffzztwa1M20Mu3fu745dInwXU6tc/tBju3muQ9dae96p+v/S0OSnc3gjNl2ucbv7MNWdt4b7aWbdH17acNZu1/sQWdIuF431kfrY9606jpDqk7Qq0GrWWTBHXDZ8GaSjXHqNjCscyFwLyQRKhi1Wzd3aqVumSvZVc0JqsJfLqga6O/COVq2Yd8Xgx4DltEtCzVOlOVgEogzwtxcGORV6JOVovowlVBgpdSKWkMhGxUuFKydYPx7StNBxhGZJhowodm5KpH4bffAaRlYcTaIdotuvNWs1F4Q6QuV0otLOczj3/8nnxdiALUyqr0lnUpCGkMHA+JMVmWxmqR7Zkcx8hlMcHHlITkVL+8VGaBkCxrUYozD9LexLWd2v/1krDuzLf5CEh1iNYcSd/om1P5KXevQJtFVqji7G3pt99q53tAhV1NL27g+sKS3WL66a8boNStrte95W4TdCsd27X3ASwy3Sznxozb34rgIVvTV5jnzobrYAR6Njr4nAXxPcqfG86Aw9k2EogxsmK0yPXyDJ36iAcmlKUoVQoqMy9enbhcFqNbBukiYlWt61gkUxGGcaQGcxSN1QVpTKbWv2ZaBF5CYBhMTNFKHsyoBu/0tG2XNqohBGtFWjz34hpaISQq1cUYCzXPlPWKrhfWxx/58b/9D378w3ebBqWYo1ePJ4b7V4yHI8OQWJfMmheWObPMhedrZs0V/PZkAAAgAElEQVS2niQIkzMMRJV3JfJBlIMURt129v742rzYOX4NDLRAgs0hL41r9fRdjIFN70w332jb/zcHcLMsW0D/Uz1Ut2vd/ojPUd2CrOx8ur5+/E4biPzYSezrZwOZPdiz4fF2Ids69MB0ezZ9+HbjKM2efzy44qD1T39A//mDdT7U2teYhLgjWdxY5+07CQ4mLXmi2bKFaRzheoE5u/9aO0iua0ZzJT+ckTFSSiGvME3K8+PKdDBrm7MSgiVFarUMXOvOsroTXnIluHYLagkFFSFXYUjWkSZG7UybVZVh2rJfZZ0JJSNaCWkEFccL1TGS70WN3bnL6DYbbK2RIxIjL1/dcbo7sF5n05DCQOI1W9AnBkjTRLy/Z3zxisPrzxnu7gFIYUQ/PLHMIBJ4vhajpddqtlhNl+Z5qRyPwYUeNyp0Dxb649qvpy3eLdv82ScF9iyuhunanAU+9QKovodU3377WrJXtb3W3i8grdVa25N2cfSGU6WxCZsD+BN/eL8XKKElJpvWw/4adYd523fg41/s9RBNZ9HUPb0zoO+tds0WWQ8x7cy4P7Pm6DYb0VZoHAkhsJZMXTLlsljJR6mkMZKSlfal4AEKtXLEsuaeBAnZ2GWsTc8xo8uKRiuFKLmSkpUslFyIjr9jiJy9/iJ5e+BhGs3BIpgGj68d68i6dXQxTY9Gm/D0h2N9pXrMw2dmLwfxZ4Wyrouz24QowuJ6HYcpMp4Sx1cTw2jfl1cbj1orHz4sSDXx8Vora64gyhCUh1V4nWDY20htftNuh+0O47ZyZCeU2vbjn11R+1rX3ff0IKDPn02Oou3xn+bRMafqBm/ba21NfIRhaY7wPljVsXvbtByXNPaav0+xBLNC/1ex85k2nzjhwrp2LlflvMKiwpJhVWNMxehtuUUoRahqgU2tMJfKNUMsyutJkAilVCIQklA9AFGK2b4Y4DpXb1qslDUTVSm10Nitmw6rs5HVEm6IBVQqxrYJMRiDWhy3p0BZChJN8LjBsafzwlJN+DhX6yhYs6LRsUyNlLxh8NC0GTH8HAdr1IGawHGKkbqYiL+oovNMuQbK45lynYliGqW1KikKh5G+JocIaQyMx8Q4RYZSmXPmXK2EwhIkIDEYGZHGNvexWVdWZsbhaOX/lw+MB6EYar/xdXFygzHZfD/oQZVWWui/+f3pLmDYcj2b/VRjhO2YOFvyv7GPPFDezrc3vPUnRqMfvxio6QGeNoNbScOeddAXAn0zaEcTaNpTtm8CM36YY7zpVqj/URu++OgQ/cc2Lv+fCnqdqY/vCF+YMn7USoiTK8U7kHInSLG2Y6rVo+9Wy9a6Qmkb8Pa6tEh6QNYFXTMxiFHeoj/4auAsDIFalHRQ9LpSn6+U1frWM0TKkq3negvMPFxtIRal5kqoiqRkwHYpCGKdMaoanXscKBcLCFURkjtayTspCUo5K2GwjaSqGoV0GJE0GKXb0+Wm4+FRWo8Ual3RXsNd+3sNwGa0rFYnmVd0ncnnR57/9Eeef3xkXipDsBIiFenUtZgC05SYpsjxNFq24ngAIOdCDcpBA+tauVxMhT84RS6vlTkr0wBE39C11frJ5iNslrDjsJaR7kClzVsP8jlu6ob9U84+bMbXAN+WLd/WI9ADNvbLlqXrDqJ/ZtPtaUC0/Z2OA9pAbqOnHzWI2YFOH//m/NX60WjusATqNNcGMpaZruBeFmpJ3pHMhAQFcXaXO7fSq/3b6ex+/AGHlKgxkaYj6/PFy06F7PdZFVIyw1XVjCeqTEPs72m0yVKF4Nluicmyh2KlhyENrFkRUeKQSIMFUUMMqHgL7OlInI4mmuzss20DZwMSfbx9bu+i7VqsTXgASsms5wd++O57zueFqkoMgUtR4hQYTwfSOBjDrdE/EWopXC6rZS/FulskhOwG4xg9VoYFqRuVts2HrkvUSqJ87TUb0EFT+6HfXqNvfxyA3yZEx1LuFG7v3MbmUy6537DgFmjp645tvbTpLmIOYNur8JJMy4j3hfqRzdOb4e3PZnt5c7qhlzvcXGD3HrY13d3wmyCRXRNLNp2aUhAaU2awzjMxeie2zfHYAIEQ0oBmiBLRdSGvK+vTA/P3P1CeZ1q3Ba0C1Vpja6lWWnw+M00viCGwlEo5m7D+usI4Gqs0SSTX3O8dbC2rCGlIaDAncxwS61oJKVAxpqpEq/FTgTjZxK+lMmLrolQTN1bvLNFZraoYZdro09VLhLuTECLN64/DSG3JkJAsaLqaQHgKlnRArBtiDKASTJfjeCLdvTT2RBzQkslrQULiula+/+GZeSk8Pls3yCFAqZUUDZDmXctbbWwi/9ljDzdBiRZABXVxRenzdAsaOGiHri3WmFi/gDU/jcOZo7LTpdlEYJqdbMHKNpehgesW7zIbZw5QRwodUPhpaG520zho5WbSHcL2sZ0RvT12eKW/XJU6n5F1JU73nR1mFS7eEcd1avYljt0mtz1JfRwkeMvr2jss1Q/PzqYxNlotgnoXp5KrscemkYC1s1ZV0znTwLoU6pCIQ6Q8X0E8ix9WZ7wHE/avkIZgSyRGal0ZUiCNlpRYq3J+unJsGC9Nps/WMum7/WljgJuTpNpaBxs7XtWcKAHCAJRMFbuOdbkyDInnUrmslaLCMASOrw6cXt9zenWHoKzXhSGJdTItlWUprEshqDKvFUrlkitlgHsxNmpFiX2Rbc8x3Py2XT/tX22svI+C6j3g3vbXna31ObkhI1osCvxs9Wcn2adxbFp97PSgdlbpJvnjS6Z4EKJqD+z0Jdi6efUB2pgRNpaOV9saa5tchSYVaJ15QLPht6uaTzhMkFRYq3JZjZGzzJkXx0SMibVY8GUpwiGqsa+wvwnKmAKrB8BtP1ZShOeLraPBq/pjDH2NdrmJ0LoUl620FmwN18K+i5Wh6IBEt8kxGCN0iBZgKtbhbFGYKt5Uw0pxUw3EpJRSSDFRqodGSu3MVFXz50JQYhNXV2uikYaIrEK+rqQAUpWyKloECIyDeoDHNHNiEmQ05loaI4ejECWgi7BehBrb/DVGUpJkJVwKRat1VwxCHGwcEKxEu650GZMYAbtH6RuvdEy7t4gtKd1xW1/DDViZH9KrjXZLSxxDKNh7qscyOiDzN+6X4y/QxH+59MmdrN5nvhmZn1nrHZNpW2SmENx1KPx/dQdekY5jaNH+bYtpteSNKbrVZ/7kaGPdA0lQ14yss29a9AelOGXK+o11ULUXlmrfrr7qezRNPDomQrleyA/vTdQJOotAqyKDOGVOPfqu5DWjS/ZWvYoUJU12P7W08gcTJ6sKoeAtSCH5tZaisBZCDC58ZJStNat1uEkuTqpGRRtipORCSINRs9U63UgciMOBEDw7kVxxUDwC2iarACGBGhvGNrriWUMbpX04o5ZMyatpZER7ks4eJFdYS2UaEsM0kI4H0jhyuL9nOI4M42iijcvCcp2xblOQLzNlLaye2ZFSyWqiw3Wqm95D81b29fPtkarNDZUdMHKj1dg0N85Tn4ufrlHb1zIr6o6ybs9F1RkJ7PaWzeHdgNutY7b9STfHu21cN871ZkibEd02NR9JH9fqm0NtwKNd+r4UqvpCn0ZqHJHrFVkW4nhyICs9YCHR296CG66EspVVaHemAnE8EdbFr0iMkunBicHV2i0rYmLaVYXp7kBdMpISgo+jA/IQghm5w0QB4jBYd7JgVOqyWqe3ONmaiiNoNhB39+UX3H/9G9PJii4IvAcnqh/96xt9Cxbt6mVtb1kp84Xr8zPrkmkipXOulBCo45HTdLT9pyh5XSnLwuWysK4ZxFgHjWacSyW6YPOUlOMEIZhRswAQfcy1Pdz2zPvE2K2dNn8UK8/zlpmWoW/n2OyD1YJrpyv3qfvRpi/yaQdq2tHBpa+rTQgZ2u7SHL6+3+rt581R3u/H9DLjDlpVeh33HsS28W9j2AUV7VFsZU79POwGdhcIbtezrMi6WnA+z8RxxLJZrQub9PulOX24LoZCCBlUCOOBmFdyGJgfH3jOynJ3sj2+Vo4orxTr0pSEqOoA265knTPjNHBdvfQoWPmvJAOLneESAjHFXo5bW/ezYgA2JNfXkYBqJqXYOxMOB2OpplYm1RI07Cn2FngJQVAGdn3osEz+hi/ABV7jgE5HlrVYgmIIaC7EIMzV9srnWbk7BIJ3hRvGkTgMrGthXRYu7x84P12YVxuRp8sCYve9rpXsmOp+DHx+gDF6e2K3xRF3bnQ3/9zZafu2/bNbhy1x4/fukMtNi3ScJju78CkefT9qNCHHt+2mJdygzxv7B7qVKPpnzRFs69NvvP3YF6F9tq/jVmbc8NZuvPZj2mZSv26w9esYC6wMIjgeizHtztDut+Ht24fS5qaCaUiVYklMxYM1GebFhU6VOhfS09VuaYjEIZCfLogodTG8V0ol1Ei5rLAskCJalMUZv5nFmNdtmwjGMCtuPGq1kubxMKJkW78ueBFi6p2ebDgrImnDBdRtkHZ2tGKlSSmZVkUtK1nnzpxTDJvPD09crivZ1+A4DQwv7zm9/Yzj4cD1ekE1s6zFujCaSSevlRQscVOqOZ6PayUJfD5EXqBErNS/sz7wKbBzaLTNqS1y7497w3Q9aKM7m+hziCI9qG8wwZ55j3fspCU+5aPNV3HfazM+DcRygztbQq6/DccZ2sZK+3h1gkFpDHr7r7Fm+hmK9oBO+9oCLBKM7ZVBqwVpaksmiVUClMoORymnSUgizFWZV+UYK9MYDI8VLw1Ww5XzbAn/FJR5gXlZrWwW90GjM7hDoJTVMLdYCa64P1hz7vonwXGyBAvuZE+AlOOIfjijwZimQzDfLEpkijaP16xEsfJ/obJK7s8nrzAk63CWorCcF4aXh548zHPu3Y5KLgZZ1mLdGnGoH+3ahyQbIzcJcQoMKTIMwnRQgsDpLnBclefmY2NdoLYVoZswb6keoA6U+QJpJA4uKqwFqdLXvkiwDK0HZLS2+dT2eMeyQdDcYiBt3W5ztttC6R/Z4gl9nrntaBUrzU6KB3FU0F/oXvNPaNR4RkU2B0v3YaP90UukWmhkD8I3QChIz7Lvsf7WlWa3FvsNcvtH2Qxk+7fjofbwFCtz6E6QRQM3poF1aejCwjRqkk+GIJD9gXqkkmJtwEIaLUP48IH4/sFLL8Q3BEx1PbiGkFp9XM2ld3Ww63f2ineOIFi73BCEsiq5Gi00JN9r1PvS19ZFIhoNSwFxQJqSTYIYu04PKgwHocwmGmrG0OiyVbU7D41ppF5eYWPmj6TbD0FCImgxsUSt/T21ZP9v5fl8tqCLzxsRuHoyZToGxrs7Ti/vOb1+yfTmFcPpZGB/PpPzB2C1jes6c75k5vNi7c2XiubCIMpdcqaOKqpd8YZtUrUH3YBX23R3zgn08rwGtrqQ2D+2JD6Ro9/Lx3O+rRW257d95vbGVC0YiNIDEfaC/dPX6S7A5XuLfedNlh4ft/beJsa8Ac2fPoPt/YwJ/dWvqH/1d/DmV7bpt/IKsNa2iAl5++bpu6Z1dBC2+VgNtIUQII4M4z05fODpj7+nPj53LBSioMHKo6IHDxWQYWAYB/KarS49BIZpIK9m6MI4EkYXKZPIeJqoEmyvDEoaRprCviqMgxCniS//9d8znl7axn+zFzkF04dSoIskaq00eqeNY0HzSlkX6jJT88pymTk/PKNqVPRLVUoIjCFBEHIpzA8rUYyKntfMstpYHQ6RIQWGceRyySznGdZs4DkYuGui7bvpZgNY/5G1ErCMVDNSwD6rfHsynw5ebqXQAwhIy0Zv67W9/1MuS+zLsAHDmwBne5PbGV9Q3Y7JDmRCZ5XqbqA3fN9syJalD/62Fri5HTcP0mhzAtv1OthX7d9jTnl7Vv59uVL/yz8gX/8t3L9uD8JIGMXWZ3AWyQZUtF+zEKg1k9KAnF6gL99AmviuRt6VA7ma7bmTwkEzsVqLUAkQavW16h00BMbBGDwhBmRIltAohel+oIog7vSVYvY8Ta5tERyHpEQcR9OmGQfT0VmzlWOplS2kIbl98g450McaZ9h2bR4vr3aDjkg1sOxjXzzJkdeVOAzcv35JnVc0LqbX4ThmXpUQK1+kyJCsnHJdTAT1+nxmmVceHy48P194PJutDNGymutinTRiEl4cA59NlTEaYycFm09FXKumzbMgBmDZ4bG2X/c5JDfOZMefNwwSC0J8wksTaFiGbod2r/SyJmXHDoUd/nSHd1/+1OfDdr79ENys/R1Obc+7nXuffGnMh16x3ReroucLUlbquhCq67hF6zho7aqDl8hmx3WKR3j7ifZ7qno5n0HJYOX6pZKX1VoIu62eL5k4RGspG0xzMUaoq6W1QxDWs2namO9rnaWi49taje0Vx4i1JY4UNQwOaiw6d4bLZIlHCyZqd65srAqqhtuD6+9IcYdZK3smYxDH7jsPP0hAhxGpmRKM1Z7XwuIdRVOKxBf3TK/fMowjKSWmcSQHa9O9Lia+/3xx/boqJIEhOUshW1fSd6vyZohMUrmdEQ1SbX8T/3WbDmZfpYVpOtOmTQo8Q9/mqZqd2OBac5/a5uvr9ZNWd/MYf91YIW1vbW/oOHKXIt5hyo5BG5aoO+zk7BhR8UAC3VjWXUDHSwD6eKuaplGOgTVbmVNBkGilcmGxEp40BHK1IMI0BMYYe1fg82wBvZOE/pCis6lTCFwWKynMpX13Jc+ZfJ0Z/d5aEMHWebSNPFjbei2ZWgvruhCCIENCUqJ6t2ILjEaqFGQwrBsvuWPLY4wMgpfOOrZ3m0BRimYv17dW3FIs8R0nEw1fLms39zWboH1Ry+wFMTZeXrL7GsYUStEYNOk4mA2KltSJAY5DYTjggRsTFl+ugQse3HLSRKlGaii5EEohUCjrTEwDWgsxz+T5mTjdEXRrPtJzgSG1SbdNQoXOuNFNyaGxZ3pURzfGDW4T9njL/mRzMWB7onQw9dERFMo/vjZ/MVDTzncblf+Ijgf0dEqr7a1YQKeKlzTIbgdq2Wl6XWD7rm0r3X7ZNjB/wu31GwAvffPCKXCUil7O1HxFykpQC4ps5RLSncAehFLdSgz8wkIa+iKuZUbzSj4/WbuxUpElE9mSMrVUrwEMtmB8kxSaKLmVAMVo5QeIO52GmJAAaVDWtVCBOCQkmrcUU9PjCMTjwdr1EojjQJpGarUoKq5OLwiBQogm3pbAFmDrClAbOPSb9TEMMVpE2cesDYiIawBUL6EQF1H0dzTH5Hq5ss6ZtVj9bnTmwpAi6Xjk8OKO8cVLhhdvGO7fEIfJndeIyDMlW9R2WZV1KeS5Evy55KLMpTIBerCn14N5+6DM/iG2OdqmljssW7nNjU/R7+WTdgZ1c/Q/Xviq2iXSd+QEf3E3Kqrehb7BATbQ3e1ey8rs2Dr+hi3o4oePYXu/6kdfro0aSUcTIoKOA/rP/xX6N/8aPb6i5pVARrRQ54vpQoyn3Vy0ewwtkOGbZgNqfmK/f6vTH+9eEU/35oilYMJkmPChjBEZEhojIXnND0oSQYOp1yuKSiZNI+l06o2PJCYLalR18U/TDYjUXkcbQ+T+y684vP7MxjpEp2QaIJFGxfSh0fZ8Aby0opVboMakMUVemJ+e+P5//IX5stAM8rUopMAxmSNbq3K5zqzzwhBtXxingEhkOE7cf/GWl2/ekEJgmVfOf/mB9fd/oC6z1V7HthH79PA1tHcs+orTNje2rIHy0ZrcBbU7U5JNW6d9iepHluYmwPCT0McndTTwvGXy2C7ZpgthZ1+rbC+0GJjIrY1sY7lfcrr/nxhTpH3Zlo3fns1Gp5fuLPRAPNBKXzpD56N74ofv4PqErjO1rMQ4mM0MH0fztmfe9L+0FqhWciAoISXGX33Fn+f/xPdn01lBhZHI51I4iO3zaUwumCgEpzpLECNpIQwpkhWGw8HKsUYru8jraqXBcyaOI+lwMPaq616k6UAYBogmIqzVxLdLblQ/4fDijjiM270p1LxAjFuQxp+E1gwEcOd5E09W25ckMEwnas68/eu/5enhDKosj8aQkVp4mjNLrjCbOHDTh5svM6rK+x/e8fDjOyiZXItn9i2AfP/yxP3dASpcv38H1yuhVpLbzqJKcHZDb37QAGabEz5rNKjp/rW54xOghSFKc5z3gcCG+z7xY7ObcMM6bX9udvMGhe8Ovf1X2zrqX+Av7kr+vS7Jl8fGSDTNBe2BzK4L+NH37fdJ8YYUcTq6IG7Tz/HzeiSzlT61Pbczom7GwgIlJVjg0rQRF6yDp+E3BcfsZktihBgjuWQj9mDB3yhi5e6DBWViMNYJYpi3SsPDwRlwg5UWq+HscTrYexPEmj2hiDcPMLZ4CGa3tme11RB01nxpIt+esJFErd6VtBTyeqFcnqmXJ64/vuPxDz/w+HAhqzG/0zgST3eGBSRwmRdKzp3puSyF5/PqrAuhMWXmYmVjYwikaGNeRTYCFQ09yTZv9vizPfmGoXbMq9ow60dz1Z4hOxeoYeHdDGqB1Y8w7id3WDShO8io0toje0uwj95u/kkLxPUOPbrt1QoWiKmelK4ehOhBGOzcVejBWWcQW5meoi8n6qvX6DPoHx6MESbePVOUwyG0yl2mZIEFsCDCmBIxKAmQajbONGxMfL4qrC7u28SC16yMMaA5U6+LzecYfV8SLxOsIEYIKLlYOdIucWBaaIFAtE5uamMoIVps4pCQaWQaAoPbgUMMBIQxbHUt0cdZM2SsPGsI5pulAFkqx2NkeVo4nAaT61D1UmsLWqlWaqZr80UBTUJIgXSYiKfRGNuDJRtGycQUGO4TDAKx8PqzyvkvhTk7W6Z64gG1wLEH2LRiYst5tQYBuTBMlZpnRC2RSVsfEuH0lvD5X8GPf4R12TCQNAzuP+/8S4t33yZWG0MxhC2B3X0mscB7QLrmJTfXAdoZnj9//BOMGlsx0i+64TjZGW2Hznr7sX0JUwOfNxGonzl6Nq9tKLq79t3G0wzpLYj39+xSivr9H+HpR+TlF9CvWbFsl2e/dPuSRgXtMyoEAgOhKiqRus7k5Up+es/8xz+Q338g1s3prwo1K2HwaG6QTbMGrOwo0DseLd5RInoNW0hmyFICXBsnHQZqsugo4J1prMxCNVBUGO+OgFCzEscJdaWnWooFd4rVJAKElIiHu06Ha5HrJoL4sSG/yfI4NdrGrvTAVs2rA3Hl+d0Hnr5/ZMm1P5KlumOSBmIaGA4HxtMLhrtXxOFAjIlaMqgJPecM56eZdc5czxk8Khxoz12Yi7IWnHroVMbmx++yfH1u7OboR3Ep/102MLQzfJ/uIZvRbYw32U1nBwF7X1rrtvG0z7WjDVH7U9t82K3jG8aNbj/3fcHXbBvP7SLa9W6gv/mlGoD7e+pn31DHF/bZOJCXlXR+REMgpcHml6NCidHmaq0bQFXtLJsN/4ht2ljG8NW/+Lec/+N/YP7zj2ang5hI4DCiaSCkBBKpYhoP8TBZZtKDrrEK8XiwOt9q4JEQKXO2vWKcTLS8WgezHkOOkcPLVw6Kd3pP4HvNtg33UqibdWh3U8uK5sXZQN69ouTePUMEHhc18boxuL6OU8o9e/N0WTgdIsfTxOntKz7/5mtef/4lh+MLUjAByPXbD/xwN/H8D/8ZnWe0WImhYiUmPWAA3dm/WSp9Dtoi6jTj3b10avbuVluteZugsptbbc617O4nnRh0B7eGj+Z7s1uV3nWgHVvZ7tYJse9T/nNvT6kNpG6f2dhyG0i43QOlsydtb9vWpvrrvUOUf/kW6NntkUuhPvwA3/wdgrWhDigSBre//nwVGrOmlVTGmMgOmPJyoVzPDKcjOSTO68LsE3ZA+e8CX49wn5XjFLz0FoIqyZ2y1mVQRcwrTJEYBsvYHSaC2tpTMmEYDOu7vYvTZEEaIKXk5ZSWDaxlJQ6JdVk53N27KLi3Iw/W4jsE8WBk6E6hlpWS5w7a2ipp5WEhJkpeGU73rPPMqy8+53Q8cn7/A3/63e95//zAZTEtKYmRp/PMulSWazbqei4sa+a6FH54/0QSs+t3pzs+//pzPv/2K96+uKeuKz/+59/x43/8fziUBV0rRYxl0yJwVZwt5xNzK/9VE4MFNGiLB297qtLLpnbTrTNMWkvg/18cHUO60dMdzBQctITtRuXjD+/wKmZv+luaYMbu175hasNR0oUpt/W7jbZdwo5V6Iu1Pj4jz4+EdUbGo7XpDhmtvkZcK6rbck9Ibial7b3tDYbpwjC6QLiwXGfXUXEno+kYhoAkZ74MA2u2TPswRr/sjAzBgtBBSDFZjGoYSHHwoHSyVt0+hnEcqRJIk0kFiFgusbHdh7sXJO9SamXDxhS9LR1qe5U9EGPVWLcDrabtWGqhrjPUYgHZknn8y/f88X98x+Ps3XVSQu5fMhwmRIVlMR2Q6/OZsqysS0HUSluGwRh2JVfvfCM9YD0OwjQCuJRBxye7ebYNv/smO5bxDUja7fWOoyzQF3qXtdo61ezW8e18MhvzKScfBTqm60uuYYMK4r/UHuEy/TBxW0PzTxxeaW1ARZw1Y3avtVbG3ydstg81X4xa0Ski33yB/uprlhopvEeOV8K6YiQyYcmFCSsBiqHZebMPxqwxbReJlbwWqrew7oFxMXyWgmkjPl6rldChzNn2B82ZMI4dc1m1hLeKVnf+ZVfy5vtRVetGjOuzmaCwMWDikAiD6S6OreENNhcjxiwz+y1QrXtZqYaZgypTNKHugKJZkKLk56ULNpudKGgMJk6sSq02RiEaCzaOA3EaScejsXOiIBRGLcRBkEnQISCjMOTK8N6SqxqEYbBS6xa8svkjaCloWQjxnrbH1Vqt2UA2za2QBvN9UXjxW/TVD/D8AHnlJtG728C3/VfZXChfi4I14GgJSM+0bTEQ/1xt54Ve+mrZJrS0Bik/f/zT7bm1PfzNpG2UsO1etq5LHplsIMAjwXhv/HkAACAASURBVG0h4iCz3W3bWHZQoIPWj2t/vZDmJiNik0K2m2wLWzFWTd7aDYpWqhoThOq95oMguhMj9UnWHaamIxECYZhswahyffeBx3OhhAHFKGMCTFSCGhDfgjRim3St3tq6ZbPUg3OBONikC952LAVjroTDARmS1dfHACGQPQgiyZg0ZkxhmgaqC8OBqfFTi6ntJzvH9OoV8e7e9DecJitsk3175mwtgz/a2/f16op2QUkUUoyc7o5cHp65LpnnxfbJ6K3D4+lEGEbSOJLiAFhb1HW+sj4/siyZXCGXwvV5oeZCXpVBjDkhYvWRU3KnQPpS6HGavS5AA1OOvMxh8Vu96YZmg7AFE3bG8VM89na8g8idHtRef2LTpmjjtV9ft8++P+vN4tMnhGw/76PNzXB2IN9EEs3y0tgi7Tu3ckS7garC6rpNYFltERfMrkpdryamCZ4Nt6i5YOUI2mohdjfQhD8F6Ro58XTPy3/7b/jh3/0f6FrMcIWIDJE4DkgKEANptMCQDIHgQRSJRsVOhyN5XS3oEgPrYpm/4XSEmKilQoiWjBEXJhYsw54X4jiBFmcXlK6VRS+ZoD83rU3nongg090BaeUW1r54ua6c54KiPC9KcQdyycqyFA4H096J05HTOBIi3H35BV/+5je8efsl0+GOFCPR53+SyNuvv2X9/e/h+mQBIbUSm50K4ta0amcH+lrbBfJuweHPrSmfl0pvV2lT2m1HT5o2Q6guAP5pHhY0hK6sumvutTHBtBtrG8OfAugNcDso1d1y3wV6bsZ3M9J0xNYAjb9B1fMZ/aI8iCPSmVI94Lu7NFWsY2E2jRqZn5DxgMoRirHEZCe22wTBSy7uNNkJ6zqTH9+zPr5j/vEdFVhycWFApaD87hKgKi+GynDa8i8hJcQqnBgGC7BUtYCFBkGmwWytBNLdybQtJiEOo+kH5GJMntMRicl+b5pXFahKjIF5MSp3cdZruZ4dCwQkDWjOlm4MAprdNhkArdnEC0vfB0N3lmNM1FqYTifefvM15x/f8/Ddj/zwuPL+ag7fkpXpAOtaeHp4NnZQzuS88vR05flamHPgGeW3f/UrvvjmS169fcv93QuGmEArg0Tku++ZvntGs3ZzWKPPLGn2wXZu8QdcaVtRh6L+/Bujw+ZU9d9rA62bKf4FuPnpHH3fcseuZdvamtMNwN7e0I7VJw4p+nngZn/ssbqbwz4v28eQHZuyXVbH2f1n/0nVO4Eaa4uSe+ckaEGa3UWEHdPA56/tAdWx7obFRaLpR02TZ6Ztr4quFSMxEIdIOozUEBimSD1beWKaEiUX0nE0e+oi+2EI6KqEaSKME0suxGS4M+dMGLxMowrJu7/UXElVGKaBu19/y/T218Q09LKuXvZMu5c2lx0HSHO8tQcsesdXgLySr8+sj+84n89AoKhXTKfAMZrTVEq1fUArecmslyvLkplXY/eN1kKO42kg58p8MZZ99E5AFvO6xT7Idolt2m15xbZny/6h0xPjiunQaJ9tH81lH5GWpe/+Vdvff2pjPqVDm6kTXBzYbWNjKLT9FHO+1buASm1z3H3PVpJfHC9UNd0Z/Bl4cLRVQXSIW+0HpRC+eg3f/pZ6/xnXmrien7msrrMYjE1TFcYUXY8GkljHspwNnxyP0drOF39mCtfF2m9LVWN2F2VIFvRfV2sRf/SuaBTl/P7M6WtjZ1oS0OyJkq3aY11tve9KqdY107oyxTT0jqMxJVZPNsTDRBxnxruJ+LTgRU+glbW4nmkQK5E1WR6C1U3Tsk0R0BWUihQoizM1PZkXAmgxbdVclBDUhf0hjqMlUw4jYYhGHEcZdCUFJY1CXau1CgfiIYGsVpqZgldg2Fww13oDRyYJsJiAsic3NU6IKFoWC6R4QFUlIIfXyPE1XN6Zr6JQiwOkKEjZ5qVmerMdxcu6dvirkwY++nuTOOk8HD+91jZfZXNgf+b45fbc1SdmX+D7LP5+he3t0S0FdKvPb5kW6QOqu4WyOW/SM4g3Dp1u5/vJdfYV7s7jDlmqg8WmEt+jp00k0AfV9kVzlhqDqDukYpG6NExwekWeJp4z/Nd14KmKiYnWyoDym7jwdlGLCDoFpGWz1Z6siSu6cBo+xtEdNquht7bUBSUcJwfzBUmxd1CKhyNhmnp2K4hRSZPTQ7MbxLoa5TrEgcOLibuvvyEd7zqbJjQNENXuBG+PUjfDzgYeWhQYfAKGZI61Z91b5kWxDW3NSkiVgwppGJxK7hO1QC4mILxerzx+eOL8fGWZvUV5tTKxkpVcjY10SsLdYctYtLmylXABrZykARzU65w/nncNjDauVZtv+mnTuPsD2RkaHKO1e2ziW93r2jaJm7icz/Xm/HUQqrsvEuVmeNuW09683wMaaN+x/LS/me4I0tZirei6kj+8R6YDOgykSF87tulZ0FHzameJEZV6U+utbrxVqzO9ln4OU4VfISTCNKJqAsMhBIbDhMbEcDpYzWs0zScLQnpeMUVSTNZBSsREwouJHE4vX6CIO33JnciBnLOVR4pQ54VyOTMcT96Forb+HFugqY3jrt1ebZ3VejlFdlq6BW/e/fkvPLz7wFqUS1ae5mLZSR/5bE3lmA4jS1ZqGHn9xSu++PZb7l68BYRlvpJDYIjJjH1MHN5+yYuvfo28+96YwUUJATNa7nPfOCINVNb97ztHp08OvZ0LQAvStClh57Wx2Ddn2U2+/Qk/zcMzSzsU3o+eTdPbtzQAALYWW0nEfj12ccmdTYTN5NFeoxc48VPm6bYeFbo47o3mlJ+zv0+355L//HvCbz4QxgNhOCA45VeLB6Dssmq1LHUrCarFstl1nVmf3qPrlfn9Ox4eZ57nTMXafWqFZ1Eo8DIJxxfCYTSkFJJrvgRrX63RWoO2NtGthS8ipDEhcWCIgzHf8kJMifHlSyRE1mUhDoM5V8OA5oWcs5sPo5Ovj4/U52fieKRez52tYLbCyxCllTE3B6tuGiMhdE04CwBU0wBJEyUXrpczmgaGw4n3zx9Yc2GplXmx4NayZJ6er8R5JefC87XwvFR+9Vdf8M1ff8vbN69J7lim2EpChHj/kjd///ek/1io//0P/fm1pbhrDIL7Lj41fN3JbQLMKOaw78bSOnAousUGfpnB/T/92AK8LYOO7zkb23srTZJtffq66T+L9ve0va6zZppjLR2W0jrLfPSWj7RKdPcMdhl+2Jzsl3fo17+lHu6sXbxgDSHcmli3E9203do+cfPAt4to5XkigeF4x3p+Yq4KtZAbXsUCD5ZkFl9fNq9lSMZkmwZIhdEDKTIMhMH0H2oqxmAbR4ZS7f5CtFImby0eYwC3P8t1ZYoDd19/yau/+RcM46Fj6PbA7Jqr4c7WokfEWwcLlWKlxbR5asyEWl3HrmTWeebhwxNLtuBLVnOu+6ZalTyvXJ6eCVKNWSqmr6G1Egfh8Oqe0+sXpBCYLwvL4zP1/SNlnrmsyhp1l0H0f2S7h61k2zE8nqxo86etWXX8WnfnEvVyGfdf+lxsL+++B5ztts9OflqH7O/V8euNs9s08dQrIyo0BoS63TCmdfPZas9/mW0LfcxbEpAhmBccgun3nEbks8+pv/oNJRyYM1yWyvkqXHLgWi1QMDgoCW4LIoaRLmvhOEUkKNelICgRKEu1wINa2dCYhNW7/6YYOF9MqDpFs/tjsmDJ+d0j9Xolnu58FHxMJFC1WqDBOxmt8+IEAddTi8nmmpjdpCpEH59kZe/pODINiWW1gC9Yd13EAixaK9NgAacpWfLBYxZWQluV+apMY2Dx4BrF/cO0AT+h+ai2PsM4IIcRGYc+V2OEWBfiqBaYaQ2ao+2t4yGSamukY6VTzeRCZT5fOB0mS2o8vCe+fAX5YqSEPBLGI+3iLdBiSdVw/2s0/QebV14GLN45Q91v7DH75iM33NUir8GMaOsKaC9uduQWoO0hoccJdGMw/9zxyxo1cBOk6f+0DafRtTv07FNpM9q7TW8LtLRo2LYZbeBdugB3w6HtK/elE/sbv4ku+yJXFEoDtRW0UNYLIY7W4q8FnUJ70jtArXp7zuIFdk69jMdXXDTx3VWZF2XNwrrYPcpgJTrjBMMoJlyGohqsnXdoC8e8nWEQ63ahViNsAjZixm9IhHHwTQsaGppevSBOB6dbOq1VgrFrqmdMgzmThh+tZdn08iXjm88tK7mvpasmumy2uz1Tf4SeKaQD8JaF811VXLjYqd15Xng+z1yXypJtTNZVqVk5ztnZxFYWkteZUjPLfOXy9Mh6ObOsK/OycplNPDGNkaAm4FWr6X6kQbifhDEp0kqw2ga8s25bRnirrW+vS7tVtcW2n00tWvpLVLT/6Ye0ki/tGkfmYGxBNaADshtfGbYormz/NlC6X9U3wdJdIKefTLZ12o3qx1oizWlX2QH9FqRQOJ+p//13PMqfyTLw8ttvkFcvqENCaoX1igxj17aIw+RD4AHBxjZp+4Nn9S3jola+lBfWd3/h+pc/k1eb02lI1j5zSMg0EVJiOh5Zl9VLBc2xSkMyNlhMSIjelnFGhsRwb+Vay5oZDie0QpoMECxPZ9IQqbmwXp4Z5zPl4qK/w2RlIy5Qag6tpWerM2m2e6pgTbJtDTiwvj498/DuwTtpRJ7mlcdLttbgWQmXhSrCWieGMVFQ3n75ltdffkkcjmQvWUzB2QiqFIzaWgkcP/+SfP879P3VyjpdtPbnYyU7Y6Qb7VNhA5eyzY0+p+DmZ7tlSw44VoO+Phvw5NM+9PaWmzns+1FzFh0YaR8P7YtpyxLbCT4uN97bqq794LavleK27935gR683u12jZG4Y+Oht89js/22z0rJ5A/fEU4vCF56oZ7tEv9M69yhlpqn6kpZZ1iNjaOaKdcrMcEYhctaeknwnCu5KjULfxoir8+VLycDSblgNsDZo8MwGHttGKxNcIjEcaKVRhFj7yiYZGK8f0kYB9brDAgigZCMDVTWbNobnkWnVPL1yvWHH4nTERlHdDUNKstqlg7ELPni7YvLapR8CaTpDvEOb7VWC/QSWMuF8f410/nKOf+FP/54YalwXotlRUtlKZUP7898eJ6RlCgSCIPwt//qr/nqmy+ZppH5slADDCmxLjNajWU3DIlXv/0b5KuvqP/+f0f+r/9sK1dsD25rzB63+D6+Ibj2b0vUNTaztqgDsC/vUU/fBxHqJ852++kfuzWidSltUKE2++hlI3uGKjScdHu/erNO/b2qHW+YN67ttD2Is8VJNwe8H3cH9Muv0G//Dr1/c2PR6zojtSJpJMho5alUWpOF3r67FgsUOiNTW/tiLNgTojKeXvJclfzwTBFxRo1YyUOUTf9QgBAYT0fDiCkQgxgmjZF4OkLrOhqT6UGNA/lsyZNhmghVwXUWS62MLlQ8HI258+Y3v2E43tHXabTyypbIsGdZbsZ9C3QHQnDM6Em8sl7I1yd0manLzHKeuTxfebhkcoFLrkzYfVCtDKsJzX54uBIDTJOxh8bTyOnNK159+StevHrLaZxsjOcrD7//rzz9w/9NfHxG1dsq757Xho5kkzHq+BufK+29bd7tbYm/piaq2kyv+nnaJGvTrM1DW66fbs1wdcO52UkvbffgS7NvrVywFnu9ClinJ3bNQMz/Y2cL0WLBHSp6GpHP3iKf/Yoy3ZOxqoRchaUK5bGiXFhKpVRY1sK7h8L1qZCq2acogey7YlaYhshhsEVd18ow2DVf50pcV9ZZTU8ME+seJ/PdrtfCvFjCubqURlE1lvnTzPJ44fSmp3d8gEJPkpdFyfNic0jo+mlE6e3LY4iUWqz6QQtIJR0S04sDz+mRMgOYLmNoCUNVlqJEsT1fwM8XGJJp66wrDBGyszZLqSbT1tjP4GwaiKOVXnnUxvxbT/qlFAgspFiIY4IkyBB6GRECUSxgjJiPnFpM1Z+FCKzPF8Iw2oIomXx+JhDw3szIMBGC4Xp1IXLGe+TNP4Pze+Txe1oHOfN/jK1k5XVtrbU9ptkBtwsIGoNR81rQCun7LFTDJN51zBj9DfMqov8fxYRtsWwMF//Ltrk3VMa2iTSnoy2q9hk7l/ZNcx/gvz2zQ1cHe9173KJD/p4WKZabv9+A3VpNFyavyDpbe8xQqTUTZPDAgwu4VUW1uNGsdBGEFrgQ0Jqpy2wA7HRgzaYHkVdbVKUqf6pCRLk/VO5iJPrFxNEigVGSb8hO31IYpsHur9X/BiwKOHp3KUxEkWAdk8IwWCvEaHXCpagZwjhwPZ/t+7yGELF5E0JgPB6NzSJCE2atebFSDQeWsrtnH8TOnrHN0jpz9NbBmJhT1UqeZ67PZ0KKpDFRL4U1K0supCDW/nBeu/GoOaMlk68Xnj984Hp+pubC4lmXCkx3E4cXB4YhGaXv4Uy6XHzT1S2ipD4HTCfSF1G7h33QoE0l6YyZJsLWp5Hs59eneuzW4e5faI9v56nJ7v6hL6XGJGL3mu7W0xaksTV4o0twcyp/fe9Y7p5N/47++3YPqqCXhfD8gAblcq1WhhSU6e5InI6oBMp8tSBIGmk0V8SYbjdjIo1VVxBXyC/zM2W5cvnuD1y/f8f1shKDcHccQIRlyRxPd1aGlBLH45HleiWm2MeylRiGaNmF8cUBGSeCBJZ5ZjwczXkTkBi5PD2TopizNy9c3r9jujsxnO6oHlwMLUAaBJFhGz8RZ83kHnSqLqYXh8kYc+dH0uHIm2++5Ycfzvz45ws/PK+cl8JQYbiuSBByqTw/XRhOR778qy8Y7+7IuZLXhRSEeclkrOZX49qNxpAGxm/+GUMQ9P/8d/Dje9QFV7fpsmUatC+s5tRs79n27m4afjZIs83rHWiFLajI7Tz6ZI92n2zjINIcuM3wqa9N3NZtOhW742ORfDZba+PQ1u3Of94+vLsm28vblmBX4hnH3XOx69rvJnr7vMTWswLLh+8smP7irROnt2w7ggVwaiUvV2JMJkC8zpR1IcTBwGRV3t6ZfsyqyhhhCMKcKx8W5T89C/enzGmM3N0F5rlw/+Jg7bWjNb6NzjQdj+Y0hjQgvnZjGiAlYhqJRs80DFcq4+HQ9631cgE8a55XarGa+evjM+X63wgUpldvkFrR6xPx9BJJAzJMPdCBBBf6Vobpzu4xmg5OVQ+2VgOJw+FEexg5Zy4hEMaB+TIzBWv9+vi8cJ6tTXgcIm++estv//rXvPnsNeuSOT9fKGvh7dt7hmgOdUgD53llvVyZ0kgNA/L3/ys8PyN//NPGJKbtyzumpNj/am17vwH0/j5azX97b78FWqeyVt7xyR7SfOFtjjcHSLz0YR9AFd0SU/sAaFt7e3uoeyfT/6dat5XUhqZlXRsO0u3ntmF0WxAFvniL/s2/pn75z6jj0UrrlgthvjLMZ0t+He4QGdvG4/eq/T5w7IYqtYnTt0fsFx0kEtPI3Ve/5enVHfH5SmuhHVOEFMFLoCSIlUaMyTL7IRKGwBCzZcuH0RxPFaYpIYOVB2kIFqSJCS3q7bmVIUWE6OVQcHrzinE69e9XrWjJhBRdc6Lp7vh4/eycc+xXsukoCqRhIq8r8+MD3/3+jzy8PzNn5TwXQgwsubKuhWVZCRHWnEEi43FgnlcicHxx4vVXX/L5V1/z8vXnDOOR5I5iXWcmFPnwgeX5GYo7haKeNBLDpy3I2Xyz2hJjP10+vTRd9+nwW8wqwsbQ9D9Wtrmw274/3cM7MdW2IbVAiy+Q2n5XDLtX83JbIGffhVbgRi8FqTBG9HSCzz6nvvmcPL5hVf8sgMKqCzmvXK8rZbV1kovy47szf/7xwuOPmSlUTkkQqRwHYUzCabLy2RQhSKWKUFZLUrBkliWzLBao0VJ5dRc4HoyFU6u1yEYtoBHEWDe1QF0Ll/cfmH79BfF4MkzR6lOjl4BJIA5jT7hXVWPQ4N8nzhYKalptiCXnUKaXB+5enXh8Xs0WqTIivaQnirFoUoQ1QwoWTK3V7EQBolpAKEXTncqO/SsmeaHZqiLikFxXLiLJGudIhCjKOBQiM1GxxLPLfKDaf58m5W4tXEgMIaDBz4NQc7HlFFYLkAyJen5GpiN1PlODNQmJMaKaXIC4ElSoISKHF3D/GTo/wHLFysHFTeC2ejpGq7qxFHWHTrvGUqvSaeDJ/ZXG+mo+Eg1b/XIC8p9k1LTN3vb0zXFrkaAWq+mdHRoFdg8+29E2nJ0taTfZbV93qv3EzfHbfxfb59v3bg677VgiAnd3ECL5/J4wHmC688sI/dpaK+p2faoFxbRtGs0pSDDQuc7U8yPr0wcUOC+Vy2yBhVoKpVQWLCr6xaFQFA7evuyQMMOUTHxQXKC0aWANh9Fq2lMkTQMyRGPYxEgIiRRGp5iOtjgxqrOKtR0Nw0heTIk+JWsLZwvXJ1H/n41nzSsxWTlFQOyabhBbe36gNVtwBrDWiFt5SXt/CMkX/ktefPk5Dw9Xztczy1q7oyIizJeV+bqQrlbCIlFYl5VSlfNcuZxnUoDxbmL84hX3n7/m1Zs3HMcDoFz//Bee/uF3jOcPxJIRb33Y6uoFN4I+sX6iObN3bhow20232+MTNmsOGqVt3Jjx2q+R7cF3NN0WdcMwHy2+7dzb2El/rTPldvNI9o5i/2kPC3ZuYd2P9S7DiJIuT4xDIOlEOZ9JQUzsM5iWUgva1tWCdCpC1HG3p0gvC9G6WmZ5viAI+fJEOT9y+eF7Hv74PVoq81I53CnDIaESWddi2fklwzAxne7Ii2nKiHdoi0MiTAdSC3YCZV3NqJXiehXCej4jJTOkyOV8BVWW85X1emG4PBK4AxSdjqbMPxwcUHgHK6CWhZwXqhbffaUzelBj5MTDEY2Jp7lyWSvnxbrASCnMl9k0Z1zo8PT6Jaf7kxkzCdS18Dg/MqbIq7s7hpRIMbKumcv1SjpFJI3IV39D+DdX9N//O/Q6dyejgcoWM7Pl9nFp7G6+0eaTdkevtnIDn7S6m5t75k1vD97n3H7VfoKHA2rdFlKfp3uN0bYk7SO7jNlmDHvGvX3ARnAL+HTHD+2v4U7nPltr1xTo3qZugR9t30XbAzdw8XEQDTFNifjyDSqBfH2iiBKuI/FwZ0GSEHsZIr7v11rI88Udr2Blvda2gct54TQE5mwMwVyUMcBSlD+eMz9eB/7Lh4VvXGpjOlpnmsNdJE1mA4eUyGthenVv5YsSSYfJOl5IIBxP1HkxXanzMynZOqq5IKFQrtftLkslxeCli4XruvLud/+NN19dyQ8/Eu5foK8uxBdvLDAch60b4zBaeWU69CCN9uSGBwRiopRs7Y2pDEPkMI28Q3oJUgXO50svtfrs12958+YFosLlfOX+/sj9YeSqF+o8U0qhlMKQBk7TxMOPP/L+6Zn16ZlxiNz/7b9kyDPx4YHm2Lb11gP2zXi0594CES2Q0aZym8GKi3/7xwL0mOqnemhbF7a/bAnB9gYH0SJsLVobBt7hUXYg3j/vZ9zOszOwtdtfucG/PwnOamOb+/M4TJRv/hb99d+h42TPKURkPLgguV9vXi3Q7h2RJCRnfemmX+zfJzQGWN0wHuqB1cL04i2v/u3/wvWH/42SlWFKxqhxTaiiyjhOkALEwZwxgTgMMChpGk1jo5peRUiJ1ahwTMeRmJKVtA8BxbQ9RKy8PSazxTU7U7pUSC3Bm6kaCYzbw0R6UHHD9OaEqdtUc57KtifptlPmCuclc10LB2fKrbmS18oaMykKcwgMx6PpehwSb779NZ9/+TV39y+IcbBnH4KzBibk1ee8+uY3fPjTn9HH67avCn0+dey2d4T4KSbdz6n9WmzTZhfD6R/bI7CO8z6aB5/ioW0/cfZMu5FukxqO6N3W23v8mTa9qPbx9p5XR+q3v6XefcYSBi4LrE8LwzQzjiZwXaqy1sKa3Y9bM9fLzPPTwuW68sP7K39+v/DwsDJF5VdH4W4KrgkmXOfCcQqIwprN+ovCcl1Zr6sl87P+v8y9R5MkW3bn97vC3UOkLPV0KzQ4AAYkjCA33JBLflt+BW5Io80MB2aYATBAN1ug+6kSWakiwsUVh4tzr7tnPaAxNhuUP8uXlREeHi7u0f/zP5xCpnOw3yg3Z0XcOWOIpSieQNdgFJK1DI89Mgwq/6YMgCmk9saaMnC5WH5rK3OTAiOcxxad41pPjglX9nA5017CxVeJ6Thw+zBijHK+xFymU5VkhDUWawRjpQ7JQqTgs4r8hqQJ1CzgCnUBGKwTfKMFnJmCpPiH1hgam/BM+NYWOg/mBKZxqiPwwvbaczZGhtGRYsQERd5hhDgkmo1BbAYbSeOA7TpcmfSWU8TOuQW9Jp3EVNAw559jDq9J736LFav6A4G0ZD+WxErJhKSkiZeCkqn/zUX+D2RticvKWRhWqManRbwPt39xPLfalupoVu+vZvWEWa8Uh6x8chGSp3Cctf/9RLGUT33w/dXRXRnE6izkRRCXJM5sLfWUug58g0GRIyaWGfPZKVx8dWsUYlUIqpAS7BXFnyYk6LSncPeW4d33vH1zTz9GjqMmGXIWUlL42hTgt97waUpcRmXInhLs9i0moxDTTUkCeYXBZQG/3SjU1it8W3mbLG6713VrC3w1q+BI0oVmTCYNfYE8K/t+DFFbJKRAOMWQhpE89Nhup1WGaVCosiktJLkQrLLcU/1aQ9WNYBU6R2l3sppFzZLZXL7k/NPI48NR20lKNtaiysiilcxpmGiGsWSDdXTww6BM6lMU7MZx9ukLrj55xcXlc7a7Cxq/Aclsmx3u9g77+3tsIckSt7Rk6PhxeJp5YDbic/y4Qg3NCYi66MvrHzNFDVDW+XK+sDgEczUQlgRVdTBZB4j88DpnwuG603Kv6nH0fqqJqB+pzoIRW84hz7xACMs44tX5I0ACuT/RdULXXdC/GQnPz+CLzzHW4ro91GRp1skqxjqS6LhBM/M/gBLvTuSkCcUcJtLYE/tHTrcPkawh3AAAIABJREFU/P77A5dbyxiE6AaeXTv2e68OYVYETuh7dldX2l4YQpkGpY6ttx7rtbUijoPqjBgVjSMJSYk49EVPGR1FiBCmieH9Dd3ZDrPZF/8i6o9mQ1WX5UjFSlnncUbbvKzT5FCKE5JGUgwA7M62PH/1jG/eHTm+PTDFxJlxtDGrcwwzEfI4Btpdi0N9bLLQOTCm8PcAXdMwHg8M9++ZYsLkzHZ3AX/8p/hf/A3ae0JdZD8wRvN7hlKNfiqD+nsORajB0npd1F71GgBJCXRM5bL5yB3OpYZer/fp32s5mq+59t8bnqqulWqa48lVe0Y2aIJwToLOd5VaTal2Uaj3trr8FsMaZVO/21BbrebvryrBWfCajHD7Sx3pm2KZeFb4pEqCBoqjaBxpGnSqjDFkGfHdlvx4R386EZMGVba2VimGXeUbw++PSRGrMrHzhlF6LvcN+TAgztPtOkLI+LZhOgxsrq9ISccLu64jhUieJtrdnjTqVCYy2opVfYpyDs57JTNHkaBN64lT4O7NLWkYuHh2RvOsJ5Pm5KYeQzk7bLPB+Z22iBTH0JYRyLkkYtPYF+RAw+b8gmcXe662Ld+BcnRkwSZhmiLWZbz3XD+7pO0arDGcb1u2jaPbtLTOcHr3XlG240RqPN3ZGdu24/HmPafbBx6mSLrY0v70T2h++7dwOD0l0q8w9ZJlqUmXdTBY18AcLq0FcA6KVqbiI93WMlCTUaC+42yr5uQM6B+m5DbNjBwy5WJr68k6wVV95oWkmDkxXccs/2Cbn4fKnZTzkKYlGeVRorQRGevLtRReJGvLZSx+kAYBCfXFq1KBOsKaudCmNmeVyUEQtp/9iN2XX3D/22/BFoJ972i3G42HrcV3KvO2omyc1faEzZY8juqXJvWNnW9pNltiSmQRmq4lxqRToUSYxkDjndIAFP63HCfycFC0eEEAmPVtyrVgXHlKFhua06T+ZYqFiL/YwmJAcs7c3Q/c3I889pHTlDEusS+JnjBGjLO0rcU3niEmbNtx/dknXD1/iW87UkqMMmCNJTlf2kYEYy2b56+YXr7CPN4Rs+o2Rw1QV2uuvlbW0NPkDUoevJLVSnI9J2/m4FH9VV1uBU2/SOvs9y426CPcUpn6BeoTGtadbdRiQuV/W6MbjDGFNLfczwS4jPniJfknf8bYXNCfRg73R06Hnq5r6HYbRCDGzDBNDFNkHCclhg6RFDOHU+Dd+xM39wPHPjPExH2fmYLh+cbhxNA1houN14RJacOZpkgYInEYmYLyuIwp02ehN9BaQ2M9zhm8U/7NEBbdMgbonMFkYTqMxIcT9uwM450mOsu1WyzZaPLENR21KySLDqowIogpnKi+wUjAUGyV3+C2EwbD9RAYfvGaMOXCmWrUXxdt6/KiHDLqpuiCdTbTOI3xYtbXncll4lVB1QK+sdjWz5/TFmmNM50kGjvhGlFCYWsxrVv5M3oOOIO/aNgfE3ejkESQEEiT1cKRs5ASccy0RgfpGECsxzYbUooQg6Z4FTWgh66yaDzS7HDnL0g332oSPMuSvij3QkqiqcaSSxFskTSZfxd9XOzAHJ/WXANQ+cFMZX/+Z7Y/3Pq0fHtpW1oJy2p7wiCwCurESoGTlr+rkZpjt6pkqFM9mZEPs4ewZMHMHAjqh6rB+/D6xIA4g7m4xl48IzlPGA4K+ZLzYsoUlWKdn28WZapQrmO6clZnLuvElvhwQxoeGe5vub15oJ90VKaIZiARFdRghK97wySGF9HQmIR3wo+7VoMfY9mmxG7ryTHTeEecEsZn/L4r+tTOpLvGOmyrfXe5P+GKE1g1fJwmUkxk0eqFVtYckgzTFGYjnMaedLjD7fa49oIcBmyBhhtJ5CQ6RSNGDEYd5TqWkdp+ocmj+TlR2P19q5MwrOHs+ppXP/qMYRDGr99xmBKbQpJlnQa8Yx+IUUvrIQljBLGO51++4vqT51w9f8mm2+J9g3MtlMkZ/vwFZ199Rb57A3ejwhZNeeZ2adeZrd1qcRhTHC1b1lldgbOPUoXo6dr/aLfKHVC8ZAOzgw0qX+uxnssYu/J/Q1HkYFaKZY7qlp3rAWdHQxFMwqLJoPZZLzFmPVYNWMyqhaP2HRe9KUJ+PGGPE9umUaJEp6S7UgI+17TqYMpCgGisU5RJzkgedYS16JQ3jGE83ZNTIIWB4TTy3cPIQ+9pneHr+0d+lh1fbHd0Z57hsWd3dUaeJk7vbthcX+PbFihj70VJfJtuQw4BCROkVCqbmugZj0dy0qCxVhXjGIhTYjqcSDHSenW266jfmnkwxoBrsLYBU1oyS/BQA0nrFLbpfcckouMIxXBzCoxJmLLgE/iY2UghZyWTkk4UOOtazhrPbttibEd/PMAAIQQlId7uOdt0PD4MHF6/QWIibjr215/S/GzA/e5XENOKBHPJKqjeqsK4Qsg8sRg1ybdeOmYOapddC0y8uuclUFqs5scrnFKCuEUVSdGhHwRhywdYkjdLRuWDGseT2FHWtyCvkDfljXqPn/RqlFs3q8YaKKAw+flpfpCgqUlQBEhCszvHdnv87hrbbRDJ6nyVRI3ah4QxWkXLKWK86HjeqBPTZBrBGm5ujjz22rInaKeHZIVs11HPb0+BEK06fYB7SPz5p4aYAuYx8eL5Gdutx1irhI5vb9h9+oI0Rfxuh7e+oAfsKiDS61ROmknluvUz/0EaJqiIAx0Xxc33d1gyF5d7nGRyCNpGjcG6BtfusH6rgVQdTIAphQ3m+6/8GZ6YTjzevOPNd++QYWDrDd+VQDUWZKw3wvWLcz778jkJ2DWezhhkCkz9oIF/CBzfvWc6Tlx99pJhvMO2jRJcTgkTEo/vj+xfnLH99Cvcr34xtxM8kc9VlqU6lHVJ1eSqFB/NVoTjYhQKcmptAT7ObUn0Fic9r9v5yz1YJWtmHhkW27Vul2ZFULx8CfOx10h0fWuRR/OEt02Wccug9z8pqXUOEVCktPUWK7kkdYteqZNN7YSlpU7E0YRhLujwoneKfcwlkUNW5Bii7fR5yuQ00u52tK0nxkyzdeAU4b3d7ZhS1iRN47WCbi2macoIbY8TSGHCNQbXdthuM5P7dk2n1+obDJa+H8qUKMp5AzmRhh6/2SGhEP83DUrCL1RY5tIWq0WWOUFRbLIUfyFHleecEylO3Hz3jm++u+VhiBymzBQFP2WGKWFPgSkKbczaauUsxhteffac/f4cSRCmgGnU5xRTeN1KMklSxviO7ic/h+M95ruvEdFWfrOIy+xXz4rcmLmbf+as+XBd1XVU4x9hQWka1eRSFtA8Lnj+io/XZgLa6pRl6QxMLDqp+hQFcSMimowxBrKZp9XNBcgGzJdfMH32cw5Tw+nxQVuMOs+nF89BhDBOHIaBsQwumSblxezHyDBlwhiIETato3WWm2FgGBNDzIyTIEnoDFztLA9JON96Gm8Y+okUM+HUE6fMGDOnMfMQpHB0GsaQCCLsOsPLCw9G8E6HryBaSJuiEBEujSENg/qbrlHieqt2tvIZ2qYpKLmiM9DpvzllkmTld3Ie8YoAdZ3ytJqgI6vTKXJ1+cjD7YkxgbeCM/pIXJmwlES5l2M2M1m+qjFdd966kvMX5fBx6ATjVknFXZlobK3VqWku05iEcv0viRMT87JUa+VKAG9pOktrE8dIAWtMEIXoyvdYQz9G2l1HOvaFMNor0m32T0prF1LkpUxzPP+U/PrvFBSSS6G7tjLJSp5KvKTnW+9DKUrqA57j42pbanw151PK/zRJo3vkD+R8vf3L47lhqRIApvLMrJnLi+axayO9Nm4rRTQ78NVZL/s/TaDJEwGteZvigj71Xuv+ZV8BHam130K7AdfiNjtyzmRJxPGkFcCmVWiyL/DkEuxhIE39fDcllr764UiOE+l0JE0TfR/UaTRKQpbyUvU1WXg3JI7BMCaFblkSrotIFo5TZt85vni+KYiYyH7XEo6jViXaVtExnUIxAWzbkstYYEGdOS2mCHEK2nPfdepcogpNkk7haHwhN308YN0b7GavAeZuT55OKuCSMa6ZgyNWUwQURpdKRVAXrPMNmJIllYxk7QHu9udszi84f36N37wnluUxZSWcCgmOx4khCNJ4sndkEbqu4/LFp1y/fMZ+f453+nqKESMB7+q6c7hPfoIXwXz3K+S3v8HENDuS8zLLK2Goi7isM2OL2NTEAcWAYub2rwpt/mi32fCuAsLyhpkTUcWCfwhjm7PJ9QiUOHGOLBf3YdUqUWV22VZyaqtzXw9RzkaEylGTDYitzsNTLJBxho0F33nk+hq/WdontNVSe0xtQVbV664BESZhxGNLn4wxnjj12OIUGmAYAschMo6RTes5TJn/8rv33B8DP/7iipyF6Tjw7PMXpHFkePMGv9/jz89w3iuqpfTN5mnURO40gbHKGzNNIJntri1EhJkUI2kMtF75XSpHlPWajKk3wFirZOXGzRM7BK83J2eSaLJYikMepmOZOGPpQ2KKmTFnQspAJBvDJiY21nB5vufics9u03C56fDIjIxpc2J6d6ckcZtSubSO1ntGYzgcBvIYkalj++xTmE7wzdfF6SzrqsiaFvukLqH5+dcRpUsb4rJeZZ2kWRZxXX1Lpb4mIOZdPmbhXJzxdeGhGuo6UWdJGqxJ5JbgcJE7ngprvX8/eG1J9lSrK0V+q52uk0FsdfLRMZxzzMn6eS3HtjUIdw52ezCGlAKGLa7ba8LUOSQnRY+U6rZxDkHJTq21OjHNGOVFS5mY4PvDNBdrGmMKRa+2IWfgGCKnSa/rboxsvSVZx8Zb3h17Lr878D/++BkpP/L8k2c0sccItBdnTHeP+LOdjjJNEes9vu2Yjqe5rz3HrIGmgJFM6AdyiKUgksljIIZEipn7u4Fnmz1us1/aY1yD8a3Cz9OI9RstSpSEzdyTXkN057Eu4ZqOi1cvefXqDX/9d7/nN9/fcZwCYJiSoXGO/dbxR//mx2w2LachsPFaOWQYiYcDMWXGYWA8DEhITK/vwFiSEbKz7FrPmDNe4M0v/5HrZ4qSkw8EroJJ5vW2iulmKPcqqNQyl1kFy7L4YR/ztkpAqZ1YiVC1eyskoBR4X66OevVXkZUKkllHVd7BdSENVvaQeojFLi6kfTM+teh9gSlgTkfCt78n2Qa72dBeXmpQ3y3uuyaHEzlrsGl9U/iiFNE12+4KpSrrMydtE85h0ulkOROP90zv3hAeH3G+8E6ERFN5ZxA2+y0hBIxzirYxphDuOw0EjSNj6c66mVMmpYRvGqy3mnCyjjCOOCs45xnHqQxGyIRhIJ4OtOcXpNCT04Q3ZwiBOkQA25SkcG3BF0iF160UJqoDWJO01jpOh0e++e6Wu1PiMQh9UM7MEBNhCPTOEmPm1AeSCNtn53zy5XOcU57ETacB2TgMWAyt91gvRCZiCHjn2XUbdl/8iLzbwn/4P5Fvv1+KXCuf9AP6vsX//AM2scrhXAMXAVvRiGYW05mDkUWsP+otUQhVV/JQ/FhJmg7QZA1z8IwUd7Aii7IiM8xnnzA9/xHHCRKB/a6j7ZSXtD/1HB9O3N8+8vCgyZfd1rPdNqVQr7FTjsLQRx4Po8p0zsQYyUmYRLjthZ3VYTDPdp6NF/o+koaJvo/EmBhjpg+JwyTchMyUjRbTLNwluGgdZ62laSrPjiKvcgUNCDpNbJzoSmynfKJKNWFLTDTTpSSdDliT5jkL1mrLovUtxnpEwG12gMU3CSI0myMppaLrTIktq/3SQk5DQQw5JRL2zhCT8ql5azXlMfsYRgfaGINr3Gr9mTL1yeJ9pmky1uVStCzJF8nzsBuDpU4TNgJ+47lsBvqghX8pCbME5ClohqvwvPoNNFGLq0ZK8SdGvC+dI1Yna802wO8xZ6+Q+zfIqZ8TL0vrU42rdO3Vc6p2U4rsmZrcqao2y+x3zZPKFkNQPi7z/v/U9i8maiqKeQ7zVoolF+dwsUmViE6/fnbWi4PyYZBnfvBaPTLMU2iqkyCUbOmibpYLq1A/fVsA2gZ3dgnOY9ttYb1WGGSWhCkLMIVJx3/FcTHOKWKsI4eROB6RLOQwQg7kaSIOyrAdky4Ah5IwlcvSKrYIU1QHN5Zz906h1ocpcYzC1c3Iv3ne8tAnLrYtX1017IbE/sU5dmOQoJBy63X8ImVxpTGSU8Z5R5oCZCVjs64gRrKQJ+2N9I1TkrTTQDwNDCHQdBvIIzYO2M0eJ0nJ6FLU3ufS3qROdtJ++lrpwOKajQatFOIvQfv040TKiRQi729P3N0ewBh84fqJMfHYTxxiJolyFbSXO86vz3j+6jlXz5/Rdh2S4dSfCvS01edUCOFyTrTNBv/jP8d+9jPs/v9B/uY/zXw5RqT0sNZAfpUoXPtWhqeQ0io0iy/6UceCcwy1tsBV+ItT+SThuULTiNRxuvUzRYZnG7nkixGYJ47NSSz9fzWqS3Vy6ROfT0hWn1iRUsrqbaEYB4smEazQXT3D789Lm5GdkxnqDC+cNZUPo/QUooMSUXkJI357Rizn2D/0OLTidey1fW/oI3/3u4FjP7LftAyngZ+8vufzL5/R7jpkHMhDT3f9DLvb4LZbndTkvCrnlGi3HXEYMCJsNi0iQu4D42kkZ6EtDrMkvcm222O7bQnYCgeP9UVHZgxuvo+5OCjWOHANSSas8zTtjuiPxCkwHAcNJLMwpUzImZBg0wQuznb8/M9+TLPfsd94No3DIkzv3uqUjmkiHI+E48jm/Aw3JUXnWUNjDLtNy6bxpNPAcRxpYqT40jXEoyw4fcZrHiJYEgN1qaFtNf9c9eAJJwuiJIsl3ql8GLOT9hFvTyYDPH2DCl8vMcSSVKnys+y6OAn1HszHgYqWXfZfbC+lUl+PuYbU16KL2GqFa6BXYbqL2C7BhbYZcHUB2zNFuLXalifG6jo2pkwU1ElsNYAyrilIASljeZmTkd/f9cSih60xTKnweZRARSuCOgXj++PE4xTZe8O3Tu/NGBPvgO8fTvzZpxf8h1+95Y8/u+KT7SOffvGCZtch00T34jk5Rpr9XknsD0eaVnk8rEk6iTBnpseTOm3GQM7KLzAEwpSZkmAPI5gOf/VKW5J3F2AMtukwVkeN5hzAKAGqMbas9YrYVeSRNEb9DGNpHDzfOT7ZOiRHoghJ4K4fsc5yvmnYd1pJHfuBznRMDwfy4cDxOOC8pT9O9KcBGzIvX1xzd3vPw2mk3TQYazjd3LIf75E4zXI7Y5XN02rfvL5mMtq6mSe/pDiB6wD0Y98+TCbNwd78yqqtZL5cM++0/vQcTFR5sQs+Yn5t/aEq+7LssEbTyIy6o7AMGBgC8u3XDLuewyB0+z3nX0G730LXYH2rreyiAVyOoVSwWTgErfIizlXeMslTcphvgDGGFEbi8Eh4uOP07Wse3z3iBNpWgyjJOkU09BG/c2zOt8RpwjYd3jfEEBAsxrea5HSayLE5ITGV9vpaZFTbE0PEeUsI2gKco/LTjFMgDT05TDrVqmmJ4xHbbpAUMKYM4JiDgIpeE20PznXyow6dsL4BjE6dsob99QX7iweOrw8ck6IHjBH6fkKspU5PFWd5sdvQNg3WWBqn0+HCOOGc4WK/p2saXKFYSNNEGAeS8yAOc3aF/Pn/jAz/F/n27imiZrUIq538J0WoVh7LdS6GoMrsYgVmV2z+khJ7VX/3IxbSes/X8mIy+gylvJdXKKqKrKmtmyVwzgnGtKG/PWEvG/YX5xivE8j6vufweOD+/sDxcWSaovpFG4cxwjhEwqix0xiFfkpMUyadRmwJ2h1CyvAwJFIceb5TYuyxV7qJFBPDpD/HkHgImceYGXNNcCsNwDdZOG09tyfP+dbRGF3FNQnsTGkd8pbYj0jUwrttygQjY2Z5RtCERG1FLAl01/ilE8J3ukazomoQQ9NslP+m+FYxQTaZDRZnwDr9LWbmeqZhQaVMWUn3a/e1Akoszqt+dLbw0lhwbYM0DX6/pT2zeDfhTGBG/5Z2/DoIZkb5p5WOdYbduWXbJw7ZEXNGkk6+lJxxpsE4SLHGgplmysqE3AasrHvp0OEDZXqatHv49C/g/g3y+Juyxqpv9LQQUc3j3CVUXjAYJBaikBKbiSy0HHWgkpFS+Fq9x39rokZWwr8Qri1RYdURs7ErjuKcPVrrkfU2B5Gryv1Kf0iui/CD12GVcV7pnFo1rEbRgNnt4Ppz7OYM2+40WQOIFLjn7K4YcpqWL0ar3SlF4tTPZIR6MxVCejwoXM4IOmu+BCIrVUkoVavDpPXBkOE3D3rOp6jtHL95yLwfIs8bx3980/P5+44/vfC8Ok68fHFO7gPt82vsZqOLvmkhZcIw4RuPoYwFbht9PikTY62QZJrGa3wdhXyayH3gdOjx7WuMN9j+iN1dIGGHk4zbnGGSJ5lK7hbnwUnO+5KRbcoNrk6JPtyMKgrnW3zX8ez6khefPuPx4cSUJlqvvYz9wxFxjiiG9mLH3nsuzvdsdxtyTkzjQIyRFAJnZ2c6dg0KNLZhOE1EBoXRdzvyT/8Ce3qEX/1qPpe6PvhQsAqX5iqDuHrzyR9zIPRRbx/IB6YmNqvbMmuQlQwu6IbV3VrJN0sAuM7KzvwR9S4viggzu7Kzw1r/0ECx7Goqmk6lJc+yrL9TeTa2ah5XqvTInIA0brky64r6kjAHizVxKCbpuFJrMdOgz32aMCnVE5sLmQ3C//f9La/OdlgR/uqX3/Pm9R0//fyCZ59cgmROpyPbV59gjMXtW60+GkO72c6tQL7xSEzkKSIh0HgljIshMfVBOaxAEzPOawDbbJgr7YXvSQNcO79mSvuXLlOrPDpjTzwdef/6HcPhgb1NXLeWQ4FYi2QOpwFjr7g82+JaJU9N04SkCXM4Mhx6xMLQB4wIh9fv2X/VYYHDzYEpJ4w1TDEwffMdXT6AO83cfcsCXHF9laBjvUClONDKaLRedU9Nw5zGm5FbBYkg68Dn49/M6vxXXiczitQs4eAa7FZlcL6XM4y1HnOFQvtQN61E3KBtxyqe9ofBqal3enVq5UTqpJAauM/Fn+o0Oad8FF7HVGOWpOJ87VmUsJpiM40hl9Zi61tSHhC0zWKza+mjJheHiDpeWQhZiRUNGQ80BjY5sPU6JcKEiT4q4s5ax22f+JucOHfw7//hWz693PBHtye+/PSS8/MNEibaZ8/g7Ay/3eObRyUuPfR6zjETjv3cqp2OA+MwMvWB+/ue0xRpvOXtfc9X7+7Y/Xe+tCnqRJs5WVwDcEmF8LHqTWZuEUQglecp8Hj7wO33N1wQuNoXBxkIwGYrmJwJw8j1tuHx/QNBMnmK9I8Dm8Zzc3tkGCbSFDCN4e7719zeH3gMif22xabI8PDA52eZFEXz2UUvG2NLQL9K3GTRpEOR5cXPW57xk/XE09jwo0bWfHDu5sN/VOd6vZPUBsEP5GjNYbCS4zXKfBHYmqD54Biy6E+pzn7l4CgHd/2Rzm14OFn6MdLsL2i7BldaaEXUplirlfgYx4LU1iDI0s4+fBajrU4lsaM2YUBEiKcHwuGe0+vveP3br3n/7sj11qkfaSwpZjY7r8Srhx7/Ys/mYlcq8Q7fWmLSY7u2wzunUxH7k66xnNVGIuQQCf2IsRZf+Oa8taTSSmi8JU0TeeyRzRa8J+cIYQAEsRZntDJeuXZSCtrmHENBJFjlh2qa+Tn6dku7v0RoeH8/MBWyfWu1oDolwceEsVo82m10gtwUEpuclYPHqH1tjdfCT46QwFrPfrPh/vaW43RDOh5prGXbGPjjP8X9/X/CHE/LspDqFy1JmsUPWxWyn8Rd66W8To7WwuTiiSk6vqIp+aAI8vFtKep5G9AAOS//RmAdui0IBJljTbVfuk03D+TrFnd5wdjryOYYJ/rDI3GcuDxruTzfMBwnTseJsY+klBmGATKMY+bUR/o+EMdEHJcJnMq7qUWxQ1K+lDQlfOEhyQL9FOlj4hgzpyTE4m9vrZnRlu+nxCjw9+8DL/aZL88srdPn1TqDc3Ca4HQK8PqR8x9NuIuV4TdG0Skoua51dYiMzKT9kjX5qVOBvSaDSyJB31f73L9/ZBwjYpRge8zareHt7I2j6BZdS84oZYUr/051zRqlsTPF/jdeffgswKbDb1qMs6QpYc+MmkxXZDgvz1aRiWWxWnVuRAME3M5ytQv0j5aTqh5wkJIlJ4OLgvPK+WM7S44ZGUaSOSDGYqzHdzusWQqklfPHNefk9lzlMdf2ZZZgQVjkqbTqVd4aTRwuiMWl02fltxWUdC6B9TJxTFay/MPtDyZqTNbFIGubM2fln+77tIpeAzKeKJLqHK7HXdWgaTnQ038v1cZl93lslvng4uqhnMVcPsN0G5QEVPtvXdMBTXFQ1AsVKSM8ixBq4iZgilNprUViJFvNIOZRuS5Op0HbqSqLvCi6ZB5aLQoTO4aIoIs/pkwSnU1fFcrfvDvyYtswZeHr48TX954Xb078+X3gj19uuSgZONttsPszUkz4psWiPZZt25S2i6ALEl1a1ZikSQinkfHxyDhqQurw+j2+a2meXamhswK+xTQdJIdxi2H3rtWpNMaWH733uZKg5jqpRvDNBml1zNv7m1u+e33PGHVUXchGezCHiUmg2XacXew4vzzDO8s0BLxvaLyn7TomAzlMiHMkMyHG4NqWpvGMhwP96UgOEw1C99lPsY93yPvb9YJcLWR58lJNAP7QoTTzEjT2h47Zx7TN/qapPx+0K8zRX3EGVkmVfzLyXTmqcypmFk9BWxDn+v5c+a+ytPA81cC6fE8hdjbVsJolqHemtlOYGc6KAbtRFJn+USCbhY8GqhZZ5LqOJazkqELGGKeJG2PKiG/PNAU2Rpgy1Dpx0q/HIzwcjrrOrOFX7yZe3x/52fsjX3x+ye58S4qRvWR8t8W1Hc435JSZTkdNbI6BOE5zxTAcB04PPTFETv1Ac7bTeaECAAAgAElEQVTFb84KLL3y0IhWGqnJsRI0SULMGrFUH4/MnBfNds/LF5fcX3YMG7jawth6rQ4iBMk881rhuTrTtsg8DDRk0qQEkiYprD0OIy1Cvr0lZzjd3NGHSNc6GCem2zs+2U8zJ4cukMqR9EM50etZXi/DDZ5EdaYcQ3X64rRWv+sHfFPzsl7a/T7WzaxlUF/R/9tFx+irKovz3/M0xWrsYBHs1aGkHKtULEwtFcx+ulmOsfrcEnA+Mc7FthdPfqUbxC6QbIzRsddtp2vTqBOmz6OQB5ZxxBW+nEv1Xq9N+c+s80hOhGnizBvORAOrIII34JzQeE2geqMYucxCj5kFOlGyQOMgSWLrhb4fwBqiCL+7iQz9xC/fHfgfvnzGi/sjF1/0mK6jvX5Oc35BOhyQoCPEx/sDeQykEBgOA+MwEWLiOExMWUjZcHcalW/g/qCIupKIUSeiXcXkihqTQpZfn71zvqztXLg8OoxvuHp5yR+92PIunrBAa5Vs0gDJRtLjiWwtIXpsCMRjIp2UYPLlZy9pzoXfH3umEHj7fsImHXKw2W+wEklDz/XGknJW5xUdlzonVWf9Xdbmh0lAeZrQWFoslvUm83vLGv9Yt4WPbdme1G7qfalJy/JifU/MU7l5YlIrWeTaGM/+s5l13erAsEjkqqpavjuD9BONfeTc7TlhkNMjhudYrwgu57z6bsZgcyotsgXVBWofrbYfYI0mFgTlbREhDEe8a5iOd6TTI4d3N/zu9+95fT9x3Vl+kuHyaoMHwmlgc3lGGgP967dsnj/Dboq/6D2Nb7QFwmm7RTydtBUga3uhlPHE00nR5W3bkmJWyx0zOSQl5DUw3D/S7m7xF9fLxEPjtHhR+abq/RMpI7tN4X/zxY9TQtUYBlIYiKEn58zV5ZYvPrnk+9sDj2NgSBlw2JBoktBkSDkTY2aaEpuYaZ1j5z3bTYNzW/rTSRG3I4wpqf+6P2O/3XK8fc/p5g6TM7Fr2J/tcT//E9w//gLzeGLmeape5krnG2yxl/KE8xMWv0+TvIt+/7AwIAux0rxAlTD7v0pE/nW2tPCB1ESN6lGoCZp5/PFaRlco3mp3O5OIzhGOE2ZjGY8P9FOPtbDdeMYhMo0j/VFJhE/3PfE0YRqdOjZERWpITMQpMaSMRSeUTaJJGsnCSTKHU+Qdhq01tIV2IAj0KTNGmU9eRNuEokjhSBYOKZFuR34SO6wIn+wdBohJ6DC0Th0AZy3TKdBAKYRq7GWNQ/loGnKOShUB5f3CK5plRnsqlUTxM0vSIA0Tp9e3xJDJQOuUFHuM0HRC6yxDyEQjbJyhcUZHhxsF6+VqAp1VRI2zxAyttxqLWwtitAiUBNNYtpctJj/qmgxp0a2zPCy+3wyCqW5n49hdZLanTDA6kS6VxJOxIEa/XzI0MWMqr5f3OO+ZxhNiLA1bTeY6pRgRIPsWc/mJ8lKFNFNjzPq8LrUKKdeM7oqHbmUQjSZL50Ss8ARxXte0JG2PXvvLH25/GFGTl0BL5iPztHom63fKnvPFrH9/6BQWx2+xh1QYkHHlO2qiqH6qOKDq8OcaJapTWA9uDeb8DHP9CtNutG+26bT6Z11R+LZcX5oXtUgqsCutYBtj8Zu99vCakTyqYTjePfLw0DOVUaIGmflp5vHAzHJCKHC+kIUR5b8KOc+6JQp8exxVOLNw2wf2jeUXDyP/0/0Zf/Yw8tMxcuVbthfX2M0OFzPp+KiV9gjTNGoVv0RCKWRy0kyqZOF0d88UIr5rMdYwnCbuv37Ni6tL8MqJIWaVmDCoMfQdxmlfI3ZpXsCANY3eN5MKj42S2ymvSGIcJ9rO0247hkOvLN2Con4ybKxhf7bBeXUgG+doraXxXn+soX+4J4UJMZaQIu12i9/t8d4xvLthPDzijGF31mK/+jlt/nu4f5ydpjnYWK1pszaOczmMpw5oLs7YH0px/mtvTxBAzOdaETVqn1dtibNzuva6P9jkg8+Ue7Lef+a6YInn1q0q8/2tC3xVWVw/kyW5U3SItThroPWYtsVuVInqYnQFvr0E7yq3uRAiLl9VHRYBHWMqGWO9JmOBzgBG5c8ZlUcpr1eD04essM6Y+P63t/z0fuRHL8959fkzcnuPP7+me/ZMA9FxJD48aoD3OBKGgZwS0xgYBu1xP02JlITPP73G7c6UC6q4ZTlHlSXzYcKjRuhltZZzU1LlDckNhNOBNJzYesMnG0vXq4y1VhmmooA1EcaRNDR4kxkeRtrzluk0sm08+7M9sR/59v5AZwxtmBiHibt+omk9djLkY89lq1FDjNAUvqgaj9TTlXXUIstrc0uOLE7pHNRV/W70OmueYFkf89OeF5rBPDV4H+22lgGhtuhW59vMqAXme1IddqlTAqS+tuynU9wWuzsH2HWfNcn3fA/rDnpAY9brq34OPTez2p3FUbHbFvvFV9irV9h2U3giSisPMn9WKAmbrK/nVDmlLMY25DRoj3xKXAwn/nKbGJLMSdPq7DpjZmLJKBDFELPuFwW6gqQdpfSv67RvGmM4JuGbw8jGGW7+4Xs+v9jx80Pkp27Ly/Nr/GZH/+Yd4/2B07s7xuPA4TiSsvLNIUJImSkLYxL6JAxJ2Fg49CP1pqjzlRVcZAwxRaz1832rU3ZMHZtcJ54V4kW/2XP24hkXZx1+68hZ6CwKrxd4iIn73/ye6eqc5y+v2Z3v6W/vyePEcBo4vH5LEsHGwM5bYph4OI3s9htcSfZsty1+PCFjIDVC9lYdP2Oe6GFY2cCV8ZRZBsu5f+jjGVbX+ocrg//a25ykMVAX1zp4XWqIK5Qg5er/OaeCxcyZ2v4ksLRcK8vDnLOpAmXQaGcly+sDzy5ISPD+nu7aI42HUfW+ogqUu8z6BmMbjPc43ypqpvALgsyJGp1mmkgpFB6OiDGG6XRP7I+k0z23r2/5x/cjr48TvxXh17cDf/HpORdby77peZYym+sLxn6Am3d0188wux3W27ndwXpPjlED65zJKeG9hyyEEPDeaSsEYAvXW5xSqeBnUszEcSCFsBRoStsgVERuUk4312igYy2WpwixytnjfAuSMO2O5A603vLyasfV2ZZv3j/OPrkxhmZSDrtUiijOWbZdw8WmpbHaomlE2DpLuLuFkmQyFxdgjhhj6dqOPgvHQw8hkcZEe31O99mXcPolJsiSxF4lcxFtPVlV3Mq6fCqj6xU9ty3mOcxd1vLcbv50nX6Mm4RFr6yTNXMCtCRB52EyRSdlUwoVi/DihoHh3QOntyds55GNo+kaYhbGEAlJON2fVMdPiXiYGJOQpwgYTpOip843DWnUZL5FcCWJLVmYciZkYUgZEcPJaFwDUtBZmak8GovmVyZRG5uN6oec4V2fyDKx8S0OQ+cWPydJRoxy4LS7guRGW+lzykQJc/t/DBPO6UTjXHwtawx4Nzvr1qiMGmNJIUJK5NtbTndHxpTxzi732agNKiER3oB3VgEH2eCK7UiiXyGo/jsNibb1TFHoWkcQzxiFNhhMFrrrM/y2wTzeIRGekLOUZGKdyltX7zz4oFyHaRzPLwLHOyFgcd5qcqVpSMbiW4/ftspXY+B4Gtm3W2KI+O1mRuNLTor2dQZndLiH/fwvsP178t/+O0Dvbe0f0XAoUxMvdTxZ5XDTdUixm6KtemubUX9KjGQE3edfsJn/QutTUYkfHqUqDFP/V196CqdexfUfFhd0LdQX5wSHsB6bjJVZIGdnfp4kVRo7Vgptduq7rlSr9AdbSXmfainjFNKZU8QUjgzROWeVShcmyF75LyQlQkh8/a5nCMIYpXD4LM5JTUgotFSFOWUhyApWXhxMg1YL65n5cg+nmHifEv/v6we+eRz437LlT7dntJ98hvUNISbSYWB6fCT0E+Fw0v7FpFDwVPrqjLEMUyQVyGm0gYThNARCSjwHbLvDbHVccE5JRwhaZfg3hYRKjXyt9Bd3QqobYsAYcoqkqIiddrPjk5eX3L974Js3D7wbMo01PNsINutyvrja8ezFFThH6xydNTjJMI2kaQTJ+DgxPhwwSbBtiysjyY3XcWzxNNJPkXhq8Nd7mi9/hom/xBz61ZotfeRVwa7X8nofYS5APKlEfMxbDdrQ63pivotiW8RjdU3/lFJ44n+Wak157QmCbhX1LUmR5YCVnEvzDCrbM8nw4sHqerM6mn5Rx8zVN8l5JumscgoUmKF9cq4AKSmqpv6uMFVjvU5k2ew437a8MVLgpyqrBogIG2MYRM/fWuWcigIpJ355c+TmOPLlIfBvd3vOpoCfJo6v3/P2H37N6eHA2Ack5blXN4kwxkTImoAVwJ1fYLqdJp7qXSuVLuvsjMSZ7+3c0F74qXwDOWNsg+u2bC6vaDcbTAg0OXDhLQahLY/okITp/p7H335D9/yCz3/2GTdvjgRJTA8n2s5hvOPMwnnjsEZ48+6eaQy02w6LsGkc7fUWe3xkGoXWZ7yxGL+svaJtlmcMM9rjadJ0MQhzkmalT+r6kpox+1D8SjJ5DrQ++m11kuWE64h6jc9WVf0n93IJlte8bIZVIYAqYqtXFnXGkigoL6zv5xxUlo9W/SisqrTLs6kAi9yPyLs3s2zqlKNmkcMi71mSOtEzkW4pqlCId1MANHnh+hOXDi6cJnW80aplM/sKajejCLlUJMesFcuQIYgwJq1ybkT/TqIiFrL249/FyHR/4naMiO84//IL3GbD17/8ltff3jCNgRQijTPsGzujXqekRZjHqN+XBL49JS4eRv5tTVr4gpLJCayfxwivW1qQPLdiKPlpkRjf6KS180suX1zC968x1rBzig3sk3CIcHNzC87yth/ZXZzTtI44Rk639/zjzS1ZYMiZ7dmGy6stk2gLx2ZjOR0Grl1kmwM7KzTe4L0pcHLzZMmsg8G6JNU5Xvwss0ZcmVoHLO2qZa2aJXP/0W3VVj2Jg4UFar/Oxci8bEsL4KKz5zeyIJY5gKDI9cIVXoOuJXCWmYsBVlWOoifNwn0w310wWZDbOzZXme7zazYXZ9hK4lvGu9bWWeWfaBFRYm+RNAcbkg0pFPl0Xu0tEMceEZ0udXg48u7Qz60Gb4LwV99m/uhqy5mHm7sjX31WJiQaIdy8JffnNBfn+LMzJRcu+t1YQwoRZyzWGMZ+VN5ErxNPJUyE04CIUcJxb0m5IK8PvSZYrAOrrcLG2sKtJfN0RGOcFhPLTa6TShVNUFpWckJSIg4nQkHAvj/03B0HnDUcp+KnJyU937QN18/O+Nmf/gjXKUfU1jucCNP7G1rvtDXrdGJ4OIIY9sYRHo6klDHO0LUNdtvReoeMgcO3B7bNpD72Khhai0tNzC/ab5HJ6kaVJavgq/X6moMrfWVZyiXG+kEx6CPbMkhazloqp44xZQKPYOzim9YClinyVDcDuNOAHN4zmi3triOHhvA4INngvOH4MHA4Dnjv5omYOQvZKJLKGyHEzKGf2DSOxjmyJELUgQ1jzJxi0iEpou24IjDK7KFgMDSl4OJm10cLELHsUVQIU4h892ggCZetKpzmokWBCYbTEBmHQIel8qNCJsWgSLLCuUrRHTqMpbT/OY3fdCqcnfmbUgyYGBjevcPmxNZbpqxTnoyU9ilrEGPYNLa0Jqp9FYQohhTVVzbJcAya3Nq0jhwNj0PmxaYhjJaH48RzK7Qd2G4zQ3FkyLO9mNGpNXYwzFOk5g4YoA66aT3sLLxP6r/ooBKDaTxJDL5MhHXeY1rHMA5suy1OFJiRs9V20cLtkwsvj7gd9if/C+n1r+Gb78D6ORGj6Jm8kiWzCOPcj17WcLZzQXF2v1Y8TDVPUI/xh2TzD7c+1erAyqCvhaGSOj3xw81KKVTHchVQ1jNe4EC5OHWlGqOZDJYjr5XX6rf54b8FQawaB2k7ZEXWSSE1qscQtI9eE0H2SdBnXIMxOsHCeIW8WdeQw8T72yNvj4lj0ARIkkwsPYi5OIkpF+HLab75WiXTmqr6zuqM1W9OqEOc9PIxAjFG7gfDf/7ugVefnbg8nGjOd9y/vuHt3/6aaZjIMdAaQ+MNbYGe5QJ5C6K9twB9iISDYUg6Ok2/2eLOrnC7M/ANtt3oFCzbKFmwKeMgq+Ixi7JfxlgalmTdkvG05RkbDFNIDAIb27DxsL/Y8uqnX7I/O2MYR1rvaa1VIq6HB/I4IhZCPxKOPRIivu0wETXM3oFVAmVf1tHxvme3a2gLe7je9lXwsuIwmlfsqgKsmVwzG75VdPlRb9UkVOd5TnkUnhjVHSXZuSz/2bA/TcSap5dcdprv5ZyBkaf3R56+rLpgdayiQDEaeIqrMr3SBeVP23r8ixf4q5fYbqeyqMxksEoW6iktmfiapLG1p7asRWOc9u9vOvYbz7PGEDLlGLbwYJiZwHMqCnQUGASigVEyQwi8vzvw9rt7uvN3nB1P/Pq//CP//j9/y5QyWwedNWz80sZU9cEocIjw891F4dxhRvXpeU8IZfrcB6yx1V2jjPETo0FATonp4Z50/wBDj4mR1iqawKJjupPAQx8I7+7Zkrn1Or44nAbSqef49sD07WvGlBn7wNn1jouLDceDpek8trGEmHAp4IZJGdpArUZdCvVqV0uo8qKI1BalZb2U+O6fNEymLAKzMs5PK4mrxIP7+GUTyt2p8mNReTLF1VhHiyqIrCv5yzpY7VdfemLLil9jKCOty65mvcNyTmbWhfog5nascp4y6/PVwYu8uotzmqtPsNszjFdkGJI0MEqhnFJxZkp74mzrZ2fAz4FVa4Uzr8dvrcUVO9lYo76c+mcIhShUhJgpqBpFuYSsiYkxlwSLwCmp7EaEyRpCDPhk+f33d3z1u+9xbcv//de/5XaM+pmsnDBBwBdUQGMMnVMUz0PMPI6BU8y8OkzKrbHRUdzW6gQsZ0tbhojqLPT12jKcJS/FKXQah+sUJXr9ky/Iv/4NMgZaa/AGzlvLRZt5eIgc7nuyg+P7B55/8ordi3Nut3vi0OOtBvdThl98+8htP7G14GPkpZ24yoFXe3Wgjf2hXRNWclZbdyiFsLKGdFKimfW1ThWpslzX0g8O/fFtNRG51q/1GuAH9k/qP8yyX0Wtro9TixErWqmn+q3a0hqVPzG1BsgKk6cSjtZkvQGrE1a6HEmP9+T37+Anf4RpOi1k+EIejMFaTQPU8b2AEnM6qwkbsWA9ri2TWKwnhYBtNzQ5M717w3QY2JEZUN/83AmPw8ivbyIvtw3eGo79G376/Mj51R5zfQZYUn9kk15g7TOMV4LdhE5E9G3LdDzReK/nEpK2HU6xjP/V9RWnwNiPPLx5Ty4tl6bpcO1OubGqPw9UpJoAktNSJUc0MSOifrsIOUWwOiq8259j+J7OCOeN4duCRNFBjcJ9P9J6x09+8opnl3tOIdE5qyO4xwF5fGQ4jUhOTEGR7Clm/NsbNheX5BgYTqeZODalTHj7HjndkncTJuZSSBM0YU153islTV1Hq5HdHyxOXVJVd6+CpKKv55hsXQz5mJOoiZJQNLOczc58tU2YxbWsE2pnmTYFDa9/XsSem2wYYuT2jXZPbDtLEsMUtQsjxKiIyUghi1Z97qzBo20546iJzhiztrGPE49Rz6+zwoXhSYuum5/UQnHhCxJIUJTomqvPICQM0zTxXUrkvSb/L7rEtjF4b9nuGnzrVX8bo8iZBBhLnEbiNOAbTyhosmx0DLYYS4oRbMD5ULhkHK7tsEZboeI4cpqyJmNQGdi2ljHr0BFjdNijc5Ci6r6UIUThMCQilt/2iZ23bBw8xzCeIs55hinx0AdyFk6PE5IV2W2mQTNcISPGkCSVyVXV/pRkSBkpmo3KOznPd1VEaIm4ZkvIhcfUO/zGMwaNy7NEsp/Y7c8YYmQY+3nYj+/2WISmdaScERsBnYBsmwv8f/+/E07/B7y901bKmjicn12RSln8Ln3uuchtbdMruYacC7BjlTCVFQL1v51MePHRVm62Hnw+2dl7Xj40r8AVEmYOgJd9ZL1PvQFZStlxnazJM3qnQmur7FaDqEbHYC522B//Me7ljzCbM3U+5oz7WhGWMWcFRmlW5zj3mBtTel3D7Gje3Z64Pw7cTir4ofDO6DR2vaEt6MhBKzNiRgkCl1wrVFiZKugg9Tmp0Jry3BqEYQw8nibef/M958+u+au//kf+4ddv601ma5WkausNO2/xpce9dcrY0UcpmV8zT6H6rj/y0+PEvt1i2z2m3RQuj2IVar+vUSNIuSfrilsujPpgsL7TNrGUmA6P3NzccXfzwPE00IfImJTLZuMcP74wnO22bBqPpEgMZfTwlOF0Ij8cCVPAOMvpOOpdOYw8x2PbhunhkWzKCLeUISZON7fE3UgzjIthoiSXeBLT8wR7ohp/Wdfy5I2PdpunUvOBLACzSZ8fVSWmre8uBk6MPCH/BVWIT+5R8WaXsd+L7C7vLydgzZIUm2W6rKsnakAUSjrzdAnIFIhv32C/usPmpNnvQmqLXZEnLIy2pBIMapyhJlDJzFTZG9/itns25zuuGksugap/etol2apB4JQ14JtySdiITpO4+fY1r79/z+efP+d37+7423ePWm1HjXHrHWfe45xRKC1SkDuWs09eYdqOOWElWasA1Ilqi06tyShN55rSf1/9FX1eOU4cbm6Q4wGXE42FzsG20PSfRU0g3x5OTJ3lzcOBq89eQrvHNA3f350ARTG0rULVhyS8P0zsk3C+90wPj2zzxK7J7DeGbmOx3igBHJR2lw/4HqhBS7EalV/NVGxkzTbIas2tDYMpCUazPJzZPprV/h/ntk5Q1ef6FFWk1y01+NUPAU8TU1W3AqyRaJU8n3K4ckfml9cB4hxIr5LQM9/MHHCuW5vXa7C8V1vOGmj/5C+xZ9cY12kCAkWvVSK9nCPGekVn+uJwW1euuaDcjLbV+lZRW7viDLbWaJLEzYAPrC3Dy828cubAJRTES8gQoyYnYxbGmJkynJJwyoY+q6PU5wjDif/47/6Wi4szpnHg5mGkF8NATeyWkaLWsnWutD4lhpSoaKP91Tmm3Zepba4EhMx8PYqoyU+f5erOLpw9Ht9uaXZXbJ6/ZHN9Rn57S+eUY65xsOsc/+tG+F1/5HbSZ3b49mtOdzskBCwJMsQp0IfAqxb+8pnhsoHWJXaN6qQqOrXlbU7AmNr+VP6uxbmZK6n4QzMTaU3Q1LXEHGDOSLePmQhjDlRXMlmTiPCUxHLeVnrpXzi8fPB78TnNIoLzj6w+Z4rsmtlkYgo/Rwk+nTP/P3Nv1mtLcuX3/VZEZO7pTHeoKtbAKlaRRbKaTUmtltuU1JKFfpIHGH7Rm/3tDPjBMGBAtgEbgmDIbRlWy7DcVLdaItlSN8ma7q07nHP2kEPE8sOKiIx9i80W/OKbIOues09m7syINfzXjOu9EUbKGVq5qb1NH8mY1mMlQdl7az0irJG0uIyFNVbDB+cJm0umaYSYSIcTWyJBrPTCAZcO0hx5sbfs6LuDcDxNfLAfeeN4YvX4Cr/qOU2fZ/4O1sC0W9GvE/PpmLN3hPk0EqeprkEaJsbjieEwEGPifn/ieLLyvZQSSMEv1r4Ab0GNpJKnNVlgwJzCiwPHHD1W/iXOozOkODEPB+ZhQE9HVjrzrTUcghBVciZtYhoHVt4w9OV6xTAaRg3zCMNEzP0eNcJpP5LmiBtmLjZrpuPA8OwlwxQJQfAxsn/yFe9tJ/Qw1bLWbNk0ciHTgmaZmmVJosjAQlhF4rfymnqn5ZQFB1dfxmsMa2umgVm31Ik6tRiiODuy/iqlw2b8FXBU6erCKe/pkT+beo53swXPg7BdeaYpMWc75zglwsrjgGG0XqIJGKdU+ybFKTGMM6dxYk6Jh8GxdcnCa4I5Z1TpnO2LOWuEKTvkHMKUP59RKxZBMnbU7KQQphi5O5oee9lB2PaYfRUQ8cSYx2YLFhRILidQCcNxRJw14ffBE6dI3/fWN1Uc4/GIC4F+d4N0K8Ppp5HTMDOr8ORgzpZNZ9h11Vlygw+WwTLNyhyVZ0flq8PMYbLN+dPDyIwQJLHtPM+HiZsgTDpyHKMFYEWY7pXvPXrARu/R589JdQR2mUJX5Kw1Oy7+hpLMoRor3klYZc3GJwKJGDoS1vcSKc4kxQVhGmaSKsFbj5okMM0T3Tq/13hCvCfk8eUiuY7r5mP6H/0Dhv/jvyV99pxlomzTbzHr0JSz5mvlRv0PlWYrsqr2Tv4s4zFtsMKrx6/PqClflu24qtDPsmaoC1oEpuX/N7i6KJ38UEVhndVcFsBZm7gWhivf18opAw0uLQtQ6v0YopVGdStc16NllG/z/0TZeAWsz4VzbmkMjDbd5HNkfLY+MisP10w4ZwoMZw4ahzloOrFO2KGxMWx8dzYEmzUYk/2e1CJ/MTdcKmPQFPAaIc78u58/54un93z8rTf4089f8NOXR8rc9pDrZnvnWAfHNlgpUXEQ7ZNyihYpFISn08wxwt87WcM5162ywWjppKXUSZxnqb8r294aAdYFXMS8xL7bIVtl9+gxbz+45G4FdyExd8q9wJxmTtEiKN4Wlsv1mv39PfNxpJNEPA3M44QmtQlWc2QaJ3OnnY5onBlfvGCYZkuhdZ7p+QvWx5f4YSBlD+zyvEVDkYX/YlgW+0Vwtb9QY8+81sbgUsq1AMFWOZ/bhVqF1yIsSoq6njcwZOHHVhCVu7brU254lvlQvqBEO6qDJz9bbmCGZn+sGv/YRHVB54SMI853VrYYuqZpZ3m/KunMIEpLaYGmCD6gmvC+RA09fnPN5Qfvkv7oJ0wRvDj6HLUXsXRPsKhKyg67KXvAhznlMgQlHe95EeFlHLgCPuyVY4TgheAdnSiDTpxmZSvCBByj8skPPuStj7+fGx3m1O84U0oUy7ovPYJyVoqFQ0kx1iW3VVBrMI7YBA5RNh7WHtadvdsjB2/tlD89KS/v91x0nvjkKXf7PQGplIgAACAASURBVO7iAt1sABiB56eJlz+/ReaZNYnd7LnEs+tmrjtYrwK+Kw6IRQ5rpZ9CAy2RNoyY/620AmcGXUkB1YomF/opTj5p6DM1cuh1O2oGrNozl9ip2bAZPDuqISYFtQsWmVEDdovObIzHRtu7WkaT5VZdZuMxPbugfUDq8hZoX3Vk6Qmg+cmLrOwi/d/+jwjf/m2k3+bGnqV2iuykiXVvnSu853J028Z2phitx0O+vksR5y2A0HvogkUznZM8xtvkhzhX6UnVssZS7mGQ8kjvlPk1JWvGOM2WZTNEOM6J+xnSfOL0bOD53T0frBx+ZTwqWW+XNdz4xN0cGUVRn8GWKCEmfve3v2uluKFfnMMKmmxwgKgj1hEleYVF8K6jRr5zxFM04DcXdG+8hb/Y4Z69wDmTJ96bXOpF+I1VAXZmfM7xBbLK/TJy81URnycxL4764sDOX7mQgIGtSqhLhiy1yeki6xeHYzleZb+2V+HrqzWLDNFFbgk5+6Sc8fUs8PpmeQ1aDLQE3pZj0YVSYWxZvoo723tlo3x5sib71WVDW9XK0Ldr/PUlbr2u+E/EeKk4bmrpndr11RjAdKH4ntIMU3wkbHfE4YTrV2iMuHlmK5btlshZZmSVjvVsAvjFfeTFaebR3Yn3DhMPbjbsbq7giy9x/Ybu4rL2z4j7A9PtHagyHQfiaSRNkXEYGYeRmCAi3B5G441gZRbdLjffD0tvSXMylSwimt4s+opdkfKe50ah08A8HEhx5vTiFjdOfGulHLbCcQ4EsbIUETMEd5JI44jv1qw9HF/csesdJaVvu17zfDgwHgfG00i/7bn/9DP2+4Fndwe6zqNO2B9PbL3SObWyKOEsQ632gEoLHy76v2hFe1knlq2oWbfUwDXndFbhUku/5W+v6xGhlhNow5MNcK09Egt9p6akS3NVQizZOOasudbIZ/OMquNuiIyjR7yQnHA7mv7ZrBz708w4RvaniXUfzIxNMA0jpzEynGY6Et9dw0YSK9c8nljgb+OowZIpP3fKGaFz5sFJcz9EYMy6XrGMTsT4q3fw8jhx1Xf4rifsNrjO5ywZo52Ios6BDwTvkTAxn0440dyAV5jn2fClKK4LuNUWt7nErS8gKW4zc3dUnh8SoXO8HOHFlHi0Eta9NQbuOs9hiDw/KH/yMvJHz8eMwazUWES46jzP50g/JxyBMTosMC+MUXmwCXzv/SveeaMjffkpOo2LLiz/bfazZJwVCJny+ElxLve8AwR6r6yjMuV76JxIs2UFxSnhVo5xnBlOI0kcficEFwyLqAVfnM8jzZ3L00kTEYUoxKtv0f+tf8Dw+/8N+osXQFeDHLa5ZxZJNmTs71U3KFXfGDa0nkYlu7re4P97Rk1bb5xT2ctDNVEYpKSjNdCw1rwvsqHKiAY8nAmR5VtpUGRdk2ZfzyI8i+EIGmfbUG+TVaRf57HSecGSjQVNmcBS09OiPkG+n3Mdmkac86Q5Mt3dcSMTn6wTUyxK2iLwTkwdeDHQ6TEmLEp2VIsAzLqURCRvPydVTmrMPWT8MGfvvgJxGnny5CszWqeZKxK9FOMWtmJK1IsR+t0YeZY9fIdkEf2Qjej7HGW/7oMJeuchhAoSDDQEUk5BdOIoZWxFIJWNMUfNufCM80Q87SHOXPjE+37k7Qt7lv1s7/egizbGeBggBEJMHF+8xO/WxNNMHGd22y13+wOnw8D+ds/V2jNIYhpmbvcHVMQ8vjHC8cDlZraIjWT6KrTUAEwtn+vyzMY/TZbI62v/nR1lF5YSQz37g1bLsFzQclrDN2f6u4EFuZa+KsHW+FPIHq4KUiWj2yIB7Lzlb1JA1WKzL4KqpAOWR46z7VUpeWrKntoXbOGyySeThAK1eSLYNAjfb9h++B2OF/+U7jjTO8E76LyzIJ0vKZ4uG6hS11GTMk/KMCaGSbkfE6d4RAT+zkMT+s7lOmRdyjKKE1aC47v/xd8lrFa5GZxlo2l+thhnGz0qLmefSF0oV8YrywJAxQd8nhizudhwuQ7EYaJ3VmK58kIfLFV1t3H8B1cWJZrmRIwjx7tbxtsvWZOjtAKpV5JP3HRwsXaEAM6XGmcpbLWQ0iLMF2WzkFkju7OhnT/TSjOGYArAkvZaoGQa/kXH6+xEXZhKfoXyy79kfSlOkKrss+7LgCH7as4AfC3fdCyZLi3rL1GQOl2x8l75pTxO7YHEUg5V9icI3bfeRR68DasO/95HdN/5EbLaUcrwUEhpZp5O+bv07D1NFy/NCeM8o/PEnKyfmltvYZoJ3hoIh1AyagQXMEPHS10HM/rUnjuJjZEuKccKmlzDs+RpVfbzNCdz3MzK7ZgYdaJzwrff6AjO1UbERZ7Nmog2vZhRlSFZ/4HNes0bH34LFzrmeTD5WAVczMA4v6sqvltlo8t6x1nww3R+EiuTCqs168fvcPOjH3H/7H/En044p7lZ85Lh4sSijg6h97be5uRzi4FWneoNzzU0cN40eNEDZw7YV5wuC1+2dz43is/6Tb3OrFnYI08zq+uRCq80+qz8oEs/icUaLny3nL/A4WYBzkSAnO1Fwbqt/KRirPrrsq+StXNKuXdgTjWourLc39XvtlIBrf0p0ExXiYx5rX+jhIBbbVAR5mlm63J5A9a0e1Iyhs3RcbVMtudj5Olw5Jf3E+9eHnnnrch7H23YpESKiTgM3P/ycw6ffsk0ThzvDkzTzKozi9ZKGUsmnL13VOX2fubRusNvd+Ctz5zRe468u4IHWifbsh91/bRMJTWbIPRbUjjw4NEVd5c9Xz5TolNWndJJHi2sMCSF/R3T81sGTaz6wPDynvX1hnl/xJ1Gtjc3dCjx7p45JW7v9uyfzZxOI9JZedkqCOuLjl4nxjGx1oQPtm8py8sGUb+C2xYXYKEXLVRT8Jh+3b77egxjkWyvNWvWJjzF8bLokyK7ShaoZMvW6GEpiS82fEpqBlKKXKfI97fw+X7ms1PkdvKE9YqI8nKIvLnr+OrFAMkqDzTBaZxJCNMcuRtm7oaJx155K8BVcLWpcMj60jmTy16yTYfYJLNs+6lCVHMYTsl6qjkR8/mRbUWFhCOilB67n7488undwA+nyPdvHrD6hvFfKkJbHN1qzZT1TdhtSfNMmmZzPmS5HLYX0G8IV29Yhnm/q71qHr39mJ/8y19wP8GQbNiLE+FiLay9Nev4+cvE//zLE39yO9KJlSafYuIqOHbB8flp4n5OrJyVOu584n5KPB0m3ls5vn/juWTi9Ok93uVyaCn6S/N0JEAtkcJlPJKyULXMKlkC8UUGR2U1R25DbgYeI6TEetOTsnNXsUy7YZjYxon+4grpVthghwia+0MyIbg8QSoQ00RKEHbfpP+7/xXzj/8R8c/+HfrsZFnDlVy1guKFfUtJubLo0zyVtvgeCh2X5s3+L+bOX59RU7X/omSqvqqLtZh4DUt9HbDTiov8e75RjcS3iq8ae0uU+VxBavlfA04U2awIb7yLu3yM9BvrtVKeJ69saTiaXjHukKKwcxq0F2KKqCZCtyKdTsjzWx52QvRqzW0zEbnsoOlkKVuas7c0ZQdMTG1jxFyip1Zzb80Ri0I058qk9jnAOE/M88TPP59YecelE4b8/pPmeSIpMeT7jEr1Mrp8jooFA0Ry1o4LLNOeTOC5nGXhnDWjipoj/iKNsUyNGCkFSOeUdufQODHe3dKfDjzqFGlS545JmY97hi+fwH6Nv7nGCwz3R2YnDPcH9DAQdhfcrNfML++ZJTEOkSf7A3GKJJTNpsdpQueJXQ+9RDQqKdv17YjQtpmtZpxftHuhMXWFIAuhyq9QeK/RUWi//LcYdl8DKi0LZiZSqNZduy6VjzL4K/elKMgGRTS3apg/R87b71u+toLdfKF6xTasnGffH66u8Q/ehrCyNG0ynWmTsSHUCWO18WJuGm6lkAtNl7TE1VsfsHr/G8Sf/JIulxcEL1gLK7HIvoOSZlMzI4BeYZOUNCkPY1aqyZStVSVl8Zzr3POkSZsg8/YbXL/7Xu1PoymaUzGn2TvnrYxQcrqvOAqATrkRhH1mSlBcQDbKfPWQ7dtvsV91zNPM2sMqZCdNEHO2OGvi2PWwzdte9rIYBEvGYTbAixd92aq87vaZK1FeqMq2OPG/tu0lm0oXMqlyvYAupSGk87KhpYmpRabOiO01Pep7naFsW0jJmTQtIl8yYVx1XJVtsDWUeq7kxlKqhdeXxZbzFaaWKUqTxcQr+lbPHWJGZoJ74zH+d34P943vWa8oCaQ5wnxXC9ZLxleKk323GA+mOFXe9L43HavkxuFkkBJxmwv85Q7dn3CSdWh21PguA5c8TcmVgECW0wJLHy6yCVOATuF9XYiu11weEZUHUWsmkw/2nSmfW/ha1ZFS1tkJjrNN8dh89A5+d0WcxrwOoQrYFK3e36KNpivjONqzZOdz6Ff4bmNrlz1BKc548Vx88D3mj37M/Cf/JjdyzLqMvOeQR2cvAQeKEZ9/dW7BSsWYq7xbSKViKl3OI/P0ucKo+6VFCGRmbnVjyaQrf36dG5a2WX+vOnvPcWj+rJGD5d8lDNSeuGTE2Glyto7GK/o1DK0ZN2keO1wCiuVOAjnbmbrG4j1pmsyBW4mkNcMlnytZF2ZiL84oivwu8t/j8Djf4YLHi01BnHKwNRW9LBDFAn3Wj8MwZkJ4MUaOLw7sI0xhxebNN1H/lLi/4+c//hn3dydEoPew7QOqwpwS42xNfI9TspITFYaYOEzK49WK7vLa1occTM1OF6fgnMkWs3NcQ9csDlR1dXKplNGO7hnTMLB2cNODO9k7dplPhozN5y+eEbzHnY48/s63OI3PmW4T8TDij0eOn39umHmaIEW2vef53QERoeusH5T3Quc8/njCnSZSUNQpyasFQIpszny3ZNEs+iPV7GeyvGsprSGzwp4UMWn7VpwHWRnw2h7l/YuuklLqxJm8q2Ko2plSHfKSMyo1QZwTMSZchIuovO8SmxX8dFI8CXD84n7mXz8beGvt2XVLidlhUO6mSCBxLZHv7uCRFzbO0TnBiwW/nSgOj2S+CCK5yX2y4Djm1ETNCTOpOYPK9F/Bcax9Eg1HjQqjWpXCysP11YpVoNJ+ymuUcsnQOFt2iuZS3CQT3bazyabdGgS6yzcBR7e7snYeKpBmWG3Zvfs2Xx3+OcdgPdksk054cVI2Gxij8L9+euRntyM9NhxjjAKi7OfEfo45QUFZAUwDb60cP9w5Ptp5Hm+EXTfA/QidJ3VibRgK1CwNd13ZZLJtvsjSFNWmQWc9Vu2RqGx0JPRrZm+Tn+aYcOLwqw7Xd2z6FSnBdrdh2B9YXVwTQo+qMk0jLiW8Dyg9wRcnqK11nEfzF+gW/8P/nPDBnxP/n39C/Le/QOgNP1Gy4zKx6qt6JHOs6Bm9SnmX4Jbk1r/g+LWOmvYoYkHLg9Ai0eWhWkPxLJLXgvcWpxbDn3MFX3/URmWVtOxykjPGrJaAgHvnbcL7n+A3FxlELYaHpR+lCjCL0eSw8dSWll1b5+ZXNEWYVJnvT7hpZucc6qy3g2IRaZeVo8sOIKvKX+omoxo9lih7zJ7W2g8jjzwbkpVAjaq1o/ioTZPTaYIZ1s4AZEmadZKdM5aVWTdXABs4Z+Az9220Eb7r9dKYzeXGACiaZnC5MVs26DSXliz7Wgi6IZJs7OECejwhw2jNuQoIzjb5fBzYf/6EtFuz1sTVW4/Zz4nx/sh8d0QOR/bTZID+eMSlyKoPvLyz8rN+1eHEehp060A3DMQpMnslYFHZiuDBUpuzFrP2HtmoyErR+MotoNaxeKxf08PIqjIRUOSE0jqcvh5tOr/m/KYZ6LR1/OWyRQJUA+CsdIWSMs/S6bz9xqJkaUimCLRsfDlAgyN89An++k2bXlHBpmZj3RhB08w8n+xyZ2P1NCnOaXN+820Krl+z/vhjTj/7BWSjsCTsuJBLEbKhWoOSog2tK76HrjV4Sk+B3KBMo30ektUeBxX8xx/hNhekebJVDLmZap5uhUCKOfKZO8o7FxZw4oIpqQrWEnEa8GHDxbd/wOEnP+H4r36K9zYm0Xub7FKcT4th0ZKCLMTRFMBXo77KzIVatLmJ1jxOqc65qoSqAXAeZa/v0/DW+Tjfksq9CP/y/Sm1T//rs21ei8PBmROk8GoCJJ3TZjlyhktxwlRno2Sl3kQci5KHVzi69gNi2d/iyKSU/eaLsk45o44k5hx5533c428BMB/vKT1XUoy1p1Toe0SEaRyN1rqA7zdo7oGh81wzS2wtsHIhF+p6rN/5BvHLr4xmvRA6m8rhvDlAi7Gx0IQsD51ffGlSTO6LVGhL6tKXcp7klf6sebIducV3deYYEFZcFFIE55RV6Ln6e7/LPE3E+3vcqmMaR8J6BXFmuLvP2Q6BhHL38gXee1brDWG1BW8TJt14omTzerVgEF2PW6+5+J3f5f6zn9MNA967Ogygkog4A3ypiZDLku0s8iq3t066knGxBN3yTVli9XyNqOo6lTp8KYZjw9+67NGrwYLX7qgeUKo8qg6ShswKf5z1Gmqua7MaoORX15vSsGjz1SYItURRYXGklPVrvivlH6zvCrj1Cn9xSbi8wm0ukW6LCyvwvtGtr0rtkjFenB1adY2q9eOQYBMW+8srLtaBeS/0Wso0LGgoWKZ3Uov4x4Jf1QKOAHeHE0+e3fN//u//kjffvObqIvCPf/aMUzbmvCgXwbPtPLveL04HgVOEuylyOyUOs/LAraHrKy41p5S9lQU2rM6gTGos+2DH0tdGyI5SrJeE79asVmtK2VkpYQmizEmIYtmwL/Yj7sU96zTzy9OE6zpOsSMNE8MXX3H3pZ13nBPROa7euubx4wte3A344AlOOO0HdDywjaMZ9WJY49y3Vjh2ke9txb4AqdBHDaYtr1p3upxfJy7mMhIaff5aO1ELtQpLG96G7yg4oCk/tC0EldyM2Jo3R1ViVGK0XmZThFNSDlEJSdBp5qQCGrkdR9IsPOgdV8EcMg9FebyFay9sgqMXG01t8NCe0Oe9KLaCIMxR6YM1LC5bFqLxd0qwFswZk5RJPVNStt4xa6rVFBv1OeMGNsFxc9Hx8OaC9To7JnPmqDhPEsWHFSlFEkZDLvTIakOaZkK3QsKasLnEynwsqzslhdwge/veB8TrC/788zvWQfj+dc/KOz47Rdxt4nrtmKbEtbess7UovSjbYBMK3+49173jIsBN77kMwlVvQUPnBSQ300WY54Qks5nFYX9v8V6GhrWnfV5fyQSybHv5QQgpso0jt25bA7veCb7r6bY7KzkTZw2YNXG6v2ONEJPSby/Qec5y3i3VMdl3kPPrmYcTGjq6m4/o/+67zJv/nvnH/wZktTibWjtpeSWSK3xoa1E1tJSgpORy5b+YN/9yR02V+Y3gP/v9laOsewZi0u5D8xKSDavFiVIAaSOhynnlmqqJfrU32X3wNqsf/X3c9TegW9kFzlmmdLMI1v1+RiQ3/0vJGjMB1YAvAARyI08DJ0ET4lmyabASitL80MYQLligXUbNhGbMbamlcyypn0JMlk0zJ2uMeErmvZwUhgSnBMcMuq+8RTis1tEUJyi9l6xA1Uo+kVw2Z2mmZUMfBKHvzDnjcuprjHOdYGF9BLoF05R+CJprHklY8X7JqrEGbjhPd3XD5VsPSZ/+kng74TQbsglChDFGpts9nXc8+fMvuH+2z6mIwuk0cXj6jFstzi3F9Z6L9QVXl2uOx4nQGftM00xwERcnUKv9dV6+Rq8VOJbkjQL+88sVIUBu0mWYRs+R/Ot2nCHtBp61TpQiOMq5WhydzZrUcH4BmnauSmPnIQUrsWR9cEbgBfwb+HAF4ZpCofzYXNQYnKVKN5Hofvs/xH/0V4hxIo17nEbrURMndB6I80jtnyQG0jRnwPjQ2xQnMYOoGLspRtI0IAj9ex8y3fwBbn/EhVJmIebVFnK/Am36FkhDP8ZwxRYsn5eMOs3lYik7j11KaAj4t942UDycYLZxiYjWPjXzONcGcKlESpzLTnYB8YR+RVhtLENoHpiPRwC6y4c8+Bs/Qj79BRwHuk7oOnM4+TLprhXViwC2X8t2CLYPQq6fzzSkiw1he1syQDIYLLcti1LpUpdygmLEtBos/7w4BjMtZAOo+DUKhF3ozQDP6w04zzMOKO/YBiLI69k6VjJ/kRX6WYZfW3ZcL6ZGo6DhP833defnln4z+fT8TwuEje652OI++IGNAE0nAzldbyVZw8B4f1sUmjUzTTFPTLEsGhd64jznqYpCirOVGOceNf16a7QzjvjHb5AcNYvGd9afwoVsnOXHt+yyc9FenahljQuRlshWPpxAyu/uvOl5LQulUlPuVQRR6w2jSXFJcd7k3Ryhf+cR63e/hXZrxDnmYWD/7Bmby23mFyVstqgK03Dgp//qz7i+2PDB9z7EeY90pc+GME8DcX9HzA2FLdji6G7epP/oO8i/+ZNszBXnZSUl+7c4cBqcVTbSygEWI684/+rfijmU9d+ZE6zSR/7OVtCfEeCvOApW/Aug4Wtz1HdeaOdrr1TOqQu78GOFxEX+VaI85+9f+dWtYCtgsMjG+hxaZW7hAdPjFrjyp4NlkqaCaiU38IcSbEFzXwdKk92Mt7OTxuWy9ZjyJDIXctbJJdveE4MjYZnfqmWccMGbkj9fssBPSTioMGnkq6+eMz55wcvbAw+uNnx6mvh0P6FAcI61T3Ru5rILrLwFJ6dkTYpfjJH9HFk7x8WjGyvxdTaxSsTVyY4pD7gQCdRMRCkZqrZihmFdNu6rpmI63pOGE6IJlxLBGZZeOevtllS5tNGQvNyfuAzC6f7Eg8cPbSrlds1L3zOcTlbCFTpWvefliyN3h5Hb48xuHXjrekU43LFj4nLt2K0dPjhcaOgjy6pUdWqWX+0TS/6PmKOtYHHxZL1gGTkl3730byt6NJWgCPKXRu7//z8KRednLz3cyv6mhgeXRaQB8tVZ7R2kaA4P76xc5+2V8LBTxjiSHHx8pXDl6ZwNZFl7C2ab6Wj3cRkTLmKiWqXLFJ/8JCFnoyxOQ8uoiqokZ+WCiO2NT8raOaaU6HH0mu0/tRmg3uX+o7NlbIGg82xpafU7LVvBhY4yOrpb9ajzdOueGBNd11tAYbVljjO974CYHy/grx/ww9/+kH/x3/0BYd0xzokv9xPHCGudOR5nfuvK8Yt7uHTCdXBceeGmF7adY9M5NkHoQ7aF83rl3vqGoFvgUeRmMmeJyLLv7U8tF1jP81fkdKn+UMuwU7VzpgQhy9bxcITQEzYdp+OJ9XZtjcJTfv+U8L636cYuMd3fonHCiaNfbQl9j++sF900DLgYkf6C7q//x8xffA5PTo16bILc2lQgNZMWi8MmJa1BYqPdkkn/q4+/1FFTFUaz0FXZ6/l5sAD62sFYqJkLFVBUhS4VhLYbWqdmFP5rUUpqHoWEdKBOcd/6Fv3f/M9w7/wA6TbkHJflGZPmMom5NgkW90pWSI2QaFUGIo4kDre+QFWtWbBbsmicozY/XIBVbk5aDI0KIhvd3KRVazKFGaOVTMzJnBRTUmaFU7QGUzaO1Jw2c06NA8u6ESxzZtaC0y2VbmossglLo0yqPN561jfXVqsnghOPK1OBxJlzKtfWm5xsStAawKcNcagTXOhxqzX91QV9cMzOOqK7ALtOuIqgh8Rnx4nO7QmA3u7ZvfEG8vCCft3zQszj7DONrLzw4vbI82PiMCbeUrheO/R4YNUnLnxk01skVnwTraAV9AutLgKgblBDVGqyr2W61/Bw/twJev6KrUAradDGV/aqr/Cu3ZHStHVZDGPmYmPWmGEF++d8X4/iyJEmI6fNYW0vUiwrDug+/i7hB3+b5IKN79PIdHxJCCvLoBknYozM8wlUcaHDewNqcZrwfU9Ybyw1fBzyu1sDT82NBGW1wd1c4ocTvjOD0HeurhGNYyPld23fsxQnL+IwGzQuZ9eoTY6OCYgO2ayQixvLNMi9dlIcGYc9/WbHdBogl2zN48g0jrz48gvWux27m4eErsN5G308HSfLyonZ9So2U+7yox8wf/KHzD/+MX3nCJ31lamPWGVxMTaW/W2VaHGUnBtsrxgdIuc/tvx/rmEXckDOp03IeZS/RkNf1SfFwdCEFzWVMovXF3EWA1crZ2XagGok13XNgQHgzLmiiUxThbcXgCPNz3aLzNeN02eh5V8tw4q8WPIASnkhyG6Hf/Amfn3BcLwndLmZpzhSOjLc3eFXKy7eeIs4jLjOJv7FOJFiIs17i+rh8N0Kt+lI88g8HpjHI7OApsh0OKAp4YM3R00oTlPO5LK2JW+VUZdspVL66EoT3eqkbt5Xlh/qulEQOfVe5bpiBDmFNCe8RMIHH+A2l+Ac03jCOcf9s6/ogmUX9ZtLXNczzRPbyyu6zQWff/aEDz7+kG69Rpy3KTrO453n5fOnrDcBHzp8WJlsGAfLJHRWz17oqfrfqxH2ijOwvFEBr/kCm0ZZX76+d41Mtnqx6viFkev3Fd3R6pzSY6DcNQ/3eu0dNUB9yJpJs5QgmtqzF23VodFWLtlsgHflo4buloivnVOBebmRgOZR7gtfY82D1RyGIpa1nVIZQgEME+nlCzPYxFnAArJz31cnRfn+Uh5x1rhTtQYuvQ/Med996AmbLZtNh3ZFKizv43Pz8EJPxSEQFcZoJUN3syn0+yhML5+zP9zxG71yMdsbOqdESXTO4WViiLBR5dLBYU48EOWtXlh55Zvf/QhZb40XxLC6lfaVrFPfPB315xgnzkZ3Z52nWSanaeL2s88ZvnyCizObIKxzb7fO28S3x+L5xoXyb4fI7eFkJS3PnvPy5S3dgwfMPpD6FYPAYYqM+yPHw8DOKzcdvOlmHs0nLnewDsHKq72tX1GZhVxESlnvwl/S0pzAWZmy5gxBLdnGVJyGao4nx6GXpQAAIABJREFUZU2RBX1V6695gGOh1XOcYjaTfV4zTetCAnmmbuExp4JKohMhJHM4rnuX6b7Iv5SdMQvGK/pVWix8ZgDn4F92GBWbqcQlvZdarh5TzvL2glezvXzO1lcgJmFKSu8s+2uIsBGbNDpmGjAHomV7z4cjfhhxfZm4aI8VczuLJGANFy3zxncrxvGO3ve40NtERgRkZ56NnBQtqx3f/Ws/5K3/4Q9wkjgeTmjwdFi1h4plFvVba7lx7WHdCbves+pyKVgt1dXcT81l/SDZDmgtlFfxolLs/yVmoE3rl2yDlP78dXptvdT6Yc0Rmb0NEUmQpoQTz+7qCul7dpcOHzzPn79gPJ5QgTSNrNc7+tUOHQd0OHLa3zOPE5vdBZubh6y99bhMSYkxWrXM1Xt03/1rTE//N9BuIcPiaBVy9kZ+nQbkqmR8UTLZi530SvZse/yljppXcbutqy4PkP9T1FdV5CWaVxaaau2xQHTygzc3K/i7Be7tvfLLuweX+I8/wb35Pu7qMe7BB8juMfhQHQrFmZQ0WiQ+TlmxpnqOOIv4NU+DCXtz7LisIMR5A5RAF0r6Wx4lWvtbGFgpnlhpnDWl7EdzNFiVGnG2qRW+fpaSdS5PGZjN+fchKmO0buKCMX67DxFT6G2ZVcmumZIwY06eISY++vY32Lz9Hi501lXfWW1ywt47ptnoRpbSEwMyywZJBdN5g3yHdBv86oLVO+/TP/oT3P0eAVPMubpqs3U8GGaeDok5As5x+vRT9i8v6Dc9EjqiS8SU2B9Hnh0mphjZOOWtDh7NnpvouVqP9J0QgrNRsK4hnSz0ZZG+9TCRUYiqvE4WJE7y3i50+loefuEzp235SeFEFmsMFv9D1fyv3K94Rss1RcErta9GK27NKZGVFLXSY1GtSn6KYhhlAdaekz8XAbYruh/+CH/1mDhPRvfDHsShGXD5rkd8Is0jL59+jojn4tFjQuhMUU0jp+lE6HvTXk4IK3PmdN0Do2sJuIs14bkgwf5Pdu7Ze7H0vmjWqETgC7AqoL0slDa0pslS6Z0qvPMO4c1vElZbrNn2wHwaGQ/73K+io1vtTEbFyJeffsaP/8XP+Gu//X1u+pU1I609ShIpHtEU6deXeUKbpfBcfPJXOf78T02Ru/NnXxqAy/niZ4IoW1+cmgu409owU7y2N6w3keZmJvvb8olz4iuRQVMJJeuq0EApMSu3axV7/WIrAXu1e+JrdpSBZ4XyozY0UwBWrXbIzrKs3yQtxq8ZbFq5TgsYr0S4GF6SOOvZsmyCvPJPw48s0feaJSWCPH4L+kum4544HPBZP8zTyN3TJ4gPPHzvW9bTAofresbjHcSJNJ04vvwKF9Zcv/lNM6h8wIUOFSFOL5juX6KaGA4Hjk+fss1OGp91aH3yoqMLTS6AwtamRKOqE6y85LnAr+TEQlGKy/3YqA7ssp4ipS9HNgq9QzqPf/cDUpxwrqdbbcxhMxl6XF8+QELHPA6EYGnT3/+r3+Wf/E+/ZJ4nA+fzhGrCBY/zga5fMQ0n1pePc0Q0kabRyqNoHprWeGvXp/xteavFDivZHrKkji+vuBh4eZ1bL+si36AEnihUqDR7pGfPteABXtujln0VrFDWpvQCKoZAasqh2ncqi5P1RLUrzuTZsqbF+eP84qUpPpOFExcsUslQ9WvGOWBZNNNo1/uwOPWcBdUqjm1lQ8Fwud9ikTtg1zjf2eehp7t8wPbdN5EnLwELOAoWn/DFIBNZnE75KEHHKSZOszlu9lFJOvMNL3zQ+8WgEyHkzNNZS1KgZdaqghfl5rd+g3c++X51uJgQMOelc5ZZE+OEy6UOxZ6WkhWa9XGbwWR9Jz3d9oL1xYZ9iiiSpyUKIU8+74MQBC7WwuMLYYyJOVkvqRiV6elLHqj1t3NOcCtwa6V/IKyDo+/EcGQO3BayqcZok0FaNr2NO1T0qZhscw3OyD8uyKtRBYX/lKXhbPluGhn/mh6l6XrJCGzl9nKStqKaqvB0cdIsOdou45ac7VztzxYPfQ0Qnd2/cKWq5qxpSFHwvi2/tm8tZVk26dB8Jpr5J6rZeZ2YvpmSEpywQpiifZMXmFSImlgXOaXKPMykcWQ6DGzE4XyoQcSYYn0XFwKu6/HrSwsOpURYbXDZJk6amOYJPx1zc24ok9Qefef7/Ke/95v80T/+Q9a+o2PmsvOsvXLpnQ2q2AQ22ZlpUwlN5ruSfZ5xicu9FyvVNk7iJeBQeKMQtBaNdQ77imww+GvXp+VPhZ80ZTt6NpsyyUQnA5KU49NnuG5N/+CSsFohKXH/5CnjMHKx3RDdCw7iWV1fIcHjvEfnE88++5JH3hH6Fb3vWG0vieNg/enE0X3nR8x//Afoy7wHNZO3Cea6hWelthhocUp+/dYw+hXHv2ePmoKWsAkVRW+9Gn05o9sli8SeoUlNPgMJzde4hl2ksJz93O6prHvc9/4K7uPfwV2+Cb4zYLV/Wb/Dhb5GvxW1qSpqYLdMXlGN1iE7zrWGzgCHkOYRNFm0AUVcIFzsCE4JuDqFQZxNirGU7ezUAdQ36V6yMDklbb/saSG67AxBS78LWfpx5HNTzrhBc0lQI2RUbVwbakpTqwI0pVl64UwJIp5v/82/jt9eIMEmPMGUQWmg9GuZ4ylPzymGmLNaOrXyDO9d3s4EYtEc6XrY3dA/fIfNNz9g/OIJOueR3DnFveuF3QbeVyVOVpoy68QYj6R9M5pVlNiZxO6DsOmt94bp7GiTD+RcSFRyyjRX+OLMuSgtoS7nG3Rqwe5rrNQWtquOTjUNvfBWATD1Kl0i9kLDUw3IXsQlNVJ/BlJfMSRZ4ovVhZdBaIlYZ3yaZQJ1P1y+GlHk/fdxj961GlOZQRMpzfjO+iiFsCbGEZIS1hueP33K/e2RTx48pNvuqmadxwOkxPH+BevddZ7IFHDditXFQ+LpgLt+AL/8xVKvKKVhH1UhVFXuWq0hS+8Pbd5VLMOu0k35pVvhvvND/GZHmTzhfKBbrRmPllrpQp87zpsjs99sefH8jjjNFiH1AVBzpPpAmiem4wEfenwG2PF0ICUlPLiGr56+Am4KoGhBv9Z91WKI1MfWfI3W/a9giOU+1diQZb8pDuTZCLQ4IUCRPD2gfa5Km4VX3XLPQm9WwrF8uEz7e32PmqmZo1ECSwPzdgmk7Mfyu61YMbi0UeDNHhSd2gJvaf7fIlzX6E7M0Kvu1kIDqfyq9vfdQ+Z5Jk4DaRyY3T2KMo1HnM7cvGMOmDgNpHm2zLbQoXHmdLzj/uVLnAzcfOMD5sGyZlzocC7g+zVJhHg82lN89Sw39pVzw5dSm57XQanAuMj7QjsU3arkqstGDxRHRaab6lRQrfqx3KZZvEYH5Ntst8SY0Lvn1o90vaO/uOSwP3H77CUXD9+0e04DekoQAhe7Dd/5wUechoHdPHI67G13+4nVZkdYbTicnqExGvhLEecC8zDjM9Cv4kZffb5GqjcO46LbylTLlkakAYM1ilyX0LE0LFUElw3K7PjPANSVTJ6mB0OzSo32eE2PRqRVXSlUmVgLgIuOK9cVx029T16/6sw5Y+OKJxaIthguLHZLXvuCrxa5WwMuujxTzdpxHulXIJ7l8Rfv9XKP1NwLlMLo1qTeO4+aq9VaLHiH312z/vB9+OOf2sQTZ04L783JYg1yWZpdSyWoyoMxJlLMwcb87s67fD1ZrmstYS0ZCknVMsWdcvNbn9h75myaUuZVst0l4/UY50y7Jsw0G0tWKqW5fF9AOnyfM1p3l+zeeMhp2zHHSHC5bMMLq1DetZTRW6+egrCq8yfLGimgofacyQCCRbaXDGQLRhTy0YUWWYIcpgQttdJIaOHpgjUWfNfKrUZ3t7SebQWt4Ob15U8LoOdfiprXBYuVJvpQ1rTQdruWRQew2FzZkD93rCzrWX4+PyrjGoZtMp5czra060owwSGSqpxOQg7EL+Xc3pk0VRK9s4qHOSkhB129gCQIYpOfCv4JzjI/xImV/M0zKfcUFfGEzkG3Qro14jt8CCSNDMM9/e6BlT31jqSJvl8zDkfWG2serjH3SezW/PDv/x7pD3/COMzses82CGsvrIKzJrvZ5nUNLizZgi28Ubdk3idp1lDIrQlMfpQAguZMb1l2mppNWkp4s5wt+1kxuFvwS5ytT0+/7UlzJA6DZfhOM9KNuM4zhcB4GDg+f4kDDscTq86SFXCwurpge/WAfr1Gn37Fiy++wPXWZD1ggdOUTsRxwPeXuPc/Jv7RH0ORQdlhWHwNpdSpBnqzA672pGnW8Rwcnh//fo6aaplRUUOG64vN0gokitDI1xTHTBZG53BdvvYVWqL1Z8CzeY+bG3j7u8j6Co0zaRozA9j9U5ytIS7g+5WNwJ3tdwmOFDp8v7bnTsmaHhZN03iQXFghRIgRxNG9+S5+t0L2U63Fc7lhUim7KcC4rLs0Dy6oZdawMH7K3nKXwU9ZBdMFhTgXIFaM3TZiokoeRZr/Vp0/5rTZ5n+jWmMtvdywe/cboNj0gDzBAxGIM7WeOVlWC8lSZb0LINHeQ9XOdRbVUWbbpxhJ84jf3rD7zd8hffpz4i8/tWke1cniapZX6BY6KTCvrpgAdDmlXZf1/BWGmj1+07OgMEtZ+5pmlreXBljJsmYuR3V+Dc+8VkdxuDRv2rzcIiCB6hRcvAoNas0WZauwCruX21YvLUWw1rPOjYAW6ZbHcOUZM3hpN2K1wr/9nUxHivc9kanew6J+npQMTGnfExO8fH6kX+/w/Tp/rwPvmY53HO9ukSSsLx+jGtG00Gr49ifwZz/Bz7OVkHkWeZNfeslCyZHKpglYoZysk03ulH5beT01KfLRd/BvvM+8vyfF57jVlrDd2VbE2RqrimeOA+LNKXNxcwMKXRfMUTmfSCnS9xvrxaOKxpk4jaRo3erjcGB+8QSmyaLdxclyxk0Z0hVHnRaeOdttKEZZBY4Z9LgzCLjss4V2FudzdhI712ZHyNmVZ2Ubsnxm9Fg+yGDYmxyUQs8KpIamX8OjZHqIb+WY1CqLs0bC+cdznegWGahFwbtlT6pDWir9nS1HFgoiZXu06hbxJRVv4VnJjK8J8+6vLw1kjQMoTPe3pJSYxsFKKXww58J4QsTlzDdhHvbEaWSz3ZFmIY0n0jiRhpOlgPcr1Anry4ccpy+Zpwm/WlsT7F5wXRvcKDxo7/OqU6AVcaBVvku+tmgSA+xFRjYOnHbhVGnlGmjlo9JcmzfeAglMXz1lmGb8aoX/5oc4dYy3twz3L3AukKYZ1cTwfI9bb7l5+IDT7S23T56YYYug00gaR/rdJU5uARgOewKJNBxJByvtXEnJhl5SimuEvnEQLA7VJeulft6sEaW3BYoTXcotXqHfCuoq+tZlD9oLZFElCzu/3s6aM4OsNtjNr5SWaH2LYYsJ0TYAts+ppZjtKjZt3/J3Fn6jWRk7acmCXYyPilWKQ4BFtaiAbNbI7tKCYiJZNuSs5/pOTal6/ZzsvHOE3EDCs0xJVAUXenYf/4Dx5p/iX5xyn4xmGlvGu5adQsW65gcwqdXVEWXL+1eDuNmIEgXX/HNMuf/YNx6wef9DXAiG58uIbU05c8jkYckYSXE2m80FypQ062MHqjG/tzl3xHf43Q2X3/0rDJ9+xuHH/xon1oS/CyyBQC+LY67o1EIrualxKe1Y9Gh2HuSsHvteGxKw6KuGCrQ4VFsKLeWOC0ed92PTqhe08qRmTJ6ptTpTW30DS8T/NT20vJ02H2UMUpPF2r+XJtJyxq9nCyqALk7o1undlnm6nFnSrnUVg3nPl7JTKymsNq9y5hQtX2uOFc5/z1uggg2ayN8RU/PYYlUUOKuC8CnRIbgY0eGEXF7bpFDnLbAZAhJWuDzJaBwGxEnuGxfBWTaNy0H3fr1jjpHehUW4JKV/832+/1/+J3z6X/9DnIMu27gx2kN7b6VjxalobJFykkM6k/2lKsE5l223ots1Z+DY2Yt/ouCcvDdFZhS5N9v3lIC7NCWQtmYz0zSwWndIH1Asu291aXgnxcR8PFrlC45/+9MnvP3WBZt14Hh3YLtbI07xXjiJY3VxyeNvvstpf2D/4itCF9hsb4ji8L5jOu1tutQbH6JXP0OOs+GOVHhSzt7NlXds9liUGtT7y2zOX+uoqQqs/ewcEZqIKDqmgHUawXV2kybdr0Wo2oILqmCrQEyWf6X3uPc/Qa7eJMYJnQbE97h+DSK2IcOBaTgCuSlTjjybEyPi4ozG2Yy/eab0bRBxpHFA44yEHllbZk6MJ3Qe8ReP8G88QI5fIrkJaQgm0F3AvOp+IdeimlQXUFXXwp2v77kaXwRw1oD5njkTqFn/Ev3XpNVI0qR13KiLJtC9Wmpe56H7znuEqxsz9lSR4CGna5eO8fPpZJF+5xDvSGlmTItAk3yu8z2+34A40jxAnInjgHOB7vHbXPzu77H/R/8Qub3NTqyy75lo63jmBQwutGH7UrIYNBNWEbqLuVGyNzSvtwl2V+pxsDXM0P2VWvQGvOmiGGpG2Gt6iFqJRQWLsPBJJawM2JTaYbyCjZaRRc75ell6GkK2Rm4NzRbvtjTX0V6XH1Rqlk/LyPl7Og+XV6TDHen2OWF1QUzmaA3OM5/2rDbXzJN5sSUEnHNcPHjI+NPP6FZ9brQGMY50qw2STGge7vZc5wlJaTbHj/Me3V3jPvkB7l/9YY0Ofk1OSolo2VpVt9QZTmhhRRPpUsE/fhP59l/F9WuGuxfWaPX2Od3VA+h65mFkOt4bC6eYp250bLcrrh9doZrs79h0GObIanuBxsg8HIn9lnl4yWpjtbXTi6e445CzpM9MiTNDoo6qr69QNncBcwXkVVopESmWe1e+kcUokGzU5UFyVQ8U/VCfqvAyTfRY5AxH1s+LwVzAlXI2xvF1PKSAZc41HhS+akA/ag5+ZdGV2rCdW3i1jV63YFQaA74eatfW/iSNSK2lPsjZZyKgefSvHvbMhz06D4y3d4TrAe16fFjhxDMd99ZQdzyhcSSs1rkuXVhttoyHgflwz3x3i99e4bsV0/4Ocj+WdDqhw0h/sWa98/iVW6LSLGCnPjvkdPaGprLOWNZkOVmqR5KlD0lzrzNkVKOjzQnF+6BC8h3x4srkrFfSNHLc3+Ivbwi9o9t01tw7y4Ph5S3T4YDbbFjdPGSIM4enXxBCj3OOzdU1fn2Bw+FXO6ZxYDrsOb34Co57xhcv6KcZulBpowZ8pMUXC42VFzw3aIRljMIr8j7L7sZyppbr5CVZ1MlitArFcFmWiIL9zuTN63osALX2jTrDAOcra4hgobP23Ra+llrGXv9Q8Ft2ZFeadcuaLTzf8nLBzC2maZznXvBvf4C7fAMJ1tRa0dp30Y7SRFiZptzPreI2V3mijASvtGGWA931I7rvf0z8Zz/O5ftLlrMFNrLhUfBuIc2iJSt4L7de+Ku+XyYy57TiVUnZRf3N95F+U5uQu7mDkDNrsldIU8qTEoudoHhv0+Q0N350LiDdCt9vSWoBxHTaE8eBcP2YB3/z76HPvkKbqXNlGEXBt5XbRCofFX2VaDIHGtow3NkI3NSWCBYy00wXRce2ePMMZJwTVfldpKHOnKWQsXXb021BAtLIyNf1WDILCg80JlCjS1/lxeJQb9674BQkVzEs5y+YfykvPAO6UMt3Cj2XTHuTf+YoLBlqlU5egSQLLsrPWJvhZ07J5fkxJoIr6cQQVepQGMsYUaYvXzCirK4v4PFbiDe8iAvWQ9V1qAoqVt0xTxNdt2YcRlarDSWTw3mx7Nbcb6VZQdR5dt/7IQ9/64+5+79+Aq4jzjaUJiVrqI9ayZY5aIzPE1ZC6CXlpv2yDO+RlK2zJfhRJivnvvpVJpS1cixr3/bDdU3Gkk18K/sp+DCiwZNEmFYTOM+ssL6ANE+Mp4luu2a433NxscX3K548O/LOG1vWq47TccBlh9Z6HNCY6C92dOs1oesY7vc4PF2/wYlnvt+j4uh3jyF0KNEeK8grNLvg5oUXqYlzS1ZNsYN/9fHv0aNmiUMV4q5fVhRUK1fK56/8bk+/GGlZpZ9dWg0KKd/LYjSUt9zukAfv4PoNSZWYTnQ+IM5ber1aw83D7Qu6zZbdw1322CvW4yFauhcT8zwgEqw0whmA1G7DfLozg+i0p98FRCGejmhSwoMb+PTLXFPvciZN3iCBs+k5LfhuNykrYFEQbR0NRqAq1t/CUqYW5i4rb/fIiMxlYVai7UqdWKGKTa3IzbQ0CbHv6T/+Nn5zgZZGdPPMfLoHsaaIcZyIw4R0HSIeHSPHwx3Hu3s2lxesdld5NGuPokzD3l42NzoVKd7+jvX7v8H8m39K/Of/DKeYUGtr3GEx8sonCpTmYIKhm7xegNVkC7m2S6vgbZtQF7qqTp0MTLWuN5nOMr0W+tPFY/w6A84aKSspgWSQrmmJ3OY/aFEUFECNrVGiZnhReDuvX7l/UfCvAg34+u+0a98KqVfOLWutCDonuL9HhyNOHPPhDkWI8wDOEYeRcf8cTYnhsGd1cYkiPHz8iPVmzTyd8CTiPOGcZ1bj8dAFhmmyEsY4Mw+nXOJnPTNS2CLXV8jB6N7lvS8OrTO1ncsC6mf5BSWveSO2KDdLIjCO6DQQXOB0vGUaB4ZxYPvoG3RdRzwdqq2k08ScEn6z5p33HhEc3H32Kd16jesCkmKVh9M00U8Dw/OnhDkicUbnyDRGgkCdYlqjSAsANFKQWqe2uC/P8XVBwMZP5/J8ScgqSkmWvjGNR0aydbHgqUVXtE4HaTImlkyrXGe+2Dr5OS2KIq1d8hoeSRdnTWXCWhsoi2wjN/xsQGgBdiynV6B1tr5AGV9daKP4wStLl9MLeGj+rbxevgdIsyLHE8Pnv2AeDkDieHvPzYM3OB1OXL39Bvtf/hne9/jNhn6zJYo3R6jCZnvJ6f6WeTgxPPsCl0B9h3Rr+vWOw91L0jQzvXyBPPmM8OwLXOegK66I5f2ojjoWGUTzXvKKgdxeW4EiVT66ujg0+vTsarvyLDtOUOeYf/kL3ON3SKknhMA0O063L3M2rZV16TQy7/d4jUzTzO3pjnVU4pTwaWQ8jcTJ0HdYbZmnmeFuz+nFLbvdlrsnX5I++ww5ndiuPbVXqtRHrh9INsjqXhaecpmbs76z4EdhuqInz7jyzOBprJisL/j60WCR5aOG8L62sq/PYQGcjLMyDrOmmo0D4RXAfBa0qB8052hJac/YIZ1pj3KR4Y/yN2nu1SybZsesluRVMQxYHOX+5gL/ze/g+q1ljSehjBHKGt4yTNT60ZS+NJDLxFkwgAUvrcwNLFOTGBHfs37vffb/9x/jNA/LCNQsE/H2TNY8VM7osgib8lkt2irlXVpwXJbtIpCszx75d//oLTP0psn6WsUZN3tSmg2fTiPzabRlcw4XOsbhyDyOhODxocflsd5+OpGmE7XNwTznzr2BzZvvcfM7f4PjP/5f8Gq9Dl0u6bKtkbr52mChwiOuet1auWUGafGbaXo1OE2lnYUEpK7ZeQBj6ddCxaQZj5VJVlVpS82WLfcsvPu6Y9n2eDWQ1GILze+9lCstMmfBHyAlK55C68s9F6dAWaglUyZfTvsAZ20S3EK75bMznQvVYZZSk9GG5OlQ2elLsyeyBL9Tfp+lsirbc05wSUnjRBxGvIKIJ8kSNAcbSNOvN8zzSL/acDjcM5zyUI0RK5/vOjQJfb9hnucqE+pa+y3Xf+vvcPjXf44OERVHKMFYTeawyYkNs2rT/9amXdk7lcDbsjgqCtHadZSsnBgzliw2Wt77lPfMsPHiUI85iFh7y9lC2tpNoGEgSSL2ga4XQt8xjaNl6qljuD+yvtoyHA58+K3H/P7v/wlrn9hdbLm57JnHmf3L57z14Yq7J5/T3W5Y3dzQbba8fPqCNCd2147Qr5EUGV8+JVxukNUaPQ4LAdD8qLrIE4p9nzOApZExf4nK/PWOmqafRdmMr0cI5ewklcbQzY9XBUorLKTiiAU0GIaxcZnl6von20TXeaTfIqEnHm+t+/3a5340wjgM7G9fIuK4futdus2FReJ9QNPMdDoYwc0Dp/tbutWWzdUb1g8i9LkmVhn3tzYp5nCHIMRxYj4cQVweH+pqM9LqpKF4s19de3v/mgqLgYOlZFKQtHjuC4HXCjAxJpdK1AKNsHCyKBJz1Ej14hcnleTx2HK5YvXONwnbS6tdTYkYR453L4nTzPWjR8RxJKzN62jnzLz4sxd8+fMv+PZvfIS/MmVo02rMIEnzxHw6IEBYbfG+R8SB86w/+ITxz38Gz56fOVIMBJe09bJMf5GTr/moGDo1ctHQYkbzxVFQ7blitNIyeUPXTe+Lari8vniz1npqzO/lQDIPtM4YhKa+U7NwoFgui1ypfNx+y7nQWYzLhriLpC6GwitlLa1BkC3Leg+R0sDWWRNw50lHy4aLKH53YeOrD/cWsQeGly9AzDh6/OaD3LdlRmO0COIw4ENgtdnhwsh8OqDTiMaE69e4bs1pmoinkRj680brcva0FEOt0F91WMP/296bNVmSHPd+P4/MPEudU9X7MoPZAJAACCOvyURJRrv3g+jryUxPetWb9HTNrkzXRImkCIDYZu+ent5qr7PmEq6HCI+IUzMcUA/ibZrSDZiuOpUnM8PDI9z9H74UjnOOqrHP1Ct6eY4/fwuzE6rZLETpVcLQd+xX10wXRzAMDG3Y4HfX17i6BnlAXTmGfQCgNpub0Jr74ZMokBXbzZ7liSBDT399iu7W9FfX1C6E0lYVicelXSFxjKUbUdbzSHNr82mD5buGnoVXZ3Bd0/jzZ/aMzNAy0sQedHCibZ+l+3AY/RW/52+/0DtFZRRTadTFtRrXgYFOaAHIJxLMYD9UuCTHTtX0bY58+s4dNKnV9OUE1hQGpr1XqJ2gXP/n/8T8z36KTCe0Z1fc6Nfp5sd4AAAgAElEQVT4umGYx8iZStE+FPMMJ4sV7XbF0O5pN1uuX50zf3KPZjZjuLpAdy3qaob1mleff83u099yz98wqTqqqUtGTaqdVe4dJh+SDfUEIpRyIGmIhR7J0nbgHhX8znyIPLeOaZH3FR1Nv2b92RdsteboR0+5fHvGQms2q5ZH77+HH5T+5oYKZdh3DFcrVGrO1i3X6y0//vMP+P2vvsS5mofeIdWE1c2Ol19/i7s6Z7GY8+EH9xlefs5y4WmqKu7ZNkRNhmkCDopw+Zg8k9e9OcTl2IwfZizHwxAgM7iU11t8ss/9oZgVewkUs/ZOksRT0ywRkuTK/m6RyalrCQdmBmnRxENQOwRCC5k0kNqKFptutfVcGhlmGxfyeutJ8e8D7qOfIsuHDPs1+AEZGqw+gvoe3+4Z+n3sPAMSwxt9bIUpCPV0HtKAxTF0uzDTPtqC/T6k5d65T31vSXW1pm5iupOL9q5YDcG4n6vEgrfGT5dqxSRGJZ5ZhLkiPtwHF9r04hU3nSB3TnBVQ3V0jI9A09Dt2K2vmC/u0Ld7xNVUTajvtttsuLm85PztGe9/8ITF3TmIUNehrW7ft/TtlqHrmEzmVM0EVzVIVbP8+X+DfvUH/FfPUnpXknnbBlwxZ7YWiy0i207hgoPyDpaSWSCqeV/LurZA8cP9U4cjMoBYrvHiBTNwoYfvfeBD5WveVUq2SOJzsY6srMGBI5xtzcTKpEhN1xa/FyU1SlsOA8XSo29F08e5k+LfnM5X2LvxjuVhSHichp02jimNIF7jJNcctTH1PqzViYt1ngR0HwDKadWEFD4Jrb390KFdj2um7DYbxAmdb9ltN7T7AGguj+/QTI+Q2M14v98xmUzp9i2iGhoGAK52VA+fsPjLn7L9uz8AMS2LmAJJOB+vxNI2kxRivoXGa4RQGNzKdVTO9HapmCQ3sSj44jRELKVg2OjHhntnvlsqWT/0nPQwVMJus6fDhVq07cB+r/T9QN92tNsWaRoQ4cG9JadnO/Y7z7w+oULwfc/Vi1NmdxcMg2e336P3H3L/8WPefvkF86PjMIdth3/9gn47pW53EYwRNNWjjQcplSbloYQMFVyUoUFjZGqwuX4ITf1hoEbyJlAqmHS/UosUBlIy8uMCSU4NWdhTKoaQqt5+b66WFosRwVNTH98P1Zf3e9CBod1Q1zWD97TrK/qu59EnP6aeLQpLRxAXih52ux1Du+P6/JS7j96nqhuGYcAPHZWb4uop1XTKsN/Rrq6oXM2wuWb/+jm62TGvQuHPUJMGzCI6RLEzy4inBQfKvoqnC3Gx+iJSOyvuuHDFNiBJfNW4eaUaBsWkSXy3IMhRAfaKd0rz059Q330vFER0Fb331M0MHTxD16J+oJnOcE2DWJX9ZsL8zpKXf/d7PvzpLipqy/XS0G60qug2N4BQRyCtcnVwlAeF+Qypya1oI4Mk6PU09nTKBQeGpDk3B6ddKWQ9WT23rcrCiTE089CUVHO0o2y7yGs97AP/7pEjFRFOW1409MropJynXiqtQhZLRSdZbo1UCdELUfCM0wd2ZfF9U6oHDkJRawJz1ONnlXOogL+5oj/9Fnf3CcP1OfX9h/h+oGpm1PUU37b015d0qxuoHNN7T3j09B46eDanL6kmc5qjZewA5Zgv71PtN/huj9/tEB+KVmu7Z1iv6K6vqS9XVBJOwEy0ykygMljR9iWzy+ykxgw1K7KZsnXVs/3V37H/7BnT9z+G5RH+5Iiu3XN0/2mI0mt3iIbW2+I9w2ZF1+6Rds9+3TOfNNy8PmP58AHddkezuIMIuAHWb94ydY7tt8/Q63P01RsmkyGmHRU8L4y2XE/hcOtOTnApX/Z5jsil9OxTDm75BUrZKU8I4xUlKqZZftLBpP0n7Qf28uWbmcy/wwYnZtCRFlQRZ5muwoxwIIE1Uk6GpBRWsCKGpP0sda7xZB7FtZr2tLgmLUkgOf1xwQY5t3cEN60YPvt77g8d/dmE7s5j+rdv2Ky3+MWSO4/uUTUTNq9fMn/4lG4QZDbH73f0lzecvviW0/M1frulO7/hz//rX7B+8wb2HUPb8eKzr9l88zU/vyccLSvqicO6I4Y3LS22OL5k+IYN2gy7AwGz/UclpeXkxZrvVfhLh/rGeBYLG5emJAK1dCzOPmN75Xn569+id5cMN5ccL47xr5e8PT2n37fcOZ5TOWH3/BXffPOGzeP3uf/kHv/xf/m/uLjaMp81vH1zwZ8/es7dzTk/0y0zWtyNUn9R05wUqdKqudkAeRhCPLElt/UNIhTeOum78otpK4sD9eH6BCyYXAT0L7FNilcpJPfA3khdpUym3mHFmdJYEkOV7HzF35Pdq6XoJBkh2hI2NwUuQ468kGy7Jhs63zfZg2lDDnIoKmFtWtp2IeLVhx/Q/NV/QKsQjVmL0O1XhA5DTQRaWtRDt9/hhxbvPfVkRtNM6bouOGPNDZOjI0J9qS0iVYgmV4KtqwqTOW55hNusAzjThGiTqqjBqGLrJ/Ik7ltJFkoxMBs4yVvckzRHkQsKd+5Q3X1AszwBVwcbtWvp98Fm16MlVTOhmS8BZRg8/dDxh999yW695YOP3qOezXB1k9okN02DoAxdRzOZhW6JVYUAgzim739E//p1iCay+ZFi4ZSHr3HfyIWElVRXJqMFOUKrkB1M3NIjooxpqSujfvVxLWK1U0DMwVNNa7w0xEqAO0SMxdRX2ztFbh16vFskcX342LL2IEqtTHEFQL+3+6PVfIrNMCmjidNPZh4VazHbFaT9IAtzeJ7Zh+otxCnfz0cf1lUhm0C9R8SF9t0RtbDo63RgGm+e9lmf9V/tlEEFHzcA9YoMA5PFgub4AdXyIW7S0LUdbbuPNWgEcTWuaqjrhun8LsPQsdusmS7u0MQSFc45hr6l2+4Ydju2N9fMF0uaySR2JnQc/+LP6X77GcNWUxfpwSuNFWouuxnpoS2YdWfQ1VW8wRD5mkYt4bPUFKdYX1ZrS6Ly0WRBxZ/j8gytzoNtW9PT7yuoWvxsinhodz27naeZVNQ4Ll5dUU8qeu84mU54fnbNYlpxfb6hroTppGbYtezf9uwjWNpvWtxHNdNmwurNK+bLE1xVUb/5iurFOcKAtRwL6ZmaZcn+E/9Ne34qAxLtYieHZu4t+kGgxopBZgGXPAtS/IGUaBGnRyhw4yTM6TMpP5d4KuhCMTe7rrSSbLJUkfmd0Cfe+zSrQ7tHZc2gA+1uy/G9+1T1FIaBru9ANdSTaSYh3Uccfdey320DSNPvGYYe9R2+34ewSYRqPkd2MGxDfYz955/RnJ8mNDXty9Fw9Ib+xlfXgayI7VChMBxLrn1n3IlHUTgjICQRMZYwQdlCsIL+kp8lGkJKPaAVyGIOj58iUqF9i3c1VV1TNQ2CY+haqmbCZHGPoW/p+y4AMk548PQp83nkO6GLlvehT71rJrjYoWZo9yFEVes4qCG0HO09tcQS3emd40Y4ZCUnKRfEHItC4SehL1HrDEwkJafhPkF/mTK0S+Lmf0thSbwm5VYq/MC6+S9PCYDKH2WFr4fXQDb4Dq3seFk+BZK0QDMDCvshfsHukW/2ncgZeyczfFPqh+0BtssL9C28eYZWDf31FW5+xKSecXN1weLJR4jvGdbXuKGH/ZbNzRpp5iyP76DtDr9ZU7sa2hbXTDH0bzJZ0q6uaJoJ/eqK9vw13WrN9vNPqb59RtV0yCwAmxTjlnI8BSvKKJDwed4DLNLQlrirhSPd07/6ijdffINUNf2Duyz+8pes5TW+37M4WTK7cwd/s8Wfn6FHc24urhgur3m7azmaL3jx7BXv+4bJ0Qnu7JzN9TW6WvHN7/7IvZMp1auvWU5a5scDoZldSAtK8Yxprkh5sd8VJQm5xSWKo2GObF+yrTjVS0kWq6230uiMekPz/c3pyRy0CMEcSZhjbW6DjYfvm5/3jlIUAtMLt47c0lpLwhWvLfc9JbYBrUl7oK13caQInJA6W/DDQFKRXIKkULp6+Gu41AqaCqg6qn6Hmwr11bc0N2fcbXtOT09ZNUfMl3Muvn3J+uyaD99/zNGdO0wevs/5q7e8+PorVt++YC57TmrHQMXuyQnd1Q273/6GQTx3/Zaf/3hK3QhSU3KB8lDm0LGJcmGya63i4xqMHkl0ZqIu+Y7VIwcgLEReahmdo1Dlw4GogeJhjFBP4enjmkcPQao9oq/wq5f4337GpIPVxrNnwtALu+2Ohj2Lt19yp7rmz/wN27rlqKp4Wl1wv6up56Hqjrgq74mDC2vUe5QqRiYo6dBG4xLWYDeVzgeEaJeDVEQ0yUr6xAAG298LO+7ggAkDYUpdowdCZFuFUhia7/DSFOfy6+nhDwcml/0gZm8VkRLJRjOlaiH/EgsSF/r3VmqeRcJ+h0emZ24797bOZzX1X/23VHeekLYK39Pv1zTTRXAQncNN57HQqXL+6g3Xp5c8/uQjqnrCZDpD/YD3He16RVXX9O2OZrYIba5d6ARTNVN0v6W9e0x1cRo7PEkqAho4lqPHD3Rkqvemh3sW+ZTZuvEkOXPBfpVK4KOPqE7uY6d3iuLqmqqZ4pzQzBexA2SHBd7PjhagsN+0lDVOhAA8VXWD+gDCePU4Qlpt3+4YVpf0g0cmDexz5dcwJJfsx1vikHgQfghrM+31BuSR7TOzg5IdYWspRc5k7ZgiuizFP+3xHPA03Cb8cnDIbc92+V3f4SV5i4r1oT4DLWnzjv9Je7jZGqXtb8vz0CYp+Zcj3Ir7FPdOxbhtdzP/pPiOXZ5q6cUXkBgd4YvSDJLAuxDdllqn23/snbA1YkW+Q80aEaGaCJMPf0TVHDNsd9TzO9RTT9uFDmez+RKAoe8Zdi211Ox3W7T3dJstMsRuvXWNqxt06Lg5e8PFy5c8/vADqpN7IapnMqX+5Jcsfvl7Vv/wKaqhu5xLhyQa/zVbLQw9xNU6LMXLDgs6H3SIiND3GjtHQVVlgNJcWR8F3drLV7b/UfjVFHuHD3zugb0qu+0eL45hNtC7nrqu6fuB5WLKdtfC4GmkoWoqXp+v6Txsdx3LSUWlju2+Q/eOJnapm80a3PUV+1ff8Pbtig/+7CP256fU23UorrztIdbsEhexjLif4QRJ+cukNZ1sMvHR7uVwY/ke+hMRNeWuQBIstYUU7SGFjCZnWc8OIlGRFxuZFH+0lAmxk22UVJPEoia8hJQocQxdj9YNOgygnqHbIIPHA7v1htl8GVIihj5s0AjDfoN2O6QidKfoO6azUGTJtzv8vkUlVNl29QRpJtSzJTRzNuvn4QS+75GrFXJUhaJj0YAzfoi4kGJUss94EicuOywZpDEepQUbLPAgmnn3zfy14qxqm37kabx7urcUSqECnr6PO75Ht7lh6DukbqhmC1ie4PueoW0DEqw+AC5di1Y1bjKhbib85V//jGHf0Xctqkq331E1U/BHIZwWCX/zA0Pf4mPrRIYh5BtrrBSOubVSOAmm+Esj+zBNw3iQRDJaLAFNLkNH86miKa3SXHLxc7OJLNxenGaDMyG/7yblZRnXDnCI8hXOTPnxwXfj7wVf020O5oEE5pixEq6IW6jTwtqPn5kTYc+xMHHBElPjs8PfKgZ4+yndy8/p+xkvm3/EPXxMIzUQ5reuJ/RVzfbtKavzK+7++CfUjx9SVzV+s4Zqgt/uQGB3veLsxUuG3ZZHD5fMTpa8/e3vuPrqBce7c+7eEZq5C+sYkzRbLxk0MKVgdpUBF0Fz2f6Y7K3Ed3Gh0Pi9acNJq+y3LTu9RH/3tyjCunVsl/d58Itf4Dc3XH31Nc/Ptpx89IRqOuGrz1/y5nzF4mROPyh3/A6/OmUuLdVuxV1t0dOWo5M6AE24GL4OWmsW+HIB+eJXzbxPY/XkNMRSJr5jnByGWCfuxQnPIGqWsSSbxkv7/UBIivsVMmpGl6Zh3Q43freoBGIsRfMQyDTDvFhfBZAvth9JABG12OeT7iXneh+wr9AxFH873AJs7cWdeJAceZ9dCdQpte64d+S5N4ehu+by1/87dwZ4KIp7eU592eC//nuWleev5p7ZLxzCLOzLXvG//480UvPwcQuVoEySU5sivFRjqTUDljUawMS9JQxEY9x1WH9ZnjBgxowewq/BXCj4UTLDZKiwQzQxU22aMtMk8MgjSJMURiyACtMJTBsB2vCuWqF6FKd0jS4cqrN8ehbThu3kG4p0hxQqlUO9g0kQ9yUTfi9pvn0cRw4EKGY7HQWXukHisIuI0nK9GRfEwJ+yQ81h5HMyTG1e3+XF6cqNJW5GZccViNHeRdRC+LTc3rODKO7gu0HeMq9D6Hv+6PY+EBaK8VuKbl5KVIxhP3nykOrJJ8U+GtJog5PokCo4X0PfIc7jplOG/cDzT59x78kTjh/MqeoJqh7ve7rdCu97rt6+5uTeY5oHx4E9rkJR6qMlzUc/QZ9/BYQoHwOIIKtwvc270kaLfNJCtu1vB+nZGiZBnzym+skvcVLRXp6BOKqjI5rpEZ2EEImqqiMQGQqLVlWIupnM5qhextS1nqHbo+pxs2U4DPDK0LXBrqUNdWyAYXWNX9/g/JDtGgmDszTQtPfGBhVeTR6yDaO43NQhDqxcB7lbXxHNlZai3UuzvjAP1XSChgiNcGdJwDRKikgoOyeWKaI5n5R3e22WVETLh21Zs/2lEms2GSgqkbd66/vhby7Zc2R7I9rMJY6aI5RsM8t6QC1S0+e5su+kekSlrRX1uNksCWeK1zhiCmmK6I96P0bWec2FskUEvKd+/AS3uM/u/BW9V5o7D1hdnLG5PGN574TdbkO/38VuaQGwef75M7q25eGTe9y9e4++7ZneOcZNZjR1zWQy4fVXL7lz9x7zo0UoQYBD5kvmf/Pv2b54gX+9x5JFvXiq2GhDiWk+2G4V0rSsmHZiZ5R576NsCxH01cLWifaORmDNFecxpR6O6yGtwaCGcRrqus4E1l1He3FN7e4iU4HOc3O1oULY3ezRfcvJw7tcbzoGYNf1tP2Qo3e6IXSr7Af8lbKvlAfTmqvzDZ//r3/P3/zsMU+bFbI/D8WZq6gDZIh62pFbTcZiyi4eyiShyMEpBhSUZtxt+uGuT2RGJiFzxrPiv7aQbBOKayEGBBLQNLLBo4dPiUl6IXfLvhz/lH6N9/e7cII+OMHvVwy7Lb5rYbZgcv8RIsL85C79bsPQ9zGPdcB3OwYhFOd0Fc7VzOZLtG1p12tQqJd3qKo6CLtCVc9C6+6uQ3c7nMB0VtFMHNJIzj+OxpJI+DmalUhERZMhVPDMNozkFBfsyHo+88qJO+AtBz8ahlkYAoUyFAG3XCLvfYJb3KXfXKOqDKsB16xCbRAF7Qf67Yqt97Hmh6dC2V3dUB8dM18ec7U9ZXd5QT2dhvv7gV4V8LgqtFNUrwxDGwvHaVCOvcelugx5nKHwuaT3zAX94kUaQgkzaHArTDmxyYx+SQor6tvAv0JWRQmpZ2lTPZwP0QxKvKuUizcqWvAvGZ9F7ZEUVZS+C9lBOTDLuW1gJIAm/QzZ0Dfld/j95ATBQeSS2t9LY9deJv48aaCud0zbb3GbG4Z/ekPfK95NkDtP2Ly+4Oyr11z0jubFJf/uv/s584dPuP70C47u3ME1DV2nvPi7/5Nqt+b6+hr39D6P/t0vmO0uWNYXLJ/Woa5UdlM4KMwJEQw1gz38QZykfOG0loONmR1dEzqJaSu1o6rhaAFzryA9eOXBArr2Bf53L+l7ZbIZuN8NHF921NOae8s1m3qg154HzZq7F2+pXMghlnlQBsI0GTDqBVVPqN4aDcshT68BTLal2IlH3muzgc3BfGvqvHQgQAnoLCIL099s78nGZ1a0tq6zI2Sn9uQ/xXfJgE0I5LOblPL2LpLEpVVGI2hWpNEzTEU8CwPvACtI4HX8Of5JzEh1JePtn9sREBQ3toVXvKdmOz4YVvHdJRffrUJvdtwEHi3i9ywForI1XOXOM1FWRJXaQejQUKHqohFnbThAB1IXiDIm1+7jLWrN9KJ1x9A8kPAtq9gX10O0EtWE3/SD2SiSRZJCDks7Jm2RQjxEEkSsRalLp395/y2OX6JXG2xWyVIr0RknF7HM72MTY+OOazraTeo1FY8v7QYt9l8tClZLkgYTgYQGHooFtqSlML1ymoWJijmKhWLB9EUanxY2yDtIUsl31ZYruZJtMlfYusbjMo3fRpprZdgGZk/TyLewH1tUSfH1QPHADyzSV9HipWQyof74L3CTo9Ad0CvNdEK3W4V91A+hxqKr8dLjpIEm3PP6Zst0fkQ9m4fRaUXt5ohAu70JB5vTNcuHEg/Y9jhXIeKQxx8gP/kx7quvqOqY1pF3obDiqmgHJLsj2iMJzI8Hro7MGyWnJ9oYj4+of/nXVCdPaK+v6bsWcUK/vUZP7tF1u1BrZrtCCSCVa6Z4GnDCh5885fU3L1E/0K6vw3ryHvEwnS/xQ8d+t2ZaT9jcXHO0WFLVE3y3p7u4oO41O0O3xVdymo3ZAmkfscUY906x+UzAVHROi/Spg8dUpiuizKX9isTPoCuqQo9K4VPYA82SIetse0axf353cO8WHfo4+bD6ILI+/m4AjIH72QdOnMBsvHR4FG6b1vFBdFOSxzzHRrm9d9bZ9plz33M4VfgPWT9p+ieqULKuCYW9ex9dYScx0ExxqjhRmk8+om33bLeXzO89pl1dc/bsU+h3TF0bU/0qpidPUYT2zRt+/+vPuLre8O//w89YLOYsHz4NIJAf2G92zBYL2n3LF//4W37xNxMWd+7R9y1VNadanDD/+AO2F19AH156UrnIzyLKCANdwueVHZpbsXHbU+P/hWhbCFgbbo32DlpxeIgVdVwEZiXqF/vXO3AaD7C80qrSdz3bfc9mcOykYlDHNO7F67bjfDfwweB4dbWjjuuvch2NdCwqh3OeRS20u47rTc8OQR+13F9O2X31JScv3uCWEkD/yiJmNASTVGbvSlq7yV4upCEBtskQMV/k++mHI2rMgDDUJwl5cYHYcpKDBeCkvEE8WaTAIvN/0uJIxmX6OCoBoiEF+P2G2fyIN7/5R44e3MHvt+zWW5Yf3WfoOhaLJX63pbu+pJrO8HOomlBEdOj36DCENplHjna3R7dbGIaQ7tT3uHpCXU/YrVdBYPqe7uIMbi6Y6J7JUY2bZKFDcignhurabq15EadiQ3FTOdgQoiLPe6kkhR2k/Tbfv2eqLAQ8XhjY5mIBJsEvj9EuOIkOCeFx+z3tfo3MF4jvmc4b+tiaTBC8H+guzwKos9kwP77LroJuc4PfrhgUpkdLKtfgu56qaUBDF6lhv0PbHZNmhu62MST4QG5JOknSEEn7ceShmPInCncUEGcCbl+K3wl2uiTRS3NDFCUDcaAwOrKs5mcXiuEdpJQ6okkME8h1O/UkRVwl28HWZcmBCEqkDhjxKcX9wFidKiTG22havy6egNujkzKyd9Z8o7RRSfEZglRC1TjQPc2upQ7WB/76OfdaZbLo6HulHS7Z/WrN1eyY9sVL6uOGelbRTISf3+upK8CdAB18+2umDfDkyLb+kF6gnngcncE5UyJC2rvstD3LbxA2EcnOUZIb08KS5wLCxg4hSgJoJlGmEY7uKI9UUXpEBvysIoTBxZahqVta8a5oNIhNBQgHXQzMgUjbTQRF4juZE5zsvWTfSDFXpijT68c5zzKRQYHDBWOnYTl+zhiRoxDDe5nxY5KoeYya67QogvQDuvepiPa7SL/8n/7pHd45Rhrp/89URG2bIxgpdY0soRgt9keNNkNh/9q+Z9/TcltKNmKhE4v9MBntKV3IbGyX7i1NhZychFprNxdUkyXShGhxC8Mb2h3T4/t0u3XcqGsqVzNdLsJJbt2gfQeEemhaT6knc/zQ4b2yur7hng+tsLXbhXdV8K5C3vsYefsKN/QpMtBAgKweJA5REmZjhceSjRLtiQRlmo2vQOXwJ0fBVvUeJ466qtmsL4Pt6Qeq+ZKmmdHvtkmXIUK7XdHMFxwtprz/o3u0q2t252c082nszmKmZEW3aRlmwe7ddx3zxdIGEHSMMwdSC5s0aug624khjSZLTrIbCn2ZuxRkh8ZMr1I52FcCfq0Htlb4Uml7SRkokk25dCSeryuFMIMI/wYiUSXzOf8uyZYoD2/UOrLED3zin8bol9v2SPxBijkLj4q2iM2jpHWaDqSSY6rpXYy3AGUtHCDWCM3+bajy4BgGn0uKqNUY05RaWGn8PK4Rs99k1jB57wl911KJUE+m7K7esr86Y7aY0e1DJHk/KEeqOOeY3jmm3bZ8+oeX/PmHD3jvx59Qz6b0XU/IbhDa/YannzzlH//zb3j88ROaqkaHnl27php63GzG7GTCsO7MG03SHNKTSAV/89wJVUxBtkNzi6DJzXYsuiTOl82zdTNTDtKSXay5mk3bMDfm301roVHPZIC5hxMPu27F21Z5toM3HiaxK+yz7cA3//SMxWyK4tlvHN+chX34XiVM/cCkCnPRdh13Jw737BlP3zvhp+8J00nYK8p1dhCNW/g1YY1Gn8D7KGoh8ihE/0FiYtY036E/0Z67CBmzFzqIFYsvq8HXKQKPi5AyUz6mqNIqy381FP7gVc2BCwOwtSKuYv2H/5v+6z/SyU9AhO31mvrsFHU1R3fv016cUk9nIYyq3eGmc1Rd6DrR7unbFtTT71vaSplPpgGNO30NJ/fxCNp1bM4vaK+v4PI11ZtvaXYrXCNF28xDJzMABfnEr/BJEyiQUF/jbsojFW7tr5l3xY/5Gtu09eBytZNnQzureBJ3dcHQvIBHP0ImE3Tw1HVN23b0+y19u4tV8ivwSr9bhfC87Yah65B6G+TJD6j39B7aXYujYjJfIjMBHOIm7DdrJk1Dt7qm1Uu6b77E39xQ1z4VjrSQdCnYmM8Ebv1enCAc8EryaV7aExOfbKMsFkBiUkrInFQAACAASURBVPzIBaWcCviR9uyMAL+jlE4EDgBAyQUiKUoYARQGZtDtOWY5o9lkJXZbi6Xr0h0OPHwDMPC2zs35Ds8NpkQ4OXcS+W3CHE+YiamP2PdFUsilVA5XVzTNwMk05IMEQGmP9zvcT0MOu3V/g0lUspoeo15DzQevqHrEVUGZp44VgWG3bW3TRHZVOoUpRMlOTQ+FpjhthzxmiQagFDzVdMugROvSELTbCuWXTImh4AfFCjNisoDkqvJq68nuQ+RvvD5p2zIFkVTU0AzsYG8XYcbRAE/1bNXkIe7byQgKCss0SrFFkc4SzIAp6ugEtloxXKByyLz6QdB6pJFGGul7KUVDRMfBnIRCTxwoSnPAPMG4cHmPz2l5WWemlN/yPpS2e6FXow2SbEGr4xbT6RRCTZndDqxG29DjBYahA3H4YcDhaG8u6HbBVpsc30FVObpzwmQ6w4ln6PaISKjn6AdoJgztnunRjO1qj+9DOrvf7xhijZtqtqDbtzT3H8LZqzCiEjiwSKDSLiiiR1KtxBRhEq5JATjm13iFi2v8+SnyZAuuAu9xqvRdS7u5waE0zQwGH0AnETZnZ4gThlhrsu066AOPtqcrJosFrp5EL1npdx3tdsdsOqO/OqP3A+2bV+i+paoclVOqeBqRnFFuOWHhiDDZ8+RhJZvU7A7jV9J70SnP9kIhluTbFRzOB3DuUCaD7RcNq2Tn5IMhH+s/Hoh0oXPfRcpR4pJ+TwWFkZSRlBqExIPcBAYWh1SHhYaTVZ/5WQI6at/PkR12rwMfrki3Tc/BbHF7ifC79z4tjbDMw3er0i7SGOmvxNRRCR2WRBEf7MlKgv82fe8+bjbHd56mrunXV9xcXaBdz/pqBV6ZTCdoNcH3Hc2sYTqb8+hHD7j8Pz7l8uKGo5MThq4NpdD6jqoORYefvP+Ifes5e/GWiXOc3Dthvx1oJg3u/iP8/BluN6Dx/TM4FcUyptRXzmV7Msq3cw4fbUjbcxNomGe6cKOTAxeCHApMIS2B1PrcYxkXwaZ01BoAu5lX7orwsPf8bAmDwm4Ih5N/cyd0dp7V+1S+oFOh9VBXEprxNI6TqWM5bagroZ5ucds91dwVTR3iWATExzU+2OsaQixxjy+6AhDnezBZAhluIy2H9CciajS9UFlILRv1GXwJhnZ0EA5g24ySmpGf8oQ1n9wfTIk54AVCZyi3257hfv+/cUJNdzrHz47onr1ktdnSiaP6qXJ0/wF+u8XvtzQn9xjqDcQcMb/vaK+u2a837Ddr1l3LR598THd5zvblW7r5KUPbcfXqNevTMybbSx4shZnfUdeaalpEWYp6Oito21TSgk4DNx7kxWz3sCHaRpo3jvS17/ONk7NFuWlUhfKIUyhOcL5nWF2x/ewz5OgEcY7pxx/g1zesLi4ZxLG8ey8o8/025Pj3IX1Ju562G9DhlM3Nhvnxgv16z83ZFXU9ZVjs0VnPbr1Fu4H95obpo0d0l+cMb75Fzt4wFU9l/p+QZvvAoSOHzQIhdBVJYJb5whrFyPiqJT9MTskbQpqrxBd7jjm0xVZeXPcuh3CHQmUuBVwdylr4IJ+zxPzSBGppRsEpv5Q4F8UxR1zYM8pLRUKbZKsHUfj/2KmZxjDIbJzYexHfqxAKQmrBwSmSOe+mIJoacT7dK4TAlq8vqPf4QSOKH56uEPYA1bBpaijo5qoQdZaZJ8mGzus7j/0AXDFyBltIvhbJJ6XiyqMIvEiudJ9SFUrz3mWZjO/lShArvRzR0AjKhdgtQWN+c2KtzaspUCUbFkjEpyTt42WdGon5xuHF8qCV/HWxNDvbu5IEmRomGeY+rjkpQC2TSbGZKsZ5sA/GvpD5hGukkUYa6V9OocGDGfq2LxbedowozaC77X1aFGX+HmewtHHTdhnTLiCAOhT7WfqOpX3mTc/0RrKP403F1QzbNVo5hn6gnh/FtFulW99QVVUAH24uQw0kJ5w8PaGeTBAR+t0WcY4hdlBChaPlCc20o99toe/w7R6ZTKmmC/rVFQyeQUOEC35IY0sqwSvWwTXXQYpjM91reicp1qi+yoLXXc/w/Ev2W6F+/wNwgptPwpi7nonU1K5Gu1AQFBTnB4bdHt3t0MmcRS10uz14ZXV2yZKKydEOjk5w4qhcxdU33/DxX/wFZ199hvZvGb75imYVDhFdPOOxVEXzf4Rss4jmdslJL5fFe5ItW6RsYvOXhSMdIKWUaw2te30+lLZDI2tbfQj+aGG3kH0xKLo7Fj7GgT/1rtKhq3qQemkLKy6Ig78R7Zc4S9azJHwevmd2YLxz8f98Pyu0ZZ2jwjtQXBdtThRNuXvhIlEF50L6r+TvHZiPhf1oxY3NbrTgH1deR6i9Qg3V8ZJ+3zEMnqZpWF9fsVnt6Lqedr2lqRyT2YR2dcP69A3zB49omgmPPnzIte+4We0Y2g5Xh9Sgoe/oVHB1ODz981885fTVKXePZ1SqTJqaCsEt7yHzGXK5pUxhyjbYYRRUAisly6wkfthV2cbL6b3RF7CoPSFF9ovL9mWJDai674B7FmkeagopqnW0O/XgHXAlECTJ7hWXUzyTj1HZHp7tcu0VV5GyjXzsBJayEqR83yHeU7J8qqVF53v8kLv5J1OfjPGBcSZyh0uqFDpPMSnRSQis0Ftim6/TgmGll5TLbdhiFRyeibSodkzOv2BfL2lu1mwvrnCPn3D++Vc0R3O+/tt/YNlU3HvvMc3yLpNH79N1HZvzU15/+gWvX7xlVguiA08XS/rdDWe/+ieO5hPa/Y6b8wsezAbun9Q0jU0eB+tbI4PKTgvWatZSwVJno+8gL4l5eUOOvDSH9zv7CjmPLS34gpH5O8XExx8rB2wvaf/p7zgbllRHS6pXr+kmDh48Yvn4CdrD9voy5DxOQ9HH9uyS7cUlenLC4Bw3FzdcvDhnu+7o+h43ndPMjvCdZ7/ZcPnsOXpxTvfkATPZwIs/sHA91TwrvzLxKA3CZCxGV+Xia0kUD5zklMstBb/j4kp3L4RUD37Ic5BPwvKmTimL7yxFAESzvkgAgQmChs1PC1aYATgMHuk11lsIsqKANFYICyt1EmSzMKzKE0i9xSqliPRKslwEeyfAN7y/RWIkhajlFEkRel5AuVY/Ji4UVUWqhC6ETdjqtMTx5q087kmmPIJ+ZfBK+WEqwEneWI1/YmBBVEy2Jp2EQCVbxxq/bO9gLTsTN5xk1hXKLil4jfvmrfWtxmmJJ3eqkYlRGcVTgmyGxD3a+GfzmoYbeWVjTPaHpL3ndm0Fa2N8wB81ZybvYWpsLOW0kIWSUpeEQ/MmPl9yfbYEjI000kgj/csp1e5w2fQo0zgTSG37XPpD1BuF3gupQDESRgj7b9S7YU8vNj9sjzQngPxZ/LnUJUL+XIUQSbO6QtyUYb+lH3rcZAoq1NMFfr/Fdx3+5jo0hXBCc3yXDz58SlU3bN6+Ytjvmd29T9VM8ao0kxnzY3CbFUPb4vwQGj+0LX7w6H5Hv97AxYrae+rysMCsesl6IaiSdCyQTYBkLydjLeqpxFoqB/7mku2zv2X/6Vc0x8c0H7zHdbtj8eEH9Js93WpDU1VM5jP6zQraFu1aVvse5zbsLy659D3qK169OOPjZs7i3kC3WrHf7qiBt599zdUfvuR4d8nxsGI57WnmAWnJNfiiI1U4T0lOhDjHYV58bKlc2gjBgTO5yddaPGkwdw+fJQcCWdoEGh1OOfgOmP7NxyJJvRtomIzlZFGkNtLvJsX3LtaarSOJpzyBhz76NdkOK232w4jckheFzVLaNPbclApegIsCqh4h1whN8cUFX82XSVFAcR14n+0ZVS2annAAJiVgJ66nqpLkOrpJhW63SN9TSUW73dFuW2oRuu2e85cXTBvHdFpz9uqS3abj8WROP5nwwY/eY7moeXa+ou9anCrtfo9D6DYbXCXUVcXsaMLL9Y63z1/j2p7Jo/vsrm+Y6IBUNVUt9F2spq2ZfwZuCtYt8XC8GUhJo87ATpJXFw+OEyOyT3t4bluANIfAi4trJGCdAcARl0KwYoWn8IbOgHgDh0rZifazFXVOshOc07Cce8CD74kRhKF8goiPgJBLNroFp/sBlCHMsQsy3dteb2lP39OR1ehPdH0yXyVoJkVyleJ8CdiiMkdBszCnwcWJKXgbNnlTeoW20lh9LFSADo5RuB5yhXSoqoH5cMkH90Lubb97xurFa16dfgtvTmkrWL/8jNlyybBY0nYd3fU5T4Y9H048lYNuP9D/7SW6uMPD4TWztsJNHdVHDqmrHHLoiMVxsQHGqYBUvNaVYwuTacWFbeGH64vr8k2CU5aERpKjmUQ9HWNo8fdCk6RJyb/YNi6VUFfCnYlj2W1Z39zQfv2a+eN76PYt9fqU1gvnpze4uuHkwT0mJye0b865evYNX7zd8tF/9XN8Lfz2N1+z2nfcO5my2myY7dfcYUPTb3l6+QY3dPDlZzSziuYozCUa0k1Sakx0wo2f0c/LspSihDJok4riavhGapCQORkPmDQbBbeFzuQtOpsJ+U1ynQGkd1mlQdbr3/d5MgsMRE0QbvyOE6QG7Ty68zBxuEby6VixhZm8mwNuVqQW/w6dR73SzF1SVEC21DRvh8mJ95pS4ZKBInkzNsBJnIsGT8oYTyg3cHACmvRC5IExKatTBadhbxnC7/nED3ILDkl5o8l+coKTwxDOwMoi99aFENBgk2cAMDkIUhh1Vn/L+GT7gPEiARfZEEgGsfoUlR+chaiGnMbueBS1D8J9Q3HhHGlmI07gssbhp2I0JkXRkLQYV9uTlQOg0Ap1JmPH6hpL5FcaR96isjEvaQ2GCK0MOpljk2Ll0qBGGmmkkf5fkOkssxcOzdmEq+QolzLSuwDNU92ZpGySfWbOYz5Uy7rh0KjIek6j8gu62fbFaG/ud/SvvkXmD3HSxP24YjI7ptvuqJo5ul1D2zFsN3Trdei46RoePHiEqKe7uaaZTPDbLXUzo6obQJhMF1SuoV1dUU9qhr1nWF3Qbba0p6/wr17jtmtkqkEfppKJZvmbMs9DMxs3HzDEKJRoCqZ5MB0d9f/kSHgwabi4OOXq4g39V1/C40e0r8/oBkWriqc/+YjJjz9Bdns2X3xJJ7Cpp+Bgu9ry+vNXXG1aZssZs8U5i1nN+uJ3TGSgunrNj/st7eUNi6OK2bFLdXeCqpWcvisxndfsT3vlwp4wgCakUhe2qelIs6Ok5EzpwBaSUMhFKmyePdn892jbqmb7y/yLUqenqJqi9vq/Cb15YKtl0zA5wB58R1y4sb1xqhfiv4evafWmaAtQht7qnsTnfM8mkEC1tI6zvZJsS/IBl8FwaX7tUNpMuyqDPSJCbHWYDGP1mmqaAqlGCwr9ek3d7mFyRNd2rE8vcE1De7Pj6mrLU1V851kuZjj1XD1/zvT4LvXRjPef3OeiDamP7W7P0HVUTYNISIFy4njy9DGvPn/Fi2dvkfWOo0mDVI7+8pLpZhfqRMph9kHqphXXS+Jgqitb8szWgTUOiICJrZko4yIhXUojipWBuMDhcBia6/yk6DI1YC/sNgasSTRSS58k1/LMmRU5Gsvh+2wjOyEAM07RPr6zKgZMhZbl0Z8wGYlymHSDZH0T9pUI2EW723CTH+rI9idq1BiPNNdaSE6V5g3EhN1iecxvSotD8r2y94ddmJRVujZ8rnFgB88mVJ0O/5NYZBOkBjeB+9pyZ3hL9b4L6QC1R9wKkRWLicADRXUS769MvCLaoXqKfDAnPci4nrwRA6MIYW5qilUPFbQUt4g/+yQoYcypoGd0RNPzynWbpf7W9cbKsAqkeG5WkAY2EATKxiHhVN81wvGijv7oBmUDF6Fw20KVbg3D9dd4qZB9x9Gu5f3Gszj9kunJEX99fEM36ZjWa46rS+5enDGJXQZkLjip83xqwDLFWzlzY6kmYU6t9ozdkhlg48ziExaKaliOt+IG8v5ZirCFeeUdNfCnaK+c5qAU0H9+3fwXp1/+j79611XuSCONNNJII707pNGQ/o7HmtEGLT7JjrbFQ5DshALCCQC1Kw2GgEhIRq7jvc15y8BMqkFinZGsGxzEjkEDdb/GP/8Nu5cv0ON7TD75Gdef/gZZHNOHkFDUe5rJlP7mhtXlBe0Ai4c9HZ7KufDIroNB8b5D6Bn6gf36Bm23+NXA0dGSy2+/4eqr5wzfPOPhpGO2EKom2twGwBTDsld2t20vsWYOljKhBR8oHOzATRHB1cKD9xwPPAy9ov4c35+jXtnthdU/fMPNs89RhOuLC75+dUM3m/GTnz3lweaaanvNtB9wmzV33m44Hp5T+566hqpSmIE8mRVuRixMX4JNojGFOA7OzEQt7E+RouFHtk+Df2DOuVmnxTxDPtQR+1mL23w3jfow8iY6FsmGzmarOa928+Somp924Hu9m5QiaQoA5aBRivHaugBVBN/MhTRtl/zGeL+yvEbyzezEMh/6ZyAh7w/p8MjAk1KOybJgb17+m/wya7Nuvh5hztXHZg6quQliFWoN2voy8ENFqaqa9uISf+Lw7YC0PfPFnKvTG9q2pwJqge3g8X3HbtOjbc9wJvzsFx/zq19/DurZnl2yOr/m+NF9Zotp6nLcVBPuncy5fnPF6dkVkz98yY9+8gHr333KzG/CAXhlIpoWShiay6BNmYpkEU8GyKSIcrGaPTYXNi8RB/C5tIHthCVGUIJZFEBZ2pO1FPSwbw+xTpUiyTe3Bujm/kmUK2KtMNUQA+NEYQjvO6SuxRESims4A7glVkHcByTIKSaHDs+Adc5UMuD7z9GfBGo0PjXLWYFEpEmzUcbT16KYQnnqn05R0+Um8AUqeSD7ahxNN1FX/OzjhhiLurkgAbHcV5hoK+BpSsGKIasBMDGdKwCyPl7vivfStHGnUChsANg+XoA0YSwBG7g1adhmSwYLUl5vWs3x7Qq+CrmgqSl1e61SIMyAsH0/gTs5UiIVRqssPOsw+KuqlGomaSKWWqO+4gMA16Nc8eT9BmiCXAhI7WLUUzR0LLw3tSA1pDOVyMMiXjJ2Yu+doZcU2lhcl944sUrTOCyCrKwMH8ZukUphkNbtxlBQk68DtPxd12gjjTTSSCONNNK/mMxGSiZiYXOZDSvJOY/Gt+azdfun7PySKTt9gXLB/uRQpLplwcZIB1F2r+gIWmRHSoV3ggxr5v2G7uoZ6+ef07uG2YefsJouUO+ZP36fqnLIbs/VF9/Sy1smxy95/+cfc/TwIdvXr2imR8i2pZofcfP6NVcvXnLx9Vdo3/P44TH6yY+o/UD9/I88vlMznVUp4jINUUhRP+YfYKORIj0MCcH+6fs5WhfVovZ+uKnZthLrObhGwWuobYgwETgBRE5RD8d3PR8cT0Mjk/Y1HCuyrFCtcCK4iUeqPjpE0VnMkhDn1wWfwnuDxjBAzeTF7EItCvtptCuJYEiwX+27mVk2RK+FAyllhyKb4/B3qyNYimUpW1ZQN9w0R5tKfrV0vXXZEfPNVFNk77tK3pdzVFBYNAC4RqCpCjNdQHxy+kV9mmkLBCZeliSxDh+UB+0H4A7B15TC1wqPyuksAZhMP8Rrw1yGrcNZplD2Z6ygtIIMoL0EoDDOfWURIgbeRL9m2OwZPvuC/fEl/eIO2g902z0Xry85vjNjt+uYtT01wuZyjR8GblZrqtkRd/zAjIrtmzO66xuOj6ZsX72ieniPajql2225fntB1ymNCOt1xx8vX7N6/pafTXYwiftP4Xa5xH5J8hfAaoeBg8lfFTIgY3ta/OW7tYYsKMHWCgepbDnCRg6+m6OlJK8ZW8dFBIBEcYh3iIBL9quDK64wRIFQxacUV5Ojwyi7Im79wGtMdRhF0SGPWyVOrmUTOAm1Pg+A/kP6QaBGMWHRomAmaYdO7WIlX5/lXmMYvBQMjkwAQoPljEQZ69KmmBZm/LxYUMmhdoe5hEliIgvVam3Yex1MKodAiArqXCFE4R1Vc5Eg1H7X3FZLiJNgr5qVrkcTjyyNywQnpZQR+VigaVrwNOTL5T8f5rYWUIsnKE8B1VyZXiSLUkITcQguheImBRuZFVJNbO7z5CnkTkLWNci5PPji3cq5VZ/Tl4be4yTneBJDOA8Cr+IitxxNs2UMuZQ41wkpT6MlLzSRtIcDsVVfjtIyWcvyEebYe021hkqAbaSRRhpppJFG+jdMZg8UtkVqi3zgFJfh64c2bDjLy9UpyoiHZCuW5nsRQRGiMYItk9OGogXjsjWTDvPsnmabimPaNDSEiBi9+D0qFb5X+me/ZtCG1cWO/npP62H39i1zXbF/+pQXv/ojj08WTJqKybRid3HKXd3x3hFU0wpljT57hcwmHH18lOwqvC/KF2iuU1N6biS34MAO5MCejilCNkBnpQTiuKtg6HkJTljZsdCeJdb2u4aqUVwEIrya62UpCGbLRkfaHCav8bA2XOu9RBAjV6ANh+9S+H3Z8TwQIrOrhTyXEak5cNjUnNr4GmaXp0NG44FP9rDYe2BpEcUNCE6gFVvV5FuUzrQdjgLqw4Gu8M7btGalWyTGQVQTmlifZroI4wqdPK0idJgzD6k4sKXNm3NsDwwp8BR+rIQUv5ghkv1e4jrUA9lP9f+SHxp7g+VH5NIKJn9DyDCw1DuUDCip4F2QbdVYV2jfoZtLutc3rGTGup7xdS+c3WxZLKfcvL2hpmIybWivV2xu1vQKWjXsb3Ys/cDL3/2R+x88RVTZfPuahsCH9fWObz7/htNvX3JUOZzrudt0fDSFReNwdeSKyMGcOANApRhfXH9lhI3NW0jtcgdAbooaSvMv8ftEP8wh4lM0TaoBdBB1ZRMU06rSvHx33ZSCVh7Kp/Vm4Gn6msRusfZm4T2so7ZH0voWiUBj0jH5mZbOGCCKiHOkFLvgcKr754vU/CBQ87P/4Tfv+LIeaaSRRhpppJFGGmmkP0WWvkBwlO006Fbh3+LUiJTAYs5idKzyYaJ9xT7MTkU6JSyc+xxJkqpuhUMoL7FuhTk32eOwZyXnOzqkYSgeqYTKDWjf8v7dnveW4dDJe0+7ecn218/4SS0sqg1VU1NVFfLUof4oYhhaRAl5dDIJh3FoiNwYwpMT0GKHtVg9lQwuYUO20SXeuuxwA4JFs0SWunw6lgr3WvHVdGz/3QPj4BC6xOsD0E04/I5I7ByoAZwRTVH2xAPTMsIlHJQeOvLYYWC8nx1KloeoJknJdXUOScVwv+M2xjmQFKmUMQkDZvKXkgNKWeOozHrI8KJKjCAvHNJ3mayYK7Gls4WvmMNvDruao29RTmoRCbEekgtjTlHzRZRGKnhtDnNtvxPlSZBKcztwAxETuuugMr6XDj9J3iTuKfYV9ZYeGSOvaqGagPY+dQ1zA+BhGJTK57IQIkJFKDBcV57JfoW/uEbWPfePFujNhm3Xsb3Y8N6jBbvTG7arLc8v9+yqinpac7Md+P1vv+YvHPi+4vTT52xPrxGB9dkpD4ctH1c901qYzx1NFQr85mLBkmTNUA5LQyLyO4MimoArRVMLciukbGCFc0WghkKISrJ7BF75om6PpEWQo9EMpAz31biO7B5h/kVI4KdtSyHL1PYhS4nKq+MAaLUFp4QoKw1Rfv4WxJSiNe0eB5FCdtciCmgoozI1pVd9H/3pGjUjjTTSSCONNNJII430b5o0GdTJebXTWwsbsWiHInQ9UHQOfKwpULjcdmIffjZnO9QmCH8zMMMiffVW3jrJs87PldSuNjiHwWuyAu1QAhAuNgiooKkCKCChsH0jwuLRHHN4s6efw+19rL1g/kRIlXeoH8KzXSiCafiRRkfaak1gjnNmE6UfY3VBwmNdGjKE21sAgkiRFuRiW+xbTQcsmiJ1Siqe64vT/jJ6x4kG3Inkr5MjICQCNjli254R6kckZORQkormHinlqxi3FOMv+WGPNMDAGj2IL51QLb6SIR8DGFIUuUbwrHhQar4RP6syglNMzrtH5rSm9ueBOWldJT/aCsmWa9MCaQAnReYDEuskhSYRLspMqnsKaU0E0YnggwSZt07Hiob72h7hwv/d9+wP9mMCcVRxdRZ4g1fVg9TWvVVDq/uBWM8zdAoK/4bfq4D3UVcV86nw5LiiY2DTr+l3sF/D6q1yMcCn1y2v9566Fn60nPJAhN215+2nzzm73MHlNZObK+7N4eMFTJyA1Amc8R6qWg7Wl/EqRdQchv2l+RMXolDSONEIgOb5KcEW+66Jrf0cIlaI1xYFhgPylQAxjSkZhpPktw3zlxPhSv7nPdn264O1dviFMMWWVaR2XQRKyeBrCaIe0uGz8ri/u698H8kPVRoeaaSRRhpppJFGGmmkkUYaaaT/L+jT//4XarUVLMrJWUZajGgRYqRF4beKFYIRivQYgJhuYtFtBv4kjzr/nOqdCKEdurnzBaCTSiZEp9tV5tofRuTk+0L06gFiuiMRFCx+jx2FwjXkd9EAeOAVHcI14ffQ+Ui94ocAqmh8zuCVboBuCGk4be/pfcCVqklFM6+o1XPkhLqORW5Tx1S5xcOASKVUJf89IIameMMQFXRrvAE88bnAdirMbmwykMXqBRX3LgDPjD1K7JYUeVgUhA7AjIupSD5EvBShNCklCVBiCQ71IZLP+B7HmMByCt5okQgbnxFqQMXrNMtGGoK4lKZVpkRpLB1iYKNEMPGX//MfvxdJHSNqRhpppJFGGmmkkUYaaaSRRvpXJ6mk9I0TgGLRa+pCJEboQBS6yVrAh7jYLlkO/VxneS9ER7yoL5PgAkuZiWBDioRBknOdHuQ0RZZkt7xEEzBUJ9dXIt4LRX1Z/1MI7cXIYIkVJjaAqAL1DjfJt9IB6lSjRdAhtilPQEoAd/wQukjZ60ksjnxQHzbWQD2MwsppdKl+F7Emko03Mclqr9jfJRbi1ViDShBCXZ8cIxbnNrMmx6R4jZE0AWCjcjmCMUZFMJPZ+gAAAfxJREFUWcHmHG0Y38/AJQutifNlZHVmLAomSkgOiLK6ZAl8St8sABhJQ8/NcQ7/myOAFO8HrK7Owd+LAuc5dSt3wLpNI1Az0kgjjTTSSCONNNJII4000r8+Va7AO2KKjbM0mewUiwRQRqKzby26Qx0ZQlFhBYrrKK43ZzvUg4IYohFbKOfmJJm0SMkjgQw+gS2Keh8L5RLfwd617EwUUl0M88lFrQPwoEqqkZTT2WLB6uTMA1WsaaUBu3B1lSJLwj0CQOEcuCbiG04jQCShSLFoTAkL74gVVEYCFBbHFoAi+9w6JIWUSY0AkyA4Z1EjLuRoaS6ea0FGBbcSsCHxX7Bi6VZImlBUHDK4Fq918foEniipm1mQHU3vRTFvAqHBUHwXi4AJUUC52HSY2wjeiUFIlv8U5vY7c6K3QcI8/wZOlalddh8Dmf5UYtOY+jTSSCONNNJII4000kgjjTTSSCON9I7QPx9rM9JII4000kgjjTTSSCONNNJII4000r8qjUDNSCONNNJII4000kgjjTTSSCONNNI7QiNQM9JII4000kgjjTTSSCONNNJII430jtAI1Iw00kgjjTTSSCONNNJII4000kgjvSM0AjUjjTTSSCONNNJII4000kgjjTTSSO8IjUDNSCONNNJII4000kgjjTTSSCONNNI7Qv8PhhAJDX2KuNYAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Class images**:" + ], + "metadata": { + "id": "ZryM4IWmtXO6" + } + }, + { + "cell_type": "code", + "source": [ + "plot_images(load_images(class_image_paths[:5]))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 223 + }, + "id": "sVtz4uOAtZhq", + "outputId": "ec063430-646e-4df0-e0c5-daf73b72ff12" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAADOCAYAAABmdeTtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9SawlW3ae963dRcQ557bZvHwv671XzauWZJVcJCWasiVRomRLpu2BBwYEG7AH9txzA4anBjzwQBMPPKIB27DNgSFAliEYsiGWyCIpFcFisapY3etftjdvc05E7GZ5sOOce+7Nm1llCXbl4KzEQcaNZseOHbtZ61//WiGqyk52spOd7GQnO9nJTnayk53sZCc72clOfv5ift4V2MlOdrKTnexkJzvZyU52spOd7GQnO9lJlR1Qs5Od7GQnO9nJTnayk53sZCc72clOdvKKyA6o2clOdrKTnexkJzvZyU52spOd7GQnO3lFZAfU7GQnO9nJTnayk53sZCc72clOdrKTnbwisgNqdrKTnexkJzvZyU52spOd7GQnO9nJTl4RcS87+O/9rb+kmhIpJUSgCYFSCqcXkUdPTzhbLolAEcOYEikVcslkTaiCUY+3Db7padsGEcswRM7PVgzDSEHxzuNDoOTCOCZUlTY0vP2pu7x+bx/IPHz8jI8fnJI1ohScdRQFwdC2HeFei2s9Eg3PHp/z7OEZZVTUZBZ7Dc5BLiOq0DQzutYhzjImxaJ87Yuf4/Nv3eN4sYe1jvWXsKy1zGYz5vMWax1ZC4qhqLJc9Zw8fsLjh49478NP+NFPPuTRkzPGVDja87x57w7Hx3d5errk++9+wMPzc8QWmkZYzDtCYzBWsU4QazDO4p0hWMEJCIViwHiLFUEKtN4TfKBfJU7PVuQ84gM0rWU2DzhvESOICpIFIjixCBYQMoXlODCUxJAiCIgB5zyiAgpGLDkl4pDo+xGMsDiYsX/YIaLEfmSMY20LERQlFVB1iAg5F0rJmz5kjWCdRVCMFYwxpKzEHFieL1mdryixUKKy2J9j9jNilZIiJsJMW147uos1wnsfPeTx0yWoxRuLM0KYOQ4O9zi+dUDXeZTIMPTkbNGsWLEE36AZnjx+yg9/+JBHTx9xdPeAwzt7FFv7qx0DYxwpJdE0nqPjfbqu5Xd++w/l/8Px9y8sc9OoSgdOCYeF5tARBeave2ZhxsfffwC9QXpHGSG0iuUAzY7D1wLa9DxdPuMrf/kzPPi+cPLwMV/6la/z5V/8Lf74n3+Lr/1ayy/95Rnvvf8x49M9uovXkY+/xslyAWZW+25zgvMNpHtYMgsfCYtn3H4H2hn4i4BxidB5vG+wJqBqsMbhfMI6Q0mKNcqscxwfL/jkx0/4b/7L/5wPv//PeHR2xoNVYciKyggkRBVjZvjuHnff+DJvvvVLNLNDXJgRuhl7B/sgma5bkDLkceDJo0doThzuL5gfzunmHi2ZOA7ElDi/WHKxjMSkrJanxPGC85MH5OGcUpYcNoXXQ+HeIvCDH/+Qdx8/5b2Hn/CsP2NVEmoNApiigAVxOFfHg0jt81IipYwU23D7jU/z7/9H/wm22eN8THz+S19i3rV4UcrQ87nPvMW920fszwLWWYwpWK84A0WVs7ORVZ/4+KOH/NP/+5/w93/nfyWPK/a6htYZLFDEk6TFGcOtsOJf//W/yKIxPH3wPpp6mtDynR895nFv6NXi0orP3264t+fZ398nxQFECd2MpxcDJ33mgR7zj7/553zw6CGdP+M3f/kLdGmkzxfEEVL2GNtwdn4OBp6d9ahkTk8foMMZbx4d8OadYz731l2sNYDiG8fjx4+4/6lPYSIsFi0pDwAs5oc8eXrKbK+haxuePHjA/myGKQVR5a//F//dKzk2/82//ZvPfUrx+tcVRQRV3fSRF22/SG48pCBT2devvams9b6fdv56+6ZneFn5pZTnqziVcdP52+X/LF+jVKhr2PW6bw4+X9aL2vTG/SIo9TmMMRhjNvfNgCgYEQRFEFSEvN0mUxmCIqIYI0Bta2sNRgRvDM5afAg4ZzFS76MopSilZEoplFyIcaTkTMqZXBRFQCxFM6IZpa7fWqbHVzBaNv2J6VkUSKa2y7ptVBVUkaLP7a/bstm+fuymff/HP/w/X8mx+Z/+x/+hXpmXp3bJubbz9rPA1b6//q3H6PbxtajWcqy1m/LX97qpnHVZ69/lmBFELq/fHqOllE1dL58D4EXv7lIu6y7Tj00Z23XYvmfOtW8pz4/JK3u27yUZY+v4WN8NQDMYFRDQopcHMCjmynPKdO36vs+Nc+VKPbef9/qctW6v7far49A+N++uz9kuZ/ve19/f+trta6636U3veHteuT4HP//e19dfvUetj1x5z9vvf/s51zrJ3/tvX81187/6+7+hddxYtCgxFnIu4CzOmdpDpOqLlELKUHJtD2McQotmRy4ZawxODG1oCNYRrMMkCMYSvKOPPcs0UCx4K4Tga3tOnXUcRzQvsK5Q5JycVzgX8G6BNXVON1L1PopiRJhZjxVDLolCRkUpKOIDiDAOY52jN+/bYSyMuWfUxKDKKmVWfSINhXGAYFv29/ZwVuisYd4YrOtxNqG5oMmQBcYSATb9+bKv1PbZ7tsiFrBkVZJCKoWkilForMUbjxRTbchSx2ldlzxGAnFUlhc9UhQnArkgRaEojfe4RsFHjDgMnpIFMBixeOOwxiBGMMZO2yCiWBuwJtCEOc61IIaCwZRpXRJQY6q9bKpdK1Lr5FzA2kAGxrgkl0gTOoJfAK6+q+n5jal2ciEzyApSRMcVKfYMacWYYh2/onhnEASLp5styCnzX/9nf49v/sNvVXsxZlptMKSqC6ghqbLSwtnQs8oZxKAiDKpcaGKgYAAvBquKQSjUrvdAxxvH5kuBGmeECBNQIxiTEDH4EJgv5sRS8EYQ6+jHyPn5kpJHvJk6gxrQQs7CONQOMwyZGDOlgBgLGLQIqtsLIqRcSLGgmhn6SCmKbR2h8XgfAEPOBWMsORV0lSAb0phJMZOTIrZOzsZacqmd2FqLGMPQ95SivPbaXQ739wguYJ3DGruZ6JxzhBCw1lFKIaUMomRVLi6WLM97nj294NmTc1bnPXEYyQXSaMhRySkhmnAm0fiMawxd55jNLd4brIMQHFjBWEMTPG4CaowoKkLMBUHw1tKGBgFsTuwdBnyYYy0YUxX3XDJaBLKiMePEYY0jpUTKiaJ1gep8oA2BIkrUDAjCZSd2wdDNA3u6IKsiVrHB0LUBbRsulsu6dBohpsQQI6qCdx5jbb1fSuScK3AkQpmAHestxgk2G5xpaYOlXw6UmGhnFtNYrIecDC4YWtqqiI4ZoxkxeVKIFTFCFGGVBs76JRGHc4YhJWK/omRFVPAmICrEnAg+0PqG1jXMmxnFVKDGBMFHIY7T4oillFeXcGaMQ40lmZFPv/MWq3LOgycn3Lt3xL/yta/yDf0Gbmz54Z+8TwGWUUEFEwyzRcfrX9rji5+6z1feucP//qPv04U5f/anPyG073Lr+IDjY8fZ6UO8g/PhHJdPMXLCbNZhbAYiRUaCM4hc0EeIEvG+Z5Ql43DBnAWt7uPcDOcqABpjj/iAcx5jDUYAzcSYSClzdO+YL371lzCrx7j332M1PqUvCTUOZyzOOEJzwOGt+9y//za3bt8mtAtCN8O3Ha5tWQ0Dz56dkobI6ekJbfBYC2dnpyzjEvPMklNEVNGSGYaeYTXijGE4fcTZ6SNOTz4hpxUuCP3ZitEmhmXLSgtDyZjQ4ErCxGECcOuSKAjWABSqPqakBKIFsDShQ5PwP//2/4QNM1QafvfoG5Qy0nihaQxHhwu++MXP8Re+9mV+9Vd/mcOjA8Y+MsaRx4+e8O6PPuD3f/+P+LPvfJc8jBwf3eIrn/8cR3szZo2DkghNh+8WiBbi0w8pKbJMcTIgPOM44Jwj5xEVSwH6mBDbgQjWuWp0qGKtZW9/zqNnE/BqLG0IG4XFS1UWhEkJsYZUEqkkrFWMKkJViEpOGFMVx3HsaU3g8GAfa+r8hVwqydWw1ek+VekvpeCdpV8u//8ecv9ScpMSfhM4c9P5V8t5QfnTwW2g5rrR8iLw52cBaV52/YvkpvNfBsBcNT70yvZNhvF1oGZzDrIxGrfb4WX3fcGBOhasvQo6iUyKIkjRzeopooh5/lkMQrCXBrFzruoiRmi9pW1bmqbBe49IBWnQS6Am50wuhRgjMWX6fmCICTEWRUg5k3KantNUhXZCaozIlv2sSKlj1nHVoKtADSA3G/oVx7kKBKzb5GXAwKso1/vL9efalpuAqOvHL8vUK8b/2lAHNgbz9XKvgBJbZRtjr1z/sueofW3dX64Cc9fPXwNGOT//HDnnK89qjNkATohsQILatab2EPMcfFMBlgkAMdUGKEVRFBEoMrWbVKt4A0hcA1dLKRhrroAsGyO33um59rzers/V6wWg7U1z5WXb3vyOXtS2N82n62PbYOAaONk+7zoot1UK27DYVTBfnuu/NwFWa2DoVZVxHPE+EMI0r6VELtWETVGxBpw1WF8d9br1PGuQJZdEKRnvAooS8whaECuUlEnGIN5gm4A1mTENxJRJBpyzAOSU6ceB4WJF13lmCyglM+YRpcdaV+0wYxHVDWDfI4QQiFoY44hKBSK9cwiGOI0foxVgKiVhnDDmkVEzQyr0URnOM2kQxlVhlS8IpUNL4iwP3L9/C1sKGuq6k1FiSmStYzeVgpvmn5QSqmUD0sEEEm4cDKA5o6XUZzAGVSgo1grGOkoqpBSJaUTyiPcFnMHtOawUHHlzXYyRyEiyBms9zlissXQTUGaNrWulMdPaoYiUzT5n69qUpCdprPqzgC1gta7rtfqKIYOuwWYDsW4XEYomlMJQAqb3aDEg232lOgmzFrJRyJGcRvq4YtSB82FJyhk0M591VbHPlvvhbZrhiKdPnkwg3QTIqky6lyBbw1SowKAqpHX9J9jZABbBT0FNBqW8RLV6OVBjHUkSuejElJkUeGMJbeDA7lMQCoJcXJCT42CxTxscIoYxwXIVWfXKaplJaSSlREyKEYuZkL21EmCM4HwgeAcKMZapcykhOEwntLMGaz05F/JYKBTSsoAkKIZxTHUCREESpSjee0KorJJS4PT0FGeFW4dHvPnaXY72FgTvNwrNGuVu2xbvPaUoKVWjRYBhiKxWAydPL3jy6IzTkwv61UBOCes9Xdcxm82wAk0QXru74JAOCWDcBKwYxTmDDw5jZPI+1F/wdXHMWdAhEsdIVhglkmIk6YD1YLwQU6EkpZQ6wRhjMSpoKhjvUCNVuYs9IkLXNixmc4wIY8msciLmWEEcLVjvCN5iraJYxphJJTLmnkZMBTraQMq5KoQYstZF3AclBCFnS4qFMSlpyytIBV2pCuRI2xqaxtM0SskO42qPFFvZW0E8MzPj9uKIkArFCMlW8FCleilFDJHIeX9OxOOcrWyJPJJjBoVRRjRDShkr0IaAUbBqMWXy5YSMdQZrHeOQOT9fYlfDT19dfl7iBKxSfCa5npNnj/Ftw9gnfvd3v8HR7QNsNLz+1m0+/MFjnG1QcWS/4p2vfZpf/je+yAVLfv8f/CnDUvlLv/5L/PnDD/nhj/6Av/prf42Dg8LJkwecnY586o2vEoYFPYV4ITgP3nmGsUHUYH3Ctg1GlmR3gmlXnC0/ZHVmubv4BUK4TdM0qBZCqIqWD2sQsWAwGKkLLF3gy7/6yxzqyIODb7H6w9/j5CyTTMDbwLzbo5sdc+v4DY6P77G3OGbWzTFOEGc5O7/g5Gxg+ewJ4/KcnCPnOTHGAe8c2QjNYo6q0jUNmgYsGZ9WBJM59j25nDDKOct8wXKZ0RzBw7I/o2hhpYp4T2BGEmGIkTLNX0bATwtlzpmSJyVTHNa2zOdHjBcjqT/j8Kjl9u0DutbzhS9+ibc/8zqf+/ybHN3a57XXX+Pw1iHWWp6cnPLkyQnf+dM/45/+k2/w/T/9PjEWrHX05+d8+XOf5sFHn/DgJ0vefvM+hwczokaePv6AW4eHpP4C6w3nF8/wNtM2nouzC7yzxBhJ1oMKfcxgPWJkAqfrhJS10A89ObfkGBEKRqjsJqkKizVKgkvAylmy5OqtcoJTh3cGa2UyrqtRa4SJTVQXMSPQBE9KCbRAyTjAquKMTNcrw9j/fMffS+Qm8GVbcd5W2td/XzfkXgRyyLYmwDWjoFxl4rzo/5vq+v8GrHmRIXRdttkH19vhRXLTeS9qF52Unp8G1LyobjeV/1xdJqPSGXeJkhlBja0KLxWIsab2bcOlx9u66hhyIjRGCN7jgyeEUMEaIzRB6LoZ3nu8X7NSJwbD5Plf/8aY6Cegph8jBWEcE6u+ZyyFnKuxllOZvOyFQrzyHqqmW5VL1akF1yAMkzmoN4E1l8bgdebAT2NxvEqyHmfb4+1FbAS4mUmxLdfHgjFXWRY55ytj/vq120ytq+PwecDyutw0rn8aWHFZf93ou+v7rgHJbVByU0cRyrYzlY2yvBkXqtV4XAM71eyaDBNb+02hkCb2Ui3XIGvw5Yb2zblsHIzbz13H+OX8uW7vbaBq+/m359r1c970rl8E1Kx/L2MJ3rS9Pn8DeLHNqLi5ftv3uw6WXr/PGqjZvt82U2xd5+vry6soRWE1DBjrMMbhfEBTnoADW41bYykqaBFyUaw31GY1pDGStDq1i1bdfw0klgyxZGyG4qr9NeSRPo9kUYaomLzVjlKq3ZAGrDaokWrH6IjNlWHiqipCSRXs6K3FSyaXxJAGMNWZ3ESDFUsqeSIK1LonzaRY/88q9KtCf5HRVUN/MpKj4eJsySyOhGB4/PQp+92CxYGhaMQFS9LCkDK6YU6WCrYUJeWIAo2xCKbqo1oJGEbMhL5nRIXaukIsStZcbVNbUF+d+YNGQBgpVItJEC1YtDI4jTCYSMoJoqXRhs47ZpKIQMbgjZv6NBi3diBU2MK5hmISIq6yQrU690UU4x1WKvsGI9UZYtIEHOvmp0BGNm1R10CDOFMd/NN8DJMeI4KqpWhkKAPn+YJnwwUPT5/QxwGhcFAO8MYzrpTu9oz5iXDy5GnVfSdW4noMXo7FtR4CvtT7GCNEvZxz3ATSeKm6ik6smhfJS4Ga4B2lBJpcuFgNDHkKSXERMdXYiqmQYsIZ4e7tA/a6lsYYRAyrWHh6tuThE0vfnzEMESphdwJl3DQ5sQFpmibgrcM6SCmSU8Q6w2wRKE2haCbHRE7rUCkmoIDKoEBY7M/IsZDSiOo6dKvCc30fgcLhYo+377/Om/fusDdroSglZzKVSVPBnTAN3GozCEJKmdWy5/z8gsdPn/Ho6TPO+xW2sXShoZl1HN85ZP/WHsEZfIH20FI8RB1REsM4MI4DkPCmgiLOu6qYAblcsmOkrL1iFTktVEqboGhOFYCImXHIqIIVxQLO1BAIS6HxBhc6UOjaliY4jAgm1zCU4gN9XFFEK5tmFihloJSqoFl1FE2kMSJUdHkYh8qIMIbgHTmNWClYqZMgtr4Taw1pw+6xaKayrHTEWV8ZNsaQcsbaOlkXqSht0ZGklkykWzQc5I6z0hNFUTKVl+cqW0dH+nHApmnRRimmIBiKZooomUyYeWamAZMZhxXWG4omih3rIu6ERhx93zOOL11Xfq5y9Po+D0+fMb/jufOFA8YPTxgvHLfu3OHRk4/44On7eA2MxmO6gCuGO3fvILOBi2enPProfd5/8pif/HnL3/yNv8Hrn3vM0dDye//4CePyMcHe4a033mI4hLKyxHTOMj1EywHknq5b0DW3iatqsNsF5DxyeMuyd6QsjvZZfZTIsacfzumHC2azOW3TVhB3HFEdCa7BeYeb+ouRQmkCX/zlr/NXfuktTk/f54N//j2e5VLHpTTstUcc7d3icLFP4xo65wl2QEtPiiOPTp7x5OP3yGlFP/Ss+iXOW8Y4Yr3HNh3ON+zvLehsYe4KCxk4nlkaL7g+UVY9xUZWy4F+HFieDTijzLsWsY4QIKZIaypbZ8ypTsiiE0VXMNZSJuWo4OgWR/jQYXNhf/+AW7f2+bt/99/hN/7mv8atO0c4D4WIWEXVcLaM/PDdH/MH3/wjvvnNf8Yff+tPWHQz7hwdk3JddOLFOSVHHj3+hF/5xS9xuDdDS4KYuHj0IbO8RHImNPucD0u6RYugBO+BtPHcJ4UhKWOpVFhrtDLZcKislWNFtIYdWQOlpLoeGHDGkqxUhQYl5cSYBxrnaZ2ltZ7GGZpQx2Mqhcbbyv5xAadUEM1ZnPecn59XL0OKWMBsQCFBNVPILx0fP0+5yQt7k1f2JkDn+vXb+66Xd92oucnQ+Fnq+TJQ5kV12P7/RYb5TR7mn1avbSNru/zrxmgtq4Z8PFfPieFyk7G93r7JGN0+Z9Pf5fLvjRFlBOMsJWeCC3jnaHygawPOKCmlDXs3hIbgLDNnsc7hnKUJDTIBO6IJ5331gpqq+uWSkTU1ZzKKVauzaFRlHCNDTKScGcbEahjoU6LkemwcEzmX6hRTMxlqk6E8ue00y4YZccW4hI0yu26b+rvaVi8CIV91oAaYPM1Xx+R23a8fW8s2GABcAVm2ZbvvWmufAw62/16XcR0Aq07FcsXwfhkIs8EQbwB9tg2Utay94OuytkGENYhxBbQRWXvZNkBJrTuAYswl+CFUp5y1jpzKhlWtYohZEWtQwyYcQeQSWAWuPPd2m66fZdP+PM9auj6ubxIRwTn30nNv6hPbfftlgPJNoGUpZfMOVPVKyNVN127/Xffp9I6fP1+V5/rh9Tn0ZUyrV0VsCPTnF+iqp+vmNeLCgLcGZyxD35NjoqRU+16wTGZdtSF9tXmMVDZJ0Zr6IJIxGknUPpNjAS3EEklayBTKoJNTvrK4QgjMD7uq5xiAGlKVSiKnRHAepw5nDFkTMUakGIIUMJBkDSJI1cdKopRCsFQDb2J0jDkTtZCzYXWWWT3piU8zNnXEPlKWsNQeu9fBmUXPDdJaVBJJqnOsAGIMOoW1jikTY2SMCbGGIo4xj5t5r20tWaa+b9wUxlVBn1QykElAnHSskUgyBRGDMbXu4zAieDT7CqQKZHUsh0gclyzazJAtY7C0BlZSaEN1AhprMKWGP9U+abFaIDORNyrQlEvGGYXQYowHqXCFFsGo5XI4TGCNQGWEyvQD1bRhvpZSKvO0VADNiJ2M+zrGxph4dn7B2UXPqCPOGnxf/0cdQwSzXBGHcbqdYEVquNt6Lp3ehZS12wNQxVD3+bqFp7KE3BpkhX9xoMaY2mFjUZZjYblckXLBhULTNlTgY8XF+ZLFfMGtowP22sBMDCKWszGRinJ6nqcJolbHOiEEi/UGa6qh7H0Nt+naBiOGxgGSEJPpOkuxteMM40iMkZy0dngFKw5jLKkUilF8Az5YSuoYhiXDMGyAGmMce4s93nj9Lp967Q7HezOsGIYxUnKmbZvJu+U3i1bJUzhWUfp+4OTklE8+fsCDx494ujwl2UKzaOm8MNtrmR020BWKFBrn8dbT55ESR0optI3DmqrwWGOxUmi8o8bkCWPKjDFhsbSNq91QageIOZNHpRHBGY+3isuZ0FSQyhlL4x2Ns3TBE5ydkEaIORFTZIwDYi1WLXfmB8z355wun3ExnCNO8I2pSuE4KQDGMyaljJlB6wQIFaF33uLFUWIdYEYEEYtYofG+otsFVA1GPCVDyomoPWKr1zF5Ia15X1lRA+IETRDHgcfPHiJlQZRMMzeEKfzCSGGMFeGtVEitVFuEMSnrWUyo9VSpYXAaHKVkEgNWAsbUPDsiFVhyThBjb1TCXhX5d/+Dv83/8g/+N269s2D2KeW1vX3eev0dvvy5r3I2PkT9knd/8D5/8I++zyIHDm/NKWnFmC54/e03ONpfUMRy/Juf5f5b93hw+m38fuKdL9zhg+98i6+nv87qLNOYA8Tu0SwKcc+yLE8hCKtyynJ5jMQZlB6CIYQLKGcMqzOcE/baY4oRfvLudzEm8PZbnwM1dN0C72s+o1wK45hRV2iaQKDQ7S1Ylp43P/sWf/Vf/Srfef8x3300YBVMVBZ+xsK3jBfnNL7h1oHjs2/MuHvU8uDBU/7Rkz/jB4+/z9kQWQ0rsmaGsccFhzMO6xtMaJF8iG3gYO64c+yYmR6JA0d+xRMZeTL05L6HkklFiaqM5ytaa2mcYeY9KkLxjvPVkl5r6E71slPptmuFPczY3z9kNu+Y7y34rX/73+Lv/Nbf4fD2IeoSz8ZT8kUk50gcBj7+6CF/9M1v83u/9/v84Ac/wtnA67fvkmPk4SefVOOs79HYczQ3vHP/LrOQuTh/QtsEKJHV08d0xwcMacSbgqUQbDUwc0pV+RlHkm9xIqzGRFZhjBHvhJwTPjQYW9mPmlMNGaNg0Oqmmjx1wTlihhGdYp8Ly3HJfrdPcEKrlnkbcNYwjj3zWUfbBEqMeFPjz701WGtQzVgreG8xogRjoOR6T62K/3wx/7mOv5fJTwNMfhbg4mXX3ej5BcTIhh3xoutuqudNBuuLzv9Z6/qy/S+Sm0AseN4Y2uxn7Ue7Vs4mFOmnA143lQtT2IcRnL0MZbHWVt3AGbwDKzXcd9a2tKHFe4edHJVrD7pzrip85pI9sc5DgwiqftovU7hLnRcvRTfgiHRCWYeJFiXlQszT31pDvmNM9Tcm+mGkT5lxHBljJKd0maOm2E1elivsArnaNtsgDVwN3djOu7Kp7SsO0txUv5uM2eushJuYRGt2xrYRX52OVwGGzfu7BmRtl3u938ukR22XtQ5NWp/3ovbfzo9z/bm2z78OfqyvuR5yJVIZY+s62MnAMkBjDJaM84aunQOKtQ47rR9QgTGAJjQ8fHqCuHazL8bqhRfjULHPtcOLQsYqW+LF7/emuewmoOwmuQ7SbL+f6+fcJDeBN+t397I5dvu655k71Su/rstlf3oepIHLsLXtdnzVJZdCyoX+/AKoTvwYE84atChpiKSYuThbIgjzwxndPOC84F1l4fimwYoBA2OKjKUCFgDJWCiFNtWw05gianRKdwEljrX/o0hKGF/ztKShpnHIOeO9h1J1nMZMBAEgm8mJNDE+RAwFhRYGlhIAACAASURBVCm9RBwr6zqby9xEjTi8tQx9ZlhGhqcjywcrhkcRPwFK4zKyGpe4vuDUUU6BeXUC9ukCtZe2oZgtYLYoQ4zVvsmFMeVLNmGMyMSkETU4U9coyhQuheKckrSGVBVVSgbVjHMVlMUoMRVWfV1bBMF7hzctLlisrelL+qjgLclIZZ2rYgpVv7M1HEtLzbEjU+xjyWUaL9UubnEEqTqiaMWLa2hltfUEg0xAcdKMEJAJAlHJ5BxBbE2xkqe5k0omEVGkGLzxdK7joDvAiCfqgBGhDS1WGppun7mdE2OqIXcwRe1UAPsy7GnNiK3PkpiYNxNIM8dTTO1jTsHpmnn4LwHUMFHOrK2034vlijEXZiI0XQM6TUClTMkhM0ZrDgERIVjZ0N2NAeerQuKDo+saQtOiTLkbWst83tE0NfGPmaglxhjaxlGsErOhcRZkVhHAlBmGkaQ1IW5Mib4fiHGJDwEfWqydoYwYozjn8b7l+OiQ+2+8wa2jQ4K1aC4YMRMzY0sBKVpDfLSidKtVz7PTMz748CPefe99Hj45ZRUH2kVDs9/gW8E1hmgHLpISjENCi/M1z00wHlUh+EBOGe8DRqoSh2bGXFBj0X4gZcFbzyy01XunylASeRiwvqMTR3AedVB8bSdva4Jdb7eTEitFYUgFFUOaKFZZM1YsC99yvDigDYaTCyFpRCVjjMdYwWqNVZyFBiUz5oGiSiDgQ8B6BwhpmPIIbeL5lbYJdM5gxIEawJNiATGMDKgUkib61BNLREvBKWAV8YbYJ4Zcc12cjudkFcQpzgqtN1gRKulJEPG1n1LR1FWEvh9IY0Iw02zm0SCYJlByxhlTcwShkOpwca56iZq2mXJkvJrSHVluv73Pl37103z3/T/k3t3b+P3Et3/4DS7yQ978/G2O3oIv/8W7zNJdfnT6Y774+S+TVgOzRWR+POP9x0+4/4unfPd7v8ujB5/wK7/2db70hfu8t/xeBTTMnLiC147v8v57P2a2d5tuUTg89Jw/XWL6OzAEzk4f0zQtmpeMq3P05BzvOvIFHBw6PvXmXcYBfvzjH3Hn1n329wCJdF1LEzq8E6ypBoQvysHhMUsPS/2Et+7f5p27d3lw9pBsPHuzBXeOjnnz9XvYdoGbJ+7dHfnqlw64cwCrNzxm2Odbf/KM9z56WsN2Yk/ShKyEIAbvW/xsj3NWhE5YZcMnywvS+QPKONCPmYte0ByQrGieGFlaF+MUMzZHusbSNTOsEbyBk35JQnFbntZYKhXVOctnPvs2X//VX+av/Y2/wme/8Dku+hWn8YLHT56xP1swLkc+eu8j/uCffpNvfuP3ePDhx3TdjKPFIUYMzx4/4dmzE1RrgrJZ15CAFJd0rSH2p6jxpFEZL84pQyQIZClITnhrSGkkp0iljU4hOFTK6GqInK96LIXjdp9CwTkPQ8EaBzpOoRKXcdDV2BTAMMaRUQoXyyWnq1Oy5hoYW/KUe6uGXjZdQ9MGQCkp4UxNqFpKBi01D44IzlqCdTipeTi8rUnJtxfCV1GeBz/qftW153t97HL7pjI2R+Uqi+Y5ZX/LcwM3M1mulHkNKPpZzrtp/3WD82cFdl4kNxlWL/MCv8hYqnyEFxhSwsS2uRm0gtp+zlqcNTS+5uRbJ/zt2obGG4IpNXGidbRTKJOzjjWbe80iqABPTRe47gs5F8To1B+mxIgim+2a32rb219ApzAREmoF72oIQJ7YElpiDbOkAj1xTJVtU6QCNePI0A+M40jKmbFMYY8TeJMnwCZPOl8N2Vk7HNd0Giib/AKbylX9aPPnq82oqVPW8/lCKivkcty8KBHs9vhbs6YumRxXWRfb5W0DX2u5vn3dwF/rH9sMnu1QqqvAz9VktZt6TuFH20l91wbO9Tn0as4hnZxuk6NBTE3+b4S261jM53Rdx+2DGXdvHbC/t8d8UVMIVEa6AakskJojserRT08viEV4+vQp4zjywfsf8ODhAwqOPikxJryreRXry4Kyzo4tsmGXr59NJmBxDUqsZTup6vVnvAm42n632yDX80ynny4vAr63+8R1hs5N/WG7vPVasZ4nqr3Fpt+t15F1n7k+x18P93o1xSLWMayWyHLJOqnwqAWD4GwghEBz1FGyUmxGMdX5nGry2rYRGhdwwYGrYek5jRQt9JrxpjJsYirkHLHW07qAAdI0tqoPKnORKqV+GBL9qqeUQjdrCd7hSyHmNDnaZZNfqUy2cEkVNKhsyExOudqn47gZ27k4mqbFGYekkXgRWT5cIss5Z8tT5rMFMio2CeliZH9vgS4LNlpssWgqJFtQV3OFyqQziTE45wkNYMwUejillgBWcaRfJVKMGAzzdk6wfsoBqBhvp9w3IzFXplAZK/BqnSEET11IC8VEMIlgPV3jCM5ipoTBRiClsaZHMZaIICWhJeMQsqnjap0iwFhDDVuqSZCNGBpTWelZ17kOBcioqflgtRisCVgJ9Tqp1+o0Z6Q8UjQhVDKHc4Z1dJJqwdiavCVYZR4cYucsuoYiEVTrh0+koXV7HLQdqzl477nIkRr6LJfrPbAeo5QaspmoQKCUGgXTUMkYRTNmUhbWV5qXDM2XAjVjqalvxpzph55hXFFUKLljHCa6EQbXNKRS6J9dYGfKGMBNLIlxiKQUaRpH080xTvGtpe0CXVOmPAUe511l2ViDFVcRzFRj1HBTXB2G0Bm8c4SmIafEMDpWfcIaTymBiwvDatnjvaPpBMQQwmITiuB9y+F+y96eQ6xMXyyq/S4jJASKIQ2ZHJVEZcaowrPVBe99/Ak/ev9DPn7wlFWJiBekNbiZwbWgdmQoio7QNYLVgrdCax29WooxqDG0IXC82OegnWOM4cn5KU/OnoGVmkRXIYjS+co6wVpkWcEWa4UOi0dwYrAhYK2tH5xBaalobZ8jZ2mgl5rV21vofEAF+jIS88Czco4bHZrrF3UEQyyFmA2iMHeWo/mC4/0DRJU+jlykkV4zxdYwiZwTw7qbTgmGc6kGa2uaKSHzlFQpJXLJNFDz7mRADCbX452tkwpiGUhYYkVmXaWoSal9Bu8xzhFynHqr4F1NMq2lMPfCYOHCwjLG6q3xUEqkNZXP6I0l+BrbSq5JS40o3gjBu40X6VUUHQb606d09vPM/B4He3N+/O6f4H0mRccPv51oW4c2yv2v3CU8OKNrzvGLBeiMfulYtId89L3vc/vwHl35FIf5LVxXOPz1Y4o8JsVnjLFnNd5ivrdgTN9Ds2MYAsNFYC53SOpp9y2N63GtkLAs4m1M7hhHRxkiEh2ejvt3Pc9OP+Lp4w+599p98thjD7V+oalkcDMuyJyfjzz6yRPiZyy3793hK2/c5uRx4onpkIN7dHtHGOMY84rXb3+Kz96fc/uowe4N+O77fP2dj/j08Tnf+u6HRFWGlICEkOglkMc5GiPn/ZLoMw/Nkv78hGG1xHpLaDuMn1UUvl2Q+p6SR1RjDbvzgnUd4hxWVsx9gYUQ1bIcazZ3owkz5VBaaU22e3Dc8Ytf+wVm+/v88N13yWYgaeJg/4jvfudP+Mb/9Q2+/a1v8/CjBxwtDnj97t1Kxzx5xrIf6IcR6xyLvT32Wo9JS/ZmC17b77BlJGmgPz1l3naUNLB/9wBaS//4HPbmOAFNI06Udm/GWUyIMxTnSCUTbCBZR7EJbWb0o0XSnDx6LvqRJ31kWSJCJuA4WRVOl5lxKPT9KY8eP+H84oJhqF+MundnH69CZ4RWlEYcJhk8QjCWHCOpZMRVKryo4oJUxo4pWMlYW2pS+JxwodKPxdZrX1XZVqynPayp65cK9LYiffXaajBcAjBrLuoatNl46TeJPPVKmT8rQHNZ15czal7EbPlp21fb48Vgy3XA56Z738gGkA1E9RxsJ9euqdu6ObPa6uv3svbM1fnfWXBO6IKjC4G28XRNoAk1vKltmilfkt2wFzbG3Q1tBUwATL3n2shasz8RmTyipjI+awFsPOEiYKRGnhSPTIwCQ2WwWmPImDXuCh5KKHQ5My+K6mxKRBwZh5FxjKxiYRwj/VATEw8xklJhzKWGDKy/ClVy9WIyUdKrC7+25DYosH4PrzhQU9/3un6FrVcGrI3ySyZHfZ7tvCds/aoRtjYuVC/LWDNt4LIfXgcJ6v4KcrMOaZ/mjXUZ22DSZl6Q6n9dg2gyGVjbXxNaAw7Vmyubd7TJj2XWxhBTMtRak2JszUWJ4kXqV/ZUuX28z9tvvsFisWBvMePW0RFN8My6BucqQ6FSp2tbFFV0GnNGuo23/9Ov3akAY3mLUgrLiy9zcnLC+WrJTz74iE8ePOJ02XNytiSW6mAsUzLYdeJWzQXEklizvWpOJmPWAOzVvDI3gSLr97L9ta/1vutg+Pb/2wDedjlwte9fZ2S9KEfRNmB0Wc66Put71z6huj3XbNdjna/xkhlVCXvPhz69ynJ+rmRtKFI46wupRObzOU3RKcVCwE8fXVHV+lEalFQsy35FkUTWyNDECWEWnHF4Y0kJDkIFArwL5GxAobENzti6PwSKFrIWkhZizCBCEbBNoMSRi76HPJtYIkqhpoBAhDlQhgGTbU1dwTq3aU0GPwwjebJfjIXz7AjDgDcNRIMulXReGE+WkOoXodrikFWitQ0h9uzbOTPXkMXRBEseVwzjKSojBotvOry31WkvjiGnmkfSuAoQFMWOCT0fGWOP8Q6TleIcRi3ONZVxOSUR1pSmPFFM69aU7F5ArNI1QLB4KzQenC2IbueMymQtWN9UUC3XOTBN4fZGhJhGckkQa9JlZ6sT3hpFiQwqoB6PYLGICibbmrJCI0ap+8RiRICE5ogRyHFEVVBrMUwg2sTkX+tjjhpV0TmPs4WxZKJkoq7AFCQXrBWC9Qymft1acJXdTcZKoiDo9OEfOzFoKBUKH6cvOBfVmlq0gN30ermmvd0sLwVqhn6glFJpW2mg9TUbt0PRVBElJ4IP9XO3q+VIyUpoC9ZFYs4slyu09HStwbc194xrLG0baNv1olOTRBlbJyA7UYCN0ToIULx3tF1TQ6XK5ecPY4ycup5cKshgraFtA5U2mrDOEYLfxB9aa9hbdDhvAZ0SFoFYIViHoixXF7UD5Yxag/GOIUYePT7h40ePOD0/R7wjiICD0HqsszgHaioXLlNqEqYyIqOipdQM49Q4wcZWRsydo2PaEHi2PEXIOFeTKdV/UhHLUnDiaUydmIO1kAv9MFT20YbqqgQRfGjIznAx9jy8eEZCmTcdtm1pu8BQIpqEISdOhnPSSSJYw2pYMZZILIWSM50PdK2jnTW0sxoS5uJIXF2QNbIcB8Y4TqFFtSvlXGMCvasL05gjmiu7CpnaRyCNkTJ5S4wxOHGAwZiEn7K6N9YjdkqYPCVl9SFgxeBtjfcvrn79K6c8eUoVK4Z545i3DSE47MWSNCkOrW1qG1tbcxAVZYwjsayBmjoV2VeYTQPw/nsf8Atf+gUO5kd86u5b9KdPefTRKYfHHeenAwcHHe/+6CPeuH+H8/NzOnvM8eIOwS94/PCEJ2cDX/nKX+DBx9/m8YMnvHb78xwdHjIM5yR1PFt+yGo1VC9G8y5xqKEyJ6fnBGNJYyCmn7A/e4eunZPlHLyhCXNMMJw+6xHt+OjhwN68wbBktXqCc5Ygc779x9/jzp3btGEG5ZzQWLKLZKsTA6qwGp5x2GUODw2ffuOYhc5YdUd4EyAJx0eHuCbQ7Adc12PMB7T2J6h7hLc9Yzwji61MuZIw1M8mChYGIQ7nxFYY0wnLi2cUBRmA5ZK2zTSNoWnneNdMn4FUSk61LxlogmPuAp0ZSKnQGgUvm0RjKhajBjfRLk9OTvnt3/7v+YWvfpWD2we8dv82t2/d4n/8nf+BP/yDP6RfDhwf3uLo+DYpFh4+O2ccelbLC4wRjg7n3Do8QMcVkpcczD1feectcn9OK4XgpILHpsF6aFzAmELJkVIyzhpSHuvnDVF09ZRWIn1cogqxjBTjeHRROKVnEMfpxTOeXvQ8eXrCyYOnNdkchkePn/LJx+9xNgxYqF+tcZ7FPHCw33FwsE9jlWAvAQrvLFrS9LWtUsMP41i9gKobJR8ypeTKcDNmWnwnajEG7wPxlQZqrv4//bV1/MWgxRXQBNmwZF4IrLA5ZWMM3VTu9WtvSl78svNfVN6Lrn3R8Z/2zDcZEz9LmdfvcN3QWgM1ynXvePVQV71DsFLXruAcs7Zl0TW0TUMbPF0bCN5XZ9IWOLPtJb8pV0QFXcyVOm2el+cTiF43CK+CVJcsgo0BWp7Pt7IJ05rOyZNxUyn8hT5mhjGy6geWfc9y1XOx6pFUwyLLBAJUABVEp1wrW8yQChZeNWZfdaBmO6krsKHYb4tee8Zt2X5H63O2c6Os2yHn/MLQ6ZcBl2vwZc2Qgaufiq5lXp0TtmU9rjf3t76Wu1VXY2syUDN9vcZM84yV2q8PZh1H+/vcv3ePdz79aZoQOD6cM++a6UMfBTMl+gTqXD4lf5dpDt/GqYumy7pL7StOAAthf8bBXocCn/vM2/Rj4unpOe999AmfPHjMj959j7PlshrmqeY2M96RcplyKFZwZg2UbbfZdp+82n6X7/566J+1lybUi/rxdhk/S0jRdTbV9nu7Cdi5TJK6XQclpcsvRV1NrnxZ5mWiekU1Xemf2/d4FeXk7ARrTWVnayFGkBSxYgnOoDmSVcCbCaxONRIiRUQLzlhKHDmfcog46/h/qHuzJkmuND3vOau7R0SutQNVaKDR3TNsstmj4chImiiTjGYySab/qN+gC+mSokzD0XCG05ylpzd0DxoNFJbacovF3c+qi88jMzIrC0DzZooHVqisyAh3j3D3E+d7v3fpmhklTvIWZcWMFmGHkRUaS4yFMQb5bI1GmW3Et0R2Wy+1TYyTPYZt8dZJbVOEiaO1oh8H4iR3FZZhlQAaybERH9JJgpQiDDlxthlxJcDS0G8ymwGGi4E9v0+/HGi94+LVOXv+LjTiubNoF4w2YIynBDDeUnQWUKhoUK0kTcUgDbxSKAE5iAqWjr1Fy56Z2FmAzlK3VjTDEBliRCnwphHfSFWkQYYmRgFanPNoLX6nWRkCmoJF1QxFvAuLFe/XMY+Esr0uK7pKNLWagJqUs0SvKwfKoKyhaLl2Q0xUXclKY2oUO4uqQG2DOiJaZRo3o2K3kyiTwImqKmmak7dpxLUUUaoggC/isc9YM6EkcgmMqSfVgCqWojV39x7Qb0ZyTJfzpjRn4BJULXVr5XXpG5RLuUxFvWIx/n4kgK8HajZrOaAKh7OG/a4BEK+PGzrWlDMpGUouEn3NSMqZnBOLTtKNrBdtm3GaphUdm0ye13WxteTLC91a8clpGkfXtNRaWa1W5FJxbQtG0hNyKfjGgqpos43i1jSNx2hHCEKBm88bWm+pKaGoaDNNjqWKeXKaYjBj5GK9ImuwTcsYEqfn52zCgGks3ig0Ee0q7czRNAbvJS89T0ha1okhV4a+J2fR/hUlYMYqCTXr3vEdUIUYelCS9qCnItBYA0pRY8HojHOaprEs7IwcMhsUQwiUlDDW0VnDwhk65zDeskqapnPMjGXRzDg42ENZTdhckEolqAwELJqiDLXVpDB1ySa/n0ShzyMn63O01qxT4GLYsAw9sRactVilsVoWByjoOgFDto2rVBI1TbIoCjHHiVonyVFaa9ykF7RT58caofE1rReQJqhLTwBVq1DltMY03UTrDihlsNZjlHTxrfPS9Wk9BYVzjv2mlRtoSrMZUyTlhjx1w2qRIrHWTMlvr2FpMYp/9qMf8fe//SlmVkmbjKeBsMezp89ZtA6rDKcvTlif/owf/8E/Z9EeEcbM3nyf3CaG9ZoPv/M97h2eU+IM5xXDWHj+6gRmaxZHTxg3iaCec7J6wV77PR48+YCZt5x9ecrw6oSsX4J6RGMtfT9CThg/597hHhfnI929J1jrcWZkE75kHCoqNhwePOTlq3POz3/Gw4fHWKf44IP3wGr2FnucN5puDgtX+PG/eJ9V/5TwCiKV1s/QRZHHEZUCpydrLuZrDvxvqP3PCa8ir55/Qc4DSdkprWIbjFfIZaRkWVjGlIl5CRPqDaLbHccRrSPeV0mLymKMuI2FjCESI3Rzx2GjIQUGr5gpT66QMqxjpWqHNi3tfMG/+JN/zc9/8XPmsxl3Do/51d9/xP/+//4Z42qk62Y8uHNMTJnVes3FcsMwRBazhjt3DumsoqSRGT33jh1eexatZWES69RDiKhqmc896/4cqwtt40lhQ9u1pBxx3jGuhkmiWFhv1pKSFiupKkbtORkVz1+uWQ4nnG02nG56LvqBmhPvzvdIGVJVaNuwv3DsUzjek3jh9XrNZrOZAOOIVxozAclKi49B4+RcmKlTVXLCWTF1y1MXBCp+6tJao/HOMY4DVJmjd5kRb+N4U/d0O76JYQJbfgc30Z7XXvuN23nDc3c7/m96/WtgyNcANLft42ZR+3XH+aZ//z6P3fz9TVBkd5m0+3qtBAy0Rk9yJ0PjPbOuoWsa2kaSDr01l8yDbQG0WyC96b2/SVJxE6jZPa6bxdj0IrkubpqsCongtVEBh+xfusaVYqRos67QNk7kyV1L1/Q4a1hPJvopF2mA1IltVG5Pd7oNTHqbgZrbALztsW9lRbt/tuf45rV08zzelDnd9vd23Fw733x8+2f3/F95jlwxLm5u87Vrq0o88Ra4uwQupqhahZoS+4Q9PWtbjo8P+N53P+DD99/n3t07NM6KiTtSGKtaxUesICapIOCL7Jktu+P6u5PucqmFSpJuvLoyswYxEZ17y8w7Dhcz3r1/l80w8vzlD3j28oSPf/cpT589Z8iZWCCOI0ZdN3TelW7dlBFtP5MtUHcz8vv3vW5fB0tuB5l3z+Ntc9bu+b66hq7v5+rn67IpuQ5fvx6vzKCvwKgtALULRL1tI+YeY1sWM5EiqSKMCz2xEMM4TP4lhpwSKUvjtm0cs5mEVKBgNRhyrjjjsDisFasJq8x0P2us9cRcCClRlWYYC9oktDGkEii1Mm8arNakNJ0/hKWiqqViMEYkOSILNKicpO7LO/MiULUAQ9aA1ZUcFSkK6J3HQFwp1l/0DM8SamzIfSSkzMWLlxzuLaAkzl8tOT58SIkKrzvGQaK91dqgW41uoZoIBkKqjMMIUx2dciFM7KCKwngrRr4T4NEaT2cdSmn6HOk3gTxm2q6hsQ5joZpCrIVVGBlrIdaKzlOCoNI4a6R5biq6ZGzN4gtaFSmLSbE0OzXOObZmv0rBGCohFJwCbxS5KnKqRJVBV6ypJFMkWr1WKMIENFOct54kc3mKIxcrk4mlWqdGSRVZYK1AmWK+Y2FIEk1eSyZRGUpkyIGoBoa4oR97VDHMbOTg6JyLk544jGjaa/cfl9/n9bKxWMsNFuPO/LDbU/s2887XAjWdM1PspMaYGVYbtFFUXSe0qF5qs0qpDKGyGQbGIBdaLpp541CukZOGOF2jK85bob5nibRunJtQ1ERUgvpb5/He0bYObbQU+LkQoqRHXRrfUdCmolTGe4XzkhvfOMt8todWDSevTsBmjg72aL0VLxcr7y/mRCLhldA4K5VUMrEkzlYrsJZUCn0cMK3CFkMOBWcc2kLTWawVSp7SEsMWc6bUxJDihPyVif4spkooKR1XmzUljWRVMd6B1aQYBLRwGm0t1ouUycRK1ZYDO8NYWBnLRg8Ypbmzd8BB19J6RQYu4sDcWXSzTwRm3Zy9/T2KrpyFNblmsFBUJRCFvuos3WxGGEYwCes0icTJ6kS0j8awSYGLfs0mjhhnmXczqrFQLUqDN5bFbCbJFoiucRhHjJHFby6FnN0E4hW0lfSBmBMxBmyVi9oYi/MObbWgsE4mgsY5KZTHIMlccy8FIj2lgPet0MELOOuxztO2LcZqGu/Z83NyyYScSLXQZknNiEVAxVgTtUrEXvlae6d/3PH9P36fL55/itKJmgpfffGSebdP7IUWOK4yNWo2fY9dFD777DfktMG5hv39fWDgi2efUusjUhwJmwtysixm+4R+wM9HKhv2D+d8+vTnbJY97vgxpy/P6E3LzO3THHtOXzwHFhzgUGPF6QYbW0zxtGhevVph28psvqT6E/b37lA2LatBs3d8QOMtz16+Yr06Z29vj3eevEcfMy9fPeP04CV7zTnH9zoO5gb9fMPh8SEHx3exSpPiirhUPP90xZ2cwL4kr57x0d+N/O7TVzJpC+y3FTZMnUU5x9REzRIqXWpFTRRYhcgfQr+mpIRvGqwxaGskaa5AVpUhRnLRzNqWOm8ZxkRUhj4WsvJUHKU2+HafoiqfP/2Kz7/4irPzf89qvWL/4ICD+RF46da8en7CMAwMY4/3De/eP6a1mjqu8Tlz93DBkwfH5PUpRoOTPaBVpeaE14qsYbVesrdo6PyCHAKzWSP6YuMFbCqVSsLMD4l9TzWGPiRO1ys+/fO/IquEU5qD2YIP9w44evQYaxTMGp791Udopem6jntHjmFYYcpIHRM6D7gaaHzL3IvsU5UpDtFoQEAZbyXla9gEvLNoKrnIORHDYJFeGKWEWq+Z0uSUJAHWwqxp/tHuvf+S8W3AlesvmP6+5Tv8Zmf2NZbGLSyANzFV3tzZf3Pyza2H+w3P/abXvWl8GzDo2xzPFqjZVkHbwkgYmCIfskbTeisMmsbTNcIg8M7i9DaMU8B8tLm27atEqOugy3YRd53ZswVY1OX5vS35Z1ucbwGEqZdw+btLY1E0yryeuLT1HNjuq05d9aJEJuKMwmotJt6qinG3MwyDZTMGQkwkuR0nM8nXgZqbP2///TaPLeNl95zUesVW2AVo3pQ8tDtuAj+7+7k5tgDptmDeZYFsx02Gznb7pWylUdeL+93jfJ3hMTFBJ/mI1QbrLAZhSlmjuH/vLof7B/zg+z/gg/feYdY2OCepKkbL96FcBr0veQAAIABJREFU+wolVQ1qko1tgRZRb8n1rKqiqmnPpaKMYctaqtN/lx/ThDPqLZA6gZGdAT/zHH/wmO+8+4A//N77fPrsBZ98/iU/++jXpDBinHvtOtxK1940bjNuvu18bsdt9+VNFtUuI+7mdbAL6O6ep9tAP/n39ceu5hZZJ78O+lx9btff22SUOoFT2yTbt3ks9hbMuxmzWYeuakqXNJPsxuCaZirMhR2vDZPtg8VP967MlS0hRFJIxJhxxqOrokaZxwAcGotnCCNohVMNJYNShjRmuV+sxSpLPwzTeRXrhk0dJKnUW1JJoMFkJgBBY6avmhLLpQTJqCkAO0LeQFgm4nkkLSGcRNIrWH/ZkzaFGArreEa/6nnx5Svu3dmnpEw3axlypjs4YlQjsUQuzpfkeaK77xjUgGk11lh0NqQqTJZSFUwsupgyepOx2opcMlWUVVjnWMxmaA20ns4FtBaZjs6FUpLYRqCoOZDTIEnAaQImnMd4j3Jgtey/JqQZXy1ag9d68uOR1LU6hfSYoWBGg8pTjLgR/6FAQnnwXklqssqTNFnWkFtGp8aiq8WiqHmk5owY85uJAaoxaoauEyBLoSDG1RLjLoqNVAKxBDa556yuGGIg5kSJMHeG02HFyfMT8hhwtJds5qrUZa/k5trEVgEaUy0YFLpULFrkWrtzzzesg74WqGmMmP8aBU5XjMrTfCw3kPUWa+2U1KEICUJ0E1KZAS2FuRadWohhQjAVqipyHonDINSrphFvklzJiPzFe4eZwupjDPRB/EokgqtSchTASBWR2qiC9wZtRNakAVU1GodRLXeP9znY38Mri1cGkRZK12GIAUpl5tvLroNymlgTYxgoVJRXtI0jGoMKEqsp16ihbR2NNygKOlWcMcQcCEmkBsY6NIZxFPqcNw6nDWEYSSEwVshaonCjmgw6C5gsoI4X+hG5wKZELLCugeoVdw8Oub93xMGiIzDy8uKM835N9gKk5RgJKjPkQM2FEAZULXg3oeuqoJQwSYpGWE+NkWSvUkkxUmrCqEpRBdsYGuvFfDBHidGtBVOVpFfVitVK3NFzxgKtc3RdC1Xc3cVJPGMm7X7f94SqccrhG0dVVQyPtWZMgQmaA6UuTZitNbTOk10k6oBrGtqmk4SLLLr9PKULKA05Q1JMjIdC27Z0StHYhk0MLNdLciqSAIZEDL+to+xf0ORA2qxIY+a973yHv/rLn7PoHKoUxvUAurJZBnJ/wdGh5dMvf0NOhdnM88GHj1mHl3x5AmFc8+DoPr4JdE3l3Xt3WernpPic6uYcLo5pq+VwcUBcRUpasE6OxjtKHTGdIWnL7Pge2sAmFVo3J5nI5uIE4hlJP0O7FzDXDGPDsliatsM4xf0n77A6W/D//cVP+B9nB8RiWC7PqCQ2mwtIHd4a5rMZS98ypETXaD774iP+j//rzxnDCR8cL/if/5tDHhwv+Q8/WfL0fAvSaIx2E5KeL9l7VEH4Sy0TRdJOlErYm3c8vP8AiuFiPbDq16Q4pWlMwPAYC6ugOV9lHh00NL7Fqg3LzYa+akbTombHtM0xRTekYcXPf/Frzs7P8c5w5+gOOVX65cB6tWYce6gFq+HhnSNao2lqZGZljm2M5bC1zHQh2CmxwHhShVjFsV8VRQwJbRxaWbz1MPYYZ9lsehbzOcMwAuLN5Z3mvUd3qM8vMDmBcxy//x26mcEpxUIbhtMz7iwKm77ntIIjEVJCFTCl0KpEiXLvjTFga6WzmlYrdJXORqpZOigkalVYrYhhpG081cp3TI6FnBKNd4z9OPlvCJtJK+mceGfIo3R1wzj8496AXzO+DRDzTSwTKV70tZrjNur8bdt7DRC45e+ve+1rx/J7gEy3gT9f9+9vA7TcZCN929e+9pwbneptgSVm4BpvjbBnJj+axjsaa3BGT0VpBqTwYerkb5OdLs1Mbxz37uexW/Rvi+wtTfo2FsV2O1sWQK3CTLhZGG49A27t6O+wQvXEqtFbZmGuVFWpBmaNxypwVuGtxjrLqg8MMZEzsCMP+jpmzds+tpLJmyyL7ee5BWnexILYfd7uYzcL+pv36u61sFusb+U7N6+Tm4X81XbKtc/68hrYAZ+ugX31ystosnvEVGidZtZ4Ht5/wB/9+Me8++gRXdth9eRCUaQ7LRTvbZtje21zDUAWw9Qi90eRlJjtWo1atw4803Ol1FbXZANA1dSpkFKIJF7VilYjnpE7e479vSc8unfMwlv+9ucfcbYJl1IG2IIwr/vD3GQpbT/PXXbN62lKr5sLb593Uyp1GyPu6vxenYubhse3zedybNfnuy1Qo9R1JtB2CBjLtW3Jdq6DjG978tPB/BjrLP0o1gspJ5qmmcAWC+IEIkAIYlCrtSemzDiFEqSYUMVgcJNlkjCLYkgwbsFZjdctulqcAo0Tr7yp6Bd7kYLDS3Ef5bvYNw0qjwwpEEpmCJGUI6kkSS5DIpga42idkzAcMt7BrFO0zkNQDM8HPv/tCavPe8bTyPmXK1o1w5uGi9WG8+U5WllqEilhjK9YrVvGEDl4ueBiE+njBqXh4vSCvUdzDt9f0N1rMLlSTMVXSy1WQj1KRRtLLhWDxmJRo2IzBvpNQDdz5nvHYA5YdHNmMxhzpNaMQeGtIZfImHvGvGa0G7INxCpAWBhHGjwz3eG1F7nR5MUTyohzllqzNOjU1f1ZpjjwfXtAzZrlyTn96YpsFHgFTSHtGUxrMI1BW0U1FeUcVs3wWtNoi8XgVIutDqUCVYv5tC5iPq6VQetGsILJg6hqqWVnNVFLItSBVZ7MqaumyQZVPZ6WqmBh5viiGVYbDIpt+royU0G5M9TEkrVaY4vA3BE5FqMmD5s6STMv586vvze+Hqhx7vLGMKpikMkzxUwtWpB22afcABmJNSsFr8TZ2GgYt5MahtaZCckSDeHh/gHdbIZzTvTTWjLqjTUoJV8+MW3ZDjChK+SUQcmiw1iDNUJFQ5XLaMAYKufjEmpi1i44OtrHaImo9VpiMVOSwmPT90QVKE2CKqa5m6En1kRRGeMNzltQEDHY7HGuoZaKAUmssoYw9iz2D9BGM4SBWALKKtCKFAo1gWvFpNAozbjpyVoRrWKsiYRofw2KEjJGZZK2lARWWWKKrLJEh/Um0njPUme6NLBcbjivay6GDWsCWUmkOEZTciBdnFFLouTEom3BGWLOkDNKScJVSImSM841+Ea8fcIYRApVK05Xam0w1YkuuVRSCGjv0Mqw6deQMzVF+TquXPq+kCTaWytFzfIevZ6y7I2jax2H82PaWUdII0PYSO49lU3uGUMQ4MeIG7xNmlISOWUa78Xp3DkUmmDs5NkwEsOAaKML58NADBGnDQfNjMZ5WhewKQKanCv9GEglUr6mM/OPPX72yd+haiaZxFdfnlCz550n91AxEiej78VszquXFxgKsShWqw137h5RdeH04pRHjx8SoifUJbhE0xRUHnFUSIYhfY4zM/7ZD/4tJ88MMWxwRrM8KdgyY2yg1ggm4+7s0w89/dBjjGHuLEUZ2mB5+vS32P4Tjh9GFnrO756fM9t7H2XEhPbLrzakoVCU4mc//3t++KM/4oPvvsezF3/K3ixw3N3j0aN3eNqvOUsywX/221/zk7/992QdWUY4+2Tki0/+nvc/WPO3n3vO8hzoQVmMaVBVgxLzOWsUWhdSqqRQ0FphlSfnQuME+FRxpGbovKad77NcrVmt1hhjJ3d6RR8zy75wsR5YeHGVz7mQ0PRVofQM2+yjTUvcDIQxc3R4hFaa9XLF0CfOzi/QFlpn2es69roWQ6Uhs6/AW+nKGApzqzClcHZ2jvONgJnKUXRDUQJKr9cDpcDBwTE1Q80VN7NiDIfc43uLfWottCbRlZFzzvnwyQNqDnhTyVnkS85okj0j6B7VQcsMS8ZrcKrQ6AJOMWaD1xanZM5uJhBaV/HcqsmgLGgjRsFQyKmwN5+TkoC7Y7+hpIhRIoVVavKLUnUyRqxYo8kpYr0j5bfXo2Z3bEGXG49edpJ3R2X72Ldjidz2+5tyi5sFy+tFAdeYHeqyCru9IL22nWsYyJuP6bbjvvxRqVtfe/Xcrdnvzcf/S4Ca65K5LdDijKYxmsY5urah9R7vLX5iFEvrTFIHlEEe2ynQrhX5dSvlENDm8r3vHMtloa3UFU16p5i8zefm8jH1hmhhvbPdaZRSUJcrvK2fkSwMSwW0xIxrrbBG7i9rJazBuEjVlrIR/62id0xtqbDDBHkTyPQ2jpvHeVvEdZk8+oBrMjO9cx3fdu3dlN7cBOZ2XydNroxcBtevo+3Yvd+uH/+0uEeh1I7X1DUgSGJ0GyQJ1BpD17UcHx8D0Hl4eO8OP/wnP+Th/fs4a0VOXqvI9KusrysibZAVnAAvlYzamiJvjYNzFMuCnEU+PgE1Mv/tHL9UESgl152epHmShKKmFrUYmWqtKXlEq0AtCac8d+YN/+qf/1OODo74s7/9Oc9fvAAkAXb3M7sOZpZLNsquV8vuc6/fO1eSKKWuzt32c92VD+3ua/ccb4GRm2DMdl+7193N+bHWK3B1e71Kg+n6diccDOEuTcbkchm8Nu+nKRXobZY+DX2g9IExBuJEfcnLNWSF91KLlpRoGycpkdqgh0RJmRKTNMfHQKMcs3YuYTRVGv1pTIy5F59N6xn7eFW3KqhjQVmxvmiURzlhf2ilsNoJu0wZrPZ4K74nGZGHDsOG5fKCWj3eNJROQzSQCuTCOg1snKFzHp0cy+eJzfPA6VeZi+cjLz9fEscz8ZqxmRojThkshtZZsrKMqXJ6uiZnxcvTX5OIqFppXUtVDcpX5vsHVFNp5gsWdo/WzOi6BaCoSjGExGbTs793l0cPvwPOU6rGmpbOdbS6w5lWEpZLwjeOmW8Eoq2VmNc8f/kJZ+dfom0k1cRmGAghTEwiNdXhUNuRcRxICOBTSkKHCiVMTFFJU9ROoYphddZz8uVzll+cCeNv4Zjdm2Obhq6d0RqP0oVSE7Y4Gr3HzDV0ztOals7OxZQ5T2uZUiZ2nzQllMmXfmrbREOoFBUoOTKmgc5ZzuMaXQpNhqQVGId2lr12zkOzx2+GUbarleAdStiD14CWHSDYVU3RYKu+sviolW0KZK31ipX4NeMbpE/yJaJ3FwpUTM2TrltjqmDtKEhGJruYJMYxA7lW3HTw3jfkWgkxElOi1Q3drKXdm9Gnkb4fKF6SjSKZpBS5RFQW8MdhQCuqNZMsRfB5lEKZKbe+alLSlOIYSZQ64FTlYDaHmoh9Ym8xxxrNmBNjiazSwDL2UAqn45KiKspqNqpndCLxUVahvaamjNWKxnUCYoSAN4aZb1G14po9jg72qKqw6Z1QrEohl8xgEm0riz8x1iwMehtXXViFgSFHvHXoIlo87y0LV9Eqk3QluED1BlUMrVMczlq805yzYZ16LsKKAiRbxIelFKyxFALDRPtyrWXWdWhr2IwDMYygwDsHUWiFc9ty3O3R+YbgA6FGTldLYgZQtNaLUV0pDIh0qxqJI16ngeqU+NdojdKQ6obVuBKqoFJo7VFK0+kOlzVGVxbNjMNugesahuqwyVOyGELnsdIPA6mMYgBVMyVVWuWx2uI7mbzRmTT0WDVj3s5JzpC9p2katNUslegO0R7tK8bKgmemG/Rin0ollETqV2I49pYOVQo//pPv8cVXz/nsyxdcvLjgwWFDjBqtG8Yx08407azF247lKvHowV3uHcz5kz/6Y0xT+eXH/5n5Yg+XDhjOMq/G57z3eE7r79COF7z60tI0+zxfPuOT55/hW8fh/A+JacN68yUzu4B+4IuP/5SD8YhNP5Jj5fBgDxU1y4uXjBeB485ycWZ4fjbwzP2CVRhp1n/DrJtBUawvRrpmgfMNL14G/u6n/45ST3h68Tkb1/E//eh9Hn94j58+S5jR8ax/zs9/9df8r3/y37PYX/Cf/uY/0w89J2eJ3y7v8NXFU4pOgEeZGfP9B6QQhRY5LUCNKpMcSqFVYa+dYYvmvSfv0m/W4hGlNDFv6POIns8Zh0rIEVWDgDWpcD7C83XE2wYPPGob2kcf8tfPNReppY2BnEaKLgzBcLB/QL++YLlaMYRE13qOFpbWGrwqdHVk0Xo8FV8k5Ulbw/nygqATeu7E96u0qKokhUqJhGGTI107w6csxMy0opYN3i5wVjp1tRZ81zBs1pSYUFpA3FmricuRfe8IdaBbHOCaOf1mpCSJDY4pMJYITctYe6ybkUMEU9HWoI2jRjEtNrqijRPz6GSwJosfjZvhTKFbdFASNQdULXTe4e1COrBVoh2NrjgrqQlSBEPbzUFpSv/2AjX6NeDhVqjmxv8RIGAHALkNwNjt9F5u65bibrfAu62olP3UCcyu0z5vdnNBuphbpogAHQLu1J3juw6kvHF/2593plU17Vupa58Eatr+5Mpy9VldA164KgJ3Xq/YGv3tfm5QJWJyAgCZaNQC0rRW07WWxik6L0EGXle0FhmesPAqGHNN9nSza36NQaGvjLAvH9s5N1qJn91tZsSXcqd6JdFSajpwpa6tCy+jlyeQU867AFyFdG2fpUjUt6otWhWZB0tBl4LRBj95w2ljQcjabIaRGAMFPfnvTd16BSpFKYAraKNlVfYWM2uugV7ssBpyQekJlKhy75UiHe1rj2+Bxd3zfOO8v57UpNDaTueACTSYaomaqTVNbAsHU4d1C2RcHeP2ntfTPF4vt6O1omyPQcuDhirn1za0zvLgaMGD4z3euX+XR48e0c072nbGfLYn/kVFEjZVjegaYUpnKcqinBdJH5VSJdyiUgUfKFXkrSWhp+70FrDRxmGMm5p8k0RARbk/9fYakru8GjH11CWhc8ZOTAgUV942FJwyNI3lx999l7n3/NVPf8qvP/2Mqiu1yja13n5/KC5TuVCTH+I0t0xz2xXYOKVVXTJudlky23MgB3STdXOTebO9znavsZvz4k2PnOvbu+59c3V8+fL6uEoZY7omdgH2aa7KSczykGhjUCLbfEvHl5sVCiucD2UxGsKwwionSbQxkFIg50rXtVSKSDarwmsvciajqVlBFUAq5kTREFUhFsgh0SiJ197SGUNNRCXF9DCMVDLzeYvT4ofntHjbWGWw3jArlpwmw93iibkh1wWN8Tit6fA0NIRUqUkTwprlaWDZK9go+pPI+Wdrvvj8gk2fiQpZx42BvJEI7EhGl0gKlpQK2h0yP5izTgmjYO/ggPsP73JwtM/h/Xs8+fB9Du8eUVSlaRoBgLXM16vlwDBEzs8Tn332nN9+8rc8fPQEYy1DDChjiTmhbcNituD+8V1Urjx6/Jg/+df/iqPDA2KMnJwuOb+opDhn7lrysGamKq3LYhxcMlCwWOLQM5y8RBXFsDonhUEa+sqgTWW+1+AOPLbVnL064+mvv+TF0xMuXlyQYqRbNByeBZrxAaa01OxINoExmM7Tx4J1ltYfYN1dmuYe1s5IShLgVNXT2kCYgSp7KgmtMqoGFAnx3OrJeYPJK1xqaYc9DmpP9r2YMGtFVZbGzVnoOcPFIOoOA8jbpSiNqeIFhZagDlMLvk5+YIjpgkFSn/TlGm97A9/ecNodX8+o8f7y52sLrXo16eQ85ZYDaer2eGfJStgUqogbd9s0OO8ZQqAfelQQNN42Ssw944AukUYpklIMcRRdtCpYBfuLObFUxpLlIrblyigIgCtaIoj5VGUy57UNIfa8eLmkmQzLUi4kRMO33CwZ04hG5EWpJKiakEUCQ8nUJFFjtUy6Oj0lPyiF1obleoU3lvlsRqSSciRSiDmRt947OVO1QjuRZ9Vc0c6C0qS+ZxxHMdkFShCzU61bsrPTArGgqiFutcrOY2cO13j6oWdII8lMJrti4IOd5GsCsClqkceMVRQkQk5p8W/RWsw/LYa7+3e4f3QHDayHNTX06LqhplFMmrXFeUstopEv2uCcJQ6BFCM1ygJc4nSFXVUoiJ/QBN6URO7XNFharBgdp0C/Dow1YRtHM2ux3mCDZblaCSVWa4ZxZN1vAIsxDm0sMRXGNJBTYd4a2rahFEn7cs5RFZg4oBDz69XYi1dNiIxBvtCa1rI/a7G6TIljb+fYazr+5q/+mnffv8+//O++yy/++gVnz1aU3nFx3nN4NCPlDY+fHLBcRuazxP17nruHHdplPvr41zTzBlUT/+QHP2RcVn710c9IX4z0wfDq/FNkcdjy4tXf0/crDg73+eJ3/45xY1ifVRpm7PuWcHFOfKpouwWqWv6hH3jn0X2ePXuK0w6DppbE6cUJxSq++4ff46unX5BT4sMP32Psn/P0d1+wvzfj4b0HuPY+y/VXON+zuHuXZbpgtneHtjXkZeHFV2fs7+9x/94+r5495b27C7563jP4BjfbZ9au2AwrYlHM5kfcv/eEnAr96oIxrMklQE1415CSxznFomlotebwYJ/l+SmWSreYU/BYLCUqtPF0viWGFTGOWKtICs42Gw5bBxQ++OAx3YPHfDxuOD2NDMNAJkl9ZeDs7BVpWNI6TTvXtI2iNYnWVBoDOo84rUkpkpTj7NUZx3fvch6hVEuTC0FlRgJGW5JOhDqysA0lbGhdh20bYhzxXsn9pwTQdtZQcrz8UtWScopRlXnXcr66kHS8Kl1YhXSWrXOEVDk9PyeMA9WBtgWjIW2LGerEnBM/GUrGNQ6txBh9r23oWoui0niHt4aSIamJDqoVxnoxiJzmrVqSzLOlQEpoPemQi2jM39bxJqbHtee8gUVy87U3O+rfxJC5bf/XO8I7z1WvP/d11ova+fkNz9v9/9cASNe3ex0QetNxCETzJqDmdnbJFVBzY/9KLlDpjkpn3FsBSTsvHmqNNcIqMQbUZHQ/pQTWWqeQAosx9rI7vy3Odw2ahW1Qrxg2Ox4i2+fHmC67b7tgz015w65p8W1FX9X6WpF4CT7weorNZWdfSZdV7bAJai2UrNHGinxSO7QWU+9hZDKFrKAmdsUE7OUsaTx1apxJRPLbObaJLDeHmoC4vA2yqNf9X7afowBdE9qyc7/t/tmmi2x/J9fI1bnfvXdrvQJ38iS13t03XJlgyjWkKSUiZ3cHKKjqEktVTOtTI1K+h3eP+OGH7/Hwzj53jg7YW+xj20YKevRUYCVqiaiSUalAnsxIqeS6BWqAS2BS1sE6C7sGJhkdkquWa5RCSE0WCEzAS5nqgmn+2Urfq9Ky75woMYKSRJaqC9pklDaUOpU7yuBMw4fvPUC7ytnqnOcny0lyIeCXAGtSjCuYAGl1eW3elOxdJS1tWTbXgV45l3oCguSYd6Vm27lg63O0C5Lvyqu2+96VWm2f93UA5+5rtqDdFqyDK0nXFtwr0zVayq4XE+yyE9+2EUYB/bTS2MZTa8GZVs4pCmUslMwYM5WAcYbGOewUuWyckzm4GHAGYzXaW2Hha0+ZJHzKCKsr10yOCaEeG6oRBkxKgWCgdB7nHK3zjONIHANQJ98RjUrgqmWv2aMzcxrjsUoaAVYZtIoo49nvGjZx5PQk8OlvXvDs6Rnr8w3rEXLVKG1xXonhdrEoA4136JgwRSwYXr56Raw977//LnsHcx49fsD3f/Ah/bjm8M4dum5BSfLldr5eXwoN15ueMGZ+/Zvf8Xc//QWff/4VTXeIa49Ba7rFjHv37rPerFn1PS/Pl3z00cesL9Y8/s53OHz4Lj/4vuM//tmf8fSzj6Cs+cM/+ICTly8Zh5G9xR79sOHu3Tus1mvm8xm/+YdP2CyXnL46IfUDOYw8/+oZ5y9ecdjNuHvnkOPjfR48OKLxmk8/+ZTnT1+yPunpz3tWqxWuMYwPe9Iqcv7snNndOfsPD2gOW3CaEirJJDa1x5Q1Vs1ojUPbOUq1qNpidCMMwFrAFGqJ1BLRBKgSLlTCkoID5bF2wazNeJshJ1IJZKR+V8piypzVxYYrQqaYFHOJkarLz32inE7f7/JszbTWgZ3G17cbXwvUGKunN7rtuMlB6HoVEXhJe63iU5KLfJnnKqwahRbpT87EsScMPTkFVM1UWwhloPQJTeXe3oy2aVmnxIuLkTFFqqrsH+zzzoMHbGLg5fnZ1IVFdHCloLHkEgREoeKdxzkLOVOqoubE+epUDNRsx4uLU7QSb5shDYQ0gC54N0dpS4mJlCIhZ6oWsEHXQikSt4WSDrIyMjFrK8ZryliGnOhX54QcxFQ4RbS1jOMooMa031ykQKm5kAuEFCUWk8qEm2O0pEiNOaOTgCsKSymRXDObEjhPG5LNjKUnmYRxkxYOJQZapVAVpKkTqoui1sR6WFKq+FsImCPUtabtOFwc8mD/AV3bMAw9JcsXnPct81qE3qYk+sw6gyoKtBMdp7NUIyweSiGWQI0V7eTzqhSqUpPvXKUfhW3QzhpwhiEEzldr1nGg2+uY547WOea2xc3N1q+OJStUhuoaGu+JMdEPIzlnZm2H845SBahTGjmfKVJKwllPSJGzfgNKsd5sqDnROk/rLK0zzN0C8y0Krn+s8ezTEz74g/d4dOeAi/UpH3z/iL98tkRVhTGKew8OmO2vOTiy/A9/+CO++93H/MVf/N+8XF1w+ssz/uGTz3j4+JDvvfMEa+DRB4/565/9ORdnL1n1kTQk3nvyHYY+8M4773B2Zig54Oyak/UFbXeAChtOXq056hb06w3NrLJariFrvvjtK7qu4+G9A57+7lP2F4dstKEoxz/84lMODg0ffvgOjc9csOHR/Tl37x6y3pxzep45Of2KO/M5f/fRr5mzxx89fsjhYcfJL0453L9P3jzjJz/9S86++Ji9xT4hIOZzquOD7/yQjz/9DYyJw4OHfPeDH1GL4vTlc16dfMkYVtQaMLoQxjWKjPeOEnpevHhJBcYYYA2bEEnaM4yZtpsxDAMKhzWQ6kifCuuoONssueM1H7z/DnXvCPfJiDZyJ5MT2mlyjYS4xqmZHZIcAAAgAElEQVSRWeNZzBu8M1iVGDYrrGvp10tSoyhVU6wD1xLR2HZOURIlWab4U0VF1UwOA7ZtsICa/KZyTqAsJSvMZBJaSwJVRDIXRpw14lVlFVZXrDUoPbn3K2S7qqKNaL+HGEkpoKj4PY9VlaTlGFTNWFWpVuGNRquCKtLNj+NAs78v91XnCWPP2K+5e+cuJQaomZTCBPyKobA1egJ9Kg6FKRWvZC6PuQh481/BeBNo802sk2/73NsAjjcBJK89R/Ha874N0PLa794ApHw9UPPmY77tteoGawegsmUeXHWkgUlue5vkSsBEa81lmEDjHd5oWmtwxkwyII0kkwmrTiHFpdFGWMR6a3hvLre/W6xtx64kSAAeeX5KaaJgh0sAaMugAa79vFvw3ezS35RNbAvCy89Cybm57blbdkBF7RSQkv6otUZNfhpag7eKTa8ZY6QiLKC8BRhiJSpQWdp1l/4kb+m4jW1WthHdO3Iuc/n+9aUZaymFEAK7dPWb29plSdyMcb6NRXHzebvHePMakN/Jse1uq9aJWc6OvK2A0pWDRcv33n/M43fu8eBon7ZpsN5R1HTOc56ijiOUQRpsKVLTklI2xBRRxqFNgzB+zBaOu2TvCOC/DcooIgnZGu1aaaxpBDxQiHlnTiL7KhOwYCgwLCl5JMcRM0k6MIasC0pblPGgLFVbFBlrHE8eHfFv/uUf89HHX/DJJ1+yXq+pU2PyUuK2A67s3pPbz+82X6jbkvt2Qbfde+qmNO26jOrqtdt93WThvC5HkvrqJgC4e/9egbtboOjKqFqpSVKp9aWB8E1Q/20c65drYijkBLNuxnze4BvDEAZyTnhvJ+mSJdeCKfWqHkaRirAUixK/JGuF+RK3LOqmEWCwCoNL+kkFl5lYFxlvjMz7tRJHMaa11mKNZrVaMQwDjfY468ilUiYLB4XFVKmLyhgYQ0AXS40JnRvc0LF+searpxecnSY2G4VrJChBocgqMvY9beOxXpQK3XyGrYXNZoVxmmoUQ0m8e/cufr5HNg7b7RGz5vxsTdOJdYXWmuV6xemrV9QCTz//is8+f4ZWjnfe/Q4Hdx/x3/6bf8M777zDnTt3ePDgPgU4ubjgk999zq9+/hG/+uVH3Hn4BOUa/uNf/oRf/vIXLJfP2SxfUPJATZG9+QEnLy548OAez796xcHBPh//+necnZzw+aefUrPi4mTJ5599yT989DEqFxbesega7t854t6RrAnXyyXnr85QWVHGzKtXF2A1p2cjX376nOOHR3z3n36X1neUDA6Hm3syhSGsqKGQU2SWenx7h/nsvoA0ag+wUnPqcA2sqSWQdUDbTpiANaBqorqMSRmVIjmtKHVNroGqFGHMfP7ZM2Hr1EsxKFvtk1aSAna1sLr9vr0CamR8Gwbq1wI1zpnLL5jdyUGSOa4WA+LenIUSmSXuSpeKrsBE0xtSEAZFTaSSJM1HQcniM7M/m3H/7h3mXcfpsCHmkZPVklQrzjWUIuwdpaT7WkpF/KWETlSqIqWEs46mkWhrXRw5QxxFsuCbhmIzZ/0ptUo6VCqJUiMaTSyZkitjioQcJQFoS5Os4K29ROgzVToJE49aGUMomRwDYz/Qx/7yZNQgUdBGaXTJYMR/yBqFSpWU5Y/E0BkqYJpGjDhLIQ4DmxBonKV1DmM91VTGErkII5s0iB+Ely/9mgp10tOqCUBLVRzJrdZSeI2BjKLqyVqwCuPGOkPrG5ngq5j89uPIUCJVQdM0GCWAVQoRpdRkFiXTVdPNMErD5GmjoiKWhDGWqiHVJHHbSqLsUi2QIllBNgptYayRTewZliND6tlrZ3R6Ysa0for7laWJNZaum6H0yBgCyhqUd4wlkIaEc46UxCh5M/RkA8MYCSURNj1DDAxhpPGGYiCHTKc0s7bDvsVfbP2Q+A//zy/4/lfvopvAvYcHPPngPie/O8f7GU0L+wcz/pf/7Y+5e/eIsR948uEhz149J8QNbg6pRs5Wr/jk6cekrLn36JjffPZLzKyhaeZ8/uUzxj6yPF+yvDgjhYF7h0842nsERbS+5+eaxeweSp0z9j0pjLS+w9iGF1+95J2Hd+Ue1Y792SHLMfPq2TMOjgyL/UM+/vUnWN1gTcMvfvoJT95/wmefvuTg8IhNr1iuC//nn/4njv7tHYacWa7OWQ+Oe4+e8PSXnzGbH5CUBuswTnF85zHrrNk7XeHbxPHxY+7de4z3LWHMbMYNrnWMw5oUe4ztZHGIwTUzTpZrvLWEFIklUY0nZA1GWFwpJwEojUHhiGkgVghRwJj9uePw8X3MT75CWYO3mmHTyxe+a3n/vfdxpUfXwDj01JrJANpSjaPbPyIbmZaNrVgH1ChsmxKpUaOio1QtLJSgMSN4GooWdl/RoCdm7xiiAFFOQY1YA1oJ2GysQxuYe4Ojir9AlcWL18JqbL0hW4NtLSGfE1Ogs4pGG5GAkWXuURVdC05VOm+m1D5DmZLU8jhA29DYFk2dEhwkZrHWiSqPeEzVnMTAlUkfMMV5GyVfjkYxpXW9/WNXugLfDND8PovpN4E1v8/vlfrmbu523IwVvtru6z4zXw/YfHOi1E0g6DYASumrhtE1wGILHd1YJGlVcFbhjMFZPSWQCavGaWHhqlrECL/WKR7eXMJQCgGDaykitd7pim/97rYFUZ4W+Ns1k1LqWiG1XVelnC9fv93G5fHuSJ5uFmu77AyQ62zrQ7FbKOqd83vdj2UbOculOScKqhKfLRQY5XFWMXOGrjGEmIgpS2JjgSEEMpLoYbKSx7f+N/+VjLJdp5TrAMv2fMn6RorDlNKleW25ZHJfBwp3mRO7oJn4yly/d+QcX2c87YIvN6PBb4I8N8HJ7dpUPGUkHeXRvWPee+cu9w73aJzC6IKkHkqRryuQEpQBVQZqiBA35PElNS3JYQTtwe7hmgOMmSOujBWMNAxqET+cWsTDkhzFkyE7dFKIwsmgK+QyQB2FWa2lkVhKoaYVef0VoT9BlQGlHcp0FD0HO8M3M6pp0K6jKoeyAYrD2ZY/+OAx9+/e59Gdu/zq17/hxemJeMUpWWdXlACiO/fMzfto97zvspkur5FL9tzVY9uxy4q5aSa9/Xn3+th93e45vHrNdVDlJli7ez1sMcPd/dqJAdg2fopCroQQiDFezi9v4+hUizeVISZUUsQhoSuEIbJaLbFWc3C4j+601BxjJsUkrCulUU5AQQG6M87KeRtDmMByz//P3Hs9yZFlaX6/K909REogARQKKNFdrW1mZ3c4XNJIW77yYY1/Lx9oxuXDGNe42z09ordFdRcKXSjIVKFcXMWH45EZmUBVV+9wObhmaZkZ4RHh4fKe73zCGgkxiTqi0WhlsE6Ro5wvRhuU8WidyCRCzMI6tgZfezIZb7y8NkNdW3IaARsrzWrp5XvoNYtly9dfvuDV10u+ePKa5UbT9mCqGa6SMJqSEykm+jDQDx31ZMKkrti0LVNvOTza5+TBCc3ehO/94PsMYWAy3+fN+YJ7D+5BgRgKq/UlMSe6vudyccn9e/f5u1/8Hb6e8hf/6q/5h1/9hr29Q/7Xf/+/8dO//Fc8uP8Aa8djvcDxnWOms31ycYTi2GzW/OpXv+bi9AX90AGFxWLB8+eGDx98wPnZBU5blpcL9vbntOsNOWQMhuP9I3732yc8f/aGp1++JqaGi8WCZ2kNOdH88RWVlpRFZxQlRFSWGniIiSEV3HLDUaW5XAeU8iyXG04+vgsDcDRFzxXN4ZTKy9w/0RHSJTE1WDdDqnQHypBUg0geE8qI6bm1CZ3j2PDM4t+aAzn1lOGc1PfEtqcPS7CWXBz9JovypkjaqkJUKtv7p0aTdoDYLaN2K5ctpWzJN1fn8XeZ830rULOlicqbbRmfRbwFdi4SspJa4rfMiChlAInw7pH4VY14rqA1vnYoV9P3PUbBtGmoXI3RFqMtVdVg2p5UChfLjsXyOV3fUU1rVGXROssEYeyMXVMPFdoUcu5h7LhlEtoqtCtkHQmmH2UDiVgyMWRJTEmDGBeTaYceZRWJDCXjrSOkiFEaZ2S7pDEbPqQEWhGSUJljCgIabLslo3+OQoCdWMQbYkjy3kpZYk44a3HWEkoGK4a5MSTRQmrFEDJm6mmqKUllVsOSdsh4W2isoXENSiki4YpSOpRhjJ+WRBlTewF6siYMgTgalYHIIeIw0LUblmaBVrCJGy67BYthA0bT+AqloBt6ckxoa3DWiX9MCEyaCaaqZH9rzaSeEXIkkBhKEIbT2MXT1pIoDGFg0W3wrmJCRSiRNgkDKZRAJrMuGW2MOHtbw2pYsQprZkZTSkVREWUFOOxzx+W6p1CofMUQBtlPMZC0YQiDeB2FQNt3hBgYciVgWUrMnUehce/oqrwv41//Tx/zH/733/CL//gH/sd/9zE/+dEjDveP2XzS8X/+H/+ZN2driq04PX1JVWfOLha8Xr7G72kqKmbnDcQBN9O8vHjJ1y/OefT4hJOTu7w4fU1KhnU70LgZz/74itgHpk3DxWVPTgMffvAxz5+85Px8wV59xLoPdP2Ku3cPefjBA169eMM+M16+fslkNiGWAVtpDD1/8W8+5f6Hijdnr9l0HTkOHO03fPjhJ1hXEcKaZ88uaLzn0ck9NvqS//LlU15ceLrS0+aas03Nh9/7H3jz/LeswxqM49PvfZ+LNvD6zSmTyTEzW3FweJ/Z3iF916JHv72uHwDpGlvtiSrTxUTxjsnBXULf0w1LYbsNA0PKDDnJ+Y+S6HhtJSKSQugHooFqXmMYOD99Tow9OWuGIYp+X48G2sYxDC11NcFM6nHSn7DTPYr39N1AF8F5Rck9QVdonBDKEzhqojsgVxNK5Ul2TqkGopmRrKGUgakTd/rGaWII0l0ySgzFQyeSIiMT0hB7nC5opABR2qAKTGtPDh1NZRmcpzQNh8eJH/3IY0kcmw1GJZwVnxyjMs5AiAVnFFUlN0+KIfcWVSKVm6BywruauvYYpcZ4bsZreEQhUipGK2+tJEwRLb5hKmmIieE9NhN+F+Dwp27I3wTg/Dmd0O/Khtk+JpOF77rsN4M+tx95F6hy429pQ33ndb4N1FwVLPrt99l2rDQ3ixqtNd5aKov40oyx29ZI80ISZoqANSN1ueQ0MmjVFWsYLTCQMdeFdUrpqqjflSntGpduzWO3j+8u865t/BYotVNA7jbPdgvMtzv55aqIu8GogStGyO2xnURaJWprqzRJW7zXxJgISVIR+xAwZAYNJmpClGtczOmKTfE+j90CWSs1JoVyYzvDKH27xUrQetTP7eynXZBmtxjffX739d8G2O6yLnbBNVnddL0Ou68rRaKwR4+pyjnm0xmH84ZpZaidMKNQRVgy9KgSIWVUHFCppaQWhiWxPSX3r+g3pwxtQJsJanIft69QVuHshKTEIFQMhqGEHlUCJg2kfk3BodyUlCTxNBdh3ZQUUFqgHo0mMQZZxJ6cB3Jc0q9fMmxatKpR/pDp0SNiGTDVjFwyGE/KHmXEV0lZx8lRw/70+zy8f8Tf/5ff8vSrr1m1A31M5Ove99W23D1fd8+l2+fRu9gxu//flhzusnW+6Zq5Cwxt9/f1MjePka28avdzbx5fNxl9W3aOd+7q2M05X4G4f04j4P/v8fH9h2QUIRRWmw3LzSWqwF41w2VNShEdpJnrjYVeJE/CDsu0ReYEQwh4L0Eo0qiVeZdCWEcpRNp+g1aaSdNApcEgDaWcaeqKqvYUPRplj9d+P63x0xo9nmu6yL2gxEJOYiQRw0Amo7Oj3xT61vDmTeDLp+e8OesYoqGZ7WEqjzGSLhiDGO8a5whDy2qzkVrKadCWw+MDHjw8YbK3R4yJ6WTGZtOjjSFFzW9+8zv253O0NQwxcnZ2xsNHH/L577/kzv2HTGb7/N0//ppPf/xT/uKv/pp//Td/w53jY2lCFFB5lPBQmNYVdVVxcnKPPz79gtcvv+by7CV785oQeg4ODrhzfJfKNyzOFgy5YzqdcH76hr6tqeqK9WpBHAIxDMQYePDgPqdvlrxaXrJGvAaX/YCmoFvhdZoR/jVGk4qiy6Cj5iIW1soQfveM5WrF2etTjj845Ad/+RmzqsFkh3cTmsk+zoncyRoHarT2UImidhhrW4asNohZusjeKCL11zmgSkuwAzGe08XApm2p5nvEolkve5FvAhRhsinld96fbQ9Ezs0rpvH13IQrrdR3b8z9CaDm5s1AGC2yIjcvSnoELiDGREll9HYRV2zpWkS0KdLBmlQYo4lJgxH6v1GWTdtzcblgGQc2rZjGFgXdkMgxj67NGqMcasw/19pgnSHGMadcQ4i9UNmMmLhV9RjVpjIJ0FVBWymwQiyy/qGQGUhjZFjMCbKSIiHnkZ6m8M5hkYjpUkQWFWIkK2GHCIkoCKVuS3fWSiaCZqshLRLrVRRbby9jRldwpYl9R9pevJVCOyumohiM8UyqmSCnahAtrVCXUMVI4orzYCRfZchAzDijRgNoi3M1VjtCXhPScHXTkHQvQ86JLmxQCpbdknVYs+iWYISB5K2j7TthSlSelAKxBJKKRAIhQYgDVjtx60YzDP1o2pWxThg5IYQxaSqwbDc47QgMdKEn5EhWGV0M635DoScmkTKhFW3XybEVErkEEoU+RpTRbNqWxXJzdUNOWaJ/UYpivHTDxpvbMAzSSbQiKyEEWtWxWnej9vr9HIcfDnz6wxOeu4r9ueXNq9+xXHZMp8ccnzg++fj7/PV//z20W/Ef/q//Gz+bMD+ecrp4SWUUTQ1qKFy2l6w3jpdP1nz17Es+/OiY3GcyPR998hETe0DunrI4XTG0mel+4s7RIc1e4cHHezg9kPKKYHqao4rmyJL8Bj3paQw0xnD66pSmtkz3pty5Y3GTFqVPKCVTVRl8oB0WLNavUcuGe/c/YLG8JISelxcvaLzhP/3jP/Dpo3+HmwgAux4KLs2Y3/8pKa1ofMOy7XlxeoqynoPpHk0z587JB0xnUyBgfEHpzHw+Y7VakKKYaWqtpUOcNJuhZ+g74iDnfSrisRRSTyZjlMgfRBst+ugSEpXV3DnYQ6XA5cUpXbch5wklR9LQo7Kh7wy/+/wLKquYTCco54QZqMQPbB0VOTlJNFOGoBXWT9mkQokJjWK5KVjlWW4GTEzoEGDoOd28RDuPUT3zOnNQZQ4aRwoj+DF2WI0SQ8XrBBNGc3QnZujOY5ykNqmccVbTU1isliyWa7quJW4WzKcJ28zISV9Fujoj9NzK2StpCRTICaNFbmK0fF6KEawTw3GjsU3DEAdySlIoZ7l+KwVYRTFKpBWj0fu63/wLnn1/3theh97NRvnnjW8qBt4NjnAli/5zgJrdjvE712FX+iQLfgeg5hue277jznqpMdHkNrPkNlCjrn5f/72VFhij8bpQOXBGY43EbsvtePSnKGqUVEuyIEXumWo7r8rblEsBXbYADYzF9U6RvmXH7Moats9tpU0xphspUbtF4RbYuQHWlSIT0PFzrLU3pBNbIGh3zwhYc32/k+2zlcrcGuNDo50HeewaiqpFYk6NViPTSICvPmlCCAwhMESJqQ1vrcf7M6y9nvLeYDfkm2wH6XwWDIYQwhUgV2A0ieYtoGYXiLnNoNuaPN8GBHYL8V2mDOXmxF5dNdOuwbfdz1LlmvVlxmNFKzjan7M/rTG6iNEv45wzb1Cpg5DQsUelNSWuCZuX9OtnxPYlJawY2kRdH2P8HMIGYyaUNFBUpqiBVBSqKHLsMKWl9CuG1QXZKJSvUUYaGluwBt2gdSNm/Nu4aQoxKXKZoFRDHgrt5QKrBvzM068vhHmaE9onsvZ4N0cVS4mBrDpKTjhteHDvAN/8Fft7+/zyn35Nv9og8dXX/i67UkTxnblOjNo9B999vdsCZtcAyS5Yut2fxmwjtW8CRG9J1t4Bum1fsn1u19dq97j9JgC9FGl+qpwIIVyz92J8S+b1Pg2nYb3pKAjjcdrUNJOKxjQw3yfGgFgPZXTWGBxo2eboUXaXEyYX+lWASuOnNbXxoOS6X1mPcVApiwIqW6FtoY8dOWWU0oTNQF0cxot/k1ISyqLgSlGiKAzdgMpKfBiVZhMHVos1/SISLiAtK158ec6T357x8sUlBctkNkNZLWxpa3Guoq4runZ1BayFVKSmtA5XOdq+lUCFIsziJ394wiff+5S+C3z+698TY+LVqzecPLhPXU949GjOF18+wVWeLiTCpuOTH/6Qf/s//y988tkP2T/cx+itbcgI1IBEgXcb2s2KV69eMnQdtTZMm4ph6KmqimrqmU7nnJ9fcHFxzqcfPUZrWK06qsqxWS+JYaBdrzg6OmCz7mm7hLYJTcaMDLcMxPH+tBU2m1GlEgtErIQKlURYbYh9x7BZMXmuMHzG8tGSy+kEV1W4esZsr8K7PZyeo9SUkj1FG7HZGJNGAbby1vFySkTJeYqRe6KRhZTax09bVOko2qGrKbFT5Kgw2kIYG4laMwbwXXc5du6tu/Oh2/OTP0ch/K1AjXIGlbdfTJJFKIVirm9O2985Z0qCnoGiy2gyXNCpkFDkYoStEiEHRxgKQ1mPka2eEAM5MrIbBDA4mkyle5N6cIbsHdZ7KT4K6PEmUCJ4PKlESlFEFFHrkeos3aGiuNJPGwxaGWIeaOOAUpYyUuauJk7bGE5lKBpyCmJmlRJFZ4Z+EJrn2KEYcpCITK0YXabQruAF3BNKnCoYJ7onudgobHESdV4UVTVFW0WbxDnfGIu1jgpwzmG0wfmaojUqJmrj8c6RVWQdOqIKTBuNyWCjXMBSKJAs1lXSucbikmFaT3FozjZLHAanLF5rZlWNVxqbEoPODESiihKTq+T79jmyKSITowtjglViUtXMmilaKfoYWMeeqA0hF9oc6UOPsRLDHFRmiIluGBhiJmgY2syeU4JMMxBjpqhMKIZNXhFjktSJohjTGOnNJRfrDVoZclE461j3LavSkVJCF40Y4o3m0zkCepRnQYwZax0lQARSUvS5sBi6d0x835/x/J88jx7P+PL5S/72H//AD7sTDven+PmcqpljTOTz3/2Gf/s3/4qffvZv+OU//Zx5dcSPH/41l4tLmLxhowsvv1ox8XOmU3DWsmkDtppw+qbFpNd8/9GUjx8d8aR0HNw5QZuOzfqM1eo1R/t3OPlkyny2z2TyPV48e87i/IzKaSqryZsNvvIc3tmjDwk3ndHlDTGsiGuHUQYTMiYpfD1jbRzKG16fvyBrxeuzMz56+Jgvv3pF+2rJTx/DB41jkaYYtU8Ia5aXPZOmIQ6J5WaNdp7ZZJ+9/UMm0wl37x1xuNfgdKDyNbPZgaQPKUu7MazbC5KGPidhy1iFyhqjxLm+aEPWCW0iJsnkoKiCbjR3D6ZMYmYWGu5NLY/uVZi6oz1zqOjxaFJpSQRS1sRYSDHy5vQMaw05ldEfIOKdJ2cx/6t8xXRaQ+lRCpyzpK3fSwzkGHBkrC5isojC24aJqbl3PGXv7oSsBio/J+cOpzV2In5XJVu09vTxJarKaNMQsydlR0oZp/PI/pNrunUNJWm+fv6cX/7iC56tepyKHH3/WGjDCPIjUicNSdFUBkWk0oqSNbZYKt3gTSOeBqmnRLC1Fcml5BwKhVVp+pjQXiLVdSmYmChoUol41dNFy8DsX/oU/E7jbVr7//fjmzqlV5P43ZSl3b//JGDy3Z4fe/7y3NWjO9+3XAODMBqoctPfQYpTKTWvCtRy/ffWc+YGK2T8EtuJzwjnyLK6YDU4XfA2YZU0K4wqWC0yKJIUiXo0zi6M5o5KpHtq7LhdJRxtu3QZdMgSQ5zkOWstCk1W6oZ8KY6eAXDTl0SWES+mnEd5chiuTFsL222mJDZZj6mWbDvy6or5w5gAMzqHiATlalu9g42EgrxNiOKqgBXC0JiwdsVBEFa0URo1pkRZU/BGi7wkQ4iKGDVDNAxRSQPuPR0qCw28lCLzWSXgR6KQ1dvHdkkRvS2St+CMvin022W/7BbWwI5v0DZ44+Zn5MwIJIxFixI5lFHlKs2LUq6o80opYioCkAAqBQyJoh1FG6wyOCJ7vvBXn93jsw/mTGxCFUmAIfa42JFyRwk9PnWo4Zw0vCYNZ6TFKXl5StycSlNRTemdRidF6QPJrim6J5eEmLCKdQCxpaQNsb+kXZ0S2g6tZb5elMX6RiLtTUOxE/CerJ1MtLWBENE5kpkQOcLPanQR2SzdK8gLbN9g6n2Un5NHJ0dCJqVAEQQVrTzHbsLke/dQ/YL//KvfcTmMcoMoczqjDeRCSJqUJSFL9sVNAGQXAL3JooFSFHnssm7jtJWSePttjPY1SLoFdaT5HaNYRZSyBYcEgzVGv/WZ7wKNboCuI7Cz65e1XTaOYPKuBO+/5X3onztm9ZRZM6frh7Epuyf7QSes1lg9JQ2BOAwM/UAKEVscaaPIQxHGfVXR58wm9HhXM/MH1N5DSsL464PUAy5STKY3kUZVeNegvEIbUUb0QyC2iZgD2hQ27VrK/aRwuqbkzGK5IMXE/v4e+/v7pKLpB0Ot9kht4NWXC57//pLT0yVZKZytsbqisg0GhassVaXJfc/EGNY50YUBoxUHsxkH04YP79+nbiz9puP5yzcc3z3h5MF9Ti/Ocd5TVTWLzVqO48sFbT/wwx/9GNvMuffgA7qYObr3kE9/9CM++uRjjo4OqIxFj8DT2OIHICvLYtOy7NbU84rZ9D7rs1Pm0z1evf6KunJMp1N+/4enTCYVrp6AMbw5O6P2js2mZbNpSalw78EH/PGrr9jbn9J1l/Rtz8TXoAaWfT8qKyTJTSEBSgF2pg1i8hxL4RRYZnhzlnjY7VH9Zk3qfsfmxx1hHVHZYnGUg0g969BmhdILjJth7ISiHEHXqGJAWRSG8TYgbBsFGTGK1lpDrvD5gFI5jJ1j5wuMSnz1+RfEy4DJkmatkI7lBxgAACAASURBVMh4pQLbPspNSaIAxAJEqSsZskaxE655dZ3/tnPzW4EamVggRnrGiPltLpQS2RrG7XYGsiqA20Gc5fmGxBAifR/G+Krrm1YuhTZ2MjExwqDRSlM3NdZYUpUIdSCXTF8KfQjEGPBWjbS+hEpihGmMgjEtJOVIGQtxbccb3tipcM6OviURZQriSptGVE9dxTFuv5uxfnSRL5CKSCjGSZ643It8AaUwTlKIjAJnxCunco4cExiF9ZY4REIMUBSVr6nthBILdVWDVbR9zxCCpBlZSx5NiJXSDCGxalvxaNAaZSwpRboQGVKij5nGepySiVQ3JNCaFIVeVnlLLIpiLLO9QzoKqRtGR+qCNnIEdyHQkuhiJmSDq+ZU3oupVtcRU4Ki6IaBrhdXbW0NNgolb5Oj+PwMkLKiD4E+DHgjnjh91zPESD9Il6cokV6pKJPLlEVCF3Mm9Im+BEIQIE4EJzLJCiWR4tgNVYaYJQ5d7v8iiVOM6QJKQTESBhATZKjrCq00QxC/nRhkAq2Neaeh3Psynjz5mkffO+EHP7nPdD6jby9ph46jO5af/OweL5+f8ZPHP+GLJ89xeoZjxrM/XHAwfcivf/mCfhg4Ot5nWD/n7nQfXOLVyzPC0HP34T5Dm1ldLnn6xQtmzZxPP/ke58tTLi/PKbmwWW64PF+xN91DacPF5ZLVasXZ2Wv2Jp44dGAzuYZ6NmFmJ1xcXBJTZHV6yd6B4+HdB/R1zfLyEmUaNiGzWFwwnU8Y+kDSmZdvXtMPkaQAIg/u7PPFGeQATdNgfMVsOqeUgfVaEsmaesbdu3epmoqTu3c4ONhn6Dum0zk5F2Lo0PM5p28KMfcMXZSLeBak3xrPEJPo5AuE0FFKFpAGLQbnted7J3PuTxxNt6JRikYVQhfIKPp+ICWFUiLRVApyiXgPrtIoEs6Jbt/ZaqwBDMZWTJoJs9ozdTPabsN0NsU5Q9ttiG3HQXWITgPzac1kMuHscsl0to+1FlMGHj84RscVRo8gT0oYx5hiJjp7SUIYE22QosVokYUElamcHSeAmtANOO/QxuE9kDNV5eXm3LdUXlgxaIWrHE0lrCBnhcbsrUErYdg0lRW5p7Q2tmnDUtBaizbgvdwAS9myKPPVhNdoQy6FUN7fc3N3fBvT5bu85k+BJt/tPf70e3/bZ94Ggt56npuF659an7HN9I3f7QaooEY+zfbvLd1jfB+lufKk0SNIw3g8V168Z7xhNG2U40mVQk7xuqCJwhyRoroQoxTM1rgrsF5rPZp4b9d5NK4cO65l61eHuvKFgJtMi11/jN2/jRnnUDmjd+UuO9tk17PkSioxNs7YWXrbwduO20DhFpQR8GH3/eX+f3vbb99OuofSfTSI5DybjCsKbzUpi3x7iO6qgH0fRxo9Zq6kJzJDvpI4wM0Jc4YbzFrpoL49od7dx7f/N6PRbinvZjRcs3Jgy/jQ6nr/7xblNg/SAVcWydtUaAxFWQlzyIHDBv7qxx/yl5/dZVaBygM59mL6PqxRcQO5RaUVpDP65TPOXj0lxwFioYSO2LZkNG52iNa1sL9zz9AvydoKOJED5ECMHZZAGFaUYcmwuWBxdk4O4JsGV03w9QTtK6wbUKbF9BVYL4WStuTMmA6ZqaoJunLEYcMQWjaLCzoFztfMDgNWBfoc8RNZjy6JnKLkiHU1WfdY6/neJx+y7CO/+uIFmyESlSEruWgoNDmNpt43QJhrSdLuubqtcbbXg+vz4/o5rbepcDf35/W1C3JWO0WdqBG2x0vO1z5gW4Bl97O2Erwt0+56fvr2+uecyDG989rzvo4t8KyygOh6BKCs1dTek0KgjwN939F3HTko8SlLCl00VlkQcg3eWYwZ2YOqiDpEFUJM9ENHGzcUkwlpoPcTjLGEYSBlSblEwZAixkAeAn0/MAwJrT2xdHhbo6MntAOrIcCmxxRPXjZcng+cPl3y9R/fcHHREnNBGUtMEqSSS6GpGqyrsb5iGCKpQF1NCCVTWzicT3h8/z6WwtnrU1b9mvnRMQcHB6yWK6qmopTC6dkpVdMwbya8fnPKEBNvTk/56ONPWLYddz94yAePP+EHP/gh00lNrQ16C/xeb3gAysgq3D/Yx9cTHIrTUlClZ7NeM22OePLFE16+eMbDh/eZTyY8+/r56Ck4hyK1bYyRru9ZLpdMJg3GLnj80SOU/ppXp6e0w0C8ajt82yhXYFJfYBETLBYsNxv+eFbx6vKcrt3QrzcsLy/Zv3eXgzt3cL5GWU8qCuMrqnpC5ScYLUmGjElbevS4KwRKEYwBZVBoIj2xdAxlAyqiUHz++W/YrDayRup63qNGts71nXg8jtXu91BXv9UVNLZzHSnlW8/Nb5c+OTc6Wo9JQlJtvDURKKWQtEJZgB29FgU1Mkn6YWCoEmXsCHSlp0RLKtKtyZQx+1yRSBBEQmWNlq5xVpQkciSnrGhT5XyWixgGbRxZQVJyg83jpMZgRgM8yV6X7lzBeYvxgq6lnLFKXyFdZuwY5Zxx3mOMleZVkui1pBIxR2JJYjalFcpprBfNuxhfjpInFM57ckkih7KQB7lJoKCpHL5yaOcYyDRVI7TQJCh9jINEJ47A2TAMYpZsILaZQpTuVhEjI61GVlGCpAU4U0E6b8YXYinEdYf3HrKjFDEZM9aQYqaPPZvQ05bMKvRsQsD5CociDEk8fZQY+hpjSEli08/XSzZ9JylXWU7FGAsU6Vxoq0hKIstjEtOrlMUs2mqDQSbK3juapqKg6TYdQ+gpWlO5WrqPSYyZhUKXtkc8qNG02RqqIje1K+2uteMk3pJiZsgD1jn2ZnNiiITVkhTTVXFqzTXd+H0c08OKn//d7zi+v0/IPbms2awz9VQkJI8/vk8f1iht+MUvf8Gbl2fMZlO++PwZpy9bFsuW0Bp843n1/ILf/+qC+WxKjBs+/OiETz8+4esvL/nZD/+GH33/p1gbePLsn/j53/+Cdt1RiialQkrQdYGuazk9e83dB8f0uafPHVVl6atESGuqAkOJxFBoqkNWl2tepOdcXJzR9j2fn71k/+QYszfh8+cv+dlPP2O6P7B8taLvW+5/cIfZnuenB4/5+//0ipgM3jkqW9PUUzabBdbPcB6O757w8OEDptOak5MTjLGcKcWsmVI5y6S2WCKzRqOfyQW6G3pyGrt0BTQeaw0xDgg/RJGKsOy8hwfzih/f8dzfH5jkiq+/fIMOM/pN4vxyRSqFkAa8TeOkO4NKzOcTqmpCzgFvLd46jCpCrx87q7M9R2MUEw0qFqa2MG0sjXK0oeXAZUoJzErhbjNBbwLzOjGdelKAPZtxVU0OQa6nUYzGQ4hX3d4YIkbLpFKbTFUpSg54pylaYbQkdCgys0nN/t6Mqvb4BKFbU3tDZSHojPYGP5oUW2+YVIYYFc4LCFR5S11ZjIG69hSVbjANrkxWtXQdqsrLvigjKJ6FLRGHIEWtNnTp/e0M/img5dse/y7L/LmMl//mQE3hG5975+Pq+rHbcrB3ATXbyba6eh07PiEFo2R+IjDkWNRYjbcabxSmZIwqkGXZK+ZJSlfMnlx2DUNHcKUylJJurPsua2K3SVVKQVtIRd3w9nvXuP2dv8nPYrebft2pu1lw7a7L7jruMjrg2vdk+763tzNsmdtvF3VKFcyW1j1uK60VRcl5m5X4ClTaUiVzxUp+H8cuU+LG+A77a7fofVe6F1zPN257CH3TZ7/rvNqCdmVnv1+DlhGJiNag3BWQ6VSmVoF7B4a//P4JP/r4gEk5hz5TSoNKAyq0qH5FGdYoItYs6Ze/5/T5rzl/fYZhAhi8N1LQKI/SDd7NROJbepFNFSUyqthBCpgUKKmnhBVpWBE3S9rFOWQt0mIAZ9Fp/K5JTDt19sjk2VGKJhZDSoMkiZZCzo7UrkhDTwg92a8pucWsz5gePiLbGSn09ENhCImcIraqUNWEup5S2ZrHD054fbbi6YtTirJkM5ZLCkoKUAopv83u2wKit2VJu8ts71vXKW7XAOXudWT3ONn1MHrXObuVKr3rungj0W18XMCjm9HfAuhcS+x2X/M+S5/Ima5rWS1XpJiZTWZYrxk2HaHtKKXQtS3DmKqUOwXGMdFTuaIXkbSaqmBIRJXphw0xbNCl4KzDOJGtd11hvVqTS0JPNZNmQt8PhCFQSof3FVlD0oUYAxSDSQavJ8Q2opxhxgEza+jWkc15pr3sWLxZc/HygmGduDhvWbWRkPPI8BRlg3UVVd1gq4aiFOs+MOSCNpZZM+F4YnlwuMfdA5EYkTOz6ZzQD3z97BnWOe7X9zFa09Q1XT+wf3CM1gsUGWc9m01Ltpbp0RE/+PGPmc9nOKWotaJIYQm8zeKovONwf4+DA0u7WKLvHvMPP/+PNN5Bigxdywf373H2+jXu7l2RkzlPSZmvn33NbDrBKIO1juPjYy4uLnn86ENePD9D60LtDEd7c95cLulz4ipB7hvHFqqBFogk1imzXBXKH15SNj2bywUfLJecbFrWq4HJTNhRkUAbNiQildFYP4KoCqlnnUcpSGlA6ThuEo3WFmUjCcEMnJow0Qc8efK5nONFj8CKHqcyI9CCgDSyTa8bOm9/pWuYbPc++1/NqPHeY1BYLRckkYSL18HOZ151ZHZvQVcXpSI+NZXR5EbSmfohYCmYUUOmjVCNM+JtMyRhzeQo5k5bPfbUenTMgnRqmXiJoU8BJa7cIUZskRNYaS8FUACSTMxigBJk0tdYj3HCwsglowuiTx8nWkM/ULTCWhANmMJoI07jOYpztGHUaheKHtV3OaO0IaU4OoFLVzmEiKVIdHRMhJgIcWDdrsFP0Rr6lMgFjJbUpRgyRlsyeUTtDYFCLBGdENNeAwqJybba4bQkM+WswShCSKQoaQznly3OWZw1OD1QG40ulqLEVEmVGqUMfVqxGjq60a9HJ0XJjtBniQjO5cr82DkjDJUk/j55SEQNRYHVmYmv8BNHF3vavJHvUqQDabXBOUdTNRKTqSIZkZx1XSdGyCGgnZKu/hhgLjIVQzQGYy1FfJmx1qOUIuZhPAbT2KHSslzR9CliDUwnFdNJRdcWnEVYVWMiiNnxZ3ofx8PHx/zqV1/Tf3HBz376F6yGr/nkk0M2q4Zf/PwFn366RzXZI8WO6UFEqzkpwdn5K+4/2OfxJw948uQp+3f2mewfsXloePPqgubAs3+4jzU9d+4d8rf/z9/yhyfP8C7y4aM5P/nRz/j1r39L6MGZikk1pWuDdFyNJSRhv0wOhYF10W5YLFbcPTRsQgvR4LB446QzMJ8yOIXOHYt2zacffcJy2LAJPUf7ezx/+gJbO4bc4+vM/rSiMT3rMmDslNnhEZWuGELE+ynTWc3jjz/k6HDK3eN99vdndN2AM4X9aY3C8PDBEYfzmvOHc36zb/m7f+x5fTaw7gcAlNY4W4k8QReRP2U5HrxOHFSKR3vwoNpw0gzYnDlVkb7twNacLzcMWYzgUg6kEEWmWRJaQ9PIjVQbYaAYZCIVUxpBZElJ81oS0LxKVFqA5WQK67CicSIdqiYw6TVH+469xrBeZTwBYsTa0ShVK6qqYnG64fzsjMcff0Tbtij0eP0qKAYgiIHo+EOR80SljNHCUBPvKZg1HqcyjVMo60ZjcUXjLLVRhALGCmKuSFTeoFWWH+dupE9sJ7nOGinCjSbFgBllIDkLc1EXLQkLyjKo9/f8vH3j3RbTf85rbz92u5i//f+3JkuNDYF3Fefv+txvA2puFxDbx9St5W6Pb1q328kn73pNUcK8EkbH9vuqK3NwjfhyCKNGjmlnxfPAm63+HdToZ5DzNokriyeSUlh/kwWTc6ZrW5yrrwrzbVd7tyDbFlApJSptSDtd8V0GzG2viXelxuwWVnqUYsPbZsC7r9kt3nYLuu267ZrRXr2+SAPp9j6/ved237cUke+UInJNYe4AFEmZG/eT0eZbp93/0uN2Ab3dZsYYSarcAVhuF7i3GTO3QbDbYNj2/eW1N/fDdh1up6ruvrZwbRC7BXySmkgTr4jflysBrzKP9hWffXDADz7c53haqMw5xEwYFDoP6NRRugWEDSX2GONI3Yaz5y84e3FK7AooRyjiWWidx7gZRVWkqFBBQPKt4kjlSIkbVOghDqTYkUJLji1x6EiDgDqxqqRJGQe095ADKQZUcpQyMmBSwuqKkCIlBWm+lUjMYuTdtz05tGxWPfH0FbaecJItszIh24a+TbR9lHpgo/CzGYQ1qIbj6YwfPj6mXV/wZhPRWPo4stdyQbqh+saxsT1ft6yWd0mQvg0AuX2u3z6WtmDd9r63Pd52P+v2Mfguk+rt+t0+7mS+q66Om10Q531mibfrDqstja1JJVP6zNC34n2ZEm3bknKm6wS00cWTAGMdWMUQJEY5pJZsFboWtUGmYIG+GzDWUtUVtZ0QVQaDpDgVR6VqyNIcTl1GWSOpv1Gj0RCkOPehgWxQxRM6xeJVy+uX55y9ahnaSO4ToNi0iTZIYI0xEqRTgKpu0MZitaXvO3KWZl4YWkgBXzt87lievqTbdCyWK4JS3H1wTySoCLO49hXeOlbrjmGIHB/fYblac3h4xGK1ppnMqaczXN0I06tkSDJXv2Gwux0lc7i/R0Bzer6gazdcnp9xdvqG46MZ68WSRx884OtnT3FamJXtesOgFb2zwg43Blc1aKWZTifknLk4XxJix3TiOT74kJevLug3PfSJflSl3B7CMoFtVD0UiioMBYYC/ZDR5xvSpqftOwZViEWxWUeO7x1iJ4ZkA5uwJpSe7AawAzFvJKZbKUqR+UQuAaW2jUOF1TL31lZhTcPc3yW5xJvT1+O5pLdEzOvrwLjeGiV1pJKo7tvzMjWyU7+pIfNN41uBmjAMYIRSaZTCaD3qnzNmvHGUEXBRSvTfxli2dMA8xjyqLNTSXBBwovI0lWfTB0JKQjkaqcUZaGoBWIZhEADIaKqqIitNHAJlTCbxVUVMgVASs3pC7SsWYQkhY73FY/FKE1OkDFF8EcbiAQ2usthscEpYGKlI9KSzlpgiaZQ/WSuMnJKLGBcPkZwClTU4b1FWUytDGBk2IlWSSLetcZ9SEgGms3yWM1JAhZhYDGvWccBoR99HctHU1YSmnhC0UMmsvZ6AoRQhB0qSeE9rEfqZdTRG0xQNuRBjwhrHEDIqW4YuUErCGNFrTuuaalIzmczxukBQHO49JiZYhxrdXaBzjydikiL1iiQezhjjsNaI5EyBNxMmdYPSisVGvk/RUDvH0XyPxtWcXp4SBkUsiCmoEbqixOLpUaunCCnRr9esRyO4UsBpTQ5FkjvqCqeF8ZKNHOAhJDCSyGWcp41Z0p5KFlaWki6Q1g6jQVlN5c0o94Cmtnh3fXO0Y5LY+zpK2XB3/5CXzy75/O8/5/EP97HULJYtx3dm3H94jzdnz1hcLshDTaFisVlydHwk55pO7N2ZkXRm727FDyZ3+GQ44uDOPot2yZtXX+HcjLP+lN//8gsaa/hs8Yjvf/oZ3jdcnH/FtJkza/Z49fIlTW344IOHvHrzinsPTqinDS9fveLO0Ql7s0NMUUzvTUidZr3oOd4/pO03tH1HLoUPHz6knkxYXl7w8OSYdbvm/CLy/R9+xurNitxuePL0t/x3P/uIe0cTXgyWbCz1ZIJXDr+pmM3mPHh4zMHRjPv35xztN9SVYb1cQm7Zm3kOZ1M+/fCAO4cNwwPH3QODKwP/+Lvf8/R5z3rdopQTs++RGS+qBoVVmX0f+eS44YN5T6NaquJoNwnjZqxXLSpGYvGU0TBXjzrcUqBkxWq9wTnRtOYcSVF8KQpZrhFakUsiJcA66fhoJXTVImkDbUocHRygXcY4K/Gnush1szeokkihR2vPrGnE3V9Jp7+ZTMZYY7kOlhQxJmNtQRFpak8yjD4eBWMVtohHV8oRaw2NrWlqR+0VuctY5xhSwFlF47Uk62hDsZJ0VVcWo8GoIgbD4wRyd4I6DANV4wWqH5k0KQUpCrTce4y2WC3R9Kv+/Y0Z3Y5vAze+adlvWuZ2gXD779uF580XXzdUvmmZ7wrUfNPytycf3/Qd1Xam8h3GNWjBeIyrq3kHaoxr19JFtaPvhHjpFSqncUb+1rmMSWJI6mKUxgXjvTmX6+Qm2NmWWjFcRbtemwZvY7evZS0iRxhCoCjzVgTu7UJ++7NbNG0/YxdQ2Z4bKSW891frtTXE3U2B2gV5tu+z/X27g6+USAW23/UGW0ffLEyvizyROsvjO1KL7fxGuEmy7Hfcv/+SY/e8yaVQrgDA6+24C3zd3i/bn+323cpittt9myp0Dea8Hb19e7/cmNTvHB8i/5BjLiKy2YqWfdPz+NDyw8fHfHRkmZkOW05xHQQ8qjpAu0AZBvKwIvdrSgoYY4i5ZbW44OysZXGp0cUQDVjniUFjfE1WFc56ch7jvEWfLt3jElExUEJPCgMlBcLQk1IgxEjMIuXJpRAzOBRdP+Crauw6J3IMaOskJSwjsbcGYhrPyQJ9iKAtXR9YLpZSHLlE2z/hTlvYv/OQOCjCJpCTmOj69QVDVeOrKX52yKOjCenTY/7pi1e8XvUMRWoUkU4qrLFX23r32N8F07bj29KYdq/B72LUbJ/b7u+U0luG49uxe43YHivfBLKYUeK/e4xuz9Ldx2577bxvY3XRYY2l8TWNd6Qt+KYlFjunwhADue0lNbckTIr0RPYm+4ChDx3tELATR7/pySrjtB7lrhDChtpXGGMxucYqQ3+5IaqEtxVuUKhoKJ1sf2cdJUqyU10qhjZTgqLvI6vlmovLjtPTJZeLDf0AKZYxLVYRUoHRpiFsZU8otLHizJIiuWspMWC1hKzszWbcnSkOastmsyH1gb3ZjPrgkL3DfVbrFXv7+/zh979nvrfHyb0T9uZ7UqM7x507U/74x2ccHd9hPptTu5qc8lgLQla78t2bQ2vFpKmZxczr12doCi9fPMdpxeuXL3hw74Rus6bEyMP792jblnbTsr835+7xHeLQc3Cwzx+ffoW1jsXygr7vuXPnDpPJnGlT8/T3T8hDh1eKxteE2ErT/hYrV47pQs4767pz7A45cwoCjL1ZMfnDayEaGE1TWWqmNAdT7HTKOmxYlHNiDgQiMbWiuslbE/8AKiEp0QaNocGiVKbygdocMBDYbPrrdWRLSipX63WFLW0XYAs47TZF3p5HfZdz8luBmrbrCEoznUzwtTAeVBEfl233IedM1gKzGwXWxqsbVUbi8yprUUqPcoAyRqAlplkkUSEJc2b7G+NEhjRSEr331HVNn4v4UgSNMuAqj7FTrHdM6poUxeBWu4GkFTYrsooUJ+lDpSAu4SM6pxSQC2UEnoqxDKMXtcHijHRClBpjxxUYo6grJ7IFLRHOSRUw4v0SsyYbhfUeXSCEgCJjFBStRwPC0Ym6CJoYVKYjoLO4fasopqWVl4tF27YoLcaE3nm89+SQqJzBABPn0K4wqxumVcPedIrSmsv1iov1ChsLIRR0FmlRKpKe4uY11njWqw3RGFT0nJ1G5rN7zKt9QjjFpQ2pdOTY0q0uKS5hjKcYMTS01uBQzPyEw/19Vps1g+oxlaHPQY6VEFFEHCMWWcQDxhiLU1amHjFSeS/yrxCJ7fakUKTRT8BbxbSZsDedYJEovFAkiUFrMWvz2uKMYxPLlcv9zQ60RBUr48TYLfQoCtNJTUxx1NerEdB6f2ecr55/hc0H6GCpVMO8PmCzisyOW3700w94+vRLjg4b1gvP5SkkOlLRPHh0h+O7Rzz96imumZP0inpfkzgn2oFXiws2XaGqa1xtefSDYw4WM5avNzz96gU5aB4/eoy1nhAibTswmUw4Pz+lnkyFgulq5gfHNHv7rF8taGxDzoHL1QKSoxsGvn6xYLVe0vYDR3ePWS+WvHr2nDb2fPzZA4bNBnzN777+A3vNPhMLi9UZRg08PDmgXTe0asJ8b07uI/O9GSf3j9nbd9w92efk3pw7BzPaTU/XXmJ1Aq/YmyjuHXoePphj1IRPHp9w93Cf+f6M8vPMk6df0QdJbZPLhcYaS8xQG7g7M3x06DjZy6iyJoY9us7SDoGgNXfvHJNPO5mspow14pFEFqBGofGuYhiGcdInN3XpfplxIieIvbEWpc2VxwEoVFaYZLHZUhVoVI1Phkpfu9yj1HitFqPEEAIpSXpJVVUjqi8syJQjs1mDdXJuGI0AmUqKL2sNlbZMmgqA6WSKVxtqb3G2UFkt4HXX451jWlc03tL1AwmJ3Z7NJtSVo649zhmwDu+9eOqMRYj3HkZfGqMN6EyI47Yro8liKmQUMRf6mN5xVrx/4zb75Z/7XjeAmluP7y5384XfDNSo6xd94+v/5PLbn/9KoOaKDYJ6a1n5EeBOazBWjgW7ZRkgckQ7Nm8ArEo4A5TRpyFHSgwi7dHil7SlhGzZQFv5wlWRPa7HLngjDYFwo7DeFj8xRqkpXHWDNXF7n22Lr9sSitvb6ao4LAXv/dVn7e7DUjIp3SwGt0XiTZCm3PgMtWWnjcXd9jtIMZiv6NtXbBBGM2e2E1F1tW5qTMxSRbwhirox537vhhqvj+wU4SmlMQRim9Qjy97erltvm9ssh12q+/9L3Zs8SXJkaX4/3czMt9gzI3JPLIUCurqrWT0yJEUozQsvPPBAmX+TQo5wRDjCG0+kCJc59FR1NRqNJYFcIjJj9c0WXeegZh4eiSxUFTlkgwqkRISHh7m7marpe9/73vcN5//956U0iAazea4cGIP9uR4S7tALnxa9tXIOmfJ7qaRnf6r5+PiIv3ioeVQumKW3dPU1wdUgA1ZViNkThCry3HcN2DUpdCAkUWpimuNY4ZOkC4ZRWZBMzjliUISgkGXRC8UDKeFdIPWaayk6ZA80OGdJKbMego/4ANZHvIsULqKjwPmE0ZKms2iVW4pNZeicRyiT5ozpZAAAIABJREFUCwYiwwuyr6U672g6x3y5YjVfE23Cukhr14TzmrpzPBGKcnKIiJ5muSZ4h2sEnRaMRmOCXVHtHvL500PG1YS//+GC787X1D7r/GgJCdnvv7etREMb4HCdtt2dtoE5uAVi39e2Gb6/A4Ru3SPfZ2W9/7vt+fWhv70DvPb3lG278Jxf9JbU/bX6OY/59TrfxycKWSiize6XMWTXtTJVKGEoZmN8DKxcDUGyXjUkK5BK0lqHKBUSQ9usaG1LcJZCacpiwng0QUsDEQqh0GhCDBkYjYoJJaYqsK2jWa2h9pR6BA7qecfqas3ismXdWJZ1R20jy8ayai1N8qQE9/YO6Oo2F9xSvp/mwnZBWVRIleOedrWiq1dE16CiZVxKDkaGh4cTSi2pl2sKrUhVxWq1ovOOUVVSr9dorXjz+jUhBO49eMxsZ4cvv/yKz7/4C3xMLJdrxnuO87NzTk6uKY2hGGsiCTnQQfqR+nb/4c6tpKAoNMvFgtM3b+iWS4zOtuVXF2dMRiPWqyW2c3z26ad8+803cO+Iqqo4Oz0lhsBX377gi7/4jNGo5PLimqapKUtDVRgUiVFhiCGyjrZfR3cd92BYf/0azI9s9F9A0JJdm3RtGb14i06JYk9SVCVP9w4YFfvo8ZgyWNLaMG88Ka0RusjGODF3dGSB4ay7K9GQFCEqkrDoqPAh0YXAYr7KQHH/XoYdMZ+6dCcmGjZBIWS2ax+Kox8Yf0ps+JNAzWhUZj0QrRBKEJzHO5cFuXjPzjAmlMyuO2Wl8ORWGy8iwQiU6jeB/oZUFAWFFEzG1ebDDgFDSPQbwBhS34KlNbUN6BBofUkXsiV2UVboUhOFoPUdKM1IZktmISH27Tl+m2IoIq53UYkxgOh1ZzyU3hGTx+NzEFJklC6Se96ESSgJRTJ5U1KSmAIpRaTSjKsKqURvY6np6PDR52DTlEip8KklSQ9933wlDN4lbIrE3DxF3XW4dE3jatZdh1SSgryxaBs5SpHHsx0+e3ifX5wccTguqIoKZInRmWLX2Y6r62tOL1ec14n5ak3jPcu2JQrJyIypV2uShS4KVDFhoQqumyV107JoLbIaUxVTRFhhEARxg1ICFy0igrcRbQpclJzPr1g3c3ShqYoRqhV03rLu6ry5K0lRjHFOIoKjkAUjM8Jai0uOpGJ2fIoOnzJDJsRAFAKhQChAy1zY6TVD+jVLEokoI044fEpYJC7mxFaIzOCRSmJSb5OuJEE4bIwkCTNVEmQkxNjrGdETJn+e43j6Odf6lH/5X37Or35zjKoCVeOJrqNZJC5edyhfInyBa5dMd0tG0zGznZKdvV2Kiz2mezNw1wRbEZnSuSXX10turlseHZ8Qk+H112+ozITjvRPCKFLbhjfvTkHnNVuMC6Y7M47uH2C7BmcbLs+WnL18zWSyy95sROsty8WapvFMx2O88EQ8elwyNpqu7phNdqABVRQEL1GxILSB/f0duq5mbRSv20uSveSX1TPOR4ZoJFWpQUiqwjOZwMNHFZ9/ccjj411UVJy+juyOdkg7iaZdsrMzZryzgykqZjNDMoHfHH7Mk492ub+n+B/+547v3y1Y2RYb1qgkKKRmT2k+PZJ8dhh4qi+ZtjCe7ePsmEVzw6J+y/37j9kZ36PuvgbfoiwUhiyCrTvAZKH0siKFBpESWhbICEoWOREDtCgzWIJgrBVF9BRS0yiIxqCSzImrCBiVhVMLpbJ7UvQkAjY4gqjASCIBhcKIwLgKORmLeS2MTdafMElRCkFlAjUZYJFSYJQi+Ww3SrKk4hAREztlRZlWRCWoDDQh31t1EZBlInR5W80thpqyFGgjUVqhtCRo2QPYEkliVBYIZF6viB6cKbL2iBPY5IipRQtDcgEdfr5r8//J2FBpP8CQ2TBMhLiTSGz+htwqcFvp6Y+5pbW1HRSoHwUI/fHywW8f6YM4MSA+7z9/66E/FZDaBi42YEbv2zSAAjKlQTYeJWTfaqswSqGNQvcC/xmsyS3HWfQ7EKwlDUl0in1vedaLG5KZgfUggFLl1qdoXQYthSARwOhN0jQ8f7uVaZvNQkqIGEgxZNZaTIORFcNpFALSoNWhNULmtkEBOOsykzOlXri4HzGDMkqIzPTrg9Xt189tEBLdmw8I0SeHfdwjlNgEk/kcaIY+lgzYBpQCmRRCxPy+UyQK+qD+tmqYp1b/Xx9MD0BgSjFXwX+mIzs79XFFCLgeoMsuWNvrLSE2LTEDOwYgF4R+3BIjUUpv5vOQgA8J8gDmDI5AG8ZND8IMPAgpMvAoTERqkNEgY0KmwGxa8vmTKX/5yQ5H5RXj7hVy+Y52ucAvV9ReonYfMDp8QlHsoaMlrTUxrXHhHZIRRu6SksOfX3D+5oJvTxf4xrEfofQTdnYMIXa0bY2ppuAjQnq8XSNTZuNokdv6ozCEBCk5UuxIocW1NTIkhE/gEyIkgu2QZUWybQaKYkKpCoIkEJHCk2IiBEdMgeg963pNCB7fNTRtS+cide1ZNYl1J4hBUbeXCP0Vz559QcEhKlk6t8Kua4SItGvBjh2hw1vG8ZBfHpzwaHbAb19o/u6Hc64iWKVRyVCI7EZIiiQUUaoNq2kbiHmfBXeHxZLE1r/B0WtgU2UPX6WGY2RHmEF4/H32zfb98X0AZjvvCiEyvKX39w4PmwJQTOQW7p8xo+aouodSikoW4EDGrO0ZegkLJSPetQTnMLpkX+0ilAQDZVH256gkSU8pSowe0fqWaGIG9hNMGDPSI8qyROtstCCLQ5y3+OCw3iKDQltIlx31fIVTFb4LXFwsWK1b1gvHsu2Y+46l97TB4yOAZDIak3wgxoD1DptcNqJB5C4QrZlUJSIFkizwMe8BwS3YGQlOdhVjI7i8WmC9YNVaJiM43JuyXNc8OnnGm7dvqeuWjz76lCTynOramtlsxNXVOQeHR4zHFV3TUR0oThcLDk7uo5ICEQgiInqnsiFMGJiSPiTazmODwIaINAqhEzs7I+bXF1RakZxDpMjJ8QOa5Yro8vr94dVLvLfMdnc5Oj4GoXnz+hzbdezv7HEd59x7+ABdGC4vr7hc1LhUMW8Sjiw7MKC0KaQs/yEUIflbLVKGwlAGUz2CuYcfFgF91sHv3+LWEukVxzYwvncPURXslwdAwtVguxsQbdZh7PPH7ICoERSkJLFphfCShsS8anHdgm7tEEkjEEiZM/XUA+ki9QWWIVbqCS1yAPFT6o0MPlww+2PjJ6NdU5Z9+5LE91+F0jmJRiD0sDHlCx16K298trlOMSKVolIyC8h6xyYQkzIHD1vvMzvz9KrdhaEsi82HiTFSlQWHBwesmppFvab1DkIiuIDzjrZtcyWJRAoRKRQqCZKPiJjwweXqbZU3P+dctq5VmYXReUu0mfGhRN9uEzLYRKGAgI2eoiiwTdZuiTG7CGilmJgRShqMzr2RXRcISHySJJ81+lPPuvEhq/YnFCJFRHRZLDkkko+EFGjWLS5CcJFRIdnV8GRnzG8+ecpvPnvK4XTMTqEoo6VIgZgUXQSEhwSzUnF4fMinJ/dI0hCAKBU2RGwIuABtm73tF9crLq9rzi5uOL2co4zmXmVAtXQ2sraBIDQujPAhZu2dAKp3W5o3K1q3RCjH3qhCqOyOk6eDp7Ytvt+sRMqJ2KgYMx3NWIQF1jq8j7nlrLdQlIVCyZhv0kqitcE5xypmpkD0HmVywBNiIIlchQmuAx8wMVL0+kdd8CQfIOWWNJUS0WXrzUSi03qzGnznifxpC+ifa1ytFvzLv/0VD5+ccHr+gmQ967plhODVD6fcXNZMqwrQ7E4Pma+uOX74iNlsj7LIIrtffvUtv/zoEYv5Fd+9eEOMjhQlSpS8evmWX/ziY0bFiMXNgvV1zf7eAbOdbIs8Gk2o1y2nZ28pTcl0NGJ+c8Xu3gwlJRfXlxhZEUaGxXzOet1xfbXi2dMp8/mcqlRUpeHs9Tu89RzuO8bVGKMUb364BCIhWh48rHCdR+mS/XtTFstTKmbsjfYRo3tUJfjUIbB88ukj/uqvPuLkwR4yOmwdKaqKBw8fI3VFXY9BW86vr0ipIekJu1XJbKaYfLzLv/pX/wVlGfjX/+P/wos3NbUYE6iZqTV/8aDirx+NOJl4itQhomOxsHRuzvnNBaOx4dmzx1w5eHtxRWdFFuqOWQtj0x4QA871m1Jf2Uipd3Xrk2G5lRwVWqGlyGKO3pMGW1RibwXK7T8g98dCYbLQpNKZ5i3IlZLs0NRTt2Pum1ayyoKUvXOelKIHm2XW5Fh3KKkIMeUgW0jGhUHHRGEMWmUtHK0kWueERmuFVLlKbZTAaPLPfXXfGIPaVCCHqmUGp5qmoaqq2ypjnzRmXY3MAFg37f+Hq+3PGx9ipPwpz/vQ7z8E1Azgwo+AGiG3Kk5s9tYPsW2kvBXO/6n39adoGvy5n0+IrZ7u944veqBJQp+05vmYBd5l7oHXMheFRO6Jl0KQgicmTwieEN2mCrvdciQSGwepQb9hE1/0bAmjDdba3F4k1R2Xl9SzW5xzmdW6pQ2RwZKIGNgpQ5U7DklY2LxuSikfv0/yQvBAb+UtRA9+5ILBUA3PcQ29W1NACH1He2I4b4PjUgj5PWvZ2/aSmRuklI0W0uBUc3sdBKB7V7jUt4QJbjUEhquZelZsJodkUWfRv4+fNZ0Gcptpz4AaAJQMrNy2sMEwD++2pw3ADbBhIg0sm8wO1Ahxy14ahGFv/56tY/drtm8lQohNi6oPHiEFSRhQGq0j96eG3/zyIV8cJ0bxHLV8hajP6ObXrG/WuFQwPnzA+OgJarKfwTfb5licFonC6BKSZ7U+Y3F5zpvTG16+WrEzUkyVZFTJnu0+Amn6wmnWJhIpEF2LFgXeuqzBEAb3vkgIuT3K+4AUKse2qY/dnKNta6RXSKUQwlBUiuRyfB1dJLiIt1lMtus6Ugx0Xce6XlOvG7rOU9eRppUs1hn4aFpL9eaS8eSCnWmFUgGSI3mHDxYRoJOehW9ol5dUo5dM9h7z6+cPGY9P+O33cy5WlpA6kAobRGa9Jo8KOd7dgOPyVsfm/bamQfcqA5bDKslF4Ls229vaM3LTzjYwdIZ5Bbm9cZu9M7z2MOfutuXfAn/boDLi1k1uMNT4gDLJz2YYMaI0JcF5jNYInXOFsjCUVWbdC2om415LRI0gQdt1PUAdGY8mmKpgNKo2jPqmafL3rqVbW7q1ZW9vDz3RKDQCKHTZ1809bt2xeDfn8tU72lVNoUbYLjJfrFnWHWsbqX1gbhvqGMg+sQIjJaXO+0PnMvADt22VakviwXaWGDyRyHhUMKp2mdFQJri6uGZRd7hoKKuK6XTKsl7x6NFDxtMJ6W1ib38PqRXlaMxqvcangJKCN29es7O7AyR8G5CzHcTFOekXnwI9uEjaWNJvwMFhrwyJpm64ubzizetXTMYVy/OGGBSdixzu7nJ+esrudIqzHa21PHv2tG8hSoDk3dtzxtMZe3v7jMoR15dXvHz5Ems9zTqTDnZ2dpjuHWG/e826zWz/OFTde/RIkNnlIm37JL2/xSRcCKxix9n1AtKa1bplvlrz9PqGR59+xOHJCbP9KVOzS1c5XBNoXMIJC7IjxQ7wOS+NWQgZHahUNqRZtzXLi7csF6sN61dsvYt8fxxO41aB7ANx4FC3+XNAGvgjQE0W28kgS4wRLXPwncU1I0rJjP73m/xQSYlCZGaC7wEPMqrc9YmykP2Nz9/aWt0GAXkzjemuQJa1FmkqTFkhJRRGIWQOGrq2I3hPctlyWUqJ7m22Yoo9OycrvEupMUkhSQRn0TprtWTb10BEo7TG45AIuuBp8SQlCRJCioTkcd7nHjep0KaiKkqCT2gUPkBjM5rqU8zpVxBoPCKBj4nWZcpliNn+NnhHZ22+2fpIqTXJQSUMh9Mdfv38Eb/56Am//vgZhwVUtKTYoaLK1UNyElMA3nmkHND3hBQRQpfFdBEIpUAJktCIiUE4y7pcc1MueDhasDgBWypKHNZ2rFLJeRxx2SZu1pEmOJJRKGNIMdKmjjoFfJToqmC57NCl7xkCEusDTbfOMsAi9RJBGiVLSArbhVzFiOK2V1kKyiIDhZ1VOTiV2drOOofsqXJSqDxfyEkkQmTbxWAptGRSlUitoOuwvdq5lIo0BO35KGR6TkZJq95RSvDzFV67aG74xT58+eK3GDOiaTqePD3GzZdcXa9ZLDuur9c8f/aEZp24qdf89rffU00O2Ns/4ejwACW+4st/+EeePXvCb/76P2O9XmM7x7t3l7x++TVnp28ZjSpElIzKKYubFYhM/+8ax2Q0ZTFfc1nfsDOZsjMbs17VHBzuM55MsK4jxmmuMMXE7u4ub9+eIZVhtVwj0yQz4nR2XXr6/BlXN2vmruH65pLprODmcsF6teDhg8dcX7zlUv/Ak70dHu2UvZJ+zcGx4S9+9Ws+/eQhk4lGyUjXeK6XS86vF1xfdazqDmuhsR5dGFb1nKv5DZ9+co+DoxHSKA6Oxvy3/9Wv2e0u+Tf/9n/j27OWVHo+O6n4Yj/x0XiFioEmKFZOUrcdznY0tuP50yfo0vDu7TWXNwvargKdA7+hpSLGSNO2SOUo8h6AEFmDS8hsSS+kyJbDAlR/V5d9IiTJtsJZiD1reRkjs/aSSH1bYURLgaqqDAD3/7L4eaQwenM8LSWF0cTeCcBo3YsGZ5vuRMprMFqkNAips0aUkExLjW6y21/ZH9NoSVlk/rxWmT0TYmRnZwcVLFomBgtOY3TeENmuNurc3qJ6cEskQvB94B/7kyCxwLz9+QI1f+74KUDjDwE1w7gDNoj4fhTz08ff9gD+E9/Pf4zH+VAAI25bn8RA4+krXUqJDRio1ODwlNkrok9+CFkzQ3gPKbyXIPfHT5nB+iNdFpHtbIeWIeg1Y/rYZkiMcsEgAzxt22J6MHSbYSPELXgyHCeDJ2mTaEFO7spKkLzdPFcpSYx+83fb1fEQMvM3ccvqgdvEcTjX2wlfbtnMIolD20PqwZrB9n5g30iV50KMucAWY9iAfgPI9UEMZutS/sdq8ft/c2wn2O9rEsFdIPNDf/t+or792MCUeL9dZbj3D8cfkmmRkbUfga4kCDaRdEQb2N8t+E8/3+Ozo44dd4poL/Grc7rVgmblkXqXnaNnlPv3CapnwROIviH6FZDQukKiWdXX3FyfcnZ5w4vTJS9+6Hh2f8rRKFfOy/GYoqzobG7d9d6inMoxowDXdBk8HBgfzhK9z9bG3hNCZnmEKOhCRFmHLDyhXmVwXit0UZFakNriU6Du1vgu0KwcTdNQFL0Ascu6SM5GXJcIXhK8QiRF6yLLJjG5idxbtsT0DikSInbg870g+EAXA90yt94XJjDbf0c1e8nT2XOmz/b45pXn++uGK1vSyDFJRCrRoZODrXbB29ZAeWeOCyF6zaiBRZOv8/b1HtbrXZbMwNIR3AVduHPs7WO8z7wZ4ortlqxh7m7rJ20LZP+cNWrG4z0EAiOhbRpSjNmWu83aoJISmTyjcoIQuXujKAratsU5twFfRZQ0y46YIpPxhGRkZmyobFYwtOyDZHd3j0QunikhGeuS1xfveP3VC+xyTSkLhIzE1pE82BBZuI6FtTQp4nvJBRAYqfPxY9Y6HfJakUBrs9FX67ocNzrv0IWgW82ZmcjutCR2jqa22RmqHHOzrjl9/ZJiMuLVyx/44c1rtCkwoeJmfk3lLMcnx8SUuDg7Y1yNePXDD+wdHHB09IjQ1kTX5SJfMNAD0Jk5Rl8Q5BbAB5Y3c15//4LV9TWnL74ltjXtWrI7m7Kcz0kpMNuZ8vbdW8azKV3fMTEa5e6I1bpGG8PV1RW27Viv15ycnPD7v/8HppNd9HTKu3cXzK9ukHhmZWbPu7Sl+5SrALfxzh/afxJEIjbBVb0iBU3rE3Xn6TqPXTtUm4jNfWb3d9kvjohJEILipr4iyDUxemTyGAmlyfdzpQ1aaJJKWNtyfnrNelVnF+yUTZFuIdnb4lPeXoe1Pwgh07ORe/DpAySAP7Yuf5o/3ovp5vi4p2oKQRABLT+ANCP6G0MiibBBeYPI1FtdVhtUJsdi2W0pxUzZvq1Q3aqZwyBIFhHe5pw6eHKxtse1Yq6EVSp/nAFRDjErQaskULpAKcloNKIqs6OLTgptNDvTHQpTYMSKTnc41+JSbkEKMSFDwNpA1BG0xIZAiBmX1KpACU2yAoOhUhUxJIKtSSaL3Xof0cnQuuwA0zQO2yW0KpDKsFjWuRIRA7OqYlxWGC15/HCfv/70Gf/JLz7i6e6YXSzKzhE2QlKZnSMFMZmMOEaPTE2mgPeTR6REiLkCH3xP/xb0FZGQkzvboNolU2pU1TJxsGiuiXWD8gKvZkwNJDVhOjvmYrXk7Oqa2jdoXSC1QJQTymJCsB1eZgqrVHlO+ASNs1jngNzKlogsFguWcUXbtZiRJvQij1IKjNEURoMRmbUUb9W1s4p6riA6skd7ErfCpAgQI4NWBmVKtDSUSSFC2NilS8BkSAgjNaMoMUZSaIUxBV3j/+jy+OccDz65xz989zuO793jxTenrG4crm0wyrF/b5dPPv2U6+sLTi/eEb3EJ8F4OuHiYs6TdcdkVrI7G3E6n/PVP37DF1/8ilG1z7gS2E7y8sV3xJgtWN+eXWFUzeOHTwjRYVNksbhhXO4wGc8wsmS5WNG1Lc8/epRdykJkvpozqSqqcsT5uyuWyxaB5PDwiJbA1XLO04+fMpvN+N//j/+Tr19/y8fPf8mT50/59ruvEdLTNCv2Dw64ub6kMpI6NGhxza6eslCPmd27z9/8zS958vgIbSJKBGznsZ3HdQ7vOqSMaJVIWtO0BW/fWm6uLkhxgQ+SXxdPGe8cQjLsTW74r//2C8bxgv/1//p7nC95flBwGK+ZpZbOg/cj5uvAsnEkFxlPS0ajCct1w1ff/cCyc8RUIqInuAhC9xskfeUxV9Q2jBIJt64qva0GuVpZGp31rYLPtoqptyFVMB4ZlOyB2BRJ0eW2EJWF0UXKGjNSZOBEiny8QusM4BAhhAyqCBiPSrSSjEYFptCUZYlUGu8C2kyIKa/niZZMC4XqAKEy66Fn/5ieAZS0JolcvbFtw2xkUDLrQ9Hrg2WrxG3njBzoaz0kPAEhJElGksjATUwJj8D+CUyP/7+MD2mZfOjn98cQvOf7Yl+FEj+2D/7QMfL3Q5sUP/r9+6/zoerQ3V7yD48P/S6997s7n5MM1Egheq0kNvMrz9e8RhKq/zkSibfrI/o7iczwVWuN7mOUoR3Fe5/BFm4FOTfslSHR7n+XjQ0Sbdtu2DTbzx30Y7ZB2eG1c+vDXSHPofhkyh7oEYMcr9wAWUOCtX1ssQUSbFfkP3g+BcQQ74iIbs+LbPwQc8tJD2AJTw8W9e1XAhiYsD+aP2ze62Ye/szBmvf1Pm5Bl9uc5X0Xrg/qf/Rjm5mVr1e6c74/dD6G2FYpheQ2qd/YvPfH0zJxbyb4Fx/v8umRZ+JeEdoFoWuxTuHYpTzcpRwfEsoJVihiiGgc3ncQWlK0SFkiUkXbrGnbJVcXS755uebNVaQLBqUrtMn2tcVoQlFOkCYzY5xz+OAhesoiAy2uByyUUjTrNd52ON/R2g7nAl0b6IJg1UQijiQ6itLQdS4zOK1HSIv3gZgC1tc0dYe3kmo8oapKqvEE5wP1lcX7SNN6QsjMOqUFbeNpPCzqkqZTFEVNsA0i5NguhEDrWlzbEoMleoEWmvnFa2Z7bxnvvubw3ifsf/yQ8myH353VdCERZIFQGpns5ka1DYI45340P/J1jj9qiXt/7mzr0eTjRe6IpfZjWEfDfNgGeIY5d7fF7i74936b1DbQ83Me49EMJRVKCFwXiES8A+s6UmwpyoLSjEgOirKAGHFdRwqBpq4zU7fvjqi7Jhd1O4fWhkIXuV1FwmKxwFoLSeFsYLVckoJjdzZBFZrJKDuFpi6iSoWRmnnTsG4s86Zj4R1NirlZJwF9UbfQWXfFOofv+SGyT3ZzYSrHVAOYbipDc3WNqRfosYY20DiLVCU2QmE0jx4/YNW2nF9dUYzH7OzMmC+WlEeHIARGSQ72dnl9+oZPP/mYy8srFqs1i5trRFTsSMl+PEELSCGzsFNfvGNrPsQQSFLhrOf3v/0t//S731PPL7HNir1Rwe54jAJscBwf32M8GXHv+Ij5Ys5kMiWbYWSc4P7xMVJrLi8vkSLn3G3T8Pz5c968estX379kMV8ynU55cnzC2fkFKMV1vcL1mmp9iSCvHyQh3F0n6b3vA2ARLLpEe1lTt562dtRXNcvzBfefPeXB84fsnOyxs7ePGlXgS1ZR0doVUji0ThSFoKw0UhcYFF46Ugx45xFCI4deCzGU8cVti7W45duIvsgEW+LzvWPXh4CaP7Y+f5pRI3rqUX8yYsqUHyFvN6chOKRn3yipUDKR4pCcCExPX07xrhWXYLvPd9gsM8izTVuGfMMJ/QespCAmnelsIaBkFitOKeGcxRNIIRJ9RAJVVd32pUsNMbfr5L5ig7UeZ7MYoFIa5wXOeoKMCCkZmQqtAlZ6WmcJPhJ8wodIsBHlBGNRUhUGLLR2hSmzvZfvrbpUEiQBgUj0ARUSFYFZaRjprO9zsnfIX3/2Kb/85BmznTH3d0dMpaeMAd3N0dFC8sSefZKSQCWJs66HHgJCJYJzOQgb+tSRJKmJ3pO8RaUEfdtWipYCTwgty9UVXetYrlou3q2YLzy1H+FKT1dZxHiPVO6hvEclsLWlk4mqrPALkIVg52gfmRzRrxHSk3BZRDpFgoBCaQpjcCHTYW1tKUclCYGzjtAFitIgi9xLD9kaGHpl+z5wlDILY1nbZTcupShVRq0LofEGxqrEOInqBGUc4Xy29R4VJbujCbOiYn8y4/jgCJMnMiGB9YKztwsur9Y/tTz+WUfA08UF19fw6rvhZ5QQAAAgAElEQVQlL7++JjSHPP3VPtN7I6Jw7D0oCIXJjdJLxXrVEoJlPp8znhzy4PgeL7//Hmfh97//is9/+SuMMXSd5fnzT6hXNVJUtE1i7WoI79g/nEGSxJCV77NArkZiCD5wcX7FvfsHfTAxVGwV0+mM1cqyszOjqgxmcsjjJ48RCnb2dviF+5SLy3Ou6lM++eIxjz/9zzk/f4eUItsN3ryjrBtU7bMAYPOWnRPLo0cHnJwcoE1CiUgMAm8Fu+Nd9p7s8uDwhLb2zOcd11cLzi8WzOdrXiwafvu7v+PtxWsOj/4bno8PkHLK0iaKkeGLXxwRV2Mu3l4juiUxei5bR5QljQ+0MbDqHKXIlPLVssXVa85vamy/1iVZr0KaghCz+9idaj70zqA9vVwMAV6+H4jUVz5iTqaIEe86JiprVQkihVGMSo3pmQZGZyezEHNyVxiD6pNd+has3BqlKEtDSpGyKEm9U10GakqEyImgROa2gCTxgdxuqAOGLFZc6AKjcj+/UTKLrOvcD56QtNHiuhYx0hkk7RNIocTGRWqgZXsX6Q1t+rnTC1dKQSRC8OiiwqbI6mcujLg9/tzE9UOgyPB1KJzw3mP5B3pm5YeBlfcT7YG48v5r/tTffoh9sD3eZyJ8CMwZCiwfBqj6GGPDppG5FW94nNTrGuXPGlJmgKSQHdGU0hQqGxdsr7UMrMSeUSk3rXU5Gcqi4dsJmVJqc4xB8No5t6ncFkVBXddUVXUHnMnv+1bXAujZLHftdbXW2K6DXhclAiIKjCkQ5LaSbcAoxog2enNOt1sdtlskhkRt81nuJHQ9MLEBgDIgk4ZzGAcgLAfLsWe1bYNo29dyuIYfAsZ+ruN91sHwWGZH3y0+bs/LDznmbJ/T2+dzB7wbxtCa8T5YNzCYNte4b3mRKjEzHX/zaMZfHbZM7QUizOlcJKUSYQxVVYGZsk6G5ECJgFKRFC1Ei/cd0VuqoiR6S4pLzs9O+fr3V3z9Q8frG0dZQjUR7O6NmO1M0NUMoUomlYIYUEriupbV6obz5ZyqqiiKAlMUaKVYr5qsJRMsre1o2kAIknUTabrMFPWhYzrOwLy3AR+bzKS2FqkSRZkd3Ea7E3Z290nKoMuK6AKjyYSHjwzNbo0QhmUTeXO+5NrCfCGwrxpG1Vs+/WhKKSW+cyjpMyPVaAiBzgXWa08MFUZ5us5y4CLJ1oz3Lvn86At2S8GXZxdcdQU2FDnG7nObAZTaZqVt39du7y+3AM0fArFvWXV318r2fXD7vrg9th+/e4+5fT93waNbFtCfAqr/c4/r62u01kxH483+P6oqlJIsFosc22tNiJ62iSByUVYrzagsEUIilaSqyp6dmN0kNZKyrDbtUPW6pfEd1gaKIlLoEl1VlKMK4RLj/V1mh4csm3NIMhf9XGTetKxioE2RPBME9MUrjUJG6NoOT8APzGEkQqpeSyivhxTAGMN6PcekwOG4ZKYjRI8NgSZGqp0Z6/WK12/fsHd4yKQa0TQto4MDjp9/xOuzM3RZMS5K3p2e0q7XvGkairKi0JrpZEzylvX8muQ6ZN86PoDJd5Bp6H+GdV3z5e9+z7tXrxgZ8O2a3XsntOsVBwf7dLVnf2+PN29es7s/I4SWp89+yT9++TXzxZLxaErqTYAePnzI2ekpl5cXHB4c8vuv/4Hos3vnweE9jvb36dZLHt47ZP36HZpM6ojDnpfiplVvGzfYHsNs9jnLpRCStU/4lSf4mmbRcX2+4PD0Hac/HPP0k2c8/PQp5eGM5zvPWaZD5uIal2qkaZCqJUSLEjrvByS0Fuzs7mYspAe4st5M6ruIRB979e9ps8YG8kkkiQHW+XCc9ccKHD8J1MTeESmJLIqTvw6Sf/3766tfREjcKqOjtgIwkUgDpX8rkNPi9kRvb2A+5d6+4QJthNlSD/TEPKlCD9TkzQuss6QQCdZnByjvqUZjRmV1G/CEQBcjrt9EW2vp+gBMCNn3HGcGDyq3Thmpe5pswiGzK4xPuC6ANOAESENT14Ro8aKhLA3eW4TyGF0gbO7jNYVmtFthPIwF3N+dcvz0gE+PDvjk5JgHu1MmpUSqlmS7vAEnssaOUFgpEDIhYoOIQJIY57Nom5BYrXOlohcgFELkdooUUDEgYkAGT1uvc0VQKxKB5GLu3WsDwUGI8OJdy+nCE0wEfcFs/5qDx5+wd3DAwltumo7z6zm2ucQ4hcdTnCkefrLPeN8QksPGjqBzu1yKaaN4jorIkFCTAm0UQqXMummHBDPgtSMlT/AehO77m8kAoJIE77KYVpHtWQtToHudARmBtWeWSqZiRIFmuV4xKkuOd+8xUQVi7ajqxH5KlA92WLQt67XlZh14+apmsfz5JoNt2yKSxXUW3yTGesxYjalmI16+uuDmcsFHHx/y8JMRto00V5qX/+477t0/4O/+/W+5f/y33L93yOHhHjfXNV3TsVqtOTjY5/j4Pv/0D9fc3LTsziqIBUZrVgtLTFdMp1P62jdN3VGakrIcEaMlpkx91lozGo04ODikaztiTBwe7pFS4ujeIQtXE3RgujtFTTXHz+9z8HSfwnu+ff07Hpw8ImrHurYs36z4y18958HoAPPNOfK6ZmwgTAJH93azTgWJlAQxSH7/779C+kDynuvra87O3rKYr7i8vOa7Fz9Qt5a1D7S+5u++fMU3r77g4fN7GJWopWDROEwx4vHuHun8krerBXWSuFSgdEGS4KIniOw8N53NMKbi7UXN9bzGxUTqWTJS9rJnYhCRlJt+Xrmh3g+q8KkHbHIbhOp1YlIMiCTouoYYQvaTJ2b2TQxZWFVLtFbZij5larXodWOkyElYDL5n05H7vo0hhRolJd5HgnNE7xEiJ5eTyThrjFVjVq0aqD9okRiXBR290HzvEmVMcdumJbPleAye4DPTZ7DnDllRLbMatQRyG20IESET3oe+HSzlf73OVLD5nPkEF/P5P9va+3PHhzbhPwSGiA16sqVHswXObL5/7+/yD7df/mSg5g/8/qf+dhh/CpX+Q2ye7YDmx0BNZrFINSRIEq1Er0XTtwGKDFLGmBmvIcSeKSkzsTjdvt7d5Ph2HQ6gRk6qb1uGzOC0IyAlcaeqPcQh2wmQtXarhQZSGkwKbl0xre22PjWbViSlVba375kxWSdmKISZzevGGHr9E3HHznebcbP9HrfZIlkkcSu28n5z3XJxa2Dr5HhPiVxwi3FwmOqTwz/EOx++2wJpfs5AzfZ1H8C1fC31JiEfgCu4nUcb4emtefyh+SDlkERvu3sN+kG3c2LzN4lNS8Q2KFBUgs8e7fLZQWS8+g6lGzoC0eteTN7gfKDrlqRihNFVBuRjIMYOHzLLRQsNSRCTZd1c8d2LH/inL2tWaYfzm5qPn5cc3DPsH46Z7ewT5AilDD56XNexWtywXs6JrkZEl+OzlFvL1y4zRpvO4nxu83cB6iayqhNNm0jJM6oMKXYYlWNXHwLeDom4ZGRGlFUBhaQNHUVhUFXBeKxRhUF4l5kxMVKtW4IOXFkHN5Gbhedmbnn79oqJLtmd7mBpSDEQrEcrRTUe42XH+bxGtQGioSpKSAH8G3btko+qA04e7nFuNaet4mwtuPK6Z6bfXudBX/ND83wbSLljtLIFtsaeMbD9+DCXtttY329zGsY2UAMD8JifP4B8H7qvbjNrfq4jBEci0lmBNoqi0FRViZZjpOhBBpmdXbuuy0WmsqQsClIym/MWvCU4i7WZtSWJeAmprEhJUBQVe3v9fR6Z7bq1wId8jsYHe9x79pj2ctVbcTsa6+hioIkBn1IvvCB6Lo3AILPZTopYsl6mgKw71Xd6IDIA72yHEonkPDhLoSJjo/DOgtbEKHl3fgEqcHC4RzUacX2zYnc6pZkvmI7GnBwe0TrHxZs3ICJBCFwIVNWIZ8+ecnNzw6gwLNdLVvM5VxcX7D14RIYe7jI8BZml6gPMFwturq54/OABL77+e0QKLBdzCuDy3LN/sMdiMcdHz9X1JY8eP8S5DiHAdh3eJarRiIOjQ16/esW3X3/Dyf37vHv3jvv37/Pim5d01lOUhqZueHB0wOnZO6bjMcuuxtluA5AicvyLUITw4danYTYHEo6YpTWkog6JVHuSjXi7YNXOubk45+LNKW9fv+HJ559w/Pwpe/eP2T86YWmvuVy/pGsdUUUSjqI0ILPWLYnMzurXWjY8ELmYIXMudMuk6+dGH8+J95jLP/oMW8DqHxo/CdS4lCtXsu/HkuQkQKeBTtzby6a+BUlmQCb2N4sea8oikGEIknpgZ6sqk2lBw00kocgixQwfXOYEwfTWialvDaDv8xz5XtDYO1y7pl1HvE0smyyCnLou+6YLQElcl0EZY7JQhOwpqF1w2RY2eugTLKE1yOxSE6OHmNBC4GwLQSCEYTKqUBEwEZtsVreRipgkKQpkqbEJgtfsoHhgJM8nBZ8cznhyvM/j/QmVAlmAoAUbSb19mCQL6GpjEBHMQKOOgRQT1gek2JShoWuz0vRAAZeCkBJCSZQQGKUz8i8LwIMIBNuik4cQWa06FIqRrui05PdXK+Z+xe5UchQSfnTBkYzsIDjrOtZN4N1VjZ8v8d6hS8HF/IqPPnvI4YMJVCtErstnkVQRCNGiRUEyCUzAR4/GoJNBTCrKsgQhcbavOKEIJlAokVuVkEgXGCGRHio5ZsSEPTmjCgJtI1UacX015/7BfWSICN9xWClUscMkTqjnK+x6xdvVEoNChsBKGv7x7IaLtaO1ktb/fAPO7jTy+ItPePX6nKdPjvl333/Di1c3VMclD/buUXQgmzG188wOKqb3KqSPvPjdW4pyzJdffs+zz+/TdYFu2VGMd0llSecEq9dzmoXn8nxOVVTsH+xwfTYntmBVgSsSOzszOrfGY/G2Y2//mHYduX//AdNxgW07irLgZnnDcrFi52CHdV0jlaITHpdavvrqK375xa84uveQ0WiKCy27kx1CG1jdrHhyssObs1eMpyVvr66ZyMisbVkHx0m5T93dUM4kSYGPAhUVyUb+7b/5n/jX//1/h7MNk2rE4f4hq7pmvl6xalsQEZE8Bwe7eG958e0b/upfNEzNmNAc4cMFutSMJ1NSK4mdwHqPExJV5U2RKCmIlEVkWuXN+rJNvO0CSSZUqhGiJKoRUhe9m0vEp4hXEaMlQiVEz7hD5WSpzyURIqGIVAlS9FgB0UdUFJmlFAUqgpEigx0iooQClfDCIY1AxISREiFibuNEoLTCqMS0hEkVWNaBlAwxWkojUMEzkxItDDujCS50GCWJqkLGIUuOyCLhpEXqikJPiEiKskJKn5PN3rUmxgIREmMSmkBSmpgyszGmDh8FMUkQvT5Ob8eppEZk3XwIZIZOb98aoqTtfr4B5/vjRwDJVtU0P5Y2RY9bQGawpEybvfF223y/KtPrH2wnEkNg3u+dIJBiSBzT8P/m2O+3hPwUaLP9OX7qs/7hxwdpwB5U6T9REnnflCSUyPuskbJv55ObFijdW2+TIkMbXYiDaGZGc7zPmkwQKbRGyVx0CQyMHoEP+RhVWeF9wIte9FeKXshXZ2CUW0bEAJYMj6WUNuDJkICH4DeBWW6xskDWR1NK4XzAmAJnLcYrfK+FI6VEFQVSa9D5WM5HtDZIEXAWEjq7iGR6c6/NFimM2QIOerBU3GpjvM9Opn+MPpaIwRFDb80NG2Fb0Yttht4l8/2Kf6bR52A0pazsFv6A5sbPYbzflpT6SrJM2VRBpn4t0DNdYBOr3rpr3br9DF9vRYVvmaT53MuN5lYIYSMwvGFFaYEwGiUNEihLjTGCjx8Y/vIkUK2+IcWaWmrQJTIZfIy40OJCQuhR1lz0iZxPJEIA5yIhghkVuFhTRMv5q3d89/WSuRtxGTURePZA8/jBLtODB5jxjLGC0HmaFrQcMZ1YRmOH8hCd7XVrcltqCon1co21AucFbXSgDXWtWTeJxgZsjLjkMRqKImsBeifoPHnPqyRjBVJYQhdoG49zBkTDeKdkvFsR05S0mOOahlGlmZaKx3sl1zcdf78MfH265unxfS4ur/EUTMeGzrcEB6JLTCeR8Vix5w1Xq8RVrbE+MR5byrJjZ3zD/s41BweHPJ8e8Gx3j7mv+HYx5vVCcekmeFWhUo0Wmdk/rKdbgFT1bSV3NYqyfk3cAHW3idwt+Jen2FDIySDsIIS7zYhRymzu/7JPDoVQP3rNbTBnG7T9OYM0AEoUPYAm8N5SlgVSlxSl5qAssNbSNA1Sa4wAESJKKrTKhglt0xJTJEqBj4nO9dpJPckgiQVFUaJUjqGMyYXflCS2i0QRqaoSaQSyyHGU7hKhdlgfqJPARkXspUdkGhLohBee0GvppeSycQySgEanCi3GFOWUpnMoEl1bo5Kn1AqjNVIrZHQEa+l8ZOdgnyjh9fk5Ic4JAR6djLl/tMe4EIwnmr2jE87Or7i+WXHy8BGvTs8o9gWLq2sWyxWNWnF88oAwv+Tsh+949viEKAWGhEwOgkOIfI/TQuKcItUNn3/2Ed99/TWXF2c8urdLvVyhd6ZMxlO6RUNzs0CXiuOTE+zS88Pbl8TouP/giGXdobTi9Ow133//PU+fPmM8Kri6fIt1kb/69V9xdbXgm6++plmvOfUt02nFY5nQ6oDT6xXzuialHOsq8h6UVIUNLeDuzJntnSakiBcJRBZB90KxiglrE6uFZ2lraitoWs/qYs769Ir7X3zGyaPHHM3uEwrHWdvRuEBSElUkAgrCmG7RIds0EI82e12Ou9gwavI6HAgm/dpTagP2MgA3d/bMYfzfZNSk4HsrbtFbeWaNAFRvPRk2MWBGkQeBrLjVzyvIasr9DSbFxBDvh3iLPg0U3lwBGt7wgEhJZL+4UhyyGfq2CiiLrD8joobKkKYj6uUCFxtam9XjXYqUk9HmuTFGjMnVi9gHWzqGDEwVBUFoahx18rQE2uhonMP1N4dJNUJhGBVjCqEolM4TpRfujIUkCkMlJOMgMNExM54nkzFfHB3yfDphz4BKa3TdkXSFEBJhsu+6SCHT6vrgyztLiPm17X+g7k17JDnS/M6fHX7FlZF3HSySTbKnpw+NWloBCwH7CbSL3Tf7aXdfCBBGI+zMalYz6unp5l2sK6vyitMPO/eFuUdGJYts9giaphwgmJUZl3uYmz32f/6HaXsUNKH9xhlCSDcbIeBjKsR87wEktcKbSKY1QaS0j7yssM4Sg8F4wARC1Gxrg5A5dWOR0VKEGtEGFm3A1Boc2G2NzAqef/4NL29atl7hrMV7T+4U7bOGtmn4hfgJ1XmOFS1OJGd200Q8kdHI4vEE4QlEZJBUZZmMslSSXGilezwuoqNGOUGV5RxNZqgA0TkmeY63iVEyljmHVU7oUvdFFQ7ZWJwxFLmi3jYgA+1qQ4yB5WKBloKr1YbRwSlfv7nlem1pg8LHQJ7n33d7/EmP24s1H/7yGCkl2zoZYrVdx2qxJboW4SU6jHl9cUtZJUS4qyPBWlT0tBtLvWmZjY5Zx5ZM5FjjiFrw4ukr3lxcMaoq1osNZVlydDJndb1B6YxRNUKqyHJ1229ELKbrOJjOePH8Be89PqXuatrQQQYhCyzrDe+9/5jlas3l6orz82OmBzPW6wV/+Zf/gcm04vh0zipfUemKnIxPf/85L14958NP3uf47JCm7li9uUCTc5wdE02XIvZkD6hJaLqWm9trbleXWLNlcRto2wVBCJbbNa1LBXguIwvRkeclKivZWpGMvX3Fus0ofAVqQqcrVu6W1gZUlpHpiq4ztNuWqiyZTkaMxxVr46mNwwTVT8aSlFQrETFtnKNw6EySZuneUDAIRJ/oghB3m9YeoM56yrUXqdhSMvkQQNzJhiD24Ss9YD0wK2TSRodgkKJn7vTpUlkmUpfKD4LSSJHr3pDYEoJFykB0HT5CbTqkiCgFuZJ0ddNHKOZ9BzGS5RqtezNgP3QIBEWWo4gomSJsk7/XsOCBc37Hakj+H3tmm6QFLc31g5wjEP4HkT7dBz6+zSARO7Dh/mMkPfgiv9urJq2XvP3a6R+7n8XAYo13AMlb77Mn+fk+5s+7fv5DTKF3XpN7QNMd83aI5o69R41MMicp+rQMgEjwYXe9BnN5268/Q+MnlQjJfDu45MOUl0UywO/vLS1lMpZsG7TOyHS22xgJlRpNQ+oS3DGIho35Pqsmz9N9kJi5d131EAI+OMD313l4LUcMIXXooDdITizhdF32gRWBteke0Zkmek/Y66hn2R1gNHyfd0Xj2/KyXdd5kDpF319vidLpGu+SavZittOGJu7O6/5Y3f/bj/kYNrNDes7wufVwXdyexxE7RcDuvPYBr/tMuf3Xu2NKxN18dp9BobVG6QQcJtuAZOpeliNOZhWhfU1Xb9AZoAtC0HiTvP5a24JUaDJQFqVFkuQHi7Ud1hmECEkukUd8aLm8uGG59pSzkvXzBQ/PCj766AnvffAR4/EhnY/ELKMYS8q5QwaL60q2K4XdSoxZpLrbu5RQ2rM51tuOSEYXIt4YrC3Y1pbWJdl6RKBVpGld3xbXbGpHWQlmXuBNi4tgjGDdOt58cYtHcXw24fjsiOOzE8ZFybgocdaTFzOy7JaLxSX6KvD0xvLVm47DQvPq1Rvee2+WbAecp9s6rIHpLCPPK0YTwXrZsFg3rGtPnsGmgrbZst1YDg5rJgcbZpM5vzp/xOOzOb97I3l2Y+ikxFiHC2Y3hgYwRqm7OXpgZcFwfwwqgvDWXD2MgfvSpPuddd+DxgML7E5Wd9epv8/uui/x2zcY/rEeXdvhrOutKhR13VDXDZlORrUh9P4vTZPO0ad0qMV61e/jkpl+Xpa761v0Uj0YTN/vErJC6Gv83o4oz7MEusfI8fERL8cVbrlKknPvknSWtJ+VMTWMc6V72kAkCIl3HpUoxsQoAYkUirIok4RWSkZZgY0Gs1mjRaQscpp6hVY9SBws9WaF15rZ4Qmd9TS1YbWuib5jMjrl6OGUg7HiwclPaEzk+nbNo/NDjGl48fIFTz78iHq7wruWZrWi3q5JhvngvUH0BrqCBD6kaydp65qm3nL55oKTozk4w9mDU3KtiG1Du11xenpIVilyYUAE5pMcWUy4WdU8ODvn8uqGLCv5yYcfs11vmZ3POZhN+PKLL/nii894fXGF8ILxeISSgel4hOtauvWSYBwy9g6NPbNRqYwIOG96h5jvHsMhhJ7llBIQDSly3JNYustth3e3NOvki3W5WrD56IbTJ48oTjNGYpL8EHE41+GjAqfoaoc3HiGyHZ4yWLkMgAskgObuHo579Rg7kOadR/w+mOYPSZ+cuyvshEwUdCF2BVOMd8VKKisDMqTFSfQJJhJJr3mCnnY1fOohxSf6O9NgPISejrsr4KLrO4Ok7k/wCaGOicabVcnNpO06tBAooQlCUVYlKo/E7RYRPFWRk+cpmjtw1+kgePJCorKCXGmCiHTR0fmANy0mJOpcQCCFYpxXjEY5lUyGQ1pKfAxsjQFBep60KBTTqPhpWfGLB1Per2AcOgpn0KsNQgS8DGyDZDQ/Jy8nBOdTRw6PEAobkyxgMAU0vk1FU/B3FOg+GWVYQNN1BWsNUklcl1BTYz2xT6porSMvCoILeAqigKxSCLXlelWj8xEfvXfA7OCI3359xbPrmtWmZXW5YKIL5icVZ9M5L189Zbk1dDJDSEUbPMoGbi5WfP73z/jJv3wIo4iqIsFF1tfJT0A+FMhSYkNAK40QGi0KxmKWmEpBkYUSbyNlVnJaHqdYSBMZN2O6ugFnWXUNbdPxulvz8OiQyekRlS7J8oAvW2znsZ2hs4LrqwXzg0PqboX3nrppOHnwEKopn76uudoEbrae1WaJaWuyH3EHYrtsefnNBZvNmrYpKcqMvNDEKPjm61t+9tGHXL+q+Zu/fsrJ0b+imBaUWYapA4vrNdvblvV1y9WzNZfPb3ny8ZzZaMZsMks+BdtI1xm6QhCmgizPkJVgu23IcsVkWnJyfMrr129oGkOlMmzdcnZyQt3UyELRbQ0jCccnp2ybGovj8PyQlpa8zOjajigjJ2cHjCYj6q7mt7/9B0o9wm0dmSx4+fKC2lgmL3J+ffqE+uYaoubJ+WNykToDQg4xoZKszPjk5x9T/F8lbbcmV4rOdrjoMa7F9bG1Ks9xIfDTTz5hfHDI7SZQFoLWCq6bnEmco+KUm6jZ6AKVV1SjCURBW28YFwVZLsmzlGzUOrjd1BgHRJ0AGJklVsgOTfc9uOKI6N3m9K1D3FEgM62QLlG4I6l7rVTyokKkCOxhkw+RLFfIJs3FPgSst+gMopcQPZmWOJf6PFnv/RG87+PAA7nO0jStIwKLVg4RJTLXmOiTDDQGdPAoHxjpihB0knIFT641EkfywknsHYRFa9XTQ0NPuU0tKe89RVHsDCuHjab3vu9EpoVX9xIwL9IaIrwj48cL1LwLvHgXE+UOoAjv/P0dUPNtY+B3vd93vcf93+1vFod//xDg5Yf8/Mce3wJq2IvlFqknJIj46Ejy8LCLqPbOYjtD23W7iOu0mQHofZ76BD8foa5bpLbJJLuXmKTxFnYmoYMXje5j7Qfp9RDJPYzRYZwOmzVjzO5xA9NmJ3WJHiHCjnUzvIcgJXXtmjGDrEm8zWAZgJEsy4ne4qIn7v9dgOtrpGEjN5zbuzZwu9ekZ1SRis4QAkL1MvN7scIDWPiusTKMp31Zz4/1uA8o7Z/DfZYEJO+DOy+jb3sq7Xvd3H/M/nsORfswr8HAqBjCNwIuRFDpc5i2w2aeKHJEnhN0SdN2uKamaWqMd0idU8oclVmcSxvXzrRY2xLxvYG2RwlFvd6yvN0gtWTTeXxn+OSDh/z5z3/G7OSU4HNGWUaAFHPtlqyvLlleXPHyqwtub2uyIjIdRSZVujetTWBMbaDpLMjUhHMuYKygsxKtQDSQZSRiuo0AACAASURBVGmtGTbU1ke0hWAjtnYIFXGxZLGOfPncstx2nN8ETq87Hi62nB4eMB4l6YrQBQ8fPeBXfsRvb5/x9dUN/3jR8G8+HGPbmk3doLXFbAPBFhjjscExGmmqaUagpV5b2lZgOo2zka61bCqL6RzddsvsYEExvebs+KfkDx6TCcWXlx6nCiR2B9TuxolzeH/3Hd8Z/qZm6v37Zl/qdn/83DcFHu7nQSLp9sDE/XSn7xrvw2fdZ/D8GA+lFOPxGK31zuh9MH2v6/qt+8oYw3Kz3oHuA8gqpaTMEmheliVVVb11X9d1vXsvrZPBb1kUANiQQl4UkbLMOTk75uJihfW2X48iMkZ0H0JSqiwZCBNpnU0MTXqCRXybxSQQOGPIioz1YknotuShJdMB4UDEgO19T8dlRchyaiTXyw1N5xiXI8qqJM88B6MCHVrmReTBgxle5VwdVzx/ecnNskEcHWDXSx4/OOVqueB0OufVi2dsVrcczGeEYAnRIkiqjBAhoLHG8Pmnn/Ly2TPWtzdMM6hKRe4seXB09YJHpzNOjzMOjg+IRMrxDBsj2eiA5cbzt//lU7bblvnhEU29paqmmC7xub0LnJ+dMMorTOdYLm4wXUsMI04PZ7TWw+UtYVXTuoCQGuglgUEiegnS9x1SCDKhElmkv/Y2BLwTuLoj+ByNRkbHi2cXXF6+4vLpKz7480/44Fc/YXJeUhSKbVjjW4vPNZqCtrZ92T2Y/g9rx716icGPd2992Y3bf/q99/3SJ5u8AiIJawkhSWiMu+tcaaX6Bf+umxsHJkyEICKIgETcFU5CIFXS8Q5CptQV7l+L1CUcDDGH+DvRc3qVkjhnaFuD0sltW+UZ9AVZiJBVE2Z50sNWozIBEXmebiZj6dEmfEj6dp0pkBqpJE1Ts7E1tW8xoYPgyaQk1xVSSMZZxSSvGAlNoTST8QQTHBeLaza2I6CIIXAyGvMXDx/zs6pktl4ib1fUTcPWJrM3nYGPjqwqKaee4DxInSYc0QM0zkKQO4MliOk6JNgoUZadRyrwzqN7ircUyREcAS4kKViq+wV5nqHzIt0ICoIsEXlBqWE673hx/Q2RyMFY8WQ8oRhPmb/p+PL5Fc60XN+sWTUOVYz4+UcfEL78hlfrDosjCkmZZdg28vr5ApFnfPzLE4q8pOscYRMRMcNuHaUs0cKTyxzpFFqOCN2c6AXNpkNEjYiKLZKm2JJnOV3d4O0a15lEZ3cdt4sl3hg+/+aab86PKKXjwVSiQ0T6iHcemecQFc4mo+m2bQlSs/GKdhv4L8+es6q7dK2cYVxmuB/xZrBbBZpVYD474jYLzA/nNLHm2dNLonWsrg03rw1+63j9tKY9sQQLwSavj2efX4B0/PY/f0UuItubBtdYlu2C50/foCyU+ZirxQKhM0KMFFVBkWfE4DHGslqtaNsWKdI947qW2aSkNZaNbcmKMU1rWay3bJstxbhiY2pWmxVVWRK959mL54wmY8pqhHUOpKJuWlY3a07mp8yPDxlPZqw318gnJfnJEas3t5joKRXg7FsMAqTg3/3v/xuPHr7PX//H/8T/85/+imfffI11Bq2mHByPOT8/JTjH2dk5j558zPWqw395wckpYAI3rqLzc2gzTFYwPTmmUBnNcoWtG3IBUstE5cbjgqexESczhC4IrUUIRYqBT+BEwFNWCtnrX4MnaZdj2DEI9+mUUgpC9D3zxuNc7IGaBG4Hb1NU8c6MOCBkonwSBev1mtkoQ6mBqRjIde9JgSdTvUdYDClRJ3ryrE9wyjReeMpC0USQeYlXEKTuJSUOs90wyTJ8nqVNqEzAklL00qUicYMZitXE+pFKJqB2b6P87U0NuwYA8U7OE3pKqRaRLJh/1vvtjzneBXrcZzW8/fs0T38LrIl8G8jj3dHB99/jh3y++z//ob//twA17/qO739mIRIoo6VIUdwiSejSk/qawHk6kxh8xhqM6aUkPaCiokBHATGgpOglhslYv+w7q97HPoIalEzUc631W7IWay1aZbjovrVBGmQuA5sG2AE0gyxq8EJJ4IVHaXYgT/JXSOPakeqbrut274MXoN/evKUNRyD4VDCiNEOsPTEgdLErAwd2DeynGr3teTF8HyGmDT7BE0PAmrc3i2mjGHbDcDjv+5u+dwGCP8Yjz/Pdpnk/rYnwNiAznCPhbfBmqEeHa3Q/mQfu5q676xd3rzkcO5lKv6tLbGmxS5HqTMTKDFFMCVJgXMB0LW29YltvcUFSVBJpDXRbgkw1Z9sm2UCe5zjrUJmgazq6uiVGSVZWXF0ZjuaKX//iPUajChs042oK0WDbNcs3F2wWr3jz/BmLixWrS8c/fG0pZ5I/+7AkziUSQyDSWMXWStYbh9QpQMP7gI+Szibpno+RPIBAooWiM5601Cu2raBQCicCaxO5WAmerqBuJS7XOAmtueXi1ZInj0+ZzWcIBUWmOJzn/MWfPeazF1terT1bX1JvAkdeI4VHS83GRDoXaZylNVBWkazQjFVBuAmYTlDbgOsjlUPoMK3Bm5ZxfU3RtJRHHR8dfsy6q7DryOBQsn8/JdB2n0Wzt6YPwHs/JoYG6zBWhscN/94HEfdZfIMc6l2A4DDO9p+3/x7789aP9RjYRXmeU1XV7tysqTHGJE+jqqJpGpq25c3VNXXTcHR0xMHBjGo8Ic9zciEwXbfzAnPOURTFbt4dvoMBuJkUFaPxGOcdxnUI51IcuJZYb3qewR1QI2OKz9A9c8P2zfX+m0w0PHlXx6UOQ1JJeOPIZUQXisNixEQ4RL2kKjStC5RZRW09m23DKkq2xicAXgpKHfi3//pXPHk44fQwJ88EBwXIsWY2P6bIIsfLlttly/MXbxC24ebyNbocETNNvV5yMCkhWiKWISIeNERY3C747Pe/R4vI+dGcmxdfcfbgQ+J2yWxaMjmpeP/JAeePjrF4srLCRUfUOatmzdXFFYWKHEzGXF9dYxrL5599wcPzU05ODqjrLV5aRqMKBYRxSdcFumbDfD7nfD5hsVyxkqBHY2wQKJERYkqTUkoTnCJ+z75MRCj6VNMYIlFLDBHbs14aFxj5SBkVXecJxrAMN7yUXzEqFSfulOMnJxQjRRMkTbA4o2kWLdoPuEV/3eLA6h0cixI7MoRhPbjzs0lDo6ep3AP6f0hj43uBmtpGtE/Fk8Qn8GBPaiBl7DtFQ9qTQMqIlAO62+suZURKt6MkD2jmQBtK4IsC5M6Yh4Hy3bN5tNbIpOgh9B3X0WicfGOiQynJZDrF+1QYZVmOlnc0qTvk29N2Scs4FGbOOax1GOFw3pITmOcFY5lR+wIf09Ts+m5BJQpyl7A1JRTTcko5qnAuwmpBJXLmmeLX7z3iXMDi06/4+tUl642js56TwxFH05xR7lHRMS0VuiiIKsmVZKbxriN6CzF1IoaBkcz++u6YcxAFWgqsMamjLUgFlwt9skrEWY/ovW6s9RjrkPouNaKsSgiCZrUmq8rkLdIYyDJ0GckPZ5znAqsynr+65PL6hs3NLTLLODo+4SfvnVF/+ZLbxmCkorXJ28fXlqsXt/zyl3/Ow/kJQkpudY0SGVt7g6wlUgVKMcI1nvXWIXxaWJwRaCHJs4wsy7hYrHF2ka5FCODTBnA0qlCHZ3R1zU2zobta0a1u+Mk053hU8mA6Tqyo9ZaoNG3nEQhWm5p8fsKNEXzz2TO+fL1E64IYIM81TiYvnR/rcXPRMn/TMhpPub58Q7MVbIMFkZzP//G/fgOmQjnF7as1i5XDtALXBkzrefPims7W5G6EFp6Lp5ccv3fNB08+RJG0u1U1QjWGTFS0mzXzgxGrbcNyueLoZMJqtaIsS8ajEbOjGYtrxxdfPuXx4/eoVE5ejjk4HFM3GxSW16+uaU2N1HB7s2G5vCUrckIUVKMxzz79KlHwvaIsJ7y6uOTswQnzoxmTmLFsa84ePsC1lk1XczAqsU2Hd5BlCh/BRsFyU5OXE9578jF/+R/+CmMiKEUU6b64vLrl/ffeR+oJLy6WzM4aOr0gz0d0TUttBPUm0r25xZsW5Tu2q1syQAgDwiJl8nsqc02WZ8Qm0PgOG9Oi7mPA2rb3looQIMsrgvQISaKqe4cXegd2A/1sL/oONnRtwwB2KCWQqt/I9fIpMcieRJqLhUjgs5SKqipSJ9MmVkqeyz61xqB0SohKcqg0Z4xHFQKwPpIXehfp3dpIF3NEMaOqck5OKqQKFJWiUbFn0NC/XiQ4h1QaKTNC9KieqSN7YCl5ONx15621yXcD3rloSdI1CaS54exkzv/5f/y7//432X/D8d2gzLsYNd8lfeKtDtJ3vea73vf7Ptd/z5+/672+7/e78yI1fCSiTyATaJUSv0JwBBcwnaOtG7q2ozWmDwUQPUAJiDReiizF1GeZwheeyWhECEkKKOMQq3wnT5JK7DzrtNYYY/AiveawwRnAFLgz5xyYOEPxNpj1Dpup1BW2RJdqoizL7iJ++077EBc+PE/nGVLqnVHxACKlWihJAF0wCJGaLlKmRs4+m2V/M7KfEDX8bUijoAcVQuhBqhDvft4Dd4R4O2JYyuTxd38Tur95/TEeA8gCdxKV4H2aM+8V0Elqyq64Hs5x+G4HBtR9xtv+f+mxw8Y7PeYto1ki0Ud0b54tlaLrOla1xlQVThq60GJNi2vXbNbXbOoOnU/wsQGlCXhcD+z64NG9hC8vivT5fSC6gDUO1AGLZsu//cWcjz845nA+AXJssyV2t9y+fsblmzd88/QlV1cb2ibinMKPJ3x9tWU8sWiZUebJ/3FlIususmoiSkNe9GCqjVifmrTRJYZ3UUhsENiokgS5U5Quh8ahcSxawWdXlt/fRLzI2KrAout4z484HCv8ywUnrePw+ADjJZlW/PzxmJ8/OeA//+6KmwbqDZzXkmKS47qWGDKcT83KbdMg8IzHmlGpKcYVSMd227BtHW0hEDpDSLDeM/eakVsimi+QD2YcFA+43ILbazDsAyvDuBnGwe4b7u/BYcztM+j27/39sbdvOD3cfyHcATX7IODb7/ftzd8+4+bHDNRMp9PdeQ3sxeGzK6UYjUa79K2yKJgfzFkuV9xe35CpjOlkxmw6Yz4eE0KyvOi6bnfNBo8oY8zOK6ooCsL0AJ3rfp1J5sNFrhnPJshM4kWv4ogRRQINdG8+7kLAxpTyFPeELTH2PlcxIrWiLHMIHu8MubDkwtOtlxTSMcklRaYIUmODonUWrwpa4wlSJOa4bzkZjfj40ZwHJxXTcfIlrHKJzBWjvCB/fMplvqRSoP2UOhgIls16QTYecXv1hkcPTvDBIoRFhCR7EiKxwp8/e8bL58+YjUe0mxU6eraLa94/HPP4QPPw4ZSjo4xpFemCROhIkLDYrihkwb/4+UecPzD81V//V16/fglBUpQZ40nyuVTiPablmO2q4cYv6FqJEBmVlsxGFVVZ8ubqmpt1za1xRJGTlTnWebTO8Xisa753DEkEhdRIFeiCpfMeGz22V/A4Gem8xUWNUpKmlXjfIMQbRGwZZb9iXhRMHs04PHjEld+waS1h7SiDupMDi4RR3D9SozX2f7p77FDffNfxh5ob3wvUNCYihe+7mrKnc3kGJv8ApAiZzICVSIhSkkLddclymbRxw4cZkFPi3eP3uzQh+r57rHa/00qjYqKDCwlaD7rLfJdIIKUi9ka+QmqiCKgBwY5pgSyyFN+cgM+4M140xtDZLcEZHOlLzMqMdbNl6xzLtmHTdXSBlMakMmKW07iO509fMJmM8daRB02lxvzy9JTZ4pIXn/0jy0XHdZtxuUnXahM6TPCcVp6TcfKhQEvQijBo1rMMnENJ6DrzdpcG0uaoHytpDu4N3nrWUfCG2BvjiSBx1kFfWBqXXMmzTKEzSecUSmryqkJmK6xraVtHNj9mfP6Y6fEDHpLx8S8EtzX8/rPP+fLpU169esnLy5ccTOd8eH7C5pvnWCFwArroyUXEt5bbi4ajecVkOuJ4NkEJiX2tMKbD4zBtSbNu6WqHibcoKRmNKpxPkcc+eNjpSn1PG0+xfDZG2s5ifYrVXt6ukM6T2RYZM85mGdZsQUTarsGQsVxcUYxKrMh4drnk66sNMQS2qxUECeMSrQuE+vF2BmUo6baSV8+XdE2gqQPFrKLr0v25ut2gvUKTk0vN9WKFMR5vQHiIJnL9ekXRzAjBk+eCq9eXzMYHmM6QacGm3nA4n3F9fUOWBTrVkWclDx6c09kN43FFDJBlOZeLGzItmc2P2Kw6rq7WGHfJT/78EbfLK+ZHU66ubgk4JrOK22bNRx9/wkc//YA3V2/45puXZNmI7bomF4qqqqjGgbzM+N2n/8D0cIQsLVoV5DHiBYyLDNdZrPFJ7hNhva755vkF//7f/9/8/d/8DW+unhOoEysFT7du0NuStvmS999XzE8PuHi9ojo4wndbyjKn6SKLZUOoWyrfUUaLkp5oDTIahPRIqSgyuUtGqruW2+WazqZNpR/MPuPg+ykIQVOMNG3XIVWJ8NxN9kPR1d/UIUSUziiKnM22BaF24I3oTXW11j2C73HeAhqdabTOGI9H+OCI0SGC76VPqi/cHUoItE7GrbIHhsqiwDuPd6CqFOseAlgveX21Ynb8kON5RS6fY/yWqAo8FhXZmb360Ptt9HO/Voo8zxAyxX+neT7dV0PCzqAdv9/1Hw6lek+QKLDG8vrlJX/35c0/6/32xxz7G7X7hfH9jVwCar5D+jSohO89d/94V+H9YwJqfii7Iq1rd6lnKZYefAQvLMZZ2rqla5I/lLUeGyI2pLhMt+sygyRickWuFLPpJBkUa92vf74HRJIESusc5wzO2Z3PDAjyHIxxqD050z4wY4x5S+IwdG+H8Tv42hhjEtDTF21Dh1frDK3FDgAa1vehVmnbdrfR30mvsqxPZUs1TabTPepMh5d3voCDhMv7O3n0u6Q9/Wi7G6dKgRRYe9flT74/QwrSHcAxXI+UanIHBIn0Zf6g7/xPcexfg+E6DF3P3TnsbcA9icE4HENj7z5j6f5GeQDd2rYF6I1L02PuMypUnyqqlST4xDaxMQUBNFIiRKStN7TLa1arW6yXNG0kLwNBwFRPkk+GDykdjH4Z6TcVSgrapqXeetZby7oTfPzRe0wqhbcdxgTCpmHz+jO+efY1ry63vLmGq2WJKGes25qGgrVruLixVDown2a0NrJoHesGjJNoQOq0hkWRAFZi8qLUWZLjBm+xXmG8oN44WheYTyS5iNx2ka9vHJdB4YDt0rAtIlE6tq3HR0VnrlhvV8xP5oyrnOO84l9+cMhvPrtmbQS1ESxXjtPZCI/FOQtSYl0gWIG1YE3EjgxF6cgySVYlSfiy9XgcnREcTApCUeKjQ7YLZP6aanZOJiObfVlgvANitFZvAZb9iNvdDvtA7vDd7/9//7nDWNln3Nxngwy/H+7ffbBn//E/dA7+Ux9CsANUuq7tGclxV0MYk7yBBsCmLCccjGe8fv2GQuVUuqCQ2e67yLKsTyiFrut2c7Fzju22RinJdDpllBe7gJuqLBAhMMlznnzwhJvz57xcPEuNOa1RzuNj8gEVCIyzmOj6eGhx11eJiXm1P9em9M5ApgXddkOpPbmKZBLyLMPEQNsYNq1j6RwrD2jF44fHvHdQ8vHDKZmvmZYjVLRU43HyZhVQFjmZUnTbLSKUaMY8u645Ojjg//27v+N/nh+xXi6I3gGO5FESwQ9zneD68opHDx/y4unXbNcrDsucQsL7Dw5570BxMi8oS8iFJ8tLbATjHQfjEjWe08acrJzwi198DFmOCJLXF6+xtmWzXXJ0dMCzz5/iHcxmU9arW1brFboqMM2Wm8WS+WTEbNxRi5gCLJBoLVGZJvMZzWD28l0aqBjJlEaR0iBr3+L61C+HIAiBLjQ2WKIXIAq0CJjWsLm55dnvPqWQkSdHv2J6NIGqImwX2HVL5iVBCHz/Pt89jkU/L7zdhEqclJ58Evce+wOO7wVqnPO7F0vSZZFYLcOb+GEiGAaj6IEX7uijUmLlXuEqBMKnoozg9hIt0nMFgij8Wx2MgTqk++J/19kRwxejUNKmBSKEXYKCEANtfrgwqfJNyrd0PkPBYUwkWiAIYk+3Ml1EkyOiQoZAHgQqpgVcCcVUabQUrFYNy3WD0JoqkzyZlFTNlq/+4XO6xRayGTedIxtPmJSa2QjGB5KicqixRI2SiS4oBApJQASPMQ4bwFuHiJEQLbnWCCEJJEBLSoUISdaQjPD6bjyS4CL0sdhpM5dkFl3rCBG2wqKqgjJ3lLki2ID1krycYhY3RJm8hYIQFJMJo6Kk8J7y5F8xffiQhxdvePn0K16+eEoxlhyUBbaNOJEWZUSkcYau2bC9foNyU2SW0QZ48PCcm5trXr18ycqtmI6mKCGp8jxtfLfbXefAWUuWVXsUYoV1jrZpqLddopA7T9u0uCCxTrLerIkEjqYlszxjtdlgZcaz59es10sePCzpbMNvnl9z0wlmZd57JTlCE+i84eT0+AfdRH+Kw+nI8gvJ528umZ6NWdUt5/qULGxoa4ddZchcYaPn4vWK1aYGL9AqAZuxixQ+J0ZLXuYUOufqqyuowUSLygrqrqWKkth6osioJqdcXF6TZYHj0ylNu8EZUKrA2pqtafAuUG8sm5WHmPP1lxdE2bGpN1SjHC1LqvyIxfULPv/t73j25XNOH5xjG5iMxmip6NoOOZF88uc/pSgLxFVOVVaMpzPW2xs+eP+UhRnz6/mcdYhsmproCkLUXN82+DqQ+chmdY0xW6J0eN8RcWiRzl+pis7VLDavmbopihOsO8RS4KwluBWyhHI6wt6s8MKnDruWSBQqq1BFjo2GdVvwclWwasHZjkif4tFLLmKMKZUGQCqCSJ1U4xxCCRQB6dM9LmNinGS6QEVBVoC2CheTrjYTYOXAnDMomXzxM5Un0ExLBBbvDUiQaKzrdqlreZ4RfESiyJWgzDNE9CgCWkbKQhMKgVCkVAXvUFvH9sULwtZSd6+ZfqDxUSBEiY4Z1liUSsye4LLk/6VTEomGxKgUYccW8qFBKY1UgratEyCvdQ8sp5hu51wy+hMRFwW+p6YbH3l8POV/nU3/tDfg9xz7sgf4NlPm/t+kkHf0WNixi4T89iL+rsL7XYv9D2Gz/CFmzg99zz+GOfN9R5QCT/KgESEVtnhPZx2tcTRNR9t2yduql8G5gRnS1yQhhiSdCgKRa2yIdMYT11vG40liB8eAEmBMKvt0nhNQtJ0nyxOrRukC5QXOur4+MLtubl4URCHwvQjC9X5xwUeikIS0ggPgemBoGM+dscQ+BTEgd13eLMt24E4CbOMujRLv0Uphuw4BPcCkCNETfKppZCYBBaLX8nvSPSbvghqG7yCSGAMxxOR1Q0hGxj4ioyT1jfv8p6EmCw4YXif2DZNAjAoVJN4LlOw3qt/7Lf9pj3dJwJIHwp30ZABzQoh4cSd32gda3sn8u8em2N9E7zMpdkyeEJAxST1Uf111nlEUGSHmLLctRhmK7hK3uGSzaFk2ktZEnOk4nI+YTAu6dUORp3XAe4EJlmoyIgpPcDWN1NxsN7Qq4/NF5P0DybxUeB+Iqzf4rWFbez59+ZxnrxzPXkuuw4ivt55Xz9ds6o4sa5gpYC1RhWflAiEWLDeKpjUUIo2h6Ht5a3BIASEK6Bu3SoJwHhkTE3y1jVxvI7dWk+ucy7Xhsg6ErKRuDLUP3HaRF23L2aTgcQ3vH2qOW8dic82Tx3OqmeJ0FjmZKNrOsRE5bzrHE2uReFpr8aKCkOEJNE6yMREjJbkP5NJS5nliVtSGzdZhOmhshw0eN80Y5R3V+jXTk5bD6YRV0yaZdg8Si5juVZXdNZYHW4d99tV9SdP+OvFWEph4O6Ut7b8kcWjGJs0Fg29UEPJOpdCP7X0fm/vsuB/rkeTTKV2vbVvyTJFlOUWf+LQ/DwuRGkvnZ+eMR+PUyPEDA9L199idL0+eZ2S5gigwxpFlZTIHjorWGIztUFpSlRlZnpEVmvnjY376b37O8vKK5mLDxEsMmojHB0cdOjpCz6WRBOF35yLiANZ5XDCstwtmuUZ5g609Y6WQURMJZFnFatOxihmXnWBhPR44mJRMxwUPZpr/5V//nPcejJhX0C2vqVTAupryTKaETespsoLDwwJvtoRCclplLLOK5euWFy9ueHV5iQkBLSTC9wI+qYhRg1fMpsccTA641BodFFUQ/PrDBxwXDZOiREaHFiU6BpRwiOjJygxRFDgd8bYjL3P+4s8+YL1s+Id//BohR7x6fcV6XfMvfv4zDo/OWNxeIkTHwTTj9PBDtEjS/OPimO7iiioTCNfiXEQUI4pijI+QZRVCKmKw7x5AIiXAymBTsE4Gru8vxJgkai3Qdp6DwzkjneG2NbNKMx1J5idjDh+c4ArNqq0Jqww/LnAddK1ByIAKupfgix6ATevvsN4jhxTEAD0jN0FLvf/eANT8kYvkHwBqUtdgvysDkMm7jsC3is8AQ8JBDzj3jI9vJxCo7+gkxl2Xd3iPBMroXeEa7tApwe51GK4bqczYrwv3f5Yx+dKIQUco0iQYrUl67Z5qrZREZxovNFk+Ji8mFEWOtS4ZpkbD2dEx5ycFV9dLGtMhNczznK9+8/e017eMyxFvNltkNcNrzeThQ37y/hnnhzl5WOPbBVuzZtJ0jIspgoDtWmRwBJ+KIe8sSiTZk++du6XOiC4Qg+91cx4hUufLu2HiF0Qf6EzKtw9R0hmHcUnCZWNEOo/NPbVoUUIQokAXJTorcK6Pv9MKHzzdZs317S1PXy559nLB1fWCshzxs1/+ii+/+orTo0NuXl4PXGEgTZqZlkzHBVIEmu2Gw9NzBEkXr5VicXvL8nbJfH5At+2IPRpaFEXy6YmSrjPUdb3zARgKH28ayrKkM4a8KLDe0TrP3OJIPgAAIABJREFUclHjtxummeaT9x/yfGNZtjXP3tRMxyU3LTx9+pTrNrB2knaVGGKjUZXiXYPnxcuLP+JW+uc9tJLcvFzSLi1njyasXMvrp284fq+CCNY6pPAYZ1ivaqqyZL2oCcGio04+RVISSEXTZtFQTkpuXt+S65xyVOK6yKSaslrVbLeGr795xeHRDOe7ZGRLkta9fnMF0VGVSVvsg2QyHXN7s+F2seLswQFlpahGBc7D73/3JfOZJssLrq4XdB5mR1NmByN+/dGvqJs6gTVaczCfs9luaduW4mxEqTJu1lsKk1G7yMi3rG8ucLNzrreBi1fXrNc1XWtou8QeCxFib0QmpEyggJC0xqFcZLFY87vPn7I2ikePCm5fP2X98lNOxA3RJ5CjtT7NbVHuNjtaK2SWcfGm5h+/vuLNosaFNE8qnZh99JIkiGmMeoXONM7ZvgOTdKtpo5fYi8N8m7Y8HmM6gkosPykgU4o8S9KkYZJVPSArYsQ5i7MGkRdAmt+GRUWKREPXOuXNFLnuO1kJKMq0SgVhdEg8KlhOJjMeH8/57Re/RVQeLU96Ha4CHwk+9qkXySjV+cQI0v2mTSvVU/uHtSR9xrIc0WHSmPG+P5W40/haZ1PkKen31jl8lOBh0m+of4zHfX+Kd7Jo2GPOcGcoOzz//vFPAUb+0HP/GFbMPwWo+WMfnzqQyVTVeUd0Fm862s7RdBZjbJIL9oCGC773WAm7+1FJhdIpdcP6AJ3p58MEAJZlSZYpULKPtle9BLofe53pQZPEuAn+buM+bLq6rkPn2Y4tsTPojXEnOxFC9lJjS14MSWYRY13PJEuFyn3mDIDzrvdEEAitE2OoT5OSfQqVIXWX76RYLgG8WcFg2P2tump4vBCo0MdPBwXBE4JDygwc/YYwEKO7k+70jJph83iXQJMSqKSUBOnfAjR+jMfAaNiXcYWY0hB3vlgM1yzu/byfTCp3xtD70pd9v5LhOUVRkFgVd94kw2ulx6fvOcmjIjEImqYltIbTYxBKUNcrVssFt8uWZe1ZbQxaak5PNc4ZsizgnScGiTEdh8fHfTJa6vo3JnC7qDFOcrns+MWDGaXcsrz+mkaBMVM+e97y228CX14EXiwl36zWvFxbGichKnRtOS0lZRTMco/tPCoYjJcoGSkLKHVf9ikocoFxqUGhElkcGfvUmRDJlWQ6zritPdeLFiEFt23EBKi7lkCSIjrvWHSetqsxnaZu4GwmORxLEEuUl3ivOZxqWsATWdcW02lKkdJ42s6i+9fyUdC5gGzTOFBC0nWWGBTOJ7aNjwKEp8pjakBE0KYjdg2TyRnjjWe9XuMHhosQO0bsHQDIbh3bHyf3GTPDsf/vfVPuYdzcGU+/PY+GOMgs3mbN3Tf13gcNf6xHXW8Zj8cpIluKnsmodiyboigQIvnvaZ0k41JKyrKgaRqyTO8YJsM6sd1ud9IpIaAoSpw1yc+paWnbDhEdRaEZj3Mm4znTaUGMFucNjz86pf71J/ztf/wNS9MyCgIpNU2wNCF5taa7OFlTRAHEHtwm4r1Fq96Gw1syAsJ1dK1hNi84mIzwztB6w8oYmhApxjln52ccHE355CeP+JefPOFspClVC+2CHItZr8FXtLlmnJ8SnEDlmvGoZFPmqCjRxZgvXnzF+dkxry5ecXl1jXWpNo1imPsEIPFRUFQF62bFweGE7nrEw3HGw8MxY3VLdC1aFomBHT1dvUyNSDzBO7xoyPQY5yKVnPA//eoTclXw//3mC2azOaMqT2u4bTk/P8WZFhFmrBcbFusNhwcVj87O2Ky3jPMtk8whosL4lI4ohCLPCrTSmO8IFpQyechIInmmiMb030zPcCGVy8ZalssVLsuZao13nmo0IsTA1nR88ugRJ08eIzLFVb3BdhbTmbfroJ793t/t3+L37B73rdrp7ebdDz2+F6hJn+ee9plER97/QO/6b78zIcXbp7F7jIh3J7LX9YlR9kyYHo3q/2/knZZ/AGLuOjh3E2Si80r2tf9iTz+Y0tl7487epFBA0vv2mypEkldYAZmGskifraoqlDEgc4TdJB+GICAKJtUIpcEs11w9e8nx0ZyVtbg8ozyc8eijP+OTn/6Us/kI1a1wG8W2bnFmzRkq0ZitJViDcwZrHSGKhBSrVFSGHlXXQRAZAKrQ/5eumXd+h+QZa/vvLmKtwfuAMZa2tXgErm0pilTMBu+J3mOtJ3hJlhXMDw/R1QihC6RxCBNZvr7ixdcvsUJTa0VhFQ8fPiLaazJ5jdqZrSUWVNfUbJZLyqri9PwciGw2a0xb07V1bwzpaV93nD88p+3avhPpaOoWYy1da3aF0rDYAcQQkEqnRIwY8T6yXm/RxYxVt+H5JvL8N1+ztYbaR1qraTvBzcUtt6uaq01DUAWqHIFQdJ3BWINSok/Y+XEe42LCqr5EC40KmiorqOsO4zzVuKRdObz1KKlwnSVIhfBgOovQAutIhn42xaDnWcZmsUVXKWZ+vTacHZ/y5tU1ddMxno9pXEdZJZBnOp2yXm9QSjAZ5+RZQYiObb2lrHJCcIxnGUWZrmORFzR1B1Ly4OEJzliaBpzPWG9b8knOyeiQ1zcvWa/XbNcN02rGw5OH/OzDn/HZl58RHVTVnHq74euLa948WvOz+ZIQPVdO0XQldd3RdB2N6ZgdzFmuVoSgk5wSj9QanY9QWUUUGePJYYql7xStE6xvX/Hy07/mUXbFcVazXd0inKDIK2zXJeBSSoSEqAJeZjQxsmgjtZd40UtWoAeGkmki0qOUwNoOIT2oLBUVvcHusBFUfUepqWuoRrsUHK0k3hqIASlTkTIZjygUSQbJANjIAcdOOmoEMtcorfoiJnWDiiJHCO6KG2Ia7zGQKbDOoaJDuIZSTtDBUpYF1t4SgyfL+lScmLRdyc8mJAM+G/A2okYVot8MJ0uOO5POrrvbaGqd75gLcMeYXG/WjMcVedYvwjKxBkK8M0v9MR5/PFDzNjiz/9z91/xDx/9IQM3+v3fnGRNQ453DW0uwyTS4bS3G+gTU9dR1SAkZg5FfkpqkNc5aQa4lVisyldgs46pC64h1vWwhS8w2IQQqyxLD5Z7PjDGGsizZbrdIKZNxupRIJXeb8aHTO9Q6opcp3Un6JKbryHK9+/1wWGuR3u+8cWKMO5nVAHjc97fYjwof6iyEQMQke6HfOjhv8CF50e2/1vBcZO+zISXOWax1qekT5O6aDp8pdarT+w6AUjpfnyKl1dvv8WMGaoZN7+ADMjCa6L/P4W93tavYAcjAW/fk9zEh9l/HOd/XoXfPGZ6vpNpJP1ONZhMrvcqJWUiMkKZlsd6y2BhuF5G6jTw4LxAi4FyD0hBiTtN0O9P5EHxqJ0vNcrFhuTSEWGB9wAXB06+eExhTW8nXrzf87ZeGL687ni1q/n/m3uxHkiw78/vdzRbfYs3IzMqtqrKL3ewmmyAJgeBIggbQQBhgXiRgXvQw/+G8zMM8DCAIIghIGlJDNsnuaXZX177kEpuHu7ltd9PDNXP3iM5aSApiXqBQkR4e5mbm1+495zvf+b7rNhCLCcwWZCStp6665rJtWJiS67Ynx5O7QJZFZlPBrJQoAlGA9YFMRTIVyTOJ0oHSqCTEKiRGp30GmTTlfCvY2EgvBZ2LeBfRRc5sNqVtG7yHvut4sfZc15GLTvOwV4joMLKliwqTa1arisxIOuuxLlJohdKGfmMJiNT+hCREQd97Oh3QSZOBuu7wXtJ1YAYW0LoJCBUwAmTTY5qWym22z/E+cBdJgN+4LuzY3/LWGjoCq29az7dzbu9v9u2791lg+2Lf4+eNgMbI3hmfxbFF85uYYG/LiDFSVRXAVky4bdvt85XnOd57isF+O8syutWKED39YEkfomMaJqRikNu+d9xno/cE7wnO0bc1dVVhbc90klMWhwgsk8k85aPKcnBwwNG//GNWNyuWf/krROvxUuL6QCpVjivuwFDZIwpIkryHRpALgQoOZzdkWI4WJWeHJaUOWDwUMDuYUEwOOL13n7P793jwzj2evnPMXLac5ALt4OamYnV5hd9sKGZTsiLHNVOyTCcmqhQcHR/y9ecvkDpyfFry/vPH/MWHH/Hxxx+z2bTkB1N8TCLFEYEPyYRHaIUpFKurDRLLNDN0qwums55itiDXkkwLgu/TsxdAdoG2rsiyDG8807nGyw41yfm9Dx7y4MED/vJnv+SLL7/mk08/4+mDIz7+5COuLy/wrWdWLFhMZ5TG0KzXHM1mPHkgWHfnhNohRIpbpTJInfIMa2sGfvrdGYQWktzkQ0EyJnOjO1NeCDmwtjoyEzBCsGkanr/7HuXBgqrvWMSAjpKmbnCtI1qPiLefu296lnbts3GIucV2XrxpfJ/98luBmlsJ8bgBDzdA3PmAu4vS3RO/e0IxRnxMVbSRCiRCEgZMrT1xu3mOFKKo0vtiHOmDI0ix3+/PtoI8qrOPnz1CNaOGwtBsNvxeDrThVGGOImkqCAHeOZRPiVDbN6nXNggykbOqA7a3eC9RxqC15PXXn9F3ng6DzXMOz+7z3o9/yvu/80Nk9Fy9/orVi89Q7QoTe4T3tL0nazui74k2VcSt82mCSonJkm24EKmdLPix194P9z35xo823kiVAtngESSB3CgEnW2SuCGBru2xUdI1LSFGlNbp2CQb3+urFdZ6ThYHoDPauuXe0RH3T4746OOv+PLrr5CTKSenhzy+/w7NsqNQUHtPiGkDzFXSCuibmsVsSltVoDQHsylawurmhtl0ys16w83NGpNnTKfTZJnaO9brKlX7hSKE5IDT9x19b1OfvjFYlyr5RVFwfbOimMyoqp7VqmW1+YIQHQf3z+hCRAvF1eUNtquZTktMMaFpe27WFUVZpH5IJckyTb7XS/62jaauUULSO0e1qmi6Nm3IuUyCgsakRTk3RBtoXYfwEhHAqGzQeAr0nWe1qjCFBi1xDhaHR2z6hlevz+mtZ7aYcfrglE1fYV3D8qZFG9A6p1pXbKqK4+Njjo4WFGVGxHF9tcTHVB3ebBxCRuq2pZhkzOZThDfUdcfFq2s++PEz7p3e4/PPPufJuw+BxMw7u3efs5P73FyteP7sOUeTGdcvr/jVRy/4YPEuL9ctP7QdC2Po7JqLak1sb2i6FQdHC07P7iEUVNUapSRt21DOZrw+v6QoCiAQfEd0CoEFv+b8819wNrnhgWmx5y/BB3oLeZahTYEbhG8n04JgNNdt4LPzDVebgBca9th9aU1K31eeZ5hMIYRPdr3oJA4sRGpN3K7kKVnIlSJ4l1o1BtRVaYUYRJMTwy454ImYAk4lE/Dt2j716Ypdb6wUIBWpmtL2KK3S2isHUXhJArYlaG2wzkJILVEi9GgZKIqM9sbSdg15PkXIpL1Q39Sp3UQN9SXviDJtLVvKv0hJz/jvvrfkudsGodYnOuuoMyIGIXGtBvFPkfaFPMvpug1av92Mmv2f3wTO3Po3b94z/6HAyzeN8T37+/C+hsG3/d2bfv9dwM0/5pyT3kMAbwne0/d9AvC7gRnXu20ShBjEcwlEmYBmRKrUS63ROiWXQoxVL0Hb9yDTHq1UAnWQ0FlPoc3ARjFbDRLvfYosIluwJssyuq5Dqp1GzdjWJESqAAsjtzo2XdclRsVwvSNtf0zUfQjkcsfIgcGO3ujfem38+xFMGIFKrTUmyxA6PWPWdsSYrLzHZ+3uHHTe0w9Mnujd4NgpgMTYDX4AtUemzJD87VuYj4CrVnvMlD1w6m0dd5kLzjmCT207++1JI4gTklL7re9j/P1+sn7XwW6bwA/PXAIQ7a32pzzPE0U/RhKLO8WsRppkfGA7WgPOwqaLrDaBrhdkWpFnBgbQ3TlJ23c0tWOxONpWjU0usX3g8tUVTeNTq12M3FQ9n3zuaaTi603L//WrC359LVgrQ924FFI3HbFOBSszKQihxeG57BqeGMPpwykL15LJgMkh14E8M/Q2sOkGMFFI4qBNOckFZmgCCFFQ5prlxiYGjRe0HXTC0NiOiCQEwepmlcBAk4PKaIOjD4Hq2tF5SYmgay44ODpIrQ1tTzHJ6DcNTespSlLciMM6D2LXtuBjwAdJ23mKLEOonHXVJRDHgWsDwgeEFMyKjK6P+Lan7huqqt4+87fWVrHHrgs7sfH9Yvc+EHPX4enu/Bl/n3Sr4jZCGI+9Y2jtWijH3+3//VgQ+bbk8m0Y0+l0K/Y7AktKKfq+v3XPRhenlARHnOspijzlNTGB9X3f03XdFtgpioJcG9q2wShF9J75rMTodL+LXDOfTVnMZgm8Q3N4cMiinHD46ClRaZbrDV989ALnJb0XrEOy6fZbXvQ4hpyZBJxkQhK7DmcrMloe3D/gdFFwONNoI1jce0h+eMTJs/c5fvSUo6MT2rYhVVZXyMZSryvYrOirhu6mgdYyLSB0HZkA33UgNdnEUBY5h8cH1F1LUWqKMqNpajabmsuLa44ODvHBp6KeTIW1qu34zW9+w/nLl7i2Bt+zuq4IDw6ZTaZMphPKaZna6WWiOuAiJibDC+0tOgZ85SGbsShOKO7PEbrn+bsPqDcbXn29IQb46U9/SnVzw1effUWzbhPDVUCMnkmZMat7chmJrsWLQGaSJIKUgkwX1EmB5rcnUEJLmZQFrrdY7/ADazHpPezaAI3JENbRWce0zJnMFmSTCfcfP0ZPJrxcLuk2G9quR1pF6ANqKBKOa/5O4ywxaO+OEZwHtu1Pd3GT3Xu//dn8TqDmrpq/YBSKvL2o7AcVd0GbUU5mPOb2+DItQGOQMJLIEGwnvlAJjUqAjmbLX9pS/gY4Zu+cwhB4xLGfk6Hvf/zo+E2B5li1jcPnpcXXCIGIyUIxxp1dbB+gbrukaxMEOQEfBatNj9cTXLHg8e98wNmz99DFhJ/94jd8/OGHXH75Efcmkh88PObB4QSpcgIpMes3G2JIG4tQZgdIScnQ5MYQlW6DCe/3qm0xATbpexHkhUEIlVqfBsZNmlMh9YP2aVP3MdLbVNHPiwlSbri4uOLVq3MmR6fk0znISDnP+eAHT1lVNY1zvFhWvHz5mrNFyfP33uVnv/gl2jvscD+LzFCaJHrYVGuyPKfZVNh2Q+8j07Kg2rTEmAToXr58zZMnT/A+slxebeegc56+63FD/2lCRSNN26FNRtv1XF5dk+c566ri8uqa4BydjUilac6X5JOS+dSwrmukEPimx/aWEDx5MUWp5ODjvWPTtDTd2+v6hIbWWaQWNK7Bi8SEmB9MWF819NZu9UsEgtgHnA1oZfDO0+PQGnSeYfIMjyPIQNXWiFaQzzJWy0163o3iqxefc/rwCO9apLRcXV6zXDZDwJmcEjyO5c0lPnhWq5bT02Oir9N313uCSwmED5bri4pcT/mDH/+EJ+8/ZtVcEFqwVaTMFhw/fMCDe4/RuuCjT/+WVy9e8IMn79OuLLPDhzg55dW6ZR0UR1JyIjfIiUDMHa9VizAeFzpu1tc0TbOtRNddh7OWm+tzyumU5bklKwqq5mtclfHTpyW//17OzccXLG/WKJETlKTqHbPJBClT21QdYDaZU9WSyvXYqIk4kg21ZASPIYk5TmdTourx2MH1KbU6OZ+Aszgw2lApoDJGoaRDhphshjOdhN/6lOAJIt5ZokzswIRZp17pBLYOIE1MbhGRoYVhYBmmBAuEiMiB2SNkCji8kCiTJ6WNMZGIATWAmH3foc0BcgCKvPMDazKBLd47tMy2z+7Iehyp4OP+EEJAoIbgy2NUAl8SAO2Sg99YSRz2sKqqtq1bb+t4EzvmLlCz//M+o+abWDRjgL+f/I3H+K7xJtr7dwEn33TO++//pr970/gmYOcWUyF4guuxvaPve9qup+t62rbfAjWIfY06NbTGjhoQEekTsGAHcDI3SVwSkcCNTV3DpGQ+nSIF+Ojp+yQk7Ad2y8imiWFnaTvau4YQ6LoeoeStebwFHG16BvYtccexn0Q551LradjZgY+JyfjeEdQZaf/blq8BpMmybAukRMY4SqJkYtaE6PE23RtjzDaG2+pZhEA/xEiSlMwFAl4ASPq+Tc/scL9HgeIdMygSvExttKNBBHxrwPnPPcb7n9zvdm10amAdANtrHIGa/d/tr2kjcKi13s6f/e94fH9yx9rNBa01eZ5jjEELkdqWIlvmYSRivaDqPF0mCcGwriNVDcELJqUhy8eigKRtLV3T422aR13XYXJNCLCpK25uVglwUYbWVlyt11RG8/mXN7xykderwE0bCYuMrMjwjUMiKIqc2bRks1kRrCM3BusjVWvJCsO7RyU6puQ414oYoekFWWEwjUc3SWtDKpiVGhlSa68Y1vdIxGpFFQS5mHBzlcw6hFAEFyAOzLmuhZhcYUNMgqAXVc8rIyiUonq1wokSAmQ6p/aStnNYnVo6pEqW4Cg1xJngfHKAVELQdA6pJqAjdd2jhaJ3PrGJmkjTRZQdLNzFbWbLPuC9c/cS23h8n1G5rzsD3Fof9gHC/eforsvTuC7sM7ikEMO1xe1zOq4po1bNCCy9zWNcezebDV3XbcHMffab1nr7PqWSmYMQgnwo8IYQ8d6xWq2296BpGrRSzCczBCkvOljMUEoOSTZMypyToyPu3TthUuQYrbDeM51PKcucH08Pub6u+E///j9y9VVFTsAghvb0sAUC9seYe2ZSIZ1DB8fJ4YSJCRzNJEdnC86ePuLk8RMevP+cxckZ+WSeulZ8oO0aVq8c6/NX+Lpj9eqa6uUF/cWSgyJjcagwSmO7lizPkKRYT5mMclLQ+0ieTfn8898wmx5QrWtevz7n2dP3kMrAwCL1UdBZx2effMH6Yon0NSJEsiJDKkE5m5KVE4TOUJlOsaISdG2bWht7A8GB63DRJefWYoYRhsVEcjCR3FuUxOaI1U1DXX3B08cP+NGPPuCzjz/jZrnk4PCERw/vs1ouKVvL6ekBLi94vUlaapKkw2ikZpfIv2EkJHZom/SDY/MQr5C+osQ6sxgEWhl661hVG5abCnFxweN7h3glqJqWOLRJ+t6hh0f320CV3y5ijcXSEeO4HTt9373yO6NdKXb9V2+6PVvK71AF3T+JvTdtgZT9wCYhBm9QJh/bj4brS1oyckslizFuA5MYR2Hg4XPHRRRuiTHeQjxHqCvG7UUJkejDMqa2p0GQIlX5RE4UY4VuOFIUBFngtxUVgY2WaANdVJBPef7TP+bwyVO+PL/g//5Pf8Z//usPOb+4IY+W//lf/TccvPMBSnu0XxGiwPUWI8EHsGHQiVB6S63TxqRrcjuBQ2DbRx4GG2ApBVEkhow2+dDklfp8hUg2ulIq2tbTdg4pFJ1NslguhMQYKGd8fn7Ol19+RXF4xGTeMJ1N0DpSTjW/88EzLm4qavsFL6+u+OTTT/ngX7zLpMhRtmdwI2UxnxG8ozCGGALVek1WFBSZxlYteZal//KciU9XOp3OuLy8wjk/BM3pHNO/FbZ3eJ8Cc6UVy+XNtsLZtjcsl0t87JEjOTFCdAGNYHnxcqAXG6KNw7VOKcoJ1vnUx+w9Wfb2JoIA5bxAF2u00MhcEvuAzBRCQ9d3iCGhcdYzn5dY2+GCxYc9d5Tc0NiWpmlBwfxozvHBAZ7AZJbhXEamcspJzlExI59n1OuOIs+5ulxhjGYxP8CYjHW9Yv3imnJiQMDJ6SFZVvLo+QPqTUNEU20qiKliK5zH2Y6vPv2CGD3owKI84f7BI5qm5fTgjJcvLykmc7548TU6wN/9zS94eO9dnMtYYfl8fcHPP33Jn/7Rj2H1grmI/Mkf/ISDRw/4u1+eIEXP1fI11zeXxDAEK2FYo1TAtZZeN8wmB7xzVvLf/skP+OF9yfmv/pLV9UtcVDgUnU1tOqFpmUwmOO/JypLrzrNsoYsmBYRDchSDTEKO1qKzJIgXvKexNboAY4a+6tUGrQwJIB6A7jgw4oLcOjIZrdFZhm2bwZ4+2XIH70nKxIlR451FKIlkEB8MIxU7UTDHdQrRD+veSNlPYFACdSJ1n1rmlFADVT4Mlt9yG9yUZY4QiQ4qYlpTtEzXIRFpw4QtW8QHT6LqW+q6HtqsBsAqDO0C2Rhspn7yVBEcEl2xa3+aZPmtBPhtG/9QoEbEN4Mf33ac/de/a3wfUOZNr30XUPN9j//G1/f26bj3mvcuMSatpestbdvRdC69XaTij/MBvAcZkGEsEiXg0XuPt34wUUxCrUkzqcNoDULS9Rajew4WKXCPYZdAj8CMMQbvHCKyZcaMc67turSGidttBVpr+s5uk/gxEVNabR1LRicm5xzK6O16POovpFYjj5R624I1fvZ+RX4EcbatV2qIkaTE4xFicJbKctQAgN5i2ChN33VopXG2wzo72M+qbUxpjEGbdK6t6261fIz6O3m2a4HcTyDf1jHex9Gid0xstdxzrtoLoqPYzf8xWRzHvvbIfgI+3of9omWW5UPYKe7cp7Eim9iXPqQ1UsQCbwy9U2g5oesVLmhMlqrJIVq61uP6tMZa67agXNu2CFUiVGR5fTXERiqtM1pwcDTl2ePAwemEp/khhw9z/vOvr/nk/JqNE+hihpYZwQfOL1f40KOl4qA8RLaR1eqa6+sGeVxwMDEYk8SYpcqoe6h7iLFDyiRTneUaGS25TIlfjCGF3kZQS8GhnPKbLxrWTXJoIsph/xgq4UMELEi6O1Ik2/sehY0QQ6T3iZGkZUaIiSnjS0mIDLpOKfZB5gmgDS4lckomYW3RIaShdz1d9BRG0TkoPNSNpTwQZFmBUTnG7Nift7RnlNy2Le5/97CbQ2Nitj9ndgLEt7WOxmd9XDOUvK2tNLY4Bblbf8Y1Zn+tGOc9vN0FDqUUXd8NbBm1XVuFSG1OcNsZK8akOTYC65vNZpuHZkNOMQLoXdfRbGpiCEymJcaUHBzM6foOgufo8ID79x/w4OwBs3JOUZZARhchXT9uAAAgAElEQVQ7QuYoF0f8D//mX1FdXfPn/+HPWbeeInqkS/Pyt9PtZNhgtCFTGtF3TMucaaGYlYqz0wOe/eQD3vv93+fk6TNCVrKpO5rlkqvLc+q2Y15O0Q5sLXjx0SsuvnxBrHvCdcP88QFaT4hR0G5qzCCUH4MfWtMNdXPDetWzvKoIQnF9veT169c0bUdWGIJM7MqA5KbaEKwntp71ekXWdczu36OcTZBZji6nBCW3ubOUEooS6x2xN8g+sFpeQ1kynx3igiMz8ODegqI4oNQTftb/mhevrwm+Y7VacbSYcHb/kKPjGX1vubi+TFo+KmJ9x+XlOZ2YJEfiTAy6tWpPxOS3bjlaKsq8oJyUFKtLbpqGuAVH5JZkAkmUPxMGbRydswilOD07QxU5lbU0XcdU53RNkwAbxB7u8O0Ay614Tgzl8r0/iduz+n7jW59axT66O2IbQ/Uo+HThg74BQgwV2GFBIrJzg0p/KwUIArvvO2wThuGq0sKD2AI7iaE8JNsxARRSyG27VDq5UZBth72I4Yu5i1ylmywG68I95ZoISIEXAwYmxgoKpPpV2LJZthv68EmeiB+cJ7w06OmC6SRjcXrMz3/1BX/+Fz/nv/zNX3GxrCFGfvj4jLN3HtPJAi8CB5kkypYYb3BdjZA5usyJJgFZuVFkRhK8IziwPqJkBrEn2I7oPV4oggeBApWS8Kwo8FFTNT3X1xu8D2TTA8rDAo9ECsX15QVXV0ssPvU3e+hdy2ySM81y1hcVr768YHJomR8smEym9E0HCD54/xnruqNuG4JzlNFjhKFnjqDnUFveOTsCCbUPzCcTykJj+4bLtcMjudl0VJuKumtph0VzvV4n0CkKmqYfrHkH6qgfhaTTItN07bZaOCLxqTqb3uRjGHoqJddXbWIeCJHa2VSi06X2nApIehpCiEH35u1tr+DQYecwnUyZLgzNdcXRO3OE7QlNQFrDweExPRs6NoSppLUBHSTTrMALx7p3ICQxOrSCVX2N8QYhFZt1aj1bbhoQkXKmOXYLQlSsVmtCgDwzmCKJ9HVtTVEUhD6xIFywlHmg2dT0bYu1jiLLMZlJQrJGsLpu0Sbny09e8/6PnnJ6eoSXsHYbXnz4t7R9Q92vuX/vhOtPrxG9ZlNtkDFw3Qi6NmDrX6HMnKNCsTia8Kyc87s/LHj+wSP++A+f8yd/+nv8l7/+ay6vLqk2FZ1rMJlkNi1ZzGfM5guePn3G+z/6Ic8OS67+6s/44mJN08Cmywgio3YiOQS0nhMF8zxn3QqqTvPR65YPX16ycqlvVvqAwKbQUkAckigXA0oO0KFPDJKoTOoNJiBiYlYE7/Cup3cKq3JC6BAyolXEyyTa64jJclgaxBi4SHAxkOGRuGFVkqmiKQRKSAwDsB3Tehqip8wVhRZkShACuN5huzXFyQFBpY0vExqhBE60xKiQ0ZAbjQyB4CTRSGRUSJGAFusdmICjR+ER0RN1Wnd961ldVByfHg3tWuDcUIWOyYWG6FEqS6wFJFEovAsEHylMumb3FrPd5HbfGzfroaBy92fJdu/8JpbKm17/PsDI3WN8Fwvnn5pcv/mcPPt7+/iq2HOOjEREiIiQKtzOgrWBtrW0vaW1ib4cx3xtqFym+ytTu0jcF7g1eJJtqPWOQIPLfRKoHNwPIbUzd13HpCzI8uQmEUJAaZOOL1OC2bUNQkmsT3ovgkgui61I5T5YkxlDtd5sgZVt+4EdkjkYNGw8AokPEIXCKIVHDML7mhgDzvbpZyK277YFsyzL0EP8FWK69uSYJgnR7RxglB7aHwMi2i3IKVRi+wGYLMNkGcGXdF1H27a0tk96USQr5SSdEgFNnk/oupa63uC8Hdh0WTrvwRI3Mwre4rbEUcRZSk2e79qVgkgxZAgxJfERXCTpBg4J8fgc7X+3+6yF/UR5H/RRSmHkrlUlxjjEnwGHwIZkCpFpg5KGXBuMDvRkXLpDTsUCJRQdnkxArgQ+BJrOI+Lg7GfT99t0PUJvkCZiPeBBW0t5dMQXLyUL7znMWs7u50ynFuNrHs4iv/duweHxCRernlcXNVfVCuuTf9ksE8wnimO14Z0Dw6HMkVVP13qK44zCSIiCKDSyKIkd2HxG7Hqi68hkQAtDpiVSRIJrMDK58KyRfHhRoaPkBw+mXK4d5ytL75P7mEAiZHp2MhGZ55qZERxmgecPcoyIXF22ZEpisojMIhHPxitqlwDSxkIbJUqQirEAQhI8+CDRQtPaQO8tQQqaLhCVoogw9yYlo3kO2RQV55RlYnb0fX/LXUkBIozC1JE4zANpRsHvcCsPuaszo3XSsYrOI6UY2uIgupRrCbVrYxzBmH1Wzj5rZ/+1cT3e73x4G0cfHZ1PTPCiKMm0SexIZ+lsR1lOBrZJkshIgGWgtwk4VzKZjrgRHDWpI8F2PaurJatqTVEUTBdTpFRJ+qHvyAqBMR4RakQMFPNTTHkPABVb+lAjaHj4/nP+9f/6vxDqNX/+v/0lm88rPIIrNBv8sDcl7RpFxMhIaRTTIke3K058zcODCc//4B1++JMPePyTP+To4VPaPrJ8ecn5ixvaVc/Hv/k4ARlHC548uEfYeD75+orLr5fIPlCGwLyqON1s4LLjcPqIEBQiCAgp3hIikoWI8Z66rTHTI3zT8erVK643FYf5ESoqfIhE53GbjtB1XF5e0lQbTkooFxmL40Py2RQ0Q9t9GABYgdCJva3yDNt3+M6yKEp8tUGXJ8gYiMJxdLrgp0c/4NkHT/jwF5/w6ccf0jQrjo7n9POMpmm4fr0kKk0xyznWgkerI9qN4O9fXJHNFEordG5QmUKKeEsnF9KzlyHQWiBKw+HZMYdXcy6adohCIiEqotBELwmtg9gjJpJ8qrj/9ISH7z8iWywIGNy6po+BIlO0/ZBjb7VgwzaG2xa9hxgkhohCIiKEINKaw04CAVJesI2FBvDe32mtvTu+HahRAjmSVAQDpX9g2UiJEHIrljOyWbb99gK4dYKjndwYZIlde5MQW7TLi5j6godsfDxeTJnF8PdjP2iK3qTUO3r3iLaGQOQ2ULO7EftCX3s3kKGqPCLhYrir4+/jCPgMdMeYULFdDCzAgzSG48MJX331GT/7q9/wV//P33O9adDGcHp4wB/90U85PDqms568nGKbBte3RGMxWhCURk8KyAwRRYiCq01DVTUED9NJRqYaTAz4vie45PIACqWT3kWmCyCp3n/2+QV/+3dfkE8M733wjPd+5yFBhu1DJvOC8PI1y6sbvA9IkiuNVpq6arg6X3K53DA/rhFSMS0LmrohYDg7PeHy5gYdLG1dJ/E7BFrA2fEhkyz19fXWsq4qvE2VfhckUWps32GdTwKS3tI1LXVdE2NktV5jewdCoLTcViX3K1wAdV1vg6NUgRApcNh922kBHSqKY6VSD3RRZ20K0AGlBlHiwe77bR25yJhOyjQfyimvLi6S7kKAvvb4OrIOax68d8LaBQiavrUon9yXNm0K3qOT5EXJ0emMq+VFYuhIjW0Dbe2JQaCMRooMLQqqpqKpe0KASTmjbfshMIg46xN9W4i0CXaXXNpku6204vL8mqPjQ2zvKCYTrJNIlfHsg6ecPjyi9Wu+/GrJpqu4qZeUk5xVtaK+afjkw894eP8B2TTj8uU1Uy9QseDL80v+4//+f/LswX3efe8xx88dIlryac7Z2RG//wc/ZHGcc7W84PziNa3rkrhviMymc4p8wrNn7/Hw3gm6uqRfrqmuN2zaQN1FvIisekfnUrLVho7DuaQPgZsg+fJiw+W6IZDWgzHJE0Leoc2nip9A0rUtldigdar+eWcHLaod4xAhiFJBHFpdxmBQK0QYA7RACKPi+rCairH1cRA0izEBQIMjVBJr9WQm21XnRRIsj2EQexy0v+LA1AkhgS8uOCJiKz7t2i5dZ0whdYypjSrtXBKTGXQ7tGVJgUISfKBvXbI4H9qqnHM4G8CkSutO5NMxnerttaYEKbWMyW/Z1P65x93W4G9jp9zV8/jejJTveP37vO/7HPP7MHm+ETgSO77M/stSkmzoh33Uk6qASQclidn31mGtw/m0tsS4ixu2I+4sZ4UQW4aElBJtMsYdoBvakWSRUeaatmmGlhOzS7KUIsuy7b6S9ghBOZmkSq1MVVpbVRhjtq1Q+1X1UTMt9cCbbRtKcnQbQR25dS0MAVSmUMZsWRWj46HRamfbHSNqsHD2ziWmz7DXmQG49MOzO7bhCCES60c6lNQ4axPLL3QIKdE6u/Xd5kWJyXKc69lsKjbVatCvITlJdj193xFjShqDT8yPrm3JTAJuizzDakmn315tNzHco/0Ws/RfKral2DWt24yxZNzZHe+zYfaZTXfbU+66S40uXuOxtvohMq3RSiryvECK1MqGb2l6w7mTlPKAYnGKWn5BDBCiYrPpUCqghUJrQd/bJKrqeqQCkym0lqA0yAQ8NJ1lUcBEQzkrWRxOMX5CpzW1BK+SLt/Z4YKLdU/V9viuZpFLjmaC+8byo8OMmdQcHky5fxopJ5FMa5Q0+KgRMWeSaWyvESX4fkMmLVo48F1yGQySQkIZFLUMPLkXaIPDlyWnJwXFqzXn1zXWQ1EYpPIoBCoGTieGg1xyOvG8c6xQsqCrapzK6CNkucH7QNMLWhtwgdT+IOT2uYlBbpcm64GhxTeS9ldsoLeOXgt8NDgETuXUfWRj2y1IMrKxxu99v2VJDGzYyC732HUf7CQlRrBvBGqSA21yW913FhvXunHs62N5fxtMzLIstX44tz3XkaHyNg9tMjLjdrp9LiClwrsExFR2jRSCPC+TzpZtk9ZeSAVLARhl8CJwvVyyurnGyBH47rCDSUjXtVTVmERHyumM+XzKyekxxSSDMb+UOUFoiJoYDJ6Ghx/8hH/97/4tm+Cxf/a3tB9fsLakuCTGAThNhTGFojQ5FB45jUwLwzvvPuH5T/6Qd3/8E3Jd8PqjL/jq9TUXlxv+688/4fpyg7eBarNGCM+De0ccTwqmB/doPrsgtC2OQO3hq5cXuFiSHR5hpg0+OIr5lCgkKmq6tuamWlFOJ7xerzjMDyiKCVFIwrinS0XXNqxvVtR1RbWpWMzmBLfi+OQYpc0AXnuiTY6j0kN0qaCId1QXS9x6Q4Zhc16hOo0SV2SLiAwqORFqw4OHc44Wv8ejJ4f815//nIuL1zx8+ICH989Q777Hbz78hKurFzjbkukETiymMxrbo4IHuSvK7CKLNCQpphCAzjXaKO7fu8cXl1fp+SBJpEQhUuEH6NoWrQJRTJkczDl+cB8xKal6S9d0+ABCamxnCc6xlQHYjrg9i3Ft3/FOEsIx1OG2xaVbQ+z+L/YJK296Nr71wVGJMRKHxEHJ26K9xEHMctAgECObRaS+UPaCqK1I5ACOpAUz/VveWrgEQd5W2t/eHzHSn9IVesae0Dhc466VCcRAWx1u6XgTB/BFqIQG7t+eSHKR2AE4cQigTEr8Y6p8jwFV0nxI5zNOoBCSi4SLjur6NS8//wScYzo5oJyV/PAH73P/wUOENkijiSj6tiXKlt7XBAR5WeDykmxS0rVJzPSmdXz9+pqb6xXPnhzz4EihSAGs7VxSys8yQrTITBOjxwfPZtPy8Sdf8eFnlzx4+ogH+piLPuNydU60ljwqopfIYgqqwncdTdcQxZTpZMLyfMXNxTWr3pFdrZGZ4nA+SwhqkHRegrc8vn/M5y9fsWo7pMwpleH4+ARcT+97siJnUszQElywaJUs4ubzGdfrDUWesa6qlAy3qcXk4uKSruvSl9jvz6Od28I4H8fgaWwHu0tjBrY0yPH9I9XdD+KVqXWqvSXw9raO/pVDbASbpsYdz8ikZn1Vc/bBGcFdokSiCH720Zc8+8kZrk1CXd2mJy811zctWMG0PCBYy83lDUrl+C5yvb5JQoc6IzMJCJhNDvn6y0tcaFFKp4Sj8zRVSwQmxZS2bdmsGyaTkswky0TXQqYEE1WQZxolSloXyWaGdx/dRxgDOvL65hWvX79ks96QT3PeefqAg+MF65sbvvjqS6bHUx794BGmKCnanrDybNqK6yXUjccFQ+00cvYLDu4dcfbOMTebJcvVBddXSzZ1RYge11uUFkzKBUV2wMniiFKWdC9fcPXpL7l5ec5m46h7SRcMrfNc1x1dlPRB8nW1YdEIGutYu5qvLiqqpkcIjRjaduIgJiVEsv80WiWLXhRKe+bTAu97gg/oTO3WFpFalow2qGE9HNeWcT6nJDQFdCkIGyj0cXBkybNtz7oQIulTaLEFbcbAL/2tZmyX2K8ET8oJXYj0TZsox0rgSMGIDeB9REmNFzK1ZsaYtMRGMEIKnLNAuWWlKa3QKPygr5GeQY3zHmcTKCPllMjOQQXBLacKIUhMpJjE4N7W8U0Cwt/283eNfypQ84895j8dqHkDI4idjWyMKcno+z4xOpqWpumS+17vcC5ZZ8M3O6XEvSQmJcLJlUwbjZaCssjJjUEPwqajE8i49u8nWmMyk1qfLMaklqSRQaO1puu6rfAl3G5dyPN86w41HvdWIjY8a6NN/ahlIWJIe+IAnoYQtoDL+O/9avwIEoxFKSnVLeAghJBaPmJExUiea6RS6G11P24FgsfvJu2Jkul0ipKCzXpF01R46xJTIJIAtL4bHLhSa1iIu4DVB0X2Dfapb8vYF1ndZx/sa8/cTa7vai+O/9/Xrhm/j/2YJCXfYptsj8cawToh03euhsJgGABLFR0ezTJoMjHn8PAx5ctX9H2H99B2ASUjWgVE16Yqc3BkmSEEsL1D65zaOrwW9DHQtDYx2XygtYFyfkAhF8hJRhMqqk3PwdmCqApOa0vTWUpzylQHHs4kZ2rJo2mNjB2TWcGDkwWZTJb0fe8QURPIcV5T6CnRGeT0AC07MtFim2vKwqDFBOkajPe8oxQOj/WWtfBkixlFoVD01K2jyCOZFmilMMDpTDFXgadnMw7LxL7LtWAymXK12STAP4ILkab32wRKKUFnd6wpOWhM9c6DHMxLhERJgVYiOci5iMUTTY6enFDZyLJaY323nQuwa3Ubx/iMxxhx3mG9T2Dc8J6tSPcwp/ZbnYRImkb7rmH7x7vLjExA0A6oGffbnX6lv3Veb7PQt7cRKTRaSuTIpoqCMisJIVBVazpn2awr6qam847ZbEaZFzSxxSjNZDJBmkjXbGirFWLo+BB4lIi0dcXyCkQ44PBgwWQyYTKZoE2W2kdVxLoNyt/gxZxUWktrXxQKmeWc/e4P+B//7f+E9y1RWuqPlrS9H3Q5k3aalIo8y5mWJeU8R1g4ub/gBx+8yzsPHtDXjovPfs3HH37Kp1cVn19UvLqqWd7UKKlZb9aYTPH6esXpYsZBkZPPT3l1+TmNt0wvNxRZJC8V89UGUy6ZHc5wKrl9Otthvaf2DlNm9Fc3CHGQgJeYNJqijMme3jrazrLZ1EwnU/Ki4PrLL7i8XNKfnuC9SQ5PMSK8RwSPjJFu04ALvP7oJbZqCS61yBdHPfFVxcmjx8hFTdk59HyBOdCog5ynxUOO7s359S9+xYe//DXxpOfe6THPnz/h8FBxdXVO36yYzQvEukMqgVKpWJ+IGYKtlrAYcYddfBFC4PD4iD5Gjr76inZ5zUjJjYTEXh0YQYXRzOYzHr33Pj7P6YmsbUdnXSpISoNt+kEJ5ZtjLbFHTBmhiO879nPabxrfDtSMD7XciWOqoWIqRobMuGHJQVxlj1EjtuoxkRiHzU2KHbokd4uHkKmqK5Uk7gl2DWSe9MBtg0Y5BPQMYFASCw57gUw6/r6A17iRhu37x3MZF8AgSLQlxDb4GIOYsWo8XlIEUHKo9KVKTbrpgDK0tmVaan70/mPq/orroPjh7/6Ix2cn1E2LRaKLKb31yNZCEZBiEEyTOcLMkCqnb9acLxsubzoubiw3y5bDQ0ueReZGgo2EAF3vKAbQK/ok3op3eCdZHB9y+hQmD9/h3E752V98xV//zd8yzSXvvXPA0XyC8T3SKWwX6FqL0KlyUK+WXK0aNtFwWX/GBz/9Xdbrl4NwFeSTBbFvmRY5v/j1Z9RRokTH6WLBNDeczA1WGroY8dahM03XtUipafoNUWWDSF1P9H7Qr9BkWc7x0THn7iIF3plJFc2hN34/cLoLrLwpeB8D83FT9d5TN3XCPWNaiMdAd/yctxmouXm5IaNg3TXcLNdMsgn12rE8r/EWog145UBGri9WZGi89SACSidWhO0s62aF1IJyalBGsFrXdH0k1xoXIkiPyTWX50uqqmE6M8Mcg3I+pa2WyVIWTWGmuB68lcync7raY5QmRs3qpiHGSNemAHVjr1j7BjUxuOC4d3LK1dU1vhXUteVf/Pf/HaZUXF4see/5Bzx5+CRR7qOn7mu0DeRRYb1guW6YTSLhvObD//B/cHiy4PT+CRfX5xSlZnZQsKpuCPSp7WlWYtScg/kZpcl5/fnXbL7+Je7lpzSXV3x91bCOhrYLdC5w2ThqL6mtoLUOuVrSWkvrJZ2NIDUShSTNH1RqRZBDX3l0DiMLsnKK8xu6ds1kkqUq7dBuobXGxcG1YdSrGdYtKdWwVg1Azdj7F1Ngn+Zv2IqMCimQcd/1Ia1RI+V+fGaSyOhtt5IRHCIEonVoWaAygxMxMbaiQAqVWIwesiJLlecQbwHui4MDtFY4OZyfD6Dl8LwJvIskcchARGB7h1QKa/vt+Wit8XvVxDwvBmFqS5T/gJ3w/+cxBsNvEu+9e6/v6hjsJ3rf1Qd999j/2PFNbJvvYuHsr7dvBHS2lZG7a3Nq9dgmysHS920Catoeax3Bp/nmXLi1jt915hlfH8f4s7WWzCiKokji1pOS+aQk14I8y5hPp8ltYii2JGBab/eJsiyJMUew+8y2bbdAjZSSoii2IsAxxq2O077w83jM8VkcXWDStYwJmE9RhxCDHp9IQNMAGu1X62G3T+3fc3lHYDSBt7vClR30drROAOnWNnS4VztXpzGeEcxmM8BT+w3WudTGiaD3ga63xKGNREiRLJmzlKi4bwk4/7nHaF+8nwDvfz9jcns3wb37XYzr0/5zuj/3x7m9BenEUM0dBIfH440OqklHJRD9kLyLVPy0KK7ijHz6kOnxfZoXnyf9FS9JhhABowRCxKQ9KNTAtEzMLBdBmJysnOKxRKGxPhJJa7iUCh08Uxk4najUVpsJouuZCs+je0cUdDw7nHCCI7dLskIyPTpkWswSw0pBYUqskwhR4p3G2ClW5UThUVkgUw3aSIpMkCtBaBWxb1hoz/tmgnWOryqHKHrUaU7oZry+uEEpKDJFDI5CCo5yx/FEcVgGpO/wXSpkKGOou55SpH23d4HWQ64TIBoCOCTRJwH76AKIQKYHTUeS0kiIKT4KNuKjoMcRi0PU5Iw+5vTRbavq+4DcPvAyzpcQAiokEeVxnu1bZ4+g6jhvxjVDxd3eMR4HuNU6tz9fR5bYeIxxju/Pyf0Wqbd16EzjvCNKQWctjWtRSmJMYsUE6an7iqapU/FKGry3KFUme+6+Q0qYaMPpySFHB3OKPIcQWF4vublZ0dsOYwyL+YT5omQ+n2O0YrVeg0omDFPn8a7BZKnQJAgEZ9M6rVIO+PDdJ/zpv/wTClMgs1/zN3//gove04sklaHznPnBnGfPn5CHQL++4snhlEczcBcf8upqzeWnPZ9+ccPPX17y+arjompxLiClBiWh79ENrFtLJgRHxZRydsDq4jWvlhsWM83jJ/eRaLqqxvYti9NjnEs296vlijIvqdcrDudT8iyjqmta65ghtq2zznu6vme5WlIUOTfLJTEK2qanbR1KGGxrk5Ow9cTeYtuOy/NLutry5ccvmJULmsZyvarQ5x1qNuHlpeXonYfoiw3ze/c4fSrIT4+YzArK2ZTZbMbRwSGffvhrLq9fcXp8xoN37iFkx3rpyIuktRmCx3kLBHxw3I1KhEht0DIKlFAgBDpTHB4tOJxPWa6W6bmMEUJAqBSDSqWYHky49/gdpqenxGJC1Xds+iS3UZoMhaTfNMgwaC8O++rtdR92DJF9IHXXsfNNMdo+meDb4rhvBWoyM6LEYhtUjECJEPwWiiyk3GPRjMyZMSCIA/NGELbV47SIJuAkIWbJJnsMznZMnO3x94KTGMLgxDRc5NiiRQp4kInOGPfYF5Hk0DSe1y7IS5TXOFaI4vZgpF74kX49EJ5SDrX7++EaY4xopri2QYTA88f3+eiLFY6CPDNU64rJTNG5QB8E66sbqs++5FE5xYiAQtNXgeubaxoHNyvHr78852rdc7BYEDN4VUExyxPC19cIF5FG4yJIGwnO0boGFz1Sz1gcnDA/y/j8asOv/+4v+cVHL1itGozyPDx5yfPHD5hLxzR0zFRkNtF4u0EIyaxUVMsNncvYbBq+fPmak4MZ9D1KaaTuiTFwdbPi49crOqnIZcejo4KDQlMaSZnlXKwbXN9DSGKok1nBpr6m6x2TsuBmXaFUqnaGvYA3hIDzjtDtNh/YVTHH18aNaEwEEGJbydpn3OxvplLsqptiT0xwpLTvz++3bUht6XoQRlDVGzJl8I3g8vWaTOW46PDWEk1qZbt8eYMyir5PlSOjcvrOo40eQFaJ8wEjc1QmcF0gn2h0JrCux4dIWUyY5gXEQLWpuLlYI5BoMqKTiZ6PRcbUOiUxdM6xXlV0XYdznul0SlkWNKGjPJ5RTEpenb/GXN9QXTfEXnN8dsTD+0+4aa45Pjnj+PCI8xevuLy8BJE2kBNzyCSUIC194wleU7eCi6uGjz79krav+OSLTzg4nPOHf/RTTs+OmS0WHM4WGKOpK/jo5ivC5pqLz3/DJCyJqytCD19XgT6TdL2jd5HrLlL1ltpC11sESR8pCknwCaRWMlVRsrwAlVgyUgmk8HRNS4yBA3VM07YEHD5L1rZayC1DMAHcST8pmNLfYVIAACAASURBVBSEqUwN7ZVxu2a6uBM8Hdk2Uo6ub6MbXhrjOirEWIF3SZRwACuLQg3r9C4JCd4mAGloBUVKbEiVylS5T44iYlgviUnUOw6fHWOyEi7ysb1CEoJFCEXvXAJ8xMCaDOk/69K6YK3bVjuN1njvUNIMyY0a1uG4Zc69reNNrJT9n+9uzt/0+v/XYz85fVOC+aZz/z4/v5F1MwKKw9gC6ESETBMleEfXNdR1aqnse48fQJoQIiGJOG3FsO+O/WsYr2l08qibBqMV905OcDbpSSymM8qiQGvNfD6D6Mmz5MAzmUxuC3GKxDCJMVKW5ZZ5mWWpr74oim3Sv8/Q2HdY2mdajKKXWTZaZ++07uQeW3ksJowtVCN4BDsx0BFMUEqhh88b2232j8PQ8mFdwORiKyw8/v3ICoIkmmxtN7QXGDKtmE6nEJJuWNMmB78BWkji7BKidVtMyA/mAG/rGNvjxvs13ue7DJv9+12W5S3r9jFxHgGXMZkeE+S7QOv4XY+MxjEhT3NCDHEz2L4fHPQEwRgMAeU7WplxEeecPfwd/l/m3qzXkuw803vWGBF7PFPmyazMGskiKVEW222h1YYbsOELX7X/gf+f7w03DNhowGhf2IClltgUB5HFKtaYwxn3FNOafLEi9t4nq0hJ3Wo5F1BZZ9r7xIlhrW+93zuou1vaepeBBxeoSokoBUYKClsipULJzJR0LkvijTGEKHApUcym7Nya9aqh2/bMF4Jpobi8mNNFR+sSy7MFIuX7+t2LKVNVcGo9Z8pQ9HOU0RSTU5TUJAJCK2JIKGtwwSK0JmegalAlFJIkLKWSVCZBzF6ELgRE6tHSc3lS0rqWqHtm0wWlKYhdQ123VKrEFCVWOGToWE4WVFqCKlhtmsycLyx1CJzKbL4fUk8fBm/icV0SKjefRna+kvQhIGVuFiQyq8mYLEuMiewLN5kTzAltNAibsPHwPB+DqCMIdyyHy7/q4Rw/SvhHoG+sTfdm3/GhSfEICo417nivep8NkcekyPGe2jPqjhg0+4b4f6Z15R9j1KGhdjtEgtIWBOnZtT30kaIwdKmhpYbS51CEPhJiw2rTE52nKkvaLoC0LBcLZqcLzk5OMVqzvl/R1i1CQOe6gQGciCLQtI6b+1tuVnd0ruPyvCEUK4zVWKVJPtB3HYGEnVRsusCr6xX3dsrFj/+EfzW9ZDH5KX/x8095uWnojeLiyQU/+ckfc3ZSsf3sGwqtOLWK609/Qxsd9Tby2xeCn3+94edXK24DdCmiSAhU9j0dvFCu12smxtLMPCfaMqsqJosCjKbtA5tNQxAFKihs46i7LUKVtJuWu29umQrF5aPH3DQ7hM4ebj4EjNZ4Hwgx0XQd3nuur6/o6oYn8xmr1Za2OWF9t2GxqPAkfNez22zxfUfjI6qcsnj8nOAld5s7Vqmi2Qg211vUi47Ta8/i/JTHa4HQSy4nS6QCYRXFfMrHP/4Bi0XF559+wt3dPctlyeXjS7749B7X93R9S9MmRDlhtE4Zcp73Y79VFxlM8TGwrXcYozmdTXitFNFl4oVNCYPASklZGC7ee8Kz739EsAXbuqMXKctLIZvxJ4Xbdagks+8p3653DhDAaAHDd7KJD8/ewwbc76vDjscfBGqKY3q5yOSikf2S4lBAyaPYQnEgIB0XDG8e6HEH7vhAc4Eihy5xfPA6KeUQw338h48b6UPxeTjcXCTuT8koDZByAGvS/mdGH5yIIMSDjnSAXvbHeNypGhk4aaxQhg1KSqDVFI2jNDti53j+9Jyf/ftf0HU9Hz17zmxxSdM71ruGn/3sl4SXv+OPn76P8Jlatnt9xVerHZ+vA1/eK3711Wtudi3vvvuUD58/wjeJ8j7SF5EiRqZWI2T25ImB3O3fbglU7JqaLUtu7i1/8bNP+PWrDZ2yMLG0IfBip7n9xTfMaTlTgWfLiscXJaen2fvk8tGSNm64fV0TU+J+vePZk0uS0ri+pxmirn/96efctQEnJU/mltNKMNVgpKDzjmIoaISSWDNBAsvlglc3K6qiYDab0rmAsRWr1Tq7tDdN7r4+AO3Evrg8Zs4cX385gIQ++Af32Jud62ODwBHMg4P+920eeqqIpebd5xes72/Z3dSEncGlnkU1J7DDaM3ZxRJtFXe9wBqLlIm7uy3trkeLIqPEISGTomlbEgohDdIEmt0O2kA5MagBCNhtdnRth7GGtsmb5bIsEVGwWe0wxrBZbWjrLne6lMW5nqIomM+zdnq73VLMLK5z+O2W6WyKjIrT6RliUuB6R9d6Xr54zRdffJWBnk3D/d0K5zyn5QUyCJ5cPCUkz4svbtAoqnKG0hvq1vH1i8+o6xu2uytu7r6hrEoun14yKbKvz6bt6PuaiwmcF57HS4Pb1TgnufWSTdcQG4fzcN84GpdwMZt+EQMQkSLT2rXI95zSJbac5nQJITOFOnYkn5NodpsaUxhIXZ5/VPb4gsO9bIzJBX2KwCD7GSZ/59xeWnoAILPX0oHNksFyIXM6U57zLMfyqTRMVIdUCJEXJa1QSpOiAxLWWERUJAGty2CdkQqjx42myh4AIWAndnj/SDjyZxipqnLYaI+pVZCTUJquy/4zPtK2Dd47rCr2AM9YZEOWa8jBlLPv/LeeibdlvMmA+C6g5k3A5E2g45+ioP5DoNB3Ai//UABHfvv1KSVEDAjE3sOlrmvqpsa5RIhjuk4cIpLj/hk5fo/jYzyWEByAmixD3G53kCLP33knJw16z0xlpo1SirKo0Eqhjd3HJo+bbed6YvB7v4eqqvZR1yMoMrIzQ8hJaUHkZ2qMdz5mA40b/LHrjVCDqXJCK4NSWXpRliXW6P37A/tjOvbHGEeKcc8IPWaK+BAYvpHXQ+fIAEuO+y7LKX4wVc4bR0UIcmA21aiBpaGkYjqfE4F2dZfX5rbNPnZSoSclShukygw4/xZ37o+BlOPzCewZMOPPjCAMjF3bA5vpmKEwgnX7BtDRBvlQlxzAoGMgRw6guYSh6Zjnbq8KCtFihWOHZZNKKvOIsyfPefm7T3AukUK2CkDIvPkZmgWZTZONs2WAUlnaEJHacPJoye52w+3NlutvrlCpJNkJbVMD3WAk7VnO83MxqzRPl1Mqc4fpOwptKCcnyMkESQ9YkigRRuKDJiiDjwYtZA5vtRZdTcBJjJYIGnzwIAqUnZNkR+jXTMuCy4Vk7RNqYrFFSd86Pv/yBdoU9G1DIDJdVATn8E4SQqJpAx6NsJYmJBrnqKqC0PVD6EZmFuVYbpnj52NCSjL7KAX6wZk0JpcbtSFlY3wBqhTY+YJdJ2hFwkWPSQ8TvY4B2fF5PX7++3iQ1h3PVcfz137eTJn1+ua9OAK2x0zvQ/P5ML+M73f8/WNA6e/L0vz/Y6zbFVe3VxAjTy+fDo377LPZiY5OtHSiIeFRQjCvFighcX3HdrcmhBJrwZqKsrCcnZ5w+fgREsG8qnJqT0r0vmfbbLm+u6ZudrR1R901yEYhVWJaCJbVGaIwuBRo64btdocT0K7v+eb1mm9WO1YBUjnh8cfv8a9mhvl8wV/97Re01Ywf/Nk/5/zpKdvNa7Adi/OCuq356gvHapvY3Vt+erviV+sNV0nRCgVSomI2cA8JgsjX0SXo+5b+vqfRlneqkqgrXIzcr1dUM42dVhAV222HsBKfWnztuf/6FRfTOVc3NwSr2TUNRTUlpjxvdL0nIuidR0hF3+d9V/noFCk1q9WG0zJR6Aw0hxAwkxIzKRGTSNcJtNfcXW24cYnPr++5rSMUp4TQwusvODvb8O594PMvr3n386c8+9FHPP3++5STgnI55bl+l1lZ8vVXL7i7f0VwHednF0j5esADcmqdtSb7bn1r5Ho2A6SJvutouxalJ5wtF0yNIYSEQGKEwqREqTSXjy948sEzFpcXxKLE+S7bqUQQSmO0RcREt2uRyKFuPYyH9VEGZoTIjKssk8pMxwfHOSIke7z4IQvz940/LH0yA9tF5q7vCGgIsv+FVJmVkFHkg/dMphJyEGsdUfnG6NXx9WmYmBJ5kyKFJCQ/AFIH4GeckKTKJyym3M0Y4ZRxA3P8s3nRyycsL6zjpHU00Q6SpfwLJSnuf+HBOX3ohjykWGeTw/zxgdIN0GEQxZLQR6aF4tnZjHdPZqz6NZs2cLtqMIXns199w29+8RXfX0baVnLlI9ebml+/3vA3L3u+WQeEmXG3UWxrRf3pLc5Z2ssTUtK46Y4L3XMyqRBKIaVFhkDs1ry6uud103Ltp3xx95K//fqe3351hZOWi4sTQnDcXd/iQpYSSAsLKynmBdPKMDEWW0yZFIK6cfzu9Q6fDDYK5rMZ/S5gtCSiafrIp59ekaSkDI7ns8dMVEEUPWU5pbRT6CMuRAqrMCLh2hqVJJU1tG1P52DXevquoygyq8ZYPUjcjkz4Utxfs+MFLi9UYSh8cheRxP4e2z8QQjygPsMoa8u3akwR7xzW2m89mG/TqE4qrj+/y1HQTmF0hSgjKgqS91TzAhd6YhL0tUdpTXSJShaIHgiZdaaNGeLTS3zvMVWJS4FeOCbLCdXMsG22lJOSlCT9Kpvxeh/20YjeB1IviVFSLUpSqAkym/j54EkBfPJAogktZm5Bwt3rOzCS6XROXe8oouZiPudVc8/N7Zrf/uZzbl694gcffsTPv/o1cdXRbddsn1XEZPlvllP+aPaMf/PiL9kIR2prbB8QQJ8gCYnzLd264X6VePnyJRKN1hapJDE5bieG5azk1cpQKkHvIusmsW4yA6htI3Xn8TEbDnLU6coTrc4pJ0JhygKiQAaFNoKqNOyaGmklTgiatmdZZB21czVSaVrnEUZgUUQPUokccy0EEXADbTrliBhUhpORyZOEB5l9J4ySWC1BSjwSLSB4R9/WqJMyz7diTNXLPQkRJTJl0ZaRCqs0UkMMgtRKmkJjXED5iE+KgoSOLVI6khIQGibSEoVGqRKRhq5zlPiYQZokOnyCSIGLmi7VuJQNZB0dSQUQgRAcrXNUVYmADOiEkJcP4SF4lCafhxhyPPNbOo4B4fH/v+9jGIDlN98k7Zf+zEA5Yqf8p8xK3wXAHB/Lmx//oe99F9BzvAnOgZYwrMaImD3gRMhSON96tuuaetvRNQEvBJ6cvtJFhwuBgbzx4L33G+vEkLaYXaHUwFBBK4SSaCmYFIZpWeCamlm5YLmYU5YWaxXTaYlRCqE0qqgyA1eC0nIABC1dm9cda+0erGnblqqqHgAvcWT3kvAxd9JDDKghyUWowXTb6CHMNWXT7ugw1lKUFjmANNPJBD3UR0JACB5b5GcrDgahfgCGYvA56UNk8/EohxjmgaURCIgYMSanMmmVn0vX9fuIcaMkuiywRlNVJW2bNyZ91w5GzD2KfOyT+QKPoPWCvttRdz1dSPQhsRQTZpMyG/G+pWNkxYyg+Pg1PUhkhEgYkzfcRhtKa7NB/iCLETEMDMgctOG6dgC5DIXN7+e9Iwo5vOeBVHa8qd/XljGRhrSufdNPCkzqc3qikIjQ4rznWkguLz5EbzvcN19SktDD8RhrMvgg5R6siTEiTYHShr4GtODynef84u41t52j9QmV1jTtlmbbs3u9oouJu9By8egRdrFkvrTMZ5GpjHRBIBdLki7RRQnkulMgSUnivSBFSwoWJROz0rCLhl4ZkprgpCK2AegIXqCSJCVFUc6xIRJdS78LhLBjbg0fPlnSbjZcb3rqpsPISOc0k2pBnzqa3rPZBipTonAZ7G86LqaabQdEiUgZPHQDuyWJSBI5Wbb34zoeSSiCJ8siiCgZqIygnLxDMI9yoEDaIVKkTw+NozMjW5DGhrIYvJxcn/cGHNhuWuthnyOGkKAB4FOK5D1RqXy8zpNSxMdsoB9cv7+TjFIkElLpvc/mgQmWGAw18D7Pk6PnzTEb7G0cu+ae3jmaxlPOGrSNIHsEkb7t6F2LF45yUqALS2nmLMoJbltTaoHrO7JZusDaHAmfug2lNZRFICiDMSWkgmoLITR439JKKCYFqMiu22WAT8+ojEWIRPQO3ylerlq+ul1ze72ldoFoLSBobcHZ+9/jT+SS+fc/wp8s0SdLbu+u6WNPCi0Wx9nkhC++vOHnLxpeNx0v+8BOVvjkOZ1NKZXm+v4GL4b6TGS2XQwBD+xIEDyy6SmuN0gKJnNNtXNw31BWitJHVAGvr9e8eFETvaCQHaVOiNmMRxeP0TKnI6aY/ZqU1ASfSMLQB0l0kW67ob4PbJeS/mxJ2ylskUAFkpbIYoJ3NW294+uvXtL2Bl2esfUborXcbHtaPMvzM1Z3Nb/58qdcPl5Q+4Z60xBXDR//5I9x8wIxX3JiKqgKwic966tr+maFZEupQalEiC7Lzoa1Mws/D+reAS7AGE30CV97mn5L6npOZ1P6qFDOUwmoCs3sbMKjj9/j5KMPCNOK+7bGkbIPTsqm1EkpnE/E3mclkJaIN5ovD0kCGZg5Zprv4YX9P/kDsW9AZpZQTOmAPXzH+IMralXl5KC9o/HggSLiAaHNiw8DLSkDI3L0Shn+GDlsEtgXpvkGVDJ7zaSYDp+nRGToSIiHxdm4COXuRMqpPQAp7EGiB0McCpaYIjEOFEGh9xT6gSCTT1YUWbJwRGWEDI6NQM1YJGedPfuLEuNIlxVIsqRBmRm2Ciyc4I8+eI//66c/5/XrW6bzCV9++YKrL2pWq3tmzyx1vUXOp3xzu+KvfnNHu/g+vkxcPnlE+/I1q3ZH3Xd8/s2XBLdDuxl6vuPJexWFtUipEVIjJNiqRGjL715c87vtli/Xia9uNzhlcS7x6sUrgu8HNx7BxXLO5cLwbCF4//mSxzODFtC5rM0sjMYYTdhFRIK2aYi+p7AldRe5uVvTOIj0zAvN6WzBfDZFyI62aVjOlhjfcX93y3JyiVECqfJ9YZVkvc2snL7r2e1qTk5O8uUbOvSjhnjsWo7dhlGOB+OtdQB0Dgjr4e5Xw/3yZjf7GIDbGzKG+ODrb9uIQTKpClzXk/zwPOpEcNl7Z7aYkmJivVnRe4+Wmul8wv3tCt95tFF0rSMFgUiRuq7p+o429JhpSZQRj6fpAz56XHRIaahmJYiE8x6HpzAFIgq01GhtckLUkFgSSczKGXW7Q6hEFx16onEh8Oj8ArPbsmtaNndrTFLsthtUCNw0K65X11hreXR+zvXNNacXp3z58jUKxURP0WvBM3XKx9UlH1085S93G0LpSTGgrKaazHF9g/OZZp1B90ggkrxDBojJsyMDiF2nsDJDvru2o+n6bCg4+GTkgow8+e7R80HnLxTGDKkseESRKKqC9999yt2V5O7qFRPlSaJlQcHFcgl6wrZpqZsWKTRCipw4IQRS585fSinLLIZrrqXMBuJhiAiUGURWg3E7cUisU9l7Q+kcZagGSWocvs9+TiWflyxWPsyhMvvQBJUQfY+IiRCzB4dWGq9LdmpGp+ZMZIVKPRKDJCAlWBUxMpCXlwChQwWBTD3SbfMiFQPJOYTz2CjQIceDOx+wg6m31mpI74u4vqesLFGO+v63dzN4PL/A7wdqDj8vGFsSD+ecA5X2wWv+Eck2v4+58w8Bc77r4yzpGT9PWRtOnvMTWWaz2WzZbna0XWZrRZlpy733OO/36YsPwJ8j5mNu5IzNo6GrJnNKnS0LJoXFSsnJYsasKplNpxRFwWQ6ybJDpTFWg9TEga7svdv7EVhj91HbdpDzjKyalLJEdvxbR/Pe8er54DNwc5TGMkqVxg1bIh+v1goE2KLA2Oz5FCODSfABsDFKE2CQZeUCT8osAZdI5PA5ZPBPDobFzju8r9Hao2SP1hZlDKSDqelodpu9dyq0NjRNw263o2tbvO+IiCxXyfQNnI/UbTYWFgK0Osg439Yx1gTHMurxHk1DzTD6FY1+YDEE3BDFHGMkxWwarcc5P2SGklI5Drpr2zy/DhI3Y8yDxJ39+Yb9vJyTh47kK66jH+6mkZnRATs75+TZx8TtPba7YVJmZmJhLVofnpXsdSFRSiOUxm9akIrZySnV4pyr1Zd88/qOs1lETqYEHxDRQ+9BJ+gqTqaPOVvOmOodpvMkqTBFhVIVuqhAFsQokUIRfcAYSdtmnx0tSxqnkHoKskTKEudWSFmgrUPhs2RfQughRo+UCWsSqy57a8wqy7On59xsvkAS0DJhDDntR8Xsw7F2nD85pWt7Ukx0XU+1qNgxMs0EMQlCgD4FQsxGw2McrlICHYfUHiShz3I+ZRKzxZTTi6fIYk4/gOUiZbNyIcSelTfcRCDFnhWVvdfYe2+OLHAhxL4JGAbWzcg0HZteffAHWR7sd6EHk/38niNAfcycyVsXRdt2dF23B3DeZIG9jcMUhvnJgiBqdn1DoWA+t4TYI7RAdBKTDD45LJpyblnM5pj5AvHocU5c0gprSpaLOcvlIrMTrcnnSUusNsPpTHS+Y73bwK4mJbffc642WzZ1TzIaqQU7l3h5v+WTr2+4awPBQ5KalLKipAmJrigpLi94dn7KHZFX6zVN30LKRtjzSYUA6trxcrXlOmqkmbAoDfX2jnfPHzG1Bdv1ijr0CLL0piortttNvnYk6hRYRc/Xmx1VKZB3gi4pzKs7Pnj/MTMXcLHhi69ec3PXcbqY06zXLBYnbKdzTs7Oc4T06IGkNEnkxrSQivv1mlNrCZ3Ddx7fS1ar7BVzsiywhaZrPV294/ZmS7v1XK9atq3j05crvhz2mdfbHQ2BT+9vOJnN+dH7HzFdTtm0ifvbmhe/+5qqMFx88ITyfIEoNctHSz4UH/HrXcNyseB0uUB8uUNJQYiBoiwoi2K/bz1uWWWuyr4yZ7NaM60KNvcrlrMZnQe/3bGoLIvTKU+/9y7Lp4+QsymdACfBj+CJVCiZsQPvevq2g5QO/sVv1HCHj9ODoxm+izgu3faHfTj+sQ7/QyqOP1jtltbu6evHv3BMlDl2uUeMc1UGYY5pdlqObudiD+pIqQ4Rq0I8+DiJcOhKyhEvyydgTysfz0XKXW3JgUmzly7JfFCjTGvPvpEjUBOHDVz+fooD6DT8PSmZw/c4IGjsPx7f84BoIwRTn0BEqLIG/lEx4/1d5Fe/+4LrbY1IebH56MPnrF9/zsX5gsVCc/74lFsneXxreB0sYbflp3/zU9o+51tNK0OHZ7255Uau+GA+ZzqfYQubN8xa4b0kCZgtFki14dXre15uYeMlQpcIAtE7jBQoIbh88pTHi5IfPFtyYXvmtkcrmR3vQ8LXDc67/clWOht+ToqSoiho+oau73JWfYosZzN837PZJGYLS3CObrflbDYntCUydGilmS1nXN/v8O2O5CNd7Sitou8NVVUxm832PhRxoHaPhfrYxThciwMYs6cgH3Vex2K067p9xPz4vntqaDr8/JuMm7dxaBKTwnK/benbmME6LbEmd2x8dCSRcMEhZGYbrbdrhGZP/0SDLhUiCpqmRVmFS5HZckovFS60xJSNt/q2x/uW+WROVImLi3PqXZ39g0SidmumekIUicXpAtd5jDIQFNEkUnRMZxPW3RalJferNTFF+r7H+8T5o1Pu0x33bsPjDx7RhprT8zmfXb8g3CSWF4+pY2BZzChqy58uf8h/ufwRyw18uLjgb+82dKFGTyqKNOHk5Jxmu6aOW9KxW/tgJu5CQKncUXC9Z5uySt15j/cRHzNFWnDYPB+DfmIEaoRECYURGlxE6cRsUrKcLTCi4PHZc54/+giVWiZFjy4A43j+/mO6bsNf//wXNCkiRcCLSBRplMJijaY0ktaaYR7MC2yMGbA22gwAS5YJDQcLZE8PFSWIA7gZwmhkOFIzDuk7MAKj+b43RtPLg2eDC4FqccJcaDai5C9+d4tvPEY6Ov2Exp7QqgukSGxOlzSFoU8Oj6TzAZUKSgJeWlqt8ErTR0FImj4kXNIkadnVPUwyhV9JhesdyqjxjJOSwMXsyfW2jjeZJn8XUHOMvPw+Nst/LqDm9/3ev0uO9ff5OKW4B1DGjlcMga7r2Wxrtrua3jlCzOapKZGfPRdyekt+RzhaY49HjCO4CFLkesUajbY58akwGqtN3mg7n39eKtq2R88mGcDWCkSW/biuI0VP9J6UAn3bM5lMsdbS91m+mc3u1V42OHaqlVL0g7RoPNZxU3S8OXoghQoJXQ4d9sFzKsZIDHF4ZsN+ffLeDeSiQ3rU8ebvjYs3gDgSZRRlVWbQuc+GwX3v0bZAyv5b/hgpRVzXZ6DdB0pboKWkayK7pmFXN4Phc5ZgCGWIQrBr8ntZY5Hq7ZUljtHc4/GP4QFSQtNkSLyqqr3vjAjfToU6BnmstftnZbw/x+szXtc/VEeM8++bchgxsCKEOJgWAzgsoVQs331OuGkpFWhRYLTNRtFaZh8WUmbRpoSMGVBLylIuzzm5fM6r2xfsemicYGkKtG4g9RgBhYSpUSzLkuWkxHZrUtdgSGhlsZM5spgidUGKBhEFwniauia4mtB52uDAXiDQeAcknxMQbQV9A0pn5qZUJKlAR6QB7QOFEKS4wxrFxcWc+Vc6J1SWimmRmM3y83h9tSUhsdWUrUukKAg+N2WTyGcwDiy3CAQkLgZcEPhBCqWTwBD3SU8kUCInty4fXTK/uASbpd2ltlna5w6G0HsATgiiyLXjMXtmvM9GSSVw8JLjsB6Msqk4bMiPmYPH98g43xwnk8FDv1AA53KK3uibNALeb3Pz8XZzj5SWTXOP33nOHs3xG4WqFLY0zKeWyhh2qxWCRN/XhDDl6cVTLs8eMylnJCSu3VFaw3J5QlmUSNSw1+uQZPOh2WxGlIKeiNCSuqsRJqew7Zzni6trpt0JLiZeXF3x9dUtOw9JFSQd8HHgRQroSKx8R1Fq2iDY7mpa53A+rzuzsqRUDpInCg8CpNQUVYGPmTH04uU3/NH3f8jTZ+/w6Vdf5DCHEOm7bmDXZkZBEImagteusAAAIABJREFUCEGg1i3bFLnbek6sQBcF543nm5evUOUMaxTaRN559oSve8GPfvwnLM/OsUX2skoClNYEmeWum90WazSzSYmMDiMLmjpxv2poujVaXaDrhDYTrq/W3O8Cn311zdXK8+XrW15uOq47z229pg2ejkCSkiZF7n/xN5RKcXEyY6bg+8/O+fPbV/zx+gO+95Mfop6coUxiMq/48Hsf0dx1nC5fMyluKLxgcXayB9wU4Aeu8Tj2sEjKDY22aRHB4bqOwhouZwWNcBSTgkfvPeHxR8+5eP8ZdQw0u5YgyYZWQgx+kxkH8G2P7/pMyHiTB3LUlDqMY6aM+FaplvaN3m+P/2jpU2H1/hQIGJIFBuf0EeEdD1gIhBjTlcZJIX9PDQc8bigOOt6DPn9k5ggBURxkVAKx7xqPKSijvGr84/Zd4/0fPJywAXAZQYa9mVYSe0bN/uSJ7NUQY8zHuk9eSSSR6YsPJGZDXOUe6Mm/MbODQl6wW2FIUiCqxA9+9CEv7+/53//dr/Gu5Xsfv89Sn/PFL0umJRgLppB8+OEzXtSa1a/vEfWGIqjcLCcbBS8WUyrVsCgSz55esFwu0SaDKkZohAXRB05PT3jvmec3r3q+2aypignVdJY7YW1NoRLLxZxHFxdcLgumskHGFmsstipJfaJ1NZ3L0iitFVKM6H92Jq93NZPJNEfbkRlRF2dLlEj03lF3kqLMqU5WJB6dLPDB07ct0eUFyxhN3DWZCSElk8kEyB3X8R7LXaxDfPCbErTjz9/cED0Aa9LhPfaAX75wD143Ajtvs5nw04un/O3NZ/iBlgeJmAK9B1vqwQMlTzoxRbSROdI4QNd0QyGaSDKyWM65eHzK3eoO33WUs4KUAhNboHUuFFf3G7Z9S1lO0Nrk/pJSWJ2lPEkKrq+uWW+2LCZzutqhRE90gr5tsUaxXm+ZX8wRpaacWjabe6y1FIXgT//5T/jr//DXGA2Ld05wocUKixGa3bqmmnfMTk+YiSVmo/ivf/ATTraGaR+4kBXPiwWf7naIRYVuJPPJklW1ZLfbEKMnkbu+iUw1zxNq7mCFEHE+P+fBj0VU2hdTb45xHhMps+cMmkJqRNJ8dPkuf/LxD/mLn/0NWyFY9YkOR1FMmHQzphM4nQV8o/ivfvh9Pn7nMf/H//Mz7uuOHg9CkWLAuQipQEowWhJSxCiJkhDTYNxL2oPjMWW2y1ggShJEP7AVxQDKMBRtdthYPKRxDh8gyD/nhMMOc+ZsOiMajWgctU+8vN9lF30SG2/5zVc74tcttjBMDCwmlllpmJanzKxkHQpM8HgxQ753Qne25D55Ot9znXa8bBNF4yEEtMkJe6VUuNRnmw2hkEmhlSDJwC6477gyb8d4uK783YwV8Xu+/ubXxkaEePNF/8Dj+n3H9PcZ3wkcvfH5Yc7NbL1R+hS9p+9adruaXd3Q9Y4Qsx4/IfAxZqDGhwFEzymIx+//gP0osvxEK0lh9cDYSSgiVuaPY3CgCpz33G82uOgz8NB3TKuSMJ9hbUH0WWLUdw2kiB5MXruu+04WxrgRP940xRCHBs/B/2ncXDnn9iDB+PUxcW1MMTTGZL+vAQyQKtdQfd8jpSCEuE/ZfNBISEcSbsb1K0EIxBQGVkdBMSuzhr93+ZwP7NNjTwt19P4pRtq2zT4ZQFGWRHJaSNP2+BAISeyLfhdgtd291alPcNjUHgBq9tdrrA1CCHjnMhtcygdgSdu2e1bvsU8RZJDmmGkx3h8jc+I4EWj8+vFzeWD5ZiPRMeJ7/PlOaLbJsjx9glYNst0wERahIspmz7N8zfP6rI3Gu0hAooop5eKcyflTnCx5fb9hXXsWUpEIGJPFijI6UmiRKZv3Jtfh2xZtLVKXoCeg7BD/3uNTh2t27LYb1qs1u9Zz3xeoBagFRDTr3S22EnS4LLMtSoLwdG3AhdwwVdZgvSN1O0KrsuebUnz47gW/re94tNAsppay1FlWqBS60ESp2TbbzLr2gc71mZU6SIdy9LbY1+wBmQ1Vo8BDFhMnhvU871/Ozi+YP35OMlP6yBBMElESdFk+mNullHtvptGb5vgeG2vJvTcVGeAz5pC+OBp756TIDB6O5uXHcr2RtTUCQKMxORwA4Rjj/nXwjzPv/1OMq5vXzKZzQmoy22Xr6YLGxgJrDHjPrCjQQAoB53p86FFaMZ1MOVmeI6Smry192zBkauf7VuZ9a/SeGD1aa87Oz5ifn/Deh+9TNztu1yt2jeP6ruHnn30N+hYXofEBnzSBzGQKKdeKo9wlquxf1OKpg6ONMct+haSaTFHbHSluqArDRx9c8qIztFc76n6HswInEnfNln//q79BlAVxWB9CykzivO4nZAKZMrgUELi6Y+MCbRWwj09onOazz18wm8/oA0xmE6anp/jZBZs6sm4dIeU9cYyRcmD59EBd1/RD2hHBUVmFRnB7c0+MBZO5oKhqrNYkOn7561dcbRyfvLzlZlNz3fTsomTTB1bO4wkDAyXS7xpWqUELydZ75kaz2m6wVnJ5Omc++4IT6akmFVLk4758+hgtf0nss2ePUAKlswJDksimJ0NEYYpoBFpkv8bCFiTfU2/bzKrzPdNCsXhyxuzROU8+/pDZO4+JkxIXs6xslC0KIUkxgBQoIfGdI7lwxH85EFa+q+Y5/vrx0/Zgz0pC8qaH2X8CUGP0UarTEcAiRAYy9J72d1hk9hvgkX0j1b6QGB3u5T5xaSzGDounkILR1XkPBu0r02GDNLBlRmQqk37SftEcXxvHaKbhWMaFOMbj5vM4iQ1RsYMviZBinwoUUjx6MPNL0vD6LJE/SKgyqOCIQJGydldUECYlf/Yvfsz//f9+gut2PH/3R/Q3gR9+9D7W3FPNpiglmJeSH394jkiJx/OK16vAzWpN43qMkSznhjkNP3i24NmjOUVVIJSirx0BSwygTUFV9Lz/ZM4P3plys16xM5pqbrHlBK1O0SIxqQqqQjOVHZYOqyVRKrw0RBlRtsTYAqlqjEloHZAiF6ht1+J6x9RO0doglEYLT2U10uX0jmq5YNdFxO2K4FqkkqiiQBlD7wIRxbZuaLqepg+4kCN4xzEuNHkB0w+6D8f04WNA5oFB8Bs3/psxisegjeCh6dpYiL2tQwuNTILz0yVdF5BaUrc1AtjVO3ShEYAyiigUTd2SZEJLTTUvUVLnRBUl6WOHa1s631HOLK1r6OnYNh1aSUprmZRTXJO4u15xslyikiH5PLHPzhbZoJcaaxNWFZSLCbttTRQBYSRBDdF6fU0MUC0vmc7nNNstRVXyy09+yfR8hhSB7W7L7WbDO9MLYh3ZbGsEV5yfP2LzTcO8jtRfXyOffgA+clFMeX95wRfbHTd3d6iUwCWWiwt2uzU+dFnyk9Xie2+GPTYRD503UkIM7BoxvCK+UeiIEXUXikIXWGUppOWjD77PabXgmy9e8ejiOX/1yScwX5Iqy7pXKFdg+8Rd3XN2MmN59j3+iz+eMZlc8L/82/+T7a5BkuUapdZke/PMNkwCCmtQIuGC502TbSllNmkcxn6uJd/TmZI9SAaLgtGo9zjlZt/VJUs587yen4Xr6ys2nWAmJOfvPOG9y4rbl9/w5PwEhed3r++52XacV0um9JQdXLczNmqIKZWC2XxOUVpOTk54cvIc53sa2XG1vuXf/fYXWN9yNq+oqgohMruCAaQWQwB6VIqT8ylf3dz9kz1r/9jjAdjxHWvzHyqoBXyrs/NPOd6UdH3X2H89BkiDz0yKeNfT1bsss+z6zFpLeaOUpa0Dm8YHUhrnZfmdHaj8DMr8TEiBlpnGvZjPsFZSloaqnACC9WrDbtcg2hYfPWVRsNlumE0n7OqG5XyOUdlMu95uUBKs1mhrQBylDw6gxjGLZlxD9gbEQ0f92Dh2n+YySp6GDddxfOeY5gJkM+78Vw7PZwavlJT7uPJxbQohZDNxlQvWEMPgbyAJKYFiP08EH1FKUxQlSRxifI/XyXAk1dJKYY3Bu55dU+PjwbRYKkkIkdZlsKa0ioBE6oKQ3l4m6jjnjcBM9qk5XCM4+Nj0fY8in4cRMIFDHTECb8fzJxyaPePn46b6mGHzgD0jxLdAouAPXjbj/ZcTwyTKSnbMWSzeRxfXSLdFkaODY8qMSSFzkqXRhr5v8THhhUZPTimXO7yacbdbcb2qma42dH3LYl5CVEwnE2azEmOgrDS+7uh9xEwmqGJBUtk8OvkWfE27vefu5pab6xUvrtbcbXvk5BzjLROpcEkRujUv1xtOJ5rSCAoc00IyPzkhSkXXNrimyUz9GGnrLdoukbrkZFrx3pMluBqdcooiSVAWii5KnAi45Bnsl+hcZmGm3jOs6qQUUYASCSVE9k0b6vgg8nonQqA0MJtNuHznKXZ5TjAlIYnsheXdYK6d9xDHSWExxewpdATMjWO810YZ5QjqBnFIaHrw7FvzoH497FsiTdM8mFvG934zJUopRVke4r9HoPFt9qi5ef2abXFPkolqUtHsVohUZTNXIdBKskvZeHo6meB1IkXJZr3hrrhFK4MxFtd2bNcb6vWW0+WSxWye58giP4OBfN21tRgtsVRUkynGzvj69T2btuX1qgctSMoQpc4ehSkgRch7HWX3bNFEZnjEFElSDZv9lBvYPoItkEGzXGoWZUmdSpruMz5ftWxcYKIl0SfwgW7X7EGIvO0dPeokhZBYbdlFRxsdTUqk4Dk3C5yuuN91TFI20J+dnyMnU87e+4jP7ltiZaGoKIbEw3E+GlULbdvR9S4z8IiczieUReJkOqELPRN7xqv7HqkTX7285pefvOCuDrQorhrPqg9s2hYfATFIiUnIlL26fAi4FLnabrlBUALr+hf0ned/6Bw/1lA8uySoXO+enE159PiE0ih82yBVBkhOFgtekOtBqXKDIPmAQVBwkLbttlt8n5OXjdSYquDRu085/+B9yscXpElFE7MkUgzetFJKRCAzBEUGfnwICD9YJwyN0bHmzpfnu2og8Z01yxs/sq/9vmuv+ub4ewM1IIZUEJUdkFPiOFY2Tw4HHeU4kWit4ciU9bgzkYuxAcAZABipMnKd8ZVBnz3+0SOdVw5mWsPHpPDgOPab7ZT2INL4/fH3Zl+HYWMv5QDcjOZio4lyPuE+xf3v3kueBmZOOmbUDJO2Fy576ISS5MDLSCsk7xVP+cHHz/nti1fEkKnVj87OKWyPkBZEYmITF9PATz6c82juuF5HrlaCTdNQtxtKW/N8OeGfffyMi5MJRVHSdo4mSOglpa2IySN8x2kZ+aP35jT9Gb96saPQHVIZyomlLAqMShQyIF2N7zf4ytJ4g0k58lMnwWQ6pdk1pLjaF6RSSlzrODk5IYmsow0xUVWGwmoWpaVuajofiSgm0nByOiURkUWFrSasVjc0jSOgqDtPSBoke5NG7z1t2+6TP2LKho7OuQcPyTFlGA7XiKNrsu9UxWz4ePzacYwg35tF1Ns6mk1Hu20pJ5ku39QtiUBVlBnEVJmOLggUhWW2qJBC0bcd02pKvWvQStP2DcF55pMSUyjKWUkUkaIqqWRBs93mZywmlFR0jeeuW3F+fk4hSr55/QIZNDpa+o0nJE+ne0IKLE8XVEuLdz1tWzOdTCgWJWZqKSYl7S4b/N3d3aJ7g2gN775zye3Vmrbpkdeeqy+uqE6X+E3P/MmUnex5/uQplVY03ZpCFJxMZjzqA/Pyik+/ecmstBgM1laU5ZRdc0/yAUT2WEpESENVN9AU87/5vpFEJBGRElGIB2GAYxFkTEFhJpS6pBAFH7z7AR88e4+//sXPeOf77+H6QBM3yNph04xSW1IyuLbgzip++pt7bPFb/qf/8V/y3//5v2C9bfif/9f/jVKpvOionCgVvIMhxYaBPTOOGBNCD126BEab3OX2kaK09N7R9TVi6AT1fU/XdRS6Qqm4Zw0ey5/SvthMg+a/pW3B9R1i8DOayY5J36D1jgu5ZR0s77/7PvUXr1ita04fVZxXcOpuQVscBlEu6HFcv77jP/zVNelfaur1il9+8hlf3dfUnSEKzbbucD4hRCD5DklCyJwCFGMEpbi+u2Xbtv8kz9l/zHjAljlak741BnrM37mov/Ge/1A2zTGgDX+4c/Pm73pzrn3wt4zvI476TeKwSZfD5zF4fN/R1jvq3Zau63E+G1867wmD7LTv3XDv5Whssf8PUnooP8lrv0BJ9j4v5eAjU1hDaTQpeLo+b5Lbvsd5R+97JpMKLQVt21Lvavq2o7QFRmtScJmJUxhKKZA6fGsz9KZMZQRuhHwocTuWHDxgragDk8YOwI0x5iBlkhJCXgO1zjLApqlRUqEHtk0+X/3+GIwaml1CobTJhr5SktQRIL1n0CQQCjn4p3zrbwuROJiYGq0pbEEIPX1d03Y9fe/xLgM6LkQSHqWy5KYPkbfYPmrPihrX+5Gtsvf2Gc7FuJHBhwcAW/bwKfefA9/alHddRzv41Iy/ZwR0xms2juOG0TG7PB/XIe55vOdi2tE7QwiGojzj8XmF2n2G6LrsKxY8QsR8/cXAjPQea0sqtUBXM+bnl8xOn+BevmJTe2KCd965JDQ7hCwobYEyivnJjD70+NCBMuhqidAVxXRG7BtCs2G7uubu9p6vv3rN1XXDi+uOu1pgFjtOYoOcCLoYefHlK3R/T+zuefJoxqOTCRfLCcvFlGo6QSpNCtD1PTIlQu9omw5TRVRMnC8WpF7lJCBtWW12CJmYL6Z4mTClRhsJIuFDpDSa4AdQZGi86OxQRxD5OQopM2ziAN5IKaimhg8/fM6jxxe0doJDEoXIEm/XIbCkeEj52jOxBpuF8X46fvaPpW/jtfTBZybaMB9Ya4eGSoBhfjiWK43zg7V2f+8dz8XjfT3uuawt9o3j49/7NgM1KkXq7QpEZFppZrMZbdNy/2qDd57ZfEpZFczKOQhD8IK2cdzHNcIlNps1UklKWeKaFt81xGaLOjthUljidIodfKWydNRnz6IkcC5wf7vlk0++5LOvb+lkiQwSH7JXo7YGqwWFlFmqR2ZgZQHOCAYmRoqoGqrIIEAWBafTc5bTnrBpuJxJfvh0SWVmmLs1WyXI7qaGVuQwiWLY444SOyEEMkgcEdfc0aZIICdCXa1X6L7h9MNLdHScns14fHlOY6aso+HXX3/F79Yt/92//lOmsxlG68FP7CDl/PLLLxFCcn52QdxdQTS0Tcvk8hnb+8BqF/Ap0IaOqzryopPc7Tr61LH1gU3v8ClhlGFWVazaLcE7FJJ3n75L3Ta8vn6FS46IYYfiy43n3/7lr6nvVzQvv+Cf/bd/zuPvP8Mn8KmlKAQn8wVsamxhqSYVi/mMeTWlrXsQ2Y8uEdAJyqGZ7wdWW992gxTaMDs/4eTpJcunT2i1oUcjkkLJhJSaMDCWREgHG5UYcU1HCjGzesQYkvTt+umw7g8EjvHrb3x/P/5wCfat8YdTn3R2sT+WJQkhB8+Z0cxODnRc8gKh5PC9fGDG6H2XVg4L1gNq0NAZi/FgRJyyS29e4MaFU2azPMTBEG7PuEEdJrXhZOVJcESeRzBI7AvJNzuDxwvlcZoDgElZLzyehyybGCbKkdg9UIURgiTKzFYIghQSPgVKJkQ75Sd/9iM++TcvcaFiflZgZw5T3+WiQFuCMswWmsIEVLrn8lSzrhdsdob1bc/USp69c8bZ4xmTxZJkZrjgWPsVMkSch1kxxZcJq1ouTnf85ONTFouSF1c7pCkpK4Wd2GzoGzpcH4lRojHEkPAxMVksoW8IsQYdUMpjDRSVxYXI2ekjrLWstjusVSgBJmm2tePkbInwjq6uiZMpnZQ0SjGpqrzg9bvsmbLestr2JJH1+FnfrhEistlsh4l0OKfp4Jw/dpmO7/3xeowL6P76CrH3pRk7i5AGf4MsgctmxfkGV1rTu/54//5Wjp6etkv0TcdsXmTtq9R0jQMpmC5mFDaj09JlmU9IESUNTdugrWQ6q/ArR/CJ/4+5N/uRJMvO/H53s8W38PDYcqvM2qvY3eRMs4f7cEYQIQkjDCA9UBD0rr9IgAA96kESIIykGUHDhxGHIkgNZ1oakt1DNtlT7O7qqso9ImPzxba76eGaeXhmLd0kCHUakMgID3czc7Nr957zne98n/UBpQzLizXoyNQUBCEoi4L5bE5bd4xGOXld8uThM8JV5ODgEK4kpxcXKHo7WS3x0SKNpLINdlxx78E9xu2Yq8tLTCa5dfcNgna8eHZKs2kwOsOInNWqYSyn7MmW86efUds109GUOwd3+OjjH3Bn4TjM5jjgWjletGsWomAym3E8m3K0ueTW9SWr1XUKTFpLpgtMNsbj8b4mRtCkNgknPEG6nkEjew5NPw9HbhZhSZpjMJSqIFMZpRphdIHJM06ObnH35A3u7L/Jv73+d3zw5of8b//id/AqEmKLrC3KFJhiSsTjg2LdGf7k3z/hzsH3+K9+631++Wvv8If/esYqFAn8jCHRuJ1M1rfB4gCHgt7VI+HZEiEVXki0LnBtS+1BTeZ0qiPKhjYEpO3wThDVCOch7ymfno4oQ9IIkRCVx3UWjODj5ZjTF5HPnl3SWIEoRpggmJagvABX4ETF0irK0T5HdzoePlzxoi7Iy4yJX1MoTx49OmiaoJkf7SOD4uJ8yZNrx3ceJtHmRRZwvqHxkevlGhMdpQajIsorvPBUtibzBbGJGD35GT59X719KdOEvtayBWheBml+EjA8FBF+muN9rqXtS/7+lef7CpgtBkAmhj6YGVhnEkQvZksCRKUA4UNyrLCWqqpYrjdUdUvdBRoX6GwCZYY11/pA52O/PwDXf+e0zmslIQYinuhtYg0oTZ5njMqcUZ5T5jmZyYgRus5RN56qamk7T911rNuWqQvkxhCcpao76qZhPiko8pxMKkTwKEY4JXunCSCkuCTLMmz02AjOOoxUCJnceQaQN4Qkah4BIdVWfHS4zgOTZVQWfe0tMWW0SuuvUbIXb5cJaCJgrSfISOts7wQSqJu6L2xE2s7iQsRkKQnVJkNpjTA9o84nTRx6Sr6QYsuegdQ+FqCfCzxd2yBEYkQXmSLGMd6Dd9B4i7ee6CPRBVwQdNIT8sRYyOTrmwwOs7xRMrldCUANLWoSbVJFNsUaqm8Z/TwgM7CmXmXSDPHt0HoyJFluh2n1Etg56CjGm/aWLMtJdiEKk5nU1i8cOkoESUQWLam0oSkzZsyQ4iKZWLjEpA0xgCSJTwNRSUbjKSrPGc0XHN+9y6OzjzivG5brjoN9jZ7sE3qS3+zggFGuCd2GznpEkYEZoeUBsYXoGqrqBVdnD/n4R2d8/1HDpxeCjimtlwhpmG80oTU8evSMs+cW12rqdWRxes29A8v9g5aj6QXTMvS5hqbIMkQU+K4jrNfk+bzXS9NEk6c1SgSkCuSlwY+OCdmUIqvRozV0lhh7kK1ticGnZ0wIhAwoBLJvbfSxNy4BSunIFdw62uPk/ls0usTrHOd8Ani7Lmm8odDqRmtmAO+EAETSdlNK9/Na34bcty+KELegjozgejbcAOQNZhlZ36oTQsQK0c8foBD9HJRv2WAhBBrbbcffLptLhAhSA3HbXvk6B7V3j+8QpcNkAmmSTqZrHHtmTNQRLTTzcs6emVKoAkFkvamYZDNaK4nXNZkWhByMlGht6JqWarkiGI1bVvgIxWQMmcFJQeMdL5aeZ6dLfvzZU55eXBOyDJElZowWEtPnockgRxJDavdkh20dI7je6t37iOscm80GvGWaacrZlCCW6MJxfKDp6gyjLJ2TPF5Z1tHQeodUERMVmei7RrRK8hDB0cWOxrZ00SGExESYIJgFwWFuKA3cOjwkG5W0wrB36z7f/v6PiHnBG2/d5s4bdyjHBUpDmeeIKNBCE1ygbSrKQuPGGW4NxWTCrYMRwnaUUfIXf/EJT2vH2oxZW0/TOdZ1TfBJhFcGyUznFMKgyKhisrq2BB49e8hivsdiNmNV1VhvCcESkejJCU/bMf/8j/49tY38g+7nufXWHS7XS6RtKPOY2t6zDD3STBYz3njwgKunz7HOoaSkjS1KCPLMYKQgtJbQJDdEk0tmByMO7t4nm81ZO0sVHLocgQuppUpoVM8wDURSOKOIAWxriT5C7HXp+DzGMrDzB2wggTX9Gijk597bd4J/7vWvEvr+SqBmy3LZqTJIqdhV9lcDtV1phEz0eilvUGQp1dadZ7cCtbtYSSmROzThNPBvKk9S9o5PajjmTU/wq6j10GOdLt7NcQe2xHDM3QXzVdBmN+lPk97NsYZzG/7frVIO6LrsxYq97xfeKIlREzF88xe/wT/5578LaO7cP+T8syt8BZ216JCCXkFEq8h8OqJxnvEo52Ba0IwlBZ79w33G8zm6nGJ9ThcFbVAEbxG5oomGbLRHaCTFqGTPOt67VzIfj7laRywtvvWY3OC7Ctc2uLrlbFOxd7SPzh2qceTFiFYoTDHCFC3+skp6HtYSYolzliLLmIxLSiM43p9TbzZ00xJtFDiHtTWt1cS1ReopIThs2yKCoHOe5XqDFXkaR30w07Yt682Gqq4TM2kQ9ntlLL4K1rxaLXiVniZEWiBjn4m/yr6yzvbuYIlC/pMqzz/LbbqXk+UZ3Rps5zCZYb3pUvIkUoWAKHCdw3cWL2A8HROCQ2pFUeQEHzCZSY4VUlHVdQJdZcRt0qKeZzmrFxUvnp9z5/YdWucwUWM3jgt7iY4GQmBUlMk6XfYtKiHQrBqwgtPuCc1mjVDg644/e3HB4dvH3L53m+ePntC0NS54jo4P+Ohh0t2ZHMx54/Z9fAOPP3uOiJpnD5/zwb33CE5y1lQ8lkuOxnsU04zFG8d8Yyx4dPaM4Do2bcN8PKG1FZPRFO878B4vk26DjDHpZ4SICgGB3AapAF6kKkeQg2udZjHZR3lJqUuOD+9w++4dVtWKT38pa+ZDAAAgAElEQVT8Kb/9n/6XjMWco/0jnjx6wvXVkqiTAJkNHhE83nZEFQhWsKlaZDR8/PApLy5PODma84tf/4Bvf/8hCI2Sqe3HR4GKESWTI7VH9AxAmaqC1veg9KAJEgkyp1Vjlr5Cx4y6s+TOYW3SMFImiU4HlwSnRe+qFkLABUfA45Bc2ZKPL1b88LNTrJOYoJmNS5RqISpsJ1MFXXl81zArIkf7I9pVsu8NbkQdAkVuyDAEpYkI9uZT8vGM5fNTmpiTacG0SM+5q2pWywrpOsSsxApP5mussKw2HRMDtrGs4+srWPpF205pov/pJ7QN/W0e+2+4zy+f//pIoy/eIJKtsZKiB3BAxECIPrXNVBXL1ZpN1dB2js7G3r7WvbQGh5hYYoHk6KiNwugUb4QYU7U5eLSWmEz3Qrk5ZVEwKktGRUHXNJxfXFHVXQKCQsSGQAjJLtv5JKZbZAYhkpMajBHRJmexLCNXKrUYRA/qxt0yxTlyy7boug6tdRIa7u27Ywwvsd6EkER879L0cmwRYxJRFjJp2HTK4XwgkxKkonOpMmi7jmpTUxZF0sEh0HYtMYKvWgg1uUnzeB5uAkWTZRhdkmUZo1GGd4m1NBQpUHFrIZ2KH57ok2pHWST2atNUSKnQyjAajeisx+Yeaz2maaEe9DLAOkcMOlmGv6ZbblJbyeCE593NGBQItFRbpvYQLw6aIAMws9vaMoyF3Xs6JMoDy2FomdrVsxn+prIdR6h+3CidEsMY4raQlGV5D2ZEdLQ4b6ldZNVJFuUhwrXI4CB6gnepaKgSpV9JQ4yC2f4ClRdk0XDr/n0uPjuii8+4uq5Y7q1TC2CuycqC2XQP4T2urnFdYLZYUI73EmjYrNisnnP2/IwffHLFD08DD9spD71GT45prWWxWDC//x7XTnLVwSpkrBqHNAvapuL8kxXPnl3y9nHGrT1JpgNSSbRKSZIQgvVqRTbaMJrNaVuNcxofHNFZEBBVRjZZoKaHFAr2Pzvn4slTQhzYTwlGjp7+epI092LSoUSTWlRioNCR/b0xb334Pi4f43WZCiDBYm1i+hmTYUxBnhfb1njnHK7XH1Iq5UMxgh9cQyNopQi9M6Mgmau4cGNYsdsmB/3aEG+AfDO03MkEuLhe7yrIXq5h57O7IuYy3BSew/YcX1/dxf/kl38Nkyt86KiahuWqxt0CKXIGTdO8zIkxsFovWVcrVrYhs4byJOfgYIHEU+R5ukYmw0vBRdXhujWdC1SdRRUlwRiaEFg1DY9PK56dXSFMmYSyNaBCD84MxIJUXQl9S+6gcTqw4YAkYB0jzjo2VcVqtSLTgr3bxywONGbjwQWKGDm5tY8oLKvOUrk1zSZQE7HOE4SjC6lBS2mFjGmcta6jCqmFyAjJTCsWUnFvXPL2yQGZsExnE/K9fUI559Onz7Exab4+eOtN7t27x2g0QgpBZjTWpWLf1eUVVbVhPpvx7MVztDY4F8nzMVdnjzhYHLNXrvnR8wteuJp1APAJAQ6J1brY3+c/+I2/z8d/9RGf/PgzDsuS5+uGNnoa63j2Ijm2luUYFy2EBD4eHB+zOFxQnzX84EefcedQozLH6mJNdXWO0ZAZQ14UVG3FaFRQjMbszaZJP81adFn0bDODIFJvNlhnyYqc/eN9Du6ckO/PaQS4roN+DIkgCFKkwkwvseKCT1B+TPNvU9VEH3sm/sus5Jufd4pYDKyav0aL+Jf8vrv9BKDm5kBbuh1sW4WGbZfaNyxuw/t3aaXDvl5d0OBGjZ8v2O92MiNsL8Ku3eEuRXD3Qu46A71KNx2OvfvZ4Xe4AYPSawk9HfYzAEivVlNuBOlkDy7pl4MyFLeODzg+OuxZDRmLw0Ns94hiNKKtO7rmMk3SAUyWUxaGPMtoqg0xmyBsy2w+I5vs40VJ1QQuNx3XtSN6TxQKtMCMR8gYcEIxGpWMSsW0HLGs4cnZNVfrFc3Go5RMC7yAdd3QnF5ig0Fmc8q9KWZ6jL+osDQ4LAFB21natkGPCpSUvP3gLps2sJhNkL5F+pZRYYgmpwuB2DXUbVLWFz3lPHhBPppi/TW+XzCFkFtLwdVqte3tHsTZhus9sGpefSB2t917+1Xjexc03KUev84UUQClYxpjShB8RHhFkU9wvkoAXG9va9sWLWSvfp+qdO2mY329QUqBKTRRgTYKYWCxP0dGwfnTa5qqxtk1Siiii1y6NeuLdbJodoGmahMQ26PRPgR816AzRSDZQ6tOElpLJhRCgm1arA6cvXjOxeoMJWDveI/pfMrZ5TlXds3h8THz8oAXpxtCBXuHxyxOFqjaYSuLKva5so5npuOvWHF3oclujVk+rHjn/Tdp/2KFziRRKcrJHdQzjwyeKmoqu6FTfS9uIFlFSwbyKgBRJDJrFBEVBQbFwd4B+5M5tw6OyVXOgzc/4Oj2Hf7H/+m/R/jAZz/+Ed9495sc3zni97/9h9S+xcvUQuhJ1RaFT73tQmAd1LXjox99ysOzt3hw94Df+o1f5kePTrmufKKmqmS36X3S4QohEkSE0LuahYT+B++J3mO0pLMKlc1gfMTZsyWXD8/54P5hqvh4D8hU8fEJpIoxBRdd57baXd5bHCWXlaOLOVk+RYQVpcjJRESLhvFoylpqYjQY7ckNtMFxa7HgRQfrdcV0vKALDjUaEYzEEZOeFoGualkuUztHpgSzcYEmteKFXNJ1kbYNEC1RKJwMKBFY25rVpuWsen1bn75sTvrrfPaLGC+xp7V+2a5/GmD5S/e789pX919/fkt1xh2LaJH0S7rOsalqVusEunfWJip576SzK9g+JBjbAgqiF5B3gOqjH7aOkkopirygLEaUoxIlNc/PLlgtlzSdZVM3dM4jtdmO8YQpRZxNbhxGSYxWrDcKvCZGSfAQcp2YnEog6po8z7frgrU2JWr+htk7iAoPII3WiqZlu04RwWRme97bewxIZYhSpuRAKDrnUV0SAV9uaqy1WOt5fnpOnmUUWUYIgaraUBQFbdthlGScKfI8oyxLurZlPB5vY5iUuFmUNJTlaCtSuhsfQR9v7ayzeZ4SpLpucDZRzUejIs0XfWCspGRTV8k+1Uimo5ypyX+qcfOz2AabdXjZ3XG4VkPMMVyXXWBmiPF2BZhf3bZ2yztj+wsLRv0xxQ7DfHCLGsa/D3Z77KIXsPXB470leE9wgvMrx+3jfSajim5zgZKB4DyR0MtDSbwVuKA4OLmHLEoUHfsndzh+4x0ufnTGugnUjSXLGnQ2ZVJOyJUmdA7berJ8QjE6IqJomzM2q8dcXr7gydOKT5Yz/nJlWbOHX8wJ5RSTKZax5fufPaOpWyKSThlqqdnUDa6LGKtZVpFlVXNnJri1r5mUniKDvMgTs8lGqnpNPhmjjKSziaHU2IbGQTY7xswOscWMstQcHh3x4vHTZMc9WBDHxC7SMkkoRCGQRiXNHZWKUoWIFJMxb334NUZHdzi3EHwkx5Ln+fb5BiiKAmOyrRbNbhF4N27cnTt340tjzBbY2xWwHoqRuwDfbgw7/B2S0UZyb0sagUljJ/QFut7yW/TCyPIGWB7aHF/X7ZtvvoPJMnSW4TxsNh1VZdlER9u1CJFyybatmRclLhzQNRYlDMK7ZHKjJD44rPdU1uMChABN22F9EuHt6poutlyuas4ur2giTKYzsrxAKBA4lBaI+HJhfveZ380Xtj9HgYqSpmrYrFaE4Ll1+y4iV+wdHzJd1lRtiwEmUbCpL/jg/hEOg3u+IVaW687jBHTRJaeyzhO6FJnaGLA9+3ssFYda8WAy4u2jPQ6nhsOTA2SWYWZ7nLeCKgry2R7r2lKOxyxXK+4QMUYjxNBJEHjy9DHL5TXzLCdXOUUxZnW9oa5bjo5OGBeGb7x7i8a2uE/OoBNQjLBRIPOMfGSAjl/51W/wrV94wH/73/x3CKGIRcZ566kjuOS3RdiskxSyiBRFzsnJAiki733tA37tgxPq6lNOz08ZmRGTXCLxaCXoupYsX2DXFePplO76itgmUXctFdJk5NoQfEfTVggF48WcW28+YP/+LapM0uKQQlMqjVY6ab6F7qUujOFeqx7jqDYbYuiB3VfiulfjrS3gv/NveN9Ln+PG+Wl3H18Vv30lULPLINkCGwMyvANw7OqC7CbHw8kOk8juYH81id4NhIbPDYvesA9EQEr1uc8NX3AX2Nltf9m9Ca8Kxr7a67n72WHyFSK+9N5d4bfdm3DzOj398uU+5hhhOi44OT7k4vICpT/ATCbIwyOWq9OkSdHZhCCajKauyMsSGQTTQtMJTT4tMZM9yPdoGsFFVXGx8SwbsNbTBIcqx4xkjtAeXU6pmqR6XYxKdOboXEG1uaba1NSdp24tnQtIkzMuptStwyHQoz3K0YizizWtXCaRYSGROqNpGhZ703StZOQXv/Y2bbVBhozZ+JBms6RtGkZBYvICtAGt8RFm+1MePz3lqtr0OjaBoixTsBTY6tAkV6jUfpdlGXVdv3RfQ3iZ3r87XgeQcDdYShWx+NL7gM8tkq8KLL6OW1EUhJiYbE3ToMnJRyOksrStZW+xx/X1khhBG40RimZd99dDYsiwncPFQFAebZJDxOpqRWgjsZLkYUJoKmJPkawvLDIqCAI8SRW9c0lMbahMqlRFlrAVRQzeo/P0DOsyJ59kHB5N0ZlEZpJ7b91Nk/NeiZkppqMRYWNZnl8hW0ltrzFTyd3ZMfNyTkbJVd3xg/UZj6+u+KUP7iFPJfOTA3IpWFaX/PAvf8Q3vvYhv/9Hv4cOlvcePODy/JqryzOu2yVN9OQiCfBWyhFlRDiPkhotJCKkHuS98Yzbx7dQQrK8vObXf/XX+b3f/ZfsXV+zd3BCWzeUmcbHjn/5r36X//s7/w/XYU3UyTHPWttr/FiErRGmQKg0pkOAq03HH//ZD/ml92/xxmLMtz58i3/z735IMuJN/cPBeZRO7aZEICQHHSVSP7OIEIMnyw2ti2BGVD5nE8eEfI4PqZ2xsx6kwXpP1zmMSAApUVBXDaNRjnOJ2ruxgstG0qkRb7z5Dt978j32JzN8e5GSRx/B5Mg8RwsP0ZGpiA2O+WJO3QXO1w0mM4Ai6/WQZAx4FLZ1dDZZUGoVGOeKYCMiSEDibGC1qckzCU2HFR3jUd4bOUicf72fz8+DNWlp3l1rhvfBX4P1Enf6pl453lf9/td9z+66/ZPOTdBXFWMAJN4F2qZhtRmYNMnhqXMe6xzWhZfcbm7m5jDI9mzX2WGuFmLQqxtEYDOMyZBC0DQdz69esNnUWOtwIWCR2BjwrU1tfQhkTFbFSqVErusZNckAYJSo9mWOD4ZYZBgfMDvCswO7IsuS4L2Ucqs5kopHBmvbviIe+8q66zUjsi++chFyZYgJf6WqG0JMYE9rA8tVzXK94fxqw2QiYN3inMc5i96k1uDcKNbCoZViNu3Ym/qt5flIpfYLrQbWx43+ypDoDdc6xqTHATfixlJKRqOSxibQzXuP1oqyLKiamswYpBB01lG1HZu6Y1QWX/BdX49tAN122TG7QquDOxe8fA2GeDQBZ3YbV7zMNr9x9Rn0b15lXL/qsiVIdrO7MWdq57+JLbfWzSE5zuB8KsRIxbUPXNuMaTFD2wYhK2Ro8W3oXR51YrpmE/aP7+GLMTmSOJ1z772vszr9IZU9Z7lpKQrNQV4wGk/QUlFVDW3nmc32iSpntVoR2wtevHjEs/M1P34uOW2PuIodHSXLdYN0ERe61OIeSOKtvm/dC5F162k7gXQ5VRBsKkdjoWoa7h/DZKQI0iOUQirPar1CFkmbYr1aEYMnREXVebL5AWZySDZboLPI0ckdvs9f4GNiaxeJJ4pWiWEmZZpdMi3RJNZ0piSj3HD44A1O3nqX66iwMj2Lph8jwz1J9y1uQZKu67Zxz5A3DE5gw7iQUqJEiteG/QytTbsAwBZg6ee7YVzuOsUNrwshtjHqANQMYE6e5zeuUD0wBUMrn3yt49rZwQnGFBTljLwY40ISbW5czWp1Tb1Z0jYbJAFnW3wf/4dI37ousc5TtZblasOmdbRR4NDJBj4mgK7zkfPrJRfLDeV4ymRaorQkiuTqJUTqakh5XDq33bVq2D6Xh9q+AHV5zXq15p237zOZjVHCU0zHUElcCLQ2CcPPpwU+1EnPzzjWWKyEdQx03hGFwote+DqtsoAgB8YC9iTsa0keWnKVdB/LgyPk7IDV8yuOHryF3DTslVMevP0OZVkm/bY827bfSQFZpjk5OeLt49v82dkZrlmTZxlXl1fcWdxFK8vt/YJfeu8uY2X47o9PeWEdwoxQ5Yjr1TmLxYjbd485mD7gv/jtf8z/8c/+BUX0zJRC+EjdXztFMpYYj8Z88+e/QXQ1V+tL/uGv/AZvfXiHg737WHvN5vSCUSYpjMQoQVlk5EUBUaCayKYoYL1JxUcfGRcFZZazWTdY2zJdTDm4e0JxeECrM9YiIrTGaEUUAi01Wil8tOwCcCEEjDYokSYB17kk6xxiL++c8vthPUj3HuBlnOMGH7hh2rw0jnbAml384Mu2rwRqXkUMt5PGILrbs1a2BxE3QMiuiNVusDf8vCvcOvwbxPRerURs6WUi9qjqTvC2s1DutkS9WpXcfdC+iJL0Ra/dfF68tL/dYHaXunhzvQbKKtsbFULqjzYa3n/vbf7qk2csV0sOJznj+T6PH39EhkD6QKskayUwRZGmH6cYjQrK2R6YnGzvGJtNqTYNV5Wn8ZomZlgh8C5SNpGihFk+QpgRmAoLtE1NkAqTa0yeU3cbnl/UXFcbTFFQRkNWW46mewQJLYKocxhNscrgpEYoQ9t2dN2a2SinLHNcmyyOMyUpCoURjun+jKsLx2a5YrVZocsJejShtoEgHQ7N9WaNR+FcYF6W5FlGZz2r1eqlvt2hUjAIX+2+vvuQfbF9dz+G+l7l3YdhAGaGAGlXaPB1Z9TYLvVNKql7IbtAjA4pBJPpmM5aprMpXd0QraPMStq6Tb3zPiUVAk0uDXsHU8zMsNqsuLpYoa3GUEKUyKCIvm8FEyG1zeQZeEtMOT5CKtBpwlImVTRccImV4pP+kBSGopygi4LGW559ekYxNcxP5qw3G8pxSV4q2rZCRI9SGdPZiKvTSxCWrhU8fxb4+nsfIluFR/N8uUQFydHzM25PZjz79BFPP/4xQcHh4oCpyWnX1yxXp0S74bf/s9/m23/4r3hy+ZzZwYz7xYT16XP+9MkPGU3HyMayf3iL2eKYs8tlb0GqOTk54U/++E+IIXJ6fs7pxTlvvCXY31tw+9Ydbt0+5I+++20+fXLGxrU4HZIw2dCmShKGs7ZOLCatEaQkzxjNDx6ecnF+zptHBX/n3ft876PPWFUOZz1BDMLmChEi3gZiCEhhICSbSEkPuAhBVdc4Falbz3pjiU7gfMD0iz1C4oPH9i4yXWtxLrnveR+IQRBihpdjLmrweoRra5R0nNw6YPOo5uzsilJGNg4K4amtpVQeQocyCqMi1niOJmO8kAQV6YTDC0fTtEi5R1QG55LORxANpRkTbIezHd5ZhBRYb9P46zwtHWWRtBuUNhSj8c/0+ftpt5v1ZIAg/ja2r97XT1ul+WsdcbvmDcye3b/6vnKd1p+2bqmrmutNxaZn0ljvezZN3NLGd2OLofUmFXvUVq9OSNlrdCSxTylSK7WUEhEjTV2z2tTUtaXtkjhkiCkCTS0fkc55fAwJqImJRSZ0atUJWmFMRtU6ul4gNxKQSpA5SxGyl1pdQghsNhsyU2wr45DA/sFeF+GGC5VYEv06tctwGZKtUo6RSmOk2ornV3VDjNBax6pqU8tIMaZygmbTIqVEq4x1ldinSjq08OSZwdJStZ7JqKXxgYUS/ViRFHkSJh7WwDzPE0Oht5sm9pXELNvGYynuEmgtGY0K1lVNazuEjGSZoSxy9Cbto6pbrrOKcvT6AjVDnKaUesmFxzm3BWlM3x4F6fktimKblA/JtpRym0gPY2PQDBn2v5usD8eGl90nnXc9S8ZvnwljTNJK6n8ejiGlJDcjfK8B1QmJzDLWEUQxgeYK1617B6JA8JHO9fP03iGj2SFdNkKFiM3HTE/uc+vND6kf/gnruuNEpvXZC4mLgbptUeWI8eEJna1o7Yr66orlquPxecdfPoNTOi5rx6a6oLGB1jui8NStw0d1Yx3dtwgpndr6CJrOQmMDWgvu3d7Hyw1oQ912KJPEQ4NNWiXIjNFkn7Pnp6klTI4RowPkaIHIp+QF3Ll7nywv8bHrW3khKQ4NgHPSz5QyvR5CRGeC4zeO+bXf+i2et5Lq7JLgA5lJqVHbtlvAzXuf2GXObwGaYYwAL+UeL+VNxqCU2rbPDYXIYQ4YQBrvfWpNeaUQPLTKdV3HarXaPq9aa/KiSPHVwDIsCrIso+s6ZLgZwz8Nw/xnvR3e/zmEzJCqQEiDlgCBaeg4PDyiqZasry/wXQ0EohcEAjZYvBA0rWe1abm+umZp4aq2OKGRuSKi8BZWq5rzq0tsjMwW++RF0bezJiAvsUMVMSbdtWG9+6r8cMui6wLnz8+5ODvnzq1b3L9/j011idEZUiXNIe8czaYmF5oiN8yncO84ULWOvcWCx5drHl0u2cTUhtNFgepBmiBAiEgWI3sqIwsBFQNt29F62HjJ/OCEJ5sOX5RcVDU/981v8fxqzeVyyWi+T/QeKVJw6kNAG8WLF2fM53t416JIhiD333iDcawYjTMmRUl1cclRrvjgeI9Axp8+vmRlxvzqf/gf4WLL8+ef8tnTFzx9annva1/nvz6+x3e++2c8eXbGs4srruqG2nWUo5zReMLJ8THjXOHrNUd7BQ/uLbjzxglCLTFesblYJhOUcU5mKrRRSC2IStE6Rz4uEZcyMfoR5CZDxsTYlwpmixmz4306rVl3Ha0IZIVAmpjcJV1AxJuumOHZ3cYlQHCOrmnoOygHDsz2/r88Fl4ey1/Jqv6C9+7+/0XbT9Tn30X6U+WppxH2LJNd1oxSYosE7zJtvoh5Ajd0vd3kefe9u8BLeu0r0My+YvFFQM3uBLWLTA/nt5vg757nzcL65UjXFzGDEvDWt0UNYIKI6SFBcvfOCb//R3+SxKcc3Ds84jQrOH/ylNi2SdOhMEzjHk0EMcoZT8eYyR6xnBGKGY0TXG866i7SBokXJg3iaLmqOsrCkClNNpqkXr7giTIFo15rGh/ZWHhRgcymmKIgn6SgsaoqVL3GbFaYTJPPZkSjiVKyWm8QtuJkVnBxcc7h/j55buiaFa1tyffnRDTlpEDuTZhoybLuWNuQkjIUq3WFExmLoxPOqycJ3eyFqwdAcHD1GsbdsDDt0uM/RynbGei7ANoXgS671a5hEd4ds7vo6Ou4nZ5eEYLAW0+eGxrfIJwiM4qqqvBEiiIFzDHS67GADIIiLwlB0LUd9brF2o5RW1KMCiZ6xPqyJug6Pdsy7SCGAKie56EQuD4gTaCD9V3qp5Wp11MJlZwNYrKi1J3HXlY06xpvJPlYsHe0x95kzqcfP2J+NCHPFFFDXpZsYuS9b32NIjNcnD8lVyXjyxyuI8Zr6nUHQhMCfP/P/4rp/IRbh3dYlFM+fv4pt8Yn5M4hfEdhAndv7fH3f+2b/NzbD/jBo0+gWvObk0P+9J/8Uw46ySIUKDkiMOLxxZpbD97hO599xsnJCe+8+z5nLy54/uwprbd00aK0pq07FosDvvPn32EdPK1UWJX0b6IH4QcKZUTrNC+E4LC2w+Ql2hg6H7nYdFxdXCD25kyN4O7xER99+jTdN2SqHMXUChJ8SqjSPYlILbeuej4E8rygjST6u/OIKFLy6CU+BDrnkDIxCoSShAjOeYzJ+kAiEl2GjRm1k2TjAtdYrN/w8MmPUavAnslxzPG6o1MWKUusBS0jUXRkE4hRYnAEldPFFKRIoMxyopzx+OEVnfWUxYhR1jEqNMJ2vaOGAxnweKx3KFUSQuoB7/pk/PT07Gf05P3NtgifW82/aH7Zndf+tkGWrzruT/rsS+cjhr7s4V0B7xy287RVy2Zd0dWWyna0LumuJDZNajlKQM3N2jkkKQOjBpHczZRWDEt+SvgSXTsxHiJ1nRg0ddXQ2oiLkogCEt89hp6OLjRJhDj9S60RIumiReicJ9ZgZIDokTIQo6XIzTY5v2lvigjhiPpl5tHutRqo0ompOVyvl+OKFHcErHVb8MT24spJ1BCE0iiTk48Mtu64vLqiWVcpYc+y9Dy3LRESkBIkXjhsEL1I+AYf3U0MFdhqneyCB1mW9UlohemrhQOTdbg3nkiIniwzRKDrki6NMYktpKwnRNjULZum/anH1//fW9u22xhjAFa6rtu+NsQYu8H70GoyMG12E/OhiPRFsebuewegbmhvGsZ69G47xnYZD7vFzQEU0DrpSmihkVnARkEXLedVhZuXSJ3RhaRhJKXAWc/GRTZOcHL7HqYYE2VGYTztZEZwLUd3HnB+9QkhnmK9wwkgM7S2xUbPweKYThoqu6Ztl8QggSnZ3j523PKjh2usLlk3lq51rDYbfExFseiTZTWx98WJCWBCSlBFz4LwNDKHrCAKy7pqmIxUcq1CIYOk7TxdG5hMFtQbx/XVNUKPKGaHZOM55CVCdcwXB+wfHLC5fNIXSEFL0cckEtHPWUIAPWijSsPf+we/wc/9vW8RH17yoo20mxWZkrQubO/zwKZK9+fGMWfIU3bBkOF+e+9xISRdrVfaDIf7usvSv9HkvCkUDoy91O5Y0bbtS0w4IQRZnm/HzLA/rdI8uKuhMhTCX9etHN0mRIUQJo0X6XGhIQiHkBqdFeRliVeBTCli0LS2pq1aGue43NScni85X1nWdSoGe6EgBDabiuqyo64bssIw3xujc0WILSYakjD+sKhpYtQkbdLAV63Fw/131nH29JRnj5+xP9/ngw8+QEpHlhlOjg7JjMEoRVc3LEuKAv8AACAASURBVC8uMVEyXezR2Y5JoXn/jVs8uqxYLa+4P5/SBsnFak3tAg5J7X1iq0dBIQylUswnU6SRtNFjZUYncz5+8oK2HHPv7fe57jyj2R5vH93hclWBgNl00jNJEoDcthuury85PDwgXF2gZeDum3cxGk4ODrC+5vSsJnOCuK6hrhhrQZErztqOLgr+0T/+z/noo+/xP/+vv8PISBazMXePD3jrrbf45tf/LtfLNafn5yzbmvPNkrPzK9rlmigDJ4sx/+g//g3efXDCZFbgdaDaeGRe4gApIm+9/SZhOu4tzw2bqkLGyP5in2WIYD2T0ZjV9TXRe/bmMw5PDhnNp9RG0XpPDB5LhzY5mCQjkFa1G1bbS50/3uOdp2maLUiTdGr+9hlpXwQCvrr9BEbNDfcriqSFIaXEx1SNjSImLQqpelGrtFC5foLOepHLrVC9lsSYHAgG0eHEnHj5QXhVZHCgHSokSJmC9kEoy/ttcNfZJLLge4Q5waEBKUnOP7FnuZASnsGeVvUOUQBKpeR0u/DGFN4lUE0kp5Vhsk/hVL/A0n9/+iTKI0QPVBERMSa9lui5d7KgqWvQOa1fYUYFb334PvVmRXXucBZs57GuYXFgmM5G5KMcigIxO8KbGavlNdfrlk0bWG46Air1YDpPUzcYo5lOSozOMeUs6VK4DVE0YCVeZbxYt2y6yNQoplnG0bhgfzKimE4w+/vJnhRNFXOWVZvGQ8hZXi8ZS8FkMcLZFi09+/MpXdvbo5ajVJURkpgppvkYqg6yKS+qgC5LyumMJ8/PkpK+SwKGCN3fh9j3+uvebjKNi0EcDvgckLK74O0CLa8ufLtJ0G5QlV5/uV3vdWbVvHi8RCBBS2z0aG3QGqx3eOsYT6aUWUG13uBs5HK5IgTQOiO4iHc+0ftExK49TXSoUaBbRkRUhDoglUqOSLF3XhGSED3rZp3og1lGWzUYqdFC4TqLDy4JcBqNMSOk7AiZwhFRxqQKV9XRrlse1Y9wsePevXucX1wQ9iHLC5yQLO2SJ3/2b3nn7psYGxCFY396CJeC6+sNQeUEoGpW+OvI//k7/4z33nmPX/nlX+HDyfuctBmf/N7/xbe84cfOcPfwLgfTBcWzGrs44u3FMcU//QMmL075hSLnaO2RWnL94pyyKPj08RPundzjB59+gugq3n3jTZQTFLLg3fvv8Vc//j6////+Acv1deq5VYaIQPftSSkwj1umU4g6/dWDIFWAlDEI6whVZNk4rpuaLNOYaNExoGQkKkMVBKJv9bEhEKOhkTm1LhFaYUVGEIpOKVoKXCcostQOJbMRVZiyiTlNkdOFBm0MrjTU0iO0JtcFtqgIIqKDxPmch1eescrY2Eh28AZ3318zHu/TzVvsxHAxO0YbzaXsMGQgDS5MCNaSmyk+jCkBQqL7RhEIKkugUquoO400OXm3RNoao2Y0HTQx0PZzcQyS6AUmK4mVA5sAoLbuoH59KdyvghvbeWpnTfuiRfmnYcLEmzd86bG/CJjZff1V+varBYrdwPTlIPXGlSBpOKXT6NrUBtDUbWqnrRps51IiaX0SWHQp8Ane42OKJ4QUqQ8/JtHsQKoYChGJfdCgtEKLALHbtjy5EHAhCXZWdUdrk9X3cJahd41MsUKKstJaPIgFhlTZH1ib0SN7TQvrA5u6QwpJ1TjKImD6iqwkWXbGIGi6Njm7qN6hLQaQkrbpiCK5BznnU2HL3LhnKqW2jkBCQFOvyTO9TcTpr4mMJNUfoRiPSlqbgCddFikx8IGsLJE9+yXLk+MFWhCk7B3iUhxxcX5FdCAWAnwgGIfJMwZjiCwzeC+AAtsngSiNpHf0EBKCTc5R1hKcxRhNmWcY1aZkON0xkJK6e30Twqy/XrtjPe8T3aF16dV1v+vS2Bt0fwbmU2JEmi2bKsaIMnrLoAghaRYNrkPD8Yd9hpBYXsE5pEhOXkoplEgtdsBWIwX65L/riDGJWuvkUYKPBXiV5nEzpu0cIVq61hK8JOTHTB78PIxmFBKE1BSjDNuO2bv9Du3yM8SygaxAqQznBY0V5HvH5OM92rrGNQ1CKyrpceU+wituHXVkD1eMZ/s8enhKVbdJnHn7JA7ajGlLvK70epDp+yll2RtNyUyOMEnH0YqIiDnWa2RRsl62yKsaomB+OGNjW6Q5JJ/dwuQZKsvQSlPONHfeuM8Prp72ACUEmaGURUnfC58qtOhpqCIyOzjiva//MpPJPvdvGV48P+NpvcHa1F42MFWNkklrzgekvmFUbduifAAf+rbHxKhNzoxxy+TeHQOvjrNdSQbXM6J6vXakgEBEZTnSeVQEIwTaaKTW+F5wWinTx75pvrVNswUBh+11Lj7iLZKOyAYhPNF1BFtha4vtGoJvaOoVMXR4JfFILpYrXiwrzlctZ8uGq1VLEzxSJ+OCpk7P6aaqiCFQzgpGoxKpkn6RlhohUhEg9olkug/xJWmFl9bOmFrzokzrgnCSq9MlDz97xGic8wt/5+coR5qmrZnvz9jbmyVhejlG6AyhJKWcIckYjzVC1bRuw/FUY+cTGmGonGM/89goudo0tBby3OBjREaBCoHZyEBbk09GlIs5xcGCZ51lvr9g4xz33n6PykV+4evvcnl1xWg8TqzkmKyolRScnp2ijUEbxfXZEw4PJxxOSsY6MF/McatLrs7PWL+44s7hPpXvuFq3+M5TqoJv/+Ef8Ad/8HsElYStJTCbjPnuDx8jvGNajpjvTTk9e55kEByE0DAuJV/7u+/xm7/+i3zwwT0Wt2fUNETbYYRmf37EeH5KOV/z5mxOMxvRKA1BMTtZ8PF3nzAzOYv5PrHpEAKs6ygyyeHJEdPjY2JWII1CRoELYFtPXgQoBT4mAxERB7mT0Lu/0ufvIOqQ4kyh8YrehKRn1gjxSgyWHHbDQGwRYhusffkz17fXMYyvvyGjJjkM9FUjPyS6EKJL8oEhATLDgRR6Z1BHut5eU21PNNGXb+igiZa7LdRte78GAWKx/X9IvL2/SahDcKmy17tK0b/u4i4boxddFWHL0hjOL9h0Hk7csClcL1wLfE6XZhdFjzGm4GTHfWoAlUQvehzEwPDpe0plQtUXezMIgbppmU6Sls14OuXdD97n0Q8+5uzxGa7z+Nix0hV3bh3io0TIjNHskMoqVpszrtcNq03H+dUqUcoJeG/RGvRVzXhccDjOKGYL2rqFqKl9pPUVphwTEIxHRbLQDR20GzppQQYoR2iRMVmMWa9qri7XBOdp3IZCCXyATdVwsD8lM6n3r8inKdDQqXKUFTkxS5oTjRcs2w7rFTYkqpqQEms7kEk4dTwes9lUDJTQXVClKPKXqly7QMtu4vF5lpd66T3DW1/VX9Ba9eDMkIwMrgGv51ZtLCDwwSX6a+x60cERRIFtOmzdkakMo7LU/qIlSmraukErje2S/kmMkdBELlZX20pQLnOiv7ExT9bzEIJHaIk0mnfefZe//PO/QIhUHUIncFTIFBA5a4nRIY3CA23XElqHjgKJJPrA4eKIYOHJp8+4t7iHrwX11YZbR7e5jte8eHaGvdiwvq5ojr/G/vqQ2IyYLsbU62uUUbRNQ1U1/O9//uf84KMf8PWvf4PvP7lk+uQxJzLjymfcmd/hX//hv+HBndv8w9/8NS7+h/+F+i+/x1FTcaI0007SSIfWUGnPKs/4409/hBmPKMYTPn38GAf88Xe/w7PnT7ju1ngtcSJATPoXIiRLzm33qQChdliJoq+qhYB3lqAkeV5Q+xYnDMiItC3z2Ziq6Vh1gVUb2FQC3XgU0DaBGCQv6oqz5jGF0bi2w5w+gyyi5IzxbMLUKD57vmR5fcrm8jwdX8mt05cE8MnesMyfIqLHdS15YbAS2vwOxdGHnP74Efpoj5+//w6tl7RlQ1vXPH58mpx5pKA0qbJ+dX1F69q+FU+QK43SiigCPvYOUwK0n3BdQdNZlqsVWQ6PzipCF2hqxZTkkEUIaK3ImprYtMxWESEMbcg5C6+vPfewvcQmHV78CYHyqwzUL1zkI5/rfNoNJl+e774a0HoVHPqyoCLG2Beh+7UzBrxNDjN1XVPXDU3T0DQd3vXuJFERYgJUOutv9DlUGh99DSeJC4dd8Iibubev9EiZXnO+T8CAtnO4Xn8pBdWpNRohEmDtPcn5kVThh55FlrQ+Ys8uU1KkCn4v2B1jenCFVEil6axHSr3VMvOtJSr3Egso9ice+3gmbL9Pf712q3X9HJtihXS/pJBkeU672dBZR2YKnHNkec755ZLNepMSQ9L3kSoJgnedQ2tFXhQs5nsYEZhPx2gZCbaj7WqU0lR1jby+InjHaFRifZfAfaN7wdG0BkqZbUGIQAIeCEm/KzMGEAlrten7p9kufcd0n5Or1uu67T5bu21oSqltG8qQhMMNM3fYtjHeDgsC2LJxQs/4cv8fdW+2JFly3vn9fDtbLJmRa+29FdAgQAAEQYIaSmbUyGR6Ar2D9A7zKjLTlS40V7KRKKOomSHHJNmYkZLAZQiSINDd1V3dteYWy9l804WfExFZ3WhgSA2txs26K9eIyDh+3D//f/9lMPPPsyyBc03q5I3PP5rRxpgSRUIYvIK0RkuFV7tu/eiFZK1N/mRCDO9xQEjoRUnTWwopCT6iZErOaeoWJysOHr5HcfwAXZRoIJAi7fu8wE8W3Hv3G/iLDVVuWa1rVnWPyksW2YT1psN1LUrmoD3oSDYtmQnJog4clIq//fhjmrrGudRkGw8cb648e/BNAkCIKA2TqiQi8CojzxVCWPogiNJQzQ+42Fzw+RfP6ZuKg+MSkRsm82OyYorJNEIOTLHM8PhbH/Lzn/y/yXsigvcCKQJCBXKTJZapECgtEVry7uP3OD65i5KSeVVw9/yEq+sr6tChpcL6gUUj5eAFF7cMuxF0izExjkVMy+MozVRS4r0bzFt3556xth09i8Z5MNbOLu5Y4EopRBj8j0JqnmV5nh5LaTZ1s8eA67dzO4QUHf0m6+dtHpcXH2+BEO8tznV4Z6lXLZvNBtu3EAMmS/dm7T2rxnK5anm96riuHQ4FSiIHcoC1geXNmizLmCyKxPres+MQQhKF2O4RA/WV1JS4vYfu9uOY9g8BIsD160ue/N3HZJnhBz/8PvP5hK7foLViPp9RTQpEX4My6LygaXuuL18yPZxQHmRIDUWRoXTGuuwplaTwEhUtHsms0DgfMSbDOs/l5Q3TSUkuApNJznwx52Z5zfVTyeH7H/D66oa5KnmnnHJyfEpe5Dx69HAn6RwijBJ5wvDB48e8ePoZH12+5s7JEbkMgMUpScgMXQhU0wkuBvIyw8iemVFEbVgrwEVkYeh9SM2Ttqfverzrudk0fP76JUVhyFAczWZMJ3Pef++Eb//aQ771zfvcubOgqgzWB6ILyKiIuqU6OuD+gzM2xYxwdMTLJrDpAyfv3GGzWvHZX/+Us3LC0eKA5eUlITiOjg85uXdOMZvhtR7ul7RL+cH2gZhYckYP1hEChNbEqLb3XQgR33t879P8GG7uxMrbNd7S/BjLMbFd/sQ4p8T+z+2tiPu3YoxbosgvGv9eHjVbza1I+s8Y04KQGDKRENwbLIW0MMWx5iIgfHqVCfAJg15uYLbsHap92I+7HoxefUCpHXi0Rbb8jr2S3uTbkiopxfb7W3PgLYNmBIwARmO9nXxqqyV2fvs4Y6UsSKjkPpNDDvRpreW2IBtBqTjoYo3WzGcTlAAtUvSuE5Isy5kfHBKd4PPPXtCua6aZQcoptTVkoqIPmlXd8+L1iuevV6w2jnVj6aylc8ntXMrI1bpGGsPkg3uY3EDc0DcRSwEa8qmgqkrwDXcXFUeVJteSvm24uLjCP3vJwel91PSSnz19ge06vvnB+1y+ekb0PcIIVJHRWcvBrCDXiiwb9dSBrtlgraWsSnoXKecLXr5YYmOStkght5Terre0bYtg160aN7Lx/a+qiq7rvsSOGf/dpx6P/46b4u3rc5uavP9449zbN7x+W0cg0nU9hwfH9G1HDOl96IXF9Q5CxCiDjx7vAm3bkumM3lu89ZgyS52e4bCwP1dHhpyQaeGRSiJ1OuSHGIg+Mp3NefLkyXCverxOZp/RBwyS6C0+WlACpU0y8SSBdlJIJBopBc8+f81Nvebw7Jjf/t3f4c//9Z/xyZ9/xLu/lnG4WPDF6oY7p/e4oWdm7pCJElVOuLi4ZF7lxN5TbzqaZcO9k/u42vJnf/Jjbq4viJ99wvtGMjk84/69d/iN3/sRD37jG6g//Qte/eG/QrUvmAbwzrBCsHQ9SyG5sD2fXbzgzoP72GrKTQicffAeMUb+4A9+n0hHkJDiouKwJqQRGUHb3RdiHNgBcjDAjgEpNIJI5wKNB6JnqhTrpuagMsxmM26cwArBJnrunz/Eh0glNJlQhOjoo8dKgcw1vYhYVxN6hXMls3zBdHGP4zuP+M4Hj4hEjDbbeyUiiF4liYlKsd5XV5fcrC552bygmt2lyEqe/Oxv2XwG2nc8eP87nJwc8Zc/+ynXl6/4xuP3mS7mGNsjgyIsX7GYHYCQyTS2a6kHINZ5TxSgdc4GaH1GAJZ1h2t7Ns1rOsywdrxEK4nSInUTlcdEj4qe4MGLgsa9vUXnPgV+C7zsfe/rAJF/yPj3kUv9vX4uRKIIiRUVPW3T0DU1ddvQth3WepzzhAHgDUIkY88+ATR+b70We4fWEMOOegwDA2FoisgEYkg5MH88iR0akmzIOp/05sjEqu0t1iWPrNTo0ekQpzRuSKYLIWD7Hq0kXRfIMo31MiVBmCEu23napqOrkozHaw0mA4aYcHHbiw/Y0qL3u+PALUbEfo0TQhhSfyRCa1SEyWSKVMmrzeQlm6bDI1FZBjYQfKDtOvq+23bLZ7MZzvrkrpDlBGEoJhVlYQjNDX3X0LieWKdi00VLnpXELBD8jr0Mg89GTPHoggTA++CRShFgMEaGcmBJNZ0jyw2qVvR+TNTaMa/ethFCSukafUFGr5rxemRZtk3H2feXcS4Bkm/K9Zqm2bKhxLYu3h3CY0zpWUltk2qQkU0zNgJHVs6+eez4vbE5NX6egB+JtQLnbWJzec/GSUqTGje23dC1HdYHGj3jvW/+BtX8BFWU6OCx0ZN5S1VOWK1XdEHy+vU1S3vF+dEhuiiZLzLq3lFUE4LMuLpo6Oo1vfWsu5ZelhzMcx5/8Ii//vyvIO6z7X7x2GupAZHpLDVCZFnShjV9bSmzFBsvRMTkGXfunONWLT46UBqUJkRN07bockqW5wiZ5JLvvf8Bd+7d5+LznxKloLcWbVKzIAiPyUBGj9CQzyY8fP+d1JiMniLTPLh7zmZT8/mzFzRNt72OkNhNWV4gzS7BbRc+sZNJjWP8eJQvwS5NdpxTXddt56H3HukVLu4axPtz0Ptwa16N/44fjyluCdxLXnj7oGCe5291PPfm5jNC6mPx+vUVq1WNyfLE3O571qsN3idGWG8dmyBYtx2brqf1EI1BikHpEZISAimYzqfpbzdj4/+Xj/0zwZe+RzrTCh+4enXBk59+jIyR3/7tHzKbT3G+H9YVg9aGuluDTlIblETqnJvVJV2InJVHZDIFrlwvVygjqUxGaCwPzk7onAepWW1q2tai8wrZ9UzyDBMds6okhh4pSjbrNX/31z/l8Q//CY+/8W0Oj445OT9PINVksjsHhTRXutZRVRWnp2f8yf/1f7Jab1h/cYF0Dd/54D6rYBEqcvfxI5afPMV2LZXJuL+YEWXg2lR8sq5BeILoMEbShZ6+dczyCarQgMfblnlVMC0ME+341ocP+f73HvPr33mf09MZs8rgmg5ERJsSnSuqoJlcXHO26Vjqkm5WUGtPs27wWvHeb36HfFrw2b/7G+aZZHI4p+sbFvfOmJ+eEIuMYHSqOaXGhYgmIuSQJmkdZBlC7iSs22s9Ylk+EJzbArAjSPOr1k6/6tiBhn9P6dPYXdhfZOIAE42IUVo4ds7oiRG0O6V4H1KkpkgJBwJQWqcFO4zO2sPBOCSGitxDf8VAIxRC4F1Ij7HHlkgTL6AUQ/c/PfPIBAjBE0IyEBuR5rGkEjAUj3FPKrXXE4gBoXeyJh8iiARUJXYOQDrk+EGCJWPqMAU3RnenFJX05/pth/Hs9IjCKHzfoGJJ8B1tuxkOt5FiVnD57IJjTmhjzsvXDcdzyUkwXC5XPHl2xcV1y826o+0ddZdMFXs3uNmbiClKFsen9DPF6nLDerNhvWpYr+vkKZEZ5lVPqTzVcMi2naVre5p1y9Xakh3UvL645uRwwsnUcFad8MmnT7F9Q9sC8wkiRsosaWK1iBSFIQRFyJIHR905Xi433HSePmoyAWVV7ZmoJZNRwS4icx8wiTFSliVCCK5vrm+Bh1uwZrhw+ykNbwJ3+1KofVPAGCPW7oqncbzN0ielJYvFIfWqZlpNqdcpclXqSJEVybsmy1kvN6lbq/PkFSMVJjd0TYdguC+Hjk5RFLsC0SfZgQzDoUNJurYjz3LK2SRFuXc2HaiEwKk46MojmdY40RHxqDyjtS25zAe2iSQEgZCKiODy1RI0PLz3LsfTY2Yc4F57nv74U+wDy2F5xEc/+ZSD7D515zmpDmgah5IK2/bEDrrGsjg4xhjDcrnEOcuT9UuW3QUXneQH7z/m+7/3ezz4/jtk0fHJ//RH1J9+wTPdUaO4dI7n2tJg2YjIpWv49OKKL159Rq9K7t9/l/e+9Wv81m/9Fn/2kx/z5OnPk1fPsBbuDt77Mrp9X6wBDPNui7KnNApJEA7pGmxdE2xGoUsOJ6nzIG1E6QwRBN94/A2qaoaRklLI7SFYZRlBpKJdEcBHMp3T2UAWPWcHJ9y/++5XAJypiBmpviBYnJ3jnOfTZy9Y95ab5RJMoDqds7yo6XyL0FBMcyZ+ytm9cxaHc0qjWW9qjmLB6dld8qKi7ztymQqCMILUAFLxYtnyk589IcbA/OCQ3/red1hUJcJC2zV45zCZJgRHNamQ2iOjRwuYTucIlfHxk6f/6PfcP2TsZseu+HsTsNlfs34VkPgXFQxftW69ybj5quff/9mv/roghsGzoe9pm5bNuqZu28SwcAk8GRzGiSJgfcANB80tyyTEgXWa9uMYbsu1th+LAfTY/l0xAS1R4GyqO7yP+IGR4J0lhNQA2r2Xcegk7jHbpEyG1UnQCSKlFkkBShl0iAiZhCWbzYYsS3G87B2KiDuG7SiZyUyG95G6rnf1i9iFJ0CqoUYTYqU1WVagsgylkzm4QpKhkAY2TcvNumbddKw2DW2fEof6rqNuGpSUSKVoX1+w2RSEkDwI6rxjuW44mE+5czKjmM1xfYtrN1wtb+i6lvnUI5kgsmzXHNvz9yOku1YriZKGMBiajodKk2Vo3VMUGUWebZnSIUS67u2VPo3XamQh7ANnI+CyfwgeQZX9uiQbWDKj9GWcV721RCmQYZfutAXkwkCHh60xLLAFasaadjz4j5/v+5EYY+CN+no8eHZkbOwgO1zXdL1kHSbM7/86J+//BmJ2jJACEywETR4cS7dBmgpTLdDVIawbOusRuUAXFbPFGSpPslqRHbC+WLNaN+iiIgB5kXF8lPPowR2CkFwsN/S9RSuNd/4Xrk/phg6URc7iaEHjI5d1zyRTTMwMp1ISqNEZKMXBfMJ6McfbDeu6wesTpgfHmKokEnEheaxJGZkfLPjBb/0O/+rFR/ghcTEgQRqEUWgZMEIQlMRMS+688xCpwPsOITMWBzPef/SQvut5+uzlll01MqzsAK7sM2NglFamj7dsOZHkSULsIrfHMc4PrfU2Ecp7T9d3OH877TbVyMk0drPZbIGfkdlTFAVCiK3X0sjmETGgB3nnm/Xy2zg269dJAhuSD8nl9QohW0SuCQisk9SNpWk7mtZSo7AhSU5VZkCJBIaGQMDTdR0hePKyGNQWfGld3n9f9ve9N/fl/a/HAMJ5lpeXfPqzn2ME/Oh3f5vZYjo0CBIDNMbIcrmiNw67mFAZhS5yqvkMUzRcXW/QRc7x+Rzn7QBKOZ49f05WFuSZo9/UKGOQrie0DTKDA6MoteDgYEZZCIqjOTYvedE4Pn3+ipcvXvKfnJ5z994DJvPZFvzdJ1zE4Rx9cDDn1TPF4eEh7dEJQcIkg4OzU+anMw4niusnT5C5QAYQ3nI0L9ETw2e1Jzs6Zm17Xq9WlNOKzQYIJUU+pcgzri5fcXjnjDLPOD+Z8+H7dzg/W/Dtb7/HdGYodMC1a7wLyCInSo1XilhGTh7eRyjNkpxrOeXSXpPlJr3/Iuf93/g253fPuPjoCVnvmSlHfnyAOZgQJgVBAM4CEql1kgsqhVYK2/W43hL0bUbbdi6EQHAeZx1qrBvepDGzvxbvzY9b99kvZ1D/KvfkL2XU3Cpuhg0jNV32isEB3EgJJePPi4FuHFFCJHW7D4PeOQ5aLn9rkxQhHWoGWXmaUOnXYIjljMPH3vtBm5kWpWB3G8O42YaQ0pb2qcf7YNL2iB9J8iiZtIrejxugSDrzmGCdUVeuVKJLuRgh7NIgxoWTkGRVwKBbC8QYkpVhiDSN5fz0BBE9wbY4WyOU4+CoZFads7rZ0PmeywtBpzVPrmvC/JSz2TnXq55PPn3Bk88vuVk2LDc9TW9pbUvfW5qmp+s7itIg5efcvXsHj8B7zU0naXrD9SbQtR2mLHHNCiUSxcu6yHLj6LwAneOF5qZuaNoN56eH3D8uCE0Ld4549uqGZlWzyhRT6ZlIy2Q6IdMpQlVJkMawualpredi3fBy1WGqGd52LJc3eDcWIBnT6YQ4RHOv1+tbh8qxW5ViRndmf+MQQiDi7RvlqxDx/UJsnA/jRhhjuHXTvO000a7rCEoQXEAEQegDKmhkTO+F0Ya27jDKJD8mMUoKM/q2x1lPZhS97bfF3v7hsPcd3vrBwLBHY/DRIVXqbnR9x3x+QHCB/EWWNwAAIABJREFUftMggic3Zkgo8PgiMj87RCnD5ctLRIi43hJdRMqMKCGvCmIZMELz0Y9/xsN37hI3QC2wXc/T66e88+67yK5kdbWBOxGnk6njLJvh6w29cGRlgQ2OelMTpaePLW1X02SCZyj+q+9/n9N338MJT/2Tn/PH//u/5jI4ug8e8yc//ymf+w2vBxjdhZiSyJB4IQHL559/yj//5/8jn332KSen53zy6cdpvbs1B3fXZmQJEEkxowIGVJvRDNUohbeWzAhi3/PR846zY8MXz16yClN6McP7VfrdlFlPZRR4h3ctPkiEytCowTMMoo8I4RGxpe87unZN8At8u8aTmFExJmGWDxaphm6dSEkckmQXrRtFIQIv10sur19i8p4QHeQKPamoDo+TgbmqWI1+M3LB7OQEpzNC1DgEOnqS3YXCBZ/YEdrg8PTO0dZLpkXOvJqgoqSMjlxqvEn0YgcUxHRwlRpjNJXKKcqSdv72Sp9u7WkjKAKwt7Z8XVH49x1fteG/+bWv69z8sucepvDAovXDx2B9pLfJH817tvu0DSnpKa23CehJI6DFjnEU4tjUGNon4s3XKfBuTHRKzRU/yKUCyRjbuTA0Z5IPHnEH2DdNQ/CjRMmTGb1lN4QQ6LoOpTXKy2RaaQxCKoTUTCYTskHmMCb/wI6ZsW/WOdZk+699ZGfsHwzGQ5/JMoTSICRt15PlJcFblMlYtw02wM26pu4s16uavreEkAwOU4dcI4VCG8X19YrLyxuKPGc6nTKZTjk8nLNcT3j34X1m1SHeg2s3NJ1DxRXRe8qy2MYFi+H9SLUZMHqMxHRNszwnRGjafjDXVRRlRlHmlGVJ03u6Lknf3tYxXm8hxDaqewRjrLU0TXPrmo5zZGRPwM5raP9gLoRIfFGp8MFvTYtjjDhrUWI4QO4xafaZvmMIx/5hewRtuq7bsrKiH0HIBAaMa/rl2hJwiF6yqaGNFba8z6//4L9EHD4k6AmFtCjr0ZnBLq+QQhFkhqkOObv3Dv0XDZOJwZQlqIy698hcga7oyPBmiqo0nQ+YfM5N3TOZHHC8mPPi4po5ktWmwVu7ZZe9OcYG6Ww2YbGY42Og85GbLiJ1gfCSLDcILDebNQc+UhYKISNIMEVJ7wy9l0RnkUViKlnvBl9Dw6/9+vf4+Kf/N09+8lcoIp0PRAd5nqF1QOOIuWa6OGayOCKKkUmfpA2zScHBdMIXQz00NvTqusaHgNBme52EEFRVhRkYcTtGy8jIEoQ3zjnj9R1BoBGo67puC1rvG1s3TUPXdTRNR9M02+ceU9v25XkjoCeEQLMDAd9mgGYcm8bS9Z66rbm+aVh3Eect3abDedg0Peu6p7UepCJkRQKMpUppgFLhnaNuO5qmJstNYlspgVIyeTLujX1w5s29eP8c8CagYzeWq9cXXLx4xrws+MFvfp9yWuKjRYiA1jtDadd7gu/pbIEDkIJyWqEySdt5Xr5aYvEUlaFuep6/uKJ3At9arFtRFGUC55sGIwVaBtpuAyqjKitO7x4wPzsmllOmdeDs8YccfPAdqumE6XyW/v43/qZxr5VK4hrPZDLhvffeY5EpVs8/J/YrYgxMJhVaOrRRHB7PWD9vyDNN9I6qVDy+e4pa3OXnn33K3btzFienLK+XrFctVTnDu57T2UkiJWSGxWHJe+8ccffuGbOZYTLJkCrgnEXqjCgkJpsk9qhs6dqOo7sC4wxYTXFZY4QjKpESTKXg8OEZi/MF3dUN8mmJFGCNpHM9QScWqJAgRGKPM2AAXoikwL6FawyNChJ7JvmnenQkMef35s5X3VNfusd+xVruzXrwq8bXe9R8RWdOKZWYC/7NVKf0NTGkHcWwV2jJsGPhEIkuEPEIkboM25tFDuyH7YHRbzczSFSzW8yXgeUS93xLxu5Z0pr7LyGlCbzx7MyDd1RAITxCMAA2u87ivgQnvZ7h+URI5n8DgCOEpOvtFjQABnmJxDtP73uUENR1x/lZQhlzoejaNd7XlBNNPs2ZzSta3/H81SVhUmKLiunZA3pR0K86/u7vnvC3P3uCCwrrBZ7IqlmzWa3TYVjA9U1P36548eo9FocHRF3gyKltg40aYaCcTGk315RlRmzXxKiou0CLposRVRR88eo152eHfPDuHabGooNALOYoWXBzvSR2jm7T4KaS4HMIDm3M0HUQlGWZ0GDV4qQjMwYXIy9fvqS3PfP5nHGWjZuc954QB5PqECjLkoODAy4vL2/Rgvfn3y867Lwpbdr/2lgMjdGw+wvy2z4ODucsrxIdUrglKg70WBsQRtJ3PVomGZp3HiEjSiiapiX6mLwOwq6LuB9T7r1H6hQpHaKnmib2k9SS3vYEJ8iyDGsdVV5Q36yIwhJ7RyYz1nZDrALlyQSc5NAuWD67RkYxMGqSb1TXNxitCE5wc3HD//o//D4zfYgMkiqb4B28+ugCUBzNp4M5eTJKVnnG1aZFaWh8Q9Nt8K7HZJrW1VTWE2VOfrjgR//5P2VWlrj6ij/4/f+Z/+X1J8RvPuK//m/+W/77f/bPWPkVNjp0lDhB8pgRAi0EKQ3A02/W/PEf/ksAZFQgkkFu0nXu5tu2CBNpMwkhGaMqJDGmTrwLHj0UaSIK1lbzL/70c/7tE8tq01F3F0wrzfE8Y55N0BPF5OAUnU0QOLq+pWs9IojETpCp49Z3oGQkKwwUFb0pCVlFH+yQLrOLI4whYJRCapPMXgcQTipFhyVKS5kL8hgpo6GoZhwfHjMtpxxMjtC+4t7JY4w2CFxiMSiSC6oSBG9QIRvWyECmIkoLUIrSZhiTUeaKxaSgEGCkIKoMQqK8Cy1Q0eNNAs1MltHEwNV6Q953hCL7x7/p/gFD8KtRXP+DvoY9EPurCtI3x1cVIkKkiGwpNWJoXngXBnlT8ndJ4HfAeo/f23t3z3X7MXf/DZjhKHtiXxo1MDaGe2oEFHxM4E0yIh6jp8MACu28yhDJZ2sbeiAk3vUE7wgxsfuC1nRdT24UUiu2DDlISRnWDaCFSjJusWMaJ6ZMRtv220P82Mkc97WxqzkenvK8QBtDiCCVpustSMlm03Cz2rBuGpq25/J6ifXQ9j3RuxTyNtQaPgQmkyNEgM2mZlW3bFqLWW64uF5yczPj6mrNu/fvcHwwQUpP26yRtsU7CzEldu37bezvgeN1iQy6fmOISGwIQ3e/wxiFyQxKaeDt9qiRUt4C3d6sIUbQZKw7hUh73fj5+N/oGTP+zAjIRW4zZsb9dWSSj4eBfQnVuGfcqnWHA8V4r3ZdkrplJqMqiwRIElEq1TA36x6ixb7eQK9YiQnvfvd3ufut38Hmh0lyITxFUbC82GyvZVFqbJggyhlL6+mdRCOIQhGEpHUpTKA4OKIK0F5c4DqH95rWBa5uVqxXNzjX03Ydztk0r37BSPeSRClwfUc2neEiBFVw00bIdDLidT3VpELpgjLPmU4nrFYpAr6Yz8mLKXYEvmJIDamBsZ7lJf/kP/0n3Dz/nPr1GhcAF9nUPXkpyXKFj4LTuw+QWYEPKbAi1SfJezIzegui7Nf+RVEihkj7rYH0cG+rTGyTlfaT7ITc3UtuuNdGv6uxUZgkhRnWOUTwW5bMCNZJqRIAO5nQdd328fLBr2aUPo1rjpIShtj3tm3p+57pdLoF/N7Gcb30dL1juelZrruhCe2oe0/TdfQhEqVCGENmMrIyRyqV5E4R2k1LWzdc1WumswlZXmwBviiSl6rYYz78KuNNkGaz2fD5T5+yurjmZDHnu9//NuWspBN2MAZPnqTj3pj2gYKAxmQl0mjyylBOM6Qy1I1DLTegKnpryYsMoQ112yeDepHAeYSgmlR0TUueayZVzvHpnLsPzzi8c0TUBUeioq/OOfjmr3H68M4gAQtfPicNG60QgiLPOT4+5nvf+y5/4y3NzRWfPf2IVawx/Q3f/cYj7pydsLINFQGspxCCOJ3CkLjW2wXl4oCr5YoPf/Btnn3xAtt7jo/uc331mgf37tC2NXfuHvPo0SmTScVkWhDwWDfIApXAFAXKFGhlCCqgsoz8UFOYQ0pX8moNV+vP8NanoA0jcRqiVqhigXE1/vKG2ltq6xA+NTIkgjjIqEdmzChtkpm4xY4b13BixPd2MEfn6/WcXzFnho9+pV8br83XyRK/FqhJ4VUp2ci6tCm5GFBjWpJQw5QcZUoMEzRtIMQ0MbzbyZT84Gw/vESCSL8tk3YpFXbe7VG12CZL+RAJMXWpYkgpEgKRYryGDTQCvbUEnzq4I+gj4o46jdjRrcdD2dgBT5N6XGAHBg6CwODCHoc2YoRIQKqdGXKMfmACKfbNkH1IZkGCANJwtWkpJyV9e8PioCDQMqkmlFWGJMCm4+xkwdHBASKbsg4ZwgaKukXInI+/uOTZ6zUhDC70StF2LV3XY3uL9R5E5Pq64ennr3l4/xHe9VgissrwtWS96gl9KtKUy9CqYGk9FkndBbKDQzabjsNJybc/eMTJTNJev6JvW6KFuRIcHpUYKcm1QIWIdBYjCiSezAjAgYsE2xGd5fzklM4n3fDLi9eU5QSUYTKdkucF61XDZlMPwIpAiJTCVU1KDucLbq6XSVIWds7aCfz78qSHJDGLcbfYjjGo4+ej9Oo20pzG2w7Y9E2H63ukCEgZEGEAXjw431MVJSDIJjn1ZgNCJelSPhQePqR0MJkYN0Yb1BCt3bcdqgRtTOq6uZjmlXUImRB623RI5emdwHWOgKT2PSYDHwNFLLn4+Q20nmk+QTuTElMGc70gA33jmB+dYBuLFJKyr/jut7/Hv/nsj8gyhcwUy+saoqFcFCipmR7MyLXm6uoaoSS+72ibDdb2CAU2eroY0NqQe3jv4WO+9Z0PCTLyxcdP+e/+xR/wdwi+e/9drhpY23TY0yiUSK8RKXZeGSQGYIyOMdIzSSsGhF3cgmkSYxBQIsVyR9eDVAhtCMNKoqVECJvCST04oXh243nW1ChTopWibRQrC7POcDSruKwFwTZoGeijBx+IsSFET5QCJCiTmIC9tbRdhCAQQtMFlVgIXUqxSAdWjzYRrMf5FJ0slcJaz1VzSVmVHB4ccX52D6VAm1QEGmmYZBVXzTVXV68pipwsG+/BgFS7DbGPFucHkFAnnxFlkg+NdR7rA3cePODuo/sIl+KVrbOp66GHJEEgupQcJEJAkzF4vf5HN77EAtyCNn7kZQ9F1PjxbRCQ8TORGEcgvvSYv0iuuc+MvfV4e53EN7s6Xzqwi8SKCULghaQNkU3v2HSO3sUBqEnr82hmedvAf3jcEFDSbJs0MQ5+AiRGVwKDhqpi3KdDOoS5mO4ZGwTWpxSn0dtGiogUIJRIKZUhJCp6HN8zgRqKNCkkLsrBc0silKLtPcQeKRITdl4VxAhlUZFlOY2tGSWNUSTWkEinAIzJkSL5QnRtS26yodmQ5EkjC2NkZ4zM3uQRJUGmND7rIxfXNS9vGi4vL2nbHuuSJ4/Rhs6ltQdSx8/awIsXrzBqMD+WydDcWcdmXWPblpvrJRcXl9y7c8KDe+dEoVmvVhS9Z907jhcHVCSZBFFsAYx99imDF0pEopSkLHP6PqfteoSrKZUgV4KOSDeAFG/jyPP8S2auUsrBxFcgtML4PElqnMN1CZAZr9l4/6RW406CZLuW2EbEXmNISom1lhACWVkxmUy2zJ3x3h8BoxEcGpkUcQBnlADlEwPRe0eeD4dTNQZbJKlfGwOZntLmd3AycPTOd/nG7/wXTA5O6WNEakEmS9p2jYuWKDTKBPpmidUlobxPdf4YYV+idGIvihhx1g0SrEDTR/LpCd4ELpcNq03k9dUGj8Z6Up0vFUKlA2v4imOKEBKpMoipYdO2PZOqZLVpWUynrFqPVDm5mdB7x3JTczir0KpCyRU+BjZeUOYzqsk0eQqp1B3XymBtqonunt3nd3/0I/7tH/8ftHWLdRERJTcx0vSQTQsePnyECA5cCxiCjESRmAaHBxWnRxVf2DrJN4NHKYnRMiW+9R2269FaEb1DZxle+GSxIMWQKgtGqS1DENjKnfbZWOP8Std2qDEG5hc+MClKyqpK86m3tF1LjHHL2iqynKoqUUrT2z4BM85TFolxM6aavZkA9baNZ68b2t6xaXpWjaXuHeu6pY8CqTMwCpVpsqJAZebW+bOpO25ulighOTyYUVb5FvhUSm6tEcZtKMTRJiOxL+G2bEUplRpgBEBBlLQ3LU8/+pwXT59ydnbMt777LUxlBrYwxNTlh7gnYRYC3weCUKhpico0uVFMD0qUuaBrPH2f0/eGaVWQqTWvr5KRe+ccq65jmmccViVSaeq2pVSB46OcaqooDysWZyd0aPLqCHH8iOL8BC01Smk8ghAEXWfJMjOwxiJGJUBSKzg8mCHxLE6OeP5zwdnRjLnOePzBPe49OMfEnnkOy0JB2/F6WdMKwXRaUSwOMPOMjfVok9E1He++8z7PX75kNp9yfnrApJAoOSEvNVmumU0Lou1xrscTEFqRFYaYFXiVpzN6cBTGELOSmJ+gRcHpxTXm6efEIBIQOezxXgi8DMTCYJVEA84ltYsyKfBCC0mQ6fzvRVL/OO8RPbi+h6F2UCKZjzulUjJuZFjnE9tu67e71+AaayPGj9NP3Kqlvk7itN8U+EXj64GaEFL3hu2rSxSgQSIUBhR3dMved0T2A5ghlUQIud0Ux47FKFkamTaEpP9MXYId80FKuYdmhZSypARapoMpMRCF2l60vo/p50LqdoswOsynP0OE9Ddsb1zCrU4z+NRtCz7Fdu+zMQTbxxJDVPS2AwUDsjsYH+/RfxN6njqDvbcs1xuKTNOuXmEOpxgpmE8PicrjbEsUUBUF0+mclSrpyTHFbEvRvrxe8ep1SuhROr3GrusJwaVNYkBKs9wk0611gxB+MBy2BCESxfBmxcQ7oov0ATa9o/URoTNa5/C247u//iHnB1NEdw3O0bQJ3JAhooQkzwoyo5gUJbkxRO9S9GEcTNg8KAKFlvQxIKLg9avXXC+XCKUpywn379/j4uJqmNyDufNII9WS6XRCVZUUeY42Gh9cohLHoTB6IwkqdUBudwbHbsNILx43xvV6vb2p9g8qX3WoeZtGbz15nuEITCcT6mVNVuQcHM93podAb3uKIkfrnLZpEEoOb28gKw304KxjUlVkWcZ6vU7vIeA6i9ECbwPRgxYmHfQBM76XbUOMASmyZCTpNkgj8RtHf9MTe4+TdntYSyCRxfcwm81RTuGDw1tP7AR//eO/wveOq8tLDucLIN0/uS7QOuNmtSa0V8ymc7x0WOeGTndEINnUDb3zRKFQxvDD3/wRJ6cLrA/8wb/8I55vWmI+4fL5a/7NH/5vqcAWQ5zj4Lcj9gqrOKSspLPekHA3SDzV3lzZju1am76f/IY9BIlQBkkyDxcEiMmoMwo9xKCna+FtT9tAZkqW9YqLS4sRig8fnDMtNIHAJE9sHBc9wSvKqoLYIkKkMIahtYsYCj5nLW1dp3hSlSjCMaq0BYV0oNQCUII8T0bTRTFlfnDEpr6msT02BKyPwLDOiYAXFhfksP747YHGh4B1djjcqO3BKMtzrlcN1o6JPfDp558jfSTubUdjJ3McI8VbC71lK/xHN/ZAkdtfT3NLCFLXb4vZfPX6I7b/3827yK1Pf+HYB16+it3zyyi4kVTgdNbSdEl221ufUgfDTj66f0/sSz3Gv1/srfEhxvQejKA6DOFSw149SIeFUAkEIjFpe+dwPhmnK5kSUyQkWnyMCJmKr5EVkkDVochjYMZEiRCKEKBrLSI4ZlVOlmcpZUWqBCz2Y6MqSaTV0IjReojeHqVcw2uRJtU8SqptutLYUd+XKyglt0kyPnh6G3h9ec3lsqXrHXXTJQYigiIv6Ltui+WNXXQl5K7+guRNMTxHXTc4a+m6JkkKVkvOjhfQN8jVhvmkIMbAwbSizLMhBUPcamCMjCTE4AXk07orpSQ3ObkxKBIrTkqxZTi/rWNffjTKmcQglZNKbenwSmuC27FrQgjUdZ0is7MMPUjGnHOs12tGRrd6A5gbgUfY1bT7/7Vtu/Wj2YJBSiKUREtDIQQmT6yeMs+T1GP43cTqENS9RWI4vP8hs/kRD7/5A44evEtRVRhnUSopaN2ACSuTEXyD1pHOG0R5jCiPWF4/RWuFWW8IQTCdH9K1HZeXV2w2LVFm3Gx61o1ntem4Xq5prWOUHHrbb43CiV9ekNLcCvS9JTeKrrM0bc/h6TE+gskK6s4RtKNaVCAVm7rD2khvQVVTzPwIYZLnnZIJpBnvcyETe10J+Obj97A3r/izH/8lm7pLgJaToDPOT885PT3DdS3CDwdYLRBKobViNptw984xy/WGi5sNUimMUti+gxAp8ny7jogYsX23bfyNgJsxeiuRVEptGVj7DIdR1j/ORTl63cT0HMUgXdmurcpTFUVi4QyHu1ECleZZhlEplGMrsTRmK9N8m5uPzy83tL2l7iydi/QhIvOKXOm0dhuNyTKkSawhGSTOWq5urlivVxRlwcFijjQJWE51m4TxrLjHjklj18DdV15s97AQhrpPUi/XfPq3n/DiyRcc3zngN3/7BxRVgcfh+j7Jz7UZ2yfIONgshIghEAUEozFlgVWSIldMpyU36xv6dYcNknXuKfOUpEdwXF7fMJ1OyTPNtMrYrDsOJxVV5jk7OeT8zgmzwzmt80xOzpBHdxDH54j5AQiFd5HGdngHm3VNXpiUvmRS81WIiFaCGB3VtODb3/mQI+Porx9wPpPMiyQ7bJdXlO4A6Vv6qyXn5YTnyy7ZjXjParlh7QJ16+naDZfXPWd3zri4fMn0wSmTKic3kazUaBmxbUuwlt5bohJk0wm6KBE6w5NSGH1I6haTVTA9JMqc87NjqipnFS0pXTFdZ6OSuXPfdomdhyDLcnrnYUh9ZPQLE+BFJAqREp79yLR1qWES0vWLUuC7HnwcYJpEFofbgN6tWmmo33ayz6Ho+Jqx//t/b0ZNoh4zHM4SnCSG5BIhxgJsL2lnKB6VUgQ/6G6jTvT37QtJj+l9GDwVbscp76hmYfjZkWIskNGnlCXfE2JEjSWrjHi3e61Sq+HjsNe1S6DRFj1N71LaqPc7mQwdOVIm+q1EoJBco4UQwwVM/iDje61UevgwLrqj/jikz81AudysV5weLWhWNfcPTzmaKKRwdH2Ps4lqpTPD/OSELy4i0lSobEJuFNYFurbBZAprA3W93ksF8CDCYLzVkJsZea5ZrW84mM9QKqOur3EuFRRdW3NapILUhYiVij5ahBZcry747re/xf3zBRMd6GuPsBERVNIG49GZIs8cZaHIMolWAOnmUFIipeJquWRSzphPFI0oEm128PWZTCbM54eUZYUx62FRHJKIBgbXmMJwfLJgubrm5asXW+Pfr5r045x88yYaO5lJW6+3nYyd99LX3Qlv3zBFjhIa6BJlsHOEILi6vE4bcggcHh7SbDrm8xlaajKT46wDfJL3RZBGbA94qbOXQL9K5NjW42VHUVUUWWLD2ZASDuIAqkUtEJlEDWmGqf+QNLZaCFD6S4uRtRY6wc0Xl9RXBqkl0kvapqG5rjHREF1keb1GygKUpigrrHWE1nJycERZlrRdjxvAACEkyJT6orXG6wRe/PCHP8RoxdXVNX/6//w5Dx485G8+/oi//tu/4Cd/E5AykZ2lSGuTMZrbh8w4HPr2dMxDEk06TIqhk60GRgHsA7gwHEaDx2idCogQcX1AZgYpYqJe49Fa4HxIaR4hsO46lIq0KvCXP/uUdev43ofvUUmBC4KqyDGAjSRmnDZok/6OTbMG0ppnlEChEEW2ZT0KmSLSvfeJSqpBCL2VbTrroZScnd7j1evI4mjO0ckJWZ6jB/mD94G2s3glE8lwNE0ffS6Q+ChwduzkiZSYEAV13RBCZDKdJqajcynOnXQfr1ar7UHEe890OuXw8HBLGW/b9j/IffWPPsTIrrnNbhFiPH38qg8Ut+/dfhHx/6fMarwtxrVzlGOMZpf7vmLbjuKebGB7X41AFCNwlAqa/Ze6/d5e52p87MTI2pm1jryj5LOS2Gw+BBQkU+AweMSJVMQB20P0KFFQSiavlUwhJeRZxsF8RlVVLBaH3FzfJCbtUNyr8WAkd147Yyd2lNaMEgelNSYz23k70py1HmXaAdf39L3n6dNn3NzccLNsYFg3hICiKIbCPzWWhJBopbbAcgw+UeVDILBj6rgYwFlMpri8uubm+prrq2vOj2ZIhmZK8BACrkgHwxHk2TdL7QemG0IRRWKj7uQfAwCh0mvq3uLUp9GDxlq7ZbZIKTF7TNumaXAusVeyzGwPz5vNZmsUK026rvveh2O98qaXzQgAjcbAsPM92ZfHjWubtZbgBpuAEeAepGm2t7Su2T7nFkRCsmwdXnh8qTiJhmI6T4CjTIexEHdeikprrAAlU8qj1AU9OcsmUJRQ9J4sczTrFXXbg1DcrFtUnphorQu0LuBCegyxJ90KLskg98dtBmFASj2Al1BvGl5wwcnhAbZzqOgw8wwXIoiM9aZlYzt6kRPElOn0CGEMRhuMztBKb+t8VIrixUaE6Hn8/jmzwvL8xWta5+nawGw+53d/7z/DZAXORmR0RC2RKARpPhsjmU6mHB0dYYOktz41IWNAqt3fMwIsu/SnnccMsI18z7Js26TeziG5i4Hvuu7WnjY2FvfBxH3p1P76OjYfrbUYYxKQaMyWlTN6Z3rvt5K8t3FcNhbrAzZI0Do1ysWwrhiNMRlCpbnmvKfd9FxcvqZt1xyfLJjPk7QzvFH7fxU4tf81v7dv7QeMCBQiBJr1mic//YiXnz3j5GDBD3/0Q0yR4aMHKXAxYp0nUzrVoTGxa8LQ4JNK0nQ9bQa6nKALzeKwZHF8wPPLmqtlQ9t75vOMvusxSnO6mBGiIy9zTo/m0Ndo6ZguJkyRgjOwAAAgAElEQVQrxcHRnKwoKIuK4mhBuTjEVlOcykEYpFJs6pbOwiefPCUzOW3XcHK6QAvIM83pyQKiJ88lRivyeUH5wSP8psDYG3Rs0Cowy0/w0xJXZNyIp5jWM+kjQiu6VcNm2fBq1SDyKU+fveDR/Xf44ulzHtw7JjOaEB3T2RSjBVpAGFiETddRzKdU0znG5NgQUDpZmYSQEkKFzkAXSJVzMF9wfDDnqnlNF5OaRQiFiAkYM0Ihq4JyUtG0Pb63KREahsatJga/bYwE54DUWCQkjzs/mObrXuB7m9Y2l/bUX4K5/L3Gvuzp65qPXwvUOLebwKngYkDL95NxxmJCDCjXjpLtfUhAjBrpoDvztP0XOY6xYA19KpxGpoSUEpEppIzDxiKTMSdDXLaUuM7SdB1CamRQgwFx3LJ2pEh0xPF50r9DhN7YxZOpo24H5NmxQ1VHIyIRhscKO9+dUfqFHQpHSWIZyKFgHp7XtY7eBV68eM4sVzy8c4L2jtX1BhssRnlyLbE+UJQ5J3dOCZfX9L3n+maDmBQEH6jKAu8dVVXivWO97oYCwBNI0aExSrLMIGREa0nXtSm6W2Q4l9B/oyVVZsh1xXq1YdlZnFJ07Ya7dxecHFVkdIjekkuBEYLNcoXRoHPB4Tzn+GjOdFqR6dThKKoJPkSub5as1jUgcX3H0eyAl3UgBk9nOx48eMB8PufRo0d0XSpqt8ygIW5dCIlSmjzLyAvF+fkJn31W0XUtdd2mAmqPWr8DakaQL25Ryv3uxVeZA94CRkXSpe9HLb5to2t6lAhMqglXVzfYpqcqKnKT0YeeIBNL7fT4mLqu6VuH7/3WWFhKSZ7n9G1HlmV7wFekKHKCjYPfjcJaR1bkdJs1+STD+nQ4k0WiFUYdoQXfu2QIHgVxMO+UJhVwYyd5LGRFFCiRoYIGT6IeFgoRJbZN7DACSK1SvK7WKClxXb/tPnZdt+tSKcG6XiEEKdozVxwsjvhgiNV+8ukT/uLf/RU39Q3L9XVKYBpYDFqptOCjUNLsrXdp/Urg526tUiPIRTq4pO6h2M5HxG1q5BagDg6jNZlKHXlnO6RM/hTB9/RtDSoH/MAqjMPBLtI7T//0BZuu5zcf32dxdIJQnhCSzwZCImQ2mEuC1hnKGJQ2w/rrEaO81HlcCITGJuq9TXI0KrWNPY4hJetMJnOeP3+GViViNHpXGp1l6DxP0k8fEjNxKK62oLEUaa64MU0GhM4IYUzCkiipkxa4d8Oaza1NazQX39f8jz/zto59wGX7rxDDfnXbuHBv9wDYO/jffqz98VUSzdG4/5e9pvH3fxGA8+bX9wGS1Jz5MmMGdqyZ8eM3v74P1AjS2j4+boy3Aab9rzOyaYDRV26bzjf83bumUZIehhBQQm3fF4SAgSXoBxB/NOQEMDrdj4kKLpiUBUalnzfG8P8x92a9kiTpmd5jmy+xni0rszIrq6vY3exms6fZJKchQRgBGs2NAF3oR+lSf0kXwmggkQNJIERRHBbZS62ZWbmcJTZfbNHFZ+YRJ2vpnpEgpgOFSpwTJ8LD3dzss/d7l67raJqGze3txNwxGcwo5z2lIeXuORz9UJxzGCfjuQA1BQwJScCD3WFDNwa22y2H/R4DwupV+X2MSClraxjGEW2gtuLnJiCVksRMXTxzJOnSuuyR4xwheHb7PaN/w6HreHR1gUoBp3tqawWwyZvM0oW31hKTxEL7JKbNIUaskbSavhe/P5VBiXe941E20ae1wDiOjEHYWW8nLTXWEdOJRGpiYx2jtguzqXgPnTJwTuO2S+PvXipQnudO15yu67LtwHHzOMkag8j9y3gvniPOVYwR9qnibHbJe09/yGq9lvdUuTnqhQ3lnGPMvhcakQxtN54hVqj2iruuxx081nqGITL4xM3mQB8SYT/w5nbPza6n94nZfIm/lvmZVMy80z2+330WQ8x90cAwjCznM/wY2e07mrrhbLlCRU1IGtfMSDiub27YbDcE1aI5o4sVlbGkpNHaytqtNFpDTCMpBUZ/wKUerTouzxseXH5Is1hSz1Yszt5jvn6AtsI4F+goAB5thLWnkPp5tV7x+mZLP/hcl2apIqeNwSNru9zrErtdfGwKiFLufTkK0F0MrcvviqzpFDgo894wDGitmWU5VNlcKqWm5/bYgDzKKn7fZvCf+9hHK56fJLKGDGWMyFeck7k+KfwwcnN9w6uXtxirePToEbN5hdIh77vstzYpTtes03UmLzT3GLxaa3TUdLs9n37yW7783e94ePkev/rVX+Lmjph9AVNSJG0wlcllrCT3RZD9Zkr0MfHybqBuFO/VC1TdUNeaBw+WvHi9YfABbSsUmvl8SWOzZOtiLYa5y5roE6t5w2zWsljXnD26ZHl1zuL8nGq9ps8ef8rO8MmQxgC65vmL52y2B7abVxiruNvcMZtV/ODpU0YfcLWsK1YrTNswUyuYBegU4z4xPRMpoRdzmos17jDyvqt58ebAvF4xryp8f4fRnnnTsr275qMn76PjQGMaGqvwhy3tokWPke7Qszt0NOs1VTsjKi3XwFlU9Hg/yC0xFmUqkq5JWiLGH5wtef7mDSokvFBwRV3RS6JttEb8uJxFdZrgJc0xJo3J63Qhf/gQ8F7sAsocS7Y4wQfGvs/NGRkfUtuf1DEnddzb5IDj+ILSuL1/pHt/c7q2fNvxe4EamXiKKZEUBKEXqqO1hpBEjpQSucOToy9z6tM4BlTItO6y8UHoZEWHXhYppcSTJER/72Kk5DkcOkg91mqsypF5uatk60r8HsaRkDxRSSSsVkXLdiSKCz1QZ0ZATqYqn6/jtLpMWuQUj3+Tihlhyu+RWUf5O6jp5snNvQdCabmZ+26grutc7FV8/fKGpgLjFOgAw0hTS/LEe+81zP/pmthW6AR9N7Db71muVqQUeP36FeMoOllUwmeql9aW1XrNfL7ksO95c30taK+t2G464pjYbnf4vkM3hkPXsRs8d93I9bZnvZzzwaNLHqxqqtShwkA/HPC+p7KRtq14/P4VTaOYtxWVAcVIXTUE3zEGaOqafdcxr2fEvUJbiwoHhqHjwXtXzGYLfvazn9F1AzFmhk9/RPtdpje2bYOrHItly2zW8PLlB3Rdz9CPhCne/T6DQSbpo9QGmLqbxRjwcDhQ1/WUoHE0ir6fwvCuHrVxNHXD5nqDUxXWNSyahTCbtKXvO/zg6TJzIQYtMjRlhQrvh8wGUxNgVbrBwQeijtjKYSqLqjSbYYubW6plQ+w6whAIJlLPWkxroVPsbneMXS+sN2VJXlxZSvHSZMquUoqoRNZWtw27YU911nL55Iq7rzaMtxEdFEaJlEEo+fK8GSOGxm0zw1jLrJ1hK8vN5paEsLTG6EnOsL5Yc3m1Akb+9u/+hpvdLdv9hpBGUB4xMzco5RBX+FL0Ha9z3uPJz5Q6smvQGOnZC8MQYZChFD4M07ibCoaUJBUE2RjGMMoCEkYBMKJHExjHDmNUNkhVWANDNxDCCEbxeYqoEHl5s8FywJqAcQpjKqyy2Lyo+Ch/v9nvebN1VM7RtHPpEEA2k1ZHACQ/Q2kcaNsZu21H33vOzx5wfvaGzebA//V3/zePLt5n1a4Zx0g/jCSVBGhDupAhF5NTERsFwC9APkpze3tH348sFiuMsXL+OdK5HKUoLUyC04hU+PYu2btynM77p55Yk7Tn3jyVGwDqBHRRWUISvxtMebtY+AYY8lYD5G1w5/vO+9v+VkCF46aksAW+rxh++/2mOVpJHcF33MNSPE+FTDrxE5B3lGuXwRdiJMXI0A9ULnvfmGJarrI/nQAMb8/1ha1QOc181rBoHbVztHWF0jnyNgpQUde1PMeTbOmbYGHxQCkb+xK9W5pVs9nsBCxwdMOIsZbEyGazoR966qoiqsCIyL5k3hTmb11Zhv5AVVcoZfBBilGjxDcnpkRlDc4axhDwKWC1oR+FcWlsgw+R292IVnf84P0rrGtQ2pKSmjaYZfNYoqi1NffuV9kYzudz+mFk2/mjvwr9t97Xd+E4BVVON7PW2Jysc5g2yAK6iedQiVMu4NVpWkjbtvcAu8JmAKZ6w/dDrn+PG+diOlwkKQW4iTHixwGV2RJlLWmaBoL4CpZGS9l8j2NP5xWLB0/5wU/+lEdPnkqj7gQElYRHWaO0kWfYWcPtfkeIBtOc0V7+gGeff8Lr6695+vCc9XLJrvds+sCI4eZui64XjFtP7z3Xt7dTZLTOzNYwjlPdDG9vRsA6eXasEUsAowwJw74fUWpP6zSVgxcv3zAeGhoNrza39BE+fvwBVEuS1ljrcu14NOomeHSKhGGg6/bEMOJqK0w7xDcmKvHGbJoGYyKj74k+kBjFZ8QYkrL3mGVd1xHGAQ35WTmyY+DIHCzAS2G+LJfLaU48BXNP2TLFx+gUvCusmfI5Kp9v0zRHud4J0Ff+r5SaJHT7/Z6+71kulycyuXd33QylSZGZXtoa6qpG5bTXGALdoePF8+ds7+5YrFc8ev8hZX8rjV0xhi/H0QrhfqrrvfUyyTpxOqdrremuO377yW/5/Def8vTpB/zyL/8M01YEI892kF4okGubkz1gke4qZRhS4naIaO9pZy11M0NVmvXa8vTJihB7NptBPFnGDusqLtZLrm/vcE3NaibpgFopXO24fP8SvahYPbzCzGdEZ1B1TapagnZgnBj5K8/usOPm9obNZktKgSdPHvHDH/+Q+azGOplDLAGdglx4bdFVA6nF4vG+BxSuAb3sGA63JJU4XyyI1R2DD7z/3pJXtxuwmvnFgtppGrUXy4xhQz8MmFqz6w8cuo5h8LTrM5q2xdUN2tVoY6XmCV6Ya0oJm8bUAkDpmqaZ8fjBFb/77DPxyzSKQUFUEtyRlAZnGbOJtlJCvpjSatTR07Qw8OS5s+KRi4QhKAU6JkI/olMGD3Ld8ocev4/Rdfrz76snyvG9O1GhnR8n3GM3UxJMpjirjNammAglqQkBSGKI4gGhNSK50NO/Q7yPGMukhaSD5M87LTJDAj9EUvSQBpEIaY3VCVs5fPZaCRiStujsP3N6TABM/i5lgtNKf6MTPnXQ8zlKxOdJRzGVrVdpJJVCWww03y54tZJi6OGjx9jasesHoYCiUCmKTjpT5yIRp2HdJD57/YyqPWcMoul9+uGHPH78KZ999tmEDuJ9juqs0LaiaRbU1ZwUNX03MtLTjVuGIRAGQetXywXWdBx2HZtu4OAj87MzLs+WLCvDzEIDHIZeUmGcoa7g8mLJYlZjTcJpQ+0cyiQgiBFqP3A4SMdy6DtScHjfk4J0L2azGU+fPs1MiYrdbj8BdceCJ+WFVIyZz89XeJ948sFjXr66pusG7m43k6zudOCfjpnS1azrmtVqhXOOm5sbmqbh+vp6+ltJMRonanAZ/+/qUWuL3w+YqFjN54yd5+7VNbYx+CxFAEneqqpaAAnEjM5aR9M0DMNAO6sF3BhHFouFsG+GgYM/SDSngy4eULWmWtXYytKYhqACzayZEr6GOFItWoYYJAo6KZR1kJ/9uq4nury1FttY2vmc/aEj1Zr1kwviSjHegKHGKUXsPGqAMHbUlZjYvrr9mkpZ7tId1loePnzI7rCj6vaog2KxWPDm9oaYIvNVS1VrYuj58qvfoR0oI6a0UXkggcomt8aK2/zJ/bfW4qNHZcljyMVUUkDSqOxfI4Cv+Fwo/c00MpFkCFAzMQQUECNGQUxeEmjMgA9a0vOMZQgJh8Iq6aLttwMpRX43KvZ9zy//9GPef3jG4A/4wVNFjUqB4EcOmw3PXzznH3/zW5pK46ylbVpWyyWzumE+n9NU9cQiLBsykzvAy+WKGBQxwA8+/CMCA4GRmZ1hk2MMnkPXY5zG4IBEiAJq+ZioKoczFiqmdSIlMYMnQd/1LBYLobiiscah7XEtKIto27bT377LDLfT49vAC1nr9b115duAmuPf/mGypXuv+Y6X/yHv812vf3uzVdb604SRP+Q4nZt19iF7mwGUkrDRCqiip2ZOvj6o/KwmrLEkLY0TAU+PDAcpzo6pdjLuoqQ8cOJ9l88nxUhTtxhF9oQQVp7LchWVi/Cmrsk+vveMZU/9Qsrm+dSrQnxPBBSdzWYMwzABNRIxoKjrSNvOmI/iuafHY1e+NCMKqJRyB7iqalLfSxMkg1pWiaGxbGoOoMDVRzmOq2qsdVSzlsWioZ2vOLtYs6wUTgeI4yQLKt/JWul0K2MwRlLiJOEnkGJumuX6D9LEOHgXj3EcJ5mIyfdXa42ppZEzm80AmbO0UlNqjnOO9Xp9r7HhnJs2zm9LUU6TKafkFY7PQQF+Tlk3Bdwu66XSxTD4KLELUUCd2WxGXdfTeq3CgHYz0GLsO4wep2TjEZS6fz5JPDNUNs0Po8dWDaOuobng+qDpXl3T7XZ8+OFTTDUjKtn87XpPpQP9GLjd7tkdemIIMi61eKyZLIEL6Zg6Mz0vOb5Ym+xDQYVzNcYZIhofE90wohnRynB9M6L9lsMwcPbwEcksce2KqNX0DGldZISJFCANHXHoGQ4daQgYA/NmRmNbMTLW0mAmCbCqiMIwRZJiiXJ9QpZz13XNYgHdfocfhmkOdM5NwExhzcCREVrGUpHveu8ngFBrLXXTMEySp8K4sdZODYoiMT1l4xyDWQL7/X4aHwUgLJHuKaWJLV3m8Xc59ck6JyoKlXCVpakELI9GWIR3t7e8fP6Cfn/g8fvvs76cS4BCbvAoxAxdm282C8pzOH3WCZONdATJSu3R9z2//Yff8uk//Y6PP/qYX/zlz4k1HKogCZVBfE4SkmSa8h5O6iCp9VQmCwTlGAKoMXEbNA9nS0zTsAgH3n84I6Vz3rzZkXygtorlrCb5nlorLtZLjAqYSuEqS7ua41YVF0/eI80qvFUCojtLMk5M6ZMmKcWbmzcMYaAfO/bdjsePH/HTn/2Yi6s1KY5Uk6m1lqYtFco4VHREVWGqOcrV6DGgQyRZR7WYoXTCd4Gzqzndvse2DR8/ueSr5284W6+wNlLXAeVvqZxhVln8fs/LV6+IWjFfrFnMZmJ2nMBpOzFeh3Fg7HuUMaKOMU7AJ2UwruLibMWjizMOX3wtjRhrwRiC9kSjICqiAu0s1kfw0uzw3qPEm0OeI2Rt00oTgqdpq7xu5QiRpAhjbqaWejSlyWvsm+DL0b7lP/Yo8+N/MlDjQ0KnY7xXeaOQF5njhsZMSGIqX+ZkcYgxSuReFEmLvF4du2Xk1CeEdWOUQac0LfwFAfNBumgKM1FkItLF7Q5RdOOIgbBCNlcleSoliQxVVqOSwhlHSlEQM8Tgcwzx2P3NlCXyeShUvmH5e6fMtsnnFsr1SaC1PXr6qMyk8sU/BqpMjz6MgHEkb1hYGFJPHEa89zSqwprIk4dz/v5vXmPmA7ppGaKnmVl+8METrq+vp0hEZxRRRepaOiZVXuAP48jrO9FWK23xw0D/5iXNuOPsrKH3itc+sVeWtrWk0HO1uuC98yUGScQZxsA49Cgibe3QBFTy1M5hdcIZ+awxeCI91giYV4pgHwNvtrccRs18teDs0SM+ePwhRjtub+8IIdD3PQqFMxKpJn47UlieXVxwtj7n8uqSw2HHs6+e8dUXX6K0eB2dUtCPg790JyouLi4xxtI0LSGMOGcncEgkOWYyAnNWkGuVEj68u0CNvwss5gvOzyp2m70YaXnP4U4K0PlcJGKzpmX0I4mU4/6E5rtczekH6T43TUOKkW6/JwwjY9fLZO8jWiVca5hfLfDKo8fIMI4CjHYdtda4xjLuE05XzGZz9nc7YaEIbw0fYt5EjTI5x8RMV/TJMy7h/OoMbRO1dTTLmvXDBX1/kCSZjaJ/PqKjJnjxNKnqFmsdbd3ih5Hx0KGT4nx9js/zh3KGvt/T73d0ceDXn/wDfX8gxAGlE8kLTVtn6ZLMv7LJKPNcjOJxpcXABSHlyqbNWEnEGr2kymgjEz8poK34WfkUMenoI+CynGn0vTwz+rhxVSoSY48xFd04oIIiZkNyrRJaB4buQNCaziuejz3/R/otP+keE8ZbFo1jXa348z//M1zt+PL5M3771ZcYq/jv/pv/ltvbW/76r/8a3/Uszi8Y+p5+v8tmo2HyGQkxiLGatoDOBaklJI+uDIt2wdMPPmTr93z+4ivmixm1lVQJY/QE+EQfhcaeSvFuCcDtbsdsOWe+aOj7O549+y2LdobTjtq2udgs3eUstcpJQKZssPO88q4espgfPVeKJ1AxDJ5+rqAk+Eysm3udmDgxNr9xpELZzq4refwqEEnfCWoT09s03d/fVf02sEajMEoiUq0WE1uVgTc5pftA+bdRgU+/470OZ54rIlnbn+sCm9dwYaiCjhFnFMkpTFSMHryWlCcJP8hMnfF+RLRSAjSgFFFpYkJADaOoK4OrFGfrOW2lWNQ1JnvckALeD9T1gpRkXSn1gnNl7pC4ZmsEEHVGi+koUFdukjjJ/RKpqDBGLSEkrAksZjU+RnaHLjdrPCkGmko2ayqOcpO15eLiks1mgzEVVdVK+mU6dvZDiBwOHQlFU7U4UwmgqhSVc8xnM1brGY8fXvH4cs35vKLWEeLI0O2JB+nE63hk1ujMIjEmd/NDgOAZxpQjyTWuclPd964eh6GXJ0NLQe8zQ1F7M/kbSY1nsm+WgDDz+Zy6rk9AZ0n00doQ0iigdD4SYijtgydkFoMfxmP9XK5pbiIV/5kCAhXfxOCFuU6pLZUiZmCgbPI3mw0Abeu4OF9z8d45j9475/xsIWMOT0wjMfpprBI1KooXyxgU1hgOhy2qcWz3ETc/p1bwxWf/xJvuM+bn5ywWS7bbAzfbnutnNxw8bPY9fgzEpFnO5swS7A8dGmEo+HCUWiuVY+lNTvQLAW10lrkk5vOWPsuZTWXY7UfAsRlHkvcsHzylPXvMbL3EJEVr5F7YShGNJSiF1gnGhO8Gus0N9Bt07FG6IipNyowfq7RIC8OIqxy2rvHdnhQ8MQYwFcmANZarywu0a/nqq2d83R8I+f4VsKU0mMuYL0DIqVRpDAEfcvxvSnTjgAlBEmYyKFfmygLunCaHlWZlSkVKJaNM1khpFpe5tD7xmCpyqtLsKB5L7+pRxoixEniQslxv3N7x6s0bXnz9ArTm4x9+zGK5xKiY9xlHKS0gsnlKyuEpq7OwpTNjNYkEzyot4J1KpDGSdj2f/8Ov+fS3v+HHP/0xf/qLn5NsIpnCBIVprY156c0BE4V5EZOErcSU6P1IGgd6FXjVwZlb0toKZQ+s1zXOnrGeO+7uNiitaJsaIizOZ8yXs8xA0xjnmK/PWFw+ILganENXWdUSFSlZkqoZouLN7paX13c07ZyLqytmiwU/+9mfcPXeA0ISeXtjlJAKQID4JMzwZBy6akljQgfARaJyMMzQZonWCVuJn+Xi8oxqUPykXeCMx2rD2dmKqhacQMIs9igSi8WCpDWzq3Pc2ZLkDK2tYPB4ZYgMpHFAx+zvSiSqiA0epVtIDYv1Jct5wwcPV3x5t0MpS4/Bo4hafGom5rJWRE1mycgY0VqY28Y4GQchsdt1oA2zucv7lgjJMPZe9vAUFnoep1O1kmsYGWD5GSzj7ftGekJlRZXMRxarHPp74JjvT32aOpuSDR+DLBxK2lJyckgHNQzjBOZYpSazP51fUzxqSIkU4gTOyGCPGCUgDEoxhojOJp5yYeTChyATHTBpoiMQfMrmnoW2RvaWUaDV1OXa3N3JpiGnrMSYiFoKomiNpEWcsHgKaq3VkSYtcd/C/iieAynHklLMOdP9uySAQGQIAyid5SUjBkvQmkNIDJs9KxeYW5FgJQXjcOB8Ybmcw5s3X9K7BVGPHLY7KmdZLpbcbnYc9ntC8tPgdFVFVTm6oWeeGjyK0Stubl6hxj3V4Y4nq4YqeLb7kTfbPbsE6/WCj58+4mrVUFsZjl0/MPrAbrNDpchyVtNUDmcN3o+Zag4hSMpNIHE4HDh0kRQ1u33Htjf41HL16CF6tWZxfsnV1RWvX72ZOlbFUM9lil9A4X2Y0heWyyU/+tEPefHiGT/46AM++eTX3G12965zkdhobahroZzPZjOapslF0EjXiZng4bAHkmwGY5QOqrUMQ0dVOdq6Aervezz+WY/zxcWkrd/v9lOH0FUNh8OB7d0WV9m8kAjyr5UmqSiduMNOgLxumOQwi8WSr7/+WmJarSESUTpQVZa2qukx7F/vSUZjnGV3c4fqIsuHF1A7Xj57yYOrK9Ig+k5tDNpaIom2bTD2qP0nJkxtWVzNUA782LN5dkdMBlUvuLi85OAj268OHJ71pNHTzmtqY9nv9igUw3CHDonaOSmKlXS9Zs2MPkbevH7NZ59+xmF3y/Xra5q65tBtkRQZhdYWWbyFAi6gnzlh4YmEq8joIJDyPKVyskzZYsbk82IdiEE2ZKBE4opFOi0BlcprJLlOKyZZSRx7ogNXGbrDQa5jDCgl45QU6HY32LlipOX5i1cYHfmXv/wRFQPzukFZAY0PfYe1jouzcy5WKy5WK84zDfvq6iqbkoJSUhCpvBQNQ4+PI/v9nuvra3a7nZib3t5yt91y/fqa995/yGa/4csXX4k5YTZILodsQJw8U8rltLaKswcPePjkMZ9/8RnPnn2OUp7nzz6FpDhfX/D44aOJRVe6zNZYdHRYI+aTpyyGd/VQ3AddJiBQpQmskZ+XAvLbXl/M9fkOidAJQpJZuakMu7eoNSk74b0N1vzHMG2m16YERgppl32jjt/nmyDQt4FCpYAuQGQqTZkMoBTmjDUaI3Z0WWacIzQ1WJ2/vilMgwjaCmMrRlRK9z5fKSXpH0ojMQSKFAPOGpazhov1glltOF82zF3Nqp1jlULZwo4jg9xkf5NS+Ompmz0Zx+YNU5GSihzJTTLbyrncyRVQz2lF1AlnMjAVxeDXakX0I8RA7SzD6PF5TMexnGQAACAASURBVCyXK/a7A32UDb9IqyNhzF4axjFvW0wlhrhGKyprWMxnLOYzri4XPHxwwaqtcQaMChAidTvPRpiJoety+oYi+dLNl01qihE/9PSjFP0hirmjNoqS2vkuHpNPTGZ2FqZLyADI28k8pR7cbrccDofJrLXK3kXGGJyxk3dIaWAqpSaGbmlYlq69MYbFYjHVPCozdwpDpxjAFhah93JPT+UbheXTtq3UkypwfXfL+fsjbW2xJq9MKRDjSDry/2VNimJXkJTJseyS1rkfB9aXD1CzlufPv+av/+bvsTPxJ3O2wkfwEcak8BGqqmY+X0m66O0d4zhK7G1U0zlDrvW9R0XZJNWVYxh6dsOOGDz9IAwtaw1bEkbBi5cDceh5/9FD/ujJT2jPHqAsst74hK5kvkhKUl9SigK2BE+KA3HYohkxlUMpcXCsczJcDJ7gs0TLHhvQaIMy5BqyRifLYRAG2TCMuZGhJ9naqVdQAd0KI817T0zC9jfpROrU9xhtqPL8cCqPLR5GRaZU5pGUIjGOUgdANgU+JhaVcVDYXt577u7uJrlemQffZW+3AlillPBBvKO6w4Hbr1+z3e1YLZc8+uAxpqqICipz3xNqIgUoUxyeOF1b5b3J17msaVrmeITZe3dzx+f/+Bu+/vQLfv6Ln/GTn/8UnxJBNqHoVDyM5FDluYqJQG7sqWPUspARxNJDATuf6JuKZTMjjQdmjSOlHcTIYlmDdUQfaOpG2CIq6+6Top4vmJ9f0q7OMMsZqpam1uhBq5qkGoag2XQ9m13Hft+zXM55+uGHdF3Hs+fP0cYym1cs5xXSAotoJWtrCdoRv0ML2pA8jDGgtcK1c8L+wLDradqWbhgwVcus0dSzyI/MB2y3OyqnUYzZ980Sfd579QMXDx/RXJxhVgu0reX+JHn2UhzxvUhPtamme6ezoT6qwlVzFss5fXfHFTPCLqsgst1IChFljBAjUGiJMhXvRFlyxWfPCFCnYsKPgaHzzOYaraJciyhMOJUTTsvdnoqsVMIbZO8UKeQOjq+VEfDtgz1JM81oaRYbbbH6u9luvyeeO0yeLBJ9qWVgBrIEQOWY14TJjtcxMzBiNuHROjvMey9MBS3vgtbiMUL57uL2LAM85a6XxFuWNqTSGcy5d82UxIVngAeVoxCVoWkb3ry5ZrvbU1fVVFiFmEAlqrqRRczkh0GVm1L0a0keaKOJKKH2k4jRHxuaHNFvn6VRYYyyucuobnbiwUeJDB1TRJPwUcxzrUosas0+f652irv9BtXvWTdLfvWn7/E//5+fsr9puNnB7bbn+s0Nu92G0Y9yLb0Mml0/srAth0E28a5S3Lx+TegGuv0dV3PHk/MZaxeJ3Z7+0GEIPFgtWCwdsypyvm6pnMOPA313IPpRfDV8wDnNer2impB8YTpYV7HfbxmiAFbOWYbOc7ft+OrNnssPfwLG8uTJB5w/eEhKhaoZchdCgKFh7Kkqh49ihjibNTRNxYc/eMrjx4/4sz/7BS9evOLjjz/i5ctrUmEd6KNhmhQ8NW3bslwumc/nGKN58eIF1lp2ux2nCVAxRsahp2lq1kuJw6ucFZPWd/R48+bNVBysViu6ruPs7Izbuz37/TZvhgzDIKyglE2yYoj4QSJtrTPE0XPz5pqLiwv2+71seBTESiYsjWbsA34nE5NRFetzAYn24y3ee14Nb2RvMXquX75muVhgdYkd9VjnRLJgxdRWa4VnxLkK6wxGR26+fk1P4o//xb+g3+6oq4qLyzO+eP0lB9/RHTY8+ZM/4fWraw67LZu7W7Q2rBdLmmrGru/oh04kPrMZL+8k3eTzzz6jriT6thjtdf3IZGabi+Vx9NR1c89fwOSujjFWovx09qgxQpdMKUcJejHJtkbjfSIGodIaLR42ZRFHBQnyicJcSUahMiCh80TohwGcoXJWNkAh+8AYMCoRwsAw3GIJ+OB4+TLy1bML/vQnPyAMd7jaMIxRnssxTWamMUYuLy8n6n8MgRBGvBeQpXT3YxLz5BAC5+fnXF5eToai4zigjOF2c8d/+a/+FQ8fPZJr14mpc59p3EPf0/Udwzgw7Hv6rmfMmv3dbif3oXK8fvUmsxoNm5s9v/30n6QmKY0ppbDGUaU634ciuRGq+//Af//P9vx933HKjplYI3ldOoIz99kl3/bvtxk23/VZ5TgFRe6zC4XSe3q8DaD8IaBNaV4A9wxny9z7fedw7zMU94qaAmTFDFyUJoy8r4A6QXaV0gkFrFWgAskHAaG1ISYpm1NUk0Tp1MxYKS2dddQEkiznc86Xcy4XC1aLmtrC+WKBClmKoD3GOEzeuMUozDFtLK46Ruei5XkvG/+qzn4UdUPIkocp0eeEcVJXFf1wwGionWHRVmyM4hA9zijGUZpaPpuzhzBO4GrT1vJdtWaIkaHvsa7CNXIuTdvgrKFyBms0Te04Wy+5OD9jNa9YzWfMG4dTEZ0CYUykccQ6S1M3kr7h78dZn8oYjTEYH1EqkaJHI/449h2WPpVmzqk58DiOxHRMzClAcQGLh2EQeZE6mk52XUeXvWtK8EBhLxTpRBkbpc4obIfCyCjStqqqJtZDAYbqHMtcGjCn3koTIHj63EVFM5sJKzJ4xtxES8GTUqD4JgqzfCTEEYiTTK1yFYfDAW0s9XJJNWs4e+8x7Rcv+YfffEkfjq91eTwtFgtqW3OzueP69o5h9CQUwyCMBqVO7AuGMc/nlr4TScFyPiMlje89h33PtuskKjfK5jHGyLxy/PjyCjef0ywXRKPRtcVnABGlcgc8oQmk5EmhJ4wHiF4k+blZrDLbzHtP8gE9jmKk3zisE4AlIUCSspJsCBLuMQweHyIqA1uToTnflBOdek4MWQ5VjH9LulNKR1PrYmxdjKmLtxVwMq/e90Bq2zY3jxPjeJRE7ff7aUw9ePAApcR36tQj8F0+yvctLKVhHKnbhrPLC5brFUkrDkMP3mcp5jE967jWpnvv902m6hG8N8YQjEb7SH+94YtPfs2XX33Jn/zFz/nRT39EiWgxxhJ1Hs95w3/K5J/sOYKkeBITMeQI9Qw6JKUJynJIidQuifstWhtmixXW1owpQd5nj/1AQtHOFgwhop3DnZ2jz84w8yW2kZSkGCLJLkj2HE+Dj5aE4rCXBMH3Hwmw9Otf/0ZSj9E8ev8BtVMkWwlZVcl6KB6CucFIlhwbQ2XyOuOgWa3xfYcfe+q2JaSIqyt0iKztinpRY7TK7EwBnLv9gXEbmF9cYM/OqM/OUE3DMEqz0BmNSrIHG/oO42oqbUjKII1UReE+WFexXJ6xv31F6xPrxuK3B/TYocNI4b0c2VTHe1Tmr1LDJwREE7DG50RUIIkcdOz606H0//lxKmk9lSd+2/G9QE1U0z3MLIcEMeUbnqR7E1OmxguCqeMRgUokdMyIhhawgyQDWGU5BEpQpZIMctSOx+mhE6Q8F3Eyoiaz4kRCxTQVeDZ3upWCwUvSSUoRnxJaZcQVA1H0cEoJFVPkTIqqEvCg64rxVi7+gmywVMxdQ3XsVBZgx0+ULTLilv1sYsTY7JyN/N4HIGmca3FWg07s/BYfNWPsaOzIZTunMoar+cjPPtD84+cbhusRnzTj9msYb3lwNsMH6A4HYkrZHyQQ+z2q1nS3BxZNRVMrlmdnnNWJeeyYO9hsDzgLZ8YxXzoePlyxmFmcks00MUIMdIc9q+UCP/Ysli1Kg6scQx/YbfcYJQ78Slt0kkV66EfGMYFpsK3Ga8v77z/m7OyCpqo4dMdo7Bgj2+0md48G6rqisRWucjRtzUcf/4Dlck5VWX784x/yt3/7d/zgow/5+//wj9zdbRiGYVosS8fAGM1iMWe5XBBCYLc7TDTTok8tRZsUSg6jpIvbNg5iZBje7QhgrfWkUT47O8s65hGlEbPdPPZ3uz2uahi6AecsVhlqV0N+nmOM3FzfEFXCNZWAnqqX66EsYz/y5tkbhhg4v7gAramqFo0h9Qk/yKKqYsKnkZubm6lwUAqs1RiriElh2jrrReUevHdxxfWL5xxu9lw+fcLjR0/4q//xf6J7veVPf3mF9glS4LC9ZjhsuDxf8OrFC2IMVNlj5c3tjXTxIEdgJ4IXevkn//gJf/TRU16/fk3XdSJjQov/hRZwwhhwubP1tq+ASOh0TmDRWYIZGIcxR+CazDSUSVbnbnReIigbZJXZNgWcNibLImMQbyqjsEkxhsSYzQCNSowpEGPAj9mrIgwMvRd6fTVjd4j83d//Ex9/+IS//POfMaZAP45sNlv8GLGtzeN/N40ZKVA0MapJSlSO4n9x2k0uGxUApaUI2W42nJ+fy2KjFG3d0NYNcb7Ir1MEIpV2Qn/Xmm3f88lvfs3d5pb1as2f/Yufy3MbDURFNxxy57KfTDaDDzCOGVgKAvhrdY/B864d3wa0KKVQhG/8/u2/Kf+G07Xw2+VKfygjpnjCnB5/iPzpuz6vFLhlk3HKbvp90iqRRutv/Oz078tzp7XOa3b2d8rNFDI7KSaRBBpEUz4GkVint0Cj0+uts7QqhsBiueDi7JzzVcPVekFTKTHn1rmeUBFrHc5VuUYwk7xPGaHLowQkquxxsxZjpJ0vmKj8xqIVtG07bdRFJgkkaGpHP/Qsaoe+WKEyWN71A2EchF2bo+uFcl0YUZJAJVHdemKcFTNSazSzSlHXFbWzrJYLVssFi/mMs2VLW1msQtjMSpGMMI1DGNFGU9cVKdctSR3X6kmulhJNVRFi4tCL7FPkX+9u1/5U1irx2+Jfp2LK6X9q+n15ffmbMgcWbxI4el0Ur5mSElZ8S8p7FOAFmICeAticAkflc8s6VDagp55Ik2fiyfysrKWpZywWK5RWeD8QgkNnjr0waiIhjng/Mo49/XCAVDYxjq4bAYNxImGbn13x81/+BZte8ZvPv+QwSgqZeJlpKgWH3YbrNzf0w0iIwsInd5nLcbqmxuDRSVj6++iZtw1+9ASEETOcSBattXz4wx/y5KM/op6vwDpcXUsD1zmJRHbCBNAxkkLP2G8Zuy3DYYvxvRiNppKhdcJiTElSX4LMH7aq0MMgqXCZLZeUJA9FxB9TGYvLfnaF6VRq2OIJc+rHI6a+Ilkpvy/zYwiBaO4DhiJlEtCmeMuUzwnB5xri6IVT2DjWunvR7zo3yQqQDkzj8T9l3v//6yjnf3quTdNg6gZtxHuxrhrqlPDBCwiW0/vK9ZMm0BHIhGNC27c1DpSSunS/2fPp33/C8y++4Je/+nOe/PHHoiiJKTMxydCFPE1kdtT99U6TYsCPowAtIdI2DXWeDpO2jMqyS5HQrlHNHb7vqeqapqrQwZOyF2JdOVQS9qdrZtj5nObqEdX5GaYVw9whRLRuie6M5NaoekXXJ756/pI3dxvWqwuMsVxf3zAMA48fP+Hl1y9RKrGcVfjKSB2eCl9VqlYQxrg2jpSk9opJo5RB1w2zi0u6uxs0kRh6AgHb1pi2IdUyN5pUs1is8OOIV4azxYp6uSLNFgRb42yNTp4xBOIwgAE/DhPraYwJgyGkIx6gUGhbcXZ2yfXXn1P3nnWtCNExDIZKwxjyGqmOthgp4w+SehpEbqlKTZYyozCzpCIShuI9cRiFmZtxiqSOGOC9xtS31GGna+R3HUox1Tn/rzxqjvrxbKyai/KYZPMkunvNOMqCo4CoCpMmI2FI8pNzdroJ5T3LJFfYK7Kps9NrtNaknCilVJ5AU574k86dAiYtoEqyEJVORswUUlBTlJoxmc0TIv04ANmXQriix4z1eOwehsyUKSdefGridNNyzZULr0SJ7yZP+JEQjg7uKemc6GEIYyT6xKgTxtQCZkWNU1G0d13PfrPhQQPVB3MenRl2sWY99/zko0f0qeLm7kAKcBgG0VqOnnlTs5hZSD0mDlRhBL9F+x2tiTlm1LNuZ1SVY7ZoWbeWWVMTx5H9sCEMA4f9lhQD81lLGDVNKxv829tbFvM5WluGwWNMlWl4gRgVfT9w6BLXt3uasyvq5Yp6MadtW5yxvNrdZvQ/stvtxKG+62TwGsVqvaRuKpbLOR9++JRHjx5ijGa+mPGLX/yczz97xtOnT/jkk19PZm3HFJJEO2tZLOcsFnO2260UJ36AAxMldDLqU4oURyIJ4xoW84b+cCA1767x2qn/03K55HA4CBjRCzNI5w3FdrsjRZXZcJpx8BitGXIKhdOGQDHplLQxtEL1An75fuSwPeDqmqZ2qNbibaS19QSyNtYhcp4gPkWZXiqdb0MInr5PHAu2IJNwH+ivD2xfbKhjzdX8PXbPN4y3A2/evOb5/BnjVgy/ku85W7bsDwMSGajQVrM97On6bor/ns1mbHc7yB2rv/qrv2K1aNntdlIcJ0lGk/W3JCw0x254LqbKRjRGMSi1Tlg15PGlFXmhEjBTDExlDnJaY7TJgIzMZzFGUgZrimm4MrmgjQGF+F4wBkIMhHHAqYTWUXwOos7eIyJvQO0ldjVGNlv4d3/177l8ULFerYkexrFn9D0pzTkcDhOlvxR/WuusGsnfJ29CReccp+SI06Sl/W4n4yNviCVRLJK8dPkqV+GDnxK6dsOeOESRyFjHITML6qpicxcYfeCHf/RjiWlXVcbz5bqVTYrWCqWHLNVS+Tzf3Y0gfBNAmUAYdfSteVu69TZQ8/ukSd/GYPlOdg3fBGrefs33HafnUtbsAgYU4Fup4Rvv9/b5TL+frsfxDI+AZk7fKJuXkqtR5mkKqybllEkYfWAMsokMuZGTTt5v+g4wmQPO2hlP3n/MojIs5hVGJ1DCJut9h9UWFQJNPaOcqnxnmfd0BqiMtZldxwTCxBCpqzo3jDTWaYjh2GXPjYXgA8F7ZqamrSUoYFY3zJoGHyOffv5lln6JnHnwHquF/RbDSRSyVli5rFhrjvfFKFqXWMwbztdrZk3FbNZytloyq4S1p0hEPxLjseC0zpJihcsgNEnMzQvDo5jnxhgJKcnGwnmcGXKp/+5uBtfr9XTu5Rk8HA7E0RO8n5gMcHw+jDFTeldKaQJsChuz67opIQuYmK5HVphsvLuuuwe+HOvLo9FsAXvK+xZmQZnzJgbXW+dY6rBSC8UkXmMqy3JD8PgwMo4Dox/wYWAce4xy+Zkz1FXL6HoMin48UDU1j5885t/8V3Pm/9v/zmdffAnRM28rHj64ZL1ckJShbSru7jbs9h0+RkJu/sSQSDo3VlUgaWlkWJMwzkjK2nzGrG3ZHg5su57NZk/SitlswQdPn/KzP/kp67NLmmYm7EpjseR02SCJs9F7ghqJ3Zb93Q399gbCkGUM0pSwOTnIZKkQSuRm/TCg64gzWnwKIyhtsvxPAg1n8wU/+clP2dzecv36JdvNhiJ3KjX9qSdMSfoyxkyG0HDsmjdNI5LezLwqtUu5n8U78XTukvc1EzBewD15jZ3GVmFzlTFz6n/zhwL7/1xHjHFiok3panneV8jPmroWxrLWKCeqj/L8FMmZGw1VNgcvjM8hAzrHRsDxvuxf3vLrf/iEr7/6in/5n/2KH/z4I0YVCCFBHrMJJrYX3F9Xpv/Ispoo648qpvlR2GhJafqk2UTYG0lpHXqPMzIPV7UlaKitJQyBNIIPmlTXVGdn1BcPqBYLEgMx9IxBYdwMmjVUS4JxRAOzxZyoFXd3W+q64dWr11xcXPHll1/l8SAMTZB9rtC5M+Egs2rSxLAxCHhjCDqRrEU3LVUIhGEPKZCMBetQxjJrW0YvnjmVtZjRo+fC4DbNDL1YikeVjyTviT5iqsjYdXQHaTorBzEpAhqjnTRnEPNmhaFqFqzPH3AYEyYGRsQvq2laYifrVYyn9Y+ANz4GYcNH8YoVNCdO9aqKCZXtb303MHYDVd7Ty1FcN7/9eLv++X311elYPJUnftvxe6RPxwWiFFdKZ08DrTNQkw1jM91fTzcZZCBIge1DXpjymFB5IlTaHiMJ/UhMZUKRjlnpnIps6Wjgo8jdNTi5dGq6QTEmIjH7yGRULQmDIPhiEivU6hAT0Xs0YpKYRPgqD1xKon9VBZ1V04MYy3lkfZosomQ6mZ4W1ZTBHWdyxHdIJ4Wko/cjnoitDIM39J1i3Af6xjOrFDo6VpVlUSvO1/B6O5I+WDHqlq9e7UlXZ/Sd5zCMdMGTRs9qPmM43OCHDsKOx1dLUqxxyjD2HSlCO79Aa0dlLevVSqi+1rE9dIy+x/c93eHAcjajshblpCvctnOaykmxiEEpk4EwUAgI4H3k9nZLVBVtO+fhkw+4eviIqm5QkambVeieYpYHs1mLj4Fh6Fmt5vzyl3/Gz3/+M6rKZfmO5sd//GP++I9/xz/94+/45JNfy1jNsrmUEpeXl1xenjObtWgjMOjoB4a+5/bmbprYC33UWMN61VA5h8sdweQM77DyaTratp0WobZtqds6A506a5bvqOoGkj6yEBKQFPP5gpmzRCK99wwpiFFwXdHYGXH0dLse6yyrsxVD8piZoV41mGRwrWPe1HQ+4LSbFtmkFSFJFK1PA0UvXNcuj5OIUw0haF5//pKlmqNRfPXr5zz/7TPc3rBoFlx/cU2IiRQ183mLHw7sNltclr5s9ztSUhy6A1ppSaDqesauz53zyBeff8G//bf/Fp2jG0mlS2rR2uBsLYlD2Z/q1EdANiTHiNUEjEG0r85Z2eAEof5rXQy0hakjn+EyKS1NBXO5FjEFKQqtoXhvOGNQiIRg9IMsgilmOp+YsWsUKmbJqe1BKbZ7z7PnkX/3v/x7/s2//q/x/cDd9g6lPLudxKeesshEwhFIMWCMEyAslXksEgn3ipyyOSsb6Lquqaxj1rQi4RqFvYRN1K6ajC91ZUg+Mg4jXS/dTdEfy9y33+0ZvWcM4tNh9DitM0mL51hUwjK6vb2lrutpI1U2Re/y8Q1ZkzpKn74TzHnr777vfeG7i4E/FKj5LqDn7dedFqYFcCgdW2vdxE78/g6Smho6pz8TT580dau00miTC+ni06NKty97bSHPVG645bU4QYyEcKytTsFXJRcDawwfPH7MYjan0iLx9MGjLaQQKOkPZroPAsiUTXZuhRFTwmmN1tW9lKcYJdhA52ullcIoOxX5ZQNijaWPkRQEdLKtjPm2bkgffcg4DDx7+RqLSIzSMJDys4mFqmro+7GczsT8EZmNpa4cy5ljvVoxa2vmbUPbNCKFUgkVhWlgjCIkiYOXei57DTpLitJxjbn5VLx4JqPUcaSuK9ox0Ayeqhuo3+Fns6T0nHbv9/s9tbHM53PgCLj1fT8leRUZVPEOKZtz4N7G8tvkLOVzVAYHTtkYZbx0XTdtsAvQVlgYRfo0gWMn8pUCArVVw2KxZNbOOD87z6yfkZCCSKHGnnEcRPaUAZth7CXBJiVCiNR1w7hvMSqwGzx17XAKZu+d86//i7/g1ZundIeOQ7dntViwXC4x2vLRB4/ZHzq6YWR36Njt9lNd54PPYInUd03b0rQNs7ZluZhTWwtERh8YfBLfC1ezWJ8xmy+ZzxZUrpbaHINDUxkxDMXmTVfwjKHDH3aM3Z7+sCX1eyyehM2yJwF4tdE5kESOGMWCwGhpnIhtQk5z1RpnHOuzObP5iuda8eyrL9ntdvcklUUuN62R+d9lrDh1NJAuewKlFBZhViklaZVlnJTxU56vMs/GKHVeVVXTWJExoO+Nt/J3pxvBcp7vstF3AU9PpWSnqcCRxH63BzJzmWOiWKkHZI95ZFIUc+7TxkhZ97z33Nzc8PzvPuXlixf84j//FQ//6AkjwuJNmW0cVd6ipyNDs4Blp0BNzHW31lZ8WlJCayu1p4YRRdSOve95eTjQKgvG4pOiqSuSEUJANArlNH4MmMpRrdYsr66w8zOMq8VgOUJ0Dj2bk+oZytYMKXJ+dQmuwt05qqrh7PyC29u73Hiz1LX4TXWHjn5WsaxaOGHS5HzKLH0i180ZkCShbN7LzuekFGltJWA9GmMrktJoa3GVSEDV6KlasV3Q1pGqCt/1HDZ7VIxYYyTgZjgQxxG0QceImSB/PQEtOqfYuWZBvTjnfVtxc3fDPkDdDLSzBUn17PeHfJ+P7LkIwsZOmso6EinPHQGVZB4IIeAMqJQYDgeiP5FDcdpOOo6jSfp2Mq7+UEC0MNvLnuM/XfoU48QskYGeMgXPZbBEJjPxZLDZu0XlBcmfPCyglJ9YNqfvJxNX4FgIxjxJHYvC0sVjAkMS6JjPMU2ATdGgTcipyjc55u5TVMSoSIQpmnB6yHxA4fGmUE010Ucx6UNlJk0iJX1vkp4EixQGmQA5WhtyfMWUXuV9yC+V9CspLvPEaR3BR8TqrCEFTdADykbW8zlGjdKJMJqRjvfmge3hhlh7ujByHQe6fof1nhQS/XgDscf3dzy4WHF1taRtzlDK03cdQxeyh4YUp01doZFobYLH+IHd9pZZZVnOW3z2jsErxk70zzF6YUqpxGE8YHInIMZETIohJnAV73/4IR/96EfYZkUYAjop+q7n7vaO169e431g6MXUNjlLbRuWqxU/+emf8Bd/8ec8ef8hVktBq42hcYZf/eUv+OQ//D1/9b+u6A6d0GGtYbaYc3ZxzvpsjbWOuqrFTR3NOHpG3wsAqCUesqktDx+cMZ9p5nVDpTV+6In8P9S92ZMkV3be+bubLxGRW2VWFVAAGt0Am02KFJukFpIjzjwM5z+WjczmRTYvomxMI4kUm2Lv3WjsQC2ZGYsvd5uHc69HVAGNJiUbqeiwQlVlZUZ4RLjfe853viVIXOlrekQyPpWFxUrjrjV0vSOFxH43QA5cnPc0rmGeIs6uoNACm6bBak3IiXEaRN6XE51z+EmSsaKCvm8Rk8qZ4XCge9Byvd7w4os72pUkisyHAzkmXGfRSe7jySf8PKDLZ6KUwjrD7Gda1dC2lpAj1jha5VAd+ATjbmSlFZ3V3N1tQUGrJ966tnz37Q3DwzMuRjLsaQAAIABJREFU1x0ffPqCwwgvXjxl9p7zsyu00Uwh4HMka0HVRx/5j3/9NwUcUJAVfbeSKZaxdG1D07SEwnSrzKxlOta2xaizUHOTNHYxZVKu0d4KraBxmnVv6FpLVC2Jhv0QUDETZ3GSl9CAsAA/uXhgqZxQRFKc5NokkqOX51aZkDxKFZ+rrMkxizljWQcPw8gvfv45v/j2Jzy6uWQcRvwcaUwi6YQ2RpzlY2Ied8Q4ERD/DbKArQpDRjTZUtyJ5j+W1IrAjNMOa1u0EoPpTGJMA3MWNbes+b6YqoNVllW3wpqO7TgSA8QgsrGHDx/R2EakKkmeK5SEPV2lWUqTMDTOYY2wfuZ5ZhheYxRVFb2xOjGhE5zmKxuyUuKnUgsCKSzkZ/Ir3/e1T/VrQJulgMjFwLh+zwnbQZ0CON9QW+T6v8KWVSphjaJxhq5zOKcR4motUgTwOxlFHV9roae8yrCpp6CL4bKmDvoUWZlSJB2/rxbQMYmHi6n7eZ0EnfQj6cQ4kqx5/OghDy7W9E7RWUvfadomoVUi+BGFxjQNbdOijcU2Da7tME6kFyBJds6ZEg8s3hMgMuqmADsAxlrxb9EZlTRZKzEJzgmrNIrIPEVyCvIalMJmuLlc8dvvv4M2mmd3e+ak6Var4uHWkKJEmG/W1Xci0/ct63UvaRcp8uByw6ZvaZtGAgCMkVK8mH+LMbHIYrIUXGSlsY1M4W0xVhdPrSADuRAIwYvsOyZIDpPlWli1lsaWZI3X9BiGYQFNKujU9z2rri+AoGYOgaFEm2+a1QKunE786/11ZP4dC+7TqO3qX6M1rFYtwyBy6qbpXororsyHylZSKhd57FESI6B5IASpc+seFYvf2P6wk4THGNE5S7JROjUhTkegx0d0iEQmjDFMs0hpXTsT5oMMZKOmaRum/UDf9zx++AhAPB6BrmsZpgm3gnU+R5fhByCs1XRkRqYU2e33aGPoV+s6u2cYDgTvYZrRKFZGIre7fiXAtlZQBiyL71TdQwsjXWPQYcAP94ThKdrfAhGjG4xpMBlMiSSXUIViJk4i+pHoJ7Lp0doRcoachMmvtJiVl+ET2hGVISmpm/xcfH6sWQzCK+OqpnJpLddTOmF+1OsjFIClXpcVbDm9tk6BFudEPjcMw8K20trgnFmkE9XUum1bLi7OCqM5FrbJ68t0AyBnGueWXsuUdOCYj+z3l/ZOqpF9HYCUgbwy5dph6fVQCR0iSVmCsvgx8OKTz3n20UcMu3v+xZ/9MY+/9UQYabkk/im1gHqyVxXTYvJyX4HsqRnQNZTbGJRVS9+XyISsQFt0gt3B85c//gj93kMed5fEwy26T+iuQWdDTIHDvBPWZt/RX99gz26IbYdylpQ7lDMY26FW15jVFR5N37egAl3fErImMdA0jrOzM+7v77m6uqLrOpyxkmikLBEtQFSWVOK6wxqMhPMkTc4G7XoyLTFOZFsGGRvIfoLgUbUnthbjWrByHzNHpnFEZyRNDYd10LQT02FgDIkUPPMwiI9kb8kYAVhVS1Su3K9a6lQUTbPm4vyanW1Q7YpROb7c7mmcIiQxmvY+EXwizYnoI3MOuKYBcvFn1mAsOSScEiuCRCKjUT4TtwPKJ1JOxALSGartyfEeffny/eb766V/14KdCIhMGfb+NzJqlDpS7JxzxxsBQdpCiGgttPm8ABlpAWMqOnxyqmXTkKnXaXZ9jaAT+r0AQvVrtbnUy1QsoZBFyVlbDNTK9BmWyU/MNWkKtDKkoj+rZCjKZmqMuITnnIlZNnFffScK0HLUD1dUVX7lHAvlLS2bMxhyqhvucTqa8hGeWzx4AKWN+FKQsFrAiKw7LA2HaSJMIysHq86yXm+4vu7preOwG2k/e86nXzwnbreoOdJozTDMNG2P9yMmRc7WPd2q5/xihdaZeZzwk2jkYwwi34h5kXgN+y3zMOCUYrNZs+qkiJiniU2/Yh5nXjx7wWrV0/VNAaVS+TwMafDEnFHOcf34MVcPH3Fx+YDDlAjJMxzGxTU/eE9KEoV4dXXFdnvLenNedP2avu+IcYJscbZElSrNw5sL/vD7v8f/8+9/wIvb5/jgMdrw6NEjHr3xmM2qRynFVLTg8zTTtS0xeiYiIURc07DqW6bDlot2w8Ya4jyRw8zaapx6fVOfLi8fSLSk1UzjQNMK48hHmaR0vaNreynofUTbyPm6P/EZSIQ0CXWYhHMWpWQqaHwmhYTTjr6TxW32notmTXwx8uXwMbu7A2EK+FY8kST9S0x2Y4w0tiXGRNO0ODQhRuYwY52mXXWoRhMmj08z2imyyzBHmt7QaINXE7qzMGeuVh3vvnHB9957yPnlm/zo558zhb/l6bOnzH6PdQ1ZJXajTPISkZgC03xgDjP7cZC0BJWX9aIrxsHiSSVNfy2aT9cupeTcTxNBUojSICqwRmGAvlE0LvPmdcfZumWk4/keQtbsDx7rWogZ7ydygpRTiXGu1adE7Gol1HFV5B0S0SrbvZxjkU7hSN6TlEdpS4ya+/3Mf/nBD/mDf/I9xsFDhBhmQrpl8oMUhiqT80gyM9lAxJCTliIuG1AaX4wfj4zAjNIGZVaMc5CkAA3juMXaTEyenD3zHNG6wzlb6PWRlJV4GaHxfg/MKES7vV6t5D3QFIaElb1BOmuZbKeEMQIYigeTGDK/zowatWRWL4t9+fNxLzhleZTybvmvHunvOZmpx9dNDV89Xv6SWkCSbzpyLUUr2JRFr601hd2mj12UAnJlsZ7ul6cF9pGdc9Ryl/20AAaShiCPF5UArC9JsJB7hKyp2JZHhgDoOiwSFoLRaqlNLi/OuTjriH4vxbPpmGcZthit0TiJq3cZs3K0fY+1Dc41uKb8co5xnBdQKhUz7pQS1jWgArowka115KwxSlg7Td3DYhJgJjkg4Sfx7tMlFaxrDG+9+VCajl99yvYwg7agz5hOzEirV4rWhs1mTde3KAUxzjROs+o6Vqte6PclSUvlQnfPZVaZktRUuTB9VQFolEI7J0BYCqRUDDydYZ4nshIJugW6xjE14jlyGF9fELXKkqrham22YhYZ60JFbxvOzs5otOH+/n65Vuu0v15fwJJUd+q5V2UpVSKolHiNWXuUXEjjfaxfT6Wm4o+kl+YejjHXlcHRtu3yPM5ZHj26Yb3uCxiXcdahtDSRdqmdyr0XEyYrxnnENq0wN9oO0zbsD3ckxPMpJkVWFm17TGHlKsmtJ2OYk+d2e0/f98RREjMFtHLCmI8iTSBnRh/IcyRmYd67piHimGJkTgbtLFkbME7MuY0pvLnKohd2e430DmHCmVZ8nPxAGLdM++fYsENlGbwoLDprVMrFkLSkXsVENsJ2TX4mOksqjIKckjT5ha6XFbRdz9XNDTeP3mAcDqRhoOmU7MVaLZ/TqeTo1DclhCAgXy7MESPM1Lqn1WulAn3VdPz4uYHWeQkDAF7yPaprXQXGJOk0czjsCxtMs9/vXunHXq/DFEP2RXJY/lw9zUTdcLI/njCgXzL2LftBzrFsu7J3iRzdMO1nPv7lx3zxwQdsGsef/+9/TrfuCdELQKNNna0sUc+1R62sNpmlvMSvEHuBE/+1mMPC8JFUXE2YZj7/6FN+9dGX/P777/Cw67D+QNc1pNaRvIaQcE1HyIr++ormwTW5P0N1PSEntDrDRsCuyO0lulmzcitwhqBkyHV7/4IPP/iQb739hGE48PDhzVLfDoc9jckcholN32A12CITlDjqpbmtDv/k0o+hBIwVn55U+vKMsDFKJLe2GKdBO1Tb0jU9RomqZvKJeT4wTxOZUKwFJvG5VAjzVLdg15h2g7EtWksdLjewyKFW/ZlYofiRy5h4cxp5+vw5iiw2BTmQvTDLcvXJTbKGqGLLk4BxnmmLVUHWUrM5NHmcxV9XKRKCAZxwMpCP/6S+yy8zj+v1egq8nn4djqEJxmgqq/7XHb/xrj3dfGphIiBNWE5WJgY1Ii0ttOhK/TsFK07pY6eFWn38Sik9pQievsijyecxvlArJeZ+tdpTQBb6VJ2GqwL2VMqTOnkTv27KWely9QY9/b56s55OTk5/Vsmq8Eoh+nLRXH/+FPxJWW7osfhehGCZXcuZs9gcuHANZ/2GtJrYrC1xmFFpYtjesmsmVEyMQaP9WFgBE+t1S9+2i1Fe4wxp9mQj6KRRELIXb5ko6TXOOTa9NPV1M6kGsNM0sVp1ZTIgn8M8jgWw0QxjwDYdw90dyVjObx7y5ltvS6EbA8kEJj+XOjHhGsuzp885O9vgvefigdBdN5sNb7/zJg9vLuk7V96b42fSdg1/8P3f5/f/6V/zV3/zn0kI++Hy8pLr62vWq57hcODDX/2KaRjJ0RP9xGa9oYmJ7W5P8AHvAw8enHPRddgUUUGMrlOIuPT6MmqaxtA0hv1+R9Na2q5lnke68zP57McZoyy7+x1d16PCwOXV5mQaI6/NkkQvrTXGaIZhj3KKbi0gT9s25JxpkhROkcz9/T0aWK8N67XB2p6261BaTOwUFDZKs0wgpjnRrc9ouoaYIoMJMHpUVhgN0yHANLNZiQQtK2hTxg2Km0PHu++8xfvf/Tbry0fsQuKtT6740U//jvW6Bd1yOOyJGRIy/R38gbvtM5nWKfma1lqKziLfqbKxeZ6LSW0FjlMBnAUYkXUMKsAbggctxbSzinUDZy1cnjkeX1purs/ZxQ5jI9O8Y7efWBoi6uRHNqlsjKQ6FWqnEuqO0GaVsL6MlXU1pzr5VkWKqQl+xjiFsoYxz3zyxRdcXV6QphmlIsZ42vYAamAOI8nBPrzANZr+YsM8lRSZADEkNuszbpz4OmmtRbKUEs6tCLMYBsc58eJ2Ypz2pCGilUEbjbUN1roST66BUJqWmXlJGpkwhYVktSbMs0hdVDVurjVCpX1blIIvvvhiKVBrIfq6H1+RPv267+PX70P/Pc/96n4LvFIwKJY4hW94vmUfK9dp/Xud4gp75Mh3+U1z21wAgvq6X/p6maLL+QNKktUqUHPqESCDpCPT1hqLKkWxSoAWEKV6DKw2HVcXLdb4IuuDkKYCCCrmeaSxIhmKKTMMI13fL1K+aiLaNCLBq4k8UCRW8BK74mhmaUt8qNQK1jgwiJF48StJMRZ2slD1jRYA7PGjGxKGX338OT5ltDXErlmGZyLlkUSXvu8Ky8egzUakvVmMk9vGyRAsRWEJ5JIYVAvM8hp0YRSfXkPWWnS2eD/LmpXFZFmYS4mQRRLZtQ3OWrru9QVRq3cMsEhUaoMNLIyWmq4zJfH8qIBLlYFW2XQF9J1zR8N1pVitVsvXJG47LcBQZVtII97Stt3CvqhNZwgT0zQukc8VlFNFwtv3PavVamm+XIln1lqkPVXqXyW/9fwXdoW1jICfZ6ZJUj3jPEqwBUn2vRA4jCNGWXzKhAzTNC/X9344MPjA02f3bNay33uxiMDZWHojOT+F4nDYo7XhMMj7uV6vywBTmGfG1sRFWROsleHwqZ9IPUxhrOucIM3Mw5Zp/4I47cDPOCgJsUrkFEYm8zkXn80kAyq0IRYWUlKQsniJGFVAooJIa2vp+jXXNw/Z3j4DxELBT6NIoWJEqWPcdr2HqkSpsqUqIFevtSpTylmMczebDSklDofDkkImLKjANAkb6zRpTyTbqhhEi6VD7S20Pl7vtYcbx9c3IONUpgon+2eZebzaC766Xy69Vv1Slj3JlPAIlGF8vuXjn/yCzz78EN3AP/2Xf8Tm8pxxmoQVY4W9KXHv+aXJxtEXsgwtEPuPnIRhI0DZ0Sz6VNkRYyKOM88/f8pPf/pjvv32m7QXF4Q8QL8imVwSpoQRpE1Dt9rQPXgEqw2hbYlaY7UTSZZrse0Zqd2QsMLcxPD8+T33h8gP/+7HRO85PLhcwMDD4cDhcOBssyal4u0WIq01JBDWSxYDbTQknUjKk7NCpQbtbLkzI2hH1l4GAIXpFaP4slplUTSge7Rry8DOF98sz5KuHD3Je8I4Sk/e9UTb060fYNdXBGVRKZF0XkRZ8sFr2tVaelgvjOzDOHJ9dc1u/BJSxBpLMEmmSTmhi8faKaNYa8UcA53tZN3JYqwvA1VfvvflmujrmDT/0EOhlhh3sYspkstveNxv9qg50Uu+DLCkBV2EOokGpdMCMtaLui4ocHTQXy7gE0DmVR1ufc5THaDSR6DmdDogaKbQickKnSXm1mh9NEoyakECdUEd6+OemtGeotrAV85hYRTpI8pb35flNRfzo1MNc0rpGCnIsfhdpqtZ4LpQpolKa2Yl2nsNnPUdNIrd4QXWJZROxDyw6uHmqiWHnvU2crvPhMMB4sSqsfSNo7EGinwlG0dNZ5iGERCNL0nAIWLg+uoSP3uGQTLtqwdKjgmjFPf398JQQBVjxIYYSkKNccRsoNvw4OYBj99+l7bfkBNYbTmkxDAeuL2/x/uJ3e6eaR6x1vLkrbfQjaFxDd9591t897vf5uJ8hTWpMJcUikSMEn9+eXnOP/vn/5R/+3//Wz7+5AtWqzWbzYbVqsO1LbvtlhfPn5GDxxBwJFaNZb7fselaFJmLVc+qcfRGMe92ZO9JwdM5w/wbW47/eUf7QDHPe5T2rC56hnFPs7ZMekfTNAx+z+OHj7nzI6szx6rreHDdM02acTBlGi2Ux8ocu7i85MsvvqTrO86eXDL5iaZtWPWrorGesMry+WeGmBJnZxtWG4drYHW2EiPZ4v8Csn60jeMwHNjt95xdbDCNpIkkq7jfbVn3a6JPDIeRxjqaVskkzBkGv+Nq2rD993c8eHCJ6zqaiw2/+0e/R391hbKav/wPP+CjT5+zH3aElInZcxh3HMYdwzi8lExjrUFhmSaZVu33++OkS9cGUTNOooM2SUM++gkolYtxaBTTTqfY9Jabi47zFjad4dGDFX2jsbplTIovbkWCNk8zzpQ4yBwoaPLJfzLV1mRMzqQYyCmgchLjNapfzdGszmhLjcZVyhJJHGbPx599zs1FQ7OJZLMHF2k7MUf1caBpIDLy7PA5D66u2e522M7RNR1NB4f9czY3PeM40XXiHabUHuv22PYCZRuUnUFd0rUXxDCSUyQnS5ilOA5BaPcqQeM6UJ7dcE9KBj8LWLNZ9ygyRlX/AAQ0ouwFKTHNI2TEoyqnIns6MIyH/2n33n/r8fcBXo6SWrVIfL7yb698/2967NM952XWjeEfssQpfUx0BJaGzRX5DycEsW86jvv5y0DWMZmlmi6rlx7z1QJJJHKmzPZlDSulOhJ2oKnkdOssZ+uWvoHGQk6zJEFoTUgR72X/08bgMhjj6Lp+8YdwZSpdpSOSBuWWWuG0bqnvDRTWMFkAVWOxtgQdpEhOhpgzrhSuwXtICWOdALQx0rqGNx4+IKfE89t7qP42J/WRNPmGlCJOW5zVtK0k/ljjMFqLJElVidgp2+oEuIPScKplMm+tlXqkvCcNmaBrsSpJdEZB2zhCTKz6lt04/30vqf/hR0pJZE0cr996/VVAoDbXwXs2/Yqry8slVrn614D4w43j+JKHVwVtKuOvDv2UOqY5VTaxXDu5hB2EpbaVc5HB4ikzR3xfMl3HMgjd7/dyX08T2JaHT96lpoLJ1J+XPs+2beVxmhbYiqQ1BJrsyrl6cgqkLMEA8+xpm56cMrv9yO3tC4yx3NzcMMfMYZjp2g3DGNCmFSktmZiEHa+zwfsJVCZE0DmTcyis0XF5/61zGOuY56nUD7qAUvV6lwaaugZmacDDNOKnLWn/AvwWxyxDgFxkV65Bm4aQQIcsPUpMYAW0lISzlhR7staFjaHxMUsssxKTYWUsTWe4uXnEtL+jcY7DfseOTCzsl3pPValcXW/r8Pk08r1+1hVISUmi3Svw1hfgrV5rlalRa5nafMu1FF8CG5VSjONA3zcLI6cy8F5nRs3p8P50UA9iXfHqsOF0zzt+75HLaoqXkckaQubu2Z4Pf/wzvvzlLyF7/tmf/SmXb1wx+4C2sn7mMhw7Zbae9rlyfqLQUApyqgE5xWrjpF+q7Ds/B4hw//yWH/3tf8VZw3u//T73IbDOibVriC4RVCJrTcgR5Xr6B4/RZ9fEbkNoWkI2JNWAcaTcEnNHY1eYtiUA+/3E55+/4MNPvuTLL57y5Refsdvecn19TV8GDn3fc3d/T86Bx+lawEilS9AFKCyoSNaWZCw+iHeZ0w60g/K6yRKAkVEkL7H12qiFkUZSZOUItOAyYQwEP8u9Mo8ivyVLKlSMKLvCrK5w54/I3TmzcpA0KgSMTihzUt8oBVhs07Gy4i85DBOXmwu+aO7w44jWiqZtSQFiiIQcj7WUVmQNtm2YlaRsaW2Kl5wmx5ngw/GzPa0rXrkmvq6fP72eT/9t2XMLe7fuq5rC9vqG2ukb79oq93kZOBHmRXUpXjY4I94EddJ2atZWF+NTNPkUmTotHl91P660QBB0/pR1o7UWB3UlHhH1e5WSdAJTnmfyQcAIk4kZRHtwfEMrkntqEFXP8fQ8X2X2nP5+iqKjFCmmo6yqfkhZWrN67ke5lGjMlVJoY4usQgoqrGJWmefDRI4zZ3bG6igNXYqsNz3fevcJV9fX3O0iP/zxJ0zjQFYNWEPbN6QcxUA5KVLIzNOIMw2qRDZOo8Q0hjnQtR3zJIZMlb5Z2VN+mll1HYfDUDbOXKZniqQsU0x8/vyej14cMGcPeXj5kOs3ntD2a/aHiZgy2+09d9t7PvroQ0KI9H3Hfr/HNQYfZp689Q7nZ2dcPbjg7bff4Ob6HKMEnJH3SaGQwlbpzPd+5z3e/fY7PH12z8X5ZaHLJsZxIoRI1zRs9/e01tCvWpwKXHSW7X7P2XqNDSNqyqS2Z7Pu8IfEGCeCn097pNfueP9PHzNNI66xnJ+foZTI2GiE1hx8oLEtT37vjK7tCHqg61v87KVg6zpiDLTOFpNdYZr9bvMOWmv2ZkfIoUyNFd5nYjT0bcOb6lto41BaYRqF0pGsA1rLpLftWozRErvpExf6jBA7jDPCeMmBxhge2gs0mhgSVq9oXEv0O5RpmR2oVrF+1vLFryLN6oJgeujWdJuOd92af3534Ic//4Sf/PJj9uMeHzyjHxgmKUDJJSEmgzUNbdsTQ0KpsMSj1nuwgqvzPC33/DAchCGSypS+XBB937HetPS94WxlWbeGVa+5OOvJGkzTSkoTCZUjKUzkFPFJ/G3IMpXWuRbUch+qLOrcNEsancpJNrQqISlAjUrIZppkHUgxEL3HNQ05wd32nvOrFXl1yxye88Nf/S2PHl1yftET0iAa9s7iSIzDLa0ztI0CNYkU0iT2/oCyklo17LYS697uuN1+zHxo2Dy4xqmJzq2YxwgqkHMi5SxSRisTyTjFsl47crL4iQWcWX5pVbx78nHtU6CMxmLKNdXQtFKc1s/uH8Px9wJnYJmmLMB9BSp4uSj4OjrtNzF2Tv/tK5OgDP+QRW6hRHMEferw5et8Sb7uNSxPvWyVdWBT9fGLzX4pCFXBa76GQlyge61Bo1g60xxOIjgTzjpWqxWbvqMxCpUDOUEgo1SQCOMo/m8hiOwJbVDaEEJczCpjqXtOQZjT4RNKLZKn0wFVCB7n2lIHyNBBpEWJnB05aXSM2PKaYwzkMEuUsdL0jeON60tIgfthwhiNc4aulQSq/X6Pnz26adAqo7Osu2iNV5mkQeOwunx+WpUIYlAqYxRoY9C5mnGql85faY3KCqUiEhAh77OYZIr0A61w1tA6R+de72bQGMM0TS/JJ2u4QZXNe+9ZrVasVyse3jxkt9vx9OnTBTiZSqJoBfpDCKzX64UBsd1ul2YdjgzBeg1XuZQxDcYca9zjwLA2qGoBB8VTRy2snFqbp5RojDBmyCzMY60U8eR1V5CpaRpCJ+bD3nu2d3eM+y0XF+fc7vYchj3jPIIWP7D5MBB8YLfdc7+Xtdc0HV3XMcc9Td9jC8Aonh4yHM0IeJsRhpg24ciKVppx9jSugI4xA4kQMjFkjM6kCM7J/VRZ8DFGjJVhhUqR5GeyHzFpJMxbVBhl+FTHehm51rUlhkzTiAVBjoGkIiln4jwSw4xqJOUx5ML4s0buoZDQRPHs0AK8jePINM8FpPNIRLZfmDBd17FarRbj3zr0rJ+XUuols/4KxNXPCsS35hgDb4C49BRVhq2UOjKpyrXivefu7p5h0KzX66N5+WsM0sDXAzB1Xa3Hq3tg/Z5T6VPteBUKncEPnhdPX/DhTz7ks09+xapV/Nmf/y88+tZbTD4uIBhGCzMGqluJzAlOADjZr0SKU32HjgMQ9RLguvSIc+Jwv+eHf/NfOdzf8yd/9s9oesfzYYuNM48uWmY1oawSKZ6zmPUZ+uKa0G5IboXPitlb5qCZfCKpiFtl3DCjg2e12rAfZj7+5Ck/+fEvQMsa99lnn3FxccFut1uMqc/Oz+j6FcM0EaKAEbmwaIgy9si0oBPKSGoxuiFjQRn5u3KgE9kUL8WcUAkZmBQmbMaQMCTvUSER93vCNIAfiPPIPE3MIZFtjz1/iLt6iD27JioLIWNNBNWgSnjAaW2QkHtao+m6DY+uFY+uv+SDTz4j7/aEDAmNdkbYNMkfr5PiO2WdZchCoHCFYaoBklg9nFx0x1omfY2kPJ+wjn/Dtb1c4wh7RyOp1SrnxTP2645vvHPrInGMPZazUidsklMUN3P0eTg9sWqqVv9+WnC9Cmac/iwcpx41geV0QiDI8YglSWKKUhgrVPnWWUzOQJmaAcPsoTi71+c6najUTbj+OmUFnaYK1de7uJG/+poLffP03+vPpHxiRFzfD6QYSknSs0r5CRHyEJmA1FpsVmSfaVVi1erCQNBsLjqaswn1/MCjxwNt1/NiOxJRmFYaal2kF+MwlU1MkiZ2+z3Bz5AFXNrt7vFzYLM5X97/cRwLxf1YlHddR+OECjz5SLZrXmwP3B4Cs+l548m7vPne92jWZxz+fFdKAAAgAElEQVSGiRgUPgSmcWJ/2PHs+VOcazg/PyvTgcxq1bM+3/D2O2/zu9/9LR49OseaBFmMr8SsWpgNKQrz6PJqwx98//f54Q8/4M03npSNcSREWXRXqx5/aGl0pjGaldVYFGu3IfiZjXM0eGKyJWY+45wmzOlUFfDaHW//4SXeezablUh9hgNaG2yjsdoQvAAVjV0xTzO6WzH7mctuVZrdLfM4Eluz0G2VUkTtmWPEqUyei5n15ZqcZRLXNQptHBmLjzDOI641GCtTbEIgmwFlLdZKTDoofFC41oqHjnZkRLIYQ6DvOxRa/F6cmITSZrwbyb0j2x7TXaO6S7zqSViizaimp+1XzF6MFCc/49NAzDOgMMbhXIdzbZksNyQlC3CdMh0jVGuBK0X4AjBrVQxBc0miMVxcnHO26TnbOKwGQ+Awz4T7GS560hS5nw5M0RGiRxEJfgJk+qwFEyprgZgaitQql41Cyuv6dVHTlvJBdlXxk8ixMFkUyXvyFIjJM+gZ1Vn+9H/7A2xzz8at6HuDVZFNd4HKTtaWcMX9/R1N29C1Lbv9Fq00MzMpCI1VR03TOXIWE8mm17RtIIXn6DSR1XP8KAbOfb9hs77Ee/GZMSqiekPykRgdSk+EeEArSd6R1yyTzYQmlrVSKfHcyDmVdT8tlH2Zsiq8/8cB1Pz/fZzuV9/0PV97aP0PY9Sowk7luP9pLal5IlurBdWvP4ecszBfT85d1/M7YRqrss+jatt3ZD0svkmvPEfmuJ9WCxZjLX3X0TaNSKFLoiNAzOD9TN91KCDOHsi0rRRq4zSxXkt6hTYySVykJq45Kdz1ctL6hDFc1xdr3dJkam3QOlPV0sZa/Fy+7o4NdTIKHyMpBZx1bPqWm6sLIpLgYbX4wgC48w0xJuZppNAkSTmKv4BSxASxSPyNUihrqcbPWqXCMrZHc0Neru1yBpWOzGmjrRiU64TSkYAwddrG0bZRAKTX9DhNh3HOsd1ul2hjYGmA63V22B/4PH6+1IM1qrs261prLi8vl0FmBYFOWRTOWbyfsNawXq85HA5L417XtNVq9VL92zR1fTyyDESG3jGO0+JhstSh5KWxr7WZMTVlVS2vOSWRyeUYmYeRvusgesZDYjrs+PlPf4JPAdeWAZ02eJ8Zp5mUFasC7hzGqQAx0pj1q24BguT9s0uKGCqQ0WjjiFmiuU+ZIVJ7R4QdmssA5diaqDL4xAqQ74PHKk0KszSBfmLa35OHe2yaZIip1AIeZ6VJiDQyJTDItSyJlAqrA36acLZjDhmvFEZlCFFk8zbhOoNVejEPv727ZRwORD+LQXLf07Ydd3d3C6Omfs4VWDsFVU7ZXKf9RQUBK2hTX7/WmtWqW4YU4kGjCuDT0HViKl4BvM1mjdbH3q0CSP+9so3/UcdLvZY+Ggmf9lKvHrVXywX0zzGx34+8+PIFH/zsl2w//pyHb17xh//qjzi7uWDOGZ2t1GFKTH9jSmhbDbFffvwjeC2/UoKalqmUWRr2+nlVeeNwf+CDH/+czz/5lO///u/x5htvELNHdR3Rg9eAc8TsRYK06ugePMCeXTI7qXdVhhd3M//hP/2Au8PM+fUNb77zJjePr1ive+YIL+5GDoMnJUUKXp4nzjx79oy2bTk7O2O1WjHNM89f3JJj4MHFmlV3Jj5ulK0xGxKteM00KywepVKJx47kbFHKklUga4syTjyhUiwTGFF8UEIMdIzM9/cw7IjjluwnGS5myLbF9peYs0eo1SXJrTDa0ClkqELhndf9flnPzHEQGxOrfs17777Hh59/yrO7O+I0i1FyFm9bbW3xz9GFNZVQxkivUcz9KUEWOUamaRSGfaqsKVmbfl198w89xINPL4C6XsCgrz9+A8RaTHZSJqeCZBbKzinV58hyUWgtTbeiLERaS2pAyAuYY43IZnJOaCV/TilJZjoKpdJxkS03qyumdvVrMcUlHlsZ0cfllDAxLcWg1VYoakaQ8fK0i25dC+WGnE+LwRIpXm7IXCbEkgN6BF+UkmZYFdMzeQ1RUkpKykSdhCyLiioGoSfMIpnKSAKE1oqYcnl/kehfrTFKEQOMs0UZi+k2ZJMJeIwCPyeibegvLe++b9jtZj748HMOk1C6NYowTQxxxuiMs4rMBDEx7wf8OGO1JSeYRtEPGyef+zhOpAzzMLHZnHGYAiFm9oeD0AWVZpwiL549Y8QyN2d867d+i8s33+Hq0SPIMPsJ7xO7/YGYAxl4cH0hdLWrc9588iaXlw94/MZj3njjhjfffMyjmwc4BwqJQM6xGMmljLFiZjmHyHq15vt/8E/4N//n/8VqbUjJ48ya/XZPDgGi5/piTZ4HOmswObPa9AzjiOt7cphptcWmREozRI9Vib7RLxmXvW5HsDtcZzmk52SV6a9bZj9jjQUCyiQa15DiSNMpsgMXFHM8YJwVL4PNCmug7TRizi336DQGetPTu5aQPG1r8MnTN5a+k+QKrRV961htNiVqWkCNCYmbFI8Fg85CTWzbDm0UbWm6lYXDsBcQxJTl2EQ0K5TymJTRcY0xLZ89f86PfvmMb31vy7tnV+hGcdhN3B1gjC3N+gLMc/wkXjAkMTNsuxV9f0bbrOn7M/a7AW0njJtKqlBhtAFkSRmYx5EUI5mEJ2EwksSmRMrTrXqMc+xHiS1frzt2hwk/zzStxfU9um0JKfH82S2H/SBmzpoC2oBRBqhFuaD0SiFJE0mas0TxrCGVDfBo+Im28n4Vts1igJgiKnvGQ+QXH3zKH+k3eeO9G+ZwTzaeptmQadnv9wIY+YaUHM1qjTOOy64lx8RGPRCgpZjq3d/fY5Xlur0BEil7YWQluL29Z71xHA6Z1drRrxSHYeYwDGy6Mw7bA2nWZN/g856UA0Y3dJ1Bq8g850JTBscKCrMphyKjzTAWGYsyYgaoULjm108fXqfj18mVTmnauYrwC26ilRi5fh3T5pR9+hKLsxx/HwaPPJbMpeq06KVHyUdA5uUfZKGE1+fRWmO1xhqR1iRVipry2X0FTCn7aSoR0PXxdD5mZ5QnWOqFClDmnArbQx2HNlJaYXSWFCIysYA8Rius1TgLzggjLSctRt7aCNOlcQQfCGFm1Xd0bUff91xcnNN3YmTobEMMFWSpcaHSQORyrtZaQkwoZcVTKlW2sFoKVrS8DoPBKEk/S2HG2kbqhpJEl1IkaYOOkWmeyDlijOJ80xFQ7PY7AWDijC7xxo1RtOtefDBSQGEJS02miqRK1g2Z+NZJqhTCknqH0NfL9XmUdEVUMWk22opMrESnJhQBMfnMKuOMom9e32awNrLee7bbLTnnxU+mNoGnHiJKG7bb7fL30wHkKUham7MQShKQUQIC9g1NY9Faak5XAJ25RG/Lfa8F/Moy5FOqrgHS7NnCoIgh0LaZEBK+NPJGG1zTiLwi19paJPMxF/ZIYWLGEMkJYshMPjDHSEgRbRTvvf8ucRp5+vRz/t1f/ju+8/778rgh07YOayyDLSDkOLLb7bi9v1/8c+R6EWPk6jVWTC8Q2W4BR0IQSwIr15KEfCSJHPYCxqPFaNOFgEmNrC3aCO6Yxc8pqITKnjS/YL79ADN8ifWzpMUZjbYK0zi0awCLMW1hA4jBPkZMWzMQdUCRSD6Qk5U0OR+Zpx26aek2TsyHbca2LQ8ePeHys895Nk/EOTFOswQnuIa+71+63uRam1BK2LrjuMc5SZrs+6OPUQUIq4/NacT70e9Ks9mcLyCP+A1O7Hbjwgir9g3ez8zzAIXBX4fup9HXr+Px6jBcvEOO+95L6odTdmXp2TSZoDVExbSdePrhl/zipz9ju73j/e+9w/f/xR+ieyuJdxksstfGXOVTxW8t1z5T2IZ1UAcQo+wlSsl1qgpQGotyI6lMmD3+EDjcj3zyy4/5xc9+yW+9/w6/+/3fRrcQs8aSSKblXkXOAZcCAUXsLjFnN2BrurJlP0b+6m9/zg9+8gE+ZW58ork4g8by9G7PxXnk2Zf3bHf37O/vuTg/ZzhMnF+d8/knn9B3LTkk4uTZ7u65uLrAj3v6VhPjI64fXLKyFkJV0Ch0VmIWb3qyTojcqez92kAUxpLSFkxLjMW/rHhZ5gKqhJiYfSBMMzmJ1DJmRTQ92W1Qq2vozkg40uRRjUZ3LdqW6z5HRDpaCpWMBFQU5htKEXPm8uKC3/72u3zy6Wfspxf4kOXzzBQGq5E1B5laKKXRykrCVchLSnOYPWk3lmTEjJEvLzXNV6/Z47ULX8NcPrmuK5hPYfZoY6TPVFWm/fXHNwM1WZBxQbjLZCUDRT97pPaGBa1dnLp1NYdUov3Mkg4li3WlhmW006QowIcAHIBKpBNpUl1k4LiJZo5Ic52tamtJtcCLkagt1PMvtNNKS8McU5xqPHh1ljb6qP9WSpciTRcQp7yOmNFa3j5JC1BoZZeCsj7Xq1S9UwDn1Kw4nkqlqt5SQ1axgFKawUvs8eATd3vPeQsrl+g6S7fuyUzcPL7CuC03wxlPn94zRGE5JJXZHUauLjaM+wOXF2dsxwGC0Ga7tmeaPNklUoZxGFBKs9/vaVxH0ortdk9Kkc6pYnro8Wi2w8QcFbuUuXjjEW+99z7d2TlWg58m2chSQmKJExcXG87Ou7LhOL7znfe5fvCQB1eXPHqwYbXuMUYBiRA12jTCHlAa7bTEQxZEMqXEk7fe4Hu/814BETy7uy3T/sCLp1/QakUOgXXfkMNM3/YMw4HzviXMI92ql9SSEFA5oJGYVKsNunl9J4N965jmSWj/zpCIhCgTJmed+B0gE7u26ySOr0wB+r6laVoUMOzvWDWdFFjO4H3A9Q2Nluhl7RQhzxixZMeT0Y2YWOrSdMzzREqas7NztHYlCruyQSgpITPBJ3IuOmuluTi7RBth1UzzUNhwDTmPuKBQeoUBZjKfP9/z8afPubq5oOlaXrwYmVLD5cN3Obv8mNXtLVEl/Cy+S8ZYLi9vePToTS7OH/Dut97jpz/5OV88+4RpHojZYxuJgrTaYJxGkWitJfiZ3bBlDKPE9SaZWjXdiru7O27v7mk7kR34lJjnIvua4fkuY5wiRss8J6GyxmoknIq8J2ONADQpyohPFdwh5Uhl0NQ0FpLIJcgi/RN6L1ClQtqChhAntAdlO/b3kR/84ENu3vsuzaUl4RmIZGMZUsLaQJojtIrUKXyKqABhjljtBEzKmaZtWdlEGD39ukGh6bsV9/fCyLo6v2LVO7a7kf1hRqWRFO5xJjHcK6b9yDxkYujJs6Y1G4Z84PmLL0h8B9escFbhwx3WFFlekWui4TAcSF7eR+csKQgoqP8RSJ9OmRVfoXOfHKmAJXVYlE+GFC8xL78GhPn7ADNf933LYJAjZbcCOK/CK8effdVHRvZfo5XorVV93KMN32nCU/09pWLyqwubNJdsl/JDdQBTfVeM1mQVy1CFInkq7B2llsconsPCFLIC4IiXlMGWpjGmXGoQuX5SlOmrK01R27ijL41raJu+yB4TbSsG1sZIEpxzrlJ/xEtOixFjzkcJlFKSCgdS24YQJCUDQJX3Llpi8FKkh1lqLSzaaLpOzF2VViiTOKMkuAwHQoz4WbycTDqGLOiyRhilqDLvajBbWUqmTNuPtdqRJX1ap5yytVI8mqIKwKhKAo8hxZKER6S1r++Ao0qWlDqmJ1lrxQS/AG6nBrDJ2AVcOYIxobBemuX9OQ4uM1qzsGq8F08to8WP5MWLFwub5tR42rnCrujbpTHfbreyN5Zzq0werUwZyMhe2nedNDYK/DTgxwMxFKNroZnJPpNVYa46mran6UaaeSDqiHWGafScbVZ86+13GA8jb9+8wWGcuN/uub+/Yxj2i/S0vj7k4dF6Rim9MN+dq7V1JqUAKuP9zDiMAq1mmJVfkoum2QsAiQAtxhhmP2O8o2m6cg1mVDFtnaInDHfk3afo4UtcuEdnL826tkXeZzBWQKYYk3Q7KZJjAM8CBPswEaaJxq4llSmLkXi2ijY3EBMxyIAyA1FZSZpEwLemaTBOjLSrZ1SVmGmtaFtZT3a7LIMJJYypqgio/c1L6oQsJta136m+J5WFJEbiUntUdnCNm68srq47GlxvNhuqJ87rfHwdc6Yy/E7//dhnFcmKUoVBpsAnxvuJz372EZ/88lf4eeBP/uUf863fe5dEkoEksucmlUjKFOC/rNm5rpUyoFNKF9Dx5eCYOkyo12qYZvE8suAnz/2zLR/+6CO++PwL3n77CX/8L7+PW2tiDigNTitC1LyIiQdJca4MNI7m/AbTn8utmwLTOPN3P/wV/+mvf8h2CJxfXvLi+S0vnt5C0kxh5rbf8/zpC4b9iDWKeZrYHfZ8+ukn5BgYGsftl1/y1ltPeHD9AANs77d88qmm6Tr2w8zNxSWH+3te3D/l6mrDk4fXrIz01Cgj6ZRZVCe57v9KJEZoh3aKeZ4gCaiYEADCNi2m7Ri3mRwiISvmqKHbYNY3wqQxbZkaiDnzHME2DUbJ+iJhIKVoyaBzIuFBBeRjV+i24be/8x0+/fIpX7z4z4xxLoE3wpgx2pThkSp/Fnlm8JHGCXBLlrpbT4GKy6gsHrJpqdFeMRT+NTXYV+Xe8nejhcBSLWO0NQs4/euObwRqTjfyCnDknF+i6R2BhhPmCEc09LRQrV43C3X55IY8ZZikMik+dQH/qk5QXuipqfDp73KDqyWZ4SXNtVIvnUN9E08nlEfa7zH1qf69Fiv1casj/6l2vf6+FDkFhTLWfOX1n04nX9I3GmQxAoYQ8THLICBrommZ9wPXG4tTjmn0WCvNprNwcd4x7Lfiqj0nfFAMhz2bvsFoQwyJaZSNwBpXipW5GKuaxWsihoDtLUZb7u5uIXqM63CNMJzCNBNTZkyKmzfe4PrJEx48uKI/P6Pteu7vD2jTsD8MnG161psVq3VL0zpWqzXvvvttuq7nbHPO+dkGp8WgUJUQL4MRaYeRL8oFLsPT2QdShrOzc/7w+3/AB7/8kGkYJT5xOqCCGLmuW4sjop0hh1kodXFm0zekGDBYlFEkL02yazrR+9vXefqQlybGOUuoqUaActLg4AzWGUJKdF1/guiKfGy1WpHTiDYwDBMpZax1NG1D9EHMPhXCZkrSpk3jICBPgr7o7JsiKzLGEpUYdRur2e92iLdg4OJstRQeOWfW3YXEcwbPrCdWtkyDM6Ck+HSrDSqNtL0j5Mzz+z2325lz0/HZly/40U9/we32wNn5NeeXj+WasAeGw4H1es2TN9/mu9/9Ln/xF3/BW2894dPPPuVf/+t/w1//l8x2t18KqVXXEfOE1QnijJ8OjMMzdPRC2VYS4X3Yb6VFtJYYJz6ZZDqmlMHZlvV6AzkwxT191xN1IywQLSadOSViYchoZUsBIv9b1rcQlmZYDEfjEaRZml0pgqs8iMJS6rpOpFraECbLz//uKX/+f/whq5sE+kDMkX3YorosyV5XLYf7HYM+YLN4VLBSZDcxDJIOEYJnVBMXjy/42f4XtLrDjho/B84355xfXmIOM9EpNlfn+BA4by8JMXJoG/Lmgu1t5O5ONvnhcE9MI22vuN1+yttvvCvMuWnP5dnI+eU5NIm7w5ZDGIl2IO1nNqtzOrdm3HkIhu3dPy4z4W9ivnwFuDnZE/5bj//en/+HPEdlmtTiV6mi9f4GYsWprFi/UqDkRUpc9+yjGZ9M5o+gDrxcxFcDSamxBagxRvYzFZOw/8r3t20r9UgZrDgrJrBd15am52V5QvUvUUq8L2JKOGtFFkVNrzGLOWj92ZzFiP/0PGMUw8qkJL5V5JWJykzIKeGLJJliJO5cQ1+MhzOZYRyFCaNVsWWQRLoqz6qSGHKt5Wo9pskRrD1eZ7WWOQ1OqOdaa6fTWk6Gd1HOnyPAU4GH1/Wor7f60JwOAU+ZB7VOdc4VWvpRLq+UWurO6klTTYWn6YDWamma6/v2qlRpvV4vXiMAu91uMY9VSn5+v9+zXq+XdC8ZcDim6ehlEmNkv9+jQsA2DWHaoeKAigMEsWLM1DpX6uoYI0aJ74lzjhwtnz99jp8OmLbnwcPHKK3p+p6sDbMPTHPLNA3L62iLvK16NFXZTZU/CWB1ZN7nMjS6vb1d5Fmn18nsvXjnBAEemqZhGAaU1jSuQalGcgRTAS1zwhJl0q8iWQWUzTRNh3M9SmWMcyKzzuLDVD3p6vPGmrTmJThDNR6fFEOMRNti9dEcViVESpEST58+5fbuDmsszXrN7ANZ6YUdU9+TuoZUI+mu6xZGiwxqj5YJ9WdOQZtTVtspGANH4KZ624zjyGq1WsylReZyTLYEGMeRw+H13TdPQeF6iJTpq0OPSgoAiDmTtRJ2nw9MT/d89uGnfPrhR0DkT//Xf8E7337CoGIZEpRh/SJhOt7Xp+dwuubBy/sM5afrmumHiTB5VI7Mo2d/t+Xpx59x9+wznnzrIX/yr/6YBw8viHlmYZflRE6ZQRl2ZNqmA9uy2qxBg4+RkBS74cD/+x//io8++JisOvwwc/PoIV9++Cn/9T//DTFMPH70iLOzS27vd8xBlBBGa8Jhj1aKkAJ+nvjx/S1vPHnCd3/3d7DGMY2BX/78Q1xj+fLsnPFwYDdsUb+KdH/yxzRXFzRGiUcTdY8XsF9YlMXDpgwnJH1KoZRFKUdCzLi1lrVOxQy6Qbses3mA6i5IupW9Xlth46TMVJiEpmkKECIAp9JFfhV3/x9zb/prSXZd+f3OFMOd3ns51cR5KJJFURQ1ttqAPxhwf+m/14ZhGzDsBoyGraktSmqKEskaMyuHN90pIs7kDztO3HiPWcVSC25nAFmZ9e67U8SJs/dee+21yHhhIysjr2kMm80DPvjBB/zTh5+w/+hTUpIm6nyNlXwj5YQPgaik8RJDIPpAGDwhBqZxqzxiBuX//wXr+XU/K0B0Gem7o6/0BcfvdH16XaCGk/uSnXUb5mwRuAv0lCBXhLPugysnBFXOzBy8KH/PbebgBKLMX6cASSmJgjbc1Z65+17qToJxtzOi7mzq92/kOWhVEqPy/vePE8iVRoVsNZ3bsjnPz18BgWJKKDtqNaRESBmbFRHDEDKLaslVHzj0By5WjrN1Q4w9ddOwXASWrWPoFJW23FwfsUqRQsQYze5mi8oK5yxaG25ubui6YVqcKQT8ELHa4LsebSyVMXTdgRQcylm6zuOzImBIdUN7fsE3vvsdHj55iGsEiHn48ALQDCGgjcNWFYfDkRATZ2fnbDZrVuvN2NHMMuuYi5K6oNlhVGHPWSyEMxq0Iec4dm8cP/rB+3z60cfUVrPvjxh/YGUzxIDNCp0DtTOkHHBOgCqn8+gqIPOpelTedpXFNg26enMtgLWB9WaFNoqkEsd9j3WGul4SQ2RztsGOyWjOGTXOfq/Xq5G1Ednvb0gpsNuJ00LTtKN4bma5WQpIk8V2Uylh0Q11oG0XHI9HqkqoviEEuqMXrZsROAjRs15tsFaKN1dVGK1lZCZEnKqx2dLU9Wjnlxn8gDaWhCKbBV5pbJ3o/IEPP/mI9WbFxcWGr+mKw9Hz87//B/75V5/hjGPRbuiaI4um5fvf/z5nmzO+/73v8id/+kf8u3/334mQsv8hm82Giwf/G89eXlHVDatFiyFgTcSoARWPPPv01wzHl+yOin0XGXwcnY9EmMxq6bBnhFLZNkuMaeiOCZ96dkNi2QqV+jgMoIQ2m2TOYAZ2gzWF3ivXNZZ/q1GDZmTY5JFlM5bAwiwYmTUlcMYsowc5RrSq2L468o9/+5w/++YTTAvZBrbXR5zRRB24Pb7AVBqfBirt6PYiIH4celzjuLm9oakbPJ7s4NgeaVRNuA08OL/gZrhm++qaR805bt3QHXfoRjp5FqiWAZMb9Mpxm2/ozCvUcs/jdc3Xv/EWi7bCVXuOx2u+//23ebCqOA4dXe6wDPS31+i1pj2PDMNLQr5l9c45++st2ry5zjLz43VMmNcF8HnceF3Q/rLn3I+lX/Vzfdlrf9VD4rIeR3wKTWd0kBhbUvPCv7z3fTBAGiv5zt4vHTQBG3Q+OU4JHbqMdbzme4zn3BoZv8zjSIkAnidA51R0igXycrXEVW7SkajrZspV5vmBMU46hdZhnD2NP+eMMkJptnam65cyVp+aWfMcSmkRMAVhqCixPkOLsu9kiS0JMFTOEoLD+4Fg9Vh4y30vbAvRvCLHOw5OijieF13oyFOhN89lynmcN+TmTbh5w0vsRTUxzs+NeaPHKwqjoOhHNE0zXY/iulOAtlIMl05nAWPgtNa899Nryd/CZC3nabfbTQV8EY8tVtyF4bDf7yk6JaXI3mw2LBYL6rqeCnWlFLvtcWL83BkDIXNz9Yrt2YLu9m38qoa4Jrsabd2otyAgoHMZH/qRhWAxthJWua2pF5nHb79LRlhBAE1Tk/MaRte9xWIxjetUVU1xeSznQ5yNFDGKdXzOUngVEKG4btV1Pa05GTNTExA6AYIhcDzuyTmSZo8ZInR7lB+E/ewatIZcLTDtOZW1xOhJSqGtJqmT1iSc8nkBkWSNBx+IiAi+AoIPpKzIPpKNxzj5vLvdjt12iyNS1W4a7RjyiQVzEqx2rFbtxESCESBCAf5OA3rO1ij3Zql5imNXXdd47ycHsrnL2DAMXF1djbVWZBiqCUAr3/0+KP4mHfPPNi+o56D8nPnnR30gtIxED0Pg5nrLzT99yqeffsRys+BP/vzPePjWOT6PmihKo8w4UqtkfKpops3rydfFqxKnYmEvCv2T2HtC15OHKEYs2y2fP/0M3x352R9/wPd+8j7NSsw7ipkMZGLOBGXo0FwOnqZ2rDcXmKaR/RnJ+F68vOIXv/hn9rcBrT3d7Zbr5y9YtAuuri7x3Z5PK8e7X/8m73zjm1zf3HJ5c0v2nsYYdvsdI9mTqnKkJ494/vQz1usNjavo9h3DUXH18orlasVnz16iSPz6w0PKgQAAACAASURBVKdcbDY4U0CtUpSV/4jaaRkpzEliY1aOkB0paZRz5JjwIaKMg5wJOFRzQXZrlFugjLDwrTVYo0cTjUgaOpICbUfNoeDJRpPTgI63MmmiFMq0KCq0ErzhyaPHvP+db/P5i5fshyzsujhnDcu/rbWYyiJkXWEdxmlEq9yLE4dY6qF0d11I3nI65hjC/WO+hgR0lymer5J/fSlQMwdZSsCej+vMb6z5hygAzTzwzymjc9CjfKlTgCy2nfnOc+ZfpqCY805X+fmc7UM+gSRz9sp9mu99xHT+OkVPZt5xKt8RmIJrCe7z47dElXOagn7ZfMv3m1/cKQArRQ6FfSOU6jA6LsSsGA6RvUo8WC9osaRDxCiNzgrbrLl4lFHa0e2O7G8PVMsWDTjrOHRCVTXG4Ef6JMBisRRmQxjn20dwJwVxXqqaBWix4M7asd13HLJm+dYjLp68xdmDC9pVw2JR09QVrlqMNFGFsRWuqjHWkbMIGhojM/RKiVViiIPMg2pDzjPgL0IqXctRnV0hgovGWB4+fMDjB+f02y0qdmwaxTFmtDVYlSGBip7WGpw16GrUVPAerRUBcQ4x2mIrh6kq1BtME60qR0ZE/DrfieaMs6wWy3HeWebEtRPgxRpHSlGEDUPEB88wdJwtVpK8I5ThnDJ1U5G1JIfLxWI8L4rj4ciyXYk7Rki0TYvVliEMVLbCKIshYWvD8ZhJQcZoxFoZIgmLuJr55Ikq4hBNBm2kIFNZCoCQFGgjqu0VbLeXfPbJx/zjZiHU5qQhBa5fPSV4cffaLFvOzi749//+v+fb3/kOi+WS3//pT1hvFmgNrqr5sz/7A0I0/PLDz1Cu5sXTT3n/W+/y/ve+wXH/io//+ef0209568ES9XLguJdZVY3QJ1PMDClAUJgR1PJDZLk8Y+gjwz6QVWLb1CwXYok4BI/3gxSaOYpwmyAtZD1PFvJYUI6W3ZPj0zh3yjinOx4nFk5EO7E0NRpCDCQPdJq/+6tf8Yf/7bvshyO56WiXK8J+IGXwMeBTprIV+6HDR09lW1KC/dBRtQ3NYkGVEj4MBBUYtCY1iat0S9u0uMbyPG+pjGewSbpCa8PN9SVDPFCzJOF4+HbDj6oH7G4b4u2Rt99uqexo+3u2YVUnjrsDt4cdL7dX9CrSxZ561XBzuGK/P7Jabbg8XOGHxODfXKDmfuCdx4AvCsrzRsPrQJqvAty87j2/ys+/rJPzVV5nUni7w3D54s83B1hKPNZaw51mRx5fU+jQp3wBChB0n7JzH7SRbrZ67e/N3SiNEZ0Pawxt04rux8x6u/yZ8o2cZQzXOmGfyqAWzlmZO7/f9NEKzW+zg30YnelMhqypaj2KgwvIkjJYV5GSISYvlG81WmEHsTK2GjSa5AeKrp/oW03fVl4vKwHNyZATWrs7gMq8GJn/ey56er9JVhL2+VqcOx29iUcBVEqO13Udy+USpQToOh5PrBFrLbWxDON68d4TY5wAhtJQK402ERp247iLOGZeXl6y2+1Yj6MnZR3f3t5S1/X03t571us11loWi8XUBL29vb3z2b0/gX1zRs8hevou4A835O6G3J0TYXRzMdINV0oAj1HPw1qLdY5MI0LuIaJdS7M0BC8undZ7AWj6k/V4Yam3bUvOJ1Cv1AvFXUgccCSX80HYNgUMK9egfBcfxKb34uLiDuskeE9Psbc3E8vN6oxNgcpWWLPBqRXO1Whbk+sFuAqbIil2eHpBjcfcvbBWpuYvijDqQSUn9uLDMBAVZDWgjKNamJGFZDk/P2NztmF39YK+lzFK7/04oizPLddF1lM3uYydnZ2x3+/pup4Yh+l7lvqh1EKFBVPORdM0pJSEPaXUHfHpqqqmcTRrLZvNhrquSEnWsQgd19M9/KYe871nXneWZlRpiJfaLKmM1RqtDMPRc/Xiko8//ITbjz/hyTsP+aP/5o9ZXSzxKYq0BGbEqMcaVmsBT1IaBfFPdWL5PPPPBWXfG8HvDNEHusOB4XDE73uuXlzy8vlzen/kxz/9AT/66Q/RtWIIHcJkHGuqKFFDYfEYbn3PJmgerB+QjZFcEzh0PcfOs9484MXzT7i8ek6OsjdFH2iqCmcNvu/48B9/wce//g3nj9/i0PXEvueQEkqL6YethD0aY8/Xv/lNmm99m8tuz831rTRqVwv2hz3dsSfFyPXVLTEEqEbdwBK3x/gswrwyVi+nZ1KMQ5uGrGsyhn4IHIeepB25qsEuod6Qx1wTAmQZidaVxYkyCSp36DHXFpxEanpSIIejaBSZehR/dihVo3Rm2WTe//a3+adf/5pfffJcmDCz/KrkG0ZrbF1TZ0iDjCDmaMYxR2GxqlQyGTW+f+lAcVoP/O7c7n48LWtNlxzld4TM3+nXdj+Aw11Us7z5/Q1g/qELS6ScoPLY3Ga7PCfGiBqLlvJ42cTmY0xzlk55j/IZyuywqM7f/R7zz3S/W1Rer7zWvNtUfj4/H+VcTAye1yQ68wtZwJfXUdsnOtYM3LFKRIVzHi0blND0QhCEMeSMalp2IRNvPJvW0Lqa2hkWC0fOjpQMh90nNE01iihlDvsjRlv6YcDYzLE7jt0eGYsBSxg8lXOiH6RFQyf4iLaOkDQ31zvMYs2QHbiGzaPHfPO736MZLSqd1TinZBZ3nIe3zoDOo/6MobA0UIkYPTmFsZMoc4olqAYf0Vm6Imq0xstRAmR37ISh4Szvf+97PPv4Y1pn0MORpVPEkCCKLoB1BpvBILbGOSSsgZwi1misMdSNo14sSbaB6q4w3Jt0SMAQOqBYNwpY2LqKRdUQRtcSZwxD6FmuzwjRY6wGFajqhroS29WcE227YLFY4n0gZ8Wh72kWNcYaQu9xuuLB+QNiTNRNTQqRenQ+sdqgcNSuFt2iboAETdWwaFc45zgejjTOUbkakiVr8MHTpx5XiaNXvaxxOGIYMKqmaho4JJabBZfbK47bc148e8bZ+oxH73yNZW3p95fc3tywXm54+8kjvv7OQ37vh9/gW9//DnW7ZL1uYGK/aNabNT/40fe49ZG/+bt/4J0nD/j9n/6Ydx5fcPXS8OpTy+MHK7759bfY3V5zcbYk3B7phzAGIdH6yXEUFU2ZaCIhBtqmpTIZ3/fsux2HWykAQ85EMiSxDX1dEatGCm4syVoWFk0ebbtP3Yz7nZ6IGsVVtRbQyxrpdMSQePXZFZ/+0yu+8QdrvI2yTrShrRrCOLebIiSdcG1DTpbGrMh67LajOfZHFs0G5aFyFbap8CHSDZ5oFDoEtI3s9gcgs/ORamUxuWZlltRmQRUrvv/oMUPfo5VG6aOMd3Qykql9Rx/AWSM2wtoQIlif2PgVNlniNhLCMDqNvbkg6hcdc1bnlxWzv2v06Yse+yoF8lcqou91E09v/AWgDfkrfa/5UeJpibGSFwg4KY9lAR7SXRr6iaSSJVG7N/5UflfPGkkpZUgJzakjNh8zVkqP3WknSZ0urNlTETpvCMljZhITdk60rtAyb34f1DCzPGOeEyitZZQDGXMMY9EgsU9jnSMmBRG5x1NEpUzlDLGu6HpDTGFkysiVCEFiG5Sfnc6bdCqZtN3KmMY8n5s33Mp1KsltOW9lZKiMZs5zo3J+3tSjbdtJ66Xo0ZTctOR95bG2bTH5lGiXvLIU4KXAXs1AmKrSkx2z1pq2bcefVyODxUw6IsDEptlsNiyXS2KMHI9HdjvRaymMiMLU0MqNYrSy/02F+pBIsWM4bsnDHsKRHBwxtEQ01ljJIxnHlaywzaqqIsSAtg7talQKmEocOrW2NE3DMXictVxcXHA8HhmGgeVySc4yYuFcNZ2znDP7/Z5h6KlrR1XVpCQuJ5vNhv1+z3a7vTOSI/fLyWq8gF5VVY15mT5pFnphLRidWVSZyjU411Bpi7ULbN2QDURtZGQjHonhhpQG9Agm3XE/UkrGhY1BK03MMobV50gkE7KiaUfQABnzbNsFdVXTW4dReXIrPPT9NE5ZNHxSknEb59x0zU/Ar53urdM9dWoshxBGpy9HXdfT40qpaX3lLDIMVVVN61DWxYmFlVLi5ubmTpP6TTzmDev7e8jdvVfLNXOiLxKOHZdPL/n848+5+vwF3/rOe/zs3/wUt6np88iKSkYcC8aaWKYUMgmZKij3+LzGe92elnMeLauRGsR7fNfT7Y9cfvaCl89eMAwDP/z9H/L+Tz+gqwdInhwUOteQzCyVEwZkzIakaprVGa5ZTqBiJpMyfPbsGa8ur7l89ZzL55+zbFtW7RILmJgJMaONJXpPPHSE3qONw2nNdntLVqIFGwbFYr3CH3Z88s+/4HD9is36jJw0L1+94mvf/ibvffc7nK83KBT94Uh/3ENr7qSsE1iTZ6bZ6sSwEVF0jVJW3DxFzwBTLxhyTXZLVL0SkMYPpOhRRsSH8zGRDFRWUzsxIkoKMZDRedSFKoY9okGlTUNWDaiKnAeM0nzt3bf5yQc/4sXNgdujJ8/wiTukCCuupGrU2sgxcdwfpPlZUopZyn6/aTZfK1+leTatX3UCir/K8aVAzX0WStk87KhGPYFrMI6Q3KUUnjYFNXXti7hYYc8UR4fyHJmfPXVx5AvK3aVJwu4gEELk+vqKGCNvvfsuRdNGqZESPW76WhWUdOxSAzmK5avQjiRhKrbZjAma0mUk4UTlnjoA5CmJKyWUsE/Gmdx09+IpVSjhUlCJ44WdgUR6oj/LOZLvEqI4NmkjtOcQRFjYqFFwDUM3BHzIHA30MfPovAFl0Qmq5YY6Jtr1htD1HHc7ut2BRbuiD4l6sWR33BGyfId6sRDRNaPRlcUYx3DoEF8H6dT5mOhjYAiG6+c32M0Fj997m4dfe5f2bM36bC0jg0Ys3FLOGLIIzKo0TjmGUelakNIYAzlHYk7oLIEsjNa8wrDShMi0hjKSKIfQEYJnu93htObswRnn5ytuXn6GSommqvA5ishk9FRayblTWkru0aXLOIuuDMY52tWKerWmi4rs3txi0NVuXJOGdd2iIzR1y3Z7TdssMMby5PEjbm5uac/O0MqgDbSNI1VC0+9Vj9YKV9VT5+LYH6W77ISmmEcdHKMtKlt86LAJhhBEwNIafJ/YrBZoo9ksz/H9wG67w1mL0YbDYU9KsFysGAZP5RagIYY9m7MVx+MeZ2pCyGhdU7uGfRjow0BFy+O3LvhN+g03t1uev7imWnyMXS14+PABzhlS6tluX7JeKC42P+Sw3aJRLJarkb0F5f4z2vPWkzMuLi64fHnDOw/PWS4s66XBccGPPviAHPYYpRgOPZ8+f0XwA9c+0COsLp3BFnA9Z3IMaGfJOYhbQAzkEMkq4rMIIBIDEE7xblYAoISWGoOo4gvFMkIOkFOZVChPg/H/y76ilIi6haGnso5MIuUBg6LbZX75i6d8+2c/oIuRYdjTqAXH44DTmv3uwPn5A3KEvvecrc7p9h1oRQgeayuaRnM47KiqFlc5jl1HzBlVaQ7dAUvD9vaWs/MLtEoEPQCa9fIc4w3LZUWVxFnNoXBWkmtnHDlo/DCQUk8k04eBx4/O2fY7nj5/ik+BhGOzrtmHI2+vHtAdB477/r/i3fYvO3K6G7BlVKckiCPoUGjDIx8ljxlkYY0ICHBKLl6XIHzVgvh1vyevpcfPAdMHnJ5zH3T5YpZPLrTg8n2VGh1aXv8ZBIgcmTUICKGNQocs9PQ8iv6ixARsdEXTI9M2xjyO92TJDcbPWxIqM94PJIE65TFFHF3TSkwuAFHT1FRjJz14z/HYUTmHsxZnisOIxJ9I6S72aFUL1TsJe8doAb6FtJLl3zDacI6J/5hoCggl7BZlRnFDHH4EoHKQERphBYnYMEoTkPyobaTQ7Y8dKispRnKJkdJFTRPoM87FKzWCv+oOGFfGYwUcmzGCEBchpWWccg5A5VxchE5s5jeZSVOOwkwoGiu73U7AkHEcJwweUqayVsA9Yyd21TAME7DTNBVV5cZRIjc1IwuAU44i/JqT6CGYEZhsR9ZMGsGDMuIEp3tFmBcdzrkJxFHKyIhPFmCvqiqs0yx1xTAkQjakGFDDDqwl+5XkYVpG8kToE2FyaYMxjqZuUUrjfWTIXqxzY0ApyW6NNSxXK7p+4HC4xFpH27b0fc9y6SZm+DCON4UQWC6XE5M258hqtRKmZxLr6gLUFKA25cRhPHfzZqfRGqsV1Tg2Vgr2GAbEYKJBVy3a1Rgr3XWZxNIkLZpROgfCMGDHbD2rjK1qnGtBW/zIbtA2S/GcNcTMYejRriUqQ8KQkrx/53sub675/OlT0hgjY8qQI2EEmI2xiJCqZdHUOCdaMtfXt+P9Zaaxyjm7voAzZW0WLaMC/MyfU8afjFE0TYXsjX7WvJZGXlm3hV3zph6lBJJif6bBl0brZC0uOUobWa9xYDj0vPjwc55/8ozd7Q0//emP+N4ffBtdaYYYyFmP8VhPW15hfBamtLj+jjE5ix4jSp1qlDEBk0idSEoMTZRPDLuO482Rl09fcPXqFSEN/OgPvs9P/vhHeOVl5CcpNEast9XIRMkKcCSYjG7WyzMRmk+BmDI+KQYPf/+3v+Af//YfuHn1kray4D2eI9ZYfEbE3JMwMDOR0B/JdGRtwQcS4i5aL2pyGCAbNudn1LXF+yNDH/DdkV/8/O9Yr9c8fPs9+uC53m459AmfMpiIJpJyGN1F45SDGGSdhZSIKJK1ZGMxaLLv6botHgumwrglyjajpgxE3QORFDp87CAPxNiTKkuuDbWNGGfJViQ6MHoUAq7ItkbpFcosECgjj3872nrND9//gA+fXvLzX/4zXQGBMxAiSnmyTSgM/fFIaxRh8KiqZjh2qChxOpNFTLmsEK3EgDWXZshdB+z7MTCX9Zbl9aw2OG3HKQWx5lacsJYvOn6nRs0ctYXS2RLKmIwmlc3jrqbN6XfVlEyVRCCOVpDGnDpMZcypzJ/7Ic6EyQTxjsFDzlR1RV3VkDNd1wk9axzTMdYRYxhvLtF5SbMAKJucfBcZvVOjwCATGBPHHSPlwjApVZl0D+ddppQixd6yvIfQnfXYKUuzC6AYBj9uFuXi5DsAV+nWTUDYDOlVWomNdo70fhiTaVDW0Gex98o3B85XLWbT4pzFtAtcu6BqFxy2t9S1Yxg6oOLq6hpTW/ohsGiXxISAM8NAVdd4H+iGHjO6DISUSFqx2+7R1YJqeYY7O2f56CEP3n6CG91aGtuMII2eFLNDCDil0M6gSCSCrKMxeVVaj9aLeXIOyGPCG2MkYqhGUapyo3gfGIaey6tLzs/O0dbw6PEFn/5aOrMxiIOTyhnrNE3lxo6t3FSVrUd0XtMsa1yzQFc1drGmUYbwBieeQwgypuRq6rah2dTEEHDnhv3+MM0vV1VFzpnb22s2Zyu6bo/KmdVijU4iHNz7nq7vsM5IJ9poctYsmkbEg7Vj0S457j2Ldo3WmuVig3EyG79YLnG2IvQB5Qw5GM4WD4WNZQaCv6VtF+QsehDWOkHDtcYoSD5hnaO2NSZrfD9gnR0Lfsf6osbnPfv9gc+evSDZzOJiTT94MooheDSRF6+ecXNzhbMVWlusrUhZ9oU8oR0JazPbmy0X6wc8efQYazIxdTSt4+LBYx49fpenn3zKW0+ecOyO5G4NXeLFEAnyEhCjdOc1KIMAwzFyOHSzccWRspnFyDblQC4bfmZMDEZNCTIhDNIhV0beZGQWQvnsJakASnk/gtqivxEIXo906YTGErzl00+uUFQ45+iGLVrVPNicsd9fY5QlDELdXi5XdN0RrSQxf3X1itvtLdpp2Sdiz2HfyTz8Uf7WRoHV5ASHdICkSDHSupbaLcjRc3u4Ze0WNLoCDU1MNKYB46icxmZH22xARbTVhOR5df2Kh6sLjv0BHwZ2/Y5jdPgQqbxis1j8177l/gXH/dHaU8E+JYkUiOaUDI5RanrOBKDcO14H0rwuSZj//v3fkw5xAYvu1O2vAWnKC/FbnbXC/orzpoTcFswdou5/npTyaeRPCVhTQJmURTQ0MRcQzJNgLuPPs5qBQfkU32G8AuX8JwF0jNKSKI85StF9UErR9z1NU2OdY7lYjBozTLmKM448dtxJGWsYx28zzo105lk8V4lRr0t0p3J5X6UmUCmnhLPSHUwpgbXTOckjGyalJC41SZwlKyMFvVGK9WrD0IvNtLHV2PCQGFrOa1Zje2rcb4wS4GXO4D2N5IzF0ogoCsMkCWMzn0wOSj4SU0KNDKi5KO+bzKgp2ipd103MGDkv476aEpW1dIcjwXpo22n8pIBY0qQrrkaB3e6IUuLgU1hKc22ZMkpVLJWttZgxf1QwuU6V9wAmwKOIGhf2iQB+gX6y9xY2csoZZRzN6lx0HuIRFWpU6FHWAcJQjFGhssZZiREpyh+VPZWpoI20laGycNjvCL4bjSXSyBBazHQh9QRSlT1pzi4qOmxtK0yk41E00Iah6NiYk2alllxQXled9FeqCq0BY9DWYsYNaLlaSembE0ELUzdbsda2RgrgIQ64lDBZYTHk2BNyJGvAOpytsG4BMZFiTwgDWSui1wy9NPJctSApTcIQQqLvO56/esFHn37C9cuXGCVgN8qwaCsZidSauhaWjOQ4Spqs45h+nJg9p5GIufV7eTylJGNz6zXOuYlVtVqtGIZhWmuLRY0x4tBapg6apkHrajrHInTdf2GMeBOOdCdOCS8wZTBIHYQWoZXivnu4PPDsw8949dkLYuj5s3/7R3z9u+/iXcCnKEzhBGBG2/qxWIcJiIbRzW4WO0rXYdKszzLdMDVYshL3okPP7vKGF599zqvPX9L5jp/+4Y/5wY+/Q7ZBTCOiJqdCUhg1B5UeY0MmmoSxmUpXLNsFKgXIkYQmRM3l1Zb/6z/+BbcvLqmtRSXJI6Oy1FU9Oo4KWSikiHUOM5If+sNACgllFf3Rk0kYq1ltNmSjJK/TChOhaixxH/nr//sv+aM/rzFtjY+Z59e3PHlyhskRUScP6CxTL5MluniZkxUkLMlUZOOwypD8kb4/kE2NqVYoW2F0NTLZRDBZIWNkKgWUP6BST/KKpERnSqWaFCq0q7GqRhmLrRao6oJkNiTmWqIyTgZwcf6I7337O/zzbz5ie9MRorjPtW097uMWnRXH3YF62Ywg18Bxd0CnESvIJVMb44OaJx3qTj70hcdYzEqckf3AqNEpkzGfG8khX3T8ztEnOAXzsgEPwzADYQp7ZPzgnACe8m+xrx5nV5Wwb8prlk2p0EjnqHmZAS6Pg5aLGyIxgdKWul2glCCsMWQUCaWEquVDxE3sn7ssF9kgJSs50XpPc5B3qdF3x5nKZ5r/uX+u5t9vPm85pzp92YgUnFC2+WOn35HNrFiWeS9CifsUhIWjIKcK32dMvaJZ9FTtjnjcM/RHsaM0ju3lluViRX/oWK027LZ7rDWEQXRqDAY/RJJRxJjZ7w8EFFnDg7cf8/Ab3+Dr73+XR48eTUr+0/zdPcCuUIslYR6R6tG7PiEz0nLt1TjGMbtmxt7rOKVpXRwOBxZjAlFVFYu2QTE65oRIvWjQyNgZWqMLTU0pEbO1lnqxomoakrFgK9woLPymHg82D9ltb8lROg5CQXaokW4do5y7YRiwztGuW7pwwA8d6+WS690tztboYDDK0FQtIXkqJ+eDkKlcxfbmhmZVk8kisoyFmLE4CAlrZAxNa8uiXkLUNNUS3w+sV2uu+5coUxFSxlQZHzu64w6j7MQaG4YeY5ywY2KiXVRc7a6ISCJy/mSJUgP7/Q3GNlxeXvHrX/2ay6uevj9K/M7irPTOO2/z5Mlj6qbCOhmvm2+mSll2+y3Pn33OYbfl8tUrev8eiYbgB3zwWOd4+OgJn378MW3V8PbDx4Rec/nsBahMVJLsqpGCC4waT6dgnMaKJ1OYgaf7OqcsNE6lpABC7uXj0JGSGlX0v+Liu1eE3y+mlNbcvNqLiHCladslx5ue54eXXJw/JNf1qBcgCeTgPY1b0A0dKUdWqyXKQD90WNOMCbfcbwVQ7VPAtg0hjk5k1jCoxJYDu+Mti7rBE4l9YLNc0WuPd4GeHj1o1ss1h9yjyDSmpmnWfGv9AJKi7zqO/pKr7SVD6um7I8knTH5zKdzlmNOlSwz4lyTKmdPvzve+f83oU/m90hH6Ks993fvdH40p//4qx/y5UsCW3ILp5yUvKD+bxneUHhkF3CcBvfbc3I3NYp1cjqmbnxJ1sxjFcQ2D99R1NeZXxc5bWKCVsQyDJytLXWtJ8I0hkychcD8HLRCgJpHvxMaSC8w1X8o6cc4RkrAP0jgSYkZqdogeNTot1XXNgwcPJsAhJdFrEIDp7lqbj5zLeT8ZGJzic5YiYnYdBSjIk67W/Zzkdef6TQZqXrx4Qdu2HA4HDofDJNDqRhC1HYEZ7z2Hw2ESYi0FcMnf+v5ACJ6maUaQr+HRo0fj2M8wXdsy9lSeW1gkJTYX2+55jj0MwzTOUpygCpOi5DwhhBNbZwTusrFYo1m2DbVRxBzIDKTYkwZFNjVOV8SYZLxn6CcAabGQ/EkdE93B432YGB7lOzhKozNOIsplPRT9mnn+3DRSQJWRHVn/kcViMY0C7fd7+r5nsVxMIsVzrZAYhdVkrYx8aSPAiICsDUX3LVmHbqRB06cEaUDFgPYH8HtMEtaCsw7jHNU4UuSqCh0ifZLYn4xj6D1dl0jWEXzADx5XDQTfc9jv+PzZM66vruj7AasUaIN1TLbrpT4QLaPAdrudRumUUieDB3Vi9RVGUvn+TdNMbJpJ1HoEdLbb7Z3ndt1xasrN95aqqjg/Pwdgu93S9/2kRfkmHvf3jdKkH0ZWl9Yi3D50A9vbHZcfPePlp5/jrOHf/Ns/H0WDB0IQYD6OfS6jVRmMmI6JsWXM1DT/rficx5gjT5iugRoC8Thw8+IVn334MZevXuGHnh//9APe/9EPyEq0pCKZEnCEVSFxnLziHgAAIABJREFUqwhsF3dCcqKtHXVVyb2aEoNPpGT51a8+5OnTZyitiEnWjVaGoD2H7kBOCq3C5E4Xjh34gB8GMlos5YVEI1MDxskUyltPsEYcSHMMVLWGXPP81TV/81d/yY9+/ycsNwti8IQk4GaeTmL5k8aYYcT9z2iUckSsiOQrQx9EG8jVLcosydZBVhA8aThC2KH8EYYDKnbUJqJ1BpVJoWfwnhgztgJjK4zSWOPQtgXTkrM7sQQpNb1cT6M0TVWhfOLlR58J6aC2vPP1dzk7P8Naw7KtuR16boaOutHQtkQfJxZ0YThTls9rYtxXzbvKfSkM11MsmdfJX3R8KVAzTyqmRToG9HkgEvFSmTEvLJgSUOQLF3BERk30WLgUBk3ZgO5r3cxnVgXIEZeBNHarwiiqRKGQqxNjxVpLionAiQlUAogAAUKFk6TjbvH/OvBlDric2DSnubS5mnw5B/d1dAQn0CdXpxmN+LdBpLuJcPn8dxMlSWQLaBNjoguZEI7krOh70WbxPcRo0M2aYfCYOmPxDD7ijKPverR23N5s6bqe5WJBf+yJKXHsBkLMHPsDGMtuiLTnF3znxx+weedtHr73Ho/fe1fmuWfjagAhxskWcX4udS56AWU+X86vn2Z0hTWUR/2UlBLGngJQCHG6ecoaCSHQjMnMsTtiQs96uRCrxpSwVjRo0vi+Zd3UdYWxFmOXKCtU5my02Mp92c3x//NxvjwndpHVagGMiVHbcHn7kpgyy8USgNVqhascXero+oF1u5HrrRyL5ZrUiy2d0oowJLQVinQOEZU0lRUR4pgDGCuASEisFkt2+y1KKxZNS+wlmMYk1pyurRiyJystiVHjOHZ7hJafSTFQ6ZrD/ih0VgVdt5OgGgeGvsM0iqwCzbmlWWpC7zns9hy6PZ89/ZSb24Hd7lZcrFLg4aPHPHr8EK0Z6cel+Cv3rMH7zM9//o/8h//9P7DbD5xvNLv99zh2FVYBWrM+u+Dxk7f5/vs/4rg7cPPiJQ83a5qXLzmmJLTYEWTMCNOtMoZh8KQU7zBhQjjtjeMnGccsBaHXSmGUsAu6QWw+cxoghzvX+z4rovwtgT/iqt+mzscYqaqa482Rw63nyTsLqBIMHbVuWK3OqaqO/X4LFI2BhHFGui9GOi5dd5B71Vr84KmdaDzEQTo4UYMPA92h563Hb7Pf7bFW83z/kotHF6AUx8GT68xhGdgPB67iLVWsWLs1PYnrF1dcLM/YqA3Oe5ZuSWsXtO05ddtwtn6b434v+jsxfHUg6w047seTOTg/3+vngLYe0ccpSZj93ute/8uC/OvWzr8EqJm9EsV5qTyn7N3z4j6/5vW+uLCfFyxmGsQqr2mtnhiwKDWCNCMTafzdeTNlHjfn5zPnTGWFzanH4niKxVZ2euccCnCjlsQJHJJx5xACqIG6XSBuVAZrJX6kcWSEKO5KMcaJVVs++1x09sSevQvgnRoVwtadCt/RWctqN7FXSrG+2WwA6LojPpzymftr6zSKXq7jbwsfC0Pj1LwqIMH8Gs4BsTmodv+xN/EoxbRzjrOzM7quI+eMdSeHnWIRXVgfwpCoJ3aC/I6fRFyLi1GxSi6/U4rl8holx51bgDcjowtOjcmiXVByzPmfpmlo2/aOXo6wZiNVs+B8vRJtluQZuj19vCLaAbd8gKocIQ7EmEYHmGoCDfq+p+s6ttst3WHH8XiQc+DEMjcEaT4UrZQ56wWYio65xkzOpxwf5P1SzKNT1Emr5/b2lqqSZtBcl9I5h7HCjNXGUY0ubCkltHUkU+GsFU2znPAonK1JMaBTL535fkfuJb5po7FudE9qWmEfGDOyXHqGUUBUvkdGqfG9tWYYerrjgeurKz769YfcXt8Qhw4z6qm1aok2eoy51ammUWpkt5y0OMt1LQBfyV8Ph4PE8hEoLOf1/Pwc5xxXV1cToFPOXYwBY5jEhQtr6/b2dqrRyv1Z9JDe1GO+h0yxUY9i2MaSojgsXb+85MWzF9x++pyHF2f87E/+gGZT06eOmBN5dO4qTLBMwpp0h/wwv7ckN7wLlp8+hwi4a8a1jSIfPftX13z2mw95/vQzss788Z/+Id/84XdJSsZ3GRtJufTcyohumc7IJ1Y12bNYVKPIMHgfgIoQ4C//4j9xPHQYVY0ak6MGTBQARSmNRuN9j0bhjCUOvWidKSPD01qjlcX7wM3NltWDjehMnS8JvsNVCqUjIQ6slguefvIxSsFPfvZ7hODHhoUe9d3GOhnJ88kQseBqUMKUr0wNbkFOjhAV2tTYqiXhCCNbUxNReUCFAzoc0NljVEBnDzmMoIiSfDhrlHaYcR9QpiJrkfhA2RnRV+J0AdbU6JJ8uNnym7//JbeHLe16SeMq3nvnXeqqIhip82pjOO723GIInZ/MQ8aVOVpzz/Puuw2gOT7yRbmUUuO4ky4YyOnnv+v4UqBmDgwUdfuc86RRcz8ZUir/ltV0zpllU09BTOWMzsWqO8C44d9HmkvXYY48x7FINCU4WAda5siCj2NRJhozIZw+85zRIjebIXG6KXMuYpxqAlPKyZ4nV/OEaq72P092ZI2c3qtciNOmcDq395ky80VwHwQqr+Gcw2hDCBmlDN2xmxJNay1k0Maw6xLX24NQq/tIRYtbKBptSb4j7/f47V4E6PpAjEdilFGKuD8Q+oEhRjovncRBKULMbN55l2/98H3e/d53OH/rLZrVSizfUroDtuUslqJ61vmeQLCUSaP+QhoTI7FCTNOol1Ij/XAcUyqJTzlCEK/7YqeaUkI7mZ3ebM5gsJydn0/JiB4F4zLqTkKkrcUYizYLslLiq6M1ZWTlTT1q3fDk4gnoTEji+BFiYLFc4Icw2n4exBq0HzC1YdEs6buO5GHRLnC6xTaShFhnSAlc4/DB01YLQh9Yr9Yc+iPHvsNYR3c4SnKBx9YaZcDHgUykT5nBe1xtOR6OoKWhUDeW/WGLiBY3hDBgjMx6OtuwXp2RyRwOO7RT9LueRbskWbH3XD1a89a7D/jNsy2uPccPkZv9Na+u9sTgidGjyZyfb6gqi9aKtm2m+0frgoonnr+45H/4H/9nfvEP/xnnGj6+qPjNRx/x+NESXVnpHqBwVcNiuaFeLInpOXVtWLcVN7vuNEudEzkKm0fWVAGp58yCIox6+ongQXoMMOLQ4kNiiCfUXo3jD7+98Z+SGa0NMt55Ym3cB3NTANM7Xj695r0P3sLnIxcPHkJI9P1OnMJWLXq0U1Va44PHGE3TVHg/4IwRoURbo6wi+MDZ+ozjscNVlqPvSWias0ZAP6CqahSa7WGHrRzawJAHhhCF9ZgzKihyY9jFjnyWiQvNVnX0uxsuzAP0cYfBsDA1laqp7BlOWZRFhMnf0ON1gXq+n3+V50mhf2KUvA74uP968///ImbJXcDorovYl71+ASvuv1ZKiRDjnabDa6a17rze6flpSnK0lpgfg9hkFrp+AVTKSNGcZSRxV9/7TneT/RKTBITJU5cMmIoiZ6UbyRj7tSkjHRGfxtEmpUWfagSUbNWOSeM4tuEjfuhgCCOoomWWX43Cl2M+87rGy/2OWhjj4PzaBO/FPMDMxZdPOcFyucRYQ98fGYaOGO82uubAULEHLnH1xIBVZDQQJyHScp7NjCU7ATP3ktM33fEJTsBSsTlOSUakvTZ3vnPbtnfci4ZhkDH78TvmHCY2Ttu2095bVdUdIKUAN4X5Mgdp4K5LluTEfmKn9KM4bSm4i112sfkuTUGttYhfKoXR4HSm1hBTIIxaSmno0bpB2xo0I6AnMeN4PLLdbicAwDlH3TSA6K/FGLAorLorOl3GBufM83mXuKzzorFS2At27OoX7Z+qqgQUs2Ya96qqavzuFudqrKtQ2k4NiYRoN6I06HGkD2Hnkga035O7a3Q6YnXCUMAkWfMxRqR80ChtqJuGbvB0PhCTiBuHIaKqQL/bEXIixcDN9SUvnn3O9eUVi8ZStS3yQqcaoTCi5Dpa+v4EPpXcs4C15b4pa0nqKzuxuIomUlk/5doD42MeY5ieF2Oc3r/rOl69enW6puOaf1OP+yBSKWiz1sSQCIeBm+eXvPj0GbubLd/85rt88NMPiDayDQdxCVXC3s65lOwykiPNtVM9dopHd5sm5ZjvazKhIPtxGDyXn7/k6Ucf8/L5Cxarlp/96c94+PZj+tyTkpg6qFzG10XiAZQ0u9RpPFarEWhT0NQOlSIpZnJSDCGy23b80y9/LUxN5Uk5kCICZPiBwqzUyozAT6Yylto6NIqQB5LSEjOU6I2Jk67G2ZaL80eEcOCw3VNXFTs6vA+0VcXnn3zC93/wbcSJN6KcG+k/ch5zCpA8SjkwNckuyapGKStOpkpsujE1yjVELDGBthmTM05rEe83DaEPpD5AzKgEmaIPZDCuplmsqNoFpmrRVQO2Jo7XI8OpVlMiIgACrBklDFgVE4fdgetXl1y+vCT5wMVqw9e/+R4qRUzO5BgJ3cDl4RLfBe6qk55G4soYMcxzqd+OeZIvMWsonhhwcyD+/tTJFx1fSaMGuJNUFEHg+2CKUierubJhpJRIw5HVcsnN9TW32+1kU4d202uXTft+t9E5d2KnJEnTSvF+ssg+JXxls5trkcxPQkmWROtkRMoUIxjFqFeTZ6990sopzy8JTgl08/nseXJ4vyMiv+vvoLbzxG0CMu79KRcSZHM22qKUIYYkIs5j8PEpglJiXZsj1iroIzmCU4ZWVWzWD6DbYZVFh4zJiraGrh+wI2AVBk+fMj6Dqmtc3bBZLXnrva9z9s43ePKNr9Gcr7FVTe3GOdh8csaaH/PvUZKkQiks3z/FIkpYrkfRPhi/+3hDlmQlhjRRl0G6CXqcl27bls3ZGZVaUVW16KEMHqW16O6EiC4b5agrIMG+HjvBaXLeUfrN7T4cbo+s1kt8GqSztzvAqO6ux4RkTrmOOZES5CFztjhnUZ2hY0XOAaMF/FstN8KkUJbatEK11J6mqYk50/sB5zRdPMjwr4XDcS+uYaam1jWuddz210Qd8dHTqoYcK9pVQ3fsRfgsG9qqJnq5dlAx9EfqekHKHohUpuYQtoScsUbxjW+9xyf/6T9LwLEWZyuayrPvt4CAMWdna5qmHvcGEdUsyROIQ8Vf/fX/w9/89d/Sd3If1VWFdRXHvscaWXchJg7HgZevrvCAbiqqELjYLPh83xFSkZUDKR0zKY5F2Vjw/Ta48vpNWCuh5naDF0FQVbrw+XX17tjdyCMVV5g5c02UedKvlCL4iMs1Tz95we8NT4g2cwhHLJk4HLCpoq5b+t5P3cqoEkbrUUNDbEmDFZ0qcVwTHZumbtkfdlirqBdL+m6gso5mVdEdOpp6ydD1kDO3uz2H4UDT1jw5f0yfevrUcTncEPqAzgoTHTkkqrYh5FcoFDprzqJlYze46gFKWcK41539q+6g/++Of02xegJ0sjg/qC8GXb4qe+ELP8+XfM4vfM698aTCPijjDV+0zl93SB5R4p/GWoPXYqUqwvlljFijVJqaKAIyiFbZvPCan4sSb0pBLOeV8b7JU6Eo47oCmvphIDg7xfDgB6y2eO9ZaNHI6PseZRtMbVDGYZ1jCANDGEhZDGBjCOQJ2BCqeon55R67y6A55QHzRpCMdVh8FHFJERg/uUWUHKUUcVornDMMg8X7from81HIUqjlHGfjZdN8GZKIn85h0RlJUfbU0kyTxxOku46X96/Dm3ZsNptJc6bkaWfn59TmdN2L09L9Ef85IAFM1xNO92jRhCvnqFyrwrC4D5oN3t+5D4tj1G63o+971us1FxcXvP322+z3e9HUmTUyi0uUNQKMOGtpKktdQfLgVWCIPcqMekkhENMw5jhMujoFEAq3p3GoylVEhbjiIGPKfd+jlJrunfkamgvdlhy61AHlPK3Xa4beTyyllJKMQlXCnins/DLWZYwdtUkU1jlSQhqASmGsEf0X35MVVM7idEKFIzbu0akjD3tiFhHn4qgWYxg1f3q0aaiMpWlqun5gP3SEkBkGz/4QOF5t8UqjnSWEnuuXrzju98Iyjgq0ph96jsNAGgGWAt7VdU1TN1TmNNpUGDdzZn3RlCmMrTICtVgsSOlkZV7W5/y+b5oarfOo/SMjUk3TTDXL5eUlh8OBMlL3JgM15ZjXlKXZ5A89r54+58VHT+mvd/z0937Ct3/2bbZhR08gKDDJYnEkRIsEpJ7TZGISF59546swZgrjuhzTPTo2/ZW8EClErq+u+eTjj3nx7BkX5xv+8E/+gPZ8wYAnkFDKinGHdiDDT0Xd4ZS7IZpFOQWwwvZZtLWszwhkAXNevrzm2bMX1FUtDcnkpWYd455i1L4ZQQGD6K2G6FHjGKu21Wh4EdFVjdEWq2ti0FjbMvQ9KSl2uyPWVYDHak0fAh/+6tfsD7uxaS7vN3IhyMjnN8ahbI1yC2JykDUZNfrqKpIyyPyE1FpOebk0oy6s6M3U5OxJgycjwv0YgzI1pllj2iW6bsHVRONIypJF1AZUkvOgxNFUBCPlHBqlWS+WrNolw+AZeg8q8+zDT/g//qf/lR988D5fe+8c0phroNhvdzAE3FS3ljVR8If/wtxOnWKBHe/5+yDNfzFQs2ibUyAauyoizstkQSdCfSNTJMtJjkGSooQ46kQyN7sjplrw4JFQ9CKanEe1daUJM1Bo8F4ACKUYJiE2O540mTfMScQ3pdBWkgwh9pTByyhH5jSHOKcAp1iK9ZOmg9aaOCpngxqdJjQZTdf7eyeUKZjlVICimetUShAjKfnp9UHizfReYZbQTImRUOVSLp0/Jg0McbEaGUAIaq/H4Cx2t0WMTY2uElKci8CgIhthTPg+0R0NTf2Q5bsP8IdrFIqN0lTO0R17dtst3NywspazBw9YXTxgcfaAh2+9w+rBQ6pFS7bSzdBF9DIlUghkKxS7qqphlGDKKY1FrbBklJW/TxtXoZWNPvNaEgMZmRPr6RQjQxANjRgih8MR33fYyrBaNpKERA/WYppW3J2soLvWVJKYGFHGNxNoJwruIOKVeZy9LKDcm5tuQlQ9Phu009RtxRBruv5I7DVtvUIpRT/siEZT1Y5jNwCZxWKJypnrmxfUVUvdVLKWvMH7SD2CWxmFtQZtNSZqUoDKGqId2B9uCX1H33WslhuaqiErxb4/UOE4HI+E0b1IR8XBH1kuVmQ0fS8zp/u+QyuDMxCiJ8Uks6cmUy/lvjeqFkpnBV/78Xvo/+XvycOA0tXIHsvkKB2TmDI32x3X263ooaSEzWkE/cB7+OUvP+E//p9/wdNPP6E79mjlub655PbmwM31HoaB25trnv+/zL1ZkyzZdaX3ncmHiMjMO9UAsEgQTYAACYAAmi2wJbbpX+ihWz9SetC7TKJZk22SdUvWzaEFslCoEVV3yJsZgw9n0sM+x8Mz61YVCmyQ95hdy7yREe7h7mfYZ+211/rsU/bHPUnDZrflujEMeULbTGMgJ71knqVJ8BdTLXe8C1ieg4MyVgv9VSuF1o6sGkY/Sx1wSkUA9NVNcKBESpEcvLi75EQsgnIUTRzRARO9HD/OfPTegfGoCP1eWFbREOKAspkpSD31PGd8iGAsPkomqSkL/TwfcJ2UnvZ9zzCKBatrHGMY0AlCDFhlJZs/Z2zUPGkecxqObHPPbtNLpu+zkaZrGKeBWU/MQYTRPzl+RPIJkqJre3KENx6/wfFmYtpFboeRnd1w0e14fSHUV0Fs5yTBMuWX+b2+vibvnmvjSz/RVcSQwqD+9a0gS7e7+10KDpRXf1yvj/ePsfy+FCYVRkoGH7PU48cM6EoJu3OM+2297qUogac1GpUTRiuCUsSUmedIirK213tTwdESKhawR1hsWkvpJSgRMl+xVuSuSVaRsskTHZqIVo7WGtqmEeDWiGh92/VYbcShCgE9tXHMPmKjiI1OJSkixm7ygIyW0sEKppL1HSCmxiMxxqX0tzpFlksjpeJuVeIQKaPK4pwTISdDDGe7Z2EkGTIWENcYW4wV1lojtXQ4hCLaXzqjUtVpxd4BEmSjKELG+Dr/lDkuREmycD858+tpFf1ztN2mh9JvdpuelCIpzPiUF0ecu0nJs1NO1WCpMaC15g4QCOLCKMdPSzwr4IOsr03TLMnHnNUCDDWlDGeeZ1Aiyvvo0SPatuVBYQbXjXbVy6laMVpr2q7jrTce8c03H2KNjAMpEfVgPD7vCSGBaXBW9GFGL89fYjXw8wGVNV27IaZIMA5yL2uIF7dV64ACPGa0sGOtXPPigLKKo2Y/g4K2a3CuYRxnlNF0bSsJWGvorJQhWWMYp0l0Y0qZknUdGIs2hpDBlvhQ+q0mpiCOh34gzJHeZhq/h+kWFU5YlZaEW84RnZWwVaMn+BE/dyjTYI2haXvMkDDWE0m8HCb2xxMxybj71ccfc7i9YRwGcYXNMI0jXb+haVo6KyLSdR/gvefGz7QFdJomKZPr+56+39CU0ro6F1SQZs3oBxZ2Ti3ZrAytep62daWPHlcyFIq+c7z99tvyTFLi5vaWtnl9nUxjgR5IEiehNCFHpuPMZ794n6fvfUAaR/67/+Ff87vf+X1ezrdEnYg5F6emTEwSEylkjBojoB61bGfBpO9WQFSGYR33ORfmc1mDo48cXt7yyXsf8tlnn/Dg8SV/+rN/hds0jCmSSuyVU2ZOM0anwr+IS8mQRkklR5JqA6MsmRlnNG3ryBpUyqSQmabEe+++z+H2SAyZOcRFYL9cAbKinYH1BKSqUQqorNEhoqJF6YZ8HDC65eMPf8VpGNm/eEHfWz791aecjgc5jtIY40Bnnj57RvCgspEkAcJ21VkMYnJOxaXRQu7BNKQcAGGwBYQ4oLXDElFpIg7HIkAfSHmCPEEKpGUdjaXSoUG7DtVv0ZsrlOsrLCXjl4wAYaHuMpF9ZI0QZJ2/vLzg93//HR49esCL588FYPWRTz/5FX1nebD5DmGcuNpuCzs4oUPZr6qCIaSErhvWVcx2nyG8/n35WV7XFcjWqlRsFNkE6aygipnCF7QvBWpuD7dnpCefMzfKVOrl2ZHJ+0CCs3YNqohtGrSxBO8l4IlJKE8xoXRCawhRHpywUGQC1JzZORklDgMUMePJL6hyqPo3tcYwlEwGoqxdHMDJWYAVMotlN5yzKinJgE8lgHXaEmNa2DqVtlmFkSWmks4hAIopmjlG7DWzlCbJGK0Lm0Jp+XuMK9qqD2KpqBSYIuoHxQrs7CaVCmBBzpiqto8AOxVpTymCFsBMdA6MKPznyJwNc7LQPcK3LVlFLi4f0rZCC1c50cfAhZ950480ztD3W5rtFd3lY1y/wfUtyojeizIiNOhjIhd3jBgisoENUGywY+kXxhiyUvjZwyqY01qQWq01ru0kwAyJeQ7F2Unod9Vm8HQ6UdlWSmmaxhC9Z5pnImD7LXGeZPNQS6aUZo4R55qFaRV8Wu57LRurdLq64L6ubVYjfhjZbDYM+4j3E9Ya2vaBZFGzx7mGw+mGmIWi772n0ZbT6STK58YzpYRujNhXOid9WoFPIyoniIHT4cRu8xACjGkk28zsB3EVU4am2TCnSE4ai+Oia5bA1YcJZTLzFBiniceP3wAC++ON1G7Pe3LIqCwZO++nIoKYmY8zWmkmdeDi9y558M6WF3+zx9oLAVWLYnzOCrTi3fff54OPP8bHxIsXL3izsSI+qDSHw8hf/5ef8x/+6v/idLgVPaQ88cEH7/OLdz/g7ccPyZPlxfOXfPr0OYf9Sz787BOONzd02x2H04HTNKAyogSv1xtYqGBjtVu9y6oREFJV8BUZz0YbjG3xWTPH4tJSd2p1N32/5br4+2XzrJS4PsU0E6KlaXogls2CuIO9+MxzOihsO4JKaHVByInDeGKz2XB7uEVryeydhiPOOKx2zKNnt7nAuI6UIqfTRNMYxvGE9yPWbVGN5jie6FxfNotw9fiKzbwRuvXmkrZvGMYTKMV4GNlebjn2O3CZMQx88ukn4CK6WG8epyPONOyHAxpD8AdUOLA1HY/SkTYZ3vltDrB/RLvrXnH3OZ4zNHcJLZ8HcNSSGcqo1RsowcJXZ3aW/pcNS4TxBR/9ssBjYQeUzJqsOQofEuPsC6BCRZFeeZK7dPPlVQEkQpIsJGC1lNnGDNMcSUnTNJaMF/CXGgiJ44us8XEJdnKOqHvqYss5hb5G0zR0XQuISK41irZxWCPzvXUOpQ3ez8zZ03ZbYlYY24AyxAxz8GzIKA05Ct0dnRAhRIXKos+myrOqpQnr+6u1CLFzjv9QyFqpEWvjhJQHa6XJSoAsYaHKeq8oGj7F3amyGrQ2Ugayeg5rhk2IaYlType682wqS8k5J8xTW4SPC4hULVGU0qUkvrKE0h1Nutet9a07X5txgIAW3ovDTtu2bLfbxRVqAU9g0Q6ppSTVLlvuaX2u/o74a3Vzurh4IBsgNCEk5tmX7zHT911xN9K4AuQIeCex7X6/53Q6LeyKChbVPiX6gBbCTGeEXaFVwIZIExPeD/h5ZuSE6x/Qmit8lDHjnCUnmMaZGDNduxWAhsykR+Z5xM+JjKZpezJawMp5xjqKRkqJjfMZnKpSCM45ur6na1tmL7oau8sLmVc8WNwCOgjgJCK/thgjWGdF3yKVDLwuQpzaSLIzRcIs7BlDIE0jORxI/oBJc3E/U1T3uJwy0XsBw5MiaEdC44zGWMem3/B8f81pPPDp9YH9zS0319fcXt/w8sU1WsPucsPl1QV926FRdE3Dbrc9l1iuQD7vPcM0EkoS5+Hjx4tdOyXh2xbQal2F0LbtIkJc+5ErYN79csNxFLA7hMQwiLOT1pqulRKyi90OYImbX9cmDrCFt5FBxcxwe+SzX/6Kp7/8kI7MT//7n/G73/8WL/yeKUZU1hixuBADFR1Qyi7LZd27yn/O69ydBER1dFqYc3WRLqXkKXPz/JpYCUOiAAAgAElEQVRf/vwfeP7pU5688YAf/eRHqM4w5Vi0bA0qURb1RIjzco5z6VT5cxE39irjlGLbyP4shJnkA9PsGYfIrz7+lHmcCUkV6+t1y/d+lnuYU7GTptzDAFg0kTkk5jFwGkduX75k2h9IaWY87en7Bh8mHj95QkgJ1zXc7A8kryApAUgqEFLKAGOZH43uCbkhZkPESzmRCoWY4InzBHHE5JnkR+I8YPAYAqRZAJ8U0UnYmyGBzZZuc0mze0izuUJlC3FChRMmJwQ6CSgj+0zQqKzQiOlQKqm8zW7D9773Hb7x9hu8+/d/X94rVRs3N9f400iOkZgz2hmcNpL8KWH4ORKXRfpViSyJ2T6fOFuPtbM2TWFY6roRqP++nKvzpUCNwqBYL961A8tCb0oZlAwAhTYrhevyc05i/8cqKJDsDlhT6ZtpJUZ2rlWsyHCljdqygFTEuU7u69Ka+n8BXu7+v9IBU0rLuZVSS02ntkaYKauyJpAFupY3rXUg1nTWel31umu5Vg1a6iK/nhAWMWXOD3otzKjQoj9BcSyisHNSQRPzORtav1e9F7XutQqO5ZgWcUNVsjtTiqTsuGp6dtsW8PROE+cRgkdn0QNybYttrNh0lrawhwrSKNnLKCUlTibclCLesFCN131DqOyqIOeSiTLWlA1wJgSP9zPjODCOEz4IzX6aJo7Ho7g7bTZoI0yvOVVqvKFpWmKqlqHCqDBGrNq9D3cCnTUFfV3eNo7jEli/ju3q6opnz56ilMI1wmJqWxHS88HTb1um04hrGqyz+DhLjWuK9N0WokLh6JseHwM4g9EwTkfarWZKnhA85Eg0iWQjxjpcthhg8AGQzF3C05oWHRU5ZNquF6GuEJjTwOxnnGsksMnQuYYTBo0pFOKZrmsYxwOJTFM+m/IsIKnrcBeZd77zNp/9zbuk2YKRLDwqLzPU6Tjw7//9X/Fv/vzP2WwuuLzcknMjYtinE9Zkbl6+YJrEcjST2e9vubm54eXNnhw7bvcTT5/tubl+ycuXM9fPb9n0jqQabLtFG0/2STaEKzCmzhW/TiBUx6uxBmsNwzTfYVV8WZMa2cKogUKzVZAgJrApLQB6+UKF1SZi0Q4rGkYaRIxNEbNGW5krmrandR3z5EklkzfNR7q+BqAW5wyPHj5imkeMMYzHk1irK02MHmMU++EFw3zkYfNQwOMp4UwrAefGiYNTKJa0VlwuGmWxxvHowRMON0esdjjjCN3EZOA0jNyOFuU0aQz85GuNmH+69nWD4VcBJPLC3czfnT98vS/09d5/77ut+1KFEasmWQXPv0qf5G5gfLeUpIIHZpXVzCkzFxe2xjpJTqwEVpVSS4C11i4TlmvRW1nFIZIoEEbYWUPtzLStzImasQYpYxnGaWGrqpzLMVxx45FEjsoZo3XRSCjgTBbnRVXWnxoL1LGvVkhdnTsWgCPf1bDTWsqgYrgrPr2OM+p71/8XLcGwHKuW9IQQ8EHYx+sm8VRa7mNNui0W6kpAOklQr2I5hNFY19PXeTN4OBwAub6qLSNxmV7WfWABRapWDJy1Aruu4/LycolHaswmP88aIyklttst1lo2mwsOhwOn02mVtc9LqW4FK7z3DMNAXIwV9AIAwDn+rPo6S2xsDdvthm1laqRIUBkVBvIcITu0y6TQcxgGbNeXuCAAom/XtC3zlNHRMM3jkmG3rlkYX123KWCCsBVEI27GWsc8T2X8GrSWbLG1ju12h/czw+mWvutxTthBXdcVRyW3bKj7vifnTNt259UwJ/quO8fkWcrlO6fwpyNpeonyR3SeMCmQ4ixCwhpAEjXKWLJxaAdWZ4wGnQLZH5jzjGpadOiwyWITDLcHrp8+Y397y8vrl8zjiLEyf4yjsInnrme32eKMKXqAdukHZ8BUs9ls7giAd13H5D0hSIxey+zWEgpVL6juL6po9W63o21bjsfjkiTP+ayLU8/fNA2gmH3geCqC2bb5uivHP2nTPhK0AquxCcLLPS/efZ/9p89pG8OPfvanvP3t3+UYZ1QEoyV+qQnrGGuVxN3N9Lq9qsRkXXpS5y+ttZQUpczx5Q2/fPcXfPThh7z5+Ak/+smPMK2VvY+qTFg511okdtknrhK+9dhLAidGtk1Hb50YdSCgRc5FsHfFYVWcdeK+rC17LACKvmmeySkz+QCHRA5bPjj+Emc1KgdORpNVxPvAxYMHXDx6zM3xyDyPEr/Jqi/sySQ6r1prsm5AGzACQqQo9uUhifNamk4oPxCmPX4+kf2JHD1znCDOaBWX5yXri6LdPaC/fEy3fYy1F2h6uYcpkBB9HKUDWiVxTy170LOuW9WMVRht+cY33ubf/PnPuH7+nKdPX4jeWxTx5ePxiBP1Z/qux/Q9R66/6M6uEm1fHauvs2+6AKziXraKAXh1n7zfvlyjpnS8XEpuhFpVWSSJMXoRygtlYqoAg7pLOY4rAGMdbAWfSlYIyJoQA0YbEnEJONbOUMKw+fxAqL/XYKROYPV71KCjLm4GRVJpmQyhioqdy5TW4rj1u68H8v1Nfr22GoCuj1HF1Gqr96B+X7M6xxpsEqS3WKBpJa5FOQs7qSzW9ZzrB10ffL1euX9Shy+AVzlX1sTJMD4/8fI48OCq57Jp0a0mq4HghYZpGyuAjXO4RmjhmbPgsdD4pHzNe3FvCvFE0zicO1/bXSGlsuhqqf20NsvW3dSJt2YchEpXsw3DMCxODSEE2kZE2IzWDKcBaw273Y5DCJKtLWVXqrBl6j27rytU66XrQlfv3+vaTqcTXdfjnOXF9XM2m+LEE040bcP+uMcnz/F0Qs+ajEdrK8J0xnGxveJ4GBj8jG0sSiXGMBDUzH6+YZgnttstL1/c0LcbxjCi1cw0j0zzhHUObRqUsVKuMHpa23I4HNhttkzDSNu0DCFitGGeZnFFiqMElN1Oat9VIiBgj88ntHakrDkN+2KjOpCSZ1C3vPO9N/mvVx9xeC4OVBXAlLIQoe03rud//V/+N/7d//xvuby8Yhs2fPb8OR9++Bl/8Rf/O9N4QtzdEj5ExunE8xfP2B9PKAUff/qCz57tefb0mtuXR46nyBQiwWtSbompUk7XbnFfPHGvGYkgi+0yDrQw/Ko7RKQyGOS9ry4bqX+T4CTnKFnOorl1zoQ3ZcxLWn4eAi9fnLh6p8e6TJyhby/luxiN2UhWbzoFTJL7GkIkmiy18lHKT8dxYprCkvnrup7ebIoG2Qu000x+onUtxigmRmHdjYHkM03b4JkIPnCYDthsMFmYPNtmQ9d0UDLFu35HCJHDdOJ0mDC2o9ttuY4HHlxd/rccTr+19qpA8f7r98GYM8uBO2vOuY+9ql98HtC5k018xXf5os/fzxrdX1/qulXn46q9sD7HOpnxVfdhAWp0Ob9WUPryNE70jcGuwIj1mLufqBE2mypMs3tjswAg1p7dUEzbstvt6Lp2WVN3u50kZ2Kg6TpmH+n6DmMbYoKmxBbOiUta5UwZa1GIVoaw/SS4VavEQL03SzJmNdbPdOn7jKa0PMd13LDeXNSYpwJCooVzNiGo5U9VU2j2d5+HxFoRpaSErN6LKvKacl6MDFKsWnPlevI5Jvyi7OLr0ioTty32zGfNHbmXh8NhKS2p962CKJVRXjfF9d4ej8fCbOmYphPH43Fh3VSjg2kaheVQtEjOgKNo81lrGceRcZT3TfMsZXglWVS1T7TWCzhUNXKapqFrHX3b0HcNxih0Eu2zRkdaJon008A4HUhB9JVAWHJJKVzbMPuIjo4cIq7tMCmgo8X7WUTiM4vAtyrrQ9t2HA6ziMevhL2lf3u2W3GffPnyhrbt2Wx3xJjoWgHJrGlK35WE4nZjRaTeitZPChFlpMy332wI3pNjIIQJfzigw4gJR1wcsHkqWXmFdiKabI2M0yqloPJEzp7gJ4wSJ1mdIU6BqCPaXrDtOkyGl8+e8uLF9R0AJCUpJa9AjFJqAQtqbFvHcn3WSuXFqjxncdiizF31edf+VF2g7gtZK6UW0K/Gq1VsuPbVYRiWfmqM4Wa/J4TIkyePASUaJK/v0KTVFm0UQWUOt7d89ve/IDy75arr+P7Pfsz2nSe8TBNWlxLDJEB5bZVJCHfXn/tr0Kt+LuyXFUkglVL9D957nw/e/yUPri75wY9/gHaGyFr/9O513N+L1XOs18AYI9ZYOmN5sN2KeG2MxBSJScoht5sNzonAvsqFRfo12upsy/9jDkwTRO+xxjAhGpBaKVznOB1GrBvpthNhnmisOJZKvBlQhSCQoiJlh1YtIekFMMlRGDFSKjsy3jxDxRNhPBCGW2yaidETw4RWWcr1cyZEcE1Dt72g6S+w3Q7terRqgFrtUBlOXrqxbsi6JWvRTqQmOxfdRolZt5sNjx5d8J3vfIu33nizMFoyIUxkf8Iq2Sd2XYfuOg6rpfHus5Vn/fn+k6g6kXffTWH5Vn06YQKuGVxrMsqXtS+nDCgp51Gl1MdogygyFXGvxp6DQXVmrqwVzY0Rwa/KzFln3iSoSCVzk+X4nFWxa+mTgDSpCM6erbzrAFv/vgZRkjq7M9U6z5xF02LNhFneP0uWej3Zrq3Ga13w/YG/Pj+c9WvW96K+fy0KVl9Txi6slDvlNjmiUkDnjE6JGAuwlGXBWAdh99lHcGb4iK6Q1H2mnAhBavysawvwE5mDuC4dTiPf/MYbdLuG6bQn5VjEqrLUA0epHZV0fi1bOoN5xmTQlpTBh3Bn01kXEEpeNsZASrXDVoJZFV+Okp23GmY5SNM0IpxXanuXYFeJcO6mODV0XUfa7STwGcZFy6c+D2DpC3URhFXZnrrLtnldW83chRDYbLaM44nDccD5lmEcSGSsc0zzRNsURxWjwcCz589QaLq2x88jymXmMDPFkWREuyGGgDUt1goTorGGeZywxnHRXy0aDcZCDqCtIpvI9e1z6Rc24+cJkOfTbsUJKKWEs462aTlNB1CG0ziCNpxOA84KyDZNE9YKuJT0gTe+/ZiLxx3zbeAQvEyQavE/xFnHZrPjH/7+PT756DP2Nyfm2fPhxx/z//38Xf7mb/8rz55/ttg2JjLjOHBze83+uMc6y+3hyC8//JjDfs/xcMBYyzzMnG4H9sdAzKoImWXInxc//yLQVCkpuTTanMeqvpshiTEtFMt67HqMc8uI4pxYmmeE3SP/P4u7i32nIQXRdNLe4MeMzo4cZzZtz+F4EH2jk0cp6GyHzzMG6PqOUz6KJaRpmKYjp+GINaI14H11TrM0xjIPQiFt+gZPlPnGaI6nI0aZqryMtZoXx+dyJSZzHAb6zYasEiF7pgj72xO7/oLjfAQUjobOaQY/YxqFUYpTOvz2BtZvsd0HaL7stQpAfg5EyXfzal8J/rxiHnvVOX/d759zXjL/FahZazJ90Xdav34f+ElJnI5q5hBk/R+nkRRb0ObOsbTW4iC5YpLeubbV/TpvqFiAh8XtqWyWjFaLCGe9FmMdwzTjXMccAqbR+Oi5KOwG7z2u70SbLUesEcFhdAkai9i3NmYpY7mzOeB8j+paff8+1ueviqtMjH7ZyK3Xf8zdQHG9NtbnNY5jiYUi906zWu8kJqvgxGJV3biSVDI0RTMkLokMAZcrAPU6a9TU+1+ZMhV08V42048ePVpihMqAHsdx6a/TNKG15ubmBq01+/2e58+fizkGUgp0nxEeQmAYblFK9L0qQCQiuxL7VGtspRSbzWZx2VJKLX1yHMdFuHu73XJ1dSWMxnGEnLBGY41osKxLFYyKNExgDFrNnOKR4aBo+i3dZoPWRuI/FTHO0SkxvZj9hNUS6xtlSDEyTRKDtm1HzuIEaYwFFM61Z30/Fek62Wje3t7iXMNudyFlnITCTJNNS2UEzXMFOmSj1XUtfp4IYaZxlnkc0EYznE4Mp5cQD9gc6IigEkY7lGtQ1qFdg7UaqxNOR1QMqBIHi2aI6MxNPqKVwbZi/5uNZbN1PHx4xZuPH9Fag4+Rw+nI6XTCGMN2u5V41liaRkCbi91OGOTeL6BMBTu1FqZQtW0HWeIvNtsFeKt9Zi1OXdlvde8CLEBiBVHr3FF/r+PdOcdG7Xj67Bm3++PC/mrb9rc5vP5RzRgDMfHyV0/56L33GV7e8uTqAT/50z/BXPYcxhPJKELKuGUzfgapa5IrFXb9F4E099eLNdhfjwUQBs+nH3zCR7/4gN1myw9/+if4FrIBY2RcZHX+fH2G6/1EjLFWyS/nXPqAzlgNLYoGhY+BhIgBZ+Dy6gJ0FvmAmg342k3B4rwr8iGJGZ8jORmMVigEyDRGQyosov2exloePLiUeURJ+WD0M6SIxoBqybojK3FRFoFyBVh8CKhpwB9fwnRL9CfiPJRYVWJWnwLznEBbjOuJ2aBMA2hSSAXAGaUMsiQdY4jkNONyANOSjQcKq4faJ4qeX0mK7rY7Li86jE5cXPQY4zBGk9JM8g0XriHG4qxW1valP3DGNteP4E5iJZ+1B+/c+VUSRZKzRpKi5vNsmq8Ca76cUZOyaKok2UAIPiNaEiiE6l42vzGL7XYNHoDVZlotSsfrAVEH1frCRVfl3CMrE0UmonOd9f1Sg/qznjNG0WqZwnQHuUopFb2bMyiSkgQmMSd8EXe7Hxy/KuO4/lkHfx20NSuzLqO6v4GrwEHTNszjdOe6lFIYlVEEVE7orAt4IfXwPp4nnPXm8P53hiLOXK5vDUTEFEjRE4OnaxuOhxHvLM/cDX/43d+laSyHm2tOw4BPmu1OkxPYlNHWSaCZQelSwhYqqBWopXDTJAJ4lbFSnyVUFeyzNWgFb3yQEp26mKd8tr3UWnM4HOQ6dBFhC0HovtYQYmR/OJCK8LC2Ip5Y2Rd1YVvT5ZVSDMOwCjQ/P5m/bm0YhhLwSeA0DCcymc2u43A8oo2mbXt8CFxcXNHYlmfPntHoSNcolE50bcM8HlFG0bQtxhka14u4a4yc9icas6HVHTknnLGY3qJtQ04ls6cCrVEopzmFIx4JVLyfOXmALG5BGXJZoETcLTEcTyijCXNGuVaAQJ0xxjGOM43rmIsNod5G+keO3/v27/D03Xfxs4gjoypLRbSsJENn+du//jn/8f/+T0w+0G02vHhxzafPPpPSPCsTJiVLcXt7w8effEQmMcwDPgU+/Ogj9vsD2sB22zMeBsY5Y22Lin4l+P1q0Lb+viDnSjRp1puzFBOxVh4rOGt+2TuMr881VRYGxcJsSymhVV42Vs5VDYsECfwUuHmxx5kn+DjRdA0Pt1fCWNDn7HLXXqARyvqsI9Z15GxwTSvBd9txOA60bYfWVub1lGiMxeodIXqclb8xKXabHZMfOY0DqEzwM0F5UhKHEm01IXpOpyMnq9n0G2YiursU5qDPvLV9k+3lBR999jGn/YHWWVR6fXUwXtW+CLB41d+W17/o8+ocPHwOoHj1yb/w3F/VPhfocs7yDsO4bP5/07YGOHMWpz2lKgAThME1zzh7zkjXMWWMIa1eW8qcI0UY9zz+zuuhWtbeaZrE1Wxztleua1QIAWWk38eY2O22+BCw1jHNHmVEf+2Yoqw9mqK7xyJyTBKdDlXq0oG7a0xOQndfreNy/jp/qLPeQLn79VrrGpZzXrJ258+fk0L3n5/ERoGU7m5OajxWM4bre4xSS3lPUhGVcrF6lQRWymn1mcq6fj3bkydPlv5bhVvlOoXleLaDFzCsxirH45Gc85I4uL0V/cZ5npe4JBa9O5kbhdlUN/dd16G1WZg2UMurBlKKi7vTOibN9xJ+ddMuuiTjwtaZ55mLNx+z6Voa59DFIc0oMK6h1wofPTmOHIZITCOptZjtxRIP+Rhp+444B6LSZAWtkfL1RCbHhEXjXMs8TbRdR9t0+FncE3MC17gCgkDbtygEbPA+crG7lLLCIMKr9T7XMgDnGnKW+P3i4qKADw6tYJ4HhuEkLJJBGFBNY9E02OxwClwR03bWoaxFW4sikeOJOB9gnmiIOAOqcWjbYG0PyhUxYY1xLdE0dFZzebUjTjP7mxum4Gn7ngcPrjDW0jgR5O2alqvdxeq5hKXfVGCk7zuaxi19roJ+281mKYtagyd1fqiW5XeT1bWkiXIPmiWWr78bY9jv92ituXj4iN3k+du/+1t++f4HhJBo27MMwevWxhi4+fhTnr/3EWYceeedd/iDH/4RcQNzcTKyyJzvlcRflUET43rvRJmH1q6fX8FuKUnP9Tpw++wlH/78PWxW/Muf/hSzaRmd6KrWeUOv1p16jvWeVL6TGKrcT+KRE4SICoEwSgVDiAJ0x5jYbHoePnzAzfFjWSv4uliNXv2D6hKFSSTE2Zeo0EFhg6ULM5v+ApUVx8ORJ994gyePH2GNJsaZlCc0UY6mLFoLUEMV3C9VMlMI+DgTbl5w8/xT9HwLcUYhxggZWYNiThKLK0OiLQLdsjdQKaDxhDwRkzhAyVqqyFHYPSlMYD1ZxYI96MKmWUMrmqZtePzokpxmyA6VNfubW/aHG1qn0P0GU5KK4TSwkE/+G7SU84J9GGNE6qOmo1Zg4j8KqEk5k0Mom4gsdWHaEOI5+1OzfrFslq11heGhmGePMcLG8V4sA2qmQBY9oTmHVMTyELZLSmcGyzKelCGLyTraWhH0zJI5DlGYMOS8COTlktGqA+VM/40YrUo93XmT5Mt1rm/YmhlTb66pVt2ZotmiCMGfQaCYyrW5OwruEkTVYHQFEuXMNBUb85wZj0e6rpMyrAxaWSKeHBNXlxek4MUG1yi0M0xBBNpEwEqhtAAoKSep/y2ibEL7FqV+uRwN1WFKGaLs50RAMVzz+I1HfOudb5ASHA83pOkkz9T2dF3GZYRJkQMZL7mblECJgDRAtSIPMRCK5WpG0SEZwkoN00a0gUKMS222n4I40KRM3zZ0mx1t19M0lrZ13NzeiuuCk/r9aZ5JIWG1YRpnpnEQkUUk2Kj9wxakVexORUsnZ2EdkSFEQVFTscB7XdtFd8k0T2y7S4x2pJjZ7rYcTnsuNpdEH7G6Efpk23Jzc+Jy+4CubZimid3FjmkcRYg5ZXJQ9O6Cw3BAp0TbtMyTp+83WOdoUituRKYKFydMCQhjSDSNZZ5meR6pZJtsQ8RCBOc6hqPUWPvZCxNHGxrT8ujyCQA+RHwe6doWG7d0XUcwMzF5fB6gyTz69hXdrmEYMrMrGRCqwJ5mfzry1je/yc1hwHUXXN8+Z/IDz5+/YJ5OgJTnGWtRxuBD4Hg4cjyNhCgq9afTkckP7A/XxBQ4HkVfJ+SIT+JEpnImLxOulBY6KxpaMh/cY0cUFiIZcUHLSBZAQySRlTmzh4qDTcqvACNynaOgcg+UFpaFUUrmwhRIOeBMS4gztmlQwHCYcK5nd+nIA1zuLjlwom16GRsbRcziXoVS9F2PDx4/eoyz0LYM00gG0RDImnE4YcwsG+xSv9/bjbgYxCx0Wj9gGot1hpv9LbOX9UHlTNduGMeR43Gk2ViGaSKEhE8RlRVWW8ykGeOEn0dS9AzzxKOHD/4JRtlv1n5dgPfL2DVfFJTVXvdV51onQySTdtYXOSM9Z6br3bZmREjUq6jBrWT+TsPI6TQwjFNxG/wSRs+XtHVwkmrwohUqSoZuDp5hnNlu+nJTClNA1RLmEpWjigCgKkDP3eCnBuGqMNsU52Dbe4+92EjGLou2nbNtKQ8xtH2LNg5jICfFNM9Smtt1pKQLUD5hlKZXGm2NmJOqjFaSuwdhJCyukpnCoi00cWqyp4zqpTRGvjdZavDrhr1uJtZJqBjLprrGQIihgdbi0ChSgRIMV9OEyuypWjqqOInEAoQum50o8Y4y1S48ls1HKkCRJPak3PgrH/s/WxMwwOF9pOt6UsoMw0RImVb32KbheDwyjoMYR6xAsQq+GGMWkOTi4gKQfiyMYZbsbIyRzWbDbrdjHOeVOGwujO7MxW63xEKmMJhm79FKLU5PNZFojGGz3S4ssP1hT06Jxlmsiuw2HU3TknUAnVA2YZXQ/9UsrPW+xF7HNDGebmFyTDGz2e2gPM+QJWESYmLyXp6nMvggWj5Ky6am73u6fiPrHWq55ppUFZMLcZrs+42sa4WUb8v1aK1LQljEfFNKuKYVA5IYcdZhinFAiMIC11rR2h6jdqjikNcY0dhTtpiIJI8JIzpGsp/BzySdwDiMacBuoN3Sthsa0xRxT03AEHXmG2885lvfeJvPnj0lp0hWAgT5aWIeRrbbLX6euL2VkokEXF1KOe5+vwcQhl5JUqmcZX5oO/peQOfr62ueP3/OkydPVvuHs8ZUBfQqMJeSaB49fvx4AXGmaVqA3tPpJOzAIvPw4tkzDvs9fp4ZjidSyvh5/Kcecr92+/QXH3F49oKUIt/67rf55nd/n9EkfE7CRC57GLRUWJDOYPQaqFaKlfTFOWlWx2+uxyGX+bUK5EMqxhYvX9zw7t/+HdM08JOf/RR3uSHqRGccjXNYA06JkH3ImmQbcswo8lK9UFmgIRWjiCROmrkYBGxSxOHRsQjuKghB4tMYMm1r+eEPv8cHn3wi2i9fGz0QoKJyN4WtnaQ/LwlCEe6PBQDWxjDOI8fpxJ/9j/+aftsSsqclSqI7KmIUwWdlxFU3oclKkUiEHBmHgWk8cv3JLzncfIaNAyrW/VYkF80ojKGzHW1/hWo64jyUWBpyDKjk0cXJSxuZN7UxEjdnIEVUmlFmRqCMyhySdVUBZHGdevzkDZQy7A+H4gIcxDxFaZ7vT+w2Hc5YhtNAJGPXCVVk/CqthcOVRUsoF+wj1Th89Q3k3OKOpZUkp5fYRrOICUtMps7o4he0LwdqUl4mD2stMSSSElBGKQW6IITlmQultgaIZ1RLWGrlErSELTElol8pY9fyoXTWCEk5LpsXFcoERiaV8+ec0daSWNHJyoRnrS3o/hpNlXPFlAnZL5Od/O3zJU01Y0QJcu8rrk+zX8CedYlTSq0JZ1YAACAASURBVMX6MoP3Z1ehu6r4NaCiuFlIUNRtNufjp0LfwqKS5ziMXO42bLseh2E/HEkxk1XCtg2NajgNUucoVmBaaNdRsvRaZXwIUr2XE9EnctlQxiQZ/pQEEf3Fex/zrW99m8uHbzBOI2E+cjwEtAv4IOKw1poCWFmMa6n+YinEElRaYpRMUwjF4ryUfhhncKai4ecaSsq04qzCKHHeapsGt5HN5uxHXCOU0+LgJ8H2OHNze8vxcEIpqaNXqIXRtLCdSq/0PiybmVT6q0z0paRInbOTr2Pb6AuadkO36Zjaif3pBpUtlp5tuyGrwDAM4ARIsEkyeRpFVkmcSpRlGE5c7h7SuA3jNLHVG/rdJZMKxLhnnAdO04lpHLl6cMUwDegMjVPMwx7dOJQy5X5C8JGm7Uheyl+yMkyj1Lo622OUY45RMoxKrHezz4Qp0DWdbMyT442rx6IntMkoHdnPL+l2PVfvXNDvWo5PFTGOtG1LDplhGlGtwofId7/3XX7y0z/jL/6Pv2Q//GeuXzwXKvd0koU1QcoRg2Qgp2nm+vlL2qbj448+4PrFC15ePyd4YYEMwwSIE5XwWAvlVrg8GG1pGgnK5nlEIVpblbJes+e5lELkLGVBVgmzJ+QsFpNKgmihfX5+PlqarBRluJ1dEkh5sT70XqyzlbN4nWmSRiUN2jJOAxsswc8CptiGOUycpiNzOGFaxTjMWNsSkog9JhJTmMlkEfkeTjjtUCTGOEAEox2TH7GNJY8ZjWbYixi4Vgale/p2i9WO7XbLzc0tOUGKsN1eYjthy1nnCEmYQaRM1J6BI5tuy0b1hDlwOL2+AecXta9istxlzaj6InAGFdbwzX026auPX9ZAoUpwBl6Ae2YBdz6jzgyaJYmSZa72XrSvDqdBLH9/g1zfq1pdrXWxms9ZMYfIYRi59Je0jSlssohOlUmiUanO47mI2qY7Qc8SY6iVhkHO6AJqGCtsVW1Eq6Ppe3FhSwFtnQDB1lb0flkXpnlms9lwGoX1Z5YS5hLY5USOAe0aUhYhbpb5IEpSR50zrfIcJRxXsIA4ItB41qy7nxmud99qQ9ZlgxxjcZYxaOPQ2pGLU1eMMt/ItWQWwclVqbZgtYWWkRNGiVjkwswp9zbmuAjNyhQkscTr2p49u15YMlXbw7pWZnQFh9OREEOJKwNWmzvsBpD7LqWlottXN9F936NURCm7/D3nzPF4LCXbhs2mK2NImOJGQ2OaO9n/TfkcsFiDV+cpATPqZj6y3W5oG8fltuPxw0uMc+TieiZjaUIVvRqtIz548nRkzpE0zZy8Jtstqmtlw5UCVidmL05eWilc04JJkBVhDPgYyCTGecAZzdWDK/b7vcTmxcFFEpaAgq7vRWNRO3xMxX7bLEk6bcQp0DWNME60xhVdx5gyfb9d4nS73JuINg3GFHc0lcFElFGoENBxJg23+OEZJhxwKoNu0cri3AbX7zDthrbtaZseY2XTljI4H0nJ8P0/+H0+evopnx2OktAMgdYYcIauaUoJWLv0g2maaJqG3W639LEYAlaxADYgU2vXdTTWLeYYFeSKMS6lVZVhX3WBYowcDgdhUF1cLJpFdU6u/afq3hxvxSjBTyNvv/mEy8sLrq5e3wTH4dNrIpl/8YPv88Y7bzATyAR0bmVt0FoAcmR+RbHs9SqAfWbFnNfEmrAIIa7WTABVmA4SP2mlIWv217d8+A8fMA5H/uWf/RRzuWG2it46LlxL4wx+uqUzCW01tyEzJtlHpBRB6fJ7WubFuoaqup3PijZ7mjii/IRWHZMPxJgFDPEe6+CPf/gd/uo//ic+ffriN1xiz2tKFd29m4jJy8+YPfvhhtPHI+1mw5/+7F/RbBqyCgLsJIXKDsqeSWmzgE6pQPwxR1KciacDw+0LYjiiUiTOihQiqFDKEh2u2WLaHbbbkSpwguy5Q5iJPoAxJJMIOaNK2VRKGYVB54SKE5gGlCRVwNzLryuUsjx56xu8/c7vMYWPcU1HjDNKZazq8H5EpRmdC6lCK3KUySvls4GCShlXDq7QUqFS7qaigHCKc0FQzhgFVmuMFtamMmpx/VJKfqYl5fvF7SuAmrSg3pVuu6YYrzMNQutRCyJcswBrLZY66SxWzQUIqQtmbetzVhG19cQF5+CrUkHrazWzEVcASmXT1AxU7ZxrQb76HdfXtwTAWjJw9ZhLdm71Perx6r1Ya+Cs697XmbB6zhqM10Vo0fHRGmVM2ZQZjsPI6XSitY1sEJ1lTApMwxgUIc7kpJagot5vbSyzj2IZitDKbK7fpyK/iowhJYU2cP3ylk8++Yxvf+ubHA83vHh2ZJpOGJ/w80DTNEuG1bmGzeYCY0WbRrtGSlGyR4hNgRQjw2kmzBM5BYwGUxZeY8yZ3VRKoKy1JMUZRS0tBM84FgvCEjxaY8jG0rQNWRWLulIvXGv5a18xJZu67uOVFVEn1nX97+valGrQOZBj5ub6Gm2htQa9ucJPnsv+kk1/yc3xgMKxaTS73Q6lKmgQOcwiLGhdJ6VSneVw3DPOiqgyfhqIpugtpMhpf4uPSZgbOrLpdyhrmKLncHuidQ1tIzTebtNLXXvWhDmAUnRd0bppHDFHqWlVia7taFxDTtA1FoUpbhjgGs00H2hcg8Xx9ltv0bUdm97Q6ZFAxjhLxiITteWtt97hD7/7B/hp4tNPPmQeD8xDxzR2RD8AgZRAp4gz4tRyPB559+//gesXT3n+7Bm+WKymKGVzp9Np6fM1C73eDIpgoZPJ36olw13njJRr3TQliyOBvFrpeUEBrNXZTe9zzx2Wc6uFRlmPKdlJX0odgw+Yxi5smxgDt4cbXDOyaXqSj1iTGf2eqAJjPjKnAX+UTcGmydheA55pGNluOuZxpr3YkApV/nSacKqTUoIQubx4JOUweGzBBryfC3NmkLndZIbxgLGZcToKIO/Mstmpop0xyusqKSlhzJFQ6N9Xl1e/nYH1W2xfVv70OrY1gFD/ee85nU6FdTAWMVZ15zO/yXkEvKiZp7vHm2fPaRhwzcWSVNAl8WKMJkXZuJ1bHRNnwT5ZdwWQ9z6inLgZCl1bQGbnGpxtSAmcbRhGz8VWrJMVSsBtY4nh7DwILCUzKCSzmCWZlcOMSsKiMfZc4itLviKlc0nRfSOCSlY/6+UYYkku1HPWWEL+ZVCx2BrfZROtWTdSxn6X/r/+fR2b1L8ZY9BWLetiPT8lpqulH/Xzr3WCY7NZHHSaYoVdn0sV9F2X8hlrhQG5YjusS1iAJQ6W9SHgnGWaJnFvipG+7+/MaxXYqZ+t4sZVb8Zau9gz1ziyJizH41GY4zGy6cUZqe97njx6xMVuJ4BMqkwtTTSGnAJ5mjB6ojUjc55oR8V0dKRZccw91nyXYHciiDzLWhfThG4MKEPyAd0KSyylyDgN8tzneEdPJ2fRlpPyXZmr67pZBTWta859MZ9NOKpNdS392Ww2zJPc567rFjZT1Tk0RokuDRmVZ1KcmPdHzPGA97fE+QWOI9YF0BZMh3E9jetwtsGVCgBcg3bN4s5jW0Bb/uBf/A7/+eeXfPT0MyYfeHh5Ret6SSSEWDSG5FmLhp/j0aNHS9zd970wiMdhKZ2rJV8hhGKrbpZxVfctVRup3psK0khZ3VlQum1buq5bdJZqjPLo0aNF4D2lxG634+LigjfffPO1HpvH8cQPfvwD3nrnbcY4gugFF9D+/L71fLXWDV0ny2tbysL12SG4zofL+5US1pNPTMcTn/ziPfbPnvPjn/wYt+sJGrGJdw5lDI3S6GxpcsbphjkFUswcJVu1zPH1VldWjcoSoeoU8eNI2ytUmsnJ42dPSgIGVNZo4ywPrq740Q//iOf/519JhcHXagvEcAaJlCZnzatRn8LAVZo/+N73eOOttyU5UFhAAvo3ROR3TCOxKsISJyVJToSJF08/YR5HclLMc8TPwjyxnehIun5D022xbUvMCavBKVMVZsgpEYPH6mrGIUwgYsTPk5RN0WKUwZgOVECZV/dtpRSPHj/hD7//PZ4+u8HPEWNlTe/6DdYbwilCTFJWVcgZ688rJdo9Xye6yfnMtKz73PulTusYZS3Hcb99JVBTJ4z7GixwF1ARcU4WHZD62fpvvfm9D4x0XYdStZ7VL8eu56ybHjhnQdaCemv627qety7CdaDW49SF+f7DrO9dgzV1IK/vhQiEyYa/TqZz2djVSXW9AAm7Rihx6+9Qz1st3eqCX/82e4/NJUOYIiSw1nGYJNOnciRlRQhJyocqxW0VQNnCOAoxYnKEHNBp5sHFjmEY8CmLFkhWxAghFGSQxHvvf8h3vvNtdrsrbl6+IA2TWHfTME8j4zSilWKz2bK/uaHre7bbCxwiEKWNKZNTEbczCj8N7MNMijNGPcJuNoKSl3sutY9FeEkpjEFo20rhZw9ISd08e1xytI2laTtMb4jhgjfeeosX1y8ZD7fAWRBQBjvknIro1bov3530l834a7yRmlJgHE/0SnRqLvsNN9fXzLGTkpbDQNd13Lw8cPXwAdlnVFRM84hzVrIHAfrNBdpajsMBH074OBBmhTKanCLb3VbEqEvw5H0mzoEwC8AyT56m7ciNYtP3ReMpMeFxNuPnOh49mpUtadPhfZCyuCAZo2masdlgjeb29obZz2idMDYzhRHnNoynicvtJWM70uWB0zxD1jjb4FPk2dPn/OVf/gcuL7b83u+9w49//Eccbl8wHm8Zmw4fJ1KxvM8pMk8jfp6ZxxFrDLc3t9ze3BC8RxV3qAwLzfhzJSrrSTafnd7W+lS5Ztk5b0SVUsJ4KxueWkKqldz7lM6A8npeWuaLMofFKIDlAlJbi49J9G9SxOLIpa4x5wRaMieus0y3J4zTTP7AnGbajZSq3dwccE5xGG8lEB0j1jisMgQoGlRynKzFwcP7RN93xJBwriN4sW3tOglWQ4jc3h6Y5pFh3otQZBHU7LoepTMKuwguVocLP3tilLXFKIMzjhfX14zzBN/75xh5X91+XUDmy5kwlVXx+UTCF01L9+esryqLejWb5vPfu/bhGEUP41iAGu/nesAlkL5//i+aR9fXvoBBkrT/3OuzDxyHka7vBMhVIiJea+4rMLGs6SXTtQaZ1vexJnt8ED0lax1N06GVoWk60aVJibY1BB9xTjFNHtd27PcHrD2DKlV/rc4Ndc132oAWJ5vsA0758zyhZMNrjEJx1tRbgxyL/GOSev6c4hJb3w/w8orB4oOXDee9eaqeey3Cv35G93X/luTbkoQ7x0/1e6UUUfjl/q61dl7nVgEBYLHg9jERCnO8smEEmFFoc0781XvgnBNWRNMsG/WUIs6dE5CbzYbT6cR+v1/eWzXEttstTdNgyhowTROn0wnn3AIEVVcfgMvLS3l+sZR2NIXRjIBPDx8+wGgFKZJSwOQk4yCWDWOIME/YMODCie08EQ9H1BCYfcOn05Gr3/kBs7rCWRG/tlqXEiQpCZxnv8Tn0i8aToc9h2FYBHTr/anOYWcDCRbGQ01cVkCjgh2xMG3HcVyAiKZpCV6svGvsr5SUXSgrjrFpHgnjLWG+Je1/RTs+XcoOstIktUFtLkj9JbFp8bpBKdGqIAZsGIh4lLGlxEJjXebJw56f/OC7PH/5kn/45UccjgdC27IrJS21/A3g6vKKzaJVJH3lcDgwTxO7Tc+DBw+WceGcK/Onv5O4rnNJnU8q2BNj5Hg83tnDADx/LqL8VQupziPzPC+gzRtvvLGAuut+/zq27//4j3n41mOm6Im56HxRk+bcAbDgrkPTuq3JAjVZVrWhKuh5Z98awWbFfDjxq19+wP7FC37yJz/E7lqxCm802gogsZ8Hjj7gNETXoCOMKIISttvl1RU5Z/b7/VKRkpJYh2s0RmXiac/w8jnb333Mg8uGrrGlkucMFKQYmIaJxll+8Md/xC/e+5B333ufr6f/lWoEiVYG55pSWWGEHVcBaSUask8ePyTEgNeG/+nf/Vu++/0/AjRaWVlbMySVSEqTtUErR1aiDZnKPjVHz3i45eVnHzEdruldJiWNKgBts2nQfU82DtO2ZG3EQTZMSAAQpTQrBoKfQSsaRH9REqeB6CdSimSVRTg8e8geldMrk5sZ6DZbvvf9P+S//PXf8f/+P3/NcBJZkIvLjbhPhRlnHSlEzEqkuraqnatiEaxeQTZLbFESk2r1urCDzbKWrgkon/v8l7RfC6ipk2rNptT/rze2xhgRh1zqAPMyKdjV6+svVwGLqna//tIV3FhKn1ZgxhLAFXvt9XesIE1dHOp71kFIFWuCc8lSjHGhMVb75/+fujd9siQ7z/t+Z8nlrlXV66wYYDAEQBCyKDIombZkByXK0geH/2hHOBQO+4uDFhfTIIcD9ExPV3dt9+Z6Nn948+TNqukZDBAy2cqIjuqqupU3by7nvOd5nyV/huy5koGmk5v3KYEqX8xcqOXjyD9XStJK4oKxkcEmMQI9xWnnc2CUXPngM5PH4iLyoCBUsoTUZG502AncyG7x8zlXYiiVEB+QQhvu2l5MEVVB37ToosRHKXYlHVXz+vUN19d3rOo19WrL0A8ENxKdFKjRRbph4PrNNeu6Zn92hgaGoRdpVFFgi3JK60rEIHRwP4wcU6C0Zk7bmO8dJfR0raduyURHPTGk5D4cR8c4DPQarLbYomS72+FC4vn7d4zHwz3j6TxoJ+5HnOZzpLWaEfAMLL7LBWebDlS7gtvjDXZloNCUpsY1kyN9kvP55OkTyrqib1vaoaXrW9ZqBSSUFU+TtjsyuAbxGxLArtAGolDg/Rgkocgn6nLNXXPL40fnUmDd3gh4spMECu8aDsc7zh9doK2hVAVhlI5BXa6me75gt94RQuDV60uGvme1WaP05FMzOowuWNUV2kSc77DGMnQDdzcDKSZW9Qo9TPf72ON9oBt7+qHjP/2n/w1rEv/9n/63fPbjH/LyxRfcXL2ibyz9IHo5F2RSiN4xdC3j0JNMQXACKKkTfjePvMtus3w9LZby9/k+g/uLpGxRo5TGGjGplE7kPVWrLHpOjZD5Z3mwzxTL7AMxhSLOALnWFoJIH7z3VDAbOV9fv0HpDxnjwNevv2K/PqN3LWVtoU/0R4c2NZvqEc43+LGnsjVWacIId+6IUhCiR2nFoZUY2q7vODvbiffPBLKGwlKYegJjJNWiKAyJSL1e0XUd6/UKFzy2lAKqbaTL3ff9wqMsYUrLGBxaBUKKlOuSpm/+f3u2/ktuvwvY+20T9+nnbwdrvhXwuXfP3t//N8Gaydtk+ZPFXNj3Pc3xSDddI/mL0+u+z3G8bVydGxnpxJid5/wQaNqO1Uo8yiTgIM0Njgx+PgQJloygpVEkCgornlLSyS6nfxVamynZRnw2JNZXnr2hH/E+Mo4DJD8DisB0fxckRCqiogcd0KYgBkea/KZCkHhwYxXJnYDePE/Nx5/HDiMebC54kVFN89WS4aG1mkGuGXRZdOcyeDxfx4mBc481vDiHJ3n26ZiWr7vXiEMkOLPEM77bJvx5QZzPST73pizmui9fS+8cXTgZuy7lT0vGbd7H7e0dWidhjIbAfr9nv9/Ttu1ci1RVxX6/n0EKOAVmAPMx5Lo1d2M3m42AF0qz2W6oS0kqCW7geDzSNY34SRZT93m6X5QfYGjwzQ2uu2XsW0Lf49sD6XiDHTvMoLk9XlMYCI8/4/Hzj+mHgVVV40KUiN6YoE6EIIvl4MMEOArDqKqq+R6T85oj7It5HJ/ZWfmcT/Km/LoM1KzX6xmkqspy3nf+Wzk/A2EIpHEk9gdif01ydxTxhkSD1gVlsaUwa6xdYcoKZRJaB4JrGMY7nILSQmUT3laYekOyK5IpUcayWcGnP3iPL7/+IcPo6UOiXq2l857Svc+EYn4uswogxogbR66vrlitVqzX6/meywyhnDoq8e6re55EIQQOh4N4E02WCOM4zsDf8rzO4PMiWSrfY/n3V1dX73Tz8fy9RwzBkWJCFWYBNp/A42XzHr6Zkgf3x6h8Tz4E6ZfrU6Khb3pe/eoFV69f89Of/5RiV+N1Qls9r0d8jOInaGHUiiZ4VFCAIapEaQqsLYVpqAwpiUdmigkmidDQdzSXr/jofMUn752hxxY3tMSqJiVFGD2lNbQkqsLSj46Lsz3/7A9+zlcvX9G03W95VrNiwE5zhMxPjy8e8eGHH7LZbGjbdgIGB/7+i8959sNPeP+jHxCVoiwqtMoengqthUWKKYha5rs0zQFuHGiPdxxvXuOaW5Jz+CRqkGQspijR5ZqIEbn96NluKwprMcqjYiI4RyxEBRLciLFCq9Igfo4pEPwo/jWFIkUHKaAnMsDbeUKypnz89AmJyOs3b0ihYLUybPaJsiiIXoDi4LzI6h6eRenuTgEBp6rpYTMqpSxdzl5590GatzG7vs8z+d3x3NO2nKyXN3zWzeaFLQ+6Z0uWSh588iS53PfDYioXIxlAWQ6Iy85PBoDy7zM6nfebvy4lV8A9pk0GhUCSdDIIs2QLZVRyCcoYYwjT5JG7Mt77WR+a953Tn1Ka/GEWYE4+5nI6L0udqlIKYyWCV2tNTIlxijKXuHTp9iskNt1omSz6vp+7PTONtBBgIykFtgRrGeJkhqgQE1gFaDFoHH1AGcOx7fjyq6/5+c8+xdiSslwRsROIVBBcy+d/97ciiagO9G1D2zRsd3uqyYTW2gJQc0S2dx5jLW6Erm2pK/EJiVpLXN1MEdOkGCUG2BbzTZ3/gXQPh05i3ctauidKK1abNWVV3UMucyc66+nz9T+dbz0Xrxm5f5e3Jl0xeAslqKRphlakSNpRlpZ+6BnHSEiBvvd0Y0dVlxQry21zTVWXRAJFXTL4FrSXAXnUlOWaVVGiNwUqKeopqhWgsBXPnrxH8p6xF/BlCJ5Cl9P1jezPzimqkt4NbIoNVhmGOMjzFydzvG4geM9mvSGqiJui57XSWFUwDB6NEnNrN6CMxpqCm+uv0WhUEoCuKDRtO4j+VgUG1+NvBv6P//3/pFCWP/iDH/Ozn33KzfUriJ6oHIf2CMOIjxEzMYfGfiAVAoqKH8PkC8G3kEQXC+aUEl3XoTD3iqZ5YcgkTVKTkanScyc1ZzeGON2DQdhzSp3eNy8SrBWLM5WSeE1EZibP6bim8TrT9X2g0Jay1Pzohz8URtVKFnXH1GMLWSCHMaGiYb25YLMvuDu+oh9uGI4eM3nLxNDTjz1VvWH0g+yrTCQ34FyP0RbnRFa23WwIIdF1LWVZQRRWVYoBUxYURSQEOL94Qt913B3uONudzeNoTrgIJuAn/bJRhnFwGGuFUfOObg/nwLwtF7DfBsTkr2p5Ayx+9vDvvu29vu019/f/3WNcPt5c1GbZU9u104Iiz4xvf0bye31vduJbGCPy90ysmo71uqIqDWmW/S3lysI2yMzJh/uKE6V8CdqcZNFJ2DS2pKoMo/NYFKvVZmKvGUbXkyJ0bY9Sfp5D8vwfYxI/j6m5kD1r8ofLCX3OxdN5WzBaTkynhYRowW4JMQgzUZ+k59576cQmCSmQ0AslyZbqPq16vp4x+wrdB88eyp5O4PAJUFqeN9nfxABa1Gzv8nZ7e3uP/ayUyElcOsmbMkumrmt0EpPfLE2JUcxjc814dXU1s2RE3qTZ7bakJFKe9Xp9T+afz5MA1WvGqam2lGKt1+sJlCznhfYss5sMjodhwBrN+dk52+2G7XZDCA6iGN3HEMQDsr9kuP2Kw5uvaA5XHI63+BhxQ6BrbvChwdoaE27ovlRU26d07WPQejLdlro9N9sOhywlmUy108lWYMlch/ts09kWYAK4luDvMAyzL0vf9zP7qCiKKZ77xH4+LdA9MQ6EoUWNR2zoKPRI8IZoPxCpYaHQhSYyMPZXFMc7Oj8Sx47kegyB0kgqjFntSatzWF1gNxeYskZpw35T8tHzp/zdP3xJf2johx41Ja5WU43ZdZ00Xyc/o1x7A8QQWFXV7DWUJW7Z+DePHbkJnoGFLK3L/66urmbAMLOurLXzfZFlVCml2Ssny6zyQtwYw/n5u+tR45KbTFo1JiVCmAxc1SRBn9aAp/H+m0AznMCbDLgu1wFz830xL4XBcfnykstXl/z85z+jOFvTpFGSUI2RcTUlkkpErSBkoa3EWWsljb1xGPn65dcnUCnkUBsAMXB//fUlaz/y+z/+Gecrxc2hwQVN2J6TosYoxej91Lge8d5hteajDz/gs89+zF/833/5O8nXYq51k6LvOi7d1wTvWK1XDH3P8djghoH9k8f8+X/4j3z8ox9SrVaEEPHZFF/JOjRpQ8CSp5EYRZI+dB3Hwx1f/vofwA+sq1LqvaKEokCXNSlZSlthlEhKK1uiYqSwljAKiz0GscqIE5M0TSwblURS7L1DRUcaNRQ9Ojh0kd1ivrnJ6TdsthsePb7g7OwMlTbYokaZAJN/THSB5AM6nc5ZvmdOO1rsN91vdnxzk/3meXSJKSzn5pmY8btKn5TShHCavMfxtIDN9MYTyh2nbtGJ1uin74MPkurjJ3bHhCDHqUN0j72yAHYeIk/5fTMav6SjZvZNPmlLpk/uXCzZKmJ8LJOPUnL8ma4Jav7cIpU5UaeXEihFpjxld3ElYIyS2DExvFJTkks+rjgfZ4yJorCTyVVO1jJYLUlWYUpKUkpM16zSswyjtBYfvXREU0Chpqh0Kx3tkBOo4tSxkWMDRdc7YawUBUmJIbMPIa8ZBZn0Gq8Cn//Dr/jpT39EWRVUdYFXk5dEteLN1S3KlDSdo+8c/ddXXDxq2J817M/O2O13oKAsVxRFKWBRihQxokygOdyxWa9wfkXSisJobHDE6CdEWq6Dcw6XAKQLWlc1TdNhTUkiEqdiwcdE3/U0h6MsuLV0wHKCBRNZXk/MB6MlwSCEMJknTqaSagLDfocB8R9ruzlccXF+xu3hGpJmtz3j+s0NG7vlVFMQ1AAAIABJREFU5qjEnLdaYcuC0Q10/S39qCiLgrvDDbu0xVhLtVohPs+GulxhUqQs1rjRoampypJ+6EBFnOtIraUu6ul8QVlWRCfeQdZYVlVFUZWkEClVweFwwA2O9XrFsbsjp0O0PkFM1JV4QnifOB6P1GUp819IKFPgQ0AZaMYDm6Hi7sWBMAQ8gUIrdEqkybskKYlOVCpxbDr+81/+Data87NPP+G/++N/QREO/NJ0rO803eC5PbSolKisJsURrS2bdcmhMvQ9RD1RIJOklaEgq1S1NlM3GRnfMGw2K0iBvj8luzkniwKjJIreaNH8opGErGnsJIjBcEK6FwYjeuY68vjRFpsK2q4jkog+p91NbLEUgQBJxNzW6CkxTYyFk9F4bxmbgLvr0VakI6NvqKzGO9C65GL3GK0qooo8uXhCN4jXVD94urZHK812vccUhoSmGXqSdxAHClNPqRgjIDG+zjlcdIQhUpU1ZV3ivMerSDf07HdnqGRoDwO79TkgJsZ6insNzuPGUUxgjYC9ox9wdwNn2/0/0ZP3m7fvC5i87WdLaZyouqfGopo4td+yDl4ujr4JjNz35ZLu3rftahbQykvTybtkGAaatqPvR3K6odCepdv0mxgzbwNs7nWj+KZMSSnpk/kQ6bqOpikpzQY7PZtpel9jsuFxnECK6fOp/CzK95NYiuAjyYjBpC0sthS2V0oRa2qUsvgk710WBf0wYq3GhxGtxMOmLiSC2BiLMXZuDsSp8IzOS9JFDPiUpUti3i1zdNbCq3vePAI4Sa9yPifTXKWimhfGubBzyZG8xzuRECsjdHTp9Kvp35TGqERyqdL9a/IQUFxeS6VPfg75dzObOkrtI3WZLK5CeHcZNTF6drvNwhdEmCnrqmK7WQnbsZCa9c2b10QUwSdilJQmkX3GidkN2+16ksAkhqFHazln2+12lqBkxsQwDJMkNEwgxHiPUZIX3hnc6PuebmLYxBinWiWKVNhagheGS1EWU3MpQfIQHZqAi4E0diTXomkxHEjd1wzNkTe3iWPTU5QBbEMXG0LneHFUPP/sf+CDj36KqsHqMH3uOKczoWAYBai3E9u863ouLi5QSiK8M4QbJnaXpItObFYn928iYa1h6DsOd7esVwJqDV1LURaE4KnrihjEFycEmQ/cOBC8I4YeN3TY2FOmHm0C1qxB7QjhSDtcMaqGMBwYj3f421vGtiEOHSp4qhK225rt+Tn7Zx+z3j2h2p5Tnz1FlzXaaqou8vGH7/Hh8y95dXVDPyWLGmNomuYEwJSVSNmMYRgHYopYI9fTx8ix7aiqkpUtJkZvoB9HisKy3UlMej8O0oQYBqqywnnxOyqqinoaO5TRWFViUmK1Evl48F7qhsn3JilJruy6jrOzM6y11HVNSuK1965uIY81i+YqKc3qB7FDyLLTNM05em5q5Ka7D7LeLAs7A2ApJYhBwgtk7xjE9+vNy1d8+eUX/OKf/ZzVfkOHWEtoa2Vtl6KM40okREoxmc1Oc49A6/gp9S4pYYZI6p401iyayzc3vP76FX/6s4/4+Nk5pbul0IaqrIh+RKmKNLE/UvR0bcvY98Rk2O02vP/8PT7//FfcHY7THLukfX/XlkhE/GQloJWl94EXL1+gVJzmRc3Z06f86b/7M/7Hf/dnbHdbgg94lYhaE6Z5FCUsSqU1Bk3wEe8T4+Dojg1Xr76G6ESWVBQiZw+RUst1sEaDMnSD4/H5GcF5TKlnlYjRUsPGEES6OYVjxDji+5auOTJ0PYYkeIK2mGrAVpLApVRE5HJTHaNypaNZbVacXVyw3p2RYoWU9ALO2KjQPkIQL6G397Amo2EkIWwm3D9slgkFDJS6BywulT335tcHAOPbtu8EarwPE4vlvnnT8o1iTllAjPaUlsSdjCJqLYkwmjRTc2XC92h1MiTORYCYjQpKvARbTt4yJwRKjtHPr1mCNEtj3tzFyNrjruvnzyAFz6nALctqNuLKzA6lTgbAs7nfNPk4f/K8CTFNVOkTyygzRGTC1lRVPXVuBFRxzk/Ibzl3yeQcK5yTgTd3xjNSq7IhImae0FerFXpKkBiGcYE654KXeQA0EyBlEImEdE8WRfZkapWM4er6lqbrWW9qxkGM5bzzoDTlesXZo0fcXN0Sgmb0ntdv7jgce47Hjv3xSLkq2G4vMLpiHEa0kaSDwloOKWELy2q/xeiSpJmptZFAmBNFNDoJW8aoTCWUhW9RpjlJLE2obntsaI7tpBEVGqJ06ZPouKfltuxHzqsLHoUANSfz53e3OxiGkdubS0bfogy8urkBLH5sMEXi5u7Is8fv0R4aikKzri1XV9eo9QYVElZZ+magazzb3RajLK6LVPVapDUYNtud3MPGY6yjaRu2qyekpFEGrJ3u+24kROkMlVVJCCJ1Ukrc66u6IKnAoT2wXq/QKnDT3rCpN/iux2KwVtg7kcixazhbPWYYRqpVxevb14x6IF4dSdcafGBMDZYALmCNZogOY41c2RCJyWOqxKvXL9hXij/6+af8mz/6iDK94YsvI2PYUFpFO45Y7ditFVUZ8HZkWyVamyAJU837HjFHjLMwRBgyMjYKSLNlvd4wjgPGSTx3moo1Wcim0+RuJmpuisLwioLiqym1SW47TWHhySc7fv57n3L1+RVfX/aMJIKxdO0JfIQ4dx2SUtiilBSuCajx2pK85e//+mv+5M9/RnC3pMISwpHeJ3SA2hq6seV4fIOtI8oYYSBoTdO2oCT4oygsfdPjoxSRt+01Z7uK0QWa7ojo+zWt69BK0/sBjcHHyHa9Yex6+jBgrSY4zzDCfn3GarXhurmSsdBa1tWG490tq3IDeBmzV5qiLGEMU3H0X9+W55n8fzV14+btHosmndbZ6tRkyODEcuG8BDaWX2WfJ9Ppe+/zYIE+/+LBj3LjZBwd3TDSj+NUIqqMIrHczUPAZvmZl82S+R3z6x78zfwaJd3IcfQ0x4ZNVbCppUaISkBPrSTDKsZEzvaTfQDIfWyUQidFYXInWvxHiqqkXpVoczp2qy0hJCJiVl4inertpmaYjA/rssZoSZcUydQgZqnW0HcNKnqiE5PTlMRfrZi6iQqLMSWK3GwxUyfRE/xIXLBsMp06PSgI5yCFJGCylJCaFJI0YRKgFdqIEWY+jyg9M4seSpWyHHvplbesS/J1OTGdc6c6G1TKMbyrW1UVc+JSWVppCmkkUSREbGFJ3lGXJdv1SsCVKaFrHNPslSIpTnbu2ksaj9RhKaVZzp8lPMUk4Y8xznI57z2bzWauKTOzpu97bFFQFAXb7Zbb21tubm9Fmm9EkqXrqZPtFb9+8YIPLyo+/egJGom1JU3+OtU5dhuwKlBrh2pvMO0tg/XEMuADXN+2tNHRxYHX5o4xrlnVz9DViqAaypAIPnI43tL3HV3fEpLH+5GkJKTg7u5A1/Xs92dYU3F7uKMoRRqhjSV56ez4GHExolJi6HpSDBRW452nOdyxWq/QGoIX0OvYdxhTQYoMQy+s2OAYjg2ub3GhpzAeZYIYttIS/TVhuGZsXjMc3jAcjhxue7o+YkLkYmN59mzNx5884cnTC/aPnlDsP4Dth5jNe5j6DF1UBALokYvznvefXvDy8jEvX9/SjcPMcM3X3zlHTJHz/TmXl5e0d3dUVcUGqbuHpmW1WtF0/fy8bfcS7d4O/ZQYphidE3jeGIxSuBDQzmPKgqY5YpOdX3t1cyP3Y1nQtq2AR13L06dP2Z+f0R+b+TnNfkld99tKZ/4xN5lLcpM8r7dSVHNU+VKyKczhSfqtNePgGMYBjKYqCjBmbmwDmCjx0coW4tk3eg6vb3j55a/4/Z//HqvzNUPyKKMpJyahvBeyjpqGt4ieGoISJZ1T9ojTuJcS2kwJUDphguL25pZ/+OUv+ejxOZ998hEbk4id+PsZZei6hqAjmJoUwDtPYQvWa8V4HIjR8dFHH/Dpqx/z13/9t/TDQFIRlP+eeE0i4qUOnVLhRLooY09VlPzoD37Ov/6P/57dxTldc6Tc7YgRhtFTVIaIsMFTAh2nmmRqHLbHjvbuyOHqNaRAsdkwTsQBHx2VMRitSQSavqWq10StCMnhg4A0IitKlNrM/luJRIyOmDRubGkOtxyvbymNpV6XlPWIHzrCJqBMIuFRFCxjyWVHGqOhXlUoPdXkSpon0TlC16MC4MPkbaXu1S1yviTZKqVF02zRoFLTtc8sqofsGdnFN73ylkSUb9t+A6PmJA9Z6paXv89vujTOzRN5/rpkuhhjWK1WM7UvpTDrcZcxa0tgJvvjZEnK0pBnaW4HzDKjhzTz/DcZ2FnqwZedpYw458+zPIb8+ryvEOI9qv7pcwvIBcyUwwy+ZKlN3sfyc2XKYj7neX9L7euSUbSUaS0lV0t/h6V2dQl4yb4ljafrurmrI5/P4H0kpMjxMPLy5St++NFjjC6IZlpcJsV+v2ccHX4MtIcj280W5x3HY8Mw9NwdD6y2a7bbgNHSdTJGYa2g5pGEw7A5e8R6u5cBUTHLNkQTOfl4JBkgTj5B8r0xaiq6ZbJ3ztF13UwLvw+uaaKaDBeVtFyVkkQZFeTYUpJEgZjeXdM1gPW65NXlV6ACRW1JaMpSA56b20vGAL1r0CT6IbCqN5ydPYIETx7vMbaAVDC4wGa9xwfHMDQURaLrGwaX8AfPer1BG4vWlrK8oCgrurYTVkzbslrVVGWNNx5dGPow0DYtCbDGYMsS7wOrUjo6XdcxDJp6vUUrTdd26KQo6xVVtSIqhw+ewXXSuXMetACcSWm6ricl6azAZEzYCTCcpYkpJXx/5ObqS84eK/72q/+HTXXHn/zenj/5g/fZli+5azxn6w1XR02xXfN8C8Y1hHhk1CN2X9MGTesioawYR0dg0k8DKDUXCNaeqMsgkgdrDc4NLBsf4iF1GthDjCidF0RpBluUSiQbKR+X/Ks//xO2tqC/6inf3JGiRMce/IhWp/eUMSwSVIDgMVrhg0N7g6kLQoKXX14zHgqePn2PQTk6H2ibIwQo1prOj/gQOBxvWG83XN/ccH5xwcjI4eaWi+2WkAqs1RwOHakIrOuarhkwumQcRs725/gwMnRyP1VFOTEP5TirqsKEAu8CQ+dYVcXkBxKJyWGN+IQYbTG65mx3zt3xDRCIQbHd7Nmc1/THd7cz+G2Mmoe/nyfxB7+7x6hR93/2tgn/NwI130XF+Q3bku3qJ/nT70K9/l7vRS6KHwBZEzsmxkjXDxybjsJaqrKYI7a/7ZgeNnaqqmKz2eC9nw1L3egZXaCsBOoQYETYrmEC0qzWdD5QGItXmuAcx7sDtiwoamnu7M/OGMxItJpVXRPdgHMjMSnc4Oi6nrKoODszrNcFTOMHSeOdI8YwM3VTFKA11zcZkMnXJNcAKSXGYcAsKnU9UfW10ffI4A87f29jPuUabHndjTGSprioHeb9zUDdbyFx+yfcHj16NC9Wl/6GuV7o+37ufGZ503q9nhe8XddxPB7ne0cpNbNgspQqmwXnfeT/x3A/uQdOjcb1en0PdHXTz7NJ7/F45Pz8HK0M4yBsFqWgLGvatmEcxukzaIpJEq+NkSTOosQWK4JdsT97hAqeVL6k7hxutFSm5uUV3F512DV8/fd/QbH/lL5esd2V1P0BrS1de2ToWw53dxPDSJjpVhvquuZ4PFKWFefnj9DWME5m4yf579S8NMK8jMHjhgGFsNlDijTN3TRXJBKBsqjRapTnyDuiF8+z5B0pjBQMVFFMkofujrvDNX17oO+OdM2Boe1xQ0JHeLLTPH9e8/Si5tGjFWd7RV1FmBafRikUEYIDY1Ea6qLifL/nww8/4G+/+Irq0ODTKTDg7u5uruNjjLRtey8ZLcTAZr3mgw8+4IsvvmAYBnY7Sa/LjKsc+vHo0SPevHmDUoqbmxtAJE2Hw2Gq5bkHEmZzamvtxGY6yaTapiGFQF3VPHr0iKZpOBwOVFX1j/Sk/fbbcr2Vx7iUZDxbrpkebjEK6z6DyUVdoReKi5OERZoLJgE+cPvmmpe/esGPf/oZ27M9MSWsLUii85lH1PuLdablvyKzeYSosFhPIGsIprVM17b83d/9HatVxY9//AMeXewwRFERFKWwZkIg4dFapD8KWa8U1qLVQGktm1XNz3//p9zc3PHFr35NmJrqv80WU0QnUVgkJSyhol7z3/zJn/If/uf/he1uN6/RU0o0TUO130jaq3DIp/lAmqpD8PRupB+OfP3qBU17oLYKa09hQHlcBDn/pS24ONujCOgYUSHKuQTx1kqyhtZKYSIoH0kqoHzC946haTGrihSUmKd7J/5tRQ7sQealB4olMzHhxFIjom2abETg7u7Apqyn/tVpbvw2JvDDTeq1fItIPf9dkifgGxjEd73HdwI1S0ZKBg3yYj7/P79mqW9emuPlgmJpCJzNIrPWZnnwuRjIrJpxHOf/52PKr1vKo/Lf5X0/1GUvIxeXvjj5NW/rLN0DZxasn6X0KheWS0Agf5bl6+S8qW+kWi3PcwZ9lsDQ0mguH+PyvC5Bp6Wr/vKcL/ex9AnSRs9JB3lQk4l0OqYYQSW+/PIlP/nRR6zXO9qmnbSXUJYlq9WK/X6P6wdSEhClqmogcTgcacZI0+kZqClLM0ub0HB5faDa7Hj6/D2MtkSmYlWZe+c0d3CzGeNms52d8Kc7Y0bP/WIxsbzuKHDBSZdRa4zSJC+yFl3IgsC5zNB6twvOUu8wHNjv9ySVuL29oVztII70fUddbRlDj9WKrmsZh8h2s6MoSqpqxTCMPHr0GB8VMQXxghkHDkcHSlK7mu4WW2rG0dFcSYrAOAyIeaSa7i2Rsx37hmol0pamb8X80I9i8RUihRNK4tXVFRcXF8SY6MYBPzrOt+ckZNK6vjtQlgWjH6jLkpvmDl1aBtdTawGM+n5gdF7ki9Mg773HE0WKgJgd3lw3+M+/5GK/YxUGPtw+54NHNel9y6uvjzxSkWNdYDc1mzJwe3zFB6uRZx/suOk8l4eBm17RDIFWTUlqKOJiUM4dNWuLadE3UtdrtM4mnqPc11Ohr40YaAvqnrtD05ihgYm+qWvFP/+zX/DJH37IL/+v/8xAQ1EaxjZwaI9S2C4maRl/AyoCQaEnw+0YS9EVx0B3TPzyL1/z/JNP2W4cMTk2F1uCS1hVcn52wZdfvRB6uS/AJJr+yDCOFKsCl0Z8dFgs0YskzbuAoqAqaowqMNrgRoPVllENpCjnJ7hI03RoZTjbXvD69RWlqbCm5OzsgteXlxLTPXl++ZTwHoKHzXqHj4lh9Pgy0owd+HdXXvG2Cffhovjea+bi78F+vsf+7wE7b1l4/7bHuTzeh8VKbgIskycevuVvKjh+U8HzUI6jlIKJeRYVjN5zaDtsWWGKAqtPNcf878Fx5P3UVc2qqufXxShyqsQjjK2xhfjLKDMZSBpL8tBPwH8Mkq4SnGNse7QxrNSaRKKqa6IPEklcWJGEoSjqmrFPuEbhA6w2FbYsiIiEgqTE50BrgpdEtRg8OY5UMTGQ1f3o62UDrSgKko+Tnh9Z+KoT2PW2zt2y3lmep4fA1nxNJunN8l6IUd5nyfx5182Ec5pSBlHycWfz15w+tNvtqOt6ZsQsX6+1sEjygjl7zuQFe/aWAdjtdlJrTE22HNu99BfJqT3ADOI89DrUWpKhVvWaZ8+fyTokRe7ubhfPpcgQrJkklCn79hXoYk1Zn6HDQPQDKXVoH2hHh64V1bOaR/uSX9+2vLj7Oz7/6/+VtN7w8Q8/I8ZWAHaV0CpRGo1PWuKKC2bmeF1LA7ZtWzbbDapTs7dV9vGRnkRgHAfiJNca+p7CTo3H6BnGHudGYaalBpU0d3c3RO8pC0vwDqMSFof2B1z3hra/Zby7xbVHmmPDMIRTg8QUPHtc83w7sK0862Kg1FMqVJBGEt4Rxx6tO3Q0mJhIRYU1hqosePrkgscXe67uDvh0akRvt9v5eldVxW634+LigqZp5lCPvu+5vr6m67rZeFlSDc0c5900DU3TTOuFRPa+Wq/Xc50dgse58d45zYm5ErBxiukehpHd5I/UNM3MzjocDv9ET95v3vIcds9DZpLWZluK+yDOfcuM7NMT1P1xaP6KwihNHDzXry65/PIlP/vJT6jOVriJPVxMTI6o7nuUfGP+1sJSzT40YpdwSu6U9CDD0I18/vkX9MPALz77EWf7FZvaYtJAIIMISer0sWfsR6IqicFhlCb4kcIY9LrE2BU3t0e26zWPzi+4vbvFhYSYFv82m/g/JmWpduf84o/+mH/9b/8nPv7Rp5yfnTGMA+kQePbkCWVhaNqWVFvWtkAbSREmgQuBdhg43N1yffklh5tXKCUhFlYV81ySVTiTeo/dbifJct4RXC9AV1FgVSBFP0mdvAA1SKhJCpHoo0h/x0BLjykNq4SoeKZ6WpGEKQRzATURX9BaUZXV1BgcZtZLURZc9z1DmvzhJsbMwxoo36P37qm3znUnQkcGaR6mPsEJH5jvqd8VqHloLgenhW9mdyyBgiXzJh/Y0gwYuPd9NtTM+1wiqtlcNwML+cHNv1syapYFSD625Ulc0q1PbJJwuoEWTJmZarzoJsEpPWr5/Smx5b4EK5+y5UQroMkJIFoCKw+PNf88++vMxdjiPGZEPp+zt3UVc+GxvD7ZpE3+9v7NkdF58WaZaNE+8fXLS1LUVOWKMF2rcfTTol864Jv1luPxQFUJEju6gZQMydSEVBCCYRwd7TBM3RiDNhDikfQXf8Vnn/0eH//gQ1JiMtCL94xSjdH4kEApqqomxCkalm8injlOevnvxGKQzqSYHCfwAQ04IsbmhA89M5ne1W1oA0/OP+TJ02fc3N3gVxqVNEo7iqpit9tjVcnhcMd6s6agxhjFMHa0XSseIJNURmKwk/gveEuIHhdHTGFoumu6vkergoihG1o2qxVv3lyJFj1JrGC0cLhtpOB1CYPlzfU1+5XQQ8VsV4s5J4q+l/Sw54+foqMCpSdfGvFnWhWGzjWE5ACLtcWU9JUlBCUx9FOKmjwHceokSuekwrUOd9mh3Yq/Obxmv/X8mz96zOP3SuIY2dDTKhnou6anirfs1iX1uuamhV0VeH03MPiCmzZyNxgODlyyDF6KTmPsNE6JyXZRlJicEuDDzLbTmSY7LTitlltbtLhyTWdvCpPYPar5w3/9GZ/98QfUm57Dr2+4/PUbfJRkpajUBOymeQZUKsHks6GVsM28HyE4Ci3JTX/7N1/zL//8J4TxQKEMu/UeksGNnhAcq3XJ5vGH0s+MSaRGSUsHt7CMPtC2A+dnj7i6vaK0k4mhj1hlcINDR0OKCq0qUlS0jaewJUYVgKG9HUijMNlW1Ybj4UhIic16T1XVtMc7zFR4VXVF00rMaT8MpBB5dvGEfpKv/teyPZxH74EtC0jmHgVWTWyS7/rbB12at71X/tnbiorvAniWc+HyNYKdTEX099LI3z+m5b4e7vdtnyt3phMQIrSDwzQdVVWwrYtvdKbe9jmAud7Ic2BuMjx58pTd7hxjrVChU6Kwkw4/ytiFgr7tSCFSFRUO8Rtpjw2b3RY3jAzFSFmtiRFGJw0Q7wJRaarVhs1uT10JwKT05EATc6l+SpaIUWJOMw8qhkAKkjIZF+cks0BSjBiEih/jtE+dYJIF5Jorf10Ce8uvyyL0Yb2UvXK+7R5ZXuN3nVUTQpi777n2zOc0M7uXQRXAnMiT66m84M517m63o6qqeTGe69e84NZaY6dmX+5W54bkksWUm1NnZ2czYyPLpVJKU+qaoR8kDrxtm2nR7mjbjrN6I2MG02JSG5IuQK9QZo0p1xT1ms34BHqDGq9QoUWXnrKG9XrF5uD55eEvuPzLmk0KbPZrVKEpihqiZ1VXjM7QtR1N03B2fkZViZTQGEtzPIKCsirnev0EOAnTU8WAdwN911IUUueNvQA0XSf+KsPYoZISmUqUNJZRK2EcJI9NHdbfkZo3MLS4tqNre0Yf8aMoG862lv3GsikCtUnUNlFoj0oGqyxaFZKQNgHCMYyYIJIuTElSkcJo9ts1z5494lcvX9E7YTjleyVfX+89r1+/5uLiYma7VFVFYeT6vv/++/N6xXtP0zScn5/PINvt7S2rlSRDZYAv36tN03B19Zrj8cjTp08pimK2PDDGcHV1NUXEC5hxdn6GnRrDb7vf39VtuQ4CGReNPgXEPKzrl+u0eZxTU0NsaoZ779FKY5ImhcjV15dcvb7kJz/7Pertmj468QBdLKJVnOTq3G8eyFdhQcoxpHldp3QiTbYfRhlcP/Ly16+4enPDD3/8Q7Y7YYcZhA0GUj96pfBuILpIjBqXpF6MwWO1Yr2qaAePG3tS8Hz6w0+oqhV///nnHNsjzkOaLBy+1zkmUa/XrHaP+Okv/pB//i//FfV2TTeIuXXfBZ4+fSLpvdZM4IZ4zobJYiCGyOura4axJ3Ut1y9fMNxdUxXC/Mpryfx8VFWFVor1ZostCmIM6BRRweHHAR1rEp7CIibCKomk2RREpcT7LEkEuilKxhjpfWIIkHwijJHSJgqbvlV4a6zl7Gw/ryvluYCqEEa3c46C7D0rf5PH4+W6/WEtM3+fTs01AWXUDKJ+myrn+86VvxGoyWDBUrecB4N8oDHGewyY5Qd8+OHy6zNY8hCseBh/mC94/tk3nJinbWlEnAfJrLc+xVjqe++9PNkPzYkfHtNy0Mz7gcwQOQ0Y8vCGmX6cB/PsSyPyn/vRmcubIZ/b/B5VVd0DsB6ez+UNlM9ZjvhbTv7ALJGaGTdB4m7X6/UsRZsHNaOoTIXScDy2HI8dq6rCFj0xJsZROkblBNawlkFVDPWkUxijIkWNC0ITNLYSpFRbUtI4P6J1wdXVLV9/fckPfvAxMeXzo6diQ6GUmCNqpRicwxYVWvvJvC2DY3o+ryF4Yjp1mYC5w2WNILxNgIvPAAAgAElEQVSu6+kODSpIXLQrCmxxH9R5lzuDPh5R0RD8jtvbS1zoMIWdjDMLjs1AYRIxKrQtSc7RtEK9h0Q/9Kw3FT4FUnLEmFjV66mTVaErTdcfiWkkKE/bH9jZCxKGpjlSVTVlWXH15pqLi8e8vr5kGAfO3rug3ovPza7c03cDjx49Ikwo+eNHjxmGgZvDkYvdOWVREV0gxDQZbmuqlUgauuaINuKRUq1LyqJkGCTZQWtLiBnwPQGuMSZ0glD0QEK3gWM02KcV45Nzxo/OcXcN1pWYcGRroTte44eezcqwXRs2a4XBU+jI892GkAq+urVcjQW/vhl53Xg8FiYwUe6ZPF4wP+tTBAspQUgRCaqZEBo0pDSZmk+G5gRQ4pn17L09Tz+sSfWRT/7gOenf/guuXxxJlz3jrQMMKCvgjI+y8IvSQhRnDfF/ct4T+yN6JZHer74+0A6ecjVQKk0KHueCPLemoqwMwUtCwPn6HG0Nm2rL5ZtLktL0vafUFcSCJxfvU61Lrq5fo3Wk7Y40Tc/Z7jHDEDk/e07ftkQN++2ecXC4wbHfnrGutoQUGZ1EMa7Wa0xlsdrw9NkK148MXY/zPTE5qpXl0N6RYuD2TrGy7y6Fe7l9G0DxbUDNfabNfaDm20CZ3zzhf/+CQDC/twM0Wk9Fh9IsOddK3ecD/ZcYN+8DBVOa00QvTxjawXF9c0v1+Iyqqu41jVRmEyyKIq31dD7VvLguy5LHjx+zP7ugqNaUZYF3nkBg8I5VVaKmDunxeKTvOjbrDSol+inpZbPbSmLc9Lqh64FIvSqJgC0FuLX1Fq0RpgwJH8UEVAeFpPVMoK53E7188oGJOdnxfsMpgwoCBHu5HlpPRfCyllJzHfUQVHl4Xz08//e+R33jnpCvp/3l8/8ub865ObVpCcZkloIxZmbXgDBcshFwjljOst/MmBiGYZatL2u+JbNc6qrTtVvWwblGs9bOUpgwsb1ubm7mWOcYJcRhnBbfWgujo2mOvLq8JIRPkUsyGWhLJ4FoS4ytUcUaXI0ta1TVEtclMVSEOBBGj46KXQGf7Bzr+sCvDn/Dy79csf74RzgD7z//YGJpQkqatukYBomLXq3Wk0ebLMqOxyMbNjNYlUEpUiA48ZsZx4GytJLm4kba9kjTNjTHAzF6UOLrFkZHYQ1lUYgsKXisiZjYo0JPDD1d29IeR+76xF2nKJPio0cVu1VkbXtWVmG0piimJDNdgdqgzXaeu2MI4EaC6sVoVgWSCUQS61XNxx99wKurO/yv34hR/tREzZKneUE6Ma4AjocD+91+vh8ys2izWQORvu8lhWZuHutZUjcMMq7k+/Lp06c8fvx4vhcAXrx4Mde9MUZ2O/G9OdvvKW0xr1ustbx8+fKeOuFd3JbPhGyTB406NU8z2LRcO2b5kzEGU5X3gBtjDNZYdB+5/Oo1t6/f8NOf/B7lrqZPjmQ1GE0yitE7cYoFCXpYNCKW7DYZM+4nC6YUJ8BPzOrfvLriyy++4vn7H3Bx8YgY3cTycpOP1Mk/pywsKQWGduD69o717oKxHzG6oh8c3jm69sh6VdG1nrPdGbuN3FfH9o5h7L7RWD6dQ6lDtRKmaFmXbC8e89lPfsHz9z+anmnHOIo/1nazmRrywoYfokfrAmWs+FdG8eTpup4XX/wD4XBNd3VJERzBj5i6JCk9J5pl+eZmu6WohAE29B1FkphtP3QQoTQJZS0xTlwjrYhGw7SudTExhEA0BYPz+NYxXN1RhYqaPWdmz15HMCemrzopoDDacHFxwXq94nDspKGfNOVENvDeU8xNT/071zGn+dnOqWNLz7flOj9/Xap/3rZ9J1ATYjihzUrhJ+RSGzulIBhSQpzbR4dW9+U5D/1pMpgwUzWZdNRRoCg9LWpilMVGDGJAJrQmyLrYPLE577FGnLmD93M3nclBWoCHkzmsD5JUJb4QAprEKA9XIpDidHyTOXKKaXp/MMhx5c+ltXz2JUJ9kiJNzuDTfnLsd06GyoNy/mqtfevPxBfAo7XBBb9gl8j5vgfaJEGRFWLgjJCmUVqLe7wtpBtkJC0mxmyMymyuLFRmofQllXCjm7xgAm+ur/jk4/engqKgqsRxvphiAMd+FBqmUTg/YrzHBHEDN3rSDaLRuhDTREBN3hQhwJvXV2gtxmFxYkdMNcfkF2MIAYwpsLYkxhalcmEupskpcbp/knz20hY477BFSfCOQitMjOgQ6fqe2+MRW5WUF08Izk0RdJPJVHp3U58ad82q3nLTXJLUSFnJuayrkqs316yrPUPXs11tSQGqdQXDgPODmNiZSDOI4d/V7SXPnz1nVVUTzT9QbtdyfSvDalNhzIALA11nMcpSFhV9P7A/O5fuBSU/+PAD+q7DaFhvVty4K8535/ghTF3EgOsDGsOTsyfsNhJj2vb9pEhPuLGHOGIUaGWo6xX7swsOXUNZK3QRWZdnvLp6hVIJpcXAPNMqZyQ8RZKOqCSGns3giWcV6ifv07zpqB6VlFvL8OUN8dWB1aqgKipW2qDjQGF7zvaWsrAc2sC5MvR95MwUtBhi6/FunBaFU9fPJykIJrmZ0svFTJrTaJKyco8DIU1pBoBPkWQS1b7m4598QFF7ysLQdy0f/fQ9Hv/gnDeXLyRRq1jjp855wmBMMXf2QkrEELGFEfrsOJIqj1EFXev4+uVrPnkk6RRVnTi0NxSFZYwB5x2F2eAGR1WvcM5zd3vD+faC28MNaQRdFtTVhmHs6ZsRNwqQP7SJi90znj55j9evr9EJKiPJY5Wp0cZSVjW77QW3h2vGsZHiBc12t6Vte4KODONACJ5yXXHojhzurkhKWHV1WQKJMbh/mgfv+2wP5ttld4ZFtyb/Xy3+QKnFmK6+e0H9fZg0D+f+hyD0Nyjd5HH0vgQpezGVZYG1E8hPEqmdKLvn/f+uBc7ymO41J2IiaQFxUadI7BbP4WhRxlDaYn5vN9UNSzkUgA8eU1rWOzFztabAlCXVaoW1JcZI5Gj0CTd6dmsLOjDGRF0UYkZsNH3b0bTtzKxQE0ByPNyx2e2oVlYkCmOgDJbteo2JihScAE3RMQ49fddh9RThHSV2lCiMuJh8hkCk+TOBLpqTj45RoIyIPZOPUq8pKRCFeSNjgXce7wLehQV4LAmTuV5T+d5IDxdK07VhSjRZxJ7Lf6Z0qpSm+TjzgN7NraqqOdo4y1Xy/ZYbkiANxyyTyl158WA5xS/n+7MoCowx84IkpcRms6GfEpuyzCk+8HhKU8f+3s+nWi4vxuu6npul3nu89aQx0XXttHBMXF9fc756Rj+KiTDKEJQBpIGgjUWVJSpUpLHG2DVULeW6xceSOlaooqTtIs55ShzvrQxFceDz5v/l7oWjry5o7jqePHmCcx7Q3B1uUMqwVisOhyPeB7bbLWKibxj6XhL71MnDRQCoFjcOGKNwbmToO8I44F1P3zak6MXfzmiCjoxTwtzYt5SFpjCgk8f3Le54R3d7pDkMHLvEXRsxFp6c19SVprSOdZmojARRGK0xtsDamqQqQrJodJ6ip+sCcsd7YtIy92h4fLbjbFNRGqjLYkqyjVRlxWa9oZgkUPl6DcMws4pefPklfd+xWq3nNUZVFnh/SncNITCOYsi/XMyVZTGx7RJGKUISAKgoCj547/3Z7mG3285rqaqqRNafEhcXF1RVxV/91V9xcXHxj/zEff9N6qE0S1VA5qMYZIzJ50n8PxMEiWuOKaGtwRgmVqSsI5TSGG2obYXrBl6+eMH1m9f89Gc/oVxX9MnjlXgHJhQ+TCmL8yI/yXioFXqyqM/zY17LQb5fhBWuYkQFuH1zzeef/wO78zPe+/A5pixQOkljOEUCihDFi0USgiPWRDZ1yTMsr16/phsjTlV00dCOkYAnKIcqIwHHe8+f8ebyDe8/f8oXL76g7bspWVesOlLwE2grwRfWlqzqFY+fP+f8yTMiYq5blmK0O449qETTHtnuVlzfXGGN5my3IaaCBPgoCaXOiwwv+YHrVy9Yx57aQFIF3kcU4zR2KYqyxFgrflkpEoIjupHRd5gYpBb2bkpAPTXeExB1oihXGF3hnKZNX/GrN1d0DmyhKDvPWVxxVnRU28C6VlilUCkKUJ3y2lO8qNabDUWp6dsj3jsqs6KuSlZ1TbhrkMQoYV6l6ZnTqHl8eFhi5RTJeQEy3RV6GmuyFYncT/dZwm+TIX/b9p1AjcQ3Q1lXC0aCBBzLjS3F1OgErDDqRFvLKFLuHCwnp3ywEiU9SZ8SklOfB8zJe2IGWebUAeZJNoRAtEz7EFlPUtD3w/weYaJrnZgngjrOKBZqMsdl0sjKgLBk54gHxmR4pPRslARpnqizpvgk5ZKCJYSEMQXZGCvGk/7yITsoI2yz3MtobFHOyHr+TG4U3wsZH3JcmCzOUkpT5GSQgUcpbFHJw2qnG0LpqQM/0ftijlvXjMFP40+SslBpgve8vLzkh59+JLGByk/FvKKw0r1RRpIylBVNadv3gMIi75OMfMYwTiyXQstCO1lS1Fxf35EQiYabmEdJybEao+VYtAFKUkSOXYFIlQrc6IlB4s+d87ggfhcuBOKEXCdgdAOFjzB6tus1qdA4qwjTQ2esUGJjjMR3mCbap8jYt7RjoNAVWlW0TYt3t/ix5zh61tUOozbURcXl9SWZ3teHgbZtqesai2UMPTd311wOr3j25DmvXr3iUb1maB2r1Z7oBXTs+4HNxlJXG9q24/z8AucCTdvy+On/R92bNcmSnOl5j2+x5lJVZ+1uYBrLYAhyRIgiRaMkIyUzXekv6gfxTmYyE804mNEQvQDdfdZaMjNW33Th4ZFZpxcAEm3QCtjBOZ2VWZkZ4eH++fu9y3PsskgYbfCz5dnNDafO0tQtIqQxKiOUZZEWPheY/ESQHqUVQ9+xqSvsPGFMiXeBumzoug6Bwssjpo7YYNAhUNQGExroDktsYqb2g/AJwJW6XDZfnm4e6QqB/+SG00by/GcvGF+9p3h3JNpIGBzz7ZGxmynLFylNFIHoLJVTPBeKTzYv+PzziX/8T29499UtWiXgSqGSb0qI6EIjlVgA0CWRiYDWkrDEyYsFTA6RBBz7gIwCCoF5avjZb37C1ZMtG3OFkxa1izz/2TWf/91rykMq1oTwEEe0qZCiQKtFw+3Oi4zWBu8XOYeUBOcIc0QERTfPVDhG32OalkN3BATV7irpj/tknLnf74nBs9UlzXZP2+w4nU44OzNOPVVVMk8Rw46X1z9HRUkte46ndzR1i50mjt1IZWpKU/L63VvG+URRC7r+IXl2nCwKg5CKceqpm4b70wPWWWRRUBpDU0vsZKmaluPx8Je+Bb/3eLSWxzM4v47NC1AjYTcXgLBI6woXi/qHQM2H0pQf/CyZifLB67/7ucsaecGSSF8hrXNlWbBtG4a+T2w2axNQGC7aVhe/5/s/07fBpZhRdnn2h1t/LgSpgIq5NIYI1kWOw0RRO4qiTHtUcaEzv3gPrTXKaEY3MwfHs2fPiUFQtS1Sp2htJZemURToQqGQKAWhKDI8gpSSk0uddKlkik+WIhXiSiBwxOCwcwJiq6pitimlTEuVmD4hcn97h7Mzm80mSSUXwM5HD8E/om/HZY5InaEAwS9/XPKjIRBVSm4MMYEpqRgUeJ9qkBSJvJg1BwhL3ZP9hmJm8nKu4daEz/X/FqB5ZeWAFHGRRWXj6+X6/EiPqqoeFcZZPpZr1mEY1pouM7JzVzS/JieT7vf7VX4OybNvHFPTaxiGlR2z2+1WICzHOU/TtIwNu9aZWTKltaZt20cNO1iMZPuecRy5v79nv9+vaZaDl4xzMvWKxuDRyDgvXhRLIpcQCF0hiz3SpfrOi0iQAXEcwAu6ODFMEH2k1fd8soXXQ+DV0PP+tmDqjlTtHh9SspUxVWqIFcUanLHZJPbYPM+4fP5gMcd29GOPUCJJB/uOEDzT0HE63hF8oN20NE3q6p/GjhjSOFMCFAE3DYyne47vXzEdj9jRYh0cByiM4sUm8qSBRs9oHHJptGoJWgq0UhRFQVEWGK3RyoA0RKlBG5AS6x1BTqmpsuAClYKX11s+04L388jDcaCqW0ql6PoTUSbZ/GbT0rYbfvrTn+K95XA44byjrCq0yVHZMAzZw+Y1ZVkuUjqN1nIBCWfatmWz2WDnmegWTyql+PjFS3a7Hc459tst79+/Z+yHNJ8oxd2796vhddd1bDYbfvnLX65g4o/xcCEuLoPrRLLEQOtVZpRBEec8wi1zjlKp2aVTaEKwFhkjZdnQmAY5Bl59/oaH+3f8+m//Bl0VzHFhIMqc7Jve77FaxC1rTp6NE+iZPITOflVwbhLLKOgPJz7/3ecIJXj56SeoUjHHgMbQ6JQ+ZVka+XExaJeKwgjsdKLwlhfbCvv2PoEjY+Tw0GOF4XjqMU3N1fMd43Gk0LDf7jFS882rVxwOR6xPDXQ7j4vvn6Esk0Tu5voJf/3X/xxZlJzGHh8tSsuUmCYV37x+xdV+x/F0YttuEvEbiXWeGMelqeDpuiNf/ONveXjzB1oxUIgJJTReFBRGA8lHyrkZXRpUqVM676I4IbgkrRLpmrswY6JGmwZtCpRMnq4IUKpGmiuaXYPavObrQ0c3QV0adpTo0VPNltnOTCGiY0SJgFzGUvLqCggMddOgdeT0cIe3gU0rKUtDVVdMt0diTE3TEOZUj3NhLJwGxUoICSEi4tJoE+Kc3hlBiTy2vm0gfDnWgEc/+77jhxk1i3QkGwjnx+oL4OZMt4oJzSSucoBMBf2QMnZZnOU/H2q2MnUtU0oziJHRaiGSR8NlCtKl3CkjWZmhkh/PbJ5LSmFehC8TmTLIlOmNmRl0KU3K3ydFb5/lS/mz54LgkvqZDb+yfi+/54c6yLBQnkc/rv+dvxcI5mlefWvye+fzmB3p88KZ5VB5MFyej0yLvpykcmywkAI7O4SCb169SgNQnylaIaRzVtUlx8Nhfa/cTYKO2SejJymSxjFFhC/sApWNuAT393cJgFo8L5DLxB3juuk0pkTpinFOTKMESpnUgVwmgGziFpxndmdNflhYREEohCyQRRpbut0jVGLkJAaWW7tslxK1H9txtX3Cu7fvKZqa4+HEk+sKO1mOh4mnT59x9/6OUkmc9Xz19VfoIjEonHNoVWB08g+x3lFvWg6nI9f7G94/3DFMI9JLNsUWEzRt2+DHB7bXV0gPiEhVlQxDn4AZo5mmI4UxeJ8AndKUxKCoKoO1M1dXe2abmDNaaxCBcToxzSNSC3ACaZIGdbYOHwOqkNwd3uG9RZQVWkWqtqR3M1KmzkcIZzpsksnJFPO3TJ7aaMScZBvzNKIj2MlCXfDeRMyvniP/2SeoEHHHnngc2MgCZQreHw9ctyXVsWMbNfV+SxQVPztuePjf/yN3rw7pPpZJc2t0iXfneL40l2WUPd2jSpw3oMkHZk7Roi75OalG8fNff8yzTza4MNH3R+qmwPuJ3/ybf8Zv/4/Pme8H4gTYkDrYyyZKyrT4SylWVo0pTdrALd5MSkl22w1COJRMke1aGw6HE1Km5719/4qmqenHnnZbE4VlsiNSewZ7RFqBjTNzGJhsj9IbFIqf/dVf4a2jH/pkYO2nRQZQMM+WojLc398RTGCmZxgmvHQcTge2mz3RpoXrcDjgwiadHzeBFGhdM0+O2c5LMssPLl1/0eO7ZCTfxYo5AzXfzZL5PqDmu372Rz4Rl2DNn/b5z8/LBURhNNvtJnmIAaeOJK2Dpdnx/3GDLr7N+BEiUbajvKw1WJ8zTjNdl8xOtVQIubCAL55zuQ4rpbHWMQ4T+/01dd2itSHEQLAeJSRFkTZywkeC8wnglAppCpQx9Kan0JpuGDCFwU4zPR1FYRjGCecDSEFZ1wxDkhpXpkj4knec7h/wIVJVdfJKW8C89LkXoCz4R4Wccw4RUzJNOh9J1ppZwTHGFfTNFPzgHBG1yno+7Nx9KKOOIRDFWeqd64EoUrF7qbFfx+7CCruUiv+Y1815num6DmBNI+n7nhjjCnzEmEIcco2UI7MzOybXw8OQPFrmeWa73a6BELmDutlsVvZXsQA/l7VeYlbEtT4ry3INlBjHcfUcMeYsYVFKcXV1hRCCpmmSGXaMHE8dh2NHiNfp94uQ2AAs04uQoAyyKBGxJrgJ4kRZbhLQ5wTRjXhp8UExDQoZwIgDL5uSysHvHwR/+PINvn5JWe8J48juSq2hDpfnLbOOEgMr4lwaf9M44qw916QLOHZ7ewvRs9/vaRbZ0OQS6KVFkkbFmBJfusMdd7fvmU4nZEggaAiRyiiutwVXTaDRgkoKSkVKoZECpQRqATSFFOmUaLWO8cgCWKoEFCTMMSzrZ0RJQVmmGn5eWKR91+O1xqjso6I4HA6cuiNdd1wYXJanT59SFMVqPF0W5WownWVOeU9VlqmuL8uSvu/T4zESbJL65Hj3w+GAc46madjv96v8J9fFeX/Uti0vXrxgHEe+/vrrf4rb7P/18a05KUZ8XJgNF9YPSimiVMlbxhi00UitU6IrksJU7JotcXJ8+fnveLh9zz//zb9AlybVlmqxt5DiW6D+mWCw7HWiROuCqm6YJ4uP4/rcR+uph3GY+fzLL+mngb/+Z7+i2TQIYSm0QcuYgH8fcMGB98hl/yOkRMQlFVMq+nHm45c3DFZQ3PcU3vDF1wN6lITgKbRhKEb2P71GjpJPf/opMgqeXV3z7u2btAdzM46Ic4H9/iqBk6akKCtU3SLLClBYGwgOxt7RbjbEYJCUeC8QUTKNnkIX2HFm7A6Mxwe+/sMXPHzzB7YFmBAwWqVI8qXxpKROfjJliVQaWMgBzuHdTJgnonO46Fhut3VPrU2JKipQBVLVaF0hpMKYgmazxaPopzHtZUxBO86LSftI28yURXrPmElPEYgSRKBpWna7XfqsLkmMlZaUVckkIAafauU/oaz6cKx+OIakkquv7aW/bX5txjwuLWK+7/ijqU/5jS8fSxG5cT2xl10+4BFocgmGXMZGZ/AiTyyPCoN4Nr6Dc4GWn6O1PkexmfOklrsZmcGTN3CX+tD8GmvtoyjsM+XqDOzk73VJUbr8XJcayctJJJ+zvLjm41LalAGSfN4uE7QuXc8Rj/16sh9G1lF/yMzJF/5Sx5k/T37epR/Oh149q7eNlAih0iaZyOHhhPM+aYoFixdK+h3bzYaHu4f12njvU1xj1yOjJIqzJjt79+QUCy0N0UdOp45hHGl27RmcIZvPefSit3XO0Z26tWOYxk86tylxYFiokQkQSuc04BcjYhdlkrIJjag1znuCACPF9/ol/RiP4WQpdU2w8HB35Hr3JMnPymuM2tJUkaKocQsl9uF45MnNM05dhzFJRz1NE0M/JEmgULCAaVfXT6hMhSgjVWmQQbBvdoQoiDIQgkubndHSNA1KSZROnjIxSCQGrUqOfYeuIqbUDFPPw+Getm2SibSbOJzu6fqO/fUOZz1FaQgi0s8TYZzZbCq6+UAIFqUDhS4oGp2KUJGKquD9Oqem+WGZK5QEKWnbBlMpxnBHWRUgJbI0zN4RJDgRKEvN7GZcA05q6t2efpppnj6lbCvm+4pWlTwc33O1KdnUElUGisJgtIEg1ohu5916D196JIUFPMrjP8kMIEQHMuC1RLWGm79qKa8d1RV042m5Dy3Seag95bVENWD7EUmae230KBUROjH/5EJwcN4hrFxT2KybqKJKVFvpkVLTHQ9cX18tsfaJFSik4/6YNM9FJXn39o6qKikLSd91nMYOgWS2I9tdS3/oKYuWw/E+sepUQMiktz8NR6KH509f0o8dh9M9sx6pG8Pkek79iSgkyhp0iLRNSzELvE/3cVUWSFlwOByIAeqq4fDwwHa7+4vcd3/K8X1gyHfLlDIocl4/Lxsa3wXGfBeA80c+EZeVx4fPf1QgrIyfc6G8Sjy0YtPUyTdlAQy6YcRav8ghvi2l+nOOD+uM7wOlzutcZLKOUz/QtC3btkls0UWOk59/9iJhkZB4jCkXoKSgKHJcckQjUEhsP2KEIs7JH4AYqIuCGOHp1TUPt/eJ6bo0Ebxz3N/eYZ2jrEqqpma2J8ZpZr/bEY1YjNsdVZ02VkRHcBbvPMGd15o8j62yJHH2jsvdZiHONUZuXkECrqUyC1svMFu/so/XzuBSV+Qj10uJvfTYbPjyuPRWWQfLxfWBMzP3x3pcX19jrV1lojHG1dw3f/bLMR9jXFN9chPqMooZYL/fUxQFfd+vwEwGK4RISaRD31PX9crgEULw9OlTtDE8PDwgpVzBoLyhz/VrBm+894zDwDCkufm4yF+MMTSbLeNsFw+eMnXqY2JzirjE0EpJYDEX1iXRVZhyhyDQNgmo9POAnQRRGQiOrZqw4TUFR4rtFS5u+b++/gxVPSVMyW+l3m3Xz5FZQdfXV0vD0uLcuXvcdamOZGmuHQ4H3r55TWkU+6sbNpsWIdI60w8TU9cxHh4gWCSOoXugO9zRdUNivglFrRVGRkqj2JSCxkQK4RefuexLmBpK3jsiyQ8kG+/nxkoIyz3iPULIZGAsVGIkxYiIgaowy2d8j3MW532SuxSGttmtHjSVrlavmQzcZX/I7Xab5qEp3bNSypVplYC+c3R7Pm9VVSGrJCOr6xopJQ8PD8QYOZ1O6xjJ9XsGfzLb/5tvvlnBwR/rcdmoXueqxRBdXeylsgcUSiP18u9lLjJaYKTmyf4GGQJ/9w//mcP7W/72v/k1sZTYuDDxZUppynuNuLz/4+a+JIb03Kurp1xf3/DVV18zzcO66T43rQN2mPn9F7/n69ev+cUvf872Zo+USRqfmDmCtq6JfiIGj1GZYZnGoXNLwpwSVLVGTJ7oLc83mq2q2NcNbx9G/u6zL/ny1TsOM9TXTxAu8tHTZ7z89Cc4O6GbNEa7rieSlCtFkYI/hFj25tYxTimmW9nwfuMAACAASURBVAqJXNJCcYLGVBzvDvQicPPkChcDJzcz90fefvUlp7s3uLFjIwP1IndNwQIgVVrnirJEan22GpHJlkOEgJ0mgp1QRPAuydakSp4/QoLUSFMiihahN0hZAsmuRKiCOUh6C7N1FKNl7/zasGnaYUmoE0ihUAs/WCz7wbqq+fjjj/jJTz5mHmfabbrfysIkrzhk8pLkh1nB8DgsKAuBWOZapdTiCfQ46enytZdAz2UK9HcdP3jX5l+QWSWXgEX+pRmM8N5DOD8/o+uZVZNZMJdfMCcpAY8WzgwifPgFPwRyLlOZLlN6Lo2BL18nhFjjvi/BjDyZZuAkS6vyDXs56WWU+tJb5jK16hIEuQRH4PHEe5lkdVmQZWDIe7/Iyc9Mj4yU29kRL5pWK7gSz2lV+T0y4p4fvzyHl4XvJYCW/Xe8TxInKVJE8ziMtPuCuBj1pvOfdI51XSeJysX5gHTeVFngfVr07Dwn7eAC8gQRiCHJ1Ya+J25vWKnT8SwJSwvgQGE2CVwJZ9f3XNh2Xc/xeGScxmxFfDHppwlLCJk04ct58MsiPdtpPf/DMKzA2Y/1ENFQFRWFMTx9AnaceXrzFFWkRXy/v+J4OFCoVNzX9YaIwrlI2ySa8jx73BxBaOq64eHdCa0M1zdPksacyNB3mFIv5mCecexXRHqzbTgeu4WBBF3fQ5B88tGn9MeB3XYHhef2/j3ee8rKpJjtuqAbeppNS71pcMHRDyeCjAz3b9Lll4HjeETolFYklccyUW9KlAlIBWpJJvN546gUMWR/CkFRFcToubq+5n7q8d4hC0XTbBEnT2M0frIUg6cfBgQBjUIFmE5dsku1AesUdVHTlFsqVRGjZrNQSYWUeHdm0gkpmOZ57RCsk7HM7Inz4u6DRyAJwqNaz+ajgv/2P/w1//3/+gtkPVBvtihRMI0jm9pw9VHL1cdbXv39AxAplCYKhQ0BSN3LEB0xCpAKISI+OHxwSBmXLockxOSHYW1KokuJWo6yrLi62vP63RvmeUoJTOOIDR5hJ2wI9ONMXW0QQjHMA3ISiKLg3cM7Cn2krRvmqaOqC+ZpSHRXH5nswMPhgIuWslRoI3CkDqf1MXXFYqAfO4qyYOwHqrqiqRuG0dEPA0pqqiKuvg3/fzkuN77fDb7Ebz12Kf35IbDmh97r4lEud+YfzmuXz19Bmg9ApRhTIptEQNusLNPicOTUTfSMj9a3y7Xlj82j5+/xmO2xbvi/AzwQQiSD7hAZppl+TGavYSkY8/OycTAkwEargrbZUpYVVdUs8muV5IjxbO4drSO4iPQRwgJ+WofSmrKqudrvOTw8MAwTyBTxWTcN4zAxzcm4vdluCFHg25j8pIiYoqJQSYJBdPiFRy1iYtMED86meO7LaywTXS5doQ/OV16//dLc8CEkBmkE584Nng+vRf7vc/3B+l6PxtcC7FwWles4inHZAHyb2v1jPDK4ktNygJWhYK1dGTK5aVPX9ZpcUhTF2hDM4M0lq/qyKZibkHljbJ2DYWC73a71sLV2rWUyS2ccx7X2yBvwXJtCuuJN07Db7VZvkqIoCFFw7Abccu2lEsiY4t19CARrwUciAo9CCINQNVIECDOUM3EzQd/jJ4cIAj9OSBURfkbGSBsiP9vXHE6R//T5/80USh66I89evlwZ9Jm55YNjt22p6mL1aosxMs0JrJgXxlC/yHL22y2m0FjnmaeRfhi4u3/g7t07bN9hlEDiCHZinB2zB1CookCVmloFGh3YVFDqiMQhZUBqEDrt/0JwSCUXkDNPcWkjp9RisyAV5GYKKUHGL2xtYxRt06R1se9xIVkrzNNAafZJyjZPCFGTdRApTjvdg1kaN89zSmqTydcoJ4plVniMYgXzbm5ugCWxLkLXdTw8PKz1+jiODMOwApA5iSzHcWdWVgYIf8xmwh8qL/KcpC6MXVc1g1JEqdf5PYaYwA8Uxmn6d0f+8e//jvu7t/x3//o3iEowBJd8PEW66t6mPVWQj5se+b3jmuiU9m7H4/HC1uIMWGdCwts/vObLL37Ps49f8vSjF8hCIQATNQhDXWiM0gTfrytyCIHoF09MvyhD/OJX5QNGBMpKUSlFVVmUGNCf7imi47df3PLFf/4vWOF48/UX7K6uUvT7dWo0CmOYup7ttk5SsQU0dvEN/WyZZ4uQgqfPnnHcbbm6eUa73RGGI/NVS11qxofXlEbjpwE39bixAzfSFBpCRBCIy7VwIWAWv8iweIYKBEYlSZpwHj+O2HEg2jHVpILELDKanCwVhMJFSVNtMeUeQQExAS8BhUMxx2Qj0E+WfpwouuS51Y4jm9ZRmgK/eHSlc52AGlMYnjy9YbvbMJmJptWUZUFZpr2CVCpFS/K4LoK1LfFovD5i1VysgUp/N4vmw3GW/51//n3HH5U+eZ8MwvzF5jhkLbg4pyelxSn9nbs7GeW9dNLP4MqlFGktND5gtlxObFn+lBfQS4pavrEzwJG7EBkMyj/PC2f+DJlVkCeHS8Dl8ndmxk6e8DJL6LITdTnJXAJQH3YFLwGjy1SmfM7y65KUI1HzjDFrMlNe3BOYElfA6EPwLJ+fSxlWHlyZwZOvzSXQk57jEUKjcgFLkrMcj0ee7K/XBU5piQ6aupJcXV2ti80ZCEpUPi/OLCJBopv6xSsoMQ0SmjpO02IuneiyQqSiE5k145phHBb5jma20zp+pmlmGHr6vsM7T/Q57cIv10CmziUWhMCzSL5ipDAG58VaZOTuxo+ZUbPbXHM6HjkOHVpo7OzQUiOlx7mZ4JIGtN1dMc+eqqkZ+omnT55zd3eXxlmU3Gyeo6Riv7viLtxRlRW76oaoHNIlydv+eke72TGHkaatkBKqquF06vDeEgnc3x9wNrBpW2JMfizOT7g5JXA9efaEceyZrWOYR5wPTMeeqqmo2xZH5Pb2lu2+oagMx2NH09RY5wkIZCGZTgNCKwIp8cIvyWNrZ1kqolKwjOfNNnnjGK15srlhu20RPhBHS1OU9KcjIkZMU1IUFdoYXIwMzlHv9gmklODGkeA9VVninacuKvb7K6R8TQh+AQDTfDXZJb7VntlqIaTEp8v9ixAijdOoMIUktD3/4X/7N/zq336Cah1FUxHRHI8DVWmw3qMM/PSvf8Lf/8ffLwV0Wjbk4hERY5I7CSXXz5XjeaVOHhdSCKqqZBzuMaagrmuEEFRlDQTevb9DKkNZ6dUbK6IoygZlAtYK+nHm+fMX9GNPlAIbJ0LhEGVBH46IwmGlx4YZowp0oZN/h4RmU+MZ6I8nirrATY6r/RNODz2bTUVZ1bjJcn//wCd1i1GGPlrqqmbo00ZHInj16vU//U33Jx4/BKp8J/Ai8ubh+yVO3/X7fgio+eBR/iQu7/mXkLoEHxQRMZlZKlUvxsIlVVVRHnrMseN0Oq3Sh/8aIPdlIXN5ftbPFVNxFBFJcuTOspLL33FeF9UCRl7TNG1iw0USsCpTt0/6SJgdfrLE2WFi6roqo/HOI0uwIdLUDZEU2V1UJdVmk9J5QuTu7j3tZoOPkd1eMltL4Tyq0Gsst3UOJdJGQEoF0uNdkgij1NLhP9cXWqf3jyEu+My5EbGeI5m83KSQSTZ8Ua88vrxiZexc1g2XINCH1y93Cx+df8707cvHf8wNjru7u7VR2HVdkvLXNVVV0TTNIyZkVVXrc9v2nGCUo7NzvZlBliIHKyxpJ0qpNUji+upqrS+LolhMd88mxl3Xrf8+Ho8rQ7hpGvq+PzcPSfXd4XBgmiaePHmS6lyXGhTjONPWDiMghuSXREzNtyAlUqcmpS4bQvQIH1FhRpYDfpYUSrFtFYEZpyKTi2BrnAPFzDbc8surDbe7yP/5xTtCP4FSTNPEdrtdN4NSgdaCrdumBsmyL7i8P51zbLZbpIBxmjicTiv76+7ujvv7e7x1FEUDMuLsiA2CwcHsUgOxlAW6qqmMY6sdtZ4QYmHLKIgKgoKoBVonLyilFtadYGEDXLIIz/G8IaZ7cnFrRMRIYTRXV/t0XR5OeB+WaHL48ssv6bqO7bZFabX4ABYIoR7tXSCBg02drm3f97RtuxoQD0O/Stzyvuf+7o7Tw4Gbm5vVeyY3wtu2paoqHh4eePnyJdZaXr16xdXVFbtd8pPLjeEfs0fNd4LIMeKCX3xBLhodpPlciWSkHmZLcI5xtrz/4h2//+wzmsbw7/79v0U1iiHOBCGX/YxYwJHFpoMzCPQIqCFJpGL03D/cEu9JxsbysbdoCIG7uzu++OxLdts9n/785+iqIAiXIqhZPESdo+9maBNob61LjcUQYAmqscv+OlkxSCIOoRQiRJgtV2XB7lnNs7rlX/7sJ3xzf+TvfvcVv/v9K05f/YG7qFBVSz852qZiHju6rsdal5QFLhCWRsw0jQgE/d07nj55yvHdW55/9JLQveO0q/nkk2cIHCp6cJbCKAie0miUiqAkc0jM7BRgE/FOrJ43xcJGk0oTpcTZGT9PzNNInAd0oShNep1SaY/nQ0yvMSVClSjdgkjroYgBH8AhmUOqfPvZcux6ZHHEVBs2uwHrU5qxEmntFnEJ/JBprd3tttzcXDF2I9VGoY2ibWuUlhDOHm9/yiGlPKO+a7MrzSeZ7ZrH7IfJT39OQ+OPMGqSG/rQDyDEivh9uOlfu12AdT4VniQkWiAWYEGu5sG5OAkhXsT3sWyM1AogZO1wvoESCOORMlIUyQ8jHeGRt8yZgUIaJGRmjFwifReKK6kASZIFT1VXiU49TUsHifXzWmsXNFagTdI2S/E4qjwDQEKek6yAdOFJg+YMEqVkJkSicOeUqkg6BxFLdhi3s2OeF4p0DAQfmePM2R0+e/0kM10hsit5mgwS8JDOhzHJ4yYVJGEFadKNnKm/S58hpp2gdY7oHO/e3fPpJ0/SBKkE0ZMmP2KSwGiNHXNnNSKlxvq4pO8sNDG5XIMQkFoSAkTvEbPFTnPqLibCzeJtsyQGIPDe0fcjVZUkPWJKaV/pHM2Mw8Tt+7uUbuHTzRJJBUFy5J8hBqJgZWEE74k+SWhSWleKBpeL9OvHepyOI1oWoAVCRJwbKOsKUyp8cIxTin18+uw5p2OH84HT6YTSkqoqCSGy31+jg6EqavCK3e4GEQXewUN3i4sT94cjjkC721FWqbNoXSq4lBRoJZAipg15XXB9dcM0T5z6A85bRJH8hiY7cHe4Y7tpiSJSVjXjODHPgdkNuOCRSi9eKJGyKhimge7UJb3tqUfMlvbZNWXtiMOGEG6RJrnKy2iRSiJDuq+VhNIoqrJhsiP7Jw11U+PnACFgmoKiapmsI5gNbVtyuL9jf3PN+/s7ZmupmyZRwe1IP8Dz508YjxOn+ciTj3fJnNsVaKEAj3VJChGXmEKywWYmBoi0YORx6WNMdHTpePJJy2/+h5/TvpDIKo156yzWjmipMFLh/MQnf/WSqxfXjO/vMHNi80gJHodQJhlwx3OhI5UgeAexxAeP0hFEwDrHrt7z7v4d7bZO12hMvjXtZsv79+8IPhVETdUyDiPD8UD0kpur58yTpWo2CBXpT3dEAf18TJHDMnJ4c09bbVEq0JQN/dRjasM4jBy7O7TRhBH2u2tOxx6tC7y1OCTTaKnrLT7A8XhCKoG1I9vtlnEaubu9Tffyj/T4LmAl//0hCJMqkO8HZ77rNZcF6x/7DB/umf+U4iAi+fbTIkIlA1pJxIhk7q61piibZEyuJPf394zzRPCLQHz5ij/4fhcFTnrjszljLsrzxmp93rKhSsmMMaU05E3W8pb5XOXudLsp2e32NHVD2zQURi9rLQlwtp4wWcJoU1yxC8SFXYoAbTRutggd2JYlf/3pp7xpW0Y7o0zarPoFsPUh3WNd31O3LbosiYBpqsRwI6V+SAApE1tJJyBHqcT6jM4iWOTCwYOKBPySiLhQ+Dl3oGUMRHLjTICH2Tkma1PBKmVK3nA2pdTlDUmusfKZvej8kc9ljKs84BIcknL5tzw3ov7Y9f5LHlLKFaBRSq1AtfeRwyEBjd6n5M5hGCnLYh1HOTEq16KXTUa1gBWZEZMbgfk+zTIlIQRlmTwe+74nAsfjcX2P3W6H95537+4QQtP3I8djhzGaqirRKnkP9n1HWRYcD0eklJSbDa/f3HL30Z6bXUsk+Q1JIj54gg8QFVIUGLM0OQX4KUAwKJ3TrFqkDAyzJQhFNyzG2EqDjKg4siHyk5uKv3+teHU4od8rTqcDUkrapk3gaXRs2pqbNWVIMM8TbgEMpiUtbewnHh7uUxNVpYCMrut48+YdhTFc3Tyh0JqhO+FDZHQ9czQEremGCcvAdlMnY2DlkQSUFBilMCpgjEBriV7TZReLhexNiUCKVF9GsWzmtExpkjGz8yB6h7cWgmNTGQgRpTRlrYkLM8N7RwhJkvbi5QvatmG72TCO01K3e+qmQS17nCyVywBNZsznyPcXL16sj0/zTNf3VHWN0hofAnXb0DQNegGBfvrTn9D3HdM0JoP/OYUZQKCuy0Uu92M24V/AssiauJvmksQOzKm2USZZOwRcAGs9YfI8vH7HV//lM96/fcvPf/4p/+pf/wbdak5hYMaBMGn9WvZNUsr1+kKaM7PvZt4/hZClnMl4XS0gesLKJc46TvcnvvyHL0AJfvE3v6Ssy8QCXebm4AJBCGyMjM4ShVr2hGmP7eMZMNdlidYwTzMuJHZ0CsQJEJIXkp1HWhOoTGTXlPzio3/Ocfg17+5OfPnqlsErPv/mDeM8E6Jn7jumaU57JpGAkaLQXLWGTdvw059+zM8+/ZRnL15QNRW73YZCQ1UpYgC1AJXBB7wXhGAXPzQBSoNMe+zkb+ZQRqfwGqURy89EBDeN2L7DjyPRzXihiTox4ZXWCKXRRZm8TJVG64JITnDO7M+Ea/kQcCIyu8gwW2rrGMeBoe+ZrcUtdYqQYU1KFDElydbNhna/Q2hDWYBSaY5QQuFdCt14tIgtA2T9/3W8XNidhHB+XCmkTn/SechYQ15rz/vKS/LGD9VmP+xRs+AgaeESqyQGWFkc6XukByebjFhX0EQsdFwfcCJNGI/8V5aBmha+JQklslI/L31rEqBg8D51oZy7GNz6LH/Kz13O2PJ704K66g+DT1KckE7MMCVvhigWHxm1RNyGQPQOpVIayWzd2j1J2nS/mOOe5VXzPOPDkl5F+i4IlcCOuFDpZDLYHadp/UyRdH6FlEzWJfaVSBOWs/NCf/UXqO+ZUeT9WTqldeqEy4VummO0M8sogTN+oRDmeE6xphc0TUmIkWEcFrd+gXUeYwq++sNbfvMvfp4AnBiw8wReIhHohfWT40qHcSQgqJodXdcRQkKGXQzYOSJJhlrOBwpVJLDJexBLHF4ALdKgV0rjhCTGgCkldWM4Hm06N35JbfCB4+HI0E+cjkkPXhRJn+uDJ9h5Kao0wXu8j2it0EunVOu0cCejOLcAYD90d/xlj5urG2Y78+bNK3a7DYEeHz39w0hdNxjtkaLg/r4jOM+pT4abYll8QkhAm1QGU1S8efNmNSc0dcFpOHF9fc3Ll58SY6A7DgjpmZyn1AUiRsbTibqs6fsOO3h2u2u6bsRHz+BG0B4/eZTWHDuPNophmqgEjKcBJQuUSWZ7k/OMw8h1s6HvBpxLWvuy1AjhYBAIVSKuIqqaKfyGGO8IwmGMRnm1eGMtGwYiRsL19Zbb17d4FNdP96iiYPSaTdEyT4FGtlwVz3HzTCUdlWh5ttHMdqQfespiS3VTIxXMneXu9kBdQXMjKRrJdJ8A6MIkszKiI7oZGT0x2ASSiPNGaDXlROCVwEuJrOBXv/kZu5cVnXtPOdXgJF998wdePn/BbrtjPHZoAS9ePOHnf/spb798izp5ghN46wla4ENChXIXgbg4NQkBQaWIxgKGuWOzq5mHFJHa2x7nLN4GKlMhE5aDDMkvYVM3PLiJ2VkUBcGlGO/Rjng8qeFiGaeJtm25vbvj6dMX9N2EdYGiErhpoG1a3JBSx7ZNiSkriIKbJ03a6AwHgrPstjuMLogiYirDPA1p4xkTeFvUJaMb/tK34J90fLgAf3tBPgMxf4xR88eYNt/9/uk9PmTUXHpxfSiDTTRhuTRP4vp7IotJKSBlxBiNXOjnRgukSNI7f++J0S5roOBRhBGwLo4fHDGS9hW5wcECALDIEHLdvn7v1HUUMab7amkuSAFRPO6OKqVompbtdkvTNBil0FIQl1jsEHwyGfcpIW6eZ/w0ExbvqWjP9UUR0mOtVGyrioinHweqzSZJDqXEek93OqUmiLO8f3igLRsIgspAoRNVP88HRAXr5jEAKVJVSE/wFqk0Sitc8GnD6COSxXx4kVZIUiJUFIGAwkeYrMWFsEafhhhTMkp47LeXzndcGixn7f15rH0XaAhKngvNPNKk+vF61JyWa/LrX/+ar776amE2p3FsrceYiqKoGYaB/X5DCJauOxFjYnxmKXmWz+emoNZ6ZY4753h4eFhjuauqSkyRECiWDuwwDGkcGrO+Jm/Ku64jBoV3KY643TRsty1laRCioDv1SKmpq5LgZiSgkQyjZbCBYGekkHipiM6mmF5lUKpAxYD0M86ewAQIE/gSoQtQBcq02P6QfJq6QCUVso70YUxyA1Ug5pkiQqMUBEt3emAcFKfTaf1OMViePrmh7/q1Tp0WxrR1jmEYePv27SozL8oC7xy3t7fc3t6uBrl1VTIOPVEoRheZoiEWu8QaDuClxNQ1ZaswWHSQ6KDQIlBpSaEihQAZ45IaCpBSgyohl9q+TMalukjSp2WuQ+o0dYWQ7iHvsOMJHUe2zYa3h55hPlGbAqFLXrx4voJ3WmsEknFMzcfoA1JIpmGk67r1umeZUja2DiFQlgnoOxwOK3CjtebFxx8xTRPOO+rCoIyhqmtef/17iqLAuWkBpaFpSq6urvDer3I+gBh/vEmmS8TQAggvgI2EIBJLOFtBIBe/pTgzO8HQOW6/ess3f/+PhOORf/nvfs0v/uYXeBU52Q4XAyhFDgyJQiygRZqzMtB69huFvGYqdRH+ECOR1NA1yjDNjuEw8Pk/fM54P/CLf/UryqsapZfm/NJoCMAcUvLtLCDqxALyzqaVVmmk0gSdLSXcklQbE6AeInM/r2CIFQFTF8RxxkRBDA9cVYHdC82vPv0Z7dOP6LwAVfLu7R1SG/pxxoVUCwoUm92Gpq64ut5RVQVay4u4eUNpFNbOuDn56Tg3p2RcKVblhMgGwSHV+FJL5lkQCBTaEKXCmAolNMHNhHFkeLgje8hN80xVlRhTgjSoqkbVNUVVo6VOsekSWBjjyHTfutki8PgQmJH008zGWbyzzONE308UpSMUiWVaqgjOE6NMEipdEIzBaUspQEiHVpFgwTuJlz755+Q/udz4gPF1+XcCg87eZlKpBYBSq7RSZKWJFIs1B+vYesxs/fbxg0BNpuplc+BsanvJIMmTUlVVHI/HR5Ke9fa7ADPy3x/KlfImOT1HPdL3niUE3z5BQohFinT2vcknSyu9/o7s8ZJimtP7Z+3v2gnicfdzvSghIbq5k5ILmRgCznv8wgAqiiIhaVGmjtriEZM/fwa3LmVOmdGilFrBkktT4/xZzr4vrIBL7hZmJD5TZ/M5zawkuUiHsk41/zxfh8skgmEYFnBEPVp0Yow8PDwkY0XcigiHmIAeqaBpa47HI1KqtPmeAk6MCwCXEjWc96w90Zgob5mefmZopRZmLg6TdjEBK7vNhig0ztn1d1jreP/+jsPhCBHKMiUOZIla3ohcStnyd8reQ0JI5mlaKap/Di3tL3FMY5c8hLyl7w7sdztOxxPOSSqjaKo93gb2myfY2VIU1xSlQkjHNPV0pwMH27Grn0BMNNtx6rm62eDjQFXUHO87du0+JZvYHudHCl1ytU0JPU2VusAeqK+S/4MMgugs+90ND8f3bNuWU9fhSTT87XbL2E+4KVBUmpvtNW/fv0U4eHnzkmpruD+8p+8GjDYYXSbD4CCo6wI2JdVG41XEKE1T1djZY/JGxqYIwOxHVBaGp0+uueteM/gOFydidFRlzauvX6ExPLmOFJVgmGbuH94n/bOQWC94srthGnqcn9GqZL9XOAu77RVlXWEPaZKWMUmsRr7bpHv5V0LY5TLGY0zGyiry7OVTTKXxJ0eQAYXgaveMq+1TqqJCtSUSONyd+OjTK6qNwHeWiEn+FjHpoZVISV5SKERM7YfEXAsr8DgMA1ul0aUidoHbh/dM08h+d03Qnn54oGkL5klS1xu8g017w31/QgoNUSLwIBx2HmjLPafxhIqR7mHEDgG8xM4zT5884fb9LU9vbiiLglEbnly9vADKE2jbn07Mc09dbZb5OSVidf2Am6EqNzgLWlZsasNw7P9pb7j/CseHG93ve/y/JlADiXuSuz3ftb7l//5TJCuXXmj5dVImtklmrDrneDgcsC58i9HzRz/rxe/98PNdvneayxMjVRDO6S3J/fFb38cYQ1PX60bSOUfnXGLiLKkidpxxo2XqRoLzaX1XFiMVRqVNW2UKnJrRRYGPETtbhm4giPT6otILexac9dhh5P2bt5i2oeOE3e3ZtSWbxqAVGKlSR2yRZYWl8SB8QHhHlAJtJN7a83dT6TUheJByoXhD9HMCaUVi5dppeuTDl8/JdxWF6ZyKtSh9NM6+9bwLYI/HkoRLL8Mf4xFCYJomPvvss1Ualmqgad3MXvrClOXZJLdpmsQGmaa1bpBS0vd9Avb8OUa7bVv2+31KltSauq7XmiTXY/0StV3XNSEEnj9/ztOnT/ntb39LjDNRgNSpCaZMgVSah8MROzuIntkmRqt1jodXr+lKePX2hl98dEOpBd5N6JhkwkEIEIrglyaiLtMeJNTEUCFjg3QjJno2sUYIz2xn4hyZJof0AR0g6khtKpRQ9H0HnO0DspFwvv7X19fc3Nys581ai4qablyY4AAAIABJREFUcRo5HA70S/NISUUISe70hz/8gRcvXrDdbhcZmWW2Fus90+xQ2lBojZzVWvcLkVjiLEx9LT2FURgdKUsBcQbiIgVb5ispSNNHSuKJIhKWhKeV0cdjZtlqHBojVVmmlLBYMvUD1lrMsg/w3q/jJXiPc3YdQ9lMOMvEck3aNA3WWsZxXO+jDApm1UFie/l1T3M8HnHWruc3p4XlOuvVq1dsNhvmeeZ0OqG1pizLf7qb7c88PtwzrnO4uGDaRFCLYsAFxfTQcf+HN3zzu88YhiP/0//87/j4l58wzhOzHXFEhFYQE4AgxOO9qRACtdyPeW48WzeohdmZ5TCJWOCEABeQo+X1Z1/y6puv+dW//FuefvRiBXbW7xNjYl8JgYyRcRiYpkih0piVUnz7+wuRjHh9QCqdWGhLoy9ZeZxZNta6s/JAQFMoWhO4frIlSsnz6xt0UaGKimH2RASq2IJMcfCIgLXz0qjWqUYMgaIq0FoxAs5OKJY90jwvKU5gbVIqpHOYWDRGZ19WudyPSWYYg+Pd29cwDMnsXKb2i4ugigplSpQpUrKvKWAhbSxbwXR+RCJVuLDUFYufgHWeYZzph5F+7Dn2HaqsgAYjC7SQS/NjaVSExG5L55rUSBUZsCM1Wy/qjD/nyGQJrfVak1wea4Psg9dc/v1dxw8CNZfgRQhhiUVVj+Q+2Sz4dDo9Wqjzl/Q+aWezJ01eADMIcOnjkKmhGXz40AsGHEVRrnrL/LiUoLVaQZRcNKQFRD4q8PLPQwyPDI7zgnpOiDjHjEsh8T6sYFUGUZxzi9+KgCiYnV9ojfbR6y8Nli+Bpst48ax1zs/L5/0SGLoEW7wPaxcnxrgCZPn75IUhF1EZjMnA26W2+vJae58KVKHOAE6+Vv3QL6Zs6eaO0acuRcjRwJ5xHJimGSUNUnqcTV47YkFifUyFn9YSv8xjafHJnyFt3tQSmR1CxC0TQozpZ855gncIkeJZp9Fye3vLq1dvmOdk9nXpf5SldEKIlZp8CYLFEAicO4mX5/7HenSnw5LuEHn/9haBpG03GLVJbuZNy37fUOia08Mtm/0zikLwcHxL3080zYZ3b9+jtwbvHWWlKCuFEJavv/mKGBWbdo9WBoWi2ux5/35MBV/Uya0dTVNtk+Gsm0mptIbu1LPdNVS6RkWN9BKj00Q/dRNEePn0o+Rf4yyFktT7K0xhuL9/x/HYUxU1WhaURcHDwx1X22t8cJRVxDQRKT2NKRkXGQExUU2NSoaEIaRxoqVElZpKaHQr8GLEFJL7uwPb9hpi5O7+DU1rOJzuAMn1k2f0/Ui72XI69SghgGSovWn3zFNgblPU32RmdJAJKAogFm8I75NEQYglTneJzBUiebWE6AkxGQcKlbyour5DGU1RGIJ1/OTjZxwO99y+G9i2beo4Hu+4el5w9bTk4d7i+kBV1szAOI8QBUqIZfOZ9NVS6LRYxoBzE2Vp0IXk/cM7jt2Rpm64vr7i2B3pZsvkIgLF9fVzghN0pwHrHU+uXxJmn9Km4oy3E0YLxn6mKhuUtNzf3/OTT/4qdVermvvbO7RSECJvXr2mriqmafEqE4q0T/XYecJax811TdeleO+iFAxDR108RYqC3WaDFoo3r98h4483veLD44fAh/z3nwPC/Lk/E4vE9sPnXG64L//+vuLku36WvaFkgLatCWGfWInTjHND6kx/8F4xPfCtz3vZMHn0PiL5UeTnrB44ea0nNzdS11VwBhByraKUoqyqpSBPKYDOWrx1BOcQMWAnBzaZCvvZpUJYBiZEMu52nkkvG+jCEERiEWtTUBaGEBMbx3mH8566LBn7gWEcqb0neJhOA/HFU7w37DYVUViUlCiZ/BMCYtH0B1zwSRZMSMW4lIlxhEQog0Lg3JyaFlIihVlqG7kUuucwhMvrdwmsPAJeYlzp2fncrWPxAzAms2ykTJuE/NiPHahp23b1pLm/v0+Ng3FEa4Ux7erpMy/dXinPNWOO5s7nNDNr3r17t9ZnOWJ7mibu7u4AVp+RLHWRUq6JUE3TcH19zfF45LPPPuN3v/sdZVlSNzWmTOa84zRxd/+AtTOHw4ndbkddFQzTSFUaICKNxkXH3aHn2E9U2lAqAI8gyexTs1EhVYGUmuAjURmELpOEt2oIfkBKVo8Z4ZLfnHeBUqpU2+mSfVvTlD3+OODD2UQ81+T39/d8/fXXPHv27NEYKyLEIPAu0jYp/WicU7zu51/8PsVzt1ukMjgf6YcEXIyTRUhFYap1D+G8Z7AWH+IiwyzQWFTwaC0oClAqIEMi9ZVGIoXHu5nEsreI6CBatISgEqAVFuZFuJibVtZYjGhtKMuKpnFEVRCsA8sa065Uiix///49V/v9CjJnmV2ew+q6Xs2A8/lLYFcCZNq2Xe0fyjJtrPM4ugRd2rZd/TzzXFcUBcfjcX39zc0NbduuYOSP8fhwXbqcp9L/JEroFCLhI3YI3H71jte/+wxpR/79//I/8vxnH9GNE7O1hKUx5l2iFgudzJsz6JXfc228xzMjAngE5GblB4D/f6h7ryZJkvRc73ERKkWJru7p7lkJYCGJhTigUeDQaPwJ/L28Ic14cXhDM4DHCLHY3ZntmZ6WVZWVmaFd8OJzj8zumRUABZoxVtY1mVmZkREe4Z+/3ysiDPsjuy+/4cXPfsH3/uCHXH//M1RhRGFxZnURY8D4ACopGaxIYZQWZcfsT83jk2G4EumdCSgdCGFGaUtINg8k9kbwEiVdmILoPcYoCjzGdxRR452iMFWyPAtQGDAFFBYKi9GgtMaWjay3goA18zQBCltU1GgGBa5PkeLaEkPy+Yye6CSEIiCAV1nXoh7RVtJl0xp47Fv69ogae1Cw3qzRhWUOitlDqS1RF+iyAlNI6pw6450ocCFwt3+gnyd8RFKzkgHx7Dyz9wxu5uF4EHagEfNmrRQ2oXwurfu9c6hEFNBKfHWMVag5pMThD2uQ7/r946ZFHk+ZnWX0ySv2401ruc/8LrIn+B3MhLP5rlJqmXAya+XjST/HpmVGwjwLkpxbuZldcs5oOAc0zg9G/nLnxsNKncADOI/dDB/sa1lKqk1ELbKo/Fly4SG56cn4MLNrMiMnU1UXgGoeKWy57PPC2rGWKcm9QkhGR97h5mmRROULPUvC4MN47AxI5e38hnH++/mAkO83LaDOh6CVXtg5+RjloisfzwyQ5YhyEKDq3H8ohpNELTOq5Hc5z+PgUFqc032ITN4To4By+4c9oAVdnn0aDyZ1+wTUcs7j8fgAhSqW7ypsA0NQYtwlgA2MQ4+xBVVR0x73zOPAPM7Mk6frBo7Hjq7tBcAO4YPxlMdJTkk4vzHnsTE7kbGdI6kfmzB+SltwEUOBmyJPHj3n5uqG7fYC52AuHFYbibO2JWVRA4HXb95SN9I92G4vKGxFZSx1XVIUGjdIV6ssC7rjSFNXrJsG52bevXmNDxPKKvq2w3gIsydUDdM4sR/uaJoV8xRxc+D+vsdoKHTBPDj29wd+/OMfs9/vFzDWlJr7h3cEPO2ho1ltxP0dy6oSnb3GQtBS3EVPtTbUa81YaaqpQM/CIsFHjNJ4wGqJYJ9nxzSOFBrKRlNfFvT+wNaucC7QtSNXF2uO7S2zT7pSUzD7mXpV4sKEG91yjLruyDjMxGgJsaCqSqz1FMFQFyXehYVd9wFYjeeEoScZh9FYDKMP1KrgzddviPNzCltQFw239+/RsWO/3wtDTCmC9gxhz/X1E57/6AntV99gS/CzF08NxHhP3PGBKIlqMYbEPhBvr8vLLXf3L5icY9tcYK1lt9thSsMw9lxuH9G1Ush0fYtzjma1EpmiLSm0pm0fsMbi8axXK+qqFm18WVGUBR2w3WyYSilkDw97njx+TFmU+DmiyxJtFMd2z+XFlrJoKGxDDJZxcDy6vqHtHwghineY04lSqXl0ccV2u/r3uOx+p+3j+3XevguwUTq7qvDt575j8j6fb3+3/fj2Y+fvc/7Yx/t9Pvf8JrBJRbFjLI1ms15xc31J33eMs2OcTszHvImM7cP3PQdozoEra22S15xAosXw1Z9AH0no4HQsPwK/zgGEeRY/tL7rcNOMczMqRkl8UwYTpIieZscwn5ozwcmcqbSSTq3WKCPF6W73QFlVElOuoGxqZu9QRtN1LVNwjINjnhxte+R733tKJLJtLHVp0l0hFehE5lkaR3NMKT5WGHMEpOMYPEEroWinRlJwQQp6Hwko5tRMCiEkaYT71jHMNUmM4pel9Le7ewI2f5sNlkGy/FhuhnzKQI33nv1+/4Ecp+8HjCmXRlY+RsMwMo7dIl86HA7Lsby6kvjpbEJc1zV93y8+NW3bLoDQeXDD+cIwGwTnBfXFxcWJneKFTRi8MCHHceLFixccuyM/+YOfUFYFl9dXzMNA2x7FeLOuebc7cLdvuV5fUERHaVLiaiEeECJNsxAH8CIdBAFC56S310oWwiEIKywEkZ9rpzAEVJxorOfx1vAvr8dFSne+zbM0z96+fbssRlarFdpIwqDWlmlytG1PjJGvX37DMM08XW+QdbWsH3wkAZJBzO9XIpM9tkdcMvVGCwM2Kvk+pbHUtaW0gaqMKBcwwaNUoDCIRDA6CA6iQyuPwi/ySp0igufvuD9mdsqcGN1D37NZr1mVW0xpl/CSHK6x2W6EeZ7AgY8Z7XBaI0iYhaxjLi4ulmSwvH7IRsvnYKAxht1utzD11+t1GtP9Es2dm7b5vHyq2/m6CFjWMllcotEYFHGODG3P6xdvePXiSwoL//V//G+5/vwxu74l+QRLGIvSS3JXYSyPHz9elB9wAv7PQ3HyOjFGhMYRFUqbZQHvu4lf/csX/PL//Ee2lxf86Ce/R7VZSYLRdzQ5ogvMbkRrh6qhKEpUWisF77+11o0gPp6I+XdRgnMiYZWxmBrWizohsY+SlFZ5T5hHYiwpbYWmwlPisShdEbTFJJaWMQVGy/ooRAVRY4qINYYYHDpGjC0oyoCPkanvmV3y8zRmmWfQJkm9NMrYdE0qCfhwM93xgJtGjHfpuo5YU6CKiqDl36Jq0FaAGmUK0HZpMoUIwzTy+v07WWumuTIiiYrTPDPOM8f+SNxXmGpNM85UVqTQhXFioRE8wzgkRUpIKXASjKOUJB1bsT/6oA761jn9iG2T65bzpKcYT8DNeU2jzhjO5yy937T9RqAmU+7O3ywv7k83ltNz57Ke864M6UIoy3Jhl+SLIqOWuSORaWa5sMqskLydX8QnxFMG7jl7xBhZqM4JNMoXpFz4gb7vl0kzL94zoyajrZA8a858BM73PZvzjTlZCrDGUFYV4SxRKb8/nE5+Zidlmm0+LhkwOi+a83HJgJmg5Cy61kzDzSDWOZiVwbLzhKf8/udgWT4WEg/nltfnYyCvEeaSMZppKpmGMfn9eMZRvGCKosDYQnxx5nkxLPbBoQtBSefJ4fyMrZNXh/MUBqH8JR1x8G4530GCnwjeMXjxLzFaTFK9F/rf4XBMnyVMCq3CB93BvGXQKY+dJTksCtUxg3X5WHyq2w8//zEP+wOfP/0Bq2ZDjApDg62kI/zuzTv2tuTZZ8/wbuTt2zu0jZTVlrLeMI0zRVGjmNk97Hn06BqtFY8ePUZrxaF6wFoYhiOvX7+mrBQhzuAUMVRpAgtYqygsNGtL2z0w9YHH1084HvboCFZdcLG+REfNptlSmpK2bRnmkdIaonXc7d5R1ysoxGjr+uqGaRqo65rbd+9FtlCv2Y8jjhFdBlarkqIdMMn42WgtzI0iRQFqkWG0hwOfP3vMXBvKtaUdbtHe8Wh7Cb5EKRjGlrK6EKM0FejHntnNrDYrZjdRmobZSVcEFQWgCC7F8pboKQo4FILQLONJ0pkZBUoJUIKKKA1VVaKJTO2I8QWvv3qD6wLruqIIBZfrK5SZ2G4MWivGURZZ28srVIA//fM/5sX//oZBOUnvUGIUZ1TSyibqdgwRFSQFQyslPkFDh64VF9srGlMz9hOfXT7FW8cu3kEsWa3EqLKqam5v31M1FqJQT9fXN2zXF7zbvaFeVZRG4+dRfIGsTtK3LcTI9cUlfdexqhpiiLx/945hlHvfzc1jNqsLCBarhcIfvKEqt0xjIHhFUVSEKAtkWxgmN1Fby7r+dGNGz7ffBVD5f/XzZSfybx8ALr+tOPh1QNHHzynEqyQqRYnl8kJYCsPk8A+H75CSnubr8/fKc36+9+Z9lKaC/1YdIJrzpF9XHzKRwnfc96tKfEXev79lv9sxT5OYJEZ578IUVLaktpV02rDUpqAbBybvuH3YMXmZ17TWoJBY+eyx0bcEH3DeiS69KNJiIVKVJft9xzRJIMLsZurm97lYV5LCEcJyHKdpTn4xnrOaTrzWokpGpuKxA6C0x4UJ0PjokrePZk4pWLmOOwdnzps350Wk1t8GZGKUu9jHwJd0DE9d6d+1O/jvueXacLfbEWNKGtxeJD+7cSmscwPLe/GNyZIU5xzX19es12sxzk4shlzDbTYbQggLqHM+nvteJDJPnjxZgIz8fI4APx6P1HXNGDzj1BOjgCbHtuX97T3zPNB2LVeXW9q2w2ooq4qoS2xZ0g4TD8eOriso68jsHUFZKlsQjUUjHX/tR5QSz40YPSrKAiUqQwga7yF4hdYl0QuLwGuFMgF8T2Nqfvxszd99ecswfNtbIUaR0d/d3S1R0dmM2TlZJzw87BnHgffvb3nz9g2mLDgcj4uXwzhN1GXJNPSUVUWTvYG8BJZoY1mtN/TDCKqiKGsKZkotvpS2MBgTiF4ajFaD0lG8tLwYdcfgxAOKgKzPFMZYojK4s7l7GddK2KrChBkom5Kx7ej271lt12itl6Svsizpuh6j1QLcZclTNhPOLC2AzWYjyVRaPIzOx10GebJRtVIqed1Y6q2wxB4/fszDw8NS858ivwVcfPTo0RJP/ylu+X6/ADTpHhWVTv5j4sc5tD0vX3zNuy+/oWoMf/3f/Q3N9YZ3xwMxKOJHxuYxWY0MQ8+LFy+WzzhfiJ83KJb1U8xMmmyQrhjHifsXr/nVz37BSOAv//LPqC9WKd1JPFFi8pnJcHWYHXfvd1S1IV4Ia09ZuX/GdC7PFSYxmuUertXJW0wrkfp5F5MiQnyQfIj46FEh0g8zxTqiZ4UuFGLE7AhYdGHxSpQMwXuIGqsKlCkRTzShoxZaUxcFc0rV1aZA6VmM6KO0GrUxmMLivJMmtwmpYSChIFmqqbSiH3q6414IDGm+cD5QGUtRNdiqFqZO+jFWvCuVtmQWWyTSjQO7wx4Xo7xeJdaSD4yzo58mVN8SbcN6HGn7kcpWwkgtHZUxTPNM20k8uk7v7VOqWFkWzLEnWQ//q8buOVADJ5BRfcf7xGTElJUtefs3e9RkUCLfpPLOZNOzuq6XwXUOtJz72iilhKIs8FLyaBCQI3gxBDJap0V6ishWyX07uHShiAkvSlNYC2ng5iSDEEV/VtiCEENK9NHMbkYll/fMepGOmGi4/YKaSlqS9xJDbXQ2Vkq0N6MW9DofD+eE8tzUQl/Mj8/TDDEQvGMcJyQ2Vz7vZNAXKcsqIXjhjAGjmGcnF6MP2CSF8iEsLujjNGGNTYa9cjNXKIm1jvmuRNq/gqIoF+DJh3kZNiYxn+yZn5DEm6ai18DsJQ60KAuiEhaSLQxaiUZXR0WYR4KHqqwYuommrmiamrZ9EOlH8g7yMeDnGR8lzcpYQ4ge5yI6GtEdKim85aYV8M7nkY2OslP9NEIUU2CjLeAZp2npOkmB7gXtTclWC8MhLVznWQzXQkoA895RmoIQo3xnFD7GDy6iT20bBjHH0hrarqWpN/TDwOHwnrKsGMeJJ4+fJWZYZHe85er6ktGNtMeWVbMmxMg4H1itGtpuT0wm2FdXV7T9ERcdh/0RpRXreoPWlnHyjHPL5CJGWZSNhOjYPexA6ZRwoql9RWENh2NLVdaUVZ3QawFfi8py93BPUWhurm84DgPNumHuR8ZhZOgHNJonN084Hvfc3d2jGxmLm+0KSktdWConGl7USV6pvGO1WQm1dHRMbqLaFKw3Fb6qccNAjKOAh6Zhvd5SlmsmN2IMKBN5uL+jn448uxGJlpsdw9yxWV3iZ7nRRucwERpbUGjNEJLXU0jpMxH5XYPRBqLIGIpCEnh9ikCOLnK8nfmnv/8lf/0ff0KoxRw7uEiMmqraUJfQth1V3VBZy+b3H/Hk+09o715jnKNI/l3GKqZZ0gJiVKAVIThidKduuw80VUUMRuRm7QPbqysOx8MysTw8PNA0Kx4OD9TrhqgC0UkHMwSwtqaya6zW6EIKisPhwDzPEkmaqLm73Y5Cl5gE0F5st5gCmmbNPDvGURKyNpstha3p2gFjC2LwjENAm5LZeaZ5Zt2saduWd+8fOI6X/56X379qOy1cI+K/leaB/PBHIEPefh2L5bc9963X/Bv3+2P2zsfAzvLZkSS9EZFFVZVcXV7QT+LR1rYt83yS0sRk0Keynl8uJ+kYJsBCabVIakzyk9DWLoV3UEFYKDGKR9QZE0R2U4qt3IHUpiAExfu7e968fk17PDKNI8EHirQot9pQFRXrasW6WWGUIUSYouft7o5D3+GiJMYYpbDGoo3Ba41DEZVm9DPTNIsGP8loyrKgbTu6dsT5SD8MDNPA558/5WpbpwZRQTboX5ie6ThrLd1NpTTKaqKTTmpUBms1Lk4U1uODwXsnIQpB4YMcA+eEIp/rkKKQzzqX/368aDlnl0i5jzCnohS42eD5fBGb/yZ7aHyKWz+MhCjAmTGGi8srWVynmnaYRuZpxgdPVVZiEs8prbNpGna73QIcngy1xTj29vYWpVRK2pSC/Xg8Upblwux1znE4HCjLkqqqsVbkx9Z6YbG4Gec8h0MHEbbbS6wVw9mIo+86bGElxXCe6YaBwhqOx55iY3n57o7vPSrZWoULjnrTEJVBqUKYaX4mRo9Q0k6+LNLpVRgtnfi6Duz7I0ZZxiTdJeak0Inn1zWPN5qHUbivIvlIrYk0Htq2pe97Li4uZGHiPPPs2O0e2O123N3dcX9/z+RmLJFxnBhHSTSNUYATZUustlTNSmr44Jl9YLVa4QK8v9/zB59fobQFLFFLwEBhIpVVoEqim1AWUCnxMwbwIyqOqDijgvj9Ke1QKqCMwWDwIQPEAuAYa0Fp+n7g7n5HPVnCOIE3NFG8YjLjBcRE1BqzfP+8KL++vubx48e8fPkSOMk0u25iu14lCU2kqWsJzXCOwlgKaymLkqZpMOm6cy5wcdHw/e//kGn6Bc7JsWnbjouLdfLGKRgGOa6f6qaVFjlNlJCQxUZDBWIwBA+um/jqFy94/fIl21XDX/3tf6C4atj1LSDsqygQnKR2xbgAcCFGSKm4kOcJlZgP+ux+J6wyEhCgjEZFxXDsuX93xz///T/QHTv+/G//hqvnTzCFoVBJlRqTSfxSSSkwlouLS8Bz7D2H3tOscsIseBdSWqiAirKItwQlXipRK4Kg+Kgg4RraGDSaECYiATeL98o4zZLeWUXQDhdHtDJE/CKj0romBo3WkqxkbCW1ItlIuUAXFk1E+xntkpEzUrPEGDBGUyQPluAHArJ2CCFijTCQJGEtMg4jh92DGCdrS4zSgDO2pKwbTFGiUjpzRKFMIfLMfMESCMFxd3fL/niUWiPZYOQ17+QcwziiB0vdjPTdgdaWlFoTvRAabCHgbz8MmMJiCou2Hu0DUQVMaRmV7AMqLuSoTKzK+E1M9Ur+SUcGYCF7nIDd9PzZ/Hr+uEl4Rv7v122/cUb92GMle8icy2nypJ5BmnMPm4xqZppZPwzLZBWyyZ0+JSzNqTtxMnMS3ds5LdqljpBSamGUDMOQuj4ymRor4IM9A4syuASQWGdApniGRbKVte7zNKci0S6IdP6sjJzN00Tf9R944HwYz6goivqMtXNizcj302kRdWLcCAKe6MgoWbREkTQYI8lTISZJk4wAAXJmAaVUKszKskrorF/MgWM897JJ/C5OC1xhmXiijgQdUMqCsUxJp1zWpXQadcQWViKw1yUq9oTYiSmXtVgrN4bJz/ROBrZPiLO1FjeL3lERiF4RlWVwgX46odAqJnoqJIQ6EjH4WVg3+SZjS88wThxbiZD3XiLp/CzjFi0JHIUWjxGbYtFzylj2xVHWpqhxJatovpvy9qlsb9/vWK1LmsbycHeHKRXTwaEt7NsWU9QoXdAPLZvtGn1fUNYrQlSMbsJ6TVEYDt0DaEFyh2GgWTVMvqOdOlSpWV2u0Fpz6HuapmHf7tmsVtR1wziOvH94yzTOzFPkyWeP6fue290dAMYbHl0/kTj5fmIMI/t+R3NZ8fbuJRfbLToUmGDZ1hW73T3T2LGu16xWjXQS94e0IIDSVoztTAjSed6sCuwYKIxMCpJsMlOYQF1GVCiZ25nRTTx6vEIxE2aHwnPsX9O2A9Y+xU2G3gfmyRGrSGkN9/d3NKs1l+tHKAXteGCYBurVlnVzyfv+jlprXPQ0xqIIKKNQJi0wIY211O2IYminlWOzLqnXa+4OE9pMoGE4FLz8xYE/+auZ+/ZL1uuVmIS6QN8FqqLk5uKC43EvDIDK8vt/9SO+fvGGYgBmjVMkcDQmvwuNwojjfRhQYY3vNdMRmkvLODuKosMph7Il0xhQNnB39xbnA81mhbIGNzt8VFRFyWq94fDQUtWVSOcKy6HbYW3FxeUV+8MOz0zTFLx5dYui5E/+8Ke8/uY1bdsRVxUKzW73QFU2CRyfuLy8ws8DhdFUVcM4T1i7pqwso3NU9Yrdw04YQXqmMJ9uesV3gS4yOaeFsZbF3+k1H7IXvjWpnz33XZ91vp2/ZtmP+N2v/y4A5uPHzsGaj39fPlMJayTPR8Zo1uuGG3+JcxMxOPo44Fyi+gex9gMW1qMUK8LQyEafWoNWEaPjoveOEWKiJftwiqkl+iQUAAAgAElEQVQWICIbA+e0M2FsCtPE0I2Ou92On3/xK47HlmmS5ovRFq0MZVHQVBU31ze8ud8JY7awDMNA13XLsQkxom1BkWQtIQR0AluituiiYhgGpnFknj3zHBYGp1Kih5/nmS+/fMHNzZZmtZZrNYSU5CRDQmkS2CLztMzhEIyAwTJ3x0RZlwWItRaHYRocbZejphXGFIgvhxTTcGIlf5vt9GGXOZKDu2QJpJXCqIghyrEzJ9bIpw7UXFzfLP6CddNIM85IlHOuj4paUyphZjdNwzgOS/Gd60BrKw6HI2I4mg2bkxklJ1+8aZo+8F5s23ZhRhwOB1Yr8UETtolPoI8ijp7C1nzxxRcY81Z8a5qKYTgQg+ewP/D2zVt2ux2r1Yqf/PDHjJNj1zle3Xccp4DzURpipiTqGm1qIrOA9kTxWtIWlMVjCViMEYBmGgr6sePRoxUP3cSsFEM/igejKXHBszEdP35c8+K2Y8QCs8SBy9FYOsS5vpQ6XfP6zTtev37N3d3d4tsTgmMcJtq2piwkRnm13lAWJRMsaVnOB7q+p2s7NquK27s9BY5+jngsUZVElRg1OEoNRhcEG5l8R1kU0jT2njh34EqiX2P8luBWqGJNCCNi81QJYGLlZjQ5hy0qufarmvV6i9cjl9ePaIoVXd9+y+Zgnh1NXTNNE/v9Hu99ikH3yaz6JGma55mh79EplbWp6+X9soyp6zoO+z1zSliUlNKJaXqH9zDPQVJ0MFxdPWIYBh49esLxeOTNm3esVp+uZDg3uFAij1VaEvBCCOigaI8Tb758xdtvXnO13fKnf/tTzKpi6Aa0T2AXnpjuViEmq4m0MFYJlJH1w0mOEr0kzQafGhvL/OyoqpLZR8Z2pL898Ku/+xm7+x0/+emf8Ox7zynrAqMCOsg9epxmopd6jZj8NLWmbBpiCBxnx4s7h4mGx3UhDOvg0ShUVEQsXhlZExMl9choKDWGcmnAKWUY/UBUMpZxPnkfAijiHHBaESePVUGSEGdp/lVWJU9OAcdUkj0pQNsCbS3KSkNeux5jNTals2oU1mhUcOAVWhm0SgmFaGyRAOm0xnTOM3UDbhjR3qOLBm1KgjLYssRWFdVqgy4KYvLPKuwKqxugRKX7yP7hnl/88l84HFpikPlHcQI4ZucZpoliMkz9kaGsOKZ5yrkGo1cUReDQ9fTTBFZq84DDePGos02B09LgSOpsGZcyKhJIk85LajaRahKrPrR/+VjydC4H/tCH7wTQhN+w3vytjJoMMmSH+/OCI7NogA+6M1njl6VC50yUvIPncqAMzGRwJ9P28k0sM1vy5+fXZaZIBoPOE54ymJMLh3Pa77nvzrn8ZWHKJDriYgqa9KX5sfPv/LGcqK7rD9Kx8vvlzzvJu07HKJ/UJdY8AUzOOaL7kKGU0wPOJWDn0iiigCHZROycqnx+bjKoNidWTX5Mp8WnxFirxETyODdycbmlsAUxOqyxUKg0oa6Zo0ebAedHyrLGmBJtIn4ccSneO0aYRpcKRU9ZyQ1znhy6iByO7XIsP6Bla401mjl51mhd0ATN7CIXRcl6dSu64XlON3mJXcw+Q3kMn4/Dc1lXHpMZUMxj7FPevvnmJX/0R79HWRZstxuGvsOYUthlSpJ++vGAdzNt67lePRJkPEp39aG9p6wLqnXJYWzZ7e5FZ+8HKITaKCyzOUWdi8fBxcUFYz9wsSk57o8QNXVV8+zZM2bnaJo6FSQOrSr68SCdZ+txvuPY33NZbImIzIkAs5t5/Pwxh1d7ihqc7jGqBq+TZ0OgO/RMeuBGXyeHdpEeaKWpyxLVtfjZ0TQlxkhUrzUKhaVrDzw2NxirsEVNYQwP9/c8unhE37Zcbz6jKGv60XAcdgzjxGq9BmMZgqNrj0Qmurblshro/Z46mQcX2tDUNcN0SOB1XCiVJ/NPWUiaZCLnYqRaNzy8focpS9ws2r5f/vPX/PnX36N85PGx5flnj2nbjnEa0/Kpw6MYZod3HX/wF8/52d9d8uXbW7QqUSkS0uoCx5So3SKXiAHwlrcvO/7X/+kf+B/+x/+CoXjHiMNUBW27Y13WaGMYV4a7+x37wwPb7SXHvuPrb255dnPDOA1oXfBwaCkrw8Phjnbu8P7A5B3jPDAMB1a+opsn1quaf/7inzFovHbs2h5LQYzC4DseW7abS5RCzo81vHr9NY8/e4L3oyRwTTPH7siqrtAqsl039O3h3+/i+394+1jr/F2//y5/e779OoDn/44s5deCRkqRn8r326qquNiCd8LK3OkHurbHO0/QJOakwCgqkY2zCaNCJSmjdO2skaS0DDKkYArx94mZ78HyfmlP0Frhw2mfjscj//iP/8Tt7R2QjCZ9ENmQ0lRlybHvcEBdVsxuTsxKWYhbK/O+TX8XExNX5veA1mFpRH3QXErMmvMFWQiBq6tL5jkCBucjKoiMq7BWABoVTpIjbYkkHzclgLBCYma10gRtiCQD5GTCOowjKvilW5oXh1kS8e2xI11E+TkDamIuJXXucC3HNNcmi4HimUb/U9xywzF/vywFyaCK1prNZrPUA7lJl+sz8aVpsLZCa7P4XSilmKaR6+tLYjKs7Pt+MYDN4+D6+nrxQNSpeZQlUVn+ZK1lvVphi4J/+seBt2/fUjc1FxcXPH/+nIvtlrqW/3/8+PEC+szO06xXvHl3y+39Iz7fbGlsOn/BiRzcp7oqLVp9iIgHRwGqIGjNHAO6sKw2a8b9HmsVxiiausIFRXAaMyt0gCePLihtz5iYAOdbXrTUdb0kEh3bnq+++nqJOvfZs8LNQKQ97LFpDJXWLuasMcLxIPf8h9098zRyP3Qcjx2NVQz9ANeNgJLWYI2irg3WzMnjxlEl2VRdFmL6PU2UbsbEkehblNmAH9G6JODBjAnglMWUtWIWK/YJEedmqnWJ957BDwtj/3CQWmC9XgOR/X6/HId8jaxWK7I8LK8N6rqmqWvwp6TYnOi0Xq+Xn3PPyMzU8t7z6tUrHj9+/EFgS9u2y3V6dXX1QYDIp7bFzFHIvjBRJEelswz9xDcvvuLVq5c8enLBX/31XxAq84Hv5NJAiEm9cdZcAFITwXwQGJPlbB8zCo0x6EKA8bkbON498Mt/+hlvXn3D5z/6Hn/0p3+EWaUEraiWZnSM4j/ovIwvN8/ihaQ0ShsmBXdToBk8FytLZVMaWYxgDc6R/Nc+TObTyoqky4AKEKJI77UtCF6Blca0j5FhmIhodChoyoqQ5pYQHcEnmZXKzfq0/kzsHlsIUGOMIfpC6m9tMMkjVltDjEE8dJxH8FOZxYUcoReGavCOeegY+lZqX2xKsjPL+VBaUzcNRbUCrSnLLXV9gbUNMSoCntFNfPH11/zsl18wuXmZ98+bSc455mlmGAxGdyhVEIMQMfquorI31E3Dw8MD/dAv51uFsDALjdY4PyP56v/68Zuxhry+PB9757jFdzGTz/3jvmv7jUBN/sOs2TuPkT4f2HkhnEGHvNA+ByjO6bTnUd/nn5Un/8x+WZKVztggmeGTf3LBUVXV8oVl0pyWxeXJqPYEDGUQ6RzkOLFK3Lcu8nwC8o0uy6mc+9BoOYSwaFRzwXKeLnUOQpx//+xZY4xZDOWUYmHh5OfOj0fe19M5gsIWy3vlG3b+3OWkp4LApQkhhCSDKiwE8NEzDQ6FIYSeEBzaBJ5+9gRtNDEk/V2hcdOcbq+GEDXDOHNoB8bJM00Cymgti36Bh9Xy3cZxwjtN8Bo3dtze3i6Gw/k7yvlKiGS6IeuixHnHagWjCzx58oRHjx6xf9gnUEjj/em853NpzcmTJ4/PXIDl156zqz7l7fr6knpVs9luePPuFcFHnj274Xb/nnpdYpVhmA5i3hpmrtaXaKPo5gPeObyZUT6gKdjtd+jCcuw7AWT3D8yDZ+xTjLy23N7eUlUl602TJGNQFBWXF1dYW3D7cJdioGEYunT9FdRNwTD0lI3m0O2oGsPgOlTSbV+ur0DBMHaA49jvaJoVkw+MvSf6yNXFlvVmzd3xDdfrC4SK7lK33jNPM4WxeCVym6awNGUBHgiR4GdCEEnOTM+xH3j85DP6hxYbLXEeFzZODOJBYcuCgGGcRHqIkolJ+cCqqDhMHSbCtllTKM3gJeK3KCxmtkmKdTKoI6Pq2jB7z7vdLd46bCUsIU1Fe+958/WOH14/out7jqnbKNGSeWEqIKw2I6aM/Nl/9RPuXgw8vPQUwDRH/AxGWUKYUqdd4WaHHjxeF/zL/3HP1dOv+OP/fsW+3ePmmTjV/OCzH9C3LaqErmslQSddq9ZqXr97SV1tIBrWmzVDOzFOPfeHB9wcsEVNVZcMh4nj7ZHSrujniaY2DFPP5eUF3aFFOUvbtmy3JY8fP+Fh90BZWox2vHt3zzDOTNOWrjsyTEeMrmiqEjdNaA37hx2m+rQ9aj5mw8iDLF2Z8wn7WwyV3xGs+fjvPi42T4ya3x2c+XWf913Fxfn+58rmnKVRJeNqYqQwhp3Z03c9KsXtanV63xBBIYkYhTVC8U+/GyugrHcBpcS7RanEmPVIYS57icwvZ/WEApIs6hdffMHb93dnxpHphGgNRjP6QFkUPBxbWjNQlKV0uRL4v0jXQ0SnZDmlYgJpNPMsxVb2hCvLcpGPS7dWQ5yIAYZhEvmfUxyOI6vKUlqV5Ns+0chVAlklvU6bAuNFFin0/JRu6D3RJTNIZVFGMc3i43HegDoHi8KZkfDJP086yedATUjS9GVMJdaTIiVW6JO3XZ5PP2VGDZyYZl3XsVqtGMeRrusW49/sw7jdbBi7w/L6DKJ47+n7O3ISqPgfVaxWa6ZpXMxdY4w0TbOYCm+3W6Zpou/7hSIvDIhiaUrmWi/GyPGw5/HNI66vLqnqCq0U14+ul+SaV69eLe9rC8Nqs2F0Dl3UvHxzx+89XtFUFZqIUp7gRwgeg17k/TMaMChdEE1FtBPRjHglZqBoYUdrrbFafCt1Yem9R4XAqipYl4pD55fuMqQGSl0vaUXjONK2La9eveF4PACBaZJIdDFplTl2Gnq6o+Vye0FVFvRdK/NAqmm7ruP2/S3eTUzTKIu5oJa6MSJmrXWjUHpEoRLLuxJGDIiPXBDmXXATzB3RHDB2DX5FVIUY1yrZL6MtQW5BImWykoyT1wvj7HAxUFZ2WXDl9ZJSIhWcpmkZB3kM5msyM2vKsmROyVHv379fTK+BxeunrmvW6zXZSzHvw2q14smTJ4s0L9exV1dXjONIXdfLuPlUt5h0rQqNjhodNNFH5oPjqy9/xTdvXnLz2TV/9Tc/xeEZhw8NgfN9aJYEBeBk1prVGdl7Cj6c0z7265KaTeOGke5uz1c/+znfvPgVVzfX/MGf/SHFqoRkUYEisUFlThqGgbEfCd6jAaUcRSEeUroocFZzFzS7yfO4EIVC8LNIrKyFMBPxqXmRcSctlh0FwujwARcBrQlGY5pajOyjWFYwTZRWmJWoGWUCjokQFT4ntBZFOk7pOxsjCg5tEghkBbSxBWryVHWTxqvMH8bmeUGkUMYmgLUocdHhpwHXt8xDK9dOiqw21lLW9ZJ26rynMgX1astqfY2xDSFKMnMII7cP9/z8xQve3N7jpFBYmDb5PGawZhpnFANKWRSWeXaURcF2U9Os19zu7jkcj7gYRFIdgviTAoUVoCaeKWTOx8oC7nyr7gI4NS7O2aV5PJ2TA85ZrBmX+G1Nud8az30+YS8pTvABwJFfJ/4E4luTF7vncYbnsqiP3/f8ubx4zgbE5wvp87z7fMAygFHXNSZdKOeslnxA8nvkzkn+rMVpP5sCnxe56cDmCzxLh4APCp1zQ7jcgTnvpOQtP35+svLxGYZhAZxkH05MkMVf54yllPfxxBL60C39/DMyE+iDmPAgND8hkKd8+SDELlMIzW4cJlCOTV3x49/7UapT5bhKhGNk6B0Rwzg6Xr1+xxe/esn9/YHV5oIQEpqYvUmKIhW0Hm0CRpfEoKiqmqEfF6PGDMjJMRStpl6+SzZNlvPy9OlT/viP/5gXL74iukkM3Ey5fN88DsdpTGyHE/iYx1YeZ/l4fpsS/mltNzePmKeRwyEwDD2Pb54QgqMoDMp4tIGHu3esmq0YthLZH/ZMoWddN4whMvY9h+7AerXi5uaGr776CpUSljabLcdDi3Mzh8ORzz57yuvXrynKgsJY2ran70bWjUv6WMfu/pC6kX6R9HVjK14x80TXHVmtJUVq1Wy53j7i7t09zapivz8ScUKlxNJ2A/MY+b0f/Yjdvdxcow3MbhLkvbIiLUwaT410t1VKR1nXNVM/Cm250FxdbTi0O3o9EiYxnQ4hMPuZKcwQDcfhQNBpDEwzV9dXeB+53GzZ7d/x9LOnFKoQxl8/oCbHqqwIoxfwawF4E+iX/CxCdvjHY8sSjOV2f49dlbg4iKBgrqhjzZc//5of/cUTmnXD/cOOwhRsNxcM00jTrHj3+g2XV5c89AeO7YEnf/CUP/1vfp+/+1/+gXDncE6hdUEMCo3CBU9gZhonlCqxumR6KPn7//QLfvzXP2VUjtv9O55e/ZDbu3uutg2v7l/g3Mg0WQKRsm5QSrT9VVPz+tVb5jBjraLrDzTlhmq7Yho8fTcw9p7VasXsTNIxS+e5MAVgWK0uaY8Dq2bD/uGB+90d2kBhFH3XU9VrhnGCKBLF64sLhq5jOPZcX1/x+OYp7+/e//tegP+KLcZcXJz+/3yO+S5Q5/yx7wJJPn7uN4E2xN9cBHy8fVdB8l3vv3wGJz13LnIFGDes6hp1yeKtsN8fOLQd3TAs93H5OXWkqrKgtIaikPGDEhq705558thcIC6fZ5euntZC4Y4hJB870BG6ruObb15JERvzMeYEOiBx1m7yqEKo5Wr2WbSPdx6nZE6q1wUKzThm1m9m3FhyAmWeXwS0Ee8RkVmnBKsA3sE0gfOKyYlsK2hZHHrvF68DbQoiAa0NhdZ45QjzqREhc7bECfsYmWZPP47M3rNOdUuW3GQWA2fjK9cYckxPC5xcW0WS8WKSqekUVZtBmgw65GbSpwzUZLZDLqKHYVhqomz46pxjv98Le3nsFkbI9fX1sjD2Xi2BFHnBfXl5udRm3nsuUzRz27YopZZ4ZpDr8ng84lxkvd4sQEYG0mxRcH15weV2szDa53lGnXVqP/vss+XYd4cd796/A1twuX7Em9s9u9bx6EIRnCPYCYhYpZN3GsJaUAZbNgQcOojJNTbgVY+PMxGLtVChmCZJSwkKqrJkQHG5LllVGt0n5iYAClsUbLdbiqLgzZs3zPPMfr+n63uGUXzovHdLko4cFIBAdzzy7u1r1s2Ku7v3zPMonox9R9dKE0gu8ijApFLYZDWglZa0SWsojEcjKa9aF7gZqqJIYkiN1ZIixDRhywncEW1XKFMR0URfADZ5Xhq0Ot0b1+s1d8MON89s6obKNDSramkmnzrrmnEYWK1WfP7552KyniRMzrlFivT+/XuUUtRVxbFtl2SxPDZzjDx8GBt9/u84jhyPR5RSXF5eLkqDXNv2fc/V1dX/F5fZv2kL0aOiTtJxjXKa/tjzzS+/5u3b1zx7/pg//+s/Y4oz4zyhsRhtzoDmNG/xoWfW0ig7Y/p9sPDW2ZT+REZQSjEPM4e397z78ite/OwX2Krkx3/2E9ZPLnEqYFMKFUhKYETmnOwppGLEliVFVVFWFYUtpE5ViuMMb46e5tKy1gXEkeAnkWGWFmvEe8jNgRgFlA8mCFAeQJdgQ4QQidpJaA6ImX0AXMAGhZscWs+YYsYFiMYSgieQwPrg0TEAWo6PNihtJNFQG/F90hZbVoQYsUWJmefUAz3VMFob8U5Nx1n5wDh0DMed+EMlf0ptJV1VGXldVIrZz8x+ptEGY2tQhkBk9iPH4y1fvnzBFy+/YfQBH0Uip83JKuR0PzeMoyeEgexxZfuWzXrDMA60Xcft/R2zd0s9prwH74jBieQ0SELreY12vv1aQCWelC/nY+gc8DmvpTK4eF5X/SYm6m9l1OQ3zXTN/KbnSU35A8uyXJ7PMXK5aDlPJcrFXC4Qztkn5/KfLD3KTJZ8UjJgdM6KyPt0zuzJ8Yf5AsxslhParZbuyTiOy801/825X04GofJELd9HfE7ysei67oPvnOmt55+fac95Ms+fmf89Z/1M6bX52K1Wq+VmvRgdnxXMnAFYOZ7vHPQ4l/9YaxnnaTH7tYV43ihtZIE3e4qioiikIfv558/57OkTtJ7RBuZJjK+UUkzzTNcNDOPM1y9f8/Off0FVb7D1Gm1lYgxBUVV2KcilSJYSOUaJwoyJyq3OGFzy/W1y+s8LCI0xinmW1A5jCp4/f87jmxtefvP1Bx2wLA07MZlODuuZGZY7oPnCz8f/U960kSLg2B5QKlI3FfuHB0LhGYeOVVNiysg4tcQAzaMNGEk2MKagKi/45m5PdJHtzSXaW0pVE6bA/Zsdzz9f8fbtu9QRXDFNMyFE7u92PLq6InpompV0paLQgFerhlevvqFpGin4FLx585br62t2Dw88e/6MV69eUtcVSmnu73dM00hVW7rxyBh7rKo53g98/uyHdMeOOHm6w566quj8gFLg5olxFADPO0dpC4ogxtHeOVRhGfuWVdnQdwPeTZSVpSgtPnjKpiK6k/dW7wZmDwMT66YieMembiiDwtqSzWpNaQO7+x0Pxz3+wvLm7VtWRcVa1ezbvaTHeLm+c0EQgyx8QooB1Ea6NEEpLm+uWT/ZcnV5wT/8b/9MGD04Tbsf6Lsjm02N8yIx3B/2bFYbJufwbuLty69Q64oxWg6x40d/+YTgfsB//p//hRgVfaeZxjTRRIhxRumAmw9oUzH3muHBM95p5kbGw91+x82qYn/sCMGzvdhiioJxcjw87AQAnxx393tmH/EB2v2REDyP6jXMmsPdHu9nyqqiVCsilvv37+j2R5SKzL2n70bqqy2PHj1ht9sTCYu0buwGHt88JSoxS7+6uuHQ7mmPIxerSypVMQ0CrKn46VK4/7Xbb+umfLx9DCL/VkD5O4Ce3/S5/9r9OV/0f9xpMlqxqisKa8XjqG5YtS2H9sgwjB/M2UVRCguvLLBWY7XCKAEbJy9zsjeBEJN5sNKLZEo+N4UOLF0qYc1E4M2bN+wPB4I+jRvpmieWZyBF8ypMVODkc6KSe4rJHiXGMvYjVSkAjdFyT/HOJa+WUzpmbgQIU0UnBo5Oc0wUvX00HI8DrlJsGk1QArYL9V5Mf1UMeDendA2pT+ZhpMwyhggRKZZ9mLi733F3/4AyluPxiNaa9Xq9gAMhSJGex8Kp+5eHyrc7zdqI34/8f6rZ9AmYyXVYnm8/1W0cJckksz26rlukKVdXV2w2m4W9EUKgSWlFWmvathV5StNQ11Ln5Rri8vKSsizZ7cTL6NmzZ/R9T9/3bDYCtux2u6UpuN1uE9vELDXdNkmahmFgGHuI4jHT1OJREnzg2PcE5DrLCVPH45FxHNFW040TX796Q2cGXv/oKT/67ILoPW4eKLXC6IoUkkqMYpBLsASM+NTomqChrK8IXrFeF/i2JQwtZWGFOe0Vq7LGF4bNbNk0BWqXo4LTIhsBxbI0LNdfAnqQktbCGXp9OkcxevYPO37+L/9MiOKPmL1YlvvLB6+XJoKEi4gHVFmWWB0oVUAj0obtZoMbejSKshQfHIPBBE2cRkzRgz+AL0BHtN5IXL1SuCD3hrIsWa1WhCh+lLqQ62OeJ/zxJG3M9XpmssQYefHixVKXlqU0Evu+5+HhgWmaePv2LddXV1xdbDGlpGNmBtd+v6eqRGrTti3H45GrqyvquuaHP/whX3zxxdJENsbQti1t2xJj5MmTJxwOB54/f74wej7JTSW5HBqcom8HvvryK96+ecX3f/iMn/zp7+FmiYOPXqPtKWkur7PkfntaDJ8zZD5WcZx97LK2yNs8z+ze3PHui6/55X/+J9Ts+MlP/4zN02tmLXW0Dlm4K74mzk/MTtYkm/WaqqqwWkvcvJHGmUosawfsoua+Em+0Ek2cHQZPUFrEB3n/lIAQEqojfjaFNou9Q9AzXslcpp0XMBaFnz1oL4a5k4ArMUbiNBKsxiSJlfcBpaURYIz4kkJEm0JYpW5OrzGUleAAS7JhYh5pLcCL1iZ5rUTmsac/PhDdRJGMuIuqoqprTFEIUBPFwzEqJ7KuxLIZ5573717z5s1X/OyXv2J3bJkixNQgyNs5QyyGSAgwTR3jOC5r+6IwHNojxlpevX6NW9bBERMjKoiZszGJUSoW5r91uC4ADMLSO5/3Tuyak/VI/puPGdXnAOGv234roya/0TnbJD+XUSEQLWXf9wvIkpkk56yP884NnOXGp/c/l6LAidIWY1xSl8736RxUydF/5yhWBkXy32RwJi/KM1iUT+i5987HrBlr7SJpOi/AMrqdD/Q5CJQn5XPQySzF3GmhaIxmnvNkppfnhF6W5E5a03UdhS1El56Q5HmaKUoBZIwWw7amWS2gWAacqqpairYMEOmUpNWUhRgyzVMCjQxVvSL4yDwFjFL8h7/6Keu6QDFLAawMM56YCunZTbRdR93U3NzcYIsGP3uUKokkp30tqRTGWJwTWuo8T+TCL3iFMVVqYqZ4UhTOR6JKscNaUM/oI9E7doeWaQo87HYURYkxNkmlLOMwMs2TJGJ5WSyTACIBb06fkc97BhWBpYD6FLfd4ZamqRjHnsOhxShNVRZ0YcTNA2pdcDjuUb7gyc0F7bAjamgPB7RSXF1ecrG6Zpwm1tVWqLW6pGoqvHfsdns+e/oU52bKuuZ+/8DNZ4+prOWbr17y2ZNnPH7yFJ+05yDGYlVRcXP9GH/hGYaeul4RUaxWW8Z+oipW6KiZejGIu7l+jA8TfTsQisDzZ9/jxf4lX//qFY+uL5mniegD7b6lua6F9q8909Ti3Uzf9dKBUQCBYRxYVyum2Z4WwkAAACAASURBVHPZrHEaog6st2v8PFMWBa53eDxNXRLLyOv3r1CVQReKqBrC5Hn6+DntfmAaJx7mGVsizvIhcDxO3L8+sCo3+G5imodU+Eai98QQss+Y3B+Tg3wMAuYQDMd9Tx8mPv/+Zzz74TVf/3yPUiuaqhbPJh1pVisOD0essUyTpMlMbsK7wLbccH+caP3AujH84X/5A9To+Pv/9BU4QxgVU5iZolukIi4MKN9BH7B9wXAI1JdbptBLkpUNDHh2u46rq0usKRmjY+h7vHes1pd0bc+qWWN1wThIitzYD0yj5/ryhrY9UtWW92/fU5QXbOstu91bfvD973F4ODJ0E301Ms9S1AxDy2ottF0XZsbW8ez5D+j6ARTMk6Mf9zSFFLamsISRZJj4/6MtSe/PQY3TJvKk3wyPqLM1jfrgkd8Kq3y0+P51QMzHrJn82Lfe7qPXxGWPPt5jAUm01pSFQq8bisJQ1iWrVS1mu4nlobWWqOske1Lp/h+cgwBRSafSm0DwQlsO8cOCPEYxSE2cGpFWeRiniTfvbgmINFMlSbEYV0piGUE8azJYIQmBYQkvCDmdEfGqiSFSVTUxDsv3j8jftm27HCepNzzKCBA1TbPQz9EEbXm/2/PZzSVGRQYiTWOIIWILk2qLiZgWH4UVKUVV1RA4pWoqiHiCUkxBcRwcd/8XdW/2JEly3/l9/IqIjDyqKquqq7obMwOAAIiDIHgsKe6abKl9W5npYf9imd70JIkmUjgJDGa6p7vryso7Lj/04OGRWT0HQIk09kZbWXdVZ0VGREa4++/7+x7LFUIq5uOsl4zsUEoxnU04OZmw26yp6hrfe+1EFlJIVcthPOutE6PBs+oBsoMcWSUmwxHdW+sP16MmredS0Z9YH1LKoaBOLJgoo4hhBdA3t9qO7W7fFwV97LOOwKJSkizLBy+QpmmYz+dkWUZVVVhrh+8Tu3i3q1FK9nHNFcvlghAia1hKMbByUhpYZqJRp7WW4B3LxYLF4yNd09A6C8pQzs/wQnG/XmHDS1rXoizk+QSExou+mFWx0PQOdDYCBCYrqPdrtJJobVDVDnSBLgoel0tCULg2hi4YpRiPDC8upvz6psEFHUFTH2ibhrY9rJ+eMPP6h+Wrx5v++QuefbXrWU9ftgo4bD5ef2MghWwLFUstKTE6Q4SO3BhwNdlIIINH9c+j6H3mjBI414CrCHYLQqGM6cdtgZaK3vIViWZUFBit6XwbE7xUhjGaLMvI8jF5liOVZL1aUe3DcH+lGmq1WsWj7+unmAAWk2lNr0bI83xg5QHD31prLi8vB+b3b3/7zzRNjVKaqoqR39GKQbDd7nj9+hXn5+fUdYW17b/CU/RvswWhoimtk6wWK15/9prF4pGPv/cx3/2Tj6N0hz65TkQj3mTAmhiUQEzskk+TXg9ATKy9EkIohBiCTlQPNDR1y+L+gYfff8Hvf/kb6qbhz/7ipzz75COsUeyrPUWeQw9ydG3HZrsFYTk9nVGUI5SQvfrAR/+n/hhFDyoKYBsEdzvLbKLIhYleKc72YSZJSiNwNoboeOIcZYyI8hwdPcxsCOR9vSiCiOm6NoKiOtADtS2YLAZUOEuQUfpHX/d41zICpNKgVD/+RBNhqzuU9SgZI+e7zOCdia/RZgBrELGB0jY1XbunqfeRNdcDcCbPyPICk+UxCdZkGKV7Q+PIwou1saNtan7+q5/z//zq59yv92xbhzvytLMuhu74Pqk2BKKXY1Dc3NyS5xm2dUwmZc+Ek7y7ueX+YdGfcz8GBo/wcb7TWuEB58Uwn8v3AJUv3bOhf3MZ6+ZU3x9/CZFSKcPwFe0jnpJavomJ+o1AzbG2KoENx5KiBESkTs2xV02SIx0zGpI0yBgzHFSSKsGBxpSAkmOQJw1STyhrR8ycZAp3LItK7JwE1hwzZY7N49Jrk044MViOt2PfnCzLBoAGGDx3jkGgdG7H3TVjIu1MKTVQWWP0WGIugRDJ86f3nul68Cj0TuJAcAGlNV3vAeNsoPNR3xwXIKm76XvPFjN0jY5NnAUQrKdu9yityIymrmOOfGstroVMal5cXfC3f/Fjcu0QAboOEAYXoGoqWttRVzuCbymLjPP5KetNLN6dT59ZL/eSkqat0Rq6LlHe42LddhofRpGqqhyS2L0LwdPZiuh3A97FFKdgW1xTs1ps+PQ3n3Lz7h1N3cYxA4/tr51EkuVHfgHe9/uK9/Ahwrs3N+6ZUFn24RaDm+6BfZdhG8/VsxesH9eEYKmqFUJHhpLJctq9wwjBZn3L6ekZbbvr2U05gdghur2964FKx8lpNAOuqopnJ5dUdaBq9wgTqLod0hWcnc6xsU1AEyrIA/bRMs7HvHj2EXXdMJ2esV02yMxxdn3G4mHBerEhzwtGWcEkP0VLxdl0ymr7yGw8J58UKDmiHM+YTEpyo+mamhcvvsXq9hEtJThB63c0XYcSE7wN2LYhuBYROjrXsreGcpQjvGdSGFZZRV5miC6wq/acjC/Y71bcrx8opwVd2IMNjExB1wpyXbLe7tEqo7YV7brCeLjZPjC//Jj171rE44hxfsJi9UDX7UGImFTWd++0kjjf03lFpGSLEFB42m2Nk4HRTPOwfMcP/9O3yU/u+OLVDRdXHzOZnLBeLsizkvuHBefn5xAs2/sbIMasutUGZQPOWvTZlIf6lpf/wxVBlfzT//oa0QS2rY3dpxAL1CAlvttC46k2hnfv7nl+XdC0LdpLvOrY1BVZPsc5g3ea3XZPV1cgY/d1NCrompqH1ZrcGPK8oLN7tBmhtEQpzXq9YTKeEIJnu95wffGCTJbsN/e9p1ccT7WJz1uelRht2OzvAcPrN58xm57yuHwA4QiiY9+u2e32/XgePuiuPXwZ4DgwPo6/T/+p38dS0k6e7G/4736BlaQ/kVHx3ns+ef8/zJD5OunUH7MdljVP9xOlEEfRkxKUUYwwGCOxNn/CmlXqYLYX51dBR0DagMAdKPEIlNTgA0pEanjq1kviog8f+uQnqOqWqgsgdU/zBoIj+Hh8tgeZXb84tX2jRHqB6NmCcQ1DNHv0DpPnSC8HtlIIAd85dD9/pDVCiBMcjtB32qG1AplneFPSItjsakQuKFVGoQu0CeAa8B4twPddOe+inExrgxpHL7roVVHhfcO2ttysdnzxsMYGRaFMDxgHiiLDe0tdbdFKcnoy4WQ2Zb3e0Da97wCeAavp7xsZIsLovY/sBpEaPGltmLz04ldkA324bNSyLFmv1wOrJsuywRNksVgM7JcB+EPStjYykoY1pWaUK4zRAyvn4eGO8Xg8fO4xpWk0NALTujIxt3e7Xe810nF/f894PKbrGrLMRMP+Pigjee0lyX9ZxOJ9v9mx2WxYr9dst1uMGTOfn3E6nzEtZohuR2MU62aHUTGNSmMQXuP8HiFrRGjxvsbT9MBJL/MxWfy71GiVMS7G7NeeWZHR7j1u63GdxDjBdKz45PqU8a8fqZvQg5a+L1K/ehxRQuJ7QAd6Vpc+alD6vssvYkH9VfLLA/vLI5XABk8XFF7mdAHaIJBZgTIdmdJg22hiL6HIFSIEpIh1iFCW4CXam8h4kAGpHI4aFwLB94WmUozyEUVWUmQxKrutLR0tRnXkxXhg1He2ZWRGlOMSLQ/2CslnJjV3syxjv9+z3W7Zbreovk5xzjGbzViv1yyXS66urnj9+jVFUTCfz4ewFa0V43FOCIc0p9TAtlYwm131lgkxmvn46f7QtkxNcXXL4uaeLz5/xWq74fs//FOuvn1JJwPOxUjpQw3Ym7r70BfE0UhICIkyhslkEpO06jqqHsIh1TdtQkhcn2QXELR1y+PtPZ//8++5//QzHJ7v/82fc/Hdb6OKHOEcWX7Y9+3tLW/fvsV7z8tvXUUAJ4TYWCCyzTVuAGjS+KqkZOsturZc54axMIgQ67mYdhW3EGJUubN9O+C9xoRUkjzPBrAiyv81tm6JaanRz1GFaEIf690IIillkKZASgU2NtCljr41cd7QCFNijCO0NiYiEWswraBD4IQk0+ZwTQW0uzVdtcI1NTYIAtG/Jh+NMMUkpkqJGC+uhUR4ibXRSDndn95bHrc73m476jaOx7kWOBfwQmG9A1JseMCFKPtqtnvubx64unrO4m5NW7WsV2tu7x5QOsfZOIcp12KwCNchvcIHhZIhNlUxBNkz/qToI9PDoYHzFc2sBNDEGj4ek/cOGeL1Dj7V3QmsEQNIdryfr9u+Eag51j8e08YS4HIMghyzUOCpl0tajMGBpXNMQT12MT90oeL3CQBJJ5S6HwlgOWbJJIDlfZAlATFN0/QFeDYMlMn07/j3EgCUjjWdW2L2pGNL8WPp99P5HcuREosoyrDaAVg6TrJKC9PEKErAVZRZHZhJadIPECmbqtcGaknXOYxRaF08QeHTMSTpWpJ5pZ9HwCzGq3VtwKgyon048swgg+Nv/uZnnJ6MIEQ2jVKatmnxPlBVDbtdxWq15+27ezbbGiE1PkBnHQE7xFOma2StHRYGUQ5m8cHjXCCEtFAPAyIJCoTBu47Oepq6I/gYG9z091nbHUz6fIiMm7Slz+34QUgx68f32/H9eXy8H+LmrUep+HemM9q6om0qqr1lejbBdR4pBUWheXh8RzkuWDzeY12MjNVmzlhntG3DyXiK0RnleMRkPGW92nF6cortLLvtlvnFnMLkTCZj2nXLyWyM84HH5QPr7YJ8pLG+omk1j4s13iu0Kri8eM6mWtA1HXmW48eO88sL9vuKXbPjdDKjbiti91tSV1FHCh0EzXKxQgrB+OISpTacnp0wVRPaSccX+9fUVe8HQ09b9ACCpumwZUbbWYpMII2g7irYWERmWK2XjIsMJSdY23I+v2RXb9AqQ6Kp9g1mPGKxfOBxt+XFxTPazRYlJONsxKsv3qEsqAC26xASrOvZgxz8j+L4pGNYCh6j4yTfupa2acmzkjfvvuAHf/UJf/tffsTPf+6o5T1enlPXgce7O0TQTIoTVqsVWhaEAMVoTGY0j/sagcS2FmRGLQJ/8tefIL3m//jffkV148l8jgvRW0DgY+qOc7RN4PFhwUV7yW6752I2Z7ves20qLstLvI9jjdE5ZmbY7ja0TctkMmHvdmSTnPFojPOOx/WePHOsVyvKcsLt7Vva1jAaGUKIzMPVasP5/CpOuH3caMCz3+9ompq2rdhu90iZMZ3kBBxVtSfLNeVoTAj0II9nNCoGP64Pcft66dDXsFq+9vVfvR2PY/9imdK/cP////YTk5hS5/fA8oRjuW96z8RAO8yv79PXFTFZKeDdAQTtWw447yhU3jNrRL/YFCSj/WRWCQwNmwimMBhnw2G9IkUEfEII+KaJZt6i97Wzlrpn+ZpeDi2FQEkFIfSs155x6100iSQt1mWUSskYax5ZARnaKJq2jot5Fzvfab0QQkBJhT8CstLaQcoICu/2dQQcHu4w2jAqSibjDN03iJxj0OHv93uU0kwnUxrTsl5vcF3s2j4FFZOxpjga0+Qgezpm0hzLED7U7f7+nqIo+OlPf8qvfvUrPvvsM/b7PWdnZ0MSz/spMikooqoqRqMRxhjKccFquWS5XHJ2dsZ8PqeqqsGP5uHhgYuLC8bjMff398P10VrTNM0Q851kMMfv07bt8JkXRUFiZzvnePPmDdvtdjjeLMt6E9kJbVcznZ6wfKhwdYP83T1/8fyceTZG41B+hxINUqwIdkFXr/G2Jrg2ejQ5kDJH6wIh+oAJERseczNlvV0jhKNxNa1yULdoI3l2PeP51SmLVw8Du0wKRVQhhmEdn9bQx2ur9H9Sih6gSAyT6O0EIq5z/MHsFSJbDyIDQGpN01o6G/CZpGpbmk7hvEQoDaKLskqh8V4Sp2SBVpGBnRcmyimFQCqJCw7nOgIWpUxkMgSPEoFRrjiZFJxMR5SjjMZ2BKd6g/B6WGdmvXTJ9OedbAuSH2KSI6bPPn3O1X7PZrNhPB7z8PDAfr/n+vp68KtRSg1St3j9Mpxrh3k1jReJoQOHJnP6+0Pdwrrl9u0bXn32e9qu5sd//mOevbzG0uHcYdxO91BqcB9vSimU0cNzemyFcTxWpZ9DX2gLgbSearXl3aev+PSXvyHYlp/99V9y9cm3kJkBIcjyHBccdV0PErSzszNOT08ZjwsiXhGPLTH1ZZK7pqQi72PKUpBstjULZTk9MRSZQ/joG+MDtK2lbRxd54nEfzkwVJ+oRGRMe4pm+4ntGM1+kRKV5aANKE2QUdqkTIYpRmT5aAB5lMnQWY7rWqLPYVRyZPkIZ1u06yK7smsIwSOcQ4g+lVEpwOO6Nkql2g5EiDWkzBjlGWU5Jh/PkEqijCYoTecDyntEZ6OnXA/MfnFzw9ub2wNr9OjzLYqM/a560uRJn+Nmszl4kjY1y1WDVAFlNOPJjMl4Qq4UIcQYdR9c79kW7T+kioBxnJfTuPPVTJpjAFm/h0scy5uOySUhhENgjlTD/P2H1lx/kFGTTHoHjal7mgCVNObHPh/HkXHHE9/x4JzAiyR5SjS/9PrEbkmvPQZtjv1thkWVPKRFHcuz0vulYzp06+xwjglUSh9wkiSlfaX3PzYVjgNjQdO0A1snLcyAJ3KodN7p5jk2Gj6+yZLZX5rQuy6inOkc0rUVUsbCUMZCvWljlyZStZMfRuy0xv2JJ/40aUsASgKcQEavmuDQ0kPo+Pa3X/Af/vrPMDHIhq5joP3WdcN+X7Fe73n1+o63bxfs9nWcIKVGSDdoeY+lYd57GuvIc93rAWLH//R0DiHR3qMJ3KFzEmnqTVOz29Z0XYyhe3i45/XrW+7u7iKgpnXUXVr3BLxLD92Bnn1gQKXPOEnlEjD5IS84BYo3X9wyn57RtZZMZ2xXK67OXlD7iqraYgrDcrXANi1SzbHWMZmMWa1WdDaCgbtqiVQB8jFd52iaFqUyHu7e8cl3PkLJOUqqmEbiHEX/nO6rPTf375hMc1CayWTE/d0t201Nkc0wJmdUTNhXa7wNCARNF00Aq2bHZl0xnowwQiBVNFrc1Duq/YYsM4gQU2GU0DRVy2QyZVdVjMrekFEKdvs9znfETKSeBiskddXSjAsYK1pfY0aK6XyCy9Zkec7t2wf0fM5mtcRhqWzDi2+94NWrV8ymJ8xPLvj8s1dsVltefvIJ+23NdrWiPC2p1xW3v7vhuX9Jt99j24bOdnTOxsmLnsn2PsgXBFrl6ExRN9EUMs/GrLoFFB51UjF61qByjRee4DVGlYyKgrYOdA0UhemlU4Hbd3ecnZzStS1FVjAZz3h3c0slt5Tf9nz8k1PazRK1yXDK4ZtmYKTZriMjp8gK9tuKs5NzMlnwsFwTMkXbNggBVVWzXi8pxyXWQqgbgofc5Ow2e2znMdrQNg5CS55H0+Fnz57zxZvXmCyOLd4H1usNZyfnUSLbNH2n2NHaDuMM1rY4K5g/O2PTe990XRMnTBclH9PJDCHpJXUfrtb+eAI/+impk3K8WB6KYr5sKvxVnZvjBcDxz9Prv+rf7x/bN8mZjn///8v29PfEMJ+n5sSBRnys404y6kOz4zitI/1MyoBSEu97Db73Q/x2nJu6w/kdJo6BXRTBlMPRDc0VoQgyDGucdB3UEWjvvUcEgfe971ybzCojGCsEEbyQsVuptRm09M57UBIjcxCSzlnyUYn1jv1+RyEKbCFoGo8xGc55zHufQ1zgeawNTyjSkbHrqGrH43LD43I5dDxtu2cXmihlzjPyTBOCpG09rp/z22YHxPjf7W4X2Ykh+fjFOVfImBKk5CHZKX5Ff5/h036vwfUhbm3bUtc1//iP/zis+z766COg715bS1XFIiDJjrz3PD4+Pmlw1bv1AMrv9/uh+Zc6+Fprbm5unkhaUnMorYvzPB98D4/BjCThT2vH09PTQ2z3eMx0Oh3YOmnNGH2aYmOl2ltymeEc3D5WfOvqFLQG1RFCTdssCNUbhN1ETwzXQZBIr2jaEUGVCGkQyqBkiXeQG5jnVyzXG1q5o9nu0OxxzY4sg48/uuTTu0d2tR3uGSEP98QxCHrsw5jWpCF4xuNy+BzSesyYbAB7E1glpYxsueARSuJ8YL2raNyUxklqKahtoLYOT5SKKRn9QbQCKX1/PxuMyRFKoQHRy+Z9D8p4YspckJENGAjkSnBxWnJ9ccqvP/+COs8psjGSwMnZKd7HSGxjDKPRaDCI9t6zWq2YzWYURcFqteL29pbLy8sBtI5+gAWuB/Km0ylXV1dUVcXj4yOz2YyzszMeHx/ZbDaD3xS4L903WmvOzs6eBJSk+/ND3T7/+W/54uY1DsuPfvZDrj66wmNJwQ/Hha/r7R+esmOi3A0YmtrH8d2pXhxeK+JnLaVEuIBysLq559XvPiVTmvn1JRfPrzGjAq96yV4PvCTQ7fnz54NCwvnYgE5z0GFei2xI2YPe8RAkXdPx9s0dczXn+axAq8jo8s7h+sZU+nI2Nh+kVE9qSymj7sD3Er3Qr4Z1lsdpTyn0qESaApHl6GKEFwZhCnQ2QpkCkmxMKqSK7F5JILjIBNF5gek62s4SrEXqHBkCug/eyIzpz9/3Xm0alWXROFhA1sfaC2MI2qDyLHrUGB33XeSYrKAYlQil2TU1//zZ71msV0/WAal2jHVr/eQ6e+/7hNdDrd22LbarkT42QySglYxjpXdRAuY9LlgUfpCveuuwPsqr4zqih2rCE7op8UdRjqbV08ZFPC6Rlh7DsUeFB6RExkQUSb/zdds3AjXpxm7bdthhmnSAJwPDYcA9ADMJvEkTUdd1TwCZdEGP/VSOF3rHYEYCfhIr5vjkj81iU9pU+vDSsdZ1/eSYjieJxBo6PqfjGOw0uabjOey/it24/pwPkpkI5qRjOUi63BNm0jGTKN2IiTr5/oI8gU3OOdq+4JVSxQ5A1xKCxGQaYUV/DgyDh1JmiAhMm+2pblorQnzUybLYfdAi4LFczE/5n//rf+Hy4hSBjRRQqeicp2k6Vss1m82O9XrHF28eePvuYUBonffoLEcKNSwmDj5AsZNYV02v1XMEHC9ffosQet+i/rlIn3Hw9EkZjsfHFdtNhfOw3Wy5vbnh9evXdC7QdG2kqivzpYH92F8osYnSPXIst0vX51+rs/xvsTVVw/npCa4JVNuKVoCRhjIraXY1Xd2hTUTgrfM4C13ryM7y3sPIst/vIoosBU1bY21gsXjg8vIZmQkoJE1Vc/vqnu9+7xN2uw2TbETXWLJ8xO3tLdPZJ2SmQEnFxfklUqwpRye9jAHKosSoKL2rm5ov3r5Gasn4pKSY5HR1w3q9pLOWk/kZm/WSzX7H2fSCbFry+LAk05am2kEZqNsGpKSqa+pW0tmWtmtog4uU/D6uc7WpmJcjJmNAB/bNllwLdvsNz6+e8XBzB96DUkyKGYv7FXiDbQLb9Y7cFJy8OEHJyPw4P5uzsCv2mz3LV0u+N/4u23aP9x1NV2OJ8cEhRINxKWICy+CBFBTOCypnUWOD7RpQjh9+/7u0fsuq2uN1x/n5KdWuYrPcoZHstxXn55KusUzHMwgtUijwsHxccTqbsXhYEILAB0eXOfS55KMfveDzf1jit4Eiy2n6GFSRkgKcoxyVTMqM3/zzP3BSnPDy4++wbnY94B27cuV4Rtc2PLt8zmK1om0ttvFMJjO2qzWj0Zg8K7m9u+Hli5d9Z9TxrRff5ub2NdPxmIeHBacnZ5TliMXjPfkoY7ffcX4+j5JEa6mbmq4NPNwvKMcF9w83jMcThFC8fP4x6/UaYySdbZjNZr231X9v21MwJo7tSTj0ZWDkePw5LnCOzYSfygG+PqXpeJ9fDSQdtq/7vW84ra95/cGQPx1/6oClnx+nI6Tr81UAVVr4DPsLcf6LU3ikeCfddwjRRDt2M2MijOgp8T3t7smWpLDvv6cT7/nfpOPyniB7IMhB6NcM0b/iwKpN0oau9x0QvsXIHBsUyntccLRtTZdJ2lYix2Oc65AqNn7S/HS8BlA9SJPWKFVVsa9qVpua27uYjpdnGaNcoURMuAou0DYOZ6OOfjIu6axnu91jncW7ECXSWhMEPVArECL0KTqyX4NFcCYVglIlTb58skj9kFOfyrLk5ORk8BxMfjFt21KWJUKIJ6ER2+2WyWSCMVGSlJg1MtjhulRVNbAYlFJDfPJut2M6nQ77ScXdeDwejIn3+z0hBE5PTxFCDGvI1DAMIaVDxTXn2dkZy+VyYAY1TdMXJI5RaSi14qSU2GpLIQT7/RqZvyAbeQJrumZPu7/B1PfQbelsTMK0XuKdxIYRwnSgRwgzRogckCiRoXLFNJuwlwsyckINztfYzlMoRZkZWtuBl2QmRxv1ZLxJ48BoNBrGwRSw4VxsqqV1OjCAgcYcbBKgH/+Cx3YtXiqs8zStZd86RgYKo6m6jtZJOusY55o8zxC2xeiM4Du0Uhgdk2yCUNFcuI+eVyKWu0oS18/SxWJORGDgtNScTnMyCXjHelVxejpju90CDE3ABOwZY8iyjOfPnw9g8nw+J4RDmpP3PiYjGkPR1zP7nl2TapzpdMpms2GxWCClZD6fk+c5q9UDWZYNSWVprH18fBxqiqqqBgDxQ91+/9lvwQh+8lc/5fnHz7HBRo+scGA3PAX9AiHYJ+MtfX12PK+kuu2YIT/UrCmjxHXcvrnl5//0T1RNzfd/9GOuX16TT8oI0kiBCFHK5PqGQlmWT8fovqEsUnEfYkx9NNCOXmhd2w0JpZv1jofHLbsXF2y9YqQ1hda4Ljb8jDEIFAJH7dqYLijccE5pvHUIgoi+NtYHhIwsFxG7B8isiDLAfITOR9ggyccTTDECZZASjNQgYiy3kRk+WW94H5vu2iBNDm2LyguQqmedxPlVZxk6BDprkSZDZSamFobIqlECpM5Q+QiVRZNiqTUi0wiVMR5P0CbHBXj15i2/f/MFbV+Xei1ncgAAIABJREFUHdf71lrWqxXOHT7XdD18cE8apMO4IgR4cLalrvbkSiK9QwSP99HrK/RrCKUEoWcmhfBVqzKGYzleR6Wx6Zhd6n3A6AM54ZgocYx3HOMKX7d941ObmC2JSZIekDSJpAI8ARnvszZSx+LYtyadzHGM4RMKWv+zdPMfL06PL8T7UqjUcThmTxxLi1LqQXpder9jRlCSCL1Pl0sgw3Ha1HG3LwFJ6ZjSIuuYEZSuZzLaO2ZzpOuXBpfD8cmBCpo6N6FH9aQS0CP+WkdH8Kapo5lZlsCgyDRo24YiHz15j/SQhxBRv9E4YzzOuH5+ybNnF5yczPizn/yQ73z0EhlcLFi9onU13geapmW3q1ivN6yWG5Qs0LqkbT0m1z29usb3n2kC+9JnK4XA6Jzk/H8ym/DxR5+gpIHQopRBCHt0I0Pwlra1VFXNL37xS5wLOAGb7TZK8XTWGy8eWFLe+0EXnsC0dP1TvObxRHB8j37I0qe2buJg6Dx13XA2m4KSvPr9p5w/PwcfWK82tI1jMjnl9nbJbDaFoCnyktVySdu1nMxO4verNZPpjLvbO/ZVxunpSfQrCoGL+SmT8Ziq3rOvHhFBMi2mfP97f8LV8+fc3t2gRxlFUfCtl6cIoanrHc51MTEpM4hzATqgC81itWCSGW4XN0yyEVprTGbYbrZcX36Cs57tqmKU58xP5yyXj5ydnVDJWFgorZBKUdUViIC1LV5AkBGokULStB2b/Z7R2DAaGxpbQScgSJaLJefzObfvbrm6vOLN7Q2n53NeXn/Mu7fvMCpHlZrFwyNn5yWL+wXz095vYL2HfcDkiq6qoC+4XIgGkN712lZitDS9nMMYhRh51MTxw//wJ7ED2K746LvP8Dk0TYegxNuM+7cP5HnGvt6QZTld12Bty6KPpH5cWK6eXbHbbFg8PMYIZOsIrkGWhlYI8pMJ40mGXXSIIDEqMuVCCIRe193UNdXOMh1PoRN0TfS7Wty9QynF1dU1Whlkrvji9TtqW0d/Iucw2lCWYzbrLTrLmYyn7PZbptMpd3f3XF99C0KBsxrvW4zRfPHF76Ohtx4zP5/T2Y5RWWKdxbqOk+l59FgSMJ2NY9kbJHe3CyaTcaR4kzrSH6706Zu2Y8Ajjj1fz155nzWT5opvYt183Xv+IabM+0ybPwakPrxGfCVYk2Qzx+mDvl+0vn9cf2isTXOAUqHHRwLOexSRck1v/jskKUI/t4h+7SIJwfKV8rMQe4jH5xUZLEeAljhmt/S7ScffP+OE0Cd79F1ba2m7LiZZeIcMOlK7ZcY0z2Jcs4w+JM5Z6qYiL0YQDoEEqZhVSvVM1sN9nyJ5d7sdN3cPrNdbpNTkuSHPJEYEjNTInvjivcNaz2azwmQRsHh4WND1UpvOdkite1bPoZmVwJdomhvTOmQvf0rg2XHD7n3m7oe0pTVZ13VMp9MBsElrvOM4Y+cc5+fnXF1d0bYt6/Wah4cHICC8ZVyWjEajQcafUnxSYZ6ikB8eHrDWDgCOEIL5fE7XdZyfnzMej3Euxie3bTvsM61HlVJMp1OstT2LwjOZTJjNZjjnIt2/C1hXUe9WnJUzvvXRFT/78QU//XjGfLJH1vd02w12t8VWD7i2BufxId6jSuV0DXhlQK/IJ3N0CUFLMjPGhghckuWY8Qy76wiqwPsC7wK51lxfXsLjgrr2dK3D+dikTbKeZOB8HNowGo36dXqBc5bpdDqAZZvNBqViUmgCM5RS8XfweGfYNRZrOx5XGxbLkkyOKLOMWnqazhNETpblZH1x6Hw0/s+MwXV9UZtnQFw3hBDPxRJ9sbRWtAJk8EgRi7myULy8uuDF9SWb5iamO7pAF7phPFuv19R1zWQyIdPRhqBpmiEOHmKhv9vtcM4N12H5+MjSdpieEXNxccF2u42M4x60SeOQc47tdsNsdsJqtewbGB3WWi4vL1mtVsN6Oxmcf8hADUXgJ3/5U64+fkEnPCIoggM4zA3p/ON8JUmhKsdjjlZqqFuPx0vgCcAxNMOtpd1XfPbpp6y3W779wx9w/b1vkxtFh0eKmGSk+zozcEjrPfZDjZ+9GKYYgezl2qJXXVicdUgdwyFef/6Gk5NzmqBYt5Z5oQkueskI1YMtRMmq1hp60Cc9P6mecUIhdQZCRkZMoDddliAVXiqkNgSlsUJg8hKVjQhC44WMY75IYI/spfp96I+IPjDK5JjMopoG521MB1aKIPSwfldSkvmAsy22qwgu+jXGNMUQ5UHaIKREZtEAXGnV7yue32q34f/+xc+5e1xS90y099cvvm/qHDeApJR07pCqnMDxEDpGZfTQ8c7irAWpe+lk9F3zwSNDz9RLDZgnayF6bTTDOuAJa/SonoYDRpGO9/hrYNX08etprfFVipfj7Y+K5047SpNRYmakQviYVpZYM3AYFEKIQE9RFH13IHZvnOt6jZ0cGBRSx2gw713Ue/fXq8jzKDHo4qIsz7OY5CMFTdtycFhOum0VmRU6MitScok28YbqepAksXDS8SY2SzI87roOpaMHSpZlQyEW38ejlO7NuuTw/vHDiAuwCLzE2NHjbt4xW8gHj0gmiIBtOx7u75mdnkKviY9U/4Bzvkf5Vb/wspgsI3iP7OnMSkZ6dQQrNFJ4hIRiVBB8iv5ucF1HnhWU45K/+duf8R//41/x4uUlRREX1ngL3iOc7D1fYtfQdhZvbdQiEx2/q87ihQQVH5imbQkBbPC0bTd8JlrraPLbGw07IWnqmr/507/i8vwy9pf7RXD8ig+NdY7OuWgM2XT88te/Y7lag5Qx3tTGGEbro19JXAAnU7qooarr6DMgpWTUe/Z0nR0W91LK+BohMJn5o4qVf6/NhILz03O2qy1lkeNtTOdZb9ZkE8O4LFlulmiZcXpyyXxy1d83GaPpiKquqJoqXpemYTwZs9uv8LRsd8sIbEqPygR5NsI6Gw1f148QBEWz5/LqktV6Tdt2zK7m3L674eRkhrUNj49LynLEbFxy/3DH+CQW5/fLO7RRWG+p9zvys2guvd3uGZVTykIjZUArR123ZNMxIsS4w4eHO0bjAp1rrLdkuWFb7aKmV8VJTGsdOzHesa8a1vuO2ficYpqz2S1QQeP30NY1V8+f03Yd4/EYIQLrzQok7Kod1W5PluU8PNxjlGFcTllvotmfDJLgwdqOtqkJ3sWuXtdhXTJSDL2ZokTJgNaByQl8+y+v+egHU4Q+Y7MrUKMG7wT3twtE0NQ7i1GSmzdvMXnG8+sXLBaLvgvpqaoaJQ237+5QMkbGZjrHNR1axC6NycY4BGfzGfWbB9Zdh1EqxmoHIPhY2npwPk6gF/NLXn/+GcVpSVGMKPISZwWbzTYy7UKIoI1QFKOS3XaPt5YsMyyWC8rxiBBiXG2RG+7v3nFxecXD3S0vX1yz3S6xwfHsfI7zgsfHJXmeUdVVb7BYAlEmidQYo6h2DUIYHDVNVXFxecbD4wKEi8f039Umjsa2+P3TNIo/vL3PsoSngMr7bJ0/BOh8FWvz/X2+//qv/P+eTRL/HYaFKiJ6ohzLXhNz5ngBPSxeBNEPIr4ZhIAIyfMi0tqDFL1zrevH+cTE8YTQN4v6iGwlIriTG0NhIrvVHY6U438k6dnxeSbF7eFYxdFfvVTr6Fwloj9+mS5YnNuDBCejGbqIzNVnl5dIQBEjzL2zCBGBAoEiEPB9w0cNXVuPcz0D2DmEVLSd5X7xSN15bIgdvMloRJkLpHcoJDHWNRIInbO9f1xNVbeMxxO839D286DtWb/Rh0agVWTUDGwaefSl4pdODBuZCqcPF6g5Pz8nz3MeHx8H09YkXX/16tUAsJydnTEej1ktl+x3u+gHow0X5+dkJgMfGald5yjLydC0nE6nwxqyaZoBaDk2CE7Mm5SSmmK7k69gMpgNIQxsnuRbI/p7u6qq6O3nHXXTMBmfMZ0UXJ8X/Mc//yE//s4Fs3yNWv8etX1Hs/uCsNvidg20NXUHUudY27Lf1zi/RciMbJRjmx0Q6BwUJxnBZ32xZmirBhcCrQu0TlC10FpJwFPkRc9yC6giJy8is1xKiVbR3sBojTbR8iAzGYHAbDZF9WvSpmko+ghgY3Rf6EZwJsoe43qybmuUIEZsa0XVdtwtt4xHhlmucErRtl1Mk8kMUmu0UmADeIXqk7qk0gipINjY4dcaj49sZK1i0Rr6GGKtcAG08Fw/O+Xq4pR/+vWnNF1La1vmp7OYHOM9Z2dneB8ZcNPxeDCeTbK1qqrY73aMihHOOzKj2TY15ahglM8wvRlurKssm82G0WjUy99GFMWIuq5o247dzjEej2l6mdPZ6SlFnrPsAcn9fs90OmU2mw2hKx/i9jf/+W+ZnJ5gcXEW8GFgscTxnaFBEwK9VEX1NVTAOxtrDHUIcUlFvhACI2Md4IjMj7SjUHW8e/WWd+9uef7Rt/j4e99FlrGJHId6AcHTNDXeesoy3otRDhOZPfTzU5oPgo+AgrU2AoAy4G2cC4IVvH19w3qz5vnzZzROcr9puRjljHqvJA8IJdBGoV3AOpA6yaEsrk89Cj7QBY9wASF09F+S0XcUqQhS4YKAICizEcJkmGKMUAYfYqy0lBGs8f25CCEJfXpaED0on+UYArpt+vLM9+BPHMuyFBAkBN51eN9BLy9K83kIac4WaKN7sAu0zsjzETYEfvmbX/P569e0NkKl7+MPw1ohkTKkQPU1Pt2B+ECAtmmo6x3eZfhCcX11zagwSGd7ZnlfYvb3n5ACpRUuWHJhBollSp2EmOIFcTwIISaKZVoPSplj1t+xqf77TTDvDiqOY/Dx67ZvXO0em08lRD8hecndPoEc6U1TNyKBOiEEJIGuqal2W8qy7F/vyE2MrFttt3iiU3frHIVSsfixB/bLdrMaGD4x/SGA6FNPdCzSAtGfJRrwtrEg6Rc2KYlFBE/bdYMjfWIGpYfZWstoNAI4eMYoQZZplBK0bYfSvXmyVGitqPtiI51/mlS9d0yn037SrgcE8Fhek2UZ1nuCJMaqtR0qgAmCzeMjp5cXWBtNPJNRXZHn1HVkz6heswiRZkdPwJYk9/gOqQVexAc5JsB4TJ5hu5bnLy74b//tf+Gnf/Z9ou1Dh5SezraHDqGMwJlA4DuHaxu6to5gjVCsN3s2bUUTPErGB8gLFdFKfwDAUmqLAIQTWC3o+oX33/3d3zHJC7yr8TiEjLGgvn/ArfPUjaVzgre3S+5XNW2rqJuWto2LrbaJYFrX2kFyBj2gGKK5cfycPW0bU8roZVjWeRS9xtMHXN1+0Iyamb4g7ANnkwm//+y3SKF59uwFX9w+8vK7HyO159n8irdv78Aq6mrLbDZlUo54e/uGum25eHbJbrehandcX19Hp3oRyEYZj/UD2kh81qJLgzCBvCzowhlZlmHGOcvdA599/hl5lrPbXbLdbjm/OGVf7RlPMrzv2DYrarejWm5ZbdaUswnVvgZfcXo65W7xjszkPKweOZcFQkQ2yf3jA/OzcxbLFeV4wnq5xHYt+3rHKCvwdMMgJ5TGOxdZNcTOtiDQtJa1FZTPTwhlACdRQSELmE7PaPC0oSMrJZ6apmt5d3/Ds/NrijJnvdoipUHLgt26YbFY4NaCvCzYdR3LaktnO4JzOGux3uKCw9oI0kid4XyH9BZlHdcXFwTTEbKOTCvG2YxVtUJ4T7ffc3lxzeV8zmr9SFN7RqOS1WKPIkdhKMclrl3QNC2t98xmM5Qy3Nzd89FHH9E0FdXmDq1HBAWZ1kxNRiNanMyAjnXb4AR0wdG2nqpxbLsdvrYI4ak2S15ev8BZw/27Fc9fXFE3j5zPpzwsN7RVR1CKq8sLnKvZ7VaYDKr9jpPpKW3dcHV1wnqzpJyCdyPW6wWjYkTnpzyu95yfTGgIjIuSyWjCcrmiqmuUjp4dSk/o2sDJ7JLtek+hFc51NFVFXVXc3N/w7Ori3/sR/BdtccGRCvgjhsxXU1G+tL0PIqR9/rG/e8z+/Kpj+2Pf/yv3E+QBcDo6PpmAdhgaGMf7+lK3ExDe9zBF/OMJmLiDOIdJgZQBKT1Ch1h39Z5pAYG3DnR839AfU6Ylz07G1HVFh4oIJQN0FptNHLpkT2jNPbj2FPSKlPDjTlnskqnI5PEHenoEseLcXORRi3/57BkvLs6ZFDknpSY3ijzXMU1K5biuQ+Ua5zzBWRQ9jT8eLJ64YK9bS9Va3t4t+PTtDVcXc14+m9PtN+QikBU5QsWiOI6Tsu/yWpwP2LZlu6v6ha88upYeoxRGSYyWMTVIikhfFx4ldPw3AR3Z9VHPjyRISfiAgZrVaoUQ0Xj1uIOZCr4ki9rv99zf3TGbTOnqhv/9//y/uL6+5uXLl0Q/RJDSDM0d51Iwhh7CIKSU5HnO+fk5y+WSyWQyMLrbtn3CNBFCDEBNYqFVVcV6vWYymQxFSmQKBKbTE7q2o7UNJ2XO2UnJj7/zgv/8l9/hxaRBNL/DbhaI5h5bL/FVS1dbjCzJRpeQ1TTdnq5r0TJjNMoIOj55RioUlq5a4YsZiAwnAtJrsA5bW/a7mnVV8dhaltazsQ1OBAQRABEi4GzXeyc6HIGTk5P+ekVAwtooH+vahsY71usVTdNwdnaGMYZxOaKzjjyPHplpPe6cReYZQoDUsXAVUnO/tZzVkrM92GwUm5xGoPMMqbOY+mNGaCkwSsbVno/SQFSU1WoJAYsIAis1WhoyMUJKTacUBEHwMJ9m/OhPrvns7TPermuslxRC8bh4oGtbpicnTE7OEIgBkDuOaScExvkIrTSN69hvVuRGsa1rWuGQMrBcPvDs2TOeP79iOh337BsbAag+zacostiE7muYuqpQMvp1joqCWZ9o5p3j7Zs3/y7P3B+7za8jc02GgE0JrT1zJvSoSAiH2GqpVUzlGfYgcH0IQip+E7tBADrENFsyjfMhSlys5+Y3r/nNL/+ZYjzhO3/6A4pxiTQSH5J8N8rppdGY0iClGmS2sZhJBup+MKz3IcrMRV+X+kj5RgZJs2t4/ZtXTK9LhIa2k9xuLBcTuCgKdKgIIuBcR2cdnQcbYu0VfEAKhdFR4WGDRfbzhCPWuzrTsamRmDgopCqQpkTnJfnklM6LyCaTEtWD7DFnN9aPAUGQEmEiUBgAXUgyG2s7QcD0JsVSxrFrYM4Gh/NtJDV4H1UOAazrQLi4Pheyn1ch0xnalGz2e377+adsqi3OenCHtUYiVQwMG+VxwiOVIRuXaG1Y7/Z0baxJFQrpJcIG6AJWtJyMC6alYb3YIVGARhx8gyMjSRuccIPXnEj3AJFUExIXx3lU36DKZLx+qVlxWN8EOFIMHdf+9Gys5B+VJK9ft30jUFOW5dAJOzaiSgh/AieSzCS97lhyFOlhgfzIYDgxcKwL7KoWY3IcDvBkRmKbDsFh4hJCUJblEzO3426gkpGadiyXUlqBj92eYwZQCIGsn+ySvCWZuCUgKFE0j2nZUh6SrqBnxBDY7/fDxZZ9hzvR4lIc47EnStrSB9u2bZQDCAFaoIVkt1pH47JehpV00en6JaAsXZtjJlC6GRJIprUmiB6907KXh3gyLfmf/v7v+fu//x95/vwSoxwhdEjpepppvAmV6LWZvYlpXdW9iXDNrmp4WCxZrjbs9/uektdCiIBXApMSVW+IdhcyRjSKALbl5fNn/OSHP8C7Fu8tQkXWVGQYRVqhdZFN8ObNW375i19R1zUhqOGhOAYRjylxqWv2vj4w/U4CGNPr0r2QdK4f6rbdPpAXZ7x7+8hyscXZwPzkOVeX13R1wBSK5y+fY/SEfdVwcjEFoLUt9b7hbHrGKCvZbSuKIqeqOu5uFzw8LBiNJtT7DRfPzmjaCqki0DifX+KcxruO9eqBxWLB9bM5k8mUut4ymZbc3t4yO5nivaUoSjq3RyjLdrel6xrqPQRnEV4jrCZYg9AZL55/xNs3d2TXF+QiQypBMcqxXYfSmtt3N4wuRxRZzijPKYuCx2bLyGiCknT1nrbvMkffBEUwgcn5hKuPL3nc3LK3W67n15g8Y9fs0MqgFDxu1lxcnLF4fGA8GmG7Bm/h6uqSzz7/grIsKUcl87M5t+sFznd0rsF2Ha7Xtx5TG72PMYy+lxtIGZBGMZpmkHUsHh95dv6cfV0jpcbajnF5ynZbE/wC52Nc6HazI89ynO/Y7bacnvYRivIwhu73FSEEFoslu/2GptngnOCj8XcpiwJbFlir2Tcen+Uoo9m0FcoHNpstrCGfFdg6UGQT2tDxuFhRFDOUkiwWC5TuQCrKckJTdXSho6oqHu5vuLy84MSOqGgo8inv7t8wkyOcDHzx5gtGpqDZ1zGFZlSyXC9ZLlcUeTGMjdPplDzPmU7HGF2gdLzf6npLMSqQ0uBd4HbxgAuO6cmU+gP2qPk64OOr2C9fJWd6/3f+GHnTH7u9v69vAnC+7ufvH+/XSqbE0/c6ljG/L2n+qm2gqIsDWDJ01KTsGTMHAOuYsSNEBN3j94H5/Izb5Zqm6TupfTfe9ZIlH75Maf46VlI4Wngdv7cNAfOEOcTAJAY4OZkwn59jsoy6WnIxH5FnIEVkpgnpqZsdSoLoDl5qw7wkJcjILrXOsd1teXtzw+PjI962PNzd8K1nZ1xeXrBdPkQGRmCIAx46zL0sMx1n8v2Lpsix64l4avZ8/HXcpY5MqNgcU/Jf7z79t9pmsxmTyYS6rjk5OWE6nbJer4fm2n6/5/T0FKUUJ6enGBm9JX70ox8NQEtiu1hryfOc8XgyjP2pKE9Nv8ViMcSAV1UFwJu+YD47OxsMgpfL5SCZX6/XSCl59uwZAFVVxXl1NmM8nmJ0QVNZjFacjEtms4K//Mlz/tNffY+8vWX78Ft090CuLNgdOEvXGvLRFUZqbNsglcaQI0aRuRAEWBHQRmNDjP3VpsAJTxA+rqd7Q/SAp+5aWutpbWC7b6kby75qYpSwi/dzMSqH61QUxZA8WpYjQojWCOmezDLD+fl5v26NnlGJoVU3UTobmUhySF6lN73ebrfD+ne93/MORWkk13OJ0gXB+v58cqQISO+QEkRwVPsNttnhsWS5htagswJvd4hujTQzhNmjszkyO0GJHOcypDb84Lvf5tefveP2H35J1TgqJ+m8wKJAKmzbsN9uhxjy8XjMfD6P7CmtmRQlne2w+44QHHXtBp+kBOgkgE9rjTGGrutomoayLAdPn/R8TyYTADabDcBwfwohWK/XQ0rYh7qdnZ0NkrGhCffe/PNk7OHL89BxHXTsZ+O8Z9O1+BAwUhKsx9Ud929u+MUvf4G1lr/+s59xen6GE5GlZaQe7CmOC3Fr/ZeOBw4eTM66nkGSfHEERmfR7NZaXr36nG2946Pzj2KjwFk6HPerDWs1YtyPHR7H/0vdm/1IkuR3fh8z8zPuyMjMOvqc7iFnSHBJzpDD3VkS2pUEQcdCAlZY7X+pN73pRcICqwWEFVYzJHeG7J6u7qquqjwi4/TbDj2Ym2dkTVV3ky/T8kahujIjPDz8MPvZ9/c92s5gjPf9062Bk7kzfD79PowT3vAeQZzkCGNRMvMyKBUhZIRKMqLEPxNC9t4ycdLPg/derKe1iYpjrHQ4qxhPZh44M5o4y3ycN/TS2CD5cTgXo3WH0R2drb3kyHmyAL1dsRSSOFJkWU4UC65fXXF1fU3b+PX3uxxirLW4rgMhcNIxnUwYT6bcvLq6lyv33yHLM9I0JoqhazuS5QwpvQ9NaKggeua78uNQRx3O7jvv1VMWjl/v30ufTmsUIe7PJdxLt7S+BxNP5Yzv2r4RqAnRcUNHRjyMwz5NcThliwT5U5AAxT1AEfxewuDtRAzWOzFHAoz1dEdrY2/C1DMaTj1uwgMYZFZSSkR0r40OLt9p6iNew/vC54M3pKUHM8KNGU5i2PdpYpPqKVqD43yvVRzlOd5PRQ0/O40cfROwgXuQK4AoQgjarkWJyDNWjCHvtc9OCDp7/x3CpHYPgNnBG8cXc36SCwNW8NvRRvvC1IQoY8G/+Bd/xX/73/1XjEcRSnYI4VOedps7rHOk6YQ4inHW0TaNL+46TV01VGVN3XQUVcv1es/V7aYHsaJ7rX7/oIRkArgHlZqmIY0zcJo0svyXf/UXnC8nWNPghEH2kaVD59n6orprNbfrO168+BqtLW3TYXrfjbA9TM26P1+hqD5lyZw+JOGcnt6f34Rw/q63R5dLjHFcrM4ZZxOsESgR8/EHn+CERTpoSkPbaJQUHKo9m82GcTbFaEdEymK0QiUxVVNRliVF0fHxxz/kbPmIY7P2KQR1StfVZNmIqjrQNCVKSMqiYDzKkMLx/Pkz5uMV08kCGSXM5nOub14itEEpgRCa1dkC6+A3v3nGo0ePeLT6gP3uyPx8hbaGpm0ZjcfMFjOqqkRGkvXmlseXTzDaejCoLal0yVk8Y5rlRByYpDldWZBISd35NCWEQCiBlR0X75+TLzKKWGAbRxTFFEVBWTSsVhcciiMWw26383F9xiIT6U05o8wbb3Yaaz2aHkWKfBTTbqrh3jHaDAWC3/p7rTfKxlnGsxGziwn7eEtZN9xtdhzqgulqyuZuD8QUxwbdCZJEIWXEcrliu90RRZI4URRFxWIx9342AsqyJo4T7u7WRHFMUfhuWlW0HPQRBSzGI7qyAt0hlWIUj4gqsIlDqghrOyKVECcRuIiu7Wh0RVUaRqMpy+UC52rK+kjVtlhtydKIrvNJXLttwdPVR7S55qtXL2is4VCWjMYpqvXPb57nbLZblufndLojkf7ZPB4LptN5z9wEoxVZNqbtil5XfyTLNIzmrLcbtG5Znc8pCod131+227u2N9kw3wbSvPmeb/r9uyRP79r+IcDMm79/G7jztoLa8bCgPR1n33yPL8weAkeh2HFeGA7cgzeB3hwK4tM/xjik81JovzNIkognjy5oX13RaYPpPy8IekPSUfj1JrqkAAAgAElEQVTMcExv2zxT6KF8K7z21AduPB4zn8+9vC9VvljUJeerOeORIpaaPEm8aamuEFHigeY4ejBfhXnUGkOrfdx3VTfcrG/57LPPkErx5GKFEo7N3S0xC6I4RvdgZlj4hCTNcIzBzyLUeFmW+SJ2WCT35sChK903Tt5+jwyavu/MEvtdbI8fP+b29tZLRJZLDocDxhgmkwnT6XSo1YJp63w86aWZ2QA4hGsTmmfhvhmPx9S1P5fBjyaACl5m7RudT58+JcuyoQ4M5sWhnh3qzl4eFa7NcrlEiZhtdcAYy3I2Jos6/uKPPuWf//QDErNGF68YuyPC1oi2pesq2tqR5eekyYS2LWhV7a+79Ys15ywW189XwgOR/X3olMD7lHqWg1BghX9+dseKonbsjx1FpWk7058fDyIFaUqWzfrz2gKOpvF1/mIxG+6lJPGdeW96q8nzDBVFNE3LYu4Nmeu6ZjTKe3a8Nwiv69p7PfX7udsfUWScTS06muKiDGMckYz7BZklTgRtuafY36GrgkR0PqGwA2FjXFdiEERdAtEOG20xWYEzFSpbouSMKIp5ejbl53/yh9xer/nq9R1dNMIiqZsGqztmkzGmLtHWz4Faa4qi6BssJU1RIQQ9wOKNTMM9FewjQsx0WFvMZjOm0yllWbLdbr0JNfegF3gwMnhplqVnsV9cXAzrr+/rFkCqAFSF9eTpOHsKFjvu6/owZp/6g4T6LMw9nejT+BBEVnDcHnj++TOqruZPfvKnnF2uQEmSWBJnCWkvQQzP6f1nyIFRE9Zg/jPuF9zamF4yGoGIcMYSI9ntdzz78gve/+hDslEOxnqPMqtZF5rbUYLKvIGwl972si9raZsG80bIjZQ+uMI6z/rodIcSko6aJE8B3xiXKsIKRZTmCBXjTOdlinGMimJ023rg42SeHT4jUjjAuBYVp4wmwqc7RREqumcBSqWQopfaEiNlhJEKq7WP7XYO4SRZkjDOM7yaUHrglpbt7g6jTS958n5QYU4JKh3oawVjBsm16TRJz+bxa0/VE50EcZz0IJKgKCqMNoNkWYiHhsBS8iDsJwBFnlPDvSVHf1jOBTsPD2KfrvuHesR6lcLp/SP65lF4HsM99I+WPgUH9vChAYwIsqbTJJ2wyD1lc/gCwxLFHigJzJuBAaLk0I0WAiIZkaiYTnpzrQC6hM8OD9y99413NNe2v2hCDKa/AXBxzg1GyIE+aa2P1AoU0/DzU7bMqQliVRUkaTI8/AE4KcoC1YMTb0Y6B4ZHONZQvA1mh/1F7brO56lr46nTUiKDtCqKUCc35+l5Dd8vFAFDEoN0w2eEwT2JY9qmv4ZC8N7Tx/z5n/8pShhiFRHHkqauqMs9ptNMZ3Nwyt/UWmONRbctbd1SVzV3d1vW6y1fvbjm+csbbtZbauPpbAIfV2rMw8jr8P39tfGeP861PL5c8N/8Fz9H2dbrr6WB/iGVSmKMp3m3rY+Ha+uWw6HwhnXa4XqjscCCOT0v4UF4GzsmvC5c01MUPlAmv6nb+7veVssVaTqirjqk27NcLvsiIKKqa7J0hNMQS0k+yfjy6hV5lrHb7piNl4zGM1SUMh3NadYtUio+/vgjLi58Fy9xOcdDSaQSXK/PdRbyJAMHeeqZI8Wh4Lg/ooSP9YujnENxpDUt1WFHmmToziDKmjwbs5qfIbVgt96SxBnr6ztmS0/j/sEnH3J1+9Lr1XWD0Zb9YYfuDAmC3WbP+OwSjCWPFOMoZtfUKGuJgEh6hFsbDxYmccJonJHmKbFIUFpx3Bxp2pbJaMbmdgsYokigrWF9s2GcT6htx+XqEa9fXbE8X3G33hKLmHV5h9WGOPGmpnDfTfcsGoPwfEms8TRY0cux0nFMNAYbCSyS3aEgm2Ssb9dIqdCdL6r8cxITRwlRFAOC/f7IxeWKqqoZjyfsdntWqxXr2zWz+RxjYDZb0DQtTkNVd1jpI361MyxnEw7FDVmSsHr6mHQXcVveIYWlrgqmYkJVV2TJhCiKSbOcm5tbVBSzXt9iTEvT1ixWl0S5wFrN7e0N89kS3VnqtqFuW+IkZrl4yqa4oSorVotzdN2xOj/j+pd/g5N3XFxesLn2crfD4cAHH3zE4XBku93SNpq2qzhbTdnvd1RVS5JMsHhWgHMxOLzfTvf/D6Dmm8CM07n1u4Arb25vgjT/2Ne/CY68a3sXSPO21735mreBVKf/H5gvb77XM2q8UfBpZ9MY44vTnhn7kFmDX3AO7BoPmM7nY87rGbfrOzCeqC6V8rY6Dxg5bz8X3+Xfrq+N8jxnNBoNho9R6heW8+kE6TSJdNiuYpzO0bpFIvp6K/PslBPgLTAtoijC4pMND8cjX798yXa/ZTQa83s//Jgsjbl6+dInFY3zod4I41PXdX3YQEqr79N1wvzXdR2j8RhrjJeFCP+d1Em9NcyVJ9fTz+8+PfDNLvf3bSuKAue8F9bNzc3ANDgFr8CzHwBcpweZlJRyaAKGOjcAMFrrXsJkh9ovGOAGc+AgjQceeIXc3NzQ9V5poXYJ5sJCiJ61M/aATSyIlECKGKsrfvz77/OTHz0hsx20HSOpMJ2lKwyHTUnjOhZnl4h4wrFuAB/NLlSEpWcha+PZzUp5yYEQGGloqxIlc+LMYo2haVpqo/37BGwPJetdx92u4m7bUFaGTmsmk5S4D82I45D42vYLoZgsS/va3afIFkXB8XhgPBmRZglC+uSxyBniSGGNN82eT6eAIJKCuqpRUTw03sLC3lgPkOwbKG1EKxKySYKKE2wvmWzqHXV1QNAxm6XQGAQG07a0pkTJBGOhOVry8QQTHbBdQ1sVJJOGZAKRtIwjwR9+8oT6L/+M//3//Pc8vy2orY9dxjlefPUleRozGi8oCt98GI/HvglrLWgfSV7VRa8ecAMomGUZq9VqkL8dj8dhDRTWN0Ei1vQGxd5r776hXVUVi8WCuq65u7sb1jrf1+1UsREMut8cj38L3D8Zh8KaLXz/sB4dAJtI+Zqq1uzXO778zVdsNjt+9Ed/yKMPnuKUwEnvexqn0QOywGkgzOkpPGXthGOyLviqSSIlcS5CWIfTmi8+/5w4jjh7tPLAt/a+O9pZSgPXtWGWpsSu82wbF5ovDHNg+F5hfSNsHyXtQOG9ehwOqxVd2xLlEm29sTwq9UHVQoLyDUGLNxIO5/cUrPGbQMSpPx+6Q8YZUeylxlL5taxAIEMCoBDgvFWGkoK2qahqP5YRCayLetY7RJEiiiVVs2e/36KNT/gVUqCUJKQ7nTai1LC2B4xlfbsmCJm9zM0zXPx8ZbBWYo2iLCru7jbeO7aXpUnrgzWCB5LsA3w8MOMG7zrh7vk9/lB8O8IrMII/28NUTinFQL15s/4JjMFwnr8NRP1GoCY44FtrH6QhZVlGnufsdruTm/cevAmO7uGAA7jitb2NNwpLYmTkaWLOgekcaZRQ7huS1FP6QifozZSo08GmrmuM84v64/FIlmWMRiM/mPUnOaBW4SHuTEfWTxBhUQ73A4UQYkCoA7pt7H0yFHj0t6l9ZFpAvE8HllPw6k2GTmAbhcIpUgp90t2KkwQLRP3DGD4zSHlCAXZ6c4QbhP47d103dIHKoiRPs2GQ/+EnH5PGEms6fNJ3hEIyyiaose9eaOMn565pMVrTNS3Hw5H97sBuf+DFy9f85osXPPvqmkNRE6V+UQmC47Egju9TwgIwFc5vSI7Ik5R/+z//jzy5WBDJ3h09EkjlEDIUkD4ZpWm6QQsOoj8+cMLfC2HwCglP4TyF7fQcDgOcuKcsnl6rUxbW93Xbbwsmk5iz5QV5NqVtC9Z3r3j/6Scsl4+xOFAaKS3rm5c8XT2hqlukSciyEWePVjx79iWrR1Oc06xWi754inxKBWCRlFWDtR3WGnzypmA8GlPsK9I0YTE7o6k6pIKmqyjLlvlijpCQJIq2adltj6wW58QqQ9iOWGR88Xd/z49+9Ae++HKONIu4212BsCAlxnmWzd32jnE+5tXrNft6x/loAcaSqojldMLxZsMk66ngUqLxLD7pJJGIaOqWJEowpcVVgq9fv+TjH/6AmJR9WXC2WvD8+TMuLy+Zjs4Yj6bEKmUxu2B9dWC/O7DdbLg8e8zxUHA+WZLODKz7sc2GiblnjzmDdXbw2AAvOZwuRqiRQCm/iGwbw2oy49Xt1yQyRhCjlAdBVJSwPxxwN17XL4TAGhiPJ2zuPKDRNB1SRigZESkf42icoKk7EplS7kps1zLKYraHA2ka4ZKIs7M5LoGoVcyXI3Zqw/G4JTIxda1I8ozLyydMJlPK8uiZNsTESUYcZ1TlHqUcF5cXCBuhZEJDiYvA2JamFmQyYbs7sBd7xumYzz77jKvrK2a6I80zqqrkfHUB+DFhPp9ze3vLbD7m7s53sObzM4yOmE3O+PL5F0gBeZaQiJRpmrPuo1C/j9s3gTPf9Np/yH7/Ma/9JpDluzJl3nztN37WO+Kwv40lFN4/MFuCmJ2HjCHnHMbdM07DuO4N5BXW+g56+LhIKs6Xc4rjEWUcrrW09t7H7M3jetf58n4v6kFTKHQ28zR9kETZ9alPQkQIIkxnyBcZzhhGcUJ1KEjzlCSKvb9VB0ZYkughoBXqgKZr2R8OvHj5Ndc3N2SjEY8eX9JWR/J4xuXFiv1+h+tjWsOqItRuZVl6MDZN6br7aFspvc9f13WkSYLAenNM/Kx+r70PYM3b2aan1+37uIWGV9N449qLi4sh6lopxX6/H9gubdvy+OLSM0lOaoXr62vW6zU/+MEPesnmlC+//JLRaMSjR+fU9T3bcrvdDgvmUJcGeexut2M8HrNardhsNiilhoV1AHZC3Rvuz8N+g1Qx+ShnPpF89N6CSVyh2xblGjpTok3D7XrLi2evKUzKz37+Y0xkKfUBYVqSSGEMRLEfp8uiJE5i4lHu6zYrqI8VyTjmuN0yinLSPEfrlmN5pLMRxlk0krKxXN3uuVofEXFOHKsenBqTJL7m9L5SCmct+SgHB1EcU5YF+/2OumkQwpGmPp0ly5LBrqBrPessVoq2bTgefOrVfD7nWJRDWlIAzfyiMeHl1R3PLyV//OkILb0xcJqmuK7EOssoTyDu0FWFcNInK3YtTdWgmwNCxLhE0bSaZDQiEQkxKba8ozCGyeIRSsAknvKTP/iIaR7xf/3Hv+GXn70ginJaY5FWMUoTam0GCeRkMhmMhMdpPtyHSRJTVSXj8ZjFYsGTJ0+w1vLy5cuhgXO6SA8AznQ69Yz3k7Giqir/XZ0b0p6C72aQYX4ft9evXw8epmE7bdLDm8xMOZhrhybraRpTeN1gZSAkpuno9iVff/WCl69e89Gnn/LBJx8hYtn7eHoGRFVVmOAJE5QYw9rzIThzyvyx1q+blPQkBGMMggiJ5Pb6hquXr/iDP/0jVBrRGU3iHM6CFZbaCq72NSvlWOaeRTqMwM4OwPnp/CulN33H+hpUOIG29MBxQzIa+WOWknQ0xkmF9bpWhFAgPGM1Cn6yJ2zS8BkeyJG9z1PvwSYZvGzwsD4CBUL1zQ8zACBxFCOAojiS55oslWhTM05zsjQGOopqT1kWwxpWKUkcK5pGD3Mp9ICZc/77Cl8b6K7j9uaGrmuHpnwA+pQKvmvQtp0fczMvI3bWN4B8k9U3dbxfz3eosx40vX4bTPL3RZBV9bVKv2bX+qFFx3fZvhGoSdP0tyg5oSgJuuZgiBMkLgHICWBH/20G6Y91vgAwxmJaT8GMVEwsYy9J6jtLAdHqtCaOIvSJtMA656lO/QVRQJzEQ9chdJHavhvS+zv5zrXWpEk6LMrDCVY9ldL2gEx0IvECnxUfaGeTydTH9jUtaZJgrSFS3jw3xFrK/kG1xpCmCSFSNkmCPIlhkDFG94a3ngIllfKRcV2L7wgGFM7rx7vuIUMkFEdhwAqvb5oGIRiYOIHdtFwu6NqO3a6hriIuzpfkeYrREt216M6guw5nHbrTvVmZoSgq6kZzONZ8/fKGq5sd680RJxTKWuIk4ezsjGfPvuy/d0okvUGd0R3+/nc425GNYv6H//6/5l/+y79EKh/XrSKFi/zNLaMIayxN01KWFU2j0Z3FOkmWjdls1yC8BjCYDkdK4RA+ErUv7oeHx9rAlB8G8XDN/XX35tAesVUo5b1Dvq+bjCTGGg7HA3VT0nYFWR6RjBWdrWnahqo9kmSWJFPepFIJxrnk/PKC6/UVtS15dbXHGoMxHY8fP+L66pWPGE1zLIZHl0/YbNdESnJ7s8ZKhRIJWZazWC76pIeY6/UrsjyjdoZXr1+S5oL2eGQ2XoGVNJXm9z5+imuvGKVjfvqTJV2rmcyX1LrhxfUNnagYj6dsN1vOzy44qiPbzZ7jvuDx/ILSHEmzhOJ4QAqHco5pllJawyhJaaXg0DTgvPO9dJLrq2vauqGrNLFIebSaksUjrBEsJktGUc5qds5xW6KNIxGGbBKjG8t8smRbrplNZwjneP/99zmsd5w/Pqd8rUH0iRLGp0t4qaBngCEdkVBIB1mmWF5Mmcwn3O531EWNbb1Z2Ww6pyl8YT+e+FSH0WjkO735CK1bzs4WHIsjxlh2u4Mfk6yfIEMU7N1mgzECpVKs9pZnSRRhaem04fHTJ7za7DhWR+bLGa41TCYJBwHZKKXbteTj1Muy7q5BQD66N3FcLpc0neZw2DMee9PMVhsORYHsLHk2oukqjjdblouZL/Z7iWPV1HzyyafkkwkIfMKTEJyfryiKA1q3CGk5FjviJGK9vmOUjVnMlqRRzjjJSdPYd0c6y2Qx4Sj3v+tH8J3bw3W9G7oqD15Dn/YnhHepe2N7G2jwNkbM21gd35Xt8q79fScQ5i1/v+01vO13w3/0XSv/p8cBelYGfYqGw3nZOziJU/65cc4hnUNJiwvFKgy+FR5cCPHnvecZPllqNp1wu9l7ENJ49htGD5JdbwjZ7+6NTthwjvASqFGee5CoNxKWfcev7usdnCOOIm/AKxWiN/xP4sRL/8YZdeXHLB9x6hNowuIiFMxt6xf4+8OBq+trrm9uEFJwNlsSRxFxFFEcjyRpQppmdG1L3jfXQjpl27ZYY6mbFiHjIfhAqQjb6/WN7f3crBtuXRN8EU7Yg6FQDfKx4coKvyj/vm6T8cjLQQTM5wuyLKUej2jqCmctlxfnXgZrja/tjBlikeM4ZjQakaYpn376SR/1HeGcZTqdDFHf9z6FkvHYx2iHtBrw0c0A5+fnOOe4vr4eGlmnxrNBOhUWoM455ospurM4NPPJjNUipz7eEKcxUmqsbWm6mpfX1/ztZy9J5h8jsyXGrelMxThNkS6ms0f2mx1FUXOsC5b5OV1jiITD9M8P1hIpwXFzh2NE0xkPwLdgrIdgG20xTiJkRKQisiwFZ/pzUTKbzYYAEOd8HaaiCN01JLG/b9M0JooUk/HES9GsIYkTdrsdaZKSZxke1PcBF0p6009r8cxsaxmPRjRNS1VVnokpHLe7htt9R3M5QcYxTog+vSpCdD6hzRiNtI62bdCdxmiBlDFIbzsQmdgzY6VGSS9REaak2l2RTECkgsl4wScfP2EySvnwo/f5f379FV88v0bg588kSYfnsCxLxuORB3XjtL93ZuR5Rp5nOOeoqppf/vKvh4b42dmKs7MVVV378SSOieME069lIqUGoCrInNq27et/MbDxFosFm83md/HYfaetKIqheX26poE3AZowt9zbUQQPH/B+ml3b9YtkcT8HadCV5uWLl3z57BmPHj3mhz/+PayyOOENgJXwawCjux548O81Rg8gggerTzxSQ3KPNd5ewjpvchykMsbR1S2//s+/4my1YrFc0vWNvM5olAUnoTOOne54cdeglimj2BBL0a9PJVEcIUSI5vb1ZxLHZEnam/V6nzSpHa7ToDVd02CjinwVI1QEfUMRQCrpZY5C9ClG/Xq4vx7OT544Qd/0AKUikAqwCEvfFIGwyNa6wyqFEgKtO+rqiNUNSSTRkUQ4g9ENkJBEjkhqdF1R7u9oa582Z503elbqYaN/kONKSWWqgTFrtGc1OmPput46o/8TrtG9RM4DYNYab/TsHMb5AAOB9DYt0keSB4s9f8Xf+P+eLKNUryLpGzUCMUhKBcGj8r4ZAl6e5uuA+xCmbwNsvhGoCQ9EiA4MxsEBtQooYqBqhiIvgDKBRWOxiEgN+wh0YKc7MuUnQ9C9aaBDRPFwZtLehC3qddtWeFTN4G8KpCBNEs8cKcthwouiiCTNQfQFsYo4llWPvssH2sIoigYHeiX9DRZYQHF0YtwkPThTchw6HUJ4VpCUEmcMsVJYvN+OL+AEuo8h9xKSdgBOAKKeGmqsQfgoBdqu6T/PPxwhicoXBo4oUjjHcC5PKc5e4xx8dvyNbRCYziAVOGf4xS9/wW6/5dNPP+KHP3yfoqxptTdYq6rKU0CPFVIpulZTlhVVWfP6as3mUPPsq2t+8TfPefb8mrKxjMe5N+dKOp5t7kiSBCkFtmtJ4pF/qKXD2pbJJOfPf/an/OVf/Rl/9mc/JY38Q0/ksKL1+nznv7w2zrMEGs3x2LA/NFgT4VzUJ3dZD+iErqH10aNSRljX+c9F+odSBAqb7KVZ/vdRpPoI1X6wwSP1umu9F8H3dPvq9tdcXryHmjyhbismZ1PyVc6L7ZcIJxjnE/b1lrN8wu6wo6od89kZmJayOHK1eU0+z7i7W/Pxhx+CdRjdcHP1isVshin3JOPMAyVFg0SwnK7I8xltVzOdTNgXG6o25XCsmIzmPL58xO6w5+r6NVLmHI8dHzxasb31EdJd09FUNY8vHpNlY1589YJyVzCZjeiOJbUtOZudMU5z8jijU4ZUap48eoroNJPplO1xS86C2SSnzTWjSHFbFFgpqBFUnUE5h0DhnEZKQSQlbeNYLc/IsxF3+x1pknDY73HOcnH+iC+/+AphHFmUESHZbja0bcc4mzASKaNE8Wp7IM7HxIsUm7Z+ASkhjhS10Qgc0npQVyuNayy5UKSJQU0Nl08e8fL2lomIObqKGMU8W/J8XSElNE3FfD7n6vUNl+eP2O3WNLpkxRlpPuL1zQ1KeY11nk+5vb2jmXaAoDhUnJ0/Zbe/pdjc0hFjTYeTgsnZBdFkxNkoxsUOQ8f7718yWsG+mTKepjx/9Tnz2QVREnNz94xI5Tx5/AF13TAe59zdXbM8n5Nmfhw/lgVtqymbklymviuYRmjT8vrmhkePH3FsD+yrgnw2pa465irhqy+/4un7T+i0QTtNsd9xcbnCyZr1puLDDz7i9mYNuuDxxYym2HMxO+P5yxdoDMuzBdpILs6f/q4fwXduUrnfLip5uOgPNZz/+UPQPfz9TcyTfyi75hSAeRed/F0Azbf9/z/kWACU8LGXxtm+vnNIZ33KhgsdQh8uIITvNvquoC+mDN7gHmNwUiA8huDnRuH3a5030r1vxsieXOK9RBptWW/3GB0aGw4kva+OuAfX3G9LxgLAZLXGao0W914Bp9csyJGzJGGSJkhnaeuK/WFPkpyRphFlWyOBSAu0rj2bRTis6f0N8PLx4liy2+0o64q79QbTac7mc0ajkZ9rrdfLF0XlG2XKoS1eIuN6wAfvSWU6R2drpFJEceIXdDJkHvYeg0nvA4S47x4Gho24Pz8+PVN6Or2Ufj/fYzZqLGEx9Q29119/NTTjQv300fv/FKdbdrod6tRTmX+oNbrOy1DrusI5TZbFfe0VE8e+UTmdjri4yHv2tGfJpGnK+fn5g+hu3/zzBscBFGqahrIsWS6Xg3TKOUc2nnDcH7FVRSYEqRC0dUmaP/LsbpFxc13w68/37Jopnz55DzmaUG1uOBwqpqMxxgqO9Q7dKY6d5Ua3vPqq5P3xhGO2IxplzCZTyqpCC0PrFC7OaUjZ7WqudpbCpVgh6YSkdRKhQEpvgh9nGUVR9yb8Y54+eUJdVuy3OxyWJE7QvTRBSr8P6yxpnGJzLw/abDaM8zFxnFC3nh2OVEgVUTcNylhmk8mDTnVVVSwXK3aHPVGk+fq2Zr2ZAAuMq3tpvUTECVorjJNYKWmKNVHsvRyz8cQ3BETNWMVYnWBNRNkWpPk5TqaIrkJ0hq4F5hKXjBjNx3ygGtJkydlU8X+ngl/8+hXZaIFKBK9fv+bjjz/m7u6uDwZYsFvfcXl52d8L+QDgxXFMFKUYA21r7jv+KqYqSw5FxeX5BZ1r6Vo7yP/D+ifEfwcGyHw+9yDvfj8wa76PW1AMhLXVPTPhXvYa5isPItyz4QO40zQ+CMJZULEf97vOpxaZSvP6+Su+/OIrZvMZf/jHfwCxBWkRfcCJcOCMH9OEkD5N1Hpza9/sFyd2HeIBk0ZoDcYinOvnFQlKopqW57/5nO1+w0/+/KdYLE77eO1eZENsFc46GgRfO0FeWT6iQ0QSRAzCy5u0Cz5s1hNWReTXm73c3xmD0523zLACXRSYKEM7jXWGWDis1URxjBUCjU9bVMISyX7B6afCgcFlvBuxJxBIgVAKa72ni9S2l1oZOttR1gXjUU4aRZTFgc31S7pyj6n32K4jSXNGzFETCW1HZBV0Ne1+i9M1sk9zMtogOk90CPNuYM1KqRAq8j45wseZM0iXkr7xoHFOewsOEaOFBZn2cdsWiURYh3RgJIAkMoJYRbhIopVAOZD2HpyxfUNJOJ+GjHNEok9DRAx1jbcAAaxDxaq3QLgPQnDWoaL7e/lUbfOu7RuBmlPPmQcpQj1CpXokN9Byw4MVQBznHHVTezPMPm7w1F/GGEue5bTOM0dwvWmusYPxXZgoQ0cjsHcCGBQmz3tDJzeYIAd0NjxUi8WC/X4/yGPC9wgnSCgfwxb8ZsJJDANeGAQHEKc/rjBYDICPUggphol+1NPPAiUxDEoBYAkGcmHSCd8pgDDh/AZqd6D9nQ5kb25h8ADIkrSPYZMY0/Hq5WuePXvG1evfZ3u3Y3NG8LIAACAASURBVDqbEMcRs9mUpq2oipKrl6+YTmc0jfeEef3qiqurG27Wd3z96pqrmzuyNGcynZCmKYnCF35qMnTgIhXTtr1zeBTz3gdP+df/+l/xz37+M7LUA1cu6OHVQ9xS677Dp+3wb60du/2RVndDoRh0feH63H//njHTP1BC+Eg/jMFav6j2+kUfvydjevBLEseeGjcwwr6HWzRKiEYRRnVEI8Gx3YGwHI5bsjhHooiihDSdoLtr8lxQlgeEEwjnaMqSzjU8uVyxvrkiS3Jmoxnz6RJrYTId4RTc3Fx71ogU7PZ7RtMZdVWhK8fVzRVPn75Ha2rOFo88QCoVP/jwBwghWM6WrDe3nF145s3V3SsaV3Jst+y7PYd2hxMTRGFJo5z5ZM5mvWUynnJ7vWY5X9FkLXd3a3bXa9JVjBMxrnUoK7g8X7E7HmkEvLpdI/Dda2/O7YhxKGdZX98wSlNmowl168eT9XpNrLx/U9dpnjx9TNd2aGMZTcZUd3cI5U2J0yyl0xopJMXhyKU4o+vp2rLv2kgBkVKAQFuLANI0IREQZwI1kuhEU5qKPJvRbfcILRilo0EOOZvNBgq8BxclWZaT5yO0dex2O5aLFUmS8vr1a3a7HfOFd+GPI8DWpLFEJwldZZFxRJdbxDQlWmaI0rI4W+CMoTAHusKhMkVZlGRpxnQ2Yf/6BoFCd4ayrEmStJ+wO9q28YaZVc3hcGQ0GqN1x/X1jtVqNSTzpWlKXVdI5bsLi/mcvTtg0ahYgNDs90ceP75ks21pmoqiONLVks16Rxz5lCchBXXbMEoSZosZd/sNaZr4BLE+QeX7uL0LuHjnz7+DVOT0vd9FWvIulsx3+fu7gDdv2/ebm3vjdYMPjGWgHD9Mdug7Yc4NIJaHCrz+HdzARkUI7+fGfcJkmJfp5YgPgDHnBnAsipT3x0g8iPFmgXQPoL31aw3HdbpvY4zv2Lt7KXVYYAT2rpP3DZXgN2CMI0piqqYm6uf5SCnP9OgX56EJdbtes9luMMawXC5JksTXIEYP1yGwOoJUPTnxawjH6ptXjrauH9RvUr4B5v0WyHj6+37O5SHI+G2Mru/DVhTFEHs9Ho8H6XpY7I1GI4qiYDwekyQjoihit9uRJAmbzaYHx3xTZzKZYIwZGphx7BOe9vv9UA9WVcXxuCNJfMd/NpvRtu3AnjlNPwr1Y57n5Hk+JEyFRt3V9Q1n86VPFbKwO1bERpNPNHma0zYJ1wfN5NH7zD9YEWUjkAnPX1xRbXYkytBUBV1bEcuMLrZs9gv+0y80v//hjj//wwWRizFa0rWOfVXRuhjZ3RCNF9RVw9cvt7TJnLJ1CBkPNXGQgfnzI6lrP0av12vPNHCONEup6mqowYMkaLPZsF6vAd+cDc9RYMokSUwSx8Q9O6TtOqTwzKOmabi9Xfv7XwrOV2dU9R5pO6yM6JzCEJHIBCcNjhZHTuRVF8iswegWpTqs7YhjiZBjZLKkKgTFoWWaTYjdCKkyWhXjtKWuC6y9IpEKlY1J0Kxyh1lG/PSffEJjY15cF4jI+8m8fv2azWbj6yTlG4x//dd/zfvvvz+wX8bj8WDJ4CVRybAeefrhB2SpT8IMdhS73Y6mLXszZjnIoaSUQ8qW1prj0TeXLy4ufkdP3bdvpxKmUyPgQVr6xs9tz3xM03QYwwLb2BvKSqy2mM6v37bXG559/jnOWf7JT/4YlScY+XZZLdATCO63YY0hPONzmM/C3CMVwjpM55UPUgmcduzvtvzdr37NBx9+QD4Zo51FW41tO6QxCKF8k1mAVZLGWOpOYjKHNhrXG/SGRvKwHnWCpunQrQ/BgAAahca0wTQHXKk47G4Zry4hzsD2igVtaHv5q7O+gSKkX5+bHgjrdPD7VGgpiPpGghACYz1IaF1L15Q409Iet7hCcTSWar/h9Zefs37xjHq/o2sKxvMRv/9HP2aafIJRc3Qa02lDUVVUbTOswXwi0z3bJFybMNeG63TqIWS6+3CjAcwTfR1iTc/a9YBOiFEPa2ke/LuvVU6Ytb+1Ce+pK94ADx9Is8N/bxxTCCg6Xbd/E0gD3wLUhMX+qSnrqct9GEzCgYY4uHDTh9dba4Zi5XQfaZoBsjeeDX4rEim9RjDQPwOlLxi0wb1m+9QANiCxwQR5yJrXmiRJOBwOg5719H3heIUQQ5ET9hcAk8Gx+YQxFCZ38IPFAAD1DcFQSAFDYsApchbO22mq1WmU5ql3yukNen9f3RenIQr7FOwJhsLGGoxusS4aHuKu1fyH//Af+ftff8lsNuHXf/dr8ixlNM44Ozvj6uqaTmu6VpMkGW3beXp2HDGfzxlPpjgp77V98t7MNxHBI8aRJpI0izi/XPFv/u2/4i/+6Z8QxxZ0RyQl2vbAk/SMJR/bJjA23NgCrS3GKl6+uuLrV685FmWPcHovglO/GSF6YMYJnOmRS9nL95wjjhVKehMsn6YTefZMb+R2j+S73g/n+7nl0ymH6oCIFbv9nvlsyvXNNW1Xs5jNaaqWy/NHdK0jScZYDJGKydKMJIqJRERbNjhtaMoaaRXOOKIoZbvdMVuO2e63OG3QQDoZs3p/xc3tFQ7L9c2G1fmK7X7LZr/lvUdPsMag2448yTGtJiFBjgTH8khVF8xmM6IRmKjhy+df896jD5kkUw53Bz768Ad0pkWohPFkwvWrzzlsC54+fsrzL1+Qj0d89fwrzn/4I2xliKynbuZpQtYm3mEfRyZjnO1QQpCmikQ5mrJgcTH3STB9l+R4PPLRBx9yfXPNcrFE6471es10OuPq5grnIM9y7nZ3zNMxx/2OTrTYzlAfC+qiRIGPr+9lRm1TI0XkgQZhiaxn26QjSTJL2bRb1CiiKHwEbFdroiwiyCGklJydnbHd7jDGMp5MaLqKNM2InPd2iuIEhQd2l8uzQd+uu5bi4I9//t5T2tc1+5st5x9dssss6UXOj87fx2rNq+dfUxy3xMmcY1Xw9HxFsy1wztB0NeNkxGr1iLrS6E4zGo29rK32Y3KSetlEFCUcj/teA+wn07KsmM2mKKUY9f4BZVmS5Qn7YkcyigFDVRcY21HXNdq0JElKKnMilRCpjulihoojoiQiShQyEozGI6IkYrfdkKlvnLp+59vbgI63MWTe/NE3LXLfBE3eJo968/3fBti87ecPupbvOI7TjuK7t1Pw/eR9J7sN82uIMXV91wocQvYSJvw84MT9nC2llz6FQj7MheDnhXBPnhZQ4BdyTasRzjLKM4ytqYcUiLef07dtb5ONOe4bR+Dn/7CIr+ua6fmKOJI4a+m0pq6bgZ4vBOiu9WNJEtMajQA6ranKku1ux263RcAQZ++NDBVxpBBWPziuqqrIep+KN8/R0AEW98akp6EQBBnaUGo+BGp8XcIDIOd+AfP9BmpCvTqZTFitVrx8+XKoSwMYchooEEURr1+/BhhAHZ+g5WX3dV0zHo+H+u94LHqPrfmwD+ccs9l0YDbsdruhJl2tVlxfX3u5cRwPEeBKKZ4+fUoURdze3lLX9cBQb7sOaQ3j6YxD2XG4vePs/BLRWF7dHll98GPe+4Nzrm4rqsORL1/c8KvfXGHrI3fbHdLVrOYj0CXJKCHJnrAtj9zZI2qWEBtFZ1uKpqbRgn3VoIwhMhFVK3i9KSmEpLJQ1j5FLEmSoYka2Nx5nlOVJdYYJqMxcd/ATZKEPM85Ho+e3dazi7q29aEIxwJnLPPpFBVFxJHqI+AtIok47A9Y55jPFxz2e66ur6jKCodjlE8YTydUTcXjx0/oUFzvSh6djX3zTiZ0JKh4ilQ5SsTsiwNdm+BMBe5AnETIKMcoRT7P2L48Ul/tWbJncj7BpXMQmsg2bPa33G3ukHHG6mxBnEhy1zBLEj7+4IJOZNztD4xGIxaLBfP53AODvaTt4uKC6XRK1/m5cLfbDd5Ek8mE+Xw+GFVfX197tlsvd1FCMp1OEUeDkGKINw9rneVyibWW169fD2yV4/fY2+10vD71ijxt7p+uPa2zfWT7vX8P+Ia7XweA7gzOwPZuz7O/+4ymKvnZP/sL0ukILbzsJciLTj/Xf6Dfx2nTPHxuYEiE45L9WkibXmKLRFpB23Q8f/Yl49GIJ++9hxP0ElRNty+Q2qKFZH23hjji4r0nRKnCIjFYz5xR1jchYwEiHj5fa43uTM+n8tYYxpjen0wQSQvCInRNvb9hc/UCNa4YjWZenpgpuqbpTXu1b2LEKSryDW5rLU3bUFeVN/V2jiRLifs1vlIC09ZY3WLqiuq44+7mirubG2xdU95esf36GdXdrTc6HymSZIbdL3DVHN0IbDymNZp9WWGclyVGnWf3SykYj6eDjC+sm9+8H4DBfD0QSIzR/fjr48AlDlxg/4CQkWcESYlwFhe8T7Wm0x1ZL/U9bcmIN+oZKT2b5xRMDMclRC+DekvDqOdTPwBqvm3e/MZqN5yQcKN6Sl40ABKByXIKUgR5lE8XSHqUWw5ypFP2jXECgSFJ0h5Q8a9B8kBeFcCNgC4HKmrYX+hGjMfjYf9tHzem1L0RVJg4w8UM3YxAPbKmG6ISTxObwhbH8YPPD4yiAKyE92ljvMa1ZwOF94YiITzYYWA4Zf+En4eLfwrYDL/rS9lwcUMc+pCm5YKu3RscowRx7M9lnvsJK8/H5FlLHMVst3uePH5C23oN7GazY75YUtd1r/mLmE69F4/AnxfrXJ/c5Jk0nTYUukFJH2EcR0lPTRQsV1P+l3/zP/Hzn/8UFWl0V6PLCucgTlLokXJrfHzykD1vPdrZtobN7sgvfvm3fPb5VxzL0ts6OH4LRAugjcJ6rbzzRXgc9U7jGKJI9g+pQ2LIs3hI2cB5dk/btr3R1fdzi+OczXbNaDJiPMmo26q/RxKcFbRNy35/QHea8WjMen+Dbg58+Pgj1lcbyn3D/GzOqy+vOFuteuMvD3/NFlP+7rO/J88zFrMZn//mC6r5lMlsRlkUxFFMGo9xWjDOJhRRwSjL2G/21EVFKhIm+QQnoMYyzUdkeUZnNJ02bPZrtG1xwqAiiYoV++JAq1ukjHFWghWsb+/44Ml73N5c8+jyiV/Eu5hMpDhh6HSL0S1d2xAJkDis8f5EQngjsbPVDIRjt98xfzzndrPFyD421WgEgqIoGE1y6rZmKqaoWHI8lMwWc44vCxb5lMPxyE5vmGULUqnI4piDaDzAF0nqrkUJaDuNU2JgbxEDscQox9fXrxnNJtyVO5SI2BzuWOXnzOdzptMpL1485+LigiTxLB9pPaBa1w35aMJsOud4OJJGMZeXl0SR5FgcmM0uOHQNH3z4Pl9+9TXvP/6QctdQT2H6wzNqvcXNDDfmiraqYG64vbshtSlOwPr2jkhE3N3domLBfleSZw1JkgGW3W5LPo5pupbpdEpRlDRNB8KR5z7+NMTWjsejPqa2Yru+I0lT6qYmSWMuLy94/fo1x+Lg/cSajqbpKEvDcnFGZHLWNxuePHnM4bhnOptSNhVNVaCdZnVxxmZ7R1OXnD1+/Dt+At+9vQ0MefPfYZL269t3G7OG7W2gydv2/20AzJsAy5vAzNvAnLcBNw+YF285lvufiQfzHNyXOp5Zcl/IOE+1wTnbM9V6Rk0P2Hus3SLE/X5CfRAaFFJKIiGH7lo4Lu+x4ueLJPJg/TgPDYjES2nfaN6E4z/97qdy4986zyffM7wuMHO17iiKgkeX5z2gWSLJcMLXWaM8wyJREuq2w1gPkjZNw26341gcUVIym44HA9XTaxeO5xT4Ukr1NZAa5D3A8PsH3eAoQkhxj704H9U8GLuF74oY/hYn312cJD59n82Ei6JACMF+vx8YLZeXl+z3e9q25Xg8Esc+zCLLctbr9VBXrNfrviZrqSpvVhkWw2VZkucjJpPRkFY6m80wxieYWuuNLANTJoDyvibLyTLPxCnLksPhQFmWfPHFF1hrWa1WA0gkpaKqG5qq4POvDELPef73n/Po0TlpLDBqwvL8jPXmgIgjKm34X/+3/4Pt3Q3vP1mwLo+czcbIVmCLPYlzpHnGR5+ckeTPGS/PMPsDm82OomppXcr1/ki3K7GJ41WR8qvnGwpbkozG1K0ZmqohPto/732q03gM/T25mM3YbDdI5e/di4uLwTQ5Uop0PKZrW5qqYrlc+vvLWdI0Ybvd0jSNZ+zkPnVLCW8w//s//BStNYfDgabuGE3GnD9aUpc1611B7cYYGaNNCVKATIiyBGENjdHI0QW/+exrpiO4uMyw0sswo1QSRZZ0OuKrrw9U0Yb3l2fk6XtgWoQTZJnm2X/+jP/0/37OT3/2U3784w+Y5gnbskFog2mbATwJa5rNZkNTN8RScn5+znK55OXLlwP7PgCJ1lratmWz2Xj20ShHwAPFgBCCJPUN4bIsMb2nUvh903gWrDGG9957j8Ph8Lt+BN+5nYIfp3NPGNdPFQRBThLWV6frO0cAaTSmtRz3R14++5rtdsNPf/ZTZmczXCQASyTux7E3zV3DZ58CMuDh6zdVDFprzxrTFuk829NpR7kvORQFH3zyA4gVje5wnabeH7BFQ4Ti5dVryq7lvU8+Ih2NSVIFsU9XsziU8I0JlPeGiiKfzmatw5rAFPV2GMZ4NUEkFCpKiKVBCEu3u+WuNSSzR+j5Crs4I5torIyJ4wiMv5dkFBMn8RCSoXVHUxY01uIEVJEiimNU5BvdznaYtuO43fHqxdf8+3/37/j8V7/ijz/9iNzWmN0trvJhNonIGKUwziXjUUIcS1BQHlvKVmMcyChGRd6GQwk5xNqHecbPb/dG0adzc9e19ySIoTHh6wgp6CVLngWPM31uiUTYMIf6e6trO0iy3ptKeH0vPKDRBsZpSI9+W2132vwI96ZPBnxYbwU84psCbL5V+hTAkFAIhcV/YE/cn7wwIdkHbJckSbD63uH4tLDSXZCeyH6B7iUuUt5HfJ+CQVVVPaBCheIjADqBfiqEjzTs2vs0qtPo5vAAvnkSBXYw5gqyl9OIt1P20OAk3qPfp50pIQVxkvRARzdc2DeZPOFPALSCB00onML+AwMpfJb/9z0bJ3TuTo8vbGmaIrBI6U2uTE+1a+quj0aDTPiicpSkPhPeefQxTyPyNCaKYrS2WCuwgBQWjEMJSJKUpu1QwjLK4j7tyd/V1lniWPHPf/7n/OzPfkIkvPN/ojKyHI5FRVVUjGdzlEo8C6a3CHAOuk5zPBZstjt++cu/5dmXz9kfClqtsa7DOk0kkwesp/DAKWHI0ni4+T3TyxFLPxBZ6xFkGyIg9cPY9zzN39lR/j5s29sj1jp2d1uEhKZuOR4rFvNzXr1aI1GMRxMuLpYIafniRck4GbO5O2Bqw/niCVEU8XL9guVUoWKJ7jRn5wt+/fe/Ivv/mHuzH0mSO8/vY+a3e9x51t3d1U1yyMFqDo2wkAC9SIIgQYIAPeiP1KueV9JKI+0O5+gZNskm+6ozK+/MuPx2M9ODuXlGFrtJ7iFMOZCorEiPCA8Pc7effX/fI43J0ozJeMzHz56hPQsOjpMxo2TM4cExX/7mS3SgOJzt2863lBgl8IyHbwIm4ymvzr+lVhX78z2qpmK7XvLu5JrpZEG1LSh1xDbf0OiO8WLM5qakazT7i32SMCbwAz59/gk3txsb0150tFvJIs64Wd0SeAKjFdYjTKPajjDwkb6HCBVhFtMBHYZaKU7Pz0jGKdPplJvrG9A2meNx+oh0lCJ8myTQqIbTs1OOHhxz+c7Gp2IMvpBUeWnZNFLQdQ1GKcLAo6wrK500BnyNLz2khDAJiNKYq/Utz5894fJsxbYuOViMGU1TPp085927d4xG1kzRGaBv1huiJGC7KZhO94jihPW6YJKNODo64vPP/56263j+/BMMmlVREaYZy3JLtJ+RSUUzbbl69Y6ffPRT8qriZnnJ0d4+02aM9g3TyZSrsxOeP3jI7WZNNso4Gj/A9wPKssLzIE5ilGrQRnF7e02SpMRxCEgOjw4xWgzsPceC3G626K5hb76gaRqkJ9iWG/AMk9Ge/XybgunkwDrxJzNMJTnci3n58jV7BwvOLy8I4xCalrpt8XrJii9hs/2wC84/tO0uZocmy+957vvAwA/t8337fR8w84eO84/5DO+DNX/M5piNd2kLemB4GOyPEOZu4d8rw/+YzdUVWukBKBkAC/vmOOPiUZqy3GyJo9BGjPZNm/sSWgsO7RblQ63w3jncpWfvdoLdYiJJU9LUFp2jUYaUwnqKRBHrbT4wY6q6oqoKOmW76OvNhrZvJo0nE6LQG9536OQJO2++D76UZUnQy66/7zh3N1cnme9J6XKbEOIei2b38e8DjT7EbTKZ2Kjn6RTVMyu7ruPg4ID5fE7TWDDaecSEoQVtkiQZGpWjUcbNzeXArHa1aFHk+H44sL5dKqqr79w4KoqCXQPUOI45Ozsjz/Nh4X5wcNAb45YDg+rt27c8ePCYumnJRmPyomSVJ2wKw+f/9Gv+8i//FClj1nltr6t2SzYZUxMSzD/mn15fg/aYjyUPj2NGcoba3uLN1oh5xIu3Ja9OO9rVBtUKqjrg8rZkmRs2TcXW3HCjpry+qthUBb6/svLePlHUSfyjKCJJEpTqCIMA3/Pp2nawOtjkm8HI2kl4JqMxURhQFiVpbCX1VorcYpQiDkN8KYnDEMKA1XqD7rT1nVEdxXaDFLBa3qCMQskxcRBRtpptraj6oIBO2YRY4XmoFloZUMsxby58JlnF5FDaRFoxptM+gR8zWuyRvzpDlSnRVrGfdWSjBE9IAi3YPzomL7/hf/+/f0E2innwaIFvAurNlu1yw1pp0jTl6uoKIexcWYt6YBN9++23g3ysLEtGoxFXV1c0TcPh4SGTyYRslFG1LYQhSRxzdXGJJyRxHCGEHUvz+Xxg5Ti5pJM2jsfjgbH/oW5uHvi+Be49oN+tkfrms5M8GdODFlJYsF965EXBu9fvODs542d/9jP2HhxifIHGGshKZcCT9+6dA8OwV6Ps3jvBNp/VzrG49YfurBzJkz7CCFTbcfL6DaPZhHCS0QpjmV95SXW1ZJSMaNqWtu149PQJD589pQ0kWgrqtqINNIFnDWmF0b1kVWOMGtZIXdcb1/Y+ZW1n2RqmM0ShTyB9hGoRqkBrEAbW5RbT1TRVAV7PRpcW3AjimHrnHBtjqPINomsswUgIOq0Io6j3a9GsVjnfffOKf/P//C1f/vor2u2aw8Dn4dhHVDm6rdFxRINC+ZDNpwRpSpCMUHisNjeUTQOejxQeoo/t1l1Hnuc2XOgeKPO76cp2DCjaPgBGK7eP6Zl0GozCaAVaIqSVQe1udqz1Pj2Yfl4dCjPeZwf7vn+vWbHb4BHuu9J39cKdPcz9fXfP9Q9tf9BM2L2AY6A4EGOXmeL2c1Ihx6wxxtgiXfb+Jb5N7mjqhqCnztt4bkFVNcOBWjd0evBDIIS0RntRRF03A2IfBgFZNqIocsvskJIojHokUA0nc1da5OhxTdMQx5HVvhusKZxWiJ4dpLV1pzfvFTm7RYhjvDiQwFE/jTb3bpK7+ehJkgzSLK3tDdwVlbtUWXeOHWDjqLKWyWQLXdn/fZdu6l7H930w1khXit60revougrPC2m7Ds8PaNumlx05l+07F28pHGrS9akaGmUU2hg8P7DGjp1CCkHYa+J3zY0D3+Mv/+rP+e/++/+WJEsRou/otRWqrmnrhtFkQRimWAWh1VdiDJ0WFEXFel3w7Tcv+eWvfsPF5TVGWPNf3SM6XWOBvSiKBiPoMPBJQo8kiZFCgrC657btkD1CHUYhFhvv0720tfXyezDMdQk/1O1wccx6c8Pp29dMpiNub1cY7XO8n7DpcozQNv4ysqaGURQjCMm3Dc+fPkdpxfnlGfP0mGm6R62d9KXBCwyNFkjPszfKumF2MOfq+oqMiHrbcvTjhxQPKzb5NQeHMwLPIwojHh1PqYoWYe22kEZyuDjEdIZ3J6cID6IghEaTRSlN03B1e8NoPma9XTPOZlyeXeNJjwcPHiG0Zm+xYJMXZKMxohGYbYNR9oauhabVCmWs15Dn2+Wd71v/nnAWIxOPTtX88stfMp1NqDtbjLd1zXa9ZW9/n6KoODg8ZL3eYKrCMjpGEzrV0XYdWTayoOTKdkF8ae8NvidptcGXltKtjKLT9no1zvgssAbjvgw5Oz3ns88+5btvv6HzWs6uT3lw9JQkTWy3F2iaio8+/pivvvqabZ4TZxHS99huN5RVSaczmq4hiEIePn5IGEWkesTZ1QVRnDDZm/Hyu++Ik4BoHuGdwqu333H08CEtDY1smR3NEZFPpSriKMEIm9ZXdi3TgzHX1zdc316zt5iz3VQcPzjg1dsrwihAeBKMoCobjJak6YiLi0viOKJpKsJwRqdaktDq6WfTMcvNkk61lGWFnPgYbRhlE5IkRXWGoqjIAsuyEdqwvF2iadk73Mfojvl0ynazwfd8vHvOGB/etmtC/kNz7/3FrBi6NeY+2/beLu4PP3RXsuDGey8rhnyl72eB/M6x/PEgzR/e735hPfxoy5qxHmHK/n/Hr0YMx91HjiIwQqCNQGin1N9Bt4zbHwwCz7NxortMHlej+IEPGtrKMlgRHYYObQLgroaxgJJlO+3WQe+fn933sHOuY+vahoHv23koCHyapmWUpQgMaZJijKasLQv17PzCBhcYmzjSNBVlVWK09SeJomiotXYZthY8sUW27rqefu8o8Jq8KG360w7TxjKXTA9c7UgKdj6bqwHA9B3JnuY9fLP9t+PAGXo2zvdjOR/MprVmNpsNjbckSQZAbbVaEQQBq9WKPM9ZLpfM53tMJuNB8mQ9RmwgRJZlAwtiMplQVRXT6eyep6FtINa0bWM9AOsaz7MAzc3NLYvFgqIoyPOCrlPM54uBoR0EIePxBLBMoL29fdsEDEJW6zVttWFze4WpaxargqY1vH7zXNDZGgAAIABJREFUkrquOT7cp6rWZKMDpos9/vrvv+Lt2Ya6qTk+mPKugqcHR4zjBK/dsKXkm7OSv/nFNVGXs10XpNmMm5ViUxium4bLqqIUhm3dJz1p6JQmEpZFnedb0iTFSxJ8T9oaQGD9JrRitbpFCMHx0ZGtEbWynnJN27O1AzxPMhpZZg3Yesz3Jb6fDrXlu3fvmE5nfRPZGjE/eHDMarWyjB4pWRU5y9WaZSi5uI1Z5xFxUOIHHkEQWfDXk+D5NMojTEP80DLclBeSjA4RXmJ9UPwpXubzv/5vf83/9L/8l0z2DfWmZDyKqVSOkgk/+tOf8q/+r895fXKBpiWcPsAXGtUUbAq7GJ9Mpj0bq+Kjjz5iu1ySZRn7+/u9EbC9LKuq4vHjx0OCbRzHXFxcMplN2WzWdG3DaJRZ+ZMnUdoyZ25ubgZlg7veDQysHFeXf6ibW6PtsvJ839+906O0dlRKDIK6duA6eNJDepJWW7PYMq84fXfGm1evef78Ux5//BQl7HrT82Qfmq0x0qUUdVZW5Bg5quu9X+zm7vWe8O+tJTEM9z+jDb70QcG7t++4vDjn+Z/+mE4a2qqi3GxZnZzTLde0844wTfjsp3/C7GifNpAoFEIpWmPoejajQO34pxgQNnzGxj/bmG1jBG1nE/2KvKDc5sRRxGSUME4lozQgjD3U+hYRt2y0oinW4FvlyzhL8OMYWtWvfy3Y4XsezXaFaiz4bIT1pimwzeHz0wt+/rf/wOf/+EtulwWeTAi0YrVa83h6gCclrYTWaOLAIxmPGS32iUdTwjglLzvWeUOrIIgi/NY2QPF92s6y9XYbCy5ti2FUuCj2Hq/Qd9Jeeray6deUsh9Xzp/GzX928NlXk54/1BJ3FcV9FrDcGae749X09QoDUHNXvyAseGixAg/dX5tu/rbj+Ye33wvUOFqZk+W4G0fUa5/hzitmeMH3zIaHAsnz6Xo6spQ+GIERBunbgiqIggGNt0WDxveC/hza6LCqtLQhlwyhlGG9sr4zMvBoOz2gZJ7nobQaEqscMJIkiY3Yk3bAmz5KUEgPIXy74At8RH9hRGmC7u4uFMcccrpRB0y5YscxZnxx5z3jkNg7NowZNG2O+unMv9yg3GUyBYFjG92xgrTWhJ7ADzyapiNJI5q67k2TwPQadzdQ6srFhlttoe+DMcoCNp6HEB5t6yRZGt8P7SK4bfF9dzEIPBH1N7BeEy/N8Nlcl8gYayz3/LPn/A//8/9IOs0QHmjdAYq2q6jzDUoHSC+l6Xw6o9EYpG5pW6hruLna8O7tFT//m1/w6s05ykgwCq2s7EIrTeRbxhCqIQwCRnFAGHgEnus22GOXArzAw5O9ubFn0zRc1n0Q2Lhrz++D2t4b1x/aVpY5F+fXbDeGKAwJ/QWPHz0iSwTrSLJZb2nSgIvLhuubFShBUZXszR4Sj6YW6U9mPBg/ZpyErBrFZnNLRUFtKmbjI4QnOLu64MHDY6qy4OrdGV76kIP9PbabnCAImC/mjCcZWjVsOk0nfEbjGUo1nFydsFouGU0nXK22rMuWh8dH+CLm9MVbPnn8nC9ffsvNcgvSY286Yz5NOWtOSOcHnJxecrA3o9xukKKmbFtm4ZT5JqdRDSb1WF4VLLuORgYYWREIQ1tBLEOYdJQzxXQasH17xXJ1y+HRHtWyZDad8vLlS0YTO2F4vsfV5S2eLwGbOLNaX9PqjulsQXmzRgso1w3TdEEbXBNHIY1SCGnZgVL4RL6wOljjoYVHpWAcRcRZwiTMyMI5ujFk6YiiXtHSUJkCpVukEWRJQq0KFodjRtcpb97ccBAcoGlp1Zaf/OwjVqst59dnHD08ZrvZslxumM0m+L4GU1HmN5TlEikzPv/icybTCeloxJu3bxmPx8wXe7RNh++HvDp9QeDHnN6s2J8t2IsCVJdzs3qLkh218ZDG4/LsGtUoTOyjREddd+zNj/juK5sQJXrDOyEVfqiQfkvTGaJ4n67rqDY1s9kM6fvcLrccHx2yXt4S+BKtKm6uboiePEWLjmePH7Fer9nWG6TRdFoxijOEstKyMMgG48kPcfPZYcvwu+lP7282tagHAnZ2Uz+gIPlhds33SHIQgDW5Hh77nufvPr57vH8Mk+eHNvuZfrcTajC2662VLVh016c+YaU6Qlqacp+igIsMFr3JsDRo0bcHlS24vD4S2mDwRN8x9STgpEoSPA+FhzK2yRFFtjjSxmC0QkuDF9pEC8uS0Ch9F/NtO5oKF2Dqvi/Ps0WaFPbH6BYpfZuioVvQLVE0wiiFUi2GgLqp8H2Pqm4Ag+9Jug5U11CXBUJbiXUySgezTHf6d5k79nuRmD4JQ7cdSJsgojHkdYMfxdZvruv67qwZPtPu/IjRBL1psycEngQpLHPWFyDv6luMERibDWIB+f7YdsGeD3GzTA91j3ngml2jPkVIaz142DhGtJQGYzpGIwuaOc9F91PXtW06XF1wfX1tWRBZ1r/niO225OrqdpDB+H7EaBTw9u0p6/UaKS3NP8smvYxqxOvXr+0iajwmiiyIeH19QxTHGCOQQYoIQ2SyoOoqtkXHyfk5f/cPv+HpR5+xdzhiFm6YTyPSUcD8wR6rVUkrQt6eF1TVCz55uMdesI8vBGQZf/3bFeNAcnnZ4Ps3GG09As/zjq2GqrmkbRRICb71pcmSmDiOSVMre02SBFWXzMYWyGqahjgMmU/nRL28H6BtNW1TEfdBI8bYVDJjOoLA731s8nsWB03TsL+/T5qmrNdr2rahKLYDG7qoSrTvMZ/tMXqQIJoNF6uW16ct433JeCYxngcmpOsqhOlQbcvHn82YRhNGkSI7OCKXCZGISZIJVW4wk4IXNw1n65AfK6iMh+kEBCknt9ds5YyjB1POr5bkZY0/ahjPH/HgQcbt2xoQpGlG0wQcHh6jtWI8znpvvAtmsxnPnj2mqmpOTs4oioIoithsNpycnPRrKKttqYqOWgi86ZT11sbKuzWEk9aNRiO8vmG+Wq2GIJPlcvnPct39sdv3zT2+H/RJPhrhpEgGhJF9QpP1HpSOOSl9ilXF5cklb1685sHjI57/9DEdds0SeH7P1QSFRPQeqYK7iOWmbu9JntyiHCxYYdkp9vikETakQ0DgBwTaY7Pa8NVvf8P+4Zwgtd6gepOzPbuCTvP4008JpylRlpCOMpRnG9Wi60BDraHWAYgOXzr+jz1ig8vKtv6GnbLXaNVqtkXL6nLD5vKWuizY25/y4HBGkfjMZgrp+cioIGhz0qAmjDLSdMR0GpKMA5TwOT9dUuUdxcam/a42K7RRqEahWkNRt9xstpy/u+WrL1/w7cnXVLpCCImHxgjBtmnB8/B8D7TA8zSL+YiHjx4y3ntIks4IpOC6zMkbAV6G1IpAKgJhpVz4EUhN06ie0GLX/giB9ASis3Of6v1llLaeQ455pLXp/+1IQx8vCNHGAyzQFQiBr22FpKVAewICD+FJPN2nPhmGNEcjsI1/fTceHPtKC5uUpXs/HNP7CIneg5deLqcVeL0MW4o+JEEIjBTo3zNt/l6gpu4Nr7TWA53TgQZSyoHm7lgjzmXcsW3c787XZtcbxkmKnPeN26qqGi6I3Qnf87wBLXbFhSsAne7LXVSOxiuEZVo0TTN0vGwUpRlMLh244BDSXe23k3ih7zpPvu9TFMXwtzRNh3PlKLBez4Jxn9NNMo4R4wAe9yU7evZdJ+UOINs1+tuVQZVlORglG2NNnaUQw+d2+nh3btx3sksnVKobJk33Hne6vjvT5CFxqrUXn/Mncq70BgaQraoqhLC66//mv/6v2JtlRL7B6BppLKOl7jrKWjGeLBDSo+06tkWB50ukVhRFzWbbcHm15OLikpOTE9q6tHpI1fRFpiEMPDzZEUUBSRwTBR5SGuIoIgxsjLG92d75Ee2yo9zYE1LaaMYdoGzokH6gW95tSGcxhSrwU0FbdKzKJZqI9XprJx0C1usNcZywmC9QqeBgsU9RWv+VOAwZxzGtzjk8PuS2MGR+ymy+oC4VeV4wysaoxrC8WXG4f0B1W6GM4tdf/opnHz+hrHPKumS9vkb15oIPHz3g/PSEZBTxKHzGo+On5C++ZRrOEE0AbchsekTbCdpOsVzf8uyjx9RtQV4WHB0f8fWLVxw/eETdVIwnE9JIUnVX5FdrsmzO6WpNawKub7aUTUfRKrpIEyWxBWd9SRgnmFZz+e4aT0Q8e/acPG/QnUASgPYJg4TJeEFd245m3TTs7y/IshHv3p2QlzUPPjsmlT7fnb6gbms2zRrfu3OK96VEd7WNclQAvqVWOqRfakbjlNOTE0IvY3l9hR9YbawRAuHBeDoiDkKur68Yj0bc3N5w/OAQzxfMZmOKsiBJU8aTMbfrNUYYDJo4iUmyhCiNeqllN5g1uthX3/dJ05TXr1/z+PEj2q4hSRPbfSlylOqYZhPK64ZtU/DxT54QJ2NMXTDKJrRlR7m1FPy2D3QsyxIzVsSxjY5M05g4CaDobNej7yIsl0um0wlJEtM0DUmast2WpEnMt19fUBUZ0+mY7XrD7e0tUksI7X17VSzZrDcsplPOz89Zr9c8fvwUKb1hEfQhbu+DG38IqNl9zi791fwRQM3ve3woeHvI/t5j7wM6vweQ+Y+18P4dwMaBU+YOzBI9I8MyOPqYUNfhGo6z/1fYdI+75/Ysmh5CeF+2LYQHQiOlIAwDRKdp2w5P2HQy34E9sjemlALP91DdXWhB0zQIz+y8fx+NLawE0wiGOdvVMUEYst1u2VtY82/fE2A0daVRQNs0RGGAUR1daxk2WZoOfnmucWM/5/uyubtzt2toCH33GWtIrJSyaYnGerC5RYZ7nvOzGeofKfCkZEiCkvZH9P8agU1qFD1VXEibgCE96w33gW55nrPZbNhsNozHY0ajEYeHh0PjzdVUWZZxeXnJ9fU1T58+BRj8PrTWQ/zxdDolz/N7DGonq7q+vh7kTUrBbDZju90OEva6rq3Bvu8PHjQnJye9T1k4BEukqWWTFEVhDT3DEImhbW3NF0cRHRVXqw3T/WO0fMm//btf8dlPPmIv81jsHYOfsF5fY/C4uLphNE15+e6afFvw8dPHEMQ0JuDl6RWz2Yzrrezn0QCtoVGGqunDfD0PPwyI4pSD/QPGWdLXxJYh0zYN4yzDyfpHo5H1dnThFj3r27LaY+sR139GV6M6SZoQYkjgcjWss0UIw3Dwx9nb2yMMQ84vTkFCmoRkacq63vLq9IppKDmMFgRZQBxFSCNAg+9H6CDlWrWIMCUdQ2cktC15K1htbpHxnL2jY5Kx9bRqyhKZTVhvSnxlWBUNX/z2W/7kyUdUxZaLVcc3v/4Nj3+SkKuQKLJyt6urqyElrCxyqnxN17Xs7++z2WwGAFEpNYB3WZbx6aefUhQF2+0KMKT9vcGdt6j3NnJJb87k2u/XEU3TWOCmZ0h/yNuu34er0f0gHB7blSh52t7zkRYQEJ5HpxTVbcXV+RUvvvuW0Tzjp3/2E1rZgvbwHGNC3FlNeL1HnBt774e5uONy91ZtoOtatFJIIfEApQ0eHp7w6LqWr7/6LVLAwdEBPpLtNme73hDFEU9+9BnT+ZzGdEjfRtN3PcMCbb3BOqBRQBgghEL07E4btgKeB74vLdjZddRVR16WFNucsrB14HpbECURddVQrG5o8hxlQPiSo6cPWBxMmI0TpodzFgf7JFlG1xmaPOTrd6f85lcvuLlcW5mgUrRVy+31ittNTt60bLYV707PaLvOYijGWiALCaEnQSnCIKAjIBknHD16wPGzz8jmD5DxBG0aKrWmVT1xwRiEsM1y1VpLD2kMbdvh5nzf92zalLFgi12X976vQuJLjySOezDEWN+gXnIZhxHCdH3ZbnoZmZ1TtbnLn3Ryp3tyq6EGsczlXYzCjRlHTNlV3ri1/ftx825MAQPr7d/bo8YNVAdkONDGeaHsAiLvgzG7C10hxMDIccCIk/O8L53aNRx2J8vdsN1CetdwylEDd2l9g1a9B4ucbMjpfbVRNE09LGiaphmObRcpGzSTfXG4e3zAEA1YluWQGODOi7tpDie6P4dlWQ5fogNC3MQjxJ3O9y4xSw8aPdf5cci58+xxx922LaF/B6Q5YMcdh4s8d5pO3/cQguF9BhqzuIso3z2ffhBgdvxgnIGo6sEpx15SSrFYLABDsVkSyAmegLatMbpjvdrSdD5ekKAMVFXDzc2aLE3RbU1VtVxdr7i+WnLy9oSubemagkBC6Hl4no0aj6KQMAxs6oUwJFEIRuFJexOznUJb/HddS5JEeOLOIMwZ+AFEyZT1ZnMPYNuVrH1o22p7SxBGHBwv0AYiGdLoGj8cMZpM8EVIEo+YjBYYDYEnGc+mZEmMlB6BZwsGmWgiEVDUG4qi5vjRIe9O34D0mM/mBH7Eer3h6PDIggaPj7i6uOHy+orJfEQ69q3m24fNaoXufC6X79Ce1ZdLFVOVLR89/JhX6g1xmPBw8QQEXK2u2Ds4oFIVraqoOw1Sssm3PH32mE7bSSgvO0aBz8iLiPGpENRZwtnZFauyYVW36CwiO0h48uwR/+//8XfkzYY0zIiCkCIvURo+/cmP+eKf/onnz55ze7Visyx4/OAjfBHx5vw1Xk+lLoqSILDab4Rgs92wSMd0umM6n9JeNFaSEEUobWi2OUHgY6SkaWqU1mjP4AkPYyyQ+vrNG2TokxdbkiwiL7YgIYwjblZLPA0CQycamqoiamNGkzHZOGVb5GSjjMPjY9quYzIdM58t6JqOcTYBQ++dMLI+Pk1DVdU8efKkB59s4ba3v0fdVAhh8APB1e21BbJLiLyEk2/eoVrFeG/MbLrP7atvWa02+PikScrB4ZQ3Zyd0HUwmU7bbNUka0LZlHz1rBumiXYx0ZFmCUi3zxZztdkMY+rawzzcIAzfXN+zN58wmM5TQdFU3eDWMx2MmiwlXZ+d0re2Q2G719IPu2v+7AjW7f78H1NzhK/9B7//vCtT8x9jeZwe9D9IwfM47wEY6PACb9CRxgAg9vZw7OZf7j6WC0It0nXjqXpE9yIOVNSmU0usTBgVJHON73sD8sUV6h0BaCRUSJcAxcwJfItBIceeHJqVNq/IC/x7I7xoWSinGoxFNXROFAUpr8jwnCkPyssCTkqKtiMKALE1I45jAv1+0DWAK+nsbWbv7uM9rWcWaum2IggDqCiN3wbv7370nXQyu61DLIdXCIWjG/Qs97V6C8EDadEUhPfiAgZqbmxsODg549uwZdV2zXC45OzsjSZJ7tW7TNGRZxvHxMcaY3q/GMkjOzs6I45hPPvlkeP7BwQGz2exeI895B1qQzTKvDw8Pub6+RmvNdDoFrG9OGIbWNLoHKLren0EIK8lq25bxeEyWZazXa8t86hcQq9WKbBFycrnESEk4OmT5Ysvf/9MrFtOI/YOWm3XN5c0KP4iI44haSVpivn235PX5hsl8QdlqrgvFTb1C4FF3CqFss8Hy9D3CMCBJUsIoYj6fk6YRaRIxGWVMJhPKquT4+CGjNObq4nyopVzQhwPE9vb2qKqKuq4ZjUYAjEYjiqIAGCwB3ObOiWuuNU3DZDKxHoy7wI4xCKWhbSg3a7QWSD/lxcWGR7OIdDZinHnUeUFV5QShRIYxv337DbX3ECk1s0YRj6aUOubvPv8Vt4VmcvgRySihbluWq5wknCH9EW8vTjm5yfnlN284mI4RXsbbiyt+/XrFr6+/IBjPWeztD0Ceq9ullEwmY7qu48WLF0ynUzabDVVVI2XAeDzGGDPs37Yt8/kMsKlvy+VyWEtNJpNh3eEMsbXWiL6ZniQJ4/H4Xkrth7i5+5BbFzpw5Pvuc0IIpOotOXwfhUBpQV62rE5vef3tS4LQ51/8xZ+iA01nOjzugmXgbsGsdlifbs2462e6u699vkZ3PUigNa3q7R+8GB+Pt+9e8eb1d3z86Sd4vo+qG9rSBrXsHR6SNzWJtEKZtk8nGgB3bUN2GiGplKYxHmHP1ES6dZ1lfbdtR90o6kZR1jVlXlCsc7qmQyNYNy1iXfD4cB/Twna5xUgYzzIiCbEvmU4yZosx6TjC8zSYlr15wi/LFe/evma7Ungytn6FRrK6zVFaEHoJuitodd1Lfvp5Ec0oiTiYjpBG23CZJGb/eI+nn37CwZNPiadH4Id09YayMzQ9Q0V6EtHZuScKI7pOWS9Uz6UBe9R1A8bJm0zPi7KpVUopJBD6AV3bIQz9erWjyHOyKCD2ZS/ZdaE8u6wpN94YHkM4Nq39sWqf+6b5ViHjDeNkN9zGPeaaRe5x0c+hWmm0gG4nFOf7tj9IGXBIN9xJd9xCfvgww8HK4UDdzdQBKA4Bdwe+C4a4xb0zXdtlzuymLO1GhLuL2Bn0ugnRAUnuhu5udk3TDIwP09Oi3UTq9nFF1vvvg7aFmQM6nF4Z7E3FOd3vmlq5C95FZzuwwx33rsnhXcfvLqnJ3Xjd59g1cN5lKrkbj5SSNE3pmnb4bhwos8vQAYbXswPpTrI1MEzEnSHibkKEgHuT5y649v54OD8/55e//CVGPAc8jNKotqUqCrZ5QTKeUzaGSGq0hvPTS6aTGeiOoqh4+/aUk3fnfPnlb1kubzFdZeOYk5jF3hzPE71XjiAMQkRPH9dK4sm7eLY7Q8e4n6jioTMK3BUPDl3vvydnHPihbmky4uDgiKurazarFfm2sFrnOkd4grIsSOOMqqm4vrzh+SdPyTcrxlnE2cUFj5884/T8lGxqkJ49h0rBdlXgEeD7HsW24HB/ztH+iKJYc37xFn+esthfsK22SF9gpKHVHWVTU7YVTaU5vz4hjTMuLy7Znz3g5ckLHhw84GCxoO20JXAqbdMKjMd4NkZ4Hm3ZcXV9gxHYjt+rl/jCZ5pN8OOUwC8wRvByecGF8Phu/Y5KtOReR3I0oxtrZp9MCb8I2RY5D+ZzkmlGVbXMRlO+++4laTrm7PScUTbi6PCQ0A+RCG5vl8z3ZzRNTVUpkjTG8wLKtmGTrwmxsb9GaPzQx/iKyTij05qorq2soqiIQp9OaZAeUnjg265PEMRUeo1SNV1X06iKVneMgpDWdBgMWRax8Ge8fPOWrK3oNg3C9wi9iFYpDvYPeXd2ih/6tKphMp2i2o5iW+AHor8fWkD7T/7kJ7bwq2uOjx/w9ddfcXl1yfHxX6B0y2Z9y+XFOcpopuMJi7093n13Rp5vOX13zqd/8gn7B/s0TYUBHj95RjqOubi9pSxb5vMJRtTEYczVzYrJNOXi4gLf9+wEi/ULaruarusoy4ogsMlScZBQbLfk2w1RGJHFGU3Vcrm8xDOSR4ePSdOUcBRwdXsFxrBYzFktV3Sd4ubm5oMGUb+vsPxj99/9/YcYNbtgzvuP35fEuNe686nZffz/d7DrB0XXLv4Z2NF0gwNpQAgrzxEYFA7gsfcNpTrbVUP0gQx9QeRqESfD2ZnH3F5G9WECXQMGQl+ilSDtzTzruiYMLOhY1S1aC0QYYnrT46afQ3t5PL7n9/OF9Y7zdpoezoA2jCL8ICBLEqqyQAiftu1QXWuBHgxxHJHEEUkU4r9nnumYBHZhdn/+df+6OXy3iSV6GXPb2UXeerOyeEt/7r+vY2wLUNsMsb8zADXCjWNh/cuMAKTtZMsepBFegJAf7ry5WCyQUg7ypDRNh5qrqiqOjo6oqorlcslisSBJbPKTY8K4OnW9XvPmzRuMMfzoRz/C933yPKeu66HuyrJseP2i2FDXzZDq477T9XpNXdfDfi7RJ4qiwVzevWbbtQhPUuQ508mYbDTi+uKCqiz5ZtOgvsuJs4RXb5eUKuLq6oJXZ5rx6RZlBK0W1EVFpzSdblHGoLqAfFVytjxH9uwx1TVD5zhJIrTqEH5I12nCKGIyGeN7kiQMCH2JUR1xmhBHAUkccn15ziYI8D05MD+22+1wvl0t27aWTeJCSm5uboaGqqvdHFDhmoLOqLjdqde6riOKIsbjMWWZo9oaXwiODg/Iq5qb9S3LOufryysePZFMigZdd6xLhak0b96u+OK3Z3z06ads64K2UZTLgi6ZkYeHfPnVV/hXL/jo+UcEUczlVvDq1dfESUwWhZQm4nLb8I/fnLI4OOKb0w3R3mNqEeLHI9q24/Hjx9zc3HB7e0uSJPz4R58RBWLw4nEJsqORRinLKHXXs00Hg8vLMzabDU3T3Fsf3dzc8ODBA/I85/b2drhXHPSgYFmW5HnOarViPp//M1+BP7wNID4M18ggeRL3VRQYEH1ohMGaqVdVzc35NScvXoLR/MVf/Tl+7NOZxjLM5V0Df/d90GZgadxjenK38N59zDIurIeZUdZfzfMDfAKaouI3v/oVcRSQZrEFfduaqirxpEdRlhhfUqsWYzSiPx6n2MAYNJIWQdFBi4+R4AuFJXl6VqarrE+rVoa6bSmrmqZqUY0CI1AGtm3H5vqG548fkmiB6CW/SZaRTsak4xHpeEQYR5aNpBVCSkaThP2DGZ1qaFro6gKtDdV2a4FP6dO2mtV6Q6vbHSYKSE/z6HDBOPKhtZ9xNE1YHM44eHREPJmDn2FkiKKiKOpekms7MdZKxMqPoEPRDed/aDgN9Yv9Guz6FJRLNtS6N/LVqM6g2o6ubmjrhkiGoPtJ8P3yx9xJlOwAc6a/9rvWfTOJntUq3RzLXaz70HTqQdTd8ePW6QOjxrtLMnMNgh/afu+MqpS6d9N0QMKuF8muf407KAdYONRpt1v4PlXXgSW7/i3uoJ0fjo1KtGyaOI4HmlDTNCRJAtxPZ3Kmvk3TDLHYboK1RlvdwKqAu0LagRV3NwnPdlJ8f/DS2T2ZrgMDd9InAOHJARU2xvQTSDn8f/dv7svdjZnbLZosyHA/2vv+2Lor5qqyGtI03Pfgzomb2IZBL8QwIJ0m29F5HTV3d9BhhyuqL1R3O4fu/d2xdF3Hdrvl1omMAAAgAElEQVTlX//rv0ZGPpfXORhBXVb8w9/9PT/72Z9y9EgSpRMaVdDWHdtNweomJ4lD3p2e8Ytf/pqTk1NOzy5JkoTpKCXNEpI4AmF6E7UO4fmD3k93Cl+GSClQuu6LTXtBh2HQe4fcXVRgwSsh5T120y4z6kPdbs42tLl1mN9cVZRlzcODlJvVFdPxmMvzWw73DljeLplNRkSBR14WaApmezFVu8KPNLXI6SrF4/lThNyDruV4/5iXJ99RFh1iT3J9ueT84jWdytmbP8QIw2JvjvAFneroypKb5YYkG3F+8YYkzegUSD+k81uEbvjm1Zcczg/x/Ii8zRmPJ6yXK2pdMJ5mSBNxc1FAu2W6mNCqlk2+YTqeEkQRZ8sVt0VBd70liWKKWcg0OCCvStq84+ijBRtWqGnH3vM55XJD/DChDlp+8vwnLC9u2a63fYqZT9tWHB4cEccBRndgDLe3t0ynE4qiYbVck6YjRpFNpFuuVjRdbQ2Qu4bYD3qTN2UN11QLGKJIgvTZtg2mA4zHZt2QjebcrG6ZjTImozGbfMu783M0sC22HM4n4CmEr5nvzfAin05V1FXDkyefcHF+zen5OdqAHwYUVYnqLHhTVRV1YzuTDoxdr9es12vGkylVVfP06VM8T5DnGxCKKIxp6oZtldPplsOjYz77Tz6jKVvW2ysuLk95+vFD1usldJqq3lLUW6TwmExSey9ObMTpeJxQVTlxEuHaD8bAfD5js1mTphlB4JFlCednF7RVg+o60iQhDmIwgsiPSNOEAHsfvL65JkwDptMpi8mUOEzI0ow3b04oivKDTq94HwD5PkDkjwFJ/kOBmuG9vodR833b7vzyQ+DRDz3v+47P+fPsFrm/+9w7Jsw9kKY/YuHMHQFtLEjTdQqtNMrYLqoxpjcIvJvL3SHtdr4Cz7ONDNXL8zzrHeB7fVFlTM9kEWitMKYAvEHi3bYtnrxLtBwSBeMYT3p4vQGiW3S5RlLYL7rKqsL3PMqiwO+ZoXEcEgQ+UeAT9omLTqrt6pDdbhzc1QW7CwjBnVmwO75hsYFNSet6fxrLE/KG1xl+BkaN+7FsISklLi9dSIHwJMLraxTP61NH7I9L0PpQNxd7nGUZy+VyAEVcreSikJ2kybFasiwbGB+uYVbXNUdHR0PNlKbpIKlyDUdXMx4dWWbOer0eWCDAADCsVquh5q2qitlsNjDUXROuKAryosAYQ1VV3N5ck8ZRz95OefHmjLK9YLnqyEtN3iiUgeXFFjB2fGGoWkXXGXRPbNNG0nUG0bV4wuuZoBqhoSlrpBQksc/BwYJRmhAFPqMsQQpDlsREYQgG1qsl49GY2cSyQRxQ9S//5b/kiy++YLvdDjW8G2MnJyc8ePAAYPD5cQx5V/MniZVWHR8f31uTuBpdKRtJLYTAD0PS0dzWJFdXlHVNqzpuVxteyoCX71borU8oR/zquzWFhrPLnDUR6zZis6253Rq++OYds/2W69sNby4q9mYhqV+zt7fg82+v+D9//gvapuY//6t/QV4riFNerxqu9Aox2qPSgpvVilGnmD5+yKtXr2jbdljP/MPnn+PTsbe3N4B2rvkghM9msxmY88aYgYXlgEb3nDzPqauKs7OzoZG8WCyGunxvb4+6tv5wbpx9qNv79yO73QEruwoFIQU6ELTCoJsO3cL6asXJt28oyy3/2X/xnxJnAS0tEg+PqGcx3M1vd2vRu5Sg3fUp3IHZu2B427Z4QiIRtEoRSA9PSkwLX3/5NVcXF3zy6VOC0McIQ61awjRhnGSkSYIfhZb1Ih0IYPAQFkDXttHQIWmMoVKCBk0gFRjLBtHaEVJtndV2NvFIdQqU9VFR2rBpW8q25WK95lEW4nk+Sgp0GBDOJoSTMSIMURqMFghCFBojFQcPj4mylOZyRdMJuqZFG40nAzpjqNqWvNqiUWhsuIQnBKEv2JtPkKqhU4Y2NPh+SpyG+LGPF8YYGQIegR/RtQ1dWwP2HmKZiBHG4i0oBFLWPZhlDXmddMkY0zNmemaUshHpGIPuOguCerL3wdMYpWy+udfXCPdqkjtM4of6Sw5Me19iDHeWKwNbZgcQ3J2Ld4Eam9Rlj0fAvfH9/vZ7gRrHcNl1uN5ljjhWhx3MzqjWu9fZCcNw2NeBK7tJRW7Sc6/rQB+XvuCYN+7icei5S05y0iY3+e0CFI7p4bxUnAFcEHoDTfB9wMSd7F1fGSnEsHjfjaF158Udt/ucddOAFEPBJaUk6N3Ld8Eh9zpdZyfnIAgtStp7W7jP7eigLmZ8t6DeBZkcxdZog/R6Z2ljLPPE8xBSovrz7WhcGHvjyXu67h1AYWnd7ljsObHFnBsLu/RqV1BI6TyIFHXb8vO//QW+9Gzn/fKKv/m3P+f6tuDxs0e8efsG3xfszfd58d0LPv+HX3B0uM/p6RnbosTzAh4/ekAcR9ZQq0dbrRGwQmlB16PhQgZ4AjzhU5UlBDbitWnteCvL0hpbGWi7tv/OIsvW0vbij+MYow0tdylbH+xWCW63vVzp+AHpUYqnBCJOAEOShZT1hsXelPl4jySNUFRcXp8y35vTqYIwlpwtr9lbHHB6fk7iJ3hAXXWMR1OuLk/I86I3o7PeTkW+JQxj0nSE8AznV28JQ8NifgAYjo+Pubm5JfQTjo4e0ZiK64sLEi+maDNCAUXd4kc+nm8I8Ki7jjAMePjoCWdvTtkPQi6vLvjRjz/hzYsTTKdIR2NelxegNeE8Q+x5PHn2EV/94zcUsuHhZw9YCZ/5kynHn+5ztP9T5LwjOvCRnmD/cI/RfkK5ybl8d0kQhsznY9brDZPRhGfPnvDdq5e8fnXCeJLiScmjRw9odItnBGEyYq02xGHK9HCOue7QG0i8gFy2NLrD9zxkKDl+dMzp5RW3lyUIa3IuPEEQSmaLKUZp5os5SkoarTg42CNfL+l8wWy6IBnN0Eahjc9Glhij6FRLVRWMxjblbjadcnpyyvHxEdI33K6u2d+b8+r1a7q2w5MeaRJzdXGBH9pF40cfPaNuCpLUpuU9fdxys11R1Dl+IrktVviBRzKKqVUBQhPFHrEfc3rylulsn+lsyuX1DZgO4oDQB429DxzODzh5+5a27YjCiCiOEHKK73tcXF7gBz5hHFBtS/LcMM4mPP/4M7brLXESMwtmdHXH0fERX3zxBSNvBB1MRxnnF+eMRmNr+O157O/t/TNfgD+87RaZ7j56175xj+0AIfeefP/3fu+hwLSvcCfyee+Nh/e7V4OI3Zd9T4YlxHt/u3upgfHb//77GDL3fzM773MHEN0Da8Td746xIYU1DHZyG9EXsapn0nS9IW7XKZtqgofqizut3JxpGYKe18t3+sLIkzaAwBOCQBvqxjIKnM+A6StDYXo/NtXiewJlNGkaUdUNdV1ZYLrrUFrhG9tYQtgFt1HYiNAd6rxSysqcopA4DNFIwigkjiICT+L79CkS1vOq22Hl+r0sXPZ/s0CVWzzcMWjsebYpWo6p0KmuL3zVwBRSSg9ADVL2YNhdGsZdHdcDMkL2njTePVbNQBHvfx+AGs+CXOL3dAb/ubciL/EDn9Xqirq2AQRa28ZPmqaDt9d6vR5qKle3ggUTnJTHNRZXq9VQKzsW+Ww2oyxLNptN31kVVFVFUeRDw9BKbAO6rmU8HrFerwnDiCzLWC2XBGEweOIsl0viOGKb5yz2FuSbDW3bsm4bDg8OQGQIP2N5vWS5qWm73nbU+BgjEEZR1y7W1zIe7XXtfC9sLeh5EVJ6vdeiwPdtCtNib0rXtXhCk8QBjx8csd2s0Uox6iViQRBwcXEx+KxsNhu01rx6+ZLZbEae54NnjftbGIa0bcvR0ZGtNXvJThBY+c/t7e1grOvq9+l0SlmWA9A2Go2YTaeMJxPqtmNb1niejT3XRlPlNY8ePSOUhq9eXXNOTdMs+Vf/5le8vFphopCf/fQ5X52VfP2bb/jVy2tUMOHRTYeQgief/JgmX3Fx8Y7ZYsPPf/2ab99ckUQhv31xhvB9gnTMyfkt6mbLfLHA8/0+zMI2gOq6Zn9/n0ePH/Wd/46uzomTmGkfGZ/nBXmeEwTWnLmqKjabls3Ggnvz+XyIbB+NRghhmTeT8ZjtdjuwuJqmIc0yqqoewMIvv/zNMHY/1O0+u8+Cim1n/UncwtzvgXTP82iEoWsaRCNZX6159c1LtqsNf/bnf8p4NqLBynI8PHwsaKK5v3g2xnrU7HrfDPOjwSaL9p4lqk8pFNrer5umBmODcoSRXJ2d8+svviCOIybTqbWKAOIsYzqbEUobUiOEQBo7t2ije9GQQWh6OaP1wSkbRd0KFB0am1blQAoH0ihl0Bob8910NnFSeDSdIu8UjYGL5Zon88d0qkQa6AyE4wnheIISHsoIC9xLH4Oh0S1+kjKaTmn1DdpIm3Tn2TRmjWZbbahV1R8XOCtdT/jotkY1vr3/eIJONcRpRJwkSOmjDX0Md8jh/gGvT8+olRnirP1A0CmrepHKebkKtLofuODkQ3Yda8E20RcrbdvR1i0ENoDGyZXu6hDTM29do8MqNIwBz/cse8bOlL9DvHFJkHeFkRgqMtn75NGfJ/fk3XHljsG9viMa/HtLnxyjZRegsJPOHZvEgi16KAx3OwXv08ec0ay7KBx7ZJee7ICIXeDDPe7Qc4cWO7AliqLBVEzvgAZwn1J0x/S56/A5oOUeZbg/Rvd6wtx9Xvf+7nm7x+PYMoEzABS2WPOFpG5qlDFEcTTodN0XFoYhRmMvNGnRya5VdMomQzjmigN+3HlwoNQgo/IcYtfZAShtspHXj6coCEiydOgKDYPH89HYSFPZg0+iH4BS+sN72nOkUf35FdJlzgs8L+gBMhDCI4psZ/z2/BKBNVPzfZ9nTx9yevKa68szfvtL6xHj5EcCxfX1BXHsEycTi4xqgzE1nvSRApq6BCyoorQh8gJMn+TUtgrPhySL7U3VGDwZoHtX97ZRCKGtptUYOq3oqrIvEARNcwdGam2oVPP7Lo9/1u1Hj59QV5IvfvGKbuVzdn5NXq6YHAYsjseMZ2MaXXF1ckP2fILPmLcX1yBzgjQgSycI4OY8xzcpRhu6WDEeTzi5uEEbO9l3uuH44SF+6PHyxSuuo2vSdExxU/Lk8TMmUYWQNUJZ/boKzf9H3Zs1SZJkV3qfqq1uvrvHnltlLY0GGj0DIYQcCl/4A/ibKcIR4SIkOIOZAaaHVd1VmZVrrL6aua2qygc1NbfIzmo0hg9Iakt0ZLl7mNuiZnrvueecy1ZnCBESxxPWmz2T0Yz59ITZ5AzTSO7u3xOPGltpCAPKoiQt1gziCb/5y9+yS3eUtaKqG4Z+xDIYc7Nfk/gBt96G5cuYZ/MRcXJCMY6IBz7DpeTpi5ekhzVf/zdnhNGAyWTKfrciwuc/fv8f+ct//VfE/pBXP7zn9OkMBpoqPVBoQd3kxFFAVXrE4YCTk1MkEc/PX7DaPhAkMFdnpB82rOIUMTRMopCwBl1rcgFh4JFMYsJ5RLj3iTxBZnLCcUjurTnU9+wOEaqEqyfPqB7ukAKaQ8bNhw+cnS4xY4UvfebLBR9ufsb3DLvdAyenE7ablNX6jixNWc4nzOYJ+AWF2nCz/sD4JGG2XHLYFpRZjik0smkIBh4fPtwxn54wSAbsthvyvGAwmOJnORcnE9YP9wSRz3p1y3Q8ZRyMyA8ZYQSlzkgWIWEsgZIkMIR+zO3NHaenp51fRVmWhH6EL32iOOKQ5/i+jx8GBKFPXh4YTYaEviDPFVpIPt7fWHlFrPGFx2Ac01CzPF8ShQP2+z279EClFbXQ+FGAB8Tel1u176/sDqMRor9YPwZaPidLAugfYR/jMI+An97r7br8KaCiegFD+yXtNp1O24FJjz/zR1CSkEdd0aOhe8djHh3v54aQAqk5dm4SBikNGNVuxrPsTW2fw7XW1I2mqhoaZQsP2gi0MG0PDENjDEbbCFdoQ2AkQQuCuNapAmG7XsjjelbXtfXCUgptGjCKqmxoOmmFT10V1GVDXSpUKWyXDQRVbdeLsi5JDxUCiAK7XtdlSRiF+J7PIA5JAkMcCeI46iriFkzSCAnKNNRK09Q2ifOEtD69RoIyaCMRWtKYY7ApW78Zeyw2ia0bZaUtysYtvmNTNQZsQxE86du1XgokDb7wWzDGmQdbvxlbefNtBVKYHmPGA+F1njTW0NO2iRXSQ39mbn4p48OHW8IwJAwjhPApCkXTlBis/CjLso6pEIYhi8WC+XxOlmXc3d11rBrnyehiZGf86gCdLMu6Il2WZfh+2V53qKqcunasbVuAS9OUKLJzM8syhqOYpO0uqpqKyTihKAom4wSJxvME8SBmu90yGI3IspyT0wX7bI8fVFR1Q3YQlIVqJXC9FvOCds65eM3eI74fMhknVGWBNhJPSkajMUJA6AnOl6eMRiPCMCQ9FITxEK1s0ev169e4zlmLxYJ0v8cYQ5amvGplT6q1FGiaht1u18W1k8mEn376iaos+eqrr0jTlP1uR9Oy7JMk6QrCURQBds6fnpzg+z673Y5GKdL9HgBfK5RRrPbbLjZPt1uqsuZ3m480uuSQV7z+uKWqNDpNGX5c8+rDAw8PDwghmIxq7q5znl7NWUwC/v0f3hIP5/yv//CaH15dA6CM5D+/viWOYvwoYp1VaFWjkQziiDgKGQxiUIokGTBIrA+IUg1x7DGcnZIk1rsnGSYsT5bc3NwgsMcZhh5xPGA8tt3I7u/vqaqqy5FWq1VXUFZas9vvmc1mRG2xuyhq2w2o9bi8uHjyT8pw/yWH9Bzw7VoVu6RatAVg+zkhhV2KaoWsJOn9gQ8/fmSz2vLiu5dMLqZUxspWMRI8QUODaWzh33UfFsKayFf66BPj1l+tNT4So+z9Evit/UalCESIRKJMQxxEeCKgyRR/+Ie/pz6sOLl6STyfIZMBQRgSe5Zxo7XuivWmBUldvqnV8akpVIHxAjIlyZuGhpLKWA8xm4vaZVIbqJTG1BqjQUmNbxRCSdKyoTRQG8Gb1YZvnz5hoEFWBbpoqA8NnheDH6G0h9C+9cLxDXkjSWvJvrQmxrJpkMo+I5Q2NEKxLzY0VLaAJFrw32iapqYsC0Q4xPMjBAXCa4jjAeFwCUFCIDzQAcgZTy6/46fXH3h/t6Ksy84omRB0eQTT4AhwCCk7o3wB+EJaJUnToHRlYwcF2nXl8oRdR7VjLWmkD6L1p7EFDYHWAiUNWZ0zdOubOTJvbGdHr82JBUJ4aG1QzZF80RE9PNnKpXRHSHEWLsYYpMHm3VrjBQKjtNubz45/UkzcdyN2CbuUraFSuwOObSHl0ciuf3IdhdExXRwS3Ge19OUozhneGfG5v3OAivtvoKMGOvaDEKJzUXfASR+p9TwbBDpGS99Ppw8EOcDHAkZ1R43rs4P6hrt94MXRNZ00ywEsSTLo2CeOtVOWJZ5UVFXdeeq447N63uO5dB2s3G8nFwMeyZyMMZbmxbFdupSSqq7IDtmjLlv9B5N76AtbdukqSnAEtILAe/RdluVk25G6azQYDLr98Nt9cO/NZrOO/noE+iwjKgh8muYogXPATxAc2VDOfNr59IDpPu/mk+/7RHFMmqaPbvAj6+gooTteMzpg7lN51Jc4fnz1migcc3o+ZbNbUzUV/+Z/+G+53bynrDIGrTGlGYfYhnHK3qNeQFlWeLJgNFxweX7Ofr/n+fMXpOmBh9WKD+8/8uz5JUVZkhe5rfKNRkymU87PTphMZqgm43DILAgmPTw/oahrhpMZ59hOJ8FAotcaowxRaLXqgRdzeXlBXpW8f3PPkyenRH7C7cMtk+GMqsooij279YbZaMgwmXJ6esXtYcXsdIIvIy6+PrN67MMdw7OQ58+ecXI1wUsU8/GEyAvI0gOKnNEk4vvv/wvz5YQgkjRGcfX1GfPzGftyR6VLGhHhBz4vXrzk9vaey8tLJuMZ6/WG1eqB8XxIqTLS/Z5kmBAEPsNvJpT6QH5fETWSgZakZUkySqgHmotfX5HrN0g/4OJXJ0gfZuMZwzihbNsSDwcx6+2a7WbN2dUJZ2dLijJnv1mxzTeAbUd6erpgt7MU/Kqo8WRMmdf4Xki6PRAFAwI/4ubjDZGfMFtMaJKIf/3Xf01eZvz05mf0O0udPhz2eIGirhqWiydstmuk8AiDkEbVnJ6eUxcloyRBCk1+OKBUSdXUeMJ2E8iyjPPTcwZJjMYwTBKkkBR5QVHk/PY3v+XDhw/UZcEgniIRTMfWx0soQeAn7KstjVfRqApd1wxHPml6oKoarq+vWS5POBwy9vsdRZkxmk44ZAcmkwnT4YhB8OWy3Y6PjT+WQB2rKseAWfYhkV945vRBjz5W0n9dyB4A02fsHIktn92+S9Y+t013GB0B5jN//5i88/n971PaHxGOWy25Q7S0MaCOzB6tbdWwaRRV09A02jJhbK/M7tuklGhAK9N2abLrk+9JPInt7NTuR8f+FIJQSkIhrF9HG2u4IoYx2oJKMmAYGwZBwH6fkeYaoTW27SYIoRHCfo+UtmtFEPjEcUAcDxgOIkZRQBAEXVKvtbbHKiXGHM1Sy6rEaEPg+2gjaFSbmDgGhLbgkGMaB37QVnp1J/dWraTZGKAttFRVRWMk2ljPnwCJRuBLa6COdEyao/Sp335UOhNm4bVJk/1xsZD9jGjP15ebDJ6enlp5c9MwnUw6iUk88DomTZIkXFxcMBwOWa1WvH37lr7ngJNHOcPbpmk62amL2xyLuygKptMph8OBzWbTxb2+73NyckIURdzc3HQ+hnEct8lkTdSyclw8mWVZ1/BAa+vteHp6Sp7nNE3NYj6zLYqFx83tHWVVkqUHGmXluWVrBeBY0AYoqxJPtibBScJ4OKTMcxCiKxIO4gFB4CGMJvR9As9jOLAgula2k6eLzbTWPDw8WMaR5z1qh75arVrrAd0Z4Loi3dnpKYvFgu1227Fk3DPJMZrevn3LdDrl7OzsEQve5QAu98iyDM/zOvPl29tbrq9vmYynVGrMoRC8eXtrfQmxvk9Vqfjw4SNRFCIE3N+vWM7H7A4F/8f/9Z+I4hGrfc0Prz5SNq5LjWCzy6ibTZuw2Xtzv9vjCUjiiND3GSZDnj17SlEc+PjxmjgOOT05QYqQpjZ8+PC2y63CMORwsHHrYDBgvV7TNHXLuLcsIccuGo1GOPsIZ40wGAw6lr7zoqzrumOKOaDrSx1uDvVlSMfniehUHFVV0RSQrlPe/fyW+4dbLp+e8+z5BUYrlDgqEvqFe7fNvjKhL1lxwxU8+jLTLtf1JI1SeNLH9wJQhrevX/Pq9SvCQczl1SWT2RQtW2uM9jtd3nQEH0z7P1c0OYKmGlAGylrRSE2jDMY0GDwLSiiFUg1aKbudNq80QKUa9nnWsk5hk+e836y5mg7RjSY5HNhs1xR5Rh2CDHziOESEI0oD+zzn3//7/8yHt7cI44NpWplOy241mvSQ2vWl3V9jTFdcUY3qji0ajTh5+pzZk6/xk1OEHGNMBLZXFlFs743b9QOmbJB+gCcDVG1ZMK4AoVsiQ0ec6F1Lo4/sUhe7GHPsqiyoWxWJa+zAI4ZyO7WQsiWROGVJmxf2I5q+NNiNvgzafUZr3bJS20YD3tFs2BFTLOjUNlKqKrzgl+GYfxKocRMsCIJOeuP7IaKN3By4YB8KTRfk9G+Sfktv9+BwD5s+28XdUGGHCBfd37lE3wUP7qD7EhWn8Xp4eOj2yYEEj06iaZPWdrt9iqv7vKMJKqUYRJHVxPfOg5NmOaTMIf6u85G7qfveNWVZdtPDBVZBS73t+/O4/bRA0mOGj1uMnGSs3xLMnXMXMLjFrEPdleq+x503JyfrP7h8z0O2bKDHQJ2lXjsWjPvbo1u2eGQi3V+83eR018J54LjXLUNIdPMNaL1ErOeGW2QcQOP+pmlbp/aBFaUUTbuwHSVZRxr8p8BcGIY0tX7kPeC8k77UUdQNcaI5PZvz5OUl49mY9x/ekh4O7PZbng3OmQ6XvPvpjsUkJ55EBIFHMpxw/fGO0bBg9qszkkFCHEXc3twynk65W63YphkvfM8a2cYRXhiQb7fMFnPu7zfMp+csl0vev3/Pbr9mMhlwdnFOdlhTHlKMMFzffiBKLFNMIFmvNwyiEbt8jxAe8/kFqICmlIzGCZIVUehz2K5ZzKZI7ylNoUD5HMoGZRTL8znPX8xZb26pZcmuVPyP/9O/sdTsZ2M+bN4CNatdyjSZUZQ50mi++uYJw+mIQ1NQ6IKzFwsaatabNQbDPt2TlwXj8YJvv/2WzXpDGEYsFks0Nffra/aHLWcnJ3z37Fve/fAWPZb4/pjz4AX6P70nWVXocczpr84wC8l0PuGHj3/g/MkFy6cTqiYjiRKEFsRBiDSaJxdn1HXOZHLF6fkc6Rk2H9asshVhGfL06gnpwXaIOKQZShl+/d237LZ7kmjA/f09Qgnm8zlNYShMydmzc9JtSmMq/uPv/gNn52ecXZyRFw3aKA77Ld98e0mWpYxHCfd3twShz9ffvuR+lYKG89MT7u5umc1HoCVlociLAmQA2jCZTTgUB7RRhKFPMk3Yrrcc8gNSQlWVLVW1oSoLfOlxenLG27dvieMBD/c769twccp+v6GuC9JM8LDeWfmn0pz4HvUhR/iSoPZ58fw5P71+TVPXlHnOs4urf+lb8M8ejwGaPzb77amAfhGoeQSkQBc9fOqjZXP/x4lyH6j53DY//c7P7oPgF9g0vzw+DXy7n0/1XbTHYUzbjtuCJC5+KBtFqVqmiG69Ndr9ceu41lZ25IwWm/ZZrn2PwJMYT3QUd4ENKK0CyBoXCh77z9kAULVyLCsPGcYRoyRkf8jJqta4sF3bPd8n8K2Zt+/7hGFIENq4YBBGxN6xo5IFp1r5lj520mxqK1tCQFUbpFRdoAfCAk7yaCrs+z6N0dZwUzHHkWwAACAASURBVNk1tWqbCTg2UCFoJTcHK7HyfVvIQFmA1vPaCnV7Lnvx1hGk8cATtGiN7erk2R8ndZaty+IvAXVfyqjqAj+QSGkoqwKlG4Iw6mKrKIrY7ezzad8yNJwBq5M77fd7BoMBJycnXUce5z3j4sLdbkeapgyHQ4CuSNWPG7///vsuxgrDkMlk0n02aFnbzkS3KAqGwyF105DnOU+ePOkKgU1jE7Zttmc6GROEEUFoCzJB4BEEHll2oKpKjLENQupGU5YVeZFb+cxkYpPfuuZsuaBu6m5fBALV1Ox2e0bD4bFTZhThyQgpjo1GHHC122678+E6Vp2fn9vYqhf7l2VpPWmA29tbwAIUznR4s9lYb54s41e/+hXffvttZ058aP16XGw7n8/Z7XbUdc1wOOyMiIfDIV9//RIMTOdDbu9viP56zP39nqKoub25pSxrfC+gyOsufRZpyv6QcjKfUyH5/se3FJXBSAkK6tyeT1p2m+97SCEIfI/Al0zHI6Io7Fpj225zkvl8zmq1Jt3YtuPGmM7KYTIZc35+xt3dHU3TPPI7cjG/ZYQd2547OVOSJCyXy1YSpkmSYdfsZL/fs1qtunP8JY4jU1A+WteEMG0xQeL7IcZAWSiqVPP+3TU3dzcsTia8/O4Z0lNobPLutuXyFNkrZPTBGbdOPQaFAI4gjcsNbAJvFQuBH2IUpNs93//ud9Sq4fL8CZP5jCAMqZraFiHa0QeghBDodl22IIfBcWgdkNAYQalAGQtYeG0vRIFu17mm/TkyZjW2j9GhrrAEU0OJ4R/evCO/PCXywKz3nNytuLm5Rx4OROOEIE4oiLi52/Nv/5f/nX/7P/9v1GmDryRV3bRdFS2dpyjLTpKGEa0U254vbQxa2W67Ck0wHHLx1bdcfvMbgtEFmCFa+3adEAKEz9nZBZPx79nkKcLzMMpgFEiO3RiNoStIII5dklR77ELYcpdds6x0zuIOuid76l3aTtNkOvmRK+TgfrTp5oBjePVjps8BNm4OA3h4ttlKm+s6kN7rze++YuW/2ky4Dxz0k2E30Z28yQEHWjedkZ5DgPs73mekONpoH2BwN6irRjiAogMQWropHJkiDrz5tIrYN2JzYIkQotW3Znie3+1nH4lzEqe+oTGIDpxwFQ63T322jzvZfbDBgQWe59EohRGPu165c1DXR2mXW3yCwAdhH+KuK0Cnue8BXO5Cu4eAA5z6HZuAR/vm9rkPtAVB0PnhOCCn//dHjxjvUSt2N9y5dte6z1pytNU+g6rfglwIKz1yjB03j/rmvn0mlQPxbGs21QEwTdNYHx3VdDdRH4jyPK9bFB1NGWgBIP/Rtfsl6v6XML7+7hmDZMRkOme337PN7pidDFHbhtliDKqmzAuePLlE0bDbr7i5veb8/BSBz2g0tRRFbXj/9h2NNoSDAVEcM55Zs1vpSe4e7qmVxg8CtBF8eH/L2cklSWL4/vvv+dWvvuHHP/zI+dl3JPGQ/d0DtTmwnC+pi4ogCBkEMVrZFulKK/JDSpaVjEcjpAjwZMjV5VPS/Z4mNwQy5MnZFT/+4RWNNlSqIgx97u6uUUuPh/SBxXzC5XhOxJD5bEJJTrpfMZwOmC6GvPnxFc+fPOOnH15xcXmBKDxev3/D1bNLNtk9RhjC0GeQJOSbkvlsRhAKtC7RpibN1iwWS24fHri5e89XL17gC4+iyknrlFIaLr95wfU6RV4m5LtrygS++e9ewrTm54/vmXwzYnk5IRwZCtMwHc3xTUAUxEznU7Iy5esXL/j9H37P6u6eyWKE0jVllTMcjWi0delPs9Sy4FTN1cUF58slaZqR7fY0ZcUgjLk6v+LnDz8TBB5+BHlVUFWa3SFikSy4fHLGu5/fMZtOQUNdlkBFMvBJs4xDtmM8Snj//j0nszFCa+5u7phOx8zGczzpk1c5GNFWdw8sT0/a56QkGoSEeYCHpCgP1iA19Gmqik1RMYgTu/AqW3EeTxKSJOBhZTX3fhAwnoxIswNpmrLZrojCAdNogkwS3r7+ufMsuHu4t6Zx/z8YnwaD/dfBEUk+gS7+HCZf+5F+oGClT5/bh+PnP7d/f2o8oh7/0q78GSygfsALdFVE50uBsRIm00ZN7j2lVCt9UlYKZVqPHiHaKljrkyKOhpB1o2yHHKwcMQwDQt8jaDsFivacaK3xhMBvq2yfAjVa0HaQAE8K4kFEEPpEyYBxq6l3R+75PlIY/I55cmS9SCFQ2gbNql1zmqahrGuU8KhbXxmtlWUqK1tBdeCVPXceURwQePZZ7CuD1xg8TyOlRitDVdeURUFRlq3Xh0djPPJDTlEUICAKbXvm4SDAlyGRLwmQ+NKewz5I081bAaJtwY20lHApA3w/fORRKKT45UnyhYzhMOmALNBtvNF0iT/YueqYB4fDwYJcbWwzHA47VsPd3V0Xy4xGo06WYqVOthW3k0ANh0PW63UH9ghhAXYXDwkhWCwWXQeo/HBgvV7bTp7t/HDxyvPnzxmPx9ze3nbfNWj99UaTMUrDbDZjvdlSFhnj8ZAkDjuGcRRFKCMoyoDZzDJX8jwnCgMCaSUBwlg2uT+ILYCkDc3FBQI4Oz/n4eEBL4oZj4c0TdUxOm5vbxmNRkwmEwZx3IFafT9JbR5XwB8eHqCNQR1oMZ1O8X2f1WqFQTCZTDgcDvzjP/7jMQ5uC4+z2Yw0Tbuco6qqzjjXscysoe60vUdqBNazbTicsNvtePXqlZUNRSFSevz0+hVpnhJIj9u7Hfv0hkpbBpwUAufB5Sri8SBmPhtb+WPoE4chi/msyydAEEUh2SHl7u6OZJBwdnaKtYQ4xsybzYaqOprlz2Yz9vs9nud1fkVlWXa5wnfffUee5/zwww8dSDWbzVitVigluvzDzbs+m/5LG/380uVYx3zTMljqyralzg8VN+9uuf3wkXgY8he/+Q4ZWJ9UbY7rjduu3QZo3ZM99Rg7nz77wcpmnSdMf58QBt8PMFqgK83rP7xifXfL6cUZT54/wwsDamXnuWlsAdotzA5s69ZMY6W8wuE0hpYRJFFIaiNRppXGmKYVshqMqjGqAa3A2K7EQkqUqam0oqjKI8PGGB6ynPLNB65OlsQTuF4XRD9dE4yH+IOI6+s9D6uMv/u7f+D1jz8TigjPeCilbVFDGJtTeQFZfqBpt92PDAS2bbgx1kZDozFS40chwWAIMkJr2QJR7eeFz3Sy5NmTp9xudmg/pFaWnSa9ozrHMlvs9zjygnaxhLaMVmdCDuLoo+sMe6EDbLS2ebgxugVpjjKqx8wX7xFduI9liN71PNqCHNdPt9/Cf2xEbYwFu/pz3frjaKvX+oXxZ/VR7MuB7AO36k5GZyirrNGSQ9T7VDEHCAAdGu86MjnanlusHBDhbiAX3LmE3T30XcAnhHhkTAaPAy7HxHDU1aqqEI567C5g+0Bw++RoqI/YHuLY8cqBRu6i9D1qHAAwHA67RaJjI2lNEFhjW3debKB6RH7dBQUoyoKwrcq5z7pz5UafrdI/J+7ffd8e11rc7a+rBrnPd2woIVHoR/vvJGKOZdRHvz3P76Rwbr70z4dbLICug5ULVhzaOBgMiOPIGta1gFJRFN3N4EC/T+VvQeB318CdG9vJSTw6P+48OG8fd1O5Cpf8NEjv0SW/xFGpmirbICMBgWG/XzOQQ4bTiCYvSaIBi+mUN9k7smLPk9kp1psJZrMFm80WrTTjYcT6YUVj4NlXX1HtU5CCH1+/4uL8jDhO2O52XFxcsd3fMB5PKYqKqlozHA7Q2jAaTTlsdyxP5wh9ytuPrxh4ER4BHx+u8ZcB6T4DbfC9gPVqjTGGr7/+jrKsKQ6S8STBmIbJfEjsJ5RpzbPLZ9ze3XL78IGmKRkPrGnexdUlh3SD0AXnF6cYU7DfrAikJGpp0mcX1vj26fNn+L5PUVacnl8RxQEfb7aMJxP2mx0y9hlFEy4uzvjDq98zmUyRXkNR7oniU6rmwMXVGYHnMYgSPly/58W3z9g+7JifjHmzDNBPEgaHIbPLId5MY5KG6dOEXycvebK84OHwniptUFXDbDrjbHHGqzc/ISPJeDLlyelTyjqlTAuaskGKkDgaUKsGLwj46adX/PVf/Ibr9zd8fPeWv/jV16webhC6ZjKaE/k+o9GSyjTkecZ4OmC9uycZj6hMQVquGYRT6qYijhbMJ0u2qxVZds833zzl5u6W1eqG2XzOeBTz5vXPTKZjVG39cmaTOW/evsMfC6Iw5sP1B+bTBRpFeijxWu+NMAowLQCuVcNgEGK04O5uC1rwzdff8vbde8JIMpsPWW/u8DwBeKT7iiiy0srxZERe5PhBiG4UieeDNizmc+7u7lBaUzZfrn/U55gkn3v/CNYcgZp/DkjzRy/LHuvmEUjyJ/7mn/i+R++bX9rQP52g9/fHslV0B9IobSuEkl5QY1xHB0WtDc400bFp+l2L3NpZC9UxFIqqAqOpKo+BVpgwRHm2pYZ4lGgZtGyZPJ8kBwZBY0S7ZmCNfz2JLwVC0xmfumOyM1kihesqYT196kZTVHVrNFx1cVPdNBZ06mnZLQNBUdWWLeqkRIEfEFUBgQ+ef2SV+r6P7/mAoWxZyKpdx7VpqAmpakOtJVobajQ1ll0X+ZJRHLSsmGOF0P10VUNh2TN902D747dMAr9l48gvnlHjeZLVakOapgwGiQWNxyM+fvyI53mMRiPgeN86U9vtdst6vW69ZKIu3nTxoJNQAZ1x7t3d3aN7vZMdKUWSJKRpyng87pod1HXNZrNhNBp1II7rFjqbzTgcDiityfO8i2tcXHQyn7NerSjKkrKqMdqw266ZTiZUZU2e5SRxQnY4sFnvGE/HLOaWaSGkIElihklCUzUMB5Y1U9X2+/NDhkAQh1aWVZcVSWy7rWJMVwidTqed3Cto4zF3L41GIzabDdnhwLSNBx1wsFgs2G23HRO7z05Ps6xjD6Vpyvn5uV3Pi6KTPPVZ/FVVMZvNHuUeYWg7q+33e3a7PYdDgZAeNzfXDJIdk8mEyWRIWVXEUchqtWI0GmCAQHioumY0HFKjbNtgZa/n1dUldV1TlpVteBEGzGczdFNjtGKYWGZQXljpUhQFjEZDPE+ilebF18/IixzVxreDwYDtdsv19XUX865WKxwjxLHLh8Nhl6/8/d//fRdfG2Mbj7gi+mQye+Rj8/Dw8EV3S/wlqRLCIIWPQaAaRVk23N+tuP3wkTAQ/Oa3v8YLbbcerSRC6q6jTv/+0/qYCPcTa/d+3yYDaLsceT1gtx3CgvRoj6qouH7/ntlkxDfffcN4NsVrc12BBXsMULd2Hn32TvchLK9DKesJ47UsG+F5NEbStH5uuvVCMcqCDLQ/Ruu2VbRA+H4L1lgmiUfr5SYgrTUfVym1luwqwftVRRCF7NKU9JCx32cEMrT3uTB4Ag51YVtkO984DNkh61ielhkjcbQUiYfnBbYwITRVfWC1uibbrhnOG/BaAAOvZcX6CBHx4uk3vL1+4G63b71Bm07FApaFqs0fd/+y8wNUo0hbUNyBOMdrf8zplFb4UUDgAU3V0ZNNW3Tpq3BMt30LtD0GDjVGuE5Ux5y9r2Jx3//pe7SsZ9kDhZR5nIN+Ov4kUNMhQ9CBFJYFEWCMTfT7Hiie53ef6f8W4igvcgflqKZ9poNLtvsSHncgrvLgpEUOsXIAkqteuRuubxbobkir5W3svDJW4uMCJM+z7RVBtGjekamBNtTq6KjugA9tDGHbNUhIu5A5cGG72xIGoTW0NbDfpx0CafWsFUHYtkxrji3PO2NgIIwCnEeNO09Hto9tLVpXtr20VgopW8ZMu/9GG7IyI4xCTEvjsqCb3a5WmqA1bbaTS+B5vmX+GNvizPP8lkLr2wqm57Xu2nTnHgye72O06XTGjbKdZxzg5YAXF6y4axLFEU3dULX0VSktrS3wfaTnUZVlt48OMFRKIR2DiKNsDoH1ADIazLGFoZvLbl/6Gu/hcMjhcLD03hbE6c/LL3X89PNr/vXf/IaiSinrmjD2qeqC0+UZdeCxuVtzslxQNxXIhkES8Rd/8SvSfUaSJCjtDDQNQRhhmortdoNSdTvnrZygqiqSZMTbt2+4OL/icnHJzfVHJpMRL16+QCB4+uwpwyQiAELh8/z8ObVpSOIRk/GcwWDIh/cf8aVHFA1AeJyfzQgCwWaTMYhjtNIk8YD9XU40HXF/e8vyZMGLZ8/IigPVJmU+XfDq/UfOLxeIeMgwmtCoA6v1PYEfUWQ5ng/L8wWHrOTnn99ias2zZ8/5eHdNNE5QdU2RHRjGCaIx6FJx9fyKKPIYJhFG15ydLbi9e8DQMJuPGU/GbB/2XH+8YTadU2vNeJiAbsgouPjLK7xE8e3ffEMzKEnrFMLGmjqPYoLJCenrDRdnV8RBzHwx4/s/FHhCcn9b8fTyBf/hH/9vZqdj4mDA5dmAydQG2GES8+0333XBvTENoLg4PyEKA6azOX/3d/+O0/MLzs/Oub17w+L0nJdfP6MsG5RuUOoAwYDxJKZpGpJkzNcvv6U2JaPxgPE04fbujuxw4ORkzvphy/n5Gff39yTJkLpW1gwusYZrQnjkRYEUkuVijicFqtGcnpywXW0p8sJWXH1FGMbMF1OSga0Al0WBF2ru7q8ZjmKatGaxXFLkiiiWjIZDGqXZbXfs9hvyQ8HFZIHnSZqW0l4UOZPZ7F/6FvzF0YNpHgEwrnrSMoi7ao17zHwK6pje/39++70//vTf+vi3UnxmK+Kfn1L/ka77MzvUD0Q/tSO2r1lZ03ENbX8rhXKgRa/a7oCaxhi0tgGTlB7S85C+k9xYEEIrW8jIi5KirkBZaZ7vWfCkqW2HJ9GuE5507U4lgW81+M5MV2tF1RiKyq5NQlhD+iAIWlNH032+q7Yi0cIaxDrGhtaK9JCTFkXHIu4Hm1K0vnnmGOeUVU1jjn5znufhe7aLou8dz6nfeppEcWSlhkaDkEjfMhNslwyBkRItBI1W6LrBYAiEZfg6Joz1L3vcHvfIlJGY9rf7of0tPYnn+4he/PUlj8FgwPm5le4OhyOUUjw8PHRtu2UrTdlut12id319TRiGPHv2jCAIuLm56bwCh8MhaZp28a4DYJq6Zj6fM5vN0C244opUeZ63nnxBl7w5pnaSJEgpO49FVyRL09T677XFTWdi7NpSv337xjKCsff7q1c/2fWi/W7fD7tufBfnFxRlju9JZpMJUtrvHw8T5MinrmryPCOOB4xOTmiamqZWRFHM6uGB/X7fxm010hOEkfVOub+/Byw7OU1TTk5ObBGulTG5oqmLs6Io6s6X87JxLb2VUhbImkyYTCY2f/A8Vq0/0GQ87nIJJ32aTMadx49jH7ntSCmYTMZ4fsB8eYI2gkNxoCwL3r39maqqLAtoEDFILsEIlJZME2uqfygyvFAQRBHrhz1xFLFYLvCkJM0y6qbBD0M8AXXlEYUBo2HCfD5nOJrxsHqgyA9E8YBBHPG73/2Oq/MzC8asH4ijmCxLOeQ5h0PO1dUlg4H1OjocMs7PL9jv9yjVdEVgV/B0Y7FYkOd5e9zH8+3Y8fP5vIuHv8TRJbQYlFYd00XpGgPWBFhL1vcb3r/9QF1l/PXf/BWDJGoXOdkanR8ZMJ8WCAD6ibTLNa2MlXahsktpH8QxmN6z0eZYujKs7lck0YDZbEocRW2nJ+upZg1lDVVZtXmf/sVnpBB2TXF0T0/6KAN51VAFBgIrJbfnSbQgjV1joPVjkbahjEbg+wFDL6RRmkK37B4Eh6Lm7fUD1w9bfvf9z7aBQ5KQDBMmoxGR9Am0AK1R1O363GauQqK0oqgtA0xIiTB2/W01F20Hw4BGQ+QZaGp2qzs+vPmBeHZBPPMJ/ASbrnkgJIKQ6eSUv/r1b/k//8O/41AWBL6gqGowtMCmafPO1v/FXUchQAqUqTFKt3kunRxUe5bng2njDmUl0FKCEbKlIdMVh2SvwE+7/vULOJ60sYQD4PpzzOW1Du+QsjWjNq2aRZtjS24hkKaVifnWasTt++fGnwRqJrMpWZZZWUjgd/4gxhzZEp8ik58GIo7O6BJfB9L0EWKXPLvOTW6BcoGLA4zcBD/ux1Ga5SQ3bgFz24WjTKZP++sAJmNoTIMnfYq8aisCVU/6ZIijgAa6SoajVxpsda9ov1t4nu2JriVRENsOCLWmbgzWVld3nh1Op9vUNVEUP2KKuAUbLOXPScw6hNgI6/LdGISwLuZSWv1iVdmHtxSSSlXEcWIPWGoizzJiirxsH1I+Aonfvk770LIgotcBH0gPIzw8T6J0gxGiDXA1JycnnQZeKcXh9qbT6NfV0SvHofqd340U4EkLFmAIItum0WADzUZrJBotJI02GCEZDK0xsxf6mBb4OxwO3QPXSZckzvRaPjIh7rO/+nPK932aWjMYDLoq0Je8oAGcPVkQJh6b2ztWqy2//ovfcnuzotgdELKgFAX3aUojPCqV8uHjHcM4YhBKinSD9ANKbdhVNSUKLQz3d9dMJzPOp2Nkbtje7hAhnJ+eURnB2B+QqwoTCApdcbo8Icv2KNOwO6xAa6bDU7Iip8q33NyvmE6WbNdrJpMpg3jAIatZLJYEIuCw10wmS7QxpJsd0+GQZ5dfcXtzzT6958VXZ+y3O7QKmc++YjoZ81eDCff3N5ycLPADj3e3v2e93xL6c6aLM/IiZX2/pio1s2RJmRU0WU0oJLfXPxMEgnE4pFin1IeK5PyUh4cbnoQX1kR3NGE2mXN/v+XVqzccig35Yco4OePickqeF8SDBD/R4DWg1twXOV/9919BIjiUOW/u3/P0/AqpS3RYsl0fOF2+4PLsBde3byg4EIw9iqJiMBjhJ5KiOaBIOD05RWmP05NTrm8/InTAaDylLnOur9+Rl4JNes50NmFb7EnrLSosKEzK0j/jyeUF99cfiUOfi/Nz4kHE/eo9+901v/7LrzhkNT+++ZE4ihgPI4qyoVaG2ewE/C3Ck0zmU/Akla7Z53uboMY+Az9Ga0mOpjzUlPmGZ8+eUKQ5dV1yv7khDocYKZE6Iiu3xKMJ2WbPbDZnu12TDCNqrcGrqU1FMPbZZFuGgzm+EGTpgYuLc1b3d6RZShxFZMoGn2/fvbYsAxS73epf9gb8E+NTDxbhfAw+AWLcv7pKyx9vCD4Hp/QM7vrvPrKQkcd3/5xmyf196NOM+1+ihP4lqOazQxgs88QGDKimRmgFqgbdgLEyH6UNSjumjS1ktH+CNQXuHXPL2pDCw8cxOGwHjkZpiqqirCpUo+w6IL228GioVGODM45Bc4Mg9CVGH4sHLq7Jq4Y0rx91WvE8j8C3HZvc2mG0tpp5IZA9/zR3PrNDxqEoUMr5uQmk155YDbWysq5GG2oNlWm7WBjaQNEmXpW2HRzd/nueR6VhGoQEUmCMQAsPpW3LVCMEaIVA47XMIWMay/Q2smURKXtOpUB6Gs+ZAQuJkT5aeiB9AuEhkXi2ZoqPh98aCwvPx/MC6y8gJZ+ds1/IqCqFlGHbBtkar15ePqUoMqQUpGna+a04efbJyQlBEPDw8NCxrfM87+IFYwzj8djOp7pmNB6TZbYgIoDddstuv++kKy4BdcVBx45wyfdwOOyk31pr4lZC5OIXt3/b7ZY4jqnrmtHUymyiKCLLMq6uLnqNICrm81nnc9I0tkOZq9A3jQINeZajlOLp06cURdEy2COMCdvYt6bRFY2uOawtWBN5cQeKuK5ZLqlxcfjDw0PX+lx6HocsAyCOInbbbQfUBEHAbrfrGOfr9ZrLy0vu7+46wFIIQZam7fatl2Ucx0wm45Y1bdthZ1nGbDYjSSxYst3tMFgQrixLHlYrFpMJh4PH2WLxSI4fRhFFnndSisNA4O805+fnrFZrmEAY+MxGCcYoQn+AEII4GjCbzQiCgB9//BGjGh7u7thvU8tQygumozF13vDrb/+SdF+y2dyQpilXV1fs9nvqqub586/a1toN4CFlyOFQtp48ujUYbijLkqqqmM/n3ZySUradywxFUSGEbTv/9OnTrjvulzp0C7A4FqExhsYohGcBba0k+a7g/u019WbP1a8viWcxCPBly07gyH7pJ9KfFkEeSTzbts8GELpdM9sis03YhU2iZVus0AKUINvu+fjzW07mM0aRR4DE5PbeErGPajSNoQNp4HEx5uhNZ9mIRtr9qE2AROAbRaMNufFRQgI1RmhqDUgrgfIQCN8+5yMZUXoG5Sk8IiJPMog8hm1eqbRCtT5unhYMoohhMiQZDonCkEAGNI2NU9BglKEuNJEYAJLaN5S6oNJly3KyTJrAgBJ2LfUEhAQI7RGgCY2PLBVlek1VvGHAAs+M0cLDCEsC0cZDigHPL75i/3LHv/vP/4kDtmmAxENobQEh1TJZG2sojJAYWnaTMjTlUUmhGgVKQw2IBmgQwgI5RZ4jQok0tkW3NfW3sYpuX1Pm2ClPCIHE5pW+Bk8YpJ0W3XCYh5tT7lobbbrOYd08RyN8n6ZV0kjsM900/5VAzXa77XbCGNOh4VY7zaOOQJZpI6nrIxOh75vipEt97xR3IziDLPcgFkJQFEXHuumzclwQ5ZJwt0j05SzO+8SBG47K5BgdSqlOcuOOyyXufSNeB/Bo/+iB09GNfR9ljhWvPkAVttWSPC9wFGt7EU13XM7jpU+5i+O4e91W045AlQOwnIGuFN6jc9ineoKVPLnr1Tdt7h4N4ugZ4FguxphHvi2O2guWWYE4ThcXKN7f33eAmdtPNyfs/h+BM/cdjinvgh53HVylxRirt4+iqAtM+lI1d53dvHkkYerpTTtvoJ5cy712ZAPRSc+cKZtj7nzJ1cFQhrz7+QP3d7csl0uy7Z7FdA5SkWYHdFNze33DZDLDqEPb3tynLAuGoxHbLCdOhlR5zsnslPcf3pOpkuXcZ7/fEYY+H262LC/GRHHIYoyUGgAAIABJREFU4qsX7NZb7rcPPHv+HK0V9/c3xHEIGHbZgcX8gkrV5FnKIduxPJ3yw+9fk6YpfiDwlj6z2YS60lR1TjyIqZuCQZwQJmM8LyQYBGzyNclsSK5ysvrAYj7BGMG7j+85OZlzcnrKanXHcDjg+sMdVdPw4vlzZtMFOyFYra+R0md+MeH1asXIxMRJxDJcsLnb8O3zv+T+4Za1WlujZFWSVZnVl0cBRZkyGgfcP9yxS7cMRxF1Yz11BklImq0xtUYMfXb7lEGiSCYRtcq5u/vAsyfPWE5mpLs92ij22Y7F5IT3168IY4/7hzuCIORwqJnNFux2W5qmYX2/5te/+Q1lqWz7UgVRGCDbav5oOCLPs7aLHCwXC+5X90ynU548uSBN7wl9ePHiivXDiizNOD094eO1IstyfC9ACDu3H1Yrtht4+fVLNtsNw/GYfbZDK81wMmC9e0CZmrIpGIYD6qagyEEInyjw2e82hJHP/f0DnrReIAhFPPBJ4iHpIcNvAubTOduHHYdDjhQ+VVkznIzZpvcUVcl0PqfIS+7u7phEEaPRiNVqRdNotIL9PgPtM51Oef/+fesPMXhUSfzSxqfSJzf6UspfkkO5f1tju1/Y/mdec8XA/y858mMQ6fGGbD3un5Y4Pdqe5c88qjo5Fo1bm/vsGa0dUNN/zTJXNW3VURwlOkJKq0E3AmPoij/O2yWMQ5JkSBQGLZOnBUV61GmlFLUxqLruJTseTVNzKCoOedUBNeAKVNYwNIqiTgZzXGPr3udkK3sOGfvBo/jhyO5UrDdb9umBurFgkxAS02M8HYs0dNU/N5zvRxRG1py4XevsOWzPm7E0duF7aK3wJdb42PePzK6WAu6YtUdzYcuakZ7skpd+IOqqjgjbMcrN3S915HnegShlaZ87URQShl7HEN/tdp1c3YEmh8OBxWLRxRJJkrDb7ZBSMplMOrAhji1r8XA4dGBHVVWEbYxZlmXnKxPHMev1+tF8dP4qTg5l48i8A0CKomDQAiJ9Fo+Ln10cuN1umc/nxHHcmc+67bm4c7lcduyTsixJ0xQnry/LsruXXFxct/eIixfjOGY0GpG2wAlYsGa/33N1dUUQBKzXa7S24MJqteL87IwwDLvuRO7eccbDfT/D5XLZSZeMsT4/7j7b7XYIYWPK6XTKbrezbbrbbkcnJyddnO2YbM6YGSBpQbYkSajrmrwFZp4/f879/T2+75O1gJK7b3e7HdPplKbZMJ06c2TBdrdhtVp1HjG+73N5ecnHjx8py4rhcMJgMGAymXSAn/M+cnYEr1+/5uTkpJ0jlrW/3+97Ho0ApouJnUnycrnsQLzNZtMVoweDAb4fUlX22NLUeuM4n6IvfThGkNYKYSyj4pDmfPzwkbv7Wy6uzjg5XSLkkSnfB2X6sidwhYjj9h8n1BKjLaPGYB7lm0q3XYCMwMOjUQ26NtSHmjc//ohnNHHo4/uWVbLZbRiFCzzjtSyW43DPfeg3ATgyOEQL9FspLJZlqtVxH3FECOlsVY5bEALhS3wkXtAa1CJIohildNvBDSv/MhC2zzdnPwK0DEtrRyG0QDetka8z9we2u40teGBQukHSslKNwQht5Wl1jVEQBJIwDhgMEiajBYE/AOx+0M5nJ5+SLRP0q6++5g9v35Ct1qjWc+6RHK3FHizTBwyiY6IYrZHymA+7rk29SdA1yVGNQXqOFaM70Mzz/ZbdRMv8tebhfaapm0+fWoD051oHFj4qgDmGs+y67rl891Mg8dPxJ6PdY5tK0wEKtt1YO0GEc9OWvWBCPAJJ3PtH81ce+aG4g3RMBjeZnd7UPZQck8XRR91DvZvgbZDlXPkdCOFAFOdf4r63ozK123egkEPzhRCdkZuBTpblWBxZlpGMRsSD+JFcxl28pnXFtr44rkOTDYz6ZrmudXdd14+AC3tD6u6B4dhF7XzD84/H8imlri8N6wNMfa2lCzwduNMHShyY4a4ftLQuYwjC4BFTpW/Y5X67xaVpFJHTa4qjtCgIQvKy6K5dkiTdsfevZ5+q6AKMfjcmd63cHOrPwc/J55Q6tg53bbxNe0xV6TpleN1n+wHUlzakkswmC9LVltPZkkE8IEmGvHr3hiAyDKKIbNewullxfj4n8iK22y1llZOMx6RpRr3NeHJ2TrJMiPwBm90OkCANYRzw/OUlk8WEWjXc3N0glWQ4HPL61Y/MFzNurj9ydrZEa1itKrLse5ajMecnCw4FNHlOHAy43t0RxT7zb05omoogABkEfLz5ANLj5VffcvPxjucXT9nlWyanE5Qu+Pn6HZ4XETZ7In9IXhwwYk6RF0jPx/MDlrMLlNIsJwuMhulojKpyELB6uOX/+f0/8tvBX6NoWG0eeHrykio1qErw8uU3VE1jkXSs4V4QeuzTNWfnc169+S+kaYYxl4Bmtbrj6uqCDx9XjJMZQgYMx2Ounl4wWwy5vr1ns7nn4vyK1cOaydiCXEYYtKjJixwRxHjCJ4giFsuE87MLtpsVL198Q1mXxP6Api4oiz3T8ZQwCPGlx/TshPPTpaWbY9sN4wcMBwkSqKuCKAZhGvJ8z2g8xBMRRgvOzi6QwiZy3333LZv1jh9+KPj973/P2eUp09mIuqlZPzxwenbOevPAYBBzeragqkviQYAfeFRlQxR6JMOYl+Pn1uRQegivQfrCVrOEwogGhKLKS4pDwTAZomrFKBlxMAfKokTVttWjL2KaMmO72RJMR+3zYYoQHkYLPC+iKEpmM0kQRNzfrwHDy5df/cvdfH/m+CXA5s/59z/7uzgyav7c7fSfr+53X0f9R98gfhk8+tx27ecfNxPQWv9RO80jaMOj947yKFouOl1XIuud0j7nezIvuz27TozHY2azGYPIep9VVUl6yDsgwyU1ZVXR1CV+66/k+T5VWXLIS8rqCHwcj6M9PNlA12bdskzdsVj5saV294M1m4DYz0dRzGBg6fpFWVO2DFQHmHzmzHbH+CgJ0ZrAb71zjKZGowwgDEIbpDM+8Cz7KAxDBsMIzz92yJAyaH/sf4u2m5NoO0H1QZpjkmO3Z6+N18oObO3xSx2uScX9/X0HRPi+z2g0YDhM+Nu//VtWqxXv3r2jKAqyLCPPc05PT7v4ZdC2pnaskc1m08V+49bjxhUkwzC07bnznO12SxAEXF5eEscxDw8PXbExDENms1nHDAd77zjmznw+75jKfhDw6tWrLj7dbredLP/s7AwhBC9evLBMm9GoY6qEYdixW4IgsAWUtmDlYlJjDLe3t51VgJSS2WzWJXMOgNlut12c7LoauW5ZzmjZgYjL5ZI8z5lMJl28eH9/z+3tLf/qX/2rrlX3YrHogCt37k9PT9FaMx6PWxnQoZVIJV387OJ9G6/WnT2Bi+eapiEIw06a5fIIYwxZllEUBbPZjM1mw+3tbVcwdSBYEARMp1OMMaRp2nkGVVVJMrRt033Ph0B08WlZlh2wZ32Qxi3TRXc5zGazIY5jzs/PefHiRceScv40DjzKsoymqRmPk+7eXy6X7Ha7bhtAa4Yctb5FEq0F79+/ZzgcdkylL3sceaKe50ziDUL4VGXD3fUt79++ZX4y4/TJCZ7vdfOyr+5w+YDLa9xruvcNbmitMZ2s5rEPiTJWuqobje/5CC3wtU9dVVy/fU+9T1lOxgQSfF+SqZp4NCSIQ2rtjGqPOW4/p5FSWiZHe9jOtsL098u45jA2v9R1+zotwNBbpD3Psz4+niRomTJCeoj/l7o3a5LlyK71Po85IufMmk+dGUAPbDRJkdR9oaR/TZke74vMZHbtSiS7m2igAZyxxpyHyJjcXQ8eHhlVGJq8MlMfhlnhFLIiY/DwcN++9tpraUEUhOb67bQuhCm3aQEQDcnA6okqU2qGPpTUVlqy2q7RKJSWNYBjSq1UfT0KjVQFQkMQJ3SHHU6fXDKenNPtHOG6Ceha06ZRUAatDVgTxx16vT7MFnUJWhsgsYK8homrhbXQ1g2r1a4zq6pO7muBKw59ACEMKIf7cD5vrZXBVJJo1zVzW40stafkNhjTBmnawIuNBdr72/ff3pNdY7bjix/b/mxa0h6wTd2SqkLrQxBmB0StzUkta6R9cXZCsItne0NthNEybywgYr/bFhq23203hJ1gLEvGsnDsRGyvxX6nqiriOH4woNvJymZqhRCkaVrXllUGpKjrhaWUjMdjUwLUAj4sO+UQCAbNvYFAqQIhDuK4bZHmPM8Jw7DJNOx2O/I8w3EP5V7WDcv3gwb4OrT9Iei24ATQTFTtz9rgSpuNYy0R29nOh31Ast/vm+tut3vbHcwCSkEQGIqteizqpR7o11i3BXuflhZsB1p7T/YcVtS4zZay+kWWgdTtdhsgB3hwfbYt2pbkmrpesDWgfspZez8IUVrxxS8/582b7/H9kIuLpwgEYRCyL3P+4W/+njJz2KwX3E6vyVVJVmUIL2C93uIKjzfffM8Xv/gVn728IK8ypssrpMgZ9SdkZUZ/0me+mBN5EVG94L75eMd2veXi4tQM6HkGSpDtM04/e4mLJAhdvnvzLVJF/PWXvyUIA1aLJf/21e8YDru8ePmS79+8xwsDgiAm3+Us1gtEprmd3TAY9hGuxz7PuLm7ZtAdE0Q+N7fX5HnOdHrP69evGQwmdDoxt7e33N9PcV0YT4Z4jsO7d98ymnTBkyznK9Cw26ZEw4Th0FDFb26vmRwfE8chi1lFmu6IExMc9Xt9RqMj0jSnEyvy3Iwnu3SDJ3w6Ucnf/f3fEkQus+U9i9WUsizY7/ZEQYDv+4RxRKUrNumKs6MJt3c3nF9ccDebc37xgtl8xqCTMBkdkWYZu22GEJrJaMy7t++5uDjn+uaazWqJLCXHk2P6wz5+4PHx5gopJV+8/pxNuiVMAgLP4btvv2E8mnA07pEXRtNru1szmUyYzW9ZLFacnI7Z7E5RSIoyZbXaoKUk2+UcjUbssz2uEnTDGF0qPO0QBBFh6BMEPtPplOFgSJlVLNN7Xrx4zmaXEoYd9qmirIWIN6stjnAIvAAtFbc3UwqVk3QTev0htx+nbHYp/W6PJI6oqpL7+ylJ3AXt1YKyFdPpDHCI46QeC4K/9Cv4k9ufY8v8ud+hFVC25hi7aR4GnE3GBv1gnP1z249lchqQ5lEWSNQf6dZ+7Tnnx4IMGwDBw8BTNwHXY1DmANQcWCF1CZDr4GiTfXPrucfY4dos6IGN63keYRTVIqF9Qt9Hyoos88jL6gHLVGsjwlsWJZ4HOC6VKsnzkrysHsyBTdwBSK3Ji4qiUlgXChAHcWSbwU33loP/IOh0XZc4jkiSmChOzHyV5Y2ThT2fUupB7NL+f5uY8gMf33VxA1OWVVV+y0XqkGxw67nNsDl8k1Gss46GL+XUCSXHaM5YhnMroG+DNYApdxI1QCMcEK75+US3r7/+uonTxuOxEXvdp00p2/X1dcOqtoDMcDgkiiK22y1RFBHHccPuCIKA9XrdOPPc39+TpmmjI2KBFOEcjDGWy2XDMrYlQTYOiuO4EYS2sUie54199i5N6ff7HB8fNzGQUorVatXYMFsGmAU8lsslvV4PgF6v14BVNoFq2TZWTDlJEu7u7ri4uGgMOBaLBa7rslwum1jMumFZW3Obnb+/v6fb7XJ+fk6apk35WFmWTf/udDq8fPmS2WyG4zj0as2Z9uLn6VNjBDCbzZqStOFw2Oyb51kDVlh2da/Xb8rhbZxt204pxcnJCa7rslqtGjbLaDRiv983gJK1YwdYLBbNczPPKkEIo9u4WqXM57DPUnq9HlHkcnNzw+XlJVJK7u/vCYIQxzm0936/J0kSOp0Oo9GoSQy2Y1Wrm2jBvMFgAGgcRzft3k4kWoDPVgzsdjsWiyW+H5l1Sg0wbbdbJpPJ/1+v2n94q4mQNUhjS480eSZZ3i/5+PYDke9zcXmKiA6gKxwMTB4vkO1m5jXVzKftxK6jDmuc9tpI6gqlapdA7eAol3SXsridcfv2I13PIRagyj1eZ0An7uJ2YnItm6oBRzhooRvR+eZaMIkVUbPHwjBswEFZz1EoVQP7gdFpsbO+tuXE9TwhzJgtXRfH9/GjoDZZ8Yx2KQd2JNSyE+JQ9WIT7w0ziZbTYz3WV6oiqzL2eYrUkloED4XEqCYKEKoGbCSur0iGMUfPzjh98Yze+BwvGKC1b27caWic2GjG8ms8N6CqZIMxwCHJI6U5g1IKKWq9OscxGnayZtRI2TCCBT88Bm7NuHKN/bc5d53kx5AghKoBLCVNCXH9fbtfe2sTBNrxQhPv1G3ZyH7wkLjQBst+avvZlWhZl5+0WR32RG3wox0ctl117ILagi72mG22i12Y25fEDuxtdXIhTFmQfRnbIsVBEDQL73aNmBFBTRogoU2vbIMwrus2mjnta7dgDxipJKVkU49skXyDHh60TcIwbOy+LSVaq0O5lu+7jYZMO3CNoqhBNC3N1dTK+qYLad04V9lnYDMC1pXJAhttRN8ySGwbWpDCqu1bVollzWRZ9gD1s8+uYU21jtNm7NgBs92BzUBYW4S2VPlt8KLEQYzYXk9Zls2xHi80bB+x12+vCR6CfLZPWgtu21/sPbX7XttK3HM9o6zeWiR8yttytyQoXbaFptAFYehzv7jhePIM2JCjKfYZ494TYidks1tR7lecnJ2RFQW9fp9yX6GKEk/7zO5WbPMNYcdjl+7wvS1+5PPh4xXpfseg2wclePena/Y7hdAZ78sbXrx4xm6z5P5qQxwG+K5gl26Yr2fMNyvOj3u8e/sdl09ekKclFyfPOX8y4ermhm63TyE1u33KoNdB6oL1Yo2WmvubOY4jGI+N009VaCbjI+bLJZ999hmrzYbVZmvQ+6XJpPUnHZSu6I07ZJuUfq+D1x1Q6owsT3n59CU3H2cMxn022wX7+w29JGG/2lAMhghHM5/P8IOAoqpIdxWDUZ9Br0+3M2IyTiiKnPPzJ4RBRFHuSbyEzW6Ndiru5zNev/6MbtTDEaYfbnYbsmKPrAqWjkte5GhHk1d7iiplNVsiswFPnzxnvU25uvlItxfjeh6XF0+5vf1Anu9ZTKf87d/8PdkuYzadcn5xzmI2Y7Fa8OLVC1zHJ4nGLOa39LpjPC9gsVgwHPVZbxcMh13KakfS8dHsWa5X/PrL37DZ3LNNt5Rlzt/+zV9zf7MgcQOev3jKzc01nTBGOIJ0meKFCXmeolwQKJaLJWfnF+yqHfusJE66rDd7VFmgSo3ve/iez2a9pTPumpIXaUQpPSfAFQFlsWUx23B6dozruSyXK4TwGAyOKAuHUpaku41Z0IYeSRybdzf7z+P61P79x4CUn/pd/8hn8OMgDdR2ov+B7cGCu33enxn6fuoU7WDosD0CmJrs14+wZh4BNQ9AHMDVNfOjDiwPrBpwWhnLAxAR1otHSzc3QVx73rMBqpTSlBw5NXVbKip1KNFqt5MFNlStPSCUopKGUm7twQ8NZUEugSse1q5LqSiKnN1uy3hyZACAJKbcbH86YNMHcM3zvMYq2hEORZ4RxwlxrVniuS5KVihZs3SEdbYQNUBT55eFYcs4woXGSatmK9W/2+8/XsyYS6qDflGza2rNmk91u7y85OjoqCkDCgIzTi6XBgywlthHR0dNQs6WPtlM6GKxaEpPwtAwVS3YoGqNRJs0dF2X4+NjtrvdA5aG3We5XNLpdOj1ek2Ms1qtmBwdsZjPm/jKluk4dd+VUjYGH4PBAMdxGj1JxzHMV5uo1Fo3rBFrdhGGIUdHR43ujmUm2Lix2+029tjW4KPb7TYx6sHUwn3AaLEMHPu57af2Oh6vBWyZ1+3tbeOWlaYZURQ076ddRNr42jJ39vu0iets3Nzv97m4eML19TXbrdGGaTt1ffz4sYk5q6qi3+83AJTVevnmm2+avm7bZjweo5Ti7u4WrR1WqyVRFBBFIXFiSqq8uuQqTQ1w8+rVq9qII3pQQWCfx75mWRmQJ2rWEDZRq5TRxen3+zVDKaMoCs7Pz5tqgyRJWNWOWdY5zLKCgiDg7u6uaX+7zvl0NyP07ggXIYw+aFlKFrMt333zPbqQXH72DD90EaGDH/iNK9PjhfJjZv3jtWp7frFudW1iAdRaIkLgez6e9pCFZHY75+r7j+i8IgljRt0YJSQaRdxNKOrrl9qU6DhGTAapHzJ2gAYED8KQMAoRrsNuuzusrZRh9Fi2jb0vKTHW4KomSTi1hbdj2JlBrfckpQFltIPR2RFGDFeLgzgyHFggTr1+R9fnUQpXCJSj0I4mTXdUqgJUi/ykbUYGMOs9L/SI+xGTJxPOXz9l+OQctzNAOzHo9tzwOD4wuqm/+OKXvL29Y/3xqhUzqJqB9DBZYRMnhoxQEMVJrXtjn69AiRYbtgZqbMmUVAohVHMbj2OuB8/MgnziIWvG9qc2m8Y+K/v5g32UQouH0jB2/5/afnZGbQ+qSh3KnxzhUFYVbptuhgneTaeyJTMHBosdGO1iul22ZF8o+9NWbrdgERxQU5utsKBLY7stDuezwIetTbX1t6Z281DG1AY/zHWYzFhRFrVmRQhaIStjxWlDFKkkUimiOKYsDxowShqbLQOgBJSFtRcDreWDwUAp1VAry7Js6pub7B2iUT9vWx1WpXFjsm1jr78NfNisUbu23u4D1HaBYQNu2R+bZbBgRVtXyHUNWDMajkj3aROIOI5bl5aZ1gmCkLIsjMq1K5qsged5SGUsysuW2KINOOxA2x5c23RBOyC3WVp2ULPnaCv+t23B7bFtVrCdlSzLCsc9DFg2YGrTkD+1Lc12BHGX7qCLFxnK4HK55f2Hd1xeDutBvkJWJWEQMxj0WaRzHOGQpntGwxFXqxtkXpBnBU+fveS//+6/k8uC8WhEmu7Bg+12y3A44urjHUeDkjhKSKIujiNQqqLfm/Du7TUf3tzzP/3NFywXcxbrexbrJW4YsNunCEcwn88IgshMxPhMpysuXzxHIpGyIAh9yipjvVrT7fXIs4rQT+jEAz7m13hDj6LM8X2PP/zh39AapNRsdlsGow6dJGE6vWOXbun2O1SFsaMMqxA8QRj7lFXJ+bMTdsWa6eKGi7MzQi+kE/fJ84zNdkOa7um5IVUh6CZjBp1jhPBI4i4fPnwkL3YcnQ7wPJcoDMiLPUqXfP3115SVRCuH0+NT1qs5AljMF5RFyZe//Q3v/vSm0SqI4oiqynhyecb9+1vS3Y5O3GW1WJPlKZ999hmODnAchZIF2W5PFEbM7qc8e3ZBWZVcPn3K0ckRi9WCzW5P0j1Ga5/j43N832Exm5GmW5JuzG63QVPh+7BcTXHdiM12QxgGuCJCFsb+MQxCYj/CVQ69qIdQCle49OM+J0+f8a+//78JIhMkBX5Ct9vnbjk1Ip1uwHK+pN8ZoQoJSuN7Qd3nUrqdHlVZsU9TPv/FGfP5gqqQXJyfGoE7x6HIc8oyJxvtEcLB813KqiQIhqzXa3a7HWdnp+x2n+67abf/LyCNzWz94JgtnRjR/Kf+i3gIlPw4eNKKsYSDLU9CW8PNWtSxfb4GcKChaz8Gj9A/vFbzuf2zbrKAZu7Tzb8NU0SZrGoTZNnv1I5D9lodcYgVAISjcD3X9MnANwFpnY0tygo0TYmJndcadkwtXGyTBW3KvLB054ZJ1LIOt+1a35+pOdcPkCynbl9UO0N5YD8Z1m/FerMmSXqEQYDnuRSFbOhL9mi2dW2JdxSG9HvdxnQg8hTdboLrOuQ55Jky4o64rZjDEuY12nVwhVdrFQR4rteAYMIxjBpb/mTP6boHoMyCPI0+TcsVynU+XUbN+fk5WZY15hW2tOjZs6ekadrEIv1+nw8fPjTuTlVV0e12G4aMLZO3QJ/WutE0sewO6+BUtpKEdiF+enraLMi3220Tt263W6NlUoMgFjDZ7nYGLKpLeGzJi407fd8nTfeEUWjiz7Ik8AOOj4/IshylZHN96/Wm0S2xIJTWEIZBrSuzJAyDJj4VQjTlU67jNK5MVVXh1RoxtgzLgio2pnVdl+122+w/HJrYpCxLBoMB+/2e6+vrRj/G6L64jR23BbbSNGW1WrLZbHn16lXd7oper1vHhUbDptvtkdUOa2dnZ41sQhRFjGq2kgU0+v0+Z2fnhGHIhw8fubu7RykDUq3Xa5TSBEHIb3/7Jb/61a9ZrVYsl/8neV5wfHzEZDJGa0UYBg1ztR1Dp2mK55kysW7XgHFPnlyQ5zl3t3cATCZj8rygqkp836uZTQ7j8YiiKFkuTamv6zooZdztbm5uUcqsfzYbAy52ux2EcJhOp8ahMfDJsn291slwHJfRaMjp6elf5L37925mzDWaNFm6Z7Va8+7NNVVR8fzyCWHgE0QBIq7FqnWbbSEfzHVtJj8c5sH2v67rYupEf2y+dmoFFRct4fb6lvvrW/bblEEc43suceTTGYzZSUnleSbmVgqF0YhxHAMkPB4ThTAz60HqQlHkBVVp3Iqs+3Z9J816xbgbSpQya0qESdAIzNwiXAcv8AnCkKKokMrYfAu75vFcdN1OXu3SLKXC9TysvotdYyqljcsvZs7bprsa4G/N9dqWYB2YuH4U0D8acHx5yvjilKjfBz+oW8Tub1Tv7EFMEZRpbcsY/PbNu0NipHZ1tOt6rakdpjyQBsixIIpXy3QYBtHDZ2vmLt1ENUrJgyiwrtlTCKqqRLd05Whp4bSBl3Z/k/LArm2Dg2AE2z2vVRpVJ6y0VpT1Wvbn9P9+FqixAI/jCHzfsk40SpkB2Nb12RfEc9x6QDFU5KqS9aL3hxTptvBZuwQnDMMGdLGMGVvGZBvJItIWIW6zXw4P8qC5YicPS1VtO0TZ7IA5NnXJuSb0fSMGV5V4nkspDYPDc11KZeyhXeFSFrJhtchK49YBj+mLJtCztteGiqwbxg/QgFGWFtkWuS3LAxMlCMKG8RLHUVM/bDtDWyuoDVQy+6pSAAAgAElEQVTYzI49plWyt0GrZevYQLatE9Pv9xs2kgG0zEuz3aYIAb5vgg+0wveCA51cge8ZsKZUNSDjOuSV6TdV3THb4nT2Oq1ugA2oLRBl28XeowWTHuvxtEGbtoaP7WvtzIZ5gSr8GvAR4kA1/nNUtL/0djzuoLRiu9qjHcOmKiuPfT5juZKMJgPWxR1BEuO7fW429wyOhqwWCzw3YJ2v6HYTRDfk+6tv6R8PcVzYb/YcH51TFlf0kx7VzuXjt/fs9xW5L+nGCevlFq0coijGdxOqQvHrv3pFVuTcTGeUZc5unfP561d8++0t/+W//M/8/nf/zHY54/Wr1ywXU+KwS+x1mS3uiEKPu5s7jk+O2Gxy/CDk+bMnfHg/R1UJT598xmx2TZEWHB+dUeWC0WjAV1/9AT92yYoUKQ0Lr5uM+dM3HzmZnHF89pqo47HazYm7AetsiVsKOnHC5GRCWuZkVUWmK/q9Ed3hEc+e9kBqtruC65sFLy5+QZamFPkGLdZs8hlh4SLpsb69J048lqsZw0EHR4xJggGyFOx2eybxgI6bMBQjBt4Rq/m/MT7qE/tdnp6FXF/fMup20c6OLF+SxDFQEfe6FKogiRNm91M22x3n56f88duvKGVKtNX0ukfcTmd8+HBFv58wngzZ7uYkSZdvvn7Db7/8NWV5z7/86+/wY5fXz54jiwJRQej5eKHP9OYDvV6HQX+IqzXdeMx3f/odwctj3t9/JA5CPOEYUTmlURI63QGdYcK+rFivVxxPjph0+mz2KZkq6R/1iaUDu5zNrqA3KMmrnCAM2Oc5lXZwRADSYTlbEycB5S5jMOgjKg9X++zynNVyjR+4LFdr8lwyPjphl6YoJUniiM1q+Zd+Bf+Htva48lMgzY/t+4P9H+6JARH4wb5CiJa7xE9sdULsIVOnfSJLuT7QrdvncNonbo3Dpr69zmIpDGChFEpq44hRqtp2s84Qauqg0NS9awRaOChHUAkDLGlhxAsdxwMhUGgjvCuMQG4UBlRSUsmKdG9o2o2DZJ5TFaUJ8IQDymQRwyBAad2wCmywihB1Hb69PxOwGlDmYTZNSonSAsfx8VzXqAhoiScEUlS1zoDbgG9WaNmpteaqqsD3BKHnoKuSsrKC0qLO9tbZSlfgCIg8j9AR9OpSxDAKcD0HWRYIVeEhQWgqaiHIOmMKRt+q67l0w5AoiPB8H1eA40ikGyFcD8c1lttuHVtpIVDCqd1JakDHNc6Qosan3Lps6nGm9FPa3rx504AbFpApy5KrK5O99TyPXq/H1dVVI3qb5zlRFHFzc/Mg3lRKNcKzNg6p5MHt1KvFdC1Twvf9Wg+n25TSzGcz3r9717A5OknCbrs1zHIpWdc23VVVMZ1OG4Fdqxuz2+2Mm09RIfyANK+IHSNOe3JyguMGgEOv10drTb/fY7/PKKuM4bDParUmDCPy3DgQZlnOeHwMUDOcQzodH9cVyDp+tolTG/dWVcVuu+X09PSBDTmex2w6bQCaMAgoa+FiWxrk+75hItVgynK5rJNDw1ood00Q+PR6XVzX4fPPP29AHLM2cMmyXSPUq5Riu90yHo8bR6w0TdlsNiitub+/bzQRv/vuO66vbzg9Pef09KIGPja1NkyX4+NjHMfh48db0rRgu90AgpPjMd1ul+FwaEqu7+7NGiIx72u302GzXjMcDpvnasSld7x7e898Puf4+JjxuM9utyOOgzrZnOO6tTOblkBFGHq8e/emLlMrH5RnuW7Idrvl6dMXXF5e8vbtWz58uOY3v3mO4wjW6wVSGtmD4+NjBoMhRfHp6tQIx7BRtII8zdnOd8yu7ilmSy6fnNMZRYT9GDd0CYPwwYL4QcVHax3wcA6tUXcOxAMpTemT27Lwadg5jiYMQpzKZ7tccf/hmtX1NVGc0OlFHJ9P8PoJpevheRGprECAq8F3DiWi8hFFtZkfVZ1wqBwqWSH3EpUrhKygdFHKRbsKvApjOW4cgoQscaVxH0IoBA6e9lAYdpDn++B7yKIweiyug5YGVHWURJYVYRDhCLeZcx3fA+0ipDBAkXbMOQVUWlMqRZrvUdSMLC0a0EXVDBsHgdYO2vcJezF+3MHxQnSpYZ+hxQqRaLToowhBBTgoEJUpn9XgaAcHB8cVFFWGLg2QlO8LVKVQlUZWGuXAuD9kNBwyvb1jWVXIsoBKUu5zdFXhKo0j6+BGCRwNAlMKJrTTEINEDdCg6/IpwHXrRATGYRm3dpt0XKwT4wGIOcRDqgZfbGzkeU4NNKkGaBVC4EjjglnXx9Xd86eRmj8D1KgHIEmbyWABFCFEU98qNA1F0bJZDFhyENA9sDAeujRZUMYe32a2LFJq63itLZ3N9NjP2swSO2laMMMi/Frrpq7WghX2PHagsC+pZbgY1f5DvXz7WMaK03ugpyNqP3R7DjuRVVXZMIraAETbbcke17a9ZYzYGlbbZra9bZu2RYLbFtimoxz0etrnatMC21o5shVo2DIumyGytNk2G8pehwXW2jREgy7SnKsB9OpgxWZMgKZsy7Kj2lbqh7Y9aPLYe7Zgj81i2Laz57HX326P9j2bANtmeMsH19r+3qe2hUGXoizwfI+k1+X65pZKKp6/ek6arsATbLZrPH9KFBRIWTGfbXAQBKHP1ftbzk5PiGKP8SRhtV4w6HXJsy2L6YqilHjDgHQ959uvPvCbL18zHowo0j2dKOLd2yueP3+OLHJC12W13iKEZrFwAMluV/Dh/TXdpEeZFyRJxHq9IAhDbu/umc7WfP7Fa3pFhw8f3pmAOJUEfof5bI2sKpQMuL+/wfVLbm9u8L2Ifn+I62rWmylJ1yHshNzczgDFN9+8JUkSnj19xnqz4Ve/+gWaivl6xs31HUHk0U96LGYbXjx/ycePJhhXlcvtzZQ4ipjN5zy9uGC+3JCVKXeza/a7HZOzITgGPDVuKZput8N6u+Dubsrnn31BVUGSxChV1QwzH8/1iaOI9WbJcNwj6UTc3t4QBCHdTpftNjXaahpA8+L5c1b7FUpVbHdzxkd9vABDtQ4TRp0Bu90G9Abf97i8vGCzXfGv//KvTMannByfMeh2QUrOjk7pdRPefnzPYr7hZDKhkwwYjU+4m844Oj5iOOyTblMUisnxCOFqNnsTHFfCuNC4rovf8djs7snKNXqX43jguC63t7d4vhFBzGROL+mxWK4otiXjcwOumBrsiE7U5fLykvncuGR0OjGuK5gvNgwGQ+bTnPlU4ngBy3lFtxuwmOUMRx3u7u5Zr3cEtTCeHYv+s2w/Bsr8GMOmvf0YoNM6yOMPflAS9bPf/4nzmMTAjzv31DmMR2eqK1/q3xuBRGruhrYlvra8qaU90/qxjI8DZbn1OcJkoB4D5zaTWI/ZnucRxxGVlJSVJNunxhK8piprKRuNjMfAvlszc5VqacQIUQefdQbQRFwNQ6ZZJGjVMHMqVYBy8Tzjh2EBEpv1dOsAvj2nGYq8EZT0XZdSiJqeXWdLHYEQXn0ck1ACc387T4BOTAkoGiVLVFUiAN8B3xegnYbq7roege8RhwFJHON7HtQsLVELA7cZNHaxI1ospscU/lZP+kGW8VPbLDADJmnVjh1sEms2mxHHMaenpw9MDgaDQVNGYoVZz87OGqHebQ2wgOk/o9GoMS/YbreN4G+n0+H9+/fMZjO6dYmSlLKJh6IoIqxFZJVSnJ2dkaYpJycnnJ2dNXo4+/2+iYFAEEVGd3E2m3FycsLp6Sl+zXgx7A6P5XJZa950jPbLZmcYVZ5h0sRx3JTeF0XBzc0NSZLwy19+TrY3gIcFUmx7JEnC+/fvubm5acAjGz97nke/32+SkDaOtbo41tZcCNEwfNolVlIaMKzT6eB5ZtyP4xgpVWPAIaVks9nQ7XbpdrsURdFoOF5cXHBzc9PEtv1+H4AnT54wmUzqcsiI9XoNwHg8boSSPc/jyZMnpGnK7373u7rdTJmSBWCCWosO4Pnz52itub29bSQHfvvb31KWJW/fvuXq6qphKVVVBfXaSSnFeDwmjgcNiJVl+4aV8/r1K4qipCzNeNHtdpvzWvexN2/e4Hke//iP/8h+v2ez2XB0dMR2u+X4+BitjcTCpyworBzXMCMKxW614e7jR64/XnF2dsboaIgX+7i+GZvMAtpolrSrBtpjzw/HWd2sb9prpPZmvy+lYTWqUkFZcXNzw2w+Je51GPT7eIFL3O/jxAGFVhSAxMxhbSkKwwxVDej+YE0hBLKS7NW+BuKyuorBiPiiBQ4Kr5l4D+Ou5WU2zFuhDdjkOgShY2LO5QqtFZ5XVxY4Dnkjcm/KsXR9HXZNJDQP1nBaGwbmdp+SV8XPQvBaaypZsVysKdIjqrwkXa3YJnf4UUWsSjxKwsRH46LxMJ7nrQCi3izrEWkIH5bQ0Dzr+j0aTyasZnPTb1rXrGQdPzjt6zOlUNTrYKVqZsuB9ts8F6UUbbHjpo+21si2H7WZW+1Yyuz7kEndZtrYsi2lNGVV4bg/vd78WaCm7U70eLFvX3hrFwc0wq4WDDkgmurBi9GuMWsv+nu9XiP61QZqgOZzm9FQSj0QA7bX1tZgsZOkpWRa0MSe9xCEGJCokiVSVs1nVo3f3qedUBvQCd24SVmhXzs4tHVZbOey+iuW8dIGS+AgbmsnCXs+e532GLaz2HawbWsDjsftZwEjpVQDcln2i/2uBa3a19MWO7Lfs9dpj2FZOHAQQbPXLKVEy4eW2fZ5r9frB6CLbZu23pBtV1sL/ZjKaO+x3Y/aDJ0DqnkokWq3u21H0w6HhU1bM+dT3fJS88c/vuM3X35GHIacnx2xWM4oVMnk9JgwcFEIKpGz2N6SZxlFVoAWfPHZJZtlxmgwJEg83nz/ls16w6sXr+hGHag0gYio9pLY7+ALH1cb679Or8f7d1foqmK/2RC6Ltv1jnSX8+r1U/qDmOVywWg4RODw5OySqqgoC8nTp8+opGJyckIlNZ0k5OZqi6o0RVaRp5JffvEbrm/fss9W9LodoihkOr9lMBqS7gp+/4d/4/nLS8pqRyF3RE7A6dmE9WrHX/36nNVqTZ6XrFZLbv7rDcNhl/vpHa8+e4pCEngxhD6R1yFLK85OjvmXf/4dX/ziC2b395wej7i+vWGXp5TkKC+nYMd6axTth6MRnusShj6z1ZJsn3NyfMFisWHQH+IHAXmZc/HkkvVmy2hyRJoXSFGx2s6ZHD8nTVO224qnT15yc/Oe/nDIcr1ESa/RmyiyPZvtugFs/dBFanjz5iPnlxPz7niCKE6YL+55+fIVq9mW7775mr/58rdcvXvHeDSgm3R5/vQFMi/o90bs0hKlPaKkR9JJ8HwPqUviTshiPWV8PMBNKparOZ5jguwPNx/o93r4uOCWzFcrjsan7LcZm90O3/OIggiZK1ztIStBUSqWyyVPnpyZrGoxJ49MdnM4HFKWOY5DreFwRCdJuL+5AzRRFHJ8csT9dIpWAnDI9jlhGCG0Is8Kk/H5T7L9XMnTz4Eo7cn/z4Etj7/z6MMHcdDjhfTjMVXph1amdn+nWdBTl+a0M5U/FsLVPhDa/kikqlBKPsiCNr9bsEa1hIf1QdPmcD0Pr92O577vG3aoVOi6LKXIJTYK1FrjisO8b4/p2GRCfWzPccBza40W0YA3UmlDj3YFVQ3MaGUDrzrBoo0ipoNH4LsENYvG0N8fnlvWbeh5Pp5bl906gjgKTEDJQXsHzHWImqErtKKqcvY7RZmn+L4REvY9w7oJfA8XF1+oOsA3QJAVIHY9n8CvmcjCQTvmxzppNaVOzfkPIE27TL39TNrP7FPdttst3W6XLMuakiOtNUFg4sX5fE632+WXv/wl19fXbDabxt46yzKm02mzSLeW1nahbh2dbPxnj5+maRMvx3HMdrvl9vaWKIo4OjpiPB7XZThnBEHA7e0tSmsuLy/Jsoxer9f0mfl8ThzHOI7D5eVlUw6qFaR7U/JjxY93ux2pkmzWa8IwxPNcdjtjI96O3YbDIff3U4rCxKlKqQbosEK119fXDAd9oihqEphVVXF9fY1luC+Xy0Z/R2vdCA/bPiOE4OjoqInbrAzBYrEADqUo9h2xdtNWaNWWK+33+5oBFBPHMScnJ3XJT9QwmGzJlY1T8zzn5PSU5XKJEfI2zzoIQqSEbrfbaA3Zcjhr097v97m8vGQ2mzEcDlBK8ebNGwaDQcO+FkLw9u3bpv2UUux2O/7pn/6pAbcuLy+JosjIDtQg4fn5eSPFYEvTrObMfD7n2bNnVFXFer3G84zulu1LUkp6vR5hGDZiwRbEC8OQ3S5tSu3W63UjVv2pblJpVFZSrHfMrq6Z3lwzHvQZn40IuxHC1fX8YwCOsgYU2kQCOCyI2+tMs3g/JIptHzPgxGGB/2BNpgVI2CxX3F3foIXm6WfPCH0fVZZUwoEopigLUlXiCgdfHETDG0Y/Rky4zf4316vqchnnQVWJEAIlNVQlQQCh70JpCnYsaC4cSwZQCGEABwDXcwgcj26vw92dg+cGuH6AK6BUCukIkwzAsFsFJuGGVKANe6S97lFKUWnFZr+j+neM60opbm/umd4dkW4ydpsNSXdOUFTs0zV6HnF6CVHvGUq7hnUrhIkTqGdqDftsb5I+SlGV1cPnWCdOFvM5VVGw22xRlTzYdOu6lMox7WRjGTtHNfvohkx82KG+BmtH3mzNxR3muXYly+EQh7VzO1lmn6+NtVSNDdi5WUn5Pw7UWPaBBT/aAII9ubWXFkIYhT0eBph2s2BF233HvhA2MLCI+oGFcgAuLIpl0PRDqYsd2NtuQfb8FpFufOJbjeq0XhxbitTtJlSyYrPZPNBpsYOBFT7LMiPq5XtBw1Bpgxj2PG2BXDtoWJFbu78VNrTnsYOIbSvbXm008THAled540Rg2TYWobUsnTaK134OtlPZ62kzZey5Hrt42XPb62uXo2mtG1DLcZyms7cdlmyplQ0+2oCTvRYLzNhJ34JmFpyz12cBpEYjqPVC2JrhtvW7bcc2SGURbHt9tq99ygHn7eyeMAmIEiMg6XkCLSt2Zc5mrfCGA3abPb2ucTW4vV4QeCG+51PlFa9fPqfIC0bjIe/evaUoUrabFUkQ8flnv+Cfv/pvbLY7+v0Bz56fEoQe682a0HWI4tCg3GWBVJLRqMc+N32z2+2RJAn39zM8N2QyOiKOAzabJYPxgEJKXrx6harAFT6+G5JnJZPREc+fv6AoFWVZMB6PQftsNxu0Bj8IWN/OkJXi+zdvePX6kkglvH37jqdPX7FZZ1x/XNHpRPgDgURSSkUYG6FuoV1UKZGFYtgfIqXk9PiU/W7P65ev8ByjJxWFEd+9+ZrB0ZjTp0cQlDhhxa7YkpcFQRDx9s0bjiYTsn3GYrEi2xcMBiOWiw+I5z5REFNIl7IyWYyizCm3Ka9/8QJdVqzXS86OL+l3Bsz8O1wf1pslvWTCZDxG+IrVZonjucyn9zgOKOXy4vkv2Gw39PtjwtDjzZs3TCZjOp2EfVrgeyGdjiIvM776+mtOjo74X/+3/wV3s+Tt3Xd4L1+yWS/ZpilBHHE/nzKUXbIiRWjBcj1ln28IXEFVFlSiIpYRju+w3K6IgoCiKuq6ZUVe5ajKTHhHwwmOFuy3BS+ffc6//vPvKcuS2WyO4zj1QsHj+PiYNN2TZbLRIhgMeyA0Sc9hdHRKKSV+KBkfJXT6HmHQJQwCnjx5gqpKPEdwenL2F34D//3bY/Dkz/2/DTTQdd25EA8m/f/oeX7AvfkzoI8Q4kFQ0j6OFV2sU3H2ihvNlsfztagjL60lGonWsmHVNIyUx8BMm62iFNo5lEdLqfC8GrhRNJovQBM7xJEp8C9Kh6osTWCn9QNtm3ZQL4TAcwSm4EoaSnntkiEcYUATDa5WaM9o33gt3RlNXfqkQAKe6xD6HmFgyqAcxzHlUkrjeq7513Xw6rnUcz0cAZWStc22bwCg+p5sm1dKNUCZKd/SQIXQGk8IAtcj9B0818H3HHzXwRNWj8fBcQ4gizDJ1yaIFY6L4z4sIbeL6wd96dG/B8ZU/UykRDqHjOOnthm9kG5T/m6FeEejHuv1ugFgvv/++wdl8rYMyiYi4zhuGCNVVbFYLBqNmyzL6Pf7KKXYbDYMBgNOTk7I85zBYMAXX3yB1toI9WYZ4/GY169fN8ybfr/P3f09t7e3jY6LFR22ttpKqcYNSUpJaYhejMdj3rx5g+/7xtq6KvBcQacTg4CTkyPOz89589aU0yhhAAXfDwjDuInpxuMxAOv12gjT+gH9fp/pdNqwQCyLzcbZg8GAyWTSuDB1Oh0cx2kcVjudTmO7bRO/cRw3Ze82LrPgVxRFdaxYNmLKNrE2GPTxPCMibAWgLeCz2WwaS/PtdosQxozEWobbWLDf71NVkvV601iMW6vzft+4R93d3TGfzw/6OloRxwcwyrpGPWaja61ZrVas1+sm5v/w4UOT2N5ttw3QYGNoyzY6rQGlMAxJksTYf3seYRg0zB/r0Hp1ddW4BrU1lIyYcFjr+myauLfNVP/UNl1oql3O/fsrPnz/hjiJOTk/Ie7HCF83C1mtNapSVOVD04/2HGnXD+3P20zANtPeshx/YCKiBEVW8PHNe1aLBa8+f0kwSPCFQJUuhYbNvqR0oNIC1xGNyHf7mux66vHC3SSbHlo0q3qe0EriC8WgE+E7rTJYYa3LlXE81IYBa8TvK4SuALcR4xaOQ1YWBFFk7MY9F+26GPckw0zxtIOQEge31qY5gEdaa0oBuyI/TPn6UET2OCJJogTX81htcnb7kiCIcB2HqswRVcXH7/9Etq/47MsBru+jOKxPwejuVLJit90Z96baHrwtY6Hr4CjbpeTpnmqf17o+tUN0Pc9JI2DUPAfDQKrnfmFKm7TSFpk5xAR1YkQ0fzeMVK1MUucxYeDHmFztzY5rB+07cDzPyKr4fm1MoH+WGPCzQI1F3K3gWFuluK0LYzuiUgdlcRusWSGe9kVbMMKiTkADBlkWib1h28EtHctODvY7lpFhhXiN+nPZoNRtMMa+oG3HpPaLtNlsaMQVeSguK6VsKKQWiCnKElkdRHvbrBqL5Fuwxpb0WCDA7tMu73Jdt3FtsoGSDQQsmGGfg21Dew6bcbAvly0HswNUG3ywz8+2lW2PtjV51ZpELEXYdd1m0rAAnm1Tu2+bPWSvuz0wWkAHDkCUtR63/av9nfa92+ctpWyyLNb1KwiCB+CS3b/tKmaft+3b9p48zyXPyua+rDPIpwzUdPsRrger9QLPMerykd9lvpgS9gfslimqcLi/WjK73hB4Ac9fveDm6payKLm5uuHi/Jy7uzuToRUOVZFzMr6g2Fds0h1HJ4Z1cXw+YZ+vSYKQ5WrDxfkFv+50SZIOuSxIBgm/nhyTZXvjeNDtMeiPSHc5URAZYUTH46s/fs3o6IhOf8Svf/nX7DY7nj55TifpMp4Meffue27v58RdlyDXdOIjyiqjyBVS5QRBSK4V4LFPJVmmGQyOEYSku5KTkzN26Yyi3HJ0MqEoJYPR0CxqHJ+T81Pi0Cfdbrm++oDn+TjCY7FY8uLlF/zql39FWazpDwdUuiCOIj7evSEOI1aLPem25GhybHSoBIzGAzabPagAtMt8fs9ksuFqfc3J0RlhFLPe7JC64vvvvuav/+7XrHdbNIoszQjcEKVguVkTJ0mdsRuS7fY4wsP1XFabNUfHA3bLFav1PQhFVWq0znEcTVnljEZDkkRx9WFG2In5cPORi6dnRvcD6CQRZZGzT7fMFve4gYPwBZWSaKHJy4wkitFUFMWestRMRkeUNY3V8wPu7+cMeiOkcMnKPYvlkrzIGXQHhF5CVZSEbkh3NCQKOpydX5KpJavVBs8V9Dpd1qs15+dPub29I013PHv2lI8frxBCMJ8vSJII3/dZ3c+IkhAhNFVVEPiasqz49k/f4QCnJxPm8/+8GjWPf/9JhovzcNx8/P0/d/wHn/+cUt2Pf+EnP348Krb//8G9aEWtOoOyAI1Wdanpj5U/PWRlHH4OV29IKAdwQPDQicjMZYbB43kulecacUelMJygQ0LCtqtANzbfaJOB8xyB0uZujT3ngQZusnoH1yxzHOOSobTRO/A9D88zJVsmNnKQSpoA13MOAJM2LBxZGeF3RxhBSC1qir5T85KUocBrYY5vXKQg8Gwpk2HIBL6L5zg1s8bBccxc2kBtwjDUXAGesKVVxq0J16Nd4mTa27IhHpY8iTrQRR9Kk5EKLRTOJwzUhGHIu3fv6PV69Pt9PM9jvV6RZWZBb8EDCyL3ej263S5ArZmyaWIQ6zRk4zA4gJVtO2gbt1kWz3Q6bQCM169f4zhOo1uitREldmpwwToq2WB/s9k0bB3f9xkMDMMjzUvipAPQMEaSJEHogCj06XQ6HB+fUBQ5URwShgFSVlSVsQvfbLb85je/beKzoigam2tbivTNN9/g+z7L5ZIsyzg7O2uJ5h4AG8dxahCkau5da81isWj0bWzMt1qtmvjVJvDsc7Fbp9NhOBw+iKE9z2/YTkb4VzXJxOFwCNDo5dg4e1zruziOw/39PbtdWpc/OSwWiyZR3O/3mc1mDdBkS1n2+z2+dzCrsOeyLHK7mLTMIaUUo9GoYSbtakFogN1uR7dmSrXBIcu4suwku14xSVcjQm0T5JY5Y9lANo5/+vQpURSSpptGG6mtK/SpbnJXMH1/w9X37/AQnF9eEA07eJGLEgdmvgVqfmr+hB866NjkrjXAacAbzPzVBmnsOZCC2d2Uj28/cH56yumTM6pA1QxLl1Iqyl2OdsANjc6MnQ0fzPMc5BTaYM1P81AFaIWLot+JcJ0D4CTsmKt0U2bcZuhorXBcgefXFQyuRykrY6bteYRRSOi6bObLJnGhlKodn6pmjdRuv3SfkZU5bbF8oY3KWntzhHnve1HAap/x8XbK8+qkpFIAACAASURBVMU5k9NTpBSUacb9+/eUlcf508/pTbpoHuIDtt2MJIVGVxWyko2AcAOK6NqpSSmUNLo71Povxp67jnksA9W2rY0pbMFTqw1/kCDSmoeB0OH/fzJme/S3Nqmk2aduX8vGlVLWiaEf6Qz19rNAjRDC0KCVwq8X3sYK80DftZlSgGyfNSCGcASuqGvhKnkAc+oFvlTKqDNzAGTsd+3CvM18aI5bMyTsgtoCENY+0b6QdmAyA1y98NdGldmW03g19beqF/Rh6JMXB+S+vagXwiDibepvVZY4jhm44zhuGt3eq83I2Otv69tYgMKWI1mApyiKZjJqf89u1nLcfmaPZe/bquSDmQz3+z1CHPR/2qwRyzqx7dq2TregRbvT2snBnr+NDsMBOTwwf8x70A6ADsLE6kFpmdU9evzC2P5g78GyhNri0o/FpNsAWDvDa188x3nIWHp8v7Zv2fv4FLco8UnTDUWRUZYVcZAw7I/Ayegmfd58d0XoJbz/+IGz01OcwDgC9HsDbq/v2KxSipGkM+nQG/SZDAYE+EzGY1azLUVVIdGsNiskkk4/wfcVVelTyIruoG9quVdm8bBar4jCkP0+YzAYUlWVETN0BGVRsN3uCIOIxXyO54dcjJ4zu1sQxwFRELKcz/n44R1ZWfH0xRdUVcFms+Hi7Alff7NgvVmy3mRMxue8ePkMz3NYLNd0Ogm+F/Hs6UvTf4VLvx+jtWS/z1guVgz7faoiR1YlmSrQlOTFnv6wT5GVVLKgE8V8eP+RNFsyPEr49sO3dGUOTsU+kzx/8ZI//O47tBZM76cU+c7o7xQVnhcAgul0wYsXBek+5auv/8gXX/ySj9fvGE96XD55wma9wXU8Aj9ku9khK0m6S8ndlMTtM5oMAc1sOuPJ8+ds0oynz56h2bPeSkSg6Y96ZsFXu+tqbRhIYdhjMB7jOAV5bhZ+o/4R692WfuJydDxisZrx7sNbvvy7v2a+WpEkMWVZ1HoBKaPhyOgmhAnu0IzVVSZZr/YcT865u5lzfDEhL0r2aYbSkl26Za8qep0OxT7n5OkT1qsdZ2fnvL1eE4UhRZ6x26YohaHKo/F8jw8fP3Jxccbt3Q1XH++JgpgXL56DclkvMoqyIIwSlvMFeZYzHA64vpqbEhX5Mx7Sf+Ht8fT+4G+tCfsxy/HHtoZ1WjsYHII8O+k/OldTZi2aTNFPX82Pb3UseDiO1oc/NHdnAxwelFaZ6zM/tuyJOoA0Lk4PnZ5MyZP924FN1DgrHa4KC5bY8ihHO9jY0XEcc1Weh8AwTCopkb6PrBMhUmmUOpQyNXMMGsexWga1zXl931Yo2ZgMmIyf0kbo2PWM46FXxyg2+BPCCPZqLdFSGhFh5VBJy9aUoA5lU4Zto/BqQMS0wYH5a5+54zgoR+M7ljXjEQaGuRP4DoHn4bsujiPwXcdYsdb2sNr2GVFr3rgmc2izrvbHcS3jxjptmXZvs2tsv7DH081zlaCcRgfoU9z+4R/+gTRNm1KT0WhUl7MXBIHPxcVFzRjRDIcJs9mc1WrFYDCgKIqmHGe93tDrdc3CpNdns9nUCx3DDtlstvVxjSvQ7e0to9GoKX2xSaS3b9+RZaaUx7J7yrJ4oHtotfuyLGMwGCCrik7HgDInJycsl0uGrk/S6bLebPj8s8/xAx9HCAJP4LkOSiuurj6ymC+a2DfwA/ZkDftmOp3W4E3VYiMb3Yz9fktYl4dNJpNGT6OtZVQUxQPtwDRNWa/XdLvdel8jqttm0L1+/ZrpdIrveyRJB+MYa5KWtvTIJjBGoyGb9cawc7pGKyitdXrs1i4fAQPy3NzccHl5ye3tLXmec39/TxAEnJyc0Ov16HT6NSOoTxwn2NLM5XLVxJ62hCgMAzZrw9ypqoqsZkTZRGGWZSwWC2azGb7v0+kkHB+fsFgsyLLMsJyU4vjkBCkVd3d3dZ/Z1rozAd1ur9HusaVck8kRvh9yd3fXnMsmouGQGLU6NGdnZ2SZSar2ul2KskQr9Ulr1Gzu53z47g1CwcvPXxEP+3hJgHDNmGUBay0PpbK0EukPmJ/OwTnWrgkOpiGt+ZfDotmC50VhEvC7dcabb7+n0+nw4tVLIxtTg+WNpm4pcXwXSkVF2awp24CA5wdNYlkIgVTqAcit0Y3Wml2fKaXwfEE3jgjcHISDqmdZI7hvEhuW2WLWpKJuD+Oc7LgurufjRREi8Ckrw6zRlQTHMev4WvzWkk9sTGJjjlJW7PMUSV1Cay3UbUjQAB5mxp8uZlRBgMwcjj50eHX7hGcvJUWhmX68RWYFi/tbNqsZnckTNAEInwOF2Ny7YZvVZc/6AJoYQx6FK5ymNVyo9WkcnLovSCUb7Rk7d+lWjHGIUexe7b8Zpq4jHFxxqAqxfQZa7K0W4Gf7nt3suvMxoGi+e3C31IDnGobNT20/C9RUmNopUS94HSHIqorEd1FS4zoeVVlbiWldW0mbTK15rlac0AT9DqaTCsdF13icqtklbfDB9312u13D7LD/WpFi+2K2GT+2c7ddg6SqcD1h3BBq16aiyPE8H42sUfBaZM8z/ua+41Jmec3CqBFo4eB4Jiuvte084PsBnU6noZ/aLIm1B7SAks022PuCg5W2Revtg7SARBv0sACUBansOWy9qQV67HcsXdfzPDqdTtN+tiTKMo/shAom02QBFDuo2KyjnYQtSPU4g2S3x4wrKasGxLEslTbo1GYrtcGUtq22pci2s0q2rdtuUXYfIUQTRNi2bSiOrmHOuK5RRi/L0mQx63tqM5IOiOqnuTnSYTIYsd/tOBoNWUwXZL6P0D5UAavblJOTIZdPnlNRMl/do50hrusRhgknRwNc0WG+ntIfj0j3GV4SUIqUVM6o9h6D8Ij7uzmXJ5f88evfo3ROIBLOn15wP73HlRqdS4bxkP/21f/Dl19+yXw+Yz6fs99v8QNNJfqs1zvKokSVisQPINuw3W2Ie13W6yVh6KOEz5PLl6y2a0K/D1WB1hW+qynzPfP7Db3+gGGvx/HoCE0Jl08osgKPkouTLv/H//5/ISU8O3tOpxfjqxXL6ZIXT1+Ql0t2+T0eLp4b0Z30CXsd5qtbgijhT199zWR0zM31FYPhiGzr0ElcBsMes+mCD7s5/fiE5WzHcr4l8Hw2y3sG/TECl+1uzcnpgCj06SYJH959xfHxEM8TrNdrXj57yfX7K3a7HUEYM+j32Rc7U0LZjXESh3eLN2RkaMeHymd+847eyGWTpYSxT6VzMnbc3b3hsxd/DTpAVYrlYspnnz1hoXO+f/M9vYHHfp8ynIz59vs/8fnTC86fXfDh/iPD0yGLxQwtNb1un/ndlCzd4ziC+WJN1O2gpI/wAga9HpUUhGmJg0cSpOzmW/bbnMGoj4xK0t2eYZxQVbBc7xBX7+n3B6x2W/qdPiQD7u+mVJlLr9vh93/4Cu35vHp1ye3/y9x7PleOZFmeP4fG04oqtMisyqrq7O4VNv//h92xnZ2erp6d7qrUkSFIBsmnBbS77weH44HMyOw2GxurgBmDwScAhwNwv37uuefcLHn7/pJut8vL169wtcvl5Q1R4NPxQ8gLZnEP9iWb1QanO2IcDxCpx2G+/Vs/gr+6aa0bfTyBcX0QwrgvPZzI7ef5xOs2Q9QEMebTWNtoG2jaLNe9fbT+vbfP/2D773/6YaBhXrMBj27memPdqbWsadjGgUggQUmU1FQSI/YrKyolUbZsCo00nzTjL7UwsTD2qI7wAeOaYPpCoVVd160NuKKFcapwXN9o0UiFdE2mW7mGYamERmKycc2uEE08YnCJuj5dm0yjBTkaBo7WNUvPwfVcgtrNx3EFQpjQT1bSuDa6tUWr0PhOzdCpg0/hCISuk15C3EsWIO4DNO3g33NcwppJE/k+YeDj+MeyaceCWggc0Spds9lFxzGCiq6PsnoN9Y/jGFtuHOOuJRy3poljGF72agmzYHCFV4s9Y3QSZMVvpgb/xts//dM/NYvvqqr48OED/X6/YT4sl9s6aRfw4cNHyjIliozY7Hg8ruMsCThkWYXveziOz3q9w3UdfD8gjvtonbDbLSlLheeFPH782GjJ6KMOhimPEgyGBviopOLR2RlJkiLE/TjXxjfdTof5fI7Wmv1+j1eznFfrHZ7nN6COrEGTXi/mcDClUkYk2AgPd7vdRt+kbSu92Rhg6tmzZ/W+IlzXYzy+oKqZ4ZYpI6VsBJg3mw1AU8p0c/Ox1r8ZNjGctRO37Ps8z7m9vWG73TKbzZjNpk3ZkuM4JpFQKfqDCXmekiQZcdypF9eavKVnmaRps38bb9tE6Wg0oigKU66cZXWpuFm0J4cDnW4H16W2Ma9I06ROwFYNEGZ1jbI0wXWNu5nVwLT6ODZBa4WPlVJcXl417JjhcMDhsK8X6xrfjwnDDtOpcUiVUhFFpjxss9nUQLak0+lyOGT4vmH1Hw6HxnBDKcXd3V3Tr5eXZj79y1/+QrdjXLaSJGnK0T7n5OPVDz9Q5CkvvnxFOBngdiP8IDAaMrXUmOK+0LwF6J0WU8UmDnTr9fa5t1ktGo1HQCUqtGcSX1UuKA/w9odL0qzij19/heiHVCozgETlg1JkSYKjwfcipDQsFgdTLiO1MoCOEERxjO/7pLU0hAVWpFYoqmb9IbVE6gItDXSjRElIRaQhEQ7S8ah0Tqm1YWCgCRENs8bVEuEYEVw3ioiGPTq9AZv0gBu66FyQFRkqKQicsLbDNgkVC45UaDypEEojXLM+z2SCdjIc6RHqGINTlSgULrXkRL2fpCwpy4Kqcnj/YcHVuyWbL/Z0eh2urj9S7VL6XkRRbsnY44sQXzo1cCSRQlLpiqJQKOWipBnHrCuv1kbLSLsaoVJiIZFOxVJWgIfCQZnVPTgaJQyr3EUiKqPH4zgax5G4dQ5K1ewcRE06EAIpwMM4RUnXvB4qgfacJlUlwDIR7s3VGvN5/0EJFPXrBhGyQI6NNajnlU9v/67rU7tcyP5tdVXsgK21qR+Mooiy6dT7CtdhGJoHx2lpobjH4KP9Hbsgt4v148JfNiU2bQZFlmX3ynaa38JpymRsFsVM0jRURbuQ9zwPLRVey3mpEZxSGk8YerOoM0z23OEoHGTBDbtZkVx7Ae1kZsEE2w9tSmdbb8W2y7bbTkq21KedOWgzb2xWwQIO9jweWp+3S6Psw9B2XWqrW1u2SxzHpGna9KllBlnGjm130wbUvdKptiaPBVrsedl+VEo1bgttAeh2v9rPtxlMdgC2bbH3ppSyDnRs/5iSChsIWRAJjrpM9rp+rlu2TIniiI7XJz9IkkPBavWe8UmPYXfMxeMTvvrd7ylUyT//f/8dtMOwN+bj9R2xH/F3f/x71usNgfCIw5gyyVHaBD9lVfHs4oJe0OHbm+/YLpaMOiPyIiHPQTgB09kZRZ5SVgV+ENeuBXHNlDK2nlUl+e77b5GV4NmLl2w2e9LkgJS6tho9YbPZcHo6oxN3TbAROPieQAcuUeQTxg4vXz1hnx4IA59uN2a5nON6mkG/x+Xmo3GqSPZcPDphvdwTRSHr9R2jyYSLR6cs7uYonRF3Oview2a7xQ9j9v6B/f5A4Pqsdiv8MEShmN+t8LTHX/78HS9eP6Hf77HfJqxXC5SsqDLFbp0zHI3YblKuP97w6tUzEBVKay4uHrFeb7m7XfD1139HlmfstwmvX3/B7e3tPTp7HMeUKsdzfLK0YKGWnM8ekSYHwjAgjkM2iamtLauC5LBnNBywXq8ZDIds1rdIFIvlin/8h3/A83I+3r7B0aDKyvRZ3GObGpp4v9fnpx/f8uL5C9AONx8XdKOAbq9HesjQ2gTxnuvhOC5lUbBcrHDdACGMPVUn6rJZ70Bowz6kYrPZUiFZ77d4UVCzGgPGowle4NKJOiT7hG5/wHA0JEtLet2OcRa5nhMEAd1+gBc5XDy+YHm3pKjg6mZB6Hm4nsNmt2MyHFMmBWn6+QacpoSm/uNX+M33KND/DqvmIY36F+9/qg36fpbuf+Xm1qCRNWZW1OKGljUjrb6MmXMreV+jpgEnbNsf7F84xywjHOnEbZbHp3Rn4FjyfJyvJVLWWbbWce+BZeK+m1Sb+SSEgFYCw28lYVzXQTh16bFjaPB2fm+o9nVCwsx5LjW5pzkfkwhS4NiMrH2/Zi9pY/PtPTi24yvcGtAxBV72HO7fA8151J+1YJOwpU6Og1u31wJE9vPHrOR9irhtdzte/Fy3OI6b0pq2YKzW+p6LUhAEzGYz+v0Oq9WSw+HAcrmsy1R6dLtd1usNWmuWyxWO43A4HDg7OyNJEqIo4ulTA3bM53dkmeRw2DMej1sME5fxeMJ2uwNM3Pbu3fsabBAcDvtG2LaqKobDIT+/fUuaJGw2G8LQMCxM9jzg1atXjUjw4XCg1+ux2605OzutHZQkZWliIMvgtuX89v6zjBlr7mAdrbqdmLDWyLm9vW0crFarFYPBAMdxmtIh4F4C1cby260BwbrdbsN6t4lJGxvaJKEtsxdak2UH/CBkV6ZoBIPhqAErPM9r+ns+n7PdbhEYVycrVmzZMJuNuV5FUTTaO72ez9u3b9HazGVB4HN2dsZ+f0DKtEm27na7mhEBYeCi9ZEBbllP9hpawNQamtze3vL48RPSNOPs7JSiKJjPFwinbLSMDgfQumA+nzObzZr22tj55uaGTqfDxcUFz549Y7VaNQLBlhUfhiFPnz41YsVBwOGwabRphBD39Do/x221XvHs1QtGkzF+HJpxCUDrZnyy485D9ond2mOQHbd+c9NQaAkCXASqAl1Ibi6vWa0WvHj5nF6/ZwBOxxTOKqWoioIkS4mCEN9xcBxLYDWEBS2oCQk091CbrWKTHHaMtesVu5nh2gz6NgEilTTsyzqRoS2zhiMIb0AHRRxHXDx5TG8wIn37Bg0EwqXcJziVwDbY9o+ymrB1fzuOg+d76Kow6yCl8YSL7wQ4QuBpl1KZeFdaehEOQpi2bQvJzx+X/Hx1y3y15UmvY+LXJCXu9yizDGSJ41VonYFQKDSVlOy2K/bbDVoexc1tf5k4wlT2DAYxs26HKpfsFwc8RyN0XTYlZR2DYFwalQLh1aCK6duHeXh7L1VVhaPMfKqrmrr+4HP2WtYv/OL9RmqF+yCi67ooKXFrYf9KyV+UsH1q+02gpj3YtjMBAn2P/WA/k+dZ85BEUdQsgq1eiEXbLSBgswTtRXK7rtQ+bG1NknbA0wZ42iCG/a7rHu2xgSZzYM/DDoJN7SA0DBY7oDvOkU4FNG2xE1JboMs+bEKYmlRLcW0DCBa8sROTXbDZdrWZMfZ87ERt2UQ2MLLXwE6EVs8FTCBqqZG2b4xonGmrBWnaAZadeCwA0u4L2257jm2mkz1++1rZSVQ4NNfEnrc9plWwD8OwAa7sTd52erKvt0GddhBgz7f9fZtNsfeGLa0qRHVPsLgNPNprWBRFU2L2uW672z3+NOLFq9cURUmWVeRlyXg85u7umsePz9gnc1bbLWV5oEwVvhvjOR7dfgdJSlatKWSOPx6x3+9BaeY3d4xHI3qdDpvVGqE0dx/n/P0//JEgPKE7MOwbjSJNM8qyYLPdEYbGcSGOO6RJhuO4fPHFU7759t/wvYjtbk8c9YjjAW/f/sx41MVzHE5nxvFHK5Od1VXFzccrnjx9Bmj26YZDvuGL370EfHr9LldXV/R6EZKU4bhDUWVUUvL3//gnlPRI8yWdfoRwKq6u3jGZzED5BMJn0A1Zr7ZoDYvFim6vB6Xm9NGAq6trHOGw2x0Q0iP2ujilSzfocai2LG/uGAwGTAczom6HYX/Gd9c/EAUdk+HLc3r9Ho7wefT4Cb7rMxrO+PnNz+yrhNlsxu5w4HY+J9humc5mbLdbdumGC+8xvc4AmUtWqwX9uE8YBcznc8Kow3a1wvEqwtBk73/+6R1fvn5NpRVeGBJ3YiOcKiH0u3QiU9/+/OlzEC5FUbLbbUnyjIuLC1wR8P03P3AynbHfbDiZnnK3WjLsD0n3GXmRM1/c4bkBnu+xXW8BzfPnz9nudiyXG/wgwOmGJHnGPj3guhHb9Zq0yBmPx4wGfQ7Zjqw4oLVks9szmY65+XhLmlb8/dd/4JtvfmC9yjg59dGuJqsSPlxfoqRgsdni4DDtd3n6/DH7JCUrCqqi4NHTs7/xE/jrmx0L7fawfKgNKNjt11g1n/rsf2Rrj4f/ke8+LMdqb7+g+z74jkETFJZOjFY03Is6cK3KqpnD1CeAmmY3nzimzT7ZuanNyvwFACHEL2KHNqDTjmPaxz6KHx/Pvf2Z9sLABtc2PrLZe9cVIFQzL1vQ/2Fi6Vg2LMAz2gC6dY444pd9Y9uBEZN0PQe3Zus4jqiBVdFQwi2bS3As/233UwPCOEY4sV1CbNv48LPtdrSvX/t6PVxwfG6bLS+y8Ybt8/1+D9CYMuR5Xi+GV02pXFmWjV6LsbT2GpY3HAVey7Lk9PSUzWZTl9n4hGGHMDR6etaNqNvtcnNzg5SmJMUKB5vyqNIIrdcW2JYlrJXi7OysWcxLKQ2odHJOVUmurq4a8wfXdZlMJg2g43leo/WSZWYesLopq9WK9XrN119/bXTm+v0GBAiCgNvbW25ubri4uKjZIUPevHnTaNUcDgdOT085HA7EcUy/32vitc1m02IjmTGg0+mQJEkjgGudjWzyz8Z+npBcnA7Z7BIcXJTjI4KAGEG3Xk9YnR4hBNPpFM81Ft/2On/48KFJigyHQyaTSbPuiOKYL7/8srlvt9stm82GIAg5Pz9vQC9T9hSy221J07Rh6di40mrYWEAMjBV8p9Ph5ctXjQzBX//6DQBRFCMczfX1dZP8BOj3+804NxgMmE6n3NzcNOMIwD//8z8ThmHjkrvb7ZhOpywWC87Ozuh2u9zd3ZKl++aav379mu12+1mXPp09uWA4GRl9Os9UNGgtcevx+6HeR3uuejgW2eTtw3m1/V27SadmqVYCCtjM19xdXzOdjTh/dIrGCPcijCU4tT7MaDoxY0WdZFfKsNXMvHdcoFuSQLs97XXXLwFwVa9zBJ5vCAKVrCgrI4yv0Ih6DlCywlFmzq0qhXJKvKBOl2jNfLlAK+Oc5EiFTgtcPzTlfRhtStsetCEkiLqUGGHYwGUtNBx6AZFrmDgSF0e55v1KUOkKXbNJlYZSuMx3Bd+9u+V6sWV2dspgOOXypw/E3R5VXuCgQJcUZYrWJVq47JKCH3/+0ZQXygoh3FaVw1GM13cUs27E42FMcsh57xrDbzBSK0pKXG0ozFbHTmBKpLSd1+up3ubSjrGBYSkprXDbMRq2xOrTsdnDe9GWNNNKItlSJ6gTTia4+XfnzN8EauyAYdkVjfNSGJPWgzjcF2ZtC7q2mRB20LwX6HgmY9sGHOygZ4GBNhDTfjDtgN9GI+0NbwOOShY42mkmpvZDbhkdfk1bFkKwT1I6tZCcnQC11mRFieveF7i1/WO/CzSCxnbit2VHVsDMPqjtAPKhw5Clutr3bKYHaFwH2oBM+8ZoO1W12TKWJWPbKluBcrtUzA4abXvrNhJov2fLpex5t9lO7UDP0rzaIJe9Vm2AziLONii0wI4VYQaa9hg9jZQsy5hOp+R5fs9BymZGLMuqLfBmjufcYxu1AS5779rv/a/ORP/PbEVRIUTAaHTK9z99B9pY3N3cLKmylDK7ZDIesVzdMRj0iVwXXSk6nZgnTy5Ybudc310SBB1ur29ZzlcwMfeG1IJ+J+Ttzx9AKPqDAdPJlCB0WScHkiyhKHI+fHjHF1++ZnO7xnVAKcnhcGA0GpGmGavlls1my9lZr57MTEnebr8j2e/ZrJakacazp8/w/QChHDphh9D3mN/eMjkZk+R7CpmyX++J4wFX19cMBn1mpxMcV7GcLwhCl8Dz6I+6JIeK9T6h3w3xAs8snqRk2JswHZ+y2lwhHJerq49MZmdEcczlxw9sVgdmsxPQmuVmRRiE5FnFdnugO+iRFym9fkwYBbx48YJCVsTdLi9ePEeqkrjjocn4cPWB09Mn+IHPerHm9OScyXDK+w9vuZvfMZ3NSLOUSkpu5nf4QUCsOpS5wnciknRFXiZMXw7JEsnt7ZwvvnrJcrNGq6J2kvGYTifcLebGscnxuL67IfI7PHn0FM+FXj8izzNuPt5wPj7l7PQM6RUU8xKlBKvllvSQ0wsqnj15wRcvv+Ty6v8i6naJxjGr1QpTuyyM1pDwEVKw3yakaYGWLvObPVq5RL2Afn9EkuQoqShLRZoUZPuPKFkx6HdAwg/f/EyvO2Y4GuI6CevVCteB2aSP67j4no+SiiTNGHSHjEcjBv0hKk8oq4rTs1OyJKf0CpLN4W/8BP769nBxb3/cBwFi+/Pw62DMp17/LRD5U0DLr732HwVx2oHww9fRxuIUrVCqAqUQdbZPKY2SqtaJqajK6t78026PDXDhyMqs323mkDZwb9vwsHTYxgJtNoz9rAUc2nFE+/P2GA/39TAYszGMndfN/CHQHOc6C3bYuMh+15br2s2Rx3vGxJZODWbROmcDggmbDBXguALHFSAs86YFxlg+daut9/rLJt0sEPPgvNrn+vA+fgiy2fm8uY6fcYJjPp83i2t7H1rXIKtNaBOKxqAhI46jpuSkqir6/T5VJWtGRo/VatWU7Fgm8Js3bwB7rU3ScL1eMxwOCYKA8XhMGIZst4eG8m4X1Qb8KRiNhs0C34I4vuexXBonvdls1ty/3/z1r4SRKYW3iU7TFvB9r2HAWOFey4CxJhnD4bCJt/r9PkEQEEURcRyTJAmDwaARyM2yrLaLNv2YJAknJycNMGNAnsM9gwf7LFogwmq2fP3116xWKy4vL5syJcuY3u12TGcj/u1f/5VSKZ6//h2e7+MKQVLkZLWwsx0TmrJ4Ibi7u+Pbb78lz3O++uorZrNZA86t12um02lj9V1VVaMpy5tqYAAAIABJREFUY/suiiKur6+beLzX6zEej8mzFC8O7tl821IlG0vba9K4v3phLUlQMBqO6XZ73Nze4vnmObGOUzZJaIGnsiz55ptvcF2Xfr/Pfr8nSRI6nQ5RZNwsB4MBo9GoOV47/o8jv1kHmHL0tJFe+By32fkpUS/GDT1wwPFMKSu0HJFa4zIcE7Pwy/GqPQ+3k9v2u/bzRvPPwZEO+9WBy/eXCEfw5MUTcHU9nwEalDRug34QMD6ZEUYh1WJJmRfHdmqNcH+ZGGiPnfb47SqIZj0ijZ6QKTs1YJXSlWHLuIY4oCQI10F4GiElulK1xo5EOJqqKpnf3bLZHvBrvdYqLxBKU+YFjufjCAftHNvpuS5UCkcYNo1Eo5z6Pccj8kI6QYyWCi08Ai0NO9YNqFRJqSpKWWIgIJeiUrx5d8e/ffuB09NzepNz/N571vuc3S5FSoUQkkJXJGnCepfy7U/v+fN//zf2h5SqMsLIx8oJpwGxqqoi32/QXgVpSZmnZvpTiqKsjLgwCle7OLUDVn0Jj0GGrgEzrXA4XhulagKABiuZ7LTvKX49fnoIxDmt99vrabMfq2lnCtDaa/qH278L1LSBAguAlPUC23Zgo6XiePcCHwsc2CDFLpBtYytMrXdbk6RpWN1oC4ZkWdbc8G2R4TaD5GEAaAe+NlvDPhxKmRrZhjXj1GJM9fesW5Chbkuq2t2pnWXT+uiuZEVu7QNpxdS01g0bqF3e1R4w7Pla4MIe14JIRQ1m2RKotgOW/Wm7LbXZMO3v2RulnS1rO221+9WCHfZc2kCQBVGAhu1jWSi2XUopgjBAyrKZLOx32n1nKcBtkMkCRW3gy94/cMxc2ZpvODqUAQ0ttg2MNWV4mnvlaO0MbJZlzfl9zrW8AIPzGbPHF3xcLBCuS6cbs5/Puf245OXzJ9xeXXJ+fsp4NOGQlXzx5CXr9Yrnz56SlzmlrFiud0xHPu/eGgekw6HA9XwKKQm7Hod8wx///g+s13tW+yVeJsDzKKqU+fIOJSRFlaIo2W0McLvb7RmNJoyHM8pCEXd7XH38yOtXA5abO6QscYOK1c2G7HCgKCvWyzVhENLt9vniiycckh1JuuPubkl/EqOAzW7DaDzFDz32hx03t9cMhh2S7IBwTZnVz2/fcHH+DKUr8tzh7OwRQgnSXYIsClQucR2PKIxxHA/P9XBdD3A4nZzTDfsk2QHX8ekO+py5Ai1KDnnCLtvw5OUTwGVz2OD6gnKXcHp+Qp7lxJ2A1foG4UCSb+mEXXAkRZ7w5NGFca+qSnoDU2bkem7terHl9GRG1OlxfX2Lg8mUFEWClAVpmjK/W9Dr9pivl4zHHbarPVUR0+33uXh2ynK5RuVwe3PLF1+8ZHG3Yr3UPHp8iuf7XFw85Xr9Bs8zuk6ruwO+08EVAYd9ipi5vP35Axdnj7mZ3zIaj7j+eMloNKAoSzxXMxlP+Om7n5hMZvhuROT3SIRkvTgwrev5s6Tg4uQJeV5we7Xm//yHP7LdzJmMhmyWB8o9LDYbJpMOUWAWCsNh39wTnku6q/AI8F0XXRZ4SPqxzw9XC9wgYJ8Zp6zTyQnp/vPNDH4qi+cIgWrN6Q9Lav69/TXj14Pt3/vuw+zPp77Xfu/XXv/UsY4BJ0eKtjbaMVpVNdhghP1kPYeqFtXX7uP+4v4TGVKMocGn+qANErQDdTsXtBMQDz/3KQDr195vAxUPP2vnTMc9Lg7aC9TmfcdpBYMmY2qOcQSHDPAFaKtDZONK8zfUYsCOBW6MeKTjfOo+ul9317TfLhxa8YP9/6euc7uv231wL0vY6qvPmVEDNEkiU3o0bv62r1kHoPF4zOEgubu7ayyardNREHiMx2NWqxVBEDCZTJpyGltqbbVS9nvDKBwOhw3b+O7urk5wgesetQStdfVms0LW1H8rrDubzchr0MDGa1bANwg7DAaDBtDsdru1NbQp2YrjmPPzc/I8b+K6w+HQuDMlScJPP/3EkydPGidNy8DudDqUNWvAun7axJ9lygghWK1WTax6OBxqsXrDeNnv9/dYLgAnJyeN+K4QogFx0jRtgKG379+jnJjJdMRhn+GHmu3KCBSPRiO22y1aa6IoQilFcjgg6mTrH/7wh0a8Oc/zRkdmOp0ipWxAteVq1TyzNlmstW7AnU6n0zBf+oMBnnt/QXZ6etrcO3a8sXbkQgjWqx1ZlhPHHXw/5OrqmjAMmc1mpGlKEAQNowtoxI611g1o6DgOL1++JEkSxuMxSZKw2+1YrVbMZrOmlM/zvKY/02RLHMes1+vG3v1zLufvDLv4gW+E212BVrLRu2on4+1m51C7PZxPPwUYP1y/aa1xtUCXkjKV3Fzestnu+fL3r4l7IVVVmFIgBI6JzlAYbTQpNLmsKGRlEtJKAkaUWClASqjXWG3gqJ2sttfDrsFsclsIw80xboRmwe8HPlpIPGWqWkqt8YOAsspxaqDFDQKEI8jylDJJcUqJcKXR5HQcSqyAft0/AlRljutigBAjVO+DUKQr86wGrkfoh/jCQwuJ4/uGeVLVro5ISlmSl2ZNXSlJhcd6nfNf/uu/0e8O+P3vXxGOztneXfHu6o7TxYbeOGazPvA/vvuW//xf/8ztame05qSJJVwpKQvbN8alrlIKVZZsVzmZK9nvchaLNZUWJlGY58iqMvOqMK+pGhhBt0SFzU1i/hZgnQ2DwAe7VuU4HwMN+6Udi3wqjmgDQ+2xwv62c7+u2Uuykriey69tvwnUOLV/uF3Qam2yY44f4GqoqtrSmJpqK4xivV3cWwCnDa7ISjY3q3VEsPu29DC7VZUkCPyG8dAuubElNm0goR0UlWVp6MBufWzHxXFdquooOnvsNMf4pWM0OkSro5tsmziW0NgLZRfzFmBpB4gWnLH7aTNq7CRuAxw7wPf7fTzPa5wFrA0p0JTymOzM0XXLnkObmWNvBOEIHO00x3Qcpyn/smydNhPGtlNrfY+BZOuA7THbk1m7BrZoAXhCCMqiRDhHnRw7mbbpl1prZFWhHRelJG7dL203JgvoWJqxvd5KKbrdbkOdtf1hKcm27Rawk5XE84LmHrEgkN1sRqRd7ve5bpkuyakIRUBRSSbTAe/ep5ycnrLfp6RZzmq1YbnesU9znk6f0OmE3Nxe0R100GiCMCAKYqpAMjs9IU0LpFZUUpJUB04ez8h0jvIUuzxBFIpur0cQuYynA0aqgx849AYdFvM1Jyen7A/GMSOpa+uFY+pCf3zzI7PpFE1FWuxxXU1R5Lx+9QXffPsdaZLx/fdvub56z++/+oLp+IQ3H96wSzdEvQjXdwmigKzMefL4MfvDlo4O8SMfHAijgB+/fw/a5+zsnM1+y3qzQ2NsTpPkQBLsEZ7AdT0W8xX7fcnFaUXgh0Siw/NHr/jhzfdUlWK5XjE5HXE7v0WmkrPHZyjM4jNJcx5PT9nvVmy2c7QSjMYXBH6A0pIf3/zIk4vHeJ5DELjc3l0xGvV59/ED/apHmmfML+dGJ0YIvv3mOx4/fUngR0xGfdKdyTb2+gN+/+VXFLpABKa/kr3AFQHr3Y7dYY8XarI8Y7tYU3gFd/MBQngslrcoXdLr9EkuUpNlEIper8fN5RYvMmUAHy+vUVLx/t07lrstz1+9IAh84iiiqiRlqUCn7Lcpw8GILKvY7na4rk+emfFpebOnLArCMOLHb94xGo2Y9mcsb5ZcXJzgCE3ohrx4+pSryzmjfp888JjNZrx7d8l0NiHLU4p1xWw4ZTG/I68yOnFIFHqMxiOysmK52uKSsV/tmdYWrJ/jZuaMo0uTEMII1wrrnECdTTLis78AAOz6WjT/OY5F9WKdVnDwKaDl4Wu/Hrx+aox7WL99H0Q5fuZY6mQAmcpQi3XtsiQf/pZYx6dfAjS/0hJt9o8V4q2PpWrwx4If7Tn94dxt+8BxBNTUbps5q3GLFnjUDrpsZPMpIMvMsUZY1IAwriPQVlxRHuMG1zOgsBCgWpprrnNkHytp5BillObacr/s1waXYLrCWo/adjj1fWUyhKZWX9gaKH7JimmDNM2PqOMnx71nH26/7zrOfZBNmWSL73lN9tfGFZ/rZnRIAg6HA91ac2U8HrNcLps41OrCLBYLyjKj2+0xnU6YzU44HA6s12s8zyQHFosFFxcXRpy31yNJ0wa8Wa/XPHv2jLOzM1wXpKxwXa+2WDasayFcNpttY3IBmixL8X3PuBztdgghGI/HlGXJaDhkt9sxGA7rMbqqzyOiqgz7pt/vc3NzQ1WVzGZTwMTNm82mMekIgqABAa6vr3nz5g1//OMfGY1GdWxrwSaTfAkDYxHtOE5TFu77fiOavdvt6PV6HA57XFfQ63U47PdMJhMD2NYJQ8uGFsJoJC6Xy6asy5pfRFHU6Mn0h2PG03OiMMTzHA77Hf1RF40mCkPEcIjWtbCy5zEcDo/aby2ZBd/32Ww29Pt90jRt1hoWbFLK2Ijb2DKOO2w2qwY463a7nJ+fo5Vksbgl8APiTkyv12+YRBYIssyrxWJhxI8dh6IsCes5td8fNA5ijuPw9u1blFJ0Op2mksACPTZWLoqCpG73n//lX7j88IGXL1/ieh7/7b/9N1zXZTgc4vs+URTR7/d48vhLgiDg+++/p9frEUVRYzTyOW6O54ADEuPoJ4Rxzyvr+aO92XIW+CUj1a7p2n+bsVQ0rAwzR2ikVOhSogv4+OGG66trZuenjE6nVLqAuizK0cJondRrMtdxkEqR7HdUZYWr7ZjcMq0WJtZ03JohWaPu7aSBXUPZH1XPnw661g8z5+H6Lq7jI50KrUpQCqWgLItGr8ZxBU7goRyHPMsokgyVS5RwiHo9Aj9gneU4wmiSmTLZet2mjQmA67S0f9AkeYIQDqEXGMZNvV4NfB/XESht1uaOZ8qfjPNdRpalJFVFriq+//496+Wa6WwIQnMx7pP4Ae+SEi8a8O7dR95c3pJrh85wjOOArhSuVijKZk6xIJbWIBwPz1UgNVVRkqQpCh9BvbZVyhgS2HWy1o3LorkMtV9VPVcqrU1Jm1JmXnba62kLuJjfD5m6x+QSTWxhv1vnsJr37YTa3qcAdPu++cT2m0BNWdaORZ7bBFye51FIUAocP0J4bk37EujClKd4ro9WkKU5rlc7RLkuRV6DBZ6P0qZ2S9Q+70I4hHGM47hkibGUtmwNapV3mzWytd9ti2YLPlhgyIAf+qj0DWitELgGVVMtQSBdZ6Qc05GqRkd17RTl+uYGsOU09gL1+8dB2l4Yy2Rp689YQKldPmbbCceA0mZILHCjUfiOhx8Y4AmhkMr0laqOFtK2vlyjqKqyDsYcpCwb1NQO0pYtZEEM4J5QtAVVLDBiWUFRFDWDob1RreieBT2KomgmK+zgIY6lWsfsT0ApDW0u9H0cLaiKwgSCUhqUuAb62oGfBZVs+2wmrB2wt6272xpJRxDHxS58Hma+bHmVPcckSX7r8fibbv/7n/4PwkiTppB4E7Kswglc4igmSXK2e0VaOHy4vOOrr77kx+++5eLpGVKk3K1XxHEXIST7RNPvzXh+/pTvvvsrUScm2WfcUbFYrRifCfqTEZv3C6osB8flbDZj/uGK9WpDfzxkcn7K42ev2GUlYbfLvkgQaFK1J81zkqygKlNklfHkyROSTYqjAlzP5fzZGSIU3C03lK5Db9gjq0pGXm37KQJWNwfSg8fb95fc3N0CLi+ef0G3G6C4ochLVAJVpuh6IdPwlDSpyEvFdrXh4vyMQ7XlcvWWoBNQlApf9CD3uPuw5mQ64fz8MYHfIY4N0JEkW/KPe07OHpMVFW4Q8PPPP3B+dsrkdMjV9TsjNqYyppMpShUMhl208Li72+M5EZe373E947wymcwQQrE/rDm/mNDrxXhewGB4wmh8zsn0hH/9H/9K6Ed0ezMOacLy/ZzZoIvyfAog9Ka4RcDrV18w6NyxP2w4LDb4ruDloxmyDFivF7z+4gvev/f4cPkT2aBgk26Zz1dEHQ/hepyenlAUFbKqcCKF3xWs3s/Z5QfScgo6ZLlcMB5PyDNMeapyEX6A52vSu4xB12cQ9Un3GcmdceR4/vyMq48r5G7F2d/N0ELz4eMtceziBz50Mv70n16hSg9V5vzwl0s08G53zcvfnzLqj9lt95zNzri7WxP6EVcf5mSVZjXf4VQOF6enfLz6yCr/fF2flDR2zwgb9JixUNeggLAAjM0A2hp5W7pSsyfswlsIkDYYRdDmlXwqm/OQ+dDe7r/WBiAsNffTbnei9a/5pkYIhdISVIXQEkebumykNg7UUlNViqo0sYOSICuNquMHrQU0EsSYYIr7GijmsBqERJlYirLSuB44lbgHNLTPr01vb1iTGlw02jGC8hoFQtblSqoRArZzpsE5jnGCScLUCwZH4Lgazze/hSMNCGRMN4ywr661X9xjWa0rJJ7jIjUGEBGGVl3pOtFQJ8dqvOd+6bcyjk9WLNjRAk+4prxbt0QXLfpEHQDWP0LUdVOOg3AMuOK5Pq7j4QoPT/g42sEVXm0HX9+LqlbKdDAU8XrBoWvLVq20Kb+SxyD0c91sEsbGitvttnYfumU0Gt0rWQ+CoBG+HQzG+H7EbneHUmbRVmQ5ZyenjEcj0iQl8APcuoS62+3yww8/NOYN/X4fpQTT6Qm3t7eApiwrhMjpdSN6vS4IwaAfUxQlh8Qwhq0eok0qZXnesLV3ux2dTgff98mylNFoTLcbcTgkjEa92i0qb4RpjzorhokxHo+bEqCvv/66fu+A5wVst1v2+z1BYICsLEubUqfhcMhms0FKyWg4AQ37/Zok2fLi+QUgOWwP9HyH5LAjjGM8AYvbW0opOTk7Nzprb9/VFtZder0+AIdDUrtuRXXsWSE8l8Mha8ALL/C5vr5u9A13ux39fp84jsm1ptvtUpYlq9WqiQEHgwHD0ciMBVIyGA6bccECOP1+n93OCDsbu+5hw3bxfZ+ffvqJMAxNzOoEFLkidQryPGe/PzTxbRiGnJycGI3IICBJCsI6fnY819grc1wrWKt1W3plY/TFYtEANwjBx7tbbm9vSZOE8yePmZ6dst/vef369T3NRs/zODk54ex0yk8//diAN/B5G2QIYUB5V1gxdIGuNI7SxlkQaIBp10ELI9Zqx+xPMT7t+K+UQmjjZOe6BhBVWqIBVWl26z3z+YIg8Hn64hHKK40hQ60lW9W8ESXqpICGfLunKis8US/6nbriRFa4nken06OsKowHUT2n1OO7VhqhNLKs0FUFlcTVZnyVfoAo9nRdhYsk08b62xWu6SMHtCvQrkK6Guk6aHzcwMP1je22rqCUigqNqzUdP0Rpzd51EeKYINBK4WjQUiMc0I6o14WCvMzIqwRq0MjxNdTATBgKY7DjOuAJ/ChEqVoepOpQVhVZUZAXBWmekWwh3W/BFVzd5PzlpqDz50u6oyHDkyleHNN1PXytoFTISqMRlCikNNfflic5VUnkSGLXxXcEWpY4qsLDRWuolKLSGlwDUHV6HVxchPVWr+8bB4dAKipUI/qLBF85BNJBuCAdY0UuhPl/uz67fb8pdYzKhDgyJVGglcBxXQSGEOK6rsEf0LieB7hGR+g35s3fBGrsoJHnRYupUZeLtBbRVb3gHfXipvGW8WIfGLuQDsOwVW+o0J5FuBRVJZGyMA+RVI0o2tGeSzeTlt1Hp9NpFtuW1WE/Y0EdoHFVsoOiRfCBBsxxsFk73SDxRvxQ4/tBwwixIrVtQWRb4qWUaoIr+7tdvmPP3wZ+ts1tkCmKIna7Ha5nSozagsCe54EWBL7X0Dnt/v3Ax/e9ZqC3N5OdkNrUTNsntpzNghz2/CyLps1KsYGgBaDaFGJbr2uPC+C6Dnk9GVkL8SAIUPWEooURq1IavNDUEcomU3sEZqxDQbuOs11O19zM9fWy/7f11ZZhUxRlndE9lubZa2ctMO1Ea4WmP9ftzbtLTs4j0sOBTucELTXn42f89M3PpvZ6m6MLQeRGZLucf/zf/hP/75//C2fPTzisbkA4nJ6dELpjnl5csNvMOX90wiHXKDdjOj6llB55UjHsC3rdLtL3GQwidtsl3X6fm5sVepvRHSgC32d+e4vSksGgj1IVspIEfsBkNOLuVrJZZfSiBN/psd3uCELFjz/8xOx0xmb7luG4j3ArLm9/Rrop3YHPPtmz3HwkzQSn52Menc+QlcZ1XN69fYciYTyasNrv+NOf/sTfffU1ZZYxrsbssj1lXhH4AW8Wt+RFxuMnj1mvd1w8OqfMFMnuwGK5YDY+pVpVFOWBL754yWq35PLjJZu5sSo9pCtc4ZIXJb2Bg3JgsZwzGZ+ySxPcvc/Ncs5kPOPFi+d4jsNsNmG1WjIZj9hs1wxHfaqqoChSsvxAtT9QVorDIeH6+j3TyYSiTFi8v6bfHzGdzNBlShzF7NI1cRwxCsfsNhUXpy94/+Et++0NXiciTxVFuuXxo6f4wmE2GpMdJgxGA9abBfvdFs/vkycFcdw1C5PBmIvzC6SETqfPPivY7Q5UQWHotp4mih2yLEdq2G22jEdDTs6GHLYFwi3ZHpacTE6I4pBOJ+LZi8fc3N6w2+9QaYUQFVkmePb8KWmWM//hRx4/fg6OJu7GbJYHFqstvV7A+XmHu/mcNCu5OD+j0+ni+QEVkjzds54nZEVG3OkSeuHf+hH81a3NdmyPIb9a7qTvB5X2/w+p3XZTWt9771MZxfb+28yV9uvH/x7ZGr/FhrBG1XW0AlohlMnn2XmvPUarOjEhq6qe23+pTfOwfe2ymeZ8GgbMkVFr5hkXzwvu9den9tfMt7XV9MNSHcOiqc/wQdseXithQRDRZqm0y4ruU/Kb0qL6/bZBgxECdu7dL+32P2TBaPEpZtPDvz5x3Zq23Qe2HMdtfqwLRZshdO/7D/bXZkS1GbmfOxPVxiE2CZhlGYfDgfF4zNnZWePMaUGQ4XBIp9Ph7u4OrY/2037gEwbGDOHu9q4BQW5v7ozmgWM0ZCxDZ7fbNSVGcZ2QLIqEThxQlgUfPqyakvOiMAv7ti5gEASNOUVZVUilGpaNfb8oDEskSYz7lHU3skwVq4Vyfn7eCJzO53N6vV6TxHNd47YURVHDQjGMnxSvdnbtdrtobd2TVgS+T1mVpGnOZpPw7t3PeMJFK9js9mx3ezq9vnGVzDN2h4QXL17Q6/Xo9/u4rstmszFuMp7HbrcjiiIGgwFaazabDXEcN65QNzc37Pd7Hj161MSFNslm2TJSGg2hTqfTlLdtttsG/Ipjo+dj2TJpmtLtdnEcpy4T6hEEogbpBgBNeZzvuuR51gBkSinCKCRNDw1jfD6fM5lMyPKcqjJrjF6vh9a6OX4URY00g5SSNE3vrWP2+33z2fPzc95++MB0OiV89Ki5BlEUcTadkSQJ33zzDZ1Op9ZuzPjLX//CtnaOsgx5u/75HDdDENTNxGTHlqZagGOiWAiBbrEdH85x7fWq3Y9ZqNdrD6AqFVIqiqzg5uYju/2Wr/7wezzfpaxMot1OjM2Ypo+yDXb/9pjCEXVyxiGKY6I4ptjtjN7MPbZFTadQpprg4ZznaI3QkkG3Rxi4uNJByXr9I1W9fjHguRHYFbieY8rGXIdKHyss7Dp0vV6bKoPadtsQFDRlYfRwHCFwDVXTMFGUZLvboZTE93wC38P3PFwEgR/gBwGu41B5Dl5sxJ99xzGsI6kIhENXGNBE1Sz9qNvBiXyCboyIfAh9euMRbuBTycoAJVpTlWVdeWP6xMYSQmuUlDiAUBJPeHiusewOwwhdLz2FFqBNSms2O+H3X77i49tvavdIk6SRtci+1Lq2FtcNW1RoA9oorWtMoLnNWsmzXzFWoB0zmPvz4Xxp534ta0MggXFVdH59Jv9NoOYo4iOautV2hscudi2KaxkWltpo6YWWmdHep53s2gvrBhSoJMIzjbb7aKjLHIEfy4KwjIjdbtdonVi3ojZzxNbHWh0X215bN2yQ/KOzUSOiXB2FuoB7JTxt+2jLHGkHjhbMst9pAxkWFACa/rUDi3VM0lo371kAKYpilDy6SNlASSuNVC2GjbbOVe49QKMpDauzP/Z62vOx59LWeLHXu80KsvdCuyzNXksbYMRx3FwPC0Z5vt9YtHqeh+e55FWFowVRGDWZBquFk2UZYRg2YFNbI6etRWDvCdvnbUFh8znTH23wz3WPluFHQKdoJv7PdVvu9jx5NSHLV+wOHzgbPWd9G7Bd5kS+5tH5OeezU1RZcTKdsljuOD17TNyJ2b29YjyI2KcZnaFiub4hTXecnZ2Sr/e8fvqcyfAJrtfl6uNbOmHIvMgZDUcomXJze8t4cMbvfv8n9oeM9TKl15MIBdv1gUF3wOJuxWDQZ9gfkiQZh20F0uHy3YpHF4+5yzYUZcrbd++5eHxBGAbsdgnrbM940me52rLZrcGB/miIWmVUecbj8wum08cUuUJXkm63T5UpqsKAqd99/y2eK3jy6CmqlDy7eMZyuSKKY3KZG7q5Eigt64DZoduJSIsdUFGqPf1gxsnsHHRAst+y/nhD3I95fP6UQpcslkviXpdDlrJPU/Bc9h+vcX2Xu+Udk+EJw+mU/W7NITngCEGv38ULYLVacHI6Y7dfcdgXnJ09Yrev8HxNkq25/HDFo7NHrFYrfCfgdy+e8WH1ASkrlKrIi4zx+JyqqhgPB+TZAe0oOt2Yr16+JkkKskNKJ4g4m54yGPWNfaJWFHlBXqQIAWWe4rqnuLjISrNabthtE+JuhlQFF0/POex3BH7MoB+T5xUnJ0OUlNwmKaNZn27fRzklJ6MRjgj44Ye3vHr1guEsJO6EVLLk9u6WLJcs5muGwx7dPtxuFjw6HRGEAT//cMOgO6VIjUieHwVs9zllJalkxWgyYbH6yPR0yGA0pBcOWVzt0OXn+2y2tcjak7kdQx+CNVrpX7x+jz7bWqwOMwPNAAAgAElEQVSb6OU4HsOny50+9Xf7GJ96/eEx7+0Ly/rRgNGhwQoIt/TW2kBNJY923I3QZWtx39Zl0foYKP1ysV8HkC3mqUkwHJMQ7XO4p/fCMbh3XND610WJH/ZFw29qvdcAEveAmuP71krcfq6tTwO/BG7an2vfJ83+2j9tuKQNxHF/O14/8Yt9tMvDDShzX0PH/m73aRNzfuJ+aZcP20Xz57zZWGUwGLDb7TgcDvzud79jtVoZh70wvFdivVgsuL6+bsAa2zfJIWG/2zdxbrfb5fr6mkpKev1e4wCUZRlxHLPb7RoGiI1NpZR1STkN48HGu7e3tyyXS87Pz3n06BGeZxJzu92uASEsC8guxHq9XuP6s9lsmM/nLXFicyzr5GRjPxsLWm0drWlYHBaUUUqRZwl5bsCMxWLRlI3tDxuGkwu0q1BiSFmB5/fZ7Yx2TFZppuePSLMCgeBidkKZG2ek8XgMGPZKnmVN2dXp6WnjQmV1bVzXOFgFQcDZ2RmvX79ugAx7LlYsebPZNIwj13UbJ6a402nuUdsPvV6vsRVPkqQBZhzHbVjgFiQy5fMV/X4PxzF21/OF0YOpypJur9PowNjYeb/b4/lRI13geV7Tf1bE2q4f4jhu2D1RFPHq1avmnknSlCAMzKK3qri6umI6nZKlKUWast/tiaKI58+fHxPD0IBUtg8/9609Ttn1Avyy3ERWEuXeH/8fJid+oWsj6rlTGnYiFahCsbyds1zMOXt0wng2RDkKocxcK+qvNftRhg2j+DRrVUmJLf1NksS0X0uEnT+FYSCWUoI8Atx2zpJSgpJ0PcHJpE8UOqiMYxVIu4+EAds9X+AGAdqlrmAB13Nw3CN4LqVsyigF4NY6MLKqDIgEaHmsVshkRZKbypbQD4iCyJRiCQc/DPBCo0vlOT7EPgQ+wnHQeYkuKoTjEkQhketQSUUpS/xujD/o4EUh2nVQnoMKXIRrmFO2H2QLnDNZGkAb8oaSxoHLExB6HihFGEREURf2CY4WCG3E9B0E87sFrpZETml0d5qSoxqgEbVLFwKkqhmx2si+aNMx2n6nSVQd7zFz/R+UcOujmY77iRK9JtapEzcNQ1X+eoLjN4GaNvPDPkRGvTxvFuPtSdur37MPln2A2sK8VrfF6IEcEVNrQ22Pax2O0jRtBmDLhLAPoAUDrEaJfTjbGiT2mI3gcc3uaLN87EANRwcrO7Cq+kawmgL2O+1zt+drtVAsEGT3aTMpluVh6xEfMnIcx2n6TyljA+cH3n1h4/p8yuII8hyzCqY0yk5cFswoyxLX8e4FVTYgs8CLZdZYgeW24LD9v53ILKPG9mHb3rqtvSPEUSQLaNorq4rA8yiVRlcSr7b9tveB7bt226zyvr3R4zhuHJ/sce13Hp6fvQd930c5RzaVvYet3o4dNC1L6XMOOh89esR6mRIGXTbJB769S3h+8ScuHm3xPYdOHDMajymKnO12h1Q75utbLsQF434PV3rIg0Z2cr599wPdXoQTusRBl9ubOxa3BS9fPkHLA/vVit16y++++IqrD9+THFI6sabbGfCnF3/g//m//zO32zm+7yIzxXaR8P6nj3Q6W776uy/Yrg/0OiM+Xt4Rh4Iiy/nTH/7Im/c/IYSZXL76/Zf861++5ebqjtnonK//4Wv+/C9/Zr6c0wl9OoEg8gNQit1qQ5oYamqZmmd/Mj4lTXOqMsfzYL6MCXyfn99/4P31Fc9fPqIb9SnTivFwxvX1nP7pGKkq9umOk8kM1xfkVUKW75HSRyiXZ4+e4oicu9WSzWrH9GKCrCpkWZKlGVUJcSem3++z2S4o8gJNxcebS+7u7uh3+5ydnfP23Rsq1ePs7IQsz+j1OvieCYTjfcJivmb6+Jx56JEXBVmmWbs70iTj9vYOdxhyt9mgI8nl7RvG3Q6+I3j78195/rsX7LMlwrlgtV6w2yTEnZhut49Smh9/+p5KKs7OHnF3tyBNc85OT9lut5zNDBV/OBzSHQ7YHHbEgyHdwZD5YonvhRzSHftdShwbmvZ4MqbX71PJkqDr8v7HG3rdIWlZotwC3wO8kvVyTbcbkaYZnU4PpUoOacLZxQmyPLDa7jhke6SW5Eow3vXBETx9/og3by55+fIJl1e3SHkgyVJ6gx7b3ZblesGkM/1bP4K/urUZgXAMrD7FmjFMh0+/3mY/Npv9TOtYD5l/bYbGp4LJIzjx6TKVdmBx77taNSUvWkm0ljVgc2Sh2nHczMll87spYX0AxvzHGBjHAKndP+0yZDv3P9z3w/ilkvd13T6Vhf3lUR9mco84yafA/Pb1sEkse00elmq1990ct9X2h+BHAwrZoL9uabsLH36/vZCx/WFLdBzHbRwtHn7OHu9T+Qp7fz7sv08xpj6nLYoiyrJkuVzieR7T6RSbcLR6JFZrzyYCp9MpHz58oNvtNgKw2/2O3XbXJJQalo6STQxl42drXmCPZY0nDBjiEUdRI9I7HA7p9Xr88OOPDahjASUbF1smRlubL4qOYIBNNHU6HaDWN0kSwjBsWM0W9JnNZmy3W5bLZc3SEKa8qGXgkec5AnPv9no9hsMh8/kcIYx2zma7Zrs94Dg+m80Bz4/o9x0UCj/qoJTm9OwcPwiZjgfs1gu01o01uC0vsyxty/6wLlw2uWodj1zX5ePHj+R53tiIW0MKK1psr7PWmul0ynq9JqndV8fjcSO8/O7dO8qybMARmyT1/QDXNdetzUQfT8bMF7cmtlQlnU7USBvEccx+v2/AlcViYTR+9mnDdLHOXnaczLKMwWCAUkcbcyGMQ1ie5835yqpiv983bKPz8/NGB7PX7TEcGNv51WqF7/sMh4N71udCGDZ/W7T4c9vaY7CdQx4mI5rxUNwfm+G32aBmcSxxnbrspNLoEpJNyv/f3ns1SZJkWXqfqhE35yx4JC1e1T0EvSuyDwCeAPwDCB7wc2chEJkd0js709VVnZU8MqhzakxV8aCm5hZRWdUjgMh2isBviVdGeLibqampqV4999xzRzcjwjDg7PEpWtrqSoH0EK6EtT0zeZbbPagRP2O1VtsnpIdWmlQX1WyN00KrzJHaiQbv9rNuffCMZtBuMug28MWWHKuborQqRHJtEN5gx2YoPITvIUOJljYd1vOsxo9Sil6vVwKDvu/bNDJjwS5hCtBGawtQ+IJMa5I8I05jBFAPQprFftz3fYIwBClQGGQYIBsRRAG+9NBS2qwFIZC+h/A8tLHVdkXgoT0Jvkemd0SA6ppRvf9CCPKkYPxgmcSiKEXueRbQSrcp6/Wa5WqD0gK0ZdMYBXiwXq4ZYzg7jCw4Jwugzi/8gWIsGWNKhpNlPxX3Xdj0MBuesonaVT/tYdDt4XguR0+VAa2rjCiNcHvt/7eMGkepBMrJE3ZViaoOYRD4oPN7aJIxplyQqgyI0gmFEvRx55BSorK8/L4DXoIgYLNZo7UqN+VVJ7Wqg+LAmOpm3HVq1fmtbuTttezAmzLFq/yMRaSdUrwTq3WTiRtgTgHf/c2lgLnrcTnLTk1+x5KJSsfHtT0IfYzR9xgeDoD42CDxAx+TWeCqqkOT57uKTg4Qgp0IsrvX1ZLejv3jFvUwDO+BMB+LDruFY1c9SpKmuzSxst1KY7KU0PdsLuNqY0W1CzDIDeqq8+o0dqpgjGP/OBZNVa8GduwtR3MO/IDM7EqMuz53zmy1rOKnbibJ+P1/+4mnz4ZkuWI6veHw8Bnf/PYLZrMx8/mc5WbBcrvg3dU7fvebb5Fei8Boml5Ay2vy9X/4hld3PzFfbPEbIetEcXV5yfnRKbUm3N5eUAsMOoPffPctSaq4vRlz8X6C5x8zGl2C9sizlO0q4d3txDo4pk4e+9xMFgwOpgRBjV67jX8WkcRrlvMxJ8eH9Lp9pvNbXv70E0+fP6PdqtNvd3h+/gRPwfNHT/ji+XNWmzUCzeMnB0xnIy4/XNKot9kut3z/x1ecnZ3y9ddHrFcbwkggfEmiNvzr9y8I/IB4veX9q0tbLWG9oRWmeKKoNLZWrNZLamGNLKyB0Kw3C3zZZNg/4k9/+gPGxDx7/hlBWOPq3QVffPWUm/E1vVabyXjJdrGmVasjlCFPY9brOXlqafXT0YTpeIYfSOI4YzyeobVCCJ/Lyzt6vRMEPlaIPSsYZYZed0in2WW+WDAej+g3D5HSlhJMs4z1ak07qvH4/JywViPNMm4nd2zSmBxNs9NhsZzR77fptLpcXY+I1zkq9UniDf3+kDhVaJ1RqwXEyYZVvLGU+7DBZLalPzwmXi7RypAmWRGdjMlzm9MbZzGbdMngsE2WGf7mP3xBreYzm4/xvRClEjxZZ7WMmYyn9AYttts1j0+eolLBaLPl868eUWu02KZrlus1k+kUITxa7TpKa1bLKdLkJFmOn8fgewQRbLefrkbNQzbHLwE05c/y46lPD38uX2ZHA6/an3McHppdun+eElX9vepAUaQ5YTRotQNrzH2WjJt3lXK/F46osdUXHjJp7r24DzTs2rqLjJbriN6lQ1XTmarrsZvb7e/VtV7fcxD/v9h98OTjNOiH4NfD10OQ6GOfKR1KU1SwwDp9Wut7m5YqQFMNuLj3Pc+zFUJKJo1j/Hy8HTbN6/64qoJizgd6+LdP0ZwP4YJqrn/a7XYJoMzn85JV4tJvhsMhWmtms5ndWBeBu+PjY9rtNlJK3r17h+f7GKzf9dvf/pbJZMLl5SWLxQJX2rvRaCCEFbmvhbs0GrD+8fn5Oa9evy5TvpVSZUUk9x7A6ekpSikWi0UJCLqS20KIsjpmnuclALBarcoxGIYh79694/T0jC+//JKrqyvSNEdry3JxfaSUwvcEoLm5ueHw8JAgCLi8vGQ8HdNqt/Ckz+HRMXe3I8KwhjARoIiTlG2cUAt9ZvMpoTQl29u1Zb1e0yx84dFoZGUUer0yKOxAidVqxWQyIQiCMmVKa81REXQIw5Dtdkur1bKpVMU8sVgsQAg6nQ6j0QitNcfHx6WGkGNSz+dzarUa3W6X5XJNo+ExGo148+YNYRjy7NkzFosFUmiCICQI/LKceL3eYDKZAJQsp5OTExukwLJ1HIjSbrfLZyUMQ968eUOj0eDJkyfldTg/1zF/7kZ33Nzeslwu+eqrr8rAb6sopuH86yqDS+VJuV+YTqdl2tenam7eqbLZq3PY/bn6PrPB7QmqqaRlpoH7XjE361yjM8NmueX64obVfMVv/uZbao0AIw0iB9T9ynwYq7dpNFZf1dxnYPKgZVaf06ZOuVQaUeii6ix3i+89cXZ3LdJoBu02vVaEr9ZWXFlIKzauDEo5IkSxvnk+Stoy49JzWq67iohK7Sr/2v21tmLERTqR6y8hBJ6QxFqxjrfkSlkGjedZPRphA+J+GFgtOgN+EOA3IvLAlrP2fR9ZBN5d/2As3OUJz0qdGSBT+CF4yqDzvNSMpXhZMMulrFnWsdHF2qcVUmpCKfGkwfcClLIC/FLY2lxSWC3aQmm57FttwAU2tMHeX6cZhEEaCP1d1afiIn5OW62MV/vzbs0r963GavZV/QH7nV2aHBTZIIXu7C/Zr1d9KqILbhFxkSEhRInUOqpflmaEvijQyMDm6gG1KCIpABgH0ECxyZZ20EthaVr3N+ASpfJSnLbqGLg2ySJSZgq6lBByp+dSSYlxDlk1jxookXrXLunJMg/WRRI8zyPNc0v6LoCPKhDl2uZSwKxjuiur6MQR7Y3c6do8LKPtwBW34BpjqV5lrqQdMaUjVWWUOIfLRvP1Paq1Y/j4XlBet3MY3H10oE51Aa8OLKfv49rmVe5V9b5Wq2/ZY8nyet1Q9X2fPEkJC4HFLEktuiwlYVS7NylXBdLyPLeAUWDbZuTOQaxGDappWFJ6eB5lCpQFC3cTd7VcuNNQ2DlxGZXn65Ozul9jfrvmHy7HfP5Nh95Bj+lmRL1zhIw89NqQkhKrmE6/S5zMCDzF5O6Gw+EpnhaY1NBqtDg+GnJwfMT19ZhAhCzmK/AE203MoBuhVMLrP11yN93y7eePefd2g1KaXu+AFy9ecPXugqdPPuPmao4MfG6uxjSiDuga49GWwcDjpx/f0Go06fUiWu2IJNnSbraJGtYx1lrz+MkjHh0eoZItwoS8f/MjuclpNBt0e0NUphj2ByznGTqH1WJFu9UgCm3krdVuIX2NIWO+mnP66IRkm3F4cMRmETO+m9Ib9tluY3rdHstCSHJwMKDT7hH6AX5o7OYn97m++sDX33zNi5ff80+//688f/qMb774iu1qxna54vD4BJOC7wdIbagHIa3DA5brNZ12F60MUVCjUW8SJzHbzZYkiRkOB7RbPRazmHibMegfIEiJ4xXrdUKzXufg4IhOo8X09gPTyQJd9xgO+4jc49WrW54eHpEvNYPeOYt0jfB8/vjiBWEQMR7NqbdbhFEdZeD50y/pdI5J4pQwiKj5PmmS0uu18YUg8zStTgMZeczWaybTJf1ui6gWcPX+lrOjYz5czPE9n8V8SVBrcHV1S/+wTZKlSO3TaLZRJuOnV+84POzSatXxzo/5cDGi3+/R6XZZLKb0+wPuru4YDjyWyxnG1Dk+OqaufC5evyXL7HzdaET2WTdrVssEr+GRqZyDQZdI+7RE+y/9CP6imcqqboVWRZl/b/e9RQ61+1kXG2xTfLb42S7wotgkywIEMAWDe/d5XITRFJtqbPlOUToY9ym71ZZ+zJxzZZtcpevaqJsxrsy2/dfoXcqTUspSl/UuYOACFs7x+veANNVzO3vIDnGAuwPbqwCFnbt3bBDXfufU32OD/FmVl5/3TbVlO1COkjL9EDD52THcmStAjXOWS+CncgwLxlSAFNdHBStZVr5XZe38jFHj2lOmblnhY/ezMU7Q2VVJseOpCuhVAUEHFMnKe59yoMNpz8znc5Ik4fDwkFarxfn5Ob7vc3FxUYI1DhTI87xMG2g06mw2lv3SbrcZj8d2M10EsoQUbOOEVqvFbDYrwSAXLHK+33a7LYJFAVorVssVy+WCu7s7/vmf/5n+YFD6184PdZorDrBx2iaOTTMej++BZavVim63W1Q93JS+rk2NDwomSQfftwwVra2ejhC7Cp21WkiW5XQ7LZSyTPA0TUs2ix+G+MX+4Pb2zqYxpTH1MOS7r7/i7fsLGvWIXBtqviRJtmxyK/Tb7Xb57rvvuLq6YrlcUo8izs7OaLVaxHHM9fV1qTNoS43HdLtdXGq/A1ZevnxJmmV0CkFhx5C+ubkpq0j5QVD2z3g85ve//30ZiA6CgMlkQq1Wo9lsslqtiOOY29sR6/UaY0ypLaRURqPeLM9/d3cHQthKiNIrxYEdeOwHIdttwmAwqGhcpmw261ISYjgccnx8jA1s+ywWc8DuPzqdNmmacHJ8QrPdZrW2qdTdfh+jNZkxSOmxWi1pNJo0m40ixW1Ns1Erwak4jhkOh2XWwqdoO0DdlHsqF8S3gLGdb+zvINz+z+yyGqS0Egduzq3OVboAJzCS7WbLfDpncjfi8OCQdqeNMoUWqgZPW1ZMlmYlWWB3DFGKrbu/GaMry6xdUbTeoQRGG7KCYVptV3Uf6Y4nBXRbTUIfpCMNUAEwjCUVCKwOqCs04Psefi0kNx6+X1QZ1oX8hZCExXOqMqtzswNq7LolhQUcsjxjm8RoDKHvE9Uiy+gpxG9930dlafEceoRBiAw9pDaEdY801eTGiuaLwhsR0vorkR+CtiXRPWWBmjzPrDiytiBMmfaEKe6XZf0YRxLIFVoovKLdQnoopS3Go2zFRUzhDzlEphgnRmNLvxuN1gYtRdkXnrHFbKjct+KLxQ/FGKz8yblKH90rClEwmx4EvdxaWnxGYAqm1y8Lff8qUOMGjhOtdakxbtA6IV8pJZ7vk6gEPEku7Gan0aijhRUbDuVOgLZ8iJAYDV7glylHAqtVsN1uiyicAwNyKyypnfSPpTG7jbyUHnnJ8rCona3yxL30GSFEmXfrwI5y8fICVK5RuQYjCfxacXNzwlpUpiu5xbfKvLH6NrvcZs+XheOpUNoUzJqodFzdYguUqWBuInBiwrZNBTChVVHmzfatypMSWHCsIWM0Qu7EkXdRRa9kxThgx113NZ/W9YMDjwC22235vTAMyfIEhIc2eUH/tLS8JNnp6whRiCYrReB5KJOBNmRxUo4bow2rJEbW7MKWFMJ3VtBNoJRGaQtcZXmKQVAL6yVgZ4XAcjx/l+PvontBEJCltpSy59mJxDFutFZ4nl9q19hnRaCMzVPMtcHzfIS3yx/9FC1dK9KVwqiQdFEni6A78BnPPxCEEcdPhqzSMZPJApG2uWRLu9MiRzNarDGDOuniijCQzK7nfH7+ObqesVqvSDZzXo6v6A87xHlEs93k7e0Vvh+yyhXD4w7Nmo9aLzlsDfAODZsspdVvsl4lBCFkQUr9OCKs1/BqIcYzdAZ1njx7RJLF1KTHxfsrvFqdv/rb/4TOEzKz4mpyRSgDwlaTZrvPzWiMCiDKBPN5ysFhh88+e8a7txfUowGDg3NyrXh/8Z6DgyGr9Zrf/e5/YDlfMp/MuLoacXZ2TqPdYzRd8ubqikdPTmnXAkQquPxww1C1qTdqjCYLwqBGGuecHp8RrhOub294/vk3bNQfeHP3js5Bk1ajixK3vLy84PnpM3RquLy6IOrU0EmGzhVZqslzgfAD+od9fnzxA6e9IWmqSJUhThUHxyfMFzNOjk+o1+toldJut9iutxgdU/PbXF+N6NePqekatbDFNJnSafuEvs9mnhDWoNlpkegYhcGvCVpdj5ev/kAtbHB28pgFHvVGjdvJFUm+YTDsoMhYbrY0G02uJrf4fshma5/BwYHPapqxxSdeZ/hey0bdvYBG1GZ2t+Ttqw/029/QrrW4+DDm+d9+xu3NlGG7T7ZJmTMnatc4ezZgvlizTJbg1XjzbsTp6SHLTU6j30UpzYfrVwz6h/Q6BxhmLDYbBr0eOlVcvrpim2V8/e1zsjQh36T4TcN0O/pLP4K/aPeW2yIB3G2CrR6sdeR2/y9AF3YOqRACT+/y2oWobOIFJRBj49zFsYpzSGEs/bcQyRVmp7dy3+5HekqAwOgd2GRcWo3Z/Wd04ZgaUKoQxduJB2cqJ1UZuTZ27TOUL20sZVoV7cY54JVoWpWN9NCqDq6NvO7SiVyAA2H7wPoTNnhkMOVGsxqYKC7SgmWmqLpR9JcDcEpQohpBU9qWpC5KUbkqJb/ETHLHcf/uGEji3qbCraHVaHDJIi1wN4VBCwohfuuoS70r9FDeRylAmEKoUCJ9H7wAJT38aqoVO7AGUYA0oowLQ4WJVAWRpBBIYYUnVQ46z/E8WUaLP0U7PDws05lcYOfNmze8evWqTBeXUtJutwvmiE1rarUOK+K6liUqkDSjlvX7ckVaVNzsdrvEccxkMkFKSb1eL9OaNpsNcRyXJcCDwKY9hbUGw1oDozVffPkYITR3d7dEUUS322U6nXJ9fU2320UpRaPRKFN+tNY0Gw3SJKHb7QIwHo/pDwY0Gw3WBTvGmU2FSooiIZo0zYvS2ht8XxJFnk1jVobNJkGpnB9/fE8Yhnz33Xel5ovv++RZZsuzC/ucPX38iIuLCzbbLZPFEs/36fR6RFHE9fU1q9WK6XRa7ifev39fFq1YLJdOptyy15OEg0NbEt3zPBrNJpPiu57nUSuO0SoYTUIIsjznzdu3bNZrGs2mBZGEZWpHRYoZWL+20WhYVkqrxd3dXQnGOfCm1WrRarUYDAas12suLy8ZDPqsjU0nWW+2ZGnK2fk5vV6P25vrstpUs9FGKRj0hzz661OOjo7513/9ntev35KlOUbb9CaXyjYej5FSst1uMcaxvQXb7ap4f8VqFTObzWg0GkRhaDepWmOE4eTkkPF4TBBI2u0mh4d97m5vmU6ths5wOKRWqzGdTv8CT92/zx4G1Ut2TMG2N8ZgCkFYG+WX5SbZVtBzu+b7KZlS2k1+DTBCss4Ui9WGi4v3oDIGwy5pniJ932ZsYIAUkox8vSVPM/wwIGhEGIkV+8XqtZQCL8Ls9MmEY51qfCHJtZ2zs1xbHRhpASdVXJslfhRrtDbIUNOsG9qeIsMn95rURIwvNarQqvGkXQz80LJ2fD9ChhEytKBOEAV2P5NbyQcpQGgLCKRGFxWscrxAYqTBeAYjA1JjKy2leYpAEoo69aANwrfslSDEZRgJTyAC35b5LoJEmQeqEZJvYwJAFjo4ph6SSgiKPacWAqREaRskD0WAUIYss5qwnuejdA7akBuNkkXVLa3JlWFt7HpuhCRRdkz4OkWrBIHC6KLisZQIoTFKgbaCvUaBMFazjoIJ4/reqILtVNxWx1bdLf3evcBMcfPv+0/ifvXkKljo/m4KVo8npKNH/+qz8WfFhB1DxTEWqiwb91C5BywIg5KBIaVkuVrb72hTOnFucXQAgWOuwC7VKkkS6vV6mSPr2uKQUrfJdrQ4xxpxQrCho17pnV5JvV6/l5rjgBoHTDi0255LI4RNBXLMDNfhrt0uf9mi4EFJE3XtMsaUIrguzabdajObzTHGlKCOu+4qu8P1R1XA2Q0Od71ugnfXI6VEG0Pg70R73TlUrvD9HeOnqr/iwDdXBrI6wbn77/o8y3f6MfeEho0udQDcv7YP9D0NGGcusuQm4+VqVYJgrr+cc+qYRX5Yu9duCyTZ9CqnOVS9PthV23LvOxaTE+6rotlB4eQ7DSXXL5+q/enFT9SiGutVzGazJp9pGv06B/2I9xdXnAZn+J5CI1BZil4qhMj5tz+85vCwj1LYagYmJ6o3iJMUPwiJYyuMOH43Ikk0x6d9+oODorJDzmq5tvToZM33/+01/Vaf/+1/+V8ZLUaoLOPs+IjZasEi2dA9bDPstxkOevQP20RhxOnxKf/l7/+B0WJCEud8eH1JbBRf/eYpOVvuxlOGvQHj+ZSoHfHl0cCTbOYAACAASURBVOfcjO/QUjFbzWh0alx8uMDzfL787guk8BgOh3z//ffU63XWqzXJNsETAZeXN6xWa+7u7vjNb7+l3amzyqbMF3NCr0ay3RKGNuVotVkyW044Oz5judwymY4YHPa5vrnjZnLNyaNjfvjThA+3Hzjq9fBDn8V4SX6kWc6WYDzitcYLDL4vWa0WtiINkm2y4uRkSBhGvH3zis06ZdBX+H4NbQR5bgiDOl7HZ7POqXVbpIlitcl4d3FDu9Wk2W4TTxJMboqoKlx8uGQZb/jd//Q3/PHlH2k0m2itGA4H3N6MieMYbRTxdo0Rdc7Oz8h1CkITZxsMOdoowlrIdpuzWsTkKUis6Nr7ixuGvQ7r9Zwo8phMp5wdPeGnP74liVMkkixNaTVDPF9yc3uL70l+89tvWW0W/PHHF0RRzZYBlpqnT5+glcGTmmazThyvQQe27/USlUGr1STJEuIk5uTsmHa3iVrGNJtdZvMJo9spnW6LXqf7l34Ef9G0ebBRrSzSLuhmKu/fY1BU3zeiBGSqIHjBqL63ea4ep0wTcp8pnMBfAxHuAxFuu+Sa70AN64AarWxkUyuUVrbsdpnu5PRprBi0TXsy9lUAPFr/XJum+vvPAZodM+a+lplBCrtJdOuODXhUup5dSpZjXjp/pXpuG7C8LyL8sK9cH/3S6+Nt/7ndT8e6z1R5eM6STePOXzB0tVIoAdr/uECoA1IKHIwqm8YBWDvG1u5fIXfMmqLH7ZjVOw2b8jqFwJMSJYR1xo1BKfnv6oO/lFXTmqoVQX3fL9gk9jpdiW7Pk4xGdzbgU+ikWN/Dfm69Xtv1oyjh7HzbIAjKikue55UskfF4XPrMTn/GsYWHwyG9Xo/Ly0uazYijoyOAEkyo1WrEcQzAbDYrNwQOCErTtKzu0u12ibfbUvvGAUSu8IbzrbvdflGwwQbRFos5SbK7zl6vRxzH9AcDoqIUthA2jUgIQViky6/Xaz777LPSB1ZK8ebNG4wx+AVbxZXXfvLkSSkhIKVkOByWJbadb395eYnv+yWwEtZqrNfrMs0nDEMeP37MZrPh+vqa6+trHj16hOd5NshZHNuBty5Fye0B3HMVxzvwo9FolL5wo9EgjuclwDMcDgsZhwApTbmfGI/HZG/f0ul0in2H9fs3mw1panVl3rx9xdHRMXd3I2q1Or4XsFxZZpfrFxfAHA4HLJezEqh1967VavHll18ihCjLq19dXRGGAU+enJfA02KxKPUY8zyn0+mUYyZN01K36FM0VQDqnl/oeklZVOSxewyBKGYjF4SX5d7Mzf+W8WJTTuy8btdLrUzBSITNYs3N+ws24wnnBwcsR3esVzMavTaNdgM/CpGeRyZVAfDn5LFCCYOshQggCCxzB4PNoBCiZFNWdTK1VigNeW7XTK94ZjE2WLFLZ92tP0bnRKGV1/BEE0WGjlN0EQD3tSFXkCsQuRX1F76HFwQEkU+GTxjaSmyimKOltPNXlmZIIciKvXjg+egCdPWFR5rrQlTX4COph1G5B0QW8hrCBgGEJ8GzQQAhQOX2HgVhgMlyVGbFyd31UuwVs9yWL3fzl01polzXypStPLeaMd4u1RkDRik0VoxZGU2WKdIsQ2vv3tpe4HulWfYnaCGsiLApQJYK4ybPFG7t3/kC5RHKdXGXUvfgE2anlae1FRN+yJZ133NpdUrliPzX09V/Fahxm3G3cXaTm3u5tCSXGqO1G3j2VbI94tgyLyoiv07oyqUfOSc0juNyAq1GlUramdElMOGYLNWy2Y5VYQeAKtBGq5jvrsM9EE413ol6VYVygXvsF9dmB0I5h7GKnpWpTKFftsnRspVS3N3dofUOpHGRESllqc3iJlgnRud+LyczF8koPuOAEKVsGbVqu0qgw+wo4tW2VvM3HUvoId1ca71j7OQ22paYrHz40yQlqkcE/i431DkBvu8RhsH9CEy+K1VendCcgK9bRB0YppSi3gjJlbknCpllGUor6n6tXIxdStd2a/MrXRqU0z5yx3YOlLv+NE3xgt0Yq4KAn6rdjsb0D0549rxPwoRFNkaZHOEZMpVxdX2F7ytazQGzZUwg2vzh+9dst5osN7x4+Yq//du/phZ6HJ0MkZ4gXttqO1mu8agxutnw5MkTtIJBr4/0JFmiub6Y8+WXz/D8kPFszj/913/h62+f89vffMvt7TVb5fHZ43MSkZPmC8bzLUJI1ssFx6dHPH32lB/+5QW9g2Pe38xodvoEYYTvaXrdI7SBxWZFvR5yfXeJ8H1evn7N2ekJo9mUD1dXbLcJcZrxzRffkKcpHVf6MgjwpWS5WTMYHrNYrRhPR0xmdwwPO7y9eYtMM9IsozcYELVqpCYhrHl0ui0W6zmdToufXvwJoyVeFKKldUyfPXsKOsUEmpPTY5brmOVyRRhFIDxqtYjF+o56PWQ0mjHoN5kvJiyWdwyGQ3w/Is8hiiw1+vZ2gu9HPDn/jK3SJNuEb7/5a+bTOcb4jCYLVpuUZ0+fcXc1QuuE8+dnbHWMCg3KAyUEi8WKu5sRtZpHp2VLv7ZaLbJAM5/PSOMN0uthRMQ63pCmKVHTJ6gL1uslea5YLTZEtSZgBSFPT04YDjO2a3sfapF1OrIsp9Go02pFZHmG7/kcH7dIki2NZsCj80f4vofOBbWgSxJvyfItnXafVy9fovKcbrtLst2wnK+Jah0OBieMRzNm0xmtXp1mt4Ewhjjb8uW3X5ApyXaz4fXrK05O+rQbXT68vfhLP4K/aA8BiIcRler7D79XbtiNQRu72YYHlYDYASvV9RF+XgLcGIPkfrWIP2eandChO3dJ4za6BGkcTVnr+0CNfeWosiS3Kh2yhyDNQ5bJx/ryIQhVMk6ExvN26cglGKYNRtzXUHmYhnU/BYt7TJ5fAl3K4/87gJo/xwZy/3pepbxrBZhx7z28n1pbVlO1epbSikB6PzuXSwErjy2cU/1zgM99rsoi/SUQcMcGslW/RJEZZYytOvkpAzVRFJXlshuNBu12m+FwaFkQzWaZarTdbhkOh6xWM7rdbpEGVKPf7xesBOs693o9ptNpKSbsfE0HiARBUKYe+b7P48ePEUKUqTYOWGk0GqVmi/OD0jQhCIIybarX6zGbzSxw0u+XRSqSJCnSZOymPI7jMk1KFUHAR48elX7NeDwuwdTNZnPPFz0+PiYIbJq42/RHUUSrKF3tgqjL5XIX2CoY2n//939PnuecnJzsAmAFU9yVoa4VgIvzEaMo4u7ujl6vV7YliiIODw9tEG+5LPcKDrBy/fvhw4cSnFJKsV6vyxSju7u7UjzZ7TOcnk+/3y+Dgq4qUpIk3N7eljqU4/GEbndQBkLr9XqhE6QBVVZu+u6772waWlH0ZLFYMBgMEHgsFiMbBG7UePv2HZ1Ox5YnX66ohTU6nX7p+7o9gNa7wC9Q9mGe52y3G1vBshCTfvLkSRk4d8Fp92yGYcjJyQndbhdjDLe3tzSbzRK0+RTNAIHT+Cx+twzJnd4KQiA9WaRA3RfN383DokzXNIVOiTGQC494HXNzccn0wzWPh0O6Ycjt6I7EKNJ1B3lySDDsI0Nb2chPrTaSNgavFuJh2TvghGCtHooRu834wzlSC6cTJhEUgQqtLYtGSoS26TwSiTaKmu/RbkTU6w10LQQvgSxnm+dIz0NrQaoMobGMFC0Fwq+DFyJrEt94tFrNYg23GSqWHWL38lprdFHQRUqBJwIERRqR0TSCGv1mmyRNadQbBSvV2PLc0kMV7F7pe4jAx0hRVjHSuSIvtE/tmr8jBHjFfVPldeii+m9Rfr2ylpaFGCjSvIQ9llYKozQqj/HoWKAsz0mSHCUK6RG904XRqgD4tFUXFgU9ZheTEha30BS+yY49U/pV5Yd/nqb8S+YCZSUQ9/BvuDHt4UB/9TDAV7FfBWpcBKFKwXUb/bxQIXeAjZvg3N8D3zIjtMoR2gocuUk+COzm3XVGkiQlaucmRbDCbw50iKKIXGVkcVZOVK7T3E2tKqh7nmcR2kqnOh0Zp4zvgAM3ybkOdNEJp2viNuxuknODvUQa2U0k7ndH13THzrKsTOMyBXiUZRnL5RKgrAblwKZqf7iIoRPZcpNBNcJlGT0KIblX2roYXvfu4UOH04kIV/WI3OByTq0rI6iUKQa9JPBDBJIszcsonHNoXNQzLvK5XRsflimvOrhVFo0xlfLaWY6p5ISCZeV4/i5H1V2fywE3OttN7tzf6Dh1/yoDygFXrtqB+/lTNRkoPlxekB1mnD1v06x16fZb4GmQECcJg2aDZjOgXe/z04sb1puYMAoxIiCq91iuY969e8/p2SnCE7x89Y4kTmi1e6yWa3r9DqvFkk43It4krNYrDodnHJ/2mC3m/OavvuT1qwt6B33+7Yd/A5Pwzddfkpo1mBxPGKsW7xmUtOl64+ktp8dnXA+u6HQa/I//83/k9PyMi8uXGLY8f/w5f/j+DxiZ4PldLt5f8eTRM548Okcpzf/1d//Ao0dnJMmWNFU0m01evnjJdDLh/NEjTk9P2W42bLYbGq0GSivSbMNPr17y7Plj1tsN0vdZrVd0Oh26/R7T1YTVZkWapSymS0xfMjw8YDZZIH1Jt9fFw2e73PDo0TFGbFkt5xz0eyyWK9bJis+efkmj1uLiH1/T7h6zWqYcHQa0W22y3KMWRkjhkyYwmaw4OR5wenrE73//BwIv5Nuvv+Xl9SuODk/IVUbge/SGXT77+imNfp3vf7xGKMPX333FZDTDEx7dwxanZ0PeX7wt8nctTf/m5oZWs02v12N0O8boDKU11zc3DA+H5LlN/6i3a1xdXpLEhuUyJvCtE5RmCWmScHp2yt//3/9Eu9VCa0kcJ8TbLWdnpyCMLVvbDPBrAbPZnEePjmi367x69ZIk1jx7+ojRaMRsPsMTEl96HJ0c8O7tK5vXLEJ8aTBKMbqdkGcp/cMOzVaDJInZZhtW8zXN1gFXtze02iEqNyxmK0u1/UTtIVBT/fk+c+Xj3y03xwVYU938V4EaB3ZXN9MPqbZCiB2tmo+Xfq6+DyCcZ/vgGkxRjtsoVQI2WmtUbsr5PitAkTzPC0aNKvLHH6QaPbjmX3N+qhFH13YApMbjvuCkBdo1iF0/ODF+tyGtgjSuPQ8BF3fe6hpbBXKq/eaO6V4PQbiPAXIPQaHqPXFrVjV6d78QgANoQGmvuA/2HFXx4BKcwxUhEMVLVs6xq2bpeR7S+7io8cP2a+30HhRSuuDcz/vwUzPn1w2Hw/LeuopIbvwsl8sisJcShl7plw2HQ7744gv+7u/+M3ke02g0qdfr9451e3sLUAb/tNZMp9OyAIUQNvXeBeLG4zFHR0fUajVbbrnQYcmymCiyqSoOqLm+vmaz2dBut8vU+G63a302s6ti1u/3SdPUpq0XDOXxeFz6O7e3twwGh0RRdK+IBVCwS+olK0NKaVOGNhvSIn0+jmOazSbHx8fc3NxY2YMi7arZbJYMI+cLOl/UFfdw7PNms0m32y2ZLC4gGRelul2FoyzLSr0fpyPT6XSYz+f3tBEdEHt0dMTR0RE3NzesVrZstdPBc6LKTrB3vV6XlZrev3/PkydPCna5DeSdn5/jeR7NZpPFYoFSOYvFtLy3rvy5LI5Zr0dWX+fqll6vTy2qEScJWabYbGLq9Rqnp8dFUHQ3h7uAaBTVUMruk54/f850OmU8tsUh3Fhw1WMdu6let+wtdz/d9UVRxJs3b6jVahwdHZXB6E/VhCeLoiL2d1dgxGY6yXI+azQadixnPwfUtXbaWjvAOc9tFkAaK67f33D16oI6kn4tIl7NUJs1xmhMFLKeLRFRjeODIcNWm+t3722/FUF0Ix27QyOkTVvRhZ6XweyyGyrrQW/Yo9PpcnX5AaOKtUEIfISVTzGFtlnBPKkHkk7L7pOl30DLFBPHiDwhVzaVODQS6YVoI9BSkBsPLQK0rzHao9fvUItqZLEq5/YdgcFqitlqT+BJ+7NSCk8IGs0WrXqD1WaDHxYyEdpWzJKezdzwpCwqTfkYSQGmWAZinOUkmy2BEdSkX64JQth7qLSmVtzPPM9RZSDovn+ilLK+hhRQpIs5VlIzDJHGCjyr3Eqk5KU/UlwnHi6BtwT9EGijQHhl0MiiKRKjLWhjQT5l6TjFUiZsVvDPfJCqT1dldjmA0Q3mqr8li3GTK0XoeyWz5tfsV3eirpRbdbNry2TfjyA5sMSJ+boNPdgGSU/ie7tyyW4D7SaVagluIcS9ClPufE5bpdVq7W5ipZOq5RBL8KYAPFyEwp3Xiaq5B8lN9u463bkciBMEwU79vkD1HQ3TbejdjavVauRqB6i441qHyYq4VUEQF8lwi41b6NyxnOicO4ZjgthcVlOyacAqiPvFA+f6wAncuT5yQIlrg2MRpVUUtPisY6rsKiXY72RZXvRJVtwLjV9oxVTZRp4nyxztKjDn2uXO5ZhXzqExxpRjwznLDiWt9oMxO8CnyrJKkgSlDb7nl2OiGp10fe3GjOd5+HKn9ePAqp2o1adnz56f88P6islsTGulOD5o4tc85oux1S7AI2pEaJERhppcb2m0QoKgRrtdp15v8OKnN/T7EqVzcp2T5hmtToc0V5ycHBAnK66vbul0I6JaxGaTMJ9PaDSbKOURRQH/x//5vxMEEf/0rxsWsztyGfPVV5/z4uUrRnd3LD2fb/7qK2I2BB2feLOicRDw7bdPGE9mBF6D8fUVr/74ms8+P0Wtc9Q2pz1sYXKJyGq8/LcLvvzuM8JajUbYZjlNeHz6nEen56wWK1799JKDg4PyHlpmmkCR8MXXz3nz+jVBWGM+X3J8ckyWK4yAf/3Dj5w/HnJ4fkDba3J7c0Mt0tzezfir3/wVjfqExXbJYramG3UYNA9YjBa0+gGT0YjHj56Sq4RpukXplH67w2aVMh4tabe6vHr5nufPz/EDSZYp2s2IXq+LlJr1ek2/3+fzzx8zHt0Rx085Ojrk1eufiGo+sVjz/PMDvv3bz3j3/i2PvzpFbRSpSuj2IpqtOvgZk8UNtSCk026yWq/wfTtXJV5Csy4IghCjPFbLjXUksoTBQY/x9A6Vh/henU2+4fBwYPWMjE+336bdbpBnGf1+C4xHox7SG7SJ6nWePz4nTra8u5pxcNgjy3L6gzb1eo35bMJqtUQrH6U2HB606bRrvHr1Ht+T9Ds9fGokcU6v16AWhlxd3mK0wpMRzYKarYUhbIawWYOXU2+FnJ8fMrkdsVmt+HTVo35e9aa6cX/IdnHvObsHslRSn6rvSwTmF0p6V1/l+7+Q+vQxJoj9g7oH1Ow+q3epT44pU6z1rrJgXtCV81zZMpjGadr8+U18tU+q7XFVGR6+X9WEceC/dYKLEFnRbreBewjQlG36SDs+Zg/v10OQxjlr7jO/1N/V8eG++7H7V22Pc7ZdlS13f7RS5LkgkOIeWxhspREHysiCAetEqR80rDzPvWFQuVf3wZ2ifK7KQTvfBHxf/mzsf2rmGAx3d3ccHR3dY9DO5/PyMxbcS2k2hxbUrteZTqe8ePGCbreLEDtG7vX1dbnpf//+Paenp+UxgyAo0mhsOsxoNGKxXLIoUrAODw9LZgxQpmBtNktOT08Yj8fMZjPOzs7KwJWUkk6nU4jGWv2ZRqG3qLXmhx9+KPUXu71e6T+6ylNCCD58uOCbb74rg45AkRZjx2O7bcXaS9CqwvDOsoz1es3V1RWTyYT+YFCCMI4Z1O12LbO58KGdJpBjnAyHw9LvduCV62PHcHHsJ5cS5UCXNE25vr4uQaMwDBkMBqVw8GKxKAGyer1egiCu4lEURfeEnqPIppkNh8NSr6Zej0p/sNVqlQHANDWcn5+jtWYymeyKghiDVpa112p1OD4+RghJmmZEtQZSegXDPMQYxWg0JsusD/rVV1+VY8mm5llf/IcffijbZ/vCAlbNZrOsdKW1otttVfyeoEi7SgvNmqDcQy2Xy3uFQj4183y/2Nvu9nDS83CKaVJKonodPwxIsgwn4Fvd89mxbCvYwW5znuea1WTF9etL8uWWqFlnOroh8DWHgz5xmpEoW6Gw1evz6MsvYL3GSEm92bDyHQDl1t+V4ravTOVlWmo1U0FKyenpKVJIrtjpl2Asm8bkthy0JwVZZtOj6r5HLfDwgxAZ1qgZH5pNTLolThOEEgjPx/NDjJEoAZ7xyPHJRUpQAItB4KNSm06UmARZeE1GG0I/KFK1tAVsKFJ1hI9UVkuvEYaIwC+vw/O8opKVsmm0nldopRmMAKM0FPu+MAyR+W599Nw6rXYMm52PcT84UoI2xR7eltvWFlQq+MGhFPgCjDIkaYrKDUZyD3Q2WmOkKINUxpiicI1NdxKereJF4SPtUrRtSXVMRZ/PUbz45WDbwzVbcH8NreIVbg13zBvrh/yyb/SrQI1jdlTZIu5kbvITQpSTsZReuQl3ExvGWLFB7ueFO4CmmnNavVHOWakK72qj0NkuteehTkwYhmVOrlKKqBaW+XdVrRS3OLgIlQMrXBsciODa46iW7l8HDlgEPNqVFS+Op80uZanKfvE9v6R8ujQwFzFwD/h6vS6/49g81XzqWq12j+rtcqNt2w1xsi3ptk5V3lbc2F2XqvSJy20FysiNMaasLuCu3/ZfjfV6S73eKB5Ag+c5UemkFPJ1bCfP80BYdpEbP+74TovGORruuw6RdBR153wmaX7v/tnonyz7xAF8DlH3CvDJLV6ODurGWxW00sbmtObbbQnSwKcN1Gy2McODIZPRnDhJQDQwRhMnRRRNGUbjCZEUfPX8mGYnoN4KaTba+H7IZDxFa0W90eDdhwvqjTa9Xptnz75gMp5yfByQZgHbZE2eJ7TbHd69veHJ00MmkxWL+ZZHj0Nu7j6wWiWISHP0aECn2eT9uwt++/VvEOoH1sstySrj3eiCwbBLA831xXs6Q4/AT8mSBZPRnP/0H3+HUgnT2zFnhyd8GF3QG/Y4Hpzwp4v3vPz+DX/9u99iEg8pQl784Q3PHj3ipx9fgDacHh2zXq44Pj7i3bt3fLi7pt3vkMQxj548Yr3esFonDE8P+fFPPzLPV/Q7HRDw+vUbOr024NFotskzwT/+4+9p1Js8efaY68t/Y3oxRceaz79+RLMTEPo+Ko9ptkKWa7i++cDTo6f40kcQsN3G+F7E6zcXPH58SKPRYrOJOT09IcvS0jFvtZp40qPdadBqNPnTn8ZcXl5wcNDh6jokFSmJWHPweMB6suVqdEW7F7LazKg1ArLVlsVqje/VCjbYliDwCcKg1AfJU7gb3/L46TFe4HF5+Y52p8V8viHeGrJM06hLOp0mJycnBJFkfDeiUe/S7faQImC93nJw1CfLUt69fWcrhnTa9Po9/vgvL+nHdQ4OeiA09XrE4cEJ09kt19cjnj9/yuefP2G53HJ3N6Zea8F2idCaLElo1EOGXz4m8FvcLW7ZKM3wqI/0BEZohFQ8eXbGZr4qqq1EqDT79QfkE7OHgY3qz1UQx1QWb11EjNzfSlDCuHz7j5fifggGSevNfhQ8eNg+oIzsVf9m/14AHUrbygvKMmZ1ISacO42aIvVJ6x392xjn3prqoe/Zx/rGNoAyyuqAdQvI3I9sufVW6QwhKqlB6n6Vp59d97+DAPLwux879kOgphq9rgJV1Y2FMeIey/XXgBoLiNi+1MZqt2khyn6unmd3HFnozhQVKGQlZE3hB1fO4077EDyssnrK9hnLyNG69GIB+KSj9kLw4cMHFosF7Xa7ZL64gJxru9M8FGIXMHN6IW6TvtlsGQwGJeMmjmO++OKLkvnhxqPzT13ZZvf71dVV6cNKKVmtVtTr9dL/Ojw85ObmpmRRdDqdEkRaLpf0er0SRDAFW/n8/JwffvihTCWSnldWfHI6N5ZBYtvrSni79Jk0TcjzjA8fPtDv9zk+Pmaz2ZQsFtfG+XyO7/ucnZ0xmU4ZDAYsl0vu7u7Kile9Xq8EjNznW60W2+2W6XTK+fk5QRCUOi3j8ZjJZFKW2O50OqRpymq1otVqlX3k2DyXl5ecnZ2VgI1ND9pa4eFGo+wbx8JwYtBa25Lezqev1+ulFs58Pi9Bt9nMst1vb28JgqC4/iVxXCuZTYvFgpOTE6QUrJZLhLApHsvlkuvrW0ajMadnjzg4GHJ7e8vJySFJsuX07Iw0sffM9dF4PGaxmNNqNQiKDfJisSj8611pdykls9mMxWLBwYEtGz8ajZjP52U1Vyklm/W61BKaz+flv5+y2bVtt4ZprQtNFLs/swVNLFtTsKte5+Zh+7zZY+3mWkEcb7l8+4HVZEE7iAilh9EpvWGPdqvHNk6ZbTfkQcDx+Rleo8HFm9ekKsMPfFRSAEN4llniexVAKbfBCJwuzY5V2Wq18KTHTy9fFkBBJc2nSMuhGsTQhloYEIWWzSY93woGhzXyKERjyJXB4CGFFSOWUuILzzJCjLD6xmLXf0prK5Qryo6xVZG1IXAMkGJd9ZCgLVDhIfCCkLwAZtx+zl6fRngewvMwstDnUXbvFfgBoRdAkrNZWmad66s8S8t9VZblpFmGkDvihbuPbk6tGVEK/YL1hzQQBoEVMU9z0iS111jgE8oFUDyJNNW1zhRkBquVg/B3YIyl3FiWzT33xxRMGth98EEg6YG/Vf7d/V5h4pQAHqJM/zLaWEHnX3FExK9FuPa2t73tbW9729ve9ra3ve1tb3vb29729t/PPmUG+d72tre97W1ve9vb3va2t73tbW9729v/r2wP1Oxtb3vb2972tre97W1ve9vb3va2t719IrYHava2t73tbW9729ve9ra3ve1tb3vb294+EdsDNXvb2972tre97W1ve9vb3va2t73tbW+fiO2Bmr3tbW9729ve9ra3ve1tb3vb2972trdPxPZAzd72tre97W1ve9vb3va2t73tbW9729snYv8P8QaHMtERYQAAAAFJREFUT85bIekAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Prepare datasets\n", + "\n", + "Dataset preparation includes two stages: (1): preparing the captions, (2) processing the images." + ], + "metadata": { + "id": "VLkqpqzZ5Yk-" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Prepare the captions" + ], + "metadata": { + "id": "gAytBq0f5egN" + } + }, + { + "cell_type": "code", + "source": [ + "# Since we're using prior preservation, we need to match the number\n", + "# of instance images we're using. We just repeat the instance image paths\n", + "# to do so. \n", + "new_instance_image_paths = []\n", + "for index in range(len(class_image_paths)):\n", + " instance_image = instance_image_paths[index % len(instance_image_paths)]\n", + " new_instance_image_paths.append(instance_image)" + ], + "metadata": { + "id": "oBouQk5IqfAH" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "v4uExJ9uVV1G" + }, + "outputs": [], + "source": [ + "# We just repeat the prompts / captions per images. \n", + "unique_id = \"sks\"\n", + "class_label = \"dog\"\n", + "\n", + "instance_prompt = f\"a photo of {unique_id} {class_label}\" \n", + "instance_prompts = [instance_prompt] * len(new_instance_image_paths)\n", + "\n", + "class_prompt = f\"a photo of {class_label}\"\n", + "class_prompts = [class_prompt] * len(class_image_paths)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Next, we embed the prompts to save some compute. " + ], + "metadata": { + "id": "7bOreYO5vELs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kOO0HZCEe_A4", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "46a24ee6-8c29-456a-bc53-400fbe0a6904" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://github.com/openai/CLIP/blob/main/clip/bpe_simple_vocab_16e6.txt.gz?raw=true\n", + "1356917/1356917 [==============================] - 0s 0us/step\n", + "Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_encoder.h5\n", + "492466864/492466864 [==============================] - 3s 0us/step\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import itertools\n", + "\n", + "# The padding token and maximum prompt length are specific to the text encoder.\n", + "# If you're using a different text encoder be sure to change them accordingly.\n", + "padding_token = 49407\n", + "max_prompt_length = 77\n", + "\n", + "# Load the tokenizer.\n", + "tokenizer = SimpleTokenizer()\n", + "\n", + "# Method to tokenize and pad the tokens.\n", + "def process_text(caption):\n", + " tokens = tokenizer.encode(caption)\n", + " tokens = tokens + [padding_token] * (max_prompt_length - len(tokens))\n", + " return np.array(tokens)\n", + "\n", + "\n", + "# Collate the tokenized captions into an array.\n", + "tokenized_texts = np.empty((len(instance_prompts) + len(class_prompts), max_prompt_length))\n", + "\n", + "for i, caption in enumerate(itertools.chain(instance_prompts, class_prompts)):\n", + " tokenized_texts[i] = process_text(caption)\n", + "\n", + "\n", + "# We also pre-compute the text embeddings to save some memory during training. \n", + "POS_IDS = tf.convert_to_tensor([list(range(max_prompt_length))], dtype=tf.int32)\n", + "text_encoder = TextEncoder(max_prompt_length)\n", + "\n", + "gpus = tf.config.list_logical_devices(\"GPU\")\n", + "\n", + "# Ensure the computation takes place on a GPU.\n", + "with tf.device(gpus[0].name):\n", + " embedded_text = text_encoder(\n", + " [tf.convert_to_tensor(tokenized_texts), POS_IDS], training=False\n", + " ).numpy()\n", + "\n", + "# To ensure text_encoder doesn't occupy any GPU space.\n", + "del text_encoder" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Prepare the images" + ], + "metadata": { + "id": "IEKtiNFJ5iII" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2ylZ3svIf_RA" + }, + "outputs": [], + "source": [ + "import keras_cv\n", + "\n", + "resolution = 512\n", + "auto = tf.data.AUTOTUNE\n", + "\n", + "augmenter = keras_cv.layers.Augmenter(\n", + " layers=[\n", + " keras_cv.layers.CenterCrop(resolution, resolution),\n", + " keras_cv.layers.RandomFlip(),\n", + " tf.keras.layers.Rescaling(scale=1.0 / 127.5, offset=-1),\n", + " ]\n", + ")\n", + "\n", + "\n", + "def process_image(image_path, tokenized_text):\n", + " image = tf.io.read_file(image_path)\n", + " image = tf.io.decode_png(image, 3)\n", + " image = tf.image.resize(image, (resolution, resolution))\n", + " return image, tokenized_text\n", + "\n", + "\n", + "def apply_augmentation(image_batch, embedded_tokens):\n", + " return augmenter(image_batch), embedded_tokens\n", + "\n", + "\n", + "def prepare_dict(instance_only=True):\n", + " def fn(image_batch, embedded_tokens):\n", + " if instance_only:\n", + " batch_dict = {\n", + " \"instance_images\": image_batch,\n", + " \"instance_embedded_texts\": embedded_tokens,\n", + " }\n", + " return batch_dict\n", + " else:\n", + " batch_dict = {\n", + " \"class_images\": image_batch,\n", + " \"class_embedded_texts\": embedded_tokens,\n", + " }\n", + " return batch_dict\n", + " return fn\n", + "\n", + "\n", + "def assemble_dataset(\n", + " image_paths, embedded_texts, instance_only=True, batch_size=1\n", + "): \n", + " dataset = tf.data.Dataset.from_tensor_slices(\n", + " (image_paths, embedded_texts)\n", + " )\n", + " dataset = dataset.map(process_image, num_parallel_calls=auto)\n", + " dataset = dataset.shuffle(5, reshuffle_each_iteration=True)\n", + " dataset = dataset.batch(batch_size)\n", + " dataset = dataset.map(apply_augmentation, num_parallel_calls=auto)\n", + "\n", + " prepare_dict_fn = prepare_dict(instance_only=instance_only)\n", + " dataset = dataset.map(prepare_dict_fn, num_parallel_calls=auto)\n", + " return dataset" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Assemble dataset" + ], + "metadata": { + "id": "5bH2Uj9t5k17" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "B95a2gpEghgA", + "outputId": "09d86be2-add7-45ac-b33c-b441f5084941" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.\n", + "WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.\n" + ] + } + ], + "source": [ + "instance_dataset = assemble_dataset(\n", + " new_instance_image_paths, \n", + " embedded_text[:len(new_instance_image_paths)],\n", + ")\n", + "class_dataset = assemble_dataset(\n", + " class_image_paths, \n", + " embedded_text[len(new_instance_image_paths):],\n", + " instance_only=False\n", + ")\n", + "train_dataset = tf.data.Dataset.zip((instance_dataset, class_dataset))" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Check shapes\n", + "\n", + "Now that the dataset has been prepared, let's quickly check what's inside it. " + ], + "metadata": { + "id": "DvhkmFMU5nLG" + } + }, + { + "cell_type": "code", + "source": [ + "sample_batch = next(iter(train_dataset))\n", + "print(sample_batch[0].keys(), sample_batch[1].keys())" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGZz1WXPvK0O", + "outputId": "e06cd69d-f1f5-432c-9158-6e2551189c44" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "dict_keys(['instance_images', 'instance_embedded_texts']) dict_keys(['class_images', 'class_embedded_texts'])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "for k in sample_batch[0]:\n", + " print(k, sample_batch[0][k].shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mmRT6AB-3oum", + "outputId": "a0bc826b-5f2a-42a7-dd60-9da2beeb6725" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "instance_images (1, 512, 512, 3)\n", + "instance_embedded_texts (1, 77, 768)\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "for k in sample_batch[1]:\n", + " print(k, sample_batch[1][k].shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "oDsE6csN5E1X", + "outputId": "6461ab2f-ee73-4e48-8170-d1799c483bc2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "class_images (1, 512, 512, 3)\n", + "class_embedded_texts (1, 77, 768)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "During training, we make use of these keys to gather the images and text embeddings and concat them accordingly. " + ], + "metadata": { + "id": "QBImMZPhye38" + } + }, + { + "cell_type": "markdown", + "source": [ + "## DreamBooth training loop\n", + "\n", + "Our DreamBooth training loop is very much inspired by [this script](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) provided by the Diffusers team at Hugging Face. However, there is an important difference to note. We only fine-tune the UNet (the model responsible for predicting noise) and don't fine-tune the text encoder in this example. If you're looking for an implementation that also performs the additional fine-tuning of the text encoder, refer to [this repository](https://github.com/sayakpaul/dreambooth-keras/). " + ], + "metadata": { + "id": "sdH2FfCy5oW9" + } + }, + { + "cell_type": "code", + "source": [ + "import tensorflow.experimental.numpy as tnp\n", + "\n", + "class DreamBoothTrainer(tf.keras.Model):\n", + " # Reference:\n", + " # https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py\n", + "\n", + " def __init__(\n", + " self,\n", + " diffusion_model,\n", + " vae,\n", + " noise_scheduler,\n", + " use_mixed_precision=False,\n", + " prior_loss_weight=1.0,\n", + " max_grad_norm=1.0,\n", + " **kwargs\n", + " ):\n", + " super().__init__(**kwargs)\n", + "\n", + " self.diffusion_model = diffusion_model\n", + " self.vae = vae\n", + " self.noise_scheduler = noise_scheduler\n", + " self.prior_loss_weight = prior_loss_weight\n", + " self.max_grad_norm = max_grad_norm\n", + "\n", + " self.use_mixed_precision = use_mixed_precision\n", + " self.vae.trainable = False\n", + "\n", + " def train_step(self, inputs):\n", + " instance_batch = inputs[0]\n", + " class_batch = inputs[1]\n", + "\n", + " instance_images = instance_batch[\"instance_images\"]\n", + " instance_embedded_text = instance_batch[\"instance_embedded_texts\"]\n", + " class_images = class_batch[\"class_images\"]\n", + " class_embedded_text = class_batch[\"class_embedded_texts\"]\n", + "\n", + " images = tf.concat([instance_images, class_images], 0)\n", + " embedded_texts = tf.concat([instance_embedded_text, class_embedded_text], 0)\n", + " batch_size = tf.shape(images)[0]\n", + "\n", + " with tf.GradientTape() as tape:\n", + " # Project image into the latent space and sample from it.\n", + " latents = self.sample_from_encoder_outputs(self.vae(images, training=False))\n", + " # Know more about the magic number here:\n", + " # https://keras.io/examples/generative/fine_tune_via_textual_inversion/\n", + " latents = latents * 0.18215\n", + "\n", + " # Sample noise that we'll add to the latents.\n", + " noise = tf.random.normal(tf.shape(latents))\n", + "\n", + " # Sample a random timestep for each image.\n", + " timesteps = tnp.random.randint(\n", + " 0, self.noise_scheduler.train_timesteps, (batch_size,)\n", + " )\n", + "\n", + " # Add noise to the latents according to the noise magnitude at each timestep\n", + " # (this is the forward diffusion process).\n", + " noisy_latents = self.noise_scheduler.add_noise(\n", + " tf.cast(latents, noise.dtype), noise, timesteps\n", + " )\n", + "\n", + " # Get the target for loss depending on the prediction type\n", + " # just the sampled noise for now.\n", + " target = noise # noise_schedule.predict_epsilon == True\n", + "\n", + " # Predict the noise residual and compute loss.\n", + " timestep_embedding = tf.map_fn(\n", + " lambda t: self.get_timestep_embedding(t), timesteps, dtype=tf.float32\n", + " )\n", + " model_pred = self.diffusion_model(\n", + " [noisy_latents, timestep_embedding, embedded_texts], training=True\n", + " )\n", + " loss = self.compute_loss(target, model_pred)\n", + " if self.use_mixed_precision:\n", + " loss = self.optimizer.get_scaled_loss(loss)\n", + "\n", + " # Update parameters of the diffusion model.\n", + " trainable_vars = self.diffusion_model.trainable_variables\n", + " gradients = tape.gradient(loss, trainable_vars)\n", + " if self.use_mixed_precision:\n", + " gradients = self.optimizer.get_unscaled_gradients(gradients)\n", + " gradients = [tf.clip_by_norm(g, self.max_grad_norm) for g in gradients]\n", + " self.optimizer.apply_gradients(zip(gradients, trainable_vars))\n", + "\n", + " return {m.name: m.result() for m in self.metrics}\n", + "\n", + " def get_timestep_embedding(self, timestep, dim=320, max_period=10000):\n", + " half = dim // 2\n", + " log_max_preiod = tf.math.log(tf.cast(max_period, tf.float32))\n", + " freqs = tf.math.exp(\n", + " -log_max_preiod * tf.range(0, half, dtype=tf.float32) / half\n", + " )\n", + " args = tf.convert_to_tensor([timestep], dtype=tf.float32) * freqs\n", + " embedding = tf.concat([tf.math.cos(args), tf.math.sin(args)], 0)\n", + " return embedding\n", + "\n", + " def sample_from_encoder_outputs(self, outputs):\n", + " mean, logvar = tf.split(outputs, 2, axis=-1)\n", + " logvar = tf.clip_by_value(logvar, -30.0, 20.0)\n", + " std = tf.exp(0.5 * logvar)\n", + " sample = tf.random.normal(tf.shape(mean), dtype=mean.dtype)\n", + " return mean + std * sample\n", + "\n", + " def compute_loss(self, target, model_pred):\n", + " # Chunk the noise and model_pred into two parts and compute the loss\n", + " # on each part separately.\n", + " # Since the first half of the inputs has instance samples and the second half\n", + " # has class samples, we do the chunking accordingly. \n", + " model_pred, model_pred_prior = tf.split(model_pred, num_or_size_splits=2, axis=0)\n", + " target, target_prior = tf.split(target, num_or_size_splits=2, axis=0)\n", + "\n", + " # Compute instance loss.\n", + " loss = self.compiled_loss(target, model_pred)\n", + "\n", + " # Compute prior loss.\n", + " prior_loss = self.compiled_loss(target_prior, model_pred_prior)\n", + "\n", + " # Add the prior loss to the instance loss.\n", + " loss = loss + self.prior_loss_weight * prior_loss\n", + " return loss\n", + "\n", + " def save_weights(self, filepath, overwrite=True, save_format=None, options=None):\n", + " # Overriding this method will allow us to use the `ModelCheckpoint`\n", + " # callback directly with this trainer class. In this case, it will\n", + " # only checkpoint the `diffusion_model` since that's what we're training\n", + " # during fine-tuning.\n", + " self.diffusion_model.save_weights(\n", + " filepath=filepath,\n", + " overwrite=overwrite,\n", + " save_format=save_format,\n", + " options=options,\n", + " )" + ], + "metadata": { + "id": "U0I9CJwW5Jy8" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Trainer initialization" + ], + "metadata": { + "id": "adwmtaCjQVTt" + } + }, + { + "cell_type": "code", + "source": [ + "# Comment it if you are not using a GPU having tensor cores.\n", + "tf.keras.mixed_precision.set_global_policy(\"mixed_float16\")" + ], + "metadata": { + "id": "HaIiqSV_GeYj" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "use_mp = True # Set it to False if you're not using a GPU with tensor cores. \n", + "\n", + "image_encoder = ImageEncoder(resolution, resolution)\n", + "dreambooth_trainer = DreamBoothTrainer(\n", + " diffusion_model=DiffusionModel(resolution, resolution, max_prompt_length),\n", + " # Remove the top layer from the encoder, which cuts off the variance and only\n", + " # returns the mean.\n", + " vae=tf.keras.Model(\n", + " image_encoder.input,\n", + " image_encoder.layers[-2].output,\n", + " ),\n", + " noise_scheduler=NoiseScheduler(),\n", + " use_mixed_precision=use_mp,\n", + ")\n", + "\n", + "# These hyperparameters come from this tutorial by Hugging Face:\n", + "# https://github.com/huggingface/diffusers/tree/main/examples/dreambooth\n", + "lr = 5e-6\n", + "beta_1, beta_2 = 0.9, 0.999\n", + "weight_decay = (1e-2,)\n", + "epsilon = 1e-08\n", + "\n", + "optimizer = tf.keras.optimizers.experimental.AdamW(\n", + " learning_rate=lr,\n", + " weight_decay=weight_decay,\n", + " beta_1=beta_1,\n", + " beta_2=beta_2,\n", + " epsilon=epsilon,\n", + ")\n", + "dreambooth_trainer.compile(optimizer=optimizer, loss=\"mse\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zHqE_1jqGrb8", + "outputId": "4daea5fd-b7a8-4c46-9126-c30b8c355983" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.\n", + "Instructions for updating:\n", + "Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/vae_encoder.h5\n", + "136824240/136824240 [==============================] - 1s 0us/step\n", + "Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_diffusion_model.h5\n", + "3439090152/3439090152 [==============================] - 52s 0us/step\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Train!\n", + "\n", + "We first calculate the number of epochs, we need to train for." + ], + "metadata": { + "id": "xtSiKL_JQXZK" + } + }, + { + "cell_type": "code", + "source": [ + "import math\n", + "\n", + "num_update_steps_per_epoch = train_dataset.cardinality()\n", + "max_train_steps = 800\n", + "epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)\n", + "print(f\"Training for {epochs} epochs.\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yYsTS_pEKoSx", + "outputId": "4904f882-e341-4ee9-f337-95d733c4e5e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training for 4 epochs.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "And then we start training!" + ], + "metadata": { + "id": "kEj2bIVpz3b_" + } + }, + { + "cell_type": "code", + "source": [ + "ckpt_path = \"dreambooth-unet.h5\" \n", + "ckpt_callback = tf.keras.callbacks.ModelCheckpoint(\n", + " ckpt_path,\n", + " save_weights_only=True,\n", + " monitor=\"loss\",\n", + " mode=\"min\",\n", + ")\n", + "dreambooth_trainer.fit(train_dataset, epochs=epochs, callbacks=[ckpt_callback])" + ], + "metadata": { + "id": "0ojwJlqxIiuW", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "27a61451-b6d6-42d0-c0c4-a0be256d23c5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/4\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/tensorflow/python/util/deprecation.py:629: calling map_fn_v2 (from tensorflow.python.ops.map_fn) with dtype is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use fn_output_signature instead\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Model Hosting\n", + "To host the model, we will use [Hugging Face Hub](https://huggingface.co/). It follows an authentication with token so we need to get our write token from [this page](https://huggingface.co/settings/tokens) and we will use `notebook_login()` to pass the token. Hosting the model using utils from Hugging Face Hub enables better versioning of models with reproducibility tools, e.g. model cards, and also easy loading without storing the model locally." + ], + "metadata": { + "id": "6LbXn5WdtZG7" + } + }, + { + "cell_type": "code", + "source": [ + "# Initialize a new Stable Diffusion model.\n", + "dreambooth_model = keras_cv.models.StableDiffusion(\n", + " img_width=resolution, img_height=resolution, jit_compile=True\n", + ")\n", + "dreambooth_model.diffusion_model.load_weights(ckpt_path)" + ], + "metadata": { + "id": "pMEiROvftaPu" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "!pip install huggingface-hub" + ], + "metadata": { + "id": "b6QCXRsksYnn", + "outputId": "2e064cb0-90fc-419f-b565-3c73c56b5392", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting huggingface-hub\n", + " Downloading huggingface_hub-0.12.0-py3-none-any.whl (190 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.3/190.3 KB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub) (4.64.1)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub) (4.4.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from huggingface-hub) (2.25.1)\n", + "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub) (23.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub) (6.0)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub) (3.9.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub) (2022.12.7)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub) (1.24.3)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub) (2.10)\n", + "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->huggingface-hub) (4.0.0)\n", + "Installing collected packages: huggingface-hub\n", + "Successfully installed huggingface-hub-0.12.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from huggingface_hub import notebook_login\n", + "notebook_login()" + ], + "metadata": { + "id": "12r5HPn0scHT" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "To host our model, we will use `push_to_hub_keras()`. This function will save the model as `SavedModel`, create a model card that we will later edit, and push our model to Hugging Face. We will pass only the diffusion model, and provide the function with a repository ID (in this case, `merve/dreambooth_diffusion_model`). \n", + "During push to hub, you might get warnings. Feel free to ignore them." + ], + "metadata": { + "id": "YWtTiBNVtyPB" + } + }, + { + "cell_type": "code", + "source": [ + "from huggingface_hub import push_to_hub_keras\n", + "\n", + "config = dreambooth_model.diffusion_model.get_config()\n", + "repo_id = \"merve/dreambooth_diffusion_model\"\n", + "push_to_hub_keras(dreambooth_model.diffusion_model, repo_id, config=config)" + ], + "metadata": { + "id": "bKuHwywYsi0d", + "outputId": "099d6a1c-7f0e-4486-ba40-de65208924cd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "8a8955009de6421ea3b5d48ee8e6f14d", + "4b3469dbb8074e14a58e102b1313d188", + "ea616bb3dbc84d10b7a4206ef3575a31", + "c19213f83c4746189ce9a760e4792bf5", + "032336542451431fabd0f7fa9daada63", + "60e1d785669d4cd4a07bfa8feedc2dfe", + "d81e1c1419d4473396e0e5f9adb85537", + "ff77d94de19743fa914983834b0212a6", + "4439d72a53ab42b9980c79a4684ecac7", + "7daa4afc65754d57a0b144e462de2a5b", + "78458dfac9674fd38799fc1a84691dd2", + "aef75430bbd147359e7f5022aaea3b83", + "a429e0620fca48e8a2b4ab973bc2a884", + "b9151c209ea84f9aa5dc4639c7c821eb", + "8bbd329d1a6b46819d5a997bf4af3b94", + "02960b3dd562457583867c9b1ea7e2f4", + "d9a89be0da754a04b3cc87fe2473c745", + "1cc271525bf9423ca19f8cc89a589f13", + "e9d5d71a4ab34598a465107f470d042c", + "f6d18d56b10a4dafa677125cb2a07898", + "a89d45ebfbe34e91a6cb7ec72ae1c882", + "44bb8a613f2645fe9c6f304bb3ce4079", + "cea917949fc4454cb18add6ca4e3a5b5", + "07bb95156e064666907fd03abbac457e", + "ad1cdb39ae15456a986874414b3dc5a5", + "c9569e78682a40f7a78d5cdad5c8b48f", + "f3c8ebd8081e4cc0b6c3d247378c9475", + "770888a315e24316b25ba367ef522d38", + "093f79b9a59245a294190a0a1199a38d", + "02df738e31c34b8faebf16002a4e63a2", + "a7bc4c0fdfc843bb928b47454e8d53de", + "15f589e74fa242a98417b1328c317a2c", + "112547a1451c484e9b7d369b98552b46", + "1cec1bc6a64e475eaa1cc36b1afbc547", + "38891fc07cb54bb8bb666bfe6d8e5189", + "6a017778085049b6ae8684493692aa2f", + "6477f70c7f8d4d4ba693b920e1f9123c", + "3424df223095402b9469cc11111862cc", + "b0b2f3a73e9e4a8c968d3ac67933f3df", + "7dc82aad1664432b8abffc14f4e5a329", + "752a0e9aeddd45cca326d250d0db2bd6", + "fdc9950a4dc64ceaaed7b9d53122b608", + "16e4220b90bf43568571b89a8a7d5f02", + "73ab8dde1b934274b98d479fbf7df107", + "4996209f55bb499db5f7356c7d524c11", + "02041e7ef91a4f458b1b1d5809eadc59", + "77116f82571a4b9da81d68018f95fa32", + "de2376940cd44c3a9cfe007df64f3b89", + "7160c7b7f90e441da2a4b8508358da6a", + "5cb336455a3a4355b2b1c21e53166091", + "d238beb883df4d918e22d01697b7ba37", + "19868a163e9d45009d835a7811bd572a", + "efcce00466c34c2d95da9a63c7dc3b2f", + "b376fed749394f4e840533f46776a04c", + "e963328f732048199e2239e6c8856352" + ] + } + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:absl:Found untraced functions such as conv2d_114_layer_call_fn, conv2d_114_layer_call_and_return_conditional_losses, _jit_compiled_convolution_op, group_normalization_85_layer_call_fn, group_normalization_85_layer_call_and_return_conditional_losses while saving (showing 5 of 1320). These functions will not be directly callable after loading.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n", + "WARNING:absl: has the same name 'GroupNormalization' as a built-in Keras object. Consider renaming to avoid naming conflicts when loading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "saved_model.pb: 0%| | 0.00/19.6M [00:00 + +

+ +This section is split into three parts: + +- [Launch a Lambda Cloud GPU](#launch-a-lambda-cloud-gpu) + - [Signing-Up with Lambda](#signing-up-with-lambda) + - [Creating a Cloud Instance](#creating-a-cloud-instance) +- [Setting up your environment](#setting-up-your-environment) + - [Deleting a Cloud Instance](#deleting-a-cloud-instance) + +### Signing-Up with Lambda + +1. Create an account with Lambda using your email address of choice: http://lambdalabs.com/HF-dreambooth-signup. If you already have an account, skip to step 2. +2. Using this same email address, email `cloud@lambdal.com` with the Subject line: `Lambda cloud account for HuggingFace Keras DreamBooth - payment authentication and credit request`. +3. Each user who emails as above will receive $20 in credits (amounting to 60 fine-tuning runs/30 hours of A10). +4. Register a valid payment method with Lambda in order to redeem the credits (see instructions below). + +To redeem these credits, you will need to authorise a valid payment method with Lambda. Provided that you remain within $20 of compute spending, your card **will not** be charged 💸. Registering your card with Lambda is a mandatory sign-up step that we unfortunately cannot bypass. But we reiterate: you will not be charged provided you remain within $20 of compute. + +Follow steps 1-4 in the next section [Creating a Cloud Instance](#creating-a-cloud-instance) to register your card. If you experience issues with registering your card, contact the Lambda team on Discord (see [Communications and Problems](#communication-and-problems)). + +In order to maximise the free GPU hours you have available for training, we advise that you shut down GPUs when you are not using them and closely monitor your GPU usage. We've detailed the steps you can follow to achieve this in [Deleting a Cloud Instance](#deleting-a-cloud-instance). + +### Creating a Cloud Instance +Estimated time to complete: 5 mins + +*You can also follow our video tutorial to set up a cloud instance on Lambda* 👉️ [YouTube Video](https://www.youtube.com/watch?v=Ndm9CROuk5g&list=PLo2EIpI_JMQtncHQHdHq2cinRVk_VZdGW) + +1. Click the link: http://lambdalabs.com/HF-dreambooth-instances +2. You'll be asked to sign in to your Lambda account (if you haven't done so already). +3. Once on the GPU instance page, click the purple button "Launch instance" in the top right. +4. Verify a payment method if you haven't done so already. IMPORTANT: if you have followed the instructions in the previous section, you will have received $20 in GPU credits. Exceeding 25 hours of 1x A10 usage may incur charges on your credit card. Contact the Lambda team on Discord if you have issues authenticating your payment method (see [Communications and Problems](#communication-and-problems)) +5. Launching an instance: + 1. In "Instance type", select the instance type "1x A10 (24 GB PCle)". In case you run out or memory while training, come back here and choose instance of type "1x A100(40GB PCIe)" or "1x A100(40GB SXM4)". + 2. In "Select region", select the region with availability closest to you. + 3. In "Select filesystem", select "Don't attach a filesystem". +6. You will be asked to provide your public SSH key. This will allow you to SSH into the GPU device from your local machine. + 1. If you’ve not already created an SSH key pair, you can do so with the following command from your local device: + ```bash + ssh-keygen + ``` + 2. You can find your public SSH key using the command: + ```bash + cat ~/.ssh/id_rsa.pub + ``` + (Windows: `type C:UsersUSERNAME.sshid_rsa.pub` where `USERNAME` is the name of your user) + 4. Copy and paste the output of this command into the first text box + 5. Give your SSH key a memorable name (e.g. `merve-ssh-key`) + 6. Click "Add SSH Key" +7. Select the SSH key from the drop-down menu and click "Launch instance" +8. Read the terms of use and agree +9. We can now see on the "GPU instances" page that our device is booting up! +10. Once the device status changes to "✅ Running", click on the SSH login ("ssh ubuntu@..."). This will copy the SSH login to your clipboard. +11. Now open a new command line window, paste the SSH login, and hit Enter. +12. If asked "Are you sure you want to continue connecting?", type "yes" and press Enter. +13. Great! You're now SSH'd into your A10 device! We're now ready to set up our Python environment! + +You can see your total GPU usage from the Lambda cloud interface: https://cloud.lambdalabs.com/usage + +Here, you can see the total charges that you have incurred since the start of the event. We advise that you check your total on a daily basis to make sure that it remains below the credit allocation of $20. This ensures that you are not inadvertently charged for GPU hours. + +If you are unable to SSH into your Lambda GPU in step 11, there is a workaround that you can try. On the [GPU instances page](http://lambdalabs.com/HF-dreambooth-instances), under the column "Cloud IDE", click the button "Launch". This will launch a Jupyter Lab on your GPU which will be displayed in your browser. In the top left-hand corner, click "File" -> "New" -> "Terminal". This will open up a new terminal window. You can use this terminal window to set up Python environment and install dependencies and run scripts. + + +## Setting up your environment + +You can establish an SSH tunnel to your instance using below command: +``` +ssh ubuntu@ADDRESS_OF_INSTANCE -L 8888:localhost:8888 +``` +This will establish the tunnel to a remote machine and also forward the SSH port to a local port, so you can open a jupyter notebook on the remote machine and access it from your own local machine. +We will use **TensorFlow** and **Keras CV** to train DreamBooth model, and later use **diffusers** for conversion. In this section, we'll cover how to set up an environment with the required libraries. This section assumes that you are SSH'd into your GPU device. + +You can setup your environment like below. +Below script: +1. Creates a python virtual environment, +2. Installs the requirements, +3. Does authentication for Hugging Face. +After you run `huggingface-cli login`, pass your write token that you can get from [here](https://huggingface.co/settings/tokens). This will authenticate you to push your models to Hugging Face Hub. + +We will use conda for this (follow this especially if you are training on A10). Install miniconda like below: +```bash +sudo wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh +sudo chmod +x Miniconda3-latest-Linux-x86_64.sh && ./Miniconda3-latest-Linux-x86_64.sh +``` +Accept the terms by typing "yes", confirm the path by pressing enter and then confirm `conda init` by typing in yes again. +To make conda commands accessible in the current shell environment enter: +```bash +source ~/.bashrc +``` +Disable the base virtual conda environment: +```bash +conda config --set auto_activate_base false +conda deactivate +``` +Now activate conda and create your own environment (in this example we use `my_env` for simplicity). +```bash +conda create -n my_env python==3.10 +conda activate my_env + ``` +As a next step, we may confirm that pip points to the correct path: + ```bash + which pip + ``` +The path should point to `/home/ubuntu/miniconda3/envs/my_env/bin/pip`. + +** Note: Please make sure you are opening the notebook either in env (if you are using Python virtual environment by following above commands) or use ipykernel to add your environment to jupyter. For first one, you can get into env folder itself and create your notebook there and it should work.** + +As a next step, we need to install necessary dependencies for CUDA Support to work properly and getting a jupyter notebook running. Ensure you are inside the `my_env` conda environment you created previously: +```bash +conda install nb_conda_kernels +ipython kernel install --user --name=my_env +conda install -c conda-forge cudatoolkit=11.8.0 +python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 +``` +Next you need to setup XLA to the correct CUDA library path with following command: + ```bash +export XLA_FLAGS=--xla_gpu_cuda_data_dir=/usr/lib/cuda +CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)")) +export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib + ``` + ** Note: you need to set this every time you close and open the terminal via SSH tunnel. If you do not do this, the `fit` method will fail. Please read through the error logs to see where to find the missing library and set the above path accordingly. + +Now, we also must install Tensorflow inside our virtual environment. It is recommend, doing so with pip: + + ```bash +python -m pip install tensorflow==2.12.* + ``` + To confirm the installed version, and the success of setting up our drivers in the conda environment: + ```bash + python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU')); print(tf.__version__)" + ``` +It should return True, and display an array with one physical device. The version should be equal to atleast 2.12. + +We may now install the dependendencies necessary for the jupyter notebook: + ```bash +pip install keras_cv===0.4.2 tensorflow_datasets===4.8.1 pillow===9.4.0 imutils opencv-python matplotlib huggingface-hub pycocotools + ``` + +Now we can start our jupyter notebook instance: +```bash +jupyter notebook +``` +Enter the URL in the browser or connect through VSCode. If this does not work, you likely forgot to forward the 8888 port. +When you open jupyter, select your environment `my_env` in `New` dropdown and it will create your notebook with conda environment you've created. + +Now inside the notebook: + +First check the pip and python are poinitng to right places by running following commands. First check for pip path by running: +```python +!which pip +``` +It should point to `/home/ubuntu/miniconda3/envs/my_env/bin/pip`. If it is pointing to `/home/ubuntu/.local/bin/pip`, you have not have run `conda config --set auto_activate_base false`. Please run it again and activate `my_env` again. Also check that your notebook is running in the proper kernel `my_env`. Once inside the notebook, you can change it from the menu navigation `Kernel->Change Kernel -> my_env`. You should now see `my_env` in the top right of the notebook. + +Now check for python path aswell: +```python +!which python +``` +It should point to: `/home/ubuntu/miniconda3/envs/my_env/bin/python` + +Running below line in the notebook makes sure that we have installed the version of TensorFlow that supports GPU, and that TensorFlow can detect the GPUs. If everything goes right, it should return `True` and a list that consists of a GPU. The version should be equal to or greater than 2.11 to support the correct version of keras_cv. In our example, it should print 2.12. +```python +import tensorflow as tf +print(tf.test.is_built_with_cuda()) +print(tf.config.list_logical_devices('GPU')) +print(tf.__version__) +``` + +You can either create your own notebook or clone the notebook `https://github.com/huggingface/community-events/blob/main/keras-dreambooth-sprint/Dreambooth_on_Hub.ipynb` if you haven't done so previously. + +You're all set! You can simply launch a jupyter notebook and start training models! 🚀 + +### Deleting a Cloud Instance + +30 1x A10 hours should provide you with enough time for 60 fine-tuning runs for Dreambooth. To maximise the GPU time you have for training, we advise that you shut down GPUs over prolonged periods of time when they are not in use. So be smart and shut down your GPU when you're not training. + +Creating an instance and setting it up for the first time may take up to 20 minutes. Subsequently, this process will be much faster as you gain familiarity with the steps, so you shouldn't worry about having to delete a GPU and spinning one up the next time you need one. You can expect to spin-up and delete 2-3 GPUs over the course of the fine-tuning event. + +We'll quickly run through the steps for deleting a Lambda GPU. You can come back to these steps after you've performed your first training run and you want to shut down the GPU: + +1. Go to the instances page: http://lambdalabs.com/HF-dreambooth-instances +2. Click the checkbox on the left next to the GPU device you want to delete +3. Click the button "Terminate" in the top right-hand side of your screen (under the purple button "Launch instance") +4. Type "erase data on instance" in the text box and press "ok" + +Your GPU device is now deleted and will stop consuming GPU credits. diff --git a/keras-dreambooth-sprint/requirements.txt b/keras-dreambooth-sprint/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..f6ec66bab9f8aa64ccad2dbc9394e7cc70f10e8d --- /dev/null +++ b/keras-dreambooth-sprint/requirements.txt @@ -0,0 +1,7 @@ +keras_cv==0.4.0 +tensorflow>=2.10.0 +tensorflow_datasets>=4.8.1 +pillow==9.4.0 +imutils +opencv-python +huggingface-hub[cli] \ No newline at end of file diff --git a/keras-sprint/README.md b/keras-sprint/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9d5ea17583ce399a60ba0cea487b7e671b432ffa --- /dev/null +++ b/keras-sprint/README.md @@ -0,0 +1,12 @@ +# Official Repository for Keras Sprint Event + +![](https://huggingface.co/spaces/keras-io/README/resolve/main/keras-hf.png) + +Keras Sprint by Hugging Face aims to reproduce [official Keras examples](https://keras.io/examples/) and build demos to them on [Hugging Face Spaces](https://huggingface.co/spaces). + +Here you can find examples to guide you for the sprint. It contains two end-to-end examples of a successful submission for the event. + +## Useful Resources +- To learn more about Keras sprint, check out [contribution guide](https://huggingface2.notion.site/Keras-Sprint-Contribution-Guide-ab1543412f3a4f7194896d6048585676). +- To join the sprint, join our [discord](https://huggingface.co/join/discord), head to #keras-working-group channel and take one of the available examples from [this spreadsheet](https://docs.google.com/spreadsheets/d/1EG6z4mmeBzmMidUzDdSDr02quBs2BcgjNOrtZCwnqvs/edit#gid=1687823618) by commenting on it. +- Check out our previous work at [Keras Hugging Face organization](https://huggingface.co/keras-io) and [official Keras examples](https://keras.io/examples/). \ No newline at end of file diff --git a/keras-sprint/deeplabv3_plus.ipynb b/keras-sprint/deeplabv3_plus.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c3706ae89f089008c634ac0a3b88b8078ec9d102 --- /dev/null +++ b/keras-sprint/deeplabv3_plus.ipynb @@ -0,0 +1,3919 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0Nm2YOjeNK6L" + }, + "source": [ + "# Multiclass semantic segmentation using DeepLabV3+\n", + "\n", + "This is an example notebook for Keras sprint prepared by Hugging Face. Keras Sprint aims to reproduce Keras examples and build interactive demos to them.\n", + "The markdown parts beginning with 🤗 and the following code snippets are the parts added by Hugging Face team to give you an example of how to host your model and build a demo.\n", + "\n", + "\n", + "**Original Author of the DeepLabV3 Example:** [Soumik Rakshit](http://github.com/soumik12345)
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D8YsmvyyNK6P" + }, + "source": [ + "## Introduction\n", + "\n", + "Semantic segmentation, with the goal to assign semantic labels to every pixel in an image,\n", + "is an essential computer vision task. In this example, we implement\n", + "the **DeepLabV3+** model for multi-class semantic segmentation, a fully-convolutional\n", + "architecture that performs well on semantic segmentation benchmarks.\n", + "\n", + "### References:\n", + "\n", + "- [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf)\n", + "- [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)\n", + "- [DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs](https://arxiv.org/abs/1606.00915)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y0vaTgH-NK6Q" + }, + "source": [ + "## Downloading the data\n", + "\n", + "We will use the [Crowd Instance-level Human Parsing Dataset](https://arxiv.org/abs/1811.12596)\n", + "for training our model. The Crowd Instance-level Human Parsing (CIHP) dataset has 38,280 diverse human images.\n", + "Each image in CIHP is labeled with pixel-wise annotations for 20 categories, as well as instance-level identification.\n", + "This dataset can be used for the \"human part segmentation\" task." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dRBW6fvgNK6Q" + }, + "outputs": [], + "source": [ + "import os\n", + "import cv2\n", + "import numpy as np\n", + "from glob import glob\n", + "from scipy.io import loadmat\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers" + ] + }, + { + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "lV4WmyoXTLaK", + "outputId": "afb73da5-807c-4620-d557-d2fa5d1e8374" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Find dataset here: https://drive.google.com/uc?id=1B9A9UCJYMwTL4oBEo4RZfbMZMaZhKJaz" + ], + "metadata": { + "id": "CDeJjizwThUD" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "itOy9ZhnNK6R" + }, + "outputs": [], + "source": [ + "!unzip -q /content/drive/MyDrive/instance-level-human-parsing.zip" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# 🤗 Installing packages to host and build a demo to our models" + ], + "metadata": { + "id": "q_A0QgojPTGj" + } + }, + { + "cell_type": "code", + "source": [ + "!pip install huggingface-hub\n", + "!pip install gradio" + ], + "metadata": { + "id": "fBFHUsE2PYEw" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZgFk68VYNK6S" + }, + "source": [ + "## Creating a TensorFlow Dataset\n", + "\n", + "Training on the entire CIHP dataset with 38,280 images takes a lot of time, hence we will be using\n", + "a smaller subset of 200 images for training our model in this example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ov8dbQBqNK6S", + "outputId": "7e540f83-c1bf-44e0-f68a-970e1e3dcb45", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train Dataset: \n", + "Val Dataset: \n" + ] + } + ], + "source": [ + "IMAGE_SIZE = 512\n", + "BATCH_SIZE = 4\n", + "NUM_CLASSES = 20\n", + "DATA_DIR = \"./instance-level_human_parsing/instance-level_human_parsing/Training\"\n", + "NUM_TRAIN_IMAGES = 1000\n", + "NUM_VAL_IMAGES = 50\n", + "\n", + "train_images = sorted(glob(os.path.join(DATA_DIR, \"Images/*\")))[:NUM_TRAIN_IMAGES]\n", + "train_masks = sorted(glob(os.path.join(DATA_DIR, \"Category_ids/*\")))[:NUM_TRAIN_IMAGES]\n", + "val_images = sorted(glob(os.path.join(DATA_DIR, \"Images/*\")))[\n", + " NUM_TRAIN_IMAGES : NUM_VAL_IMAGES + NUM_TRAIN_IMAGES\n", + "]\n", + "val_masks = sorted(glob(os.path.join(DATA_DIR, \"Category_ids/*\")))[\n", + " NUM_TRAIN_IMAGES : NUM_VAL_IMAGES + NUM_TRAIN_IMAGES\n", + "]\n", + "\n", + "\n", + "def read_image(image_path, mask=False):\n", + " image = tf.io.read_file(image_path)\n", + " if mask:\n", + " image = tf.image.decode_png(image, channels=1)\n", + " image.set_shape([None, None, 1])\n", + " image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])\n", + " else:\n", + " image = tf.image.decode_png(image, channels=3)\n", + " image.set_shape([None, None, 3])\n", + " image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])\n", + " image = image / 127.5 - 1\n", + " return image\n", + "\n", + "\n", + "def load_data(image_list, mask_list):\n", + " image = read_image(image_list)\n", + " mask = read_image(mask_list, mask=True)\n", + " return image, mask\n", + "\n", + "\n", + "def data_generator(image_list, mask_list):\n", + " dataset = tf.data.Dataset.from_tensor_slices((image_list, mask_list))\n", + " dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)\n", + " dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)\n", + " return dataset\n", + "\n", + "\n", + "train_dataset = data_generator(train_images, train_masks)\n", + "val_dataset = data_generator(val_images, val_masks)\n", + "\n", + "print(\"Train Dataset:\", train_dataset)\n", + "print(\"Val Dataset:\", val_dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "68WUsYO-NK6T" + }, + "source": [ + "## Building the DeepLabV3+ model\n", + "\n", + "DeepLabv3+ extends DeepLabv3 by adding an encoder-decoder structure. The encoder module\n", + "processes multiscale contextual information by applying dilated convolution at multiple\n", + "scales, while the decoder module refines the segmentation results along object boundaries.\n", + "\n", + "![](https://github.com/lattice-ai/DeepLabV3-Plus/raw/master/assets/deeplabv3_plus_diagram.png)\n", + "\n", + "**Dilated convolution:** With dilated convolution, as we go deeper in the network, we can keep the\n", + "stride constant but with larger field-of-view without increasing the number of parameters\n", + "or the amount of computation. Besides, it enables larger output feature maps, which is\n", + "useful for semantic segmentation.\n", + "\n", + "The reason for using **Dilated Spatial Pyramid Pooling** is that it was shown that as the\n", + "sampling rate becomes larger, the number of valid filter weights (i.e., weights that\n", + "are applied to the valid feature region, instead of padded zeros) becomes smaller." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "kh9auWU-NK6U" + }, + "outputs": [], + "source": [ + "\n", + "def convolution_block(\n", + " block_input,\n", + " num_filters=256,\n", + " kernel_size=3,\n", + " dilation_rate=1,\n", + " padding=\"same\",\n", + " use_bias=False,\n", + "):\n", + " x = layers.Conv2D(\n", + " num_filters,\n", + " kernel_size=kernel_size,\n", + " dilation_rate=dilation_rate,\n", + " padding=\"same\",\n", + " use_bias=use_bias,\n", + " kernel_initializer=keras.initializers.HeNormal(),\n", + " )(block_input)\n", + " x = layers.BatchNormalization()(x)\n", + " return tf.nn.relu(x)\n", + "\n", + "\n", + "def DilatedSpatialPyramidPooling(dspp_input):\n", + " dims = dspp_input.shape\n", + " x = layers.AveragePooling2D(pool_size=(dims[-3], dims[-2]))(dspp_input)\n", + " x = convolution_block(x, kernel_size=1, use_bias=True)\n", + " out_pool = layers.UpSampling2D(\n", + " size=(dims[-3] // x.shape[1], dims[-2] // x.shape[2]), interpolation=\"bilinear\",\n", + " )(x)\n", + "\n", + " out_1 = convolution_block(dspp_input, kernel_size=1, dilation_rate=1)\n", + " out_6 = convolution_block(dspp_input, kernel_size=3, dilation_rate=6)\n", + " out_12 = convolution_block(dspp_input, kernel_size=3, dilation_rate=12)\n", + " out_18 = convolution_block(dspp_input, kernel_size=3, dilation_rate=18)\n", + "\n", + " x = layers.Concatenate(axis=-1)([out_pool, out_1, out_6, out_12, out_18])\n", + " output = convolution_block(x, kernel_size=1)\n", + " return output\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c0I36dMgNK6V" + }, + "source": [ + "The encoder features are first bilinearly upsampled by a factor 4, and then\n", + "concatenated with the corresponding low-level features from the network backbone that\n", + "have the same spatial resolution. For this example, we\n", + "use a ResNet50 pretrained on ImageNet as the backbone model, and we use\n", + "the low-level features from the `conv4_block6_2_relu` block of the backbone." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1RhOhvaQNK6V" + }, + "outputs": [], + "source": [ + "\n", + "def DeeplabV3Plus(image_size, num_classes):\n", + " model_input = keras.Input(shape=(image_size, image_size, 3))\n", + " resnet50 = keras.applications.ResNet50(\n", + " weights=\"imagenet\", include_top=False, input_tensor=model_input\n", + " )\n", + " x = resnet50.get_layer(\"conv4_block6_2_relu\").output\n", + " x = DilatedSpatialPyramidPooling(x)\n", + "\n", + " input_a = layers.UpSampling2D(\n", + " size=(image_size // 4 // x.shape[1], image_size // 4 // x.shape[2]),\n", + " interpolation=\"bilinear\",\n", + " )(x)\n", + " input_b = resnet50.get_layer(\"conv2_block3_2_relu\").output\n", + " input_b = convolution_block(input_b, num_filters=48, kernel_size=1)\n", + "\n", + " x = layers.Concatenate(axis=-1)([input_a, input_b])\n", + " x = convolution_block(x)\n", + " x = convolution_block(x)\n", + " x = layers.UpSampling2D(\n", + " size=(image_size // x.shape[1], image_size // x.shape[2]),\n", + " interpolation=\"bilinear\",\n", + " )(x)\n", + " model_output = layers.Conv2D(num_classes, kernel_size=(1, 1), padding=\"same\")(x)\n", + " return keras.Model(inputs=model_input, outputs=model_output)\n", + "\n", + "\n", + "model = DeeplabV3Plus(image_size=IMAGE_SIZE, num_classes=NUM_CLASSES)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# 🤗 Before we move on with training, let's create TensorBoard" + ], + "metadata": { + "id": "uFkYSXWSSRRh" + } + }, + { + "cell_type": "code", + "source": [ + "# Load the TensorBoard notebook extension\n", + "%load_ext tensorboard" + ], + "metadata": { + "id": "ICOJLuIwSQjz" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "log_dir = \"logs/fit/\"\n", + "tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)" + ], + "metadata": { + "id": "ViDhtqnvSX_q" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oTLle3r1NK6W" + }, + "source": [ + "## Training\n", + "\n", + "We train the model using sparse categorical crossentropy as the loss function, and\n", + "Adam as the optimizer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dnjSoXIbNK6W", + "outputId": "1af1a02f-5ec4-473a-f6bd-32c7506f158e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/5\n", + "250/250 [==============================] - 40s 85ms/step - loss: 1.2065 - accuracy: 0.6356 - val_loss: 2.5502 - val_accuracy: 0.5545\n", + "Epoch 2/5\n", + "250/250 [==============================] - 20s 81ms/step - loss: 0.9568 - accuracy: 0.6963 - val_loss: 2.6706 - val_accuracy: 0.5978\n", + "Epoch 3/5\n", + "250/250 [==============================] - 20s 81ms/step - loss: 0.8468 - accuracy: 0.7285 - val_loss: 1.4310 - val_accuracy: 0.6123\n", + "Epoch 4/5\n", + "250/250 [==============================] - 20s 81ms/step - loss: 0.7736 - accuracy: 0.7513 - val_loss: 1.0082 - val_accuracy: 0.6894\n", + "Epoch 5/5\n", + "250/250 [==============================] - 20s 81ms/step - loss: 0.7116 - accuracy: 0.7708 - val_loss: 1.0158 - val_accuracy: 0.7053\n" + ] + } + ], + "source": [ + "loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True)\n", + "model.compile(\n", + " optimizer=keras.optimizers.Adam(learning_rate=0.001),\n", + " loss=loss,\n", + " metrics=[\"accuracy\"],\n", + ")\n", + "\n", + "history = model.fit(train_dataset, validation_data=val_dataset, epochs=5,\n", + " callbacks = [tensorboard_callback])\n", + "# 🤗 note how we call tensorboard" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# 🤗 Push your model to the Hub\n", + "We will push our model to the Hugging Face Hub with tensorboard logs.\n", + "\n", + "If you already have access to keras-io organization, you can give \"keras-io/deeplab-v3\" as the model ID. If not, you can push model to your own account and then carry it to the keras-io organization later. 🥳\n", + "\n", + "To push your models to the Hub, you need authentication. To authenticate, you can log using notebook_login. You can get your token from https://huggingface.co/settings/tokens 🙌🏻" + ], + "metadata": { + "id": "QLwNPNyZVmjM" + } + }, + { + "cell_type": "code", + "source": [ + "from huggingface_hub import notebook_login\n", + "notebook_login()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 387, + "referenced_widgets": [ + "6656427d58584fdc93d205920dd586c0", + "bbcfbb2e927d453ca5ab6f58c0096ce8", + "5c7a3a49f4d64fe7917c8c489047888a", + "c8737dd8a7a44ee08762f4a66f8e62c2", + "2b5694f714f5449d880fea1e59bf2496", + "65c7d524f74444d8becc6b2249c61dfa", + "ea738912885747fb85c1c45902128658", + "86853c4a023c4eae98828688480d4ee1", + "ef117ade52df431eb27301e058d7e649", + "b0d5f1a62eaf42d89639b2d3b77000c2", + "351c270c0e9a47e1a2c5755f470ad065", + "9a20e3b8c7ce4290b60ce1889a369a8a", + "83bb5d69285f43fbb30d2a09f8459f06", + "338a72e0d5834c2f9879591e295d2b7c", + "e99ed10952c5407b90ac9371f41f1e79", + "160e8e1d73a041f1bfab72f0bbc7bcbc", + "f49bb981eda24cdb897d95e6a9541cf9" + ] + }, + "id": "sONm33JwcGFc", + "outputId": "858ce119-a678-4d25-9393-6dde6824153d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Login successful\n", + "Your token has been saved to /root/.huggingface/token\n", + "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n", + "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n", + "\n", + "git config --global credential.helper store\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now we can push our model to the Hugging Face Hub 🤩🙌🏻 The below function will:\n", + "1. create a remote repository on Hugging Face Hub, \n", + "2. serialize our model, \n", + "3. create a model card including training hyperparameters, model architecture and couple of fields you can fill about model,\n", + "4. push the model to the Hub." + ], + "metadata": { + "id": "V23tNN0JcLIa" + } + }, + { + "cell_type": "code", + "source": [ + "from huggingface_hub import push_to_hub_keras\n", + "\n", + "push_to_hub_keras(model,\n", + " \"merve/deeplab-v3\",\n", + " log_dir = \"./logs/fit\",\n", + " tags = [\"image-segmentation\"]\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 508, + "referenced_widgets": [ + "79d25547eafe436cb17eacea753d8d6b", + "590f529278d94fc3b5a8d7bafca4522b", + "d935575e705f4be3a7bd741ec52ad3ee", + "c92ae6434a7a48b9847047075724dc07", + "4a5c0fbb5b7f42b2b72c4ad6dae84bba", + "479b8ba4e01f41d593b0712ef13c7ab4", + "012c339e2a8a4792b58b2283f81a10a6", + "4d741d8aea5d488687b44d2c5251aafa", + "3fc5074bdf8e4d819a7e658e025fd726", + "3285a709e0534f25930344074ddab274", + "f58618ad4990454bbbdb4046144c3be5", + "fde09f707d83420e8b7f7991bc611b6d", + "7b24fa1794fe413395f3f692aeb0b288", + "c952dfa1aa9b4cafb599f8c25c473699", + "b04c00cf578047c48a57c5091525e38d", + "17f0eb2433b24235b4d56108cd4e2ecb", + "ff5b3f4e42794cfd801bff046d07e7ff", + "ffaa836cbd2c4743bcda186f2f7f5de3", + "15f2504476894ff19275af4a75c0a2b2", + "c13a2e4c2cd74d739473c311ff33192a", + "dde17f4f2ade443bb1e388fb887662ce", + "09cefd16a4444816aa8f66b7af6aba75", + "4c65df413dbc4923a76ebdc4fc25ac48", + "e065fdde08394bd68846c5641f8ab0e0", + "0da75866105c4b1898d3693da8edc0b7", + "7ba6afd7404e4d7ab7448f84c29afb08", + "6a9fa5d14eee432686642ddf63677028", + "7861bfce6c6e432faa15d788aa9392ad", + "fa182fa9b39e40d39e9d25af46671620", + "5c193eab3d6944819e72525e25880c99", + "1a089068a9f44b03b59c3eea9d6d9487", + "13c09471f8434875991bb5986c0fd276", + "1fdc13a9f6f241c186b56dbcf4c62ecb", + "7e01da20a1234719b275f54b8d3c9c37", + "f00793caba854b54a345c10f443d9607", + "4399b8a5d99c47f3b7f873350ac3bc54", + "57febc5abbdb46d9b2fcfc782ca6a6c3", + "bf964693f0954cfdba1e57109f2207f8", + "e55a6f2d9c8146fc9289a11abd9c5d23", + "74d8bc6267b34df282673a95688fb5c2", + "537285fa93ad4005a634ba9b20f7fdc9", + "696899bd01c240589d89734ec733be99", + "dcb9bf7430e44ea9b25d7cfab7b49e3b", + "098603a5b92e465a855d30ece229c298", + "37b168972ebe44eb918ffa852b141520", + "2d23a4207c144e949e783361da188e43", + "e4d17b31d93b40b389fd41edf31a4f78", + "f7ed1919db754291b52a56b998d0b13b", + "cb4eef2d3905403bb8c9430d3c2a8a24", + "a8f811fdfbd54a9188fb1a833f60f9a6", + "8c7a34132c6343189336f047e3d33d24", + "a37de9c39d9c45edba8d593578ff1f08", + "4e5358a9eb044636a43f9f5cc67e2ec3", + "2393f85e33bd4140b9eca6144f930c3d", + "4c7e3c8e4eca4471aa0f760aebde4795", + "52ab02bf10ea4d01bf3d3bff9d0ad13f", + "c86173f060ed48b1a200f925cef1ef48", + "7e347745b55441daa6d37a6890f783fe", + "acdbf3200f024bf7bc2d492065f7430f", + "9345debcdde446efa852934a8ed9127c", + "7abebdb21c29435c9b05926dc5f765ae", + "1dc72b732a1d4838a006e66f6786a6eb", + "f2a6a5d448514ab799d863a685d4e9a7", + "73290bb00d5e46de9efa3b0055a9a671", + "8e7c2d758a2e4d55bd915d0e1e174364", + "d53d843a31544e428285c0962d40e366", + "bcd94f5cdbd84c589b369cf4778ee4f5", + "7ad604cec9434d9a99fc7d3d4a96cd25", + "8b49e25be8154f8787b76cffd10c6383", + "3bf847b8c30844a5bd1f34fe192d99f7", + "20277969b49843ce98b4a97c6a798f6f", + "6f782e62489540269454a2a590d7a3e2", + "6f633413b76a4302bad7b4d20214d5fc", + "3c16b5c800a5406497acb059b88deede", + "83a1317aa8c74286afde0d789f8cf1a5", + "561bc92ca9e1418e889c600ee5a8c270", + "ca04e7a0664a429392f62ea53a1f4522" + ] + }, + "id": "84D5xQ3PT7kj", + "outputId": "33db88da-168b-44c8-d229-77ad96ba443c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Cloning https://huggingface.co/merve/deeplab-v3 into local empty directory.\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "INFO:tensorflow:Assets written to: merve/deeplab-v3/assets\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Adding files tracked by Git LFS: ['variables/variables.data-00000-of-00001', 'model.png', 'variables/variables.index']. This may take a bit of time if the files are large.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Upload file variables/variables.data-00000-of-00001: 0%| | 3.34k/45.4M [00:00 main\n", + "\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'https://huggingface.co/merve/deeplab-v3/commit/4c83b323a69683a7e3607fd07d7840309bf4b096'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## 🤗 Build a UI using Gradio" + ], + "metadata": { + "id": "OQ-Yrw40UGa3" + } + }, + { + "cell_type": "markdown", + "source": [ + "We will now build a UI with Gradio. To do this, we just need to write the inference function (which is usually given in notebooks) and pass it to a gradio `Interface`." + ], + "metadata": { + "id": "3okP5jFMVc9M" + } + }, + { + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import tensorflow as tf\n", + "import gradio as gr\n", + "from huggingface_hub import from_pretrained_keras\n", + "import cv2\n", + "\n", + "# note how I download the already pushed model\n", + "model = from_pretrained_keras(\"merve/deeplab-v3\")\n", + "\n", + "\n", + "# we will now create our inference function\n", + "colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143],\n", + " [217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248],\n", + " [85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92],\n", + " [167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8)\n", + " \n", + "img_size = 512\n", + " \n", + "def read_image(image):\n", + " image = tf.convert_to_tensor(image)\n", + " image.set_shape([None, None, 3])\n", + " image = tf.image.resize(images=image, size=[img_size, img_size])\n", + " image = image / 127.5 - 1\n", + " return image\n", + "\n", + "def infer(model, image_tensor):\n", + " predictions = model.predict(np.expand_dims((image_tensor), axis=0))\n", + " predictions = np.squeeze(predictions)\n", + " predictions = np.argmax(predictions, axis=2)\n", + " return predictions\n", + "\n", + "def decode_segmentation_masks(mask, colormap, n_classes):\n", + " r = np.zeros_like(mask).astype(np.uint8)\n", + " g = np.zeros_like(mask).astype(np.uint8)\n", + " b = np.zeros_like(mask).astype(np.uint8)\n", + " for l in range(0, n_classes):\n", + " idx = mask == l\n", + " r[idx] = colormap[l, 0]\n", + " g[idx] = colormap[l, 1]\n", + " b[idx] = colormap[l, 2]\n", + " rgb = np.stack([r, g, b], axis=2)\n", + " return rgb\n", + "\n", + "def get_overlay(image, colored_mask):\n", + " image = tf.keras.preprocessing.image.array_to_img(image)\n", + " image = np.array(image).astype(np.uint8)\n", + " overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)\n", + " return overlay\n", + "\n", + "def segmentation(input_image):\n", + " image_tensor = read_image(input_image)\n", + " prediction_mask = infer(image_tensor=image_tensor, model=model)\n", + " prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)\n", + " overlay = get_overlay(image_tensor, prediction_colormap)\n", + " return (overlay, prediction_colormap)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsjCxx3uUJIa", + "outputId": "a3b06994-0e67-4af9-e075-c36713ee4507" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "config.json not found in HuggingFace Hub\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# the app takes one image to be segmented\n", + "input = gr.inputs.Image()\n", + "# the app outputs two segmented images\n", + "output = [gr.outputs.Image(), gr.outputs.Image()]\n", + "# it's good practice to pass examples, description and a title to guide users\n", + "examples = [[\"/content/example_image_2.jpeg\"], [\"/content/example_image_3.jpeg\"]] \n", + "title = \"Human Part Segmentation\"\n", + "description = \"Upload an image or select from examples to segment out different human parts.\"\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "b8gY7vvDWamC", + "outputId": "44409207-5a0f-434a-be4b-e5e8b29a203a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n", + " warnings.warn(value)\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's launch the interface!" + ], + "metadata": { + "id": "j_Y53qbnWf2d" + } + }, + { + "cell_type": "code", + "source": [ + "gr.Interface(segmentation, input, output, examples=examples, allow_flagging=False, analytics_enabled=False,\n", + " title=title, description=description).launch(enable_queue=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 704 + }, + "id": "R8CpugHGWfDQ", + "outputId": "4cb4e0f2-d75b-41f3-a78b-969537f91ee9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/gradio/interface.py:356: UserWarning: The `allow_flagging` parameter in `Interface` nowtakes a string value ('auto', 'manual', or 'never'), not a boolean. Setting parameter to: 'never'.\n", + " \"The `allow_flagging` parameter in `Interface` now\"\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Colab notebook detected. To show errors in colab notebook, set `debug=True` in `launch()`\n", + "Running on public URL: https://38608.gradio.app\n", + "\n", + "This share link expires in 72 hours. For free permanent hosting, check out Spaces (https://huggingface.co/spaces)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(,\n", + " 'http://127.0.0.1:7862/',\n", + " 'https://38608.gradio.app')" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "deeplabv3_plus", + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "6656427d58584fdc93d205920dd586c0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bbcfbb2e927d453ca5ab6f58c0096ce8", + "IPY_MODEL_5c7a3a49f4d64fe7917c8c489047888a", + "IPY_MODEL_c8737dd8a7a44ee08762f4a66f8e62c2", + "IPY_MODEL_2b5694f714f5449d880fea1e59bf2496", + "IPY_MODEL_65c7d524f74444d8becc6b2249c61dfa" + ], + "layout": "IPY_MODEL_ea738912885747fb85c1c45902128658" + } + }, + "bbcfbb2e927d453ca5ab6f58c0096ce8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_86853c4a023c4eae98828688480d4ee1", + "placeholder": "​", + "style": "IPY_MODEL_ef117ade52df431eb27301e058d7e649", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "5c7a3a49f4d64fe7917c8c489047888a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_b0d5f1a62eaf42d89639b2d3b77000c2", + "placeholder": "​", + "style": "IPY_MODEL_351c270c0e9a47e1a2c5755f470ad065", + "value": "" + } + }, + "c8737dd8a7a44ee08762f4a66f8e62c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_9a20e3b8c7ce4290b60ce1889a369a8a", + "style": "IPY_MODEL_83bb5d69285f43fbb30d2a09f8459f06", + "tooltip": "" + } + }, + "2b5694f714f5449d880fea1e59bf2496": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_338a72e0d5834c2f9879591e295d2b7c", + "placeholder": "​", + "style": "IPY_MODEL_e99ed10952c5407b90ac9371f41f1e79", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
Logging in with your username and password is deprecated and\nwon't be possible anymore in the near future. You can still use them for now by\nclicking below. " + } + }, + "65c7d524f74444d8becc6b2249c61dfa": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Use password", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_160e8e1d73a041f1bfab72f0bbc7bcbc", + "style": "IPY_MODEL_f49bb981eda24cdb897d95e6a9541cf9", + "tooltip": "" + } + }, + "ea738912885747fb85c1c45902128658": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "86853c4a023c4eae98828688480d4ee1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ef117ade52df431eb27301e058d7e649": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b0d5f1a62eaf42d89639b2d3b77000c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "351c270c0e9a47e1a2c5755f470ad065": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a20e3b8c7ce4290b60ce1889a369a8a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "83bb5d69285f43fbb30d2a09f8459f06": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "338a72e0d5834c2f9879591e295d2b7c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e99ed10952c5407b90ac9371f41f1e79": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "160e8e1d73a041f1bfab72f0bbc7bcbc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f49bb981eda24cdb897d95e6a9541cf9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "79d25547eafe436cb17eacea753d8d6b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_590f529278d94fc3b5a8d7bafca4522b", + "IPY_MODEL_d935575e705f4be3a7bd741ec52ad3ee", + "IPY_MODEL_c92ae6434a7a48b9847047075724dc07" + ], + "layout": "IPY_MODEL_4a5c0fbb5b7f42b2b72c4ad6dae84bba" + } + }, + "590f529278d94fc3b5a8d7bafca4522b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_479b8ba4e01f41d593b0712ef13c7ab4", + "placeholder": "​", + "style": "IPY_MODEL_012c339e2a8a4792b58b2283f81a10a6", + "value": "Upload file variables/variables.data-00000-of-00001: 100%" + } + }, + "d935575e705f4be3a7bd741ec52ad3ee": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d741d8aea5d488687b44d2c5251aafa", + "max": 47564880, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3fc5074bdf8e4d819a7e658e025fd726", + "value": 47564880 + } + }, + "c92ae6434a7a48b9847047075724dc07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3285a709e0534f25930344074ddab274", + "placeholder": "​", + "style": "IPY_MODEL_f58618ad4990454bbbdb4046144c3be5", + "value": " 45.4M/45.4M [00:40<00:00, 1.01MB/s]" + } + }, + "4a5c0fbb5b7f42b2b72c4ad6dae84bba": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "479b8ba4e01f41d593b0712ef13c7ab4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "012c339e2a8a4792b58b2283f81a10a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4d741d8aea5d488687b44d2c5251aafa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3fc5074bdf8e4d819a7e658e025fd726": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3285a709e0534f25930344074ddab274": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f58618ad4990454bbbdb4046144c3be5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fde09f707d83420e8b7f7991bc611b6d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b24fa1794fe413395f3f692aeb0b288", + "IPY_MODEL_c952dfa1aa9b4cafb599f8c25c473699", + "IPY_MODEL_b04c00cf578047c48a57c5091525e38d" + ], + "layout": "IPY_MODEL_17f0eb2433b24235b4d56108cd4e2ecb" + } + }, + "7b24fa1794fe413395f3f692aeb0b288": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff5b3f4e42794cfd801bff046d07e7ff", + "placeholder": "​", + "style": "IPY_MODEL_ffaa836cbd2c4743bcda186f2f7f5de3", + "value": "Upload file saved_model.pb: 100%" + } + }, + "c952dfa1aa9b4cafb599f8c25c473699": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_15f2504476894ff19275af4a75c0a2b2", + "max": 2850637, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c13a2e4c2cd74d739473c311ff33192a", + "value": 2850637 + } + }, + "b04c00cf578047c48a57c5091525e38d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dde17f4f2ade443bb1e388fb887662ce", + "placeholder": "​", + "style": "IPY_MODEL_09cefd16a4444816aa8f66b7af6aba75", + "value": " 2.72M/2.72M [00:40<00:00, 40.9kB/s]" + } + }, + "17f0eb2433b24235b4d56108cd4e2ecb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff5b3f4e42794cfd801bff046d07e7ff": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ffaa836cbd2c4743bcda186f2f7f5de3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15f2504476894ff19275af4a75c0a2b2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c13a2e4c2cd74d739473c311ff33192a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dde17f4f2ade443bb1e388fb887662ce": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "09cefd16a4444816aa8f66b7af6aba75": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c65df413dbc4923a76ebdc4fc25ac48": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e065fdde08394bd68846c5641f8ab0e0", + "IPY_MODEL_0da75866105c4b1898d3693da8edc0b7", + "IPY_MODEL_7ba6afd7404e4d7ab7448f84c29afb08" + ], + "layout": "IPY_MODEL_6a9fa5d14eee432686642ddf63677028" + } + }, + "e065fdde08394bd68846c5641f8ab0e0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7861bfce6c6e432faa15d788aa9392ad", + "placeholder": "​", + "style": "IPY_MODEL_fa182fa9b39e40d39e9d25af46671620", + "value": "Upload file variables/variables.index: 100%" + } + }, + "0da75866105c4b1898d3693da8edc0b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c193eab3d6944819e72525e25880c99", + "max": 19238, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a089068a9f44b03b59c3eea9d6d9487", + "value": 19238 + } + }, + "7ba6afd7404e4d7ab7448f84c29afb08": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13c09471f8434875991bb5986c0fd276", + "placeholder": "​", + "style": "IPY_MODEL_1fdc13a9f6f241c186b56dbcf4c62ecb", + "value": " 18.8k/18.8k [00:40<00:00, 362B/s]" + } + }, + "6a9fa5d14eee432686642ddf63677028": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7861bfce6c6e432faa15d788aa9392ad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa182fa9b39e40d39e9d25af46671620": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c193eab3d6944819e72525e25880c99": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1a089068a9f44b03b59c3eea9d6d9487": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "13c09471f8434875991bb5986c0fd276": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fdc13a9f6f241c186b56dbcf4c62ecb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7e01da20a1234719b275f54b8d3c9c37": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f00793caba854b54a345c10f443d9607", + "IPY_MODEL_4399b8a5d99c47f3b7f873350ac3bc54", + "IPY_MODEL_57febc5abbdb46d9b2fcfc782ca6a6c3" + ], + "layout": "IPY_MODEL_bf964693f0954cfdba1e57109f2207f8" + } + }, + "f00793caba854b54a345c10f443d9607": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e55a6f2d9c8146fc9289a11abd9c5d23", + "placeholder": "​", + "style": "IPY_MODEL_74d8bc6267b34df282673a95688fb5c2", + "value": "Upload file model.png: 100%" + } + }, + "4399b8a5d99c47f3b7f873350ac3bc54": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_537285fa93ad4005a634ba9b20f7fdc9", + "max": 802790, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_696899bd01c240589d89734ec733be99", + "value": 802790 + } + }, + "57febc5abbdb46d9b2fcfc782ca6a6c3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dcb9bf7430e44ea9b25d7cfab7b49e3b", + "placeholder": "​", + "style": "IPY_MODEL_098603a5b92e465a855d30ece229c298", + "value": " 784k/784k [00:40<00:00, 17.2kB/s]" + } + }, + "bf964693f0954cfdba1e57109f2207f8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e55a6f2d9c8146fc9289a11abd9c5d23": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74d8bc6267b34df282673a95688fb5c2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "537285fa93ad4005a634ba9b20f7fdc9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "696899bd01c240589d89734ec733be99": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dcb9bf7430e44ea9b25d7cfab7b49e3b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "098603a5b92e465a855d30ece229c298": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37b168972ebe44eb918ffa852b141520": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d23a4207c144e949e783361da188e43", + "IPY_MODEL_e4d17b31d93b40b389fd41edf31a4f78", + "IPY_MODEL_f7ed1919db754291b52a56b998d0b13b" + ], + "layout": "IPY_MODEL_cb4eef2d3905403bb8c9430d3c2a8a24" + } + }, + "2d23a4207c144e949e783361da188e43": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a8f811fdfbd54a9188fb1a833f60f9a6", + "placeholder": "​", + "style": "IPY_MODEL_8c7a34132c6343189336f047e3d33d24", + "value": "Upload file keras_metadata.pb: 100%" + } + }, + "e4d17b31d93b40b389fd41edf31a4f78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a37de9c39d9c45edba8d593578ff1f08", + "max": 357249, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e5358a9eb044636a43f9f5cc67e2ec3", + "value": 357249 + } + }, + "f7ed1919db754291b52a56b998d0b13b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2393f85e33bd4140b9eca6144f930c3d", + "placeholder": "​", + "style": "IPY_MODEL_4c7e3c8e4eca4471aa0f760aebde4795", + "value": " 349k/349k [00:40<00:00, 8.72kB/s]" + } + }, + "cb4eef2d3905403bb8c9430d3c2a8a24": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8f811fdfbd54a9188fb1a833f60f9a6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c7a34132c6343189336f047e3d33d24": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a37de9c39d9c45edba8d593578ff1f08": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4e5358a9eb044636a43f9f5cc67e2ec3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2393f85e33bd4140b9eca6144f930c3d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c7e3c8e4eca4471aa0f760aebde4795": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "52ab02bf10ea4d01bf3d3bff9d0ad13f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c86173f060ed48b1a200f925cef1ef48", + "IPY_MODEL_7e347745b55441daa6d37a6890f783fe", + "IPY_MODEL_acdbf3200f024bf7bc2d492065f7430f" + ], + "layout": "IPY_MODEL_9345debcdde446efa852934a8ed9127c" + } + }, + "c86173f060ed48b1a200f925cef1ef48": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7abebdb21c29435c9b05926dc5f765ae", + "placeholder": "​", + "style": "IPY_MODEL_1dc72b732a1d4838a006e66f6786a6eb", + "value": "Upload file logs/validation/events.out.tfevents.1653922035.b3a961ec2aba.109.1.v2: 100%" + } + }, + "7e347745b55441daa6d37a6890f783fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2a6a5d448514ab799d863a685d4e9a7", + "max": 1636, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_73290bb00d5e46de9efa3b0055a9a671", + "value": 1636 + } + }, + "acdbf3200f024bf7bc2d492065f7430f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8e7c2d758a2e4d55bd915d0e1e174364", + "placeholder": "​", + "style": "IPY_MODEL_d53d843a31544e428285c0962d40e366", + "value": " 1.60k/1.60k [00:40<?, ?B/s]" + } + }, + "9345debcdde446efa852934a8ed9127c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7abebdb21c29435c9b05926dc5f765ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1dc72b732a1d4838a006e66f6786a6eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2a6a5d448514ab799d863a685d4e9a7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73290bb00d5e46de9efa3b0055a9a671": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8e7c2d758a2e4d55bd915d0e1e174364": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d53d843a31544e428285c0962d40e366": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bcd94f5cdbd84c589b369cf4778ee4f5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ad604cec9434d9a99fc7d3d4a96cd25", + "IPY_MODEL_8b49e25be8154f8787b76cffd10c6383", + "IPY_MODEL_3bf847b8c30844a5bd1f34fe192d99f7" + ], + "layout": "IPY_MODEL_20277969b49843ce98b4a97c6a798f6f" + } + }, + "7ad604cec9434d9a99fc7d3d4a96cd25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f782e62489540269454a2a590d7a3e2", + "placeholder": "​", + "style": "IPY_MODEL_6f633413b76a4302bad7b4d20214d5fc", + "value": "Upload file logs/train/events.out.tfevents.1653921998.b3a961ec2aba.109.0.v2: 100%" + } + }, + "8b49e25be8154f8787b76cffd10c6383": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3c16b5c800a5406497acb059b88deede", + "max": 1951463, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_83a1317aa8c74286afde0d789f8cf1a5", + "value": 1951463 + } + }, + "3bf847b8c30844a5bd1f34fe192d99f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_561bc92ca9e1418e889c600ee5a8c270", + "placeholder": "​", + "style": "IPY_MODEL_ca04e7a0664a429392f62ea53a1f4522", + "value": " 1.86M/1.86M [00:40<00:00, 29.7kB/s]" + } + }, + "20277969b49843ce98b4a97c6a798f6f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f782e62489540269454a2a590d7a3e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f633413b76a4302bad7b4d20214d5fc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c16b5c800a5406497acb059b88deede": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "83a1317aa8c74286afde0d789f8cf1a5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "561bc92ca9e1418e889c600ee5a8c270": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ca04e7a0664a429392f62ea53a1f4522": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/keras-sprint/example_image_2.jpeg b/keras-sprint/example_image_2.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..9fe8145e5d247a684092ba2032e63807b6bcffed Binary files /dev/null and b/keras-sprint/example_image_2.jpeg differ diff --git a/keras-sprint/example_image_3.jpeg b/keras-sprint/example_image_3.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..1442543758ec3b253670c6de3fe9105c7d4c332e Binary files /dev/null and b/keras-sprint/example_image_3.jpeg differ diff --git a/keras-sprint/mnist_convnet.ipynb b/keras-sprint/mnist_convnet.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..9cc01bb5ad68d0a386c49215ecb44b5de075dcf4 --- /dev/null +++ b/keras-sprint/mnist_convnet.ipynb @@ -0,0 +1,998 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "KwORmaB27LPx" + }, + "source": [ + "# Simple MNIST convnet\n", + "\n", + "This example shows how to push your Keras model to the Hugging Face Hub and load the model from Hub.\n", + "\n", + "**Original Author of Example:** [fchollet](https://twitter.com/fchollet)
\n", + "**Description:** A simple convnet that achieves ~99% test accuracy on MNIST." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "860CEXn27LP1" + }, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "7Msic2JB7LP1" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers" + ] + }, + { + "cell_type": "markdown", + "source": [ + "🤗 Install Hugging Face Hub" + ], + "metadata": { + "id": "4s6WujK7ILKt" + } + }, + { + "cell_type": "code", + "source": [ + "!pip install huggingface_hub" + ], + "metadata": { + "id": "JNzv7-Cg_cgu" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "import huggingface_hub\n", + "from huggingface_hub import notebook_login, push_to_hub_keras, from_pretrained_keras" + ], + "metadata": { + "id": "HS4vW65V_-G-" + }, + "execution_count": 21, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "00LCkZPt7LP3" + }, + "source": [ + "## Prepare the data" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "j6tx7Fkh7LP3", + "outputId": "48ae4179-4665-4938-9a10-2652cc464bdf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "x_train shape: (60000, 28, 28, 1)\n", + "60000 train samples\n", + "10000 test samples\n" + ] + } + ], + "source": [ + "# Model / data parameters\n", + "num_classes = 10\n", + "input_shape = (28, 28, 1)\n", + "\n", + "# the data, split between train and test sets\n", + "(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()\n", + "\n", + "# Scale images to the [0, 1] range\n", + "x_train = x_train.astype(\"float32\") / 255\n", + "x_test = x_test.astype(\"float32\") / 255\n", + "# Make sure images have shape (28, 28, 1)\n", + "x_train = np.expand_dims(x_train, -1)\n", + "x_test = np.expand_dims(x_test, -1)\n", + "print(\"x_train shape:\", x_train.shape)\n", + "print(x_train.shape[0], \"train samples\")\n", + "print(x_test.shape[0], \"test samples\")\n", + "\n", + "\n", + "# convert class vectors to binary class matrices\n", + "y_train = keras.utils.to_categorical(y_train, num_classes)\n", + "y_test = keras.utils.to_categorical(y_test, num_classes)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5bpZgm6n7LP4" + }, + "source": [ + "## Build the model" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QI34HRui7LP4", + "outputId": "a0a91950-828e-45a9-d10c-bc7f05cb742e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " conv2d (Conv2D) (None, 26, 26, 32) 320 \n", + " \n", + " max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0 \n", + " ) \n", + " \n", + " conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 \n", + " \n", + " max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0 \n", + " 2D) \n", + " \n", + " flatten (Flatten) (None, 1600) 0 \n", + " \n", + " dropout (Dropout) (None, 1600) 0 \n", + " \n", + " dense (Dense) (None, 10) 16010 \n", + " \n", + "=================================================================\n", + "Total params: 34,826\n", + "Trainable params: 34,826\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = keras.Sequential(\n", + " [\n", + " keras.Input(shape=input_shape),\n", + " layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\"),\n", + " layers.MaxPooling2D(pool_size=(2, 2)),\n", + " layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"),\n", + " layers.MaxPooling2D(pool_size=(2, 2)),\n", + " layers.Flatten(),\n", + " layers.Dropout(0.5),\n", + " layers.Dense(num_classes, activation=\"softmax\"),\n", + " ]\n", + ")\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0hwLCbr-7LP5" + }, + "source": [ + "## Train the model" + ] + }, + { + "cell_type": "code", + "source": [ + "# Load the TensorBoard notebook extension\n", + "%load_ext tensorboard" + ], + "metadata": { + "id": "w_Q7X180AYbB" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "log_dir = \"logs/fit/\"\n", + "tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)" + ], + "metadata": { + "id": "vRhyg5W-AbLU" + }, + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AEXgbiWZ7LP5", + "outputId": "45222492-a30b-4a64-e53f-1a7d5ee3652c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/5\n", + "422/422 [==============================] - 47s 109ms/step - loss: 0.0274 - accuracy: 0.9909 - val_loss: 0.0292 - val_accuracy: 0.9923\n", + "Epoch 2/5\n", + "422/422 [==============================] - 44s 105ms/step - loss: 0.0273 - accuracy: 0.9907 - val_loss: 0.0280 - val_accuracy: 0.9917\n", + "Epoch 3/5\n", + "422/422 [==============================] - 43s 102ms/step - loss: 0.0263 - accuracy: 0.9913 - val_loss: 0.0262 - val_accuracy: 0.9937\n", + "Epoch 4/5\n", + "422/422 [==============================] - 42s 100ms/step - loss: 0.0242 - accuracy: 0.9916 - val_loss: 0.0260 - val_accuracy: 0.9927\n", + "Epoch 5/5\n", + "422/422 [==============================] - 43s 102ms/step - loss: 0.0242 - accuracy: 0.9917 - val_loss: 0.0311 - val_accuracy: 0.9917\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "batch_size = 128\n", + "epochs = 5\n", + "\n", + "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", + "\n", + "model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1,\n", + " callbacks = [tensorboard_callback])" + ] + }, + { + "cell_type": "markdown", + "source": [ + "We will push our model to the Hugging Face Hub with tensorboard logs.\n", + "\n", + "If you already have access to keras-io organization, you can give \"keras-io/{model-name}\" as the model ID. If not, you can push model to your own account and then carry it to the keras-io organization later. 🥳\n", + "\n", + "To push your models to the Hub, you need authentication. To authenticate, you can log using notebook_login. You can get your token from https://huggingface.co/settings/tokens 🙌🏻" + ], + "metadata": { + "id": "cIYC7UnFBjHR" + } + }, + { + "cell_type": "code", + "source": [ + "notebook_login()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 471, + "referenced_widgets": [ + "a3f2334822e7452abaaf93ccc47ba051", + "2b99210c02a041fb86b2935e4a1ced6e", + "38c57d5de54b45c2aef003db892e38c6", + "38aea29e8c654739b8e93935d1ff45fe", + "9fc97a48a10b4211adaddf710b20ca71", + "6f08c5a0af3745e49a4bd98d89df1c7f", + "92fcdadef15d48b3a92e969613076504", + "54ac8eb952c14dd1b9585bf97aef046b", + "1e8921fab93d496f85a611903e87d9ef", + "5430fb89181a46df945835040dfaaa73", + "0ca7af69b9e0424e8de5f0bff45e9517", + "72ca67223062400283daf47b2d43363a", + "5ef27ad680c142c0ba410a93aa991fb7", + "b2b3738b36bc4f2b9c30f85afb3c3070", + "cd740c81dc2c401ca2c7d163ae1d36ca", + "5da678bbd0784cd48c2619aeb7ed62d7", + "9c117ad0cd2248a5987a62d1c9e3e10f" + ] + }, + "id": "lpPBVGq8_OVV", + "outputId": "4b25884d-862b-4b03-a5cb-3f5d1f66d322" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Login successful\n", + "Your token has been saved to /root/.huggingface/token\n", + "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n", + "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n", + "\n", + "git config --global credential.helper store\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now we can push our model to the Hugging Face Hub 🤩🙌🏻 \n", + "The below function will:\n", + "\n", + "1. create a remote repository on Hugging Face Hub,\n", + "2. serialize our model,\n", + "3. create a model card including training hyperparameters, model architecture and couple of fields you can fill about model,\n", + "4. push the model to the Hub." + ], + "metadata": { + "id": "eLbbU8AnBtqu" + } + }, + { + "cell_type": "code", + "source": [ + "push_to_hub_keras(model, \"merve/mnist\", log_dir = \"logs/fit/\", tags = [\"image-classification\"])" + ], + "metadata": { + "id": "1RNi4hGKAVUv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "See pushed model with TensorBoard and model card [here](https://huggingface.co/merve/mnist)." + ], + "metadata": { + "id": "kW6aHvOeC8oJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "Let's load the model!" + ], + "metadata": { + "id": "XCsztZCtFCdu" + } + }, + { + "cell_type": "code", + "source": [ + "model = from_pretrained_keras(\"merve/mnist\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Wept7KeFEx7", + "outputId": "38f10ece-30bc-45b3-fbc8-e7a1b7eb5a3c" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "config.json not found in HuggingFace Hub\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U_OrylJv7LP6" + }, + "source": [ + "## Evaluate the trained model" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RVwK3ZHJ7LP6", + "outputId": "1adb6f61-2532-4475-cf10-55db0e69d552" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Test loss: 0.022792112082242966\n", + "Test accuracy: 0.9919999837875366\n" + ] + } + ], + "source": [ + "score = model.evaluate(x_test, y_test, verbose=0)\n", + "print(\"Test loss:\", score[0])\n", + "print(\"Test accuracy:\", score[1])" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "mnist_convnet", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "a3f2334822e7452abaaf93ccc47ba051": { + "model_module": "@jupyter-widgets/controls", + "model_name": "VBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "VBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "VBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2b99210c02a041fb86b2935e4a1ced6e", + "IPY_MODEL_38c57d5de54b45c2aef003db892e38c6", + "IPY_MODEL_38aea29e8c654739b8e93935d1ff45fe", + "IPY_MODEL_9fc97a48a10b4211adaddf710b20ca71", + "IPY_MODEL_6f08c5a0af3745e49a4bd98d89df1c7f" + ], + "layout": "IPY_MODEL_92fcdadef15d48b3a92e969613076504" + } + }, + "2b99210c02a041fb86b2935e4a1ced6e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_54ac8eb952c14dd1b9585bf97aef046b", + "placeholder": "​", + "style": "IPY_MODEL_1e8921fab93d496f85a611903e87d9ef", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + }, + "38c57d5de54b45c2aef003db892e38c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PasswordModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PasswordModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PasswordView", + "continuous_update": true, + "description": "Token:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_5430fb89181a46df945835040dfaaa73", + "placeholder": "​", + "style": "IPY_MODEL_0ca7af69b9e0424e8de5f0bff45e9517", + "value": "" + } + }, + "38aea29e8c654739b8e93935d1ff45fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_72ca67223062400283daf47b2d43363a", + "style": "IPY_MODEL_5ef27ad680c142c0ba410a93aa991fb7", + "tooltip": "" + } + }, + "9fc97a48a10b4211adaddf710b20ca71": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2b3738b36bc4f2b9c30f85afb3c3070", + "placeholder": "​", + "style": "IPY_MODEL_cd740c81dc2c401ca2c7d163ae1d36ca", + "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
Logging in with your username and password is deprecated and\nwon't be possible anymore in the near future. You can still use them for now by\nclicking below. " + } + }, + "6f08c5a0af3745e49a4bd98d89df1c7f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Use password", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_5da678bbd0784cd48c2619aeb7ed62d7", + "style": "IPY_MODEL_9c117ad0cd2248a5987a62d1c9e3e10f", + "tooltip": "" + } + }, + "92fcdadef15d48b3a92e969613076504": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "54ac8eb952c14dd1b9585bf97aef046b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1e8921fab93d496f85a611903e87d9ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5430fb89181a46df945835040dfaaa73": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ca7af69b9e0424e8de5f0bff45e9517": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "72ca67223062400283daf47b2d43363a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ef27ad680c142c0ba410a93aa991fb7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "b2b3738b36bc4f2b9c30f85afb3c3070": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd740c81dc2c401ca2c7d163ae1d36ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5da678bbd0784cd48c2619aeb7ed62d7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9c117ad0cd2248a5987a62d1c9e3e10f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/merges.txt b/merges.txt new file mode 100644 index 0000000000000000000000000000000000000000..6038932a2a1f09a66991b1c2adae0d14066fa29e --- /dev/null +++ b/merges.txt @@ -0,0 +1,50001 @@ +#version: 0.2 +Ġ t +Ġ a +Ġt h +i n +e r +Ġ w +Ġ s +o u +Ġth e +r e +o n +a t +e n +Ġ c +i t +i s +Ġ b +n d +Ġ d +Ġ m +Ġ h +Ġ o +in g +e s +Ġ p +Ġt o +a n +Ġ f +o r +l l +Ġ I +Ġ l +Ġ y +a r +Ġ g +Ġy ou +e d +Ġa nd +Ġ in +Ġo f +a s +Ġ n +o m +i c +Ġth at +u s +e t +v e +a l +o w +l e +Ġ is +Ġ e +Ġ it +o t +' s +Ġb e +i on +Ġ T +Ġw h +Ġ A +en t +Ġ S +Ġ re +a y +Ġw e +Ġ on +er e +Ġh a +u t +a c +i d +i g +o s +k e +v er +i m +Ġ Ð +ĠT h +a m +a ll +Ġf or +e l +c h +r o +Ġth is +Ġs t +Ġ W +Ġ u +a d +ou t +i r +l d +c t +Ġ k +i f +Ġg o +. . +Ð ¾ +it h +l y +h t +q u +Ġ - +Ġd o +Ġ j +Ġha ve +Ġ B +Ġa n +Ġw ith +Ġa re +Ġ r +Ġd e +Ġs e +Ġs o +Ġ v +s t +i ll +u r +Ġl i +Ġ M +es t +o d +all y +' t +us t +Ġa s +Ġ C +c e +Ġm e +Ð ° +Ð µ +i l +Ġ H +Ġw as +t er +t h +Ġc an +an t +Ġc om +ou r +ig ht +Ġ Y +at ion +ĠA nd +o l +Ġs h +Ñ Ĥ +o p +s e +Ġn ot +ĠS o +Ġn e +u n +Ġa b +Ġli ke +Ġa t +Ġ D +i e +Ġh e +Ġc on +Ġc h +o re +Ġa l +Ġo r +Ġ qu +Ġ O +om e +r a +u l +Ġ N +p p +Ġyou r +ou ld +Ġ P +Ġf r +g e +er s +' re +Ð ¸ +Ġthe y +Ġwh at +us e +Ġa ll +ĠTh e +Ġ L +es s +e m +Ġk n +Ġj ust +ar t +Ġp ro +ver y +u m +Ġl o +Ġ ì +Ġm y +o k +Ġe x +a b +Ġth ere +Ġb ut +Ġkn ow +Ġs u +Ġ G +Ñ ģ +Ġ E +Ġm a +о Ð +Ġ en +Ġab out +ĠI t +is t +Ġw or +r i +in d +Ġon e +at e +a nd +in k +Ġl e +or t +' m +Ġ F +ic h +Ñ Ģ +id e +Ġg et +Ġ out +.. . +Ġw ill +ã ģ +i ve +Ð ½ +Ġfr om +a in +ĠW e +Ġu p +p e +re s +c a +Ġ R +Ġ if +Ġp l +Ġd on +ac k +Ġ 1 +Ġ " +Ġt r +Ġ us +ĠW h +it y +Ġ J +ĠY ou +Ġh ere +h er +Ġs ome +ou g +a k +ar d +Ġgo ing +Ġu n +m ent +Ġth ink +Ġp e +en d +Ġ ( +ca use +Ġt im +as t +à © +Ġ our +Ġw ant +am e +i es +Ġ ë +u d +in e +Ġre ally +Ġt e +Ġse e +c i +Ġb y +s o +u re +os e +Ġ [ +a re +Ġm ore +a h +on e +c k +op le +а Ð +Ġthe n +Ġth ing +Ġthe m +v en +ou nd +os t +on g +e ct +Ġr ight +a g +Ġin t +Ġpe ople +Ġwh en +ou s +p l +Ġtim e +Ġ im +Ġwh o +Ġ 2 +a p +Ġbe cause +h ing +Ġn o +ic e +Ġlo ok +Ġh as +Ġw ould +Ġh ow +ac t +Ġf e +n t +oug h +Ġp r +ĠB ut +Ġs ay +Ñ ĥ +Ġn ow +Ġm an +Ġ very +Ġwor k +i z +Ġ K +i v +it t +Ġa r +e p +Ġc l +Ġwh ich +Ġc o +an s +' ve +Ġs a +f f +' ll +Ġan y +Ġa ct +Ġy e +b er +ac h +a ge +p er +Ġal so +f er +Ġthe se +Ġa d +е Ð +th er +ac e +ic k +a ke +re at +i re +u e +Ġa g +Ġ U +u ch +ion s +r y +0 0 +n a +Ġd id +Ġqu e +Ġha d +Ġe very +ĠH e +Ġl a +Ġw ay +Ġs p +b le +ĠTh is +as s +Ġthe ir +it e +Ġne ed +Ġp art +Ġw ere +Ġb ack +i p +ow n +om et +b e +as e +Ġma ke +ir st +i a +en ce +an g +an k +Ġg ot +Ġp re +Ġcon t +Ġo ther +p t +ĠTh at +o g +Ġgo od +Ġint o +al k +Ġbe en +Ġa m +Ġo ver +u ally +Ġ â +ì Ŀ +Ġu nd +h e +w ay +Ġg r +Ñ Į +Ġd if +Ġp er +Ñ ı +ĠI n +Ġt w +on d +ar s +in t +or m +Ġl ot +Ġwh ere +Ġ à +Ġ V +Ġs omet +Ð » +en s +Ġg u +Ġa c +u g +Ñ ĭ +Ä ± +Ġf irst +re e +Ġh is +itt le +Ġim p +Ġm o +a v +Ġl ittle +ĠWh at +Ġm uch +Ġ z +Ġ ê +ab le +ĠÐ ¿ +Ġp o +Ġcom p +n e +Ġd is +Ġl et +an ce +Ġh er +Ġthing s +Ġst art +ul t +Ġa pp +Ġre s +Ġf o +Ġc ould +Ġin ter +Ġth ose +Ġd es +Ġwe ll +Ġtw o +Ġk ind +x t +res s +el y +à ¤ +Ġb r +Ġth r +ĠÐ ² +Ġ i +is h +Ġdif fer +Ġ ro +ĠS t +Ġsomet hing +Ġt ake +Ġb o +y s +Ġsh e +Ġt alk +l o +Ñ ĩ +Ġe ven +Ð º +ã Ģ +ĠÐ ½ +Ġb u +ĠI f +Ġd own +ĠC h +ad e +ation s +Ġ use +or d +Ġof f +Ġact ually +Ġs pe +d u +at ed +at er +os s +n ing +à ¼ +Ġdo es +Ġ Ñģ +Ġne w +Ġb et +ve l +c ess +p le +Ġha pp +t ing +on na +Ġ es +Ġd ay +Ġon ly +ig n +k ay +s el +ent s +ou nt +i ld +i le +Ġs c +Ġh im +Ġag ain +v ing +Ġg onna +Ġcom m +Ġh el +ot her +Ġ ke +ic al +Ġ 3 +Ġe l +Ġthr ough +Ġcom e +ar k +d ay +i er +à ³ +Ġth an +ĠThe y +Ġm ay +Ġs er +í ķ +Ġc all +Ġdiffer ent +Ġsh ould +ĠTh ere +ar y +ĠN ow +ã Ĥ +th ing +w e +or y +f ter +Ġp ut +or s +i al +ë ĭ +Ġund er +Ġin c +ĠY e +u b +f orm +Ġv ide +à ¸ +ver s +Ġfe el +à ¡ +od y +f t +f ore +Ġe m +g et +Ġsa id +it ion +Ġre c +i ous +at ch +Ġtr y +Ġhel p +Ġsh ow +Ð ´ +Ġb it +u ll +Ð ² +ÑĤ о +g r +Ġpl ay +if e +a il +ĠYe ah +Ġqu est +Ġman y +Ġp ers +Ġg reat +Ã Ń +Ġ est +n g +Ġâ Ļ +t y +l a +ĠO h +Ġ × +à ® +ĠB e +ad y +Ġm ost +ct ion +ĠN o +Ġdo ing +Ġbe ing +Ġto o +c es +Ġb l +. " +Ġre m +is s +on s +> > +r u +w n +on t +i b +e ll +Ġs m +ot h +u al +Ġ >> +Ġp h +l es +o c +f ul +Ġse c +is e +Ġad d +ig h +er t +Ġs ame +â Ģ +Ġme an +Ġf ind +e k +Ġen d +- - +Ð ¼ +Ġst ill +a z +Ġ ' +Ġm in +Ġye ars +ur n +Ġar ound +sel f +Ġw r +b s +oug ht +ĠâĻ ª +Ġf l +an ge +Ġa fter +Ġpo int +m er +v ed +Ġl ong +o y +ä ¸ +Ġc r +way s +Ġs y +Ġt ra +Ġ2 0 +a ve +Ġch e +Ġ ent +Ġbe fore +p h +Ġat t +i an +i ly +Ġpers on +Ġb ig +Ġs ch +Ġre al +Ġne xt +Ġlo ve +Ġvide o +ĠL et +Ġf in +Ġma k +i ble +Ġto day +er m +ĠA l +ow er +an n +i x +Ġp ar +Ġst ud +à ¶ +Ġimp ort +t e +Ġg ive +v es +Ġd ie +Ġde c +Ġte ll +ĠÐ º +Ñģ ÑĤ +Ġwh y +ic ally +ic t +re d +Ġb as +Ġsu re +Ġbe l +at ing +Ġt ak +Ġs et +Ġl ife +Ġdid n +Ø § +o b +u nd +at h +Ġo p +ĠÐ ¾ +a it +Ġwor ld +Ġsu pp +i o +Ġc our +ĠÐ ¸ +w ard +е н +Ġal ways +u p +Ġha nd +ĠH ow +ci al +Ġcon s +Ġ Ñ +Ġin d +Ġ 4 +ĠA s +Ġf un +j ect +Ġimport ant +Ġs ur +e w +at es +Ġ 5 +Ġd i +Ġm ade +Ġin s +Ġas k +Ġ et +Ġn um +Ġc ar +ĠO kay +Ġs im +i k +Ġl ast +ĠG o +Ġm us +Ġre l +ul ar +´ ì +ĠWe ll +pe ct +ĠTh ank +Ġth ree +à £ +ã ĥ +Ġin v +Ġg en +l ic +Ġhapp en +ë Ĭ +i en +e ver +оР² +Ġst r +ĠA ll +Ġin st +Ġâ Ģ +Ġde f +Ġs l +Ġm ight +un g +Ġye ar +Ġo wn +Ġke ep +b ody +d er +Ġ ÑĤ +ĠÐ ´ +Ġan other +Ġm od +Ġe v +Ġgu ys +Ġab le +ã o +qu e +id ent +ĠY es +Ġit s +Ġpl ace +Ġpro du +ar n +ĠÐ ¼ +Ġre p +Ġex per +Ġf am +it ies +if ic +Ġh igh +i ed +o ol +ie w +е ÑĤ +re n +Ġdon e +Ġ ... +ëĬ Ķ +st em +ĠS e +Ġbet ter +c ome +Ġd el +Ġt y +Ġu m +Ġh o +ĠA n +Ġm on +ing s +Ġs k +Ġo b +c om +ble m +op e +st and +' d +ment s +Ġe le +ĠI s +Ġd a +Ġre g +le ase +i ke +al s +iz e +ê ° +Ġc are +Ġne ver +ìĿ ´ +es e +Ġm et +ol og +ĠWh en +u ck +е ÑĢ +Ġ é +Ġd at +à § +Ġex am +il ity +Ġd et +c ri +Ġus ed +ĠD o +Ġtr ans +e g +t en +Ñ İ +c us +Ġsec ond +Ġb est +Ġh ard +Ġ ide +Ġpro blem +ê ³ +ĠU n +Ñ ħ +Ġ Î +Ġw atch +ĠS h +at ter +Ġpre t +Ġd er +Ġcour se +Å Ł +at ive +ic s +Ġquest ion +ut e +ì Ĺ +ĠF or +at her +Ġc ol +i end +Ġ í +Ġ Z +Ġdoes n +ar ch +Ġinter est +Ġp ol +Ġc or +i ence +Ġp res +Ġe ach +Ġsy stem +Ġf act +i el +ab ly +Ġ er +Ġr un +Ġì Ŀ +Ġto p +n er +Ġth ought +Ġe as +i ent +Ġc re +Ñ Ī +Ġcomm un +y e +re ady +ll ow +Ġevery thing +om m +Ġm ed +ļ Ķ +Ġc ount +it s +Ġcom pl +h ip +Ù Ħ +o ok +Ġto get +Ġtoget her +am p +Ġg ame +Ġal ready +аР» +Ġcall ed +al e +Å Ĥ +ĠM y +Ġunder stand +Ġd r +Ġm om +it ed +оР» +Ġus ing +z y +Ġnum ber +ãĢ ģ +c ed +Ġc le +н о +ëĭ ¤ +in ce +Ġlook ing +Ġpret ty +Ġpro b +ĠS he +Ġ ve +Ġget ting +Ġwe ek +Ġe ff +u ff +a ir +u es +er n +Ġ Q +ou p +ent ion +Ġs ide +оР¼ +Ġfor m +Ġb us +Ġas s +Ġ ed +as on +we en +âĢ ¦ +Ġt urn +Ġc ur +Ġco ll +Ġd ire +ĠG od +Ġ1 0 +Ġe qu +ĠÐ ± +Ġop en +Ġsu ch +ir d +аРº +Ġe ar +Ä Ļ +g an +Ġpart ic +Ġfr iend +Ġex p +Ġex t +Ġh ome +Ġw ater +ĠO n +ÑĤ ÑĮ +or k +Ġп ÑĢ +Ġmo ve +n ess +en se +h o +Ġch ar +c o +in s +Ġb oth +Ġ1 9 +Ġg ra +Ġbet ween +á » +Ġì ķ +as h +ĠR e +a i +al th +u res +em ber +Ġa v +Ġ ver +à ª +one y +Ġth ank +Ġmay be +u c +im e +ê³ ł +Ġa way +Ġn ame +ou se +Ġac c +Ġmus ic +Ġch ange +Ġp ass +g er +Ġbu ild +Ġv al +in ess +an y +Ġfe w +´ ë +t a +Ġl ist +à ¥ +Ġo ld +Ġì ŀ +Ġs ort +Ġme m +Ġc a +ce pt +Ġgen er +Ġye ah +Ġwh ile +Ġany thing +r ic +gr am +Ġe in +c y +ur ing +ĠD e +Ġp ower +Ġcom ing +Ġwor d +Ġ- - +Ġbel ie +Ġf ound +t o +Ð ¿ +Ġme ans +Ġin form +Ġ Ø +Ġ Ñĩ +Ġsm all +00 0 +Ġc ame +Ġ íķ +w h +Ġwork ing +Ġexam ple +Ġp os +Ġde p +ê ² +ä º +ot e +Ġde m +ì § +t s +Ġv ar +a ut +Ġt ri +ch n +Ġhe ad +Ġwho le +× Ļ +z e +Ġtry ing +Ġt em +Ġc ou +et s +Ġ 6 +Ġf il +vel op +Ġc ase +à ¯ +Ġprob ably +Ġo kay +Ġpl an +Ġs it +Ġsch ool +ĠTh en +¸ ë +m e +Ġpro cess +Ġf ar +Ġre ad +Ġp oss +Ġb re +Ġso l +ic ht +Ġsupp ort +ĠT o +ert ain +Ġstart ed +Ġc ap +Ġle ft +Ġdat a +Ġtim es +еР» +Ġwant ed +а н +Ġtalk ing +Ġis t +Ġha ving +um p +Ġcont in +Ġsu b +ĠÐ · +p r +ëĭ Ī +in a +Å ¼ +Ġc reat +od e +× ķ +æ ĺ +! ! +Ġt erm +is m +оР´ +ĠBe cause +Ġw ent +id er +Ġpro v +Ġch ild +Ġd en +Ġl ight +b r +³ о +o h +Ġbo ok +Ġ Ù +ut ion +ĠJ ust +en e +Ġf our +Ġv is +ê° Ģ +Ġh ope +Ġmak ing +ĠL e +ì ķ +Ġo pp +a u +Ġm oney +Ġpro gram +à ¨ +Ġst and +I N +Ġs ign +Ġle arn +à ł +ĠD on +Ġte am +Ġн а +l ud +Ġre st +ic es +æ ľ +Ġ ÑĢ +Ġa ut +Ġle ad +ation al +d e +g y +Ġn ice +Ġd as +Ġd ist +Ġh um +ĠO ne +æ Ī +Ġcom es +Ġj o +Ġc ent +Ġex pl +Ġm ark +re en +l ed +g in +ì ļĶ +Ġle vel +Ġcon f +us h +Ġde velop +Ġt est +en g +v ious +at ure +еР¼ +re t +Ġj e +Ġst uff +Ġcl ass +ow s +Ġê · +Ġs i +Ġl es +ro p +ç ļ +Ġp or +Ġw ar +ìĹ IJ +Ġevery one +Ġg e +Ġche ck +ot t +Ġs ing +Ġar t +Ġfo llow +Ġ20 1 +ĠF r +a is +ì ĸ +Î ± +å ° +Ġà ł +im es +Ġre t +Ġch ang +Ġp ub +Ġin f +Ġte chn +ad a +iv es +Ġbe h +æĺ ¯ +Ġlook s +ãĢ Ĥ +Ð · +ĠWh y +çļ Ħ +Ġen ough +Ġb ra +it ch +ä » +Ġad v +Ð ± +Ġwith out +w er +mer ic +d en +Ġcompl et +Ġide a +ter s +o ck +Ġdef in +Ġe ver +Ġg l +Ġon ce +Ġbr ing +Ġsay ing +Ġan s +Ġhe ar +n ect +Ġl ess +g o +re am +ad o +ì ŀ +Ġm ind +ent e +Ġf ull +Ġb ad +Ġw om +Ġsome one +Ġd u +Ġw on +Ġcont ro +ort un +Ġhe alth +Ġch o +ĠA r +Ġcon c +Ġinform ation +Ġst op +at t +at ely +ä ½ +Ġgr oup +Ġ Ñĥ +Ġqu ite +Ġres p +E R +ug ht +ê ¸ +m an +iz ed +ĠB r +Ġrem ember +Ġfam ily +Ġbus iness +a w +Ġspe c +Ġa u +ĠO r +Ä ħ +Ġse en +Ġl ar +Ġ 7 +g g +b ers +Ġd ra +Ġmon th +Ġsay s +Ġis s +Ġli ve +Ġl ine +Ġmom ent +Ġex c +el s +Ġs ound +Ġco ol +Ġlo c +Ġc ertain +Ġd ri +о ÑĤ +am es +Ġm ust +n y +и ÑĤ +Ġk id +Ġinc lud +ìĿ Ħ +at or +Ä Ł +h a +are d +Ġse em +Ð ¹ +ì Ħ +Ġel se +Ġì ł +ir l +Ġ 8 +Ġv o +Ġquest ions +in es +e e +æĪ ij +ü r +ĠA meric +Ġst ory +Ġser v +ver n +ag es +l and +ĠâĢ ĵ +er a +ĠC an +Ġp op +et her +Ġn a +Ġor der +Ġmak es +Ġs ince +c on +ct or +Ġth ough +Ġprodu ct +л и +Ġle g +Ġme et +al f +Ñģ Ñı +un ch +it er +o ve +×ķ × +i et +аР¼ +it al +Ġsu per +l ing +Ġp ay +Ġpar a +Ġj ob +ĠH ere +Ġs w +k s +pt ion +m a +Ġbelie ve +¬ ë +Ġw ait +оР¹ +Ġun t +Ġqu ick +h r +ĠÑ į +ĠP ro +Ġm en +à ¹ +Ġday s +Ġgo es +Ġspe ak +ĠA t +em ent +Ġm iss +Ġa w +Ġdes ign +Ġpro ject +о ÑĢ +i j +ant s +at s +ĠCh r +Ġ 9 +Ġc ut +Ġre qu +Ġн е +ĠN ot +as ter +Ġm ill +Ġpartic ular +Ġp ie +Ġstud ents +Ġf ive +ou n +ĠN e +Ġg i +Ġp as +Ġf ree +ĠS p +l ich +Ġpro f +Ġen g +Ġpr ot +ĠL ike +os ed +Ġcon nect +a pp +Ġë § +it ing +Ġb lo +Ġl os +ist s +Ġexper ience +re nt +Ġst ay +Ġfo od +t on +ru ct +Ġh ist +v iew +in ing +m ost +i vers +b o +ãģ Ħ +ĠT r +g en +Ġp lease +Ġcommun ity +Ġc e +A N +n o +Ġb ody +Ġh our +Ġ vers +á º +c er +Ġê ° +Ġre ason +ĠR ight +Ġl ater +Ï Ħ +Ġh ouse +Ġ X +оР½ +Ġst ate +f ic +å ¤ +Å Ľ +iel d +Ġp ri +Ġp ast +Ġw alk +olog y +er ing +an na +Ġt er +Ġho ld +Ġor gan +b en +Î ¿ +ó n +Ġeff ect +Ġyour self +Ġpl us +a j +and o +ur al +Ġro om +le ct +ê² Į +? " +s ide +Ġbe come +Ñ Ĩ +Ġ  +o od +Ġcon st +Ġn ight +ut es +Ð ¶ +Ġbre ak +Ġp ain +Ġst ep +ire d +Ġnot hing +Ġunt il +Ñ ĸ +аР² +Ù Ĭ +Ġd uring +ì§ Ģ +l ess +o ll +н Ñĭ +Î ¹ +f ect +i ver +ı Ħ +ith er +y ing +Ġbe gin +×Ļ × +iv id +Ġà § +Ġs al +Ġt a +Ġp ot +Ġ $ +Ġm ar +Ġcle ar +Ġf ace +Ġgr ow +Ġ * +Ġins ide +Ġfriend s +Ġle ave +en n +Ġeas y +Ġare a +al ity +ou d +Ġe at +Ù Ĩ +Ġp ur +or n +Ġsa w +Ġans wer +Ġfr ont +Ġbe aut +¼ ë +Ġm atter +Ġs on +ĠN ew +Ġres ult +id es +ch e +Ġf ut +p s +Ġfo cus +Ġinterest ing +å ¥ +Ġa p +" . +Ġcre ate +о Ñģ +Ġp ress +r oss +Ġp ick +l ine +Ġto ok +ĠM ay +r ow +Ġ ich +ĺ ë +Ġre f +Ġm or +r act +are nt +A R +Ġex act +Ġsp ace +w ork +н и +Ġb ir +Ġde v +Ð ³ +Ġto ld +Ġpub lic +ci ally +Ġv iew +ĠHe y +m ed +ll o +c c +Ġf ac +Ġcou ple +Ġhe art +l er +Ġre ady +Ġal most +ar ing +Ġh alf +ĠM e +av or +i que +Ġchar ac +Ġpr act +O N +an e +Ġ il +н а +Ġv i +l ish +he ad +Ġle ast +Ġbas ically +as ed +r ight +Ġy et +Ġtak ing +Ġcount ry +Ġw in +Ġis n +Ġposs ible +Ġc am +Ġinc re +Ġp at +Ġw anna +Ġcons ider +Ġab s +Ġwith in +Ġhum an +Ġthink ing +Ġo h +¡ ľ +Ġqu i +as es +Ġ 0 +it ely +ä¸ į +Ġk ill +Ġm il +Ġinv est +is ter +Ġsu c +ion al +el f +Ġwh ether +Ġcontro l +Ġagain st +ot s +ëĭĪ ëĭ¤ +i or +Ġpres ent +Ġ ا +Ġwatch ing +u be +er v +Ġn icht +Ġgo vern +ĠTh ese +Ġ : +u it +ug h +Ġwork s +o o +Ġw ir +Ġa ir +ĠT e +аР· +is ion +wh ere +Ġto t +j oy +ì ĭ +Ġv ol +ĠÐ µ +Ġcl ose +ĠA d +Ñ ī +in ed +Ġun a +Ġê· ¸ë +° ë +or ry +Ġb ro +Ġfil m +if t +2 0 +Ġty pe +Ġhappen ed +ĠA m +Ġg irl +ĠA re +ward s +Ġp our +Ġcol or +el t +а Ñģ +Ġs ense +le x +ĠW ith +us s +ri b +Ġre se +Ġn orm +Ġfut ure +Ġde al +end ing +e y +Ġ x +er o +ĠC l +u k +Ġwhat ever +sel ves +Ġyou ng +ì Ĭ +ĠM ar +ĠChr ist +Ġgu ess +Ġper form +Ġen er +r on +Ġh it +Ġw ond +Ġdire ct +ĠE very +Ġof ten +Ġf a +Ġal ong +Ġcl ick +ĠL ook +Ġsit u +Ġhapp y +e ad +Ġag o +Ġen c +Ġmy self +Ġco ver +оР± +Ġm id +Ġc ost +Ġt en +ĠS ch +Ġex pect +Ġwas n +Ġstr ong +if ul +Ġopp ortun +in al +y le +Ġsh are +Ġtr ue +Ġapp ro +Ġch all +Ġmin utes +Ġch ann +Ġë Ĥ +Î µ +l i +Ġm ess +or ies +pe cially +Ġwr ong +Ġy es +Ġì Ĺ +ir on +Ġall ow +Ġsu bs +Ġf ore +Ġf ight +Ġso cial +Ġc ra +an a +Ġa ff +Ġ ess +Ġway s +Ġsh ort +Ġf all +Ġla w +ĠWh o +Ġen joy +Ġc al +Ġac cess +f e +Ġn on +Ġac ross +er y +vious ly +ĠE x +id ed +Ġl ink +ĠP r +Ġterm s +ac es +Ġl and +az ing +Ġ1 5 +Ġm ult +Ġspe cial +å Ģ +iv ing +ìĿ Ģ +Ġty p +Ġst e +Ġ Ä +Ġfor ward +å ı +Ġf re +å¥ ½ +Ġrese arch +௠į +а ÑĤ +Ġma in +Ġrec ord +Ġh u +Ġdefin itely +Ġe ither +Ġlist en +Ġke y +Ġmark et +ĠÑĩ ÑĤо +iz ation +Ġvide os +Ġgu y +Ġf ig +Ġst ra +ĠP l +ull y +am os +Ġm ention +Ġs ong +Ġinter n +r al +ur s +Ġh on +Ġval ue +Ġb ar +c le +оР¶ +Ä ĩ +ľ ë +Ġz u +и м +ä½ ł +Ġsing le +Ġa uch +cus s +Ġget s +Ġsomet imes +å ¾ +am b +m m +c ing +Ġper fect +ĠB l +out h +ì ł +Ġs ci +p ar +Ġre d +Ġp ost +Ġm ot +Ġele ct +ĠE u +it ive +ĠS ome +Ġdes cri +Ġcur rent +é s +Ġt re +ĠE n +Ġm it +E N +Ī ë +i um +Ġhe ard +Ġsim ple +l ar +Ġevery body +il ar +Ġneed s +Ġdif fic +ĠGo od +um ent +c ent +Ġo per +а ÑĤÑĮ +et y +Ġbl ack +Ġgi ven +on es +Ġwe l +é Ģ +Ġìķ Ħ +Ġ3 0 +A T +Ġst at +ou ch +ĠM r +а ÑĢ +Ġsh o +Ġcon d +× Ķ +m y +Ġchild ren +Ġe u +еР´ +ìķ Ħ +ter n +Ġu h +Ġh ar +Ġpr om +Ġp ull +re w +Ġcomp any +Ġbeaut iful +ust om +íķ ĺ +к и +Ġst re +Ġam azing +ri es +Ġsuc cess +Ġm ach +n ot +Ġdis cuss +Ġn at +¦ ¬ +Ġun e +Ġdiffic ult +Ġr is +Î ½ +Ġc amp +Ġbu y +ä¸ Ģ +Ġma g +p o +ĠY our +Ġbeh ind +ic a +ı n +ĠO K +Ġl ang +Ġwom en +Ġen v +Ġre ce +Ġchann el +i ally +u le +Ġ1 2 +th ers +Ġb ott +Ġrep ort +ent ly +f ully +T he +Ġs ent +Ġev ent +Ġener gy +l t +Ġword s +ar r +d le +Ġa head +ard s +Ø ± +äº Ĩ +Ġto ol +con om +е Ñģ +Ġexact ly +Ġf avor +Ġl ow +Ġpro per +Ġìŀ Ī +Ġ ! +Ġrel ations +Ġm as +Ġkid s +Ġent ire +ud e +Ù ħ +ĠWh ere +Ġon es +Ġc ity +ol ut +Ġs ix +ab ility +ö r +il i +ĠE s +Ġhapp ens +ain s +Ġmod el +Ġp ict +Ġes pecially +Ġ1 00 +k t +Ġso on +b y +ro du +Ġan n +Ġsubs cri +ĠQ u +Ġav ail +im ent +Ġv oc +k a +Ġ2 00 +ap er +ĠI nd +Ġì § +h or +į ° +j or +и л +Ġs qu +A U +ar ning +ĠÐ ³ +I S +ĠÐ » +еР¹ +y es +å ħ +ĠÐ Ĵ +Ġor ig +оР³Ð¾ +Ġask ed +il t +оР³ +Ġcontin ue +Ġì ĺ +r am +Ġo thers +E S +oh n +Ġl ay +Ġbas ed +Ġp u +Ġapp e +Ġl im +Ġpro p +Ģ ë +m in +Ġh ot +ĠL a +Ġf ast +Ġprot ect +Ġam ount +Ġa qu +Ġf und +Ġc ustom +Ġc ult +Ġhand s +Ġha ven +Ġa ud +Ġout side +ĠA fter +ap s +Ġan im +pl oy +Ġh at +ĠF irst +Ġt reat +Ġe p +Ġm ater +Ġbuild ing +Ġë ° +å IJ +ìĦ ľ +z a +ught er +ĠP e +ne y +et er +at ic +Ġed uc +ê¸ ° +Ġmo v +ĵ ¤ +am a +r ation +Ġs n +Ù Ī +Ġs um +Ġph ot +ĠÐ Ŀ +Ġ . +æľ ī +Ġfin ish +itt ing +å ® +Ġlar ge +Ġì ĸ +Ġwh ite +ar a +Ġma is +ĠH i +Ġd am +Ġا ÙĦ +Ġbo x +ĠHe llo +Ġs le +Ġo pt +ri ed +¥ ¼ +Ġact iv +Ġn ão +ĠC om +Ġplay ing +T h +Ġavail able +Ġp ort +å Ī +ĠA h +Ġl as +Ġear ly +Ġwond er +± ° +Ġ1 8 +c ul +Ġfun ction +Ġmor ning +ll e +i ents +u x +Ġc ir +it ions +Ġde ep +Ġpol it +y or +m p +ak ing +Į ë +ĠM an +Ġmill ion +Ġ / +Ġind ivid +Ġp an +Ġgovern ment +Ġwr ite +ĠT od +am ent +Ġ Ï +Ġw ind +ĠE ng +ch en +W h +ì ľ +Ġ ident +ãģ § +v ent +ur ch +Ġh y +Ġy a +Ġtr ad +Ġrelations hip +à º +Ġd ou +O R +Ġs we +Ġne g +in ation +Ġte xt +i pp +Ġf ine +á s +ĠD r +ĠC ome +Ġmonth s +, " +ен и +Ġhour s +Ġp od +ir t +Ġinv ol +Ġcoll ect +Ġau f +Ġp a +Ġhist ory +m b +if y +Ġ ? +Ġbel ow +as ure +ab y +Ġlang u +Ġan t +Ġcom b +at o +Ġex ist +Ġë ĭ +Ġtak es +Ġcharac ter +a ff +Ġf ield +Ġe conom +ie f +Ġpie ce +å ľ +Ġre ach +Ġê ² +on y +Ġmater ial +Ġd ig +Ġph ys +Ġimp ro +Ġsim ilar +I C +Ġn et +y n +Ġpos ition +à Ł +Ġb ene +re ad +Ġle arning +um e +Ġcle an +ÑĤо ÑĢ +Ġco ok +Ġseem s +Ġo l +ĠU S +ĠJ es +Ġ à® +ent ial +ivers ity +ac y +Ġ Ñı +olut ely +re ct +ĠP lease +Ġrep res +Ġt ouch +m en +ĠÐ ° +i ón +ĠThank s +Ġan g +Ġma jor +Ġit self +ill s +" , +i ans +Ġsc reen +Ġh or +Ġknow n +Ġenv iron +Ġfin al +Ġfig ure +ĠT w +Ġe yes +Ġim ag +Ġsee ing +Ġha ir +re m +Ġapp lic +end s +p ut +Ġnew s +Ġcomplet ely +ugh s +Ġkn ew +if ied +ĠJ e +ĠD id +Ġsitu ation +Ġf lo +m s +Ġph one +Ġb all +d o +Ġp arent +Ġs orry +ur y +и н +ip s +аР´ +Ġinst ead +Ġhu ge +Ġt u +Ġ ãģ +ĠG r +Ġdet ail +ĠÐ Ł +Ġindivid ual +Ġf ire +Ġcl os +Ġw er +un e +Ġrun ning +Ġcon vers +Ġrec omm +Ġcom o +Ġsome body +ĠJ ohn +ĠìĿ ´ +ĠO ur +pl es +ĠP h +Ġan al +Ġ5 0 +Ġof fer +Ġ < +ition al +g est +Ġv ous +l et +ic y +Ġfeel ing +L E +r os +Ġth ird +оРº +Ġser ies +ĠAn y +is ed +o ld +Ġdra w +Ġserv ice +Ġcan not +b al +ãģ Ĩ +Ġli ving +ı m +Ġdiffer ence +Ġopportun ity +Ġne ar +or th +k en +Ġloc al +Ø ª +ĠC on +Ġob ject +Ġd ass +ãģ Ļ +IJ × +Ġquick ly +ra ph +Ġiss ues +éĢ Ļ +ĠAmeric an +Ġpre p +en ces +Ġprof ess +ll ing +o f +Ġfo ot +b re +Ġus ually +Ġgener al +d a +an ces +Ġd est +Ġo cc +Ġmem bers +Ġd ans +Ġequ al +z t +Ġbe com +Ġmo ving +Ġspec ific +ÃŃ a +Ġf ur +Ġne cess +Ġcomm on +Ġatt ack +ĠÑį ÑĤо +ĠTod ay +Ġun s +ĠG u +i od +Ġacc ount +Ġgra nd +Ġs elf +ĠE l +Ġt ast +Ġcont ent +Ġc u +Ħ ë +ĠMay be +ĠJes us +ore s +p ort +© ´ +Ġg ives +Ġnorm al +ÑĢ Ñĥ +Ġimp act +ä r +Ġd ies +Ġl ab +s h +i os +ĠP res +ĠU nd +ĠO f +Ġfin ally +Ġdo ll +Ġvoc ê +p ly +ĠA g +Ġtak en +Ġgr ound +f ort +Ġg ave +ĠIn st +Ġl ost +Ġwork ed +Ġl iter +Ġiss ue +Ġind ust +Ġret urn +Ġhappen ing +Ġwant s +и в +Ġproblem s +ĠC ar +Ŀ ¼ +ĠAl so +Ġs ize +Ġob viously +ĠS u +ĠS c +Ġrecomm end +our ces +ast ic +.. .. +Ġm i +l ier +ĠE ven +ci a +Ġh ur +v a +Ġm ass +Ġwould n +un t +ck s +Ġf elt +os p +l ight +ол ÑĮ +n ie +Ġbott om +Ġб Ñĭ +ore d +is on +Ġgr ad +Ġum a +Ġv a +Ġì Ĥ +ress ion +ul ation +I D +id ence +Ġb ur +Ġg one +l u +ìĸ ´ì +Ġre du +Ġj a +ìĿ ĺ +it a +Ġso ft +Ġç a +ic o +er al +à ± +a f +Ġpoint s +g u +Ġd é +ap t +a x +ĠAl right +Ġcam era +Ġa ch +Ġп о +Ġse ver +5 0 +Ġs ie +Ï ģ +Ġm al +Ġcomp ut +Ġmid dle +Ġcould n +m ing +Ġì ĭ +ĠH is +Ġg ames +Ġint rodu +Ġc ell +p or +Ġsle ep +Ġë ³ +id ing +Ġ ou +Ġde g +Ġdr ink +Ġenviron ment +ĠUn ited +Ġtalk ed +Ġcho ose +Ġj our +e ge +ĠM in +Ġint e +Ġr ather +Ġoff ic +к а +ac hing +Ġmention ed +Ġf ill +Ġtr ack +Ġn ie +Ġ ut +Ġв Ñĭ +ib ility +Ġv ac +Ġr ad +Ġp ack +Ġs end +ĠD as +ĠA b +Ġeng ine +ãģ Ĺ +Ġcomp et +à ´ +Ġв Ñģ +Ġdo or +Ġlong er +å° į +Ġlangu age +Ġext ra +pl ay +Ġwe bs +um b +ro om +ç ľ +Ġbegin ning +Ġre fer +A M +n en +ig her +f ace +er c +Ġfor get +Ġcom ment +еРº +л Ñı +r or +ż e +ĠG e +Ġd ark +Ġany one +ant e +g es +ìĬ µ +Ñ ij +b ed +j e +ruct ure +Ġpr im +id a +è ¦ +ãģ ¾ +Ġm ix +Ġstart ing +ĠìĿ ´ë +Ġprov ide +act ion +Ġm other +Ġper iod +Ġst ick +ĠYou T +Ġtechn ology +ê ¹ +Ġb ed +Ġg iving +Ġexpl ain +z en +im ate +Ġrepres ent +lo ad +ĠHow ever +Ġli ves +ut h +ir it +og n +Ġli k +Ġresp ons +Ġpri v +Ġto m +ç ão +i am +Ġexc ited +Ġc ard +gr ound +Ġ× Ķ +Ġs ens +Ġte ach +id o +h od +Ġep is +Ġwel come +Ġw all +ä ¹ +Ġch ance +h en +ĠÐ ¡ +ĠÄ ij +Ġsim ply +ĠÑĤ ак +r ing +j a +b ook +Ġsever al +st e +Ġcreat ed +Ġо ÑĤ +Ġp ush += = +Ġh igher +u f +our ce +o ke +Ġon line +Ġre le +Ġt on +ens ive +Ġfavor ite +Ñĥ д +Ġlook ed +Ġv on +âĢ Ķ +Ġf ür +Ġbut ton +Ġb ill +Ġchang es +! " +Ġsl ow +ab les +Ġde ath +and s +ate g +Ġthem selves +ãģ £ +Ġc op +ãģ ® +Ġperson al +ug hing +Ġ1 1 +g ar +ad es +Ġneed ed +Ġstud y +ag ed +ÑģÑĤ в +in o +Ġdis c +k i +Ġadd ress +× ¨ +itt en +es ome +ĠÐ ¶ +¤ ë +ur a +Ġm u +Ġcontin u +f or +Ġm atch +ãģ ¦ +Ġstra ight +IJ ë +n ers +Ġdo g +Ġde b +ĠC O +Ġo s +g ed +c ame +Ġcor rect +et te +ĠSe e +Ġinclud ing +ĠEu ro +est er +Ġj ump +ĠWh ich +Ġк ак +s on +y a +IN G +Ġe ine +os h +en cy +Ġmed ia +Ġsubscri be +é Ĥ +Ġpr in +Ġha b +ĠP er +ĠW as +Ġp age +it or +Ġto wards +Ġtri ed +en ge +art ment +Ġvar i +Ġp aper +Ġpict ure +Ġvers ion +Ġbr ought +w are +ĠSt ates +Ġs ich +led ge +Ġper cent +Ġgo d +e c +ĠC omm +Ġdec ided +Ġse lect +íķ ľ +) . +ur ity +Ġfur ther +Ġcom ments +le ment +Ġd ream +Ġcent er +m i +Ġc as +Ġwom an +Ġro ad +Ġf ail +Ġbe came +l us +il ities +ãģ ¯ +ĠC o +Ġman age +Ġrec ogn +Ġact ion +Ġbene f +Ġear lier +× ľ +Ġspe ed +Ġm ent +Ġso ci +Ġsho ot +u i +Ġà ¤ +Ġapp ly +v o +x im +Ġca use +Ġsur pr +Ġha ben +D I +Ġf ather +ĠNe xt +ĠYouT ube +Ġc ode +Ġro le +g ress +Ġg reen +et t +Ġbu ilt +Ġfl ow +Ġb ase +Ġtra ining +Ġr ound +ĠW ill +Ġp ath +ĠR o +Ġinterest ed +ìĸ ´ +Ġres pect +Ġchang ed +iss ion +Ġstud ent +og raph +Ġappro ach +Ġshow s +å° ± +Ġt ar +Ġcr it +Ġg lo +ìĬµ ëĭĪëĭ¤ +Ġde ad +ĠPres ident +Ġth ous +Ġb al +st er +e x +Ġabs olutely +Ġm ic +Ġpract ice +Ġqu ality +Ġl ower +og le +Ġse par +b all +med i +Ġre view +ĠA pp +Ġo k +âĢ ĭ +Ġexper ien +Ġconc ern +ent ially +m ore +ĠJ o +ap an +ĠI ch +ist ic +Ġf air +Ġwebs ite +i res +ĠB y +Ġtra vel +Ġris k +Ġm ir +Ġbo ard +Ġs en +Ġparent s +ĠW ow +Ġfe ed +Ġsa ve +Ġser ious +Ġin it +E L +und red +A S +Ġv an +or row +Ġwor th +Ġse arch +Ġ1 6 +Ġpart s +ÑģÑĤ ÑĮ +Ġcomp an +Ġmov ie +Ġmet hod +Ġ ill +Ġw ish +d y +Ġit em +Ġmin us +ang er +Ġvo ice +Ġsk in +Ġare as +Ġe ight +Ġo bs +Ġ , +аР¹ +Ġo il +Ġc y +Ġb aby +s y +Ġem ploy +ĠK e +Ġpl aces +Ġf ix +Ġest á +ãģ ¨ +iv ed +Ġlot s +Ġse ason +un k +al t +Ġt able +ĠÐ ¢ +à ¢ +Ġatt ention +ãģ ª +ĠH er +Ġa ge +Ġp ra +b ack +c il +Ġnet work +r it +Ġdo c +Ġare n +ig en +Ġë Ħ +Ø ¯ +end er +Ġtot al +Ġpr ice +Ġcra zy +ì ļ +i qu +th ough +Y ou +Ù ĩ +ãĤ ĵ +Ï ħ +Ġs at +Ġb i +ĠD ie +Ġsh a +Ġthank s +u h +Ġst age +аР¶ +ĠF l +Ġle av +Ġbo y +Ġa f +ö n +ĠG et +Ġac cept +Ġent er +Ġt ur +Ġsi ÄĻ +Ġhon est +ãĢ Į +Ġs am +Ġre pl +g ing +Ġdevelop ment +ĠA ct +or a +ãĢ į +ä ¾ +Ġknow s +Ġim age +ĠL ord +и ÑĤÑĮ +Ġweek s +Ġse x +Ķ ë +Ġh undred +Ġsound s +Ġlearn ed +Ġb ud +ĠÑģ ÑĤ +Ġinc red +â Ļ +Ġn os +Ġd rop +Ġb en +ĠÐ ĺ +Ġsa fe +at a +Ġf uck +so ci +Ġd an +Ġcr oss +1 0 +m o +ver t +Ġ1 7 +z ie +å ķ +Ġd om +ĠB o +Ġset ting +Ġinvol ved +ar ily +Ġs ind +Ġs us +Ġwor ry +et h +ê¹ Į +Ġs un +Ġh ier +Ġcertain ly +ou l +ort s +ĠE r +ĠU m +Ġca us +Ġnat ural +Ġà ¼ +Ġc ry +ĠSe c +Ġs om +æ ² +Ġeduc ation +а еÑĤ +Ġmult ip +Ġal one +Ġe ye +Ġr ate +ĠEuro pe +è ¿ +m on +Ġf it +iz ing +pp ed +Ġpress ure +th e +и Ñģ +it es +ĠA f +re ci +att le +Ġserv ices +ĠGo ogle +é ģ +Ġc ases +Ġdri ve +Ġchall eng +u z +ĠM o +ìľ ¼ë +v al +åĢ ĭ +Ġf ol +Ġì ¢ +ff ic +Ġr a +Ġs in +Ġbl ue +Ġaff ect +Ġm is +Ġsh ot +Ġо б +as ing +Ġsign ific +ĠC he +Ġê ³ +Ġpos itive +ì £ +Ġw ie +Ġ4 0 +ord ing +ĠFr om +ê µ +Ġbra nd +Ġtr ust +Ġp le +Ġcommun ic +Ġwe ight +Ġask ing +Ġta x +ĠJ apan +ãģ Ł +Ġíķ ĺ +op s +Ï Ĥ +Ġput ting +Ġro ll +ĠAmeric a +re g +ŀ × +at ures +ens ion +ĠS omet +Ġorig inal +p ing +Ġ ÅŁ +Ġproduct s +ãĥ ¼ +Ġcont act +ol ution +Ġgo al +Ġp ow +Ġperform ance +Ġblo od +at ors +ĠM ich +Ġtem per +ĠD an +Ġsu gg +ÑĤ и +Ġim m +Ġoff ice +Ġar ri +Ġcom fort +ĠÐ Ķ +Ġsugg est +Ġpl at +Ĥ ĺ +1 9 +Ġo m +Ġse ven +ĠC ent +ill e +Ġcon cept +Ġb ag +ü n +ive ly +Ġd iv +m os +æ ī +Ġfeel s +Ġ ir +ak es +le y +Ġpartic ip +ĠÐ ļ +f l +j ust +Ġs il +ĠP a +A L +Ġgot ta +Ġf an +Ġchall enge +Ġcompan ies +ĠPe ople +< / +оР· +Ġp en +is ing +Ġa us +em ic +am ente +Ġmeet ing +Ġvis it +Ġsupp osed +ĠOn ce +д а +or ld +3 0 +U S +Ġvi ol +Ġnot ice +ĠÐ IJ +h an +p ed +ì ĺ +h h +Ġtr ou +Ġmin ute +ĠP ar +r ay +Ġt it +Ġup d +Ġblo ck +Ġd ue +a ur +Ġfor ce +Ġcou n +ĠâĢ Ķ +Ġtyp es +ë § +Ġl ate +Ġimpro ve +Ġì Ī +Ġa ve +ul es +c l +am ed +Ġaw esome +ĠO k +Ġv ot +Ġmach ine +Ġfollow ing +Ġme asure +ac ión +u el +ch an +Ġab ility +Ġt out +Ġide as +Ġincre ase +Ġen s +ĠÑ ħ +Ġë ª +Ġj est +ĠÐ ľ +Ġtr uth +h y +Ġsp end +Ġsci ence +et e +Ġ1 4 +Ġepis ode +Ġal g +end ed +ãģ ĵ +ar i +ll a +Ġf ish +Ġthr ow +m it +å ¹ +Ġcir c +ĠC al +Ġt our +Ġdire ction +Ġno ch +еР² +é n +Ġcount ries +Ġindust ry +in y +ic le +Ġfe et +I t +Ġlead ers +et zt +Ġst aff +ç Ķ +Ġpur p +it o +? ! +ĠJ a +Ġst ore +et ic +ĠCh ina +Ġë IJ +ĠUn iversity +Ġ # +Ġdec ision +Ġach ie +Ġact ual +u ly +Ġse ction +Ġresult s +Ġst ar +Ġm ist +ib ly +Ġd ad +Ġnum bers +om b +è ª +ĠS pe +Ġm er +Ġ2 5 +Ġaut om +Ġco ld +Ø ¨ +Ħ ľ +ag er +ĠT V +ĠS ie +ĠH ave +Ġ że +ug g +ain ed +Ġup on +Ġlo g +Ġcomplet e +Ġbra in +ag ing +ĠM us +o ver +Ġeas ier +Ġinte gr +Ġm ás +Ġturn ed +Ġst ri +iv al +Ġhe av +ĠT H +Ġwr iting +ÑĢ а +åľ ¨ +å¤ § +Ġcl a +d ing +Ġtell ing +и д +ic ated +ä» ¥ +ac ht +ãģ Ĥ +h aps +ĠSt e +Ġres ources +Ġd ann +Ġpart y +Ġ ÏĦ +Ġsa f +is es +t re +o int +Ġknow ledge +Ġany more +Ġf ly +Ġma int +и к +å ij +Ġse ll +la ughs +ĠY ork +Ġb ien +Ġo d +Ġeas ily +Ġr ange +Ġo ption +Ø ¹ +Ġapp reci +oc r +Ġdet erm +Ñ Ħ +Ġmean ing +Ġs ite +Ġdis co +ver age +Ġl ose +Ġinst all +Ġem ot +ant ly +ä t +Ġt amb +ĠW ar +ĠH o +ĠG en +em y +еР· +ĠP ol +Ġmess age +Ġnot e +Į Ģ +Ġh et +Ġim medi +Ġav o +Ġbook s +Ġbecom es +res h +è s +as ons +Ġhim self +ut s +Ġj u +Ġaw are +Ġrequ ire +Ġsystem s +ĠH ar +Ġam ong +Ġh om +Ġb reat +Ġwe ird +Ġë ¶ +Î » +Ø © +if f +or ing +Ġplat form +ĠT ake +Ġhelp s +ut ions +Ġfor g +Ġl uck +ĠEng lish +Ġwe b +Ġneg ative +Ġt ut +Ġab ove +ng th +Ġê ±° +Ġst ories +Ġlo ad +Ġback ground +Ġsw itch +g a +Ġprin ci +Ġfin an +Ġvar ious +Ġl Ãł +Ġkind s +ain ing +Ġn ature +ĠÐ ŀ +c z +Ġpr ay +Ġg ar +ir m +Ġ & +Ġì ĥ +n s +ĠR ep +ĠF e +Ġre v +ra nd +Ġlike ly +Ġunderstand ing +ı r +ãģ ĭ +Ġf al +Ġ1 3 +ÑĨ и +Ġsu d +Ġbr other +Ġpl ant +Ġthrough out +w ise +p re +Ġcult ure +ĠÙ ħ +Ġwonder ful +Ġa h +pp er +Ġso ld +Ġstart s +Ġwr itten +Î ¯ +n i +Ġ×Ķ × +ĠD av +Ġu lt +Ġar m +Ġro ck +Ġwe ar +ë į° +an o +ra g +Ġsqu are +ан и +c ast +le br +Ġliter ally +Ġplay ed +Ġhe at +on se +r ict +Ġins p +id s +Ġpop ular +ë ıĦ +Ġc atch +Ġm ount +Ġj ud +Wh at +еР± +R A +a ud +к о +Ġsur face +Ġcon v +Ġpie ces +O h +æ Ģ +Ġst yle +pp ing +Ġread ing +Ġconvers ation +оР¿ +ä¾ Ĩ +ĠAg ain +Ġb ank +t ime +Ñĥ ÑĤ +er ve +ĠG reat +Ġcap t +аР± +ay s +ĠF in +ific ation +Ġä r +а Ñİ +Ġe gg +ĠW el +Ġtar get +ul a +ch es +an i +O O +ic ious +n ow +Ï ĥ +bo ard +Ġg ente +Ġd ro +ĠE t +Ġd in +Ġc os +Ġaut hor +Ø ³ +Ġo ch +Ġem ail +Ġsp irit +Ġs itting +m as +Ġstre ngth +Ġbig ger +ĠW ait +Ġm at +Ġpol ice +ress ed +Ġwait ing +is hing +Ġdoll ars +ho od +s s +Ġimag ine +in i +Ġm es +Ġdis e +id ge +ab or +Ġp et +Ġh op +ĠK ing +Ġcomput er +Ġgo ld +Ġn u +Ġf ing +) , +Ġsec urity +ru ction +Ġsol ution +e xt +Ġp atter +ick en +ure d +Ġstand ard +ìĭ ľ +Ġdou ble +Î · +Ġw ife +is a +Ġdirect ly +ac ed +Ġb unch +Ġ ¿ +ал ÑĮ +Ġreg ard +Ġswe et +Ġun ique +ĠâĻ « +Ġtra in +ĠG erm +Î ¬ +R E +Ġbeh av +Ġpre d +ì ĥ +s et +Ġdescri ption +é e +Ġc at +å ĵ +Ġcoll ege +ì Ľ +Ġapplic ation +ĠS en +as k +Ġc red +ub lic +Ġmultip le +Ġn i +Ġpres ident +Ġadd ed +Ġro b +Ġaqu i +Ġh osp +Ġtool s +Ġg un +Ġbas ic +Ġl ines +Ġst ructure +ĠR uss +Ġtot ally +Ġbig gest +Ġe en +Ġar g +Ġ× ľ +Ġp ark +ĠD es +Ġce lebr +Ġf ait +ен ÑĮ +Ġsu ff +Ġreg ular +¨ ë +Ġm ine +ĠK ore +Ġpre vious +Ġp i +Ġse g +Ġpol icy +Ġк о +ĠTr ump +Ġvac c +ó w +ĠS y +и Ñĩ +it ter +Ġpolit ical +r as +Ġal s +ел ÑĮ +Ġsha pe +an z +Ġon to +Ġar ch +Ġam b +ag ram +ĠS m +ct ions +Ġjo in +b or +å Ľ +Ġfr ame +ł ĩ +Ġcho ice +௠ģ +Ñĥ Ñİ +ĠC or +ĠS w +I T +Ġt end +ĠE ar +Ġto r +Ġev ents +Ġcla im +ĠD a +ĠM ark +Ġgroup s +Ġe ating +ĠW orld +Ġrec ently +Ġtast e +Ġsur v +à ¤ +Ġsk ills +Ġи з +itt ed +Ġsh op +ìĿ ´ì +Ġest ab +ĠëĤ ĺ +Ġsecond s +ĠTh ose +ĠE nt +Ġì Ħ +ers on +Ġto wn +Ġc and +Ġopt ions +Ġ ing +V ID +Ġenc our +Ġr é +âĻ ª +Ġent re +Ġmove ment +ĠB en +Ġbir th +Ġwh e +Ġh ang +ĠE m +ig e +ro ll +Ġun f +ì Ĥ +Ġr id +Ġsp read +Ġh ost +al d +ĠE d +Ġcons um +U N +Ġop in +it ar +ĠM ed +Ġsub ject +Ġp al +Ġcar ry +Ġag ree +ĠWh ile +Ġcare er +Ġsci ent +Ġsud den +Ġf ile +z i +Ġex cept +é º +Ġpot ential +ĠAn other +Ġcomp lex +ĠS im +end o +Ġr ais +Ġphys ical +Ġd ate +ak er +ĠC ol +Ġpower ful +Ġmem ber +ra p +Ġsp ot +Ġs ource +Ġf em +é m +Ġem p +j i +iet y +Ġinf lu +Ġd ry +Ġlo ck +Ġz ero +ĠU h +Ġr out +Ġpor que +Ġ2 4 +Ġt al +Ġfol ks +Ġla unch +Ġcomp on +ĠWel come +Ġk ann +ä n +ĠÑį ÑĤ +e es +ĠÙ Ī +Ġany way +Ġaud ience +äº º +Ġsl ight +on a +Ġu r +Ġrel ig +Ġext rem +ı z +ĠM a +Î ¼ +Ġà ¶ +Ġall ows +Ġf at +ĠF ace +Ġn ational +Ġinter view +ĠM c +é t +Ġc ute +el a +Ġsec ret +ĠW est +ĠD ep +Ġex erc +Ġhist or +Ġpri or +Ġ6 0 +av a +ac her +y ond +ĠH a +Ġest e +in ary +ĠN orth +on st +Ġsm art +am s +ал и +Ġd ar +er ed +Ġfun ny +ĠO b +ĠBl ack +Ġrel ated +ĠB u +Ġsome where +ĠR em +n es +ment e +ĠRe ally +Ġcreat ing +Ġfam il +Ġsoci ety +Ġg el +Ġtrans form +Ä ĥ +Ġinclud e +Ġh ol +l ike +k o +air s +Ġп од +Ġpers pect +Ġb es +Ġparticular ly +Ġshow ing +ĠP art +Ġqu al +lo ck +Ġreal ity +ho ld +ict ion +o on +Ġv ir +ãģ « +it ary +Ġdr ug +Ġfe ature +Ġre asons +Ġ× © +Ġwr ote +Ġf ant +Ġb and +Ù ĥ +en a +ke y +Ġear th +d om +Ġfe atures +Ġflo or +Ġspeak ing +Ġt ip +ĠA ust +Ġst ock +Ġch urch +Ġr ac +ìľ¼ë ¡ľ +ภĻ +ãĤ Į +k y +Ġresp onse +Û Į +ul ations +Ġsl ide +Ġgrad u +ci ous +Ġme ant +Ġ == +Ġ× IJ× +ã ħ +Ġkind a +Ġsc ene +Ġm uit +Ġê° Ģ +r ast +re st +Ġplay ers +w a +Ġbro ad +Ġtom orrow +oc ol +ĠÑģ в +ĠB ar +ı k +Ġse a +Ġrem ove +Ġrem ind +ом Ñĥ +ĠS ince +Ġave c +ce ll +и Ñħ +Ġdoc ument +Ġê·¸ë Ł +Ġne igh +be at +Ġp Ã¥ +Ġas pect +Ġd ed +lish ed +il s +Ġour selves +u ce +Ġhe y +ĠпÑĢ о +ent y +Ġas soci +ad os +um ber +Ġ ] +éĤ £ +no v +Ġì Ļ +Ñĥ Ñĩ +Ġcond ition +ëĬĶ ëį° +Ġval ues +Ġsc en +min ist +Ġc ast +Ġgrow ing +Ġus er +Ġresp ond +l im +é r +y m +çľ ĭ +os es +sy ch +ĠÑĢ аз +Ġappe ar +Ġpro gress +eng th +Ġj ak +ĠD is +Ġpat ients +ĠS er +Ġg as +è re +ìĸ´ì ļĶ +Ġre ci +ìĿ ¸ +Ġs ca +ep end +Ñģ к +аР¿ +Ġb atter +Ġve h +ð Ł +Ġac com +Ġbe at +Ġpain t +Ġcont rib +Ġs ad +Æ ° +al es +Ġt ree +b a +Ġb orn +ic ed +à® ķ +b and +Ġme chan +ĠD et +Ġcap ital +Ġdel iver +Ġfe ar +ŀ ĺ +ĠS outh +Ġb ought +Ġst ress +Ġv or +? ? +i h +ìķ ¼ +Ġer a +ìĿ´ ë +а Ñı +is ions +iv ity +Ġhelp ed +Ġass ist +Ġplay er +r an +Ġimmedi ately +Ġmo ved +c ie +ê ± +Ġann oun +å ¿ +ìŀ IJ +Ġprodu ction +Ġsum mer +Ġt un +Ġprogram s +G H +al ing +ir a +el ess +. ) +Ġa verage +è¦ ģ +Ġgl ass +om an +if ically +Ġëĭ ¤ +ĠC ong +ĠV er +Ġtr ick +Ġbe gan +Ġv ill +ê ±° +h ow +æ Ń +Ġt ill +Ġ9 0 +ber t +Ġê ¸ +Ġtemper ature +à ² +๠Ī +Ġgra ph +Ġê· ¸ +Ġr ot +Ġmo b +A Y +a el +Ġre pe +Ġdev ice +Ġ19 9 +Ġte le +Ġke pt +p a +æ ĸ +ver se +Ġst ream +е Ñĩ +ess ion +Ġstr ugg +z z +Ġdeg ree +Ġhelp ing +Ġsm ell +Ġper haps +p ro +Ġcont ext +Ġi k +Ġп еÑĢ +Ġcal cul +éº ¼ +b ing +Ġreal ize +l am +ĠCh ar +y t +ĠìĿ ´ì +Ġd anger +ĠI m +a a +Ġlo ved +Ġpurp ose +Ġfinish ed +Ġpe ace +Ġo t +Ġglo bal +Ï Ģ +Ġab er +ĸ Ī +Ġcharac ters +Ġn ur +Ġdam age +Ġem er +Ġpre c +ĠW ir +Ġinst it +ij × +Ġallow ed +b on +Ġto d +еР³Ð¾ +Ġj etzt +Ġmed ic +Ġsmall er +ce ed +Ġlevel s +Ġint ell +W e +Ġse m +Ġcurrent ly +Ġmod ern +Ġcont ract +Ġdetail s +ortun ately +O S +Ġst ates +Ġad just +ant age +e z +ĠV ery +Ġsc ale +Ġre lease +Ġf az +Ġ ic +it ude +A C +ĠP at +id en +Ń IJ +Ġpre fer +olog ical +ĠFace book +Ġê° Ļ +Ġ .. +ĠM ake +Ġко ÑĤоÑĢ +ĠDav id +ĠAf ric +Ġmod e +ĠC ity +Ġsh all +ĠÑ Ħ +im in +Ġз а +r om +u a +Ġbe yond +Ġdist rib +к Ñĥ +ĠDo es +Ġv ict +r ate +Ġv ai +Ġsuccess ful +Ġh ous +ah a +est s +ĠE st +Ġdisco ver +Ġthere fore +ch a +Ġc up +Ġpop ulation +ĠI l +s c +Ġsp ent +re l +Ġuse ful +Ġt ab +æ Ŀ +Ġ Å +Ġìł ľ +Ġcon se +Ġqu ant +ay a +Ġb on +åı ¯ +ĠCh in +Ġê² ĥ +ound s +е ÑĪ +ell e +Ġ ice +2 1 +Ġk ick +ä¸ ĭ +Ġstep s +Ġton ight +нÑĭ й +ren ch +. ' +Ġgra b +Ġimp lement +ĠìĪ ĺ +Ġmiss ion +Ġclear ly +Ġappreci ate +è Ģ +Ġf resh +ar m +ĠTw o +Ġex ec +Ġproject s +Ġcommun ities +ri ble +Ġreg ion +Ġfre qu +ro y +Ġhow ever +Ġpart ners +an c +Ġmin im +Ġl at +Ġfamil ies +Ġev idence +Ġp un +ra ft +Ġl oss +Ġma p +Ġany body +Ġchang ing +Ġr ules +Ġorgan ization +Ġess entially +ĠR ed +Ġele ment +æ Ĺ +Ġv irt +r at +Ġpr int +and er +are n +em os +ο Ïħ +Ġcond itions +ab e +Ġd ance +и ÑĢ +Ġd os +о Ñĩ +ĠQ ue +Ġwalk ing +Ġt ro +Ġ id +Ġadd itional +Ġfull y +Ġf ans +Ġadd ition +Ġlik ed +Ġü ber +Ġb ow +d i +Ġm aster +o ff +) : +m ber +Ġë ¬ +å ¯ +åĪ ° +la use +Ġo der +Ġsaf ety +Ġre act +à® ¿ +b t +Ġdis app +Ġgirl s +S t +ĠA ng +Ġfa ith +Ġturn s +Ġt ight +Ġm outh +am i +z er +Ġwe ap +Ġб Ñĥд +Ġhosp ital +ra id +Ġmic ro +ĠSt ate +ĠM ost +ag n +Ġdec ide +Ġpat ient +Ġcor ner +Ġdi ed +N o +ĠSt ud +re nd +em pt +Ġli e +Ġl if +ĠBe fore +t ó +ĠSu per +Ġbe ll +6 0 +Ġpriv ate +ĠPa ul +Ġg ib +Ġag re +´ì Ħľ +Ġs ig +Ġinvest ig +Ñı ÑĤ +en ing +Ġdist ance +Ġwar m +Ġdig ital +å¾ Ī +in er +Ġp and +ĠCO VID +Ð ³Ð¾ +g n +Ġr ace +Ġpr oud +Ġte aching +Ġ ÑĤо +ìŀ ¥ +ĠAll ah +I n +Ġw ood +Ġcol ors +Ġw ird +u j +id ad +Ġcustom ers +Ġconnect ed +Ġlay er +Ġachie ve +Ġperspect ive +ĠC oll +Ù Ĥ +Ġcl oud +!! ! +Ġend ed +łĩ ê²Į +Ġmanage ment +Ġr ich +Ġsub st +Ġrem o +Ġser ve +Ġres ist +Ġthought s +Ġgrow th +ili ar +Ġright s +Ġchar ge +Ġcons ist +Ġwer den +Ġem b +and om +Ġhur t +Ġk an +i as +л о +Ġsh it +Ġbe g +Ġrece ived +it ation +Ġme at +Ġis so +ff ee +Ġfam ous +Ġcomfort able +I L +ĠB ye +èª ª +åĢ ij +oth es +Ġmed ical +Ġenjoy ed +Ġhealth y +Ġw y +c ies +Ġeff ort +Ġdo ctor +Ġmil itary +L AU +Ġg ro +Ġb attle +Ġf ed +Ġcap ac +Ġaf raid +iv il +ĠвÑģ е +Ġl ength +ys is +Ġbe i +¤ í +Ġorgan iz +or g +in c +Ġinter act +ĠChin ese +Ġacc ording +Ġincred ible +Ġkill ed +Ġda ughter +ĠÏ Ģ +Ñĭ в +Ġschool s +Ġ « +ll er +Ġshould n +n al +Ġcr is +Ġch icken +Ġf aster +Ġextrem ely +Ġopp os +Ġn ous +Ġ + +ri a +Ġfinan cial +Ġexc iting +Ġjour ney +×Ļ× Ŀ +ł ë +Ġdis play +Ġmem ory +Ġheav y +н е +Ġpass ed +ÑĢ и +il es +Ġp sych +Ġspec ifically +Ġeng age +Ġl ed +or ge +ĠD em +ord er +Ġ8 0 +Ġcre am +ester day +Ġed ge +Ġп ол +Ġbu ll +Ġind ic +Ġk tó +Ġhope fully +um ents +ag en +н ого +Ġh ate +ch t +8 0 +Ġeff ic +Ġì§ Ģ +Ġintern et +Ġbud get +Ġproper ty +id ay +Ġì ļ +Ġм ож +ol a +Ġshow ed +ĠM on +Ġthous and +A P +Ġpo or +us ed +ĠJ ack +Ġs Ã¥ +ĥ ½ +Ġes c +Ġsoft ware +Ġqu ar +ĠØ ¨ +Ġnecess arily +om en +i y +Ġevent ually +ish ed +Ġbr ight +E D +Ġs pl +Ġdem and +Ġth reat +Ġs ir +Ġrele ased +ck et +ĠâĢ « +Ġrequ ired +Ġv ote +ì ¹ +à® ¤ +Ġdevelop ed +ĠìĤ ¬ +at ory +Ġd ir +ca pe +Ġslight ly +à ¬ +๠ī +re et +Ġdise ase +Ġcour t +Ġitem s +ĠEar th +ÑģÑĤ и +ж е +ì ² +Ġchalleng es +ĠBr it +Ġdesign ed +1 2 +Ġhear ing +Ġlisten ing +z o +ĠÑģ л +ãģ§ ãģĻ +Ġper o +Ġwe aring +pl ic +Ġch em +Ġbal ance +Ġb a +Ġrece ive +im a +Ġsignific ant +Ġм Ñĭ +an ch +ĠC r +ĠC oun +ê¸ Ī +Ġjo bs +Ġoffic ial +Ġper m +om s +Ġopportun ities +Ġover all +Ġh us +od es +Ġn ation +ĠR eg +Ġor d +Ġrest aur +Ġì Ĩ +Ġm el +v in +Ġw enn +Ġk ön +æ ĥ +Ġopin ion +ãĤ Ĥ +è ¬ +ĠSomet imes +ç Ĥ +Ñī е +as c +O U +Ġ20 20 +Ġdel icious +ig er +Ġìķ Ī +o le +Ġhand le +Ġc it +Ġíķ ľ +Ġf ör +o oth +Ġnecess ary +Ġind epend +æ Ħ +ist en +h am +Ġé t +ãĥ ³ +Ġmult i +Ï Į +? ) +Ġcamp us +Ġtop ic +Ġr ain +Ġpan el +ĠS am +Ġlar ger +aud ience +Ġpa id +Ġeconom ic +ol t +Ġstre et +ĠC ont +Ġdri ving +Ġìł Ģ +Ġh ay +Ġprofess ional +ĠIn tern +å ¸ +Ġin put +Ġc ateg +Ġc ro +Ġ ll +E T +Ñĭ й +* * +ĠZ e +B LE +Ġì ¤ +re es +ĠÐ ¯ +ed e +ier t +Ġfo ld +Ġd ur +ĠN ational +Ġìĸ ´ë +an ced +Ġfa ire +ut ed +Ġk ing +Ġw ild +o i +up beat +Ġpre vent +i us +Ġà ¨ +Ġw ide +Ġr ing +Ġtit le +Ġstand ing +Ġal though +Ġh i +Ġsa uce +Ġs ides +Ġanim als +il ing +at ives +ìĹIJ ìĦľ +ĠO ver +Ġdes p +Ġconsider ed +ar ies +i ers +Ġein en +Ġs ister +Ġë ķ +ĠS ure +ãĤ ĭ +ri end +a ign +Ġsh own +Ġs ac +Ġs ont +Ġcent ury +Ġt ien +ĠÎ º +ĠS T +åķ Ĭ +Ġold er +ie m +Ġtr uly +ĠS i +Ġwind ow +iqu es +ar io +æ² Ĵ +Ġloc ation +Î º +Ġì ľ +v i +ag ue +ĠS orry +Ġdis p +Ġhe ll +Ġà ī +Ġtr ade +Ġcrit ical +Ġê ± +Ġn amed +Ġprep ared +ĠH ouse +al u +Ġt ough +Ġtri p +Ġs and +c el +ü z +ĠP ut +Ġap art +is f +v is +Ġli br +a ven +Ġv ie +Ġeffect ive +ภ² +Ġmag n +Ġmuit o +Ġê µ +h al +Ġlim it +Ġn ine +Ġwill ing +ı ÅŁ +s p +еР³ +h i +Ġal t +ĠJ an +Ġorig in +ĠU s +Ġele ments +Ġus es +Ġhelp ful +Ġfl at +Ġfam iliar +ĠP ark +Ġc ore +Ġclos er +Ġact ive +Ġad minist +C E +нÑĭ е +ç Ħ +Ġrel ative +Ġment al +Ġr andom +Ġpart ner +Ġut il +ph one +Ġr ule +w w +Ġìł ķ +Ġsch on +Ġco ffee +H A +Ġconnect ion +Ġun it +la ughing +l og +Ġapp l +л а +us ic +ĠB ra +Ġany where +AU DI +Ġsepar ate +bo x +Ġd ivid +Ġtest ing +Ġs ick +Ġwer en +ä» ĸ +Ġ׾ × +Ġadv antage +Ġtrans fer +' . +Ġë ¹ +Ġfind ing +н ой +Ġì¢ ĭ +Ġfor t +Ġeconom y +Ġl ack +Ġleav ing +Ġd im +å İ +ĠR es +Ø Ń +Ġdiscuss ion +еР¿ +Ġg es +du ct +Ġch ain +Ġus ers +e ch +ÅĤ a +Ġdis h +Ġcare ful +Ġte acher +Ġopt im +Ġfl u +at ically +Ġref lect +Ġtreat ment +e ed +i ÄĻ +à ¹ +à® ¾ +Ġequ ip +Ġplan ning +Ġsol ve +ãģ Ŀ +ĠT om +Ġavo id +Ġp ou +Ġgreat er +l in +O L +ĠL u +ĠM ore +Ġatt ract +ê n +un a +Ġphot o +er ation +Ġplan et +Ġcop y +Ġvis ual +ir ing +Ġintern ational +Ġla ughing +Ġth ick +Ġhold ing +Ġbring ing +Ġlet ter +Ġb urn +Ġeffect s +it é +our s +O T +ê me +ĠSch ool +×ķ× ª +rop ri +l ig +α ι +Ġad ult +Ġsu gar +Ġr ide +Ġhigh light +Ġno body +Ġ2 1 +Ġch at +ĠпÑĢ и +Ġin nov +ung en +Ġatt ach +ed om +å Ĭ +y l +Ġleg al +Ġr ice +Ġcoll abor +k ing +d own +æ Ļ +ãĤ Ĭ +Ġi h +ĠA c +ous ly +Ġr ap +Ġsol id +Ġgener ally +Ġpatter n +al i +à¸ Ń +Ġtrans l +in ter +a ult +Ġë ¨ +Ġexp ress +Ġexam ples +Ġch ose +Ġtell s +ÃŃ s +ain t +ĠT ell +ĠMich ael +æ ¨ +ĠN umber +Ġt ap +Ġexper iment +Ġbenef it +Ġì ° +Ġse qu +Ġexp ensive +Ġgener ation +ĠM any +Ġadd ing +Ġk il +Ġcamp aign +ĠA nt +ra w +omm en +Ġs oul +j o +ĠAct ually +am m +ê² ł +Ġma xim +Ġsal t +Ġc ru +Ġcall ing +ãģ Į +Ġbas is +b an +Ġkeep ing +ĠM or +ed s +ì Ĩ +Ġto do +ам и +н Ñı +Ġli ved +ĠD u +ãĤ ī +å® ¶ +for ce +å¹ ´ +fer ence +al a +Ġocc ur +s k +Ġrec ent +Ġc ars +Ġtrad itional +ent le +² Ī +Ġhel d +Ġn ach +ĠCent er +er en +Ġb in +Ù ģ +Ġcomm e +Ġre ve +Ġìĺ ¤ +Ġexpect ed +ab il +Ġfocus ed +o v +Ġi P +or ial +i ro +Ġet c +am ing +ĠS on +Ġy esterday +Ġstr ate +ĠÑ Ĩ +Ġë ı +p es +Ġactiv ity +Ġadv ice +Ġopen ing +f in +Ġre la +é ĸ +Ġinst ance +ĠEvery one +b l +p en +Ġvis ion +ĠA lex +if orn +Ġt ick +H e +Ġstrate gy +Ġk om +P E +ĠG l +Ġelect ric +1 5 +Ġda ily +Ġhus band +Ġst ation +Ġanal ysis +yn am +Ġatt empt +Ġbill ion +v ant +Ġfor th +Ġm ath +al y +Ġbehav ior +ĠM as +k an +ĠD ay +Ġbl ess +Ġg ut +ĠH igh +o x +Ġd ress +Ġj ed +è ¯ +å ĸ +Ġexperien ces +ist a +Ġfight ing +å · +ĠÑģ к +Ġmost ly +a use +Ġpict ures +ен ÑĤ +Ġm ad +Ġmod els +ÑĪ е +ĠC ount +Å Ħ +ÅĤ o +ep t +O M +ĠA N +Ġtrou ble +4 0 +Ġb ird +ul ate +Ġm ur +Ġprodu ce +Ġmar ried +b it +Ġthe ory +í ĺ +Ġlead er +ĠL ast +A A +è µ +Ġim ages +Ġexp and +ĠP or +Ġpur ch +ĠS an +ĠChrist mas +ĠAust ral +Ġw id +ĠM iss +Ġknow ing +Ġz e +s hip +k u +Ñħ од +ĠInst agram +ĠInd ia +Ġest a +ĠCal iforn +Ġ7 0 +Ġdra g +Ġbr ush +Ġn ames +A nd +Ġy o +ill a +Ġsch ed +Ġdest roy +ye ar +Ġv amos +Ġ ÙĦ +ç a +Ġforg ot +и е +Ġra ise +re me +íķ ´ +ĠG ive +Ġcont ain +ra b +Ġg ift +ĠÑģ п +Ġrequ est +Ġsh ut +Ġdeg rees +Ġbenef its +Ñĭ е +Ġstud ies +Ġend s +Ġevery where +Ġher o +op h +er ry +Ġmaterial s +en ed +N A +å į +Ġmu y +Ġwor se +ä» Ģ +ĠM ad +Ġdec isions +ion e +Ġfore ign +la ughter +i ber +ени Ñı +ãħ ĭ +Ġreal ized +Ġ ign +Ġwe ak +ĠÎ ¼ +Ġsca red +Ġass um +A K +ï ¿ +ï¿ ½ +Ġcover ed +ĠS at +Ġо н +Ġindividual s +Ġcomp ared +1 1 +ĠAd d +ic les +Ġc ert +r ar +Ġbr ief +Ġactiv ities +Ġf ab +b ar +Ġa st +ĠO ther +Ġclass es +Ġo g +Ġmiss ing +ãģ ł +é Ŀ +w ers +× © +Ġintrodu ce +Ġequ ation +ãģ¾ ãģĻ +Ġn om +Ġpain ting +us hing +ĠA P +Ġencour age +Ġsh ip +itt ee +iver se +ot a +n am +ãĥ » +Ġexerc ise +ĠÐ Ń +Ġn as +Ġthous ands +ĠCaliforn ia +Ġs es +Ġr ow +ŀ Ī +Ġpand emic +Ġsk ill +b el +Ġdire ctor +Ġmil k +Ġn ut +Ġmot ion +Ġcl osed +è ¨ +Ġcred it +ah r +Ġche ese +Ġal tern +im ately +Ġs ust +ĠT ra +Ġgl ad +Ġhigh ly +Ġw a +Ġredu ce +Ġb le +ad or +in ated +ion es +ci ent +Ġdep ending +Ġsh aring +Ġca ught +ra el +Ġme hr +Ġpass ion +ç Ľ +Ġr u +Ġfar m +T I +av es +ĠR ob +ĠB ro +Ġmot iv +ret ch +ru pt +ĠB ig +Ġall e +Ġet t +ub s +ĠJapan ese +ĠH all +и ли +AUDI BLE +ç ¬ +Ġcell s +ik a +el ine +il er +Ġì £ +Ġsk y +IN AUDIBLE +end e +ap ter +Ġp in +Ġg ather +h ol +le ction +Ġsy n +Ġpl ug +r ound +Ġun iversity +h ib +Ġfant astic +k n +Ġho le +ĠRem ember +in ct +ak s +C H +Ġbro ken +Ġstr ateg +Ġal ive +Ġt ank +Ġc art +r ated +r ie +ĠSt ep +ĠEvery thing +Ġb ound +Ġso bre +Ġcustom er +¡ Į +ur g +ĠB ill +L a +wh at +Ġre action +Ġs ession +Ġpl ans +ĠìĿ´ë łĩê²Į +Ġdown load +ì Ļ +u er +Ġc ab +Ġinst r +if ying +ĠN ice +Ġteam s +ı l +Ġgo als +is ch +Ġtrans port +Ġanim al +Ġcost s +Ġcall s +Ġse hr +ì Ī +ri an +Ġd ial +Ġwe ather +๠Ģ +Ġв оÑĤ +ĠPl ay +Ġsh ared +Ġsm ooth +ab a +Ġleav es +à® © +Ġconc ent +Ġsh ift +ĠëIJ ĺ +ĠGo vern +Ġdem onst +Ġbut ter +ĠìĹ ¬ +Ġsat isf +Īë ¬ +Ġrecogn ize +ĠF rench +Ġvol ume +ä nd +Ñĥ м +Ġì§ Ħ +ĠKe ep +ow a +ipp ed +ÑģÑĤ ÑĢ +Ġdet ect +ĠÏ ĥ +Ġl ift +Ġcl othes +ĠSt op +à µ +m et +Ġcl in +Ġar r +f riend +Ġst uck +Y e +h and +um a +Ġsc ri +Ġfuck ing +ct ors +× ª +Ġjo ining +Ġc ette +ĠØ £ +ĠWh ite +Ġi hr +Î Ń +ãģ Ń +Ġinclud ed +ess o +Ġac ad +b um +Ġs ab +Ġд лÑı +è¿ Ļ +uf act +ĠRep ublic +r im +Ġye llow +Ġlim ited +T ER +ĠT y +Ġnot es +v est +и з +al ed +Ġph ase +and a +ĠM om +R I +Ġim mer +m al +Ġin j +Ġy ang +ud ible +аР³ +Ġset t +Ġmag ic +Ġens ure +Ġsp ring +Ġsh ock +Ġwhe el +ог да +ãĤ Ī +Ġcan cer +Ġro ot +Ð IJ +gen cy +Ġë į +i i +Ġout put +Ġcomm it +Ġwork ers +ìķĦ ìļĶ +ĠÑģ ам +ve y +Ġpe u +Ġc ivil +is c +Ġbr ings +ÑĢ ав +an ia +Ä ģ +c raft +mb ol +Ġintell ig +b i +ac ing +y ou +Ġbecom ing +ĠD er +em a +å°± æĺ¯ +Ġing red +Ġcomm and +Ġupd ate +Ġpre m +Ġopen ed +Ħ ¤ +ени е +Ġg ard +Ġstat ement +Ġsc rew +Ġpr ote +Ġc ards +Ġt ask +Ġeven ing +Ġst itch +in en +ĠB er +m ark +ĠD ad +Ġе ÑģÑĤÑĮ +Ġ× ŀ× +ìĹ Ī +Ġb an +Ġcl im +Ġfre edom +Ġnorm ally +еÑģ ÑĮ +å ¦ +Ġprov ided +Ġìŀ IJ +ĠìķĦ ëĭĪ +ĠK im +ied er +ìĿ Į +Ġcit iz +Ġb ike +Ġb ak +Ġno ise +Ġcl imate +iz es +å¾ Į +Ġincre asing +ĠTH E +Ġli qu +Ġperson ally +e f +res p +Ġleg s +ind er +Ġp ed +Ġë§ İ +Ġdep end +Ġvar iety +ĠIs rael +Ġwas h +å Ĩ +Ġqu iet +ĠJ ames +ĠJ ew +Ġfore ver +ĠI nt +Ġcoun ter +ur ance +ĠAny way +ca re +ĠOn ly +ci ón +ad i +ĠE v +ëĭĪ ê¹Į +ĠÎ ± +Ġslow ly +Ġо д +Ġnot iced +ier en +Ġfe ll +ĠÐ ij +Ġm ême +Ġwhen ever +! ) +ĠH y +å ¼ +ord s +us ion +ĠSt ar +Ġí ĺ +ĠM ac +ä¸ Ĭ +i ven +Ġìĭ ľ +ĠìĹ Ĩ +ĠT ur +Ġg er +r is +Ġve z +Ġл Ñİ +Ġvers us +ا Ø +ocol ate +Ġplan e +Ġz o +Ġsu it +Th is +Ġn erv +ĠA cc +Ñĥ ж +ìĤ ¬ +n h +em e +Ġa uss +Ġme as +Ġtr ès +Ï ī +Ñģ ли +ĠAr t +ĠSec ond +олÑĮ ко +ch o +it ect +е ÑģÑĤ +Ġb oss +Ġinc ome +ł ¤ +Ġsh ad +Ġapp ropri +ĠM al +op t +Ġart ist +Ġplay s +oth ers +ĠIn ter +Ġvir us +Ġh ung +Ġconst ant +Ġscri pt +Ġsn ow +ul f +k et +Ġdev ices +Ġmet al +ight s +ìĦ ¸ +Ġsal es +Ġve get +Ġcollect ion +Ġv ia +k er +Ġgot ten +O W +i én +Ġacc ur +Ġw ave +ult y +ĠA ir +Ġlead ing +ic ing +Ġcent ral +ĠChrist ian +f r +ĠAl though +Ġsong s +Ġf if +нÑĭ Ñħ +Ġbel ong +oss ible +ì ° +Ġphot os +is l +Ġrela x +s a +US IC +ê · +Ġman ufact +ĠTw itter +Ġdanger ous +Ġhy d +le ar +i ant +ĠâĢ ¦ +Ġsudden ly +Ġla ugh +Ġang le +ĠG ot +Ġwor ried +о е +Ġp ap +ĠM art +en o +Ġbatter y +Ġп оÑģ +Ġlight s +Ġar ms +ĠA bs +m es +âĢ ĵ +use um +Ġte a +ĠM ic +Ġfor mer +ograph y +Ġapplic ations +ĠD ire +çĦ ¶ +Ġfeed back +itch en +yor um +u ed +ig t +Æ° á» +os ition +ĠD el +Ġíķ ĺë +ĠB ack +ad s +Ġpr ime +ì£ ¼ +ì£ ł +× ij +Ġm ut +] . +ĠÐ Ĺ +lo c +k in +Ġexper t +Ġal right +ung s +Ġsupp ly +Ġleaders hip +ĠF ra +Ġtyp ically +Ġs el +Ġtre es +Ġ2 2 +h ar +Ġwor st +Ġbus y +ant o +ĠU p +ĠB as +Ġpresent ation +Ġstr ange +Ġth in +ÑĤ е +Ġveh icle +Ġд о +cell ent +7 0 +Ġt ired +Ġcris is +Ġt iny +as y +Ġr an +é ĩ +Ġfor ces +Ġо Ñĩ +Ġident ify +Ġass ess +иÑĤ е +S E +Ġcreat ive +ç Ł +Ġdep artment +Ġinit ial +æĪij åĢij +ĠD am +ak t +v ere +Ġinf ect +Ġp ump +Ạ¡ +Ġv iel +Ġr are +Ġd ot +ash ion +em pl +Ġf lex +Ġk on +Ġtr uck +Ġle ct +Ġpl astic +la w +Ġlik es +Ġr ough +ĠM AT +í ŀĪ +Ġcomm er +Ġas se +Ġc ake +Ġact ions +Ġad m +Ġother wise +ĠHe alth +Ġcoll e +à¹Ģ ภ+Ġr ub +å¾ Ĺ +æ Ķ +Ġsc r +Ġz um +ĠH im +Ġch amp +Ġconcern ed +Ġ5 00 +Ġpl ate +ĠO ut +Ġdon c +Ġequip ment +Ġta ught +ll ed +Ġí Ļ +iv a +Ġmot or + » +Ġgu ide +å ī +Ġstop ped +Ġr at +Ġlab or +Ġa im +Ġprep are +ĠÑ Ī +Ġshoot ing +ann ed +cri pt +Ġen emy +Ġdep ends +Ġn av +Ġb er +Ġland s +Ġun ivers +i u +Ġfact or +ok ing +Ġcar bon +b ut +ĠL ove +el d +ĠÎ µ +Ġg a +Ġé s +Ġbre ad +Ġvol t +í Ĭ +Ġwas te +Ġkeep s +æī Ģ +Ġst or +Ġhon or +Ġun less +Ġcol um +Ġë ĮĢ +Ġpl ants +Ye ah +Ġinclud es +ä¸ Ń +Ġo x +Ġpe ut +ë§ Į +ìĥ ģ +ist ry +ภ± +ĠDep artment +ant a +Ġfing er +Ġst retch +Ġsy mbol +Ġneigh bor +æ ¬ +ê° Ħ +~ ~ +ĠÑĤ Ñĭ +ĠA ber +k es +Ġmass ive +ĠC H +ĠS al +× ł +ãĤ Ĵ +Ġd ynam +ach e +ĠP re +Ġmon itor +ent ed +E O +Ġrais ed +ist ics +Ú © +Ġv ou +it en +¡ ° +Ġbusiness es +Ġe arn +Ġmob ile +id ade +Ġha be +y r +l ict +Ġcon duct +Ġfed eral +Ġw o +b u +Ġn one +Ġteach ers +ĠاÙĦ Ø +éģ ĵ +id ents +ا ÙĦ +Ġtre nd +еР¶ +Ġal bum +Ġm ich +b ased +ภµ +Ġtrans ition +Ġн о +õ es +h ost +ed y +ĠPro f +p an +ij n +Ġcapac ity +und o +Ġ× ij× +Ġbreat h +Ġм ен +Ġm ü +í Ļ +ĠA ut +hing ton +Ġn or +Ġg ain +po int +Y es +ĠØ ª +ĠN a +Ã¥ r +Ġi ç +ĠM ary +Ġsp in +Ġant i +åIJ § +Ġsome how +Ġlaw s +Ġmom ents +Ġg re +Ġmo ves +ĠW ould +Ġpred ict +Ġv ra +Ġ201 9 +¶ Ħ +Ġfund ament +2 5 +Ġp ure +Ġw ow +Ġis land +Ġinvest ment +Ġb ath +ĠY a +Ġhard er +Ġt ips +å Ĺ +Ġelect ron +ĠB ob +Ġb ond +od ies +ĠA ug +Ġgib t +Ġch air +Ġtw ice +w ood +Ġcl ar +Ġmas k +Ġhonest ly +Ġ201 8 +t ies +' , +Ġp ens +Ġsurpr ised +Ġcommunic ation +ãģ£ ãģ¦ +Ġsp r +Ġwh ose +Ġst ars +× IJ× +ĠâĢ ĭ +Ġproper ly +Ġg rew +os ing +Ġdi vers +A D +Ġem pt +Ġexp ression +Ạ¿ +ĠP al +ãģ Ĭ +Ġjust ice +Ġp air +w o +Ġse at +or ter +Ġlink s +ĠM er +Ġre nd +но е +up id +ĠH el +ĠM arch +ĠL o +Ñģ ÑĮ +Ġhas n +Ġev alu +ãģ ı +å¤ © +il os +Ġfund ing +Ġv en +u an +ĠM aster +ĠO l +ĠF re +Ġy ap +ĠS ir +s ch +Ġmist ake +am an +Ġdin ner +ĠWas hington +Ġorganiz ations +Ġж е +av ing +Ġv ÃŃ +Ġbirth day +Ġbe ar +ĠÙ ģ +Ġaff ord +Ġre ven +Ġrelationship s +r ough +ĠT ime +Ġt ag +ĠS un +u ary +ĠP o +c ar +ab ilities +Ġpr ison +Ġl ic +ìł ķ +id den +Ġspec ies +é » +Ġf irm +Ġsc ore +Ġd it +Ġspe ct +Ġp el +Ġcompl icated +æ¨ £ +Ġr ank +Ġoppos ite +Ġpick ed +Ġк он +el er +Ġm ig +ĠS l +ĠN et +Ġne ck +ĠFr ance +Ġtechn ical +ภ¡ +Ġmil es +Ġprim ary +Ġse in +s es +Ġla ughs +b ra +ÅĽ ci +ri age +Ġn ic +et ers +Ġà ª +olog ies +ĠI S +r ad +ud o +ı nd +m ar +Ġex ch +Ġcompet ition +Ġauss i +ĠS erv +Ġre nt +Ġch ocolate +Ġw ieder +Ġnear ly +Ġspe ech +Ġun c +Ġpar am +ĠBrit ish +Ġrem ain +ภģ +ur t +ĠØ ¹ +Ġcr ack +ail s +Ġprom ise +Ġpay ing +i ÃŁ +Ġad apt +ал а +Ġmov ies +Ġw ire +Ł ¬ +æľ ĥ +Ġter rible +Ġs ó +Ġperfect ly +åij ¢ +ord in +Ġj á +Ġimp ossible +ĠTh ree +Ġn h +Ġtur ning +r um +ĠB el +ig g +Ġrespons ible +и й +Ġincred ibly +w i +ian o +Ġhum ans +Ġà ĩ +Ġsetting s +Ġj oy +o ot +Ġdeal ing +ill ed +Ġsur round +Ġfollow ed +Ġposs ibly +Ġinit i +st en +Ġpr os +Ġcand id +Ġass ign +Ġviol ence +W ell +Ġr ise +P S +Ġtamb ém +Ġë ĵ¤ +i ance +y an +Ġaud io +ĠB et +ĠAmeric ans +ĠAs s +is chen +ìŀ ħ +Ġult imately +Ġpol ic +Ġmajor ity +éĢĻ åĢĭ +ĠFin ally +er ap +Ġgu ard +ĠMAT T +Ġbr own +м и +Ġch a +ĠHo ly +Ġnerv ous +ipp ing +ÄĻ d +ĠS a +ĵ ľë +¶ Ģ +l ie +çľ Ł +Ġn uc +ĠA pr +é Ľ +ĠKore a +eg o +ĠCan ada +Ġkön nen +Ġcomp ar +Ġg anz +ĠM ais +Ġthem e +Ġk i +Ġdraw ing +az on +ĠO ff +t t +ĠW ind +Ġtod os +Ġob vious +на Ñı +I M +ĠÐ ł +we ll +Ġbl ow +Ġho ok +Ġcir cle +Ġë³ ´ +Ġarch itect +ĠK r +Ġc ó +Ġprotect ion +eg a +å ĩ +Ġwatch ed +Ġans wers +Ġdi et +iv o +Ġpow der +Ġyour s +Ġhigh est +çĤ º +F F +å º +Ġbo ys +ö yle +Ġl unch +è¬ Ŀ +ĠI I +Ġset s +Ġmo le +Û ģ +Ġwin ter +Ġluck y +Ġrespons ibility +Ġsign al +Ġwond ering +Ġa x +Ġcook ing +ов оÑĢ +le g +Ġп оÑĤ +Ġsurpr ise +Ġdem ocr +Ġlo op +Ġj ag +Ġcur ious +Ġmarket ing +Ð Ŀ +ar on +ĠApp le +Ġvirt ual +Ġ19 8 +no on +ĠM et +оÑģ ÑĤо +об Ñĭ +it u +ĠA w +Ġbu ying +Ġrestaur ant +ĠB ud +Ġdou bt +Ġgr ant +Ġver d +Ġc ash +Ġfac ulty +Th at +ĠE in +å¤ ļ +Ġw ed +it ness +ĠM ag +n el +Ġn arr +Ġacc ident +Ġmed ium +em ents +Ġcr ow +n ight +ìĿ ¼ +ä¹ Ł +Ġlibr ary +аÑİ ÑĤ +Ġtamb ién +Ġrefer ence +Ġfour th +h ouse +v ention +Ġfill ed +ĠC our +ib r +Ġn g +Ġdevelop ing +Ġprov ides +Ġpo ll +Ġtra ffic +arent ly +à® Ł +Ġform s +Ġcl ient +Ġg entle +Ġmus s +ĠCong ress +ĠInd ian +ce an +Ġp il +Ġc zy +st ood +ut y +Ġn ä +Ġsp ending +Ġconst ruction +ina udible +Ġë§ Ī +Īë¬ ´ +Ġìĥ Ŀ +om a +os en +ag o +Ġlar gest +ãħĭ ãħĭ +Ġun iverse +b es +os a +Ġе го +Ġd ude +ĠM AR +Ġind eed +ε ι +Ġman aged +ĠSh ould +S o +Ġappl ied +Ġfair ly +ĠD en +Ġanal y +Ġconst antly +Ñģ п +H ow +ĠS ay +en cies +ĠP C +Ġegg s +à® ° +Ġet h +ĠEnt ão +in ar +i ot +Ġc z +ĠEurope an +ãģ Ī +ĠA M +Ġc á +Ġrad io +§ Į +Ġh ide +ä» Ĭ +ĠSt art +Ġcl ub +ĠH ope +Ġeff orts +lus ion +Ġc ities +h one +Ġreach ed +Ġgu id +ro id +Ġhar m +Ġcut ting +Ġb ul +1 8 +i est +ĠMe x +Ġ iron +çŁ ¥ +Ġafter noon +Ġha ll +Ġpr zy +Ġg osh +Ġinflu ence +Ġв ид +Ġincre ased +ĠMin ister +Ġdis ci +ĠP eter +Ġver t +Ġmen u +Ġse lling +ur ally +Ġqu ote +Ġ ¡ +Ġcontin ues +mp re +ĠÅŁ ey +it ution +Ġна Ñģ +c les +ĠGerm an +c zy +ĠÐ £ +B e +Ġk itchen +ĠT ry +i pe +Ġic on +ar p +Ġprov iding +ĠTr ans +Ġtechn ique +Ġh är +Ġinf rast +Ġsus p +ü ck +ic ip +ĠÐ ķ +Ġc in +ìĸ ´ë +Ġpr z +Ġcompon ent +Ġby e +ĠB ible +iz er +C h +Ġsol utions +Ġaccom pl +Ġ201 6 +I E +ĠT a +Ġass ume +Ġliqu id +Ġë¨ ¹ +Ġquar ter +Ġfem ale +ĠTh ink +Ġstat us +it ute +Ġco ach +Ġre in +Ġcomb ination +è · +ĠT er +Ġobject s +Ġdist rict +Ġmake up +Ġmur der +w as +f en +Ġbow l +Ġpub lished +Ġsp orts +ãģ ¡ +Ġident ity +Ġseem ed +Ġact ing +л Ñİ +ri x +Ġup load +Ġh ast +Ġbo at +ĠM od +ri o +Ġ = +Ġcy cle +¯ ¸ +Ġl oud +ust ed +com ing +Ġ201 7 +Ġon t +Ġleg isl +Ġst ruct +ĠSomet hing +Ġconf lict +Ġu pper +Ġman ager +Ġm ort +Ġf ra +ĠÄ ° +ĠM ike +ĠW ork +Ġn ó +ph ere +ĠìĤ ¬ë +ĠL and +Ġfil ter +Ġprom ot +æ ° +æĻ Ĥ +ķ ¼ +Ġrecord ing +× Ŀ +Ġassoci ated +Ġf uel +und er +Ġele ction +Ġemploy ees +ĠCom p +ÑĢÑĥ г +ĠW o +ro l +Ġsa ved +ĠH on +ĠV i +åĪ Ĩ +ac a +p ret +Ġw et +Ġst upid +Ġl ad +Ġf est +Ġw ake +Ġи н +Ġgreat est +ĠJ im +Ġserious ly +Ġì ¹ +Ġfeel ings +Ġ3 00 +i ation +Ġbeaut y +Ġìŀ ĺ +Ġs an +ĵ ł +Ġ- ( +Ġcons cious +Ġд ел +b ye +ç Ļ +M an +Ġlet s +Ġsho es +y d +ä¹ Ī +Ġdisapp e +ĠCount y +ĠSc ott +Ġbut t +Ġaqu ÃŃ +Ġconf ig +resp ond +LAU GH +© ëĭĪëĭ¤ +Ġdivid ed +Ġac qu +Ġz one +Ġk omm +a ção +ì§ ľ +c ut +Ġ2 3 +Ġmaxim um +ro g +Ġrun s +Ġcompon ents +Ġarri ved +Ġconf ident +ÑĢ ов +Ġhe ight +Ġpro ced +E M +ĠÐŃ ÑĤо +ĠM en +Ġtalk s +Ġconf idence +ĠChr is +Ġlead s +Ġn ose +f all +b b +ĠNot hing +is er +Ġindepend ent +Ġmin or +Ġsy m +l en +ci ence +Ġf ashion +Ġsex ual +Ġb un +h ere +Ġso il +Ġdies e +Ġsh ap +Ġempt y +Ġjour nal +ag on +ĠThe ir +Ġweek end +ÃŃ t +Ġer ror +Ġn ar +à ¸ +è © +an cy +Ġìķ Ĭ +Ġfore st +Ġha cer +Ġmiss ed +ãģ ķ +åı¯ 以 +Ġev il +Ġstor age +Ġsing ing +in ha +Ġkn ock +Ġimp ress +ĠоÑĩ енÑĮ +ĠGo ld +ĠS ur +ĠP ort +åİ » +ĠL ond +Ġfaz er +ot y +ot o +Ġan x +ĠWill iam +Ġexist ing +pl ace +ĠC D +Î ³ +ĠColl ege +l or +ĠE ast +s en +f ach +o ft +Ġexperien ced +Ġlo ves +im m +Ġpo ly +Ġes se +ì ¤ +ĠG rand +è § +ch er +Ġvict im +ĠG es +л ÑĮ +v ision +Ġt all +Ġl ens +Ġз на +ĠB oth +Ġì ² +Ġsust ain +Ġarg ument +Ġfact ors +Ġautom atically +Ġfr uit +Ġli ber +Ġa le +ĠP ress +ĠB a +ĠÐ ³Ð¾ +Ġhundred s +th at +ĠR ich +Ġreci pe +ĠI T +è ĩ +Ạ¥ +Ġdescri be +Ġdri ver +ĠO ct +ĠM at +д е +Ġme al +Ġlat est +Ġth erap +Ġcomp are +ĠAm azon +Ġì¢ Ģ +ĠRuss ia +Ġstr ing +Ġk a +ĠComm un +Ġd ia +I s +Ġmill ions +Ġcor por +Ġcor respond +Ġfix ed +ĠJo e +Ù İ +Ġview s +Ġr iver +Ġstud io +ig ger +Ġfl avor +Ġpres ence +Ġun its +Ġsa ving +av our +Ġp esso +or ith +Ġh ers +ĠN at +as ion +ĠFr ank +о ÑĪ +ÅĤ y +í Ħ +Ġein em +Ġfun ctions +um an +Ġn orth +Ġìł Ħ +Ġhor se +v id +Ġple asure +а ÑĪ +é es +ind a +Ġt ail +Ġexpl ore +S T +Ġcommer cial +ĠD uring +ar l +] : +f it +Ġr ates +æ ³ +M USIC +Ġhous ing +Ġein er +Ġsitu ations +æ ĭ +Ġdec re +Ġappropri ate +ен но +% . +Ġb ac +Ġw at +ens ity +ä h +kn own +it z +Ġemot ional +erv ation +Ġbl ind +1 6 +í ĥ +大 家 +Ġjo ined +Ġloc ated +ĠÑģ м +ad as +ber g +Ġd ess +Ġde ar +ed en +c os +Ġad opt +1 00 +ow e +ĠChe ck +ism o +Ġsim pl +Ġang ry +Ġмен Ñı +ĠC am +Ġp ad +Ġatt end +Ġsam ple +æĹ ¥ +Ġì Ľ +ĠI N +ul ous +ĠS ar +ĠSh ow +Ġinfrast ructure +ĠAug ust +Ġless on +Ġn iet +æ İ +Ġfo i +Ġbro ke +t r +ç ķ +Ġ4 5 +Ġg ew +Ñĥ п +at i +Ġmaint ain +Ġart ists +ing er +æĿ ¥ +er ved +I A +Ġequ als +Ġoper ation +ill y +ĠëĤ ´ +Ġcrow d +Ġintern al +Ġtest s +ĠR ock +ĠC ons +ĠëĦ Ī무 +w ar +Ġs ou +Ġch art +ĠJ une +ĠApr il +g ent +Ġv ent +Ġqu and +ĠKore an +im o +ç ī +id ers +Ġmount ain +ÑģÑĤ ав +æľ Ī +ij k +Ġdiscover ed +ĠS und +ĠS il +Ġso lo + ´ +Ġsch ol +ĠE ach +ç µ +Ġb are +Ġí Į +ĠvÃŃ de +Ġingred ients +ĠIt s +Ŀ¼ ê³ł +Ġì Ĭ +Ï į +ĠLe e +Ġsc ary +Ġprinci p +Ġspirit ual +ì ħ +ĠH old +æ²Ĵ æľī +Ġdef ine +ĠL es +ĠN or +ĠE nd +Ġbl og +ĠG reen +аеÑĤ ÑģÑı +p art +el es +äº ĭ +ĠUnd er +Ġpart e +Ġ3 5 +Ġse ctor +ĠS ept +Ġaut h +à® ® +om in +Ġcl ients +Ġc i +ĠFr iday +er as +Ġtw e +ul ated +Ġcult ural +ĠÑģв о +Ġëį Ķ +Ġà º +Ġpar ce +à® ² +Ġtrad ition +Ġjud ge +ĠGen eral +Ġdeterm ine +ĠIs n +ĠP L +ne ath +Ġmatter s +íķ ´ì +! ] +а Ñħ +Ġpo ol +Ġvari able +Ġvacc ine +Ġcaus ed +Ġw est +ĠY ep +f ast +Ġph ilos +hor a +Ġcontinu ed +Ġunf ortunately +ãģ į +æ ķ +Ġfl ight +Ġw rap +Ġhu h +ĠAbs olutely +Ġp ink +Ġrem ains +Ġn é +Ġf le +ĠS ol +Ġlos ing +Ġalg orith +Ġrequ ires +Ġfound ation +ĠB ur +Ġprofess ion +ĠM id +Ġë ŃIJ +c an +ĠM il +Ġyoung er +Ġappe ars +ter m +íķĺ ê³ł +ac le +ĠLond on +Ġengine ering +ภ¢ +Ġadv ent +ìĦ¸ ìļĶ +Ġê¸ ° +ĠM aj +ÑĢ ем +ing u +ĠU K +u ro +s pe +Ġt ent +Ġreport ed +ĠA L +H ey +Ġë§ IJ +Ġd ent +ĠAustral ia +ĠJan uary +³ ´ +ag ues +ars h +r ig +Ġtien e +ภ£ +Î ® +Ġmach en +un te +Ñĥ Ñģ +Ġelect r +Ġtut orial +Ġpl aced +ĠìĿ´ ê±° +ĠCoun cil +í ĸĪ +°ë ¦¬ +ah ren +Ġê·¸ë ŀĺ +Ġpro ve +f ol +Ġqu er +Ġche ap +ĠF ather +ĠP ower +ĵ ľ +Ġpur s +Ġes p +ĠB re +ê¸ °ë +om as +æĥ ³ +ил ÑĮ +Ġge ht +os ter +ê³ ¼ +Ġfil es +ĠÐ § +be ll +Ġwh om +Ġë ĺ +Ġex cellent +Ġdat ab +Ġg ö +Ġì§Ħ ì§ľ +Ġbelie f +j et +Ġj ack +Ġsw im +ri al +um in +a uc +Ġso ll +Ġess ential +íķĺ ëĬĶ +Ġev ol +cha ft +ain e +th let +Ġinc or +Ġreport s +Ġdefin ition +ke l +Ġcirc um +Ġprodu ced +Ġ× Ľ +ant ic +n et +Ġa ward +Ġd urch +Ġtrans p +Ġm ale +¦ ¬ë +Ġmo on +ĠGe orge +Ġfly ing +i ó +Ġs ources +Ġpl enty +ĠDem ocr +R O +Ġ 00 +Ġsec ure +ĠB ir +ra in +Ġz ur +Ġeffic ient +Ġrepe at +Ġmethod s +Ġcal m +Ġdiscuss ed +ĠìŀĪ ëĬĶ +Ġser ver +an ie +ĠInst ead +Ġide al +Ġcon ven +Ġhop ing +ĠT or +Ġdep th +Ġhe aven +EN CE +Ġhab it +gr ad +Ġfl ag +Ġin e +Ġk h +ĠL I +Ġfac ing +ĠA U +ĠT im +Ġg em +ĠJ ul +Ġel a +iz za +Ġfe llow +Ġqu el +Ġsp oke +Ġcitiz ens +u ge +é ĥ½ +Ġp ages +Ġf asc +Ġrelig ious +at en +Ġch apter +ĠV al +Ġcons ult +ĠM ill +g l +op er +Ġinf in +Ġmar riage +Ġmedic ine +Ġд в +Ġdog s +Ġinstr ument +ĠEx act +á n +Ġ20 21 +Ġf er +Ġwe alth +Ġgr ade +Ñĭ Ñħ +Ġcr ime +Ġth read +Ġess a +Ġw ine +co hol +ph a +ภĩ +og ue +Ġins urance +arr ator +ĠSept ember +Ġv id +ĠSp irit +Ġg est +ĠRuss ian +Ġproper ties +Ġart icle +Ġunder neath +y er +Ġjo int +Ġrelative ly +Ġin ch +Ġdesp ite +ĠG ree +Ġclass ic +Ġsupport ing +Ġinst ruct +lus ive +Ġdi agn +æ Ĭ +Ġadminist ration +аб оÑĤ +ĠO pen +æīĢ 以 +Ġп ок +Ġdoll ar +Ġconse qu +o ber +ĠGerm any +Ġter r +ĠQ U +ĠÐ ĵ +ç ¾ +Ġstrong er +É Ļ +ĠÙ Ĭ +ĠiP hone +Ġfab ric +ü h +Ġen em +æ ¯ +Ġsub t +E E +ond e +Ġcre w +Ġremo ved +Ġl ady +Ġpot entially +ĠÐĿ о +y al +Ġsym pt +Ġar my +Ġintrodu ced +t es +Ġaspect s +1 4 +ĠL ou +Ġ ) +Ġde ploy +p et +Ġh an +ĠW atch +Ġweap ons +Ġph en +Ġreg ister +Ġein fach +Ġsp ort +Ġbr idge +Ġin ner +Ġminim um +Ġw itness +Ġes o +Ġvill age +Ġown er +¦¬ ê³ł +Ġsc ream +il ed +Ġp itch +b ru +Ġadv ance +ä¸į æĺ¯ +Ġsupp ose +ĠAt t +еÑĤ ÑģÑı +Ġdiffer ences +ak ed +Ġinter pret +à ¦ +iend o +Ġabs ol +ĠбÑĥд еÑĤ +Ġë ² +Ġtri al +Ġthink s +ly ing +cept ion +ĠAfric an +Ġchem ical +Ġta pe +Ġconvers ations +Ġdistrib ution +t i +ĠA I +Ġfl ash +Ġunder stood +ĠGovern ment +å° ı +! ? +ĠS k +ê± °ë +ri er +T S +ĠAcc ording +Ñİ ÑĤ +Ġsp ons +ÑĤ обÑĭ +Ġval u +ere m +icht ig +Ġresist ance +ĠG al +ger y +Ġbeg ins +Ġadv anced +Ġrele vant +Ġpolit ics +ĠF am +Ġç ok +ĠN ever +ill ing +Ġfoot ball +и и +ĠI D +ĠAfric a +Ġfing ers +Ġб олÑĮ +Ġà ¡ +Ġcl ip +ĠL at +ãĤ Ħ +Ġì§Ģ ê¸Ī +es se +Ġvo or +Ġas ide +æ ŀ +Ġto ward +Ġb at +Ġval id +ĠM ens +Ġcomplet ed +ı ÄŁ +Ġpod cast +ĠB on +Û Ĵ +ĠJ uly +il a +Ġpack age +Ġpull ed +ch ar +ĠM el +o is +Ġs outh +Ġë Ķ +Ġimport ance +Ġp ushing +Ġis ol +Ġstand s +c ill +ä ¼ +Ġ ðŁ +or i +ê° ģ +Ġhom es +Ġconcern s +Ġb iz +å ½ +b ie +Ġb is +Ġge ar +ĠM S +Ġh un +ĠM att +Ạ£ +se y +ĠSec ret +Ġod d +ĠM ax +oll y +f ord +ĠS H +Ġrepl ace +Ġnav ig +Ġin i +и Ñı +Ġgi ant +Ġma nd +ĠH app +TI ON +g un +iam o +ìŀħ ëĭĪëĭ¤ +Ġg ap +Ġê tre +Ġclass room +Ġhy p +ak i +è ® +is ters +ack s +ĠÑģ о +Ġb ug +Ġgra v +am in +Ġevery day +Ġì ¡° +Ġgard en +ce mber +Ġest o +åĹ İ +Ø ¬ +Ł ° +å ģ +Ġr om +Ġìłľ ê°Ģ +Ġfall ing +Ġfa ult +ell y +Ġch est +Ġл и +Ġpot ato +Ġbuild ings +Ġoper ating +Ġp are +w r +D on +ĠF our +Ġv ul +Ġl á +Ġfr ust +ĠD ann +ol es +ny a +Ġì ¶ +ĠÑĢ аÑģ +× Ľ +Ġa ÃŃ +w ord +Ġweap on +Ġob t +ĠF all +ĠSte ve +Ġmix ed +Ġp ode +ĠA S +ĠL eg +Ġdes c +Ġspl it +Ġemer gency +ĠS ing +Ġprof it +Ġtyp ical +ĠDon c +Ġannoun ce +ĠTe x +Ġsac r +tern al +Ġcomm ittee +ig o +Ġdi am +ph as +Ġdef e +ĠProf ess +Ġdec l +Ñĥ ÑĢ +2 2 +ol f +ĠM ond +u y +Ġa y +Ġl em +Ġlove ly +ĠC ould +Ġgu ar +H H +Ġcare fully +ĠL isten +Ġк ÑĢ +Ġyou th +ĠThere fore +Ġdream s +ĠJe ff +? ] +Ġë Ī +D A +Ġb odies +au x +Ġtechn iques +Ġmechan ism +× ĵ +Ġо ни +Ġdes ire +à ® +ĠV o +qu es +ĠÑĥ же +ĠWho a +ĠG ame +Ġh al +an ish +Ġpract ices +5 00 +Ġsort s +up s +ate ful +Ġhers elf +Ġgu itar +Ġprop os +Ġsit es +Ġbe ach +Ġ× ¢ +ç¬ ¬ +н Ñĥ +Ġdr am +ĠNo ve +V E +r ant +Ġpl ot +ĠìŬ 기 +ĠC a +Ġestab lished +Ġ201 5 +Ġinsp ired +Ġannoun ced +ä¸ ª +ĠÑĤ ÑĢ +Ġ2 6 +Ġv oy +Ġte ch +ìł ģ +Ġprocess es +ont o +ĠP an +Ġrap id +ist an +Ġ19 7 +Ġrelig ion +Ġ2 8 +Ġsm ile +Ġb ab +Ġ Ú© +ĠV ir +Ġsched ule +Ġexec ut +Ġpr on +Ñ į +ĠÐĿ Ñĥ +m usic +ìĽ IJ +Ġg an +ìĭ ł +Ġdef ault +Ġbe m +Ù ī +Ġfor ced +ĠOb viously +Ġst one +Ġt ie +Ġdrink ing +Ġser ved +C ause +Ġcon ference +ĠExact ly +ãĥ Ī +ł ľ +ìĻ Ģ +ĠR a +Ġf ake +Ġdif f +ãģ © +Ġchalleng ing +Ġì¤ ij +Ï ĩ +ä»Ģ 麼 +Ġintellig ence +re te +Ġstud ying +Ġapp oint +Ġt an +Ġи м +Ġcur ve +ĠTe am +ĠA z +Ġз д +ĠMus ic +f ield +ir ation +Ġfail ed +Ġno vel +Ġdifferent ly +Ġes cape +ĠY o +ĠOct ober +ı yor +Ġdescri bed +Ġcon vert +ac ement +Ġhot el +is ation +Ġsu is +ãģ ij +å ŃIJ +æĢ İ +Ġwalk ed +2 00 +Ġneighbor hood +is p +ĠL os +Ġh idden +Ġ2 7 +л е +Ġph r +ĠIs land +ĠSt reet +end a +hip s +os ure +Ġdefin ed +ภ§ +Ġv ida +Ġlab el +ĠEvery body +Ġjo ke +ia o +ا ÙĨ +Ġa thlet +... " +ĠF ire +D o +Ġdef ense +Ġent ertain +á t +Ġpolic ies +Ġal cohol +ĠEng ine +Ġg al +ĠJ ud +Ġvol unte +ick s +et a +ag t +Ġ× ķ +Ġm ö +1 3 +Ġenc oun +Ġe h +Ġor ange +Ġabs or +Ġsp aces +ĠNove mber +êµ ¬ +i at +Ġt am +ck now +Ġst orm +ĠDire ctor +Ġpre gn +ĠìĿ ¼ +Ġо п +Ġres ource +Ġb ard +ne w +ĠDe cember +u its +Ġwe il +Ġconst ruct +s i +n ic +Ġfl our +Ġrest rict +ü t +Ġentire ly +Ġbreak ing +ent lich +Ġtw enty +Ġcaus es +Ġele v +ĠS pr +ĠIntern et +Ġk iss +Ġoper ations +s zy +Ġë Ĭ +Ġscient ists +Ġgr own +Ġown ers +out s +Ġcour ses +Ġus ual +Ġin n +Ġtrans m +ñ o +Ġnu est +к ов +Ġcateg ory +ĠL ife +ĠPl us +Ġat mos +wh ile +Ġrecord s +Ġde ÄŁ +ëĭ¤ ê³ł +ĠìĤ¬ë ŀ +Ġrequire ments +in n +Ġimm ig +Ġdeep er +ç ´ +Ġapp s +Ġcolle agues +ż y +Ġoff ers +Ġt á +Ġcolum n +la ud +I R +ĠM s +Ġexch ange +l as +ĠL aw +ĠJ on +is se +ro gen +Ġmo i +× Ĺ +Ġs ending +Ġhe llo +е е +ÅĽ Äĩ +Ġsuc ceed +Ġsuff ering +Ġad vert +Ġì£ ¼ +çŁ¥ éģĵ +Ġrec o +ın ı +Ġк ом +all ey +Ġfail ure +ie j +Ġëķ Į +Ġdrug s +Ġcu ando +Ġìĸ´ë ĸ +ĠAb out +Ġqu ando +9 0 +ĠF ed +1 7 +S h +in ho +ĠSund ay +ĠPh il +Ġacad emic +ĠIn c +Ġmaint en +åĩ º +Ġre ward +er d +Ġcomm itted +ìĬ ¤ +г ÑĢ +Ġstand ards +Ġk al +Ġint ention +ĠZ h +Ġa cknow +ä ¿ +Ġ== = +og y +å § +Ġfilm s +is k +Ġte eth +Ġstrugg le +r d +u en +Ġdis s +ĠD ar +am y +Ġenem ies +Ġve loc +ĠC all +um bs +иÑĤ елÑĮ +Ġo cean +é d +ìļ ° +Ġtre m +ient o +еÑĪ ÑĮ +ffic ient +Ġbott le +Ġinstit ution +est y +ĠH an +h ab +ëĬ ĺ +Ġar rest +éĤ Ħ +Ġlet ters +oun ce +í Į +A n +Ġcreat es +Ġcl ock +Ġdeb t +Ġan cient +ific ations +g i +B ut +ĠT u +k l +Ġb order +Ġo ok +ĠB ay +est a +Ġë³ ´ì +Ġw ra +pre ne +Ġê² Į +ang le +Ġbelie ved +ien cy +ak a +Ġcrit ic +Ġb omb +Ġha m +ĠÐ Ľ +êµ Ń +ĠGu ys +ros oft +Ġcr im +et ch +AR R +Ġs ight +и на +Ġa in +á» ij +is che +Ġau x +Ġnum er +Ġsurv ive +A ll +B C +Ġs z +Ł ¬ë +Ġj am +ĠCour t +Ġall es +Ġtr igger +Ð ŀ +Ġform at +Ġdec ades +Ġc es +Ġsign s +Ġrob ot +ĠCh urch +Ġa z +Ġs oup +ĠTex as +ut en +ĠÑĩ ÑĤобÑĭ +Ġneigh b +ĸ ×Ķ +Ġcommunic ate +Å ¡ +Ġel imin +Ġfrequ ency +her n +id os +Ġem phas +Ġmess ages +Ġg ender +ĠW enn +Ġв о +Ġpr ices +ol o +Ġп он +w ing +ĠF il +а ем +ĠC ur +Ġfal se +Ġfield s +Ġs é +2 4 +Ġm ac +u ÅŁ +Ġlay ers +Ġadv oc +w an +Ġk ar +ĠÅ ŀ +Ġdec or +Ġwall s +o e +iss ions +Ġres ol +× ¢ +ĠCar ol +ĠV ide +le ep +ĠY OU +Ġfl ip +Ġsur gery +Ġch op +U R +. , +Ġag ency +Ġwant ing +Ġsol ar +Ġhor iz +ĠAd am +Ġstay ing +ol ic +Ġgr ateful +Ġrem ark +Ġtechn ologies +Ġprote in +å¿ ĥ +д ел +ĠM ont +Ġshould er +Ġz a +re y +ĠO oh +Ġst y +ic ar +оÑĤ ÑĢ +Ġrout e +ĠT urn +Ġb om +Ġdeb ate +Ġposs ibility +Ġíķ ´ì +ap a +Ġinv ent +ür lich +Ġprof ile +Ġsen ior +pp y +v as +Ġm undo +ate ver +Ġapp arently +en er +× IJ +ç Ń +Ġprec is +Ġal ign +Ġkn ife +ĠRo bert +å ĭ +Ġfo ol +Ġinv ite +us ing +Ġcircum st +Ġcapt ure +Ġd ough +ĠS and +Ġse u +ĠNew s +Ġb ite +Ġne ut +w ide +Ġlect ure +Ġëĺ IJ +Ġorigin ally +Ġcho ices +ĠG ar +Ġver se +Ġl it +Ġ19 6 +íķ ł +Ġmeas ures +ç ões +w ater +ri ve +Ġz ijn +í ģ +ĠB us +Ġhe b +е Ñħ +ĠK ar +ĠN ão +Ġkill ing +à® ª +Ġmir ror +m od +Ġm ol +Ġcre ation +Ġest im +Ġatmos phere +Ġg am +Ġt ables +is i +ĠL ittle +Ġt as +ĠE le +é l +Ġscen es +Ġt one +Ġaffect ed +ĠAU DI +ĠBr own +I f +ĠÙ ĩ +ĠDan iel +羣 çļĦ +qu er +ch i +íķ ĺë +Ġmist akes +Ġs la +ãĤ ¤ +Ġent r +Ġе Ñģли +Ġsh out +Ġport ion +Ñ Ĺ +Ġpre viously +á» Ļ +ĠпÑĢ ед +оÑģ ÑĮ +Ġhead s +ç İ +å Ń +åľ ĭ +Ġgr ass +ภ° +cri be +Ġqu é +ĠSp anish +Ġoffer ed +ĠбÑĭ ло +ĠCl oud +Ġve ctor +ĠH uh +Ġk ad +if ts +ĠÎ ½ +Ġhung ry +Ð ¡ +Ġpar all +AN D +ĠvÃŃde o +iz z +Ġocc up +Ġí Ķ +Ġsee k +h es +Ġdo ors +Ġhous es +Ġconsider ing +Ġgradu ate +Ġf ulf +è ¡Į +è £ +Ġext reme +Ġflow ers +it ate +ĠP ri +Ġfundament al +Ñĩ аÑģ +è¯ ´ +Ġtext ure +į ĺ +ĠAN D +à® ± +ĠT em +Ġn ada +ì§ Ħ +Ġcelebr ate +um s +Ġp ill +Ġи ли +go ing +Ġh ip +Ġsupport ed +Ġper man +Ġagre ement +Ġty m +Ġë ij +ĵ¤ ìĿ´ +Ġpurch ase +í Ķ +ĠPl an +eg en +Ġrec over +P U +ĠMic rosoft +du c +Ġhol es +Ġdro pped +Ġp ig +Ġend ing +Ġattack s +be c +Ġre n +Ġr app +Ġìļ °ë¦¬ +Ġter ror +Ġ× Ļ +Ġed it +Ġa o +. +Ġhero es +ĠB oston +Ġdepend ent +Ġmotiv ation +fl ix +Ġse am +ки е +Ġdra in +od ed +Ġgu ilty +ĠJ enn +ing en +Ġgrant ed +ĠK elly +ĠS av +ĠUn cle +ĠHon estly +EL I +Ġnavig ate +Ġbless ed +c ore +Ġear ning +Ġsign als +Ġdis k +ial s +Ġag es +æ ħ +Ġpartic le +ĠÑĩ еÑĢ +Ġcan n +Ġt ier +Ġstat ements +ê³ł ìļĶ +ĠëķĮ문 ìĹIJ +ĠCh o +Ġpol ar +an ç +ĠK enn +ĠN i +ĠF ight +or gan +é ķ +ĠCh a +ĠS ÃŃ +ãĥ ª +Ġs lic +Ġcert ific +Ġtempl ate +ĠFed eral +Ġconsider ation +Ġexpl o +ĠM ain +ĠN E +Ġalong side +Ġd ressed +ĠP oint +Ġenviron ments +Ġpró xim +Ġda ar +Ġprom pt +Ġpurs ue +Ġentertain ment +Ġth roat +Ġproblem a +Ġm art +ì ¼ +Ġprov ider +Ø Į +Ġ× Ĺ +int e +m aking +Ġstro ke +Ġtiss ue +U n +Ġpre cious +ĠAr ts +ink ing +ĠÐŀ н +Ġи Ñģ +n ah +ĠÐķ Ñģли +Ġcor ners +Ġtrick y +in ch +l ijk +Ġpress ing +le vel +AN G +Ġrad iation +ìĦ ł +Ġconf ront +Ġv et +Ġrepresent ative +Ġprop ag +Ġcra p +ĠDe c +Ġr amp +еп еÑĢÑĮ +u és +ess en +cri ption +Ġb ills +ĠMatth ew +Ġan ime +ấ t +Ġlow est +h as +sc reen +og rap +ал о +int on +ĠJ ah +èĢ ħ +it Ãł +Ġk ay +Ġrot ation +ĠW ere +abe i +Ġtri als +Ġle ver +ight y +Ġsp oon +Ġh unt +c ling +Ġdis m +ĠболÑĮ ÑĪ +Ġass ault +Ġíĺ ķ +Ġweek ly +Ġm ismo +Ġgen etic +ul pt +ĠStud ent +Ġreal istic +Ġauthent ic +æī ĵ +ast a +Ġarrest ed +Ġguid elines +Ġ×ľ× IJ +Ġд ав +ĠCom ing +f ür +Ġrequ ests +ĥ IJ +Ġanaly ze +Ġinter ess +Ġh alt +ĠO per +on om +Ġd uck +Ġwith d +s er +ĠÏ Į +ĠHist ory +Ġyout ube +ãĤ į +Ġsab er +w alk +f ont +Ġover view +3 9 +ü y +ett i +Ġfro zen +Ġf lesh +ÄŁ i +ĠP M +ĠìĻ Ģ +é ¢ +ÑĨи и +Ġê¸ °ë +íģ ¬ +Ġpr ose +oo oo +r ates +W S +Ġautom atic +Ġcollect ing +Å ij +Ġneighb ors +» . +ĠEx pl +Ġcir cul +co ver +we g +Ġstick s +Ġe ller +Ġw ww +Ġd orm +ĠEx per +Ġstat istics +Ġemail s +Ġgra ve +im iz +H S +Ġu it +, ' +Ġlas er +è ī +ĠÑĤ ем +Ñĭ ÑĪ +Ñī Ñij +Ġgen au +Ġtien en +Ġmed itation +ĠOr gan +Ġest imate +Ġë¬ ´ì +l ets +Ġn Ãły +Ġmind set +Ġres on +Ġm és +Ġnumer ous +Ġvie lleicht +ĠTh ird +u ous +ĠDe ad +ан д +H N +Ġrac ing +Ġag ents +ĠU t +Ġte ar +ĠH P +Ġchem istry +Ġsurv ival +æĸ ° +Ġconvin ced +Ġ ; +Ġreg ulations +ĠE S +åĴ Į +3 00 +Ġen se +Ġì µ +Ġd ict +G A +Ġah ÃŃ +åĭ ķ +Ġte j +Ġо ÑģÑĤ +ĠE lect +Ġintellect ual +Ġbi as +Ġbur den +çĤ ¹ +Ġìĸ´ëĸ » +Ġche er +Ġso ph +Ġportfol io +ub a +Ġest os +T V +F or +Ġas h +Ġkom mer +Ġcollect ive +Ġw rest +ĠJ etzt +ĠW at +re ich +Ġprim er +act ive +Ġm ie +ick ed +Ġhun ting +Ġtest im +Ġcompass ion +ĠØ ± +Ġbr ut +Ġsal ad +об Ñīе +Ġsol ving +Ġflo ating +ç · +Ġattract ive +ÙĪ ÙĦ +Ġper d +if fer +Ġsc ulpt +hh h +ĠWe ek +Ġent hus +Ġn ad +Ġmer ch +ĠíĻ ķ +Ġm ile +好 äºĨ +ĠÎ ¸ +ĠëĤ ĺë +éĩ į +3 8 +Ġch ains +ĠAl most +Ġtick ets +r in +ĠC C +Ġdistrib uted +abet es +Ġtemper atures +Ġg ained +Ġflex ibility +Ġscream ing +Ġab road +un o +Ġentreprene urs +ĠNet work +ĠCanad ian +Ġpre v +Ġs ö +ĠÑĤеб Ñı +ĠP oke +ĠP od +ĠTur key +çı¾ åľ¨ +Ġabst ract +Ġsn ake +ĠAm y +ĠëĬIJëĤ Į +Ġbra ve +ĠìŀĪ ìĸ´ìļĶ +ĠK al +Ġ200 7 +á rio +Ġmark ed +gin es +Ġall oc +ON G +Ġscient ist +Ġes ca +Ġrac ism +× ij× +ĠS ams +ĠP enn +Ġload s +Ġà® ¨ +ü ber +M e +ix ò +Ġper ò +an ne +Ġexp ressed +м еÑĢ +Ġmo et +Ġret urning +n ia +Ġexp on +P ro +Ġlo yal +M L +Ġl amp +Ġsh y +Ġcomp osition +ĠL y +Ġmagn etic +Ġprem ier +Ġmeasure d +Ġsumm ary +Ġattack ed +Ġfin ishing +Ð Ĺ +ç ¥ +Ġs its +Ġhyd rogen +Ġma i +ĠDeuts ch +as ı +Ġobt ain +v ie +Ġso it +Ġë° Ķ +Ġl ane +Ġconse gu +в о +Ġe ase +ak in +ĠF a +Ġunt uk +Ġbur st +Ġc um +al ım +ú blic +id i +ĠRoy al +ĠK on +Ġcommon ly +Ġremo ving +Ġj ur +il ib +Ġan ch +íĸ ī +Æ°á» £ +ĠÐľ Ñĭ +ĠAn th +ĠS Ã¥ +Ġinter rupt +Ġst ere +ĠO S +ony m +ter y +ĠMar ia +ê² ĥ +Ġexpl oring +Ġtransp arent +Ġf ate +ĠJ ung +Ġgr up +Ġdark er +ĠD oug +Ġman e +æĶ ¾ +ạ i +d ri +lo ok +ĠDes ign +Ġtut aj +Ġhorizont al +re on +ort e +ĠCor rect +ĠSte ven +Ġv ine +0 2 +i Äĩ +Ġsie mpre +ĠK ey +åĥ ı +ĠG ames +Ġna ar +Ġshock ed +el ve +ĠR ose +ìĭ ¬ +Ġstop ping +oh l +ĠM ix +Ġsuff ered +Ġsig ma +Ġweak ness +ĠO w +ี à¹Ī +I F +Ġà® ħ +ad ed +ĠNet flix +an es +Ġrem ained +ir y +Ġr ip +ell t +Ġsil ent +Ġpro ven +Ġtox ic +Ġal umin +Ġmulti pl +al and +Ġ3 4 +0 6 +ĠB ru +Ġìłķ ë§IJ +J ust +b oy +Ġsho e +Ġcreat ure +Ġhead ed +ĠоÑĤ к +æ ± +Ġess ence +Ġremark able +Ġnú mer +Ġd rew +Ġpu zzle +ĠLibr ary +ĠF u +ash es +k k +ĠI st +¦ ° +ĠB ry +Ġc eremony +Ġà® İ +Ġc ri +e qu +ãĤ ¢ +Ġpri ze +Ġdim ensions +og ram +Ġle ather +Ġpop ulations +u um +Ġve gan +Ñı д +Ġcó mo +å Ħ +Ġstri p +å £ +Ġvac ation +ħ ķ +Ġme als +ili pp +Ġ ents +ar am +ric ht +Ġgra in +ĠSp ain +Ġche ek +ĠA ff +I ON +ĠBr ing +Ġ3 8 +iel en +ul u +ĠболÑĮ ÑĪе +Ġannounce ment +ĠÑĤ ÑĥÑĤ +ĠPro phet +ard o +3 7 +Ġw oke +Ġtransl ation +ĠN OT +ĠC L +Ġd Ã¼ÅŁ +ÑĨ Ñĸ +ac er +ĠL oc +Ġper ception +N O +Ġdies en +L ook +he art +av ed +Ġbound ary +Ġfl ows +Ñij м +Ġarg uments +Ġelect ions +ı s +Ġhe ck +Ġsuit able +Ġf iber +ĠSt ra +x y +ĠH um +Ġmonth ly +u per +Ġgol f +Ġl ately +ĠG ard +ĠR en +ĠA st +ĠF ant +аÑģ Ñģ +Ġobs er +ë ¡ľ +Ġeas iest +į Ķë +Ġwebs ites +p ol +Ġco con +Ġà® ĩ +ĠV eg +Ġwalk s +Ġint ro +Ġdirect ed +ĠAn na +Ġëĵ¤ ìĸ´ +ĠEaster n +ĠS aint +ĠB ow +Ġro ast +ĠU RL +Ġjed en +ur as +aj a +Ġse mi +Ġrapid ly +Ġtarget s +ĠCont rol +Ġb ah +Ġref lection +Ġcreat ivity +hold ers +Ġìĺ ¬ë +Ġamong st +Ġfeed ing +ÑįÑĤ омÑĥ +Ġвид е +Ġë§Įë ĵ¤ +ĠSm art +Ġrel iable +Ġvez es +Ġ× ¨ +ch uckles +az ione +ĠWilliam s +Ġa ç +Ġsle e +е Ñī +Ġtim eline +Ġthor ough +á» į +ĠO t +ạ n +Ġimag ination +Ġmechan ics +r ist +Ġclaim ed +ÏĦ η +ê te +ĠHur ry +ĠiP ad +Ġconst ru +ĠC la +ĠAl s +ä¼ ļ +ut z +Ġcult ures +Ġìĸ´ëĸ» ê²Į +Ġbelong s +Ġy er +ĠDoes n +Ġge omet +Ġb id +Ġfo am +Ġh ob +ĠBrit ain +Ġsubst ance +Ġann iversary +ĠëĦ Ī +Ġnot ed +Ġgovern or +Ġstock s +3 1 +Ġdi ye +ìĬ ¤ë +Ġre b +z el +Ġmultip ly +Ġoper ator +Ħ¤ ìļĶ +Ġwat ers +Ġd är +Ġuns er +ĠEliz abeth +é« ĺ +Ġincreasing ly +ĠG ro +Ġen gines +ir s +Ø « +Ġtre asure +P C +in ction +ir i +Ġacc um +Ġvari ation +Ġp om +Ġtit les +ĠF est +ó s +Ġeld er +ny m +r un +Ñı в +Ġinnov ative +Ġnom bre +Ġco inc +Ġfr anch +Ġent onces +Ġnicht s +Ġexc lusive +ĠChe ers +ĠB i +u je +æŃ ¡ +Ġp ok +ĠP rem +Ġrock et +ELI PE +Ġhosp itals +ri um +Ġjust e +Ġham mer +Ġquant um +Ġrespons es +ll y +end i +Ġact ively +Ġfr idge +i ate +l ong +Ġqu em +Ġdeath s +Ġsuper ior +ck en +ìĿ´ì ĹIJ +kt op +Ġgather ed +£ ¨ +Ġd azu +Ġreci pes +Ġbu zz +c en +Ġany time +ons ense +Ġcirc les +Ġsol ved +Ġìĭ ł +Ġcoron avirus +ĠLu ke +Ġbu bb +Ġcont empor +r zy +ĠJ ane +Ġд ом +Ġscrew s +Ġhy brid +Ġcas ual +Ġsel bst +be ing +ĠÄ IJ +ĠCol umb +ĠÑħ оÑĩ +Ġbu cket +Ġevalu ate +Ġid ol +Ġrep utation +ĠìĨ Įë +ÙĪ ر +Ġhe cho +Ġpo em +Ġsubject s +pl ant +ĠBe h +ĠSpe aking +Ġbatter ies +Ġfollow ers +ö l +Ġg ently +Ġsi xt +Ġparam eter +Ġik ke +ĠT our +ĠD J +ot te +ĠJ ahren +Ġprepar ation +Ġд Ñĥм +Ġ8 00 +c op +ik ing +Ġë¬ ¸ +Ġн Ñĥ +Ġл еÑĤ +åIJ Į +ĠI de +Ġì¡° ê¸Ī +Ġla ughter +Ġmole cules +ĠR est +Ġobs erved +d zie +Ġadvert ising +ert o +Ġmo ins +ĠM IT +Ġexc it +Ġt um +Ġty l +Ġinvest ed +Ġph arm +Ġunex pected +Ġph i +oty pe +we ise +Ġge ç +jour d +Ġhors es +n Äħ += " +ĠS M +Ġf ib +Ġcl ips +çķ ¶ +å¦Ĥ æŀľ +Ġreg ime +Ġrot ate +r ou +n ik +Ġarm or +ðŁ ĺ +еÑĢ а +åº ¦ +ĠO ch +Ġr ichtig +üz el +ane ously +m ek +éĮ ¯ +ĠX iao +Ġexist ed +w orth +ãģ£ ãģ¨ +Ġna ught +Ġhe iÃŁt +ĠB al +Ġres id +iv ot +om atic +Ġh ired +Ġgrad ually +Ġon ions +Ġcomp at +Ġint im +Ġj ew +Ġcontrib ution +ĠI re +ac ji +Ġsl ice +Ġimm un +ĠR us +Ġgr ows +ĠSimilar ly +Ġhard est +Ġst ruck +Ġmeasure ment +... ] +th ey +Ġìł Ģë +Ġsne ak +Ġappl ies +Ġн ем +æ ĵ +×ij ר +ĠЧ ÑĤо +Ġout ro +Ġinnoc ent +Ġm og +ĠSams ung +Ġmer cy +Ġhand ling +Ġinter vention +id ays +g ot +Ġcur ric +Ġbound aries +Ġconf using +Ŀ¼ ëĬĶ +æ ĩ +Ġstitch es +ÃŃ vel +Ġtun nel +it ä +Ġg ost +im y +Ġcz as +Ġm é +Ġcat al +ĠSim on +ĠLI AM +m ic +ĠÐ ¤ +Ġey el +is as +ĠC PU +ĠD ou +Ġnä ch +Ġinfin ity +Ġr if +ĠPe ace +ĠC u +Ġminim al +Ġlisten ed +Ġpo le +hal b +Ġload ed +Ġste ady +ĠBes ides +ê m +Ġl ap +Ġco op +Ġfriends hip +w orld +Ġge h +Ġtyl ko +ĠLa ura +Ġsurround ed +ĠE vent +Ġch ap +ĠW onder +bre ak +Ġdro ve +Ġbroad er +Ġch i +F i +Ġge hen +Ġwest ern +Ġintellig ent +Ġpers ist +Ġfound ed +ãģĵ ãģ¨ +Ġhistor ic +Ġfr Ã¥ +cks Ã¥ +Ġhand y +Ġsy mp +Ġr ows +Ġnut ri +b ur +ĠLe on +Ġsist ema +Ġext ensive +ĠÑĥ в +í ı +Ġnight s +Ġcá c +Ġcount ing +ĠM ust +all ow +еÑģ Ñģ +M om +Ġнад о +Ġbar rel +ãĥ ŀ +AR D +Ġinstall ation +Ġin sect +Ġëħ ¸ë +uj Äħ +ĠÄij i +Ġpack ed +Ġf iction +N ow +ĠY ay +Ġper t +r ons +und e +ach es +Ġsty les +Ġapr ès +ok u +ĠV ice +ın ız +com m +Ġassign ed +Ġinteract ions +Ġac ab +F ELIPE +Ġresc ue +Ġindust ries +ĠAnd y +Ġpra ise +Ġfl ame +Ġsn ack +í Ĥ +ç ģ +Ġsw o +rend er +Ġbo ards +ĠÑĤ ом +en ne +Ġpast a +Ġdev il +ĠF el +Ġhat te +Ġcoll eg +e h +ì » +ãģĵ ãģ® +Ġproduct ive +for ward +и п +Ġsmart phone +Ġinv is +Ġb um +Ġwho a +ìŀ Ħ +Ġo cksÃ¥ +ĠL ang +ĠSy ria +Ġses i +ί α +Ġappro val +4 8 +Ġод ин +Ġë ĸ +ĠH arr +ĠAd minist +Ġ× ¤ +ĠDe an +f i +Ġcitiz en +Ġsh ark +0 5 +Ġbo il +Ġindic ate +å ¡ +A re +Ġlay out +Ġref r +ĠPac ific +AA AA +ĠAustral ian +g ression +V oice +ал ÑģÑı +Ġshel ter +T o +au pt +Ġevalu ation +ap or +Ġcur rency +Ġм ного +ig os +ãģ ° +Ġo ct +Ġro yal +è ³ +as il +ĠChild ren +Ġr ien +Ġë ĵľë +Ġbar rier +Ġej emplo +Ġe k +N D +es p +ен а +Ġp ic +Ġkill er +Ġintegr ate +Ġfew er +Ġdis abilities +Ġ .... +Ġtri angle +Ġfe es +Ġwid ely +em i +Ġoverwhel ming +Ġz omb +Ġb ere +Ġho od +ĠA ye +ĠHar vard +e v +ĠÏĦ οÏħ +Ġcup s +ĠA uch +z ona +Ġ199 0 +Ġwe iÃŁ +Ġcr unch +æ ¥ +Ġз ав +Ġmeas uring +Ġst ations +ĠStep hen +Ġshort ly +Ġsig ning +Ġcom edy +om o +Ġsuggest ions +Ġsign ature +ĠпÑĢ ив +Ġdis order +as ka +Ġworld s +Ġprecis ely +n orm +ra v +ĠC ivil +In ter +ĠC ertain +Ġinj ured +Ġsuggest s +ĠGold en +Ġcy ber +ĠØ ´ +Ġtempor ary +Ġco oper +Ġvot ed +Ġ ought +ấ y +x ual +Ġpan els +Ġ9 5 +Ġhands ome +ĠпÑĢ ов +Ġper mit +Ġke in +Ġbad ly +Ġnot ifications +iz a +ĠNot ice +Ġinc lusive +Ġanswer ing +Ġí Ĺ +u ld +íħ Į +Ġnow adays +Ġ3 7 +Ġb olt +Ġstat ic +ĠH op +Ġav ant +aj o +Ġ맼 ìŀĪ +Ġfif ty +ĠF inal +Ġsc ores +ĠT ap +Ġcy l +Ġconv ince +Ġany ways +od a +Ġìķ ¼ +Ġser ves +ĠÑĤак ой +ĠZo om +Ġsaving s +ul o +Ġs outhern +view er +Ġho je +Ġse ja +Ġrepresent ing +Īë įĺ +l ik +ĠSome body +Ġbe ast +Ġstick ing +Ġins ist +Ġtal ented +Ġexplain ing +Ġatt orney +éĥ ¨ +Ġst airs +ĠD og +í ĭ +Ġc ig +Ġshap ed +Ġs ons +Ïģ ι +ut t +Ġì Ķ +Ġpar ad +ìĿ¸ë į° +Ġh orn +ĠJ our +ann o +Ġworld wide +åĬ Ľ +Ġparticip ation +¦ Ħ +Ġm ów +Ġburn ed +Ġwrit ers +all ah +ĠF und +Ġcle ver +ĠLe ute +b in +Ġbe ating +f oot +ĠìĽ IJ +ĠStud io +Ġv ag +be y +r ze +Ġoppos ition +Ġж из +w ho +Ġê± ´ +Ġtr ace +Ġд енÑĮ +Ġep id +Ġges ch +ĠN ar +ĠB E +Ñĥ й +ĠS ign +ed ly +Ġcl ay +Ġinst antly +Ġgather ing +ĠGal axy +Ġb ored +ĠBudd h +c é +Ġm am +Ġsl ope +Ġëĭ¤ ìĿĮ +Ġsch ön +Ġp ir +ge f +am er +Ġh ö +Ġcolle ague +Ġpres ents +ad ium +Ġà® µ +Ġfal ar +be ep +Ġdri ed +ism s +Ġro pe +Ġworks hop +Ġest ud +Ġb ands +Ġthem es +åħ ¬ +ÙĬ ر +åIJ İ +Ġremind er +ÑĤ Ñĥ +ĠB h +Ġcocon ut +ĠÑģ ÑĤо +ĠCh annel +Ġimmig ration +ä s +.. ... +ä¸ » +çĻ ½ +st op +Ġк аÑĢ +Ġco ins +ĠÑĩ аÑģ +Ġdest ruction +l ined +Ġbar riers +ant ine +Ġprint ed +Ġcongrat ulations +ĠHe art +Ġin qu +th a +Ġhard ly +ĠA ven +Ġt inha +ĠS ony +ĠN F +Ġgradu ates +Ġsque eze +ere my +ÏĦ ι +Ġep ic +ĠJ u +Ġol m +ĠLa ughter +Ġbelief s +ĠC ru +ĠTr ue +ĠS oul +owe en +Ġrom antic +Ġз в +Ġan os +ĠY up +éĺ ¿ +d im +Ġin fer +Ġз ам +Ġso c +uk a +Ġprec ise +Ġdro pping +Ġcl ue +Ġer rors +char ge +ĠP u +omet er +Ġlamb da +ac ional +ĠD ong +Ġcham ber +Ġthank ful +ĠN u +ĠHaw ai +Ġinf o +Ġactiv ate +ĠQ ual +Ġqu ed +Ñĥ лÑĮ +Ġcl oth +åĸ ľ +Ġw ichtig +5 5 +Ġot ra +ograp her +Ġcur ios +Ġ19 80 +Ġemp res +d ess +e ur +Ġcl uster +ar ter +ob ile +ĠY an +ĠAd v +Ġdiscipl ine +Ġìłķ ëıĦ +ĠPl ace +ĠSe lect +T E +ĠбÑĭ ла +Ġwh is +Ġb ay +ĠD or +en cing +Ġrep et +Ġf icar +p ad +Ġf og +u yor +Ġsn ap +ib t +Ġso bie +Ġappoint ment +ĠR y +Ġce iling +our se +Ġwr ites +ĠAfghan istan +Ġm os +az e +Ġpen al +Ġcry stal +IC E +ê° IJ +é Ł +ĠTes la +Ġthe ories +Ġappe al +Ġnewsp aper +Ġcook ies +æ © +ĠاÙĦ ÙĦ +Ġma j +ĠGet ting +k ommen +ĠHe aven +ell s +Ġdiv ine +Ä « +Ġa kt +Ġhop es +ĠCh en +we gen +** * +ĠFra ge +Ġн и +ภ¹ +min ister +nes ota +wh ich +Ġexpl icit +Ġverd ad +Ġgradu ated +ĠPh ilipp +Q L +ĠM I +Ġdev ot +Ġc ure +Ġclos est +Ġà Ħ +Ġsex y +ãģ Ľ +ĠDe ath +ok o +ug u +ĠAn ne +itar ian +es a +ег од +ĠD ur +Ġ 000 +ze it +Ġtour nament +Ġmel hor +ภª +Ġin du +Ġf law +Ġw ars +ĠM ind +ĠI ron +ÑĤ ак +ĠV R +Ġs iz +ĠS outhern +Ġê·¸ëŁ ¬ë +Ġaw ak +Ġìķ ŀ +Ġc ube +believ able +if all +d is +Ġabandon ed +m ind +Ġpar l +Ġclass ical +è ĭ +á»Ļ t +ĠAut o +ĠB or +ç © +4 00 +ĠSoci ety +Ġsubt le +Ġmiss ions +Ġremember ed +ĠE ither +Ġda für +OR D +Ġint ensity +ES IN +ĠC up +Ġrare ly +Ġto ys +ĠChar lie +á» Ł +Ġgla ube +Ġround s +T IN +Ġcap ability +Ġderiv ative +Ġrefer ring +Ġd Ã¥ +ĠT ALI +Ġcott on +Ġcon fer +Ġcolum ns +Ġliber al +Ġnun ca +Ġμ ε +Ġind o +ib en +ĠBe ispiel +Ġê·¸ë łĩ +ĠÑĥ Ñĩ +Ġh oy +Ġfr y +ĠScott ish +è Ĭ +Ġc iv +Ġconserv ative +Ġair pl +Ġs ar +r us +Ġinvest ments +Ġinfin ite +Ġà® ķ +ĠTALI ESIN +ĠG ary +ue ll +Ġа к +ĠC ir +Ġrit ual +Ġ>> > +Ġtem pt +ĠTe ch +ĠPoke mon +Ġimprove ments +Ġsp are +Ġtransl ate +Ġson ra +ĠFil m +w ort +Ġм и +Ġperiod s +Ġje alous +ãģĦ ãģĦ +Ġt ir +M I +Ġconduct ed +ĠìķĪë ħķ +0 9 +ĠPol it +ĠWhere as +Ġmoist ure +Ġs ins +Ġk ap +ĠÑį к +Ġben im +Ġelimin ate +Ġathlet es +ĠMan ager +Ġfeature d +ap ore +äº Ľ +Ġë° ľ +Ġper f +ĠTh us +Ġdeb ut +об ÑĢ +Ġse ñ +Ġmyster ious +w ords +Ķ ê°Ģ +Ġcheck s +Ġvolunte er +Ġwas hing +ĠMar vel +ĠA B +iss ors +! ' +ĠF ull +ye on +Ġwe igh +ĠJO HN +Ġv os +Ġproced ures +Ġaddress ed +ĠBer lin +put er +ĠB an +Ġmedic ation +Ġdr one +ĠÑĥ б +ĠJe an +Ġcap s +Ġdisappoint ed +Ġw ore +Ġêµ Ń +Ġorgan ize +ĠHall oween +Ġfant asy +y ard +Ġnos otros +Ġjump ed +Ġphot ography +ĠN ame +re c +A B +Ġbless ing +ĠSh ut +Ġbit ter +p op +ãģĿ ãĤĮ +Ġde i +Ġfulf ill +çIJ Ĩ +Ġden gan +Ġbe lo +ĠMean while +Ġdep ois +Ġdi abetes +Ġbu nd +ĠZe aland +Ġdig est +Ġt ires +Ġdo d +ag ne +ế t +Ġpe el +Ġз аб +Ġn odes +Ġtrend s +ĠSw itch +ĠA ward +ĠOr ig +ĠH al +Ġest as +Ġ3 60 +Ġsim ult +Ġcom ic +Ġm Ãł +Ġbal anced +ĠPrin cess +Ġkilomet ers +á» © +Ġpart ir +ì¤ ij +so ft +ĠV iew +Ġbi ological +in st +4 4 +Ġman era +Ġcompreh ensive +ĠS ab +Ġcr imes +y ers +ĠComp any +ĠPh ot +Ġpou co +i ac +Ġbe im +in ate +Ġsub sequ +ĠMay or +Ġcent uries +è res +ìŀĸ ìķĦìļĶ +Ġê·¸ëŁ ¼ +ĠFra u +ĠO H +Ġëģ Ŀ +ĠN ah +ĠSer ies +Ġover night +íĴ Ī +ĠâĢ ¢ +Ġtra ve +atter ed +Ġwar ri +ĠGru nd +ĠInd ones +Ġsc ra +ob y +ĠBro ok +Ġcur s +Ġë ¸ +Ġexpl ains +ram atic +Ġparticip ating +Ġmin ut +Ġcontract s +Ġg egen +Ġdisappe ared +ĠS N +Ġrob ust +ap h +Ġsh rim +Ġdev ast +c ope +Ġme ets +Ġpeace ful +m ate +Ġwe ld +Ġ× ª +d on +Ñĥ ÑĤÑĮ +Ġregister ed +ĠN ik +j in +Ġc av +Ġe cht +io x +Ġflow ing +но ÑģÑĤи +Ġto e +Ġent ity +ов а +f its +ĠPat rick +ÑĤ ÑĢ +Ġle verage +Ġcor rel +i ah +Ġstr ings +ist inct +Ġg ue +arch y +Ġteng o +ım ız +Ġor bit +ä¸ º +Ġе ÑīÑij +ca ke +Ġ׾ ×Ķ +ĠMin nesota +Ġbra ke +ow ie +Ġcra w +ê¸°ë ¥¼ +Ġprogram me +ĠÑģл ÑĥÑĩ +åı ª +ien ces +ĠO ui +ĠP ers +im iento +ĠIn vest +Ġsl ower +æĻĤ åĢĻ +ĠB eth +Ġnur se +ĠSpr ing +S p +Ġun employ +д и +Ġgen ius +ĠA aron +Ġê·¸ëŁ ¬ +Ġe i +ãģĹ ãĤĩ +Ġtank s +Ġau jourd +Ġcomplex ity +ĠÑĢ еÑĪ +Ġold est +Ġlet z +åħ ¥ +Ġphenomen on +pr int +ĠBund es +it at +ê» ĺ +Ġ4 2 +ĠW i +Ġinc om +Ġg ek +Ġembr ace +Ġt ies +out e +Ġd ose +ĠF riends +Ñĭ ÑĤ +егод нÑı +Ġor g +Ħë ¡ľ +ó g +Ġex ceed +Ġgod s +Ġê±° ìĺĪìļĶ +Ġsoci et +ĠUn ivers +it ät +Ġword en +Ġsm oking +Ġint ens +ab ul +em ia +è ij +4 7 +f ly +Ġ200 6 +ĠSer iously +Ġprze z +æ ¼ +c re +Ġn an +Ġmod es +ов аÑĤÑĮ +ĠH ang +em en +Ġbenefic ial +Ġvot ers +ĠBro ad +Ġb ent +W ow +Ġm ul +åĵ ¥ +ĠU C +Ġdam aged +ĠUk raine +Ġw ipe +Ġst ones +Ġman agers +Ġr ab +ÑģÑĤÑĢ о +l at +Ġde ce +Ġgraph ic +Ġf oss +Ġdisag ree +ĠAm en +Ġsec rets +ho le +ink le +Ġfortun ate +Ġì ± +ìľ Ħ +èIJ ¬ +Ġhab its +Ġbur ied +Ġh in +Ġvirt ually +ol as +ĠR P +ĠT ab +l ow +Ġsacr ific +Ġestim ated +ol n +Ù ĭ +c ur +ĠFe el +Ġcast le +Ġus eless +Ġdis g +ĠJac ob +Ġga an +Ġup side +Ġpare ce +ãĥ³ ãĥ +Ġsh ipping +ĠC R +Ġdis rupt +ac ter +UN D +f u +å® Į +ĠP ick +ĠChar l +ĠB ull +Ġenter prise +Ġpunish ment +ack ing +Ġfr action +Ġtab let +Ġch ord +Ġsimilar ly +åħ¶ 實 +ĠTor onto +Ġcour ts +ÄŁ l +esz cze +Ġpron oun +ĠS ister +ĠM P +Ġgreat ly +ĠD ank +ic op +Ġgar bage +Ġresol ve +ĠS af +ĠG un +Ġcomp ound +Ġë° ° +ĠMus ik +âĻ « +Ġcha os +ĠWhen ever +Ġe uros +Ġor chest +Ġrefr iger +al an +ภ· +ĠAm azing +Ġp ud +ag an +Ġj eszcze +is y +Ġaccur acy +ĠA ma +is ode +ë ĮĢ +Ġinterpret ation +ĠL iber +æ · +c am +Ġevol ved +ĠK ay +ÑĨ Ñĭ +Ġcreat or +it as +Ġal arm +Ġcelebr ation +z ent +Ġfun cion +Ġo v +umb ling +Ġ % +ภĪ +Ġrestrict ions +Ġн ав +ĠK inder +Ġban ana +ÑĮ Ñı +Ġdiam eter +Ġnor thern +ur ers +ĠP as +æĪij çļĦ +Ġwork force +Ġj ung +Ġguar ante +Ġequ ilib +Ġsu ite +Ġeu ro +Ġdel iber +S te +Ġdownt own +Ġch in +Ġc odes +ed ia +Ġshe ep +res hold +wn ie +ó b +Ġunder lying +l ia +j er +ÏĢ ÏĮ +ç Ŀ +th rop +Ġz ap +Ġvac uum +ĠH ab +Ġwra pped +ì ¢ +Ġinvent ory +м а +Ġco ord +Ġpl ates +Ġsy mm +T e +ĠwÅĤa ÅĽnie +Ġreach es +Ġlon ely +S cript +le e +ess er +Ġê± ¸ +ĠGes ch +ĠMo ving +Ġré p +ĠV ill +åIJ Ī +ĠR achel +Ġtem os +ON E +Ġstra in +Ġang el +Ġf Ã¥ +T r +Ġach o +Ġhighlight s +ĠW er +ĠCar l +Ġbl ur +Ġreg ards + · +ил ÑģÑı +Ġrec re +ĠY ani +U CK +ł ¸ +Ġelectr ons +ĠSp iel +Ġv ed +Ú ¾ +Ġbe am +Ġid iot +ë ĵ¤ +на Ñĩ +id d +Ġsk i +it ative +Ġhyp othes +ãģ§ãģĻ ãģŃ +ent er +ĠìķĦëĭĪ ë +Ġih re +Ġpre view +ang el +Ġdem on +Ġd us +Ġd ic +ĠK om +LE Y +... ! +Ġsie ht +ĠSon ic +Ġten ho +an as +Ġdig it +ĠMa ar +Ġunder grad +oun cer +uff y +Ġconvers ion +Ġdis connect +Ġe cho +om er +Ġcurric ulum +Ġper ché +Ġw and +.. ? +Ġroll ed +Ġentreprene ur +Ġtheore t +ĠÑī о +Ġins ights +Ġzus ammen +o in +ret t +p rodu +Ġvisit ors +e ous +Ġgrand mother +Ġhum or +Ġн иÑħ +zen ia +ins on +Ġres et +Ġbase ball +Ġmatch ing +ëĭ¤ ê°Ģ +Ġpun to +ì ¡ +Ġre de +Ġaddress ing +Ġfore cast +ĠB ol +Ġcol ored +Ġdocument ation +Ġexpect ation +ĠNor thern +Ġcre o +Ġà® ļ +f on +Ġuns ere +U M +Ġcop ies +Ġexpand ed +Ġveter ans +ĠAl m +Ġво обÑīе +Ġpsych ological +Ġnos so +Ġpay ments +im eters +Ġ-- > +ĠJenn ifer +Ġvolunte ers +os se +or ious +ĠбÑĭ ли +è Ĥ +ĠEs s +w s +ĠB C +ĠI C +W oman +Ġv ont +Ġeth nic +EN N +им о +Ġlo b +Ġou i +c s +Ġre he +Ġìł ģ +Ġch ick +ús ica +Ġk ont +ĠDist rict +Ġp ile +Ġа в +ей ÑģÑĤв +Ġ £ +Ġiss ued +Ġком п +Ġpros per +Ġprof ound +ĠDe ar +Ġãģ ĵ +Ġfund ed +Ġb isa +ŀ ĺë +× Ł +ĠìĿ ĺ +Ġtw elve +ĠChamp ions +éĿŀ 常 +Ñģ л +Ġ200 5 +p m +Ġon de +Ġdiff é +ĠCh all +Ġdifficult ies +Ġgar age +Ġd á +ün k +Ġë¬ ¼ +Ġtr an +Ġsubm itted +z w +ÙĪ ا +Ġar k +ĠìĦ ± +Ġgrocer y +он а +i ere +Ġa est +Ġexhib ition +Ġr és +Ġconsist ency +Ġcook ie +н ей +Ġrepl acement +æ² ¹ +ĠS em +ĠìĤ¬ ìļ© +8 00 +Ġgen es +Ġtrans action +ĠE L +Ġdur ante +ib les +ĠE at +t ail +iss ance +Ġto ss +Ġsurv ived +Ġoff ices +Ġsupport ive +Wh ere +Ġtout es +Ġë§ ī +Ġj okes +ier on +ap ers +Ġm ature +ĠM arsh +Ġs ido +k ind +Ġreal mente +ĠChe f +Ġquel que +Ġjud ges +e ft +ER S +Ġj et +Ġpers ons +è » +iz ations +ri k +Ġsh ops +ĠW y +Ġele g +qu è +qu oi +Ġjug a +Ġíķľë ²Ī +ĠQuest ion +ĠGlo bal +Ġìķ½ ê°Ħ +ĠSt ation +æİ ¥ +ĠOh io +Ġstick y +Ġst ressed +Ġg ün +Ġí Ŀ +ÑģÑĤ Ñĥп +é ¡Į +ĠPh D +im mer +Ġment or +Ġinv ented +Ġre un +Ġine vit +Ġpol ÃŃt +Ġexec ute +ĠSt ory +Ġout standing +Ġgu er +ĠR ain +Ġch oses +ĠT it +ĠÑģ еÑĢ +ĠSing apore +ĠN one +Ġch ronic +°ë į° +Ġe go +æł · +ES T +ãģĤ ãĤĬ +ĠW ang +ĠN AT +Ġa ug +Ġdes ktop +Ġetern al +ĠìĤ¬ ìĭ¤ +ĠConst itution +ìĤ ¬ë +×Ļ× ľ +p res +ĠТ Ñĭ +Ġinter f +Ġlist s +Ġfight s +ft en +ĠI owa +Ġmotiv ated +ĠH osp +Ġelse where +Ġpath s +Ġinst ances +B l +r ange +á» ± +ĠS it +man a +Ġìĭľ ìŀij +Ġm ình +ans as +Ġs na +Ġphilos oph +Ġpas se +Æ°á» Ŀi +ak h +ent al +Ġih n +ru ctor +Ġв аÑĪ +Ġgener ous +Ġp ivot +п ол +Ġjam ais +Ġcom ent +ĠL ew +od zi +ĠX box +Ġв од +Ġcons ent +ī ìŀ¥ +Ġdis par +l ass +ĠGovern or +Be ifall +Ġê° ľ +Ġbelo ved +׳ ×ķ +se ll +Ġhon ored +le h +Ġw äre +un ting +Ġfra ud +ĠR AM +ê± ¸ +Ġkill s +Ġeconom ics +0 4 +п еÑĢ +Ġco isas +Ġи гÑĢ +ÃŃ m +Ġmö chte +Ġìµ ľ +Ġstim ul +Ġfast est +l v +Ġg én +ĠS ounds +Ġ19 70 +Ġhome work +spe aking +Ġencour aging +Ġqu ery +Ġre vers +pro fit +Ġd y +Ġìŀ ij +ëĬĶëį° ìļĶ +Ġso ap +ĠG all +ĠC N +ĠAn s +Ġf ic +ank s +Ġdess ert +ĠìłĢ íĿ¬ +ĠM aking +Ġcome ç +ê³ Ħ +Ġassoci ation +D ad +he e +Ġh ogy +Ġap ro +Ġinvis ible +Americ an +í İ +Ġvi be +Ġem issions +Ġadvoc ate +Ġkick ed +Ġ vel +Ġsum mar +Ġfre aking +ch ron +Ġpin ch +Ġwszyst k +isc al +Ġpro ved +Ġmind ful +Ġt ä +Ġno ises +Ġisol ated +Ġcross ed +Ġê° ķ +Ġvo ilÃł +Ġch ore +ĠR A +C om +Ġrelax ed +at ro +Ġpre vention +Voice over +O D +ĠCo vid +Ġsepar ation +Ġ- [ +иÑĩ его +çĻ ¼ +ĠS D +ble ep +Ġindepend ence +Ġpart ial +Ġalgorith ms +ĠAny one +Ġassoci ate +h um +ic ular +Ġb ạn +Ġbatt les +G ood +App lause +Ġbast ante +Ġadv ant +ĠS weet +Ġref used +ãĤ ¸ +ĠÑĤеб е +pl et +Ġencour aged +åĵ ¦ +Ġmir acle +ĠB un +ĠV ar +rim ination +e lect +ĠM ult +Ġdeliver ing +e ing +Ġc m +ne hmen +ĠL ine +Ġë§ Į +en ced +ĠS ound +ĠCont in +ij d +UN G +k le +Ġth reshold +Ġcomp act +ad t +Ġto es +ĠP ur +own ed +ment ed +Ġdes igning +Ġvacc inated +Ġexha ust +Ġbas ics +Ġcons ists +ĠGu y +ac zy +Ġm ÃŃ +w on +å® ³ +Ġ8 5 +æ Ĥ +Ġm um +Ġign or +Ġprint ing +ac ular +p ow +Ġexpand ing +Ġg ir +ĠC ab +íĺ ¸ +ÑĤÑĮ ÑģÑı +ĠìĹ¬ëŁ¬ë ¶Ħ +Ġang les +Ġterm inal +ĠW on +ĠInter esting +Ġcross ing +Ġbond s +Ġpu eden +Ġor b +lar ın +Ġcreep y +Ġnutr ition +Ġall ies +Ġwire less +Ġdes ired +Ġcomp ute +ĠAri zona +ĠBeaut iful +Ġprodu ces +Ġnuest ro +t ed +Ġel igible +ĠÑģ оз +ic ial +ĠH ero +Ġcons ume +Ġrob ots +Ġpurch ased +c ción +Ġ iz +ượ c +ίν αι +ĠØ£ ÙĨ +Ġshad ows +ĠMed ia +Ġprin cess +Ġk lar +Ġwood en +Ġus ar +Ġg üzel +Ġsl ot +r ade +Ġë Ĵ +Ġhar mon +Ġingred ient +ors hip +ek i +Ġgrand father +Ġexcit ement +Ġpolit icians +.. ! +Ġout s +Ġsepar ately +ĠÑı к +ĠW elt +ĠP ow +j an +Ġorient ation +åı ĭ +L C +age m +ÛĮ Úº +åIJ Ĺ +Ġbran ches +ad en +rent e +ĠI hr +as m +Ġest ão +ĠN ic +Ġsla ve +Ġcomp ress +c rowd +Ġclim bing +ĠMan agement +ĠB ah +Ġpan ic +Ġk or +Ġcool ing +Ġb ind +Ġз ад +Ġr ack +Ġent it +Ġs ends +Ġyour selves +d es +ĠMuslim s +Ġí ļ +ism a +cy cle +un kt +ĠC ore +Ġinj uries +Ġident ical +ка Ñı +ĠDeutsch land +Ġе е +is an +Ġtr uc +let on +Ġback up +Ġult ra +Ġab und +ille urs +Ġby ÅĤo +åħ ĥ +ort ed +Ġearth qu +Ġк л +Ġobs ervation +Ġmainten ant +el en +Ġsett led +Ġp ela +ĠE conom +Ġ Õ +Ġste ering +ĠAL L +ĠC her +Ġpat ience +ĠS now +Ġb or +Ġworth y +Ġcá i +Ġ× § +Ġκ α +d og +ĠK aren +ill es +Î ² +Ġagric ulture +×ķ× Ł +ĠSe an +Ġsens ors +íķ ´ë +ag h +Ġpublic ly +Ġpe ux +ĠAlex ander +Ġprior it +Ġla zy +ard on +atter ing +Ġcost ume +س ت +è¿ ĺ +Ġun w +Ð Ľ +Ġthick ness +qu ito +g unt +ist as +ne ys +ĠëIJĺ ê²Į +ĠBr asil +Ġto ken +Ġaff ili +l on +Ġf Ã¥r +ĠBe ach +Ġw itch +ĠSe ven +Ġp ant +λ λ +Ġcapt ain +å Ŀ +Ġve ut +Ġpou voir +ac z +ĠBar b +Ġut ility +Ġcontempor ary +Ġobt ained +Ġpainting s +e ar +Ġpe an +ĠO g +Ġc ust +л ем +Ĥ ĺë +ĠIs so +Ġac onte +ĠTe le +ĠAss istant +à ī +íĸĪ ìĬµëĭĪëĭ¤ +Ġcount s +Ġbu ck +ĠDe ep +Ġtack le +Ġh arsh +Ġdec ides +éĹ ľ +. âĢĭ +éĤ Ĭ +ĠAng el +Ġlay ing +Ġcal ories +Ġcontro lling +Ġadvant ages +ĠÑįÑĤ ой +Ġappro aching +Ġthreat s +ak an +em atic +m ann +ê³ µ +m umbles +ac ió +Ġmaint aining +Ġfound er +l ah +f ight +Ġadm itted +âĢ¦ . +ķ Į +ab ol +Ġus age +Ġn onsense +ĠPal est +Ġcont re +ĠDemocr atic +ĠE R +j ekt +Ġar bit +Ġг ол +ĠMich elle +ich er +es h +ĠP ho +к ом +4 9 +ĠEner gy +ο Ïį +Ġc ents +Ġref ers +Ġg ospel +ĠSh a +ĠSh are +×Ļ× ł +Ġclin ic +ĠëĦ £ +Ġequ ality +ug s +Ġsh ed +Ġplan es +Ġtout e +re ck +Ġstra nd +Ġbi ology +Ġle ague +ĠP ok +Ġnúmer o +ĠCo ast +Ġconsist ently +Ġnuc le +OO OO +Ġob jet +Ġch or +Ġg inger +Ġd abei +Ġcoop eration +à¯į . +nt en +ç ¤ +l Ãł +ìĸ ij +r ado +Ġpass ive +Ġglo ves +Ġunder ground +Ġlog ical +Ġk et +Ġfunction ality +¸ë ¦¬ +Ġport al +ell er +×Ļ× ¨ +ĠT ed +ĠG re +IJ ľ +Ġperson nel +Ġemer ging +ĠF ür +Ġmeant ime +usal em +ĠC lear +Ġtra pped +Ġìļ ° +Ġdis pl +Ġmet tre +Ġmun icip +Ġwithd raw +Ġsp at +un es +Ġaccess ibility +æĪij 们 +Ġap are +Ġpros pect +Ġн аз +Ġcop per +ĠP RO +Ïħ ÏĦ +Ġattack ing +ĠV in +ĠSt one +Ġinvestig ate +st yle +ĠÎ » +ë ¡Ŀ +ë§ Ī +Ġins pect +Ġli ver +ал иÑģÑĮ +Ġser a +hal ten +em an +Ġmin istry +' ' +Ġd ots +ãħĭãħĭ ãħĭãħĭ +Ñĥ ÑģÑĤ +ĠJ ak +AK E +Ġg aps +uck er +ĠинÑĤеÑĢ еÑģ +ĠEm ily +Ġinter val +Ġt ender +ĠTechn ology +g ame +Ġtri b +ÙĦ ا +ĠDevelop ment +Ùħ ا +Ġwr ist +Ġf ires +Ġtarget ed +ìł IJ +Ġso d +íļ Į +Ġoldu ÄŁ +Ġse asons +vent ions +Ġн его +Ġsomet ime +ли в +n é +Ġt ú +ĠDe us +Ġexec ution +á p +ĠCh ange +ĠInd eed +Ġreg ulation +ĠH ung +é is +Ġwish es +Ġj azz +Ġstruct ural +Ġblow ing +Ġby Äĩ +Ġtherm al +ph ant +ÑĢÑĥ з +ан ÑĤ +ĠP ull +Ġconf usion +нÑĭ ми +Ġscen arios +ìłģ ìľ¼ë¡ľ +Ġд еÑĤ +Ġtatto o +Ġaut re +Ġhe ating +Ġtreat ing +Ġпон им +Ġexc lus +ĠL OL +we ar +ag le +Ġzur ück +Ġr ational +s u +Ġdet er +ĠN ative +à®ķ ள +ach ed +Ġ ãĥ +ĠEnt onces +Ġhor a +ìĿ´ìĹIJ ìļĶ +Ġl ite +à « +Ġsix th +Ġбол ее +act or +Ġpsych ology +çĽ ¸ +Ġdem ands +Ġpe er +Ġnew ly +ĠWW E +Don ald +ĠBo x +Ġp ine +Ġload ing +ĠN ico +Ġs ÅĤ +omm e +AR T +Ġrecru it +Ġbug s +arent s +ĠпÑĢ об +ĠIn side +ipp er +d ramatic +Ġplan ets +ord e +Ġy oga +ch ild +ĠMar ie +Ġãģ Ĥ +ĠB L +Ġfil med +Ġref resh +Ġtomato es +Ġf et +Qu é +Ġ !! +ĠëĤ ´ë +r ine +Ġinteract ive +s al +ann ah +pe z +ç¶ ĵ +Ġunderstand s +ĠTok yo +Ġlibr aries +Ġread er +ij IJ +o z +ĠEnd e +ĠF lo +Ġm ild +Ġpo etry +Ġж ив +æĦ Ľ +Ġbeh ave +Ġdo en +ĠSus an +p age +ra ham +Ġcommunic ations +Ġtun ing +Ġp ac +Ġanx ious +I O +M ark +Ġhi ç +book s +Ġp iss +Ġen abled +achel or +ĠF OR +Ġé c +ĠT R +il st +h at +ĠìĿ Į +Ġty ch +Ġj ar +Ġbuild s +ĠAr gent +Ġinter medi +Ġl ou +Ġa ra +Ġassign ment +Ġcabin et +Ġretire ment +ãģ » +Ġdis abled +ric a +Ġa wards +Ġbo ots +Ġacknow led +Ġth y +Ġêµ ¬ +Ġsy nd +ни й +il ton +Ġprob l +ĠF al +Ġverd ade +Ġ7 00 +ĠLe arning +oc us +Ġpal ace +N ot +t ain +c m +Ġmagn et +inc oln +Ġfig uring +ĠL yn +ĠB oss +ĠV O +Ġdiagn osis +Ġequ ipped +w atch +in os +ad ers +Ġsh elf +Ġorgan is +Ġn od +Ġk ız +pp ers +Ġrest ore +Ġart ic +ĠVo ice +ı yorum +ê² © +Ġspread ing +Ġh ips +Ġw ard +ure au +Ġinter section +6 6 +Ġ3 9 +ç ³ +Ġwait ed +ì ´ +hh hh +Ġd ys +ĠE N +Ġb atch +Ġca f +Ġmark er +大家 好 +or able +ó ria +Ġste pped +Ġcelebr ating +ан а +Ġwor n +ĠF ol +Ġpl a +Ġattempt s +Ġtwe et +Ġr ust +g ence +í Ĩµ +Ġre vel +Ġre cept +en ess +Ġ( ( +ãĥ¼ ãĥ +! âĢĭ +ĠìĨ IJ +Ġinfluen ced +и ж +Ġкон еÑĩно +Ġcolleg es +ion i +Ġs ag +An n +ol ar +Ġexpress ions +Ġsu its +Ġowners hip +el and +pie ce +æĢİ ä¹Ī +Ġdesp ués +Ġt el +Ġins ult +Ġêµ īìŀ¥ +ĠSm all +ĠF R +ok a +ber ries +ĠAnt on +ел Ñı +Ñı Ñģ +Ġval ve +act s +Ġwood s +à® £ +Ġcult iv +Ġf á +ãģ¨ ãģĦãģĨ +Ġche ers +Ġassum ption +Ġfit ness +ÃŃ cul +Ġpod r +Ġwe it +ĠH ind +Ġd ign +Ġз н +Ġsqu ad +Ġdest ro +c ere +sh irt +imm t +eng ers +Ġs ä +k ÅĤad +Ġ ÈĻ +Ġocc as +Ġì¤ Ħ +Ġprocess or +ĠD M +ĠDad dy +Ġsoon er +Ġstraight forward +Ġdepart ments +ĠChr ome +Ġwork place +ĠPy thon +Ġm eng +ĠD AN +ĠI ce +ĠëĪ Ī +ĠG i +Ġh iring +Ġland ed +Ġdemocr atic +ied z +ãģĺ ãĤĥ +Ġse v +ic ia +Ġespe cial +ĠN ous +Ġh ät +Ġb ou +per t +ies z +åij Ģ +Ġv il +ÅĽ li +Ġî n +Ġloss es +éķ · +Ġto ast +Ġreal m +ĠAust in +ĠIn formation +Ġres ume +Ġch ase +Ġsal ary +Ġë¶ Ħ +ли Ñĩ +ĠÑģл ед +ĠFur ther +Ġcar ing +Ġv ig +Ġval or +è¿Ļ 个 +ĠÑĩ а +Ġanalyt ics +Ġglo be +ĠM AN +Ġn el +ìĿ´ì ķ¼ +Ł ¼ +Ġo y +íķĺ ìĦ¸ìļĶ +j en +Ġtrou bles +ah aha +Ġchurch es +u et +Ġmeasure ments +b il +ì ½ +if ully +ин Ñĥ +ĠWil son +¦ ´ +ĠíĮ Į +Ġì° ¨ +Ġp úblic +ĠJer usalem +Ġn ails +Ġsp ine +Ġhe mos +Ġz n +qu is +ĠLe ben +Ġrefer ences +IT H +i per +ĠÑģеб Ñı +ì ģ +ĠW a +st ate +§ Ŀ +åħ ± +ĠGen er +Ġact ress +ĠEn joy +๠ĥ +Ġ× Ĵ +Ġinfect ed +Ġsh aking +Ġn ick +ภ¸ +Ġf ot +Ġaccompl ished +u ke +Ġshe ets +Ġf ence +Ġnurs ing +Ġintrodu cing +Ġfe at +O ne +T O +Ġcl ubs +ĠBru ce +on ge +ch ange +ĠBat man +åı ° +ĠOffic er +Ġhyd ro +Ġsupp lement +Ġc ela +Ġlong est +Ġcompet ing +Ġcon he +g iving +Ġbra ins +Ġlo ans +Ġw age +ĠCl inton +Ġs Äĥ +ane ous +Ġl ord +ÑĢÑĥ ж +Ġqu iz +Ġst iff +ĠL GB +s z +M E +m are +th ere +Ġn är +ĠM and +l ast +Ġd ag +Ġhalf way +ĠB and +Ġëĭ¤ ìĭľ +ĠA ren +Ġi le +P N +ent o +Ġalg um +Ġsoc cer +Ġblock ed +ĠJon athan +Ġse w +ĠTest ament +Ġv ale +Ġbehav i +å§ ĭ +Ġcon na +IC H +Ġaud iences +m l +amm ad +ĠìĤ ´ì +I GH +Ġr aces +em ed +Ġm á»Ļt +à ¯ +Ġover s +Ġdecl ared +Ġs ana +ĠU na +ĠÑĢ е +uck s +Ġp airs +Ġan ge +N e +Ġup s +av y +ø r +ree k +Ġbehav iors +Ġreflect ed +Ġprior ities +Ġcon du +Ġret reat +Ġexp enses +Ġë´ IJ +Ġtri ple +Ġêµīìŀ¥ íŀĪ +ä lt +Ġind igenous +Ġmin ing +Ġaccept able +Ġru in +C A +u ine +Ġpip eline +ct ic +ê t +ĠвÑģ его +Ġb oun +ĠDig ital +ĠBo om +ÑĨ е +Ġл ÑĥÑĩ +Ġas c +ĮĢë ¡ľ +ĠGood bye +Ġrend er +ene z +ar re +ĠTH AT +b our +ic ión +ãĤ Ń +E very +Ġw ires +ĠPar liament +n ung +ate ur +ĠS ave +ĠPh ys +Ġam or +ĠE ve +Ġfr ight +Ġgam ma +Ġmic ros +m itt +ĠC ode +ĠBe y +pl ed +ĠиÑģп олÑĮз +ç Ĺ +ìĥ ī +å¥ ¹ +Ġmon et +ĠJah re +Ġlux ury +Ġde af +Ġbet ray +Ġê² ° +и ки +Ġdefe ated +Ġunder t +Ġwe g +Ġcool er +ãģķ ãĤĵ +iam i +éĤĦ æľī +ĠJess ica +ĠJ oy +Ġsoph istic +ени и +ðĿ ĺ +Ġch ili +ĠTy pe +Ġprote ins +Ġpresent ing +al ia +ìļ ¸ +ĠMaj or +Ġmolec ule +um er +Ġcoll apse +ĠAny ways +ĠMount ain +ant ed +ãĢ IJ +Ġвиде о +æ° ´ +A ud +Ġcon qu +Ġvo ll +Ġkn it +Ġmem br +ĠMark et +Ġd ari +Ġcalcul ated +г и +Ġshrim p +ĠM u +ĠпÑĢ оÑĤ +Ġìĺģ ìĥģ +Ġproduct ivity +Ġcogn itive +ĠHe b +ict ions +ê² ½ +Ġcr é +f ör +Ġpray ing +ash i +ĠT ik +ó r +w en +ÑĮ Ñİ +ix o +Ġ( " +ĠÑĤ ел +Ġìĸ´ëĸ ¤ +ĠпеÑĢ ед +ĠD rive +ãĢ ij +ĠE qu +Ġequilib rium +Ġdescri bes +не е +4 2 +ĠCur rent +y y +Ġabsor b +Ġsold ier +d ers +Ġtestim ony +Ġdec line +ľë ¡ľ +g age +Ġinsp ire +la pping +Ġspin ning +Ġsla very +Ġfac ial +Ġtrad itions +ári os +ĠHosp ital +Ġn est +ĠëĪ Ħ +Ġto i +Ġfe ars +ìħ ¨ +ĠM uh +Ġgradu ation +Ġimpact ed +Ġa unt +ĠLet s +Ġalumin um +Ġdomin ant +ĠDav is +ĠNav y +Ġcom pt +op les +Ġest ava +è ¥ +Ġsc al +Ġpres erve +ĠO pp +Ġpract ically +Ġmagn itude +Ġf itting +Ġcoordin ate +Ġfurn iture +ĠFam il +Ġexplos ion +Ġdocument ary +ĠS cript +Ġport ray +m at +Ġschedul ed +Ġdynam ics +ph y +ak y +ĠU I +C he +Ġcontinu ously +ĠPro v +å° ij +Ñĥ з +ra h +Ġger ne +pro of +Ġsecret ary +ĠPat reon +sc ream +ĠK ids +á»ĵ i +Ġk g +Ġuncertain ty +Ġк ажд +Ġmit ig +Ġread s +å· ² +ĠR u +Ġpri est +Ġн ед +Ġlimit ations +Ġflo at +6 00 +ĠT oy +ĠJim my +Ġoff ensive +en i +ĠX i +Ġeye br +ĠTur k +Ġaccident ally +Ġoh ne +ĠS aud +9 5 +ĠD utch +ан Ñģ +ĠSe attle +Ġëĵ ± +che ck +k ÄĻ +Ġcontrib utions +Ġbes ide +Ġqu indi +Ġfle w +æĹ ¶ +Ø° ا +ĠL O +Ġwa ist +ĠE V +Ġhol idays +j on +Ġmis under +Ñı н +Ġb out +Ġd imin +Ạ½ +ó l +ĠGr ace +Ġinput s +Ġden y +Ġform ing +ĠB ild +Ġad equ +Ġfol k +Ġreject ed +se mb +Ġfrust rated +op en +ĠBet ter +il on +Ġtow el +Ġdifferent ial +Ġsac red +Ġsa il +éĩ Į +ent imes +Ġgentle man +Ġicon ic +Ġcomp aring +Ġs agt +Ġtext s +Ġgrand ma +Ġroll s +Ġcont ents +ä¸į 好 +оÑģ Ñģ +Ġsusp ension +ro it +¦ ¼ +Ġasse z +Ġd ort +ĠM ath +ĠVict or +ĠJava Script +ä¸į å°į +Ġen han +Å Ļ +ĠB ush +Ġpromot ion +Ġk in +Ġmon sters +ĠColor ado +ĠÎ ² +íķ´ì ļĶ +æŃ £ +iffer ent +Ġn aked +Ġpro d +et ics +ĠW oman +Ġtreat ments +Ġest oy +v é +Ġlif ting +Ġy apt +ĠRo ber +Ġì¹ ľ +Ġsubst itute +ak u +r idge +Ġê± °ë +Ġrespond ed +Ġb é +ĠEngine er +Ġtransfer red +ë ² +Ġha ber +o op +ĠW E +Ġv est +Ġfor ty +ĠD S +Ġ200 4 +Ġco aching +n om +ĠB ab +Ġn ossa +ĠJ ake +Ġg y +Ġde leg +Ġìŀ ł +ĠкÑĢ аÑģ +Ġstand point +Ġdis ad +Ġart work +A d +ill o +ĠÄij ược +ĠPr om +ĠL ib +Ġcritic ism +Ġcontact s +ÑĢ ам +Ġachieve ment +ÐĶ а +Ġdiss ol +ĠVeg as +Ġstream s +ĠK ent +ĠعÙĦ Ùī +Ġrad ius +Ġsu cks +ĠA ch +Ġf i +ou st +ĠлÑİд и +Ġpal ette +ĠH az +ĠAnth ony +Ġtem a +ĠC os +Ġsa fer +α ÏĤ +Ġcont rad +Ġma ior +Ġinfl ation +ĠSil ver +Ġatt ending +íķľ íħĮ +art o +Ġapplaud ing +Ġcomput ing +ĠH at +æ » +k now +mak ers +Ġcon oc +Ġeduc ated +Ġmod ified +Ġinc lusion +ment al +ŀ IJ +is ia +ĠÏĢ οÏħ +Ġa un +ĠIre land +Ġk ö +Ġcompl iance +Ġinsp iring +иÑĤелÑĮ но +Ġdisp os +ì° ¨ +Ġw ip +r ical +raw d +Ġt res +Ġmob il +olut ions +B O +Ġb ounce +Ġassum ed +ĠMed ical +Ġf iscal +Ġng Æ°á»Ŀi +ition ally +Ġst olen +ĠB M +Ġmechanism s +ε ί +Ġqual ified +Ġìŀ IJë +ught ers +ĠH IV +ĠL ots +Ġser vers +Ġcar r +ĠT ogether +Ġattract ed +Ġk r +æĪij æĺ¯ +th ur +in in +ĠH alf +È Ľ +ĠP ap +Ġremind ed +AL L +Ġhel met +Ġbott les +Ġprofess ors +Ġse ine +ÅĤ Äħ +ãĥ ı +Ġê±° ìķ¼ +Ġ×¢ ׾ +f un +ĠB ird +Ġfight er +ĠëĶ °ë +ĠT ool +Ġt in +ino is +ë ¶Ħ +×Ļ× Ł +ĠC AR +åIJ į +irst y +Ġout door +ĠN S +ãħ İ +ff en +Ġl ud +H ello +Ġroll er +ie le +ĠPol and +Ġap a +ex p +Ġcertific ate +ĠT own +аÑİÑĤ ÑģÑı +ild e +Ġdeterm in +P R +Ġfree ze +Ġmain stream +Ġobject ives +b lo +Ġtak ie +åĵĪ åĵĪ +Ġë°Ķë ¡ľ +el et +ĠI V +ĠF ast +Ġd ere +em p +ĠD ra +ĠìŀĪ ìĹĪ +Ġdisc rimination +Ġε ίναι +ne cess +æ ® +ıģ ı +Ġpost ing +wi ÅĽcie +Ġl ub +Ġol ive +Ġr im +Ġmodel ing +Ġa ño +ĠPak istan +Ġover l +Ġinf lam +N E +ìĹIJ ê²Į +Ġatt ended +Ġdeal t +ĠAl t +ĠL incoln +Ġaw ake +Ġfil ters +ĠWith in +czy wiÅĽcie +Ġs û +ĠJohn ny +Ġintegr ity +Ġisol ation +ĠE asy +ĠпÑĢ ин +ĠAl ice +Ġsm iling +en ix +, ... +Î ¶ +Ġbeg un +Ġjew el +Ġconvention al +Ġstat ist +Ġhand ed +Ġir re +Ġpro hib +Ġsatell ite +é¦ Ļ +ĠInd ust +Ġtra ged +Ġtra va +Ġih m +Ġcru el +ĠAg ora +ĠD oc +Ġz ones +Ġm all +Ġtr ay +×ķ× ł +Ġir rit +Ġk ans +ĠBe at +ud ge +ie lle +Ġtrust ed +Ġb ikes +ĠÑĥ п +ĠM ember +w ick +Ġcreat ors +Ġher itage +ind istinct +Ġres ur +enn en +C ome +Ġf iring +ĠBu eno +ĠТ о +ik an +ett es +Ġk es +Ġtri ps +Ġdivor ce +ĠK l +Ġcons ol +ke ep +기 ê°Ģ +ĠRep ort +Ġhost ing +Ġdiam ond +Ġcompl ic +Ġhel icop +Ġdep uis +d s +ĠCh an +Ñı л +Ġsc issors +il ation +Ġprop ortion +ER E +ĠÙĪ اÙĦ +int a +Ġmuch as +u ation +it is +æĬ Ĭ +Ñı Ñī +Ġni in +Ġemphas ize +uel a +Ġprodu cers +Ġr ze +änd er +ET H +æ º +Ġconst itu +åĽ ½ +Ġperform ances +ist le +go v +ĠL iter +Ġincorpor ate +Ġeduc ate +ĠN in +ì ª½ +Ùĩ Ùħ +el eration +×ķ× ij +Ġya ÅŁ +or ous +ĠC as +Ġgr ants +ëĬ ¥ +am el +Ġê·¸ë łĩê²Į +ĠE ste +Ñħод иÑĤ +ĠпоÑģ ле +Ġg ent +Ġfocus es +al ities +ĠR h +ë ³´ +æ° ij +ĠD ance +r r +Ġam er +Ġutil ize +Ġl ÃŃ +ĠAm ong +Ġpregn ancy +Ġlo ops +ал оÑģÑĮ +ĠM oh +Ġcatch ing +Ġglo b +Ġa jud +Ġ[ ? +ĠAn al +lo oking +Ġsurf aces +Ġprogress ive +Ġvir al +0 8 +Î ¾ +K A +Ġ ży +Ġpick s +ann on +Ġbul k +ĠR oss +Ġdescri bing +ĠG el +Ġloc ally +Ġend less +Ġmass age +Ġclean ed +Ġtravel ed +ен Ñĭ +Ġsent iment +ig ma +ĠN as +Ġchemical s +Ġright eous +ĠMag ic +Ġrel ates +Ġtruck s +Ġ19 60 +åĪ ¥ +Ġapp et +Ġsn acks +ĠSum mer +Ġy üz +Ġpr is +ĠMex ican +Ġtransp aren +Ġminor ity +Ġver te +Ġl assen +4 6 +л ек +é p +ĠÑĦ илÑĮ +Ġi yi +Ġsp an +íķĺ ì§Ģ +Ġind icated +qu ar +Ġscholars hip +ĠLGB T +Ġhistor ically +ó ÅĤ +Ġmin ist +Ġpen et +ĠR ap +Ġcons ervation +çĽ ´ +ĠH oney +ĠBe i +id el +Ġrespons ibilities +Ġmess y +ĠEx cept +OR E +Ġiniti atives +Ġjun ior +Ġdesign ers +Ġexpl oration +Ġspons or +Ġmob ility +Ġint eg +land o +Ġb ark +Ġindic ates +à ¶ +Ġemploy er +å® ī +Ġcous in +Ġbo iling +Ġch rom +Ġç al +Ġper pet +Ġcont ained +Ġpark s +Ð « +ĠEngine ering +P lease +ĠStart ing +her o +Ġlaw yers +è¥ ¿ +Ġz d +Ġfranch ise +ra ge +Ġint uit +ĠG L +re ach +ĠE lle +Ġnh Æ° +ĠN ord +Ġbe an +0 7 +Ġple asant +å½ ĵ +v iron +Ġgrad ient +z us +ĠE M +Ġess ay +ìĹIJ ìļĶ +ế n +n u +á» « +ĠÃī s +Ġden omin +ĠGirl s +Ġperson nes +ĠاÙĦØ £ +b ild +ĠSt at +Ġcompl iment +ĠK ate +Ġoptim al +Ġh id +د ÙĬ +Ġquick er +w all +E n +IN E +?? ? +ì² ´ +ĠA ction +å Ł +Ġpenal ty +ĠK az +' ? +Ġc ried +Ġcan vas +ft e +Ġexc lud +¸ë ¡ľ +Ġemphas is +Ġen zy +ĠH ou +Ġoverse as +ÃŃ amos +å¸ « +ö glich +Ġhead phones +c n +ĠA ge +Ġa kan +Ġcharacter istic +íķĺë ©´ +get s +Ġë¶ Ī +Ġr ival +Ġb orders +em ente +em ás +Ġy ol +Ġcom pe +end ers +ınd an +Ġmö glich +Ġbubb les +nat ural +Ġar med +Ġel abor +ĠìĿ´ë ²Ī +Ġwash ed +οÏħ με +è« ĭ +Ġfl avors +Ġexist e +Ġpre st +ĠThe ma +оп ÑĢоÑģ +er on +U E +er i +Ġconc er +Ġa ixò +åħ © +Ġprotect ive +Ġзна Ñİ +ĠëĤ ł +ĠII I +Ġme er +ĠSh op +ll i +ĠOr der +ĠM Y +ĠG host +ãĤĤ ãģĨ +ad el +Ġst ole +Ġrele asing +ĠCom ment +Ġtra ins +ë ªħ +Ġw issen +ens ed +Ġdesc end +Ġf ier +Ġrad i +Ġpers u +ç ¢ +Ġм н +ĠD est +Ġwor ries +it et +b as +Ġst ab +n ame +or ic +ĠCl ose +Ġalum ni +ĠS elf +ff e +it ating +ather ine +ĠRight s +Ġell os +Ġwar rant +Ġn erve +Ġveget able +ĠTe il +Ġê°Ļ ìĿ´ +R Y +Ġsustain ability +Ġste ht +Ġbr id +ada ÅŁ +Ġt v +Ġdur ation +Ġpesso a +Ġmet rics +Ġad am +c as +аÑĢ и +Ġev ident +Ġdisplay ed +Ø§Ø ¦ +Ġre ck +ĠBudd ha +Ġde le +ĠDie go +os ph +Ġb la +ĠM ik +ul ator +Ġ200 1 +Ġpromot ing +y ch +ĠE X +Ġlast ly +Ġout line +Ġspir its +Ġve ux +Ġsubt ract +ĠÅŁ imdi +Ġp ins +Ġbur ger +Ġmol to +Ġhab ÃŃa +Ġë° ĺ +ig u +er st +Ġn en +Ġbac on +it ious +Ġcar ries +Ġprom ises +nd e +ĠLe ft +ĠL im +æ £ +Ġ4 4 +Ġcare ers +Ġì£ ¼ë +Ġspeed s +qu é +m ad +mark et +is me +Ġ200 3 +Ġre cess +ĠJ UD +Ġrac ist +ĠSch l +Ġpar ler +Ġot ros +ish es +Ġconvert ed +aa aa +ани и +ĠAr k +ĠCh ance +Ġelement ary +ε ν +ink s +Inter viewer +Ġfre ely +al ah +Ġëĭ¤ë ¥¸ +Ġrequest ed +Ġtor que +no ÅĽci +ou red +ĠSt aff +Ġst ain +ĠAl an +Ġv ere +ĠW inter +Ġdef ect +ied y +Ġbe ats +Ġh á +um n +o ons +it udes +Ġse it +o ly +Ġres erv +Ġext r +Ġphys ician +vis or +Ġhand ful +ĠN ations +Ġì¢ĭ ìĿĢ +uc cess +Ġup stairs +ĠSqu are +Ġhe in +ĠSe ason +ol is +Ġpr ince +Ġdef ensive +ç ½ +Ġм еÑģÑĤ +Ñĸ й +Ġا ÙĨ +um ble +ê¹Į ìļĶ +Ġass ass +Ġcirc ular +Ġqual ities +Ġh mm +Ġbl own +ĠL iz +ĠK ur +ĠS A +Ġfind ings +Ġcol ours +Ġde lle +ĠI R +ĠA th +ĠD ub +ĠO x +ĠØ ® +Ġpo ckets +Ġgr ill +Ġswitch ing +Ġprefer red +ĠW ales +Ġex emplo +Ġchop ped +Ġvacc ination +Ġne uro +Ġspec ify +iv os +Ġser á +Ġz ie +Ġà® ® +Ġresult ing +ĠU gh +Ġmess ed +C D +Ġpa ar +Ġcom er +Ġcou ch +ĠFest ival +Ġ4 9 +v ous +z ens +ç¨ ® +ĠKenn edy +ĠT s +Ġë³´ì Ĺ +Ġdemonst ration +Ġun to +Ġfrust rating +Ġlabor atory +Ġe gy +Ġbeaut ifully +Ġìŀ ¬ë +Ġal gu +Ġö yle +ä½ł çľĭ +ĠP H +Ġfort une +Ġclean er +ĠRob in +Ġsa us +ĠG eld +Ġk at +o bs +Ġol ur +Ġm att +Ġquest a +Ġsuggest ion +en cer +о ÑģÑĤ +Ġrad ar +Ġìŀ ¡ +ish a +à® ¨ +ãĤĵ ãģª +j es +Ġve el +ìĤ ° +Ġauth ors +ãĢ İ +pl an +Ġcollabor ative +Ġinst inct +Ġfar ming +au ge +E du +Ġmembers hip +Ġsimult aneously +Ġb ake +Ġk ä +Ġlect ures +Ñĩ еÑģ +Ġprend re +Ġcoll aps +ĠS aya +ĠF ut +Ġy og +ĠR ather +ر ÙĬ +Ġcamp s +ол од +Ġsim ulation +ĠM ak +La ughs +Ġgre y +Ġsent ences +y en +ĠUn less +J e +ĠSat an +ĠÑĤак же +ĠN A +Ġbr on +Ġ? ] +Ġsoul s +Ġlight ning +Ġimag ined +Ġczy li +ps ilon +et ta +Ġbelie ving +Ġstrong est +ĠC ON +Ġquel ques +Ġimmig rants +Ġwall et +éĢĻ æĺ¯ +ĠJer sey +Ġimplic ations +Ġfor b +ãĢ ı +Ġun believable +Ø§Ø ¡ +Ġoper ational +ü s +ĠG M +Ġê·¸ëŁ °ëį° +Ġgrac ias +Ġent end +ĠReg ard +ro b +ĠÑĤ еÑħ +è ı +ĠRev olution +Ġwa ar +ĠB iz +th eless +Ġspons ored +qu ier +ĠìĿ ¼ë +Ġte k +ĠëIJ ł +ig keit +ĠL uck +ĠCertain ly +Ġto ll +Ġн иÑĩего +ĠM oney +ĠÑģ ÑĤоÑĢ +ĠDou ble +ĠW olf +Ġch unk +ά ν +it és +on ing +M ar +Ġgrand es +Ġcollect ions +ĠEurop a +Ġа ÑĢ +ĠâĢĭâĢĭ âĢĭ +Ġê·¸ëŁ¬ë ©´ +Ġоб ÑĬ +Ġãģ ª +Ġìĭľ ê°Ħ +ĠC ustom +Ġì² ĺ +Ñĸ лÑĮ +Ġindivid ually +í Ĺ +Ġdo zen +Ġo we +ĠVict oria +åı¯ èĥ½ +Ġbe et +ur b +Ġanal og +i ção +Ĥ ľ +so ever +Ġmod o +Ġsubscri bed +ìŀ ¬ +Ġent ities +çī ĩ +Ġclos et +Ġrespond ing +Ġprin ter +ĠStep han +Ġby ÅĤ +ĠD om +ĠF ern +ĠP ier +ĠwiÄĻ c +Ġh ence +Ġmod ules +ãĥ ¬ +ĠëĶ ± +ĠDann y +ĠÑģеб е +Ġv ad +ĠìĹ Ħ +Ġs ous +Ġsp here +B Y +ĠP ed +ign ed +Ġwhe at +Ġund ers +Ġevol ve +Ġdec lar +Ġlight ly +Ġident ifying +æĦı æĢĿ +Ġlegend ary +Ġgen uine +Ġgr ind +ĠU ne +ge ben +Ġb icy +Ġjump s +Ġprov ince +zi ÄĻ +Ġ×IJ× ł×Ļ +Ġh oc +Ġб л +ĠGr ad +Ġreven ge +ĠاÙĦ ت +o oh +æĭ ľ +аÑĨи и +å¹ ³ +Ġelect ro +ĠëIJ IJ +ãģ§ ãģ¯ +Ġf als +ri el +ok er +ĠEx cellent +ĠMor gan +Ġbr ick +Ġsubstant ial +Ġpoll ution +ĠT ür +ĠEv et +Ġl ung +ãģ ĸ +×Ļ× © +omm es +Ġreal izing +Ġhum ble +ĠL ock +Ġb od +Ġìĸ ¸ +Ġpe ers +uz z +Ġembed ded +Ġclar o +Ġag greg +Ġemploy ers +ĠR aj +Ġãģ ¨ +ĠY i +Ġje u +at ers +Ġstri kes +n os +aut res +d r +op her +ĠApp arently +íĺ Ħ +Ġinf ant +ا ب +ÑĤ Ñĭ +í Ľ +Ú ¯ +Ġred es +acaÄŁ ım +ĠDA VID +ĠCh icken +Ġperspect ives +Ġview er +Ġsh ar +ĠпÑĢо из +lig t +er os +it able +ил оÑģÑĮ +Ġdif ÃŃ +´ë į° +Ġret ired +Ġthat s +zen ie +be iten +Ġmy cket +ĠR ab +Ġinflam m +ì° ® +Ġd um +Ġdad dy +æľ Ł +Ġimm ers +Ġplay list +௠Ĩ +Ġtra um +Ġref use +st ep +à® ļ +c up +Ġpop s +r imin +ay ım +Ġa ld +Ġun necess +Ġd ah +ĠIr ish +Ġcomp r +la ÅŁ +T P +Ġtransl ated +S c +ce ÄŁim +´ IJ +Ġd rei +ĠлÑİд ей +Ġqu iero +Ġhe le +z lich +Ġapp les +Ġdistrict s +Ġcred its +Ġas p +Ġëĭ ¨ +or al +å½ ± +Ġste pping +ĠV a +Ġg ains +6 5 +Ġnuest ra +ed ay +ass ador +ĠL ind +Ġcrop s +ci endo +ig ue +Ġb ana +A m +Ġp ent +Ġadd iction +Ġpack aging +ä d +ª ¨ +Ġper què +Ġcampaign s +Ġste ep +Ġne ue +Ġembarrass ed +Ġdist inction +it zer +åij Ĭ +Ġregist ration +Ġll am +ĠAlm ighty +li est +Ġu z +n ak +ç º +Ġter az +iam ente +Ġtrans actions +Ġc ôt +Ġswitch ed +Ġcom bo +Ġpray ers +Ġintern ship +Ġaddress es +Ġchar ity +ĠW OO +Ġb ait +è¿ ĩ +Ġ � +Ġf ica +ĠTy ler +ar u +Ġat oms +ĠLe vel +ĠпоÑĤ ом +Ġf ame +ul k +Ġteach es +Ġre build +ед ÑĮ +ĠIndones ia +ush i +ĠSh ort +Ġens uring +f s +e le +Ġmargin al +Ġconclud e +am t +Ġver ify +ĠMc Donald +Ġsk al +Ġrec onst +ĠM ann +Ġbas ement +Ġtransform ed +Ġoccasion ally +z one +ĠD ans +Ġкак ой +Ġdiagn osed +ĠÏĦ α +Ġcomm ands +Ġpresident ial +Ġab b +Ġbrack et +ĠL em +Ã¥ ng +Ġfavor ites +Ġrev ol +ĠíĬ ¹ +Ġhar ass +é ħ +Ġcle ans +st änd +Ġknock ed +Ġpe oples +Ġmusic ians +Ġmut ual +ĠC old +8 8 +ze j +at ie +ĠHon or +Ġobs essed +ĠM USIC +ĠBre ak +ú ng +Ġmod ify +Ġs öyle +Ġ×ŀ ×Ķ +ĠOn line +f o +ĠMill er +Ġlik ing +Ġin hab +Ġgrat itude +ĠJour nal +arn ess +J ohn +ĠG it +åī Ľ +Ġsin cere +ĠS ci +ĠE li +Ġsymbol s +Ġman ually +ε ÏĤ +Ġв Ñĸд +ĠF at +Ġlab els +Ġsophistic ated +ump s +Ġrele ases +Ġ4 7 +ĠO M +ê°Ģ ë +ĠB ien +ĠRe f +è¨ ĺ +ĠSt a +ĠE gg +Ġindic ator +ps on +Ġnas ıl +R ight +Ġcon vey +Ġkn ot +Ġconnect s +ul as +Ġpre ced +Ġine quality +am iento +Ġrep ly +O Y +Ġdism iss +ĠëIJ ľ +çĦ ¡ +ĠÑħоÑĢоÑĪ о +Ġm éd +Ġrandom ly +ĠO nt +u ard +Ġpull s +ĠÑĤ епеÑĢÑĮ +ĠNe ed +ĠSo ft +Ġstrength s +Ġgo ed +um en +æŃ » +Ġíİ ¸ +Ġд об +Ġclar ity +ĠA i +Ġball oon +ĠP and +ĠìķĦ ëĭ +Ġsh iny +Ġsmall est +on ia +h ill +ot ing +Ġe ing +Ġmere ly +Ġse us +Ġн еп +Ġí Ĩµ +Ġgu ides +Ġspecial ist +Ġste ak +ãĤĪ ãģĨ +Ġmig ration +que le +Ġru ined +Ġpu pp +å¥ ³ +Ġk end +ang an +Ġpal m +Ġunf air +Ġz m +ĠD V +ch ester +и Ñİ +Ġo oh +er g +AT H +° © +åĵ ª +r ison +Ġinvol ving +Ġpart ly +anç ais +Ġv ow +Ġprom inent +Ġcry st +ib a +Ġdes erves +Ġover t +Ġsens it +ĠWh e +Ġtight en +Ġintim id +Ġal iment +w ill +Ġstrength en +ĠT an +åı Ī +ãģĹ ãģ¾ãģĻ +on i +ĠM un +Ġpro ph +Ġrehe ars +ĠK le +Ġve ces +Ġwonder ed +ok i +Ġsens es +´ì ĭ +Æ°á» Ľ +ĠÈĻ i +Ġmuch os +Ġwatch es +ortun ate +ĠJ uan +ìŀĸ ìķĦ +ÑĢ е +e i +ion en +Ġexperiment al +Ġda ughters +ภĽ +Ġment ally +bec ca +aw are +ìĦ Ŀ +Ġwhat soever +Ġen ables +ĠL ow +o id +ภĬ +ó d +Ø º +Ġconstruct ed +ĠLad ies +Ġaccus ed +Ġа н +D an +Ġsp awn +Ġcontain ers +Ġart istic +ı p +Ġdisc l +Ġaut res +in as +ĠN ation +Ġn ag +be an +w he +ľë ıĦ +ĠSe oul +Ġíı ¬ +ĠN ich +Ġcomp lement +Ġinter ven +ĠMod el +ĠOr ange +nam on +Ġcalcul ation +se e +Ġusted es +Ġle b +Ġdo ct +Ñĸ н +Ġf oster +Ġel astic +ĠAh h +Ġa ce +ĠP ink +ĠJ eg +Ġde er +ãģĹ ãģĦ +s is +Ġjak o +ĠEm ma +ÑģÑĤв енно +Ġport rait +Ġmak er +Ġa ument +ÑĢ об +Ġairpl ane +Ġtransparen cy +Ġadjust ment +ĠCD C +ç on +Ġupload ed +Ġд ейÑģÑĤв +Ġго ÑĤов +Ġit er +Ġcur se +ô n +mer ce +ar an +Ġle ak +çµ IJ +Ġabs ence +Ñģ кий +Ġread ers +al er +Ġbene ath +ang o +h etic +Ġfin ns +Ġpo op +Ġdu plic +H i +ig s +olog ically +op p +Ġd izer +ĠAll en +Ġgl i +Ġacc eleration +Ġvit amin +ãĥ Ń +v ä +ĠAc cess +à® Ļ +r ás +Ġappreci ated +Ġn ah +Ġpos ter +Ġt ale +Ġhighlight ed +æĸ ĩ +ż eli +Ġblock chain +Ġmic row +Ġcin ema +ĠCh ang +ĠSe arch +ust ers +ĠZ ero +ĠDiv ision +ÑĢ аÑģ +Ġsca re +Ġj elly +ĠAdminist ration +S O +Ġl ined +Ġê° Ħ +Ġge ben +Ġso da +Ġwin ners +³ ¼ +Ù Ĵ +ĠAm b +åķı é¡Į +å Ķ +Ġpe g +å· ± +4 3 +Ġra us +Ġre wards +Ġinc lus +Ġhigh way +Ġha h +Ġmultipl ied +Ġs ẽ +Ġdisci ples +Ġn ing +Ġdress ing +Ġattrib utes +ĠM osc +ĠGree ce +Ġse k +ĠLe arn +Ġj us +rend re +Ġperson ne +pl ete +Ġpl acing +Ġl uego +ill ance +Ġоб Ñī +Ġprov ision +Ġl ion +t ra +bo ards +Ġbehavi our +he y +Ġsubscri ption +Ġprot agon +ãĥ £ +Ġvar a +ĠÅŁ u +Ġha ha +Ġteas poon +æ Ł +av oir +Ġcrypt o +ĠÑģÑĤ аÑĢ +ĠSt ore +ab s +ĠStud ents +Ġla und +int o +Ġapproach ed +° ľ +ÑĥÑİ Ñī +ĠL abor +ot es +iat ric +Ġgro ÃŁ +ut ive +Ġи д +ĠG ib +Ġpl acement +ĠdifÃŃ cil +Ġf rog +ĠвÑģе Ñħ +ĠJ r +az ed +Ñĥ Ñī +Ġê ¼ +fr ame +а еÑĪÑĮ +Ġlock down +åij ³ +Ġmed i +Ġ×Ķ× ŀ× +ени й +em ale +ì¢ ħ +ater al +Ġdist ant +Ġbe ars +Ġjournal ist +è§ £ +ĠMarsh all +ĠIh nen +uet ooth +b ag +ĠÄij ã +ĠHigh ness +Ġì° į +и ка +ĠW u +ĠFr an +Ġp eng +Ġf on +Ġhypothes is +ĠÑĢ Ñĥ +Ġl y +× ļ +ìĽ Ķ +ĠRad io +ภŀ +D av +Ġembarrass ing +ĠìŀĪ ìĸ´ +Ġcast ing +Ġc age +ĠP sych +ĠìĿ¼ ëĭ¨ +ĠÅ ¾ +im b +Ġdirect ors +S H +ĠÏĦη ν +á»ģ u +Ġkon uÅŁ +Ġoption al +quar ters +ik er +ĠS ant +Ġvers es +ë ¶Ģ +Ġo lar +ĠÏ ĩ +ãĥ ķ +Ġγ ια +ĠI mm +Ġcontrovers ial +Ġer sten +Ġreci p +ĠChristian ity +Ġê´ ľ +ord on +×ķ× © +Ġsl ash +ĠP f +Ñĥд ÑĮ +×ķ× Ŀ +ĠPer ry +Ġm amy +Ġbackground s +Ġà®İ ன +Ġpend ant +ĠColumb ia +Ġin verse +ĠÑĩеÑĢ ез +Ġs v +Ġdig ging +4 1 +ch em +Ġnavig ation +ĠSh in +ĠFr ont +P D +Ġbe aring +ĠW asser +Ġw ax +ĠCH RIS +ch ing +Ġpress ed +E l +ĠD al +ons in +Ġb inding +Ñģк ой +po ons +Ġmo ck +are st +к ÑĢа +M M +Ġcor rupt +st orm +Ġref res +ĠCo ach +ll ä +ĠTH IS +Ġpar ag +Ġìĵ ° +p ool +Ġbill ions +Ġê¹ Ģ +gr oup +Ġwel coming +cell ence +ĠDu ke +ê¸ ´ +Ġprim era +ìł ¸ +Ġp ond +Ġstat ue +Ġêµ ¬ë +Ġh atch +Ġinstrument al +Ġresident ial +ì» ¤ +Ġaccept ing +osh i +d ate +ĠìĶ ¨ +Ġplant ed +Ġj oking +Ġì Ħľ +Ġh ated +ĠÑĢаÑģ Ñģк +Ġsle pt +Ġpack ages +Ġisland s +es en +ÄŁ ı +Ġdi agon +ĠO sc +Ġmes h +Ġsc ales +ar ity +ĠDef ense +ãģ¡ ãĤĩ +ĠLew is +ĠÑģ егоднÑı +Ġfl ies +uin ely +ĠCons ider +Ġst ark +he w +ĠAs ÃŃ +³ ´ë +Ġprop ose +Ġíķĺë ©´ +od o +ĠNorm ally +Ġhe eft +ĠHarr is +g ro +ĠBlo od +b ase +Ġi OS +Ġtouch es +Ġinsp ir +Ġ× ĵ +Ġb inary +Ġì¶ Ķ +Ġser ial +Ġ ion +Ġunemploy ment +Ġodd s +ĠF ab +ĠF BI +BR UN +Ġweight s +ν ο +at ile +Ġnurs es +Ġinvolve ment +ĠíĶ ¼ +Ġgovern ance +Ġâ Ĥ¬ +ÑĢÑĥ п +ier ra +íĺ ķ +ĠJ erry +Ġbe ard +Ġsal vation +ĠAl ong +g entle +ĠK i +b ol +ĠPl at +Ġhas ht +è¿ ij +Ġw are +Ġpart ie +y cz +Ġint r +F ih +n ent +Ġche at +il en +Ġë ¯ +or ie +Ġfá cil +et ric +Ġaffect ing +unci ation +Ġaff airs +Ġbe e +Ġview ing +Ġor ang +ĠL an +ĠС ÑĤ +ä¸ ĸ +ĠM es +ĥ ģ +er ie +Ġes pa +Ġinter pre +Ġposs ess +Ġpure ly +rit o +f ound +as ma +ìłģ ìĿ¸ +Ġexam ine +ĠÑĥ м +Ġbes ch +ĠTom orrow +ĠB lock +Ġvari ant +Ġprefer ence +Ġcoach es +Ġmedic ations +Ġíĺ Ħ +Ġemp ire +ë Ħ¤ +ĠIll inois +Ġcris py +Ġth ì +Ġbe es +7 7 +Ġgl ow +è º +ĠStud ies +åIJ Ħ +ĠChall enge +Ġunlike ly +Ð § +ıy orsun +DI E +Ġminim ize +iz ard +Ġú n +Ġencont rar +ĠK ill +å » +Ġvan illa +ĠGr ant +ĠG T +se a +Ġs ought +в од +Ġnä m +ĠA unt +OW N +Ġpump kin +st ellen +Ġr ag +ег да +Ġstory t +Ġfor um +æ© Ł +Ġestab a +uch e +Ġcon gress +ĠRe y +Ġdram atically +ĠSp ort +ĠYe llow +Ġê³Ħ ìĨį +Ġdisg usting +ĠRe cent +Ġacqu ired +Ġc ables +çĶ ļ +d in +Ġv isto +Ġcommunic ating +ÑģÑĤав лÑı +еÑģ ÑĤо +ãĥ»ãĥ» ãĥ» +Ġré g +Ġso cks +Ġpro ces +be cause +Ġut ter +Ġcoloc ar +Ġnew est +Ġgr amm +è¡ ¨ +ä¸į çŁ¥éģĵ +Ġsh ifting +Ġcar rier +ĠÑģк оÑĢ +ĠSch w +Ġexec uted +Ġmaint ained +ĠÏ Ĩ +ĠM oses +Ġdis se +Ġhor r +ãĢ ľ +Ġr ally +Ġall em +ĠEvent ually +Ġdi yor +lv ania +Ġsch nell +Ġê³ ¼ +Ġë§ ¤ +Ġstrugg les +l ate +Ġclar ify +é ment +Ġmulti plic +иб о +Ġjour n +Ġfra gr +Ġsurprising ly +Ġdesper ate +5 2 +Ġs ul +ĠRe ad +ĠF ried +Ġm ond +w oo +Ġorgan izing +ãģĹãĤĩ ãģĨ +ĠSo on +Ġв опÑĢоÑģ +ĠN ur +ĠÐĹ Ð´ +Ġsp ider +е ÑģÑı +Ġtutorial s +Ġnutri ents +or er +Ġcoe fficient +Ġarrange ment +Ġpr icing +n an +y u +B L +Ġtri be +ĠHow ard +un ks +Ġnew er +Ġprov in +Ġpred iction +h os +Ġol sun +ĠAr ound +Ġv ier +ĠÑģÑĤоÑĢ он +Ġv alley +ĠE la +if i +Ġgal axy +Ġtran qu +Ġad vers +ĠTem ple +iff s +ig ence +èĩª å·± +Ġkön nte +ĠÄij ó +D id +Ġphotograph s +ĠA WS +ÑĨи Ñı +Ġgu ards +Ġappoint ed +ĠG il +Ġм ом +Ġc od +ĠUn like +Ġeven ly +isc onsin +Ġest ou +Ġm nie +ĠEx ec +ĠM V +ĠE ine +ä¿ ¡ +ĠRog er +ĠF ac +ĠL ist +Ġf uer +аеÑĤ е +om ed +Ġattract ion +èī ² +Ġter rain +ĠD rop +Ġcorpor ations +Ġsci ences +Ġthr one +ãģĦ ãģŁ +Ġa j +ĠR ot +çī ¹ +Ġsupp orters +ĠB ere +H ere +Ġdifer entes +Ġsignific ance +Ïĥ η +æĪij 覺å¾Ĺ +Ġcl amp +Ġë ĮĢë +Ġfab ulous +re z +æĮ ģ +Ġassum ptions +ut her +w id +p ot +è¿ İ +Ġy an +ul in +ÑĢ Ñĭв +ĠSl ow +ĠPenn sy +Ġíķ ´ìĦľ +Ġme io +Ġwealth y +ĠE ight +Ġpul se +Ġfr iction +id ity +ĠH oll +i yorum +Ġsound ed +ĠC arr +Ġfor k +â ĺ +ĠP A +Ġcons pir +Ġc oding +r t +ĠTy p +Ġìĸ ij +Ġп ог +Ġmis er +ĠÑģм оÑĤÑĢ +ĠSw eden +Ġolar ak +ĠZh ang +ĠCh i +ĠT itan +Ġscreen ing +ĠSp ider +ĠÅŀ imdi +Ġobst acles +lar a +Ġchalleng ed +p se +T ON +á» ¥ +ĠP i +Ġlag i +ie urs +Ġhur ting +Ġneg lect +Ġgener ating +Ġyoung est +Ġaud it +ĠÑĢ ез +Ïģ ά +Ġdon ate +ĠPD F +Ġvis its +Ġcru ise +P P +as er +Ġw sp +back s +iv als +ãģĨ ãĤĵ +Ġde ve +Ġprop ort +Ġc ath +ĠE ffect +Ġwind s +ĠìĻ Ķ +Ġchart s +Ġs ama +Ġautom ation +Ġпок а +Ġol an +Ġbo ats +Ġca fe +Ġden ied +ĠM ama +Ġblock ing +ĠTh or +Ġphenomen al +Ġstake holders +Ġun os +Ñĥ еÑĤ +ĠAb raham +ãģ§ ãĤĤ +Ġdetect ion +Ġjur is +Ġpower ed +z ial +Ġwel fare +Ġup grad +Ġmoż na +ĠC ase +c ular +Ķ ìĿ´ +ãĥ ģ +ĠGu ess +Ġcy cles +ä¾ ĭ +çµ ¦ +ro ck +um i +Ġel ite +Ġqu è +åł ± +ÑĤ ом +Ġsh ore +gun ta +Ġk u +Ġfaith ful +ĠJ eremy +a id +à · +ug al +å°į åķĬ +ĠV el +Ġvra i +st ell +¨ ¸ +Ġk ol +è ½ +Ġquant o +Ġз аÑĢ +Ġ200 2 +es y +Ġres erve +Ġмом енÑĤ +Ġdeploy ed +Ġdefin ing +Ġsa u +Ġga at +" ) +Ġtrans mit +Ġpubl ishing +Ġrank ing +Ġoff ense +Ġ4 6 +p in +ĠT aking +Ġentit led +Ġgen uinely +Ġvari ations +Ġfind e +Ġt au +Ġunf ortunate +ĠR ah +port s +Ġc Å +Ġmon key +Ġbr ac +we i +l ung +Ġart if +Ġsy rup +ĠÐĶ ав +Ġlift ed +Ġche z +ĠAd vent +ĠSt ock +Ġdo l +м ен +иÑĪ ÑĮ +Ġy n +g io +d et +Ġdes se +Ġg ri +ĠChair man +ç ħ +Ġcu enta +an im +Ġcra b +Ġesc al +Ġpremi ère +ĠGe f +Ġd ining +Ġsevent h +Ġch asing +ĠT ower +Ġbrut al +Ġfundament ally +ãģ¨ ãģĨ +л ениÑı +st age +Ġacqu is +Ġcyl inder +Ġcomm ander +m em +ĠU V +ha ppy +Ġe psilon +Ġinv itation +Ġfar mer +ch air +Ġdest iny +Ġso vere +ĠHeb rew +Ġserv ant +Ġbe w +Ġg ast +ut ies +Ġadministr ative +ĠComm and +é ta +Ġnit rogen +ê· ¼ +Ġab i +Ġvill ain +Ġblank et +ĠS end +Ġbeat en +² Ħ +Ġvol unt +Ġschol ar +ĠEm peror +Ġ4 3 +v able +ĠD us +ĠG U +Ġtarget ing +ww w +Ġamend ment +ìĨ Įë +Ġt ing +Ġn asty +Ġg auge +ĠÑĢ од +ĠH ans +Y our +α ν +Ġpro jet +ĠHawai i +Ġsusp icious +Ġsch w +Ġremo val +Ġint rig +ĠM U +Ġp onto +ठ¾ +Ġоб ÑĢаз +Ġguess ing +p ace +Ġm others +Ġmill imeter +л ение +没 æľī +Ġavail ability +ic z +æŃ ¤ +Ġfr act +Ġbas es +k m +ĠB TS +ĠF ield +Ġd zie +Ġseg undo +ĠëĤĺ ëĬĶ +Ġlegit imate +im as +Ġв н +Ġcor ruption +Ġsm ash +ĠVal ent +Ġalign ed +ĠPennsy lvania +Ġg ab +ĠE un +ent h +ĠMor ning +Ġcand le +Ġback pack +ĠIslam ic +a ções +Ġenc ry +Ġmushroom s +íĮ Į +d it +Ġtrans it +ĠW isconsin +Ġparticip ated +ĠIl s +Ġunf old +¶ Ģë +Ġprof its +Ġwar ming +ĠG ang +Ġnetwork ing +Ġme ga +Ġthorough ly +le ments +ĠH m +Ġdec iding +Ġemotion ally +Ġexha usted +ĠÐŁ оÑĤ +c ido +ĠHT ML +Ġcopy right +Ġmel ody +y im +Ġand ers +osh op +Ġë³ ¼ +Ġathlet e +ĠG E +Ġfrequ ent +Ġdes ires +Ġneed ing +ĠY un +Ġrif le +Ġlo ver +' T +Ġd ense +Ġt ão +Ġnot ified +Ġid i +ìĹ Ń +í Ĩ +Ġinteract ing +Ġrapp ort +еÑĢ и +s ki +Ġb esser +Ġmanufact urer +ĠK yle +Ġaccount able +ĠS ak +ĠP il +ĠD omin +Ġpres um +ĠÐĴÑģ е +Ġvine gar +Ġguarante ed +çľĭ åĪ° +Ġhand led +éŁ ³ +c at +Ġcivil ization +Ġaccom p +ĠV M +é mon +Ġde ze +Ġgrad es +Ġsoll te +Ġst aring +×IJ× ª +ar nt +Ġhoriz on +Ġtrav ail +h our +第 ä¸Ģ +ĠE D +ĠD ak +Ġn y +Ġcon ve +ĠCh am +Ġfir ms +ĠL iu +ĠÑģÑĤ ÑĢан +Ġli bert +Ġlens es +Ġint ake +ĠвÑĭ б +Ġmens en +h el +Ġpract ition +Ġ3 50 +ãĤ ³ +F O +Ġbed s +Ġancest ors +ĠìĹĦ ì²Ń +Ġdistur b +ĠLast ly +ĠSupp ort +ี à¹ī +ĠCor ona +Ġenthus i +Ġвоз м +ĠìĤ¬ëŀ Įë +Ġ5 2 +b ird +Ġredu ces +ĠìŀĪ ìĿĦ +ĠG ene +êµ IJ +ÄĻ p +ĠÃľ ber +Ġconcer ning +us er +Ġconcent rate +ĠWH AT +ish op +onym ous +no ld +Ġsuggest ing +© ° +ĠF ish +.... .... +Ġvess el +Ġtrabaj o +ãģ µ +ĠO cean +å§ IJ +y g +Ġtown s +d el +Ġterr ifying +Ġçal Ä±ÅŁ +Ġs ino +Ġe ats +Ġge z +Ġg eme +ĠìĻ Ħ +Ġcomp art +Ġimplement ing +ĠPot ter +ĠGerm ans +Ġg ÅĤ +Ġt ennis +Ġcar pet +au er +ĠSaud i +ye ong +Ġcur ry +ĠFore st +Ñĭ л +Ġfif teen +Ġbol ts +Ġ{ \ +¬ ´ +Ġsett lement +Ġl ange +Ġb am +G et +íķ Ļ +Ġsw ap +ĠK han +Ġcomm ence +Ġquar antine +Ġsc ored +ç ĸ +Ġ19 50 +Ġthick er +Ġsû r +åı £ +ĠLar ry +Ġall ez +ìĭľ ëĬĶ +Ġg ü +Ġspect acular +/ / +b oth +Ġst ats +å¦ ³ +ĠN ancy +Ġbun u +Ġcr ust +Ġactiv ated +Ġê·¸ë ŀ +out he +Ġport s +Ġne ural +Ġj aw +Ġobserv ations +Ġvo it +ab an +ả i +¦¬ë ¥¼ +om es +௠ĭ +qu i +Ġkind ness +Ð ij +Ġ4 1 +Ġmoder ate +Ġang els +ĠT amb +è t +Ġch lor +ĠBill y +ì² ĺë +ac on +Ġselect ing +ĠDel ta +Ġn ull +den ly +Ġci ud +Ġtend ency +Ġbreak down +Ġm int +ÑĦ оÑĢм +or ph +Ġda wn +s pr +ĠW ILL +äch lich +Ġpu ppy +7 00 +Ġà® ¤ +Ġfail s +ĠCon c +Ġrel atives +Ġinv iting +Ġaut onom +Ġcomp osed +Ġun ity +Ġdec is +Ġaccess ories +ĠC ass +Ġb ist +ĠT ip +ì§ ¸ +Ġp unt +Ġr áp +éĢ ² +AN K +ãģ ļ +ex ist +Ġcompat ible +Ġn er +Ġе мÑĥ +Ġa plic +Ġb apt +Ġfail ing +ĠTam am +Ġos cill +Ġletz ten +Ġrepeated ly +Ġjung le +ĠP ush +h ai +ĠÎ · +Ġdead ly +Ñı ж +wi Äħ +ĠComm on +ĠÎ ķ +Ġsk ate +T C +ĠMin i +Ġhob by +ầ n +Ġrout es +Ġam igos +Ġcon jun +Ġpartners hips +Ġno vo +Ġa ver +Ġpou vez +br idge +Ġpre oc +h im +Ġtur b +Ġso b +ĠSn ap +Ġì° ¸ +min ute +Ġtra ject +uj ÄĻ +Ġe ager +Ġregul atory +Ġbank ing +b ling +ÑĪ ÑĮ +a ż +Ġbiz arre +it ated +d ire +Ġthreat ened +Ġsh ining +Ġn esse +Ġcor ps +ĠÑģ Ñĥ +Ġt eles +Ġtem p +t em +Ġк ан +Ġfe ver +N ew +Ġheav ier +ĠS ah +b ud +Ġout ros +Ġì° ¾ +Ġëª ħ +arr ing +Ġê´ľ ì°® +ĠN ap +Ġse min +ĠTh an +if s +Ġdes en +ĠÑĤак ое +Ġlos es +ĠB alt +k on +Ġнап ÑĢ +Ġvo is +ĠMosc ow +Ġch airs +h is +Ġrefuge es +k g +Ġk ole +į ¨ +аÑģ ибо +¦ ½ +ĠUn iverse +ĠDire ct +Ġche ating +ĠC in +Ġpat ri +Ġadv ise +ĠN ether +Ġprime iro +Ġmention ing +n ut +5 6 +ar ı +Ġpet ite +b led +Ġpens ar +ic io +IN D +Ġveter an +Ġlad der +Ġconsequ ence +ож ал +ĠB urn +Ġr ug +ĠM ade +Ġg it +" ... +Ġcompet itors +Ġprz ed +Ġapp arent +ĠArgent ina +ĠWork ing +Ġcollabor ate +w oman +Ġret ain +Ġle urs +Ġdash board +×Ļ× ĵ +ĠEar ly +B M +Ġе Ñij +ол ог +Ġsatisf ying +Ġoft entimes +Ġma pping +ünk ü +ar th +f old +Ġlaunch ing +Ġa ura +Ġprec ision +work s +G od +Ġstra p +ĠIm per +Ġr ivers +Ġ | +Ġcu er +reg on +Ġarri val +ка Ñħ +ĠM iami +ан Ñĭ +Ġsurviv ors +ĠSen ior +Dav id +Ġest ado +Ġse ctors +Ġpop ping +Ġch im +ay ı +Ġkun nen +Ġgall ery +Ġsun light +ese hen +Ġye lling +ĠMe in +ĠPho enix +Ġman o +Ġhistor ia +Ġoccur ring +æ¬ ¸ +ì ¸ +ад и +å¾ ħ +Ġinstitution al +ĠT ut +ç ² +Ġsl aves +ãģ© ãģĨ +Ġforg iveness +Ġtw in +ĠHy un +н ÑĮ +ĠK omm +and ra +sh ot +ss ä +ĠÑĨ е +at ta +Ġexp ense +ĠG PU +ĠP ast +rib ly +ĠëŃIJ ìķ¼ +Ġгод а +Ġresp ir +æĿ ± +ĠQue ens +h ops +Ġs érie +Ġpre f +Ġcom ed +Ġpl ut +ĠOver all +Ġãģ Ŀ +Ġc ush +Ġring ing +Ġincor rect +ĠÑģÑĤ ÑĢ +Ġgeomet ry +Ġadvert is +ĠÐ ¨ +Ġreview ed +ãģĤ ãģĤ +Ġdo zens +Ġdeterm ination +ĠPh ill +Ġcontrib uted +ĠC it +Ġpass engers +Ġcôt é +Ġre ver +Ġtechn ological +Ġall en +Ġr aining +av i +Ġsal ty +Ġtyp ing +ĠÑĤ е +Ġt ilt +Ġì¹ ĺ +Ġо ÑĢ +ĠпÑĢ Ñıм +Ġr ou +Ġare na +ar at +åĪ « +HH HH +Ġmanufact urers +ĠEd ward +Ġt uck +Ġbl ows +ing o +ĠMar c +ìķĦ ìĦľ +M ich +ĠCle an +è ´ +est o +ĠP ack +Ġsha ft +BRUN O +Ġa ven +u ur +Ñģк олÑĮко +ê´ Ģ +Ġautom ated +Ġvent ure +Ġsurve illance +ĠG row +ĠE mer +Ġд оÑĢ +Ġinvest or +ĠY ok +Ġl atter +ĠN I +Ġfunction ing +ĠHam ilton +Ġ5 1 +Ġmurder ed +Ġanch or +Ġc uc +ĠSC P +ĠMad am +Ġconstra ints +Ġb arn +ank en +Ġë§İ ìĿĢ +ĠMot or +ĠDo ing +Ġam en +et ts +Ġinst ructor +eg t +ak o +Ġpost ure +iv ia +ĠPol ish +Ġдв а +Ġcolor ful +Ġel bow +Ġpar le +Ġpass er +Ġcond em +ort al +Ġfert il +ا د +ĠCol omb +Ġalign ment +Ġastron aut +ĠM ut +Ġsal mon +Ġstructure d +ŀ ר +Ġclick s +Ġm iej +æĶ ¿ +ãģĦ ãĤĦ +ĠR ound +Ġrain bow +ĠV A +ãģĶ ãģĸ +ì§ Ī +ot z +, +Ġch ords +ĠSand ers +Ġë¶ Ħë +B en +Ġdar über +ili ans +Ġorder ing +ĠMan h +Ġkil ogram +Ġkar ÅŁ +Ġgr asp +Ġghost s +al en +ĠJ edi +Ġб ли +Ġdownload ed +Ġconduct ing +ĠH ak +Ġresearch er +il an +go od +ĠH annah +ĠdÃ¼ÅŁ ün +ĠMess iah +u ity +ion a +Ġprob able +ĠY E +Ġindepend ently +Ġbuff er +b urn +our d +ĠMc K +Ġl ingu +uj emy +еÑĢ ÑĤ +Ġintuit ive +Ġcrack s +app ropri +nt y +Ġge en +Ġl end +Ġcert ification +ID S +un ter +pe es +Ġtr ump +Ġbank rupt +Ġfe as +è Ĺ +Ġdu ż +æ¸ ħ +Ġvirus es +Ġ5 8 +g od +Ġж ел +Ġst alk +I nd +ach i +ĠC F +ĠC ond +Ġsan ct +Ġcont en +Ġfre ed +ĠR T +Ġment ors +ì¡ ± +Ġport able +ĠPaul o +r ane +HA HA +ĠS ection +ç Ĩ +hy un +ĠÎŃ Ïĩ +ĠP ub +ĠInd epend +Ġcomp ounds +ĠÑģ Ñĭ +Ġmess aging +Ġded ication +Ġnot icing +Ġdevot ed +ÑİÑĤ ÑģÑı +Ġsn akes +Ġbattle field +p ers +Ġdel a +9 2 +Ġha i +ill ä +ér er +e very +Ġrespons ive +×Ļ ×ķ +op f +é ī +Ĭ ¸ +Be cause +Ġtour ism +Ġê·¸ ê²Į +×ķ× ¦ +Ġcan s +st üt +Ġdon ne +ĠD ios +ĠU ber +act ory +Ġorient ed +ĠH erm +Ġpat ron +ur f +be i +Ġprogram a +ĠOh h +gen er +Ġf ist +ĠW endy +Ġand a +Ġguess ed +Ġfre ak +ä¸Ń åľĭ +ĠK ings +ch ool +Ġoff line +ĠIndian a +ĠAll iance +Ġ5 3 +Ġpartic ul +ĠF ocus +Ġinhab it +Ġê°ĻìĿĢ ëį° +ĠMc G +ows ki +ĠìĿ´ ê±´ +Ġpa ÅĦst +он и +itt a +Ġconfirm ation +ĠBrook lyn +Ġnood le +f und +it ud +Ġgrand parents +Ġbar becue +ει ÏĤ +Ġ á +Ġball ot +ĠV eter +Ġpip es +ig ious +ĠG raph +est ed +Ġë¸ Įë +ĠK E +ãģ¡ãĤĩ ãģ£ãģ¨ +Ġe ins +Ġhat red +ãģij ãģ© +Ġd ang +ee ee +Ġarch ae +ĠJes se +Ġdetect ed +Ġsen i +burg h +Ġdispl acement +Ġdo p +Ġcondition ing +Ġне ÑģколÑĮко +Ġdistur bing +P H +Ġthin ner +Ġwound ed +ĠCu ando +Ġcush ion +Ġwh ites +Ġprefer ences +Ġì¤Ģë ¹Ħ +Ġka ż +ĠG ate +ĠP ath +d les +à¸Ħ ร +im ore +Ġë³´ìĹ ¬ +Ġdiscipl ines +á» ı +Ġmes ma +Ġìĥ Īë +Ġìĭ ¬ +Ġg ing +Ġumbre lla +IGH T +Ġp ension +Ġcomb ining +S S +Ġrect angle +á»ĩ t +Ġpro xim +ĠC ow +¸ Į +Ġintention al +æķ Ļ +Ġdec id +ĠÑģк аж +ĠU ma +ias m +b uz +Ġdebr is +Ġc ass +ĠP rop +is ka +ë ł¥ +ester ol +uss ian +ìĿ´ë ŀij +Ġun limited +Ġadm ire +Ġtight ly +Ġgen ome +ĠJun ior +ven ir +g us +Ġc Äĥ +ĠV lad +Ġí Ĥ +Ġrel ativ +in ci +Ġaun que +ĠBo ys +ÑĨи он +ĠSw iss +Ġphys icians +Ġíı ī +ĠP ET +Ġw ounds +ab out +Ãł i +on z +ur ities +ĠÑĥв ид +å· ¦ +Ġment ality +Ġvari ance +Ġseg unda +Ġvol cano +al ie +ॠĩ +Ġt iles +ĠT erry +ĠاÙĦÙĦ Ùĩ +Ġcan on +Ġsc attered +pt on +Ġdefin itions +Ġal gebra +ot en +ab lo +ij uana +Ġwra pping +Ġses ame +ĠнаÑĩ ина +ĠAl f +ĠÐł оÑģÑģ +or no +Ġan kle +Ġspecial ty +Ġattempt ing +ili ation +Ġ19 20 +Ġphen omena +ĠPro duct +ĠB uck +ĠA ww +se en +Ġvo id +ĠFrank lin +Ġadvoc acy +ĠS ep +Ġcool est +ĠÑģ ÑĢазÑĥ +ĠQu and +Ġ9 00 +ĠTr ad +d ies +Ġhas h +æĪij å°± +ä¹Ł æĺ¯ +Ġpot s +Ġsad ly +Ġvi able +ĠT iger +ĠON E +Ġneur ons +ow anie +Ä Ĺ +ĠSh ar +ĠLand es +Ġconfer ences +è© ² +Ġcred ential +Ġl ime +ine e +x it +p ay +Ġinc ons +Ġ>> : +èª į +Ġí ŀĺë +Ġless er +Ġsp ill +Ġprem ise +Ġ36 5 +ĠH ost +Ġtom ar +×IJ× ľ +ë ²Ī +ĠWhat s +Ġlight weight +ĠM ap +f ia +ells chaft +Ġvend ors +uest o +ĠM ister +ĠÐŁ ÑĢи +åı ³ +h ma +Ġintention ally +ĠT ang +éĹ ® +Ġident ification +Ġetc etera +ĠN ee +ĠÑĤ ÑĢи +ê· ¸ +Ġcrypt ocur +Ġin hale +Ġadd ict +åIJĦ ä½į +Ġma u +ĠÑĤак аÑı +Ġë² Ħ +Ġcomp rar +ied zieÄĩ +ĠоÑĤ но +Ġbegin ner +Ġм Ñĥж +Ġobs c +Ġlim iting +asc ular +Ġins pection +ac i +Ġre jo +M us +Ġz aten +Ġsz cz +ĠMad rid +Ġvar ieties +Ġest Ãł +ĠSh akes +Ġk its +Ġad minister +Ġla va +Ġg Ã¥ +è© ¦ +ת ×Ļ +ĠWay ne +Ġinst agram +Ġr ated +p aper +Ġb ild +Ġpret ending +Ġobser ving +ĠÑģам ом +Ġtr or +Ġorgan isms +Ġfal ta +Ġh ometown +ç ± +Ġí ĭ +Ġche g +Ġì ¡ +Ġcomm a +is é +Ġlike lihood +av ored +Ġgel di +ни ков +Ġmed io +Ġjak ie +ĠJ up +Ġgreen house +Ġsp it +ко е +Ġк аж +ĠG ram +ĠCon ference +Ġdef icit +s ın +in se +u ÄŁ +Ġr icht +Ġcoinc idence +åı į +Ġeu rop +Ġbutter fly +p read +Ġìĸ ¼ +èĢ ¶ +Ġwa vel +ĠIn fin +ĠPlan et +Ġself ie +ient ras +Ġar rog +os er +id al +ł×Š׳×ķ +üt ün +Ġfresh man +ĠMach ine +Ïĥ ÏĦ +ĠD ia +ìĿ´ ëĭ¤ +ãģĵ ãģĨ +ne a +Ġlist ing +Ġconfig ure +ut or +U p +ts chaft +ri ère +Ġup wards +ĠÑħоÑĩ Ñĥ +Ġswe ep +B r +Ġexpress ing +Ġun happy +Ġmand atory +g ender +ĠA ÃŃ +Ġindic ators +Ġoil s +n ote +Ġseg ur +ож еÑĤ +yn asty +Ġdist ances +Ġmer ge +BER T +Ġsur render +Ġbu at +ĠA wards +Ġseñ or +od ox +Ġfl avour +Ġab dom +Ġconfig ur +8 6 +ĠDI Y +Ġrig id +° ĺ +Ġcorpor ation +Ġg room +j aw +ĠNe ar +ил о +Ġoper a +ĠIn nov +и ÑĢа +ĵ ± +Ġspec ified +Ġcos m +ĠFre edom +Ġcl own +ĠN em +Ġв ол +Ñij н +Ġchar ger +à¹ģ ล +Ġinflu ential +äs ident +é ¤ +ĠìĦ łë +Ġvol umes +æ IJ +Ġout ras +ĠTw itch +Ġfound ing +Ġa while +Ġco il +ê° Ļ +Ġc ả +ĠTh row +ĠH ence +omm t +ĠBen jamin +глÑı д +T ime +ob ic +Ġm our +Ġd read +ĠL Ãł +ĠCh ile +Ġpre val +Ġv ain +Ġart ık +Ġpres erved +ĠоÑĤ д +Ġware house +Ġbest e +ĠSever al +ĠS ituation +Ġcard board +T od +er na +Ġgar ant +Ġgest ure +Ġh en +Ġspe lling +ose xual +Ġan ne +Ġm ice +ĠMe ine +c ard +Ġre bell +Ġcert o +Ġìľ łë +Ġvers chied +ĠB os +Ġinv ention +Ġtr ze +Ġman ière +ĠCh ad +Ġsp re +Ġorganis ations +Ġpoor ly +Ġan terior +Ġst air +к ÑĢ +Ġatom ic +Ġsymp ath +Ġcontin ually +Ġkle ine +è te +и Ñī +ο ÏĤ +pe ut +Ġrep osit +Ġent ra +E m +Ġfinan cing +Ġмн ог +Ġthe sis +ĠCom puter +e au +ĠT ree +Ġbr ide +ons ieur +sh ire +w ic +D E +ĠìĪ ĺë +Ġac om +ĠP O +ers ch +Ġпом оÑī +ĠAr men +Ġì£ ½ +Ġz or +Ġprint s +ĠD ass +æ¸ ¯ +Ġdur able +ĠTrans port +ìŀIJ ê°Ģ +Ġл ег +Ġdé t +ô le +am ous +Y N +Ġcl iff +Ġgramm ar +ĠÐŁÐ¾ ÑįÑĤомÑĥ +ĠlÃł m +es ch +Ġmiser able +Ġvol ts +ĠC ad +uk an +ÑĤ ив +r ust +Ġìĺ¬ë Ŀ¼ +Ġver k +Ġchick ens +ĠY oo +Ġout fits +c ode +Ġhier archy +net es +Ġcounter part +Ġt ôi +Ġt ed +ĠB art +Ġë Ŀ¼ +ĠGen au +Ġinc oming +ĠA BC +ri que +ĠоÑĤ п +qu al +Ġincent ive +Ġih ren +׳ ×Ļ +lo e +Ġ19 30 +Ġbar g +Ġd iction +Ġön ce +IN S +Ġre h +isia j +m outh +Ġsc oring +l ık +ĠìķĦ 주 +OR IA +ĠEst ados +Ġcompan ion +Ġasse mble +Ġpun ished +Ġit al +Ġprev ents +ist es +ĠKent ucky +Ġloc ate +Ġfast ing +ãģ¨ æĢĿ +ĥ Ģ +ĠSe b +ĠCr own +op ia +Ġwh ip +us z +к ами +Ġdatab ases +åŃ Ĺ +Ġprose c +Ġ199 7 +ĠìĤ´ì §Ŀ +ĠSol ar +ĠP ues +ĠZ en +oll o +ĠG uru +Ġsque ez +ĠÐĹ Ð° +ĠÄ į +cept ions +c ca +iz able +m and +Ġbreak through +Ġtables poon +ĠS EC +ik h +ĠS ão +Ġп ло +am en +Ġpr ac +Ġdar ling +Ġtall er +Ġrend ering +Ġìļ°ë¦¬ ê°Ģ +ĠÏĦη ÏĤ +Ġm ã +Ġes os +uer do +ĠÑģ ÑĩиÑĤ +all er +ìĹĪ ìĸ´ìļĶ +Ġmill ones +ler in +Ġpe gar +on ne +Ġenroll ment +Ġli egt +Ġbo a +w iÄĻ +bs p +Ġcy cling +ĠBern ie +Ġ198 9 +Ġд алÑĮ +ĠDak ota +ĠÑģв Ñıз +ĠC P +Ġst are +íĤ ¤ +Ġprosper ity +Ġarrange ments +Ġarri ving +m ä +Ġkay ak +ip t +Ġp ardon +Ġrel at +Ġver ste +ĠF ig +Ġfo il +ĠTalk ing +pe are +Ġno i +ĠпÑĢи ÑĪ +Ġhoc key +Ġad o +ĠO UT +6 7 +Ġhorm ones +ĠAven ue +ĠSuper man +Ġpres cription +uber netes +C L +ot ive +N IS +ien en +Ġsad ness +ĠV it +T y +Ġstar ter +Ġbed e +Ġfound ations +Ġso re +åº Ĺ +Ñīе ÑģÑĤв +ìļ °ë +ĠÑĩ Ñĥв +l ink +Ġmane u +work ing +Ãł n +ĠAtt ack +ĠC art +ve is +ĠRes p +ens ing +Ġì¢ĭ ìķĦìļĶ +Ġesc uch +ĠR NA +Ĥ ´ +Ġad op +Ġb ending +ع د +Ġman ages +us p +Ġt art +Ġrout er +B o +Ġestab lishing +Ġbal ancing +Ġathlet ic +ĠS lo +Ġf ills +Ġн аб +Ġд ал +Ġpos so +ĠV ielen +Ġcrit ics +Ġlaws uit +ĠIsa ac +ĠÑĦилÑĮ м +Ġtr as +Ġpra w +ĠCra zy +Ġne u +Ġk ull +Ġtum or +ĠAP P +g ate +ĠA RE +9 8 +ĠSte am +Ġfuck ed +l age +ĠâĻ ¬ +ĠM D +f y +Ġshell s +ĠSe ems +iz ers +Ġr anges +ĠAnton io +AT ION +ĠB aba +Ġìĥ ī +k un +Ġpray ed +ÑĢ Ñı +ĠпÑĢоÑĤ ив +Ġse as +b ury +Ġ×Ķ× © +Ġtra it +ĠDep ending +Ġd re +Ġkön nt +ÑĨ Ñĥ +Ġlip stick +ee z +ĠпÑĢ имеÑĢ +Ġassign ments +B ob +Ġmet als +Ġspe cially +å°į ä¸įå°į +Ġìĺ Īë +ĠÅ ¡ +Ġv ista +ĠÎ ¬ +Ġtw ins +Ġnot able +ĠS au +Ġdé velop +Ġç ek +Ġpoly nom +av am +Ġtamb é +он ом +Ġpl asma +Ġe fect +Ġlä ng +Ġcas i +Ñģ а +ım ı +ãģĻ ãĤĭ +ĵ¤ ìĿĢ +Ġlab our +oss en +ĠP un +r if +Ġd oses +Ġoper ates +ил ли +Ġja ar +st aw +ĠìĤ¬ëŀ ij +Ġat m +Ġprotect s +Ġimp ed +H O +Ġc ima +Ġto ch +ab is +Ġsend o +la us +Ġcur l +ĠN um +Ġspons ors +Ġdé but +ĠAlex a +ĠB ür +ĠA mer +Ġc ope +Ġиз в +j al +Ġ199 5 +ap at +res se +ĠPri ze +ĠCla ire +ĠBrand on +Ġwszyst ko +Ġval ued +à¸Ļ ะ +Ġse ct +Ġsecret ly +Ġdiam onds +ĠEv an +ĠRP G +ãģ« ãģª +Īë ıĦ +ĠUnivers al +Ġdoub ts +ĠP in +wiÄħ z +ļ © +Ġal bo +Ġbra ucht +AU L +ĠM obile +gr ades +Ġsch em +wh y +ĠN icht +p i +g le +Ġchor us +Ġg ly +Ġrein force +Ġm uff +ĠSh en +ĠH ola +Ñĥ г +vid emment +v ial +ac ious +laim ed +ĠR ico +Ġve gg +Ġillust ration +ĠBut ter +ow ad +Ġeu x +Ġenf ants +ĠLe ader +ĠVill age +et ically +ÙĨ ÙĬ +Ġst ew +Ġsurpr ises +Ġc ue +ĠGrand ma +ĠC elsius +ĠR icht +en c +Ġpet ition +Ġher b +Ġw icked +Ġsch le +oc aly +Ġtrans f +Ġtok ens +ĠGr ay +ĠB BC +I K +Ġ15 00 +z n +ĠNe v +Ġk oy +Ġz ar +Ġbull shit +ĠColomb ia +ul ative +Ġwides pread +y ect +k it +Ġempres a +Ġn our +Ġburn s +at in +a ired +Ġrevolution ary +Ġгод Ñĥ +ĠLog an +Ġ199 6 +ĠGra ham +re b +ĠN HS +æľ Ľ +Ġcost umes +Ġnaw et +Ġlo vers +ĠLuc y +ĠInd igenous +íķĺ 기 +Ġimmun ity +¥ ´ë +uit o +Ġexcess ive +Ġdon ations +Ġ×Ķ ר +Ġì² « +éī Ħ +Ġdry ing +mel on +Ġsurve ys +Ġ무ì Ĭ¨ +é¢ ¨ +aa a +Ġpro be +an cial +Ġlou der +Ġhot els +ü ÄŁ +ag ner +Ġorig ins +Ġë§Ī ì§Ģë§ī +Ġ* * +Ġstr angers +ĠHa us +com ed +Ġan throp +Ġus o +ĠìķĦ ì§ģ +ĠY uan +ĠíķĦ ìļĶ +pl er +ress ive +Ġsp raw +ĠSt ew +Ġ199 4 +Ġeld ers +Ġme inen +Ġj unt +Ġac oust +ĠW ohn +Ġban anas +Ġproject ion +ĠSt ick +leg t +spe ed +ĠcÅ ©ng +ĠW ort +ĠBalt imore +ĠÑĨ ел +Ġdun no +å¼ · +? , +ãĥī ãĥ³ +ĠLoc al +ost o +Ð Ń +од а +ĠPort uguese +Ġtheir s +Ġdé m +åı ¦ +Ġdra uf +ĠBuddh ist +ert a +G e +Ġcar rot +ĠWonder ful +Ġso ak +Ġchair man +gg i +IC A +f ried +Ġfl ick +ĠThrough out +Ġìļ °ë +Ġc ough +Ġfl uffy +sch ool +Ġr ipped +---- ---- +ĠZuk unft +Ġн еб +Ġst o +ĠB O +p ent +ĠLaw rence +Ïī ÏĤ +st icks +ĠE ins +ĠÑĢ Ñĭ +ĠStr ong +Ġcar amel +Ġsp ite +az ar +éĥ½ æĺ¯ +Ġcrit ically +Ġob ra +ow itz +ĠZ one +ĠÑĢ ек +Ġsu g +ard ed +Ġg ì +ff entlich +an che +Ø Ł +ast ically +ìĿ ¼ë +л ав +Ġsimpl est +ĠF riend +Ġque llo +Ġamb ition +Ġabb iamo +åº ķ +ĠÑĦ оÑĢм +ĠEs sa +Ġeduc ators +Ġstatist ical +éĢĻ éĤĬ +Ġchang er +Ġat au +éta is +ĠShakes peare +ë IJĺ +Ġtr iggers +Ġreal iz +Ġcel ui +whe el +Ġloyal ty +Ġscream s +ke hr +ĠM ega +e ast +Ġtop s +ĠTot ally +ount ain +l ord +Ġviol ation +ĠG A +Ġnic er +ĠF resh +ĠMel issa +fun ction +Ġra pe +Ġexcept ions +Ġsil icon +Ġliber ty +Ġhousehold s +ãģį ãģ¾ãģĻ +ĠC A +ĠÐŀ б +Ġli b +ŀ Į +c ific +Ġtrop ical +Ġinvestig ating +H D +Ġad apter +ĠP itt +an cia +ĠShe ll +friend ly +Ġconclus ions +Ġtur tle +Ġdec omp +Ġanim ations +ĠÑģ ек +ins i +Ġret ention +k ie +Ġinject ion +ĠMad ison +ì° ° +Ġv ient +Ġvar ied +Ġviol in +ĠB il +Ġluck ily +Ġh tt +l ä +Ġr anch +çľĭ çľĭ +Ġsó lo +ìķ ħ +ĠD erek +ĠScript ure +оÑĢ а +Ġclassroom s +av il +form ed +Ġbefore hand +ĠG em +pre ch +Ġl in +Ġgre ens +ÑĨ ев +ĠMer cedes +Ġdr ought +gas ps +Ġab ortion +Ġter ribly +Ġspos ób +Ġsec ured +Ġat rás +Ġwavel ength +Ġgra ins +ect ive +Ġspace craft +Ġtour s +Ġprof es +Ġsur geon +ĠP ie +Ġide ally +arn er +U P +op ard +s ce +Ġimm ense +ĠOr t +roll er +ĠD allas +ĠNich olas +Ġs ulf +ĠToy ota +Ġquant ities +ce ans +Ġcu i +an ça +ĠC AN +itzer land +åĦ ¿ +Ġz ou +ĠCy ber +le gen +ĠIn it +ed u +Ġa pert +Ġad jac +ou v +èĢĮ ä¸Ķ +r s +Ġcab bage +Ġwheel chair +iny l +ĠD ynam +ĠìķĦëĭĪë Ŀ¼ +Ġl ing +h l +Ġмог Ñĥ +Ġcris p +Ġm ij +Ġd ug +n in +Ġbl oss +Ġbelong ing +Ġloud ly +Ġminer als +Ġconclud ed +Ġsearch ed +9 6 +ĠMe et +ĠS EO +ĠС к +ĠH ob +ot ta +Ġpropag anda +Ġcin namon +Ġhun ter +Ġgeme ins +Ġsculpt ure +uls ion +Ġv äl +Ġmagaz ines +Ġcontrovers y +ä¸Ģ 樣 +Ġsequ ences +ãģĦ ãĤĭ +Ġíļ Į +Ġdel eted +ä½ ¿ +IJë ıĦ +Ġvary ing +ãĥ Ĩ +Ġmount ing +Ġaff air +Ġpath ways +æ ¦ +Ġdig o +äº ® +Ġд ок +A lex +Ġtob acco +ĠC V +Ġbother ed +Ġamb ient +ink y +ĠS L +Ġh ates +Ġje żeli +Ġcon greg +Ġel as +Ġde uts +ĠStud ios +ch ÄĻ +Ġdocument ed +ĠCru z +ĠL en +ĠDoug las +ĠPort ugal +ent i +Ġsp ouse +Ġanal ys +av ia +Ġed ited +Ġl ại +bu ilt +Ġv ille +ad ora +Ġbrac elet +Ġs ushi +Ġp m +Ġtra ils +Ġl ug +Ġö ver +Ġs orrow +Ġcol ony +ado x +Ġser ie +any ak +ĠØ · +ĠG ulf +æĺ¯ ä¸įæĺ¯ +ĠP V +ĠSam uel +ĠK it +ĠR al +ont in +ex pl +Ġent ries +Ġactiv ists +P s +Ġs ant +ĠÑĤо Ñĩ +ĠBr uno +ke ley +Ġtut to +é Ķ +Ġv intage +Ġterr ified +Ġпо Ñħ +us ive +ow ers +ай ÑĤ +ë ıĻ +Ġtwist ed +ĠTh ought +Ġt ah +Ġshr ink +Ġshe er +l it +Ġdal am +Ġd ib +Ġv ard +ow ane +Ġdo br +ĠR ena +ĠÑģво Ñİ +ĠpaÃŃs es +ĠE ra +ãģ® ãģ§ +ĠB UT +s ighs +Ġê·¸ ê±° +Ġgro ÃŁen +Ġë¹ ¨ë¦¬ +Ġn erves +Ġconst it +Ġpreoc up +ĠG ay +ĠX u +keep er +he ure +.. ) +ĠCal m +ĠUn idos +ĠìĿ´ ê²ĥ +ĠAqu i +Ġìłľ ìĿ¼ +d ır +ì¦ ĺ +y our +ĠÑįÑĤ им +20 20 +Ġr und +ĠH O +ĠC atherine +iel i +Ġf usion +Ġide ology +Ġfor am +sh aped +ĠíĽ Ħë +Ġw t +Ġret r +Ġpr éc +Ġê° ij +Ġopen ly +v ity +구 ìļĶ +Ġobst acle +Ġbo o +Ġse iner +ic orn +Ġeigen lijk +Ġhead er +are mos +Ġso fter +ĠÐŁ од +Ġpre jud +Ġdefin es +ier te +Ġbl ending +Ġbelie vers +ĠWo chen +Ġник ак +ĠÐļ огда +ĠTyp ically +Ġíģ ¬ +ç® ¡ +ci os +Ġmiss iles +Ġsp onge +ĠK itchen +Ġt ren +ning en +Ġsc rap +Ġser ait +´ì ł +ç ¹ +Ġë° ĺë +Ġrest ored +Ġprzy kÅĤad +ĠK ubernetes +Ġsa it +Ġu w +Ġen abling +Ġtra vers +amp s +åı Ĺ +ĠOM G +ens or +Ġz osta +Ġpronoun ced +A ng +norm al +Ġeconom ies +t in +ĠChamp ion +iz en +Ġar beiten +ĠG ospel +ĠZ u +ng a +Ġliter acy +ĠM ans +Ġcircul ation +Ġad ap +ĠTot al +Ġmere ka +Ġol acak +ÑģÑĤ аÑĤи +J ack +Ġm und +Ġth ief +b ies +Ġê² ģ +a que +ĠÚ© ÛĮ +ĠSc ar +å ² +Ġab ol +Ġdev ote +Ġ0 1 +Ġs itten +ĠVis ual +we ek +s ome +ing t +Ġjournal ism +ĠH ir +ĠB achelor +in ery +Ãľ ND +ãĥ Ł +ç» Ļ +Ġcolor ing +ĠCr ist +Ġcelebr ities +ĠÑĩ иÑģ +ĠC rit +Ġdifferent iate +ĠÐľ не +el im +Ġse afood +Ġalgum as +otherap y +æĪ ° +Ġgla ub +Ġarbitr ary +g ens +ĠбÑĥд ем +Ġt av +Ġcream y +ĠCount ry +a ñ +м еÑĤ +Ġh inter +Ġm ism +Ġillust rate +ÃľND NIS +Ġdecre asing +Ġwen iger +AK I +ix on +Ġн ей +Ġfat to +Ġn erd +ç ł +Ġb itte +P er +Ġt ane +Ġgö z +Ġfor te +ĠE y +Ġнав еÑĢ +è¢ « +ĠWord Press +ĠM is +Å ¯ +z äh +Ġinté ress +osa urs +ĠFall s +Ġn essa +9 7 +Ġmuseum s +Ġcorrespond s +Ġs ings +f our +Ġed er +ĠCommun ist +o a +ne k +ĠWH O +Ġcor po +Ġmess ing +ÏĦ αι +Ġbrush es +Ġb isc +ĠAr beits +ĠT ax +Ġse le +Ġflag s +ou pe +Ġanticip ated +ãĥ ij +ĠN ad +Ġpou red +Ġm l +Ġll ama +Ġvisual ize +Ġlisten ers +ÙĦ Ùĥ +al ten +Mich ael +Ġcos ì +Õ¡ Õ +op us +Ġíķ´ì £¼ +Ġh ike +ĠAtt orney +ĠHill ary +ud ed +Ġíķĺ ì§Ģë§Į +Ġdo ve +Ġstorm s +ак Ñģ +Ġdoct rine +Ġhe x +ik s +no ÅĽÄĩ +Ġscript s +Ġδ εν +ĠÑįÑĤи Ñħ +ĠÐ Ĩ +ab er +ĠV as +Ġcent imeters +×ŀ ×Ķ +ни б +Ġrid ers +ĠT rib +åĮ ħ +Ġtak że +Ġn oun +Ġic ons +Ġsole ly +mind ed +Ġdisp on +ĠSw itzerland +Ġcl usters +Ġqu eda +ail ing +Ġman ga +Ġ6 8 +Ħ Ī +Ġt et +g ins +ha us +ç© º +å· ¥ +ĠO P +ot ed +Ġnouve au +AL LY +ÙĪ د +ò n +Ġmort ality +ĠGit Hub +d rop +Ġdis gu +Ġrec om +Ġloc als +Ġhome made +amb a +Ġpron unciation +Ġal phabet +ан ÑĮ +ow any +ir as +id ency +OM E +ĠÑĢаÑģ Ñģ +ar ak +v iamente +Ġnon profit +ĠYouT uber +Ġp arenth +ĠB oo +v at +ĠSt ir +Ġpre cip +Ġan ts +Ġall y +ĠMa ori +ĠëĮĢ íķľ +åı¯ æĺ¯ +og ene +ĠLab our +aret te +Ġrecy cling +ens a +Ġpurs uit +Ġs ak +ĠÐĹд еÑģÑĮ +Ġtoler ance +Ġsa at +Ġclick ed +âĻ ¥ +Ġface book +ĠInt o +Ġincent ives +기 ëĬĶ +ĠD ennis +ĠW ik +ges ch +à¹ĢภĽ +ĠÏĢ α +ĠWh oo +Ġround ed +Ġdo pe +Ġcapt uring +ĠWar ri +Ġcivil ian +Ġchar ming +Ġes as +Ġsust ained +Ġle aning +Ġabund ance +ÃŃ lia +алÑĮ нÑĭй +Ġph ải +ac ja +Ġê°Ļ ìķĦ +act iv +า ย +Ġ9 7 +Ġм ой +c ro +ĠJack ie +itt ees +br acht +ul ent +Ġìł ľë +Ġplug in +v antage +part y +Ġsu as +Ġan te +Ñĥ л +ÐĿ ÐIJ +æĤ ¨ +ĠÏĥ Ïħ +Ġmet h +Ġenthus iasm +ÑıÑĤ ÑģÑı +íĻ Ķë +Ġsynth etic +Ġseason ing +ĠL ost +on omy +ĠSp ark +Ġb ure +Ġass ured +Ġimag in +Ġcar ro +S ha +Äħ t +нÑĥ ÑĤÑĮ +át ica +T Y +Ġk ern +ĠBrazil ian +à ° +Ġsusp ended +ĠCar ib +Ġbiz im +ĠOl iver +ãģ ¶ +T om +Ġпл ан +Ġn ope +omet hing +Ġbe iden +ÑĨ ен +Ġflu ct +Ġμ οÏħ +Ġf athers +ĠBl ake +Ġup ward +ĠD ash +ĠL il +ĠìĪ ĺëıĦ +Ġrevel ation +Ġelev ated +ĠJi ang +LE D +ĠThom pson +Ġмог ÑĥÑĤ +ÑģÑĤ ÑĢÑĥ +if iers +Ġcome back +Ġbuy ers +ê² ° +ĠS ales +иÑĩ е +c iones +Ġwh istle +Ġd ull +LE X +Ġíķĺ ê²łìĬµëĭĪëĭ¤ +Ġcrimin als +Ġdes cent +ipp le +mas ı +Ġfool ish +ĠдÑĥм аÑİ +t ar +Ġman go +Ġchore ography +M att +Ġterr itor +Ġac aba +ĠEin stein +ĠI BM +ĠMet al +ĠCry stal +Ġr ah +Ġf oul +ĠIsland s +Ġint act +ĠR ail +. : +Ġac á +ĠпÑĢ оп +еÑĢ е +ĠWr ite +he he +ĠF O +ĠÏĥ ÏĦη +Ġdo in +h eld +Ġappropri ately +Ġdeliber ately +Ġarch ive +Ġgive away +ãģĵ ãģĵ +Ġfin ale +л аÑģ +ен о +Æ¡ n +æ£ Ĵ +og o +çī © +ĠAud ience +ãħ ł +Ġsub ur +Ġhead ache +ан нÑı +ĠW itch +ĠSwed ish +ĠB I +Ġer ase +Ġk hi +Ġcomment ary +ĠS ultan +íĥ Ŀ +ĠLe ban +Ġë³´ì ĭ +ĠP am +pe kt +mon th +Ġground ed +ê ¾ +ĠÅŁek ilde +2 50 +ĠS CH +ios o +Ġin aug +he imer +Ġreflect ing +ĠR uth +ĠO il +Ġtrou ver +u ep +.. ] +Ġìŀ Īë +Ġol ha +Ġreason ably +Ġgl itch +U B +ĠGr an +Ġad alah +Ġl ent +ر ا +Ġtr action +Ġadjust ing +´ ¤ +ниб ÑĥдÑĮ +Ġд оп +Ġstretch ed +Ġor t +Ġcos ine +vi ol +Ġì ħ +c ir +Ġbast ard +ä¸ ĩ +ĠÑħ од +Ġqu ier +Ġpress ures +ĠAn h +å¹ ¾ +Ġell es +Ġд ÑĢÑĥз +ĠможеÑĤ е +Ġch á» +ĠM é +ö k +ầ u +ìł Ī +z in +Ġca ution +ib an +Ġjud ging +ÑĥÑİ ÑĤ +Ġb aj +ĠС ейÑĩаÑģ +ĠPo or +ĠNaz i +Ġup beat +y ang +Ġweek ends +ĠEss entially +Ġol uyor +Ġspat ial +ack er +Ġsell er +Ġ×IJ ×ķת +ij ׾ +Ġv ivid +ĠB ond +ê ¶Į +is kt +ãĤ µ +Ġgo at +dri ver +Ġm ug +ict ional +Ġall t +ĠIn iti +ĠR and +Ġfinish es +Ġê° Ī +Ġvit am +Ġteen agers +ĠMor ris +ì¤ Ħ +ĠO ri +i ya +Ġmy ös +St ep +ĠK re +è¾ ¦ +Ġdin osaur +Ġëª ĩ +aff e +ĠëIJ ©ëĭĪëĭ¤ +Ġz eg +åĪ ĩ +ĠManh attan +Ġsu jet +ue lle +st off +Ġd ür +Ġsub mar +es es +Ġa quele +Ġn ou +ĠFa ith +t z +ĠÑĤ омÑĥ +ace ut +li ers +Ġband width +Æ°á» Ŀ +Ġrespect ive +ĠA ve +Ġspread she +ĠS ent +ic amente +Ġinf ra +Ġlearn ers +Ġà® ī +ai ah +ren al +Ġmust ard +Ġhab t +ç ĥ +ĠQu é +Ġanaly zing +æ¯ ı +Ġso lic +Ġ×Ķ ×ķ×IJ +Ġcaus a +Ġwel comed +ĠS uccess +Ġfac ile +ĠÐŁÐ¾ÑĤ омÑĥ +sche in +Ġf etch +Ġstr at +ĠÑģÑĤо иÑĤ +ìĹIJìĦľ ëĬĶ +ĠÑģп оÑģоб +m am +Ġser ÃŃa +nam ents +wr iter +Ġconsult ing +íĺ Ģ +ĠBer keley +e u +as ive +U U +ĠAnal yt +Ġsubm ission +Ġmagnific ent +en za +Ġe con +Ġprof iles +Ġinc ar +A b +ĠN un +Ġh ic +scream ing +Ġresil ient +åĪ © +gr und +Ġconc ur +Ġbere its +L D +Ġnur t +ì ī +Ġfe ast +Ġenc uent +ĠMich el +Ġsup rem +" ] +Ġfeed s +ĠKoll egen +iss er +ĠF eng +ĠW en +m un +Ġten ÃŃa +ĠW rest +Ġìĺ¤ëĬĺ ìĿĢ +Ġst ead +Ġrest oration +Ġdon ated +Ġdel s +Ġc ensus +Ġdesper ately +worth y +H E +ĠSp a +ĠBry an +Ġh j +ĠR aw +ìķĦ ë +ĠCam era +Ġz ien +Ġst yl +ĠT W +ĠChe ese +bor ne +Ġob l +ĠAl ready +Ġunst able +Ġfl ames +p ost +H a +rom agn +ĠìĹ Ħë§Ī +d est +Ġkole j +Ġtempor arily +Ġdeterm ining +ĠGl ass +ÑĢ он +ol an +Ġdom inated +åĮ ĸ +__ __ +ĠÙĩ ذا +ĠD ana +Ġdin heiro +a qu +ë ¯¼ +ĠÃł s +ĠJo ey +ĠGr iff +Ġatt ain +Ġtrans itions +ĠLiter ally +ен д +ĠHa ven +Ġgrab bing +Ġcryst als +ĠFour th +Ġcand les +ĠÑģлÑĥÑĩ а +ric o +Ġ5 000 +et to +Ġund o +Ġk to +Ġdi vert +Ġch ir +Ġper sec +Ġh iking +Ġannounce ments +çĶ ± +з Ñĭ +Ġa uc +Ġsystem ic +ĠR M +Ïĥ α +ĠÐĶ ж +Ġy ar +ĠW ard +Ġpiss ed +Ġcar n +Ġautonom ous +ãħİ ãħİ +so ver +æ²Ĵ éĮ¯ +å¾Ī 好 +Ġref lex +Ġgard ens +Ġd ated +ì ± +ami ÄĻ +Ġcontinu ity +Ġcitizens hip +Ġsch wer +Ġz ak +t able +ĠÑģ Ñĩ +è§ ģ +ĠÏĥ ε +Ġgener ates +구ë Ĥĺ +ö h +ó m +al am +ĠJUD Y +ĠB ug +Ġãģ ¦ +Ġdr ones +Ġá gua +ac aks +æ ļ +ĠÐļ он +× ĸ×Ķ +Ġstri ve +ĠAl tern +Ġne arest +Ġpro yect +ter a +ĠASH LEY +Ġwor m +Ġre play +Ġt ara +ĠInd ians +ãĤ ° +ica id +ĠìĪ ľ +Ġappe aling +ĠW es +Ġment ions +Ġдел е +Ġk w +Ġfrag ile +is z +k ów +h ang +col or +Ġpresident e +8 7 +е ÑĦ +çĪ ¸ +Ġдоб ав +ĠN elson +á fic +ĠMIC HAEL +Ġmechan ic +Ġmet res +Ġo czywiÅĽcie +ĠC ind +Ġog sÃ¥ +Ġlands ca +AC E +Ġhead lines +Ġcat alyst +ĠC atch +ink les +Ġp ills +ord o +Ġimmig rant +Ġexam ination +Ġacc idents +zÄħ d +Ġqui ere +Ġne lla +Ġ6 7 +Ġpass a +Ġsuper fic +ist or +Ġno v +ëĭ µ +Ġmand ate +is ons +ĠVirt ual +Ġsel ber +Ġcounsel ing +ĠN BA +Ġse pt +Ġbelie ver +Ġmar vel +ĠInte gr +Ġм Ñĸ +Ġor ph +Ġback ward +ĠGen eration +ĠP ict +ĠÑĤо ÑĤ +Ġtap i +pro chen +Ġhall way +ht e +ĠÛģ ÛĴ +ĠZ um +èĢģ 師 +ach ment +iqu er +fol g +ĠEd die +ĠK il +Ġwell ness +st ock +è¼ ĥ +Ġka ç +Ġterror ism +Ġpo inter +O f +her ic +ĠUlt imately +Ġmes es +ĠTr ade +Ġp int +Ġtu ition +Ġdisag re +Ġê²Į ìŀĦ +Ġmanus cript +Ġro omm +Ġoutput s +е ÑĨи +Ġr ies +Ġsal ud +otz dem +Ġmass es +Ġby ÅĤa +Ġclear ing +Ġdisc ourse +ats on +Ġfold ed +ĠJ ar +ÙĦ Ùī +9 00 +ĠÑĥ Ñģп +Ġprophe cy +Ġinterf ere +иÑħ од +๠Į +Ġth ri +Ġ×ŀ× © +Ġlaz ım +Ġ199 2 +Ġfut uro +Ġlock ing +Ġembar go +ĠNe ither +iv amente +ĠmÃ¥ ste +Ġm ik +Ġcollect or +еко ÑĤоÑĢ +ĠG and +Ġsent ir +ĠM ight +å¡ Ķ +Ġgan zen +U C +Ġrel ating +S D +Ġmos quito +G R +Ġho llow +âĺ ħ +ĠWalk er +Ġaffili ate +Ġduplic ate +н ем +Ġgra pe +ĠOrgan ization +Ġsy nt +J oe +Ġg eg +Ġreve aling +ĠEth an +out er +Ġy ay +é« Ķ +л аÑĢ +Ġreported ly +Ġihr er +Ġrecogn ise +Ġbum per +ĠR andy +ĠVen us +t les +Ġappet ite +Ġgluc ose +Ġch odzi +ĠFurther more +t ir +Ġcont a +Ġint uition +Ġalt itude +Ġch unks +ĠJosh ua +ıģ ım +ry lic +le ans +ĠíĶ ¼ë +L L +Q ue +Ġg or +Ġзна ÑĩиÑĤ +Ġpo ems +Ġexc el +Ġexpl ored +Ġpop ul +Ġinclus o +st ä +ĠG avin +all ing +ĠÏĦο ν +é © +ar beit +ĠG as +Ġgl orious +rie ben +Ġsp am +Ġindo or +Ġthr ust +ĠA ld +ĠPri or +Ġon board +ãģł ãģķãģĦ +o ca +AS H +£ ł +ĠChrist ine +Ġdra wer +Ġno on +Ġìŀ ĺë +Ġperman ently +æ· ± +ĠнапÑĢ имеÑĢ +Ġpodcast s +era peut +pr it +Ġstain less +ĠÚ© ÛĴ +Ġfamil ia +ĠÑĢаз ÑĢ +un to +ĠÑģÑĤ ол +Ġh ä +ĠH ai +ĠP B +iz on +Ġkon nte +Ġbüy ük +Ġutil izar +Ú Ĩ +Ġaqu esta +Ġmix er +ud ent +лек Ñģ +ÅĤ u +ĠÑģиÑģÑĤ ем +Ġн оÑĢм +Ġfat al +Ġconsider ations +Ġvalid ation +Ġo li +Ġk ardeÅŁ +ĠGL ORIA +Ġp all +еÑģÑĤ е +Ġrect ang +Ġmed ieval +allah i +ast i +ĠSy rian +Ġshe ar +Ġdeb ug +ĠM ai +Ġknock ing +ĠLe x +ard an +ro v +Ġmem orial +æ° £ +ook y +Ġstuff ed +Ġpass é +Ġw ig +Ĥ ł +Ġpróxim a +Ġ199 1 +Ġм еждÑĥ +Ġnuest ros +ĠBe ast +Ġsm o +atch ed +olog ia +Ġм од +Ġge e +Ġconcept ual +Ġà ´ +Ġdecre ases +Ġquer ies +олÑĮ ÑĪ +ĠA part +Ġex empl +å± ± +Ġfl ed +ĠO FF +gg ak +Ġbe ad +h ir +l ies +ĠClear ly +ı lar +Ġch ess +Ġwhich ever +Ġ9 6 +Ạ± +Ġrespect s +Ġм оÑĢ +Ġorgan ism +Ġgrand pa +ĠV ie +è·Ł ä½ł +Ġflo oding +Ġupgrad ed +Ñij ÑĢ +Ġcheek s +Ġcon quer +Ġstub born +Ġpuzz les +Ġau ction +Ġre lying +ĠPRO F +ĠEs per +ĠÐľ У +Ġhy pe +Ġposs ibil +Ġimp rison +ĠEr n +ìĹĪ ìĬµëĭĪëĭ¤ +Ġenv ie +Ġresur rection +ä¸į è¡Į +Ġs per +ĠVenez uela +s om +Ġìŀł ê¹ +Ġnouve lle +Ġclos es +Ġ19 40 +Ġqu a +ĠJ ared +ĠP ir +Ġind e +Ġscr ub +uk u +Ġrequ iring +Ġв ами +Ġconsider able +åIJ Ľ +il ia +Ġin ne +Ġmein em +Ġhard ship +Ġtra ps +ro c +ĠìĦ ¤ë +Ġresearch ing +ĠMarg aret +Ġpen ny +Ġbı rak +Ñij л +Ġw ool +Ġr het +Ġflat ten +ç ĩ +à¹Ģภ£ +Ġp ied +ĠCh ap +Ġunder m +Ġf ret +Ġcrash ed +ĠFra uen +Ø° Ùĩ +iv an +Ġliter ary +late go +Ġsp äter +Ġsimilar ities +â Ĩ +ĠCor on +ĠC reek +Ġboss es +Ġaccompan ied +Ġdeb ates +Ġassemb led +Ġà ģ +ĠV ai +Ġtr act +Ġsimple ment +ĠAr in +Ġvulner ability +Ġhorm one +I EL +OO K +Ġrel ay +ĠAnd rea +r il +Ġnecess ity +aceut ical +Ñİ Ñī +ous ing +nah men +Ġfoot print +m ap +ĠT ier +ann ya +int end +åĸ ® +å ¢ +Ġdecor ate +Ġzomb ies +ĠHy d +ĠSu z +Ġcampus es +ĠE mb +Ġthr ottle +Ġad min +Ġop ortun +Ġmir rors +Ġident ities +ĠCl in +Ġë¹ Ħë +á¹ £ +ĠO tt +Ġbl ues +Ġimpress ions +- , +Ġv ague +a fe +Ġinfer ior +eral d +Ġmedic ines +Ġpre gunta +os ely +Ġt élé +ĠMon th +ĠLe aders +ĠEgypt ian +Ġr ation +k ers +he its +Ġre cht +P lay +Ġe g +Ġpoll s +ĠWOO DR +Ġsl ots +j am +B oth +ĠR at +ÑĢ аж +ĠBr ight +ä¸Ģ å®ļ +á»ij i +ur ious +Ġsing ers +Ġlo gin +Ġt êm +l ation +ĠM um +Æ°á»Ŀ ng +ĠEd itor +åIJ ij +Ġinnov ations +h ave +ĠS ek +Ġwe aker +ĠG ob +A fter +´ì §Ģ +Ġ문 ìłľ +ãĥ¼ ãĥ¼ +Ġdisad vantage +ç¢ º +Ġg aze +ĠM ack +Ïģ ί +ĠK iss +ĠH olo +ĠBir th +iz i +b ab +ä¿ Ŀ +ìĭľ ê³ł +д еÑĢж +Ġsqu at +кÑĥ Ñģ +un i +ĠComm e +ĠWOODR UFF +ĠChampions hip +Ġwel che +ĠY outh +z em +Ġod pow +Ġpersist ent +r ut +ìĶ © +íĸ ¥ +la ir +ik u +Ġvend or +Ġch úng +Ġfinan ci +Ġover ly +â u +Ġgl uten +Ġ18 00 +Ġdiv isions +Ġciud ad +Ġob ed +Ġwar um +Ġe her +Ġel im +ĠÐĴ о +Ġpeu vent +ĠW anna +Ġattend ance +Ġassess ments +ĠB og +Ġimag ery +Ġcollect ively +Ġinform al +ĠSch we +Ġde utlich +ĠCh el +ĠP E +ow ed +Ġb anner +Ġshel ves +ĠRet urn +æĭ ¿ +LAUGH S +Ġcongrat ulate +ĠNor way +Ġd well +ĠCarib bean +Ġnorm s +ĠAn imal +ĠValent ine +Ġext ending +ĠV ou +or r +ĠCh eng + ¡ +ĠдоÑĢ ог +Ġve g +Ġh Ã¥ +ĠX in +Ġì¹ ´ë +em et +Ġhyp oth +Ġinteress ante +ric es +I Z +ĠUS D +Ġrun ner +ĠB ag +Ġê ½ +Ġcomeç ar +Ġpig s +Ġweakness es +P h +ĠVi ol +ä¸į çĶ¨ +Ġdra gging +ĠAqu ÃŃ +ĠCS S +Ġmill imeters +Ġest ás +Ġac ute +Ġde jar +i ÄŁ +ob ra +L ove +Ġsil k +** ** +Ġjo ins +Ġpro l +Ġê°IJìĤ¬ íķ©ëĭĪëĭ¤ +æĶ ¯ +ØŃ Ø¯ +agh etti +än ner +Ġstr ang +Ġdoub led +Ġdescri ptions +Ġst ellen +Ġpart i +ç« ĭ +² Ħë +Ġö ÄŁ +ig hing +Ġang ular +Ġnat uur +ĠSh el +Æ° Æ¡ +Ġr ays +Ġse per +st art +v ised +Ġrush ed +Ġinternation ally +Ġnive l +Ġbox ing +fall en +á»ij c +Ġse inen +plic ity +Ġcarb oh +ĠTra vis +us o +ĠPh ase +Ġactiv ation +Ġop io +· ¨ +Ġdecre ased +C ar +Ġbund le +Ġexp end +orm al +Ġadjac ent +Ġme e +ĠоÑĢ г +Ġtrans cript +ĠLang uage +G S +è§ ī +Ġse ul +Ãł nh +Ġn ya +ning s +Ġìĭ ľë +ĠëĶ°ë Ŀ¼ +ĠA gr +ÃŃ d +çķ Ļ +Ġab y +ĠNe o +ıyor uz +ĠThink ing +a ime +Ġv ite +Ġtrav és +Ġ×ij× ¢ +Ġм ед +O ur +ho ot +Ġl iner +ĠP izza +Ġhy g +fl ies +ĠContin ue +Ġdent al +ĠT ib +Ġreg ulate +lie ÃŁ +AL K +ĠTa e +ê¸ ¸ +ĠBre xit +ĠG ut +Ġoccup ation +Ġz robi +â m +Ġwh isk +ä¸ĸ çķĮ +Ġkans ke +om on +ro be +Ġwar fare +Ġth á»ĥ +Ġjak i +Ġstro kes +Ġpe as +ĠDam it +H AN +Ġinter ference +Ġмин ÑĥÑĤ +N ER +out ing +Ġtext ures +Ł ī +ow i +Ġíķ Ļ +Ġd ens +Ġprotagon ist +än n +Ġgod dess +Ġwoll te +ij o +ĠWo che +ĠV PN +st ory +Ġkind erg +Ġfun nel +Ġdist ress +ноÑģÑĤÑĮ Ñİ +Ġno isy +ĠпÑĢод олж +Ġdar an +Ġenzy me +л ож +Ġm ute +Ġd war +Ġا س +Ġkom pl +Ġmer it +Ġf osse +ĠDr ink +Ġfor a +Ġw ohl +Ġbree ze +Ġsan it +Ġdr in +ĠìĿ´ê±° ëĬĶ +Ġ6 2 +Ġì° ¨ë +aby tes +Ġde eds +ĠÐ ¹ +i ème +igg ling +Ġ" ' +ĠÑĩа ÑģÑĤÑĮ +ĠAns wer +Ġev angel +Ġ10 80 +ĠVis it +ic ient +Ġreli ability +Ñİ ÑģÑĮ +ĠEar lier +Ġf id +çŃī ä¸Ģä¸ĭ +Ġslee ves +iy orsun +Ġb ib +ĠAcc ount +Ñı ли +cipl inary +z as +Ġб еÑĢ +Ġneck lace +Ġbl ender +ĠPhill ips +et i +ĠJup iter +Ġprov oc +ĠYe ars +ent re +ac io +Ġk ü +Ġanten na +Ġnovel s +Ġf art +ĠS ugar +ĠJud y +Ġcollaps ed +ç ° +rit is +Ġìĥģ íĻ© +ÐĹ Ð« +ĠVer f +rane an +ere um +ĠTar get +Ġ8 8 +ĠÐĺ з +ide o +Ġreg ression +ì¶ ľ +Ġmów i +Ġstud ios +i ens +ip h +Ġfr ying +Ġfasc inated +ĠW ah +b ucks +m aya +ĠSat urn +ĠM ommy +Ġrating s +Ġaut umn +Æ°Æ¡ ng +Ġlos er +Ġcent ro +érie ur +ĠF old +Ġsuper visor +ĠNo bel +Ġunder est +ob ia +Ġв ÑģÑı +Ġver w +Ġfu els +Ġartif acts +Ġë¶ Ļ +ĠAut om +çļĦ æĺ¯ +Û Ķ +×ķ× ¡ +Ġih nen +Ġ5 9 +ound ing +еÑĢ Ñĭ +in ars +ch ant +Ġadd icted +Ġexplos ive +Ġdisp ers +â ĸĪ +ax is +AR Y +Ġl um +ĠÑĥ Ñģл +ĠØ Į +Ġru pees +ĠPe arl +c amp +t v +oy a +Ġconclud es +Ġcoll ision +Ġbuy er +Ġplay ground +Ġspr ings +Ġfemin ine +ĠR as +Ġincar cer +íĹ ĺ +Ġdial ect +Ġclos ure +Ġchat ting +Ġb abe +Ġspot light +Ġnot ation +è· ¯ +St ar +i ão +Ġt ête +Ġt ide +Ġjun to +Ġsen ator +Ð ¥ +Ġexcus es +Ġbl ink +Ġadm ission +ĠL ily +Ñĭ ми +Ġam igo +Ġl ust +ëĭ ¬ +Ġam ino +äºĭ æĥħ +Ġconsult ant +ĠElect ric +Ġëħ¸ë ŀĺ +uj ah +Ġshoot er +icht en +ĠUkrain ian +Ġaim s +ĠEnter tain +Ġmir acles +èŃ ° +Ġze igen +Ġl am +Ġres s +ĠJ ill +yl an +Ġro ok +Ġh aya +Ġpass port +ad ata +Ġju icy +con f +л ей +ĠS z +Ġinter cept +ãģĤãĤĬãģĮãģ¨ãģĨ ãģĶãģĸ +ĠTe ams +Ġmak en +ir rel +ĠLI KE +áºŃ y +êµ ° +Ġshort age +Ġparad igm +Ġpap el +Ġast ero +ãģ¾ ãģŁ +Ġsoll en +ĠMic key +ĠOr leans +Ġchol esterol +Ġgo ose +ÑĨи Ñİ +ãģĤ ãĤĭ +ĠF L +Ġгол ов +Ġtrib ute +ĠG am +Ġé videmment +Ñı Ñħ +å® ŀ +çĶ ° +Ġin appropri +uh an +Ġorganiz ational +ail ed +Ġend ure +Ġ7 6 +Ġshot gun +Ġliv re +Ġsu ited +Ġwarm th +ĠS IM +Ġenv ision +Ġde grad +î ne +La ughing +ĠWho ever +ĠBuddh ism +Ġspr inkle +ceÄŁ iz +Ġru ins +Ġst arch +ĠHer z +Ġinjust ice +Ġhum idity +ожал Ñĥй +ĠOb ject +ĠI gn +ĠEx am +ig ers +Ġth ou +ĠSo y +iv as +Ġpol es +m ath +Ġв ним +ING ING +ed ral +Ġexpl or +Ġroast ed +Ġcraw l +Ġco ff +Ġan om +Ġw ij +Ġimpro ves +Ġtreat y +Ġdiscover ing +Ġstat ute +Ġmerc ado +ĠÑģ ил +Ġint el +ĠChance llor +ĠMed icaid +ug i +Ġver bal +Ġd ön +Ġscript ure +Ġit eration +ek s +ĠOx ford +Ġw äh +ĠV ad +ĠA K +ĠìķĦ ìĿ´ë +Ġi ets +Ġneed les +Ùĥ Ùħ +Ġpas ado +Ġalbum s +Ġye a +et zen +Ħë ıĦ +Ġdeterm ines +Ġthe e +ĠPlay ing +är t +Ġ× ¦ +c led +Ġdown ward +al one +Ġsol u +Ġpart ition +Ġw z +d d +Ġpesso al +å ª½ +Ġfact ories +Ġble ibt +ม า +als a +ĠNF L +Ġfu era +Ġres erved +ĠE arn +Ġhel t +Ġshort cut +Ġconvin cing +sp ace +Ġen force +Ġc ores +Ġe fter +Ġrecess ion +x ico +Ġprop osition +ar ians +rop ol +Ġëª °ë +ĠÎ ľ +ĠìļĶ ì¦ĺ +Ġactiv ist +Ġconv iction +Ġz ab +Ġcancel ed +ÑĤо Ñĩно +ĠÎ ® +éĢĻ樣 åŃIJ +n ite +Ġfund ra +buz zer +ел о +ic ations +Ġz ona +Ġte ens +Ġmethod ology +Ġì¤ij ìļĶ +th an +ĠU l +ĠG rey +Ġh og +IN K +ĠS ung +ĠC laud +ĠCN N +Ġdel ivers +al in +ĠAd obe +ot he +ĠDes wegen +ภ³ +Ġwer de +Ġgre ase +Ġup grades +ĠFin land +ac cept +Ġinter rog +be e +Ġãģ « +Ġpre de +ĠN ep +ĠCam bridge +Ġgraph s +Ġha unted +Ñģ ем +æ § +åħ ĭ +S ome +ĠM all +Ġrehears al +ĠUr ban +ĠL ag +Ġn im +ê° ķ +Ġposition ed +Ġavo ided +EM A +Ġlleg ar +Ġráp ido +Ġgou vern +Ġh ing +Ġdeal er +Ġreform s +Ġfat ty +к ол +ĠA ce +Ġne p +Ġì² Ń +Ġcomput ation +ĠSt ream +bour ne +t ur +P or +Ġsleep y +Ġbang et +ãģĤ ãģ® +Ġwe ighs +Ġble iben +ĠG ren +Ġun ions +Ġêµ IJ +Ġap render +uit ar +ĠJ est +um ing +ĠPlay er +ĠExt rem +Ġinteg er +аÑĩ е +Ġconcert s +×ķ× Ľ +Ġtro chÄĻ +ĠRe pe +éĩį è¦ģ +๠Ĥ +ż en +Ġsound ing +Ġan onymous +Ġex ca +ĠIran ian +Ġener getic +Ġw ives +ĠÑĨ веÑĤ +Ġa is +ãģĭ ãģª +Ġsud ah +Ġunder wear +Ġcrunch y +ĠP ain +Ġger çek +red ict +Ġm isma +Ñĸ ÑĤ +Ġsurv iving +ÎŃ ÏĤ +Ġparticip ant +ĠH essen +ári as +Ġsub way +ist ä +Ġcor al +Ġmar ijuana +ĠMem orial +ÑĪ ий +ri z +Ġsatell ites +Ġle ase +ĠCam eron +um ph +Ġclass mates +äh än +ÑģÑĤв е +Ġh ue +ĵ¤ ìĿĦ +Ġproport ional +Ġn oss +Ġl aps +r Ã¥ +Ġbit coin +ÐĹЫ ÐļÐIJ +Ġì¶ © +ĠÙĦ ÙĦ +ĠM ort +ĠEs p +arn os +ĠÑģказ ал +Ġä nd +åħ Ħ +×Ļ ×Ļ×Ŀ +ĠGe b +ge hen +I naudible +bor ough +ÑĦ ÑĦ +Ġfellow ship +ĠP aper +Ġcur ved +ĠGE OR +Ġcalcul ator +ĠCat al +ĠvÃł o +Ġby pass +л еÑĤ +à ³ +tr ans +ren cies +ì ¡Į +ig ent +Ġtast ed +Ġo ceans +u ft +erv ice +ĠÐľÐ£ ÐĹЫÐļÐIJ +ĠClass ic +Ġrespect ively +~ ) +î tre +ĠN ash +Ġz it +ĠìĽ ĥ +ĠëĨ Ĵ +qu ote +ĠUn s +Ġt ac +Ġpro ves +ĠPort land +b ly +Ġ ere +ì¶ Ķ +Ġépo ca +ĠÑĤÑĭ ÑģÑıÑĩ +7 6 +Ġhad e +ĠF ro +ĠpolÃŃt ica +t ag +Ġíķ Ń +Ġsch ö +are tt +Ġprov isions +Ġmot ors +Ġimag ing +Ġdo k +ul ously +Ġme ille +çİ° åľ¨ +ë IJ +ĠIS O +ĠST EM +ĠBow l +Ġto wers +ĠE e +ĠPerform ance +Ġlo in +cuss ion +Ġcoast al +ial e +com pass +Ġspell s +Ġdisappoint ing +Ġë²Ī 째 +E ER +Ġvers atile +as ury +Ġen fin +Ġdown side +Ġgu iding +ĠاÙĦ ÙĤ +Ġnin ety +char ged +ĠF ans +Ġphilosoph ical +Ġg arn +ĠmÃ¥ nga +Ġwilling ness +Ġport ions +ab en +Ġ ï + ¿ +ra ul +Ġspr int +if en +ıy la +Ġк Ñĥп +ãģı ãģłãģķãģĦ +Ġens uite +ĠCap itol +Ġ6 3 +ĠговоÑĢ иÑĤ +Ġappoint ments +æī ¾ +omi ast +Ġcare g +Ġpubl isher +Ġher aus +Ġε ί +ĠV S +ãģĿ ãģĹãģ¦ +ä¸Ń åħ± +Ġsacrific es +th ird +Ġhuman itarian +ĠëĤ ´ì +im on +Ġine qu +Ġz ob +Ġcomfort ably +ĠD inge +Ġcancell ed +ĠPS AKI +ĠRob inson +Ġfin s +) ? +ĠHist or +ĠÑĩеловек а +Ġt bsp +te xt +k im +Ġupd ating +Ġgel d +f eld +ı ¼ +Ġm ä +Ġcaf é +Ö Ģ +ĠS ri +ĠReg ion +ĠH ahaha +Ġfin ances +ĠاÙĦØ ´ +Ġb unk +ru k +ha ft +Ġlater al +Ġext ensions +ĠìķĦ ìĿ´ +Ġdefin ite +ĠZ hao +ĠLu is +st y +Ġcas os +ĠK lim +Ġ199 3 +Ġreal ization +Ġhistor ian +Ġcrack ed +ëĤ ´ +Ġsyst ème +ĠC IA +ĠÑĤ во +osp heric +Ġfle e +Ġr ất +ĠRegard less +Ġrel uct +Ġtim ely +ĠJul ian +G M +é Ĵ +ad ura +é£ Ł +Ġdress es +çģ £ +ĠëĶ Ķ +Ġnom inated +Ġadvoc ates +ym ph +Ġrecord ings +Ġdev iation +Ġpriorit ize +Ġspir al +ĠYOU R +Ġtransp ose +amp oo +ĠìĽIJë ŀĺ +ĠV ision +Ġpol ite +Ġha mb +ĠPat ient +æ¯Ķ è¼ĥ +íģ ¬ë +Ġs ia +Ġê³ ³ +Ġž e +è§ Ģ +Ġsuper market +ë ¹ +ĠS ierra +Ġgr illed +ĠUp on +Ġabs ent +Ġme c +ĠAp ollo +Ġp unk +ĠPa ÅĦst +ĠÑģв ой +Ġê±° 기 +G irl +Ġskin ny +ĠPrem ier +Ġterrit ories +Ġli ability +Ġj erk +r atic +Ġdan cers +ĠÑĥ ÑĢов +Ġê´ Ģë +on ly +ĠSt u +Ġske leton +ĠëŃ IJë +Ġзак он +ı kt +ĠMI KE +Ġl ö +m ie +Ġre iter +ãģĵãĤĮ ãģ¯ +ĠKoll eg +ĠAd ams +lich er +Ġçoc uk +Ñı г +Ġbl ush +Ġsun shine +Ġe z +ĠDev il +Ġê¸ ¸ +Ġãģ Ĭ +ad d +Ġlic ensed +Ġv inyl +ĠC zech +im ag +Ġcrack ing +Ġì º +Ġud ah +Ġs ommes +Ġìĸ¼ êµ +wa Äĩ +Ġf res +åij ½ +ĠWal mart +ĠТ епеÑĢÑĮ +at isf +C I +l ang +Ġdiff usion +çĶ · +Ġsom os +ĠM akes +æĪij æĥ³ +ĠRick y +Ġmuch a +íķ ¨ +Ġhorse power +as ia +Ġfib ers +Ġ erm +Ñģ кие +Ġjest e +Ġfire fight +Ġcu isine +Ġbesond ers +d ig +Ġì¢ ħ +ĠÑĥ ж +Ġtr acing +Ġcertain s +ĠApp ly +Ñĭв аÑĤÑĮ +ç Į +Ġbr u +ĠY ES +ĠB ai +ĠD it +ĠB is +Ġun le +ÑģÑĤа ÑĤоÑĩно +ĠAw ak +.. " +Ġ12 5 +Ġroot ed +Ġcaut ious +con st +Ġorchest ra +çľ ¼ +Ġвн ÑĥÑĤ +Ġquel qu +ĠоÑĤ веÑĤ +ĠMet hod +ì¹ ľ +Ġμ αÏĤ +l ü +ĠìķĦ ê¹Į +Ġn aming +C har +ĠS icher +Ġprivile ged +ĠF ly +Ġãģ ĭ +áºŃ t +Ġadv ances +ĠZel da +Ġand ra +Ġgr inding +ĠEd ition +p f +Ġwarri ors +Ġh edge +Ġuns eren +ĠÑģÑİ Ð´Ð° +el iness +Ġpersonal ities +Ġf ö +' M +ĠÑĤо Ñĩно +Ġsh ipped +Ġmete or +Ġsurround ings +ĠF ill +u esta +ĠPerson al +ĠAll e +OR T +ä¹ ħ +ĠS che +V I +Ġcompar able +dam n +Ġd itch +Y AN +ism us +Ġpick up +Ġd ak +ĠE P +b est +ĠS ue +äll t +Ġpop corn +Ġfold ing +h ome +ив аеÑĤ +å·² ç¶ĵ +Ġan not +ch uck +Ġfier ce +Ġdam aging +Ġfl op +Ġpas ar +Ġre ef +ĠÑģво ей +Ġz oo +o vers +j ets +Ġpr ès +ĠSil icon +te ok +ĠS eth +at amente +Ġtransm itted +Ġrepl icate +Ġsl im +ĠC ream +æĦŁ ãģĺ +Ġside walk +ìĪ ĺë +Ġжиз нÑĮ +ĠMon ica +ä¾Ĩ äºĨ +Ġcop ied +ĠTer ra +ist ent +ç³ » +Ġо но +Ġwh ale +ĠW ITH +л ÑĥÑĪ +å½± çīĩ +ĠE en +ĠÑģво и +Ġord in +Ġpl ural +Ġsp okes +Ġdisp ute +Ġsens ible +Ġpre aching +Ġktó rzy +pt ed +av ier +Ġpist ol +ĠTap i +Ġ ÅĤ +ff ff +Ġac rylic +Ġignor ance +ĠZ iel +r ans +Ġweld ing +m id +æĪij ä¸į +Ġзан им +Ġlan es +Ġmin es +Ġmom s +×ķ× Ĺ +ĠCham ber +t ier +Ġmod est +ĠìĹ¬ê¸° ìĦľ +Ġun as +Ġw rench +hand ed +Ġsatur ated +ĠF ang +ĠCommission er +ठ° +Ġ× ĸ +ĠLouis iana +ĠM ask +Ġcub es +ìĶ ¨ +Ġvidé os +ĠnÃ¥ gon +Ġr ider +Ġì¶ ľ +Ġs ón +ĠLat ino +b ank +íķ´ì £¼ +ĠB rend +Ġsexual ity +... , +Ġforget ting +Ġ ÛĮ +ĠAven gers +ĠBon jour +cess or +кÑĢа ÑĹ +c ence +Ġge ograph +cul o +о ÑģÑĤÑĮ +Ġswe ating +íĥ Ģ +Ġsymm etry +ts Ã¥ +Ġj an +ĠFer r +é¦ ĸ +Ġamb assador +ziÄĻ k +Ġmus un +ĠÑĥ ÑĤ +ĠL G +iss ent +comm un +Ġcour s +Ġdevelop s +Ġbron ze +Ġsubst ances +dri ven +주 ìĦ¸ìļĶ +Ġa os +åĦ Ħ +ĠPROF ESS +h alf +Ġsort ed +ĠB omb +л аг +ĠMalays ia +ĠChrist ina +Ġteam mate +èģ ŀ +F T +Ġk ı +heart ed ++ + +ogen ic +Ġbell s +ĠOu ais +Ġspecial ists +б Ñĭ +dep th +lass es +g ies +ĠCo ffee +Ġmark ing +Ġfo ll +ul i +Ġad hesive +ĠB ot +ĠP unkt +e ye +ĠB ub +el ong +åĪ ¶ +ĠпÑĢ ик +Ġdon or +8 4 +Ġen for +Ġcatch es +Ġbr icks +Ġkn itting +ĠKnow ing +ok s +H Y +r ide +ĠFant asy +im an +Ġp se +Ġìĺ ¨ +Ġв д +Ġrest ra +Ġevalu ated +ÑĢ ев +Ġfortun ately +Ġche gar +ر ب +Ġdom ains +ib i +ar ry +Ġshut ter +Ġfic ou +M ike +Ġinc lu +Ġdon ors +Ġa pl +ĠL ower +Ġimport ed +Ġacad emy +Ġfin als +Ġdisappe ars +ÙĬ ا +Ġadministr ator +j s +Ġcut ter +Ġr anging +ör per +Ġconstra int +ĠT able +ĠSh an +v ic +ĠF ix +ĠSw ift +oun ces +ĠWar um +Ġlett uce +app elle +Ġsh ave +Ġb ás +Ġ7 7 +ĠO oo +a o +ĠMc M +ĠD rew +Ġl ump +Ġl ashes +schein lich +R ep +in is +ĠC ette +Ġcompos ite +emet ery +Ġsort e +ĠFin ancial +он е +ron es +ĠV oy +Ġt éc +ł ¹ +ĠNin ja +ĠCor in +ен нÑı +ìĿ´ìĹ Ī +Ġn ich +Ġdetect ive +âĢ¦ " +Ïĥ ε +Ŀ¼ë ıĦ +Ġë³ Ģ +Ġë¸ Ķë +Ġpro pe +ĠW right +Ġ×Ķ× ª +ĠSh i +Ġãģ Ł +Ġinvestig ations +éĤĦ æĺ¯ +ĠPower Point +ĠCh u +Ġìĺ ¤í +ĠìĻĦ ìłĦ +ĠFra gen +un ning +Ġpour rait +Ġtext book +м Ñĭ +Ġf ahren +Ġ ÑĤоÑĢ +Ġl akes +ünd e +I nt +ĠMet ro +Ġmans ion +Ġа б +ĠZh ou +Ġcorrid or +Ġesc ol +Ġindic ating +ia ÅĤa +Ġm ommy +Ġarch ives +Ġfound ers +eng ine +ĠDie u +Ġsick ness +Ġë³´ ëĭĪê¹Į +Ġar b +Ġn ed +ĠCh op +Ġco vid +Ġsl am +Ġpublic ations +D C +Ġsp ends +æ ¾ +Ġrefuge e +Ġd ile +Ġ×IJ× ĸ +ific ar +ĠS ach +G u +Ġre load +?? ?? +Ġje ÅĽli +ĠÑģ оÑģÑĤо +Ġsim plicity +Ġbull ying +Ġм ол +Ġreal idad +Ġuncle ar +app a +le vant +ĠIS IS +ĠW atson +Ġde in +ĠMic ro +íķ ľë +ü g +Ġdev am +Ġtwe eted +å° İ +Ġunderstand able +at an +Ġvers a +Ġpre ca +Ġv á»ģ +ĠCop y +ĠOr acle +Ġmindful ness +Ġdisc ret +ern en +ĠP le +H ave +Ġisol ate +Ġde u +Ġsevent y +ĠH ills +Ġarc ade +ĠÑģп еÑĨи +Ġsigu iente +ĠB ÃľNDNIS +lig a +ĠвÑģÑĤÑĢ еÑĩ +ô m +Ġtwe ets +Ġsch auen +Ġcrit ique +ĠðŁİ µ +Ġst att +ĠÑģам ое +ân cia +Ġsuper natural +Ġplug ged +F l +yn ı +ĠTamb ién +Ġencourage ment +ĠSer ver +ëĤ ľ +up a +Ġast on +Ġhe ars +ÑĢа Ñħ +Ġsch e +Ġr ats +Ġrec uper +Ġun ten +ĠFight ing +Ġacadem ics +ç¤ º +ĠS ü +Ñģ киÑħ +Ġpa ired +Ģ ìĿĦ +Ġá rea +Ġsweet ness +åı Ĭ +Ġde fer +Ġmuit as +ĠAud io +Ġlock er +ÙĬ د +ĠÑģÑĤ ав +Ġbu ena +AN S +Ġdetect or +av o +be k +Ġα ν +íİ ¸ +Ġdra gged +Ġдолж ен +à ĸ +ر Ø© +ìĿ´ì §Ģ +Ġcell e +ck ing +ĠاÙĦØ ¬ +ĠCan vas +Ġespa ñ +Ġgl imp +Ġspread s +ong o +ĠM ason +ĠIn g +Ġê°Ģ ëĬ¥ +ÏĦ ικ +Ġsec ular +Ġb ater +Ġinqu iry +Ġenerg ies +Ġmanufact ured +Ġveget arian +Ġpine apple +ÑıÑĤ а +Ġpractition ers +2 000 +Ġíķ´ì ļĶ +ĠìĹ¬ëŁ¬ë ¶Ħëĵ¤ +Ġë¶ Īë +ĠJeff erson +ĠJo an +Ġtr am +å® ¹ +ch mal +ĠH ait +á¹ ĩ +Ġun real +Ġsymbol ic +Ġste alth +Ġspl ash +ĠEntertain ment +Ġmetall ic +?" . +è¶ Ĭ +ar ound +Ġdesp air +ĠNev ada +ĠFin ance +Ġk rie +ĠL ux +ĠSm ash +ke eping +Ġз аг +Ġnarc iss +Ġdz isiaj +Ġtoler ate +o ard +Ġlink ing +ĠEconom ic +Ġì ¼ +Ġmor ph +ĠN ak +ĠB aker +at on +r ings +ĠP eng +ĠAir port +ãģĭ ãģ£ãģŁ +íķĺ ëĭ¤ +§ ģ +pr ints +Ġhad i +Ġemp ir +ĠL ives +ann ers +Ġн им +ĠPROFESS OR +Ġpositive ly +ant om +Ġbad ge +ke lt +Ġinter fer +Ġfulf illing +Ġvisual ization +éĹľ ä¿Ĥ +ĠPr ice +� � +Ġscen ery +Ġpr one +Ġw izard +Ġb anyak +ver b +s ky +Ġwish ed +Ġrail way +Ġü zer +Ġalgu ien +ĠA W +Ġкол иÑĩе +Ġreact ing +ĠB uch +ภ¶ +Ġan th +Ġsi h +Ġh ust +ĠSc reen +il ant +ah o +Ġfragr ance +Ġelev ation +ĠMed iter +Ġë ¿ +Ġé qu +Ġwra ps +Ġin ert +Ġrecre ate +л аÑĤ +Ġbo leh +Ġharass ment +unk y +Ġglimp se +reg ierung +Ġfut ur +Ġreposit ory +Ġeng ra +Ġtraff icking +ass is +ĠTre k +Ġë² Į +Ġë§ Īë +ĠK ab +ani u +g ive +Ġdin osaurs +Ġfe ather +Ġatt itudes +Ġpl um +ĠR S +ĠAn fang +ill ery +ĠìĬ ¤ +M Y +Ġtrze ba +Ġsk ies +ĠA j +ur able +C U +ĠSh ane +Ġdepart ure +ĠT ON +iet en +r ats +æ° Ĺ +is u +Ġb ord +Ġinteresting ly +çĻ » +oug hing +Ġr ushing +Ġvol atility +Ġp yt +Ġform ats +Ġз аÑĤ +Ġê¼ Ń +Ġwhat not +Ġcomp ort +s w +ore an +ĠRel ax +Ġcl an +ĠA H +Ġpe w +Ġdiction ary +T ake +sh irts +ĠH ugh +ĠعÙĦ ÙĬ +ĠP ic +Ġenroll ed +Ġjed nak +Ġoffer ings +Ġcor az +L ife +Ġ !!! +Ġcl er +ĠVide os +ĠRod rig +ĠId ent +ĠP os +ĠSt age +ĠR ace +Ġen act +ãģĦ ãģ¾ãģĹãģŁ +ĠG y +ĠHis pan +Ġdef ence +ĠCamp bell +m atic +Ġrele v +Ġpe ach +Ħ¸ ìļĶ +Ġparad ise +Ġcere mon +Ġannoy ed +æĮ ĩ +la x +Ġexplo it +Ġcla use +ek er +ĠBlo om +n ant +ate urs +Ġhe ights +E ven +Ñģ он +Ġoutra ge +ĠVietnam ese +ãģ¯ ãģ¯ +T R +Ġe er +Ġcann on +ĠCom b +IJë §Į +è» Ĭ +Ġê²ĥ ëıĦ +Ġaccomplish ments +ĠAnalyt ics +Ġshap ing +re iben +Ġb achelor +Ġfing ert +ack ed +Ġpyram id +ĠStew art +á st +Ġsurviv or +Ġdu ct +Ġdeal ers +æ´ » +ع Ùħ +ли н +Ġed e +×ķ× ¢ +ĠÙĥ اÙĨ +ĠÏĦ ι +Ġcho oses +ĠO wn +го ÑĤов +h ire +алÑĮ нÑĭе +ĠÐĽ Ñİ +Ġо ÑģÑĤав +te ch +Ġdro it +Ġsubject ive +en es +Ġdiv is +ave z +Ġmaneu ver +à¹Ħ à¸Ķ +ade ce +ĠEn s +ac ial +ĠProt ection +ĸ ´ +Ġform ally +Ġwy d +ingu ém +Ġz iem +Ġrecru iting +×Ļ× ļ +n em +Ġforb idden +ĠB apt +×IJ× ł×Ļ +Ġsubs et +ĠMag az +n ement +Ġaqu ela +rag on +Ġcomm ittees +Ġéta ient +ud i +ĠDa wn +Ġb ore +Ġcompos er +ĠwiÄĻ cej +ang a +Ġdis like +ĠD ays +åŁ º +Ġpar al +Ġm ientras +Ġheaven s +ãģ Ĵ +he id +Ġtrad ers +on ce +Ġmasc ara +ĠÏĢ Ïģο +Ġwhis per +ĠMus k +éĽ Ĩ +ĠFamil ie +All ah +ĠOl ivia +ĠPr os +Ġol ika +il im +Ġrép ond +ĠP eters +Ġ å¾Ī +Ġbit es +Ġv ic +ĠN Y +em ption +Ġ4 50 +Ġvisual s +Ġlie u +ück en +ĠSte el +ĠG P +w ait +Ġnotice able +uch a +Ġreh abil +Ġreject ion +ĠÑģлед ÑĥÑİÑī +Ġsl ider +Ġregard ed +Ġgrav it +ĠRes erve +c ount +Ġbre eding +Ġlon ge +ale b +Ġkn ight +Ġв ой +Ġprés ent +Ĥĺ ìļĶ +ĠSpec ifically +Ġpos es +Ġve ure +ok ay +em as +Ġ ãģ§ãģĻ +Ġma jÄħ +Ġweb inars +Ġcann abis +Ġdam als +ĠNorth west +Ġp ada +Ġcrowd s +Ġfut ures +Ġä n +Ġciv ilians +ĠS achen +æ į +Ġtr aces +Ġ먹 ê³ł +Q U +é¡ĺ ãģĦ +ĠI F +an ın +ìĤ ´ +Ġb iblical +ĠV ed +Ġst oring +ÑĢав лÑı +æĩī 該 +Ġn ast +Ġd ö +ÑĢ оп +el ia +Ġside ways +ĠUnder stand +ĠQ ur +Ġper pend +ĠMill ionen +Ġwater melon +ĠDiv ine +ult ur +ab ord +Ġsuccess es +Ġhom bre +Ġcar p +Ġsus cept +ung kin +Ġk ij +ul us +Ø§Ø ¬ +Ġnot ch +Ġpolynom ial +å¹ ² +å © +Ġún ico +Ġteles cope +Ġpolit ique +k iem +ĠÎŃ Î½Î± +Ġaggreg ate +ĠGe off +Ġtr il +ĠG RA +Ġsubscri ber +im et +Ġдол лаÑĢ +op ing +Ġth erapeut +ĠCan cer +Ġpar ade +Ġir rig +âĻª âĻª +Ġclear er +Ġb og +ĠM aur +า à¸ĩ +ĠShang hai +acht e +ĠK ol +el ujah +Ġha v +ĠCr ime +se k +Ġë ¡ľ +ien na +ĠG or +è Ľ +ĠпоÑĤ ÑĢ +Ġкаж еÑĤÑģÑı +ĠL ift +ĠS ort +ĠP sal +Ġp ing +ĵ Ŀ +ph is +ĠF UCK +ĠS yn +Ġbam boo +¬ ìĺģ +c uts +Ġm mm +Ġfunktion iert +Ġ _ +ÃŃ cio +St op +Ġimag inary +Ġnot amment +ĠIniti ative +ãĥ ¥ +ĠK urt +Ġlo osen +Ġbus car +çģ « +Ġz elf +Ġpro ps +åĽ ī +Ġmoet en +Ġmill i +Ġhall s +ĠM atch +Ġbrack ets +ĠC ou +æ¦ Ĥ +ĠÐľ аÑĢ +IS A +Ġcig arette +Ġcompet itions +ĠM IN +Ġbeh ö +vo or +Ġ ust +ĠZ i +ĠO cc +ul ates +Ġball oons +Ġpr onto +ĠM iy +ĠF ile +Ġкл аÑģÑģ +нÑĥ л +Ġcere al +Ġincre ment +Ġref ined +åı¦ å¤ĸ +pr ising +ĠR F +Ġrespect ful +Ġlo ot +ask et +Ġdeix a +ing le +Ġfuncion a +ĠRe vel +Ġso ber +Ġperform s +ĠG entle +ãĤ ¨ +Ġrecip ient +ĠHa use +Ġë ĥ +F rom +Ġmin isters +Ġpar adox +å°±æĺ¯ èªª +Ġtast ing +Ġ×Ķ× Ĺ +Ġre use +ĠL ane +ĠÑģов еÑĢÑĪ +Ġremem bers +Ġfemin ist +Ġcommit ments +Ġproject ed +Ġg az +iyor uz +Ġoblig ations +R o +z ar +Ġch w +ĠJ AM +ĠbÄĻd Äħ +asp berry +Ġм еÑģÑĤо +ë² ķ +Ġreg ulated +Ġw icht +ĠTre vor +Ġsecond ly +ĠIh re +els h +Ġrep orters +ÑĤоÑĢ а +oy o +G I +Ġinter connect +é IJĺ +OS H +æŃ ² +Ġbr ass +Ġign oring +ä»Ĭ æĹ¥ +in fect +Ġpro jekt +ore t +ÏĦα ν +ĠÑĤ ип +Ġmut ta +Ġunbox ing +Ħ ° +å¡ Ĭ +Ġadv ised +ĠDen ver +Ġsevere ly +ĠM hm +Ġfl ipped +Ġp ien +Ġkomm un +ĠF RE +Ġà®ĩ à®° +aint ed +Ġkn ives +Ġhab l +Ġgew orden +arett es +C S +Ġмал енÑĮ +Ġgal ax +Ġnin ete +ê±°ë Ĥĺ +Ġs is +Ġadvis ory +Ġdr illing +ĠWould n +ün f +gest ellt +ĠHel en +Ġ×ŀ× IJ +ap olis +Ġrze czy +Ġter ra +Ġhe p +Ġalg ún +ik k +Ġastron om +ĠStar bucks +k Äħ +Ġpat rol +Ġì½ Ķ +Ġg on +Ġ ãĢIJ +Ġson st +Ġencoun ters +Ġret rou +Ġshark s +Ġd or +ĠR ever +Ġev apor +Ġreserv oir +Ġalleg ed +ul er +Ġver m +Ġcommer ce +Ġf itted +ge m +Ġtact ical +Ġl ith +éīĦ å¡Ķ +h ad +è® Ĭ +Ġcarboh yd +Ġlength s +ι ο +Ġdem ographic +R ob +ĠS kin +cc oli +Ġsimpl ified +Ġread ily +ĠC um +ades h +ĠD Ã¥ +us st +ig ne +et on +Ġmen or +q i +OO M +à¸Ń à¸Ļ +Ġpsych iat +Ġeight y +Ġм илли +ĠT ob +ed o +ç¶ ² +ĠÄij ến +Ġcirc uits +ĠLAU GH +ic ism +em or +Ġreg ener +eg ree +Ġbure auc +ĠAl ber +ä¹ĭ å¾Į +ĠW or +å¤ « +Ġres in +Ġby ÅĤy +ĠI G +à¯į , +Ġ7 8 +Ġwe eds +ĠMy th +9 3 +æ ¿ +ĠëĤĺ ìĻĶ +é v +á ½ +ö ren +ç ar +ĠP AUL +Ġdisad vant +Ġposition ing +Ġcock tail +Ġagre es +n n +ĠS ally +M s +Ġinher ent +Ġmonet ary +Ġnat ur +ĠN h +ĠImp ort +Ġle ben +Ġw i +uss y +Ġob es +Ġwand ering +Ġìĭ łë +Äħ da +etch up +Ġdispos al +ĠJ A +ĠC er +z illa +Ġvir gin +ĠSl ide +and el +Ġrighteous ness +ĠÎ £ +Ġide ia +ä½ł 好 +иÑĢов аÑĤÑĮ +ר ×IJ +Com ment +Ġpre lim +ĠV ale +Ġì§Ģë Ĥľ +ĠV anc +OM AN +Ġп Ñĸд +Ġy um +st re +ce m +Ġpo cz +Ġfrag ment +ĠÑģлÑĥÑĩа е +Ġunder go +ĠH ank +ce ks +ĠF PS +Ġoc ur +Ġdeter ior +æ³ ¨ +Ġempres as +Pa ul +Ġ) )) +ĠвÑĢем ени +Ġsc old +×Ļ× ¢ +Ġsuspect ed +Ġaccess ing +Ġsubst it +Ġhistor ians +ä» » +Ġдел о +Ġsoci ed +r one +Ġre den +Ġext ends +epher d +Ġbal con +ä¸į èµ· +ĠSol o +Ġpolit ician +олÑĮ но +Ġirgend w +Ġtraum atic +Ġrapp er +ĠRO BERT +Re ally +æģ ¯ +Ġline up +AS E +Ġcontract or +ĠCorpor ation +g or +ĠTod o +ÑģÑĤÑĢ ой +F BE +Ġnews letter +Ġko ÅĦ +alt ies +ĠпÑĢ иÑĩ +ĠHe avy +Ġsw ords +Ġmanip ulation +Ġfun k +Ġv Ã¥r +ĠTal iban +Ġë° ¥ +Ġac ne +ür ü +Ġdes wegen +ĠD ust +Ġsil ic +Ġhook s +Ġbl ij +Ġpet its +Ġfil me +ĠBere ich +ĠSa id +Ġimp osed +Ġdi ary +Ġго ÑĢ +ĠG ates +Ġal ta +å¸ Į +Ġch cia +ple asant +Ġë° Ŀ +Ġmoż emy +ĠAust ria +Ġbro ker +Ġsuck ed +èĢ ĥ +Ġcomp artment +Ġcl one +Ġ×Ķ× ¢ +ĠDan ke +Ġnoch mal +ез д +Ġad renal +Ġkle inen +ãģ¾ ãģĹãĤĩãģĨ +Ġsubsequ ently +Ġdecent ral +Ġgen etics +Ġê´ ij +Ġmon itors +ĠApp lic +ĠRep orter +w ert +Ġwie m +ĠMove ment +Ġinterview ing +Ġhair s +Ġpu ò +ĠChel sea +Ġco her +Ġc ot +Ġz as +Ġpatch es +Ġl ah +Ñĥн к +ĠRe agan +ĠMar co +c ity +Ġdef ender +Ġdecor ation +ij i +Ġl itter +Ð ¨ +Ġj ego +RE W +ĠP ik +ĠHe e +ĠI v +Ġи де +ĠThe ater +ĠÑĩаÑģ ÑĤо +Ġswe ater +Ġhighlight ing +Ġa insi +Ġdipl omatic +ĠNever theless +å ³ +AS ON +Ġpúblic o +Ġf erm +reat ed +c od +Ġë¬ ¼ë +Ġm ister +ĠVanc ouver +Ġrecogn izes +ec d +Ġcomplic ations +en cial +ãģĹ ãģı +Ġê°Ģ ì§Ģ +ĠUlt imate +Ġva ig +ĠM erry +×ķ× Ĵ +ĠMar cus +ç¸ ½ +ow ego +Ġm ente +S m +Ġa ja +ĠTa o +Ġjud icial +Ġentrepreneurs hip +Ġнем ного +Ġp is +Ġer g +Ġch rist +ĠC urt +ĠÑĢаÑģ п +λ ε +ens ch +ÃŃ re +Ġfo cal +ĠDiam ond +av ÃŃa +Ġh anno +ĠSqu ad +Ġassoci ations +ĠCreat ive +Ġmess enger +Ġbe gging +Ġdec imal +Ġd Ä±ÅŁ +Ġmet adata +sel s +ĠÄ° ÅŁ +ữ a +Ġdiffic ile +d ı +Ġs laughter +ĠVer g +Ġ×Ĵ ×Ŀ +ç° ¡ +æĮ ī +ĠTe a +ass es +O k +Ġsynth es +ot iation +Ġpain ter +Ġel bows +Ġarchitect ural +ĠÑĢ ад +Ġgl or +im age +amp a +cul iar +ł ¨ +Ġte ve +ĠSt elle +ĠB am +Ġì´ Ī +as is +ip edia +ĠG I +ĠAct ive +çĦ¶ åIJİ +az i +ãĤĮ ãģ¦ +ĠL ucky +íķ © +ĠпÑĢ иÑħод +Ġrun way +Ġauthent ication +Ġpos ible +Ġsupp lements +Ġsurg ical +G en +Ġfeas ible +D O +Ġout look +Ġinter vals +Ġan ecd +Ãł ng +Ġstra ps +ĠSh u +ud d +iss enschaft +Ġport e +Ġcomm itting +Ġall ey +Ġco venant +ĠPed ro +less ness +ĠSol id +ĠM olly +Ġн екоÑĤоÑĢ +Ġcooper ate +åĮ Ĺ +oll en +Ġtun a +Ġkinderg arten +ĠS iz +Ġduż o +ĠM BA +ĠGEOR GE +ĠF isher +å¿ ĺ +ĠCa esar +ĠкÑĢаÑģ ив +ĠDel hi +zy m +Ġexpl icar +ê°Ģ ì§Ģ +un s +gr ow +ĠпÑĢ иÑģ +Ġ8 6 +Ġst ating +Ġmass a +ch ter +Ġì»¬ë Ł¬ +Ġdep uty +S M +n oc +Ġge ography +ĠEnter prise +ĠC ant +ö z +Ġun pack +ĠíĻ Ķë +Ġsearch es +Ġpres idency +Ġtri vial +Ġp ige +ou bt +ãĤ ļ +ì¼ ĢìĿ´ +Ġbudget s +Ġu b +Ġp ne +ĠY ale +ĠÅŁ öyle +reg ular +Ġimper fect +AR A +Ġfam ÃŃlia +ur m +ĠAdvent ure +ãĥ Ĭ +c is +em ark +Ġne go +Ġinappropri ate +ĠпÑĢи з +ĠÑĢ ол +Ġdream ed +B ry +Ġshut tle +Ġpill ars +Ġb ik +in um +ĠÑĥ Ñģ +ĠNe br +Ġperpend icular +Ġbook ed +ber y +Ġv ikt +be ar +es us +Ġвозм ожно +¨ ¹ +Ġpresum ably +ĠMem phis +Ġambul ance +×ķ× ŀר +Ġthumbna il +Ġmod ification +éĩ ı +Ġinterpret ed +Ġprom o +Ġκ ά +Ġε ÏĢ +Ġacoust ic +ĠD B +åĵ İ +Ġnon etheless +ou le +Ġpe qu +Ġkn ob +ãĤ £ +ĠëıĮ ìķĦ +Ġpurch ases +ĠÃĩ ünkü +Ġdivid ing +per form +ract ion +health y +ĠTit le +Ġu k +Ġcer ca +Ġargu ably +Ġf ale +ë³ µ +Ġgam ers +Ġutil izing +Ġoff ended +Ġt ava +al ı +Ġmed ian +Ġinfect ious +ĠAn nie +Ġsmart phones +Ġpar ole +åĸ Ŀ +ĠEp ic +z za +Ġun ified +Ġê·¸ë ķĮ +Ġcur tain +ĠÄ ĥ +Ġsex ually +Ġuns erem +ĠCon vention +Ġalleg edly +Y a +ĠH oo +en ment +æĢ ª +íĽ Ħ +Ġgig antic +Ġnot ing +Ġre bo +ĠJ ama +ĠAl z +Ġborrow ed +ì¹ ¨ +Ġper ipher +оÑĤ а +ĠG B +ĠGe ar +Ġeconom ically +Ġtele fon +Ġqu eremos +ĠдалÑĮ ÑĪе +Ġr as +ĠTe ach +ic ios +at os +Ġpl edge +b au +ĠHim self +L ink +Ġesper o +Ġchrom os +ĠP ER +Ġer le +Ġpod ium +ç os +Ġnie u +Ġf en +ĠGO D +ĠCh ocolate +wer k +Ġt ừ +Ġsupp ress +λ η +Ġ24 0 +Ġsit ä +Ġhonest y +ĠB io +ĠB ard +ĠобÑī ем +Ġм Ñĥз +Ġmar ble +ĠÑĨ енÑĤ +Ġproc ure +Ġrot or +ber n +Ġtu h +Ġhead set +at em +Ġwarrant y +à® ´ +Ġfil ing +ι ά +Ġcomp rendre +Ġimp ulse +Ġsal v +wr itten +Ġinstit ute +K im +ĠLGBT Q +fic iente +H is +ĠαÏħÏĦ ÏĮ +Ġteen age +or us +ĠÑĢаз б +S ee +ĠCons erv +á»ģ n +ful ness +Ġstraw berries +ĠAb u +и он +Ġo lla +NO ISE +ĠEm ploy +Ġwip ed +ur ger +Ġmod ifications +Ġíķĺ ì§Ģ +Ġfoot steps +Ġhon ors +Ġad ul +Ġfl ipping +ĠH U +Z Y +Ġintegr ating +ب ر +ull a +Ġnatuur lijk +ĠíĹ Ī +ĠEth ereum +ÙĬ ÙĦ +w ed +Ġpe aks +ĠK es +Ġblo om +Ġcr ashing +Ġ9 11 +ĠоÑĤ лиÑĩ +Ġcontro llers +ĠD od +Ġвм еÑģÑĤе +Ġsort ir +å¥ ĩ +ĠStra ight +ĠGrac ias +Ġgro ove +Ġto gg +Ġìĭ¶ ìĿĢ +é ro +Ġout ward +ĠW A +ĠRock y +Ġsc am +Ġhay at +ig nty +â Ħ +pl ings +Ġantibiot ics +Ġ ä¸Ģ +Ġnever theless +j ang +com merce +Ġspo iler +Ġglo ve +Ġch atter +ĠB Y +~ ? +Ġíĺ ¸ +Ġdem ol +we chsel +im ir +Ġra id +еÑĢ Ñħ +ìŀIJ 기 +en f +Ġcomment ed +Ġoptim ized +Ġconv icted +Ġb ats +ĠS B +ĠA ur +ĠT ong +Ġimplic it +ĠJan et +Ġre ag +ãģ ² +ĠAdv anced +Ġimp ose +ש ×Ķ +Ġschem es +oug her +ab olic +Ġê±° ì£ł +Ġslow ing +Ġwt edy +Ġdest ructive +Ġоп ÑĢед +Ġland mark +Ġëı Ī +ĠWalk ing +Ạ¹ +Ġt ijd +ĠK N +ĠQu ant +ìĺ ¤ë +Ġк ÑĢÑĥ +Ġper der +Ġno ve +änd e +Ġãģ Ĺ +b ia +Ġcust ody +Ġb iod +æĿ± 西 +Ġdirect ing +... âĢĭ +Ġre loc +Ġdemand e +ãĤĵ ãģł +Ġo ÄŁlum +Ġод на +ĠMil k +åı · +ĠK ra +ĠH onda +Ġp ue +Ġele kt +Ġbegin ners +Ġspe ar +ÃŃ nh +ĠLu ft +Ġn ig +ĠSchool s +Ġfor ums +ĠQ in +pp o +Ġz ag +ĠÐ ® +Ġtooth p +ĠSt yle +ì´ Ī +Ġpun ct +Ġrep s +ĠA ly +Ġamend ments +Ġö z +Ġdig its +ur ai +Ġcha otic +ĠMas ters +e on +ĠC ash +ĠC uz +Ġbede utet +Ġscan ning +Ġж д +н еÑĤ +Ġcertain ty +j ek +Ġdi jo +ĠCl imate +Ġr inse +Ġk rij +vel and +Ġsound track +ĠSa fe +ĠNo va +9 4 +Ġa the +ĠVer b +ol er +ìĿ´ì £ł +Ġv in +Ġrespir atory +ĠStud y +ĠC AM +Ġav ocado +ĠZ hen +Ġlat ency +Ġfe athers +Ġcont ar +Ġв еÑī +Ġf ark +Ġbl ended +Ġexpl oded +ĠX X +ĠBen im +Ġalgu ém +isto ire +Ġconfident ial +Ġm ast +Ġì ¿ +ge h +Ġdis respect +ĠSystem s +Æ° a +E d +Ġw ys +Ġex otic +Ġgl owing +ù ng +oun ge +è Ħ +ани з +Ġpal av +ĠSw ord +Ġg im +ĠC row +Ġpot ent +b ish +Ġab used +ĠJ ed +Ġg ambling +ĠS pect +Ġinvestig ators +æĻ ļ +Ġr att +Ġdo b +ĠD ES +h og +ĠоÑĤк ÑĢÑĭ +íĮ ħ +ĠденÑĮ ги +Ġíĺ ¹ +Ġë¨ ¸ë¦¬ +Ġsat uration +Ġinher ited +ĠInnov ation +ìĹ Īëįĺ +Ġtang ible +Ġdep ri +h ed +Ġпом ог +Ġslic ed +ॠį +Ġth ế +Å ¥ +6 8 +Ġcor ona +Ġgift ed +Ġso ir +Ġhum ility +ĠìĿ´ 걸 +Ġflaw s +ĠпÑĢ акÑĤи +Ġk ald +wa ż +y w +ãĤĵ ãģ§ãģĻ +ir teen +Ġcroch ets +¦¬ ê°Ģ +ĠìłĦ ìĹIJ +Ġdes e +æ¥ Ń +Ġм аг +Ġdz iaÅĤ +Ġl ég +ch anging +Ġlle v +ÅĦ sk +çĶ » +Ġ198 4 +orn s +ĠW elsh +Ġpharm aceutical +Ġpump ing +ĠSh aw +p unk +Ġva ult +Ġkin etic +Ġhur ricane +ĠInc luding +ứ c +ĠGrand pa +ans hip +é¦Ļ 港 +ĠвÑĭ Ñħод +н ож +ľ ł +ut ta +Ġê²ģ ëĭĪëĭ¤ +Ġb az +Ġпо ÑĪ +Ġpe culiar +zy Äĩ +ĠEll ie +Ġlearn s +ĠKr ishna +Ġconse cut +Ġemp ath +ĠD in +Ġtrad ed +ĠBor is +ugg age +oll a +Ġназ в +Ġetern ity +Ġв п +è mes +Ġgra pp +b é +ĠпÑĢед ÑģÑĤав +ĠF C +į ëĭĪëĭ¤ +e ven +ĠNebr aska +ortun e +Ġk arena +ĠAg ent +Ġst ing +ĠP I +Ġmunicip al +power ed +Ġconse gue +ĠMan chester +Ġrain y +Ġbl i +Ġk ost +Ġhal ten +ĠAh hh +ins ula +er ting +ĠاÙĦ Ùģ +Ġrel acion +Ġk omen +Ġd ome +Ġpri ests +ĠInt rodu +rop he +sh ore +vel t +clip se +ĠÑĢ ÑĥÑģ +×Ļ× ¡ +Ġsab emos +ĠHoll and +og i +ank i +ĠM ats +Ġsm oked +ull ie +Ġeuro pe +ĠдейÑģÑĤв иÑĤелÑĮно +Ġbard ziej +Ġtransform ing +ĠE z +op ath +Ġìĸ¸ ëĭĪ +ĠÑģÑĤ ан +ằ ng +ั à¹ī +ĠO uch +Ġclear ance +ust ain +Ġsolid arity +Ġpro ving +ĠÐĺ н +ĠÑģ ÑĬ +Ġpro long +ад но +Ġs os +ĠDe al +Ġ17 0 +m ons +Ġз ем +Ġlo gged +Ġlif elong +Ġsens ory +Ġbe hold +ĠF AR +èt ement +ĠFed eration +Ġdod ge +ĠSh ir +Ġdrag ons +ĠAr ctic +Äħ ż +Å į + º +Ġden ke +Ġpodr ÃŃa +co le +ÑĥлÑĮÑĤ аÑĤ +Ġsystem atic +ам а +ch os +Ġclin ics +ĠB S +Ġtal es +us ions +Ġí Ī¬ +Ġpres ervation +Ġl ore +ĠProt est +á» Ľ +å¸ Ĥ +Ġacknowled ged +ĠIs aiah +ĠëķĮ ëĬĶ +Ġ× ĺ +Ġcompet itor +Ġadv ancing +z ip +Ġtent h +ĠLa ure +Ġh ints +Ġexerc ising +ŀ ľë +ĠIntell igence +u ated +OU T +op ed +Ġaut onomy +Ġbrand ing +ĠMediter ranean +Ñĸ к +Ġscrew driver +Ġsu pre +Ġst ap +Ġjurisd iction +ĠSetting s +Ġfore front +ĠF emale +com fort +Ġmultiplic ation +ĠMur ray +Ġbo b +ĠT as +Ġt ahu +Ġon un +et ter +Ġproph ets +l ag +Ġreven ues +Ġpr á +Ġupload ing +Ġmach inery +asc al +ĠEst á +ĠG oth +ĠB ald +ĠS aw +Ġstri pes +ìł ij +Ġpow in +æĹ¥ æľ¬ +Ġhost ile +Ġdar um +Ġprevent ed +ожалÑĥй ÑģÑĤа +Ġalgun as +Ġhop eless +Ġz naj +Ġread ings +Ġcra ving +t at +ĠP ig +Ġli ar +çĪ ± +Ġmulti player +Ġd ale +ĠCour se +íģ ¼ +ĠK ita +Ġcustom s +Ġrespond s +end ra +è¦ ĸ +Ġmet ro +Ñģ ол +Ġmitig ate +Ġopp ression +Ġ æĪijåĢij +qu inho +Ġam mo +Ġen fer +Ġp ony +Ġ ounces +° Ķ +ĠìĪĺ ê°Ģ +Ġdich o +ĠDe b +Ġwond ers +ĠRo ose +Ġpri zes +ĠA LEX +Ġthank fully +Ġtiss ues +ĠÑĢав но +ĠL una +intell igible +ĠìĻ ¸ +ê° ij +ĠHe at +ĠÑģ ид +ĠQu i +Ġ ions +Ġaccommod ation +ä¾ ¿ +ĠK art +ien st +Ġt arde +Ġso aked +ĠCase y +Ġì´ Ŀ +ĠÑĢ Ñĥб +Ġdifferent i +Ġleft over +Ġexch anges +sec ond +Ġfirst ly +Ġbuild er +ri en +Ġd w +Ġboun cing +? < +olog ÃŃa +we alth +Ġmed itate +ĵ¤ ìĿĺ +ĠC raft +è§ī å¾Ĺ +æĻ ® +ri v +ĠAgain st +Ġcer amic +esp ère +Ġcompet ent +ĠHop kins +Ġkil os +Ġgra vel +Ġpist on +Ġfriends hips +Ġesc re +Ġvo z +ĠGes ellschaft +Ġunter stüt +Ġmu j +Ġwarning s +p os +ĠProfess ional +w szy +od le +b ands +Ġteam work +stell ung +Ġd x +åį Ĭ +Ġatt orneys +Ġweit ere +ãħĭãħĭ ãħĭ +ĠOrig inal +×Ļ× Ĺ +Ġbroadcast ing +ĠпеÑĢв Ñĭй +uch i +Ġhe ure +Ġgra bs +ĠW OR +ĠPla id +M in +Ġp az +ĠP uis +um u +it ates +Ġco ats +Ġbu en +Ġhe ir +Ġpne um +ש ר +ens er +ĠJUD GE +Ġbl onde +á¹ Ľ +Ġg ak +Ġs ık +Ġquot ed +Ġequip o +Ġw ishing +ÃŃ cia +Ġver bs +çµ Ħ +ĠCanad ians +Ġgover ning +ĠEv ans +E uro +Ġgen res +Ġunters chied +ĠBeck y +³¼ ê²ĮìļĶ +Ġe inge +ĠRa ise +ol and +ĠStr ateg +Ġer es +ĠVeter ans +Ġbreak out +Ġsant é +Ġad el +Ġinvestig ated +Ġpe ur +Ġag ile +Ġrail road +ans ka +Ġе й +Ġexp os +ator ies +ĠCont ent +Ġtruth s +ĠTra il +Ġgu a +Ġp ores +Ġwrit ings +ĠU hr +ĠThat s +Ġic ing +O C +ĠProdu ction +Ġcar ne +IS S +Ġn inguém +n on +Ġv icious +×ķ× Ķ +Ġrecon nect +Ġcent res +ĠK em +Ġcre ase +ĠìĿ´ë ¯¸ +айÑĤ еÑģÑĮ +Ġб оÑĢ +ĠHay ır +ĠÑģ Ñĥд +Ġún ica +owa ÅĤ +Ġad her +h ua +Z Z +Ġprecis o +Ġcurrent s +Ġseason ed +ĠIo T +ĠB ishop +è¨ Ī +st ed +ĠBern ard +ì¤ ĺ +æ² » +ĠGl enn +Ġktóry m +ื à¹Ī +Ġast rolog +ĠK ot +å¤ ľ +Ġparf ois +Ġfor wards +ĠW iÄĻ +ĠÎ ĺ +Ġn ano +è» į +s ub +ĠBr ill +Ġgr it +Ġc ited +g ado +Ġmel ts +Ġfor cé +âĸĪ âĸĪ +Ġb ajo +Ġdiscret ion +° ° +at ivity +Ġsitu ated +ãĥ« ãĤ¯ +Ñīе е +åľ° æĸ¹ +ĠпÑĢин ÑĨип +am az +Ġaqu arium +Ġdissol ve +ĠGod s +S uper +Ġam id +z k +Ġ ãģĦ +éł IJ +amp f +Ġhel a +' ! +Ġdevelopment al +ĠD ise +ĠÑĢабоÑĤ аеÑĤ +Ġsnaps hot +好 好 +Õ ¸ +ĠY ue +ĠH ulk +ĠDo om +ĠFel ix +Ġré f +M ale +ç· Ĭ +ph ants +EN S +ĠMe chan +ĠG olf +åĨį è¦ĭ +Ġgener osity +ät ze +Ġunlock ed +Ġ ãĤĴ +íĥ ģ +ocaly pse +Al right +Ġê° ľë +Ġ×IJ× ij׾ +ĠKeep ing +Ġcollabor ating +ch ief +ĠFern ando +Ġchef s +ĠíĶ¼ë ¶Ģ +Ġsk ipped +Ġperson n +Ġax e +che z +Ġextract ion +ĠA V +ĠGib bs +Ġí ľ +Ġs ı +I AM +V iew +ĠGR ANT +Ġëª ¸ +Ġver ification +Ġdep icted +ĠMo z +ou x +Ġt ul +Ġsc anner +Ġcomed ian +ĠVol ks +ĠJE FF +è¨Ĥ éĸ± +§ Ħ +Ġdistract ion +r á +ĠIN TER +Ġsin cer +Ġ×ŀ× ª +Ġש ׳ +Ġconstruct ive +ar f +ĠëĪ Ħë +Ġe co +r amos +Ġrenew ed +in ement +ĠU b +ĠPe pper +ì§Ģ ê°Ģ +ĠDar win +Ġmerch and +Ġv árias +è ce +N G +ĠìľĦ íķ´ìĦľ +Ġак ÑĤив +ĠUn ters +ع ÙĦ +Ġint ric +omm a +ie ving +ĠCarol ine +åĵ ģ +ĠPR ES +Ġperform er +Ġaut our +ãģ¾ãģĽ ãĤĵ +Ġutter ly +Ġsynth esis +Ġles bian +Ġretrie ve +Ġmane ira +Ġimp air +Ġment oring +ĠSoul s +ĠGo Pro +ÑĢ аÑĤÑĮ +Ġc ose +ĠSS D +I RE +Ġup front +ĠA un +Ġgam er +Ġl itt +Ġag gression +ĠLike wise +ĠBet ty +ĠD art +ĠD LC +ish ment +ìŀ¥ ìĿĦ +Ġ 对 +ç» ı +c ream +ĠBaby lon +Ġn ug +br ar +Ġa ynı +am ily +b ike +ahah aha +lo yd +Ġmir a +Ġper me +ĠG aming +Ġfirm ware +M a +Ġassist ed +at ics +Ġìķŀ ìľ¼ë¡ľ +ĠM ental +niej s +ĠI z +ow Äħ +Ġt ougher +Ġde ed +èĭ ¦ +Ġsty lish +ĠTool s +ĠH amp +Ġsun screen +Ġartic ulate +i ye +и ÑĦ +ĠSp read +ĠHA VE +Ġsw irl +Ġspons oring +ä» ĭ +iov ascular +mes i +Ġrelax ation +ĠÑģво иÑħ +Ġmar gins +Ġsa ÄŁ +ĠPr ide +ĠÏĦοÏħ ÏĤ +и ÑĨи +en ci +Do es +Ġcor pse +Ġend urance +Ġí ŀĺ +ì¹ ´ +Ġhair cut +Ġinterrupt ed +Ġwind y +ĠC aleb +Ïģ Ïĩ +ĠPour quoi +Ġhol istic +uc lear +ĠWho le +å£ « +A ct +Ġgall on +c ade +ĠReg ional +ro ads +ĠSch ne +á ng +Ġиз мен +ãĤĪ ãģŃ +Ġmen us +Ġspl itting +Ġpr iced +ĠÎ ĵ +Ġus ername +ĠÐŀ Ñĩ +Ġcomp ressed +y in +Ġguard ian +Ġgo of +Ġcheck list +Ġinter change +Ġexped ition +Ġex tern +Ġinfra red +eng o +Ġden ying +Ġpack ets +on ent +B B +ĠInc re +Ġsin i +ÃŁ er +è g +ma al +gen eration +Ġminor ities +Ġlle var +Ġnom ination +Ġcons id +Ġ×ľ× ¢ +m uÅŁ +ĠEs c +Ġnumer ator +Ġka ik +Ġktóry ch +ies en +Ġv ê +ĠUS S +ĠPri vate +Ġод но +Ġal ém +ÃŃt ulo +Ġlim b +Ġforg iven +Ġdiscl osure +ÏĦ ί +Ġning ún +Ġtherapeut ic +Ġnegoti ating +ĠN ike +ense ful +Ġin cap +Ġflag ship +t own +â Ī +ĠÏĢ ολ +Ġwol ves +Ġviol ations +ĠAr nold +Ġinterven e +Ġhe ater +Ġrecurs os +Ġma id +ê² ¼ +Ġдав айÑĤе +ĠCe lebr +Ġca pe +ĠSt y +ain en +s ite +b ij +Ġп олÑĮз +Ġfr amed +Ġpublish ers +ĠÑĩ ÑĥÑĤÑĮ +Ġtempt ation +Ġcert eza +Ġex empt +ìĬ ¹ +se lling +ĠT ask +ho on +ĠC oc +ĠPark s +Ġrepet ition +ĠÑĤ Ñĥда +Ġens l +ĠdeÄŁ iÅŁ +ĠOr lando +ĠMain ten +æŃ ¢ +oc ument +ĠH C +Ġscoot er +Ġнап иÑģ +Ġtight er +Ġte ase +Ġremo ves +Ġkij ken +ĠÑģÑĥ ÑīеÑģÑĤв +Ġth é +ĠвÑĭ глÑıд +Ġrel ieve +Ġmit ä +Ġstation ary +ö ff +p able +Ġar ter +Ġdé f +r ative +Ġcon ect +Ġsad dle +ĠD iane +Ġcomm emor +fend im +S ÃŃ +Ġíģ ´ë +Ġman ge +at te +Ġarrog ant +Ġrobot ic +Ġgi Ãł +æĺ¯ çļĦ +Ġneighbour hood +iss on +Ġдв иж +ĠR I +ĠNorm an +b rand +am ation +Ġraz or +Ġmur ders +ĠÑĤ Ñĥ +Ġwszystk im +Ġut ilities +Ġmicros cop +ê ¿ +Ġda qui +oll ar +ĠÐĶав айÑĤе +Ġann ée +Ġkilomet res +Ġhom osexual +Ġarchitect s +ãģ¡ ãģ¯ +Ġni ye +L ER +Ġmicro phones +ĠSt unden +Ġconsecut ive +iend a +v änd +D ER +Ġlif ts +ĠMe at +Ġsave z +íĸ Īëįĺ +M en +Ġdism ant +ê±°ë ¥¼ +Ġins ulation +Ġsc all +Ġsp ooky +Ġpar c +Ġball et +ĠWhats App +Ġfr anc +Ġdeliber ate +Ġíħ Į +Ġm ars +ĠZ ur +P r +dis ciplinary +Ġobs ession +м е +Ġmarch ing +ĠEmer gency +ig uous +Ġs zy +ĠL ands +Ġboard ing +ĠпоÑĩ ÑĤи +Ġenv y +Ġcompassion ate +Ġmer ci +Ġdes irable +d ale +Ġcan ım +ĠAnt ar +tem ps +Ġconfig ured +ĠComp ared +ne h +ic ating +Ġnic kel +ÙĪ ÙĤ +Ùĥ ÙĪÙĨ +op es +Ġform ulas +ĠÐķ ÑģÑĤÑĮ +Ġpo bl +ĠP J +ĠL ud +ä»Ĭ åĽŀ +ĠBr id +ĠH og +ĠBr is +J en +Ġshad ing +ĠY as +Ġdistur bed +Ġrecomm ending +Ġc é +ĠH OW +ìĹĪ ìĸ´ +Ġrevers ed +ĠInteresting ly +iox id +åħ Ń +Ġìĺ¤ ì¼ĢìĿ´ +ế u +x x +Ġou ais +ĠYouT ubers +ĠR osa +ĠH aupt +j adi +Ġvlog s +Ġcult ura +ĠLeaders hip +ĠH ep +Ġill um +´ë ıĻ +Ġcustom ized +Ġmar ca +Ġqu atro +Ġн аг +ĠSpace X +ĠE igen +ast ing +ĠolduÄŁ u +Ġfor ts +ãģ ī +r iment +ien cia +Ġten ir +ro ffen +Ġ197 9 +Ġc ie +ĠëIJĺ ê³ł +Ġes cri +ÏĮ ÏĤ +íı ¬ +uz zy +C ong +ìĿ¸ ìĿ´ +G reat +s il +é ch +ãģ¨ ãģĭ +Ġmult ic +ĠDis k +² ķ +Ġfaz la +Ġle vant +Ġab ajo +ur ry +st ru +Ġ먹 ëĬĶ +Ġaccess ory +Ġдв иг +ĠR id +20 19 +Ġdown stream +æķ ¸ +Ġk az +ut an +Ġchar coal +Ġa fect +w u +Ġcontext s +Ġfe ared +ĠìĦ ¤ +Ġhist ories +Ġf as +ens ible +Ġcoco a +ill ar +ge ons +Ġspiritual ity +ĠP ew +Ġpharm acy +Ġpass ions +Ġb os +Ġall á +Ġthri ving +ĠRe act +Ġoccup y +Ġwithdraw al +Ġallow ance +ĠFra ktion +Ġbud dies +Ġid le +Ġdissol ved +Ġpreval ent +Ġmil itar +Ġsens ing +Ġpo jaw +Ġanc ora +Ġabund ant +Ġha irst +ãģĤ ãĤĮ +Ġtw ee +Ġnäch ste +ĠMöglich keit +Ġho o +uff icient +Ġfant ast +Ġed ible +Ġëĸ¨ ìĸ´ì +ìĽ ĥ +Ġve in +uc ci +Ġdevot ion +Ġconce aler +in come +Ġrecy cled +ĠìĬ¤í ĥĢ +Ġpont os +Ġdess us +Ġvé rit +Ġreflect ions +ĠA A +Ġtake away +b are +ĠCont act +e il +ĠHe ar +Ġmir ac +ĠGer ilim +ĠÑģам Ñĭй +Ġv ivo +Ġkilogram s +ĠCr im +û t +7 8 +Ġsincere ly +ra z +Ġë³ µ +Ġarri v +Ġconcept ion +ĠPers ian +Ġsj äl +Ġst arring +ĠìķĦë ¬´ +ĠFore ver +е ÑģÑĤÑĮ +Ġve il +Ġsubt it +od ka +ĠоÑĤно ÑĪ +Ġcook s +ен Ñı +K ay +Ġni ños +ĠPh one +Ġstitch ing +Ġfinger print +é¢ ĺ +λ ά +Ġded icate +ĠL ob +Ġblack s +ĠB le +b out +ĠÄij ang +Ġe ks +Ġsqu ash +ĠK ü +od i +Ġn Æ°á»Ľc +Ġvoy age +Ġplay ful +ĠØ¥ ÙĦÙī +an ic +Ġcondem n +ĠB öyle +ĠPol ize +ãĤ¿ ãĥ¼ +Ġay uda +Ġp am +à¹Ħ à¸Ľ +ĠK athy +ед ин +нов а +Ġbr ig +eg er +Ġe agle +Ġvis ions +ĠíķŃ ìĥģ +Ġsh itty +Ġh ott +ĠBr itt +ut ors +ENT E +æĽ ² +Ġph on +ĠB ing +Ġпод деÑĢж +spr ing +æĸ ¯ +et ten +Ġpil gr +Ġed iyor +енÑĤ Ñĭ +ag gio +Ġj ul +Ġcomp rend +te il +ĠØ ² +Ġperform ers +Ġinf amous +ĠM K +ç ª +æ³ ģ +ot le +e ff +ĠH ash +Ġcow ard +ĠB RA +ĠD D +Ġcom ida +Ġpl ata +Ġfl ap +ĠMe hr +rib ution +ĠY emen +Ġmyster ies +ĠÄ° yi +Ġst ell +Ġeyel iner +Ġdel es +Ġnail ed +Ġillness es +Ġst acks +Ġtrabaj ar +fl ower +ci u +Ġcr ude +Ġsubstant ially +Ġhome m +Ġnep hew +Ġstamp s +Ġcar bs +ÑĮ ÑĤе +mo oth +Ġtun nels +ac ie +æ³ ¢ +ĠSe ñ +ĠH era +ĠìķĦëĭĪ ìĹIJìļĶ +ĠWy oming +ĠHD MI +ĠL is +u ción +Ġste er +о Ñİ +иÑĤ а +N T +Ġìĸ¼êµ ´ +Ġpal ms +Ġne on +ов аниÑı +Ġfilter ing +Ġjou er +ĠH ö +Ġне Ñģ +ê²ł ìĸ´ìļĶ +Ġ8 1 +Ġstory line +Ġprz ep +Ġthank ing +ĠBo eing +Ġsoft ly +j em +алÑĮ нÑĭÑħ +Ġflash light +Ġп Ñĥ +ĠW OMAN +ắ c +ÃŃ ch +Ġlux urious +Ġw ün +Ġimpact ful +Ġcons on +re u +ir ring +if ter +Ġconstitu ents +èIJ ½ +Ġ9 4 +ĠT ou +g om +ĠìĥĿê°ģ ìĿĦ +Ġstere otypes +Ġmoż li +åĪĨ 享 +Ĥ ¨ +Ġpencil s +ĠÑģл ож +Ġih rem +ĠBes ch +ĠK oh +ĠEnt scheid +Ġle k +Ġför s +Ġtotal mente +Ġlive ly +Ġent ropy +Ġdisc ern +ĠÐĹ Ð½Ð° +Ġdo v +Ġmyth ology +è¨ĺ å¾Ĺ +apan ese +Ġapprox imate +аÑĤ ив +if iable +ĠSe o +åĢ Ĵ +´ìĭ¬ íŀĪ +Ġìĺ · +Ġtempor al +Ġi T +Ġest at +к им +Ġspr ink +Ġgr und +Ġinfant ry +Ġsch affen +ç´ Ħ +Ġan k +ri ages +ĠYe on +ĠMor oc +Ġinv asive +ģ Ķ +Ġparent ing +ĠR is +ib ile +Ġmod s +å½ ¢ +ĠпÑĢов еÑĢ +ĠTh ing +ĠWhere ver +Ġacknowled ging +Ġpa wn +um mer +or b +6 9 +Ġretr ouve +Ġrel ies +ĠHigh way +Ġa we +ãģ§ãģĻ ãģĭ +ita ire +Ġapplic ant +Ġais le +w orm +Ġpay load +Ġcar re +ĠB ach +æł ¼ +Ġì¹ľ 구ë +ни е +Ġit ÃŃs +onna ise +s ol +èı ¯ +alg ia +Ġrock ing +Ġbest en +rit es +^ ^ +ин ой +Ġba ixo +Ġ기 ìĸµ +оÑĤ ÑĢи +s im +Ġinc arn +ëĭ¤ ìĿĮ +Ġl ick +s ided +Ġ7 1 +f order +Ġreson ance +Ġte gen +Ġmet aph +ows er +Ġ×IJ× ł×Ĺ׳×ķ +? ãĢį +Ġsp ielen +Ġvoll ey +ĶìĿ´íģ¬ ìĹħ +lo oked +Ġsent enced +Ġmultip lying +Ġide als +Ġwahr scheinlich +Ġdepos its +bil ir +Ġeff et +ill on +Īë §Į +Ġtestim on +Ġz awsze +ĠпÑĢоÑĨ еÑģÑģ +ĠL av +ä¸į éĮ¯ +Ġtrava iller +Ġla isse +ĠMount ains +ĠÑĢ об +Ġexam ined +it us +W as +л Ñĭ +Ġattrib uted +ĠìĬ ¹ +ĠBar on +Ġg ep +Ġatt ent +ĠColl ection +Ġthe at +ĠC ai +Ġwell s +Ġhuman o +çĹ ħ +ĠH ast +ĠÑħоÑĤ Ñı +cz as +Ġperm its +Ġle gg +Ġe po +ĠF en +Ġth i +ĠF oi +Ġé lect +Ġ8 3 +Ġover th +Ġ è¬Ŀè¬Ŀ +Ġten ant +è² · +N ext +Ġpra ised +sec urity +ĠImp act +为 ä»Ģä¹Ī +Ġv ouch +Ġneg ó +Ġun ve +Ġcritic ize +ĠKen ya +Ġtact ic +Ġlo gr +Ġpo is +Ġpap a +spe aks +ðŁ ij +isp ers +Ġsur plus +Ġcold er +åį Ĺ +åIJ ¬ +pl ets +ĠV ienna +ĠLe ad +Ġaer ial +ĠT ah +енÑĤ ов +ĠGree ks +C am +Ġmá xim +Ġk uin +ch io +Ġdemonst rates +an os +ĠC ert +ĠÑį н +Ġblog s +ĠìĦľ ìļ¸ +Ġbe ams +ик ов +Ġprompt ed +Ġfright ening +ĠPors che +ãģĪ ãģ¦ +lar ını +Ġch illing +is phere +Ġfl ashing +ĠK ard +b read +Ġex h +Ġty cker +Ġec ological +ĠMa e +Ġ×ŀ×IJ ×ķ×ĵ +ĠëĤ ĺëıĦ +л он +ys s +Ġper gunt +Ġpri x +izz ard +Ġcan cers +Ġ9 1 +s usp +ĠIt em +ÅŁ a +Ġp est +Ġtak Äħ +Ġl ymph +ĠPat ri +f ill +Ġrec onna +Ġoptim ism +Ġmim ic +Ġì² ľ +ĠMad ame +oc y +l ining +åijĬ 訴 +erm e +Ġfold ers +Ġcz ÅĤ +uch ar +Ġcur so +Ġbre ach +ни ÑĤÑĮ +Ġp amiÄĻ +Ġel ig +Ġaut op +F low +Ġprogram med +ĠPro cess +Ġfig ur +ĠS F +ĠE les +Ġprogram mes +Ġdiz zy +ìĭľ ê°Ħ +Ġли бо +Ġsn iff +ĠSeb astian +ĠH ye +Ġ4 000 +Ġperm ite +æ¢ Ŀ +Ġза Ñī +Ġgu it +ĠD ais +Ġaccord ance +Ġmod ular +ogene ous +æĭ į +Ġpou quinho +Ġart illery +Ġlub ric +Ġvol can +ĠN H +ðŁ ¤ +Ġde an +R h +Ġminist re +åĿ IJ +ĠIn v +ĠBul gar +ĠD aten +è İ +I m +Ġorigin ated +ĠN ixon +inte gr +Ġlack s +ĠN acht +ìĸ´ë Ĥĺ +cam era +Ġrad ish +ki ye +Ġang es +Ġpré f +j uk +ĠBe e +ĠB U +ĠвоÑģ п +ĠB T +ê mes +ĠSt ück +ĠIn k +æĪĸ èĢħ +ĠSerge ant +ĠMult ip +Ġhiç bir +ĠС ам +ĠD é +ol ph +ìĸ ¸ +Ġimp at +ĠìķĬ ê³ł +ĠÑĤак ого +ĠнавеÑĢ ное +Ġunpredict able +Ġm end +ĠìĹĨ ìĸ´ìļĶ +Ġjakie ÅĽ +Ġann i +Ġdon né +ĠK irsty +Ġrectang ular +Ġempez ar +ĠEx change +ê° Ķ +Ġé conom +ãģĵ ãĤĵ +el in +re ibt +Ġ×Ķ× ¤ +Ġc emetery +Ġespañ ol +ol in +лÑİ Ð´ +Ġgr âce +all en +ĠPh ilos +ĠEr st +Ġìĥ Ī +ĠV id +G ive +O H +μ ο +ĠP are +Ġmetabol ism +Ġma ple +Ġax le +ĠD y +Ġkomm e +Ïİ Î½ +Ġgreat ness +Ġver ified +Ġsp é +ĠFahren heit +ĠB ren +ĠConf eder +Ġhist oire +Ġelimin ating +ĠAd ding +ĠAb i +æĿ İ +Ġhospital ity +t im +Ġbon ito +Ġpart es +ĠдÑĢÑĥг иÑħ +ĠSh ay +ĠS ed +Ġreg rets +Ñı ми +Ġten ants +éĢ Ł +ĠP TS +Ġdev i +ĠL ate +ue z +Ġsö yl +ãĤ » +Ġìŀ¬ë °Į +Ġtogg le +Ġmas king +алÑĮ ного +Ġpers ön +Ġamer ican +f ik +ĠR GB +ens on +ĠK A +ww ww +ĠÑĢ ег +met ics +Ġeduc ator +ãĤ· ãĥ«ãĤ¯ +p ark +елÑĮ зÑı +ar us +ÑĢ еÑĤ +Ġfe ito +Ġcho ir +Ġlar go +Ġe ens +Ġwat ts +ĠSing le +Ġsuscept ible +ic er +Ġв клÑİÑĩ +Ġp us +íĻ ĺ +E ng +Ġfant as +Ġspecific ation +Ġconfront ed +ĠColumb us +ив еÑĤ +ar ım +Ġcaffe ine +mun ition +Ġmig rants +l ide +it ations +ĠG eme +Ạ« +Ġpl anner +Ġstim ulate +Ġapro xim +ce u +ĠN om +Ġv og +ĠÑĢ аÑģÑĤ +Ġense ñ +Ġsell ers +Ġgut en +z d +C al +Ġdescri pt +Ġrecon ciliation +z inho +á¹ĩ a +ãģĺãĤĥ ãģĤ +acy j +ĠCO L +s aw +ĠíĻķ ìĿ¸ +Ġvar it +Ġpartner ing +Ġdet ention +Ġbomb ing +c lapping +ien cies +ond u +AM E +Ġê°Ļ ìĬµëĭĪëĭ¤ +c ÃŃa +ĠпоÑģ ÑĤо +ĠAS MR +Ġhome page +Ġsi è +an tha +ĠP oll +Ġ igen +cy ch +Ġê°ij ìŀIJ기 +Ġconsider ably +ä»ĸ çļĦ +ĠAr ist +Ġwith stand +Ġqual itative +ĠK raft +ĠÑį лекÑĤ +ĠBe ad +екÑĤ ив +Ġcr ushing +ì³ IJ +Ġnav y +ÙĪ Úº +s ho +Ġo ak +ipp ers +Ġso ils +Ġpig ment +Ġev itar +ãĥ ĩ +Ġf use +ĠD ale +: " +Ġcompl ètement +Ġke l +๠Ĩ +Ġqu atre +ĠU M +Ġë§ IJë +æł ¹ +ÃŃ r +Ġle isure +ĠH ousing +Ġfold s +est ion +AR S +Ġm ash +urp ose +Ġaccum ulated +ĠSt uff +èª ŀ +Ġtap es +ĠÑģ илÑĮно +ĠLO VE +Ġ198 2 +Ġsc ars +Ġcapital ist +ĠN ed +Ġsoft en +Ġnot ably +Ġforcé ment +ĠRa um +Ġнеоб Ñħод +Ġtrad emark +Ġfert ig +Ġ? ! +æĹ ł +Ġreinfor ced +Ġre charge +ĠPut ting +Ġvill ains +Ġhand ic +Ġadvertis ement +ت ÙĬ +ĠÑģ Ñĥм +ĠR iley +×ķ× ij× +äº ¬ +O s +Ø§Ø ² +B oy +Ġsqu ish +ock et +Ġtest ify +æ¼ Ķ +Ġ×ľ× ŀ× +Ġм аÑģÑģ +man uel +ĠArk ansas +if fe +Ġanalyst s +ĠDe af +Ġj ó +Ġgrocer ies +ĠWhe el +ĠÑĢ иÑģ +Ġc òn +ĠC ob +Ġpris ons +è ve +ĠCab inet +Ġpos ed +Ġguer re +ĠL loyd +Ġcl erk +Ġcr ises +ĠSh o +ĠO re +ĠFoot ball +ĠAd vis +ĠZh eng +è į +ĠAM Y +Ġun for +Ġmon aster +Ġcomp ile +Ġimm ortal +at able +Ġpar ano +Ġt iver +ĠStep h +ĠFu ÃŁ +Ġdisc ontin +Ġr ipe +Ġhack ing +Ġs iendo +Ġsegu ro +alt res +Ġand eres +Ġë ¦¬ë +Ġexp orts +æŃ ¥ +Ġtab ii +Ġ기 ëĭ¤ë +Ġbother ing +Ġpick le +ĠBRI AN +Ġalt ar +ĠпÑĢи б +Ġtransfer ring +ĠV ors +ĠÙĩ ÙĪ +ĠZ a +ĠFr ances +Ġbrow se +em it +Ġche wing +ĠFred dy +Ġedit ors +ä lle +Ġí ĮĢ +ĠS que +ĠC ultural +aw k +ĠS ache +ĠCar bon +ắ t +F L +ĠN GO +pe ÅĤ +ĠS ou +Ġh vor +un intelligible +Ġë² ķ +Ġ ° +i in +Ġ×¢ ×Ŀ +Ġder rière +Ġczy m +ĠAp ost +Ġregard er +Ġag rade +ĠC andy +Ġma re +Ġintrodu ces +bird s +Ġuniqu ely +Ġm uk +Ġcook er +Ġcrew s +Ġje ito +ER T +¶ Ħë +n isse +Ġe f +Ġcart e +ĠY ak +ĠP AT +и но +bok ki +Ġm ates +Ġdist int +Ġì½Ķë¡ľ ëĤĺ +Ġy ıl +Ġκ άν +Ġconfigur ations +eng a +re cht +H appy +ãĤĦ ãģ£ãģ¦ +in vest +Ġreconst ruct +ĠÑįÑĤ омÑĥ +Ġmos que +ra um +Ġvoy ez +ĠN BC +ĠìŀIJ ìĭł +Ġstur dy +Ġк ап +Ġans ch +al id +Ġmas ih +ĠR EP +Ġì½ Ķë +Ġded uct +Ġsal ir +w urf +il ot +ĠM utter +old s +ĠF EMA +ĠB ib +Ġneighb oring +Ġbl iss +Ġíĺ ¼ +ли ÑģÑĮ +ĠÑĤÑĢ еб +Ġ å°±æĺ¯ +Ġgren ade +Ġe gal +Ġfin ely +Ġpet als +Ġke er +Ġch yba +Ġsk ipping +Ġth irteen +Ġgrav y +ĠS AT +6 1 +Ġн ог +Ġmin s +IT E +Ġso zial +íķĺë ©´ìĦľ +rukt ur +Ġвозм ож +Ġоп ÑıÑĤÑĮ +Ġar th +ĠCub an +Ġtre asures +Ġfertil izer +Ġawak ening +Ġë°± ìĭł +Ġr all +Ġdep ict +ĠP ablo +Ġninete en +Ġw att +Ġentire ty +K S +ĠWood s +S ch +ĠÚ© ÙĪ +ĠD ry +ãģ ŀ +u ve +Ġreconst ruction +Ġanat omy +Īë ¥¼ +Ġb aba +Ġlisten er +Ġshar pen +ĠPer u +ĠвÑĭ з +Ġrecre ation +Ġiniti ate +Ġcal or +ĠN aj +ge e +ĠFe els +ĠSnap chat +ĠT et +ĠN est +ĠD af +ĠFin ish +ĠÑĤак им +ú c +iz ens +Ġsp ins +Ġemb ry +Ġpass ages +Ġc ient +Ġjust ification +ä»ĸ 說 +Ġolm az +Ġflood ed +Ġemo ji +Ġembr acing +Ġdisc ard +ĠBas ic +ag og +ĠìľĦ íķ´ +Ġas ylum +er in +Ġf im +Ġnin ja +Ġautom ate +Ġaller gic +ÿÿ ÿÿ +am am +Ġм аÑĢ +ĠO i +ä us +Ġin duct +ĠB EN +Ġz ÅĤ +Ġkaż dy +ĠAM P +n ÄĽ +S ure +Ġqu il +Ġespe c +ro k +BS CRI +Ġlie be +p us +ach sen +Ġcr icket +ëĬ IJ +ĠFr ame +ekk ür +ar b +Ġp ÅĻ +иÑģ Ñģ +Ġzeg gen +Ġdou bles +ĠD re +t est +ins p +bo ys +Ġm ão +ĠVer se +Ġmus cular +ĠMA LE +Ġd ulu +Ġoccas ional +L o +conom ic +Ġv ak +Ġrem edy +å¤ ł +ĠâĻªâĻª âĻª +ve m +Ġön em +ĠkarÅŁ ı +ĠSh arp +h ur +Ġë°© ë²ķ +Ġgrand son +Ġakt iv +ĠTh rones +ĠìķĪ ìĹIJ +Ġto ts +Ġsub d +ĠPa ula +Ġgra ves +ĠB rent +Ġник ÑĤо +Ġsö z +Ġcre c +ĠVlad imir +çĸ « +Ġп ой +Ġ" - +Ġp sy +at ri +id an +Ġa ún +Ġstandard ized +ì¹ ĺë +Ġк ÑĢов +ĠZh u +s omething +Ġ7 50 +Ġmuj eres +Ġa it +éĹ ´ +ag u +Ġcorrect ed +ik ka +el ed +ĠCare er +ow ym +Ġroomm ate +Ġdescend ants +ĠNapole on +ĠÐĶ о +íĸĪ ìĸ´ìļĶ +Ġbun un +ĠMich a +ç· ļ +Ġdesc ob +P I +Ġpalab ra +Ġtrack ed +Ġdepend ence +ĠBar ack +åģ ĩ +Ġfert ility +ĠSouth west +Ġincom plete +Ġcomun ic +Ġcomp ris +ĠRest aur +Ġac ron +κ α +Ġapprent ices +Ġmus st +ĠA br +Ġpent ru +ĠCons ort +ĠAve c +Ġdum plings +L R +Ġwszystk ie +Ġsw amp +н ев +ugg le +Ġwater color +Ġprot on +ĠEspa ña +ock ing +ов ал +Ġtak im +V ery +Ġdement ia +ĠÅŁey i +J ac +ĠMac Book +ĠL iv +ffic ients +ĠH unt +Ġover lay +æĦŁ 覺 +ĠSky pe +p unkt +Ġconf ined +ĠAd rian +ر Ùĥ +ĠJe ep +Ġenqu anto +Ġan est +оÑĤ веÑĤ +Ġм енÑĮ +Ġirrig ation +á»ij n +Ġeight een +ĠP on +Ġresc ued +Ġ198 3 +r ü +ja e +ĠJe ong +Ġamazing ly +ĠF DP +Ġback stage +c ue +ĠÏĥÏĦη ν +ĠاÙĦØ µ +Ġlivest ock +ĠW arner +Ġmaj ors +ãĥģ ãĥ£ +Ġcooper ative +ĠBr ady +ra ined +rie b +Ġ×ij× ŀ× +Ġдов олÑĮно +ĠF E +Ġle aked +ĠMerc ury +Ġpersu ade +Ġtransform er +ĠNor weg +ĠìĹ¬ë Ł¬ +Ġzrobi Äĩ +Ġcard iovascular +ĠCr ash +Ġg ossip +а ÑģÑĤÑĮ +Ġì ª½ +Ġsw ept +ĠH orn +ĠAt é +Ġbu kan +ĠK aw +K Y +ĠSt ories +G ary +Ġgard ening +ĠQuick ly +ĠFal con +Ġov at +c ı +ĠCom plet +ĠD ate +ĠпÑĢ им +Ġlä uft +ĠAud rey +ĠW ent +Ġpel ÃŃcul +Ġcar riage +Ġun acceptable +ny mi +ĠÑģл ÑĭÑĪ +Ġter re +uell ement +EE EE +Ġpharm ac +h ões +Ġz ich +Ġmig rate +ĠF ry +ñ ana +ĠM uito +EO VER +Ġfort ress +ĠCom pan +ĠJ SON +ord nung +Ġw arto +Ġun gef +ìħĶ ìĦľ +ĠÑĢ ок +Ġpad dle +J ared +Ġsubm itting +Ġl atch +Ġf ug +Ġк оÑģ +ĠE f +Ġlaunch es +Ġf t +ote chn +Ġtrave lled +ا Ùģ +éģ ķ +Ġpro ch +Ġded im +8 3 +Ġreb ound +ĠL U +p ath +ĠÑģп ÑĢав +Ġö l +ĠíĤ ¤ +Ġpriv at +Ġtr actor +ĠAtt ention +S er +Ġcos es +á ria +p al +ĠìĿ Ģ +Ġsuccess or +Ġconnect ors +ĠÑĥÑģÑĤ анов +Ġgen ocide +Ġsufficient ly +ĠA ixò +Ġstabil ize +Ġcon gest +Ġcar ving +Ġz ost +ĠбÑĭ ÑģÑĤÑĢо +Ġshort est +Ġli vel +Ġ8 9 +éģ Ĭ +Ġer k +Ġport raits +ॠĢ +è ĺ +bo at +ll ah +AN C +Ġempir ical +ĠE cho +ĠNeder land +è¿Ļ ä¹Ī +N et +Ġcuid ado +ĠR oma +Ġc alf +Ġgi ants +ĠExpl orer +ĠColl ect +al ition +ĠDest iny +Ġaus ge +ĠE du +ĠC lo +Ġear rings +ĠTr ack +ĠR OS +ĠBe lle +çĻ ¾ +Ġpu eda +Ġday time +Ġsupp lier +ĠS V +ĠEx hale +Ġgal era +c ourse +Ġcent imeter +ĠB ast +m ud +Ġsang at +ĠPhys ical +Ġpriv ately +Ġtr ata +lyn n +ill i +Ġë© ĶìĿ´íģ¬ìĹħ +Ġcryst all +Ġpod s +ả n +in ator +ĠRec ords +å® ĺ +ÄŁim iz +isse ment +h are +h adow +ĠD K +ĠìķĮ ê³ł +Ġw yn +Ġrequest ing +ĠD onna +ĠìĹ ´ìĭ¬íŀĪ +ine a +Ġex ert +ĠDun can +Ġв еÑĩ +ĠH ah +ठĤ +ĠL if +ĠF inding +ĠNo v +Ġзн ак +Ġо ÑĦ +ĠQu è +Ġquarter back +ĠÑĦ ак +Ġbipart isan +ÄŁ in +Ġné cess +Ġrefer endum +Ġcomp iler +Ġprob abil +ед и +Ġtrad er +æĺ ĵ +ĠR um +ge me +Ġd io +ĠbÄĻdzie my +ĠÏĢ ά +ê¾ ¸ +×ķ× ĺ +Ġठķ +Ġбл аг +Ġscal p +ĠPa use +Ġcapt ion +Ġend anger +Ġen lar +Ġrot ten +ãĥĥ ãĥĪ +Ġw ah +èĤ ī +Ġd zi +ĠInst all +A y +Ġcre ar +енÑĤ а +Ġwe ighing +Ġbutter flies +ĠG ast +äº ķ +h orn +war z +IC EOVER +Ġнай ÑĤи +Ġcoe fficients +ç°¡ åĸ® +ĠSp encer +ĠH igher +Ġcow ork +å¨ ĺ +ĠкоÑĤоÑĢ ое +Ġmon it +Ġdys function +ĠÑģÑĤ анов +Ġtour naments +Ġoy ster +B N +Ġtr ud +sl ow +ĠPen ny +ĠOd ys +æ r +Ġf ou +Ġenjoy ment +аÑĤ Ñĭ +Ġwygl Äħda +алÑĮ наÑı +ĠProt ect +Ġmo y +Ġcl aw +Ġsusp icion +Ġsacrific ed +Ġgost o +B ig +Ġaggress ively +Ġvor ne +ãĥ ł +Ġbl amed +ĠSe hr +פ ר +c ito +Ġse als +Ġmu jer +ĠWe ird +Ġfore ns +Ġcontrib utes +est ra +Ġp og +L OL +Ġhacer lo +о ÑĤÑĮ +f iction +7 9 +λ ο +大 æ¦Ĥ +å£ ° +ĠÑĤ об +ĠG S +ĠCl ara +ite z +Ġadvoc ating +ĠíĶ Ħë +s ung +Ġvert ices +Ġnavig ating +Ġeurop é +çļ Ĩ +Ġslow ed +Ġfore ground +ĠIndust rial +Ġad ore +ìĭ Ń +Ġcré er +æŀ Ĺ +chn itt +Ġun aware +Ġcur ly +ent ar +Ġl er +Ġprohib ited +ĠHero es +ĠRe ed +u ca +Ġsm ok +Ġkun na +zeit ig +im men +ĠL un +Ġаб ÑģолÑİÑĤ +Ġdeg li +Ġvill agers +Ġpres et +z ept +ud s +Ġem it +ä½ł è¦ģ +Ġë ī +ëĬĶ ì§Ģ +нак о +Ġos ób +Ġ196 9 +ĠÐIJ ÑĢ +Ġman chmal +ĠBro ck +Ġmant ra +ĠW IL +b ach +in ä +el as +kel n +Ġdisci ple +Ġqual c +Ġde hyd +ìĿ´ë Ŀ¼ëĬĶ +A f +ìĦ± ìĿ´ +R yan +Ġpupp et +ĠдÑĢÑĥг ие +Ġr ud +Ġp ending +P lus +ĠìķĬ ìĿĦ +Ġb á»ĭ +ĠSe ga +ç e +Ġprogram mer +b li +Ġun l +Ġensl aved +Ġsoci été +Äģ h +Ġinherit ance +ĠBang l +erm aid +Ġpractition er +ĠSt alin +ĠUs er +ci ble +Ġcard iac +ĠKore ans +Ġdump ed +Ġ×Ķ ×Ļ×Ķ +á is +Ġhydraul ic +oubt edly +ĠP it +Ġpic nic +Ġbehö ver +ĠÑģм ог +Ġbra king +é» ij +ut ar +ĠìĦ ¸ë +ub l +Ġü z +Ġmaj esty +Ġb ers +ut able +Ġhot ter +çħ § +ÛĮ ÙĨ +Ġbi ases +Ġsubject ed +Ġnaught y +Ġcir cus +ãģĹ ãģĭ +ĠIm medi +ĠSte fan +ĠTri ple +en k +Ġw it +Ġrecy cle +em ie +d ated +Ġun load +Ġpop ula +ch in +Ġyield s +Ġeng lish +ĠBon nie +Ġsp iders +à ģ +Ġer osion +éĥ¨ åĪĨ +ĠN ICK +иÑı Ñħ +Ġimp art +Ġк ни +Ġres olutions +Ġlith ium +Ġconver gence +ĠT ara +Ġдв е +th s +ĠCind y +æĪij è¦ģ +å¹ « +ĠD IE +Ġass urance +Ġоп иÑģ +Ġbu ckets +Ġc ues +ĠQu iet +Ġsimilar ity +Ġfound ational +ĠMin ist +æ» ¿ +Ġp ian +Ġcent r +Ġnum b +Ġmon ks +uj ourd +en zie +Ġskate board +Ġd latego +ĠÑģ оÑĤ +ĠA E +Ġmaster piece +ĠSol omon +ĠRed dit +Ġr iot +ab l +ĠJ azz +Ġelectromagn etic +Ġinsec ure +ĠComp et +ger ies +об од +ł ×ķ +ðŁ Ĵ +Ġsen ators +ĠBris bane +ĠAl b +utter ing +ĠAll ow +z ero +Ġp ai +ĠÐIJ лекÑģ +ĠDis play +ĠBl ade +ĠApp s +Ġp ä +Ġд еÑģÑı +Ġque lla +ĠGa o +ен нÑĭÑħ +Ġspoil ers +Ġgall ons +ĠÙĦ ÙĬ +ĠZ ion +æľī ä¸Ģ +on ie +rag t +ĠCh and +Ġë³ ij +Ġbl unt +Ġus u +ĠK ad +ra kt +Ġcin ematic +Ġam munition +re ne +Ġfour teen +ĠC arn +c rit +Ġten ure +v u +Ġprincipal mente +Ġalle en +éĢĻ ä¸Ģ +Ġkompl ett +Ġdü ny +J ames +Ġrecept or +Ġones elf +g uru +Ġmerch ant +l iness +Ġover looked +Ġharmon ic +éķ ¿ +ies o +×ķ× ŀ +col m +ĠпÑĢо екÑĤ +ĠAd a +ا س +T im +Ġrecur ring +Ġproceed s +ĠPart icularly +ĠDown load +et rical +Ġmat rices +Ġproyect o +anc ies +ĠUh m +Ġc aves +Ġìĸ´ë ł¤ +ĠLe af +Ġоб ÑĭÑĩ +ĠìĿ´ì ľł +Euro pe +Ġt Äħ +Ġpul s +Ġtak iego +ÐĿ е +G U +Ġfor s +Ïģ γ +Ġfot os +Ġ) ) +Ġë© ¤ë +Ġaqu ilo +ĠK urd +ï¸ ı +pt ic +ĠD ort +Ġmis ery +aus o +åĬ Ł +chuck ling +ĠR idge +ĠíĸĪ ìĬµëĭĪëĭ¤ +Ġ* ** +å® ¢ +ĠHmm m +Ġge ographic +Ġany s +Ġtal vez +Ġske let +Ġsign atures +Ġlit ers +IJë ©´ +ĠÑģво его +Ġski ing +ĠÐľ оÑģ +Ġadop ting +Ġha ft +Ġsymm etric +ĠL iqu +Ġthy roid +Ġmis in +lud e +Ġh ull +ĠX D +ĠG ust +ze ich +Ġvibr ations +Ġes emp +ĠвÑģ Ñİ +ĠQu em +Ġü brig +ĠS ke +ĠLyn ch +room s +art et +f est +Ġfr üher +Ġl ure +ä¸į好 æĦıæĢĿ +ĠìķĮ ìķĦ +ĠW IN +ĠR YAN +ĠкоÑĤоÑĢ ÑĥÑİ +ĠK ash +Ġ×Ķ× ŀ +Ġsaf eg +ĠHall elujah +Ġдв ÑĥÑħ +Ġstap le +Ġsed iment +ĠAct s +Ġbl aming +Ġmain land +Ġsport ing +Ġdecor ations +Ġexecut ing +Ġpar an +ĠDoll ar +Ġproject ions +Ġcommission ed +Ġb our +ö m +Ġste amed +ĠëŃ ĺ +Ġpet rol +Ġcel ular +å¸ ¶ +ĠHung ary +Ġrent ed +Ġв аÑĢи +bb ie +Ġsé cur +ü ll +Ġsw ings +bet ween +Ġи ÑĤ +est ro +Ġnie mand +ĠìĤ ¼ +ĠP ardon +ess es +ĠM ID +Ġcentral ized +ĠAl ien +cul os +Ġcr ise +裡 éĿ¢ +Ġcl asse +beit et +i ÄŁi +Ġwh ales +Ġper imeter +Ġty ing +Ġstr ony +Ġlike wise +ĠP unch +D a +ĠBapt ist +Ġsort ing +Ġ iv +Ġíķ © +Ġre hab +Ġet a +ri ver +Ġsa i +ãģĦãģŁ ãģł +od us +ãģĬé¡ĺãģĦ ãģĹãģ¾ãģĻ +Ġess ayer +Ġtur tles +ĠHaz rat +Ġfab rics +Ġcav ity +Ġpon ieważ +Ġschle cht +Ġs alsa +ÅŁ ekkür +Ġse ating +Ġeconom ists +Ġman g +Ġsegu inte +Ġr ang +Ġrat ios +Ġconst ell +Ġlong temps +u ating +Ġspo iled +Ġrecip ients +Ġsn iper +ä¹ĭ åīį +ìĬµ ëĭĪê¹Į +Ġw p +ĠLIN KE +Ġfl are +ĠAd ri +ñ as +Ġback l +mä ÃŁ +ĠB end +Ġworkload s +ĠÑģ Ñĥп +Ġ197 5 +им ÑģÑı +ан е +Ġм он +Ġaspir ations +ĠA er +ĠговоÑĢ иÑĤÑĮ +ĠQ ian +å¦ Ī +Ġcomprom ised +Ġyol k +ла ÑģÑĤ +Ġhe men +ro ve +d ens +Ġком менÑĤ +Ġ- -- +Ġflu ores +но Ñģ +ĠLiver pool +ĠÑģоб ой +ĠZ we +Ġl umin +ĠO G +á ¸ +hol m +pro fits +S N +Ġproport ions +Ġm ica +ĠB oh +ĠAt las +Ġuns ure +Ġtour ing +Ġn ied +Ġt ÄĻ +Ġimper ative +Ġdem ek +ĠSher iff +r ance +Ġhom eland +ĠH ail +ĠG anz +y mm +M on +åĨ · +v ida +Ġdesar roll +æĬ Ģ +Ġintrig uing +ĠH ugo +Ġ ãĤĤ +é ¬ +а ÑĨ +ĠWiÄĻ c +att ed +ĠìķĦëĭĪ ê³ł +ĠV ari +á d +Ġsur real +Ġdispar ities +Ġm ó +ull en +ĠìŀĪ ëĭ¤ê³ł +Ġп ожалÑĥйÑģÑĤа +Ġma ins +Ġe ject +Ġmeth ane +Ġmarginal ized +Ġchill i +r ès +Ġy em +ä½ł æĺ¯ +ĠCh un +Ġdeb ts +Ġdownload ing +ĠAth ens +is ierung +ry n +Ġte kn +ĠQu indi +éľ Ģ +Ġtara f +Ġh é +Ġconscious ly +Ġfix es +uck le +may ın +Ġfre i +Ġsp a +Ġì§Ħ íĸī +ĠاÙĦØ ° +ĠÑĥ к +let t +Ġolm uÅŁ +Ġche esy +า à¸ģ +na ire +Ġw iden +Ġli en +Ġesca ping +igg s +ĠBl ick +c Äħ +ĠìĦ ľë +Ġ×Ķ× ¡ +Ġв пеÑĢ +oph one +ie ll +ĠSU BSCRI +Ġl ions +Ġê·¸ ê²ĥ +Ġinsp ires +Ġguarante es +Ġcome ça +ĠGrow ing +Ġneg lig +ĠFrank f +Ġge geben +ĠÄij ầu +Ġend lich +Ġì į¨ +ĠT T +ĠL ith +ÏĢ α +aster n +ĠA zer +Ġlun ar +h ic +Ġна ÑĢод +Ġnen hum +è· ij +ĠSalv ador +ĠPro gress +Ġprivile ges +ĠëıĻ ìķĪ +Ġant agon +ĠImp f +Ġdesc ub +ĠLe i +ĠìĥĪë ¡ľ +Ñĩ е +Ġdó lares +ĠMeg han +ĠW ire +to o +ay ing +us c +Ġt ud +Ġappe als +ed uc +Ġp ane +Ġj i +Ġde cks +ĠAl ter +Ġ å°± +ìĦ ¤ +åĪĨ éIJĺ +Ġproduct ions +ĠWILL IAM +Ġimpl ied +Ġfulfill ment +ĠA ah +Ġsa ja +x us +ĠÎļ αι +Ãł s +uc ch +ок о +ĠDisc ord +ĠS Y +j sk +ĠWall ace +un ction +Dan iel +Ġk öt +ij ah +Ġmarch e +Ġdis gr +Ġm ungkin +Ġal ma +³ µ +Ġextensive ly +ĠFl oren +ĠAll ison +ãĤ ± +ÙĬ Ùħ +Ġju ven +ĠRena issance +Ġfundra ising +ĠCha os +Ġpar aly +Ġnarr ator +Ġecosystem s +A sh +Ġmitig ation +ĠA ujourd +ĠIde e +! , +Ġ ½ +Ġland lord +Ġdefect s +Ġac re +uls ive +Ġalg ae +pe k +Ġem ba +ĠR oc +éĽ ¢ +ks om +ä che +Ġle uk +Ġlever aging +Ġê·¸ëłĩ ì§Ģ +ĠPal m +Ġä ven +Ġl is +ĠIn sp +ĠR ita +ĠAb b +ith m +Ġsuper vision +Ġrevis it +Ġpi ÄĻ +Ġeu h +Ġf ades +Ġmot to +åį ¡ +ез ж +ĠSh im +Ġrelev ance +Ġo o +Ġo stat +n ica +Ġcho ix +ĠFac ulty +Ġì¤ij ìĹIJ +ĠAb ove +Ġнеб олÑĮÑĪ +Ġsequ encing +Ġnutri ent +Ġconqu ered +Ġdigest ive +Ġback drop +ĠL ori +ail able +G ame +Ġneglect ed +om orph +ill ah +Ġkn e +Ġsi itä +Ġworks pace +ĠVen ice +ĠK ne +Ñī о +ħ Ģ +ĠH ass +Ġv ita +Ŀ¼ë ©´ +Ġlay s +ên cias +é rica +ĠL l +æ± Ĥ +ĠCo ca +ĠWH Y +èĪ ŀ +Ġrout ing +Ġperm issions +Ġd ings +pre nd +pro gram +Ġcro cod +br al +AAAA AAAA +ag it +ĠN ä +Ġgek ommen +at ten +Ġrefer enced +Ġpair ing +ĠPart ner +ĠCoron avirus +Ñĸ Ñģ +è½ ī +Ġ×Ķ× ĵ +Ġespec ÃŃfic +ars i +qu elle +Ġspont aneous +çĨ ± +Ġê²ĥ ìĿĦ +ĠÐŁÐ¾Ñģ ле +ĠاÙĦ د +ĠSh out +Ġн ал +Ġdisgu ise +ĠJ ord +Ġwe e +Ġmiej sc +Ġser um +Ġplais ir +Ġcred ible +Ġb Ã¥ +ĠA J +ma res +Ġrod s +Ġer an +ãģ¾ ãģĤ +Ġp ää +ĠU A +ĠUn known +ĠÙĦ Ùħ +ĠRab bi +Ġla at +Ġhairst yle +ĠØ º +éģ ĭ +Ġc ach +ĠWr iting +оÑĩ ки +ab ad +Ġstraight en +-- " +w ife +Ġhott est +Ġpun ya +ĠF ashion +gr iff +ĠQ R +ot ch +ĠÐľ ожеÑĤ +Cl oud +ĠStri ke +ĠHe in +Ġ 羣çļĦ +Ġle i +ĠFl ow +weg s +Ġha br +åīĽ åīĽ +nah me +Ì ģ +Ġple asing +op ping +Ġ구ë ıħ +Ġdr an +Ġbang s +Ġ7 9 +Ġsk et +Ġcav al +ĠMac ron +Ġweight ed +Ġm uted +Ġnuest ras +EE P +Ġmath ematic +ĠM RI +ag us +Ġtherap ies +θ ε +Ġun pl +Ġcomm encer +f ull +Ġtow els +Ġpr ue +Ġlic enses +׼ ×ķ׾ +ĠÐŁ оÑĩемÑĥ +Ġpoint less +B ye +Ġelig ibility +Ġscra pe +Ġab usive +ĠM ant +Ġje unes +t al +ĠPrin cip +ĠOrth odox +Ġmel od +ĠмаÑĤ еÑĢи +Ġprosecut or +Ġopio id +ĠÑĥ веÑĢ +ĠBe en +Ġìłij ì¢ħ +Ġd ynasty +Ġajud a +Ġent reg +Ġweigh ed +Ġe ure +ĠB em +Ġab normal +8 2 +ĠJ R +ĠA kt +ĠB ri +ú t +Ġst agn +! * +Ġwe gen +Ġle aking +ĠW ords +ĠM au +Ġv ue +ĠL iam +ани ем +Ġclin icians +ĠP ump +Ġför st +? ... +Ġautom otive +ĠOw en +zus agen +ĠH undred +Ġdecentral ized +Ġbul bs +Ġ×ľ× Ľ +Ġprovin ces +ĠMil an +8 1 +k as +Ġëĵ £ +Ġfor ça +Ġright ly +å³ ¶ +r Äħ +Ġven ues +Ġw ai +Ġpred icting +ĠWi Fi +Ġê¶ģ ê¸Ī +ر ÙĪ +Ġ×Ķ× ĸ +cent ury +Ġgrad ual +ĠProblem e +ĠìĹ ħ +Ġcop ing +ĠBr us +Ġpean uts +irts chaft +Ġз ал +ĠT roy +Ġsper m +ĠM itar +ĠTür kiye +g rand +¦ Ń +Ġ×ŀ× ¡ +Ġp ans +ĠKnow ledge +ber ly +ĠÐķ го +Ġdan ced +ĠFr ost +ĠB urg +Ġbit ing +ìłķ ìĿĦ +me al +Ġhero ic +Ġmother board +ĠL icht +ãģ£ ãģ +ll an +ай н +ĠÑĢ Ñıд +Ġ à¹Ģภ+on en +ir ie +Ar t +r ang +ν η +Ġnew born +Ġam is +Ġا ÙĪر +Ġsoph om +ĠCare ful +Ġprospect s +ens en +Ġthr ill +ĠVi á»ĩt +A dam +r ition +ent ric +ud en +Ġcertific ates +Ġas hes +èª ¿ +play ing +Ġs adece +Ġo st +Ġairpl anes +ÑĢ ок +on er +Ġmagnes ium +Ġgod damn +Ġ197 2 +ĠSch ule +Ġtem at +Ġpart out +௠Ĥ +Ġin ve +ĠScient ists +ĠHud son +win ning +ceks in +Ġcongress ional +or u +Ġro pes +в ед +Ġmad re +Ġf erry +ĠCoh en +ĠP red +Ġvag y +Ġб еÑģп +Ġmult im +Ġdrain age +Ġsim ulator +g iggles +ĠSt adium +об Ñī +Ġnot ices +Ġcraw ling +Ġgr oupe +åı ¸ +Ġkto ÅĽ +ĠY oga +Ġmed ida +ĠÑħ ваÑĤ +ĠL ite +Ġr av +or ama +Ġdisc ord +ĠDI RE +Ġte h +ĠN urs +ç² ī +Ġpitch ed +Ġbark ing +ĠC oke +wi ad +Ġpop ulated +éĻ ¤ +pe lled +Ġб ог +Ġpe wno +ĠC ube +Ġrecru ited +éĢĻ 種 +ĠC ara +ıģ ını +im ated +ĠÑĪ кол +ic ional +ĠпÑĢо ÑĦ +Ġcontam ination +Ġúlt imos +Ġfear ful +Ġele phants +us i +ĠiT unes +ĠSw ami +ê ¼ +ĠìĦ¤ë ªħ +ĠRich ards +Ġmagn ets +ĠRicht ung +ĠLeg ion +èı ľ +Ġk itty +Ġkiss ed +Ġwater ing +Ġcon o +ĠPalest ine +id ir +Ġma ze +Ġflu ids +ĠProdu cer +ĠKr sna +好 åķ¦ +la f +Ġ×IJ ×ķ +Ġm iesz +ĠX ing +oint ed +se in +ĠF uk +ĠDep ression +ĠD uty +ĠPan ther +Ġsu nd +Ġref ere +Ġexc lusion +Ġnav al +ĠWin ston +Ġsl ogan +Ġhypoth etical +Ġelev ate +ë ł¹ +Ġcabe ça +ĠGes und +m eter +ĠìķĦëĭĪë ©´ +Ġcloud y +âĢ¦ ? +ĠSch ritt +ĠJ S +ì į +ĠSpr ings +ĠB atter +· ° +Ġtail or +ĠPTS D +ĠG ent +Ġba ÄŁ +Ġspat ula +Ġcr ay +ĠLeg isl +Ġs ú +Ġle ve +า ม +Ġer ad +Ġdon g +Ġd erm +ĠBank s +ich o +åħĪ çĶŁ +ĠFr anz +ra vel +éģ Ķ +ол о +Ġfl ute +ĠE k +Ġjoy ful +Ġch ased +ĠLar ge +O ver +Ġentrepreneur ial +Ġcons iders +Ñĥ ем +op a +Ġdorm ir +ĠElement ary +Ġprzy pad +ÑĥÑģ ка +ĠоÑĩ еÑĢ +ug ene +Ġten ido +Ġlug ares +ë ¥ +ĠÑĩ аÑģÑĤ +Ġsa o +Ġbra id +ĠV ere +ĠRe ich +ĠP oss +Ġin an +w and +re f +Ġmont rer +Ġ198 1 +çķ ª +as ında +Ġch rome +ĠTr inity +Ġexplo itation +ĠS ense +ĠC MS +ĠNo ble +ĠìĦł íĥĿ +Ġswe lling +elect ronic +] ? +Ġbr ushing +Ġliquid ity +ĠH ook +ĠCon nor +ĠAl um +Ġgu cken +su ite +Ġwie le +Ġbarrel s +ĠReg el +ĠM ent +ĠT rip +ĠBr ush +ĠE rik +ur ate +ÉĻ r +ĠC yr +ou ble +ĠBe cca +Ġpass words +Å ± +bor g +Ġv endo +ĠCla us +ĠF az +ind est +Ġdece ased +Ġcompar isons +ĠL CD +ĠP ork +Ġevent ual +Ġpat reon +Ġin ability +Ġext inction +Ġì¢ĭìķĦ íķĺëĬĶ +ĠÑģ оÑģ +aj u +Ġ×ij× IJ× +Ġso fort +Ġdest ined +ĠR in +Ġmouth s +ĠNat ürlich +Ġpres erving +Ġlim p +é» ¨ +oc used +ин г +Ġexp osing +ĠÎ ¾ +ë į +la ugh +Ġhis s +ãģł ãģĭãĤī +Ġind ie +Ġdet al +ÑĢав ÑģÑĤв +Ġtr ên +æķ ° +Ġog ni +Ġsimple mente +Ġ197 8 +Ġgo o +Ġ196 7 +Ġgen ug +h ö +Ġhist ó +å® Ł +Ġlob ster +c endo +Ġte il +Ġalle vi +00 00 +OL D +Ġpes os +Ġbon uses +Ġam i +Ġrev ival +ĠHor se +Ġs ack +T alk +Ġmul her +ĠпоÑģÑĤо Ñıн +ĠH ood +H uh +Ġë¶ ģ +Ġhy ung +ĠMe eting +Ġimport a +Ġì°¾ ìķĦ +ĠV ern +Ġstri pped +Ġref uses +Ġqual ifications +op l +Ģë ıĦ +ix ÃŃ +Ġdi ab +it ime +fl ows +Ġin ac +ĠG ong +Ġmeaning less +Ġcourage ous +Ġmicro bi +az y +h ist +Ġvolunte ering +V IE +Ġviol ated +Ġsymp athy +ĠEd it +好 åĥı +elect ric +produ ct +Ġpand emia +Ġgeomet ric +ĠCon vers +g re +Ġgl ut +ist ed +ĠاÙĦ Ùĥ +ĠCh ain +ĠPres ent +ĠY in +ĠÑģ ог +ĠV log +Ġìĸ´ë ¨¸ +Ġdon n +Ġh itch +uck ing +ãģĬ ãģĦ +w ald +ris k +Ġhar i +ĠK ens +ĠId ol +Ġвним ание +Ġtod d +Ġsm ashed +Ġinv ari +Ġкон ÑĤÑĢ +Ġaut istic +ìŀ¥ ëĭĺ +R es +д Ñĭ +ch au +Ġsel v +Ġhät ten +ठ¿ +Ġexpect s +Ïģ η +Ġaç ık +ĠHT TP +le ÅŁ +Ġswe eping +ĠBet a +Ġcounterpart s +ab ile +ĠSim s +C s +Ġrep ar +s qu +Ġprovin cial +Ġshare holders +Ġrun ter +Ġged acht +ĠTe en +Ġgrand s +çĶ ¢ +ag les +Ġrock y +ven s +Ġr ivals +un al +Ġreact s +ë © +Ġmerc ury +ĠLu igi +Ġо г +ĠJ UST +Ġl od +Ġcort ex +w ig +Ġl akh +ì¤ij ìĹIJ +ĠV ic +ĠM und +Ġma pped +ĠD ell +ĠD ruck +Ġlif es +алÑĮ ное +ivid ual +ad ım +Ġat rav +ĠFl ug +ĠKle in +ê±° ìķ¼ +ห à¸Ļ +Ġapp li +ா ? +ü yorum +ĠинÑĤеÑĢеÑģ но +Ġdis infect +> - +Ġchamp agne +Ġk la +op ers +Tr ans +ĠDes ert +Ġcultiv ate +ĠFuck ing +idel ity +ĠÑĤ ан +Ġinc ub +Ġtem u +Ġlearn er +found er +ĠSy l +ãĤ Ģ +Ġf ato +z ier +ĠìĹĨ ìĿ´ +ĠìĪ ¨ +Ġpsych o +ĠÑĤел еÑĦ +Ġregard e +Ġrepresent ations +Ġlit igation +Ġsp ann +ult s +b ior +è¦ĭ ãģ¦ +ä¸į å¤ļ +ĠSur vey +ĠLED s +Ġtr ä +Ġl ên +Ġant ioxid +еÑĢ ом +Ġindu ction +Ġfool ed +ät zlich +ĠговоÑĢ ÑıÑĤ +ĠF act +umb ai +Ġw iggle +NO UN +Ġdévelop p +ĠCl aro +Ġì ¸ +ë ¬ +ãģªãĤĵ ãģł +Ġaccum ulate +Ġmaint ains +ë Ħ +ĠFight er +íĨ ł +Ġmat in +Ġcoup on +Ġst unt +Ġdeb uted +å¾ħ ãģ£ãģ¦ +Ġpra g +ив аем +7 3 +Ġexp res +Ġìĺ¤ë ¹ł +ĠпеÑĢ Ñģон +Ġcalcul us +Ġab rupt +ĠInspect or +our t +æĸ Ļ +ź niej +int ense +B a +Ġl ounge +Ġast hma +ĠHi ç +ª » +Ġeditor ial +Ġse ize +Ġk ır +Ġm ouve +Ġtier ra +Ġtestoster one +Ġr h +ĠKing ston +EL LE +ĠRepresent ative +Ġ197 4 +Ġi ba +T s +Ġsort a +Ġ( ?) +Ġت ÙĪ +ĠëĤ´ë ł¤ +Ġbek ommt +Ġspirit ually +Ġdist orted +M ad +Ġre im +á nh +ĠOtt oman +ĠRel ig +ĠEl s +Ġret ained +ĠLa ughs +æĢ » +ĠS AS +ĠколиÑĩе ÑģÑĤво +×ķת ר +Ġinnov ate +Ġk ork +ĠÑĢаÑģÑģк азÑĭв +ond ere +iv i +ay e +ount y +ĠполÑĥÑĩ аеÑĤÑģÑı +Ġbun s +åħ « +Ġyüz den +Ġsur geries +Ø£ ÙĨ +Ġbankrupt cy +w elt +Ġsi amo +Ġdark est +ĠH ann +gg a +Ġform as +ĠD j +n amed +Ġshield s +ue ller +ĠF ew +Ġl ace +Ġfur ious +ĠY U +Ġsociet al +Ġjudge ment +ĠD os +Ġj ab +law s +Ġrein vent +ĠK atherine +ĠCh oi +ad ows +Ġr ans +od en +ĠMid west +n ın +Ġdep ort +ĠD ip +ç´ ħ +Ġaten ción +ĠCourt ney +ivid ad +ĠÚ© Ûģ +Ġeffic acy +ĠBrook s +Ġrefer ral +Ġкон ÑĨ +Ġmal icious +Ġk ir +ĠGod dess +Ġfun ky +Ġinter im +ĠK örper +Ġìĸ¼ë § +k ur +Ġк ли +Ġtruc s +ges etz +Ġz ug +ĠGl ück +ĠMin ute +Ġprest igious +Ġnie z +Ġconcent rations +ла ÑģÑĤи +ĠS is +ĠVit amin +ko v +ĠP BS +Ġне е +Ġretail ers +Ġcon ventions +ĠSam antha +Ġproud ly +J ordan +ĠJ ASON +at k +Ġtr iste +Ġst är +Ġreiter ate +Ġpos terior +Ġ197 3 +ĠP ine +ĠJul iet +Ġped ir +k il +Ġover lapping +Ġexclud e +Ġecon óm +Ġaccept s +ĠS ter +æ± º +Ġìļ ´ëıĻ +est ab +Ġt ug +ar g +Ġliv ro +Ø§Ø µ +Ġse ams +Ġbur aya +Ġe llo +ĠT M +ĠP aw +ĠInd ex +Ex c +Ġinspir ational +Ġd unk +è° ģ +ak ter +Ġcondition er +ĠSal ut +ÅĤ ec +Ġìī ½ +ĠÑĥз на +ĠRome o +f ruit +ĠY O +Ġchá» ī +б Ñĥ +b ons +Ġreprodu ctive +Ġor ada +Ġíļ ¨ +Ġtent ar +Ġma ñana +ãĤ ¬ +Ġsol vent +Jess ica +ĠLeg al +Ġtu a +Ġs ic +ĠE Q +au kee +ìĭľ ëĭ¤ +ĠÅŀ u +Ġad here +ĠT ul +Ġà® Ĩ +Ġtext books +ĠFif th +Ġexper i +Ġch ic +Ġhe ap +in ely +at ra +T wo +Ġhele maal +Ġf ren +æİ ¨ +Ġbis her +Ø§Ø ´ +ĠìĦł ìĥĿ +ĠT ages +Ġs á»± +Ġbull ied +Ø ¤ +Ġbenef ited +ĠPre viously +ĠÑį ÑĦÑĦ +Ù į +Ġsen ate +ĠM orm +ij ke +ĠF lu +Ġincorpor ating +j ack +Ġп иÑĤ +Ġimp ly +Ġha cks +ĠR ICH +Ġк ваÑĢ +ĠпÑĢек ÑĢаÑģ +Ġdepend ency +Ġìļ © +Ġì± ħ +Ġwäh rend +Ġsu lla +ĠPitts burgh +Ġesemp io +¼ë ¡ľ +pr ot +ĠR osen +ĠIndepend ence +Ġpars ley +ie gen +Ġha w +Ġaqu ell +ĠC AP +ĠÑĢабоÑĤ аÑĤÑĮ +ĠCl iff +ion ar +Ġsec uring +æĪijåĢij çļĦ +ν ε +Ġutil is +Ġcou le +ĠP ing +Ġtre k +Ġf ak +Ġenorm e +Ġìĭ « +è® © +Ġdoub ling +ĠнÑĢав иÑĤÑģÑı +Ġh ed +ho ven +ĠStand ing +Ġm ÃŃn +ĠJ imin +Ġmon arch +Ġco ke +Ġm r +Ġcl ic +à į +Ġimpe achment +Ġdur ability +Ġvar ios +Ġcommercial s +Ġgreet ings +ĠR i +ĠApp reci +ìŀĪ ëĬĶ +Ġrés ult +ér t +Ġsal ute +Ġpoder ia +Ġsun rise +ve ck +Ġreluct ant +Ġcommission er +å¿ µ +â te +ĠKen ny +ĠSir i +ãĥĥ ãĥĹ +ĠëĬ ĺ +ĠE E +Ġun ch +к он +ĠاÙĦØ ¥ +Ġbel ts +Ġhas s +Ġмо Ñı +Ġdispl aced +Ġab ra +ÎŃ Î» +Ġscratch es +Ġcom et +Ġauthor ization +ĠL LC +Ġprodu k +Ġrehabil itation +å ŀ +Ñĸ Ñĩ +ud ing +ol it +Ġ10 5 +Ġexp ands +Ġalt ri +ĠKom ment +Ġan f +P l +ĠM ana +f ed +Ġb ri +Ġor a +G s +ĠG ur +uck land +Ġjun ction +Ġiron ic +ĠFe ed +Ġpra kt +ĠHam mer +Įë ıĦ +ĠTr acy +çµ ± +ĠAs ide +н его +ĠиÑģполÑĮз оваÑĤÑĮ +Ġz aj +Ġequ itable +Ġcur b +Ġãģĵ ãĤĮ +Ġderiv atives +Ġpupp ies +ĠKenn eth +ĠCom pl +ig ram +ĠGar cia +) " +ĠHar bor +est ial +Ġ ä¾Ĩ +Ġ ers +æ ¹ +Ġunw anted +Ġbel ang +аР³Ð¾ +em b +d os +ĠìĻ ľë +ĠBud get +Ġbatt ling +ØŃ Øª +k ok +наÑĩ ала +Ġpl ag +Ġcant idad +Ġgrup os +Ġplug ins +ler ini +Ġиме еÑĤ +Ġso zusagen +ol ics +Ġpue blo +Ġrem inis +r än +ĠMor rison +Ġl inha +Ġbreath s +ĠT aste +Ġenf rent +ĠDo cker +Ġд ен +Ġethnic ity +Ġw ob +Ġsuff ers +Ġtransition ing +ĠR ange +ÄĻd zy +Ġк аÑĤ +Ġsy ner +Ġdon ut +Ġprob abilities +ĠO mar +Wh ich +u ish +is in +Ġdem os +ĠìłĢ 기 +Ġëĺij ê°Ļ +Ġед ин +Ġc erve +Ġj oka +I AN +Ġkilomet er +Ġhorizont ally +ĠBh ag +Ġ- > +ĠMon itor +Ġknowledge able +Ġf av +Ġpin ned +Ġe Bay +ick er +Ġìŀłê¹ IJë§Į +ĠXia omi +Ġcap it +Ġn p +Ġ196 5 +ho e +Ġn ok +ĠS age +Ġн елÑĮзÑı +ĠT ow +g am +Ġdic en +ĠSUBSCRI BE +Ġrebo ot +Ġp aj +Ġë³´ìĹ ¬ë +Ġth icken +ĠRe ality +id än +N a +Ġê²ĥ ìĿĢ +!! ) +Ġrout ines +Ġод ного +Ġex ting +Ġì¦ Ŀ +Ġsulf ur +Ġcar ve +Ġastero id +ĠWarri or +Ġphotograph ers +Ġpe ll +Ġcros sover +æĪij çŁ¥éģĵ +Ġhace mos +ĠNe j +Ġsett ling +Ġir m +ĠBook s +ient ôt +Ġesp acio +ĠSchol ars +Ġdo omed +ĠIR S +w ohl +Ġseg ue +ĠëĪĦ ê°Ģ +Ġpr atic +B T +ĠConsider ing +ĠBuff alo +Ġtrain ings +Ġge bru +ĠG leich +Ġpir ates +Ġen velop +Ġre open +im at +Ġte e +Ġsu ed +fe h +Ġ×Ķ× § +Ġdi ets +Ġjunt os +ast o +Ġmisunder stood +Ġru im +Ġclass ify +ĠпÑĢод Ñĥк +Ġin se +Ġillust rated +Ġcorros ion +Ġacc red +ĠAunt ie +ĠпÑĢив еÑĤ +ĠLI VE +Ġre k +Ġrece ipt +åĪ° åºķ +ĠBar bie +ĠSn ake +t urn +Je ff +ãģĬ ãģĬ +ķ Ħ +VO ICEOVER +co ll +Ġrun ners +ìł ľë +os os +mo on +Ġkey note +ĠInst it +S PEAK +Ġplug s +Ġcur v +ĠY uri +ĠTh eres +ĠP s +Ġμ ÏĢο +Ġconver ter +Ġref ine +Ġbad ass +Ġο ι +Ġreg en +az zi +ÙĬ Ùģ +Ġse ized +Ġiç er +ile e +Ġup stream +Ġbud s +Ġp im +Ġíķĺë £¨ +Ġall uded +Ġthem ed +Ġconsist ing +Ġb ons +un uz +ĠпÑĢов од +ĠLove ly +ॠĭ +Ġpar ach +ĠSta ats +éļ Ĭ +Ġselect ive +Ġf ase +ĠGeor get +Ġcoc aine +Ġreprodu ction +ĠL ara +ĠL D +Ġg h +J on +Ġl Ã¥ +Ġëij IJë +Ġtyp ed +ĠB ana +ë ĵľë +Ġsav ory +ĠZ omb +stand en +Ġpedest rian +Ġdifférent s +Ġìĭ ¸ +èī ¯ +Ġcompl ained +ç¦ ı +ĠÐļ ÑĤо +Ġ×ľ× ¤ +ali ÅĽmy +Ġmort ar +Ġverd ict +Ġsu ficiente +ĠMill ion +mitt el +in als +ĠاÙĦØ ® +аÑİ ÑģÑĮ +Ġmi ÄĻdzy +ĠO le +Ġin vert +czy Äĩ +озм ожно +star ter +Ġaud itor +ĠSc out +ch ien +ĠSver ige +uff led +Ġze hn +ĠA uckland +Ġarg ent +Ġ197 6 +ĠHo e +Ġboth ers +Ġsocial ist +Ġpl iers +Ġemer gen +ĠX P +еÑĢ ов +M ore +ĠLe vi +ĠAnd ers +ibil idad +ĠP arents +Ġindu ced +ìĸ´ì ¤ +Ġbal ances +ĠвÑĭ ÑĪ +Ġsubmar ine +St art +Ġdri es +Ġvol ver +Ġtick ing +c ott +Ġf aj +pr és +ĠS abb +Ġза Ñĩ +Ġпок Ñĥп +Ġbapt ized +ĠBrill iant +ĠÐij ог +Ġm ots +b its +Ġlatt ice +æĪij è·Łä½ł +Ġcor iander +Ġresid ency +yn c +Ġpier wszy +ĠKn ock +ĠZ ap +ĠÐķ в +ê² ¬ +å°ı å¿ĥ +Ġune ven +ĠJ as +od or +ç¿ Ĵ +7 4 +ĠS ite +Ġacontece u +ym pt +Ġtril ogy +Ġlan tern +ĠZ ucker +v ari +we lling +ĠPot ato +gom ery +Ġreact ed +ĠChr on +Ġj ede +be eld +Ġtw ent +Ġl act +æ¨ Ĥ +Ġré se +Ġrel ent +Ġfurn ace +Ġwid get +Ġearthqu akes +ĠAd just +il it +ĠØ£ ÙĪ +Ġhear ings +Ġdefend ant +irs iniz +Ġbas k +c ja +ľ ¨ +Ġrif les +Ġinst al +ĠFor give +p ical +ĠÐŀÑĩ енÑĮ +Ġpet ites +Ġh p +Ġren owned +ĠIn n +Ġ주 ìĦ¸ìļĶ +Ġemphas ized +éĹ® é¢ĺ +ĠìŀĪ ì£ł +Ġê²ĥ ìľ¼ë¡ľ +ãĤ Ĩ +Å ĵ +g ili +D ave +Ġexha usting +ÅĤ ug +Ġsch ema +μ ά +cy cl +Ġaut ant +Ġpar cel +Ġmater ia +ĠB erry +ĠÑģ ами +Ġextract ed +ĠSay ing +ism atic +Ġпоп ÑĢоб +Ġneur on +g raph +ľë ©´ +Ġencl osure +ĠJoh ann +Ġafter math +ÑĤ об +Ġu ży +Ġs amp +3 60 +ĠMe i +Ġt aco +Ġrecept ors +Ġpunch es +ĠHo je +ĠÙĩ ÙĨا +=" # +ĠAng ular +Ġmus ique +Ġro l +Ġà ± +ster reich +Ġcl am +ĠTre asury +chem ical +Ġap ar +Ġapp end +Ġforb id +ĠHamb urg +ак ов +Ġê¸ Ī +ild a +Ġprepar ations +Ġmog Äħ +Ġcam ino +E ric +ĠBl ind +èĪ ĩ +å¹´ çļĦ +ĠDis covery +ì¸ ł +çĪ ¶ +Ġinterpre ter +Ġb red +ĠPsal m +Ġdef ended +ìī ¬ +ĠEr fahr +ĠPe ach +Ġmo ons +ĠO st +Ġspé cial +Ġarri ver +ĠW is +u ci +Ġrobot ics +I VE +Ġsie ge +ar la +Ġsepar ates +ĠT C +íı ° +quis ite +Ġparenth eses +ик е +ç« Ļ +Ġtr ous +å» º +ĠÑģ илÑĮ +Ġbe ers +Ġпл аÑĤ +ãģĻãģĶ ãģĦ +Ġso la +Ġd ès +ming ham +ik te +Ġo ops +Ġtw itch +å° ĩ +Ï Ī +ĠShould n +uv re +Ġle er +cript ions +Ġeyes hadow +ĠGu o +ĠPow ell +Ġsup uesto +Ġan a +r als +ĠMont real +Ġsurf ing +ĠÐŁÐµÑĢ в +×ŀ ×ķ +Ġmillise conds +Ġsubur bs +Ġplanet a +ÑĥÑĪ ка +hr lich +ĠH Y +Ġس ÛĴ +ĠM M +ĠE ff +åı¯ æĦĽ +ĠH S +ans on +Ġì§ģ ìłij +Ġsu o +Ġdeploy ing +Ġk unt +ter ing +Ġere ct +ìŀ¥ ìĿ´ +ĠìĿĮ ìĭĿ +Ġspec imen +! ... +æĪij 說 +Ġlig ne +Ġk onst +ade qu +Ġìĥģ íĥľ +Ġaccess ed +ĠP ole +k ill +Ġë² Ħë +Ġauthentic ity +Ġapp elle +ull e +Ġrev ision +Ġgo ats +г ли +Ġp au +ĠR anger +ĠIm ag +aut hor +Ġe ve +ĠMess enger +Ġn ay +Ġwh oles +ät te +Ġon wards +ĠDep ois +Ġíijľ íĺĦ +ĠSAR S +Ġwszystk ich +Ġdest ru +umb ing +Ġcompat ibility +Ġmis information +od ore +ĠF avor +ek o +ı Į +w aukee +ĠTe aching +ĠK O +Ġbet ting +Ġquest s +Ġviv re +ĠмÑĥз Ñĭ +Ġs aga +Ġswe ll +Ġge he +æĢİ麼 樣 +ĠоÑĢг аниз +Ġg ide +ĠG ross +Ġdale j +Ġcl aws +á»Ļ c +Ġprejud ice +Ġins ign +i hood +Ġpl ed +Ġdó nde +ĠPolit ical +Ġprem ises +und ert +ع ت +on nen +Ġespa ço +Ġf é +ĠHarr ison +ĠC ensus +Ġcard io +Ġdi y +Ġmil ieu +Ġjourn ée +ĠRe lease +N IE +ĠM uk +id ée +á»į i +Ġiç inde +ŀ Ļ +Ġreson ate +Ġm oles +ĠF lying +ĠGl oria +ĠPast or +ĠAre na +好 ä¸į好 +N ON +ол ов +Ġall ÃŃ +om at +ìĸ´ë ıĦ +Ġcaracter ÃŃst +Ġdecl ining +Ñĸ Ñı +an co +ĠIn form +Ġbarg ain +Ġbus hes +ĠNat urally +Ġre chts +ĠT ensor +ĠPat ricia +Ġprincip io +ĠM umbai +Ġwom b +Ġnost ra +Ġdile mma +Ġirgendw ann +Ġ196 4 +Ġenerg ÃŃa +Ġна ÑĢ +Ġseg regation +ĠA thlet +Ġ» , +Ġy eni +ĠSe it +Ġven om +Ġdak ika +Ġëı Įë +ĠÃī l +Ġf us +ĠM og +¦½ ëĭĪëĭ¤ +Ġrem ar +ĠTed dy +Ġbreast s +ic ans +æĶ¶ çľĭ +k ap +Ġh Æ¡n +ĠJ P +ãĥ³ ãĤ¿ +Ġresur rect +ĠìĿ ¸ë +her ical +Ġfot ograf +ĠJos é +Ġlivel ihood +Ġbib li +ter i +Ġvor stellen +ĠA AA +Ġassess ing +Y A +Ġspl end +Ġexca v +Ġbapt ism +y ll +w ow +M ac +Ġpl astics +teok bokki +Ġintéress ant +Ġcommand ed +Ġfamous ly +ĠÐĺ ли +ĠMan uel +Ġsouth west +Ġde formation +ÃŃcul o +ĠнаÑħод иÑĤÑģÑı +ĠP atter +d egree +ĠczÄĻ sto +" - +Ġìħ ĭ +Ġman ger +ĠTrust ee +Ģë ¦¬ +Ġpunt os +iv able +Ġvol atile +ĠëĬ IJ +Ġinst ability +Ġc iel +ci Äħ +Ġpur ity +но ÑģÑĤ +S il +ed ar +åĻ ¨ +NOUN CER +Ġspe lled +G ER +Ġsanct uary +Ġacceler ating +Ġsc out +ĠпÑĢ ев +f ahren +ãģĵ ãģ¡ãĤī +ĠëĤĺìĺ ¨ +Ġpocz Äħt +ĠMe u +ka ar +³´ ê³ł +ak ra +D own +ĠÃĦ r +ĠEl ite +Ġall ons +Ġmay onnaise +ĠS ustain +prising ly +Ġsuper vis +Ġê·¸ëłĩ ì£ł +Ġunemploy ed +Ġfresh ly +Ġ×ŀ× ¢ +ĠD h +Ġtack ling +Ġo gr +Ġì´ Īë +ãĤĪ ãĤį +Ġlo ft +ar ah +ĠA irl +ĠD ir +ĠÐľ ожно +Ġbook ing +ĠC RA +Ġhtt ps +Ġcho ke +Ġg own +Ġno ite +Ġz ac +ist ol +Ġsec re +Ġresemb les +Ġcu ad +ìĤ¬ ê°Ģ +sh ow +Ġbl anc +Ġag u +ĠPr int +ast ed +ĠWe ather +i pl +Ġobsc ure +Ġcont e +ough s +) ; +ĠD ame +ä¸Ģ 缴 +Ġclar ification +Ġintim acy +Ġup hold +ĠMir ror +Ġw agon +x ide +Ġcl og +app er +ĠImmedi ately +ú de +Ġtouch down +Ġro oft +аÑĪ а +Ġç ıkt +Ġla isser +ĠUn real +ens itive +Ġ12 3 +Ġpl aster +Ġduck s +Ġet me +Ġb ishop +bre vi +Ġb ic +ä¸ĭ åİ» +Ġrun time +Ġamb itions +м аÑĤ +ĠWe in +ĠMar i +ĠíĬ ¸ë +Ġresol ver +Ġng Ãły +ĠR ise +ãĤĪãģĨ ãģ« +ĠCr us +Ġmerchand ise +Ġel i +Ġstate wide +Ġow l +éģ ł +æĶ ¹ +Ġtwist ing +Ġcontam inated +ĠCom merce +hy thm +Ġà Ī +Ġìĭ ¤ë +Ġmus ste +u ir +Ġsum s +ĠSome where +ãĥ İ +Ġk ami +Ġa ired +ĠAND REW +Ġê º +Ġv iendo +Ġantib ody +Ġabsol ument +Ġprotest ers +ĠQué bec +st adt +Sha un +Ġcham bers +ĠWe ar +ĠEffect s +Ġhaz ards +Ġne i +Ġcoraz ón +Ġá ¼ +ĠS G +Ķ © +ĠìĹŃ ìĭľ +Ġcom fy +ĠC ody +Ġpens ando +Ġg anska +ĠAc ross +öll ig +aby te +Ġwed ge +Ġkal ian +Ġsig ue +end es +ĠGro ÃŁ +Ġutil iser +Ġfl own +ани Ñİ +Ġle var +rest rial +Ġillust rations +Ġas lında +BLE EP +Ġдо ÑģÑĤ +Ġtur ret +Ġsuit case +ziÄĻ ki +Ġsket ches +Ġac red +ĠRe i +Ġt sun +ĠS ag +Ġthird s +ĠKIR BY +ra i +Ġhuman os +Ġrecomm ends +Ġextraordin arily +Ġcommence ment +K N +ope z +Ġ×ij× © +Ġlet hal +ĠEst amos +Ġinspect or +ĠSe ok +e un +Ġoff shore +Ġget tin +ye ars +ĠSil ence +ĠNat ur +up un +Ġtr zy +Ġno get +Ġhamb urger +ĠPra ise +é nd +Ġ197 1 +yl ie +k rit +ĠìĥĿê°ģ ìĿ´ +çļ ® +Ġmoment os +Ġest é +Ġdisse min +Ġgig s +Ġdes af +Ġav is +ĠZ oo +ĠìķĬ ìĿĢ +h äng +åı ¥ +h ake +ĠB ism +Ġre think +ĠMal colm +Ġident ifies +l ower +ix el +Ġtv Ã¥ +k ed +ier z +Ġö ffentlich +Ġproc laim +so on +l ol +Ġlo i +Ġb itten +ro llo +Ġser mon +Ġes qu +Ġjack ets +Ġgr áfic +Ġпок азÑĭв +Ġcabe za +ch odzi +Ġpel vis +Ġnost algia +Ġbre w +Ġshort cuts +ĠAd emás +Ġsuperfic ial +åħ© åĢĭ +Ġbo ca +ĠæĪij æĺ¯ +iment os +åĽł 为 +Ġspr outs +é£ Ľ +ĠJon as +ĠFloren ce +st atic +da ughter +* ) +ÅĤ by +f ashion +ĠG inger +Ġë§ ¤ë +Ġhust le +ut os +ĠÑĤ Ñıж +ĠL ös +ש ×Ļ×Ŀ +any ch +tu ber +Ġtid y +Ġfront al +Ġwhis key +Ġhum id +ĠÎ Ł +Ġr idge +Ġmar in +Ġb ientôt +ĠCarr ie +ch w +Ġtah un +ĠEr geb +F R +Ġìłķ ë¶Ģ +ĠSold ier +Ġenlight enment +Ġexam ining +ĠNot re +Ġer am +ĠSun ny +Ġlay ered +ĠD azu +r ades +好 åIJĥ +ĠнаÑĪ ей +Ġtim ber +Ġman ners +ĠBir mingham +Ġmini ature +omet ers +Ġfill er +ĠR ip +ĠK omb +own er +ì ¿ +id ian +Ġdem ás +ĠÙĪ ت +Ġpreca utions +Ġgovern o +z elf +ĠCom plete +å¸ ĥ +ĠPh antom +ãģ¾ ãģļ +Ġн ез +ĠкаÑĢ ÑĤ +ĠAnt wort +ĠPf izer +ĠFran co +Ġw ÅĤ +Ġfr ig +es per +Ġk ale +Ġfilm maker +Ġk urt +Ġinv alid +å± Ģ +are lla +Äĥ ng +ram ento +Ġnutr itional +Ġdict ators +Ġaf in +Ġf uzzy +ĠG ina +ó t +ĠExtrem adura +Ġdemonst rations +ĠMont gomery +íķ´ì Ħ¤ +ĠGand hi +ãĥ Ŀ +ç½ ® +Ġreun ion +Ġjaki ÅĽ +ĠZ ug +OU GH +l ifting +Ġ ಠ+á¹Ľ á¹£ +e b +ĠW OW +ĠSh iva +omet ry +Ġwild ly +Ġt ended +Ġmeg ap +ì² ĺ +Ġna use +Ġg erek +ãĥ ĭ +ĠMar cel +Ġn este +Ø® ر +Ġfe h +åĨ ħ +susp enseful +ĠWrest le +ĠPalestin ians +ĠG ORD +iy et +ĠÑĢ ади +Ġvers uchen +Ġtrans istor +ĠÐŁÑĢ оÑģÑĤо +Ġпон ÑĢав +Ġrhy me +ĠVerm ont +pl atz +è® ° +ĠÄ°ÅŁ te +ĠH ag +ĠÐĺ м +ĠÑĢаÑģÑģк аз +Ġmet ros +ĠInfin ity +w olf +ib al +ft ig +Ġ ÚĨ +Ġíĺ¹ ìĭľ +Ġo ggi +Ġdisp osit +ĠпÑĢ ил +ĠвÑĭ пол +Ġth ôi +ĠK ENN +Ġhand ing +act us +Ġtac os +Ġformer ly +ĠCorinth ians +ãģ« ãģ¯ +ÑĨÑĸ ÑĹ +Ġpad re +Ġcongreg ation +æ ij +fer t +Ġsub ir +ais er +qu a +ara oh +ĠCur ry +ĠìķĬ ëĬĶ +ел Ñİ +Ġf uss +Ġbo oty +Ġl ows +Ġh ommes +ĠM H +ĠDisney land +w ent +Ġresid ue +Ġbe eping +è¼ ķ +ät ta +Ġm ould +ĠPro jekt +st alk +Ġartif act +ĠAnt rag +ĠAM D +ĠCry pt +Ġë© Ķ +ĠFel ipe +ĠCO B +el u +Ġself ies +ĠS anti +ch utz +ĠУ кÑĢаÑĹ +ges amt +Ġflo ck +j az +pl ain +Ġwr inkles +Ġre ais +Ġpal jon +Ġempower ment +Ġattend ees +pp a +Ġn eden +он Ñĭ +Ġtime frame +ĠCher ry +Ġid ée +Ġg ag +Ġdon key +Ġô ng +ĠH are +éļ Ľ +ĠK ara +Ġacom pan +pl aces +im ientos +ĠH amm +б и +ub en +ili yor +Ġth irst +Ġk ry +ĠGeorget own +׳ ×Ķ +Ġor ch +Ġheart beat +Ġtransform ations +est ones +ĠK H +Ġcart oons +Ġan ci +Ġworth less +Ġtail ored +p u +Americ ans +Ġp iles +ĠMon key +Ġbas in +ĠTem per +ĠP aint +Ġpunch ing +Ġba ik +ĠOak land +v re +ÅŁ allah +yd d +Ġcas ually +od u +Ġc oded +ĠNorweg ian +ĠV ince +Ġprem ature +ĠProm ise +ек ÑģÑĤ +Ġdevast ated +ĠPrem ium +ĠPar am +ĠÃĸ yle +um uz +P O +r ators +Ġlamp s +Ġterritor ial +Ġback bone +list ed +D Y +ĠاÙĦ ر +Ġpurs ued +ĠComm ons +Ġê³ ¡ +lo cks +ed or +Ġconce ived +g ere +Ġdisappe aring +ĠS ull +ĠìĹ °ë +Ġho ffe +Ġdet ox +íĶ Į +Ġret ir +ĠëģĿ ëĤ +Ġper gunta +ĠB OY +ç² ¾ +Ġp enn +æĿ¥ äºĨ +h és +h on +Ġcatastroph ic +Ġa ust +Ġtor so +Ġìĸ´ ëĬIJ +ĠìĤ¬ëŀĮë ĵ¤ìĿ´ +Ġmarvel ous +ĠHar ley +ach ine +Ġti ế +itt o +ĠI ÃŃm +yl on +Ġshut down +.' ' +Ġap ologies +ĠCommun ication +ĠговоÑĢ Ñİ +ãģĤ ãĥ¼ +âĦ ¢ +ÃŃ veis +ac un +Ġret aining +Ġcontrad iction +ĠAD AM +C OM +Bry an +ĠM onsieur +Ġadap ting +Ш ÐIJ +ĠSc r +änd ert +Ġpl aus +ä»Ĭ天 çļĦ +Ġon set +Ġassist ants +Ġval ves +Ġsc atter +ĠR ust +aw ia +Ġread iness +Ġp ais +Ġb ible +Ġamb iente +Ġа меÑĢик +Ġunc ond +Ġk alk +åĬ ¨ +Ġmo c +un n +Ġact u +Ġhum ming +iss imo +ĠPat rol +g ow +ãĥ ¤ +ĠTHE Y +ĠBod en +ĠB ie +Ġre el +ĠÑĥÑģл ов +Ġende avor +ĠPer iod +ustom ed +m als +al on +B ox +ĠÏĥ αÏĤ +Ġom dat +Ġal tre +ĠHe h +k ad +Ġprotect or +Ġdomin ance +odynam ic +Ġcommunic ated +k ö +Ġprede cessor +ĠL uk +ĠFl ower +Ġãģ © +po que +ÑĤи ÑĢов +Ġret rospect +Ġdecis ive +Ġexem pel +{ \ +ĠR ück +r ite +ĠZe us +Ġcal orie +Ġattract ions +ĠH inter +Ġuh m +ĠíĮ IJ +Ġrul ers +Ġdiscour aged +Ġaconte cer +Ġacc ents +ĠOpt im +ĠAl g +k ids +20 21 +ĠLind say +Ġfilm makers +pr owad +Ġter ug +ëĭ ´ +ĠSom mer +20 18 +Ġborrow ing +ĠTrans fer +н оп +ari as +Ġhead phone +ì¼ ľ +Ġtransl ating +Ġauf ge +ப à®Ł +we is +av ant +pa id +b aby +Ġtough est +Ġrepe ats +ĠTer esa +L ord +Ġacab ar +ĠR ide +d ir +Ġl eng +Ġd wa +Ġhead aches +Ġn ữa +ĠнаÑģ ÑĤоÑıÑī +Ġbo ils +Ġlong ing +ri as +ó rio +ĠParad ise +ĠSeñ or +erd em +Ġrein st +Ġsal aries +Ġinsec urity +ÅĤo ÅĽci +ĠабÑģолÑİÑĤ но +ink en +ĠEd dy +ud os +Ġd ummy +Ðļ ак +s ix +Ġin box +Ạ© +Pe ople +á»ĵ ng +Ġorganiz ers +f ind +Ġü l +ĠCO M +ż a +we ile +Comment ary +íĬ¸ë ¥¼ +ĠMitt el +k us +èĽ ĭ +ठ¨ +ir al +Ġgar ment +ικ ά +Ġst ool +pay ers +Ġsh immer +ĠO llie +ĠJe żeli +è¿ĺ æľī +Ġ197 7 +Ġje ux +Ġext inct +ĠTransport ation +ĠM aker +Ġj ohn +Ġrich est +Ġtraum at +Ġli egen +´ë ¥¼ +è¿Ļ éĩĮ +Ġun rest +ĠSt raw +æĭľ æĭľ +Ġcom a +ĠKr isten +ĠÐļон еÑĩно +ĠBry ce +ĠÑıк Ñĸ +Ġpearl s +Ġпоним аÑİ +Ġadd itions +Ġas ympt +ĠменÑĮ ÑĪе +Ġsc ans +Ch ild +ĠH ide +к ÑĥÑİ +et as +Ġd ank +Ġple as +Ġess ays +Ġj ets +åħ Ĵ +Ġв ед +Ġposit ives +ho f +- ) +zz o +Ġstar ters +Ġsm iled +Ġ194 4 +qu iera +Ġro k +Ġpu esto +N ico +Ġsim ulations +Ġ ච+Ġintrig ued +ĠOver watch +åĸ Ĥ +s igh +b ai +Ġë§IJ ê³ł +id é +Ġcra bs +áºŃ p +ĠIraq i +ìĿ´ë ¥¼ +ÑĤ Ñı +ĠSoph ia +ĠDN S +Ġönem li +ĠLu o +Ŀ ¤ +ĠCoun sel +l igen +анÑĮ ÑĪе +Ġtrump et +Ġd apat +ĠJ M +ĠEVER Y +Ġå°į ä¸įå°į +å¤ ¢ +ĠL ayer +Ġc ô +н ал +ĠJ oo +ĠH ack +Ġs unt +ĠLeon ard +ĠFire base +äng er +Ġexpl oding +v oy +Ġì¦ IJ +ĠÑģ еÑĢÑĮ +Ġsever ity +Ġbest imm +çµIJ æŀľ +Ġt iring +Ġprocure ment +Ġdiplom acy +Ġdecor ative +ĠÙĬ ا +Ġpenet ration +Õ « +Ġout right +EN E +ĠUn i +od les +Ġz eros +Ġdelight ful +j m +Ġdo po +没 äºĭ +Ġposit ivity +ĠVIS TA +ĠRes ource +íĥ Ģë +ÑĪ ие +C arl +Ġpip ing +Ġchop ping +ĠGan ze +ü ss +ĠA o +Ġsh attered +ĠDet ective +Ġund oubtedly +Ġhall uc +Ġen ch +Ñĭ Ñĩно +ÑĥлÑı ÑĢ +is esti +Ġped als +Ġdur um +¤í Ķ +la imer +Ġprop re +C u +Ġtransl ator +Ġca ÅĤ +Ġê·¸ 걸 +Ġca ÅĤy +U A +Ġrev ised +Ġпод об +ĠArt icle +ĠHait i +Ġà ĵ +ĠC trl +Ġroz m +la it +Ġletz te +is pering +dis play +Ġalumin ium +Ġpalab ras +Ġconoc er +Ġz itten +Ġdir ig +åıª æľī +Ġbrain storm +Ġw ifi +ĠPart icip +Ġview point +ĠQu an +Ġhier arch +W elcome +å¯ ¾ +Ġoff en +ĠRe covery +gan o +W ould +Ġrep ro +Ġper ceptions +Ġdem asi +ĠBangl adesh +ĠIncred ible +Ġlet zt +Ġbehav ing +Ġaston ishing +Ġâ Ĩ +ĠëĤ¨ ìŀIJ +èµ° äºĨ +ãĥ Ķ +ĠGORD ON +C AR +? !" +ĠP rest +Ġë§ŀ ìķĦìļĶ +Ġt and +Ġl ash +ç Ĭ +ific ant +Ġint oler +Ġг еÑĢо +Ġte u +as o +ĠÑģов еÑĤ +Ġtravel ers +ĠSy nd +ĠвеÑĢ Ñģ +F onda +ad ı +Ġtrans cription +Ġtit anium +Ġtw ists +Ġgear box +ens ation +f at +C oll +ĠCommon wealth +z on +ĠPolize i +ĠAPP LAUSE +f ry +ĠJud a +este em +Ġso ck +ĠJug end +Ġк ÑģÑĤаÑĤи +ĠD ro +Ġproch aine +ãĥ¼ ãĥ« +Ġli ksom +ĠEner gie +ĠMar ina +Ġ2 30 +Ġê°Ģ ìĦľ +ump ing +Ġl one +ç´ ļ +Ġfont s +Ġbusiness man +Ġp ly +Ġdo e +gr id +ĠMil waukee +ĠE den +! ". +ĠÛĮ Ûģ +og ens +Ġteas er +Ġqui én +Ġincent iv +go vern +Ġchild care +Ġsneak ers +Ġimprison ed + ® +иÑĤ еÑģÑĮ +an bul +Ġreg ain +Ġtranqu il +Red ner +éĽ ¨ +IF A +Ġide ological +Ġmayor ÃŃa +Ġb ureau +et erm +ĠD ID +ìĬ · +Ġw aving +Ġbe b +Ġá r +Ġк в +Ġenv oy +an ut +ик Ñĥ +ĠEnviron ment +ĠAss ass +ãĤĵ ãģ§ +ĠB read +ĠТ ÑĥÑĤ +Ġstair case +ĠDise ase +Ġauc un +Ġëĭ Ī +Ġconfront ation +Ġ194 1 +Ġiron y +Ġwor sh +ãĤĮ ãĤĭ +Ġf ick +ĠNa omi +Ġback side +ie ux +K ap +Ġved ere +Ġlength y +Ġbreak er +ĠRoll e +Ġpred ator +Ġnoss os +Ġadvert ise +è³ ĩ +ÑĢод е +Redner wechsel +re ten +Ġcollect ors +ıģ ımız +Ġtr ig +Ġax es +in ters +Ġpen alties +ĠOs man +ĠJen na +Ġfl akes +Ġtrain ers +Ġstun ned +ĠSc roll +ĠP ip +Ġна ÑģÑĤ +Ġnh Ãł +ĠSm ack +ẫ n +rat os +ĠÑĢабоÑĤ Ñĭ +Ġu cz +ĠLem on +ĠS ind +Ġpsych ic +ĠAb g +Ġmamm als +Ġimmers ive +Ġb ots +Ġverschied ene +Ġg eral +Ġfoll ower +Ġ ä»ĸ +Ġsegur idad +Ġimmers ed +fe ito +c ross +Ġö ld +íĥ Ħ +Ġãģĵ ãģ® +Ġ×Ķ ×Ļ×IJ +ĠJ ian +Ġbili yor +are a +Ġk af +Ġgod t +缸 ä¿¡ +Ġë°© ìĨ¡ +Ġdet riment +æ¥ ļ +Ñĸ л +ĠÄij âu +Ġchlor ide +ø re +le i +Ġmont e +Ġdifférent es +à¯ģ . +Ġcareg ivers +Ġin adequ +Ġfare well +ĠÑĤип а +ont ec +ĠE ph +HH H +ĠTod os +ĠС ШÐIJ +Ġtro v +Ġl ige +Ġc ông +ĠC iv +Ġcap az +ĠV allahi +Ġquest e +Ġrepl ica +س ب +z na +ĠÑģл Ñĥж +ĠP T +w ave +ien i +Ġrel ied +de velop +Ġdem e +ĠA man +Ġ[ ...] +Ġcompl iments +u ais +ĠíĮ ¨ +Ġsmell ing +Ġdad urch +ÙĪ ت +Ġor anges +Ġл ай +Ġstabil ization +åĢ į +ãĤĮ ãģŁ +æ¥ ½ +Ġappl iances +Ġh m +ĥ IJë©´ +odynam ics +Ġc iÄĻ +ĠC ott +M ON +ĠM ang +æĶ¯ æĮģ +Ġall erdings +ικ ή +sh ots +Ġt s +ĠG ör +ĠCH AR +Ġ: ( +Ġwr ath +Ġf ique +Ġfüh ren +Ġtest ament +Ġ^ ^ +á¹Ľá¹£ á¹ĩa +AL D +Ġtext o +ĠDog s +Ġs ib +Ġpath etic +ock s +Ġrad ically +ĠM ORE +ĠJAM ES +Ġing l +ĠTechn ical +Ġpor ch +ĠU T +ĠобÑıз аÑĤелÑĮно +Ġrenew al +Ġaesthet ics +ik um +Ġbe verage +der n +Ġpredict ive +Ġch uy +ĠRegard ing +ĠFor ward +ĠÙĪ ÙĦ +Ġcontext ual +Ġdwar f +Ġpre he +Ġgovern ed +ħ Ħ +Ġtrabal har +Ġnegó cio +ĠболÑĮÑĪ ой +еÑĩ аÑĤ +Ġд ÑĥÑħ +Ġflood s +Ġbow ling +ĠO B +ĠH är +Ġgrad ing +주 ëĬĶ +Ġg ars +d ling +Ġr ak +ë Ī +c reat +ĠÑī е +Ġneighb ours +f ood +Qu ery +Ġhero in +ice ps +ĠK inda +N ET +Ġmar i +Ġim itate +Ġach ter +Ġsettle ments +ra re +cc iones +Ġë ĵľ +Ġf ik +it ung +Ġм акÑģим +Ġel f +Ġd alla +ĠPol sce +ĠP ul +Ч ÑĤо +ĠMor gen +ØŃ Ùħ +Ġsuprem acy +Ġk ys +ĠHur ricane +ĠG TA +ĠFe h +Ġfinal mente +m und +ĠK rie +é poque +ĠT ucker +IT T +Ġl ur +Ġdi pping +ä v +Ġeer ste +ĠFl int +bild ung +ู à¹ī +Ġto im +Ġpr acy +Ġtransform s +Ġspeed ing +Ġpresent er +Ġfellow s +f illed +ie za +Ġadv ising +ĠInter view +и гÑĢ +we hr +ĠD ante +pt ure +Īë¬ ¸ +¯ ¸ë +IJ IJ +ĠCoun ter +Ġcr ist +Ġì§ ľ +Ġje une +ĠÑģÑĤ ÑĢаÑĪ +Ġmie Äĩ +Ġtut or +Ġmas ala +Ġpowder ed +Ġn au +ĠFreder ick +Ġbill ing +ĠE isen +Ġд обÑĢ +Ġm est +æ ½ +Ġsn ipp +Ġmon o +ĠA lo +ĠMer cy +éri ence +Ġcasual ties +ĠAN NOUNCER +ä» İ +Ġto car +Ġbacter ial +H o +Ġstre ak +ĠJ ENN +Ġpl ast +Ñģ лед +Ġre app +Ġpay check +Ġmin ers +hab t +ĠJ ap +н ÑĥÑĤ +Ġred emption +Ġqu ir +hn lich +Ġaccum ulation +Ġsh ove +Ġadrenal ine +M ake +ĠH ern +oss ing +ĠV il +ub by +her tz +bre aks +Ġsp ur +ĠD aha +US TIN +Ġcontinu er +ĠSa ul +ãģ® ãģ¯ +Ġíı Ń +ĠëIJĺë ©´ +Ġë§IJìĶ Ģ +Ġо ж +Ġsuspect s +Ġla quelle +ĠMuch as +Ġv öllig +ul en +Ġimp res +Ġlo bb +ene e +Ġн аж +T a +Ġréal ité +ĠRe x +Ġharvest ing +Ġest r +æ ¶ +osp ace +OS S +Ġdisturb ance +ass ic +ĠIs ab +Ġdéc ouv +ĠHamp shire +Ġor nament +Ġlu ôn +ĠU W +Ġj Äħ +éĤ£ ä¹Ī +Ġrespect o +Ġcomun idad +Ġcom igo +ag na +Ġintrins ic +ĠAlum ni +Ġses leri +Ġestim ation +âĢĶ âĢĶ +Ġprodu it +ãĢĤ ãĢį +Ġв ÑĢ +Ġwh irl +Ġac ces +ç u +Ġvari ability +Ġv odka +its u +Ġinternship s +Ġalloc ate +R R +íĽ Ī +Ġinstruction al +t ant +Ġà®ħ த +Ġinv ites +Ġha k +Ġsca res +Ġe clipse +п ов +к олÑĮ +ativ as +Ġstab bed +ĠD OM +ä¸į åĪ° +ro ots +ĠPict ure +íĺ ¼ +ĠC HA +ie c +ı ı +han ol +Ġmisunder stand +R ay +Ġroad map +ocument ed +iz ione +ĠOl ive +r ift +Ġ×Ķ× ł +æ¯ į +l est +; ; +ĠE A +éľĢ è¦ģ +од Ñĥ +Ġhob bies +Ġbur ial +ãģ« ãģ¡ãģ¯ +Ð ¤ +le ge +ĠH J +Ġobject ion +Ġãģ Ń +ct ory +Ġincre mental +Ġgym n +Ġepid emi +Ñģ Ñĭл +à ij +Ġadvance ment +Ġpar ch +New s +Ġa yr +л ам +Ġ×ľ× © +Ġdipl oma +ãģ¡ãĤĥ ãĤĵ +Ġrob bed +On ly +Ġinc ur +Ġch anting +Ġíķ´ë ıĦ +Ġrich es +ĠCar men +Ġnost ro +λ ÎŃ +ĠPow der +à¹Ģภ« +ĠìŀĪ ìľ¼ë©´ +Ġgerçek ten +ĠPik achu +ем он +OL L +Ġplanet ary +Ġsl ows +Ġclock wise +al ion +Ġì Į +Ġver n +Ġh omme +Ġend point +Ġinnoc ence +Ġelement os +Ġsophom ore +Ġnot ions +ĠCould n +p ur +Ġz at +Ġobs ess +Ġmotiv o +ĠK ub +ĠDr ug +A nt +ĠPlay ers +ĠHum ans +Ġme lee +ĠWild life +ĠV P +Ġvolcan ic +Ġcom in +ĠGu ang +ĠÏĦι ÏĤ +ĠоÑģоб енно +ĠS ize +L isten +ĠA aa +app ro +Ġbar bar +ĠPark inson +нÑı ÑĤÑĮ +å į° +Ġunderest imate +Ġsubst itution +Ġcosm etic +ä¸ĭ 次 +Ġwill en +Ġbe ide +ann i +Ġcondition ed +ĠDe bbie +Ġis to +ĠEd wards +ìĽĮ ìļĶ +ĠÑĤ ов +Ġab brevi +ĠM ün +ĠPr inc +ĠLi ang +Ġst ink +Ġradio active +ãģĨ ãĤı +Ġac ontec +Ġun con +ĠTur bo +ãģ IJ +Ġkiss es +æĺ¯ ä»Ģ麼 +еÑĤ ÑĢов +Ġfront ier +ĠSp y +ĠBel arus +ĠC BS +á» Ĺ +am oto +íķľë į° +ĠÑģÑĤ ÑĢо +ĠEn fin +Ġbread th +éĺ ² +ĠCa fe +ĠDaf ür +ĠB our +ar as +Ġbl ueprint +an ı +Ġconst ants +Ġattack er +ĠForm ula +za Äĩ +Ġs owie +Ġeyebr ow +ob ook +Ġset zen +第 ä¸ī +ons ider +aw ning +Ġsöyle ye +Ġinv aded +Ġpronoun s +Ġdob ry +S i +ĠÐ¥ оÑĤ +Ġvolley ball +Ġl ament +is ches +ar me +ap i +ĠW iki +ли ÑĪ +Ġkas ih +Ġp ess +ĠÑĦ оÑĤ +ĠS ul +å¾ · +Ġpse udo +Ġmem o +ĠìĹ° ìĬµ +ĠдоллаÑĢ ов +ĠпеÑĢ ем +ĠRe ach +mir al +alt ed +Ġstat ut +read ing +Ġsöy led +ĠLind sey +ĠAh mad +ë ¶Ģë +ĠС егоднÑı +Ġprzy got +Ġhy ster +U RE +ĠNe igh +Rep orter +ĠB unu +ĠTreat y +ĠR ank +ĠF ame +in ished +Ġge ared +Ġcomp ose +od ia +ĠL on +Ġjeste ÅĽmy +ĠDIRE CTOR +Ġel kaar +ĠV iel +×IJ× © +ynth ia +ä¸ ¦ +Ġm ère +ĠTom ato +Ġex atamente +ni ÄĻ +ĠFre i +ĠD if +Ġopen ings +Ġgraph ical +ĠÑĥд об +ĠвÑģ п +ĠWeek ly +ев а +Ġhang s +Ġuns afe +Ġem blem +ĠKolleg innen +al ay +Ġk si +Ġh ides +Ġol may +Ġent ste +Ġarth ritis +ÃŁ erdem +Ġbin nen +Ġlist ens +ĠH ess +åĨį ä¾Ĩ +ĠLou ise +ld en +ен Ñģ +ĠVers ion +ĠAgric ulture +ìĬ¤ë ¥¼ +м ан +ë Ħ¤ìļĶ +Ġw ines +ĠIN F +r ul +ĠJ K +ıyor lar +sh ield +reat h +Ġter us +ĠL um +Ġanticip ation +Ġacc ustomed +ĠM ina +Ġw ield +io è +mer a +Ġcount down +Ġcl ing +Ġcomm end +Ġfakt iskt +Ġdef enses +Ġcock pit +Ġком анд +Ġdish was +ĠThan os +Ġkid neys +Ġse he +Ġmicro bes +Ġc uff +ĠвÑĭÑģ ок +ĠSp icy +çŃī çŃī +வ à®° +cul us +or c +ç¾ ħ +ix es +ĠC redit +Ġr aj +Ġbring t +ĠN iss +Ġgr im +ĠS OL +Ġten im +ĠSud an +ĠSp art +Ġpromot es +ĠN ossa +ĠÑģоÑģÑĤо Ñıни +Ġì° © +Ġunc ont +ĠLiber al +ĠТ олÑĮко +ĠV iele +Ġktóre j +Ġ* *** +M ax +ĠЧ ÑĤобÑĭ +3 50 +Ġíĺ¼ ìŀIJ +Ġë¶Ħë ĵ¤ìĿ´ +Ġwar p +Ġteng a +Ġsympath etic +Ġbiz i +ĠZ ack +ied o +Ġëī ´ì +p iel +ĠÑĤ ол +Ġsc aled +ĠPET ER +ĠCO MM +ĠC ame +Ġcatast rophe +Ġsweat y +ig ration +Ġstuff ing +ĠÏĢολ Ïį +ĠDri ver +zy st +T ech +Ġassess ed +ĠSur face +ır ım +s ur +ler weile +Ġд ог +Ġshut ting +Ġfr actions +ĠÑģ ол +every one +Ġer n +ĠÐĿ ов +Ġdefend ers +Ġvers ucht +ãĥ³ãĥ Ģ +Ġpol ity +ĠÐŁ он +ver ständ +Ġbrows ers +Ġtransform ative +Ġdict ate +ĠLE GO +Ġning una +ê´ ij +Ġp izz +ĠHar old +ĠL opez +Ú¾ ÛĮ +an ız +atch et +ÙĬ ت +Ġl ernen +Ġê·Ģ ìŬ +Ġhous ed +Ġclean se +ĠW AT +lar ation +Ġby tes +Ġtuck ed +Ġfault s +д о +F X +Ġìĸ¼ë§ ĪëĤĺ +Ġde form +Ġcontract ing +ĠTIM E +ir se +Ġne ben +Ġc erc +ĠArm strong +Ġtest er +Ġparf ait +Ġjealous y +Ġtox ins +Ġdis bel +ÑĥÑĢ Ñĭ +imp ression +Ġprost ate +Ġfire wall +Ġclass ics +еÑĩ ÑĮ +Ġsocial ism +Ġgrac ious +ĠÑģ нова +Ġд нÑı +Ġburn er +ĠMin or +Ġìļ°ë ¦¬ë +Ġjed es +Ġcontinu um +Ġh ots +Ġoccur rence +Ġadminister ed +Ġзам еÑĤ +Ġhes itation +Ġdr ills +er ca +ĠвÑĤоÑĢ ой +Ġstead ily +Ġinsan lar +Ġi han +í ij +Ġhel per +ĠSen in +åģ ľ +ов ание +ĠER IC +b la +ĠAcad emic +Ġhuman ities +bl ack +ump y +ort ex +Ġìł Īë +ĠØ¥ ÙĨ +Ġdiscl ose +ĠEl ijah +Ġλ ÎŃ +ĠQu er +ب ÙĦ +ãĤ ¡ +T ell +ar le +Ñĸ ÑĢ +Ġaug mented +Ġë¹Ħ ìĬ· +Ġand roid +ठ¤ +ar ma +Ġs zer +ge ord +Ġge ek +Ġye ux +Ġp ong +ĠãģĿ ãģĨ +Ġtort ured +ĠB ath +z ig +ason able +Ġn ets +Ġbar u +ĠFl at +ĠV ater +ĠTer ror +ĠA vo +Ġceremon ies +ro e +Ùģ س +O ps +Ġhy vin +Ġap resent +ol or +ĠигÑĢ Ñĭ +ort on +Ġê·¸ëŀ ¬ +Ġlook in +ĠT Y +ĠM int +Ad d +Ġm ite +ĠSm oke +Ġnot a +Ġm oss +ĠAb end +Ġì» ¨ +Ġexagger ated +f ires +Ġred ist +ff iti +Ġopen ness +ê°IJ ìĿ´ +ende u +ен ной +W atch +Ġav atar +ĠP ey +ur un +Ġsen za +Ġì§Ģ ìĹŃ +ĠNat omiast +Ġemer gence +ray s +Ġcraft ed +g ary +ãģł ãģij +ü ng +- " +Ġhack ed +Ġstr ay +en cie +em o +Ġcom en +ĠK ız +ĠJ asmine +ĠH indi +man as +Ġinfin itely +em on +ìĿ¸ëį° ìļĶ +j ak +Ġro aring +éri que +s weise +ĠRo lex +åł± å°İ +ĠStu art +bn b +Ġdiagn ose +Ġcoher ent +ĠM J +æºĸ åĤĻ +Ġp ike +l av +Ġorchest ral +а ÑģÑĤи +Ġterm inar +Ġgather ings +Ġcompl iant +Ġupgrad ing +Ġregul ator +Ġlan ç +éĢ £ +Ġmerch ants +ta wa +Ġmonit ored +Ġrend re +ä¸ ¤ +Ġunter wegs +ang uard +g ard +ĠBel ow +du ino +ĠЦ е +Ġimped ance +ìľ ¡ +ä» ½ +Ġakt uell +ĠV atic +åŃ © +Ġste wards +Ġbright est +Ġk enn +Ġk au +ĠMat rix +ĠB ark +ĠðŁ ij +Ġt aper +Ġcas ino +ר ×Ķ +ys ical +Ġbuild ers +ĠczÅĤ owie +ĠNep al +Ġ! " +Ġterm e +Ġin nych +Ġmath s +Ġdraft ed +ĠB alk +Ġhesit ant +Ġvolt ar +Ġrev ive +ĠÑĦилÑĮ ма +Ġassass in +ĠS olutions +Ġdu el +Ġbear ings +à¸Ħ ะ +Ġrook ie +ik at +Ġbisc uits +Ġc ords +Ñĥв аÑĤи +AR IN +Ġprogress ing +ĠG ir +Ġpenet rate +ĠSt orage +e ight +ĠÑĤ ÑĢÑĥ +Ġdon ÃŃt +Ġsiz in +Ġout dated +ĠнаÑĪ и +Ġaff ir +Ġspo ons +Ġon i +Ġfl ank +ĠG ol +h ã +Ġp éri +Ġhonor able +ĠBreat he +sc enes +Ġob viamente +ик Ñģ +Ġש ×ŀ× +Ġsmooth ie +ŀ Īë +Ġd ime +ĠíĸĪ ìĸ´ìļĶ +Ġapp el +ĠCath olics +Ġsing les +Ġlat en +Ġç ünkü +ĠV ader +æı Ľ +Ġvard ı +ĠIst anbul +gr é +ĠEl sa +ë l +Ġinve ce +Ġcr ane +Ġo be +ĠSh ark +Ġsm ack +Ġrest oring +. \ +Ġë¹ łë +Ġf aded +um bers +S inging +Ġdep ressing +th est +ĠW ahr +Ġmult itude +ÑĢавÑģÑĤв ÑĥйÑĤе +rij k +ek a +Ġcomplet es +ĠWell s +Ġro y +ĠPr ay +ĠKal au +iz in +iaÅĤ em +Ġlo com +ĠNash ville +ĠPent agon +ë ¯¸ +ĠNE W +Äħ Äĩ +ÃŃ ss +Ġmarry ing +Ġfe ud +íĻ ķ +æĢ ¥ +) ! +ĠOper ations +Ñĥ ÑĶ +Ġmo je +Ġinstruct ed +ĠëĪĦ 구 +Ġ×Ķ× Ĵ +ĠпомоÑī ÑĮÑİ +Ġsab ia +ìķĺ ìĸ´ìļĶ +pl ane +p ri +Ġпол ноÑģÑĤÑĮÑİ +ĠK itty +Ġpróp rio +ed ere +Ġinteres ante +Ġд е +Ġcond ensed +Ġav ent +T OR +Ġgre asy +AR K +ort a +A J +Ġdis reg +Ġcorrect ions +Ġst ero +Ġinfluen za +Ġdess es +Ġball ots +Ġme get +Ġma fia +Ġb öl +n ost +ĠÑģÑĤ аÑĤÑĮ +Ġrespond er +Ġhint en +g rav +à¸Ń ะ +yn chron +Ġvi ens +Ġsam o +Ġd t +pan nt +ĠÅĽwi at +Ġзап иÑģ +Ġmer ged +Ġke p +Ġmis leading +Ġdig amos +Ġam mon +è¾ Ľ +ch et +Ġê°Ģ ìł¸ +Ġun i +ĠëIJĺ ëĬĶëį° +Ġнап ÑĢав +ĠкоÑĤоÑĢ ого +Ġanim ate +×ķ× IJ× +еÑĢ в +Ġmin ced +Ġka um +ãģĤ ãģģ +ÏĢ ε +л ег +exist ing +Ġplata form +ĠK RIS +ìĽ ł +ĠFamil ien +ĠLib ya +Ġbiod iversity +Ġidi ots +ird i +Ġszy b +ĠRoll ing +ü cht +ĠÑĥд ив +Ñģ Ñĥд +Ġreal izar +Ġcan ned +ĠÑĢ ан +Ġmet abolic +ĠBe ef +Ġkil ka +лÑİ Ñģ +Ġreg istry +моÑĤÑĢ иÑĤе +Ġviel ä +Ġod c +Ġcondem ned +æ© ĭ +f al +ĠD il +wo ÅĽci +A w +Ġstatist ically +Ġso gen +ĠB ETH +Ġsh aving +å¹ ¸ +oc al +ĠFun ny +Ġpeace fully +Ġaddict ive +ĠIns ert +la uf +Ġexperien cia +é¦ĸ åħĪ +иÑĤ елÑı +ÃŃ gen +ág ina +Ġabdom en +íķľ ëĭ¤ +ic us +im ana +ì į¨ +arch ing +Ġkonk ret +ìķ ĺë +ек а +ou fl +ive l +Ġn ude +èt res +Ġm onsieur +Ġcl ash +Ġtherap ists +Ġcub ed +Ġretrou ver +Ġwave form +Ġpot em +ĠForm er +is ión +åº ľ +Ġ×IJ× Ŀ +und os +ĠMein ung +ص ÙĦ +ĠJ ude +Ġn Ã¥r +ĠLeon ardo +ĠCr isto +ĠG OT +ÑģÑĤÑĢÑĥ к +L AN +Ġg Ã¥ng +Ġdé b +ĠFrankf urt +Ġcra ppy +Ġli l +ann ée +ĠмеÑģÑĤ е +RE T +ĠN er +ĠCO STA +Ġjed em +Ġcurt ains +Ġiter ations +Ġun av +Ġpla que +or um +ĠÎ ¶ +Ġnúmer os +Ġdes ap +² ½ +Ġcomp iled +Ġref le +Ġrank ings +Ġrep aired +ĠÐĿап ÑĢ +Ġdownload s +Ġarm our +Ġ×Ļ ×ķתר +Ġlonge vity +ĠTON ER +ĠкомменÑĤ аÑĢ +Ġcz ego +Ġnot ify +Ġairport s +Ġend uring +let te +Ġapp arat +Ġhab il +á»ĩ c +n ad +IC O +ĠBra h +Ġseg ún +Ġgovern ors +k aha +ĠSchl uss +Ġodpow ied +ir ting +Ġrem pl +ĠAb original +ident ally +Ġenhan cing +lic ting +ĠHawai ian +Ġstri ving +ĠN iet +Ġzn aczy +Ġobed ience +ĠnÃ¥ got +Ġexp ired +Ġ19 18 +pres ented +Ġpr owad +ĠTer r +ĠPrinc eton +Ġmor gen +Ġattract ing +ĠS igma +ign er +ĠRe chts +ĠP eki +Ġmet hy +Ġha mm +Ġdire ito +Ġdeleg ation +ив аÑİÑĤ +Ġg in +You ng +Ġdepend encies +ĠBrad ley +bud s +Ġf is +Ġpyt anie +Ġinterconnect ed +Ġemba ixo +ĠS as +Ġr uh +ĠS icht +S ur +Ġsuper b +ĠSabb ath +ĠD anger +k ol +Ġh ou +s upp +ĠN acional +Ġsuccess ion +Ġv á +ĠMaÃŁ nahmen +ĠJess ie +ĠId aho +fore st +ħ ĺ +Ġ×ŀ× ĵ +ĠØ£ ÙĬ +Ġsweet heart +Ġneat ly +ĠEv angel +ê³ ¡ +ĠSu ite +úblic a +ĠÑĥ ли +ĠAnn ouncer +l igh +Ġsens ations +Ġshel ters +Ġh art +Ġsqueez ing +ĠR ivers +ĠCook ing +ì± ħ +person al +Ġman os +ÑijÑĤ ÑģÑı +w ij +Ġgo gg +ĠMill i +ĠF P +ün st +ĠL S +Ġspray ing +Ġf aux +Ġaut ograph +olog ic +Ġtor ment +Ġencry pted +á» ħ +Ġest re +ç¹ ¼ +à ± +Ġst umbled +Ġa ider +Ġsab en +x ter +ĠC ities +ĠTür k +ëĭ ¥ +ch ine +Ġto pping +Ġpoison ed +ĠRoman ia +×ĵ ×Ļ +Ģë ¡ľ +ĠпоÑĢ Ñıд +Ġchir ping +ĠìĻ Ħë +×ij× ¢ +Ġcu anto +Ġdon ating +ĠReg ent +ĠBer uf +Ġdistract ing +Ġstam ina +ĠDar ren +Ġì¶ ķ +l ists +d al +ch uss +Ġeconom ist +ãģĪ ãĥ¼ +org t +Ġist iyorum +è¿ Ľ +ĠSur prise +ĠHa o +Ġìµľ ê³ł +ĠG W +ĠIn ner +Ġqu ieren +Ġmind ed +Ġsupercom puter +Ġdiagram s +íĬ ľë +ê²ł ìĸ´ +ĠобÑĬ ÑıÑģ +Ġestab an +Ġdestro ys +ĠBre aking +Ġkar Ä±ÅŁ +Ġrebuild ing +ľë ĮĢ +ли во +ĠSau ce +ĠF usion +×ķ× ŀ× +ĠQu inn +Ġga uche +ĠÙĪ Ø£ +Ġ È +ç ĵľ +Ġtechn o +Ġdisp atch +ĠaÅŁ k +Ġein zel +ĠG mail +ç ŀ +Ġê°ľ ìĿ¸ +ĠÑģем ÑĮ +Ġjour neys +Ġi ht +Ġfib re +Ġdram as +ouch ed +Ġren ame +Ġоп еÑĢ +Ġpo o +ĠD ru +ĠиÑĤ ог +Ġz ast +Ġco z +Ġz ucch +Ġobt aining +Ġcomm ute +Ġsub mer +ĠV ish +ĠR abb +og g +Ġh ut +íĸĪ ìĸ´ +æ¯Ķ å¦Ĥ +ere mi +Ġμ α +Ġdisk ut +Ġб Ñĥк +Ġimp aired +d epend +ĠÙĪ ا +ĠÑĢ Ñĥк +Ġб аÑĢ +Ġoxid ation +Ġsitu ação +ÉĻ n +u ção +Ġsag te +ĠS ER +ĠC ake +Ġtur meric +ĠK ak +b ung +ĠK á¹Ľá¹£á¹ĩa +Ġpoison ing +Ġsl ipping +ĠS ays +å°± åı¯ä»¥ +ò ng +çŁ ³ + « +ĠClaud ia +ĠChar acter +ни ÑĨ +co at +Ġprogress ed +ĠFer gus +Ġìĺ¤ ëĬ +Ġo at +ord able +ĠLe y +ĠHera us +Ġresult ados +ĠKay la +Ġr iff +Ġcheg ou +Ġx i +Ġsp acious +Ġrecogn ised +Ġe ch +ĠT ie +Ġlaunch er +J im +Ġsupp ression +ĠImp ossible +Ġguit ars +ĠFour ier +иÑĩеÑģ кий +ĠTh erap +ĠK af +cent ered +ĠÑģо оÑĤвеÑĤ +Ġk lim +Ġcarbohyd rates +ign ant +ĠAst ron +Ġem ple +Ġdr astic +ĠмиÑĢ е +в ин +u w +Ġpret tier +Ġdon uts +ĠAth ena +Ġdiss ert +Ġpl ante +Ġur anium +ìĿ Įë +ar é +Ġrze cz +Ġdisplay ing +æĪ ² +Ġsar c +r ão +Ġtamp oco +Ġphilosoph ers +ĠRe cht +æĵ ļ +Ġcoment arios +y se +Ġìľ ¤ +Ġm ise +ĠG in +Ġн ом +ĠFR OM +l iner +at if +Ġspo ÅĤec +x a +ĠÑĤ ÑĢÑĥд +Ġw ag +기 ìĹIJ +ĠM G +Ġoff spring +ĠUnder standing +åıª æĺ¯ +OR A +Ġwh irring +Ġsur rend +Ġpok er +Ġmon uments +ĠâĻ © +Ġorgan ised +ĠSo zial +ĠF actory +Ñħ а +Ġrese mble +з д +Ġexplos ions +Ġpay roll +Ġom n +ĠJ orge +ι Ïĥ +Ġfract ure +Ġpersec ution +Ġdem ais +E CH +, ) +Ġcri ar +ĠJ OSH +Ġdem ographics +Ġ16 00 +Ġcur rencies +ĠT ips +Ġ éĢĻåĢĭ +ĠRe fer +ĠDan cing +Ġincons istent +Ġde h +Ġimm ens +Ġme ist +Ġimpat ient +Ġbehav es +æĿ ¾ +ĠëĤ´ì ļ© +Ġback story +Ġagree ing +ĠÅ ģ +ih in +Ġtemper atura +ĠBack ground +Ġnut zen +Ġëħ ¹ +ĠM änner +Ġcollabor ations +ĠK os +éģİ åİ» +Ġnight mares +ë ĵ± +ĠQueens land +Ġassoci ates +ĠK ok +Ġfact orial +ĠHy ung +Ġê·¸ ëĭ¤ìĿĮ +Ġfil ho +Ġel ét +Ġíĸī ë³µ +° ± +Ġgef unden +Ġsemic ondu +Ġcounsel ors +ĠU pper +ĠA ub +ick ers +V er +Ġnorth west +ĠMainten ant +ĠL akes +аÑı в +int é +ì° ½ +Ġг аз +Ġgi orn +Ġdigit ally +ĠCirc uit +ì¼ Ģ +ãĤĬ ãģ¾ãģĹãģŁ +Ġcheer ful +ĠPet erson +ĠDan ish +ativ os +Ġli ken +Ġhar bor +али ÑģÑĤ +x e +Ġcur ls +ĠR hod +E nd +ĠE T +Ġacqu aint +ĠKel vin +Ġtr if +ĠA way +ìŀIJ ëĬĶ +v s +Ġp ágina +Ġin let +ĠSant os +Ġìļ° ìĻĢ +Ġyap ıyorsun +th eme +Ġsou ff +Ġinject ed +Ġpó źniej +iver so +amp ed +Ġda her +Ġd agger +ĠлÑİб им +Ġt ummy +Ġenlight ened +c ents +ĠD ah +Ġcu est +ä¾Ĩ 說 +IL Y +Ġ×ij ר +Ġbang ing +ĠEm il +ĠC ler +ĠB order +иж Ñĥ +Ġpresent ers +ĠST UD +co ins +ĠíĻ į +Ġper ks +Ġpar ap +Ġcertain es +ĠL ore +ö st +ĠMAR TIN +Ġb ios +Ġwhere by +ver ts +ĠMir anda +Ġst ip +æ¾ ¤ +and ez +׼ ׾ +uj in +Ġê ¾ +Ġaller gies +pl ate +Ġyap ıl +Ġundert ake +ĠëĤĺ ê°Ģ +P art +Ġkız ım +h guru +ãģĤ ãģ¨ +ĠJohn s +Ġeyel ashes +Ġdra ined +Ġst Ã¥r +ãģĤãĤĬ ãģ¾ãģĻ +ĠJ ade +Ġcal end +fil m +Ġmes a +Ġlud zie +Ġattract s +Ġju ices +Ġк ил +Ġnieu we +Ġmen cion +Ġign ition +Ġbl adder +anda ag +ĠExt ension +íĤ ¨ +fe ed +ĠÙĪ Ùĩ +Ġsp un +Ġt ät +оÑĢ оÑĤ +ty ard +ron ics +ĠH uge +Ñĥж д +st ring +Ġun just +Ġpra wn +Ġfrost ing +Ġdisappear ance +ios a +Ġcard i +ĠPri est +Ġcient ÃŃfic +åĵª 裡 +ĠÐĴ аÑģ +Ġë¶Ģ íĥģ +Ġth ieves +Ġphys ique +ĠE ugene +Ġбли з +Ġmon opoly +Ġbi ography +Ġho ÅŁ +Ġt ö +m ac +Ġshock s +ìĦ ¸ë +h it +Ġsn ug +Ġinc l +Ġded ic +Ġult ras +Ġизв еÑģÑĤ +Ġutil ization +ĠÑģовеÑĢÑĪ енно +Ġserv i +st ag +1 80 +Ġse wer +ĠCh oice +Ġdis charged +ĠJ D +ол еÑĤ +ĠкваÑĢ ÑĤи +Ġteles cop +ĠJe ÅĽli +ĠN ana +c ale +ĠÑĤ он +mm m +äºĨ åIJ§ +Ġge habt +ëĤ ł +æĬ ķ +à¸Ļ à¸Ļ +Ġet her +Ġz en +Ġresearch ed +ĠCzy li +å®Į åħ¨ +work ers +Ġê²½ ì°° +Ġsher iff +all o +Ġtip os +Ġprosec ution +Ġfrog s +Ġf alt +j d +ĠíĮ Ķ +Ġfilter ed +ĠO ft +Ġì į +Ġdis fr +ĠMust ang +Ġwo ah +ĠRE ALLY +Ġмог ли +Ġentr ada +Ġиг ÑĢа +Ġmix es +ĠавÑĤом об +Ð Ļ +Ġsh in +Ġparan ormal +Ġsome place +Ġdish on +eta an +Ġfu erte +Ù ¹ +Ġdo om +ìĪ ľ +Ġexist ential +Ġbu ld +ĠSD K +ĠпÑĢав да +Ġturn over +ĠìĹ¬ê¸° ìĹIJ +Ġठ¹ +Ġmodel ed +Ġbug ün +Ġexperiment ation +Ġmorning s +Ġmed o +Ste vie +Ġplay able +Ġairl ines +g ments +Ġê¸°ë ¶Ħ +ĠT omb +ĠMV P +AUDI ENCE +Ġcheck out +Ġpas st +Ġbe ispiel +ĠLink s +he avy +Ġquestion able +Ġìĵ °ë +Ġs ill +Ġmanip ulated +ĠL oren +Ġìľ ¼ +Ġver ge +á k +I ES +Ġsab ot +ĠCustom er +ale ży +Ġnom inee +ĠG ad +Ġnouve lles +ĠS PE +ist ling +Ġo val +обÑĢ аж +if ty +éĩ İ +Ġbez el +y et +Ġfre ight +ĠHan ım +r ÃŃa +Ġz oning +Ġind em +ĠB ü +Ġfemin ism +Ġvo ix +Ġof icial +Ġdi yorum +» IJ +Ġar ose +Ġpar ar +ìĿ¸ ì§Ģ +ĠMart ine +ĠL ect +Ġrest er +Ġdrown ing +u ya +c ida +ĠAri el +Ġ0 2 +Ġ×Ķ ×Ķ +ç´ ł +ĠW ert +Т Ñĭ +Ġwid ow +Ġparch ment +Ġcott age +ĠX L +ĠSl ack +ĠN ES +Ġro be +Ġg imm +Ġcam inho +ĠHar per +Ġcit rus +Ġfirefight ers +Ġdop amine +el ets +Ġdemocr at +ìł ľë¡ľ +Ġplay back +o j +ĠпÑĢ ок +ĠSull ivan +se mble +ĠW orth +ĠMust afa +า ร +Ġmet s +éĸ Ģ +л оÑģÑĮ +Ġinert ia +Ġuniform s +è¶ ³ +é rio +×ķר ×Ķ +é nt +Ġà® Ĵ +ĠÑģам ÑĭÑħ +Ġvou lais +ĠZ immer +ê² łë +Ġн оÑģ +en cias +Ġrel ación +Ġê± ¸ë +Ġfact ion +Ġg osp +пол ож +n ap +h ak +Ġproceed ings +ĠìĨ Ķ +ìķĦ ëĭĪ +ĠìŀIJ 기 +Ġwer d +Ġso f +Ġsch lim +Ġfl avored +Ġquad ratic +ĠBo ot +Ġpublic ity +ĠCar o +Ġ ?" +ни ÑĨа +man ia +ĠS UR +ĠB UR +l ance +ét ica +Ġzob aczy +Ġtri o +s ama +Ġta ÅŁ +Ġas ymm +ress er +Ġت ع +Ġп еÑģ +Ġbeginning s +lad ım +ĠбÑĭ ÑģÑĤÑĢ +Ġmo o +ĠGene va +Ġ åľ¨ +er us +bor ah +Ġref using +b ull +ĠWait ing +ĠInd ividual +Ġan onym +im ens +Ġmed idas +Ġfragr ant +Ġdirect ement +ĠìķĦ ë§Ī +ur ia +Ġsp herical +Ġab ge +ĠVictor ian +Ġspect acle +ĠRodrig uez +Ġoc up +ĠN är +mark s +ng ulo +ĠLu ci +Ġshout ed +Ġregul ators +ÄŁ ini +Ġdis ent +ĠÑĢÑĭ н +ëĤ ¨ +ĠìĤ ´ë +Ġprobl èmes +ĠF inger +asse mble +Ġpe ar +Ġdro ite +ĠEvery where +t am +оÑĤ ив +в ой +ordin ate +ĠL ak +Ġm Ỽi +ĠTele vision +Ġexpon entially +av as +Ġble v +ĠM T +ä¿ º +Con nell +ĠêµŃ 민 +ĠÑģво им +Ġach a +ĠD ynasty +J in +Ġto re +Ġfl or +Ġмног ие +æ²Ĵ äºĭ +ow an +b ah +Ġì£ Ħ +ĠC ela +Ġìµľ ê·¼ +Ġpermett re +Ġab ras +Ġverste hen +Ġesc ort +ĠThe m +är ke +por ter +Ġkah kaha +Ġhe ct +Ġda u +w ah +ol ve +ĠAg es +s chaft +ĠSt ell +ne lle +ĠEn suite +ĠÐĴÑģ ем +Ġcr éd +ĠP P +l ords +gr unting +Ġcontract ion +G ot +Ġacqu iring +Ġso pr +Ġpoison ous +R NA +Ġan ar +ĠH of +' ) +Ġremark ably +Ġintern acional +ü cke +in qu +Ġdu y +Ġbeast s +ĠL AN +Ġpreced ent +ĠRP M +åij ¨ +Ġsel on +Ġmort e +Ġcomeç ou +Ñı ла +Ġinterpre ting +ĠBur ke +ÑĤ ÑĢа +ĠìĿ´ë Ł¬ +Ġpess im +ĠN ok +íĮ Ŀ +F emale +Ġìĭ ¤í +Ļ Ģ +Ġstim ulation +Ġsl ick +Ġê°Ģ ëĬĶ +Ġк аз +ĠH BO +Ġpap ier +Ġkön nten +Ñĥб ли +ĠConst ant +SPEAK ING +Ġktó rÄħ +Ġcos metics +ĠT rend +Ġrob bery +Ġt itt +Ġgj ort +Ġdiet ary +ł Į +ĠKir by +ĠпÑĢимеÑĢ но +Ġqual ification +Ġìķ ī +Ġcabin ets +Ġhtt p +ĠEric a +ç¾ © +Ġdisadvant ages +Ġch attering +y z +fe it +Ġgu ild +ĠE TF +ĠDrag ons +ĠH ERE +vent h +ÙĦ اÙħ +Ġmarch é +D am +Ġphot on +Ġest able +M ag +Ġol har +Ġcou pling +ĠHil fe +ĠW izard +Ġм ало +hel p +ĠlÃŃ nea +Ġì « +Ġstand alone +Ġmor ale +Ġzwe ite +ãĤĪãĤį ãģĹãģı +ähr t +Ġd otted +Ġdri pping +ĠFl ag +éĿ Ĵ +ro cket +rate gy +ir im +Ġíķĺë ©´ìĦľ +Ġsogen an +ĠUn o +ĠSch utz +Ġest ilo +ĠS ubs +ĠDais y +ÐĿ еÑĤ +' ... +Ġplat inum +Ġb irl +ĠSo vi +Ġviol ate +Ñĥ еÑĤÑģÑı +r ill +Ġtra z +Ġsn ip +Ġcum pl +à¸Ń à¸ģ +Ġc uk +éħ Ĵ +ĠParl ament +Ġhyper t +Ġpul p +Ġtong ues +at to +Ġbus ca +ih n +ER O +ĠÙĬ ع +Ġvari as +ĠMar ian +Ġbound ed +Ġpitch ing +Ġdefic iency +ĠBless ed +ĠEx erc +uch s +ĠnhÆ° ng +æľ¬ å½ĵ +Ġrap ed +h ales +Ġmal a +p ic +Ġ40 1 +ÅĽ niej +ar ina +ëĵ¤ ìĿĦ +ott i +Ġдол го +Ġtrack er +ĠShel by +Ġvan ished +Ġbak ery +Kap ı +J esus +ĠK R +J O +ħ ¸ +Ġdisc s +ìĦ ¯ +ì§Ģ ë +×Ļ× ¦ +em ary +K endra +Ġy ük +ück t +Ġv az +Ġk up +akt u +ĠÑģп аÑģибо +Ġa ik +Ġnurs ery +Ġendanger ed +êm ement +emat ics +Ġrespond ers +ĠRepresent atives +Ġsculpt ures +ig keiten +Ġde pl +Ġinterpret ations +Ġdead lines +Ġ194 2 +Ã Ĺ +Ġsug ars +em u +l ively +Ġrecre ational +Ġdist ort +Ġunders core +Ġun quote +Ġsaf est +Ġsw ollen +Ġanalys es +Ġcommen cé +å¦ ¹ +and in +ĠÐ¥ оÑĢоÑĪо +Ġdi arr +ãģ¾ ãģģ +zi est +Ġtooth brush +éł» éģĵ +u ations +Ġc ade +Ġbackl ash +h ind +Ġris que +z ess +ĠìĿ´ìķ¼ 기 +Ġesper ar +Ġtransl ations +ion ed +gro ans +Ġп ÑĥÑĤ +Ġgen etically +éĢ ł +Ġhapp iest +Ġwer k +ato on +Ġmus i +Ġfun ção +Ġìŀħ ëĭĪëĭ¤ +ĠÑĢ ай +Ġbe vor +BL ANK +Ġrepent ance +P ut +Ġpotrze b +Ġsal a +Ġcamp a +W ER +Ġdec ÃŃa +Ġsécur ité +ĠAppreci ate +Ñĩ и +ĠR andom +ë³ Ħ +k ah +Ġmö j +Ġsä ger +Ġ×Ļ ׼×ķ׾ +Ġ19 0 +xt ures +E u +Ġg ä +Ġ×ij× ª +ĠC roat +ap o +P LE +Ġpersist ence +åĬ © +Ġbl ends +Ġtre ffen +ĠSanti ago +yd ia +al do +ĠTensor Flow +ĠD ual +ãĥ ľ +Ġch iff +ìĹ ´ +Ġcontract ed +Ġseg reg +ĠFair y +Ġwis ely +Ġvulner abilities +Ġhand held +Ġgad gets +Ġbo ÅŁ +ĠPop ular +Ġcurv ature +ë ¬¸ +ĠMAR Y +ìĿ´ì Ĭ +Ġform ulation +Ġcel ery +Ġblur ry +ĠT S +ale z +Ġw s +Ġprogram m +ĠSt ack +ĠJ IM +ов али +ı ll +Ġp ère +ĠKan ye +ĠDel aware +Ġãģ ł +Ġda unting +Ġб еÑģ +ĠSt upid +b ig +ffic ial +Ġprecip itation +Ġpl ung +ụ c +bur se +Ġdar le +Ġcri pp +Ġpione er +Ġdis put +Ġse an +ãģĵ ãĤĵãģª +Ġresist or +Ġalle in +ipp les +are l +Ġend ors +z ust +ĠÑĢеб ÑıÑĤа +ed ed +Ġì¹´ë ©Ķë +Ġlle va +Ġken nt +Ġб ал +ĠDoc ument +ĠKn ights +Ġbuck le +Ġìī ¬ +Ġal k +ĠEvery day +atter s +Ġtoil ets +Ġj ugar +ĠìŀĪ ì§Ģ +Ġgen auso +ĠLandes regierung +ãģ£ãģ ± +ij e +Ġtrail ers +ĠT igers +Ġg itti +Ġforg iving +Ġconcur rent +ĠV u +ĠíĬ¹ íŀĪ +ĠBR OWN +ound ed +" ; +Ġtre mb +Ġt iet +ĠÑĢеж им +Ġnuts hell +ел иÑĩ +Ġlos ers +ric ting +Ġrede em +def ined +N ice +Ġbroad band +K O +Ġte asing +Ġpart isan +ı ma +Ġìŀ¬ë ¯¸ +ĠJour ney +Ġslop es +un ing +gr unts +Ġt äll +Ġuncover ed +Ġmy ÅĽlÄĻ +ĠEst her +äº İ +ĠHealth y +Ġë° ij +r ée +Ġpolar ization +Ġfl av +Ġcambi ar +Ġy r +ĠR anch +Ġspl its +Ġtrou vé +åľĭ 家 +Ġrecord er +Ġdé part +ÙĪ ب +ĠK ry +Ġinteress ant +Ġeder im +ÅĽ wiad +il ateral +w right +Ġpour ra +ê ter +Ġcam el +á ŀ +Ġrapid ement +Ġme j +Ġstiff ness +AD AS +Ġdiff ers +Ġal ot +ĠS ig +ÑıÑĤ елÑĮ +Ġabstract ion +åľ ĺ +Ġke iner +gr upp +ĠSher lock +íĺ Ķ +Ġc ite +Ġover flow +Ġt ại +ú car +b ula +Ġconjun to +ĠC I +Ġmoder ator +Ġindirect ly +Ġalle ine +â Ĥ +ÑĪ иб +Ġб аб +Ġdan ach +Ġ19 39 +Ġpr omet +Ġdest inations +ĠIll ust +ικ ÏĮ +Ġsab es +Ġhe h +ĠGesetz ent +ĠM iz +ен ко +ĠM ys +Ð ¬ +ĠJuda ism +Ġmust ache +Ġst immt +ĠG aza +Ġvol te +Ġnu o +Ġm ón +ĠCom put +ู à¹Ī +ĠR adi +Ġexception ally +Ġassum es +éĸĭ å¿ĥ +ãģĪ ãģ° +in form +Ġshr ine +æĵ Ĭ +Ġimplic ation +ĠF itz +æ²Ĵ éĹľä¿Ĥ +! . +Ġl t +Ġall oy +Ġeth ic +Ġmonaster y +ìĭľ ì£ł +ica ção +Ġcoordin ating +ĠM oto +Ġover look +Ġcho is +Ġantibiot ic +ĠMin ne +ĠB J +ĠA pa +or ian +Ġsp illed +J am +Ġhus bands +Ġcre ations +Ġa ñ +üs sel +ĠìĿ´ì ļ© +Ġanaly se +r ose +Ġpunch ed +Ġpres que +Ġastron omy +Ġschwier ig +ĠEb ola +Ġc is +Ġac et +ĠF X +end re +ĠìĿĮ ìķħ +Ġweb page +Ġfre aked +Ġlat te +Ġì¿ ł +Ġë¨ ¸ë +N ever +G ra +íĻĶë ¥¼ +ey ed +Ġë°ľë Ŀ¼ +Ġesper a +Ġapare ce +ra ção +Ġdisrupt ive +ĠJo int +ur ous +re as +Ġquer ÃŃa +Ġdistrib utions +Ġexpon ent +ì¹ ĺ를 +Ġd l +z hou +ĠHe aring +å·® ä¸įå¤ļ +ĠC raw +Ġflo ats +oun ced +L ab +W orld +Ġbur dens +Ġauthor itarian +ĠB olt +Ġод нÑĥ +Ġpige on +Ġdistract ions +ĠHeraus forder +Ġz est +es c +Ġsh akes +at as +ĠÙħ Ø´ +hol es +Ġthink ers +al ta +Ġar che +ĠS uk +an ha +Ġtempt ing +Ġyou tuber +Ġv ì +Ġdz iaÅĤa +ĠVatic an +P ark +Ġsup ers +ĠNik ki +ëĬ IJë +or ang +ram ient +é ¬¼ +Ġê°ĸ ê³ł +Ġdessert s +Ġav ere +ĠGreg ory +Ġëĵ¤ìĸ´ì ĺ +Ġcost ing +ĠClin ic +Ġreb els +ĠM ob +Ġbun lar +ĠYour s +ert ime +Ġret ali +m ara +at us +all es +Ġд ÑĢ +Ġд иÑģ +Ġdiscount s +ĠGU Y +Ġкак ое +ĠExper iment +re ment +ĠXi ang +Ġb ate +W E +Ġspecial ize +Ġde ity +ĠL oki +m ag +ĠN it +W est +Ġmater nal +Ġqu is +åŁº æľ¬ +bro ken +Ġlas ers +Ġha kk +ĠAng els +Ġmaster y +ant is +T iffany +ee e +ç ij +ore m +Ġin acc +Ġjurisd ictions +ĠKard ash +æľ º +I l +ĠS inn +åĭķ çĶ» +Ġathlet ics +c ÄĻ +Ġlo osely +Ġdiet a +A g +Ġ? ? +ĠëĮĢ íijľ +Ġsuper v +Ġnut rit +Ġdr ifting +ĠìĦłìĥĿ ëĭĺ +Ġпон Ñıл +ĠVict ory +ÙĦ Ø© +×ķ׳ ×Ķ +Ġп иÑĪ +Ġsh aved +Ġmes ure +ond en +Ùĥ ر +Ġex ile +ĠDes de +ĠP interest +Ġattach ments +Ġh ombres +Ġfin es +ĠìĦ¸ ìĥģ +Ġsleep s +ĠT aco +ĠI RA +ri os +Ġo ll +et es +Ġun ut +fashion ed +Ġtre ball +ĠNear ly +ĠÑĢе алÑĮно +Ġch il +éĢ ± +ÄŁ a +ĠM EL +ros cop +ĠC G +Ġv enge +Ġdishwas her +al gic +Ġmod ifier +Ġemb assy +t imer +em ics +Ġintric ate +Ġev et +ĠëĮĢë °ķ +Ġis ot +Ġна ÑĥÑĩ +ĠQu iz +res o +δ Ïİ +Ġye lled +Ġfed er +ELL ER +Ġexceed ed +on as +ic ano +Ġжив оÑĤ +ĠMa o +ĠKaz uto +Ġ ãħĭãħĭãħĭãħĭ +Ġfront line +ĠHung arian +Ġüber all +aw at +Ġgri ps +i ções +arn ya +ĠÍ ¡ +Ġse id +Ġan ak +Ġacab ou +íķ ij +Ġnot orious +ĠGod zilla +Ġover coming +ĠP end +Ġol abilir +ül me +Ġer halten +ãĤī ãģĦ +ê· ¹ +ĠM eter +Ġsta an +O l +Ġch ats +ĠBu enos +ÃŃ ve +alu able +Ġstrateg ically +Ġcompr ised +ĠпеÑĢÑģон аж +Ġw ann +ĠC en +н иÑĤе +Ł ģ +ĠÑĤоб ой +i ad +ĠkardeÅŁ im +ĠCongress man +ream ing +h omme +Ġcommun aut +Ġalcohol ic +Ġpick led +Ġac ord +p osition +eg ól +Ġtrou bling +ĠMarch eg +Ġzum indest +Ġseam lessly +Ġol un +ĠTV s +ĠпÑĢакÑĤи ÑĩеÑģки +Ġback end +ãģĵãĤĵ ãģ«ãģ¡ãģ¯ +id able +Ġgad get +Ġfa ço +ĠMarcheg iani +Ġë° ¤ +Ġaccident al +ĠL P +Ġeld est +ĠAd miral +Ġn Äĥm +le ver +Ġpast el +Ġfond o +Con nie +Ġter cer +Ġp act +ĠMont e +Ġme ats +ĠS MS +ĠAustral ians +ç ¼ +Rh ett +Ġexact ement +Ġë¹ ¼ +ĠM OD +ç ¡ +ĠR apt +ĠNo ch +Ġab ort +ĠNav al +ĠFu ji +IN TER +Ġнов Ñĭй +Ġmiej sce +ĠIC U +ĠGrad uate +ĠGl en +ard i +ĠÈ ĺ +Ġsold er +Ġprofess ions +Ġorth og +om n +int rodu +ĠDen ise +ìŀIJë ¥¼ +Ġcorrespond ence +AM A +Ġinf lict +Ġf and +ĠG ü +ĠÑĩ еÑĤ +Ġtr aced +Ġpat ents +Ġamb ush +Ġlot ta +ff er +ĠW agner +Ġimp erson +Ġextr êmement +ÙĤ ت +cond uct +A tt +ĠM ueller +ĠAl icia +Ġcy c +Ġha cker +Ġt ys +Ġha il +Ġз аÑıв +Ġpas so +Ġì¶ Ķê°Ģ +ĠÎ Ī +Ġpack aged +ĠC ynthia +he et +ä¸Ń åĽ½ +ĠNiss an +ĠQuest o +é ¨ +d id +Ġμ ια +ĠEll is +ĠAnal ysis +ce mos +Ġas eg +ĠMy ster +ĠCa o +Ġtu v +ĠIndust ry +주 ê³ł +ot al +Ġpeque ño +br as +Ġcompreh end +ĠSim pson +ÑģÑĤв ие +ocr acy +иÑĩеÑģ ки +ĠM ush +ĠLaur ie +Ġtriang ular +ĠPres ents +ĠK unden +ç´ ¹ +æŃ ¦ +ĠIs s +ĠDe ck +á»ĥ n +ĠDark ness +Ġinflamm atory +eremi ah +Ġwar med +vey ard +ĠMem ory +et ty +Ġtax payers +ภĵ +Ø ¡ +Ġpract ise +ëĭ ¬ë +Ġdr illed +m Ã¼ÅŁ +log o +ĠF ach +¤ë ¡ľ +Ġübrig ens +Ġkon nten +Ġnormal mente +Ġarg ues +iling ual +°ë ¥¼ +eg al +Ġtrava ill +ov y +а ÑĤо +Ġr uth +ĠL ights +Ġconsist ed +×ijר ×Ļ×Ŀ +Ġstere otype +Ġpay er +ĠRe e +ĠAir bnb +Ġdr owned +ĠZ oe +Ġcan opy +Ġbar r +Ġн оÑĩ +Ġpag an +Ġj ars +Ġr ê +er ver +æĪ ¿ +ie ben +Ġes pect +ĠF i +Ġunw illing +Ġtechn ician +ặ t +m ember +ĠCan al +س Ùħ +Ġlie ber +Ġin ference +Ġhon oring +åij µ +ĠCamp aign +Ġline age +ĠSt ress +Ġvict ories +Ġde ja +× £ +ê tes +bl ick +Ġмен ее +oth s +ĠCou ple +J ason +ĠNic olas +ек Ñģ +l ib +Ġher ramient +Ġ×IJ ×ķ×ŀר +Ġвид им +mill imeter +Ġsil houette +Ġdrive way +Ġcher ish +ãħł ãħł +Ġrans om +Ġinter disciplinary +ĠPort al +Ġtra g +th ood +Ġted ious +Ġgloss y +Ġpré par +ĠC ay +ĠT ook +ĠBott om +Ġz ig +å « +åį ± +re presented +à¹Ģล ย +Ġdesar rollo +ìĦ ľë +Ġvis cos +Ġmill igram +ĠG und +Ġfer ment +d rum +Ġdraw ers +La ugh +Ġpel os +Ġpave ment +Ġmem oir +av ait +Ġ20 50 +¤ë ¥¼ +Ġraz ón +Ġflour ish +Ġst ern +ä¸ Ī +ĠCh ung +Ġser pent +ĠGentle men +羣çļĦ å¾Ī +k ook +Ġl ut +import e +p arent +Ġw sz +Ġsc ree +ĠMitar beiter +å· ´ +m ut +Ġìĸĺ 기를 +Ġsem ble +ĠO W +Ġinvestig ator +ĠCher yl +ĠG erald +Ġpr ere +Ġcomp ares +ny t +Ġdiferen ça +? - +Ġqu á +ר ×Ļ +S en +Ġhe ps +Ġgrat uit +Ġcons ort +ĠST OP +ĠProtest ant +Ġelectro de +â Ĺ +Ġsecure ly +иÑĩеÑģ кой +Ġt ää +Ġreg isters +ĠHeaven ly +og ly +iss ä +ĠPhys ics +ĠMer kel +Ġré v +éĻ ¢ +Ġer ased +ĠSac ramento +Ġcoff in +Ġex acer +Ġl anz +Ġpo ets +ul if +Ġì¹ ĺë +ĠN erd +ĠN CT +ĠH our +neh mer +ŀ ĺëıĦ +ĠPrin ci +S w +m ies +ar med +ĠBeat les +Ġpropag ation +Ġexch anged +Ġcum ulative +Ġì§ij ìĹIJ +Ġdefe ating +æĬ ± +b els +Ġw es +ĠOdys sey +ä½ł æĥ³ +av ior +ĠìľĦ ìĹIJ +Ġbr it +Ġhij o +D AY +ĠاÙĦت ÙĬ +ĠС еÑĢг +Ñĥ ка +eds iÄĻ +Ġimp os +Ġell as +Ġfire arms +ĠN R +Ġ×ij× IJ +ĠÐŁ ока +aw i +ĠìĦ± ê³µ +Ġpup ils +ĠT ack +Ġfr ase +ĠSh ip +Ġst ad +ä¸ ľ +ĠGreat er +un un +imm ung +gr own +ĠN XT +ĠAmeric as +f ox +Ġmant en +éłIJ åĤĻ +ĠÑģ ок +Ġr ikt +lect ric +de ep +Ġзна еÑĪÑĮ +Ġben ut +ĠInf rast +ĠEm ir +ĠоÑĤп ÑĢав +ĠKim chi +ĠFinn ish +´ìł ģ +ina ire +Ġo ike +æ¸ħ æ¥ļ +Ġhost age +ĠBut ton +ÙĤ ÙĬ +ek ing +ĠKaz akh +Ġcomfort ing +Ġso g +Ġgreet ed +g uitar +p ayer +Ġrel ational +Ġconstru ir +çī¹ åĪ¥ +op ian +ĠVol ume +iet h +ÑģÑĤв ом +ur rection +li ÅĽmy +Ġhem isphere +ĠBe an +IG N +Ġköt ü +ĠFall out +Ġbr ace +ç¹¼ çºĮ +ÏĢ ά +ĠH AS +Ġg é +Ġcharacter ize +ặ c +ĠMil ky +Ġtum ors +Ġn uit +ĠG az +ĠìŀĪ ëĭ¤ëĬĶ +Ġг аÑĢ +ess ment +ĠA be +Ġë½ ij +ĠEins atz +J IN +j ä +C ry +ĠProm ised +ĠÑģеÑĢ д +ok us +Ġscal able +ĠпоÑģмоÑĤÑĢ еÑĤÑĮ +ück lich +Ġreal ism +Ġmay o +Ġjuven ile +Ġhead lights +Ġgör Ã¼ÅŁ +ĠRe form +Ġhal ves +cz ne +Ġbreak up +że j +Ġr ätt +D ay +ĠìĿ¼ë ³¸ +Ġmu erte +Ġtun es +ĠSm ile +rec ord +Ġrecher che +atisf ied +Ġpo zi +Ġcelebr ations +ise xual +ĠRO B +third s +ĠF ortune +ĠÑĤ ой +Ġbrand ed +lo o +Ġd ud +Ġrandom ized +Ġcomb in +ä¸Ģ äºĽ +ier an +c zenia +į ãĥ« +Ġcur ator +Ġar tery +ĠÑĥ ÑĪ +ĠÑĩ иÑĤ +Ġsubsid ies +Ġbloss om +ĠTw ilight +Ġhy vä +ĠPom pe +ĠC isco +ĠÐŁÑĢ о +Ġbir i +Ġg ern +Ġre built +Ġw cze +Ġbenefic i +Ġdrum mer +Ġsol ids +Ġdi yorsun +ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ ãģĦãģ¾ãģĹãģŁ +l ated +Ġmud dy +Ġh olog +Ġcl aps +ĠR ings +ĠO key +ĠBra ve +Ġvalu ation +Ġmig rant +Ġinter mitt +Ġeig ene +ili ary +ãĥ¼ ãĥĪ +mark t +k r +ĠR ib +á»Ļ i +Ġaccus ations +Ġa rab +w ash +ĠBard zo +Ġu gh +est ers +oph ren +Ġaliment os +ĠU z +Ö Ĥ +Ġ6 50 +ĠпÑĢи еÑħ +F I +Ġsamp ai +Ġparl é +hes ion +Ġs ır +Ġapparat us +Ġcor related +ĠPrincip al +Ġcor r +ĠOffic ial +иÑĩеÑģ кие +Ġtermin als +Sh ould +Ġvac un +Ġst ellt +Ġmo oi +etz ung +Ġк ÑĢа +Ġda i +Ġп ож +Te am +ĠP PE +ĠÐŀ Ñģ +ĠLe ah +ĠI vy +y st +Ġuh hh +Ġnight time +Ġtrend y +Ġsec urities +Ġcontin ents +Ġfirst hand +ĠVer on +ĠëĤ ® +Ġbrows ing +ĠC ada +t ro +Ġtr amp +re ib +Ġerst mal +irl er +Ġps ic +Ġget ir +ĠN P +Ġdzie ci +об ÑĢаз +Ġmagic ian +Ġscrut iny +Ġsl ab +ĠO T +ist y +ir ies +ore st +Ġtask ed +Ġmor ally +ìķ¼ ì§Ģ +ust ered +Ġfool s +Ġir respons +Ġein f +Ġvi á»ĩc +Ġsc or +Ġpill ows +ĠG egen +Ġtut te +Ġquarter ly +Ġdid nt +ĠG ym +ĠE ther +ĠØ « +лиÑĪ ком +Ġsign aling +ĠN ode +ĠDonc s +Ġy ah +ĠKan al +Ġf ading +et in +Ġinfluen cers +Ġmed als +Ġengine ered +Ġfer mented +ê²ł ì§Ģë§Į +ĠBeet hoven +×ŀ× © +inent al +ĠìķĮë ł¤ +üt fen +al nya +Ġo vere +Ġden kt +ак ÑĤеÑĢ +Ġâ ĺ +Ġneces it +Ġgener ators +gr ass +Ġпод Ñĥм +lie ÃŁen +B ar +ľë ıĻ +ĠдеÑĤ ей +Ġsuck ing +Ġsten cil +Ġprim o +ĠBreat h +st rom +Ġimmens ely +Ġapp reh +ìłķ ìĿ´ +P op +Ġj ong +ĠGi ul +ĠAD HD +Ġhö ren +Ġe lo +iv ent +Ġr us +Ġoutrage ous +Ġmaster ed +Ġì» ¤ +ÙĪ Ùģ +ip es +ĠRud y +Jac ob +Ġbull ish +Ġt apped +Ġfa ud +iz ophren +ĠÑģо Ñħ +ĠDar ling +Ġ196 3 +ĠPre vention +² Ķ +Ġabdom inal +st ones +Ġav aient +á»ķ i +m ake +Ġs are +ĠInst ant +к ам +Ġkeep er +Ġblank ets +ãģ§ ãģĹãĤĩãģĨ +Ġswe ats +ĠMinne apolis +åħ¨ éĥ¨ +Ġgen ommen +Ġfast en +ĠBrus sels +åij ¼ +Ġcaf eter +Ġabsor bing +Ġha go +ĠEl mo +Ġgust o +ĠY ap +M úsica +Ġt ert +Ġband a +Ġm ily +Ġthere after +ĠStock holm +ĠC arson +Ġcalib ration +ava ÅŁ +ans a +ik ke +Ġfore see +Ġqual che +Ġdest e +æ ¤ +ün üz +Ġfor ge +D is +est en +Ġδ ια +Ġenca ps +ĠGes pr +Ġcher cher +ick ets +ÑĤоÑĢ Ñĭ +C r +ĠТак же +Ġrabb its +ĠD ot +he iten +Ġcaus al +ĠF oster +ajÄħ c +Ġbere it +Ġayud ar +é« Ļ +ãģ ³ +s ong +com b +Ġfr inge +Ġcyber security +Ġëľ ¨ +Ġk ier +Ġbesch äft +Ġкон ÑĨе +Ġfacil it +ĠNam en +Ġbil ateral +t x +ĠW issenschaft +Ġnu ances +Ġr ipping +Ġf y +ĠSicher heit +ĠGh ana +ol on +Ġto pped +ĠMoroc co +Ġrad ial +ĠL EE +ĠAndre as +ed d +ĠìĹ ´ë +ĠAirl ines +ãģĵ ãĤį +Ġval ores +ê· ľ +H y +Ġзад аÑĩ +ĠKend all +ĠÑħ аÑĢ +ĠV amp +Ġpy thon +Ġmanage able +ĠG ente +o ise +ici ary +Ġimp oss +ĠBun ny +iest a +And rew +Ġser t +ĠC ec +zz arella +Ġautom obile +ĠT iere +all ows +åĨ Ĩ +Ġë° Ģ +ĠSc orp +ĠJ elly +ag ara +ĠSt retch +Ġrede f +Ġexacer b +ĠS HA +é f +ors a +Ġflaw ed +ĠNo el +?! ? +Ġpro cent +Ġmen stru +ĠпÑĢо Ñĩ +Ġinf ants +ðŁİ µ +pa use +ĠR acing +Ġ194 8 +Ġsuper intendent +id ores +id y +bra him +Ġunl ucky +Ġper k +an ci +Ġë§Įë Ĥĺ +ĠÐľÐ¾Ñģ кв +Ġfin ans +Ġdiferen cia +łĪ ìĿ´ +éħ į +OR Y +ĠT ac +ÛĮ ا +Ġdes em +Ġваж но +ĠJ U +ĠìŀĪ ìŀĸìķĦìļĶ +ĠÎ Ŀ +Ġinform ations +ĠH EL +h st +Ġпог овоÑĢ +Ġvo iture +Ġre us +änd ig +ĠпоÑħ ож +j ing +Ġd ru +alt ra +Ġprodu its +Ġk ite +Ġeye ball +ĠB elt +ĠRestaur ant +Ġg amb +Ġpor ridge +it ters +Ġconver ts +Ġyard ım +Ġmáxim o +w irtschaft +Ġíķĺë Ĥĺë +Ġì¤ Ģ +Ġice berg +Ġvor bei +Ġ25 6 +ocr atic +Ġreck less +on ner +Ġm ús +Ġlog ically +ĠPr ison +ĠNet z +Ġvac ant +Ġn immt +ĠH ARR +Ġз ов +ĠDe e +ring e +ni est +ĠR ules +ìĬ¤ë Ł½ +cuss ions +Ġfl oral +Ġconstra ined +Ġdifferent iation +ĠQue bec +ĠÛģ ÛĮÚº +Ġpúblic a +it el +Ġaccommod ations +ĠGr ü +í ľ +Ġpick les +иÑĩеÑģ киÑħ +Ġcomm issions +ĠBa ek +Ġçoc uÄŁ +ĠMed ium +Ġperiod ically +Ġwonder fully +Ġstaff ing +ìĽ IJë +ri re +f le +ĠMc L +ĠÑĤ еп +ĠпеÑĢ ек +н олог +Ġíģ¬ ê²Į +çĻ¼ çı¾ +Ġprosper ous +ĠSpirit ual +ĠCh ick +DI A +ĠÐŁÑĢ ивеÑĤ +Ġper ÃŃ +ÑĮ ÑİÑĤ +Ġconsult ants +ĠEar l +ä»Ĭ å¹´ +Ġru ining +оÑĢ е +Ġpens er +Ġtak iej +Ġstrength ened +ĠLiqu id +он еÑĨ +ав аÑĤÑĮ +Ġcam er +Ġdisagre ement +Ġbat hing +ĠY osh +a al +pre chen +RIS ADAS +Ġsuper star +æģ Ń +лÑı ÑĤÑĮ +Ġn ib +ĠTh erm +ĠDAN IEL +Ġp aw +Ġliqu ids +Ġcapac it +ark en +Ġvag ina +Ġm ashed +Ġemer ges +ys cy +Ġun related +ĠGu ild +Ġin verted +it ives +T ra +Ġbe gr +Ġal te +ì§ ķ +ãĤģ ãģ¦ +ĠÑĢазÑĢ абоÑĤ +f inder +Ġдал ее +Ġблаг одаÑĢ +walk er +Ġcr ater +ass adors +ren ces +ins ki +ĠK IM +ĠEll iot +20 17 +ĠS r +ink a +ano v +Ġìŀĺë ª» +Ġpropriet ary +display style +ĠÑģ им +Ġиз б +ĠPan el +Ġinstinct s +ĠCommun ications +éº » +mid t +Ġë§Įëĵ¤ ìĸ´ +ĠÑģл ова +ĠGil bert +缮 åīį +Т ак +voor beeld +е ÑİÑģÑĮ +ary n +que z +Ġd art +Ñĸ ÑĪ +ĠH ut +S al +Ġs outheast +Ġpestic ides +Ġhelicop ters +Ġend ured +i ada +Ġbre wing +ìĹ ¬ë +ĠÑģв обод +ĠS aints +ĠFr ançais +ĠEconom ics +Ġdis loc +oph obia +C amer +Ġnegoti ated +ĠÑģÑĤ али +ìĬ¤í ģ +og ie +Ġtsun ami +Ġpeel ed +Ġmotiv ations +è¨ Ń +ost at +fl an +ĠD AC +Ġk av +' RE +ĠPe arson +b be +c zenie +Ġaten ção +íĨµ ëł¹ +ãģ£ ãģ¡ +ĠÑĥд аÑĢ +Ġintrodu ctory +ĠI ci +ë ĮĢë +ak at +Ġt rench +Ġproceed ed +ĠCo in +Ġdere cho +ĠRed e +æ¯ Ľ +ан нÑĭй +Ġincarcer ated +ĠRich mond +R ock +ĠP av +ĠKar ma +ug es +Ġconte ú +ë ¹Ħ +Ġê·¸ë §Į +ĠG one +Ġwsp óÅĤ +ĠRah men +un ken +Ġì¤ijìļĶ íķľ +Ġi b +Ġatt aching +H ay +Ġsu ka +ìį ¹ +Ġpivot al +ĠRes pect +ÃŃ da +I B +ĠVer antwort +w iet +Ġforens ic +ÑĢи ÑģÑĤ +ĠпÑĢинÑĨип е +Ġmark ings +Ġk ettle +ĠOper a +ĠDo ctors +Ġshred ded +Ġrec uer +Ġvig il +ĠF ail +Ġentre v +Ġд ÑĥÑĪ +Ġout breaks +èµ° åIJ§ +ĠÏĢ ο +Ġro gue +ang led +Ġyear ly +ĠCre ed +Ġw am +Ġlot us +ê³ ¼ë +ãĢģ ãĢģ +ĠSp it +ĠIt u +Ġstra ins +Ġstamp ed +Ġpl aint +Ġpot ion +Ġconsolid ation +è© ķ +оÑĩ кÑĥ +Ġvlog ging +Ġsl ate +ĠAu ft +ĠInc or +ừ ng +§ IJ +en h +Ġhe iÃŁ +Ġdom est +ĠSt rom +åį ³ +ak is +Ġfra gen +Ġfin er +ĠS ug +Ġup hill +Ġé én +âĢ¦ ) +ĠÑģ оп +ĠCore y +Ġsie bie +Ġm use +Ġclo ves +Ġp ous +ĠFin anz +ĠR oute +am at +Ġmut ually +ĠвнÑĥÑĤ ÑĢи +ĠSel ena +ë Ķ +ĠGa ussian +ë ¶ĢíĦ° +Ġ×ij× Ľ +Ġej erc +å¾ ® +ke a +ĠG erry +ĠS ic +大 çļĦ +Ġ196 6 +ies e +Ġfoss ils +Ġest ad +ĠK ane +ci Äĩ +Ġìľł íĬľë +Ġп ам +ĠCru ise +int érieur +Ġbe kannt +ĠP ode +Ġdem ander +R em +Ġinv ade +Ġdecor ating +rop ic +Ġcow boy +ĠPh oto +opol it +Ġì»¬ë Ł¬ë +Ġre ap +Ġhand writing +à¹Ħ ร +Ġë ļ +Ġب عد +ĠM t +Ù Ģ +Ġspaces hip +Ġnational ism +Ġcouncil s +ĠGriff in +ĠAh med +Ġcl ich +ĠO L +w l +ĠPil ot +å® ® +Ġacron ym +Ġg els +Ġelectro ly +è ĵ +Ġм ной +Ġepis od +ĠDies es +ĠAT P +Ġed iyorum +Ġexpress es +Ġexhib its +C omm +Ġк ÑĢÑĥп +Ġmat ar +Ġ20 25 +ĠArt em +vas ive +r Ãł +Ġbe ÅŁ +é» ĥ +Ġliz ard +Ġfill e +Ġì§ Ī문 +Ġмо Ñī +Ġt ür +Ġcul prit +Ġwo ven +ĠAN Y +n im +Ġt ay +Ġprom in +Ġacom pa +Ġid é +Ġbo iler +ĠThe men +Ġaven ue +ĠM ud +Ġнов Ñĭе +Ġwitness ing +Ġl ance +ĠCH AN +ĠBe ver +ت Ùħ +Ġchem otherapy +K ing +ĠbÄĻd ÄĻ +Ġat ual +Ġt ive +Ġtalk in +Ġqued ar +ie ÃŁ +ed el +Ġìĸ´ì łľ +Ġjog ar +Ġö r +Ġundert aking +ĠStre ngth +Ġmil hões +ĠW ine +ĠM olt +è® ² +ãģij ãĤĮ +Ġunderm ine +ĠArch ives +v ana +mer cial +M C +Ġcast e +п ÑĢ +Ġlegisl ators +ul ators +ên io +Ġëį °ë +ĠÑħоÑĤ иÑĤе +Ġн ек +Ġs urn +Ġcons ci +ĠP OW +Ġcul inary +ĠK AT +ĠFol ks +Ñĭв аем +Ġв ок +ãģij ãĤĭ +s ervice +pt s +Ġпоб ед +æĺ¯ åķĬ +Ġt ents +Ġn ord +ST E +Ġrepublic an +Ġwy k +Ġmin ions +èĻ ķ +Ġmem ang +j est +Ġcompar ative +Ġty le +car bon +bed ingt +ks en +Ġneg ativity +Ġsjäl v +Ġd ú +æīĢ æľī +Ġrec alled +c ra +ĠT ada +ĠÑĢÑĥ ки +ĠопÑĢед ел +Ġproc rast +Ġjog os +ĠO o +ĠHe arts +Ġé ch +Ġksi Äħż +Ġco arse +ĠT ube +ĠG reens +Ġé n +Ġdumb bell +ĠÑĤ и +Ġquer er +ا ØŃ +Ïĥ ει +ĠпÑĢав илÑĮно +Ġп ап +Ġcomp ra +Ġt ér +ĠAnt es +Ġoptim um +Ġbisc uit +κ ι +acz ego +Ġìĭľê°Ħ ìĿ´ +ĠMar ines +ver o +Ġvacc inations +Ġpet ty +rit ers +Ġа л +count ry +Ġcoun ters +Ġattend ant +ĠH ui +ãģ¨ãģĦãģĨãģĵãģ¨ ãģ§ +ck a +ÑģÑĤвен нÑĭй +gu y +Ġtrick ed +ĠR ED +Ġthr illing +ÏĢο ι +Ġpig gy +Ġan unci +OR TER +ĠVal ue +Ġr ond +ĠA DA +Ġpos er +h ores +ĠR oland +ĵ ¯ +Ġno ir +Ġש ×IJ× +ë° ľ +iem and +ĠпоÑĤ еÑĢ +ê³ ³ +Ġê± ± +Ġformat ting +ĠL ed +è§Ģ çľ¾ +Ġkill ers +ĠÄij ấy +Ġha ar +ag ain +! > [ +min ster +Ġв ли +Ġident ifier +ĠLamb da +Ġtr os +Ġflaw less +Ġdetriment al +Ġbun ları +W ar +Ġreg ião +羣çļĦ æĺ¯ +ĠB ike +cess ors +Ġc ùng +ĠR N +Ġê½ ĥ +Ġküç ük +ĠBegin ning +íĺ ¸ë +Ġge we +Ġden ote +ĠAlber to +Ġprob iot +Ġo de +Ġmol ar +Ġburst ing +ass umed +Ġfoot prints +ved a +Ġstero ids +Ġfl aming +ĠE ller +Ġerk ennen +ät zen +Ġlife cycle +ĠD OU +ĠK arena +ĠGuer ra +è¿ĺ æĺ¯ +Ġsin ister +Ġpod éis +Ġpar ab +Ġok o +Ġmat éri +Ġcar ic +son aro +Ġpratic amente +ÑĥÑģ а +Ġcomun que +Ġvig ilant +Ġreg imes +ĠShoot ing +Ġra ids +ĠN ora +ĠW ieder +m ens +ĠÑģ од +Ġê²½ìļ° ìĹIJëĬĶ +Ġв Ñħод +Ġaut obi +ĠS chn +ĠRob bie +ĠF itness +Ġкон ÑĦ +Ġpeng uin +моÑĤÑĢ Ñı +Ġми ним +play s +Ġdeleg ates +M er +Ġsist em +ĠMicha els +m ale +ا ع +Ġcá ch +ĠH ä +Ġ×Ļ ×ķ×ĵ×¢ +Ġsuper power +Ġstr on +Ġro ver +Ġdé pend +éĻ ³ +Ġret iring +Ġvamp ires +Ġmer de +ĠCh anging +Ġt ame +Ġspokes person +Ġc ay +Ġfl irting +ĠGr ö +Ġw är +Ġwy b +Ġcoe ur +ạ nh +ĠìĻĢ ìĦľ +Ġconna is +ĠHundred s +ĠBe a +Ġα ÏĢ +pr uch +Ġsocied ade +ĠWh ilst +ĠK ait +esp ace +Ġch ia +ĠEr m +Ġë°Ķ ê¿ +Ġf ences +ĠM ortal +ê² ģ +Ġг ÑĢаÑĦ +ĠHom eland +ĠJ UN +is st +Ġpar lar +Ġsport y +é o +Ġdeep en +ĠBeh avior +éĢ ı +åĵĪåĵĪ åĵĪ +Ġer rand +Ġrot ary +ĠWell ington +W ind +Ġmes ela +ả ng +iend e +Ġex cell +ĠGen ius +ĠEdu ardo +æľī 人 +ĠÅŁ unu +ĠÄ° stanbul +Ġprod uto +Ġ ãħİãħİ +O FF +Ġwoll t +çĪ Ĩ +Ġëī´ì Ĭ¤ +Ġl ass +Ġher tz +Ġar omatic +Ġзв он +Ġaut oc +ĠL ust +Ġ11 2 +ĠÎ Ĺ +Ġreview ers +Ġrecept ive +å°į äºĨ +â nd +og lo +ĠìķĦëĭ Ļ +Ġn go +Ñĸ ÑĤи +Ã¥ t +con o +Ġtek rar +Ġ주 ê³ł +Ġgel miÅŁ +Ġbed time +ĠAr gh +AD A +ĠгоÑĢод а +ĠÄ ĩ +Ġall iances +g iggling +Ġyer de +Ġsp ies +Ġg utes +ç i +Ġallt id +ĠL ah +ŀ IJë +Ġdo kÅĤad +ÙĪ ÙĬ +Ġtoxic ity +Ġcancell ation +Ġ195 8 +d ro +Ġìŀij ìĿĢ +ĠMotor ola +Ġmult in +Ġenthusi asts +ĠM ighty +ĠCoc onut +: ãĢĮ +ĠPict ures +Ġsang re +Ġbl inking +ol esome +ĠìĬ¤íĥĢ ìĿ¼ +F P +Ġboom ing +ĠдеÑģÑı ÑĤ +Ġr atchet +Ġtim elines +len ess +Ġc ages +ĠGood night +omet imes +Ġc unning +ĠR isk +ul ed +d ade +Ġpr ata +Ġgust arÃŃa +am us +ĠJin ping +Ġest rut +Ġdescob rir +ĠM Äģ +ĠAll an +Ġ åĪĨ +Ġ×ľ× § +Ġpres erv +ĠStraw berry +Ä ı +L u +Ġk ro +ĠRep orts +ìħĶ ìķ¼ +Ġval t +Ġpouv ait +Ġapp ar +ĠB one +Ġprefer ably +ĠRep ública +å°± åĪ° +Ġher zlich +Ġchim ney +Ġç ev +Ġvis as +Ġver r +Ġcultiv ation +ĠArmen ia +Ġвд ÑĢÑĥг +Ġcock ro +retch ed +art z +ĠлÑİд Ñıм +ĠpolÃŃt icas +ĠP anz +ĠA KA +ĠëĪ Į룬 +Ġer ro +Ġcam per +Ġ10 2 +ठ¸ +d one +Ġho ard +ĠÐŁÐ¾ÑĤ ом +je ong +Ġdest a +p ak +Ġin im +Ġgrow ers +ĠMess age +Ġele ctor +eng age +ĠFor bes +ĠCincinn ati +Ġdiffé rence +d f +Ġsp ar +Ġawait s +ĠUSS R +ĠR ising +ĠHo ÅŁ +Ġfoot ing +Ġcond iciones +ÑĤоÑĢ ов +Ġclin ician +ĠDisk uss +å£ ĵ +ר ×Ĵ +× ¥ +ite it +g ren +Ġchar isma +Ġle uke +Ġirrit ating +Ġcir ca +ĠRhod es +Ġp ior +Ġhandic ap +roy able +Ġv ull +O G +Ġin ÃŃcio +ier i +Ġspl ashing +Ġdem ise +Ġassist ir +Ñĩ ÑĤо +Ġcover t +ĠG ud +ภī +kl är +ĠìŀIJ 꾸 +Ġver ändert +ĠR EM +ĠCon ven +at ge +Ġpierws ze +Ġcler gy +ling ton +l iv +V PN +ĠÑģ ожал +ĠH ate +ãģ¨ ãģĵãĤį +ÏĨ ο +ĠResp ons +оз д +Ġet mek +Ġchem in +Ùħ Ø© +Ġê°Ģ 족 +T re +Ġum as +ĠBur ton +Ġpatri arch +ĠSmithson ian +¥ ĺ +M oon +A ir +Ġmed ios +Ġer aser +Ġwoll ten +Ġpare il +ĠBill ie +æĬ ½ +еÑĢÑĤ в +Ġparl ament +Ġag ony +ĠQU E +sequ ently +An other +ĠWh ew +ĠAnn ual +Ġse ben +ìĥģ ìĿĦ +val ues +ŀľë §Į +Ġsin on +ere al +ĠEn light +ĠChem istry +ĠCatal unya +Ġdoct r +ant on +Ġst uk +ĠPl ate +ĠKardash ian +Ġfil os +ĠW et +Ġпоп ÑĭÑĤ +Ġunknown s +ĠSch on +ĠBald win +Ġtelescop es +ĠG ucci +ox ide +ĠConserv ative +ìĦ± ìĿĦ +Ġhina us +P ower +Ġê±´ ê°ķ +Ġprev ail +orm an +m achine +Ġ194 6 +Ġun bel +Ġsch aut +Ġp iel +e enth +Ġobject ively +Ġch akra +aud io +Ġch icos +ĠV ault +å° Ī +Ġmedic inal +ĠT ail +Wh ile +Ġas phalt +Ġfro ze +ĠE K +unch ing +n osis +20 15 +ĠG ri +Ġodd ly +ĠM är +ĠA eg +c olo +P ar +Ġëĵ¤ ìĸ´ë +Ġv inden +ĠO VER +Ġ iced +Ġsc orp +Ġha c +qual ified +ĠÑĥвид еÑĤÑĮ +erm o +H EN +Ġso i +Ġmulti ples +Ġlay outs +Ġblind ness +ĠB owser +Ġпод ÑĤ +ĠÃ İ +vention al +Ġm ata +mad ı +Ġge ez +Ġcad ence +Ġważ ne +ĠChrist ie +ven ge +C all +Ġturn around +Ġblo b +ĠЯ к +ĠVoice over +Ġper il +ĠJa ime +ĠH OY +l ane +Ġse bel +ĠDu o +ĠHistor ical +Ġd ni +Ġg ema +y k +Ġsab em +ắ ng +Ġv ars +ĠRon nie +ĠRon aldo +ĠPer què +ns inn +h air +Ġrelent less +Ġl yn +Ġtravel er +æĢİ麼 äºĨ +n ine +Ġant im +Ġì¼ Ģ +Ġsnow ball +ĠÑħаÑĢ акÑĤеÑĢ +Ġintern s +Ġconstitu ency +ĠÐĿ ам +׾ ׾ +V EL +Ġvikt igt +Ġap oyo +ÙĦ ب +Ġj ard +Ġheight ened +ÑĢо ÑģÑĤ +ĠSM ITH +Ġдел а +Ġrepair ing +Ġr igt +ĠShe ikh +ĠBrit ney +Ġevery time +Ġadvent urous +oc key +er nt +Ġat aque +ĠAltern atively +e ffect +Ġpalav ras +ĠElli ott +Ġréuss i +Ġhypert ension +ĠMan ual +Ġproph etic +Ġhand c +ÑĮ е +Ġref rain +ĠSqu id +ìŀ ¡ +Ġком ан +äll en +Ġlleg ó +Ġbas h +ion y +ĠÑģк лад +Ġк аб +Ġcare less +ĠP ool +Ġtr ás +Ġfil s +ĠSch r +Ġsp rawd +ĠMon aten +Ġunfor gettable +ĠCott on +Ġinconven ient +ĠR X +or is +Ġhum bled +ת ×Ĺ +ĠØ¢ Ù¾ +Ġincre ÃŃ +ĠKomment are +èĪ Ĵ +r ación +Ġv antage +ĠSe al +ĠìĿ´ 거를 +Ġjou e +ãģĿãģĨ ãģ§ãģĻãģŃ +Ġìĺ¤ë ŀĺ +ĠиÑģп ÑĭÑĤ +ob en +Ġgr ate +Ġcontro le +ĠPer cy +ÅĤ ada +Ġsimult aneous +Ġprot oty +ĠgroÃŁ er +Ġbew usst +iniz i +Ġpass ieren +ĠHapp iness +åī ĩ +sh i +ge ht +Ġstation ed +ĠErgeb nis +Ġdirect amente +Ġsurv ives +Ġperson es +BER G +Ġvom iting +Ġconhe cer +Ġad jour +ĠCiv ic +pe i +bur st +Ġëĭ¤ ëĭĪ +é ı +Ġsl ed +Ġplataform a +ĠS ect +ĠDe fin +çĻ» éĮ² +én om +chn et +Ġprofit ability +Ġerre icht +á»ı i +c ation +Ġì§Ģ ê¸ +Ġperd re +Ġfel ony +Ġ195 7 +æĪij å¾Ī +Ġunsuccess ful +Ġnag yon +Ġelastic ity +Ġfac ade +Ġearth ly +ĠамеÑĢик ан +Ġcon n +c la +D u +Ġpolit iques +Ġhal o +iant es +Ġмо ей +ãĥ³ ãĥī +ton es +el ier +è® ļ +ht aking +Ġwicht ige +Ġan no +ĠL ok +ill ions +Ġv iver +Ġsol chen +Ġsu f +ĠSal z +ĠN vidia +z uge +ĠSp ike +V ideo +Ġtw or +ĠA la +èij ī +Ġh anya +ĠAd m +ìĿ µ +ĠPatient en +ĠOn ion +ĠKo be +ĠSc ene +ĠR ash +æ¨ Ļ +ÑĢа ÑģÑĤ +ist ani +Gen eral +le ye +imb ap +Ġconce aled +ĠFr idays +ĠW ool +Ġнов ÑĭÑħ +Ø´ ر +Ġê²° ê³¼ +Ġjed och +´ìĭ ľ +ĵ¤ ëıĦ +Ġìŀ¥ ëĤľ +uk t +L ou +Ġ먹 ìĸ´ +ĠEx pect +Ġдом ой +Ġirrespons ible +Ġac erca +ĠZ ust +ר ×ĺ +U I +Ġyout ubers +ĠPos itive +Ġsoci oe +Ġsn atch +èĥ Į +Ġrefresh ed +Ġnom inations +ĠP att +Ġobsol ete +Ġdem iÅŁ +åı ¤ +orm uÅŁ +ĠìĨĶì§ģ íŀĪ +Ġf la +Ġcra ziest +ĠZ ie +ĠT ú +z ep +ic em +Ġë©ĭ ìŀĪ +Ġcyn ical +ãģĿ ãĤĵãģª +Ġt resp +Ġcra z +Õ¥ Õ +Ġne lle +Ġm ph +ĠN ered +ĠK ob +ĠE ck +¨¸ ëĭĪ +J an +ĠТ огда +Ġde ci +ĠV og +Ġbubb ling +éĢ Ģ +ú a +Ġproduct os +iber al +Ġrepl icated +ĠImp rove +ill ary +C ha +Ġré du +ĥIJ íķĺë©´ +Ġcon not +ĠK rit +ĠдÑĥÑħ ов +Ġtread mill +ĠP W +Ġзов ÑĥÑĤ +Ġcl ams +Ġdra fting +Ġ195 6 +un ta +Ġexpend itures +ĠHoo ver +W OO +ÑĪе е +Ġded uction +mon ary +Ġreci b +Ġpo vo +Ġëį Ķë +ĠP AL +ĠBl ow +Ġwy p +Ġdest ac +de al +Gra eme +Ġnécess aire +Ġdamn ed +Ġ19 38 +Ġìĭ¤ ìłľë¡ľ +Ġtro op +Ġinsight ful +ĠT J +ĠоÑģ в +Ġf idelity +ĠSk ip +ĠMay o +ë§ Ŀ +app e +Ġbl as +ĠW Y +ĠG N +ct ar +S u +Ġcu ent +he ws +Ġcorps es +A bs +Ġwaste water +Ġc iek +ĠOn u +Ġexplos ives +Ġar ma +ĠSTEP HAN +polit ik +ĠOs aka +ta ÅĤ +Ġyap ıyor +Ġiz quier +Ġbele za +ĠWy att +åIJ ¸ +Ġsu k +Ġspec jal +Ġdan ke +wh istle +ĠfÃŃs ica +ĠHar riet +ĠìķĦ íĮĮ +Ġwill kommen +ip ing +ĠÑģмоÑĤÑĢ иÑĤе +Ġмож еÑĪÑĮ +Ġinacc urate +Ġarrog ance +ĠRem o +γ ά +ass ed +Ġdeliver ies +Ġst inky +ĠпеÑĢ еж +j ay +Ġtrans itional +Ġr ere +ĠNGO s +ĠAT M +Ø® ت +i ology +Ġв лад +Ġsch me +ĠSh ine +ìķ ¡ +p ants +Ġser ge +Ġsen hor +Ġab duct +ĠBry ant +V ES +Ġawak ened +ĠL az +rop olis +ĠLa o +è¾Ľ èĭ¦ +Ġvill a +Ġsumm ers +Ġent hal +Ġ194 9 +V ia +Ġìĸ´ì ¨ +Ġtend on +Ġviol et +Ġintellect ually +Ġboun ced +ara us +Ġ19 19 +Ġvra ag +Ġsp el +ĠSch war +Sc ott +ĠInd o +Ġë§ Ŀ +Ġcanon ical +ĠI KE +Ġthat ÃŃs +Ġme llan +æ¯ Ĵ +ig mat +C ould +... ?) +Ġfo arte +ĠKum ar +rend o +Ġél é +à ´ +val uation +c ases +Ġintuit ively +h ong +ett ed +Ġsou ven +Ġmor b +Ġc ors +ĠN V +ĠHas an +æĥħ åĨµ +ie ved +Ġì§Ģê¸Ī ìĿĢ +Ġdum pling +Ġcontr ôle +Ġambigu ity +æ©Ł æľĥ +Ġco g +ĠScript ures +Ġc ai +Ġbe ver +大家 éĥ½ +Ġhu is +Ġa ime +Ġerkl ären +ĠL M +ĠF ey +éļ ¾ +à®± த +Ġsuper vised +Ġje we +s pl +ĠÑĨенÑĤ ÑĢ +Ġcoll isions +ÙĦ Ùģ +ĠHog warts +ĠDur ham +×ķ× £ +Ġphosph ate +Ġoverse e +Ġinspect ions +Ġbr inc +ĠZ ak +Ġpay off +Ġch aud +ĠHung er +ã os +v ir +Ġf iance +Ġb oug +l ived +c ry +åĽŀ ä¾Ĩ +Ġjoint ly +Ġgirl friends +ĠNe xus +¦¬ ê²łìĬµëĭĪëĭ¤ +ĠK wang +åĵĪ åĽī +å§ ij +ÅĤ ÄĻ +ĠN eden +ie ce +Ġins erting +æŁ ĵ +ĠM ummy +ĠGlo be +Ġle e +Ġg erman +Ġcre ams +ach o +Ġch Æ°a +ĠGal ile +Ġfür s +Ġest iver +c idos +Christ ian +Ġlors qu +Ġcut est +v ale +ĠкÑĢ еп +Ġw ary +Ġslic ing +Ġesper ando +ĠV ander +ĠDe ixa +Ġ195 4 +Ġmów iÄħ +Ñĸ ÑĶ +Ġtool ing +Ġrest or +Ġpos ición +Ġintent ar +ĠAp ache +OU L +ĠÙĪ ب +Ġmat ière +ãĥ¼ ãĤĵ +Ġl inen +Ġestrat ég +ĠMut ta +é¡ ¯ +è¡Į äºĨ +Ġpart ing +Ġminim izing +Ġapp rendre +æľ Ŀ +Ġан глий +ĠDo o +ĠFire fox +c ómo +Ġge opolit +Ġmak an +Ġmog elijk +ĠÏĢε Ïģι +Ġcá» © +Ġinstall er +Ġdib uj +ĠHe ath +lo op +ĠBro ken +HY UN +sh elf +Ġf izer +Ġenh ances +ä¾ĭ ãģĪãģ° +Ġдо ÑģÑĤи +ĠP UB +ĠKolleg in +Ġatt ained +Ä ¾ +Ġmist ress +ĠOft entimes +×ŀ ×Ļ×Ŀ +Ġbe we +ĠS ora +ra uen +ba um +Ġroll ers +Ġm ering +ĠP AC +Ġн Ñĸ +ĠRép ublique +ĠÑĤ ÑĢав +ĠV anguard +uc iones +Ġ무ë ĮĢ +Ġg our +¯ ¤ +ĠÏ ī +Ġsa una +Ġpe ine +ĠVal erie +ĠS ikh +fend imiz +ber o +ĠÑĩ и +Ġdo ÅĽwiad +ĠE uros +Ġcomment aires +Ġtwe aks +ĠF aster +ĠÑĢаÑģ к +Ġprogress ively +ĠE uch +bor o +ĠIng red +C ap +Ġun check +Ġìĺ¤ë ¥¸ +Ġw re +ĠF T +ör ung +Ġmemor ized +ĠD inner +ĠP hew +ou bl +Ġput a +Ġadm its +ез де +op od +Ġpand a +Ġhing es +ci pe +Ġtrans act +Ġpod ia +Ġp ics +Ġcriter ion +ĠOrchest ra +ĠBl og +Ġsolem n +ĠPix ar +Th ree +Ġв низ +ĠVol unte +ĠSav age +ĠPV C +ĠC af +Ġwy kon +Ġgrad ers +Ġcr ouch +Ġcl iche +Ġsoy beans +ĠM UR +ĠGonz alez +ĠM imi +ĠBol sonaro +Ġdi aphrag +Ġbil ang +ëIJĺ ëĬĶ +éĤ£ æĪijåĢij +Ġregul ating +M c +J udge +Ġн ож +Ġjak Äħ +ites se +ĠW ij +Ġl ata +gro aning +POS ING +Ġ×IJ×ķת ×ķ +Ġha ga +Ġground ing +Ġviol ently +Ġt ills +Ġeng ag +ĠHo llow +Ġпоп ÑĥлÑıÑĢ +Ġw prowad +Ġrepl aces +Ġfluores cent +urg ical +igg ly +ĠTrad itional +t te +ĠÙĦ Ùĩ +Ġphosph orus +Ġapr on +ĠWat ers +ĠK ultur +ав ай +Ġol ives +Ġ×Ķ×IJ× ľ +Ġteil weise +Ġsen cill +Ġprend s +Ġnarr ower +Ġj ätte +ĠInformation en +ìĥģ ìĿ´ +Ġstar ve +Ġfr ick +ĠBe weg +ठ² +Ġdolph in +ĠLAUGH TER +ĠINTER VIE +åĶ ī +Ġyan lÄ±ÅŁ +Ġtor pedo +Ġshort ages +ìĿ´ë ĵľ +ıld ı +Ġp aws +Ġo zone +Ġcultiv ated +ĠF ot +Ġnot or +н оз +Ġко ÑĪ +Ġtouch screen +ĠAll y +æľĢ è¿ij +Ġ맼ìŀĪ ìĸ´ìļĶ +ĠС еÑĢ +Ġв полне +Ġpap rika +ĠDust in +Ġefect o +Ġop ini +Ġmu ut +Ġhá»į c +Ġinter ject +ÄĻ t +Ġbut ts +ure z +ĠP ike +ĠH ok +ĠGu inea +ĠCath edral +Ġ14 00 +C ra ++ , +ë§ Ľ +³´ë ıĦë¡Ŀ +aby rin +Ġvide og +Ġо ÑĢÑĥж +Ġu ž +Ġbus cando +ĠAss istance +éĻ ½ +Ġmel hores +ì¡ ´ +Ġëģ ¼ +ĠR J +Ġت Ùħ +Ġo min +Ġmotor cycles +ĠS app +Ġsupply ing +ĠAl gun +Ġaer ospace +×¢ ׾ +oc cup +le ist +Ġê±° ëĬĶ +Ġcomplet a +b res +! ( +ĠÐŁÑĢ ед +Ġdisadvant aged +ĠAtt end +ĠJud ah +á»ĭ ch +yl ene +act ly +Ġset ups +Ġammon ia +ĠSchwe iz +ĠSh ame +Ġband e +ĠF uel +Ġtroubles ome +Ġnum ero +ĠM OM +ĠпÑĢед лаг +ment ioned +ĠболÑĮÑĪ ое +ĠVikt or +ĠSty les +Ġcruc ified +ructure d +en viron +Ġmor als +Ġmed itating +Ġax ial +is ance +ĠAb st +G reen +Ġê± ´ì +Ġquad rant +Ġper gi +Ġcamer aman +ĠSe qu +Ġpa used +ĠLa ughing +ê· Ģ +? .. +ĠÅ» e +Ġpermit ir +Ġdetect ors +ĠH UD +av al +ĠìĹ¬ê¸° ê¹Įì§Ģ +Ġh ubs +Ġbest immt +ĠбÑĥдеÑĤ е +INTER POSING +Ġten gan +Ġcra ve +ĠBundes regierung +ĠBlo ody +Ġus ability +ĠE as +ĠÄijá»Ļ ng +Ġ195 5 +Ġkrie gen +Ġhabit ual +Ġessential s +rim inal +Ġroomm ates +éĤ£ å°± +ĠпеÑĢе Ñħод +Ġng hi +Ġmen ing +ĠSym phony +ĠH ug +ag gi +Ġw ied +Ġmit ad +ãģ£ãģ¦ ãģĦãģĨ +te enth +ida Äĩ +S ave +Ġrob iÄĩ +Ġboun ces +° ĸìĹIJ +st ars +Ġprag matic +Ġcogn ition +Ġwra pper +Ġw arten +ad h +Ġpens a +ĠHert z +Ġn ÄĽ +ĠRe id +ĠPC s +ĠMo le +Ġ.. ... +Ġpre cio +ĠChampions hips +ê°Ģë Ŀ½ +Ġv ér +Ġcorrid ors +ĠElect ronic +S l +Ġа ле +Ġoverth row +Ġk abul +ĠR ES +ĠCyber punk +ог од +ĠÐĿ ав +Ġw an +Ġmanifest ations +Ġcual es +ĠW ise +ĠLös ung +Ġex fol +Ġearn s +ÑĥÑģÑĤ иÑĤÑĮ +Ġsa pp +ĠBra un +ĠBRAND ON +ì¹ Ļ +Ġs ano +ĠF EL +Ñĭв айÑĤеÑģÑĮ +ожд ениÑı +Ġse wn +F un +Ġrecipro cal +Ġexpans ive +ĠTra ffic +Ġktóre go +ĠÙĪ س +æĺ ¥ +Ġë¹ ¨ +pro ve +ig are +Ġlo h +Ø§Ø ¶ +H ope +Ġdevote es +ĠG om +Ġste als +ĠU ms +ĠTw ice +ãĤ ² +iy im +Ġrhythm ic +ĠV orte +Ġpref ix +om ination +Ġdat o +Ġcust ard +ĠVO ICE +å· ŀ +Ġmen y +ist ors +Ġíĺ ij +ĠìĤ´ì ķĦ +Ġíĥ Ħ +Ġk ort +Ġab a +ĠV era +ep y +Ġì¹´ë©Ķë Ŀ¼ +Ġsubmer ged +ĠC lock +Ġthumbna ils +Ġbo ast +ĠF are +!! ] +ĠÅĽ m +Ġkaik ki +ĠTechn ologies +ìĻ ¸ +ãĥ Ĵ +иÑĤ ай +å°ı æĻĤ +Ġа ÑĤ +Ġkn obs +Ġre icht +ượ ng +gl io +Ġ맼 ìĿ´ +ê°IJ ìĿĦ +Ġjot ka +ĠHand y +ĠHab en +n ous +Ġin land +Ġam azon +ho oting +S L +Ġle isten +~ " +Ġprov oke +ĠTw ist +Ġ×ij× Ĺ +Ġdepart ed +ê° ľë¥¼ +Ġk onse +ĠCar wyn +íķĺ ìĭł +ident al +ES CO +Ġt teokbokki +Ġdiz endo +ç· ´ +ınd aki +imas u +af ar +Ġland fill +Ġcorrect ing +Ġcle ars +ĠNum mer +H AM +Ġcart ridges +ĠDies el +p aced +Ġobl iv +Ġmoy ens +ĠSin ne +ĠPre is +il iz +ĠÑģм ож +Ġbroad en +ä»ĸ æĺ¯ +x es +Ġcarbohyd rate +íĺ ¹ +se ok +Ġecho es +Ġc ess +ë° Ķ +Ġб изнеÑģ +Ġllam ado +Ġess ent +ĠìĿ¼ë °ĺ +ĠA ires +ph en +Ġze bra +Ġsymbol ism +On ce +Ġr acks +ĠKaf ka +ĠÑģеÑĢÑĮ ез +Ġsin n +p icious +ka a +Ġmotherf ucker +Ġapprentices hip +Ġr pm +Ġtax ation +Ġfur ry +ĠSac red +ĠÑĢаз м +por a +eng es +ĠíĹ Īë +ĠÑģ ин +Ġsanit izer +Ġcr inge +ĠS ca +оÑĩ но +Ġof ere +Ġmel odies +ĠVel vet +ĠIhr er +ĠHy brid +ĠG iov +Ġirgend was +Ġdep ende +ĠUs ers +Ġh ump +dri ving +Ġs f +Ġruth less +à¹ĢภĦ +Ġlem ons +Ġfö ret +ĠO j +Ġм ама +Ġinter personal +Ġge v +Ġab norm +иÑģ л +Ġин д +Ġkont roll +Ġreg res +Ġled ge +Ġerzäh lt +ĠT act +Ġarri vé +Ġsubstant ive +Ġspoon ful +zw ischen +oooo o +Ġconten ido +Ġbes l +á»ĥ m +k ten +Jam ie +Ġsand y +ä¸į åIJĮ +â ĭ +Ġp ase +Ġdet te +ĠBelg ian +ê° ľë +ula res +r ud +ig or +ĠíĮ ¬ë +Ġremed ies +Ġblast ing +ĠS ich +Ġож ид +Ġmon str +Ġmanif old +Ġglaub en +ĠE ST +Ġstream line +Ġlobb ying +ĠGoth ic +to ire +.. ' +Ġdém ocr +Ġнаб лÑİд +Ġwsp ól +ĠczÄĻ ÅĽÄĩ +ä¸ĭ éĿ¢ +is és +g angen +Ġbez pie +rem lin +ê° Ŀ +St ill +Ġres ides +Ġgele cek +Ġtélé phone +Ġpe wn +Ġle opard +Ġcompliment ary +Ġc rib +ĠAnim als +Ġge il +ess el +Ġgard er +Ġcatch y +æ¨ ¹ +ĠE ts +ĠCom mercial +ĠD ENNIS +ĠCoordin ator +ĠAb igail +ffff ff +ấ p +Ġpeque ña +Ġinject ions +ce kt +Ġphilanthrop y +Ġp uck +Ġcelebr ates +ĠD unk +ĠD latego +ãģ¾ ãģł +δ ή +grad uate +ĠM obil +t ill +ac am +Ġyol ks +Ġtang led +Ġman iac +Ġoblig ed +ĠLa ink +Ġver der +ĠDam on +Ġmut ant +Ġhop ping +Ġre ins +Ġinver ter +Ġcont empt +׳ ס +le arning +M iss +ĠÐĵ оÑģ +ĠMe yer +ê»ĺ ìĦľ +é£ İ +×ķ׳ ×Ļ×Ŀ +ask ing +Ġtrim ming +Ġtre asury +Ġs ente +A ust +ĠUnterstüt zung +ĠCom edy +ĠAn akin +é ¹ +ÑĢÑĥ ÑĤ +ĠH ari +ograph ers +Ġoat meal +ĠB ots +ä¸į äºĨ +Ġп алÑĮ +Ġacknowledge ment +x ic +Ġê´Ģ ìĭ¬ +gas ping +Ġãģ ķ +Ġterr ace +Ġor naments +ĠM ER +comm ittee +ĠìĹĨ ìĬµëĭĪëĭ¤ +Ġr ij +é ³ +צ ×Ŀ +le me +Ġlibert ies +Ġfell as +ĠCop per +ben ch +ĠIde a +á»į n +ÑĪ а +Ġvers ión +ÏĦο Ïį +ĠÐľ и +ĠпÑĢил ож +Ġbox er +ĠT anner +ĠM oy +ì¹ĺ ëĬĶ +T hr +Ġtin ham +Ġpol ishing +Ġconsequ ently +Ġamen ities +ĠK I +ĠGRE EN +ĠFrank ie +н иÑĤ +itt el +Ñģ кое +urs ed +Ġup bringing +Ġth ứ +ĠìĭĿ ìľ¼ë¡ľ +Ġwh im +Ġchin ese +conf idence +ĠJ eder +ãģª ãģ®ãģ§ +aj cie +ĠT ous +ĠPow ers +ừ a +other mal +ĠвÑĭ ÑĪе +r ale +Ø§Ø ® +Ġì§Ģ ìĽIJ +Ġép isode +Ġsul ph +Ġenc ara +k raft +alar ı +ĠCom es +Ġdiv ul +ĠRud olph +ĠM use +Ġut ens +ĠìŀIJ 주 +Ġp ana +ĠVeget a +ĠPH P +ĠN SA +ent in +ĠCarne gie +ا ÙĬ +iÄĻ cy +H arry +Ġf ır +С п +Ġglad ly +Ġaver aging +íķĺ ê²łìĬµëĭĪëĭ¤ +лÑı ÑİÑĤÑģÑı +ĠÐľ енÑı +Ġquot ation +ri res +itch ens +ay ed +Ġun att +ĠP erez +ĠоÑĤ меÑĤ +Ġtact ile +ĠEu h +is ini +b uh +Ġhat ır +ĠìŀĪ ìľ¼ +Ġpolicy makers +³´ì Ħ¸ìļĶ +ac ı +Ġκ ι +Ġregister ing +re to +ĠSpr inkle +ĠGram my +ax ter +Ġб и +Ġsit ter +Ġpred ic +Ġthin ly +Ġstr um +Ġag grav +Ġa ha +ر ج +m ellow +Ġconst ante +ĠL aut +ist on +Ġtransition ed +ĠCamb odia +ãģĦ ãģįãģ¾ãģĻ +è·Ł 大家 +art ed +Ġmis f +ĠPunk te +Įë ĵł +Ġtremb ling +Ġges pannt +ĠعÙĦÙĬ Ùĩ +Ġникак иÑħ +Ġë¶Ģë ĵľë +ĠÑĢазв иÑĤ +Ġit chy +Ġc iento +Ġpl ains +Ġk ittens +Ġback log +ĠPres iding +pt a +Ġha voc +ĠDarr in +ĠÐĽÑİ Ð± +Ġsegreg ated +Ġg hetto +Ġerle bt +Ġdrug iej +ĠSi xt +åı ĥ +ร ะ +uen cia +Ġíķĺ 기 +ĠëĨ į +Ġrob i +Ġpione ers +Ġmilli ards +ĠWitch er +Ġ무ìĹ ĩ +or ro +m ass +Ġdiver gence +ĠRiver a +ĠNo odles +Ġend roit +ĠK osten +ĠдÑĢÑĥг а +ĠmÃŃn imo +ĠKazakh stan +ت Ùĩ +Ġвоз дÑĥ +Ġgesch rieben +ĠN il +Ñģ ки +ĠFr üh +Ġbever ages +æº IJ +ĠG on +æĺ ¨ +Ar in +ĠInt ro +ocaly ptic +Ġexhaust ion +ĠStat us +ĠBatter y +és z +£ ¼ë +air y +Ġë³´ìŬë ĵľë +Ġdispar ity +Ù Į +ĠTuc son +Ġbright ly +pro blem +Ġbiom ass +éĻ į +§ ī +Ġhur dle +Ġwavelength s +Ġ< < +Ġteam ed +FF FF +ĠS lim +om ial +Ġunve iled +ĠVere in +ÙĤ Ø· +est ry +Ġcl ás +Ġch eddar +Ġaccus ing +ĠScient ific +ĠбÑĥд е +ĠCyr us +ε ÏĦε +Ĩĵ ê³ł +Ġë³ Ħ +Ġcur d +Ġrefer rals +sh ift +åį ķ +nik ów +Ġm ier +Ġconf ronting +ê²ĥ ëıĦ +aw l +Ġtry in +Ġê·¸ëŀĺ ìļĶ +Ġch iar +Ġìĺ¤ëĬ ĺëıĦ +æĶ¿ æ²» +es que +Ġmism os +ĠSh ak +Ġsoci aux +Ġpi ÅŁ +ĠkiÅŁ i +Ġcy an +h ay +be w +b od +ĠÎ ¹ +ĠMain ly +Ñİ ÑĤÑĮ +hab itude +ĠÑģп окой +è·Ł æĪij +Ġpre con +ĠM andy +ðŁ¤ £ +ill os +Ġgr upp +Ġcr umble +Ġconstru ctor +erv ices +Ġlight house +ĠCon cept +ан ÑĤи +alt ro +h ope +ĠAll eg +ìĸ´ë ¥¼ +pie ces +oun ter +Ġíķĺ ëĭĪê¹Į +ĠìĿ¸ íĦ°ë +Ġvérit able +Ġthread ed +bl ind +Ĥĺë Ŀ¼ +Ġtr ays +ĠEd ison +ĠÃĸ z +ĠSte vie +Ġl ender +Ġbrig ade +Ġdeuts che +m uffled +b art +Ġinsan ity +Ġsav vy +Ġsens ational +Ġdere chos +ĠM X +ĠпÑĢ еп +Ġthreat ens +Ġrealt Ãł +Ġindic ative +Ġch ops +Ġbenef iting +ĠVern on +ĠSt rand +n un +qu ently +10 1 +Ġe el +ìĪ Ļ +r ints +ĠÙħ س +Ġب د +Ġпо ÑģÑĤÑĢо +Ġyap mÄ±ÅŁ +Ġol ması +Ġi edereen +ol é +ke f +Ġë°ľ ìĥĿ +Ġr ained +Ġalm ighty +ĠвÑĭ д +ĠC PR +F re +Ġinhab ited +Ġarb ets +Ġa kin +а ÑģÑĤв +v ania +Ġhäuf ig +ĠMat te +s orry +Jen ny +ĠгÑĢ ад +Ġwh it +Ġbro kers +å¯ Ł +Ġh ine +ast en +Ġг ÑĢÑĥ +M B +ĠP RI +S ab +Ġwrest ler +Ġfacil itating +Ġeh kä +ĠC red +Ġ12 7 +Ġnot hin +Ġmand ated +å¯ Į +ÑĥÑĤ ÑģÑĤв +F rank +Ġwor s +Ġdzie ÅĦ +ĠUnder ground +Ġznaj du +ĠB ä +ĠPrin zip +аÑĤ елей +Ġveter inar +Ġsplend id +Ġroz p +Ġpsych opath +ig on +Ġh ops +Ġc ần +ĠX ian +Ġtro isième +Ġproduct o +ĠdeÄŁ er +ĠContin uing +ив ал +c ık +Ġmoistur izer +Wh ite +Ġsi is +ĠEver est +ien ced +Ġcả m +ĠJ apon +´ìł Ħ +Ġten ÃŃan +Ġenc anta +M m +Ġdrop down +ĠI ya +³´ë ©´ +Ġword ing +ĠSque eze +ĠMap le +Ġclar ified +ĠMun icip +ĠRou ge +ĠNick i +ĠGo o +v olt +t ek +fect ure +f red +ar rive +ãĥ¼ ãģĦ +te z +E p +Ġob ras +ĠV ID +ĠR iv +ĠMod i +i be +Ġacontec endo +Ġim itation +Ġcamoufl age +Ġspan ning +ĠSEC RET +ĠOre o +ìĨĮë ¦¬ +Ġh unch +Ġca ÅĤe +Ġspont aneously +ĠPer d +Ġet ap +ĠHo le +ĠDis ability +Ġafter life +æģ © +Ġtest ified +Ġpres up +Ġpet roleum +Ġcontr ario +ĠAss essment +ÄŁ lu +Ġp ests +Ġdil ig +ĠвÑģÑĤÑĢ еÑĤ +Ġcons équ +Ġcann ons +Ġcan oe +ĠM ile +Ġcit oy +Ġbe gged +ĠMin nie +ÅĤy ch +Ġprinci pe +ÏĢÏĮ ν +m niej +Ġw ert +Ġëĭ¤ë ĵ¤ +an se +Ġunc les +Ġprovoc ative +Ġinter sections +Ġdemocr ats +ĠJul ius +ин ки +yg usal +Ġ׾ ×ķ +Ġgj orde +Ġg asket +ĠB ock +ĠÄ° n +b reat +ĠEqu ity +ard ı +Ġкан але +Ġд ней +Ġt Ỽi +Ġfi xture +Ġab uses +Ġv aya +Ġou vert +Ġmultic ultural +Ġcontext o +ĠSes ame +Ġdé pl +Ġcons omm +ĠPart e +Ġp em +ĠCon an +Ġб ÑĸлÑĮ +Ġpersu aded +Ġdra ins +M oo +F ORE +Ġб аÑĤ +Ġf od +ĠProduct s +ì§Ħ ì§ľ +Ġ" [ +ĠW ick +ĠNar uto +н али +ry w +Ġl odge +Ġin h +Ġvont ade +Ġdi j +ĠJes ús +Look ing +Ġfore arm +ĠIntegr ation +ĠHARR IS +Ġtool bar +le ader +Ġsel dom +Ġб ÑĢоÑģ +ĠK ook +он д +Ġmon opol +Ġmill et +Ġl ira +ĠAs ians +Ġ18 90 +ci ÄŁim +Ġed en +ĠIKE A +ĠNeigh bor +ĠKazu ya +ü d +Ġpsych edel +Ġenvision ed +åĿ Ĺ +Ġï· » +Ġw under +ĠBulgar ia +B rid +Ġmar row +Ġdep iction +ĠT in +ĠPhar ise +Ġeinz ige +Ġblind ly +ãģĽ ãģ¦ +Ġdef ens +D ire +Ġvibr ating +Ġtroll s +Ġdisrespect ful +Ġw od +Ġstimul i +Ġcreep ing +Ġcla irement +Ġsc ariest +Ġdécouv rir +Ġ10 4 +ĠвеÑĢ Ñħ +ĠÅĤ at +Ġróż ne +Ġbar ley +ĠRe pl +ĠT we +k ke +ĠãģĿ ãĤĮ +ĠRed mi +ĠMet roid +Ġή ÏĦαν +Che ck +ĠS EN +Ġ ido +ÑĤоÑĢ ии +ó p +UN KNOWN +Ġänd ern +ĠJu ice +ĠGes icht +å°± æľĥ +ĠнаÑģÑĤ олÑĮко +íĥ ķ +Â Ń +ex hales +Ġì´ ī +Ġj sem +ÏĢ ÏīÏĤ +Ġit t +ëªħ ìĿ´ +Ġrem ix +Ġbloss oms +ĠR enee +is ations +ìĬ¤í Ħ° +Ġë³´ ìĿ´ëĬĶ +uest as +op edia +ĠA im +ìĿ´ì¦ Ī +sc ene +Ġleak age +uck t +S ad +A sk +Ġsusp ense +Ġimp ost +ĠStrateg ic +ĠIt ÃŃs +âĢ Į +Ġkey boards +Ġam using +og r +id erman +ŀ ĸ +Ġв ижÑĥ +Ġd ips +Ġapolog ized +ĠST AR +Ġesc uela +ĠC hing +н ениÑı +Ġë¶Ģë¶Ħ ìĿ´ +ĠFle et +Ġs amb +Ġentsprech end +Ġelectrod es +ĠFrei heit +æĪij ä¸įçŁ¥éģĵ +ĠSh rim +iÃŁ e +Ġselect ions +Ġfor di +Ġd oss +Ñı Ñĩ +Ġdiscrimin ate +ĠAu ÃŁerdem +Ġdesenvol v +ĠIntern al +ĠBened ict +å¯ Ĩ +ĠSh iv +M issy +Ġоб наÑĢÑĥж +Ġна ÑģÑĤÑĢо +Ġcontrol ar +ĠL ia +Ġopio ids +ant u +Ġcup board +æģ IJ +г е +acht s +Ġcur ated +Ġx em +Ġwe ary +Ġbre thren +Ġbudget ing +Ġpour tant +éļ » +ais ia +ĠоÑĤв еÑĩ +ĠG IS +μ αι +Ġש×Ķ ×ķ×IJ +Ġsa ud +Ġl Ỽ +Ðķ Т +ub ine +ĠнÑĥж ен +Ġkidna pping +Ġbr at +ĠTer re +ĠMon et +Ġë§Ī ìĬ¤íģ +Ġflash y +ĠIS BN +Ġfreel ance +i age +Ġjun ge +ì¶ © +cer al +ĠÑĤоÑĩ ки +Ġform ulate +ĠF ER +ĠDart mouth +ìľ¼ë ©´ìĦľ +å¢ ĥ +ow iÄħ +ĠëĶĶ ìŀIJ +Ġreg iment +Ġmetabol ismo +ĠP arr +Ġ충 ë¶Ħ +Ġsan ity +ĠL al +ĠG ö +ĠG la +Ġprot o +Ġmicroscop ic +Ġk ang +ĠSc alia +Ġp ug +ĠSc ore +ĠSav annah +Ġgard e +ĠN OR +å°į åIJ§ +Ġsche int +Ġp óÅĤ +Ġcor ri +Ġbr ute +Ġ ÅĤad +ä»ĸ 们 +Ġsucceed ing +Ġbicy cles +N on +Ġseek ers +Ġuncond itional +Ġrhy mes +ĠGar age +Ġinv oice +Ġcan vi +ne ck +Ġcustom izable +irit ual +Que en +íķĺ ìĭľëĬĶ +Ġpower less +Ġcs ak +ä¸į ä¼ļ +is oft +Ġìłķ íĻķ +Ġnh ân +ĠM AND +ĠH af +Ġrevol ves +ä¹Ł åı¯ä»¥ +ov an +ar oo +ĠGr ind +éĽ ª +Ġindispens able +Ġconsult ed +ĠClin ical +A cc +Ġol hos +Ġmon ter +ĠH ana +et ah +Ġva an +Ġt igers +Ġcau cus +ðŁĺ Ĥ +³´ì ŀIJ +pow ers +ium s +ĠíĨ łë +Ġtrad icional +Ġreson ated +Ġìĭł 기 +th em +Ro bert +Ġelement o +Ġant id +Ġоб Ñģ +Ġnat ives +Ġlo ca +ow ment +ĠT ight +Ġ æĢĿ +Ġmel an +ĠN ue +am is +Ġsor gen +as ına +H ome +ĠPUB G +Ġaw fully +ĠSh ore +ĠPer ché +ĠL au +ĠCind erella +ĠCh est +Ġsem antic +Ġdesert ed +ĠMom o +ĠHern andez +gen es +ĠAd ult +иÑĩеÑģ кого +osh ima +ĠcaracterÃŃst icas +ĠK L +´ìŀ ¥ +oc ar +Ġfeh lt +Ġd ruk +ĠPop py +EN GLISH +ĠVerg leich +B rien +Ġrec omp +ĠÑģ д +Ġmer ger +Ġmarket ers +Ġhoney moon +Ġpen so +Ġbell i +еÑĤ Ñĥ +Ġbank er +Cam era +ĠSt all +ĠSt amp +ĠB ite +еж де +Ġs ür +Ġgü ç +ĠPas sover +ĠBug ün +ĠÑģожал ениÑİ +Ġн из +Ġman ure +Ġglac ier +è« ĩ +RA Y +ter ror +Ġsal ads +Ġhur ricanes +ĠDesign er +ator io +Ġfact ual +ĠTam my +Ġзв ÑĥÑĩ +Ġintrodu ctions +Ġhouse keeping +Ġh anger +ëĭ ĺë +ak te +ĠCol a +' ] +ĠG ender +оÑĢ он +ip se +ic ias +Ġsuccess ive +Ġpolit ic +Ġhö her +ĠQ iao +ĠG imme +Ġл ож +Ġse b +ĠWe iter +ĠSak ura +ĠB oulder +ĠAm érica +peÅĤ nie +Ġtecn ologÃŃa +ish ops +f ur +Ġmoon light +Ġdispers ed +Ġre z +ен ное +алÑĮ нÑĥÑİ +ĠTw elve +ĠH OR +ìĭ¤í ŀĪ +il age +Ġshad ed +Ġres umes +ĠPe anut +ĠM ILL +ap ons +ĠU FC +ĠSo le +Ġjoy stick +ĠOliv ier +war ming +Ġsyll abus +Ġоб Ñīе +Ġhi á»ĩn +Ġfest a +Ġcr adle +ĠZ ac +Ġremem brance +Ġê°Ļ ìķĦìĦľ +ĠpiÄĻ k +Ġco exist +ĠV II +Ġá reas +Ġu waż +Ġobser vers +Ġmännisk or +co on +ĠD AM +Ġnas zym +Ġall igator +ĠFree ze +ĠEst ate +ĠÑĤÑĢ ади +Ġunder cover +Ġn ies +ĠFeh ler +pl in +ĠK abul +il ate +Ġê³ł ìĸij +Ġm op +ìĦ ¼ +Ġand erer +ĠK ELL +ок и +Ġж еÑģÑĤ +Ġgra zing +Ġda ÃŃ +Ġcapital ize +Ġa pex +Ġnurt uring +Ġcort ar +Ġcontr ac +ımız ı +Ġtand em +éĥ½ æľī +ge ment +ĠÑģиÑģÑĤем а +Ġman que +ia jÄħ +W OR +Ġا ب +Ġcart s +AN O +Ġë°Ľ ê³ł +ĠC ena +ĠBi ology +id ar +Ġa ż +er ne +an u +Ġthank ed +Ġsubmar ines +Ġman ic +Ġм оз +ä¼ Ĭ +inst ant +ess ential +Ġsam urai +Ġpast i +Ġal an +Ġbro ch +Ġb aker +ĠGu ill +¨ ¼ +Ġwithd rawn +ëĭ Ŀ +Per fect +qu ency +Ġstream lined +Ġ13 00 +´ë ıĦ +Ġëĸ łë +Ġãģ¯ ãģĦ +Ġh vad +ä¸Ģå®ļ è¦ģ +Ġverb ally +ĠK ons +Ġì¡° ìĭ¬ +Ġdie z +æİ° æİ° +Ġchuck ling +ĠM ih +Ġrall ies +Ġman ter +Ġearn est +s uper +Ġge ce +ĠR end +ĠGer ade +jen igen +ĠV all +Ġìŀ ĪëĤĺ +ĠÑģказ ала +Ġtrabal h +ĠнаÑĪ ем +Ġм еÑħ +ik it +Ġnoun s +Ġneurolog ical +Ġmotiv ational +ĠMcM ahon +ĠFin ished +Ġë³´ ìĿ´ +ĠField s +Ġadoles cents +ĠT isch +ĠNe ben +ĠFl owers +ĠEner g +Ġdire t +ĠTh i +ĠP icas +æĥ ľ +æĢİä¹Ī æł· +Ġav ete +ĠF ors +ĠChap el +N ão +E t +ĠÑģод еÑĢж +ren o +Ġs ven +Ġdost ÄĻp +ne e +ĠSnap dragon +ĠID s +ìķĺ ëĬĶëį° +ר ×ļ +Ġsun flower +Ġperpet ual +ç³ ĸ +Ġkn ights +Ġg ird +ĠTo ld +Ġvolcano es +Ġadvers ary +ĠEconom y +Ġextra pol +Ġbl uetooth +Ġzoom ing +Ġsk ys +Ġgen ial +ÃŃcul os +amb re +Ġм еÑĢ +Ġteen y +Ġstress ing +ìķ Į +ON Y +Ġtransluc ent +Ġround ing +Ġgr ues +×Ļ׳ ×Ķ +ap rès +Ġprue ba +Ġpoly gon +Ġblue berry +ĠProgram m +Ġtren ches +Ġse bagai +Ġpal ate +Ġla ude +Ġbehav ed +Ġlongitud inal +ĠMod ule +Ġadm ir +λ ι +G reg +Ġwy st +Ġpropag ate +Ġmold s +ĠT ub +ĠL oud +ust o +Ġun stoppable +Ġreinfor cing +éĿŀ常 çļĦ +ĠпÑĢоблем а +Ġpot encial +Ġhe mp +ìŀ Ķ +ठ¯ +Ġopt ic +Ġerfolg reich +Ñģ Ñĭ +олÑĮ ÑĪе +ur st +ĠPo is +Ġrespond ents +Ġneh me +ĠEx ternal +ol ate +H yun +Ġquart z +Ġmathematic ian +Ġbás icamente +Ġa il +ìł ľë¥¼ +att utto +Ġno oit +Ġaff lict +ĠOl ga +èŃ · +Ġна ÑĤ +Ġd ites +Ġreal idade +Ġk än +Ġuniqu eness +Ġpad res +Ġsubs idi +Ġpige ons +β α +st ad +Ġder en +ĠС лед +d oo +ĠопиÑģ ании +Ġam ber +Ġgoose bumps +ĠfrÃ¥ gor +ĠV ital +ĠIsrael ites +w asser +Is n +Ġcomm its +ĠSTE VEN +ĠBev ölker +uit ive +Ġleg en +Ġbr uk +иÑĢов ан +yn en +hel m +Ġgener ational +ĠL ändern +οι ÏĢÏĮν +uz u +Ġcall er +он ÑĮ +üm ü +Ġbes ar +Ġpl ats +Ġmig rated +Ġj ap +ĠW AR +Ġdis sect +ĠZus ch +ĠZe iten +ĠL ions +ĠD F +â Ķ +ки в +Ġpedest rians +ĠMar ilyn +d ock +Ġy ht +Ġre incarn +ĠSon o +ĠGrow th +ÑĥÑģ ов +Ġdun geons +Ġbag us +k ich +ĠÑĥ кÑĢаÑĹ +éĨ « +ĠK eller +chem istry +J apanese +Ġwill st +Ġdecomp osition +ĠÑģÑĤ ен +Ġrev ived +íķĻ êµIJ +ĠÅ ĵ +ä½ IJ +ìĭ ¸ +ipp y +Ġhour ly +j än +ĠWork shop +Ŀ¼ ìĦľ +Ġcu arto +Ġpat rim +ĠB urch +ĠìŀĪ 기 +Ġhe pat +Ġh Ãłng +ĠëĮĢ íķ´ +ĠваÑĪ и +Ġre work +Ġpar se +Ġçıkt ı +ĠS ax +ĠMong o +ĠAa ah +ram ble +D J +Ġstabil ized +ĠSpe ech +Book s +Ġhur dles +ĠW O +ĠLamb org +Ġ19 33 +Ġvor bere +Ġclin ically +Ġbreat htaking +ĠGate way +пеÑĢв ÑĭÑħ +ut ers +Ġë¹ µ +Ġyet er +Ġpull ey +Ġmuff in +ĠPre fer +ĠP ence +Ġinform ação +ìĬ¤í Ĭ¸ë +ãĤ¸ ãĥ£ +ĠTur tle +ĠReg ina +ĠLo ad +do es +pan ze +¸ Ķ +Ġmin a +ĠLatin os +amm ers +ĠT ort +ĠBey once +имо ÑģÑĤи +ĠвопÑĢоÑģ Ñĭ +Ġbul un +èĢĮ å·² +ine k +bere ich +Ġpast ure +ĠO A +ĠM elt +ĠEt t +ĠD Y +Ġob wohl +Ġle agues +ÑĤ еÑģÑĮ +Ġк ÑĥÑģ +Ġv ors +Ġto pp +ograph ical +as st +Ġl indo +Ġë°Ŀ íĺĶ +Ġré fl +Ġclim bs +Ġv arsa +Ġmethy l +ĠKar ere +Æ°á» Ł +R ad +Ġprepared ness +он Ñĩ +ĠO D +ĠC GI +Ġठ® +Ġspeech less +Ġlas ci +Ġbol ag +ĠÑħоÑĩ еÑĤÑģÑı +Ġgr ieving +ĠJohann es +ĠCar roll +ad aki +Ī ¬ë +ĠsÅĤ u +Ġinner halb +Ġgymn astics +п ÑĢи +if iques +Ġkar ate +Ġdom u +ãģĿãĤĮ ãģ§ +OTH ER +Ġdemand é +Ġbook let +ĠKy oto +Ġw oh +ĠMar ÃŃa +viol ent +J E +Ġl óg +Ġbrut ally +c ot +ĠÙħ ÛĮ +ĠWars z +å® Ī +w ol +Ġmik ä +ĠPron ounce +ĠBrend an +Ġr oup +Ġital iano +å¦Ĥ æѤ +Ġкомп ÑĮÑİÑĤ +Ġur ging +ed es +Ġcarbon o +ĠRichards on +ĠÐĿ аÑĩ +ĠTra iner +ĠCrime a +Ġdi apers +Ġco vet +ĠMah ar +ĠH utch +ĠAus w +ber ty +Ġind ifferent +кÑĢ еÑĤ +uld ade +Ġhar ms +¢ ÙĨ +les ia +Ġg io +ĠMist ress +ĠK nox +ĠFRE E +Ġë £¨ë +ĠнаÑĪ а +Ġinvinci ble +Ġma iden +ĠJ eez +Ġbre ve +po le +Ġcritic isms +ĠRus ia +ठ® +ph in +ĠComp are +ĠB ON +Ġsne aking +ĠR ails +ĠG eral +Ġ195 3 +H ola +Ġоп ÑĭÑĤ +Ġrain forest +Ġbel um +ĠOb i +ĠIS S +ãĤĮ ãģªãģĦ +ĠС в +Ġbl ond +Ġwz gl +Ġpowiedz iaÅĤ +Ġch oking +ĠSong s +ĠBir az +Ġyell s +Ġstyl ist +ÏĮ ÏĦε +Ġsch reiben +ĠJ aw +ĠEle ven +ĠR if +/ . +Ġìĺ¤ë ŀľë§Į +Ġtreat ies +uff ed +ĠâĪ Ĵ +Ġroof s +à¹Ģภª +Ġë » +Ġspark le +ĠK iev +ĠAr gu +ere cht +ĠÐĿад о +ĠF IL +Ġmol ta +ĠDe vi +Ġcam pe +Ġbene vol +ĠT ough +Ġmo im +Ġevac uate +Ġer rado +å© Ĩ +ÑĢÑĥ го +Ġíİ ĺ +ĠÎĵ ια +Ġweak en +Ġillum inated +Ġsig lo +ĠV acc +и ей +al is +ĠÑĥ ÑģÑĤÑĢой +Ġdon a +ÅĤ os +ü man +Ġprodu cción +Ġcl ot +ĠM ango +Ġune asy +Ġsh uts +ĠExam ples +ve ll +e be +Ġprompt ly +ĠT eles +ĠпÑĢоÑĪ л +Ġpu erta +Ġüber zeug +Ġco ch +so cial +ĠB enson +ĠM eth +ĠEx ped +Ġsupplement al +Ġconce ive +Ġ×ĺ ×ķ×ij +Ġcapt ivity +ıĻ ìķĪ +ĠÑħ Ñĥд +form ing +Ġupload s +Ġturbul ence +j oint +Ġsatisf actory +ĠAn ime +Ġwash es +Ġliber als +ĠSun shine +ĠRE AL +ub lik +b inary +T ony +Ġpolar ized +Ġenrich ed +t aking +ĠëģĿ ëĤĺ +Ġple asures +Ġex termin +in ese +at l +v är +аÑĢ Ñĭ +Ġmy ÅĽ +n arrator +Ġод ном +Ġnaj wiÄĻ +Ġmobil ize +Ġmill or +Ġat a +æ· · +ĠpolÃŃt ico +Ġple ad +Ġpain ters +ĠS ow +о ÑĦ +ĠìĺĽ ëĤł +ĠÑĩ ÑĤоб +Ġs abor +ĠUnd ert +ĠJER RY +Å¡ ÃŃ +Ġë° ĸìĹIJ +Ġpréc éd +Ġannot ation +ĠI naudible +Ġtext ured +Ġfisher man +v ordan +icher ung +Ġìłģ ìĿ´ +Ġge zeigt +Ġmand ates +Ġbe ak +ĠTW O +ĠAk bar +il ian +Ġtiế p +Ġsuperior ity +ink u +Ġl ys +ĠF CC +ĠC PA +ust ering +nic os +an ja +Ġch ills +ĠC age +Ġse aling +Ġsa ç +Ġded ans +ĠAl ger +Ġspe zie +Ġcol oss +ıy ı +clock wise +Ġexact amente +Ġ iemand +am ı +Ġmand ar +ra j +f aced +ag ua +Ġê¹ Ķë +Ġins besondere +Ġdri zzle +Ġdimin ish +ĠY oda +A I +Ġbil miyorum +ĠM MA +ateg ory +ĠпеÑĢ еп +Ġparticip ar +Ġnormal ized +Ġcomplex ities +æ´ ² +æİ § +аÑĢ ов +m ist +ich a +Gr oup +Ġresil iency +Ġnog le +ĠCN C +pr ü +Ġphysic ists +н ок +L I +Ġstuff s +Ġsist emas +Ġinterfer ing +ĠMar vin +ér cito +ĠìĹĨ ê³ł +Ġson ic +Ġequ iv +Ġab ord +ĠRam en +Ġ0 9 +med im +at iques +Ġдел аÑİÑĤ +Ġunanim ously +Ġsk irts +ĠíĬ¹ ë³Ħ +ĠP rix +k ami +Ġfr uition +Ġbirthday s +ик ом +Ġinaug ural +Ġcorrel ate +ĠT ory +ĠëĤĺ ìģ +Ġde w +ĠPre cis +ih i +Ġë¬¸ìłľ ê°Ģ +Ġc iting +ĠL ana +ĠK ag +Ġplay through +ĠProt ocol +fr ist +hov ah +Ġmerc iful +Ġb ilingual +ĠG uitar +r h +Ġglam orous +ĠVik ings +ĠOoo oh +íķĺ ëĬĶëį° +ĠUg anda +Ġcollaps es +ent ry +Ġantioxid ants +ëĤ ĺë +ÑĪ аÑı +Ġtri via +Ġgä ller +Ġfun gi +Ġmil ks +Ġd icht +μ η +po ke +ĠвÑĭп ÑĥÑģк +Ġfeed er +ĠAl cohol +h ower +Ġdes erving +ĠRe bel +ios is +Ġ10 3 +Ġhand out +Ġen m +Ġland lords +Ġge ology +r ils +Ġco bra +ĠV old +ĠP anch +ĠGRE G +Ġpr oss +Ġbrac elets +ĠV ega +Ġroz um +æ¬ ¾ +аз д +ĠLy nd +ĠHon ors +Ġsurrend ered +Ġlibr arians +12 5 +ĠÑģ иг +Ġuniform ly +ĠE agles +ìķ Ļ +иÑĤ ан +and id +ĠìłĪë ĮĢ +ĠØ ¶ +Ġarrest s +ĠCS V +ĠAzerbai jan +ort ic +ĠD X +ĠAdvent ures +Ġab us +ĠF au +Ġschlim m +Ġratt ling +Ġconsum es +ĠTol kien +Ġresurrect ed +ĠX Y +íĬ¸ ê°Ģ +ĠвÑĭ ÑģÑĤÑĥп +ĠAng ie +żen ia +M ic +ĠShe ila +acht et +Ġover st +Ġl â +Ġine ffective +æĿ ¡ +æĢİä¹Ī äºĨ +å¿ Ļ +Ġwicht iger +Ġv ino +Ġp um +Ġang led +ĠP ione +ĠM ỹ +ãģĿãĤĮ ãģ¯ +wo ÅĽÄĩ +d raw +ั à¹Ī +mark ets +Ġcaf es +ĠC em +â Ŀ¤ +ĠS uit +M K +Ġemphas izes +Ġtort illa +Ġmejor ar +ĠSur viv +cast ing +Ġeduc ación +ĠG um +u ely +ĠìĹ¬ê¸° ëĬĶ +Ġstretch y +en ça +Ġwith hold +Ġex iting +Ġenthal py +ĠTrans it +ıl mÄ±ÅŁ +al ies +Ġsal var +Ġlean ed +ĠgroÃŁ es +Ġf itt +ак и +S arah +Ġhost el +Ġfinger na +Ġnadzie jÄĻ +w ives +R ec +Ġsp ool +аÑĤ ов +ĠEn emy +Ġf ury +Ġdet ta +ĠF ay +éļ ¨ +Ñı ÑİÑĤ +Ġaproxim adamente +Ġsil os +Ġmag ist +Ġc ree +ĠKr ank +ĠD OWN +Ġstart led +Ġre born +ĠUm welt +ĠSuz anne +ни ÑĨÑĭ +out ez +ĠJ AC +y ards +rad as +ra u +ip ts +h ail +Ġparagraph s +Ġme glio +Ġisol ating +Ġace ite +ĠH arsh +Ġcy st +ĠBlock chain +ĠÑħоÑĢоÑĪ ий +Ġvirt uous +Ġinvestig ación +Ġdev oir +Ġmast urb +ĠS ale +ÙĬر Ø© +ĠÎ § +ĠStra ÃŁen +Ġdi kk +Ġa fore +ĠJung kook +Ġcho ciaż +ĠDebat te +Ġweird ly +Ġvia je +reg ist +H elp +Ġkind eren +Ġform ulated +Ġenf im +ĠTow ards +ко ÑĹ +iver ing +ĠдеÑĤ и +char ger +Ġpur l +Ġacadem ically +ĠNur se +Ġdel eting +ay o +Ġref usal +Ġdepict s +ĠDr acula +Ġtoast ed +ĠZomb ie +ĠSuper ior +ĠB old +Ġquizz es +Ġg le +4 50 +Ġcome ço +yn n +Ġver st +ĠO laf +Ġpom oc +ĠS ask +ë ĺ +ĠT CP +ĠProper ty +íķĺ ì£ł +à¸ľ ม +bo om +ar os +ĠÑĢоÑģÑģ ий +ĠбÑĭв аеÑĤ +åĩº åİ» +ĠìĿ´ìķ¼ 기를 +Ġcomb ien +v acc +Ġeben falls +par a +Ġз м +Ġdesper ation +ord re +Ġש׾ ×Ļ +Ġgener ously +ĠÐŀ к +Ġorb iting +> ", + "archeological": "archaeological", + "ardour": "ardor", + "armour": "armor", + "armoured": "armored", + "armourer": "armorer", + "armourers": "armorers", + "armouries": "armories", + "armoury": "armory", + "artefact": "artifact", + "artefacts": "artifacts", + "authorise": "authorize", + "authorised": "authorized", + "authorises": "authorizes", + "authorising": "authorizing", + "axe": "ax", + "backpedalled": "backpedaled", + "backpedalling": "backpedaling", + "bannister": "banister", + "bannisters": "banisters", + "baptise": "baptize", + "baptised": "baptized", + "baptises": "baptizes", + "baptising": "baptizing", + "bastardise": "bastardize", + "bastardised": "bastardized", + "bastardises": "bastardizes", + "bastardising": "bastardizing", + "battleax": "battleaxe", + "baulk": "balk", + "baulked": "balked", + "baulking": "balking", + "baulks": "balks", + "bedevilled": "bedeviled", + "bedevilling": "bedeviling", + "behaviour": "behavior", + "behavioural": "behavioral", + "behaviourism": "behaviorism", + "behaviourist": "behaviorist", + "behaviourists": "behaviorists", + "behaviours": "behaviors", + "behove": "behoove", + "behoved": "behooved", + "behoves": "behooves", + "bejewelled": "bejeweled", + "belabour": "belabor", + "belaboured": "belabored", + "belabouring": "belaboring", + "belabours": "belabors", + "bevelled": "beveled", + "bevvies": "bevies", + "bevvy": "bevy", + "biassed": "biased", + "biassing": "biasing", + "bingeing": "binging", + "bougainvillaea": "bougainvillea", + "bougainvillaeas": "bougainvilleas", + "bowdlerise": "bowdlerize", + "bowdlerised": "bowdlerized", + "bowdlerises": "bowdlerizes", + "bowdlerising": "bowdlerizing", + "breathalyse": "breathalyze", + "breathalysed": "breathalyzed", + "breathalyser": "breathalyzer", + "breathalysers": "breathalyzers", + "breathalyses": "breathalyzes", + "breathalysing": "breathalyzing", + "brutalise": "brutalize", + "brutalised": "brutalized", + "brutalises": "brutalizes", + "brutalising": "brutalizing", + "busses": "buses", + "bussing": "busing", + "caesarean": "cesarean", + "caesareans": "cesareans", + "calibre": "caliber", + "calibres": "calibers", + "calliper": "caliper", + "callipers": "calipers", + "callisthenics": "calisthenics", + "canalise": "canalize", + "canalised": "canalized", + "canalises": "canalizes", + "canalising": "canalizing", + "cancelation": "cancellation", + "cancelations": "cancellations", + "cancelled": "canceled", + "cancelling": "canceling", + "candour": "candor", + "cannibalise": "cannibalize", + "cannibalised": "cannibalized", + "cannibalises": "cannibalizes", + "cannibalising": "cannibalizing", + "canonise": "canonize", + "canonised": "canonized", + "canonises": "canonizes", + "canonising": "canonizing", + "capitalise": "capitalize", + "capitalised": "capitalized", + "capitalises": "capitalizes", + "capitalising": "capitalizing", + "caramelise": "caramelize", + "caramelised": "caramelized", + "caramelises": "caramelizes", + "caramelising": "caramelizing", + "carbonise": "carbonize", + "carbonised": "carbonized", + "carbonises": "carbonizes", + "carbonising": "carbonizing", + "carolled": "caroled", + "carolling": "caroling", + "catalogue": "catalog", + "catalogued": "cataloged", + "catalogues": "catalogs", + "cataloguing": "cataloging", + "catalyse": "catalyze", + "catalysed": "catalyzed", + "catalyses": "catalyzes", + "catalysing": "catalyzing", + "categorise": "categorize", + "categorised": "categorized", + "categorises": "categorizes", + "categorising": "categorizing", + "cauterise": "cauterize", + "cauterised": "cauterized", + "cauterises": "cauterizes", + "cauterising": "cauterizing", + "cavilled": "caviled", + "cavilling": "caviling", + "centigramme": "centigram", + "centigrammes": "centigrams", + "centilitre": "centiliter", + "centilitres": "centiliters", + "centimetre": "centimeter", + "centimetres": "centimeters", + "centralise": "centralize", + "centralised": "centralized", + "centralises": "centralizes", + "centralising": "centralizing", + "centre": "center", + "centred": "centered", + "centrefold": "centerfold", + "centrefolds": "centerfolds", + "centrepiece": "centerpiece", + "centrepieces": "centerpieces", + "centres": "centers", + "channelled": "channeled", + "channelling": "channeling", + "characterise": "characterize", + "characterised": "characterized", + "characterises": "characterizes", + "characterising": "characterizing", + "cheque": "check", + "chequebook": "checkbook", + "chequebooks": "checkbooks", + "chequered": "checkered", + "cheques": "checks", + "chilli": "chili", + "chimaera": "chimera", + "chimaeras": "chimeras", + "chiselled": "chiseled", + "chiselling": "chiseling", + "circularise": "circularize", + "circularised": "circularized", + "circularises": "circularizes", + "circularising": "circularizing", + "civilise": "civilize", + "civilised": "civilized", + "civilises": "civilizes", + "civilising": "civilizing", + "clamour": "clamor", + "clamoured": "clamored", + "clamouring": "clamoring", + "clamours": "clamors", + "clangour": "clangor", + "clarinettist": "clarinetist", + "clarinettists": "clarinetists", + "collectivise": "collectivize", + "collectivised": "collectivized", + "collectivises": "collectivizes", + "collectivising": "collectivizing", + "colonisation": "colonization", + "colonise": "colonize", + "colonised": "colonized", + "coloniser": "colonizer", + "colonisers": "colonizers", + "colonises": "colonizes", + "colonising": "colonizing", + "colour": "color", + "colourant": "colorant", + "colourants": "colorants", + "coloured": "colored", + "coloureds": "coloreds", + "colourful": "colorful", + "colourfully": "colorfully", + "colouring": "coloring", + "colourize": "colorize", + "colourized": "colorized", + "colourizes": "colorizes", + "colourizing": "colorizing", + "colourless": "colorless", + "colours": "colors", + "commercialise": "commercialize", + "commercialised": "commercialized", + "commercialises": "commercializes", + "commercialising": "commercializing", + "compartmentalise": "compartmentalize", + "compartmentalised": "compartmentalized", + "compartmentalises": "compartmentalizes", + "compartmentalising": "compartmentalizing", + "computerise": "computerize", + "computerised": "computerized", + "computerises": "computerizes", + "computerising": "computerizing", + "conceptualise": "conceptualize", + "conceptualised": "conceptualized", + "conceptualises": "conceptualizes", + "conceptualising": "conceptualizing", + "connexion": "connection", + "connexions": "connections", + "contextualise": "contextualize", + "contextualised": "contextualized", + "contextualises": "contextualizes", + "contextualising": "contextualizing", + "cosier": "cozier", + "cosies": "cozies", + "cosiest": "coziest", + "cosily": "cozily", + "cosiness": "coziness", + "cosy": "cozy", + "councillor": "councilor", + "councillors": "councilors", + "counselled": "counseled", + "counselling": "counseling", + "counsellor": "counselor", + "counsellors": "counselors", + "crenelated": "crenellated", + "criminalise": "criminalize", + "criminalised": "criminalized", + "criminalises": "criminalizes", + "criminalising": "criminalizing", + "criticise": "criticize", + "criticised": "criticized", + "criticises": "criticizes", + "criticising": "criticizing", + "crueller": "crueler", + "cruellest": "cruelest", + "crystallisation": "crystallization", + "crystallise": "crystallize", + "crystallised": "crystallized", + "crystallises": "crystallizes", + "crystallising": "crystallizing", + "cudgelled": "cudgeled", + "cudgelling": "cudgeling", + "customise": "customize", + "customised": "customized", + "customises": "customizes", + "customising": "customizing", + "cypher": "cipher", + "cyphers": "ciphers", + "decentralisation": "decentralization", + "decentralise": "decentralize", + "decentralised": "decentralized", + "decentralises": "decentralizes", + "decentralising": "decentralizing", + "decriminalisation": "decriminalization", + "decriminalise": "decriminalize", + "decriminalised": "decriminalized", + "decriminalises": "decriminalizes", + "decriminalising": "decriminalizing", + "defence": "defense", + "defenceless": "defenseless", + "defences": "defenses", + "dehumanisation": "dehumanization", + "dehumanise": "dehumanize", + "dehumanised": "dehumanized", + "dehumanises": "dehumanizes", + "dehumanising": "dehumanizing", + "demeanour": "demeanor", + "demilitarisation": "demilitarization", + "demilitarise": "demilitarize", + "demilitarised": "demilitarized", + "demilitarises": "demilitarizes", + "demilitarising": "demilitarizing", + "demobilisation": "demobilization", + "demobilise": "demobilize", + "demobilised": "demobilized", + "demobilises": "demobilizes", + "demobilising": "demobilizing", + "democratisation": "democratization", + "democratise": "democratize", + "democratised": "democratized", + "democratises": "democratizes", + "democratising": "democratizing", + "demonise": "demonize", + "demonised": "demonized", + "demonises": "demonizes", + "demonising": "demonizing", + "demoralisation": "demoralization", + "demoralise": "demoralize", + "demoralised": "demoralized", + "demoralises": "demoralizes", + "demoralising": "demoralizing", + "denationalisation": "denationalization", + "denationalise": "denationalize", + "denationalised": "denationalized", + "denationalises": "denationalizes", + "denationalising": "denationalizing", + "deodorise": "deodorize", + "deodorised": "deodorized", + "deodorises": "deodorizes", + "deodorising": "deodorizing", + "depersonalise": "depersonalize", + "depersonalised": "depersonalized", + "depersonalises": "depersonalizes", + "depersonalising": "depersonalizing", + "deputise": "deputize", + "deputised": "deputized", + "deputises": "deputizes", + "deputising": "deputizing", + "desensitisation": "desensitization", + "desensitise": "desensitize", + "desensitised": "desensitized", + "desensitises": "desensitizes", + "desensitising": "desensitizing", + "destabilisation": "destabilization", + "destabilise": "destabilize", + "destabilised": "destabilized", + "destabilises": "destabilizes", + "destabilising": "destabilizing", + "dialled": "dialed", + "dialling": "dialing", + "dialogue": "dialog", + "dialogues": "dialogs", + "diarrhoea": "diarrhea", + "digitise": "digitize", + "digitised": "digitized", + "digitises": "digitizes", + "digitising": "digitizing", + "disc": "disk", + "discolour": "discolor", + "discoloured": "discolored", + "discolouring": "discoloring", + "discolours": "discolors", + "discs": "disks", + "disembowelled": "disemboweled", + "disembowelling": "disemboweling", + "disfavour": "disfavor", + "dishevelled": "disheveled", + "dishonour": "dishonor", + "dishonourable": "dishonorable", + "dishonourably": "dishonorably", + "dishonoured": "dishonored", + "dishonouring": "dishonoring", + "dishonours": "dishonors", + "disorganisation": "disorganization", + "disorganised": "disorganized", + "distil": "distill", + "distils": "distills", + "dramatisation": "dramatization", + "dramatisations": "dramatizations", + "dramatise": "dramatize", + "dramatised": "dramatized", + "dramatises": "dramatizes", + "dramatising": "dramatizing", + "draught": "draft", + "draughtboard": "draftboard", + "draughtboards": "draftboards", + "draughtier": "draftier", + "draughtiest": "draftiest", + "draughts": "drafts", + "draughtsman": "draftsman", + "draughtsmanship": "draftsmanship", + "draughtsmen": "draftsmen", + "draughtswoman": "draftswoman", + "draughtswomen": "draftswomen", + "draughty": "drafty", + "drivelled": "driveled", + "drivelling": "driveling", + "duelled": "dueled", + "duelling": "dueling", + "economise": "economize", + "economised": "economized", + "economises": "economizes", + "economising": "economizing", + "editorialise": "editorialize", + "editorialised": "editorialized", + "editorialises": "editorializes", + "editorialising": "editorializing", + "edoema": "edema", + "empathise": "empathize", + "empathised": "empathized", + "empathises": "empathizes", + "empathising": "empathizing", + "emphasise": "emphasize", + "emphasised": "emphasized", + "emphasises": "emphasizes", + "emphasising": "emphasizing", + "enamelled": "enameled", + "enamelling": "enameling", + "enamoured": "enamored", + "encyclopaedia": "encyclopedia", + "encyclopaedias": "encyclopedias", + "encyclopaedic": "encyclopedic", + "endeavour": "endeavor", + "endeavoured": "endeavored", + "endeavouring": "endeavoring", + "endeavours": "endeavors", + "energise": "energize", + "energised": "energized", + "energises": "energizes", + "energising": "energizing", + "enrol": "enroll", + "enrols": "enrolls", + "enthral": "enthrall", + "enthrals": "enthralls", + "epaulette": "epaulet", + "epaulettes": "epaulets", + "epicentre": "epicenter", + "epicentres": "epicenters", + "epilogue": "epilog", + "epilogues": "epilogs", + "epitomise": "epitomize", + "epitomised": "epitomized", + "epitomises": "epitomizes", + "epitomising": "epitomizing", + "equalisation": "equalization", + "equalise": "equalize", + "equalised": "equalized", + "equaliser": "equalizer", + "equalisers": "equalizers", + "equalises": "equalizes", + "equalising": "equalizing", + "eulogise": "eulogize", + "eulogised": "eulogized", + "eulogises": "eulogizes", + "eulogising": "eulogizing", + "evangelise": "evangelize", + "evangelised": "evangelized", + "evangelises": "evangelizes", + "evangelising": "evangelizing", + "exorcise": "exorcize", + "exorcised": "exorcized", + "exorcises": "exorcizes", + "exorcising": "exorcizing", + "extemporisation": "extemporization", + "extemporise": "extemporize", + "extemporised": "extemporized", + "extemporises": "extemporizes", + "extemporising": "extemporizing", + "externalisation": "externalization", + "externalisations": "externalizations", + "externalise": "externalize", + "externalised": "externalized", + "externalises": "externalizes", + "externalising": "externalizing", + "factorise": "factorize", + "factorised": "factorized", + "factorises": "factorizes", + "factorising": "factorizing", + "faecal": "fecal", + "faeces": "feces", + "familiarisation": "familiarization", + "familiarise": "familiarize", + "familiarised": "familiarized", + "familiarises": "familiarizes", + "familiarising": "familiarizing", + "fantasise": "fantasize", + "fantasised": "fantasized", + "fantasises": "fantasizes", + "fantasising": "fantasizing", + "favour": "favor", + "favourable": "favorable", + "favourably": "favorably", + "favoured": "favored", + "favouring": "favoring", + "favourite": "favorite", + "favourites": "favorites", + "favouritism": "favoritism", + "favours": "favors", + "feminise": "feminize", + "feminised": "feminized", + "feminises": "feminizes", + "feminising": "feminizing", + "fertilisation": "fertilization", + "fertilise": "fertilize", + "fertilised": "fertilized", + "fertiliser": "fertilizer", + "fertilisers": "fertilizers", + "fertilises": "fertilizes", + "fertilising": "fertilizing", + "fervour": "fervor", + "fibre": "fiber", + "fibreglass": "fiberglass", + "fibres": "fibers", + "fictionalisation": "fictionalization", + "fictionalisations": "fictionalizations", + "fictionalise": "fictionalize", + "fictionalised": "fictionalized", + "fictionalises": "fictionalizes", + "fictionalising": "fictionalizing", + "fillet": "filet", + "filleted": "fileted", + "filleting": "fileting", + "fillets": "filets", + "finalisation": "finalization", + "finalise": "finalize", + "finalised": "finalized", + "finalises": "finalizes", + "finalising": "finalizing", + "flautist": "flutist", + "flautists": "flutists", + "flavour": "flavor", + "flavoured": "flavored", + "flavouring": "flavoring", + "flavourings": "flavorings", + "flavourless": "flavorless", + "flavours": "flavors", + "flavoursome": "flavorsome", + "flyer / flier": "flier / flyer", + "foetal": "fetal", + "foetid": "fetid", + "foetus": "fetus", + "foetuses": "fetuses", + "formalisation": "formalization", + "formalise": "formalize", + "formalised": "formalized", + "formalises": "formalizes", + "formalising": "formalizing", + "fossilisation": "fossilization", + "fossilise": "fossilize", + "fossilised": "fossilized", + "fossilises": "fossilizes", + "fossilising": "fossilizing", + "fraternisation": "fraternization", + "fraternise": "fraternize", + "fraternised": "fraternized", + "fraternises": "fraternizes", + "fraternising": "fraternizing", + "fulfil": "fulfill", + "fulfilment": "fulfillment", + "fulfils": "fulfills", + "funnelled": "funneled", + "funnelling": "funneling", + "gage": "gauge", + "gaged": "gauged", + "gages": "gauges", + "gaging": "gauging", + "galvanise": "galvanize", + "galvanised": "galvanized", + "galvanises": "galvanizes", + "galvanising": "galvanizing", + "gambolled": "gamboled", + "gambolling": "gamboling", + "gaol": "jail", + "gaolbird": "jailbird", + "gaolbirds": "jailbirds", + "gaolbreak": "jailbreak", + "gaolbreaks": "jailbreaks", + "gaoled": "jailed", + "gaoler": "jailer", + "gaolers": "jailers", + "gaoling": "jailing", + "gaols": "jails", + "gasses": "gases", + "generalisation": "generalization", + "generalisations": "generalizations", + "generalise": "generalize", + "generalised": "generalized", + "generalises": "generalizes", + "generalising": "generalizing", + "ghettoise": "ghettoize", + "ghettoised": "ghettoized", + "ghettoises": "ghettoizes", + "ghettoising": "ghettoizing", + "gipsies": "gypsies", + "glamor": "glamour", + "glamorise": "glamorize", + "glamorised": "glamorized", + "glamorises": "glamorizes", + "glamorising": "glamorizing", + "globalisation": "globalization", + "globalise": "globalize", + "globalised": "globalized", + "globalises": "globalizes", + "globalising": "globalizing", + "glueing": "gluing", + "goitre": "goiter", + "goitres": "goiters", + "gonorrhoea": "gonorrhea", + "gramme": "gram", + "grammes": "grams", + "gravelled": "graveled", + "grey": "gray", + "greyed": "grayed", + "greying": "graying", + "greyish": "grayish", + "greyness": "grayness", + "greys": "grays", + "grovelled": "groveled", + "grovelling": "groveling", + "groyne": "groin", + "groynes": "groins", + "gruelling": "grueling", + "gruellingly": "gruelingly", + "gryphon": "griffin", + "gryphons": "griffins", + "gynaecological": "gynecological", + "gynaecologist": "gynecologist", + "gynaecologists": "gynecologists", + "gynaecology": "gynecology", + "haematological": "hematological", + "haematologist": "hematologist", + "haematologists": "hematologists", + "haematology": "hematology", + "haemoglobin": "hemoglobin", + "haemophilia": "hemophilia", + "haemophiliac": "hemophiliac", + "haemophiliacs": "hemophiliacs", + "haemorrhage": "hemorrhage", + "haemorrhaged": "hemorrhaged", + "haemorrhages": "hemorrhages", + "haemorrhaging": "hemorrhaging", + "haemorrhoids": "hemorrhoids", + "harbour": "harbor", + "harboured": "harbored", + "harbouring": "harboring", + "harbours": "harbors", + "harmonisation": "harmonization", + "harmonise": "harmonize", + "harmonised": "harmonized", + "harmonises": "harmonizes", + "harmonising": "harmonizing", + "homoeopath": "homeopath", + "homoeopathic": "homeopathic", + "homoeopaths": "homeopaths", + "homoeopathy": "homeopathy", + "homogenise": "homogenize", + "homogenised": "homogenized", + "homogenises": "homogenizes", + "homogenising": "homogenizing", + "honour": "honor", + "honourable": "honorable", + "honourably": "honorably", + "honoured": "honored", + "honouring": "honoring", + "honours": "honors", + "hospitalisation": "hospitalization", + "hospitalise": "hospitalize", + "hospitalised": "hospitalized", + "hospitalises": "hospitalizes", + "hospitalising": "hospitalizing", + "humanise": "humanize", + "humanised": "humanized", + "humanises": "humanizes", + "humanising": "humanizing", + "humour": "humor", + "humoured": "humored", + "humouring": "humoring", + "humourless": "humorless", + "humours": "humors", + "hybridise": "hybridize", + "hybridised": "hybridized", + "hybridises": "hybridizes", + "hybridising": "hybridizing", + "hypnotise": "hypnotize", + "hypnotised": "hypnotized", + "hypnotises": "hypnotizes", + "hypnotising": "hypnotizing", + "hypothesise": "hypothesize", + "hypothesised": "hypothesized", + "hypothesises": "hypothesizes", + "hypothesising": "hypothesizing", + "idealisation": "idealization", + "idealise": "idealize", + "idealised": "idealized", + "idealises": "idealizes", + "idealising": "idealizing", + "idolise": "idolize", + "idolised": "idolized", + "idolises": "idolizes", + "idolising": "idolizing", + "immobilisation": "immobilization", + "immobilise": "immobilize", + "immobilised": "immobilized", + "immobiliser": "immobilizer", + "immobilisers": "immobilizers", + "immobilises": "immobilizes", + "immobilising": "immobilizing", + "immortalise": "immortalize", + "immortalised": "immortalized", + "immortalises": "immortalizes", + "immortalising": "immortalizing", + "immunisation": "immunization", + "immunise": "immunize", + "immunised": "immunized", + "immunises": "immunizes", + "immunising": "immunizing", + "impanelled": "impaneled", + "impanelling": "impaneling", + "imperilled": "imperiled", + "imperilling": "imperiling", + "individualise": "individualize", + "individualised": "individualized", + "individualises": "individualizes", + "individualising": "individualizing", + "industrialise": "industrialize", + "industrialised": "industrialized", + "industrialises": "industrializes", + "industrialising": "industrializing", + "inflexion": "inflection", + "inflexions": "inflections", + "initialise": "initialize", + "initialised": "initialized", + "initialises": "initializes", + "initialising": "initializing", + "initialled": "initialed", + "initialling": "initialing", + "instal": "install", + "instalment": "installment", + "instalments": "installments", + "instals": "installs", + "instil": "instill", + "instils": "instills", + "institutionalisation": "institutionalization", + "institutionalise": "institutionalize", + "institutionalised": "institutionalized", + "institutionalises": "institutionalizes", + "institutionalising": "institutionalizing", + "intellectualise": "intellectualize", + "intellectualised": "intellectualized", + "intellectualises": "intellectualizes", + "intellectualising": "intellectualizing", + "internalisation": "internalization", + "internalise": "internalize", + "internalised": "internalized", + "internalises": "internalizes", + "internalising": "internalizing", + "internationalisation": "internationalization", + "internationalise": "internationalize", + "internationalised": "internationalized", + "internationalises": "internationalizes", + "internationalising": "internationalizing", + "ionisation": "ionization", + "ionise": "ionize", + "ionised": "ionized", + "ioniser": "ionizer", + "ionisers": "ionizers", + "ionises": "ionizes", + "ionising": "ionizing", + "italicise": "italicize", + "italicised": "italicized", + "italicises": "italicizes", + "italicising": "italicizing", + "itemise": "itemize", + "itemised": "itemized", + "itemises": "itemizes", + "itemising": "itemizing", + "jeopardise": "jeopardize", + "jeopardised": "jeopardized", + "jeopardises": "jeopardizes", + "jeopardising": "jeopardizing", + "jewelled": "jeweled", + "jeweller": "jeweler", + "jewellers": "jewelers", + "jewellery": "jewelry", + "judgement": "judgment", + "kilogramme": "kilogram", + "kilogrammes": "kilograms", + "kilometre": "kilometer", + "kilometres": "kilometers", + "labelled": "labeled", + "labelling": "labeling", + "labour": "labor", + "laboured": "labored", + "labourer": "laborer", + "labourers": "laborers", + "labouring": "laboring", + "labours": "labors", + "lacklustre": "lackluster", + "legalisation": "legalization", + "legalise": "legalize", + "legalised": "legalized", + "legalises": "legalizes", + "legalising": "legalizing", + "legitimise": "legitimize", + "legitimised": "legitimized", + "legitimises": "legitimizes", + "legitimising": "legitimizing", + "leukaemia": "leukemia", + "levelled": "leveled", + "leveller": "leveler", + "levellers": "levelers", + "levelling": "leveling", + "libelled": "libeled", + "libelling": "libeling", + "libellous": "libelous", + "liberalisation": "liberalization", + "liberalise": "liberalize", + "liberalised": "liberalized", + "liberalises": "liberalizes", + "liberalising": "liberalizing", + "licence": "license", + "licenced": "licensed", + "licences": "licenses", + "licencing": "licensing", + "likeable": "likable", + "lionisation": "lionization", + "lionise": "lionize", + "lionised": "lionized", + "lionises": "lionizes", + "lionising": "lionizing", + "liquidise": "liquidize", + "liquidised": "liquidized", + "liquidiser": "liquidizer", + "liquidisers": "liquidizers", + "liquidises": "liquidizes", + "liquidising": "liquidizing", + "litre": "liter", + "litres": "liters", + "localise": "localize", + "localised": "localized", + "localises": "localizes", + "localising": "localizing", + "louvre": "louver", + "louvred": "louvered", + "louvres": "louvers", + "lustre": "luster", + "magnetise": "magnetize", + "magnetised": "magnetized", + "magnetises": "magnetizes", + "magnetising": "magnetizing", + "manoeuvrability": "maneuverability", + "manoeuvrable": "maneuverable", + "manoeuvre": "maneuver", + "manoeuvred": "maneuvered", + "manoeuvres": "maneuvers", + "manoeuvring": "maneuvering", + "manoeuvrings": "maneuverings", + "marginalisation": "marginalization", + "marginalise": "marginalize", + "marginalised": "marginalized", + "marginalises": "marginalizes", + "marginalising": "marginalizing", + "marshalled": "marshaled", + "marshalling": "marshaling", + "marvelled": "marveled", + "marvelling": "marveling", + "marvellous": "marvelous", + "marvellously": "marvelously", + "materialisation": "materialization", + "materialise": "materialize", + "materialised": "materialized", + "materialises": "materializes", + "materialising": "materializing", + "maximisation": "maximization", + "maximise": "maximize", + "maximised": "maximized", + "maximises": "maximizes", + "maximising": "maximizing", + "meagre": "meager", + "mechanisation": "mechanization", + "mechanise": "mechanize", + "mechanised": "mechanized", + "mechanises": "mechanizes", + "mechanising": "mechanizing", + "mediaeval": "medieval", + "memorialise": "memorialize", + "memorialised": "memorialized", + "memorialises": "memorializes", + "memorialising": "memorializing", + "memorise": "memorize", + "memorised": "memorized", + "memorises": "memorizes", + "memorising": "memorizing", + "mesmerise": "mesmerize", + "mesmerised": "mesmerized", + "mesmerises": "mesmerizes", + "mesmerising": "mesmerizing", + "metabolise": "metabolize", + "metabolised": "metabolized", + "metabolises": "metabolizes", + "metabolising": "metabolizing", + "metre": "meter", + "metres": "meters", + "mhm": "hmm", + "micrometre": "micrometer", + "micrometres": "micrometers", + "militarise": "militarize", + "militarised": "militarized", + "militarises": "militarizes", + "militarising": "militarizing", + "milligramme": "milligram", + "milligrammes": "milligrams", + "millilitre": "milliliter", + "millilitres": "milliliters", + "millimetre": "millimeter", + "millimetres": "millimeters", + "miniaturisation": "miniaturization", + "miniaturise": "miniaturize", + "miniaturised": "miniaturized", + "miniaturises": "miniaturizes", + "miniaturising": "miniaturizing", + "minibusses": "minibuses", + "minimise": "minimize", + "minimised": "minimized", + "minimises": "minimizes", + "minimising": "minimizing", + "misbehaviour": "misbehavior", + "misdemeanour": "misdemeanor", + "misdemeanours": "misdemeanors", + "misspelt": "misspelled", + "mitre": "miter", + "mitres": "miters", + "mm": "hmm", + "mmm": "hmm", + "mobilisation": "mobilization", + "mobilise": "mobilize", + "mobilised": "mobilized", + "mobilises": "mobilizes", + "mobilising": "mobilizing", + "modelled": "modeled", + "modeller": "modeler", + "modellers": "modelers", + "modelling": "modeling", + "modernise": "modernize", + "modernised": "modernized", + "modernises": "modernizes", + "modernising": "modernizing", + "moisturise": "moisturize", + "moisturised": "moisturized", + "moisturiser": "moisturizer", + "moisturisers": "moisturizers", + "moisturises": "moisturizes", + "moisturising": "moisturizing", + "monologue": "monolog", + "monologues": "monologs", + "monopolisation": "monopolization", + "monopolise": "monopolize", + "monopolised": "monopolized", + "monopolises": "monopolizes", + "monopolising": "monopolizing", + "moralise": "moralize", + "moralised": "moralized", + "moralises": "moralizes", + "moralising": "moralizing", + "motorised": "motorized", + "mould": "mold", + "moulded": "molded", + "moulder": "molder", + "mouldered": "moldered", + "mouldering": "moldering", + "moulders": "molders", + "mouldier": "moldier", + "mouldiest": "moldiest", + "moulding": "molding", + "mouldings": "moldings", + "moulds": "molds", + "mouldy": "moldy", + "moult": "molt", + "moulted": "molted", + "moulting": "molting", + "moults": "molts", + "moustache": "mustache", + "moustached": "mustached", + "moustaches": "mustaches", + "moustachioed": "mustachioed", + "multicoloured": "multicolored", + "nationalisation": "nationalization", + "nationalisations": "nationalizations", + "nationalise": "nationalize", + "nationalised": "nationalized", + "nationalises": "nationalizes", + "nationalising": "nationalizing", + "naturalisation": "naturalization", + "naturalise": "naturalize", + "naturalised": "naturalized", + "naturalises": "naturalizes", + "naturalising": "naturalizing", + "neighbour": "neighbor", + "neighbourhood": "neighborhood", + "neighbourhoods": "neighborhoods", + "neighbouring": "neighboring", + "neighbourliness": "neighborliness", + "neighbourly": "neighborly", + "neighbours": "neighbors", + "neutralisation": "neutralization", + "neutralise": "neutralize", + "neutralised": "neutralized", + "neutralises": "neutralizes", + "neutralising": "neutralizing", + "normalisation": "normalization", + "normalise": "normalize", + "normalised": "normalized", + "normalises": "normalizes", + "normalising": "normalizing", + "odour": "odor", + "odourless": "odorless", + "odours": "odors", + "oesophagus": "esophagus", + "oesophaguses": "esophaguses", + "oestrogen": "estrogen", + "offence": "offense", + "offences": "offenses", + "omelette": "omelet", + "omelettes": "omelets", + "optimise": "optimize", + "optimised": "optimized", + "optimises": "optimizes", + "optimising": "optimizing", + "organisation": "organization", + "organisational": "organizational", + "organisations": "organizations", + "organise": "organize", + "organised": "organized", + "organiser": "organizer", + "organisers": "organizers", + "organises": "organizes", + "organising": "organizing", + "orthopaedic": "orthopedic", + "orthopaedics": "orthopedics", + "ostracise": "ostracize", + "ostracised": "ostracized", + "ostracises": "ostracizes", + "ostracising": "ostracizing", + "outmanoeuvre": "outmaneuver", + "outmanoeuvred": "outmaneuvered", + "outmanoeuvres": "outmaneuvers", + "outmanoeuvring": "outmaneuvering", + "overemphasise": "overemphasize", + "overemphasised": "overemphasized", + "overemphasises": "overemphasizes", + "overemphasising": "overemphasizing", + "oxidisation": "oxidization", + "oxidise": "oxidize", + "oxidised": "oxidized", + "oxidises": "oxidizes", + "oxidising": "oxidizing", + "paederast": "pederast", + "paederasts": "pederasts", + "paediatric": "pediatric", + "paediatrician": "pediatrician", + "paediatricians": "pediatricians", + "paediatrics": "pediatrics", + "paedophile": "pedophile", + "paedophiles": "pedophiles", + "paedophilia": "pedophilia", + "palaeolithic": "paleolithic", + "palaeontologist": "paleontologist", + "palaeontologists": "paleontologists", + "palaeontology": "paleontology", + "panelled": "paneled", + "panelling": "paneling", + "panellist": "panelist", + "panellists": "panelists", + "paralyse": "paralyze", + "paralysed": "paralyzed", + "paralyses": "paralyzes", + "paralysing": "paralyzing", + "parcelled": "parceled", + "parcelling": "parceling", + "parlour": "parlor", + "parlours": "parlors", + "particularise": "particularize", + "particularised": "particularized", + "particularises": "particularizes", + "particularising": "particularizing", + "passivisation": "passivization", + "passivise": "passivize", + "passivised": "passivized", + "passivises": "passivizes", + "passivising": "passivizing", + "pasteurisation": "pasteurization", + "pasteurise": "pasteurize", + "pasteurised": "pasteurized", + "pasteurises": "pasteurizes", + "pasteurising": "pasteurizing", + "patronise": "patronize", + "patronised": "patronized", + "patronises": "patronizes", + "patronising": "patronizing", + "patronisingly": "patronizingly", + "pedalled": "pedaled", + "pedalling": "pedaling", + "pedestrianisation": "pedestrianization", + "pedestrianise": "pedestrianize", + "pedestrianised": "pedestrianized", + "pedestrianises": "pedestrianizes", + "pedestrianising": "pedestrianizing", + "penalise": "penalize", + "penalised": "penalized", + "penalises": "penalizes", + "penalising": "penalizing", + "pencilled": "penciled", + "pencilling": "penciling", + "personalise": "personalize", + "personalised": "personalized", + "personalises": "personalizes", + "personalising": "personalizing", + "pharmacopoeia": "pharmacopeia", + "pharmacopoeias": "pharmacopeias", + "philosophise": "philosophize", + "philosophised": "philosophized", + "philosophises": "philosophizes", + "philosophising": "philosophizing", + "philtre": "filter", + "philtres": "filters", + "phoney": "phony", + "plagiarise": "plagiarize", + "plagiarised": "plagiarized", + "plagiarises": "plagiarizes", + "plagiarising": "plagiarizing", + "plough": "plow", + "ploughed": "plowed", + "ploughing": "plowing", + "ploughman": "plowman", + "ploughmen": "plowmen", + "ploughs": "plows", + "ploughshare": "plowshare", + "ploughshares": "plowshares", + "polarisation": "polarization", + "polarise": "polarize", + "polarised": "polarized", + "polarises": "polarizes", + "polarising": "polarizing", + "politicisation": "politicization", + "politicise": "politicize", + "politicised": "politicized", + "politicises": "politicizes", + "politicising": "politicizing", + "popularisation": "popularization", + "popularise": "popularize", + "popularised": "popularized", + "popularises": "popularizes", + "popularising": "popularizing", + "pouffe": "pouf", + "pouffes": "poufs", + "practise": "practice", + "practised": "practiced", + "practises": "practices", + "practising": "practicing", + "praesidium": "presidium", + "praesidiums": "presidiums", + "pressurisation": "pressurization", + "pressurise": "pressurize", + "pressurised": "pressurized", + "pressurises": "pressurizes", + "pressurising": "pressurizing", + "pretence": "pretense", + "pretences": "pretenses", + "primaeval": "primeval", + "prioritisation": "prioritization", + "prioritise": "prioritize", + "prioritised": "prioritized", + "prioritises": "prioritizes", + "prioritising": "prioritizing", + "privatisation": "privatization", + "privatisations": "privatizations", + "privatise": "privatize", + "privatised": "privatized", + "privatises": "privatizes", + "privatising": "privatizing", + "professionalisation": "professionalization", + "professionalise": "professionalize", + "professionalised": "professionalized", + "professionalises": "professionalizes", + "professionalising": "professionalizing", + "programme": "program", + "programmes": "programs", + "prologue": "prolog", + "prologues": "prologs", + "propagandise": "propagandize", + "propagandised": "propagandized", + "propagandises": "propagandizes", + "propagandising": "propagandizing", + "proselytise": "proselytize", + "proselytised": "proselytized", + "proselytiser": "proselytizer", + "proselytisers": "proselytizers", + "proselytises": "proselytizes", + "proselytising": "proselytizing", + "psychoanalyse": "psychoanalyze", + "psychoanalysed": "psychoanalyzed", + "psychoanalyses": "psychoanalyzes", + "psychoanalysing": "psychoanalyzing", + "publicise": "publicize", + "publicised": "publicized", + "publicises": "publicizes", + "publicising": "publicizing", + "pulverisation": "pulverization", + "pulverise": "pulverize", + "pulverised": "pulverized", + "pulverises": "pulverizes", + "pulverising": "pulverizing", + "pummelled": "pummel", + "pummelling": "pummeled", + "pyjama": "pajama", + "pyjamas": "pajamas", + "pzazz": "pizzazz", + "quarrelled": "quarreled", + "quarrelling": "quarreling", + "radicalise": "radicalize", + "radicalised": "radicalized", + "radicalises": "radicalizes", + "radicalising": "radicalizing", + "rancour": "rancor", + "randomise": "randomize", + "randomised": "randomized", + "randomises": "randomizes", + "randomising": "randomizing", + "rationalisation": "rationalization", + "rationalisations": "rationalizations", + "rationalise": "rationalize", + "rationalised": "rationalized", + "rationalises": "rationalizes", + "rationalising": "rationalizing", + "ravelled": "raveled", + "ravelling": "raveling", + "realisable": "realizable", + "realisation": "realization", + "realisations": "realizations", + "realise": "realize", + "realised": "realized", + "realises": "realizes", + "realising": "realizing", + "recognisable": "recognizable", + "recognisably": "recognizably", + "recognisance": "recognizance", + "recognise": "recognize", + "recognised": "recognized", + "recognises": "recognizes", + "recognising": "recognizing", + "reconnoitre": "reconnoiter", + "reconnoitred": "reconnoitered", + "reconnoitres": "reconnoiters", + "reconnoitring": "reconnoitering", + "refuelled": "refueled", + "refuelling": "refueling", + "regularisation": "regularization", + "regularise": "regularize", + "regularised": "regularized", + "regularises": "regularizes", + "regularising": "regularizing", + "remodelled": "remodeled", + "remodelling": "remodeling", + "remould": "remold", + "remoulded": "remolded", + "remoulding": "remolding", + "remoulds": "remolds", + "reorganisation": "reorganization", + "reorganisations": "reorganizations", + "reorganise": "reorganize", + "reorganised": "reorganized", + "reorganises": "reorganizes", + "reorganising": "reorganizing", + "revelled": "reveled", + "reveller": "reveler", + "revellers": "revelers", + "revelling": "reveling", + "revitalise": "revitalize", + "revitalised": "revitalized", + "revitalises": "revitalizes", + "revitalising": "revitalizing", + "revolutionise": "revolutionize", + "revolutionised": "revolutionized", + "revolutionises": "revolutionizes", + "revolutionising": "revolutionizing", + "rhapsodise": "rhapsodize", + "rhapsodised": "rhapsodized", + "rhapsodises": "rhapsodizes", + "rhapsodising": "rhapsodizing", + "rigour": "rigor", + "rigours": "rigors", + "ritualised": "ritualized", + "rivalled": "rivaled", + "rivalling": "rivaling", + "romanticise": "romanticize", + "romanticised": "romanticized", + "romanticises": "romanticizes", + "romanticising": "romanticizing", + "rumour": "rumor", + "rumoured": "rumored", + "rumours": "rumors", + "sabre": "saber", + "sabres": "sabers", + "saltpetre": "saltpeter", + "sanitise": "sanitize", + "sanitised": "sanitized", + "sanitises": "sanitizes", + "sanitising": "sanitizing", + "satirise": "satirize", + "satirised": "satirized", + "satirises": "satirizes", + "satirising": "satirizing", + "saviour": "savior", + "saviours": "saviors", + "savour": "savor", + "savoured": "savored", + "savouries": "savories", + "savouring": "savoring", + "savours": "savors", + "savoury": "savory", + "scandalise": "scandalize", + "scandalised": "scandalized", + "scandalises": "scandalizes", + "scandalising": "scandalizing", + "sceptic": "skeptic", + "sceptical": "skeptical", + "sceptically": "skeptically", + "scepticism": "skepticism", + "sceptics": "skeptics", + "sceptre": "scepter", + "sceptres": "scepters", + "scrutinise": "scrutinize", + "scrutinised": "scrutinized", + "scrutinises": "scrutinizes", + "scrutinising": "scrutinizing", + "secularisation": "secularization", + "secularise": "secularize", + "secularised": "secularized", + "secularises": "secularizes", + "secularising": "secularizing", + "sensationalise": "sensationalize", + "sensationalised": "sensationalized", + "sensationalises": "sensationalizes", + "sensationalising": "sensationalizing", + "sensitise": "sensitize", + "sensitised": "sensitized", + "sensitises": "sensitizes", + "sensitising": "sensitizing", + "sentimentalise": "sentimentalize", + "sentimentalised": "sentimentalized", + "sentimentalises": "sentimentalizes", + "sentimentalising": "sentimentalizing", + "sepulchre": "sepulcher", + "sepulchres": "sepulchers", + "serialisation": "serialization", + "serialisations": "serializations", + "serialise": "serialize", + "serialised": "serialized", + "serialises": "serializes", + "serialising": "serializing", + "sermonise": "sermonize", + "sermonised": "sermonized", + "sermonises": "sermonizes", + "sermonising": "sermonizing", + "sheikh": "sheik", + "shovelled": "shoveled", + "shovelling": "shoveling", + "shrivelled": "shriveled", + "shrivelling": "shriveling", + "signalise": "signalize", + "signalised": "signalized", + "signalises": "signalizes", + "signalising": "signalizing", + "signalled": "signaled", + "signalling": "signaling", + "smoulder": "smolder", + "smouldered": "smoldered", + "smouldering": "smoldering", + "smoulders": "smolders", + "snivelled": "sniveled", + "snivelling": "sniveling", + "snorkelled": "snorkeled", + "snorkelling": "snorkeling", + "snowplough": "snowplow", + "snowploughs": "snowplow", + "socialisation": "socialization", + "socialise": "socialize", + "socialised": "socialized", + "socialises": "socializes", + "socialising": "socializing", + "sodomise": "sodomize", + "sodomised": "sodomized", + "sodomises": "sodomizes", + "sodomising": "sodomizing", + "solemnise": "solemnize", + "solemnised": "solemnized", + "solemnises": "solemnizes", + "solemnising": "solemnizing", + "sombre": "somber", + "specialisation": "specialization", + "specialisations": "specializations", + "specialise": "specialize", + "specialised": "specialized", + "specialises": "specializes", + "specialising": "specializing", + "spectre": "specter", + "spectres": "specters", + "spiralled": "spiraled", + "spiralling": "spiraling", + "splendour": "splendor", + "splendours": "splendors", + "squirrelled": "squirreled", + "squirrelling": "squirreling", + "stabilisation": "stabilization", + "stabilise": "stabilize", + "stabilised": "stabilized", + "stabiliser": "stabilizer", + "stabilisers": "stabilizers", + "stabilises": "stabilizes", + "stabilising": "stabilizing", + "standardisation": "standardization", + "standardise": "standardize", + "standardised": "standardized", + "standardises": "standardizes", + "standardising": "standardizing", + "stencilled": "stenciled", + "stencilling": "stenciling", + "sterilisation": "sterilization", + "sterilisations": "sterilizations", + "sterilise": "sterilize", + "sterilised": "sterilized", + "steriliser": "sterilizer", + "sterilisers": "sterilizers", + "sterilises": "sterilizes", + "sterilising": "sterilizing", + "stigmatisation": "stigmatization", + "stigmatise": "stigmatize", + "stigmatised": "stigmatized", + "stigmatises": "stigmatizes", + "stigmatising": "stigmatizing", + "storey": "story", + "storeys": "stories", + "subsidisation": "subsidization", + "subsidise": "subsidize", + "subsidised": "subsidized", + "subsidiser": "subsidizer", + "subsidisers": "subsidizers", + "subsidises": "subsidizes", + "subsidising": "subsidizing", + "succour": "succor", + "succoured": "succored", + "succouring": "succoring", + "succours": "succors", + "sulphate": "sulfate", + "sulphates": "sulfates", + "sulphide": "sulfide", + "sulphides": "sulfides", + "sulphur": "sulfur", + "sulphurous": "sulfurous", + "summarise": "summarize", + "summarised": "summarized", + "summarises": "summarizes", + "summarising": "summarizing", + "swivelled": "swiveled", + "swivelling": "swiveling", + "symbolise": "symbolize", + "symbolised": "symbolized", + "symbolises": "symbolizes", + "symbolising": "symbolizing", + "sympathise": "sympathize", + "sympathised": "sympathized", + "sympathiser": "sympathizer", + "sympathisers": "sympathizers", + "sympathises": "sympathizes", + "sympathising": "sympathizing", + "synchronisation": "synchronization", + "synchronise": "synchronize", + "synchronised": "synchronized", + "synchronises": "synchronizes", + "synchronising": "synchronizing", + "synthesise": "synthesize", + "synthesised": "synthesized", + "synthesiser": "synthesizer", + "synthesisers": "synthesizers", + "synthesises": "synthesizes", + "synthesising": "synthesizing", + "syphon": "siphon", + "syphoned": "siphoned", + "syphoning": "siphoning", + "syphons": "siphons", + "systematisation": "systematization", + "systematise": "systematize", + "systematised": "systematized", + "systematises": "systematizes", + "systematising": "systematizing", + "tantalise": "tantalize", + "tantalised": "tantalized", + "tantalises": "tantalizes", + "tantalising": "tantalizing", + "tantalisingly": "tantalizingly", + "tasselled": "tasseled", + "technicolour": "technicolor", + "temporise": "temporize", + "temporised": "temporized", + "temporises": "temporizes", + "temporising": "temporizing", + "tenderise": "tenderize", + "tenderised": "tenderized", + "tenderises": "tenderizes", + "tenderising": "tenderizing", + "terrorise": "terrorize", + "terrorised": "terrorized", + "terrorises": "terrorizes", + "terrorising": "terrorizing", + "theatre": "theater", + "theatregoer": "theatergoer", + "theatregoers": "theatergoers", + "theatres": "theaters", + "theorise": "theorize", + "theorised": "theorized", + "theorises": "theorizes", + "theorising": "theorizing", + "tonne": "ton", + "tonnes": "tons", + "towelled": "toweled", + "towelling": "toweling", + "toxaemia": "toxemia", + "tranquillise": "tranquilize", + "tranquillised": "tranquilized", + "tranquilliser": "tranquilizer", + "tranquillisers": "tranquilizers", + "tranquillises": "tranquilizes", + "tranquillising": "tranquilizing", + "tranquillity": "tranquility", + "tranquillize": "tranquilize", + "tranquillized": "tranquilized", + "tranquillizer": "tranquilizer", + "tranquillizers": "tranquilizers", + "tranquillizes": "tranquilizes", + "tranquillizing": "tranquilizing", + "tranquilly": "tranquility", + "transistorised": "transistorized", + "traumatise": "traumatize", + "traumatised": "traumatized", + "traumatises": "traumatizes", + "traumatising": "traumatizing", + "travelled": "traveled", + "traveller": "traveler", + "travellers": "travelers", + "travelling": "traveling", + "travelog": "travelogue", + "travelogs": "travelogues", + "trialled": "trialed", + "trialling": "trialing", + "tricolour": "tricolor", + "tricolours": "tricolors", + "trivialise": "trivialize", + "trivialised": "trivialized", + "trivialises": "trivializes", + "trivialising": "trivializing", + "tumour": "tumor", + "tumours": "tumors", + "tunnelled": "tunneled", + "tunnelling": "tunneling", + "tyrannise": "tyrannize", + "tyrannised": "tyrannized", + "tyrannises": "tyrannizes", + "tyrannising": "tyrannizing", + "tyre": "tire", + "tyres": "tires", + "unauthorised": "unauthorized", + "uncivilised": "uncivilized", + "underutilised": "underutilized", + "unequalled": "unequaled", + "unfavourable": "unfavorable", + "unfavourably": "unfavorably", + "unionisation": "unionization", + "unionise": "unionize", + "unionised": "unionized", + "unionises": "unionizes", + "unionising": "unionizing", + "unorganised": "unorganized", + "unravelled": "unraveled", + "unravelling": "unraveling", + "unrecognisable": "unrecognizable", + "unrecognised": "unrecognized", + "unrivalled": "unrivaled", + "unsavoury": "unsavory", + "untrammelled": "untrammeled", + "urbanisation": "urbanization", + "urbanise": "urbanize", + "urbanised": "urbanized", + "urbanises": "urbanizes", + "urbanising": "urbanizing", + "utilisable": "utilizable", + "utilisation": "utilization", + "utilise": "utilize", + "utilised": "utilized", + "utilises": "utilizes", + "utilising": "utilizing", + "valour": "valor", + "vandalise": "vandalize", + "vandalised": "vandalized", + "vandalises": "vandalizes", + "vandalising": "vandalizing", + "vaporisation": "vaporization", + "vaporise": "vaporize", + "vaporised": "vaporized", + "vaporises": "vaporizes", + "vaporising": "vaporizing", + "vapour": "vapor", + "vapours": "vapors", + "verbalise": "verbalize", + "verbalised": "verbalized", + "verbalises": "verbalizes", + "verbalising": "verbalizing", + "victimisation": "victimization", + "victimise": "victimize", + "victimised": "victimized", + "victimises": "victimizes", + "victimising": "victimizing", + "videodisc": "videodisk", + "videodiscs": "videodisks", + "vigour": "vigor", + "visualisation": "visualization", + "visualisations": "visualizations", + "visualise": "visualize", + "visualised": "visualized", + "visualises": "visualizes", + "visualising": "visualizing", + "vocalisation": "vocalization", + "vocalisations": "vocalizations", + "vocalise": "vocalize", + "vocalised": "vocalized", + "vocalises": "vocalizes", + "vocalising": "vocalizing", + "vulcanised": "vulcanized", + "vulgarisation": "vulgarization", + "vulgarise": "vulgarize", + "vulgarised": "vulgarized", + "vulgarises": "vulgarizes", + "vulgarising": "vulgarizing", + "waggon": "wagon", + "waggons": "wagons", + "watercolour": "watercolor", + "watercolours": "watercolors", + "weaselled": "weaseled", + "weaselling": "weaseling", + "westernisation": "westernization", + "westernise": "westernize", + "westernised": "westernized", + "westernises": "westernizes", + "westernising": "westernizing", + "womanise": "womanize", + "womanised": "womanized", + "womaniser": "womanizer", + "womanisers": "womanizers", + "womanises": "womanizes", + "womanising": "womanizing", + "woollen": "woolen", + "woollens": "woolens", + "woollies": "woolies", + "woolly": "wooly", + "worshipped": "worshiped", + "worshipper": "worshiper", + "worshipping": "worshiping", + "yodelled": "yodeled", + "yodelling": "yodeling", + "yoghourt": "yogurt", + "yoghourts": "yogurts", + "yoghurt": "yogurt", + "yoghurts": "yogurts" +} diff --git a/open-source-ai-game-jam/README.md b/open-source-ai-game-jam/README.md new file mode 100644 index 0000000000000000000000000000000000000000..79b699d2746d1a14c0b36d39c546244f5f7ad5db --- /dev/null +++ b/open-source-ai-game-jam/README.md @@ -0,0 +1,147 @@ +# Welcome to the first [Open Source AI Game Jam](https://itch.io/jam/open-source-ai-game-jam) 🎮 + +![](https://img.itch.zone/aW1hZ2UyL2phbS8zMzExNDMvMTIyNDYzNzYucG5n/original/lXt9Rf.png) + +Welcome to the **first Open-Source AI Game Jam 🎉**. During two days, **you’ll make a game using AI tools 🤖.** + +🤝 Open to all skill levels + +💸 Participation fee: Free + +📍 Where?: Online + +**Claim your spot in the Game Jam! Sign up here** 👉 https://itch.io/jam/open-source-ai-game-jam + +This document summarizes all the relevant information required for the Game Jam 📋. **Please read it thoroughly and make sure to**: + +- Do the Onboarding ⛴️ +- Read the The Game Jam Rules 📜 +- Join the Discord Server 👉 https://hf.co/join/discord + +# The Onboarding ⛴️ + +When the game jam starts here’s what you need to do: + +🔢 If it’s not already done, don’t forget to **sign up to the Game Jam to be able to summit your game** 👉 https://itch.io/jam/open-source-ai-game-jam + +2️⃣ Watch the video below that will give you the Game Jam Theme **(the video will be posted on Friday 7th of July at 5:00 UTC)**. + +**The Theme Announcement** 👉 https://youtu.be/k0MvSAwoM8k + +3️⃣ Sign up to the Discord Server 👉 https://hf.co/join/discord + +Discord + +4️⃣ In *channels and role* select ML For Game Development + +Discord-role + +5️⃣ You'll see we created 4 channels for the game Jam + +Discord + +6️⃣ You **search for a team or teammates**? Ask on **#GameJam-Looking-For-Team** + +7️⃣ You have questions? Ask on **Ask on #GameJam-Help,** we’ll be there to respond 🤗 + +8️⃣ When you have your team or you want to work alone, it’s time to start to make your game. **Keep Discord open because we’ll give update from time to time** 🤗 + + +## The Goal of this Game Jam 🏆 + +Create a game in **48 hours** that uses **at** **least one Open Source AI Tool** + +You can use proprietary AI tools (Midjourney, ChatGPT) **as long as at least one open source tool is part of the game or workflow**. + +## The Game Jam Rules 📜 + +Rules + +## Deadlines 🕧 + +Deadlines + +### Voting System 🗳️ + +- After the submission deadline (July 9th at 5:00pm UTC) you’ll **get until July 16th to vote for the other games** + +Voting + +## The AI Toolbox 🧰 + +The AI toolbox 🧰 (you can use other AI tools too): https://github.com/simoninithomas/awesome-ai-tools-for-game-dev + +Here some examples of AI tools you can use (again remember that you need to use at least one Open Source AI model): + +Toolbox1 +Toolbox2 + + +## Some helpful tutorials 📖 + +Here's some helpful tutorials: +- How to install the Unity Hugging Face API: https://huggingface.co/blog/unity-api +- AI Speech Recognition in Unity: https://huggingface.co/blog/unity-asr +- Making ML-powered web games with Transformers.js: https://huggingface.co/blog/ml-web-games +- Building a smart Robot AI using Hugging Face 🤗 and Unity: https://thomassimonini.substack.com/p/building-a-smart-robot-ai-using-hugging + +## Some Game Examples 🕹️ + +Here we give some Game Examples which use AI tools: + +1. **Detective Game** + + You can play it here 👉 https://google.github.io/mysteryofthreebots/ + +Example1 + +2. **Action Game** + + You can play it here 👉 https://huggingface.co/spaces/ThomasSimonini/SmartRobot + Tutorial 👉 Building a smart Robot AI using Hugging Face 🤗 and Unity + +Example2 + +3. **AI NPC with Unity MLAgents** + +You can play it here 👉 https://danielk0703.itch.io/ship-jam + +Example3 + +1. **Example 4: Doodle Dash** + +Play it here 👉 https://huggingface.co/spaces/Xenova/doodle-dash + +Learn to make your own with this tutorial 👉 https://huggingface.co/blog/ml-web-games + +Example4 + +## Some advice 💡 + +Advice + + +## Discord Channels + +Our Discord Server is the **central place to create teams, exchange with other teams, ask questions and get the latest updates**. + +👉 https://hf.co/join/discord + +We built different channels: + +Channels + +## You're looking for a team? + +Channels + +## You have some questions? +Channels + +## Organizers 🧑‍🤝‍🧑 + +Organizers + + + + diff --git a/preprocessor_config.json b/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..f21b077d7131224bb89056aaa08283ec6931090e --- /dev/null +++ b/requirements.txt @@ -0,0 +1,10 @@ +accelerate +torch +torchvision +datasets +scipy +wandb +einops +fire +retry +kornia==0.5.4 \ No newline at end of file diff --git a/setup.py b/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..e73ef0b5ff20407861f4e667fb42a1753b68027a --- /dev/null +++ b/setup.py @@ -0,0 +1,6 @@ +from setuptools import setup, find_packages + +with open("requirements.txt", "r") as f: + requirements = f.read().splitlines() + +setup(name="huggan", install_requires=requirements, packages=find_packages()) diff --git a/sklearn-sprint/guidelines.md b/sklearn-sprint/guidelines.md new file mode 100644 index 0000000000000000000000000000000000000000..d092fa7249ecb584a738b7956fa9210f85a385f2 --- /dev/null +++ b/sklearn-sprint/guidelines.md @@ -0,0 +1,101 @@ + +![Hugging Face x Scikit-learn](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/hfxsklearn.png) + +In this sprint, we will build interactive demos from the scikit-learn documentation and, afterwards, contribute the demos directly to the docs. + +## Important Dates + +🌅 Sprint Start Date: Apr 12, 2023 +🌃 Sprint Finish Date: Apr 30, 2023 + +## To get started 🤩 + +1. Join our [Discord](https://huggingface.co/join/discord) and take the role #sklearn-sprint-participant by selecting "Sklearn Working Group" in the #role-assignment channel. Then, meet us in #sklearn-sprint channel. +2. Head to [this page](https://scikit-learn.org/stable/auto_examples/) and pick an example you’d like to build on. +3. Leave a comment on [this spreadsheet](https://docs.google.com/spreadsheets/d/14EThtIyF4KfpU99Fm2EW3Rz9t6SSEqDyzV4jmw3fjyI/edit?usp=sharing) with your name under Owner column, claiming the example. The spreadsheet has a limited number of examples. Feel free to add yours with a comment if it doesn’t exist in the spreadsheet. +. +4. Start building! + + We will be hosting our applications in [scikit-learn](https://huggingface.co/sklearn-docs) organization of Hugging Face. + + For complete starters: in the Hugging Face Hub, there are repositories for models, datasets, and [Spaces](https://huggingface.co/spaces). Spaces are a special type of repository hosting ML applications, such as showcasing a model. To write our apps, we will only be using Gradio. [Gradio](https://gradio.app/) is a library that lets you build a cool front-end application for your models, completely in Python, and supports many libraries! In this sprint, we will be using mostly visualization support (`matplotlib`, `plotly`, `altair` and more) and [skops](https://skops.readthedocs.io/en/stable/) integration (which you can launch an interface for a given classification or regression interface with one line of code). + + In Gradio, there are two ways to create a demo. One is to use `Interface`, which is a very simple abstraction. Let’s see an example. + + ```python + import gradio as gr + + # implement your classifier here + clf.fit(X_train, y_train) + + def cancer_classifier(df): + # simply infer and return predictions + predictions = clf.predict(df) + return predictions + + gr.Interface(fn=cancer_classifier, inputs="dataframe", + outputs="label").launch() + + # save this in a file called app.py + # then run it + ``` + + This will result in following interface: + + ![Simple Interface](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/interface.png) + + This is very customizable. You can specify rows and columns, add a title and description, an example input, and more. There’s a more detailed guide [here](https://gradio.app/using-gradio-for-tabular-workflows/). + + Another way of creating an application is to use [Blocks](https://gradio.app/quickstart/#blocks-more-flexibility-and-control). You can see usage of Blocks in the example applications linked in this guide. + + After we create our application, we will create a Space. You can go to [hf.co](http://huggingface.co), click on your profile on top right and select “New Space”. + + ![New Space](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_space.png) + + We can name our Space, pick a license and select Space SDK as “Gradio”. Free hardware is enough for our app, so no need to change it. + + ![Space Configuration](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/space_config.png) + + After creating the Space, you have three options + * You can clone the repository locally, add your files, and then push them to the Hub. + * You can do all your coding directly in the browser. + * (shown below) You can do the coding locally and then drag and drop your application file to the Hub. + + ![Space Config](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/space_config.png) + + To upload your application file, pick “Add File” and drag and drop your file. + + ![New Space Landing](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/space_landing.png) + + Lastly, if your application includes any library other than Gradio, create a file called requirements.txt and add requirements like below: + + ```python + matplotlib==3.6.3 + scikit-learn==1.2.1 + ``` + + And your app should be up and running! + + **Example Submissions** + + We left couple of examples below: (there’s more at the end of this page) + Documentation page for comparing linkage methods for hierarchical clustering and example Space built on it 👇🏼 + + [Comparing different hierarchical linkage methods on toy datasets](https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html#sphx-glr-auto-examples-cluster-plot-linkage-comparison-py) + + [Hierarchical Clustering Linkage - a Hugging Face Space by scikit-learn](https://huggingface.co/spaces/scikit-learn/hierarchical-clustering-linkage) + + Note: If for your demo you're training a model from scratch (e.g. training an image classifier), you can push it to the Hub using [skops](https://skops.readthedocs.io/en/stable/) and build a Gradio demo on top of it. For such submission, we expect a model repository with a model card and the model weight as well as a simple Space with the interface that receives input and outputs results. You can use this tutorial to get started with [skops](https://www.kdnuggets.com/2023/02/skops-new-library-improve-scikitlearn-production.html). + + You can find an example submission for a model repository below. + + [scikit-learn/cancer-prediction-trees · Hugging Face](https://huggingface.co/scikit-learn/cancer-prediction-trees) + +4. After the demos are done, we will open pull requests to scikit-learn documentation in [scikit-learn’s repository](https://github.com/scikit-learn/scikit-learn) to contribute our application codes to be directly inside the documentation. We will help you out if this is your first open source contribution. 🤗  + +**If you need any help** you can join our discord server, take collaborate role and join `sklearn-sprint` channel and ask questions 🤗🫂 + +### Sprint Prizes +We will be giving following vouchers that can be spent at [Hugging Face Store](https://store.huggingface.co/) including shipping, +- $20 worth of voucher for everyone that builds three demos, +- $40 worth of voucher for everyone that builds five demos. \ No newline at end of file diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..bf69932dca4b3719b59fdd8f6cc1978109509f6c --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,139 @@ +{ + "additional_special_tokens": [ + "<|endoftext|>", + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nocaptions|>", + "<|notimestamps|>" + ], + "bos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tokenizer_config.json b/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d13b786c04765fb1a06492b53587752cd67665ea --- /dev/null +++ b/tokenizer_config.json @@ -0,0 +1,12989 @@ +{ + "add_bos_token": false, + "add_prefix_space": false, + "added_tokens_decoder": { + "50257": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50258": { + "content": "<|startoftranscript|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50259": { + "content": "<|en|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50260": { + "content": "<|zh|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50261": { + "content": "<|de|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50262": { + "content": "<|es|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50263": { + "content": "<|ru|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50264": { + "content": "<|ko|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50265": { + "content": "<|fr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50266": { + "content": "<|ja|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50267": { + "content": "<|pt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50268": { + "content": "<|tr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50269": { + "content": "<|pl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50270": { + "content": "<|ca|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50271": { + "content": "<|nl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50272": { + "content": "<|ar|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50273": { + "content": "<|sv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50274": { + "content": "<|it|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50275": { + "content": "<|id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50276": { + "content": "<|hi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50277": { + "content": "<|fi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50278": { + "content": "<|vi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50279": { + "content": "<|he|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50280": { + "content": "<|uk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50281": { + "content": "<|el|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50282": { + "content": "<|ms|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50283": { + "content": "<|cs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50284": { + "content": "<|ro|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50285": { + "content": "<|da|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50286": { + "content": "<|hu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50287": { + "content": "<|ta|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50288": { + "content": "<|no|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50289": { + "content": "<|th|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50290": { + "content": "<|ur|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50291": { + "content": "<|hr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50292": { + "content": "<|bg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50293": { + "content": "<|lt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50294": { + "content": "<|la|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50295": { + "content": "<|mi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50296": { + "content": "<|ml|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50297": { + "content": "<|cy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50298": { + "content": "<|sk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50299": { + "content": "<|te|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50300": { + "content": "<|fa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50301": { + "content": "<|lv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50302": { + "content": "<|bn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50303": { + "content": "<|sr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50304": { + "content": "<|az|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50305": { + "content": "<|sl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50306": { + "content": "<|kn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50307": { + "content": "<|et|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50308": { + "content": "<|mk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50309": { + "content": "<|br|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50310": { + "content": "<|eu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50311": { + "content": "<|is|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50312": { + "content": "<|hy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50313": { + "content": "<|ne|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50314": { + "content": "<|mn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50315": { + "content": "<|bs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50316": { + "content": "<|kk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50317": { + "content": "<|sq|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50318": { + "content": "<|sw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50319": { + "content": "<|gl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50320": { + "content": "<|mr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50321": { + "content": "<|pa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50322": { + "content": "<|si|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50323": { + "content": "<|km|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50324": { + "content": "<|sn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50325": { + "content": "<|yo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50326": { + "content": "<|so|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50327": { + "content": "<|af|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50328": { + "content": "<|oc|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50329": { + "content": "<|ka|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50330": { + "content": "<|be|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50331": { + "content": "<|tg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50332": { + "content": "<|sd|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50333": { + "content": "<|gu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50334": { + "content": "<|am|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50335": { + "content": "<|yi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50336": { + "content": "<|lo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50337": { + "content": "<|uz|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50338": { + "content": "<|fo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50339": { + "content": "<|ht|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50340": { + "content": "<|ps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50341": { + "content": "<|tk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50342": { + "content": "<|nn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50343": { + "content": "<|mt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50344": { + "content": "<|sa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50345": { + "content": "<|lb|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50346": { + "content": "<|my|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50347": { + "content": "<|bo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50348": { + "content": "<|tl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50349": { + "content": "<|mg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50350": { + "content": "<|as|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50351": { + "content": "<|tt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50352": { + "content": "<|haw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50353": { + "content": "<|ln|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50354": { + "content": "<|ha|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50355": { + "content": "<|ba|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50356": { + "content": "<|jw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50357": { + "content": "<|su|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50358": { + "content": "<|translate|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50359": { + "content": "<|transcribe|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50360": { + "content": "<|startoflm|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50361": { + "content": "<|startofprev|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50362": { + "content": "<|nocaptions|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50363": { + "content": "<|notimestamps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50364": { + "content": "<|0.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50365": { + "content": "<|0.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50366": { + "content": "<|0.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50367": { + "content": "<|0.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50368": { + "content": "<|0.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50369": { + "content": "<|0.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50370": { + "content": "<|0.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50371": { + "content": "<|0.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50372": { + "content": "<|0.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50373": { + "content": "<|0.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50374": { + "content": "<|0.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50375": { + "content": "<|0.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50376": { + "content": "<|0.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50377": { + "content": "<|0.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50378": { + "content": "<|0.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50379": { + "content": "<|0.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50380": { + "content": "<|0.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50381": { + "content": "<|0.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50382": { + "content": "<|0.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50383": { + "content": "<|0.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50384": { + "content": "<|0.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50385": { + "content": "<|0.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50386": { + "content": "<|0.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50387": { + "content": "<|0.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50388": { + "content": "<|0.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50389": { + "content": "<|0.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50390": { + "content": "<|0.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50391": { + "content": "<|0.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50392": { + "content": "<|0.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50393": { + "content": "<|0.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50394": { + "content": "<|0.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50395": { + "content": "<|0.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50396": { + "content": "<|0.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50397": { + "content": "<|0.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50398": { + "content": "<|0.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50399": { + "content": "<|0.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50400": { + "content": "<|0.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50401": { + "content": "<|0.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50402": { + "content": "<|0.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50403": { + "content": "<|0.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50404": { + "content": "<|0.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50405": { + "content": "<|0.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50406": { + "content": "<|0.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50407": { + "content": "<|0.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50408": { + "content": "<|0.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50409": { + "content": "<|0.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50410": { + "content": "<|0.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50411": { + "content": "<|0.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50412": { + "content": "<|0.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50413": { + "content": "<|0.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50414": { + "content": "<|1.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50415": { + "content": "<|1.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50416": { + "content": "<|1.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50417": { + "content": "<|1.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50418": { + "content": "<|1.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50419": { + "content": "<|1.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50420": { + "content": "<|1.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50421": { + "content": "<|1.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50422": { + "content": "<|1.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50423": { + "content": "<|1.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50424": { + "content": "<|1.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50425": { + "content": "<|1.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50426": { + "content": "<|1.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50427": { + "content": "<|1.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50428": { + "content": "<|1.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50429": { + "content": "<|1.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50430": { + "content": "<|1.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50431": { + "content": "<|1.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50432": { + "content": "<|1.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50433": { + "content": "<|1.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50434": { + "content": "<|1.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50435": { + "content": "<|1.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50436": { + "content": "<|1.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50437": { + "content": "<|1.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50438": { + "content": "<|1.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50439": { + "content": "<|1.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50440": { + "content": "<|1.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50441": { + "content": "<|1.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50442": { + "content": "<|1.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50443": { + "content": "<|1.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50444": { + "content": "<|1.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50445": { + "content": "<|1.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50446": { + "content": "<|1.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50447": { + "content": "<|1.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50448": { + "content": "<|1.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50449": { + "content": "<|1.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50450": { + "content": "<|1.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50451": { + "content": "<|1.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50452": { + "content": "<|1.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50453": { + "content": "<|1.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50454": { + "content": "<|1.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50455": { + "content": "<|1.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50456": { + "content": "<|1.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50457": { + "content": "<|1.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50458": { + "content": "<|1.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50459": { + "content": "<|1.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50460": { + "content": "<|1.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50461": { + "content": "<|1.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50462": { + "content": "<|1.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50463": { + "content": "<|1.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50464": { + "content": "<|2.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50465": { + "content": "<|2.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50466": { + "content": "<|2.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50467": { + "content": "<|2.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50468": { + "content": "<|2.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50469": { + "content": "<|2.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50470": { + "content": "<|2.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50471": { + "content": "<|2.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50472": { + "content": "<|2.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50473": { + "content": "<|2.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50474": { + "content": "<|2.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50475": { + "content": "<|2.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50476": { + "content": "<|2.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50477": { + "content": "<|2.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50478": { + "content": "<|2.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50479": { + "content": "<|2.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50480": { + "content": "<|2.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50481": { + "content": "<|2.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50482": { + "content": "<|2.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50483": { + "content": "<|2.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50484": { + "content": "<|2.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50485": { + "content": "<|2.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50486": { + "content": "<|2.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50487": { + "content": "<|2.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50488": { + "content": "<|2.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50489": { + "content": "<|2.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50490": { + "content": "<|2.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50491": { + "content": "<|2.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50492": { + "content": "<|2.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50493": { + "content": "<|2.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50494": { + "content": "<|2.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50495": { + "content": "<|2.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50496": { + "content": "<|2.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50497": { + "content": "<|2.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50498": { + "content": "<|2.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50499": { + "content": "<|2.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50500": { + "content": "<|2.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50501": { + "content": "<|2.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50502": { + "content": "<|2.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50503": { + "content": "<|2.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50504": { + "content": "<|2.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50505": { + "content": "<|2.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50506": { + "content": "<|2.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50507": { + "content": "<|2.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50508": { + "content": "<|2.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50509": { + "content": "<|2.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50510": { + "content": "<|2.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50511": { + "content": "<|2.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50512": { + "content": "<|2.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50513": { + "content": "<|2.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50514": { + "content": "<|3.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50515": { + "content": "<|3.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50516": { + "content": "<|3.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50517": { + "content": "<|3.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50518": { + "content": "<|3.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50519": { + "content": "<|3.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50520": { + "content": "<|3.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50521": { + "content": "<|3.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50522": { + "content": "<|3.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50523": { + "content": "<|3.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50524": { + "content": "<|3.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50525": { + "content": "<|3.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50526": { + "content": "<|3.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50527": { + "content": "<|3.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50528": { + "content": "<|3.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50529": { + "content": "<|3.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50530": { + "content": "<|3.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50531": { + "content": "<|3.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50532": { + "content": "<|3.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50533": { + "content": "<|3.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50534": { + "content": "<|3.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50535": { + "content": "<|3.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50536": { + "content": "<|3.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50537": { + "content": "<|3.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50538": { + "content": "<|3.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50539": { + "content": "<|3.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50540": { + "content": "<|3.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50541": { + "content": "<|3.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50542": { + "content": "<|3.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50543": { + "content": "<|3.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50544": { + "content": "<|3.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50545": { + "content": "<|3.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50546": { + "content": "<|3.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50547": { + "content": "<|3.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50548": { + "content": "<|3.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50549": { + "content": "<|3.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50550": { + "content": "<|3.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50551": { + "content": "<|3.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50552": { + "content": "<|3.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50553": { + "content": "<|3.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50554": { + "content": "<|3.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50555": { + "content": "<|3.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50556": { + "content": "<|3.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50557": { + "content": "<|3.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50558": { + "content": "<|3.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50559": { + "content": "<|3.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50560": { + "content": "<|3.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50561": { + "content": "<|3.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50562": { + "content": "<|3.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50563": { + "content": "<|3.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50564": { + "content": "<|4.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50565": { + "content": "<|4.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50566": { + "content": "<|4.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50567": { + "content": "<|4.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50568": { + "content": "<|4.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50569": { + "content": "<|4.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50570": { + "content": "<|4.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50571": { + "content": "<|4.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50572": { + "content": "<|4.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50573": { + "content": "<|4.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50574": { + "content": "<|4.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50575": { + "content": "<|4.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50576": { + "content": "<|4.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50577": { + "content": "<|4.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50578": { + "content": "<|4.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50579": { + "content": "<|4.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50580": { + "content": "<|4.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50581": { + "content": "<|4.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50582": { + "content": "<|4.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50583": { + "content": "<|4.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50584": { + "content": "<|4.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50585": { + "content": "<|4.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50586": { + "content": "<|4.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50587": { + "content": "<|4.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50588": { + "content": "<|4.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50589": { + "content": "<|4.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50590": { + "content": "<|4.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50591": { + "content": "<|4.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50592": { + "content": "<|4.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50593": { + "content": "<|4.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50594": { + "content": "<|4.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50595": { + "content": "<|4.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50596": { + "content": "<|4.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50597": { + "content": "<|4.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50598": { + "content": "<|4.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50599": { + "content": "<|4.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50600": { + "content": "<|4.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50601": { + "content": "<|4.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50602": { + "content": "<|4.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50603": { + "content": "<|4.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50604": { + "content": "<|4.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50605": { + "content": "<|4.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50606": { + "content": "<|4.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50607": { + "content": "<|4.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50608": { + "content": "<|4.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50609": { + "content": "<|4.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50610": { + "content": "<|4.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50611": { + "content": "<|4.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50612": { + "content": "<|4.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50613": { + "content": "<|4.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50614": { + "content": "<|5.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50615": { + "content": "<|5.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50616": { + "content": "<|5.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50617": { + "content": "<|5.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50618": { + "content": "<|5.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50619": { + "content": "<|5.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50620": { + "content": "<|5.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50621": { + "content": "<|5.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50622": { + "content": "<|5.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50623": { + "content": "<|5.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50624": { + "content": "<|5.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50625": { + "content": "<|5.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50626": { + "content": "<|5.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50627": { + "content": "<|5.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50628": { + "content": "<|5.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50629": { + "content": "<|5.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50630": { + "content": "<|5.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50631": { + "content": "<|5.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50632": { + "content": "<|5.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50633": { + "content": "<|5.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50634": { + "content": "<|5.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50635": { + "content": "<|5.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50636": { + "content": "<|5.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50637": { + "content": "<|5.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50638": { + "content": "<|5.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50639": { + "content": "<|5.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50640": { + "content": "<|5.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50641": { + "content": "<|5.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50642": { + "content": "<|5.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50643": { + "content": "<|5.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50644": { + "content": "<|5.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50645": { + "content": "<|5.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50646": { + "content": "<|5.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50647": { + "content": "<|5.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50648": { + "content": "<|5.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50649": { + "content": "<|5.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50650": { + "content": "<|5.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50651": { + "content": "<|5.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50652": { + "content": "<|5.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50653": { + "content": "<|5.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50654": { + "content": "<|5.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50655": { + "content": "<|5.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50656": { + "content": "<|5.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50657": { + "content": "<|5.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50658": { + "content": "<|5.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50659": { + "content": "<|5.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50660": { + "content": "<|5.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50661": { + "content": "<|5.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50662": { + "content": "<|5.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50663": { + "content": "<|5.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50664": { + "content": "<|6.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50665": { + "content": "<|6.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50666": { + "content": "<|6.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50667": { + "content": "<|6.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50668": { + "content": "<|6.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50669": { + "content": "<|6.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50670": { + "content": "<|6.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50671": { + "content": "<|6.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50672": { + "content": "<|6.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50673": { + "content": "<|6.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50674": { + "content": "<|6.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50675": { + "content": "<|6.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50676": { + "content": "<|6.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50677": { + "content": "<|6.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50678": { + "content": "<|6.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50679": { + "content": "<|6.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50680": { + "content": "<|6.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50681": { + "content": "<|6.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50682": { + "content": "<|6.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50683": { + "content": "<|6.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50684": { + "content": "<|6.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50685": { + "content": "<|6.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50686": { + "content": "<|6.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50687": { + "content": "<|6.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50688": { + "content": "<|6.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50689": { + "content": "<|6.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50690": { + "content": "<|6.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50691": { + "content": "<|6.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50692": { + "content": "<|6.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50693": { + "content": "<|6.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50694": { + "content": "<|6.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50695": { + "content": "<|6.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50696": { + "content": "<|6.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50697": { + "content": "<|6.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50698": { + "content": "<|6.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50699": { + "content": "<|6.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50700": { + "content": "<|6.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50701": { + "content": "<|6.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50702": { + "content": "<|6.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50703": { + "content": "<|6.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50704": { + "content": "<|6.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50705": { + "content": "<|6.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50706": { + "content": "<|6.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50707": { + "content": "<|6.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50708": { + "content": "<|6.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50709": { + "content": "<|6.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50710": { + "content": "<|6.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50711": { + "content": "<|6.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50712": { + "content": "<|6.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50713": { + "content": "<|6.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50714": { + "content": "<|7.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50715": { + "content": "<|7.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50716": { + "content": "<|7.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50717": { + "content": "<|7.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50718": { + "content": "<|7.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50719": { + "content": "<|7.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50720": { + "content": "<|7.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50721": { + "content": "<|7.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50722": { + "content": "<|7.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50723": { + "content": "<|7.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50724": { + "content": "<|7.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50725": { + "content": "<|7.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50726": { + "content": "<|7.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50727": { + "content": "<|7.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50728": { + "content": "<|7.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50729": { + "content": "<|7.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50730": { + "content": "<|7.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50731": { + "content": "<|7.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50732": { + "content": "<|7.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50733": { + "content": "<|7.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50734": { + "content": "<|7.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50735": { + "content": "<|7.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50736": { + "content": "<|7.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50737": { + "content": "<|7.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50738": { + "content": "<|7.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50739": { + "content": "<|7.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50740": { + "content": "<|7.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50741": { + "content": "<|7.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50742": { + "content": "<|7.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50743": { + "content": "<|7.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50744": { + "content": "<|7.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50745": { + "content": "<|7.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50746": { + "content": "<|7.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50747": { + "content": "<|7.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50748": { + "content": "<|7.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50749": { + "content": "<|7.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50750": { + "content": "<|7.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50751": { + "content": "<|7.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50752": { + "content": "<|7.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50753": { + "content": "<|7.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50754": { + "content": "<|7.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50755": { + "content": "<|7.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50756": { + "content": "<|7.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50757": { + "content": "<|7.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50758": { + "content": "<|7.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50759": { + "content": "<|7.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50760": { + "content": "<|7.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50761": { + "content": "<|7.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50762": { + "content": "<|7.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50763": { + "content": "<|7.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50764": { + "content": "<|8.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50765": { + "content": "<|8.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50766": { + "content": "<|8.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50767": { + "content": "<|8.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50768": { + "content": "<|8.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50769": { + "content": "<|8.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50770": { + "content": "<|8.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50771": { + "content": "<|8.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50772": { + "content": "<|8.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50773": { + "content": "<|8.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50774": { + "content": "<|8.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50775": { + "content": "<|8.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50776": { + "content": "<|8.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50777": { + "content": "<|8.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50778": { + "content": "<|8.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50779": { + "content": "<|8.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50780": { + "content": "<|8.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50781": { + "content": "<|8.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50782": { + "content": "<|8.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50783": { + "content": "<|8.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50784": { + "content": "<|8.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50785": { + "content": "<|8.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50786": { + "content": "<|8.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50787": { + "content": "<|8.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50788": { + "content": "<|8.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50789": { + "content": "<|8.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50790": { + "content": "<|8.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50791": { + "content": "<|8.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50792": { + "content": "<|8.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50793": { + "content": "<|8.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50794": { + "content": "<|8.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50795": { + "content": "<|8.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50796": { + "content": "<|8.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50797": { + "content": "<|8.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50798": { + "content": "<|8.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50799": { + "content": "<|8.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50800": { + "content": "<|8.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50801": { + "content": "<|8.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50802": { + "content": "<|8.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50803": { + "content": "<|8.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50804": { + "content": "<|8.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50805": { + "content": "<|8.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50806": { + "content": "<|8.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50807": { + "content": "<|8.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50808": { + "content": "<|8.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50809": { + "content": "<|8.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50810": { + "content": "<|8.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50811": { + "content": "<|8.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50812": { + "content": "<|8.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50813": { + "content": "<|8.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50814": { + "content": "<|9.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50815": { + "content": "<|9.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50816": { + "content": "<|9.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50817": { + "content": "<|9.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50818": { + "content": "<|9.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50819": { + "content": "<|9.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50820": { + "content": "<|9.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50821": { + "content": "<|9.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50822": { + "content": "<|9.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50823": { + "content": "<|9.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50824": { + "content": "<|9.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50825": { + "content": "<|9.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50826": { + "content": "<|9.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50827": { + "content": "<|9.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50828": { + "content": "<|9.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50829": { + "content": "<|9.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50830": { + "content": "<|9.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50831": { + "content": "<|9.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50832": { + "content": "<|9.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50833": { + "content": "<|9.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50834": { + "content": "<|9.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50835": { + "content": "<|9.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50836": { + "content": "<|9.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50837": { + "content": "<|9.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50838": { + "content": "<|9.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50839": { + "content": "<|9.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50840": { + "content": "<|9.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50841": { + "content": "<|9.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50842": { + "content": "<|9.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50843": { + "content": "<|9.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50844": { + "content": "<|9.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50845": { + "content": "<|9.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50846": { + "content": "<|9.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50847": { + "content": "<|9.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50848": { + "content": "<|9.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50849": { + "content": "<|9.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50850": { + "content": "<|9.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50851": { + "content": "<|9.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50852": { + "content": "<|9.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50853": { + "content": "<|9.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50854": { + "content": "<|9.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50855": { + "content": "<|9.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50856": { + "content": "<|9.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50857": { + "content": "<|9.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50858": { + "content": "<|9.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50859": { + "content": "<|9.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50860": { + "content": "<|9.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50861": { + "content": "<|9.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50862": { + "content": "<|9.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50863": { + "content": "<|9.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50864": { + "content": "<|10.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50865": { + "content": "<|10.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50866": { + "content": "<|10.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50867": { + "content": "<|10.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50868": { + "content": "<|10.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50869": { + "content": "<|10.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50870": { + "content": "<|10.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50871": { + "content": "<|10.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50872": { + "content": "<|10.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50873": { + "content": "<|10.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50874": { + "content": "<|10.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50875": { + "content": "<|10.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50876": { + "content": "<|10.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50877": { + "content": "<|10.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50878": { + "content": "<|10.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50879": { + "content": "<|10.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50880": { + "content": "<|10.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50881": { + "content": "<|10.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50882": { + "content": "<|10.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50883": { + "content": "<|10.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50884": { + "content": "<|10.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50885": { + "content": "<|10.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50886": { + "content": "<|10.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50887": { + "content": "<|10.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50888": { + "content": "<|10.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50889": { + "content": "<|10.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50890": { + "content": "<|10.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50891": { + "content": "<|10.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50892": { + "content": "<|10.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50893": { + "content": "<|10.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50894": { + "content": "<|10.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50895": { + "content": "<|10.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50896": { + "content": "<|10.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50897": { + "content": "<|10.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50898": { + "content": "<|10.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50899": { + "content": "<|10.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50900": { + "content": "<|10.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50901": { + "content": "<|10.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50902": { + "content": "<|10.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50903": { + "content": "<|10.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50904": { + "content": "<|10.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50905": { + "content": "<|10.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50906": { + "content": "<|10.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50907": { + "content": "<|10.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50908": { + "content": "<|10.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50909": { + "content": "<|10.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50910": { + "content": "<|10.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50911": { + "content": "<|10.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50912": { + "content": "<|10.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50913": { + "content": "<|10.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50914": { + "content": "<|11.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50915": { + "content": "<|11.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50916": { + "content": "<|11.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50917": { + "content": "<|11.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50918": { + "content": "<|11.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50919": { + "content": "<|11.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50920": { + "content": "<|11.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50921": { + "content": "<|11.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50922": { + "content": "<|11.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50923": { + "content": "<|11.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50924": { + "content": "<|11.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50925": { + "content": "<|11.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50926": { + "content": "<|11.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50927": { + "content": "<|11.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50928": { + "content": "<|11.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50929": { + "content": "<|11.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50930": { + "content": "<|11.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50931": { + "content": "<|11.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50932": { + "content": "<|11.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50933": { + "content": "<|11.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50934": { + "content": "<|11.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50935": { + "content": "<|11.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50936": { + "content": "<|11.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50937": { + "content": "<|11.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50938": { + "content": "<|11.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50939": { + "content": "<|11.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50940": { + "content": "<|11.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50941": { + "content": "<|11.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50942": { + "content": "<|11.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50943": { + "content": "<|11.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50944": { + "content": "<|11.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50945": { + "content": "<|11.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50946": { + "content": "<|11.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50947": { + "content": "<|11.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50948": { + "content": "<|11.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50949": { + "content": "<|11.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50950": { + "content": "<|11.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50951": { + "content": "<|11.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50952": { + "content": "<|11.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50953": { + "content": "<|11.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50954": { + "content": "<|11.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50955": { + "content": "<|11.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50956": { + "content": "<|11.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50957": { + "content": "<|11.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50958": { + "content": "<|11.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50959": { + "content": "<|11.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50960": { + "content": "<|11.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50961": { + "content": "<|11.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50962": { + "content": "<|11.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50963": { + "content": "<|11.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50964": { + "content": "<|12.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50965": { + "content": "<|12.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50966": { + "content": "<|12.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50967": { + "content": "<|12.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50968": { + "content": "<|12.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50969": { + "content": "<|12.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50970": { + "content": "<|12.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50971": { + "content": "<|12.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50972": { + "content": "<|12.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50973": { + "content": "<|12.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50974": { + "content": "<|12.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50975": { + "content": "<|12.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50976": { + "content": "<|12.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50977": { + "content": "<|12.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50978": { + "content": "<|12.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50979": { + "content": "<|12.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50980": { + "content": "<|12.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50981": { + "content": "<|12.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50982": { + "content": "<|12.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50983": { + "content": "<|12.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50984": { + "content": "<|12.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50985": { + "content": "<|12.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50986": { + "content": "<|12.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50987": { + "content": "<|12.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50988": { + "content": "<|12.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50989": { + "content": "<|12.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50990": { + "content": "<|12.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50991": { + "content": "<|12.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50992": { + "content": "<|12.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50993": { + "content": "<|12.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50994": { + "content": "<|12.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50995": { + "content": "<|12.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50996": { + "content": "<|12.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50997": { + "content": "<|12.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50998": { + "content": "<|12.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50999": { + "content": "<|12.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51000": { + "content": "<|12.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51001": { + "content": "<|12.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51002": { + "content": "<|12.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51003": { + "content": "<|12.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51004": { + "content": "<|12.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51005": { + "content": "<|12.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51006": { + "content": "<|12.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51007": { + "content": "<|12.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51008": { + "content": "<|12.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51009": { + "content": "<|12.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51010": { + "content": "<|12.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51011": { + "content": "<|12.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51012": { + "content": "<|12.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51013": { + "content": "<|12.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51014": { + "content": "<|13.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51015": { + "content": "<|13.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51016": { + "content": "<|13.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51017": { + "content": "<|13.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51018": { + "content": "<|13.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51019": { + "content": "<|13.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51020": { + "content": "<|13.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51021": { + "content": "<|13.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51022": { + "content": "<|13.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51023": { + "content": "<|13.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51024": { + "content": "<|13.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51025": { + "content": "<|13.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51026": { + "content": "<|13.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51027": { + "content": "<|13.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51028": { + "content": "<|13.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51029": { + "content": "<|13.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51030": { + "content": "<|13.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51031": { + "content": "<|13.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51032": { + "content": "<|13.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51033": { + "content": "<|13.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51034": { + "content": "<|13.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51035": { + "content": "<|13.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51036": { + "content": "<|13.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51037": { + "content": "<|13.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51038": { + "content": "<|13.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51039": { + "content": "<|13.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51040": { + "content": "<|13.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51041": { + "content": "<|13.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51042": { + "content": "<|13.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51043": { + "content": "<|13.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51044": { + "content": "<|13.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51045": { + "content": "<|13.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51046": { + "content": "<|13.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51047": { + "content": "<|13.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51048": { + "content": "<|13.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51049": { + "content": "<|13.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51050": { + "content": "<|13.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51051": { + "content": "<|13.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51052": { + "content": "<|13.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51053": { + "content": "<|13.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51054": { + "content": "<|13.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51055": { + "content": "<|13.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51056": { + "content": "<|13.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51057": { + "content": "<|13.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51058": { + "content": "<|13.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51059": { + "content": "<|13.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51060": { + "content": "<|13.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51061": { + "content": "<|13.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51062": { + "content": "<|13.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51063": { + "content": "<|13.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51064": { + "content": "<|14.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51065": { + "content": "<|14.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51066": { + "content": "<|14.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51067": { + "content": "<|14.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51068": { + "content": "<|14.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51069": { + "content": "<|14.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51070": { + "content": "<|14.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51071": { + "content": "<|14.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51072": { + "content": "<|14.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51073": { + "content": "<|14.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51074": { + "content": "<|14.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51075": { + "content": "<|14.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51076": { + "content": "<|14.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51077": { + "content": "<|14.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51078": { + "content": "<|14.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51079": { + "content": "<|14.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51080": { + "content": "<|14.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51081": { + "content": "<|14.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51082": { + "content": "<|14.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51083": { + "content": "<|14.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51084": { + "content": "<|14.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51085": { + "content": "<|14.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51086": { + "content": "<|14.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51087": { + "content": "<|14.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51088": { + "content": "<|14.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51089": { + "content": "<|14.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51090": { + "content": "<|14.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51091": { + "content": "<|14.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51092": { + "content": "<|14.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51093": { + "content": "<|14.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51094": { + "content": "<|14.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51095": { + "content": "<|14.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51096": { + "content": "<|14.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51097": { + "content": "<|14.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51098": { + "content": "<|14.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51099": { + "content": "<|14.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51100": { + "content": "<|14.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51101": { + "content": "<|14.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51102": { + "content": "<|14.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51103": { + "content": "<|14.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51104": { + "content": "<|14.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51105": { + "content": "<|14.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51106": { + "content": "<|14.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51107": { + "content": "<|14.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51108": { + "content": "<|14.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51109": { + "content": "<|14.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51110": { + "content": "<|14.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51111": { + "content": "<|14.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51112": { + "content": "<|14.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51113": { + "content": "<|14.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51114": { + "content": "<|15.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51115": { + "content": "<|15.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51116": { + "content": "<|15.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51117": { + "content": "<|15.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51118": { + "content": "<|15.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51119": { + "content": "<|15.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51120": { + "content": "<|15.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51121": { + "content": "<|15.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51122": { + "content": "<|15.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51123": { + "content": "<|15.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51124": { + "content": "<|15.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51125": { + "content": "<|15.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51126": { + "content": "<|15.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51127": { + "content": "<|15.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51128": { + "content": "<|15.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51129": { + "content": "<|15.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51130": { + "content": "<|15.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51131": { + "content": "<|15.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51132": { + "content": "<|15.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51133": { + "content": "<|15.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51134": { + "content": "<|15.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51135": { + "content": "<|15.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51136": { + "content": "<|15.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51137": { + "content": "<|15.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51138": { + "content": "<|15.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51139": { + "content": "<|15.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51140": { + "content": "<|15.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51141": { + "content": "<|15.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51142": { + "content": "<|15.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51143": { + "content": "<|15.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51144": { + "content": "<|15.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51145": { + "content": "<|15.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51146": { + "content": "<|15.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51147": { + "content": "<|15.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51148": { + "content": "<|15.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51149": { + "content": "<|15.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51150": { + "content": "<|15.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51151": { + "content": "<|15.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51152": { + "content": "<|15.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51153": { + "content": "<|15.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51154": { + "content": "<|15.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51155": { + "content": "<|15.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51156": { + "content": "<|15.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51157": { + "content": "<|15.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51158": { + "content": "<|15.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51159": { + "content": "<|15.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51160": { + "content": "<|15.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51161": { + "content": "<|15.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51162": { + "content": "<|15.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51163": { + "content": "<|15.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51164": { + "content": "<|16.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51165": { + "content": "<|16.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51166": { + "content": "<|16.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51167": { + "content": "<|16.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51168": { + "content": "<|16.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51169": { + "content": "<|16.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51170": { + "content": "<|16.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51171": { + "content": "<|16.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51172": { + "content": "<|16.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51173": { + "content": "<|16.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51174": { + "content": "<|16.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51175": { + "content": "<|16.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51176": { + "content": "<|16.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51177": { + "content": "<|16.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51178": { + "content": "<|16.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51179": { + "content": "<|16.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51180": { + "content": "<|16.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51181": { + "content": "<|16.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51182": { + "content": "<|16.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51183": { + "content": "<|16.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51184": { + "content": "<|16.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51185": { + "content": "<|16.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51186": { + "content": "<|16.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51187": { + "content": "<|16.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51188": { + "content": "<|16.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51189": { + "content": "<|16.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51190": { + "content": "<|16.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51191": { + "content": "<|16.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51192": { + "content": "<|16.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51193": { + "content": "<|16.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51194": { + "content": "<|16.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51195": { + "content": "<|16.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51196": { + "content": "<|16.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51197": { + "content": "<|16.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51198": { + "content": "<|16.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51199": { + "content": "<|16.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51200": { + "content": "<|16.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51201": { + "content": "<|16.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51202": { + "content": "<|16.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51203": { + "content": "<|16.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51204": { + "content": "<|16.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51205": { + "content": "<|16.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51206": { + "content": "<|16.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51207": { + "content": "<|16.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51208": { + "content": "<|16.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51209": { + "content": "<|16.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51210": { + "content": "<|16.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51211": { + "content": "<|16.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51212": { + "content": "<|16.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51213": { + "content": "<|16.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51214": { + "content": "<|17.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51215": { + "content": "<|17.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51216": { + "content": "<|17.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51217": { + "content": "<|17.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51218": { + "content": "<|17.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51219": { + "content": "<|17.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51220": { + "content": "<|17.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51221": { + "content": "<|17.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51222": { + "content": "<|17.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51223": { + "content": "<|17.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51224": { + "content": "<|17.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51225": { + "content": "<|17.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51226": { + "content": "<|17.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51227": { + "content": "<|17.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51228": { + "content": "<|17.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51229": { + "content": "<|17.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51230": { + "content": "<|17.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51231": { + "content": "<|17.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51232": { + "content": "<|17.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51233": { + "content": "<|17.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51234": { + "content": "<|17.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51235": { + "content": "<|17.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51236": { + "content": "<|17.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51237": { + "content": "<|17.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51238": { + "content": "<|17.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51239": { + "content": "<|17.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51240": { + "content": "<|17.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51241": { + "content": "<|17.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51242": { + "content": "<|17.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51243": { + "content": "<|17.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51244": { + "content": "<|17.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51245": { + "content": "<|17.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51246": { + "content": "<|17.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51247": { + "content": "<|17.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51248": { + "content": "<|17.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51249": { + "content": "<|17.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51250": { + "content": "<|17.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51251": { + "content": "<|17.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51252": { + "content": "<|17.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51253": { + "content": "<|17.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51254": { + "content": "<|17.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51255": { + "content": "<|17.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51256": { + "content": "<|17.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51257": { + "content": "<|17.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51258": { + "content": "<|17.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51259": { + "content": "<|17.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51260": { + "content": "<|17.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51261": { + "content": "<|17.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51262": { + "content": "<|17.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51263": { + "content": "<|17.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51264": { + "content": "<|18.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51265": { + "content": "<|18.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51266": { + "content": "<|18.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51267": { + "content": "<|18.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51268": { + "content": "<|18.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51269": { + "content": "<|18.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51270": { + "content": "<|18.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51271": { + "content": "<|18.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51272": { + "content": "<|18.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51273": { + "content": "<|18.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51274": { + "content": "<|18.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51275": { + "content": "<|18.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51276": { + "content": "<|18.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51277": { + "content": "<|18.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51278": { + "content": "<|18.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51279": { + "content": "<|18.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51280": { + "content": "<|18.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51281": { + "content": "<|18.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51282": { + "content": "<|18.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51283": { + "content": "<|18.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51284": { + "content": "<|18.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51285": { + "content": "<|18.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51286": { + "content": "<|18.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51287": { + "content": "<|18.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51288": { + "content": "<|18.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51289": { + "content": "<|18.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51290": { + "content": "<|18.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51291": { + "content": "<|18.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51292": { + "content": "<|18.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51293": { + "content": "<|18.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51294": { + "content": "<|18.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51295": { + "content": "<|18.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51296": { + "content": "<|18.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51297": { + "content": "<|18.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51298": { + "content": "<|18.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51299": { + "content": "<|18.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51300": { + "content": "<|18.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51301": { + "content": "<|18.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51302": { + "content": "<|18.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51303": { + "content": "<|18.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51304": { + "content": "<|18.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51305": { + "content": "<|18.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51306": { + "content": "<|18.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51307": { + "content": "<|18.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51308": { + "content": "<|18.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51309": { + "content": "<|18.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51310": { + "content": "<|18.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51311": { + "content": "<|18.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51312": { + "content": "<|18.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51313": { + "content": "<|18.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51314": { + "content": "<|19.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51315": { + "content": "<|19.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51316": { + "content": "<|19.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51317": { + "content": "<|19.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51318": { + "content": "<|19.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51319": { + "content": "<|19.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51320": { + "content": "<|19.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51321": { + "content": "<|19.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51322": { + "content": "<|19.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51323": { + "content": "<|19.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51324": { + "content": "<|19.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51325": { + "content": "<|19.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51326": { + "content": "<|19.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51327": { + "content": "<|19.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51328": { + "content": "<|19.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51329": { + "content": "<|19.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51330": { + "content": "<|19.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51331": { + "content": "<|19.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51332": { + "content": "<|19.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51333": { + "content": "<|19.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51334": { + "content": "<|19.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51335": { + "content": "<|19.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51336": { + "content": "<|19.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51337": { + "content": "<|19.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51338": { + "content": "<|19.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51339": { + "content": "<|19.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51340": { + "content": "<|19.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51341": { + "content": "<|19.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51342": { + "content": "<|19.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51343": { + "content": "<|19.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51344": { + "content": "<|19.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51345": { + "content": "<|19.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51346": { + "content": "<|19.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51347": { + "content": "<|19.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51348": { + "content": "<|19.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51349": { + "content": "<|19.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51350": { + "content": "<|19.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51351": { + "content": "<|19.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51352": { + "content": "<|19.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51353": { + "content": "<|19.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51354": { + "content": "<|19.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51355": { + "content": "<|19.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51356": { + "content": "<|19.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51357": { + "content": "<|19.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51358": { + "content": "<|19.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51359": { + "content": "<|19.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51360": { + "content": "<|19.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51361": { + "content": "<|19.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51362": { + "content": "<|19.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51363": { + "content": "<|19.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51364": { + "content": "<|20.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51365": { + "content": "<|20.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51366": { + "content": "<|20.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51367": { + "content": "<|20.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51368": { + "content": "<|20.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51369": { + "content": "<|20.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51370": { + "content": "<|20.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51371": { + "content": "<|20.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51372": { + "content": "<|20.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51373": { + "content": "<|20.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51374": { + "content": "<|20.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51375": { + "content": "<|20.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51376": { + "content": "<|20.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51377": { + "content": "<|20.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51378": { + "content": "<|20.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51379": { + "content": "<|20.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51380": { + "content": "<|20.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51381": { + "content": "<|20.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51382": { + "content": "<|20.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51383": { + "content": "<|20.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51384": { + "content": "<|20.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51385": { + "content": "<|20.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51386": { + "content": "<|20.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51387": { + "content": "<|20.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51388": { + "content": "<|20.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51389": { + "content": "<|20.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51390": { + "content": "<|20.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51391": { + "content": "<|20.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51392": { + "content": "<|20.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51393": { + "content": "<|20.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51394": { + "content": "<|20.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51395": { + "content": "<|20.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51396": { + "content": "<|20.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51397": { + "content": "<|20.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51398": { + "content": "<|20.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51399": { + "content": "<|20.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51400": { + "content": "<|20.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51401": { + "content": "<|20.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51402": { + "content": "<|20.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51403": { + "content": "<|20.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51404": { + "content": "<|20.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51405": { + "content": "<|20.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51406": { + "content": "<|20.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51407": { + "content": "<|20.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51408": { + "content": "<|20.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51409": { + "content": "<|20.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51410": { + "content": "<|20.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51411": { + "content": "<|20.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51412": { + "content": "<|20.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51413": { + "content": "<|20.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51414": { + "content": "<|21.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51415": { + "content": "<|21.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51416": { + "content": "<|21.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51417": { + "content": "<|21.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51418": { + "content": "<|21.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51419": { + "content": "<|21.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51420": { + "content": "<|21.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51421": { + "content": "<|21.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51422": { + "content": "<|21.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51423": { + "content": "<|21.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51424": { + "content": "<|21.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51425": { + "content": "<|21.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51426": { + "content": "<|21.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51427": { + "content": "<|21.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51428": { + "content": "<|21.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51429": { + "content": "<|21.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51430": { + "content": "<|21.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51431": { + "content": "<|21.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51432": { + "content": "<|21.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51433": { + "content": "<|21.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51434": { + "content": "<|21.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51435": { + "content": "<|21.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51436": { + "content": "<|21.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51437": { + "content": "<|21.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51438": { + "content": "<|21.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51439": { + "content": "<|21.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51440": { + "content": "<|21.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51441": { + "content": "<|21.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51442": { + "content": "<|21.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51443": { + "content": "<|21.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51444": { + "content": "<|21.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51445": { + "content": "<|21.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51446": { + "content": "<|21.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51447": { + "content": "<|21.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51448": { + "content": "<|21.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51449": { + "content": "<|21.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51450": { + "content": "<|21.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51451": { + "content": "<|21.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51452": { + "content": "<|21.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51453": { + "content": "<|21.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51454": { + "content": "<|21.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51455": { + "content": "<|21.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51456": { + "content": "<|21.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51457": { + "content": "<|21.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51458": { + "content": "<|21.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51459": { + "content": "<|21.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51460": { + "content": "<|21.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51461": { + "content": "<|21.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51462": { + "content": "<|21.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51463": { + "content": "<|21.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51464": { + "content": "<|22.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51465": { + "content": "<|22.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51466": { + "content": "<|22.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51467": { + "content": "<|22.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51468": { + "content": "<|22.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51469": { + "content": "<|22.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51470": { + "content": "<|22.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51471": { + "content": "<|22.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51472": { + "content": "<|22.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51473": { + "content": "<|22.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51474": { + "content": "<|22.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51475": { + "content": "<|22.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51476": { + "content": "<|22.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51477": { + "content": "<|22.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51478": { + "content": "<|22.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51479": { + "content": "<|22.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51480": { + "content": "<|22.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51481": { + "content": "<|22.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51482": { + "content": "<|22.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51483": { + "content": "<|22.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51484": { + "content": "<|22.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51485": { + "content": "<|22.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51486": { + "content": "<|22.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51487": { + "content": "<|22.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51488": { + "content": "<|22.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51489": { + "content": "<|22.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51490": { + "content": "<|22.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51491": { + "content": "<|22.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51492": { + "content": "<|22.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51493": { + "content": "<|22.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51494": { + "content": "<|22.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51495": { + "content": "<|22.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51496": { + "content": "<|22.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51497": { + "content": "<|22.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51498": { + "content": "<|22.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51499": { + "content": "<|22.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51500": { + "content": "<|22.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51501": { + "content": "<|22.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51502": { + "content": "<|22.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51503": { + "content": "<|22.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51504": { + "content": "<|22.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51505": { + "content": "<|22.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51506": { + "content": "<|22.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51507": { + "content": "<|22.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51508": { + "content": "<|22.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51509": { + "content": "<|22.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51510": { + "content": "<|22.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51511": { + "content": "<|22.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51512": { + "content": "<|22.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51513": { + "content": "<|22.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51514": { + "content": "<|23.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51515": { + "content": "<|23.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51516": { + "content": "<|23.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51517": { + "content": "<|23.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51518": { + "content": "<|23.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51519": { + "content": "<|23.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51520": { + "content": "<|23.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51521": { + "content": "<|23.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51522": { + "content": "<|23.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51523": { + "content": "<|23.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51524": { + "content": "<|23.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51525": { + "content": "<|23.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51526": { + "content": "<|23.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51527": { + "content": "<|23.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51528": { + "content": "<|23.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51529": { + "content": "<|23.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51530": { + "content": "<|23.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51531": { + "content": "<|23.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51532": { + "content": "<|23.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51533": { + "content": "<|23.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51534": { + "content": "<|23.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51535": { + "content": "<|23.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51536": { + "content": "<|23.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51537": { + "content": "<|23.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51538": { + "content": "<|23.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51539": { + "content": "<|23.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51540": { + "content": "<|23.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51541": { + "content": "<|23.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51542": { + "content": "<|23.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51543": { + "content": "<|23.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51544": { + "content": "<|23.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51545": { + "content": "<|23.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51546": { + "content": "<|23.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51547": { + "content": "<|23.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51548": { + "content": "<|23.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51549": { + "content": "<|23.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51550": { + "content": "<|23.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51551": { + "content": "<|23.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51552": { + "content": "<|23.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51553": { + "content": "<|23.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51554": { + "content": "<|23.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51555": { + "content": "<|23.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51556": { + "content": "<|23.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51557": { + "content": "<|23.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51558": { + "content": "<|23.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51559": { + "content": "<|23.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51560": { + "content": "<|23.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51561": { + "content": "<|23.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51562": { + "content": "<|23.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51563": { + "content": "<|23.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51564": { + "content": "<|24.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51565": { + "content": "<|24.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51566": { + "content": "<|24.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51567": { + "content": "<|24.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51568": { + "content": "<|24.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51569": { + "content": "<|24.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51570": { + "content": "<|24.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51571": { + "content": "<|24.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51572": { + "content": "<|24.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51573": { + "content": "<|24.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51574": { + "content": "<|24.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51575": { + "content": "<|24.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51576": { + "content": "<|24.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51577": { + "content": "<|24.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51578": { + "content": "<|24.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51579": { + "content": "<|24.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51580": { + "content": "<|24.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51581": { + "content": "<|24.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51582": { + "content": "<|24.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51583": { + "content": "<|24.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51584": { + "content": "<|24.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51585": { + "content": "<|24.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51586": { + "content": "<|24.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51587": { + "content": "<|24.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51588": { + "content": "<|24.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51589": { + "content": "<|24.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51590": { + "content": "<|24.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51591": { + "content": "<|24.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51592": { + "content": "<|24.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51593": { + "content": "<|24.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51594": { + "content": "<|24.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51595": { + "content": "<|24.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51596": { + "content": "<|24.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51597": { + "content": "<|24.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51598": { + "content": "<|24.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51599": { + "content": "<|24.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51600": { + "content": "<|24.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51601": { + "content": "<|24.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51602": { + "content": "<|24.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51603": { + "content": "<|24.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51604": { + "content": "<|24.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51605": { + "content": "<|24.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51606": { + "content": "<|24.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51607": { + "content": "<|24.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51608": { + "content": "<|24.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51609": { + "content": "<|24.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51610": { + "content": "<|24.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51611": { + "content": "<|24.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51612": { + "content": "<|24.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51613": { + "content": "<|24.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51614": { + "content": "<|25.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51615": { + "content": "<|25.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51616": { + "content": "<|25.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51617": { + "content": "<|25.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51618": { + "content": "<|25.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51619": { + "content": "<|25.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51620": { + "content": "<|25.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51621": { + "content": "<|25.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51622": { + "content": "<|25.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51623": { + "content": "<|25.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51624": { + "content": "<|25.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51625": { + "content": "<|25.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51626": { + "content": "<|25.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51627": { + "content": "<|25.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51628": { + "content": "<|25.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51629": { + "content": "<|25.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51630": { + "content": "<|25.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51631": { + "content": "<|25.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51632": { + "content": "<|25.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51633": { + "content": "<|25.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51634": { + "content": "<|25.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51635": { + "content": "<|25.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51636": { + "content": "<|25.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51637": { + "content": "<|25.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51638": { + "content": "<|25.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51639": { + "content": "<|25.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51640": { + "content": "<|25.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51641": { + "content": "<|25.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51642": { + "content": "<|25.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51643": { + "content": "<|25.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51644": { + "content": "<|25.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51645": { + "content": "<|25.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51646": { + "content": "<|25.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51647": { + "content": "<|25.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51648": { + "content": "<|25.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51649": { + "content": "<|25.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51650": { + "content": "<|25.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51651": { + "content": "<|25.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51652": { + "content": "<|25.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51653": { + "content": "<|25.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51654": { + "content": "<|25.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51655": { + "content": "<|25.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51656": { + "content": "<|25.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51657": { + "content": "<|25.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51658": { + "content": "<|25.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51659": { + "content": "<|25.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51660": { + "content": "<|25.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51661": { + "content": "<|25.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51662": { + "content": "<|25.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51663": { + "content": "<|25.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51664": { + "content": "<|26.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51665": { + "content": "<|26.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51666": { + "content": "<|26.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51667": { + "content": "<|26.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51668": { + "content": "<|26.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51669": { + "content": "<|26.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51670": { + "content": "<|26.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51671": { + "content": "<|26.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51672": { + "content": "<|26.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51673": { + "content": "<|26.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51674": { + "content": "<|26.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51675": { + "content": "<|26.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51676": { + "content": "<|26.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51677": { + "content": "<|26.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51678": { + "content": "<|26.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51679": { + "content": "<|26.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51680": { + "content": "<|26.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51681": { + "content": "<|26.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51682": { + "content": "<|26.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51683": { + "content": "<|26.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51684": { + "content": "<|26.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51685": { + "content": "<|26.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51686": { + "content": "<|26.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51687": { + "content": "<|26.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51688": { + "content": "<|26.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51689": { + "content": "<|26.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51690": { + "content": "<|26.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51691": { + "content": "<|26.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51692": { + "content": "<|26.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51693": { + "content": "<|26.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51694": { + "content": "<|26.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51695": { + "content": "<|26.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51696": { + "content": "<|26.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51697": { + "content": "<|26.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51698": { + "content": "<|26.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51699": { + "content": "<|26.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51700": { + "content": "<|26.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51701": { + "content": "<|26.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51702": { + "content": "<|26.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51703": { + "content": "<|26.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51704": { + "content": "<|26.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51705": { + "content": "<|26.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51706": { + "content": "<|26.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51707": { + "content": "<|26.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51708": { + "content": "<|26.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51709": { + "content": "<|26.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51710": { + "content": "<|26.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51711": { + "content": "<|26.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51712": { + "content": "<|26.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51713": { + "content": "<|26.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51714": { + "content": "<|27.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51715": { + "content": "<|27.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51716": { + "content": "<|27.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51717": { + "content": "<|27.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51718": { + "content": "<|27.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51719": { + "content": "<|27.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51720": { + "content": "<|27.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51721": { + "content": "<|27.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51722": { + "content": "<|27.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51723": { + "content": "<|27.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51724": { + "content": "<|27.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51725": { + "content": "<|27.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51726": { + "content": "<|27.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51727": { + "content": "<|27.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51728": { + "content": "<|27.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51729": { + "content": "<|27.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51730": { + "content": "<|27.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51731": { + "content": "<|27.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51732": { + "content": "<|27.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51733": { + "content": "<|27.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51734": { + "content": "<|27.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51735": { + "content": "<|27.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51736": { + "content": "<|27.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51737": { + "content": "<|27.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51738": { + "content": "<|27.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51739": { + "content": "<|27.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51740": { + "content": "<|27.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51741": { + "content": "<|27.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51742": { + "content": "<|27.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51743": { + "content": "<|27.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51744": { + "content": "<|27.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51745": { + "content": "<|27.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51746": { + "content": "<|27.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51747": { + "content": "<|27.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51748": { + "content": "<|27.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51749": { + "content": "<|27.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51750": { + "content": "<|27.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51751": { + "content": "<|27.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51752": { + "content": "<|27.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51753": { + "content": "<|27.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51754": { + "content": "<|27.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51755": { + "content": "<|27.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51756": { + "content": "<|27.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51757": { + "content": "<|27.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51758": { + "content": "<|27.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51759": { + "content": "<|27.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51760": { + "content": "<|27.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51761": { + "content": "<|27.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51762": { + "content": "<|27.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51763": { + "content": "<|27.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51764": { + "content": "<|28.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51765": { + "content": "<|28.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51766": { + "content": "<|28.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51767": { + "content": "<|28.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51768": { + "content": "<|28.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51769": { + "content": "<|28.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51770": { + "content": "<|28.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51771": { + "content": "<|28.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51772": { + "content": "<|28.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51773": { + "content": "<|28.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51774": { + "content": "<|28.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51775": { + "content": "<|28.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51776": { + "content": "<|28.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51777": { + "content": "<|28.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51778": { + "content": "<|28.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51779": { + "content": "<|28.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51780": { + "content": "<|28.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51781": { + "content": "<|28.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51782": { + "content": "<|28.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51783": { + "content": "<|28.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51784": { + "content": "<|28.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51785": { + "content": "<|28.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51786": { + "content": "<|28.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51787": { + "content": "<|28.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51788": { + "content": "<|28.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51789": { + "content": "<|28.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51790": { + "content": "<|28.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51791": { + "content": "<|28.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51792": { + "content": "<|28.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51793": { + "content": "<|28.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51794": { + "content": "<|28.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51795": { + "content": "<|28.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51796": { + "content": "<|28.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51797": { + "content": "<|28.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51798": { + "content": "<|28.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51799": { + "content": "<|28.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51800": { + "content": "<|28.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51801": { + "content": "<|28.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51802": { + "content": "<|28.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51803": { + "content": "<|28.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51804": { + "content": "<|28.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51805": { + "content": "<|28.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51806": { + "content": "<|28.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51807": { + "content": "<|28.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51808": { + "content": "<|28.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51809": { + "content": "<|28.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51810": { + "content": "<|28.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51811": { + "content": "<|28.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51812": { + "content": "<|28.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51813": { + "content": "<|28.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51814": { + "content": "<|29.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51815": { + "content": "<|29.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51816": { + "content": "<|29.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51817": { + "content": "<|29.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51818": { + "content": "<|29.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51819": { + "content": "<|29.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51820": { + "content": "<|29.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51821": { + "content": "<|29.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51822": { + "content": "<|29.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51823": { + "content": "<|29.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51824": { + "content": "<|29.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51825": { + "content": "<|29.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51826": { + "content": "<|29.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51827": { + "content": "<|29.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51828": { + "content": "<|29.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51829": { + "content": "<|29.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51830": { + "content": "<|29.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51831": { + "content": "<|29.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51832": { + "content": "<|29.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51833": { + "content": "<|29.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51834": { + "content": "<|29.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51835": { + "content": "<|29.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51836": { + "content": "<|29.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51837": { + "content": "<|29.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51838": { + "content": "<|29.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51839": { + "content": "<|29.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51840": { + "content": "<|29.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51841": { + "content": "<|29.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51842": { + "content": "<|29.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51843": { + "content": "<|29.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51844": { + "content": "<|29.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51845": { + "content": "<|29.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51846": { + "content": "<|29.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51847": { + "content": "<|29.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51848": { + "content": "<|29.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51849": { + "content": "<|29.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51850": { + "content": "<|29.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51851": { + "content": "<|29.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51852": { + "content": "<|29.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51853": { + "content": "<|29.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51854": { + "content": "<|29.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51855": { + "content": "<|29.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51856": { + "content": "<|29.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51857": { + "content": "<|29.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51858": { + "content": "<|29.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51859": { + "content": "<|29.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51860": { + "content": "<|29.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51861": { + "content": "<|29.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51862": { + "content": "<|29.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51863": { + "content": "<|29.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51864": { + "content": "<|30.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "additional_special_tokens": [ + "<|endoftext|>", + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nocaptions|>", + "<|notimestamps|>" + ], + "bos_token": "<|endoftext|>", + "clean_up_tokenization_spaces": true, + "eos_token": "<|endoftext|>", + "errors": "replace", + "model_max_length": 1024, + "pad_token": "<|endoftext|>", + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "tokenizer_class": "WhisperTokenizer", + "unk_token": "<|endoftext|>" +} diff --git a/training_args.bin b/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..0efdb18a2a85fbd62eb83ec399852545e5bfdc6e --- /dev/null +++ b/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1562c17bb2dc7592b45af48209c138ce71faddb67bef288ecaf31f1c50f864ae +size 5048 diff --git a/vocab.json b/vocab.json new file mode 100644 index 0000000000000000000000000000000000000000..90e797dd4fd05d9dea443d702ca06be2463c5f2f --- /dev/null +++ b/vocab.json @@ -0,0 +1,50260 @@ +{ + "": 50256, + "!": 0, + "!!": 1432, + "!!!": 4589, + "!!!!": 8153, + "!!!!!": 28493, + "!!!!!!": 50199, + "!!!!!!!!": 28618, + "!!\"": 44556, + "!!)": 33826, + "!!]": 46990, + "!\"": 2963, + "!\",": 44815, + "!\".": 35323, + "!'": 13840, + "!(": 46824, + "!)": 5700, + "!*": 32854, + "!,": 32652, + "!.": 37817, + "!..": 44311, + "!...": 34205, + "!": 21732, + "\"?": 8930, + "\"]": 23711, + "#": 2, + "$": 3, + "%": 4, + "%,": 8923, + "%.": 6856, + "&": 5, + "'": 6, + "'!": 30159, + "''": 15025, + "')": 37380, + "',": 6098, + "'.": 5004, + "'...": 37474, + "'?": 16265, + "'D": 41063, + "'M": 25310, + "'RE": 39040, + "'S": 11460, + "'T": 18010, + "']": 48038, + "'d": 1116, + "'ll": 603, + "'m": 478, + "'re": 434, + "'s": 311, + "'t": 380, + "'ve": 600, + "(": 7, + "()": 45191, + "(?)": 20396, + ")": 8, + ")!": 36380, + ")\"": 33739, + ")(": 29422, + "))": 9383, + "),": 3824, + ").": 3050, + ")...": 40144, + "):": 4507, + ");": 34446, + ")?": 25107, + ")]": 8245, + "*": 9, + "*)": 34634, + "**": 4852, + "***": 13684, + "****": 24396, + "+": 10, + "++": 25472, + "+,": 46797, + "+.": 45585, + ",": 11, + ",\"": 2494, + ",'": 12529, + ",)": 36881, + ",,": 20387, + ",-": 44013, + ",.": 40698, + ",...": 16007, + ",": 50257, + "=": 28, + "=\"": 13114, + "=\"#": 34106, + "=#": 49872, + "==": 2945, + ">": 29, + ">-": 33335, + "><": 29986, + ">>": 893, + "?": 30, + "?!": 3529, + "?!\"": 35271, + "?!?": 38825, + "?!?!": 44587, + "?\"": 1811, + "?\",": 29359, + "?\".": 25760, + "?'": 8569, + "?)": 4827, + "?,": 22753, + "?-": 38337, + "?.": 27552, + "?..": 46863, + "?...": 32865, + "?": 14350, + "Ġ-...": 41975, + "Ġ->": 33798, + "Ġ-[": 14635, + "Ġ-âĻª": 45499, + "Ġ.": 2411, + "Ġ..": 4386, + "Ġ...": 1097, + "Ġ...\"": 39463, + "Ġ....": 13368, + "Ġ.....": 46915, + "Ġ/": 2460, + "Ġ//": 29178, + "Ġ0": 1958, + "Ġ00": 7143, + "Ġ000": 13711, + "Ġ01": 23185, + "Ġ02": 37202, + "Ġ03": 43677, + "Ġ04": 50022, + "Ġ09": 48729, + "Ġ1": 502, + "Ġ10": 1266, + "Ġ100": 2319, + "Ġ1000": 9714, + "Ġ101": 21055, + "Ġ102": 45937, + "Ġ103": 48784, + "Ġ104": 47757, + "Ġ105": 33705, + "Ġ108": 41342, + "Ġ1080": 24547, + "Ġ11": 2975, + "Ġ110": 20154, + "Ġ112": 45835, + "Ġ115": 39436, + "Ġ12": 2272, + "Ġ120": 10411, + "Ġ1200": 29139, + "Ġ123": 34466, + "Ġ125": 25276, + "Ġ127": 47561, + "Ġ128": 29810, + "Ġ13": 3705, + "Ġ130": 19966, + "Ġ1300": 48156, + "Ġ135": 42652, + "Ġ14": 3499, + "Ġ140": 21548, + "Ġ1400": 46795, + "Ġ144": 45218, + "Ġ15": 2119, + "Ġ150": 8451, + "Ġ1500": 22671, + "Ġ16": 3165, + "Ġ160": 21243, + "Ġ1600": 36885, + "Ġ17": 3282, + "Ġ170": 27228, + "Ġ1700": 43373, + "Ġ175": 41165, + "Ġ18": 2443, + "Ġ180": 11971, + "Ġ1800": 24327, + "Ġ1890": 47725, + "Ġ19": 1294, + "Ġ190": 37609, + "Ġ1900": 28898, + "Ġ1914": 45131, + "Ġ1917": 42757, + "Ġ1918": 36588, + "Ġ1919": 46484, + "Ġ1920": 22003, + "Ġ1930": 22350, + "Ġ1933": 48390, + "Ġ1938": 46398, + "Ġ1939": 37785, + "Ġ194": 9754, + "Ġ1940": 24158, + "Ġ1941": 35364, + "Ġ1942": 37549, + "Ġ1943": 40402, + "Ġ1944": 35133, + "Ġ1945": 28253, + "Ġ1946": 46062, + "Ġ1947": 40417, + "Ġ1948": 38833, + "Ġ1949": 46476, + "Ġ195": 10858, + "Ġ1950": 18141, + "Ġ1953": 48528, + "Ġ1954": 46590, + "Ġ1955": 46881, + "Ġ1956": 46379, + "Ġ1957": 46256, + "Ġ1958": 45868, + "Ġ1959": 45608, + "Ġ196": 7998, + "Ġ1960": 16157, + "Ġ1961": 41720, + "Ġ1962": 39498, + "Ġ1963": 38698, + "Ġ1964": 34314, + "Ġ1965": 33809, + "Ġ1966": 39157, + "Ġ1967": 33193, + "Ġ1968": 29930, + "Ġ1969": 32090, + "Ġ197": 7560, + "Ġ1970": 14577, + "Ġ1971": 34578, + "Ġ1972": 32952, + "Ġ1973": 33530, + "Ġ1974": 33422, + "Ġ1975": 32454, + "Ġ1976": 33978, + "Ġ1977": 35092, + "Ġ1978": 33191, + "Ġ1979": 30595, + "Ġ198": 6375, + "Ġ1980": 13626, + "Ġ1981": 33117, + "Ġ1982": 31352, + "Ġ1983": 31758, + "Ġ1984": 27127, + "Ġ1985": 28962, + "Ġ1986": 27895, + "Ġ1987": 29008, + "Ġ1988": 27816, + "Ġ1989": 22427, + "Ġ199": 4303, + "Ġ1990": 13384, + "Ġ1991": 24097, + "Ġ1992": 23952, + "Ġ1993": 25137, + "Ġ1994": 22736, + "Ġ1995": 22601, + "Ġ1996": 22690, + "Ġ1997": 22383, + "Ġ1998": 21404, + "Ġ1999": 19952, + "Ġ2": 568, + "Ġ20": 945, + "Ġ200": 2331, + "Ġ2000": 8132, + "Ġ2001": 16382, + "Ġ2002": 17822, + "Ġ2003": 16416, + "Ġ2004": 15817, + "Ġ2005": 14394, + "Ġ2006": 14062, + "Ġ2007": 12656, + "Ġ2008": 10389, + "Ġ2009": 11453, + "Ġ201": 1525, + "Ġ2010": 9657, + "Ġ2011": 10154, + "Ġ2012": 9125, + "Ġ2013": 9012, + "Ġ2014": 8227, + "Ġ2015": 7546, + "Ġ2016": 6549, + "Ġ2017": 6591, + "Ġ2018": 6096, + "Ġ2019": 6071, + "Ġ2020": 4808, + "Ġ2021": 7201, + "Ġ2022": 20229, + "Ġ2023": 44377, + "Ġ2024": 45237, + "Ġ2025": 39209, + "Ġ2030": 28638, + "Ġ2050": 38308, + "Ġ21": 5080, + "Ġ210": 42692, + "Ġ22": 5853, + "Ġ220": 29387, + "Ġ23": 6673, + "Ġ230": 35311, + "Ġ24": 4022, + "Ġ240": 26837, + "Ġ25": 3552, + "Ġ250": 11650, + "Ġ2500": 41171, + "Ġ256": 38882, + "Ġ26": 7551, + "Ġ260": 44624, + "Ġ27": 7634, + "Ġ270": 40774, + "Ġ28": 7562, + "Ġ280": 41229, + "Ġ29": 9413, + "Ġ3": 805, + "Ġ30": 2217, + "Ġ300": 6641, + "Ġ3000": 20984, + "Ġ31": 10353, + "Ġ32": 8858, + "Ġ320": 42429, + "Ġ33": 11816, + "Ġ330": 45374, + "Ġ34": 12790, + "Ġ35": 6976, + "Ġ350": 18065, + "Ġ36": 8652, + "Ġ360": 13898, + "Ġ365": 22046, + "Ġ37": 13435, + "Ġ38": 12843, + "Ġ39": 15238, + "Ġ4": 1017, + "Ġ40": 3356, + "Ġ400": 8423, + "Ġ4000": 31104, + "Ġ401": 37510, + "Ġ41": 18173, + "Ġ42": 14034, + "Ġ43": 17914, + "Ġ44": 16408, + "Ġ45": 6905, + "Ġ450": 26034, + "Ġ46": 17835, + "Ġ47": 16953, + "Ġ48": 11174, + "Ġ49": 16513, + "Ġ5": 1025, + "Ġ50": 2625, + "Ġ500": 5923, + "Ġ5000": 23777, + "Ġ51": 18485, + "Ġ52": 18079, + "Ġ53": 21860, + "Ġ54": 20793, + "Ġ55": 12330, + "Ġ550": 42514, + "Ġ56": 19687, + "Ġ57": 21423, + "Ġ58": 21786, + "Ġ59": 24624, + "Ġ6": 1386, + "Ġ60": 4060, + "Ġ600": 11849, + "Ġ6000": 41789, + "Ġ61": 28294, + "Ġ62": 24536, + "Ġ63": 25082, + "Ġ64": 12145, + "Ġ65": 11624, + "Ġ650": 38566, + "Ġ66": 21126, + "Ġ67": 23879, + "Ġ68": 23317, + "Ġ69": 28267, + "Ġ7": 1614, + "Ġ70": 5285, + "Ġ700": 15204, + "Ġ71": 30942, + "Ġ72": 18731, + "Ġ720": 40881, + "Ġ73": 28387, + "Ġ74": 28868, + "Ġ75": 9562, + "Ġ750": 31682, + "Ġ76": 24733, + "Ġ77": 25546, + "Ġ78": 26369, + "Ġ79": 32803, + "Ġ8": 1649, + "Ġ80": 4688, + "Ġ800": 13083, + "Ġ81": 30827, + "Ġ82": 29097, + "Ġ83": 30997, + "Ġ84": 29018, + "Ġ85": 14695, + "Ġ86": 26687, + "Ġ87": 27990, + "Ġ88": 24587, + "Ġ89": 31877, + "Ġ9": 1722, + "Ġ90": 4289, + "Ġ900": 22016, + "Ġ91": 31064, + "Ġ911": 26901, + "Ġ92": 28225, + "Ġ93": 28876, + "Ġ94": 30849, + "Ġ95": 13420, + "Ġ96": 24124, + "Ġ97": 23399, + "Ġ98": 20860, + "Ġ99": 11803, + "Ġ:": 1982, + "Ġ:(": 35495, + "Ġ:)": 11201, + "Ġ;": 12562, + "Ġ;)": 41540, + "Ġ<": 2627, + "Ġ": 12331, + "Ġ>>": 902, + "Ġ>>:": 22040, + "Ġ>>>": 13793, + "Ġ>>[": 45687, + "Ġ?": 2506, + "Ġ?!": 31363, + "Ġ?\"": 37266, + "Ġ??": 37969, + "Ġ???": 29678, + "Ġ?]": 16587, + "Ġ@": 10428, + "ĠA": 316, + "ĠAA": 30680, + "ĠAAA": 34347, + "ĠAB": 13838, + "ĠABC": 22342, + "ĠABOUT": 50249, + "ĠABS": 41707, + "ĠAC": 8157, + "ĠACC": 42251, + "ĠACE": 44606, + "ĠACL": 43873, + "ĠACT": 40341, + "ĠAD": 9135, + "ĠADA": 39354, + "ĠADAM": 34938, + "ĠADHD": 38680, + "ĠAE": 32207, + "ĠAF": 20389, + "ĠAG": 28406, + "ĠAGA": 49133, + "ĠAH": 25888, + "ĠAI": 7318, + "ĠAIDS": 27929, + "ĠAJ": 32759, + "ĠAK": 24789, + "ĠAKA": 45933, + "ĠAL": 7056, + "ĠALEX": 27351, + "ĠALISSA": 39430, + "ĠALL": 14824, + "ĠAM": 6475, + "ĠAMD": 34808, + "ĠAMP": 31616, + "ĠAMY": 31410, + "ĠAN": 5252, + "ĠAND": 8093, + "ĠANDREW": 34504, + "ĠANNOUNCER": 35629, + "ĠANY": 39222, + "ĠAO": 40684, + "ĠAP": 5372, + "ĠAPI": 9362, + "ĠAPIs": 21445, + "ĠAPP": 22513, + "ĠAPPLAUSE": 35298, + "ĠAR": 8943, + "ĠARE": 22515, + "ĠARM": 45209, + "ĠAS": 7469, + "ĠASH": 20146, + "ĠASHLEY": 23834, + "ĠASMR": 31300, + "ĠAT": 8872, + "ĠATM": 46455, + "ĠATP": 39202, + "ĠAU": 7171, + "ĠAUDI": 8029, + "ĠAUDIENCE": 8155, + "ĠAV": 30198, + "ĠAW": 25815, + "ĠAWS": 17650, + "ĠAZ": 49698, + "ĠAa": 21460, + "ĠAaa": 35820, + "ĠAaah": 48381, + "ĠAah": 32616, + "ĠAaron": 14018, + "ĠAb": 2847, + "ĠAbb": 32673, + "ĠAbby": 27726, + "ĠAbd": 27548, + "ĠAbdul": 42591, + "ĠAbdullah": 45625, + "ĠAbe": 38472, + "ĠAbend": 36194, + "ĠAber": 5992, + "ĠAbg": 35407, + "ĠAbgeord": 40730, + "ĠAbi": 31205, + "ĠAbigail": 47174, + "ĠAboriginal": 36577, + "ĠAbout": 7769, + "ĠAbove": 32691, + "ĠAbr": 31717, + "ĠAbraham": 17782, + "ĠAbs": 5813, + "ĠAbsol": 43965, + "ĠAbsolutely": 7021, + "ĠAbst": 46853, + "ĠAbu": 26874, + "ĠAc": 5097, + "ĠAcad": 9740, + "ĠAcademic": 36139, + "ĠAcademy": 11735, + "ĠAcc": 5725, + "ĠAccept": 39957, + "ĠAccess": 17166, + "ĠAccording": 7328, + "ĠAccount": 24558, + "ĠAce": 24900, + "ĠAch": 15847, + "ĠAcho": 40731, + "ĠAcross": 34527, + "ĠAct": 3251, + "ĠActing": 42413, + "ĠAction": 16261, + "ĠActiv": 28550, + "ĠActive": 26635, + "ĠActor": 45457, + "ĠActs": 32363, + "ĠActually": 5135, + "ĠAd": 1999, + "ĠAda": 32276, + "ĠAdam": 7938, + "ĠAdams": 25214, + "ĠAdapt": 49643, + "ĠAdd": 5349, + "ĠAdding": 31204, + "ĠAdditional": 44272, + "ĠAdditionally": 19927, + "ĠAde": 43177, + "ĠAdemás": 34621, + "ĠAdjust": 34049, + "ĠAdm": 46292, + "ĠAdminist": 13322, + "ĠAdministration": 17187, + "ĠAdmiral": 38097, + "ĠAdobe": 24862, + "ĠAdri": 32447, + "ĠAdrian": 31746, + "ĠAds": 44325, + "ĠAdult": 47987, + "ĠAdv": 13634, + "ĠAdvance": 44425, + "ĠAdvanced": 26951, + "ĠAdvent": 17856, + "ĠAdventure": 26718, + "ĠAdventures": 48818, + "ĠAdvis": 31407, + "ĠAdvisor": 49719, + "ĠAdvisory": 39816, + "ĠAeg": 46085, + "ĠAer": 32459, + "ĠAf": 3325, + "ĠAfD": 28413, + "ĠAff": 12840, + "ĠAffairs": 21721, + "ĠAffordable": 41337, + "ĠAfghan": 11393, + "ĠAfghanistan": 13658, + "ĠAfric": 4390, + "ĠAfrica": 7349, + "ĠAfrican": 7312, + "ĠAfricans": 42228, + "ĠAfter": 2381, + "ĠAfterwards": 41357, + "ĠAg": 2725, + "ĠAgain": 3764, + "ĠAgainst": 29995, + "ĠAge": 16280, + "ĠAgency": 21649, + "ĠAgent": 27174, + "ĠAges": 37362, + "ĠAgg": 41512, + "ĠAgora": 16023, + "ĠAgr": 24454, + "ĠAgre": 29324, + "ĠAgreement": 40572, + "ĠAgric": 27587, + "ĠAgriculture": 35966, + "ĠAh": 2438, + "ĠAha": 27448, + "ĠAhh": 17116, + "ĠAhhh": 27185, + "ĠAhmad": 35911, + "ĠAhmed": 39189, + "ĠAhora": 18840, + "ĠAhÃŃ": 49924, + "ĠAi": 16993, + "ĠAid": 39916, + "ĠAim": 47796, + "ĠAin": 29672, + "ĠAir": 5774, + "ĠAirPods": 43247, + "ĠAirbnb": 38232, + "ĠAires": 47058, + "ĠAirl": 34421, + "ĠAirlines": 38788, + "ĠAirport": 25784, + "ĠAixò": 31869, + "ĠAj": 25862, + "ĠAk": 9629, + "ĠAkbar": 48665, + "ĠAkt": 32850, + "ĠAku": 41120, + "ĠAl": 967, + "ĠAla": 46289, + "ĠAlab": 20302, + "ĠAlabama": 20898, + "ĠAladdin": 45071, + "ĠAlan": 16442, + "ĠAlaska": 19553, + "ĠAlb": 32223, + "ĠAlban": 41547, + "ĠAlber": 26361, + "ĠAlbert": 20812, + "ĠAlberta": 43279, + "ĠAlberto": 45709, + "ĠAlcohol": 48779, + "ĠAld": 24031, + "ĠAle": 9366, + "ĠAlej": 44568, + "ĠAlert": 44939, + "ĠAlex": 5202, + "ĠAlexa": 22595, + "ĠAlexand": 28800, + "ĠAlexander": 14845, + "ĠAlexandra": 45546, + "ĠAlexandria": 41943, + "ĠAlexis": 39826, + "ĠAlf": 21996, + "ĠAlfred": 28327, + "ĠAlg": 35014, + "ĠAlger": 48681, + "ĠAlgun": 46816, + "ĠAli": 12020, + "ĠAlice": 16004, + "ĠAlicia": 38153, + "ĠAlien": 32396, + "ĠAlison": 41001, + "ĠAll": 1057, + "ĠAllah": 4574, + "ĠAllahu": 44351, + "ĠAllan": 45902, + "ĠAlle": 25318, + "ĠAlleg": 47486, + "ĠAllen": 17160, + "ĠAlles": 27633, + "ĠAllez": 29616, + "ĠAlliance": 21859, + "ĠAllied": 45620, + "ĠAllies": 44949, + "ĠAllison": 32638, + "ĠAllow": 32225, + "ĠAlly": 46776, + "ĠAllÄģh": 41778, + "ĠAlm": 14344, + "ĠAlma": 42439, + "ĠAlmighty": 16849, + "ĠAlmost": 12627, + "ĠAlo": 35625, + "ĠAlone": 42056, + "ĠAlong": 17457, + "ĠAlors": 9946, + "ĠAlpha": 20588, + "ĠAlready": 23741, + "ĠAlright": 2798, + "ĠAlrighty": 43301, + "ĠAls": 12948, + "ĠAlso": 2743, + "ĠAlt": 15992, + "ĠAlter": 32608, + "ĠAltern": 23830, + "ĠAlternatively": 46167, + "ĠAlthough": 5780, + "ĠAlto": 50066, + "ĠAlum": 33134, + "ĠAlumni": 35699, + "ĠAlways": 11270, + "ĠAly": 27008, + "ĠAlz": 26804, + "ĠAlzheimer": 27932, + "ĠAlém": 44457, + "ĠAm": 2012, + "ĠAma": 14171, + "ĠAman": 35466, + "ĠAmanda": 20431, + "ĠAmazing": 14165, + "ĠAmazon": 6795, + "ĠAmb": 17196, + "ĠAmbassador": 28506, + "ĠAmber": 29407, + "ĠAmelia": 42814, + "ĠAmen": 14092, + "ĠAmend": 20404, + "ĠAmendment": 21443, + "ĠAmer": 22597, + "ĠAmeric": 1656, + "ĠAmerica": 3374, + "ĠAmerican": 2665, + "ĠAmericans": 6280, + "ĠAmericas": 38415, + "ĠAmerika": 42345, + "ĠAmong": 16119, + "ĠAmsterdam": 28291, + "ĠAmy": 12651, + "ĠAmérica": 48053, + "ĠAn": 1107, + "ĠAna": 21202, + "ĠAnakin": 47218, + "ĠAnal": 16128, + "ĠAnalysis": 38172, + "ĠAnalyt": 23688, + "ĠAnalytics": 25944, + "ĠAnat": 42628, + "ĠAnch": 39547, + "ĠAncient": 28352, + "ĠAnd": 400, + "ĠAnda": 40480, + "ĠAnders": 33988, + "ĠAnderson": 18768, + "ĠAndre": 20667, + "ĠAndrea": 24215, + "ĠAndreas": 38785, + "ĠAndrew": 10110, + "ĠAndroid": 8853, + "ĠAndy": 13285, + "ĠAnfang": 25856, + "ĠAng": 4521, + "ĠAngeb": 44301, + "ĠAngel": 14902, + "ĠAngela": 20848, + "ĠAngeles": 12292, + "ĠAngels": 37950, + "ĠAngie": 48829, + "ĠAnglo": 49570, + "ĠAngry": 49860, + "ĠAngst": 28622, + "ĠAngular": 34107, + "ĠAnh": 23574, + "ĠAnim": 21691, + "ĠAnimal": 24358, + "ĠAnimals": 47164, + "ĠAnimation": 44635, + "ĠAnime": 48615, + "ĠAnita": 44528, + "ĠAnk": 42483, + "ĠAnn": 8860, + "ĠAnna": 12899, + "ĠAnne": 13706, + "ĠAnnie": 26781, + "ĠAnnouncer": 36640, + "ĠAnnual": 46030, + "ĠAnother": 3996, + "ĠAns": 14590, + "ĠAnsch": 45062, + "ĠAnswer": 24545, + "ĠAnt": 5130, + "ĠAntar": 30536, + "ĠAntarctica": 39866, + "ĠAntes": 39325, + "ĠAnth": 12727, + "ĠAnthony": 15853, + "ĠAnti": 27757, + "ĠAnton": 15291, + "ĠAntonio": 22527, + "ĠAntrag": 34807, + "ĠAntwort": 34693, + "ĠAny": 2639, + "ĠAnybody": 19082, + "ĠAnyone": 14643, + "ĠAnything": 11998, + "ĠAnytime": 39401, + "ĠAnyway": 5684, + "ĠAnyways": 15585, + "ĠAo": 35208, + "ĠAp": 8723, + "ĠApa": 37831, + "ĠApache": 46597, + "ĠApart": 24111, + "ĠAph": 41775, + "ĠApollo": 25187, + "ĠApost": 31467, + "ĠApp": 3132, + "ĠApparently": 16755, + "ĠAppe": 41322, + "ĠApplause": 19281, + "ĠApple": 6373, + "ĠApplic": 26519, + "ĠApplication": 39512, + "ĠApply": 25264, + "ĠAppreci": 33669, + "ĠAppreciate": 37601, + "ĠAppro": 29551, + "ĠApps": 32231, + "ĠApr": 6305, + "ĠApril": 6929, + "ĠAprès": 29265, + "ĠAqu": 8728, + "ĠAqua": 45591, + "ĠAqui": 23089, + "ĠAquÃŃ": 24386, + "ĠAr": 1587, + "ĠAra": 18601, + "ĠArab": 8625, + "ĠArabia": 21610, + "ĠArabic": 19938, + "ĠArabs": 39770, + "ĠArbeit": 18604, + "ĠArbeits": 23262, + "ĠArc": 21727, + "ĠArch": 10984, + "ĠArchitect": 29306, + "ĠArchitecture": 43049, + "ĠArchives": 39258, + "ĠArctic": 27241, + "ĠArduino": 39539, + "ĠAre": 2014, + "ĠArea": 19405, + "ĠAren": 15464, + "ĠArena": 34290, + "ĠArg": 40081, + "ĠArgent": 15183, + "ĠArgentina": 18336, + "ĠArgh": 45851, + "ĠArgu": 48560, + "ĠAri": 9433, + "ĠAriana": 43296, + "ĠAriel": 37201, + "ĠArin": 24209, + "ĠArist": 31310, + "ĠAristotle": 42368, + "ĠArizona": 14723, + "ĠArk": 16427, + "ĠArkansas": 31386, + "ĠArm": 11893, + "ĠArmed": 42024, + "ĠArmen": 22302, + "ĠArmenia": 45925, + "ĠArmenian": 41581, + "ĠArmor": 44679, + "ĠArms": 42561, + "ĠArmstrong": 36100, + "ĠArmy": 9583, + "ĠArnold": 30406, + "ĠAround": 17633, + "ĠArri": 45188, + "ĠArrow": 40269, + "ĠArsen": 41218, + "ĠArsenal": 49156, + "ĠArt": 5735, + "ĠArtem": 39210, + "ĠArthur": 19624, + "ĠArticle": 35230, + "ĠArtist": 39504, + "ĠArts": 12407, + "ĠAry": 39960, + "ĠAs": 1018, + "ĠAsh": 10279, + "ĠAshe": 45006, + "ĠAshley": 19571, + "ĠAsia": 10038, + "ĠAsian": 10645, + "ĠAsians": 47724, + "ĠAside": 33726, + "ĠAsk": 12320, + "ĠAss": 6281, + "ĠAssad": 40122, + "ĠAssass": 35355, + "ĠAssassin": 43176, + "ĠAssembly": 20399, + "ĠAssessment": 47643, + "ĠAssim": 40376, + "ĠAssist": 49633, + "ĠAssistance": 46805, + "ĠAssistant": 14890, + "ĠAssoci": 8619, + "ĠAssociate": 28520, + "ĠAssociation": 10734, + "ĠAst": 12884, + "ĠAstra": 45242, + "ĠAstron": 36819, + "ĠAsÃŃ": 17419, + "ĠAt": 1711, + "ĠAtari": 41381, + "ĠAth": 16487, + "ĠAthena": 36827, + "ĠAthens": 32530, + "ĠAthlet": 34318, + "ĠAtl": 11000, + "ĠAtlanta": 20225, + "ĠAtlantic": 20233, + "ĠAtlas": 32485, + "ĠAtt": 7298, + "ĠAttack": 22477, + "ĠAttend": 46827, + "ĠAttention": 31858, + "ĠAttorney": 23283, + "ĠAté": 31793, + "ĠAu": 12160, + "ĠAub": 36927, + "ĠAuch": 13382, + "ĠAuckland": 33976, + "ĠAud": 8821, + "ĠAudi": 28943, + "ĠAudience": 23517, + "ĠAudio": 25706, + "ĠAudrey": 31808, + "ĠAuf": 9462, + "ĠAufg": 29648, + "ĠAufgabe": 40070, + "ĠAuft": 39119, + "ĠAug": 6088, + "ĠAugen": 29692, + "ĠAugust": 6897, + "ĠAujourd": 32650, + "ĠAun": 30265, + "ĠAunque": 45068, + "ĠAunt": 17535, + "ĠAuntie": 33878, + "ĠAur": 26945, + "ĠAurora": 40663, + "ĠAus": 9039, + "ĠAuss": 21286, + "ĠAust": 4126, + "ĠAustin": 15356, + "ĠAustral": 5273, + "ĠAustralia": 7060, + "ĠAustralian": 13337, + "ĠAustralians": 38108, + "ĠAustria": 26501, + "ĠAustrian": 41507, + "ĠAusw": 48500, + "ĠAut": 6049, + "ĠAuth": 40231, + "ĠAuthor": 20216, + "ĠAuthority": 29824, + "ĠAuto": 13738, + "ĠAutob": 49909, + "ĠAutom": 24619, + "ĠAutumn": 45597, + "ĠAuÃŁerdem": 47834, + "ĠAv": 11667, + "ĠAvant": 44822, + "ĠAvatar": 44748, + "ĠAve": 23650, + "ĠAvec": 31720, + "ĠAven": 13573, + "ĠAvengers": 25430, + "ĠAvenue": 22454, + "ĠAvi": 40712, + "ĠAvo": 36175, + "ĠAvoid": 41061, + "ĠAw": 6381, + "ĠAwak": 25274, + "ĠAward": 13894, + "ĠAwards": 22187, + "ĠAware": 43949, + "ĠAway": 36957, + "ĠAwesome": 10391, + "ĠAww": 22007, + "ĠAx": 20118, + "ĠAy": 9081, + "ĠAye": 13377, + "ĠAz": 7607, + "ĠAzer": 32580, + "ĠAzerbai": 41937, + "ĠAzerbaijan": 48815, + "ĠAzure": 11969, + "ĠAÃŃ": 22175, + "ĠB": 363, + "ĠBA": 21050, + "ĠBACK": 42467, + "ĠBAR": 27952, + "ĠBB": 19168, + "ĠBBC": 22669, + "ĠBBQ": 40969, + "ĠBC": 14359, + "ĠBCE": 49369, + "ĠBE": 13513, + "ĠBEC": 45090, + "ĠBEN": 31613, + "ĠBER": 42488, + "ĠBET": 41804, + "ĠBETH": 36480, + "ĠBH": 40342, + "ĠBI": 23524, + "ĠBIG": 39761, + "ĠBILL": 28062, + "ĠBJ": 37830, + "ĠBL": 15132, + "ĠBLACK": 43408, + "ĠBM": 15901, + "ĠBMW": 21355, + "ĠBO": 22785, + "ĠBOB": 43765, + "ĠBON": 48524, + "ĠBOY": 34909, + "ĠBP": 40533, + "ĠBR": 10262, + "ĠBRA": 30777, + "ĠBRAND": 41466, + "ĠBRANDON": 46940, + "ĠBRE": 41450, + "ĠBRI": 27466, + "ĠBRIAN": 31434, + "ĠBROWN": 37705, + "ĠBS": 27253, + "ĠBT": 31144, + "ĠBTS": 17951, + "ĠBU": 31142, + "ĠBUR": 37270, + "ĠBUT": 23073, + "ĠBY": 26930, + "ĠBa": 6777, + "ĠBab": 15820, + "ĠBaba": 22529, + "ĠBabe": 44127, + "ĠBaby": 9425, + "ĠBabylon": 30278, + "ĠBach": 30920, + "ĠBachelor": 23193, + "ĠBack": 5833, + "ĠBackground": 36904, + "ĠBacon": 42460, + "ĠBad": 11523, + "ĠBaek": 38913, + "ĠBag": 24377, + "ĠBagh": 45487, + "ĠBah": 14782, + "ĠBahn": 44337, + "ĠBai": 25269, + "ĠBailey": 28192, + "ĠBak": 12063, + "ĠBake": 42597, + "ĠBaker": 25780, + "ĠBal": 13140, + "ĠBalance": 41899, + "ĠBald": 27306, + "ĠBaldwin": 46050, + "ĠBali": 40664, + "ĠBalk": 36289, + "ĠBall": 10744, + "ĠBalt": 18294, + "ĠBaltimore": 22749, + "ĠBam": 26630, + "ĠBan": 13850, + "ĠBana": 33942, + "ĠBanana": 39588, + "ĠBand": 15462, + "ĠBang": 11538, + "ĠBangkok": 43055, + "ĠBangl": 32123, + "ĠBangladesh": 35260, + "ĠBank": 8915, + "ĠBanks": 33081, + "ĠBao": 42099, + "ĠBapt": 25991, + "ĠBaptist": 32410, + "ĠBar": 4156, + "ĠBarack": 31705, + "ĠBarb": 14876, + "ĠBarbara": 19214, + "ĠBarbie": 33884, + "ĠBarcel": 20496, + "ĠBarcelona": 21247, + "ĠBard": 26841, + "ĠBardzo": 38559, + "ĠBare": 43957, + "ĠBark": 36275, + "ĠBarn": 21605, + "ĠBarnes": 43903, + "ĠBaron": 30978, + "ĠBarr": 28694, + "ĠBarry": 21639, + "ĠBart": 22338, + "ĠBas": 5859, + "ĠBase": 21054, + "ĠBased": 18785, + "ĠBash": 43068, + "ĠBasic": 31598, + "ĠBasically": 8537, + "ĠBasil": 43175, + "ĠBasket": 45360, + "ĠBass": 29626, + "ĠBast": 31915, + "ĠBat": 10066, + "ĠBath": 36167, + "ĠBatman": 15432, + "ĠBatt": 29439, + "ĠBatter": 33066, + "ĠBattery": 47410, + "ĠBattle": 11846, + "ĠBattlefield": 41091, + "ĠBau": 28772, + "ĠBaum": 40165, + "ĠBay": 7840, + "ĠBayern": 29163, + "ĠBaz": 42220, + "ĠBaÅŁ": 28942, + "ĠBe": 879, + "ĠBea": 45786, + "ĠBeach": 14866, + "ĠBead": 31315, + "ĠBeam": 40916, + "ĠBean": 38454, + "ĠBear": 19836, + "ĠBears": 50180, + "ĠBeast": 24100, + "ĠBeat": 16031, + "ĠBeatles": 38376, + "ĠBeau": 43702, + "ĠBeaut": 10584, + "ĠBeautiful": 14724, + "ĠBeauty": 21450, + "ĠBecause": 1436, + "ĠBecca": 33148, + "ĠBeck": 19184, + "ĠBecky": 30059, + "ĠBecome": 44308, + "ĠBed": 19893, + "ĠBee": 31141, + "ĠBeef": 36465, + "ĠBeen": 32839, + "ĠBeer": 41453, + "ĠBeet": 28798, + "ĠBeethoven": 38651, + "ĠBefore": 4546, + "ĠBegin": 20660, + "ĠBeginning": 45705, + "ĠBeh": 13068, + "ĠBehavior": 45807, + "ĠBehind": 20475, + "ĠBei": 16188, + "ĠBeij": 18995, + "ĠBeijing": 20240, + "ĠBeim": 45113, + "ĠBeing": 8891, + "ĠBeispiel": 13772, + "ĠBeit": 43637, + "ĠBel": 6248, + "ĠBelarus": 35855, + "ĠBelg": 19234, + "ĠBelgian": 47127, + "ĠBelgium": 28094, + "ĠBelieve": 21486, + "ĠBell": 11485, + "ĠBella": 29133, + "ĠBelle": 31905, + "ĠBelo": 49244, + "ĠBelow": 36261, + "ĠBelt": 38869, + "ĠBem": 32846, + "ĠBen": 3964, + "ĠBend": 32451, + "ĠBene": 27702, + "ĠBened": 39753, + "ĠBenedict": 47837, + "ĠBeng": 29425, + "ĠBengal": 50221, + "ĠBeni": 44460, + "ĠBenim": 27051, + "ĠBenjamin": 22231, + "ĠBenn": 29686, + "ĠBennett": 40620, + "ĠBenny": 44531, + "ĠBenson": 48601, + "ĠBent": 28894, + "ĠBentley": 43147, + "ĠBer": 5637, + "ĠBere": 17684, + "ĠBereich": 26489, + "ĠBerg": 27511, + "ĠBerkeley": 23684, + "ĠBerlin": 13848, + "ĠBern": 10781, + "ĠBernard": 30116, + "ĠBernie": 22426, + "ĠBerry": 34084, + "ĠBert": 29594, + "ĠBeruf": 36688, + "ĠBes": 8190, + "ĠBesch": 30860, + "ĠBesides": 13212, + "ĠBest": 9752, + "ĠBet": 6279, + "ĠBeta": 33286, + "ĠBeth": 14011, + "ĠBets": 49352, + "ĠBett": 45083, + "ĠBetter": 15753, + "ĠBetty": 30270, + "ĠBetween": 18967, + "ĠBev": 41159, + "ĠBever": 39236, + "ĠBeverly": 43598, + "ĠBevölker": 48313, + "ĠBew": 40512, + "ĠBeweg": 46757, + "ĠBey": 15550, + "ĠBeyonce": 48416, + "ĠBeyond": 19707, + "ĠBh": 13550, + "ĠBhag": 33797, + "ĠBhar": 49104, + "ĠBi": 13007, + "ĠBian": 39509, + "ĠBib": 31520, + "ĠBible": 6544, + "ĠBiden": 9877, + "ĠBie": 34972, + "ĠBieber": 42377, + "ĠBien": 16956, + "ĠBier": 50222, + "ĠBig": 5429, + "ĠBigQuery": 43422, + "ĠBij": 41809, + "ĠBike": 45699, + "ĠBil": 22879, + "ĠBild": 15746, + "ĠBilder": 44719, + "ĠBill": 5477, + "ĠBillboard": 40351, + "ĠBillie": 46021, + "ĠBilly": 18179, + "ĠBin": 18983, + "ĠBing": 30755, + "ĠBio": 26840, + "ĠBiology": 48132, + "ĠBir": 7145, + "ĠBiraz": 48542, + "ĠBird": 15931, + "ĠBirds": 41456, + "ĠBirmingham": 34673, + "ĠBirth": 24299, + "ĠBirthday": 29236, + "ĠBis": 25271, + "ĠBishop": 30113, + "ĠBism": 34594, + "ĠBit": 9101, + "ĠBitch": 40678, + "ĠBitcoin": 11414, + "ĠBite": 48012, + "ĠBitte": 42890, + "ĠBiz": 16619, + "ĠBizim": 45180, + "ĠBj": 49660, + "ĠBl": 2177, + "ĠBla": 18925, + "ĠBlack": 4076, + "ĠBlade": 32230, + "ĠBlair": 42157, + "ĠBlake": 23451, + "ĠBlaze": 49894, + "ĠBle": 30721, + "ĠBlend": 44836, + "ĠBless": 21562, + "ĠBlessed": 37501, + "ĠBlick": 32556, + "ĠBlind": 34126, + "ĠBliss": 50034, + "ĠBlizzard": 40976, + "ĠBlo": 9865, + "ĠBlock": 17500, + "ĠBlockchain": 48916, + "ĠBlog": 46693, + "ĠBlood": 17428, + "ĠBloody": 46877, + "ĠBloom": 25927, + "ĠBloomberg": 40363, + "ĠBlow": 46391, + "ĠBlue": 8510, + "ĠBlues": 44979, + "ĠBluetooth": 20286, + "ĠBo": 3286, + "ĠBoard": 10008, + "ĠBob": 6085, + "ĠBobby": 19573, + "ĠBock": 47672, + "ĠBod": 19482, + "ĠBoden": 34971, + "ĠBody": 21329, + "ĠBoeing": 30831, + "ĠBog": 24339, + "ĠBoh": 32484, + "ĠBol": 14331, + "ĠBold": 48954, + "ĠBolsonaro": 46710, + "ĠBolt": 37884, + "ĠBom": 19812, + "ĠBomb": 25463, + "ĠBon": 7368, + "ĠBond": 23604, + "ĠBone": 45915, + "ĠBong": 39813, + "ĠBonjour": 25431, + "ĠBonnie": 32170, + "ĠBonus": 44917, + "ĠBoo": 23351, + "ĠBook": 9476, + "ĠBooks": 33843, + "ĠBoom": 15523, + "ĠBoost": 43902, + "ĠBoot": 37263, + "ĠBor": 13739, + "ĠBora": 49967, + "ĠBorder": 36985, + "ĠBoris": 27158, + "ĠBorn": 29808, + "ĠBos": 22264, + "ĠBose": 45206, + "ĠBoss": 15215, + "ĠBoston": 12333, + "ĠBot": 25486, + "ĠBoth": 6767, + "ĠBots": 47224, + "ĠBott": 28479, + "ĠBottom": 38289, + "ĠBou": 43833, + "ĠBoulder": 48052, + "ĠBoule": 50121, + "ĠBour": 35866, + "ĠBow": 12903, + "ĠBowl": 25044, + "ĠBowser": 46102, + "ĠBox": 15112, + "ĠBoy": 9486, + "ĠBoys": 21963, + "ĠBr": 1603, + "ĠBra": 4991, + "ĠBrad": 11895, + "ĠBradley": 36607, + "ĠBrady": 31773, + "ĠBrah": 36569, + "ĠBrain": 29783, + "ĠBran": 45265, + "ĠBranch": 40482, + "ĠBrand": 11119, + "ĠBrandon": 22606, + "ĠBrasil": 14861, + "ĠBraun": 46939, + "ĠBrave": 38545, + "ĠBravo": 28861, + "ĠBrazil": 9435, + "ĠBrazilian": 23435, + "ĠBre": 7090, + "ĠBread": 35357, + "ĠBreak": 16925, + "ĠBreakfast": 45371, + "ĠBreaking": 36715, + "ĠBreat": 20093, + "ĠBreath": 38672, + "ĠBreathe": 36323, + "ĠBree": 49188, + "ĠBref": 49957, + "ĠBren": 31200, + "ĠBrend": 25425, + "ĠBrenda": 39610, + "ĠBrendan": 48484, + "ĠBrent": 31665, + "ĠBret": 42000, + "ĠBrett": 29447, + "ĠBrew": 42906, + "ĠBrexit": 24480, + "ĠBri": 32851, + "ĠBrian": 10765, + "ĠBrid": 30552, + "ĠBridge": 18917, + "ĠBrief": 39805, + "ĠBrig": 29675, + "ĠBright": 24271, + "ĠBrill": 30132, + "ĠBrilliant": 34007, + "ĠBring": 12842, + "ĠBringing": 45241, + "ĠBris": 30554, + "ĠBrisbane": 32222, + "ĠBristol": 41208, + "ĠBrit": 4760, + "ĠBritain": 12960, + "ĠBritish": 6221, + "ĠBritney": 46161, + "ĠBritt": 30750, + "ĠBrittany": 41067, + "ĠBro": 5425, + "ĠBroad": 14074, + "ĠBroadway": 19414, + "ĠBrock": 32093, + "ĠBroken": 46624, + "ĠBron": 19544, + "ĠBronx": 41862, + "ĠBronze": 44916, + "ĠBrook": 13945, + "ĠBrooke": 43092, + "ĠBrooklyn": 21872, + "ĠBrooks": 33493, + "ĠBros": 27651, + "ĠBrother": 8904, + "ĠBrothers": 19886, + "ĠBrown": 8030, + "ĠBru": 12792, + "ĠBruce": 15429, + "ĠBruno": 23046, + "ĠBrus": 32894, + "ĠBrush": 33142, + "ĠBrussels": 38717, + "ĠBry": 12812, + "ĠBryan": 23730, + "ĠBryant": 46466, + "ĠBryce": 35109, + "ĠBu": 4078, + "ĠBub": 25489, + "ĠBubble": 43072, + "ĠBuch": 25818, + "ĠBuck": 22006, + "ĠBud": 6384, + "ĠBudd": 8845, + "ĠBuddh": 13522, + "ĠBuddha": 16375, + "ĠBuddhism": 24744, + "ĠBuddhist": 22764, + "ĠBuddy": 27829, + "ĠBudget": 33751, + "ĠBueno": 16046, + "ĠBuenos": 38058, + "ĠBuff": 20254, + "ĠBuffalo": 33855, + "ĠBug": 23821, + "ĠBugün": 48017, + "ĠBuild": 11875, + "ĠBuilding": 18974, + "ĠBuilt": 49822, + "ĠBul": 19825, + "ĠBulgar": 31125, + "ĠBulgaria": 47737, + "ĠBull": 14131, + "ĠBullet": 44975, + "ĠBun": 14661, + "ĠBund": 10203, + "ĠBundes": 14031, + "ĠBundesregierung": 46876, + "ĠBundest": 43825, + "ĠBunny": 38803, + "ĠBunu": 35919, + "ĠBunun": 45160, + "ĠBur": 7031, + "ĠBurada": 43776, + "ĠBurch": 48370, + "ĠBureau": 19738, + "ĠBurg": 32911, + "ĠBurger": 28936, + "ĠBurke": 37396, + "ĠBurn": 18328, + "ĠBurning": 43905, + "ĠBurns": 41195, + "ĠBurton": 46011, + "ĠBus": 8006, + "ĠBusan": 43538, + "ĠBush": 15782, + "ĠBusiness": 10715, + "ĠBut": 583, + "ĠButler": 27571, + "ĠButt": 40801, + "ĠButter": 22646, + "ĠButton": 38435, + "ĠBuy": 19146, + "ĠBuzz": 29209, + "ĠBy": 3146, + "ĠBye": 4621, + "ĠByz": 41014, + "ĠBä": 47571, + "ĠBöyle": 30734, + "ĠBü": 37186, + "ĠBür": 22596, + "ĠBürger": 28514, + "ĠBÃľNDNIS": 25667, + "ĠC": 383, + "ĠCA": 22852, + "ĠCAD": 41143, + "ĠCAL": 50188, + "ĠCAM": 27040, + "ĠCAN": 22931, + "ĠCAP": 33636, + "ĠCAR": 15939, + "ĠCAS": 43268, + "ĠCAT": 41192, + "ĠCB": 18745, + "ĠCBD": 41584, + "ĠCBS": 35856, + "ĠCC": 12630, + "ĠCCP": 27876, + "ĠCCTV": 44838, + "ĠCD": 6743, + "ĠCDC": 17133, + "ĠCDU": 19181, + "ĠCDs": 45257, + "ĠCE": 28109, + "ĠCEO": 9282, + "ĠCEOs": 40736, + "ĠCF": 21792, + "ĠCG": 38007, + "ĠCGI": 48448, + "ĠCH": 5995, + "ĠCHA": 35732, + "ĠCHAN": 39235, + "ĠCHAR": 35494, + "ĠCHEERING": 45465, + "ĠCHRIS": 17353, + "ĠCI": 37777, + "ĠCIA": 25143, + "ĠCJ": 42285, + "ĠCL": 12855, + "ĠCM": 20424, + "ĠCMS": 33124, + "ĠCN": 14589, + "ĠCNC": 48714, + "ĠCNN": 24859, + "ĠCO": 3002, + "ĠCOB": 34812, + "ĠCOL": 31286, + "ĠCOM": 35074, + "ĠCOME": 49563, + "ĠCOMM": 36041, + "ĠCON": 16596, + "ĠCOP": 48988, + "ĠCOR": 43137, + "ĠCOSTA": 36537, + "ĠCOVID": 4566, + "ĠCP": 22431, + "ĠCPA": 48672, + "ĠCPR": 47536, + "ĠCPU": 13199, + "ĠCR": 14123, + "ĠCRA": 34425, + "ĠCRIS": 49256, + "ĠCS": 9460, + "ĠCSS": 24387, + "ĠCSV": 48814, + "ĠCT": 19529, + "ĠCU": 29777, + "ĠCV": 22995, + "ĠCa": 7544, + "ĠCab": 14704, + "ĠCabinet": 31398, + "ĠCad": 22323, + "ĠCada": 38603, + "ĠCaesar": 26678, + "ĠCaf": 46701, + "ĠCafe": 35864, + "ĠCage": 48677, + "ĠCai": 30983, + "ĠCait": 28250, + "ĠCaitlin": 50131, + "ĠCake": 36773, + "ĠCal": 3511, + "ĠCaleb": 30331, + "ĠCalendar": 43583, + "ĠCaliforn": 5284, + "ĠCalifornia": 5384, + "ĠCall": 7807, + "ĠCalled": 45001, + "ĠCalling": 44150, + "ĠCalm": 23086, + "ĠCalvin": 28025, + "ĠCam": 6886, + "ĠCamb": 29287, + "ĠCambodia": 47347, + "ĠCambridge": 24876, + "ĠCame": 36042, + "ĠCamera": 23734, + "ĠCameron": 24962, + "ĠCamp": 9189, + "ĠCampaign": 38256, + "ĠCampbell": 25914, + "ĠCampus": 28095, + "ĠCan": 1664, + "ĠCanad": 10380, + "ĠCanada": 6309, + "ĠCanadian": 12641, + "ĠCanadians": 30053, + "ĠCanal": 38250, + "ĠCancer": 26127, + "ĠCand": 20466, + "ĠCandy": 31470, + "ĠCann": 29866, + "ĠCannon": 43102, + "ĠCanon": 27666, + "ĠCant": 26697, + "ĠCanton": 44170, + "ĠCanvas": 25725, + "ĠCanyon": 29170, + "ĠCao": 38176, + "ĠCap": 8363, + "ĠCape": 27517, + "ĠCapital": 21502, + "ĠCapitol": 25081, + "ĠCapt": 9480, + "ĠCaptain": 10873, + "ĠCar": 2741, + "ĠCara": 33006, + "ĠCarbon": 31453, + "ĠCard": 11877, + "ĠCare": 9532, + "ĠCareer": 31690, + "ĠCareful": 32932, + "ĠCarib": 23438, + "ĠCaribbean": 24356, + "ĠCarl": 14256, + "ĠCarla": 41325, + "ĠCarlo": 45112, + "ĠCarlos": 19646, + "ĠCarm": 44530, + "ĠCarmen": 35778, + "ĠCarn": 32254, + "ĠCarne": 42799, + "ĠCarnegie": 47301, + "ĠCarney": 29351, + "ĠCaro": 37265, + "ĠCarol": 7925, + "ĠCarolina": 11480, + "ĠCaroline": 30245, + "ĠCarolyn": 42731, + "ĠCarr": 17715, + "ĠCarrie": 34654, + "ĠCarroll": 48456, + "ĠCarry": 44168, + "ĠCars": 43595, + "ĠCarson": 38731, + "ĠCart": 22478, + "ĠCarter": 21622, + "ĠCarwyn": 47021, + "ĠCas": 16100, + "ĠCasa": 44843, + "ĠCase": 17791, + "ĠCasey": 27369, + "ĠCash": 27016, + "ĠCass": 18208, + "ĠCast": 11019, + "ĠCastle": 21076, + "ĠCastro": 43221, + "ĠCat": 9565, + "ĠCatal": 24994, + "ĠCatalunya": 46039, + "ĠCatch": 23869, + "ĠCath": 8764, + "ĠCathedral": 46794, + "ĠCatherine": 23098, + "ĠCatholic": 11981, + "ĠCatholics": 36333, + "ĠCathy": 39799, + "ĠCats": 40902, + "ĠCau": 49788, + "ĠCauc": 44044, + "ĠCaucas": 44941, + "ĠCause": 10865, + "ĠCav": 28066, + "ĠCave": 41100, + "ĠCay": 38287, + "ĠCe": 8257, + "ĠCec": 38807, + "ĠCel": 19967, + "ĠCela": 37348, + "ĠCelebr": 30413, + "ĠCeline": 42704, + "ĠCell": 28859, + "ĠCelsius": 22658, + "ĠCelt": 44591, + "ĠCem": 48852, + "ĠCen": 38065, + "ĠCena": 48131, + "ĠCensus": 34273, + "ĠCent": 3408, + "ĠCenter": 5169, + "ĠCenters": 41911, + "ĠCentral": 9701, + "ĠCentre": 20764, + "ĠCentury": 28555, + "ĠCer": 26402, + "ĠCert": 31036, + "ĠCertain": 13407, + "ĠCertainly": 16628, + "ĠCes": 28414, + "ĠCette": 25556, + "ĠCh": 761, + "ĠCha": 12374, + "ĠChad": 22268, + "ĠChain": 33252, + "ĠChair": 8678, + "ĠChairman": 17866, + "ĠChall": 14398, + "ĠChallenge": 17517, + "ĠCham": 18054, + "ĠChamber": 25401, + "ĠChamp": 9863, + "ĠChampion": 23160, + "ĠChampions": 14391, + "ĠChampionship": 24310, + "ĠChampionships": 46917, + "ĠChan": 16064, + "ĠChance": 16428, + "ĠChancellor": 24778, + "ĠChand": 32244, + "ĠChanel": 42698, + "ĠChang": 17179, + "ĠChange": 15060, + "ĠChanging": 45773, + "ĠChannel": 13553, + "ĠChaos": 32644, + "ĠChap": 24187, + "ĠChapel": 48203, + "ĠChapter": 18874, + "ĠChar": 4327, + "ĠCharacter": 36786, + "ĠCharge": 40546, + "ĠCharl": 14130, + "ĠCharles": 10523, + "ĠCharlie": 13754, + "ĠCharlotte": 19059, + "ĠChart": 49762, + "ĠChase": 21384, + "ĠChat": 27503, + "ĠChe": 3351, + "ĠCheck": 6881, + "ĠCheer": 39899, + "ĠCheers": 13006, + "ĠCheese": 23738, + "ĠChef": 14447, + "ĠChel": 24345, + "ĠChelsea": 26527, + "ĠChem": 21357, + "ĠChemical": 42754, + "ĠChemistry": 46038, + "ĠChen": 13682, + "ĠCheng": 24363, + "ĠCher": 14825, + "ĠChern": 49504, + "ĠCherry": 34831, + "ĠCheryl": 38331, + "ĠChest": 47981, + "ĠChev": 44236, + "ĠChevy": 49426, + "ĠChi": 17730, + "ĠChic": 9010, + "ĠChicago": 9525, + "ĠChick": 38930, + "ĠChicken": 16765, + "ĠChief": 10068, + "ĠChild": 9004, + "ĠChildren": 13354, + "ĠChile": 22238, + "ĠChili": 45624, + "ĠChill": 41368, + "ĠChin": 4430, + "ĠChina": 3533, + "ĠChinese": 4649, + "ĠChing": 47818, + "ĠChip": 29751, + "ĠChloe": 29694, + "ĠCho": 12366, + "ĠChocolate": 26832, + "ĠChoi": 33479, + "ĠChoice": 37080, + "ĠChong": 43040, + "ĠChoose": 21661, + "ĠChop": 25615, + "ĠChr": 1721, + "ĠChris": 6688, + "ĠChrist": 2040, + "ĠChristian": 5778, + "ĠChristianity": 17326, + "ĠChristians": 12254, + "ĠChristie": 46111, + "ĠChristina": 25466, + "ĠChristine": 24038, + "ĠChristmas": 5272, + "ĠChristopher": 20649, + "ĠChrome": 15327, + "ĠChron": 34038, + "ĠChry": 43183, + "ĠChu": 25585, + "ĠChuck": 21607, + "ĠChun": 32527, + "ĠChung": 38314, + "ĠChurch": 7882, + "ĠChurchill": 39837, + "ĠCi": 20188, + "ĠCiao": 28473, + "ĠCin": 18310, + "ĠCinc": 44142, + "ĠCincinn": 45323, + "ĠCincinnati": 45951, + "ĠCind": 23863, + "ĠCinderella": 47980, + "ĠCindy": 32185, + "ĠCinema": 42502, + "ĠCinnamon": 40446, + "ĠCir": 13791, + "ĠCirc": 28938, + "ĠCircle": 29381, + "ĠCircuit": 36939, + "ĠCisco": 38528, + "ĠCit": 18435, + "ĠCities": 36672, + "ĠCitizen": 44371, + "ĠCitizens": 44120, + "ĠCity": 4392, + "ĠCiv": 35452, + "ĠCivic": 46237, + "ĠCivil": 13405, + "ĠCl": 2033, + "ĠCla": 12947, + "ĠClaire": 22605, + "ĠClan": 45117, + "ĠClap": 45297, + "ĠClar": 28410, + "ĠClara": 32048, + "ĠClark": 18572, + "ĠClaro": 33380, + "ĠClass": 9471, + "ĠClassic": 25008, + "ĠClaud": 24858, + "ĠClaudia": 36785, + "ĠClaus": 33153, + "ĠClay": 21392, + "ĠCle": 8834, + "ĠClean": 18463, + "ĠClear": 14993, + "ĠClearly": 24120, + "ĠClement": 49517, + "ĠCler": 36984, + "ĠClerk": 45175, + "ĠCleveland": 27846, + "ĠClick": 8230, + "ĠCliff": 33638, + "ĠClimate": 27025, + "ĠClin": 24240, + "ĠClinic": 37918, + "ĠClinical": 47942, + "ĠClint": 45311, + "ĠClinton": 15445, + "ĠClo": 31901, + "ĠClock": 46986, + "ĠClone": 45536, + "ĠClose": 16346, + "ĠCloud": 8061, + "ĠClub": 11288, + "ĠCly": 44752, + "ĠCo": 3066, + "ĠCoach": 17369, + "ĠCoalition": 40586, + "ĠCoast": 14960, + "ĠCob": 31395, + "ĠCoc": 30430, + "ĠCoca": 32719, + "ĠCock": 39410, + "ĠCoco": 29787, + "ĠCoconut": 45875, + "ĠCode": 15549, + "ĠCody": 34524, + "ĠCoffee": 25481, + "ĠCoh": 29000, + "ĠCohen": 32968, + "ĠCoin": 39054, + "ĠCoke": 32996, + "ĠCol": 4004, + "ĠCola": 48037, + "ĠCold": 16918, + "ĠCole": 20394, + "ĠColeman": 49930, + "ĠColin": 29253, + "ĠColl": 4586, + "ĠCollabor": 44483, + "ĠCollect": 31896, + "ĠCollection": 30981, + "ĠCollege": 6745, + "ĠCollins": 27973, + "ĠColomb": 18514, + "ĠColombia": 22677, + "ĠColon": 21408, + "ĠColonel": 28478, + "ĠColor": 10458, + "ĠColorado": 15786, + "ĠColumb": 13056, + "ĠColumbia": 17339, + "ĠColumbus": 31258, + "ĠCom": 2432, + "ĠComb": 25939, + "ĠCombat": 41019, + "ĠCome": 2492, + "ĠComedy": 47217, + "ĠComes": 47290, + "ĠComic": 40945, + "ĠComics": 43533, + "ĠComing": 12473, + "ĠComm": 3046, + "ĠCommand": 17901, + "ĠCommander": 20857, + "ĠComme": 24308, + "ĠComment": 16328, + "ĠCommerce": 34493, + "ĠCommercial": 47171, + "ĠCommission": 10766, + "ĠCommissioner": 25410, + "ĠCommittee": 11556, + "ĠCommon": 18235, + "ĠCommons": 34894, + "ĠCommonwealth": 35295, + "ĠComms": 42664, + "ĠCommun": 6800, + "ĠCommunication": 34930, + "ĠCommunications": 38998, + "ĠCommunist": 23253, + "ĠCommunity": 10421, + "ĠComo": 11913, + "ĠComp": 6620, + "ĠCompan": 31827, + "ĠCompanies": 44031, + "ĠCompany": 13918, + "ĠCompare": 48523, + "ĠCompared": 30539, + "ĠCompass": 50179, + "ĠCompet": 32216, + "ĠCompetition": 43634, + "ĠCompl": 33736, + "ĠComplet": 31804, + "ĠComplete": 34687, + "ĠCompletely": 39978, + "ĠComplex": 41184, + "ĠComput": 37804, + "ĠComputer": 22289, + "ĠCon": 2656, + "ĠConan": 47691, + "ĠConc": 18200, + "ĠConcept": 47482, + "ĠCond": 21793, + "ĠConf": 11701, + "ĠConfeder": 31201, + "ĠConfederate": 45000, + "ĠConference": 22131, + "ĠConfig": 44151, + "ĠCong": 4280, + "ĠCongo": 42839, + "ĠCongrats": 40219, + "ĠCongratulations": 9694, + "ĠCongress": 6426, + "ĠCongressman": 38071, + "ĠConnect": 11653, + "ĠConnecticut": 29433, + "ĠConnie": 49558, + "ĠConnor": 33133, + "ĠCons": 6923, + "ĠConse": 39706, + "ĠConserv": 26870, + "ĠConservation": 40131, + "ĠConservative": 46054, + "ĠConsider": 17416, + "ĠConsidering": 33854, + "ĠConsole": 44152, + "ĠConsort": 31719, + "ĠConst": 8574, + "ĠConstant": 37413, + "ĠConstitution": 14505, + "ĠConstruction": 40017, + "ĠConsult": 40057, + "ĠConsumer": 39494, + "ĠCont": 4839, + "ĠContact": 30683, + "ĠContain": 43732, + "ĠContent": 30078, + "ĠContin": 14674, + "ĠContinue": 24472, + "ĠContinuing": 47585, + "ĠContract": 44659, + "ĠControl": 12912, + "ĠController": 44969, + "ĠConven": 45992, + "ĠConvention": 26793, + "ĠConvers": 33247, + "ĠCook": 12259, + "ĠCookie": 42011, + "ĠCooking": 36647, + "ĠCool": 8561, + "ĠCooper": 20355, + "ĠCoordin": 39620, + "ĠCoordinator": 47173, + "ĠCop": 11579, + "ĠCopenh": 50135, + "ĠCopper": 47243, + "ĠCopy": 25653, + "ĠCor": 3925, + "ĠCord": 40267, + "ĠCore": 14798, + "ĠCorey": 39136, + "ĠCorin": 25567, + "ĠCorinth": 29455, + "ĠCorinthians": 34778, + "ĠCorn": 21590, + "ĠCornell": 43257, + "ĠCorner": 42391, + "ĠCoron": 24199, + "ĠCorona": 18075, + "ĠCoronavirus": 32737, + "ĠCorpor": 19665, + "ĠCorporation": 26464, + "ĠCorps": 20169, + "ĠCorrect": 12753, + "ĠCort": 28522, + "ĠCory": 41695, + "ĠCos": 15855, + "ĠCost": 20863, + "ĠCosta": 28440, + "ĠCostco": 43453, + "ĠCott": 35485, + "ĠCotton": 46195, + "ĠCou": 26180, + "ĠCould": 7497, + "ĠCouldn": 35800, + "ĠCoun": 4780, + "ĠCouncil": 7076, + "ĠCouncill": 10778, + "ĠCouncillor": 11731, + "ĠCouncillors": 44912, + "ĠCounsel": 35157, + "ĠCount": 5247, + "ĠCounter": 35607, + "ĠCountry": 23216, + "ĠCounty": 6658, + "ĠCouple": 38266, + "ĠCour": 6413, + "ĠCourse": 27327, + "ĠCourt": 7873, + "ĠCourtney": 33489, + "ĠCover": 19106, + "ĠCovid": 14633, + "ĠCow": 21933, + "ĠCox": 41576, + "ĠCr": 4779, + "ĠCra": 11138, + "ĠCraft": 29991, + "ĠCraig": 19732, + "ĠCrash": 31787, + "ĠCraw": 37877, + "ĠCrazy": 22509, + "ĠCre": 9549, + "ĠCream": 25358, + "ĠCreat": 11972, + "ĠCreate": 20248, + "ĠCreating": 40002, + "ĠCreation": 42874, + "ĠCreative": 26598, + "ĠCreator": 28208, + "ĠCred": 47560, + "ĠCredit": 36006, + "ĠCreed": 39103, + "ĠCreek": 24200, + "ĠCreo": 40640, + "ĠCrew": 29857, + "ĠCrim": 30691, + "ĠCrime": 26140, + "ĠCrimea": 48495, + "ĠCriminal": 43698, + "ĠCrisis": 42846, + "ĠCrisp": 49077, + "ĠCrist": 23199, + "ĠCristo": 36524, + "ĠCrit": 23202, + "ĠCritical": 39482, + "ĠCro": 18965, + "ĠCroat": 37614, + "ĠCroatia": 50186, + "ĠCross": 11623, + "ĠCrossing": 41675, + "ĠCrow": 27072, + "ĠCrowd": 40110, + "ĠCrown": 22375, + "ĠCru": 13586, + "ĠCruise": 39165, + "ĠCrunch": 44233, + "ĠCrus": 34484, + "ĠCrush": 44211, + "ĠCruz": 23008, + "ĠCry": 12267, + "ĠCrypt": 34809, + "ĠCrystal": 23489, + "ĠCtrl": 35233, + "ĠCu": 13205, + "ĠCuando": 21907, + "ĠCub": 21300, + "ĠCuba": 20604, + "ĠCuban": 31547, + "ĠCube": 33003, + "ĠCul": 49037, + "ĠCult": 41550, + "ĠCultural": 31450, + "ĠCulture": 27539, + "ĠCum": 26337, + "ĠCup": 13751, + "ĠCur": 7907, + "ĠCuriosity": 48998, + "ĠCurrent": 15629, + "ĠCurrently": 19964, + "ĠCurry": 34789, + "ĠCurt": 26587, + "ĠCurtis": 42140, + "ĠCustom": 16649, + "ĠCustomer": 37168, + "ĠCut": 9431, + "ĠCute": 29121, + "ĠCuz": 27017, + "ĠCy": 10295, + "ĠCyber": 22935, + "ĠCyberpunk": 46927, + "ĠCycl": 49173, + "ĠCynthia": 38163, + "ĠCyr": 33146, + "ĠCyrus": 47439, + "ĠCzech": 25227, + "ĠCzy": 19832, + "ĠCzyli": 37099, + "ĠCó": 41306, + "ĠD": 413, + "ĠDA": 9578, + "ĠDAC": 39038, + "ĠDAM": 48093, + "ĠDAN": 15331, + "ĠDANIEL": 38958, + "ĠDAR": 49274, + "ĠDAVID": 16764, + "ĠDAY": 27665, + "ĠDB": 26754, + "ĠDC": 9114, + "ĠDD": 30778, + "ĠDDR": 49272, + "ĠDE": 10113, + "ĠDENNIS": 47172, + "ĠDES": 27083, + "ĠDF": 48336, + "ĠDH": 28606, + "ĠDI": 11953, + "ĠDID": 35345, + "ĠDIE": 32188, + "ĠDIRE": 32990, + "ĠDIRECTOR": 35929, + "ĠDIS": 49028, + "ĠDIY": 22194, + "ĠDJ": 13078, + "ĠDK": 31934, + "ĠDLC": 30272, + "ĠDM": 15322, + "ĠDN": 21500, + "ĠDNA": 8272, + "ĠDNS": 35153, + "ĠDO": 10699, + "ĠDOM": 35727, + "ĠDON": 20403, + "ĠDOT": 50142, + "ĠDOU": 45723, + "ĠDOWN": 48897, + "ĠDP": 42796, + "ĠDR": 12118, + "ĠDS": 15816, + "ĠDU": 28423, + "ĠDV": 17021, + "ĠDVD": 21187, + "ĠDW": 45318, + "ĠDX": 48817, + "ĠDY": 48427, + "ĠDa": 3933, + "ĠDaar": 29883, + "ĠDabei": 39606, + "ĠDad": 5639, + "ĠDaddy": 15323, + "ĠDae": 42361, + "ĠDaf": 31582, + "ĠDafür": 35865, + "ĠDag": 41866, + "ĠDah": 36977, + "ĠDaha": 35658, + "ĠDai": 39521, + "ĠDaily": 19685, + "ĠDais": 31109, + "ĠDaisy": 37472, + "ĠDak": 18051, + "ĠDakota": 22429, + "ĠDal": 17357, + "ĠDale": 31329, + "ĠDallas": 22923, + "ĠDam": 5885, + "ĠDamas": 49327, + "ĠDame": 34447, + "ĠDamen": 21131, + "ĠDamit": 24495, + "ĠDamn": 11907, + "ĠDamon": 47197, + "ĠDan": 3394, + "ĠDana": 23759, + "ĠDance": 16114, + "ĠDancing": 36890, + "ĠDang": 29580, + "ĠDanger": 36619, + "ĠDani": 42136, + "ĠDaniel": 8033, + "ĠDanielle": 21182, + "ĠDanish": 36944, + "ĠDank": 14148, + "ĠDanke": 26508, + "ĠDann": 7455, + "ĠDanny": 16682, + "ĠDans": 16897, + "ĠDante": 35602, + "ĠDar": 7803, + "ĠDare": 42320, + "ĠDark": 9563, + "ĠDarkness": 38198, + "ĠDarling": 38697, + "ĠDarr": 44007, + "ĠDarren": 36691, + "ĠDarrin": 47368, + "ĠDart": 30271, + "ĠDarth": 40696, + "ĠDartmouth": 47883, + "ĠDarwin": 30233, + "ĠDas": 2846, + "ĠDash": 23453, + "ĠDass": 22306, + "ĠDat": 9315, + "ĠData": 11888, + "ĠDatab": 40461, + "ĠDate": 31805, + "ĠDaten": 31126, + "ĠDav": 3724, + "ĠDave": 11017, + "ĠDavid": 4389, + "ĠDavidson": 44401, + "ĠDavis": 15658, + "ĠDaw": 28407, + "ĠDawn": 26001, + "ĠDay": 5226, + "ĠDays": 26007, + "ĠDayton": 44718, + "ĠDazu": 34667, + "ĠDe": 1346, + "ĠDead": 12550, + "ĠDeadpool": 45493, + "ĠDeaf": 31389, + "ĠDeal": 27227, + "ĠDean": 13324, + "ĠDear": 14383, + "ĠDeath": 13703, + "ĠDeb": 27347, + "ĠDebat": 42167, + "ĠDebatte": 48930, + "ĠDebbie": 35834, + "ĠDeborah": 39695, + "ĠDec": 12427, + "ĠDecember": 7687, + "ĠDeck": 38196, + "ĠDeclaration": 40844, + "ĠDed": 41300, + "ĠDee": 38894, + "ĠDeep": 14895, + "ĠDef": 9548, + "ĠDefence": 43291, + "ĠDefense": 17410, + "ĠDefin": 46245, + "ĠDefinitely": 12151, + "ĠDeixa": 46589, + "ĠDel": 5831, + "ĠDelaware": 37655, + "ĠDelete": 49452, + "ĠDelhi": 26680, + "ĠDelicious": 28518, + "ĠDell": 33319, + "ĠDelta": 18183, + "ĠDem": 4686, + "ĠDemocr": 7141, + "ĠDemocracy": 43062, + "ĠDemocrat": 27827, + "ĠDemocratic": 14928, + "ĠDemocrats": 12217, + "ĠDemokrat": 27802, + "ĠDemokraten": 41139, + "ĠDemon": 29683, + "ĠDen": 6458, + "ĠDenis": 45351, + "ĠDenise": 38133, + "ĠDenmark": 28065, + "ĠDenn": 19027, + "ĠDennis": 23376, + "ĠDent": 41622, + "ĠDenver": 26270, + "ĠDep": 4056, + "ĠDepartment": 5982, + "ĠDepending": 22539, + "ĠDepois": 34231, + "ĠDepot": 45445, + "ĠDepression": 33044, + "ĠDeputy": 21560, + "ĠDer": 5618, + "ĠDerek": 22887, + "ĠDes": 3885, + "ĠDesde": 37985, + "ĠDesert": 33340, + "ĠDeshalb": 27969, + "ĠDesign": 12748, + "ĠDesigner": 48027, + "ĠDesktop": 49044, + "ĠDesp": 9891, + "ĠDespite": 11334, + "ĠDespués": 40995, + "ĠDest": 16339, + "ĠDestiny": 31898, + "ĠDestroy": 41719, + "ĠDeswegen": 24864, + "ĠDet": 4237, + "ĠDetails": 42811, + "ĠDetective": 35210, + "ĠDetroit": 20887, + "ĠDeus": 15057, + "ĠDeuts": 10514, + "ĠDeutsch": 12699, + "ĠDeutsche": 45567, + "ĠDeutschen": 45070, + "ĠDeutschland": 14802, + "ĠDev": 9096, + "ĠDevOps": 43051, + "ĠDevelop": 11442, + "ĠDeveloper": 44915, + "ĠDevelopment": 15041, + "ĠDevi": 48565, + "ĠDevice": 50140, + "ĠDevil": 25221, + "ĠDew": 43079, + "ĠDh": 34414, + "ĠDharma": 40552, + "ĠDi": 8789, + "ĠDia": 22157, + "ĠDial": 29658, + "ĠDiam": 21706, + "ĠDiamond": 26593, + "ĠDiana": 21470, + "ĠDiane": 30460, + "ĠDick": 18754, + "ĠDid": 2589, + "ĠDidn": 11151, + "ĠDie": 3229, + "ĠDiego": 16377, + "ĠDienst": 43932, + "ĠDies": 10796, + "ĠDiese": 18993, + "ĠDiesel": 47037, + "ĠDieser": 39609, + "ĠDieses": 39201, + "ĠDiet": 29606, + "ĠDieu": 25610, + "ĠDif": 35940, + "ĠDifferent": 20825, + "ĠDig": 10976, + "ĠDigital": 15522, + "ĠDil": 36475, + "ĠDim": 20975, + "ĠDin": 27156, + "ĠDing": 20558, + "ĠDinge": 25102, + "ĠDingen": 49351, + "ĠDinner": 46678, + "ĠDion": 45212, + "ĠDios": 21838, + "ĠDip": 33486, + "ĠDir": 34422, + "ĠDire": 5822, + "ĠDirect": 18308, + "ĠDirector": 7680, + "ĠDirectory": 49598, + "ĠDis": 4208, + "ĠDisability": 47636, + "ĠDisc": 19839, + "ĠDiscord": 32623, + "ĠDiscover": 40386, + "ĠDiscovery": 34129, + "ĠDise": 30161, + "ĠDisease": 35360, + "ĠDisk": 30609, + "ĠDiskuss": 45963, + "ĠDisney": 8653, + "ĠDisneyland": 34797, + "ĠDisplay": 32229, + "ĠDist": 9840, + "ĠDistrict": 14374, + "ĠDit": 25270, + "ĠDiv": 9886, + "ĠDiversity": 44187, + "ĠDivine": 26098, + "ĠDivision": 17183, + "ĠDj": 33464, + "ĠDlatego": 47184, + "ĠDo": 1144, + "ĠDob": 29679, + "ĠDoc": 16024, + "ĠDoch": 21533, + "ĠDocker": 33772, + "ĠDoctor": 10143, + "ĠDoctors": 39090, + "ĠDocument": 37684, + "ĠDod": 26904, + "ĠDodge": 41883, + "ĠDoes": 4402, + "ĠDoesn": 12955, + "ĠDog": 13472, + "ĠDogs": 35504, + "ĠDoing": 18496, + "ĠDok": 29768, + "ĠDol": 18786, + "ĠDoll": 20059, + "ĠDollar": 32370, + "ĠDom": 16674, + "ĠDomin": 18027, + "ĠDominican": 45486, + "ĠDon": 1468, + "ĠDonald": 8632, + "ĠDonc": 7477, + "ĠDoncs": 38641, + "ĠDone": 18658, + "ĠDong": 13609, + "ĠDonkey": 44217, + "ĠDonna": 31938, + "ĠDont": 49271, + "ĠDoo": 46612, + "ĠDoom": 30168, + "ĠDoor": 29636, + "ĠDop": 42657, + "ĠDor": 13643, + "ĠDorothy": 41105, + "ĠDort": 32308, + "ĠDos": 33474, + "ĠDot": 38753, + "ĠDou": 13200, + "ĠDouble": 16633, + "ĠDoug": 12742, + "ĠDouglas": 23010, + "ĠDow": 20947, + "ĠDown": 9506, + "ĠDownload": 32282, + "ĠDownt": 44386, + "ĠDowntown": 49255, + "ĠDoy": 40059, + "ĠDr": 2491, + "ĠDra": 15971, + "ĠDracula": 48950, + "ĠDrag": 8832, + "ĠDragon": 11517, + "ĠDragons": 37437, + "ĠDrake": 27465, + "ĠDrama": 45406, + "ĠDraw": 20386, + "ĠDre": 31635, + "ĠDream": 12105, + "ĠDreams": 41887, + "ĠDrew": 25550, + "ĠDri": 19150, + "ĠDrink": 24529, + "ĠDrive": 15622, + "ĠDriver": 36048, + "ĠDriving": 44028, + "ĠDro": 35305, + "ĠDrop": 17675, + "ĠDru": 36744, + "ĠDruck": 33320, + "ĠDrug": 35806, + "ĠDrum": 40320, + "ĠDry": 31562, + "ĠDu": 5153, + "ĠDual": 37625, + "ĠDub": 16488, + "ĠDubai": 29100, + "ĠDublin": 42323, + "ĠDuch": 44267, + "ĠDuck": 29266, + "ĠDud": 42622, + "ĠDude": 12042, + "ĠDue": 18980, + "ĠDuke": 17380, + "ĠDul": 50115, + "ĠDum": 29572, + "ĠDun": 11959, + "ĠDuncan": 31942, + "ĠDunk": 47183, + "ĠDuo": 46123, + "ĠDur": 13710, + "ĠDurch": 28557, + "ĠDurham": 46540, + "ĠDuring": 6842, + "ĠDus": 17916, + "ĠDust": 26483, + "ĠDustin": 46782, + "ĠDutch": 15719, + "ĠDuty": 33045, + "ĠDuygusal": 50090, + "ĠDw": 41448, + "ĠDy": 31193, + "ĠDylan": 28160, + "ĠDynam": 22947, + "ĠDynamic": 45440, + "ĠDynasty": 37339, + "ĠDz": 39448, + "ĠDziÄĻkujÄĻ": 43721, + "ĠDá": 49794, + "ĠDär": 40291, + "ĠDÃ¥": 26339, + "ĠDé": 31153, + "ĠDü": 41835, + "ĠE": 462, + "ĠEA": 35747, + "ĠEB": 50148, + "ĠEC": 19081, + "ĠED": 18050, + "ĠEE": 33685, + "ĠEH": 39416, + "ĠEK": 46078, + "ĠEL": 14426, + "ĠEM": 16237, + "ĠEN": 15244, + "ĠEP": 25330, + "ĠEPA": 27447, + "ĠEQ": 33580, + "ĠER": 14929, + "ĠERIC": 36137, + "ĠES": 12564, + "ĠEST": 47140, + "ĠET": 36953, + "ĠETF": 37436, + "ĠEU": 10887, + "ĠEV": 15733, + "ĠEVER": 27843, + "ĠEVERY": 35163, + "ĠEX": 16385, + "ĠEach": 6947, + "ĠEagle": 27926, + "ĠEagles": 48807, + "ĠEar": 3929, + "ĠEarl": 38936, + "ĠEarlier": 24552, + "ĠEarly": 18344, + "ĠEarn": 24820, + "ĠEarnest": 28214, + "ĠEarth": 4755, + "ĠEas": 46879, + "ĠEast": 6747, + "ĠEaster": 9403, + "ĠEastern": 12901, + "ĠEasy": 16002, + "ĠEat": 14429, + "ĠEating": 29234, + "ĠEb": 20418, + "ĠEbola": 37846, + "ĠEc": 28993, + "ĠEcho": 31887, + "ĠEck": 46354, + "ĠEco": 40263, + "ĠEconom": 14821, + "ĠEconomic": 25776, + "ĠEconomics": 39024, + "ĠEconomy": 48223, + "ĠEcu": 40675, + "ĠEcuador": 41558, + "ĠEd": 3977, + "ĠEddie": 23911, + "ĠEddy": 35062, + "ĠEden": 35322, + "ĠEdgar": 42981, + "ĠEdge": 19328, + "ĠEdin": 39697, + "ĠEdinburgh": 41215, + "ĠEdison": 47497, + "ĠEdit": 33241, + "ĠEdition": 25301, + "ĠEditor": 24281, + "ĠEdu": 31900, + "ĠEduardo": 45819, + "ĠEduc": 9517, + "ĠEducation": 10680, + "ĠEdward": 18456, + "ĠEdwards": 35836, + "ĠEe": 25046, + "ĠEen": 25374, + "ĠEf": 31840, + "ĠEfendi": 43472, + "ĠEfendimiz": 50120, + "ĠEff": 34192, + "ĠEffect": 17764, + "ĠEffects": 34515, + "ĠEg": 43515, + "ĠEgg": 16960, + "ĠEggs": 42486, + "ĠEgypt": 9582, + "ĠEgyptian": 24257, + "ĠEgyptians": 44119, + "ĠEh": 9663, + "ĠEi": 29786, + "ĠEig": 40561, + "ĠEigen": 30586, + "ĠEight": 17708, + "ĠEin": 6391, + "ĠEine": 17664, + "ĠEink": 49128, + "ĠEins": 22790, + "ĠEinsatz": 38474, + "ĠEinstein": 23486, + "ĠEis": 43174, + "ĠEisen": 35619, + "ĠEither": 13746, + "ĠEk": 33089, + "ĠEl": 2699, + "ĠEla": 17637, + "ĠElaine": 42322, + "ĠEld": 19705, + "ĠElder": 28390, + "ĠEle": 8024, + "ĠElect": 12575, + "ĠElection": 45074, + "ĠElectric": 24677, + "ĠElectronic": 46921, + "ĠElekt": 40321, + "ĠElement": 20900, + "ĠElementary": 33099, + "ĠElena": 39603, + "ĠEles": 31096, + "ĠEleven": 48548, + "ĠEli": 16943, + "ĠElijah": 36147, + "ĠEliot": 44023, + "ĠElise": 40545, + "ĠElite": 34404, + "ĠEliz": 11991, + "ĠElizabeth": 12978, + "ĠEll": 8353, + "ĠElla": 29261, + "ĠElle": 16227, + "ĠEllen": 20306, + "ĠEller": 45719, + "ĠElli": 40612, + "ĠEllie": 27151, + "ĠElliot": 38986, + "ĠElliott": 46170, + "ĠEllis": 38171, + "ĠElmo": 38722, + "ĠElo": 41784, + "ĠElon": 28498, + "ĠEls": 33437, + "ĠElsa": 36342, + "ĠElse": 45472, + "ĠEltern": 29101, + "ĠElvis": 39944, + "ĠEm": 3968, + "ĠEmail": 49482, + "ĠEmb": 24234, + "ĠEmbassy": 49637, + "ĠEmer": 18477, + "ĠEmergency": 30524, + "ĠEmil": 36983, + "ĠEmily": 15034, + "ĠEmin": 40695, + "ĠEmir": 38426, + "ĠEmm": 28237, + "ĠEmma": 17124, + "ĠEmmanuel": 44421, + "ĠEmmy": 45580, + "ĠEmp": 8599, + "ĠEmperor": 17913, + "ĠEmpire": 12197, + "ĠEmploy": 26878, + "ĠEmpress": 28559, + "ĠEn": 2193, + "ĠEnc": 29584, + "ĠEnd": 6967, + "ĠEnde": 15152, + "ĠEnemy": 48886, + "ĠEner": 11132, + "ĠEnerg": 48195, + "ĠEnergie": 35309, + "ĠEnergy": 14939, + "ĠEnfin": 35861, + "ĠEng": 2469, + "ĠEngagement": 43931, + "ĠEngine": 7659, + "ĠEngineer": 15808, + "ĠEngineering": 16215, + "ĠEngineers": 43950, + "ĠEngland": 8196, + "ĠEnglish": 3669, + "ĠEnjoy": 15411, + "ĠEnlight": 46037, + "ĠEnough": 19401, + "ĠEns": 25979, + "ĠEnsuite": 37366, + "ĠEnt": 3951, + "ĠEnter": 10399, + "ĠEnterprise": 26696, + "ĠEntertain": 24684, + "ĠEntertainment": 25758, + "ĠEntonces": 15097, + "ĠEntre": 27979, + "ĠEntreprene": 49049, + "ĠEntscheid": 30862, + "ĠEntscheidung": 44667, + "ĠEntwick": 29397, + "ĠEntwicklung": 39654, + "ĠEntão": 6469, + "ĠEnviron": 19286, + "ĠEnvironment": 35354, + "ĠEnvironmental": 27813, + "ĠEp": 9970, + "ĠEph": 35445, + "ĠEpic": 26785, + "ĠEpisode": 19882, + "ĠEqu": 15624, + "ĠEquity": 47675, + "ĠEr": 3300, + "ĠEra": 23071, + "ĠErde": 43720, + "ĠEren": 49479, + "ĠErfahr": 34137, + "ĠErfahrung": 49318, + "ĠErfolg": 45232, + "ĠErgeb": 34657, + "ĠErgebnis": 46229, + "ĠEric": 9336, + "ĠErica": 37429, + "ĠErik": 33143, + "ĠErin": 27983, + "ĠErm": 45794, + "ĠErn": 24147, + "ĠErst": 31183, + "ĠEs": 2313, + "ĠEsc": 30379, + "ĠEscape": 42960, + "ĠEso": 27795, + "ĠEsp": 24978, + "ĠEspa": 27907, + "ĠEspaña": 31729, + "ĠEspecially": 8545, + "ĠEsper": 24142, + "ĠEspero": 41831, + "ĠEss": 14357, + "ĠEssa": 22818, + "ĠEsse": 18814, + "ĠEssen": 42098, + "ĠEssential": 49736, + "ĠEssentially": 23596, + "ĠEst": 4410, + "ĠEsta": 20547, + "ĠEstado": 29740, + "ĠEstados": 22362, + "ĠEstamos": 34563, + "ĠEstate": 48097, + "ĠEste": 16105, + "ĠEsther": 37731, + "ĠEsto": 20880, + "ĠEstoy": 49651, + "ĠEstá": 27304, + "ĠEt": 3790, + "ĠEternal": 44432, + "ĠEth": 10540, + "ĠEthan": 23984, + "ĠEther": 38636, + "ĠEthereum": 26894, + "ĠEthi": 29380, + "ĠEthiopia": 39445, + "ĠEts": 47170, + "ĠEtt": 48426, + "ĠEu": 2186, + "ĠEuch": 46668, + "ĠEugene": 37059, + "ĠEuh": 47320, + "ĠEun": 17965, + "ĠEuro": 3010, + "ĠEurop": 12201, + "ĠEuropa": 16642, + "ĠEurope": 3315, + "ĠEuropean": 6473, + "ĠEuropeans": 29746, + "ĠEuros": 46662, + "ĠEv": 5689, + "ĠEva": 29377, + "ĠEvan": 22613, + "ĠEvangel": 36635, + "ĠEvans": 30055, + "ĠEve": 15544, + "ĠEven": 2754, + "ĠEvent": 13222, + "ĠEvents": 45314, + "ĠEventually": 17586, + "ĠEver": 12123, + "ĠEverest": 47591, + "ĠEvery": 2048, + "ĠEverybody": 7646, + "ĠEveryday": 37689, + "ĠEveryone": 5198, + "ĠEverything": 5471, + "ĠEverywhere": 37322, + "ĠEvet": 16729, + "ĠEvil": 20528, + "ĠEvolution": 40800, + "ĠEw": 28101, + "ĠEx": 2111, + "ĠExact": 7199, + "ĠExactly": 7587, + "ĠExam": 24755, + "ĠExamples": 48591, + "ĠExc": 9368, + "ĠExcel": 19060, + "ĠExcellence": 44684, + "ĠExcellent": 16723, + "ĠExcept": 16192, + "ĠExchange": 31169, + "ĠExcuse": 11359, + "ĠExec": 17662, + "ĠExecutive": 20658, + "ĠExerc": 37502, + "ĠExercise": 44307, + "ĠExhale": 31911, + "ĠExodus": 44472, + "ĠExp": 21391, + "ĠExpect": 46318, + "ĠExped": 48603, + "ĠExper": 12522, + "ĠExperience": 28503, + "ĠExperiment": 37933, + "ĠExpert": 41255, + "ĠExpl": 12514, + "ĠExplain": 39574, + "ĠExplorer": 31895, + "ĠExport": 50130, + "ĠExpress": 20212, + "ĠExt": 9881, + "ĠExtension": 37034, + "ĠExternal": 48277, + "ĠExtra": 29429, + "ĠExtrem": 24921, + "ĠExtremadura": 34713, + "ĠExtreme": 39525, + "ĠEy": 23236, + "ĠEye": 21603, + "ĠEyes": 28925, + "ĠEz": 27211, + "ĠEÄŁer": 41930, + "ĠF": 479, + "ĠFA": 19894, + "ĠFAR": 27235, + "ĠFBI": 17441, + "ĠFC": 27168, + "ĠFCC": 48671, + "ĠFDA": 18933, + "ĠFDP": 31763, + "ĠFE": 31778, + "ĠFEL": 46943, + "ĠFEMA": 31519, + "ĠFER": 47882, + "ĠFIFA": 39497, + "ĠFIL": 48563, + "ĠFIN": 43022, + "ĠFIR": 41538, + "ĠFL": 24720, + "ĠFM": 29614, + "ĠFO": 23501, + "ĠFOR": 15174, + "ĠFP": 36655, + "ĠFPS": 26429, + "ĠFR": 15288, + "ĠFRE": 26276, + "ĠFREE": 48511, + "ĠFROM": 36848, + "ĠFS": 41138, + "ĠFT": 46675, + "ĠFUCK": 26154, + "ĠFX": 37849, + "ĠFY": 42730, + "ĠFa": 12710, + "ĠFab": 17440, + "ĠFac": 17667, + "ĠFace": 4047, + "ĠFacebook": 4384, + "ĠFach": 38213, + "ĠFact": 33375, + "ĠFactory": 36868, + "ĠFaculty": 32689, + "ĠFahr": 19843, + "ĠFahren": 29109, + "ĠFahrenheit": 31199, + "ĠFail": 39094, + "ĠFair": 12157, + "ĠFairy": 37631, + "ĠFaith": 23642, + "ĠFake": 40469, + "ĠFal": 15202, + "ĠFalcon": 31801, + "ĠFall": 7465, + "ĠFallout": 38457, + "ĠFalls": 23245, + "ĠFalse": 50040, + "ĠFam": 7342, + "ĠFame": 35922, + "ĠFamil": 15672, + "ĠFamilie": 26021, + "ĠFamilien": 36451, + "ĠFamilies": 45081, + "ĠFamily": 11661, + "ĠFan": 18564, + "ĠFang": 25409, + "ĠFans": 25065, + "ĠFant": 12885, + "ĠFantastic": 21320, + "ĠFantasy": 25503, + "ĠFar": 9067, + "ĠFare": 46989, + "ĠFarm": 19991, + "ĠFasc": 49098, + "ĠFashion": 32782, + "ĠFast": 15968, + "ĠFaster": 46665, + "ĠFat": 16948, + "ĠFate": 40900, + "ĠFather": 7085, + "ĠFau": 48820, + "ĠFavor": 34240, + "ĠFavorite": 43697, + "ĠFay": 48889, + "ĠFaz": 33154, + "ĠFe": 3697, + "ĠFear": 28054, + "ĠFebru": 8534, + "ĠFebruary": 8711, + "ĠFed": 7772, + "ĠFeder": 45545, + "ĠFederal": 12380, + "ĠFederation": 27237, + "ĠFeed": 33720, + "ĠFeel": 14113, + "ĠFeeling": 29945, + "ĠFeels": 31578, + "ĠFeh": 35576, + "ĠFehler": 48101, + "ĠFei": 39587, + "ĠFel": 13298, + "ĠFeld": 42677, + "ĠFelipe": 34811, + "ĠFelix": 30169, + "ĠFell": 29709, + "ĠFellow": 44794, + "ĠFellows": 40011, + "ĠFemale": 27288, + "ĠFen": 30993, + "ĠFeng": 23715, + "ĠFer": 10728, + "ĠFergus": 36790, + "ĠFerguson": 40823, + "ĠFerm": 43261, + "ĠFern": 16675, + "ĠFernando": 30190, + "ĠFerr": 25443, + "ĠFerrari": 29828, + "ĠFest": 12993, + "ĠFestival": 16512, + "ĠFeuer": 39972, + "ĠFew": 33468, + "ĠFey": 46530, + "ĠFi": 38245, + "ĠField": 17952, + "ĠFields": 48190, + "ĠFif": 21501, + "ĠFifth": 33588, + "ĠFig": 22443, + "ĠFight": 12371, + "ĠFighter": 33387, + "ĠFighting": 25694, + "ĠFigure": 43225, + "ĠFil": 7905, + "ĠFile": 26196, + "ĠFilip": 28241, + "ĠFilipino": 41266, + "ĠFill": 25315, + "ĠFilm": 13801, + "ĠFilter": 39592, + "ĠFin": 3773, + "ĠFinal": 13443, + "ĠFinally": 6288, + "ĠFinance": 25765, + "ĠFinancial": 25560, + "ĠFinanz": 39141, + "ĠFind": 11809, + "ĠFinding": 31947, + "ĠFine": 12024, + "ĠFinger": 37318, + "ĠFinish": 31583, + "ĠFinished": 48188, + "ĠFinland": 24869, + "ĠFinn": 21066, + "ĠFinnish": 38429, + "ĠFiona": 42556, + "ĠFir": 28164, + "ĠFire": 7652, + "ĠFirebase": 35173, + "ĠFirefox": 46613, + "ĠFirma": 50206, + "ĠFirst": 2386, + "ĠFirstly": 20042, + "ĠFish": 18096, + "ĠFisher": 26676, + "ĠFit": 29263, + "ĠFitness": 45750, + "ĠFitz": 37815, + "ĠFive": 9436, + "ĠFix": 25538, + "ĠFl": 3235, + "ĠFlag": 37461, + "ĠFlame": 42792, + "ĠFlash": 20232, + "ĠFlat": 36172, + "ĠFle": 18612, + "ĠFleet": 47821, + "ĠFleisch": 44911, + "ĠFlex": 29208, + "ĠFlight": 28954, + "ĠFlint": 35587, + "ĠFlip": 28210, + "ĠFlo": 15153, + "ĠFlor": 8328, + "ĠFloren": 32637, + "ĠFlorence": 34631, + "ĠFlorida": 9117, + "ĠFlow": 32792, + "ĠFlower": 34993, + "ĠFlowers": 48194, + "ĠFloyd": 28494, + "ĠFlu": 33612, + "ĠFlug": 33326, + "ĠFly": 25294, + "ĠFlying": 34287, + "ĠFlynn": 40391, + "ĠFo": 8564, + "ĠFocus": 21862, + "ĠFoi": 30995, + "ĠFol": 15255, + "ĠFold": 24609, + "ĠFolge": 43597, + "ĠFolks": 39275, + "ĠFollow": 9876, + "ĠFollowing": 19192, + "ĠFont": 43901, + "ĠFood": 11675, + "ĠFoods": 40724, + "ĠFool": 41583, + "ĠFoot": 20989, + "ĠFootball": 31406, + "ĠFor": 1171, + "ĠForbes": 45950, + "ĠForce": 10580, + "ĠForces": 27445, + "ĠFord": 11961, + "ĠFore": 9018, + "ĠForeign": 20430, + "ĠForest": 18124, + "ĠForever": 30703, + "ĠForget": 18675, + "ĠForgive": 34060, + "ĠForm": 10126, + "ĠFormer": 36514, + "ĠFormula": 35872, + "ĠFors": 48202, + "ĠForsch": 42938, + "ĠFort": 11002, + "ĠFortnite": 28712, + "ĠFortunately": 20652, + "ĠFortune": 38508, + "ĠForum": 29704, + "ĠForward": 35524, + "ĠFoster": 38756, + "ĠFot": 46771, + "ĠFound": 8207, + "ĠFoundation": 10335, + "ĠFour": 7451, + "ĠFourier": 36810, + "ĠFourth": 23773, + "ĠFox": 11388, + "ĠFr": 1526, + "ĠFra": 5849, + "ĠFrage": 13685, + "ĠFragen": 25588, + "ĠFraktion": 30648, + "ĠFrame": 31628, + "ĠFran": 17288, + "ĠFranc": 8686, + "ĠFrance": 6190, + "ĠFrances": 31441, + "ĠFrancis": 19648, + "ĠFrancisco": 12279, + "ĠFranco": 34695, + "ĠFrank": 6823, + "ĠFranken": 39678, + "ĠFrankf": 32571, + "ĠFrankfurt": 36530, + "ĠFrankie": 47263, + "ĠFranklin": 22010, + "ĠFrankly": 41344, + "ĠFranz": 33084, + "ĠFrançais": 39023, + "ĠFraser": 49119, + "ĠFrau": 13930, + "ĠFrauen": 24191, + "ĠFre": 6142, + "ĠFred": 10112, + "ĠFreddie": 41264, + "ĠFreddy": 31445, + "ĠFreder": 27535, + "ĠFrederick": 35617, + "ĠFree": 11551, + "ĠFreedom": 22208, + "ĠFreeman": 42163, + "ĠFreeze": 48096, + "ĠFrei": 35939, + "ĠFreiheit": 47825, + "ĠFrench": 5522, + "ĠFres": 42618, + "ĠFresh": 22843, + "ĠFreud": 41590, + "ĠFreund": 29685, + "ĠFreunde": 40016, + "ĠFriday": 6984, + "ĠFridays": 46306, + "ĠFried": 17605, + "ĠFriend": 22812, + "ĠFriends": 14042, + "ĠFro": 25028, + "ĠFrog": 40103, + "ĠFrom": 3358, + "ĠFront": 17348, + "ĠFrost": 32910, + "ĠFrozen": 39422, + "ĠFruit": 39989, + "ĠFry": 31822, + "ĠFrüh": 47400, + "ĠFu": 12807, + "ĠFuck": 10965, + "ĠFucking": 33342, + "ĠFuel": 46837, + "ĠFuj": 43915, + "ĠFuji": 38119, + "ĠFuk": 33043, + "ĠFull": 13841, + "ĠFun": 11166, + "ĠFund": 13493, + "ĠFunk": 45285, + "ĠFunny": 36484, + "ĠFur": 11705, + "ĠFurther": 15364, + "ĠFurthermore": 23999, + "ĠFury": 40327, + "ĠFusion": 36721, + "ĠFut": 16569, + "ĠFuture": 20805, + "ĠFuÃŁ": 31419, + "ĠFuÃŁball": 49487, + "ĠFör": 20665, + "ĠFür": 14990, + "ĠG": 460, + "ĠGA": 22841, + "ĠGB": 26809, + "ĠGC": 29435, + "ĠGDP": 19599, + "ĠGE": 18003, + "ĠGEOR": 24992, + "ĠGEORGE": 26675, + "ĠGET": 28091, + "ĠGG": 42240, + "ĠGH": 40690, + "ĠGI": 26634, + "ĠGIR": 44027, + "ĠGIS": 47860, + "ĠGL": 16225, + "ĠGLORIA": 24074, + "ĠGM": 16609, + "ĠGN": 46411, + "ĠGO": 10365, + "ĠGOD": 26831, + "ĠGOOD": 28771, + "ĠGORD": 34746, + "ĠGORDON": 35269, + "ĠGOT": 36525, + "ĠGP": 26039, + "ĠGPA": 41321, + "ĠGPS": 19462, + "ĠGPU": 18407, + "ĠGR": 10903, + "ĠGRA": 26121, + "ĠGRANT": 30204, + "ĠGRE": 20830, + "ĠGREEN": 47262, + "ĠGREG": 48793, + "ĠGRÃľ": 21100, + "ĠGRÃľNEN": 21584, + "ĠGS": 32047, + "ĠGSA": 41754, + "ĠGT": 17530, + "ĠGTA": 35575, + "ĠGU": 17917, + "ĠGUY": 37931, + "ĠGW": 36704, + "ĠGa": 10384, + "ĠGab": 11995, + "ĠGabe": 39524, + "ĠGabrie": 50053, + "ĠGabriel": 20985, + "ĠGad": 37171, + "ĠGaga": 41465, + "ĠGal": 7336, + "ĠGalaxy": 13520, + "ĠGalile": 46576, + "ĠGall": 14588, + "ĠGallery": 29733, + "ĠGam": 24723, + "ĠGamb": 44643, + "ĠGame": 7522, + "ĠGames": 12761, + "ĠGaming": 30288, + "ĠGan": 19461, + "ĠGand": 23962, + "ĠGandhi": 34717, + "ĠGang": 17984, + "ĠGanz": 32496, + "ĠGanze": 35206, + "ĠGao": 32235, + "ĠGar": 7995, + "ĠGarage": 47918, + "ĠGarcia": 33738, + "ĠGard": 12882, + "ĠGarden": 19429, + "ĠGardens": 45268, + "ĠGarlic": 41124, + "ĠGarr": 42326, + "ĠGarrett": 40266, + "ĠGary": 13788, + "ĠGas": 24025, + "ĠGast": 31988, + "ĠGate": 21913, + "ĠGates": 26494, + "ĠGateway": 48394, + "ĠGather": 39841, + "ĠGaussian": 39148, + "ĠGavin": 24020, + "ĠGay": 23081, + "ĠGaz": 38468, + "ĠGaza": 37800, + "ĠGe": 2876, + "ĠGear": 26810, + "ĠGeb": 24984, + "ĠGed": 28166, + "ĠGedanken": 44612, + "ĠGee": 39840, + "ĠGeez": 43836, + "ĠGef": 17873, + "ĠGefühl": 29715, + "ĠGeg": 27826, + "ĠGegen": 38631, + "ĠGel": 16142, + "ĠGeld": 16535, + "ĠGem": 22894, + "ĠGeme": 31266, + "ĠGen": 3632, + "ĠGenau": 22340, + "ĠGender": 48039, + "ĠGene": 18083, + "ĠGener": 15409, + "ĠGeneral": 6996, + "ĠGenerally": 21082, + "ĠGeneration": 23898, + "ĠGenesis": 20587, + "ĠGeneva": 37285, + "ĠGenius": 45818, + "ĠGent": 33070, + "ĠGente": 38799, + "ĠGentle": 26214, + "ĠGentlemen": 38316, + "ĠGeoff": 26119, + "ĠGeor": 27909, + "ĠGeorg": 10114, + "ĠGeorge": 7136, + "ĠGeorget": 33932, + "ĠGeorgetown": 34848, + "ĠGeorgia": 11859, + "ĠGer": 9409, + "ĠGerade": 48175, + "ĠGeral": 48527, + "ĠGerald": 38332, + "ĠGerilim": 30687, + "ĠGerm": 3848, + "ĠGerman": 6521, + "ĠGermans": 18116, + "ĠGermany": 7244, + "ĠGerry": 39154, + "ĠGes": 6761, + "ĠGesch": 14241, + "ĠGeschichte": 28896, + "ĠGeschäft": 40440, + "ĠGesellschaft": 30006, + "ĠGesetz": 20685, + "ĠGesetzent": 37792, + "ĠGesetzentwurf": 42040, + "ĠGesicht": 47777, + "ĠGespr": 38746, + "ĠGest": 39909, + "ĠGesund": 33057, + "ĠGesundheits": 44709, + "ĠGet": 3240, + "ĠGetting": 13674, + "ĠGew": 19063, + "ĠGh": 20321, + "ĠGhana": 38779, + "ĠGhost": 16323, + "ĠGi": 15334, + "ĠGian": 41958, + "ĠGiant": 29391, + "ĠGib": 17256, + "ĠGibbs": 30199, + "ĠGibson": 42250, + "ĠGift": 44890, + "ĠGig": 40489, + "ĠGil": 17654, + "ĠGilbert": 39003, + "ĠGill": 27709, + "ĠGimme": 48047, + "ĠGin": 36846, + "ĠGina": 34711, + "ĠGinger": 34637, + "ĠGins": 41728, + "ĠGinsburg": 49347, + "ĠGiov": 47089, + "ĠGir": 36306, + "ĠGirl": 8502, + "ĠGirls": 16245, + "ĠGit": 16939, + "ĠGitHub": 23331, + "ĠGiul": 38679, + "ĠGive": 5303, + "ĠGiven": 18600, + "ĠGiving": 28983, + "ĠGl": 5209, + "ĠGla": 47895, + "ĠGlad": 28301, + "ĠGlas": 29078, + "ĠGlasgow": 40457, + "ĠGlass": 23752, + "ĠGleich": 33858, + "ĠGlen": 38125, + "ĠGlenn": 30119, + "ĠGlo": 10786, + "ĠGlobal": 14465, + "ĠGlobe": 46570, + "ĠGloria": 34288, + "ĠGlory": 28524, + "ĠGlue": 49832, + "ĠGlück": 33508, + "ĠGmail": 36732, + "ĠGo": 1037, + "ĠGoPro": 30259, + "ĠGob": 24287, + "ĠGobierno": 41963, + "ĠGod": 1265, + "ĠGoddess": 33498, + "ĠGods": 30151, + "ĠGodzilla": 38046, + "ĠGoes": 44471, + "ĠGog": 39690, + "ĠGoing": 10963, + "ĠGoku": 29138, + "ĠGol": 36319, + "ĠGold": 6731, + "ĠGolden": 13410, + "ĠGoldman": 45378, + "ĠGolf": 30176, + "ĠGom": 46961, + "ĠGomez": 43537, + "ĠGon": 47403, + "ĠGone": 39068, + "ĠGong": 33231, + "ĠGonna": 20341, + "ĠGonz": 28458, + "ĠGonzalez": 46708, + "ĠGoo": 47609, + "ĠGood": 2205, + "ĠGoodbye": 15528, + "ĠGoodness": 39863, + "ĠGoodnight": 45889, + "ĠGoog": 45005, + "ĠGoogle": 3329, + "ĠGor": 26144, + "ĠGordon": 19369, + "ĠGore": 45450, + "ĠGos": 41272, + "ĠGosh": 19185, + "ĠGospel": 23163, + "ĠGot": 5803, + "ĠGotcha": 42109, + "ĠGoth": 27305, + "ĠGothic": 47143, + "ĠGott": 19133, + "ĠGotta": 21527, + "ĠGottes": 49569, + "ĠGovern": 5515, + "ĠGovernment": 7321, + "ĠGovernor": 14550, + "ĠGr": 2606, + "ĠGra": 8985, + "ĠGrab": 20357, + "ĠGrac": 20586, + "ĠGrace": 15742, + "ĠGracias": 26909, + "ĠGrad": 16710, + "ĠGrade": 44452, + "ĠGraduate": 38124, + "ĠGraham": 22691, + "ĠGram": 22130, + "ĠGrammy": 47332, + "ĠGran": 23554, + "ĠGrand": 6757, + "ĠGrande": 28384, + "ĠGrandma": 22657, + "ĠGrandpa": 27139, + "ĠGranny": 40746, + "ĠGrant": 17529, + "ĠGraph": 21884, + "ĠGrass": 39891, + "ĠGravity": 49478, + "ĠGray": 22668, + "ĠGre": 14986, + "ĠGreat": 3769, + "ĠGreater": 38410, + "ĠGree": 7229, + "ĠGreece": 17214, + "ĠGreek": 10281, + "ĠGreeks": 31029, + "ĠGreen": 6969, + "ĠGreens": 39314, + "ĠGreet": 18678, + "ĠGreetings": 20032, + "ĠGreg": 11490, + "ĠGregory": 37915, + "ĠGren": 24913, + "ĠGrey": 24854, + "ĠGri": 46082, + "ĠGrid": 42905, + "ĠGriff": 23765, + "ĠGriffin": 39188, + "ĠGrill": 43592, + "ĠGrind": 47938, + "ĠGro": 12981, + "ĠGross": 34256, + "ĠGround": 28371, + "ĠGroup": 10500, + "ĠGrove": 43111, + "ĠGrow": 18476, + "ĠGrowing": 32569, + "ĠGrowth": 48345, + "ĠGroÃŁ": 34534, + "ĠGru": 10459, + "ĠGrund": 13941, + "ĠGrö": 45778, + "ĠGrü": 38908, + "ĠGu": 2694, + "ĠGuan": 41431, + "ĠGuang": 35815, + "ĠGuard": 11549, + "ĠGuardian": 27684, + "ĠGuardians": 45236, + "ĠGuatem": 39462, + "ĠGuatemala": 43120, + "ĠGucci": 46052, + "ĠGud": 45986, + "ĠGue": 44847, + "ĠGuer": 28305, + "ĠGuerra": 45725, + "ĠGuess": 17795, + "ĠGuid": 49036, + "ĠGuide": 18727, + "ĠGuild": 38968, + "ĠGuill": 48149, + "ĠGuin": 44117, + "ĠGuinea": 46793, + "ĠGuitar": 48758, + "ĠGul": 43314, + "ĠGulf": 23033, + "ĠGum": 48862, + "ĠGun": 14153, + "ĠGund": 38299, + "ĠGuo": 34175, + "ĠGur": 33716, + "ĠGuru": 22389, + "ĠGus": 40619, + "ĠGust": 32337, + "ĠGut": 24481, + "ĠGuten": 42833, + "ĠGuy": 14690, + "ĠGuys": 7855, + "ĠGwen": 42499, + "ĠGy": 25911, + "ĠGym": 38635, + "ĠGö": 47894, + "ĠGör": 35493, + "ĠGü": 38139, + "ĠGün": 50225, + "ĠH": 389, + "ĠHA": 11979, + "ĠHAM": 45561, + "ĠHAR": 19819, + "ĠHARF": 27602, + "ĠHARR": 38892, + "ĠHARRIS": 47714, + "ĠHAS": 38461, + "ĠHAVE": 30309, + "ĠHBO": 37409, + "ĠHC": 30440, + "ĠHD": 12149, + "ĠHDMI": 30811, + "ĠHDR": 29650, + "ĠHE": 11827, + "ĠHEL": 38856, + "ĠHER": 29060, + "ĠHERE": 37438, + "ĠHEY": 43821, + "ĠHI": 44376, + "ĠHIM": 43854, + "ĠHIS": 45470, + "ĠHIV": 15907, + "ĠHJ": 35755, + "ĠHK": 39378, + "ĠHO": 23097, + "ĠHOL": 44069, + "ĠHOR": 48064, + "ĠHOW": 30561, + "ĠHOY": 46120, + "ĠHP": 12557, + "ĠHQ": 43209, + "ĠHR": 19460, + "ĠHS": 34194, + "ĠHT": 11751, + "ĠHTML": 17995, + "ĠHTTP": 33283, + "ĠHU": 26887, + "ĠHUD": 46867, + "ĠHY": 34189, + "ĠHa": 4064, + "ĠHab": 14225, + "ĠHaben": 47007, + "ĠHack": 35170, + "ĠHad": 12298, + "ĠHadi": 18908, + "ĠHae": 44245, + "ĠHaf": 47933, + "ĠHag": 34758, + "ĠHah": 31944, + "ĠHaha": 19131, + "ĠHahah": 42656, + "ĠHahaha": 25122, + "ĠHahn": 45303, + "ĠHai": 24055, + "ĠHail": 32495, + "ĠHair": 27957, + "ĠHait": 25752, + "ĠHaiti": 35231, + "ĠHaj": 43347, + "ĠHak": 21750, + "ĠHal": 13896, + "ĠHalf": 15917, + "ĠHall": 5434, + "ĠHallelujah": 32359, + "ĠHallo": 21242, + "ĠHalloween": 13860, + "ĠHalo": 29795, + "ĠHam": 8234, + "ĠHamb": 27551, + "ĠHamburg": 34118, + "ĠHamilton": 18484, + "ĠHamm": 34842, + "ĠHammer": 33722, + "ĠHamp": 30303, + "ĠHampshire": 35688, + "ĠHan": 7820, + "ĠHana": 47946, + "ĠHand": 8854, + "ĠHands": 21369, + "ĠHandy": 47006, + "ĠHang": 14070, + "ĠHani": 39731, + "ĠHank": 26427, + "ĠHann": 33461, + "ĠHannah": 21754, + "ĠHans": 17926, + "ĠHanım": 37182, + "ĠHao": 36702, + "ĠHapp": 7412, + "ĠHappiness": 46224, + "ĠHappy": 8277, + "ĠHar": 3653, + "ĠHarbor": 33740, + "ĠHard": 11817, + "ĠHardy": 43930, + "ĠHare": 34836, + "ĠHari": 47221, + "ĠHarlem": 44196, + "ĠHarley": 34921, + "ĠHarm": 43523, + "ĠHarmon": 40599, + "ĠHarold": 36076, + "ĠHarper": 37216, + "ĠHarr": 13321, + "ĠHarriet": 46437, + "ĠHarris": 17426, + "ĠHarrison": 34272, + "ĠHarry": 9378, + "ĠHarsh": 48914, + "ĠHart": 21414, + "ĠHarvard": 13378, + "ĠHarvey": 28796, + "ĠHas": 8646, + "ĠHasan": 46513, + "ĠHash": 30775, + "ĠHass": 32711, + "ĠHast": 30987, + "ĠHasta": 45027, + "ĠHat": 15867, + "ĠHate": 46000, + "ĠHaupt": 30573, + "ĠHaus": 22725, + "ĠHause": 26217, + "ĠHaush": 39581, + "ĠHaut": 49668, + "ĠHave": 3560, + "ĠHaven": 23770, + "ĠHaving": 10222, + "ĠHaw": 9325, + "ĠHawai": 13613, + "ĠHawaii": 17930, + "ĠHawaiian": 36581, + "ĠHawk": 42219, + "ĠHay": 8721, + "ĠHayır": 30102, + "ĠHaz": 15852, + "ĠHazrat": 32423, + "ĠHe": 634, + "ĠHead": 11398, + "ĠHealing": 48997, + "ĠHealth": 5912, + "ĠHealthcare": 45548, + "ĠHealthy": 37733, + "ĠHear": 30685, + "ĠHearing": 37875, + "ĠHeart": 13569, + "ĠHearts": 39309, + "ĠHeat": 27359, + "ĠHeath": 46622, + "ĠHeather": 21728, + "ĠHeaven": 13676, + "ĠHeavenly": 38352, + "ĠHeavy": 26473, + "ĠHeb": 15606, + "ĠHebrew": 17895, + "ĠHebrews": 44604, + "ĠHeck": 41948, + "ĠHee": 26545, + "ĠHeh": 34984, + "ĠHehe": 45185, + "ĠHeidi": 40947, + "ĠHeights": 44039, + "ĠHeil": 45650, + "ĠHein": 32789, + "ĠHej": 44567, + "ĠHel": 6128, + "ĠHelen": 26294, + "ĠHelena": 49294, + "ĠHell": 12090, + "ĠHello": 2425, + "ĠHelp": 10773, + "ĠHels": 45429, + "ĠHem": 18568, + "ĠHen": 8651, + "ĠHence": 22229, + "ĠHend": 28594, + "ĠHenderson": 45013, + "ĠHenri": 45365, + "ĠHenry": 11085, + "ĠHep": 30578, + "ĠHer": 3204, + "ĠHera": 30808, + "ĠHeraus": 36795, + "ĠHerausforder": 37888, + "ĠHerbert": 41942, + "ĠHere": 1692, + "ĠHeritage": 27406, + "ĠHerm": 21842, + "ĠHerman": 44676, + "ĠHern": 35651, + "ĠHernandez": 47985, + "ĠHero": 14731, + "ĠHeroes": 32070, + "ĠHerr": 10367, + "ĠHerren": 20810, + "ĠHerrn": 41791, + "ĠHers": 41222, + "ĠHert": 41898, + "ĠHertz": 46910, + "ĠHerz": 24749, + "ĠHess": 35960, + "ĠHessen": 24951, + "ĠHet": 12045, + "ĠHeute": 27978, + "ĠHey": 1911, + "ĠHi": 2421, + "ĠHidden": 41156, + "ĠHide": 35118, + "ĠHier": 10886, + "ĠHigh": 5229, + "ĠHigher": 31997, + "ĠHighness": 17284, + "ĠHighway": 30911, + "ĠHij": 27832, + "ĠHil": 19914, + "ĠHilfe": 37448, + "ĠHill": 9109, + "ĠHillary": 23284, + "ĠHills": 25663, + "ĠHim": 5920, + "ĠHimself": 26821, + "ĠHin": 29571, + "ĠHind": 15307, + "ĠHindi": 36225, + "ĠHindu": 21231, + "ĠHindus": 49726, + "ĠHinter": 35006, + "ĠHip": 29596, + "ĠHir": 23192, + "ĠHis": 2812, + "ĠHispan": 25912, + "ĠHispanic": 29559, + "ĠHist": 9038, + "ĠHistor": 25108, + "ĠHistorical": 46124, + "ĠHistory": 12486, + "ĠHit": 9217, + "ĠHitler": 19038, + "ĠHiç": 33410, + "ĠHm": 17989, + "ĠHmm": 8239, + "ĠHmmm": 32317, + "ĠHo": 3631, + "ĠHob": 22966, + "ĠHobby": 49705, + "ĠHoch": 29193, + "ĠHod": 45151, + "ĠHoe": 33979, + "ĠHof": 37379, + "ĠHoff": 29135, + "ĠHog": 30553, + "ĠHogwarts": 46539, + "ĠHoje": 34104, + "ĠHok": 46792, + "ĠHol": 11086, + "ĠHola": 22637, + "ĠHold": 6962, + "ĠHolding": 40818, + "ĠHole": 47635, + "ĠHoliday": 40898, + "ĠHoll": 17712, + "ĠHolland": 27201, + "ĠHollow": 46731, + "ĠHolly": 10055, + "ĠHollywood": 11628, + "ĠHolmes": 27474, + "ĠHolo": 24298, + "ĠHolocaust": 28399, + "ĠHoly": 6295, + "ĠHolz": 45455, + "ĠHom": 20903, + "ĠHome": 8719, + "ĠHomeland": 45800, + "ĠHomer": 42273, + "ĠHon": 6625, + "ĠHond": 45260, + "ĠHonda": 26989, + "ĠHonestly": 12348, + "ĠHoney": 16187, + "ĠHong": 8868, + "ĠHonor": 16922, + "ĠHonors": 48801, + "ĠHoo": 26796, + "ĠHood": 33213, + "ĠHook": 33132, + "ĠHoover": 46382, + "ĠHop": 13438, + "ĠHope": 6483, + "ĠHopefully": 10429, + "ĠHopkins": 29999, + "ĠHor": 10691, + "ĠHoriz": 42141, + "ĠHorizon": 40102, + "ĠHorn": 31792, + "ĠHorror": 42993, + "ĠHorse": 33208, + "ĠHos": 44004, + "ĠHosp": 14516, + "ĠHospital": 15645, + "ĠHost": 22047, + "ĠHot": 9423, + "ĠHotel": 20354, + "ĠHou": 16273, + "ĠHour": 38369, + "ĠHouse": 4928, + "ĠHousing": 31340, + "ĠHouston": 18717, + "ĠHow": 1012, + "ĠHoward": 17626, + "ĠHowever": 2908, + "ĠHoy": 28664, + "ĠHoÅŁ": 45958, + "ĠHu": 11874, + "ĠHua": 19094, + "ĠHuang": 28073, + "ĠHuawei": 28542, + "ĠHub": 18986, + "ĠHubble": 42317, + "ĠHud": 27767, + "ĠHudson": 32959, + "ĠHue": 40015, + "ĠHug": 46892, + "ĠHuge": 37043, + "ĠHugh": 25893, + "ĠHughes": 41102, + "ĠHugo": 32504, + "ĠHuh": 8063, + "ĠHui": 39340, + "ĠHulk": 30167, + "ĠHum": 12877, + "ĠHuman": 10294, + "ĠHumans": 35809, + "ĠHun": 11648, + "ĠHund": 43361, + "ĠHundred": 32869, + "ĠHundreds": 45785, + "ĠHung": 15063, + "ĠHungarian": 38034, + "ĠHungary": 32380, + "ĠHunger": 46549, + "ĠHunt": 31740, + "ĠHunter": 18704, + "ĠHunting": 44793, + "ĠHur": 8598, + "ĠHurricane": 35574, + "ĠHurry": 12944, + "ĠHus": 21282, + "ĠHut": 39012, + "ĠHutch": 48499, + "ĠHy": 5701, + "ĠHybrid": 47088, + "ĠHyd": 24231, + "ĠHye": 31103, + "ĠHyp": 45649, + "ĠHyper": 29592, + "ĠHyun": 18398, + "ĠHyundai": 44133, + "ĠHyung": 36917, + "ĠHz": 39747, + "ĠHä": 45763, + "ĠHär": 35539, + "ĠHé": 42318, + "ĠHö": 30824, + "ĠI": 286, + "ĠIB": 40385, + "ĠIBM": 23487, + "ĠIC": 14360, + "ĠICE": 43337, + "ĠICU": 38123, + "ĠID": 7348, + "ĠIDE": 40930, + "ĠIDs": 48212, + "ĠIF": 26080, + "ĠIG": 26367, + "ĠII": 6351, + "ĠIII": 16317, + "ĠIKE": 46492, + "ĠIKEA": 47728, + "ĠIL": 40413, + "ĠIM": 21463, + "ĠIN": 6892, + "ĠINF": 35971, + "ĠINT": 43140, + "ĠINTER": 30219, + "ĠINTERVIE": 46761, + "ĠINTERVIEWER": 49667, + "ĠIO": 39839, + "ĠIP": 8671, + "ĠIPO": 50220, + "ĠIPS": 50021, + "ĠIQ": 28921, + "ĠIR": 16486, + "ĠIRA": 37993, + "ĠIRS": 33848, + "ĠIS": 6205, + "ĠISBN": 47874, + "ĠISIL": 45518, + "ĠISIS": 25639, + "ĠISO": 25042, + "ĠISS": 48534, + "ĠIT": 6783, + "ĠIU": 44218, + "ĠIV": 15967, + "ĠIX": 49497, + "ĠIan": 19595, + "ĠIb": 40790, + "ĠIce": 15332, + "ĠIceland": 28004, + "ĠIch": 3141, + "ĠIci": 39049, + "ĠId": 11506, + "ĠIdaho": 36628, + "ĠIde": 13090, + "ĠIdea": 47245, + "ĠIdeally": 40817, + "ĠIdee": 32651, + "ĠIdent": 25905, + "ĠIdi": 40187, + "ĠIdol": 33266, + "ĠIf": 759, + "ĠIg": 19271, + "ĠIgn": 24754, + "ĠIgor": 40356, + "ĠIh": 10485, + "ĠIhnen": 17280, + "ĠIhr": 14773, + "ĠIhre": 26247, + "ĠIhrer": 47087, + "ĠIk": 8316, + "ĠIl": 4416, + "ĠIll": 10597, + "ĠIllinois": 17508, + "ĠIllust": 37788, + "ĠIls": 17979, + "ĠIm": 4331, + "ĠImag": 34223, + "ĠImage": 29903, + "ĠImagine": 11739, + "ĠImam": 39875, + "ĠImm": 17322, + "ĠImma": 50089, + "ĠImmedi": 32157, + "ĠImmediately": 34457, + "ĠImmer": 42676, + "ĠImp": 8270, + "ĠImpact": 31005, + "ĠImper": 18360, + "ĠImperial": 21395, + "ĠImpf": 32591, + "ĠImport": 26391, + "ĠImportant": 42908, + "ĠImpossible": 36808, + "ĠImprove": 46366, + "ĠIn": 682, + "ĠInaudible": 48655, + "ĠInc": 7779, + "ĠIncluding": 27137, + "ĠIncor": 39120, + "ĠIncre": 30367, + "ĠIncred": 27792, + "ĠIncredible": 35261, + "ĠInd": 2333, + "ĠIndeed": 15061, + "ĠIndepend": 21809, + "ĠIndependence": 33631, + "ĠIndependent": 40310, + "ĠIndex": 33552, + "ĠIndia": 5282, + "ĠIndian": 6427, + "ĠIndiana": 21858, + "ĠIndians": 23838, + "ĠIndigenous": 22699, + "ĠIndividual": 37292, + "ĠIndo": 46489, + "ĠIndones": 13942, + "ĠIndonesia": 16879, + "ĠIndonesian": 39772, + "ĠIndust": 16018, + "ĠIndustrial": 32059, + "ĠIndustries": 45375, + "ĠIndustry": 38178, + "ĠInf": 11537, + "ĠInfin": 22145, + "ĠInfinite": 43368, + "ĠInfinity": 34762, + "ĠInform": 34301, + "ĠInformation": 15357, + "ĠInformationen": 46753, + "ĠInfrast": 38425, + "ĠIng": 25731, + "ĠIngred": 46670, + "ĠInhale": 27586, + "ĠIni": 28929, + "ĠInit": 22937, + "ĠIniti": 23613, + "ĠInitially": 29446, + "ĠInitiative": 26166, + "ĠInk": 31147, + "ĠInn": 34066, + "ĠInnen": 43617, + "ĠInner": 36705, + "ĠInnov": 22203, + "ĠInnovation": 27092, + "ĠIns": 9442, + "ĠInsert": 36487, + "ĠInside": 15123, + "ĠInsp": 32671, + "ĠInspect": 29552, + "ĠInspector": 33402, + "ĠInst": 2730, + "ĠInstagram": 5281, + "ĠInstall": 31982, + "ĠInstant": 38707, + "ĠInstead": 7156, + "ĠInstit": 33897, + "ĠInstitute": 9446, + "ĠInstr": 39785, + "ĠInsurance": 39971, + "ĠInt": 5681, + "ĠInte": 21525, + "ĠIntegr": 23894, + "ĠIntegration": 47713, + "ĠIntel": 19762, + "ĠIntell": 18762, + "ĠIntelligence": 27274, + "ĠInter": 5751, + "ĠInteresting": 14711, + "ĠInterestingly": 30564, + "ĠInterior": 44346, + "ĠIntern": 4844, + "ĠInternal": 47836, + "ĠInternational": 9157, + "ĠInternet": 7703, + "ĠInterview": 35599, + "ĠInterviewer": 43184, + "ĠInto": 23373, + "ĠIntro": 47406, + "ĠIntrodu": 27193, + "ĠInv": 31124, + "ĠInvest": 14008, + "ĠInvestig": 42030, + "ĠInvestment": 43427, + "ĠIo": 19239, + "ĠIoT": 30112, + "ĠIowa": 14514, + "ĠIr": 9151, + "ĠIra": 10954, + "ĠIran": 8283, + "ĠIranian": 24934, + "ĠIraq": 11818, + "ĠIraqi": 35149, + "ĠIre": 13151, + "ĠIreland": 15880, + "ĠIrene": 40834, + "ĠIris": 40789, + "ĠIrish": 16801, + "ĠIron": 13720, + "ĠIs": 1119, + "ĠIsa": 19718, + "ĠIsaac": 22505, + "ĠIsab": 35686, + "ĠIsaiah": 27263, + "ĠIsh": 42854, + "ĠIslam": 8571, + "ĠIslamic": 17970, + "ĠIsland": 7637, + "ĠIslands": 23492, + "ĠIsn": 6998, + "ĠIsrael": 5674, + "ĠIsraeli": 19974, + "ĠIsraelis": 45086, + "ĠIsraelites": 48308, + "ĠIss": 38195, + "ĠIsso": 14887, + "ĠIst": 12810, + "ĠIstanbul": 36340, + "ĠIt": 467, + "ĠItal": 8158, + "ĠItalia": 41355, + "ĠItalian": 10003, + "ĠItalians": 43620, + "ĠItaly": 10705, + "ĠItem": 31066, + "ĠIts": 6953, + "ĠItu": 39109, + "ĠItÃŃs": 47806, + "ĠIv": 26546, + "ĠIvan": 28893, + "ĠIvy": 38592, + "ĠIya": 47600, + "ĠIz": 30296, + "ĠIÃŃm": 34925, + "ĠJ": 508, + "ĠJA": 26401, + "ĠJAC": 48904, + "ĠJACK": 40281, + "ĠJAKE": 45452, + "ĠJAM": 26238, + "ĠJAMES": 35510, + "ĠJASON": 33524, + "ĠJAY": 29116, + "ĠJB": 43019, + "ĠJC": 49802, + "ĠJD": 37082, + "ĠJE": 21072, + "ĠJEFF": 30214, + "ĠJEN": 50245, + "ĠJENN": 35635, + "ĠJER": 29257, + "ĠJERRY": 48650, + "ĠJES": 49350, + "ĠJESS": 49439, + "ĠJF": 40951, + "ĠJH": 27473, + "ĠJI": 50172, + "ĠJIM": 37650, + "ĠJJ": 21386, + "ĠJJonak": 42805, + "ĠJK": 35973, + "ĠJM": 35162, + "ĠJO": 9787, + "ĠJOE": 44114, + "ĠJOHN": 13844, + "ĠJON": 27838, + "ĠJOSH": 36883, + "ĠJP": 34336, + "ĠJR": 32849, + "ĠJS": 33063, + "ĠJSON": 31828, + "ĠJU": 38852, + "ĠJUD": 16418, + "ĠJUDGE": 30042, + "ĠJUDY": 23820, + "ĠJUL": 40820, + "ĠJUN": 45801, + "ĠJUST": 33310, + "ĠJUSTIN": 41987, + "ĠJW": 49885, + "ĠJY": 43587, + "ĠJa": 3530, + "ĠJab": 40319, + "ĠJac": 9538, + "ĠJack": 4718, + "ĠJackie": 23402, + "ĠJackson": 10647, + "ĠJacob": 14117, + "ĠJacobs": 44068, + "ĠJacqu": 49770, + "ĠJacques": 42691, + "ĠJade": 37021, + "ĠJadi": 21662, + "ĠJae": 20916, + "ĠJag": 9014, + "ĠJah": 12443, + "ĠJahr": 11674, + "ĠJahre": 15557, + "ĠJahren": 13080, + "ĠJahres": 44360, + "ĠJaime": 46119, + "ĠJak": 15029, + "ĠJake": 15822, + "ĠJam": 10372, + "ĠJama": 26803, + "ĠJamaica": 42927, + "ĠJames": 5678, + "ĠJamie": 19309, + "ĠJan": 4956, + "ĠJana": 49164, + "ĠJane": 13048, + "ĠJaneiro": 44711, + "ĠJanet": 26948, + "ĠJang": 29912, + "ĠJanuary": 7061, + "ĠJap": 35642, + "ĠJapan": 3367, + "ĠJapanese": 5433, + "ĠJapon": 47594, + "ĠJar": 23941, + "ĠJared": 24160, + "ĠJas": 34023, + "ĠJasmine": 36224, + "ĠJason": 11181, + "ĠJava": 10745, + "ĠJavaScript": 15778, + "ĠJaw": 48547, + "ĠJay": 11146, + "ĠJaz": 45640, + "ĠJazz": 32213, + "ĠJe": 2588, + "ĠJean": 13854, + "ĠJed": 27076, + "ĠJeder": 47274, + "ĠJedi": 21746, + "ĠJeep": 31748, + "ĠJeez": 48516, + "ĠJeff": 7506, + "ĠJefferson": 25747, + "ĠJeffrey": 28721, + "ĠJeg": 17119, + "ĠJeju": 42966, + "ĠJelly": 38815, + "ĠJen": 9228, + "ĠJenkins": 41273, + "ĠJenn": 12342, + "ĠJenna": 35391, + "ĠJennifer": 14351, + "ĠJenny": 20580, + "ĠJeong": 31761, + "ĠJer": 8139, + "ĠJeremiah": 40460, + "ĠJeremy": 17809, + "ĠJerome": 44965, + "ĠJerry": 17454, + "ĠJersey": 16601, + "ĠJerusalem": 15393, + "ĠJes": 2547, + "ĠJess": 10484, + "ĠJesse": 21895, + "ĠJessica": 15570, + "ĠJessie": 36627, + "ĠJest": 24918, + "ĠJesus": 2705, + "ĠJesús": 47710, + "ĠJet": 28730, + "ĠJetzt": 12592, + "ĠJew": 5679, + "ĠJewish": 9246, + "ĠJews": 11041, + "ĠJeżeli": 35090, + "ĠJeÅĽli": 37086, + "ĠJi": 9702, + "ĠJia": 29242, + "ĠJian": 35423, + "ĠJiang": 23458, + "ĠJie": 41731, + "ĠJill": 24690, + "ĠJim": 6637, + "ĠJimin": 33657, + "ĠJimmy": 15709, + "ĠJin": 10617, + "ĠJing": 19534, + "ĠJinping": 45898, + "ĠJo": 3139, + "ĠJoan": 25748, + "ĠJoanna": 49314, + "ĠJob": 18602, + "ĠJobs": 29169, + "ĠJoe": 6807, + "ĠJoel": 21522, + "ĠJoey": 23764, + "ĠJoh": 19180, + "ĠJohann": 34094, + "ĠJohannes": 48455, + "ĠJohn": 2619, + "ĠJohnny": 15999, + "ĠJohns": 37016, + "ĠJohnson": 9779, + "ĠJoin": 19642, + "ĠJoining": 40229, + "ĠJoint": 37866, + "ĠJoker": 27453, + "ĠJon": 7745, + "ĠJonah": 42353, + "ĠJonas": 34630, + "ĠJonathan": 15471, + "ĠJones": 10512, + "ĠJong": 19589, + "ĠJoo": 35169, + "ĠJord": 32752, + "ĠJordan": 10979, + "ĠJorge": 36875, + "ĠJos": 18541, + "ĠJose": 8635, + "ĠJoseph": 11170, + "ĠJosh": 9785, + "ĠJoshua": 24005, + "ĠJosé": 34342, + "ĠJour": 13483, + "ĠJournal": 16936, + "ĠJourney": 37724, + "ĠJoy": 15571, + "ĠJoyce": 40044, + "ĠJoão": 21302, + "ĠJr": 17261, + "ĠJu": 13582, + "ĠJuan": 17064, + "ĠJub": 43560, + "ĠJud": 7661, + "ĠJuda": 35300, + "ĠJudah": 46828, + "ĠJudaism": 37797, + "ĠJudas": 49632, + "ĠJude": 36521, + "ĠJudge": 19476, + "ĠJudith": 45395, + "ĠJudy": 24577, + "ĠJug": 27892, + "ĠJugend": 35303, + "ĠJuice": 47776, + "ĠJul": 7174, + "ĠJulia": 18551, + "ĠJulian": 25151, + "ĠJulie": 18794, + "ĠJuliet": 33532, + "ĠJulius": 47666, + "ĠJuly": 7370, + "ĠJump": 18697, + "ĠJun": 8492, + "ĠJune": 6928, + "ĠJung": 12739, + "ĠJungkook": 48928, + "ĠJungle": 44021, + "ĠJunior": 21954, + "ĠJup": 22125, + "ĠJupiter": 24567, + "ĠJur": 27544, + "ĠJurassic": 44730, + "ĠJust": 1449, + "ĠJustice": 10422, + "ĠJustin": 11320, + "ĠJá": 21237, + "ĠK": 591, + "ĠKA": 31233, + "ĠKAR": 42976, + "ĠKAT": 39274, + "ĠKE": 21887, + "ĠKELL": 48109, + "ĠKENN": 34773, + "ĠKENNETH": 42303, + "ĠKEVIN": 50006, + "ĠKH": 34854, + "ĠKI": 47261, + "ĠKIM": 38985, + "ĠKIR": 29927, + "ĠKIRBY": 34553, + "ĠKL": 47991, + "ĠKN": 26967, + "ĠKNOW": 39429, + "ĠKO": 34245, + "ĠKP": 41371, + "ĠKR": 37522, + "ĠKRIS": 36449, + "ĠKY": 41150, + "ĠKa": 10988, + "ĠKab": 25848, + "ĠKabul": 48103, + "ĠKad": 32248, + "ĠKaf": 36813, + "ĠKafka": 47064, + "ĠKag": 48751, + "ĠKah": 39444, + "ĠKai": 20753, + "ĠKaiser": 42066, + "ĠKait": 45791, + "ĠKak": 36775, + "ĠKal": 12655, + "ĠKalau": 36366, + "ĠKam": 11934, + "ĠKamera": 42728, + "ĠKampf": 45126, + "ĠKan": 11120, + "ĠKanal": 38643, + "ĠKane": 39161, + "ĠKang": 20360, + "ĠKann": 29074, + "ĠKansas": 19422, + "ĠKant": 40927, + "ĠKanye": 37654, + "ĠKap": 21216, + "ĠKar": 8009, + "ĠKara": 34838, + "ĠKard": 31050, + "ĠKardash": 37959, + "ĠKardashian": 46044, + "ĠKaren": 14834, + "ĠKarena": 45724, + "ĠKarere": 48442, + "ĠKarl": 20405, + "ĠKarma": 39063, + "ĠKart": 27365, + "ĠKas": 28059, + "ĠKash": 32356, + "ĠKat": 8365, + "ĠKate": 16251, + "ĠKath": 20067, + "ĠKatherine": 33478, + "ĠKathleen": 41648, + "ĠKathryn": 49655, + "ĠKathy": 30740, + "ĠKatie": 19602, + "ĠKatrina": 42550, + "ĠKaty": 42959, + "ĠKauf": 44590, + "ĠKaw": 31795, + "ĠKay": 14179, + "ĠKayla": 36797, + "ĠKaz": 16264, + "ĠKazakh": 38438, + "ĠKazakhstan": 47394, + "ĠKazu": 41038, + "ĠKazuto": 38031, + "ĠKazuya": 47730, + "ĠKe": 3189, + "ĠKeep": 5527, + "ĠKeeping": 30187, + "ĠKeith": 20613, + "ĠKel": 19158, + "ĠKell": 28554, + "ĠKeller": 48352, + "ĠKelly": 12345, + "ĠKelsey": 44714, + "ĠKelvin": 36955, + "ĠKem": 30097, + "ĠKen": 8273, + "ĠKend": 20891, + "ĠKendall": 38794, + "ĠKenn": 12369, + "ĠKennedy": 16517, + "ĠKenneth": 33735, + "ĠKenny": 33681, + "ĠKens": 33265, + "ĠKensuke": 44708, + "ĠKent": 15843, + "ĠKentucky": 22369, + "ĠKenya": 31011, + "ĠKer": 20706, + "ĠKern": 40224, + "ĠKerry": 28528, + "ĠKes": 26898, + "ĠKevin": 9954, + "ĠKey": 12759, + "ĠKeys": 43733, + "ĠKh": 11681, + "ĠKhal": 27724, + "ĠKhan": 18136, + "ĠKhông": 49125, + "ĠKi": 17459, + "ĠKia": 45505, + "ĠKick": 20886, + "ĠKickstarter": 41288, + "ĠKid": 18978, + "ĠKids": 15694, + "ĠKiev": 48559, + "ĠKil": 23912, + "ĠKill": 17526, + "ĠKiller": 39846, + "ĠKim": 5652, + "ĠKimberly": 39804, + "ĠKimchi": 38428, + "ĠKin": 27950, + "ĠKind": 9242, + "ĠKinda": 35553, + "ĠKinder": 14193, + "ĠKindern": 43987, + "ĠKing": 3819, + "ĠKingdom": 11277, + "ĠKings": 21855, + "ĠKingston": 33419, + "ĠKir": 11305, + "ĠKirby": 37423, + "ĠKirk": 27834, + "ĠKirsty": 31166, + "ĠKiss": 24297, + "ĠKit": 23037, + "ĠKita": 27329, + "ĠKitchen": 23135, + "ĠKitty": 36393, + "ĠKivol": 27506, + "ĠKivolowitz": 27507, + "ĠKl": 16053, + "ĠKlar": 44893, + "ĠKle": 17053, + "ĠKlein": 33327, + "ĠKlim": 25136, + "ĠKn": 10519, + "ĠKne": 32708, + "ĠKnight": 18708, + "ĠKnights": 37685, + "ĠKnock": 34017, + "ĠKnow": 10265, + "ĠKnowing": 25499, + "ĠKnowledge": 32906, + "ĠKnox": 48510, + "ĠKo": 10509, + "ĠKob": 46353, + "ĠKobe": 46296, + "ĠKoch": 40401, + "ĠKoh": 30861, + "ĠKok": 36915, + "ĠKol": 26137, + "ĠKoll": 11621, + "ĠKolleg": 25213, + "ĠKollege": 28505, + "ĠKollegen": 23713, + "ĠKollegin": 46632, + "ĠKolleginnen": 35950, + "ĠKom": 14286, + "ĠKomb": 34678, + "ĠKombat": 49131, + "ĠKomm": 18400, + "ĠKomment": 33708, + "ĠKommentare": 46203, + "ĠKommun": 28832, + "ĠKommunen": 42566, + "ĠKon": 12718, + "ĠKong": 9832, + "ĠKons": 48163, + "ĠKonst": 44200, + "ĠKont": 20629, + "ĠKontakt": 43396, + "ĠKook": 47719, + "ĠKop": 49656, + "ĠKopf": 28231, + "ĠKor": 21690, + "ĠKore": 3893, + "ĠKorea": 6307, + "ĠKorean": 6933, + "ĠKoreans": 32130, + "ĠKos": 36909, + "ĠKosten": 47391, + "ĠKot": 30123, + "ĠKr": 6332, + "ĠKra": 26988, + "ĠKraft": 31313, + "ĠKrank": 48896, + "ĠKranken": 39950, + "ĠKre": 23625, + "ĠKrie": 35579, + "ĠKris": 28486, + "ĠKrishna": 27153, + "ĠKrist": 19562, + "ĠKristen": 35107, + "ĠKristin": 42189, + "ĠKrit": 46372, + "ĠKrsna": 33035, + "ĠKry": 37747, + "ĠKu": 20311, + "ĠKub": 35805, + "ĠKubernetes": 23145, + "ĠKultur": 46744, + "ĠKum": 28039, + "ĠKumar": 46500, + "ĠKun": 19089, + "ĠKund": 49759, + "ĠKunden": 38192, + "ĠKung": 44317, + "ĠKunst": 40099, + "ĠKur": 16481, + "ĠKurd": 32305, + "ĠKurt": 26168, + "ĠKurz": 45307, + "ĠKush": 49709, + "ĠKw": 43432, + "ĠKwang": 46561, + "ĠKy": 12237, + "ĠKyle": 18023, + "ĠKylie": 39424, + "ĠKyoto": 48470, + "ĠKyung": 40285, + "ĠKä": 40502, + "ĠKö": 43197, + "ĠKön": 29077, + "ĠKörper": 33501, + "ĠKü": 30726, + "ĠKız": 36223, + "ĠKá¹Ľá¹£á¹ĩa": 36777, + "ĠL": 441, + "ĠLA": 9855, + "ĠLAKE": 42193, + "ĠLAN": 37387, + "ĠLAU": 8150, + "ĠLAUGH": 26355, + "ĠLAUGHTER": 46760, + "ĠLAURA": 10105, + "ĠLC": 42198, + "ĠLCD": 33158, + "ĠLD": 33936, + "ĠLE": 11378, + "ĠLED": 11261, + "ĠLEDs": 33366, + "ĠLEE": 38784, + "ĠLEGO": 36072, + "ĠLEO": 49692, + "ĠLET": 40866, + "ĠLG": 25449, + "ĠLGB": 15452, + "ĠLGBT": 16179, + "ĠLGBTQ": 26862, + "ĠLI": 7169, + "ĠLIAM": 13194, + "ĠLIKE": 24705, + "ĠLIN": 19763, + "ĠLINKE": 32445, + "ĠLISA": 42448, + "ĠLIVE": 33880, + "ĠLLC": 33698, + "ĠLM": 46529, + "ĠLO": 15731, + "ĠLOL": 15086, + "ĠLOOK": 45648, + "ĠLORD": 29818, + "ĠLOT": 42930, + "ĠLOU": 49486, + "ĠLOVE": 31351, + "ĠLP": 38095, + "ĠLS": 36657, + "ĠLT": 42671, + "ĠLU": 31851, + "ĠLY": 42154, + "ĠLa": 2369, + "ĠLab": 10137, + "ĠLabor": 17250, + "ĠLaboratory": 40824, + "ĠLabour": 23361, + "ĠLabs": 40047, + "ĠLac": 40113, + "ĠLad": 12106, + "ĠLaden": 45555, + "ĠLadies": 17084, + "ĠLady": 11256, + "ĠLag": 24886, + "ĠLage": 41555, + "ĠLah": 45862, + "ĠLaink": 47195, + "ĠLak": 37327, + "ĠLake": 10582, + "ĠLakes": 36932, + "ĠLal": 47893, + "ĠLam": 18825, + "ĠLamb": 19302, + "ĠLambda": 45691, + "ĠLamborg": 48389, + "ĠLan": 17482, + "ĠLana": 48750, + "ĠLanc": 39803, + "ĠLance": 40493, + "ĠLand": 6607, + "ĠLandes": 22031, + "ĠLandesregierung": 37695, + "ĠLanding": 49458, + "ĠLands": 30527, + "ĠLane": 26226, + "ĠLang": 13313, + "ĠLanguage": 24445, + "ĠLanka": 42765, + "ĠLao": 46471, + "ĠLap": 42498, + "ĠLar": 11569, + "ĠLara": 33935, + "ĠLarge": 33092, + "ĠLarry": 18145, + "ĠLars": 41563, + "ĠLas": 10663, + "ĠLaser": 43810, + "ĠLast": 5264, + "ĠLastly": 18072, + "ĠLat": 7354, + "ĠLate": 31220, + "ĠLater": 11965, + "ĠLatin": 10803, + "ĠLatino": 25422, + "ĠLatinos": 48413, + "ĠLau": 47979, + "ĠLaughing": 46861, + "ĠLaughs": 33439, + "ĠLaughter": 13584, + "ĠLaunch": 28119, + "ĠLaur": 29906, + "ĠLaura": 13220, + "ĠLaure": 27270, + "ĠLauren": 18915, + "ĠLaurent": 49357, + "ĠLaurie": 38189, + "ĠLaut": 47344, + "ĠLav": 30966, + "ĠLaw": 7744, + "ĠLawrence": 22787, + "ĠLay": 20084, + "ĠLayer": 35166, + "ĠLaz": 46469, + "ĠLazar": 49273, + "ĠLe": 1456, + "ĠLead": 31025, + "ĠLeader": 22650, + "ĠLeaders": 24256, + "ĠLeadership": 30577, + "ĠLeaf": 32290, + "ĠLeague": 11199, + "ĠLeah": 38591, + "ĠLean": 49303, + "ĠLearn": 17216, + "ĠLearning": 15205, + "ĠLeave": 9825, + "ĠLeaving": 41253, + "ĠLeb": 19437, + "ĠLeban": 23530, + "ĠLebanon": 29532, + "ĠLeben": 15399, + "ĠLebens": 21530, + "ĠLect": 37196, + "ĠLed": 39367, + "ĠLee": 6957, + "ĠLeft": 16405, + "ĠLeg": 7470, + "ĠLegacy": 42838, + "ĠLegal": 33577, + "ĠLegend": 21480, + "ĠLegends": 28103, + "ĠLegion": 33024, + "ĠLegisl": 33074, + "ĠLego": 28761, + "ĠLeh": 42631, + "ĠLehr": 29943, + "ĠLehrer": 49718, + "ĠLei": 32593, + "ĠLeist": 39577, + "ĠLem": 16905, + "ĠLemon": 35404, + "ĠLen": 23009, + "ĠLena": 41549, + "ĠLeno": 45661, + "ĠLeo": 19344, + "ĠLeon": 13244, + "ĠLeonard": 35172, + "ĠLeonardo": 36523, + "ĠLes": 6965, + "ĠLeslie": 28140, + "ĠLess": 18649, + "ĠLet": 961, + "ĠLets": 15655, + "ĠLetter": 43426, + "ĠLeute": 13495, + "ĠLeuten": 42301, + "ĠLev": 28471, + "ĠLevel": 16872, + "ĠLevi": 33987, + "ĠLew": 14542, + "ĠLewis": 17412, + "ĠLex": 24086, + "ĠLey": 36794, + "ĠLi": 8349, + "ĠLia": 47844, + "ĠLiam": 32860, + "ĠLiang": 35842, + "ĠLib": 15834, + "ĠLiber": 14175, + "ĠLiberal": 36020, + "ĠLiberty": 27527, + "ĠLibr": 12006, + "ĠLibrary": 12806, + "ĠLibya": 36452, + "ĠLic": 40627, + "ĠLicht": 32917, + "ĠLie": 11197, + "ĠLiebe": 28790, + "ĠLieutenant": 28412, + "ĠLif": 31946, + "ĠLife": 7720, + "ĠLift": 26148, + "ĠLight": 8279, + "ĠLightning": 28848, + "ĠLights": 38226, + "ĠLike": 1743, + "ĠLikewise": 30269, + "ĠLil": 23454, + "ĠLilly": 41386, + "ĠLily": 24669, + "ĠLim": 16406, + "ĠLima": 50217, + "ĠLimited": 43231, + "ĠLin": 9355, + "ĠLincoln": 15993, + "ĠLind": 16828, + "ĠLinda": 20324, + "ĠLindsay": 35017, + "ĠLindsey": 35910, + "ĠLine": 14670, + "ĠLing": 20977, + "ĠLink": 8466, + "ĠLinked": 19322, + "ĠLinkedIn": 20657, + "ĠLinks": 37156, + "ĠLinux": 18734, + "ĠLion": 21704, + "ĠLions": 48335, + "ĠLip": 27475, + "ĠLiqu": 32331, + "ĠLiquid": 38943, + "ĠLis": 30812, + "ĠLisa": 12252, + "ĠList": 17668, + "ĠListen": 7501, + "ĠListening": 49321, + "ĠLit": 41841, + "ĠLite": 32986, + "ĠLiter": 16090, + "ĠLiterally": 23768, + "ĠLith": 32577, + "ĠLittle": 8022, + "ĠLiu": 18056, + "ĠLiv": 31738, + "ĠLive": 10385, + "ĠLiver": 28010, + "ĠLiverpool": 32473, + "ĠLives": 25791, + "ĠLiving": 18824, + "ĠLiz": 16480, + "ĠLl": 32717, + "ĠLloyd": 31401, + "ĠLo": 6130, + "ĠLoad": 48408, + "ĠLob": 30719, + "ĠLoc": 12859, + "ĠLocal": 22755, + "ĠLoch": 49912, + "ĠLock": 16736, + "ĠLog": 10824, + "ĠLogan": 22689, + "ĠLogic": 49898, + "ĠLok": 46278, + "ĠLoki": 37940, + "ĠLol": 41026, + "ĠLon": 35927, + "ĠLond": 6735, + "ĠLondon": 7042, + "ĠLong": 8282, + "ĠLook": 2053, + "ĠLooking": 11053, + "ĠLooks": 10027, + "ĠLoop": 45660, + "ĠLopez": 36077, + "ĠLor": 29358, + "ĠLord": 3257, + "ĠLords": 41870, + "ĠLore": 36994, + "ĠLoren": 37162, + "ĠLori": 32698, + "ĠLos": 7632, + "ĠLost": 23422, + "ĠLot": 20131, + "ĠLots": 15908, + "ĠLotus": 44769, + "ĠLou": 7272, + "ĠLoud": 48259, + "ĠLouis": 9763, + "ĠLouise": 35962, + "ĠLouisiana": 25413, + "ĠLove": 5956, + "ĠLovely": 33925, + "ĠLow": 17078, + "ĠLower": 25523, + "ĠLoy": 50048, + "ĠLt": 44451, + "ĠLu": 5047, + "ĠLub": 43781, + "ĠLuc": 9593, + "ĠLuca": 42076, + "ĠLucas": 19178, + "ĠLuci": 37309, + "ĠLuck": 16627, + "ĠLuckily": 19726, + "ĠLucky": 26639, + "ĠLucy": 22698, + "ĠLud": 30550, + "ĠLuego": 45665, + "ĠLuft": 26995, + "ĠLuigi": 33308, + "ĠLuis": 25133, + "ĠLuiza": 45208, + "ĠLuk": 34992, + "ĠLuke": 13044, + "ĠLulu": 45223, + "ĠLum": 35978, + "ĠLun": 32077, + "ĠLuna": 27355, + "ĠLunch": 44958, + "ĠLuo": 35155, + "ĠLup": 44319, + "ĠLust": 45834, + "ĠLuther": 20693, + "ĠLux": 25767, + "ĠLy": 12687, + "ĠLydia": 44038, + "ĠLyn": 15214, + "ĠLynch": 32345, + "ĠLynd": 48800, + "ĠLynn": 27469, + "ĠLänder": 43441, + "ĠLändern": 48321, + "ĠLö": 50123, + "ĠLös": 34642, + "ĠLösung": 46934, + "ĠLÃł": 22237, + "ĠM": 376, + "ĠMA": 12191, + "ĠMAC": 27716, + "ĠMAL": 40643, + "ĠMALE": 31642, + "ĠMAN": 15372, + "ĠMAND": 47932, + "ĠMAR": 6450, + "ĠMARC": 49433, + "ĠMARISHA": 12265, + "ĠMARK": 20606, + "ĠMARTIN": 36996, + "ĠMARY": 37640, + "ĠMAS": 42129, + "ĠMAT": 5904, + "ĠMATT": 6291, + "ĠMAX": 39549, + "ĠMAY": 28996, + "ĠMAYOR": 43967, + "ĠMB": 28866, + "ĠMBA": 26674, + "ĠMC": 8797, + "ĠMCU": 39415, + "ĠMD": 22521, + "ĠME": 12003, + "ĠMEL": 38005, + "ĠMEM": 40524, + "ĠMER": 47234, + "ĠMG": 36856, + "ĠMH": 34796, + "ĠMI": 13696, + "ĠMIC": 20565, + "ĠMICH": 41276, + "ĠMICHAEL": 23859, + "ĠMID": 32394, + "ĠMIDI": 41474, + "ĠMIKE": 25208, + "ĠMIL": 43346, + "ĠMILL": 48070, + "ĠMIN": 26186, + "ĠMIT": 13100, + "ĠMJ": 36240, + "ĠMK": 30770, + "ĠML": 21601, + "ĠMM": 34191, + "ĠMMA": 48700, + "ĠMO": 19290, + "ĠMOD": 38113, + "ĠMOM": 46840, + "ĠMON": 27398, + "ĠMOO": 49197, + "ĠMOR": 29533, + "ĠMORE": 35509, + "ĠMOS": 44219, + "ĠMP": 14146, + "ĠMR": 9808, + "ĠMRI": 32812, + "ĠMS": 7395, + "ĠMT": 37333, + "ĠMTV": 43924, + "ĠMU": 17935, + "ĠMUELLER": 42573, + "ĠMUR": 46707, + "ĠMUS": 49764, + "ĠMUSIC": 16924, + "ĠMV": 17663, + "ĠMVP": 37151, + "ĠMX": 47509, + "ĠMY": 16322, + "ĠMa": 4042, + "ĠMaar": 14294, + "ĠMac": 5707, + "ĠMacBook": 31737, + "ĠMaced": 45603, + "ĠMach": 12089, + "ĠMachine": 22155, + "ĠMacht": 40873, + "ĠMack": 24295, + "ĠMacron": 32806, + "ĠMad": 5326, + "ĠMadam": 18490, + "ĠMadame": 31077, + "ĠMade": 18330, + "ĠMadison": 22874, + "ĠMadonna": 49540, + "ĠMadrid": 22091, + "ĠMae": 31055, + "ĠMaf": 41517, + "ĠMag": 6395, + "ĠMagaz": 25994, + "ĠMagazine": 27618, + "ĠMage": 49293, + "ĠMaggie": 29107, + "ĠMagic": 16154, + "ĠMagn": 19664, + "ĠMah": 10104, + "ĠMahar": 48498, + "ĠMai": 24084, + "ĠMail": 29164, + "ĠMain": 12383, + "ĠMaine": 28180, + "ĠMainly": 47468, + "ĠMainten": 30437, + "ĠMaintenant": 36931, + "ĠMais": 6313, + "ĠMaj": 7048, + "ĠMajesty": 10665, + "ĠMajor": 15581, + "ĠMak": 16576, + "ĠMake": 4387, + "ĠMaker": 35096, + "ĠMakes": 25245, + "ĠMaking": 14595, + "ĠMal": 5746, + "ĠMalays": 21543, + "ĠMalaysia": 25465, + "ĠMalcolm": 34596, + "ĠMale": 21080, + "ĠMall": 24883, + "ĠMam": 19899, + "ĠMama": 17775, + "ĠMan": 2458, + "ĠMana": 33711, + "ĠManagement": 14781, + "ĠManager": 13821, + "ĠManchester": 27180, + "ĠMand": 15458, + "ĠMandal": 49869, + "ĠMandarin": 42292, + "ĠMandy": 47474, + "ĠMang": 35487, + "ĠMango": 48588, + "ĠManh": 21740, + "ĠManhattan": 23633, + "ĠMann": 16892, + "ĠMans": 23167, + "ĠMansion": 45572, + "ĠMant": 32829, + "ĠManual": 46173, + "ĠManuel": 34362, + "ĠManufact": 44957, + "ĠMany": 5126, + "ĠMao": 38030, + "ĠMaori": 23357, + "ĠMap": 22053, + "ĠMaple": 47604, + "ĠMaps": 28978, + "ĠMar": 2039, + "ĠMarc": 18460, + "ĠMarcel": 34738, + "ĠMarch": 6129, + "ĠMarcheg": 38081, + "ĠMarchegiani": 38092, + "ĠMarco": 26535, + "ĠMarcus": 26574, + "ĠMarg": 20000, + "ĠMargaret": 24177, + "ĠMari": 34478, + "ĠMaria": 12734, + "ĠMarian": 37497, + "ĠMarie": 15130, + "ĠMarilyn": 48340, + "ĠMarin": 43016, + "ĠMarina": 35310, + "ĠMarine": 20415, + "ĠMarines": 39331, + "ĠMario": 9343, + "ĠMarion": 49270, + "ĠMark": 3934, + "ĠMarket": 15596, + "ĠMarketing": 27402, + "ĠMarkt": 39774, + "ĠMarkus": 45041, + "ĠMarly": 50129, + "ĠMarriage": 49593, + "ĠMars": 9692, + "ĠMarsh": 14443, + "ĠMarshall": 17279, + "ĠMart": 5807, + "ĠMartha": 27787, + "ĠMartin": 9184, + "ĠMartine": 37195, + "ĠMartinez": 41886, + "ĠMarty": 29192, + "ĠMarvel": 13837, + "ĠMarvin": 48722, + "ĠMarx": 21703, + "ĠMary": 6059, + "ĠMaryland": 19939, + "ĠMarÃŃa": 48472, + "ĠMas": 5224, + "ĠMash": 42039, + "ĠMask": 25414, + "ĠMason": 25730, + "ĠMass": 10482, + "ĠMassachusetts": 19979, + "ĠMaster": 6140, + "ĠMasters": 27014, + "ĠMat": 6789, + "ĠMatch": 26178, + "ĠMate": 27594, + "ĠMater": 19188, + "ĠMaterial": 29160, + "ĠMath": 15776, + "ĠMatrix": 36274, + "ĠMats": 27204, + "ĠMatt": 7397, + "ĠMatte": 47544, + "ĠMatter": 20285, + "ĠMatth": 11327, + "ĠMatthew": 12434, + "ĠMau": 32858, + "ĠMaur": 26133, + "ĠMaurice": 49041, + "ĠMax": 7402, + "ĠMaxim": 29076, + "ĠMaxwell": 39594, + "ĠMay": 1891, + "ĠMaya": 21695, + "ĠMaybe": 2704, + "ĠMayo": 46406, + "ĠMayor": 13925, + "ĠMaz": 28568, + "ĠMaÃŁ": 28645, + "ĠMaÃŁnahmen": 36626, + "ĠMc": 4050, + "ĠMcC": 12061, + "ĠMcCain": 49725, + "ĠMcCarthy": 44085, + "ĠMcConnell": 41331, + "ĠMcD": 49269, + "ĠMcDonald": 16889, + "ĠMcG": 21865, + "ĠMcK": 21765, + "ĠMcL": 38922, + "ĠMcM": 25549, + "ĠMcMahon": 48187, + "ĠMcN": 48996, + "ĠMe": 1923, + "ĠMean": 12302, + "ĠMeaning": 19948, + "ĠMeans": 40290, + "ĠMeanwhile": 13879, + "ĠMeasure": 41436, + "ĠMeat": 30502, + "ĠMechan": 30175, + "ĠMed": 3982, + "ĠMedal": 42437, + "ĠMedia": 14741, + "ĠMedic": 11555, + "ĠMedicaid": 24779, + "ĠMedical": 15896, + "ĠMedicare": 19583, + "ĠMedicine": 20338, + "ĠMedien": 44030, + "ĠMediter": 25828, + "ĠMediterranean": 27280, + "ĠMedium": 38915, + "ĠMeer": 49758, + "ĠMeet": 22963, + "ĠMeeting": 33217, + "ĠMeg": 9986, + "ĠMega": 22834, + "ĠMegan": 21332, + "ĠMeghan": 32597, + "ĠMeh": 29337, + "ĠMehr": 30782, + "ĠMei": 34100, + "ĠMein": 18382, + "ĠMeine": 22258, + "ĠMeinung": 36519, + "ĠMel": 7375, + "ĠMelanie": 42798, + "ĠMelbourne": 27496, + "ĠMelissa": 22844, + "ĠMelt": 48425, + "ĠMem": 8731, + "ĠMember": 16037, + "ĠMembers": 21495, + "ĠMemorial": 24957, + "ĠMemory": 38203, + "ĠMemphis": 26743, + "ĠMen": 6685, + "ĠMend": 40887, + "ĠMeng": 29090, + "ĠMenge": 40723, + "ĠMens": 7364, + "ĠMensch": 27773, + "ĠMenschen": 8397, + "ĠMent": 33140, + "ĠMental": 30294, + "ĠMenu": 43343, + "ĠMeow": 42996, + "ĠMer": 6124, + "ĠMerc": 18897, + "ĠMercedes": 22899, + "ĠMerci": 19856, + "ĠMercury": 31780, + "ĠMercy": 35626, + "ĠMeredith": 29737, + "ĠMerkel": 38356, + "ĠMerry": 26572, + "ĠMes": 17485, + "ĠMess": 9847, + "ĠMessage": 45947, + "ĠMessenger": 34226, + "ĠMessi": 42969, + "ĠMessiah": 21756, + "ĠMet": 6377, + "ĠMetal": 23488, + "ĠMetall": 49447, + "ĠMete": 43328, + "ĠMeter": 38054, + "ĠMeth": 48602, + "ĠMethod": 25285, + "ĠMetro": 25598, + "ĠMetroid": 47767, + "ĠMetropolitan": 45489, + "ĠMeu": 34398, + "ĠMex": 6496, + "ĠMexican": 16164, + "ĠMexico": 8612, + "ĠMeyer": 47207, + "ĠMhm": 26272, + "ĠMi": 10204, + "ĠMia": 28545, + "ĠMiami": 18367, + "ĠMic": 5818, + "ĠMich": 3392, + "ĠMicha": 31698, + "ĠMichael": 5116, + "ĠMichaels": 45759, + "ĠMichel": 23709, + "ĠMichelle": 14933, + "ĠMichigan": 11925, + "ĠMick": 42538, + "ĠMickey": 24714, + "ĠMicro": 25642, + "ĠMicrosoft": 8116, + "ĠMid": 7033, + "ĠMiddle": 10775, + "ĠMidwest": 33483, + "ĠMig": 18951, + "ĠMight": 23964, + "ĠMighty": 45874, + "ĠMiguel": 29150, + "ĠMih": 48168, + "ĠMik": 16380, + "ĠMike": 6602, + "ĠMikey": 42344, + "ĠMil": 7036, + "ĠMilan": 32874, + "ĠMile": 47651, + "ĠMiles": 27384, + "ĠMilitary": 28460, + "ĠMilk": 26986, + "ĠMilky": 38465, + "ĠMill": 7190, + "ĠMillenn": 42007, + "ĠMiller": 16932, + "ĠMilli": 36654, + "ĠMilliarden": 44784, + "ĠMillion": 33959, + "ĠMillionen": 26096, + "ĠMills": 44277, + "ĠMilton": 40778, + "ĠMilwaukee": 35321, + "ĠMimi": 46709, + "ĠMin": 2829, + "ĠMina": 35981, + "ĠMind": 13719, + "ĠMine": 11620, + "ĠMinecraft": 21029, + "ĠMing": 19352, + "ĠMinh": 45093, + "ĠMini": 18239, + "ĠMinist": 32196, + "ĠMinister": 6506, + "ĠMinistry": 19720, + "ĠMinne": 37829, + "ĠMinneapolis": 38713, + "ĠMinnesota": 13996, + "ĠMinnie": 47654, + "ĠMinor": 36117, + "ĠMins": 49239, + "ĠMint": 36188, + "ĠMinute": 33509, + "ĠMinuten": 27593, + "ĠMir": 9421, + "ĠMira": 28394, + "ĠMiranda": 37000, + "ĠMire": 50008, + "ĠMirror": 34452, + "ĠMis": 23240, + "ĠMiss": 5275, + "ĠMission": 20170, + "ĠMississippi": 20347, + "ĠMissouri": 21334, + "ĠMist": 20166, + "ĠMister": 22058, + "ĠMistress": 48509, + "ĠMit": 10821, + "ĠMitar": 32900, + "ĠMitarbeiter": 38324, + "ĠMitch": 18546, + "ĠMitchell": 27582, + "ĠMitgl": 44167, + "ĠMits": 40897, + "ĠMitt": 18784, + "ĠMitte": 41526, + "ĠMittel": 35079, + "ĠMix": 12769, + "ĠMiy": 26195, + "ĠMiz": 37793, + "ĠMm": 8266, + "ĠMmm": 12146, + "ĠMmmm": 42992, + "ĠMo": 3335, + "ĠMob": 37920, + "ĠMobil": 47188, + "ĠMobile": 22625, + "ĠMod": 6583, + "ĠMode": 20500, + "ĠModel": 17105, + "ĠModer": 42067, + "ĠModern": 19814, + "ĠModi": 47621, + "ĠModule": 48251, + "ĠMog": 34327, + "ĠMoh": 16123, + "ĠMohammad": 43939, + "ĠMohammed": 41910, + "ĠMoi": 20256, + "ĠMol": 28278, + "ĠMole": 46914, + "ĠMolly": 26665, + "ĠMolt": 39254, + "ĠMom": 5576, + "ĠMoment": 19093, + "ĠMommy": 24602, + "ĠMomo": 47984, + "ĠMon": 4713, + "ĠMona": 43731, + "ĠMonate": 44067, + "ĠMonaten": 46193, + "ĠMond": 7492, + "ĠMonday": 8138, + "ĠMonet": 47871, + "ĠMoney": 16631, + "ĠMong": 19423, + "ĠMongo": 48380, + "ĠMongol": 43573, + "ĠMonica": 25363, + "ĠMonitor": 33799, + "ĠMonkey": 34862, + "ĠMonroe": 43900, + "ĠMonsieur": 34941, + "ĠMonst": 39768, + "ĠMonster": 21059, + "ĠMont": 7947, + "ĠMontana": 27916, + "ĠMonte": 38105, + "ĠMontgomery": 34715, + "ĠMonth": 24255, + "ĠMontreal": 34180, + "ĠMoo": 43224, + "ĠMoon": 10714, + "ĠMoore": 21644, + "ĠMor": 5146, + "ĠMore": 5048, + "ĠMoreover": 19838, + "ĠMorgan": 16724, + "ĠMorgen": 35570, + "ĠMorm": 33610, + "ĠMormon": 39515, + "ĠMorning": 17967, + "ĠMoroc": 30893, + "ĠMorocco": 38782, + "ĠMorris": 23619, + "ĠMorrison": 33767, + "ĠMort": 24977, + "ĠMortal": 45797, + "ĠMos": 19430, + "ĠMosc": 17213, + "ĠMoscow": 18298, + "ĠMoses": 17580, + "ĠMoss": 39591, + "ĠMost": 4534, + "ĠMostly": 29035, + "ĠMot": 8956, + "ĠMother": 8931, + "ĠMotion": 27771, + "ĠMoto": 37825, + "ĠMotor": 18495, + "ĠMotorola": 45871, + "ĠMotors": 40118, + "ĠMount": 8426, + "ĠMountain": 15586, + "ĠMountains": 30970, + "ĠMouse": 29383, + "ĠMov": 43756, + "ĠMove": 10475, + "ĠMovement": 26523, + "ĠMovie": 28766, + "ĠMoving": 14242, + "ĠMoy": 47254, + "ĠMoz": 30208, + "ĠMozart": 42653, + "ĠMoż": 44736, + "ĠMoże": 43774, + "ĠMr": 2221, + "ĠMrs": 9814, + "ĠMs": 7741, + "ĠMt": 39183, + "ĠMu": 15601, + "ĠMuch": 12313, + "ĠMuchas": 35669, + "ĠMud": 39231, + "ĠMueller": 38152, + "ĠMuh": 15651, + "ĠMuhammad": 19360, + "ĠMuito": 31824, + "ĠMuk": 34280, + "ĠMul": 29960, + "ĠMull": 41621, + "ĠMult": 14665, + "ĠMulti": 29238, + "ĠMultip": 31150, + "ĠMultiple": 40056, + "ĠMum": 24279, + "ĠMumbai": 34309, + "ĠMummy": 46569, + "ĠMun": 17050, + "ĠMund": 33317, + "ĠMunich": 40601, + "ĠMunicip": 47606, + "ĠMur": 9373, + "ĠMurder": 44370, + "ĠMurphy": 28549, + "ĠMurray": 27291, + "ĠMus": 3569, + "ĠMuse": 47293, + "ĠMuseum": 10967, + "ĠMush": 38188, + "ĠMusic": 7609, + "ĠMusical": 42527, + "ĠMusik": 14156, + "ĠMusk": 26019, + "ĠMuslim": 8178, + "ĠMuslims": 14793, + "ĠMuss": 43879, + "ĠMust": 13252, + "ĠMustafa": 37229, + "ĠMustang": 37115, + "ĠMut": 18517, + "ĠMutta": 46604, + "ĠMutter": 31517, + "ĠMuy": 39586, + "ĠMy": 1222, + "ĠMyan": 42297, + "ĠMyanmar": 42725, + "ĠMyers": 45088, + "ĠMys": 37795, + "ĠMyst": 28510, + "ĠMyster": 38175, + "ĠMystery": 41660, + "ĠMyth": 26371, + "ĠMythical": 44566, + "ĠMäd": 49182, + "ĠMänner": 36907, + "ĠMär": 46084, + "ĠMé": 23580, + "ĠMéxico": 28128, + "ĠMême": 42027, + "ĠMöglich": 21467, + "ĠMöglichkeit": 30662, + "ĠMöglichkeiten": 42627, + "ĠMü": 21295, + "ĠMün": 35840, + "ĠMÄģ": 45901, + "ĠMỹ": 48845, + "ĠN": 426, + "ĠNA": 16585, + "ĠNARRATOR": 10160, + "ĠNAS": 10182, + "ĠNASA": 12077, + "ĠNAT": 14500, + "ĠNATO": 19419, + "ĠNAU": 44789, + "ĠNBA": 23890, + "ĠNBC": 31504, + "ĠNC": 20786, + "ĠNCAA": 49650, + "ĠNCT": 38368, + "ĠND": 40709, + "ĠNE": 12384, + "ĠNES": 37212, + "ĠNEW": 36373, + "ĠNF": 13576, + "ĠNFL": 24817, + "ĠNFT": 50075, + "ĠNGO": 31456, + "ĠNGOs": 46454, + "ĠNH": 31118, + "ĠNHS": 22693, + "ĠNI": 18482, + "ĠNICK": 32175, + "ĠNIH": 28716, + "ĠNO": 9146, + "ĠNOR": 47904, + "ĠNOT": 12854, + "ĠNOW": 27734, + "ĠNP": 38611, + "ĠNPC": 28787, + "ĠNR": 38399, + "ĠNS": 15943, + "ĠNSA": 47299, + "ĠNT": 43452, + "ĠNV": 46512, + "ĠNXT": 38414, + "ĠNY": 26032, + "ĠNYU": 42682, + "ĠNZ": 41089, + "ĠNa": 6056, + "ĠNab": 45366, + "ĠNach": 11815, + "ĠNacht": 31133, + "ĠNacional": 36623, + "ĠNad": 23269, + "ĠNada": 40992, + "ĠNag": 18913, + "ĠNah": 13933, + "ĠNai": 50205, + "ĠNaj": 31576, + "ĠNak": 25779, + "ĠNam": 10684, + "ĠName": 13866, + "ĠNamen": 38771, + "ĠNan": 18852, + "ĠNana": 37087, + "ĠNancy": 18154, + "ĠNano": 43511, + "ĠNaomi": 35369, + "ĠNap": 18287, + "ĠNapole": 28298, + "ĠNapoleon": 31694, + "ĠNar": 13512, + "ĠNarr": 45658, + "ĠNarrator": 19242, + "ĠNaru": 42518, + "ĠNaruhodou": 44658, + "ĠNaruto": 47703, + "ĠNas": 16151, + "ĠNash": 25012, + "ĠNashville": 36370, + "ĠNast": 42185, + "ĠNasıl": 28710, + "ĠNat": 6821, + "ĠNatalie": 29574, + "ĠNatasha": 40624, + "ĠNate": 28064, + "ĠNathan": 20634, + "ĠNation": 17095, + "ĠNational": 4862, + "ĠNations": 16459, + "ĠNative": 15093, + "ĠNatomiast": 36210, + "ĠNatur": 34571, + "ĠNatural": 20137, + "ĠNaturally": 34304, + "ĠNature": 20159, + "ĠNatürlich": 33172, + "ĠNav": 9219, + "ĠNaval": 38118, + "ĠNavy": 15659, + "ĠNaw": 40315, + "ĠNay": 42019, + "ĠNaz": 11870, + "ĠNazi": 23592, + "ĠNazis": 29812, + "ĠNe": 1734, + "ĠNear": 22200, + "ĠNearly": 38000, + "ĠNeben": 48193, + "ĠNebr": 26733, + "ĠNebraska": 27171, + "ĠNed": 31355, + "ĠNeden": 46565, + "ĠNeder": 29005, + "ĠNederland": 31888, + "ĠNee": 22067, + "ĠNeed": 16984, + "ĠNeg": 19103, + "ĠNegative": 43230, + "ĠNegro": 45256, + "ĠNeigh": 35917, + "ĠNeighbor": 47729, + "ĠNeil": 18615, + "ĠNein": 18878, + "ĠNeither": 23956, + "ĠNej": 33840, + "ĠNelson": 23857, + "ĠNem": 22210, + "ĠNeo": 24458, + "ĠNep": 24875, + "ĠNepal": 36283, + "ĠNept": 45560, + "ĠNeptune": 49527, + "ĠNer": 36536, + "ĠNerd": 38367, + "ĠNered": 46352, + "ĠNest": 31581, + "ĠNet": 6188, + "ĠNetflix": 12778, + "ĠNether": 18313, + "ĠNetherlands": 20873, + "ĠNetwork": 12640, + "ĠNetz": 38889, + "ĠNev": 22673, + "ĠNevada": 25764, + "ĠNever": 7344, + "ĠNevertheless": 26554, + "ĠNew": 1873, + "ĠNewman": 49377, + "ĠNews": 7987, + "ĠNewton": 19541, + "ĠNext": 3087, + "ĠNexus": 46559, + "ĠNg": 21198, + "ĠNh": 26390, + "ĠNi": 12370, + "ĠNiagara": 45123, + "ĠNic": 14776, + "ĠNice": 5490, + "ĠNich": 17102, + "ĠNicholas": 22924, + "ĠNicht": 22629, + "ĠNick": 9449, + "ĠNickel": 45416, + "ĠNicki": 47608, + "ĠNico": 15115, + "ĠNicolas": 38268, + "ĠNicole": 18532, + "ĠNie": 12016, + "ĠNiet": 36583, + "ĠNig": 39554, + "ĠNiger": 21489, + "ĠNigeria": 28828, + "ĠNight": 10190, + "ĠNik": 13969, + "ĠNike": 30397, + "ĠNikki": 37907, + "ĠNil": 47398, + "ĠNim": 45251, + "ĠNin": 16093, + "ĠNina": 29204, + "ĠNine": 18939, + "ĠNing": 39417, + "ĠNinja": 25566, + "ĠNintendo": 11578, + "ĠNir": 44813, + "ĠNiss": 36009, + "ĠNissan": 38166, + "ĠNit": 37942, + "ĠNixon": 31130, + "ĠNiye": 40938, + "ĠNo": 883, + "ĠNoah": 20895, + "ĠNobel": 24611, + "ĠNoble": 33125, + "ĠNobody": 9297, + "ĠNoch": 38116, + "ĠNode": 38640, + "ĠNoel": 38824, + "ĠNoise": 44821, + "ĠNok": 37400, + "ĠNokia": 43980, + "ĠNolan": 43707, + "ĠNom": 31272, + "ĠNon": 8774, + "ĠNone": 14492, + "ĠNonetheless": 45437, + "ĠNoodles": 47389, + "ĠNope": 12172, + "ĠNor": 6966, + "ĠNora": 45741, + "ĠNord": 16229, + "ĠNorm": 8702, + "ĠNormal": 21277, + "ĠNormally": 17424, + "ĠNorman": 30475, + "ĠNorth": 4067, + "ĠNortheast": 42150, + "ĠNorthern": 14335, + "ĠNorthwest": 26068, + "ĠNorway": 24354, + "ĠNorweg": 31783, + "ĠNorwegian": 34875, + "ĠNos": 18749, + "ĠNossa": 36016, + "ĠNot": 1726, + "ĠNote": 11633, + "ĠNotes": 41360, + "ĠNothing": 6693, + "ĠNotice": 13428, + "ĠNotre": 34663, + "ĠNou": 28843, + "ĠNous": 15343, + "ĠNov": 31948, + "ĠNova": 27031, + "ĠNove": 7539, + "ĠNovember": 7674, + "ĠNow": 823, + "ĠNowadays": 28908, + "ĠNu": 13612, + "ĠNuclear": 42528, + "ĠNue": 47970, + "ĠNum": 22592, + "ĠNumber": 5118, + "ĠNummer": 47034, + "ĠNun": 23696, + "ĠNur": 17612, + "ĠNurs": 32992, + "ĠNurse": 48945, + "ĠNursing": 42655, + "ĠNut": 19861, + "ĠNvidia": 46284, + "ĠNy": 29214, + "ĠNão": 8010, + "ĠNä": 32731, + "ĠNär": 37306, + "ĠNós": 27626, + "ĠO": 422, + "ĠOA": 48424, + "ĠOB": 35538, + "ĠOC": 42278, + "ĠOD": 48447, + "ĠOF": 11944, + "ĠOFF": 24115, + "ĠOFFIC": 40579, + "ĠOFFICER": 44724, + "ĠOG": 32477, + "ĠOH": 13931, + "ĠOK": 2264, + "ĠOL": 39191, + "ĠOLED": 43944, + "ĠOM": 16954, + "ĠOMG": 23152, + "ĠON": 9299, + "ĠONE": 22026, + "ĠOP": 23324, + "ĠOR": 19654, + "ĠOS": 12731, + "ĠOT": 38617, + "ĠOUR": 45611, + "ĠOUT": 22451, + "ĠOVER": 46090, + "ĠOW": 38329, + "ĠOak": 19692, + "ĠOakland": 34868, + "ĠOb": 4075, + "ĠObama": 9560, + "ĠOber": 27664, + "ĠObi": 48533, + "ĠObject": 24753, + "ĠObrig": 45619, + "ĠObs": 20707, + "ĠObserv": 42547, + "ĠObviously": 7580, + "ĠOcc": 26191, + "ĠOcean": 18101, + "ĠOch": 13128, + "ĠOct": 6788, + "ĠOctober": 7617, + "ĠOculus": 49094, + "ĠOczywiÅĽcie": 42980, + "ĠOd": 12210, + "ĠOdd": 43630, + "ĠOder": 20988, + "ĠOdys": 32010, + "ĠOdyssey": 38385, + "ĠOf": 2720, + "ĠOff": 6318, + "ĠOffic": 11511, + "ĠOffice": 8935, + "ĠOfficer": 15434, + "ĠOfficial": 38577, + "ĠOft": 37112, + "ĠOften": 20043, + "ĠOftentimes": 46636, + "ĠOg": 14883, + "ĠOh": 876, + "ĠOhh": 21847, + "ĠOhhh": 29108, + "ĠOhio": 14469, + "ĠOi": 31610, + "ĠOil": 23545, + "ĠOj": 47100, + "ĠOk": 3477, + "ĠOkay": 1033, + "ĠOke": 29094, + "ĠOkey": 38544, + "ĠOklah": 20872, + "ĠOklahoma": 21183, + "ĠOl": 6141, + "ĠOlaf": 48961, + "ĠOld": 8633, + "ĠOle": 33965, + "ĠOlga": 48288, + "ĠOlha": 19450, + "ĠOliv": 42477, + "ĠOlive": 35741, + "ĠOliver": 23440, + "ĠOlivia": 26023, + "ĠOlivier": 48075, + "ĠOllie": 35089, + "ĠOlymp": 10395, + "ĠOlympic": 19169, + "ĠOlympics": 19854, + "ĠOlá": 41811, + "ĠOm": 9757, + "ĠOmaha": 49575, + "ĠOmar": 33784, + "ĠOmega": 27645, + "ĠOn": 1282, + "ĠOna": 49793, + "ĠOnce": 3443, + "ĠOnd": 40091, + "ĠOne": 1485, + "ĠOnePlus": 41352, + "ĠOnion": 46295, + "ĠOnline": 16930, + "ĠOnly": 5686, + "ĠOnt": 16980, + "ĠOntario": 19673, + "ĠOnu": 46420, + "ĠOnun": 40379, + "ĠOo": 39308, + "ĠOoh": 7951, + "ĠOok": 50081, + "ĠOoo": 25547, + "ĠOooh": 27413, + "ĠOoooh": 48762, + "ĠOops": 21726, + "ĠOp": 12011, + "ĠOpen": 7238, + "ĠOpening": 41137, + "ĠOper": 12480, + "ĠOpera": 39089, + "ĠOperation": 27946, + "ĠOperations": 36381, + "ĠOpp": 15666, + "ĠOpportun": 39441, + "ĠOprah": 43804, + "ĠOpt": 21455, + "ĠOptim": 35013, + "ĠOption": 29284, + "ĠOptions": 42934, + "ĠOr": 1610, + "ĠOra": 43672, + "ĠOracle": 25654, + "ĠOrange": 17106, + "ĠOrb": 44329, + "ĠOrchest": 42414, + "ĠOrchestra": 46692, + "ĠOrd": 29388, + "ĠOrder": 16321, + "ĠOre": 31405, + "ĠOregon": 18664, + "ĠOreo": 47628, + "ĠOrgan": 12538, + "ĠOrganisation": 49425, + "ĠOrganization": 23979, + "ĠOri": 23621, + "ĠOrient": 49544, + "ĠOrig": 13895, + "ĠOrigin": 45313, + "ĠOriginal": 30022, + "ĠOriginally": 28696, + "ĠOrion": 41028, + "ĠOrlando": 30436, + "ĠOrleans": 24715, + "ĠOrt": 22921, + "ĠOrth": 27554, + "ĠOrthodox": 32833, + "ĠOs": 8875, + "ĠOsaka": 46425, + "ĠOsc": 17406, + "ĠOscar": 20718, + "ĠOsman": 35390, + "ĠOst": 34140, + "ĠOt": 12936, + "ĠOther": 5358, + "ĠOthers": 20277, + "ĠOtherwise": 10328, + "ĠOtt": 24243, + "ĠOttawa": 40767, + "ĠOtto": 41716, + "ĠOttoman": 33435, + "ĠOu": 11710, + "ĠOuais": 25475, + "ĠOuch": 27217, + "ĠOui": 14005, + "ĠOur": 2621, + "ĠOut": 5925, + "ĠOutside": 28218, + "ĠOv": 50005, + "ĠOver": 4886, + "ĠOverall": 18420, + "ĠOverwatch": 35141, + "ĠOw": 12773, + "ĠOwen": 32867, + "ĠOwn": 25964, + "ĠOwner": 43290, + "ĠOx": 16489, + "ĠOxford": 24786, + "ĠOy": 40023, + "ĠOz": 29843, + "ĠOÄŁlum": 41783, + "ĠP": 430, + "ĠPA": 17718, + "ĠPAC": 46644, + "ĠPAL": 46390, + "ĠPAR": 21720, + "ĠPAT": 31485, + "ĠPAUL": 26379, + "ĠPB": 24056, + "ĠPBS": 33517, + "ĠPC": 6465, + "ĠPCB": 42065, + "ĠPCR": 44022, + "ĠPCs": 46913, + "ĠPD": 10464, + "ĠPDF": 17752, + "ĠPE": 24346, + "ĠPER": 26825, + "ĠPET": 21968, + "ĠPETER": 36040, + "ĠPF": 43402, + "ĠPG": 40975, + "ĠPH": 16530, + "ĠPHIL": 49933, + "ĠPHP": 47298, + "ĠPI": 27176, + "ĠPJ": 30549, + "ĠPK": 49475, + "ĠPL": 6999, + "ĠPLAY": 8726, + "ĠPLAYING": 9871, + "ĠPM": 12499, + "ĠPO": 22299, + "ĠPOL": 45682, + "ĠPOW": 39272, + "ĠPP": 37369, + "ĠPPE": 38589, + "ĠPR": 11568, + "ĠPRE": 44164, + "ĠPRES": 30247, + "ĠPRESID": 42508, + "ĠPRI": 47555, + "ĠPRO": 15008, + "ĠPROF": 24141, + "ĠPROFESS": 25460, + "ĠPROFESSOR": 25794, + "ĠPS": 8168, + "ĠPSAKI": 25104, + "ĠPT": 35460, + "ĠPTS": 31218, + "ĠPTSD": 33069, + "ĠPU": 44098, + "ĠPUB": 46631, + "ĠPUBG": 47975, + "ĠPV": 23035, + "ĠPVC": 46700, + "ĠPW": 46375, + "ĠPa": 3426, + "ĠPablo": 31554, + "ĠPac": 10702, + "ĠPacific": 13335, + "ĠPack": 18466, + "ĠPad": 18691, + "ĠPage": 21217, + "ĠPaige": 45177, + "ĠPain": 24943, + "ĠPaint": 34865, + "ĠPak": 11543, + "ĠPakistan": 15985, + "ĠPakistani": 50253, + "ĠPal": 6116, + "ĠPalace": 19121, + "ĠPale": 50007, + "ĠPalest": 14926, + "ĠPalestin": 19750, + "ĠPalestine": 33030, + "ĠPalestinian": 28202, + "ĠPalestinians": 34745, + "ĠPalm": 32668, + "ĠPalmer": 43889, + "ĠPam": 23532, + "ĠPan": 7557, + "ĠPanama": 41202, + "ĠPanch": 48792, + "ĠPand": 16995, + "ĠPanda": 44207, + "ĠPandemie": 44694, + "ĠPanel": 38996, + "ĠPang": 49499, + "ĠPanther": 33046, + "ĠPanz": 45932, + "ĠPap": 15919, + "ĠPapa": 21102, + "ĠPaper": 24990, + "ĠPar": 3457, + "ĠPara": 11107, + "ĠParad": 28527, + "ĠParadise": 35053, + "ĠParam": 34882, + "ĠParce": 20429, + "ĠPardon": 32392, + "ĠPare": 31189, + "ĠParece": 45419, + "ĠParent": 44717, + "ĠParents": 33990, + "ĠParis": 8380, + "ĠPark": 4964, + "ĠParker": 20155, + "ĠParkinson": 35823, + "ĠParks": 30431, + "ĠParl": 29666, + "ĠParlament": 37487, + "ĠParliament": 15538, + "ĠParr": 47890, + "ĠPars": 49691, + "ĠPart": 4100, + "ĠParte": 47689, + "ĠParticip": 35247, + "ĠParticularly": 32281, + "ĠPartner": 32736, + "ĠPartners": 28058, + "ĠPartnership": 49589, + "ĠParty": 8552, + "ĠPas": 14199, + "ĠPascal": 41723, + "ĠPass": 10319, + "ĠPassion": 45554, + "ĠPassover": 48016, + "ĠPast": 18408, + "ĠPaste": 43827, + "ĠPastor": 34289, + "ĠPat": 4379, + "ĠPatch": 44359, + "ĠPath": 21914, + "ĠPatient": 25173, + "ĠPatienten": 46294, + "ĠPatreon": 15692, + "ĠPatri": 31071, + "ĠPatricia": 34307, + "ĠPatrick": 13980, + "ĠPatrol": 34967, + "ĠPatt": 46332, + "ĠPatter": 34367, + "ĠPatty": 44116, + "ĠPaty": 43760, + "ĠPaul": 4552, + "ĠPaula": 31663, + "ĠPaulo": 21801, + "ĠPause": 31973, + "ĠPav": 39062, + "ĠPaw": 33551, + "ĠPay": 11431, + "ĠPayPal": 39906, + "ĠPaÅĦst": 25189, + "ĠPaÅĦstwo": 42239, + "ĠPe": 2396, + "ĠPeace": 13204, + "ĠPeach": 34138, + "ĠPeak": 43604, + "ĠPeanut": 48069, + "ĠPear": 45461, + "ĠPearl": 24639, + "ĠPearson": 39041, + "ĠPed": 16689, + "ĠPedro": 26662, + "ĠPeg": 28007, + "ĠPeki": 36598, + "ĠPel": 21083, + "ĠPelosi": 44145, + "ĠPen": 10571, + "ĠPence": 48402, + "ĠPend": 38048, + "ĠPeng": 25783, + "ĠPenguin": 49562, + "ĠPeninsula": 40922, + "ĠPenn": 12667, + "ĠPennsy": 17704, + "ĠPennsylvania": 17963, + "ĠPenny": 32009, + "ĠPens": 45035, + "ĠPent": 20165, + "ĠPentagon": 36371, + "ĠPeople": 3432, + "ĠPep": 28637, + "ĠPepper": 30231, + "ĠPepsi": 42311, + "ĠPer": 3026, + "ĠPerché": 47978, + "ĠPercy": 46216, + "ĠPerd": 47633, + "ĠPere": 49349, + "ĠPerez": 47317, + "ĠPerfect": 10246, + "ĠPerform": 19351, + "ĠPerformance": 25047, + "ĠPerhaps": 10517, + "ĠPeriod": 34976, + "ĠPerm": 41006, + "ĠPero": 9377, + "ĠPerquè": 46133, + "ĠPerry": 17334, + "ĠPers": 14006, + "ĠPersian": 30699, + "ĠPerson": 8443, + "ĠPersonal": 25317, + "ĠPersonality": 44523, + "ĠPersonally": 21079, + "ĠPersonen": 40942, + "ĠPeru": 31571, + "ĠPerò": 20533, + "ĠPet": 10472, + "ĠPete": 19013, + "ĠPeter": 6508, + "ĠPeters": 26028, + "ĠPetersburg": 42367, + "ĠPeterson": 36943, + "ĠPew": 30638, + "ĠPey": 36206, + "ĠPf": 17331, + "ĠPfizer": 34694, + "ĠPh": 2623, + "ĠPhD": 14476, + "ĠPhantom": 34689, + "ĠPhar": 45050, + "ĠPharaoh": 43444, + "ĠPharise": 47742, + "ĠPharm": 44032, + "ĠPhase": 24432, + "ĠPhew": 46679, + "ĠPhi": 41435, + "ĠPhil": 7777, + "ĠPhiladelphia": 21205, + "ĠPhilip": 21144, + "ĠPhilipp": 13694, + "ĠPhilippines": 20153, + "ĠPhill": 18433, + "ĠPhillip": 44051, + "ĠPhillips": 24565, + "ĠPhilos": 31182, + "ĠPhilosophy": 43655, + "ĠPho": 14936, + "ĠPhoenix": 18383, + "ĠPhone": 30713, + "ĠPhot": 13919, + "ĠPhoto": 39175, + "ĠPhotoshop": 20821, + "ĠPhys": 15542, + "ĠPhysical": 31918, + "ĠPhysics": 38355, + "ĠPi": 17741, + "ĠPic": 25895, + "ĠPicas": 48198, + "ĠPicasso": 49708, + "ĠPick": 14129, + "ĠPict": 23899, + "ĠPicture": 35730, + "ĠPictures": 45877, + "ĠPie": 22914, + "ĠPiece": 42868, + "ĠPier": 16676, + "ĠPierce": 45432, + "ĠPierre": 28461, + "ĠPiet": 41970, + "ĠPig": 27322, + "ĠPik": 26544, + "ĠPikachu": 35785, + "ĠPike": 46791, + "ĠPil": 18026, + "ĠPill": 44656, + "ĠPilot": 39193, + "ĠPin": 22619, + "ĠPine": 33531, + "ĠPing": 33645, + "ĠPink": 17118, + "ĠPinterest": 37986, + "ĠPione": 48844, + "ĠPip": 35396, + "ĠPir": 24161, + "ĠPis": 43263, + "ĠPit": 32136, + "ĠPitt": 22861, + "ĠPitts": 29478, + "ĠPittsburgh": 33626, + "ĠPix": 18652, + "ĠPixar": 46695, + "ĠPixel": 28323, + "ĠPizza": 24469, + "ĠPl": 2149, + "ĠPla": 19942, + "ĠPlace": 13637, + "ĠPlaid": 30030, + "ĠPlan": 8112, + "ĠPlanet": 22146, + "ĠPlanning": 29308, + "ĠPlant": 28995, + "ĠPlat": 17461, + "ĠPlate": 46043, + "ĠPlatform": 28707, + "ĠPlato": 43027, + "ĠPlatz": 27595, + "ĠPlay": 5506, + "ĠPlayStation": 20599, + "ĠPlayer": 24920, + "ĠPlayers": 35808, + "ĠPlaying": 24801, + "ĠPlaystation": 42787, + "ĠPlaza": 41890, + "ĠPle": 25658, + "ĠPlease": 2555, + "ĠPlug": 40740, + "ĠPlus": 7721, + "ĠPluto": 41205, + "ĠPo": 6165, + "ĠPocket": 44594, + "ĠPod": 12646, + "ĠPodcast": 29972, + "ĠPode": 39168, + "ĠPoint": 12387, + "ĠPoints": 44763, + "ĠPois": 48274, + "ĠPok": 14958, + "ĠPoke": 12645, + "ĠPokemon": 13796, + "ĠPokémon": 20104, + "ĠPol": 3635, + "ĠPoland": 15950, + "ĠPole": 34212, + "ĠPolice": 11882, + "ĠPolicy": 21708, + "ĠPolish": 18504, + "ĠPolit": 13812, + "ĠPolitical": 34265, + "ĠPolitics": 45348, + "ĠPolitik": 29847, + "ĠPolize": 30735, + "ĠPolizei": 35297, + "ĠPoll": 31304, + "ĠPolsce": 35567, + "ĠPolski": 44589, + "ĠPoly": 18553, + "ĠPom": 21227, + "ĠPompe": 38527, + "ĠPon": 31756, + "ĠPont": 41127, + "ĠPool": 46188, + "ĠPoor": 23591, + "ĠPop": 10215, + "ĠPope": 19291, + "ĠPoppy": 47996, + "ĠPopular": 37637, + "ĠPor": 5269, + "ĠPork": 33159, + "ĠPorque": 11287, + "ĠPors": 29416, + "ĠPorsche": 31044, + "ĠPort": 6733, + "ĠPortal": 38281, + "ĠPorter": 42609, + "ĠPortland": 25020, + "ĠPortugal": 23011, + "ĠPortuguese": 22759, + "ĠPos": 25906, + "ĠPose": 40174, + "ĠPosition": 29780, + "ĠPositive": 46326, + "ĠPoss": 33112, + "ĠPost": 10223, + "ĠPot": 9145, + "ĠPotato": 34035, + "ĠPotter": 18115, + "ĠPour": 8732, + "ĠPourquoi": 30333, + "ĠPow": 14762, + "ĠPowder": 35781, + "ĠPowell": 34176, + "ĠPower": 7086, + "ĠPowerPoint": 25584, + "ĠPowers": 47278, + "ĠPr": 2114, + "ĠPra": 12133, + "ĠPrab": 48995, + "ĠPract": 19170, + "ĠPractice": 27904, + "ĠPrag": 40067, + "ĠPrague": 45370, + "ĠPraise": 34576, + "ĠPray": 36365, + "ĠPrayer": 45226, + "ĠPre": 6001, + "ĠPrecis": 48746, + "ĠPred": 32969, + "ĠPrefer": 48401, + "ĠPreis": 47042, + "ĠPrem": 13011, + "ĠPremier": 25194, + "ĠPremiere": 39724, + "ĠPremium": 34881, + "ĠPrep": 21684, + "ĠPrepare": 29689, + "ĠPres": 2718, + "ĠPresent": 33253, + "ĠPresents": 38191, + "ĠPresident": 3117, + "ĠPresidential": 41823, + "ĠPresiding": 47365, + "ĠPress": 6776, + "ĠPrest": 35272, + "ĠPret": 9739, + "ĠPretty": 10693, + "ĠPrevention": 38699, + "ĠPreviously": 33606, + "ĠPri": 8087, + "ĠPrice": 25803, + "ĠPride": 30319, + "ĠPriest": 37052, + "ĠPrim": 19671, + "ĠPrimary": 42576, + "ĠPrime": 9655, + "ĠPrin": 9367, + "ĠPrinc": 35841, + "ĠPrince": 9821, + "ĠPrincess": 13903, + "ĠPrinceton": 36592, + "ĠPrinci": 38372, + "ĠPrincip": 32832, + "ĠPrincipal": 38575, + "ĠPrint": 34439, + "ĠPrinzip": 47572, + "ĠPrior": 24032, + "ĠPrison": 38888, + "ĠPriv": 39691, + "ĠPrivate": 30386, + "ĠPrix": 48736, + "ĠPrize": 22604, + "ĠPro": 1705, + "ĠProb": 8736, + "ĠProbably": 9210, + "ĠProblem": 11676, + "ĠProbleme": 32891, + "ĠProcess": 31093, + "ĠProdu": 11793, + "ĠProducer": 33034, + "ĠProduct": 22005, + "ĠProduction": 30088, + "ĠProducts": 47699, + "ĠProdukt": 44599, + "ĠProf": 6039, + "ĠProfess": 7487, + "ĠProfessional": 30011, + "ĠProfessor": 8419, + "ĠProgram": 8338, + "ĠProgramm": 48244, + "ĠPrograms": 44762, + "ĠProgress": 32587, + "ĠProject": 9849, + "ĠProjekt": 34804, + "ĠProm": 15833, + "ĠPromise": 34878, + "ĠPromised": 38478, + "ĠPron": 27723, + "ĠPronounce": 48483, + "ĠPronunciation": 45496, + "ĠProp": 21944, + "ĠProper": 27627, + "ĠProperty": 48966, + "ĠProphet": 12849, + "ĠPros": 26024, + "ĠProse": 50058, + "ĠProt": 10019, + "ĠProte": 43371, + "ĠProtect": 32017, + "ĠProtection": 25981, + "ĠProtest": 27259, + "ĠProtestant": 38345, + "ĠProtocol": 48753, + "ĠProv": 15685, + "ĠProvince": 40649, + "ĠProvost": 45426, + "ĠProzent": 29726, + "ĠPrzy": 39590, + "ĠPräsident": 27513, + "ĠPs": 33903, + "ĠPsaki": 50037, + "ĠPsal": 26150, + "ĠPsalm": 34134, + "ĠPsych": 17303, + "ĠPsychology": 42827, + "ĠPu": 13605, + "ĠPub": 21808, + "ĠPublic": 9489, + "ĠPuerto": 21472, + "ĠPues": 22386, + "ĠPuis": 30033, + "ĠPul": 35568, + "ĠPull": 15074, + "ĠPump": 32863, + "ĠPun": 22574, + "ĠPunch": 32408, + "ĠPunj": 44989, + "ĠPunk": 27852, + "ĠPunkt": 25487, + "ĠPunkte": 47352, + "ĠPur": 14682, + "ĠPurd": 41632, + "ĠPurdue": 42506, + "ĠPure": 29474, + "ĠPurple": 28483, + "ĠPush": 18229, + "ĠPut": 4935, + "ĠPutin": 19818, + "ĠPutting": 31367, + "ĠPv": 41896, + "ĠPy": 9953, + "ĠPython": 15329, + "ĠPÃ¥": 45133, + "ĠQ": 1249, + "ĠQR": 32784, + "ĠQU": 7246, + "ĠQUE": 46026, + "ĠQUES": 8521, + "ĠQUESTION": 8557, + "ĠQatar": 41691, + "ĠQi": 21430, + "ĠQian": 32461, + "ĠQiao": 48046, + "ĠQin": 26999, + "ĠQing": 20089, + "ĠQiu": 49024, + "ĠQu": 2326, + "ĠQuad": 29619, + "ĠQual": 13616, + "ĠQuality": 28892, + "ĠQuan": 35249, + "ĠQuand": 22015, + "ĠQuando": 18725, + "ĠQuant": 26968, + "ĠQuantum": 44964, + "ĠQuarter": 43794, + "ĠQue": 4493, + "ĠQuebec": 38903, + "ĠQueen": 10077, + "ĠQueens": 18414, + "ĠQueensborough": 40722, + "ĠQueensland": 36913, + "ĠQuel": 43521, + "ĠQuem": 32342, + "ĠQuer": 36149, + "ĠQuest": 8800, + "ĠQuestion": 14464, + "ĠQuestions": 27738, + "ĠQuesto": 38167, + "ĠQui": 27361, + "ĠQuick": 12101, + "ĠQuickly": 31800, + "ĠQuiet": 32193, + "ĠQuin": 44761, + "ĠQuindi": 32534, + "ĠQuinn": 36723, + "ĠQuit": 50139, + "ĠQuite": 20464, + "ĠQuiz": 38020, + "ĠQur": 26094, + "ĠQuran": 19375, + "ĠQuè": 31951, + "ĠQué": 23662, + "ĠQuébec": 34510, + "ĠQuá»ijc": 41494, + "ĠR": 497, + "ĠRA": 14626, + "ĠRAM": 14561, + "ĠRAMSAY": 42487, + "ĠRAW": 40539, + "ĠRB": 40302, + "ĠRC": 28987, + "ĠRD": 49488, + "ĠRE": 10869, + "ĠREAL": 48619, + "ĠREALLY": 37117, + "ĠRED": 39346, + "ĠREM": 45991, + "ĠREP": 31511, + "ĠRES": 46926, + "ĠRF": 26204, + "ĠRGB": 31231, + "ĠRH": 50209, + "ĠRI": 30474, + "ĠRICH": 33618, + "ĠRICHARD": 45302, + "ĠRIGHT": 41631, + "ĠRJ": 46810, + "ĠRM": 23790, + "ĠRN": 45702, + "ĠRNA": 22484, + "ĠRO": 9025, + "ĠROB": 38506, + "ĠROBERT": 26458, + "ĠROI": 49808, + "ĠROM": 41678, + "ĠROS": 31904, + "ĠRP": 14105, + "ĠRPG": 22614, + "ĠRPM": 37389, + "ĠRS": 25855, + "ĠRT": 21797, + "ĠRTX": 44573, + "ĠRUS": 43719, + "ĠRV": 28314, + "ĠRW": 42513, + "ĠRX": 46197, + "ĠRYAN": 32354, + "ĠRa": 7591, + "ĠRab": 16781, + "ĠRabb": 36753, + "ĠRabbi": 32768, + "ĠRabbit": 42092, + "ĠRac": 42033, + "ĠRace": 25908, + "ĠRach": 40793, + "ĠRachel": 14246, + "ĠRacing": 38832, + "ĠRad": 9654, + "ĠRadi": 37806, + "ĠRadio": 17296, + "ĠRaf": 29611, + "ĠRafael": 43173, + "ĠRag": 44289, + "ĠRah": 17844, + "ĠRahmen": 39070, + "ĠRail": 23494, + "ĠRails": 48526, + "ĠRain": 14487, + "ĠRainbow": 29477, + "ĠRais": 43374, + "ĠRaise": 30062, + "ĠRaj": 16745, + "ĠRak": 43000, + "ĠRal": 23038, + "ĠRalph": 28131, + "ĠRam": 9078, + "ĠRama": 39828, + "ĠRamadan": 39848, + "ĠRamen": 48728, + "ĠRams": 28990, + "ĠRamsay": 40721, + "ĠRan": 27948, + "ĠRanch": 37740, + "ĠRand": 23614, + "ĠRandom": 37603, + "ĠRandy": 23993, + "ĠRange": 33778, + "ĠRanger": 34222, + "ĠRangers": 40703, + "ĠRank": 35921, + "ĠRap": 16184, + "ĠRapha": 49690, + "ĠRapid": 44580, + "ĠRapt": 38115, + "ĠRare": 43920, + "ĠRas": 24649, + "ĠRash": 46298, + "ĠRaspberry": 41154, + "ĠRat": 24269, + "ĠRate": 49583, + "ĠRather": 16571, + "ĠRaum": 31359, + "ĠRaven": 28956, + "ĠRavi": 44486, + "ĠRaw": 23732, + "ĠRay": 10883, + "ĠRaymond": 42813, + "ĠRaz": 29051, + "ĠRe": 1300, + "ĠReach": 35904, + "ĠReact": 30644, + "ĠRead": 17604, + "ĠReading": 29766, + "ĠReady": 9944, + "ĠReagan": 26534, + "ĠReal": 8467, + "ĠReality": 33822, + "ĠReally": 4083, + "ĠRealm": 44723, + "ĠReaper": 49956, + "ĠReason": 39693, + "ĠRebecca": 19381, + "ĠRebel": 48782, + "ĠRec": 9647, + "ĠRece": 41962, + "ĠRecent": 17553, + "ĠRecently": 20072, + "ĠRecht": 36840, + "ĠRechts": 36597, + "ĠRecogn": 44682, + "ĠRecomm": 49545, + "ĠRecord": 27401, + "ĠRecords": 31928, + "ĠRecovery": 35254, + "ĠRed": 4477, + "ĠReddit": 32210, + "ĠRede": 39056, + "ĠRedmi": 47766, + "ĠRee": 38231, + "ĠReed": 32071, + "ĠReese": 49474, + "ĠRef": 16957, + "ĠRefer": 36889, + "ĠReform": 38489, + "ĠReg": 4791, + "ĠRegard": 16613, + "ĠRegarding": 35523, + "ĠRegardless": 25148, + "ĠRegel": 33139, + "ĠRegent": 36687, + "ĠRegierung": 42979, + "ĠRegina": 48407, + "ĠRegion": 25121, + "ĠRegional": 30341, + "ĠRegister": 43167, + "ĠRegular": 45659, + "ĠRei": 34549, + "ĠReich": 33111, + "ĠReid": 46912, + "ĠRein": 42116, + "ĠRel": 8738, + "ĠRelations": 28663, + "ĠRelax": 25886, + "ĠRelease": 34278, + "ĠRelig": 33436, + "ĠReligion": 40127, + "ĠRem": 4080, + "ĠRemember": 5459, + "ĠRemo": 46445, + "ĠRemote": 44858, + "ĠRemove": 18831, + "ĠRen": 12883, + "ĠRena": 23068, + "ĠRenaissance": 32642, + "ĠRend": 48174, + "ĠRenee": 47790, + "ĠReno": 44404, + "ĠRent": 42743, + "ĠRep": 3696, + "ĠRepe": 24927, + "ĠRepeat": 28523, + "ĠRepl": 47762, + "ĠReport": 16057, + "ĠReporter": 26520, + "ĠReporting": 44229, + "ĠReports": 45910, + "ĠRepresent": 19945, + "ĠRepresentative": 33421, + "ĠRepresentatives": 37543, + "ĠRepublic": 5564, + "ĠRepublican": 10937, + "ĠRepublicans": 12017, + "ĠRepública": 45917, + "ĠRequ": 42029, + "ĠRes": 5015, + "ĠRescue": 39379, + "ĠResearch": 10303, + "ĠResearchers": 43555, + "ĠReserve": 26049, + "ĠResident": 29563, + "ĠResistance": 45647, + "ĠResource": 35200, + "ĠResources": 29706, + "ĠResp": 22480, + "ĠRespect": 39079, + "ĠRespons": 46003, + "ĠResponse": 43937, + "ĠRest": 13094, + "ĠRestaur": 31712, + "ĠRestaurant": 38870, + "ĠRet": 11495, + "ĠReturn": 24350, + "ĠRev": 12127, + "ĠRevel": 26211, + "ĠRevelation": 28979, + "ĠRever": 26314, + "ĠReverend": 44896, + "ĠReview": 19954, + "ĠRevolution": 16617, + "ĠRex": 35678, + "ĠRey": 17547, + "ĠReynolds": 29516, + "ĠRh": 16111, + "ĠRhod": 36951, + "ĠRhode": 40202, + "ĠRhodes": 45973, + "ĠRi": 33668, + "ĠRib": 38554, + "ĠRic": 21215, + "ĠRica": 42080, + "ĠRicardo": 42634, + "ĠRice": 19386, + "ĠRich": 6781, + "ĠRichard": 9809, + "ĠRichards": 33021, + "ĠRichardson": 48492, + "ĠRichmond": 39060, + "ĠRicht": 22659, + "ĠRichtung": 33023, + "ĠRick": 11224, + "ĠRicky": 25247, + "ĠRico": 22643, + "ĠRid": 30619, + "ĠRide": 35042, + "ĠRider": 40150, + "ĠRidge": 32313, + "ĠRif": 48549, + "ĠRig": 42720, + "ĠRight": 1779, + "ĠRights": 16352, + "ĠRiley": 31373, + "ĠRim": 44034, + "ĠRin": 33170, + "ĠRing": 19844, + "ĠRings": 38543, + "ĠRio": 18719, + "ĠRiot": 49536, + "ĠRip": 34677, + "ĠRis": 30897, + "ĠRise": 34482, + "ĠRising": 45957, + "ĠRisk": 45892, + "ĠRita": 32672, + "ĠRiv": 47620, + "ĠRiver": 8640, + "ĠRivera": 47388, + "ĠRivers": 36646, + "ĠRo": 3101, + "ĠRoad": 11507, + "ĠRob": 5424, + "ĠRobbie": 45749, + "ĠRober": 15800, + "ĠRobert": 7977, + "ĠRoberto": 40354, + "ĠRoberts": 20919, + "ĠRobin": 16533, + "ĠRobinson": 25105, + "ĠRobot": 29601, + "ĠRoc": 32661, + "ĠRochester": 39895, + "ĠRock": 6922, + "ĠRockef": 50178, + "ĠRocket": 29651, + "ĠRocky": 26916, + "ĠRod": 11097, + "ĠRodrig": 25904, + "ĠRodriguez": 37304, + "ĠRog": 11860, + "ĠRoger": 17666, + "ĠRogers": 29877, + "ĠRogue": 43770, + "ĠRoh": 27490, + "ĠRoland": 39357, + "ĠRolex": 36234, + "ĠRoll": 9926, + "ĠRolle": 35376, + "ĠRolling": 36457, + "ĠRom": 10141, + "ĠRoma": 31892, + "ĠRoman": 8566, + "ĠRomania": 36678, + "ĠRomanian": 49963, + "ĠRomans": 20252, + "ĠRome": 12043, + "ĠRomeo": 33563, + "ĠRon": 9949, + "ĠRonald": 27397, + "ĠRonaldo": 46132, + "ĠRong": 43383, + "ĠRonnie": 46131, + "ĠRoom": 19190, + "ĠRoose": 27349, + "ĠRoosevelt": 28515, + "ĠRos": 11144, + "ĠRosa": 30572, + "ĠRose": 12765, + "ĠRosen": 33630, + "ĠRosie": 40521, + "ĠRoss": 16140, + "ĠRot": 17681, + "ĠRoth": 28089, + "ĠRou": 28392, + "ĠRouge": 47607, + "ĠRough": 42791, + "ĠRound": 18525, + "ĠRoute": 39142, + "ĠRover": 43278, + "ĠRow": 20309, + "ĠRox": 44427, + "ĠRoy": 8751, + "ĠRoyal": 12717, + "ĠRoz": 43313, + "ĠRs": 21643, + "ĠRu": 15702, + "ĠRub": 10518, + "ĠRuby": 19907, + "ĠRud": 18636, + "ĠRudolph": 47292, + "ĠRudy": 38690, + "ĠRug": 50057, + "ĠRule": 27533, + "ĠRules": 38897, + "ĠRum": 31963, + "ĠRun": 8950, + "ĠRunner": 50105, + "ĠRunning": 28136, + "ĠRus": 13155, + "ĠRush": 28389, + "ĠRusia": 48520, + "ĠRuss": 3878, + "ĠRussell": 20937, + "ĠRussia": 6797, + "ĠRussian": 7220, + "ĠRussians": 20605, + "ĠRust": 34952, + "ĠRut": 42723, + "ĠRuth": 23544, + "ĠRy": 13654, + "ĠRyan": 9116, + "ĠRyu": 41599, + "ĠRép": 41587, + "ĠRépublique": 46646, + "ĠRück": 35001, + "ĠS": 318, + "ĠSA": 16482, + "ĠSAL": 40713, + "ĠSAM": 9617, + "ĠSAN": 49557, + "ĠSAND": 44097, + "ĠSAP": 27743, + "ĠSAR": 18748, + "ĠSARAH": 41666, + "ĠSARS": 34233, + "ĠSAS": 33441, + "ĠSAT": 31536, + "ĠSAY": 42948, + "ĠSB": 26944, + "ĠSBS": 41788, + "ĠSC": 9028, + "ĠSCH": 23539, + "ĠSCOTT": 41181, + "ĠSCP": 18489, + "ĠSD": 14638, + "ĠSDK": 37135, + "ĠSE": 10269, + "ĠSEC": 22399, + "ĠSECRET": 47627, + "ĠSEE": 44712, + "ĠSEN": 47770, + "ĠSEO": 22964, + "ĠSER": 36772, + "ĠSEÃij": 40677, + "ĠSF": 31095, + "ĠSG": 34520, + "ĠSH": 7405, + "ĠSHA": 38820, + "ĠSHE": 44179, + "ĠSI": 29083, + "ĠSIM": 24738, + "ĠSJ": 44883, + "ĠSK": 21483, + "ĠSL": 22999, + "ĠSM": 13115, + "ĠSMITH": 46156, + "ĠSMS": 38107, + "ĠSN": 13955, + "ĠSO": 10621, + "ĠSOL": 36011, + "ĠSOUND": 45383, + "ĠSP": 8420, + "ĠSPD": 19572, + "ĠSPE": 37173, + "ĠSPEAK": 11824, + "ĠSPEAKER": 12081, + "ĠSQL": 19200, + "ĠSR": 20840, + "ĠSS": 12238, + "ĠSSD": 30262, + "ĠST": 4904, + "ĠSTACK": 49114, + "ĠSTAR": 47816, + "ĠSTART": 49326, + "ĠSTE": 20039, + "ĠSTEM": 25043, + "ĠSTEP": 28143, + "ĠSTEPHAN": 46423, + "ĠSTEVE": 40878, + "ĠSTEVEN": 48312, + "ĠSTOP": 38344, + "ĠSTR": 43013, + "ĠSTUD": 36988, + "ĠSTUDENT": 41833, + "ĠSU": 9872, + "ĠSUBSCRI": 32563, + "ĠSUBSCRIBE": 33817, + "ĠSUN": 42596, + "ĠSUPER": 49342, + "ĠSUR": 37269, + "ĠSUS": 40117, + "ĠSUV": 28452, + "ĠSV": 31910, + "ĠSW": 20346, + "ĠSY": 32624, + "ĠSa": 6299, + "ĠSaaS": 49733, + "ĠSab": 13915, + "ĠSabb": 34003, + "ĠSabbath": 36618, + "ĠSabrina": 45439, + "ĠSac": 19356, + "ĠSach": 25626, + "ĠSache": 31452, + "ĠSachen": 26074, + "ĠSacramento": 38360, + "ĠSacred": 47074, + "ĠSad": 12269, + "ĠSadhguru": 40000, + "ĠSadly": 29628, + "ĠSaf": 14152, + "ĠSafari": 43820, + "ĠSafe": 27030, + "ĠSafety": 21340, + "ĠSag": 34551, + "ĠSage": 33812, + "ĠSah": 18280, + "ĠSahib": 43545, + "ĠSai": 27987, + "ĠSaid": 26490, + "ĠSail": 42014, + "ĠSaint": 12902, + "ĠSaints": 39022, + "ĠSak": 18025, + "ĠSakura": 48051, + "ĠSal": 5996, + "ĠSale": 48922, + "ĠSalem": 49619, + "ĠSales": 23467, + "ĠSalesforce": 40398, + "ĠSally": 26385, + "ĠSalt": 19503, + "ĠSalut": 33559, + "ĠSalv": 28596, + "ĠSalvador": 32586, + "ĠSalz": 46283, + "ĠSam": 4832, + "ĠSamantha": 33521, + "ĠSame": 10635, + "ĠSami": 44029, + "ĠSammy": 44316, + "ĠSams": 12666, + "ĠSamsung": 13173, + "ĠSamuel": 23036, + "ĠSan": 5271, + "ĠSana": 29200, + "ĠSand": 7985, + "ĠSanders": 21734, + "ĠSandra": 28184, + "ĠSandy": 27390, + "ĠSang": 19037, + "ĠSans": 21504, + "ĠSanskrit": 44392, + "ĠSant": 17315, + "ĠSanta": 9933, + "ĠSanti": 34815, + "ĠSantiago": 37621, + "ĠSanto": 49639, + "ĠSantos": 36962, + "ĠSap": 49287, + "ĠSapp": 46814, + "ĠSar": 6894, + "ĠSara": 18694, + "ĠSarah": 9519, + "ĠSas": 36613, + "ĠSasha": 29276, + "ĠSask": 48963, + "ĠSat": 5344, + "ĠSatan": 16583, + "ĠSaturday": 8803, + "ĠSaturn": 24601, + "ĠSau": 22557, + "ĠSauce": 36720, + "ĠSaud": 15717, + "ĠSaudi": 18121, + "ĠSaul": 35661, + "ĠSav": 12346, + "ĠSavage": 46699, + "ĠSavannah": 47902, + "ĠSave": 15541, + "ĠSavior": 29310, + "ĠSaw": 27307, + "ĠSax": 48379, + "ĠSay": 6463, + "ĠSaya": 16568, + "ĠSaying": 34087, + "ĠSays": 36780, + "ĠSc": 2747, + "ĠSca": 47082, + "ĠScale": 42999, + "ĠScalia": 47899, + "ĠScan": 41177, + "ĠScandin": 42403, + "ĠScar": 23181, + "ĠScary": 45504, + "ĠScene": 46297, + "ĠSch": 2065, + "ĠSche": 25321, + "ĠSched": 44926, + "ĠSchl": 16420, + "ĠSchluss": 36573, + "ĠSchmidt": 42621, + "ĠSchn": 45748, + "ĠSchne": 30343, + "ĠSchol": 27866, + "ĠScholars": 33846, + "ĠSchon": 46049, + "ĠSchool": 5070, + "ĠSchools": 26997, + "ĠSchr": 46191, + "ĠSchritt": 33062, + "ĠSchul": 21223, + "ĠSchuld": 50153, + "ĠSchule": 32953, + "ĠSchulen": 41909, + "ĠSchutz": 37469, + "ĠSchw": 17576, + "ĠSchwar": 46487, + "ĠSchwe": 24343, + "ĠSchweiz": 46834, + "ĠSchön": 41060, + "ĠSchüler": 39776, + "ĠSci": 16942, + "ĠScience": 8976, + "ĠSciences": 21108, + "ĠScient": 18944, + "ĠScientific": 47437, + "ĠScientists": 32958, + "ĠSco": 27682, + "ĠScore": 47901, + "ĠScorp": 38814, + "ĠScot": 9534, + "ĠScotland": 11180, + "ĠScott": 6659, + "ĠScottish": 13777, + "ĠScout": 33971, + "ĠScr": 34944, + "ĠScreen": 25823, + "ĠScrew": 42630, + "ĠScript": 15675, + "ĠScripture": 22888, + "ĠScriptures": 46522, + "ĠScroll": 35395, + "ĠSe": 1100, + "ĠSea": 11352, + "ĠSeal": 46207, + "ĠSean": 14839, + "ĠSearch": 17180, + "ĠSeason": 16465, + "ĠSeattle": 15721, + "ĠSeb": 22374, + "ĠSebastian": 31102, + "ĠSec": 3306, + "ĠSecond": 5736, + "ĠSecondly": 19483, + "ĠSecret": 7400, + "ĠSecretary": 9126, + "ĠSect": 46244, + "ĠSection": 21804, + "ĠSecurity": 11164, + "ĠSed": 31213, + "ĠSee": 3008, + "ĠSeeing": 19703, + "ĠSeems": 22524, + "ĠSeg": 21595, + "ĠSega": 32114, + "ĠSehr": 32028, + "ĠSei": 49229, + "ĠSeit": 34321, + "ĠSeite": 19748, + "ĠSeiten": 45200, + "ĠSek": 24285, + "ĠSel": 10736, + "ĠSelbst": 29712, + "ĠSelect": 13638, + "ĠSelena": 39146, + "ĠSelf": 16348, + "ĠSell": 44296, + "ĠSem": 14421, + "ĠSempre": 49724, + "ĠSen": 3862, + "ĠSenate": 9867, + "ĠSenator": 10893, + "ĠSend": 17908, + "ĠSenhor": 43792, + "ĠSeni": 42752, + "ĠSenin": 36134, + "ĠSenior": 18370, + "ĠSens": 40926, + "ĠSense": 33123, + "ĠSent": 23652, + "ĠSentinel": 49498, + "ĠSeo": 30877, + "ĠSeok": 34565, + "ĠSeong": 40333, + "ĠSeoul": 17100, + "ĠSep": 22012, + "ĠSepar": 43480, + "ĠSept": 6978, + "ĠSeptember": 7216, + "ĠSequ": 46859, + "ĠSer": 4210, + "ĠSerbia": 39461, + "ĠSerge": 18885, + "ĠSergeant": 31149, + "ĠSergey": 49238, + "ĠSergio": 45078, + "ĠSerie": 49135, + "ĠSeries": 13934, + "ĠSeriously": 14063, + "ĠServ": 6213, + "ĠServe": 45663, + "ĠServer": 25684, + "ĠService": 9561, + "ĠServices": 12124, + "ĠSerá": 42968, + "ĠSes": 29827, + "ĠSesame": 47686, + "ĠSet": 8928, + "ĠSeth": 25353, + "ĠSetting": 21063, + "ĠSettings": 27286, + "ĠSeung": 20384, + "ĠSev": 28960, + "ĠSeven": 14868, + "ĠSever": 19635, + "ĠSeveral": 22246, + "ĠSew": 42697, + "ĠSex": 29037, + "ĠSexual": 45449, + "ĠSeñ": 30807, + "ĠSeñor": 35054, + "ĠSh": 1160, + "ĠSha": 14944, + "ĠShadow": 19036, + "ĠShah": 21159, + "ĠShak": 47459, + "ĠShake": 27809, + "ĠShakes": 22094, + "ĠShakespeare": 22825, + "ĠShakt": 40867, + "ĠShall": 12128, + "ĠSham": 42912, + "ĠShame": 46835, + "ĠShan": 25536, + "ĠShane": 25865, + "ĠShang": 19316, + "ĠShanghai": 26135, + "ĠShank": 45264, + "ĠShannon": 28974, + "ĠShap": 44160, + "ĠShape": 49148, + "ĠShar": 22030, + "ĠShare": 14945, + "ĠSharing": 49060, + "ĠShark": 36347, + "ĠSharon": 28573, + "ĠSharp": 31654, + "ĠShaun": 49363, + "ĠShaw": 27132, + "ĠShawn": 28634, + "ĠShay": 31212, + "ĠShe": 1240, + "ĠSheikh": 46160, + "ĠSheila": 48832, + "ĠShel": 24415, + "ĠShelby": 37517, + "ĠShell": 22863, + "ĠShelley": 42337, + "ĠShen": 22636, + "ĠSheng": 40544, + "ĠShepherd": 43395, + "ĠSher": 11789, + "ĠSheriff": 32492, + "ĠSherlock": 37769, + "ĠSherman": 45130, + "ĠShh": 41429, + "ĠShi": 25580, + "ĠShield": 28539, + "ĠShift": 28304, + "ĠShim": 32683, + "ĠShin": 17347, + "ĠShine": 46460, + "ĠShiny": 49683, + "ĠShip": 38407, + "ĠShir": 27239, + "ĠShirley": 43275, + "ĠShit": 19593, + "ĠShiv": 47839, + "ĠShiva": 34729, + "ĠSho": 31404, + "ĠShock": 39474, + "ĠShoot": 19760, + "ĠShooting": 45739, + "ĠShop": 16319, + "ĠShopify": 43991, + "ĠShore": 47977, + "ĠShort": 16881, + "ĠShortly": 40109, + "ĠShot": 28845, + "ĠShould": 6454, + "ĠShouldn": 34170, + "ĠShout": 32749, + "ĠShow": 6895, + "ĠShrim": 47827, + "ĠShu": 26655, + "ĠShut": 13870, + "ĠShy": 45250, + "ĠSi": 4909, + "ĠSiber": 42608, + "ĠSic": 39155, + "ĠSich": 47135, + "ĠSicher": 25292, + "ĠSicherheit": 38778, + "ĠSicht": 36615, + "ĠSick": 43471, + "ĠSid": 19797, + "ĠSide": 19026, + "ĠSie": 3559, + "ĠSierra": 25182, + "ĠSig": 37763, + "ĠSigma": 36595, + "ĠSign": 13515, + "ĠSignal": 43414, + "ĠSikh": 46657, + "ĠSil": 6943, + "ĠSilence": 34570, + "ĠSilent": 40862, + "ĠSilicon": 25351, + "ĠSilk": 43853, + "ĠSilva": 50171, + "ĠSilver": 15861, + "ĠSim": 3998, + "ĠSimilar": 10905, + "ĠSimilarly": 13157, + "ĠSimmons": 42516, + "ĠSimon": 13193, + "ĠSimone": 41652, + "ĠSimple": 21532, + "ĠSimply": 19596, + "ĠSimpson": 38184, + "ĠSims": 33289, + "ĠSin": 11187, + "ĠSince": 4162, + "ĠSind": 35405, + "ĠSing": 7474, + "ĠSingapore": 14491, + "ĠSinger": 44184, + "ĠSingh": 27529, + "ĠSinging": 39483, + "ĠSingle": 31248, + "ĠSinn": 37962, + "ĠSinne": 47041, + "ĠSir": 6144, + "ĠSiri": 33682, + "ĠSis": 33514, + "ĠSister": 14145, + "ĠSisters": 43166, + "ĠSit": 14523, + "ĠSite": 34027, + "ĠSith": 43860, + "ĠSitting": 43129, + "ĠSituation": 22247, + "ĠSix": 11678, + "ĠSixt": 47374, + "ĠSiz": 26672, + "ĠSize": 35818, + "ĠSk": 7324, + "ĠSke": 32344, + "ĠSket": 45012, + "ĠSketch": 49245, + "ĠSkill": 40737, + "ĠSkills": 27856, + "ĠSkillshare": 42991, + "ĠSkin": 26333, + "ĠSkip": 46405, + "ĠSky": 9879, + "ĠSkype": 31743, + "ĠSkywalker": 49220, + "ĠSl": 6187, + "ĠSlack": 37211, + "ĠSleep": 19383, + "ĠSleeping": 49618, + "ĠSlide": 26405, + "ĠSlim": 47428, + "ĠSlo": 22497, + "ĠSloven": 50122, + "ĠSlow": 17703, + "ĠSlowly": 29674, + "ĠSm": 3915, + "ĠSmack": 35399, + "ĠSmall": 15287, + "ĠSmart": 12923, + "ĠSmash": 25768, + "ĠSmells": 44355, + "ĠSmile": 38499, + "ĠSmith": 8538, + "ĠSmithson": 44350, + "ĠSmithsonian": 46013, + "ĠSmoke": 36191, + "ĠSmooth": 42404, + "ĠSn": 9264, + "ĠSna": 41539, + "ĠSnake": 33885, + "ĠSnap": 18254, + "ĠSnapchat": 31579, + "ĠSnapdragon": 48211, + "ĠSne": 41336, + "ĠSno": 42902, + "ĠSnow": 14827, + "ĠSny": 49464, + "ĠSo": 407, + "ĠSoc": 43627, + "ĠSoci": 12276, + "ĠSocial": 9909, + "ĠSociety": 13742, + "ĠSod": 42059, + "ĠSofia": 42611, + "ĠSoft": 16985, + "ĠSoftware": 27428, + "ĠSol": 7026, + "ĠSolar": 22385, + "ĠSold": 20064, + "ĠSoldier": 34660, + "ĠSole": 48073, + "ĠSolid": 26664, + "ĠSolo": 26452, + "ĠSolomon": 32209, + "ĠSolutions": 36295, + "ĠSom": 12297, + "ĠSome": 2188, + "ĠSomebody": 13463, + "ĠSomehow": 28357, + "ĠSomeone": 8734, + "ĠSomet": 3379, + "ĠSomething": 6595, + "ĠSometimes": 4803, + "ĠSomewhere": 34500, + "ĠSommer": 35022, + "ĠSon": 5185, + "ĠSong": 11862, + "ĠSongs": 48541, + "ĠSonic": 14290, + "ĠSono": 48344, + "ĠSonra": 41379, + "ĠSony": 13575, + "ĠSoo": 28784, + "ĠSoon": 17610, + "ĠSoph": 18921, + "ĠSophia": 35152, + "ĠSophie": 29645, + "ĠSor": 21421, + "ĠSora": 46639, + "ĠSorry": 4919, + "ĠSort": 26149, + "ĠSou": 31458, + "ĠSoul": 13588, + "ĠSouls": 30258, + "ĠSound": 14673, + "ĠSounds": 14576, + "ĠSoup": 40648, + "ĠSource": 29629, + "ĠSouth": 4242, + "ĠSoutheast": 27906, + "ĠSouthern": 13724, + "ĠSouthwest": 31708, + "ĠSovi": 37477, + "ĠSoviet": 11348, + "ĠSoviets": 41354, + "ĠSow": 48644, + "ĠSoy": 24758, + "ĠSozial": 36867, + "ĠSp": 1738, + "ĠSpa": 23729, + "ĠSpace": 8705, + "ĠSpaceX": 30585, + "ĠSpain": 12838, + "ĠSpanish": 8058, + "ĠSpark": 23424, + "ĠSpart": 36014, + "ĠSpaÃŁ": 27460, + "ĠSpe": 3550, + "ĠSpeak": 27868, + "ĠSpeaker": 8454, + "ĠSpeaking": 13069, + "ĠSpec": 20484, + "ĠSpecial": 11863, + "ĠSpecifically": 26058, + "ĠSpect": 27078, + "ĠSpeech": 48385, + "ĠSpeed": 18774, + "ĠSpencer": 31996, + "ĠSpicy": 35999, + "ĠSpider": 17733, + "ĠSpiel": 14266, + "ĠSpieler": 44053, + "ĠSpike": 46286, + "ĠSpin": 29185, + "ĠSpirit": 7218, + "ĠSpiritual": 38929, + "ĠSpit": 39108, + "ĠSpl": 19788, + "ĠSplit": 45111, + "ĠSpo": 45011, + "ĠSponge": 43742, + "ĠSport": 17549, + "ĠSports": 20191, + "ĠSpot": 19102, + "ĠSpotify": 29036, + "ĠSpr": 7702, + "ĠSpread": 30308, + "ĠSpring": 14013, + "ĠSprings": 33065, + "ĠSprinkle": 47331, + "ĠSpy": 35854, + "ĠSqu": 8683, + "ĠSquad": 26596, + "ĠSquare": 16463, + "ĠSque": 31449, + "ĠSqueeze": 47603, + "ĠSquid": 46178, + "ĠSr": 38988, + "ĠSri": 25120, + "ĠSt": 745, + "ĠSta": 16959, + "ĠStaat": 45559, + "ĠStaats": 33928, + "ĠStack": 37649, + "ĠStacy": 43644, + "ĠStadium": 32976, + "ĠStadt": 20550, + "ĠStaff": 16440, + "ĠStage": 25907, + "ĠStalin": 32126, + "ĠStall": 48010, + "ĠStamp": 48011, + "ĠStan": 10061, + "ĠStand": 9133, + "ĠStandard": 21298, + "ĠStandards": 44546, + "ĠStanding": 33655, + "ĠStanford": 20374, + "ĠStanley": 28329, + "ĠStar": 5705, + "ĠStarbucks": 26303, + "ĠStark": 28967, + "ĠStars": 20957, + "ĠStart": 6481, + "ĠStarted": 39715, + "ĠStarting": 16217, + "ĠStat": 16249, + "ĠState": 4533, + "ĠStates": 3040, + "ĠStation": 14467, + "ĠStatistics": 49226, + "ĠStatus": 47409, + "ĠStay": 8691, + "ĠSte": 3592, + "ĠSteam": 22517, + "ĠSteel": 26038, + "ĠStef": 43421, + "ĠStefan": 32158, + "ĠStein": 29453, + "ĠStell": 37364, + "ĠStella": 45073, + "ĠStelle": 26629, + "ĠStellen": 41893, + "ĠStep": 5470, + "ĠSteph": 31418, + "ĠStephan": 16672, + "ĠStephanie": 18634, + "ĠStephen": 13391, + "ĠSter": 33539, + "ĠStern": 39538, + "ĠSteuer": 44250, + "ĠSteve": 7466, + "ĠSteven": 12754, + "ĠStevens": 41727, + "ĠStevie": 47499, + "ĠStew": 22735, + "ĠStewart": 25951, + "ĠStick": 22744, + "ĠStill": 8291, + "ĠStir": 23353, + "ĠStitch": 44871, + "ĠStock": 17857, + "ĠStockholm": 38730, + "ĠStone": 15012, + "ĠStones": 49982, + "ĠStop": 5535, + "ĠStorage": 36308, + "ĠStore": 17242, + "ĠStories": 31797, + "ĠStorm": 20494, + "ĠStory": 14484, + "ĠStr": 8251, + "ĠStra": 12875, + "ĠStraight": 26908, + "ĠStrand": 47517, + "ĠStrange": 29068, + "ĠStrateg": 30064, + "ĠStrategic": 47805, + "ĠStrategy": 40915, + "ĠStraw": 35104, + "ĠStrawberry": 45906, + "ĠStraÃŁe": 43817, + "ĠStraÃŁen": 48925, + "ĠStre": 19597, + "ĠStream": 24904, + "ĠStreet": 7638, + "ĠStrength": 39251, + "ĠStress": 38258, + "ĠStretch": 38817, + "ĠStri": 20390, + "ĠStrike": 32788, + "ĠStro": 42196, + "ĠStrom": 39126, + "ĠStrong": 22792, + "ĠStu": 25203, + "ĠStuart": 36236, + "ĠStud": 4541, + "ĠStudent": 12464, + "ĠStudents": 17244, + "ĠStudien": 49496, + "ĠStudies": 17515, + "ĠStudio": 13500, + "ĠStudios": 23005, + "ĠStudy": 27039, + "ĠStuff": 31347, + "ĠStunde": 42781, + "ĠStunden": 30496, + "ĠStupid": 37659, + "ĠSty": 30415, + "ĠStyle": 27004, + "ĠStyles": 46845, + "ĠStück": 31146, + "ĠSu": 2746, + "ĠSub": 8511, + "ĠSubaru": 43044, + "ĠSubs": 37471, + "ĠSubscribe": 10611, + "ĠSubst": 42090, + "ĠSuccess": 23669, + "ĠSuch": 9653, + "ĠSud": 12323, + "ĠSudan": 36013, + "ĠSuddenly": 21194, + "ĠSue": 25332, + "ĠSuff": 40178, + "ĠSug": 39131, + "ĠSugar": 24576, + "ĠSuit": 48854, + "ĠSuite": 36637, + "ĠSuk": 37898, + "ĠSul": 35897, + "ĠSull": 34901, + "ĠSullivan": 37226, + "ĠSultan": 23528, + "ĠSum": 8626, + "ĠSummer": 16161, + "ĠSummit": 28726, + "ĠSun": 6163, + "ĠSund": 6942, + "ĠSunday": 7776, + "ĠSundays": 44857, + "ĠSung": 24857, + "ĠSunny": 34665, + "ĠSunshine": 48618, + "ĠSup": 9141, + "ĠSuper": 4548, + "ĠSuperintendent": 49623, + "ĠSuperior": 48953, + "ĠSuperman": 22455, + "ĠSupp": 9391, + "ĠSupport": 18073, + "ĠSuppose": 21360, + "ĠSupreme": 11032, + "ĠSur": 6732, + "ĠSure": 4894, + "ĠSurely": 29803, + "ĠSurf": 43124, + "ĠSurface": 36052, + "ĠSurprise": 36701, + "ĠSurprisingly": 49908, + "ĠSurv": 40716, + "ĠSurvey": 33365, + "ĠSurviv": 48859, + "ĠSus": 9545, + "ĠSusan": 15160, + "ĠSustain": 34407, + "ĠSut": 40492, + "ĠSuz": 24232, + "ĠSuzanne": 48901, + "ĠSuzuki": 49457, + "ĠSven": 49787, + "ĠSver": 29490, + "ĠSverige": 33973, + "ĠSw": 3926, + "ĠSwami": 33018, + "ĠSwan": 40884, + "ĠSwe": 29918, + "ĠSwed": 21617, + "ĠSweden": 17727, + "ĠSwedish": 23523, + "ĠSweet": 14653, + "ĠSwift": 25539, + "ĠSwiss": 21965, + "ĠSwitch": 13893, + "ĠSwitzerland": 23312, + "ĠSword": 27070, + "ĠSy": 3902, + "ĠSyd": 19918, + "ĠSydney": 21065, + "ĠSyl": 33349, + "ĠSym": 28877, + "ĠSymphony": 46891, + "ĠSyn": 26155, + "ĠSynd": 35284, + "ĠSyndrome": 44545, + "ĠSyria": 13314, + "ĠSyrian": 24081, + "ĠSystem": 8910, + "ĠSystems": 27059, + "ĠSz": 24699, + "ĠSão": 22401, + "ĠSÃ¥": 12728, + "ĠSé": 49556, + "ĠSó": 19961, + "ĠSü": 25697, + "ĠSÃŃ": 12375, + "ĠT": 314, + "ĠTA": 20094, + "ĠTALI": 13763, + "ĠTALIESIN": 13787, + "ĠTB": 29711, + "ĠTC": 34150, + "ĠTCP": 48965, + "ĠTD": 42606, + "ĠTE": 19744, + "ĠTED": 43036, + "ĠTER": 41305, + "ĠTF": 40964, + "ĠTH": 3578, + "ĠTHAT": 15532, + "ĠTHE": 5663, + "ĠTHERE": 40562, + "ĠTHEY": 34970, + "ĠTHIS": 17371, + "ĠTHOM": 40933, + "ĠTI": 28819, + "ĠTIM": 20187, + "ĠTIME": 36096, + "ĠTJ": 46402, + "ĠTL": 40277, + "ĠTM": 33550, + "ĠTO": 8232, + "ĠTOM": 29473, + "ĠTON": 25867, + "ĠTONER": 36557, + "ĠTOP": 40925, + "ĠTP": 44462, + "ĠTR": 15176, + "ĠTRA": 10841, + "ĠTRAVIS": 12317, + "ĠTS": 37645, + "ĠTT": 32576, + "ĠTU": 42408, + "ĠTV": 3558, + "ĠTVs": 38085, + "ĠTW": 23737, + "ĠTWO": 48664, + "ĠTY": 36187, + "ĠTa": 6551, + "ĠTab": 14106, + "ĠTabii": 41770, + "ĠTable": 25535, + "ĠTac": 38848, + "ĠTack": 38405, + "ĠTaco": 37992, + "ĠTact": 47111, + "ĠTada": 39303, + "ĠTae": 24478, + "ĠTag": 11204, + "ĠTage": 29724, + "ĠTagen": 41721, + "ĠTages": 33601, + "ĠTah": 31027, + "ĠTai": 9623, + "ĠTail": 46074, + "ĠTails": 49888, + "ĠTaiwan": 12296, + "ĠTaiwanese": 45187, + "ĠTaj": 44837, + "ĠTak": 9118, + "ĠTake": 3664, + "ĠTakes": 44347, + "ĠTaking": 17837, + "ĠTal": 10516, + "ĠTale": 49846, + "ĠTalent": 44081, + "ĠTales": 50099, + "ĠTaliban": 26478, + "ĠTalk": 8780, + "ĠTalking": 22445, + "ĠTall": 42633, + "ĠTam": 8540, + "ĠTamam": 18224, + "ĠTamara": 40424, + "ĠTamb": 18176, + "ĠTambién": 25682, + "ĠTamil": 39938, + "ĠTammy": 48030, + "ĠTampa": 40583, + "ĠTan": 17046, + "ĠTang": 22063, + "ĠTank": 28746, + "ĠTanner": 47253, + "ĠTanz": 42420, + "ĠTao": 26580, + "ĠTap": 13445, + "ĠTapi": 25386, + "ĠTar": 10537, + "ĠTara": 32182, + "ĠTarget": 24586, + "ĠTas": 27293, + "ĠTask": 30428, + "ĠTaste": 33770, + "ĠTat": 19645, + "ĠTax": 23263, + "ĠTay": 10132, + "ĠTaylor": 12060, + "ĠTe": 1989, + "ĠTea": 26614, + "ĠTeach": 26816, + "ĠTeacher": 19745, + "ĠTeachers": 40596, + "ĠTeaching": 34244, + "ĠTeam": 7606, + "ĠTeams": 24702, + "ĠTech": 13795, + "ĠTechn": 8337, + "ĠTechnical": 35512, + "ĠTechnically": 42494, + "ĠTechnologies": 46993, + "ĠTechnology": 15037, + "ĠTed": 14985, + "ĠTeddy": 34330, + "ĠTeen": 33297, + "ĠTeil": 16357, + "ĠTek": 27821, + "ĠTel": 27729, + "ĠTele": 14889, + "ĠTeles": 48595, + "ĠTelevision": 37329, + "ĠTell": 5115, + "ĠTem": 8095, + "ĠTemper": 34864, + "ĠTempl": 39563, + "ĠTemple": 17642, + "ĠTen": 9380, + "ĠTenemos": 44903, + "ĠTenn": 19418, + "ĠTennessee": 21127, + "ĠTensor": 34306, + "ĠTensorFlow": 37624, + "ĠTer": 6564, + "ĠTeraz": 41810, + "ĠTeresa": 35039, + "ĠTerm": 19835, + "ĠTerr": 36591, + "ĠTerra": 25366, + "ĠTerre": 47870, + "ĠTerror": 36174, + "ĠTerry": 21983, + "ĠTes": 12262, + "ĠTesla": 13666, + "ĠTest": 9279, + "ĠTestament": 15473, + "ĠTesting": 45517, + "ĠTet": 31580, + "ĠTex": 7479, + "ĠTexas": 7885, + "ĠText": 18643, + "ĠTh": 334, + "ĠThai": 19254, + "ĠThailand": 19434, + "ĠThan": 18289, + "ĠThank": 1044, + "ĠThankfully": 28344, + "ĠThanks": 2561, + "ĠThanksgiving": 21230, + "ĠThanos": 35993, + "ĠThat": 663, + "ĠThats": 30085, + "ĠThe": 440, + "ĠTheater": 26548, + "ĠTheatre": 27782, + "ĠTheir": 6710, + "ĠThem": 37354, + "ĠThema": 16306, + "ĠTheme": 42428, + "ĠThemen": 39229, + "ĠThen": 1396, + "ĠTheo": 42519, + "ĠTheory": 29009, + "ĠTherap": 36812, + "ĠThere": 821, + "ĠTherefore": 7504, + "ĠTheres": 33902, + "ĠTheresa": 42595, + "ĠTherm": 38957, + "ĠThese": 1981, + "ĠThey": 814, + "ĠThi": 48197, + "ĠThing": 30902, + "ĠThings": 9514, + "ĠThink": 6557, + "ĠThinking": 24460, + "ĠThird": 12548, + "ĠThirty": 41490, + "ĠThis": 639, + "ĠThom": 19409, + "ĠThomas": 8500, + "ĠThompson": 23460, + "ĠThor": 17777, + "ĠThose": 3950, + "ĠThough": 10404, + "ĠThought": 23058, + "ĠThous": 29852, + "ĠThousands": 40535, + "ĠThr": 41645, + "ĠThree": 6244, + "ĠThrones": 31659, + "ĠThrough": 8927, + "ĠThroughout": 22775, + "ĠThrow": 22228, + "ĠThunder": 21023, + "ĠThursday": 10383, + "ĠThus": 13827, + "ĠThy": 40010, + "ĠTi": 20456, + "ĠTian": 19736, + "ĠTib": 24474, + "ĠTibet": 28884, + "ĠTibetan": 44963, + "ĠTie": 36804, + "ĠTier": 24224, + "ĠTiere": 38810, + "ĠTiffany": 28104, + "ĠTig": 44550, + "ĠTiger": 22025, + "ĠTigers": 37699, + "ĠTight": 47967, + "ĠTik": 15613, + "ĠTikTok": 20211, + "ĠTil": 45141, + "ĠTill": 20227, + "ĠTim": 7172, + "ĠTime": 6161, + "ĠTimes": 11366, + "ĠTimothy": 29418, + "ĠTin": 47741, + "ĠTina": 28504, + "ĠTinder": 49341, + "ĠTing": 43196, + "ĠTiny": 39992, + "ĠTip": 18210, + "ĠTipp": 42102, + "ĠTips": 36887, + "ĠTir": 45523, + "ĠTisch": 48192, + "ĠTit": 14489, + "ĠTitan": 17731, + "ĠTitanic": 42183, + "ĠTitans": 45574, + "ĠTitle": 26768, + "ĠTo": 1407, + "ĠTob": 26350, + "ĠToby": 40223, + "ĠTod": 2465, + "ĠToday": 2692, + "ĠTodd": 21488, + "ĠTodo": 26466, + "ĠTodos": 35447, + "ĠTogether": 15911, + "ĠTok": 11036, + "ĠTokyo": 15147, + "ĠTol": 21402, + "ĠTold": 48220, + "ĠTolkien": 48824, + "ĠTom": 5041, + "ĠTomato": 35936, + "ĠTomb": 37150, + "ĠTommy": 19448, + "ĠTomorrow": 17499, + "ĠTon": 11385, + "ĠTong": 26946, + "ĠToni": 41374, + "ĠTonight": 18702, + "ĠTony": 10902, + "ĠToo": 11395, + "ĠTook": 38288, + "ĠTool": 15934, + "ĠTools": 30302, + "ĠTop": 8840, + "ĠTor": 7160, + "ĠTorah": 29676, + "ĠToronto": 14140, + "ĠTorres": 41506, + "ĠTort": 48415, + "ĠTory": 48743, + "ĠTot": 11236, + "ĠTotal": 23170, + "ĠTotally": 22837, + "ĠTou": 30850, + "ĠTouch": 20029, + "ĠTough": 48568, + "ĠTour": 13077, + "ĠTous": 47277, + "ĠTout": 20453, + "ĠTow": 33814, + "ĠTowards": 48938, + "ĠTower": 17877, + "ĠTown": 15954, + "ĠToy": 15708, + "ĠToyota": 22926, + "ĠTr": 1765, + "ĠTra": 5403, + "ĠTrack": 31903, + "ĠTracy": 33724, + "ĠTrad": 22017, + "ĠTrade": 23923, + "ĠTrading": 49929, + "ĠTraditional": 46738, + "ĠTraffic": 46950, + "ĠTrail": 30080, + "ĠTrain": 28029, + "ĠTrainer": 48494, + "ĠTraining": 20620, + "ĠTran": 42971, + "ĠTrans": 6531, + "ĠTransfer": 35025, + "ĠTransform": 27938, + "ĠTransit": 48870, + "ĠTransport": 22309, + "ĠTransportation": 35095, + "ĠTravel": 20610, + "ĠTravis": 24430, + "ĠTre": 8648, + "ĠTreasure": 49884, + "ĠTreasury": 34113, + "ĠTreat": 20298, + "ĠTreaty": 35920, + "ĠTree": 22291, + "ĠTrek": 25845, + "ĠTrend": 37417, + "ĠTrent": 40119, + "ĠTrevor": 26245, + "ĠTri": 10931, + "ĠTrib": 23304, + "ĠTribe": 44984, + "ĠTrick": 43367, + "ĠTrinity": 33121, + "ĠTrip": 33141, + "ĠTriple": 32159, + "ĠTro": 19406, + "ĠTrop": 43917, + "ĠTroy": 32898, + "ĠTru": 21388, + "ĠTruck": 44600, + "ĠTrue": 13587, + "ĠTruly": 43548, + "ĠTruman": 49723, + "ĠTrump": 3899, + "ĠTrung": 40555, + "ĠTrust": 11580, + "ĠTrustee": 34373, + "ĠTrustees": 45099, + "ĠTruth": 20522, + "ĠTry": 6526, + "ĠTrying": 20180, + "ĠTs": 16518, + "ĠTsch": 44461, + "ĠTu": 7836, + "ĠTub": 48258, + "ĠTube": 39313, + "ĠTuc": 42272, + "ĠTucker": 35581, + "ĠTucson": 47417, + "ĠTudo": 29871, + "ĠTuesday": 10017, + "ĠTul": 33585, + "ĠTumb": 50088, + "ĠTun": 21363, + "ĠTur": 5712, + "ĠTurbo": 35848, + "ĠTurk": 15714, + "ĠTurkey": 12647, + "ĠTurkish": 18565, + "ĠTurks": 42275, + "ĠTurn": 7956, + "ĠTurner": 28950, + "ĠTurning": 39660, + "ĠTurns": 29524, + "ĠTurtle": 48406, + "ĠTus": 42026, + "ĠTut": 18392, + "ĠTutaj": 41819, + "ĠTw": 2574, + "ĠTwe": 47763, + "ĠTwelve": 48063, + "ĠTwenty": 28789, + "ĠTwice": 46964, + "ĠTwilight": 38525, + "ĠTwin": 27444, + "ĠTwist": 47016, + "ĠTwitch": 22222, + "ĠTwitter": 5794, + "ĠTwo": 4453, + "ĠTy": 5569, + "ĠTyl": 49286, + "ĠTyler": 16869, + "ĠTyp": 17722, + "ĠType": 15576, + "ĠTypically": 23129, + "ĠTyr": 43126, + "ĠTyson": 43382, + "ĠTá": 20907, + "ĠTä": 41204, + "ĠTôi": 43345, + "ĠTú": 46341, + "ĠTür": 16728, + "ĠTürk": 36673, + "ĠTürkiye": 32901, + "ĠU": 624, + "ĠUA": 32765, + "ĠUC": 14079, + "ĠUCLA": 42862, + "ĠUE": 42260, + "ĠUFC": 48072, + "ĠUFO": 28318, + "ĠUH": 50030, + "ĠUI": 15682, + "ĠUK": 7051, + "ĠUM": 31335, + "ĠUN": 8229, + "ĠUNC": 44886, + "ĠUP": 20074, + "ĠURL": 12905, + "ĠURLs": 43267, + "ĠUS": 2546, + "ĠUSA": 10827, + "ĠUSB": 10109, + "ĠUSC": 44066, + "ĠUSD": 24375, + "ĠUSDA": 41244, + "ĠUSS": 30385, + "ĠUSSR": 45956, + "ĠUT": 35514, + "ĠUV": 17887, + "ĠUW": 35691, + "ĠUX": 40176, + "ĠUb": 30230, + "ĠUber": 21839, + "ĠUg": 28690, + "ĠUganda": 48764, + "ĠUgh": 16506, + "ĠUh": 4019, + "ĠUhh": 29365, + "ĠUhm": 32287, + "ĠUhr": 30084, + "ĠUk": 9816, + "ĠUkrain": 21481, + "ĠUkraine": 14081, + "ĠUkrainian": 24682, + "ĠUl": 24853, + "ĠUlt": 9523, + "ĠUltimate": 26570, + "ĠUltimately": 23921, + "ĠUltra": 20925, + "ĠUm": 3301, + "ĠUma": 21939, + "ĠUmm": 18918, + "ĠUms": 46963, + "ĠUmwelt": 48900, + "ĠUn": 1156, + "ĠUna": 15491, + "ĠUnbelievable": 39523, + "ĠUncle": 12347, + "ĠUnd": 2719, + "ĠUnder": 6974, + "ĠUnderground": 47569, + "ĠUnderstand": 26093, + "ĠUnderstanding": 36858, + "ĠUnderstood": 42832, + "ĠUndert": 48649, + "ĠUne": 16701, + "ĠUnf": 8170, + "ĠUnfortunately": 8590, + "ĠUng": 43559, + "ĠUni": 35191, + "ĠUnidos": 23087, + "ĠUnion": 8133, + "ĠUnit": 27894, + "ĠUnited": 2824, + "ĠUnity": 27913, + "ĠUnivers": 14052, + "ĠUniversal": 22617, + "ĠUniverse": 18307, + "ĠUniversity": 3535, + "ĠUnknown": 32766, + "ĠUnless": 16581, + "ĠUnlike": 17657, + "ĠUno": 37468, + "ĠUnreal": 34464, + "ĠUns": 25017, + "ĠUnt": 8256, + "ĠUnter": 12065, + "ĠUnternehmen": 27577, + "ĠUnters": 30240, + "ĠUnterschied": 41414, + "ĠUnterstüt": 42128, + "ĠUnterstützung": 47216, + "ĠUntil": 9088, + "ĠUp": 5858, + "ĠUpdate": 28923, + "ĠUpon": 25184, + "ĠUpper": 36926, + "ĠUr": 9533, + "ĠUran": 44407, + "ĠUrban": 24885, + "ĠUrs": 41303, + "ĠUs": 4958, + "ĠUse": 8278, + "ĠUsed": 43237, + "ĠUser": 32127, + "ĠUsers": 47092, + "ĠUsing": 11142, + "ĠUsually": 11419, + "ĠUt": 12555, + "ĠUtah": 20226, + "ĠUz": 38564, + "ĠV": 691, + "ĠVA": 18527, + "ĠVAN": 49090, + "ĠVC": 41922, + "ĠVER": 27686, + "ĠVERY": 45655, + "ĠVI": 27619, + "ĠVIC": 41519, + "ĠVID": 47619, + "ĠVII": 48087, + "ĠVIP": 29732, + "ĠVIS": 29421, + "ĠVISTA": 35199, + "ĠVM": 18038, + "ĠVMware": 40146, + "ĠVND": 39777, + "ĠVO": 15216, + "ĠVOICE": 46973, + "ĠVOICES": 44623, + "ĠVP": 35812, + "ĠVPN": 24512, + "ĠVR": 13722, + "ĠVS": 25091, + "ĠVa": 16822, + "ĠVac": 44442, + "ĠVacc": 48579, + "ĠVad": 24788, + "ĠVader": 36337, + "ĠVai": 24206, + "ĠVal": 7188, + "ĠVale": 26415, + "ĠValent": 17961, + "ĠValentine": 24359, + "ĠValerie": 46656, + "ĠVall": 48177, + "ĠVallahi": 35454, + "ĠValley": 10666, + "ĠValue": 39352, + "ĠValve": 41369, + "ĠVamos": 10894, + "ĠVamp": 38796, + "ĠVan": 8979, + "ĠVanc": 26417, + "ĠVancouver": 26563, + "ĠVander": 46588, + "ĠVanessa": 27928, + "ĠVanguard": 46648, + "ĠVar": 14662, + "ĠVari": 32511, + "ĠVas": 23299, + "ĠVater": 36173, + "ĠVatic": 36268, + "ĠVatican": 37904, + "ĠVault": 46071, + "ĠVay": 39556, + "ĠVe": 9706, + "ĠVed": 26084, + "ĠVeg": 12895, + "ĠVega": 48796, + "ĠVegan": 49688, + "ĠVegas": 15841, + "ĠVeget": 28092, + "ĠVegeta": 47297, + "ĠVeh": 41230, + "ĠVel": 17814, + "ĠVelvet": 47086, + "ĠVen": 11182, + "ĠVenez": 19656, + "ĠVenezuela": 24153, + "ĠVenice": 32707, + "ĠVent": 28290, + "ĠVenus": 23994, + "ĠVer": 4281, + "ĠVera": 46982, + "ĠVerantwort": 39082, + "ĠVerantwortung": 43423, + "ĠVerb": 27034, + "ĠVerd": 41257, + "ĠVere": 33110, + "ĠVerein": 47431, + "ĠVerf": 24583, + "ĠVerfüg": 41611, + "ĠVerfügung": 43026, + "ĠVerg": 26610, + "ĠVergleich": 47998, + "ĠVerizon": 44456, + "ĠVerkehr": 40706, + "ĠVerm": 20185, + "ĠVermont": 34754, + "ĠVern": 33220, + "ĠVernon": 47516, + "ĠVeron": 38600, + "ĠVeronica": 43498, + "ĠVers": 12226, + "ĠVerse": 31640, + "ĠVersion": 35965, + "ĠVert": 21044, + "ĠVery": 4372, + "ĠVet": 50111, + "ĠVeter": 21881, + "ĠVeterans": 30066, + "ĠVi": 6626, + "ĠVia": 49232, + "ĠVic": 33316, + "ĠVice": 13276, + "ĠVict": 8676, + "ĠVictor": 15777, + "ĠVictoria": 16656, + "ĠVictorian": 37302, + "ĠVictory": 37976, + "ĠVid": 31185, + "ĠVide": 7926, + "ĠVideo": 9777, + "ĠVideos": 25903, + "ĠVie": 24130, + "ĠViel": 35931, + "ĠViele": 36022, + "ĠVielen": 22502, + "ĠVielleicht": 29838, + "ĠVienna": 31024, + "ĠVietnam": 11013, + "ĠVietnamese": 25934, + "ĠView": 13909, + "ĠVij": 41201, + "ĠVik": 29465, + "ĠViking": 40375, + "ĠVikings": 48761, + "ĠVikt": 42500, + "ĠViktor": 46844, + "ĠVil": 35653, + "ĠVill": 14244, + "ĠVilla": 40280, + "ĠVillage": 22651, + "ĠVin": 15011, + "ĠVince": 34876, + "ĠVincent": 28003, + "ĠVine": 40569, + "ĠViol": 24383, + "ĠViolence": 49279, + "ĠVir": 7566, + "ĠVirgin": 9281, + "ĠVirginia": 10956, + "ĠVirt": 19447, + "ĠVirtual": 23887, + "ĠVirus": 39790, + "ĠVis": 10410, + "ĠVisa": 44907, + "ĠVish": 36752, + "ĠVision": 25170, + "ĠVisit": 24548, + "ĠVisual": 23187, + "ĠVit": 22463, + "ĠVital": 48307, + "ĠVitamin": 33515, + "ĠViv": 28188, + "ĠVive": 44288, + "ĠViá»ĩt": 32936, + "ĠVlad": 21958, + "ĠVladimir": 31669, + "ĠVlog": 33256, + "ĠVo": 7518, + "ĠVoc": 8993, + "ĠVocê": 9781, + "ĠVocês": 40262, + "ĠVog": 46359, + "ĠVoice": 15229, + "ĠVoiceover": 46117, + "ĠVoilÃł": 18677, + "ĠVol": 8911, + "ĠVold": 48791, + "ĠVolks": 30213, + "ĠVolkswagen": 39856, + "ĠVoll": 39602, + "ĠVolt": 40332, + "ĠVolume": 38448, + "ĠVolunte": 46698, + "ĠVolvo": 43381, + "ĠVon": 20700, + "ĠVoor": 43114, + "ĠVor": 12231, + "ĠVors": 31438, + "ĠVorte": 46968, + "ĠVote": 44354, + "ĠVou": 24361, + "ĠVous": 10802, + "ĠVoy": 25563, + "ĠVu": 37703, + "ĠVul": 41434, + "ĠVä": 45199, + "ĠVÃł": 44851, + "ĠW": 343, + "ĠWA": 26915, + "ĠWAR": 48331, + "ĠWAS": 28984, + "ĠWAT": 36086, + "ĠWAY": 42274, + "ĠWE": 15813, + "ĠWH": 8183, + "ĠWHAT": 18090, + "ĠWHO": 23256, + "ĠWHY": 32720, + "ĠWIL": 32095, + "ĠWILL": 18194, + "ĠWILLIAM": 32613, + "ĠWIN": 32353, + "ĠWITH": 25371, + "ĠWO": 48388, + "ĠWOMAN": 30837, + "ĠWOO": 16864, + "ĠWOODR": 24265, + "ĠWOODRUFF": 24309, + "ĠWOR": 30029, + "ĠWOW": 34728, + "ĠWR": 44175, + "ĠWW": 12040, + "ĠWWE": 15110, + "ĠWY": 46410, + "ĠWa": 15405, + "ĠWaar": 43123, + "ĠWade": 28001, + "ĠWag": 49921, + "ĠWagner": 38146, + "ĠWah": 24598, + "ĠWahl": 27437, + "ĠWahr": 36357, + "ĠWait": 3802, + "ĠWaiting": 37291, + "ĠWak": 45077, + "ĠWake": 21062, + "ĠWal": 9707, + "ĠWald": 29223, + "ĠWales": 16495, + "ĠWalk": 10818, + "ĠWalker": 23974, + "ĠWalking": 26964, + "ĠWall": 9551, + "ĠWallace": 32626, + "ĠWalmart": 25237, + "ĠWalt": 28260, + "ĠWalter": 21572, + "ĠWam": 41226, + "ĠWan": 28932, + "ĠWand": 40772, + "ĠWang": 14499, + "ĠWanna": 24336, + "ĠWant": 11773, + "ĠWar": 3630, + "ĠWard": 23794, + "ĠWare": 49978, + "ĠWarm": 40353, + "ĠWarner": 31769, + "ĠWarning": 45140, + "ĠWarren": 20538, + "ĠWarri": 23385, + "ĠWarrior": 33834, + "ĠWarriors": 40161, + "ĠWars": 9818, + "ĠWarsaw": 41662, + "ĠWarsz": 48479, + "ĠWarum": 25541, + "ĠWas": 3027, + "ĠWash": 28891, + "ĠWashington": 6149, + "ĠWasn": 28782, + "ĠWass": 42998, + "ĠWasser": 17351, + "ĠWat": 12593, + "ĠWatch": 7277, + "ĠWatching": 28482, + "ĠWater": 8772, + "ĠWaters": 46743, + "ĠWatson": 25640, + "ĠWatts": 42933, + "ĠWave": 28530, + "ĠWay": 9558, + "ĠWayne": 22101, + "ĠWe": 492, + "ĠWear": 34514, + "ĠWeather": 34441, + "ĠWeb": 9573, + "ĠWebb": 49649, + "ĠWeber": 42690, + "ĠWebs": 45347, + "ĠWed": 9589, + "ĠWednesday": 10579, + "ĠWeek": 12615, + "ĠWeekly": 35945, + "ĠWeg": 18919, + "ĠWei": 21174, + "ĠWeight": 44464, + "ĠWeihn": 42181, + "ĠWeil": 18665, + "ĠWein": 34477, + "ĠWeird": 32033, + "ĠWeise": 41947, + "ĠWeiter": 48050, + "ĠWel": 3778, + "ĠWelcome": 4027, + "ĠWell": 1042, + "ĠWellington": 45812, + "ĠWellness": 50166, + "ĠWells": 36363, + "ĠWelsh": 27129, + "ĠWelt": 14761, + "ĠWen": 23716, + "ĠWendy": 21850, + "ĠWenn": 7899, + "ĠWent": 31809, + "ĠWer": 14255, + "ĠWere": 12448, + "ĠWerk": 42911, + "ĠWert": 37205, + "ĠWes": 23843, + "ĠWesley": 43908, + "ĠWest": 4055, + "ĠWestern": 8724, + "ĠWestminster": 49714, + "ĠWet": 46046, + "ĠWh": 506, + "ĠWha": 45040, + "ĠWhat": 708, + "ĠWhatever": 8541, + "ĠWhats": 22051, + "ĠWhatsApp": 30513, + "ĠWhe": 17040, + "ĠWheel": 31392, + "ĠWheels": 49372, + "ĠWhen": 1133, + "ĠWhenever": 14159, + "ĠWhere": 2305, + "ĠWhereas": 13813, + "ĠWherever": 30903, + "ĠWhether": 8503, + "ĠWhew": 46029, + "ĠWhich": 3013, + "ĠWhile": 3987, + "ĠWhilst": 45790, + "ĠWhis": 41132, + "ĠWhit": 21693, + "ĠWhite": 5552, + "ĠWhitney": 39466, + "ĠWho": 2102, + "ĠWhoa": 7521, + "ĠWhoever": 24743, + "ĠWhole": 30336, + "ĠWhoo": 23381, + "ĠWhoops": 45263, + "ĠWhose": 28463, + "ĠWhy": 1545, + "ĠWi": 14035, + "ĠWiFi": 32885, + "ĠWick": 47702, + "ĠWid": 28331, + "ĠWide": 42543, + "ĠWie": 9233, + "ĠWieder": 45742, + "ĠWii": 27865, + "ĠWij": 46721, + "ĠWik": 23377, + "ĠWiki": 35892, + "ĠWikipedia": 28999, + "ĠWil": 9483, + "ĠWild": 10904, + "ĠWildlife": 35811, + "ĠWill": 3099, + "ĠWilliam": 6740, + "ĠWilliams": 12929, + "ĠWillie": 39912, + "ĠWilly": 42238, + "ĠWilson": 15388, + "ĠWin": 10427, + "ĠWind": 6320, + "ĠWindow": 44933, + "ĠWindows": 8591, + "ĠWinds": 43082, + "ĠWine": 39253, + "ĠWing": 28785, + "ĠWinston": 33051, + "ĠWinter": 16444, + "ĠWir": 4347, + "ĠWire": 32598, + "ĠWireless": 49962, + "ĠWirtschaft": 29412, + "ĠWis": 34143, + "ĠWisconsin": 17977, + "ĠWise": 46933, + "ĠWish": 27697, + "ĠWissenschaft": 38774, + "ĠWit": 42299, + "ĠWitch": 23522, + "ĠWitcher": 47383, + "ĠWith": 2022, + "ĠWithin": 15996, + "ĠWithout": 9129, + "ĠWitness": 41366, + "ĠWiz": 43490, + "ĠWizard": 37449, + "ĠWiÄĻ": 30127, + "ĠWiÄĻc": 32508, + "ĠWo": 6622, + "ĠWoah": 19668, + "ĠWoche": 24511, + "ĠWochen": 23126, + "ĠWohn": 22741, + "ĠWohnung": 50087, + "ĠWol": 19925, + "ĠWolf": 16634, + "ĠWolver": 49059, + "ĠWoman": 15794, + "ĠWomen": 11065, + "ĠWon": 14710, + "ĠWonder": 13224, + "ĠWonderful": 22768, + "ĠWong": 41638, + "ĠWoo": 10468, + "ĠWood": 11558, + "ĠWoods": 31559, + "ĠWoody": 40618, + "ĠWool": 46307, + "ĠWor": 26363, + "ĠWord": 8725, + "ĠWordPress": 23239, + "ĠWords": 32857, + "ĠWork": 6603, + "ĠWorkers": 42375, + "ĠWorking": 18337, + "ĠWorks": 27914, + "ĠWorkshop": 48366, + "ĠWorld": 3937, + "ĠWorlds": 43003, + "ĠWort": 22748, + "ĠWorth": 37228, + "ĠWould": 6068, + "ĠWouldn": 26291, + "ĠWow": 3153, + "ĠWr": 10159, + "ĠWrap": 41291, + "ĠWrest": 23719, + "ĠWrestle": 34744, + "ĠWrestleMania": 49014, + "ĠWrestling": 43508, + "ĠWright": 25578, + "ĠWrite": 23499, + "ĠWriting": 32774, + "ĠWrong": 28150, + "ĠWu": 17287, + "ĠWuhan": 42101, + "ĠWy": 14458, + "ĠWyatt": 46430, + "ĠWyoming": 30810, + "ĠWäh": 40084, + "ĠWür": 43846, + "ĠX": 1783, + "ĠXD": 32336, + "ĠXL": 37210, + "ĠXML": 43484, + "ĠXP": 33984, + "ĠXV": 44707, + "ĠXX": 27050, + "ĠXY": 48826, + "ĠXavier": 44653, + "ĠXbox": 14544, + "ĠXi": 15712, + "ĠXia": 11956, + "ĠXian": 47581, + "ĠXiang": 37935, + "ĠXiao": 13134, + "ĠXiaomi": 33806, + "ĠXin": 24368, + "ĠXing": 33040, + "ĠXu": 23082, + "ĠXuan": 45292, + "ĠXue": 43999, + "ĠY": 398, + "ĠYA": 40771, + "ĠYE": 21760, + "ĠYEAH": 43549, + "ĠYES": 25268, + "ĠYH": 49389, + "ĠYJ": 49535, + "ĠYO": 33565, + "ĠYOU": 7928, + "ĠYOUR": 25166, + "ĠYT": 49002, + "ĠYU": 33471, + "ĠYa": 6080, + "ĠYah": 19740, + "ĠYahoo": 41757, + "ĠYak": 31484, + "ĠYale": 26711, + "ĠYam": 18992, + "ĠYan": 13633, + "ĠYang": 11978, + "ĠYani": 14262, + "ĠYao": 40575, + "ĠYap": 38724, + "ĠYar": 41554, + "ĠYas": 30557, + "ĠYay": 13268, + "ĠYaz": 44962, + "ĠYe": 835, + "ĠYea": 21145, + "ĠYeah": 865, + "ĠYear": 10289, + "ĠYears": 24569, + "ĠYellow": 17550, + "ĠYemen": 30784, + "ĠYeon": 30892, + "ĠYep": 7010, + "ĠYes": 1079, + "ĠYeshua": 43885, + "ĠYesterday": 19765, + "ĠYet": 10890, + "ĠYi": 16747, + "ĠYin": 33254, + "ĠYing": 28125, + "ĠYo": 7616, + "ĠYoda": 48697, + "ĠYog": 49328, + "ĠYoga": 32983, + "ĠYok": 18480, + "ĠYong": 20085, + "ĠYoo": 22330, + "ĠYoon": 27893, + "ĠYork": 3609, + "ĠYosh": 38949, + "ĠYoshi": 45676, + "ĠYou": 509, + "ĠYouT": 2898, + "ĠYouTube": 3088, + "ĠYouTuber": 23349, + "ĠYouTubers": 30571, + "ĠYoung": 8160, + "ĠYour": 2260, + "ĠYours": 37922, + "ĠYout": 10717, + "ĠYouth": 24312, + "ĠYoutube": 12132, + "ĠYoutuber": 49219, + "ĠYu": 10767, + "ĠYuan": 22730, + "ĠYue": 30166, + "ĠYug": 41949, + "ĠYuk": 27975, + "ĠYum": 29890, + "ĠYummy": 40590, + "ĠYun": 18007, + "ĠYup": 13593, + "ĠYuri": 33901, + "ĠZ": 1176, + "ĠZa": 31440, + "ĠZac": 48082, + "ĠZach": 21028, + "ĠZack": 36034, + "ĠZahl": 42592, + "ĠZahlen": 44096, + "ĠZak": 46546, + "ĠZam": 45492, + "ĠZap": 34018, + "ĠZar": 41580, + "ĠZe": 4853, + "ĠZealand": 13883, + "ĠZeit": 9394, + "ĠZeiten": 48334, + "ĠZel": 20952, + "ĠZelda": 25298, + "ĠZen": 22387, + "ĠZent": 44091, + "ĠZero": 17182, + "ĠZeus": 35003, + "ĠZh": 7790, + "ĠZhan": 49550, + "ĠZhang": 17729, + "ĠZhao": 25132, + "ĠZhen": 27042, + "ĠZheng": 31408, + "ĠZhi": 43835, + "ĠZhong": 41664, + "ĠZhou": 25601, + "ĠZhu": 31680, + "ĠZi": 26190, + "ĠZie": 46340, + "ĠZiel": 25391, + "ĠZig": 50004, + "ĠZimmer": 37243, + "ĠZion": 32240, + "ĠZo": 10337, + "ĠZoe": 38234, + "ĠZomb": 33945, + "ĠZombie": 48952, + "ĠZone": 22800, + "ĠZoo": 34589, + "ĠZoom": 13453, + "ĠZu": 23164, + "ĠZucker": 34032, + "ĠZug": 34722, + "ĠZuk": 20991, + "ĠZukunft": 22782, + "ĠZum": 23906, + "ĠZur": 30518, + "ĠZus": 18742, + "ĠZusammen": 29442, + "ĠZusch": 48333, + "ĠZust": 46322, + "ĠZw": 29385, + "ĠZwe": 32475, + "Ġ[": 542, + "Ġ[\"": 29799, + "Ġ[#": 40726, + "Ġ[(": 9128, + "Ġ[...]": 35467, + "Ġ[?": 16127, + "Ġ[âĻª": 44529, + "Ġ\\": 12033, + "Ġ]": 4183, + "Ġ^": 18956, + "Ġ^^": 35500, + "Ġ_": 26161, + "Ġ__": 49264, + "Ġ`": 28279, + "Ġa": 257, + "Ġaa": 40079, + "Ġaan": 9904, + "Ġab": 410, + "Ġaba": 46981, + "Ġabajo": 30613, + "Ġabandon": 9072, + "Ġabandoned": 13732, + "Ġabb": 16903, + "Ġabbiamo": 22815, + "Ġabbrevi": 35839, + "Ġabdom": 22191, + "Ġabdomen": 36494, + "Ġabdominal": 38701, + "Ġabduct": 46465, + "Ġaber": 4340, + "Ġabge": 37301, + "Ġabges": 49848, + "Ġabi": 17905, + "Ġabide": 39663, + "Ġabilities": 11582, + "Ġability": 3485, + "Ġabla": 43899, + "Ġable": 1075, + "Ġabnorm": 47104, + "Ġabnormal": 32847, + "Ġaboard": 27488, + "Ġabol": 23183, + "Ġabolition": 39999, + "Ġabonn": 40676, + "Ġabord": 48727, + "Ġabort": 38117, + "Ġabortion": 22902, + "Ġabout": 466, + "Ġabove": 3673, + "Ġabra": 33693, + "Ġabras": 37351, + "Ġabre": 41594, + "Ġabrir": 27446, + "Ġabroad": 12637, + "Ġabrupt": 33401, + "Ġabruptly": 49642, + "Ġabs": 1950, + "Ġabsence": 17145, + "Ġabsent": 25185, + "Ġabsol": 7305, + "Ġabsolument": 34508, + "Ġabsolut": 18757, + "Ġabsolutamente": 49285, + "Ġabsolute": 8236, + "Ġabsolutely": 3122, + "Ġabsor": 7672, + "Ġabsorb": 15631, + "Ġabsorbed": 20799, + "Ġabsorbing": 38720, + "Ġabsorbs": 40745, + "Ġabsorption": 27557, + "Ġabst": 10823, + "Ġabstract": 12649, + "Ġabstraction": 37765, + "Ġabsurd": 19774, + "Ġabund": 14809, + "Ġabundance": 23391, + "Ġabundant": 30657, + "Ġabus": 48819, + "Ġabuse": 9852, + "Ġabused": 27075, + "Ġabuses": 47681, + "Ġabusive": 32828, + "Ġaby": 24457, + "Ġac": 696, + "Ġacab": 13281, + "Ġacaba": 23485, + "Ġacabar": 35041, + "Ġacabou": 38043, + "Ġacad": 5558, + "Ġacadem": 19267, + "Ġacademia": 28937, + "Ġacademic": 7778, + "Ġacademically": 48944, + "Ġacademics": 25695, + "Ġacademy": 25525, + "Ġacc": 1317, + "Ġacceler": 10172, + "Ġaccelerate": 21341, + "Ġaccelerated": 29763, + "Ġaccelerating": 34391, + "Ġacceleration": 17162, + "Ġaccelerator": 39889, + "Ġaccent": 11982, + "Ġaccents": 35012, + "Ġaccept": 3241, + "Ġacceptable": 15513, + "Ġacceptance": 20351, + "Ġaccepted": 9035, + "Ġaccepting": 17391, + "Ġaccepts": 33538, + "Ġacces": 35707, + "Ġacceso": 49284, + "Ġaccess": 2105, + "Ġaccessed": 34211, + "Ġaccessibility": 15002, + "Ġaccessible": 9515, + "Ġaccessing": 26440, + "Ġaccessories": 18207, + "Ġaccessory": 30617, + "Ġaccident": 6398, + "Ġaccidental": 38094, + "Ġaccidentally": 15715, + "Ġaccidents": 23875, + "Ġaccom": 4223, + "Ġaccommod": 11713, + "Ġaccommodate": 21410, + "Ġaccommodation": 27363, + "Ġaccommodations": 38907, + "Ġaccomp": 18037, + "Ġaccompan": 19307, + "Ġaccompanied": 24202, + "Ġaccompany": 21627, + "Ġaccompanying": 43648, + "Ġaccompl": 6548, + "Ġaccomplish": 9021, + "Ġaccomplished": 15419, + "Ġaccomplishment": 29144, + "Ġaccomplishments": 25943, + "Ġaccord": 18640, + "Ġaccordance": 31110, + "Ġaccording": 4650, + "Ġaccordingly": 19717, + "Ġaccount": 2696, + "Ġaccountability": 19380, + "Ġaccountable": 18024, + "Ġaccountant": 43898, + "Ġaccounted": 43138, + "Ġaccounting": 19163, + "Ġaccounts": 9402, + "Ġaccred": 33877, + "Ġaccum": 12989, + "Ġaccumulate": 33384, + "Ġaccumulated": 31346, + "Ġaccumulation": 35647, + "Ġaccur": 5771, + "Ġaccuracy": 14170, + "Ġaccurate": 8559, + "Ġaccurately": 20095, + "Ġaccus": 11168, + "Ġaccusations": 38556, + "Ġaccuse": 43610, + "Ġaccused": 17085, + "Ġaccusing": 47436, + "Ġaccustomed": 35980, + "Ġace": 17117, + "Ġaceite": 48913, + "Ġacept": 43568, + "Ġacerca": 46321, + "Ġacesso": 49543, + "Ġacet": 37848, + "Ġach": 2800, + "Ġacha": 37338, + "Ġache": 29677, + "Ġachei": 44961, + "Ġachie": 3538, + "Ġachieve": 4584, + "Ġachieved": 11042, + "Ġachievement": 15838, + "Ġachievements": 21420, + "Ġachieving": 19626, + "Ġacho": 14253, + "Ġacht": 43048, + "Ġachter": 35557, + "Ġacid": 8258, + "Ġacidic": 39514, + "Ġacids": 21667, + "Ġacknow": 7791, + "Ġacknowled": 15195, + "Ġacknowledge": 10692, + "Ġacknowledged": 27262, + "Ġacknowledgement": 47227, + "Ġacknowledging": 30904, + "Ġacne": 26480, + "Ġacom": 22298, + "Ġacompa": 39226, + "Ġacompan": 34839, + "Ġacompañ": 43142, + "Ġaconte": 14888, + "Ġacontec": 35846, + "Ġacontece": 19786, + "Ġacontecendo": 47623, + "Ġacontecer": 35011, + "Ġaconteceu": 34028, + "Ġacord": 38077, + "Ġacordo": 49392, + "Ġacost": 44126, + "Ġacoust": 22740, + "Ġacoustic": 26753, + "Ġacqu": 6667, + "Ġacquaint": 36954, + "Ġacquainted": 50224, + "Ġacquire": 20001, + "Ġacquired": 17554, + "Ġacquiring": 37374, + "Ġacquis": 17883, + "Ġacquisition": 21668, + "Ġacre": 32656, + "Ġacred": 34548, + "Ġacres": 19852, + "Ġacron": 31713, + "Ġacronym": 39195, + "Ġacross": 2108, + "Ġacrylic": 25389, + "Ġact": 605, + "Ġacted": 20359, + "Ġacting": 6577, + "Ġaction": 3069, + "Ġactionable": 45098, + "Ġactions": 5909, + "Ġactiv": 2430, + "Ġactivate": 13615, + "Ġactivated": 18157, + "Ġactivates": 43869, + "Ġactivating": 42481, + "Ġactivation": 24433, + "Ġactive": 4967, + "Ġactively": 13022, + "Ġactivism": 29040, + "Ġactivist": 24836, + "Ġactivists": 23042, + "Ġactivities": 5354, + "Ġactivity": 5191, + "Ġactor": 8747, + "Ġactors": 10037, + "Ġactress": 15410, + "Ġacts": 10672, + "Ġactu": 34964, + "Ġactual": 3539, + "Ġactually": 767, + "Ġacuerdo": 28113, + "Ġacum": 41343, + "Ġacute": 24390, + "Ġacá": 23496, + "Ġad": 614, + "Ġada": 11063, + "Ġadalah": 23555, + "Ġadam": 16368, + "Ġadap": 23169, + "Ġadapt": 6231, + "Ġadaptation": 21549, + "Ġadaptations": 44465, + "Ġadapted": 20871, + "Ġadapter": 22860, + "Ġadapting": 34942, + "Ġadaptive": 27912, + "Ġadd": 909, + "Ġadded": 3869, + "Ġaddict": 22072, + "Ġaddicted": 24629, + "Ġaddiction": 16835, + "Ġaddictive": 36486, + "Ġadding": 5127, + "Ġaddition": 4500, + "Ġadditional": 4497, + "Ġadditionally": 43181, + "Ġadditions": 35113, + "Ġadditive": 45558, + "Ġaddress": 2985, + "Ġaddressed": 13847, + "Ġaddresses": 16862, + "Ġaddressing": 14329, + "Ġadds": 10860, + "Ġadel": 30069, + "Ġadelante": 40214, + "Ġademás": 21251, + "Ġadequ": 15747, + "Ġadequate": 20927, + "Ġadequately": 41822, + "Ġadesso": 39552, + "Ġadher": 30106, + "Ġadhere": 33584, + "Ġadhesive": 25485, + "Ġadjac": 22940, + "Ġadjacent": 24441, + "Ġadject": 29378, + "Ġadjective": 44129, + "Ġadjour": 46236, + "Ġadjust": 4369, + "Ġadjustable": 27804, + "Ġadjusted": 19871, + "Ġadjusting": 23559, + "Ġadjustment": 17132, + "Ġadjustments": 18624, + "Ġadm": 5910, + "Ġadmin": 24236, + "Ġadminist": 4968, + "Ġadminister": 22096, + "Ġadministered": 36123, + "Ġadministr": 9737, + "Ġadministration": 7236, + "Ġadministrative": 17900, + "Ġadministrator": 25529, + "Ġadministrators": 27754, + "Ġadmir": 48252, + "Ġadmiration": 44597, + "Ġadmire": 21951, + "Ġadmired": 39987, + "Ġadmission": 24668, + "Ġadmissions": 29856, + "Ġadmit": 9796, + "Ġadmits": 46682, + "Ġadmitted": 14920, + "Ġadmitting": 44056, + "Ġado": 22450, + "Ġadoles": 21383, + "Ġadolescent": 40193, + "Ġadolescents": 48191, + "Ġadop": 22486, + "Ġadopt": 6878, + "Ġadopted": 12175, + "Ġadopting": 32328, + "Ġadoption": 19215, + "Ġadorable": 18698, + "Ġadore": 32060, + "Ġadrenal": 26511, + "Ġadrenaline": 35649, + "Ġads": 10342, + "Ġadul": 26885, + "Ġadult": 5075, + "Ġadulthood": 42328, + "Ġadults": 8865, + "Ġadv": 1551, + "Ġadvance": 7295, + "Ġadvanced": 7339, + "Ġadvancement": 35764, + "Ġadvances": 25297, + "Ġadvancing": 27267, + "Ġadvant": 14652, + "Ġadvantage": 5002, + "Ġadvantages": 14906, + "Ġadvent": 7045, + "Ġadventure": 9868, + "Ġadventures": 20905, + "Ġadventurous": 46163, + "Ġadvers": 17641, + "Ġadversary": 48222, + "Ġadverse": 27590, + "Ġadversity": 40018, + "Ġadvert": 7756, + "Ġadvertis": 18427, + "Ġadvertise": 35379, + "Ġadvertised": 42310, + "Ġadvertisement": 31370, + "Ġadvertisements": 42897, + "Ġadvertisers": 42679, + "Ġadvertising": 13097, + "Ġadvice": 5192, + "Ġadvis": 10280, + "Ġadvise": 18312, + "Ġadvised": 26269, + "Ġadviser": 43547, + "Ġadvising": 35598, + "Ġadvisor": 19161, + "Ġadvisors": 29136, + "Ġadvisory": 26289, + "Ġadvoc": 7915, + "Ġadvocacy": 22011, + "Ġadvocate": 14608, + "Ġadvocates": 25160, + "Ġadvocating": 32050, + "Ġaer": 11207, + "Ġaerial": 31026, + "Ġaerospace": 46817, + "Ġaest": 14413, + "Ġaesthet": 27837, + "Ġaesthetic": 20092, + "Ġaesthetics": 35517, + "Ġaf": 3238, + "Ġafar": 41795, + "Ġafect": 30626, + "Ġaff": 2096, + "Ġaffair": 22987, + "Ġaffairs": 17478, + "Ġaffect": 3345, + "Ġaffected": 8028, + "Ġaffecting": 17476, + "Ġaffection": 20080, + "Ġaffects": 11807, + "Ġaffili": 14863, + "Ġaffiliate": 23975, + "Ġaffiliated": 42174, + "Ġaffinity": 39703, + "Ġaffir": 36315, + "Ġaffirm": 21260, + "Ġaffirmative": 45270, + "Ġafflict": 48287, + "Ġafford": 6157, + "Ġaffordable": 12028, + "Ġafin": 34709, + "Ġafore": 48927, + "Ġafraid": 4638, + "Ġafter": 934, + "Ġafterlife": 47637, + "Ġaftermath": 34095, + "Ġafternoon": 6499, + "Ġafterward": 40411, + "Ġafterwards": 10543, + "Ġag": 623, + "Ġagain": 797, + "Ġagainst": 1970, + "Ġage": 3205, + "Ġaged": 21213, + "Ġagencies": 9504, + "Ġagency": 7934, + "Ġagenda": 9829, + "Ġagent": 9461, + "Ġagents": 12554, + "Ġages": 12357, + "Ġaggi": 42254, + "Ġaggrav": 47339, + "Ġaggreg": 16743, + "Ġaggregate": 26118, + "Ġaggress": 8939, + "Ġaggression": 30268, + "Ġaggressive": 10762, + "Ġaggressively": 32024, + "Ġagile": 30072, + "Ġagility": 39794, + "Ġaging": 19090, + "Ġago": 2057, + "Ġagony": 46025, + "Ġagora": 9851, + "Ġagrad": 49463, + "Ġagrade": 31469, + "Ġagre": 4554, + "Ġagree": 3986, + "Ġagreed": 9166, + "Ġagreeing": 36900, + "Ġagreement": 8106, + "Ġagreements": 21422, + "Ġagrees": 26383, + "Ġagric": 9682, + "Ġagricultural": 19587, + "Ġagriculture": 14837, + "Ġagu": 34438, + "Ġagua": 19330, + "Ġah": 3716, + "Ġaha": 47340, + "Ġahead": 2286, + "Ġahh": 28612, + "Ġahor": 44249, + "Ġahora": 9923, + "ĠahÃŃ": 12571, + "Ġai": 9783, + "Ġaid": 9418, + "Ġaide": 40890, + "Ġaider": 36669, + "Ġaids": 28447, + "Ġaik": 37537, + "Ġaika": 39704, + "Ġail": 48283, + "Ġaim": 5939, + "Ġaime": 46527, + "Ġaimed": 20540, + "Ġaiming": 20253, + "Ġaims": 24683, + "Ġain": 7862, + "Ġainda": 11804, + "Ġainsi": 26552, + "Ġair": 1988, + "Ġairborne": 49278, + "Ġaircraft": 9465, + "Ġaire": 42885, + "Ġaired": 34503, + "Ġairflow": 45291, + "Ġairl": 18856, + "Ġairline": 29528, + "Ġairlines": 37147, + "Ġairpl": 13781, + "Ġairplane": 17130, + "Ġairplanes": 32947, + "Ġairport": 10155, + "Ġairports": 36561, + "Ġais": 24938, + "Ġaisle": 30916, + "Ġait": 31684, + "Ġaixò": 16312, + "ĠaixÃŃ": 40217, + "Ġaj": 17680, + "Ġaja": 26579, + "Ġajud": 16126, + "Ġajuda": 32842, + "Ġajudar": 28883, + "Ġajust": 41023, + "Ġak": 9308, + "Ġaka": 28042, + "Ġakan": 16281, + "Ġakhir": 49843, + "Ġakin": 47540, + "Ġakkor": 44439, + "Ġakl": 43380, + "Ġako": 43567, + "Ġakt": 13680, + "Ġaktiv": 31658, + "Ġaktuell": 36267, + "Ġaku": 21093, + "Ġal": 419, + "Ġalan": 48146, + "Ġalar": 27597, + "Ġalarm": 14183, + "Ġalarming": 44043, + "Ġalarms": 45039, + "Ġalbeit": 43654, + "Ġalbo": 22622, + "Ġalbum": 6030, + "Ġalbums": 24795, + "Ġalc": 20005, + "Ġalcanz": 50200, + "Ġalcohol": 7658, + "Ġalcoholic": 38075, + "Ġald": 16798, + "Ġale": 6775, + "Ġaleg": 44491, + "Ġalert": 9615, + "Ġalerts": 28061, + "Ġalg": 3501, + "Ġalgae": 32658, + "Ġalgebra": 21989, + "Ġalgo": 8655, + "Ġalgorith": 7028, + "Ġalgorithm": 9284, + "Ġalgorithms": 14642, + "Ġalgu": 16527, + "Ġalguien": 25814, + "Ġalgum": 15468, + "Ġalguma": 20259, + "Ġalgumas": 23207, + "Ġalgun": 9813, + "Ġalguna": 20651, + "Ġalgunas": 27316, + "Ġalgunos": 21078, + "Ġalguns": 20210, + "Ġalguém": 27052, + "Ġalgún": 26300, + "Ġali": 10198, + "Ġalien": 12319, + "Ġaliens": 21594, + "Ġalign": 7975, + "Ġaligned": 17962, + "Ġalignment": 18515, + "Ġalike": 20025, + "Ġaliment": 17043, + "Ġalimentos": 38563, + "Ġalive": 5465, + "Ġalk": 37688, + "Ġalkal": 44220, + "Ġall": 439, + "Ġalla": 11591, + "Ġalle": 5430, + "Ġalleen": 32259, + "Ġalleg": 10364, + "Ġallegations": 29259, + "Ġalleged": 26317, + "Ġallegedly": 26794, + "Ġallegiance": 44706, + "Ġallein": 37673, + "Ġalleine": 37780, + "Ġallem": 17585, + "Ġallemaal": 29352, + "Ġallen": 18440, + "Ġaller": 8722, + "Ġallerdings": 35489, + "Ġallergic": 31606, + "Ġallergies": 37007, + "Ġallergy": 41505, + "Ġalles": 7874, + "Ġallevi": 33201, + "Ġalleviate": 42701, + "Ġalley": 26660, + "Ġallez": 18146, + "Ġalliance": 20995, + "Ġalliances": 45855, + "Ġallied": 41969, + "Ġallies": 14719, + "Ġalligator": 48095, + "Ġalloc": 12660, + "Ġallocate": 35713, + "Ġallocated": 29772, + "Ġallocation": 27599, + "Ġallons": 34405, + "Ġallora": 44141, + "Ġallow": 2089, + "Ġallowance": 30647, + "Ġallowed": 4350, + "Ġallowing": 8293, + "Ġallows": 4045, + "Ġalloy": 37819, + "Ġallt": 23612, + "Ġalltid": 45861, + "ĠalltsÃ¥": 43505, + "Ġalluded": 33919, + "Ġally": 23356, + "Ġallá": 30642, + "ĠallÃŃ": 34294, + "Ġalm": 18667, + "Ġalma": 32634, + "Ġalmighty": 47534, + "Ġalmond": 29506, + "Ġalmonds": 40973, + "Ġalmost": 1920, + "Ġalone": 3312, + "Ġalong": 2051, + "Ġalongside": 12385, + "Ġalors": 11246, + "Ġalot": 37762, + "Ġaloud": 43888, + "Ġalpha": 8961, + "Ġalphabet": 23339, + "Ġalready": 1217, + "Ġalred": 41290, + "Ġalrededor": 43663, + "Ġalright": 5845, + "Ġals": 3907, + "Ġalso": 611, + "Ġalt": 4955, + "Ġalta": 26495, + "Ġaltar": 31435, + "Ġalte": 38973, + "Ġalten": 41217, + "Ġalter": 11337, + "Ġaltered": 28783, + "Ġaltern": 5400, + "Ġalternate": 18873, + "Ġalternating": 40062, + "Ġalternative": 8535, + "Ġalternatives": 20478, + "Ġalthough": 4878, + "Ġaltijd": 29191, + "Ġaltitude": 24003, + "Ġalto": 21275, + "Ġaltogether": 19051, + "Ġaltre": 34983, + "Ġaltri": 33707, + "Ġaltro": 40924, + "Ġaltura": 39398, + "Ġalum": 12064, + "Ġalumin": 12787, + "Ġaluminium": 35239, + "Ġaluminum": 15656, + "Ġalumni": 16347, + "Ġalways": 1009, + "Ġalém": 30388, + "Ġam": 669, + "Ġama": 10889, + "Ġaman": 42943, + "Ġamar": 42171, + "Ġamateur": 29339, + "Ġamazed": 20507, + "Ġamazing": 2243, + "Ġamazingly": 31762, + "Ġamazon": 47010, + "Ġamb": 3913, + "Ġambassador": 25445, + "Ġambassadors": 44235, + "Ġamber": 48304, + "Ġambient": 22997, + "Ġambiente": 34957, + "Ġambigu": 40390, + "Ġambiguity": 46519, + "Ġambiguous": 39465, + "Ġambition": 22814, + "Ġambitions": 34475, + "Ġambitious": 20239, + "Ġambos": 41425, + "Ġambul": 21574, + "Ġambulance": 26744, + "Ġambush": 38143, + "Ġamen": 18497, + "Ġamend": 11704, + "Ġamended": 43641, + "Ġamendment": 17920, + "Ġamendments": 27009, + "Ġamenities": 47260, + "Ġamer": 16116, + "Ġamerican": 31229, + "Ġami": 33206, + "Ġamid": 30153, + "Ġamiga": 45322, + "Ġamigo": 24671, + "Ġamigos": 18243, + "Ġamino": 24674, + "Ġamis": 32929, + "Ġammo": 27340, + "Ġammon": 36431, + "Ġammonia": 46833, + "Ġammunition": 32251, + "Ġamo": 43155, + "Ġamong": 3654, + "Ġamongst": 12918, + "Ġamor": 15543, + "Ġamount": 2372, + "Ġamounts": 11663, + "Ġamp": 18648, + "Ġamph": 40077, + "Ġampl": 9731, + "Ġample": 42857, + "Ġamplified": 49237, + "Ġamplifier": 27439, + "Ġamplify": 41174, + "Ġamplitude": 27433, + "Ġamps": 43970, + "Ġamusement": 39970, + "Ġamusing": 47809, + "Ġaméric": 39902, + "Ġan": 364, + "Ġana": 34178, + "Ġanak": 38042, + "Ġanal": 2624, + "Ġanalog": 16660, + "Ġanalogy": 21663, + "Ġanaly": 6459, + "Ġanalys": 23014, + "Ġanalyse": 37840, + "Ġanalyses": 37560, + "Ġanalysis": 5215, + "Ġanalyst": 19085, + "Ġanalysts": 31388, + "Ġanalyt": 10783, + "Ġanalytic": 40358, + "Ġanalytical": 29579, + "Ġanalytics": 15370, + "Ġanalyze": 12477, + "Ġanalyzed": 28181, + "Ġanalyzing": 23663, + "Ġanar": 37378, + "Ġanarch": 41957, + "Ġanat": 21618, + "Ġanatomy": 31566, + "Ġanc": 9789, + "Ġancest": 11749, + "Ġancestor": 40032, + "Ġancestors": 18069, + "Ġancestral": 40049, + "Ġancestry": 44729, + "Ġanch": 12723, + "Ġanche": 11585, + "Ġanchor": 18487, + "Ġanci": 34856, + "Ġancient": 7832, + "Ġancora": 30656, + "Ġand": 293, + "Ġanda": 21851, + "Ġandar": 50009, + "Ġandare": 42742, + "Ġander": 49466, + "Ġandere": 10490, + "Ġanderen": 11122, + "Ġanderer": 48108, + "Ġanderes": 31426, + "Ġanders": 17999, + "Ġandra": 25299, + "Ġandroid": 36157, + "Ġanecd": 26652, + "Ġanecdote": 49845, + "Ġanest": 31750, + "Ġanf": 33709, + "Ġang": 2562, + "Ġange": 15495, + "Ġangef": 43907, + "Ġangel": 14250, + "Ġangels": 18175, + "Ġanger": 10240, + "Ġanges": 31138, + "Ġangle": 5802, + "Ġangled": 48843, + "Ġangles": 14708, + "Ġangry": 6884, + "Ġangular": 24413, + "Ġanh": 18931, + "Ġani": 40477, + "Ġanim": 2383, + "Ġanimal": 5496, + "Ġanimales": 45102, + "Ġanimals": 4882, + "Ġanimate": 36439, + "Ġanimated": 18947, + "Ġanimation": 9603, + "Ġanimations": 22868, + "Ġanime": 12435, + "Ġank": 30890, + "Ġankle": 21999, + "Ġankles": 40962, + "Ġanlam": 28940, + "Ġanlat": 27691, + "Ġann": 2324, + "Ġannat": 42786, + "Ġanne": 22256, + "Ġannex": 41012, + "Ġanni": 31164, + "Ġannih": 40430, + "Ġanniversary": 12962, + "Ġanno": 46277, + "Ġannot": 25339, + "Ġannotation": 48654, + "Ġannoun": 4262, + "Ġannounce": 7478, + "Ġannounced": 7548, + "Ġannouncement": 12847, + "Ġannouncements": 23785, + "Ġannouncer": 49574, + "Ġannouncing": 28706, + "Ġannoy": 8759, + "Ġannoyed": 25921, + "Ġannoying": 11304, + "Ġannual": 9784, + "Ġannually": 29974, + "Ġannée": 30488, + "Ġannées": 21203, + "Ġano": 19816, + "Ġanom": 24769, + "Ġanomaly": 42737, + "Ġanonym": 37293, + "Ġanonymous": 24932, + "Ġanos": 13592, + "Ġanother": 1071, + "Ġans": 1567, + "Ġansch": 31508, + "Ġanswer": 1867, + "Ġanswered": 10103, + "Ġanswering": 13430, + "Ġanswers": 6338, + "Ġant": 2511, + "Ġantagon": 32590, + "Ġante": 23411, + "Ġanten": 18858, + "Ġantenna": 24573, + "Ġanterior": 22272, + "Ġantes": 11014, + "Ġanth": 25820, + "Ġanthem": 42383, + "Ġanthrop": 22727, + "Ġanthropology": 44518, + "Ġanti": 6061, + "Ġantib": 11533, + "Ġantibiot": 19388, + "Ġantibiotic": 37828, + "Ġantibiotics": 26922, + "Ġantibodies": 28356, + "Ġantibody": 34507, + "Ġantic": 49172, + "Ġanticip": 10416, + "Ġanticipate": 21685, + "Ġanticipated": 23267, + "Ġanticipating": 40568, + "Ġanticipation": 35979, + "Ġantid": 47962, + "Ġantig": 44417, + "Ġantim": 46141, + "Ġantioxid": 33369, + "Ġantioxidants": 48767, + "Ġantiqu": 41036, + "Ġantique": 41220, + "Ġantis": 44474, + "Ġants": 23355, + "Ġanunci": 39350, + "Ġanvänd": 41559, + "Ġanx": 6739, + "Ġanxiety": 9119, + "Ġanxious": 15166, + "Ġany": 604, + "Ġanybody": 4472, + "Ġanyhow": 44995, + "Ġanymore": 3602, + "Ġanyone": 2878, + "Ġanys": 32319, + "Ġanything": 1340, + "Ġanytime": 13038, + "Ġanyway": 4033, + "Ġanyways": 13448, + "Ġanywhere": 4992, + "Ġanál": 44113, + "Ġao": 8130, + "Ġaos": 25458, + "Ġap": 1882, + "Ġapa": 15951, + "Ġapar": 34115, + "Ġapare": 15004, + "Ġaparece": 37863, + "Ġaparecer": 43336, + "Ġapart": 4936, + "Ġapartment": 9587, + "Ġapartments": 29056, + "Ġape": 44315, + "Ġapenas": 18561, + "Ġaper": 43139, + "Ġapert": 22939, + "Ġaperture": 29848, + "Ġapex": 48115, + "Ġapl": 25522, + "Ġaplic": 18221, + "Ġapo": 50165, + "Ġapocalypse": 42600, + "Ġapolog": 9472, + "Ġapologies": 34929, + "Ġapologise": 50128, + "Ġapologize": 12328, + "Ġapologized": 47815, + "Ġapology": 28006, + "Ġapost": 19484, + "Ġapostle": 50244, + "Ġapostles": 39397, + "Ġapoy": 41535, + "Ġapoyo": 46151, + "Ġapp": 724, + "Ġappar": 45914, + "Ġapparat": 36564, + "Ġapparatus": 38573, + "Ġapparent": 18335, + "Ġapparently": 7970, + "Ġappe": 2363, + "Ġappeal": 13668, + "Ġappealing": 23842, + "Ġappeals": 32603, + "Ġappear": 4204, + "Ġappearance": 8967, + "Ġappearances": 29174, + "Ġappeared": 8516, + "Ġappearing": 19870, + "Ġappears": 7038, + "Ġappel": 36332, + "Ġappelle": 34216, + "Ġappend": 34116, + "Ġappet": 16159, + "Ġappetite": 23996, + "Ġappl": 4988, + "Ġapplaud": 9644, + "Ġapplauding": 15865, + "Ġapplauds": 20783, + "Ġapplause": 9969, + "Ġapple": 10606, + "Ġapples": 16814, + "Ġappli": 33330, + "Ġappliance": 45646, + "Ġappliances": 35480, + "Ġapplic": 2580, + "Ġapplicable": 21142, + "Ġapplicant": 30915, + "Ġapplicants": 28767, + "Ġapplication": 3861, + "Ġapplications": 5821, + "Ġapplied": 6456, + "Ġapplies": 13165, + "Ġapply": 3079, + "Ġapplying": 9275, + "Ġappoint": 7602, + "Ġappointed": 17653, + "Ġappointment": 13653, + "Ġappointments": 25084, + "Ġappreci": 3616, + "Ġappreciate": 4449, + "Ġappreciated": 17169, + "Ġappreciation": 18909, + "Ġappreciative": 43239, + "Ġappreh": 38675, + "Ġapprendre": 46609, + "Ġapprent": 21435, + "Ġapprentice": 40207, + "Ġapprentices": 31715, + "Ġapprenticeship": 47070, + "Ġappro": 2075, + "Ġapproach": 3109, + "Ġapproached": 17247, + "Ġapproaches": 11587, + "Ġapproaching": 14908, + "Ġappropri": 5745, + "Ġappropriate": 6854, + "Ġappropriately": 23505, + "Ġapproval": 13317, + "Ġapprove": 18827, + "Ġapproved": 10826, + "Ġapprox": 28080, + "Ġapproxim": 8542, + "Ġapproximate": 30874, + "Ġapproximately": 10447, + "Ġapproximation": 28023, + "Ġapps": 7733, + "Ġapr": 10992, + "Ġaprend": 21003, + "Ġaprender": 24916, + "Ġapresent": 36181, + "Ġapro": 14602, + "Ġapron": 46742, + "Ġaprove": 29015, + "Ġaproxim": 31270, + "Ġaproximadamente": 48892, + "Ġaprès": 13274, + "Ġapt": 29427, + "Ġaqu": 2373, + "Ġaquarium": 30149, + "Ġaquatic": 44020, + "Ġaquela": 25996, + "Ġaquele": 23640, + "Ġaqueles": 49831, + "Ġaquell": 33635, + "Ġaquellos": 49835, + "Ġaquest": 19269, + "Ġaquesta": 24062, + "Ġaqui": 3871, + "Ġaquilo": 32304, + "ĠaquÃŃ": 6661, + "Ġar": 594, + "Ġara": 15186, + "Ġarab": 38557, + "Ġarada": 40479, + "Ġarb": 25613, + "Ġarbe": 40476, + "Ġarbeiten": 23162, + "Ġarbeitet": 49907, + "Ġarbets": 47539, + "Ġarbit": 14931, + "Ġarbitr": 19071, + "Ġarbitrary": 23211, + "Ġarc": 10346, + "Ġarcade": 25664, + "Ġarch": 3912, + "Ġarchae": 21894, + "Ġarchaeological": 42139, + "Ġarche": 37897, + "Ġarchety": 41852, + "Ġarchitect": 6331, + "Ġarchitects": 30491, + "Ġarchitectural": 26621, + "Ġarchitecture": 9482, + "Ġarchive": 23507, + "Ġarchives": 25607, + "Ġard": 44856, + "Ġare": 366, + "Ġarea": 1859, + "Ġareas": 3179, + "Ġaren": 3212, + "Ġarena": 18451, + "Ġarg": 3882, + "Ġargent": 33977, + "Ġargu": 10171, + "Ġarguably": 26771, + "Ġargue": 9695, + "Ġargued": 20219, + "Ġargues": 38218, + "Ġarguing": 19697, + "Ġargument": 6770, + "Ġarguments": 12869, + "Ġarise": 20288, + "Ġarises": 27388, + "Ġarising": 44900, + "Ġarist": 40105, + "Ġarithmetic": 42973, + "Ġark": 14408, + "ĠarkadaÅŁ": 19153, + "ĠarkadaÅŁlar": 27550, + "Ġarm": 3726, + "Ġarma": 46422, + "Ġarmas": 44611, + "Ġarmed": 16297, + "Ġarmies": 28217, + "Ġarmor": 13124, + "Ġarmored": 41879, + "Ġarmour": 36554, + "Ġarmp": 44541, + "Ġarms": 5812, + "Ġarmy": 7267, + "Ġaroma": 28687, + "Ġaromatic": 45831, + "Ġarose": 37192, + "Ġaround": 926, + "Ġarqu": 40258, + "Ġarr": 5539, + "Ġarran": 50235, + "Ġarrange": 9424, + "Ġarranged": 18721, + "Ġarrangement": 17620, + "Ġarrangements": 22435, + "Ġarray": 10225, + "Ġarrays": 41011, + "Ġarrest": 7823, + "Ġarrested": 12469, + "Ġarrests": 48813, + "Ġarri": 3399, + "Ġarrib": 21620, + "Ġarriba": 28469, + "Ġarriv": 30697, + "Ġarrival": 18365, + "Ġarrive": 8881, + "Ġarrived": 6678, + "Ġarriver": 34142, + "Ġarrives": 20116, + "Ġarriving": 22436, + "Ġarrivé": 47112, + "Ġarrog": 22149, + "Ġarrogance": 46444, + "Ġarrogant": 30467, + "Ġarrow": 11610, + "Ġarrows": 19669, + "Ġarsen": 28636, + "Ġarsenal": 42227, + "Ġart": 1523, + "Ġarte": 29159, + "Ġarter": 30455, + "Ġarteries": 44801, + "Ġartery": 38520, + "Ġarth": 31546, + "Ġarthritis": 35956, + "Ġartic": 15228, + "Ġarticle": 7222, + "Ġarticles": 11290, + "Ġarticulate": 30305, + "Ġarticulated": 43322, + "Ġartif": 17851, + "Ġartifact": 34806, + "Ġartifacts": 24617, + "Ġartific": 39905, + "Ġartificial": 11677, + "Ġartillery": 31115, + "Ġartist": 5748, + "Ġartistic": 17090, + "Ġartists": 6910, + "Ġarts": 8609, + "Ġartwork": 15829, + "Ġartık": 22241, + "Ġas": 382, + "Ġasc": 15526, + "Ġascend": 41604, + "Ġaseg": 38174, + "Ġash": 12588, + "Ġashamed": 19489, + "Ġashes": 32942, + "Ġasi": 28644, + "Ġaside": 7359, + "Ġask": 1029, + "Ġasked": 2351, + "Ġasking": 3365, + "Ġasks": 8962, + "Ġasleep": 11039, + "Ġaslında": 34541, + "Ġasp": 16817, + "Ġaspect": 4171, + "Ġaspects": 7270, + "Ġasphalt": 46076, + "Ġaspir": 20003, + "Ġaspiration": 44565, + "Ġaspirations": 32458, + "Ġaspire": 41224, + "Ġaspiring": 45405, + "Ġass": 1256, + "Ġassass": 16475, + "Ġassassin": 36294, + "Ġassassination": 40195, + "Ġassault": 12458, + "Ġassaulted": 44910, + "Ġasse": 5907, + "Ġassemb": 8438, + "Ġassemble": 22364, + "Ġassembled": 24204, + "Ġassembling": 43867, + "Ġassembly": 12103, + "Ġassert": 19810, + "Ġassess": 5877, + "Ġassessed": 36051, + "Ġassessing": 34348, + "Ġassessment": 9687, + "Ġassessments": 24338, + "Ġasset": 11999, + "Ġassets": 9769, + "Ġassez": 15774, + "Ġasshole": 28599, + "Ġassign": 6269, + "Ġassigned": 13279, + "Ġassigning": 49602, + "Ġassignment": 15187, + "Ġassignments": 22546, + "Ġassim": 8249, + "Ġassist": 4255, + "Ġassistance": 9683, + "Ġassistant": 10994, + "Ġassistants": 34949, + "Ġassisted": 30291, + "Ġassisting": 40368, + "Ġassistir": 45983, + "Ġassists": 49416, + "Ġassoci": 4180, + "Ġassociate": 14644, + "Ġassociated": 6615, + "Ġassociates": 36914, + "Ġassociation": 14598, + "Ġassociations": 26597, + "Ġassum": 5339, + "Ġassume": 6552, + "Ġassumed": 15895, + "Ġassumes": 37808, + "Ġassuming": 11926, + "Ġassumption": 15302, + "Ġassumptions": 17695, + "Ġassunto": 50219, + "Ġassurance": 32189, + "Ġassure": 20968, + "Ġassured": 23426, + "Ġast": 5357, + "Ġasta": 43405, + "Ġastero": 24711, + "Ġasteroid": 33833, + "Ġasteroids": 50230, + "Ġasthma": 33409, + "Ġaston": 25687, + "Ġastonishing": 35264, + "Ġastrolog": 30122, + "Ġastrology": 44385, + "Ġastron": 11117, + "Ġastronaut": 18516, + "Ġastronauts": 28273, + "Ġastronom": 26302, + "Ġastronomers": 43151, + "Ġastronomical": 49035, + "Ġastronomy": 37844, + "Ġasylum": 31601, + "Ġasymm": 37277, + "Ġasympt": 35114, + "Ġasynchron": 42642, + "Ġasynchronous": 49174, + "ĠasÃŃ": 8582, + "Ġat": 412, + "Ġata": 48639, + "Ġatac": 41015, + "Ġataque": 46166, + "Ġatau": 22823, + "Ġate": 8468, + "Ġaten": 21723, + "Ġatención": 33488, + "Ġatenção": 39044, + "Ġathe": 27033, + "Ġatheist": 43977, + "Ġathlet": 7650, + "Ġathlete": 18002, + "Ġathletes": 13820, + "Ġathletic": 22496, + "Ġathletics": 37964, + "Ġatm": 22582, + "Ġatmos": 7722, + "Ġatmosphere": 8018, + "Ġatmospheric": 28854, + "Ġatom": 12018, + "Ġatomic": 22275, + "Ġatoms": 16871, + "Ġatra": 44192, + "Ġatrav": 33325, + "Ġatravés": 39941, + "Ġatroc": 43530, + "Ġatrás": 22906, + "Ġatt": 951, + "Ġattach": 5085, + "Ġattached": 8570, + "Ġattaches": 49404, + "Ġattaching": 39074, + "Ġattachment": 19431, + "Ġattachments": 37987, + "Ġattack": 2690, + "Ġattacked": 12692, + "Ġattacker": 35871, + "Ġattackers": 45129, + "Ġattacking": 15010, + "Ġattacks": 8122, + "Ġattain": 23766, + "Ġattained": 46633, + "Ġatte": 42783, + "Ġattempt": 5217, + "Ġattempted": 18997, + "Ġattempting": 22001, + "Ġattempts": 15257, + "Ġattend": 6888, + "Ġattendance": 24337, + "Ġattendant": 39339, + "Ġattended": 15990, + "Ġattendees": 34826, + "Ġattending": 15862, + "Ġattends": 49837, + "Ġattent": 30980, + "Ġattention": 3202, + "Ġattentive": 43661, + "Ġattic": 40766, + "Ġattitude": 10157, + "Ġattitudes": 25853, + "Ġattorney": 13469, + "Ġattorneys": 30019, + "Ġattract": 5049, + "Ġattracted": 15912, + "Ġattracting": 36594, + "Ġattraction": 17672, + "Ġattractions": 35005, + "Ġattractive": 12609, + "Ġattracts": 37026, + "Ġattrib": 9080, + "Ġattribute": 19667, + "Ġattributed": 30976, + "Ġattributes": 17212, + "Ġatual": 39241, + "Ġaté": 8784, + "Ġau": 1609, + "Ġauc": 23788, + "Ġauch": 2168, + "Ġauction": 24139, + "Ġaucun": 35361, + "Ġaucune": 40076, + "Ġaud": 2379, + "Ġaudi": 27435, + "Ġaudible": 41317, + "Ġaudience": 4034, + "Ġaudiences": 15479, + "Ġaudio": 6278, + "Ġaudiobook": 40031, + "Ġaudit": 17748, + "Ġaudition": 20015, + "Ġauditor": 33970, + "Ġauf": 2501, + "Ġaufge": 35031, + "Ġaug": 14501, + "Ġaugment": 29919, + "Ġaugmented": 36155, + "Ġaujourd": 14023, + "Ġaula": 41642, + "Ġaument": 17128, + "Ġaumentar": 43504, + "Ġaumento": 43600, + "Ġaun": 15879, + "Ġaunque": 21962, + "Ġaunt": 15654, + "Ġaur": 19145, + "Ġaura": 18355, + "Ġaurait": 29531, + "Ġaus": 3437, + "Ġausge": 31899, + "Ġauss": 5730, + "Ġaussi": 6212, + "Ġaust": 34916, + "Ġauster": 49867, + "Ġaut": 1476, + "Ġautant": 34081, + "Ġauth": 6979, + "Ġauthent": 9214, + "Ġauthentic": 12466, + "Ġauthentication": 26643, + "Ġauthenticity": 34215, + "Ġauthor": 3793, + "Ġauthoritarian": 37883, + "Ġauthorities": 12076, + "Ġauthority": 8281, + "Ġauthorization": 33697, + "Ġauthorized": 28312, + "Ġauthors": 16552, + "Ġautism": 21471, + "Ġautistic": 33272, + "Ġauto": 8399, + "Ġautobi": 45747, + "Ġautoc": 45833, + "Ġautograph": 36660, + "Ġautom": 3553, + "Ġautomat": 28034, + "Ġautomate": 31605, + "Ġautomated": 18473, + "Ġautomatic": 12509, + "Ġautomatically": 6772, + "Ġautomation": 17769, + "Ġautomobile": 38809, + "Ġautomotive": 32866, + "Ġautonom": 18203, + "Ġautonomous": 23797, + "Ġautonomy": 27278, + "Ġautop": 31090, + "Ġautor": 19510, + "Ġautour": 30249, + "Ġautre": 15081, + "Ġautres": 17093, + "Ġautumn": 24604, + "Ġaux": 7865, + "Ġauxiliary": 43741, + "ĠauÃŁer": 39428, + "Ġav": 1305, + "Ġavaient": 38703, + "Ġavail": 2327, + "Ġavailability": 17945, + "Ġavailable": 2435, + "Ġavait": 11853, + "Ġavant": 13439, + "Ġavanz": 42444, + "Ġavatar": 36205, + "Ġave": 3472, + "Ġavec": 4163, + "Ġaven": 18469, + "Ġavent": 36399, + "Ġavenue": 39230, + "Ġavenues": 43039, + "Ġaver": 18247, + "Ġaverage": 4274, + "Ġaverages": 42257, + "Ġaveraging": 47308, + "Ġavere": 37914, + "Ġavete": 48201, + "Ġavez": 11766, + "Ġaviation": 28831, + "Ġavis": 34588, + "Ġavo": 3641, + "Ġavocado": 27041, + "Ġavoid": 5042, + "Ġavoided": 24890, + "Ġavoiding": 20220, + "Ġavoir": 10853, + "Ġavons": 18990, + "Ġaw": 1714, + "Ġawait": 19670, + "Ġawaiting": 43759, + "Ġawaits": 45955, + "Ġawak": 13726, + "Ġawake": 15994, + "Ġawaken": 43566, + "Ġawakened": 46468, + "Ġawakening": 31550, + "Ġaward": 7130, + "Ġawarded": 19100, + "Ġawards": 15193, + "Ġaware": 3650, + "Ġawareness": 8888, + "Ġaway": 1314, + "Ġawe": 30912, + "Ġawesome": 3476, + "Ġawful": 11232, + "Ġawfully": 47976, + "Ġawhile": 22224, + "Ġawkward": 11411, + "Ġax": 6360, + "Ġaxe": 30195, + "Ġaxes": 35387, + "Ġaxial": 46851, + "Ġaxis": 10298, + "Ġaxle": 31192, + "Ġay": 7494, + "Ġaye": 19259, + "Ġaynı": 30281, + "Ġayr": 35767, + "Ġayud": 20333, + "Ġayuda": 30737, + "Ġayudar": 38759, + "Ġaz": 7883, + "Ġazt": 39566, + "Ġazul": 39580, + "Ġaç": 12930, + "Ġaçık": 33282, + "Ġaçıl": 43236, + "Ġañ": 37837, + "Ġañad": 44980, + "Ġaño": 15984, + "Ġaños": 11424, + "Ġaún": 31676, + "ĠaÃŃ": 7461, + "ĠaÄŁ": 21294, + "Ġaż": 48134, + "ĠaÅŁ": 21002, + "ĠaÅŁk": 36730, + "Ġb": 272, + "Ġba": 4773, + "Ġbab": 7564, + "Ġbaba": 31568, + "Ġbabe": 24655, + "Ġbabies": 10917, + "Ġbaby": 3186, + "Ġbabys": 39764, + "Ġbac": 6857, + "Ġbachelor": 25947, + "Ġback": 646, + "Ġbackbone": 34889, + "Ġbackdrop": 32697, + "Ġbacked": 20391, + "Ġbackend": 38087, + "Ġbackground": 3678, + "Ġbackgrounds": 17336, + "Ġbacking": 19373, + "Ġbackl": 32449, + "Ġbacklash": 37572, + "Ġbacklog": 47364, + "Ġbackpack": 17969, + "Ġbacks": 19513, + "Ġbackside": 35370, + "Ġbackstage": 31764, + "Ġbackstory": 36899, + "Ġbackup": 14807, + "Ġbackups": 50160, + "Ġbackward": 23897, + "Ġbackwards": 12204, + "Ġbackyard": 20036, + "Ġbacon": 16400, + "Ġbacter": 9755, + "Ġbacteria": 11763, + "Ġbacterial": 35632, + "Ġbad": 1578, + "Ġbadass": 33907, + "Ġbadge": 25797, + "Ġbadges": 43894, + "Ġbadly": 13425, + "Ġbag": 3411, + "Ġbaggage": 41567, + "Ġbags": 10405, + "Ġbagus": 48348, + "Ġbah": 12913, + "Ġbaht": 49254, + "Ġbaik": 34867, + "Ġbail": 19313, + "Ġbait": 16865, + "Ġbaix": 40447, + "Ġbaixo": 30934, + "Ġbaj": 23589, + "Ġbaja": 49427, + "Ġbajo": 30139, + "Ġbak": 5657, + "Ġbakalım": 28812, + "Ġbakayım": 42918, + "Ġbake": 16562, + "Ġbaked": 19453, + "Ġbaker": 48148, + "Ġbakery": 37519, + "Ġbaking": 12102, + "Ġbakın": 43307, + "Ġbal": 3119, + "Ġbalance": 4772, + "Ġbalanced": 13902, + "Ġbalances": 33993, + "Ġbalancing": 22495, + "Ġbalcon": 26450, + "Ġbalcony": 29468, + "Ġbald": 21096, + "Ġball": 2594, + "Ġballet": 30512, + "Ġballistic": 44478, + "Ġballoon": 16994, + "Ġballoons": 26193, + "Ġballot": 21880, + "Ġballots": 36410, + "Ġballs": 9803, + "Ġbalm": 42532, + "Ġbam": 18132, + "Ġbamboo": 26156, + "Ġban": 5643, + "Ġbana": 16832, + "Ġbanana": 14194, + "Ġbananas": 22742, + "Ġbanc": 39612, + "Ġbanco": 45498, + "Ġband": 4116, + "Ġbanda": 38727, + "Ġbande": 46836, + "Ġbandits": 49043, + "Ġbands": 13543, + "Ġbandwidth": 23647, + "Ġbang": 8550, + "Ġbanget": 24909, + "Ġbanging": 36982, + "Ġbangs": 32802, + "Ġbank": 3765, + "Ġbanker": 48008, + "Ġbanking": 18261, + "Ġbankrupt": 21780, + "Ġbankruptcy": 33457, + "Ġbanks": 10237, + "Ġbanned": 19564, + "Ġbanner": 24348, + "Ġbanquet": 49796, + "Ġbanyak": 25808, + "Ġbao": 45296, + "Ġbapt": 18222, + "Ġbaptism": 34352, + "Ġbaptized": 34006, + "Ġbar": 2159, + "Ġbara": 19519, + "Ġbarbar": 35822, + "Ġbarbecue": 21877, + "Ġbarber": 49906, + "Ġbard": 7685, + "Ġbardziej": 27209, + "Ġbardzo": 9034, + "Ġbare": 6949, + "Ġbarely": 10268, + "Ġbarg": 22351, + "Ġbargain": 34302, + "Ġbargaining": 42108, + "Ġbark": 16202, + "Ġbarking": 32995, + "Ġbarley": 47761, + "Ġbarn": 18492, + "Ġbarr": 38236, + "Ġbarre": 43834, + "Ġbarrel": 13257, + "Ġbarrels": 33138, + "Ġbarrier": 13357, + "Ġbarriers": 13565, + "Ġbars": 10228, + "Ġbart": 44768, + "Ġbaru": 36171, + "Ġbas": 987, + "Ġbase": 3096, + "Ġbaseball": 14323, + "Ġbased": 2361, + "Ġbaseline": 20518, + "Ġbasement": 16893, + "Ġbases": 17949, + "Ġbash": 46183, + "Ġbasic": 3875, + "Ġbasically": 1936, + "Ġbasics": 14688, + "Ġbasil": 29862, + "Ġbasin": 34863, + "Ġbasis": 5143, + "Ġbask": 34055, + "Ġbasket": 8390, + "Ġbasketball": 11767, + "Ġbaskets": 42853, + "Ġbass": 10136, + "Ġbast": 8414, + "Ġbasta": 45282, + "Ġbastante": 14651, + "Ġbastard": 23569, + "Ġbastards": 49346, + "Ġbat": 7362, + "Ġbatch": 15245, + "Ġbate": 37936, + "Ġbater": 25735, + "Ġbath": 6079, + "Ġbathing": 38948, + "Ġbathroom": 8687, + "Ġbathrooms": 39537, + "Ġbatht": 40708, + "Ġbathtub": 42901, + "Ġbats": 26943, + "Ġbatt": 9591, + "Ġbatter": 4220, + "Ġbatteries": 13070, + "Ġbattery": 5809, + "Ġbattle": 4635, + "Ġbattlefield": 21818, + "Ġbattles": 14648, + "Ġbattling": 33752, + "Ġbauen": 43787, + "Ġbaw": 40463, + "Ġbay": 13642, + "Ġbaz": 27147, + "ĠbaÄŁ": 33071, + "ĠbaÅŁ": 8694, + "ĠbaÅŁka": 27883, + "Ġbe": 312, + "Ġbeach": 7534, + "Ġbeaches": 27560, + "Ġbeacon": 41669, + "Ġbead": 24117, + "Ġbeads": 20369, + "Ġbeak": 48663, + "Ġbeam": 14269, + "Ġbeams": 31040, + "Ġbean": 16230, + "Ġbeans": 12010, + "Ġbear": 6155, + "Ġbeard": 17455, + "Ġbearing": 17350, + "Ġbearings": 36297, + "Ġbears": 17276, + "Ġbeast": 13464, + "Ġbeasts": 37386, + "Ġbeat": 4224, + "Ġbeaten": 17909, + "Ġbeating": 13497, + "Ġbeats": 16447, + "Ġbeau": 29891, + "Ġbeaucoup": 8796, + "Ġbeaut": 1869, + "Ġbeautiful": 2238, + "Ġbeautifully": 16525, + "Ġbeauty": 6643, + "Ġbeb": 35348, + "Ġbeber": 40069, + "Ġbecame": 3062, + "Ġbecause": 570, + "Ġbecom": 2683, + "Ġbecome": 1813, + "Ġbecomes": 3643, + "Ġbecoming": 5617, + "Ġbed": 2901, + "Ġbede": 22466, + "Ġbedeutet": 27018, + "Ġbedroom": 11211, + "Ġbedrooms": 39955, + "Ġbeds": 18068, + "Ġbedtime": 45850, + "Ġbee": 17479, + "Ġbeef": 9256, + "Ġbeen": 668, + "Ġbeep": 28678, + "Ġbeeping": 34800, + "Ġbeeps": 27722, + "Ġbeer": 8795, + "Ġbeers": 34159, + "Ġbees": 17511, + "Ġbeet": 16658, + "Ġbeetje": 27459, + "Ġbeetle": 49735, + "Ġbef": 21312, + "Ġbefore": 949, + "Ġbeforehand": 22893, + "Ġbeg": 4612, + "Ġbegan": 4283, + "Ġbege": 41832, + "Ġbegg": 44914, + "Ġbegged": 47653, + "Ġbegging": 26600, + "Ġbegin": 1841, + "Ġbeginnen": 40326, + "Ġbeginner": 22080, + "Ġbeginners": 26992, + "Ġbeginning": 2863, + "Ġbeginnings": 37281, + "Ġbegins": 7338, + "Ġbegitu": 49707, + "Ġbegr": 38972, + "Ġbegun": 16009, + "Ġbeh": 1540, + "Ġbehalf": 9490, + "Ġbehand": 43122, + "Ġbehav": 3851, + "Ġbehave": 15158, + "Ġbehaved": 48249, + "Ġbehaves": 36896, + "Ġbehavi": 15475, + "Ġbehaving": 35263, + "Ġbehavior": 5223, + "Ġbehavioral": 19124, + "Ġbehaviors": 15501, + "Ġbehaviour": 17229, + "Ġbehind": 2261, + "Ġbehold": 27234, + "Ġbehö": 26187, + "Ġbehöver": 32138, + "Ġbei": 4643, + "Ġbeide": 35831, + "Ġbeiden": 23446, + "Ġbeige": 40274, + "Ġbeim": 13922, + "Ġbeing": 885, + "Ġbeings": 8958, + "Ġbeispiel": 37155, + "Ġbeispielsweise": 40152, + "Ġbek": 9393, + "Ġbekannt": 39167, + "Ġbekommen": 19256, + "Ġbekommt": 33429, + "Ġbel": 989, + "Ġbelang": 33746, + "Ġbelangrijk": 42330, + "Ġbele": 29620, + "Ġbeleza": 46429, + "Ġbelie": 1351, + "Ġbelief": 7107, + "Ġbeliefs": 13585, + "Ġbelieve": 1697, + "Ġbelieved": 7847, + "Ġbeliever": 23892, + "Ġbelievers": 23125, + "Ġbelieves": 12307, + "Ġbelieving": 16594, + "Ġbelki": 44596, + "Ġbell": 4549, + "Ġbelle": 28770, + "Ġbelli": 48006, + "Ġbells": 25474, + "Ġbelly": 11696, + "Ġbelo": 13878, + "Ġbelong": 5784, + "Ġbelonged": 28611, + "Ġbelonging": 22957, + "Ġbelongings": 43554, + "Ġbelongs": 12953, + "Ġbeloved": 14553, + "Ġbelow": 2507, + "Ġbelt": 10750, + "Ġbelts": 33689, + "Ġbelum": 48532, + "Ġbem": 7577, + "Ġben": 3271, + "Ġbench": 10638, + "Ġbenchmark": 18927, + "Ġbenchmarks": 43751, + "Ġbend": 11229, + "Ġbending": 22487, + "Ġbends": 42990, + "Ġbene": 2537, + "Ġbeneath": 17149, + "Ġbenef": 3070, + "Ġbenefic": 10304, + "Ġbenefici": 38534, + "Ġbeneficial": 14072, + "Ġbeneficiaries": 49937, + "Ġbenefit": 5121, + "Ġbenefited": 33605, + "Ġbenefiting": 47515, + "Ġbenefits": 5311, + "Ġbenevol": 48567, + "Ġbeni": 19723, + "Ġbenim": 13818, + "Ġbent": 14075, + "Ġbenut": 38424, + "Ġbenz": 44335, + "Ġber": 5948, + "Ġberaber": 39855, + "Ġbere": 13375, + "Ġbereit": 38758, + "Ġbereits": 23703, + "Ġberm": 50001, + "Ġberries": 29898, + "Ġberry": 44955, + "Ġbers": 32147, + "Ġbert": 50098, + "Ġbes": 4097, + "Ġbesar": 48327, + "Ġbesch": 17498, + "Ġbeschäft": 38768, + "Ġbeside": 15726, + "Ġbesides": 11868, + "Ġbesl": 47118, + "Ġbesoin": 19207, + "Ġbesond": 20114, + "Ġbesonders": 25258, + "Ġbess": 42410, + "Ġbesser": 18021, + "Ġbest": 1151, + "Ġbeste": 22245, + "Ġbesteht": 43680, + "Ġbesten": 30930, + "Ġbestimm": 35180, + "Ġbestimmt": 46871, + "Ġbet": 778, + "Ġbeta": 9861, + "Ġbeter": 45425, + "Ġbetray": 15560, + "Ġbetrayal": 42700, + "Ġbetrayed": 29515, + "Ġbets": 39922, + "Ġbetter": 1101, + "Ġbetting": 34246, + "Ġbetween": 1296, + "Ġbever": 46524, + "Ġbeverage": 35519, + "Ġbeverages": 47401, + "Ġbevor": 37591, + "Ġbew": 17897, + "Ġbewe": 46638, + "Ġbewusst": 46221, + "Ġbey": 39977, + "Ġbeyond": 4399, + "Ġbez": 10782, + "Ġbezel": 37179, + "Ġbezpie": 47153, + "ĠbeÄŁ": 44863, + "ĠbeÅŁ": 39213, + "Ġbh": 41221, + "Ġbi": 3228, + "Ġbias": 12577, + "Ġbiased": 28035, + "Ġbiases": 32152, + "Ġbib": 24557, + "Ġbible": 34956, + "Ġbibli": 34344, + "Ġbiblical": 26083, + "Ġbic": 34472, + "Ġbicy": 16703, + "Ġbicycle": 20888, + "Ġbicycles": 47913, + "Ġbid": 12957, + "Ġbidding": 39702, + "Ġbien": 3610, + "Ġbientôt": 34653, + "Ġbig": 955, + "Ġbigger": 3801, + "Ġbiggest": 3880, + "Ġbij": 10317, + "Ġbijvoorbeeld": 43061, + "Ġbik": 26730, + "Ġbike": 5656, + "Ġbikes": 16035, + "Ġbiking": 40276, + "Ġbil": 8588, + "Ġbilang": 46712, + "Ġbilateral": 38772, + "Ġbild": 22105, + "Ġbile": 18729, + "Ġbili": 20709, + "Ġbilingual": 48757, + "Ġbiliyor": 35424, + "Ġbill": 2961, + "Ġbilling": 35618, + "Ġbillion": 5218, + "Ġbillionaire": 42358, + "Ġbillions": 17375, + "Ġbills": 12433, + "Ġbilmiyorum": 48699, + "Ġbin": 5171, + "Ġbinary": 17434, + "Ġbind": 14786, + "Ġbinder": 45630, + "Ġbinding": 17359, + "Ġbinds": 41515, + "Ġbinge": 41487, + "Ġbinnen": 35958, + "Ġbins": 41275, + "Ġbio": 12198, + "Ġbiod": 26977, + "Ġbiodiversity": 36453, + "Ġbiography": 37062, + "Ġbiological": 13910, + "Ġbiology": 14956, + "Ġbiom": 27450, + "Ġbiomass": 47420, + "Ġbiomedical": 49775, + "Ġbios": 36997, + "Ġbip": 19016, + "Ġbipart": 28741, + "Ġbipartisan": 31954, + "Ġbipolar": 42469, + "Ġbir": 1904, + "Ġbiraz": 19696, + "Ġbird": 5255, + "Ġbirds": 9009, + "Ġbiri": 38530, + "Ġbirl": 37476, + "Ġbirlikte": 44642, + "Ġbirth": 3965, + "Ġbirthday": 6154, + "Ġbirthdays": 48739, + "Ġbis": 7393, + "Ġbisa": 14386, + "Ġbisc": 23261, + "Ġbiscuit": 39327, + "Ġbiscuits": 36301, + "Ġbisexual": 42570, + "Ġbisher": 33598, + "Ġbishop": 34470, + "Ġbisog": 40505, + "Ġbiss": 10627, + "Ġbisschen": 10763, + "Ġbist": 18209, + "Ġbit": 857, + "Ġbitch": 11960, + "Ġbitches": 42094, + "Ġbitcoin": 24973, + "Ġbite": 7988, + "Ġbites": 26030, + "Ġbiting": 32912, + "Ġbits": 9239, + "Ġbitte": 23231, + "Ġbitten": 34608, + "Ġbitter": 13871, + "Ġbitterness": 44224, + "Ġbiz": 7390, + "Ġbizarre": 18265, + "Ġbize": 28825, + "Ġbizi": 36033, + "Ġbizim": 23439, + "Ġbiết": 28432, + "Ġbl": 888, + "Ġbla": 16379, + "Ġblack": 2211, + "Ġblacks": 30720, + "Ġbladder": 37032, + "Ġblade": 10959, + "Ġblades": 20066, + "Ġblah": 12288, + "Ġblame": 10127, + "Ġblamed": 32027, + "Ġblaming": 32364, + "Ġblanc": 34437, + "Ġbland": 29849, + "Ġblank": 8247, + "Ġblanket": 17907, + "Ġblankets": 38710, + "Ġblas": 46409, + "Ġblast": 12035, + "Ġblasting": 47134, + "Ġblat": 42780, + "Ġble": 5408, + "Ġbleach": 39631, + "Ġbleed": 28385, + "Ġbleeding": 19312, + "Ġbleiben": 24912, + "Ġbleibt": 24814, + "Ġblend": 10628, + "Ġblended": 27048, + "Ġblender": 24564, + "Ġblending": 23124, + "Ġblends": 37619, + "Ġbless": 5227, + "Ġblessed": 12351, + "Ġblessing": 13869, + "Ġblessings": 19296, + "Ġblev": 37332, + "Ġblew": 19075, + "Ġbli": 27182, + "Ġblij": 26486, + "Ġblind": 6865, + "Ġblindfold": 44846, + "Ġblindly": 47744, + "Ġblindness": 46101, + "Ġblink": 24667, + "Ġblinking": 45879, + "Ġblir": 19504, + "Ġbliss": 31522, + "Ġbliver": 45329, + "Ġblo": 1749, + "Ġblob": 46115, + "Ġblock": 3461, + "Ġblockchain": 17176, + "Ġblocked": 15470, + "Ġblocking": 17776, + "Ġblocks": 8474, + "Ġblog": 6968, + "Ġblogs": 31038, + "Ġblond": 48537, + "Ġblonde": 30043, + "Ġblood": 3390, + "Ġbloody": 18938, + "Ġbloom": 26899, + "Ġblooming": 45294, + "Ġbloque": 41592, + "Ġbloss": 22956, + "Ġblossom": 38524, + "Ġblossoms": 47789, + "Ġblow": 6327, + "Ġblowing": 15068, + "Ġblown": 16479, + "Ġblows": 18458, + "Ġblue": 3344, + "Ġblueberries": 43722, + "Ġblueberry": 48243, + "Ġblueprint": 35868, + "Ġblues": 24244, + "Ġbluetooth": 48225, + "Ġbluff": 44191, + "Ġblunt": 32246, + "Ġblur": 14257, + "Ġblurred": 43525, + "Ġblurry": 37644, + "Ġblush": 25218, + "Ġbo": 748, + "Ġboa": 22422, + "Ġboard": 3150, + "Ġboarding": 30528, + "Ġboards": 13293, + "Ġboast": 46988, + "Ġboat": 6582, + "Ġboats": 17772, + "Ġbob": 27292, + "Ġboca": 34624, + "Ġbod": 16737, + "Ġbodies": 7510, + "Ġbodily": 39576, + "Ġbody": 1772, + "Ġbog": 26132, + "Ġboil": 13329, + "Ġboiled": 21058, + "Ġboiler": 39228, + "Ġboiling": 16208, + "Ġboils": 35049, + "Ġbois": 44808, + "Ġbok": 41882, + "Ġbol": 8986, + "Ġbola": 41110, + "Ġbolag": 48452, + "Ġbold": 11928, + "Ġboleh": 25835, + "Ġbolt": 13436, + "Ġbolts": 18127, + "Ġbom": 7957, + "Ġbomb": 7851, + "Ġbombard": 42894, + "Ġbomber": 44889, + "Ġbombers": 50055, + "Ġbombing": 31292, + "Ġbombs": 19043, + "Ġbon": 4428, + "Ġbona": 49012, + "Ġbond": 6086, + "Ġbonded": 41194, + "Ġbonding": 28824, + "Ġbonds": 14713, + "Ġbone": 9026, + "Ġbones": 10491, + "Ġbonito": 31209, + "Ġbonne": 20577, + "Ġbons": 33922, + "Ġbonus": 10882, + "Ġbonuses": 33205, + "Ġboo": 23113, + "Ġboobs": 40439, + "Ġbook": 1446, + "Ġbooked": 26735, + "Ġbooking": 34424, + "Ġbooklet": 48469, + "Ġbooks": 3642, + "Ġbookstore": 43478, + "Ġboom": 9351, + "Ġbooming": 45883, + "Ġboost": 9194, + "Ġbooster": 29275, + "Ġboosting": 43117, + "Ġboot": 11450, + "Ġbooth": 20912, + "Ġboots": 15194, + "Ġbooty": 34793, + "Ġbor": 14828, + "Ġbord": 25872, + "Ġborder": 7838, + "Ġborders": 16287, + "Ġbore": 26002, + "Ġbored": 13521, + "Ġboring": 9989, + "Ġborn": 4232, + "Ġborrow": 11172, + "Ġborrowed": 26805, + "Ġborrowing": 35024, + "Ġbos": 30641, + "Ġboss": 5741, + "Ġbosses": 24201, + "Ġbot": 10592, + "Ġboth": 1293, + "Ġbother": 8677, + "Ġbothered": 22996, + "Ġbothering": 31432, + "Ġbothers": 33980, + "Ġbots": 35410, + "Ġbott": 2274, + "Ġbottle": 7817, + "Ġbottlene": 44641, + "Ġbottles": 15923, + "Ġbottom": 2767, + "Ġbottoms": 43413, + "Ġbou": 15345, + "Ġboug": 46553, + "Ġbought": 4243, + "Ġboun": 15521, + "Ġbounce": 15894, + "Ġbounced": 46482, + "Ġbounces": 46901, + "Ġbouncing": 27380, + "Ġbouncy": 49704, + "Ġbound": 5472, + "Ġboundaries": 13180, + "Ġboundary": 12866, + "Ġbounded": 37498, + "Ġbounds": 29905, + "Ġbounty": 40773, + "Ġbour": 32373, + "Ġbout": 15738, + "Ġbow": 4503, + "Ġbowel": 40094, + "Ġbowl": 6571, + "Ġbowling": 35537, + "Ġbowls": 28513, + "Ġbows": 43158, + "Ġbox": 2424, + "Ġboxer": 47252, + "Ġboxes": 9002, + "Ġboxing": 24424, + "Ġboy": 3237, + "Ġboyfriend": 11457, + "Ġboys": 6347, + "Ġboî": 50127, + "ĠboÅŁ": 37636, + "Ġbr": 738, + "Ġbra": 1548, + "Ġbrac": 17848, + "Ġbrace": 38458, + "Ġbracelet": 23021, + "Ġbracelets": 48795, + "Ġbraces": 41537, + "Ġbrack": 12305, + "Ġbracket": 16904, + "Ġbrackets": 26179, + "Ġbrag": 41995, + "Ġbraid": 33109, + "Ġbrain": 3567, + "Ġbrains": 15442, + "Ġbrainstorm": 35245, + "Ġbrake": 13997, + "Ġbrakes": 19950, + "Ġbraking": 32140, + "Ġbran": 12029, + "Ġbranch": 9819, + "Ġbranches": 14770, + "Ġbrand": 3360, + "Ġbranded": 38510, + "Ġbranding": 27279, + "Ġbrands": 11324, + "Ġbras": 19993, + "Ġbrasile": 28435, + "Ġbrass": 26257, + "Ġbrat": 47869, + "Ġbrauch": 45522, + "Ġbrauchen": 19543, + "Ġbraucht": 22623, + "Ġbrave": 12653, + "Ġbravery": 43271, + "Ġbre": 1403, + "Ġbreach": 31086, + "Ġbread": 5961, + "Ġbreadth": 35862, + "Ġbreak": 1821, + "Ġbreakdown": 18188, + "Ġbreaker": 35375, + "Ġbreakfast": 8201, + "Ġbreaking": 7697, + "Ġbreakout": 30067, + "Ġbreaks": 9857, + "Ġbreakthrough": 22397, + "Ġbreakup": 38492, + "Ġbreast": 9934, + "Ġbreasts": 34331, + "Ġbreat": 3656, + "Ġbreath": 6045, + "Ġbreathe": 10192, + "Ġbreathing": 9570, + "Ġbreaths": 33769, + "Ġbreathtaking": 48393, + "Ġbred": 34133, + "Ġbree": 20082, + "Ġbreed": 18971, + "Ġbreeding": 26051, + "Ġbreeds": 41609, + "Ġbreeze": 24532, + "Ġbrethren": 47854, + "Ġbreve": 48517, + "Ġbrew": 34619, + "Ġbrewer": 39440, + "Ġbrewing": 39019, + "Ġbri": 33713, + "Ġbrick": 16725, + "Ġbricks": 25497, + "Ġbrid": 16362, + "Ġbride": 22292, + "Ġbridge": 7283, + "Ġbridges": 21114, + "Ġbrief": 5353, + "Ġbriefing": 28878, + "Ġbriefly": 10515, + "Ġbrig": 30743, + "Ġbrigade": 47501, + "Ġbright": 4730, + "Ġbrighten": 49007, + "Ġbrighter": 19764, + "Ġbrightest": 36271, + "Ġbrightly": 47418, + "Ġbrightness": 21367, + "Ġbrill": 8695, + "Ġbrilliant": 10248, + "Ġbrinc": 46545, + "Ġbring": 1565, + "Ġbringen": 27519, + "Ġbringing": 5062, + "Ġbrings": 5607, + "Ġbringt": 36008, + "Ġbrit": 38389, + "Ġbrittle": 49325, + "Ġbro": 2006, + "Ġbroad": 4152, + "Ġbroadband": 37718, + "Ġbroadcast": 9975, + "Ġbroadcasting": 30024, + "Ġbroaden": 47045, + "Ġbroader": 13227, + "Ġbroadly": 19511, + "Ġbroccoli": 29044, + "Ġbroch": 48147, + "Ġbroke": 6902, + "Ġbroken": 5463, + "Ġbroker": 26502, + "Ġbrokers": 47549, + "Ġbrom": 50134, + "Ġbron": 16586, + "Ġbronze": 25454, + "Ġbroom": 41544, + "Ġbroth": 18872, + "Ġbrother": 3708, + "Ġbrothers": 8452, + "Ġbrought": 3038, + "Ġbrow": 19299, + "Ġbrown": 6292, + "Ġbrows": 8333, + "Ġbrowse": 31442, + "Ġbrowser": 11185, + "Ġbrowsers": 36069, + "Ġbrowsing": 38602, + "Ġbru": 25267, + "Ġbruk": 48316, + "Ġbrunch": 49761, + "Ġbrush": 5287, + "Ġbrushed": 40694, + "Ġbrushes": 23260, + "Ġbrushing": 33130, + "Ġbrut": 12603, + "Ġbrutal": 17878, + "Ġbrutality": 41745, + "Ġbrutally": 48476, + "Ġbrute": 47909, + "Ġbu": 758, + "Ġbuat": 22186, + "Ġbubb": 13045, + "Ġbubble": 12212, + "Ġbubbles": 16295, + "Ġbubbling": 46360, + "Ġbuck": 14894, + "Ġbucket": 13058, + "Ġbuckets": 32191, + "Ġbuckle": 37686, + "Ġbucks": 11829, + "Ġbud": 3265, + "Ġbuddies": 30649, + "Ġbuddy": 10340, + "Ġbudget": 4706, + "Ġbudgeting": 47855, + "Ġbudgets": 26708, + "Ġbuds": 33916, + "Ġbuen": 30037, + "Ġbuena": 25710, + "Ġbuenas": 43852, + "Ġbueno": 11974, + "Ġbuenos": 49617, + "Ġbuff": 9204, + "Ġbuffalo": 39681, + "Ġbuffer": 21762, + "Ġbuffet": 42904, + "Ġbuffs": 50164, + "Ġbug": 7426, + "Ġbugs": 15120, + "Ġbugün": 37141, + "Ġbuild": 1322, + "Ġbuilder": 27377, + "Ġbuilders": 36281, + "Ġbuilding": 2390, + "Ġbuildings": 7446, + "Ġbuilds": 15182, + "Ġbuilt": 3094, + "Ġbukan": 31794, + "Ġbul": 6493, + "Ġbulb": 21122, + "Ġbulbs": 32871, + "Ġbuld": 37134, + "Ġbulk": 16139, + "Ġbulky": 42986, + "Ġbull": 4693, + "Ġbullet": 11632, + "Ġbullets": 20132, + "Ġbullied": 33603, + "Ġbullish": 38692, + "Ġbullshit": 22676, + "Ġbully": 29123, + "Ġbullying": 25633, + "Ġbulun": 48419, + "Ġbum": 13309, + "Ġbump": 9961, + "Ġbumped": 42696, + "Ġbumper": 23992, + "Ġbumps": 27719, + "Ġbumpy": 49400, + "Ġbun": 6702, + "Ġbuna": 44257, + "Ġbunch": 3840, + "Ġbund": 13882, + "Ġbundle": 24438, + "Ġbung": 50045, + "Ġbunk": 25125, + "Ġbunker": 39579, + "Ġbunlar": 37921, + "Ġbunları": 45695, + "Ġbunny": 28588, + "Ġbuns": 33452, + "Ġbunu": 18155, + "Ġbunun": 31697, + "Ġbuoy": 42841, + "Ġbur": 2779, + "Ġburada": 19167, + "Ġburadan": 49443, + "Ġburaya": 33548, + "Ġburden": 12578, + "Ġburdens": 37882, + "Ġbure": 23425, + "Ġbureau": 35343, + "Ġbureauc": 26360, + "Ġbureaucracy": 44671, + "Ġburg": 41000, + "Ġburger": 16393, + "Ġburgers": 28403, + "Ġburial": 35751, + "Ġburied": 14101, + "Ġburn": 5064, + "Ġburned": 13490, + "Ġburner": 36116, + "Ġburning": 9488, + "Ġburnout": 44841, + "Ġburns": 22684, + "Ġburnt": 18901, + "Ġburst": 12712, + "Ġbursting": 45713, + "Ġbursts": 41663, + "Ġbury": 28919, + "Ġbus": 1255, + "Ġbusca": 37492, + "Ġbuscando": 46804, + "Ġbuscar": 26170, + "Ġbuses": 20519, + "Ġbush": 19910, + "Ġbushes": 34303, + "Ġbusiness": 1606, + "Ġbusinesses": 6011, + "Ġbusinessman": 35317, + "Ġbust": 19432, + "Ġbusted": 41074, + "Ġbusy": 5856, + "Ġbut": 457, + "Ġbutcher": 41579, + "Ġbutt": 6660, + "Ġbutter": 5517, + "Ġbutterflies": 31987, + "Ġbutterfly": 22140, + "Ġbutton": 2960, + "Ġbuttons": 9905, + "Ġbutts": 46789, + "Ġbuy": 2256, + "Ġbuyer": 24645, + "Ġbuyers": 23465, + "Ġbuying": 6382, + "Ġbuys": 28153, + "Ġbuzz": 13036, + "Ġbuzzing": 29659, + "Ġby": 538, + "Ġbye": 6543, + "Ġbypass": 24996, + "Ġbyte": 40846, + "Ġbytes": 36088, + "ĠbyÄĩ": 15069, + "ĠbyÅĤ": 16673, + "ĠbyÅĤa": 23936, + "ĠbyÅĤo": 14811, + "ĠbyÅĤy": 26366, + "Ġbzw": 39998, + "Ġbás": 25545, + "Ġbásicamente": 48282, + "Ġbättre": 44842, + "ĠbÃ¥": 32758, + "ĠbÃ¥de": 39845, + "Ġbé": 15807, + "Ġbén": 41249, + "Ġbên": 43730, + "Ġbö": 41715, + "Ġböl": 36413, + "Ġbör": 21175, + "Ġbörjar": 49534, + "Ġböyle": 11018, + "Ġbütün": 27977, + "Ġbüy": 19445, + "Ġbüyük": 24059, + "Ġbı": 19902, + "Ġbırak": 24179, + "ĠbÄĻd": 8218, + "ĠbÄĻdzie": 10562, + "ĠbÄĻdziemy": 31966, + "ĠbÄĻdÄħ": 26239, + "ĠbÄĻdÄĻ": 39240, + "Ġbạn": 14647, + "Ġbá»ĭ": 32113, + "Ġc": 269, + "Ġca": 1335, + "Ġcab": 5487, + "Ġcabbage": 22944, + "Ġcabe": 18893, + "Ġcabeza": 34615, + "Ġcabeça": 33056, + "Ġcabin": 9401, + "Ġcabinet": 15188, + "Ġcabinets": 37427, + "Ġcable": 8220, + "Ġcables": 17555, + "Ġcabo": 41335, + "Ġcach": 32773, + "Ġcache": 19459, + "Ġcactus": 44287, + "Ġcad": 12209, + "Ġcada": 8411, + "Ġcade": 37571, + "Ġcadence": 46109, + "Ġcadre": 39546, + "Ġcaf": 15246, + "Ġcafe": 17773, + "Ġcafes": 48851, + "Ġcafeter": 38719, + "Ġcafeteria": 42230, + "Ġcaffe": 29118, + "Ġcaffeine": 31261, + "Ġcafé": 25118, + "Ġcage": 17302, + "Ġcages": 45888, + "Ġcai": 46523, + "Ġcake": 5908, + "Ġcakes": 19932, + "Ġcal": 2104, + "Ġcalam": 43936, + "Ġcalcium": 20918, + "Ġcalcul": 4322, + "Ġcalculate": 8873, + "Ġcalculated": 15598, + "Ġcalculating": 28258, + "Ġcalculation": 17108, + "Ġcalculations": 20448, + "Ġcalculator": 24993, + "Ġcalculus": 33400, + "Ġcalend": 37022, + "Ġcalendar": 12183, + "Ġcalf": 31893, + "Ġcalib": 21583, + "Ġcaliber": 41946, + "Ġcalibration": 38732, + "Ġcalidad": 42955, + "Ġcall": 818, + "Ġcalle": 45092, + "Ġcalled": 1219, + "Ġcaller": 48324, + "Ġcalling": 5141, + "Ġcalls": 5498, + "Ġcalm": 7151, + "Ġcalming": 39723, + "Ġcalmly": 39740, + "Ġcalor": 31575, + "Ġcalorie": 35004, + "Ġcalories": 14904, + "Ġcalves": 43755, + "Ġcam": 1945, + "Ġcama": 50197, + "Ġcamar": 43764, + "Ġcamb": 18751, + "Ġcambi": 19569, + "Ġcambiar": 37738, + "Ġcambio": 28731, + "Ġcame": 1361, + "Ġcamel": 37755, + "Ġcamer": 38946, + "Ġcamera": 2799, + "Ġcameraman": 46858, + "Ġcameras": 8622, + "Ġcaminho": 37215, + "Ġcamino": 34124, + "Ġcamoufl": 39491, + "Ġcamouflage": 47625, + "Ġcamp": 2255, + "Ġcampa": 37597, + "Ġcampaign": 5129, + "Ġcampaigns": 16840, + "Ġcampe": 48566, + "Ġcamper": 45936, + "Ġcamping": 19470, + "Ġcampo": 29691, + "Ġcamps": 16573, + "Ġcampus": 4828, + "Ġcampuses": 24233, + "Ġcan": 393, + "Ġcanal": 9911, + "Ġcancel": 10373, + "Ġcanceled": 24839, + "Ġcancell": 19114, + "Ġcancellation": 45867, + "Ġcancelled": 25103, + "Ġcancer": 5592, + "Ġcancers": 31063, + "Ġcanción": 41897, + "Ġcand": 3955, + "Ġcandid": 6268, + "Ġcandidate": 11532, + "Ġcandidates": 11255, + "Ġcandies": 43877, + "Ġcandle": 17968, + "Ġcandles": 23774, + "Ġcandy": 11237, + "Ġcane": 27518, + "Ġcann": 12361, + "Ġcannabis": 26066, + "Ġcanned": 36462, + "Ġcannon": 25938, + "Ġcannons": 47649, + "Ġcannot": 2644, + "Ġcanoe": 47650, + "Ġcanon": 21985, + "Ġcanonical": 46491, + "Ġcanopy": 38235, + "Ġcans": 21835, + "Ġcant": 11223, + "Ġcantidad": 33757, + "Ġcanvas": 16267, + "Ġcanvi": 47920, + "Ġcanyon": 45424, + "Ġcanım": 30535, + "Ġcap": 1410, + "Ġcapabilities": 10862, + "Ġcapability": 13759, + "Ġcapable": 8189, + "Ġcapac": 4637, + "Ġcapacidad": 43507, + "Ġcapacit": 38961, + "Ġcapacitance": 50241, + "Ġcapacities": 39396, + "Ġcapacitor": 29372, + "Ġcapacity": 6042, + "Ġcapaz": 35453, + "Ġcape": 30414, + "Ġcapit": 33807, + "Ġcapita": 39727, + "Ġcapital": 4238, + "Ġcapitalism": 19704, + "Ġcapitalist": 31354, + "Ġcapitalize": 48114, + "Ġcaps": 13855, + "Ġcapsule": 29247, + "Ġcapt": 3770, + "Ġcaptain": 14871, + "Ġcaption": 31974, + "Ġcaptions": 44832, + "Ġcaptiv": 40769, + "Ġcaptive": 41762, + "Ġcaptivity": 48607, + "Ġcapture": 7983, + "Ġcaptured": 11828, + "Ġcaptures": 27986, + "Ġcapturing": 23384, + "Ġcar": 1032, + "Ġcara": 10962, + "Ġcaracter": 28760, + "ĠcaracterÃŃst": 34297, + "ĠcaracterÃŃsticas": 47990, + "Ġcaramel": 22793, + "Ġcarb": 12143, + "Ġcarboh": 24429, + "Ġcarbohyd": 26328, + "Ġcarbohydrate": 47048, + "Ġcarbohydrates": 36817, + "Ġcarbon": 5954, + "Ġcarbono": 48491, + "Ġcarbs": 30801, + "Ġcard": 2920, + "Ġcardboard": 22248, + "Ġcardi": 37051, + "Ġcardiac": 32129, + "Ġcardio": 34274, + "Ġcardiovascular": 31786, + "Ġcards": 5632, + "Ġcare": 1127, + "Ġcared": 19779, + "Ġcareer": 3988, + "Ġcareers": 16409, + "Ġcareful": 5026, + "Ġcarefully": 7500, + "Ġcareg": 25087, + "Ġcaregiver": 44305, + "Ġcaregivers": 35440, + "Ġcareless": 46187, + "Ġcares": 12310, + "Ġcarga": 41964, + "Ġcargo": 19449, + "Ġcaric": 45732, + "Ġcaring": 15365, + "Ġcarn": 23796, + "Ġcarne": 30089, + "Ġcarp": 26103, + "Ġcarpet": 18119, + "Ġcarr": 15910, + "Ġcarre": 30919, + "Ġcarriage": 31811, + "Ġcarried": 9094, + "Ġcarrier": 17574, + "Ġcarriers": 28541, + "Ġcarries": 16402, + "Ġcarro": 23428, + "Ġcarrot": 22767, + "Ġcarrots": 21005, + "Ġcarry": 3985, + "Ġcarrying": 9792, + "Ġcars": 5163, + "Ġcart": 5467, + "Ġcarta": 41815, + "Ġcarte": 31483, + "Ġcartoon": 18569, + "Ġcartoons": 34855, + "Ġcartridge": 27753, + "Ġcartridges": 47036, + "Ġcarts": 48128, + "Ġcarve": 33832, + "Ġcarved": 28613, + "Ġcarving": 31872, + "Ġcas": 3058, + "Ġcasa": 9022, + "Ġcascade": 50080, + "Ġcase": 1389, + "Ġcases": 3331, + "Ġcash": 6388, + "Ġcasi": 22567, + "Ġcasing": 45109, + "Ġcasino": 36278, + "Ġcaso": 9666, + "Ġcasos": 25135, + "Ġcass": 21943, + "Ġcassette": 40514, + "Ġcast": 4193, + "Ġcaste": 39262, + "Ġcasting": 17301, + "Ġcastle": 14114, + "Ġcasts": 41921, + "Ġcasual": 13052, + "Ġcasually": 34872, + "Ġcasualties": 35628, + "Ġcat": 3857, + "Ġcatal": 13192, + "Ġcatalog": 19746, + "Ġcatalyst": 23868, + "Ġcatast": 19754, + "Ġcatastroph": 28363, + "Ġcatastrophe": 36043, + "Ġcatastrophic": 34915, + "Ġcatch": 3745, + "Ġcatches": 25496, + "Ġcatching": 16124, + "Ġcatchy": 47168, + "Ġcateg": 4847, + "Ġcategor": 19250, + "Ġcategories": 10479, + "Ġcategory": 7719, + "Ġcater": 21557, + "Ġcaterp": 44982, + "Ġcath": 17763, + "Ġcathedral": 45346, + "Ġcats": 11111, + "Ġcattle": 19992, + "Ġcau": 42951, + "Ġcaucus": 47950, + "Ġcaught": 5415, + "Ġcauliflower": 43125, + "Ġcaus": 3302, + "Ġcausa": 23667, + "Ġcausal": 38755, + "Ġcause": 3082, + "Ġcaused": 7008, + "Ġcauses": 7700, + "Ġcausing": 9853, + "Ġcaut": 21130, + "Ġcaution": 23585, + "Ġcautious": 25278, + "Ġcav": 13971, + "Ġcaval": 32805, + "Ġcavalry": 41010, + "Ġcave": 11730, + "Ġcaveat": 43012, + "Ġcaves": 32288, + "Ġcavity": 32425, + "Ġcay": 45776, + "ĠcaÅĤ": 35224, + "ĠcaÅĤe": 47631, + "ĠcaÅĤy": 35226, + "Ġce": 1769, + "Ġcease": 27887, + "Ġceased": 49917, + "Ġceiling": 13655, + "Ġcel": 9277, + "Ġcela": 15437, + "Ġcele": 43165, + "Ġcelebr": 3886, + "Ġcelebrate": 8098, + "Ġcelebrated": 19366, + "Ġcelebrates": 47182, + "Ġcelebrating": 15252, + "Ġcelebration": 14184, + "Ġcelebrations": 38504, + "Ġcelebrities": 23200, + "Ġcelebrity": 18597, + "Ġcelery": 37643, + "Ġcelestial": 41003, + "Ġcell": 2815, + "Ġcelle": 25722, + "Ġcellphone": 42524, + "Ġcells": 5438, + "Ġcellular": 29267, + "Ġcelui": 22829, + "Ġcelular": 32378, + "Ġcement": 19729, + "Ġcemetery": 31176, + "Ġcen": 27900, + "Ġcena": 41777, + "Ġcens": 19019, + "Ġcensorship": 40985, + "Ġcensus": 23725, + "Ġcent": 1489, + "Ġcenter": 3056, + "Ġcentered": 18988, + "Ġcenters": 10898, + "Ġcentigrade": 44731, + "Ġcentimet": 44755, + "Ġcentimeter": 31914, + "Ġcentimeters": 23300, + "Ġcentr": 32199, + "Ġcentral": 5777, + "Ġcentralized": 32395, + "Ġcentre": 10093, + "Ġcentres": 30096, + "Ġcentrif": 44828, + "Ġcentro": 24607, + "Ġcents": 14941, + "Ġcenturies": 13926, + "Ġcentury": 4901, + "Ġcep": 45026, + "Ġcer": 10146, + "Ġceram": 49678, + "Ġceramic": 29996, + "Ġcerc": 36099, + "Ġcerca": 26770, + "Ġcere": 11643, + "Ġcereal": 26199, + "Ġcerebral": 43561, + "Ġceremon": 25920, + "Ġceremonies": 36176, + "Ġceremony": 12813, + "Ġcert": 5351, + "Ġcerta": 44438, + "Ġcertain": 1629, + "Ġcertaines": 36993, + "Ġcertainly": 3297, + "Ġcertains": 25263, + "Ġcertainty": 27022, + "Ġcerteza": 30424, + "Ġcertific": 12378, + "Ġcertificate": 15953, + "Ġcertificates": 32941, + "Ġcertification": 21775, + "Ġcertified": 18580, + "Ġcerto": 22261, + "Ġcerv": 39543, + "Ġcerve": 33792, + "Ġcervical": 49883, + "Ġces": 7879, + "Ġcess": 47052, + "Ġcet": 8603, + "Ġcetera": 11458, + "Ġcette": 5550, + "Ġceux": 21314, + "Ġcev": 43266, + "Ġch": 417, + "Ġcha": 6294, + "Ġchacun": 42241, + "Ġchain": 5021, + "Ġchains": 12626, + "Ġchair": 6090, + "Ġchairman": 22770, + "Ġchairs": 18299, + "Ġchakra": 46068, + "Ġchalk": 28660, + "Ġchall": 2076, + "Ġchalleng": 3333, + "Ġchallenge": 3430, + "Ġchallenged": 17737, + "Ġchallenges": 4759, + "Ġchallenging": 7595, + "Ġcham": 8268, + "Ġchama": 40954, + "Ġchamado": 43475, + "Ġchamber": 13610, + "Ġchambers": 34513, + "Ġchamp": 5921, + "Ġchampagne": 33336, + "Ġchampion": 10971, + "Ġchampions": 11230, + "Ġchampionship": 19070, + "Ġchampionships": 41433, + "Ġchance": 2931, + "Ġchancellor": 49225, + "Ġchances": 10486, + "Ġchang": 1534, + "Ġchange": 1319, + "Ġchanged": 3105, + "Ġchanger": 22822, + "Ġchanges": 2962, + "Ġchanging": 4473, + "Ġchann": 2078, + "Ġchannel": 2269, + "Ġchannels": 9235, + "Ġchant": 28280, + "Ġchanting": 35775, + "Ġchaos": 14158, + "Ġchaotic": 27013, + "Ġchap": 13223, + "Ġchapel": 42617, + "Ġchapter": 7187, + "Ġchapters": 20013, + "Ġchaque": 18920, + "Ġchar": 1290, + "Ġcharac": 1926, + "Ġcharacter": 2517, + "Ġcharacteristic": 16282, + "Ġcharacteristics": 10891, + "Ġcharacterization": 49246, + "Ġcharacterize": 38463, + "Ġcharacterized": 29361, + "Ġcharacters": 4342, + "Ġcharcoal": 30625, + "Ġcharge": 4602, + "Ġcharged": 11109, + "Ġcharger": 22213, + "Ġcharges": 12235, + "Ġcharging": 11379, + "Ġcharisma": 45969, + "Ġcharismatic": 41109, + "Ġcharitable": 44609, + "Ġcharities": 42006, + "Ġcharity": 16863, + "Ġcharm": 18904, + "Ġcharming": 23387, + "Ġcharms": 41383, + "Ġchart": 6927, + "Ġcharter": 27472, + "Ġcharts": 17767, + "Ġchase": 15359, + "Ġchased": 33091, + "Ġchasing": 17876, + "Ġchassis": 28262, + "Ġchat": 5081, + "Ġchats": 38057, + "Ġchatter": 26929, + "Ġchattering": 37432, + "Ġchatting": 24654, + "Ġchaud": 46548, + "Ġchauff": 49211, + "Ġchaîne": 28036, + "Ġchce": 28928, + "Ġchcia": 26497, + "Ġche": 947, + "Ġcheap": 7084, + "Ġcheaper": 12284, + "Ġcheapest": 29167, + "Ġcheat": 17470, + "Ġcheated": 28079, + "Ġcheating": 18309, + "Ġcheck": 1520, + "Ġchecked": 10033, + "Ġchecking": 8568, + "Ġchecklist": 30357, + "Ġcheckout": 37153, + "Ġcheckpoint": 42269, + "Ġchecks": 13834, + "Ġcheddar": 47435, + "Ġcheek": 12839, + "Ġcheeks": 24135, + "Ġcheer": 12581, + "Ġcheerful": 36942, + "Ġcheering": 11060, + "Ġcheers": 15301, + "Ġcheese": 5399, + "Ġcheesecake": 41348, + "Ġcheesy": 32549, + "Ġchef": 10530, + "Ġchefs": 30191, + "Ġcheg": 22115, + "Ġchega": 40157, + "Ġchegar": 25512, + "Ġchegou": 36799, + "Ġchem": 4771, + "Ġchemical": 7313, + "Ġchemicals": 16152, + "Ġchemin": 46006, + "Ġchemistry": 12558, + "Ġchemotherapy": 39238, + "Ġcher": 12085, + "Ġcherche": 41644, + "Ġchercher": 38747, + "Ġcherish": 38277, + "Ġcherry": 20164, + "Ġchess": 24122, + "Ġchest": 7443, + "Ġchests": 49142, + "Ġchew": 21200, + "Ġchewing": 31444, + "Ġchewy": 28139, + "Ġchez": 17855, + "Ġchi": 13228, + "Ġchia": 45793, + "Ġchiar": 47454, + "Ġchic": 33590, + "Ġchick": 14371, + "Ġchicken": 4662, + "Ġchickens": 22329, + "Ġchicks": 42214, + "Ġchicos": 46070, + "Ġchief": 9588, + "Ġchiff": 37627, + "Ġchil": 38002, + "Ġchild": 1440, + "Ġchildcare": 35330, + "Ġchildhood": 9278, + "Ġchildish": 42203, + "Ġchildren": 2227, + "Ġchili": 15575, + "Ġchill": 11355, + "Ġchilled": 45552, + "Ġchilli": 32523, + "Ġchilling": 31047, + "Ġchills": 48676, + "Ġchilly": 39815, + "Ġchim": 18375, + "Ġchime": 40921, + "Ġchimney": 45920, + "Ġchin": 14210, + "Ġchina": 43668, + "Ġchinese": 47272, + "Ġchip": 11409, + "Ġchips": 11583, + "Ġchir": 23782, + "Ġchirping": 36682, + "Ġchlor": 18178, + "Ġchloride": 35434, + "Ġchlorine": 39888, + "Ġcho": 1586, + "Ġchociaż": 48929, + "Ġchocol": 29792, + "Ġchocolate": 6215, + "Ġchocolates": 42018, + "Ġchodzi": 23998, + "Ġchoice": 3922, + "Ġchoices": 7994, + "Ġchoir": 31244, + "Ġchois": 37827, + "Ġchoix": 32688, + "Ġchoke": 34427, + "Ġchoking": 48540, + "Ġchol": 20961, + "Ġcholesterol": 24716, + "Ġchoose": 2826, + "Ġchooses": 25963, + "Ġchoosing": 10875, + "Ġchop": 7931, + "Ġchopped": 16497, + "Ġchopping": 35205, + "Ġchops": 47514, + "Ġchopsticks": 39443, + "Ġchor": 14965, + "Ġchord": 14137, + "Ġchords": 21733, + "Ġchore": 14625, + "Ġchoreography": 23482, + "Ġchores": 39551, + "Ġchorus": 22632, + "Ġchose": 5111, + "Ġchosen": 8614, + "Ġchoses": 14488, + "Ġchrist": 26586, + "Ġchrom": 16209, + "Ġchrome": 33120, + "Ġchromos": 26824, + "Ġchromosome": 42896, + "Ġchromosomes": 45228, + "Ġchron": 19393, + "Ġchronic": 14493, + "Ġchu": 40215, + "Ġchuck": 20870, + "Ġchuckles": 29151, + "Ġchuckling": 48167, + "Ġchunk": 16635, + "Ġchunks": 24004, + "Ġchunky": 45392, + "Ġchurch": 4128, + "Ġchurches": 15381, + "Ġchut": 45373, + "Ġchuy": 35522, + "Ġchw": 26237, + "Ġchwil": 41941, + "Ġchyba": 31532, + "Ġchúng": 24322, + "ĠchÃŃnh": 42178, + "ĠchÆ°a": 46575, + "Ġchá»": 23579, + "Ġchá»ī": 33566, + "Ġchá»ĭ": 45167, + "Ġci": 6983, + "Ġciao": 42860, + "Ġcic": 27464, + "Ġcidade": 27882, + "Ġcider": 40515, + "Ġcie": 30596, + "Ġciek": 46419, + "Ġciel": 34380, + "Ġcielo": 49549, + "Ġcient": 31590, + "Ġciento": 47361, + "ĠcientÃŃfic": 37053, + "Ġcier": 39769, + "Ġciert": 49252, + "Ġcierto": 28558, + "Ġcig": 13474, + "Ġcigar": 41952, + "Ġcigarette": 26184, + "Ġcigarettes": 29244, + "Ġcilantro": 43626, + "Ġcima": 22586, + "Ġcin": 6539, + "Ġcinco": 21350, + "Ġcine": 45144, + "Ġcinema": 17178, + "Ġcinemat": 43520, + "Ġcinematic": 32250, + "Ġcinnamon": 22969, + "Ġcinq": 43335, + "Ġcioè": 41827, + "Ġcir": 2450, + "Ġcirc": 3510, + "Ġcirca": 45972, + "Ġcircle": 6329, + "Ġcircles": 13040, + "Ġcircuit": 9048, + "Ġcircuits": 26354, + "Ġcircul": 12515, + "Ġcircular": 16476, + "Ġcirculating": 39749, + "Ġcirculation": 23168, + "Ġcircum": 7125, + "Ġcircumst": 7982, + "Ġcircumstance": 27640, + "Ġcircumstances": 9121, + "Ġcircus": 32155, + "Ġcis": 37847, + "Ġcit": 4814, + "Ġcitation": 45590, + "Ġcite": 37771, + "Ġcited": 30134, + "Ġcities": 6486, + "Ġciting": 48749, + "Ġcitiz": 5655, + "Ġcitizen": 13326, + "Ġcitizens": 7180, + "Ġcitizenship": 23808, + "Ġcitoy": 47652, + "Ġcitrus": 37217, + "Ġcity": 2307, + "Ġciud": 18186, + "Ġciudad": 24329, + "Ġciv": 13779, + "Ġcivic": 29089, + "Ġcivil": 5605, + "Ġcivilian": 23386, + "Ġcivilians": 26073, + "Ġcivilization": 18036, + "Ġcivilizations": 40749, + "ĠciÄħ": 42398, + "ĠciÄĻ": 35484, + "Ġcl": 596, + "Ġcla": 3583, + "Ġclaim": 3932, + "Ġclaimed": 12941, + "Ġclaiming": 19232, + "Ġclaims": 9441, + "Ġclair": 41375, + "Ġclairement": 47754, + "Ġclam": 34112, + "Ġclamp": 17690, + "Ġclamps": 44423, + "Ġclams": 46377, + "Ġclan": 25887, + "Ġclap": 20760, + "Ġclapping": 19978, + "Ġclaps": 38542, + "Ġclar": 6093, + "Ġclarification": 34449, + "Ġclarified": 47605, + "Ġclarify": 17594, + "Ġclarity": 16992, + "Ġclaro": 16742, + "Ġclase": 44578, + "Ġclash": 36508, + "Ġclass": 1508, + "Ġclasse": 32400, + "Ġclasses": 5359, + "Ġclassic": 7230, + "Ġclassical": 13735, + "Ġclassics": 36110, + "Ġclassification": 21538, + "Ġclassified": 20627, + "Ġclassify": 33872, + "Ġclassmates": 24964, + "Ġclassroom": 7419, + "Ġclassrooms": 22890, + "Ġclassy": 43989, + "Ġclause": 25925, + "Ġclauses": 49072, + "Ġclaw": 32019, + "Ġclaws": 34258, + "Ġclay": 13517, + "Ġcle": 1233, + "Ġclean": 2541, + "Ġcleaned": 16146, + "Ġcleaner": 16532, + "Ġcleaning": 8924, + "Ġcleans": 16912, + "Ġcleanse": 36085, + "Ġcleansing": 29345, + "Ġcleanup": 40991, + "Ġclear": 1850, + "Ġclearance": 27218, + "Ġcleared": 19725, + "Ġclearer": 26131, + "Ġclearing": 23937, + "Ġclearly": 4448, + "Ġclears": 47033, + "Ġcler": 25902, + "Ġclergy": 45995, + "Ġclerk": 31402, + "Ġclever": 13494, + "Ġclic": 33661, + "Ġclich": 39190, + "Ġcliche": 46705, + "Ġclick": 2052, + "Ġclicked": 23370, + "Ġclicking": 9697, + "Ġclicks": 18521, + "Ġclient": 6423, + "Ġclients": 6982, + "Ġcliff": 22316, + "Ġcliffs": 50039, + "Ġclim": 5644, + "Ġclimate": 5659, + "Ġclimax": 41329, + "Ġclimb": 10724, + "Ġclimbed": 28691, + "Ġclimbing": 14780, + "Ġclimbs": 48439, + "Ġclin": 5538, + "Ġcling": 35986, + "Ġclinic": 14947, + "Ġclinical": 9115, + "Ġclinically": 48392, + "Ġclinician": 45962, + "Ġclinicians": 32862, + "Ġclinics": 27252, + "Ġclip": 7353, + "Ġclipping": 49320, + "Ġclips": 13117, + "Ġclique": 44467, + "Ġclo": 20123, + "Ġcloak": 45004, + "Ġclock": 7830, + "Ġclocks": 41528, + "Ġclockwise": 35790, + "Ġclog": 34455, + "Ġclone": 26506, + "Ġclones": 43803, + "Ġclos": 2611, + "Ġclose": 1998, + "Ġclosed": 5395, + "Ġclosely": 8185, + "Ġcloser": 4966, + "Ġcloses": 24157, + "Ġclosest": 13699, + "Ġcloset": 16669, + "Ġclosing": 10377, + "Ġclosure": 24653, + "Ġclot": 48587, + "Ġcloth": 13619, + "Ġclothes": 5534, + "Ġclothing": 11502, + "Ġcloud": 4588, + "Ġclouds": 12193, + "Ġcloudy": 33060, + "Ġcloves": 39139, + "Ġclown": 22209, + "Ġclub": 6482, + "Ġclubs": 15428, + "Ġclue": 13602, + "Ġclues": 20936, + "Ġclumsy": 44640, + "Ġcluster": 13630, + "Ġclusters": 23313, + "Ġclutch": 20597, + "Ġclutter": 40614, + "Ġclás": 47434, + "Ġcm": 14668, + "Ġco": 598, + "Ġcoach": 6560, + "Ġcoaches": 17503, + "Ġcoaching": 15818, + "Ġcoal": 10209, + "Ġcoalition": 21371, + "Ġcoarse": 39312, + "Ġcoast": 8684, + "Ġcoastal": 25050, + "Ġcoaster": 28442, + "Ġcoat": 10690, + "Ġcoated": 28489, + "Ġcoating": 20163, + "Ġcoats": 30036, + "Ġcob": 39527, + "Ġcobra": 48790, + "Ġcoc": 21047, + "Ġcocaine": 33933, + "Ġcoch": 48599, + "Ġcock": 11241, + "Ġcockpit": 35990, + "Ġcockro": 45927, + "Ġcocktail": 26382, + "Ġcocktails": 49006, + "Ġcoco": 21611, + "Ġcocoa": 30634, + "Ġcocon": 12893, + "Ġcoconut": 13551, + "Ġcod": 17656, + "Ġcode": 3089, + "Ġcoded": 34874, + "Ġcodes": 14211, + "Ġcoding": 17720, + "Ġcoe": 12155, + "Ġcoefficient": 17619, + "Ġcoefficients": 31994, + "Ġcoerc": 49741, + "Ġcoeur": 45781, + "Ġcoexist": 48086, + "Ġcoff": 24768, + "Ġcoffee": 4982, + "Ġcoffin": 38361, + "Ġcog": 46521, + "Ġcogn": 11786, + "Ġcognition": 46905, + "Ġcognitive": 15605, + "Ġcoh": 21683, + "Ġcoher": 26528, + "Ġcoherent": 36239, + "Ġcohesive": 43025, + "Ġcohort": 28902, + "Ġcoil": 22225, + "Ġcoils": 43639, + "Ġcoin": 11464, + "Ġcoinc": 13001, + "Ġcoincidence": 22137, + "Ġcoined": 45222, + "Ġcoins": 13561, + "Ġcoisa": 9614, + "Ġcoisas": 14567, + "Ġcoke": 33659, + "Ġcol": 1173, + "Ġcola": 40495, + "Ġcolabor": 49629, + "Ġcold": 3554, + "Ġcolder": 31020, + "Ġcole": 45139, + "Ġcoll": 1263, + "Ġcollab": 44228, + "Ġcollabor": 5091, + "Ġcollaborate": 18338, + "Ġcollaborated": 42463, + "Ġcollaborating": 30188, + "Ġcollaboration": 9363, + "Ġcollaborations": 36908, + "Ġcollaborative": 16555, + "Ġcollaborators": 39789, + "Ġcollagen": 40444, + "Ġcollaps": 16567, + "Ġcollapse": 15584, + "Ġcollapsed": 24578, + "Ġcollapses": 48765, + "Ġcollapsing": 45339, + "Ġcollar": 20672, + "Ġcollateral": 41875, + "Ġcolle": 5913, + "Ġcolleague": 13532, + "Ġcolleagues": 7734, + "Ġcollect": 2500, + "Ġcollected": 11087, + "Ġcollecting": 12510, + "Ġcollection": 5765, + "Ġcollections": 16641, + "Ġcollective": 12590, + "Ġcollectively": 24341, + "Ġcollector": 23960, + "Ġcollectors": 35384, + "Ġcollects": 39897, + "Ġcolleg": 13300, + "Ġcollege": 3859, + "Ġcolleges": 15272, + "Ġcollide": 49093, + "Ġcollision": 24644, + "Ġcollisions": 46537, + "Ġcoloc": 12327, + "Ġcoloca": 41231, + "Ġcolocar": 17568, + "Ġcolon": 8255, + "Ġcolonial": 19066, + "Ġcolonialism": 50033, + "Ġcolonies": 27981, + "Ġcolony": 23028, + "Ġcolor": 2017, + "Ġcolored": 14332, + "Ġcolorful": 18506, + "Ġcoloring": 23198, + "Ġcolors": 4577, + "Ġcoloss": 48683, + "Ġcolour": 8267, + "Ġcoloured": 42042, + "Ġcolours": 16484, + "Ġcolum": 5970, + "Ġcolumn": 7738, + "Ġcolumns": 13766, + "Ġcom": 395, + "Ġcoma": 35106, + "Ġcomb": 2512, + "Ġcombat": 8361, + "Ġcombien": 48975, + "Ġcombin": 38514, + "Ġcombination": 6562, + "Ġcombinations": 21267, + "Ġcombine": 10432, + "Ġcombined": 9354, + "Ġcombines": 29520, + "Ġcombining": 21928, + "Ġcombo": 16859, + "Ġcombos": 44079, + "Ġcombust": 21161, + "Ġcombustion": 28121, + "Ġcome": 808, + "Ġcomeback": 23464, + "Ġcomed": 18418, + "Ġcomedian": 30212, + "Ġcomedy": 13394, + "Ġcomen": 36222, + "Ġcoment": 14541, + "Ġcomentarios": 36842, + "Ġcomentários": 43739, + "Ġcomenz": 29564, + "Ġcomer": 16510, + "Ġcomercial": 43163, + "Ġcomes": 1487, + "Ġcomet": 33696, + "Ġcomeç": 14596, + "Ġcomeça": 32568, + "Ġcomeçar": 24379, + "Ġcomeço": 48958, + "Ġcomeçou": 37393, + "Ġcomfort": 3400, + "Ġcomfortable": 4619, + "Ġcomfortably": 25101, + "Ġcomforting": 38439, + "Ġcomfy": 34523, + "Ġcomic": 13900, + "Ġcomics": 18756, + "Ġcomida": 30779, + "Ġcomigo": 35696, + "Ġcomin": 35814, + "Ġcoming": 1348, + "Ġcomm": 800, + "Ġcomma": 22117, + "Ġcommand": 5622, + "Ġcommanded": 34359, + "Ġcommander": 17885, + "Ġcommanders": 42932, + "Ġcommandments": 40289, + "Ġcommands": 16901, + "Ġcomme": 5173, + "Ġcommemor": 30461, + "Ġcommen": 29199, + "Ġcommence": 18137, + "Ġcommencement": 34558, + "Ġcommencer": 32817, + "Ġcommencé": 37561, + "Ġcommend": 35987, + "Ġcomment": 2871, + "Ġcommentaires": 46663, + "Ġcommentary": 23527, + "Ġcommented": 26940, + "Ġcommenting": 29590, + "Ġcomments": 3053, + "Ġcommer": 5906, + "Ġcommerce": 26320, + "Ġcommercial": 6841, + "Ġcommercially": 41751, + "Ġcommercials": 33666, + "Ġcommission": 9221, + "Ġcommissioned": 32372, + "Ġcommissioner": 33678, + "Ġcommissions": 38912, + "Ġcommit": 5599, + "Ġcommitment": 8371, + "Ġcommitments": 26230, + "Ġcommits": 48311, + "Ġcommitted": 7784, + "Ġcommittee": 7482, + "Ġcommittees": 25998, + "Ġcommitting": 26659, + "Ġcommod": 19931, + "Ġcommodities": 40777, + "Ġcommodity": 29125, + "Ġcommon": 2689, + "Ġcommonly": 12719, + "Ġcommun": 1199, + "Ġcommunal": 43893, + "Ġcommunaut": 38074, + "Ġcommunauté": 49056, + "Ġcommunic": 3363, + "Ġcommunicate": 7890, + "Ġcommunicated": 34989, + "Ġcommunicating": 17559, + "Ġcommunication": 6101, + "Ġcommunications": 15163, + "Ġcommunion": 42808, + "Ġcommunism": 42160, + "Ġcommunist": 29347, + "Ġcommunities": 4456, + "Ġcommunity": 1768, + "Ġcommute": 36750, + "Ġcomo": 2617, + "Ġcomp": 715, + "Ġcompact": 14679, + "Ġcompan": 3168, + "Ġcompanies": 3431, + "Ġcompanion": 22363, + "Ġcompanions": 28009, + "Ġcompany": 2237, + "Ġcompar": 6311, + "Ġcomparable": 25323, + "Ġcomparative": 39292, + "Ġcompare": 6794, + "Ġcompared": 5347, + "Ġcompares": 38334, + "Ġcomparing": 15763, + "Ġcomparison": 9660, + "Ġcomparisons": 33157, + "Ġcompart": 18113, + "Ġcompartil": 40204, + "Ġcompartir": 40667, + "Ġcompartment": 26505, + "Ġcompass": 10707, + "Ġcompassion": 12601, + "Ġcompassionate": 30531, + "Ġcompat": 13147, + "Ġcompatibility": 34237, + "Ġcompatible": 18218, + "Ġcompañ": 29953, + "Ġcompe": 16291, + "Ġcompelled": 40021, + "Ġcompelling": 20050, + "Ġcompens": 11598, + "Ġcompensate": 29458, + "Ġcompensation": 19644, + "Ġcompet": 2850, + "Ġcompete": 11831, + "Ġcompeted": 43619, + "Ġcompetence": 39965, + "Ġcompetency": 50097, + "Ġcompetent": 29998, + "Ġcompeting": 15439, + "Ġcompetit": 41131, + "Ġcompetition": 6211, + "Ġcompetitions": 26185, + "Ġcompetitive": 10043, + "Ġcompetitor": 27266, + "Ġcompetitors": 18333, + "Ġcompilation": 40261, + "Ġcompile": 31413, + "Ġcompiled": 36548, + "Ġcompiler": 31958, + "Ġcompl": 1209, + "Ġcomplac": 49546, + "Ġcomplain": 11024, + "Ġcomplained": 33951, + "Ġcomplaining": 20740, + "Ġcomplaint": 20100, + "Ġcomplaints": 19585, + "Ġcomple": 44424, + "Ġcomplement": 17103, + "Ġcomplementary": 40705, + "Ġcomplet": 1557, + "Ġcompleta": 46822, + "Ġcompletamente": 28381, + "Ġcomplete": 3566, + "Ġcompleted": 7365, + "Ġcompletely": 2584, + "Ġcompletes": 36362, + "Ġcompleting": 19472, + "Ġcompletion": 19372, + "Ġcompleto": 40135, + "Ġcomplex": 3997, + "Ġcomplexes": 43676, + "Ġcomplexities": 48705, + "Ġcomplexity": 14024, + "Ġcompliance": 15882, + "Ġcompliant": 36248, + "Ġcomplic": 16060, + "Ġcomplicado": 49850, + "Ġcomplicated": 6179, + "Ġcomplications": 26566, + "Ġcompliment": 16250, + "Ġcomplimentary": 47162, + "Ġcompliments": 35468, + "Ġcompliqué": 44290, + "Ġcomply": 27956, + "Ġcomplètement": 31331, + "Ġcompon": 4026, + "Ġcomponent": 6542, + "Ġcomponents": 6677, + "Ġcomport": 25883, + "Ġcompos": 10199, + "Ġcompose": 35925, + "Ġcomposed": 18204, + "Ġcomposer": 26003, + "Ġcomposers": 43872, + "Ġcomposite": 25557, + "Ġcomposition": 12686, + "Ġcompositions": 43401, + "Ġcompost": 20203, + "Ġcompound": 14154, + "Ġcompounds": 21810, + "Ġcompr": 16802, + "Ġcompra": 39323, + "Ġcomprar": 22077, + "Ġcompreh": 10753, + "Ġcomprehend": 38183, + "Ġcomprehension": 44991, + "Ġcomprehensive": 13914, + "Ġcomprend": 30765, + "Ġcomprendre": 26856, + "Ġcompress": 14778, + "Ġcompressed": 30353, + "Ġcompression": 19355, + "Ġcompressor": 28765, + "Ġcompris": 31711, + "Ġcomprised": 38062, + "Ġcomprom": 11482, + "Ġcompromise": 18577, + "Ġcompromised": 32463, + "Ġcompt": 15660, + "Ġcompte": 19424, + "Ġcompuls": 42773, + "Ġcomput": 2807, + "Ġcomputation": 24903, + "Ġcomputational": 28270, + "Ġcompute": 14722, + "Ġcomputed": 40610, + "Ġcomputer": 3820, + "Ġcomputers": 10807, + "Ġcomputing": 15866, + "Ġcomrades": 42249, + "Ġcomum": 44324, + "Ġcomun": 11040, + "Ġcomunic": 31710, + "Ġcomunidad": 35695, + "Ġcomunque": 45736, + "Ġcomún": 45448, + "Ġcon": 416, + "Ġconc": 1588, + "Ġconce": 10413, + "Ġconceal": 40170, + "Ġconcealed": 46305, + "Ġconcealer": 30672, + "Ġconceive": 48605, + "Ġconceived": 34898, + "Ġconcent": 5512, + "Ġconcentrate": 18089, + "Ġconcentrated": 21321, + "Ġconcentrating": 40571, + "Ġconcentration": 9856, + "Ġconcentrations": 33512, + "Ġconcept": 3410, + "Ġconception": 30698, + "Ġconcepts": 10392, + "Ġconceptual": 24106, + "Ġconcer": 16311, + "Ġconcern": 3136, + "Ġconcerned": 5922, + "Ġconcerning": 18087, + "Ġconcerns": 7389, + "Ġconcert": 8543, + "Ġconcerts": 24924, + "Ġconcise": 44882, + "Ġconclud": 9312, + "Ġconclude": 16886, + "Ġconcluded": 22960, + "Ġconcludes": 24643, + "Ġconclus": 18646, + "Ġconclusion": 10063, + "Ġconclusions": 22865, + "Ġconcret": 39481, + "Ġconcrete": 9859, + "Ġconcur": 23702, + "Ġconcurrent": 37702, + "Ġcond": 2224, + "Ġcondem": 18510, + "Ġcondemn": 30733, + "Ġcondemned": 36472, + "Ġcondensed": 36398, + "Ġcondiciones": 45960, + "Ġcondition": 4188, + "Ġconditional": 27708, + "Ġconditioned": 35833, + "Ġconditioner": 33558, + "Ġconditioning": 21901, + "Ġconditions": 4487, + "Ġcondu": 15504, + "Ġconduc": 45095, + "Ġconduct": 6018, + "Ġconducted": 13809, + "Ġconducting": 21749, + "Ġconduction": 43842, + "Ġconductivity": 42982, + "Ġconductor": 29957, + "Ġcone": 19749, + "Ġconect": 30458, + "Ġcones": 40548, + "Ġconex": 49509, + "Ġconf": 1497, + "Ġconfer": 13765, + "Ġconference": 7586, + "Ġconferences": 22032, + "Ġconfess": 19367, + "Ġconfessed": 41428, + "Ġconfession": 29154, + "Ġconfian": 49081, + "Ġconfiance": 43213, + "Ġconfidence": 6687, + "Ġconfident": 6679, + "Ġconfidential": 27054, + "Ġconfidently": 41956, + "Ġconfig": 6662, + "Ġconfigur": 22192, + "Ġconfiguration": 11694, + "Ġconfigurations": 31493, + "Ġconfigure": 22162, + "Ġconfigured": 30538, + "Ġconfined": 31745, + "Ġconfinement": 41064, + "Ġconfir": 9186, + "Ġconfirm": 9064, + "Ġconfirmation": 21871, + "Ġconfirmed": 11341, + "Ġconfirming": 42861, + "Ġconfirms": 39982, + "Ġconfisc": 49868, + "Ġconflict": 6596, + "Ġconflicting": 43784, + "Ġconflicts": 19807, + "Ġconform": 18975, + "Ġconfort": 43392, + "Ġconfront": 12422, + "Ġconfrontation": 35363, + "Ġconfronted": 31257, + "Ġconfronting": 47449, + "Ġconfuse": 28584, + "Ġconfused": 9019, + "Ġconfusing": 13181, + "Ġconfusion": 15075, + "Ġcongest": 31871, + "Ġcongestion": 40816, + "Ġcongr": 8882, + "Ġcongrat": 9774, + "Ġcongratulate": 24353, + "Ġcongratulations": 13568, + "Ġcongreg": 23002, + "Ġcongregation": 34782, + "Ġcongress": 17546, + "Ġcongressional": 32962, + "Ġconhe": 15440, + "Ġconhecer": 46235, + "Ġconj": 20295, + "Ġconjug": 29456, + "Ġconjugate": 45064, + "Ġconjun": 18244, + "Ġconjunction": 27482, + "Ġconjunto": 37776, + "Ġconn": 46264, + "Ġconna": 15477, + "Ġconnais": 45784, + "Ġconnect": 1745, + "Ġconnected": 4582, + "Ġconnecting": 11015, + "Ġconnection": 4984, + "Ġconnections": 9271, + "Ġconnectivity": 21095, + "Ġconnector": 19127, + "Ġconnectors": 31865, + "Ġconnects": 16967, + "Ġconnot": 46371, + "Ġcono": 33029, + "Ġconoc": 15871, + "Ġconocer": 35241, + "Ġconos": 49892, + "Ġconqu": 15592, + "Ġconquer": 24136, + "Ġconquered": 32695, + "Ġconquest": 43241, + "Ġcons": 1014, + "Ġconsci": 39271, + "Ġconscience": 20537, + "Ġconscient": 44507, + "Ġconscious": 6648, + "Ġconsciously": 32538, + "Ġconsciousness": 10081, + "Ġconse": 4425, + "Ġconsec": 40526, + "Ġconsecut": 27154, + "Ġconsecutive": 30497, + "Ġconsegu": 12706, + "Ġconsegue": 27179, + "Ġconseguir": 21229, + "Ġconsensus": 19115, + "Ġconsent": 14546, + "Ġconsequ": 7242, + "Ġconsequence": 18326, + "Ġconsequences": 10098, + "Ġconsequently": 47259, + "Ġconserv": 9704, + "Ġconservation": 16185, + "Ġconservative": 13780, + "Ġconservatives": 39607, + "Ġconserve": 45240, + "Ġconsid": 30376, + "Ġconsider": 1949, + "Ġconsiderable": 24167, + "Ġconsiderably": 31308, + "Ġconsideration": 12381, + "Ġconsiderations": 24070, + "Ġconsidered": 4888, + "Ġconsidering": 8079, + "Ġconsiders": 33095, + "Ġconsig": 40233, + "Ġconsigo": 43688, + "Ġconsist": 4603, + "Ġconsiste": 49066, + "Ġconsisted": 38227, + "Ġconsistency": 14416, + "Ġconsistent": 8398, + "Ġconsistently": 14961, + "Ġconsisting": 33921, + "Ġconsists": 14689, + "Ġconsol": 16054, + "Ġconsole": 11076, + "Ġconsoles": 28948, + "Ġconsolid": 19045, + "Ġconsolidate": 49521, + "Ġconsolidated": 49008, + "Ġconsolidation": 39114, + "Ġconsomm": 47688, + "Ġconson": 30843, + "Ġconsonant": 43647, + "Ġconsort": 38343, + "Ġconspir": 17719, + "Ġconspiracy": 20439, + "Ġconst": 1817, + "Ġconstant": 5754, + "Ġconstante": 47343, + "Ġconstantly": 6460, + "Ġconstants": 35870, + "Ġconstell": 32436, + "Ġconstellation": 42336, + "Ġconstit": 23079, + "Ġconstitu": 16085, + "Ġconstituency": 46146, + "Ġconstituents": 30847, + "Ġconstitute": 41658, + "Ġconstitutes": 44204, + "Ġconstitution": 11937, + "Ġconstitutional": 20176, + "Ġconstra": 11525, + "Ġconstrained": 38901, + "Ġconstraint": 25534, + "Ġconstraints": 18491, + "Ġconstru": 12946, + "Ġconstruct": 7690, + "Ġconstructed": 17083, + "Ġconstructing": 39969, + "Ġconstruction": 6435, + "Ġconstructive": 30223, + "Ġconstructor": 47479, + "Ġconstruir": 38445, + "Ġconsult": 7189, + "Ġconsultant": 24676, + "Ġconsultants": 38935, + "Ġconsultation": 20932, + "Ġconsulted": 47941, + "Ġconsulting": 23682, + "Ġconsum": 3978, + "Ġconsume": 14732, + "Ġconsumed": 21226, + "Ġconsumer": 9711, + "Ġconsumers": 11883, + "Ġconsumes": 48823, + "Ġconsuming": 19867, + "Ġconsumo": 42505, + "Ġconsumption": 12126, + "Ġconséqu": 47648, + "Ġcont": 660, + "Ġconta": 24001, + "Ġcontact": 3385, + "Ġcontacted": 21546, + "Ġcontacting": 41482, + "Ġcontacts": 15836, + "Ġcontag": 28525, + "Ġcontagious": 40666, + "Ġcontain": 5304, + "Ġcontained": 16212, + "Ġcontainer": 10129, + "Ġcontainers": 17089, + "Ġcontaining": 19273, + "Ġcontainment": 44058, + "Ġcontains": 8306, + "Ġcontam": 20463, + "Ġcontamin": 27562, + "Ġcontaminated": 34492, + "Ġcontamination": 33012, + "Ġcontar": 27045, + "Ġconte": 34444, + "Ġcontempl": 19935, + "Ġcontempor": 13046, + "Ġcontemporary": 14878, + "Ġcontempt": 47202, + "Ġconten": 21795, + "Ġcontenido": 47117, + "Ġcontent": 2701, + "Ġcontents": 15768, + "Ġcontest": 10287, + "Ġcontestants": 39676, + "Ġcontext": 4319, + "Ġcontexto": 47685, + "Ġcontexts": 30628, + "Ġcontextual": 35526, + "Ġconteú": 39065, + "Ġconteúdo": 44144, + "Ġcontin": 1421, + "Ġcontinent": 18932, + "Ġcontinental": 42479, + "Ġcontinents": 38598, + "Ġconting": 27820, + "Ġcontinu": 2993, + "Ġcontinua": 40861, + "Ġcontinually": 22277, + "Ġcontinuar": 29980, + "Ġcontinuation": 29357, + "Ġcontinue": 2354, + "Ġcontinued": 7014, + "Ġcontinuer": 35660, + "Ġcontinues": 6515, + "Ġcontinuing": 9289, + "Ġcontinuity": 23807, + "Ġcontinuous": 10957, + "Ġcontinuously": 15684, + "Ġcontinuum": 36120, + "Ġcontour": 21234, + "Ġcontr": 10273, + "Ġcontra": 10742, + "Ġcontrac": 48118, + "Ġcontract": 4364, + "Ġcontracted": 37629, + "Ġcontracting": 36095, + "Ġcontraction": 37372, + "Ġcontractor": 26463, + "Ġcontractors": 28377, + "Ġcontracts": 13952, + "Ġcontrad": 15858, + "Ġcontradict": 28900, + "Ġcontradiction": 34937, + "Ġcontradictory": 49555, + "Ġcontrario": 47642, + "Ġcontrary": 19506, + "Ġcontrast": 8712, + "Ġcontrat": 40944, + "Ġcontre": 14927, + "Ġcontrib": 4226, + "Ġcontribute": 10586, + "Ġcontributed": 18434, + "Ġcontributes": 32035, + "Ġcontributing": 19270, + "Ġcontribution": 13150, + "Ġcontributions": 15725, + "Ġcontributor": 42859, + "Ġcontributors": 45627, + "Ġcontro": 1583, + "Ġcontrol": 1969, + "Ġcontrolar": 47843, + "Ġcontrole": 46215, + "Ġcontroll": 45159, + "Ġcontrolled": 10164, + "Ġcontroller": 10561, + "Ġcontrollers": 26903, + "Ġcontrolling": 14905, + "Ġcontrols": 9003, + "Ġcontrovers": 11542, + "Ġcontroversial": 17323, + "Ġcontroversy": 22976, + "Ġcontrôle": 46518, + "Ġconv": 3754, + "Ġconve": 18053, + "Ġconvection": 49080, + "Ġconven": 7158, + "Ġconvenience": 19283, + "Ġconvenient": 10851, + "Ġconveniently": 44375, + "Ġconvention": 10286, + "Ġconventional": 16011, + "Ġconventions": 33520, + "Ġconver": 9652, + "Ġconverge": 41881, + "Ġconvergence": 32181, + "Ġconvers": 2615, + "Ġconversation": 3761, + "Ġconversations": 7315, + "Ġconversion": 14298, + "Ġconversions": 42256, + "Ġconvert": 7620, + "Ġconverted": 16424, + "Ġconverter": 33905, + "Ġconverting": 29942, + "Ġconverts": 38874, + "Ġconvex": 42432, + "Ġconvey": 16965, + "Ġconveyed": 49340, + "Ġconvicted": 26942, + "Ġconviction": 24837, + "Ġconvictions": 44757, + "Ġconvin": 9854, + "Ġconvince": 13447, + "Ġconvinced": 12561, + "Ġconvincing": 24823, + "Ġconvolution": 45216, + "Ġcook": 2543, + "Ġcooked": 9267, + "Ġcooker": 31476, + "Ġcookie": 14417, + "Ġcookies": 13670, + "Ġcooking": 6361, + "Ġcooks": 30709, + "Ġcool": 1627, + "Ġcooldown": 40782, + "Ġcooled": 27491, + "Ġcooler": 15566, + "Ġcoolest": 22013, + "Ġcooling": 14785, + "Ġcools": 42883, + "Ġcoop": 13215, + "Ġcooper": 13414, + "Ġcooperate": 26667, + "Ġcooperation": 14968, + "Ġcooperative": 31772, + "Ġcoord": 14230, + "Ġcoordin": 8285, + "Ġcoordinate": 15670, + "Ġcoordinated": 29591, + "Ġcoordinates": 21056, + "Ġcoordinating": 37824, + "Ġcoordination": 21252, + "Ġcoordinator": 27394, + "Ġcop": 2971, + "Ġcope": 22598, + "Ġcopied": 25365, + "Ġcopies": 14341, + "Ġcoping": 32893, + "Ġcopper": 15007, + "Ġcops": 19012, + "Ġcopy": 5055, + "Ġcopying": 27976, + "Ġcopyright": 17996, + "Ġcor": 1181, + "Ġcoral": 24955, + "Ġcoraz": 25899, + "Ġcorazón": 34518, + "Ġcoração": 41408, + "Ġcord": 12250, + "Ġcords": 36302, + "Ġcore": 4965, + "Ġcores": 24826, + "Ġcoriander": 34013, + "Ġcorn": 9046, + "Ġcorner": 4538, + "Ġcorners": 12413, + "Ġcoron": 10451, + "Ġcorona": 27103, + "Ġcoronavirus": 13043, + "Ġcorpo": 23257, + "Ġcorpor": 6804, + "Ġcorporate": 10896, + "Ġcorporation": 22197, + "Ġcorporations": 17676, + "Ġcorps": 18271, + "Ġcorpse": 30324, + "Ġcorpses": 46416, + "Ġcorr": 38576, + "Ġcorre": 29731, + "Ġcorrect": 3006, + "Ġcorrected": 31687, + "Ġcorrecting": 47032, + "Ġcorrection": 19984, + "Ġcorrections": 36406, + "Ġcorrectly": 8944, + "Ġcorrel": 13983, + "Ġcorrelate": 48742, + "Ġcorrelated": 38574, + "Ġcorrelation": 20009, + "Ġcorrer": 49568, + "Ġcorrespond": 6805, + "Ġcorrespondence": 38135, + "Ġcorrespondent": 44406, + "Ġcorresponding": 11760, + "Ġcorresponds": 23249, + "Ġcorri": 47908, + "Ġcorrid": 20322, + "Ġcorridor": 25602, + "Ġcorridors": 46920, + "Ġcorro": 45125, + "Ġcorros": 28957, + "Ġcorrosion": 33876, + "Ġcorrupt": 17366, + "Ġcorrupted": 39480, + "Ġcorruption": 17959, + "Ġcors": 46511, + "Ġcort": 11278, + "Ġcortar": 48117, + "Ġcortex": 33312, + "Ġcortisol": 45618, + "Ġcos": 3792, + "Ġcosa": 10163, + "Ġcosas": 12218, + "Ġcose": 30261, + "Ġcoses": 31860, + "Ġcosine": 23565, + "Ġcosm": 22207, + "Ġcosmetic": 35828, + "Ġcosmetics": 37416, + "Ġcosmic": 27614, + "Ġcosmos": 41794, + "Ġcosplay": 39403, + "Ġcost": 2063, + "Ġcosting": 37917, + "Ġcostly": 28328, + "Ġcosts": 5497, + "Ġcostume": 14850, + "Ġcostumes": 22695, + "Ġcosì": 23278, + "Ġcot": 26529, + "Ġcott": 11550, + "Ġcottage": 37209, + "Ġcotton": 13764, + "Ġcou": 1384, + "Ġcouch": 16511, + "Ġcough": 22777, + "Ġcoughing": 39375, + "Ġcould": 727, + "Ġcouldn": 2809, + "Ġcoule": 33644, + "Ġcouleur": 49462, + "Ġcoun": 3465, + "Ġcouncil": 9209, + "Ġcouncils": 39187, + "Ġcounsel": 10351, + "Ġcounseling": 23889, + "Ġcounselor": 27851, + "Ġcounselors": 36925, + "Ġcount": 1207, + "Ġcountdown": 35985, + "Ġcounted": 20150, + "Ġcounter": 5682, + "Ġcounterpart": 22335, + "Ġcounterparts": 33287, + "Ġcounters": 39338, + "Ġcounties": 20583, + "Ġcounting": 13251, + "Ġcountless": 19223, + "Ġcountries": 3517, + "Ġcountry": 1941, + "Ġcountryside": 28252, + "Ġcounts": 14893, + "Ġcounty": 9928, + "Ġcoup": 8682, + "Ġcoupe": 45136, + "Ġcouple": 1916, + "Ġcoupled": 29482, + "Ġcouples": 20368, + "Ġcoupling": 37447, + "Ġcoupon": 33390, + "Ġcour": 1005, + "Ġcourage": 9892, + "Ġcourageous": 33233, + "Ġcours": 25452, + "Ġcourse": 1164, + "Ġcourses": 7712, + "Ġcourt": 4753, + "Ġcourtesy": 41704, + "Ġcourtroom": 44050, + "Ġcourts": 14141, + "Ġcourtyard": 41364, + "Ġcous": 12304, + "Ġcousin": 16207, + "Ġcousins": 29246, + "Ġcovari": 49851, + "Ġcovenant": 26661, + "Ġcover": 2060, + "Ġcoverage": 9645, + "Ġcovered": 5343, + "Ġcovering": 10322, + "Ġcovers": 10538, + "Ġcovert": 45985, + "Ġcovet": 48497, + "Ġcovid": 25616, + "Ġcow": 8408, + "Ġcoward": 30776, + "Ġcowboy": 39174, + "Ġcowork": 31998, + "Ġcoworkers": 43465, + "Ġcows": 19148, + "Ġcoy": 41485, + "Ġcoz": 36747, + "Ġcozy": 29414, + "Ġcoû": 49743, + "ĠcoÅĽ": 19241, + "Ġcr": 941, + "Ġcra": 2094, + "Ġcrab": 17870, + "Ġcrabs": 35147, + "Ġcrack": 6226, + "Ġcracked": 25140, + "Ġcrackers": 41407, + "Ġcracking": 25229, + "Ġcracks": 21770, + "Ġcradle": 48081, + "Ġcraft": 8448, + "Ġcrafted": 36213, + "Ġcrafting": 29048, + "Ġcrafts": 27831, + "Ġcran": 39685, + "Ġcrane": 36345, + "Ġcrank": 21263, + "Ġcrap": 12426, + "Ġcrappy": 36531, + "Ġcrash": 8252, + "Ġcrashed": 24190, + "Ġcrashes": 28642, + "Ġcrashing": 26900, + "Ġcrate": 42426, + "Ġcrater": 38981, + "Ġcrave": 46875, + "Ġcraving": 27320, + "Ġcraw": 13999, + "Ġcrawl": 24767, + "Ġcrawling": 32979, + "Ġcray": 33073, + "Ġcraz": 46348, + "Ġcraziest": 46339, + "Ġcrazy": 3219, + "Ġcre": 1197, + "Ġcream": 4689, + "Ġcreams": 46573, + "Ġcreamy": 23215, + "Ġcrear": 31984, + "Ġcrease": 30098, + "Ġcreat": 1428, + "Ġcreate": 1884, + "Ġcreated": 2942, + "Ġcreates": 7829, + "Ġcreating": 4084, + "Ġcreation": 8016, + "Ġcreations": 37836, + "Ġcreative": 5880, + "Ġcreatively": 43750, + "Ġcreativity": 12915, + "Ġcreator": 14181, + "Ġcreators": 16039, + "Ġcreature": 12797, + "Ġcreatures": 12281, + "Ġcrec": 31668, + "Ġcred": 3864, + "Ġcredential": 22034, + "Ġcredentials": 27404, + "Ġcredibility": 28852, + "Ġcredible": 32757, + "Ġcredit": 5397, + "Ġcredited": 41155, + "Ġcredits": 16816, + "Ġcree": 48895, + "Ġcreek": 41868, + "Ġcreep": 9626, + "Ġcreeping": 47753, + "Ġcreepy": 14717, + "Ġcreo": 14336, + "Ġcres": 20964, + "Ġcrest": 43799, + "Ġcrew": 7260, + "Ġcrews": 31477, + "Ġcri": 12815, + "Ġcrian": 27659, + "Ġcriança": 43300, + "Ġcrianças": 45280, + "Ġcriar": 36882, + "Ġcrib": 47163, + "Ġcricket": 31626, + "Ġcried": 16266, + "Ġcries": 29206, + "Ġcrim": 7857, + "Ġcrime": 7206, + "Ġcrimes": 13916, + "Ġcrimin": 19044, + "Ġcriminal": 8628, + "Ġcriminals": 23474, + "Ġcringe": 47081, + "Ġcripp": 37667, + "Ġcris": 4661, + "Ġcrise": 32398, + "Ġcrises": 31403, + "Ġcrisis": 5869, + "Ġcrisp": 22952, + "Ġcrispy": 17509, + "Ġcrist": 35608, + "Ġcrit": 3113, + "Ġcriter": 9912, + "Ġcriteria": 11101, + "Ġcriterion": 46691, + "Ġcritic": 7850, + "Ġcritical": 4924, + "Ġcritically": 22797, + "Ġcriticism": 15835, + "Ġcriticisms": 48519, + "Ġcriticize": 31010, + "Ġcriticized": 28011, + "Ġcriticizing": 45474, + "Ġcritics": 22503, + "Ġcritique": 25673, + "Ġcro": 4848, + "Ġcroch": 8191, + "Ġcrochet": 9387, + "Ġcrochets": 27115, + "Ġcrocod": 32727, + "Ġcrocodile": 43652, + "Ġcrois": 21724, + "Ġcrooked": 41710, + "Ġcrop": 9086, + "Ġcrops": 16829, + "Ġcros": 28108, + "Ġcross": 3278, + "Ġcrossed": 14622, + "Ġcrosses": 28467, + "Ġcrossing": 14712, + "Ġcrossover": 33837, + "Ġcrouch": 46704, + "Ġcrow": 6401, + "Ġcrowd": 6919, + "Ġcrowded": 21634, + "Ġcrowds": 26070, + "Ġcrown": 11841, + "Ġcru": 5140, + "Ġcruc": 28154, + "Ġcrucial": 11462, + "Ġcrucified": 46846, + "Ġcrude": 30796, + "Ġcruel": 16022, + "Ġcruelty": 40145, + "Ġcruise": 17754, + "Ġcruising": 42180, + "Ġcrumble": 47478, + "Ġcrumbs": 42675, + "Ġcrunch": 13386, + "Ġcrunchy": 24942, + "Ġcrus": 42603, + "Ġcrush": 10321, + "Ġcrushed": 19889, + "Ġcrushing": 31317, + "Ġcrust": 18156, + "Ġcry": 3305, + "Ġcrying": 8554, + "Ġcrypt": 9844, + "Ġcrypto": 17240, + "Ġcryptocur": 22070, + "Ġcryptocurrencies": 44369, + "Ġcryptocurrency": 28809, + "Ġcryst": 17035, + "Ġcrystal": 13662, + "Ġcrystall": 31924, + "Ġcrystals": 23772, + "Ġcré": 15609, + "Ġcréd": 37368, + "Ġcréer": 32062, + "ĠcrÃŃt": 39927, + "Ġcs": 28277, + "Ġcsak": 47927, + "Ġcu": 2702, + "Ġcuad": 34434, + "Ġcual": 10911, + "Ġcuales": 46932, + "Ġcualquier": 21004, + "Ġcuando": 7767, + "Ġcuanto": 36685, + "Ġcuarto": 48368, + "Ġcuatro": 28795, + "Ġcub": 10057, + "Ġcube": 13728, + "Ġcubed": 36510, + "Ġcubes": 25415, + "Ġcubic": 28733, + "Ġcuc": 18488, + "Ġcucumber": 28725, + "Ġcucumbers": 43354, + "Ġcud": 40287, + "Ġcue": 22656, + "Ġcuent": 46414, + "Ġcuenta": 17868, + "Ġcuer": 18363, + "Ġcuerpo": 20264, + "Ġcues": 32192, + "Ġcuest": 36978, + "Ġcuestión": 50216, + "Ġcuff": 35997, + "Ġcui": 22929, + "Ġcuid": 20770, + "Ġcuidado": 31891, + "Ġcuisine": 25257, + "Ġcuk": 37485, + "Ġcul": 11021, + "Ġculinary": 39273, + "Ġculmin": 28583, + "Ġculpa": 44870, + "Ġculprit": 39220, + "Ġcult": 2376, + "Ġcultiv": 15298, + "Ġcultivate": 33341, + "Ġcultivated": 46770, + "Ġcultivation": 45924, + "Ġcultura": 30576, + "Ġcultural": 6988, + "Ġculturally": 28879, + "Ġculture": 3713, + "Ġcultures": 12951, + "Ġcum": 12713, + "Ġcuma": 44630, + "Ġcumin": 40950, + "Ġcumpl": 37483, + "Ġcumulative": 38379, + "Ġcunning": 45891, + "Ġcup": 4414, + "Ġcupboard": 47847, + "Ġcupcake": 42153, + "Ġcupcakes": 44515, + "Ġcups": 13381, + "Ġcur": 1262, + "Ġcurated": 47851, + "Ġcurator": 38519, + "Ġcurb": 33731, + "Ġcurd": 47443, + "Ġcure": 13698, + "Ġcured": 29617, + "Ġcurios": 13625, + "Ġcuriosity": 18769, + "Ġcurious": 6369, + "Ġcurl": 22591, + "Ġcurling": 45085, + "Ġcurls": 36950, + "Ġcurly": 32066, + "Ġcurrencies": 36886, + "Ġcurrency": 13346, + "Ġcurrent": 2190, + "Ġcurrently": 4362, + "Ġcurrents": 30110, + "Ġcurric": 13179, + "Ġcurriculum": 14302, + "Ġcurry": 18123, + "Ġcurs": 13946, + "Ġcurse": 17139, + "Ġcursed": 29498, + "Ġcurso": 31085, + "Ġcursor": 28169, + "Ġcurt": 28087, + "Ġcurtain": 26789, + "Ġcurtains": 36539, + "Ġcurv": 33900, + "Ġcurvature": 37638, + "Ġcurve": 7605, + "Ġcurved": 24991, + "Ġcurves": 19490, + "Ġcush": 18422, + "Ġcushion": 21908, + "Ġcust": 14884, + "Ġcustard": 46972, + "Ġcustody": 26976, + "Ġcustom": 2375, + "Ġcustomer": 5474, + "Ġcustomers": 4581, + "Ġcustomizable": 47922, + "Ġcustomization": 39387, + "Ġcustomize": 19734, + "Ġcustomized": 30581, + "Ġcustoms": 27330, + "Ġcut": 1723, + "Ġcute": 4052, + "Ġcutest": 46582, + "Ġcuts": 9992, + "Ġcutter": 25531, + "Ġcutting": 6492, + "Ġcuz": 11910, + "Ġcuál": 44318, + "Ġcuánt": 44256, + "Ġcuá»Ļc": 50138, + "Ġcy": 3185, + "Ġcyan": 47463, + "Ġcyber": 13411, + "Ġcybersecurity": 38765, + "Ġcyc": 38154, + "Ġcycl": 19474, + "Ġcycle": 6586, + "Ġcycles": 17796, + "Ġcycling": 22425, + "Ġcyl": 13446, + "Ġcylind": 28044, + "Ġcylinder": 17884, + "Ġcylinders": 42166, + "Ġcyn": 28365, + "Ġcynical": 46345, + "Ġcyst": 48915, + "Ġcyt": 40248, + "Ġcz": 6472, + "Ġczas": 13190, + "Ġczasie": 42667, + "Ġczasu": 40860, + "Ġczego": 36559, + "Ġczy": 6430, + "Ġczyli": 16591, + "Ġczym": 31466, + "ĠczÄĻ": 18544, + "ĠczÄĻsto": 34369, + "ĠczÄĻÅĽci": 41314, + "ĠczÄĻÅĽÄĩ": 47149, + "ĠczÅĤ": 31083, + "ĠczÅĤowie": 36282, + "Ġcá": 6476, + "Ġcác": 13250, + "Ġcách": 45762, + "Ġcái": 14830, + "Ġcámara": 44273, + "Ġcâ": 19288, + "Ġcâmera": 43640, + "Ġcé": 30560, + "Ġcél": 29064, + "Ġcélulas": 49092, + "Ġcéu": 50052, + "Ġcòn": 31394, + "Ġcó": 6333, + "Ġcód": 40210, + "Ġcódigo": 44195, + "Ġcómo": 12826, + "Ġcô": 35167, + "Ġcông": 35451, + "Ġcôt": 16857, + "Ġcôté": 18437, + "Ġcùng": 45701, + "ĠcÄĥ": 21957, + "ĠcÅ": 17846, + "ĠcÅ©ng": 22747, + "ĠcÅĵ": 41388, + "ĠcÅĵur": 43207, + "Ġcả": 22227, + "Ġcảm": 47593, + "Ġcần": 47580, + "Ġcá»": 9613, + "Ġcủa": 11990, + "Ġcứ": 46619, + "Ġd": 274, + "ĠdB": 43116, + "Ġda": 1120, + "Ġdaar": 12390, + "Ġdab": 28964, + "Ġdabei": 14967, + "Ġdachte": 39775, + "Ġdad": 3546, + "Ġdaddy": 16785, + "Ġdado": 29568, + "Ġdados": 39915, + "Ġdads": 41798, + "Ġdadurch": 35472, + "Ġdafür": 13747, + "Ġdag": 15460, + "Ġdage": 41557, + "Ġdagegen": 45387, + "Ġdagen": 49638, + "Ġdagger": 36972, + "Ġdah": 16800, + "Ġdaha": 10545, + "Ġdaher": 36971, + "Ġdai": 38586, + "Ġdaily": 5212, + "Ġdairy": 21276, + "Ġdak": 25329, + "Ġdakika": 34323, + "Ġdal": 11702, + "Ġdalam": 23063, + "Ġdale": 27326, + "Ġdalej": 34257, + "Ġdall": 43351, + "Ġdalla": 35566, + "Ġdam": 2422, + "Ġdamage": 4344, + "Ġdamaged": 14080, + "Ġdamages": 28536, + "Ġdamaging": 25342, + "Ġdamals": 26067, + "Ġdamit": 9479, + "Ġdamn": 8151, + "Ġdamned": 46397, + "Ġdamp": 19498, + "Ġdamping": 49588, + "Ġdan": 3277, + "Ġdanach": 37784, + "Ġdance": 4489, + "Ġdanced": 32909, + "Ġdancer": 21621, + "Ġdancers": 25199, + "Ġdances": 28322, + "Ġdancing": 8898, + "Ġdando": 29854, + "Ġdane": 49206, + "Ġdang": 21892, + "Ġdanger": 4330, + "Ġdangerous": 5795, + "Ġdangers": 27701, + "Ġdank": 35121, + "Ġdanke": 46434, + "Ġdann": 3594, + "Ġdans": 2680, + "Ġdapat": 35161, + "Ġdaqui": 30485, + "Ġdar": 4072, + "Ġdaran": 24520, + "Ġdarauf": 18654, + "Ġdare": 8955, + "Ġdared": 44564, + "Ġdares": 50213, + "Ġdarf": 19374, + "Ġdari": 15597, + "Ġdaring": 43128, + "Ġdark": 2877, + "Ġdarker": 12741, + "Ġdarkest": 33460, + "Ġdarkness": 11262, + "Ġdarle": 37666, + "Ġdarling": 22405, + "Ġdarn": 29063, + "Ġdart": 39010, + "Ġdarum": 27313, + "Ġdarüber": 21737, + "Ġdas": 1482, + "Ġdash": 8240, + "Ġdashboard": 18342, + "Ġdass": 2658, + "Ġdat": 1137, + "Ġdata": 1412, + "Ġdatab": 7104, + "Ġdatabase": 8149, + "Ġdatabases": 22380, + "Ġdatas": 20377, + "Ġdataset": 28872, + "Ġdatasets": 42856, + "Ġdate": 4002, + "Ġdated": 23804, + "Ġdates": 11691, + "Ġdating": 10689, + "Ġdato": 46971, + "Ġdatos": 27721, + "Ġdau": 37359, + "Ġdaughter": 4653, + "Ġdaughters": 17070, + "Ġdaunting": 37657, + "Ġdav": 11753, + "Ġdavon": 18574, + "Ġdaw": 43438, + "Ġdawn": 18192, + "Ġday": 786, + "Ġdaylight": 29964, + "Ġdays": 1708, + "Ġdaytime": 31908, + "Ġdazu": 13034, + "Ġdazz": 44078, + "ĠdaÃŃ": 48113, + "Ġde": 368, + "Ġdeactiv": 45428, + "Ġdead": 3116, + "Ġdeadline": 20615, + "Ġdeadlines": 37548, + "Ġdeadly": 18232, + "Ġdeaf": 15559, + "Ġdeal": 2028, + "Ġdealer": 24896, + "Ġdealers": 25955, + "Ġdealing": 6260, + "Ġdeals": 11215, + "Ġdealt": 15991, + "Ġdean": 31120, + "Ġdear": 6875, + "Ġdeath": 2966, + "Ġdeaths": 13027, + "Ġdeb": 3001, + "Ġdebate": 7958, + "Ġdebated": 42212, + "Ġdebates": 24203, + "Ġdebating": 40647, + "Ġdebe": 27422, + "Ġdeben": 49187, + "Ġdeber": 29671, + "Ġdebido": 50003, + "Ġdebit": 39709, + "Ġdebr": 19958, + "Ġdebris": 21942, + "Ġdebt": 7831, + "Ġdebts": 32528, + "Ġdebug": 24083, + "Ġdebugging": 45592, + "Ġdebut": 13828, + "Ġdebuted": 33392, + "Ġdec": 979, + "Ġdecade": 10378, + "Ġdecades": 7878, + "Ġdecay": 21039, + "Ġdece": 14088, + "Ġdeceased": 33156, + "Ġdeceive": 43440, + "Ġdeceived": 41304, + "Ġdecent": 8681, + "Ġdecentral": 26515, + "Ġdecentralized": 32870, + "Ġdeception": 40451, + "Ġdeci": 46358, + "Ġdecid": 21937, + "Ġdecide": 4536, + "Ġdecided": 3047, + "Ġdecides": 14898, + "Ġdeciding": 17990, + "Ġdecimal": 26601, + "Ġdecipher": 49859, + "Ġdecir": 10235, + "Ġdecis": 18206, + "Ġdecision": 3537, + "Ġdecisions": 5327, + "Ġdecisive": 34998, + "Ġdeck": 9341, + "Ġdecks": 32607, + "Ġdecl": 7488, + "Ġdeclar": 16694, + "Ġdeclaration": 27606, + "Ġdeclare": 19710, + "Ġdeclared": 15489, + "Ġdeclaring": 40374, + "Ġdecline": 15635, + "Ġdeclined": 29213, + "Ġdeclining": 34298, + "Ġdecomp": 22867, + "Ġdecomposition": 48356, + "Ġdeconst": 49473, + "Ġdecor": 7919, + "Ġdecorate": 24229, + "Ġdecorated": 28422, + "Ġdecorating": 39172, + "Ġdecoration": 26538, + "Ġdecorations": 32367, + "Ġdecorative": 35185, + "Ġdecre": 6853, + "Ġdecrease": 11514, + "Ġdecreased": 24436, + "Ġdecreases": 24108, + "Ġdecreasing": 23223, + "Ġdecree": 41071, + "ĠdecÃŃa": 37599, + "Ġded": 4172, + "Ġdedans": 48680, + "Ġdedi": 19731, + "Ġdedic": 37071, + "Ġdedicate": 30718, + "Ġdedicated": 8374, + "Ġdedication": 21813, + "Ġdedim": 31848, + "Ġdeduct": 31513, + "Ġdeduction": 46385, + "Ġdeed": 30299, + "Ġdeeds": 24539, + "Ġdeemed": 27637, + "Ġdeep": 2452, + "Ġdeepen": 45806, + "Ġdeeper": 7731, + "Ġdeepest": 28288, + "Ġdeeply": 8760, + "Ġdeer": 17120, + "Ġdef": 1060, + "Ġdefault": 7576, + "Ġdefe": 7486, + "Ġdefeat": 11785, + "Ġdefeated": 15563, + "Ġdefeating": 38381, + "Ġdefect": 16445, + "Ġdefects": 32655, + "Ġdefence": 25913, + "Ġdefend": 8602, + "Ġdefendant": 34053, + "Ġdefended": 34135, + "Ġdefender": 26537, + "Ġdefenders": 36063, + "Ġdefending": 21377, + "Ġdefens": 47746, + "Ġdefense": 7654, + "Ġdefenses": 35989, + "Ġdefensive": 16468, + "Ġdefer": 25704, + "Ġdefic": 19248, + "Ġdeficiency": 37500, + "Ġdeficit": 22132, + "Ġdeficits": 49616, + "Ġdefin": 1561, + "Ġdefine": 6964, + "Ġdefined": 7642, + "Ġdefines": 23122, + "Ġdefining": 17827, + "Ġdefinit": 28781, + "Ġdefinite": 25131, + "Ġdefinitely": 2138, + "Ġdefinition": 7123, + "Ġdefinitions": 21988, + "Ġdefinitive": 28152, + "Ġdeflect": 41373, + "Ġdeform": 36094, + "Ġdeformation": 34364, + "Ġdeg": 2821, + "Ġdegener": 40520, + "Ġdegli": 32079, + "Ġdegrad": 24740, + "Ġdegradation": 40519, + "Ġdegree": 4314, + "Ġdegrees": 5310, + "Ġdeh": 36892, + "Ġdehyd": 32102, + "Ġdei": 13874, + "Ġdein": 25641, + "Ġdeine": 28395, + "Ġdeinen": 49362, + "Ġdeity": 37939, + "Ġdeix": 9963, + "Ġdeixa": 26208, + "Ġdeixar": 19701, + "Ġdej": 21259, + "Ġdeja": 38260, + "Ġdejar": 24391, + "Ġdel": 1103, + "Ġdela": 21820, + "Ġdelay": 8577, + "Ġdelayed": 20268, + "Ġdelays": 28610, + "Ġdele": 16376, + "Ġdeleg": 15824, + "Ġdelegate": 40999, + "Ġdelegates": 45756, + "Ġdelegation": 36602, + "Ġdeles": 30789, + "Ġdelete": 12097, + "Ġdeleted": 22981, + "Ġdeleting": 48946, + "Ġdeliber": 14207, + "Ġdeliberate": 30515, + "Ġdeliberately": 23506, + "Ġdelic": 29831, + "Ġdelicate": 21417, + "Ġdelicious": 4809, + "Ġdelight": 11627, + "Ġdelighted": 18783, + "Ġdelightful": 35194, + "Ġdeliver": 4239, + "Ġdelivered": 10144, + "Ġdeliveries": 46448, + "Ġdelivering": 14666, + "Ġdelivers": 24860, + "Ġdelivery": 8982, + "Ġdell": 19781, + "Ġdella": 11618, + "Ġdelle": 16485, + "Ġdels": 23724, + "Ġdelta": 8289, + "Ġdelve": 43098, + "Ġdem": 1371, + "Ġdemain": 44389, + "Ġdemais": 36879, + "Ġdemand": 4733, + "Ġdemande": 26982, + "Ġdemanded": 28276, + "Ġdemander": 39169, + "Ġdemanding": 19960, + "Ġdemands": 15107, + "Ġdemandé": 48468, + "Ġdemasi": 35259, + "Ġdemasiado": 39820, + "Ġdeme": 35465, + "Ġdemek": 32491, + "Ġdement": 29950, + "Ġdementia": 31734, + "Ġdemi": 42188, + "Ġdemise": 45982, + "ĠdemiÅŁ": 46334, + "Ġdemo": 10723, + "Ġdemocr": 6366, + "Ġdemocracy": 10528, + "Ġdemocrat": 37221, + "Ġdemocratic": 15337, + "Ġdemocrats": 47665, + "Ġdemographic": 26331, + "Ġdemographics": 36884, + "Ġdemokrat": 49432, + "Ġdemol": 26933, + "Ġdemon": 14283, + "Ġdemonic": 41297, + "Ġdemons": 19733, + "Ġdemonst": 5516, + "Ġdemonstrate": 11698, + "Ġdemonstrated": 18772, + "Ġdemonstrates": 31034, + "Ġdemonstrating": 29889, + "Ġdemonstration": 16520, + "Ġdemonstrations": 34714, + "Ġdemos": 33788, + "Ġdemost": 41556, + "Ġdemás": 34682, + "Ġden": 1441, + "Ġdenen": 19998, + "Ġdengan": 13877, + "Ġdenial": 28754, + "Ġdenied": 17774, + "Ġdenim": 43535, + "Ġdenk": 21285, + "Ġdenke": 27245, + "Ġdenken": 28780, + "Ġdenkt": 38658, + "Ġdenn": 10471, + "Ġdenomin": 16244, + "Ġdenominator": 20687, + "Ġdenote": 45708, + "Ġdens": 24505, + "Ġdense": 18011, + "Ġdensity": 10305, + "Ġdent": 7059, + "Ġdental": 24473, + "Ġdentist": 28666, + "Ġdentro": 10856, + "Ġdeny": 15744, + "Ġdenying": 30363, + "Ġdep": 1367, + "Ġdepart": 9110, + "Ġdeparted": 47018, + "Ġdepartment": 5882, + "Ġdepartments": 15326, + "Ġdeparture": 25866, + "Ġdepend": 5672, + "Ġdepende": 47091, + "Ġdependence": 31704, + "Ġdependencies": 36606, + "Ġdependency": 33621, + "Ġdependent": 12334, + "Ġdepending": 5413, + "Ġdepends": 5946, + "Ġdepict": 31553, + "Ġdepicted": 30207, + "Ġdepiction": 47740, + "Ġdepicts": 48949, + "Ġdepl": 37546, + "Ġdeploy": 7274, + "Ġdeployed": 17826, + "Ġdeploying": 34198, + "Ġdeployment": 19317, + "Ġdepois": 13880, + "Ġdeport": 33485, + "Ġdepos": 19930, + "Ġdeposit": 19107, + "Ġdeposited": 42002, + "Ġdeposits": 30958, + "Ġdepreci": 40609, + "Ġdepress": 44248, + "Ġdepressed": 18713, + "Ġdepressing": 36355, + "Ġdepression": 10799, + "Ġdepri": 27095, + "Ġdeprived": 42086, + "Ġdepth": 7161, + "Ġdepths": 28439, + "Ġdepuis": 16062, + "Ġdeputy": 26692, + "Ġder": 1163, + "Ġdere": 15969, + "Ġderecho": 39055, + "Ġderechos": 47508, + "Ġderen": 48300, + "Ġderiv": 10151, + "Ġderivative": 13760, + "Ġderivatives": 33733, + "Ġderive": 28446, + "Ġderived": 18949, + "Ġderm": 33080, + "Ġdermat": 43706, + "Ġderni": 20562, + "Ġdernier": 29332, + "Ġdernière": 29028, + "Ġderrière": 31465, + "Ġders": 39636, + "Ġdes": 730, + "Ġdesaf": 34587, + "Ġdesap": 36546, + "Ġdesapare": 42316, + "Ġdesar": 21464, + "Ġdesarroll": 32501, + "Ġdesarrollo": 38295, + "Ġdesc": 7471, + "Ġdescend": 16333, + "Ġdescendants": 31693, + "Ġdescended": 41311, + "Ġdescending": 40182, + "Ġdescent": 23475, + "Ġdescob": 31700, + "Ġdescobrir": 45900, + "Ġdescon": 49801, + "Ġdescri": 2189, + "Ġdescribe": 6786, + "Ġdescribed": 7619, + "Ġdescribes": 15626, + "Ġdescribing": 16141, + "Ġdescript": 31280, + "Ġdescription": 3855, + "Ġdescriptions": 24406, + "Ġdescriptive": 42585, + "Ġdescrição": 42051, + "Ġdescub": 32592, + "Ġdesde": 10188, + "Ġdese": 27118, + "Ġdesem": 38850, + "Ġdesen": 18291, + "Ġdesenvol": 28683, + "Ġdesenvolv": 47835, + "Ġdesert": 11029, + "Ġdeserted": 47983, + "Ġdeserve": 9948, + "Ġdeserved": 27964, + "Ġdeserves": 17037, + "Ġdeserving": 48781, + "Ġdeshalb": 28457, + "Ġdesign": 1715, + "Ġdesignated": 21688, + "Ġdesignation": 40838, + "Ġdesigned": 4761, + "Ġdesigner": 11795, + "Ġdesigners": 16196, + "Ġdesigning": 14685, + "Ġdesigns": 11347, + "Ġdesirable": 30533, + "Ġdesire": 7516, + "Ġdesired": 14721, + "Ġdesires": 18005, + "Ġdesk": 10026, + "Ġdesktop": 14502, + "Ġdesp": 4887, + "Ġdespair": 25763, + "Ġdesper": 10679, + "Ġdesperate": 17601, + "Ġdesperately": 23726, + "Ġdesperation": 48980, + "Ġdespite": 7228, + "Ġdesprés": 42237, + "Ġdespués": 15283, + "Ġdess": 6874, + "Ġdessa": 18554, + "Ġdessas": 40083, + "Ġdesse": 17864, + "Ġdessert": 14593, + "Ġdesserts": 37913, + "Ġdesses": 36409, + "Ġdessus": 30677, + "Ġdest": 2677, + "Ġdesta": 45943, + "Ġdestac": 46393, + "Ġdeste": 38738, + "Ġdestin": 40254, + "Ġdestination": 12236, + "Ġdestinations": 37787, + "Ġdestined": 33169, + "Ġdestiny": 17893, + "Ġdestro": 15311, + "Ġdestroy": 5293, + "Ġdestroyed": 8937, + "Ġdestroying": 19926, + "Ġdestroys": 36714, + "Ġdestru": 34235, + "Ġdestruction": 13563, + "Ġdestructive": 26960, + "Ġdeswegen": 26482, + "Ġdet": 1141, + "Ġdetach": 43245, + "Ġdetached": 42050, + "Ġdetail": 2607, + "Ġdetailed": 9942, + "Ġdetailing": 42459, + "Ġdetails": 4365, + "Ġdetained": 41452, + "Ġdetal": 33185, + "Ġdetect": 5531, + "Ġdetected": 21896, + "Ġdetecting": 40237, + "Ġdetection": 17784, + "Ġdetective": 25571, + "Ġdetector": 25712, + "Ġdetectors": 46866, + "Ġdetention": 31291, + "Ġdeter": 15092, + "Ġdeterior": 26431, + "Ġdeterm": 3618, + "Ġdetermin": 15957, + "Ġdeterminant": 41296, + "Ġdetermination": 18432, + "Ġdetermine": 6997, + "Ġdetermined": 9540, + "Ġdetermines": 24799, + "Ġdetermining": 23751, + "Ġdeton": 39920, + "Ġdetox": 34904, + "Ġdetriment": 35430, + "Ġdetrimental": 45694, + "Ġdetta": 48888, + "Ġdette": 47126, + "Ġdetto": 41031, + "Ġdeu": 25661, + "Ġdeutlich": 24344, + "Ġdeuts": 23004, + "Ġdeutsche": 47502, + "Ġdeutschen": 39707, + "Ġdeux": 8208, + "Ġdeuxième": 29112, + "Ġdev": 1905, + "Ġdevam": 25645, + "Ġdevant": 28982, + "Ġdevast": 13959, + "Ġdevastated": 34880, + "Ġdevastating": 21280, + "Ġdeve": 17761, + "Ġdevelop": 1499, + "Ġdeveloped": 4743, + "Ġdeveloper": 10754, + "Ġdevelopers": 8849, + "Ġdeveloping": 6416, + "Ġdevelopment": 3250, + "Ġdevelopmental": 30160, + "Ġdevelopments": 20862, + "Ġdevelops": 25453, + "Ġdeven": 43115, + "Ġdevenir": 41271, + "Ġdever": 40739, + "Ġdevi": 31219, + "Ġdeviation": 25163, + "Ġdevice": 4302, + "Ġdevices": 5759, + "Ġdevient": 42100, + "Ġdevil": 13297, + "Ġdevo": 49717, + "Ġdevoir": 48920, + "Ġdevot": 13697, + "Ġdevote": 23184, + "Ġdevoted": 21815, + "Ġdevotees": 46960, + "Ġdevotion": 30671, + "Ġdevrait": 43356, + "Ġdew": 48745, + "Ġdez": 45057, + "Ġdeze": 18040, + "ĠdeÄŁ": 7725, + "ĠdeÄŁer": 47584, + "ĠdeÄŁil": 9920, + "ĠdeÄŁild": 49587, + "ĠdeÄŁiÅŁ": 30435, + "Ġdi": 1026, + "Ġdia": 6801, + "Ġdiab": 33227, + "Ġdiabetes": 13881, + "Ġdiabetic": 50238, + "Ġdiagn": 7234, + "Ġdiagnose": 36238, + "Ġdiagnosed": 16899, + "Ġdiagnosis": 15217, + "Ġdiagnost": 43215, + "Ġdiagnostic": 27897, + "Ġdiagon": 17405, + "Ġdiagonal": 21539, + "Ġdiagram": 10686, + "Ġdiagrams": 36709, + "Ġdial": 5502, + "Ġdialect": 24652, + "Ġdialog": 19308, + "Ġdialogue": 10221, + "Ġdialogues": 45551, + "Ġdiam": 7484, + "Ġdiameter": 14196, + "Ġdiamond": 16059, + "Ġdiamonds": 22612, + "Ġdiaper": 45121, + "Ġdiapers": 48496, + "Ġdiaphrag": 46711, + "Ġdiarr": 37565, + "Ġdiarrhea": 41282, + "Ġdiary": 26492, + "Ġdias": 21084, + "Ġdib": 23064, + "Ġdibuj": 46621, + "Ġdic": 14285, + "Ġdice": 10313, + "Ġdicen": 33816, + "Ġdich": 10390, + "Ġdicho": 27346, + "Ġdicht": 48774, + "Ġdiciendo": 42797, + "Ġdick": 18659, + "Ġdict": 12569, + "Ġdictate": 36071, + "Ġdictator": 42852, + "Ġdictators": 34708, + "Ġdictatorship": 44349, + "Ġdiction": 22352, + "Ġdictionary": 25890, + "Ġdid": 630, + "Ġdidn": 994, + "Ġdidnt": 38634, + "Ġdie": 978, + "Ġdied": 4539, + "Ġdies": 2714, + "Ġdiese": 6705, + "Ġdiesel": 21258, + "Ġdiesem": 10975, + "Ġdiesen": 12862, + "Ġdieser": 9053, + "Ġdieses": 12113, + "Ġdiet": 6339, + "Ġdieta": 37967, + "Ġdietary": 37421, + "Ġdiets": 33867, + "Ġdiez": 48165, + "Ġdif": 679, + "Ġdifer": 10918, + "Ġdiferen": 18959, + "Ġdiferencia": 38844, + "Ġdiferente": 20973, + "Ġdiferentes": 17686, + "Ġdiferença": 38336, + "Ġdiff": 7593, + "Ġdiffer": 743, + "Ġdifference": 2649, + "Ġdifferences": 7300, + "Ġdifferent": 819, + "Ġdifferenti": 27372, + "Ġdifferential": 15756, + "Ġdifferentiate": 23203, + "Ġdifferentiation": 38902, + "Ġdifferently": 7614, + "Ġdiffers": 37761, + "Ġdiffic": 2204, + "Ġdifficile": 26607, + "Ġdifficult": 2252, + "Ġdifficulties": 14399, + "Ġdifficulty": 10360, + "Ġdiffuse": 42165, + "Ġdiffusion": 25242, + "Ġdiffé": 14397, + "Ġdifférence": 45952, + "Ġdifférent": 19384, + "Ġdifférentes": 35438, + "Ġdifférents": 33948, + "Ġdific": 29615, + "ĠdifÃŃ": 16774, + "ĠdifÃŃcil": 17258, + "Ġdig": 2528, + "Ġdigamos": 36430, + "Ġdigest": 13884, + "Ġdigestion": 40560, + "Ġdigestive": 32696, + "Ġdigging": 17343, + "Ġdigit": 14293, + "Ġdigital": 4562, + "Ġdigitally": 36938, + "Ġdigits": 27011, + "Ġdign": 15308, + "Ġdignity": 19672, + "Ġdigo": 22990, + "Ġdij": 47709, + "Ġdije": 39414, + "Ġdijo": 27024, + "Ġdikk": 48926, + "Ġdil": 11504, + "Ġdile": 25623, + "Ġdilemma": 34312, + "Ġdilig": 47646, + "Ġdiligence": 40046, + "Ġdiligent": 50251, + "Ġdiligently": 49013, + "Ġdim": 5013, + "Ġdime": 36330, + "Ġdimension": 10139, + "Ġdimensional": 18795, + "Ġdimensions": 12819, + "Ġdimin": 15739, + "Ġdiminish": 48696, + "Ġdiminished": 40206, + "Ġdin": 3791, + "Ġdinero": 27923, + "Ġding": 21211, + "Ġdingen": 40870, + "Ġdings": 32724, + "Ġdinheiro": 23760, + "Ġdining": 17874, + "Ġdinner": 6148, + "Ġdinosaur": 23627, + "Ġdinosaurs": 25851, + "Ġdio": 31965, + "Ġdiode": 40787, + "Ġdiox": 18982, + "Ġdioxide": 19590, + "Ġdip": 10460, + "Ġdipl": 11432, + "Ġdiplom": 20053, + "Ġdiploma": 35770, + "Ġdiplomacy": 35184, + "Ġdiplomatic": 26553, + "Ġdipped": 45162, + "Ġdipping": 35584, + "Ġdips": 47814, + "Ġdir": 4746, + "Ġdire": 1264, + "Ġdirect": 2047, + "Ġdirectamente": 46230, + "Ġdirected": 12898, + "Ġdirectement": 37297, + "Ġdirecting": 26979, + "Ġdirection": 3513, + "Ġdirectional": 42242, + "Ġdirections": 11095, + "Ġdirective": 45444, + "Ġdirectly": 3838, + "Ġdirector": 5391, + "Ġdirectors": 17307, + "Ġdirectory": 21120, + "Ġdireito": 36601, + "Ġdirekt": 20315, + "Ġdiret": 48196, + "Ġdirig": 35243, + "Ġdirt": 11483, + "Ġdirty": 9360, + "Ġdis": 717, + "Ġdisabilities": 13367, + "Ġdisability": 11090, + "Ġdisable": 28362, + "Ġdisabled": 15191, + "Ġdisad": 15828, + "Ġdisadvant": 26380, + "Ġdisadvantage": 24292, + "Ġdisadvantaged": 46826, + "Ġdisadvantages": 37431, + "Ġdisag": 10414, + "Ġdisagre": 23926, + "Ġdisagree": 14091, + "Ġdisagreement": 38947, + "Ġdisapp": 4518, + "Ġdisappe": 6657, + "Ġdisappear": 11596, + "Ġdisappearance": 37049, + "Ġdisappeared": 13954, + "Ġdisappearing": 34900, + "Ġdisappears": 25527, + "Ġdisappoint": 8505, + "Ġdisappointed": 13856, + "Ġdisappointing": 25054, + "Ġdisappointment": 28175, + "Ġdisast": 42103, + "Ġdisaster": 11293, + "Ġdisasters": 27966, + "Ġdisastrous": 44502, + "Ġdisbel": 36105, + "Ġdisc": 2983, + "Ġdiscard": 31597, + "Ġdiscarded": 45469, + "Ġdiscern": 30868, + "Ġdischarge": 21718, + "Ġdischarged": 37081, + "Ġdisci": 6507, + "Ġdiscipl": 8644, + "Ġdisciple": 32100, + "Ġdisciples": 17209, + "Ġdiscipline": 13635, + "Ġdisciplined": 40061, + "Ġdisciplines": 21919, + "Ġdiscl": 17092, + "Ġdisclaimer": 40896, + "Ġdisclose": 36146, + "Ġdisclosure": 30392, + "Ġdisco": 3622, + "Ġdiscomfort": 28552, + "Ġdisconnect": 14299, + "Ġdisconnected": 29426, + "Ġdiscontin": 31420, + "Ġdiscord": 32989, + "Ġdiscount": 11635, + "Ġdiscounts": 37930, + "Ġdiscour": 21497, + "Ġdiscouraged": 35010, + "Ġdiscours": 43609, + "Ġdiscourse": 23938, + "Ġdiscover": 4411, + "Ġdiscovered": 6941, + "Ġdiscoveries": 28400, + "Ġdiscovering": 24773, + "Ġdiscovers": 44522, + "Ġdiscovery": 12114, + "Ġdiscret": 25656, + "Ġdiscrete": 27706, + "Ġdiscretion": 30140, + "Ġdiscrimin": 20828, + "Ġdiscriminate": 47833, + "Ġdiscrimination": 15973, + "Ġdiscs": 37525, + "Ġdiscuss": 2248, + "Ġdiscussed": 7152, + "Ġdiscussing": 10850, + "Ġdiscussion": 5017, + "Ġdiscussions": 11088, + "Ġdiscut": 42085, + "Ġdise": 3814, + "Ġdisease": 4752, + "Ġdiseases": 11044, + "Ġdisent": 37313, + "Ġdisfr": 37114, + "Ġdisg": 14116, + "Ġdisgr": 32632, + "Ġdisgrace": 41702, + "Ġdisgu": 23333, + "Ġdisguise": 32751, + "Ġdisgusting": 17552, + "Ġdish": 5025, + "Ġdishes": 10814, + "Ġdishon": 37127, + "Ġdishwas": 35992, + "Ġdishwasher": 38009, + "Ġdisinfect": 33334, + "Ġdisintegr": 45354, + "Ġdisk": 12355, + "Ġdisks": 41617, + "Ġdiskut": 36760, + "Ġdisl": 43186, + "Ġdislike": 26006, + "Ġdisloc": 39025, + "Ġdism": 12456, + "Ġdismant": 30506, + "Ġdismiss": 16974, + "Ġdismissed": 29970, + "Ġdisobed": 49171, + "Ġdisorder": 13399, + "Ġdisorders": 20261, + "Ġdisp": 4920, + "Ġdispar": 14548, + "Ġdisparities": 32514, + "Ġdisparity": 47415, + "Ġdispatch": 36729, + "Ġdispers": 24631, + "Ġdispersed": 48059, + "Ġdispl": 14996, + "Ġdisplaced": 33692, + "Ġdisplacement": 21899, + "Ġdisplay": 4674, + "Ġdisplayed": 16372, + "Ġdisplaying": 36834, + "Ġdisplays": 20119, + "Ġdispon": 23311, + "Ġdispos": 15885, + "Ġdisposable": 41578, + "Ġdisposal": 26400, + "Ġdispose": 42537, + "Ġdisposit": 34769, + "Ġdisposition": 40293, + "Ġdisproportion": 28734, + "Ġdisproportionately": 43397, + "Ġdisput": 37669, + "Ġdispute": 25379, + "Ġdisputes": 39666, + "Ġdisreg": 36405, + "Ġdisregard": 44493, + "Ġdisrespect": 27058, + "Ġdisrespectful": 47750, + "Ġdisrupt": 14124, + "Ġdisrupted": 42271, + "Ġdisruption": 28751, + "Ġdisruptive": 37865, + "Ġdiss": 7802, + "Ġdisse": 17581, + "Ġdissect": 48332, + "Ġdissemin": 34585, + "Ġdissert": 36828, + "Ġdissertation": 39555, + "Ġdissip": 29544, + "Ġdisso": 20088, + "Ġdissoci": 44446, + "Ġdissol": 15840, + "Ġdissolve": 30150, + "Ġdissolved": 30651, + "Ġdist": 1483, + "Ġdistance": 4560, + "Ġdistances": 22182, + "Ġdistancing": 18567, + "Ġdistant": 17275, + "Ġdistill": 42923, + "Ġdistinct": 10644, + "Ġdistinction": 16844, + "Ġdistinctive": 27766, + "Ġdistingu": 11365, + "Ġdistinguish": 20206, + "Ġdistinguished": 21702, + "Ġdistint": 31489, + "Ġdistintos": 49337, + "Ġdistort": 37555, + "Ġdistorted": 33431, + "Ġdistortion": 28426, + "Ġdistract": 9945, + "Ġdistracted": 21658, + "Ġdistracting": 36689, + "Ġdistraction": 30217, + "Ġdistractions": 37887, + "Ġdistress": 24516, + "Ġdistrib": 4400, + "Ġdistribute": 20594, + "Ġdistributed": 12631, + "Ġdistributing": 41406, + "Ġdistribution": 7316, + "Ġdistributions": 37870, + "Ġdistributor": 49192, + "Ġdistrict": 6566, + "Ġdistricts": 16815, + "Ġdistur": 10242, + "Ġdisturb": 18071, + "Ġdisturbance": 35684, + "Ġdisturbed": 30558, + "Ġdisturbing": 21903, + "Ġdit": 6176, + "Ġditch": 25325, + "Ġdites": 48291, + "Ġdiu": 40297, + "Ġdiv": 3414, + "Ġdive": 9192, + "Ġdiver": 18558, + "Ġdivergence": 47387, + "Ġdivers": 6111, + "Ġdiverse": 9521, + "Ġdiversion": 49422, + "Ġdiversity": 8811, + "Ġdivert": 23781, + "Ġdivid": 4996, + "Ġdivide": 9845, + "Ġdivided": 6666, + "Ġdividend": 29796, + "Ġdividends": 39675, + "Ġdivides": 41347, + "Ġdividing": 26764, + "Ġdivine": 13678, + "Ġdiving": 20241, + "Ġdivis": 25974, + "Ġdivision": 10044, + "Ġdivisions": 24328, + "Ġdivor": 11861, + "Ġdivorce": 16052, + "Ġdivorced": 27670, + "Ġdivul": 47291, + "Ġdiy": 34275, + "Ġdiye": 12968, + "Ġdiyor": 17587, + "Ġdiyorsun": 38537, + "Ġdiyorum": 37190, + "Ġdiz": 12098, + "Ġdizendo": 47026, + "Ġdizer": 17159, + "Ġdizzy": 31098, + "ĠdiÄŁer": 44525, + "Ġdl": 37873, + "Ġdla": 12285, + "Ġdlatego": 32205, + "Ġdni": 46125, + "Ġdo": 360, + "Ġdoable": 41183, + "Ġdob": 27082, + "Ġdobr": 23067, + "Ġdobre": 41959, + "Ġdobry": 35884, + "Ġdobrze": 28335, + "Ġdoc": 3211, + "Ġdoch": 9243, + "Ġdock": 20929, + "Ġdocs": 45623, + "Ġdoct": 17112, + "Ġdoctor": 4631, + "Ġdoctoral": 41419, + "Ġdoctors": 8778, + "Ġdoctr": 46040, + "Ġdoctrine": 23290, + "Ġdocument": 4166, + "Ġdocumentaries": 41630, + "Ġdocumentary": 15674, + "Ġdocumentation": 14333, + "Ġdocumented": 23007, + "Ġdocumenting": 42360, + "Ġdocuments": 8512, + "Ġdod": 13886, + "Ġdodge": 27238, + "Ġdoe": 35319, + "Ġdoen": 15159, + "Ġdoes": 775, + "Ġdoesn": 1177, + "Ġdoet": 44138, + "Ġdog": 3000, + "Ġdogs": 7197, + "Ġdoin": 23503, + "Ġdoing": 884, + "Ġdois": 11854, + "Ġdoit": 19193, + "Ġdoivent": 44341, + "Ġdok": 25037, + "Ġdokument": 40858, + "ĠdokÅĤad": 45864, + "Ġdol": 17858, + "Ġdoll": 2722, + "Ġdollar": 7241, + "Ġdollars": 3808, + "Ġdolls": 29134, + "Ġdolor": 42416, + "Ġdolph": 29188, + "Ġdolphin": 46759, + "Ġdolphins": 44835, + "Ġdom": 3285, + "Ġdomain": 9274, + "Ġdomains": 25514, + "Ġdome": 27191, + "Ġdomest": 39125, + "Ġdomestic": 10939, + "Ġdomin": 8859, + "Ġdominance": 34987, + "Ġdominant": 15657, + "Ġdominate": 28246, + "Ġdominated": 23755, + "Ġdominating": 43306, + "Ġdomination": 41502, + "Ġdomu": 48465, + "Ġdon": 500, + "Ġdona": 48583, + "Ġdonate": 17751, + "Ġdonated": 23723, + "Ġdonating": 36686, + "Ġdonation": 19724, + "Ġdonations": 22705, + "Ġdonc": 5926, + "Ġdonde": 10488, + "Ġdone": 1096, + "Ġdong": 33079, + "Ġdonkey": 34834, + "Ġdonn": 33258, + "Ġdonne": 21837, + "Ġdonner": 20882, + "Ġdonné": 31165, + "Ġdonnées": 40101, + "Ġdonor": 25493, + "Ġdonors": 25521, + "Ġdont": 9400, + "Ġdonut": 33782, + "Ġdonuts": 36826, + "ĠdonÃŃt": 36311, + "Ġdoo": 27572, + "Ġdoom": 37131, + "Ġdoomed": 33847, + "Ġdoor": 2853, + "Ġdoors": 8077, + "Ġdoorway": 41992, + "Ġdop": 21900, + "Ġdopamine": 37219, + "Ġdope": 23383, + "Ġdopo": 35196, + "Ġdopp": 44862, + "Ġdor": 26313, + "Ġdorm": 12521, + "Ġdormir": 33098, + "Ġdort": 15775, + "Ġdos": 4491, + "Ġdose": 14041, + "Ġdoses": 22576, + "Ġdoss": 47831, + "Ġdost": 20568, + "ĠdostÄĻp": 48209, + "Ġdot": 5893, + "Ġdots": 15026, + "Ġdotted": 37459, + "Ġdou": 2482, + "Ġdoub": 10831, + "Ġdouble": 3834, + "Ġdoubled": 24405, + "Ġdoubles": 31634, + "Ġdoubling": 33651, + "Ġdoubt": 6385, + "Ġdoubts": 22618, + "Ġdough": 7984, + "Ġdoute": 41984, + "Ġdov": 30870, + "Ġdove": 23287, + "Ġdow": 9459, + "Ġdown": 760, + "Ġdownhill": 29929, + "Ġdownload": 5484, + "Ġdownloaded": 21748, + "Ġdownloading": 32529, + "Ġdownloads": 36553, + "Ġdowns": 21554, + "Ġdownside": 25060, + "Ġdownstairs": 20148, + "Ġdownstream": 30621, + "Ġdownt": 11655, + "Ġdowntime": 49648, + "Ġdowntown": 14209, + "Ġdownward": 24805, + "Ġdownwards": 39880, + "Ġdozen": 16654, + "Ġdozens": 18431, + "ĠdoÄŁ": 18557, + "ĠdoÄŁru": 28297, + "ĠdoÅĽwiad": 46661, + "ĠdoÅĽÄĩ": 49333, + "Ġdr": 1224, + "Ġdra": 1617, + "Ġdraft": 11206, + "Ġdrafted": 36288, + "Ġdrafting": 46378, + "Ġdrag": 5286, + "Ġdragged": 25717, + "Ġdragging": 24385, + "Ġdragon": 12165, + "Ġdragons": 27240, + "Ġdrain": 12339, + "Ġdrainage": 32973, + "Ġdrained": 37018, + "Ġdraining": 42916, + "Ġdrains": 47694, + "Ġdram": 7538, + "Ġdrama": 9412, + "Ġdramas": 36739, + "Ġdramat": 42749, + "Ġdramatic": 12023, + "Ġdramatically": 17548, + "Ġdran": 32801, + "Ġdrank": 21011, + "Ġdrastic": 36821, + "Ġdrastically": 29673, + "Ġdrauf": 22763, + "ĠdrauÃŁen": 44602, + "Ġdraw": 2642, + "Ġdrawer": 24039, + "Ġdrawers": 38302, + "Ġdrawing": 6316, + "Ġdrawings": 18618, + "Ġdrawn": 10117, + "Ġdraws": 20045, + "Ġdre": 22540, + "Ġdread": 22236, + "Ġdream": 3055, + "Ġdreamed": 26726, + "Ġdreaming": 21475, + "Ġdreams": 7505, + "Ġdrei": 16809, + "Ġdress": 5231, + "Ġdressed": 12386, + "Ġdresses": 25156, + "Ġdressing": 17211, + "Ġdrew": 12804, + "Ġdri": 1630, + "Ġdrie": 50049, + "Ġdried": 13538, + "Ġdries": 33997, + "Ġdrift": 19699, + "Ġdrifting": 37973, + "Ġdrill": 11392, + "Ġdrilled": 38210, + "Ġdrilling": 26290, + "Ġdrills": 36126, + "Ġdrin": 24534, + "Ġdrink": 2822, + "Ġdrinking": 7583, + "Ġdrinks": 12142, + "Ġdrip": 29376, + "Ġdripping": 37460, + "Ġdrive": 3332, + "Ġdriven": 9555, + "Ġdriver": 6787, + "Ġdrivers": 11590, + "Ġdrives": 11754, + "Ġdriveway": 38276, + "Ġdriving": 4840, + "Ġdrizzle": 48695, + "Ġdro": 3789, + "Ġdroit": 25971, + "Ġdroite": 37321, + "Ġdrone": 13852, + "Ġdrones": 23823, + "Ġdrop": 3270, + "Ġdropdown": 47599, + "Ġdroplets": 41573, + "Ġdropped": 8119, + "Ġdropping": 13601, + "Ġdrops": 11438, + "Ġdrought": 22900, + "Ġdrove": 13226, + "Ġdrown": 20337, + "Ġdrowned": 38233, + "Ġdrowning": 37198, + "Ġdru": 38864, + "Ġdrug": 4110, + "Ġdrugiej": 47373, + "Ġdrugs": 7766, + "Ġdruk": 47995, + "Ġdrum": 10206, + "Ġdrummer": 38535, + "Ġdrums": 20420, + "Ġdrunk": 11192, + "Ġdry": 4016, + "Ġdryer": 29880, + "Ġdrying": 22709, + "Ġdt": 36423, + "Ġdu": 1581, + "Ġdua": 40173, + "Ġdual": 11848, + "Ġduas": 19463, + "Ġdub": 18540, + "Ġdubbed": 43686, + "Ġduck": 12482, + "Ġducks": 34468, + "Ġduct": 25954, + "Ġdud": 38512, + "Ġduda": 43881, + "Ġdude": 6449, + "Ġdudes": 27717, + "Ġdue": 3462, + "Ġduel": 36296, + "Ġdues": 41753, + "Ġdug": 22954, + "Ġduh": 43763, + "Ġdul": 44012, + "Ġdull": 23471, + "Ġdulu": 31643, + "Ġdum": 16784, + "Ġdumb": 10316, + "Ġdumbbell": 39316, + "Ġdummy": 35064, + "Ġdump": 11430, + "Ġdumped": 32131, + "Ġdumping": 42224, + "Ġdumpling": 46517, + "Ġdumplings": 31721, + "Ġdun": 10234, + "Ġdungeon": 27919, + "Ġdungeons": 48347, + "Ġdunk": 33555, + "Ġdunno": 22751, + "Ġduo": 28127, + "Ġduplic": 17154, + "Ġduplicate": 23976, + "Ġdur": 4861, + "Ġdura": 43416, + "Ġdurability": 33664, + "Ġdurable": 22308, + "Ġdurant": 43941, + "Ġdurante": 14427, + "Ġduration": 16365, + "Ġdurch": 7131, + "Ġdurchaus": 42840, + "Ġduring": 1830, + "Ġdurum": 35218, + "Ġdus": 14284, + "Ġdust": 8634, + "Ġdusty": 41973, + "Ġduties": 20910, + "Ġduty": 9776, + "Ġduy": 37385, + "Ġduż": 21783, + "Ġdużo": 26673, + "Ġdw": 27379, + "Ġdwa": 35045, + "Ġdwar": 24524, + "Ġdwarf": 35527, + "Ġdwell": 24355, + "Ġdwelling": 41750, + "Ġdx": 30017, + "Ġdy": 14584, + "Ġdye": 20179, + "Ġdyed": 43199, + "Ġdying": 8639, + "Ġdynam": 5999, + "Ġdynamic": 8546, + "Ġdynamically": 43492, + "Ġdynamics": 15679, + "Ġdynasty": 32841, + "Ġdys": 15243, + "Ġdysfunction": 32002, + "Ġdz": 9758, + "Ġdzi": 31981, + "ĠdziaÅĤ": 27121, + "ĠdziaÅĤa": 37903, + "Ġdzie": 17953, + "Ġdzieci": 38612, + "ĠdzieÅĦ": 47568, + "Ġdzisiaj": 25772, + "ĠdziÄĻki": 45003, + "Ġdá": 14401, + "Ġdär": 12976, + "ĠdÃ¥": 13762, + "Ġdès": 34163, + "Ġdé": 2795, + "Ġdéb": 36529, + "Ġdébut": 22594, + "Ġdéc": 9198, + "Ġdécidé": 43206, + "Ġdécouv": 35687, + "Ġdécouvrir": 47756, + "Ġdéf": 30456, + "Ġdéfin": 40763, + "ĠdéjÃł": 12027, + "Ġdém": 22761, + "Ġdémocr": 47146, + "Ġdép": 27998, + "Ġdépart": 37745, + "Ġdépend": 45768, + "Ġdépl": 47687, + "Ġdés": 18963, + "Ġdét": 22312, + "Ġdévelop": 22558, + "Ġdévelopp": 33379, + "Ġdéveloppement": 45128, + "Ġdó": 18816, + "Ġdólares": 32596, + "Ġdónde": 34264, + "Ġdö": 26089, + "Ġdön": 24782, + "Ġdú": 39299, + "Ġdû": 42300, + "Ġdü": 19378, + "Ġdüny": 32262, + "Ġdür": 23637, + "Ġdürfen": 29493, + "ĠdÃ¼ÅŁ": 12856, + "ĠdÃ¼ÅŁÃ¼n": 21755, + "ĠdÃŃa": 12271, + "ĠdÃŃas": 19527, + "ĠdÄ±ÅŁ": 26602, + "ĠdÅĤ": 44042, + "Ġe": 308, + "ĠeBay": 33803, + "Ġeach": 1184, + "Ġeager": 18259, + "Ġeagle": 30745, + "Ġear": 1273, + "Ġearbuds": 40441, + "Ġearlier": 3071, + "Ġearliest": 20573, + "Ġearly": 2440, + "Ġearn": 6012, + "Ġearned": 12283, + "Ġearnest": 48171, + "Ġearning": 12353, + "Ġearnings": 20548, + "Ġearns": 46936, + "Ġearrings": 31902, + "Ġears": 8798, + "Ġearth": 4120, + "Ġearthly": 46262, + "Ġearthqu": 14814, + "Ġearthquake": 18778, + "Ġearthquakes": 34048, + "Ġeas": 1195, + "Ġease": 12708, + "Ġeasier": 3571, + "Ġeasiest": 12889, + "Ġeasily": 3612, + "Ġeast": 10648, + "Ġeastern": 19346, + "Ġeasy": 1858, + "Ġeat": 1862, + "Ġeaten": 12158, + "Ġeater": 40362, + "Ġeating": 3936, + "Ġeats": 18109, + "Ġeben": 11375, + "Ġebenfalls": 48977, + "Ġec": 11437, + "Ġecc": 29613, + "Ġeccentric": 42629, + "Ġech": 36803, + "Ġecho": 14300, + "Ġechoes": 47051, + "Ġecht": 13972, + "Ġeclipse": 35722, + "Ġeco": 30226, + "Ġecological": 31054, + "Ġecology": 39683, + "Ġecon": 23692, + "Ġeconom": 2520, + "Ġeconomic": 4836, + "Ġeconomical": 42473, + "Ġeconomically": 26811, + "Ġeconomics": 14564, + "Ġeconomies": 23158, + "Ġeconomist": 36696, + "Ġeconomists": 32431, + "Ġeconomy": 5010, + "Ġeconóm": 33537, + "Ġecos": 11007, + "Ġecosystem": 11311, + "Ġecosystems": 32647, + "Ġed": 1257, + "Ġede": 25959, + "Ġeden": 47727, + "Ġeder": 23252, + "Ġederim": 37749, + "Ġedge": 4691, + "Ġedges": 8819, + "Ġedible": 30666, + "Ġedit": 8129, + "Ġedited": 23016, + "Ġediting": 10000, + "Ġedition": 11377, + "Ġeditions": 44840, + "Ġeditor": 9839, + "Ġeditorial": 33412, + "Ġeditors": 31446, + "Ġedits": 41752, + "Ġediyor": 30761, + "Ġediyorum": 39203, + "Ġeduc": 2400, + "Ġeducación": 48861, + "Ġeducate": 16092, + "Ġeducated": 15872, + "Ġeducating": 28835, + "Ġeducation": 3309, + "Ġeducational": 10189, + "Ġeducator": 31237, + "Ġeducators": 22819, + "Ġeel": 47521, + "Ġeen": 3881, + "Ġeens": 31246, + "Ġeer": 25937, + "Ġeerste": 35586, + "Ġef": 31482, + "Ġefect": 22565, + "Ġefecto": 46783, + "Ġefendim": 43556, + "Ġeff": 1244, + "Ġeffect": 1802, + "Ġeffective": 4942, + "Ġeffectively": 8659, + "Ġeffectivement": 40126, + "Ġeffectiveness": 21208, + "Ġeffects": 5065, + "Ġeffet": 30960, + "Ġeffic": 4703, + "Ġefficacy": 33492, + "Ġefficiency": 10493, + "Ġefficient": 7148, + "Ġefficiently": 19621, + "Ġeffort": 4630, + "Ġefforts": 6484, + "Ġefic": 49510, + "Ġefter": 24827, + "Ġeg": 24263, + "Ġegal": 31528, + "Ġegent": 41170, + "Ġegg": 3777, + "Ġeggplant": 43018, + "Ġeggs": 6466, + "Ġego": 14495, + "Ġegy": 16524, + "Ġeh": 7670, + "Ġeher": 24332, + "Ġehkä": 47559, + "Ġehrlich": 40872, + "Ġei": 14020, + "Ġeig": 9728, + "Ġeigen": 10446, + "Ġeigene": 38549, + "Ġeigenen": 28702, + "Ġeigenlijk": 23116, + "Ġeigentlich": 10926, + "Ġeight": 3180, + "Ġeighteen": 31755, + "Ġeighth": 19495, + "Ġeighty": 26348, + "Ġein": 1343, + "Ġeine": 3018, + "Ġeinem": 6827, + "Ġeinen": 4891, + "Ġeiner": 6850, + "Ġeines": 18599, + "Ġeinf": 38627, + "Ġeinfach": 7281, + "Ġeing": 17002, + "Ġeinge": 30061, + "Ġeinges": 49821, + "Ġeinige": 28338, + "Ġeinmal": 11078, + "Ġeins": 21889, + "Ġeinz": 21586, + "Ġeinzel": 36731, + "Ġeinzige": 47743, + "Ġeither": 2139, + "Ġej": 10012, + "Ġeje": 39564, + "Ġeject": 32520, + "Ġejemplo": 13358, + "Ġejerc": 39151, + "Ġek": 13359, + "Ġeks": 30724, + "Ġel": 806, + "Ġela": 7175, + "Ġelabor": 16298, + "Ġelaborate": 20945, + "Ġelas": 23003, + "Ġelastic": 17115, + "Ġelasticity": 46260, + "Ġelbow": 18507, + "Ġelbows": 26620, + "Ġeld": 8912, + "Ġelder": 12995, + "Ġelderly": 19682, + "Ġelders": 22737, + "Ġeldest": 38096, + "Ġele": 1118, + "Ġelect": 2185, + "Ġelected": 11776, + "Ġelection": 6618, + "Ġelections": 12870, + "Ġelector": 45948, + "Ġelectoral": 28633, + "Ġelectr": 7072, + "Ġelectric": 5210, + "Ġelectrical": 12147, + "Ġelectricity": 10356, + "Ġelectro": 16717, + "Ġelectrod": 44216, + "Ġelectrode": 38346, + "Ġelectrodes": 47824, + "Ġelectroly": 39197, + "Ġelectromagn": 27528, + "Ġelectromagnetic": 32214, + "Ġelectron": 6084, + "Ġelectronic": 10092, + "Ġelectronically": 49677, + "Ġelectronics": 20611, + "Ġelectrons": 14265, + "Ġeleg": 14459, + "Ġelegant": 21117, + "Ġelekt": 26991, + "Ġelement": 4478, + "Ġelemental": 39427, + "Ġelementary": 16429, + "Ġelemento": 47961, + "Ġelementos": 35797, + "Ġelements": 4959, + "Ġelephant": 19791, + "Ġelephants": 33015, + "Ġeles": 10244, + "Ġelev": 7701, + "Ġelevate": 33054, + "Ġelevated": 23457, + "Ġelevation": 25827, + "Ġelevator": 18782, + "Ġeleven": 21090, + "Ġelf": 35565, + "Ġeli": 34486, + "Ġelig": 31089, + "Ġeligibility": 32826, + "Ġeligible": 14728, + "Ġelim": 24333, + "Ġelimin": 7892, + "Ġeliminate": 13819, + "Ġeliminated": 20308, + "Ġeliminates": 49893, + "Ġeliminating": 31203, + "Ġelimination": 29224, + "Ġelite": 17801, + "Ġelites": 44678, + "Ġelk": 44818, + "Ġelkaar": 35930, + "Ġell": 8284, + "Ġella": 18823, + "Ġellas": 38397, + "Ġelle": 8404, + "Ġeller": 12519, + "Ġelles": 23576, + "Ġello": 33549, + "Ġellos": 16353, + "Ġelo": 38682, + "Ġelong": 40786, + "Ġels": 10302, + "Ġelse": 1646, + "Ġelsewhere": 14517, + "Ġelves": 43087, + "Ġelét": 36920, + "Ġem": 846, + "Ġemail": 3796, + "Ġemailed": 45460, + "Ġemails": 12524, + "Ġeman": 28211, + "Ġemb": 4605, + "Ġemba": 32660, + "Ġembaixo": 36612, + "Ġembar": 18801, + "Ġembargo": 23955, + "Ġembark": 29832, + "Ġembarrass": 9187, + "Ġembarrassed": 16843, + "Ġembarrassing": 17299, + "Ġembarrassment": 43536, + "Ġembassy": 38012, + "Ġembed": 12240, + "Ġembedded": 16741, + "Ġemblem": 35949, + "Ġembod": 28935, + "Ġembodied": 42046, + "Ġembody": 42575, + "Ġembora": 44681, + "Ġembr": 9392, + "Ġembrace": 14038, + "Ġembraced": 28673, + "Ġembracing": 31596, + "Ġembro": 27925, + "Ġembroider": 29833, + "Ġembroidery": 43762, + "Ġembry": 31588, + "Ġemer": 4345, + "Ġemerge": 21511, + "Ġemerged": 20178, + "Ġemergen": 33983, + "Ġemergence": 36211, + "Ġemergencies": 43483, + "Ġemergency": 7473, + "Ġemerges": 38965, + "Ġemerging": 14989, + "Ġemission": 29513, + "Ġemissions": 14607, + "Ġemit": 32084, + "Ġemitted": 44897, + "Ġemo": 19611, + "Ġemoc": 28283, + "Ġemoji": 31595, + "Ġemot": 3626, + "Ġemotion": 8913, + "Ġemotional": 6863, + "Ġemotionally": 17991, + "Ġemotions": 8462, + "Ġemp": 4012, + "Ġempath": 27155, + "Ġempathy": 18701, + "Ġemperor": 20255, + "Ġempez": 18730, + "Ġempezar": 31168, + "Ġemphas": 7896, + "Ġemphasis": 16271, + "Ġemphasize": 16078, + "Ġemphasized": 34068, + "Ġemphasizes": 48856, + "Ġemphasizing": 45550, + "Ġempieza": 44577, + "Ġempir": 25790, + "Ġempire": 17506, + "Ġempirical": 31886, + "Ġemple": 36820, + "Ġemploy": 3188, + "Ġemployed": 20115, + "Ġemployee": 10738, + "Ġemployees": 6619, + "Ġemployer": 16205, + "Ġemployers": 16744, + "Ġemployment": 11949, + "Ġempower": 11071, + "Ġempowered": 27898, + "Ġempowering": 28261, + "Ġempowerment": 34825, + "Ġempre": 43223, + "Ġempres": 13627, + "Ġempresa": 22682, + "Ġempresas": 26433, + "Ġempt": 6113, + "Ġemptiness": 41993, + "Ġempty": 6707, + "Ġemulate": 45497, + "Ġen": 465, + "Ġenable": 9528, + "Ġenabled": 15172, + "Ġenables": 17077, + "Ġenabling": 23148, + "Ġenact": 25909, + "Ġenacted": 41313, + "Ġenam": 44549, + "Ġenc": 2058, + "Ġenca": 28934, + "Ġencant": 42380, + "Ġencanta": 47597, + "Ġencaps": 38745, + "Ġencara": 47287, + "Ġench": 35213, + "Ġencima": 40265, + "Ġencl": 20987, + "Ġenclosed": 42089, + "Ġenclosure": 34093, + "Ġencoding": 43430, + "Ġencompass": 28268, + "Ġencompasses": 49866, + "Ġencont": 10176, + "Ġencontra": 43621, + "Ġencontramos": 45049, + "Ġencontrar": 17525, + "Ġencore": 10122, + "Ġencoun": 7669, + "Ġencounter": 8593, + "Ġencountered": 20381, + "Ġencounters": 26310, + "Ġencour": 3959, + "Ġencourage": 5373, + "Ġencouraged": 14658, + "Ġencouragement": 25683, + "Ġencourages": 28071, + "Ġencouraging": 14580, + "Ġencry": 17972, + "Ġencrypted": 36663, + "Ġencryption": 29575, + "Ġencuent": 23708, + "Ġencuentra": 43274, + "Ġend": 917, + "Ġendanger": 31975, + "Ġendangered": 37539, + "Ġende": 19099, + "Ġendeavor": 34975, + "Ġendeavors": 49608, + "Ġended": 4590, + "Ġending": 8121, + "Ġendings": 42474, + "Ġendless": 16144, + "Ġendlessly": 44920, + "Ġendlich": 32574, + "Ġendors": 37676, + "Ġendorse": 29228, + "Ġendorsed": 50094, + "Ġendpoint": 35795, + "Ġendroit": 47390, + "Ġends": 5314, + "Ġendurance": 30325, + "Ġendure": 24732, + "Ġendured": 39017, + "Ġenduring": 36562, + "Ġenem": 7255, + "Ġenemies": 7805, + "Ġenemy": 5945, + "Ġener": 2043, + "Ġenerg": 10575, + "Ġenergetic": 24935, + "Ġenergia": 29469, + "Ġenergies": 25737, + "Ġenergized": 49231, + "Ġenergy": 2281, + "ĠenergÃŃa": 34315, + "Ġenf": 10667, + "Ġenfant": 44888, + "Ġenfants": 22649, + "Ġenfer": 27341, + "Ġenfermed": 42695, + "Ġenfim": 48937, + "Ġenfin": 25059, + "Ġenfor": 25495, + "Ġenforce": 24825, + "Ġenforced": 40953, + "Ġenforcement": 11475, + "Ġenfrent": 33771, + "Ġeng": 1741, + "Ġengag": 46730, + "Ġengage": 4683, + "Ġengaged": 8237, + "Ġengagement": 8742, + "Ġengagements": 44978, + "Ġengages": 45576, + "Ġengaging": 11268, + "Ġengine": 2848, + "Ġengineer": 11403, + "Ġengineered": 38648, + "Ġengineering": 7043, + "Ġengineers": 11955, + "Ġengines": 12982, + "Ġenglish": 32169, + "Ġengra": 25842, + "Ġenh": 10944, + "Ġenhan": 15780, + "Ġenhance": 11985, + "Ġenhanced": 21191, + "Ġenhancement": 40776, + "Ġenhances": 46628, + "Ġenhancing": 36579, + "Ġenjo": 27803, + "Ġenjoy": 2103, + "Ġenjoyable": 20305, + "Ġenjoyed": 4626, + "Ġenjoying": 9929, + "Ġenjoyment": 32013, + "Ġenjoys": 29750, + "Ġenlar": 31976, + "Ġenlight": 18690, + "Ġenlightened": 36975, + "Ġenlightenment": 34661, + "Ġenm": 48786, + "Ġenorm": 8473, + "Ġenorme": 33648, + "Ġenormous": 11322, + "Ġenormously": 39669, + "Ġenough": 1547, + "Ġenqu": 21304, + "Ġenquanto": 31749, + "Ġenrich": 18849, + "Ġenriched": 48624, + "Ġenrichment": 49900, + "Ġenroll": 12266, + "Ġenrolled": 25896, + "Ġenrollment": 22420, + "Ġens": 3489, + "Ġense": 12567, + "Ġensemble": 19492, + "Ġenseñ": 31275, + "Ġensl": 30434, + "Ġenslaved": 32119, + "Ġensuite": 25080, + "Ġensure": 5586, + "Ġensures": 28111, + "Ġensuring": 16882, + "Ġent": 948, + "Ġentails": 50133, + "Ġentend": 16612, + "Ġentender": 20054, + "Ġentendeu": 49622, + "Ġentendu": 41489, + "Ġenter": 3242, + "Ġentered": 9065, + "Ġentering": 11104, + "Ġenterprise": 14132, + "Ġenterprises": 29034, + "Ġenters": 18780, + "Ġentertain": 7655, + "Ġentertained": 44783, + "Ġentertaining": 20402, + "Ġentertainment": 12393, + "Ġentfer": 41940, + "Ġenthal": 46475, + "Ġenthalpy": 48869, + "Ġenthus": 12616, + "Ġenthusi": 18076, + "Ġenthusiasm": 23417, + "Ġenthusiastic": 28574, + "Ġenthusiasts": 45873, + "Ġentire": 2302, + "Ġentirely": 7696, + "Ġentirety": 31557, + "Ġentit": 14789, + "Ġentities": 16667, + "Ġentitled": 17838, + "Ġentity": 13977, + "Ġentonces": 13003, + "Ġentr": 8041, + "Ġentra": 22284, + "Ġentrada": 37119, + "Ġentrance": 12014, + "Ġentrar": 20913, + "Ġentre": 3962, + "Ġentreg": 32843, + "Ġentren": 45069, + "Ġentreprene": 8354, + "Ġentrepreneur": 14307, + "Ġentrepreneurial": 33094, + "Ġentrepreneurs": 12639, + "Ġentrepreneurship": 26582, + "Ġentreprises": 41657, + "Ġentrev": 39095, + "Ġentries": 23041, + "Ġentropy": 30867, + "Ġentry": 8729, + "Ġents": 12834, + "Ġentsche": 28398, + "Ġentscheiden": 44560, + "Ġentschieden": 49807, + "Ġentsprech": 29967, + "Ġentsprechend": 47823, + "Ġentste": 35955, + "Ġentwic": 28449, + "Ġentwickelt": 43208, + "Ġentão": 9071, + "Ġenv": 2267, + "Ġenvelop": 33860, + "Ġenvelope": 19989, + "Ġenvie": 24149, + "Ġenviron": 2571, + "Ġenvironment": 2823, + "Ġenvironmental": 8303, + "Ġenvironmentally": 42236, + "Ġenvironments": 12388, + "Ġenvision": 24739, + "Ġenvisioned": 47733, + "Ġenvol": 49995, + "Ġenvoy": 35351, + "Ġenvy": 30530, + "Ġenzy": 16272, + "Ġenzyme": 24521, + "Ġenzymes": 29299, + "Ġep": 2388, + "Ġepic": 13581, + "Ġepid": 13510, + "Ġepidemi": 35761, + "Ġepidemic": 20982, + "Ġepile": 41855, + "Ġepilepsy": 49680, + "Ġepis": 2927, + "Ġepisod": 39200, + "Ġepisode": 3500, + "Ġepisodes": 9313, + "Ġepisód": 42736, + "Ġepisódio": 50056, + "Ġepo": 30992, + "Ġepoxy": 45397, + "Ġepsilon": 17889, + "Ġequ": 1267, + "Ġequal": 2681, + "Ġequality": 14949, + "Ġequally": 12309, + "Ġequals": 6915, + "Ġequation": 5367, + "Ġequations": 11787, + "Ġequator": 45544, + "Ġequilib": 14204, + "Ġequilibrium": 15625, + "Ġequip": 5037, + "Ġequipment": 5927, + "Ġequipo": 30048, + "Ġequipped": 15218, + "Ġequitable": 33730, + "Ġequity": 10769, + "Ġequiv": 48726, + "Ġequival": 9052, + "Ġequivalent": 10344, + "Ġer": 1189, + "Ġera": 4249, + "Ġerad": 33078, + "Ġeram": 34664, + "Ġeran": 32762, + "Ġerase": 23525, + "Ġerased": 38359, + "Ġeraser": 46018, + "Ġere": 25022, + "Ġerect": 34201, + "Ġeres": 30065, + "Ġerf": 20228, + "Ġerfahren": 49472, + "Ġerfolg": 39447, + "Ġerfolgreich": 48270, + "Ġerg": 26585, + "Ġergon": 42735, + "Ġerhalten": 38051, + "Ġerhö": 49058, + "Ġerk": 31879, + "Ġerkennen": 45720, + "Ġerkl": 27570, + "Ġerklären": 46528, + "Ġerle": 26826, + "Ġerlebt": 47372, + "Ġerm": 25253, + "Ġern": 36061, + "Ġernst": 43412, + "Ġerosion": 32173, + "Ġerr": 45267, + "Ġerrado": 48571, + "Ġerrand": 45810, + "Ġerre": 28641, + "Ġerreichen": 39464, + "Ġerreicht": 46250, + "Ġerro": 45935, + "Ġerror": 6713, + "Ġerrors": 13603, + "Ġers": 33743, + "Ġersch": 41673, + "Ġerst": 11301, + "Ġerste": 20951, + "Ġersten": 17324, + "Ġerstmal": 38607, + "Ġeru": 20999, + "Ġeruption": 42584, + "Ġerw": 21715, + "Ġerzäh": 28337, + "Ġerzählt": 47110, + "Ġes": 785, + "Ġesa": 11342, + "Ġesas": 23388, + "Ġesc": 4721, + "Ġesca": 12663, + "Ġescal": 17871, + "Ġescape": 7615, + "Ġescaped": 20397, + "Ġescapes": 43769, + "Ġescaping": 32554, + "Ġescol": 25603, + "Ġescola": 42501, + "Ġescort": 37353, + "Ġescr": 49865, + "Ġescre": 30004, + "Ġescrever": 44909, + "Ġescri": 30598, + "Ġescrito": 49451, + "Ġescuch": 22483, + "Ġescuela": 47817, + "Ġese": 10167, + "Ġesemp": 32340, + "Ġesempio": 33627, + "Ġesf": 41614, + "Ġesfuer": 49213, + "Ġesimerk": 50029, + "Ġeso": 7287, + "Ġesos": 22411, + "Ġesp": 7089, + "Ġespa": 17488, + "Ġespacio": 33845, + "Ġespaço": 34270, + "Ġespañ": 25726, + "Ġespañol": 31177, + "Ġespe": 10049, + "Ġespec": 31620, + "Ġespecial": 15342, + "Ġespecially": 2318, + "Ġespecialmente": 41546, + "Ġespecie": 49368, + "Ġespect": 38244, + "ĠespecÃŃfic": 32741, + "Ġesper": 10045, + "Ġespera": 37862, + "Ġesperando": 46587, + "Ġesperar": 37577, + "Ġespero": 26823, + "Ġespresso": 44140, + "ĠespÃŃ": 48987, + "Ġesqu": 34611, + "Ġesque": 28147, + "Ġesquer": 40428, + "Ġess": 2097, + "Ġessa": 7208, + "Ġessas": 19277, + "Ġessay": 16238, + "Ġessayer": 32421, + "Ġessays": 35123, + "Ġesse": 6755, + "Ġessen": 41749, + "Ġessence": 12801, + "Ġessent": 47056, + "Ġessential": 7115, + "Ġessentially": 4476, + "Ġessentials": 46884, + "Ġessere": 19799, + "Ġesses": 18966, + "Ġest": 871, + "Ġesta": 5283, + "Ġestab": 3947, + "Ġestaba": 17544, + "Ġestaban": 36713, + "Ġestable": 37444, + "Ġestablish": 8327, + "Ġestablished": 7545, + "Ġestablishing": 22494, + "Ġestablishment": 20971, + "Ġestad": 39160, + "Ġestado": 18372, + "Ġestamos": 10382, + "Ġestan": 42058, + "Ġestar": 8755, + "Ġestas": 13897, + "Ġestat": 30883, + "Ġestate": 9749, + "Ġestava": 15662, + "Ġestavam": 43711, + "Ġeste": 4065, + "Ġestem": 50185, + "Ġestilo": 37470, + "Ġestim": 8017, + "Ġestimate": 12539, + "Ġestimated": 14109, + "Ġestimates": 20561, + "Ġestimation": 35701, + "Ġestiver": 46578, + "Ġesto": 7433, + "Ġestos": 12585, + "Ġestou": 17660, + "Ġestoy": 15796, + "Ġestr": 35680, + "Ġestran": 49461, + "Ġestrat": 42746, + "Ġestratég": 46603, + "Ġestre": 36665, + "Ġestrogen": 44754, + "Ġestruct": 43935, + "Ġestrut": 45899, + "Ġestud": 13542, + "Ġestudio": 44286, + "Ġestuv": 49777, + "Ġestá": 3192, + "Ġestán": 10368, + "Ġestás": 24389, + "Ġestão": 14775, + "Ġesté": 34584, + "ĠestÃł": 22093, + "Ġet": 1030, + "Ġeta": 32415, + "Ġetap": 47634, + "Ġetc": 5183, + "Ġetcetera": 22066, + "Ġetern": 10533, + "Ġeternal": 14503, + "Ġeternity": 27162, + "Ġeth": 6468, + "Ġethanol": 43150, + "Ġether": 37096, + "Ġethic": 37820, + "Ġethical": 18890, + "Ġethics": 19769, + "Ġethn": 42589, + "Ġethnic": 14363, + "Ġethnicity": 33774, + "Ġetiqu": 42177, + "Ġetme": 34469, + "Ġetmek": 46005, + "Ġett": 5431, + "Ġetti": 41523, + "Ġettä": 9894, + "Ġetwa": 28369, + "Ġetwas": 9569, + "Ġeu": 2228, + "Ġeuch": 10403, + "Ġeuh": 32678, + "Ġeure": 32845, + "Ġeuro": 14206, + "Ġeurop": 22139, + "Ġeurope": 27207, + "Ġeuropé": 32055, + "Ġeuros": 14160, + "Ġeux": 22648, + "Ġev": 1073, + "Ġevac": 20245, + "Ġevacuate": 48570, + "Ġevacuation": 42740, + "Ġevalu": 6133, + "Ġevaluate": 13059, + "Ġevaluated": 25509, + "Ġevaluating": 27479, + "Ġevaluation": 13344, + "Ġevaluations": 43085, + "Ġevangel": 24546, + "Ġevangelical": 45471, + "Ġevapor": 26315, + "Ġeve": 34225, + "Ġeven": 754, + "Ġevening": 5634, + "Ġevenings": 42835, + "Ġevenly": 17658, + "Ġevent": 2280, + "Ġevento": 40655, + "Ġevents": 3931, + "Ġeventual": 33160, + "Ġeventually": 4728, + "Ġever": 1562, + "Ġeverlasting": 43710, + "Ġevery": 633, + "Ġeverybody": 2201, + "Ġeveryday": 7429, + "Ġeveryone": 1518, + "Ġeverything": 1203, + "Ġeverytime": 46162, + "Ġeverywhere": 5315, + "Ġevet": 38016, + "Ġeviden": 43699, + "Ġevidence": 4467, + "Ġevident": 16371, + "Ġevil": 6724, + "Ġevitar": 31326, + "Ġevol": 7117, + "Ġevolution": 9303, + "Ġevolutionary": 27567, + "Ġevolve": 16693, + "Ġevolved": 14178, + "Ġevolves": 43737, + "Ġevolving": 21085, + "Ġew": 43364, + "Ġex": 454, + "Ġexacer": 38362, + "Ġexacerb": 38819, + "Ġexact": 1900, + "Ġexactamente": 48686, + "Ġexactement": 38111, + "Ġexactly": 2293, + "Ġexagger": 19123, + "Ġexaggerated": 36196, + "Ġexam": 1139, + "Ġexamination": 23874, + "Ġexamine": 17496, + "Ġexamined": 30972, + "Ġexamining": 34662, + "Ġexample": 1365, + "Ġexamples": 5110, + "Ġexams": 20514, + "Ġexatamente": 35937, + "Ġexc": 1624, + "Ġexca": 24933, + "Ġexcav": 34351, + "Ġexceed": 14048, + "Ġexceeded": 38026, + "Ġexceeds": 43305, + "Ġexcel": 24015, + "Ġexcell": 45817, + "Ġexcellence": 21268, + "Ġexcellent": 7103, + "Ġexcept": 3993, + "Ġexception": 11183, + "Ġexceptional": 19279, + "Ġexceptionally": 37807, + "Ġexceptions": 22847, + "Ġexcer": 42760, + "Ġexcess": 9310, + "Ġexcessive": 22704, + "Ġexch": 6210, + "Ġexchange": 7742, + "Ġexchanged": 38378, + "Ġexchanges": 27374, + "Ġexcit": 13101, + "Ġexcited": 2919, + "Ġexcitement": 14755, + "Ġexciting": 4670, + "Ġexclud": 16269, + "Ġexclude": 33536, + "Ġexcluded": 29486, + "Ġexcluding": 49999, + "Ġexclus": 15085, + "Ġexclusion": 33049, + "Ġexclusive": 13005, + "Ġexclusively": 20638, + "Ġexcus": 20974, + "Ġexcuse": 8960, + "Ġexcuses": 24666, + "Ġexec": 4454, + "Ġexecut": 7568, + "Ġexecute": 14483, + "Ġexecuted": 17577, + "Ġexecuting": 32368, + "Ġexecution": 15058, + "Ġexecutive": 10140, + "Ġexecutives": 28485, + "Ġexem": 9659, + "Ġexempel": 34999, + "Ġexempl": 24112, + "Ġexemple": 12223, + "Ġexemplo": 16496, + "Ġexempt": 30425, + "Ġexemption": 43154, + "Ġexerc": 4057, + "Ġexercise": 5380, + "Ġexercises": 11900, + "Ġexercising": 27272, + "Ġexert": 31941, + "Ġexfol": 46935, + "Ġexh": 31052, + "Ġexha": 9059, + "Ġexhale": 19652, + "Ġexhaust": 14687, + "Ġexhausted": 17992, + "Ġexhausting": 34076, + "Ġexhaustion": 47408, + "Ġexhib": 8144, + "Ġexhibit": 20487, + "Ġexhibited": 49446, + "Ġexhibition": 14414, + "Ġexhibitions": 41522, + "Ġexhibits": 39205, + "Ġexile": 37984, + "Ġexist": 2514, + "Ġexiste": 16304, + "Ġexisted": 13135, + "Ġexistem": 44345, + "Ġexistence": 9123, + "Ġexistential": 37133, + "Ġexisting": 6741, + "Ġexists": 8198, + "Ġexit": 11043, + "Ġexiting": 48868, + "Ġexits": 44183, + "Ġexotic": 27063, + "Ġexp": 1278, + "Ġexpand": 5268, + "Ġexpanded": 14342, + "Ġexpanding": 14702, + "Ġexpands": 33706, + "Ġexpans": 9672, + "Ġexpansion": 11260, + "Ġexpansive": 46949, + "Ġexpect": 2066, + "Ġexpectancy": 42574, + "Ġexpectation": 14334, + "Ġexpectations": 9843, + "Ġexpected": 5176, + "Ġexpecting": 9650, + "Ġexpects": 33280, + "Ġexped": 19348, + "Ġexpedition": 30359, + "Ġexpelled": 44368, + "Ġexpend": 24439, + "Ġexpenditure": 40377, + "Ġexpenditures": 46381, + "Ġexpense": 18406, + "Ġexpenses": 15506, + "Ġexpensive": 5124, + "Ġexper": 1086, + "Ġexperi": 33589, + "Ġexperien": 3135, + "Ġexperience": 1752, + "Ġexperienced": 6751, + "Ġexperiences": 5235, + "Ġexperiencia": 36489, + "Ġexperiencing": 11139, + "Ġexperient": 49611, + "Ġexperiment": 5120, + "Ġexperimental": 17069, + "Ġexperimentation": 37142, + "Ġexperimenting": 29070, + "Ġexperiments": 12050, + "Ġexperiência": 41238, + "Ġexpert": 5844, + "Ġexpertise": 11769, + "Ġexperts": 8572, + "Ġexpiration": 39657, + "Ġexpire": 45447, + "Ġexpired": 36587, + "Ġexpl": 1490, + "Ġexplain": 2903, + "Ġexplained": 8825, + "Ġexplaining": 13468, + "Ġexplains": 13948, + "Ġexplan": 9045, + "Ġexplanation": 10835, + "Ġexplanations": 28708, + "Ġexplic": 28021, + "Ġexplicar": 26682, + "Ġexplicit": 13691, + "Ġexplicitly": 20803, + "Ġexplo": 12382, + "Ġexplode": 21411, + "Ġexploded": 27049, + "Ġexplodes": 42610, + "Ġexploding": 35175, + "Ġexploit": 25924, + "Ġexploitation": 33122, + "Ġexploited": 40918, + "Ġexplor": 24765, + "Ġexploration": 16197, + "Ġexplore": 6839, + "Ġexplored": 24016, + "Ġexplorer": 39680, + "Ġexplores": 45473, + "Ġexploring": 12736, + "Ġexplos": 9215, + "Ġexplosion": 15673, + "Ġexplosions": 36872, + "Ġexplosive": 24630, + "Ġexplosives": 46421, + "Ġexpon": 12680, + "Ġexponent": 37871, + "Ġexponential": 21510, + "Ġexponentially": 37330, + "Ġexport": 10725, + "Ġexported": 42055, + "Ġexporting": 44686, + "Ġexports": 31428, + "Ġexpos": 30076, + "Ġexpose": 19219, + "Ġexposed": 9495, + "Ġexposing": 33178, + "Ġexposure": 10420, + "Ġexpres": 33397, + "Ġexpress": 5109, + "Ġexpressed": 12675, + "Ġexpresses": 39204, + "Ġexpressing": 22171, + "Ġexpression": 6114, + "Ġexpressions": 15277, + "Ġexpressive": 40189, + "Ġext": 1279, + "Ġextend": 10101, + "Ġextended": 10913, + "Ġextending": 24360, + "Ġextends": 26448, + "Ġextension": 10320, + "Ġextensions": 25129, + "Ġextensive": 13246, + "Ġextensively": 32636, + "Ġextent": 8396, + "Ġexterior": 20677, + "Ġextermin": 48628, + "Ġextern": 30360, + "Ġexternal": 8320, + "Ġexternally": 40899, + "Ġextinct": 35094, + "Ġextinction": 33163, + "Ġexting": 33829, + "Ġextr": 16455, + "Ġextra": 2857, + "Ġextract": 8947, + "Ġextracted": 34086, + "Ġextracting": 49844, + "Ġextraction": 30197, + "Ġextraord": 10149, + "Ġextraordin": 27396, + "Ġextraordinarily": 34557, + "Ġextraordinary": 10581, + "Ġextrapol": 48224, + "Ġextras": 40961, + "Ġextrater": 43324, + "Ġextrem": 4040, + "Ġextreme": 8084, + "Ġextremely": 4664, + "Ġextremes": 41119, + "Ġextrêmement": 38148, + "Ġey": 9817, + "Ġeye": 3313, + "Ġeyeball": 38868, + "Ġeyeballs": 43758, + "Ġeyebr": 15713, + "Ġeyebrow": 35875, + "Ġeyebrows": 19916, + "Ġeyel": 13197, + "Ġeyelashes": 37017, + "Ġeyelid": 39386, + "Ġeyelids": 42419, + "Ġeyeliner": 30788, + "Ġeyes": 2575, + "Ġeyeshadow": 34174, + "Ġeyesight": 49887, + "Ġez": 25220, + "ĠeÄŁ": 49681, + "ĠeÅŁ": 40600, + "Ġf": 283, + "Ġfa": 2050, + "Ġfab": 5355, + "Ġfabric": 7253, + "Ġfabrication": 44820, + "Ġfabrics": 32424, + "Ġfabulous": 17692, + "Ġfac": 1915, + "Ġfacade": 46261, + "Ġface": 1851, + "Ġfacebook": 23372, + "Ġfaced": 11446, + "Ġfaces": 8475, + "Ġfacets": 49752, + "Ġfacial": 15642, + "Ġfacil": 10217, + "Ġfacile": 23670, + "Ġfacilit": 38770, + "Ġfacilitate": 20207, + "Ġfacilitating": 47558, + "Ġfacilities": 9406, + "Ġfacility": 8973, + "Ġfacing": 7170, + "Ġfact": 1186, + "Ġfaction": 37249, + "Ġfactions": 41252, + "Ġfacto": 42225, + "Ġfactor": 5952, + "Ġfactorial": 36916, + "Ġfactories": 24813, + "Ġfactors": 6771, + "Ġfactory": 9265, + "Ġfacts": 9130, + "Ġfactual": 48029, + "Ġfacult": 44137, + "Ġfaculty": 6389, + "Ġfade": 21626, + "Ġfaded": 36352, + "Ġfades": 32679, + "Ġfading": 38644, + "Ġfahren": 25593, + "Ġfail": 3061, + "Ġfailed": 7612, + "Ġfailing": 18223, + "Ġfails": 18199, + "Ġfailure": 7763, + "Ġfailures": 20774, + "Ġfaint": 21104, + "Ġfair": 3143, + "Ġfaire": 4865, + "Ġfairly": 6457, + "Ġfairness": 29765, + "Ġfairy": 19104, + "Ġfais": 12153, + "Ġfaisait": 42795, + "Ġfait": 3887, + "Ġfaites": 29902, + "Ġfaith": 4522, + "Ġfaithful": 17808, + "Ġfaj": 34001, + "Ġfak": 33647, + "Ġfake": 7592, + "Ġfakt": 21310, + "Ġfaktiskt": 35988, + "Ġfal": 3704, + "Ġfala": 21580, + "Ġfalan": 21474, + "Ġfalando": 21236, + "Ġfalar": 13536, + "Ġfale": 26772, + "Ġfalei": 29800, + "Ġfall": 2100, + "Ġfallait": 49170, + "Ġfallen": 11547, + "Ġfalling": 7440, + "Ġfalls": 8804, + "Ġfalou": 28443, + "Ġfals": 16720, + "Ġfalsch": 43340, + "Ġfalse": 7908, + "Ġfalt": 37108, + "Ġfalta": 22111, + "Ġfam": 1087, + "Ġfame": 16874, + "Ġfamil": 4085, + "Ġfamili": 42155, + "Ġfamilia": 24050, + "Ġfamiliar": 4963, + "Ġfamiliarity": 49828, + "Ġfamilies": 4466, + "Ġfamille": 28123, + "Ġfamily": 1605, + "Ġfamine": 42790, + "Ġfamoso": 49526, + "Ġfamous": 4618, + "Ġfamously": 34360, + "ĠfamÃŃlia": 26716, + "Ġfan": 3429, + "Ġfancy": 10247, + "Ġfand": 38138, + "Ġfandom": 41591, + "Ġfans": 4499, + "Ġfant": 4115, + "Ġfantas": 31255, + "Ġfantast": 30665, + "Ġfantastic": 5456, + "Ġfantasy": 13861, + "Ġfar": 1400, + "Ġfare": 11994, + "Ġfarewell": 35442, + "Ġfark": 27047, + "Ġfarklı": 43953, + "Ġfarm": 5421, + "Ġfarmer": 17891, + "Ġfarmers": 11339, + "Ġfarming": 16557, + "Ġfarms": 20366, + "Ġfart": 24575, + "Ġfarther": 20344, + "Ġfas": 30632, + "Ġfasc": 7184, + "Ġfascinated": 24597, + "Ġfascinating": 10343, + "Ġfase": 33931, + "Ġfashion": 6700, + "Ġfashionable": 40735, + "Ġfashioned": 40646, + "Ġfast": 2370, + "Ġfasten": 38716, + "Ġfaster": 4663, + "Ġfastest": 14573, + "Ġfasting": 22371, + "Ġfat": 4046, + "Ġfatal": 24069, + "Ġfate": 12738, + "Ġfather": 3086, + "Ġfathers": 23450, + "Ġfatigue": 20574, + "Ġfato": 33351, + "Ġfats": 29885, + "Ġfatto": 23228, + "Ġfatty": 24898, + "Ġfauc": 49567, + "Ġfaud": 38694, + "Ġfault": 7441, + "Ġfaults": 36090, + "Ġfaut": 8487, + "Ġfaux": 36659, + "Ġfav": 33801, + "Ġfavor": 2294, + "Ġfavorable": 29557, + "Ġfavored": 44420, + "Ġfavorite": 2954, + "Ġfavorites": 16907, + "Ġfavors": 40554, + "Ġfavour": 8182, + "Ġfavourite": 10696, + "Ġfaz": 4375, + "Ġfazem": 41748, + "Ġfazendo": 20741, + "Ġfazer": 6736, + "Ġfazla": 30611, + "Ġfaço": 38091, + "Ġfaçon": 20725, + "Ġfe": 579, + "Ġfear": 4240, + "Ġfeared": 30629, + "Ġfearful": 33014, + "Ġfearless": 44139, + "Ġfears": 15649, + "Ġfeas": 21781, + "Ġfeasible": 26648, + "Ġfeast": 23707, + "Ġfeat": 15425, + "Ġfeather": 25852, + "Ġfeathers": 27044, + "Ġfeature": 4111, + "Ġfeatured": 13822, + "Ġfeatures": 4122, + "Ġfeaturing": 19742, + "Ġfed": 4636, + "Ġfeder": 38024, + "Ġfederal": 6019, + "Ġfee": 12054, + "Ġfeed": 3154, + "Ġfeedback": 5824, + "Ġfeeder": 48778, + "Ġfeeding": 12919, + "Ġfeeds": 23712, + "Ġfeel": 841, + "Ġfeeling": 2633, + "Ġfeelings": 6640, + "Ġfeels": 3417, + "Ġfees": 13370, + "Ġfeet": 3521, + "Ġfeh": 34741, + "Ġfehlt": 47994, + "Ġfeito": 31243, + "Ġfel": 11094, + "Ġfelic": 49986, + "Ġfeliz": 28544, + "Ġfell": 5696, + "Ġfella": 49820, + "Ġfellas": 47242, + "Ġfellow": 7177, + "Ġfellows": 35595, + "Ġfellowship": 24989, + "Ġfelony": 46255, + "Ġfelt": 2762, + "Ġfem": 4010, + "Ġfemale": 6556, + "Ġfemales": 21529, + "Ġfemin": 11155, + "Ġfeminine": 24648, + "Ġfeminism": 37187, + "Ġfeminist": 26229, + "Ġfemme": 27427, + "Ġfemmes": 27997, + "Ġfen": 26830, + "Ġfence": 15422, + "Ġfences": 45796, + "Ġfender": 49746, + "Ġfent": 39395, + "Ġfer": 7202, + "Ġfera": 50169, + "Ġferm": 26558, + "Ġferment": 38300, + "Ġfermentation": 43161, + "Ġfermented": 38649, + "Ġferry": 32967, + "Ġfert": 10700, + "Ġfertig": 31362, + "Ġfertil": 18512, + "Ġfertile": 43509, + "Ġfertility": 31707, + "Ġfertilizer": 31549, + "Ġfest": 6633, + "Ġfesta": 48080, + "Ġfestival": 12091, + "Ġfestivals": 28040, + "Ġfestive": 42729, + "Ġfet": 15136, + "Ġfetch": 23673, + "Ġfeu": 29539, + "Ġfeud": 36377, + "Ġfever": 18277, + "Ġfew": 1326, + "Ġfewer": 13366, + "Ġfez": 21714, + "Ġfi": 15848, + "Ġfian": 49513, + "Ġfiance": 46552, + "Ġfib": 13116, + "Ġfiber": 12874, + "Ġfibers": 25252, + "Ġfibre": 36738, + "Ġfic": 14591, + "Ġfica": 16868, + "Ġficar": 13646, + "Ġfick": 35368, + "Ġficou": 25518, + "Ġfiction": 13266, + "Ġfictional": 28911, + "Ġfid": 24553, + "Ġfidelity": 46404, + "Ġfield": 2519, + "Ġfields": 7909, + "Ġfier": 16334, + "Ġfierce": 25341, + "Ġfiery": 43897, + "Ġfif": 5782, + "Ġfifteen": 18126, + "Ġfifth": 9266, + "Ġfifty": 13442, + "Ġfig": 2147, + "Ġfight": 2092, + "Ġfighter": 15932, + "Ġfighters": 19714, + "Ġfighting": 5237, + "Ġfights": 14512, + "Ġfigur": 31094, + "Ġfigura": 44691, + "Ġfigure": 2573, + "Ġfigured": 8932, + "Ġfigures": 9624, + "Ġfiguring": 15213, + "Ġfij": 42001, + "Ġfik": 35562, + "Ġfil": 1387, + "Ġfilament": 44280, + "Ġfile": 3991, + "Ġfiled": 18789, + "Ġfiles": 7098, + "Ġfilho": 36919, + "Ġfiling": 26854, + "Ġfill": 2836, + "Ġfille": 39216, + "Ġfilled": 6412, + "Ġfiller": 34676, + "Ġfilling": 10623, + "Ġfills": 22498, + "Ġfilm": 2007, + "Ġfilme": 26488, + "Ġfilmed": 15133, + "Ġfilming": 8869, + "Ġfilmmaker": 34700, + "Ġfilmmakers": 35018, + "Ġfilmmaking": 43133, + "Ġfilms": 7796, + "Ġfilos": 46045, + "Ġfils": 46190, + "Ġfilt": 29148, + "Ġfilter": 6608, + "Ġfiltered": 37111, + "Ġfiltering": 30822, + "Ġfilters": 15995, + "Ġfilthy": 40384, + "Ġfiltration": 43623, + "Ġfim": 31603, + "Ġfin": 962, + "Ġfinal": 2572, + "Ġfinale": 23510, + "Ġfinalement": 28623, + "Ġfinally": 2721, + "Ġfinalmente": 35577, + "Ġfinals": 25526, + "Ġfinan": 3682, + "Ġfinance": 10719, + "Ġfinances": 25123, + "Ġfinanci": 24323, + "Ġfinancial": 4669, + "Ġfinancially": 20469, + "Ġfinancing": 22286, + "Ġfinans": 38843, + "Ġfind": 915, + "Ġfinde": 17841, + "Ġfinden": 20734, + "Ġfindet": 27752, + "Ġfinding": 5006, + "Ġfindings": 16483, + "Ġfinds": 10704, + "Ġfine": 2489, + "Ġfinely": 31529, + "Ġfiner": 39130, + "Ġfines": 37989, + "Ġfinest": 28141, + "Ġfing": 3823, + "Ġfinger": 5984, + "Ġfingerna": 48880, + "Ġfingerprint": 30715, + "Ġfingerprints": 42170, + "Ġfingers": 7350, + "Ġfingert": 25948, + "Ġfingertips": 27715, + "Ġfini": 40634, + "Ġfinish": 2413, + "Ġfinished": 4335, + "Ġfinishes": 23615, + "Ġfinishing": 12693, + "Ġfinite": 19362, + "Ġfinns": 17152, + "Ġfino": 42560, + "Ġfins": 25106, + "Ġfique": 35497, + "Ġfiquei": 49647, + "Ġfir": 12159, + "Ġfire": 2610, + "Ġfirearm": 43253, + "Ġfirearms": 38398, + "Ġfired": 11777, + "Ġfirefight": 25256, + "Ġfirefighters": 37218, + "Ġfireplace": 39511, + "Ġfires": 15044, + "Ġfirewall": 36109, + "Ġfireworks": 28453, + "Ġfiring": 16045, + "Ġfirm": 6174, + "Ġfirmly": 20031, + "Ġfirms": 18055, + "Ġfirmware": 30289, + "Ġfirst": 700, + "Ġfirsthand": 38599, + "Ġfirstly": 27376, + "Ġfis": 36609, + "Ġfiscal": 15897, + "Ġfish": 3506, + "Ġfisher": 20698, + "Ġfisherman": 48657, + "Ġfishermen": 42670, + "Ġfishes": 41734, + "Ġfishing": 10180, + "Ġfishy": 41991, + "Ġfist": 21849, + "Ġfists": 49384, + "Ġfit": 3318, + "Ġfitness": 15303, + "Ġfits": 9001, + "Ġfitt": 48876, + "Ġfitted": 26321, + "Ġfitting": 15669, + "Ġfive": 1732, + "Ġfix": 3191, + "Ġfixed": 6806, + "Ġfixes": 32539, + "Ġfixing": 19442, + "Ġfixture": 47680, + "Ġfiz": 21000, + "Ġfizer": 46627, + "Ġfl": 932, + "Ġfla": 46338, + "Ġflag": 7166, + "Ġflags": 23265, + "Ġflagship": 30400, + "Ġflakes": 35392, + "Ġflame": 13287, + "Ġflames": 23743, + "Ġflaming": 45718, + "Ġflank": 36318, + "Ġflap": 30781, + "Ġflaps": 50065, + "Ġflare": 32446, + "Ġflash": 7319, + "Ġflashes": 39665, + "Ġflashing": 31049, + "Ġflashlight": 30835, + "Ġflashy": 47873, + "Ġflat": 4962, + "Ġflats": 43075, + "Ġflatten": 24183, + "Ġflatter": 41247, + "Ġflattering": 49722, + "Ġflav": 37737, + "Ġflavor": 6813, + "Ġflavored": 37261, + "Ġflavors": 16303, + "Ġflavour": 22190, + "Ġflavours": 49450, + "Ġflaw": 13717, + "Ġflawed": 38823, + "Ġflawless": 45693, + "Ġflaws": 27108, + "Ġfle": 7025, + "Ġfled": 24114, + "Ġflee": 25146, + "Ġfleeing": 41885, + "Ġfleet": 19396, + "Ġflesh": 12497, + "Ġflew": 15728, + "Ġflex": 5896, + "Ġflexibility": 12635, + "Ġflexible": 11358, + "Ġflick": 22774, + "Ġflies": 17414, + "Ġflight": 7018, + "Ġflights": 21089, + "Ġflip": 7929, + "Ġflipped": 26273, + "Ġflipping": 26886, + "Ġflips": 40249, + "Ġflirt": 40532, + "Ġflirting": 45777, + "Ġflo": 2591, + "Ġfloat": 15706, + "Ġfloating": 12607, + "Ġfloats": 37878, + "Ġflock": 34819, + "Ġflood": 10481, + "Ġflooded": 31594, + "Ġflooding": 24132, + "Ġfloods": 35536, + "Ġfloor": 4123, + "Ġfloors": 21008, + "Ġflop": 25343, + "Ġflor": 37342, + "Ġfloral": 38900, + "Ġfloss": 49697, + "Ġflour": 7693, + "Ġflourish": 38311, + "Ġflow": 3095, + "Ġflower": 8617, + "Ġflowers": 8085, + "Ġflowing": 13974, + "Ġflown": 34536, + "Ġflows": 12867, + "Ġflu": 5029, + "Ġfluct": 23448, + "Ġfluctuations": 45276, + "Ġfluent": 40799, + "Ġfluff": 41533, + "Ġfluffy": 22778, + "Ġfluid": 9113, + "Ġfluids": 33033, + "Ġfluor": 40540, + "Ġfluores": 32471, + "Ġfluorescent": 46735, + "Ġflush": 19568, + "Ġflute": 33088, + "Ġflux": 19298, + "Ġfly": 3603, + "Ġflying": 7137, + "Ġfo": 726, + "Ġfoam": 12958, + "Ġfoarte": 46499, + "Ġfocal": 26592, + "Ġfocus": 1879, + "Ġfocused": 5178, + "Ġfocuses": 16109, + "Ġfocusing": 8416, + "Ġfod": 47698, + "Ġfog": 13648, + "Ġfoi": 6901, + "Ġfoil": 22444, + "Ġfois": 9576, + "Ġfol": 3339, + "Ġfold": 4860, + "Ġfolded": 23940, + "Ġfolder": 10820, + "Ġfolders": 31082, + "Ġfolding": 25335, + "Ġfolds": 31341, + "Ġfoliage": 49767, + "Ġfolk": 15748, + "Ġfolklore": 49195, + "Ġfolks": 4024, + "Ġfoll": 25483, + "Ġfollow": 1524, + "Ġfollowed": 6263, + "Ġfollower": 35413, + "Ġfollowers": 13071, + "Ġfollowing": 3480, + "Ġfollows": 10002, + "Ġfon": 17290, + "Ġfonction": 20172, + "Ġfonctionne": 49216, + "Ġfond": 9557, + "Ġfondo": 38101, + "Ġfont": 10703, + "Ġfonts": 35316, + "Ġfood": 1755, + "Ġfoods": 8656, + "Ġfool": 7979, + "Ġfooled": 33372, + "Ġfoolish": 23478, + "Ġfools": 38625, + "Ġfoot": 2671, + "Ġfootage": 9556, + "Ġfootball": 7346, + "Ġfooting": 45959, + "Ġfootprint": 24222, + "Ġfootprints": 45715, + "Ġfootsteps": 26883, + "Ġfor": 337, + "Ġfora": 24530, + "Ġforam": 23102, + "Ġforb": 16603, + "Ġforbid": 34117, + "Ġforbidden": 25990, + "Ġforce": 3464, + "Ġforced": 7579, + "Ġforces": 5874, + "Ġforcing": 19030, + "Ġforcé": 30137, + "Ġforcément": 31358, + "Ġfordi": 47830, + "Ġfore": 2091, + "Ġforearm": 47712, + "Ġforecast": 14330, + "Ġforecasting": 44331, + "Ġforecasts": 49421, + "Ġforefront": 27287, + "Ġforeground": 32058, + "Ġforehead": 20472, + "Ġforeign": 5329, + "Ġforeigner": 42764, + "Ġforeigners": 28201, + "Ġforemost": 18864, + "Ġforens": 32034, + "Ġforensic": 39084, + "Ġforesee": 38736, + "Ġforest": 6719, + "Ġforests": 21700, + "Ġforever": 5680, + "Ġforg": 3667, + "Ġforge": 38741, + "Ġforged": 40226, + "Ġforget": 2870, + "Ġforgetting": 25428, + "Ġforgive": 10718, + "Ġforgiven": 30391, + "Ġforgiveness": 18396, + "Ġforgiving": 37701, + "Ġforgot": 5298, + "Ġforgotten": 11832, + "Ġfork": 17716, + "Ġform": 1254, + "Ġforma": 8366, + "Ġformal": 9860, + "Ġformally": 25983, + "Ġformas": 33463, + "Ġformat": 7877, + "Ġformation": 11723, + "Ġformations": 39652, + "Ġformats": 25879, + "Ġformatting": 39366, + "Ġforme": 28670, + "Ġformed": 8693, + "Ġformer": 5819, + "Ġformerly": 34777, + "Ġformidable": 41246, + "Ġforming": 15745, + "Ġforms": 6422, + "Ġformul": 49990, + "Ġformula": 8513, + "Ġformulas": 30546, + "Ġformulate": 47881, + "Ġformulated": 48936, + "Ġformulation": 37642, + "Ġfors": 32299, + "Ġforsk": 45321, + "Ġfort": 5009, + "Ġforte": 23235, + "Ġforth": 5220, + "Ġfortress": 31826, + "Ġforts": 30589, + "Ġfortun": 10506, + "Ġfortunate": 14096, + "Ġfortunately": 25511, + "Ġfortune": 16531, + "Ġforty": 15815, + "Ġforum": 17542, + "Ġforums": 26998, + "Ġforward": 2128, + "Ġforwards": 30126, + "Ġforça": 32878, + "Ġfoss": 14090, + "Ġfosse": 24528, + "Ġfossil": 18737, + "Ġfossils": 39159, + "Ġfoster": 17114, + "Ġfot": 15418, + "Ġfoto": 19176, + "Ġfotograf": 34341, + "Ġfotos": 32301, + "Ġfou": 32012, + "Ġfought": 11391, + "Ġfoul": 23491, + "Ġfound": 1352, + "Ġfoundation": 7030, + "Ġfoundational": 32195, + "Ġfoundations": 22467, + "Ġfounded": 13234, + "Ġfounder": 14917, + "Ġfounders": 25608, + "Ġfounding": 22223, + "Ġfountain": 29451, + "Ġfour": 1451, + "Ġfourteen": 32253, + "Ġfourth": 6409, + "Ġfout": 41907, + "Ġfox": 21026, + "Ġfps": 44981, + "Ġfr": 431, + "Ġfra": 6600, + "Ġfract": 17948, + "Ġfraction": 14135, + "Ġfractions": 36058, + "Ġfracture": 36877, + "Ġfrag": 9241, + "Ġfragen": 39129, + "Ġfragile": 23847, + "Ġfragment": 26424, + "Ġfragments": 29197, + "Ġfragr": 17599, + "Ġfragrance": 25826, + "Ġfragrant": 37296, + "Ġfram": 21405, + "Ġframe": 3920, + "Ġframed": 30420, + "Ġframes": 12083, + "Ġframework": 8388, + "Ġframeworks": 29834, + "Ġframing": 28971, + "Ġfranc": 30514, + "Ġfranch": 13002, + "Ġfranchise": 16222, + "Ġfrank": 10455, + "Ġfrankly": 11939, + "Ġfrança": 43660, + "Ġfrançais": 21425, + "Ġfrançaise": 43832, + "Ġfrase": 38406, + "Ġfrater": 41168, + "Ġfraud": 14560, + "Ġfre": 2130, + "Ġfreak": 21853, + "Ġfreaked": 37853, + "Ġfreakin": 39571, + "Ġfreaking": 14612, + "Ġfree": 1737, + "Ġfreed": 21796, + "Ġfreedom": 5645, + "Ġfreedoms": 40671, + "Ġfreel": 27931, + "Ġfreelance": 47875, + "Ġfreely": 16433, + "Ġfreestyle": 40910, + "Ġfreeze": 15959, + "Ġfreezer": 20189, + "Ġfreezing": 20200, + "Ġfrei": 32542, + "Ġfreight": 37181, + "Ġfren": 33596, + "Ġfrench": 27598, + "Ġfrente": 19873, + "Ġfrequ": 4459, + "Ġfrequencies": 20250, + "Ġfrequency": 7893, + "Ġfrequent": 18004, + "Ġfrequently": 10374, + "Ġfres": 25235, + "Ġfresh": 4451, + "Ġfreshly": 34412, + "Ġfreshman": 22154, + "Ġfreshmen": 43694, + "Ġfreshwater": 50234, + "Ġfret": 24189, + "Ġfreue": 43195, + "Ġfreuen": 41913, + "Ġfrick": 46756, + "Ġfriction": 17710, + "Ġfridge": 13023, + "Ġfried": 10425, + "Ġfriend": 1277, + "Ġfriendly": 9208, + "Ġfriends": 1855, + "Ġfriendship": 13216, + "Ġfriendships": 30003, + "Ġfries": 20733, + "Ġfrig": 34697, + "Ġfright": 15545, + "Ġfrightened": 28839, + "Ġfrightening": 31043, + "Ġfringe": 38764, + "Ġfro": 9795, + "Ġfrog": 17259, + "Ġfrogs": 37107, + "Ġfrom": 490, + "Ġfront": 1868, + "Ġfrontal": 34647, + "Ġfrontier": 35853, + "Ġfrontline": 38033, + "Ġfronts": 40426, + "Ġfrost": 19623, + "Ġfrosting": 37048, + "Ġfroze": 46077, + "Ġfrozen": 12496, + "Ġfruit": 6773, + "Ġfruitful": 49795, + "Ġfruition": 48738, + "Ġfruits": 12148, + "Ġfrust": 7454, + "Ġfrustrated": 15751, + "Ġfrustrating": 16522, + "Ġfrustration": 20491, + "Ġfry": 13776, + "Ġfrying": 24596, + "ĠfrÃ¥": 13237, + "ĠfrÃ¥gor": 48306, + "ĠfrÃ¥n": 18669, + "Ġfrüh": 45029, + "Ġfrüher": 32349, + "Ġft": 31842, + "Ġfu": 8536, + "Ġfuck": 3275, + "Ġfucked": 22518, + "Ġfuckin": 20022, + "Ġfucking": 5546, + "Ġfue": 9248, + "Ġfuego": 43934, + "Ġfuel": 6616, + "Ġfueled": 45446, + "Ġfuels": 24616, + "Ġfuer": 17669, + "Ġfuera": 24818, + "Ġfueron": 28739, + "Ġfuerte": 37129, + "Ġfuerza": 39730, + "Ġfug": 31838, + "Ġfui": 27863, + "Ġfulf": 8081, + "Ġfulfil": 41054, + "Ġfulfill": 13875, + "Ġfulfilled": 21380, + "Ġfulfilling": 25800, + "Ġfulfillment": 32615, + "Ġfull": 1577, + "Ġfullest": 45154, + "Ġfullness": 45262, + "Ġfully": 4498, + "Ġfum": 43845, + "Ġfun": 1019, + "Ġfuncion": 14186, + "Ġfunciona": 26210, + "Ġfunción": 43735, + "Ġfunction": 2445, + "Ġfunctional": 11745, + "Ġfunctionality": 14980, + "Ġfunctioning": 18483, + "Ġfunctions": 6828, + "Ġfund": 2374, + "Ġfundament": 6073, + "Ġfundamental": 8088, + "Ġfundamentally": 17879, + "Ġfundamentals": 29505, + "Ġfunded": 14385, + "Ġfunding": 6137, + "Ġfundo": 40201, + "Ġfundra": 24844, + "Ġfundraising": 32643, + "Ġfunds": 8271, + "Ġfuneral": 20231, + "Ġfungi": 48772, + "Ġfungus": 39788, + "Ġfunk": 26476, + "Ġfunktion": 20454, + "Ġfunktioniert": 26160, + "Ġfunky": 33499, + "Ġfunnel": 24515, + "Ġfunniest": 42681, + "Ġfunny": 4074, + "Ġfunz": 49345, + "Ġfunção": 37588, + "Ġfur": 2687, + "Ġfurious": 33470, + "Ġfurn": 11433, + "Ġfurnace": 34046, + "Ġfurniture": 15671, + "Ġfurry": 47073, + "Ġfurther": 3052, + "Ġfury": 48887, + "Ġfus": 34326, + "Ġfuse": 31328, + "Ġfusion": 23100, + "Ġfuss": 34792, + "Ġfut": 1877, + "Ġfutur": 25840, + "Ġfuture": 2027, + "Ġfutures": 26071, + "Ġfuturistic": 44932, + "Ġfuturo": 23953, + "Ġfuzzy": 34710, + "Ġfy": 38777, + "Ġfá": 15299, + "Ġfácil": 17474, + "Ġfällt": 42870, + "ĠfÃ¥": 14251, + "ĠfÃ¥r": 14865, + "ĠfÃ¥tt": 43651, + "Ġfé": 34271, + "Ġfö": 25309, + "Ġför": 4816, + "Ġföret": 47099, + "Ġförs": 30864, + "Ġförst": 32864, + "Ġförsta": 44203, + "Ġförsö": 45020, + "Ġfø": 50177, + "Ġfør": 40314, + "Ġfüh": 18813, + "Ġführen": 35498, + "Ġführt": 39671, + "Ġfünf": 28723, + "Ġfür": 2959, + "Ġfürs": 46577, + "ĠfÃŃs": 27538, + "ĠfÃŃsica": 46436, + "Ġfır": 47305, + "Ġg": 290, + "Ġga": 5959, + "Ġgaan": 14118, + "Ġgaat": 17829, + "Ġgab": 17964, + "Ġgad": 21318, + "Ġgadget": 38090, + "Ġgadgets": 37635, + "Ġgag": 34833, + "Ġgagn": 49177, + "Ġgagner": 45343, + "Ġgain": 6052, + "Ġgained": 12634, + "Ġgaining": 19752, + "Ġgains": 16823, + "Ġgak": 30045, + "Ġgal": 7660, + "Ġgalax": 26285, + "Ġgalaxies": 28755, + "Ġgalaxy": 17639, + "Ġgalera": 31912, + "Ġgall": 8527, + "Ġgalleries": 40141, + "Ġgallery": 18378, + "Ġgallon": 30339, + "Ġgallons": 32238, + "Ġgam": 8019, + "Ġgamb": 38871, + "Ġgamble": 44128, + "Ġgambling": 27077, + "Ġgame": 1216, + "Ġgameplay": 11421, + "Ġgamer": 30266, + "Ġgamers": 26774, + "Ġgames": 2813, + "Ġgaming": 9703, + "Ġgamma": 15546, + "Ġgan": 7574, + "Ġgang": 10145, + "Ġgangs": 42834, + "Ġgangster": 50104, + "Ġganhar": 40200, + "Ġganska": 34526, + "Ġganz": 6312, + "Ġganze": 18898, + "Ġganzen": 23966, + "Ġgap": 7417, + "Ġgaps": 15031, + "Ġgar": 3691, + "Ġgarage": 14400, + "Ġgarant": 22251, + "Ġgarbage": 14150, + "Ġgard": 5628, + "Ġgarde": 47903, + "Ġgarden": 7431, + "Ġgardening": 31799, + "Ġgardens": 23803, + "Ġgarder": 47167, + "Ġgarlic": 9168, + "Ġgarment": 35084, + "Ġgarments": 44881, + "Ġgarn": 25067, + "Ġgarnish": 42430, + "Ġgars": 35542, + "Ġgas": 4211, + "Ġgases": 21452, + "Ġgasket": 47671, + "Ġgasoline": 28914, + "Ġgasps": 43035, + "Ġgast": 17898, + "Ġgat": 44092, + "Ġgate": 8539, + "Ġgates": 19792, + "Ġgateway": 28532, + "Ġgather": 5448, + "Ġgathered": 13032, + "Ġgathering": 13519, + "Ġgatherings": 36247, + "Ġgauche": 36724, + "Ġgauge": 17924, + "Ġgave": 2729, + "Ġgay": 9049, + "Ġgaz": 26232, + "Ġgaze": 24294, + "Ġgdy": 28405, + "Ġgdzie": 18922, + "ĠgdzieÅĽ": 41359, + "Ġge": 1519, + "Ġgear": 7394, + "Ġgearbox": 35291, + "Ġgeared": 35924, + "Ġgears": 20915, + "Ġgeb": 21125, + "Ġgebaut": 49203, + "Ġgebe": 29073, + "Ġgeben": 17191, + "Ġgebracht": 40744, + "Ġgebru": 33857, + "Ġgece": 48173, + "Ġged": 19238, + "Ġgedaan": 44419, + "Ġgedacht": 33296, + "Ġgee": 24105, + "Ġgeehr": 40886, + "Ġgeek": 36162, + "Ġgeen": 21773, + "Ġgeez": 46108, + "Ġgef": 11271, + "Ġgefallen": 39935, + "Ġgefragt": 42638, + "Ġgefunden": 36923, + "Ġgefähr": 41484, + "Ġgeg": 23982, + "Ġgegangen": 44415, + "Ġgegeben": 32572, + "Ġgegen": 13953, + "Ġgegenüber": 41830, + "Ġgeh": 13218, + "Ġgehabt": 37092, + "Ġgehe": 34252, + "Ġgehen": 13230, + "Ġgeht": 7095, + "Ġgehört": 21544, + "Ġgeil": 47165, + "Ġgek": 14037, + "Ġgekommen": 32732, + "Ġgel": 4087, + "Ġgelatin": 45174, + "Ġgeld": 25114, + "Ġgeldi": 22121, + "Ġgele": 20234, + "Ġgelecek": 47158, + "Ġgelen": 43353, + "Ġgelernt": 49224, + "Ġgelir": 44011, + "Ġgeliyor": 29776, + "ĠgelmiÅŁ": 45849, + "Ġgels": 39196, + "Ġgem": 7173, + "Ġgema": 46126, + "Ġgemaakt": 49666, + "Ġgemacht": 12293, + "Ġgeme": 18111, + "Ġgemeins": 22971, + "Ġgemeinsam": 29701, + "Ġgems": 29296, + "Ġgen": 1049, + "Ġgenau": 12535, + "Ġgenauso": 37694, + "Ġgender": 7898, + "Ġgene": 12186, + "Ġgener": 1337, + "Ġgeneral": 2674, + "Ġgeneralized": 44498, + "Ġgenerally": 5101, + "Ġgenerals": 41346, + "Ġgenerate": 8460, + "Ġgenerated": 10833, + "Ġgenerates": 23815, + "Ġgenerating": 17746, + "Ġgeneration": 5125, + "Ġgenerational": 48320, + "Ġgenerations": 10593, + "Ġgenerator": 19265, + "Ġgenerators": 38662, + "Ġgenere": 41553, + "Ġgeneric": 19577, + "Ġgenerosity": 30178, + "Ġgenerous": 14537, + "Ġgenerously": 48983, + "Ġgenes": 14424, + "Ġgenetic": 12462, + "Ġgenetically": 37582, + "Ġgenetics": 26516, + "Ġgenial": 48228, + "Ġgenius": 14017, + "Ġgenocide": 31867, + "Ġgenom": 41441, + "Ġgenome": 21953, + "Ġgenommen": 38715, + "Ġgenre": 11022, + "Ġgenres": 30057, + "Ġgens": 10668, + "Ġgent": 16108, + "Ġgente": 3788, + "Ġgentle": 6424, + "Ġgentleman": 15761, + "Ġgentlemen": 11669, + "Ġgently": 13073, + "Ġgenug": 33194, + "Ġgenuine": 16699, + "Ġgenuinely": 17839, + "Ġgeo": 43198, + "Ġgeograph": 25435, + "Ġgeographic": 32318, + "Ġgeographical": 39872, + "Ġgeography": 26695, + "Ġgeology": 48788, + "Ġgeomet": 12956, + "Ġgeometric": 33246, + "Ġgeometry": 18426, + "Ġgeopolit": 46615, + "Ġgep": 30979, + "Ġger": 5713, + "Ġgera": 41289, + "Ġgerade": 12117, + "Ġgeral": 35412, + "Ġgere": 18635, + "Ġgerek": 34736, + "Ġgereki": 45038, + "Ġgeri": 41018, + "Ġgerm": 19858, + "Ġgerman": 46572, + "Ġgerms": 44010, + "Ġgern": 38531, + "Ġgerne": 15689, + "Ġgerçek": 24944, + "Ġgerçekten": 35784, + "Ġges": 5019, + "Ġgesagt": 12260, + "Ġgesam": 39746, + "Ġgesch": 13511, + "Ġgeschafft": 45215, + "Ġgeschrieben": 47397, + "Ġgesehen": 21535, + "Ġgespannt": 47355, + "Ġgesprochen": 42714, + "Ġgest": 7219, + "Ġgestellt": 42259, + "Ġgesture": 22252, + "Ġgestures": 28475, + "Ġgesund": 49176, + "Ġget": 483, + "Ġgetan": 45599, + "Ġgetir": 38610, + "Ġgets": 2170, + "Ġgettin": 34568, + "Ġgetting": 1242, + "Ġgev": 47103, + "Ġgeven": 49437, + "Ġgew": 6906, + "Ġgewe": 45707, + "Ġgewesen": 27653, + "Ġgewoon": 19751, + "Ġgeworden": 26281, + "Ġgez": 18110, + "Ġgezeigt": 48661, + "Ġgeç": 13110, + "Ġgh": 33937, + "Ġghee": 45172, + "Ġghetto": 47371, + "Ġghost": 8359, + "Ġghosts": 21744, + "Ġgi": 1735, + "Ġgia": 39689, + "Ġgiant": 7410, + "Ġgiants": 31894, + "Ġgib": 4553, + "Ġgibi": 11033, + "Ġgibt": 6089, + "Ġgid": 19805, + "Ġgide": 34255, + "Ġgider": 42291, + "Ġgift": 5306, + "Ġgifted": 27104, + "Ġgifts": 11449, + "Ġgig": 8741, + "Ġgigabytes": 42741, + "Ġgigantic": 26800, + "Ġgiggles": 50032, + "Ġgigs": 34586, + "Ġgilt": 29487, + "Ġgim": 27071, + "Ġgimbal": 43667, + "Ġgimm": 37214, + "Ġgin": 36604, + "Ġging": 21924, + "Ġginger": 14966, + "Ġgio": 48508, + "Ġgiorn": 36937, + "Ġgiorno": 42202, + "Ġgir": 14703, + "Ġgiraffe": 49897, + "Ġgird": 48219, + "Ġgirl": 2013, + "Ġgirlfriend": 10369, + "Ġgirlfriends": 46558, + "Ġgirls": 4519, + "Ġgit": 18331, + "Ġgitti": 37700, + "Ġgitu": 20156, + "Ġgive": 976, + "Ġgiveaway": 23508, + "Ġgiven": 2212, + "Ġgives": 2709, + "Ġgiving": 2902, + "ĠgiÃł": 30469, + "Ġgiá»Ŀ": 28689, + "Ġgj": 20249, + "Ġgjorde": 47670, + "Ġgjort": 37420, + "Ġgl": 1563, + "Ġgla": 8771, + "Ġglac": 29700, + "Ġglacier": 48021, + "Ġglad": 5404, + "Ġgladly": 47307, + "Ġglam": 28133, + "Ġglamorous": 48760, + "Ġglance": 21094, + "Ġgland": 43284, + "Ġglands": 49533, + "Ġglare": 49159, + "Ġglass": 4276, + "Ġglasses": 10812, + "Ġglaub": 23210, + "Ġglaube": 13756, + "Ġglauben": 47139, + "Ġglaze": 39390, + "Ġgle": 48956, + "Ġgleich": 11699, + "Ġgleichen": 49069, + "Ġgleichzeitig": 44242, + "Ġgli": 17161, + "Ġglide": 41848, + "Ġglimp": 25727, + "Ġglimpse": 25838, + "Ġglitch": 23552, + "Ġglitter": 18620, + "Ġglo": 3114, + "Ġglob": 16125, + "Ġglobal": 4338, + "Ġglobalization": 40518, + "Ġglobally": 18958, + "Ġglobe": 15371, + "Ġglor": 26623, + "Ġglorious": 24026, + "Ġglory": 11924, + "Ġgloss": 19574, + "Ġglossy": 38285, + "Ġglove": 26928, + "Ġgloves": 14976, + "Ġglow": 17513, + "Ġglowing": 27064, + "Ġgluc": 19636, + "Ġglucose": 23997, + "Ġglue": 8998, + "Ġglued": 28008, + "Ġglut": 33249, + "Ġgluten": 24326, + "Ġgly": 22633, + "Ġgn": 49819, + "Ġgo": 352, + "Ġgoal": 3387, + "Ġgoals": 5493, + "Ġgoat": 23608, + "Ġgoats": 34219, + "Ġgob": 20489, + "Ġgobierno": 29254, + "Ġgod": 3044, + "Ġgoddamn": 32951, + "Ġgoddess": 24508, + "Ġgods": 14049, + "Ġgodt": 35427, + "Ġgoed": 16987, + "Ġgoes": 1709, + "Ġgogg": 36653, + "Ġgoggles": 39808, + "Ġgoin": 21582, + "Ġgoing": 516, + "Ġgol": 9988, + "Ġgold": 3821, + "Ġgolden": 9729, + "Ġgolf": 12880, + "Ġgolpe": 42032, + "Ġgon": 26307, + "Ġgone": 2780, + "Ġgonna": 799, + "Ġgoo": 33192, + "Ġgood": 665, + "Ġgoodbye": 12084, + "Ġgoodies": 44072, + "Ġgoodness": 8387, + "Ġgoods": 10179, + "Ġgoof": 30356, + "Ġgoofy": 42995, + "Ġgoog": 50061, + "Ġgoogle": 20742, + "Ġgoose": 24717, + "Ġgoosebumps": 48305, + "Ġgor": 24012, + "Ġgord": 42443, + "Ġgorgeous": 12291, + "Ġgorilla": 45066, + "Ġgosh": 6502, + "Ġgosp": 37250, + "Ġgospel": 14943, + "Ġgossip": 31788, + "Ġgost": 13188, + "Ġgosta": 39874, + "Ġgosto": 32022, + "Ġgot": 658, + "Ġgotta": 3428, + "Ġgotten": 5768, + "Ġgou": 21301, + "Ġgour": 46651, + "Ġgouvern": 24894, + "Ġgouvernement": 27504, + "Ġgover": 27526, + "Ġgovern": 1980, + "Ġgovernance": 17449, + "Ġgoverned": 35529, + "Ġgoverning": 30054, + "Ġgovernment": 2463, + "Ġgovernmental": 43391, + "Ġgovernments": 11280, + "Ġgoverno": 34685, + "Ġgovernor": 12965, + "Ġgovernors": 36571, + "Ġgown": 34428, + "Ġgr": 677, + "Ġgra": 1295, + "Ġgrab": 4444, + "Ġgrabbed": 18607, + "Ġgrabbing": 23771, + "Ġgrabs": 30028, + "Ġgrac": 11625, + "Ġgrace": 10042, + "Ġgracias": 16611, + "Ġgracious": 36113, + "Ġgrad": 2771, + "Ġgrade": 7204, + "Ġgraders": 46703, + "Ġgrades": 18041, + "Ġgradient": 16235, + "Ġgrading": 35540, + "Ġgradu": 4138, + "Ġgradual": 32890, + "Ġgradually": 13145, + "Ġgraduate": 8080, + "Ġgraduated": 13693, + "Ġgraduates": 13577, + "Ġgraduating": 18843, + "Ġgraduation": 15652, + "Ġgraffiti": 40531, + "Ġgraft": 44767, + "Ġgrain": 12837, + "Ġgrains": 22908, + "Ġgram": 21353, + "Ġgramm": 17570, + "Ġgrammar": 22317, + "Ġgrams": 11899, + "Ġgran": 9370, + "Ġgrand": 2697, + "Ġgrandchildren": 28112, + "Ġgranddaughter": 44411, + "Ġgrande": 8883, + "Ġgrandes": 16640, + "Ġgrandfather": 14754, + "Ġgrandi": 45155, + "Ġgrandma": 15766, + "Ġgrandmother": 14317, + "Ġgrandpa": 24129, + "Ġgrandparents": 21876, + "Ġgrands": 33298, + "Ġgrandson": 31657, + "Ġgranny": 44797, + "Ġgrant": 6386, + "Ġgranted": 12344, + "Ġgranting": 50204, + "Ġgrants": 16101, + "Ġgranular": 39962, + "Ġgrape": 23978, + "Ġgrapes": 28032, + "Ġgraph": 4295, + "Ġgraphic": 14089, + "Ġgraphical": 35942, + "Ġgraphics": 11837, + "Ġgraphs": 24877, + "Ġgrapp": 27165, + "Ġgrappling": 50086, + "Ġgras": 29444, + "Ġgrasp": 21743, + "Ġgrass": 8054, + "Ġgrasses": 49701, + "Ġgrassroots": 39522, + "Ġgrat": 10158, + "Ġgrate": 46214, + "Ġgrated": 43319, + "Ġgrateful": 7941, + "Ġgratitude": 16935, + "Ġgratuit": 38342, + "Ġgrav": 7427, + "Ġgrave": 12525, + "Ġgravel": 30001, + "Ġgraves": 31664, + "Ġgraveyard": 42607, + "Ġgravit": 26048, + "Ġgravitational": 28538, + "Ġgravity": 12110, + "Ġgravy": 31535, + "Ġgray": 10855, + "Ġgrazing": 48112, + "Ġgre": 6066, + "Ġgrease": 24867, + "Ġgreasy": 36401, + "Ġgreat": 869, + "Ġgreater": 5044, + "Ġgreatest": 6636, + "Ġgreatly": 14147, + "Ġgreatness": 31196, + "Ġgreed": 29230, + "Ġgreedy": 28228, + "Ġgreen": 3092, + "Ġgreenhouse": 22126, + "Ġgreens": 22897, + "Ġgreet": 12044, + "Ġgreeted": 38441, + "Ġgreeting": 28174, + "Ġgreetings": 33667, + "Ġgren": 20313, + "Ġgrenade": 31527, + "Ġgrenades": 43529, + "Ġgrew": 6109, + "Ġgrey": 16578, + "Ġgri": 17865, + "Ġgrid": 10748, + "Ġgrief": 18998, + "Ġgriev": 49260, + "Ġgrieving": 48454, + "Ġgrill": 16492, + "Ġgrille": 49011, + "Ġgrilled": 25183, + "Ġgrilling": 49961, + "Ġgrim": 36010, + "Ġgrin": 49179, + "Ġgrind": 16700, + "Ġgrinder": 41424, + "Ġgrinding": 25300, + "Ġgrip": 12007, + "Ġgrips": 38037, + "Ġgrit": 30133, + "Ġgro": 4634, + "Ġgroans": 44657, + "Ġgrocer": 11884, + "Ġgroceries": 31391, + "Ġgrocery": 14410, + "Ġgroo": 42156, + "Ġgroom": 22198, + "Ġgrooming": 49700, + "Ġgroot": 41906, + "Ġgroove": 26910, + "Ġgrooves": 49359, + "Ġgros": 18638, + "Ġgross": 11367, + "Ġgrosse": 40009, + "Ġgrote": 39928, + "Ġground": 2727, + "Ġgroundbreaking": 42491, + "Ġgrounded": 23535, + "Ġgrounding": 46727, + "Ġgrounds": 19196, + "Ġgroundwater": 40511, + "Ġgroup": 1594, + "Ġgroupe": 32980, + "Ġgrouped": 41877, + "Ġgrouping": 40149, + "Ġgroups": 3935, + "Ġgrow": 1852, + "Ġgrowers": 45946, + "Ġgrowing": 4194, + "Ġgrown": 7709, + "Ġgrows": 13156, + "Ġgrowth": 4599, + "ĠgroÃŁ": 17253, + "ĠgroÃŁe": 19691, + "ĠgroÃŁen": 23076, + "ĠgroÃŁer": 46220, + "ĠgroÃŁes": 48875, + "Ġgrues": 48238, + "Ġgrund": 30886, + "Ġgrup": 12740, + "Ġgrupo": 20190, + "Ġgrupos": 33758, + "Ġgrupp": 47477, + "Ġgry": 41974, + "Ġgráfic": 34613, + "Ġgrâce": 31180, + "ĠgrÃ¶ÃŁ": 20691, + "Ġgu": 695, + "Ġgua": 30081, + "Ġguar": 7498, + "Ġguarante": 14203, + "Ġguarantee": 10815, + "Ġguaranteed": 18031, + "Ġguarantees": 32567, + "Ġguard": 6290, + "Ġguarded": 44157, + "Ġguardian": 30355, + "Ġguardians": 40525, + "Ġguarding": 44077, + "Ġguards": 17652, + "Ġgucken": 33135, + "Ġgue": 13987, + "Ġguer": 14486, + "Ġguerra": 27542, + "Ġguerre": 31400, + "Ġguess": 2041, + "Ġguessed": 21852, + "Ġguesses": 42703, + "Ġguessing": 17939, + "Ġguest": 8341, + "Ġguests": 9804, + "Ġguid": 6489, + "Ġguidance": 10056, + "Ġguide": 5934, + "Ġguided": 19663, + "Ġguideline": 41653, + "Ġguidelines": 12470, + "Ġguides": 17007, + "Ġguiding": 25061, + "Ġguild": 37435, + "Ġguilt": 20421, + "Ġguilty": 12341, + "Ġguit": 31108, + "Ġguitar": 7531, + "Ġguitars": 36809, + "Ġgum": 19973, + "Ġgummy": 45617, + "Ġgun": 3874, + "Ġguns": 10153, + "Ġgur": 40642, + "Ġguru": 29949, + "Ġgust": 9679, + "Ġgusta": 20576, + "Ġgustado": 45221, + "ĠgustarÃŃa": 45896, + "Ġgusto": 38723, + "Ġgut": 5228, + "Ġgute": 21476, + "Ġguten": 31277, + "Ġgutes": 45859, + "Ġguts": 28560, + "Ġguy": 2146, + "Ġguys": 1074, + "Ġgw": 29255, + "Ġgy": 15823, + "Ġgym": 9222, + "Ġgymn": 35760, + "Ġgymnastics": 48461, + "Ġgä": 37612, + "Ġgäller": 48771, + "ĠgÃ¥": 22098, + "ĠgÃ¥ng": 36528, + "ĠgÃ¥r": 19831, + "Ġgé": 38462, + "Ġgén": 14575, + "Ġgénér": 45622, + "Ġgénéral": 27796, + "Ġgì": 22804, + "Ġgö": 7105, + "Ġgör": 8362, + "Ġgöra": 20541, + "Ġgörd": 27407, + "Ġgöre": 21032, + "Ġgörün": 49676, + "ĠgörÃ¼ÅŁ": 38488, + "Ġgöst": 42594, + "Ġgöster": 40968, + "Ġgöt": 39630, + "Ġgöz": 23234, + "Ġgü": 18148, + "Ġgün": 14472, + "Ġgüzel": 14746, + "Ġgüç": 48015, + "ĠgÅĤ": 18117, + "ĠgÅĤos": 43767, + "Ġh": 276, + "Ġha": 324, + "Ġhaar": 39371, + "Ġhab": 3025, + "Ġhabe": 6015, + "Ġhaben": 3084, + "Ġhaber": 15811, + "Ġhabil": 36565, + "Ġhabit": 7164, + "Ġhabitat": 20110, + "Ġhabitats": 42159, + "Ġhabits": 14100, + "Ġhabitual": 46883, + "Ġhabl": 26280, + "Ġhabla": 42135, + "Ġhablando": 29369, + "Ġhablar": 21014, + "Ġhabr": 32794, + "Ġhabt": 23660, + "ĠhabÃŃa": 16395, + "ĠhabÃŃan": 44466, + "Ġhac": 46093, + "Ġhace": 10032, + "Ġhacemos": 33839, + "Ġhacen": 27434, + "Ġhacer": 6720, + "Ġhacerlo": 32039, + "Ġhacia": 21365, + "Ġhaciendo": 20509, + "Ġhack": 10339, + "Ġhacked": 36218, + "Ġhacker": 38155, + "Ġhackers": 39766, + "Ġhacking": 31422, + "Ġhacks": 33617, + "Ġhad": 632, + "Ġhade": 25027, + "Ġhadi": 25789, + "Ġhadn": 8782, + "Ġhaft": 32329, + "Ġhag": 42386, + "Ġhaga": 46726, + "Ġhago": 38721, + "Ġhah": 17206, + "Ġhaha": 17236, + "Ġhahaha": 28142, + "Ġhai": 21822, + "Ġhail": 38157, + "Ġhair": 2578, + "Ġhaircut": 30328, + "Ġhaird": 41954, + "Ġhairs": 26525, + "Ġhairst": 30658, + "Ġhairstyle": 32770, + "Ġhairy": 42346, + "Ġhak": 35720, + "Ġhakk": 37949, + "Ġhal": 7523, + "Ġhalf": 1922, + "Ġhalfway": 15461, + "Ġhall": 6500, + "Ġhalls": 26177, + "Ġhalluc": 35212, + "Ġhallway": 23903, + "Ġhalo": 46268, + "Ġhalt": 12479, + "Ġhalten": 27184, + "Ġhalves": 38490, + "Ġham": 7852, + "Ġhamb": 25172, + "Ġhamburger": 34575, + "Ġhamm": 36600, + "Ġhammer": 13017, + "Ġhan": 7276, + "Ġhand": 1011, + "Ġhandc": 46175, + "Ġhanded": 16013, + "Ġhandful": 16458, + "Ġhandheld": 37634, + "Ġhandic": 31369, + "Ġhandicap": 45975, + "Ġhanding": 34774, + "Ġhandlar": 42572, + "Ġhandle": 4813, + "Ġhandled": 18033, + "Ġhandler": 41967, + "Ġhandles": 18722, + "Ġhandling": 13175, + "Ġhandmade": 39446, + "Ġhandout": 48785, + "Ġhands": 2377, + "Ġhandsome": 13421, + "Ġhandwriting": 39179, + "Ġhandy": 13239, + "Ġhang": 3967, + "Ġhanger": 48034, + "Ġhanging": 8345, + "Ġhangs": 35947, + "Ġhani": 45108, + "Ġhanno": 26595, + "Ġhanya": 46291, + "Ġhapp": 782, + "Ġhappen": 1051, + "Ġhappened": 2011, + "Ġhappening": 2737, + "Ġhappens": 2314, + "Ġhappier": 20423, + "Ġhappiest": 37584, + "Ġhappily": 19909, + "Ġhappiness": 8324, + "Ġhappy": 2055, + "Ġhar": 2233, + "Ġharass": 16910, + "Ġharassment": 25836, + "Ġharbor": 36947, + "Ġhard": 1152, + "Ġhardcore": 28196, + "Ġharden": 50203, + "Ġhardened": 42605, + "Ġharder": 6081, + "Ġhardest": 13158, + "Ġhardly": 13572, + "Ġhardness": 44019, + "Ġhardship": 24172, + "Ġhardships": 41351, + "Ġhardware": 8837, + "Ġhare": 39921, + "Ġhari": 33264, + "Ġharm": 6491, + "Ġharmed": 41478, + "Ġharmful": 19727, + "Ġharmless": 40160, + "Ġharmon": 14750, + "Ġharmonic": 32270, + "Ġharmony": 19410, + "Ġharms": 48505, + "Ġharness": 19700, + "Ġharp": 50093, + "Ġharsh": 14897, + "Ġhart": 36644, + "Ġharus": 28219, + "Ġharvest": 11917, + "Ġharvested": 40994, + "Ġharvesting": 35679, + "Ġhas": 575, + "Ġhash": 22019, + "Ġhasht": 17462, + "Ġhashtag": 20379, + "Ġhashtags": 50016, + "Ġhasn": 6132, + "Ġhass": 33690, + "Ġhassle": 39526, + "Ġhast": 6581, + "Ġhasta": 10764, + "Ġhat": 2385, + "Ġhatch": 17387, + "Ġhate": 4700, + "Ġhated": 17398, + "Ġhaters": 43675, + "Ġhates": 23000, + "Ġhating": 45082, + "Ġhatred": 21890, + "Ġhats": 20549, + "Ġhatte": 13299, + "Ġhatten": 20441, + "Ġhatır": 47323, + "Ġhaul": 21167, + "Ġhaunted": 24878, + "Ġhaunting": 44512, + "Ġhaut": 29032, + "Ġhav": 26139, + "Ġhave": 362, + "Ġhaven": 2378, + "Ġhaver": 41912, + "Ġhavia": 28855, + "Ġhaving": 1419, + "Ġhavoc": 47367, + "Ġhaw": 33634, + "Ġhay": 4842, + "Ġhaya": 24693, + "Ġhayat": 26918, + "Ġhayır": 40148, + "Ġhaz": 11008, + "Ġhazard": 20790, + "Ġhazardous": 40020, + "Ġhazards": 34516, + "Ġhazır": 29573, + "Ġhe": 415, + "Ġhead": 1378, + "Ġheadache": 23520, + "Ġheadaches": 35046, + "Ġheaded": 12798, + "Ġheader": 23117, + "Ġheaders": 45101, + "Ġheading": 9864, + "Ġheadlights": 38487, + "Ġheadline": 28380, + "Ġheadlines": 23867, + "Ġheadphone": 35028, + "Ġheadphones": 16278, + "Ġheadquarters": 21052, + "Ġheads": 8050, + "Ġheadset": 26850, + "Ġheal": 10526, + "Ġhealed": 20482, + "Ġhealing": 9745, + "Ġheals": 45653, + "Ġhealth": 1585, + "Ġhealthcare": 8884, + "Ġhealthier": 19580, + "Ġhealthy": 4627, + "Ġheap": 33591, + "Ġhear": 1568, + "Ġheard": 2198, + "Ġhearing": 4763, + "Ġhearings": 34052, + "Ġhears": 25688, + "Ġheart": 1917, + "Ġheartbeat": 34851, + "Ġheartbreaking": 41030, + "Ġheartfelt": 49332, + "Ġhearts": 8852, + "Ġheat": 3738, + "Ġheated": 18806, + "Ġheater": 30408, + "Ġheating": 15082, + "Ġheats": 41035, + "Ġheav": 3577, + "Ġheaven": 7162, + "Ġheavenly": 29406, + "Ġheavens": 26011, + "Ġheavier": 18279, + "Ġheavily": 10950, + "Ġheavy": 4676, + "Ġheb": 8007, + "Ġhebben": 12116, + "Ġhebt": 28339, + "Ġhecho": 13064, + "Ġheck": 12872, + "Ġhect": 37358, + "Ġhed": 33653, + "Ġhedge": 25304, + "Ġheed": 49781, + "Ġheeft": 17425, + "Ġheel": 9430, + "Ġheels": 19502, + "Ġheft": 43674, + "Ġheh": 37791, + "Ġhehe": 42683, + "Ġheight": 6681, + "Ġheightened": 46154, + "Ġheights": 25930, + "Ġhein": 16464, + "Ġheir": 30038, + "ĠheiÃŁ": 39124, + "ĠheiÃŁt": 13139, + "Ġhel": 801, + "Ġhela": 30158, + "Ġheld": 5167, + "Ġhele": 16812, + "Ġhelemaal": 33595, + "Ġhelfen": 29966, + "Ġhelicop": 16061, + "Ġhelicopter": 19803, + "Ġhelicopters": 39016, + "Ġhelium": 40175, + "Ġhell": 4921, + "Ġhello": 7751, + "Ġhelm": 29554, + "Ġhelmet": 15922, + "Ġhelmets": 42022, + "Ġhelp": 854, + "Ġhelped": 4254, + "Ġhelper": 36133, + "Ġhelpful": 4961, + "Ġhelping": 4315, + "Ġhelpless": 27596, + "Ġhelps": 3665, + "Ġhelt": 24821, + "Ġhem": 8636, + "Ġhemen": 32466, + "Ġhemisphere": 38453, + "Ġhemos": 15396, + "Ġhemp": 48266, + "Ġhen": 22253, + "Ġhence": 16678, + "Ġhep": 26299, + "Ġhepat": 48372, + "Ġheps": 38341, + "Ġher": 720, + "Ġheraus": 25089, + "Ġherb": 22662, + "Ġherbal": 44255, + "Ġherbs": 21426, + "Ġherd": 29484, + "Ġhere": 510, + "Ġheritage": 16040, + "Ġherkes": 42122, + "Ġherman": 39458, + "Ġhero": 5316, + "Ġheroes": 12332, + "Ġheroic": 32915, + "Ġheroin": 35551, + "Ġherramient": 38271, + "Ġhers": 6820, + "Ġherself": 7530, + "Ġhertz": 45830, + "Ġherum": 49675, + "Ġherzlich": 45919, + "Ġhes": 10453, + "Ġhesit": 28336, + "Ġhesitant": 36290, + "Ġhesitate": 20842, + "Ġhesitation": 36125, + "Ġhet": 3639, + "Ġheter": 20789, + "Ġheure": 30027, + "Ġheures": 28509, + "Ġheut": 42793, + "Ġheute": 9801, + "Ġhex": 23291, + "Ġhey": 4177, + "Ġhi": 4879, + "Ġhic": 23697, + "Ġhice": 50026, + "Ġhid": 16253, + "Ġhidden": 7633, + "Ġhide": 6479, + "Ġhides": 35953, + "Ġhiding": 10596, + "Ġhier": 3296, + "Ġhierarch": 35250, + "Ġhierarchy": 22333, + "Ġhigh": 1090, + "Ġhigher": 2946, + "Ġhighest": 6343, + "Ġhighlight": 5078, + "Ġhighlighted": 17173, + "Ġhighlighter": 40455, + "Ġhighlighting": 26551, + "Ġhighlights": 14254, + "Ġhighly": 5405, + "Ġhighness": 49235, + "Ġhighs": 29687, + "Ġhighway": 17205, + "Ġhighways": 43747, + "Ġhij": 10625, + "Ġhijo": 38390, + "Ġhijos": 42590, + "Ġhike": 23282, + "Ġhiking": 23784, + "Ġhil": 28315, + "Ġhilar": 18661, + "Ġhilarious": 19796, + "Ġhilft": 42493, + "Ġhill": 10997, + "Ġhills": 21379, + "Ġhim": 796, + "Ġhimself": 3647, + "Ġhin": 14102, + "Ġhina": 41844, + "Ġhinaus": 46056, + "Ġhind": 20138, + "Ġhindsight": 44357, + "Ġhine": 47551, + "Ġhing": 24895, + "Ġhinge": 28822, + "Ġhinges": 46686, + "Ġhint": 12075, + "Ġhinten": 36417, + "Ġhinter": 23219, + "Ġhints": 27271, + "Ġhip": 8103, + "Ġhipp": 27745, + "Ġhips": 15233, + "Ġhire": 11158, + "Ġhired": 13144, + "Ġhiring": 15335, + "Ġhis": 702, + "Ġhiss": 33182, + "Ġhist": 1758, + "Ġhistogram": 49816, + "Ġhistoire": 31202, + "Ġhistor": 4058, + "Ġhistoria": 18385, + "Ġhistorian": 25139, + "Ġhistorians": 26442, + "Ġhistoric": 13236, + "Ġhistorical": 8584, + "Ġhistorically": 16180, + "Ġhistories": 30631, + "Ġhistory": 2503, + "Ġhistó": 33196, + "Ġhistória": 20670, + "Ġhit": 2045, + "Ġhitch": 33259, + "Ġhits": 8664, + "Ġhitting": 8850, + "Ġhive": 42523, + "Ġhizo": 28803, + "Ġhiç": 15169, + "Ġhiçbir": 31151, + "Ġhiá»ĩn": 48079, + "Ġhj": 23731, + "Ġhjäl": 42822, + "Ġhm": 35481, + "Ġhmm": 16478, + "Ġho": 1106, + "Ġhoard": 45940, + "Ġhob": 12959, + "Ġhobbies": 35750, + "Ġhobby": 18240, + "Ġhoc": 16708, + "Ġhoch": 19783, + "Ġhockey": 22449, + "Ġhoe": 19709, + "Ġhoffe": 34903, + "Ġhog": 24855, + "Ġhogy": 14601, + "Ġhoje": 13458, + "Ġhol": 4091, + "Ġhold": 1797, + "Ġholder": 20349, + "Ġholders": 29274, + "Ġholding": 5061, + "Ġholds": 9190, + "Ġhole": 5458, + "Ġholes": 8118, + "Ġholiday": 9960, + "Ġholidays": 15734, + "Ġholiness": 44867, + "Ġholistic": 30334, + "Ġhollow": 23972, + "Ġholog": 38541, + "Ġholy": 10622, + "Ġhom": 3655, + "Ġhomage": 44073, + "Ġhombre": 26102, + "Ġhombres": 37988, + "Ġhome": 1280, + "Ġhomeland": 32494, + "Ġhomeless": 12294, + "Ġhomelessness": 28791, + "Ġhomem": 30798, + "Ġhomemade": 23336, + "Ġhomeowners": 39868, + "Ġhomepage": 31301, + "Ġhomes": 7388, + "Ġhometown": 22112, + "Ġhomework": 14578, + "Ġhomicide": 49411, + "Ġhomme": 35794, + "Ġhommes": 34795, + "Ġhomogeneous": 42632, + "Ġhomosexual": 30490, + "Ġhon": 2157, + "Ġhone": 43212, + "Ġhonest": 3245, + "Ġhonestly": 6095, + "Ġhonesty": 26839, + "Ġhoney": 8330, + "Ġhoneymoon": 48004, + "Ġhonor": 5968, + "Ġhonorable": 36322, + "Ġhonorary": 49365, + "Ġhonored": 14556, + "Ġhonoring": 38254, + "Ġhonors": 26884, + "Ġhonour": 20631, + "Ġhoo": 30663, + "Ġhood": 13376, + "Ġhoodie": 41191, + "Ġhoof": 44974, + "Ġhook": 6328, + "Ġhooked": 20410, + "Ġhooks": 26485, + "Ġhoop": 29749, + "Ġhoor": 43330, + "Ġhop": 3818, + "Ġhope": 1454, + "Ġhoped": 19737, + "Ġhopeful": 20531, + "Ġhopefully": 4696, + "Ġhopeless": 27317, + "Ġhopes": 13681, + "Ġhoping": 7159, + "Ġhopping": 47199, + "Ġhops": 47579, + "Ġhor": 2569, + "Ġhora": 15098, + "Ġhoras": 19548, + "Ġhoriz": 7937, + "Ġhorizon": 18046, + "Ġhorizont": 10908, + "Ġhorizontal": 12750, + "Ġhorizontally": 33796, + "Ġhorm": 11876, + "Ġhormone": 24211, + "Ġhormones": 22453, + "Ġhorn": 13482, + "Ġhorns": 28818, + "Ġhorr": 17582, + "Ġhorrend": 49520, + "Ġhorrible": 9263, + "Ġhorribly": 45028, + "Ġhorrific": 29248, + "Ġhorrifying": 40227, + "Ġhorror": 11501, + "Ġhors": 11912, + "Ġhorse": 6832, + "Ġhorsepower": 25250, + "Ġhorses": 13112, + "Ġhose": 20061, + "Ġhosp": 3872, + "Ġhospital": 4530, + "Ġhospitality": 31207, + "Ġhospitalized": 42340, + "Ġhospitals": 13014, + "Ġhost": 3975, + "Ġhostage": 38434, + "Ġhosted": 19204, + "Ġhostel": 48879, + "Ġhostile": 27312, + "Ġhosting": 16058, + "Ġhosts": 21573, + "Ġhot": 2368, + "Ġhotel": 7622, + "Ġhotels": 22718, + "Ġhots": 36121, + "Ġhott": 30749, + "Ġhotter": 32149, + "Ġhottest": 32780, + "Ġhou": 36621, + "Ġhour": 1773, + "Ġhourly": 48364, + "Ġhours": 2496, + "Ġhous": 4407, + "Ġhouse": 1782, + "Ġhoused": 36084, + "Ġhousehold": 9888, + "Ġhouseholds": 22850, + "Ġhousekeeping": 48033, + "Ġhouses": 8078, + "Ġhousing": 6849, + "Ġhover": 20076, + "Ġhovering": 44923, + "Ġhow": 577, + "Ġhowever": 4461, + "Ġhoy": 13775, + "ĠhoÅŁ": 37063, + "Ġhp": 34064, + "Ġhtt": 22881, + "Ġhttp": 37428, + "Ġhttps": 34426, + "Ġhu": 2137, + "Ġhub": 11838, + "Ġhubs": 46870, + "Ġhue": 24967, + "Ġhug": 8777, + "Ġhuge": 2603, + "Ġhugely": 27417, + "Ġhugging": 41706, + "Ġhugs": 42149, + "Ġhuh": 7020, + "Ġhuis": 46526, + "Ġhull": 32335, + "Ġhum": 1484, + "Ġhuman": 1952, + "Ġhumanitarian": 25096, + "Ġhumanities": 36140, + "Ġhumanity": 10243, + "Ġhumano": 30985, + "Ġhumanos": 34555, + "Ġhumans": 6255, + "Ġhumble": 16735, + "Ġhumbled": 46199, + "Ġhumid": 34649, + "Ġhumidity": 24751, + "Ġhumili": 29981, + "Ġhumility": 27106, + "Ġhumming": 34965, + "Ġhumor": 14318, + "Ġhumour": 45138, + "Ġhump": 47093, + "Ġhun": 7396, + "Ġhunch": 47630, + "Ġhundred": 3262, + "Ġhundreds": 6779, + "Ġhung": 5753, + "Ġhunger": 19229, + "Ġhungry": 8067, + "Ġhunt": 12454, + "Ġhunted": 44943, + "Ġhunter": 22970, + "Ġhunters": 29509, + "Ġhunting": 12599, + "Ġhur": 2756, + "Ġhurdle": 47423, + "Ġhurdles": 48387, + "Ġhurricane": 27136, + "Ġhurricanes": 48026, + "Ġhurry": 11025, + "Ġhurt": 4607, + "Ġhurting": 17744, + "Ġhurts": 11051, + "Ġhus": 4788, + "Ġhusband": 5213, + "Ġhusbands": 37835, + "Ġhust": 25822, + "Ġhustle": 34639, + "Ġhut": 36755, + "Ġhvad": 48160, + "Ġhvis": 45427, + "Ġhvor": 31459, + "Ġhy": 2477, + "Ġhybrid": 13051, + "Ġhyd": 5796, + "Ġhydrated": 44960, + "Ġhydration": 43631, + "Ġhydraul": 27510, + "Ġhydraulic": 32134, + "Ġhydro": 15435, + "Ġhydrogen": 12697, + "Ġhyg": 24470, + "Ġhygiene": 29541, + "Ġhyp": 7420, + "Ġhype": 24144, + "Ġhyped": 43172, + "Ġhyper": 9848, + "Ġhypert": 37488, + "Ġhypertension": 46172, + "Ġhypnot": 42944, + "Ġhypoc": 50207, + "Ġhypocr": 39419, + "Ġhypoth": 24371, + "Ġhypothes": 14276, + "Ġhypotheses": 49969, + "Ġhypothesis": 17291, + "Ġhypothetical": 33053, + "Ġhyster": 35915, + "Ġhyung": 33216, + "Ġhyvin": 36180, + "Ġhyvä": 38526, + "Ġhá": 16448, + "Ġhä": 24054, + "Ġhält": 40751, + "Ġhär": 6533, + "Ġhät": 15344, + "Ġhätte": 20041, + "Ġhätten": 33278, + "Ġhäuf": 39735, + "Ġhäufig": 47543, + "ĠhÃ¥": 24367, + "Ġhè": 49243, + "Ġhé": 32537, + "Ġhö": 13531, + "Ġhöher": 48045, + "Ġhör": 42651, + "Ġhören": 38681, + "Ġhört": 42243, + "ĠhÃłng": 48373, + "ĠhÆ¡n": 34335, + "Ġhết": 44414, + "Ġhá»į": 27700, + "Ġhá»įc": 46786, + "Ġi": 741, + "ĠiOS": 17430, + "ĠiP": 5180, + "ĠiPad": 12945, + "ĠiPh": 42048, + "ĠiPhone": 7252, + "ĠiPhones": 43793, + "ĠiT": 30882, + "ĠiTunes": 33017, + "Ġia": 20721, + "Ġib": 39073, + "Ġiba": 33423, + "Ġic": 4376, + "Ġice": 4435, + "Ġiceberg": 38880, + "Ġiced": 46091, + "Ġich": 1893, + "Ġici": 11575, + "Ġicing": 30086, + "Ġicon": 6528, + "Ġiconic": 15762, + "Ġicons": 23308, + "Ġicy": 42015, + "Ġid": 4496, + "Ġidag": 43334, + "Ġide": 1153, + "Ġidea": 1558, + "Ġideal": 7157, + "Ġideally": 22915, + "Ġideals": 30956, + "Ġideas": 3487, + "Ġidee": 49742, + "Ġideia": 26409, + "Ġident": 2473, + "Ġidentical": 14800, + "Ġidentific": 49456, + "Ġidentification": 22065, + "Ġidentified": 9234, + "Ġidentifier": 45690, + "Ġidentifies": 34597, + "Ġidentify": 5876, + "Ġidentifying": 16696, + "Ġidentities": 24239, + "Ġidentity": 6575, + "Ġideological": 35341, + "Ġideology": 23101, + "Ġidi": 18014, + "Ġidiot": 14270, + "Ġidiots": 36454, + "Ġidle": 30650, + "Ġido": 47771, + "Ġidol": 13060, + "Ġidols": 29959, + "Ġidé": 39227, + "Ġidée": 34832, + "Ġie": 43203, + "Ġiedereen": 47529, + "Ġiemand": 48687, + "Ġiets": 24791, + "Ġif": 498, + "Ġig": 8508, + "Ġigen": 31305, + "Ġign": 5335, + "Ġignite": 49609, + "Ġignition": 37031, + "Ġignor": 14698, + "Ġignorance": 25390, + "Ġignorant": 29374, + "Ġignore": 11200, + "Ġignored": 19735, + "Ġignoring": 26258, + "Ġigual": 10953, + "Ġih": 5096, + "Ġihan": 36131, + "Ġihm": 16021, + "Ġihn": 14534, + "Ġihnen": 24623, + "Ġihr": 5553, + "Ġihre": 14280, + "Ġihrem": 30859, + "Ġihren": 22347, + "Ġihrer": 23990, + "Ġiht": 36737, + "Ġik": 4320, + "Ġiki": 20739, + "Ġikke": 13076, + "Ġil": 1930, + "Ġile": 15465, + "Ġilgili": 43542, + "Ġilk": 28912, + "Ġill": 3171, + "Ġilleg": 9976, + "Ġillegal": 11905, + "Ġillegally": 39585, + "Ġillness": 10152, + "Ġillnesses": 30791, + "Ġillum": 30579, + "Ġillumin": 28593, + "Ġilluminated": 48577, + "Ġillusion": 18854, + "Ġillusions": 49836, + "Ġillust": 8490, + "Ġillustrate": 23221, + "Ġillustrated": 33875, + "Ġillustrates": 41718, + "Ġillustration": 22645, + "Ġillustrations": 34540, + "Ġils": 9047, + "Ġim": 566, + "Ġimag": 2576, + "Ġimage": 3256, + "Ġimagem": 43824, + "Ġimagen": 40652, + "Ġimagery": 24340, + "Ġimages": 5267, + "Ġimagin": 23427, + "Ġimaginar": 49048, + "Ġimaginary": 26164, + "Ġimagination": 12938, + "Ġimagine": 3811, + "Ġimagined": 16590, + "Ġimaging": 25036, + "Ġimagining": 27798, + "Ġimbalance": 43007, + "Ġimitate": 35556, + "Ġimitation": 47624, + "Ġimm": 3397, + "Ġimmature": 49539, + "Ġimmedi": 3640, + "Ġimmediate": 11629, + "Ġimmediately": 4258, + "Ġimmens": 36893, + "Ġimmense": 22920, + "Ġimmensely": 38674, + "Ġimmer": 5578, + "Ġimmers": 16787, + "Ġimmersed": 35416, + "Ġimmersion": 40348, + "Ġimmersive": 35409, + "Ġimmig": 7730, + "Ġimmigrant": 23873, + "Ġimmigrants": 16598, + "Ġimmigration": 13554, + "Ġimmin": 40728, + "Ġimminent": 44339, + "Ġimmort": 44817, + "Ġimmortal": 31414, + "Ġimmun": 13154, + "Ġimmune": 11992, + "Ġimmunity": 22701, + "Ġimp": 704, + "Ġimpact": 2712, + "Ġimpacted": 15653, + "Ġimpactful": 30842, + "Ġimpacting": 29963, + "Ġimpacto": 49687, + "Ġimpacts": 11606, + "Ġimpair": 30256, + "Ġimpaired": 36762, + "Ġimpairment": 42025, + "Ġimpart": 32177, + "Ġimpat": 31156, + "Ġimpatient": 36895, + "Ġimpe": 19643, + "Ġimpeachment": 33663, + "Ġimped": 22584, + "Ġimpedance": 36264, + "Ġimper": 10100, + "Ġimperative": 32490, + "Ġimperfect": 26714, + "Ġimperial": 21143, + "Ġimperson": 38147, + "Ġimpl": 8484, + "Ġimplant": 28309, + "Ġimplants": 43032, + "Ġimplement": 4445, + "Ġimplementation": 11420, + "Ġimplemented": 12270, + "Ġimplementing": 18114, + "Ġimplic": 10629, + "Ġimplication": 37814, + "Ġimplications": 16602, + "Ġimplicit": 26947, + "Ġimplied": 32614, + "Ġimplies": 18779, + "Ġimply": 33616, + "Ġimport": 974, + "Ġimporta": 33218, + "Ġimportance": 7379, + "Ġimportant": 1021, + "Ġimportante": 9416, + "Ġimportantes": 27963, + "Ġimportantly": 8906, + "Ġimported": 25524, + "Ġimporting": 43866, + "Ġimports": 41596, + "Ġimpos": 38396, + "Ġimpose": 26952, + "Ġimposed": 26491, + "Ġimposing": 40288, + "Ġimposs": 38802, + "Ġimpossible": 6243, + "Ġimpost": 47804, + "Ġimpres": 35672, + "Ġimpress": 6729, + "Ġimpressed": 11679, + "Ġimpression": 9995, + "Ġimpressions": 24245, + "Ġimpressive": 8992, + "Ġimprint": 44615, + "Ġimprison": 24146, + "Ġimprisoned": 35332, + "Ġimpro": 2530, + "Ġimproper": 40651, + "Ġimprov": 29424, + "Ġimprove": 3470, + "Ġimproved": 9689, + "Ġimprovement": 10444, + "Ġimprovements": 13797, + "Ġimproves": 24771, + "Ġimproving": 11470, + "Ġimprovis": 39784, + "Ġimpul": 41767, + "Ġimpulse": 26857, + "Ġin": 294, + "Ġinability": 33162, + "Ġinac": 33230, + "Ġinacc": 37957, + "Ġinaccurate": 46443, + "Ġinad": 42148, + "Ġinadequ": 35441, + "Ġinadequate": 42107, + "Ġinadvert": 49152, + "Ġinan": 33113, + "Ġinappropri": 24728, + "Ġinappropriate": 26723, + "Ġinaug": 23541, + "Ġinaugural": 48741, + "Ġinbox": 35067, + "Ġinc": 834, + "Ġincap": 30399, + "Ġincapable": 44174, + "Ġincar": 23694, + "Ġincarcer": 24650, + "Ġincarcerated": 39059, + "Ġincarceration": 41603, + "Ġincarn": 30938, + "Ġincarnation": 49988, + "Ġincense": 50202, + "Ġincent": 11903, + "Ġincentiv": 35328, + "Ġincentive": 22346, + "Ġincentives": 23374, + "Ġinception": 49834, + "Ġinch": 7227, + "Ġinches": 8478, + "Ġincidence": 41726, + "Ġincident": 9348, + "Ġincidents": 21139, + "Ġincl": 37070, + "Ġinclined": 28173, + "Ġinclu": 25520, + "Ġinclud": 1637, + "Ġinclude": 4090, + "Ġincluded": 5556, + "Ġincludes": 5974, + "Ġincluding": 3009, + "Ġinclus": 17204, + "Ġinclusion": 15874, + "Ġinclusive": 13429, + "Ġincluso": 24018, + "Ġincom": 14036, + "Ġincome": 5742, + "Ġincomes": 42458, + "Ġincoming": 22341, + "Ġincomp": 40393, + "Ġincompet": 41602, + "Ġincomplete": 31709, + "Ġincon": 20972, + "Ġincons": 22039, + "Ġinconsistent": 36891, + "Ġinconven": 28752, + "Ġinconvenient": 46196, + "Ġincor": 7121, + "Ġincorpor": 8788, + "Ġincorporate": 16091, + "Ġincorporated": 21654, + "Ġincorporates": 50193, + "Ġincorporating": 33613, + "Ġincorrect": 18424, + "Ġincorrectly": 42892, + "Ġincr": 42211, + "Ġincre": 1946, + "Ġincrease": 3488, + "Ġincreased": 6505, + "Ġincreases": 8637, + "Ġincreasing": 5662, + "Ġincreasingly": 12980, + "Ġincred": 3267, + "Ġincredible": 4651, + "Ġincredibly": 6252, + "Ġincrement": 26200, + "Ġincremental": 35759, + "ĠincreÃŃ": 46202, + "Ġincub": 33345, + "Ġincumb": 39854, + "Ġincumbent": 45539, + "Ġincur": 35774, + "Ġind": 1016, + "Ġinde": 24162, + "Ġindeed": 6451, + "Ġindem": 37185, + "Ġindent": 44494, + "Ġindepend": 4819, + "Ġindependence": 14640, + "Ġindependent": 6695, + "Ġindependently": 21761, + "Ġindex": 8186, + "Ġindic": 4694, + "Ġindicate": 13330, + "Ġindicated": 16176, + "Ġindicates": 16203, + "Ġindicating": 25604, + "Ġindication": 18877, + "Ġindications": 44450, + "Ġindicative": 47513, + "Ġindicator": 16961, + "Ġindicators": 22176, + "Ġindices": 43840, + "Ġindict": 49981, + "Ġindie": 33184, + "Ġindifferent": 48502, + "Ġindigenous": 15511, + "Ġindirect": 19523, + "Ġindirectly": 37779, + "Ġindisp": 40637, + "Ġindispens": 42937, + "Ġindispensable": 47940, + "Ġindivid": 2461, + "Ġindividual": 2609, + "Ġindividually": 16652, + "Ġindividuals": 5346, + "Ġindo": 13770, + "Ġindoor": 24029, + "Ġindoors": 29655, + "Ġindu": 13716, + "Ġinduce": 41263, + "Ġinduced": 33991, + "Ġinduct": 31612, + "Ġinduction": 33371, + "Ġindul": 28626, + "Ġindust": 2735, + "Ġindustri": 49005, + "Ġindustrial": 9987, + "Ġindustries": 13284, + "Ġindustry": 3518, + "Ġine": 7167, + "Ġineffective": 48836, + "Ġinefficient": 43495, + "Ġinequ": 25099, + "Ġinequalities": 41874, + "Ġinequality": 16970, + "Ġinert": 25832, + "Ġinertia": 37234, + "Ġinevit": 14481, + "Ġinevitable": 21451, + "Ġinevitably": 28171, + "Ġinex": 29961, + "Ġinexpensive": 28382, + "Ġinf": 1536, + "Ġinfamous": 30769, + "Ġinfant": 16757, + "Ġinfantry": 30887, + "Ġinfants": 38829, + "Ġinfect": 5888, + "Ġinfected": 15414, + "Ġinfection": 11764, + "Ġinfections": 19478, + "Ġinfectious": 26780, + "Ġinfer": 13596, + "Ġinference": 38253, + "Ġinferior": 24249, + "Ġinfilt": 29085, + "Ġinfin": 7193, + "Ġinfinite": 13785, + "Ġinfinitely": 36227, + "Ġinfinity": 13202, + "Ġinfl": 9922, + "Ġinflam": 15987, + "Ġinflamm": 16782, + "Ġinflammation": 21613, + "Ġinflammatory": 38199, + "Ġinflation": 15860, + "Ġinflict": 38137, + "Ġinflu": 4015, + "Ġinfluen": 9024, + "Ġinfluence": 6503, + "Ġinfluenced": 15269, + "Ġinfluencer": 39503, + "Ġinfluencers": 38646, + "Ġinfluences": 21222, + "Ġinfluencing": 40396, + "Ġinfluential": 22215, + "Ġinfluenza": 36408, + "Ġinfo": 13614, + "Ġinform": 1356, + "Ġinformación": 21660, + "Ġinformal": 24342, + "Ġinformation": 1589, + "Ġinformational": 49391, + "Ġinformations": 38855, + "Ġinformative": 27759, + "Ġinformação": 48403, + "Ġinformações": 42542, + "Ġinformed": 11740, + "Ġinforming": 43969, + "Ġinforms": 45320, + "Ġinfra": 23654, + "Ġinfrared": 30361, + "Ġinfrast": 6534, + "Ġinfrastructure": 6896, + "Ġinfring": 45205, + "Ġinfused": 50083, + "Ġing": 3957, + "Ġingen": 21600, + "Ġingl": 35511, + "Ġinglés": 49766, + "Ġingred": 5621, + "Ġingredient": 14751, + "Ġingredients": 6952, + "Ġinh": 47707, + "Ġinhab": 16934, + "Ġinhabit": 21863, + "Ġinhabitants": 27740, + "Ġinhabited": 47538, + "Ġinhal": 43157, + "Ġinhale": 22071, + "Ġinher": 9484, + "Ġinherent": 26387, + "Ġinherently": 27993, + "Ġinherit": 21389, + "Ġinheritance": 32122, + "Ġinherited": 27091, + "Ġinhib": 20406, + "Ġinhibit": 49858, + "Ġini": 7408, + "Ġinic": 40380, + "Ġinici": 43043, + "Ġinicial": 44076, + "Ġinim": 45945, + "Ġinit": 3157, + "Ġiniti": 6265, + "Ġinitial": 5883, + "Ġinitially": 9105, + "Ġinitiate": 31574, + "Ġinitiated": 28578, + "Ġinitiation": 43569, + "Ġinitiative": 11552, + "Ġinitiatives": 16194, + "Ġinj": 5580, + "Ġinject": 10711, + "Ġinjected": 36967, + "Ġinjection": 22873, + "Ġinjections": 47178, + "Ġinjured": 13408, + "Ġinjuries": 14799, + "Ġinjury": 10454, + "Ġinjust": 19336, + "Ġinjustice": 24750, + "Ġink": 11276, + "Ġinland": 47009, + "Ġinlet": 36961, + "Ġinm": 41052, + "Ġinmates": 39479, + "Ġinn": 7714, + "Ġinnate": 41766, + "Ġinne": 24170, + "Ġinner": 7284, + "Ġinnerhalb": 48460, + "Ġinning": 49989, + "Ġinnoc": 10843, + "Ġinnocence": 35796, + "Ġinnocent": 13171, + "Ġinnov": 5083, + "Ġinnovate": 33444, + "Ġinnovation": 8504, + "Ġinnovations": 24283, + "Ġinnovative": 12999, + "Ġinnych": 36286, + "Ġinom": 44839, + "Ġinput": 4846, + "Ġinputs": 15743, + "Ġinqu": 13570, + "Ġinquiry": 25736, + "Ġins": 1028, + "Ġinsan": 11513, + "Ġinsane": 10838, + "Ġinsanely": 40965, + "Ġinsanity": 47505, + "Ġinsanlar": 36130, + "Ġinsbesondere": 48694, + "Ġinscre": 27824, + "Ġinscription": 49882, + "Ġinse": 33874, + "Ġinsec": 18851, + "Ġinsect": 13261, + "Ġinsects": 20201, + "Ġinsecure": 32215, + "Ġinsecurity": 35058, + "Ġinsert": 8969, + "Ġinserted": 27992, + "Ġinserting": 46567, + "Ġinserts": 49163, + "Ġinsgesamt": 41438, + "Ġinside": 1854, + "Ġinsider": 40990, + "Ġinsight": 11269, + "Ġinsightful": 46401, + "Ġinsights": 14310, + "Ġinsign": 34261, + "Ġinsignificant": 43685, + "Ġinsist": 13466, + "Ġinsisted": 28456, + "Ġinsists": 50137, + "Ġinsp": 3741, + "Ġinspect": 15018, + "Ġinspection": 22085, + "Ġinspections": 46544, + "Ġinspector": 34564, + "Ġinspir": 17432, + "Ġinspiration": 10249, + "Ġinspirational": 33554, + "Ġinspire": 15638, + "Ġinspired": 7547, + "Ġinspires": 32566, + "Ġinspiring": 15883, + "Ġinst": 1058, + "Ġinstability": 34379, + "Ġinstagram": 22102, + "Ġinstal": 34059, + "Ġinstall": 3625, + "Ġinstallation": 13260, + "Ġinstallations": 41932, + "Ġinstalled": 8899, + "Ġinstaller": 46620, + "Ġinstalling": 20762, + "Ġinstallment": 39413, + "Ġinstance": 5197, + "Ġinstances": 14519, + "Ġinstant": 9836, + "Ġinstantaneous": 45596, + "Ġinstantly": 13518, + "Ġinstead": 2602, + "Ġinstinct": 16556, + "Ġinstincts": 38997, + "Ġinstit": 4348, + "Ġinstitute": 26860, + "Ġinstitution": 7818, + "Ġinstitutional": 18391, + "Ġinstitutions": 8142, + "Ġinstr": 5488, + "Ġinstruct": 7232, + "Ġinstructed": 36384, + "Ġinstruction": 10951, + "Ġinstructional": 35716, + "Ġinstructions": 9415, + "Ġinstructor": 18499, + "Ġinstructors": 28367, + "Ġinstrument": 7198, + "Ġinstrumental": 17388, + "Ġinstruments": 12190, + "Ġinsufficient": 41709, + "Ġinsulation": 30508, + "Ġinsulin": 21587, + "Ġinsult": 15285, + "Ġinsulted": 49063, + "Ġinsulting": 44463, + "Ġinsurance": 7214, + "Ġint": 560, + "Ġintact": 23493, + "Ġintake": 18060, + "Ġinte": 2830, + "Ġinteg": 16200, + "Ġinteger": 24922, + "Ġintegers": 41674, + "Ġintegr": 3572, + "Ġintegral": 11573, + "Ġintegrate": 13365, + "Ġintegrated": 10919, + "Ġintegrating": 26889, + "Ġintegration": 10980, + "Ġintegrity": 16000, + "Ġinteiro": 45633, + "Ġintel": 24777, + "Ġintelig": 44300, + "Ġintell": 4359, + "Ġintellect": 10058, + "Ġintellectual": 12576, + "Ġintellectually": 46481, + "Ġintellig": 5613, + "Ġintelligence": 7599, + "Ġintelligent": 13232, + "Ġinten": 43094, + "Ġintend": 19759, + "Ġintended": 10226, + "Ġintens": 14056, + "Ġintense": 9447, + "Ġintensely": 43235, + "Ġintensity": 13749, + "Ġintensive": 18957, + "Ġintent": 8446, + "Ġintentar": 46596, + "Ġintention": 7789, + "Ġintentional": 21935, + "Ġintentionally": 22062, + "Ġintentions": 19354, + "Ġinter": 728, + "Ġinteract": 4648, + "Ġinteracted": 49621, + "Ġinteracting": 18017, + "Ġinteraction": 9285, + "Ġinteractions": 13280, + "Ġinteractive": 15141, + "Ġinteracts": 43582, + "Ġintercept": 24700, + "Ġinterchange": 30358, + "Ġinterconnect": 26253, + "Ġinterconnected": 36611, + "Ġinterdisciplinary": 38280, + "Ġinteres": 20157, + "Ġinteresante": 36396, + "Ġinteress": 12478, + "Ġinteressant": 37748, + "Ġinteressante": 24372, + "Ġinterest": 1179, + "Ġinterested": 3102, + "Ġinteresting": 1880, + "Ġinterestingly": 25873, + "Ġinterests": 8847, + "Ġinterf": 14510, + "Ġinterface": 9226, + "Ġinterfaces": 28416, + "Ġinterfer": 25799, + "Ġinterfere": 23946, + "Ġinterference": 24497, + "Ġinterfering": 48721, + "Ġinterim": 33500, + "Ġinterior": 10636, + "Ġinterject": 46787, + "Ġintermedi": 15184, + "Ġintermediate": 19376, + "Ġintermitt": 38548, + "Ġintermittent": 44084, + "Ġintern": 2154, + "Ġinternacional": 37382, + "Ġinternal": 6920, + "Ġinternally": 19501, + "Ġinternation": 19257, + "Ġinternational": 5058, + "Ġinternationally": 24422, + "Ġinternet": 4705, + "Ġinterns": 46145, + "Ġinternship": 16861, + "Ġinternships": 35712, + "Ġinterpersonal": 47102, + "Ġinterpol": 44902, + "Ġinterpre": 17489, + "Ġinterpret": 7302, + "Ġinterpretation": 14174, + "Ġinterpretations": 37547, + "Ġinterpreted": 26749, + "Ġinterpreter": 34132, + "Ġinterpreting": 37395, + "Ġinterrog": 24871, + "Ġinterrupt": 12729, + "Ġinterrupted": 30329, + "Ġinterrupting": 49455, + "Ġintersect": 27815, + "Ġintersection": 15236, + "Ġintersections": 47664, + "Ġintertw": 44400, + "Ġinterval": 15035, + "Ġintervals": 26651, + "Ġinterven": 17104, + "Ġintervene": 30407, + "Ġintervention": 13176, + "Ġinterventions": 20924, + "Ġinterview": 4049, + "Ġinterviewed": 19770, + "Ġinterviewing": 26524, + "Ġinterviews": 12318, + "Ġintest": 21098, + "Ġintestine": 42446, + "Ġintestines": 44429, + "Ġintim": 13148, + "Ġintimacy": 34450, + "Ġintimate": 20215, + "Ġintimid": 17042, + "Ġintimidated": 40234, + "Ġintimidating": 29714, + "Ġinto": 666, + "Ġintoler": 35278, + "Ġintox": 40809, + "Ġintr": 17467, + "Ġintra": 43358, + "Ġintric": 30242, + "Ġintricate": 38015, + "Ġintrig": 17934, + "Ġintrigued": 35140, + "Ġintriguing": 32503, + "Ġintrins": 28621, + "Ġintrinsic": 35698, + "Ġintro": 12897, + "Ġintrodu": 2814, + "Ġintroduce": 5366, + "Ġintroduced": 7268, + "Ġintroduces": 31472, + "Ġintroducing": 15424, + "Ġintroduction": 9339, + "Ġintroductions": 48032, + "Ġintroductory": 39048, + "Ġintuit": 16224, + "Ġintuition": 24002, + "Ġintuitive": 21769, + "Ġintuitively": 46506, + "Ġinté": 18555, + "Ġintéress": 23243, + "Ġintéressant": 34358, + "Ġinv": 1048, + "Ġinvade": 39171, + "Ġinvaded": 35882, + "Ġinvalid": 34702, + "Ġinvaluable": 40367, + "Ġinvari": 33270, + "Ġinvasion": 21575, + "Ġinvasive": 30894, + "Ġinve": 32957, + "Ġinvece": 36344, + "Ġinvent": 7962, + "Ġinvented": 14479, + "Ġinvention": 22265, + "Ġinventions": 43748, + "Ġinventor": 41593, + "Ġinventory": 14228, + "Ġinver": 28653, + "Ġinvers": 21378, + "Ġinverse": 17340, + "Ġinversion": 43576, + "Ġinvert": 33966, + "Ġinverted": 38969, + "Ġinverter": 47201, + "Ġinvest": 1963, + "Ġinvested": 13104, + "Ġinvestig": 4557, + "Ġinvestigación": 48919, + "Ġinvestigate": 15013, + "Ġinvestigated": 30070, + "Ġinvestigating": 22858, + "Ġinvestigation": 9627, + "Ġinvestigations": 25582, + "Ġinvestigative": 45495, + "Ġinvestigator": 38330, + "Ġinvestigators": 27079, + "Ġinvesting": 10978, + "Ġinvestir": 49646, + "Ġinvestment": 6078, + "Ġinvestments": 13784, + "Ġinvestor": 18479, + "Ġinvestors": 11519, + "Ġinvinci": 42807, + "Ġinvincible": 48514, + "Ġinvis": 13308, + "Ġinvisible": 14603, + "Ġinvit": 43714, + "Ġinvitation": 17890, + "Ġinvite": 7980, + "Ġinvited": 9185, + "Ġinvites": 35719, + "Ġinviting": 18202, + "Ġinvoice": 47919, + "Ġinvoke": 41117, + "Ġinvol": 2499, + "Ġinvolve": 9494, + "Ġinvolved": 3288, + "Ġinvolvement": 17447, + "Ġinvolves": 11626, + "Ġinvolving": 17030, + "Ġinward": 29876, + "ĠinÃŃcio": 45979, + "Ġio": 19785, + "Ġiod": 44422, + "Ġion": 17437, + "Ġions": 27362, + "Ġip": 28501, + "Ġir": 3418, + "Ġirgend": 11093, + "Ġirgendw": 26455, + "Ġirgendwann": 34313, + "Ġirgendwas": 47090, + "Ġirgendwie": 20759, + "Ġirgendwo": 40865, + "Ġirm": 33842, + "Ġiron": 6497, + "Ġironic": 33719, + "Ġironically": 41082, + "Ġirony": 35365, + "Ġirr": 29413, + "Ġirrational": 39914, + "Ġirre": 16014, + "Ġirregular": 29349, + "Ġirrelevant": 28682, + "Ġirrespons": 38626, + "Ġirresponsible": 46320, + "Ġirrig": 26129, + "Ġirrigation": 31753, + "Ġirrit": 16029, + "Ġirritated": 43650, + "Ġirritating": 45971, + "Ġirritation": 50031, + "Ġis": 307, + "Ġise": 40912, + "Ġisland": 6077, + "Ġislands": 17402, + "Ġisn": 1943, + "Ġisol": 7381, + "Ġisolate": 25660, + "Ġisolated": 14621, + "Ġisolating": 48912, + "Ġisolation": 16001, + "Ġisot": 38018, + "Ġiss": 1620, + "Ġisso": 4616, + "Ġissue": 2734, + "Ġissued": 14379, + "Ġissues": 2663, + "Ġissuing": 43214, + "Ġist": 1418, + "Ġiste": 49920, + "Ġistedi": 40058, + "Ġistem": 42785, + "Ġister": 40366, + "Ġistiyorum": 36699, + "Ġisto": 35835, + "Ġit": 309, + "Ġital": 22366, + "Ġitaliano": 48486, + "Ġitchy": 47360, + "Ġitem": 3174, + "Ġitems": 4754, + "Ġiter": 17138, + "Ġiterate": 44497, + "Ġiteration": 24784, + "Ġiterations": 36540, + "Ġits": 1080, + "Ġitself": 2564, + "Ġitt": 47786, + "Ġitu": 9032, + "ĠitÃŃs": 30924, + "Ġiv": 32412, + "Ġivory": 49218, + "Ġiy": 29861, + "Ġiyi": 16173, + "Ġiz": 14736, + "Ġizquier": 46428, + "Ġiç": 6058, + "Ġiçer": 33913, + "Ġiçin": 8457, + "Ġiçinde": 34283, + "ĠiÅŁ": 8690, + "ĠiÅŁi": 45377, + "ĠiÅŁte": 19804, + "Ġj": 361, + "Ġja": 2784, + "Ġjaar": 22579, + "Ġjab": 33475, + "Ġjack": 7109, + "Ġjacket": 11781, + "Ġjackets": 34612, + "Ġjadi": 19399, + "Ġjag": 6368, + "Ġjail": 10511, + "Ġjak": 4207, + "Ġjakby": 28976, + "Ġjaki": 24492, + "Ġjakie": 22124, + "ĠjakieÅĽ": 31163, + "Ġjakim": 49410, + "ĠjakiÅĽ": 34721, + "Ġjako": 17123, + "ĠjakÄħ": 46719, + "Ġjal": 43089, + "Ġjam": 7872, + "Ġjamais": 14540, + "Ġjan": 25442, + "Ġjangan": 45107, + "Ġjap": 48330, + "Ġjapanese": 49508, + "Ġjar": 15181, + "Ġjard": 46153, + "Ġjars": 38239, + "Ġjaw": 18162, + "Ġjaws": 44942, + "Ġjazz": 15066, + "Ġje": 1506, + "Ġjealous": 13805, + "Ġjealousy": 36103, + "Ġjeans": 18880, + "Ġjed": 5232, + "Ġjede": 34039, + "Ġjedem": 36538, + "Ġjeden": 12906, + "Ġjeder": 19610, + "Ġjedes": 36119, + "Ġjednak": 25897, + "Ġjedoch": 46311, + "Ġjeg": 10610, + "Ġjego": 26542, + "Ġjeito": 31478, + "Ġjej": 28924, + "Ġjelly": 17186, + "Ġjemand": 21717, + "Ġjeopard": 44295, + "Ġjer": 20160, + "Ġjerk": 25197, + "Ġjersey": 40700, + "Ġjest": 3492, + "Ġjeste": 25255, + "Ġjestem": 29627, + "ĠjesteÅĽmy": 35928, + "Ġjeszcze": 14168, + "Ġjet": 14452, + "Ġjets": 35124, + "Ġjetzt": 4354, + "Ġjeu": 16748, + "Ġjeune": 35610, + "Ġjeunes": 32830, + "Ġjeux": 35093, + "Ġjew": 13149, + "Ġjewe": 46534, + "Ġjewel": 16010, + "Ġjewelry": 19982, + "Ġjewels": 43256, + "Ġjeżeli": 23001, + "ĠjeÅĽli": 25630, + "Ġji": 32606, + "Ġjig": 43716, + "Ġjij": 28002, + "Ġjin": 43528, + "Ġjingle": 49495, + "Ġjo": 1488, + "Ġjob": 1691, + "Ġjobbar": 42965, + "Ġjobs": 4782, + "Ġjog": 9464, + "Ġjogar": 39248, + "Ġjogo": 20068, + "Ġjogos": 39307, + "Ġjohn": 35097, + "Ġjoin": 3917, + "Ġjoined": 6869, + "Ġjoining": 5549, + "Ġjoins": 24397, + "Ġjoint": 7225, + "Ġjointly": 46557, + "Ġjoints": 19949, + "Ġjoka": 33793, + "Ġjoke": 7647, + "Ġjokes": 14439, + "Ġjoking": 17396, + "Ġjon": 49151, + "Ġjong": 38678, + "Ġjorn": 40345, + "Ġjos": 29217, + "Ġjot": 27873, + "Ġjotka": 47005, + "Ġjou": 11110, + "Ġjoue": 46209, + "Ġjouer": 30823, + "Ġjour": 2827, + "Ġjourn": 17598, + "Ġjournal": 6708, + "Ġjournalism": 23191, + "Ġjournalist": 17277, + "Ġjournalists": 19535, + "Ġjournals": 29621, + "Ġjourney": 4671, + "Ġjourneys": 36736, + "Ġjournée": 34277, + "Ġjours": 20724, + "Ġjoy": 6258, + "Ġjoyful": 33090, + "Ġjoystick": 48074, + "Ġjs": 42713, + "Ġjsem": 47784, + "Ġju": 3649, + "Ġjud": 3747, + "Ġjudge": 6995, + "Ġjudged": 27485, + "Ġjudgement": 33473, + "Ġjudges": 14449, + "Ġjudging": 23587, + "Ġjudgment": 12216, + "Ġjudgments": 40337, + "Ġjudicial": 26581, + "Ġjudiciary": 49987, + "Ġjue": 27833, + "Ġjuego": 21344, + "Ġjuegos": 43411, + "Ġjug": 9568, + "Ġjuga": 14462, + "Ġjugar": 37692, + "Ġjuice": 8544, + "Ġjuices": 37027, + "Ġjuicy": 24696, + "Ġjul": 30764, + "Ġjullie": 29633, + "Ġjum": 29067, + "Ġjump": 3012, + "Ġjumped": 13864, + "Ġjumper": 44061, + "Ġjumping": 11233, + "Ġjumps": 16704, + "Ġjun": 8156, + "Ġjunction": 33718, + "Ġjung": 14202, + "Ġjunge": 47877, + "Ġjungle": 18228, + "Ġjunior": 16195, + "Ġjunk": 19109, + "Ġjunt": 22739, + "Ġjunto": 24663, + "Ġjuntos": 33868, + "Ġjur": 12721, + "Ġjuris": 17785, + "Ġjurisd": 19078, + "Ġjurisdiction": 27285, + "Ġjurisdictions": 37958, + "Ġjury": 19516, + "Ġjus": 17217, + "Ġjusqu": 20340, + "Ġjust": 445, + "Ġjustamente": 41056, + "Ġjuste": 13016, + "Ġjustement": 27807, + "Ġjustice": 6118, + "Ġjustification": 31591, + "Ġjustified": 27808, + "Ġjustify": 20833, + "Ġjusto": 40534, + "Ġjut": 42079, + "Ġjuven": 32641, + "Ġjuvenile": 38486, + "Ġjuż": 10678, + "Ġjá": 6242, + "Ġjätte": 46752, + "Ġjó": 31390, + "Ġjóvenes": 45110, + "ĠjÄħ": 35692, + "ĠjÄĻ": 42309, + "ĠjÄĻzy": 49055, + "Ġk": 350, + "Ġka": 6799, + "Ġkab": 27835, + "Ġkabul": 46925, + "Ġkad": 8064, + "Ġkadar": 10456, + "Ġkadın": 39421, + "Ġkaf": 35426, + "Ġkah": 21651, + "Ġkahkaha": 37357, + "Ġkaik": 30381, + "Ġkaikki": 46992, + "Ġkal": 7788, + "Ġkalau": 20218, + "Ġkald": 27110, + "Ġkale": 34699, + "Ġkali": 41690, + "Ġkalian": 34531, + "Ġkalk": 34960, + "Ġkalo": 40257, + "Ġkam": 9727, + "Ġkamera": 43246, + "Ġkami": 34502, + "Ġkamp": 45369, + "Ġkamu": 20705, + "Ġkan": 4608, + "Ġkana": 42372, + "Ġkang": 47898, + "Ġkann": 4028, + "Ġkannst": 20853, + "Ġkans": 16030, + "Ġkanske": 24487, + "Ġkanssa": 49054, + "Ġkant": 44055, + "Ġkap": 13816, + "Ġkar": 7917, + "Ġkara": 29555, + "Ġkaraoke": 41629, + "Ġkarate": 48464, + "ĠkardeÅŁ": 24073, + "ĠkardeÅŁim": 38070, + "Ġkarena": 27173, + "Ġkarma": 28396, + "Ġkart": 29120, + "ĠkarÄ±ÅŁ": 36716, + "ĠkarÅŁ": 21742, + "ĠkarÅŁÄ±": 31653, + "Ġkas": 19173, + "Ġkasih": 35894, + "Ġkat": 16536, + "Ġkau": 36273, + "Ġkaufen": 42083, + "Ġkaum": 36443, + "Ġkav": 39039, + "Ġkay": 12446, + "Ġkayak": 22438, + "Ġkaz": 30623, + "Ġkaç": 23916, + "Ġkaż": 21912, + "Ġkażdy": 31615, + "Ġke": 803, + "Ġked": 42472, + "Ġkeen": 20297, + "Ġkeep": 1066, + "Ġkeeper": 38709, + "Ġkeeping": 5145, + "Ġkeeps": 5965, + "Ġkeer": 31531, + "Ġkeh": 39616, + "Ġkein": 13424, + "Ġkeine": 9252, + "Ġkeinen": 20624, + "Ġkeiner": 37767, + "Ġkel": 31332, + "Ġkell": 41892, + "Ġkelu": 40559, + "Ġkeluar": 43365, + "Ġken": 18787, + "Ġkend": 17016, + "Ġkendi": 29723, + "Ġkenn": 36272, + "Ġkennen": 28445, + "Ġkennt": 37682, + "Ġkep": 36428, + "Ġkepada": 45598, + "Ġkept": 4305, + "Ġker": 19377, + "Ġkern": 23434, + "Ġkernel": 28256, + "Ġkes": 16050, + "Ġket": 14979, + "Ġketchup": 29301, + "Ġketo": 44299, + "Ġkettle": 39088, + "Ġkey": 2141, + "Ġkeyboard": 10186, + "Ġkeyboards": 47808, + "Ġkeynote": 33896, + "Ġkeys": 9317, + "Ġkeyword": 20428, + "Ġkeywords": 21009, + "Ġkg": 15696, + "Ġkh": 7168, + "Ġkhi": 23526, + "Ġkho": 49627, + "Ġkhác": 43713, + "Ġkhông": 11415, + "Ġki": 6315, + "Ġkick": 4437, + "Ġkicked": 14609, + "Ġkicking": 19137, + "Ġkicks": 21293, + "Ġkid": 1636, + "Ġkidding": 9287, + "Ġkidna": 20673, + "Ġkidnapped": 29300, + "Ġkidnapping": 47868, + "Ġkidney": 19000, + "Ġkidneys": 35994, + "Ġkids": 2301, + "Ġkiedy": 18777, + "Ġkier": 38767, + "Ġkij": 26106, + "Ġkijken": 30446, + "Ġkil": 5128, + "Ġkilka": 36466, + "Ġkill": 1961, + "Ġkilled": 4652, + "Ġkiller": 13364, + "Ġkillers": 39369, + "Ġkilling": 8011, + "Ġkills": 14563, + "Ġkilo": 21112, + "Ġkilogram": 21741, + "Ġkilograms": 30690, + "Ġkilomet": 9677, + "Ġkilometer": 33795, + "Ġkilometers": 13904, + "Ġkilometres": 30489, + "Ġkilos": 30000, + "Ġkilow": 41295, + "Ġkim": 10776, + "Ġkimchi": 21656, + "Ġkimse": 42005, + "Ġkin": 15784, + "Ġkind": 733, + "Ġkinda": 4144, + "Ġkinderen": 48935, + "Ġkinderg": 24514, + "Ġkindergarten": 26671, + "Ġkindly": 29736, + "Ġkindness": 18171, + "Ġkinds": 3685, + "Ġkinetic": 27135, + "Ġking": 4867, + "Ġkingdom": 10231, + "Ġkingdoms": 44171, + "Ġkings": 21581, + "Ġkir": 33497, + "Ġkiss": 7704, + "Ġkissed": 33027, + "Ġkisses": 35850, + "Ġkissing": 29495, + "Ġkit": 8260, + "Ġkita": 8965, + "Ġkitchen": 6525, + "Ġkite": 38867, + "Ġkits": 22095, + "Ġkitten": 39696, + "Ġkittens": 47363, + "Ġkitty": 33026, + "ĠkiÅŁ": 28212, + "ĠkiÅŁi": 47462, + "Ġkl": 9671, + "Ġkla": 33337, + "Ġklar": 14743, + "Ġklass": 42917, + "Ġkle": 9318, + "Ġklein": 29231, + "Ġkleine": 22278, + "Ġkleinen": 26512, + "Ġkleiner": 39496, + "Ġklim": 36816, + "Ġkm": 10698, + "Ġkn": 444, + "Ġknapp": 40979, + "Ġkne": 32704, + "Ġknead": 28602, + "Ġknee": 9434, + "Ġknees": 10546, + "Ġknew": 2586, + "Ġknife": 7976, + "Ġknight": 26054, + "Ġknights": 48218, + "Ġknit": 15594, + "Ġknitting": 25498, + "Ġknives": 26279, + "Ġknob": 26759, + "Ġknobs": 46999, + "Ġknock": 6728, + "Ġknocked": 16914, + "Ġknocking": 24085, + "Ġknocks": 40815, + "Ġknot": 16966, + "Ġknots": 27426, + "Ġknow": 458, + "Ġknowing": 5276, + "Ġknowledge": 3601, + "Ġknowledgeable": 33800, + "Ġknown": 2570, + "Ġknows": 3255, + "Ġko": 8384, + "Ġkob": 43057, + "Ġkok": 28376, + "Ġkol": 17818, + "Ġkolay": 44999, + "Ġkole": 18303, + "Ġkolej": 23749, + "Ġkoll": 44693, + "Ġkom": 5207, + "Ġkomb": 42925, + "Ġkomen": 27190, + "Ġkomm": 6669, + "Ġkomma": 41808, + "Ġkomme": 31194, + "Ġkommen": 11729, + "Ġkommer": 12589, + "Ġkommt": 10047, + "Ġkommun": 26275, + "Ġkompl": 24526, + "Ġkomplett": 32261, + "Ġkomt": 27760, + "Ġkomun": 45359, + "Ġkon": 5897, + "Ġkonk": 21428, + "Ġkonkret": 36500, + "Ġkonnte": 24058, + "Ġkonnten": 38216, + "Ġkons": 27896, + "Ġkonse": 47020, + "Ġkonst": 34208, + "Ġkont": 14373, + "Ġkontroll": 47107, + "ĠkonuÅŁ": 17311, + "Ġkop": 28920, + "Ġkor": 14784, + "Ġkork": 33445, + "Ġkort": 46980, + "Ġkos": 19532, + "Ġkoska": 49139, + "Ġkost": 27183, + "Ġkosten": 44115, + "Ġkot": 43029, + "Ġkoy": 22674, + "ĠkoÅĦ": 26470, + "ĠkoÅŁ": 49251, + "Ġkr": 15913, + "Ġkra": 28248, + "Ġkrie": 25766, + "Ġkriegen": 46882, + "Ġkrij": 27027, + "Ġkrijgen": 43460, + "Ġkrit": 42825, + "Ġkro": 45909, + "Ġkry": 34847, + "Ġkró": 42366, + "Ġksi": 35952, + "ĠksiÄħż": 39311, + "Ġkto": 23780, + "ĠktoÅĽ": 32982, + "Ġktó": 4695, + "Ġktóra": 19456, + "Ġktóre": 8864, + "Ġktórego": 46951, + "Ġktórej": 36023, + "Ġktóry": 9913, + "Ġktórych": 30382, + "Ġktórym": 30120, + "Ġktórzy": 25382, + "ĠktórÄħ": 37415, + "Ġku": 17807, + "Ġkuin": 31032, + "Ġkul": 27576, + "Ġkull": 22511, + "Ġkullan": 27443, + "Ġkun": 8215, + "Ġkung": 49304, + "Ġkunna": 32074, + "Ġkunne": 45335, + "Ġkunnen": 18377, + "Ġkunt": 34199, + "Ġkup": 37534, + "Ġkur": 10072, + "Ġkurt": 34701, + "Ġkurz": 20465, + "Ġkuv": 49275, + "Ġkw": 23846, + "Ġkwest": 42035, + "Ġky": 28740, + "Ġkys": 35573, + "Ġkä": 16563, + "Ġkän": 48293, + "Ġkäyt": 49313, + "Ġkäytt": 49811, + "Ġkö": 15881, + "Ġkön": 4798, + "Ġkönnen": 6310, + "Ġkönnt": 22541, + "Ġkönnte": 17646, + "Ġkönnten": 37411, + "Ġkör": 42889, + "Ġköt": 32629, + "Ġkötü": 38456, + "Ġkü": 24572, + "Ġküç": 39959, + "Ġküçük": 45704, + "Ġkı": 25470, + "Ġkır": 33414, + "Ġkız": 15225, + "Ġkızım": 37013, + "Ġl": 287, + "Ġla": 635, + "Ġlaat": 32769, + "Ġlab": 2715, + "Ġlabel": 7645, + "Ġlabeled": 21335, + "Ġlabeling": 40244, + "Ġlabels": 16949, + "Ġlabor": 5938, + "Ġlaboratories": 41013, + "Ġlaboratory": 16523, + "Ġlabour": 22572, + "Ġlabs": 20339, + "Ġlac": 28027, + "Ġlace": 33469, + "Ġlack": 5011, + "Ġlacked": 41481, + "Ġlacking": 20889, + "Ġlacks": 31132, + "Ġlact": 34042, + "Ġlad": 6632, + "Ġladder": 18325, + "Ġladies": 9974, + "Ġlado": 11631, + "Ġlados": 40301, + "Ġlady": 7262, + "Ġlag": 8953, + "Ġlagi": 17742, + "Ġlah": 26532, + "Ġlaid": 9897, + "Ġlain": 29272, + "Ġlaisse": 30969, + "Ġlaisser": 34463, + "Ġlake": 11001, + "Ġlakes": 25595, + "Ġlakh": 33314, + "Ġlam": 24688, + "Ġlama": 45423, + "Ġlamb": 10097, + "Ġlambda": 13607, + "Ġlame": 27635, + "Ġlament": 35888, + "Ġlamp": 12684, + "Ġlamps": 34887, + "Ġlan": 9326, + "Ġlance": 39234, + "Ġland": 2117, + "Ġlanded": 15336, + "Ġlandfill": 47031, + "Ġlanding": 11202, + "Ġlandlord": 32654, + "Ġlandlords": 48787, + "Ġlandmark": 26962, + "Ġlands": 5949, + "Ġlandsca": 23865, + "Ġlandscape": 9661, + "Ġlandscapes": 29822, + "Ġlane": 12705, + "Ġlanes": 25397, + "Ġlang": 2265, + "Ġlange": 18131, + "Ġlangsam": 39597, + "Ġlangu": 2510, + "Ġlanguage": 2856, + "Ġlanguages": 8650, + "Ġlangue": 40318, + "Ġlantern": 34031, + "Ġlanz": 38363, + "Ġlanç": 36251, + "Ġlap": 13214, + "Ġlaps": 24971, + "Ġlapse": 49757, + "Ġlapt": 9183, + "Ġlaptop": 10732, + "Ġlaptops": 27642, + "Ġlaquelle": 35668, + "Ġlar": 1613, + "Ġlarg": 11034, + "Ġlarge": 2416, + "Ġlargely": 11611, + "Ġlarger": 4833, + "Ġlargest": 6443, + "Ġlargo": 31245, + "Ġlarva": 42290, + "Ġlas": 2439, + "Ġlasci": 48451, + "Ġlaser": 12530, + "Ġlasers": 37948, + "Ġlash": 35275, + "Ġlashes": 25552, + "Ġlass": 45829, + "Ġlassen": 16168, + "Ġlast": 1036, + "Ġlasted": 21116, + "Ġlasting": 20714, + "Ġlastly": 16386, + "Ġlasts": 20669, + "Ġlat": 4465, + "Ġlata": 46722, + "Ġlatch": 31837, + "Ġlate": 3469, + "Ġlately": 12881, + "Ġlaten": 36335, + "Ġlatency": 27043, + "Ġlatent": 48994, + "Ġlater": 1780, + "Ġlateral": 25128, + "Ġlatest": 6792, + "Ġlatitude": 45436, + "Ġlatt": 29025, + "Ġlatte": 37854, + "Ġlatter": 18481, + "Ġlattice": 34011, + "Ġlaude": 48248, + "Ġlaufen": 41647, + "Ġlaugh": 5801, + "Ġlaughed": 20881, + "Ġlaughing": 5059, + "Ġlaughs": 6197, + "Ġlaughter": 13092, + "Ġlaunch": 4025, + "Ġlaunched": 8730, + "Ġlauncher": 36805, + "Ġlaunches": 31841, + "Ġlaunching": 18354, + "Ġlaund": 17245, + "Ġlaundry": 19811, + "Ġlaure": 49469, + "Ġlaut": 44330, + "Ġlav": 20923, + "Ġlava": 22097, + "Ġlavender": 43757, + "Ġlavor": 29241, + "Ġlavoro": 42060, + "Ġlaw": 2101, + "Ġlawmakers": 40988, + "Ġlawn": 19915, + "Ġlaws": 6064, + "Ġlawsuit": 22504, + "Ġlawsuits": 39493, + "Ġlawyer": 11613, + "Ġlawyers": 16219, + "Ġlay": 2360, + "Ġlayer": 4583, + "Ġlayered": 34666, + "Ġlayering": 40754, + "Ġlayers": 7914, + "Ġlaying": 14903, + "Ġlayout": 13333, + "Ġlayouts": 46100, + "Ġlays": 32714, + "Ġlaz": 19320, + "Ġlazy": 14847, + "Ġlazım": 23951, + "Ġle": 476, + "Ġlead": 1477, + "Ġleader": 5263, + "Ġleaders": 3523, + "Ġleadership": 5848, + "Ġleading": 5775, + "Ġleads": 6689, + "Ġleaf": 10871, + "Ġleague": 14957, + "Ġleagues": 48429, + "Ġleak": 17143, + "Ġleakage": 47799, + "Ġleaked": 31779, + "Ġleaking": 32856, + "Ġleaks": 28885, + "Ġlean": 11659, + "Ġleaned": 48874, + "Ġleaning": 23390, + "Ġleap": 19438, + "Ġlearn": 1466, + "Ġlearned": 3264, + "Ġlearner": 33347, + "Ġlearners": 23655, + "Ġlearning": 2539, + "Ġlearns": 27152, + "Ġlearnt": 18991, + "Ġlease": 24961, + "Ġleash": 41616, + "Ġleast": 1935, + "Ġleather": 12821, + "Ġleav": 3236, + "Ġleave": 1856, + "Ġleaves": 5510, + "Ġleaving": 5012, + "Ġleb": 17111, + "Ġleben": 26392, + "Ġlebih": 20451, + "Ġleche": 50047, + "Ġlect": 5899, + "Ġlecture": 7991, + "Ġlecturer": 49881, + "Ġlectures": 16564, + "Ġled": 4684, + "Ġledge": 47109, + "Ġlee": 46571, + "Ġleer": 34172, + "Ġleft": 1411, + "Ġleftover": 27373, + "Ġleftovers": 43011, + "Ġleg": 1676, + "Ġlegacy": 11711, + "Ġlegal": 5089, + "Ġlegally": 21106, + "Ġlegen": 48315, + "Ġlegend": 9451, + "Ġlegendary": 16698, + "Ġlegends": 27695, + "Ġlegg": 30991, + "Ġleggings": 42733, + "Ġlegisl": 6593, + "Ġlegislation": 11329, + "Ġlegislative": 21331, + "Ġlegislators": 39264, + "Ġlegislature": 21631, + "Ġlegit": 10275, + "Ġlegitim": 29754, + "Ġlegitimacy": 41339, + "Ġlegitimate": 17956, + "Ġlegitimately": 44431, + "Ġlegs": 5668, + "Ġlei": 32791, + "Ġleicht": 28333, + "Ġleider": 29115, + "Ġleisten": 47013, + "Ġleisure": 31339, + "Ġlek": 30863, + "Ġlekker": 44125, + "Ġlem": 7495, + "Ġlemon": 11356, + "Ġlemonade": 44374, + "Ġlemons": 47098, + "Ġlen": 40116, + "Ġlend": 21774, + "Ġlender": 47500, + "Ġlending": 29823, + "Ġleng": 35044, + "Ġlength": 4641, + "Ġlengths": 26329, + "Ġlengthy": 35374, + "Ġlens": 6765, + "Ġlenses": 18059, + "Ġlent": 23556, + "Ġleopard": 47161, + "Ġlequel": 39439, + "Ġler": 32068, + "Ġlernen": 36082, + "Ġles": 1512, + "Ġlesbian": 30253, + "Ġless": 1570, + "Ġlesser": 22043, + "Ġlesson": 6898, + "Ġlessons": 8820, + "Ġlet": 718, + "Ġlethal": 34562, + "Ġlets": 6653, + "Ġlett": 20689, + "Ġletter": 5063, + "Ġletters": 7825, + "Ġletting": 8295, + "Ġlettuce": 25542, + "Ġletz": 14027, + "Ġletzt": 35262, + "Ġletzte": 35236, + "Ġletzten": 18226, + "Ġleuk": 32665, + "Ġleuke": 45970, + "Ġleur": 9580, + "Ġleurs": 18341, + "Ġlev": 20445, + "Ġleva": 43410, + "Ġlevant": 30612, + "Ġlevar": 34538, + "Ġleve": 33076, + "Ġlevel": 1496, + "Ġleveling": 40617, + "Ġlevels": 4358, + "Ġleven": 45542, + "Ġlever": 12451, + "Ġleverage": 13982, + "Ġleveraging": 32666, + "Ġlevers": 45571, + "Ġley": 27786, + "Ġli": 375, + "Ġliability": 25196, + "Ġliaison": 49431, + "Ġliar": 27323, + "Ġlib": 22854, + "Ġliber": 6774, + "Ġliberal": 13767, + "Ġliberals": 48617, + "Ġliberated": 43304, + "Ġliberation": 27736, + "Ġlibert": 18058, + "Ġliberties": 47241, + "Ġliberty": 22849, + "Ġliberté": 49158, + "Ġlibr": 4939, + "Ġlibrarian": 42558, + "Ġlibrarians": 48803, + "Ġlibraries": 15148, + "Ġlibrary": 6405, + "Ġlibre": 29976, + "Ġlibro": 29354, + "Ġlic": 6169, + "Ġlicence": 49047, + "Ġlicense": 10476, + "Ġlicensed": 25225, + "Ġlicenses": 32821, + "Ġlicensing": 29759, + "Ġlick": 30940, + "Ġlid": 10252, + "Ġlider": 45341, + "Ġlidt": 40574, + "Ġlie": 4544, + "Ġliebe": 31623, + "Ġlieber": 38252, + "Ġlied": 20101, + "Ġliegen": 35100, + "Ġliegt": 22421, + "Ġlien": 32553, + "Ġlies": 9134, + "Ġlieu": 26036, + "Ġlieutenant": 45521, + "Ġlif": 4545, + "Ġlife": 993, + "Ġlifecycle": 45722, + "Ġlifelong": 27232, + "Ġlifes": 33321, + "Ġlifespan": 40361, + "Ġlifestyle": 11716, + "Ġlifetime": 11364, + "Ġlift": 5533, + "Ġlifted": 17854, + "Ġlifting": 15798, + "Ġlifts": 30501, + "Ġlig": 11742, + "Ġlige": 35450, + "Ġligger": 43187, + "Ġlight": 1442, + "Ġlighter": 11546, + "Ġlighthouse": 47481, + "Ġlighting": 9577, + "Ġlightly": 16695, + "Ġlightning": 16589, + "Ġlights": 5811, + "Ġlightweight": 22052, + "Ġligne": 34207, + "Ġlihat": 45153, + "Ġlij": 42158, + "Ġlik": 2913, + "Ġlike": 411, + "Ġliked": 4501, + "Ġlikelihood": 22119, + "Ġlikely": 3700, + "Ġliken": 36946, + "Ġlikes": 5902, + "Ġlikewise": 32407, + "Ġliking": 16933, + "Ġliksom": 35308, + "Ġlil": 36532, + "Ġlim": 2364, + "Ġlimb": 30390, + "Ġlimbs": 29315, + "Ġlime": 22035, + "Ġlimit": 4948, + "Ġlimitation": 27432, + "Ġlimitations": 15705, + "Ġlimite": 39946, + "Ġlimited": 5567, + "Ġlimiting": 22083, + "Ġlimits": 10406, + "Ġlimp": 33174, + "Ġlin": 22896, + "Ġlindo": 48436, + "Ġline": 1622, + "Ġlineage": 38257, + "Ġlinear": 8213, + "Ġlinearly": 43586, + "Ġlined": 17189, + "Ġlinen": 46602, + "Ġliner": 24468, + "Ġlines": 3876, + "Ġlineup": 26461, + "Ġling": 22949, + "Ġlinger": 45657, + "Ġlingering": 49542, + "Ġlingu": 21766, + "Ġlinguistic": 43002, + "Ġlinha": 33768, + "Ġlining": 19628, + "Ġlink": 2113, + "Ġlinkage": 49118, + "Ġlinked": 9408, + "Ġlinking": 25775, + "Ġlinks": 6123, + "Ġlion": 17226, + "Ġlions": 32564, + "Ġlip": 8280, + "Ġlips": 10118, + "Ġlipstick": 22543, + "Ġliqu": 5664, + "Ġliquid": 6553, + "Ġliquidity": 33131, + "Ġliquids": 38960, + "Ġliquor": 29162, + "Ġlira": 47723, + "Ġlire": 43254, + "Ġlis": 32670, + "Ġlist": 1329, + "Ġlista": 27764, + "Ġlisted": 10052, + "Ġlisten": 2140, + "Ġlistened": 13207, + "Ġlistener": 31569, + "Ġlisteners": 23274, + "Ġlistening": 4764, + "Ġlistens": 35959, + "Ġlisting": 22161, + "Ġlistings": 45615, + "Ġlists": 14511, + "Ġlit": 7997, + "Ġlite": 15100, + "Ġliter": 2733, + "Ġliteracy": 23166, + "Ġliteral": 20411, + "Ġliterally": 3736, + "Ġliterary": 24194, + "Ġliterature": 10394, + "Ġliters": 32323, + "Ġlith": 26324, + "Ġlithium": 32180, + "Ġlitigation": 33359, + "Ġlitres": 49259, + "Ġlitt": 30267, + "Ġlitter": 26540, + "Ġlittle": 707, + "Ġliv": 11477, + "Ġlive": 1621, + "Ġlived": 5152, + "Ġlivel": 31876, + "Ġlivelihood": 34343, + "Ġlively": 30866, + "Ġliver": 15019, + "Ġlives": 2909, + "Ġlivest": 19531, + "Ġlivestock": 31768, + "Ġlivestream": 29782, + "Ġliving": 2647, + "Ġlivre": 24735, + "Ġlivres": 50020, + "Ġlivro": 33545, + "Ġliz": 28632, + "Ġlizard": 39215, + "Ġll": 4849, + "Ġllam": 16848, + "Ġllama": 23272, + "Ġllamado": 47055, + "Ġlle": 12038, + "Ġlleg": 11234, + "Ġllega": 40423, + "Ġllegar": 24892, + "Ġllegó": 46182, + "Ġllev": 27124, + "Ġlleva": 37681, + "Ġllevar": 30374, + "Ġln": 44166, + "Ġlo": 450, + "Ġload": 3677, + "Ġloaded": 13210, + "Ġloading": 15114, + "Ġloads": 12668, + "Ġloaf": 40743, + "Ġloan": 10529, + "Ġloans": 15443, + "Ġlob": 14366, + "Ġlobb": 35673, + "Ġlobby": 21067, + "Ġlobbying": 47142, + "Ġlobster": 33198, + "Ġloc": 1628, + "Ġloca": 47965, + "Ġlocal": 2654, + "Ġlocalized": 44574, + "Ġlocally": 16143, + "Ġlocals": 23335, + "Ġlocate": 22370, + "Ġlocated": 6870, + "Ġlocation": 4914, + "Ġlocations": 9253, + "Ġlock": 4017, + "Ġlockdown": 17267, + "Ġlocked": 9376, + "Ġlocker": 25707, + "Ġlocking": 23954, + "Ġlocks": 20703, + "Ġlocom": 36369, + "Ġlod": 33311, + "Ġlodge": 47706, + "Ġloft": 34419, + "Ġlog": 3565, + "Ġlogar": 41473, + "Ġlogged": 27231, + "Ġlogging": 27991, + "Ġlogic": 9952, + "Ġlogical": 14978, + "Ġlogically": 38887, + "Ġlogin": 24276, + "Ġlogistics": 27420, + "Ġlogo": 9699, + "Ġlogos": 40654, + "Ġlogr": 31013, + "Ġlogs": 20820, + "Ġloh": 46957, + "Ġloi": 34607, + "Ġloin": 25048, + "Ġlok": 43578, + "Ġlol": 10065, + "Ġlon": 9155, + "Ġlone": 35314, + "Ġloneliness": 28144, + "Ġlonely": 14236, + "Ġlong": 938, + "Ġlonge": 26052, + "Ġlonger": 2854, + "Ġlongest": 15438, + "Ġlongevity": 36556, + "Ġlonging": 35050, + "Ġlongitud": 39596, + "Ġlongitudinal": 48250, + "Ġlongo": 40558, + "Ġlongtemps": 32437, + "Ġlongtime": 44363, + "Ġlongue": 44445, + "Ġlook": 574, + "Ġlooked": 2956, + "Ġlookin": 36186, + "Ġlooking": 1237, + "Ġlookout": 41025, + "Ġlooks": 1542, + "Ġloop": 6367, + "Ġloops": 16121, + "Ġloos": 40454, + "Ġloose": 9612, + "Ġloosely": 37966, + "Ġloosen": 26169, + "Ġloot": 26206, + "Ġlord": 15448, + "Ġlore": 27258, + "Ġloro": 28810, + "Ġlors": 20653, + "Ġlorsqu": 46581, + "Ġlorsque": 40629, + "Ġlos": 1750, + "Ġlose": 3624, + "Ġloser": 24606, + "Ġlosers": 37713, + "Ġloses": 18293, + "Ġlosing": 7027, + "Ġloss": 4470, + "Ġlosses": 15352, + "Ġlost": 2731, + "Ġlot": 688, + "Ġlotion": 41044, + "Ġlots": 3195, + "Ġlotta": 38144, + "Ġlottery": 27391, + "Ġlotus": 39105, + "Ġlou": 15185, + "Ġloud": 6588, + "Ġlouder": 22717, + "Ġloudly": 22958, + "Ġlounge": 33408, + "Ġlove": 959, + "Ġloved": 4333, + "Ġlovely": 7496, + "Ġlover": 18009, + "Ġlovers": 22697, + "Ġloves": 6752, + "Ġloving": 9344, + "Ġlow": 2295, + "Ġlower": 3126, + "Ġlowered": 28466, + "Ġlowering": 28124, + "Ġlowers": 44936, + "Ġlowest": 12437, + "Ġlows": 34794, + "Ġloyal": 12682, + "Ġloyalty": 22831, + "Ġlt": 37818, + "Ġlu": 10438, + "Ġlub": 15980, + "Ġlubric": 31116, + "Ġluc": 21296, + "Ġluck": 3668, + "Ġluckily": 22880, + "Ġlucky": 6356, + "Ġlud": 15946, + "Ġludzi": 29586, + "Ġludzie": 37025, + "Ġluego": 17222, + "Ġlug": 23025, + "Ġlugar": 11467, + "Ġlugares": 33105, + "Ġluggage": 27744, + "Ġlui": 8783, + "Ġlum": 24635, + "Ġlumber": 41686, + "Ġlumin": 32476, + "Ġlumière": 43193, + "Ġlump": 25551, + "Ġlumps": 44948, + "Ġlun": 19039, + "Ġlunar": 32581, + "Ġlunch": 6349, + "Ġlung": 16730, + "Ġlungs": 19467, + "Ġlur": 35583, + "Ġlure": 32350, + "Ġlush": 49729, + "Ġlust": 24672, + "Ġlut": 38319, + "Ġlux": 11363, + "Ġluxurious": 30840, + "Ġluxury": 15558, + "Ġluz": 20671, + "Ġluôn": 35690, + "Ġly": 17293, + "Ġlying": 8493, + "Ġlymph": 31070, + "Ġlyn": 46137, + "Ġlyric": 42409, + "Ġlyrics": 12189, + "Ġlys": 48670, + "Ġlá": 7453, + "Ġlâ": 48835, + "Ġlä": 8235, + "Ġläh": 49383, + "Ġläng": 22566, + "Ġlänger": 40935, + "Ġlässt": 29335, + "Ġläuft": 31807, + "ĠlÃ¥": 33939, + "ĠlÃ¥ng": 39756, + "Ġlæ": 44584, + "Ġlég": 27122, + "Ġlên": 33368, + "Ġlóg": 48475, + "Ġlö": 25209, + "ĠlÃł": 3684, + "ĠlÃłm": 22319, + "ĠlÃŃ": 16118, + "ĠlÃŃder": 44190, + "ĠlÃŃnea": 37452, + "Ġlại": 23017, + "ĠlỼ": 47864, + "Ġm": 275, + "ĠmRNA": 50103, + "Ġma": 463, + "Ġmaar": 10314, + "Ġmac": 7912, + "Ġmacam": 44921, + "Ġmacaron": 49686, + "Ġmach": 2246, + "Ġmache": 28289, + "Ġmachen": 7069, + "Ġmachine": 3479, + "Ġmachinery": 27302, + "Ġmachines": 8379, + "Ġmachst": 43350, + "Ġmacht": 10857, + "Ġmacro": 18887, + "Ġmad": 5244, + "Ġmadam": 28882, + "Ġmade": 1027, + "Ġmadness": 28736, + "Ġmadre": 32966, + "Ġmae": 43783, + "Ġmafia": 36412, + "Ġmag": 2258, + "Ġmagari": 49932, + "Ġmagaz": 9044, + "Ġmagazine": 11332, + "Ġmagazines": 22975, + "Ġmagg": 44639, + "Ġmagic": 5585, + "Ġmagical": 12066, + "Ġmagically": 39763, + "Ġmagician": 38614, + "Ġmagist": 48894, + "Ġmagn": 4944, + "Ġmagnes": 28860, + "Ġmagnesium": 32950, + "Ġmagnet": 15211, + "Ġmagnetic": 12688, + "Ġmagnets": 33022, + "Ġmagnific": 21623, + "Ġmagnificent": 23690, + "Ġmagnitude": 15668, + "Ġmah": 29926, + "Ġmahd": 44194, + "Ġmahdoll": 45158, + "Ġmai": 12698, + "Ġmaid": 30410, + "Ġmaiden": 48515, + "Ġmail": 10071, + "Ġmailbox": 43602, + "Ġmailing": 41612, + "Ġmain": 2135, + "Ġmainland": 32365, + "Ġmainly": 8704, + "Ġmains": 32519, + "Ġmainstream": 15960, + "Ġmaint": 3604, + "Ġmaintain": 6909, + "Ġmaintained": 17578, + "Ġmaintaining": 14916, + "Ġmaintains": 33385, + "Ġmainten": 7780, + "Ġmaintenance": 11258, + "Ġmaintenant": 14817, + "Ġmaior": 15859, + "Ġmaioria": 44384, + "Ġmais": 2420, + "Ġmaison": 28511, + "Ġmaj": 13673, + "Ġmajestic": 49561, + "Ġmajesty": 32146, + "Ġmajor": 2563, + "Ġmajority": 6286, + "Ġmajors": 31770, + "ĠmajÄħ": 26064, + "Ġmak": 963, + "Ġmakan": 46616, + "Ġmake": 652, + "Ġmaken": 24703, + "Ġmaker": 17127, + "Ġmakers": 19323, + "Ġmakes": 1669, + "Ġmakeup": 6567, + "Ġmaking": 1455, + "Ġmal": 2806, + "Ġmala": 37508, + "Ġmalad": 39500, + "Ġmalaria": 45182, + "Ġmale": 7133, + "Ġmales": 20776, + "Ġmalf": 41318, + "Ġmalfunction": 50229, + "Ġmalicious": 33496, + "Ġmall": 16026, + "Ġmalt": 45654, + "Ġmalware": 40747, + "Ġmam": 13524, + "Ġmama": 18775, + "Ġmamm": 19033, + "Ġmammal": 49312, + "Ġmammals": 35408, + "Ġmamy": 17335, + "Ġman": 587, + "Ġmana": 21225, + "Ġmanage": 3067, + "Ġmanageable": 38798, + "Ġmanaged": 6453, + "Ġmanagement": 4592, + "Ġmanager": 6598, + "Ġmanagers": 14084, + "Ġmanages": 22489, + "Ġmanaging": 11642, + "Ġmanchmal": 32092, + "Ġmand": 7411, + "Ġmandar": 48689, + "Ġmandate": 23885, + "Ġmandated": 47563, + "Ġmandates": 48662, + "Ġmandatory": 22173, + "Ġmane": 12743, + "Ġmaneira": 30255, + "Ġmanera": 13913, + "Ġmaneu": 22474, + "Ġmaneuver": 25976, + "Ġmang": 32432, + "Ġmanga": 23316, + "Ġmange": 30465, + "Ġmanger": 34372, + "Ġmango": 23481, + "Ġmaniac": 47193, + "Ġmanic": 48139, + "Ġmanif": 8173, + "Ġmanifest": 10067, + "Ġmanifestation": 29550, + "Ġmanifestations": 46931, + "Ġmanifested": 42775, + "Ġmanifests": 50252, + "Ġmanifold": 47138, + "Ġmanip": 9258, + "Ġmanipulate": 20459, + "Ġmanipulated": 37161, + "Ġmanipulating": 40805, + "Ġmanipulation": 26475, + "Ġmanière": 22267, + "Ġmankind": 21220, + "Ġmanne": 49815, + "Ġmanner": 9060, + "Ġmanners": 34672, + "Ġmano": 18384, + "Ġmanos": 36650, + "Ġmanque": 48124, + "Ġmans": 18868, + "Ġmansion": 25599, + "Ġmant": 10845, + "Ġmanten": 38417, + "Ġmantener": 42759, + "Ġmanter": 48170, + "Ġmantle": 45031, + "Ġmantra": 32094, + "Ġmanual": 9688, + "Ġmanually": 16945, + "Ġmanufact": 5793, + "Ġmanufacture": 27400, + "Ġmanufactured": 25738, + "Ġmanufacturer": 18022, + "Ġmanufacturers": 18455, + "Ġmanufacturing": 11096, + "Ġmanure": 48020, + "Ġmanus": 21550, + "Ġmanuscript": 23928, + "Ġmanuscripts": 42849, + "Ġmany": 867, + "Ġmap": 4471, + "Ġmapa": 44025, + "Ġmaple": 31191, + "Ġmapped": 33318, + "Ġmapping": 18350, + "Ġmaps": 11317, + "Ġmar": 1849, + "Ġmarathon": 27601, + "Ġmaravil": 41009, + "Ġmarble": 26844, + "Ġmarc": 42365, + "Ġmarca": 30582, + "Ġmarch": 8368, + "Ġmarche": 32631, + "Ġmarched": 43565, + "Ġmarching": 30523, + "Ġmarché": 37441, + "Ġmare": 31471, + "Ġmargin": 10270, + "Ġmarginal": 16885, + "Ġmarginalized": 32522, + "Ġmargins": 30317, + "Ġmari": 35555, + "Ġmarijuana": 24956, + "Ġmarin": 34652, + "Ġmarinade": 49386, + "Ġmarine": 20246, + "Ġmaritime": 43892, + "Ġmark": 1491, + "Ġmarked": 12658, + "Ġmarker": 15247, + "Ġmarkers": 19175, + "Ġmarket": 2142, + "Ġmarketed": 49089, + "Ġmarketers": 48003, + "Ġmarketing": 6370, + "Ġmarketplace": 19455, + "Ġmarkets": 8383, + "Ġmarking": 25482, + "Ġmarkings": 39087, + "Ġmarks": 10640, + "Ġmarque": 41024, + "Ġmarriage": 7194, + "Ġmarriages": 39760, + "Ġmarried": 5259, + "Ġmarrow": 47739, + "Ġmarry": 9747, + "Ġmarrying": 36376, + "Ġmars": 30517, + "Ġmarsh": 21653, + "Ġmarshm": 29817, + "Ġmarshmallow": 43896, + "Ġmart": 12396, + "Ġmartial": 20755, + "Ġmartyr": 41005, + "Ġmarvel": 23893, + "Ġmarvelous": 34920, + "Ġmas": 2300, + "Ġmasa": 29216, + "Ġmasala": 35614, + "Ġmasc": 18792, + "Ġmascara": 26016, + "Ġmascot": 42339, + "Ġmascul": 19255, + "Ġmasculine": 28992, + "Ġmasculinity": 45195, + "Ġmash": 31344, + "Ġmashed": 38964, + "Ġmasih": 31510, + "Ġmask": 6094, + "Ġmasked": 45249, + "Ġmasking": 31226, + "Ġmasks": 11830, + "Ġmass": 2758, + "Ġmassa": 26689, + "Ġmassacre": 41076, + "Ġmassage": 16145, + "Ġmasse": 42313, + "Ġmasses": 23935, + "Ġmassive": 5994, + "Ġmassively": 29379, + "Ġmast": 27055, + "Ġmaster": 4505, + "Ġmastered": 38686, + "Ġmastering": 49382, + "Ġmasterpiece": 32208, + "Ġmasters": 19294, + "Ġmastery": 37951, + "Ġmasturb": 48921, + "Ġmasuk": 42364, + "Ġmat": 3803, + "Ġmata": 46106, + "Ġmatar": 39208, + "Ġmatch": 2995, + "Ġmatched": 21447, + "Ġmatches": 10676, + "Ġmatching": 14324, + "Ġmate": 11709, + "Ġmateix": 42770, + "Ġmater": 2389, + "Ġmateria": 34083, + "Ġmaterial": 2527, + "Ġmaterials": 5319, + "Ġmaternal": 37944, + "Ġmates": 31488, + "Ġmath": 5221, + "Ġmathemat": 11619, + "Ġmathematic": 32811, + "Ġmathematical": 18894, + "Ġmathematically": 44003, + "Ġmathematician": 48281, + "Ġmathematics": 18666, + "Ġmaths": 36287, + "Ġmatin": 33389, + "Ġmating": 49955, + "Ġmatière": 46600, + "Ġmatrices": 32284, + "Ġmatrix": 8141, + "Ġmats": 43366, + "Ġmatt": 16539, + "Ġmatte": 21592, + "Ġmatter": 1871, + "Ġmattered": 44282, + "Ġmatters": 7001, + "Ġmattress": 20625, + "Ġmature": 14442, + "Ġmaturity": 28874, + "Ġmatéri": 45731, + "Ġmau": 22074, + "Ġmauv": 49631, + "Ġmauvais": 50018, + "Ġmax": 11469, + "Ġmaxim": 5138, + "Ġmaximal": 49336, + "Ġmaximize": 19874, + "Ġmaximum": 6674, + "Ġmay": 815, + "Ġmaybe": 1310, + "Ġmayo": 38485, + "Ġmayonnaise": 34406, + "Ġmayor": 10120, + "ĠmayorÃŃa": 35342, + "Ġmaze": 33032, + "Ġmañana": 33573, + "Ġme": 385, + "Ġmeal": 6791, + "Ġmeals": 12832, + "Ġmean": 914, + "Ġmeaning": 3620, + "Ġmeaningful": 10995, + "Ġmeaningless": 33232, + "Ġmeanings": 28138, + "Ġmeans": 1355, + "Ġmeant": 4140, + "Ġmeantime": 14991, + "Ġmeanwhile": 29252, + "Ġmeas": 5731, + "Ġmeasurable": 43615, + "Ġmeasure": 3481, + "Ġmeasured": 12690, + "Ġmeasurement": 13160, + "Ġmeasurements": 15383, + "Ġmeasures": 8000, + "Ġmeasuring": 13389, + "Ġmeat": 4615, + "Ġmeatballs": 44741, + "Ġmeats": 38106, + "Ġmec": 25186, + "Ġmechan": 4236, + "Ġmechanic": 23860, + "Ġmechanical": 12070, + "Ġmechanics": 12939, + "Ġmechanism": 7513, + "Ġmechanisms": 15902, + "Ġmed": 1205, + "Ġmedal": 21364, + "Ġmedals": 38647, + "Ġmedi": 17269, + "Ġmedia": 3021, + "Ġmedian": 26779, + "Ġmedic": 4355, + "Ġmedical": 4625, + "Ġmedically": 49230, + "Ġmedication": 13851, + "Ġmedications": 17504, + "Ġmedicinal": 46073, + "Ġmedicine": 7195, + "Ġmedicines": 24251, + "Ġmedida": 32984, + "Ġmedidas": 37295, + "Ġmedieval": 24078, + "Ġmedio": 22123, + "Ġmediocre": 45415, + "Ġmedios": 46017, + "Ġmeditate": 29989, + "Ġmeditating": 46850, + "Ġmeditation": 12537, + "Ġmedium": 6399, + "Ġmedo": 37144, + "Ġmee": 24442, + "Ġmeer": 16318, + "Ġmeet": 1677, + "Ġmeeting": 3440, + "Ġmeetings": 8410, + "Ġmeets": 13961, + "Ġmeg": 10816, + "Ġmega": 17986, + "Ġmegap": 34733, + "Ġmeget": 36411, + "Ġmeglio": 48911, + "Ġmehr": 5417, + "Ġmehrere": 44677, + "Ġmeidän": 44751, + "Ġmeille": 25039, + "Ġmeilleur": 41457, + "Ġmeillä": 45211, + "Ġmein": 10777, + "Ġmeine": 10946, + "Ġmeinem": 24171, + "Ġmeinen": 22738, + "Ġmeiner": 20529, + "Ġmeio": 17706, + "Ġmeist": 36894, + "Ġmeisten": 29708, + "Ġmej": 37758, + "Ġmejor": 11479, + "Ġmejorar": 48858, + "Ġmejores": 42284, + "Ġmel": 4795, + "Ġmelan": 47969, + "Ġmelee": 35810, + "Ġmelhor": 13714, + "Ġmelhores": 46807, + "Ġmellan": 46494, + "Ġmelod": 32834, + "Ġmelodies": 47085, + "Ġmelody": 17997, + "Ġmelon": 41722, + "Ġmelt": 10083, + "Ġmelted": 19057, + "Ġmelting": 20493, + "Ġmelts": 30136, + "Ġmem": 1334, + "Ġmemang": 39290, + "Ġmemb": 27942, + "Ġmember": 4006, + "Ġmembers": 2679, + "Ġmembership": 16560, + "Ġmembr": 15595, + "Ġmembrane": 19651, + "Ġmeme": 21701, + "Ġmemes": 29730, + "Ġmemo": 35900, + "Ġmemoir": 38306, + "Ġmemor": 10560, + "Ġmemorable": 20723, + "Ġmemorial": 24089, + "Ġmemories": 8495, + "Ġmemorize": 27478, + "Ġmemorized": 46677, + "Ġmemory": 4675, + "Ġmen": 1706, + "Ġmencion": 37030, + "Ġmend": 31161, + "Ġmeng": 15330, + "Ġmening": 46890, + "Ġmenjadi": 39964, + "Ġmeno": 40236, + "Ġmenor": 26343, + "Ġmenos": 8902, + "Ġmens": 10923, + "Ġmensen": 18062, + "Ġmenstru": 38827, + "Ġment": 3074, + "Ġmental": 4973, + "Ġmentality": 21976, + "Ġmentally": 17072, + "Ġmente": 26577, + "Ġmention": 2152, + "Ġmentioned": 2835, + "Ġmentioning": 18315, + "Ġmentions": 23844, + "Ġmentor": 14478, + "Ġmentoring": 30257, + "Ġmentors": 21798, + "Ġmentorship": 40422, + "Ġmentre": 49601, + "Ġmenu": 6510, + "Ġmenus": 30347, + "Ġmeny": 46975, + "Ġmeow": 45132, + "Ġmer": 3551, + "Ġmerak": 39668, + "Ġmerc": 10811, + "Ġmercado": 24775, + "Ġmerch": 12618, + "Ġmerchand": 30234, + "Ġmerchandise": 34485, + "Ġmerchant": 32267, + "Ġmerchants": 36253, + "Ġmerci": 30532, + "Ġmerciful": 48756, + "Ġmercury": 33307, + "Ġmercy": 13174, + "Ġmerde": 45772, + "Ġmere": 8401, + "Ġmereka": 23171, + "Ġmerely": 17003, + "Ġmerge": 22183, + "Ġmerged": 36427, + "Ġmerger": 48002, + "Ġmerging": 44559, + "Ġmering": 46643, + "Ġmeringue": 50044, + "Ġmerit": 24527, + "Ġmerits": 40923, + "Ġmerk": 43541, + "Ġmermaid": 43146, + "Ġmerry": 41545, + "Ġmes": 3813, + "Ġmesa": 37024, + "Ġmesela": 45814, + "Ġmeses": 23922, + "Ġmesh": 17407, + "Ġmesma": 21921, + "Ġmesmo": 9082, + "Ġmess": 2082, + "Ġmessage": 3636, + "Ġmessages": 7897, + "Ġmessaging": 21812, + "Ġmessed": 16507, + "Ġmessenger": 26599, + "Ġmessing": 23258, + "Ġmessy": 16191, + "Ġmest": 35621, + "Ġmesure": 37981, + "Ġmesures": 42265, + "Ġmet": 1131, + "Ġmeta": 19616, + "Ġmetabol": 19110, + "Ġmetabolic": 36464, + "Ġmetabolism": 31190, + "Ġmetabolismo": 47889, + "Ġmetadata": 26603, + "Ġmetal": 5760, + "Ġmetall": 20866, + "Ġmetallic": 25759, + "Ġmetals": 22548, + "Ġmetaph": 30946, + "Ġmetaphor": 19157, + "Ġmete": 21245, + "Ġmeteor": 25313, + "Ġmeter": 9255, + "Ġmeters": 8146, + "Ġmeth": 23416, + "Ġmethane": 32521, + "Ġmethod": 3170, + "Ġmethodology": 24850, + "Ġmethods": 7150, + "Ġmethy": 36599, + "Ġmethyl": 48441, + "Ġmetic": 41566, + "Ġmetre": 42431, + "Ġmetres": 23861, + "Ġmetric": 20678, + "Ġmetrics": 16367, + "Ġmetro": 27334, + "Ġmetropolitan": 44645, + "Ġmetros": 34761, + "Ġmets": 37231, + "Ġmett": 27812, + "Ġmettre": 14997, + "Ġmeu": 9230, + "Ġmeus": 28033, + "Ġmeva": 40530, + "Ġmex": 28759, + "Ġmez": 28966, + "Ġmg": 49566, + "Ġmi": 2752, + "Ġmia": 21290, + "ĠmiaÅĤ": 27989, + "Ġmic": 3123, + "Ġmica": 32483, + "Ġmice": 22257, + "Ġmich": 6031, + "Ġmicro": 4532, + "Ġmicrob": 49713, + "Ġmicrobes": 35996, + "Ġmicrobi": 33234, + "Ġmicrof": 42763, + "Ġmicron": 45094, + "Ġmicroorgan": 49129, + "Ġmicrophone": 10952, + "Ġmicrophones": 30495, + "Ġmicros": 15547, + "Ġmicroscop": 30483, + "Ġmicroscope": 29753, + "Ġmicroscopic": 47897, + "Ġmicrow": 17177, + "Ġmicrowave": 19025, + "Ġmics": 45481, + "Ġmid": 2062, + "Ġmiddle": 2808, + "Ġmidnight": 19006, + "Ġmidst": 18629, + "Ġmie": 12597, + "Ġmiedo": 40383, + "Ġmiej": 18522, + "Ġmiejsc": 32754, + "Ġmiejsce": 38122, + "Ġmiel": 41392, + "Ġmieli": 41214, + "Ġmientras": 26010, + "Ġmier": 47448, + "Ġmies": 41543, + "Ġmiesz": 33039, + "Ġmieux": 20401, + "ĠmieÄĩ": 35612, + "Ġmig": 6186, + "Ġmight": 1062, + "Ġmighty": 21556, + "Ġmigrant": 38547, + "Ġmigrants": 31263, + "Ġmigrate": 31821, + "Ġmigrated": 48329, + "Ġmigration": 17011, + "Ġmij": 22953, + "Ġmijn": 19884, + "Ġmik": 23959, + "Ġmike": 43357, + "Ġmikä": 48482, + "Ġmil": 1962, + "Ġmild": 15154, + "Ġmile": 12620, + "Ġmileage": 43121, + "Ġmiles": 6193, + "Ġmilestone": 28048, + "Ġmilestones": 42038, + "Ġmilhões": 39252, + "Ġmilieu": 34276, + "Ġmilit": 19142, + "Ġmilitar": 30653, + "Ġmilitary": 4632, + "Ġmilj": 41128, + "Ġmilk": 5392, + "Ġmilks": 48773, + "Ġmill": 1728, + "Ġmillenn": 21362, + "Ġmillennials": 45543, + "Ġmillet": 47722, + "Ġmilli": 26176, + "Ġmilliards": 47382, + "Ġmilligram": 38298, + "Ġmilligrams": 45147, + "Ġmillimeter": 17942, + "Ġmillimeters": 24388, + "Ġmillion": 2459, + "Ġmillionaire": 41114, + "Ġmillions": 6803, + "Ġmillise": 27940, + "Ġmilliseconds": 34184, + "Ġmillones": 22416, + "Ġmillor": 48638, + "Ġmily": 38728, + "Ġmim": 12247, + "Ġmimic": 31075, + "Ġmin": 923, + "Ġmina": 48412, + "Ġminced": 36442, + "Ġmind": 1575, + "Ġminded": 36707, + "Ġminder": 44146, + "Ġmindful": 14618, + "Ġmindfulness": 25655, + "Ġminds": 9634, + "Ġmindset": 12543, + "Ġmine": 3892, + "Ġminer": 18746, + "Ġmineral": 21630, + "Ġminerals": 22959, + "Ġminers": 35640, + "Ġmines": 25398, + "Ġminha": 11720, + "Ġmini": 8382, + "Ġminiature": 34674, + "Ġminim": 4464, + "Ġminimal": 13206, + "Ġminimalist": 50192, + "Ġminimize": 17522, + "Ġminimizing": 46608, + "Ġminimum": 7285, + "Ġmining": 15512, + "Ġminion": 49361, + "Ġminions": 39288, + "Ġminist": 16182, + "Ġminister": 10563, + "Ġministers": 26220, + "Ġministre": 31122, + "Ġministry": 15024, + "Ġminor": 6696, + "Ġminorities": 30373, + "Ġminority": 16166, + "Ġmins": 31539, + "Ġmint": 18189, + "Ġminus": 3175, + "Ġminut": 13951, + "Ġminute": 3456, + "Ġminutes": 2077, + "Ġminutos": 19421, + "Ġmio": 29908, + "Ġmir": 3149, + "Ġmira": 30286, + "Ġmirac": 30686, + "Ġmiracle": 14660, + "Ġmiracles": 24685, + "Ġmiraculous": 41101, + "Ġmirror": 8013, + "Ġmirrors": 24238, + "Ġmis": 3346, + "Ġmiscon": 27631, + "Ġmisconception": 41350, + "Ġmisconceptions": 50012, + "Ġmise": 36845, + "Ġmiser": 17725, + "Ġmiserable": 22321, + "Ġmisery": 32309, + "Ġmisf": 47351, + "Ġmisin": 32333, + "Ġmisinformation": 34238, + "Ġmisleading": 36429, + "Ġmism": 23220, + "Ġmisma": 24946, + "Ġmismo": 12461, + "Ġmismos": 47458, + "Ġmiss": 1713, + "Ġmisschien": 42047, + "Ġmissed": 6721, + "Ġmisses": 29394, + "Ġmissile": 19321, + "Ġmissiles": 23133, + "Ġmissing": 5361, + "Ġmission": 4447, + "Ġmissionary": 45418, + "Ġmissions": 13744, + "Ġmist": 3544, + "Ġmistake": 6146, + "Ġmistaken": 21333, + "Ġmistakes": 8038, + "Ġmister": 26562, + "Ġmistress": 46635, + "Ġmisunder": 15736, + "Ġmisunderstand": 35736, + "Ġmisunderstanding": 29227, + "Ġmisunderstood": 33870, + "Ġmit": 2194, + "Ġmitad": 46895, + "Ġmite": 36190, + "Ġmiteinander": 43127, + "Ġmiten": 43265, + "Ġmitig": 15699, + "Ġmitigate": 27336, + "Ġmitigation": 32649, + "Ġmitochond": 41008, + "Ġmitt": 19130, + "Ġmittlerweile": 41999, + "Ġmitä": 30451, + "Ġmix": 2890, + "Ġmixed": 7467, + "Ġmixer": 24063, + "Ġmixes": 37121, + "Ġmixing": 11983, + "Ġmixture": 9925, + "ĠmiÄĻdzy": 33964, + "Ġml": 23271, + "Ġmm": 11169, + "Ġmmm": 26159, + "Ġmnie": 17661, + "Ġmniej": 39513, + "Ġmo": 705, + "Ġmob": 4298, + "Ġmobil": 15891, + "Ġmobile": 6013, + "Ġmobility": 16199, + "Ġmobilize": 48637, + "Ġmoc": 34962, + "Ġmock": 17362, + "Ġmocking": 49792, + "Ġmod": 1072, + "Ġmodal": 39745, + "Ġmode": 4391, + "Ġmodel": 2316, + "Ġmodeled": 37140, + "Ġmodeling": 15983, + "Ġmodelling": 42253, + "Ġmodelo": 27825, + "Ġmodels": 5245, + "Ġmoder": 10494, + "Ġmoderate": 18174, + "Ġmoderation": 49471, + "Ġmoderator": 37778, + "Ġmodern": 4363, + "Ġmodes": 14068, + "Ġmodest": 25403, + "Ġmodification": 26747, + "Ġmodifications": 26881, + "Ġmodified": 15873, + "Ġmodifier": 38011, + "Ġmodify": 16927, + "Ġmodifying": 42626, + "Ġmodo": 16664, + "Ġmods": 30899, + "Ġmodular": 31111, + "Ġmodulation": 42288, + "Ġmodule": 10088, + "Ġmodules": 16679, + "Ġmodulus": 42287, + "Ġmodèle": 45631, + "Ġmoet": 12677, + "Ġmoeten": 26175, + "Ġmog": 13172, + "Ġmogelijk": 46617, + "ĠmogÄħ": 34123, + "ĠmogÄĻ": 41737, + "Ġmoi": 7748, + "Ġmoim": 48569, + "Ġmoins": 13099, + "Ġmois": 19230, + "Ġmoist": 8641, + "Ġmoistur": 21531, + "Ġmoisture": 13814, + "Ġmoisturizer": 47588, + "Ġmoisturizing": 44134, + "Ġmoje": 36383, + "Ġmol": 8015, + "Ġmolar": 45712, + "Ġmold": 11102, + "Ġmolds": 48257, + "Ġmole": 6353, + "Ġmolec": 10646, + "Ġmolecular": 19046, + "Ġmolecule": 15582, + "Ġmolecules": 13093, + "Ġmoles": 34286, + "Ġmolt": 10739, + "Ġmolta": 48564, + "Ġmolten": 44845, + "Ġmolto": 16394, + "Ġmolé": 49300, + "Ġmom": 1225, + "Ġmomencie": 40883, + "Ġmoment": 1623, + "Ġmomento": 9333, + "Ġmomentos": 34583, + "Ġmoments": 6065, + "Ġmomentum": 11244, + "Ġmommy": 25606, + "Ġmoms": 25399, + "Ġmon": 1108, + "Ġmonarch": 33658, + "Ġmonaster": 31412, + "Ġmonastery": 37821, + "Ġmond": 17606, + "Ġmonde": 10431, + "Ġmondo": 40499, + "Ġmonet": 15556, + "Ġmonetary": 26388, + "Ġmoney": 1460, + "Ġmonit": 32001, + "Ġmonitor": 6002, + "Ġmonitored": 36255, + "Ġmonitoring": 11028, + "Ġmonitors": 26518, + "Ġmonk": 27698, + "Ġmonkey": 17847, + "Ġmonkeys": 29534, + "Ġmonks": 32201, + "Ġmono": 35624, + "Ġmonopol": 47721, + "Ġmonopoly": 37061, + "Ġmonsieur": 36507, + "Ġmonster": 10090, + "Ġmonsters": 15785, + "Ġmonstr": 47137, + "Ġmont": 8143, + "Ġmontage": 40184, + "Ġmonte": 35437, + "Ġmonter": 47945, + "Ġmonth": 1618, + "Ġmonthly": 12878, + "Ġmonths": 2493, + "Ġmontre": 44132, + "Ġmontrer": 33116, + "Ġmontón": 45259, + "Ġmonument": 20289, + "Ġmonumental": 43105, + "Ġmonuments": 36864, + "Ġmoo": 37284, + "Ġmood": 9268, + "Ġmooi": 38583, + "Ġmoon": 7135, + "Ġmoonlight": 48058, + "Ġmoons": 34139, + "Ġmop": 48106, + "Ġmor": 1896, + "Ġmoral": 9723, + "Ġmorale": 37455, + "Ġmorality": 29106, + "Ġmorally": 38622, + "Ġmorals": 46849, + "Ġmorb": 46510, + "Ġmore": 544, + "Ġmorgen": 36593, + "Ġmorning": 2446, + "Ġmornings": 37143, + "Ġmorph": 25778, + "Ġmort": 6599, + "Ġmortal": 27624, + "Ġmortality": 23330, + "Ġmortar": 33956, + "Ġmorte": 37392, + "Ġmortgage": 20236, + "Ġmos": 13659, + "Ġmosque": 31501, + "Ġmosquito": 23970, + "Ġmosquitoes": 39394, + "Ġmoss": 36193, + "Ġmost": 881, + "Ġmostly": 5240, + "Ġmostra": 43101, + "Ġmostrar": 21487, + "Ġmot": 2184, + "Ġmote": 49071, + "Ġmother": 2895, + "Ġmotherboard": 32916, + "Ġmotherf": 29537, + "Ġmotherfucker": 47069, + "Ġmothers": 17941, + "Ġmotif": 39478, + "Ġmotion": 5394, + "Ġmotions": 27500, + "Ġmotiv": 5426, + "Ġmotivate": 28497, + "Ġmotivated": 14515, + "Ġmotivates": 42569, + "Ġmotivating": 41066, + "Ġmotivation": 12335, + "Ġmotivational": 48186, + "Ġmotivations": 39034, + "Ġmotive": 28827, + "Ġmotives": 39812, + "Ġmotivo": 35804, + "Ġmoto": 42192, + "Ġmotor": 5932, + "Ġmotorcycle": 20554, + "Ġmotorcycles": 46813, + "Ġmotors": 25035, + "Ġmots": 34009, + "Ġmotto": 32680, + "Ġmould": 34803, + "Ġmound": 49034, + "Ġmount": 3746, + "Ġmountain": 6937, + "Ġmountains": 10233, + "Ġmounted": 19138, + "Ġmounting": 22986, + "Ġmounts": 40982, + "Ġmour": 22235, + "Ġmourning": 42947, + "Ġmouse": 9719, + "Ġmouth": 4525, + "Ġmouths": 33171, + "Ġmouve": 33415, + "Ġmouvement": 41219, + "Ġmov": 2402, + "Ġmove": 1286, + "Ġmoved": 4259, + "Ġmovement": 3963, + "Ġmovements": 9981, + "Ġmover": 39945, + "Ġmoves": 6067, + "Ġmovie": 3169, + "Ġmovies": 6233, + "Ġmovimento": 40798, + "Ġmovimiento": 43180, + "Ġmoving": 2684, + "Ġmoy": 32018, + "Ġmoyen": 42009, + "Ġmoyens": 47040, + "Ġmozzarella": 44135, + "Ġmoż": 10697, + "Ġmoże": 12034, + "Ġmożemy": 26500, + "Ġmożli": 30854, + "Ġmożna": 17790, + "Ġmph": 46351, + "Ġmr": 33660, + "Ġmu": 2992, + "Ġmuch": 709, + "Ġmucha": 25248, + "Ġmuchas": 16072, + "Ġmucho": 9824, + "Ġmuchos": 17061, + "ĠmuchÃŃs": 29353, + "ĠmuchÃŃsimo": 44722, + "Ġmud": 8933, + "Ġmudar": 42281, + "Ġmuddy": 38540, + "Ġmue": 49532, + "Ġmuerte": 38497, + "Ġmuff": 22635, + "Ġmuffin": 48400, + "Ġmug": 23610, + "Ġmuit": 4146, + "Ġmuita": 21025, + "Ġmuitas": 25705, + "Ġmuito": 4945, + "Ġmuitos": 28918, + "Ġmuj": 30008, + "Ġmujer": 32032, + "Ġmujeres": 31683, + "Ġmuk": 31475, + "Ġmul": 14077, + "Ġmulher": 33211, + "Ġmulheres": 43244, + "Ġmult": 2120, + "Ġmulti": 4825, + "Ġmultic": 30608, + "Ġmulticultural": 47684, + "Ġmultif": 39824, + "Ġmultim": 32972, + "Ġmultimedia": 49202, + "Ġmultin": 45872, + "Ġmultip": 3311, + "Ġmultipl": 12788, + "Ġmultiplayer": 27325, + "Ġmultiple": 3866, + "Ġmultiples": 46099, + "Ġmultiplic": 17596, + "Ġmultiplication": 27290, + "Ġmultiplied": 17207, + "Ġmultiplier": 44106, + "Ġmultiply": 12972, + "Ġmultiplying": 30955, + "Ġmultit": 42338, + "Ġmultitude": 36358, + "Ġmum": 14697, + "Ġmummy": 45295, + "Ġmun": 11864, + "Ġmund": 23175, + "Ġmundane": 43497, + "Ġmundial": 41740, + "Ġmundo": 7968, + "Ġmungkin": 32633, + "Ġmunicip": 14998, + "Ġmunicipal": 27177, + "Ġmunicipalities": 39748, + "Ġmunicipality": 44186, + "Ġmur": 5257, + "Ġmural": 40595, + "Ġmurder": 6568, + "Ġmurdered": 18486, + "Ġmurderer": 28703, + "Ġmurders": 30479, + "Ġmurm": 39729, + "Ġmus": 1038, + "Ġmuscle": 8679, + "Ġmuscles": 9530, + "Ġmuscular": 31641, + "Ġmuse": 39138, + "Ġmuseum": 8441, + "Ġmuseums": 23248, + "Ġmush": 11559, + "Ġmushroom": 12094, + "Ġmushrooms": 17973, + "Ġmusi": 37587, + "Ġmusic": 1318, + "Ġmusical": 9165, + "Ġmusician": 19570, + "Ġmusicians": 16916, + "Ġmusimy": 43449, + "Ġmusique": 34108, + "Ġmuss": 6425, + "Ġmusst": 31716, + "Ġmusste": 34497, + "Ġmust": 1633, + "Ġmustache": 37798, + "Ġmustard": 23659, + "Ġmustn": 42818, + "Ġmusun": 25447, + "Ġmut": 5839, + "Ġmutant": 47198, + "Ġmutation": 27960, + "Ġmutations": 29243, + "Ġmute": 24523, + "Ġmuted": 32808, + "Ġmutta": 26265, + "Ġmutual": 16917, + "Ġmutually": 39144, + "Ġmuut": 46785, + "Ġmuy": 5323, + "Ġmuá»ijn": 42453, + "Ġmy": 452, + "Ġmycket": 16780, + "Ġmyself": 2059, + "Ġmyst": 9111, + "Ġmyster": 11010, + "Ġmysteries": 30785, + "Ġmysterious": 13831, + "Ġmystery": 11422, + "Ġmystical": 40565, + "Ġmyth": 9474, + "Ġmythical": 40843, + "Ġmythology": 30871, + "Ġmyths": 28205, + "Ġmyös": 23623, + "ĠmyÅĽ": 48633, + "ĠmyÅĽlÄĻ": 37730, + "Ġmá": 12228, + "Ġmáqu": 39701, + "Ġmáquina": 49360, + "Ġmár": 40331, + "Ġmás": 3573, + "Ġmáxim": 31031, + "Ġmáximo": 38876, + "Ġmã": 22410, + "Ġmãe": 29392, + "Ġmão": 31639, + "Ġmä": 25117, + "Ġmänn": 39550, + "Ġmännisk": 45220, + "Ġmänniskor": 48091, + "ĠmÃ¥": 10254, + "ĠmÃ¥nga": 25068, + "ĠmÃ¥ste": 23958, + "Ġmère": 35935, + "Ġmé": 13191, + "Ġméd": 16978, + "Ġmédi": 42436, + "Ġmédia": 49503, + "Ġmédico": 44853, + "Ġmég": 43510, + "Ġmél": 41953, + "Ġmés": 12545, + "Ġmét": 20275, + "Ġméth": 45404, + "Ġmême": 5698, + "Ġmêmes": 42588, + "Ġmês": 41400, + "Ġmình": 14526, + "Ġmó": 32515, + "Ġmón": 37803, + "Ġmów": 13489, + "Ġmówi": 24592, + "ĠmówiÄħ": 46591, + "Ġmö": 7667, + "Ġmöchte": 14570, + "Ġmöchten": 49699, + "Ġmöglich": 16294, + "Ġmöglichst": 44850, + "Ġmöj": 37606, + "Ġmús": 38886, + "Ġmúsica": 20091, + "Ġmü": 6047, + "Ġmüs": 28802, + "Ġmüssen": 9013, + "Ġmüsst": 49481, + "Ġmüsste": 42962, + "ĠmÃł": 13901, + "ĠmÃły": 45464, + "ĠmÃŃ": 14692, + "ĠmÃŃn": 33656, + "ĠmÃŃnimo": 47393, + "Ġmı": 9251, + "ĠmÅĤ": 40770, + "Ġmá»Ļt": 15486, + "ĠmỼi": 37328, + "Ġn": 297, + "Ġna": 1667, + "Ġnaar": 12762, + "Ġnac": 42071, + "Ġnach": 5168, + "Ġnacional": 29836, + "Ġnad": 12617, + "Ġnada": 8096, + "Ġnadie": 28060, + "Ġnadzie": 43693, + "ĠnadziejÄĻ": 48881, + "Ġnag": 17096, + "Ġnagyon": 46259, + "Ġnah": 17170, + "Ġnail": 10173, + "Ġnailed": 30790, + "Ġnails": 15394, + "Ġnaive": 29052, + "Ġnaj": 11212, + "Ġnajbardziej": 41857, + "Ġnajle": 41903, + "ĠnajwiÄĻ": 48636, + "Ġnak": 20332, + "Ġnaked": 15791, + "Ġnam": 8835, + "Ġname": 1315, + "Ġnamed": 4926, + "Ġnamely": 20926, + "Ġnames": 5288, + "Ġnaming": 25290, + "Ġnan": 14067, + "Ġnano": 30129, + "Ġnap": 9296, + "ĠnaprawdÄĻ": 20970, + "Ġnar": 6714, + "Ġnarc": 21328, + "Ġnarciss": 25771, + "Ġnarcissist": 49130, + "Ġnarr": 6397, + "Ġnarration": 43299, + "Ġnarrative": 9977, + "Ġnarratives": 28016, + "Ġnarrator": 32646, + "Ġnarrow": 9432, + "Ġnarrower": 46751, + "Ġnas": 5382, + "Ġnasal": 41575, + "Ġnast": 26088, + "Ġnasty": 17923, + "ĠnastÄĻp": 39662, + "Ġnasze": 43394, + "Ġnaszego": 44517, + "Ġnaszej": 42946, + "Ġnaszych": 45002, + "Ġnaszym": 48094, + "Ġnasıl": 16963, + "Ġnat": 2249, + "Ġnation": 4790, + "Ġnational": 4048, + "Ġnationale": 49974, + "Ġnationalism": 39186, + "Ġnationalist": 49654, + "Ġnationally": 27652, + "Ġnations": 11035, + "Ġnationwide": 29102, + "Ġnative": 8470, + "Ġnatives": 47964, + "Ġnatomiast": 43169, + "Ġnatur": 26389, + "Ġnatural": 3303, + "Ġnaturale": 40877, + "Ġnaturally": 8195, + "Ġnature": 3687, + "Ġnatuur": 24414, + "Ġnatuurlijk": 26892, + "Ġnatürlich": 8762, + "Ġnau": 35616, + "Ġnauc": 49103, + "Ġnaught": 13138, + "Ġnaughty": 32154, + "Ġnause": 34735, + "Ġnav": 5947, + "Ġnaval": 33050, + "Ġnave": 39376, + "Ġnavig": 7407, + "Ġnavigate": 12350, + "Ġnavigating": 32054, + "Ġnavigation": 17346, + "Ġnavy": 31319, + "Ġnaw": 18969, + "Ġnawet": 22696, + "Ġnay": 34227, + "Ġnaz": 20151, + "Ġne": 408, + "Ġnear": 2651, + "Ġnearby": 11184, + "Ġnearest": 23831, + "Ġnearly": 6217, + "Ġneat": 10654, + "Ġneatly": 36634, + "Ġneben": 36098, + "Ġneces": 11909, + "Ġnecesario": 44095, + "Ġnecesit": 38661, + "Ġnecesita": 45485, + "Ġnecess": 2688, + "Ġnecessarily": 4725, + "Ġnecessary": 4818, + "Ġnecessity": 24217, + "Ġneck": 6189, + "Ġnecklace": 24563, + "Ġnectar": 49943, + "Ġned": 25614, + "Ġneden": 34828, + "Ġnee": 41694, + "Ġneed": 643, + "Ġneeded": 2978, + "Ġneeding": 18006, + "Ġneedle": 11037, + "Ġneedles": 24792, + "Ġneeds": 2203, + "Ġneg": 2485, + "Ġnegative": 3671, + "Ġnegatively": 29519, + "Ġnegatives": 40019, + "Ġnegativity": 39297, + "Ġneglect": 17745, + "Ġneglected": 32701, + "Ġneglig": 32570, + "Ġnego": 26722, + "Ġnegoti": 9542, + "Ġnegotiate": 21713, + "Ġnegotiated": 39028, + "Ġnegotiating": 30396, + "Ġnegotiation": 27573, + "Ġnegotiations": 20476, + "Ġnegro": 40008, + "Ġnegó": 31008, + "Ġnegócio": 35532, + "Ġneh": 40857, + "Ġnehme": 48276, + "Ġnehmen": 19905, + "Ġnei": 34517, + "Ġneigh": 4168, + "Ġneighb": 7888, + "Ġneighbor": 5987, + "Ġneighborhood": 7630, + "Ġneighborhoods": 20052, + "Ġneighboring": 31521, + "Ġneighbors": 12512, + "Ġneighbour": 19755, + "Ġneighbourhood": 30471, + "Ġneighbours": 35548, + "Ġnein": 40041, + "Ġneither": 9662, + "Ġnel": 15373, + "Ġnell": 44666, + "Ġnella": 23878, + "Ġnelle": 46350, + "Ġnem": 9939, + "Ġnen": 16399, + "Ġnenhum": 32584, + "Ġnenhuma": 43273, + "Ġneo": 41977, + "Ġneol": 49512, + "Ġneon": 30820, + "Ġnep": 24901, + "Ġnephew": 30799, + "Ġner": 18219, + "Ġnerd": 23229, + "Ġnered": 28085, + "Ġnerede": 44906, + "Ġnerv": 5724, + "Ġnerve": 16355, + "Ġnerves": 23078, + "Ġnervous": 6296, + "Ġness": 39787, + "Ġnessa": 23246, + "Ġnesse": 18270, + "Ġnest": 15646, + "Ġneste": 34739, + "Ġnet": 2533, + "Ġnets": 36170, + "Ġnett": 42084, + "Ġnetwork": 3209, + "Ġnetworking": 17985, + "Ġnetworks": 9590, + "Ġneu": 22510, + "Ġneue": 16842, + "Ġneuen": 21387, + "Ġneues": 43979, + "Ġneur": 12087, + "Ġneural": 18161, + "Ġneuro": 16499, + "Ġneurolog": 28351, + "Ġneurological": 48185, + "Ġneuron": 34090, + "Ġneurons": 22027, + "Ġneuros": 28813, + "Ġneuroscience": 42762, + "Ġneurot": 43286, + "Ġneut": 7989, + "Ġneutr": 39913, + "Ġneutral": 10598, + "Ġneutron": 44362, + "Ġnever": 1128, + "Ġnevertheless": 26924, + "Ġnew": 777, + "Ġnewborn": 32928, + "Ġnewcom": 40014, + "Ġnewer": 17628, + "Ġnewest": 17569, + "Ġnewly": 15109, + "Ġnews": 2583, + "Ġnewsletter": 26469, + "Ġnewsp": 10202, + "Ġnewspaper": 13669, + "Ġnewspapers": 20781, + "Ġnext": 958, + "Ġng": 6415, + "Ġnggak": 28631, + "Ġngh": 29338, + "Ġnghi": 46889, + "ĠnghÄ©": 41077, + "Ġngo": 45843, + "ĠngÃły": 34481, + "ĠngÆ°á»Ŀi": 15898, + "Ġnh": 6245, + "Ġnhi": 20575, + "Ġnhiá»ģu": 28272, + "Ġnhân": 47931, + "ĠnhÃł": 35398, + "ĠnhÆ°": 16228, + "ĠnhÆ°ng": 37504, + "Ġnhất": 41081, + "Ġnhững": 20136, + "Ġni": 3867, + "Ġnib": 38956, + "Ġnic": 6201, + "Ġnice": 1481, + "Ġnicely": 9594, + "Ġnicer": 22842, + "Ġnicest": 45516, + "Ġnich": 25570, + "Ġniche": 19956, + "Ġnicht": 1979, + "Ġnichts": 13004, + "Ġnick": 15416, + "Ġnickel": 30542, + "Ġnickname": 21641, + "Ġnie": 2838, + "Ġniece": 39991, + "Ġnied": 32488, + "Ġniego": 49615, + "Ġniemand": 32390, + "Ġnies": 48100, + "Ġniet": 6899, + "Ġnieu": 26829, + "Ġnieuwe": 37029, + "Ġniew": 43622, + "Ġniez": 33511, + "Ġnig": 26996, + "Ġnigga": 41626, + "Ġnight": 1818, + "Ġnightmare": 18724, + "Ġnightmares": 36911, + "Ġnights": 13249, + "Ġnighttime": 38595, + "Ġnih": 27438, + "Ġniin": 16077, + "Ġnik": 44336, + "Ġnim": 24887, + "Ġnimmt": 38891, + "Ġnin": 9616, + "Ġnine": 4949, + "Ġninete": 26286, + "Ġnineteen": 31555, + "Ġninety": 25063, + "Ġning": 17210, + "Ġninguna": 36073, + "Ġninguém": 30091, + "Ġningún": 30394, + "Ġninja": 31604, + "Ġninth": 28207, + "Ġnit": 10900, + "Ġnitrogen": 17903, + "Ġnive": 11461, + "Ġniveau": 19144, + "Ġnivel": 24423, + "Ġniye": 30493, + "Ġniño": 42307, + "Ġniños": 30712, + "Ġniż": 28502, + "Ġno": 572, + "Ġnoble": 20171, + "Ġnobody": 5079, + "Ġnoch": 3514, + "Ġnoche": 29735, + "Ġnochmal": 26509, + "Ġnod": 15224, + "Ġnode": 9984, + "Ġnodes": 13891, + "Ġnodig": 43409, + "Ġnog": 9638, + "Ġnoget": 34574, + "Ġnogle": 48713, + "Ġnoi": 22447, + "Ġnoir": 39359, + "Ġnoise": 5658, + "Ġnoises": 14620, + "Ġnoisy": 24518, + "Ġnoite": 34429, + "Ġnok": 33811, + "Ġnom": 5369, + "Ġnombre": 13000, + "Ġnombreux": 43260, + "Ġnome": 19003, + "Ġnominal": 41641, + "Ġnominated": 25159, + "Ġnomination": 30375, + "Ġnominations": 46331, + "Ġnominee": 37170, + "Ġnominees": 49774, + "Ġnomés": 40052, + "Ġnon": 2107, + "Ġnone": 6022, + "Ġnonetheless": 26756, + "Ġnonprofit": 23348, + "Ġnonprofits": 42851, + "Ġnonsense": 14925, + "Ġnood": 8422, + "Ġnoodle": 21873, + "Ġnoodles": 10480, + "Ġnooit": 48286, + "Ġnoon": 24040, + "Ġnope": 23444, + "Ġnor": 6051, + "Ġnord": 39284, + "Ġnorm": 2026, + "Ġnormal": 2710, + "Ġnormale": 43646, + "Ġnormalized": 48704, + "Ġnormally": 5646, + "Ġnormalmente": 38217, + "Ġnorms": 24357, + "Ġnorte": 41966, + "Ġnorth": 6830, + "Ġnortheast": 40984, + "Ġnorthern": 14197, + "Ġnorthwest": 36930, + "Ġnos": 3269, + "Ġnosaltres": 49100, + "Ġnose": 6690, + "Ġnosotros": 13863, + "Ġnoss": 24970, + "Ġnossa": 15821, + "Ġnossas": 44041, + "Ġnosso": 14347, + "Ġnossos": 35378, + "Ġnost": 10397, + "Ġnostalgia": 34618, + "Ġnostalgic": 40240, + "Ġnostra": 34311, + "Ġnostro": 35779, + "Ġnot": 406, + "Ġnota": 36192, + "Ġnotable": 22556, + "Ġnotably": 31357, + "Ġnotamment": 26165, + "Ġnotation": 24657, + "Ġnotch": 26109, + "Ġnote": 3637, + "Ġnotebook": 21060, + "Ġnotebooks": 43782, + "Ġnoted": 12964, + "Ġnotes": 5570, + "Ġnothin": 47562, + "Ġnothing": 1825, + "Ġnotice": 3449, + "Ġnoticeable": 26041, + "Ġnoticed": 5694, + "Ġnotices": 32978, + "Ġnoticing": 21814, + "Ġnotification": 11554, + "Ġnotifications": 13426, + "Ġnotified": 18013, + "Ġnotify": 36560, + "Ġnoting": 26801, + "Ġnotion": 10710, + "Ġnotions": 35799, + "Ġnotor": 46772, + "Ġnotorious": 38045, + "Ġnotre": 10349, + "Ġnotwend": 41308, + "Ġnou": 23641, + "Ġnoun": 23307, + "Ġnouns": 48184, + "Ġnour": 22683, + "Ġnous": 4666, + "Ġnouve": 11456, + "Ġnouveau": 23326, + "Ġnouveaux": 44952, + "Ġnouvelle": 24156, + "Ġnouvelles": 37172, + "Ġnov": 23883, + "Ġnova": 28265, + "Ġnovamente": 49960, + "Ġnove": 26972, + "Ġnovel": 7613, + "Ġnovels": 24574, + "Ġnovelty": 44805, + "Ġnovo": 18246, + "Ġnow": 586, + "Ġnowadays": 13434, + "Ġnowhere": 11159, + "Ġnozzle": 28998, + "Ġnp": 33808, + "Ġnu": 3822, + "Ġnuance": 42625, + "Ġnuanced": 45115, + "Ġnuances": 38775, + "Ġnuc": 6304, + "Ġnucle": 14962, + "Ġnuclear": 8179, + "Ġnuclei": 49919, + "Ġnucleus": 28055, + "Ġnud": 40045, + "Ġnude": 36505, + "Ġnue": 10412, + "Ġnuest": 7717, + "Ġnuestra": 16825, + "Ġnuestras": 32809, + "Ġnuestro": 14726, + "Ġnuestros": 24099, + "Ġnueva": 28963, + "Ġnuevas": 42817, + "Ġnuevo": 18591, + "Ġnuevos": 42010, + "Ġnug": 30279, + "Ġnuggets": 42663, + "Ġnuit": 38467, + "Ġnull": 18184, + "Ġnum": 1031, + "Ġnuma": 29080, + "Ġnumb": 32200, + "Ġnumber": 1230, + "Ġnumbered": 40936, + "Ġnumbers": 3547, + "Ġnumer": 7866, + "Ġnumerator": 30380, + "Ġnumerical": 29054, + "Ġnumero": 46839, + "Ġnumerous": 12546, + "Ġnuméro": 49525, + "Ġnun": 8905, + "Ġnunca": 13768, + "Ġnuo": 37802, + "Ġnuovo": 49348, + "Ġnur": 4343, + "Ġnurs": 9070, + "Ġnurse": 14012, + "Ġnursery": 37538, + "Ġnurses": 17446, + "Ġnursing": 15423, + "Ġnurt": 23705, + "Ġnurture": 41451, + "Ġnurturing": 48116, + "Ġnut": 5393, + "Ġnutr": 12289, + "Ġnutri": 13242, + "Ġnutrient": 32694, + "Ġnutrients": 17617, + "Ġnutrit": 37972, + "Ġnutrition": 14718, + "Ġnutritional": 34707, + "Ġnutritious": 40850, + "Ġnuts": 10483, + "Ġnutshell": 37711, + "Ġnutzen": 36905, + "Ġny": 18052, + "Ġnya": 24450, + "Ġnylon": 43503, + "Ġnyt": 21508, + "Ġnão": 2431, + "Ġnä": 6433, + "Ġnäch": 13201, + "Ġnächste": 30661, + "Ġnächsten": 19101, + "Ġnäm": 17534, + "Ġnämlich": 21219, + "Ġnär": 15457, + "ĠnÃ¥": 11594, + "ĠnÃ¥gon": 25418, + "ĠnÃ¥gonting": 43998, + "ĠnÃ¥got": 36586, + "ĠnÃ¥gra": 40842, + "ĠnÃ¥r": 36522, + "Ġné": 7024, + "Ġnécess": 31956, + "Ġnécessaire": 46396, + "Ġnên": 40606, + "Ġnó": 6604, + "Ġnói": 27508, + "Ġnós": 9738, + "Ġnú": 11908, + "Ġnúmer": 12803, + "Ġnúmero": 14959, + "Ġnúmeros": 36545, + "ĠnÃło": 29069, + "ĠnÃły": 12542, + "ĠnÃŃvel": 41747, + "ĠnÄĥm": 38098, + "ĠnÄĽ": 46911, + "ĠnÆ°á»Ľc": 30728, + "Ġnữa": 35047, + "Ġo": 277, + "Ġoak": 31322, + "Ġoat": 36792, + "Ġoath": 29450, + "Ġoatmeal": 47223, + "Ġoats": 43095, + "Ġob": 1111, + "Ġobe": 36346, + "Ġobec": 49141, + "Ġobed": 24330, + "Ġobedience": 36585, + "Ġobedient": 42541, + "Ġoben": 21279, + "Ġobes": 26395, + "Ġobese": 50060, + "Ġobesity": 29744, + "Ġobey": 19297, + "Ġobject": 2657, + "Ġobjection": 35756, + "Ġobjections": 44649, + "Ġobjective": 10024, + "Ġobjectively": 46067, + "Ġobjectives": 15961, + "Ġobjects": 6565, + "Ġobjet": 14964, + "Ġobjetivo": 29809, + "Ġobjeto": 40438, + "Ġobjetos": 49605, + "Ġobl": 23740, + "Ġoblig": 9270, + "Ġobligation": 20326, + "Ġobligations": 26234, + "Ġobliged": 47194, + "Ġobliv": 47039, + "Ġobra": 22798, + "Ġobras": 47618, + "Ġobrig": 29126, + "Ġobrigado": 41774, + "Ġobs": 3181, + "Ġobsc": 22082, + "Ġobscure": 34443, + "Ġobser": 12887, + "Ġobserv": 9951, + "Ġobservation": 14816, + "Ġobservations": 18163, + "Ġobserve": 11441, + "Ġobserved": 13095, + "Ġobserver": 27878, + "Ġobservers": 48090, + "Ġobserving": 22107, + "Ġobsess": 35803, + "Ġobsessed": 16923, + "Ġobsession": 30521, + "Ġobsol": 43053, + "Ġobsolete": 46333, + "Ġobst": 9579, + "Ġobstacle": 23112, + "Ġobstacles": 17735, + "Ġobstruct": 45579, + "Ġobstruction": 49711, + "Ġobt": 7464, + "Ġobtain": 12701, + "Ġobtained": 14879, + "Ġobtaining": 36749, + "Ġobten": 28326, + "Ġobviamente": 36325, + "Ġobvious": 6322, + "Ġobviously": 2745, + "Ġobwohl": 48428, + "Ġoc": 10409, + "Ġocas": 44534, + "Ġocc": 2678, + "Ġoccas": 15319, + "Ġoccasion": 9674, + "Ġoccasional": 31644, + "Ġoccasionally": 16895, + "Ġoccasions": 20641, + "Ġoccup": 8073, + "Ġoccupation": 24482, + "Ġoccupational": 43544, + "Ġoccupied": 19629, + "Ġoccupy": 30645, + "Ġoccur": 5160, + "Ġoccurred": 11068, + "Ġoccurrence": 36122, + "Ġoccurring": 18386, + "Ġoccurs": 11843, + "Ġocean": 7810, + "Ġoceans": 25004, + "Ġoch": 3795, + "ĠocksÃ¥": 13312, + "Ġoct": 13350, + "Ġoctave": 44441, + "Ġoctopus": 27962, + "Ġocup": 37305, + "Ġocur": 26430, + "ĠoczywiÅĽcie": 23862, + "Ġod": 3611, + "Ġodc": 36471, + "Ġodd": 7401, + "Ġoddly": 46083, + "Ġodds": 17439, + "Ġode": 45711, + "Ġoder": 4513, + "Ġodor": 41176, + "Ġodpow": 24314, + "Ġodpowied": 36574, + "Ġof": 295, + "Ġofere": 47084, + "Ġoff": 766, + "Ġoffen": 35253, + "Ġoffend": 41836, + "Ġoffended": 26776, + "Ġoffenders": 49079, + "Ġoffense": 17834, + "Ġoffenses": 49765, + "Ġoffensive": 15710, + "Ġoffer": 2626, + "Ġoffered": 8059, + "Ġoffering": 8745, + "Ġofferings": 25898, + "Ġoffers": 7736, + "Ġoffic": 2832, + "Ġoffice": 3398, + "Ġofficer": 8456, + "Ġofficers": 9199, + "Ġoffices": 14434, + "Ġofficial": 4783, + "Ġofficially": 12053, + "Ġofficials": 9798, + "Ġoffline": 21857, + "Ġoffs": 39457, + "Ġoffset": 18687, + "Ġoffshore": 34567, + "Ġoffspring": 36857, + "Ġoficial": 37189, + "Ġoft": 11649, + "Ġoften": 2049, + "Ġoftentimes": 18349, + "Ġog": 5360, + "Ġoggi": 34768, + "Ġogl": 49424, + "Ġogni": 33189, + "Ġogr": 34416, + "ĠogsÃ¥": 23864, + "Ġogóle": 29229, + "Ġoh": 1954, + "Ġohh": 50101, + "Ġohne": 15716, + "Ġoike": 38432, + "Ġoil": 3184, + "Ġoils": 22177, + "Ġoily": 27693, + "Ġojos": 39519, + "Ġok": 3133, + "Ġokay": 1392, + "Ġoke": 40043, + "Ġoko": 45730, + "Ġol": 2545, + "Ġolabilir": 38049, + "Ġolacak": 23172, + "Ġolan": 17771, + "Ġolar": 17318, + "Ġolarak": 17728, + "Ġold": 1331, + "Ġolder": 4906, + "Ġoldest": 14026, + "Ġolds": 41972, + "Ġoldu": 9761, + "ĠolduÄŁ": 15049, + "ĠolduÄŁu": 30588, + "ĠolduÄŁunu": 28619, + "Ġole": 18726, + "Ġoleh": 50051, + "Ġolha": 23550, + "Ġolhar": 37446, + "Ġolho": 50147, + "Ġolhos": 47944, + "Ġoli": 24072, + "Ġolika": 26025, + "Ġolive": 15981, + "Ġolives": 46746, + "Ġoll": 37995, + "Ġolla": 26876, + "Ġollut": 41851, + "Ġolm": 13583, + "Ġolmak": 45535, + "Ġolmas": 40307, + "Ġolması": 47528, + "Ġolmay": 35954, + "Ġolmaz": 31593, + "ĠolmuÅŁ": 32548, + "Ġolsa": 44655, + "Ġolsun": 17632, + "Ġolun": 38084, + "Ġolur": 16538, + "Ġolurs": 41607, + "Ġoluyor": 23597, + "ĠoluÅŁ": 49849, + "Ġolv": 43851, + "Ġolvid": 43194, + "Ġom": 3406, + "Ġomdat": 34982, + "Ġomega": 10498, + "Ġomin": 46812, + "Ġomn": 36874, + "Ġon": 322, + "Ġona": 20325, + "Ġonboard": 24033, + "Ġonc": 40592, + "Ġonce": 1564, + "Ġonda": 45671, + "Ġondan": 49228, + "Ġonde": 14396, + "Ġonder": 20756, + "Ġone": 472, + "Ġones": 2306, + "Ġoneself": 32265, + "Ġongoing": 10452, + "Ġoni": 36317, + "Ġonion": 10916, + "Ġonions": 13146, + "Ġonlar": 43179, + "Ġonline": 2950, + "Ġonly": 787, + "Ġons": 18818, + "Ġonset": 34948, + "Ġont": 6592, + "Ġonto": 3911, + "Ġonu": 20801, + "Ġonun": 27295, + "Ġonwards": 34230, + "Ġonze": 29460, + "Ġoo": 32685, + "Ġooh": 17024, + "Ġook": 7839, + "Ġoops": 34166, + "Ġop": 999, + "Ġopacity": 41693, + "Ġopaque": 42687, + "Ġopen": 1269, + "Ġopened": 5625, + "Ġopener": 43850, + "Ġopening": 5193, + "Ġopenings": 35941, + "Ġopenly": 23109, + "Ġopenness": 36200, + "Ġopens": 9870, + "Ġoper": 2208, + "Ġopera": 22202, + "Ġoperate": 9651, + "Ġoperated": 20826, + "Ġoperates": 22577, + "Ġoperating": 7447, + "Ġoperation": 6916, + "Ġoperational": 16607, + "Ġoperations": 7705, + "Ġoperator": 12973, + "Ġoperators": 19077, + "Ġopin": 3980, + "Ġopini": 46784, + "Ġopinion": 4800, + "Ġopinions": 11819, + "Ġopio": 24434, + "Ġopioid": 32837, + "Ġopioids": 47845, + "Ġopis": 45477, + "Ġoportun": 24237, + "Ġoportunidad": 42794, + "Ġopp": 1458, + "Ġoppon": 8292, + "Ġopponent": 10620, + "Ġopponents": 19001, + "Ġopportun": 2070, + "Ġopportunities": 4786, + "Ġopportunity": 2650, + "Ġoppos": 4665, + "Ġoppose": 28355, + "Ġopposed": 8851, + "Ġopposing": 27890, + "Ġopposite": 6182, + "Ġopposition": 13504, + "Ġoppress": 50240, + "Ġoppressed": 39640, + "Ġoppression": 27337, + "Ġops": 44663, + "Ġopt": 2427, + "Ġopted": 40768, + "Ġoptic": 48269, + "Ġoptical": 20674, + "Ġoptics": 42599, + "Ġoptim": 5028, + "Ġoptimal": 16252, + "Ġoptimism": 31074, + "Ġoptimistic": 19397, + "Ġoptimization": 19618, + "Ġoptimize": 19719, + "Ġoptimized": 26941, + "Ġoptimizing": 40425, + "Ġoptimum": 39326, + "Ġoption": 3614, + "Ġoptional": 17312, + "Ġoptions": 3956, + "Ġor": 420, + "Ġora": 33714, + "Ġorada": 33570, + "Ġoral": 19338, + "Ġorang": 17481, + "Ġorange": 7671, + "Ġoranges": 35474, + "Ġoraz": 28905, + "Ġorb": 14715, + "Ġorbit": 13991, + "Ġorbital": 27677, + "Ġorbitals": 50015, + "Ġorbiting": 48985, + "Ġorbits": 43522, + "Ġorch": 34850, + "Ġorchest": 14161, + "Ġorchestra": 25280, + "Ġorchestral": 36244, + "Ġord": 4792, + "Ġorden": 28615, + "Ġorder": 1668, + "Ġordered": 8866, + "Ġordering": 21739, + "Ġorders": 9470, + "Ġordin": 25376, + "Ġordinance": 40260, + "Ġordinary": 10547, + "Ġore": 20865, + "Ġorg": 14045, + "Ġorgan": 1798, + "Ġorganic": 10220, + "Ġorganis": 15223, + "Ġorganisation": 18641, + "Ġorganisations": 22270, + "Ġorganise": 50110, + "Ġorganised": 36866, + "Ġorganism": 24128, + "Ġorganisms": 22110, + "Ġorganiz": 4645, + "Ġorganization": 4475, + "Ġorganizational": 24730, + "Ġorganizations": 6150, + "Ġorganize": 13859, + "Ġorganized": 9983, + "Ġorganizer": 41363, + "Ġorganizers": 35071, + "Ġorganizing": 17608, + "Ġorgans": 20659, + "Ġorgas": 44834, + "Ġorient": 8579, + "Ġorientation": 14764, + "Ġoriented": 21841, + "Ġorig": 2349, + "Ġorigin": 4957, + "Ġoriginal": 3380, + "Ġoriginally": 7993, + "Ġoriginated": 31129, + "Ġorigins": 22721, + "Ġornament": 35689, + "Ġornaments": 47233, + "Ġoro": 45150, + "Ġorph": 23896, + "Ġorphan": 28711, + "Ġort": 23564, + "Ġorth": 19052, + "Ġorthog": 38130, + "Ġorthogonal": 41488, + "Ġos": 3003, + "Ġoscill": 18225, + "Ġoscillator": 43859, + "Ġoso": 19116, + "Ġosob": 41518, + "Ġosoby": 39737, + "Ġoss": 19508, + "Ġost": 32946, + "Ġostat": 32686, + "Ġoste": 42804, + "Ġostr": 44024, + "Ġosób": 32089, + "Ġot": 4337, + "Ġother": 661, + "Ġothers": 2357, + "Ġotherwise": 5911, + "Ġotra": 13623, + "Ġotras": 20244, + "Ġotro": 11921, + "Ġotros": 16422, + "Ġott": 42772, + "Ġotur": 41598, + "Ġou": 2820, + "Ġouais": 30570, + "Ġought": 13416, + "Ġoui": 14367, + "Ġounce": 29860, + "Ġounces": 27343, + "Ġour": 527, + "Ġours": 11896, + "Ġourselves": 4175, + "Ġout": 484, + "Ġoutbreak": 20963, + "Ġoutbreaks": 39097, + "Ġoutcome": 9700, + "Ġoutcomes": 10070, + "Ġoutdated": 36313, + "Ġoutdoor": 15942, + "Ġoutdoors": 20980, + "Ġouter": 10847, + "Ġoutfit": 11263, + "Ġoutfits": 22331, + "Ġoutgoing": 41565, + "Ġoutlet": 20656, + "Ġoutlets": 27416, + "Ġoutline": 16387, + "Ġoutlined": 27412, + "Ġoutlines": 40125, + "Ġoutlook": 26650, + "Ġoutput": 5598, + "Ġoutputs": 23930, + "Ġoutra": 12301, + "Ġoutrage": 25933, + "Ġoutrageous": 38685, + "Ġoutras": 22221, + "Ġoutreach": 19638, + "Ġoutright": 35189, + "Ġoutro": 13170, + "Ġoutros": 18282, + "Ġouts": 14758, + "Ġoutset": 44618, + "Ġoutside": 2380, + "Ġoutsider": 40484, + "Ġoutsiders": 49825, + "Ġoutstanding": 14485, + "Ġoutta": 21327, + "Ġoutward": 26914, + "Ġouv": 21157, + "Ġouvert": 47683, + "Ġov": 14187, + "Ġoval": 37175, + "Ġovat": 31802, + "Ġoven": 9090, + "Ġover": 670, + "Ġoverall": 4787, + "Ġoverarching": 45501, + "Ġoverboard": 49480, + "Ġoverc": 40027, + "Ġovercome": 10473, + "Ġovercoming": 38047, + "Ġoverd": 19853, + "Ġoverdose": 42206, + "Ġovere": 38657, + "Ġoverflow": 37772, + "Ġoverhe": 29807, + "Ġoverhead": 19922, + "Ġoverl": 15986, + "Ġoverlap": 19959, + "Ġoverlapping": 33535, + "Ġoverlay": 31741, + "Ġoverload": 28777, + "Ġoverlook": 37826, + "Ġoverlooked": 32269, + "Ġoverly": 24324, + "Ġovernight": 13935, + "Ġoverride": 42321, + "Ġovers": 15488, + "Ġoverse": 11916, + "Ġoverseas": 16274, + "Ġoversee": 46543, + "Ġoversight": 29146, + "Ġoversized": 49408, + "Ġoverst": 48834, + "Ġovert": 17038, + "Ġoverth": 30998, + "Ġoverthrow": 46924, + "Ġovertime": 29863, + "Ġoverturn": 42865, + "Ġoverview": 12492, + "Ġoverweight": 40523, + "Ġoverwhel": 9103, + "Ġoverwhelmed": 19042, + "Ġoverwhelming": 13373, + "Ġoverwhelmingly": 42926, + "Ġow": 11492, + "Ġowe": 16655, + "Ġowed": 41262, + "Ġowes": 50028, + "Ġowl": 34488, + "Ġown": 1065, + "Ġowned": 11684, + "Ġowner": 7289, + "Ġowners": 7710, + "Ġownership": 15279, + "Ġowning": 29820, + "Ġowns": 19143, + "Ġox": 5976, + "Ġoxid": 19924, + "Ġoxidation": 36767, + "Ġoxide": 28421, + "Ġoxygen": 9169, + "Ġoy": 15376, + "Ġoyn": 42753, + "Ġoyster": 32005, + "Ġoysters": 42296, + "Ġoyun": 41773, + "Ġozone": 46769, + "Ġoù": 9068, + "ĠoÄŁlum": 26984, + "Ġp": 280, + "ĠpH": 21677, + "Ġpa": 2502, + "Ġpaar": 16509, + "Ġpac": 15165, + "Ġpace": 11638, + "Ġpacing": 43285, + "Ġpack": 2844, + "Ġpackage": 7372, + "Ġpackaged": 38162, + "Ġpackages": 17401, + "Ġpackaging": 16836, + "Ġpacked": 13265, + "Ġpacket": 20300, + "Ġpackets": 30364, + "Ġpacking": 20815, + "Ġpacks": 19403, + "Ġpact": 38104, + "Ġpad": 6887, + "Ġpada": 26069, + "Ġpadding": 39562, + "Ġpaddle": 31834, + "Ġpadre": 34781, + "Ġpadres": 48295, + "Ġpads": 19179, + "Ġpag": 11812, + "Ġpagan": 38238, + "Ġpagar": 28024, + "Ġpage": 3028, + "Ġpages": 7183, + "Ġpai": 32227, + "Ġpaid": 4835, + "Ġpain": 1822, + "Ġpainful": 11697, + "Ġpains": 29774, + "Ġpaint": 4225, + "Ġpainted": 11797, + "Ġpainter": 26619, + "Ġpainters": 48643, + "Ġpainting": 5370, + "Ġpaintings": 14880, + "Ġpaints": 28076, + "Ġpair": 6119, + "Ġpaired": 25699, + "Ġpairing": 32735, + "Ġpairs": 15494, + "Ġpais": 34955, + "Ġpaj": 33819, + "Ġpajamas": 43625, + "Ġpak": 20843, + "Ġpakai": 49062, + "Ġpal": 3984, + "Ġpalab": 21119, + "Ġpalabra": 31702, + "Ġpalabras": 35240, + "Ġpalace": 15207, + "Ġpalate": 48247, + "Ġpalav": 27069, + "Ġpalavra": 40960, + "Ġpalavras": 46169, + "Ġpale": 19546, + "Ġpalette": 15851, + "Ġpaling": 49626, + "Ġpaljon": 34824, + "Ġpall": 24075, + "Ġpalm": 17018, + "Ġpalms": 30819, + "Ġpals": 43806, + "Ġpam": 30738, + "ĠpamiÄĻ": 31088, + "Ġpan": 2462, + "Ġpana": 47296, + "Ġpancake": 28916, + "Ġpancakes": 27859, + "Ġpand": 4565, + "Ġpanda": 46685, + "Ġpandemia": 33245, + "Ġpandemic": 5388, + "Ġpane": 32605, + "Ġpanel": 4831, + "Ġpanelists": 20162, + "Ġpanels": 13419, + "Ġpani": 43916, + "Ġpanic": 14783, + "Ġpans": 32905, + "Ġpant": 14869, + "Ġpantalla": 44449, + "Ġpantry": 40689, + "Ġpants": 10082, + "Ġpap": 5806, + "Ġpapa": 31015, + "Ġpapel": 24710, + "Ġpaper": 3035, + "Ġpapers": 10577, + "Ġpaperwork": 27953, + "Ġpapier": 37410, + "Ġpaprika": 46781, + "Ġpar": 971, + "Ġpara": 1690, + "Ġparab": 45729, + "Ġparach": 33927, + "Ġparachute": 44665, + "Ġparad": 13480, + "Ġparade": 26128, + "Ġparadigm": 24709, + "Ġparadise": 25919, + "Ġparadox": 26221, + "Ġparag": 17372, + "Ġparagraph": 18865, + "Ġparagraphs": 48910, + "Ġparal": 26009, + "Ġparall": 8069, + "Ġparallel": 8952, + "Ġparallels": 44223, + "Ġparaly": 32645, + "Ġparalysis": 49507, + "Ġparalyzed": 41919, + "Ġparam": 6220, + "Ġparameter": 13075, + "Ġparameters": 9834, + "Ġparan": 32369, + "Ġparano": 31416, + "Ġparanoid": 43948, + "Ġparanormal": 37125, + "Ġparap": 36992, + "Ġparar": 37193, + "Ġparas": 21012, + "Ġparasite": 49756, + "Ġparasites": 45289, + "Ġparc": 30511, + "Ġparce": 6992, + "Ġparcel": 34082, + "Ġparch": 35765, + "Ġparchment": 37208, + "Ġpardon": 22440, + "Ġpare": 7448, + "Ġparece": 14120, + "Ġparecer": 44885, + "Ġpareil": 46020, + "Ġparent": 2596, + "Ġparental": 41113, + "Ġparenth": 23350, + "Ġparentheses": 34153, + "Ġparenting": 30896, + "Ġparents": 3152, + "Ġparf": 19743, + "Ġparfait": 36102, + "Ġparfois": 30125, + "Ġparish": 45325, + "Ġparity": 44747, + "Ġpark": 3884, + "Ġparked": 28491, + "Ġparking": 9893, + "Ġparks": 16213, + "Ġparl": 13734, + "Ġparlament": 46024, + "Ġparlar": 45803, + "Ġparle": 18508, + "Ġparler": 16421, + "Ġparliament": 19520, + "Ġparliamentary": 43067, + "Ġparlé": 38570, + "Ġparody": 43386, + "Ġparole": 26783, + "Ġparrot": 42462, + "Ġpars": 21156, + "Ġparse": 48377, + "Ġparsley": 33632, + "Ġpart": 644, + "Ġpartager": 44006, + "Ġparte": 6975, + "Ġpartes": 31210, + "Ġparti": 24408, + "Ġpartial": 14641, + "Ġpartially": 18886, + "Ġpartic": 1276, + "Ġparticip": 3421, + "Ġparticipant": 24950, + "Ġparticipants": 10503, + "Ġparticipar": 48703, + "Ġparticipate": 8197, + "Ġparticipated": 17978, + "Ġparticipating": 13950, + "Ġparticipation": 13487, + "Ġparticle": 12359, + "Ġparticles": 10007, + "Ġparticul": 21861, + "Ġparticular": 1729, + "Ġparticularly": 4098, + "Ġparticulier": 40400, + "Ġpartido": 41310, + "Ġpartie": 17465, + "Ġparties": 8265, + "Ġparting": 46607, + "Ġpartir": 13906, + "Ġpartis": 44634, + "Ġpartisan": 37721, + "Ġpartition": 24808, + "Ġpartly": 17031, + "Ġpartner": 4975, + "Ġpartnered": 29865, + "Ġpartnering": 31290, + "Ġpartners": 4462, + "Ġpartnership": 9982, + "Ġpartnerships": 18245, + "Ġpartout": 32955, + "Ġparts": 3166, + "Ġparty": 3595, + "Ġpas": 1736, + "Ġpasa": 20260, + "Ġpasado": 24794, + "Ġpasando": 45412, + "Ġpasar": 25344, + "Ġpase": 47125, + "Ġpaso": 29212, + "Ġpass": 1320, + "Ġpassa": 23880, + "Ġpassado": 42490, + "Ġpassage": 11497, + "Ġpassages": 31589, + "Ġpassar": 20630, + "Ġpassat": 50050, + "Ġpasse": 14530, + "Ġpassed": 4678, + "Ġpassenger": 18707, + "Ġpassengers": 18436, + "Ġpasser": 18509, + "Ġpasses": 11335, + "Ġpassieren": 46223, + "Ġpassiert": 21671, + "Ġpassing": 8437, + "Ġpassion": 5418, + "Ġpassionate": 11410, + "Ġpassions": 30640, + "Ġpassive": 14975, + "Ġpasso": 38159, + "Ġpassou": 44740, + "Ġpassport": 24694, + "Ġpasst": 37154, + "Ġpassword": 11524, + "Ġpasswords": 33149, + "Ġpassé": 24093, + "Ġpast": 1791, + "Ġpasta": 13296, + "Ġpaste": 9163, + "Ġpastel": 38100, + "Ġpasti": 48145, + "Ġpastor": 21193, + "Ġpastors": 42452, + "Ġpastry": 29198, + "Ġpasture": 48423, + "Ġpasó": 41382, + "Ġpat": 1947, + "Ġpatch": 9972, + "Ġpatches": 26531, + "Ġpatent": 20495, + "Ġpatents": 38142, + "Ġpater": 42302, + "Ġpath": 3100, + "Ġpathetic": 35506, + "Ġpathogens": 44760, + "Ġpaths": 14518, + "Ġpathway": 18590, + "Ġpathways": 22988, + "Ġpatience": 14826, + "Ġpatient": 4537, + "Ġpatiently": 49001, + "Ġpatients": 4209, + "Ġpatio": 42924, + "Ġpatreon": 33161, + "Ġpatri": 18311, + "Ġpatriarch": 46012, + "Ġpatrim": 48369, + "Ġpatriot": 44210, + "Ġpatrol": 26305, + "Ġpatron": 21843, + "Ġpatrons": 27559, + "Ġpatt": 49916, + "Ġpatter": 3829, + "Ġpattern": 5102, + "Ġpatterns": 8294, + "Ġpau": 34221, + "Ġpause": 10465, + "Ġpaused": 46860, + "Ġpave": 28870, + "Ġpaved": 42989, + "Ġpavement": 38305, + "Ġpaw": 38959, + "Ġpawn": 30905, + "Ġpaws": 46768, + "Ġpay": 1689, + "Ġpaycheck": 35639, + "Ġpayer": 38230, + "Ġpaying": 6229, + "Ġpayload": 30918, + "Ġpayment": 10224, + "Ġpayments": 14348, + "Ġpayoff": 46547, + "Ġpayroll": 36873, + "Ġpays": 10604, + "Ġpaz": 30032, + "ĠpaÃŃs": 10572, + "ĠpaÃŃses": 23070, + "ĠpaÅĦst": 21868, + "ĠpaÅĦstwa": 43289, + "ĠpaÅĦstwo": 42233, + "Ġpc": 43451, + "Ġpe": 520, + "Ġpea": 49178, + "Ġpeac": 43370, + "Ġpeace": 4336, + "Ġpeaceful": 13962, + "Ġpeacefully": 36485, + "Ġpeach": 25917, + "Ġpeak": 10651, + "Ġpeaks": 26897, + "Ġpean": 14882, + "Ġpeanut": 19209, + "Ġpeanuts": 32895, + "Ġpear": 37320, + "Ġpearl": 20287, + "Ġpearls": 35111, + "Ġpeas": 24494, + "Ġpec": 42451, + "Ġpeculiar": 27149, + "Ġped": 5670, + "Ġpedal": 19122, + "Ġpedals": 35217, + "Ġpedest": 20497, + "Ġpedestrian": 33947, + "Ġpedestrians": 48339, + "Ġpediatric": 27477, + "Ġpedir": 33533, + "Ġpee": 21343, + "Ġpeek": 19604, + "Ġpeel": 13889, + "Ġpeeled": 39033, + "Ġpeeling": 39926, + "Ġpeer": 15108, + "Ġpeers": 16739, + "Ġpeg": 17199, + "Ġpega": 43005, + "Ġpegar": 22418, + "Ġpeine": 46655, + "Ġpel": 6178, + "Ġpela": 14820, + "Ġpele": 41615, + "Ġpelig": 43839, + "Ġpell": 33836, + "Ġpelo": 12167, + "Ġpelos": 38304, + "Ġpelvic": 40959, + "Ġpelvis": 34617, + "ĠpelÃŃcul": 31810, + "ĠpelÃŃcula": 40154, + "Ġpem": 47690, + "Ġpen": 3435, + "Ġpena": 29222, + "Ġpenal": 13661, + "Ġpenalties": 35389, + "Ġpenalty": 16263, + "Ġpencil": 10985, + "Ġpencils": 30857, + "Ġpend": 12179, + "Ġpendant": 17338, + "Ġpending": 32110, + "Ġpendulum": 44103, + "Ġpenet": 16183, + "Ġpenetrate": 36307, + "Ġpenetration": 35187, + "Ġpeng": 17289, + "Ġpenguin": 45752, + "Ġpeninsula": 45065, + "Ġpenis": 28282, + "Ġpenn": 34911, + "Ġpenny": 24178, + "Ġpens": 6099, + "Ġpensa": 46909, + "Ġpensando": 34525, + "Ġpensar": 18321, + "Ġpense": 11209, + "Ġpenser": 38940, + "Ġpension": 21927, + "Ġpenso": 48005, + "Ġpent": 16834, + "Ġpentru": 31718, + "Ġpeople": 561, + "Ġpeoples": 16915, + "Ġpepp": 39759, + "Ġpepper": 8532, + "Ġpeppers": 21345, + "Ġpept": 41781, + "Ġpequ": 26758, + "Ġpeque": 19132, + "Ġpequeña": 47177, + "Ġpequeño": 38181, + "Ġper": 680, + "Ġperce": 9016, + "Ġperceber": 49376, + "Ġperceive": 20281, + "Ġperceived": 19049, + "Ġpercent": 3043, + "Ġpercentage": 9668, + "Ġpercentages": 42270, + "Ġpercept": 43276, + "Ġperception": 12860, + "Ġperceptions": 35258, + "Ġperch": 29240, + "Ġperché": 14303, + "Ġpercussion": 44430, + "Ġperd": 12611, + "Ġperde": 44182, + "Ġperder": 26971, + "Ġperdre": 46254, + "Ġperdu": 44759, + "Ġperf": 13826, + "Ġperfect": 2176, + "Ġperfection": 19708, + "Ġperfectly": 6239, + "Ġperfekt": 49134, + "Ġperform": 2042, + "Ġperformance": 3389, + "Ġperformances": 16087, + "Ġperformed": 10332, + "Ġperformer": 30248, + "Ġperformers": 30768, + "Ġperforming": 10205, + "Ġperforms": 26213, + "Ġperfume": 28464, + "Ġpergi": 46857, + "Ġpergunt": 31060, + "Ġpergunta": 34908, + "Ġperhaps": 4317, + "Ġperil": 46118, + "Ġperimeter": 32404, + "Ġperiod": 2896, + "Ġperiodic": 27790, + "Ġperiodically": 38916, + "Ġperiods": 13804, + "Ġperipher": 26807, + "Ġperipheral": 40235, + "Ġperish": 41586, + "Ġperk": 38839, + "Ġperks": 36991, + "Ġperlu": 39779, + "Ġperm": 4784, + "Ġperman": 8105, + "Ġpermanent": 10996, + "Ġpermanently": 24042, + "Ġperme": 30287, + "Ġpermet": 20696, + "Ġpermett": 21540, + "Ġpermettre": 37350, + "Ġpermis": 44744, + "Ġpermission": 11226, + "Ġpermissions": 32723, + "Ġpermit": 13423, + "Ġpermite": 31105, + "Ġpermitir": 46865, + "Ġpermits": 30990, + "Ġpermitted": 28658, + "Ġpernah": 41136, + "Ġpero": 4768, + "Ġperpend": 26095, + "Ġperpendicular": 26734, + "Ġperpet": 16211, + "Ġperpetual": 48216, + "Ġperquè": 16839, + "Ġpers": 868, + "Ġperse": 20607, + "Ġpersec": 23783, + "Ġpersecuted": 49903, + "Ġpersecution": 36878, + "Ġpersever": 29917, + "Ġperseverance": 39674, + "Ġpersist": 13233, + "Ġpersistence": 37617, + "Ġpersistent": 24315, + "Ġperson": 954, + "Ġpersona": 12184, + "Ġpersonagem": 49502, + "Ġpersonaje": 41746, + "Ġpersonajes": 43960, + "Ġpersonal": 2973, + "Ġpersonalities": 25308, + "Ġpersonality": 9033, + "Ġpersonalized": 28415, + "Ġpersonally": 5665, + "Ġpersonas": 12019, + "Ġpersone": 29944, + "Ġpersones": 46232, + "Ġpersonn": 30194, + "Ġpersonnage": 43952, + "Ġpersonne": 17219, + "Ġpersonnel": 14988, + "Ġpersonnes": 16246, + "Ġpersons": 14453, + "Ġperspect": 4096, + "Ġperspective": 4585, + "Ġperspectives": 16766, + "Ġpersu": 16336, + "Ġpersuade": 31781, + "Ġpersuaded": 47693, + "Ġpersön": 31228, + "Ġpersönlich": 42699, + "Ġpert": 13269, + "Ġpertaining": 49582, + "Ġpertama": 49109, + "Ġperto": 42855, + "Ġperturb": 40468, + "Ġperò": 12673, + "ĠperÃŃ": 38933, + "ĠperÃŃodo": 44699, + "Ġpes": 9262, + "Ġpesar": 41951, + "Ġpeso": 28149, + "Ġpesos": 33204, + "Ġpess": 35895, + "Ġpessim": 37399, + "Ġpesso": 6818, + "Ġpessoa": 16366, + "Ġpessoal": 24811, + "Ġpessoas": 10021, + "Ġpest": 31068, + "Ġpestic": 28904, + "Ġpesticides": 39015, + "Ġpests": 47645, + "Ġpet": 3817, + "Ġpetals": 31530, + "Ġpetit": 9686, + "Ġpetite": 18319, + "Ġpetites": 34063, + "Ġpetition": 22661, + "Ġpetits": 26487, + "Ġpetrol": 32377, + "Ġpetroleum": 47641, + "Ġpets": 19897, + "Ġpetty": 39334, + "Ġpeu": 5604, + "Ġpeuple": 49186, + "Ġpeur": 30071, + "Ġpeut": 5977, + "Ġpeuvent": 24335, + "Ġpeux": 14844, + "Ġpew": 25889, + "Ġpewn": 47160, + "Ġpewno": 33002, + "ĠpeÅĤ": 43205, + "Ġph": 903, + "Ġpharm": 13105, + "Ġpharmac": 31818, + "Ġpharmaceutical": 27130, + "Ġpharmacy": 30639, + "Ġphase": 5574, + "Ġphases": 18764, + "Ġphen": 7279, + "Ġphenomen": 9388, + "Ġphenomena": 22004, + "Ġphenomenal": 17778, + "Ġphenomenon": 14029, + "Ġphi": 13107, + "Ġphilan": 28797, + "Ġphilanthrop": 28941, + "Ġphilanthropy": 47180, + "Ġphilos": 7012, + "Ġphilosop": 9237, + "Ġphilosoph": 14529, + "Ġphilosopher": 29805, + "Ġphilosophers": 36839, + "Ġphilosophical": 25066, + "Ġphilosophy": 10675, + "Ġphon": 30754, + "Ġphone": 2593, + "Ġphones": 10216, + "Ġphosph": 19775, + "Ġphosphate": 46542, + "Ġphosphorus": 46741, + "Ġphot": 2409, + "Ġphoto": 5052, + "Ġphotograph": 8348, + "Ġphotographed": 45067, + "Ġphotographer": 19494, + "Ġphotographers": 33835, + "Ġphotographs": 17649, + "Ġphotography": 13865, + "Ġphoton": 37443, + "Ġphotons": 40209, + "Ġphotos": 5787, + "Ġphr": 7636, + "Ġphrase": 9535, + "Ġphrases": 20312, + "Ġphys": 2529, + "Ġphysi": 21265, + "Ġphysic": 27903, + "Ġphysical": 4001, + "Ġphysically": 9762, + "Ġphysician": 16456, + "Ġphysicians": 21966, + "Ġphysicist": 42466, + "Ġphysicists": 48716, + "Ġphysics": 10649, + "Ġphysiological": 41234, + "Ġphysiology": 43585, + "Ġphysique": 37058, + "Ġphải": 23394, + "Ġpi": 3895, + "Ġpiace": 50062, + "Ġpian": 32198, + "Ġpiano": 9211, + "Ġpic": 13363, + "Ġpick": 1888, + "Ġpicked": 6183, + "Ġpicking": 8867, + "Ġpickle": 31433, + "Ġpickled": 38076, + "Ġpickles": 38910, + "Ġpicks": 16137, + "Ġpickup": 25328, + "Ġpicky": 41099, + "Ġpicnic": 32137, + "Ġpics": 46690, + "Ġpict": 2317, + "Ġpicture": 3036, + "Ġpictured": 49896, + "Ġpictures": 5242, + "Ġpid": 44540, + "Ġpie": 1730, + "Ġpiece": 2522, + "Ġpieces": 3755, + "Ġpied": 24186, + "Ġpiel": 46065, + "Ġpien": 26274, + "Ġpier": 9766, + "Ġpiercing": 42972, + "Ġpierws": 27623, + "Ġpierwsze": 45994, + "Ġpierwszy": 34016, + "Ġpies": 29640, + "Ġpig": 8120, + "Ġpige": 26704, + "Ġpigeon": 37886, + "Ġpigeons": 48297, + "Ġpiggy": 39349, + "Ġpigment": 31325, + "Ġpigs": 24380, + "Ġpik": 49928, + "Ġpike": 36242, + "Ġpil": 6429, + "Ġpile": 14375, + "Ġpiles": 34861, + "Ġpilgr": 30760, + "Ġpilgrimage": 49954, + "Ġpill": 8100, + "Ġpillar": 27592, + "Ġpillars": 26729, + "Ġpillow": 18581, + "Ġpillows": 38630, + "Ġpills": 23871, + "Ġpilot": 9691, + "Ġpilots": 21506, + "Ġpim": 33917, + "Ġpin": 5447, + "Ġpinch": 14614, + "Ġpine": 15113, + "Ġpineapple": 25740, + "Ġping": 26151, + "Ġpink": 7022, + "Ġpinky": 42616, + "Ġpinned": 33802, + "Ġpinpoint": 40837, + "Ġpins": 16392, + "Ġpint": 23924, + "Ġpione": 19761, + "Ġpioneer": 37668, + "Ġpioneers": 47381, + "Ġpior": 45974, + "Ġpip": 8489, + "Ġpipe": 11240, + "Ġpipeline": 15517, + "Ġpipelines": 40168, + "Ġpipes": 21882, + "Ġpiping": 35204, + "Ġpir": 13528, + "Ġpirate": 27424, + "Ġpirates": 33859, + "Ġpis": 26584, + "Ġpiss": 15171, + "Ġpissed": 23795, + "Ġpist": 12273, + "Ġpista": 49516, + "Ġpistol": 25385, + "Ġpiston": 30002, + "Ġpit": 10147, + "Ġpitch": 7293, + "Ġpitched": 32994, + "Ġpitcher": 42147, + "Ġpitches": 43110, + "Ġpitching": 37499, + "Ġpits": 40312, + "Ġpity": 21103, + "Ġpivot": 14538, + "Ġpivotal": 39078, + "Ġpix": 11273, + "Ġpixel": 19261, + "Ġpixels": 18668, + "Ġpizz": 36075, + "Ġpizza": 8298, + "Ġpizzas": 44037, + "Ġpiù": 10589, + "ĠpiÄĻ": 32677, + "ĠpiÄĻk": 48085, + "ĠpiÅŁ": 47461, + "Ġpl": 499, + "Ġpla": 15256, + "Ġplac": 20831, + "Ġplace": 1081, + "Ġplacebo": 42779, + "Ġplaced": 7074, + "Ġplacement": 17257, + "Ġplaces": 3190, + "Ġplacing": 17221, + "Ġplag": 33756, + "Ġplague": 28185, + "Ġplain": 11121, + "Ġplains": 47362, + "Ġplaint": 39112, + "Ġplais": 29286, + "Ġplaisir": 32756, + "Ġplan": 1393, + "Ġplane": 5720, + "Ġplanes": 14952, + "Ġplanet": 5054, + "Ġplaneta": 34186, + "Ġplanetary": 35788, + "Ġplanets": 15126, + "Ġplank": 27861, + "Ġplanned": 8589, + "Ġplanner": 31268, + "Ġplanners": 49674, + "Ġplanning": 5038, + "Ġplano": 40259, + "Ġplans": 5482, + "Ġplant": 3709, + "Ġplantation": 45328, + "Ġplante": 36829, + "Ġplanted": 17395, + "Ġplanting": 20585, + "Ġplants": 5972, + "Ġplaque": 36542, + "Ġplasma": 22564, + "Ġplast": 35636, + "Ġplaster": 34467, + "Ġplastic": 5900, + "Ġplastics": 34356, + "Ġplat": 3403, + "Ġplata": 30780, + "Ġplataform": 36448, + "Ġplataforma": 46243, + "Ġplate": 5924, + "Ġplateau": 39885, + "Ġplates": 14231, + "Ġplatform": 3663, + "Ġplatforms": 9473, + "Ġplatinum": 37475, + "Ġplats": 48328, + "Ġplaus": 34946, + "Ġplausible": 39925, + "Ġplay": 862, + "Ġplayable": 37146, + "Ġplayback": 37223, + "Ġplayed": 3737, + "Ġplayer": 4256, + "Ġplayers": 4150, + "Ġplayful": 30730, + "Ġplayground": 24646, + "Ġplaying": 2433, + "Ġplaylist": 16788, + "Ġplayoffs": 41142, + "Ġplays": 5749, + "Ġplaythrough": 48752, + "Ġple": 3362, + "Ġplea": 42152, + "Ġplead": 48642, + "Ġpleas": 35122, + "Ġpleasant": 16232, + "Ġplease": 1767, + "Ġpleased": 10587, + "Ġpleasing": 32798, + "Ġpleasure": 6834, + "Ġpleasures": 48627, + "Ġpled": 34263, + "Ġpledge": 26819, + "Ġplein": 21088, + "Ġplenty": 7140, + "Ġpliers": 33982, + "Ġplot": 7542, + "Ġplots": 28609, + "Ġplotted": 43288, + "Ġplotting": 41178, + "Ġplu": 44373, + "Ġpluck": 41514, + "Ġplug": 5452, + "Ġplugged": 25679, + "Ġplugging": 42975, + "Ġplugin": 23407, + "Ġplugins": 33759, + "Ġplugs": 33899, + "Ġplum": 25854, + "Ġplumbing": 39993, + "Ġplung": 37663, + "Ġplup": 45312, + "Ġplupart": 45403, + "Ġplural": 25377, + "Ġplus": 1804, + "Ġplusieurs": 20208, + "Ġplut": 18419, + "Ġplutôt": 20856, + "Ġply": 35318, + "Ġplywood": 43633, + "Ġplötzlich": 49033, + "Ġpm": 23023, + "Ġpne": 26710, + "Ġpneum": 30039, + "Ġpneumonia": 43097, + "Ġpo": 714, + "Ġpobl": 30548, + "Ġpoblación": 42769, + "Ġpobre": 40819, + "Ġpocket": 8963, + "Ġpockets": 16491, + "Ġpoco": 10639, + "Ġpocz": 26423, + "ĠpoczÄħt": 34397, + "ĠpoczÄħtku": 43959, + "Ġpod": 2497, + "Ġpodcast": 7367, + "Ġpodcasts": 24045, + "Ġpode": 7468, + "Ġpodem": 20934, + "Ġpodemos": 12234, + "Ġpoder": 8152, + "Ġpoderia": 33674, + "Ġpodia": 46689, + "Ġpodium": 26827, + "Ġpodob": 43024, + "Ġpodr": 15305, + "ĠpodrÃŃa": 27246, + "Ġpods": 31925, + "Ġpodstaw": 43443, + "Ġpodéis": 45728, + "ĠpodÃŃa": 45588, + "Ġpoem": 13065, + "Ġpoems": 24014, + "Ġpoet": 20874, + "Ġpoetic": 41080, + "Ġpoetry": 15155, + "Ġpoets": 38364, + "Ġpog": 32037, + "Ġpoi": 19260, + "Ġpoint": 935, + "Ġpointed": 10932, + "Ġpointer": 23918, + "Ġpointers": 44548, + "Ġpointing": 12166, + "Ġpointless": 32824, + "Ġpoints": 2793, + "Ġpois": 31014, + "Ġpoison": 10836, + "Ġpoisoned": 36677, + "Ġpoisoning": 36778, + "Ġpoisonous": 37376, + "Ġpojaw": 30655, + "Ġpok": 13010, + "Ġpoke": 19712, + "Ġpokemon": 41161, + "Ġpoker": 36863, + "Ġpoking": 42684, + "Ġpol": 1180, + "Ġpolar": 12367, + "Ġpolarization": 37736, + "Ġpolarized": 48623, + "Ġpole": 13208, + "Ġpoles": 24760, + "Ġpolic": 6285, + "Ġpolice": 3804, + "Ġpoliceman": 42658, + "Ġpolicies": 7657, + "Ġpolicing": 28799, + "Ġpolicy": 3897, + "Ġpolicymakers": 47325, + "Ġpolish": 20452, + "Ġpolished": 29079, + "Ġpolishing": 47258, + "Ġpolit": 2453, + "Ġpolite": 25171, + "Ġpolitic": 48044, + "Ġpolitical": 3905, + "Ġpolitically": 21154, + "Ġpolitician": 26453, + "Ġpoliticians": 14756, + "Ġpolitics": 7341, + "Ġpolitique": 26115, + "Ġpolitiques": 46267, + "Ġpolity": 36066, + "Ġpoll": 6418, + "Ġpollen": 42482, + "Ġpolling": 29518, + "Ġpolls": 24264, + "Ġpollut": 43415, + "Ġpollution": 16727, + "Ġpolsk": 28757, + "Ġpoly": 6754, + "Ġpolygon": 48242, + "Ġpolymer": 20073, + "Ġpolynom": 22560, + "Ġpolynomial": 26110, + "ĠpolÃŃt": 14482, + "ĠpolÃŃtica": 25029, + "ĠpolÃŃticas": 45931, + "ĠpolÃŃtico": 48641, + "Ġpom": 12991, + "Ġpomoc": 48962, + "Ġpomp": 44275, + "Ġpon": 9224, + "Ġpond": 17384, + "Ġpone": 40192, + "Ġponer": 19149, + "Ġpong": 36164, + "Ġponieważ": 32426, + "Ġpont": 18770, + "Ġponto": 17936, + "Ġpontos": 30676, + "Ġpony": 27342, + "Ġponytail": 49138, + "Ġpoo": 36743, + "Ġpool": 7005, + "Ġpools": 28688, + "Ġpoop": 17153, + "Ġpoor": 4716, + "Ġpoorer": 49740, + "Ġpoorest": 44925, + "Ġpoorly": 22271, + "Ġpop": 1665, + "Ġpopcorn": 25334, + "Ġpope": 42248, + "Ġpopped": 21545, + "Ġpopping": 18374, + "Ġpops": 16795, + "Ġpopul": 24017, + "Ġpopula": 32166, + "Ġpopular": 3743, + "Ġpopularity": 19301, + "Ġpopulated": 32998, + "Ġpopulation": 4415, + "Ġpopulations": 12822, + "Ġpoquito": 28229, + "Ġpor": 1515, + "Ġporch": 35513, + "Ġpore": 41459, + "Ġpores": 30082, + "Ġpork": 10208, + "Ġporn": 19444, + "Ġpornography": 49936, + "Ġporque": 4021, + "Ġporridge": 38872, + "Ġport": 2436, + "Ġporta": 28598, + "Ġportable": 21800, + "Ġportal": 14982, + "Ġporte": 26658, + "Ġporter": 41628, + "Ġportfol": 11688, + "Ġportfolio": 12583, + "Ġportion": 8044, + "Ġportions": 25070, + "Ġportrait": 17126, + "Ġportraits": 31880, + "Ġportray": 15676, + "Ġportrayed": 29845, + "Ġports": 18160, + "Ġpos": 1366, + "Ġpose": 10774, + "Ġposed": 31399, + "Ġposer": 39355, + "Ġposes": 26059, + "Ġposible": 26644, + "Ġposición": 46595, + "Ġposing": 40378, + "Ġposit": 11218, + "Ġposition": 2535, + "Ġpositioned": 24889, + "Ġpositioning": 26381, + "Ġpositions": 8432, + "Ġpositiv": 40806, + "Ġpositive": 3353, + "Ġpositively": 25795, + "Ġpositives": 35127, + "Ġpositivity": 35198, + "Ġpositivo": 44710, + "Ġposição": 49842, + "Ġposs": 1402, + "Ġpossa": 41564, + "Ġpossess": 17490, + "Ġpossessed": 29608, + "Ġpossession": 20935, + "Ġpossessions": 40623, + "Ġpossiamo": 44758, + "Ġpossibil": 24145, + "Ġpossibile": 50184, + "Ġpossibilities": 12178, + "Ġpossibility": 7959, + "Ġpossible": 1944, + "Ġpossibly": 6264, + "Ġposso": 22501, + "Ġpossono": 43857, + "ĠpossÃŃvel": 29322, + "Ġpost": 2183, + "Ġpostal": 49645, + "Ġposted": 9437, + "Ġposter": 17171, + "Ġposterior": 33529, + "Ġposters": 28172, + "Ġposting": 15978, + "Ġpostp": 28973, + "Ġpostponed": 49023, + "Ġposts": 12300, + "Ġposture": 18502, + "Ġpot": 1847, + "Ġpotassium": 29547, + "Ġpotato": 7445, + "Ġpotatoes": 11811, + "Ġpotem": 36513, + "Ġpotencial": 48265, + "Ġpotent": 27073, + "Ġpotential": 3995, + "Ġpotentially": 7263, + "Ġpotion": 39113, + "Ġpotrze": 28577, + "Ġpotrzeb": 37595, + "Ġpots": 22022, + "Ġpottery": 45272, + "Ġpou": 5043, + "Ġpouch": 27781, + "Ġpouco": 13920, + "Ġpound": 12013, + "Ġpounding": 40034, + "Ġpounds": 8319, + "Ġpouquinho": 31114, + "Ġpour": 2016, + "Ġpoured": 23270, + "Ġpouring": 20450, + "Ġpourquoi": 19934, + "Ġpourra": 37753, + "Ġpourrait": 25590, + "Ġpourtant": 47856, + "Ġpous": 39140, + "Ġpouv": 29663, + "Ġpouvait": 45913, + "Ġpouvez": 18248, + "Ġpouvoir": 14874, + "Ġpoverty": 10958, + "Ġpovo": 46388, + "Ġpow": 3388, + "Ġpowder": 6341, + "Ġpowdered": 35615, + "Ġpower": 1347, + "Ġpowered": 17786, + "Ġpowerful": 4005, + "Ġpowerless": 47926, + "Ġpowers": 8674, + "Ġpowiedz": 27617, + "ĠpowiedziaÅĤ": 48539, + "ĠpowiedzieÄĩ": 27886, + "Ġpowin": 27310, + "Ġpoz": 21281, + "Ġpozi": 38503, + "Ġpozw": 40557, + "Ġpozy": 49358, + "Ġpr": 582, + "Ġpra": 3206, + "Ġprac": 22404, + "Ġpract": 1927, + "Ġpractical": 8496, + "Ġpractically": 15667, + "Ġpractice": 3124, + "Ġpracticed": 19268, + "Ġpractices": 7525, + "Ġpracticing": 11350, + "Ġpractise": 38208, + "Ġpractition": 18064, + "Ġpractitioner": 32125, + "Ġpractitioners": 25742, + "Ġpracy": 35591, + "Ġprag": 33394, + "Ġpragmatic": 46904, + "Ġpraise": 13286, + "Ġpraised": 31003, + "Ġpraising": 42941, + "Ġprakt": 33721, + "Ġprank": 19794, + "Ġprat": 28844, + "Ġprata": 45895, + "Ġpratic": 33852, + "Ġpraticamente": 45734, + "Ġpratique": 43740, + "Ġpraw": 22508, + "Ġprawd": 41175, + "Ġprawda": 43607, + "Ġprawn": 37047, + "Ġpray": 3690, + "Ġprayed": 22532, + "Ġprayer": 8767, + "Ġprayers": 16860, + "Ġpraying": 15611, + "Ġpre": 659, + "Ġpreach": 21552, + "Ġpreached": 40001, + "Ġpreacher": 42078, + "Ġpreaching": 25381, + "Ġprec": 4346, + "Ġpreca": 25651, + "Ġprecautions": 34684, + "Ġpreced": 16969, + "Ġprecedent": 37388, + "Ġprecio": 46916, + "Ġprecious": 12406, + "Ġprecip": 23354, + "Ġprecipitation": 37662, + "Ġprecis": 7974, + "Ġprecisa": 18861, + "Ġprecisamente": 44901, + "Ġprecise": 13600, + "Ġprecisely": 13402, + "Ġprecision": 18356, + "Ġpreciso": 30109, + "Ġprecon": 47473, + "Ġprecurs": 41736, + "Ġpred": 3852, + "Ġpredator": 35377, + "Ġpredators": 29194, + "Ġprede": 24874, + "Ġpredecessor": 34991, + "Ġpredic": 47336, + "Ġpredict": 6069, + "Ġpredictable": 27737, + "Ġpredicted": 19147, + "Ġpredicting": 32884, + "Ġprediction": 17630, + "Ġpredictions": 21264, + "Ġpredictive": 35521, + "Ġpredomin": 21456, + "Ġpredominantly": 29893, + "Ġpref": 18417, + "Ġprefer": 4382, + "Ġpreferably": 45916, + "Ġpreference": 17502, + "Ġpreferences": 21910, + "Ġpreferred": 16494, + "Ġprefers": 44334, + "Ġprefix": 46969, + "Ġpregn": 7681, + "Ġpregnancy": 16120, + "Ġpregnant": 10435, + "Ġpregunt": 19860, + "Ġpregunta": 24252, + "Ġpreguntas": 39722, + "Ġprehe": 35528, + "Ġprejud": 23121, + "Ġprejudice": 34260, + "Ġprelim": 26414, + "Ġpreliminary": 28817, + "Ġprem": 5624, + "Ġpremature": 34877, + "Ġpremi": 11222, + "Ġpremier": 12689, + "Ġpremiere": 28372, + "Ġpremiers": 45166, + "Ġpremise": 22045, + "Ġpremises": 34266, + "Ġpremium": 12049, + "Ġpremière": 17872, + "Ġpren": 43149, + "Ġprend": 9866, + "Ġprendre": 16566, + "Ġprends": 46750, + "Ġpreoc": 18250, + "Ġpreoccup": 44388, + "Ġpreocup": 23080, + "Ġprep": 2666, + "Ġprepar": 8231, + "Ġpreparation": 13081, + "Ġpreparations": 34122, + "Ġprepare": 5940, + "Ġprepared": 4927, + "Ġpreparedness": 48445, + "Ġprepares": 39418, + "Ġpreparing": 10075, + "Ġprere": 38333, + "Ġpres": 1183, + "Ġpreschool": 39809, + "Ġprescribe": 49292, + "Ġprescribed": 29099, + "Ġprescription": 22456, + "Ġpresence": 6814, + "Ġpresent": 1974, + "Ġpresentation": 5860, + "Ġpresentations": 18964, + "Ġpresente": 28709, + "Ġpresented": 8212, + "Ġpresenter": 35594, + "Ġpresenters": 36987, + "Ġpresenting": 15578, + "Ġpresents": 13533, + "Ġpreserv": 45905, + "Ġpreservation": 27257, + "Ġpreserve": 15665, + "Ġpreserved": 22242, + "Ġpreserving": 33173, + "Ġpreset": 32081, + "Ġpresets": 41865, + "Ġpresidency": 26702, + "Ġpresident": 3868, + "Ġpresidente": 23852, + "Ġpresidential": 16902, + "Ġpresidents": 27611, + "Ġpresque": 37843, + "Ġpress": 1886, + "Ġpressed": 17355, + "Ġpresses": 40892, + "Ġpressing": 12417, + "Ġpressure": 3321, + "Ġpressured": 45306, + "Ġpressures": 23573, + "Ġprest": 16305, + "Ġprestige": 42531, + "Ġprestigious": 33510, + "Ġpresum": 18028, + "Ġpresumably": 26742, + "Ġpresume": 43283, + "Ġpresup": 47640, + "Ġpret": 1162, + "Ġpretend": 11865, + "Ġpretended": 45056, + "Ġpretending": 22106, + "Ġprett": 45421, + "Ġprettier": 36825, + "Ġpretty": 1238, + "Ġprev": 12642, + "Ġprevail": 46059, + "Ġpreval": 22239, + "Ġprevalence": 42583, + "Ġprevalent": 30652, + "Ġprevent": 4871, + "Ġprevented": 27314, + "Ġpreventing": 19965, + "Ġprevention": 14630, + "Ġprevents": 22367, + "Ġpreview": 14281, + "Ġprevious": 3894, + "Ġpreviously": 8046, + "Ġprey": 21107, + "Ġpreço": 42295, + "Ġpri": 1790, + "Ġprice": 3218, + "Ġpriced": 30349, + "Ġprices": 7901, + "Ġpricing": 17621, + "Ġprick": 43986, + "Ġpride": 10936, + "Ġpriest": 15703, + "Ġpriests": 27192, + "Ġprim": 2886, + "Ġprima": 19507, + "Ġprimarily": 10029, + "Ġprimary": 6194, + "Ġprime": 5835, + "Ġprimeira": 21158, + "Ġprimeiro": 18314, + "Ġprimer": 12595, + "Ġprimera": 17382, + "Ġprimero": 21289, + "Ġprimitive": 28540, + "Ġprimo": 38671, + "Ġprin": 3024, + "Ġprince": 16467, + "Ġprinces": 41536, + "Ġprincess": 14742, + "Ġprinci": 3681, + "Ġprincip": 6959, + "Ġprincipal": 9716, + "Ġprincipalmente": 32258, + "Ġprincipals": 45333, + "Ġprincipe": 47656, + "Ġprincipio": 34308, + "Ġprinciple": 8665, + "Ġprinciples": 9156, + "Ġprint": 4482, + "Ġprinted": 13567, + "Ġprinter": 16671, + "Ġprinters": 40007, + "Ġprinting": 14699, + "Ġprints": 22305, + "Ġprior": 4059, + "Ġpriorit": 14846, + "Ġpriorities": 15503, + "Ġprioritize": 25164, + "Ġpriority": 9365, + "Ġpris": 16163, + "Ġprise": 49468, + "Ġprison": 6168, + "Ġprisoner": 28114, + "Ġprisoners": 20417, + "Ġprisons": 31396, + "Ġpriv": 2915, + "Ġprivacy": 11427, + "Ġprivat": 31856, + "Ġprivate": 4551, + "Ġprivately": 31919, + "Ġprivile": 8670, + "Ġprivilege": 12122, + "Ġprivileged": 25293, + "Ġprivileges": 32588, + "Ġprix": 31061, + "Ġprize": 12818, + "Ġprizes": 27350, + "Ġpro": 447, + "Ġproactive": 28028, + "Ġprob": 1239, + "Ġprobabil": 31959, + "Ġprobabilities": 33783, + "Ġprobability": 8482, + "Ġprobable": 21759, + "Ġprobably": 1391, + "Ġprobation": 41821, + "Ġprobe": 22715, + "Ġprobiot": 45710, + "Ġprobl": 15201, + "Ġproblem": 1154, + "Ġproblema": 12395, + "Ġproblemas": 20720, + "Ġproblematic": 19011, + "Ġproblems": 2740, + "Ġproblème": 21111, + "Ġproblèmes": 37317, + "Ġproc": 9510, + "Ġproced": 6682, + "Ġprocedural": 43951, + "Ġprocedure": 10747, + "Ġprocedures": 13846, + "Ġproceed": 8991, + "Ġproceeded": 39053, + "Ġproceeding": 41163, + "Ġproceedings": 37254, + "Ġproceeds": 32280, + "Ġprocent": 38826, + "Ġproces": 17565, + "Ġproceso": 29314, + "Ġprocess": 1399, + "Ġprocessed": 18846, + "Ġprocesses": 7555, + "Ġprocessing": 9007, + "Ġprocesso": 27939, + "Ġprocessor": 15321, + "Ġprocessors": 27751, + "Ġproch": 31847, + "Ġprochain": 39389, + "Ġprochaine": 35306, + "Ġproclaim": 34604, + "Ġproclaimed": 49091, + "Ġprocrast": 39306, + "Ġprocure": 26846, + "Ġprocurement": 35183, + "Ġprod": 15792, + "Ġprodu": 1082, + "Ġproducción": 48586, + "Ġproduce": 5258, + "Ġproduced": 7126, + "Ġproducer": 12314, + "Ġproducers": 16080, + "Ġproduces": 14725, + "Ġproducing": 10501, + "Ġproduct": 1674, + "Ġproduction": 4265, + "Ġproductions": 32612, + "Ġproductive": 13304, + "Ġproductivity": 15604, + "Ġproducto": 47583, + "Ġproductos": 46363, + "Ġproducts": 3383, + "Ġproduit": 35703, + "Ġproduits": 38866, + "Ġproduk": 33699, + "Ġprodukt": 42816, + "Ġproduto": 45823, + "Ġproduz": 28093, + "Ġprodução": 49147, + "Ġprof": 1740, + "Ġprofes": 22912, + "Ġprofesional": 42882, + "Ġprofess": 2668, + "Ġprofession": 7032, + "Ġprofessional": 4843, + "Ġprofessionally": 27941, + "Ġprofessionals": 11954, + "Ġprofessions": 38129, + "Ġprofessor": 8304, + "Ġprofessors": 15924, + "Ġprofile": 7964, + "Ġprofiles": 23693, + "Ġprofit": 7475, + "Ġprofitability": 46249, + "Ġprofitable": 21608, + "Ġprofits": 17982, + "Ġprofound": 14382, + "Ġprofoundly": 39954, + "Ġprofund": 40958, + "Ġprogram": 1461, + "Ġprograma": 21846, + "Ġprogramm": 37648, + "Ġprogramme": 14001, + "Ġprogrammed": 31092, + "Ġprogrammer": 32116, + "Ġprogrammers": 41504, + "Ġprogrammes": 31097, + "Ġprogramming": 9410, + "Ġprograms": 4268, + "Ġprogress": 4205, + "Ġprogressed": 36789, + "Ġprogresses": 41929, + "Ġprogressing": 36305, + "Ġprogression": 18733, + "Ġprogressive": 16131, + "Ġprogressively": 46667, + "Ġprohib": 16015, + "Ġprohibited": 32069, + "Ġproject": 1716, + "Ġprojected": 26231, + "Ġprojecting": 43001, + "Ġprojection": 22743, + "Ġprojections": 32371, + "Ġprojector": 39792, + "Ġprojects": 4455, + "Ġprojekt": 26261, + "Ġprojet": 17929, + "Ġprojeto": 40679, + "Ġprojets": 49830, + "Ġprol": 24398, + "Ġprolong": 27224, + "Ġprolonged": 41237, + "Ġprom": 2234, + "Ġpromet": 37786, + "Ġpromin": 39225, + "Ġprominent": 17034, + "Ġpromise": 6228, + "Ġpromised": 10768, + "Ġpromises": 16403, + "Ġpromising": 20257, + "Ġpromo": 26750, + "Ġpromot": 6609, + "Ġpromote": 9773, + "Ġpromoted": 21162, + "Ġpromotes": 36015, + "Ġpromoting": 16383, + "Ġpromotion": 15783, + "Ġpromotional": 41790, + "Ġpromotions": 42127, + "Ġprompt": 12391, + "Ġprompted": 31042, + "Ġpromptly": 48594, + "Ġprompts": 41095, + "Ġpron": 7569, + "Ġprone": 25806, + "Ġpronoun": 14144, + "Ġpronounce": 19567, + "Ġpronounced": 23155, + "Ġpronouns": 35883, + "Ġpronto": 26194, + "Ġpronunciation": 23338, + "Ġproof": 8177, + "Ġprop": 2365, + "Ġpropag": 12425, + "Ġpropaganda": 22968, + "Ġpropagate": 48256, + "Ġpropagation": 38377, + "Ġprope": 25577, + "Ġproper": 2296, + "Ġproperly": 6108, + "Ġproperties": 7221, + "Ġproperty": 4707, + "Ġproph": 17051, + "Ġprophe": 19944, + "Ġprophecy": 23945, + "Ġprophet": 18566, + "Ġprophetic": 46174, + "Ġprophets": 27297, + "Ġpropia": 40464, + "Ġpropio": 40098, + "Ġpropor": 41516, + "Ġproport": 17762, + "Ġproportion": 16068, + "Ġproportional": 24969, + "Ġproportions": 32482, + "Ġpropos": 7532, + "Ġproposal": 11494, + "Ġproposals": 20198, + "Ġpropose": 17421, + "Ġproposed": 10348, + "Ġproposing": 29939, + "Ġproposition": 24830, + "Ġpropre": 35221, + "Ġpropri": 40465, + "Ġpropriet": 27881, + "Ġproprietary": 38992, + "Ġproprio": 28203, + "Ġprops": 26173, + "Ġpropulsion": 49375, + "Ġpros": 6267, + "Ġprose": 12505, + "Ġprosec": 22382, + "Ġprosecut": 21015, + "Ġprosecution": 37106, + "Ġprosecutor": 32836, + "Ġprosecutors": 40030, + "Ġprospect": 15005, + "Ġprospective": 39377, + "Ġprospects": 32933, + "Ġprosper": 14381, + "Ġprosperity": 22434, + "Ġprosperous": 38928, + "Ġpross": 48794, + "Ġprost": 10293, + "Ġprostate": 36108, + "Ġprosth": 39976, + "Ġprostu": 19518, + "ĠproszÄĻ": 39677, + "Ġprot": 1742, + "Ġprotagon": 17232, + "Ġprotagonist": 24506, + "Ġprote": 5631, + "Ġprotect": 2371, + "Ġprotected": 10594, + "Ġprotecting": 12316, + "Ġprotection": 6334, + "Ġprotections": 29031, + "Ġprotective": 16314, + "Ġprotector": 34986, + "Ġprotects": 22583, + "Ġproteg": 49157, + "Ġprotein": 7944, + "Ġproteins": 15577, + "Ġprotest": 11281, + "Ġprotesters": 34509, + "Ġprotesting": 40171, + "Ġprotests": 20174, + "Ġproto": 47896, + "Ġprotocol": 10336, + "Ġprotocols": 20618, + "Ġproton": 31728, + "Ġprotons": 40270, + "Ġprototy": 46219, + "Ġprototype": 19475, + "Ġprototypes": 42197, + "Ġprotr": 45468, + "Ġproud": 4570, + "Ġproudly": 33522, + "Ġprov": 1439, + "Ġprova": 28959, + "Ġprove": 7081, + "Ġproved": 14617, + "Ġproven": 12785, + "Ġproverb": 49923, + "Ġproves": 25019, + "Ġprovide": 2893, + "Ġprovided": 5649, + "Ġprovider": 12398, + "Ġproviders": 11330, + "Ġprovides": 6417, + "Ġproviding": 6530, + "Ġprovin": 17629, + "Ġprovince": 16705, + "Ġprovinces": 32873, + "Ġprovincial": 33293, + "Ġproving": 27221, + "Ġprovision": 17225, + "Ġprovisions": 25034, + "Ġprovoc": 24568, + "Ġprovocative": 47663, + "Ġprovoke": 47015, + "Ġprow": 45553, + "Ġprowad": 36590, + "Ġproxim": 21932, + "Ġproximity": 27632, + "Ġproxy": 29690, + "Ġproyect": 23832, + "Ġproyecto": 32285, + "Ġprue": 32820, + "Ġprueba": 48241, + "Ġpry": 41902, + "Ġprz": 6541, + "Ġprze": 8325, + "Ġprzeci": 39622, + "Ġprzed": 18334, + "Ġprzede": 44786, + "ĠprzedsiÄĻbior": 43477, + "Ġprzedstaw": 45616, + "Ġprzek": 29785, + "Ġprzep": 30829, + "Ġprzest": 44264, + "Ġprzew": 39758, + "Ġprzez": 14064, + "Ġprzy": 6501, + "Ġprzygot": 35914, + "ĠprzykÅĤad": 23144, + "Ġprzyp": 41780, + "Ġprzypad": 33100, + "Ġprzypadku": 41955, + "Ġprzysz": 44018, + "Ġprá": 27300, + "Ġprès": 25350, + "Ġpré": 11127, + "Ġpréc": 23107, + "Ġprécis": 49436, + "Ġprécéd": 48653, + "Ġpréf": 31139, + "Ġprépar": 38286, + "Ġprés": 11761, + "Ġprésent": 26056, + "Ġprésident": 29654, + "Ġprêt": 44393, + "Ġpró": 8565, + "Ġpróp": 21431, + "Ġprópria": 39608, + "Ġpróprio": 36394, + "Ġpróxim": 12389, + "Ġpróxima": 24096, + "Ġpróximo": 21177, + "Ġps": 18815, + "Ġpse": 25505, + "Ġpseudo": 35899, + "Ġpsi": 20304, + "Ġpsic": 38609, + "Ġpsy": 31673, + "Ġpsych": 4681, + "Ġpsyche": 50223, + "Ġpsychedel": 47732, + "Ġpsychiat": 26347, + "Ġpsychiatric": 40123, + "Ġpsychiatrist": 41287, + "Ġpsychic": 35406, + "Ġpsycho": 33355, + "Ġpsychological": 14346, + "Ġpsychologically": 41387, + "Ġpsychologist": 29514, + "Ġpsychologists": 41562, + "Ġpsychology": 15105, + "Ġpsychopath": 47577, + "Ġpu": 2362, + "Ġpub": 1535, + "Ġpubl": 11227, + "Ġpubli": 49804, + "Ġpublic": 1908, + "Ġpublication": 19953, + "Ġpublications": 25618, + "Ġpublicity": 37264, + "Ġpublicly": 14843, + "Ġpublish": 11374, + "Ġpublished": 6572, + "Ġpublisher": 25088, + "Ġpublishers": 30421, + "Ġpublishing": 17832, + "Ġpuck": 47181, + "Ġpud": 14166, + "Ġpudding": 29149, + "Ġpue": 26990, + "Ġpueblo": 33764, + "Ġpued": 10947, + "Ġpueda": 31907, + "Ġpuedan": 41241, + "Ġpuede": 8919, + "Ġpueden": 14714, + "Ġpuedes": 19010, + "Ġpuedo": 21612, + "Ġpuerta": 48597, + "Ġpues": 11059, + "Ġpuesto": 35136, + "Ġpuff": 19613, + "Ġpug": 47900, + "Ġpuis": 9093, + "Ġpuisqu": 43459, + "Ġpuisque": 28090, + "Ġpuisse": 42363, + "Ġpul": 8331, + "Ġpull": 2235, + "Ġpulled": 7373, + "Ġpulley": 48399, + "Ġpulling": 8407, + "Ġpulls": 16982, + "Ġpulp": 37489, + "Ġpuls": 32295, + "Ġpulse": 17709, + "Ġpulses": 45279, + "Ġpum": 48842, + "Ġpump": 5889, + "Ġpumped": 27774, + "Ġpumping": 27131, + "Ġpumpkin": 17537, + "Ġpumpkins": 49053, + "Ġpumps": 27648, + "Ġpun": 4468, + "Ġpunch": 8135, + "Ġpunched": 37842, + "Ġpunches": 34103, + "Ġpunching": 34866, + "Ġpunct": 27006, + "Ġpunish": 9842, + "Ġpunished": 22365, + "Ġpunishing": 49824, + "Ġpunishment": 14133, + "Ġpunk": 25188, + "Ġpunkt": 39561, + "Ġpunt": 18212, + "Ġpunto": 14326, + "Ġpuntos": 34375, + "Ġpunya": 32781, + "Ġpup": 19784, + "Ġpupil": 44533, + "Ġpupils": 38404, + "Ġpupp": 17014, + "Ġpuppet": 32107, + "Ġpuppies": 33734, + "Ġpuppy": 18196, + "Ġpur": 1864, + "Ġpurch": 5270, + "Ġpurchase": 8110, + "Ġpurchased": 14734, + "Ġpurchases": 26762, + "Ġpurchasing": 20906, + "Ġpure": 6075, + "Ġpuree": 49407, + "Ġpurely": 17491, + "Ġpurity": 34382, + "Ġpurl": 48943, + "Ġpurp": 3527, + "Ġpurple": 9656, + "Ġpurpose": 4334, + "Ġpurposely": 41840, + "Ġpurposes": 9932, + "Ġpurs": 7088, + "Ġpurse": 28345, + "Ġpursue": 12392, + "Ġpursued": 34893, + "Ġpursuing": 20222, + "Ġpursuit": 23365, + "Ġpus": 31252, + "Ġpush": 2944, + "Ġpushed": 9152, + "Ġpushes": 21020, + "Ġpushing": 7380, + "Ġpussy": 40169, + "Ġput": 829, + "Ġputa": 46681, + "Ġputs": 8137, + "Ġputting": 3372, + "Ġpuzz": 18741, + "Ġpuzzle": 12805, + "Ġpuzzles": 24138, + "Ġpuò": 26526, + "Ġpy": 10664, + "Ġpyram": 20543, + "Ġpyramid": 25950, + "Ġpyt": 25878, + "Ġpytanie": 36610, + "Ġpython": 38797, + "Ġpá": 40639, + "Ġpágina": 36960, + "Ġpä": 32232, + "Ġpää": 32764, + "ĠpÃ¥": 4170, + "Ġpère": 37653, + "Ġpé": 29507, + "Ġpén": 49880, + "Ġpéri": 36321, + "Ġpériode": 44703, + "Ġpó": 28157, + "Ġpóźniej": 36968, + "ĠpóÅĤ": 47907, + "Ġpúblic": 15392, + "Ġpública": 38905, + "Ġpúblico": 26557, + "ĠpÅĤ": 28695, + "ĠpÅĻ": 31631, + "Ġq": 9505, + "Ġqu": 421, + "Ġqua": 24159, + "Ġquad": 10787, + "Ġquadrant": 46856, + "Ġquadratic": 37262, + "Ġquais": 44075, + "Ġqual": 4101, + "Ġqualc": 32101, + "Ġqualche": 38737, + "Ġqualcosa": 42400, + "Ġqualidade": 41501, + "Ġqualification": 37425, + "Ġqualifications": 33223, + "Ġqualified": 15904, + "Ġqualify": 20276, + "Ġqualifying": 41793, + "Ġqualitative": 31312, + "Ġqualities": 16477, + "Ġquality": 3125, + "Ġqualité": 42106, + "Ġqualquer": 20437, + "Ġquan": 19068, + "Ġquand": 6932, + "Ġquando": 7770, + "Ġquant": 4426, + "Ġquantidade": 39639, + "Ġquantify": 40421, + "Ġquantitative": 27778, + "Ġquantities": 22927, + "Ġquantity": 11275, + "Ġquanto": 17820, + "Ġquantum": 13018, + "Ġquar": 4723, + "Ġquarant": 41240, + "Ġquarantine": 18138, + "Ġquart": 20837, + "Ġquarter": 6555, + "Ġquarterback": 31952, + "Ġquarterly": 38633, + "Ġquarters": 20612, + "Ġquarto": 50109, + "Ġquartz": 48280, + "Ġquas": 49625, + "Ġquase": 28875, + "Ġquasi": 20954, + "Ġquatre": 31334, + "Ġquatro": 30583, + "Ġque": 631, + "Ġqued": 13617, + "Ġqueda": 23314, + "Ġquedar": 39244, + "Ġqueen": 12206, + "Ġqueens": 42017, + "Ġqueer": 20323, + "Ġquel": 7178, + "Ġquella": 32234, + "Ġquelle": 29237, + "Ġquello": 22813, + "Ġquelqu": 25283, + "Ġquelque": 14448, + "Ġquelques": 16597, + "Ġquem": 13026, + "Ġquer": 7083, + "Ġqueremos": 26813, + "Ġquerer": 39318, + "Ġqueria": 27955, + "Ġqueries": 24109, + "Ġquero": 18738, + "Ġquery": 14581, + "ĠquerÃŃa": 37869, + "Ġquest": 866, + "Ġquesta": 16540, + "Ġqueste": 35455, + "Ġquesti": 29729, + "Ġquestion": 1168, + "Ġquestionable": 37158, + "Ġquestioned": 28146, + "Ġquestioning": 21257, + "Ġquestionnaire": 44702, + "Ġquestions": 1651, + "Ġquesto": 10263, + "Ġquests": 34247, + "Ġquestão": 28477, + "Ġqueue": 18639, + "Ġqui": 1956, + "Ġquick": 1702, + "Ġquicker": 16255, + "Ġquickest": 49403, + "Ġquickly": 2661, + "Ġquien": 20108, + "Ġquienes": 43091, + "Ġquier": 23572, + "Ġquiere": 23877, + "Ġquieren": 36706, + "Ġquieres": 29839, + "Ġquiero": 16811, + "Ġquiet": 5677, + "Ġquieter": 43339, + "Ġquietly": 19141, + "Ġquil": 31619, + "Ġquilt": 27566, + "Ġquin": 42215, + "Ġquindi": 15727, + "Ġquint": 40006, + "Ġquir": 35645, + "Ġquirky": 49515, + "Ġquis": 37945, + "Ġquiser": 28753, + "Ġquit": 10366, + "Ġquite": 1596, + "Ġquitting": 42789, + "Ġquiz": 15450, + "Ġquizz": 43425, + "Ġquizzes": 48955, + "Ġquién": 35327, + "Ġquo": 28425, + "Ġquoi": 11714, + "Ġquot": 9641, + "Ġquota": 45171, + "Ġquotation": 47312, + "Ġquote": 6513, + "Ġquoted": 30047, + "Ġquotes": 19963, + "Ġquotid": 44017, + "Ġquoting": 41552, + "Ġquy": 44088, + "Ġquá": 38338, + "Ġquè": 17802, + "Ġqué": 8057, + "Ġquê": 28605, + "Ġr": 367, + "Ġra": 3342, + "Ġrab": 14085, + "Ġrabb": 28179, + "Ġrabbit": 19509, + "Ġrabbits": 38752, + "Ġrac": 4129, + "Ġrace": 4569, + "Ġraces": 15484, + "Ġracial": 12131, + "Ġracing": 12553, + "Ġracism": 12664, + "Ġracist": 16419, + "Ġrack": 14788, + "Ġracket": 41130, + "Ġracks": 47063, + "Ġrad": 2843, + "Ġradar": 16544, + "Ġradi": 16335, + "Ġradial": 38783, + "Ġradiant": 49430, + "Ġradiation": 12420, + "Ġradiator": 41345, + "Ġradical": 12001, + "Ġradically": 35508, + "Ġradio": 6477, + "Ġradioactive": 35844, + "Ġradish": 31136, + "Ġradius": 15845, + "Ġraft": 43863, + "Ġrag": 17539, + "Ġrage": 20133, + "Ġraging": 44173, + "Ġrah": 23490, + "Ġrahat": 43066, + "Ġraid": 26936, + "Ġraids": 45740, + "Ġrail": 8765, + "Ġrailroad": 30073, + "Ġrails": 27649, + "Ġrailway": 25812, + "Ġrain": 4830, + "Ġrainbow": 18526, + "Ġrained": 47533, + "Ġrainfall": 29382, + "Ġrainforest": 48531, + "Ġraining": 18441, + "Ġrains": 27805, + "Ġrainy": 27181, + "Ġrais": 4000, + "Ġraise": 5300, + "Ġraised": 6005, + "Ġraises": 19658, + "Ġraising": 11225, + "Ġraison": 28402, + "Ġraj": 36007, + "Ġrak": 35544, + "Ġrall": 31552, + "Ġrallies": 48169, + "Ġrally": 17584, + "Ġram": 10211, + "Ġramen": 20948, + "Ġramp": 12428, + "Ġran": 5872, + "Ġranch": 22883, + "Ġrandom": 4974, + "Ġrandomized": 38513, + "Ġrandomly": 16979, + "Ġrang": 32434, + "Ġrange": 3613, + "Ġranged": 45570, + "Ġranges": 22526, + "Ġranging": 25532, + "Ġrank": 6181, + "Ġranked": 20197, + "Ġranking": 17833, + "Ġrankings": 36550, + "Ġranks": 21406, + "Ġrans": 33481, + "Ġransom": 38279, + "Ġrant": 45332, + "Ġrap": 5099, + "Ġrape": 22846, + "Ġraped": 37506, + "Ġrapid": 7558, + "Ġrapidement": 37757, + "Ġrapidly": 12910, + "Ġrapp": 8125, + "Ġrappelle": 43736, + "Ġrapper": 26457, + "Ġrappers": 45025, + "Ġrapping": 44333, + "Ġrapport": 18018, + "Ġrapt": 40142, + "Ġrare": 5892, + "Ġrarely": 13752, + "Ġras": 26815, + "Ġrasa": 41493, + "Ġrash": 40357, + "Ġrasp": 49399, + "Ġraspberry": 41468, + "Ġrat": 5937, + "Ġratchet": 45885, + "Ġrate": 3314, + "Ġrated": 22103, + "Ġrates": 6846, + "Ġrather": 2831, + "Ġrating": 10990, + "Ġratings": 24603, + "Ġratio": 8509, + "Ġration": 24258, + "Ġrational": 15090, + "Ġrationale": 41989, + "Ġratios": 32435, + "Ġrats": 25691, + "Ġratt": 27081, + "Ġrattling": 48822, + "Ġraus": 17202, + "Ġrav": 32987, + "Ġraw": 8936, + "Ġray": 18592, + "Ġrays": 24417, + "Ġraz": 9639, + "Ġrazem": 40225, + "Ġrazor": 30478, + "Ġrazón": 38310, + "Ġre": 319, + "Ġreach": 2524, + "Ġreached": 6488, + "Ġreaches": 14235, + "Ġreaching": 9906, + "Ġreact": 4515, + "Ġreacted": 34037, + "Ġreacting": 25817, + "Ġreaction": 5480, + "Ġreactions": 12215, + "Ġreactive": 28897, + "Ġreactor": 20628, + "Ġreactors": 41649, + "Ġreacts": 33305, + "Ġread": 1401, + "Ġreadable": 49857, + "Ġreader": 15149, + "Ġreaders": 17147, + "Ġreadily": 26336, + "Ġreadiness": 34954, + "Ġreading": 3760, + "Ġreadings": 27319, + "Ġreads": 15700, + "Ġready": 1919, + "Ġreag": 26949, + "Ġreais": 34823, + "Ġreal": 957, + "Ġrealidad": 25635, + "Ġrealidade": 48292, + "Ġrealise": 18809, + "Ġrealised": 21337, + "Ġrealism": 38484, + "Ġrealistic": 12465, + "Ġrealistically": 40734, + "Ġrealities": 27785, + "Ġreality": 4103, + "Ġrealiz": 22828, + "Ġrealizar": 36461, + "Ġrealization": 25138, + "Ġrealize": 4325, + "Ġrealized": 5334, + "Ġrealizes": 29316, + "Ġrealizing": 16734, + "Ġreally": 534, + "Ġrealm": 15355, + "Ġrealmente": 14446, + "Ġrealms": 42824, + "Ġrealt": 41133, + "ĠrealtÃł": 47512, + "Ġreap": 39178, + "Ġreapp": 35638, + "Ġrear": 8250, + "Ġrearr": 29875, + "Ġrearrange": 39568, + "Ġreason": 1778, + "Ġreasonable": 10585, + "Ġreasonably": 23551, + "Ġreasoning": 21577, + "Ġreasons": 4112, + "Ġreass": 19486, + "Ġreb": 12970, + "Ġrebel": 28293, + "Ġrebell": 22260, + "Ġrebellion": 29793, + "Ġrebels": 37919, + "Ġrebirth": 49445, + "Ġrebo": 26802, + "Ġreboot": 33818, + "Ġreborn": 48899, + "Ġrebound": 31850, + "Ġrebuild": 16877, + "Ġrebuilding": 36717, + "Ġrebuilt": 38532, + "Ġrec": 850, + "Ġreca": 43086, + "Ġrecall": 9901, + "Ġrecalled": 39301, + "Ġrecap": 20928, + "Ġrece": 2268, + "Ġreceber": 42748, + "Ġreceipt": 33882, + "Ġreceive": 4774, + "Ġreceived": 4613, + "Ġreceiver": 20086, + "Ġreceivers": 49196, + "Ġreceives": 20717, + "Ġreceiving": 10040, + "Ġrecent": 5162, + "Ġrecently": 3938, + "Ġrecept": 15263, + "Ġreception": 21682, + "Ġreceptive": 45838, + "Ġreceptor": 32264, + "Ġreceptors": 34102, + "Ġrecess": 16417, + "Ġrecession": 24828, + "Ġrecharge": 31366, + "Ġrecher": 27788, + "Ġrecherche": 38501, + "Ġrecht": 24261, + "Ġrechts": 34305, + "Ġreci": 4214, + "Ġrecib": 46387, + "Ġrecibir": 49703, + "Ġrecip": 17325, + "Ġrecipe": 6782, + "Ġrecipes": 13035, + "Ġrecipient": 26216, + "Ġrecipients": 32440, + "Ġrecipro": 28961, + "Ġreciprocal": 46948, + "Ġrecite": 39434, + "Ġreck": 16374, + "Ġreckless": 38884, + "Ġreckon": 29548, + "Ġreclaim": 40074, + "Ġreco": 7759, + "Ġrecogn": 3068, + "Ġrecognise": 23991, + "Ġrecognised": 36802, + "Ġrecognition": 11150, + "Ġrecognizable": 40757, + "Ġrecognize": 5521, + "Ġrecognized": 9823, + "Ġrecognizes": 26564, + "Ġrecognizing": 18538, + "Ġrecoil": 42053, + "Ġrecoll": 39495, + "Ġrecom": 23334, + "Ġrecomend": 40292, + "Ġrecomm": 2616, + "Ġrecommend": 2748, + "Ġrecommendation": 11879, + "Ġrecommendations": 10434, + "Ġrecommended": 9628, + "Ġrecommending": 30559, + "Ġrecommends": 34556, + "Ġrecomp": 48000, + "Ġrecon": 9993, + "Ġreconcile": 41059, + "Ġreconciliation": 31281, + "Ġreconna": 31073, + "Ġreconnect": 30095, + "Ġreconoc": 43838, + "Ġreconsider": 40497, + "Ġreconst": 16891, + "Ġreconstruct": 31499, + "Ġreconstruction": 31565, + "Ġrecord": 2136, + "Ġrecorded": 8287, + "Ġrecorder": 37744, + "Ġrecording": 6613, + "Ġrecordings": 25162, + "Ġrecords": 7724, + "Ġrecount": 43997, + "Ġrecover": 8114, + "Ġrecovered": 19542, + "Ġrecovering": 29180, + "Ġrecovery": 8597, + "Ġrecre": 14261, + "Ġrecreate": 25833, + "Ġrecreation": 31573, + "Ġrecreational": 37554, + "Ġrecru": 9372, + "Ġrecruit": 15119, + "Ġrecruited": 33004, + "Ġrecruiting": 25987, + "Ġrecruitment": 28240, + "Ġrect": 11048, + "Ġrectang": 24077, + "Ġrectangle": 21930, + "Ġrectangular": 31167, + "Ġrecuer": 39092, + "Ġrecuper": 25692, + "Ġrecur": 18680, + "Ġrecurring": 32279, + "Ġrecurs": 20560, + "Ġrecursos": 30409, + "Ġrecy": 12036, + "Ġrecycle": 32162, + "Ġrecycled": 30674, + "Ġrecycling": 23363, + "Ġred": 2182, + "Ġrede": 14328, + "Ġredeem": 37715, + "Ġredef": 38818, + "Ġredemption": 35644, + "Ġreden": 26447, + "Ġredes": 16762, + "Ġredesign": 39853, + "Ġredirect": 29066, + "Ġredist": 36198, + "Ġredo": 29956, + "Ġredu": 2783, + "Ġreduce": 5407, + "Ġreduced": 9212, + "Ġreduces": 18081, + "Ġreducing": 12245, + "Ġreduction": 11004, + "Ġreductions": 40296, + "Ġredund": 27830, + "Ġredundant": 40997, + "Ġreduz": 40674, + "Ġree": 43060, + "Ġreef": 25345, + "Ġreefs": 50054, + "Ġreel": 34973, + "Ġref": 1895, + "Ġrefer": 2864, + "Ġrefere": 33048, + "Ġreferee": 43096, + "Ġreference": 6408, + "Ġreferenced": 32734, + "Ġreferences": 15400, + "Ġreferencing": 40582, + "Ġreferendum": 31957, + "Ġreferral": 33494, + "Ġreferrals": 47444, + "Ġreferred": 10839, + "Ġreferring": 13761, + "Ġrefers": 14942, + "Ġrefill": 42533, + "Ġrefin": 44395, + "Ġrefine": 33906, + "Ġrefined": 26201, + "Ġrefle": 36549, + "Ġreflect": 5031, + "Ġreflected": 15502, + "Ġreflecting": 23543, + "Ġreflection": 12914, + "Ġreflections": 30679, + "Ġreflective": 28931, + "Ġreflects": 18926, + "Ġreflex": 23802, + "Ġreform": 8290, + "Ġreforms": 24897, + "Ġrefr": 13334, + "Ġrefract": 45353, + "Ġrefrain": 46177, + "Ġrefres": 17368, + "Ġrefresh": 15134, + "Ġrefreshed": 46330, + "Ġrefreshing": 19772, + "Ġrefriger": 14162, + "Ġrefrigerator": 19655, + "Ġrefuge": 10991, + "Ġrefugee": 25622, + "Ġrefugees": 18301, + "Ġrefund": 29384, + "Ġrefusal": 48948, + "Ġrefuse": 16791, + "Ġrefused": 14654, + "Ġrefuses": 33222, + "Ġrefusing": 37289, + "Ġreg": 1121, + "Ġregain": 35336, + "Ġregard": 3843, + "Ġregarde": 33357, + "Ġregarded": 26047, + "Ġregarder": 31468, + "Ġregardez": 49841, + "Ġregarding": 8595, + "Ġregardless": 10060, + "Ġregards": 14258, + "Ġregel": 40504, + "Ġregen": 33909, + "Ġregener": 26358, + "Ġregeneration": 43813, + "Ġregime": 13120, + "Ġregiment": 47888, + "Ġregimes": 45738, + "Ġregion": 4458, + "Ġregional": 10964, + "Ġregions": 10682, + "Ġregist": 11376, + "Ġregister": 7280, + "Ġregistered": 13968, + "Ġregistering": 47329, + "Ġregisters": 38351, + "Ġregistration": 16847, + "Ġregistry": 36468, + "Ġregião": 45697, + "Ġregión": 45163, + "Ġregres": 47108, + "Ġregression": 24590, + "Ġregret": 10879, + "Ġregrets": 31214, + "Ġregul": 9837, + "Ġregular": 3890, + "Ġregularly": 11672, + "Ġregulate": 24475, + "Ġregulated": 26243, + "Ġregulating": 46715, + "Ġregulation": 15062, + "Ġregulations": 12563, + "Ġregulator": 36250, + "Ġregulators": 37311, + "Ġregulatory": 18260, + "Ġreh": 22355, + "Ġrehab": 32414, + "Ġrehabil": 26043, + "Ġrehabilitation": 33700, + "Ġrehe": 14369, + "Ġrehears": 17052, + "Ġrehearsal": 24884, + "Ġreicht": 47000, + "Ġreign": 20350, + "Ġreim": 33433, + "Ġreimburse": 41685, + "Ġrein": 6561, + "Ġreincarn": 48343, + "Ġreindeer": 49992, + "Ġreinfor": 20520, + "Ġreinforce": 22634, + "Ġreinforced": 31365, + "Ġreinforcement": 29280, + "Ġreinforcing": 48262, + "Ġreins": 47200, + "Ġreinst": 35056, + "Ġreinvent": 33477, + "Ġreiter": 25211, + "Ġreiterate": 33528, + "Ġreject": 8248, + "Ġrejected": 15749, + "Ġrejecting": 45401, + "Ġrejection": 26044, + "Ġrejo": 22087, + "Ġrejoice": 42397, + "Ġrek": 33881, + "Ġrel": 1039, + "Ġrela": 5195, + "Ġrelacion": 27189, + "Ġrelación": 37247, + "Ġrelat": 22441, + "Ġrelatable": 42355, + "Ġrelate": 10961, + "Ġrelated": 4077, + "Ġrelates": 16155, + "Ġrelating": 23968, + "Ġrelation": 9721, + "Ġrelational": 38444, + "Ġrelations": 2299, + "Ġrelationship": 2480, + "Ġrelationships": 6159, + "Ġrelativ": 21960, + "Ġrelative": 4972, + "Ġrelatively": 7226, + "Ġrelatives": 18201, + "Ġrelativity": 45675, + "Ġrelax": 5789, + "Ġrelaxation": 30315, + "Ġrelaxed": 14628, + "Ġrelaxing": 20103, + "Ġrelay": 24214, + "Ġrelação": 28177, + "Ġrele": 2951, + "Ġrelease": 4374, + "Ġreleased": 4736, + "Ġreleases": 16952, + "Ġreleasing": 16327, + "Ġrelent": 34045, + "Ġrelentless": 46136, + "Ġrelev": 25916, + "Ġrelevance": 32684, + "Ġrelevant": 7340, + "Ġreli": 19653, + "Ġreliability": 24550, + "Ġreliable": 12924, + "Ġreliably": 49927, + "Ġrelie": 21680, + "Ġrelied": 35463, + "Ġrelief": 10915, + "Ġrelies": 30910, + "Ġrelieve": 30450, + "Ġrelieved": 27972, + "Ġrelig": 4039, + "Ġreligion": 7561, + "Ġreligions": 21212, + "Ġreligious": 7185, + "Ġreload": 25628, + "Ġreloc": 26981, + "Ġreluct": 25149, + "Ġreluctant": 33677, + "Ġrely": 10687, + "Ġrelying": 24140, + "Ġrem": 890, + "Ġrema": 28986, + "Ġremain": 6222, + "Ġremainder": 29837, + "Ġremained": 12780, + "Ġremaining": 8877, + "Ġremains": 7023, + "Ġremake": 28582, + "Ġremar": 34329, + "Ġremark": 7942, + "Ġremarkable": 12802, + "Ġremarkably": 37381, + "Ġremarks": 19151, + "Ġremed": 28718, + "Ġremedies": 47133, + "Ġremedy": 31648, + "Ġremem": 20648, + "Ġremember": 1604, + "Ġremembered": 13745, + "Ġremembering": 20719, + "Ġremembers": 26228, + "Ġremembrance": 48083, + "Ġremind": 4160, + "Ġreminded": 15920, + "Ġreminder": 13548, + "Ġreminders": 43458, + "Ġreminding": 27639, + "Ġreminds": 12025, + "Ġreminis": 33765, + "Ġreminiscent": 44304, + "Ġremix": 47788, + "Ġremnants": 44652, + "Ġremo": 4595, + "Ġremot": 19896, + "Ġremote": 8607, + "Ġremotely": 20824, + "Ġremovable": 44060, + "Ġremoval": 17933, + "Ġremove": 4159, + "Ġremoved": 7261, + "Ġremoves": 30445, + "Ġremoving": 12720, + "Ġrempl": 36576, + "Ġren": 8124, + "Ġrename": 36741, + "Ġrenamed": 40949, + "Ġrencont": 28038, + "Ġrend": 6125, + "Ġrender": 15529, + "Ġrendered": 28748, + "Ġrendering": 22407, + "Ġrendez": 40026, + "Ġrendre": 36256, + "Ġrenew": 10162, + "Ġrenewable": 20938, + "Ġrenewal": 35516, + "Ġrenewed": 30228, + "Ġrenov": 18845, + "Ġrenovation": 39973, + "Ġrenowned": 34065, + "Ġrent": 6214, + "Ġrental": 21468, + "Ġrented": 32381, + "Ġrenting": 40598, + "Ġreop": 28994, + "Ġreopen": 33861, + "Ġreopening": 39542, + "Ġreorgan": 41203, + "Ġrep": 1085, + "Ġrepair": 10535, + "Ġrepaired": 36551, + "Ġrepairing": 46158, + "Ġrepairs": 28823, + "Ġrepar": 33291, + "Ġrepay": 27522, + "Ġrepe": 4301, + "Ġrepeat": 7149, + "Ġrepeated": 10477, + "Ġrepeatedly": 18227, + "Ġrepeating": 18617, + "Ġrepeats": 35038, + "Ġrepent": 19994, + "Ġrepentance": 37593, + "Ġrepente": 42884, + "Ġreper": 28946, + "Ġrepertoire": 49604, + "Ġrepet": 13645, + "Ġrepetition": 30432, + "Ġrepetitive": 29404, + "Ġrepl": 3248, + "Ġreplace": 7406, + "Ġreplaced": 10772, + "Ġreplacement": 14419, + "Ġreplaces": 46734, + "Ġreplacing": 19139, + "Ġreplay": 23836, + "Ġreplen": 43532, + "Ġreplica": 35456, + "Ġreplicate": 25356, + "Ġreplicated": 46365, + "Ġreplication": 39911, + "Ġreplied": 20345, + "Ġreplies": 42289, + "Ġreply": 16972, + "Ġrepo": 49040, + "Ġreport": 2275, + "Ġreported": 7055, + "Ġreportedly": 23989, + "Ġreporter": 19152, + "Ġreporters": 26249, + "Ġreporting": 10031, + "Ġreports": 7122, + "Ġreposit": 22283, + "Ġrepository": 25841, + "Ġrepres": 2556, + "Ġrepresent": 2906, + "Ġrepresenta": 49823, + "Ġrepresentation": 10290, + "Ġrepresentations": 33358, + "Ġrepresentative": 12424, + "Ġrepresentatives": 18628, + "Ġrepresented": 10379, + "Ġrepresenting": 13460, + "Ġrepresents": 8855, + "Ġrepro": 35257, + "Ġreprodu": 11408, + "Ġreproduce": 29501, + "Ġreproduction": 33934, + "Ġreproductive": 33569, + "Ġreprés": 27961, + "Ġreprésent": 40509, + "Ġreps": 27007, + "Ġrept": 29143, + "Ġrepublic": 18535, + "Ġrepublican": 39286, + "Ġreputation": 13061, + "Ġrequ": 1724, + "Ġrequest": 5308, + "Ġrequested": 16436, + "Ġrequesting": 31937, + "Ġrequests": 12475, + "Ġrequire": 3651, + "Ġrequired": 4739, + "Ġrequirement": 11695, + "Ġrequirements": 7728, + "Ġrequires": 7029, + "Ġrequiring": 24165, + "Ġrequis": 49878, + "Ġrer": 43819, + "Ġrere": 46453, + "Ġres": 725, + "Ġresc": 9610, + "Ġrescue": 13283, + "Ġrescued": 31757, + "Ġrese": 2025, + "Ġresearch": 2132, + "Ġresearched": 37098, + "Ġresearcher": 21751, + "Ġresearchers": 10309, + "Ġresearching": 24176, + "Ġresemb": 20695, + "Ġresemble": 36870, + "Ġresembles": 34433, + "Ġresent": 28773, + "Ġresentment": 43131, + "Ġreserv": 16454, + "Ġreservation": 28922, + "Ġreservations": 40222, + "Ġreserve": 17824, + "Ġreserved": 24819, + "Ġreserves": 27483, + "Ġreservoir": 26316, + "Ġreset": 14322, + "Ġresid": 13141, + "Ġreside": 40134, + "Ġresidence": 19607, + "Ġresidency": 34014, + "Ġresident": 10832, + "Ġresidential": 17389, + "Ġresidents": 9630, + "Ġresides": 47157, + "Ġresidual": 27980, + "Ġresidue": 34799, + "Ġresign": 27471, + "Ġresignation": 49494, + "Ġresigned": 41180, + "Ġresil": 12227, + "Ġresilience": 19980, + "Ġresiliency": 48712, + "Ġresilient": 23699, + "Ġresin": 26365, + "Ġresist": 4597, + "Ġresistance": 7335, + "Ġresistant": 20383, + "Ġresisting": 43940, + "Ġresistor": 37672, + "Ġresize": 50069, + "Ġresol": 7923, + "Ġresolution": 8669, + "Ġresolutions": 32179, + "Ġresolve": 14151, + "Ġresolved": 20772, + "Ġresolver": 34480, + "Ġresolving": 49940, + "Ġreson": 12544, + "Ġresonance": 30944, + "Ġresonate": 34285, + "Ġresonated": 47957, + "Ġresonates": 41051, + "Ġresort": 19606, + "Ġresource": 7684, + "Ġresources": 3593, + "Ġresp": 1597, + "Ġrespe": 40792, + "Ġrespect": 3104, + "Ġrespectable": 44279, + "Ġrespected": 20020, + "Ġrespectful": 26205, + "Ġrespectfully": 45201, + "Ġrespecting": 41968, + "Ġrespective": 23649, + "Ġrespectively": 25009, + "Ġrespecto": 35694, + "Ġrespects": 24126, + "Ġrespir": 18412, + "Ġrespiratory": 27038, + "Ġrespond": 4196, + "Ġresponded": 15806, + "Ġrespondents": 48275, + "Ġresponder": 36416, + "Ġresponders": 37542, + "Ġresponding": 16670, + "Ġresponds": 27331, + "Ġrespons": 2914, + "Ġresponsabil": 29829, + "Ġresponse": 4134, + "Ġresponses": 13019, + "Ġresponsibilities": 16190, + "Ġresponsibility": 6357, + "Ġresponsible": 6250, + "Ġresponsive": 21826, + "Ġresposta": 42126, + "Ġrespuesta": 40585, + "Ġress": 24689, + "Ġrest": 1472, + "Ġrestart": 21022, + "Ġrestaur": 4793, + "Ġrestaurant": 6383, + "Ġrestaurants": 11486, + "Ġreste": 20694, + "Ġrested": 43090, + "Ġrester": 37197, + "Ġresting": 21221, + "Ġrestless": 45451, + "Ġresto": 28247, + "Ġrestor": 46594, + "Ġrestoration": 23722, + "Ġrestore": 15227, + "Ġrestored": 23143, + "Ġrestoring": 36349, + "Ġrestra": 25508, + "Ġrestraint": 49281, + "Ġrestrict": 7694, + "Ġrestricted": 20608, + "Ġrestriction": 29529, + "Ġrestrictions": 14191, + "Ġrestrictive": 43220, + "Ġrestroom": 41286, + "Ġrests": 39755, + "Ġresult": 1874, + "Ġresultado": 28047, + "Ġresultados": 36796, + "Ġresulted": 18753, + "Ġresulting": 16505, + "Ġresults": 3542, + "Ġresume": 15358, + "Ġresumes": 48068, + "Ġresur": 16042, + "Ġresurrect": 34338, + "Ġresurrected": 48825, + "Ġresurrection": 24150, + "Ġret": 1533, + "Ġretail": 10800, + "Ġretailer": 45467, + "Ġretailers": 33519, + "Ġretain": 18340, + "Ġretained": 33438, + "Ġretaining": 34936, + "Ġretali": 37924, + "Ġretard": 42073, + "Ġretention": 22871, + "Ġrethink": 34595, + "Ġretir": 34906, + "Ġretire": 10731, + "Ġretired": 16776, + "Ġretirement": 15189, + "Ġretiring": 45770, + "Ġretour": 28873, + "Ġretr": 23106, + "Ġretra": 49356, + "Ġretract": 41107, + "Ġretreat": 15505, + "Ġretrie": 19817, + "Ġretrieve": 30254, + "Ġretro": 18820, + "Ġretrospect": 34997, + "Ġretrou": 26311, + "Ġretrouve": 30909, + "Ġretrouver": 36511, + "Ġreturn": 2736, + "Ġreturned": 8752, + "Ġreturning": 12678, + "Ġreturns": 11247, + "Ġreun": 14480, + "Ġreunion": 34720, + "Ġreunited": 50036, + "Ġreus": 38860, + "Ġreusable": 41807, + "Ġreuse": 26225, + "Ġrev": 3698, + "Ġreve": 5174, + "Ġreveal": 10658, + "Ġrevealed": 9599, + "Ġrevealing": 23983, + "Ġreveals": 20893, + "Ġrevel": 15262, + "Ġrevelation": 23456, + "Ġreven": 6158, + "Ġrevenge": 16711, + "Ġrevenir": 44899, + "Ġrevenue": 9324, + "Ġrevenues": 27299, + "Ġrever": 18438, + "Ġreverb": 41829, + "Ġrevers": 14582, + "Ġreversal": 42778, + "Ġreverse": 9943, + "Ġreversed": 30563, + "Ġreversible": 44788, + "Ġreview": 3131, + "Ġreviewed": 18429, + "Ġreviewers": 45837, + "Ġreviewing": 19576, + "Ġreviews": 10229, + "Ġrevis": 20767, + "Ġrevise": 44252, + "Ġrevised": 35228, + "Ġrevision": 34218, + "Ġrevisit": 32676, + "Ġrevital": 42457, + "Ġrevival": 33207, + "Ġrevive": 36292, + "Ġrevived": 48358, + "Ġrevol": 16908, + "Ġrevolt": 42568, + "Ġrevolution": 8894, + "Ġrevolutionary": 22687, + "Ġrevolves": 47934, + "Ġrevving": 49739, + "Ġreward": 7782, + "Ġrewarded": 29105, + "Ġrewarding": 20063, + "Ġrewards": 17203, + "Ġrewind": 41458, + "Ġrework": 48376, + "Ġrewrite": 28132, + "Ġrez": 48060, + "Ġrh": 33418, + "Ġrhe": 50100, + "Ġrhet": 24182, + "Ġrhetoric": 29604, + "Ġrhin": 49030, + "Ġrho": 20293, + "Ġrhy": 8740, + "Ġrhyme": 34753, + "Ġrhymes": 47917, + "Ġrhythm": 11801, + "Ġrhythmic": 46967, + "Ġrhythms": 44892, + "Ġri": 19739, + "Ġrib": 9162, + "Ġribbon": 20921, + "Ġribs": 21400, + "Ġric": 21040, + "Ġrice": 5090, + "Ġrich": 4593, + "Ġricher": 29021, + "Ġriches": 35777, + "Ġrichest": 35098, + "Ġrichness": 44506, + "Ġricht": 22136, + "Ġrichtig": 13129, + "Ġrichtige": 41569, + "Ġrico": 41529, + "Ġrid": 3973, + "Ġride": 5077, + "Ġrider": 25419, + "Ġriders": 23303, + "Ġrides": 20773, + "Ġridge": 34651, + "Ġridic": 9276, + "Ġridiculous": 11083, + "Ġridiculously": 41358, + "Ġriding": 9546, + "Ġrien": 13355, + "Ġries": 23932, + "Ġrif": 13203, + "Ġriff": 36798, + "Ġrifle": 18008, + "Ġrifles": 34058, + "Ġrig": 8329, + "Ġright": 558, + "Ġrighteous": 16153, + "Ġrighteousness": 26407, + "Ġrightly": 32879, + "Ġrights": 4601, + "Ġrigid": 22195, + "Ġrigor": 42191, + "Ġrigorous": 29882, + "Ġrigt": 46159, + "Ġrij": 47237, + "Ġrikt": 38420, + "Ġrim": 15982, + "Ġring": 4875, + "Ġringing": 18423, + "Ġrings": 11136, + "Ġrinse": 27026, + "Ġriot": 32211, + "Ġriots": 43802, + "Ġrip": 12782, + "Ġripe": 31421, + "Ġripped": 22780, + "Ġripping": 38776, + "Ġripple": 40688, + "Ġris": 2253, + "Ġrise": 6272, + "Ġrisen": 28614, + "Ġrises": 21373, + "Ġrising": 11636, + "Ġrisk": 3148, + "Ġrisking": 45235, + "Ġrisks": 10888, + "Ġrisky": 21137, + "Ġrisque": 37574, + "Ġrit": 11289, + "Ġritual": 13792, + "Ġrituals": 29082, + "Ġriv": 28745, + "Ġrival": 16286, + "Ġrivalry": 42352, + "Ġrivals": 33303, + "Ġriver": 6810, + "Ġrivers": 18361, + "Ġro": 744, + "Ġroad": 3060, + "Ġroadmap": 35738, + "Ġroads": 11344, + "Ġroam": 40474, + "Ġroaming": 42680, + "Ġroar": 40347, + "Ġroaring": 36231, + "Ġroast": 12904, + "Ġroasted": 24766, + "Ġroasting": 45227, + "Ġrob": 3870, + "Ġrobbed": 35772, + "Ġrobbery": 37418, + "Ġrobe": 37213, + "Ġrobi": 47380, + "ĠrobiÄĩ": 46900, + "Ġrobot": 7881, + "Ġrobotic": 30468, + "Ġrobotics": 34145, + "Ġrobots": 14733, + "Ġrobust": 13956, + "Ġrock": 3727, + "Ġrocket": 13012, + "Ġrockets": 28361, + "Ġrocking": 30929, + "Ġrocks": 10989, + "Ġrocky": 33301, + "Ġrod": 8685, + "Ġrode": 21602, + "Ġrods": 32761, + "Ġrodz": 28607, + "Ġrogue": 39100, + "Ġrok": 35135, + "Ġroku": 19451, + "Ġrol": 34109, + "Ġrole": 3090, + "Ġroles": 9604, + "Ġroll": 3373, + "Ġrolled": 14306, + "Ġroller": 15948, + "Ġrollers": 46642, + "Ġrolling": 9439, + "Ġrolls": 15767, + "Ġrom": 7438, + "Ġroman": 41362, + "Ġromance": 19064, + "Ġromantic": 13590, + "Ġrond": 39353, + "Ġroof": 8418, + "Ġroofs": 48555, + "Ġrooft": 34460, + "Ġrooftop": 41027, + "Ġrook": 24692, + "Ġrookie": 36299, + "Ġroom": 1808, + "Ġroomm": 23929, + "Ġroommate": 31692, + "Ġroommates": 46886, + "Ġrooms": 9396, + "Ġroot": 5593, + "Ġrooted": 25277, + "Ġrooting": 41572, + "Ġroots": 10669, + "Ġrope": 13540, + "Ġropes": 32964, + "Ġros": 18953, + "Ġrose": 10895, + "Ġroses": 28620, + "Ġroster": 29892, + "Ġrot": 4297, + "Ġrotary": 45811, + "Ġrotate": 13121, + "Ġrotated": 42146, + "Ġrotates": 42133, + "Ġrotating": 19627, + "Ġrotation": 12447, + "Ġrotational": 45420, + "Ġrotations": 44796, + "Ġrotor": 26847, + "Ġrotten": 31977, + "Ġrou": 18450, + "Ġrouge": 40605, + "Ġrough": 5903, + "Ġroughly": 9810, + "Ġround": 3098, + "Ġrounded": 23382, + "Ġrounding": 48237, + "Ġrounds": 13757, + "Ġroup": 48485, + "Ġrout": 4020, + "Ġroute": 7955, + "Ġrouter": 22492, + "Ġroutes": 18242, + "Ġroutine": 9927, + "Ġroutinely": 40443, + "Ġroutines": 33827, + "Ġrouting": 32722, + "Ġrover": 45767, + "Ġrow": 5386, + "Ġrows": 13241, + "Ġroy": 36364, + "Ġroyal": 13351, + "Ġroyalty": 40929, + "Ġroz": 9544, + "Ġrozm": 35234, + "Ġrozp": 47576, + "Ġrozum": 48797, + "Ġrpm": 47071, + "Ġru": 5420, + "Ġrua": 49467, + "Ġrub": 5915, + "Ġrubber": 11593, + "Ġrubbing": 29770, + "Ġrubbish": 29978, + "Ġrud": 32109, + "Ġrude": 18895, + "Ġrue": 43919, + "Ġrug": 18329, + "Ġrugby": 43895, + "Ġrugged": 42662, + "Ġruh": 36614, + "Ġruim": 33871, + "Ġruin": 15514, + "Ġruined": 17013, + "Ġruining": 38938, + "Ġruins": 24747, + "Ġrul": 8551, + "Ġrule": 4978, + "Ġruled": 20077, + "Ġruler": 19661, + "Ġrulers": 35009, + "Ġrules": 4474, + "Ġruling": 21437, + "Ġrum": 8347, + "Ġrumah": 44988, + "Ġrumor": 29639, + "Ġrumors": 21201, + "Ġrun": 1190, + "Ġrund": 23096, + "Ġrunner": 24376, + "Ġrunners": 33892, + "Ġrunning": 2614, + "Ġruns": 6676, + "Ġrunt": 49435, + "Ġrunter": 33295, + "Ġruntime": 34474, + "Ġrunway": 26642, + "Ġrupees": 24638, + "Ġrural": 11165, + "Ġrus": 38684, + "Ġrush": 9300, + "Ġrushed": 24421, + "Ġrushing": 25876, + "Ġrust": 15259, + "Ġrusty": 45394, + "Ġrut": 41324, + "Ġruth": 38225, + "Ġruthless": 47096, + "Ġry": 20791, + "Ġrze": 16081, + "Ġrzecz": 36833, + "Ġrzeczy": 26297, + "ĠrzeczywiÅĽcie": 44922, + "Ġráp": 18213, + "Ġrápido": 24893, + "Ġrä": 39442, + "Ġrätt": 38494, + "Ġrèg": 43659, + "Ġré": 3960, + "Ġréal": 18911, + "Ġréalité": 35677, + "Ġrécup": 43113, + "Ġrédu": 46369, + "Ġréf": 30170, + "Ġréfl": 48438, + "Ġrég": 17563, + "Ġrégion": 42669, + "Ġrép": 14243, + "Ġrépond": 26027, + "Ġrépondre": 40139, + "Ġréponse": 40967, + "Ġrés": 14415, + "Ġrése": 34044, + "Ġrésult": 33671, + "Ġréuss": 28099, + "Ġréussi": 46171, + "Ġrév": 38357, + "Ġrê": 38240, + "Ġró": 11416, + "Ġrównież": 20532, + "Ġróż": 19637, + "Ġróżne": 47760, + "Ġróżnych": 42602, + "Ġrôle": 41681, + "ĠrÄĻ": 41197, + "Ġrất": 25147, + "Ġrằng": 45019, + "Ġrá»ĵi": 19908, + "Ġs": 262, + "Ġsa": 601, + "Ġsaat": 23369, + "Ġsab": 5560, + "Ġsabe": 12275, + "Ġsabem": 46128, + "Ġsabemos": 27200, + "Ġsaben": 36670, + "Ġsaber": 12489, + "Ġsabes": 37790, + "Ġsabia": 36388, + "Ġsabor": 48648, + "Ġsabot": 37167, + "Ġsac": 4899, + "Ġsacar": 43823, + "Ġsach": 42510, + "Ġsack": 33209, + "Ġsacr": 7480, + "Ġsacred": 15757, + "Ġsacrific": 14108, + "Ġsacrifice": 11521, + "Ġsacrificed": 32021, + "Ġsacrifices": 25094, + "Ġsacrificing": 42294, + "Ġsad": 4227, + "Ġsaddle": 30459, + "Ġsadece": 32945, + "Ġsadly": 22023, + "Ġsadness": 22462, + "Ġsaf": 3597, + "Ġsafe": 3273, + "Ġsafeg": 32358, + "Ġsafeguard": 40153, + "Ġsafely": 11750, + "Ġsafer": 15856, + "Ġsafest": 37558, + "Ġsafety": 4514, + "Ġsag": 15274, + "Ġsaga": 34250, + "Ġsage": 19721, + "Ġsagen": 8360, + "Ġsagt": 15764, + "Ġsagte": 36771, + "Ġsah": 19292, + "Ġsai": 32417, + "Ġsaid": 848, + "Ġsail": 15758, + "Ġsailed": 49339, + "Ġsailing": 27452, + "Ġsailors": 42036, + "Ġsaint": 28374, + "Ġsaints": 29546, + "Ġsair": 29157, + "Ġsais": 11757, + "Ġsait": 23146, + "Ġsaja": 32617, + "Ġsak": 23366, + "Ġsake": 9717, + "Ġsaker": 40416, + "Ġsal": 1845, + "Ġsala": 37596, + "Ġsalad": 12604, + "Ġsalads": 48025, + "Ġsalah": 41688, + "Ġsalaries": 35057, + "Ġsalary": 15360, + "Ġsale": 8680, + "Ġsales": 5763, + "Ġsalir": 31514, + "Ġsaliva": 43540, + "Ġsalmon": 18518, + "Ġsalon": 27768, + "Ġsalsa": 32428, + "Ġsalt": 5139, + "Ġsalted": 39783, + "Ġsalts": 50191, + "Ġsalty": 18443, + "Ġsalud": 23933, + "Ġsalut": 45184, + "Ġsalute": 33673, + "Ġsalv": 26858, + "Ġsalvar": 48873, + "Ġsalvation": 17456, + "Ġsam": 3247, + "Ġsama": 17768, + "Ġsamb": 47822, + "Ġsame": 912, + "Ġsamen": 39405, + "Ġsamh": 49864, + "Ġsamma": 43407, + "Ġsamo": 36422, + "Ġsamp": 34098, + "Ġsampai": 38569, + "Ġsample": 6889, + "Ġsamples": 10938, + "Ġsampling": 21179, + "Ġsamurai": 48144, + "Ġsan": 6645, + "Ġsana": 15490, + "Ġsanct": 21794, + "Ġsanction": 39830, + "Ġsanctions": 21342, + "Ġsanctuary": 34390, + "Ġsand": 4932, + "Ġsandbox": 42115, + "Ġsanding": 44338, + "Ġsandwich": 11141, + "Ġsandwiches": 29022, + "Ġsandy": 47122, + "Ġsane": 45610, + "Ġsang": 9980, + "Ġsangat": 31917, + "Ġsangre": 45878, + "Ġsanit": 24533, + "Ġsanitation": 50146, + "Ġsanitizer": 47080, + "Ġsanity": 47892, + "Ġsank": 43746, + "Ġsano": 46942, + "Ġsans": 12177, + "Ġsant": 23044, + "Ġsanté": 30068, + "Ġsao": 33108, + "Ġsap": 18985, + "Ġsapp": 46938, + "Ġsar": 13782, + "Ġsarc": 36836, + "Ġsare": 38706, + "ĠsarÃł": 41338, + "Ġsash": 43780, + "Ġsat": 3227, + "Ġsatell": 11997, + "Ġsatellite": 16016, + "Ġsatellites": 24960, + "Ġsatisf": 5519, + "Ġsatisfaction": 18715, + "Ġsatisfactory": 48614, + "Ġsatisfied": 11239, + "Ġsatisfies": 44271, + "Ġsatisfy": 19319, + "Ġsatisfying": 18348, + "Ġsatu": 27679, + "Ġsatur": 21160, + "Ġsaturated": 25408, + "Ġsaturation": 27090, + "Ġsau": 17828, + "Ġsauc": 49181, + "Ġsauce": 4880, + "Ġsauces": 41447, + "Ġsaud": 47863, + "Ġsauna": 46654, + "Ġsaus": 16534, + "Ġsausage": 20526, + "Ġsausages": 41157, + "Ġsaute": 41223, + "Ġsav": 11163, + "Ġsava": 44908, + "Ġsavage": 42512, + "Ġsave": 3155, + "Ġsaved": 6624, + "Ġsaves": 19155, + "Ġsavez": 30503, + "Ġsaving": 6816, + "Ġsavings": 13454, + "Ġsavior": 41327, + "Ġsavoir": 19345, + "Ġsavory": 33944, + "Ġsavvy": 47506, + "Ġsaw": 1866, + "Ġsax": 42119, + "Ġsay": 584, + "Ġsaya": 9160, + "Ġsayin": 44364, + "Ġsaying": 1566, + "Ġsays": 1619, + "Ġsaç": 48679, + "Ġsaúde": 39937, + "ĠsaÄŁ": 30318, + "Ġsc": 795, + "Ġsca": 4216, + "Ġscaff": 40889, + "Ġscaffold": 44094, + "Ġscal": 15664, + "Ġscalable": 38481, + "Ġscalar": 39684, + "Ġscale": 4373, + "Ġscaled": 36039, + "Ġscales": 17408, + "Ġscaling": 21589, + "Ġscall": 30509, + "Ġscalp": 31972, + "Ġscam": 26917, + "Ġscan": 11049, + "Ġscand": 40273, + "Ġscandal": 27922, + "Ġscanned": 45089, + "Ġscanner": 30211, + "Ġscanning": 27019, + "Ġscans": 35116, + "Ġscar": 10569, + "Ġscarce": 41340, + "Ġscarcity": 44181, + "Ġscare": 17185, + "Ġscared": 5338, + "Ġscares": 35721, + "Ġscarf": 29086, + "Ġscariest": 47755, + "Ġscars": 31353, + "Ġscary": 6958, + "Ġscatter": 34951, + "Ġscattered": 21986, + "Ġscattering": 42314, + "Ġscen": 4191, + "Ġscenario": 9005, + "Ġscenarios": 15077, + "Ġscene": 4145, + "Ġscenery": 25805, + "Ġscenes": 8026, + "Ġscent": 19040, + "Ġsch": 956, + "Ġschaffen": 30888, + "Ġschauen": 25672, + "Ġschaut": 46064, + "Ġsche": 25690, + "Ġsched": 5292, + "Ġschedul": 12000, + "Ġschedule": 7567, + "Ġscheduled": 15678, + "Ġschedules": 28078, + "Ġscheduling": 29055, + "Ġscheint": 47906, + "Ġschem": 22627, + "Ġschema": 34078, + "Ġschematic": 44739, + "Ġscheme": 12232, + "Ġschemes": 26954, + "Ġschizophren": 41532, + "Ġschizophrenia": 49022, + "Ġschle": 22664, + "Ġschlecht": 32427, + "Ġschlim": 37260, + "Ġschlimm": 48821, + "Ġschme": 46459, + "Ġschne": 28643, + "Ġschnell": 17589, + "Ġschneller": 43865, + "Ġschol": 6946, + "Ġscholar": 17912, + "Ġscholarly": 39589, + "Ġscholars": 8553, + "Ġscholarship": 16178, + "Ġscholarships": 28474, + "Ġschon": 4981, + "Ġschool": 1395, + "Ġschooling": 41677, + "Ġschools": 4656, + "Ġschreiben": 48546, + "Ġschw": 17932, + "Ġschwer": 23809, + "Ġschwier": 27546, + "Ġschwierig": 37845, + "Ġschö": 25032, + "Ġschön": 13527, + "Ġschöne": 41152, + "Ġsci": 2180, + "Ġscience": 3497, + "Ġsciences": 17677, + "Ġscient": 3989, + "Ġscientific": 8134, + "Ġscientifically": 39719, + "Ġscientist": 12662, + "Ġscientists": 7708, + "Ġscissors": 16066, + "Ġscold": 26437, + "Ġscolded": 49283, + "Ġscoop": 19555, + "Ġscoot": 21375, + "Ġscooter": 30441, + "Ġscope": 11923, + "Ġscor": 38629, + "Ġscore": 6175, + "Ġscored": 18139, + "Ġscores": 13444, + "Ġscoring": 22358, + "Ġscorp": 46092, + "Ġscout": 34392, + "Ġscr": 5918, + "Ġscra": 13943, + "Ġscrambled": 49127, + "Ġscrap": 23138, + "Ġscrape": 32827, + "Ġscraping": 43738, + "Ġscraps": 45204, + "Ġscratch": 8459, + "Ġscratched": 40513, + "Ġscratches": 33695, + "Ġscratching": 29699, + "Ġscream": 7291, + "Ġscreamed": 41069, + "Ġscreaming": 12636, + "Ġscreams": 22832, + "Ġscree": 38323, + "Ġscreen": 2568, + "Ġscreening": 17732, + "Ġscreens": 11171, + "Ġscreenshot": 27712, + "Ġscreenshots": 40661, + "Ġscrew": 5630, + "Ġscrewdriver": 27282, + "Ġscrewed": 20331, + "Ġscrews": 13050, + "Ġscri": 5545, + "Ġscrib": 39435, + "Ġscript": 5755, + "Ġscripts": 23294, + "Ġscripture": 24783, + "Ġscriptures": 29969, + "Ġscroll": 11369, + "Ġscrolling": 29053, + "Ġscrub": 24163, + "Ġscrut": 28949, + "Ġscrutiny": 38615, + "Ġsculpt": 12613, + "Ġsculpture": 22972, + "Ġsculptures": 37544, + "Ġscène": 42424, + "Ġse": 369, + "Ġsea": 4158, + "Ġseafood": 23206, + "Ġseal": 12185, + "Ġsealed": 21514, + "Ġsealing": 48678, + "Ġseals": 32031, + "Ġseam": 12337, + "Ġseamless": 28677, + "Ġseamlessly": 38083, + "Ġseams": 33547, + "Ġsean": 37670, + "Ġsearch": 3164, + "Ġsearched": 22961, + "Ġsearches": 26701, + "Ġsearching": 10808, + "Ġseas": 22535, + "Ġseason": 3196, + "Ġseasonal": 27421, + "Ġseasoned": 30111, + "Ġseasoning": 23421, + "Ġseasons": 15050, + "Ġseat": 6121, + "Ġseated": 20959, + "Ġseating": 32430, + "Ġseats": 11069, + "Ġseaweed": 29449, + "Ġseb": 48049, + "Ġsebagai": 48246, + "Ġsebel": 46122, + "Ġseben": 46031, + "Ġsec": 907, + "Ġsechs": 41945, + "Ġsecond": 1150, + "Ġsecondary": 11396, + "Ġsecondly": 26246, + "Ġsecondo": 41601, + "Ġseconds": 3949, + "Ġsecre": 34432, + "Ġsecret": 4054, + "Ġsecretary": 15691, + "Ġsecretly": 22611, + "Ġsecrets": 14093, + "Ġsect": 22610, + "Ġsection": 3541, + "Ġsections": 10863, + "Ġsector": 6977, + "Ġsectors": 18373, + "Ġsecular": 25734, + "Ġsecure": 7144, + "Ġsecured": 22905, + "Ġsecurely": 38348, + "Ġsecuring": 33640, + "Ġsecurities": 38597, + "Ġsecurity": 3825, + "Ġsed": 9643, + "Ġsedan": 29344, + "Ġsediment": 32362, + "Ġsee": 536, + "Ġseed": 8871, + "Ġseeds": 9203, + "Ġseeing": 2577, + "Ġseek": 8075, + "Ġseekers": 47915, + "Ġseeking": 11670, + "Ġseeks": 28840, + "Ġseem": 1643, + "Ġseemed": 6576, + "Ġseemingly": 18709, + "Ġseems": 2544, + "Ġseen": 1612, + "Ġsees": 8194, + "Ġseg": 3896, + "Ġsegment": 9469, + "Ġsegments": 19904, + "Ġsegreg": 37630, + "Ġsegregated": 47370, + "Ġsegregation": 34317, + "Ġsegu": 8878, + "Ġsegue": 33850, + "Ġseguinte": 32433, + "Ġseguir": 18584, + "Ġsegunda": 21978, + "Ġsegundo": 17954, + "Ġsegundos": 40108, + "Ġsegur": 22179, + "Ġsegurança": 49538, + "Ġseguridad": 35415, + "Ġseguro": 31424, + "Ġsegún": 36570, + "Ġsehe": 35995, + "Ġsehen": 11333, + "Ġsehr": 5499, + "Ġsei": 10842, + "Ġseid": 38041, + "Ġsein": 6195, + "Ġseine": 15925, + "Ġseinem": 29187, + "Ġseinen": 24427, + "Ġseiner": 23114, + "Ġseis": 28233, + "Ġseism": 40159, + "Ġseit": 16452, + "Ġseiz": 27610, + "Ġseize": 33413, + "Ġseized": 33912, + "Ġseizure": 42522, + "Ġseizures": 44215, + "Ġseja": 13459, + "Ġsek": 17215, + "Ġsekali": 45016, + "Ġsekarang": 29047, + "Ġsel": 5851, + "Ġselber": 23888, + "Ġselbst": 13053, + "Ġseldom": 47717, + "Ġsele": 23264, + "Ġselect": 3048, + "Ġselected": 8209, + "Ġselecting": 18182, + "Ġselection": 9450, + "Ġselections": 47829, + "Ġselective": 33930, + "Ġself": 2698, + "Ġselfie": 22147, + "Ġselfies": 34814, + "Ġselfish": 19074, + "Ġsell": 3607, + "Ġseller": 23600, + "Ġsellers": 31276, + "Ġselling": 6511, + "Ġsells": 20897, + "Ġselon": 37391, + "Ġselv": 33277, + "Ġselves": 41900, + "Ġsem": 4361, + "Ġsemaine": 28681, + "Ġsemaines": 40715, + "Ġsemana": 20205, + "Ġsemanas": 42507, + "Ġsemantic": 47982, + "Ġsemb": 20775, + "Ġsembla": 49277, + "Ġsemble": 38328, + "Ġsemester": 11894, + "Ġsemi": 12909, + "Ġsemic": 27515, + "Ġsemicondu": 36924, + "Ġsemiconductor": 45310, + "Ġsemin": 18288, + "Ġseminar": 29235, + "Ġseminars": 43112, + "Ġsempre": 9553, + "Ġsemua": 28195, + "Ġsen": 3151, + "Ġsenate": 33609, + "Ġsenator": 24664, + "Ġsenators": 32221, + "Ġsencill": 46749, + "Ġsend": 2845, + "Ġsending": 7750, + "Ġsendiri": 39536, + "Ġsendo": 22589, + "Ġsends": 14790, + "Ġsenhor": 46464, + "Ġseni": 21897, + "Ġsenin": 19402, + "Ġsenior": 7965, + "Ġseniors": 21069, + "Ġsens": 2923, + "Ġsensation": 20069, + "Ġsensational": 47507, + "Ġsensations": 36642, + "Ġsense": 2020, + "Ġsenses": 17057, + "Ġsensible": 25380, + "Ġsensing": 30654, + "Ġsensit": 17039, + "Ġsensitive": 9477, + "Ġsensitivity": 19392, + "Ġsensor": 10200, + "Ġsensors": 14840, + "Ġsensory": 27233, + "Ġsent": 2279, + "Ġsente": 47214, + "Ġsentence": 8174, + "Ġsentenced": 30954, + "Ġsentences": 16579, + "Ġsentido": 19850, + "Ġsentiment": 16149, + "Ġsentimental": 42823, + "Ġsentiments": 41146, + "Ġsentir": 23963, + "Ġsenza": 36208, + "Ġsepar": 3128, + "Ġseparate": 4994, + "Ġseparated": 12005, + "Ġseparately": 14759, + "Ġseparates": 34149, + "Ġseparating": 29279, + "Ġseparation": 14634, + "Ġseper": 24418, + "Ġseperti": 28693, + "Ġsept": 23891, + "Ġsequ": 5123, + "Ġsequel": 20622, + "Ġsequence": 8310, + "Ġsequences": 22978, + "Ġsequencing": 32693, + "Ġsequential": 42881, + "Ġser": 816, + "Ġsera": 15021, + "Ġserait": 23139, + "Ġseres": 44721, + "Ġserge": 46463, + "Ġseria": 20809, + "Ġserial": 17436, + "Ġserie": 23030, + "Ġseries": 2638, + "Ġserio": 49531, + "Ġserious": 3156, + "Ġseriously": 6638, + "Ġseriousness": 44880, + "Ġsermon": 34610, + "Ġseront": 39400, + "Ġserpent": 38315, + "Ġsert": 38806, + "Ġserum": 32755, + "Ġserv": 1658, + "Ġservant": 17896, + "Ġservants": 21705, + "Ġserve": 4596, + "Ġserved": 7584, + "Ġserver": 7154, + "Ġservers": 15909, + "Ġserves": 13451, + "Ġservi": 37076, + "Ġservice": 2643, + "Ġservices": 3328, + "Ġservicio": 43078, + "Ġservicios": 42722, + "Ġserving": 8148, + "Ġservir": 29463, + "Ġserá": 16502, + "ĠserÃŃa": 23679, + "Ġses": 5385, + "Ġsesame": 21994, + "Ġsesi": 13315, + "Ġsesleri": 35700, + "Ġsession": 5481, + "Ġsessions": 11081, + "Ġset": 992, + "Ġsets": 6352, + "Ġsett": 5584, + "Ġsetting": 3287, + "Ġsettings": 6257, + "Ġsettle": 11852, + "Ġsettled": 14819, + "Ġsettlement": 18130, + "Ġsettlements": 35558, + "Ġsettlers": 43798, + "Ġsettling": 33841, + "Ġsetup": 8657, + "Ġsetups": 46832, + "Ġsetzen": 35877, + "Ġsetzt": 49099, + "Ġseu": 7986, + "Ġseul": 24448, + "Ġseule": 18800, + "Ġseulement": 27772, + "Ġseus": 17004, + "Ġsev": 15340, + "Ġseva": 42465, + "Ġseven": 3407, + "Ġsevent": 12100, + "Ġseventeen": 39532, + "Ġseventh": 17875, + "Ġseventy": 25662, + "Ġsever": 2802, + "Ġseveral": 2940, + "Ġsevere": 8922, + "Ġseverely": 26271, + "Ġseverity": 35179, + "Ġsevi": 43812, + "Ġsew": 15472, + "Ġsewer": 37079, + "Ġsewing": 19311, + "Ġsewn": 46946, + "Ġsex": 3260, + "Ġsext": 42826, + "Ġsexual": 6701, + "Ġsexuality": 25426, + "Ġsexually": 26791, + "Ġsexy": 13701, + "Ġseç": 43065, + "Ġseñ": 13830, + "Ġseñor": 22188, + "Ġseñora": 41094, + "Ġsf": 47095, + "Ġsh": 402, + "Ġsha": 3230, + "Ġshack": 40369, + "Ġshad": 5744, + "Ġshade": 11466, + "Ġshaded": 48067, + "Ġshades": 20639, + "Ġshading": 30556, + "Ġshadow": 8576, + "Ġshadows": 14740, + "Ġshady": 41853, + "Ġshaft": 18467, + "Ġshake": 10283, + "Ġshaken": 40971, + "Ġshakes": 37891, + "Ġshaking": 15415, + "Ġshaky": 44785, + "Ġshall": 4393, + "Ġshallow": 20488, + "Ġsham": 29758, + "Ġshame": 10069, + "Ġshameful": 49600, + "Ġshameless": 40164, + "Ġshampoo": 27484, + "Ġshap": 6706, + "Ġshape": 3909, + "Ġshaped": 13475, + "Ġshapes": 10854, + "Ġshaping": 25945, + "Ġshar": 16768, + "Ġshare": 2073, + "Ġshared": 5507, + "Ġshareholders": 33294, + "Ġshares": 12182, + "Ġsharing": 5414, + "Ġshark": 13327, + "Ġsharks": 26312, + "Ġsharp": 8199, + "Ġsharpen": 31570, + "Ġsharper": 44670, + "Ġsharply": 42893, + "Ġshattered": 35209, + "Ġshave": 25544, + "Ġshaved": 37980, + "Ġshaving": 36481, + "Ġshe": 750, + "Ġshear": 24082, + "Ġshed": 14951, + "Ġshedding": 49934, + "Ġsheep": 14213, + "Ġsheer": 23061, + "Ġsheet": 8193, + "Ġsheets": 15421, + "Ġshel": 9180, + "Ġshelf": 15222, + "Ġshell": 8720, + "Ġshells": 22523, + "Ġshelter": 13341, + "Ġshelters": 36643, + "Ġshelves": 24349, + "Ġshepherd": 40317, + "Ġsher": 29855, + "Ġsheriff": 37103, + "Ġshield": 10257, + "Ġshields": 33466, + "Ġshift": 5513, + "Ġshifted": 18892, + "Ġshifting": 17573, + "Ġshifts": 19201, + "Ġshimmer": 35088, + "Ġshin": 37124, + "Ġshine": 12207, + "Ġshines": 28056, + "Ġshining": 18269, + "Ġshiny": 16997, + "Ġship": 5374, + "Ġshipment": 49991, + "Ġshipped": 25312, + "Ġshipping": 14122, + "Ġships": 11434, + "Ġshirt": 8336, + "Ġshirts": 20832, + "Ġshit": 4611, + "Ġshitty": 30748, + "Ġsho": 2223, + "Ġshock": 5588, + "Ġshocked": 12763, + "Ġshocking": 18776, + "Ġshocks": 37066, + "Ġshoe": 12796, + "Ġshoes": 6654, + "Ġshook": 28438, + "Ġshoot": 3076, + "Ġshooter": 24680, + "Ġshooters": 45526, + "Ġshooting": 5942, + "Ġshootings": 44314, + "Ġshoots": 20704, + "Ġshop": 3945, + "Ġshopping": 8688, + "Ġshops": 14457, + "Ġshore": 17805, + "Ġshores": 44247, + "Ġshort": 2099, + "Ġshortage": 24708, + "Ġshortages": 46765, + "Ġshortcut": 24822, + "Ġshortcuts": 34620, + "Ġshorten": 39632, + "Ġshortened": 45183, + "Ġshorter": 11639, + "Ġshortest": 31875, + "Ġshortly": 13392, + "Ġshorts": 19848, + "Ġshot": 3347, + "Ġshotgun": 24734, + "Ġshots": 8305, + "Ġshould": 820, + "Ġshoulder": 7948, + "Ġshoulders": 10245, + "Ġshouldn": 4659, + "Ġshout": 8043, + "Ġshouted": 37310, + "Ġshouting": 20382, + "Ġshove": 35648, + "Ġshovel": 29789, + "Ġshow": 855, + "Ġshowc": 29794, + "Ġshowcase": 20388, + "Ġshowed": 4712, + "Ġshower": 10128, + "Ġshowers": 29499, + "Ġshowing": 4099, + "Ġshown": 4898, + "Ġshows": 3110, + "Ġshr": 9884, + "Ġshred": 21567, + "Ġshredded": 39091, + "Ġshrim": 13958, + "Ġshrimp": 15600, + "Ġshrine": 37812, + "Ġshrink": 23060, + "Ġshrinking": 41684, + "Ġshroud": 50077, + "Ġshuffle": 39426, + "Ġshut": 5309, + "Ġshutdown": 34927, + "Ġshuts": 48590, + "Ġshutter": 25517, + "Ġshutting": 36057, + "Ġshuttle": 26728, + "Ġshy": 12685, + "Ġsi": 1511, + "Ġsia": 25176, + "Ġsiamo": 33459, + "Ġsib": 35505, + "Ġsibling": 39409, + "Ġsiblings": 20571, + "Ġsic": 33579, + "Ġsich": 3041, + "Ġsicher": 18623, + "Ġsick": 4998, + "Ġsickness": 25611, + "Ġsid": 20822, + "Ġside": 1252, + "Ġsided": 41651, + "Ġsides": 4881, + "Ġsidewalk": 25360, + "Ġsideways": 26092, + "Ġsido": 14444, + "Ġsie": 2804, + "Ġsiebie": 39137, + "Ġsiege": 34147, + "Ġsieht": 14289, + "Ġsiellä": 42771, + "Ġsiempre": 12758, + "Ġsiendo": 31423, + "Ġsiento": 40340, + "Ġsiete": 40719, + "Ġsig": 4556, + "Ġsigh": 29472, + "Ġsighs": 44705, + "Ġsight": 7860, + "Ġsights": 29363, + "Ġsiglo": 48578, + "Ġsigma": 12771, + "Ġsign": 1465, + "Ġsignal": 6358, + "Ġsignaling": 38639, + "Ġsignals": 12354, + "Ġsignature": 13397, + "Ġsignatures": 32322, + "Ġsigned": 8175, + "Ġsignific": 3350, + "Ġsignifica": 19957, + "Ġsignificance": 17687, + "Ġsignificant": 4776, + "Ġsignificantly": 10591, + "Ġsigning": 13393, + "Ġsigns": 7880, + "Ġsigu": 21152, + "Ġsigue": 34532, + "Ġsigui": 39578, + "Ġsiguiente": 25666, + "Ġsih": 25821, + "Ġsiihen": 40581, + "Ġsiinä": 41464, + "Ġsiis": 47590, + "Ġsiitä": 32705, + "Ġsil": 3425, + "Ġsilence": 12239, + "Ġsilent": 12784, + "Ġsilently": 40087, + "Ġsilhouette": 38275, + "Ġsilic": 26484, + "Ġsilicon": 22848, + "Ġsilicone": 28778, + "Ġsilk": 24395, + "Ġsill": 37160, + "Ġsilly": 11774, + "Ġsilos": 48893, + "Ġsilver": 8753, + "Ġsim": 1034, + "Ġsimilar": 2531, + "Ġsimilarities": 24197, + "Ġsimilarity": 32194, + "Ġsimilarly": 14138, + "Ġsimmer": 29835, + "Ġsimpl": 6883, + "Ġsimple": 2199, + "Ġsimplement": 24208, + "Ġsimplemente": 33190, + "Ġsimpler": 18587, + "Ġsimples": 21730, + "Ġsimplesmente": 44482, + "Ġsimplest": 22811, + "Ġsimplicity": 25632, + "Ġsimplified": 26335, + "Ġsimplify": 20460, + "Ġsimplistic": 44199, + "Ġsimply": 2935, + "Ġsimulate": 27817, + "Ġsimulated": 41713, + "Ġsimulation": 16575, + "Ġsimulations": 35138, + "Ġsimulator": 32974, + "Ġsimult": 13899, + "Ġsimultaneous": 46218, + "Ġsimultaneously": 16561, + "Ġsin": 3343, + "Ġsina": 43400, + "Ġsince": 1670, + "Ġsincer": 30220, + "Ġsincere": 16941, + "Ġsincerely": 30694, + "Ġsincerity": 44040, + "Ġsind": 3290, + "Ġsine": 18609, + "Ġsinful": 41861, + "Ġsing": 1522, + "Ġsinger": 11564, + "Ġsingers": 24275, + "Ġsinging": 6726, + "Ġsingle": 2167, + "Ġsingles": 36334, + "Ġsings": 23250, + "Ġsingular": 20010, + "Ġsini": 30368, + "Ġsinister": 45727, + "Ġsink": 9500, + "Ġsinking": 28148, + "Ġsinks": 43162, + "Ġsinn": 47066, + "Ġsinner": 41293, + "Ġsinners": 41004, + "Ġsino": 18108, + "Ġsinon": 46035, + "Ġsins": 13815, + "Ġsint": 41259, + "Ġsinus": 41503, + "Ġsip": 29668, + "Ġsir": 4735, + "Ġsis": 26288, + "Ġsist": 10555, + "Ġsistem": 45758, + "Ġsistema": 13245, + "Ġsistemas": 48720, + "Ġsister": 4892, + "Ġsisters": 11589, + "Ġsit": 1394, + "Ġsitcom": 49530, + "Ġsite": 3621, + "Ġsites": 7533, + "Ġsitio": 40621, + "Ġsits": 12696, + "Ġsitt": 43709, + "Ġsitten": 23186, + "Ġsitter": 47335, + "Ġsitting": 3798, + "Ġsitu": 2054, + "Ġsituación": 29343, + "Ġsituated": 30143, + "Ġsituation": 2590, + "Ġsituations": 6851, + "Ġsituação": 36768, + "Ġsitzen": 44998, + "Ġsitzt": 49734, + "Ġsitä": 26838, + "Ġsix": 2309, + "Ġsixt": 13074, + "Ġsixteen": 27847, + "Ġsixth": 15102, + "Ġsixty": 21390, + "Ġsiz": 13723, + "Ġsize": 2744, + "Ġsized": 20004, + "Ġsizes": 11602, + "Ġsizi": 45327, + "Ġsizin": 36312, + "Ġsizing": 45435, + "Ġsizz": 43828, + "Ġsiè": 31302, + "Ġsiècle": 40830, + "ĠsiÄĻ": 3244, + "Ġsj": 20601, + "Ġsjäl": 30700, + "Ġsjälv": 39298, + "Ġsk": 1110, + "Ġska": 9958, + "Ġskal": 16890, + "Ġskate": 18237, + "Ġskateboard": 32204, + "Ġskating": 29103, + "Ġske": 8756, + "Ġskelet": 32321, + "Ġskeleton": 25204, + "Ġskeletons": 45538, + "Ġskept": 19128, + "Ġskeptical": 28601, + "Ġsket": 32804, + "Ġsketch": 12325, + "Ġsketches": 34547, + "Ġski": 14274, + "Ġskies": 25861, + "Ġskiing": 32326, + "Ġskill": 5389, + "Ġskilled": 19690, + "Ġskills": 3942, + "Ġskin": 3178, + "Ġskincare": 29461, + "Ġskinny": 25193, + "Ġskins": 27888, + "Ġskip": 10023, + "Ġskipped": 30193, + "Ġskipping": 31533, + "Ġskirt": 20134, + "Ġskirts": 48734, + "Ġskull": 11743, + "Ġskulle": 20750, + "Ġsky": 5443, + "Ġskys": 48227, + "Ġsl": 1061, + "Ġsla": 8039, + "Ġslab": 38616, + "Ġslack": 29767, + "Ġslam": 25617, + "Ġslammed": 50196, + "Ġslang": 42517, + "Ġslap": 21075, + "Ġslapped": 43309, + "Ġslash": 17330, + "Ġslate": 39118, + "Ġslaughter": 26609, + "Ġslave": 14777, + "Ġslavery": 15641, + "Ġslaves": 18394, + "Ġsle": 2426, + "Ġsled": 46242, + "Ġslee": 12931, + "Ġsleek": 43464, + "Ġsleep": 2817, + "Ġsleeping": 8296, + "Ġsleeps": 37991, + "Ġsleepy": 24908, + "Ġsleeve": 21138, + "Ġsleeves": 24555, + "Ġslept": 17400, + "Ġslic": 12377, + "Ġslice": 13153, + "Ġsliced": 27098, + "Ġslices": 19793, + "Ġslicing": 46586, + "Ġslick": 37406, + "Ġslide": 4137, + "Ġslider": 26046, + "Ġslides": 9788, + "Ġsliding": 21169, + "Ġslight": 4036, + "Ġslightest": 41040, + "Ġslightly": 4748, + "Ġslim": 25357, + "Ġslime": 20650, + "Ġslip": 11140, + "Ġslipp": 20129, + "Ġslipped": 28989, + "Ġslippers": 45670, + "Ġslippery": 28100, + "Ġslipping": 36779, + "Ġslips": 44690, + "Ġslit": 43182, + "Ġslog": 49760, + "Ġslogan": 33052, + "Ġslop": 21254, + "Ġslope": 13525, + "Ġslopes": 37725, + "Ġsloppy": 43684, + "Ġslot": 14747, + "Ġslots": 24266, + "Ġslow": 2964, + "Ġslowed": 32057, + "Ġslower": 14009, + "Ġslowing": 26958, + "Ġslowly": 5692, + "Ġslows": 35789, + "Ġslut": 41496, + "Ġsm": 899, + "Ġsmack": 36348, + "Ġsmall": 1359, + "Ġsmaller": 4356, + "Ġsmallest": 16998, + "Ġsmart": 4069, + "Ġsmarter": 20294, + "Ġsmartest": 41491, + "Ġsmartphone": 13307, + "Ġsmartphones": 26782, + "Ġsmash": 17960, + "Ġsmashed": 33269, + "Ġsmashing": 43316, + "Ġsme": 41818, + "Ġsmell": 4316, + "Ġsmelled": 40453, + "Ġsmelling": 35471, + "Ġsmells": 10036, + "Ġsmile": 7563, + "Ġsmiled": 35132, + "Ġsmiles": 28083, + "Ġsmiling": 16005, + "Ġsmo": 24101, + "Ġsmok": 32073, + "Ġsmoke": 8439, + "Ġsmoked": 27205, + "Ġsmokes": 49592, + "Ġsmoking": 14055, + "Ġsmooth": 5508, + "Ġsmoother": 28640, + "Ġsmoothie": 36328, + "Ġsmoothly": 19565, + "Ġsn": 2406, + "Ġsna": 14528, + "Ġsnack": 13288, + "Ġsnacks": 16160, + "Ġsnail": 42555, + "Ġsnake": 12650, + "Ġsnakes": 21817, + "Ġsnap": 13650, + "Ġsnapped": 41396, + "Ġsnapping": 42727, + "Ġsnaps": 19206, + "Ġsnapshot": 30163, + "Ġsnare": 45018, + "Ġsnatch": 46328, + "Ġsne": 9244, + "Ġsneak": 13164, + "Ġsneakers": 35331, + "Ġsneaking": 48525, + "Ġsneaky": 39518, + "Ġsneez": 49299, + "Ġsneeze": 50076, + "Ġsnel": 42582, + "Ġsniff": 31101, + "Ġsnip": 37482, + "Ġsniper": 32441, + "Ġsnipp": 35623, + "Ġsno": 43287, + "Ġsnow": 5756, + "Ġsnowball": 46143, + "Ġsnowfl": 44124, + "Ġsnug": 37069, + "Ġso": 370, + "Ġsoak": 22769, + "Ġsoaked": 27368, + "Ġsoaking": 40580, + "Ġsoap": 14587, + "Ġsob": 18253, + "Ġsober": 26212, + "Ġsobie": 13652, + "Ġsobre": 5473, + "Ġsoc": 13598, + "Ġsoccer": 15469, + "Ġsoci": 3075, + "Ġsociais": 45179, + "Ġsocial": 2093, + "Ġsociale": 41889, + "Ġsociales": 29623, + "Ġsocialism": 36112, + "Ġsocialist": 33981, + "Ġsocially": 21397, + "Ġsociaux": 47460, + "Ġsocied": 26445, + "Ġsociedad": 42306, + "Ġsociedade": 45789, + "Ġsociet": 14051, + "Ġsocietal": 33472, + "Ġsocieties": 19329, + "Ġsociety": 4086, + "Ġsocio": 44303, + "Ġsocioe": 46327, + "Ġsociology": 41744, + "Ġsociété": 32120, + "Ġsock": 35302, + "Ġsocket": 19741, + "Ġsocks": 17564, + "Ġsod": 15047, + "Ġsoda": 17192, + "Ġsodium": 20265, + "Ġsof": 37259, + "Ġsofa": 28668, + "Ġsofort": 33168, + "Ġsoft": 2787, + "Ġsoften": 31356, + "Ġsofter": 23119, + "Ġsoftly": 30832, + "Ġsoftware": 4722, + "Ġsog": 38440, + "Ġsogar": 19485, + "Ġsogen": 36479, + "Ġsogenan": 37467, + "Ġsoi": 46098, + "Ġsoient": 42711, + "Ġsoil": 6704, + "Ġsoils": 31324, + "Ġsoir": 27105, + "Ġsoit": 12703, + "Ġsok": 41513, + "Ġsol": 1404, + "Ġsola": 34162, + "Ġsolamente": 27814, + "Ġsolar": 7936, + "Ġsolche": 29813, + "Ġsolchen": 46281, + "Ġsold": 3718, + "Ġsolder": 38128, + "Ġsoldier": 15632, + "Ġsoldiers": 8892, + "Ġsole": 12321, + "Ġsolely": 23309, + "Ġsolem": 43519, + "Ġsolemn": 46694, + "Ġsolic": 23665, + "Ġsolid": 5100, + "Ġsolidarity": 27220, + "Ġsolids": 38536, + "Ġsolitary": 44155, + "Ġsoll": 7114, + "Ġsollen": 24713, + "Ġsollte": 18042, + "Ġsollten": 29096, + "Ġsolo": 6944, + "Ġsolu": 24807, + "Ġsolution": 3827, + "Ġsolutions": 6547, + "Ġsolve": 5039, + "Ġsolved": 13041, + "Ġsolvent": 33575, + "Ġsolves": 39890, + "Ġsolving": 12606, + "Ġsom": 3307, + "Ġsome": 512, + "Ġsomebody": 2618, + "Ġsomeday": 19412, + "Ġsomehow": 6063, + "Ġsomeone": 1580, + "Ġsomeplace": 37126, + "Ġsomet": 692, + "Ġsomethin": 39374, + "Ġsomething": 746, + "Ġsometime": 15053, + "Ġsometimes": 2171, + "Ġsomewhat": 8344, + "Ġsomewhere": 4079, + "Ġsomm": 41854, + "Ġsommes": 25232, + "Ġsomos": 25244, + "Ġson": 1872, + "Ġsondern": 11465, + "Ġsong": 2153, + "Ġsongs": 5781, + "Ġsonic": 48725, + "Ġsono": 9259, + "Ġsonra": 13800, + "Ġsons": 13476, + "Ġsonst": 26309, + "Ġsont": 4900, + "Ġsoon": 2321, + "Ġsooner": 15324, + "Ġsoort": 43168, + "Ġsoothing": 40704, + "Ġsoph": 12582, + "Ġsophistic": 15572, + "Ġsophisticated": 16950, + "Ġsophom": 32931, + "Ġsophomore": 35798, + "Ġsopr": 37375, + "Ġsoprattutto": 50002, + "Ġsor": 9359, + "Ġsorcer": 41349, + "Ġsore": 22468, + "Ġsorgen": 47972, + "Ġsorrow": 23027, + "Ġsorry": 2597, + "Ġsort": 1333, + "Ġsorta": 33425, + "Ġsorte": 25559, + "Ġsorted": 25462, + "Ġsortie": 45662, + "Ġsorting": 32411, + "Ġsortir": 26906, + "Ġsorts": 7527, + "Ġsos": 27226, + "Ġsost": 41585, + "Ġsotto": 43754, + "Ġsou": 6926, + "Ġsouff": 36966, + "Ġsought": 17532, + "Ġsouha": 45214, + "Ġsoul": 5133, + "Ġsouls": 16588, + "Ġsound": 1626, + "Ġsounded": 17714, + "Ġsounding": 24931, + "Ġsounds": 3263, + "Ġsoundtrack": 27029, + "Ġsoup": 7884, + "Ġsour": 11006, + "Ġsource": 4009, + "Ġsources": 7139, + "Ġsous": 16686, + "Ġsout": 29350, + "Ġsouth": 7377, + "Ġsoutheast": 39014, + "Ġsouthern": 13456, + "Ġsouthwest": 34363, + "Ġsouven": 46509, + "Ġsouvenir": 44361, + "Ġsouvent": 20847, + "Ġsovere": 17894, + "Ġsovereign": 28756, + "Ġsovereignty": 27862, + "Ġsow": 19766, + "Ġsowie": 35874, + "Ġsoy": 8812, + "Ġsoybean": 44227, + "Ġsoybeans": 46706, + "Ġsozial": 31541, + "Ġsozusagen": 33762, + "Ġsp": 637, + "Ġspa": 32543, + "Ġspac": 39404, + "Ġspace": 1901, + "Ġspacecraft": 22910, + "Ġspaced": 43766, + "Ġspaces": 7673, + "Ġspaceship": 39185, + "Ġspacing": 27739, + "Ġspacious": 36801, + "Ġspaghetti": 28556, + "Ġspam": 24028, + "Ġspan": 16174, + "Ġspann": 33360, + "Ġspannend": 49027, + "Ġspanning": 47626, + "Ġspans": 44086, + "Ġspar": 45954, + "Ġspare": 13798, + "Ġspared": 49577, + "Ġspark": 9908, + "Ġsparked": 39653, + "Ġsparkle": 48558, + "Ġsparkling": 39967, + "Ġsparks": 44102, + "Ġspat": 15000, + "Ġspatial": 23598, + "Ġspatula": 33072, + "Ġspawn": 17088, + "Ġspe": 768, + "Ġspeak": 1710, + "Ġspeaker": 8145, + "Ġspeakers": 9518, + "Ġspeaking": 4124, + "Ġspeaks": 10789, + "Ġspear": 26993, + "Ġspec": 1608, + "Ġspecial": 2121, + "Ġspecialist": 17008, + "Ġspecialists": 25476, + "Ġspecialize": 37938, + "Ġspecialized": 19813, + "Ġspecially": 22549, + "Ġspecialty": 22000, + "Ġspecies": 6172, + "Ġspecific": 2685, + "Ġspecifically": 4682, + "Ġspecification": 31256, + "Ġspecifications": 29448, + "Ġspecifics": 28454, + "Ġspecified": 22206, + "Ġspecify": 16500, + "Ġspecimen": 34204, + "Ġspecimens": 41007, + "Ġspecjal": 46433, + "Ġspecs": 27911, + "Ġspect": 6177, + "Ġspectacle": 37303, + "Ġspectacular": 18149, + "Ġspectral": 42761, + "Ġspectrum": 11143, + "Ġspeculate": 40775, + "Ġspeculation": 27696, + "Ġspeculative": 49415, + "Ġspeech": 6218, + "Ġspeeches": 29982, + "Ġspeechless": 48450, + "Ġspeed": 3073, + "Ġspeeding": 35593, + "Ġspeeds": 16411, + "Ġspel": 46486, + "Ġspell": 9827, + "Ġspelled": 34388, + "Ġspelling": 22254, + "Ġspells": 25053, + "Ġspend": 3496, + "Ġspending": 6434, + "Ġspends": 25620, + "Ġspent": 4418, + "Ġsper": 24152, + "Ġsperm": 32899, + "Ġspezie": 48682, + "Ġsphere": 16687, + "Ġspheres": 41225, + "Ġspherical": 37300, + "Ġspic": 41418, + "Ġspice": 19436, + "Ġspices": 19608, + "Ġspicy": 9127, + "Ġspider": 17614, + "Ġspiders": 32171, + "Ġspielen": 30950, + "Ġspielt": 39778, + "Ġspies": 45858, + "Ġspike": 21053, + "Ġspikes": 28997, + "Ġspill": 22044, + "Ġspilled": 37833, + "Ġspin": 6060, + "Ġspinach": 27784, + "Ġspinal": 28022, + "Ġspind": 44169, + "Ġspine": 15395, + "Ġspinner": 44849, + "Ġspinning": 15640, + "Ġspins": 31587, + "Ġspir": 10733, + "Ġspiral": 25165, + "Ġspirit": 3797, + "Ġspirits": 16388, + "Ġspiritual": 6960, + "Ġspirituality": 30637, + "Ġspiritually": 33430, + "Ġspit": 22127, + "Ġspite": 22794, + "Ġspl": 4732, + "Ġsplash": 25757, + "Ġsplashing": 45981, + "Ġsplend": 34350, + "Ġsplendid": 47575, + "Ġsplit": 7472, + "Ġsplits": 37741, + "Ġsplitting": 30348, + "Ġspo": 8243, + "Ġspoil": 18630, + "Ġspoiled": 32439, + "Ġspoiler": 26927, + "Ġspoilers": 32237, + "Ġspoke": 7179, + "Ġspoken": 10759, + "Ġspokes": 25378, + "Ġspokesperson": 45775, + "Ġspong": 50013, + "Ġsponge": 23134, + "Ġspons": 7330, + "Ġsponsor": 16198, + "Ġsponsored": 16621, + "Ġsponsoring": 30311, + "Ġsponsors": 22593, + "Ġsponsorship": 42922, + "Ġspont": 20795, + "Ġspontaneous": 32744, + "Ġspontaneously": 47632, + "Ġspooky": 30510, + "Ġspool": 48884, + "Ġspoon": 12453, + "Ġspoonful": 47114, + "Ġspoons": 36316, + "Ġspor": 43729, + "Ġsport": 7282, + "Ġsporting": 32366, + "Ġsports": 6573, + "Ġsporty": 45804, + "Ġspos": 20443, + "Ġsposób": 22904, + "Ġspot": 4008, + "Ġspotlight": 24656, + "Ġspots": 10681, + "Ġspotted": 21010, + "Ġspouse": 23013, + "Ġspouses": 49784, + "ĠspoÅĤec": 36851, + "Ġspr": 6103, + "Ġspraw": 22734, + "Ġsprawd": 46192, + "Ġspray": 8519, + "Ġsprayed": 40330, + "Ġspraying": 36658, + "Ġspre": 22269, + "Ġspread": 3974, + "Ġspreading": 15232, + "Ġspreads": 25728, + "Ġspreadshe": 23651, + "Ġspreadsheet": 27733, + "Ġsprechen": 27853, + "Ġspricht": 42088, + "Ġspring": 5587, + "Ġsprings": 24647, + "Ġsprink": 30885, + "Ġsprinkle": 24745, + "Ġsprint": 25075, + "Ġsprite": 43848, + "Ġsprout": 43728, + "Ġsprouts": 34628, + "Ġspun": 37038, + "Ġspur": 35657, + "Ġspy": 20752, + "Ġspäter": 24196, + "Ġspé": 31198, + "Ġspécial": 34141, + "Ġsqu": 2339, + "Ġsquad": 15310, + "Ġsquare": 3732, + "Ġsquared": 8889, + "Ġsquares": 19368, + "Ġsquash": 30725, + "Ġsquat": 24305, + "Ġsquats": 45055, + "Ġsque": 8447, + "Ġsqueez": 22390, + "Ġsqueeze": 13578, + "Ġsqueezed": 39470, + "Ġsqueezing": 36645, + "Ġsquid": 28015, + "Ġsquirrel": 28565, + "Ġsquish": 31379, + "Ġsquishy": 45402, + "Ġst": 342, + "Ġsta": 11135, + "Ġstaan": 38055, + "Ġstaat": 28836, + "Ġstab": 16343, + "Ġstabbed": 35726, + "Ġstabil": 11652, + "Ġstability": 11826, + "Ġstabilization": 35476, + "Ġstabilize": 31870, + "Ġstabilized": 48384, + "Ġstable": 8351, + "Ġstack": 8630, + "Ġstacked": 28867, + "Ġstacking": 41376, + "Ġstacks": 30792, + "Ġstad": 38408, + "Ġstadium": 18585, + "Ġstaff": 3525, + "Ġstaffing": 38918, + "Ġstage": 3233, + "Ġstaged": 45178, + "Ġstages": 10232, + "Ġstagger": 29656, + "Ġstaggering": 42974, + "Ġstaging": 41085, + "Ġstagn": 32853, + "Ġstain": 16441, + "Ġstained": 39924, + "Ġstainless": 24048, + "Ġstains": 40733, + "Ġstair": 22273, + "Ġstaircase": 35359, + "Ġstairs": 13471, + "Ġstake": 10407, + "Ġstakeholder": 43406, + "Ġstakeholders": 17779, + "Ġstakes": 28429, + "Ġstal": 49875, + "Ġstalk": 21789, + "Ġstall": 19633, + "Ġstalls": 50248, + "Ġstam": 29682, + "Ġstamina": 36690, + "Ġstamp": 9921, + "Ġstamped": 39111, + "Ġstamping": 41792, + "Ġstamps": 30800, + "Ġstan": 27984, + "Ġstance": 21033, + "Ġstand": 1463, + "Ġstandalone": 37454, + "Ġstandard": 3832, + "Ġstandardized": 31677, + "Ġstandards": 7787, + "Ġstandby": 50170, + "Ġstanding": 4877, + "Ġstandpoint": 15827, + "Ġstands": 7382, + "Ġstanie": 40013, + "Ġstap": 27284, + "Ġstaple": 32361, + "Ġstar": 3543, + "Ġstarch": 24748, + "Ġstare": 22432, + "Ġstared": 44738, + "Ġstaring": 18043, + "Ġstark": 17417, + "Ġstarred": 39438, + "Ġstarring": 30701, + "Ġstars": 6105, + "Ġstart": 722, + "Ġstarted": 1409, + "Ġstarter": 22465, + "Ġstarters": 35131, + "Ġstarting": 2891, + "Ġstartled": 48898, + "Ġstarts": 3719, + "Ġstartup": 18578, + "Ġstartups": 28041, + "Ġstarve": 46755, + "Ġstarving": 28420, + "Ġstat": 2219, + "Ġstata": 49554, + "Ġstate": 1785, + "Ġstated": 11323, + "Ġstatement": 5629, + "Ġstatements": 12363, + "Ġstates": 4368, + "Ġstatewide": 34487, + "Ġstatic": 13437, + "Ġstating": 26688, + "Ġstation": 5214, + "Ġstationary": 30452, + "Ġstationed": 46228, + "Ġstations": 13390, + "Ġstatist": 16012, + "Ġstatistic": 29588, + "Ġstatistical": 22820, + "Ġstatistically": 36478, + "Ġstatistics": 12523, + "Ġstato": 29657, + "Ġstats": 18152, + "Ġstatt": 25675, + "Ġstatue": 17385, + "Ġstatues": 29480, + "Ġstatus": 6558, + "Ġstatut": 35907, + "Ġstatute": 24774, + "Ġstatutory": 42037, + "Ġstay": 1754, + "Ġstayed": 9181, + "Ġstaying": 7939, + "Ġstays": 10834, + "Ġste": 2126, + "Ġstead": 23721, + "Ġsteadily": 36129, + "Ġsteady": 13211, + "Ġsteak": 17009, + "Ġsteal": 11009, + "Ġstealing": 19757, + "Ġsteals": 46962, + "Ġstealth": 25756, + "Ġsteam": 11952, + "Ġsteamed": 32375, + "Ġsteeds": 43603, + "Ġsteel": 8269, + "Ġsteep": 16841, + "Ġsteer": 30814, + "Ġsteering": 14823, + "Ġstehen": 19777, + "Ġsteht": 16361, + "Ġstell": 30787, + "Ġstellar": 42333, + "Ġstellen": 24407, + "Ġstellt": 38582, + "Ġstem": 12312, + "Ġstems": 27600, + "Ġsten": 28031, + "Ġstencil": 38670, + "Ġstep": 1823, + "Ġstepped": 15251, + "Ġstepping": 16821, + "Ġsteps": 4439, + "Ġster": 18924, + "Ġstere": 12730, + "Ġstereo": 29029, + "Ġstereoty": 41182, + "Ġstereotype": 38229, + "Ġstereotypes": 30853, + "Ġsteril": 41477, + "Ġstern": 38312, + "Ġstero": 36407, + "Ġsteroids": 45717, + "Ġstesso": 44413, + "Ġstew": 22654, + "Ġstewards": 36270, + "Ġstewardship": 50092, + "Ġstick": 2897, + "Ġsticker": 20400, + "Ġstickers": 21019, + "Ġsticking": 13465, + "Ġsticks": 12518, + "Ġsticky": 14470, + "Ġstiff": 15451, + "Ġstiffness": 37759, + "Ġstigma": 27880, + "Ġstill": 920, + "Ġstim": 8983, + "Ġstimmt": 37799, + "Ġstimul": 14572, + "Ġstimulate": 31269, + "Ġstimulating": 43671, + "Ġstimulation": 37405, + "Ġstimuli": 47752, + "Ġstimulus": 21366, + "Ġsting": 27175, + "Ġstink": 35843, + "Ġstinks": 50114, + "Ġstinky": 46449, + "Ġstip": 37001, + "Ġstir": 8946, + "Ġstirred": 49409, + "Ġstirring": 28650, + "Ġstitch": 5635, + "Ġstitched": 48992, + "Ġstitches": 13184, + "Ġstitching": 30714, + "Ġsto": 22784, + "Ġstock": 4127, + "Ġstocks": 12966, + "Ġstoked": 49145, + "Ġstol": 43553, + "Ġstole": 16326, + "Ġstolen": 15900, + "Ġstom": 9036, + "Ġstomach": 9665, + "Ġstone": 7581, + "Ġstones": 14083, + "Ġstood": 9371, + "Ġstool": 35086, + "Ġstop": 1590, + "Ġstopped": 5936, + "Ġstopping": 12767, + "Ġstops": 10094, + "Ġstor": 5967, + "Ġstora": 43323, + "Ġstorage": 6725, + "Ġstore": 3531, + "Ġstored": 12187, + "Ġstores": 9512, + "Ġstories": 3676, + "Ġstoring": 26085, + "Ġstorm": 7679, + "Ġstorms": 23288, + "Ġstory": 1657, + "Ġstoryline": 30828, + "Ġstoryt": 17541, + "Ġstorytelling": 21479, + "Ġstos": 43581, + "Ġstove": 19263, + "Ġstr": 1056, + "Ġstra": 2148, + "Ġstraight": 2997, + "Ġstraighten": 32777, + "Ġstraightforward": 15325, + "Ġstrain": 14249, + "Ġstrains": 39110, + "Ġstrand": 14955, + "Ġstranded": 44394, + "Ġstrands": 29664, + "Ġstrang": 24404, + "Ġstrange": 5861, + "Ġstrangely": 39851, + "Ġstranger": 18834, + "Ġstrangers": 22724, + "Ġstrap": 18359, + "Ġstraps": 26654, + "Ġstrat": 23674, + "Ġstrate": 5187, + "Ġstrateg": 5464, + "Ġstrategic": 10924, + "Ġstrategically": 38061, + "Ġstrategies": 9029, + "Ġstrategy": 5206, + "Ġstratég": 45023, + "Ġstraw": 10099, + "Ġstrawberries": 26873, + "Ġstrawberry": 20440, + "Ġstray": 36219, + "Ġstre": 2242, + "Ġstreak": 35634, + "Ġstream": 4309, + "Ġstreaming": 11791, + "Ġstreamline": 47141, + "Ġstreamlined": 48155, + "Ġstreams": 15842, + "Ġstreet": 4838, + "Ġstreets": 8481, + "Ġstrength": 3800, + "Ġstrengthen": 17045, + "Ġstrengthened": 38942, + "Ġstrengthening": 28224, + "Ġstrengths": 16986, + "Ġstress": 4244, + "Ġstressed": 14471, + "Ġstresses": 27732, + "Ġstressful": 19108, + "Ġstressing": 48233, + "Ġstret": 27678, + "Ġstretch": 5985, + "Ġstretched": 23563, + "Ġstretches": 29058, + "Ġstretching": 19632, + "Ġstretchy": 48865, + "Ġstri": 3575, + "Ġstrict": 10910, + "Ġstrictly": 20792, + "Ġstrike": 9302, + "Ġstrikes": 16750, + "Ġstriking": 18559, + "Ġstring": 6798, + "Ġstrings": 13985, + "Ġstrip": 12828, + "Ġstripe": 42957, + "Ġstripes": 27308, + "Ġstripped": 33221, + "Ġstrips": 19842, + "Ġstrive": 23829, + "Ġstriving": 36582, + "Ġstro": 8959, + "Ġstroke": 12403, + "Ġstrokes": 24493, + "Ġstroll": 42812, + "Ġstron": 45766, + "Ġstrong": 2068, + "Ġstronger": 7249, + "Ġstrongest": 16595, + "Ġstrongly": 10613, + "Ġstrony": 32406, + "Ġstruck": 13159, + "Ġstruct": 6594, + "Ġstructural": 15067, + "Ġstructure": 3877, + "Ġstructured": 18519, + "Ġstructures": 9227, + "Ġstrugg": 4312, + "Ġstruggle": 7799, + "Ġstruggled": 19023, + "Ġstruggles": 17592, + "Ġstruggling": 9314, + "Ġstrum": 47338, + "Ġstub": 20266, + "Ġstubborn": 24137, + "Ġstuck": 5541, + "Ġstud": 972, + "Ġstudent": 3107, + "Ġstudents": 1731, + "Ġstudied": 9454, + "Ġstudies": 5313, + "Ġstudio": 6811, + "Ġstudios": 24593, + "Ġstudy": 2979, + "Ġstudying": 7601, + "Ġstuff": 1507, + "Ġstuffed": 24092, + "Ġstuffing": 36046, + "Ġstuffs": 48719, + "Ġstuk": 46042, + "Ġstumble": 41302, + "Ġstumbled": 36668, + "Ġstump": 43164, + "Ġstun": 11885, + "Ġstunned": 35394, + "Ġstunning": 18550, + "Ġstunt": 33391, + "Ġstupid": 6631, + "Ġstur": 29249, + "Ġsturdy": 31506, + "Ġsty": 7952, + "Ġstyl": 23736, + "Ġstyle": 3758, + "Ġstyles": 13273, + "Ġstyling": 27944, + "Ġstylish": 30301, + "Ġstylist": 48544, + "Ġstär": 33527, + "ĠstÃ¥r": 37019, + "Ġstör": 42554, + "Ġsu": 459, + "Ġsua": 8233, + "Ġsuas": 23410, + "Ġsub": 1422, + "Ġsubconscious": 27389, + "Ġsubd": 31662, + "Ġsubdiv": 45331, + "Ġsubir": 34785, + "Ġsubject": 3983, + "Ġsubjected": 32153, + "Ġsubjective": 25972, + "Ġsubjects": 13066, + "Ġsubm": 8286, + "Ġsubmar": 23638, + "Ġsubmarine": 33995, + "Ġsubmarines": 48138, + "Ġsubmer": 36751, + "Ġsubmerged": 46985, + "Ġsubmission": 23689, + "Ġsubmissions": 40429, + "Ġsubmit": 10315, + "Ġsubmitted": 14405, + "Ġsubmitting": 31836, + "Ġsubs": 2090, + "Ġsubscri": 2325, + "Ġsubscribe": 3022, + "Ġsubscribed": 16665, + "Ġsubscriber": 26122, + "Ġsubscribers": 11092, + "Ġsubscribing": 19981, + "Ġsubscription": 17231, + "Ġsubscriptions": 44951, + "Ġsubsequ": 13924, + "Ġsubsequent": 19962, + "Ġsubsequently": 26514, + "Ġsubset": 25993, + "Ġsubsid": 20051, + "Ġsubsidi": 48296, + "Ġsubsidies": 38523, + "Ġsubsidy": 49636, + "Ġsubst": 4594, + "Ġsubstance": 12961, + "Ġsubstances": 25455, + "Ġsubstant": 11889, + "Ġsubstantial": 16726, + "Ġsubstantially": 30797, + "Ġsubstantive": 47113, + "Ġsubstit": 26441, + "Ġsubstitute": 15802, + "Ġsubstitution": 35827, + "Ġsubstrate": 27585, + "Ġsubt": 7257, + "Ġsubtit": 30706, + "Ġsubtitles": 42045, + "Ġsubtle": 13743, + "Ġsubtract": 16390, + "Ġsubur": 23519, + "Ġsuburban": 40138, + "Ġsuburbs": 34185, + "Ġsubway": 24953, + "Ġsuc": 1965, + "Ġsucc": 21578, + "Ġsucceed": 7754, + "Ġsucceeded": 20263, + "Ġsucceeding": 47912, + "Ġsucceeds": 49263, + "Ġsuccess": 2245, + "Ġsuccesses": 26101, + "Ġsuccessful": 4406, + "Ġsuccessfully": 10727, + "Ġsuccession": 36624, + "Ġsuccessive": 48043, + "Ġsuccessor": 31864, + "Ġsuced": 41928, + "Ġsuch": 1270, + "Ġsuchen": 44470, + "Ġsuck": 9967, + "Ġsucked": 26503, + "Ġsucker": 43259, + "Ġsucking": 38669, + "Ġsucks": 15846, + "Ġsuction": 40431, + "Ġsud": 3707, + "Ġsudah": 24940, + "Ġsudden": 3990, + "Ġsuddenly": 5800, + "Ġsue": 20416, + "Ġsued": 33864, + "Ġsuf": 46282, + "Ġsuff": 3889, + "Ġsuffer": 9753, + "Ġsuffered": 12770, + "Ġsuffering": 7755, + "Ġsuffers": 33776, + "Ġsufficient": 11563, + "Ġsufficiently": 31868, + "Ġsuficiente": 33958, + "Ġsug": 22802, + "Ġsugar": 5076, + "Ġsugars": 37551, + "Ġsugg": 3395, + "Ġsuggest": 3402, + "Ġsuggested": 10945, + "Ġsuggesting": 18094, + "Ġsuggestion": 16541, + "Ġsuggestions": 13396, + "Ġsuggests": 13409, + "Ġsuic": 28419, + "Ġsuicidal": 43243, + "Ġsuicide": 12308, + "Ġsuis": 7624, + "Ġsuit": 5722, + "Ġsuitable": 12873, + "Ġsuitcase": 34545, + "Ġsuite": 14205, + "Ġsuited": 24736, + "Ġsuits": 15278, + "Ġsuiv": 20751, + "Ġsuivre": 43404, + "Ġsujet": 23634, + "Ġsuk": 46432, + "Ġsuka": 39076, + "Ġsul": 17603, + "Ġsulf": 22925, + "Ġsulfur": 33831, + "Ġsulla": 33625, + "Ġsulph": 47286, + "Ġsum": 2408, + "Ġsumm": 8367, + "Ġsummar": 14611, + "Ġsummarize": 20858, + "Ġsummary": 12691, + "Ġsummation": 28811, + "Ġsummer": 4266, + "Ġsummers": 46474, + "Ġsummertime": 43785, + "Ġsummit": 21564, + "Ġsummon": 18714, + "Ġsummoned": 40791, + "Ġsums": 34499, + "Ġsun": 3295, + "Ġsund": 33047, + "Ġsunflower": 48215, + "Ġsung": 18829, + "Ġsunglasses": 28675, + "Ġsunk": 40564, + "Ġsunlight": 18379, + "Ġsunny": 20412, + "Ġsunrise": 33675, + "Ġsunscreen": 30304, + "Ġsunset": 20142, + "Ġsunshine": 25219, + "Ġsunt": 35171, + "Ġsuo": 34197, + "Ġsup": 9331, + "Ġsuper": 1687, + "Ġsuperb": 36617, + "Ġsupercom": 27839, + "Ġsupercomputer": 36708, + "Ġsuperfic": 23881, + "Ġsuperficial": 34622, + "Ġsuperhero": 19428, + "Ġsuperheroes": 45417, + "Ġsuperintendent": 38834, + "Ġsuperior": 13028, + "Ġsuperiority": 48668, + "Ġsupermarket": 25180, + "Ġsupernatural": 25678, + "Ġsuperpower": 45765, + "Ġsupers": 37906, + "Ġsuperst": 29423, + "Ġsuperstar": 38953, + "Ġsuperv": 37971, + "Ġsupervis": 34409, + "Ġsupervised": 46533, + "Ġsupervision": 32675, + "Ġsupervisor": 24610, + "Ġsupervisors": 42218, + "Ġsupp": 1003, + "Ġsupper": 44185, + "Ġsuppl": 9386, + "Ġsupplement": 15436, + "Ġsupplemental": 48604, + "Ġsupplements": 26645, + "Ġsupplied": 27625, + "Ġsupplier": 31909, + "Ġsuppliers": 29467, + "Ġsupplies": 11768, + "Ġsupply": 5847, + "Ġsupplying": 46815, + "Ġsupport": 1406, + "Ġsupported": 8104, + "Ġsupporter": 28600, + "Ġsupporters": 17683, + "Ġsupporting": 7231, + "Ġsupportive": 14435, + "Ġsupports": 9346, + "Ġsuppose": 7297, + "Ġsupposed": 3442, + "Ġsupposedly": 20581, + "Ġsuppress": 26835, + "Ġsuppressed": 42645, + "Ġsuppression": 36807, + "Ġsupre": 27283, + "Ġsuprem": 23710, + "Ġsupremacy": 35572, + "Ġsupreme": 27756, + "Ġsupuesto": 34177, + "Ġsur": 1022, + "Ġsure": 988, + "Ġsurely": 11468, + "Ġsurf": 9684, + "Ġsurface": 3753, + "Ġsurfaces": 16130, + "Ġsurfing": 34181, + "Ġsurg": 19560, + "Ġsurge": 18989, + "Ġsurgeon": 22913, + "Ġsurgeons": 42354, + "Ġsurgeries": 33455, + "Ġsurgery": 7930, + "Ġsurgical": 26646, + "Ġsurn": 39270, + "Ġsurname": 50152, + "Ġsurpass": 27650, + "Ġsurplus": 31019, + "Ġsurpr": 3083, + "Ġsurprise": 6365, + "Ġsurprised": 6100, + "Ġsurprises": 22655, + "Ġsurprising": 8830, + "Ġsurprisingly": 17600, + "Ġsurreal": 32513, + "Ġsurrend": 36862, + "Ġsurrender": 22185, + "Ġsurrendered": 48802, + "Ġsurround": 6262, + "Ġsurrounded": 13221, + "Ġsurrounding": 11498, + "Ġsurroundings": 25314, + "Ġsurrounds": 44576, + "Ġsurt": 18622, + "Ġsurtout": 19903, + "Ġsurv": 3940, + "Ġsurve": 11463, + "Ġsurveillance": 18475, + "Ġsurvey": 8984, + "Ġsurveys": 22711, + "Ġsurviv": 12324, + "Ġsurvival": 12559, + "Ġsurvive": 7867, + "Ġsurvived": 14433, + "Ġsurvives": 46231, + "Ġsurviving": 24948, + "Ġsurvivor": 25953, + "Ġsurvivors": 18369, + "Ġsus": 3291, + "Ġsuscept": 26104, + "Ġsusceptible": 31249, + "Ġsuscri": 40405, + "Ġsushi": 23022, + "Ġsusp": 6535, + "Ġsuspect": 9091, + "Ġsuspected": 26439, + "Ġsuspects": 35667, + "Ġsuspend": 42546, + "Ġsuspended": 23437, + "Ġsuspense": 47803, + "Ġsuspension": 15771, + "Ġsuspicion": 32020, + "Ġsuspicious": 17931, + "Ġsust": 5402, + "Ġsustain": 6769, + "Ġsustainability": 16360, + "Ġsustainable": 11235, + "Ġsustained": 23389, + "Ġsustaining": 49097, + "Ġsut": 43489, + "Ġsv": 17342, + "Ġsven": 48208, + "Ġsw": 1693, + "Ġswab": 49840, + "Ġswag": 42064, + "Ġswallow": 20099, + "Ġswallowed": 41769, + "Ġswamp": 31724, + "Ġswap": 18135, + "Ġswapped": 50011, + "Ġswarm": 49839, + "Ġswatch": 42362, + "Ġsway": 27555, + "Ġswe": 2484, + "Ġswear": 11902, + "Ġsweat": 11872, + "Ġsweater": 26550, + "Ġsweating": 25438, + "Ġsweats": 38712, + "Ġsweaty": 36044, + "Ġsweep": 22169, + "Ġsweeping": 33285, + "Ġsweet": 3844, + "Ġsweeter": 44323, + "Ġsweetheart": 36633, + "Ġsweetie": 40508, + "Ġsweetness": 25702, + "Ġsweets": 28680, + "Ġswell": 34251, + "Ġswelling": 33127, + "Ġswept": 31791, + "Ġswift": 29184, + "Ġswiftly": 49891, + "Ġswim": 7110, + "Ġswimming": 11989, + "Ġswims": 42357, + "Ġswing": 11173, + "Ġswinging": 29500, + "Ġswings": 32386, + "Ġswipe": 28170, + "Ġswirl": 30310, + "Ġswitch": 3679, + "Ġswitched": 16858, + "Ġswitches": 19458, + "Ġswitching": 16493, + "Ġswo": 13291, + "Ġswoje": 29489, + "ĠswojÄħ": 49194, + "Ġswollen": 37559, + "Ġsword": 10576, + "Ġswords": 26474, + "Ġsworn": 40068, + "Ġsy": 943, + "Ġsyll": 20223, + "Ġsyllable": 40151, + "Ġsyllables": 45364, + "Ġsyllabus": 48077, + "Ġsym": 6697, + "Ġsymb": 43700, + "Ġsymbol": 5986, + "Ġsymbolic": 25755, + "Ġsymbolism": 47061, + "Ġsymbols": 16944, + "Ġsymm": 14232, + "Ġsymmetric": 32330, + "Ġsymmetrical": 40360, + "Ġsymmetry": 25440, + "Ġsymp": 13240, + "Ġsympath": 22276, + "Ġsympathetic": 36032, + "Ġsympathy": 33240, + "Ġsympt": 7266, + "Ġsymptom": 29370, + "Ġsymptoms": 8332, + "Ġsyn": 5451, + "Ġsynagogue": 49169, + "Ġsync": 20271, + "Ġsynchron": 19331, + "Ġsynchronous": 44743, + "Ġsynd": 15198, + "Ġsyndrome": 19371, + "Ġsyner": 33781, + "Ġsynergy": 50163, + "Ġsynt": 23980, + "Ġsyntax": 28431, + "Ġsynth": 10657, + "Ġsynthes": 26617, + "Ġsynthesis": 30252, + "Ġsynthetic": 23420, + "Ġsyrup": 17852, + "Ġsyst": 20274, + "Ġsystem": 1185, + "Ġsystematic": 27249, + "Ġsystematically": 39531, + "Ġsystemic": 23789, + "Ġsystems": 3652, + "Ġsystème": 25142, + "Ġsytu": 28275, + "Ġsz": 7870, + "Ġszcz": 22090, + "Ġszczegól": 49624, + "Ġszer": 36160, + "Ġszy": 30526, + "Ġszyb": 36456, + "Ġsão": 8364, + "Ġsä": 15316, + "Ġsäga": 28013, + "Ġsäger": 37607, + "Ġsätt": 29503, + "ĠsÃ¥": 4719, + "ĠsÃ¥dan": 40989, + "Ġsé": 7910, + "Ġsécur": 32384, + "Ġsécurité": 37600, + "Ġsérie": 18416, + "Ġsì": 49267, + "Ġsó": 6238, + "Ġsólo": 22885, + "Ġsón": 25421, + "Ġsö": 12643, + "Ġsöy": 27543, + "Ġsöyl": 31222, + "Ġsöyle": 16928, + "Ġsöyled": 35909, + "Ġsöyleye": 35881, + "Ġsöz": 31667, + "Ġsú": 33075, + "Ġsúper": 43282, + "Ġsû": 15998, + "Ġsûr": 18143, + "Ġsü": 21218, + "Ġsür": 48014, + "ĠsÃŃ": 8600, + "Ġsı": 30201, + "Ġsık": 30046, + "Ġsır": 38572, + "ĠsÄĥ": 15446, + "ĠsÄħ": 9015, + "ĠsÅĤ": 15116, + "ĠsÅĤu": 48459, + "Ġsẽ": 17208, + "Ġsá»±": 33602, + "Ġsá»ij": 44983, + "Ġt": 256, + "Ġta": 1846, + "Ġtab": 4421, + "Ġtabii": 31430, + "Ġtable": 3199, + "Ġtables": 8020, + "Ġtablespoon": 22398, + "Ġtablespoons": 21615, + "Ġtablet": 14136, + "Ġtablets": 27622, + "Ġtabs": 20743, + "Ġtac": 25018, + "Ġtack": 9426, + "Ġtackle": 14896, + "Ġtackling": 34415, + "Ġtaco": 34101, + "Ġtacos": 34776, + "Ġtact": 9959, + "Ġtactic": 31012, + "Ġtactical": 26323, + "Ġtactics": 19454, + "Ġtactile": 47319, + "Ġtad": 29622, + "Ġtadi": 42953, + "Ġtag": 6162, + "Ġtagged": 40239, + "Ġtags": 18632, + "Ġtah": 23059, + "Ġtahu": 27294, + "Ġtahun": 34656, + "Ġtai": 20499, + "Ġtail": 6838, + "Ġtailor": 33068, + "Ġtailored": 34858, + "Ġtails": 28537, + "Ġtak": 991, + "Ġtaka": 28017, + "Ġtake": 747, + "Ġtakeaway": 30681, + "Ġtakeaways": 45584, + "Ġtaken": 2726, + "Ġtakes": 2516, + "Ġtaki": 20065, + "Ġtakich": 29607, + "Ġtakie": 15963, + "Ġtakiego": 32296, + "Ġtakiej": 38941, + "Ġtakim": 31732, + "Ġtaking": 1940, + "ĠtakÄħ": 31069, + "Ġtakże": 23306, + "Ġtal": 4023, + "Ġtale": 17172, + "Ġtalent": 8301, + "Ġtalented": 13467, + "Ġtalents": 19933, + "Ġtales": 27254, + "Ġtalk": 751, + "Ġtalked": 2825, + "Ġtalkin": 39243, + "Ġtalking": 1417, + "Ġtalks": 6686, + "Ġtall": 6764, + "Ġtaller": 22406, + "Ġtallest": 42075, + "Ġtalvez": 32320, + "Ġtam": 7677, + "Ġtama": 45342, + "Ġtamam": 18536, + "Ġtaman": 41500, + "Ġtamanho": 45645, + "Ġtamb": 3629, + "Ġtambién": 6407, + "Ġtambé": 22562, + "Ġtambém": 6274, + "Ġtame": 45774, + "Ġtamp": 21424, + "Ġtampoco": 36838, + "Ġtan": 7603, + "Ġtand": 35274, + "Ġtandem": 48120, + "Ġtane": 23233, + "Ġtang": 10266, + "Ġtangent": 27747, + "Ġtangible": 27094, + "Ġtangled": 47192, + "Ġtank": 5466, + "Ġtanks": 14022, + "Ġtant": 12095, + "Ġtanta": 40864, + "Ġtanto": 10331, + "Ġtao": 44292, + "Ġtap": 5119, + "Ġtapa": 42097, + "Ġtape": 7314, + "Ġtaped": 45673, + "Ġtaper": 36277, + "Ġtapes": 31349, + "Ġtapi": 23901, + "Ġtapped": 38693, + "Ġtapping": 21444, + "Ġtaps": 42536, + "Ġtar": 3112, + "Ġtara": 23837, + "Ġtaraf": 32536, + "Ġtard": 21057, + "Ġtarde": 27367, + "Ġtare": 49423, + "Ġtarget": 3779, + "Ġtargeted": 15045, + "Ġtargeting": 17918, + "Ġtargets": 12911, + "Ġtariffs": 39661, + "Ġtark": 44777, + "Ġtart": 22491, + "Ġtas": 8023, + "Ġtask": 5633, + "Ġtasked": 38621, + "Ġtasks": 9608, + "Ġtast": 2700, + "Ġtaste": 3939, + "Ġtasted": 25003, + "Ġtastes": 8666, + "Ġtasting": 26223, + "Ġtasty": 11535, + "Ġtat": 9600, + "Ġtatsächlich": 20796, + "Ġtatto": 12096, + "Ġtattoo": 15080, + "Ġtattoos": 28662, + "Ġtau": 17842, + "Ġtaught": 5928, + "Ġtav": 23214, + "Ġtava": 26777, + "Ġtavalla": 50132, + "Ġtax": 3366, + "Ġtaxation": 47072, + "Ġtaxes": 10041, + "Ġtaxi": 18984, + "Ġtaxpayer": 43204, + "Ġtaxpayers": 38205, + "Ġtay": 39224, + "ĠtaÅŁ": 37276, + "Ġtbsp": 25110, + "Ġte": 535, + "Ġtea": 5817, + "Ġteach": 2924, + "Ġteacher": 5027, + "Ġteachers": 6023, + "Ġteaches": 16876, + "Ġteaching": 4571, + "Ġteachings": 21037, + "Ġteam": 1469, + "Ġteamed": 47426, + "Ġteammate": 25467, + "Ġteammates": 20461, + "Ġteams": 5491, + "Ġteamwork": 30015, + "Ġtear": 12556, + "Ġtearing": 29401, + "Ġtears": 10462, + "Ġteas": 11488, + "Ġtease": 30444, + "Ġteaser": 35326, + "Ġteasing": 37720, + "Ġteaspoon": 17237, + "Ġteaspoons": 43996, + "Ġtech": 7553, + "Ġtechn": 1537, + "Ġtechnical": 6191, + "Ġtechnically": 12120, + "Ġtechnician": 38247, + "Ġtechnicians": 40885, + "Ġtechnique": 6532, + "Ġtechniques": 7512, + "Ġtechno": 36728, + "Ġtechnological": 18439, + "Ġtechnologies": 7943, + "Ġtechnology": 2899, + "Ġtecn": 20105, + "Ġtecnologia": 44905, + "ĠtecnologÃŃa": 48055, + "Ġted": 22337, + "Ġteddy": 45116, + "Ġtedious": 38284, + "Ġtee": 33863, + "Ġteen": 8921, + "Ġteenage": 26866, + "Ġteenager": 21440, + "Ġteenagers": 23618, + "Ġteens": 24849, + "Ġteeny": 48232, + "Ġteeth": 7798, + "Ġtegen": 30945, + "Ġtego": 8627, + "Ġteh": 32991, + "Ġtehd": 44812, + "Ġteil": 33200, + "Ġteilweise": 46748, + "Ġtej": 12573, + "Ġtek": 16624, + "Ġtekn": 32533, + "Ġtekrar": 45847, + "Ġtel": 15284, + "Ġtela": 29203, + "Ġtele": 4304, + "Ġtelef": 40616, + "Ġtelefon": 26812, + "Ġtelephone": 19800, + "Ġteleport": 28050, + "Ġteles": 18273, + "Ġtelescop": 37085, + "Ġtelescope": 26114, + "Ġtelescopes": 46051, + "Ġtelev": 49492, + "Ġtelevis": 40638, + "Ġtelevision": 8815, + "Ġtell": 980, + "Ġtellement": 28906, + "Ġtelling": 3585, + "Ġtells": 5112, + "Ġtem": 1383, + "Ġtema": 15854, + "Ġtemas": 40284, + "Ġtemat": 32954, + "Ġtemos": 14247, + "Ġtemp": 18274, + "Ġtemper": 3393, + "Ġtemperatura": 36903, + "Ġtemperature": 4292, + "Ġtemperatures": 12633, + "Ġtempl": 9100, + "Ġtemplate": 12379, + "Ġtemplates": 21165, + "Ġtemple": 10184, + "Ġtemples": 27431, + "Ġtempo": 8972, + "Ġtempor": 8219, + "Ġtemporada": 41983, + "Ġtemporal": 30881, + "Ġtemporarily": 23750, + "Ġtemporary": 13413, + "Ġtemps": 8827, + "Ġtempt": 13794, + "Ġtemptation": 30423, + "Ġtempted": 29941, + "Ġtempting": 37900, + "Ġtemu": 33346, + "Ġten": 2064, + "Ġtenant": 31000, + "Ġtenants": 31216, + "Ġtend": 3928, + "Ġtended": 34732, + "Ġtendencies": 45488, + "Ġtendency": 18187, + "Ġtender": 15036, + "Ġtendon": 46479, + "Ġtends": 12258, + "Ġtenemos": 9914, + "Ġtener": 11640, + "Ġteng": 10370, + "Ġtenga": 36031, + "Ġtengan": 46874, + "Ġtengo": 13989, + "Ġtenha": 28834, + "Ġtenho": 14291, + "Ġtenido": 33104, + "Ġtenim": 36012, + "Ġtenir": 30593, + "Ġtennis": 18118, + "Ġtens": 10688, + "Ġtense": 18760, + "Ġtension": 8980, + "Ġtensions": 28303, + "Ġtensor": 40863, + "Ġtent": 7054, + "Ġtentang": 43575, + "Ġtentar": 33572, + "Ġtenth": 27269, + "Ġtents": 39283, + "Ġtenure": 32256, + "ĠtenÃŃa": 23718, + "ĠtenÃŃan": 47596, + "Ġteor": 40238, + "Ġter": 1796, + "Ġteraz": 16854, + "Ġterce": 41385, + "Ġtercer": 38103, + "Ġteria": 45530, + "Ġterm": 1433, + "Ġterme": 36285, + "Ġtermin": 10761, + "Ġterminal": 14709, + "Ġterminals": 38579, + "Ġterminar": 36246, + "Ġterminology": 27575, + "Ġterms": 2115, + "Ġterr": 7245, + "Ġterra": 26298, + "Ġterrace": 47232, + "Ġterrain": 17674, + "Ġterre": 31815, + "Ġterrible": 6237, + "Ġterribly": 22903, + "Ġterrific": 20899, + "Ġterrified": 23051, + "Ġterrifying": 18106, + "Ġterrit": 8673, + "Ġterritor": 23484, + "Ġterritorial": 34888, + "Ġterritories": 25195, + "Ġterritory": 11360, + "Ġterror": 8127, + "Ġterrorism": 23917, + "Ġterrorist": 20342, + "Ġterrorists": 28330, + "Ġtert": 38726, + "Ġterug": 35020, + "Ġterus": 35977, + "Ġtes": 20018, + "Ġtest": 1500, + "Ġtestament": 35499, + "Ġteste": 49586, + "Ġtested": 8246, + "Ġtester": 36101, + "Ġtestified": 47639, + "Ġtestify": 31381, + "Ġtestim": 12600, + "Ġtestimon": 30963, + "Ġtestimony": 15634, + "Ġtesting": 4997, + "Ġtestoster": 29841, + "Ġtestosterone": 33417, + "Ġtests": 6921, + "Ġtet": 23319, + "Ġteu": 35280, + "Ġteve": 26628, + "Ġtext": 2487, + "Ġtextbook": 25591, + "Ġtextbooks": 33587, + "Ġtexted": 42553, + "Ġtextile": 42069, + "Ġtexting": 29897, + "Ġtexto": 35503, + "Ġtexts": 15765, + "Ġtexture": 8091, + "Ġtextured": 48656, + "Ġtextures": 24501, + "Ġteż": 9516, + "ĠteÅŁekkür": 44002, + "Ġth": 258, + "Ġtha": 43614, + "Ġthan": 813, + "Ġthank": 1309, + "Ġthanked": 48137, + "Ġthankful": 13611, + "Ġthankfully": 27352, + "Ġthanking": 30830, + "Ġthanks": 3231, + "Ġthat": 300, + "Ġthats": 16777, + "ĠthatÃŃs": 46493, + "Ġthe": 264, + "ĠtheCUBE": 40906, + "Ġtheat": 30982, + "Ġtheater": 10612, + "Ġtheaters": 28887, + "Ġtheatre": 18711, + "Ġtheatrical": 42806, + "Ġthee": 24800, + "Ġtheft": 28508, + "Ġtheir": 641, + "Ġtheirs": 22760, + "Ġthem": 552, + "Ġtheme": 6314, + "Ġthemed": 33920, + "Ġthemes": 13544, + "Ġthemselves": 2969, + "Ġthen": 550, + "Ġtheo": 40594, + "Ġtheological": 40725, + "Ġtheology": 27927, + "Ġtheor": 27423, + "Ġtheore": 10299, + "Ġtheorem": 20904, + "Ġtheoret": 14308, + "Ġtheoretical": 20864, + "Ġtheoretically": 29400, + "Ġtheories": 13667, + "Ġtheory": 5261, + "Ġtherap": 6793, + "Ġtherapeut": 26126, + "Ġtherapeutic": 30395, + "Ġtherapies": 32814, + "Ġtherapist": 19830, + "Ġtherapists": 36509, + "Ġtherapy": 9492, + "Ġthere": 456, + "Ġthereafter": 38729, + "Ġthereby": 28281, + "Ġtherefore": 4412, + "Ġtheres": 42551, + "Ġtherm": 8810, + "Ġthermal": 15070, + "Ġthermometer": 42539, + "Ġthese": 613, + "Ġthesis": 22288, + "Ġtheta": 9725, + "Ġthey": 436, + "Ġthi": 30994, + "Ġthick": 5060, + "Ġthicken": 33821, + "Ġthicker": 18142, + "Ġthickness": 14855, + "Ġthief": 23176, + "Ġthieves": 37057, + "Ġthigh": 27871, + "Ġthighs": 29207, + "Ġthin": 5862, + "Ġthing": 551, + "Ġthings": 721, + "Ġthink": 519, + "Ġthinkers": 37895, + "Ġthinking": 1953, + "Ġthinks": 7309, + "Ġthinly": 47337, + "Ġthinner": 21905, + "Ġthird": 2636, + "Ġthirds": 34552, + "Ġthirst": 34846, + "Ġthirsty": 28115, + "Ġthirteen": 31534, + "Ġthirty": 11790, + "Ġthis": 341, + "Ġtho": 27899, + "Ġthor": 11588, + "Ġthorough": 12934, + "Ġthoroughly": 17987, + "Ġthose": 729, + "Ġthou": 24757, + "Ġthough": 1673, + "Ġthought": 1194, + "Ġthoughtful": 21566, + "Ġthoughts": 4598, + "Ġthous": 3118, + "Ġthousand": 4714, + "Ġthousands": 5383, + "Ġthr": 739, + "Ġthread": 7207, + "Ġthreaded": 47493, + "Ġthreads": 19314, + "Ġthreat": 4734, + "Ġthreaten": 29864, + "Ġthreatened": 18268, + "Ġthreatening": 20768, + "Ġthreatens": 47511, + "Ġthreats": 14909, + "Ġthree": 1045, + "Ġthreshold": 14678, + "Ġthrew": 11918, + "Ġthri": 23949, + "Ġthrill": 32935, + "Ġthrilled": 18744, + "Ġthriller": 43009, + "Ġthrilling": 39347, + "Ġthrive": 21233, + "Ġthriving": 30643, + "Ġthroat": 12394, + "Ġthrone": 17678, + "Ġthrottle": 24235, + "Ġthrough": 807, + "Ġthroughout": 3710, + "Ġthroughput": 44629, + "Ġthrow": 3507, + "Ġthrowing": 10238, + "Ġthrown": 11732, + "Ġthrows": 19251, + "Ġthrust": 24030, + "Ġthu": 40295, + "Ġthumb": 9298, + "Ġthumbna": 21313, + "Ġthumbnail": 26746, + "Ġthumbnails": 46987, + "Ġthumbs": 8838, + "Ġthunder": 19898, + "Ġthunderstorm": 39618, + "Ġthus": 8807, + "Ġthy": 15196, + "Ġthyroid": 32332, + "Ġthé": 30448, + "Ġthì": 17510, + "Ġthôi": 34772, + "ĠthÃłnh": 39953, + "Ġthấy": 27793, + "Ġthế": 27100, + "Ġthứ": 47269, + "Ġthá»±c": 50183, + "Ġthá»ĥ": 24491, + "Ġthá»Ŀi": 49506, + "Ġti": 8757, + "Ġtick": 5204, + "Ġticket": 10550, + "Ġtickets": 12628, + "Ġticking": 33999, + "Ġticks": 42475, + "Ġtid": 9422, + "Ġtidak": 18943, + "Ġtide": 24662, + "Ġtiden": 44302, + "Ġtidy": 34646, + "Ġtie": 7582, + "Ġtied": 9601, + "Ġtief": 45100, + "Ġtiempo": 11772, + "Ġtien": 4902, + "Ġtiene": 7066, + "Ġtienen": 12536, + "Ġtienes": 20716, + "Ġtier": 12362, + "Ġtierra": 33416, + "Ġtiers": 40563, + "Ġties": 14039, + "Ġtiet": 37709, + "Ġtiger": 21432, + "Ġtigers": 47949, + "Ġtight": 4524, + "Ġtighten": 17041, + "Ġtightened": 49673, + "Ġtightening": 42217, + "Ġtighter": 30443, + "Ġtightly": 21952, + "Ġtijd": 26966, + "Ġtik": 44994, + "Ġtil": 8440, + "Ġtilde": 45046, + "Ġtile": 20590, + "Ġtiles": 21982, + "Ġtill": 4288, + "Ġtills": 46729, + "Ġtilt": 18446, + "Ġtilted": 43229, + "Ġtim": 524, + "Ġtimber": 34671, + "Ġtime": 565, + "Ġtimed": 44696, + "Ġtimeframe": 34830, + "Ġtimeless": 41200, + "Ġtimeline": 12933, + "Ġtimelines": 45886, + "Ġtimely": 25150, + "Ġtimer": 19247, + "Ġtimes": 1413, + "Ġtimest": 49108, + "Ġtiming": 10822, + "Ġtin": 15935, + "Ġtinc": 43240, + "Ġting": 17922, + "Ġtinha": 13574, + "Ġtinham": 47257, + "Ġtint": 28738, + "Ġtiny": 5870, + "Ġtio": 44735, + "Ġtip": 4125, + "Ġtipo": 9746, + "Ġtipos": 37105, + "Ġtipping": 41625, + "Ġtips": 6082, + "Ġtir": 13807, + "Ġtirar": 29239, + "Ġtire": 11756, + "Ġtired": 5868, + "Ġtires": 13885, + "Ġtiring": 35182, + "Ġtiro": 44188, + "Ġtiss": 10080, + "Ġtissue": 12404, + "Ġtissues": 27353, + "Ġtit": 3459, + "Ġtitanium": 35289, + "Ġtitle": 4876, + "Ġtitled": 19841, + "Ġtitles": 12992, + "Ġtitre": 44161, + "Ġtitt": 37419, + "Ġtive": 39242, + "Ġtiver": 31417, + "Ġtiế": 34923, + "Ġtiếp": 48667, + "Ġto": 281, + "Ġtoast": 15354, + "Ġtoasted": 48951, + "Ġtob": 20676, + "Ġtobacco": 22994, + "Ġtoc": 42565, + "Ġtoca": 43514, + "Ġtocar": 35631, + "Ġtoch": 22587, + "Ġtod": 4352, + "Ġtoda": 11687, + "Ġtodas": 10906, + "ĠtodavÃŃa": 28388, + "Ġtoday": 965, + "Ġtodd": 33268, + "Ġtoddler": 44348, + "Ġtodo": 5149, + "Ġtodos": 6321, + "Ġtoe": 13976, + "Ġtoen": 29911, + "Ġtoes": 14681, + "Ġtofu": 21419, + "Ġtoget": 1213, + "Ġtogether": 1214, + "Ġtogg": 26911, + "Ġtoggle": 31225, + "Ġtoi": 15648, + "Ġtoil": 9499, + "Ġtoilet": 11137, + "Ġtoilets": 37691, + "Ġtoim": 35590, + "Ġtok": 19164, + "Ġtoken": 14862, + "Ġtokens": 22667, + "Ġtold": 1907, + "Ġtoler": 11125, + "Ġtolerance": 23368, + "Ġtolerant": 45525, + "Ġtolerate": 25773, + "Ġtoll": 16629, + "Ġtom": 2916, + "Ġtoma": 39728, + "Ġtomar": 22048, + "Ġtomato": 9288, + "Ġtomatoes": 15135, + "Ġtomb": 18712, + "Ġtomorrow": 4153, + "Ġton": 2952, + "Ġtone": 8027, + "Ġtoner": 40403, + "Ġtones": 19995, + "Ġtong": 9124, + "Ġtongue": 10601, + "Ġtongues": 37490, + "Ġtonight": 4440, + "Ġtonnes": 41402, + "Ġtons": 9131, + "Ġtoo": 886, + "Ġtook": 1890, + "Ġtool": 2290, + "Ġtoolbar": 47715, + "Ġtoolbox": 44593, + "Ġtooling": 46593, + "Ġtoolkit": 40167, + "Ġtools": 3873, + "Ġtooth": 11680, + "Ġtoothbrush": 37568, + "Ġtoothp": 27003, + "Ġtoothpaste": 39956, + "Ġtop": 1192, + "Ġtopic": 4829, + "Ġtopics": 8378, + "Ġtopl": 41017, + "Ġtopp": 48433, + "Ġtopped": 38781, + "Ġtopping": 36676, + "Ġtoppings": 43052, + "Ġtops": 22836, + "Ġtor": 3930, + "Ġtorch": 27822, + "Ġtore": 37341, + "Ġtorment": 36662, + "Ġtorn": 10885, + "Ġtornado": 27935, + "Ġtornar": 41283, + "Ġtorpedo": 46764, + "Ġtorque": 16437, + "Ġtorso": 34917, + "Ġtort": 10806, + "Ġtortilla": 48857, + "Ġtorto": 50159, + "Ġtorture": 20711, + "Ġtortured": 36166, + "Ġtoss": 14432, + "Ġtossed": 42768, + "Ġtot": 1993, + "Ġtota": 40066, + "Ġtotal": 3217, + "Ġtotalement": 45203, + "Ġtotally": 3879, + "Ġtotalmente": 30865, + "Ġtote": 49019, + "Ġtots": 31661, + "Ġtou": 10095, + "Ġtouch": 2557, + "Ġtouchdown": 34459, + "Ġtouched": 9828, + "Ġtouches": 17431, + "Ġtouching": 11175, + "Ġtouchscreen": 46775, + "Ġtough": 4930, + "Ġtougher": 30298, + "Ġtoughest": 35037, + "Ġtoujours": 11936, + "Ġtour": 3512, + "Ġtouring": 32487, + "Ġtourism": 21832, + "Ġtourist": 19806, + "Ġtourists": 20273, + "Ġtournament": 13713, + "Ġtournaments": 32004, + "Ġtours": 22911, + "Ġtous": 8317, + "Ġtout": 3486, + "Ġtoute": 14953, + "Ġtoutes": 14437, + "Ġtow": 10966, + "Ġtoward": 7361, + "Ġtowards": 3030, + "Ġtowel": 15755, + "Ġtowels": 32819, + "Ġtower": 10567, + "Ġtowers": 25045, + "Ġtown": 3954, + "Ġtowns": 18104, + "Ġtox": 10357, + "Ġtoxic": 12786, + "Ġtoxicity": 45866, + "Ġtoxins": 36104, + "Ġtoy": 12058, + "Ġtoys": 13753, + "Ġtr": 504, + "Ġtra": 944, + "Ġtrabaj": 9618, + "Ġtrabajando": 40473, + "Ġtrabajar": 30793, + "Ġtrabajo": 18099, + "Ġtrabal": 12067, + "Ġtrabalh": 48180, + "Ġtrabalhar": 35531, + "Ġtrabalho": 20834, + "Ġtrace": 13508, + "Ġtraced": 38141, + "Ġtraces": 26076, + "Ġtracing": 25262, + "Ġtrack": 2837, + "Ġtracked": 31703, + "Ġtracker": 37516, + "Ġtracking": 11603, + "Ġtracks": 10218, + "Ġtract": 24207, + "Ġtraction": 23558, + "Ġtractor": 31857, + "Ġtrad": 2479, + "Ġtrade": 4923, + "Ġtraded": 27157, + "Ġtrademark": 31361, + "Ġtrader": 31961, + "Ġtraders": 26014, + "Ġtrades": 21287, + "Ġtradicional": 47956, + "Ġtrading": 9529, + "Ġtradition": 6994, + "Ġtraditional": 5164, + "Ġtraditionally": 19067, + "Ġtraditions": 15643, + "Ġtraff": 21073, + "Ġtraffic": 6419, + "Ġtrafficking": 25843, + "Ġtrag": 38282, + "Ġtraged": 16019, + "Ġtragedy": 18563, + "Ġtragen": 44737, + "Ġtragic": 20385, + "Ġtrail": 9924, + "Ġtrailer": 11724, + "Ġtrailers": 37698, + "Ġtrails": 23024, + "Ġtrain": 3847, + "Ġtrained": 8895, + "Ġtrainee": 40350, + "Ġtrainees": 41316, + "Ġtrainer": 21110, + "Ġtrainers": 35393, + "Ġtraining": 3097, + "Ġtrainings": 33856, + "Ġtrains": 16329, + "Ġtrait": 22538, + "Ġtraitor": 39819, + "Ġtraits": 19526, + "Ġtraject": 18257, + "Ġtrajectory": 21512, + "Ġtram": 25749, + "Ġtramp": 38605, + "Ġtran": 14404, + "Ġtranqu": 17640, + "Ġtranquil": 35337, + "Ġtrans": 1145, + "Ġtransact": 46688, + "Ġtransaction": 14425, + "Ġtransactions": 16856, + "Ġtransc": 43800, + "Ġtranscend": 28535, + "Ġtranscript": 24444, + "Ġtranscription": 35288, + "Ġtransf": 22666, + "Ġtransfer": 5003, + "Ġtransferred": 15809, + "Ġtransferring": 31437, + "Ġtransfers": 29137, + "Ġtransform": 4088, + "Ġtransformation": 9887, + "Ġtransformations": 34852, + "Ġtransformative": 36070, + "Ġtransformed": 16894, + "Ġtransformer": 31782, + "Ġtransforming": 27210, + "Ġtransforms": 35592, + "Ġtransgender": 27470, + "Ġtransient": 41998, + "Ġtransistor": 34750, + "Ġtransit": 17976, + "Ġtransition": 6034, + "Ġtransitional": 46452, + "Ġtransitioned": 47346, + "Ġtransitioning": 33777, + "Ġtransitions": 23767, + "Ġtransl": 5105, + "Ġtranslate": 13799, + "Ġtranslated": 16805, + "Ġtranslates": 28468, + "Ġtranslating": 35030, + "Ġtranslation": 12853, + "Ġtranslations": 37578, + "Ġtranslator": 35223, + "Ġtransluc": 45266, + "Ġtranslucent": 48236, + "Ġtransm": 7715, + "Ġtransmission": 11574, + "Ġtransmit": 17831, + "Ġtransmitted": 25355, + "Ġtransmitter": 40121, + "Ġtransp": 7132, + "Ġtransparen": 16165, + "Ġtransparency": 17131, + "Ġtransparent": 12737, + "Ġtransplant": 20662, + "Ġtransport": 5495, + "Ġtransportation": 11328, + "Ġtransported": 29373, + "Ġtransporting": 49302, + "Ġtranspose": 25167, + "Ġtrap": 11487, + "Ġtrapped": 14994, + "Ġtraps": 24173, + "Ġtras": 22507, + "Ġtrash": 11321, + "Ġtrat": 21507, + "Ġtrata": 31920, + "Ġtratar": 42549, + "Ġtraum": 16790, + "Ġtrauma": 11407, + "Ġtraumat": 35099, + "Ġtraumatic": 26456, + "Ġtrav": 11783, + "Ġtrava": 16020, + "Ġtravail": 18047, + "Ġtravaill": 38222, + "Ġtravaille": 41072, + "Ġtravailler": 30968, + "Ġtrave": 13938, + "Ġtravel": 3147, + "Ġtraveled": 16147, + "Ġtraveler": 46138, + "Ġtravelers": 35283, + "Ġtraveling": 9712, + "Ġtravelled": 31844, + "Ġtravelling": 20515, + "Ġtravels": 19863, + "Ġtravers": 23149, + "Ġtraverse": 45674, + "Ġtravés": 24463, + "Ġtray": 16027, + "Ġtrays": 47496, + "Ġtraz": 37481, + "Ġtrazer": 44776, + "Ġtre": 2192, + "Ġtread": 28286, + "Ġtreadmill": 46374, + "Ġtreasure": 12985, + "Ġtreasures": 31548, + "Ġtreasury": 47213, + "Ġtreat": 2387, + "Ġtreated": 8668, + "Ġtreaties": 48552, + "Ġtreating": 15083, + "Ġtreatment": 5032, + "Ġtreatments": 15795, + "Ġtreats": 19566, + "Ġtreaty": 24772, + "Ġtreball": 37999, + "Ġtreble": 43715, + "Ġtree": 4230, + "Ġtrees": 5852, + "Ġtreffen": 37620, + "Ġtrek": 33646, + "Ġtrem": 7813, + "Ġtremb": 37708, + "Ġtrembling": 47354, + "Ġtremend": 8706, + "Ġtremendous": 10048, + "Ġtremendously": 27985, + "Ġtren": 23136, + "Ġtrench": 39052, + "Ġtrenches": 48245, + "Ġtrend": 6028, + "Ġtrending": 28692, + "Ġtrends": 13892, + "Ġtrendy": 38596, + "Ġtres": 15890, + "Ġtresp": 46347, + "Ġtri": 1376, + "Ġtrial": 7308, + "Ġtrials": 12450, + "Ġtriang": 19335, + "Ġtriangle": 13369, + "Ġtriangles": 29896, + "Ġtriangular": 38190, + "Ġtrib": 15039, + "Ġtribal": 20958, + "Ġtribe": 17625, + "Ġtribes": 19035, + "Ġtribute": 24722, + "Ġtrick": 4282, + "Ġtricked": 39345, + "Ġtricks": 11733, + "Ġtricky": 12414, + "Ġtried": 3031, + "Ġtries": 9898, + "Ġtrif": 36956, + "Ġtrig": 35386, + "Ġtrigger": 7875, + "Ġtriggered": 21710, + "Ġtriggering": 40406, + "Ġtriggers": 22827, + "Ġtril": 26120, + "Ġtrillion": 18723, + "Ġtrilogy": 34030, + "Ġtrim": 10445, + "Ġtrimmed": 44563, + "Ġtrimming": 47212, + "Ġtrio": 37274, + "Ġtrip": 4931, + "Ġtriple": 15508, + "Ġtripod": 28020, + "Ġtrips": 16051, + "Ġtriste": 33526, + "Ġtriumph": 29156, + "Ġtrivia": 48770, + "Ġtrivial": 26703, + "Ġtro": 4495, + "ĠtrochÄĻ": 24926, + "Ġtrois": 19758, + "Ġtroisième": 47582, + "Ġtroll": 20680, + "Ġtrolls": 47749, + "Ġtrong": 18826, + "Ġtroop": 46400, + "Ġtroops": 11522, + "Ġtrop": 9006, + "Ġtroph": 45583, + "Ġtrophy": 28639, + "Ġtropical": 22857, + "Ġtror": 22109, + "Ġtros": 45692, + "Ġtrotzdem": 28325, + "Ġtrou": 3455, + "Ġtrouble": 5253, + "Ġtroubled": 29402, + "Ġtroubles": 15379, + "Ġtroublesome": 46838, + "Ġtroubling": 38080, + "Ġtrous": 34156, + "Ġtrousers": 41463, + "Ġtrout": 43978, + "Ġtrouve": 19359, + "Ġtrouver": 23546, + "Ġtrouvé": 37742, + "Ġtrov": 35449, + "Ġtruc": 14805, + "Ġtruck": 5898, + "Ġtrucks": 16156, + "Ġtrucs": 33505, + "Ġtrud": 32007, + "Ġtrue": 2074, + "Ġtruly": 4908, + "Ġtrump": 21779, + "Ġtrumpet": 35160, + "Ġtrunk": 19849, + "Ġtrust": 3361, + "Ġtrusted": 16034, + "Ġtrustees": 43234, + "Ġtrusting": 28235, + "Ġtrusts": 45358, + "Ġtrustworthy": 39714, + "Ġtruth": 3494, + "Ġtruthful": 44669, + "Ġtruths": 30079, + "Ġtry": 853, + "Ġtryin": 47452, + "Ġtrying": 1382, + "Ġtryna": 49597, + "Ġtrze": 22266, + "Ġtrzeba": 25860, + "Ġtrzy": 34573, + "Ġtrás": 46189, + "Ġträ": 33367, + "Ġtrès": 5732, + "Ġtrên": 33187, + "Ġtrês": 20779, + "ĠtrÆ°á»Ľc": 44860, + "Ġts": 35492, + "Ġtsp": 21438, + "Ġtsun": 34550, + "Ġtsunami": 39032, + "Ġtteokbokki": 47025, + "Ġtu": 2604, + "Ġtua": 33578, + "Ġtub": 10809, + "Ġtube": 9917, + "Ġtuber": 39847, + "Ġtubes": 21458, + "Ġtubing": 43349, + "Ġtuck": 18457, + "Ġtucked": 36089, + "Ġtud": 32602, + "Ġtudo": 9379, + "Ġtug": 33543, + "Ġtuh": 26849, + "Ġtuition": 23925, + "Ġtul": 30210, + "Ġtule": 27954, + "Ġtulee": 40038, + "Ġtum": 13102, + "Ġtumb": 42994, + "Ġtummy": 36974, + "Ġtumor": 22512, + "Ġtumors": 38466, + "Ġtun": 4267, + "Ġtuna": 26670, + "Ġtune": 10864, + "Ġtuned": 10870, + "Ġtunes": 38498, + "Ġtung": 41880, + "Ġtuning": 15164, + "Ġtunnel": 13186, + "Ġtunnels": 30804, + "Ġtuo": 45352, + "Ġtur": 3243, + "Ġturb": 18252, + "Ġturbine": 27536, + "Ġturbines": 44947, + "Ġturbo": 20902, + "Ġturbul": 27462, + "Ġturbulence": 48612, + "Ġturbulent": 41697, + "Ġturf": 42756, + "Ġturkey": 21551, + "Ġturmeric": 36774, + "Ġturmoil": 44554, + "Ġturn": 1261, + "Ġturnaround": 46114, + "Ġturned": 3574, + "Ġturning": 6246, + "Ġturnout": 42497, + "Ġturnover": 37137, + "Ġturns": 4523, + "Ġturret": 34544, + "Ġturtle": 22866, + "Ġturtles": 32422, + "Ġtus": 20647, + "Ġtussen": 50119, + "Ġtut": 3672, + "Ġtutaj": 12749, + "Ġtutor": 35613, + "Ġtutorial": 7073, + "Ġtutorials": 17616, + "Ġtutoring": 44410, + "Ġtutte": 38632, + "Ġtutti": 19822, + "Ġtutto": 23048, + "Ġtuv": 38177, + "Ġtuvo": 43718, + "Ġtv": 16364, + "ĠtvÃ¥": 34600, + "Ġtw": 683, + "Ġtwe": 6986, + "Ġtweak": 29879, + "Ġtweaks": 46664, + "Ġtwee": 30660, + "Ġtweet": 15258, + "Ġtweeted": 25646, + "Ġtweeting": 40090, + "Ġtweets": 25671, + "Ġtwelve": 14390, + "Ġtwent": 34041, + "Ġtwenties": 49398, + "Ġtwenty": 7699, + "Ġtwice": 6091, + "Ġtwin": 18397, + "Ġtwins": 22555, + "Ġtwist": 8203, + "Ġtwisted": 23057, + "Ġtwisting": 34491, + "Ġtwists": 35290, + "Ġtwitch": 34167, + "Ġtwitter": 21439, + "Ġtwo": 732, + "Ġtwor": 46288, + "Ġty": 1104, + "Ġtych": 15180, + "Ġtycker": 31053, + "Ġtying": 32405, + "Ġtyl": 13103, + "Ġtyle": 39293, + "Ġtylko": 13219, + "Ġtym": 8107, + "Ġtyp": 2125, + "Ġtype": 2010, + "Ġtyped": 33941, + "Ġtypes": 3467, + "Ġtypical": 7476, + "Ġtypically": 5850, + "Ġtyping": 18444, + "Ġtyr": 41108, + "Ġtyre": 44087, + "Ġtyres": 42564, + "Ġtys": 38156, + "Ġtyö": 43448, + "Ġtá": 7737, + "Ġtão": 18012, + "Ġtä": 14619, + "Ġtähän": 49580, + "Ġtäll": 37728, + "Ġtämä": 29962, + "Ġtän": 19790, + "Ġtänker": 43431, + "Ġtässä": 29934, + "Ġtät": 37039, + "Ġtätä": 50187, + "Ġtää": 38350, + "Ġté": 19809, + "Ġtéc": 25564, + "Ġtécnica": 45411, + "Ġtélé": 24254, + "Ġtéléphone": 47159, + "Ġtér": 39324, + "Ġtérmin": 45198, + "Ġtêm": 24277, + "Ġtête": 24661, + "Ġtô": 20683, + "Ġtôi": 22336, + "Ġtö": 37064, + "Ġtú": 15056, + "Ġtür": 39219, + "ĠtÃŃtulo": 43399, + "ĠtÄħ": 32294, + "ĠtÄĻ": 32489, + "Ġtại": 37773, + "Ġtừ": 26834, + "ĠtỼi": 47679, + "Ġu": 344, + "Ġub": 26709, + "Ġubiqu": 43868, + "Ġucz": 35403, + "Ġud": 11727, + "Ġuda": 44544, + "Ġudah": 25231, + "Ġug": 10743, + "Ġugh": 38560, + "Ġugly": 12246, + "Ġuh": 2232, + "Ġuhh": 29256, + "Ġuhhh": 38594, + "Ġuhm": 35007, + "Ġuit": 12528, + "Ġuk": 26769, + "Ġul": 20352, + "Ġult": 3725, + "Ġultimate": 9705, + "Ġultimately": 6284, + "Ġultra": 14808, + "Ġultras": 37072, + "Ġultrasound": 40895, + "Ġum": 1105, + "Ġuma": 2772, + "Ġumas": 46010, + "Ġumbre": 20158, + "Ġumbrella": 21925, + "Ġumm": 28397, + "Ġun": 517, + "Ġuna": 2002, + "Ġunable": 11299, + "Ġunacceptable": 31812, + "Ġunanim": 29710, + "Ġunanimously": 48733, + "Ġunas": 25405, + "Ġunatt": 47316, + "Ġunav": 36541, + "Ġunaware": 32065, + "Ġunbedingt": 41211, + "Ġunbel": 46063, + "Ġunbelievable": 16605, + "Ġunbelievably": 43593, + "Ġunbox": 20242, + "Ġunboxing": 26266, + "Ġunc": 6219, + "Ġuncertain": 11308, + "Ġuncertainty": 15697, + "Ġunch": 33686, + "Ġunchanged": 44553, + "Ġuncheck": 46672, + "Ġuncle": 9153, + "Ġunclear": 25636, + "Ġuncles": 47662, + "Ġuncom": 8585, + "Ġuncomfortable": 10532, + "Ġuncommon": 29289, + "Ġuncon": 35847, + "Ġuncond": 34959, + "Ġunconditional": 47916, + "Ġunconscious": 18900, + "Ġuncont": 36019, + "Ġuncover": 21694, + "Ġuncovered": 37729, + "Ġund": 674, + "Ġunde": 40981, + "Ġunder": 833, + "Ġundercover": 48099, + "Ġunderest": 24612, + "Ġunderestimate": 35826, + "Ġundergo": 26426, + "Ġundergoing": 40033, + "Ġundergrad": 14295, + "Ġundergraduate": 19113, + "Ġunderground": 14977, + "Ġunderlying": 14217, + "Ġunderm": 24188, + "Ġundermine": 39257, + "Ġunderneath": 7223, + "Ġunders": 16692, + "Ġunderscore": 37556, + "Ġunderside": 49511, + "Ġunderstand": 1223, + "Ġunderstandable": 25648, + "Ġunderstanding": 3701, + "Ġunderstands": 15146, + "Ġunderstood": 7320, + "Ġundert": 15564, + "Ġundertake": 37010, + "Ġundertaken": 40313, + "Ġundertaking": 39250, + "Ġunderwater": 20967, + "Ġunderway": 27534, + "Ġunderwear": 24941, + "Ġunderworld": 49607, + "Ġundes": 45667, + "Ġundo": 23779, + "Ġundocumented": 40472, + "Ġundoubtedly": 35211, + "Ġune": 2251, + "Ġuneasy": 48589, + "Ġunemploy": 14015, + "Ġunemployed": 34411, + "Ġunemployment": 17438, + "Ġuneven": 34022, + "Ġunex": 11572, + "Ġunexpected": 13106, + "Ġunexpectedly": 40452, + "Ġunf": 3971, + "Ġunfair": 17019, + "Ġunfamiliar": 29415, + "Ġunfinished": 41037, + "Ġunfold": 17980, + "Ġunfolding": 44586, + "Ġunfor": 31411, + "Ġunforgettable": 46194, + "Ġunfortunate": 17843, + "Ġunfortunately": 7015, + "Ġung": 29038, + "Ġungef": 31831, + "Ġungefähr": 41285, + "Ġunglaub": 49087, + "Ġunhappy": 22172, + "Ġunhealthy": 29147, + "Ġuni": 36435, + "Ġunicorn": 28122, + "Ġunified": 26787, + "Ġuniform": 9452, + "Ġuniformly": 48806, + "Ġuniforms": 37235, + "Ġunin": 43456, + "Ġunint": 29466, + "Ġunintended": 49902, + "Ġunintention": 45514, + "Ġuninter": 49234, + "Ġunion": 11671, + "Ġunions": 24914, + "Ġuniqu": 20763, + "Ġunique": 3845, + "Ġuniquely": 31474, + "Ġuniqueness": 48294, + "Ġunit": 4985, + "Ġunite": 29320, + "Ġunited": 18883, + "Ġunits": 6815, + "Ġunity": 18205, + "Ġunivers": 5950, + "Ġuniversal": 11455, + "Ġuniversally": 43995, + "Ġuniverse": 6445, + "Ġuniverses": 50168, + "Ġuniversities": 11779, + "Ġuniversity": 5454, + "Ġuniverso": 42332, + "Ġunjust": 37046, + "Ġunknown": 9841, + "Ġunknowns": 46048, + "Ġunl": 32118, + "Ġunle": 25272, + "Ġunleash": 49814, + "Ġunless": 5969, + "Ġunlike": 8343, + "Ġunlikely": 17518, + "Ġunlimited": 21950, + "Ġunload": 32165, + "Ġunlock": 11634, + "Ġunlocked": 30180, + "Ġunlocking": 49620, + "Ġunlucky": 38838, + "Ġunm": 19334, + "Ġunmute": 41445, + "Ġunnatural": 43470, + "Ġunnecess": 16799, + "Ġunnecessary": 19350, + "Ġunnie": 49665, + "Ġuno": 8526, + "Ġunos": 17780, + "Ġunp": 20994, + "Ġunpack": 26699, + "Ġunpl": 32816, + "Ġunpleasant": 29128, + "Ġunplug": 39456, + "Ġunpre": 19237, + "Ġunprecedented": 21555, + "Ġunpredict": 28341, + "Ġunpredictable": 31160, + "Ġunquote": 37557, + "Ġunravel": 40507, + "Ġunre": 20584, + "Ġunreal": 25754, + "Ġunrealistic": 42867, + "Ġunreasonable": 41730, + "Ġunrelated": 38967, + "Ġunrest": 35103, + "Ġuns": 2693, + "Ġunsafe": 35948, + "Ġunscrew": 42579, + "Ġunseen": 40608, + "Ġunser": 12977, + "Ġunsere": 14339, + "Ġunserem": 26792, + "Ġunseren": 25305, + "Ġunserer": 20965, + "Ġunsett": 43964, + "Ġunst": 18799, + "Ġunstable": 23742, + "Ġunstoppable": 48261, + "Ġunsuccess": 40501, + "Ġunsuccessful": 46258, + "Ġunsure": 32486, + "Ġunt": 1701, + "Ġunten": 25693, + "Ġunter": 8662, + "Ġunters": 20983, + "Ġunterschied": 30058, + "Ġunterstüt": 30007, + "Ġunterstützen": 43081, + "Ġunterwegs": 36258, + "Ġuntil": 1826, + "Ġunto": 16521, + "Ġuntuk": 12711, + "Ġunus": 10054, + "Ġunused": 44383, + "Ġunusual": 10901, + "Ġunut": 37997, + "Ġunve": 31009, + "Ġunveiled": 47430, + "Ġunw": 14853, + "Ġunwanted": 33745, + "Ġunwilling": 38246, + "Ġup": 493, + "Ġupbeat": 23593, + "Ġupbringing": 47268, + "Ġupcoming": 11500, + "Ġupd": 3460, + "Ġupdate": 5623, + "Ġupdated": 10588, + "Ġupdates": 9205, + "Ġupdating": 25113, + "Ġupfront": 30264, + "Ġupgrad": 17789, + "Ġupgrade": 11484, + "Ġupgraded": 24133, + "Ġupgrades": 24868, + "Ġupgrading": 36249, + "Ġuphill": 39132, + "Ġuphold": 34451, + "Ġuplift": 45407, + "Ġupload": 6580, + "Ġuploaded": 17135, + "Ġuploading": 27301, + "Ġuploads": 48611, + "Ġupon": 3564, + "Ġupp": 11775, + "Ġupper": 6597, + "Ġupright": 27405, + "Ġuprising": 49144, + "Ġups": 15497, + "Ġupset": 8340, + "Ġupsetting": 44109, + "Ġupside": 14119, + "Ġupstairs": 16462, + "Ġupstream": 33915, + "Ġupward": 23452, + "Ġupwards": 22167, + "Ġur": 4038, + "Ġuranium": 36830, + "Ġurban": 9681, + "Ġurg": 40199, + "Ġurge": 19029, + "Ġurged": 44206, + "Ġurgency": 29734, + "Ġurgent": 19022, + "Ġurgently": 49390, + "Ġurging": 48489, + "Ġurine": 27638, + "Ġus": 505, + "Ġusa": 29909, + "Ġusability": 46878, + "Ġusable": 29975, + "Ġusage": 14924, + "Ġusando": 29798, + "Ġusar": 14745, + "Ġuse": 764, + "Ġused": 1143, + "Ġuseful": 4420, + "Ġuseless": 14115, + "Ġuser": 4195, + "Ġusername": 30351, + "Ġusers": 5022, + "Ġuses": 4960, + "Ġusing": 1228, + "Ġuso": 22728, + "Ġust": 26189, + "Ġusted": 10467, + "Ġustedes": 17110, + "Ġusu": 32247, + "Ġusual": 7713, + "Ġusually": 2673, + "Ġut": 2839, + "Ġutan": 29011, + "Ġutens": 47294, + "Ġutil": 4976, + "Ġutilis": 33643, + "Ġutilise": 39475, + "Ġutiliser": 34535, + "Ġutilities": 30482, + "Ġutility": 14877, + "Ġutiliz": 19906, + "Ġutilizar": 24060, + "Ġutilization": 37074, + "Ġutilize": 16117, + "Ġutilized": 28158, + "Ġutilizing": 26775, + "Ġutilizz": 40355, + "Ġutmost": 42777, + "Ġutter": 17567, + "Ġutterly": 30251, + "Ġutveck": 39807, + "Ġuw": 23147, + "ĠuwagÄĻ": 43696, + "Ġuważ": 48089, + "Ġuy": 28266, + "Ġuz": 16851, + "ĠuÄŁ": 43222, + "Ġuży": 34097, + "Ġuž": 46803, + "Ġv": 371, + "Ġva": 2773, + "Ġvaak": 49644, + "Ġvaan": 47948, + "Ġvac": 2842, + "Ġvacant": 38890, + "Ġvacation": 12830, + "Ġvacc": 3900, + "Ġvaccin": 44931, + "Ġvaccinated": 14686, + "Ġvaccination": 16498, + "Ġvaccinations": 39333, + "Ġvaccine": 7007, + "Ġvaccines": 12164, + "Ġvacun": 38581, + "Ġvacuum": 14224, + "Ġvad": 16684, + "Ġvag": 13501, + "Ġvagina": 38963, + "Ġvague": 24247, + "Ġvagy": 32970, + "Ġvai": 4405, + "Ġvaig": 26571, + "Ġvain": 22240, + "Ġvais": 9369, + "Ġvak": 31647, + "Ġval": 1323, + "Ġvale": 15474, + "Ġvaleur": 45255, + "Ġvalid": 7363, + "Ġvalidate": 29562, + "Ġvalidated": 40693, + "Ġvalidation": 24071, + "Ġvalidity": 40943, + "Ġvallahi": 45338, + "Ġvalle": 40699, + "Ġvalley": 17636, + "Ġvalleys": 45614, + "Ġvalor": 15367, + "Ġvalores": 38790, + "Ġvalt": 45912, + "Ġvalu": 7332, + "Ġvaluable": 8263, + "Ġvaluation": 38546, + "Ġvalue": 2158, + "Ġvalued": 22608, + "Ġvalues": 4190, + "Ġvalve": 15294, + "Ġvalves": 34950, + "Ġvam": 41864, + "Ġvamos": 5295, + "Ġvamp": 20017, + "Ġvampire": 28592, + "Ġvampires": 45771, + "Ġvan": 3161, + "Ġvandaag": 41901, + "Ġvanilla": 17528, + "Ġvanish": 43584, + "Ġvanished": 37518, + "Ġvanity": 44622, + "Ġvantage": 46206, + "Ġvap": 29393, + "Ġvapor": 20358, + "Ġvar": 1374, + "Ġvara": 17234, + "Ġvard": 23065, + "Ġvardı": 36339, + "Ġvardır": 41312, + "Ġvari": 3034, + "Ġvariability": 35709, + "Ġvariable": 7006, + "Ġvariables": 9102, + "Ġvariance": 21977, + "Ġvariant": 17501, + "Ġvariants": 21669, + "Ġvarias": 37496, + "Ġvariation": 12990, + "Ġvariations": 17840, + "Ġvaried": 22877, + "Ġvaries": 21716, + "Ġvarieties": 22092, + "Ġvariety": 5673, + "Ġvarios": 33665, + "Ġvarious": 3683, + "Ġvarit": 31289, + "Ġvars": 46130, + "Ġvarsa": 48440, + "Ġvary": 10559, + "Ġvarying": 22984, + "Ġvas": 11481, + "Ġvase": 44065, + "Ġvast": 8369, + "Ġvastly": 41426, + "Ġvault": 27134, + "Ġvaya": 47682, + "Ġvaz": 37533, + "Ġve": 1241, + "Ġvec": 42021, + "Ġveces": 17054, + "Ġvector": 8062, + "Ġvectors": 18875, + "Ġved": 14267, + "Ġvedere": 35373, + "Ġveel": 16550, + "Ġveg": 24366, + "Ġvegan": 12824, + "Ġveget": 5764, + "Ġvegetable": 16356, + "Ġvegetables": 9320, + "Ġvegetarian": 25739, + "Ġvegetation": 28769, + "Ġvegg": 22644, + "Ġveggies": 27889, + "Ġveh": 4221, + "Ġvehicle": 5864, + "Ġvehicles": 8948, + "Ġveil": 30705, + "Ġvein": 30669, + "Ġveins": 29390, + "Ġveio": 41164, + "Ġvel": 14610, + "Ġveloc": 7806, + "Ġvelocidad": 50143, + "Ġvelocidade": 45181, + "Ġvelocity": 9269, + "Ġvelvet": 41905, + "Ġvem": 19053, + "Ġvemos": 20909, + "Ġven": 6138, + "Ġvend": 10169, + "Ġvender": 44281, + "Ġvendo": 33152, + "Ġvendor": 24321, + "Ġvendors": 22056, + "Ġvenge": 38008, + "Ġvengeance": 43818, + "Ġvenir": 20817, + "Ġvenom": 34322, + "Ġvent": 6931, + "Ġventil": 27498, + "Ġventilation": 29553, + "Ġvents": 40048, + "Ġventure": 18474, + "Ġvenue": 21645, + "Ġvenues": 32882, + "Ġveo": 41319, + "Ġver": 1306, + "Ġveramente": 50079, + "Ġverb": 9595, + "Ġverbal": 24781, + "Ġverbally": 48162, + "Ġverbess": 49112, + "Ġverbs": 30051, + "Ġverd": 6387, + "Ġverdad": 13692, + "Ġverdade": 15203, + "Ġverde": 29653, + "Ġverder": 47196, + "Ġverdi": 40243, + "Ġverdict": 33957, + "Ġvere": 16443, + "Ġverein": 49162, + "Ġverf": 40660, + "Ġverg": 20209, + "Ġverge": 37164, + "Ġvergessen": 42418, + "Ġverification": 30206, + "Ġverified": 31197, + "Ġverify": 16888, + "Ġverk": 22328, + "Ġverkl": 43403, + "Ġverl": 19441, + "Ġverlier": 49331, + "Ġverloren": 44884, + "Ġverm": 26319, + "Ġverme": 40064, + "Ġvern": 35793, + "Ġverr": 45923, + "Ġvers": 1774, + "Ġversa": 25650, + "Ġversatile": 25057, + "Ġversch": 20563, + "Ġverschied": 22263, + "Ġverschiedene": 35411, + "Ġverschiedenen": 41043, + "Ġverse": 7996, + "Ġverses": 17316, + "Ġversion": 3037, + "Ġversions": 9606, + "Ġversión": 47248, + "Ġverso": 49786, + "Ġverst": 48960, + "Ġverste": 22442, + "Ġverstehen": 37352, + "Ġversuchen": 34749, + "Ġversucht": 36064, + "Ġversus": 5717, + "Ġversão": 41471, + "Ġvert": 6509, + "Ġverte": 16167, + "Ġvertex": 28162, + "Ġvertical": 9429, + "Ġvertically": 28450, + "Ġvertices": 32053, + "Ġverw": 24615, + "Ġvery": 588, + "Ġverz": 43945, + "Ġverändert": 45990, + "Ġves": 28274, + "Ġvess": 11800, + "Ġvessel": 18098, + "Ġvessels": 20117, + "Ġvest": 15814, + "Ġvested": 49317, + "Ġvet": 12423, + "Ġveter": 8901, + "Ġveteran": 18324, + "Ġveterans": 14343, + "Ġveterinar": 47574, + "Ġveto": 42910, + "Ġveulent": 41826, + "Ġveure": 26060, + "Ġveut": 14873, + "Ġveux": 16389, + "Ġveya": 49223, + "Ġvez": 5715, + "Ġvezes": 12925, + "Ġvi": 1932, + "Ġvia": 5766, + "Ġviable": 22024, + "Ġviaje": 48932, + "Ġvib": 11666, + "Ġvibe": 14606, + "Ġvibes": 27636, + "Ġvibr": 11599, + "Ġvibrant": 21571, + "Ġvibrating": 47748, + "Ġvibration": 20006, + "Ġvibrations": 32339, + "Ġvic": 26031, + "Ġvice": 11964, + "Ġvicinity": 42387, + "Ġvicious": 30093, + "Ġvict": 4403, + "Ġvictim": 6760, + "Ġvictims": 11448, + "Ġvictories": 38259, + "Ġvictorious": 42557, + "Ġvictory": 9812, + "Ġvid": 7217, + "Ġvida": 7644, + "Ġvidare": 49324, + "Ġvide": 838, + "Ġvideo": 960, + "Ġvideog": 46801, + "Ġvideos": 2145, + "Ġvidé": 9543, + "Ġvidéo": 11660, + "Ġvidéos": 25417, + "Ġvie": 4941, + "Ġviel": 5891, + "Ġviele": 9693, + "Ġvielen": 19885, + "Ġvielleicht": 12547, + "Ġvielä": 36470, + "Ġviendo": 34506, + "Ġviene": 19561, + "Ġvienen": 49298, + "Ġviennent": 44458, + "Ġviens": 36421, + "Ġvient": 22876, + "Ġvier": 17634, + "Ġview": 1910, + "Ġviewed": 19174, + "Ġviewer": 16767, + "Ġviewers": 8499, + "Ġviewing": 17480, + "Ġviewpoint": 35248, + "Ġviews": 6809, + "Ġvig": 15366, + "Ġvigil": 39093, + "Ġvigilant": 45737, + "Ġvigor": 42396, + "Ġvikt": 26737, + "Ġviktig": 49706, + "Ġviktigt": 46150, + "Ġvil": 15349, + "Ġvill": 4284, + "Ġvilla": 46473, + "Ġvillage": 7288, + "Ġvillagers": 32080, + "Ġvillages": 20444, + "Ġvillain": 17906, + "Ġvillains": 31368, + "Ġville": 23019, + "Ġvimos": 49266, + "Ġvin": 27037, + "Ġvind": 20168, + "Ġvinden": 46089, + "Ġvine": 12755, + "Ġvinegar": 18030, + "Ġvino": 48841, + "Ġvintage": 23050, + "Ġvinyl": 25226, + "Ġviol": 3448, + "Ġviolate": 37478, + "Ġviolated": 33239, + "Ġviolating": 42201, + "Ġviolation": 22840, + "Ġviolations": 30405, + "Ġviolence": 6270, + "Ġviolent": 11867, + "Ġviolently": 46728, + "Ġviolet": 46480, + "Ġviolin": 22878, + "Ġvir": 4107, + "Ġviral": 16132, + "Ġvirgin": 26404, + "Ġvirt": 4480, + "Ġvirtual": 6374, + "Ġvirtually": 14103, + "Ġvirtue": 20816, + "Ġvirtues": 41106, + "Ġvirtuous": 48918, + "Ġvirus": 5752, + "Ġviruses": 21785, + "Ġvis": 1452, + "Ġvisa": 18589, + "Ġvisas": 45922, + "Ġviscos": 38297, + "Ġviscosity": 39744, + "Ġvisibility": 19883, + "Ġvisible": 8974, + "Ġvision": 5201, + "Ġvisionary": 49442, + "Ġvisions": 30746, + "Ġvisit": 3441, + "Ġvisited": 11220, + "Ġvisiting": 11700, + "Ġvisitor": 28222, + "Ġvisitors": 14315, + "Ġvisits": 17753, + "Ġvist": 40247, + "Ġvista": 22553, + "Ġvisto": 17558, + "Ġvisual": 5056, + "Ġvisualization": 25801, + "Ġvisualize": 23273, + "Ġvisually": 19622, + "Ġvisuals": 26035, + "Ġvisão": 49949, + "Ġvit": 9467, + "Ġvita": 32712, + "Ġvital": 11707, + "Ġvitam": 23617, + "Ġvitamin": 17163, + "Ġvitamins": 27920, + "Ġvite": 24462, + "Ġvitesse": 49573, + "Ġviu": 28383, + "Ġviv": 11005, + "Ġvive": 28927, + "Ġviver": 46280, + "Ġvivid": 23603, + "Ġvivir": 39656, + "Ġvivo": 30689, + "Ġvivre": 34248, + "Ġviá»ĩc": 38628, + "Ġvlog": 8917, + "Ġvlogging": 39117, + "Ġvlogs": 30575, + "Ġvo": 1650, + "Ġvoc": 2329, + "Ġvocabulary": 19864, + "Ġvocal": 11657, + "Ġvocals": 28441, + "Ġvocê": 2723, + "Ġvocês": 10522, + "Ġvodka": 35710, + "Ġvog": 31273, + "Ġvoi": 20931, + "Ġvoice": 3177, + "Ġvoiced": 42246, + "Ġvoices": 9802, + "Ġvoid": 22009, + "Ġvoila": 45565, + "ĠvoilÃł": 14624, + "Ġvoir": 10695, + "Ġvois": 18297, + "Ġvoit": 18164, + "Ġvoiture": 38859, + "Ġvoix": 37188, + "Ġvol": 1996, + "Ġvolatile": 34377, + "Ġvolatility": 25877, + "Ġvolcan": 31117, + "Ġvolcanic": 35813, + "Ġvolcano": 21979, + "Ġvolcanoes": 48221, + "Ġvole": 49877, + "Ġvoll": 15593, + "Ġvolley": 30951, + "Ġvolleyball": 35887, + "Ġvolont": 40005, + "Ġvolt": 5962, + "Ġvolta": 18765, + "Ġvoltage": 8352, + "Ġvoltages": 49614, + "Ġvoltar": 36291, + "Ġvolte": 37801, + "Ġvolts": 22322, + "Ġvolume": 5523, + "Ġvolumes": 22219, + "Ġvolunt": 17911, + "Ġvoluntarily": 41782, + "Ġvoluntary": 28563, + "Ġvolunte": 7662, + "Ġvolunteer": 13835, + "Ġvolunteered": 41213, + "Ġvolunteering": 33237, + "Ġvolunteers": 14352, + "Ġvolver": 33998, + "Ġvom": 10135, + "Ġvomit": 42374, + "Ġvomiting": 46234, + "Ġvon": 2957, + "Ġvont": 14362, + "Ġvontade": 47708, + "Ġvoor": 7358, + "Ġvor": 4245, + "Ġvorbei": 38881, + "Ġvorbere": 48391, + "Ġvorher": 29195, + "Ġvorne": 32025, + "Ġvors": 48432, + "Ġvorstellen": 34346, + "Ġvortex": 49113, + "Ġvos": 13845, + "Ġvost": 28944, + "Ġvot": 3478, + "Ġvote": 4740, + "Ġvoted": 13415, + "Ġvoter": 21722, + "Ġvoters": 14073, + "Ġvotes": 12068, + "Ġvoting": 10419, + "Ġvotre": 10087, + "Ġvou": 6008, + "Ġvouch": 31007, + "Ġvoud": 39520, + "Ġvoulais": 37242, + "Ġvoulez": 29072, + "Ġvous": 2630, + "Ġvow": 17033, + "Ġvowel": 29410, + "Ġvowels": 44972, + "Ġvoy": 7552, + "Ġvoyage": 30729, + "Ġvoyez": 31503, + "Ġvoz": 30005, + "Ġvra": 6070, + "Ġvraag": 46485, + "Ġvrai": 17815, + "Ġvraiment": 8322, + "Ġvrij": 45547, + "Ġvs": 12041, + "Ġvu": 9732, + "Ġvue": 32859, + "Ġvuel": 20126, + "Ġvuelta": 41542, + "Ġvul": 7452, + "Ġvull": 45977, + "Ġvulner": 8184, + "Ġvulnerabilities": 37633, + "Ġvulnerability": 24210, + "Ġvulnerable": 10955, + "Ġvur": 40797, + "Ġvy": 44766, + "Ġvá": 36625, + "Ġvárias": 30235, + "Ġvários": 29830, + "Ġvão": 18766, + "Ġvä": 12099, + "Ġvähän": 42702, + "Ġväl": 22974, + "Ġväldigt": 19888, + "Ġvär": 28187, + "ĠvÃ¥": 27748, + "ĠvÃ¥r": 26477, + "ĠvÃ¥ra": 41042, + "Ġvæ": 18836, + "Ġvære": 27458, + "Ġvé": 19050, + "Ġvéhic": 49438, + "Ġvér": 46919, + "Ġvérit": 30678, + "Ġvéritable": 47492, + "Ġvê": 30384, + "Ġvì": 37902, + "Ġvöllig": 35670, + "ĠvÃł": 10274, + "ĠvÃło": 24995, + "ĠvÃŃ": 6153, + "ĠvÃŃde": 6951, + "ĠvÃŃdeo": 8071, + "ĠvÃŃdeos": 20617, + "Ġvẫn": 49004, + "ĠváºŃy": 29738, + "Ġvá»ģ": 25652, + "Ġvá»ĭ": 45186, + "ĠvỼi": 18916, + "Ġw": 261, + "Ġwa": 5406, + "Ġwaar": 16618, + "Ġwack": 42138, + "Ġwaffle": 44328, + "Ġwag": 36854, + "Ġwage": 15444, + "Ġwages": 20097, + "Ġwagon": 34453, + "Ġwah": 31979, + "Ġwahr": 21628, + "Ġwahrscheinlich": 30957, + "Ġwai": 32883, + "Ġwaist": 15732, + "Ġwait": 1699, + "Ġwaited": 15240, + "Ġwaiter": 45389, + "Ġwaiting": 3806, + "Ġwaits": 40597, + "Ġwaiver": 42143, + "Ġwake": 6634, + "Ġwakes": 29610, + "Ġwaking": 20447, + "Ġwaktu": 44782, + "Ġwal": 21346, + "Ġwalk": 1792, + "Ġwalked": 7628, + "Ġwalking": 4494, + "Ġwalks": 12896, + "Ġwall": 2929, + "Ġwallet": 16599, + "Ġwallpaper": 43293, + "Ġwalls": 7920, + "Ġwalnut": 50136, + "Ġwam": 39104, + "Ġwan": 46930, + "Ġwand": 14304, + "Ġwander": 27541, + "Ġwandering": 26396, + "Ġwann": 38064, + "Ġwanna": 1948, + "Ġwant": 528, + "Ġwanted": 1415, + "Ġwanting": 7935, + "Ġwants": 2738, + "Ġwar": 1516, + "Ġward": 15234, + "Ġwardrobe": 29065, + "Ġware": 17464, + "Ġwarehouse": 22244, + "Ġwaren": 11931, + "Ġwarfare": 24490, + "Ġwarm": 4561, + "Ġwarmed": 38201, + "Ġwarmer": 21599, + "Ġwarming": 17983, + "Ġwarmth": 24737, + "Ġwarn": 12286, + "Ġwarned": 21284, + "Ġwarning": 9164, + "Ġwarnings": 30009, + "Ġwarp": 36030, + "Ġwarrant": 16354, + "Ġwarranty": 26852, + "Ġwarri": 13940, + "Ġwarrior": 20173, + "Ġwarriors": 25303, + "Ġwars": 13718, + "Ġwart": 45124, + "Ġwarten": 46907, + "Ġwarto": 31830, + "Ġwarum": 24331, + "Ġwary": 46585, + "Ġwas": 390, + "Ġwash": 5675, + "Ġwashed": 16300, + "Ġwasher": 29304, + "Ġwashes": 48616, + "Ġwashing": 13836, + "Ġwasn": 2067, + "Ġwast": 49075, + "Ġwaste": 5964, + "Ġwasted": 19496, + "Ġwastewater": 46418, + "Ġwasting": 20457, + "Ġwat": 6858, + "Ġwatch": 1159, + "Ġwatched": 6337, + "Ġwatches": 17062, + "Ġwatching": 1976, + "Ġwater": 1281, + "Ġwatercolor": 31727, + "Ġwaterfall": 27848, + "Ġwatering": 33028, + "Ġwatermelon": 26097, + "Ġwaterproof": 27974, + "Ġwaters": 12975, + "Ġwatershed": 49728, + "Ġwatery": 43015, + "Ġwatt": 31556, + "Ġwatts": 31247, + "Ġwave": 5772, + "Ġwaveform": 36512, + "Ġwavel": 22144, + "Ġwavelength": 22907, + "Ġwavelengths": 47424, + "Ġwaves": 9417, + "Ġwaving": 35347, + "Ġwax": 17352, + "Ġway": 636, + "Ġways": 2098, + "Ġważ": 27777, + "Ġważne": 46110, + "Ġwcze": 38533, + "ĠwczeÅĽniej": 40785, + "Ġwe": 321, + "Ġweak": 5336, + "Ġweaken": 48576, + "Ġweakened": 42613, + "Ġweaker": 24286, + "Ġweakest": 44001, + "Ġweakness": 12772, + "Ġweaknesses": 24381, + "Ġwealth": 7203, + "Ġwealthy": 17707, + "Ġweap": 4528, + "Ġweapon": 7463, + "Ġweapons": 7278, + "Ġwear": 3728, + "Ġwearing": 4769, + "Ġwears": 20877, + "Ġweary": 47853, + "Ġweather": 5503, + "Ġweave": 29145, + "Ġweaving": 40028, + "Ġweb": 3670, + "Ġwebcam": 39490, + "Ġwebinar": 10942, + "Ġwebinars": 26065, + "Ġwebpage": 37852, + "Ġwebs": 2859, + "Ġwebsite": 3144, + "Ġwebsites": 12891, + "Ġwed": 6393, + "Ġwedding": 8523, + "Ġweddings": 39617, + "Ġwedge": 34530, + "Ġwee": 32753, + "Ġweed": 20852, + "Ġweeds": 26370, + "Ġweek": 1243, + "Ġweekend": 6711, + "Ġweekends": 23595, + "Ġweekly": 12460, + "Ġweeks": 3259, + "Ġweer": 19662, + "Ġweet": 28991, + "Ġweg": 15565, + "Ġwegen": 32855, + "Ġweigh": 13843, + "Ġweighed": 32844, + "Ġweighing": 31986, + "Ġweighs": 24911, + "Ġweight": 3364, + "Ġweighted": 32807, + "Ġweights": 17443, + "Ġweil": 7689, + "Ġweird": 3657, + "Ġweirdest": 44807, + "Ġweirdly": 48931, + "Ġweit": 15306, + "Ġweiter": 8988, + "Ġweitere": 30020, + "Ġweiteren": 44036, + "Ġweiterhin": 42480, + "ĠweiÃŁ": 13385, + "Ġwel": 2214, + "Ġwelche": 24311, + "Ġwelcome": 2928, + "Ġwelcomed": 23668, + "Ġwelcoming": 17378, + "Ġweld": 13964, + "Ġwelded": 49227, + "Ġwelding": 25393, + "Ġwelfare": 17788, + "Ġwell": 731, + "Ġwellbeing": 29508, + "Ġwellness": 23913, + "Ġwells": 30984, + "Ġwelt": 43119, + "Ġwen": 11472, + "Ġwenig": 20911, + "Ġweniger": 23224, + "Ġwenn": 4797, + "Ġwent": 1437, + "Ġwer": 2612, + "Ġwerd": 37258, + "Ġwerde": 24866, + "Ġwerden": 4604, + "Ġwere": 645, + "Ġweren": 4999, + "Ġwerk": 37585, + "Ġwert": 47659, + "Ġwes": 38384, + "Ġwest": 7009, + "Ġwestern": 13231, + "Ġwet": 6630, + "Ġweten": 40759, + "Ġwh": 315, + "Ġwhack": 42877, + "Ġwhale": 25370, + "Ġwhales": 32403, + "Ġwhat": 437, + "Ġwhatever": 2035, + "Ġwhatnot": 25882, + "Ġwhats": 29625, + "Ġwhatsoever": 17076, + "Ġwhe": 3966, + "Ġwheat": 16691, + "Ġwheel": 5589, + "Ġwheelchair": 22945, + "Ġwheels": 10046, + "Ġwhen": 562, + "Ġwhenever": 5699, + "Ġwhere": 689, + "Ġwhereas": 9735, + "Ġwhereby": 36998, + "Ġwherein": 43531, + "Ġwherever": 8660, + "Ġwhether": 1968, + "Ġwhich": 597, + "Ġwhichever": 24123, + "Ġwhile": 1339, + "Ġwhilst": 18534, + "Ġwhim": 47271, + "Ġwhip": 22377, + "Ġwhipped": 27918, + "Ġwhipping": 45476, + "Ġwhirl": 35706, + "Ġwhirring": 36861, + "Ġwhis": 13641, + "Ġwhisk": 24485, + "Ġwhiskey": 34648, + "Ġwhisper": 26018, + "Ġwhispering": 42445, + "Ġwhistle": 23470, + "Ġwhistles": 49282, + "Ġwhit": 47548, + "Ġwhite": 2418, + "Ġwhites": 21909, + "Ġwho": 567, + "Ġwhoa": 13310, + "Ġwhoever": 11387, + "Ġwhole": 1379, + "Ġwholes": 34228, + "Ġwholesale": 43982, + "Ġwholly": 45157, + "Ġwhom": 7101, + "Ġwhooshing": 44825, + "Ġwhopping": 50043, + "Ġwhose": 6104, + "Ġwhy": 983, + "Ġwi": 26393, + "Ġwicht": 26244, + "Ġwichtig": 13621, + "Ġwichtige": 46276, + "Ġwichtiger": 48840, + "Ġwicked": 22663, + "Ġwid": 5274, + "Ġwide": 4874, + "Ġwidely": 13371, + "Ġwiden": 32552, + "Ġwider": 11842, + "Ġwides": 21516, + "Ġwidespread": 22679, + "Ġwidget": 34047, + "Ġwidgets": 43355, + "Ġwidow": 37207, + "Ġwidth": 11402, + "Ġwidz": 27486, + "Ġwie": 3355, + "Ġwied": 46894, + "Ġwieder": 6216, + "Ġwiel": 20570, + "Ġwield": 35982, + "Ġwiele": 33137, + "Ġwielu": 40437, + "Ġwiem": 26522, + "Ġwife": 3836, + "Ġwifi": 35246, + "Ġwig": 24094, + "Ġwiggle": 33377, + "Ġwij": 24770, + "Ġwil": 20501, + "Ġwild": 4868, + "Ġwilderness": 27613, + "Ġwildlife": 19199, + "Ġwildly": 34731, + "Ġwill": 486, + "Ġwillen": 35830, + "Ġwilling": 4950, + "Ġwillingly": 44675, + "Ġwillingness": 25069, + "Ġwillkommen": 46439, + "Ġwillst": 48355, + "Ġwilt": 45357, + "Ġwin": 1942, + "Ġwind": 2468, + "Ġwinding": 29775, + "Ġwindow": 4910, + "Ġwindows": 9309, + "Ġwinds": 17765, + "Ġwindshield": 39996, + "Ġwindy": 30330, + "Ġwine": 7209, + "Ġwines": 35970, + "Ġwing": 11162, + "Ġwings": 11405, + "Ġwink": 44212, + "Ġwinner": 8507, + "Ġwinners": 17193, + "Ġwinning": 8224, + "Ġwins": 10641, + "Ġwinter": 6355, + "Ġwip": 15887, + "Ġwipe": 14082, + "Ġwiped": 26879, + "Ġwipes": 41228, + "Ġwiping": 40611, + "Ġwir": 1987, + "Ġwird": 4578, + "Ġwire": 6234, + "Ġwired": 27415, + "Ġwireless": 14720, + "Ġwires": 15537, + "Ġwiring": 27520, + "Ġwirklich": 9696, + "Ġwis": 9074, + "Ġwisdom": 10712, + "Ġwise": 10829, + "Ġwisely": 37632, + "Ġwish": 3172, + "Ġwished": 25811, + "Ġwishes": 15065, + "Ġwishing": 30049, + "Ġwissen": 16331, + "Ġwit": 32161, + "Ġwitch": 14867, + "Ġwitches": 43467, + "Ġwith": 365, + "Ġwithd": 12483, + "Ġwithdraw": 14999, + "Ġwithdrawal": 30646, + "Ġwithdrawn": 48151, + "Ġwithhold": 48867, + "Ġwithin": 1951, + "Ġwithout": 1553, + "Ġwithstand": 31311, + "Ġwitness": 7286, + "Ġwitnessed": 21519, + "Ġwitnesses": 20217, + "Ġwitnessing": 39233, + "Ġwives": 24936, + "Ġwiz": 40808, + "Ġwizard": 25807, + "ĠwiÄĻ": 10469, + "ĠwiÄĻc": 16677, + "ĠwiÄĻcej": 26004, + "ĠwiÄĻks": 29968, + "Ġwn": 45368, + "Ġwo": 6020, + "Ġwoah": 37116, + "Ġwob": 33775, + "Ġwod": 47751, + "Ġwoh": 48471, + "Ġwohl": 24531, + "Ġwoj": 40758, + "Ġwok": 40022, + "Ġwoke": 12852, + "Ġwol": 20960, + "Ġwolf": 19216, + "Ġwoll": 8181, + "Ġwollen": 11253, + "Ġwollt": 45826, + "Ġwollte": 24509, + "Ġwollten": 46019, + "Ġwolves": 30404, + "Ġwom": 1579, + "Ġwoman": 3059, + "Ġwomb": 34310, + "Ġwomen": 2266, + "Ġwon": 1582, + "Ġwond": 2046, + "Ġwonder": 2441, + "Ġwondered": 17055, + "Ġwonderful": 3715, + "Ġwonderfully": 38917, + "Ġwondering": 6359, + "Ġwonders": 27348, + "Ġwont": 27524, + "Ġwoo": 21657, + "Ġwood": 4576, + "Ġwooden": 14744, + "Ġwoods": 15296, + "Ġwool": 24181, + "Ġwor": 469, + "Ġword": 1349, + "Ġworden": 14054, + "Ġwording": 47602, + "Ġwords": 2283, + "Ġwordt": 20365, + "Ġwore": 13857, + "Ġwork": 589, + "Ġworked": 2732, + "Ġworker": 11346, + "Ġworkers": 5600, + "Ġworkflow": 20993, + "Ġworkflows": 43461, + "Ġworkforce": 14201, + "Ġworking": 1364, + "Ġworkload": 20139, + "Ġworkloads": 32452, + "Ġworkout": 12169, + "Ġworkouts": 28300, + "Ġworkplace": 15328, + "Ġworks": 1985, + "Ġworksheet": 49890, + "Ġworkshop": 13541, + "Ġworkshops": 19162, + "Ġworkspace": 32706, + "Ġworld": 1002, + "Ġworldly": 40397, + "Ġworlds": 13401, + "Ġworldview": 41141, + "Ġworldwide": 13485, + "Ġworm": 23835, + "Ġworms": 28271, + "Ġworn": 15254, + "Ġworried": 5804, + "Ġworries": 16340, + "Ġworry": 3292, + "Ġworrying": 18788, + "Ġwors": 47567, + "Ġworse": 5324, + "Ġworsh": 35366, + "Ġworship": 9965, + "Ġworst": 5855, + "Ġworth": 3163, + "Ġworthless": 34857, + "Ġworthwhile": 28159, + "Ġworthy": 14829, + "Ġwould": 576, + "Ġwouldn": 2759, + "Ġwound": 10999, + "Ġwounded": 21906, + "Ġwounds": 21969, + "Ġwoven": 39221, + "Ġwow": 6076, + "Ġwp": 32444, + "Ġwprowad": 46733, + "Ġwr": 928, + "Ġwra": 7843, + "Ġwrap": 7019, + "Ġwrapped": 14226, + "Ġwrapper": 46906, + "Ġwrapping": 21993, + "Ġwraps": 25831, + "Ġwrath": 35496, + "Ġwre": 46674, + "Ġwreck": 21478, + "Ġwrench": 25406, + "Ġwrest": 12591, + "Ġwrestle": 43251, + "Ġwrestler": 47557, + "Ġwrestling": 19274, + "Ġwrinkles": 34822, + "Ġwrist": 15043, + "Ġwrists": 41876, + "Ġwrit": 10912, + "Ġwrite": 2464, + "Ġwriter": 9936, + "Ġwriters": 13491, + "Ġwrites": 13657, + "Ġwriting": 3579, + "Ġwritings": 30083, + "Ġwritten": 3720, + "Ġwrong": 2085, + "Ġwrote": 4114, + "Ġws": 37647, + "Ġwsp": 17757, + "Ġwspól": 47148, + "ĠwspóÅĤ": 39069, + "Ġwsz": 38322, + "Ġwszyscy": 44232, + "Ġwszyst": 10998, + "Ġwszystk": 14615, + "Ġwszystkich": 34234, + "Ġwszystkie": 31723, + "Ġwszystkim": 30481, + "Ġwszystko": 22607, + "Ġwt": 23105, + "Ġwtedy": 26959, + "Ġwunder": 47736, + "Ġwur": 8818, + "Ġwurde": 11191, + "Ġwurden": 21105, + "Ġwus": 42571, + "Ġwww": 12520, + "Ġwy": 4628, + "Ġwyb": 45780, + "Ġwyd": 25984, + "Ġwydaje": 49165, + "Ġwygl": 27947, + "ĠwyglÄħda": 32015, + "Ġwyk": 39287, + "Ġwykon": 46702, + "Ġwykor": 43606, + "Ġwym": 29764, + "Ġwyn": 31936, + "Ġwyp": 46392, + "Ġwys": 27062, + "Ġwyst": 48255, + "Ġwz": 24809, + "Ġwzgl": 48538, + "Ġwäh": 24787, + "Ġwährend": 33624, + "Ġwär": 45779, + "Ġwäre": 14558, + "Ġwären": 43933, + "Ġwün": 30841, + "Ġwür": 9195, + "Ġwürde": 11942, + "Ġwürden": 27621, + "ĠwÅĤ": 34696, + "ĠwÅĤa": 12326, + "ĠwÅĤas": 43572, + "ĠwÅĤaÅĽci": 40112, + "ĠwÅĤaÅĽciwie": 50108, + "ĠwÅĤaÅĽnie": 14234, + "Ġx": 2031, + "Ġxem": 47852, + "Ġxen": 49773, + "Ġxi": 36800, + "Ġxu": 41104, + "Ġy": 288, + "Ġya": 2478, + "Ġyacht": 39629, + "Ġyah": 38642, + "Ġyak": 18603, + "Ġyan": 17700, + "Ġyang": 5581, + "Ġyani": 11654, + "ĠyanlÄ±ÅŁ": 46763, + "Ġyap": 6143, + "ĠyapmÄ±ÅŁ": 47527, + "Ġyapt": 15799, + "Ġyapıl": 37009, + "Ġyapıyor": 46427, + "Ġyapıyorsun": 36964, + "Ġyar": 23793, + "Ġyard": 11682, + "Ġyards": 18685, + "Ġyardım": 38875, + "Ġyarn": 11400, + "Ġyat": 42734, + "Ġyay": 23986, + "Ġyaz": 20819, + "ĠyaÄŁ": 49210, + "ĠyaÅŁ": 16098, + "Ġye": 606, + "Ġyea": 24796, + "Ġyeah": 1338, + "Ġyear": 1064, + "Ġyearly": 39102, + "Ġyears": 924, + "Ġyeast": 21629, + "Ġyell": 20525, + "Ġyelled": 38023, + "Ġyelling": 18381, + "Ġyellow": 5566, + "Ġyells": 48543, + "Ġyem": 32525, + "Ġyemek": 41145, + "Ġyen": 21570, + "Ġyeni": 34320, + "Ġyep": 18633, + "Ġyer": 12954, + "Ġyerde": 45857, + "Ġyere": 42044, + "Ġyes": 2086, + "Ġyesterday": 5186, + "Ġyet": 1939, + "Ġyeter": 48398, + "Ġyeux": 36163, + "Ġyht": 48342, + "Ġyhte": 44876, + "Ġyield": 11257, + "Ġyields": 32168, + "Ġyine": 29088, + "Ġyn": 17861, + "Ġyo": 5290, + "Ġyog": 16570, + "Ġyoga": 15128, + "Ġyogurt": 20997, + "Ġyok": 9229, + "Ġyol": 16290, + "Ġyolk": 32464, + "Ġyolks": 47191, + "Ġyou": 291, + "Ġyoung": 2037, + "Ġyounger": 7037, + "Ġyoungest": 17747, + "Ġyoungsters": 49068, + "Ġyour": 428, + "Ġyours": 6342, + "Ġyourself": 1803, + "Ġyourselves": 14791, + "Ġyout": 11325, + "Ġyouth": 7503, + "Ġyoutube": 12487, + "Ġyoutuber": 37901, + "Ġyoutubers": 46325, + "Ġyr": 37739, + "Ġyuan": 28370, + "Ġyum": 26420, + "Ġyummy": 18576, + "Ġyup": 40073, + "Ġyêu": 49107, + "Ġyön": 42315, + "Ġyük": 37531, + "Ġyüz": 16162, + "Ġyüzden": 33454, + "Ġyıl": 31491, + "Ġz": 710, + "Ġza": 7949, + "Ġzab": 24838, + "Ġzac": 34430, + "Ġzach": 29303, + "Ġzaczy": 43811, + "Ġzad": 42788, + "Ġzag": 27001, + "Ġzaj": 33729, + "Ġzak": 23810, + "Ġzal": 29599, + "Ġzam": 19876, + "Ġzaman": 12180, + "Ġzap": 14223, + "Ġzar": 22675, + "Ġzas": 26530, + "Ġzasad": 44585, + "Ġzast": 36746, + "Ġzat": 35802, + "Ġzaten": 22089, + "Ġzaw": 28165, + "Ġzawsze": 30964, + "Ġzd": 16221, + "Ġzde": 49749, + "ĠzdjÄĻ": 49026, + "Ġzdrow": 49745, + "Ġze": 5277, + "Ġzebra": 47060, + "Ġzeg": 23631, + "Ġzeggen": 31633, + "Ġzehn": 33975, + "Ġzeigen": 24687, + "Ġzeigt": 29250, + "Ġzeit": 49367, + "Ġzeker": 43844, + "Ġzelf": 26172, + "Ġzen": 37097, + "Ġzer": 44746, + "Ġzero": 4018, + "Ġzeros": 35193, + "Ġzest": 37889, + "Ġzg": 40948, + "Ġzich": 31820, + "Ġzie": 16503, + "Ġziehen": 40645, + "Ġziem": 25986, + "Ġziemlich": 28901, + "Ġzien": 23735, + "Ġziet": 39827, + "Ġzig": 38290, + "Ġzij": 49311, + "Ġzijn": 8004, + "Ġzinc": 29062, + "Ġzip": 20730, + "Ġzipper": 29887, + "Ġzit": 25013, + "Ġzitten": 35242, + "Ġzm": 17020, + "Ġzmian": 43591, + "Ġzn": 15397, + "Ġznaczy": 36584, + "Ġznaj": 27318, + "Ġznajdu": 47570, + "Ġzo": 5721, + "Ġzoals": 40040, + "Ġzob": 25100, + "Ġzobaczy": 37273, + "Ġzod": 39979, + "Ġzomb": 13374, + "Ġzombie": 20310, + "Ġzombies": 24230, + "Ġzona": 24848, + "Ġzone": 6668, + "Ġzones": 16025, + "Ġzoning": 37184, + "Ġzoo": 25347, + "Ġzoom": 8863, + "Ġzooming": 48226, + "Ġzor": 22304, + "Ġzost": 31873, + "Ġzosta": 23154, + "Ġzou": 22934, + "Ġzrob": 44399, + "Ġzrobi": 24483, + "ĠzrobiÄĩ": 31785, + "Ġzu": 2164, + "Ġzucch": 36748, + "Ġzucchini": 44781, + "Ġzug": 33507, + "Ġzuk": 50151, + "Ġzul": 43238, + "Ġzum": 5919, + "Ġzumindest": 38082, + "ĠzupeÅĤnie": 49922, + "Ġzur": 7147, + "Ġzurück": 15089, + "Ġzus": 11548, + "Ġzusammen": 14311, + "Ġzust": 45034, + "Ġzw": 11873, + "Ġzwar": 19054, + "Ġzwe": 8733, + "Ġzwei": 12002, + "Ġzweite": 37456, + "Ġzweiten": 39943, + "Ġzwischen": 19875, + "ĠzwiÄħz": 27741, + "Ġzwr": 49111, + "Ġzwy": 43436, + "ĠzÅĤ": 31614, + "Ġ{": 10929, + "Ġ{\\": 18128, + "Ġ|": 18362, + "Ġ}": 49870, + "Ġ~": 11938, + "ĠÂ": 1815, + "Ġ¡": 6514, + "Ġ£": 14378, + "Ġ§": 49803, + "Ġ«": 4657, + "Ġ°": 31462, + "Ġ»": 8793, + "Ġ»,": 34319, + "Ġ».": 28082, + "Ġ»:": 40795, + "Ġ½": 32653, + "Ġ¿": 3841, + "ĠÃ": 690, + "Ġá": 7352, + "Ġágua": 23824, + "Ġár": 35349, + "Ġárea": 25701, + "Ġáreas": 48088, + "Ġâ": 20621, + "Ġä": 3078, + "Ġähnlich": 49696, + "Ġän": 26072, + "Ġänd": 24981, + "Ġändern": 47775, + "Ġär": 3775, + "Ġäven": 32669, + "ĠÃ¥": 8841, + "ĠÃ¥r": 19525, + "ĠÃ¥t": 39502, + "Ġç": 1844, + "Ġça": 2788, + "Ġçal": 16210, + "ĠçalÄ±ÅŁ": 18107, + "Ġçek": 22559, + "Ġçev": 45921, + "Ġçoc": 19156, + "Ġçocuk": 25216, + "ĠçocuÄŁ": 38914, + "Ġçok": 7343, + "Ġçünkü": 36336, + "Ġçık": 12208, + "Ġçıkar": 41097, + "Ġçıkt": 34462, + "Ġçıktı": 48378, + "Ġè": 4873, + "Ġé": 1136, + "Ġéc": 15175, + "Ġéch": 39310, + "Ġéconom": 31171, + "Ġéconomique": 49915, + "Ġécrit": 41700, + "Ġégal": 19540, + "Ġégalement": 20503, + "Ġél": 11810, + "Ġélect": 30996, + "Ġélé": 46502, + "Ġéléments": 49977, + "Ġén": 39315, + "Ġéner": 45045, + "Ġénorm": 27982, + "Ġénormément": 41595, + "Ġép": 21018, + "Ġépisode": 47285, + "Ġépo": 21354, + "Ġépoca": 25024, + "Ġéqu": 25830, + "Ġés": 5960, + "Ġét": 4823, + "Ġéta": 21325, + "Ġétaient": 25999, + "Ġétait": 11806, + "Ġétant": 41144, + "Ġété": 8862, + "Ġév": 20090, + "Ġévidemment": 24724, + "Ġéén": 39133, + "Ġê": 6203, + "Ġêtes": 18935, + "Ġêtre": 7418, + "Ġî": 11300, + "Ġîn": 15351, + "Ġînt": 43990, + "Ġñ": 34110, + "Ġó": 11857, + "Ġór": 44083, + "Ġót": 44490, + "Ġô": 24107, + "Ġông": 34835, + "Ġö": 4044, + "Ġöffentlich": 34603, + "Ġöl": 31854, + "Ġöld": 35419, + "Ġön": 12253, + "Ġönce": 22353, + "Ġönem": 31652, + "Ġönemli": 35154, + "Ġör": 39249, + "Ġöver": 23026, + "Ġöyle": 16528, + "Ġöz": 27010, + "ĠÃ¶ÄŁ": 24411, + "ĠÃ¶ÄŁren": 40283, + "Ġø": 43008, + "Ġú": 6991, + "Ġúlt": 11499, + "Ġúltima": 28118, + "Ġúltimo": 21013, + "Ġúltimos": 33013, + "Ġún": 17524, + "Ġúnica": 30104, + "Ġúnico": 26113, + "Ġútil": 49191, + "Ġü": 3304, + "Ġüber": 4502, + "Ġüberall": 38035, + "Ġüberhaupt": 20023, + "Ġübers": 45022, + "Ġüberzeug": 48598, + "Ġübrig": 32343, + "Ġübrigens": 38215, + "Ġül": 35073, + "Ġüst": 28816, + "Ġüz": 32145, + "Ġüzer": 25813, + "Ġüzerine": 43816, + "Ġüç": 29630, + "Ġý": 49291, + "Ġþ": 43219, + "ĠÃĢ": 19018, + "ĠÃģ": 24205, + "ĠÃĦ": 13700, + "ĠÃĦr": 34403, + "ĠÃħ": 43360, + "ĠÃĩ": 6256, + "ĠÃĩa": 11527, + "ĠÃĩok": 19243, + "ĠÃĩünkü": 26763, + "ĠÃĪ": 34495, + "ĠÃī": 4922, + "ĠÃīl": 34325, + "ĠÃīs": 16243, + "ĠÃīt": 40567, + "ĠÃītats": 44444, + "ĠÃİ": 46104, + "ĠÃĵ": 35232, + "ĠÃĶ": 40732, + "ĠÃĸ": 9158, + "ĠÃĸsterreich": 41423, + "ĠÃĸyle": 34883, + "ĠÃĸz": 47498, + "ĠÃľ": 10713, + "ĠÃľber": 18086, + "ĠÃł": 1531, + "ĠÃłs": 23763, + "ĠÃŃ": 18645, + "ĠÄ": 2127, + "ĠÄ°": 6601, + "ĠÄ°n": 47673, + "ĠÄ°ns": 45379, + "ĠÄ°s": 45053, + "ĠÄ°stanbul": 45822, + "ĠÄ°yi": 30786, + "ĠÄ°ÅŁ": 26605, + "ĠÄ°ÅŁte": 34757, + "ĠÄĥ": 26790, + "ĠÄĥn": 28657, + "ĠÄĩ": 45854, + "ĠÄį": 22392, + "ĠÄIJ": 13055, + "ĠÄIJây": 45672, + "ĠÄij": 2934, + "ĠÄijang": 30723, + "ĠÄiji": 13264, + "ĠÄijiá»ģu": 42082, + "ĠÄijâu": 35433, + "ĠÄijây": 20199, + "ĠÄijã": 17283, + "ĠÄijó": 17647, + "ĠÄijược": 15832, + "ĠÄijấy": 39370, + "ĠÄijầu": 32573, + "ĠÄijến": 26353, + "ĠÄijá»ĥ": 20081, + "ĠÄijá»ĭ": 42063, + "ĠÄijá»Ļ": 29075, + "ĠÄijá»Ļng": 46880, + "ĠÅ": 4423, + "ĠÅ¡": 22552, + "Ġź": 50212, + "ĠÅ»": 29804, + "ĠÅ»e": 46864, + "Ġż": 19625, + "Ġżad": 39628, + "Ġże": 3561, + "Ġżeby": 11316, + "Ġży": 16136, + "Ġżycia": 44343, + "Ġżycie": 43202, + "Ġž": 17305, + "Ġže": 25178, + "ĠÅģ": 36901, + "ĠÅĤ": 25387, + "ĠÅĤad": 47910, + "ĠÅĤat": 47759, + "ĠÅĵ": 48360, + "ĠÅļ": 27933, + "ĠÅĽ": 8299, + "ĠÅĽm": 46991, + "ĠÅĽrod": 28580, + "ĠÅĽwi": 21485, + "ĠÅĽwiat": 36425, + "ĠÅĽwie": 40078, + "ĠÅŀ": 7918, + "ĠÅŀey": 43171, + "ĠÅŀimdi": 17734, + "ĠÅŀu": 33583, + "ĠÅŁ": 3382, + "ĠÅŁeh": 49755, + "ĠÅŁek": 18850, + "ĠÅŁekilde": 23537, + "ĠÅŁey": 6517, + "ĠÅŁeyi": 31735, + "ĠÅŁeyler": 28863, + "ĠÅŁimdi": 16391, + "ĠÅŁu": 17235, + "ĠÅŁunu": 45821, + "ĠÅŁur": 49420, + "ĠÅŁÃ¶yle": 26712, + "ĠÅł": 49039, + "ĠÆ¡i": 43144, + "ĠÈ": 36726, + "ĠÈĺ": 38127, + "ĠÈĺi": 41820, + "ĠÈĻ": 15318, + "ĠÈĻi": 17060, + "ĠÍ": 28451, + "ĠÍ¡": 38040, + "Ġ͡°": 40130, + "ĠÎ": 1158, + "ĠΣ": 26408, + "ĠΤ": 20838, + "ĠΤο": 44524, + "ĠΧ": 48924, + "Ġά": 22554, + "Ġάλλ": 41370, + "Ġή": 24841, + "ĠήÏĦαν": 47768, + "Ġα": 5691, + "Ġακ": 40822, + "Ġαλλά": 44716, + "Ġαν": 25715, + "Ġανα": 49931, + "ĠαÏĢ": 45787, + "ĠαÏĢο": 44313, + "ĠαÏĢÏĮ": 19821, + "ĠαÏħÏĦ": 18679, + "ĠαÏħÏĦÏĮ": 26865, + "Ġβ": 15787, + "Ġγ": 10643, + "Ġγια": 17321, + "Ġδ": 8715, + "Ġδεν": 23295, + "Ġδια": 38744, + "Ġε": 5958, + "Ġεί": 25090, + "Ġείναι": 15974, + "ĠεδÏİ": 44440, + "Ġεκ": 44009, + "Ġεν": 42958, + "ĠεÏĢ": 26752, + "ĠεÏĢι": 49185, + "Ġζ": 36544, + "Ġη": 18231, + "Ġθ": 12622, + "Ġθα": 18828, + "Ġι": 47467, + "Ġκ": 4903, + "Ġκά": 26751, + "Ġκάν": 31492, + "Ġκα": 14832, + "Ġκαι": 8839, + "Ġκι": 47328, + "Ġλ": 15015, + "ĠλÎŃ": 36148, + "Ġμ": 5337, + "Ġμα": 36759, + "ĠμαÏĤ": 25287, + "Ġμε": 13769, + "Ġμια": 38170, + "ĠμοÏħ": 23449, + "ĠμÎŃ": 27730, + "ĠμÏĢο": 33904, + "Ġν": 8066, + "Ġνα": 9083, + "Ġξ": 33179, + "Ġο": 11383, + "Ġοι": 33908, + "ĠοÏĢο": 44035, + "ĠÎĪ": 38161, + "ĠÎĮ": 43692, + "ĠÎij": 18793, + "ĠÎĵ": 30350, + "ĠÎĵια": 48575, + "ĠÎĶ": 27556, + "ĠÎķ": 18236, + "ĠÎĹ": 45836, + "ĠÎĺ": 30128, + "ĠÎļ": 19233, + "ĠÎļαι": 32619, + "ĠÎľ": 24834, + "ĠÎĿ": 38854, + "ĠÎŁ": 34650, + "ĠÎł": 20894, + "ĠÎŃ": 10541, + "ĠÎŃνα": 26117, + "ĠÎŃÏĩ": 21807, + "ĠÎŃÏĩει": 42940, + "ĠÏ": 2467, + "ĠÏĢ": 4654, + "ĠÏĢά": 31967, + "ĠÏĢα": 23380, + "ĠÏĢε": 28465, + "ĠÏĢεÏģι": 46618, + "ĠÏĢο": 39099, + "ĠÏĢολ": 30403, + "ĠÏĢολÏį": 36047, + "ĠÏĢοÏħ": 15878, + "ĠÏĢÏģο": 26017, + "ĠÏģ": 40750, + "ĠÏĥ": 5532, + "ĠÏĥαÏĤ": 34981, + "ĠÏĥε": 23814, + "ĠÏĥοÏħ": 43455, + "ĠÏĥÏĦα": 45391, + "ĠÏĥÏĦη": 23502, + "ĠÏĥÏĦην": 31766, + "ĠÏĥÏĦο": 20702, + "ĠÏĥÏħ": 23415, + "ĠÏĥÏħν": 49025, + "ĠÏĦ": 3596, + "ĠÏĦα": 16900, + "ĠÏĦη": 10013, + "ĠÏĦην": 17309, + "ĠÏĦηÏĤ": 22409, + "ĠÏĦι": 25962, + "ĠÏĦιÏĤ": 35816, + "ĠÏĦο": 8335, + "ĠÏĦον": 24022, + "ĠÏĦοÏħ": 13380, + "ĠÏĦοÏħÏĤ": 30320, + "ĠÏĦÏīν": 39575, + "ĠÏħ": 28049, + "ĠÏĨ": 17579, + "ĠÏĩ": 17319, + "ĠÏī": 46653, + "ĠÏĮ": 12485, + "ĠÏĮÏĦι": 27841, + "ĠÐ": 333, + "ĠС": 2933, + "ĠСШÐIJ": 35448, + "ĠСам": 31152, + "ĠСв": 48536, + "ĠСегоднÑı": 35913, + "ĠСейÑĩаÑģ": 23590, + "ĠСеÑĢ": 46779, + "ĠСеÑĢг": 38393, + "ĠСк": 22965, + "ĠСлед": 48301, + "ĠСо": 40156, + "ĠСов": 45680, + "ĠСп": 19349, + "ĠСпаÑģибо": 29219, + "ĠСÑĤ": 17483, + "ĠТ": 3200, + "ĠТак": 8770, + "ĠТакже": 38751, + "ĠТам": 27451, + "ĠТем": 44064, + "ĠТепеÑĢÑĮ": 25238, + "ĠТо": 16047, + "ĠТогда": 46357, + "ĠТолÑĮко": 36021, + "ĠТÑĥÑĤ": 35358, + "ĠТÑĭ": 14509, + "ĠУ": 6523, + "ĠУкÑĢаÑĹ": 34817, + "ĠФ": 13196, + "ĠÐ¥": 9456, + "ĠХоÑĢоÑĪо": 37564, + "ĠХоÑĤ": 35886, + "ĠХоÑĤÑı": 43963, + "ĠЦ": 18545, + "ĠЦе": 36263, + "ĠЧ": 7099, + "ĠЧеÑĢ": 39659, + "ĠЧÑĤо": 13169, + "ĠЧÑĤобÑĭ": 36026, + "ĠШ": 18428, + "ĠЩ": 42373, + "ĠЮ": 27002, + "ĠЯ": 4857, + "ĠЯк": 46116, + "Ġа": 2559, + "Ġаб": 25600, + "ĠабÑģолÑİÑĤ": 32078, + "ĠабÑģолÑİÑĤно": 35060, + "Ġав": 14376, + "ĠавÑĤом": 27669, + "ĠавÑĤомоб": 37122, + "Ġад": 27705, + "Ġак": 13790, + "ĠаккÑĥ": 49381, + "ĠакÑĤив": 30239, + "Ġал": 39336, + "Ġале": 46923, + "ĠамеÑĢик": 34958, + "ĠамеÑĢикан": 46263, + "Ġан": 17086, + "Ġанглий": 46611, + "Ġап": 29356, + "ĠаÑĢ": 16643, + "ĠаÑĤ": 46998, + "Ġб": 1268, + "Ġбаб": 37783, + "Ġбаг": 45165, + "Ġбаз": 39798, + "Ġбал": 37683, + "Ġбан": 29049, + "ĠбаÑĢ": 36766, + "ĠбаÑĤ": 47697, + "Ġбег": 49942, + "Ġбез": 10969, + "ĠбезопаÑģ": 45015, + "Ġбел": 29430, + "ĠбеÑĢ": 24562, + "ĠбеÑģ": 37658, + "ĠбеÑģп": 32971, + "Ġби": 47334, + "ĠбизнеÑģ": 47054, + "Ġбл": 16709, + "Ġблаг": 31971, + "ĠблагодаÑĢ": 38979, + "Ġбли": 21747, + "Ġблиз": 37060, + "Ġблок": 42222, + "Ġбо": 20462, + "Ġбог": 33001, + "Ġбой": 41029, + "Ġбок": 45156, + "Ġбол": 11993, + "Ġболее": 15103, + "ĠболÑĮ": 7351, + "ĠболÑĮÑĪ": 12457, + "ĠболÑĮÑĪе": 12846, + "ĠболÑĮÑĪое": 46843, + "ĠболÑĮÑĪой": 35533, + "ĠбоÑĢ": 30101, + "ĠбÑĢ": 19603, + "ĠбÑĢаÑĤ": 43333, + "ĠбÑĢоÑģ": 47718, + "ĠбÑĥ": 21646, + "ĠбÑĥд": 4529, + "ĠбÑĥде": 47438, + "ĠбÑĥдем": 23213, + "ĠбÑĥдеÑĤ": 7306, + "ĠбÑĥдеÑĤе": 46872, + "ĠбÑĥдÑĤо": 45239, + "ĠбÑĥдÑĥ": 21407, + "ĠбÑĥдÑĥÑĤ": 20393, + "ĠбÑĥдÑĥÑī": 44327, + "ĠбÑĥк": 36761, + "ĠбÑĥкв": 42587, + "ĠбÑĥло": 41981, + "ĠбÑĥм": 49721, + "ĠбÑĭ": 2768, + "ĠбÑĭв": 28951, + "ĠбÑĭваеÑĤ": 48972, + "ĠбÑĭл": 10059, + "ĠбÑĭла": 13640, + "ĠбÑĭли": 14355, + "ĠбÑĭло": 8060, + "ĠбÑĭÑģÑĤÑĢ": 37283, + "ĠбÑĭÑģÑĤÑĢо": 31874, + "ĠбÑĭÑĤÑĮ": 11510, + "ĠбÑĸлÑĮ": 47692, + "Ġв": 740, + "Ġваж": 19491, + "Ġважно": 38851, + "Ġвал": 42187, + "Ġвам": 10448, + "Ġвами": 24166, + "ĠваÑĢи": 32382, + "ĠваÑĢианÑĤ": 42442, + "ĠваÑģ": 10655, + "ĠваÑĪ": 14536, + "ĠваÑĪи": 48375, + "Ġвд": 25507, + "ĠвдÑĢÑĥг": 45926, + "Ġвед": 35126, + "ĠведÑĮ": 28026, + "Ġвел": 29328, + "ĠвеÑĢ": 10544, + "ĠвеÑĢÑģ": 35285, + "ĠвеÑĢÑħ": 47758, + "ĠвеÑģ": 28244, + "ĠвеÑģÑĮ": 29225, + "ĠвеÑĤ": 45010, + "ĠвеÑĩ": 31943, + "ĠвеÑī": 27046, + "ĠвеÑīи": 43050, + "Ġвже": 40738, + "Ġвз": 11892, + "ĠвзÑıÑĤÑĮ": 44101, + "Ġви": 28570, + "Ġвид": 6504, + "Ġвиде": 12921, + "Ġвидел": 40718, + "Ġвидели": 49998, + "Ġвидео": 15589, + "Ġвидим": 38273, + "ĠвидиÑĤе": 41904, + "Ġвидно": 41239, + "ĠвижÑĥ": 47813, + "Ġвик": 49233, + "Ġвин": 49847, + "ĠвклÑİÑĩ": 31251, + "ĠвкÑĥÑģ": 28295, + "Ġвлад": 46458, + "Ġвли": 45689, + "Ġвм": 20307, + "ĠвмеÑģÑĤе": 26905, + "Ġвн": 17958, + "ĠвнеÑĪ": 50025, + "Ġвниз": 46697, + "Ġвним": 24762, + "Ġвнимание": 33267, + "ĠвнÑĥÑĤ": 25282, + "ĠвнÑĥÑĤÑĢи": 39145, + "Ġво": 7900, + "Ġвод": 14545, + "ĠводÑĭ": 44391, + "Ġвоз": 8918, + "Ġвозв": 39797, + "ĠвозвÑĢаÑī": 45503, + "ĠвоздÑĥ": 47396, + "Ġвозм": 18077, + "Ġвозмож": 31544, + "Ġвозможно": 26740, + "ĠвозможноÑģÑĤÑĮ": 41233, + "ĠвозÑĮ": 45097, + "Ġвой": 26055, + "Ġвок": 39277, + "ĠвокÑĢÑĥг": 45247, + "Ġвол": 22211, + "Ġвони": 40727, + "ĠвообÑīе": 14345, + "ĠвопÑĢоÑģ": 17611, + "ĠвопÑĢоÑģÑĭ": 48418, + "ĠвоÑģ": 18867, + "ĠвоÑģп": 31143, + "ĠвоÑĤ": 5505, + "Ġвп": 27163, + "ĠвпеÑĢ": 32560, + "Ġвполне": 46780, + "ĠвÑĢ": 35705, + "ĠвÑĢем": 8951, + "ĠвÑĢемени": 26436, + "ĠвÑĢемÑı": 12039, + "ĠвÑĢоде": 41079, + "ĠвÑģ": 2852, + "ĠвÑģе": 4640, + "ĠвÑģегда": 19087, + "ĠвÑģего": 15520, + "ĠвÑģей": 43419, + "ĠвÑģем": 21042, + "ĠвÑģеÑħ": 17260, + "ĠвÑģп": 35944, + "ĠвÑģÑĤÑĢ": 20569, + "ĠвÑģÑĤÑĢеÑĤ": 47647, + "ĠвÑģÑĤÑĢеÑĩ": 25669, + "ĠвÑģÑİ": 32341, + "ĠвÑģÑı": 24614, + "ĠвÑģÑij": 9649, + "ĠвÑĤоÑĢ": 19823, + "ĠвÑĤоÑĢой": 36128, + "ĠвÑħод": 45746, + "ĠвÑĩ": 49102, + "ĠвÑĭ": 2840, + "ĠвÑĭб": 18061, + "ĠвÑĭглÑıд": 30449, + "ĠвÑĭглÑıдиÑĤ": 40670, + "ĠвÑĭд": 47535, + "ĠвÑĭз": 31572, + "ĠвÑĭй": 42132, + "ĠвÑĭп": 21188, + "ĠвÑĭпол": 34771, + "ĠвÑĭпÑĥÑģк": 48777, + "ĠвÑĭÑģ": 19361, + "ĠвÑĭÑģок": 35998, + "ĠвÑĭÑģÑĤÑĥп": 48828, + "ĠвÑĭÑħод": 27142, + "ĠвÑĭÑĪ": 33994, + "ĠвÑĭÑĪе": 47281, + "ĠвÑĸд": 16947, + "ĠвÑĸн": 40756, + "Ġг": 2342, + "Ġгаз": 36936, + "ĠгаÑĢ": 38470, + "Ġгде": 11418, + "ĠгеÑĢо": 35279, + "Ġгл": 10735, + "Ġглав": 18539, + "Ġглавное": 39940, + "Ġглаз": 27634, + "Ġглаза": 49664, + "ĠглÑĥб": 41863, + "Ġго": 6778, + "ĠговоÑĢ": 8180, + "ĠговоÑĢил": 39801, + "ĠговоÑĢиÑĤ": 25083, + "ĠговоÑĢиÑĤÑĮ": 32460, + "ĠговоÑĢÑİ": 34931, + "ĠговоÑĢÑı": 42210, + "ĠговоÑĢÑıÑĤ": 33374, + "Ġгод": 9182, + "Ġгода": 18411, + "ĠгодÑĥ": 22688, + "Ġгол": 14932, + "Ġголов": 24721, + "ĠголоÑģ": 42390, + "ĠгоÑĢ": 26493, + "ĠгоÑĢаз": 45386, + "ĠгоÑĢаздо": 45607, + "ĠгоÑĢод": 18750, + "ĠгоÑĢода": 45853, + "ĠгоÑģÑĥдаÑĢ": 42950, + "ĠгоÑĤов": 17137, + "ĠгÑĢ": 11726, + "ĠгÑĢад": 47547, + "ĠгÑĢаÑĦ": 45799, + "ĠгÑĢом": 41765, + "ĠгÑĢÑĥ": 47553, + "ĠгÑĢÑĥп": 27530, + "ĠгÑĢÑĥпп": 29311, + "Ġд": 1070, + "Ġда": 8995, + "Ġдав": 12472, + "Ġдавай": 28869, + "ĠдавайÑĤе": 30412, + "Ġдавно": 40086, + "Ġдаже": 11210, + "Ġдал": 22500, + "Ġдалее": 38978, + "ĠдалÑĮ": 22428, + "ĠдалÑĮÑĪе": 26814, + "Ġдан": 19582, + "Ġдв": 7196, + "Ġдва": 18505, + "Ġдве": 32183, + "Ġдвиг": 30618, + "Ġдвиж": 30473, + "ĠдвÑĥÑħ": 32360, + "Ġде": 36397, + "Ġдев": 20572, + "ĠдейÑģÑĤв": 17136, + "ĠдейÑģÑĤвиÑĤелÑĮно": 27208, + "Ġдел": 6649, + "Ġдела": 46157, + "ĠделаеÑĤ": 43109, + "ĠделаÑĤÑĮ": 19284, + "ĠделаÑİÑĤ": 48732, + "Ġделе": 23845, + "Ġдело": 26444, + "Ġден": 33773, + "Ġденег": 40957, + "ĠденÑĮ": 13509, + "ĠденÑĮги": 27087, + "ĠдеÑĢ": 27620, + "ĠдеÑĢев": 29662, + "ĠдеÑĢж": 27565, + "ĠдеÑģÑı": 32233, + "ĠдеÑģÑıÑĤ": 45884, + "ĠдеÑĤ": 15079, + "ĠдеÑĤей": 38668, + "ĠдеÑĤи": 48941, + "Ġди": 28255, + "Ġдив": 49829, + "ĠдиÑģ": 37929, + "ĠдлÑı": 5561, + "Ġдней": 47678, + "ĠднÑı": 36115, + "Ġдо": 5865, + "Ġдоб": 16991, + "Ġдобав": 23856, + "ĠдобÑĢ": 35620, + "Ġдов": 20124, + "ĠдоволÑĮно": 31777, + "Ġдог": 36056, + "Ġдок": 22992, + "ĠдокÑĥм": 43031, + "Ġдол": 8300, + "Ġдолго": 37515, + "Ġдолж": 12220, + "Ġдолжен": 25718, + "Ġдолжна": 40129, + "Ġдолжно": 40475, + "ĠдолжнÑĭ": 27581, + "ĠдоллаÑĢ": 26124, + "ĠдоллаÑĢов": 35902, + "Ġдом": 13049, + "Ġдома": 29012, + "Ġдомой": 46319, + "Ġдоп": 23562, + "Ġдополн": 45120, + "ĠдоÑĢ": 18478, + "ĠдоÑĢог": 24365, + "ĠдоÑģ": 41126, + "ĠдоÑģÑĤ": 34543, + "ĠдоÑģÑĤаÑĤоÑĩно": 28562, + "ĠдоÑģÑĤи": 46630, + "ĠдоÑģÑĤÑĥп": 41057, + "ĠдÑĢ": 37928, + "ĠдÑĢÑĥг": 8435, + "ĠдÑĢÑĥга": 47392, + "ĠдÑĢÑĥгие": 32108, + "ĠдÑĢÑĥгиÑħ": 31211, + "ĠдÑĢÑĥгой": 27823, + "ĠдÑĢÑĥз": 23577, + "ĠдÑĢÑĥзÑĮÑı": 28366, + "ĠдÑĥже": 39919, + "ĠдÑĥм": 13082, + "ĠдÑĥмаÑİ": 23479, + "ĠдÑĥÑħ": 35535, + "ĠдÑĥÑħов": 46373, + "ĠдÑĥÑĪ": 39096, + "Ġе": 1997, + "Ġев": 42402, + "Ġего": 6448, + "Ġед": 20686, + "Ġедин": 33791, + "Ġее": 14803, + "Ġей": 30075, + "ĠемÑĥ": 18220, + "ĠеÑģли": 8042, + "ĠеÑģÑĤе": 43775, + "ĠеÑģÑĤÑĮ": 5640, + "ĠеÑīе": 9910, + "ĠеÑīÑij": 13993, + "ĠеÑij": 18346, + "Ġж": 2989, + "Ġжд": 27020, + "Ġже": 6151, + "Ġжел": 21788, + "Ġжен": 21349, + "ĠженÑī": 28393, + "ĠжеÑģÑĤ": 48111, + "Ġжив": 15156, + "ĠживоÑĤ": 38029, + "Ġжиз": 13505, + "Ġжизни": 21415, + "ĠжизнÑĮ": 25362, + "ĠжиÑĤÑĮ": 40124, + "Ġз": 1423, + "Ġза": 4396, + "Ġзаб": 13890, + "Ġзав": 13388, + "ĠзавиÑģ": 39673, + "Ġзаг": 25770, + "Ġзад": 14787, + "ĠзадаÑĩ": 38793, + "Ġзай": 40133, + "Ġзак": 10264, + "ĠзаклÑİÑĩ": 49613, + "Ġзакон": 25206, + "ĠзаконÑĩ": 39641, + "ĠзакÑĢÑĭ": 43993, + "Ġзал": 32897, + "Ġзам": 13597, + "ĠзамеÑĤ": 36124, + "ĠзамеÑĩ": 41618, + "Ġзан": 18596, + "Ġзаним": 25396, + "Ġзап": 10333, + "ĠзапиÑģ": 36426, + "ĠзаÑĢ": 17821, + "ĠзаÑģ": 27819, + "ĠзаÑĤ": 25880, + "ĠзаÑĤем": 45288, + "ĠзаÑħ": 28701, + "ĠзаÑĩ": 34004, + "ĠзаÑĩем": 41521, + "ĠзаÑī": 31107, + "ĠзаÑıв": 38158, + "Ġзв": 13591, + "Ġзвон": 45832, + "ĠзвÑĥÑĩ": 48031, + "Ġзд": 7608, + "ĠздеÑģÑĮ": 9087, + "ĠздоÑĢов": 29638, + "Ġзем": 27230, + "Ġзм": 48979, + "Ġзн": 15309, + "Ġзна": 6766, + "Ġзнаем": 45491, + "ĠзнаеÑĤ": 39986, + "ĠзнаеÑĤе": 29868, + "ĠзнаеÑĪÑĮ": 38423, + "Ġзнак": 31949, + "Ġзнаком": 40909, + "ĠзнаÑĤÑĮ": 49997, + "ĠзнаÑĩ": 27605, + "ĠзнаÑĩиÑĤ": 24013, + "ĠзнаÑİ": 16315, + "Ġзов": 38893, + "ĠзовÑĥÑĤ": 46376, + "ĠзÑĢ": 27589, + "Ġи": 1006, + "Ġиг": 20713, + "ĠигÑĢ": 14568, + "ĠигÑĢа": 37120, + "ĠигÑĢÑĭ": 36183, + "Ġид": 17255, + "Ġиде": 26547, + "ĠидеÑĤ": 40029, + "Ġиз": 3943, + "Ġизб": 38995, + "Ġизв": 22599, + "ĠизвеÑģÑĤ": 37073, + "Ġизмен": 30345, + "ĠизÑĥÑĩ": 43264, + "Ġили": 8101, + "Ġим": 7604, + "Ġиме": 19539, + "ĠимееÑĤ": 33761, + "Ġименно": 20290, + "Ġин": 6635, + "Ġинд": 47106, + "Ġиногда": 43749, + "ĠинÑģÑĤÑĢÑĥменÑĤ": 44572, + "ĠинÑĤ": 44673, + "ĠинÑĤеÑĢ": 12073, + "ĠинÑĤеÑĢеÑģ": 15033, + "ĠинÑĤеÑĢеÑģно": 33333, + "ĠинÑĦоÑĢм": 29117, + "ĠиÑģ": 12410, + "ĠиÑģк": 20284, + "ĠиÑģп": 11265, + "ĠиÑģполÑĮз": 15552, + "ĠиÑģполÑĮзоваÑĤÑĮ": 33728, + "ĠиÑģпÑĭÑĤ": 46212, + "ĠиÑģÑģлед": 40299, + "ĠиÑģÑĤоÑĢ": 18950, + "ĠиÑģÑĤоÑĢии": 40203, + "ĠиÑģÑĤоÑĢиÑı": 41531, + "ĠиÑĤ": 32388, + "ĠиÑĤог": 36745, + "ĠиÑĤоге": 44063, + "ĠиÑħ": 9642, + "Ġй": 24540, + "Ġйого": 44123, + "Ġк": 981, + "Ġкаб": 46186, + "Ġкад": 42650, + "Ġкаж": 22129, + "Ġкажд": 15698, + "ĠкаждÑĭй": 27628, + "ĠкажеÑĤÑģÑı": 26147, + "Ġказ": 37408, + "Ġкак": 3014, + "ĠкакаÑı": 29334, + "Ġкакие": 19971, + "Ġкаким": 49190, + "ĠкакиÑħ": 44178, + "Ġкакое": 37932, + "Ġкакой": 16898, + "ĠкакÑĥÑİ": 45244, + "Ġкам": 21477, + "Ġкан": 18276, + "Ġканал": 28597, + "Ġканале": 47677, + "Ġкап": 31507, + "ĠкаÑĢ": 13560, + "ĠкаÑĢÑĤ": 34692, + "ĠкаÑģ": 43218, + "ĠкаÑĤ": 33780, + "ĠкаÑĩе": 28595, + "Ġкв": 35350, + "ĠкваÑĢ": 33619, + "ĠкваÑĢÑĤи": 37084, + "Ġкил": 37028, + "Ġкино": 49874, + "Ġкл": 14815, + "ĠклаÑģÑģ": 26197, + "Ġкли": 33504, + "ĠклÑİÑĩ": 43398, + "Ġкни": 32178, + "Ġкноп": 40450, + "Ġко": 3898, + "Ġкогда": 8874, + "Ġкого": 28985, + "Ġкож": 40107, + "Ġкол": 10706, + "Ġколи": 49672, + "ĠколиÑĩе": 25816, + "ĠколиÑĩеÑģÑĤво": 33442, + "Ġком": 7761, + "Ġкоман": 46180, + "Ġкоманд": 35991, + "ĠкомменÑĤ": 32469, + "ĠкомменÑĤаÑĢ": 36558, + "Ġкомна": 43418, + "Ġкомп": 14380, + "Ġкомпании": 44231, + "ĠкомпÑĮÑİÑĤ": 48488, + "ĠкомÑĥ": 40158, + "Ġкон": 6184, + "ĠконеÑĩно": 15271, + "ĠконÑĤ": 43064, + "ĠконÑĤÑĢ": 33271, + "ĠконÑĦ": 45751, + "ĠконÑĨ": 33495, + "ĠконÑĨе": 38769, + "Ġкоп": 42399, + "ĠкоÑĢ": 11384, + "ĠкоÑĢаб": 42830, + "ĠкоÑĢп": 45284, + "ĠкоÑģ": 31839, + "ĠкоÑĤ": 39535, + "ĠкоÑĤоÑĢ": 4388, + "ĠкоÑĤоÑĢаÑı": 19032, + "ĠкоÑĤоÑĢого": 36438, + "ĠкоÑĤоÑĢое": 32000, + "ĠкоÑĤоÑĢой": 29452, + "ĠкоÑĤоÑĢом": 39818, + "ĠкоÑĤоÑĢÑĥÑİ": 32355, + "ĠкоÑĤоÑĢÑĭе": 10381, + "ĠкоÑĤоÑĢÑĭй": 11897, + "ĠкоÑĤоÑĢÑĭÑħ": 28700, + "ĠкоÑĪ": 46774, + "ĠкÑĢ": 7502, + "ĠкÑĢа": 38585, + "ĠкÑĢай": 39584, + "ĠкÑĢаÑģ": 15826, + "ĠкÑĢаÑģив": 26679, + "ĠкÑĢеп": 46584, + "ĠкÑĢов": 31679, + "ĠкÑĢÑĥ": 26970, + "ĠкÑĢÑĥг": 43543, + "ĠкÑĢÑĥп": 39207, + "ĠкÑĢÑĥÑĤ": 43217, + "ĠкÑģÑĤаÑĤи": 35304, + "ĠкÑĤо": 12278, + "ĠкÑĥда": 27509, + "ĠкÑĥп": 25078, + "ĠкÑĥÑĢ": 28975, + "ĠкÑĥÑģ": 48431, + "Ġл": 2344, + "Ġладно": 44107, + "Ġлай": 35475, + "Ġлег": 22311, + "Ġлегко": 39995, + "Ġлеж": 41803, + "ĠлеÑģ": 42548, + "ĠлеÑĤ": 13088, + "Ġли": 7444, + "Ġлибо": 31100, + "ĠлиÑĩ": 29936, + "ĠлиÑĪ": 42637, + "ĠлиÑĪÑĮ": 29179, + "Ġлож": 48048, + "ĠлÑĥÑĩ": 15525, + "ĠлÑĥÑĩÑĪе": 21569, + "ĠлÑİ": 5716, + "ĠлÑİб": 9875, + "ĠлÑİбим": 36973, + "ĠлÑİблÑİ": 44683, + "ĠлÑİбов": 45356, + "ĠлÑİбой": 42803, + "ĠлÑİд": 8836, + "ĠлÑİдей": 16810, + "ĠлÑİди": 15850, + "ĠлÑİдÑıм": 45930, + "Ġм": 1084, + "Ġмаг": 27120, + "Ġмагаз": 39771, + "Ġмай": 41860, + "ĠмакÑģим": 35564, + "Ġмал": 19499, + "ĠмаленÑĮ": 26284, + "Ġмало": 37450, + "Ġмам": 40631, + "Ġмама": 47101, + "ĠмаÑĢ": 31609, + "ĠмаÑģ": 21466, + "ĠмаÑģÑģ": 31384, + "ĠмаÑĤ": 20908, + "ĠмаÑĤеÑĢи": 32835, + "ĠмаÑĪ": 19820, + "Ġмед": 24465, + "ĠмеждÑĥ": 24098, + "Ġмел": 44651, + "Ġмен": 6046, + "Ġменее": 38264, + "ĠменÑĮ": 31752, + "ĠменÑĮÑĪе": 35115, + "ĠменÑı": 6885, + "ĠмеÑĢ": 48231, + "ĠмеÑģÑĤ": 16470, + "ĠмеÑģÑĤа": 43956, + "ĠмеÑģÑĤе": 36534, + "ĠмеÑģÑĤо": 26241, + "ĠмеÑģÑı": 29329, + "ĠмеÑĤ": 18791, + "ĠмеÑħ": 48182, + "ĠмеÑĩ": 42721, + "ĠмеÑĪ": 44874, + "Ġми": 13803, + "Ġмик": 43712, + "Ġмилли": 26349, + "Ġмин": 19073, + "Ġминим": 45754, + "ĠминÑĥÑĤ": 24498, + "ĠмиÑĢ": 20536, + "ĠмиÑĢа": 41454, + "ĠмиÑĢе": 36822, + "Ġмн": 16338, + "Ġмне": 8531, + "Ġмног": 22287, + "Ġмногие": 37343, + "Ġмного": 13347, + "Ġмной": 39199, + "Ġмо": 9971, + "Ġмог": 9962, + "Ġмогли": 37118, + "ĠмогÑĥ": 22951, + "ĠмогÑĥÑĤ": 23461, + "Ġмод": 24104, + "Ġмоей": 46270, + "Ġмож": 4710, + "Ġможем": 28815, + "ĠможеÑĤ": 8689, + "ĠможеÑĤе": 23578, + "ĠможеÑĪÑĮ": 46442, + "Ġможно": 8885, + "Ġмоз": 48140, + "Ġмои": 39822, + "Ġмой": 23400, + "Ġмол": 25634, + "Ġмолод": 28801, + "Ġмом": 17655, + "ĠмоменÑĤ": 17825, + "Ġмон": 32457, + "ĠмоÑĢ": 24127, + "ĠмоÑī": 39218, + "ĠмоÑı": 33691, + "ĠмÑĥж": 22081, + "ĠмÑĥжÑĩ": 40051, + "ĠмÑĥз": 26843, + "ĠмÑĥзÑĭ": 34249, + "ĠмÑĭ": 4777, + "ĠмÑĭÑĪ": 45009, + "ĠмÑıÑģ": 40966, + "ĠмÑĸ": 23895, + "Ġн": 757, + "Ġна": 1470, + "Ġнаб": 22499, + "ĠнаблÑİд": 47147, + "Ġнав": 14192, + "ĠнавеÑĢ": 23237, + "ĠнавеÑĢное": 31159, + "Ġнаг": 30584, + "Ġнад": 8469, + "Ġнадо": 13256, + "Ġнаж": 35675, + "Ġназ": 15006, + "Ġназад": 28724, + "Ġназв": 27161, + "ĠназÑĭв": 20922, + "ĠназÑĭваеÑĤÑģÑı": 40659, + "Ġнай": 19235, + "Ġнайд": 41805, + "ĠнайÑĤи": 31993, + "Ġнак": 20955, + "ĠнаконеÑĨ": 49154, + "Ġнал": 32750, + "Ġнам": 11401, + "Ġнами": 44552, + "Ġнап": 9011, + "ĠнапиÑģ": 30442, + "ĠнапÑĢ": 18296, + "ĠнапÑĢав": 36437, + "ĠнапÑĢимеÑĢ": 24044, + "ĠнаÑĢ": 34316, + "ĠнаÑĢод": 32583, + "ĠнаÑģ": 6519, + "ĠнаÑģколÑĮко": 49635, + "ĠнаÑģÑĤ": 35397, + "ĠнаÑģÑĤолÑĮко": 47779, + "ĠнаÑģÑĤоÑıÑī": 35048, + "ĠнаÑģÑĤÑĢо": 47842, + "ĠнаÑĤ": 48290, + "ĠнаÑĥÑĩ": 38019, + "ĠнаÑħод": 19363, + "ĠнаÑħодиÑĤÑģÑı": 34366, + "ĠнаÑĩ": 8970, + "ĠнаÑĩал": 44800, + "ĠнаÑĩала": 40551, + "ĠнаÑĩина": 21995, + "ĠнаÑĪ": 8253, + "ĠнаÑĪа": 48513, + "ĠнаÑĪего": 45309, + "ĠнаÑĪей": 34670, + "ĠнаÑĪем": 48181, + "ĠнаÑĪи": 36314, + "ĠнаÑĪиÑħ": 41525, + "Ġне": 1725, + "Ġнеб": 22783, + "ĠнеболÑĮÑĪ": 32692, + "Ġнев": 21224, + "Ġнего": 15052, + "Ġнед": 15704, + "Ġнее": 33518, + "Ġнез": 34691, + "Ġней": 23227, + "Ġнек": 39269, + "ĠнекоÑĤоÑĢ": 26666, + "ĠнекоÑĤоÑĢÑĭе": 43876, + "ĠнелÑĮзÑı": 33813, + "Ġнем": 13166, + "Ġнемного": 26583, + "Ġнемнож": 39844, + "Ġнемножко": 44382, + "Ġнеоб": 27864, + "ĠнеобÑħод": 31360, + "ĠнеобÑħодимо": 41432, + "Ġнеп": 17005, + "ĠнеÑģ": 30825, + "ĠнеÑģколÑĮко": 21902, + "ĠнеÑĤ": 9916, + "ĠнеÑij": 44527, + "Ġни": 13686, + "Ġниз": 48019, + "Ġник": 11295, + "Ġникак": 23127, + "ĠникакиÑħ": 47357, + "Ġникогда": 29375, + "ĠникÑĤо": 31666, + "Ġним": 25793, + "Ġними": 42371, + "ĠниÑħ": 14319, + "ĠниÑĩего": 16630, + "Ġно": 6035, + "Ġнов": 10022, + "ĠновÑĭе": 39232, + "ĠновÑĭй": 38121, + "ĠновÑĭÑħ": 46308, + "Ġног": 31538, + "Ġнож": 46718, + "Ġном": 36847, + "ĠноÑĢм": 24068, + "ĠноÑĢмалÑĮно": 39601, + "ĠноÑģ": 37245, + "ĠноÑĩ": 38237, + "ĠнÑĢав": 27564, + "ĠнÑĢавиÑĤÑģÑı": 33652, + "ĠнÑĥ": 13087, + "ĠнÑĥж": 9353, + "ĠнÑĥжен": 47867, + "ĠнÑĥжно": 12264, + "ĠнÑĸ": 46645, + "Ġо": 1000, + "Ġоб": 3348, + "ĠобнаÑĢÑĥж": 47841, + "ĠобÑĢаз": 17938, + "ĠобÑĢазом": 29916, + "ĠобÑĢаÑĤ": 29851, + "ĠобÑģ": 47963, + "ĠобÑī": 17224, + "ĠобÑīе": 48078, + "ĠобÑīем": 26842, + "ĠобÑĬ": 16646, + "ĠобÑĬÑıÑģ": 36712, + "ĠобÑĭÑĩ": 32291, + "ĠобÑĭÑĩно": 41878, + "ĠобÑıз": 27945, + "ĠобÑıзаÑĤелÑĮно": 35515, + "Ġог": 33309, + "ĠогÑĢ": 21517, + "ĠогÑĢом": 28107, + "Ġод": 5693, + "Ġодин": 13319, + "Ġодна": 26985, + "Ġодним": 50096, + "Ġодно": 30387, + "Ġодного": 33828, + "Ġодной": 29281, + "Ġодном": 48635, + "ĠоднÑĥ": 37885, + "Ġож": 35666, + "Ġожид": 47136, + "Ġоз": 29176, + "ĠознаÑĩ": 49994, + "Ġок": 11423, + "Ġоказ": 28833, + "Ġоколо": 40573, + "Ġон": 5345, + "Ġона": 8826, + "Ġони": 7515, + "Ġоно": 25369, + "Ġоп": 7683, + "ĠопаÑģ": 39393, + "ĠопеÑĢ": 36742, + "ĠопиÑģ": 32190, + "ĠопиÑģании": 48303, + "ĠопÑĢед": 26961, + "ĠопÑĢедел": 39305, + "ĠопÑĭÑĤ": 48530, + "ĠопÑıÑĤÑĮ": 31545, + "ĠоÑĢ": 18448, + "ĠоÑĢг": 24443, + "ĠоÑĢганиз": 34254, + "ĠоÑĢÑĥж": 46802, + "ĠоÑģ": 8940, + "ĠоÑģв": 46403, + "ĠоÑģнов": 19217, + "ĠоÑģоб": 21244, + "ĠоÑģобенно": 35817, + "ĠоÑģÑĤ": 12574, + "ĠоÑģÑĤав": 25969, + "ĠоÑģÑĤан": 41633, + "ĠоÑģÑĤанов": 44367, + "ĠоÑģÑĤÑĢ": 42710, + "ĠоÑĤ": 2943, + "ĠоÑĤв": 29642, + "ĠоÑĤвеÑĤ": 25284, + "ĠоÑĤвеÑĩ": 47859, + "ĠоÑĤд": 22243, + "ĠоÑĤдел": 50176, + "ĠоÑĤделÑĮ": 41199, + "ĠоÑĤк": 12799, + "ĠоÑĤкÑĢÑĭ": 27085, + "ĠоÑĤкÑĢÑĭв": 44543, + "ĠоÑĤлиÑĩ": 26902, + "ĠоÑĤмеÑĤ": 47318, + "ĠоÑĤно": 22079, + "ĠоÑĤноÑģ": 44539, + "ĠоÑĤноÑĪ": 30708, + "ĠоÑĤп": 22344, + "ĠоÑĤпÑĢав": 38427, + "ĠоÑĤÑģ": 29870, + "ĠоÑĦ": 31950, + "ĠоÑħ": 28871, + "ĠоÑĩ": 5875, + "ĠоÑĩенÑĮ": 6730, + "ĠоÑĩеÑĢ": 33102, + "ĠоÑĪиб": 40253, + "ĠоÑī": 40065, + "ĠоÑīÑĥÑī": 44966, + "Ġп": 713, + "Ġпад": 44149, + "Ġпал": 40415, + "ĠпалÑĮ": 47226, + "Ġпам": 39164, + "Ġпап": 39322, + "ĠпаÑĢ": 11813, + "ĠпаÑĢÑĥ": 44163, + "ĠпеÑĢ": 4321, + "ĠпеÑĢв": 11922, + "ĠпеÑĢвÑĭй": 30025, + "ĠпеÑĢе": 29641, + "ĠпеÑĢев": 28106, + "ĠпеÑĢед": 15621, + "ĠпеÑĢеж": 46450, + "ĠпеÑĢек": 38924, + "ĠпеÑĢем": 35903, + "ĠпеÑĢеп": 48702, + "ĠпеÑĢеÑħод": 46888, + "ĠпеÑĢи": 45602, + "ĠпеÑĢÑģон": 33399, + "ĠпеÑĢÑģонаж": 38063, + "ĠпеÑģ": 37280, + "ĠпеÑĩ": 44875, + "ĠпиÑģ": 39739, + "ĠпиÑĤ": 33615, + "ĠпиÑĪ": 37979, + "Ġпл": 9283, + "Ġплан": 23443, + "ĠплаÑĤ": 34160, + "Ġпло": 22402, + "ĠплоÑħ": 29938, + "ĠплоÑħо": 45210, + "ĠплоÑī": 44633, + "ĠплÑİÑģ": 43342, + "Ġпо": 2801, + "Ġпоб": 20024, + "Ġпобед": 39281, + "Ġпов": 10499, + "ĠповеÑĢÑħ": 44397, + "ĠповÑĤоÑĢ": 42221, + "Ġпог": 17724, + "ĠпоговоÑĢ": 38858, + "Ġпод": 4095, + "ĠподаÑĢ": 43564, + "ĠподгоÑĤов": 49914, + "ĠподдеÑĢж": 30756, + "Ġподоб": 35229, + "ĠподпиÑģ": 27386, + "ĠподÑĤ": 46103, + "ĠподÑĥм": 38664, + "ĠподÑħод": 44617, + "ĠпоеÑħ": 49519, + "Ġпож": 38587, + "ĠпожалÑĥйÑģÑĤа": 32518, + "Ġпоз": 12188, + "Ġпозвол": 28805, + "Ġпой": 31671, + "Ġпойд": 41207, + "Ġпок": 7240, + "Ġпока": 17770, + "Ġпоказ": 21147, + "ĠпоказÑĭв": 34614, + "ĠпокÑĥп": 34005, + "Ġпол": 4692, + "Ġполез": 40191, + "ĠполиÑĤ": 45330, + "ĠполноÑģÑĤÑĮÑİ": 36392, + "Ġполов": 39884, + "Ġполож": 29408, + "ĠполÑĥÑĩ": 9478, + "ĠполÑĥÑĩаеÑĤÑģÑı": 33451, + "ĠполÑĥÑĩилоÑģÑĮ": 44405, + "ĠполÑĥÑĩиÑĤÑģÑı": 49579, + "ĠполÑĥÑĩиÑĤÑĮ": 41725, + "ĠполÑĮз": 30419, + "ĠполÑĮзов": 44803, + "Ġпом": 8613, + "Ġпомог": 27097, + "ĠпомоÑī": 22301, + "ĠпомоÑīÑĮÑİ": 36387, + "Ġпон": 7903, + "Ġпонад": 49581, + "Ġпоним": 15084, + "ĠпонимаÑİ": 35112, + "ĠпонÑĢав": 34752, + "ĠпонÑıл": 37975, + "ĠпонÑıÑĤно": 39718, + "ĠпонÑıÑĤÑĮ": 44403, + "Ġпоп": 10694, + "Ġпопад": 43613, + "ĠпопÑĢоб": 34089, + "ĠпопÑĥлÑıÑĢ": 46732, + "ĠпопÑĭÑĤ": 46047, + "ĠпоÑĢ": 11948, + "ĠпоÑĢÑıд": 36681, + "ĠпоÑģ": 5810, + "ĠпоÑģле": 16107, + "ĠпоÑģлед": 19253, + "ĠпоÑģмоÑĤÑĢ": 19240, + "ĠпоÑģмоÑĤÑĢеÑĤÑĮ": 38482, + "ĠпоÑģмоÑĤÑĢим": 42293, + "ĠпоÑģÑĤ": 27877, + "ĠпоÑģÑĤав": 28072, + "ĠпоÑģÑĤо": 31299, + "ĠпоÑģÑĤоÑıн": 33212, + "ĠпоÑģÑĤоÑıнно": 41548, + "ĠпоÑģÑĤÑĢо": 47526, + "ĠпоÑģÑĤÑĥп": 43829, + "ĠпоÑĤ": 6364, + "ĠпоÑĤеÑĢ": 39363, + "ĠпоÑĤом": 16873, + "ĠпоÑĤомÑĥ": 11919, + "ĠпоÑĤÑĢ": 26146, + "ĠпоÑĤÑĢеб": 40529, + "ĠпоÑħ": 23052, + "ĠпоÑħож": 38862, + "ĠпоÑĩ": 12079, + "ĠпоÑĩемÑĥ": 21513, + "ĠпоÑĩÑĤи": 30529, + "ĠпоÑĪ": 27148, + "ĠпоÑįÑĤомÑĥ": 19698, + "ĠпоÑıв": 20011, + "ĠпÑĢ": 1285, + "ĠпÑĢав": 10615, + "ĠпÑĢавда": 37136, + "ĠпÑĢавилÑĮно": 39321, + "ĠпÑĢакÑĤи": 27109, + "ĠпÑĢакÑĤиÑĩеÑģки": 38086, + "ĠпÑĢе": 43228, + "ĠпÑĢев": 34393, + "ĠпÑĢед": 8048, + "ĠпÑĢедлаг": 46841, + "ĠпÑĢедлож": 40373, + "ĠпÑĢедÑģÑĤав": 27167, + "ĠпÑĢедÑģÑĤавлÑı": 39412, + "ĠпÑĢез": 39838, + "ĠпÑĢезид": 49529, + "ĠпÑĢек": 28939, + "ĠпÑĢекÑĢаÑģ": 33620, + "ĠпÑĢеп": 47510, + "ĠпÑĢеÑģÑĤ": 44481, + "ĠпÑĢеÑģÑĤÑĥп": 48991, + "ĠпÑĢи": 5082, + "ĠпÑĢиб": 31436, + "ĠпÑĢив": 13398, + "ĠпÑĢивеÑĤ": 33879, + "ĠпÑĢиг": 42619, + "ĠпÑĢигоÑĤов": 49630, + "ĠпÑĢид": 21255, + "ĠпÑĢидÑĥм": 45234, + "ĠпÑĢиеÑħ": 38567, + "ĠпÑĢиз": 26724, + "ĠпÑĢик": 25492, + "ĠпÑĢил": 34770, + "ĠпÑĢилож": 47251, + "ĠпÑĢим": 31806, + "ĠпÑĢимеÑĢ": 22545, + "ĠпÑĢимеÑĢно": 37424, + "ĠпÑĢин": 16003, + "ĠпÑĢиним": 44396, + "ĠпÑĢинÑĨип": 30147, + "ĠпÑĢинÑĨипе": 39086, + "ĠпÑĢиÑĢ": 41640, + "ĠпÑĢиÑģ": 26686, + "ĠпÑĢиÑħод": 26641, + "ĠпÑĢиÑĩ": 26472, + "ĠпÑĢиÑĪ": 22448, + "ĠпÑĢо": 4178, + "ĠпÑĢоб": 15122, + "ĠпÑĢоблем": 20920, + "ĠпÑĢоблема": 48264, + "ĠпÑĢоблемÑĭ": 44340, + "ĠпÑĢов": 13422, + "ĠпÑĢовеÑĢ": 30901, + "ĠпÑĢовод": 33924, + "ĠпÑĢог": 20192, + "ĠпÑĢогÑĢам": 29043, + "ĠпÑĢод": 11354, + "ĠпÑĢодолж": 24519, + "ĠпÑĢодÑĥк": 33873, + "ĠпÑĢоекÑĤ": 32275, + "ĠпÑĢоиз": 16769, + "ĠпÑĢоизвод": 28685, + "ĠпÑĢоизоÑĪ": 41476, + "ĠпÑĢоиÑģ": 21482, + "ĠпÑĢоиÑģÑħодиÑĤ": 28548, + "ĠпÑĢок": 37225, + "ĠпÑĢом": 42988, + "ĠпÑĢоп": 23497, + "ĠпÑĢоÑģ": 21109, + "ĠпÑĢоÑģÑĤ": 27959, + "ĠпÑĢоÑģÑĤо": 8221, + "ĠпÑĢоÑĤ": 15602, + "ĠпÑĢоÑĤив": 22534, + "ĠпÑĢоÑĦ": 33011, + "ĠпÑĢоÑĦеÑģÑģ": 43624, + "ĠпÑĢоÑħод": 39782, + "ĠпÑĢоÑĨ": 20640, + "ĠпÑĢоÑĨеÑģÑģ": 30965, + "ĠпÑĢоÑĩ": 38828, + "ĠпÑĢоÑĪ": 20567, + "ĠпÑĢоÑĪл": 48596, + "ĠпÑĢÑĭ": 50236, + "ĠпÑĢÑıм": 18449, + "ĠпÑĢÑıмо": 28547, + "ĠпÑģ": 40163, + "ĠпÑģиÑħ": 44159, + "ĠпÑĥ": 30836, + "ĠпÑĥÑĤ": 37581, + "ĠпÑĭÑĤ": 28806, + "ĠпÑıÑĤ": 41367, + "ĠпÑıÑĤÑĮ": 43618, + "ĠпÑĸд": 26419, + "ĠÐĨ": 23297, + "ĠÐIJ": 3450, + "ĠÐIJв": 50175, + "ĠÐIJл": 43104, + "ĠÐIJле": 45043, + "ĠÐIJлекÑģ": 32228, + "ĠÐIJлекÑģанд": 44938, + "ĠÐIJн": 20802, + "ĠÐIJнд": 39583, + "ĠÐIJÑĢ": 32091, + "ĠÐij": 5697, + "ĠÐijог": 34008, + "ĠÐijÑĥд": 40208, + "ĠÐijÑĭ": 44804, + "ĠÐĴ": 2348, + "ĠÐĴам": 43670, + "ĠÐĴаÑģ": 37055, + "ĠÐĴедÑĮ": 42612, + "ĠÐĴид": 42888, + "ĠÐĴлад": 41022, + "ĠÐĴо": 24334, + "ĠÐĴоÑĤ": 9756, + "ĠÐĴÑģ": 10779, + "ĠÐĴÑģе": 18029, + "ĠÐĴÑģем": 37367, + "ĠÐĴÑģÑij": 29661, + "ĠÐĴÑĤоÑĢ": 49732, + "ĠÐĴÑĭ": 11886, + "ĠÐĵ": 7247, + "ĠÐĵде": 41996, + "ĠÐĵоÑģ": 47206, + "ĠÐĶ": 3401, + "ĠÐĶа": 9149, + "ĠÐĶав": 17853, + "ĠÐĶавай": 29196, + "ĠÐĶавайÑĤе": 30487, + "ĠÐĶаже": 42900, + "ĠÐĶж": 23792, + "ĠÐĶлÑı": 21324, + "ĠÐĶо": 31695, + "ĠÐķ": 6538, + "ĠÐķв": 34019, + "ĠÐķго": 32908, + "ĠÐķÑģли": 12412, + "ĠÐķÑģÑĤÑĮ": 30547, + "ĠÐķÑīе": 44122, + "ĠÐĸ": 18977, + "ĠÐĹ": 5841, + "ĠÐĹа": 22391, + "ĠÐĹап": 49612, + "ĠÐĹд": 17613, + "ĠÐĹдеÑģÑĮ": 23367, + "ĠÐĹем": 42604, + "ĠÐĹна": 30869, + "ĠÐĹнаÑĩиÑĤ": 44827, + "ĠÐĺ": 3272, + "ĠÐĺз": 24588, + "ĠÐĺли": 34361, + "ĠÐĺм": 34759, + "ĠÐĺн": 27222, + "ĠÐĺÑĤак": 28793, + "ĠÐļ": 3422, + "ĠÐļак": 11011, + "ĠÐļаÑĢ": 43923, + "ĠÐļогда": 23128, + "ĠÐļол": 45363, + "ĠÐļон": 23827, + "ĠÐļонеÑĩно": 35108, + "ĠÐļоÑĢ": 29635, + "ĠÐļÑĢаÑģ": 49491, + "ĠÐļÑģÑĤаÑĤи": 39883, + "ĠÐļÑĤо": 33953, + "ĠÐĽ": 7853, + "ĠÐĽÑİ": 25968, + "ĠÐĽÑİб": 47369, + "ĠÐľ": 3493, + "ĠÐľÐ£": 24143, + "ĠÐľÐ£ÐĹЫÐļÐIJ": 25007, + "ĠÐľÐ°ÑĢ": 26182, + "ĠÐľÐµÐ½Ñı": 47311, + "ĠÐľÐ¸": 47250, + "ĠÐľÐ¸Ñħ": 50150, + "ĠÐľÐ½Ðµ": 23204, + "ĠÐľÐ¾Ð¶ÐµÑĤ": 32786, + "ĠÐľÐ¾Ð¶Ð½Ð¾": 34423, + "ĠÐľÐ¾Ñģ": 32327, + "ĠÐľÐ¾Ñģкв": 38842, + "ĠÐľÑĭ": 12726, + "ĠÐĿ": 2410, + "ĠÐĿа": 11245, + "ĠÐĿав": 46929, + "ĠÐĿад": 29637, + "ĠÐĿадо": 48562, + "ĠÐĿам": 46147, + "ĠÐĿап": 28167, + "ĠÐĿапÑĢ": 36552, + "ĠÐĿапÑĢимеÑĢ": 39645, + "ĠÐĿаÑĩ": 48493, + "ĠÐĿе": 11512, + "ĠÐĿеÑĤ": 21249, + "ĠÐĿик": 28448, + "ĠÐĿо": 7264, + "ĠÐĿов": 36062, + "ĠÐĿÐIJ": 44416, + "ĠÐĿÑĥ": 7571, + "ĠÐŀ": 3688, + "ĠÐŀб": 22853, + "ĠÐŀд": 20125, + "ĠÐŀднако": 39757, + "ĠÐŀй": 42724, + "ĠÐŀк": 48984, + "ĠÐŀн": 12409, + "ĠÐŀна": 20280, + "ĠÐŀни": 18973, + "ĠÐŀп": 45246, + "ĠÐŀÑģ": 38590, + "ĠÐŀÑĤ": 18611, + "ĠÐŀÑĩ": 30352, + "ĠÐŀÑĩенÑĮ": 34062, + "ĠÐŁ": 2608, + "ĠÐŁÐµÑĢ": 20426, + "ĠÐŁÐµÑĢв": 34182, + "ĠÐŁÐ¾": 12121, + "ĠÐŁÐ¾Ð´": 23120, + "ĠÐŁÐ¾ÐºÐ°": 38401, + "ĠÐŁÐ¾Ð»": 28183, + "ĠÐŁÐ¾Ð¼": 43030, + "ĠÐŁÐ¾Ð½": 36067, + "ĠÐŁÐ¾Ñģ": 18689, + "ĠÐŁÐ¾Ñģле": 32747, + "ĠÐŁÐ¾ÑĤ": 17993, + "ĠÐŁÐ¾ÑĤом": 45941, + "ĠÐŁÐ¾ÑĤомÑĥ": 23671, + "ĠÐŁÐ¾ÑĩемÑĥ": 32823, + "ĠÐŁÐ¾ÑįÑĤомÑĥ": 22318, + "ĠÐŁÑĢ": 8567, + "ĠÐŁÑĢав": 39793, + "ĠÐŁÑĢед": 46825, + "ĠÐŁÑĢи": 22059, + "ĠÐŁÑĢивеÑĤ": 38932, + "ĠÐŁÑĢо": 38529, + "ĠÐŁÑĢоÑģÑĤо": 34751, + "ĠÐł": 6325, + "ĠÐłÐ°Ð·": 28972, + "ĠÐłÐ¾ÑģÑģ": 21997, + "ĠÐłÐ¾ÑģÑģии": 29007, + "ĠÐŃ": 5381, + "ĠÐŃÑĤо": 6684, + "ĠÐŃÑĤоÑĤ": 42054, + "ĠÑ": 1015, + "ĠÑĢ": 1475, + "ĠÑĢаб": 41499, + "ĠÑĢабоÑĤ": 9197, + "ĠÑĢабоÑĤаеÑĤ": 30162, + "ĠÑĢабоÑĤаÑĤÑĮ": 33637, + "ĠÑĢабоÑĤÑĥ": 39382, + "ĠÑĢабоÑĤÑĭ": 35402, + "ĠÑĢав": 19353, + "ĠÑĢавно": 27354, + "ĠÑĢад": 26622, + "ĠÑĢади": 34748, + "ĠÑĢаз": 4203, + "ĠÑĢаза": 49578, + "ĠÑĢазб": 26868, + "ĠÑĢазв": 20019, + "ĠÑĢазвиÑĤ": 47359, + "ĠÑĢазг": 39901, + "ĠÑĢаздел": 45414, + "ĠÑĢазлиÑĩ": 40140, + "ĠÑĢазм": 47075, + "ĠÑĢазмеÑĢ": 41813, + "ĠÑĢазнÑĭе": 43059, + "ĠÑĢазнÑĭÑħ": 40644, + "ĠÑĢазÑĢ": 24051, + "ĠÑĢазÑĢабоÑĤ": 38976, + "ĠÑĢай": 37590, + "ĠÑĢан": 36463, + "ĠÑĢанÑĮÑĪе": 40442, + "ĠÑĢаÑģ": 7459, + "ĠÑĢаÑģк": 46666, + "ĠÑĢаÑģп": 26588, + "ĠÑĢаÑģÑģ": 23345, + "ĠÑĢаÑģÑģк": 17399, + "ĠÑĢаÑģÑģказ": 34760, + "ĠÑĢаÑģÑģказÑĭв": 33446, + "ĠÑĢаÑģÑĤ": 31274, + "ĠÑĢе": 15492, + "ĠÑĢеалÑĮно": 38001, + "ĠÑĢеб": 18902, + "ĠÑĢебен": 41417, + "ĠÑĢебÑıÑĤа": 37678, + "ĠÑĢег": 31235, + "ĠÑĢед": 42845, + "ĠÑĢеж": 28418, + "ĠÑĢежим": 37710, + "ĠÑĢез": 17749, + "ĠÑĢезÑĥлÑĮÑĤаÑĤ": 28476, + "ĠÑĢек": 22801, + "ĠÑĢеÑģ": 39836, + "ĠÑĢеÑĪ": 14025, + "ĠÑĢеÑĪил": 44240, + "ĠÑĢиÑģ": 31393, + "ĠÑĢо": 49493, + "ĠÑĢоб": 30971, + "ĠÑĢод": 17925, + "ĠÑĢоз": 20681, + "ĠÑĢок": 31833, + "ĠÑĢол": 26725, + "ĠÑĢолÑĮ": 49189, + "ĠÑĢоÑģ": 44935, + "ĠÑĢоÑģÑģ": 43809, + "ĠÑĢоÑģÑģий": 48971, + "ĠÑĢÑĥ": 17292, + "ĠÑĢÑĥб": 27371, + "ĠÑĢÑĥблей": 40851, + "ĠÑĢÑĥк": 36765, + "ĠÑĢÑĥки": 39304, + "ĠÑĢÑĥÑģ": 27198, + "ĠÑĢÑĭ": 22791, + "ĠÑĢÑĭн": 37314, + "ĠÑĢÑıд": 32921, + "ĠÑĢÑıдом": 43190, + "ĠÑģ": 776, + "ĠÑģам": 5602, + "ĠÑģама": 40517, + "ĠÑģами": 34085, + "ĠÑģамо": 43745, + "ĠÑģамого": 42264, + "ĠÑģамое": 25676, + "ĠÑģамой": 49560, + "ĠÑģамом": 22108, + "ĠÑģамÑĭе": 44253, + "ĠÑģамÑĭй": 30688, + "ĠÑģамÑĭÑħ": 37241, + "ĠÑģб": 29014, + "ĠÑģв": 4155, + "ĠÑģвеÑĤ": 28492, + "ĠÑģвид": 43666, + "ĠÑģво": 6989, + "ĠÑģвобод": 39021, + "ĠÑģвое": 42666, + "ĠÑģвоего": 32325, + "ĠÑģвоей": 25346, + "ĠÑģвои": 25375, + "ĠÑģвоим": 37337, + "ĠÑģвоиÑħ": 30316, + "ĠÑģвой": 25190, + "ĠÑģвоÑİ": 23069, + "ĠÑģвÑıз": 22430, + "ĠÑģд": 48001, + "ĠÑģдел": 10326, + "ĠÑģделал": 40653, + "ĠÑģделали": 44780, + "ĠÑģделаÑĤÑĮ": 18695, + "ĠÑģе": 27383, + "ĠÑģеб": 9968, + "ĠÑģебе": 16683, + "ĠÑģебÑı": 15403, + "ĠÑģегоднÑı": 17413, + "ĠÑģейÑĩаÑģ": 10241, + "ĠÑģек": 22869, + "ĠÑģем": 20933, + "ĠÑģемÑĮ": 36735, + "ĠÑģеÑĢ": 14490, + "ĠÑģеÑĢд": 38479, + "ĠÑģеÑĢÑĮ": 35178, + "ĠÑģеÑĢÑĮез": 47065, + "ĠÑģиг": 48805, + "ĠÑģид": 27360, + "ĠÑģил": 24776, + "ĠÑģилÑĮ": 34158, + "ĠÑģилÑĮно": 31350, + "ĠÑģим": 38994, + "ĠÑģин": 47079, + "ĠÑģиÑģÑĤ": 21351, + "ĠÑģиÑģÑĤем": 24067, + "ĠÑģиÑģÑĤема": 48123, + "ĠÑģиÑĤÑĥ": 27840, + "ĠÑģк": 5239, + "ĠÑģкаж": 21938, + "ĠÑģказ": 10867, + "ĠÑģказал": 24980, + "ĠÑģказала": 48179, + "ĠÑģказаÑĤÑĮ": 20636, + "ĠÑģклад": 46185, + "ĠÑģколÑĮко": 28838, + "ĠÑģкоÑĢ": 17575, + "ĠÑģкоÑĢее": 41420, + "ĠÑģкоÑĢо": 44971, + "ĠÑģл": 4766, + "ĠÑģлед": 15363, + "ĠÑģледÑĥÑİÑī": 26045, + "ĠÑģлиÑĪком": 40576, + "ĠÑģлов": 20319, + "ĠÑģлова": 39002, + "ĠÑģлово": 43272, + "ĠÑģлож": 30858, + "ĠÑģложно": 41016, + "ĠÑģлÑĥж": 35459, + "ĠÑģлÑĥÑĩ": 14002, + "ĠÑģлÑĥÑĩа": 23775, + "ĠÑģлÑĥÑĩае": 26425, + "ĠÑģлÑĥÑĩай": 40181, + "ĠÑģлÑĥÑĪ": 41839, + "ĠÑģлÑĭÑĪ": 31814, + "ĠÑģм": 6871, + "ĠÑģмеÑĢ": 39997, + "ĠÑģмог": 32139, + "ĠÑģмож": 47044, + "ĠÑģмоÑĤÑĢ": 17726, + "ĠÑģмоÑĤÑĢеÑĤÑĮ": 43922, + "ĠÑģмоÑĤÑĢиÑĤе": 46441, + "ĠÑģмÑĭÑģ": 44045, + "ĠÑģн": 42864, + "ĠÑģнаÑĩала": 44437, + "ĠÑģним": 28098, + "ĠÑģнова": 36114, + "ĠÑģо": 7425, + "ĠÑģоб": 10450, + "ĠÑģобиÑĢ": 41534, + "ĠÑģобой": 32474, + "ĠÑģобÑģÑĤвен": 44177, + "ĠÑģобÑģÑĤвенно": 49863, + "ĠÑģобÑĭÑĤи": 42654, + "ĠÑģов": 11030, + "ĠÑģовеÑĢÑĪ": 26227, + "ĠÑģовеÑĢÑĪенно": 37075, + "ĠÑģовеÑĤ": 35282, + "ĠÑģовÑĢем": 42880, + "ĠÑģовÑģем": 27711, + "ĠÑģог": 33255, + "ĠÑģоглаÑģ": 40587, + "ĠÑģод": 45744, + "ĠÑģодеÑĢж": 48206, + "ĠÑģожал": 45999, + "ĠÑģожалениÑİ": 48018, + "ĠÑģоз": 14729, + "ĠÑģозд": 20247, + "ĠÑģозн": 41334, + "ĠÑģок": 38419, + "ĠÑģол": 36059, + "ĠÑģолн": 49685, + "ĠÑģообÑī": 40626, + "ĠÑģооÑĤвеÑĤ": 36815, + "ĠÑģоп": 39135, + "ĠÑģоÑĢ": 43992, + "ĠÑģоÑģ": 33165, + "ĠÑģоÑģÑĤав": 41772, + "ĠÑģоÑģÑĤо": 25631, + "ĠÑģоÑģÑĤоÑıни": 36017, + "ĠÑģоÑĤ": 32206, + "ĠÑģоÑĤÑĢÑĥд": 50233, + "ĠÑģоÑħ": 38696, + "ĠÑģоÑħÑĢан": 41571, + "ĠÑģп": 5307, + "ĠÑģпаÑģ": 41895, + "ĠÑģпаÑģибо": 37536, + "ĠÑģпеÑĨи": 25665, + "ĠÑģпиÑģ": 49918, + "ĠÑģпокой": 47471, + "ĠÑģпоÑĢÑĤ": 49941, + "ĠÑģпоÑģоб": 23677, + "ĠÑģпÑĢав": 31853, + "ĠÑģпÑĢоÑģ": 44312, + "ĠÑģÑĢав": 42987, + "ĠÑģÑĢазÑĥ": 22014, + "ĠÑģÑĢед": 20446, + "ĠÑģÑģÑĭл": 41480, + "ĠÑģÑĤ": 3266, + "ĠÑģÑĤав": 25709, + "ĠÑģÑĤал": 28980, + "ĠÑģÑĤала": 44503, + "ĠÑģÑĤали": 39029, + "ĠÑģÑĤало": 39633, + "ĠÑģÑĤан": 27214, + "ĠÑģÑĤанов": 32003, + "ĠÑģÑĤановиÑĤÑģÑı": 44799, + "ĠÑģÑĤаÑĢ": 17241, + "ĠÑģÑĤаÑĤÑĮ": 36415, + "ĠÑģÑĤен": 48357, + "ĠÑģÑĤо": 13552, + "ĠÑģÑĤоиÑĤ": 23675, + "ĠÑģÑĤол": 24053, + "ĠÑģÑĤолÑĮко": 50156, + "ĠÑģÑĤоÑĢ": 16632, + "ĠÑģÑĤоÑĢон": 17635, + "ĠÑģÑĤоÑĢонÑĥ": 44205, + "ĠÑģÑĤоÑĢонÑĭ": 28360, + "ĠÑģÑĤÑĢ": 18425, + "ĠÑģÑĤÑĢан": 18057, + "ĠÑģÑĤÑĢаÑħ": 50190, + "ĠÑģÑĤÑĢаÑĪ": 35611, + "ĠÑģÑĤÑĢо": 35860, + "ĠÑģÑĤÑĥд": 44322, + "ĠÑģÑĥ": 18272, + "ĠÑģÑĥд": 30103, + "ĠÑģÑĥм": 31372, + "ĠÑģÑĥп": 32453, + "ĠÑģÑĥÑīеÑģÑĤв": 30447, + "ĠÑģÑħ": 42755, + "ĠÑģÑĨен": 40436, + "ĠÑģÑĩ": 23812, + "ĠÑģÑĩиÑĤ": 22413, + "ĠÑģÑĬ": 27223, + "ĠÑģÑĭ": 21811, + "ĠÑģÑİ": 19172, + "ĠÑģÑİда": 25306, + "ĠÑģÑİж": 49785, + "ĠÑĤ": 1069, + "ĠÑĤа": 18752, + "ĠÑĤай": 50074, + "ĠÑĤак": 2936, + "ĠÑĤакаÑı": 22075, + "ĠÑĤакже": 16584, + "ĠÑĤакие": 20113, + "ĠÑĤаким": 31584, + "ĠÑĤакиÑħ": 28572, + "ĠÑĤакого": 31158, + "ĠÑĤакое": 18292, + "ĠÑĤакой": 13452, + "ĠÑĤакÑĥÑİ": 42456, + "ĠÑĤам": 8223, + "ĠÑĤан": 33344, + "ĠÑĤво": 25144, + "ĠÑĤвоÑĢ": 42767, + "ĠÑĤе": 18445, + "ĠÑĤеб": 8458, + "ĠÑĤебе": 14656, + "ĠÑĤебÑı": 12644, + "ĠÑĤел": 15619, + "ĠÑĤелеÑĦ": 33356, + "ĠÑĤелеÑĦон": 44485, + "ĠÑĤем": 12532, + "ĠÑĤемпеÑĢ": 45609, + "ĠÑĤеп": 38923, + "ĠÑĤепеÑĢÑĮ": 16983, + "ĠÑĤеÑĢ": 21168, + "ĠÑĤеÑĢÑĢи": 49634, + "ĠÑĤеÑģÑĤ": 41699, + "ĠÑĤеÑħ": 16615, + "ĠÑĤеÑħнолог": 42709, + "ĠÑĤи": 39317, + "ĠÑĤип": 26264, + "ĠÑĤипа": 35443, + "ĠÑĤо": 4572, + "ĠÑĤоб": 32046, + "ĠÑĤобой": 38068, + "ĠÑĤов": 35838, + "ĠÑĤогда": 21696, + "ĠÑĤого": 11283, + "ĠÑĤоже": 12251, + "ĠÑĤой": 38509, + "ĠÑĤол": 36038, + "ĠÑĤолÑĮко": 9008, + "ĠÑĤом": 13294, + "ĠÑĤомÑĥ": 23644, + "ĠÑĤон": 37089, + "ĠÑĤоп": 41637, + "ĠÑĤоÑĢ": 25594, + "ĠÑĤоÑĤ": 23900, + "ĠÑĤоÑĩ": 23045, + "ĠÑĤоÑĩки": 47880, + "ĠÑĤоÑĩно": 25311, + "ĠÑĤÑĢ": 7550, + "ĠÑĤÑĢав": 46647, + "ĠÑĤÑĢади": 48098, + "ĠÑĤÑĢан": 45454, + "ĠÑĤÑĢеб": 31525, + "ĠÑĤÑĢеÑĤÑĮ": 45305, + "ĠÑĤÑĢи": 22068, + "ĠÑĤÑĢÑĥ": 36310, + "ĠÑĤÑĢÑĥд": 36853, + "ĠÑĤÑĥ": 30480, + "ĠÑĤÑĥда": 30433, + "ĠÑĤÑĥÑĢ": 49248, + "ĠÑĤÑĥÑĤ": 12848, + "ĠÑĤÑĭ": 5991, + "ĠÑĤÑĭÑģÑıÑĩ": 25025, + "ĠÑĤÑıж": 34641, + "ĠÑĥ": 1595, + "ĠÑĥб": 13853, + "ĠÑĥбий": 40636, + "ĠÑĥв": 13247, + "ĠÑĥвелиÑĩ": 41511, + "ĠÑĥвеÑĢ": 32838, + "ĠÑĥвид": 21974, + "ĠÑĥвидеÑĤÑĮ": 46095, + "ĠÑĥг": 20392, + "ĠÑĥд": 11927, + "ĠÑĥдаÑĢ": 39047, + "ĠÑĥдив": 36459, + "ĠÑĥдоб": 35943, + "ĠÑĥж": 25261, + "ĠÑĥжаÑģ": 44973, + "ĠÑĥже": 7520, + "ĠÑĥз": 20940, + "ĠÑĥзна": 33562, + "ĠÑĥк": 32546, + "ĠÑĥкÑĢаÑĹ": 48350, + "ĠÑĥкÑĢаÑĹн": 49454, + "ĠÑĥли": 36639, + "ĠÑĥм": 17497, + "ĠÑĥп": 16036, + "ĠÑĥпÑĢав": 44080, + "ĠÑĥÑĢов": 25200, + "ĠÑĥÑģ": 26732, + "ĠÑĥÑģл": 24636, + "ĠÑĥÑģлов": 34974, + "ĠÑĥÑģп": 23944, + "ĠÑĥÑģÑĤ": 21204, + "ĠÑĥÑģÑĤанов": 31866, + "ĠÑĥÑģÑĤÑĢой": 48582, + "ĠÑĥÑĤ": 25448, + "ĠÑĥÑĩ": 13774, + "ĠÑĥÑĩаÑģÑĤ": 40970, + "ĠÑĥÑĪ": 38521, + "ĠÑĦ": 4394, + "ĠÑĦак": 31953, + "ĠÑĦиз": 44662, + "ĠÑĦилÑĮ": 16172, + "ĠÑĦилÑĮм": 22506, + "ĠÑĦилÑĮма": 36293, + "ĠÑĦин": 42020, + "ĠÑĦоÑĢм": 22817, + "ĠÑĦоÑĤ": 35896, + "ĠÑĦоÑĤогÑĢаÑĦ": 40855, + "ĠÑĦÑĥнк": 39484, + "ĠÑħ": 3490, + "ĠÑħаÑĢ": 38795, + "ĠÑħаÑĢакÑĤеÑĢ": 46144, + "ĠÑħваÑĤ": 32985, + "ĠÑħл": 45566, + "ĠÑħод": 23571, + "ĠÑħозÑı": 49791, + "ĠÑħолод": 39726, + "ĠÑħоÑĢоÑĪ": 11436, + "ĠÑħоÑĢоÑĪий": 48917, + "ĠÑħоÑĢоÑĪо": 16977, + "ĠÑħоÑĤ": 11515, + "ĠÑħоÑĤел": 27688, + "ĠÑħоÑĤиÑĤе": 39268, + "ĠÑħоÑĤÑĮ": 39605, + "ĠÑħоÑĤÑı": 30988, + "ĠÑħоÑĩ": 13057, + "ĠÑħоÑĩеÑĤ": 42175, + "ĠÑħоÑĩеÑĤÑģÑı": 48453, + "ĠÑħоÑĩеÑĪÑĮ": 45656, + "ĠÑħоÑĩÑĥ": 22168, + "ĠÑħÑĥд": 48609, + "ĠÑĨ": 5188, + "ĠÑĨвеÑĤ": 24937, + "ĠÑĨе": 18404, + "ĠÑĨел": 22750, + "ĠÑĨен": 39821, + "ĠÑĨенÑĤ": 26845, + "ĠÑĨенÑĤÑĢ": 46536, + "ĠÑĩ": 1358, + "ĠÑĩа": 15369, + "ĠÑĩаÑģ": 13562, + "ĠÑĩаÑģов": 44477, + "ĠÑĩаÑģÑĤ": 33107, + "ĠÑĩаÑģÑĤи": 29168, + "ĠÑĩаÑģÑĤо": 26549, + "ĠÑĩаÑģÑĤÑĮ": 24544, + "ĠÑĩего": 19275, + "ĠÑĩелов": 10347, + "ĠÑĩеловек": 11326, + "ĠÑĩеловека": 25109, + "ĠÑĩеловеÑĩ": 41365, + "ĠÑĩем": 12056, + "ĠÑĩеÑĢ": 12360, + "ĠÑĩеÑĢез": 17341, + "ĠÑĩеÑĤ": 38140, + "ĠÑĩеÑĤÑĭ": 39644, + "ĠÑĩи": 46660, + "ĠÑĩиÑģ": 23201, + "ĠÑĩиÑģÑĤ": 44459, + "ĠÑĩиÑĤ": 38522, + "ĠÑĩÑĤо": 2143, + "ĠÑĩÑĤоб": 48647, + "ĠÑĩÑĤобÑĭ": 7887, + "ĠÑĩÑĥв": 22472, + "ĠÑĩÑĥвÑģÑĤв": 29269, + "ĠÑĩÑĥд": 43332, + "ĠÑĩÑĥÑĤÑĮ": 30422, + "ĠÑĪ": 5941, + "ĠÑĪиÑĢ": 44583, + "ĠÑĪкол": 33009, + "ĠÑĪÑĤ": 28826, + "ĠÑī": 9427, + "ĠÑīе": 35547, + "ĠÑīо": 14309, + "ĠÑīоб": 42899, + "ĠÑį": 1704, + "ĠÑįк": 13817, + "ĠÑįконом": 41800, + "ĠÑįкÑĢан": 41643, + "ĠÑįкÑģп": 29030, + "ĠÑįкÑģпеÑĢ": 40404, + "ĠÑįлекÑĤ": 31314, + "ĠÑįлем": 44509, + "ĠÑįн": 31037, + "ĠÑįнеÑĢг": 40804, + "ĠÑįп": 43985, + "ĠÑįÑĤ": 4030, + "ĠÑįÑĤа": 21396, + "ĠÑįÑĤи": 11012, + "ĠÑįÑĤим": 23094, + "ĠÑįÑĤиÑħ": 23296, + "ĠÑįÑĤо": 2691, + "ĠÑįÑĤого": 10751, + "ĠÑįÑĤой": 14907, + "ĠÑįÑĤом": 10755, + "ĠÑįÑĤомÑĥ": 31500, + "ĠÑįÑĤоÑĤ": 11508, + "ĠÑįÑĤÑĥ": 18763, + "ĠÑįÑĦÑĦ": 33607, + "ĠÑİ": 29488, + "ĠÑı": 2552, + "ĠÑıв": 19028, + "ĠÑıвлÑıеÑĤÑģÑı": 29755, + "ĠÑıзÑĭ": 29364, + "ĠÑıк": 14760, + "ĠÑıкÑĸ": 35110, + "ĠÑıÑĢ": 44016, + "ĠÑĶ": 28669, + "ĠÑĸ": 8934, + "ĠÑĸз": 49973, + "ĠÑĸн": 29858, + "ĠÑĹ": 27902, + "ĠÑĹÑħ": 49084, + "ĠÕ": 14822, + "Ġ×": 877, + "Ġס": 19713, + "Ġ×¢": 7535, + "Ġ×¢×ľ": 15929, + "Ġ×¢×Ŀ": 31464, + "Ġפ": 13323, + "Ġפ×Ķ": 40833, + "Ġצ": 24803, + "Ġצר": 43563, + "Ġק": 14831, + "Ġר": 12926, + "Ġרק": 44918, + "Ġר×ķצ": 41927, + "Ġש": 4113, + "Ġש×IJ×": 39360, + "Ġש×Ķ": 19208, + "Ġש×Ķ×ķ×IJ": 47862, + "Ġש׾": 8817, + "Ġש׾×Ļ": 48982, + "Ġש×ŀ×": 36327, + "Ġש׳": 30222, + "Ġת": 13965, + "Ġ×IJ": 8428, + "Ġ×IJ×": 4142, + "Ġ×IJפ": 40784, + "Ġ×IJת": 9625, + "Ġ×IJת×Ķ": 41254, + "Ġ×IJ×ij׾": 30186, + "Ġ×IJ×ķ": 33038, + "Ġ×IJ×ķת": 23601, + "Ġ×IJ×ķת×ķ": 46725, + "Ġ×IJ×ķ×ŀר": 38272, + "Ġ×IJ×ĸ": 25624, + "Ġ×IJ×Ĺ": 20505, + "Ġ×IJ×Ĺ×ĵ": 42205, + "Ġ×IJ׾": 28379, + "Ġ×IJ×Ŀ": 36517, + "Ġ×IJ׳": 49553, + "Ġ×IJ׳×Ĺ׳×ķ": 30948, + "Ġ×IJ׳×Ļ": 16707, + "Ġ×ij": 11473, + "Ġ×ij×": 6044, + "Ġ×ijס": 40188, + "Ġ×ij×¢": 24464, + "Ġ×ijר": 36981, + "Ġ×ijש": 34561, + "Ġ×ijת": 37613, + "Ġ×ij×IJ": 38400, + "Ġ×ij×IJ×": 33167, + "Ġ×ij×ĵ": 49959, + "Ġ×ij×Ķ": 40435, + "Ġ×ij×Ĺ": 47017, + "Ġ×ij׼": 39150, + "Ġ×ij×ŀ×": 31776, + "Ġ×Ĵ": 15413, + "Ġ×Ĵ×Ŀ": 26611, + "Ġ×ĵ": 17433, + "Ġ×Ķ": 2922, + "Ġ×Ķ×": 3723, + "Ġ×Ķס": 32559, + "Ġ×Ķ×¢": 26507, + "Ġ×Ķפ": 31175, + "Ġ×Ķצ": 43691, + "Ġ×Ķק": 33866, + "Ġ×Ķר": 22706, + "Ġ×Ķש": 22537, + "Ġ×Ķת": 25579, + "Ġ×Ķ×IJ": 42876, + "Ġ×Ķ×IJ×": 20079, + "Ġ×Ķ×IJ׾": 46747, + "Ġ×Ķ×ij": 49052, + "Ġ×Ķ×ij×": 43974, + "Ġ×Ķ×Ĵ": 36386, + "Ġ×Ķ×ĵ": 32740, + "Ġ×Ķ×Ķ": 37203, + "Ġ×Ķ×ķ×IJ": 23666, + "Ġ×Ķ×ĸ": 32888, + "Ġ×Ķ×ĸ×Ķ": 28776, + "Ġ×Ķ×Ĺ": 26224, + "Ġ×Ķ×Ļ": 29526, + "Ġ×Ķ×Ļ×IJ": 35422, + "Ġ×Ķ×Ļ×Ķ": 32132, + "Ġ×Ķ׼": 29561, + "Ġ×Ķ×Ŀ": 44775, + "Ġ×Ķ×ŀ": 32357, + "Ġ×Ķ×ŀ×": 17270, + "Ġ×Ķ׳": 35743, + "Ġ×ķ": 7666, + "Ġ×ķ×IJ×": 40298, + "Ġ×ķ×Ķ": 28628, + "Ġ×ĸ": 25412, + "Ġ×ĸ×Ķ": 12173, + "Ġ×Ĺ": 12400, + "Ġ×ĺ": 27265, + "Ġ×ĺ×ķ×ij": 48606, + "Ġ×Ļ": 8128, + "Ġ×Ļש": 20592, + "Ġ×Ļ×Ķ": 49854, + "Ġ×Ļ×ķתר": 36555, + "Ġ×Ļ×ķ×ĵ×¢": 45764, + "Ġ×Ļ׼×ķ׾": 37608, + "Ġ׼": 7127, + "Ġ׼×Ļ": 44826, + "Ġ׼׾": 21547, + "Ġ׼ף": 44644, + "Ġ׾": 3883, + "Ġ׾×": 5001, + "Ġ×ľ×¢": 30377, + "Ġ׾פ": 33954, + "Ġ׾ק": 45904, + "Ġ׾ש": 35769, + "Ġ׾×IJ": 12471, + "Ġ׾×IJ×": 45087, + "Ġ׾×Ķ": 13995, + "Ġ׾×Ķ×Ļ×ķת": 49695, + "Ġ׾×ķ": 47669, + "Ġ׾×Ĺ": 42485, + "Ġ׾×Ļ": 29948, + "Ġ׾׼": 32872, + "Ġ׾×ŀ×": 31383, + "Ġ׾׳×ķ": 44946, + "Ġ×ŀ": 9148, + "Ġ×ŀ×": 5641, + "Ġ×ŀס": 32904, + "Ġ×ŀ×¢": 34413, + "Ġ×ŀצ": 44015, + "Ġ×ŀק": 39598, + "Ġ×ŀש": 23950, + "Ġ×ŀת": 30221, + "Ġ×ŀ×IJ": 26295, + "Ġ×ŀ×IJ×": 45686, + "Ġ×ŀ×IJ×ķ×ĵ": 31056, + "Ġ×ŀ×ĵ": 36631, + "Ġ×ŀ×Ķ": 16929, + "Ġ×ŀ×Ĺ": 42644, + "Ġ×ŀ׼": 44698, + "Ġ×ŀ×ŀ×": 41764, + "Ġ׳": 11302, + "ĠØ": 1357, + "ĠØ¢": 19753, + "Ġآپ": 46201, + "ĠØ£": 5551, + "ĠØ£ÙĨ": 14739, + "ĠØ£ÙĨا": 41850, + "ĠØ£ÙĪ": 34051, + "ĠØ£ÙĬ": 36632, + "ĠØ¥": 11933, + "ĠØ¥ÙĦÙī": 30731, + "ĠØ¥ÙĨ": 36145, + "Ġا": 1975, + "Ġاب": 48127, + "Ġاس": 24525, + "Ġاست": 44713, + "ĠاÙĦ": 2423, + "ĠاÙĦØ": 6024, + "ĠاÙĦØ£": 16247, + "ĠاÙĦØ¥": 33688, + "ĠاÙĦا": 42963, + "ĠاÙĦب": 29739, + "ĠاÙĦت": 16712, + "ĠاÙĦتÙĬ": 38392, + "ĠاÙĦج": 25724, + "ĠاÙĦØ®": 33962, + "ĠاÙĦد": 32748, + "ĠاÙĦØ°": 32545, + "ĠاÙĦØ°ÙĬ": 43527, + "ĠاÙĦر": 34892, + "ĠاÙĦس": 21136, + "ĠاÙĦØ´": 25124, + "ĠاÙĦص": 31767, + "ĠاÙĦØ·": 41950, + "ĠاÙĦع": 18863, + "ĠاÙĦØŃ": 21542, + "ĠاÙĦÙģ": 27188, + "ĠاÙĦÙĤ": 25062, + "ĠاÙĦÙĥ": 33251, + "ĠاÙĦÙĦ": 13672, + "ĠاÙĦÙĦÙĩ": 21984, + "ĠاÙĦÙħ": 9673, + "ĠاÙĦÙĨ": 28239, + "ĠاÙĦÙĬ": 45595, + "ĠاÙĨ": 16472, + "ĠاÙĪر": 32930, + "Ġب": 4724, + "ĠباÙĦ": 20666, + "Ġبت": 39894, + "Ġبد": 47525, + "Ġبع": 45030, + "Ġبعد": 39182, + "ĠبÙĨ": 44945, + "ĠبÙĩ": 39627, + "ĠبÙĬÙĨ": 49374, + "Ġت": 6055, + "Ġتع": 37279, + "ĠتÙħ": 46811, + "ĠتÙĪ": 33427, + "Ġتھ": 41924, + "ĠØ«": 38637, + "Ġج": 10874, + "ĠØ®": 16490, + "Ġد": 11778, + "ĠØ°": 29910, + "Ġر": 12602, + "Ġز": 30767, + "Ġس": 8608, + "ĠسÛĴ": 34190, + "ĠØ´": 13412, + "ĠØ´ÙĬ": 44049, + "Ġص": 20328, + "Ġض": 48812, + "ĠØ·": 23032, + "Ġع": 6225, + "ĠعÙĦ": 11203, + "ĠعÙĦÙī": 15844, + "ĠعÙĦÙĬ": 25894, + "ĠعÙĦÙĬÙĩ": 47356, + "ĠعÙĨ": 18871, + "ĠعÙĨد": 43242, + "Ġغ": 32771, + "ĠØĮ": 24637, + "ĠØŁ": 45520, + "ĠØŃ": 11331, + "ĠÙ": 1447, + "ĠÙ¾": 21453, + "ĠÙģ": 6156, + "ĠÙģÙĬ": 8978, + "ĠÙĤ": 12174, + "ĠÙĤاÙĦ": 50239, + "ĠÙĥ": 9122, + "ĠÙĥاÙĨ": 25961, + "ĠÙĥÙĦ": 28242, + "ĠÙĦ": 5296, + "ĠÙĦا": 20193, + "ĠÙĦÙĥÙĨ": 44381, + "ĠÙĦÙĦ": 24976, + "ĠÙĦÙħ": 32767, + "ĠÙĦÙĩ": 46740, + "ĠÙĦÙĪ": 45164, + "ĠÙĦÙĬ": 32239, + "ĠÙħ": 3714, + "ĠÙħا": 19446, + "ĠÙħت": 44650, + "ĠÙħØ«": 50113, + "ĠÙħس": 47524, + "ĠÙħØ´": 37893, + "ĠÙħع": 20449, + "ĠÙħÙĨ": 9154, + "ĠÙħÛĮ": 48478, + "ĠÙħÛĮÚº": 27875, + "ĠÙĨ": 8717, + "ĠÙĨÛģ": 43596, + "ĠÙĨÛģÛĮÚº": 50194, + "ĠÙĨÛĴ": 43947, + "ĠÙĩ": 8032, + "ĠÙĩذا": 23758, + "ĠÙĩØ°Ùĩ": 29538, + "ĠÙĩÙĨا": 34105, + "ĠÙĩÙĪ": 31439, + "ĠÙĩÙĬ": 39896, + "ĠÙĪ": 4032, + "ĠÙĪØ£": 36725, + "ĠÙĪا": 36764, + "ĠÙĪاÙĦ": 16070, + "ĠÙĪب": 46599, + "ĠÙĪت": 34683, + "ĠÙĪج": 49610, + "ĠÙĪس": 46952, + "ĠÙĪÙĦ": 35525, + "ĠÙĪÙĦا": 49429, + "ĠÙĪÙĩ": 37037, + "ĠÙĪÛģ": 44291, + "ĠÙĬ": 7251, + "ĠÙĬا": 35186, + "ĠÙĬع": 37495, + "ĠÚ©": 7565, + "Ġکا": 39893, + "Ġکر": 29688, + "ĠÚ©ÙĪ": 31561, + "ĠÚ©Ûģ": 33491, + "ĠÚ©ÛĮ": 23180, + "ĠÚ©ÛĴ": 24049, + "ĠÚ¯": 28697, + "ĠÚĨ": 34766, + "ĠÛģ": 12138, + "ĠÛģÙĪ": 45509, + "ĠÛģÛĮÚº": 38904, + "ĠÛģÛĴ": 23905, + "ĠÛĮ": 25429, + "ĠÛĮÛģ": 35324, + "Ġà¤": 8485, + "Ġम": 48449, + "Ġस": 49316, + "Ġह": 37139, + "Ġà¤ķ": 31970, + "Ġà®": 2548, + "Ġத": 18198, + "Ġந": 12669, + "Ġப": 12008, + "Ġà®®": 16504, + "Ġவ": 13535, + "Ġà®ħ": 12776, + "Ġà®ħத": 35718, + "Ġà®Ĩ": 33586, + "Ġà®ĩ": 12894, + "Ġà®ĩà®°": 26277, + "Ġà®ĩல": 49465, + "Ġà®ī": 23656, + "Ġà®İ": 12814, + "Ġà®İன": 17337, + "Ġà®Ĵ": 37240, + "Ġà®ķ": 13786, + "Ġà®ļ": 14337, + "Ġà²": 34725, + "Ġà¶": 35139, + "Ġà¸ģ": 44579, + "Ġà¹Ģà¸": 32922, + "Ġá": 21879, + "Ġấy": 43966, + "Ġá»": 40132, + "Ġợ": 19272, + "Ġá¼": 34519, + "Ġâ": 672, + "ĠâĢ": 1059, + "ĠâĢ¢": 13937, + "ĠâĢ¦": 5799, + "ĠâĢ«": 4738, + "ĠâĢĭ": 6107, + "ĠâĢĭâĢĭ": 8701, + "ĠâĢĭâĢĭâĢĭ": 16644, + "ĠâĢij": 41395, + "ĠâĢijâĢij": 45217, + "ĠâĢĵ": 1662, + "ĠâĢĶ": 3466, + "ĠâĤ¬": 17450, + "ĠâĨ": 35265, + "ĠâĨĴ": 41600, + "ĠâĪ": 28462, + "ĠâĪĴ": 48554, + "Ġâĸ": 29405, + "Ġâĺ": 38660, + "ĠâĻ": 873, + "ĠâĻ¥": 43385, + "ĠâĻ©": 36865, + "ĠâĻª": 931, + "ĠâĻªâĻª": 9061, + "ĠâĻªâĻªâĻª": 31650, + "ĠâĻ«": 3846, + "ĠâĻ¬": 22520, + "ĠãĢĮ": 21675, + "ĠãĢIJ": 26308, + "Ġãģ": 2605, + "Ġãģ¡": 44692, + "Ġãģ¦": 23822, + "Ġãģ§": 21376, + "Ġãģ§ãģĻ": 26063, + "Ġãģ¨": 16746, + "Ġãģ©": 34994, + "Ġãģª": 16647, + "Ġãģ«": 24873, + "Ġãģ®": 21171, + "Ġãģ¯": 20785, + "Ġãģ¯ãģĦ": 48159, + "Ġãģ¾": 20979, + "Ġãģ¾ãģĻ": 45194, + "ĠãģĤ": 15131, + "ĠãģĤãĤĬ": 49444, + "ĠãģĦ": 30155, + "ĠãģĨ": 42504, + "ĠãģĬ": 25223, + "Ġãģĭ": 25295, + "ĠãģĮ": 29697, + "Ġãģĵ": 14384, + "Ġãģĵãģ®": 35421, + "ĠãģĵãĤĮ": 33732, + "Ġãģķ": 47231, + "ĠãģĹ": 26974, + "ĠãģĻ": 41068, + "ĠãģĿ": 18421, + "ĠãģĿãģĨ": 36165, + "ĠãģĿãĤĮ": 47765, + "ĠãģŁ": 25581, + "Ġãģł": 37656, + "ĠãģŃ": 35757, + "ĠãĤĤ": 32505, + "ĠãĤĦ": 43938, + "ĠãĤĪ": 49879, + "ĠãĤĴ": 30181, + "ĠãĤĵ": 42961, + "Ġãĥ": 15096, + "Ġãħ": 40978, + "Ġãħĭãħĭãħĭ": 49249, + "Ġãħĭãħĭãħĭãħĭ": 38032, + "Ġãħİãħİ": 45824, + "Ġä¸Ģ": 26923, + "Ġä¸į": 19021, + "Ġä¸įæĺ¯": 43906, + "Ġä¸įè¦ģ": 50181, + "Ġä»ĸ": 35414, + "Ġä½ł": 10930, + "Ġä¾Ĩ": 33742, + "Ġ大": 28589, + "Ġ好": 12202, + "Ġ对": 30275, + "Ġå°±": 32609, + "Ġå°±æĺ¯": 31526, + "Ġå°į": 8748, + "Ġå°įä¸įå°į": 35164, + "Ġå°įåķĬ": 49155, + "Ġå°ı": 43454, + "Ġå¾Ī": 26029, + "Ġå¿«": 42598, + "ĠåĪĨ": 45903, + "Ġåı¯ä»¥": 43269, + "Ġåľ¨": 37286, + "Ġæ²Ĵæľī": 40183, + "ĠæĢĿ": 47968, + "ĠæĪij": 8624, + "ĠæĪijåĢij": 27338, + "ĠæĪijæĺ¯": 34625, + "ĠæīĢ以": 45168, + "Ġæĺ¯": 11947, + "Ġæľī": 21461, + "ĠçĦ¶å¾Į": 49078, + "ĠçļĦ": 27949, + "Ġ羣çļĦ": 32790, + "Ġè¬Ŀè¬Ŀ": 30999, + "ĠéĢĻ": 45286, + "ĠéĢĻåĢĭ": 36888, + "ĠéĤ£": 18625, + "Ġê": 711, + "Ġê°": 1777, + "Ġê°Ģ": 4147, + "Ġê°Ģ격": 41162, + "Ġê°Ģê¹Į": 44913, + "Ġê°Ģë": 10583, + "Ġê°ĢëĬ¥": 25732, + "Ġê°ĢëĬĶ": 37407, + "Ġê°Ģ족": 46008, + "Ġê°Ģì§Ģ": 26569, + "Ġê°Ģì§Ģê³ł": 21361, + "Ġê°ĢìĦľ": 35312, + "Ġê°Ģìļ´ëį°": 44627, + "Ġê°Ģìŀ¥": 20283, + "Ġê°ĢìŀIJ": 40115, + "Ġê°Ģìł¸": 36434, + "Ġê°ģ": 28378, + "Ġê°Ħ": 17190, + "Ġê°Ħëĭ¨": 50102, + "Ġê°Ī": 23616, + "Ġê°IJ": 10892, + "Ġê°IJë": 41398, + "Ġê°IJìĤ¬": 19538, + "Ġê°IJìĤ¬íķ©ëĭĪëĭ¤": 24399, + "Ġê°ij": 23108, + "Ġê°ijìŀIJ기": 31307, + "Ġê°Ķ": 28676, + "Ġê°ķ": 14623, + "Ġê°ĸ": 27668, + "Ġê°ĸê³ł": 37912, + "Ġê°Ļ": 4385, + "Ġê°ĻìĬµëĭĪëĭ¤": 31297, + "Ġê°ĻìķĦ": 23396, + "Ġê°ĻìķĦìĦľ": 48084, + "Ġê°ĻìķĦìļĶ": 12196, + "Ġê°ĻìĿ´": 16358, + "Ġê°ĻìĿĢ": 10005, + "Ġê°ĻìĿĢëį°": 21864, + "Ġê°ľ": 14552, + "Ġê°ľë": 30185, + "Ġê°ľìĿ¸": 36734, + "Ġê±": 4925, + "Ġê±°": 3675, + "Ġ거기": 25191, + "Ġê±°ë": 15805, + "Ġê±°ëĬĶ": 46821, + "Ġê±°ì£ł": 26957, + "Ġê±°ì§Ģ": 42435, + "Ġê±°ìķ¼": 15928, + "Ġê±°ìĺĪìļĶ": 14050, + "Ġê±°ìĿĺ": 27872, + "Ġê±±": 39365, + "Ġê±±ìłķ": 45315, + "Ġê±´": 13507, + "Ġê±´ê°ķ": 46058, + "Ġê±´ë": 39626, + "Ġê±´ëį°": 29201, + "Ġê±´ì": 46855, + "Ġ걸": 14240, + "Ġ걸ë": 37248, + "Ġê±¸ë¡ľ": 41636, + "Ġê²": 2525, + "Ġê²°": 15561, + "Ġê²°ê³¼": 46310, + "Ġê²°êµŃ": 42335, + "Ġê²½": 9537, + "Ġ경찰": 37102, + "Ġê²½ìļ°": 20591, + "Ġê²½ìļ°ìĹIJëĬĶ": 45745, + "Ġê²Ģ": 20282, + "Ġê²Ģì°°": 45433, + "Ġê²ģ": 23178, + "Ġê²ģëĭĪëĭ¤": 27146, + "Ġê²ĥ": 4431, + "Ġê²ĥëıĦ": 25942, + "Ġê²ĥì²ĺëŁ¼": 44052, + "Ġê²ĥìľ¼ë¡ľ": 34071, + "Ġê²ĥìĿ´": 29665, + "Ġê²ĥìĿĢ": 33825, + "Ġê²ĥìĿĦ": 32746, + "Ġê²Į": 7845, + "Ġê²ĮìŀĦ": 23927, + "Ġê³": 3352, + "Ġ곡": 34895, + "Ġ골ë": 42142, + "Ġê³³": 25177, + "Ġê³µ": 9273, + "Ġê³¼": 17590, + "Ġê³Ħ": 10603, + "Ġê³ĦìĨį": 17551, + "Ġê³ł": 9161, + "Ġê³łë": 18556, + "Ġê³łë¯¼": 41936, + "Ġê³łìĸij": 48105, + "Ġê´": 8214, + "Ġê´Ģ": 21061, + "Ġê´Ģë": 25201, + "Ġê´Ģ볨": 42660, + "Ġê´Ģìĭ¬": 47229, + "Ġê´ij": 26517, + "Ġê´ľ": 17327, + "Ġê´ľì°®": 18286, + "Ġê´ľì°®ìķĦ": 45058, + "Ġêµ": 4946, + "Ġ구": 15197, + "Ġ구ë": 17386, + "Ġ구ëıħ": 32800, + "Ġêµ°": 45644, + "Ġêµīìŀ¥": 15286, + "Ġêµīìŀ¥íŀĪ": 15509, + "ĠêµIJ": 24915, + "ĠêµŃ": 13858, + "ĠêµŃ민": 37336, + "Ġê¶ģ": 29342, + "Ġê¶ģê¸Ī": 32886, + "Ġê·": 1510, + "Ġê·¸": 4296, + "Ġ그거": 23075, + "Ġ그건": 41058, + "Ġ그걸": 35225, + "Ġê·¸ê²ĥ": 32565, + "Ġê·¸ê²Į": 21833, + "Ġê·¸ë": 2003, + "Ġê·¸ë¦¬ê³ł": 8785, + "Ġ그림": 43170, + "Ġê·¸ë§Į": 39067, + "Ġê·¸ëĥ¥": 11208, + "Ġê·¸ëĭ¤ìĿĮ": 36918, + "Ġê·¸ëĭ¤ìĿĮìĹIJ": 45137, + "Ġê·¸ëĮĢë¡ľ": 41711, + "Ġê·¸ëķĮ": 26788, + "Ġê·¸ëŀ": 18158, + "Ġê·¸ëŀ¬": 36185, + "Ġê·¸ëŀĺ": 7080, + "Ġê·¸ëŀĺëıĦ": 27449, + "Ġê·¸ëŀĺìĦľ": 8844, + "Ġê·¸ëŀĺìļĶ": 47453, + "Ġê·¸ëŁ": 4167, + "Ġê·¸ëŁ¬": 14019, + "Ġê·¸ëŁ¬ë": 13725, + "Ġê·¸ëŁ¬ë©´": 16645, + "Ġê·¸ëŁ¬ëĭĪê¹Į": 20855, + "Ġê·¸ëŁ°": 9306, + "Ġê·¸ëŁ°ëį°": 16610, + "Ġê·¸ëŁ´": 45372, + "Ġê·¸ëŁ¼": 13929, + "Ġê·¸ëłĩ": 13773, + "Ġê·¸ëłĩê²Į": 16104, + "Ġê·¸ëłĩì£ł": 34410, + "Ġê·¸ëłĩì§Ģ": 32667, + "Ġê·¼": 42476, + "Ġê·¼ë": 9564, + "Ġê·¼ëį°": 9907, + "Ġê·Ģ": 19112, + "Ġê·ĢìŬ": 36083, + "Ġê¸": 4291, + "Ġ기": 7047, + "Ġ기ë": 12503, + "Ġ기본": 40456, + "Ġ기ë¶Ħ": 37149, + "Ġ기ëĭ¤ë": 31431, + "Ġ기ëĮĢ": 41055, + "Ġ기ìĸµ": 30935, + "Ġ기ìŀIJ": 41483, + "Ġ길": 25222, + "Ġê¸Ī": 34120, + "Ġê¸ī": 44728, + "Ġê¹": 8394, + "Ġê¹Ģ": 17376, + "Ġê¹Ģë": 43629, + "Ġê¹Į": 49124, + "Ġê¹Ķë": 48693, + "Ġêº": 34505, + "Ġê¼": 17264, + "Ġê¼Ń": 25881, + "Ġê½": 24378, + "Ġê½ĥ": 45703, + "Ġê¾": 37006, + "Ġê¿": 28529, + "Ġê¿Ī": 43487, + "Ġë": 531, + "Ġë¡ľ": 26142, + "Ġ루ë": 48512, + "Ġ리": 28227, + "Ġ리ë": 31427, + "Ġ립": 44930, + "Ġë§": 1747, + "Ġ맡": 49132, + "Ġ매": 17591, + "Ġ매ë": 34638, + "Ġë§Ī": 6437, + "Ġë§Īë": 25847, + "Ġë§Ī무ë": 43797, + "Ġë§Īì§Ģë§ī": 22722, + "Ġë§ĪìĬ¤íģ": 47872, + "Ġë§ĪìĿĮ": 20477, + "Ġë§ĪìĿĮìĹIJ": 43093, + "Ġë§ī": 14438, + "Ġë§Į": 14671, + "Ġë§Įë": 8165, + "Ġë§ĮëĤĺ": 38841, + "Ġë§Įëĵ¤": 12922, + "Ġë§Įëĵ¤ìĸ´": 39001, + "Ġë§Įëĵł": 40628, + "Ġë§Įìķ½": 42195, + "Ġë§Įíģ¼": 50215, + "Ġë§İ": 5671, + "Ġë§İìĿ´": 8358, + "Ġë§İìĿĢ": 18494, + "Ġë§IJ": 7058, + "Ġë§IJê³ł": 35145, + "Ġë§IJë": 31336, + "Ġë§IJìĶ": 20797, + "Ġë§IJìĶĢ": 35665, + "Ġë§IJìĶĢë": 41112, + "Ġë§IJìĶĢëĵľë": 45345, + "Ġë§IJìĿ´": 44276, + "Ġë§IJìĿĦ": 39692, + "Ġ맼": 9508, + "Ġ맼ìĿ´": 47003, + "Ġ맼ìŀĪ": 13441, + "Ġ맼ìŀĪëĬĶ": 49051, + "Ġ맼ìŀĪìĸ´ìļĶ": 46778, + "Ġë§Ŀ": 46490, + "Ġë§ŀ": 9172, + "Ġë§ŀëĬĶ": 49953, + "Ġë§ŀìķĦ": 29417, + "Ġë§ŀìķĦìļĶ": 35273, + "Ġë¨": 5108, + "Ġ머ë": 37856, + "Ġ머리": 27089, + "Ġ먹": 6554, + "Ġë¨¹ê³ł": 26077, + "Ġ먹ëĬĶ": 30616, + "Ġ먹ìĸ´": 46317, + "Ġ먹ìĸ´ë": 28428, + "Ġ먹ìĿĦ": 28130, + "Ġ먼": 19326, + "Ġ먼ìłĢ": 20749, + "Ġë©": 8514, + "Ġ멤ë": 32303, + "Ġë©ĭ": 29260, + "Ġë©ĭìŀĪ": 46344, + "Ġë©Ķ": 34810, + "Ġë©Ķë": 42873, + "Ġë©ĶìĿ´íģ¬ìĹħ": 31923, + "Ġëª": 3491, + "Ġ모": 11722, + "Ġ모ë": 8941, + "Ġ모르": 20502, + "Ġ모ëijIJ": 27615, + "Ġ모ëĵł": 27714, + "Ġ모ìĬµ": 27780, + "Ġ모ìĸij": 45254, + "Ġ목": 20433, + "Ġ몰ë": 24833, + "Ġ몰ëĿ¼": 41733, + "Ġ몸": 30205, + "Ġ못": 10239, + "Ġëªħ": 18284, + "Ġëªĩ": 23628, + "Ġë¬": 4509, + "Ġ무": 27387, + "Ġ무ë": 19327, + "Ġ무ëĮĢ": 46650, + "Ġ무ì": 12540, + "Ġ무ìĦľ": 45072, + "Ġ무ìĬ¨": 22712, + "Ġ무ìĹ": 45613, + "Ġ무ìĹĩ": 47384, + "Ġ문": 13086, + "Ġë¬¸ìłľ": 24290, + "Ġë¬¸ìłľê°Ģ": 48748, + "Ġ묻": 39399, + "Ġ물": 14403, + "Ġ물ë": 26561, + "Ġë¬¼ë¡ł": 41251, + "Ġ물ìĸ´ë": 44558, + "Ġë®": 45388, + "Ġë¯": 17472, + "Ġ미": 10795, + "Ġ미êµŃ": 28667, + "Ġ미ë": 29004, + "Ġ미ìķĪ": 40241, + "Ġ민": 21509, + "Ġ민주": 49000, + "Ġ믿": 40365, + "Ġë°": 2391, + "Ġë°¤": 38093, + "Ġë°¥": 26479, + "Ġë°©": 10006, + "Ġë°©ë²ķ": 31656, + "Ġë°©ìĨ¡": 35429, + "Ġë°°": 14155, + "Ġë°±": 20710, + "Ġë°±ìĭł": 31551, + "Ġë°Ģ": 38813, + "Ġë°ij": 37734, + "Ġë°Ķ": 12704, + "Ġë°Ķê¿": 45795, + "Ġë°Ķë": 9040, + "Ġë°Ķë¡ľ": 15965, + "Ġë°ĶëĢ": 43841, + "Ġë°ķ": 21140, + "Ġë°ĸìĹIJ": 48652, + "Ġë°ĺ": 16396, + "Ġë°ĺë": 23142, + "Ġë°Ľ": 12152, + "Ġë°Ľê³ł": 48130, + "Ġë°ĽìķĦ": 41561, + "Ġë°ľ": 13825, + "Ġë°ľë": 20414, + "Ġë°ľëĿ¼": 37861, + "Ġë°ľìĥĿ": 47532, + "Ġë°Ŀ": 26499, + "Ġë°ĿíĺĶ": 48437, + "Ġë²": 7307, + "Ġë²Ħ": 22076, + "Ġë²Ħë": 34214, + "Ġë²Ī": 10212, + "Ġë²Ī째": 25055, + "Ġë²Į": 25846, + "Ġë²Įìį¨": 49175, + "Ġë²ķ": 31461, + "Ġë²ł": 28672, + "Ġë³": 2818, + "Ġë³´": 6330, + "Ġë³´ê³ł": 18942, + "Ġë³´ë": 10035, + "Ġë³´ë©´": 19443, + "Ġë³´ëĤ": 39833, + "Ġë³´ëĬĶ": 40891, + "Ġë³´ëĭĪê¹Į": 25612, + "Ġë³´ì": 7842, + "Ġë³´ìĦ¸ìļĶ": 49790, + "Ġë³´ìĭ": 23531, + "Ġë³´ìĭľ": 44771, + "Ġë³´ìĭľë©´": 42872, + "Ġë³´ìĹ": 16519, + "Ġë³´ìŬ": 21918, + "Ġë³´ìŬë": 33820, + "Ġë³´ìŬëĵľë": 47414, + "Ġë³´ìĿ´": 48189, + "Ġë³´ìĿ´ëĬĶ": 47793, + "Ġë³´íĨµ": 41701, + "Ġë³µ": 30696, + "Ġ본": 19387, + "Ġë³¼": 18001, + "Ġë³Ģ": 25575, + "Ġë³Ħ": 47442, + "Ġë³Ħë¡ľ": 45513, + "Ġë³ij": 32245, + "Ġë´": 8649, + "Ġë´¤": 20727, + "Ġë´IJ": 15507, + "Ġë´IJìļĶ": 45639, + "Ġë¶": 3658, + "Ġë¶Ģ": 11351, + "Ġë¶Ģë": 10201, + "Ġë¶Ģë¶Ħ": 18805, + "Ġë¶Ģë¶ĦìĿ´": 47820, + "Ġë¶Ģëĵľë": 47358, + "Ġë¶Ģíĥģ": 37056, + "Ġë¶ģ": 33215, + "Ġë¶ģíķľ": 45319, + "Ġë¶Ħ": 15361, + "Ġë¶Ħë": 21735, + "Ġë¶Ħëĵ¤": 20147, + "Ġë¶Ħëĵ¤ìĿ´": 36029, + "Ġë¶Ħëĵ¤ìĿĢ": 40821, + "Ġë¶ĦìľĦ": 49712, + "Ġë¶Ī": 16285, + "Ġë¶Īë": 25746, + "Ġë¶Ļ": 24618, + "Ġë¸": 13947, + "Ġë¸Įë": 21886, + "Ġë¸Ķë": 25576, + "Ġë¹": 5005, + "Ġ빨": 46954, + "Ġ빨리": 23077, + "Ġë¹µ": 48397, + "Ġë¹¼": 38112, + "Ġë¹Ħ": 10079, + "Ġë¹Ħë": 24241, + "Ġë¹ĦìĬ·": 36156, + "Ġë¹ł": 28117, + "Ġë¹łë": 36351, + "Ġë»": 48557, + "Ġë½": 28744, + "Ġë½ij": 38473, + "Ġë¿": 25829, + "Ġë¿Įë": 41582, + "Ġëģ": 9770, + "Ġëģ¼": 46809, + "ĠëģĿ": 13932, + "ĠëģĿëĤ": 34907, + "ĠëģĿëĤĺ": 48626, + "ĠëĤ": 2079, + "ĠëĤ¨": 11689, + "ĠëĤ¨ìŀIJ": 35266, + "ĠëĤ®": 38601, + "ĠëĤ´": 6918, + "ĠëĤ´ê°Ģ": 10474, + "ĠëĤ´ë": 15139, + "ĠëĤ´ëł¤": 33428, + "ĠëĤ´ì": 25097, + "ĠëĤ´ìļ©": 36898, + "ĠëĤ´ìĿ¼": 42831, + "ĠëĤĺ": 3948, + "ĠëĤĺê°Ģ": 37011, + "ĠëĤĺë": 12623, + "ĠëĤĺëĪ": 44263, + "ĠëĤĺëĬĶ": 17955, + "ĠëĤĺëıĦ": 31057, + "ĠëĤĺì¤ijìĹIJ": 44865, + "ĠëĤĺìģ": 48744, + "ĠëĤĺìĦľ": 43156, + "ĠëĤĺìĺ": 19370, + "ĠëĤĺìĺ¤": 19857, + "ĠëĤĺìĺ¤ë": 49397, + "ĠëĤĺìĺ¤ëĬĶ": 40137, + "ĠëĤĺìĺ¨": 34396, + "ĠëĤĺìĺ¬": 49599, + "ĠëĤĺìĻĢ": 27704, + "ĠëĤĺìĻĶ": 26374, + "ĠëĤĺíĥĢë": 49406, + "ĠëĤľ": 19252, + "ĠëĤł": 16316, + "Ġëĥ": 26218, + "ĠëĥĦ": 43250, + "ĠëĥĦìĥĪ": 49985, + "ĠëĦ": 3214, + "ĠëĦ£": 14948, + "ĠëĦ£ê³ł": 49201, + "ĠëĦ¤": 8808, + "ĠëĦ¤ê°Ģ": 41714, + "ĠëĦĪ": 12963, + "ĠëĦĪ무": 6924, + "ĠëĦĺ": 20237, + "Ġëħ": 8727, + "Ġëħ¸": 29158, + "Ġëħ¸ë": 13262, + "Ġëħ¸ëŀĺ": 24678, + "Ġëħ¸ëŀĺë": 42461, + "Ġëħ¸ëł¥": 49388, + "Ġëħ¹": 36906, + "ĠëĨ": 10091, + "ĠëĨĢë": 29873, + "ĠëĨį": 47379, + "ĠëĨĴ": 25015, + "ĠëĨĵ": 28747, + "ĠëĪ": 7508, + "ĠëĪĦ": 15647, + "ĠëĪĦê°Ģ": 33851, + "ĠëĪĦ구": 36385, + "ĠëĪĦë": 30225, + "ĠëĪĪ": 15333, + "ĠëĪĮ룬": 45934, + "Ġëī": 32086, + "Ġëī´ì": 36036, + "Ġëī´ìĬ¤": 45828, + "ĠëĬ": 7707, + "ĠëĬIJ": 34378, + "ĠëĬIJê»": 41667, + "ĠëĬIJë": 10749, + "ĠëĬIJëĤ": 11796, + "ĠëĬIJëĤĮ": 12652, + "ĠëĬIJëĤĮìĿ´": 29459, + "ĠëĬĺ": 33684, + "Ġëĭ": 2515, + "Ġëĭ¤": 4279, + "Ġëĭ¤ë": 9586, + "Ġëĭ¤ë¥¸": 16435, + "Ġëĭ¤ëĭĪ": 46240, + "Ġëĭ¤ëĵ¤": 47660, + "Ġëĭ¤ìĭľ": 15463, + "Ġëĭ¤ìĸij": 40553, + "Ġëĭ¤ìĸijíķľ": 49679, + "Ġëĭ¤ìĿĮ": 13526, + "Ġëĭ¤ìĿĮìĹIJ": 28232, + "Ġëĭ¨": 16818, + "Ġëĭ¬": 21166, + "Ġëĭ¬ë": 20738, + "Ġëĭ¬ëĿ¼": 42407, + "Ġëĭ´": 39700, + "Ġëĭµ": 41918, + "Ġëĭ¹": 12047, + "Ġëĭ¹ìĭľ": 49559, + "Ġëĭ¹ìĭł": 45594, + "Ġëĭ¹ìĹ°": 43424, + "ĠëĭĪ": 35362, + "Ġëĭĺ": 45054, + "ĠëĮ": 28088, + "ĠëĮĢ": 5971, + "ĠëĮĢë": 17691, + "ĠëĮĢë°ķ": 38017, + "ĠëĮĢíĨµëł¹": 39567, + "ĠëĮĢíijľ": 37970, + "ĠëĮĢíķ´": 48374, + "ĠëĮĢíķ´ìĦľ": 27382, + "ĠëĮĢíķľ": 23358, + "ĠëĮĵ": 39765, + "Ġëį": 5596, + "Ġëį°": 20883, + "Ġëį°ë": 39267, + "ĠëįĶ": 6990, + "ĠëįĶë": 46389, + "Ġëı": 5189, + "Ġëı¼": 11080, + "Ġëı¼ìļĶ": 21565, + "ĠëıĦ": 10701, + "Ġëıħ": 39411, + "ĠëıĪ": 26963, + "ĠëıĮ": 20555, + "ĠëıĮë": 34324, + "ĠëıĮìķĦ": 26761, + "ĠëıĻ": 11685, + "ĠëıĻìķĪ": 32589, + "ĠëIJ": 3534, + "ĠëIJ©ëĭĪëĭ¤": 23630, + "ĠëIJIJ": 16718, + "ĠëIJĺ": 5514, + "ĠëIJĺê²Į": 14860, + "ĠëIJĺê³ł": 30597, + "ĠëIJĺë": 20603, + "ĠëIJĺë©´": 35664, + "ĠëIJĺëĬĶ": 18650, + "ĠëIJĺëĬĶëį°": 36436, + "ĠëIJĺì§Ģ": 43463, + "ĠëIJĺìĸ´": 41210, + "ĠëIJľ": 16975, + "ĠëIJł": 16625, + "Ġëij": 8108, + "ĠëijIJ": 11915, + "ĠëijIJë": 33940, + "Ġëijĺ": 21433, + "ĠëĴ": 14749, + "ĠëĴ¤": 19798, + "ĠëĴ¤ìĹIJ": 40856, + "Ġëĵ": 10758, + "Ġëĵ£": 32877, + "Ġëĵ¤": 6275, + "Ġëĵ¤ê³ł": 43488, + "Ġëĵ¤ë": 42186, + "Ġëĵ¤ìĸ´": 12900, + "Ġëĵ¤ìĸ´ê°Ģ": 20794, + "Ġëĵ¤ìĸ´ë": 46088, + "Ġëĵ¤ìĸ´ì": 20744, + "Ġëĵ¤ìĸ´ìĺ": 37916, + "Ġëĵ¯": 43058, + "Ġëĵ±": 15722, + "Ġëĵľ": 35561, + "Ġëĵľë": 13356, + "ĠëĶ": 7378, + "ĠëĶ°": 49150, + "ĠëĶ°ë": 15933, + "ĠëĶ°ëĿ¼": 24453, + "ĠëĶ±": 16681, + "ĠëĶĶ": 25158, + "ĠëĶĶìŀIJ": 47887, + "Ġëķ": 4893, + "ĠëķĮ": 7765, + "ĠëķĮë": 9057, + "ĠëķĮ문": 11406, + "ĠëķĮ문ìĹIJ": 12365, + "ĠëķĮëĬĶ": 27264, + "ĠëķĮëıĦ": 49738, + "Ġëĸ": 13320, + "Ġëĸ¡": 45197, + "Ġëĸ¨": 27436, + "Ġëĸ¨ìĸ´ì": 30667, + "Ġëĸł": 43687, + "Ġëĸłë": 48158, + "Ġëĺ": 7102, + "ĠëĺIJ": 7992, + "Ġëĺij": 29142, + "Ġëĺijê°Ļ": 33790, + "Ġëļ": 39181, + "ĠëĽ": 40589, + "Ġ뼰": 44380, + "Ġëľ": 20490, + "Ġ뾨": 38766, + "Ġëľ»": 44774, + "ĠëĿ¼": 22339, + "ĠëĿ¼ê³ł": 43281, + "ĠëĿ¼ë": 44831, + "ĠëĿ¼ëĬĶ": 49121, + "ĠëłĪ": 28156, + "ĠëłĪë": 43927, + "ĠëŃ": 10096, + "ĠëŃIJ": 7034, + "ĠëŃIJê°Ģ": 39713, + "ĠëŃIJë": 25205, + "ĠëŃIJìķ¼": 18410, + "ĠëŃĶ": 43972, + "ĠëŃĶê°Ģ": 20729, + "ĠëŃĺ": 32376, + "Ġì": 451, + "Ġì¡": 22116, + "Ġì¡°": 7430, + "Ġì¡°ê¸Ī": 13091, + "Ġì¡°ë": 42707, + "Ġì¡°ìĭ¬": 48164, + "Ġì¢": 3340, + "Ġì¢Ģ": 6796, + "Ġì¢ħ": 25260, + "Ġì¢ĭ": 5008, + "Ġì¢ĭëĭ¤": 44891, + "Ġì¢ĭìķĦ": 10805, + "Ġì¢ĭìķĦìļĶ": 22482, + "Ġì¢ĭìķĦíķĺ": 40344, + "Ġì¢ĭìķĦíķĺëĬĶ": 33164, + "Ġì¢ĭìĿĢ": 16460, + "Ġì¢ĭìĿĦ": 39968, + "Ġì£": 5442, + "Ġ주": 7757, + "Ġì£¼ê³ł": 45848, + "Ġ주ë": 16410, + "Ġ주ëĬĶ": 45589, + "Ġ주ìĦ¸ìļĶ": 34067, + "Ġ죽": 22303, + "Ġì£Ħ": 37347, + "Ġì£ĦìĨ¡": 41939, + "Ġì¤": 4855, + "Ġì¤Ģ": 38879, + "Ġì¤Ģë": 18647, + "Ġì¤Ģë¹Ħ": 21911, + "Ġì¤Ħ": 15320, + "Ġì¤ij": 7596, + "Ġì¤ijêµŃ": 39712, + "Ġì¤ijìĹIJ": 32690, + "Ġì¤ijìļĶ": 24851, + "Ġì¤ijìļĶíķľ": 39072, + "Ġì¤ĺ": 41926, + "Ġì¦": 19220, + "Ġì¦IJ": 35177, + "Ġì¦Ŀ": 33830, + "Ġì§": 2334, + "Ġ짧": 43437, + "Ġì§Ģ": 4704, + "Ġì§Ģê¸": 46253, + "Ġì§Ģê¸Ī": 7356, + "Ġì§Ģê¸Īê¹Įì§Ģ": 41309, + "Ġì§Ģê¸ĪìĿĢ": 46516, + "Ġì§Ģë": 12205, + "Ġì§ĢëĤĺ": 41672, + "Ġì§ĢëĤľ": 26416, + "Ġì§ĢìĹŃ": 36209, + "Ġì§ĢìĽIJ": 47284, + "Ġì§ģ": 19224, + "Ġì§ģìłij": 34196, + "Ġì§Ħ": 5526, + "Ġì§Ħì§ľ": 7106, + "Ġì§Ħíĸī": 32544, + "Ġì§Ī문": 39217, + "Ġì§ij": 12111, + "Ġì§ijìĹIJ": 38380, + "Ġì§ľ": 35609, + "Ġ쪽": 31790, + "Ġì«": 37453, + "Ġì°": 5122, + "Ġì°¨": 15391, + "Ġì°¨ë": 24537, + "Ġì°©": 36018, + "Ġì°¸": 18255, + "Ġì°½": 39501, + "Ġì°¾": 18283, + "Ġì°¾ìķĦ": 33219, + "Ġì°į": 17285, + "Ġì±": 14097, + "Ġì±Ħ": 27411, + "Ġì±ħ": 33623, + "Ġì±Ļ": 49414, + "Ġì²": 6768, + "Ġ첫": 22707, + "Ġì²´": 39667, + "Ġì²ĺ": 16650, + "Ġì²ĺë": 40272, + "Ġì²ĺìĿĮ": 18736, + "Ġì²ľ": 31076, + "Ġì²Ń": 24902, + "Ġì³": 43517, + "Ġì´": 10359, + "Ġì´¬ìĺģ": 27874, + "Ġì´Ī": 26631, + "Ġì´Īë": 34417, + "Ġì´ī": 47783, + "Ġì´Ŀ": 27370, + "Ġìµ": 12568, + "Ġìµľ": 14571, + "Ġìµľê³ł": 36703, + "Ġìµľê·¼": 37349, + "ĠìµľëĮĢ": 44112, + "Ġì¶": 7458, + "Ġ춤": 40037, + "Ġ충": 24975, + "Ġ충ë¶Ħ": 47891, + "Ġì¶Ķ": 17435, + "Ġì¶Ķê°Ģ": 38160, + "Ġì¶Ķì²ľ": 40264, + "Ġì¶ķ": 36692, + "Ġì¶ľ": 25420, + "Ġì·¨": 28880, + "Ġì¸": 33381, + "Ġ측": 41696, + "Ġì¹": 6639, + "Ġì¹´": 41703, + "Ġì¹´ë": 24369, + "Ġì¹´ë©Ķë": 37680, + "Ġì¹´ë©ĶëĿ¼": 46984, + "Ġì¹ĺ": 18447, + "Ġì¹ĺë": 38366, + "Ġì¹ľ": 15801, + "Ġì¹ľêµ¬": 28307, + "Ġì¹ľêµ¬ë": 30922, + "Ġìº": 25230, + "ĠìºIJë": 45024, + "Ġì»": 9305, + "Ġ커": 38687, + "Ġ커ë": 39573, + "Ġ커íĶ": 45326, + "Ġ컨": 36195, + "Ġ컬ë": 19266, + "Ġì»¬ëŁ¬": 26691, + "Ġì»¬ëŁ¬ë": 39177, + "Ġì¼": 25777, + "Ġì¼Ģ": 46142, + "Ġì½": 10630, + "Ġì½Ķ": 26306, + "Ġì½Ķë": 31512, + "Ġì½Ķë¡ľ": 29716, + "Ġì½Ķë¡ľëĤĺ": 31490, + "Ġì½ĺ": 43875, + "Ġì¿": 27056, + "Ġì¿ł": 37855, + "ĠìĤ": 2774, + "ĠìĤ¬": 4744, + "ĠìĤ¬ê±´": 49653, + "ĠìĤ¬ê³ł": 40836, + "ĠìĤ¬ë": 6606, + "ĠìĤ¬ëŀ": 7727, + "ĠìĤ¬ëŀĮ": 12211, + "ĠìĤ¬ëŀĮë": 18078, + "ĠìĤ¬ëŀĮëĵ¤": 39570, + "ĠìĤ¬ëŀĮëĵ¤ìĿ´": 34919, + "ĠìĤ¬ëŀĮìĿ´": 27660, + "ĠìĤ¬ëŀij": 22581, + "ĠìĤ¬ì§Ħ": 29899, + "ĠìĤ¬ìĭ¤": 14504, + "ĠìĤ¬ìļ©": 14422, + "ĠìĤ°": 29589, + "ĠìĤ´": 21155, + "ĠìĤ´ë": 37316, + "ĠìĤ´ì": 15482, + "ĠìĤ´ì§Ŀ": 22384, + "ĠìĤ´ìķĦ": 46978, + "ĠìĤ¼": 32391, + "Ġìĥ": 3694, + "Ġìĥģ": 8563, + "Ġìĥģíĥľ": 34210, + "ĠìĥģíĻ©": 24581, + "ĠìĥĪ": 31184, + "ĠìĥĪë": 21922, + "ĠìĥĪë¡ľ": 32594, + "ĠìĥĪë¡ľìļ´": 41088, + "Ġìĥī": 22530, + "Ġìĥīê¹": 44105, + "ĠìĥĿ": 6439, + "ĠìĥĿê°ģ": 8594, + "ĠìĥĿê°ģìĿ´": 34581, + "ĠìĥĿê°ģìĿĦ": 30852, + "ĠìĥĿê²¼": 49810, + "ĠìĦ": 3952, + "ĠìĦ¤": 30630, + "ĠìĦ¤ë": 24175, + "ĠìĦ¤ëªħ": 33020, + "ĠìĦ±": 14409, + "ĠìĦ±ê³µ": 38403, + "ĠìĦ¸": 11605, + "ĠìĦ¸ê³Ħ": 40179, + "ĠìĦ¸ë": 32143, + "ĠìĦ¸ìĥģ": 37990, + "ĠìĦľ": 17397, + "ĠìĦľë": 32558, + "ĠìĦľë¡ľ": 44595, + "ĠìĦľìļ¸": 31039, + "ĠìĦŀ": 45048, + "ĠìĦł": 11835, + "ĠìĦłë": 22218, + "ĠìĦłë¬¼": 44956, + "ĠìĦłë°°": 49122, + "ĠìĦłìĥĿ": 33600, + "ĠìĦłìĥĿëĭĺ": 37974, + "ĠìĦłíĥĿ": 33126, + "Ġìħ": 23567, + "Ġìħĭ": 34371, + "ĠìĨ": 4794, + "ĠìĨĮ": 10614, + "ĠìĨĮê°ľ": 42784, + "ĠìĨĮë": 13062, + "ĠìĨĮ리": 21652, + "ĠìĨį": 18663, + "ĠìĨIJ": 15268, + "ĠìĨĶ": 37255, + "ĠìĨĶì§ģ": 40279, + "ĠìĨĶì§ģíŀĪ": 46337, + "ĠìĪ": 3471, + "ĠìĪ¨": 33354, + "ĠìĪĺ": 4446, + "ĠìĪĺê°Ģ": 27345, + "ĠìĪĺë": 22297, + "ĠìĪĺëıĦ": 23455, + "ĠìĪľ": 23841, + "ĠìĪľê°Ħ": 44588, + "ĠìĪł": 41986, + "Ġìī": 18804, + "Ġìī¬": 37687, + "Ġìī½": 33561, + "ĠìĬ": 6955, + "ĠìĬ¤": 25858, + "ĠìĬ¤ë": 40420, + "ĠìĬ¤í": 11196, + "ĠìĬ¤íĥĢ": 30675, + "ĠìĬ¤íĥĢìĿ¼": 45881, + "ĠìĬ¤íĬ¸ë": 49490, + "ĠìĬ¹": 30977, + "Ġìĭ": 2811, + "Ġìĭ¤": 19300, + "Ġìĭ¤ë": 34496, + "Ġìĭ¤ìłľë¡ľ": 46399, + "Ġìĭ¤í": 37403, + "Ġìĭ«": 33649, + "Ġìĭ¬": 21923, + "Ġìĭ¶": 10785, + "Ġìĭ¶ìĿĢ": 26912, + "Ġìĭ¸": 33949, + "Ġìĭľ": 5710, + "Ġìĭľê°Ħ": 16648, + "Ġìĭľê°ĦìĿ´": 39330, + "Ġìĭľë": 24452, + "Ġìĭľì²Ń": 41123, + "Ġìĭľìŀij": 14525, + "ĠìĭĿ": 19675, + "ĠìĭĿìľ¼ë¡ľ": 47270, + "Ġìĭł": 13042, + "Ġìĭłê¸°": 47958, + "Ġìĭłë": 26397, + "ĠìĮ": 35792, + "Ġìį": 37113, + "Ġìį¨": 32575, + "Ġìı": 40304, + "Ġìĵ": 11647, + "Ġìĵ°": 17373, + "Ġìĵ°ê³ł": 43303, + "Ġìĵ°ë": 37159, + "Ġìĵ°ëĬĶ": 44878, + "Ġìĵ¸": 42776, + "ĠìĶ": 13479, + "ĠìĶ¨": 17394, + "ĠìĶ¨ê°Ģ": 49262, + "Ġìķ": 1298, + "Ġìķ¼": 13450, + "Ġìķ½": 11503, + "Ġìķ½ê°Ħ": 14466, + "ĠìķĦ": 2216, + "ĠìķĦê¹Į": 25289, + "ĠìķĦë": 9200, + "ĠìķĦë§Ī": 37298, + "ĠìķĦ무": 30702, + "ĠìķĦ무ë": 29907, + "ĠìķĦë²Ħ": 49972, + "ĠìķĦë¹ł": 41281, + "ĠìķĦëĭ": 16996, + "ĠìķĦëĭĪ": 5651, + "ĠìķĦëĭĪê³ł": 32510, + "ĠìķĦëĭĪë": 14279, + "ĠìķĦëĭĪë©´": 33059, + "ĠìķĦëĭĪëĿ¼": 22948, + "ĠìķĦëĭĪìķ¼": 20425, + "ĠìķĦëĭĪìĹIJìļĶ": 30809, + "ĠìķĦëĭĮ": 28069, + "ĠìķĦëĭĻ": 45842, + "ĠìķĦ주": 22360, + "ĠìķĦì§ģ": 22729, + "ĠìķĦ침": 41812, + "ĠìķĦìĿ´": 25130, + "ĠìķĦìĿ´ë": 24790, + "ĠìķĦíĮĮ": 46438, + "Ġìķħ": 43843, + "ĠìķĪ": 4811, + "ĠìķĪë": 9658, + "ĠìķĪëħķ": 13810, + "ĠìķĪëħķíķĺìĦ¸ìļĶ": 19289, + "ĠìķĪëı¼": 42685, + "ĠìķĪìĹIJ": 31660, + "Ġìķī": 37426, + "ĠìķĬ": 6718, + "ĠìķĬê³ł": 31157, + "ĠìķĬëĬĶ": 34790, + "ĠìķĬìķĦ": 39860, + "ĠìķĬìķĦìļĶ": 39952, + "ĠìķĬìķĺ": 29558, + "ĠìķĬìĿĢ": 34590, + "ĠìķĬìĿĦ": 32112, + "ĠìķĮ": 9457, + "ĠìķĮê³ł": 31935, + "ĠìķĮë": 21246, + "ĠìķĮ볤": 38654, + "ĠìķĮìķĦ": 32352, + "ĠìķĮìķĺìĸ´": 49453, + "Ġìķŀ": 13727, + "ĠìķŀìĹIJ": 42004, + "Ġìķŀìľ¼ë¡ľ": 30293, + "Ġìķł": 21459, + "Ġìķłë": 42422, + "Ġìĸ": 2417, + "Ġìĸ´": 9076, + "Ġìĸ´ë": 4863, + "Ġìĸ´ë¨¸": 33257, + "Ġìĸ´ëĬIJ": 34918, + "Ġìĸ´ëĶ": 41802, + "Ġìĸ´ëĶĶ": 20879, + "Ġìĸ´ëķĮ": 43884, + "Ġìĸ´ëĸ": 7768, + "Ġìĸ´ëĸ¡": 39593, + "Ġìĸ´ëĸ¤": 15620, + "Ġìĸ´ëĸ»": 12580, + "Ġìĸ´ëĸ»ê²Į": 12952, + "Ġìĸ´ëł¤": 32289, + "Ġìĸ´ëłµ": 43961, + "Ġìĸ´ì": 11474, + "Ġìĸ´ì¨": 46478, + "Ġìĸ´ì¨Įëĵł": 49856, + "Ġìĸ´ì©": 43513, + "Ġìĸ´ìļ": 27755, + "Ġìĸ´ìłľ": 39247, + "Ġìĸ¸": 16738, + "Ġìĸ¸ë": 44014, + "Ġìĸ¸ëĭĪ": 27213, + "Ġìĸ¸ìłľ": 43790, + "Ġìĸ¼": 22142, + "Ġìĸ¼êµ": 25233, + "Ġìĸ¼êµ´": 30818, + "Ġìĸ¼ë": 21699, + "Ġìĸ¼ë§": 33502, + "Ġìĸ¼ë§Ī": 44859, + "Ġìĸ¼ë§ĪëĤĺ": 36093, + "Ġìĸij": 17723, + "Ġìĸĺ": 11098, + "Ġìĸĺ기": 19641, + "Ġìĸĺ기를": 38327, + "Ġìĸĺë": 49441, + "ĠìĸĺëĬĶ": 43084, + "ĠìĹ": 2087, + "ĠìŬ": 5518, + "ĠìĹ¬ê¸°": 7543, + "ĠìĹ¬ê¸°ê¹Įì§Ģ": 46869, + "ĠìĹ¬ê¸°ëĬĶ": 48864, + "ĠìĹ¬ê¸°ìĦľ": 25404, + "ĠìĹ¬ê¸°ìĹIJ": 37138, + "ĠìŬë": 8228, + "ĠìŬ룬": 31784, + "ĠìŬ룬ë": 10791, + "ĠìŬ룬ë¶Ħ": 14707, + "ĠìŬ룬ë¶Ħëĵ¤": 25745, + "ĠìŬìŀIJ": 41768, + "ĠìĹ°": 11839, + "ĠìĹ°ë": 34902, + "ĠìĹ°ìĬµ": 35901, + "ĠìĹ´": 41280, + "ĠìĹ´ë": 38787, + "ĠìĹ´ì": 40039, + "ĠìĹ´ìĭ¬íŀĪ": 31939, + "ĠìĹĦ": 16685, + "ĠìĹĦë§Ī": 23747, + "ĠìĹĦì²Ń": 18070, + "ĠìĹħ": 32892, + "ĠìĹĨ": 5711, + "ĠìĹĨê³ł": 48724, + "ĠìĹĨëĬĶ": 20986, + "ĠìĹĨëĭ¤": 50174, + "ĠìĹĨìĬµëĭĪëĭ¤": 47236, + "ĠìĹĨìĸ´": 28715, + "ĠìĹĨìĸ´ìļĶ": 31162, + "ĠìĹĨìĿ´": 33353, + "ĠìĹIJ": 20122, + "ĠìĹIJë": 44428, + "ĠìĹŃ": 19427, + "ĠìĹŃìĭľ": 34522, + "Ġìĺ": 2355, + "Ġìĺ¤": 5175, + "Ġìĺ¤ë": 10258, + "Ġìĺ¤ë¥¸": 46673, + "Ġìĺ¤ë¹ł": 33398, + "Ġìĺ¤ëĬ": 36791, + "Ġìĺ¤ëĬĺ": 8880, + "Ġìĺ¤ëĬĺëıĦ": 47455, + "Ġìĺ¤ëĬĺìĿĢ": 23720, + "Ġìĺ¤ëŀĺ": 46211, + "Ġìĺ¤ëŀľë§Į": 48551, + "Ġìĺ¤ì¼ĢìĿ´": 30567, + "Ġìĺ¤í": 25586, + "Ġìĺ¨": 25506, + "Ġìĺ¬": 28603, + "Ġìĺ¬ë": 12917, + "Ġìĺ¬ëĿ¼": 22327, + "Ġìĺ·": 30880, + "Ġìĺģ": 9293, + "Ġìĺģìĥģ": 15603, + "ĠìĺģìĥģìĿĦ": 42942, + "ĠìĺģíĻĶ": 44869, + "ĠìĺĨ": 29095, + "ĠìĺĪ": 10134, + "ĠìĺĪë": 22551, + "ĠìĺĪë»IJ": 45527, + "ĠìĺĪìģ": 20684, + "ĠìĺĪìģĺ": 28424, + "ĠìĺĽ": 44298, + "ĠìĺĽëĤł": 48646, + "ĠìĻ": 4186, + "ĠìĻ¸": 27357, + "ĠìĻĢ": 12500, + "ĠìĻĢìĦľ": 45783, + "ĠìĻĦ": 18112, + "ĠìĻĦë": 36683, + "ĠìĻĦìĦ±": 41867, + "ĠìĻĦìłĦ": 25587, + "ĠìĻĶ": 17766, + "ĠìĻľ": 9883, + "ĠìĻľë": 33750, + "ĠìĻľëĥIJíķĺë©´": 49338, + "Ġìļ": 4709, + "Ġìļ©": 33622, + "Ġìļ°": 14995, + "Ġìļ°ë": 22776, + "Ġìļ°ë¦¬": 8126, + "Ġìļ°ë¦¬ê°Ģ": 22408, + "Ġìļ°ë¦¬ë": 36118, + "Ġìļ°ë¦¬ëĬĶ": 42425, + "Ġìļ°ìĻĢ": 36963, + "Ġìļ´ëıĻ": 33541, + "Ġìļ¸": 40814, + "ĠìļĶ": 10161, + "ĠìļĶë": 39688, + "ĠìļĶì¦ĺ": 24835, + "ĠìĽ": 6891, + "ĠìĽĢ": 40481, + "ĠìĽĢì§ģ": 42114, + "ĠìĽĥ": 25014, + "ĠìĽIJ": 13499, + "ĠìĽIJë": 20884, + "ĠìĽIJëŀĺ": 25169, + "Ġìľ": 4916, + "Ġìľ¤": 36844, + "Ġìľ¼": 37163, + "ĠìľĦ": 9491, + "ĠìľĦìĹIJ": 38388, + "ĠìľĦíķ´": 31600, + "ĠìľĦíķ´ìĦľ": 30238, + "ĠìľĦíķľ": 41475, + "Ġìľł": 11878, + "Ġìľłë": 22262, + "ĠìľłíĬľë": 39163, + "ĠìĿ": 1191, + "ĠìĿ´": 2620, + "ĠìĿ´ê±°": 7075, + "ĠìĿ´ê±°ë¥¼": 46208, + "ĠìĿ´ê±°ëĬĶ": 24535, + "ĠìĿ´ê±´": 21867, + "ĠìĿ´ê±¸": 27107, + "ĠìĿ´ê²ĥ": 23088, + "ĠìĿ´ê²ĥëıĦ": 42118, + "ĠìĿ´ê²Į": 10496, + "ĠìĿ´ë": 2892, + "ĠìĿ´ë¦Ħ": 28581, + "ĠìĿ´ë¯¸": 30099, + "ĠìĿ´ë²Ī": 16299, + "ĠìĿ´ë²ĪìĹIJ": 40692, + "ĠìĿ´ëŁ¬": 37398, + "ĠìĿ´ëŁ°": 8381, + "ĠìĿ´ëłĩê²Į": 5483, + "ĠìĿ´ì": 4329, + "ĠìĿ´ìª½": 40325, + "ĠìĿ´ìĥģ": 20362, + "ĠìĿ´ìķ¼": 20510, + "ĠìĿ´ìķ¼ê¸°": 37576, + "ĠìĿ´ìķ¼ê¸°ë¥¼": 48974, + "ĠìĿ´ìĸ": 40186, + "ĠìĿ´ìļ©": 37839, + "ĠìĿ´ìľł": 32292, + "ĠìĿ´ìł": 41049, + "ĠìĿ´ìłľ": 8424, + "ĠìĿ´íķ´": 49373, + "ĠìĿ´íĽĦ": 43577, + "ĠìĿµ": 45664, + "ĠìĿ¸": 9385, + "ĠìĿ¸ë": 34339, + "ĠìĿ¸íĦ°ë": 47491, + "ĠìĿ¼": 7682, + "ĠìĿ¼ë": 16623, + "ĠìĿ¼ë°ĺ": 47057, + "ĠìĿ¼ë³¸": 38496, + "ĠìĿ¼ëĭ¨": 17304, + "ĠìĿ¼ìĿ´": 42848, + "ĠìĿ½": 43302, + "ĠìĿĢ": 31863, + "ĠìĿĮ": 15179, + "ĠìĿĮìĭĿ": 34203, + "ĠìĿĮìķħ": 37851, + "ĠìĿij": 21712, + "ĠìĿĺ": 14389, + "ĠìĿĺë": 29321, + "Ġìŀ": 1332, + "Ġìŀ¡": 16545, + "Ġìŀ¡ìķĦ": 40845, + "Ġìŀ¥": 12280, + "Ġìŀ¥ëĤľ": 46314, + "Ġìŀ¬": 20804, + "Ġìŀ¬ë": 16526, + "Ġìŀ¬ë¯¸": 37723, + "Ġìŀ¬ë°Į": 31224, + "ĠìŀĦ": 43216, + "Ġìŀħ": 10051, + "ĠìŀħëĭĪëĭ¤": 37589, + "ĠìŀĪ": 2297, + "ĠìŀĪê±°ëĵłìļĶ": 44262, + "ĠìŀĪê²Į": 41680, + "ĠìŀĪê³ł": 18683, + "ĠìŀĪê³łìļĶ": 44426, + "ĠìŀĪ기": 48371, + "ĠìŀĪë": 23549, + "ĠìŀĪëĤĺ": 48178, + "ĠìŀĪëĬĶ": 7153, + "ĠìŀĪëĬĶëį°": 19197, + "ĠìŀĪëĬĶëį°ìļĶ": 43550, + "ĠìŀĪëĭ¤": 27468, + "ĠìŀĪëĭ¤ê³ł": 32517, + "ĠìŀĪëĭ¤ëĬĶ": 38469, + "ĠìŀĪì£ł": 34070, + "ĠìŀĪì§Ģ": 37693, + "ĠìŀĪì§Ģë§Į": 49355, + "ĠìŀĪìĬµëĭĪëĭ¤": 10552, + "ĠìŀĪìĸ´": 17300, + "ĠìŀĪìĸ´ìĦľ": 27937, + "ĠìŀĪìĸ´ìļĶ": 12654, + "ĠìŀĪìĹĪ": 15972, + "ĠìŀĪìľ¼": 47324, + "ĠìŀĪìľ¼ë©´": 35783, + "ĠìŀĪìľ¼ëĭĪê¹Į": 44489, + "ĠìŀĪìĿĦ": 18082, + "ĠìŀĪìŀĸìķĦìļĶ": 38853, + "ĠìŀIJ": 5650, + "ĠìŀIJ기": 37257, + "ĠìŀIJ꾸": 45989, + "ĠìŀIJë": 15905, + "ĠìŀIJ주": 47295, + "ĠìŀIJìĭł": 31505, + "ĠìŀIJìĹ°": 39635, + "Ġìŀij": 14585, + "ĠìŀijìĹħ": 40316, + "ĠìŀijìĿĢ": 45870, + "Ġìŀĺ": 6644, + "Ġìŀĺë": 24041, + "Ġìŀĺ못": 38991, + "Ġìŀł": 15825, + "Ġìŀłê¹": 24155, + "Ġìŀłê¹IJ": 43479, + "Ġìŀłê¹IJë§Į": 33805, + "Ġìł": 1647, + "ĠìłĢ": 4841, + "ĠìłĢ기": 33789, + "ĠìłĢë": 13163, + "ĠìłĢëĬĶ": 10551, + "ĠìłĢëıĦ": 27591, + "ĠìłĢíĿ¬": 14594, + "ĠìłĢíĿ¬ê°Ģ": 27463, + "Ġìłģ": 14370, + "ĠìłģìĿ´": 48660, + "ĠìłĦ": 6831, + "ĠìłĦë": 19617, + "ĠìłĦìĹIJ": 27117, + "ĠìłĪë": 36144, + "ĠìłĪëĮĢ": 48811, + "ĠìłIJ": 20060, + "Ġìłij": 21616, + "Ġìłijì¢ħ": 32840, + "Ġìłķ": 4980, + "Ġìłķë§IJ": 12793, + "Ġìłķë¶Ģ": 34659, + "ĠìłķëıĦ": 13636, + "ĠìłķëıĦë¡ľ": 42173, + "ĠìłķíĻķ": 47930, + "Ġìłľ": 4424, + "Ġìłľê°Ģ": 7439, + "Ġìłľë": 23406, + "ĠìłľëĮĢë¡ľ": 43795, + "ĠìłľìĿ¼": 23090, + "ĠìłľíĴĪ": 21496, + "Ġí": 1175, + "Ġíģ": 9414, + "Ġíģ¬": 23130, + "Ġíģ¬ê²Į": 38926, + "Ġíģ¬ë": 27680, + "Ġíģ°": 21307, + "Ġíģ´ë": 30464, + "ĠíĤ": 21959, + "ĠíĤ¤": 31855, + "Ġíĥ": 8675, + "ĠíĥĢ": 19840, + "ĠíĥĦ": 46979, + "Ġíĥľ": 28808, + "ĠíĦ°": 39565, + "Ġíħ": 18575, + "ĠíħĮ": 30516, + "ĠíĨ": 20901, + "ĠíĨµ": 17006, + "ĠíĨł": 40309, + "ĠíĨłë": 47955, + "ĠíĪ¬": 27256, + "ĠíĬ": 11412, + "ĠíĬ¸ë": 34479, + "ĠíĬ¹": 16909, + "ĠíĬ¹ë³Ħ": 48735, + "ĠíĬ¹íŀĪ": 37704, + "ĠíĬĢ": 49470, + "Ġíĭ": 22114, + "Ġíĭ°": 42417, + "ĠíĮ": 6950, + "ĠíĮ¨": 35470, + "ĠíĮ¬": 45480, + "ĠíĮ¬ë": 47132, + "ĠíĮĢ": 31448, + "ĠíĮĮ": 15390, + "ĠíĮĮë": 44475, + "ĠíĮIJ": 35008, + "ĠíĮĶ": 37110, + "ĠíĮĶë": 49236, + "Ġíį¼": 40849, + "Ġíİ": 10981, + "Ġíݸ": 16990, + "Ġíİĺ": 48574, + "Ġíı": 9250, + "Ġíı¬": 17101, + "Ġíı¬ìĿ¸": 45253, + "Ġíıī": 21967, + "ĠíıŃ": 35663, + "Ġíij": 41065, + "Ġíijľ": 20966, + "ĠíijľíĺĦ": 34232, + "ĠíĴ": 21442, + "ĠíĴĢ": 40036, + "ĠíĶ": 8074, + "ĠíĶ¼": 17448, + "ĠíĶ¼ë": 24009, + "ĠíĶ¼ë¶Ģ": 30192, + "ĠíĶĦë": 32051, + "ĠíĶĦë¡ľ": 27758, + "ĠíĶĮë": 28764, + "Ġíķ": 1362, + "Ġíķ¨": 19340, + "Ġíķ¨ê»ĺ": 21469, + "Ġíķ©": 32413, + "Ġíķ©ëĭĪëĭ¤": 18802, + "Ġíķ´": 11683, + "Ġíķ´ë": 11134, + "Ġíķ´ëıĦ": 35776, + "Ġíķ´ì": 7960, + "Ġíķ´ì£¼": 23281, + "Ġíķ´ì¤": 29409, + "Ġíķ´ìĦľ": 17705, + "Ġíķ´ìķ¼": 20556, + "Ġíķ´ìļĶ": 25744, + "ĠíķĦ": 19620, + "ĠíķĦìļĶ": 22731, + "Ġíķij": 45549, + "Ġíķĺ": 3369, + "Ġíķĺê²Į": 44605, + "Ġíķĺê²łìĬµëĭĪëĭ¤": 23473, + "Ġíķĺê³ł": 10301, + "Ġíķĺ기": 47378, + "Ġíķĺë": 5832, + "Ġíķĺ루": 33918, + "Ġíķĺë©´": 17422, + "Ġíķĺë©´ìĦľ": 37466, + "ĠíķĺëĤĺ": 12261, + "ĠíķĺëĤĺë": 38878, + "ĠíķĺëĬĶ": 10914, + "ĠíķĺëĬĶëį°": 29600, + "ĠíķĺëĭĪê¹Į": 47490, + "Ġíķĺì§Ģ": 26882, + "Ġíķĺì§Ģë§Į": 23286, + "ĠíķĻ": 24504, + "Ġíķľ": 4815, + "ĠíķľêµŃ": 21045, + "Ġíķľë": 10737, + "Ġíķľë²Ī": 14463, + "Ġíķľëĭ¤": 44005, + "Ġíķľëį°": 49780, + "Ġíķł": 8981, + "Ġíķłê²ĮìļĶ": 43258, + "Ġíķłë": 44148, + "ĠíķŃ": 25031, + "ĠíķŃìĥģ": 30747, + "Ġíĸ": 11988, + "Ġíĸ¥": 29165, + "ĠíĸĪ": 8154, + "ĠíĸĪëĬĶëį°": 27418, + "ĠíĸĪëįĺ": 45564, + "ĠíĸĪìĬµëĭĪëĭ¤": 32314, + "ĠíĸĪìĸ´": 49528, + "ĠíĸĪìĸ´ìļĶ": 36331, + "Ġíĸī": 21484, + "Ġíĸīë³µ": 36921, + "ĠíĹ": 13431, + "ĠíŤ": 45037, + "ĠíĹĪ": 26893, + "ĠíĹĪë": 47078, + "ĠíĹĪíĮĿ": 41756, + "Ġíĺ": 5706, + "Ġíĺ¸": 26932, + "Ġíĺ¹": 27088, + "Ġíĺ¹ìĭľ": 34767, + "Ġíĺ¼": 31523, + "Ġíĺ¼ìŀIJ": 36028, + "ĠíĺĦ": 17505, + "ĠíĺĦìŀ¬": 39870, + "Ġíĺij": 46977, + "Ġíĺķ": 12459, + "ĠíĻ": 5930, + "ĠíĻį": 36990, + "ĠíĻĶ": 20661, + "ĠíĻĶë": 26700, + "ĠíĻĶìŀ¥": 40711, + "ĠíĻķ": 12619, + "ĠíĻķì§Ħ": 45061, + "ĠíĻķìĭ¤íŀĪ": 50149, + "ĠíĻķìĿ¸": 31288, + "ĠíĻĺ": 29288, + "ĠíĻľ": 42194, + "ĠíĻľëıĻ": 45638, + "Ġíļ": 14794, + "Ġíļ¨": 33571, + "ĠíļĮ": 22980, + "ĠíĽ": 11091, + "ĠíĽ¨": 41842, + "ĠíĽ¨ìĶ¬": 42489, + "ĠíĽĦ": 21638, + "ĠíĽĦë": 23104, + "ĠíĽĦë³´": 40089, + "Ġíľ": 30200, + "ĠíĿ": 14473, + "Ġíŀĺ": 30326, + "Ġíŀĺë": 22042, + "Ġíŀĺëĵ¤": 28576, + "Ġï": 25072, + "Ġï·": 28081, + "Ġï·º": 41122, + "Ġï·»": 47735, + "Ġ�": 16867, + "ĠðĿ": 42244, + "ĠðĿĺ": 42341, + "ĠðŁ": 7385, + "ĠðŁİ": 19034, + "ĠðŁİµ": 25674, + "ĠðŁİ¶": 43669, + "ĠðŁIJ": 27480, + "ĠðŁij": 36276, + "ĠðŁĺ": 20732, + "ġ": 221, + "Ģ": 222, + "Ģë": 2366, + "Ģë¡ľ": 36680, + "Ģ리": 34374, + "ĢëıĦ": 33225, + "ĢìĿ´": 12192, + "ĢìĿĦ": 25700, + "ģ": 223, + "ģ¼": 29278, + "ģĶ": 30895, + "Ĥ": 224, + "Ĥ¨": 30856, + "Ĥ¬": 9915, + "Ĥ´": 22485, + "Ĥĺ": 3404, + "Ĥĺë": 14886, + "ĤĺëĿ¼": 47495, + "ĤĺìļĶ": 26057, + "Ĥľ": 16662, + "Ĥł": 24095, + "ĥ": 225, + "ĥ¥": 10408, + "ĥ½": 4720, + "ĥĢ": 22373, + "ĥģ": 17486, + "ĥIJ": 12476, + "ĥIJë©´": 35482, + "ĥIJíķĺë©´": 46370, + "Ħ": 226, + "Ħ¤": 5626, + "Ħ¤ìļĶ": 12974, + "Ħ°": 26267, + "Ħ±": 42235, + "Ħ¸": 20600, + "Ħ¸ìļĶ": 25918, + "Ħë": 2703, + "Ħë¡ľ": 14046, + "Ħ를": 21273, + "Ħë§Ī": 21274, + "ĦëıĦ": 24798, + "Ħëĵ¤": 10801, + "ĦĪ": 23318, + "ĦIJ": 45382, + "Ħľ": 3556, + "ħ": 227, + "ħ¸": 37524, + "ħëĭĪëĭ¤": 28332, + "ħĢ": 32710, + "ħĦ": 35530, + "ħķ": 12831, + "ħĺ": 36630, + "Ĩ": 228, + "Ĩµ": 9999, + "Ĩĵ": 28500, + "Ĩĵê³ł": 47441, + "ĩ": 229, + "Ī": 230, + "Ī¬": 20435, + "Ī¬ë": 48458, + "Īë": 2196, + "Ī를": 31567, + "Īë§Į": 30962, + "Īë¬": 5520, + "Ī무": 6438, + "Ī무ë": 27532, + "Ī문": 35604, + "ĪëĤĺ": 19505, + "ĪëĦ¤": 39510, + "Īëįĺ": 13461, + "ĪëıĦ": 22616, + "ī": 231, + "īìŀ¥": 14547, + "Ĭ": 232, + "Ĭ¤": 19426, + "Ĭ¨": 21588, + "Ĭ¸": 21830, + "Ĭ¸ë": 28699, + "ĭ": 233, + "Į": 234, + "Įë": 2457, + "Į를": 29039, + "Įëį°": 50158, + "ĮëıĦ": 33723, + "Įëĵł": 47353, + "Į룬": 39530, + "ĮĢ": 3638, + "ĮĢë": 8405, + "ĮĢë¡ľ": 15527, + "ĮĢ를": 49946, + "į": 235, + "į¨": 18304, + "į°": 2336, + "į¼": 21709, + "įãĥ«": 38518, + "įëĭĪëĭ¤": 27169, + "įĶ": 19666, + "įĶë": 12890, + "įĶëĭĪ": 39638, + "įĶëĿ¼": 39898, + "įĶëĿ¼ê³ł": 19129, + "įĶëĿ¼ê³łìļĶ": 21261, + "įĺ": 8092, + "İ": 236, + "ı": 237, + "ı¼": 25116, + "ıĦ": 1838, + "ıĦë¡Ŀ": 19305, + "ıħ": 19079, + "ıĮ": 34242, + "ıĻ": 8309, + "ıĻìķĪ": 48608, + "IJ": 238, + "IJ×": 2660, + "IJë": 2998, + "IJë§Į": 25940, + "IJë©´": 32324, + "IJëį°": 43429, + "IJëıĦ": 22983, + "IJIJ": 35606, + "IJĺ": 10487, + "IJĺëĬĶ": 43653, + "IJľ": 14987, + "ij": 239, + "ij¥": 42815, + "ij×": 4349, + "ij׾": 23602, + "ijIJ": 15150, + "ijIJë": 45193, + "ijľ": 12139, + "Ĵ": 240, + "ĵ": 241, + "ĵ¤": 2403, + "ĵ¤ëıĦ": 46313, + "ĵ¤ìĿ´": 8109, + "ĵ¤ìĿĢ": 22571, + "ĵ¤ìĿĦ": 24968, + "ĵ¤ìĿĺ": 29990, + "ĵ¯": 39358, + "ĵ±": 22205, + "ĵľ": 7087, + "ĵľë": 6300, + "ĵľë¥¼": 43871, + "ĵľë¦´": 29512, + "ĵľë¦´ê²ĮìļĶ": 41413, + "ĵľëĬĶ": 29609, + "ĵĿ": 26152, + "ĵł": 6646, + "Ķ": 242, + "Ķ©": 34521, + "Ķê°Ģ": 13833, + "Ķë": 3261, + "Ķë¡ľ": 18839, + "ĶëıĦ": 40720, + "ĶìĿ´": 17793, + "ĶìĿ´íģ¬": 29819, + "ĶìĿ´íģ¬ìĹħ": 30952, + "ĶĶ": 9520, + "ĶĶìĸ´": 40803, + "ĶĶìĺ¤": 49117, + "ķ": 243, + "ķ¼": 6612, + "ķĦ": 33889, + "ķĮ": 14922, + "ĸ": 244, + "ĸ´": 25982, + "ĸ×Ķ": 7889, + "ĸìĹIJ": 28216, + "ĸĪ": 4341, + "Ĺ": 245, + "ĹIJ": 8926, + "ĺ": 246, + "ĺë": 1894, + "ĺ를": 18855, + "ĺëıĦ": 8226, + "Ļ": 247, + "ĻĢ": 37404, + "ļ": 248, + "ļ©": 22621, + "ļĶ": 1206, + "Ľ": 249, + "Ľi": 8971, + "ľ": 250, + "ľ¨": 34057, + "ľë": 2163, + "ľë¡ľ": 15636, + "ľë¥¼": 20087, + "ľë©´": 34092, + "ľëĮĢ": 36718, + "ľëıĦ": 17099, + "ľëıĻ": 38667, + "ľł": 27144, + "Ŀ": 251, + "Ŀi": 10677, + "Ŀ¤": 35156, + "Ŀ¼": 2742, + "Ŀ¼ê³ł": 6954, + "Ŀ¼ë": 9316, + "Ŀ¼ë©´": 32713, + "Ŀ¼ëĬĶ": 13182, + "Ŀ¼ëıĦ": 25574, + "Ŀ¼ìĦľ": 48367, + "Ŀ½": 20523, + "ŀ": 252, + "ŀ¨": 43369, + "ŀ×": 3376, + "ŀר": 18520, + "ŀת": 40339, + "ŀĢ": 18781, + "ŀĪ": 5387, + "ŀĪë": 36329, + "ŀĪ볤": 50073, + "ŀĮ": 22855, + "ŀIJ": 15876, + "ŀIJë": 45863, + "ŀij": 9143, + "ŀĸ": 47812, + "ŀĺ": 4241, + "ŀĺë": 14387, + "ŀĺëıĦ": 38371, + "ŀĻ": 34284, + "ŀľë": 27273, + "ŀľë§Į": 46034, + "Ł": 253, + "Ł¬": 6235, + "Ł¬ë": 7871, + "Ł¬ìļ´": 40537, + "Ł°": 7436, + "Ł¼": 15375, + "Ł½": 21498, + "Łģ": 38067, + "Łī": 24502, + "ł": 254, + "ł¤": 5743, + "ł¤ê³ł": 18914, + "ł¤ë": 19479, + "ł¤ìĦľ": 40673, + "ł¤ìļĶ": 45410, + "ł¥": 11770, + "ł¨": 26627, + "łµ": 39469, + "ł¸": 14264, + "ł¹": 25565, + "ł×ķ": 32219, + "ł×Ĺ": 21418, + "ł×Ĺ׳×ķ": 22152, + "ł×Ļ": 10361, + "łë": 4673, + "łë¥¼": 39988, + "łĩ": 3921, + "łĩê²Į": 4591, + "łĪ": 10417, + "łĪë": 29494, + "łĪìĿ´": 38845, + "łĮ": 37422, + "łľ": 7589, + "Ń": 255, + "Ńī": 43962, + "ŃIJ": 4381 +} diff --git a/whisper-fine-tuning-event/README.md b/whisper-fine-tuning-event/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b62f501c0b35cc51b7ce86a9cf514b357cfe0873 --- /dev/null +++ b/whisper-fine-tuning-event/README.md @@ -0,0 +1,1244 @@ +# Whisper Fine-Tuning Event 🤗 + +Welcome to the Whisper fine-tuning event 🎙️! + +For two weeks, we will endeavour to fine-tune the Whisper model to build state-of-the-art speech recognition systems in +the languages of our choice 🗣. We will work together as a community to achieve this, helping others and learning where +we can 🤗. If necessary and available, free access to A100 40 GB GPUs will kindly be provided by our cloud compute +partners, [Lambda](https://lambdalabs.com) 🚀. + +This document summarises all the relevant information required for the event 📋. Please read it thoroughly +and make sure to: +- Sign-up using the [Google form](https://forms.gle/F2bpouvhDpKKisM39) +- Join the [Hugging Face Discord server](https://hf.co/join/discord) and make sure to assign yourself **@ml-4-audio** role in #role-assignment so that you can access #events channel. + +## Table of Contents + +- [Introduction](#introduction) +- [Important Dates](#important-dates) +- [Launch a Lambda Cloud GPU](#launch-a-lambda-cloud-gpu) +- [Set Up an Environment](#set-up-an-environment) +- [Data and Pre-Processing](#data-and-pre-processing) +- [Fine-Tune a Whisper Model](#fine-tune-whisper) +- [Evaluation](#evaluation) +- [Building a Demo](#building-a-demo) +- [Communication and Problems](#communication-and-problems) +- [Talks](#talks) +- [Tips and Tricks](#tips-and-tricks) +- [Feedback](#feedback) + +## Introduction +Whisper is a pre-trained model for automatic speech recognition (ASR) published in [September 2022](https://openai.com/blog/whisper/) +by the authors Radford et al. from OpenAI. Pre-trained on 680,000 hours of labelled data, it demonstrates a strong ability +to generalise to different datasets and domains. Through fine-tuning, the performance of this model can be significantly +boosted for a given language. + +In this event, we're bringing the community together to fine-tune Whisper in as many languages as possible. Our aim is +to achieve state-of-the-art on the languages spoken by the community. Together, we can democratise speech recognition +for all. + +We are providing training scripts, notebooks, blog posts, talks and compute (where available), so you have all the +resources you need to participate! You are free to chose your level of participation, from using the template script and setting +it to your language, right the way through to exploring advanced training methods. We encourage you to participate to +level that suits you best. We'll be on hand to facilitate this! + +Participants are allowed to fine-tune their systems on the training data of their choice, including datasets from the +Hugging Face Hub, web-scraped data from the internet, or private datasets. Whisper models will be evaluated +on the "test" split of the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) +dataset for the participant's chosen language. + +We believe that framing the event as a competition is fun! But at the core, the event is about +fine-tuning Whisper in as many languages as possible as a community. We want to foster an environment where we +work together, help each other solve bugs, share important findings and ultimately learn something new. + +This README contains all the information you need for the event. It is structured such that you can read it sequentially, +section-by-section. **We recommend that you read the document once from start to finish before running any code.** This will +give you an idea of where to look for the relevant information and an idea of how the event is going to run. + +## Important Dates + +- *Introduction Talk*: 2nd December 2022 +- *Sprint start*: 5th December 2022 +- *Speaker Events*: 5th December 2022 +- *Sprint end*: 19th December 2022 +- *Results*: 23rd December 2022 + +## Launch a Lambda Cloud GPU +Where possible, we encourage you to fine-tune Whisper on a local GPU machine. This will mean a faster set-up and more +familiarity with your device. If you are running on a local GPU machine, you can skip ahead to the next section: [Set Up an Environment](#set-up-an-environment). + +The training scripts can also be run as a notebook through Google Colab. We recommend you train on Google Colab if you +have a "Colab Pro" or "Pro+" subscription. This is to ensure that you receive a sufficiently powerful GPU on your Colab for +fine-tuning Whisper. If you wish to fine-tune Whisper through Google Colab, you can skip ahead to the section: [Data and Pre-Processing](#data-and-pre-processing). + +If you do not have access to a local GPU or Colab Pro/Pro+, we'll endeavour to provide you with a cloud GPU instance. +We've partnered up with Lambda to provide cloud compute for this event. They'll be providing the latest NVIDIA A100 +40 GB GPUs, so you'll be loaded with some serious firepower! The Lambda API makes it easy to spin-up and launch +a GPU instance. In this section, we'll go through the steps for spinning up an instance one-by-one. + +

+ +

+ +This section is split into three parts: + +1. [Signing-Up with Lambda](#signing-up-with-lambda) +2. [Creating a Cloud Instance](#creating-a-cloud-instance) +3. [Deleting a Cloud Instance](#deleting-a-cloud-instance) + +### Signing-Up with Lambda + +1. Create an account with Lambda using your email address of choice: https://cloud.lambdalabs.com/sign-up. If you already have an account, skip to step 2. +2. Using this same email address, email `cloud@lambdal.com` with the Subject line: `Lambda cloud account for HuggingFace Whisper event - payment authentication and credit request`. +3. Each user who emails as above will receive $110 in credits (amounting to 100 hours of 1x A100 usage). +4. Register a valid payment method with Lambda in order to redeem the credits (see instructions below). + +100 hours of 1x A100 usage should enable you to complete 5-10 fine-tuning runs. To redeem these credits, you will need to +authorise a valid payment method with Lambda. Provided that you remain within $110 of compute spending, your card **will not** +be charged 💸. Registering your card with Lambda is a mandatory sign-up step that we unfortunately cannot bypass. But we +reiterate: you will not be charged provided you remain within $110 of compute spending! + +Follow steps 1-4 in the next section [Creating a Cloud Instance](#creating-a-cloud-instance) to register your +card. If you experience issues with registering your card, contact the Lambda team on Discord (see [Communications and Problems](#communication-and-problems)). + +In order to maximise the free GPU hours you have available for training, we advise that you shut down GPUs when you are +not using them and closely monitor your GPU usage. We've detailed the steps you can follow to achieve this in [Deleting a Cloud Instance](#deleting-a-cloud-instance). + +### Creating a Cloud Instance +Estimated time to complete: 5 mins + +*You can also follow our video tutorial to set up a cloud instance on Lambda* 👉️ [YouTube Video](https://www.youtube.com/watch?v=Ndm9CROuk5g&list=PLo2EIpI_JMQtncHQHdHq2cinRVk_VZdGW) + +1. Click the link: https://cloud.lambdalabs.com/instances +2. You'll be asked to sign in to your Lambda account (if you haven't done so already). +3. Once on the GPU instance page, click the purple button "Launch instance" in the top right. +4. Verify a payment method if you haven't done so already. IMPORTANT: if you have followed the instructions in the previous section, you will have received $110 in GPU credits. Exceeding 100 hours of 1x A100 usage may incur charges on your credit card. Contact the Lambda team on Discord if you have issues authenticating your payment method (see [Communications and Problems](#communication-and-problems)) +5. Launching an instance: + 1. In "Instance type", select the instance type "1x A100 (40 GB SXM4)" + 2. In "Select region", select the region with availability closest to you. + 3. In "Select filesystem", select "Don't attach a filesystem". +6. You will be asked to provide your public SSH key. This will allow you to SSH into the GPU device from your local machine. + 1. If you’ve not already created an SSH key pair, you can do so with the following command from your local device: + ```bash + ssh-keygen + ``` + 2. You can find your public SSH key using the command: + ```bash + cat ~/.ssh/id_rsa.pub + ``` + (Windows: `type C:UsersUSERNAME.sshid_rsa.pub` where `USERNAME` is the name of your user) + 4. Copy and paste the output of this command into the first text box + 5. Give your SSH key a memorable name (e.g. `sanchits-mbp`) + 6. Click "Add SSH Key" +7. Select the SSH key from the drop-down menu and click "Launch instance" +8. Read the terms of use and agree +9. We can now see on the "GPU instances" page that our device is booting up! +10. Once the device status changes to "✅ Running", click on the SSH login ("ssh ubuntu@..."). This will copy the SSH login to your clipboard. +11. Now open a new command line window, paste the SSH login, and hit Enter. +12. If asked "Are you sure you want to continue connecting?", type "yes" and press Enter. +13. Great! You're now SSH'd into your A100 device! We're now ready to set up our Python environment! + +You can see your total GPU usage from the Lambda cloud interface: https://cloud.lambdalabs.com/usage + +Here, you can see the total charges that you have incurred since the start of the event. We advise that you check your +total on a daily basis to make sure that it remains below the credit allocation of $110. This ensures that you are +not inadvertently charged for GPU hours. + +If you are unable to SSH into your Lambda GPU in step 11, there is a workaround that you can try. On the [GPU instances page](https://cloud.lambdalabs.com/instances), +under the column "Cloud IDE", click the button "Launch". This will launch a Jupyter Lab on your GPU which will be displayed in your browser. In the +top left-hand corner, click "File" -> "New" -> "Terminal". This will open up a new terminal window. You can use this +terminal window to set up your Python environment in the next section [Set Up an Environment](#set-up-an-environment). + +### Deleting a Cloud Instance + +100 1x A100 hours should provide you with enough time for 5-10 fine-tuning runs (depending on how long you train for +and which size models). To maximise the GPU time you have for training, we advise that you shut down GPUs over prolonged +periods of time when they are not in use. Leaving a GPU running accidentally over the weekend will incur 48 hours of +wasted GPU hours. That's nearly half of your compute allocation! So be smart and shut down your GPU when you're not training. + +Creating an instance and setting it up for the first time may take up to 20 minutes. Subsequently, this process will +be much faster as you gain familiarity with the steps, so you shouldn't worry about having to delete a GPU and spinning one +up the next time you need one. You can expect to spin-up and delete 2-3 GPUs over the course of the fine-tuning event. + + +We'll quickly run through the steps for deleting a Lambda GPU. You can come back to these steps after you've +performed your first training run and you want to shut down the GPU: + +1. Go to the instances page: https://cloud.lambdalabs.com/instances +2. Click the checkbox on the left next to the GPU device you want to delete +3. Click the button "Terminate" in the top right-hand side of your screen (under the purple button "Launch instance") +4. Type "erase data on instance" in the text box and press "ok" + +Your GPU device is now deleted and will stop consuming GPU credits. + +## Set Up an Environment +Estimated time to complete: 5 mins + +*Follow along our video tutorial detailing the set up* 👉️ [YouTube Video](https://www.youtube.com/playlist?list=PLo2EIpI_JMQtzC5feNpqQL7eToYKcOxYf) + +The Whisper model should be fine-tuned using **PyTorch**, **🤗 Transformers**, and, **🤗 Datasets**. In this +section, we'll cover how to set up an environment with the required libraries. This section assumes that you are SSH'd +into your GPU device. This section does not apply if you are fine-tuning the Whisper model in a Google Colab. + +If you are returning to this section having read through it previously and want to quickly set up an environment, you +can do so in one call by executing the following code cell. If this is your first time setting up an environment, we +recommend you read this section to understand the steps involved. + +```bash +sudo add-apt-repository -y ppa:jonathonf/ffmpeg-4 +sudo apt update +sudo apt install -y ffmpeg + +sudo apt-get install git-lfs + +python3 -m venv hf_env +source hf_env/bin/activate +echo "source ~/hf_env/bin/activate" >> ~/.bashrc + +git clone https://github.com/huggingface/community-events.git +pip install -r community-events/whisper-fine-tuning-event/requirements.txt + +git config --global credential.helper store +huggingface-cli login + ``` + +### Unix Libraries + +First, we need to make sure we have the required NVIDIA drivers installed. We can check that we have these drivers +through the following command: + +```bash +nvidia-smi +``` + +This should print a table with our NVIDIA driver version and CUDA version, and should work out of the box for Lambda GPUs! +If you get an error running this command, refer to your device manual for installing the required NVIDIA driver. + +Before installing the required libraries, we'd need to install and update the Unix package `ffmpeg` to version 4: + + ```bash +sudo add-apt-repository -y ppa:jonathonf/ffmpeg-4 +sudo apt update +sudo apt install -y ffmpeg + ``` + +We'll also need the package `git-lfs` to push large model weights to the Hugging Face Hub. To check whether +`git-lfs` is installed, simply run: + +```bash +git-lfs -v +``` + +The output should show something like `git-lfs/2.13.2 (GitHub; linux amd64; go 1.15.4)`. If your console states that +the `git-lfs` command was not found, you can install it via: + +```bash +sudo apt-get install git-lfs +``` + +### Python Libraries + +We recommend installing the required libraries in a Python virtual environment. If you're unfamiliar with Python virtual +environments, check out the [official user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). + +Let's define a variable that denotes the name of the environment we're going to create: + +```bash +env_name= +``` + +We can create a virtual environment (venv) with this name using the following command: + +```bash +python3 -m venv $env_name +``` + +We'll instruct our bash shell to activate the venv by default by placing the venv source command in `.bashrc`: + +```bash +echo "source ~/$env_name/bin/activate" >> ~/.bashrc +``` + +Re-launching the bash shell will activate the venv: + +```bash +bash +``` + +Great! We can see that our venv name is at the start of our command line - this means that we're operating from +within the venv. We can now go ahead and start installing the required Python packages to our venv. + +The [`requirements.txt`](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/requirements.txt) +file in this directory has all the necessary Python packages we need to fine-tune Whisper, including PyTorch, Transformers +and Datasets. We'll install all the packages in this file through one `pip install` command. + +First, let's clone the `community-events` repository to our device: + +```bash +git clone https://github.com/huggingface/community-events.git +``` + +Now we can install the packages from the `requirements.txt` file using the following command: + +```bash +pip install -r community-events/whisper-fine-tuning-event/requirements.txt +``` + +Note: when installing packages, you might see warnings such as: + +```bash + error: invalid command 'bdist_wheel' + ---------------------------------------- + ERROR: Failed building wheel for audioread +``` + +This is perfectly ok! It does not affect our installation. + +We can check that above steps installed the correct version of PyTorch to match our CUDA version. The following command should return True: + +```python +python -c "import torch; print(torch.cuda.is_available())" +``` + +If the above command does not return True, refer to the [official instructions](https://pytorch.org/get-started/locally/) for installing PyTorch. + +We can now verify that `transformers` and `datasets` have been correctly installed. First, launch a Python shell: + +```bash +python +``` + +Running the following code cell will load one sample of the [Common Voice](https://huggingface.co/datasets/common_voice) +dataset from the Hugging Face Hub and perform a forward pass of the "tiny" Whisper model: + +```python +import torch +from transformers import WhisperFeatureExtractor, WhisperForConditionalGeneration +from datasets import load_dataset + +model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") +feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-tiny") + +common_voice = load_dataset("common_voice", "en", split="validation", streaming=True) + +inputs = feature_extractor(next(iter(common_voice))["audio"]["array"], sampling_rate=16000, return_tensors="pt") +input_features = inputs.input_features + +decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id +logits = model(input_features, decoder_input_ids=decoder_input_ids).logits + +print("Environment set up successful?", logits.shape[-1] == 51865) + +``` + +If the final check returns True, the libraries have been installed correctly. Finally, exit the Python shell: + +```python +quit() +``` + +The last thing we need to do is link our Hugging Face account. Run the command: + +```bash +git config --global credential.helper store +huggingface-cli login +``` + +And then enter an authentication token from https://huggingface.co/settings/tokens. Create a new token if you do not have +one already. You should make sure that this token has "write" privileges. + +## Data and Pre-Processing + +In this section, we will cover how to find suitable training data and the necessary steps to pre-process it. +If you are new to the 🤗 Datasets library, we highly recommend reading the comprehensive blog post: [A Complete Guide To Audio Datasets](https://huggingface.co/blog/audio-datasets). +This blog post will tell you everything you need to know about 🤗 Datasets and its one-line API. + +### Data + +Whisper models will be evaluated on the `"test"` split of the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) +dataset. Any data can be used to fine-tune the Whisper model **except Common Voice's `"test"` split**. This exception +extends to all Common Voice versions, as the test split of legacy Common Voice releases often overlaps with the +latest one. For instance, the test split of Common Voice 10 is largely the same as that of Common Voice 11. + +So, the test data: + +```python +load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", use_auth_token=True) +``` + +More or less includes the same data as: + +```python +load_dataset("mozilla-foundation/common_voice_10_0", "en", split="test", use_auth_token=True) +``` + +And **neither** are allowed for training purposes. However, we strongly encourage participants to make use of the other +Common Voice splits for training data, such as the `"train"` and `"validation"` splits: + +```python +load_dataset("mozilla-foundation/common_voice_10_0", "en", split="train", use_auth_token=True) +``` + +For most languages, the `"train"` split of Common Voice 11 dataset offers a reasonable amount of training data. +For low-resource languages, it is normal procedure to combine the `"train"` and `"validation"` splits to give a larger +training corpus: + +```python +load_dataset("mozilla-foundation/common_voice_10_0", "en", split="train+validation", use_auth_token=True) +``` + +This notation for combining splits (`"split_a+split_b"`) is consistent for all resources in the event. You can combine +splits in this same way using the fine-tuning scripts in the following section [Fine-Tune Whisper](#fine-tune-whisper). + +If combining the `"train"` and `"validation"` splits of the Common Voice 11 dataset still gives insufficient training +data for your language, you can explore using other datasets on the Hub to train your model and try +[Mixing Datasets](#mixing-datasets-optional) to give larger training splits. + +### Streaming Mode + +Audio datasets are very large. This causes two issues: +1. They require a significant amount of **storage space** to download. +2. They take a significant amount of **time** to download and process. + +The storage and time requirements present limitations to most speech researchers. For example, downloading the English +subset of the Common Voice 11 dataset (2,300 hours) requires upwards of 200GB of disk space and up to several hours +of download time. For these reasons, we **do not** recommend that you run the following code cell! +```python +from datasets import load_dataset + +common_voice = load_dataset("mozilla-foundation/common_voice_11_0", "en", use_auth_token=True) + +# we have to wait several hours until the entire dataset is downloaded before we can access the first sample... +print(next(iter(common_voice["train"]))) +``` + +However, both these issues can be solved with 🤗 Datasets. Rather than downloading the whole dataset at once, we +load individual samples as we cycle over the dataset, in a process called _streaming_. Since the data is loaded +progressively as we iterate over the dataset, we can get started with a dataset as soon as the first sample is ready. +This way, we don't have to wait for the entire dataset to download before we can run our code! We are also free of any +disk space contraints: once we're done with a sample, we discard it and load the next one to memory. This way, we only +have the data when we need it, and not when we don't! + +Streaming is enabled by passing the argument `streaming=True` to the `load_dataset` function. We can then use our +audio datasets in much the same way as before! For these reasons, **we highly recommend** that you try out the following +code cell! Just make sure you've accepted the Common Voice 11 [terms of use](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) on the Hugging Face Hub. + +```python +from datasets import load_dataset + +common_voice = load_dataset("mozilla-foundation/common_voice_11_0", "en", use_auth_token=True, streaming=True) + +# get the first sample of the dataset straight away! +print(next(iter(common_voice["train"]))) +``` + +The examples for this event rely heavily on streaming mode to fine-tune Whisper. With streaming mode, we can use **any +speech recognition dataset on the Hub with just 20GB of disk space**. As a speech recognition practitioner, this is +game changing! The largest speech recognition datasets are available to us regardless of our device disk space. We are +extremely excited to be showcasing streaming mode in this event and hope that you will enjoy using it. + +There is one caveat to streaming mode. When downloading a dataset to disk, the processed data is saved to our cache. If +we want to re-use this data, we can directly load the processed data from cache, skipping the download and processing +steps. Consequently, we only have to perform the downloading and processing operations once. With streaming mode, the +data is not downloaded to disk. Thus, neither the download nor pre-processing are cached. If we want to re-use the data, +the streaming steps must be repeated, with the audio files loaded and pre-processed again. Therefore, we recommend not +using streaming mode if your dataset is small (< 10 hours). In this case, it is faster to download and pre-process the +dataset in the conventional way once at the start, and then re-use it at each epoch. We provide pointers for disabling +streaming mode in the section [Fine-Tune Whisper](#fine-tune-whisper). + +If you want to read more about streaming mode, we +recommend you check out the aforementioned blog post: [A Complete Guide To Audio Datasets](https://huggingface.co/blog/audio-datasets). + +### Pre-Processing + +Data pre-processing is a very grey area when it comes to speech recognition. In this section, we'll try to make the +situation as clear as possible for you as participants. + +The Common Voice dataset is both cased and punctuated: + +```python +print(next(iter(common_voice["train"]))["sentence"]) +``` +**Print Output:** +``` +Why does Melissandre look like she wants to consume Jon Snow on the ride up the wall? +``` + +If we train the Whisper model on the raw Common Voice dataset, it will learn to predict casing and punctuation. This is +great when we want to use out model for actual speech recognition applications, such as transcribing meetings or +dictation, as the predicted transcriptions will be formatted with casing and punctuation. + +However, we also have the option of 'normalising' the dataset to remove any casing and punctuation. Normalising the +dataset makes the speech recognition task easier: the model no longer needs to distinguish between upper and lower case +characters, or have to predict punctuation from the audio data alone. Because of this, the word error rates are +naturally lower (meaning the results are better). The Whisper paper demonstrates the drastic effect that normalising +transcriptions can have on WER results (_c.f._ Section 4.4 of the [Whisper paper](https://cdn.openai.com/papers/whisper.pdf)). +But while we get lower WERs, we can't necessarily use our model in production. The lack of casing and punctuation makes +the predicted text from the model much harder to read. We would need additional post-processing models to restore casing and +punctuation in our predictions if we wanted to use it for downstream applications. + +There is a happy medium between the two: we can train our systems on cased and normalised transcriptions, and then +evaluate them on normalised text. This way, we train our systems to predict fully formatted text, but also benefit from +the WER improvements we get by normalising the transcriptions. + +The choice of whether you normalise the transcriptions is ultimately down to you. We recommend training on un-normalised +text and evaluating on normalised text to get the best of both worlds. Since those choices are not always obvious, feel +free to ask on Discord or (even better) post your question on the [forum](https://discuss.huggingface.co). + +| Train | Eval | Pros | Cons | +|---------------|---------------|----------------------------------------------------------------|------------------------------------------| +| Un-normalised | Un-normalised | * Predict casing + punctuation
* One logic for train / eval | * WERs are higher | +| Un-normalised | Normalised | * Predict casing + punctuation
* WERs are lower | * Different logic for train / eval | +| Normalised | Normalised | * One logic for train / eval
* WERs are lower | * No casing / punctuation in predictions | + +With the provided training scripts, it is trivial to toggle between removing or retaining punctuation and casing, +requiring at most three lines of code change. Switching between the different modes is explained in more detail in the +following section [Fine-Tune Whisper](#fine-tune-whisper). + +If you want to find out more about pre- and post-processing for speech recognition, we refer you in the direction of +the paper: [ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition](https://arxiv.org/abs/2210.13352). + +The following two subsections are optional. They cover how you can mix datasets to form larger training splits and how +you can use custom data to fine-tune your model. If the Common Voice 11 dataset has sufficient data in your language to +fine-tune your model, you can skip to the next section [Fine-Tune Whisper](#fine-tune-whisper). + +### Mixing Datasets (optional) + +If the Common Voice 11 dataset contains insufficient training data to fine-tune Whisper in your language, you can explore mixing +different datasets to create a larger combined training set. Incorporating supplementary training data is almost always beneficial for training. +The Whisper paper demonstrates the significant effect that increasing the amount of training data can have on downstream +performance (_c.f._ Section 4.2 of the [paper](https://cdn.openai.com/papers/whisper.pdf)). There are a number of datasets +that are available on the Hugging Face Hub that can be downloaded via the 🤗 Datasets library in much the same way as +Common Voice 11. + +We recommend selecting from the following four datasets on the Hugging Face Hub for multilingual speech recognition: + +| Dataset | Languages | Casing | Punctuation | +|-----------------------------------------------------------------------------------------------|-----------|--------|-------------| +| [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) | 100+ | ✅ | ✅ | +| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 15 | ❌ | ✅ | +| [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech) | 6 | ❌ | ❌ | +| [FLEURS](https://huggingface.co/datasets/google/fleurs) | 100+ | ✅ | ✅ | + + + + +You can try training on these datasets individually, or mix them to form larger train sets. + +When mixing datasets, you should ensure the transcription format is consistent across datasets. For example, if you mix +Common Voice 11 (cased + punctuated) with VoxPopuli (un-cased + punctuated), you will need to lower-case **all the text** +for both training and evaluation, such that the transcriptions are consistent across training samples (un-cased + punctuated). + +Likewise, if mixing Common Voice 11 (cased + punctuated) with Multilingual LibriSpeech (un-cased + un-punctuated), you +should make sure to remove all casing and punctuation in **all the text** for both training and evaluation, such that +all transcriptions are un-cased and un-punctuated for all training samples. + +Having a mismatch in formatting for different training samples can reduce the final performance of your fine-tuned Whisper +model. + +If you want to combine multiple datasets for training, you can refer to the code-snippet provided for interleaving +datasets with streaming mode: [interleave_streaming_datasets.ipynb](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/interleave_streaming_datasets.ipynb). + +### Custom Data (optional) + +In addition to publicly available data on the Hugging Face Hub, participants can also make use of their own audio data +for training. When using your own audio data, please make sure that you **are allowed to use the audio data**. For +instance, if the audio data is taken from media platforms, such as YouTube, please verify that the media platform and +the owner of the data have given their approval to use the audio data in the context of machine learning research. If +you are not sure whether the data you want to use has the appropriate licensing, please contact the Hugging Face team +on Discord. + + + +## Fine-Tune Whisper + +Throughout the event, participants are encouraged to leverage the official pre-trained [Whisper checkpoints](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=downloads&search=whisper). +The Whisper checkpoints come in five configurations of varying model sizes. +The smallest four are trained on either English-only or multilingual data. +The largest checkpoint is multilingual only. The checkpoints are summarised in the following table with links to the +models on the Hugging Face Hub: + +| Size | Layers | Width | Heads | Parameters | English-only | Multilingual | +|--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------| +| tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | +| base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | +| small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | +| medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | +| large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | + +The English-only checkpoints should be used for English speech recognition. For all other languages, one should use the +multilingual checkpoints. + +We recommend using the tiny model for rapid prototyping. **We advise that the small or medium checkpoints are used for +fine-tuning**. These checkpoints achieve comparable performance to the large checkpoint, but can be trained much faster +(and hence for much longer!). + +A complete guide to Whisper fine-tuning can be found in the blog post: [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper). +While it is not necessary to have read this blog post before fine-tuning Whisper, it is strongly advised to gain +familiarity with the fine-tuning code. + +There are three ways in which you can execute the fine-tuning code: +1. [Python Script](#python-script) +2. [Jupyter Notebook](#jupyter-notebook) +3. [Google Colab](#google-colab) + +1 and 2 are applicable when running on a local GPU or cloud GPU instance (such as on Lambda). 3 applies if you have +a Google Colab Pro/Pro+ subscription and want to run training in a Google Colab. The proceeding instructions for running +each of these methods are quite lengthy. Feel free to read through each of them to get a better idea for which one you +want to use for training. Once you've read through, we advise you pick one method and stick to it! + +For the walk-through, we'll assume that we're fine-tuning the Whisper model on Spanish ("es") on the Common Voice 11 +dataset. We'll point out where you'll need to change variables to run the script for your language of choice. + +Before jumping into any training, make sure you've accepted the Common Voice 11 [terms of use](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) +on the Hugging Face Hub. + +### Python Script +*Checkout the video tutorial detailing how to fine-tune your whisper model via the CLI* 👉️ [YouTube Video](https://www.youtube.com/playlist?list=PLo2EIpI_JMQuKpnFm1ntcLKP6gq0l0f1Q) + +1. **Create a model repository** + +The steps for running training with a Python script assume that you are SSH'd into your GPU device and have set up +your environment according to the previous section [Set Up an Environment](#set-up-an-environment). + +First, we need to create a model repository on the Hugging Face Hub. This repository will contain all the required files +to reproduce the training run, alongside model weights, training logs and a README.md card. You can either create a model +repository directly on the Hugging Face Hub using the link: https://huggingface.co/new Or, via the CLI. Here, we'll show +how to use the CLI. + +Let's pick a name for our fine-tuned Whisper model: *whisper-small-es*. We can run the following command to create a +repository under this name. + +```bash +huggingface-cli repo create whisper-small-es +``` +(change "es" to your language code) + +We can now see the model on the Hub, *e.g.* under https://huggingface.co/sanchit-gandhi/whisper-small-es + +Let's clone the repository so that we can place our training script and model weights inside: + +```bash +git lfs install +git clone https://huggingface.co/sanchit-gandhi/whisper-small-es +``` + +(be sure to change the repo address to `https://huggingface.co//`) + +We can then enter the repository using the `cd` command: + +```bash +cd whisper-small-es +``` + +2. **Add training script and `run` command** + +We encourage participants to add all the relevant files for training directly to the model repository. This way, +training runs are fully reproducible. + +We provide a Python training script for fine-tuning Whisper with 🤗 Datasets' streaming mode: [`run_speech_recognition_seq2seq_streaming.py`](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_speech_recognition_streaming.py) +This script can be copied to your model repository with the following command: + +```bash +cp ~/community-events/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py . +``` + +This will download a copy of the training script to your model repository. + +We can then define the model, training and data arguments for fine-tuning: + +```bash +echo 'python run_speech_recognition_seq2seq_streaming.py \ + --model_name_or_path="openai/whisper-small" \ + --dataset_name="mozilla-foundation/common_voice_11_0" \ + --dataset_config_name="es" \ + --language="spanish" \ + --train_split_name="train+validation" \ + --eval_split_name="test" \ + --model_index_name="Whisper Small Spanish" \ + --max_steps="5000" \ + --output_dir="./" \ + --per_device_train_batch_size="64" \ + --per_device_eval_batch_size="32" \ + --logging_steps="25" \ + --learning_rate="1e-5" \ + --warmup_steps="500" \ + --evaluation_strategy="steps" \ + --eval_steps="1000" \ + --save_strategy="steps" \ + --save_steps="1000" \ + --generation_max_length="225" \ + --length_column_name="input_length" \ + --max_duration_in_seconds="30" \ + --text_column_name="sentence" \ + --freeze_feature_encoder="False" \ + --report_to="tensorboard" \ + --metric_for_best_model="wer" \ + --greater_is_better="False" \ + --load_best_model_at_end \ + --gradient_checkpointing \ + --fp16 \ + --overwrite_output_dir \ + --do_train \ + --do_eval \ + --predict_with_generate \ + --do_normalize_eval \ + --streaming \ + --use_auth_token \ + --push_to_hub' >> run.sh +``` + +Make sure to change the `--dataset_config_name` and `--language` to the correct values for your language! See also how +we combine the train and validation splits as `--train_split_name="train+validation"`. This is recommended for low-resource +languages (it probably isn't strictly necessary for Spanish, where the `"train"` split for Common Voice 11 contains +ample training data). We also assign a `"model_index_name"` - a pretty name that will go on the model card. If you are +training on a very small dataset (< 10 hours), it is advisable to disable streaming mode: `--streaming="False"`. + +We provide the train/eval batch sizes for the "small" checkpoint fine-tuned on a 1x A100 device. Depending on your device and checkpoint, +you might need to lower these values. Refer to the subsection [Recommended Training Configurations](#recommended-training-configurations) +for suggested batch-sizes for other devices and checkpoints. + +3. **Launch training 🚀** + +We recommend running training through a `tmux` session. This means that training won't be interrupted when you close +your SSH connection. To start a `tmux` session named `mysession`: + +```bash +tmux new -s mysession +``` +(if `tmux` is not installed, you can install it through: `sudo apt-get install tmux`) + +Once in the `tmux` session, we can launch training: + +```bash +bash run.sh +``` + +Training should take approximately 8 hours, with a final cross-entropy loss of **1e-4** and word error rate of **32.6%**. + +Since we're in a `tmux` session, we're free to close our SSH window without stopping training! + +If you close your SSH connection and want to rejoin the `tmux` window, you can SSH into your GPU and then connect to +your session with the following command: + +```bash +tmux a -t mysession +``` + +It will be like you never left! + +`tmux` guide: https://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/ + +### Jupyter Notebook +*We've detailed these steps in a video tutorial to help you get up to speed faster* 👉️ [YouTube Video](https://www.youtube.com/playlist?list=PLo2EIpI_JMQs9z-N4v8L_Jb4KF6kAkylX) + +1. **SSH port forwarding** + +The steps for running training with a Python script assume that you have set up your environment according to the +previous section [Set Up an Environment](#set-up-an-environment) and are **not** SSH'd into your GPU device. If you are +SSH'd into your GPU device, you can close this SSH window and start from your local machine. + +The command to SSH into our GPU looked something as follows: + +```bash +ssh ubuntu@104.171.202.236 +``` + +When running a Jupyter Notebook, we need to "forward" the SSH port from the remote port to the local one. This amounts +to adding `-L 8888:localhost:8888` to the end of our SSH command. We can SSH into our remote machine using this modified +SSH command: + +```bash +ssh ubuntu@104.171.202.236 -L 8888:localhost:8888 +``` + +Be sure to change the `ssh ubuntu@...` part to your corresponding SSH command, it's simply the `-L 8888:localhost:8888` +part added onto the end that is new. If you want to find out more about SSH port forwarding, we recommend you read the guide: +[SSH/OpenSSH/PortForwarding](https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding). + +2. **Create a model repository (copied from previous subsection [Python Script](#python-script))** + +First, we need to create a model repository on the Hugging Face Hub. This repository will contain all the required files +to reproduce the training run, alongside model weights, training logs and a README.md card. + +You can either create a model repository directly on the Hugging Face Hub using the link: https://huggingface.co/new +Or, via the CLI. Here, we'll show how to use the CLI. + +Let's pick a name for our fine-tuned Whisper model: *whisper-small-es*. We can run the following command to create a +repository under this name. + +```bash +huggingface-cli repo create whisper-small-es +``` +(change "es" to your language code) + +We can now see the model on the Hub, *e.g.* under https://huggingface.co/sanchit-gandhi/whisper-small-es + +Let's clone the repository so that we can place our training script and model weights inside: + +```bash +git lfs install +git clone https://huggingface.co/sanchit-gandhi/whisper-small-es +``` + +(be sure to change the repo address to `https://huggingface.co//`) + +We can then enter the repository using the `cd` command: + +```bash +cd whisper-small-es +``` + +3. **Add notebook** + +We encourage participants to add all the training notebook directly to the model repository. This way, +training runs are fully reproducible. + +We provide an iPython notebook for fine-tuning Whisper with 🤗 Datasets' streaming mode: [`fine-tune-whisper-streaming.ipynb`](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/fine-tune-whisper-streaming.ipynb) +This notebook can be copied to your model repository with the following command: + +```bash +cp ~/community-events/whisper-fine-tuning-event/fine-tune-whisper-streaming.ipynb . +``` + +If you are fine-tuning Whisper on a very small dataset (< 10 hours), it is advised that you use the non-streaming notebook +[`fine-tune-whisper-non-streaming.ipynb`](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.ipynb) +(see section [Streaming Mode](#streaming-mode)). This notebook can be copied to your model repository with the following +command: + +```bash +cp ~/community-events/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.ipynb . +``` + +4. **Launch Jupyter** + +First, we need to make sure `jupyterlab` is installed: + +```bash +pip install jupyterlab +``` + +We can then link `jupyter lab` to our venv: +```bash +python -m ipykernel install --user --name= +``` + +We recommend running training through a `tmux` session. This means that training won't be interrupted when you close +your SSH connection. To start a `tmux` session named `mysession`: + +```bash +tmux new -s mysession +``` +(if `tmux` is not installed, you can install it through: `sudo apt-get install tmux`) + +Once in the `tmux` session, we can launch `jupyter lab`: + +```bash +jupyter lab --port 8888 +``` + +5. **Open Jupyter in browser** + +Now, this is the hardest step of running training from a Jupyter Notebook! Open a second terminal window on your local +machine and SSH into your GPU again. This time, it doesn't matter whether we include the `-L 8888:localhost:8888` part, +the important thing is that you re-enter your GPU device in a new SSH window. + +Once SSH'd into your GPU, view all running `jupyter lab` sessions: + +```bash +jupyter lab list +``` + +Copy the URL for the lab corresponding to port 8888 your clipboard, it will take the form `http://localhost:8888/?token=...`. +On your local desktop, open a web browser window (Safari, Firefox, Chrome, etc.). Paste the URL into the browser web +address bar and press Enter. + +Voilà! We're now running a Jupyter Notebook on our GPU machine through the web browser on our local device! + +6. **Open fine-tuning notebook** + +We can use the file explorer on the left to go to our model repository and open the Jupyter notebook `fine_tune_whisper_streaming.ipynb`. +In the top right of the notebook, you'll see a small window that says "Python 3". Clicking on this window will open a +dropdown menu, from which we can select a Python kernel. Select your venv from this dropdown menu. This will ensure that +you run the notebook in the venv we previously set up. + +You can now run this notebook from start to finish and fine-tune the Whisper model as you desire 🤗 The notebook +contains pointers for where you need to change variables for your language. + +Since we're operating within a `tmux` session, we're free to close our SSH connection and browser window when we desire. +Training won't be interrupted by closing this window. However, the notebook will cease to update, so you should make +sure that training is working before closing the notebook. You can monitor training progress through your model repo +on the Hugging Face Hub under the "Training Metrics" tab. + +### Google Colab +The Google Colab for fine-tuning Whisper is entirely self-contained. No need to set up an environment or sping up a GPU. +You can access it through the following link: + + + Open In Colab + + +### Recommended Training Configurations + +In this section, we provide guidance for appropriate training and evaluation batch sizes depending on your GPU device. +Since the Whisper model expects log-Mel input features of a fixed dimension, the GPU memory required by the models is +the same for audio samples of any length. Thus, these recommendations should stand for all 16/40GB GPU devices. However, +if you experience out-of-memory errors, we recommend reducing the `per_device_train_batch_size` by factors of 2 and +increasing the `gradient_accumulation_steps` to compensate. + +If you want to explore methods for reducing the memory of the Whisper model, check out the section [Tips and Tricks](#tips-and-tricks). + +#### V100 / 16 GB GPU + +| Model | Train Batch Size | Gradient Acc Steps | Eval Batch size | +|--------|------------------|--------------------|-----------------| +| small | 16 | 2 | 8 | +| medium | 2 | 16 | 1 | + +It is advised to run the "small" checkpoint if training on a V100 device. Running the medium checkpoint will take +upwards of 12 hours for 5k training steps. We reckon you're better off training the "small" checkpoint for longer! + +#### A100 / 40GB GPU + +| Model | Train Batch Size | Gradient Acc Steps | Eval Batch size | +|--------|------------------|--------------------|-----------------| +| small | 64 | 1 | 32 | +| medium | 32 | 1 | 16 | + +### Punctuation, Casing and Normalisation + +When using the Python training script, removing casing for the training data is enabled by passing the flag `--do_lower_case`. +Removing punctuation in the training data is achieved by passing the flag `--do_remove_punctuation`. Both of these flags +default to False, and we **do not** recommend setting either of them to True. This will ensure your fine-tuned model +learns to predict casing and punctuation. Normalisation is only applied during evaluation by setting the flag +`--do_normalize_eval` (which defaults to True and recommend setting). Normalisation is performed according to the +'official' Whisper normaliser. This normaliser applies the following basic standardisation for non-English text: +1. Remove any phrases between matching brackets ([, ]). +2. Remove any phrases between matching parentheses ((, )). +3. Replace any markers, symbols, and punctuation characters with a space, i.e. when the Unicode category of each character in the NFKC-normalized string starts with M, S, or P. +4. Make the text lowercase. +5. Replace any successive whitespace characters with a space. + +Similarly, in the notebooks, removing casing in the training data is enabled by setting the variable `do_lower_case = True`, +and punctuation by `do_remove_punctuation = True`. We do not recommend setting either of these to True to ensure that +your model learns to predict casing and punctuation. Thus, they are set to False by default. Normalisation is only +applied during evaluation by setting the variable `do_normalize_eval=True` (which we do recommend setting). + +## Evaluation + +We'll be running a live leaderboard throughout the event to track the best performing models across all languages. The leaderboard will track your models performance across *all* the speech recognition models available on the hub for your chosen language and dataset. + +You can find the leaderboard [here](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=common_voice_11_0&only_verified=0&task=automatic-speech-recognition&config=th&split=train%2Bvalidation&metric=wer) 📈. + +Each participant should evaluate their fine-tuned Whisper checkpoint on the `"test"` split of the Common Voice 11 +dataset for their respective language. For languages that are not part of the Common Voice 11 dataset, please contact +the organisers on Discord so that we can work together to find suitable evaluation data. + +We recommend running evaluation during training by setting your eval dataset to the `"test"` split of Common Voice 11. +We'll also provide you with a standalone evaluation script so that you can test your model after training on Common Voice +or other datasets of your choice. + +In addition to running evaluation while training, you can noe use your Whisper checkpoints to run evaluation on *any* speech recognition dataset on the hub. The [run_eval_whisper_streaming.py](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_eval_whisper_streaming.py) script loads your whisper checkpoints, runs batch inference on your specified dataset and returns the WER. + +You can use the script as follows: +```bash +python run_eval_whisper_streaming.py --model_id="openai/whisper-tiny" --dataset="google/fleurs" --config="ar_eg" --device=0 --language="ar" +``` + +The evaluation script can be customised with the following parameters: +1. `model_id` - Whisper model identifier e.g. `openai/whisper-tiny` +2. `dataset` - Dataset name to evaluate the `model_id` on. Default value: `mozilla-foundation/common_voice_11_0` +3. `config` - Config of the dataset. e.g. `'en'` for the English split of Common Voice +4. `split` - Split of the dataset. Default value: `test` +5. `batch_size` - Number of samples to go through each streamed batch for inference. Default value: `16` +6. `max_eval_samples` - Max number of samples to be evaluated from the dataset. Put a lower number e.g. `64` for testing this script. **Only use this for testing the script** +7. `streaming` - Whether you'd like to download the entire dataset or stream it during the evaluation. Default value: `True` +8. `language` - Language you want the `model_id` to transcribe the audio in. +9. `device` - The device to run the pipeline on. e.g. `0` for running on GPU 0. Default value: -1 for CPU. + +## Building a Demo + +Finally, on to the fun part! Time to sit back and watch the model transcribe audio. We've created a [template Gradio demo](https://huggingface.co/spaces/whisper-event/whisper-demo) +that you can use to showcase your fine-tuned Whisper model 📢 + +Click the link to duplicate the template demo to your account: https://huggingface.co/spaces/whisper-event/whisper-demo?duplicate=true + +We recommend giving your space a similar name to your fine-tuned model (e.g. `whisper-demo-es`) and setting the visibility +to "Public". + +Once you've duplicated the Space to your account, click "Files and versions" -> "app.py" -> "edit". Change the model +identifier to your fine-tuned model (line 9). Scroll to the bottom of the page and click "Commit changes to `main`". +The demo will reboot, this time using your fine-tuned model. You can share this demo with your friends and family so +that they can use the model that you've trained! + +*Checkout our video tutorial to get a better understanding 👉️ [YouTube Video](https://www.youtube.com/watch?v=VQYuvl6-9VE)* + +## Communication and Problems + +If you encounter any problems or have any questions, you should use one of the following platforms +depending on your type of problem. Hugging Face is an "open-source-first" organisation, meaning +that we'll try to solve all problems in the most public and transparent way possible so that everybody +in the community benefits. + +The following paragraph summarises the platform to use for each kind of problem: + +- Problem/question/bug with the 🤗 Datasets library that you think is a general problem that also impacts other people, please open an [Issue on Datasets](https://github.com/huggingface/datasets/issues/new?assignees=&labels=bug&template=bug-report.md&title=) and ping @sanchit-gandhi and @vaibhavs10. +- Problem/question/bug with the 🤗 Transformers library that you think is a general problem that also impacts other people, please open an [Issue on Transformers](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title=) and ping @sanchit-gandhi and @vaibhavs10. +- Problem/question with a modified, customised training script that is less likely to impact other people, please post your problem/question [on the forum](https://discuss.huggingface.co/) and ping @sanchit-gandhi and @vaibhavs10. +- Problem/question regarding access or set up of a Lambda GPU, please ask in the Discord channel **#lambdalabs-infra-support**. +- Other questions regarding the event, rules of the event, or if you are unsure where to post your question, please ask in the Discord channel **#events**. + +## Talks + +We are very excited to be hosting talks from Open AI, Meta AI and Hugging Face to help you get a better understanding of the Whisper model, the VoxPopuli dataset and details about the fine-tuning event itself! + +| **Speaker** | **Topic** | **Time** | **Video** | +|------------------------------|------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------| +| Sanchit Gandhi, Hugging Face | Introduction to Whisper Fine-Tuning Event | 15:00 UTC, 2nd December, 2022 | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=1cVBLOMlv3w) | +| Jong Wook Kim, OpenAI | [Whisper Model](https://cdn.openai.com/papers/whisper.pdf) | 16:30 UTC, 5th December, 2022 | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=fZMiD8sDzzg ) | +| Changhan Wang, MetaAI | [VoxPopuli Dataset](https://arxiv.org/abs/2101.00390) | 17:30 UTC, 5th December, 2022 | [![Youtube](https://www.youtube.com/s/desktop/f506bd45/img/favicon_32.png)](https://www.youtube.com/watch?v=fZMiD8sDzzg ) | + +## Tips and Tricks + +We include three memory saving tricks that you can explore to run the fine-tuning scripts with larger batch-sizes and +potentially larger checkpoints. + +### Adam 8bit +The [Adam optimiser](https://arxiv.org/abs/1412.6980a) requires two params (betas) for every model parameter. So the memory requirement of the optimiser is +**two times** that of the model. You can switch to using an 8bit version of the Adam optimiser from [`bitsandbytes`](https://github.com/TimDettmers/bitsandbytes#bitsandbytes). +This will cast the optimiser parameters into 8bit precision, saving you a lot of memory and potentially allowing you to run bigger batch sizes. +To use Adam 8bit, you first need to pip install `bitsandbytes`: + +```bash +pip install bitsandbytes +``` + +Then, set `optim="adamw_bnb_8bit"`, either in your `run.sh` file if running from a Python script, or when you +instantiate the Seq2SeqTrainingArguments from a Jupyter Notebook or Google Colab: + +```python +from transformers import Seq2SeqTrainingArguments + +training_args = Seq2SeqTrainingArguments( + output_dir="./", + per_device_train_batch_size=64, + gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size + learning_rate=1e-5, + warmup_steps=500, + max_steps=5000, + gradient_checkpointing=True, + fp16=True, + evaluation_strategy="steps", + per_device_eval_batch_size=8, + predict_with_generate=True, + generation_max_length=225, + save_steps=1000, + eval_steps=1000, + logging_steps=25, + report_to=["tensorboard"], + load_best_model_at_end=True, + metric_for_best_model="wer", + greater_is_better=False, + push_to_hub=True, + optim="adamw_bnb_8bit" +) +``` + +### Adafactor + +Rather than using Adam, you can use a different optimiser all together. Adam requires two optimiser params per one model +param, but [Adafactor](https://arxiv.org/abs/1804.04235) uses only one. To enable Adafactor, set `optim="adafactor"` in the +`Seq2SeqTrainingArguments`. You can expect to double your training batch size when using Adafactor compared to Adam. + +A word of caution: Adafactor is untested for fine-tuning Whisper, so we are unsure sure how +Adafactor performance compares to Adam! Typically, using Adafactor results in **slower convergence** than using Adam or +Adam 8bit. For this reason, we recommend Adafactor as an **experimental feature** only. + +### DeepSpeed + +DeepSpeed is a framework for training larger deep learning models with limited GPU resources by optimising GPU utilisation. +We provide implementation details for DeepSpeed ZeRo Stage 2, which partitions the optimiser states (ZeRO stage 1) and gradients +(ZeRO stage 2). With DeepSpeed, it is more than possible to train the medium Whisper checkpoint on a V100, or the large +checkpoint on an A100. For more details, we refer you to the blog post by the original authors: [DeepSpeed ZeRO](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/). + +Using DeepSpeed with 🤗 Transformers is straightforward. First, we need to install the packages 🤗 Accelerate and DeepSpeed: + +```bash +pip install -U accelerate deepspeed +``` + +The DeepSpeed configuration file specifies precisely what form of optimiser/gradient offloading we are going to perform. +The key to getting a huge improvement on a single GPU with DeepSpeed is to have at least the provided DeepSpeed configuration +in the configuration file [`ds_config.json`](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/ds_config.json). + +You can copy the DeepSpeed configuration file to your model repository as follows: + +```bash +cp ~/community-events/whisper-fine-tuning-event/ds_config.json . +``` + +### Python Script + +Using DeepSpeed with the Python training script requires two changes to the `run.sh` file. Firstly, we launch the script using `deepspeed` +instead of Python. Secondly, we pass the DeepSpeed config `ds_config.json` as a training argument. The remainder of the `run.sh` +file takes the same format as using the native Trainer configuration: + +```bash +deepspeed run_speech_recognition_seq2seq_streaming.py \ + --deepspeed="ds_config.json" \ + --model_name_or_path="openai/whisper-small" \ + --dataset_name="mozilla-foundation/common_voice_11_0" \ + --dataset_config_name="es" \ + --language="spanish" \ + --train_split_name="train+validation" \ + --eval_split_name="test" \ + --model_index_name="Whisper Small Spanish" \ + --max_steps="5000" \ + --output_dir="./" \ + --per_device_train_batch_size="64" \ + --per_device_eval_batch_size="32" \ + --logging_steps="25" \ + --learning_rate="1e-5" \ + --warmup_steps="500" \ + --evaluation_strategy="steps" \ + --eval_steps="1000" \ + --save_strategy="steps" \ + --save_steps="1000" \ + --generation_max_length="225" \ + --length_column_name="input_length" \ + --max_duration_in_seconds="30" \ + --text_column_name="sentence" \ + --freeze_feature_encoder="False" \ + --report_to="tensorboard" \ + --metric_for_best_model="wer" \ + --greater_is_better="False" \ + --load_best_model_at_end \ + --gradient_checkpointing \ + --fp16 \ + --overwrite_output_dir \ + --do_train \ + --do_eval \ + --predict_with_generate \ + --do_normalize_eval \ + --streaming \ + --use_auth_token \ + --push_to_hub +``` + +### Jupyter Notebook + +Using DeepSpeed with the template Jupyter Notebooks requires two changes. Firstly, we add the following code cell at the +start of the notebook to configure the DeepSpeed environment: + +```python +# DeepSpeed requires a distributed environment even when only one process is used. +# This emulates a launcher in the notebook +import os + +os.environ["MASTER_ADDR"] = "localhost" +os.environ["MASTER_PORT"] = "9994" # modify if RuntimeError: Address already in use +os.environ["RANK"] = "0" +os.environ["LOCAL_RANK"] = "0" +os.environ["WORLD_SIZE"] = "1" +``` + +Secondly, we pass the DeepSpeed config file to the training args: + +```python +training_args = Seq2SeqTrainingArguments(..., deepspeed="ds_config.json") +``` + +### Recommended Batch Sizes with DeepSpeed + +Using DeepSpeed, it is possible to fit larger batch sizes and even larger checkpoints on your device, be it a V100 or +A100. We provide recommended batch sizes for the three checkpoint sizes of interest for 16GB GPUs and 40GB GPUs. As before, +these batch sizes are only indicative: you should tune the batch size depending on your device, checkpoint and language. + +#### V100 / 16 GB GPU + +| Model | Train Batch Size | Gradient Acc Steps | Eval Batch size | Speed | +|--------|------------------|--------------------|-----------------|---------| +| small | 32 | 1 | 16 | 1.3s/it | +| medium | 16 | 1 or 2 | 8 | 2.0s/it | +| large | 8 | 2 or 4 | 4 | 3.8s/it | + +#### A100 / 40GB GPU + +| Model | Train Batch Size | Gradient Acc Steps | Eval Batch size | Speed | +|--------|------------------|--------------------|-----------------|---------| +| small | 64 | 1 | 32 | 2.3s/it | +| medium | 64 | 1 | 32 | 5.8s/it | +| large | 32 | 1 or 2 | 16 | 5.9s/it | + + +## Scripts & Colabs + +1. [Whirlwind tour of Whispering with 🤗Transformers](https://colab.research.google.com/drive/1l290cRv4RdvuLNlSeo9WexByHaNWs3s3?usp=sharing) +2. [8bit inference for Whisper large model (6.5 gig VRAM) 🤯](https://colab.research.google.com/drive/1EMOwwfm1V1fHxH7eT1LLg7yBjhTooB6j?usp=sharing) + + + +## Feedback + +We would love to get your feedback on the event! If you have a spare ten minutes, we'd appreciate you filling out the +feedback form at: https://forms.gle/7hvrTE8NaSdQwwU68 diff --git a/whisper-fine-tuning-event/added_tokens.json b/whisper-fine-tuning-event/added_tokens.json new file mode 100644 index 0000000000000000000000000000000000000000..e3d256c988462aa153dcabe2aa38b8e9b436c06f --- /dev/null +++ b/whisper-fine-tuning-event/added_tokens.json @@ -0,0 +1,1609 @@ +{ + "<|0.00|>": 50364, + "<|0.02|>": 50365, + "<|0.04|>": 50366, + "<|0.06|>": 50367, + "<|0.08|>": 50368, + "<|0.10|>": 50369, + "<|0.12|>": 50370, + "<|0.14|>": 50371, + "<|0.16|>": 50372, + "<|0.18|>": 50373, + "<|0.20|>": 50374, + "<|0.22|>": 50375, + "<|0.24|>": 50376, + "<|0.26|>": 50377, + "<|0.28|>": 50378, + "<|0.30|>": 50379, + "<|0.32|>": 50380, + "<|0.34|>": 50381, + "<|0.36|>": 50382, + "<|0.38|>": 50383, + "<|0.40|>": 50384, + "<|0.42|>": 50385, + "<|0.44|>": 50386, + "<|0.46|>": 50387, + "<|0.48|>": 50388, + "<|0.50|>": 50389, + "<|0.52|>": 50390, + "<|0.54|>": 50391, + "<|0.56|>": 50392, + "<|0.58|>": 50393, + "<|0.60|>": 50394, + "<|0.62|>": 50395, + "<|0.64|>": 50396, + "<|0.66|>": 50397, + "<|0.68|>": 50398, + "<|0.70|>": 50399, + "<|0.72|>": 50400, + "<|0.74|>": 50401, + "<|0.76|>": 50402, + "<|0.78|>": 50403, + "<|0.80|>": 50404, + "<|0.82|>": 50405, + "<|0.84|>": 50406, + "<|0.86|>": 50407, + "<|0.88|>": 50408, + "<|0.90|>": 50409, + "<|0.92|>": 50410, + "<|0.94|>": 50411, + "<|0.96|>": 50412, + "<|0.98|>": 50413, + "<|1.00|>": 50414, + "<|1.02|>": 50415, + "<|1.04|>": 50416, + "<|1.06|>": 50417, + "<|1.08|>": 50418, + "<|1.10|>": 50419, + "<|1.12|>": 50420, + "<|1.14|>": 50421, + "<|1.16|>": 50422, + "<|1.18|>": 50423, + "<|1.20|>": 50424, + "<|1.22|>": 50425, + "<|1.24|>": 50426, + "<|1.26|>": 50427, + "<|1.28|>": 50428, + "<|1.30|>": 50429, + "<|1.32|>": 50430, + "<|1.34|>": 50431, + "<|1.36|>": 50432, + "<|1.38|>": 50433, + "<|1.40|>": 50434, + "<|1.42|>": 50435, + "<|1.44|>": 50436, + "<|1.46|>": 50437, + "<|1.48|>": 50438, + "<|1.50|>": 50439, + "<|1.52|>": 50440, + "<|1.54|>": 50441, + "<|1.56|>": 50442, + "<|1.58|>": 50443, + "<|1.60|>": 50444, + "<|1.62|>": 50445, + "<|1.64|>": 50446, + "<|1.66|>": 50447, + "<|1.68|>": 50448, + "<|1.70|>": 50449, + "<|1.72|>": 50450, + "<|1.74|>": 50451, + "<|1.76|>": 50452, + "<|1.78|>": 50453, + "<|1.80|>": 50454, + "<|1.82|>": 50455, + "<|1.84|>": 50456, + "<|1.86|>": 50457, + "<|1.88|>": 50458, + "<|1.90|>": 50459, + "<|1.92|>": 50460, + "<|1.94|>": 50461, + "<|1.96|>": 50462, + "<|1.98|>": 50463, + "<|10.00|>": 50864, + "<|10.02|>": 50865, + "<|10.04|>": 50866, + "<|10.06|>": 50867, + "<|10.08|>": 50868, + "<|10.10|>": 50869, + "<|10.12|>": 50870, + "<|10.14|>": 50871, + "<|10.16|>": 50872, + "<|10.18|>": 50873, + "<|10.20|>": 50874, + "<|10.22|>": 50875, + "<|10.24|>": 50876, + "<|10.26|>": 50877, + "<|10.28|>": 50878, + "<|10.30|>": 50879, + "<|10.32|>": 50880, + "<|10.34|>": 50881, + "<|10.36|>": 50882, + "<|10.38|>": 50883, + "<|10.40|>": 50884, + "<|10.42|>": 50885, + "<|10.44|>": 50886, + "<|10.46|>": 50887, + "<|10.48|>": 50888, + "<|10.50|>": 50889, + "<|10.52|>": 50890, + "<|10.54|>": 50891, + "<|10.56|>": 50892, + "<|10.58|>": 50893, + "<|10.60|>": 50894, + "<|10.62|>": 50895, + "<|10.64|>": 50896, + "<|10.66|>": 50897, + "<|10.68|>": 50898, + "<|10.70|>": 50899, + "<|10.72|>": 50900, + "<|10.74|>": 50901, + "<|10.76|>": 50902, + "<|10.78|>": 50903, + "<|10.80|>": 50904, + "<|10.82|>": 50905, + "<|10.84|>": 50906, + "<|10.86|>": 50907, + "<|10.88|>": 50908, + "<|10.90|>": 50909, + "<|10.92|>": 50910, + "<|10.94|>": 50911, + "<|10.96|>": 50912, + "<|10.98|>": 50913, + "<|11.00|>": 50914, + "<|11.02|>": 50915, + "<|11.04|>": 50916, + "<|11.06|>": 50917, + "<|11.08|>": 50918, + "<|11.10|>": 50919, + "<|11.12|>": 50920, + "<|11.14|>": 50921, + "<|11.16|>": 50922, + "<|11.18|>": 50923, + "<|11.20|>": 50924, + "<|11.22|>": 50925, + "<|11.24|>": 50926, + "<|11.26|>": 50927, + "<|11.28|>": 50928, + "<|11.30|>": 50929, + "<|11.32|>": 50930, + "<|11.34|>": 50931, + "<|11.36|>": 50932, + "<|11.38|>": 50933, + "<|11.40|>": 50934, + "<|11.42|>": 50935, + "<|11.44|>": 50936, + "<|11.46|>": 50937, + "<|11.48|>": 50938, + "<|11.50|>": 50939, + "<|11.52|>": 50940, + "<|11.54|>": 50941, + "<|11.56|>": 50942, + "<|11.58|>": 50943, + "<|11.60|>": 50944, + "<|11.62|>": 50945, + "<|11.64|>": 50946, + "<|11.66|>": 50947, + "<|11.68|>": 50948, + "<|11.70|>": 50949, + "<|11.72|>": 50950, + "<|11.74|>": 50951, + "<|11.76|>": 50952, + "<|11.78|>": 50953, + "<|11.80|>": 50954, + "<|11.82|>": 50955, + "<|11.84|>": 50956, + "<|11.86|>": 50957, + "<|11.88|>": 50958, + "<|11.90|>": 50959, + "<|11.92|>": 50960, + "<|11.94|>": 50961, + "<|11.96|>": 50962, + "<|11.98|>": 50963, + "<|12.00|>": 50964, + "<|12.02|>": 50965, + "<|12.04|>": 50966, + "<|12.06|>": 50967, + "<|12.08|>": 50968, + "<|12.10|>": 50969, + "<|12.12|>": 50970, + "<|12.14|>": 50971, + "<|12.16|>": 50972, + "<|12.18|>": 50973, + "<|12.20|>": 50974, + "<|12.22|>": 50975, + "<|12.24|>": 50976, + "<|12.26|>": 50977, + "<|12.28|>": 50978, + "<|12.30|>": 50979, + "<|12.32|>": 50980, + "<|12.34|>": 50981, + "<|12.36|>": 50982, + "<|12.38|>": 50983, + "<|12.40|>": 50984, + "<|12.42|>": 50985, + "<|12.44|>": 50986, + "<|12.46|>": 50987, + "<|12.48|>": 50988, + "<|12.50|>": 50989, + "<|12.52|>": 50990, + "<|12.54|>": 50991, + "<|12.56|>": 50992, + "<|12.58|>": 50993, + "<|12.60|>": 50994, + "<|12.62|>": 50995, + "<|12.64|>": 50996, + "<|12.66|>": 50997, + "<|12.68|>": 50998, + "<|12.70|>": 50999, + "<|12.72|>": 51000, + "<|12.74|>": 51001, + "<|12.76|>": 51002, + "<|12.78|>": 51003, + "<|12.80|>": 51004, + "<|12.82|>": 51005, + "<|12.84|>": 51006, + "<|12.86|>": 51007, + "<|12.88|>": 51008, + "<|12.90|>": 51009, + "<|12.92|>": 51010, + "<|12.94|>": 51011, + "<|12.96|>": 51012, + "<|12.98|>": 51013, + "<|13.00|>": 51014, + "<|13.02|>": 51015, + "<|13.04|>": 51016, + "<|13.06|>": 51017, + "<|13.08|>": 51018, + "<|13.10|>": 51019, + "<|13.12|>": 51020, + "<|13.14|>": 51021, + "<|13.16|>": 51022, + "<|13.18|>": 51023, + "<|13.20|>": 51024, + "<|13.22|>": 51025, + "<|13.24|>": 51026, + "<|13.26|>": 51027, + "<|13.28|>": 51028, + "<|13.30|>": 51029, + "<|13.32|>": 51030, + "<|13.34|>": 51031, + "<|13.36|>": 51032, + "<|13.38|>": 51033, + "<|13.40|>": 51034, + "<|13.42|>": 51035, + "<|13.44|>": 51036, + "<|13.46|>": 51037, + "<|13.48|>": 51038, + "<|13.50|>": 51039, + "<|13.52|>": 51040, + "<|13.54|>": 51041, + "<|13.56|>": 51042, + "<|13.58|>": 51043, + "<|13.60|>": 51044, + "<|13.62|>": 51045, + "<|13.64|>": 51046, + "<|13.66|>": 51047, + "<|13.68|>": 51048, + "<|13.70|>": 51049, + "<|13.72|>": 51050, + "<|13.74|>": 51051, + "<|13.76|>": 51052, + "<|13.78|>": 51053, + "<|13.80|>": 51054, + "<|13.82|>": 51055, + "<|13.84|>": 51056, + "<|13.86|>": 51057, + "<|13.88|>": 51058, + "<|13.90|>": 51059, + "<|13.92|>": 51060, + "<|13.94|>": 51061, + "<|13.96|>": 51062, + "<|13.98|>": 51063, + "<|14.00|>": 51064, + "<|14.02|>": 51065, + "<|14.04|>": 51066, + "<|14.06|>": 51067, + "<|14.08|>": 51068, + "<|14.10|>": 51069, + "<|14.12|>": 51070, + "<|14.14|>": 51071, + "<|14.16|>": 51072, + "<|14.18|>": 51073, + "<|14.20|>": 51074, + "<|14.22|>": 51075, + "<|14.24|>": 51076, + "<|14.26|>": 51077, + "<|14.28|>": 51078, + "<|14.30|>": 51079, + "<|14.32|>": 51080, + "<|14.34|>": 51081, + "<|14.36|>": 51082, + "<|14.38|>": 51083, + "<|14.40|>": 51084, + "<|14.42|>": 51085, + "<|14.44|>": 51086, + "<|14.46|>": 51087, + "<|14.48|>": 51088, + "<|14.50|>": 51089, + "<|14.52|>": 51090, + "<|14.54|>": 51091, + "<|14.56|>": 51092, + "<|14.58|>": 51093, + "<|14.60|>": 51094, + "<|14.62|>": 51095, + "<|14.64|>": 51096, + "<|14.66|>": 51097, + "<|14.68|>": 51098, + "<|14.70|>": 51099, + "<|14.72|>": 51100, + "<|14.74|>": 51101, + "<|14.76|>": 51102, + "<|14.78|>": 51103, + "<|14.80|>": 51104, + "<|14.82|>": 51105, + "<|14.84|>": 51106, + "<|14.86|>": 51107, + "<|14.88|>": 51108, + "<|14.90|>": 51109, + "<|14.92|>": 51110, + "<|14.94|>": 51111, + "<|14.96|>": 51112, + "<|14.98|>": 51113, + "<|15.00|>": 51114, + "<|15.02|>": 51115, + "<|15.04|>": 51116, + "<|15.06|>": 51117, + "<|15.08|>": 51118, + "<|15.10|>": 51119, + "<|15.12|>": 51120, + "<|15.14|>": 51121, + "<|15.16|>": 51122, + "<|15.18|>": 51123, + "<|15.20|>": 51124, + "<|15.22|>": 51125, + "<|15.24|>": 51126, + "<|15.26|>": 51127, + "<|15.28|>": 51128, + "<|15.30|>": 51129, + "<|15.32|>": 51130, + "<|15.34|>": 51131, + "<|15.36|>": 51132, + "<|15.38|>": 51133, + "<|15.40|>": 51134, + "<|15.42|>": 51135, + "<|15.44|>": 51136, + "<|15.46|>": 51137, + "<|15.48|>": 51138, + "<|15.50|>": 51139, + "<|15.52|>": 51140, + "<|15.54|>": 51141, + "<|15.56|>": 51142, + "<|15.58|>": 51143, + "<|15.60|>": 51144, + "<|15.62|>": 51145, + "<|15.64|>": 51146, + "<|15.66|>": 51147, + "<|15.68|>": 51148, + "<|15.70|>": 51149, + "<|15.72|>": 51150, + "<|15.74|>": 51151, + "<|15.76|>": 51152, + "<|15.78|>": 51153, + "<|15.80|>": 51154, + "<|15.82|>": 51155, + "<|15.84|>": 51156, + "<|15.86|>": 51157, + "<|15.88|>": 51158, + "<|15.90|>": 51159, + "<|15.92|>": 51160, + "<|15.94|>": 51161, + "<|15.96|>": 51162, + "<|15.98|>": 51163, + "<|16.00|>": 51164, + "<|16.02|>": 51165, + "<|16.04|>": 51166, + "<|16.06|>": 51167, + "<|16.08|>": 51168, + "<|16.10|>": 51169, + "<|16.12|>": 51170, + "<|16.14|>": 51171, + "<|16.16|>": 51172, + "<|16.18|>": 51173, + "<|16.20|>": 51174, + "<|16.22|>": 51175, + "<|16.24|>": 51176, + "<|16.26|>": 51177, + "<|16.28|>": 51178, + "<|16.30|>": 51179, + "<|16.32|>": 51180, + "<|16.34|>": 51181, + "<|16.36|>": 51182, + "<|16.38|>": 51183, + "<|16.40|>": 51184, + "<|16.42|>": 51185, + "<|16.44|>": 51186, + "<|16.46|>": 51187, + "<|16.48|>": 51188, + "<|16.50|>": 51189, + "<|16.52|>": 51190, + "<|16.54|>": 51191, + "<|16.56|>": 51192, + "<|16.58|>": 51193, + "<|16.60|>": 51194, + "<|16.62|>": 51195, + "<|16.64|>": 51196, + "<|16.66|>": 51197, + "<|16.68|>": 51198, + "<|16.70|>": 51199, + "<|16.72|>": 51200, + "<|16.74|>": 51201, + "<|16.76|>": 51202, + "<|16.78|>": 51203, + "<|16.80|>": 51204, + "<|16.82|>": 51205, + "<|16.84|>": 51206, + "<|16.86|>": 51207, + "<|16.88|>": 51208, + "<|16.90|>": 51209, + "<|16.92|>": 51210, + "<|16.94|>": 51211, + "<|16.96|>": 51212, + "<|16.98|>": 51213, + "<|17.00|>": 51214, + "<|17.02|>": 51215, + "<|17.04|>": 51216, + "<|17.06|>": 51217, + "<|17.08|>": 51218, + "<|17.10|>": 51219, + "<|17.12|>": 51220, + "<|17.14|>": 51221, + "<|17.16|>": 51222, + "<|17.18|>": 51223, + "<|17.20|>": 51224, + "<|17.22|>": 51225, + "<|17.24|>": 51226, + "<|17.26|>": 51227, + "<|17.28|>": 51228, + "<|17.30|>": 51229, + "<|17.32|>": 51230, + "<|17.34|>": 51231, + "<|17.36|>": 51232, + "<|17.38|>": 51233, + "<|17.40|>": 51234, + "<|17.42|>": 51235, + "<|17.44|>": 51236, + "<|17.46|>": 51237, + "<|17.48|>": 51238, + "<|17.50|>": 51239, + "<|17.52|>": 51240, + "<|17.54|>": 51241, + "<|17.56|>": 51242, + "<|17.58|>": 51243, + "<|17.60|>": 51244, + "<|17.62|>": 51245, + "<|17.64|>": 51246, + "<|17.66|>": 51247, + "<|17.68|>": 51248, + "<|17.70|>": 51249, + "<|17.72|>": 51250, + "<|17.74|>": 51251, + "<|17.76|>": 51252, + "<|17.78|>": 51253, + "<|17.80|>": 51254, + "<|17.82|>": 51255, + "<|17.84|>": 51256, + "<|17.86|>": 51257, + "<|17.88|>": 51258, + "<|17.90|>": 51259, + "<|17.92|>": 51260, + "<|17.94|>": 51261, + "<|17.96|>": 51262, + "<|17.98|>": 51263, + "<|18.00|>": 51264, + "<|18.02|>": 51265, + "<|18.04|>": 51266, + "<|18.06|>": 51267, + "<|18.08|>": 51268, + "<|18.10|>": 51269, + "<|18.12|>": 51270, + "<|18.14|>": 51271, + "<|18.16|>": 51272, + "<|18.18|>": 51273, + "<|18.20|>": 51274, + "<|18.22|>": 51275, + "<|18.24|>": 51276, + "<|18.26|>": 51277, + "<|18.28|>": 51278, + "<|18.30|>": 51279, + "<|18.32|>": 51280, + "<|18.34|>": 51281, + "<|18.36|>": 51282, + "<|18.38|>": 51283, + "<|18.40|>": 51284, + "<|18.42|>": 51285, + "<|18.44|>": 51286, + "<|18.46|>": 51287, + "<|18.48|>": 51288, + "<|18.50|>": 51289, + "<|18.52|>": 51290, + "<|18.54|>": 51291, + "<|18.56|>": 51292, + "<|18.58|>": 51293, + "<|18.60|>": 51294, + "<|18.62|>": 51295, + "<|18.64|>": 51296, + "<|18.66|>": 51297, + "<|18.68|>": 51298, + "<|18.70|>": 51299, + "<|18.72|>": 51300, + "<|18.74|>": 51301, + "<|18.76|>": 51302, + "<|18.78|>": 51303, + "<|18.80|>": 51304, + "<|18.82|>": 51305, + "<|18.84|>": 51306, + "<|18.86|>": 51307, + "<|18.88|>": 51308, + "<|18.90|>": 51309, + "<|18.92|>": 51310, + "<|18.94|>": 51311, + "<|18.96|>": 51312, + "<|18.98|>": 51313, + "<|19.00|>": 51314, + "<|19.02|>": 51315, + "<|19.04|>": 51316, + "<|19.06|>": 51317, + "<|19.08|>": 51318, + "<|19.10|>": 51319, + "<|19.12|>": 51320, + "<|19.14|>": 51321, + "<|19.16|>": 51322, + "<|19.18|>": 51323, + "<|19.20|>": 51324, + "<|19.22|>": 51325, + "<|19.24|>": 51326, + "<|19.26|>": 51327, + "<|19.28|>": 51328, + "<|19.30|>": 51329, + "<|19.32|>": 51330, + "<|19.34|>": 51331, + "<|19.36|>": 51332, + "<|19.38|>": 51333, + "<|19.40|>": 51334, + "<|19.42|>": 51335, + "<|19.44|>": 51336, + "<|19.46|>": 51337, + "<|19.48|>": 51338, + "<|19.50|>": 51339, + "<|19.52|>": 51340, + "<|19.54|>": 51341, + "<|19.56|>": 51342, + "<|19.58|>": 51343, + "<|19.60|>": 51344, + "<|19.62|>": 51345, + "<|19.64|>": 51346, + "<|19.66|>": 51347, + "<|19.68|>": 51348, + "<|19.70|>": 51349, + "<|19.72|>": 51350, + "<|19.74|>": 51351, + "<|19.76|>": 51352, + "<|19.78|>": 51353, + "<|19.80|>": 51354, + "<|19.82|>": 51355, + "<|19.84|>": 51356, + "<|19.86|>": 51357, + "<|19.88|>": 51358, + "<|19.90|>": 51359, + "<|19.92|>": 51360, + "<|19.94|>": 51361, + "<|19.96|>": 51362, + "<|19.98|>": 51363, + "<|2.00|>": 50464, + "<|2.02|>": 50465, + "<|2.04|>": 50466, + "<|2.06|>": 50467, + "<|2.08|>": 50468, + "<|2.10|>": 50469, + "<|2.12|>": 50470, + "<|2.14|>": 50471, + "<|2.16|>": 50472, + "<|2.18|>": 50473, + "<|2.20|>": 50474, + "<|2.22|>": 50475, + "<|2.24|>": 50476, + "<|2.26|>": 50477, + "<|2.28|>": 50478, + "<|2.30|>": 50479, + "<|2.32|>": 50480, + "<|2.34|>": 50481, + "<|2.36|>": 50482, + "<|2.38|>": 50483, + "<|2.40|>": 50484, + "<|2.42|>": 50485, + "<|2.44|>": 50486, + "<|2.46|>": 50487, + "<|2.48|>": 50488, + "<|2.50|>": 50489, + "<|2.52|>": 50490, + "<|2.54|>": 50491, + "<|2.56|>": 50492, + "<|2.58|>": 50493, + "<|2.60|>": 50494, + "<|2.62|>": 50495, + "<|2.64|>": 50496, + "<|2.66|>": 50497, + "<|2.68|>": 50498, + "<|2.70|>": 50499, + "<|2.72|>": 50500, + "<|2.74|>": 50501, + "<|2.76|>": 50502, + "<|2.78|>": 50503, + "<|2.80|>": 50504, + "<|2.82|>": 50505, + "<|2.84|>": 50506, + "<|2.86|>": 50507, + "<|2.88|>": 50508, + "<|2.90|>": 50509, + "<|2.92|>": 50510, + "<|2.94|>": 50511, + "<|2.96|>": 50512, + "<|2.98|>": 50513, + "<|20.00|>": 51364, + "<|20.02|>": 51365, + "<|20.04|>": 51366, + "<|20.06|>": 51367, + "<|20.08|>": 51368, + "<|20.10|>": 51369, + "<|20.12|>": 51370, + "<|20.14|>": 51371, + "<|20.16|>": 51372, + "<|20.18|>": 51373, + "<|20.20|>": 51374, + "<|20.22|>": 51375, + "<|20.24|>": 51376, + "<|20.26|>": 51377, + "<|20.28|>": 51378, + "<|20.30|>": 51379, + "<|20.32|>": 51380, + "<|20.34|>": 51381, + "<|20.36|>": 51382, + "<|20.38|>": 51383, + "<|20.40|>": 51384, + "<|20.42|>": 51385, + "<|20.44|>": 51386, + "<|20.46|>": 51387, + "<|20.48|>": 51388, + "<|20.50|>": 51389, + "<|20.52|>": 51390, + "<|20.54|>": 51391, + "<|20.56|>": 51392, + "<|20.58|>": 51393, + "<|20.60|>": 51394, + "<|20.62|>": 51395, + "<|20.64|>": 51396, + "<|20.66|>": 51397, + "<|20.68|>": 51398, + "<|20.70|>": 51399, + "<|20.72|>": 51400, + "<|20.74|>": 51401, + "<|20.76|>": 51402, + "<|20.78|>": 51403, + "<|20.80|>": 51404, + "<|20.82|>": 51405, + "<|20.84|>": 51406, + "<|20.86|>": 51407, + "<|20.88|>": 51408, + "<|20.90|>": 51409, + "<|20.92|>": 51410, + "<|20.94|>": 51411, + "<|20.96|>": 51412, + "<|20.98|>": 51413, + "<|21.00|>": 51414, + "<|21.02|>": 51415, + "<|21.04|>": 51416, + "<|21.06|>": 51417, + "<|21.08|>": 51418, + "<|21.10|>": 51419, + "<|21.12|>": 51420, + "<|21.14|>": 51421, + "<|21.16|>": 51422, + "<|21.18|>": 51423, + "<|21.20|>": 51424, + "<|21.22|>": 51425, + "<|21.24|>": 51426, + "<|21.26|>": 51427, + "<|21.28|>": 51428, + "<|21.30|>": 51429, + "<|21.32|>": 51430, + "<|21.34|>": 51431, + "<|21.36|>": 51432, + "<|21.38|>": 51433, + "<|21.40|>": 51434, + "<|21.42|>": 51435, + "<|21.44|>": 51436, + "<|21.46|>": 51437, + "<|21.48|>": 51438, + "<|21.50|>": 51439, + "<|21.52|>": 51440, + "<|21.54|>": 51441, + "<|21.56|>": 51442, + "<|21.58|>": 51443, + "<|21.60|>": 51444, + "<|21.62|>": 51445, + "<|21.64|>": 51446, + "<|21.66|>": 51447, + "<|21.68|>": 51448, + "<|21.70|>": 51449, + "<|21.72|>": 51450, + "<|21.74|>": 51451, + "<|21.76|>": 51452, + "<|21.78|>": 51453, + "<|21.80|>": 51454, + "<|21.82|>": 51455, + "<|21.84|>": 51456, + "<|21.86|>": 51457, + "<|21.88|>": 51458, + "<|21.90|>": 51459, + "<|21.92|>": 51460, + "<|21.94|>": 51461, + "<|21.96|>": 51462, + "<|21.98|>": 51463, + "<|22.00|>": 51464, + "<|22.02|>": 51465, + "<|22.04|>": 51466, + "<|22.06|>": 51467, + "<|22.08|>": 51468, + "<|22.10|>": 51469, + "<|22.12|>": 51470, + "<|22.14|>": 51471, + "<|22.16|>": 51472, + "<|22.18|>": 51473, + "<|22.20|>": 51474, + "<|22.22|>": 51475, + "<|22.24|>": 51476, + "<|22.26|>": 51477, + "<|22.28|>": 51478, + "<|22.30|>": 51479, + "<|22.32|>": 51480, + "<|22.34|>": 51481, + "<|22.36|>": 51482, + "<|22.38|>": 51483, + "<|22.40|>": 51484, + "<|22.42|>": 51485, + "<|22.44|>": 51486, + "<|22.46|>": 51487, + "<|22.48|>": 51488, + "<|22.50|>": 51489, + "<|22.52|>": 51490, + "<|22.54|>": 51491, + "<|22.56|>": 51492, + "<|22.58|>": 51493, + "<|22.60|>": 51494, + "<|22.62|>": 51495, + "<|22.64|>": 51496, + "<|22.66|>": 51497, + "<|22.68|>": 51498, + "<|22.70|>": 51499, + "<|22.72|>": 51500, + "<|22.74|>": 51501, + "<|22.76|>": 51502, + "<|22.78|>": 51503, + "<|22.80|>": 51504, + "<|22.82|>": 51505, + "<|22.84|>": 51506, + "<|22.86|>": 51507, + "<|22.88|>": 51508, + "<|22.90|>": 51509, + "<|22.92|>": 51510, + "<|22.94|>": 51511, + "<|22.96|>": 51512, + "<|22.98|>": 51513, + "<|23.00|>": 51514, + "<|23.02|>": 51515, + "<|23.04|>": 51516, + "<|23.06|>": 51517, + "<|23.08|>": 51518, + "<|23.10|>": 51519, + "<|23.12|>": 51520, + "<|23.14|>": 51521, + "<|23.16|>": 51522, + "<|23.18|>": 51523, + "<|23.20|>": 51524, + "<|23.22|>": 51525, + "<|23.24|>": 51526, + "<|23.26|>": 51527, + "<|23.28|>": 51528, + "<|23.30|>": 51529, + "<|23.32|>": 51530, + "<|23.34|>": 51531, + "<|23.36|>": 51532, + "<|23.38|>": 51533, + "<|23.40|>": 51534, + "<|23.42|>": 51535, + "<|23.44|>": 51536, + "<|23.46|>": 51537, + "<|23.48|>": 51538, + "<|23.50|>": 51539, + "<|23.52|>": 51540, + "<|23.54|>": 51541, + "<|23.56|>": 51542, + "<|23.58|>": 51543, + "<|23.60|>": 51544, + "<|23.62|>": 51545, + "<|23.64|>": 51546, + "<|23.66|>": 51547, + "<|23.68|>": 51548, + "<|23.70|>": 51549, + "<|23.72|>": 51550, + "<|23.74|>": 51551, + "<|23.76|>": 51552, + "<|23.78|>": 51553, + "<|23.80|>": 51554, + "<|23.82|>": 51555, + "<|23.84|>": 51556, + "<|23.86|>": 51557, + "<|23.88|>": 51558, + "<|23.90|>": 51559, + "<|23.92|>": 51560, + "<|23.94|>": 51561, + "<|23.96|>": 51562, + "<|23.98|>": 51563, + "<|24.00|>": 51564, + "<|24.02|>": 51565, + "<|24.04|>": 51566, + "<|24.06|>": 51567, + "<|24.08|>": 51568, + "<|24.10|>": 51569, + "<|24.12|>": 51570, + "<|24.14|>": 51571, + "<|24.16|>": 51572, + "<|24.18|>": 51573, + "<|24.20|>": 51574, + "<|24.22|>": 51575, + "<|24.24|>": 51576, + "<|24.26|>": 51577, + "<|24.28|>": 51578, + "<|24.30|>": 51579, + "<|24.32|>": 51580, + "<|24.34|>": 51581, + "<|24.36|>": 51582, + "<|24.38|>": 51583, + "<|24.40|>": 51584, + "<|24.42|>": 51585, + "<|24.44|>": 51586, + "<|24.46|>": 51587, + "<|24.48|>": 51588, + "<|24.50|>": 51589, + "<|24.52|>": 51590, + "<|24.54|>": 51591, + "<|24.56|>": 51592, + "<|24.58|>": 51593, + "<|24.60|>": 51594, + "<|24.62|>": 51595, + "<|24.64|>": 51596, + "<|24.66|>": 51597, + "<|24.68|>": 51598, + "<|24.70|>": 51599, + "<|24.72|>": 51600, + "<|24.74|>": 51601, + "<|24.76|>": 51602, + "<|24.78|>": 51603, + "<|24.80|>": 51604, + "<|24.82|>": 51605, + "<|24.84|>": 51606, + "<|24.86|>": 51607, + "<|24.88|>": 51608, + "<|24.90|>": 51609, + "<|24.92|>": 51610, + "<|24.94|>": 51611, + "<|24.96|>": 51612, + "<|24.98|>": 51613, + "<|25.00|>": 51614, + "<|25.02|>": 51615, + "<|25.04|>": 51616, + "<|25.06|>": 51617, + "<|25.08|>": 51618, + "<|25.10|>": 51619, + "<|25.12|>": 51620, + "<|25.14|>": 51621, + "<|25.16|>": 51622, + "<|25.18|>": 51623, + "<|25.20|>": 51624, + "<|25.22|>": 51625, + "<|25.24|>": 51626, + "<|25.26|>": 51627, + "<|25.28|>": 51628, + "<|25.30|>": 51629, + "<|25.32|>": 51630, + "<|25.34|>": 51631, + "<|25.36|>": 51632, + "<|25.38|>": 51633, + "<|25.40|>": 51634, + "<|25.42|>": 51635, + "<|25.44|>": 51636, + "<|25.46|>": 51637, + "<|25.48|>": 51638, + "<|25.50|>": 51639, + "<|25.52|>": 51640, + "<|25.54|>": 51641, + "<|25.56|>": 51642, + "<|25.58|>": 51643, + "<|25.60|>": 51644, + "<|25.62|>": 51645, + "<|25.64|>": 51646, + "<|25.66|>": 51647, + "<|25.68|>": 51648, + "<|25.70|>": 51649, + "<|25.72|>": 51650, + "<|25.74|>": 51651, + "<|25.76|>": 51652, + "<|25.78|>": 51653, + "<|25.80|>": 51654, + "<|25.82|>": 51655, + "<|25.84|>": 51656, + "<|25.86|>": 51657, + "<|25.88|>": 51658, + "<|25.90|>": 51659, + "<|25.92|>": 51660, + "<|25.94|>": 51661, + "<|25.96|>": 51662, + "<|25.98|>": 51663, + "<|26.00|>": 51664, + "<|26.02|>": 51665, + "<|26.04|>": 51666, + "<|26.06|>": 51667, + "<|26.08|>": 51668, + "<|26.10|>": 51669, + "<|26.12|>": 51670, + "<|26.14|>": 51671, + "<|26.16|>": 51672, + "<|26.18|>": 51673, + "<|26.20|>": 51674, + "<|26.22|>": 51675, + "<|26.24|>": 51676, + "<|26.26|>": 51677, + "<|26.28|>": 51678, + "<|26.30|>": 51679, + "<|26.32|>": 51680, + "<|26.34|>": 51681, + "<|26.36|>": 51682, + "<|26.38|>": 51683, + "<|26.40|>": 51684, + "<|26.42|>": 51685, + "<|26.44|>": 51686, + "<|26.46|>": 51687, + "<|26.48|>": 51688, + "<|26.50|>": 51689, + "<|26.52|>": 51690, + "<|26.54|>": 51691, + "<|26.56|>": 51692, + "<|26.58|>": 51693, + "<|26.60|>": 51694, + "<|26.62|>": 51695, + "<|26.64|>": 51696, + "<|26.66|>": 51697, + "<|26.68|>": 51698, + "<|26.70|>": 51699, + "<|26.72|>": 51700, + "<|26.74|>": 51701, + "<|26.76|>": 51702, + "<|26.78|>": 51703, + "<|26.80|>": 51704, + "<|26.82|>": 51705, + "<|26.84|>": 51706, + "<|26.86|>": 51707, + "<|26.88|>": 51708, + "<|26.90|>": 51709, + "<|26.92|>": 51710, + "<|26.94|>": 51711, + "<|26.96|>": 51712, + "<|26.98|>": 51713, + "<|27.00|>": 51714, + "<|27.02|>": 51715, + "<|27.04|>": 51716, + "<|27.06|>": 51717, + "<|27.08|>": 51718, + "<|27.10|>": 51719, + "<|27.12|>": 51720, + "<|27.14|>": 51721, + "<|27.16|>": 51722, + "<|27.18|>": 51723, + "<|27.20|>": 51724, + "<|27.22|>": 51725, + "<|27.24|>": 51726, + "<|27.26|>": 51727, + "<|27.28|>": 51728, + "<|27.30|>": 51729, + "<|27.32|>": 51730, + "<|27.34|>": 51731, + "<|27.36|>": 51732, + "<|27.38|>": 51733, + "<|27.40|>": 51734, + "<|27.42|>": 51735, + "<|27.44|>": 51736, + "<|27.46|>": 51737, + "<|27.48|>": 51738, + "<|27.50|>": 51739, + "<|27.52|>": 51740, + "<|27.54|>": 51741, + "<|27.56|>": 51742, + "<|27.58|>": 51743, + "<|27.60|>": 51744, + "<|27.62|>": 51745, + "<|27.64|>": 51746, + "<|27.66|>": 51747, + "<|27.68|>": 51748, + "<|27.70|>": 51749, + "<|27.72|>": 51750, + "<|27.74|>": 51751, + "<|27.76|>": 51752, + "<|27.78|>": 51753, + "<|27.80|>": 51754, + "<|27.82|>": 51755, + "<|27.84|>": 51756, + "<|27.86|>": 51757, + "<|27.88|>": 51758, + "<|27.90|>": 51759, + "<|27.92|>": 51760, + "<|27.94|>": 51761, + "<|27.96|>": 51762, + "<|27.98|>": 51763, + "<|28.00|>": 51764, + "<|28.02|>": 51765, + "<|28.04|>": 51766, + "<|28.06|>": 51767, + "<|28.08|>": 51768, + "<|28.10|>": 51769, + "<|28.12|>": 51770, + "<|28.14|>": 51771, + "<|28.16|>": 51772, + "<|28.18|>": 51773, + "<|28.20|>": 51774, + "<|28.22|>": 51775, + "<|28.24|>": 51776, + "<|28.26|>": 51777, + "<|28.28|>": 51778, + "<|28.30|>": 51779, + "<|28.32|>": 51780, + "<|28.34|>": 51781, + "<|28.36|>": 51782, + "<|28.38|>": 51783, + "<|28.40|>": 51784, + "<|28.42|>": 51785, + "<|28.44|>": 51786, + "<|28.46|>": 51787, + "<|28.48|>": 51788, + "<|28.50|>": 51789, + "<|28.52|>": 51790, + "<|28.54|>": 51791, + "<|28.56|>": 51792, + "<|28.58|>": 51793, + "<|28.60|>": 51794, + "<|28.62|>": 51795, + "<|28.64|>": 51796, + "<|28.66|>": 51797, + "<|28.68|>": 51798, + "<|28.70|>": 51799, + "<|28.72|>": 51800, + "<|28.74|>": 51801, + "<|28.76|>": 51802, + "<|28.78|>": 51803, + "<|28.80|>": 51804, + "<|28.82|>": 51805, + "<|28.84|>": 51806, + "<|28.86|>": 51807, + "<|28.88|>": 51808, + "<|28.90|>": 51809, + "<|28.92|>": 51810, + "<|28.94|>": 51811, + "<|28.96|>": 51812, + "<|28.98|>": 51813, + "<|29.00|>": 51814, + "<|29.02|>": 51815, + "<|29.04|>": 51816, + "<|29.06|>": 51817, + "<|29.08|>": 51818, + "<|29.10|>": 51819, + "<|29.12|>": 51820, + "<|29.14|>": 51821, + "<|29.16|>": 51822, + "<|29.18|>": 51823, + "<|29.20|>": 51824, + "<|29.22|>": 51825, + "<|29.24|>": 51826, + "<|29.26|>": 51827, + "<|29.28|>": 51828, + "<|29.30|>": 51829, + "<|29.32|>": 51830, + "<|29.34|>": 51831, + "<|29.36|>": 51832, + "<|29.38|>": 51833, + "<|29.40|>": 51834, + "<|29.42|>": 51835, + "<|29.44|>": 51836, + "<|29.46|>": 51837, + "<|29.48|>": 51838, + "<|29.50|>": 51839, + "<|29.52|>": 51840, + "<|29.54|>": 51841, + "<|29.56|>": 51842, + "<|29.58|>": 51843, + "<|29.60|>": 51844, + "<|29.62|>": 51845, + "<|29.64|>": 51846, + "<|29.66|>": 51847, + "<|29.68|>": 51848, + "<|29.70|>": 51849, + "<|29.72|>": 51850, + "<|29.74|>": 51851, + "<|29.76|>": 51852, + "<|29.78|>": 51853, + "<|29.80|>": 51854, + "<|29.82|>": 51855, + "<|29.84|>": 51856, + "<|29.86|>": 51857, + "<|29.88|>": 51858, + "<|29.90|>": 51859, + "<|29.92|>": 51860, + "<|29.94|>": 51861, + "<|29.96|>": 51862, + "<|29.98|>": 51863, + "<|3.00|>": 50514, + "<|3.02|>": 50515, + "<|3.04|>": 50516, + "<|3.06|>": 50517, + "<|3.08|>": 50518, + "<|3.10|>": 50519, + "<|3.12|>": 50520, + "<|3.14|>": 50521, + "<|3.16|>": 50522, + "<|3.18|>": 50523, + "<|3.20|>": 50524, + "<|3.22|>": 50525, + "<|3.24|>": 50526, + "<|3.26|>": 50527, + "<|3.28|>": 50528, + "<|3.30|>": 50529, + "<|3.32|>": 50530, + "<|3.34|>": 50531, + "<|3.36|>": 50532, + "<|3.38|>": 50533, + "<|3.40|>": 50534, + "<|3.42|>": 50535, + "<|3.44|>": 50536, + "<|3.46|>": 50537, + "<|3.48|>": 50538, + "<|3.50|>": 50539, + "<|3.52|>": 50540, + "<|3.54|>": 50541, + "<|3.56|>": 50542, + "<|3.58|>": 50543, + "<|3.60|>": 50544, + "<|3.62|>": 50545, + "<|3.64|>": 50546, + "<|3.66|>": 50547, + "<|3.68|>": 50548, + "<|3.70|>": 50549, + "<|3.72|>": 50550, + "<|3.74|>": 50551, + "<|3.76|>": 50552, + "<|3.78|>": 50553, + "<|3.80|>": 50554, + "<|3.82|>": 50555, + "<|3.84|>": 50556, + "<|3.86|>": 50557, + "<|3.88|>": 50558, + "<|3.90|>": 50559, + "<|3.92|>": 50560, + "<|3.94|>": 50561, + "<|3.96|>": 50562, + "<|3.98|>": 50563, + "<|30.00|>": 51864, + "<|4.00|>": 50564, + "<|4.02|>": 50565, + "<|4.04|>": 50566, + "<|4.06|>": 50567, + "<|4.08|>": 50568, + "<|4.10|>": 50569, + "<|4.12|>": 50570, + "<|4.14|>": 50571, + "<|4.16|>": 50572, + "<|4.18|>": 50573, + "<|4.20|>": 50574, + "<|4.22|>": 50575, + "<|4.24|>": 50576, + "<|4.26|>": 50577, + "<|4.28|>": 50578, + "<|4.30|>": 50579, + "<|4.32|>": 50580, + "<|4.34|>": 50581, + "<|4.36|>": 50582, + "<|4.38|>": 50583, + "<|4.40|>": 50584, + "<|4.42|>": 50585, + "<|4.44|>": 50586, + "<|4.46|>": 50587, + "<|4.48|>": 50588, + "<|4.50|>": 50589, + "<|4.52|>": 50590, + "<|4.54|>": 50591, + "<|4.56|>": 50592, + "<|4.58|>": 50593, + "<|4.60|>": 50594, + "<|4.62|>": 50595, + "<|4.64|>": 50596, + "<|4.66|>": 50597, + "<|4.68|>": 50598, + "<|4.70|>": 50599, + "<|4.72|>": 50600, + "<|4.74|>": 50601, + "<|4.76|>": 50602, + "<|4.78|>": 50603, + "<|4.80|>": 50604, + "<|4.82|>": 50605, + "<|4.84|>": 50606, + "<|4.86|>": 50607, + "<|4.88|>": 50608, + "<|4.90|>": 50609, + "<|4.92|>": 50610, + "<|4.94|>": 50611, + "<|4.96|>": 50612, + "<|4.98|>": 50613, + "<|5.00|>": 50614, + "<|5.02|>": 50615, + "<|5.04|>": 50616, + "<|5.06|>": 50617, + "<|5.08|>": 50618, + "<|5.10|>": 50619, + "<|5.12|>": 50620, + "<|5.14|>": 50621, + "<|5.16|>": 50622, + "<|5.18|>": 50623, + "<|5.20|>": 50624, + "<|5.22|>": 50625, + "<|5.24|>": 50626, + "<|5.26|>": 50627, + "<|5.28|>": 50628, + "<|5.30|>": 50629, + "<|5.32|>": 50630, + "<|5.34|>": 50631, + "<|5.36|>": 50632, + "<|5.38|>": 50633, + "<|5.40|>": 50634, + "<|5.42|>": 50635, + "<|5.44|>": 50636, + "<|5.46|>": 50637, + "<|5.48|>": 50638, + "<|5.50|>": 50639, + "<|5.52|>": 50640, + "<|5.54|>": 50641, + "<|5.56|>": 50642, + "<|5.58|>": 50643, + "<|5.60|>": 50644, + "<|5.62|>": 50645, + "<|5.64|>": 50646, + "<|5.66|>": 50647, + "<|5.68|>": 50648, + "<|5.70|>": 50649, + "<|5.72|>": 50650, + "<|5.74|>": 50651, + "<|5.76|>": 50652, + "<|5.78|>": 50653, + "<|5.80|>": 50654, + "<|5.82|>": 50655, + "<|5.84|>": 50656, + "<|5.86|>": 50657, + "<|5.88|>": 50658, + "<|5.90|>": 50659, + "<|5.92|>": 50660, + "<|5.94|>": 50661, + "<|5.96|>": 50662, + "<|5.98|>": 50663, + "<|6.00|>": 50664, + "<|6.02|>": 50665, + "<|6.04|>": 50666, + "<|6.06|>": 50667, + "<|6.08|>": 50668, + "<|6.10|>": 50669, + "<|6.12|>": 50670, + "<|6.14|>": 50671, + "<|6.16|>": 50672, + "<|6.18|>": 50673, + "<|6.20|>": 50674, + "<|6.22|>": 50675, + "<|6.24|>": 50676, + "<|6.26|>": 50677, + "<|6.28|>": 50678, + "<|6.30|>": 50679, + "<|6.32|>": 50680, + "<|6.34|>": 50681, + "<|6.36|>": 50682, + "<|6.38|>": 50683, + "<|6.40|>": 50684, + "<|6.42|>": 50685, + "<|6.44|>": 50686, + "<|6.46|>": 50687, + "<|6.48|>": 50688, + "<|6.50|>": 50689, + "<|6.52|>": 50690, + "<|6.54|>": 50691, + "<|6.56|>": 50692, + "<|6.58|>": 50693, + "<|6.60|>": 50694, + "<|6.62|>": 50695, + "<|6.64|>": 50696, + "<|6.66|>": 50697, + "<|6.68|>": 50698, + "<|6.70|>": 50699, + "<|6.72|>": 50700, + "<|6.74|>": 50701, + "<|6.76|>": 50702, + "<|6.78|>": 50703, + "<|6.80|>": 50704, + "<|6.82|>": 50705, + "<|6.84|>": 50706, + "<|6.86|>": 50707, + "<|6.88|>": 50708, + "<|6.90|>": 50709, + "<|6.92|>": 50710, + "<|6.94|>": 50711, + "<|6.96|>": 50712, + "<|6.98|>": 50713, + "<|7.00|>": 50714, + "<|7.02|>": 50715, + "<|7.04|>": 50716, + "<|7.06|>": 50717, + "<|7.08|>": 50718, + "<|7.10|>": 50719, + "<|7.12|>": 50720, + "<|7.14|>": 50721, + "<|7.16|>": 50722, + "<|7.18|>": 50723, + "<|7.20|>": 50724, + "<|7.22|>": 50725, + "<|7.24|>": 50726, + "<|7.26|>": 50727, + "<|7.28|>": 50728, + "<|7.30|>": 50729, + "<|7.32|>": 50730, + "<|7.34|>": 50731, + "<|7.36|>": 50732, + "<|7.38|>": 50733, + "<|7.40|>": 50734, + "<|7.42|>": 50735, + "<|7.44|>": 50736, + "<|7.46|>": 50737, + "<|7.48|>": 50738, + "<|7.50|>": 50739, + "<|7.52|>": 50740, + "<|7.54|>": 50741, + "<|7.56|>": 50742, + "<|7.58|>": 50743, + "<|7.60|>": 50744, + "<|7.62|>": 50745, + "<|7.64|>": 50746, + "<|7.66|>": 50747, + "<|7.68|>": 50748, + "<|7.70|>": 50749, + "<|7.72|>": 50750, + "<|7.74|>": 50751, + "<|7.76|>": 50752, + "<|7.78|>": 50753, + "<|7.80|>": 50754, + "<|7.82|>": 50755, + "<|7.84|>": 50756, + "<|7.86|>": 50757, + "<|7.88|>": 50758, + "<|7.90|>": 50759, + "<|7.92|>": 50760, + "<|7.94|>": 50761, + "<|7.96|>": 50762, + "<|7.98|>": 50763, + "<|8.00|>": 50764, + "<|8.02|>": 50765, + "<|8.04|>": 50766, + "<|8.06|>": 50767, + "<|8.08|>": 50768, + "<|8.10|>": 50769, + "<|8.12|>": 50770, + "<|8.14|>": 50771, + "<|8.16|>": 50772, + "<|8.18|>": 50773, + "<|8.20|>": 50774, + "<|8.22|>": 50775, + "<|8.24|>": 50776, + "<|8.26|>": 50777, + "<|8.28|>": 50778, + "<|8.30|>": 50779, + "<|8.32|>": 50780, + "<|8.34|>": 50781, + "<|8.36|>": 50782, + "<|8.38|>": 50783, + "<|8.40|>": 50784, + "<|8.42|>": 50785, + "<|8.44|>": 50786, + "<|8.46|>": 50787, + "<|8.48|>": 50788, + "<|8.50|>": 50789, + "<|8.52|>": 50790, + "<|8.54|>": 50791, + "<|8.56|>": 50792, + "<|8.58|>": 50793, + "<|8.60|>": 50794, + "<|8.62|>": 50795, + "<|8.64|>": 50796, + "<|8.66|>": 50797, + "<|8.68|>": 50798, + "<|8.70|>": 50799, + "<|8.72|>": 50800, + "<|8.74|>": 50801, + "<|8.76|>": 50802, + "<|8.78|>": 50803, + "<|8.80|>": 50804, + "<|8.82|>": 50805, + "<|8.84|>": 50806, + "<|8.86|>": 50807, + "<|8.88|>": 50808, + "<|8.90|>": 50809, + "<|8.92|>": 50810, + "<|8.94|>": 50811, + "<|8.96|>": 50812, + "<|8.98|>": 50813, + "<|9.00|>": 50814, + "<|9.02|>": 50815, + "<|9.04|>": 50816, + "<|9.06|>": 50817, + "<|9.08|>": 50818, + "<|9.10|>": 50819, + "<|9.12|>": 50820, + "<|9.14|>": 50821, + "<|9.16|>": 50822, + "<|9.18|>": 50823, + "<|9.20|>": 50824, + "<|9.22|>": 50825, + "<|9.24|>": 50826, + "<|9.26|>": 50827, + "<|9.28|>": 50828, + "<|9.30|>": 50829, + "<|9.32|>": 50830, + "<|9.34|>": 50831, + "<|9.36|>": 50832, + "<|9.38|>": 50833, + "<|9.40|>": 50834, + "<|9.42|>": 50835, + "<|9.44|>": 50836, + "<|9.46|>": 50837, + "<|9.48|>": 50838, + "<|9.50|>": 50839, + "<|9.52|>": 50840, + "<|9.54|>": 50841, + "<|9.56|>": 50842, + "<|9.58|>": 50843, + "<|9.60|>": 50844, + "<|9.62|>": 50845, + "<|9.64|>": 50846, + "<|9.66|>": 50847, + "<|9.68|>": 50848, + "<|9.70|>": 50849, + "<|9.72|>": 50850, + "<|9.74|>": 50851, + "<|9.76|>": 50852, + "<|9.78|>": 50853, + "<|9.80|>": 50854, + "<|9.82|>": 50855, + "<|9.84|>": 50856, + "<|9.86|>": 50857, + "<|9.88|>": 50858, + "<|9.90|>": 50859, + "<|9.92|>": 50860, + "<|9.94|>": 50861, + "<|9.96|>": 50862, + "<|9.98|>": 50863, + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|nocaptions|>": 50362, + "<|notimestamps|>": 50363, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|startoflm|>": 50360, + "<|startofprev|>": 50361, + "<|startoftranscript|>": 50258, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|transcribe|>": 50359, + "<|translate|>": 50358, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 +} diff --git a/whisper-fine-tuning-event/checkpoint-1000/config.json b/whisper-fine-tuning-event/checkpoint-1000/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/whisper-fine-tuning-event/checkpoint-1000/generation_config.json b/whisper-fine-tuning-event/checkpoint-1000/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5576849bec3fa8e898478b36fc743acda59479f3 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/generation_config.json @@ -0,0 +1,265 @@ +{ + "alignment_heads": [ + [ + 5, + 3 + ], + [ + 5, + 9 + ], + [ + 8, + 0 + ], + [ + 8, + 4 + ], + [ + 8, + 7 + ], + [ + 8, + 8 + ], + [ + 9, + 0 + ], + [ + 9, + 7 + ], + [ + 9, + 9 + ], + [ + 10, + 5 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "forced_decoder_ids": [ + [ + 1, + null + ], + [ + 2, + 50359 + ] + ], + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 + }, + "language": "hi", + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50363, + "pad_token_id": 50257, + "prev_sot_token_id": 50361, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50358, + 50359, + 50360, + 50361, + 50362 + ], + "task_to_id": { + "transcribe": 50359, + "translate": 50358 + }, + "transformers_version": "4.40.0.dev0" +} diff --git a/whisper-fine-tuning-event/checkpoint-1000/model.safetensors b/whisper-fine-tuning-event/checkpoint-1000/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..57c6707a605e3463e7102cb14406794b834a0091 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ced286c696cdb6a90bfe52d4c6c9ddb703275f387bff0eb4794432a34c3e9378 +size 966995080 diff --git a/whisper-fine-tuning-event/checkpoint-1000/optimizer.pt b/whisper-fine-tuning-event/checkpoint-1000/optimizer.pt new file mode 100644 index 0000000000000000000000000000000000000000..5c93a32324ad570d24a216589b51561b92b2945b --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/optimizer.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:425bc67c6a6b6fbeda15cf59b246583cedae3f5c8dc72964ec9059f941cd8bcd +size 1925064044 diff --git a/whisper-fine-tuning-event/checkpoint-1000/preprocessor_config.json b/whisper-fine-tuning-event/checkpoint-1000/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/whisper-fine-tuning-event/checkpoint-1000/rng_state.pth b/whisper-fine-tuning-event/checkpoint-1000/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..68dceb838fb0b28fdd1ae2817962f84312c64282 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bded210308e42252bbae8eae4a69e1ce6c258f88afb96d000a6c88926d54924c +size 14244 diff --git a/whisper-fine-tuning-event/checkpoint-1000/scheduler.pt b/whisper-fine-tuning-event/checkpoint-1000/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..278a4e1ef5e50d3e83a3fcc19a3ebed6a5425a46 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6983ae7e0032d082d946848755da0680fcdb0cd12518cc8330956c3315a05a99 +size 1064 diff --git a/whisper-fine-tuning-event/checkpoint-1000/trainer_state.json b/whisper-fine-tuning-event/checkpoint-1000/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..d22765a5a287e865fdf3337de1ba04e3d2212ea4 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/trainer_state.json @@ -0,0 +1,310 @@ +{ + "best_metric": 18.926838201629888, + "best_model_checkpoint": "./checkpoint-1000", + "epoch": 9.7799511002445, + "eval_steps": 1000, + "global_step": 1000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.24, + "grad_norm": 39.86157989501953, + "learning_rate": 5.000000000000001e-07, + "loss": 2.0555, + "step": 25 + }, + { + "epoch": 0.49, + "grad_norm": Infinity, + "learning_rate": 9.800000000000001e-07, + "loss": 1.5219, + "step": 50 + }, + { + "epoch": 0.73, + "grad_norm": 6.197519779205322, + "learning_rate": 1.48e-06, + "loss": 1.0167, + "step": 75 + }, + { + "epoch": 0.98, + "grad_norm": 5.485505104064941, + "learning_rate": 1.98e-06, + "loss": 0.7299, + "step": 100 + }, + { + "epoch": 1.22, + "grad_norm": 5.534335613250732, + "learning_rate": 2.4800000000000004e-06, + "loss": 0.6317, + "step": 125 + }, + { + "epoch": 1.47, + "grad_norm": 4.898209095001221, + "learning_rate": 2.9800000000000003e-06, + "loss": 0.5503, + "step": 150 + }, + { + "epoch": 1.71, + "grad_norm": 5.0602946281433105, + "learning_rate": 3.48e-06, + "loss": 0.4998, + "step": 175 + }, + { + "epoch": 1.96, + "grad_norm": 4.8069305419921875, + "learning_rate": 3.980000000000001e-06, + "loss": 0.4457, + "step": 200 + }, + { + "epoch": 2.2, + "grad_norm": 4.571457386016846, + "learning_rate": 4.48e-06, + "loss": 0.3778, + "step": 225 + }, + { + "epoch": 2.44, + "grad_norm": 4.707397937774658, + "learning_rate": 4.980000000000001e-06, + "loss": 0.333, + "step": 250 + }, + { + "epoch": 2.69, + "grad_norm": 4.317914009094238, + "learning_rate": 5.480000000000001e-06, + "loss": 0.2859, + "step": 275 + }, + { + "epoch": 2.93, + "grad_norm": 2.6433582305908203, + "learning_rate": 5.98e-06, + "loss": 0.2229, + "step": 300 + }, + { + "epoch": 3.18, + "grad_norm": 2.5579586029052734, + "learning_rate": 6.480000000000001e-06, + "loss": 0.1767, + "step": 325 + }, + { + "epoch": 3.42, + "grad_norm": 2.2651941776275635, + "learning_rate": 6.98e-06, + "loss": 0.1474, + "step": 350 + }, + { + "epoch": 3.67, + "grad_norm": 2.528773546218872, + "learning_rate": 7.48e-06, + "loss": 0.1493, + "step": 375 + }, + { + "epoch": 3.91, + "grad_norm": 2.422232151031494, + "learning_rate": 7.980000000000002e-06, + "loss": 0.142, + "step": 400 + }, + { + "epoch": 4.16, + "grad_norm": 2.209630012512207, + "learning_rate": 8.48e-06, + "loss": 0.1126, + "step": 425 + }, + { + "epoch": 4.4, + "grad_norm": 1.9945831298828125, + "learning_rate": 8.98e-06, + "loss": 0.0909, + "step": 450 + }, + { + "epoch": 4.65, + "grad_norm": 1.8972020149230957, + "learning_rate": 9.48e-06, + "loss": 0.0892, + "step": 475 + }, + { + "epoch": 4.89, + "grad_norm": 2.345607042312622, + "learning_rate": 9.980000000000001e-06, + "loss": 0.0909, + "step": 500 + }, + { + "epoch": 5.13, + "grad_norm": 1.3913277387619019, + "learning_rate": 9.946666666666667e-06, + "loss": 0.0713, + "step": 525 + }, + { + "epoch": 5.38, + "grad_norm": 2.5306901931762695, + "learning_rate": 9.891111111111113e-06, + "loss": 0.0535, + "step": 550 + }, + { + "epoch": 5.62, + "grad_norm": 1.3689407110214233, + "learning_rate": 9.835555555555556e-06, + "loss": 0.051, + "step": 575 + }, + { + "epoch": 5.87, + "grad_norm": 2.091756820678711, + "learning_rate": 9.780000000000001e-06, + "loss": 0.0573, + "step": 600 + }, + { + "epoch": 6.11, + "grad_norm": 1.5179609060287476, + "learning_rate": 9.724444444444445e-06, + "loss": 0.0454, + "step": 625 + }, + { + "epoch": 6.36, + "grad_norm": 1.3439680337905884, + "learning_rate": 9.66888888888889e-06, + "loss": 0.029, + "step": 650 + }, + { + "epoch": 6.6, + "grad_norm": 1.279569387435913, + "learning_rate": 9.613333333333335e-06, + "loss": 0.032, + "step": 675 + }, + { + "epoch": 6.85, + "grad_norm": 1.6171939373016357, + "learning_rate": 9.557777777777777e-06, + "loss": 0.0314, + "step": 700 + }, + { + "epoch": 7.09, + "grad_norm": 0.8949939608573914, + "learning_rate": 9.502222222222223e-06, + "loss": 0.0245, + "step": 725 + }, + { + "epoch": 7.33, + "grad_norm": 1.3610639572143555, + "learning_rate": 9.446666666666667e-06, + "loss": 0.0165, + "step": 750 + }, + { + "epoch": 7.58, + "grad_norm": 1.5446442365646362, + "learning_rate": 9.391111111111111e-06, + "loss": 0.0169, + "step": 775 + }, + { + "epoch": 7.82, + "grad_norm": 1.2825671434402466, + "learning_rate": 9.335555555555557e-06, + "loss": 0.0193, + "step": 800 + }, + { + "epoch": 8.07, + "grad_norm": 0.7063258290290833, + "learning_rate": 9.280000000000001e-06, + "loss": 0.0154, + "step": 825 + }, + { + "epoch": 8.31, + "grad_norm": 0.72287917137146, + "learning_rate": 9.224444444444445e-06, + "loss": 0.0102, + "step": 850 + }, + { + "epoch": 8.56, + "grad_norm": 1.2877657413482666, + "learning_rate": 9.168888888888889e-06, + "loss": 0.0093, + "step": 875 + }, + { + "epoch": 8.8, + "grad_norm": 1.6262348890304565, + "learning_rate": 9.113333333333335e-06, + "loss": 0.0117, + "step": 900 + }, + { + "epoch": 9.05, + "grad_norm": 0.49374520778656006, + "learning_rate": 9.057777777777779e-06, + "loss": 0.0121, + "step": 925 + }, + { + "epoch": 9.29, + "grad_norm": 0.8290354013442993, + "learning_rate": 9.002222222222223e-06, + "loss": 0.0063, + "step": 950 + }, + { + "epoch": 9.54, + "grad_norm": 0.9974227547645569, + "learning_rate": 8.946666666666669e-06, + "loss": 0.006, + "step": 975 + }, + { + "epoch": 9.78, + "grad_norm": 0.8566415309906006, + "learning_rate": 8.891111111111111e-06, + "loss": 0.007, + "step": 1000 + }, + { + "epoch": 9.78, + "eval_loss": 0.41129249334335327, + "eval_runtime": 1450.197, + "eval_samples_per_second": 1.996, + "eval_steps_per_second": 0.499, + "eval_wer": 18.926838201629888, + "step": 1000 + } + ], + "logging_steps": 25, + "max_steps": 5000, + "num_input_tokens_seen": 0, + "num_train_epochs": 50, + "save_steps": 1000, + "total_flos": 1.845907654606848e+19, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/whisper-fine-tuning-event/checkpoint-1000/training_args.bin b/whisper-fine-tuning-event/checkpoint-1000/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f1e1c1503977a74c2be326ce97dee50daa53384 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-1000/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f73c95d6632bb7d80507c5d129a813cefcc6575c685b8993420525612405d91 +size 5048 diff --git a/whisper-fine-tuning-event/checkpoint-2000/config.json b/whisper-fine-tuning-event/checkpoint-2000/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/whisper-fine-tuning-event/checkpoint-2000/generation_config.json b/whisper-fine-tuning-event/checkpoint-2000/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5576849bec3fa8e898478b36fc743acda59479f3 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/generation_config.json @@ -0,0 +1,265 @@ +{ + "alignment_heads": [ + [ + 5, + 3 + ], + [ + 5, + 9 + ], + [ + 8, + 0 + ], + [ + 8, + 4 + ], + [ + 8, + 7 + ], + [ + 8, + 8 + ], + [ + 9, + 0 + ], + [ + 9, + 7 + ], + [ + 9, + 9 + ], + [ + 10, + 5 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "forced_decoder_ids": [ + [ + 1, + null + ], + [ + 2, + 50359 + ] + ], + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 + }, + "language": "hi", + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50363, + "pad_token_id": 50257, + "prev_sot_token_id": 50361, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50358, + 50359, + 50360, + 50361, + 50362 + ], + "task_to_id": { + "transcribe": 50359, + "translate": 50358 + }, + "transformers_version": "4.40.0.dev0" +} diff --git a/whisper-fine-tuning-event/checkpoint-2000/model.safetensors b/whisper-fine-tuning-event/checkpoint-2000/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..7294b7d42e8e41be4625f0abdd9722acfcdb90b6 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:07fa1863c030db278d378cbbfb2d0c58bae43d93a915130d79c5ba00160fe630 +size 966995080 diff --git a/whisper-fine-tuning-event/checkpoint-2000/optimizer.pt b/whisper-fine-tuning-event/checkpoint-2000/optimizer.pt new file mode 100644 index 0000000000000000000000000000000000000000..32e4294e431dc596e5fb3438c579755d1f9077f6 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/optimizer.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:574ac81170c416549e8d3a3d0806c571865781184c1273605ce49daf02ef86cc +size 1925064044 diff --git a/whisper-fine-tuning-event/checkpoint-2000/preprocessor_config.json b/whisper-fine-tuning-event/checkpoint-2000/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/whisper-fine-tuning-event/checkpoint-2000/rng_state.pth b/whisper-fine-tuning-event/checkpoint-2000/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..f52399eb213db114bba8b59ff74786d069db67a6 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71a0fdb9e8f10ab8d6cd4b270c3479a9f43e8126a634ce9d1630a3b83bad9e79 +size 14244 diff --git a/whisper-fine-tuning-event/checkpoint-2000/scheduler.pt b/whisper-fine-tuning-event/checkpoint-2000/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..80845d973e3cffe7a979202ef34680d02412462c --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:33377184da97e177b0780baa2b74567aae5f37821389a4e05186d99b45f8185c +size 1064 diff --git a/whisper-fine-tuning-event/checkpoint-2000/trainer_state.json b/whisper-fine-tuning-event/checkpoint-2000/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..656e07a388e58b82c2813be579328d5c0b2a461d --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/trainer_state.json @@ -0,0 +1,599 @@ +{ + "best_metric": 18.301895430821354, + "best_model_checkpoint": "./checkpoint-2000", + "epoch": 19.559902200489, + "eval_steps": 1000, + "global_step": 2000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.24, + "grad_norm": 39.86157989501953, + "learning_rate": 5.000000000000001e-07, + "loss": 2.0555, + "step": 25 + }, + { + "epoch": 0.49, + "grad_norm": Infinity, + "learning_rate": 9.800000000000001e-07, + "loss": 1.5219, + "step": 50 + }, + { + "epoch": 0.73, + "grad_norm": 6.197519779205322, + "learning_rate": 1.48e-06, + "loss": 1.0167, + "step": 75 + }, + { + "epoch": 0.98, + "grad_norm": 5.485505104064941, + "learning_rate": 1.98e-06, + "loss": 0.7299, + "step": 100 + }, + { + "epoch": 1.22, + "grad_norm": 5.534335613250732, + "learning_rate": 2.4800000000000004e-06, + "loss": 0.6317, + "step": 125 + }, + { + "epoch": 1.47, + "grad_norm": 4.898209095001221, + "learning_rate": 2.9800000000000003e-06, + "loss": 0.5503, + "step": 150 + }, + { + "epoch": 1.71, + "grad_norm": 5.0602946281433105, + "learning_rate": 3.48e-06, + "loss": 0.4998, + "step": 175 + }, + { + "epoch": 1.96, + "grad_norm": 4.8069305419921875, + "learning_rate": 3.980000000000001e-06, + "loss": 0.4457, + "step": 200 + }, + { + "epoch": 2.2, + "grad_norm": 4.571457386016846, + "learning_rate": 4.48e-06, + "loss": 0.3778, + "step": 225 + }, + { + "epoch": 2.44, + "grad_norm": 4.707397937774658, + "learning_rate": 4.980000000000001e-06, + "loss": 0.333, + "step": 250 + }, + { + "epoch": 2.69, + "grad_norm": 4.317914009094238, + "learning_rate": 5.480000000000001e-06, + "loss": 0.2859, + "step": 275 + }, + { + "epoch": 2.93, + "grad_norm": 2.6433582305908203, + "learning_rate": 5.98e-06, + "loss": 0.2229, + "step": 300 + }, + { + "epoch": 3.18, + "grad_norm": 2.5579586029052734, + "learning_rate": 6.480000000000001e-06, + "loss": 0.1767, + "step": 325 + }, + { + "epoch": 3.42, + "grad_norm": 2.2651941776275635, + "learning_rate": 6.98e-06, + "loss": 0.1474, + "step": 350 + }, + { + "epoch": 3.67, + "grad_norm": 2.528773546218872, + "learning_rate": 7.48e-06, + "loss": 0.1493, + "step": 375 + }, + { + "epoch": 3.91, + "grad_norm": 2.422232151031494, + "learning_rate": 7.980000000000002e-06, + "loss": 0.142, + "step": 400 + }, + { + "epoch": 4.16, + "grad_norm": 2.209630012512207, + "learning_rate": 8.48e-06, + "loss": 0.1126, + "step": 425 + }, + { + "epoch": 4.4, + "grad_norm": 1.9945831298828125, + "learning_rate": 8.98e-06, + "loss": 0.0909, + "step": 450 + }, + { + "epoch": 4.65, + "grad_norm": 1.8972020149230957, + "learning_rate": 9.48e-06, + "loss": 0.0892, + "step": 475 + }, + { + "epoch": 4.89, + "grad_norm": 2.345607042312622, + "learning_rate": 9.980000000000001e-06, + "loss": 0.0909, + "step": 500 + }, + { + "epoch": 5.13, + "grad_norm": 1.3913277387619019, + "learning_rate": 9.946666666666667e-06, + "loss": 0.0713, + "step": 525 + }, + { + "epoch": 5.38, + "grad_norm": 2.5306901931762695, + "learning_rate": 9.891111111111113e-06, + "loss": 0.0535, + "step": 550 + }, + { + "epoch": 5.62, + "grad_norm": 1.3689407110214233, + "learning_rate": 9.835555555555556e-06, + "loss": 0.051, + "step": 575 + }, + { + "epoch": 5.87, + "grad_norm": 2.091756820678711, + "learning_rate": 9.780000000000001e-06, + "loss": 0.0573, + "step": 600 + }, + { + "epoch": 6.11, + "grad_norm": 1.5179609060287476, + "learning_rate": 9.724444444444445e-06, + "loss": 0.0454, + "step": 625 + }, + { + "epoch": 6.36, + "grad_norm": 1.3439680337905884, + "learning_rate": 9.66888888888889e-06, + "loss": 0.029, + "step": 650 + }, + { + "epoch": 6.6, + "grad_norm": 1.279569387435913, + "learning_rate": 9.613333333333335e-06, + "loss": 0.032, + "step": 675 + }, + { + "epoch": 6.85, + "grad_norm": 1.6171939373016357, + "learning_rate": 9.557777777777777e-06, + "loss": 0.0314, + "step": 700 + }, + { + "epoch": 7.09, + "grad_norm": 0.8949939608573914, + "learning_rate": 9.502222222222223e-06, + "loss": 0.0245, + "step": 725 + }, + { + "epoch": 7.33, + "grad_norm": 1.3610639572143555, + "learning_rate": 9.446666666666667e-06, + "loss": 0.0165, + "step": 750 + }, + { + "epoch": 7.58, + "grad_norm": 1.5446442365646362, + "learning_rate": 9.391111111111111e-06, + "loss": 0.0169, + "step": 775 + }, + { + "epoch": 7.82, + "grad_norm": 1.2825671434402466, + "learning_rate": 9.335555555555557e-06, + "loss": 0.0193, + "step": 800 + }, + { + "epoch": 8.07, + "grad_norm": 0.7063258290290833, + "learning_rate": 9.280000000000001e-06, + "loss": 0.0154, + "step": 825 + }, + { + "epoch": 8.31, + "grad_norm": 0.72287917137146, + "learning_rate": 9.224444444444445e-06, + "loss": 0.0102, + "step": 850 + }, + { + "epoch": 8.56, + "grad_norm": 1.2877657413482666, + "learning_rate": 9.168888888888889e-06, + "loss": 0.0093, + "step": 875 + }, + { + "epoch": 8.8, + "grad_norm": 1.6262348890304565, + "learning_rate": 9.113333333333335e-06, + "loss": 0.0117, + "step": 900 + }, + { + "epoch": 9.05, + "grad_norm": 0.49374520778656006, + "learning_rate": 9.057777777777779e-06, + "loss": 0.0121, + "step": 925 + }, + { + "epoch": 9.29, + "grad_norm": 0.8290354013442993, + "learning_rate": 9.002222222222223e-06, + "loss": 0.0063, + "step": 950 + }, + { + "epoch": 9.54, + "grad_norm": 0.9974227547645569, + "learning_rate": 8.946666666666669e-06, + "loss": 0.006, + "step": 975 + }, + { + "epoch": 9.78, + "grad_norm": 0.8566415309906006, + "learning_rate": 8.891111111111111e-06, + "loss": 0.007, + "step": 1000 + }, + { + "epoch": 9.78, + "eval_loss": 0.41129249334335327, + "eval_runtime": 1450.197, + "eval_samples_per_second": 1.996, + "eval_steps_per_second": 0.499, + "eval_wer": 18.926838201629888, + "step": 1000 + }, + { + "epoch": 10.02, + "grad_norm": 1.7889363765716553, + "learning_rate": 8.835555555555557e-06, + "loss": 0.0067, + "step": 1025 + }, + { + "epoch": 10.27, + "grad_norm": 0.9269456267356873, + "learning_rate": 8.78e-06, + "loss": 0.0047, + "step": 1050 + }, + { + "epoch": 10.51, + "grad_norm": 0.7966364622116089, + "learning_rate": 8.724444444444445e-06, + "loss": 0.0047, + "step": 1075 + }, + { + "epoch": 10.76, + "grad_norm": 0.6406449675559998, + "learning_rate": 8.66888888888889e-06, + "loss": 0.0049, + "step": 1100 + }, + { + "epoch": 11.0, + "grad_norm": 0.4881477355957031, + "learning_rate": 8.613333333333333e-06, + "loss": 0.0049, + "step": 1125 + }, + { + "epoch": 11.25, + "grad_norm": 0.4843809902667999, + "learning_rate": 8.557777777777778e-06, + "loss": 0.0036, + "step": 1150 + }, + { + "epoch": 11.49, + "grad_norm": 0.8177527189254761, + "learning_rate": 8.502222222222223e-06, + "loss": 0.0028, + "step": 1175 + }, + { + "epoch": 11.74, + "grad_norm": 0.676511287689209, + "learning_rate": 8.446666666666668e-06, + "loss": 0.0031, + "step": 1200 + }, + { + "epoch": 11.98, + "grad_norm": 0.9199188351631165, + "learning_rate": 8.391111111111112e-06, + "loss": 0.003, + "step": 1225 + }, + { + "epoch": 12.22, + "grad_norm": 0.248287171125412, + "learning_rate": 8.335555555555556e-06, + "loss": 0.0024, + "step": 1250 + }, + { + "epoch": 12.47, + "grad_norm": 0.9288859963417053, + "learning_rate": 8.28e-06, + "loss": 0.0022, + "step": 1275 + }, + { + "epoch": 12.71, + "grad_norm": 0.8308430910110474, + "learning_rate": 8.224444444444444e-06, + "loss": 0.0025, + "step": 1300 + }, + { + "epoch": 12.96, + "grad_norm": 0.33064720034599304, + "learning_rate": 8.16888888888889e-06, + "loss": 0.0027, + "step": 1325 + }, + { + "epoch": 13.2, + "grad_norm": 0.5254776477813721, + "learning_rate": 8.113333333333334e-06, + "loss": 0.0019, + "step": 1350 + }, + { + "epoch": 13.45, + "grad_norm": 0.4681105315685272, + "learning_rate": 8.057777777777778e-06, + "loss": 0.0021, + "step": 1375 + }, + { + "epoch": 13.69, + "grad_norm": 0.352115273475647, + "learning_rate": 8.002222222222222e-06, + "loss": 0.0026, + "step": 1400 + }, + { + "epoch": 13.94, + "grad_norm": 1.5301597118377686, + "learning_rate": 7.946666666666666e-06, + "loss": 0.0027, + "step": 1425 + }, + { + "epoch": 14.18, + "grad_norm": 0.28577202558517456, + "learning_rate": 7.891111111111112e-06, + "loss": 0.0018, + "step": 1450 + }, + { + "epoch": 14.43, + "grad_norm": 0.7940084338188171, + "learning_rate": 7.835555555555556e-06, + "loss": 0.002, + "step": 1475 + }, + { + "epoch": 14.67, + "grad_norm": 1.031543493270874, + "learning_rate": 7.78e-06, + "loss": 0.0021, + "step": 1500 + }, + { + "epoch": 14.91, + "grad_norm": 0.5695396661758423, + "learning_rate": 7.724444444444446e-06, + "loss": 0.0016, + "step": 1525 + }, + { + "epoch": 15.16, + "grad_norm": 0.2285182625055313, + "learning_rate": 7.66888888888889e-06, + "loss": 0.0014, + "step": 1550 + }, + { + "epoch": 15.4, + "grad_norm": 0.40289613604545593, + "learning_rate": 7.613333333333334e-06, + "loss": 0.0017, + "step": 1575 + }, + { + "epoch": 15.65, + "grad_norm": 0.5758986473083496, + "learning_rate": 7.557777777777779e-06, + "loss": 0.0012, + "step": 1600 + }, + { + "epoch": 15.89, + "grad_norm": 0.5524174571037292, + "learning_rate": 7.502222222222223e-06, + "loss": 0.001, + "step": 1625 + }, + { + "epoch": 16.14, + "grad_norm": 0.7031832933425903, + "learning_rate": 7.446666666666668e-06, + "loss": 0.0015, + "step": 1650 + }, + { + "epoch": 16.38, + "grad_norm": 0.22649440169334412, + "learning_rate": 7.3911111111111125e-06, + "loss": 0.0012, + "step": 1675 + }, + { + "epoch": 16.63, + "grad_norm": 0.46751469373703003, + "learning_rate": 7.335555555555556e-06, + "loss": 0.0012, + "step": 1700 + }, + { + "epoch": 16.87, + "grad_norm": 0.3201611340045929, + "learning_rate": 7.280000000000001e-06, + "loss": 0.0009, + "step": 1725 + }, + { + "epoch": 17.11, + "grad_norm": 0.05176452174782753, + "learning_rate": 7.224444444444445e-06, + "loss": 0.0007, + "step": 1750 + }, + { + "epoch": 17.36, + "grad_norm": 0.5956466794013977, + "learning_rate": 7.1688888888888895e-06, + "loss": 0.0007, + "step": 1775 + }, + { + "epoch": 17.6, + "grad_norm": 0.1542888581752777, + "learning_rate": 7.113333333333334e-06, + "loss": 0.001, + "step": 1800 + }, + { + "epoch": 17.85, + "grad_norm": 0.624476432800293, + "learning_rate": 7.057777777777778e-06, + "loss": 0.0016, + "step": 1825 + }, + { + "epoch": 18.09, + "grad_norm": 0.3069753050804138, + "learning_rate": 7.0022222222222225e-06, + "loss": 0.0013, + "step": 1850 + }, + { + "epoch": 18.34, + "grad_norm": 0.3797595500946045, + "learning_rate": 6.946666666666667e-06, + "loss": 0.0018, + "step": 1875 + }, + { + "epoch": 18.58, + "grad_norm": 0.3482624590396881, + "learning_rate": 6.891111111111111e-06, + "loss": 0.0014, + "step": 1900 + }, + { + "epoch": 18.83, + "grad_norm": 0.05667097494006157, + "learning_rate": 6.835555555555556e-06, + "loss": 0.0008, + "step": 1925 + }, + { + "epoch": 19.07, + "grad_norm": 0.09759561717510223, + "learning_rate": 6.780000000000001e-06, + "loss": 0.0011, + "step": 1950 + }, + { + "epoch": 19.32, + "grad_norm": 0.5752401947975159, + "learning_rate": 6.724444444444444e-06, + "loss": 0.0014, + "step": 1975 + }, + { + "epoch": 19.56, + "grad_norm": 0.1028558760881424, + "learning_rate": 6.668888888888889e-06, + "loss": 0.0009, + "step": 2000 + }, + { + "epoch": 19.56, + "eval_loss": 0.4927152395248413, + "eval_runtime": 1461.0654, + "eval_samples_per_second": 1.981, + "eval_steps_per_second": 0.496, + "eval_wer": 18.301895430821354, + "step": 2000 + } + ], + "logging_steps": 25, + "max_steps": 5000, + "num_input_tokens_seen": 0, + "num_train_epochs": 50, + "save_steps": 1000, + "total_flos": 3.691699875053568e+19, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/whisper-fine-tuning-event/checkpoint-2000/training_args.bin b/whisper-fine-tuning-event/checkpoint-2000/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f1e1c1503977a74c2be326ce97dee50daa53384 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-2000/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f73c95d6632bb7d80507c5d129a813cefcc6575c685b8993420525612405d91 +size 5048 diff --git a/whisper-fine-tuning-event/checkpoint-3000/config.json b/whisper-fine-tuning-event/checkpoint-3000/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/whisper-fine-tuning-event/checkpoint-3000/generation_config.json b/whisper-fine-tuning-event/checkpoint-3000/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5576849bec3fa8e898478b36fc743acda59479f3 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/generation_config.json @@ -0,0 +1,265 @@ +{ + "alignment_heads": [ + [ + 5, + 3 + ], + [ + 5, + 9 + ], + [ + 8, + 0 + ], + [ + 8, + 4 + ], + [ + 8, + 7 + ], + [ + 8, + 8 + ], + [ + 9, + 0 + ], + [ + 9, + 7 + ], + [ + 9, + 9 + ], + [ + 10, + 5 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "forced_decoder_ids": [ + [ + 1, + null + ], + [ + 2, + 50359 + ] + ], + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 + }, + "language": "hi", + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50363, + "pad_token_id": 50257, + "prev_sot_token_id": 50361, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50358, + 50359, + 50360, + 50361, + 50362 + ], + "task_to_id": { + "transcribe": 50359, + "translate": 50358 + }, + "transformers_version": "4.40.0.dev0" +} diff --git a/whisper-fine-tuning-event/checkpoint-3000/model.safetensors b/whisper-fine-tuning-event/checkpoint-3000/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..b40b42a2bb7b0311af2369d1915cafec33a0c38b --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af137ee84c4419b5b2f91451fca6bd92298608426cb471bff2e42c4e95bca1b0 +size 966995080 diff --git a/whisper-fine-tuning-event/checkpoint-3000/optimizer.pt b/whisper-fine-tuning-event/checkpoint-3000/optimizer.pt new file mode 100644 index 0000000000000000000000000000000000000000..78f291df1475296a57a6fb692d8b5fb8143defe6 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/optimizer.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e5baa00a56cacce373d21ff8a25fd06cc0798068eadf0aee13c933c22e0ed2fb +size 1925064044 diff --git a/whisper-fine-tuning-event/checkpoint-3000/preprocessor_config.json b/whisper-fine-tuning-event/checkpoint-3000/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/whisper-fine-tuning-event/checkpoint-3000/rng_state.pth b/whisper-fine-tuning-event/checkpoint-3000/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..6eeb1adab35fe2e18417caf9d52d90cfcff10488 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:add9825a42b571991ab3854fb2e0ba47bf55d930a1681859c2a938fc623d503c +size 14244 diff --git a/whisper-fine-tuning-event/checkpoint-3000/scheduler.pt b/whisper-fine-tuning-event/checkpoint-3000/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..6315bde756f7bd721a3b5470e34c7a95e77e1485 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62c6fc3c22ad845c5522d6bb20938bae92ca52dec79a56e7f1a42148dc7d838b +size 1064 diff --git a/whisper-fine-tuning-event/checkpoint-3000/trainer_state.json b/whisper-fine-tuning-event/checkpoint-3000/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..e48559d8cff7d1fe137028527af33189c3835063 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/trainer_state.json @@ -0,0 +1,888 @@ +{ + "best_metric": 18.301895430821354, + "best_model_checkpoint": "./checkpoint-2000", + "epoch": 29.339853300733495, + "eval_steps": 1000, + "global_step": 3000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.24, + "grad_norm": 39.86157989501953, + "learning_rate": 5.000000000000001e-07, + "loss": 2.0555, + "step": 25 + }, + { + "epoch": 0.49, + "grad_norm": Infinity, + "learning_rate": 9.800000000000001e-07, + "loss": 1.5219, + "step": 50 + }, + { + "epoch": 0.73, + "grad_norm": 6.197519779205322, + "learning_rate": 1.48e-06, + "loss": 1.0167, + "step": 75 + }, + { + "epoch": 0.98, + "grad_norm": 5.485505104064941, + "learning_rate": 1.98e-06, + "loss": 0.7299, + "step": 100 + }, + { + "epoch": 1.22, + "grad_norm": 5.534335613250732, + "learning_rate": 2.4800000000000004e-06, + "loss": 0.6317, + "step": 125 + }, + { + "epoch": 1.47, + "grad_norm": 4.898209095001221, + "learning_rate": 2.9800000000000003e-06, + "loss": 0.5503, + "step": 150 + }, + { + "epoch": 1.71, + "grad_norm": 5.0602946281433105, + "learning_rate": 3.48e-06, + "loss": 0.4998, + "step": 175 + }, + { + "epoch": 1.96, + "grad_norm": 4.8069305419921875, + "learning_rate": 3.980000000000001e-06, + "loss": 0.4457, + "step": 200 + }, + { + "epoch": 2.2, + "grad_norm": 4.571457386016846, + "learning_rate": 4.48e-06, + "loss": 0.3778, + "step": 225 + }, + { + "epoch": 2.44, + "grad_norm": 4.707397937774658, + "learning_rate": 4.980000000000001e-06, + "loss": 0.333, + "step": 250 + }, + { + "epoch": 2.69, + "grad_norm": 4.317914009094238, + "learning_rate": 5.480000000000001e-06, + "loss": 0.2859, + "step": 275 + }, + { + "epoch": 2.93, + "grad_norm": 2.6433582305908203, + "learning_rate": 5.98e-06, + "loss": 0.2229, + "step": 300 + }, + { + "epoch": 3.18, + "grad_norm": 2.5579586029052734, + "learning_rate": 6.480000000000001e-06, + "loss": 0.1767, + "step": 325 + }, + { + "epoch": 3.42, + "grad_norm": 2.2651941776275635, + "learning_rate": 6.98e-06, + "loss": 0.1474, + "step": 350 + }, + { + "epoch": 3.67, + "grad_norm": 2.528773546218872, + "learning_rate": 7.48e-06, + "loss": 0.1493, + "step": 375 + }, + { + "epoch": 3.91, + "grad_norm": 2.422232151031494, + "learning_rate": 7.980000000000002e-06, + "loss": 0.142, + "step": 400 + }, + { + "epoch": 4.16, + "grad_norm": 2.209630012512207, + "learning_rate": 8.48e-06, + "loss": 0.1126, + "step": 425 + }, + { + "epoch": 4.4, + "grad_norm": 1.9945831298828125, + "learning_rate": 8.98e-06, + "loss": 0.0909, + "step": 450 + }, + { + "epoch": 4.65, + "grad_norm": 1.8972020149230957, + "learning_rate": 9.48e-06, + "loss": 0.0892, + "step": 475 + }, + { + "epoch": 4.89, + "grad_norm": 2.345607042312622, + "learning_rate": 9.980000000000001e-06, + "loss": 0.0909, + "step": 500 + }, + { + "epoch": 5.13, + "grad_norm": 1.3913277387619019, + "learning_rate": 9.946666666666667e-06, + "loss": 0.0713, + "step": 525 + }, + { + "epoch": 5.38, + "grad_norm": 2.5306901931762695, + "learning_rate": 9.891111111111113e-06, + "loss": 0.0535, + "step": 550 + }, + { + "epoch": 5.62, + "grad_norm": 1.3689407110214233, + "learning_rate": 9.835555555555556e-06, + "loss": 0.051, + "step": 575 + }, + { + "epoch": 5.87, + "grad_norm": 2.091756820678711, + "learning_rate": 9.780000000000001e-06, + "loss": 0.0573, + "step": 600 + }, + { + "epoch": 6.11, + "grad_norm": 1.5179609060287476, + "learning_rate": 9.724444444444445e-06, + "loss": 0.0454, + "step": 625 + }, + { + "epoch": 6.36, + "grad_norm": 1.3439680337905884, + "learning_rate": 9.66888888888889e-06, + "loss": 0.029, + "step": 650 + }, + { + "epoch": 6.6, + "grad_norm": 1.279569387435913, + "learning_rate": 9.613333333333335e-06, + "loss": 0.032, + "step": 675 + }, + { + "epoch": 6.85, + "grad_norm": 1.6171939373016357, + "learning_rate": 9.557777777777777e-06, + "loss": 0.0314, + "step": 700 + }, + { + "epoch": 7.09, + "grad_norm": 0.8949939608573914, + "learning_rate": 9.502222222222223e-06, + "loss": 0.0245, + "step": 725 + }, + { + "epoch": 7.33, + "grad_norm": 1.3610639572143555, + "learning_rate": 9.446666666666667e-06, + "loss": 0.0165, + "step": 750 + }, + { + "epoch": 7.58, + "grad_norm": 1.5446442365646362, + "learning_rate": 9.391111111111111e-06, + "loss": 0.0169, + "step": 775 + }, + { + "epoch": 7.82, + "grad_norm": 1.2825671434402466, + "learning_rate": 9.335555555555557e-06, + "loss": 0.0193, + "step": 800 + }, + { + "epoch": 8.07, + "grad_norm": 0.7063258290290833, + "learning_rate": 9.280000000000001e-06, + "loss": 0.0154, + "step": 825 + }, + { + "epoch": 8.31, + "grad_norm": 0.72287917137146, + "learning_rate": 9.224444444444445e-06, + "loss": 0.0102, + "step": 850 + }, + { + "epoch": 8.56, + "grad_norm": 1.2877657413482666, + "learning_rate": 9.168888888888889e-06, + "loss": 0.0093, + "step": 875 + }, + { + "epoch": 8.8, + "grad_norm": 1.6262348890304565, + "learning_rate": 9.113333333333335e-06, + "loss": 0.0117, + "step": 900 + }, + { + "epoch": 9.05, + "grad_norm": 0.49374520778656006, + "learning_rate": 9.057777777777779e-06, + "loss": 0.0121, + "step": 925 + }, + { + "epoch": 9.29, + "grad_norm": 0.8290354013442993, + "learning_rate": 9.002222222222223e-06, + "loss": 0.0063, + "step": 950 + }, + { + "epoch": 9.54, + "grad_norm": 0.9974227547645569, + "learning_rate": 8.946666666666669e-06, + "loss": 0.006, + "step": 975 + }, + { + "epoch": 9.78, + "grad_norm": 0.8566415309906006, + "learning_rate": 8.891111111111111e-06, + "loss": 0.007, + "step": 1000 + }, + { + "epoch": 9.78, + "eval_loss": 0.41129249334335327, + "eval_runtime": 1450.197, + "eval_samples_per_second": 1.996, + "eval_steps_per_second": 0.499, + "eval_wer": 18.926838201629888, + "step": 1000 + }, + { + "epoch": 10.02, + "grad_norm": 1.7889363765716553, + "learning_rate": 8.835555555555557e-06, + "loss": 0.0067, + "step": 1025 + }, + { + "epoch": 10.27, + "grad_norm": 0.9269456267356873, + "learning_rate": 8.78e-06, + "loss": 0.0047, + "step": 1050 + }, + { + "epoch": 10.51, + "grad_norm": 0.7966364622116089, + "learning_rate": 8.724444444444445e-06, + "loss": 0.0047, + "step": 1075 + }, + { + "epoch": 10.76, + "grad_norm": 0.6406449675559998, + "learning_rate": 8.66888888888889e-06, + "loss": 0.0049, + "step": 1100 + }, + { + "epoch": 11.0, + "grad_norm": 0.4881477355957031, + "learning_rate": 8.613333333333333e-06, + "loss": 0.0049, + "step": 1125 + }, + { + "epoch": 11.25, + "grad_norm": 0.4843809902667999, + "learning_rate": 8.557777777777778e-06, + "loss": 0.0036, + "step": 1150 + }, + { + "epoch": 11.49, + "grad_norm": 0.8177527189254761, + "learning_rate": 8.502222222222223e-06, + "loss": 0.0028, + "step": 1175 + }, + { + "epoch": 11.74, + "grad_norm": 0.676511287689209, + "learning_rate": 8.446666666666668e-06, + "loss": 0.0031, + "step": 1200 + }, + { + "epoch": 11.98, + "grad_norm": 0.9199188351631165, + "learning_rate": 8.391111111111112e-06, + "loss": 0.003, + "step": 1225 + }, + { + "epoch": 12.22, + "grad_norm": 0.248287171125412, + "learning_rate": 8.335555555555556e-06, + "loss": 0.0024, + "step": 1250 + }, + { + "epoch": 12.47, + "grad_norm": 0.9288859963417053, + "learning_rate": 8.28e-06, + "loss": 0.0022, + "step": 1275 + }, + { + "epoch": 12.71, + "grad_norm": 0.8308430910110474, + "learning_rate": 8.224444444444444e-06, + "loss": 0.0025, + "step": 1300 + }, + { + "epoch": 12.96, + "grad_norm": 0.33064720034599304, + "learning_rate": 8.16888888888889e-06, + "loss": 0.0027, + "step": 1325 + }, + { + "epoch": 13.2, + "grad_norm": 0.5254776477813721, + "learning_rate": 8.113333333333334e-06, + "loss": 0.0019, + "step": 1350 + }, + { + "epoch": 13.45, + "grad_norm": 0.4681105315685272, + "learning_rate": 8.057777777777778e-06, + "loss": 0.0021, + "step": 1375 + }, + { + "epoch": 13.69, + "grad_norm": 0.352115273475647, + "learning_rate": 8.002222222222222e-06, + "loss": 0.0026, + "step": 1400 + }, + { + "epoch": 13.94, + "grad_norm": 1.5301597118377686, + "learning_rate": 7.946666666666666e-06, + "loss": 0.0027, + "step": 1425 + }, + { + "epoch": 14.18, + "grad_norm": 0.28577202558517456, + "learning_rate": 7.891111111111112e-06, + "loss": 0.0018, + "step": 1450 + }, + { + "epoch": 14.43, + "grad_norm": 0.7940084338188171, + "learning_rate": 7.835555555555556e-06, + "loss": 0.002, + "step": 1475 + }, + { + "epoch": 14.67, + "grad_norm": 1.031543493270874, + "learning_rate": 7.78e-06, + "loss": 0.0021, + "step": 1500 + }, + { + "epoch": 14.91, + "grad_norm": 0.5695396661758423, + "learning_rate": 7.724444444444446e-06, + "loss": 0.0016, + "step": 1525 + }, + { + "epoch": 15.16, + "grad_norm": 0.2285182625055313, + "learning_rate": 7.66888888888889e-06, + "loss": 0.0014, + "step": 1550 + }, + { + "epoch": 15.4, + "grad_norm": 0.40289613604545593, + "learning_rate": 7.613333333333334e-06, + "loss": 0.0017, + "step": 1575 + }, + { + "epoch": 15.65, + "grad_norm": 0.5758986473083496, + "learning_rate": 7.557777777777779e-06, + "loss": 0.0012, + "step": 1600 + }, + { + "epoch": 15.89, + "grad_norm": 0.5524174571037292, + "learning_rate": 7.502222222222223e-06, + "loss": 0.001, + "step": 1625 + }, + { + "epoch": 16.14, + "grad_norm": 0.7031832933425903, + "learning_rate": 7.446666666666668e-06, + "loss": 0.0015, + "step": 1650 + }, + { + "epoch": 16.38, + "grad_norm": 0.22649440169334412, + "learning_rate": 7.3911111111111125e-06, + "loss": 0.0012, + "step": 1675 + }, + { + "epoch": 16.63, + "grad_norm": 0.46751469373703003, + "learning_rate": 7.335555555555556e-06, + "loss": 0.0012, + "step": 1700 + }, + { + "epoch": 16.87, + "grad_norm": 0.3201611340045929, + "learning_rate": 7.280000000000001e-06, + "loss": 0.0009, + "step": 1725 + }, + { + "epoch": 17.11, + "grad_norm": 0.05176452174782753, + "learning_rate": 7.224444444444445e-06, + "loss": 0.0007, + "step": 1750 + }, + { + "epoch": 17.36, + "grad_norm": 0.5956466794013977, + "learning_rate": 7.1688888888888895e-06, + "loss": 0.0007, + "step": 1775 + }, + { + "epoch": 17.6, + "grad_norm": 0.1542888581752777, + "learning_rate": 7.113333333333334e-06, + "loss": 0.001, + "step": 1800 + }, + { + "epoch": 17.85, + "grad_norm": 0.624476432800293, + "learning_rate": 7.057777777777778e-06, + "loss": 0.0016, + "step": 1825 + }, + { + "epoch": 18.09, + "grad_norm": 0.3069753050804138, + "learning_rate": 7.0022222222222225e-06, + "loss": 0.0013, + "step": 1850 + }, + { + "epoch": 18.34, + "grad_norm": 0.3797595500946045, + "learning_rate": 6.946666666666667e-06, + "loss": 0.0018, + "step": 1875 + }, + { + "epoch": 18.58, + "grad_norm": 0.3482624590396881, + "learning_rate": 6.891111111111111e-06, + "loss": 0.0014, + "step": 1900 + }, + { + "epoch": 18.83, + "grad_norm": 0.05667097494006157, + "learning_rate": 6.835555555555556e-06, + "loss": 0.0008, + "step": 1925 + }, + { + "epoch": 19.07, + "grad_norm": 0.09759561717510223, + "learning_rate": 6.780000000000001e-06, + "loss": 0.0011, + "step": 1950 + }, + { + "epoch": 19.32, + "grad_norm": 0.5752401947975159, + "learning_rate": 6.724444444444444e-06, + "loss": 0.0014, + "step": 1975 + }, + { + "epoch": 19.56, + "grad_norm": 0.1028558760881424, + "learning_rate": 6.668888888888889e-06, + "loss": 0.0009, + "step": 2000 + }, + { + "epoch": 19.56, + "eval_loss": 0.4927152395248413, + "eval_runtime": 1461.0654, + "eval_samples_per_second": 1.981, + "eval_steps_per_second": 0.496, + "eval_wer": 18.301895430821354, + "step": 2000 + }, + { + "epoch": 19.8, + "grad_norm": 0.28834694623947144, + "learning_rate": 6.613333333333334e-06, + "loss": 0.0012, + "step": 2025 + }, + { + "epoch": 20.05, + "grad_norm": 0.38117802143096924, + "learning_rate": 6.557777777777778e-06, + "loss": 0.0017, + "step": 2050 + }, + { + "epoch": 20.29, + "grad_norm": 0.6632546782493591, + "learning_rate": 6.502222222222223e-06, + "loss": 0.001, + "step": 2075 + }, + { + "epoch": 20.54, + "grad_norm": 0.32943013310432434, + "learning_rate": 6.446666666666668e-06, + "loss": 0.0017, + "step": 2100 + }, + { + "epoch": 20.78, + "grad_norm": 0.6536120772361755, + "learning_rate": 6.391111111111111e-06, + "loss": 0.001, + "step": 2125 + }, + { + "epoch": 21.03, + "grad_norm": 0.6113318204879761, + "learning_rate": 6.335555555555556e-06, + "loss": 0.0009, + "step": 2150 + }, + { + "epoch": 21.27, + "grad_norm": 0.24811410903930664, + "learning_rate": 6.280000000000001e-06, + "loss": 0.0012, + "step": 2175 + }, + { + "epoch": 21.52, + "grad_norm": 1.5321826934814453, + "learning_rate": 6.224444444444445e-06, + "loss": 0.0015, + "step": 2200 + }, + { + "epoch": 21.76, + "grad_norm": 0.6304628252983093, + "learning_rate": 6.16888888888889e-06, + "loss": 0.002, + "step": 2225 + }, + { + "epoch": 22.0, + "grad_norm": 0.4291835427284241, + "learning_rate": 6.113333333333333e-06, + "loss": 0.0017, + "step": 2250 + }, + { + "epoch": 22.25, + "grad_norm": 1.250555396080017, + "learning_rate": 6.057777777777778e-06, + "loss": 0.0014, + "step": 2275 + }, + { + "epoch": 22.49, + "grad_norm": 0.14119359850883484, + "learning_rate": 6.002222222222223e-06, + "loss": 0.0011, + "step": 2300 + }, + { + "epoch": 22.74, + "grad_norm": 0.6686920523643494, + "learning_rate": 5.946666666666668e-06, + "loss": 0.0013, + "step": 2325 + }, + { + "epoch": 22.98, + "grad_norm": 0.6255317330360413, + "learning_rate": 5.891111111111112e-06, + "loss": 0.001, + "step": 2350 + }, + { + "epoch": 23.23, + "grad_norm": 0.08858698606491089, + "learning_rate": 5.8355555555555565e-06, + "loss": 0.0006, + "step": 2375 + }, + { + "epoch": 23.47, + "grad_norm": 0.08142836391925812, + "learning_rate": 5.78e-06, + "loss": 0.0005, + "step": 2400 + }, + { + "epoch": 23.72, + "grad_norm": 1.0621262788772583, + "learning_rate": 5.724444444444445e-06, + "loss": 0.0005, + "step": 2425 + }, + { + "epoch": 23.96, + "grad_norm": 0.04572203755378723, + "learning_rate": 5.6688888888888895e-06, + "loss": 0.0004, + "step": 2450 + }, + { + "epoch": 24.21, + "grad_norm": 0.03155618906021118, + "learning_rate": 5.613333333333334e-06, + "loss": 0.0002, + "step": 2475 + }, + { + "epoch": 24.45, + "grad_norm": 0.03207828477025032, + "learning_rate": 5.557777777777778e-06, + "loss": 0.0003, + "step": 2500 + }, + { + "epoch": 24.69, + "grad_norm": 0.0497412383556366, + "learning_rate": 5.5022222222222224e-06, + "loss": 0.0003, + "step": 2525 + }, + { + "epoch": 24.94, + "grad_norm": 0.21509559452533722, + "learning_rate": 5.4466666666666665e-06, + "loss": 0.0004, + "step": 2550 + }, + { + "epoch": 25.18, + "grad_norm": 0.024903174489736557, + "learning_rate": 5.391111111111111e-06, + "loss": 0.0003, + "step": 2575 + }, + { + "epoch": 25.43, + "grad_norm": 0.02149089053273201, + "learning_rate": 5.335555555555556e-06, + "loss": 0.0003, + "step": 2600 + }, + { + "epoch": 25.67, + "grad_norm": 0.014418188482522964, + "learning_rate": 5.28e-06, + "loss": 0.0002, + "step": 2625 + }, + { + "epoch": 25.92, + "grad_norm": 0.018349435180425644, + "learning_rate": 5.224444444444445e-06, + "loss": 0.0002, + "step": 2650 + }, + { + "epoch": 26.16, + "grad_norm": 0.013832501135766506, + "learning_rate": 5.168888888888889e-06, + "loss": 0.0002, + "step": 2675 + }, + { + "epoch": 26.41, + "grad_norm": 0.012281795963644981, + "learning_rate": 5.113333333333333e-06, + "loss": 0.0001, + "step": 2700 + }, + { + "epoch": 26.65, + "grad_norm": 0.009847081266343594, + "learning_rate": 5.057777777777778e-06, + "loss": 0.0001, + "step": 2725 + }, + { + "epoch": 26.89, + "grad_norm": 0.020844602957367897, + "learning_rate": 5.002222222222223e-06, + "loss": 0.0002, + "step": 2750 + }, + { + "epoch": 27.14, + "grad_norm": 0.012561388313770294, + "learning_rate": 4.946666666666667e-06, + "loss": 0.0003, + "step": 2775 + }, + { + "epoch": 27.38, + "grad_norm": 0.0130954310297966, + "learning_rate": 4.891111111111111e-06, + "loss": 0.0002, + "step": 2800 + }, + { + "epoch": 27.63, + "grad_norm": 0.008950438350439072, + "learning_rate": 4.835555555555556e-06, + "loss": 0.0001, + "step": 2825 + }, + { + "epoch": 27.87, + "grad_norm": 0.007355996407568455, + "learning_rate": 4.78e-06, + "loss": 0.0001, + "step": 2850 + }, + { + "epoch": 28.12, + "grad_norm": 0.008460123091936111, + "learning_rate": 4.724444444444445e-06, + "loss": 0.0001, + "step": 2875 + }, + { + "epoch": 28.36, + "grad_norm": 0.007149124052375555, + "learning_rate": 4.66888888888889e-06, + "loss": 0.0001, + "step": 2900 + }, + { + "epoch": 28.61, + "grad_norm": 0.008197379298508167, + "learning_rate": 4.613333333333334e-06, + "loss": 0.0001, + "step": 2925 + }, + { + "epoch": 28.85, + "grad_norm": 0.00648567546159029, + "learning_rate": 4.557777777777778e-06, + "loss": 0.0001, + "step": 2950 + }, + { + "epoch": 29.1, + "grad_norm": 0.006952579598873854, + "learning_rate": 4.502222222222223e-06, + "loss": 0.0001, + "step": 2975 + }, + { + "epoch": 29.34, + "grad_norm": 0.009140390902757645, + "learning_rate": 4.446666666666667e-06, + "loss": 0.0001, + "step": 3000 + }, + { + "epoch": 29.34, + "eval_loss": 0.535641610622406, + "eval_runtime": 1473.7946, + "eval_samples_per_second": 1.964, + "eval_steps_per_second": 0.491, + "eval_wer": 18.395751304825566, + "step": 3000 + } + ], + "logging_steps": 25, + "max_steps": 5000, + "num_input_tokens_seen": 0, + "num_train_epochs": 50, + "save_steps": 1000, + "total_flos": 5.537492095500288e+19, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/whisper-fine-tuning-event/checkpoint-3000/training_args.bin b/whisper-fine-tuning-event/checkpoint-3000/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f1e1c1503977a74c2be326ce97dee50daa53384 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-3000/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f73c95d6632bb7d80507c5d129a813cefcc6575c685b8993420525612405d91 +size 5048 diff --git a/whisper-fine-tuning-event/checkpoint-4000/config.json b/whisper-fine-tuning-event/checkpoint-4000/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/whisper-fine-tuning-event/checkpoint-4000/generation_config.json b/whisper-fine-tuning-event/checkpoint-4000/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5576849bec3fa8e898478b36fc743acda59479f3 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/generation_config.json @@ -0,0 +1,265 @@ +{ + "alignment_heads": [ + [ + 5, + 3 + ], + [ + 5, + 9 + ], + [ + 8, + 0 + ], + [ + 8, + 4 + ], + [ + 8, + 7 + ], + [ + 8, + 8 + ], + [ + 9, + 0 + ], + [ + 9, + 7 + ], + [ + 9, + 9 + ], + [ + 10, + 5 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "forced_decoder_ids": [ + [ + 1, + null + ], + [ + 2, + 50359 + ] + ], + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 + }, + "language": "hi", + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50363, + "pad_token_id": 50257, + "prev_sot_token_id": 50361, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50358, + 50359, + 50360, + 50361, + 50362 + ], + "task_to_id": { + "transcribe": 50359, + "translate": 50358 + }, + "transformers_version": "4.40.0.dev0" +} diff --git a/whisper-fine-tuning-event/checkpoint-4000/model.safetensors b/whisper-fine-tuning-event/checkpoint-4000/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..e2251a14bc3725179f25a4934ea5300f5c3a4a60 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5148560a9c42f5bc1a9f8ff63206869bcae5db72a1d1684895f4207cdcf3bcd3 +size 966995080 diff --git a/whisper-fine-tuning-event/checkpoint-4000/optimizer.pt b/whisper-fine-tuning-event/checkpoint-4000/optimizer.pt new file mode 100644 index 0000000000000000000000000000000000000000..a92c5dd631fe1cf510bdd9d00f518adb25858a9b --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/optimizer.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadc01d8dce9946ee8e7a6a976ddd8018bff8c195dce88943831f5b7f962c30f +size 1925064044 diff --git a/whisper-fine-tuning-event/checkpoint-4000/preprocessor_config.json b/whisper-fine-tuning-event/checkpoint-4000/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/whisper-fine-tuning-event/checkpoint-4000/rng_state.pth b/whisper-fine-tuning-event/checkpoint-4000/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..f3d5609409651e135bf8832654bdc5e329da441d --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c76d2a773674218dbf191e2bd7972993110ab38f0f4ec23dc0737b952d379f3b +size 14244 diff --git a/whisper-fine-tuning-event/checkpoint-4000/scheduler.pt b/whisper-fine-tuning-event/checkpoint-4000/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..07911103855f626b1ee62d060797bcaf3f688a53 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a382a9c61605f8d81ded18f481590da40e63ed655cb410f92839fa7b08314e83 +size 1064 diff --git a/whisper-fine-tuning-event/checkpoint-4000/trainer_state.json b/whisper-fine-tuning-event/checkpoint-4000/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..2faff0e822115e21c331e2b09102025179e82d83 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/trainer_state.json @@ -0,0 +1,1177 @@ +{ + "best_metric": 18.301895430821354, + "best_model_checkpoint": "./checkpoint-2000", + "epoch": 39.119804400978, + "eval_steps": 1000, + "global_step": 4000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.24, + "grad_norm": 39.86157989501953, + "learning_rate": 5.000000000000001e-07, + "loss": 2.0555, + "step": 25 + }, + { + "epoch": 0.49, + "grad_norm": Infinity, + "learning_rate": 9.800000000000001e-07, + "loss": 1.5219, + "step": 50 + }, + { + "epoch": 0.73, + "grad_norm": 6.197519779205322, + "learning_rate": 1.48e-06, + "loss": 1.0167, + "step": 75 + }, + { + "epoch": 0.98, + "grad_norm": 5.485505104064941, + "learning_rate": 1.98e-06, + "loss": 0.7299, + "step": 100 + }, + { + "epoch": 1.22, + "grad_norm": 5.534335613250732, + "learning_rate": 2.4800000000000004e-06, + "loss": 0.6317, + "step": 125 + }, + { + "epoch": 1.47, + "grad_norm": 4.898209095001221, + "learning_rate": 2.9800000000000003e-06, + "loss": 0.5503, + "step": 150 + }, + { + "epoch": 1.71, + "grad_norm": 5.0602946281433105, + "learning_rate": 3.48e-06, + "loss": 0.4998, + "step": 175 + }, + { + "epoch": 1.96, + "grad_norm": 4.8069305419921875, + "learning_rate": 3.980000000000001e-06, + "loss": 0.4457, + "step": 200 + }, + { + "epoch": 2.2, + "grad_norm": 4.571457386016846, + "learning_rate": 4.48e-06, + "loss": 0.3778, + "step": 225 + }, + { + "epoch": 2.44, + "grad_norm": 4.707397937774658, + "learning_rate": 4.980000000000001e-06, + "loss": 0.333, + "step": 250 + }, + { + "epoch": 2.69, + "grad_norm": 4.317914009094238, + "learning_rate": 5.480000000000001e-06, + "loss": 0.2859, + "step": 275 + }, + { + "epoch": 2.93, + "grad_norm": 2.6433582305908203, + "learning_rate": 5.98e-06, + "loss": 0.2229, + "step": 300 + }, + { + "epoch": 3.18, + "grad_norm": 2.5579586029052734, + "learning_rate": 6.480000000000001e-06, + "loss": 0.1767, + "step": 325 + }, + { + "epoch": 3.42, + "grad_norm": 2.2651941776275635, + "learning_rate": 6.98e-06, + "loss": 0.1474, + "step": 350 + }, + { + "epoch": 3.67, + "grad_norm": 2.528773546218872, + "learning_rate": 7.48e-06, + "loss": 0.1493, + "step": 375 + }, + { + "epoch": 3.91, + "grad_norm": 2.422232151031494, + "learning_rate": 7.980000000000002e-06, + "loss": 0.142, + "step": 400 + }, + { + "epoch": 4.16, + "grad_norm": 2.209630012512207, + "learning_rate": 8.48e-06, + "loss": 0.1126, + "step": 425 + }, + { + "epoch": 4.4, + "grad_norm": 1.9945831298828125, + "learning_rate": 8.98e-06, + "loss": 0.0909, + "step": 450 + }, + { + "epoch": 4.65, + "grad_norm": 1.8972020149230957, + "learning_rate": 9.48e-06, + "loss": 0.0892, + "step": 475 + }, + { + "epoch": 4.89, + "grad_norm": 2.345607042312622, + "learning_rate": 9.980000000000001e-06, + "loss": 0.0909, + "step": 500 + }, + { + "epoch": 5.13, + "grad_norm": 1.3913277387619019, + "learning_rate": 9.946666666666667e-06, + "loss": 0.0713, + "step": 525 + }, + { + "epoch": 5.38, + "grad_norm": 2.5306901931762695, + "learning_rate": 9.891111111111113e-06, + "loss": 0.0535, + "step": 550 + }, + { + "epoch": 5.62, + "grad_norm": 1.3689407110214233, + "learning_rate": 9.835555555555556e-06, + "loss": 0.051, + "step": 575 + }, + { + "epoch": 5.87, + "grad_norm": 2.091756820678711, + "learning_rate": 9.780000000000001e-06, + "loss": 0.0573, + "step": 600 + }, + { + "epoch": 6.11, + "grad_norm": 1.5179609060287476, + "learning_rate": 9.724444444444445e-06, + "loss": 0.0454, + "step": 625 + }, + { + "epoch": 6.36, + "grad_norm": 1.3439680337905884, + "learning_rate": 9.66888888888889e-06, + "loss": 0.029, + "step": 650 + }, + { + "epoch": 6.6, + "grad_norm": 1.279569387435913, + "learning_rate": 9.613333333333335e-06, + "loss": 0.032, + "step": 675 + }, + { + "epoch": 6.85, + "grad_norm": 1.6171939373016357, + "learning_rate": 9.557777777777777e-06, + "loss": 0.0314, + "step": 700 + }, + { + "epoch": 7.09, + "grad_norm": 0.8949939608573914, + "learning_rate": 9.502222222222223e-06, + "loss": 0.0245, + "step": 725 + }, + { + "epoch": 7.33, + "grad_norm": 1.3610639572143555, + "learning_rate": 9.446666666666667e-06, + "loss": 0.0165, + "step": 750 + }, + { + "epoch": 7.58, + "grad_norm": 1.5446442365646362, + "learning_rate": 9.391111111111111e-06, + "loss": 0.0169, + "step": 775 + }, + { + "epoch": 7.82, + "grad_norm": 1.2825671434402466, + "learning_rate": 9.335555555555557e-06, + "loss": 0.0193, + "step": 800 + }, + { + "epoch": 8.07, + "grad_norm": 0.7063258290290833, + "learning_rate": 9.280000000000001e-06, + "loss": 0.0154, + "step": 825 + }, + { + "epoch": 8.31, + "grad_norm": 0.72287917137146, + "learning_rate": 9.224444444444445e-06, + "loss": 0.0102, + "step": 850 + }, + { + "epoch": 8.56, + "grad_norm": 1.2877657413482666, + "learning_rate": 9.168888888888889e-06, + "loss": 0.0093, + "step": 875 + }, + { + "epoch": 8.8, + "grad_norm": 1.6262348890304565, + "learning_rate": 9.113333333333335e-06, + "loss": 0.0117, + "step": 900 + }, + { + "epoch": 9.05, + "grad_norm": 0.49374520778656006, + "learning_rate": 9.057777777777779e-06, + "loss": 0.0121, + "step": 925 + }, + { + "epoch": 9.29, + "grad_norm": 0.8290354013442993, + "learning_rate": 9.002222222222223e-06, + "loss": 0.0063, + "step": 950 + }, + { + "epoch": 9.54, + "grad_norm": 0.9974227547645569, + "learning_rate": 8.946666666666669e-06, + "loss": 0.006, + "step": 975 + }, + { + "epoch": 9.78, + "grad_norm": 0.8566415309906006, + "learning_rate": 8.891111111111111e-06, + "loss": 0.007, + "step": 1000 + }, + { + "epoch": 9.78, + "eval_loss": 0.41129249334335327, + "eval_runtime": 1450.197, + "eval_samples_per_second": 1.996, + "eval_steps_per_second": 0.499, + "eval_wer": 18.926838201629888, + "step": 1000 + }, + { + "epoch": 10.02, + "grad_norm": 1.7889363765716553, + "learning_rate": 8.835555555555557e-06, + "loss": 0.0067, + "step": 1025 + }, + { + "epoch": 10.27, + "grad_norm": 0.9269456267356873, + "learning_rate": 8.78e-06, + "loss": 0.0047, + "step": 1050 + }, + { + "epoch": 10.51, + "grad_norm": 0.7966364622116089, + "learning_rate": 8.724444444444445e-06, + "loss": 0.0047, + "step": 1075 + }, + { + "epoch": 10.76, + "grad_norm": 0.6406449675559998, + "learning_rate": 8.66888888888889e-06, + "loss": 0.0049, + "step": 1100 + }, + { + "epoch": 11.0, + "grad_norm": 0.4881477355957031, + "learning_rate": 8.613333333333333e-06, + "loss": 0.0049, + "step": 1125 + }, + { + "epoch": 11.25, + "grad_norm": 0.4843809902667999, + "learning_rate": 8.557777777777778e-06, + "loss": 0.0036, + "step": 1150 + }, + { + "epoch": 11.49, + "grad_norm": 0.8177527189254761, + "learning_rate": 8.502222222222223e-06, + "loss": 0.0028, + "step": 1175 + }, + { + "epoch": 11.74, + "grad_norm": 0.676511287689209, + "learning_rate": 8.446666666666668e-06, + "loss": 0.0031, + "step": 1200 + }, + { + "epoch": 11.98, + "grad_norm": 0.9199188351631165, + "learning_rate": 8.391111111111112e-06, + "loss": 0.003, + "step": 1225 + }, + { + "epoch": 12.22, + "grad_norm": 0.248287171125412, + "learning_rate": 8.335555555555556e-06, + "loss": 0.0024, + "step": 1250 + }, + { + "epoch": 12.47, + "grad_norm": 0.9288859963417053, + "learning_rate": 8.28e-06, + "loss": 0.0022, + "step": 1275 + }, + { + "epoch": 12.71, + "grad_norm": 0.8308430910110474, + "learning_rate": 8.224444444444444e-06, + "loss": 0.0025, + "step": 1300 + }, + { + "epoch": 12.96, + "grad_norm": 0.33064720034599304, + "learning_rate": 8.16888888888889e-06, + "loss": 0.0027, + "step": 1325 + }, + { + "epoch": 13.2, + "grad_norm": 0.5254776477813721, + "learning_rate": 8.113333333333334e-06, + "loss": 0.0019, + "step": 1350 + }, + { + "epoch": 13.45, + "grad_norm": 0.4681105315685272, + "learning_rate": 8.057777777777778e-06, + "loss": 0.0021, + "step": 1375 + }, + { + "epoch": 13.69, + "grad_norm": 0.352115273475647, + "learning_rate": 8.002222222222222e-06, + "loss": 0.0026, + "step": 1400 + }, + { + "epoch": 13.94, + "grad_norm": 1.5301597118377686, + "learning_rate": 7.946666666666666e-06, + "loss": 0.0027, + "step": 1425 + }, + { + "epoch": 14.18, + "grad_norm": 0.28577202558517456, + "learning_rate": 7.891111111111112e-06, + "loss": 0.0018, + "step": 1450 + }, + { + "epoch": 14.43, + "grad_norm": 0.7940084338188171, + "learning_rate": 7.835555555555556e-06, + "loss": 0.002, + "step": 1475 + }, + { + "epoch": 14.67, + "grad_norm": 1.031543493270874, + "learning_rate": 7.78e-06, + "loss": 0.0021, + "step": 1500 + }, + { + "epoch": 14.91, + "grad_norm": 0.5695396661758423, + "learning_rate": 7.724444444444446e-06, + "loss": 0.0016, + "step": 1525 + }, + { + "epoch": 15.16, + "grad_norm": 0.2285182625055313, + "learning_rate": 7.66888888888889e-06, + "loss": 0.0014, + "step": 1550 + }, + { + "epoch": 15.4, + "grad_norm": 0.40289613604545593, + "learning_rate": 7.613333333333334e-06, + "loss": 0.0017, + "step": 1575 + }, + { + "epoch": 15.65, + "grad_norm": 0.5758986473083496, + "learning_rate": 7.557777777777779e-06, + "loss": 0.0012, + "step": 1600 + }, + { + "epoch": 15.89, + "grad_norm": 0.5524174571037292, + "learning_rate": 7.502222222222223e-06, + "loss": 0.001, + "step": 1625 + }, + { + "epoch": 16.14, + "grad_norm": 0.7031832933425903, + "learning_rate": 7.446666666666668e-06, + "loss": 0.0015, + "step": 1650 + }, + { + "epoch": 16.38, + "grad_norm": 0.22649440169334412, + "learning_rate": 7.3911111111111125e-06, + "loss": 0.0012, + "step": 1675 + }, + { + "epoch": 16.63, + "grad_norm": 0.46751469373703003, + "learning_rate": 7.335555555555556e-06, + "loss": 0.0012, + "step": 1700 + }, + { + "epoch": 16.87, + "grad_norm": 0.3201611340045929, + "learning_rate": 7.280000000000001e-06, + "loss": 0.0009, + "step": 1725 + }, + { + "epoch": 17.11, + "grad_norm": 0.05176452174782753, + "learning_rate": 7.224444444444445e-06, + "loss": 0.0007, + "step": 1750 + }, + { + "epoch": 17.36, + "grad_norm": 0.5956466794013977, + "learning_rate": 7.1688888888888895e-06, + "loss": 0.0007, + "step": 1775 + }, + { + "epoch": 17.6, + "grad_norm": 0.1542888581752777, + "learning_rate": 7.113333333333334e-06, + "loss": 0.001, + "step": 1800 + }, + { + "epoch": 17.85, + "grad_norm": 0.624476432800293, + "learning_rate": 7.057777777777778e-06, + "loss": 0.0016, + "step": 1825 + }, + { + "epoch": 18.09, + "grad_norm": 0.3069753050804138, + "learning_rate": 7.0022222222222225e-06, + "loss": 0.0013, + "step": 1850 + }, + { + "epoch": 18.34, + "grad_norm": 0.3797595500946045, + "learning_rate": 6.946666666666667e-06, + "loss": 0.0018, + "step": 1875 + }, + { + "epoch": 18.58, + "grad_norm": 0.3482624590396881, + "learning_rate": 6.891111111111111e-06, + "loss": 0.0014, + "step": 1900 + }, + { + "epoch": 18.83, + "grad_norm": 0.05667097494006157, + "learning_rate": 6.835555555555556e-06, + "loss": 0.0008, + "step": 1925 + }, + { + "epoch": 19.07, + "grad_norm": 0.09759561717510223, + "learning_rate": 6.780000000000001e-06, + "loss": 0.0011, + "step": 1950 + }, + { + "epoch": 19.32, + "grad_norm": 0.5752401947975159, + "learning_rate": 6.724444444444444e-06, + "loss": 0.0014, + "step": 1975 + }, + { + "epoch": 19.56, + "grad_norm": 0.1028558760881424, + "learning_rate": 6.668888888888889e-06, + "loss": 0.0009, + "step": 2000 + }, + { + "epoch": 19.56, + "eval_loss": 0.4927152395248413, + "eval_runtime": 1461.0654, + "eval_samples_per_second": 1.981, + "eval_steps_per_second": 0.496, + "eval_wer": 18.301895430821354, + "step": 2000 + }, + { + "epoch": 19.8, + "grad_norm": 0.28834694623947144, + "learning_rate": 6.613333333333334e-06, + "loss": 0.0012, + "step": 2025 + }, + { + "epoch": 20.05, + "grad_norm": 0.38117802143096924, + "learning_rate": 6.557777777777778e-06, + "loss": 0.0017, + "step": 2050 + }, + { + "epoch": 20.29, + "grad_norm": 0.6632546782493591, + "learning_rate": 6.502222222222223e-06, + "loss": 0.001, + "step": 2075 + }, + { + "epoch": 20.54, + "grad_norm": 0.32943013310432434, + "learning_rate": 6.446666666666668e-06, + "loss": 0.0017, + "step": 2100 + }, + { + "epoch": 20.78, + "grad_norm": 0.6536120772361755, + "learning_rate": 6.391111111111111e-06, + "loss": 0.001, + "step": 2125 + }, + { + "epoch": 21.03, + "grad_norm": 0.6113318204879761, + "learning_rate": 6.335555555555556e-06, + "loss": 0.0009, + "step": 2150 + }, + { + "epoch": 21.27, + "grad_norm": 0.24811410903930664, + "learning_rate": 6.280000000000001e-06, + "loss": 0.0012, + "step": 2175 + }, + { + "epoch": 21.52, + "grad_norm": 1.5321826934814453, + "learning_rate": 6.224444444444445e-06, + "loss": 0.0015, + "step": 2200 + }, + { + "epoch": 21.76, + "grad_norm": 0.6304628252983093, + "learning_rate": 6.16888888888889e-06, + "loss": 0.002, + "step": 2225 + }, + { + "epoch": 22.0, + "grad_norm": 0.4291835427284241, + "learning_rate": 6.113333333333333e-06, + "loss": 0.0017, + "step": 2250 + }, + { + "epoch": 22.25, + "grad_norm": 1.250555396080017, + "learning_rate": 6.057777777777778e-06, + "loss": 0.0014, + "step": 2275 + }, + { + "epoch": 22.49, + "grad_norm": 0.14119359850883484, + "learning_rate": 6.002222222222223e-06, + "loss": 0.0011, + "step": 2300 + }, + { + "epoch": 22.74, + "grad_norm": 0.6686920523643494, + "learning_rate": 5.946666666666668e-06, + "loss": 0.0013, + "step": 2325 + }, + { + "epoch": 22.98, + "grad_norm": 0.6255317330360413, + "learning_rate": 5.891111111111112e-06, + "loss": 0.001, + "step": 2350 + }, + { + "epoch": 23.23, + "grad_norm": 0.08858698606491089, + "learning_rate": 5.8355555555555565e-06, + "loss": 0.0006, + "step": 2375 + }, + { + "epoch": 23.47, + "grad_norm": 0.08142836391925812, + "learning_rate": 5.78e-06, + "loss": 0.0005, + "step": 2400 + }, + { + "epoch": 23.72, + "grad_norm": 1.0621262788772583, + "learning_rate": 5.724444444444445e-06, + "loss": 0.0005, + "step": 2425 + }, + { + "epoch": 23.96, + "grad_norm": 0.04572203755378723, + "learning_rate": 5.6688888888888895e-06, + "loss": 0.0004, + "step": 2450 + }, + { + "epoch": 24.21, + "grad_norm": 0.03155618906021118, + "learning_rate": 5.613333333333334e-06, + "loss": 0.0002, + "step": 2475 + }, + { + "epoch": 24.45, + "grad_norm": 0.03207828477025032, + "learning_rate": 5.557777777777778e-06, + "loss": 0.0003, + "step": 2500 + }, + { + "epoch": 24.69, + "grad_norm": 0.0497412383556366, + "learning_rate": 5.5022222222222224e-06, + "loss": 0.0003, + "step": 2525 + }, + { + "epoch": 24.94, + "grad_norm": 0.21509559452533722, + "learning_rate": 5.4466666666666665e-06, + "loss": 0.0004, + "step": 2550 + }, + { + "epoch": 25.18, + "grad_norm": 0.024903174489736557, + "learning_rate": 5.391111111111111e-06, + "loss": 0.0003, + "step": 2575 + }, + { + "epoch": 25.43, + "grad_norm": 0.02149089053273201, + "learning_rate": 5.335555555555556e-06, + "loss": 0.0003, + "step": 2600 + }, + { + "epoch": 25.67, + "grad_norm": 0.014418188482522964, + "learning_rate": 5.28e-06, + "loss": 0.0002, + "step": 2625 + }, + { + "epoch": 25.92, + "grad_norm": 0.018349435180425644, + "learning_rate": 5.224444444444445e-06, + "loss": 0.0002, + "step": 2650 + }, + { + "epoch": 26.16, + "grad_norm": 0.013832501135766506, + "learning_rate": 5.168888888888889e-06, + "loss": 0.0002, + "step": 2675 + }, + { + "epoch": 26.41, + "grad_norm": 0.012281795963644981, + "learning_rate": 5.113333333333333e-06, + "loss": 0.0001, + "step": 2700 + }, + { + "epoch": 26.65, + "grad_norm": 0.009847081266343594, + "learning_rate": 5.057777777777778e-06, + "loss": 0.0001, + "step": 2725 + }, + { + "epoch": 26.89, + "grad_norm": 0.020844602957367897, + "learning_rate": 5.002222222222223e-06, + "loss": 0.0002, + "step": 2750 + }, + { + "epoch": 27.14, + "grad_norm": 0.012561388313770294, + "learning_rate": 4.946666666666667e-06, + "loss": 0.0003, + "step": 2775 + }, + { + "epoch": 27.38, + "grad_norm": 0.0130954310297966, + "learning_rate": 4.891111111111111e-06, + "loss": 0.0002, + "step": 2800 + }, + { + "epoch": 27.63, + "grad_norm": 0.008950438350439072, + "learning_rate": 4.835555555555556e-06, + "loss": 0.0001, + "step": 2825 + }, + { + "epoch": 27.87, + "grad_norm": 0.007355996407568455, + "learning_rate": 4.78e-06, + "loss": 0.0001, + "step": 2850 + }, + { + "epoch": 28.12, + "grad_norm": 0.008460123091936111, + "learning_rate": 4.724444444444445e-06, + "loss": 0.0001, + "step": 2875 + }, + { + "epoch": 28.36, + "grad_norm": 0.007149124052375555, + "learning_rate": 4.66888888888889e-06, + "loss": 0.0001, + "step": 2900 + }, + { + "epoch": 28.61, + "grad_norm": 0.008197379298508167, + "learning_rate": 4.613333333333334e-06, + "loss": 0.0001, + "step": 2925 + }, + { + "epoch": 28.85, + "grad_norm": 0.00648567546159029, + "learning_rate": 4.557777777777778e-06, + "loss": 0.0001, + "step": 2950 + }, + { + "epoch": 29.1, + "grad_norm": 0.006952579598873854, + "learning_rate": 4.502222222222223e-06, + "loss": 0.0001, + "step": 2975 + }, + { + "epoch": 29.34, + "grad_norm": 0.009140390902757645, + "learning_rate": 4.446666666666667e-06, + "loss": 0.0001, + "step": 3000 + }, + { + "epoch": 29.34, + "eval_loss": 0.535641610622406, + "eval_runtime": 1473.7946, + "eval_samples_per_second": 1.964, + "eval_steps_per_second": 0.491, + "eval_wer": 18.395751304825566, + "step": 3000 + }, + { + "epoch": 29.58, + "grad_norm": 0.007503976579755545, + "learning_rate": 4.391111111111112e-06, + "loss": 0.0001, + "step": 3025 + }, + { + "epoch": 29.83, + "grad_norm": 0.005778305232524872, + "learning_rate": 4.3355555555555565e-06, + "loss": 0.0001, + "step": 3050 + }, + { + "epoch": 30.07, + "grad_norm": 0.007032153662294149, + "learning_rate": 4.2800000000000005e-06, + "loss": 0.0001, + "step": 3075 + }, + { + "epoch": 30.32, + "grad_norm": 0.005656179040670395, + "learning_rate": 4.2244444444444446e-06, + "loss": 0.0001, + "step": 3100 + }, + { + "epoch": 30.56, + "grad_norm": 0.006409101653844118, + "learning_rate": 4.168888888888889e-06, + "loss": 0.0001, + "step": 3125 + }, + { + "epoch": 30.81, + "grad_norm": 0.006126554682850838, + "learning_rate": 4.1133333333333335e-06, + "loss": 0.0001, + "step": 3150 + }, + { + "epoch": 31.05, + "grad_norm": 0.005458911880850792, + "learning_rate": 4.057777777777778e-06, + "loss": 0.0001, + "step": 3175 + }, + { + "epoch": 31.3, + "grad_norm": 0.005242755636572838, + "learning_rate": 4.002222222222222e-06, + "loss": 0.0001, + "step": 3200 + }, + { + "epoch": 31.54, + "grad_norm": 0.005507026333361864, + "learning_rate": 3.946666666666667e-06, + "loss": 0.0001, + "step": 3225 + }, + { + "epoch": 31.78, + "grad_norm": 0.006995031144469976, + "learning_rate": 3.891111111111111e-06, + "loss": 0.0001, + "step": 3250 + }, + { + "epoch": 32.03, + "grad_norm": 0.0054997107945382595, + "learning_rate": 3.835555555555555e-06, + "loss": 0.0001, + "step": 3275 + }, + { + "epoch": 32.27, + "grad_norm": 0.004706221166998148, + "learning_rate": 3.7800000000000002e-06, + "loss": 0.0001, + "step": 3300 + }, + { + "epoch": 32.52, + "grad_norm": 0.005071236286312342, + "learning_rate": 3.724444444444445e-06, + "loss": 0.0001, + "step": 3325 + }, + { + "epoch": 32.76, + "grad_norm": 0.005186586640775204, + "learning_rate": 3.668888888888889e-06, + "loss": 0.0001, + "step": 3350 + }, + { + "epoch": 33.01, + "grad_norm": 0.006826834753155708, + "learning_rate": 3.6133333333333336e-06, + "loss": 0.0001, + "step": 3375 + }, + { + "epoch": 33.25, + "grad_norm": 0.005360448732972145, + "learning_rate": 3.5577777777777785e-06, + "loss": 0.0001, + "step": 3400 + }, + { + "epoch": 33.5, + "grad_norm": 0.004380129277706146, + "learning_rate": 3.5022222222222225e-06, + "loss": 0.0001, + "step": 3425 + }, + { + "epoch": 33.74, + "grad_norm": 0.006299168337136507, + "learning_rate": 3.446666666666667e-06, + "loss": 0.0001, + "step": 3450 + }, + { + "epoch": 33.99, + "grad_norm": 0.006263605318963528, + "learning_rate": 3.391111111111111e-06, + "loss": 0.0001, + "step": 3475 + }, + { + "epoch": 34.23, + "grad_norm": 0.004375001415610313, + "learning_rate": 3.335555555555556e-06, + "loss": 0.0001, + "step": 3500 + }, + { + "epoch": 34.47, + "grad_norm": 0.004684335086494684, + "learning_rate": 3.2800000000000004e-06, + "loss": 0.0001, + "step": 3525 + }, + { + "epoch": 34.72, + "grad_norm": 0.004894171841442585, + "learning_rate": 3.2244444444444444e-06, + "loss": 0.0001, + "step": 3550 + }, + { + "epoch": 34.96, + "grad_norm": 0.005006886553019285, + "learning_rate": 3.1688888888888893e-06, + "loss": 0.0001, + "step": 3575 + }, + { + "epoch": 35.21, + "grad_norm": 0.004793678876012564, + "learning_rate": 3.1133333333333337e-06, + "loss": 0.0001, + "step": 3600 + }, + { + "epoch": 35.45, + "grad_norm": 0.0059304991737008095, + "learning_rate": 3.0577777777777778e-06, + "loss": 0.0001, + "step": 3625 + }, + { + "epoch": 35.7, + "grad_norm": 0.00519231241196394, + "learning_rate": 3.0022222222222227e-06, + "loss": 0.0001, + "step": 3650 + }, + { + "epoch": 35.94, + "grad_norm": 0.003882919903844595, + "learning_rate": 2.946666666666667e-06, + "loss": 0.0001, + "step": 3675 + }, + { + "epoch": 36.19, + "grad_norm": 0.004180469550192356, + "learning_rate": 2.891111111111111e-06, + "loss": 0.0001, + "step": 3700 + }, + { + "epoch": 36.43, + "grad_norm": 0.004309108946472406, + "learning_rate": 2.835555555555556e-06, + "loss": 0.0001, + "step": 3725 + }, + { + "epoch": 36.67, + "grad_norm": 0.004415574017912149, + "learning_rate": 2.7800000000000005e-06, + "loss": 0.0001, + "step": 3750 + }, + { + "epoch": 36.92, + "grad_norm": 0.004281037952750921, + "learning_rate": 2.7244444444444445e-06, + "loss": 0.0001, + "step": 3775 + }, + { + "epoch": 37.16, + "grad_norm": 0.00387546862475574, + "learning_rate": 2.6688888888888894e-06, + "loss": 0.0001, + "step": 3800 + }, + { + "epoch": 37.41, + "grad_norm": 0.004122734069824219, + "learning_rate": 2.6133333333333334e-06, + "loss": 0.0001, + "step": 3825 + }, + { + "epoch": 37.65, + "grad_norm": 0.004634737502783537, + "learning_rate": 2.557777777777778e-06, + "loss": 0.0001, + "step": 3850 + }, + { + "epoch": 37.9, + "grad_norm": 0.003926947247236967, + "learning_rate": 2.5022222222222224e-06, + "loss": 0.0001, + "step": 3875 + }, + { + "epoch": 38.14, + "grad_norm": 0.0039747897535562515, + "learning_rate": 2.446666666666667e-06, + "loss": 0.0001, + "step": 3900 + }, + { + "epoch": 38.39, + "grad_norm": 0.003933820873498917, + "learning_rate": 2.3911111111111113e-06, + "loss": 0.0001, + "step": 3925 + }, + { + "epoch": 38.63, + "grad_norm": 0.0039012329652905464, + "learning_rate": 2.3355555555555557e-06, + "loss": 0.0001, + "step": 3950 + }, + { + "epoch": 38.88, + "grad_norm": 0.0034920210018754005, + "learning_rate": 2.28e-06, + "loss": 0.0001, + "step": 3975 + }, + { + "epoch": 39.12, + "grad_norm": 0.004213281441479921, + "learning_rate": 2.2244444444444447e-06, + "loss": 0.0001, + "step": 4000 + }, + { + "epoch": 39.12, + "eval_loss": 0.5614951848983765, + "eval_runtime": 1476.654, + "eval_samples_per_second": 1.96, + "eval_steps_per_second": 0.49, + "eval_wer": 18.48273967585386, + "step": 4000 + } + ], + "logging_steps": 25, + "max_steps": 5000, + "num_input_tokens_seen": 0, + "num_train_epochs": 50, + "save_steps": 1000, + "total_flos": 7.383284315947008e+19, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/whisper-fine-tuning-event/checkpoint-4000/training_args.bin b/whisper-fine-tuning-event/checkpoint-4000/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f1e1c1503977a74c2be326ce97dee50daa53384 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-4000/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f73c95d6632bb7d80507c5d129a813cefcc6575c685b8993420525612405d91 +size 5048 diff --git a/whisper-fine-tuning-event/checkpoint-5000/config.json b/whisper-fine-tuning-event/checkpoint-5000/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/whisper-fine-tuning-event/checkpoint-5000/generation_config.json b/whisper-fine-tuning-event/checkpoint-5000/generation_config.json new file mode 100644 index 0000000000000000000000000000000000000000..5576849bec3fa8e898478b36fc743acda59479f3 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/generation_config.json @@ -0,0 +1,265 @@ +{ + "alignment_heads": [ + [ + 5, + 3 + ], + [ + 5, + 9 + ], + [ + 8, + 0 + ], + [ + 8, + 4 + ], + [ + 8, + 7 + ], + [ + 8, + 8 + ], + [ + 9, + 0 + ], + [ + 9, + 7 + ], + [ + 9, + 9 + ], + [ + 10, + 5 + ] + ], + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "decoder_start_token_id": 50258, + "eos_token_id": 50257, + "forced_decoder_ids": [ + [ + 1, + null + ], + [ + 2, + 50359 + ] + ], + "is_multilingual": true, + "lang_to_id": { + "<|af|>": 50327, + "<|am|>": 50334, + "<|ar|>": 50272, + "<|as|>": 50350, + "<|az|>": 50304, + "<|ba|>": 50355, + "<|be|>": 50330, + "<|bg|>": 50292, + "<|bn|>": 50302, + "<|bo|>": 50347, + "<|br|>": 50309, + "<|bs|>": 50315, + "<|ca|>": 50270, + "<|cs|>": 50283, + "<|cy|>": 50297, + "<|da|>": 50285, + "<|de|>": 50261, + "<|el|>": 50281, + "<|en|>": 50259, + "<|es|>": 50262, + "<|et|>": 50307, + "<|eu|>": 50310, + "<|fa|>": 50300, + "<|fi|>": 50277, + "<|fo|>": 50338, + "<|fr|>": 50265, + "<|gl|>": 50319, + "<|gu|>": 50333, + "<|haw|>": 50352, + "<|ha|>": 50354, + "<|he|>": 50279, + "<|hi|>": 50276, + "<|hr|>": 50291, + "<|ht|>": 50339, + "<|hu|>": 50286, + "<|hy|>": 50312, + "<|id|>": 50275, + "<|is|>": 50311, + "<|it|>": 50274, + "<|ja|>": 50266, + "<|jw|>": 50356, + "<|ka|>": 50329, + "<|kk|>": 50316, + "<|km|>": 50323, + "<|kn|>": 50306, + "<|ko|>": 50264, + "<|la|>": 50294, + "<|lb|>": 50345, + "<|ln|>": 50353, + "<|lo|>": 50336, + "<|lt|>": 50293, + "<|lv|>": 50301, + "<|mg|>": 50349, + "<|mi|>": 50295, + "<|mk|>": 50308, + "<|ml|>": 50296, + "<|mn|>": 50314, + "<|mr|>": 50320, + "<|ms|>": 50282, + "<|mt|>": 50343, + "<|my|>": 50346, + "<|ne|>": 50313, + "<|nl|>": 50271, + "<|nn|>": 50342, + "<|no|>": 50288, + "<|oc|>": 50328, + "<|pa|>": 50321, + "<|pl|>": 50269, + "<|ps|>": 50340, + "<|pt|>": 50267, + "<|ro|>": 50284, + "<|ru|>": 50263, + "<|sa|>": 50344, + "<|sd|>": 50332, + "<|si|>": 50322, + "<|sk|>": 50298, + "<|sl|>": 50305, + "<|sn|>": 50324, + "<|so|>": 50326, + "<|sq|>": 50317, + "<|sr|>": 50303, + "<|su|>": 50357, + "<|sv|>": 50273, + "<|sw|>": 50318, + "<|ta|>": 50287, + "<|te|>": 50299, + "<|tg|>": 50331, + "<|th|>": 50289, + "<|tk|>": 50341, + "<|tl|>": 50348, + "<|tr|>": 50268, + "<|tt|>": 50351, + "<|uk|>": 50280, + "<|ur|>": 50290, + "<|uz|>": 50337, + "<|vi|>": 50278, + "<|yi|>": 50335, + "<|yo|>": 50325, + "<|zh|>": 50260 + }, + "language": "hi", + "max_initial_timestamp_index": 50, + "max_length": 448, + "no_timestamps_token_id": 50363, + "pad_token_id": 50257, + "prev_sot_token_id": 50361, + "return_timestamps": false, + "suppress_tokens": [ + 1, + 2, + 7, + 8, + 9, + 10, + 14, + 25, + 26, + 27, + 28, + 29, + 31, + 58, + 59, + 60, + 61, + 62, + 63, + 90, + 91, + 92, + 93, + 359, + 503, + 522, + 542, + 873, + 893, + 902, + 918, + 922, + 931, + 1350, + 1853, + 1982, + 2460, + 2627, + 3246, + 3253, + 3268, + 3536, + 3846, + 3961, + 4183, + 4667, + 6585, + 6647, + 7273, + 9061, + 9383, + 10428, + 10929, + 11938, + 12033, + 12331, + 12562, + 13793, + 14157, + 14635, + 15265, + 15618, + 16553, + 16604, + 18362, + 18956, + 20075, + 21675, + 22520, + 26130, + 26161, + 26435, + 28279, + 29464, + 31650, + 32302, + 32470, + 36865, + 42863, + 47425, + 49870, + 50254, + 50258, + 50358, + 50359, + 50360, + 50361, + 50362 + ], + "task_to_id": { + "transcribe": 50359, + "translate": 50358 + }, + "transformers_version": "4.40.0.dev0" +} diff --git a/whisper-fine-tuning-event/checkpoint-5000/model.safetensors b/whisper-fine-tuning-event/checkpoint-5000/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c50aabf1c96454a3da08054ea910d3df8e5f1e87 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6a4a0ac3b8facd8cfc83bf36776caa1e11294a3ea87cb665b8c3bc3e33bb1b0c +size 966995080 diff --git a/whisper-fine-tuning-event/checkpoint-5000/optimizer.pt b/whisper-fine-tuning-event/checkpoint-5000/optimizer.pt new file mode 100644 index 0000000000000000000000000000000000000000..1c1ca4f95ae8d6771e375335e3e3dd53849ee341 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/optimizer.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0e69dfa0a9eb675783fe1754c9885d5572455402678e1c574d98cfa43a9cdadb +size 1925064044 diff --git a/whisper-fine-tuning-event/checkpoint-5000/preprocessor_config.json b/whisper-fine-tuning-event/checkpoint-5000/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/whisper-fine-tuning-event/checkpoint-5000/rng_state.pth b/whisper-fine-tuning-event/checkpoint-5000/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..81d5b9b66baaa81187e7842cb5a6f5497dc8453f --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9c6335e28c7e09aedee56f3bff4cd20c9fc1c85bd0d1d2cfb7d15790331554b3 +size 14244 diff --git a/whisper-fine-tuning-event/checkpoint-5000/scheduler.pt b/whisper-fine-tuning-event/checkpoint-5000/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..17bf8f62a718f84cf7e91f331bf1d4ddd4c2ecc4 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d79662b413883c41ee46022c57c3925985bc10951685b4f1ce2702c31792813b +size 1064 diff --git a/whisper-fine-tuning-event/checkpoint-5000/trainer_state.json b/whisper-fine-tuning-event/checkpoint-5000/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..f9e374d2418b65eaf4a7b0ea4db38fc0b64cd0a6 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/trainer_state.json @@ -0,0 +1,1466 @@ +{ + "best_metric": 18.301895430821354, + "best_model_checkpoint": "./checkpoint-2000", + "epoch": 48.899755501222494, + "eval_steps": 1000, + "global_step": 5000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.24, + "grad_norm": 39.86157989501953, + "learning_rate": 5.000000000000001e-07, + "loss": 2.0555, + "step": 25 + }, + { + "epoch": 0.49, + "grad_norm": Infinity, + "learning_rate": 9.800000000000001e-07, + "loss": 1.5219, + "step": 50 + }, + { + "epoch": 0.73, + "grad_norm": 6.197519779205322, + "learning_rate": 1.48e-06, + "loss": 1.0167, + "step": 75 + }, + { + "epoch": 0.98, + "grad_norm": 5.485505104064941, + "learning_rate": 1.98e-06, + "loss": 0.7299, + "step": 100 + }, + { + "epoch": 1.22, + "grad_norm": 5.534335613250732, + "learning_rate": 2.4800000000000004e-06, + "loss": 0.6317, + "step": 125 + }, + { + "epoch": 1.47, + "grad_norm": 4.898209095001221, + "learning_rate": 2.9800000000000003e-06, + "loss": 0.5503, + "step": 150 + }, + { + "epoch": 1.71, + "grad_norm": 5.0602946281433105, + "learning_rate": 3.48e-06, + "loss": 0.4998, + "step": 175 + }, + { + "epoch": 1.96, + "grad_norm": 4.8069305419921875, + "learning_rate": 3.980000000000001e-06, + "loss": 0.4457, + "step": 200 + }, + { + "epoch": 2.2, + "grad_norm": 4.571457386016846, + "learning_rate": 4.48e-06, + "loss": 0.3778, + "step": 225 + }, + { + "epoch": 2.44, + "grad_norm": 4.707397937774658, + "learning_rate": 4.980000000000001e-06, + "loss": 0.333, + "step": 250 + }, + { + "epoch": 2.69, + "grad_norm": 4.317914009094238, + "learning_rate": 5.480000000000001e-06, + "loss": 0.2859, + "step": 275 + }, + { + "epoch": 2.93, + "grad_norm": 2.6433582305908203, + "learning_rate": 5.98e-06, + "loss": 0.2229, + "step": 300 + }, + { + "epoch": 3.18, + "grad_norm": 2.5579586029052734, + "learning_rate": 6.480000000000001e-06, + "loss": 0.1767, + "step": 325 + }, + { + "epoch": 3.42, + "grad_norm": 2.2651941776275635, + "learning_rate": 6.98e-06, + "loss": 0.1474, + "step": 350 + }, + { + "epoch": 3.67, + "grad_norm": 2.528773546218872, + "learning_rate": 7.48e-06, + "loss": 0.1493, + "step": 375 + }, + { + "epoch": 3.91, + "grad_norm": 2.422232151031494, + "learning_rate": 7.980000000000002e-06, + "loss": 0.142, + "step": 400 + }, + { + "epoch": 4.16, + "grad_norm": 2.209630012512207, + "learning_rate": 8.48e-06, + "loss": 0.1126, + "step": 425 + }, + { + "epoch": 4.4, + "grad_norm": 1.9945831298828125, + "learning_rate": 8.98e-06, + "loss": 0.0909, + "step": 450 + }, + { + "epoch": 4.65, + "grad_norm": 1.8972020149230957, + "learning_rate": 9.48e-06, + "loss": 0.0892, + "step": 475 + }, + { + "epoch": 4.89, + "grad_norm": 2.345607042312622, + "learning_rate": 9.980000000000001e-06, + "loss": 0.0909, + "step": 500 + }, + { + "epoch": 5.13, + "grad_norm": 1.3913277387619019, + "learning_rate": 9.946666666666667e-06, + "loss": 0.0713, + "step": 525 + }, + { + "epoch": 5.38, + "grad_norm": 2.5306901931762695, + "learning_rate": 9.891111111111113e-06, + "loss": 0.0535, + "step": 550 + }, + { + "epoch": 5.62, + "grad_norm": 1.3689407110214233, + "learning_rate": 9.835555555555556e-06, + "loss": 0.051, + "step": 575 + }, + { + "epoch": 5.87, + "grad_norm": 2.091756820678711, + "learning_rate": 9.780000000000001e-06, + "loss": 0.0573, + "step": 600 + }, + { + "epoch": 6.11, + "grad_norm": 1.5179609060287476, + "learning_rate": 9.724444444444445e-06, + "loss": 0.0454, + "step": 625 + }, + { + "epoch": 6.36, + "grad_norm": 1.3439680337905884, + "learning_rate": 9.66888888888889e-06, + "loss": 0.029, + "step": 650 + }, + { + "epoch": 6.6, + "grad_norm": 1.279569387435913, + "learning_rate": 9.613333333333335e-06, + "loss": 0.032, + "step": 675 + }, + { + "epoch": 6.85, + "grad_norm": 1.6171939373016357, + "learning_rate": 9.557777777777777e-06, + "loss": 0.0314, + "step": 700 + }, + { + "epoch": 7.09, + "grad_norm": 0.8949939608573914, + "learning_rate": 9.502222222222223e-06, + "loss": 0.0245, + "step": 725 + }, + { + "epoch": 7.33, + "grad_norm": 1.3610639572143555, + "learning_rate": 9.446666666666667e-06, + "loss": 0.0165, + "step": 750 + }, + { + "epoch": 7.58, + "grad_norm": 1.5446442365646362, + "learning_rate": 9.391111111111111e-06, + "loss": 0.0169, + "step": 775 + }, + { + "epoch": 7.82, + "grad_norm": 1.2825671434402466, + "learning_rate": 9.335555555555557e-06, + "loss": 0.0193, + "step": 800 + }, + { + "epoch": 8.07, + "grad_norm": 0.7063258290290833, + "learning_rate": 9.280000000000001e-06, + "loss": 0.0154, + "step": 825 + }, + { + "epoch": 8.31, + "grad_norm": 0.72287917137146, + "learning_rate": 9.224444444444445e-06, + "loss": 0.0102, + "step": 850 + }, + { + "epoch": 8.56, + "grad_norm": 1.2877657413482666, + "learning_rate": 9.168888888888889e-06, + "loss": 0.0093, + "step": 875 + }, + { + "epoch": 8.8, + "grad_norm": 1.6262348890304565, + "learning_rate": 9.113333333333335e-06, + "loss": 0.0117, + "step": 900 + }, + { + "epoch": 9.05, + "grad_norm": 0.49374520778656006, + "learning_rate": 9.057777777777779e-06, + "loss": 0.0121, + "step": 925 + }, + { + "epoch": 9.29, + "grad_norm": 0.8290354013442993, + "learning_rate": 9.002222222222223e-06, + "loss": 0.0063, + "step": 950 + }, + { + "epoch": 9.54, + "grad_norm": 0.9974227547645569, + "learning_rate": 8.946666666666669e-06, + "loss": 0.006, + "step": 975 + }, + { + "epoch": 9.78, + "grad_norm": 0.8566415309906006, + "learning_rate": 8.891111111111111e-06, + "loss": 0.007, + "step": 1000 + }, + { + "epoch": 9.78, + "eval_loss": 0.41129249334335327, + "eval_runtime": 1450.197, + "eval_samples_per_second": 1.996, + "eval_steps_per_second": 0.499, + "eval_wer": 18.926838201629888, + "step": 1000 + }, + { + "epoch": 10.02, + "grad_norm": 1.7889363765716553, + "learning_rate": 8.835555555555557e-06, + "loss": 0.0067, + "step": 1025 + }, + { + "epoch": 10.27, + "grad_norm": 0.9269456267356873, + "learning_rate": 8.78e-06, + "loss": 0.0047, + "step": 1050 + }, + { + "epoch": 10.51, + "grad_norm": 0.7966364622116089, + "learning_rate": 8.724444444444445e-06, + "loss": 0.0047, + "step": 1075 + }, + { + "epoch": 10.76, + "grad_norm": 0.6406449675559998, + "learning_rate": 8.66888888888889e-06, + "loss": 0.0049, + "step": 1100 + }, + { + "epoch": 11.0, + "grad_norm": 0.4881477355957031, + "learning_rate": 8.613333333333333e-06, + "loss": 0.0049, + "step": 1125 + }, + { + "epoch": 11.25, + "grad_norm": 0.4843809902667999, + "learning_rate": 8.557777777777778e-06, + "loss": 0.0036, + "step": 1150 + }, + { + "epoch": 11.49, + "grad_norm": 0.8177527189254761, + "learning_rate": 8.502222222222223e-06, + "loss": 0.0028, + "step": 1175 + }, + { + "epoch": 11.74, + "grad_norm": 0.676511287689209, + "learning_rate": 8.446666666666668e-06, + "loss": 0.0031, + "step": 1200 + }, + { + "epoch": 11.98, + "grad_norm": 0.9199188351631165, + "learning_rate": 8.391111111111112e-06, + "loss": 0.003, + "step": 1225 + }, + { + "epoch": 12.22, + "grad_norm": 0.248287171125412, + "learning_rate": 8.335555555555556e-06, + "loss": 0.0024, + "step": 1250 + }, + { + "epoch": 12.47, + "grad_norm": 0.9288859963417053, + "learning_rate": 8.28e-06, + "loss": 0.0022, + "step": 1275 + }, + { + "epoch": 12.71, + "grad_norm": 0.8308430910110474, + "learning_rate": 8.224444444444444e-06, + "loss": 0.0025, + "step": 1300 + }, + { + "epoch": 12.96, + "grad_norm": 0.33064720034599304, + "learning_rate": 8.16888888888889e-06, + "loss": 0.0027, + "step": 1325 + }, + { + "epoch": 13.2, + "grad_norm": 0.5254776477813721, + "learning_rate": 8.113333333333334e-06, + "loss": 0.0019, + "step": 1350 + }, + { + "epoch": 13.45, + "grad_norm": 0.4681105315685272, + "learning_rate": 8.057777777777778e-06, + "loss": 0.0021, + "step": 1375 + }, + { + "epoch": 13.69, + "grad_norm": 0.352115273475647, + "learning_rate": 8.002222222222222e-06, + "loss": 0.0026, + "step": 1400 + }, + { + "epoch": 13.94, + "grad_norm": 1.5301597118377686, + "learning_rate": 7.946666666666666e-06, + "loss": 0.0027, + "step": 1425 + }, + { + "epoch": 14.18, + "grad_norm": 0.28577202558517456, + "learning_rate": 7.891111111111112e-06, + "loss": 0.0018, + "step": 1450 + }, + { + "epoch": 14.43, + "grad_norm": 0.7940084338188171, + "learning_rate": 7.835555555555556e-06, + "loss": 0.002, + "step": 1475 + }, + { + "epoch": 14.67, + "grad_norm": 1.031543493270874, + "learning_rate": 7.78e-06, + "loss": 0.0021, + "step": 1500 + }, + { + "epoch": 14.91, + "grad_norm": 0.5695396661758423, + "learning_rate": 7.724444444444446e-06, + "loss": 0.0016, + "step": 1525 + }, + { + "epoch": 15.16, + "grad_norm": 0.2285182625055313, + "learning_rate": 7.66888888888889e-06, + "loss": 0.0014, + "step": 1550 + }, + { + "epoch": 15.4, + "grad_norm": 0.40289613604545593, + "learning_rate": 7.613333333333334e-06, + "loss": 0.0017, + "step": 1575 + }, + { + "epoch": 15.65, + "grad_norm": 0.5758986473083496, + "learning_rate": 7.557777777777779e-06, + "loss": 0.0012, + "step": 1600 + }, + { + "epoch": 15.89, + "grad_norm": 0.5524174571037292, + "learning_rate": 7.502222222222223e-06, + "loss": 0.001, + "step": 1625 + }, + { + "epoch": 16.14, + "grad_norm": 0.7031832933425903, + "learning_rate": 7.446666666666668e-06, + "loss": 0.0015, + "step": 1650 + }, + { + "epoch": 16.38, + "grad_norm": 0.22649440169334412, + "learning_rate": 7.3911111111111125e-06, + "loss": 0.0012, + "step": 1675 + }, + { + "epoch": 16.63, + "grad_norm": 0.46751469373703003, + "learning_rate": 7.335555555555556e-06, + "loss": 0.0012, + "step": 1700 + }, + { + "epoch": 16.87, + "grad_norm": 0.3201611340045929, + "learning_rate": 7.280000000000001e-06, + "loss": 0.0009, + "step": 1725 + }, + { + "epoch": 17.11, + "grad_norm": 0.05176452174782753, + "learning_rate": 7.224444444444445e-06, + "loss": 0.0007, + "step": 1750 + }, + { + "epoch": 17.36, + "grad_norm": 0.5956466794013977, + "learning_rate": 7.1688888888888895e-06, + "loss": 0.0007, + "step": 1775 + }, + { + "epoch": 17.6, + "grad_norm": 0.1542888581752777, + "learning_rate": 7.113333333333334e-06, + "loss": 0.001, + "step": 1800 + }, + { + "epoch": 17.85, + "grad_norm": 0.624476432800293, + "learning_rate": 7.057777777777778e-06, + "loss": 0.0016, + "step": 1825 + }, + { + "epoch": 18.09, + "grad_norm": 0.3069753050804138, + "learning_rate": 7.0022222222222225e-06, + "loss": 0.0013, + "step": 1850 + }, + { + "epoch": 18.34, + "grad_norm": 0.3797595500946045, + "learning_rate": 6.946666666666667e-06, + "loss": 0.0018, + "step": 1875 + }, + { + "epoch": 18.58, + "grad_norm": 0.3482624590396881, + "learning_rate": 6.891111111111111e-06, + "loss": 0.0014, + "step": 1900 + }, + { + "epoch": 18.83, + "grad_norm": 0.05667097494006157, + "learning_rate": 6.835555555555556e-06, + "loss": 0.0008, + "step": 1925 + }, + { + "epoch": 19.07, + "grad_norm": 0.09759561717510223, + "learning_rate": 6.780000000000001e-06, + "loss": 0.0011, + "step": 1950 + }, + { + "epoch": 19.32, + "grad_norm": 0.5752401947975159, + "learning_rate": 6.724444444444444e-06, + "loss": 0.0014, + "step": 1975 + }, + { + "epoch": 19.56, + "grad_norm": 0.1028558760881424, + "learning_rate": 6.668888888888889e-06, + "loss": 0.0009, + "step": 2000 + }, + { + "epoch": 19.56, + "eval_loss": 0.4927152395248413, + "eval_runtime": 1461.0654, + "eval_samples_per_second": 1.981, + "eval_steps_per_second": 0.496, + "eval_wer": 18.301895430821354, + "step": 2000 + }, + { + "epoch": 19.8, + "grad_norm": 0.28834694623947144, + "learning_rate": 6.613333333333334e-06, + "loss": 0.0012, + "step": 2025 + }, + { + "epoch": 20.05, + "grad_norm": 0.38117802143096924, + "learning_rate": 6.557777777777778e-06, + "loss": 0.0017, + "step": 2050 + }, + { + "epoch": 20.29, + "grad_norm": 0.6632546782493591, + "learning_rate": 6.502222222222223e-06, + "loss": 0.001, + "step": 2075 + }, + { + "epoch": 20.54, + "grad_norm": 0.32943013310432434, + "learning_rate": 6.446666666666668e-06, + "loss": 0.0017, + "step": 2100 + }, + { + "epoch": 20.78, + "grad_norm": 0.6536120772361755, + "learning_rate": 6.391111111111111e-06, + "loss": 0.001, + "step": 2125 + }, + { + "epoch": 21.03, + "grad_norm": 0.6113318204879761, + "learning_rate": 6.335555555555556e-06, + "loss": 0.0009, + "step": 2150 + }, + { + "epoch": 21.27, + "grad_norm": 0.24811410903930664, + "learning_rate": 6.280000000000001e-06, + "loss": 0.0012, + "step": 2175 + }, + { + "epoch": 21.52, + "grad_norm": 1.5321826934814453, + "learning_rate": 6.224444444444445e-06, + "loss": 0.0015, + "step": 2200 + }, + { + "epoch": 21.76, + "grad_norm": 0.6304628252983093, + "learning_rate": 6.16888888888889e-06, + "loss": 0.002, + "step": 2225 + }, + { + "epoch": 22.0, + "grad_norm": 0.4291835427284241, + "learning_rate": 6.113333333333333e-06, + "loss": 0.0017, + "step": 2250 + }, + { + "epoch": 22.25, + "grad_norm": 1.250555396080017, + "learning_rate": 6.057777777777778e-06, + "loss": 0.0014, + "step": 2275 + }, + { + "epoch": 22.49, + "grad_norm": 0.14119359850883484, + "learning_rate": 6.002222222222223e-06, + "loss": 0.0011, + "step": 2300 + }, + { + "epoch": 22.74, + "grad_norm": 0.6686920523643494, + "learning_rate": 5.946666666666668e-06, + "loss": 0.0013, + "step": 2325 + }, + { + "epoch": 22.98, + "grad_norm": 0.6255317330360413, + "learning_rate": 5.891111111111112e-06, + "loss": 0.001, + "step": 2350 + }, + { + "epoch": 23.23, + "grad_norm": 0.08858698606491089, + "learning_rate": 5.8355555555555565e-06, + "loss": 0.0006, + "step": 2375 + }, + { + "epoch": 23.47, + "grad_norm": 0.08142836391925812, + "learning_rate": 5.78e-06, + "loss": 0.0005, + "step": 2400 + }, + { + "epoch": 23.72, + "grad_norm": 1.0621262788772583, + "learning_rate": 5.724444444444445e-06, + "loss": 0.0005, + "step": 2425 + }, + { + "epoch": 23.96, + "grad_norm": 0.04572203755378723, + "learning_rate": 5.6688888888888895e-06, + "loss": 0.0004, + "step": 2450 + }, + { + "epoch": 24.21, + "grad_norm": 0.03155618906021118, + "learning_rate": 5.613333333333334e-06, + "loss": 0.0002, + "step": 2475 + }, + { + "epoch": 24.45, + "grad_norm": 0.03207828477025032, + "learning_rate": 5.557777777777778e-06, + "loss": 0.0003, + "step": 2500 + }, + { + "epoch": 24.69, + "grad_norm": 0.0497412383556366, + "learning_rate": 5.5022222222222224e-06, + "loss": 0.0003, + "step": 2525 + }, + { + "epoch": 24.94, + "grad_norm": 0.21509559452533722, + "learning_rate": 5.4466666666666665e-06, + "loss": 0.0004, + "step": 2550 + }, + { + "epoch": 25.18, + "grad_norm": 0.024903174489736557, + "learning_rate": 5.391111111111111e-06, + "loss": 0.0003, + "step": 2575 + }, + { + "epoch": 25.43, + "grad_norm": 0.02149089053273201, + "learning_rate": 5.335555555555556e-06, + "loss": 0.0003, + "step": 2600 + }, + { + "epoch": 25.67, + "grad_norm": 0.014418188482522964, + "learning_rate": 5.28e-06, + "loss": 0.0002, + "step": 2625 + }, + { + "epoch": 25.92, + "grad_norm": 0.018349435180425644, + "learning_rate": 5.224444444444445e-06, + "loss": 0.0002, + "step": 2650 + }, + { + "epoch": 26.16, + "grad_norm": 0.013832501135766506, + "learning_rate": 5.168888888888889e-06, + "loss": 0.0002, + "step": 2675 + }, + { + "epoch": 26.41, + "grad_norm": 0.012281795963644981, + "learning_rate": 5.113333333333333e-06, + "loss": 0.0001, + "step": 2700 + }, + { + "epoch": 26.65, + "grad_norm": 0.009847081266343594, + "learning_rate": 5.057777777777778e-06, + "loss": 0.0001, + "step": 2725 + }, + { + "epoch": 26.89, + "grad_norm": 0.020844602957367897, + "learning_rate": 5.002222222222223e-06, + "loss": 0.0002, + "step": 2750 + }, + { + "epoch": 27.14, + "grad_norm": 0.012561388313770294, + "learning_rate": 4.946666666666667e-06, + "loss": 0.0003, + "step": 2775 + }, + { + "epoch": 27.38, + "grad_norm": 0.0130954310297966, + "learning_rate": 4.891111111111111e-06, + "loss": 0.0002, + "step": 2800 + }, + { + "epoch": 27.63, + "grad_norm": 0.008950438350439072, + "learning_rate": 4.835555555555556e-06, + "loss": 0.0001, + "step": 2825 + }, + { + "epoch": 27.87, + "grad_norm": 0.007355996407568455, + "learning_rate": 4.78e-06, + "loss": 0.0001, + "step": 2850 + }, + { + "epoch": 28.12, + "grad_norm": 0.008460123091936111, + "learning_rate": 4.724444444444445e-06, + "loss": 0.0001, + "step": 2875 + }, + { + "epoch": 28.36, + "grad_norm": 0.007149124052375555, + "learning_rate": 4.66888888888889e-06, + "loss": 0.0001, + "step": 2900 + }, + { + "epoch": 28.61, + "grad_norm": 0.008197379298508167, + "learning_rate": 4.613333333333334e-06, + "loss": 0.0001, + "step": 2925 + }, + { + "epoch": 28.85, + "grad_norm": 0.00648567546159029, + "learning_rate": 4.557777777777778e-06, + "loss": 0.0001, + "step": 2950 + }, + { + "epoch": 29.1, + "grad_norm": 0.006952579598873854, + "learning_rate": 4.502222222222223e-06, + "loss": 0.0001, + "step": 2975 + }, + { + "epoch": 29.34, + "grad_norm": 0.009140390902757645, + "learning_rate": 4.446666666666667e-06, + "loss": 0.0001, + "step": 3000 + }, + { + "epoch": 29.34, + "eval_loss": 0.535641610622406, + "eval_runtime": 1473.7946, + "eval_samples_per_second": 1.964, + "eval_steps_per_second": 0.491, + "eval_wer": 18.395751304825566, + "step": 3000 + }, + { + "epoch": 29.58, + "grad_norm": 0.007503976579755545, + "learning_rate": 4.391111111111112e-06, + "loss": 0.0001, + "step": 3025 + }, + { + "epoch": 29.83, + "grad_norm": 0.005778305232524872, + "learning_rate": 4.3355555555555565e-06, + "loss": 0.0001, + "step": 3050 + }, + { + "epoch": 30.07, + "grad_norm": 0.007032153662294149, + "learning_rate": 4.2800000000000005e-06, + "loss": 0.0001, + "step": 3075 + }, + { + "epoch": 30.32, + "grad_norm": 0.005656179040670395, + "learning_rate": 4.2244444444444446e-06, + "loss": 0.0001, + "step": 3100 + }, + { + "epoch": 30.56, + "grad_norm": 0.006409101653844118, + "learning_rate": 4.168888888888889e-06, + "loss": 0.0001, + "step": 3125 + }, + { + "epoch": 30.81, + "grad_norm": 0.006126554682850838, + "learning_rate": 4.1133333333333335e-06, + "loss": 0.0001, + "step": 3150 + }, + { + "epoch": 31.05, + "grad_norm": 0.005458911880850792, + "learning_rate": 4.057777777777778e-06, + "loss": 0.0001, + "step": 3175 + }, + { + "epoch": 31.3, + "grad_norm": 0.005242755636572838, + "learning_rate": 4.002222222222222e-06, + "loss": 0.0001, + "step": 3200 + }, + { + "epoch": 31.54, + "grad_norm": 0.005507026333361864, + "learning_rate": 3.946666666666667e-06, + "loss": 0.0001, + "step": 3225 + }, + { + "epoch": 31.78, + "grad_norm": 0.006995031144469976, + "learning_rate": 3.891111111111111e-06, + "loss": 0.0001, + "step": 3250 + }, + { + "epoch": 32.03, + "grad_norm": 0.0054997107945382595, + "learning_rate": 3.835555555555555e-06, + "loss": 0.0001, + "step": 3275 + }, + { + "epoch": 32.27, + "grad_norm": 0.004706221166998148, + "learning_rate": 3.7800000000000002e-06, + "loss": 0.0001, + "step": 3300 + }, + { + "epoch": 32.52, + "grad_norm": 0.005071236286312342, + "learning_rate": 3.724444444444445e-06, + "loss": 0.0001, + "step": 3325 + }, + { + "epoch": 32.76, + "grad_norm": 0.005186586640775204, + "learning_rate": 3.668888888888889e-06, + "loss": 0.0001, + "step": 3350 + }, + { + "epoch": 33.01, + "grad_norm": 0.006826834753155708, + "learning_rate": 3.6133333333333336e-06, + "loss": 0.0001, + "step": 3375 + }, + { + "epoch": 33.25, + "grad_norm": 0.005360448732972145, + "learning_rate": 3.5577777777777785e-06, + "loss": 0.0001, + "step": 3400 + }, + { + "epoch": 33.5, + "grad_norm": 0.004380129277706146, + "learning_rate": 3.5022222222222225e-06, + "loss": 0.0001, + "step": 3425 + }, + { + "epoch": 33.74, + "grad_norm": 0.006299168337136507, + "learning_rate": 3.446666666666667e-06, + "loss": 0.0001, + "step": 3450 + }, + { + "epoch": 33.99, + "grad_norm": 0.006263605318963528, + "learning_rate": 3.391111111111111e-06, + "loss": 0.0001, + "step": 3475 + }, + { + "epoch": 34.23, + "grad_norm": 0.004375001415610313, + "learning_rate": 3.335555555555556e-06, + "loss": 0.0001, + "step": 3500 + }, + { + "epoch": 34.47, + "grad_norm": 0.004684335086494684, + "learning_rate": 3.2800000000000004e-06, + "loss": 0.0001, + "step": 3525 + }, + { + "epoch": 34.72, + "grad_norm": 0.004894171841442585, + "learning_rate": 3.2244444444444444e-06, + "loss": 0.0001, + "step": 3550 + }, + { + "epoch": 34.96, + "grad_norm": 0.005006886553019285, + "learning_rate": 3.1688888888888893e-06, + "loss": 0.0001, + "step": 3575 + }, + { + "epoch": 35.21, + "grad_norm": 0.004793678876012564, + "learning_rate": 3.1133333333333337e-06, + "loss": 0.0001, + "step": 3600 + }, + { + "epoch": 35.45, + "grad_norm": 0.0059304991737008095, + "learning_rate": 3.0577777777777778e-06, + "loss": 0.0001, + "step": 3625 + }, + { + "epoch": 35.7, + "grad_norm": 0.00519231241196394, + "learning_rate": 3.0022222222222227e-06, + "loss": 0.0001, + "step": 3650 + }, + { + "epoch": 35.94, + "grad_norm": 0.003882919903844595, + "learning_rate": 2.946666666666667e-06, + "loss": 0.0001, + "step": 3675 + }, + { + "epoch": 36.19, + "grad_norm": 0.004180469550192356, + "learning_rate": 2.891111111111111e-06, + "loss": 0.0001, + "step": 3700 + }, + { + "epoch": 36.43, + "grad_norm": 0.004309108946472406, + "learning_rate": 2.835555555555556e-06, + "loss": 0.0001, + "step": 3725 + }, + { + "epoch": 36.67, + "grad_norm": 0.004415574017912149, + "learning_rate": 2.7800000000000005e-06, + "loss": 0.0001, + "step": 3750 + }, + { + "epoch": 36.92, + "grad_norm": 0.004281037952750921, + "learning_rate": 2.7244444444444445e-06, + "loss": 0.0001, + "step": 3775 + }, + { + "epoch": 37.16, + "grad_norm": 0.00387546862475574, + "learning_rate": 2.6688888888888894e-06, + "loss": 0.0001, + "step": 3800 + }, + { + "epoch": 37.41, + "grad_norm": 0.004122734069824219, + "learning_rate": 2.6133333333333334e-06, + "loss": 0.0001, + "step": 3825 + }, + { + "epoch": 37.65, + "grad_norm": 0.004634737502783537, + "learning_rate": 2.557777777777778e-06, + "loss": 0.0001, + "step": 3850 + }, + { + "epoch": 37.9, + "grad_norm": 0.003926947247236967, + "learning_rate": 2.5022222222222224e-06, + "loss": 0.0001, + "step": 3875 + }, + { + "epoch": 38.14, + "grad_norm": 0.0039747897535562515, + "learning_rate": 2.446666666666667e-06, + "loss": 0.0001, + "step": 3900 + }, + { + "epoch": 38.39, + "grad_norm": 0.003933820873498917, + "learning_rate": 2.3911111111111113e-06, + "loss": 0.0001, + "step": 3925 + }, + { + "epoch": 38.63, + "grad_norm": 0.0039012329652905464, + "learning_rate": 2.3355555555555557e-06, + "loss": 0.0001, + "step": 3950 + }, + { + "epoch": 38.88, + "grad_norm": 0.0034920210018754005, + "learning_rate": 2.28e-06, + "loss": 0.0001, + "step": 3975 + }, + { + "epoch": 39.12, + "grad_norm": 0.004213281441479921, + "learning_rate": 2.2244444444444447e-06, + "loss": 0.0001, + "step": 4000 + }, + { + "epoch": 39.12, + "eval_loss": 0.5614951848983765, + "eval_runtime": 1476.654, + "eval_samples_per_second": 1.96, + "eval_steps_per_second": 0.49, + "eval_wer": 18.48273967585386, + "step": 4000 + }, + { + "epoch": 39.36, + "grad_norm": 0.004206055775284767, + "learning_rate": 2.168888888888889e-06, + "loss": 0.0001, + "step": 4025 + }, + { + "epoch": 39.61, + "grad_norm": 0.0037401721347123384, + "learning_rate": 2.1133333333333336e-06, + "loss": 0.0001, + "step": 4050 + }, + { + "epoch": 39.85, + "grad_norm": 0.0035285723861306906, + "learning_rate": 2.057777777777778e-06, + "loss": 0.0, + "step": 4075 + }, + { + "epoch": 40.1, + "grad_norm": 0.003878298681229353, + "learning_rate": 2.0022222222222225e-06, + "loss": 0.0001, + "step": 4100 + }, + { + "epoch": 40.34, + "grad_norm": 0.0030597576405853033, + "learning_rate": 1.9466666666666665e-06, + "loss": 0.0001, + "step": 4125 + }, + { + "epoch": 40.59, + "grad_norm": 0.0032207348849624395, + "learning_rate": 1.8911111111111114e-06, + "loss": 0.0001, + "step": 4150 + }, + { + "epoch": 40.83, + "grad_norm": 0.003292777808383107, + "learning_rate": 1.8355555555555557e-06, + "loss": 0.0001, + "step": 4175 + }, + { + "epoch": 41.08, + "grad_norm": 0.0030599229503422976, + "learning_rate": 1.7800000000000001e-06, + "loss": 0.0001, + "step": 4200 + }, + { + "epoch": 41.32, + "grad_norm": 0.003622801974415779, + "learning_rate": 1.7244444444444448e-06, + "loss": 0.0001, + "step": 4225 + }, + { + "epoch": 41.56, + "grad_norm": 0.0033257571049034595, + "learning_rate": 1.668888888888889e-06, + "loss": 0.0, + "step": 4250 + }, + { + "epoch": 41.81, + "grad_norm": 0.0031936015002429485, + "learning_rate": 1.6133333333333335e-06, + "loss": 0.0, + "step": 4275 + }, + { + "epoch": 42.05, + "grad_norm": 0.0034745309967547655, + "learning_rate": 1.5577777777777777e-06, + "loss": 0.0, + "step": 4300 + }, + { + "epoch": 42.3, + "grad_norm": 0.003774922341108322, + "learning_rate": 1.5022222222222224e-06, + "loss": 0.0, + "step": 4325 + }, + { + "epoch": 42.54, + "grad_norm": 0.0031888398807495832, + "learning_rate": 1.4466666666666669e-06, + "loss": 0.0, + "step": 4350 + }, + { + "epoch": 42.79, + "grad_norm": 0.004271605517715216, + "learning_rate": 1.3911111111111111e-06, + "loss": 0.0, + "step": 4375 + }, + { + "epoch": 43.03, + "grad_norm": 0.0032749429810792208, + "learning_rate": 1.3355555555555558e-06, + "loss": 0.0, + "step": 4400 + }, + { + "epoch": 43.28, + "grad_norm": 0.003801706014201045, + "learning_rate": 1.28e-06, + "loss": 0.0, + "step": 4425 + }, + { + "epoch": 43.52, + "grad_norm": 0.00296389264985919, + "learning_rate": 1.2244444444444445e-06, + "loss": 0.0, + "step": 4450 + }, + { + "epoch": 43.77, + "grad_norm": 0.0033649583347141743, + "learning_rate": 1.168888888888889e-06, + "loss": 0.0, + "step": 4475 + }, + { + "epoch": 44.01, + "grad_norm": 0.0034869518131017685, + "learning_rate": 1.1133333333333334e-06, + "loss": 0.0, + "step": 4500 + }, + { + "epoch": 44.25, + "grad_norm": 0.0036122759338468313, + "learning_rate": 1.0577777777777779e-06, + "loss": 0.0, + "step": 4525 + }, + { + "epoch": 44.5, + "grad_norm": 0.0033294886816293, + "learning_rate": 1.0022222222222223e-06, + "loss": 0.0, + "step": 4550 + }, + { + "epoch": 44.74, + "grad_norm": 0.0035312592517584562, + "learning_rate": 9.466666666666667e-07, + "loss": 0.0, + "step": 4575 + }, + { + "epoch": 44.99, + "grad_norm": 0.003853454953059554, + "learning_rate": 8.911111111111112e-07, + "loss": 0.0, + "step": 4600 + }, + { + "epoch": 45.23, + "grad_norm": 0.002988777356222272, + "learning_rate": 8.355555555555556e-07, + "loss": 0.0, + "step": 4625 + }, + { + "epoch": 45.48, + "grad_norm": 0.002669387497007847, + "learning_rate": 7.8e-07, + "loss": 0.0, + "step": 4650 + }, + { + "epoch": 45.72, + "grad_norm": 0.0037788026966154575, + "learning_rate": 7.244444444444446e-07, + "loss": 0.0, + "step": 4675 + }, + { + "epoch": 45.97, + "grad_norm": 0.0036868879105895758, + "learning_rate": 6.68888888888889e-07, + "loss": 0.0, + "step": 4700 + }, + { + "epoch": 46.21, + "grad_norm": 0.003460908541455865, + "learning_rate": 6.133333333333333e-07, + "loss": 0.0, + "step": 4725 + }, + { + "epoch": 46.45, + "grad_norm": 0.0029548273887485266, + "learning_rate": 5.577777777777779e-07, + "loss": 0.0, + "step": 4750 + }, + { + "epoch": 46.7, + "grad_norm": 0.002722677541896701, + "learning_rate": 5.022222222222222e-07, + "loss": 0.0, + "step": 4775 + }, + { + "epoch": 46.94, + "grad_norm": 0.0030762418173253536, + "learning_rate": 4.466666666666667e-07, + "loss": 0.0, + "step": 4800 + }, + { + "epoch": 47.19, + "grad_norm": 0.0031928212847560644, + "learning_rate": 3.9111111111111115e-07, + "loss": 0.0, + "step": 4825 + }, + { + "epoch": 47.43, + "grad_norm": 0.003021241631358862, + "learning_rate": 3.3555555555555556e-07, + "loss": 0.0, + "step": 4850 + }, + { + "epoch": 47.68, + "grad_norm": 0.002956483978778124, + "learning_rate": 2.8e-07, + "loss": 0.0, + "step": 4875 + }, + { + "epoch": 47.92, + "grad_norm": 0.0031601181253790855, + "learning_rate": 2.2444444444444445e-07, + "loss": 0.0, + "step": 4900 + }, + { + "epoch": 48.17, + "grad_norm": 0.002807649550959468, + "learning_rate": 1.6888888888888888e-07, + "loss": 0.0, + "step": 4925 + }, + { + "epoch": 48.41, + "grad_norm": 0.0032878078054636717, + "learning_rate": 1.1333333333333336e-07, + "loss": 0.0, + "step": 4950 + }, + { + "epoch": 48.66, + "grad_norm": 0.003067249897867441, + "learning_rate": 5.777777777777778e-08, + "loss": 0.0, + "step": 4975 + }, + { + "epoch": 48.9, + "grad_norm": 0.003526049666106701, + "learning_rate": 2.2222222222222225e-09, + "loss": 0.0, + "step": 5000 + }, + { + "epoch": 48.9, + "eval_loss": 0.5704851746559143, + "eval_runtime": 1476.388, + "eval_samples_per_second": 1.96, + "eval_steps_per_second": 0.49, + "eval_wer": 18.498763849464332, + "step": 5000 + } + ], + "logging_steps": 25, + "max_steps": 5000, + "num_input_tokens_seen": 0, + "num_train_epochs": 50, + "save_steps": 1000, + "total_flos": 9.229191970553856e+19, + "train_batch_size": 8, + "trial_name": null, + "trial_params": null +} diff --git a/whisper-fine-tuning-event/checkpoint-5000/training_args.bin b/whisper-fine-tuning-event/checkpoint-5000/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f1e1c1503977a74c2be326ce97dee50daa53384 --- /dev/null +++ b/whisper-fine-tuning-event/checkpoint-5000/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f73c95d6632bb7d80507c5d129a813cefcc6575c685b8993420525612405d91 +size 5048 diff --git a/whisper-fine-tuning-event/config.json b/whisper-fine-tuning-event/config.json new file mode 100644 index 0000000000000000000000000000000000000000..8d2a327cb177d5048125acef1f6c6fbab0b47606 --- /dev/null +++ b/whisper-fine-tuning-event/config.json @@ -0,0 +1,52 @@ +{ + "_name_or_path": "openai/whisper-small", + "activation_dropout": 0.0, + "activation_function": "gelu", + "apply_spec_augment": false, + "architectures": [ + "WhisperForConditionalGeneration" + ], + "attention_dropout": 0.0, + "begin_suppress_tokens": [ + 220, + 50257 + ], + "bos_token_id": 50257, + "classifier_proj_size": 256, + "d_model": 768, + "decoder_attention_heads": 12, + "decoder_ffn_dim": 3072, + "decoder_layerdrop": 0.0, + "decoder_layers": 12, + "decoder_start_token_id": 50258, + "dropout": 0.0, + "encoder_attention_heads": 12, + "encoder_ffn_dim": 3072, + "encoder_layerdrop": 0.0, + "encoder_layers": 12, + "eos_token_id": 50257, + "forced_decoder_ids": null, + "init_std": 0.02, + "is_encoder_decoder": true, + "mask_feature_length": 10, + "mask_feature_min_masks": 0, + "mask_feature_prob": 0.0, + "mask_time_length": 10, + "mask_time_min_masks": 2, + "mask_time_prob": 0.05, + "max_length": 448, + "max_source_positions": 1500, + "max_target_positions": 448, + "median_filter_width": 7, + "model_type": "whisper", + "num_hidden_layers": 12, + "num_mel_bins": 80, + "pad_token_id": 50257, + "scale_embedding": false, + "suppress_tokens": [], + "torch_dtype": "float32", + "transformers_version": "4.40.0.dev0", + "use_cache": false, + "use_weighted_layer_sum": false, + "vocab_size": 51865 +} diff --git a/whisper-fine-tuning-event/ds_config.json b/whisper-fine-tuning-event/ds_config.json new file mode 100644 index 0000000000000000000000000000000000000000..6fe6c2429adbd7c17f25d9ba41613262ab860549 --- /dev/null +++ b/whisper-fine-tuning-event/ds_config.json @@ -0,0 +1,50 @@ +{ + "fp16": { + "enabled": "auto", + "loss_scale": 0, + "loss_scale_window": 1000, + "initial_scale_power": 16, + "hysteresis": 2, + "min_loss_scale": 1 + }, + + "optimizer": { + "type": "AdamW", + "params": { + "lr": "auto", + "betas": "auto", + "eps": "auto", + "weight_decay": "auto" + } + }, + + "scheduler": { + "type": "WarmupDecayLR", + "params": { + "last_batch_iteration": -1, + "total_num_steps": "auto", + "warmup_min_lr": "auto", + "warmup_max_lr": "auto", + "warmup_num_steps": "auto" + } + }, + + "zero_optimization": { + "stage": 2, + "offload_optimizer": { + "device": "cpu", + "pin_memory": true + }, + "allgather_partitions": true, + "allgather_bucket_size": 2e8, + "overlap_comm": true, + "reduce_scatter": true, + "reduce_bucket_size": 2e8, + "contiguous_gradients": true + }, + + "gradient_accumulation_steps": "auto", + "gradient_clipping": "auto", + "train_batch_size": "auto", + "train_micro_batch_size_per_gpu": "auto" +} diff --git a/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.ipynb b/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..33f9847de5ffa4741781b7f0a1c415b0148e63d4 --- /dev/null +++ b/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.ipynb @@ -0,0 +1,15057 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6", + "metadata": { + "id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6" + }, + "source": [ + "# Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers" + ] + }, + { + "cell_type": "markdown", + "id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a", + "metadata": { + "id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a" + }, + "source": [ + "In this Colab, we present a step-by-step guide on how to fine-tune Whisper \n", + "for any multilingual ASR dataset using Hugging Face 🤗 Transformers. This is a \n", + "more \"hands-on\" version of the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). \n", + "For a more in-depth explanation of Whisper, the Common Voice dataset and the theory behind fine-tuning, the reader is advised to refer to the blog post." + ] + }, + { + "cell_type": "markdown", + "id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e", + "metadata": { + "id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e" + }, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0", + "metadata": { + "id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0" + }, + "source": [ + "Whisper is a pre-trained model for automatic speech recognition (ASR) \n", + "published in [September 2022](https://openai.com/blog/whisper/) by the authors \n", + "Alec Radford et al. from OpenAI. Unlike many of its predecessors, such as \n", + "[Wav2Vec 2.0](https://arxiv.org/abs/2006.11477), which are pre-trained \n", + "on un-labelled audio data, Whisper is pre-trained on a vast quantity of \n", + "**labelled** audio-transcription data, 680,000 hours to be precise. \n", + "This is an order of magnitude more data than the un-labelled audio data used \n", + "to train Wav2Vec 2.0 (60,000 hours). What is more, 117,000 hours of this \n", + "pre-training data is multilingual ASR data. This results in checkpoints \n", + "that can be applied to over 96 languages, many of which are considered \n", + "_low-resource_.\n", + "\n", + "When scaled to 680,000 hours of labelled pre-training data, Whisper models \n", + "demonstrate a strong ability to generalise to many datasets and domains.\n", + "The pre-trained checkpoints achieve competitive results to state-of-the-art \n", + "ASR systems, with near 3% word error rate (WER) on the test-clean subset of \n", + "LibriSpeech ASR and a new state-of-the-art on TED-LIUM with 4.7% WER (_c.f._ \n", + "Table 8 of the [Whisper paper](https://cdn.openai.com/papers/whisper.pdf)).\n", + "The extensive multilingual ASR knowledge acquired by Whisper during pre-training \n", + "can be leveraged for other low-resource languages; through fine-tuning, the \n", + "pre-trained checkpoints can be adapted for specific datasets and languages \n", + "to further improve upon these results. We'll show just how Whisper can be fine-tuned \n", + "for low-resource languages in this Colab." + ] + }, + { + "cell_type": "markdown", + "id": "e59b91d6-be24-4b5e-bb38-4977ea143a72", + "metadata": { + "id": "e59b91d6-be24-4b5e-bb38-4977ea143a72" + }, + "source": [ + "
\n", + "\"Trulli\"\n", + "
Figure 1: Whisper model. The architecture \n", + "follows the standard Transformer-based encoder-decoder model. A \n", + "log-Mel spectrogram is input to the encoder. The last encoder \n", + "hidden states are input to the decoder via cross-attention mechanisms. The \n", + "decoder autoregressively predicts text tokens, jointly conditional on the \n", + "encoder hidden states and previously predicted tokens. Figure source: \n", + "OpenAI Whisper Blog.
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "21b6316e-8a55-4549-a154-66d3da2ab74a", + "metadata": { + "id": "21b6316e-8a55-4549-a154-66d3da2ab74a" + }, + "source": [ + "The Whisper checkpoints come in five configurations of varying model sizes.\n", + "The smallest four are trained on either English-only or multilingual data.\n", + "The largest checkpoint is multilingual only. All nine of the pre-trained checkpoints \n", + "are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The \n", + "checkpoints are summarised in the following table with links to the models on the Hub:\n", + "\n", + "| Size | Layers | Width | Heads | Parameters | English-only | Multilingual |\n", + "|--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------|\n", + "| tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny.) |\n", + "| base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |\n", + "| small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |\n", + "| medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |\n", + "| large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |\n", + "\n", + "For demonstration purposes, we'll fine-tune the multilingual version of the \n", + "[`\"small\"`](https://huggingface.co/openai/whisper-small) checkpoint with 244M params (~= 1GB). \n", + "As for our data, we'll train and evaluate our system on a low-resource language \n", + "taken from the [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)\n", + "dataset. We'll show that with as little as 8 hours of fine-tuning data, we can achieve \n", + "strong performance in this language." + ] + }, + { + "cell_type": "markdown", + "id": "3a680dfc-cbba-4f6c-8a1f-e1a5ff3f123a", + "metadata": { + "id": "3a680dfc-cbba-4f6c-8a1f-e1a5ff3f123a" + }, + "source": [ + "------------------------------------------------------------------------\n", + "\n", + "\\\\({}^1\\\\) The name Whisper follows from the acronym “WSPSR”, which stands for “Web-scale Supervised Pre-training for Speech Recognition”." + ] + }, + { + "cell_type": "markdown", + "id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0", + "metadata": { + "id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0" + }, + "source": [ + "## Load Dataset" + ] + }, + { + "cell_type": "markdown", + "id": "674429c5-0ab4-4adf-975b-621bb69eca38", + "metadata": { + "id": "674429c5-0ab4-4adf-975b-621bb69eca38" + }, + "source": [ + "Using 🤗 Datasets, downloading and preparing data is extremely simple. \n", + "We can download and prepare the Common Voice splits in just one line of code. \n", + "\n", + "First, ensure you have accepted the terms of use on the Hugging Face Hub: [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). Once you have accepted the terms, you will have full access to the dataset and be able to download the data locally.\n", + "\n", + "Since Hindi is very low-resource, we'll combine the `train` and `validation` \n", + "splits to give approximately 8 hours of training data. We'll use the 4 hours \n", + "of `test` data as our held-out test set:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a2787582-554f-44ce-9f38-4180a5ed6b44", + "metadata": { + "id": "a2787582-554f-44ce-9f38-4180a5ed6b44" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/datasets/load.py:1483: FutureWarning: The repository for mozilla-foundation/common_voice_11_0 contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/mozilla-foundation/common_voice_11_0\n", + "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n", + "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/datasets/load.py:1483: FutureWarning: The repository for mozilla-foundation/common_voice_11_0 contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/mozilla-foundation/common_voice_11_0\n", + "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n", + "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n", + " num_rows: 6540\n", + " })\n", + " test: Dataset({\n", + " features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n", + " num_rows: 2894\n", + " })\n", + "})\n" + ] + } + ], + "source": [ + "from datasets import load_dataset, DatasetDict\n", + "\n", + "common_voice = DatasetDict()\n", + "\n", + "common_voice[\"train\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"hi\", split=\"train+validation\", token=True)\n", + "common_voice[\"test\"] = load_dataset(\"mozilla-foundation/common_voice_11_0\", \"hi\", split=\"test\", token=True)\n", + "\n", + "print(common_voice)" + ] + }, + { + "cell_type": "markdown", + "id": "d5c7c3d6-7197-41e7-a088-49b753c1681f", + "metadata": { + "id": "d5c7c3d6-7197-41e7-a088-49b753c1681f" + }, + "source": [ + "Most ASR datasets only provide input audio samples (`audio`) and the \n", + "corresponding transcribed text (`sentence`). Common Voice contains additional \n", + "metadata information, such as `accent` and `locale`, which we can disregard for ASR.\n", + "Keeping the notebook as general as possible, we only consider the input audio and\n", + "transcribed text for fine-tuning, discarding the additional metadata information:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "20ba635d-518c-47ac-97ee-3cad25f1e0ce", + "metadata": { + "id": "20ba635d-518c-47ac-97ee-3cad25f1e0ce" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['audio', 'sentence'],\n", + " num_rows: 6540\n", + " })\n", + " test: Dataset({\n", + " features: ['audio', 'sentence'],\n", + " num_rows: 2894\n", + " })\n", + "})\n" + ] + } + ], + "source": [ + "common_voice = common_voice.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"path\", \"segment\", \"up_votes\"])\n", + "\n", + "print(common_voice)" + ] + }, + { + "cell_type": "markdown", + "id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605", + "metadata": { + "id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605" + }, + "source": [ + "## Prepare Feature Extractor, Tokenizer and Data" + ] + }, + { + "cell_type": "markdown", + "id": "601c3099-1026-439e-93e2-5635b3ba5a73", + "metadata": { + "id": "601c3099-1026-439e-93e2-5635b3ba5a73" + }, + "source": [ + "The ASR pipeline can be de-composed into three stages: \n", + "1) A feature extractor which pre-processes the raw audio-inputs\n", + "2) The model which performs the sequence-to-sequence mapping \n", + "3) A tokenizer which post-processes the model outputs to text format\n", + "\n", + "In 🤗 Transformers, the Whisper model has an associated feature extractor and tokenizer, \n", + "called [WhisperFeatureExtractor](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor)\n", + "and [WhisperTokenizer](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer) \n", + "respectively.\n", + "\n", + "We'll go through details for setting-up the feature extractor and tokenizer one-by-one!" + ] + }, + { + "cell_type": "markdown", + "id": "560332eb-3558-41a1-b500-e83a9f695f84", + "metadata": { + "id": "560332eb-3558-41a1-b500-e83a9f695f84" + }, + "source": [ + "### Load WhisperFeatureExtractor" + ] + }, + { + "cell_type": "markdown", + "id": "32ec8068-0bd7-412d-b662-0edb9d1e7365", + "metadata": { + "id": "32ec8068-0bd7-412d-b662-0edb9d1e7365" + }, + "source": [ + "The Whisper feature extractor performs two operations:\n", + "1. Pads / truncates the audio inputs to 30s: any audio inputs shorter than 30s are padded to 30s with silence (zeros), and those longer that 30s are truncated to 30s\n", + "2. Converts the audio inputs to _log-Mel spectrogram_ input features, a visual representation of the audio and the form of the input expected by the Whisper model" + ] + }, + { + "cell_type": "markdown", + "id": "589d9ec1-d12b-4b64-93f7-04c63997da19", + "metadata": { + "id": "589d9ec1-d12b-4b64-93f7-04c63997da19" + }, + "source": [ + "
\n", + "\"Trulli\"\n", + "
Figure 2: Conversion of sampled audio array to log-Mel spectrogram.\n", + "Left: sampled 1-dimensional audio signal. Right: corresponding log-Mel spectrogram. Figure source:\n", + "Google SpecAugment Blog.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "b2ef54d5-b946-4c1d-9fdc-adc5d01b46aa", + "metadata": { + "id": "b2ef54d5-b946-4c1d-9fdc-adc5d01b46aa" + }, + "source": [ + "We'll load the feature extractor from the pre-trained checkpoint with the default values:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bc77d7bb-f9e2-47f5-b663-30f7a4321ce5", + "metadata": { + "id": "bc77d7bb-f9e2-47f5-b663-30f7a4321ce5" + }, + "outputs": [], + "source": [ + "from transformers import WhisperFeatureExtractor\n", + "\n", + "feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-small\")" + ] + }, + { + "cell_type": "markdown", + "id": "93748af7-b917-4ecf-a0c8-7d89077ff9cb", + "metadata": { + "id": "93748af7-b917-4ecf-a0c8-7d89077ff9cb" + }, + "source": [ + "### Load WhisperTokenizer" + ] + }, + { + "cell_type": "markdown", + "id": "2bc82609-a9fb-447a-a2af-99597c864029", + "metadata": { + "id": "2bc82609-a9fb-447a-a2af-99597c864029" + }, + "source": [ + "The Whisper model outputs a sequence of _token ids_. The tokenizer maps each of these token ids to their corresponding text string. For Hindi, we can load the pre-trained tokenizer and use it for fine-tuning without any further modifications. We simply have to \n", + "specify the target language and the task. These arguments inform the \n", + "tokenizer to prefix the language and task tokens to the start of encoded \n", + "label sequences:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c7b07f9b-ae0e-4f89-98f0-0c50d432eab6", + "metadata": { + "id": "c7b07f9b-ae0e-4f89-98f0-0c50d432eab6", + "outputId": "5c004b44-86e7-4e00-88be-39e0af5eed69" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" + ] + } + ], + "source": [ + "from transformers import WhisperTokenizer\n", + "\n", + "tokenizer = WhisperTokenizer.from_pretrained(\"openai/whisper-small\", language=\"Hindi\", task=\"transcribe\")" + ] + }, + { + "cell_type": "markdown", + "id": "d2ef23f3-f4a8-483a-a2dc-080a7496cb1b", + "metadata": { + "id": "d2ef23f3-f4a8-483a-a2dc-080a7496cb1b" + }, + "source": [ + "### Combine To Create A WhisperProcessor" + ] + }, + { + "cell_type": "markdown", + "id": "5ff67654-5a29-4bb8-a69d-0228946c6f8d", + "metadata": { + "id": "5ff67654-5a29-4bb8-a69d-0228946c6f8d" + }, + "source": [ + "To simplify using the feature extractor and tokenizer, we can _wrap_ \n", + "both into a single `WhisperProcessor` class. This processor object \n", + "inherits from the `WhisperFeatureExtractor` and `WhisperProcessor`, \n", + "and can be used on the audio inputs and model predictions as required. \n", + "In doing so, we only need to keep track of two objects during training: \n", + "the `processor` and the `model`:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6", + "metadata": { + "id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n" + ] + } + ], + "source": [ + "from transformers import WhisperProcessor\n", + "\n", + "processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\", language=\"Hindi\", task=\"transcribe\")" + ] + }, + { + "cell_type": "markdown", + "id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c", + "metadata": { + "id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c" + }, + "source": [ + "### Prepare Data" + ] + }, + { + "cell_type": "markdown", + "id": "9649bf01-2e8a-45e5-8fca-441c13637b8f", + "metadata": { + "id": "9649bf01-2e8a-45e5-8fca-441c13637b8f" + }, + "source": [ + "Let's print the first example of the Common Voice dataset to see \n", + "what form the data is in:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6e6b0ec5-0c94-4e2c-ae24-c791be1b2255", + "metadata": { + "id": "6e6b0ec5-0c94-4e2c-ae24-c791be1b2255" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'audio': {'path': '/home/haroon/.cache/huggingface/datasets/downloads/extracted/19da7992f84c9f6fbb0b9f00f7d850f460c81cf35b4cf1f0c78fee7c0a9ceec8/hi_train_0/common_voice_hi_26008353.mp3', 'array': array([ 5.81611368e-26, -1.48634016e-25, -9.37040538e-26, ...,\n", + " 1.06425901e-07, 4.46416450e-08, 2.61450239e-09]), 'sampling_rate': 48000}, 'sentence': 'हमने उसका जन्मदिन मनाया।'}\n" + ] + } + ], + "source": [ + "print(common_voice[\"train\"][0])" + ] + }, + { + "cell_type": "markdown", + "id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd", + "metadata": { + "id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd" + }, + "source": [ + "Since \n", + "our input audio is sampled at 48kHz, we need to _downsample_ it to \n", + "16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. \n", + "\n", + "We'll set the audio inputs to the correct sampling rate using dataset's \n", + "[`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column)\n", + "method. This operation does not change the audio in-place, \n", + "but rather signals to `datasets` to resample audio samples _on the fly_ the \n", + "first time that they are loaded:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f12e2e57-156f-417b-8cfb-69221cc198e8", + "metadata": { + "id": "f12e2e57-156f-417b-8cfb-69221cc198e8" + }, + "outputs": [], + "source": [ + "from datasets import Audio\n", + "\n", + "common_voice = common_voice.cast_column(\"audio\", Audio(sampling_rate=16000))" + ] + }, + { + "cell_type": "markdown", + "id": "00382a3e-abec-4cdd-a54c-d1aaa3ea4707", + "metadata": { + "id": "00382a3e-abec-4cdd-a54c-d1aaa3ea4707" + }, + "source": [ + "Re-loading the first audio sample in the Common Voice dataset will resample \n", + "it to the desired sampling rate:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "87122d71-289a-466a-afcf-fa354b18946b", + "metadata": { + "id": "87122d71-289a-466a-afcf-fa354b18946b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'audio': {'path': '/home/haroon/.cache/huggingface/datasets/downloads/extracted/19da7992f84c9f6fbb0b9f00f7d850f460c81cf35b4cf1f0c78fee7c0a9ceec8/hi_train_0/common_voice_hi_26008353.mp3', 'array': array([ 3.81639165e-17, 2.42861287e-17, -1.73472348e-17, ...,\n", + " -1.30981789e-07, 2.63096808e-07, 4.77157300e-08]), 'sampling_rate': 16000}, 'sentence': 'हमने उसका जन्मदिन मनाया।'}\n" + ] + } + ], + "source": [ + "print(common_voice[\"train\"][0])" + ] + }, + { + "cell_type": "markdown", + "id": "3df7378a-a4c0-45d7-8d07-defbd1062ab6", + "metadata": {}, + "source": [ + "We'll define our pre-processing strategy. We advise that you **do not** lower-case the transcriptions or remove punctuation unless mixing different datasets. This will enable you to fine-tune Whisper models that can predict punctuation and casing. Later, you will see how we can evaluate the predictions without punctuation or casing, so that the models benefit from the WER improvement obtained by normalising the transcriptions while still predicting fully formatted transcriptions." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d041650e-1c48-4439-87b3-5b6f4a514107", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n", + "\n", + "do_lower_case = False\n", + "do_remove_punctuation = False\n", + "\n", + "normalizer = BasicTextNormalizer()" + ] + }, + { + "cell_type": "markdown", + "id": "89e12c2e-2f14-479b-987b-f0c75c881095", + "metadata": {}, + "source": [ + "Now we can write a function to prepare our data ready for the model:\n", + "1. We load and resample the audio data by calling `batch[\"audio\"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly.\n", + "2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array.\n", + "3. We perform any optional pre-processing (lower-case or remove punctuation).\n", + "4. We encode the transcriptions to label ids through the use of the tokenizer." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c085911c-a10a-41ef-8874-306e0503e9bb", + "metadata": {}, + "outputs": [], + "source": [ + "def prepare_dataset(batch):\n", + " # load and (possibly) resample audio data to 16kHz\n", + " audio = batch[\"audio\"]\n", + "\n", + " # compute log-Mel input features from input audio array \n", + " batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n", + " # compute input length of audio sample in seconds\n", + " batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n", + " \n", + " # optional pre-processing steps\n", + " transcription = batch[\"sentence\"]\n", + " if do_lower_case:\n", + " transcription = transcription.lower()\n", + " if do_remove_punctuation:\n", + " transcription = normalizer(transcription).strip()\n", + " \n", + " # encode target text to label ids\n", + " batch[\"labels\"] = processor.tokenizer(transcription).input_ids\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "8c960965-9fb6-466f-9dbd-c9d43e71d9d0", + "metadata": { + "id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13" + }, + "source": [ + "We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7b73ab39-ffaf-4b9e-86e5-782963c6134b", + "metadata": { + "id": "7b73ab39-ffaf-4b9e-86e5-782963c6134b" + }, + "outputs": [], + "source": [ + "common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names[\"train\"], num_proc=2)" + ] + }, + { + "cell_type": "markdown", + "id": "54ce0fdb-7218-4a4d-b175-383980fec0df", + "metadata": {}, + "source": [ + "Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "01cb25ef-4bb0-4325-9461-f59198acadf6", + "metadata": {}, + "outputs": [], + "source": [ + "max_input_length = 30.0\n", + "\n", + "def is_audio_in_length_range(length):\n", + " return length < max_input_length" + ] + }, + { + "cell_type": "markdown", + "id": "30e676a8-7ca8-4850-8c5d-5b2b00d13fba", + "metadata": {}, + "source": [ + "We apply our filter function to all samples of our training dataset through 🤗 Datasets' `.filter` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "333f7f6e-6053-4d3b-8924-c733c79b82ac", + "metadata": {}, + "outputs": [], + "source": [ + "common_voice[\"train\"] = common_voice[\"train\"].filter(\n", + " is_audio_in_length_range,\n", + " input_columns=[\"input_length\"],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "263a5a58-0239-4a25-b0df-c625fc9c5810", + "metadata": { + "id": "263a5a58-0239-4a25-b0df-c625fc9c5810" + }, + "source": [ + "## Training and Evaluation" + ] + }, + { + "cell_type": "markdown", + "id": "a693e768-c5a6-453f-89a1-b601dcf7daf7", + "metadata": { + "id": "a693e768-c5a6-453f-89a1-b601dcf7daf7" + }, + "source": [ + "Now that we've prepared our data, we're ready to dive into the training pipeline. \n", + "The [🤗 Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer)\n", + "will do much of the heavy lifting for us. All we have to do is:\n", + "\n", + "- Define a data collator: the data collator takes our pre-processed data and prepares PyTorch tensors ready for the model.\n", + "\n", + "- Evaluation metrics: during evaluation, we want to evaluate the model using the [word error rate (WER)](https://huggingface.co/metrics/wer) metric. We need to define a `compute_metrics` function that handles this computation.\n", + "\n", + "- Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly for training.\n", + "\n", + "- Define the training configuration: this will be used by the 🤗 Trainer to define the training schedule.\n", + "\n", + "Once we've fine-tuned the model, we will evaluate it on the test data to verify that we have correctly trained it \n", + "to transcribe speech in Hindi." + ] + }, + { + "cell_type": "markdown", + "id": "8d230e6d-624c-400a-bbf5-fa660881df25", + "metadata": { + "id": "8d230e6d-624c-400a-bbf5-fa660881df25" + }, + "source": [ + "### Define a Data Collator" + ] + }, + { + "cell_type": "markdown", + "id": "04def221-0637-4a69-b242-d3f0c1d0ee78", + "metadata": { + "id": "04def221-0637-4a69-b242-d3f0c1d0ee78" + }, + "source": [ + "The data collator for a sequence-to-sequence speech model is unique in the sense that it \n", + "treats the `input_features` and `labels` independently: the `input_features` must be \n", + "handled by the feature extractor and the `labels` by the tokenizer.\n", + "\n", + "The `input_features` are already padded to 30s and converted to a log-Mel spectrogram \n", + "of fixed dimension by action of the feature extractor, so all we have to do is convert the `input_features`\n", + "to batched PyTorch tensors. We do this using the feature extractor's `.pad` method with `return_tensors=pt`.\n", + "\n", + "The `labels` on the other hand are un-padded. We first pad the sequences\n", + "to the maximum length in the batch using the tokenizer's `.pad` method. The padding tokens \n", + "are then replaced by `-100` so that these tokens are **not** taken into account when \n", + "computing the loss. We then cut the BOS token from the start of the label sequence as we \n", + "append it later during training.\n", + "\n", + "We can leverage the `WhisperProcessor` we defined earlier to perform both the \n", + "feature extractor and the tokenizer operations:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "8326221e-ec13-4731-bb4e-51e5fc1486c5", + "metadata": { + "id": "8326221e-ec13-4731-bb4e-51e5fc1486c5" + }, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "from dataclasses import dataclass\n", + "from typing import Any, Dict, List, Union\n", + "\n", + "@dataclass\n", + "class DataCollatorSpeechSeq2SeqWithPadding:\n", + " processor: Any\n", + "\n", + " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n", + " # split inputs and labels since they have to be of different lengths and need different padding methods\n", + " # first treat the audio inputs by simply returning torch tensors\n", + " input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n", + " batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n", + "\n", + " # get the tokenized label sequences\n", + " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n", + " # pad the labels to max length\n", + " labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n", + "\n", + " # replace padding with -100 to ignore loss correctly\n", + " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n", + "\n", + " # if bos token is appended in previous tokenization step,\n", + " # cut bos token here as it's append later anyways\n", + " if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n", + " labels = labels[:, 1:]\n", + "\n", + " batch[\"labels\"] = labels\n", + "\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86", + "metadata": { + "id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86" + }, + "source": [ + "Let's initialise the data collator we've just defined:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "fc834702-c0d3-4a96-b101-7b87be32bf42", + "metadata": { + "id": "fc834702-c0d3-4a96-b101-7b87be32bf42" + }, + "outputs": [], + "source": [ + "data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)" + ] + }, + { + "cell_type": "markdown", + "id": "d62bb2ab-750a-45e7-82e9-61d6f4805698", + "metadata": { + "id": "d62bb2ab-750a-45e7-82e9-61d6f4805698" + }, + "source": [ + "### Evaluation Metrics" + ] + }, + { + "cell_type": "markdown", + "id": "66fee1a7-a44c-461e-b047-c3917221572e", + "metadata": { + "id": "66fee1a7-a44c-461e-b047-c3917221572e" + }, + "source": [ + "We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing \n", + "ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b22b4011-f31f-4b57-b684-c52332f92890", + "metadata": { + "id": "b22b4011-f31f-4b57-b684-c52332f92890" + }, + "outputs": [], + "source": [ + "import evaluate\n", + "\n", + "metric = evaluate.load(\"wer\")" + ] + }, + { + "cell_type": "markdown", + "id": "4f32cab6-31f0-4cb9-af4c-40ba0f5fc508", + "metadata": { + "id": "4f32cab6-31f0-4cb9-af4c-40ba0f5fc508" + }, + "source": [ + "We then simply have to define a function that takes our model \n", + "predictions and returns the WER metric. This function, called\n", + "`compute_metrics`, first replaces `-100` with the `pad_token_id`\n", + "in the `label_ids` (undoing the step we applied in the \n", + "data collator to ignore padded tokens correctly in the loss).\n", + "It then decodes the predicted and label ids to strings. Finally,\n", + "it computes the WER between the predictions and reference labels. \n", + "Here, we have the option of evaluating with the 'normalised' transcriptions \n", + "and predictions. We recommend you set this to `True` to benefit from the WER \n", + "improvement obtained by normalising the transcriptions." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "23959a70-22d0-4ffe-9fa1-72b61e75bb52", + "metadata": { + "id": "23959a70-22d0-4ffe-9fa1-72b61e75bb52" + }, + "outputs": [], + "source": [ + "# evaluate with the 'normalised' WER\n", + "do_normalize_eval = True\n", + "\n", + "def compute_metrics(pred):\n", + " pred_ids = pred.predictions\n", + " label_ids = pred.label_ids\n", + "\n", + " # replace -100 with the pad_token_id\n", + " label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n", + "\n", + " # we do not want to group tokens when computing the metrics\n", + " pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n", + " label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n", + "\n", + " if do_normalize_eval:\n", + " pred_str = [normalizer(pred) for pred in pred_str]\n", + " label_str = [normalizer(label) for label in label_str]\n", + "\n", + " wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n", + "\n", + " return {\"wer\": wer}" + ] + }, + { + "cell_type": "markdown", + "id": "daf2a825-6d9f-4a23-b145-c37c0039075b", + "metadata": { + "id": "daf2a825-6d9f-4a23-b145-c37c0039075b" + }, + "source": [ + "### Load a Pre-Trained Checkpoint" + ] + }, + { + "cell_type": "markdown", + "id": "437a97fa-4864-476b-8abc-f28b8166cfa5", + "metadata": { + "id": "437a97fa-4864-476b-8abc-f28b8166cfa5" + }, + "source": [ + "Now let's load the pre-trained Whisper `small` checkpoint. Again, this \n", + "is trivial through use of 🤗 Transformers!" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f", + "metadata": { + "id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f" + }, + "outputs": [], + "source": [ + "from transformers import WhisperForConditionalGeneration\n", + "\n", + "model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")\n", + "model.generation_config.language = \"hi\" # define your language of choice here" + ] + }, + { + "cell_type": "markdown", + "id": "a15ead5f-2277-4a39-937b-585c2497b2df", + "metadata": { + "id": "a15ead5f-2277-4a39-937b-585c2497b2df" + }, + "source": [ + "Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)). Set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "62038ba3-88ed-4fce-84db-338f50dcd04f", + "metadata": { + "id": "62038ba3-88ed-4fce-84db-338f50dcd04f" + }, + "outputs": [], + "source": [ + "model.config.forced_decoder_ids = None\n", + "model.config.suppress_tokens = []\n", + "model.config.use_cache = False" + ] + }, + { + "cell_type": "markdown", + "id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06", + "metadata": { + "id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06" + }, + "source": [ + "### Define the Training Configuration" + ] + }, + { + "cell_type": "markdown", + "id": "c21af1e9-0188-4134-ac82-defc7bdcc436", + "metadata": { + "id": "c21af1e9-0188-4134-ac82-defc7bdcc436" + }, + "source": [ + "In the final step, we define all the parameters related to training. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments)." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a", + "metadata": { + "id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a" + }, + "outputs": [], + "source": [ + "from transformers import Seq2SeqTrainingArguments\n", + "\n", + "training_args = Seq2SeqTrainingArguments(\n", + " output_dir=\"./\",\n", + " per_device_train_batch_size=8,\n", + " gradient_accumulation_steps=8, # increase by 2x for every 2x decrease in batch size\n", + " learning_rate=1e-5,\n", + " warmup_steps=500,\n", + " max_steps=5000,\n", + " gradient_checkpointing=True,\n", + " fp16=True,\n", + " evaluation_strategy=\"steps\",\n", + " per_device_eval_batch_size=4,\n", + " predict_with_generate=True,\n", + " generation_max_length=225,\n", + " save_steps=1000,\n", + " eval_steps=1000,\n", + " logging_steps=25,\n", + " report_to=[\"tensorboard\"],\n", + " load_best_model_at_end=True,\n", + " metric_for_best_model=\"wer\",\n", + " greater_is_better=False,\n", + " push_to_hub=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b3a944d8-3112-4552-82a0-be25988b3857", + "metadata": { + "id": "b3a944d8-3112-4552-82a0-be25988b3857" + }, + "source": [ + "**Note**: if one does not want to upload the model checkpoints to the Hub, \n", + "set `push_to_hub=False`." + ] + }, + { + "cell_type": "markdown", + "id": "bac29114-d226-4f54-97cf-8718c9f94e1e", + "metadata": { + "id": "bac29114-d226-4f54-97cf-8718c9f94e1e" + }, + "source": [ + "We can forward the training arguments to the 🤗 Trainer along with our model,\n", + "dataset, data collator and `compute_metrics` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "d546d7fe-0543-479a-b708-2ebabec19493", + "metadata": { + "id": "d546d7fe-0543-479a-b708-2ebabec19493" + }, + "outputs": [], + "source": [ + "from transformers import Seq2SeqTrainer\n", + "\n", + "trainer = Seq2SeqTrainer(\n", + " args=training_args,\n", + " model=model,\n", + " train_dataset=common_voice[\"train\"],\n", + " eval_dataset=common_voice[\"test\"],\n", + " data_collator=data_collator,\n", + " compute_metrics=compute_metrics,\n", + " tokenizer=processor.feature_extractor,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "uOrRhDGtN5S4", + "metadata": { + "id": "uOrRhDGtN5S4" + }, + "source": [ + "We'll save the processor object once before starting training. Since the processor is not trainable, it won't change over the course of training:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "-2zQwMfEOBJq", + "metadata": { + "id": "-2zQwMfEOBJq" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "processor.save_pretrained(training_args.output_dir)" + ] + }, + { + "cell_type": "markdown", + "id": "7f404cf9-4345-468c-8196-4bd101d9bd51", + "metadata": { + "id": "7f404cf9-4345-468c-8196-4bd101d9bd51" + }, + "source": [ + "### Training" + ] + }, + { + "cell_type": "markdown", + "id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112", + "metadata": { + "id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112" + }, + "source": [ + "Training will take approximately 5-10 hours depending on your GPU. The peak GPU memory for the given training configuration is approximately 36GB. \n", + "Depending on your GPU, it is possible that you will encounter a CUDA `\"out-of-memory\"` error when you launch training. \n", + "In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 \n", + "and employ [`gradient_accumulation_steps`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps)\n", + "to compensate.\n", + "\n", + "To launch training, simply execute:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de", + "metadata": { + "id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " [ 986/5000 3:06:04 < 12:39:04, 0.09 it/s, Epoch 9.63/50]\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining LossValidation Loss

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n", + "/home/haroon/python_virtual_envs/whisper_fine_tuning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3", + "metadata": { + "id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3" + }, + "source": [ + "We can label our checkpoint with the `whisper-event` tag on push by setting the appropriate key-word arguments (kwargs):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c704f91e-241b-48c9-b8e0-f0da396a9663", + "metadata": { + "id": "c704f91e-241b-48c9-b8e0-f0da396a9663" + }, + "outputs": [], + "source": [ + "kwargs = {\n", + " \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n", + " \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n", + " \"language\": \"hi\",\n", + " \"model_name\": \"Whisper Small Hi - Sanchit Gandhi\", # a 'pretty' name for your model\n", + " \"finetuned_from\": \"openai/whisper-small\",\n", + " \"tasks\": \"automatic-speech-recognition\",\n", + " \"tags\": \"whisper-event\",\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "090d676a-f944-4297-a938-a40eda0b2b68", + "metadata": { + "id": "090d676a-f944-4297-a938-a40eda0b2b68" + }, + "source": [ + "The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub` command and save the preprocessor object we created:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7030622-caf7-4039-939b-6195cdaa2585", + "metadata": { + "id": "d7030622-caf7-4039-939b-6195cdaa2585" + }, + "outputs": [], + "source": [ + "trainer.push_to_hub(**kwargs)" + ] + }, + { + "cell_type": "markdown", + "id": "ca743fbd-602c-48d4-ba8d-a2fe60af64ba", + "metadata": { + "id": "ca743fbd-602c-48d4-ba8d-a2fe60af64ba" + }, + "source": [ + "## Closing Remarks" + ] + }, + { + "cell_type": "markdown", + "id": "7f737783-2870-4e35-aa11-86a42d7d997a", + "metadata": { + "id": "7f737783-2870-4e35-aa11-86a42d7d997a" + }, + "source": [ + "In this blog, we covered a step-by-step guide on fine-tuning Whisper for multilingual ASR \n", + "using 🤗 Datasets, Transformers and the Hugging Face Hub. For more details on the Whisper model, the Common Voice dataset and the theory behind fine-tuning, refere to the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). If you're interested in fine-tuning other \n", + "Transformers models, both for English and multilingual ASR, be sure to check out the \n", + "examples scripts at [examples/pytorch/speech-recognition](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition)." + ] + } + ], + "metadata": { + "colab": { + "include_colab_link": true, + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.py b/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.py new file mode 100644 index 0000000000000000000000000000000000000000..22f4860458b544e5982763f41280a52fd7034432 --- /dev/null +++ b/whisper-fine-tuning-event/fine-tune-whisper-non-streaming.py @@ -0,0 +1,554 @@ +#!/home/haroon/python_virtual_envs/whisper_fine_tuning/bin/python +#!/usr/bin/env python +# coding: utf-8 + +# # Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers + +# In this Colab, we present a step-by-step guide on how to fine-tune Whisper +# for any multilingual ASR dataset using Hugging Face 🤗 Transformers. This is a +# more "hands-on" version of the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). +# For a more in-depth explanation of Whisper, the Common Voice dataset and the theory behind fine-tuning, the reader is advised to refer to the blog post. + +# ## Introduction + +# Whisper is a pre-trained model for automatic speech recognition (ASR) +# published in [September 2022](https://openai.com/blog/whisper/) by the authors +# Alec Radford et al. from OpenAI. Unlike many of its predecessors, such as +# [Wav2Vec 2.0](https://arxiv.org/abs/2006.11477), which are pre-trained +# on un-labelled audio data, Whisper is pre-trained on a vast quantity of +# **labelled** audio-transcription data, 680,000 hours to be precise. +# This is an order of magnitude more data than the un-labelled audio data used +# to train Wav2Vec 2.0 (60,000 hours). What is more, 117,000 hours of this +# pre-training data is multilingual ASR data. This results in checkpoints +# that can be applied to over 96 languages, many of which are considered +# _low-resource_. +# +# When scaled to 680,000 hours of labelled pre-training data, Whisper models +# demonstrate a strong ability to generalise to many datasets and domains. +# The pre-trained checkpoints achieve competitive results to state-of-the-art +# ASR systems, with near 3% word error rate (WER) on the test-clean subset of +# LibriSpeech ASR and a new state-of-the-art on TED-LIUM with 4.7% WER (_c.f._ +# Table 8 of the [Whisper paper](https://cdn.openai.com/papers/whisper.pdf)). +# The extensive multilingual ASR knowledge acquired by Whisper during pre-training +# can be leveraged for other low-resource languages; through fine-tuning, the +# pre-trained checkpoints can be adapted for specific datasets and languages +# to further improve upon these results. We'll show just how Whisper can be fine-tuned +# for low-resource languages in this Colab. + +#

+# Trulli +#
Figure 1: Whisper model. The architecture +# follows the standard Transformer-based encoder-decoder model. A +# log-Mel spectrogram is input to the encoder. The last encoder +# hidden states are input to the decoder via cross-attention mechanisms. The +# decoder autoregressively predicts text tokens, jointly conditional on the +# encoder hidden states and previously predicted tokens. Figure source: +# OpenAI Whisper Blog.
+#
+ +# The Whisper checkpoints come in five configurations of varying model sizes. +# The smallest four are trained on either English-only or multilingual data. +# The largest checkpoint is multilingual only. All nine of the pre-trained checkpoints +# are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The +# checkpoints are summarised in the following table with links to the models on the Hub: +# +# | Size | Layers | Width | Heads | Parameters | English-only | Multilingual | +# |--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------| +# | tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny.) | +# | base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | +# | small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | +# | medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | +# | large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | +# +# For demonstration purposes, we'll fine-tune the multilingual version of the +# [`"small"`](https://huggingface.co/openai/whisper-small) checkpoint with 244M params (~= 1GB). +# As for our data, we'll train and evaluate our system on a low-resource language +# taken from the [Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) +# dataset. We'll show that with as little as 8 hours of fine-tuning data, we can achieve +# strong performance in this language. + +# ------------------------------------------------------------------------ +# +# \\({}^1\\) The name Whisper follows from the acronym “WSPSR”, which stands for “Web-scale Supervised Pre-training for Speech Recognition”. + +# ## Load Dataset + +# Using 🤗 Datasets, downloading and preparing data is extremely simple. +# We can download and prepare the Common Voice splits in just one line of code. +# +# First, ensure you have accepted the terms of use on the Hugging Face Hub: [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). Once you have accepted the terms, you will have full access to the dataset and be able to download the data locally. +# +# Since Hindi is very low-resource, we'll combine the `train` and `validation` +# splits to give approximately 8 hours of training data. We'll use the 4 hours +# of `test` data as our held-out test set: + +# In[1]: + + +from datasets import load_dataset, DatasetDict + +common_voice = DatasetDict() + +common_voice["train"] = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train+validation", token=True) +common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="test", token=True) + +print(common_voice) + + +# Most ASR datasets only provide input audio samples (`audio`) and the +# corresponding transcribed text (`sentence`). Common Voice contains additional +# metadata information, such as `accent` and `locale`, which we can disregard for ASR. +# Keeping the notebook as general as possible, we only consider the input audio and +# transcribed text for fine-tuning, discarding the additional metadata information: + +# In[2]: + + +common_voice = common_voice.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"]) + +print(common_voice) + + +# ## Prepare Feature Extractor, Tokenizer and Data + +# The ASR pipeline can be de-composed into three stages: +# 1) A feature extractor which pre-processes the raw audio-inputs +# 2) The model which performs the sequence-to-sequence mapping +# 3) A tokenizer which post-processes the model outputs to text format +# +# In 🤗 Transformers, the Whisper model has an associated feature extractor and tokenizer, +# called [WhisperFeatureExtractor](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor) +# and [WhisperTokenizer](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer) +# respectively. +# +# We'll go through details for setting-up the feature extractor and tokenizer one-by-one! + +# ### Load WhisperFeatureExtractor + +# The Whisper feature extractor performs two operations: +# 1. Pads / truncates the audio inputs to 30s: any audio inputs shorter than 30s are padded to 30s with silence (zeros), and those longer that 30s are truncated to 30s +# 2. Converts the audio inputs to _log-Mel spectrogram_ input features, a visual representation of the audio and the form of the input expected by the Whisper model + +#
+# Trulli +#
Figure 2: Conversion of sampled audio array to log-Mel spectrogram. +# Left: sampled 1-dimensional audio signal. Right: corresponding log-Mel spectrogram. Figure source: +# Google SpecAugment Blog. +#
+ +# We'll load the feature extractor from the pre-trained checkpoint with the default values: + +# In[3]: + + +from transformers import WhisperFeatureExtractor + +feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small") + + +# ### Load WhisperTokenizer + +# The Whisper model outputs a sequence of _token ids_. The tokenizer maps each of these token ids to their corresponding text string. For Hindi, we can load the pre-trained tokenizer and use it for fine-tuning without any further modifications. We simply have to +# specify the target language and the task. These arguments inform the +# tokenizer to prefix the language and task tokens to the start of encoded +# label sequences: + +# In[4]: + + +from transformers import WhisperTokenizer + +tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Hindi", task="transcribe") + + +# ### Combine To Create A WhisperProcessor + +# To simplify using the feature extractor and tokenizer, we can _wrap_ +# both into a single `WhisperProcessor` class. This processor object +# inherits from the `WhisperFeatureExtractor` and `WhisperProcessor`, +# and can be used on the audio inputs and model predictions as required. +# In doing so, we only need to keep track of two objects during training: +# the `processor` and the `model`: + +# In[5]: + + +from transformers import WhisperProcessor + +processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Hindi", task="transcribe") + + +# ### Prepare Data + +# Let's print the first example of the Common Voice dataset to see +# what form the data is in: + +# In[6]: + + +print(common_voice["train"][0]) + + +# Since +# our input audio is sampled at 48kHz, we need to _downsample_ it to +# 16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. +# +# We'll set the audio inputs to the correct sampling rate using dataset's +# [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column) +# method. This operation does not change the audio in-place, +# but rather signals to `datasets` to resample audio samples _on the fly_ the +# first time that they are loaded: + +# In[7]: + + +from datasets import Audio + +common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) + + +# Re-loading the first audio sample in the Common Voice dataset will resample +# it to the desired sampling rate: + +# In[8]: + + +print(common_voice["train"][0]) + + +# We'll define our pre-processing strategy. We advise that you **do not** lower-case the transcriptions or remove punctuation unless mixing different datasets. This will enable you to fine-tune Whisper models that can predict punctuation and casing. Later, you will see how we can evaluate the predictions without punctuation or casing, so that the models benefit from the WER improvement obtained by normalising the transcriptions while still predicting fully formatted transcriptions. + +# In[9]: + + +from transformers.models.whisper.english_normalizer import BasicTextNormalizer + +do_lower_case = False +do_remove_punctuation = False + +normalizer = BasicTextNormalizer() + + +# Now we can write a function to prepare our data ready for the model: +# 1. We load and resample the audio data by calling `batch["audio"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly. +# 2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array. +# 3. We perform any optional pre-processing (lower-case or remove punctuation). +# 4. We encode the transcriptions to label ids through the use of the tokenizer. + +# In[10]: + + +def prepare_dataset(batch): + # load and (possibly) resample audio data to 16kHz + audio = batch["audio"] + + # compute log-Mel input features from input audio array + batch["input_features"] = processor.feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] + # compute input length of audio sample in seconds + batch["input_length"] = len(audio["array"]) / audio["sampling_rate"] + + # optional pre-processing steps + transcription = batch["sentence"] + if do_lower_case: + transcription = transcription.lower() + if do_remove_punctuation: + transcription = normalizer(transcription).strip() + + # encode target text to label ids + batch["labels"] = processor.tokenizer(transcription).input_ids + return batch + + +# We can apply the data preparation function to all of our training examples using dataset's `.map` method. The argument `num_proc` specifies how many CPU cores to use. Setting `num_proc` > 1 will enable multiprocessing. If the `.map` method hangs with multiprocessing, set `num_proc=1` and process the dataset sequentially. + +# In[11]: + + +common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2) + + +# Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer: + +# In[12]: + + +max_input_length = 30.0 + +def is_audio_in_length_range(length): + return length < max_input_length + + +# We apply our filter function to all samples of our training dataset through 🤗 Datasets' `.filter` method: + +# In[13]: + + +common_voice["train"] = common_voice["train"].filter( + is_audio_in_length_range, + input_columns=["input_length"], +) + + +# ## Training and Evaluation + +# Now that we've prepared our data, we're ready to dive into the training pipeline. +# The [🤗 Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer) +# will do much of the heavy lifting for us. All we have to do is: +# +# - Define a data collator: the data collator takes our pre-processed data and prepares PyTorch tensors ready for the model. +# +# - Evaluation metrics: during evaluation, we want to evaluate the model using the [word error rate (WER)](https://huggingface.co/metrics/wer) metric. We need to define a `compute_metrics` function that handles this computation. +# +# - Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly for training. +# +# - Define the training configuration: this will be used by the 🤗 Trainer to define the training schedule. +# +# Once we've fine-tuned the model, we will evaluate it on the test data to verify that we have correctly trained it +# to transcribe speech in Hindi. + +# ### Define a Data Collator + +# The data collator for a sequence-to-sequence speech model is unique in the sense that it +# treats the `input_features` and `labels` independently: the `input_features` must be +# handled by the feature extractor and the `labels` by the tokenizer. +# +# The `input_features` are already padded to 30s and converted to a log-Mel spectrogram +# of fixed dimension by action of the feature extractor, so all we have to do is convert the `input_features` +# to batched PyTorch tensors. We do this using the feature extractor's `.pad` method with `return_tensors=pt`. +# +# The `labels` on the other hand are un-padded. We first pad the sequences +# to the maximum length in the batch using the tokenizer's `.pad` method. The padding tokens +# are then replaced by `-100` so that these tokens are **not** taken into account when +# computing the loss. We then cut the BOS token from the start of the label sequence as we +# append it later during training. +# +# We can leverage the `WhisperProcessor` we defined earlier to perform both the +# feature extractor and the tokenizer operations: + +# In[14]: + + +import torch + +from dataclasses import dataclass +from typing import Any, Dict, List, Union + +@dataclass +class DataCollatorSpeechSeq2SeqWithPadding: + processor: Any + + def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: + # split inputs and labels since they have to be of different lengths and need different padding methods + # first treat the audio inputs by simply returning torch tensors + input_features = [{"input_features": feature["input_features"]} for feature in features] + batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") + + # get the tokenized label sequences + label_features = [{"input_ids": feature["labels"]} for feature in features] + # pad the labels to max length + labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") + + # replace padding with -100 to ignore loss correctly + labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): + labels = labels[:, 1:] + + batch["labels"] = labels + + return batch + + +# Let's initialise the data collator we've just defined: + +# In[15]: + + +data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) + + +# ### Evaluation Metrics + +# We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing +# ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate: + +# In[16]: + + +import evaluate + +metric = evaluate.load("wer") + + +# We then simply have to define a function that takes our model +# predictions and returns the WER metric. This function, called +# `compute_metrics`, first replaces `-100` with the `pad_token_id` +# in the `label_ids` (undoing the step we applied in the +# data collator to ignore padded tokens correctly in the loss). +# It then decodes the predicted and label ids to strings. Finally, +# it computes the WER between the predictions and reference labels. +# Here, we have the option of evaluating with the 'normalised' transcriptions +# and predictions. We recommend you set this to `True` to benefit from the WER +# improvement obtained by normalising the transcriptions. + +# In[17]: + + +# evaluate with the 'normalised' WER +do_normalize_eval = True + +def compute_metrics(pred): + pred_ids = pred.predictions + label_ids = pred.label_ids + + # replace -100 with the pad_token_id + label_ids[label_ids == -100] = processor.tokenizer.pad_token_id + + # we do not want to group tokens when computing the metrics + pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True) + label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True) + + if do_normalize_eval: + pred_str = [normalizer(pred) for pred in pred_str] + label_str = [normalizer(label) for label in label_str] + + wer = 100 * metric.compute(predictions=pred_str, references=label_str) + + return {"wer": wer} + + +# ### Load a Pre-Trained Checkpoint + +# Now let's load the pre-trained Whisper `small` checkpoint. Again, this +# is trivial through use of 🤗 Transformers! + +# In[18]: + + +from transformers import WhisperForConditionalGeneration + +model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") +model.generation_config.language = "hi" # define your language of choice here + + +# Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)). Set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible: + +# In[19]: + + +model.config.forced_decoder_ids = None +model.config.suppress_tokens = [] +model.config.use_cache = False + + +# ### Define the Training Configuration + +# In the final step, we define all the parameters related to training. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments). + +# In[20]: + + +from transformers import Seq2SeqTrainingArguments + +training_args = Seq2SeqTrainingArguments( + output_dir="./", + per_device_train_batch_size=8, + gradient_accumulation_steps=8, # increase by 2x for every 2x decrease in batch size + learning_rate=1e-5, + warmup_steps=500, + max_steps=5000, + gradient_checkpointing=True, + fp16=True, + evaluation_strategy="steps", + per_device_eval_batch_size=4, + predict_with_generate=True, + generation_max_length=225, + save_steps=1000, + eval_steps=1000, + logging_steps=25, + report_to=["tensorboard"], + load_best_model_at_end=True, + metric_for_best_model="wer", + greater_is_better=False, + push_to_hub=True, +) + + +# **Note**: if one does not want to upload the model checkpoints to the Hub, +# set `push_to_hub=False`. + +# We can forward the training arguments to the 🤗 Trainer along with our model, +# dataset, data collator and `compute_metrics` function: + +# In[21]: + + +from transformers import Seq2SeqTrainer + +trainer = Seq2SeqTrainer( + args=training_args, + model=model, + train_dataset=common_voice["train"], + eval_dataset=common_voice["test"], + data_collator=data_collator, + compute_metrics=compute_metrics, + tokenizer=processor.feature_extractor, +) + + +# We'll save the processor object once before starting training. Since the processor is not trainable, it won't change over the course of training: + +# In[22]: + + +processor.save_pretrained(training_args.output_dir) + + +# ### Training + +# Training will take approximately 5-10 hours depending on your GPU. The peak GPU memory for the given training configuration is approximately 36GB. +# Depending on your GPU, it is possible that you will encounter a CUDA `"out-of-memory"` error when you launch training. +# In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 +# and employ [`gradient_accumulation_steps`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps) +# to compensate. +# +# To launch training, simply execute: + +# In[ ]: + + +trainer.train() + + +# We can label our checkpoint with the `whisper-event` tag on push by setting the appropriate key-word arguments (kwargs): + +# In[ ]: + + +kwargs = { + "dataset_tags": "mozilla-foundation/common_voice_11_0", + "dataset": "Common Voice 11.0", # a 'pretty' name for the training dataset + "language": "hi", + "model_name": "Whisper Small Hi - Sanchit Gandhi", # a 'pretty' name for your model + "finetuned_from": "openai/whisper-small", + "tasks": "automatic-speech-recognition", + "tags": "whisper-event", +} + + +# The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub` command and save the preprocessor object we created: + +# In[ ]: + + +trainer.push_to_hub(**kwargs) + + +# ## Closing Remarks + +# In this blog, we covered a step-by-step guide on fine-tuning Whisper for multilingual ASR +# using 🤗 Datasets, Transformers and the Hugging Face Hub. For more details on the Whisper model, the Common Voice dataset and the theory behind fine-tuning, refere to the accompanying [blog post](https://huggingface.co/blog/fine-tune-whisper). If you're interested in fine-tuning other +# Transformers models, both for English and multilingual ASR, be sure to check out the +# examples scripts at [examples/pytorch/speech-recognition](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition). diff --git a/whisper-fine-tuning-event/fine-tune-whisper-streaming.ipynb b/whisper-fine-tuning-event/fine-tune-whisper-streaming.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..4da8d74c2d1d2282654309ddba4663181a9660cd --- /dev/null +++ b/whisper-fine-tuning-event/fine-tune-whisper-streaming.ipynb @@ -0,0 +1,883 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6", + "metadata": {}, + "source": [ + "# Fine-Tune Whisper With 🤗 Transformers and Streaming Mode" + ] + }, + { + "cell_type": "markdown", + "id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a", + "metadata": {}, + "source": [ + "In this Colab, we present a step-by-step guide on fine-tuning Whisper with Hugging Face 🤗 Transformers on 400 hours of speech data! Using streaming mode, we'll show how you can train a speech recongition model on any dataset, irrespective of size. With streaming mode, storage requirements are no longer a consideration: you can train a model on whatever dataset you want, even if it's download size exceeds your devices disk space. How can this be possible? It simply seems too good to be true! Well, rest assured it's not 😉 Carry on reading to find out more." + ] + }, + { + "cell_type": "markdown", + "id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e", + "metadata": {}, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0", + "metadata": {}, + "source": [ + "Speech recognition datasets are large. A typical speech dataset consists of approximately 100 hours of audio-transcription data, requiring upwards of 130GB of storage space for download and preparation. For most ASR researchers, this is already at the upper limit of what is feasible for disk space. So what happens when we want to train on a larger dataset? The full [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) dataset consists of 960 hours of audio data. Kensho's [SPGISpeech](https://huggingface.co/datasets/kensho/spgispeech) contains 5,000 hours of audio data. ML Commons [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) contains **30,000+** hours of audio data! Do we need to bite the bullet and buy additional storage? Or is there a way we can train on all of these datasets with no disk drive requirements?\n", + "\n", + "When training machine learning systems, we rarely use the entire dataset at once. We typically _batch_ our data into smaller subsets of data, and pass these incrementally through our training pipeline. This is because we train our system on an accelerator device, such as a GPU or TPU, which has a memory limit typically around 16GB. We have to fit our model, optimiser and training data all on the same accelerator device, so we usually have to divide the dataset up into smaller batches and move them from the CPU to the GPU when required.\n", + "\n", + "Consequently, we don't require the entire dataset to be downloaded at once; we simply need the batch of data that we pass to our model at any one go. We can leverage this principle of partial dataset loading when preparing our dataset: rather than downloading the entire dataset at the start, we can load each piece of data as and when we need it. For each batch, we load the relevant data from a remote server and pass it through the training pipeline. For the next batch, we load the next items and again pass them through the training pipeline. At no point do we have to save data to our disk drive, we simply load them in memory and use them in our pipeline. In doing so, we only ever need as much memory as each individual batch requires.\n", + "\n", + "This is analogous to downloading a TV show versus streaming it 📺 When we download a TV show, we download the entire video offline and save it to our disk. Compare this to when we stream a TV show. Here, we don't download any part of the video to memory, but iterate over the video file and load each part in real-time as required. It's this same principle that we can apply to our ML training pipeline! We want to iterate over the dataset and load each sample of data as required.\n", + "\n", + "While the principle of partial dataset loading sounds ideal, it also seems **pretty** difficult to do. Luckily for us, 🤗 Datasets allows us to do this with minimal code changes! We'll make use of the principle of [_streaming_](https://huggingface.co/docs/datasets/stream), depicted graphically in Figure 1. Streaming does exactly this: the data is loaded progressively as we iterate over the dataset, meaning it is only loaded as and when we need it. If you're familiar with 🤗 Transformers and Datasets, the content of this notebook will be very familiar, with some small extensions to support streaming mode." + ] + }, + { + "cell_type": "markdown", + "id": "1c87f76e-47be-4a5d-bc52-7b1c2e9d4f5a", + "metadata": {}, + "source": [ + "
\n", + "\"Trulli\"\n", + "
Figure 1: Streaming mode. The dataset is divided into smaller subsets, with subsets loaded progressively as we iterate over the dataset.
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "21b6316e-8a55-4549-a154-66d3da2ab74a", + "metadata": {}, + "source": [ + "This notebook provides a guide to fine-tuning on the task of _speech recognition_, which involves learning a\n", + "mapping from speech to text. Speech recognition is divided into two categories: English-only or multilingual (all other languages). \n", + "This notebook applies to both categories, with pointers for changing between languages and datasets.\n", + "\n", + "As for our model, we'll fine-tune the Whisper model released in [September 2022](https://openai.com/blog/whisper/) by the authors \n", + "Alec Radford et al. from OpenAI. Whisper is an encoder-decoder model pre-trained on 680k hours of labelled audio-transcription data. \n", + "It achieves strong performance on many speech recognition and speech translation datasets without fine-tuning. With fine-tuning, \n", + "we aim to improve upon these results further, with many SoTA results up for grabs! For a full explanation on the Whisper model, the \n", + "reader is advised to read the blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper#introduction).\n", + "\n", + "The Whisper checkpoints come in five configurations of varying model sizes.\n", + "The smallest four are trained on either English-only or multilingual data.\n", + "The largest checkpoint is multilingual only. All nine of the pre-trained checkpoints \n", + "are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The \n", + "checkpoints are summarised in the following table with links to the models on the Hub:\n", + "\n", + "| Size | Layers | Width | Heads | Parameters | English-only | Multilingual |\n", + "|--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------|\n", + "| tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny.) |\n", + "| base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |\n", + "| small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |\n", + "| medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |\n", + "| large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |\n", + "\n", + "When fine-tuning on an English dataset for speech recognition, it is recommeneded to select one of the English-only checkpoints. For any other language, it is recommended to select a multilingual checkpoint.\n", + "\n", + "For demonstration purposes, we'll fine-tune the multilingual version of the \n", + "[`\"small\"`](https://huggingface.co/openai/whisper-small) checkpoint with 244M params (~= 1GB). \n", + "As for our data, we'll train and evaluate our system on 400 hours of multilingual speech recognition data\n", + "taken from the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)\n", + "dataset. We'll show how we can train a model on 400 hours of training data using the default disk space \n", + "that comes with a standard GPU device or Google Colab." + ] + }, + { + "cell_type": "markdown", + "id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0", + "metadata": {}, + "source": [ + "## Load Dataset with Streaming" + ] + }, + { + "cell_type": "markdown", + "id": "b17a4763-4381-4157-ae38-b04a8b5f1c43", + "metadata": {}, + "source": [ + "This is where the magic happens! We'll first write a wrapper function around 🤗 Datasets `load_dataset` method. This function downloads the required splits using streaming mode by forcing `streaming=True` in the `load_dataset` method. Multiple splits can be combined (interleaved) by concatenating them with the \"+\" symbol when specifying the split name, e.g. `split=train+validation` will return a single split with the training and validation splits interleaved together. The function has the same arguments and key-word arguments as 🤗 Datasets `load_dataset` method, so we can use it in exactly the same way!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "065a8cf7-e54f-4ac3-900e-609c80714fca", + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import interleave_datasets, load_dataset\n", + "\n", + "def load_streaming_dataset(dataset_name, dataset_config_name, split, **kwargs):\n", + " if \"+\" in split:\n", + " # load multiple splits separated by the `+` symbol *with* streaming mode\n", + " dataset_splits = [load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=True, **kwargs) for split_name in split.split(\"+\")]\n", + " # interleave multiple splits to form one dataset\n", + " interleaved_dataset = interleave_datasets(dataset_splits)\n", + " return interleaved_dataset\n", + " else:\n", + " # load a single split *with* streaming mode\n", + " dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=True, **kwargs)\n", + " return dataset" + ] + }, + { + "cell_type": "markdown", + "id": "674429c5-0ab4-4adf-975b-621bb69eca38", + "metadata": {}, + "source": [ + "We'll train our system on the Spanish split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). We can see how much training data we have by viewing the [language page](https://commonvoice.mozilla.org/en/datasets) on the Common Voice website. The Spanish split has over 400 hours of labelled training data - that's enourmous! More than we could ever fit on a Google Colab or a standard workstation. But with streaming mode, we'll only download data as and when we need it, making training on this dataset possible!\n", + "\n", + "Since Spanish is relatively high-resource, we'll only use the `train` split for training and the `test` split for evaluation. If you're training on a low-resource language, such as the Hindi split of Common Voice 11, it's worth combining the `train` and `validation` splits to give a larger training set. You can achieve this by setting: `split=\"train+validation\"` for the training split.\n", + "\n", + "If you're using a gated dataset, like Common Voice 11, ensure you have accepted the terms of use on the Hugging Face Hub: [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). Once you have accepted the terms, you will have full access to the dataset and be able to load the data locally." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2787582-554f-44ce-9f38-4180a5ed6b44", + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import IterableDatasetDict\n", + "\n", + "raw_datasets = IterableDatasetDict()\n", + "\n", + "raw_datasets[\"train\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"es\", split=\"train\", use_auth_token=True) # set split=\"train+validation\" for low-resource\n", + "raw_datasets[\"test\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"es\", split=\"test\", use_auth_token=True)" + ] + }, + { + "cell_type": "markdown", + "id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605", + "metadata": {}, + "source": [ + "## Prepare Processor and Pre-Process Data" + ] + }, + { + "cell_type": "markdown", + "id": "601c3099-1026-439e-93e2-5635b3ba5a73", + "metadata": {}, + "source": [ + "The ASR pipeline can be de-composed into three stages: \n", + "1) A feature extractor which pre-processes the raw audio-inputs\n", + "2) The model which performs the sequence-to-sequence mapping \n", + "3) A tokenizer which post-processes the model outputs to text format\n", + "\n", + "In 🤗 Transformers, the Whisper model has an associated feature extractor and tokenizer, \n", + "called [WhisperFeatureExtractor](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor)\n", + "and [WhisperTokenizer](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer) \n", + "respectively. To make our lives simple, these two objects are wrapped under a single class, called the [WhisperProcessor](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). We can call the WhisperProcessor to perform \n", + "both the audio pre-processing and the text token post-processing. In doing so, we only need to keep track of two objects during training: \n", + "the `processor` and the `model`.\n", + "\n", + "If using a multilingual checkpoint, you should set the `\"language\"` to your target text language. You should also set the task to `\"transcribe\"` for speech recogntition and `\"translate\"` for speech translation. These arguments modify the behaviour of the tokenizer - they should be set correctly to ensure the target labels are encoded properly. These arguments should be omitted for English-only fine-tuning." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import WhisperProcessor\n", + "\n", + "processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\", language=\"Spanish\", task=\"transcribe\")" + ] + }, + { + "cell_type": "markdown", + "id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c", + "metadata": {}, + "source": [ + "### Pre-Process Data" + ] + }, + { + "cell_type": "markdown", + "id": "bf10cd3e-924e-44fc-8790-46e413de7b3d", + "metadata": {}, + "source": [ + "Let's have a look at the dataset features. Pay particular attention to the `\"audio\"` column - this details the sampling rate of our audio inputs:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988", + "metadata": {}, + "outputs": [], + "source": [ + "raw_datasets[\"train\"].features" + ] + }, + { + "cell_type": "markdown", + "id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd", + "metadata": {}, + "source": [ + "Since our input audio is sampled at 48kHz, we need to _downsample_ it to\n", + "16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. \n", + "\n", + "We'll set the audio inputs to the correct sampling rate using dataset's \n", + "[`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column)\n", + "method. This operation does not change the audio in-place, \n", + "but rather signals to `datasets` to resample audio samples _on the fly_ the \n", + "first time that they are loaded:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39", + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import Audio\n", + "\n", + "raw_datasets = raw_datasets.cast_column(\"audio\", Audio(sampling_rate=16000))" + ] + }, + { + "cell_type": "markdown", + "id": "161322c2-94f3-4d26-9e1d-d9d5202ca3cf", + "metadata": {}, + "source": [ + "We'll define our pre-processing strategy. We advise that you **do not** lower-case the transcriptions or remove punctuation unless mixing different datasets. This will enable you to fine-tune Whisper models that can predict punctuation and casing. Later, you will see how we can evaluate the predictions without punctuation or casing, so that the models benefit from the WER improvement obtained by normalising the transcriptions while still predicting fully formatted transcriptions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d041650e-1c48-4439-87b3-5b6f4a514107", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n", + "\n", + "do_lower_case = False\n", + "do_remove_punctuation = False\n", + "\n", + "normalizer = BasicTextNormalizer()" + ] + }, + { + "cell_type": "markdown", + "id": "bfaa935b-a11d-497c-88c1-0c4d1bb3247b", + "metadata": {}, + "source": [ + "Now we can write a function to prepare our data ready for the model:\n", + "1. We load and resample the audio data by calling `batch[\"audio\"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly.\n", + "2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array.\n", + "3. We perform any optional pre-processing (lower-case or remove punctuation).\n", + "4. We encode the transcriptions to label ids through the use of the tokenizer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c085911c-a10a-41ef-8874-306e0503e9bb", + "metadata": {}, + "outputs": [], + "source": [ + "def prepare_dataset(batch):\n", + " # load and (possibly) resample audio data to 16kHz\n", + " audio = batch[\"audio\"]\n", + "\n", + " # compute log-Mel input features from input audio array \n", + " batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n", + " # compute input length of audio sample in seconds\n", + " batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n", + " \n", + " # optional pre-processing steps\n", + " transcription = batch[\"sentence\"]\n", + " if do_lower_case:\n", + " transcription = transcription.lower()\n", + " if do_remove_punctuation:\n", + " transcription = normalizer(transcription).strip()\n", + " \n", + " # encode target text to label ids\n", + " batch[\"labels\"] = processor.tokenizer(transcription).input_ids\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13", + "metadata": {}, + "source": [ + "We can apply the data preparation function to all of our training examples using 🤗 Datasets' `.map` method. We'll remove all of the columns from the raw training data, leaving just the `input_features` and `labels` defined in the `prepare_dataset` function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684", + "metadata": {}, + "outputs": [], + "source": [ + "vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=list(next(iter(raw_datasets.values())).features)).with_format(\"torch\")" + ] + }, + { + "cell_type": "markdown", + "id": "3d59b37e-4950-47ec-9e3e-2cf2ec7fc750", + "metadata": {}, + "source": [ + "We can now define how we shuffle the data in the train split. The size of the subset we load is set by the variable `buffer_size`. You can increase or decrease this depending on your memory constraints. In this example, the `buffer_size` is set to 500, meaning 500 samples are loaded before shuffling across the subset. The larger we set this value, the closer to True offline shuffling. The `seed` is set for reproducibility:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c", + "metadata": {}, + "outputs": [], + "source": [ + "vectorized_datasets[\"train\"] = vectorized_datasets[\"train\"].shuffle(\n", + " buffer_size=500,\n", + " seed=0,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "666b9ef0-7909-4e1e-a419-87604d233e29", + "metadata": {}, + "source": [ + "Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "01cb25ef-4bb0-4325-9461-f59198acadf6", + "metadata": {}, + "outputs": [], + "source": [ + "max_input_length = 30.0\n", + "\n", + "def is_audio_in_length_range(length):\n", + " return length < max_input_length" + ] + }, + { + "cell_type": "markdown", + "id": "28e37ac3-b1c5-465b-8586-7cfd8d76b0f1", + "metadata": {}, + "source": [ + "We apply our filter function to all samples of our training dataset through 🤗 Datasets' `.filter` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "333f7f6e-6053-4d3b-8924-c733c79b82ac", + "metadata": {}, + "outputs": [], + "source": [ + "vectorized_datasets[\"train\"] = vectorized_datasets[\"train\"].filter(\n", + " is_audio_in_length_range,\n", + " input_columns=[\"input_length\"],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "263a5a58-0239-4a25-b0df-c625fc9c5810", + "metadata": {}, + "source": [ + "## Training and Evaluation" + ] + }, + { + "cell_type": "markdown", + "id": "a693e768-c5a6-453f-89a1-b601dcf7daf7", + "metadata": {}, + "source": [ + "Now that we've prepared our data, we're ready to dive into the training pipeline. \n", + "The [🤗 Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer)\n", + "will do much of the heavy lifting for us. All we have to do is:\n", + "\n", + "- Define a data collator: the data collator takes our pre-processed data and prepares PyTorch tensors ready for the model.\n", + "\n", + "- Evaluation metrics: during evaluation, we want to evaluate the model using the [word error rate (WER)](https://huggingface.co/metrics/wer) metric. We need to define a `compute_metrics` function that handles this computation.\n", + "\n", + "- Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly for training.\n", + "\n", + "- Define the training configuration: this will be used by the 🤗 Trainer to define the training schedule." + ] + }, + { + "cell_type": "markdown", + "id": "8d230e6d-624c-400a-bbf5-fa660881df25", + "metadata": {}, + "source": [ + "### Define a Data Collator" + ] + }, + { + "cell_type": "markdown", + "id": "04def221-0637-4a69-b242-d3f0c1d0ee78", + "metadata": {}, + "source": [ + "The data collator for a sequence-to-sequence speech model is unique in the sense that it \n", + "treats the `input_features` and `labels` independently: the `input_features` must be \n", + "handled by the feature extractor and the `labels` by the tokenizer.\n", + "\n", + "The `input_features` are already padded to 30s and converted to a log-Mel spectrogram \n", + "of fixed dimension by action of the feature extractor, so all we have to do is convert the `input_features`\n", + "to batched PyTorch tensors. We do this using the feature extractor's `.pad` method with `return_tensors=pt`.\n", + "\n", + "The `labels` on the other hand are un-padded. We first pad the sequences\n", + "to the maximum length in the batch using the tokenizer's `.pad` method. The padding tokens \n", + "are then replaced by `-100` so that these tokens are **not** taken into account when \n", + "computing the loss. We then cut the BOS token from the start of the label sequence as we \n", + "append it later during training.\n", + "\n", + "We can leverage the `WhisperProcessor` we defined earlier to perform both the \n", + "feature extractor and the tokenizer operations:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8326221e-ec13-4731-bb4e-51e5fc1486c5", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "from dataclasses import dataclass\n", + "from typing import Any, Dict, List, Union\n", + "\n", + "@dataclass\n", + "class DataCollatorSpeechSeq2SeqWithPadding:\n", + " processor: Any\n", + "\n", + " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n", + " # split inputs and labels since they have to be of different lengths and need different padding methods\n", + " # first treat the audio inputs by simply returning torch tensors\n", + " input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n", + " batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n", + "\n", + " # get the tokenized label sequences\n", + " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n", + " # pad the labels to max length\n", + " labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n", + "\n", + " # replace padding with -100 to ignore loss correctly\n", + " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n", + "\n", + " # if bos token is appended in previous tokenization step,\n", + " # cut bos token here as it's append later anyways\n", + " if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n", + " labels = labels[:, 1:]\n", + "\n", + " batch[\"labels\"] = labels\n", + "\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86", + "metadata": {}, + "source": [ + "Let's initialise the data collator we've just defined:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fc834702-c0d3-4a96-b101-7b87be32bf42", + "metadata": {}, + "outputs": [], + "source": [ + "data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)" + ] + }, + { + "cell_type": "markdown", + "id": "d62bb2ab-750a-45e7-82e9-61d6f4805698", + "metadata": {}, + "source": [ + "### Evaluation Metrics" + ] + }, + { + "cell_type": "markdown", + "id": "66fee1a7-a44c-461e-b047-c3917221572e", + "metadata": {}, + "source": [ + "We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing \n", + "ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b22b4011-f31f-4b57-b684-c52332f92890", + "metadata": {}, + "outputs": [], + "source": [ + "import evaluate\n", + "\n", + "metric = evaluate.load(\"wer\")" + ] + }, + { + "cell_type": "markdown", + "id": "509f96d7-3f11-4f37-add9-f74a0c44f3fc", + "metadata": {}, + "source": [ + "We then simply have to define a function that takes our model \n", + "predictions and returns the WER metric. This function, called\n", + "`compute_metrics`, first replaces `-100` with the `pad_token_id`\n", + "in the `label_ids` (undoing the step we applied in the \n", + "data collator to ignore padded tokens correctly in the loss).\n", + "It then decodes the predicted and label ids to strings. Finally,\n", + "it computes the WER between the predictions and reference labels. \n", + "Here, we have the option of evaluating with the 'normalised' transcriptions \n", + "and predictions. We recommend you set this to `True` to benefit from the WER \n", + "improvement obtained by normalising the transcriptions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb", + "metadata": {}, + "outputs": [], + "source": [ + "# evaluate with the 'normalised' WER\n", + "do_normalize_eval = True\n", + "\n", + "def compute_metrics(pred):\n", + " pred_ids = pred.predictions\n", + " label_ids = pred.label_ids\n", + "\n", + " # replace -100 with the pad_token_id\n", + " label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n", + "\n", + " # we do not want to group tokens when computing the metrics\n", + " pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n", + " label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n", + "\n", + " if do_normalize_eval:\n", + " pred_str = [normalizer(pred) for pred in pred_str]\n", + " label_str = [normalizer(label) for label in label_str]\n", + " # filtering step to only evaluate the samples that correspond to non-zero references:\n", + " pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]\n", + " label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]\n", + "\n", + " wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n", + "\n", + " return {\"wer\": wer}" + ] + }, + { + "cell_type": "markdown", + "id": "daf2a825-6d9f-4a23-b145-c37c0039075b", + "metadata": {}, + "source": [ + "### Load a Pre-Trained Checkpoint" + ] + }, + { + "cell_type": "markdown", + "id": "437a97fa-4864-476b-8abc-f28b8166cfa5", + "metadata": {}, + "source": [ + "Now let's load the pre-trained Whisper `small` checkpoint. Again, this \n", + "is trivial through use of 🤗 Transformers!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import WhisperForConditionalGeneration\n", + "\n", + "model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")" + ] + }, + { + "cell_type": "markdown", + "id": "a15ead5f-2277-4a39-937b-585c2497b2df", + "metadata": {}, + "source": [ + "Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)). Set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62038ba3-88ed-4fce-84db-338f50dcd04f", + "metadata": {}, + "outputs": [], + "source": [ + "model.config.forced_decoder_ids = None\n", + "model.config.suppress_tokens = []\n", + "model.config.use_cache = False" + ] + }, + { + "cell_type": "markdown", + "id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06", + "metadata": {}, + "source": [ + "### Define the Training Configuration" + ] + }, + { + "cell_type": "markdown", + "id": "c21af1e9-0188-4134-ac82-defc7bdcc436", + "metadata": {}, + "source": [ + "In the final step, we define all the parameters related to training. Here, you can set the `max_steps` to train for longer. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import Seq2SeqTrainingArguments\n", + "\n", + "training_args = Seq2SeqTrainingArguments(\n", + " output_dir=\"./\",\n", + " per_device_train_batch_size=64,\n", + " gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n", + " learning_rate=1e-5,\n", + " warmup_steps=500,\n", + " max_steps=5000,\n", + " gradient_checkpointing=True,\n", + " fp16=True,\n", + " evaluation_strategy=\"steps\",\n", + " per_device_eval_batch_size=8,\n", + " predict_with_generate=True,\n", + " generation_max_length=225,\n", + " save_steps=1000,\n", + " eval_steps=1000,\n", + " logging_steps=25,\n", + " report_to=[\"tensorboard\"],\n", + " load_best_model_at_end=True,\n", + " metric_for_best_model=\"wer\",\n", + " greater_is_better=False,\n", + " push_to_hub=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b3a944d8-3112-4552-82a0-be25988b3857", + "metadata": {}, + "source": [ + "**Note**: if one does not want to upload the model checkpoints to the Hub, \n", + "set `push_to_hub=False`." + ] + }, + { + "cell_type": "markdown", + "id": "393c883e-3e50-492c-bd58-f51dbf15ee56", + "metadata": {}, + "source": [ + "We then define a custom [Callback](https://huggingface.co/docs/transformers/main_classes/callback) that is called by the 🤗 Trainer on the end of each epoch. The Callback reinitialises and reshuffles the streaming dataset at the beginning of each new epoch - this gives different shuffling across our subsets for every epoch." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import TrainerCallback\n", + "from transformers.trainer_pt_utils import IterableDatasetShard\n", + "from torch.utils.data import IterableDataset\n", + "\n", + "# trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch\n", + "class ShuffleCallback(TrainerCallback):\n", + " def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):\n", + " if isinstance(train_dataloader.dataset, IterableDatasetShard):\n", + " pass # set_epoch() is handled by the Trainer\n", + " elif isinstance(train_dataloader.dataset, IterableDataset):\n", + " train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)" + ] + }, + { + "cell_type": "markdown", + "id": "bac29114-d226-4f54-97cf-8718c9f94e1e", + "metadata": {}, + "source": [ + "We can forward the training arguments to the 🤗 Trainer along with our model,\n", + "dataset, data collator, `compute_metrics` function and custom callback:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d546d7fe-0543-479a-b708-2ebabec19493", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import Seq2SeqTrainer\n", + "\n", + "trainer = Seq2SeqTrainer(\n", + " args=training_args,\n", + " model=model,\n", + " train_dataset=vectorized_datasets[\"train\"],\n", + " eval_dataset=vectorized_datasets[\"test\"],\n", + " data_collator=data_collator,\n", + " compute_metrics=compute_metrics,\n", + " tokenizer=processor,\n", + " callbacks=[ShuffleCallback()],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "67ab88c3-7091-4e51-8ad5-f5cacbe18449", + "metadata": {}, + "source": [ + "We'll save the model and processor to the output directory before training:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672", + "metadata": {}, + "outputs": [], + "source": [ + "model.save_pretrained(training_args.output_dir)\n", + "processor.save_pretrained(training_args.output_dir)" + ] + }, + { + "cell_type": "markdown", + "id": "7f404cf9-4345-468c-8196-4bd101d9bd51", + "metadata": {}, + "source": [ + "### Training" + ] + }, + { + "cell_type": "markdown", + "id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112", + "metadata": {}, + "source": [ + "Training will take approximately 5-10 hours depending on your GPU. The peak GPU memory for the given training configuration is approximately 36GB. \n", + "Depending on your GPU, it is possible that you will encounter a CUDA `\"out-of-memory\"` error when you launch training. \n", + "In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 \n", + "and employ [`gradient_accumulation_steps`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps)\n", + "to compensate.\n", + "\n", + "To launch training, simply execute:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de", + "metadata": {}, + "outputs": [], + "source": [ + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "id": "747c6a6e", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "(note that training may take some time to commence as we load the first training data samples with streaming mode)" + ] + }, + { + "cell_type": "markdown", + "id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3", + "metadata": {}, + "source": [ + "We can label our checkpoint with the `whisper-event` tag on push by setting the appropriate key-word arguments (kwargs):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6dd0e310-9b07-4133-ac14-2ed2d7524e22", + "metadata": {}, + "outputs": [], + "source": [ + "kwargs = {\n", + " \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n", + " \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n", + " \"language\": \"es\",\n", + " \"model_name\": \"Whisper Small Es - Sanchit Gandhi\", # a 'pretty' name for your model\n", + " \"finetuned_from\": \"openai/whisper-small\",\n", + " \"tasks\": \"automatic-speech-recognition\",\n", + " \"tags\": \"whisper-event\",\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "090d676a-f944-4297-a938-a40eda0b2b68", + "metadata": {}, + "source": [ + "The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub` command:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95737cda-c5dd-4887-a4d0-dfcb0d61d977", + "metadata": {}, + "outputs": [], + "source": [ + "trainer.push_to_hub(**kwargs)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/whisper-fine-tuning-event/fine_tune_whisper_streaming_colab.ipynb b/whisper-fine-tuning-event/fine_tune_whisper_streaming_colab.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..35ea306d11f357a4fc96a5ba8966980a19745a31 --- /dev/null +++ b/whisper-fine-tuning-event/fine_tune_whisper_streaming_colab.ipynb @@ -0,0 +1,1189 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6eb59f41", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6", + "metadata": { + "id": "75b58048-7d14-4fc6-8085-1fc08c81b4a6" + }, + "source": [ + "# Fine-Tune Whisper With 🤗 Transformers and Streaming Mode" + ] + }, + { + "cell_type": "markdown", + "id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a", + "metadata": { + "id": "fbfa8ad5-4cdc-4512-9058-836cbbf65e1a" + }, + "source": [ + "In this Colab, we present a step-by-step guide on fine-tuning Whisper with Hugging Face 🤗 Transformers on 400 hours of speech data! Using streaming mode, we'll show how you can train a speech recongition model on any dataset, irrespective of size. With streaming mode, storage requirements are no longer a consideration: you can train a model on whatever dataset you want, even if it's download size exceeds your devices disk space. How can this be possible? It simply seems too good to be true! Well, rest assured it's not 😉 Carry on reading to find out more." + ] + }, + { + "cell_type": "markdown", + "id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e", + "metadata": { + "id": "afe0d503-ae4e-4aa7-9af4-dbcba52db41e" + }, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0", + "metadata": { + "id": "9ae91ed4-9c3e-4ade-938e-f4c2dcfbfdc0" + }, + "source": [ + "Speech recognition datasets are large. A typical speech dataset consists of approximately 100 hours of audio-transcription data, requiring upwards of 130GB of storage space for download and preparation. For most ASR researchers, this is already at the upper limit of what is feasible for disk space. So what happens when we want to train on a larger dataset? The full [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) dataset consists of 960 hours of audio data. Kensho's [SPGISpeech](https://huggingface.co/datasets/kensho/spgispeech) contains 5,000 hours of audio data. ML Commons [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) contains **30,000+** hours of audio data! Do we need to bite the bullet and buy additional storage? Or is there a way we can train on all of these datasets with no disk drive requirements?\n", + "\n", + "When training machine learning systems, we rarely use the entire dataset at once. We typically _batch_ our data into smaller subsets of data, and pass these incrementally through our training pipeline. This is because we train our system on an accelerator device, such as a GPU or TPU, which has a memory limit typically around 16GB. We have to fit our model, optimiser and training data all on the same accelerator device, so we usually have to divide the dataset up into smaller batches and move them from the CPU to the GPU when required.\n", + "\n", + "Consequently, we don't require the entire dataset to be downloaded at once; we simply need the batch of data that we pass to our model at any one go. We can leverage this principle of partial dataset loading when preparing our dataset: rather than downloading the entire dataset at the start, we can load each piece of data as and when we need it. For each batch, we load the relevant data from a remote server and pass it through the training pipeline. For the next batch, we load the next items and again pass them through the training pipeline. At no point do we have to save data to our disk drive, we simply load them in memory and use them in our pipeline. In doing so, we only ever need as much memory as each individual batch requires.\n", + "\n", + "This is analogous to downloading a TV show versus streaming it 📺 When we download a TV show, we download the entire video offline and save it to our disk. Compare this to when we stream a TV show. Here, we don't download any part of the video to memory, but iterate over the video file and load each part in real-time as required. It's this same principle that we can apply to our ML training pipeline! We want to iterate over the dataset and load each sample of data as required.\n", + "\n", + "While the principle of partial dataset loading sounds ideal, it also seems **pretty** difficult to do. Luckily for us, 🤗 Datasets allows us to do this with minimal code changes! We'll make use of the principle of [_streaming_](https://huggingface.co/docs/datasets/stream), depicted graphically in Figure 1. Streaming does exactly this: the data is loaded progressively as we iterate over the dataset, meaning it is only loaded as and when we need it. If you're familiar with 🤗 Transformers and Datasets, the content of this notebook will be very familiar, with some small extensions to support streaming mode." + ] + }, + { + "cell_type": "markdown", + "id": "1c87f76e-47be-4a5d-bc52-7b1c2e9d4f5a", + "metadata": { + "id": "1c87f76e-47be-4a5d-bc52-7b1c2e9d4f5a" + }, + "source": [ + "
\n", + "\"Trulli\"\n", + "
Figure 1: Streaming mode. The dataset is divided into smaller subsets, with subsets loaded progressively as we iterate over the dataset.
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "d44b85a2-3465-4cd5-bcca-8ddb302ab71b", + "metadata": { + "id": "d44b85a2-3465-4cd5-bcca-8ddb302ab71b", + "tags": [] + }, + "source": [ + "## Prepare Environment" + ] + }, + { + "cell_type": "markdown", + "id": "a47bbac5-b44b-41ac-a948-1b57cec2b6f1", + "metadata": { + "id": "a47bbac5-b44b-41ac-a948-1b57cec2b6f1" + }, + "source": [ + "First of all, let's try to secure a decent GPU for our Colab! Unfortunately, it's becoming much harder to get access to a good GPU with the free version of Google Colab. However, with Google Colab Pro / Pro+ one should have no issues in being allocated a V100 or P100 GPU.\n", + "\n", + "To get a GPU, click _Runtime_ -> _Change runtime type_, then change _Hardware accelerator_ from _None_ to _GPU_." + ] + }, + { + "cell_type": "markdown", + "id": "47686bd5-cbb1-4352-81cf-0fcf7bbd45c3", + "metadata": { + "id": "47686bd5-cbb1-4352-81cf-0fcf7bbd45c3" + }, + "source": [ + "We can verify that we've been assigned a GPU and view its specifications:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d74b38c5-a1fb-4214-b4f4-b5bf0869f169", + "metadata": { + "id": "d74b38c5-a1fb-4214-b4f4-b5bf0869f169", + "tags": [] + }, + "outputs": [], + "source": [ + "gpu_info = !nvidia-smi\n", + "gpu_info = '\\n'.join(gpu_info)\n", + "if gpu_info.find('failed') >= 0:\n", + " print('Not connected to a GPU')\n", + "else:\n", + " print(gpu_info)" + ] + }, + { + "cell_type": "markdown", + "id": "be67f92a-2f3b-4941-a1c0-5ed2de6e0a6a", + "metadata": { + "id": "be67f92a-2f3b-4941-a1c0-5ed2de6e0a6a", + "tags": [] + }, + "source": [ + "Next, we need to update the Unix package `ffmpeg` to version 4:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "15493a84-8b7c-4b35-9aeb-2b0a57a4e937", + "metadata": { + "id": "15493a84-8b7c-4b35-9aeb-2b0a57a4e937", + "tags": [] + }, + "outputs": [], + "source": [ + "!add-apt-repository -y ppa:jonathonf/ffmpeg-4\n", + "!apt update\n", + "!apt install -y ffmpeg" + ] + }, + { + "cell_type": "markdown", + "id": "ab471347-a547-4d14-9d11-f151dc9547a7", + "metadata": { + "id": "ab471347-a547-4d14-9d11-f151dc9547a7" + }, + "source": [ + "We'll employ several popular Python packages to fine-tune the Whisper model.\n", + "We'll use `datasets` to download and prepare our training data and \n", + "`transformers` to load and train our Whisper model. We'll also require\n", + "the `soundfile` package to pre-process audio files, `evaluate` and `jiwer` to\n", + "assess the performance of our model. Finally, we'll\n", + "use `gradio` to build a flashy demo of our fine-tuned model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4e106846-3620-46aa-989d-5e35e27c8057", + "metadata": { + "id": "4e106846-3620-46aa-989d-5e35e27c8057" + }, + "outputs": [], + "source": [ + "!pip install git+https://github.com/huggingface/datasets\n", + "!pip install git+https://github.com/huggingface/transformers\n", + "!pip install librosa\n", + "!pip install evaluate>=0.3.0\n", + "!pip install jiwer\n", + "!pip install gradio\n", + "!pip install more-itertools" + ] + }, + { + "cell_type": "markdown", + "id": "5b185650-af09-48c6-a67b-0e4368b74b3b", + "metadata": { + "id": "5b185650-af09-48c6-a67b-0e4368b74b3b", + "tags": [] + }, + "source": [ + "Linking the notebook to the Hugging Face Hub is straightforward - it simply requires entering your \n", + "Hub authentication token when prompted. Find your Hub authentication token [here](https://huggingface.co/settings/tokens):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dff27c76-575c-432b-8916-b1b810efef4a", + "metadata": { + "id": "dff27c76-575c-432b-8916-b1b810efef4a" + }, + "outputs": [], + "source": [ + "from huggingface_hub import notebook_login\n", + "\n", + "notebook_login()" + ] + }, + { + "cell_type": "markdown", + "id": "21b6316e-8a55-4549-a154-66d3da2ab74a", + "metadata": { + "id": "21b6316e-8a55-4549-a154-66d3da2ab74a" + }, + "source": [ + "This notebook provides a guide to fine-tuning on the task of _speech recognition_, which involves learning a\n", + "mapping from speech to text. Speech recognition is divided into two categories: English-only or multilingual (all other languages). \n", + "This notebook applies to both categories, with pointers for changing between languages and datasets.\n", + "\n", + "As for our model, we'll fine-tune the Whisper model released in [September 2022](https://openai.com/blog/whisper/) by the authors \n", + "Alec Radford et al. from OpenAI. Whisper is an encoder-decoder model pre-trained on 680k hours of labelled audio-transcription data. \n", + "It achieves strong performance on many speech recognition and speech translation datasets without fine-tuning. With fine-tuning, \n", + "we aim to improve upon these results further, with many SoTA results up for grabs! For a full explanation on the Whisper model, the \n", + "reader is advised to read the blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper#introduction).\n", + "\n", + "The Whisper checkpoints come in five configurations of varying model sizes.\n", + "The smallest four are trained on either English-only or multilingual data.\n", + "The largest checkpoint is multilingual only. All nine of the pre-trained checkpoints \n", + "are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The \n", + "checkpoints are summarised in the following table with links to the models on the Hub:\n", + "\n", + "| Size | Layers | Width | Heads | Parameters | English-only | Multilingual |\n", + "|--------|--------|-------|-------|------------|------------------------------------------------------|---------------------------------------------------|\n", + "| tiny | 4 | 384 | 6 | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny.) |\n", + "| base | 6 | 512 | 8 | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) |\n", + "| small | 12 | 768 | 12 | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) |\n", + "| medium | 24 | 1024 | 16 | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) |\n", + "| large | 32 | 1280 | 20 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) |\n", + "\n", + "When fine-tuning on an English dataset for speech recognition, it is recommeneded to select one of the English-only checkpoints. For any other language, it is recommended to select a multilingual checkpoint.\n", + "\n", + "For demonstration purposes, we'll fine-tune the multilingual version of the \n", + "[`\"small\"`](https://huggingface.co/openai/whisper-small) checkpoint with 244M params (~= 1GB). \n", + "As for our data, we'll train and evaluate our system on 400 hours of multilingual speech recognition data\n", + "taken from the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)\n", + "dataset. We'll show how we can train a model on 400 hours of training data using the default disk space \n", + "that comes with a standard GPU device or Google Colab." + ] + }, + { + "cell_type": "markdown", + "id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0", + "metadata": { + "id": "b219c9dd-39b6-4a95-b2a1-3f547a1e7bc0" + }, + "source": [ + "## Load Dataset with Streaming" + ] + }, + { + "cell_type": "markdown", + "id": "b17a4763-4381-4157-ae38-b04a8b5f1c43", + "metadata": { + "id": "b17a4763-4381-4157-ae38-b04a8b5f1c43" + }, + "source": [ + "This is where the magic happens! We'll first write a wrapper function around 🤗 Datasets `load_dataset` method. This function downloads the required splits using streaming mode by forcing `streaming=True` in the `load_dataset` method. Multiple splits can be combined (interleaved) by concatenating them with the \"+\" symbol when specifying the split name, e.g. `split=train+validation` will return a single split with the training and validation splits interleaved together. The function has the same arguments and key-word arguments as 🤗 Datasets `load_dataset` method, so we can use it in exactly the same way!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "065a8cf7-e54f-4ac3-900e-609c80714fca", + "metadata": { + "id": "065a8cf7-e54f-4ac3-900e-609c80714fca" + }, + "outputs": [], + "source": [ + "from datasets import interleave_datasets, load_dataset\n", + "\n", + "def load_streaming_dataset(dataset_name, dataset_config_name, split, **kwargs):\n", + " if \"+\" in split:\n", + " # load multiple splits separated by the `+` symbol *with* streaming mode\n", + " dataset_splits = [load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=True, **kwargs) for split_name in split.split(\"+\")]\n", + " # interleave multiple splits to form one dataset\n", + " interleaved_dataset = interleave_datasets(dataset_splits)\n", + " return interleaved_dataset\n", + " else:\n", + " # load a single split *with* streaming mode\n", + " dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=True, **kwargs)\n", + " return dataset" + ] + }, + { + "cell_type": "markdown", + "id": "674429c5-0ab4-4adf-975b-621bb69eca38", + "metadata": { + "id": "674429c5-0ab4-4adf-975b-621bb69eca38" + }, + "source": [ + "We'll train our system on the Spanish split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). We can see how much training data we have by viewing the [language page](https://commonvoice.mozilla.org/en/datasets) on the Common Voice website. The Spanish split has over 400 hours of labelled training data - that's enourmous! More than we could ever fit on a Google Colab or a standard workstation. But with streaming mode, we'll only download data as and when we need it, making training on this dataset possible!\n", + "\n", + "Since Spanish is relatively high-resource, we'll only use the `train` split for training and the `test` split for evaluation. If you're training on a low-resource language, such as the Hindi split of Common Voice 11, it's worth combining the `train` and `validation` splits to give a larger training set. You can achieve this by setting: `split=\"train+validation\"` for the training split.\n", + "\n", + "If you're using a gated dataset, like Common Voice 11, ensure you have accepted the terms of use on the Hugging Face Hub: [mozilla-foundation/common_voice_11_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). Once you have accepted the terms, you will have full access to the dataset and be able to load the data locally." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2787582-554f-44ce-9f38-4180a5ed6b44", + "metadata": { + "id": "a2787582-554f-44ce-9f38-4180a5ed6b44" + }, + "outputs": [], + "source": [ + "from datasets import IterableDatasetDict\n", + "\n", + "raw_datasets = IterableDatasetDict()\n", + "\n", + "raw_datasets[\"train\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"es\", split=\"train\", use_auth_token=True) # set split=\"train+validation\" for low-resource\n", + "raw_datasets[\"test\"] = load_streaming_dataset(\"mozilla-foundation/common_voice_11_0\", \"es\", split=\"test\", use_auth_token=True)" + ] + }, + { + "cell_type": "markdown", + "id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605", + "metadata": { + "id": "2d63b2d2-f68a-4d74-b7f1-5127f6d16605" + }, + "source": [ + "## Prepare Processor and Pre-Process Data" + ] + }, + { + "cell_type": "markdown", + "id": "601c3099-1026-439e-93e2-5635b3ba5a73", + "metadata": { + "id": "601c3099-1026-439e-93e2-5635b3ba5a73" + }, + "source": [ + "The ASR pipeline can be de-composed into three stages: \n", + "1) A feature extractor which pre-processes the raw audio-inputs\n", + "2) The model which performs the sequence-to-sequence mapping \n", + "3) A tokenizer which post-processes the model outputs to text format\n", + "\n", + "In 🤗 Transformers, the Whisper model has an associated feature extractor and tokenizer, \n", + "called [WhisperFeatureExtractor](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperFeatureExtractor)\n", + "and [WhisperTokenizer](https://huggingface.co/docs/transformers/main/model_doc/whisper#transformers.WhisperTokenizer) \n", + "respectively. To make our lives simple, these two objects are wrapped under a single class, called the [WhisperProcessor](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). We can call the WhisperProcessor to perform \n", + "both the audio pre-processing and the text token post-processing. In doing so, we only need to keep track of two objects during training: \n", + "the `processor` and the `model`.\n", + "\n", + "If using a multilingual checkpoint, you should set the `\"language\"` to your target text language. You should also set the task to `\"transcribe\"` for speech recogntition and `\"translate\"` for speech translation. These arguments modify the behaviour of the tokenizer - they should be set correctly to ensure the target labels are encoded properly. These arguments should be omitted for English-only fine-tuning." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6", + "metadata": { + "id": "77d9f0c5-8607-4642-a8ac-c3ab2e223ea6" + }, + "outputs": [], + "source": [ + "from transformers import WhisperProcessor\n", + "\n", + "processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\", language=\"Spanish\", task=\"transcribe\")" + ] + }, + { + "cell_type": "markdown", + "id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c", + "metadata": { + "id": "381acd09-0b0f-4d04-9eb3-f028ac0e5f2c" + }, + "source": [ + "### Pre-Process Data" + ] + }, + { + "cell_type": "markdown", + "id": "bf10cd3e-924e-44fc-8790-46e413de7b3d", + "metadata": { + "id": "bf10cd3e-924e-44fc-8790-46e413de7b3d" + }, + "source": [ + "Let's have a look at the dataset features. Pay particular attention to the `\"audio\"` column - this details the sampling rate of our audio inputs:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988", + "metadata": { + "id": "ab5a13b4-9bd4-4aa0-aef2-b3de9b762988" + }, + "outputs": [], + "source": [ + "raw_datasets[\"train\"].features" + ] + }, + { + "cell_type": "markdown", + "id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd", + "metadata": { + "id": "5a679f05-063d-41b3-9b58-4fc9c6ccf4fd" + }, + "source": [ + "Since our input audio is sampled at 48kHz, we need to _downsample_ it to\n", + "16kHz prior to passing it to the Whisper feature extractor, 16kHz being the sampling rate expected by the Whisper model. \n", + "\n", + "We'll set the audio inputs to the correct sampling rate using dataset's \n", + "[`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=cast_column#datasets.DatasetDict.cast_column)\n", + "method. This operation does not change the audio in-place, \n", + "but rather signals to `datasets` to resample audio samples _on the fly_ the \n", + "first time that they are loaded:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39", + "metadata": { + "id": "3ab6a724-3d1e-478b-a9e9-d2f85feb6c39" + }, + "outputs": [], + "source": [ + "from datasets import Audio\n", + "\n", + "raw_datasets = raw_datasets.cast_column(\"audio\", Audio(sampling_rate=16000))" + ] + }, + { + "cell_type": "markdown", + "id": "d3de7804-c296-4e08-a3bb-91c8a3d9d839", + "metadata": {}, + "source": [ + "We'll define our pre-processing strategy. We advise that you **do not** lower-case the transcriptions or remove punctuation unless mixing different datasets. This will enable you to fine-tune Whisper models that can predict punctuation and casing. Later, you will see how we can evaluate the predictions without punctuation or casing, so that the models benefit from the WER improvement obtained by normalising the transcriptions while still predicting fully formatted transcriptions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c535a26e-4e16-458a-aa5c-141125264451", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n", + "\n", + "do_lower_case = False\n", + "do_remove_punctuation = False\n", + "\n", + "normalizer = BasicTextNormalizer()" + ] + }, + { + "cell_type": "markdown", + "id": "28ed733a-7c0f-4166-8334-49d5353eb15b", + "metadata": {}, + "source": [ + "Now we can write a function to prepare our data ready for the model:\n", + "1. We load and resample the audio data by calling `batch[\"audio\"]`. As explained above, 🤗 Datasets performs any necessary resampling operations on the fly.\n", + "2. We use the feature extractor to compute the log-Mel spectrogram input features from our 1-dimensional audio array.\n", + "3. We perform any optional pre-processing (lower-case or remove punctuation).\n", + "4. We encode the transcriptions to label ids through the use of the tokenizer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c085911c-a10a-41ef-8874-306e0503e9bb", + "metadata": { + "id": "c085911c-a10a-41ef-8874-306e0503e9bb" + }, + "outputs": [], + "source": [ + "def prepare_dataset(batch):\n", + " # load and (possibly) resample audio datato 16kHz\n", + " audio = batch[\"audio\"]\n", + "\n", + " # compute log-Mel input features from input audio array \n", + " batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n", + " # compute input length of audio sample in seconds\n", + " batch[\"input_length\"] = len(audio[\"array\"]) / audio[\"sampling_rate\"]\n", + " \n", + " # optional pre-processing steps\n", + " transcription = batch[\"sentence\"]\n", + " if do_lower_case:\n", + " transcription = transcription.lower()\n", + " if do_remove_punctuation:\n", + " transcription = re.sub(punctuation_to_remove_regex, \" \", transcription).strip()\n", + " \n", + " # encode target text to label ids\n", + " batch[\"labels\"] = processor.tokenizer(transcription).input_ids\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13", + "metadata": { + "id": "70b319fb-2439-4ef6-a70d-a47bf41c4a13" + }, + "source": [ + "We can apply the data preparation function to all of our training examples using 🤗 Datasets' `.map` method. We'll remove all of the columns from the raw training data, leaving just the `input_features` and `labels` defined in the `prepare_dataset` function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684", + "metadata": { + "id": "a37a7cdb-9013-427f-8de9-6a8d0e9dc684" + }, + "outputs": [], + "source": [ + "vectorized_datasets = raw_datasets.map(prepare_dataset, remove_columns=list(next(iter(raw_datasets.values())).features)).with_format(\"torch\")" + ] + }, + { + "cell_type": "markdown", + "id": "3d59b37e-4950-47ec-9e3e-2cf2ec7fc750", + "metadata": { + "id": "3d59b37e-4950-47ec-9e3e-2cf2ec7fc750" + }, + "source": [ + "We can now define how we shuffle the data in the train split. The size of the subset we load is set by the variable `buffer_size`. You can increase or decrease this depending on your memory constraints. In this example, the `buffer_size` is set to 500, meaning 500 samples are loaded before shuffling across the subset. The larger we set this value, the closer to True offline shuffling. The `seed` is set for reproducibility:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c", + "metadata": { + "id": "1b145699-acfc-4b1d-93a2-a2ad3d62674c" + }, + "outputs": [], + "source": [ + "vectorized_datasets[\"train\"] = vectorized_datasets[\"train\"].shuffle(\n", + " buffer_size=500,\n", + " seed=0,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "666b9ef0-7909-4e1e-a419-87604d233e29", + "metadata": { + "id": "666b9ef0-7909-4e1e-a419-87604d233e29" + }, + "source": [ + "Finally, we filter any training data with audio samples longer than 30s. These samples would otherwise be truncated by the Whisper feature-extractor which could affect the stability of training. We define a function that returns `True` for samples that are less than 30s, and `False` for those that are longer:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "01cb25ef-4bb0-4325-9461-f59198acadf6", + "metadata": { + "id": "01cb25ef-4bb0-4325-9461-f59198acadf6" + }, + "outputs": [], + "source": [ + "max_input_length = 30.0\n", + "\n", + "def is_audio_in_length_range(length):\n", + " return length < max_input_length" + ] + }, + { + "cell_type": "markdown", + "id": "28e37ac3-b1c5-465b-8586-7cfd8d76b0f1", + "metadata": { + "id": "28e37ac3-b1c5-465b-8586-7cfd8d76b0f1" + }, + "source": [ + "We apply our filter function to all samples of our training dataset through 🤗 Datasets' `.filter` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "333f7f6e-6053-4d3b-8924-c733c79b82ac", + "metadata": { + "id": "333f7f6e-6053-4d3b-8924-c733c79b82ac" + }, + "outputs": [], + "source": [ + "vectorized_datasets[\"train\"] = vectorized_datasets[\"train\"].filter(\n", + " is_audio_in_length_range,\n", + " input_columns=[\"input_length\"],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "263a5a58-0239-4a25-b0df-c625fc9c5810", + "metadata": { + "id": "263a5a58-0239-4a25-b0df-c625fc9c5810" + }, + "source": [ + "## Training and Evaluation" + ] + }, + { + "cell_type": "markdown", + "id": "a693e768-c5a6-453f-89a1-b601dcf7daf7", + "metadata": { + "id": "a693e768-c5a6-453f-89a1-b601dcf7daf7" + }, + "source": [ + "Now that we've prepared our data, we're ready to dive into the training pipeline. \n", + "The [🤗 Trainer](https://huggingface.co/transformers/master/main_classes/trainer.html?highlight=trainer)\n", + "will do much of the heavy lifting for us. All we have to do is:\n", + "\n", + "- Define a data collator: the data collator takes our pre-processed data and prepares PyTorch tensors ready for the model.\n", + "\n", + "- Evaluation metrics: during evaluation, we want to evaluate the model using the [word error rate (WER)](https://huggingface.co/metrics/wer) metric. We need to define a `compute_metrics` function that handles this computation.\n", + "\n", + "- Load a pre-trained checkpoint: we need to load a pre-trained checkpoint and configure it correctly for training.\n", + "\n", + "- Define the training configuration: this will be used by the 🤗 Trainer to define the training schedule." + ] + }, + { + "cell_type": "markdown", + "id": "8d230e6d-624c-400a-bbf5-fa660881df25", + "metadata": { + "id": "8d230e6d-624c-400a-bbf5-fa660881df25" + }, + "source": [ + "### Define a Data Collator" + ] + }, + { + "cell_type": "markdown", + "id": "04def221-0637-4a69-b242-d3f0c1d0ee78", + "metadata": { + "id": "04def221-0637-4a69-b242-d3f0c1d0ee78" + }, + "source": [ + "The data collator for a sequence-to-sequence speech model is unique in the sense that it \n", + "treats the `input_features` and `labels` independently: the `input_features` must be \n", + "handled by the feature extractor and the `labels` by the tokenizer.\n", + "\n", + "The `input_features` are already padded to 30s and converted to a log-Mel spectrogram \n", + "of fixed dimension by action of the feature extractor, so all we have to do is convert the `input_features`\n", + "to batched PyTorch tensors. We do this using the feature extractor's `.pad` method with `return_tensors=pt`.\n", + "\n", + "The `labels` on the other hand are un-padded. We first pad the sequences\n", + "to the maximum length in the batch using the tokenizer's `.pad` method. The padding tokens \n", + "are then replaced by `-100` so that these tokens are **not** taken into account when \n", + "computing the loss. We then cut the BOS token from the start of the label sequence as we \n", + "append it later during training.\n", + "\n", + "We can leverage the `WhisperProcessor` we defined earlier to perform both the \n", + "feature extractor and the tokenizer operations:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8326221e-ec13-4731-bb4e-51e5fc1486c5", + "metadata": { + "id": "8326221e-ec13-4731-bb4e-51e5fc1486c5" + }, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "from dataclasses import dataclass\n", + "from typing import Any, Dict, List, Union\n", + "\n", + "@dataclass\n", + "class DataCollatorSpeechSeq2SeqWithPadding:\n", + " processor: Any\n", + "\n", + " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n", + " # split inputs and labels since they have to be of different lengths and need different padding methods\n", + " # first treat the audio inputs by simply returning torch tensors\n", + " input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n", + " batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n", + "\n", + " # get the tokenized label sequences\n", + " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n", + " # pad the labels to max length\n", + " labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n", + "\n", + " # replace padding with -100 to ignore loss correctly\n", + " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n", + "\n", + " # if bos token is appended in previous tokenization step,\n", + " # cut bos token here as it's append later anyways\n", + " if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n", + " labels = labels[:, 1:]\n", + "\n", + " batch[\"labels\"] = labels\n", + "\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86", + "metadata": { + "id": "3cae7dbf-8a50-456e-a3a8-7fd005390f86" + }, + "source": [ + "Let's initialise the data collator we've just defined:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fc834702-c0d3-4a96-b101-7b87be32bf42", + "metadata": { + "id": "fc834702-c0d3-4a96-b101-7b87be32bf42" + }, + "outputs": [], + "source": [ + "data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)" + ] + }, + { + "cell_type": "markdown", + "id": "d62bb2ab-750a-45e7-82e9-61d6f4805698", + "metadata": { + "id": "d62bb2ab-750a-45e7-82e9-61d6f4805698" + }, + "source": [ + "### Evaluation Metrics" + ] + }, + { + "cell_type": "markdown", + "id": "66fee1a7-a44c-461e-b047-c3917221572e", + "metadata": { + "id": "66fee1a7-a44c-461e-b047-c3917221572e" + }, + "source": [ + "We'll use the word error rate (WER) metric, the 'de-facto' metric for assessing \n", + "ASR systems. For more information, refer to the WER [docs](https://huggingface.co/metrics/wer). We'll load the WER metric from 🤗 Evaluate:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b22b4011-f31f-4b57-b684-c52332f92890", + "metadata": { + "id": "b22b4011-f31f-4b57-b684-c52332f92890" + }, + "outputs": [], + "source": [ + "import evaluate\n", + "\n", + "metric = evaluate.load(\"wer\")" + ] + }, + { + "cell_type": "markdown", + "id": "509f96d7-3f11-4f37-add9-f74a0c44f3fc", + "metadata": { + "id": "509f96d7-3f11-4f37-add9-f74a0c44f3fc" + }, + "source": [ + "We then simply have to define a function that takes our model \n", + "predictions and returns the WER metric. This function, called\n", + "`compute_metrics`, first replaces `-100` with the `pad_token_id`\n", + "in the `label_ids` (undoing the step we applied in the \n", + "data collator to ignore padded tokens correctly in the loss).\n", + "It then decodes the predicted and label ids to strings. Finally,\n", + "it computes the WER between the predictions and reference labels. \n", + "Here, we have the option of evaluating with the 'normalised' transcriptions \n", + "and predictions. We recommend you set this to `True` to benefit from the WER \n", + "improvement obtained by normalising the transcriptions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb", + "metadata": { + "id": "a11d1bfc-9e28-460f-a287-72d8f7bc1acb" + }, + "outputs": [], + "source": [ + "# evaluate with the 'normalised' WER\n", + "do_normalize_eval = True\n", + "\n", + "def compute_metrics(pred):\n", + " pred_ids = pred.predictions\n", + " label_ids = pred.label_ids\n", + "\n", + " # replace -100 with the pad_token_id\n", + " label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n", + "\n", + " # we do not want to group tokens when computing the metrics\n", + " pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n", + " label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n", + "\n", + " if do_normalize_eval:\n", + " pred_str = [normalizer(pred) for pred in pred_str]\n", + " label_str = [normalizer(label) for label in label_str]\n", + " # filtering step to only evaluate the samples that correspond to non-zero references:\n", + " pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]\n", + " label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]\n", + " \n", + " wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n", + " return {\"wer\":wer}" + ] + }, + { + "cell_type": "markdown", + "id": "daf2a825-6d9f-4a23-b145-c37c0039075b", + "metadata": { + "id": "daf2a825-6d9f-4a23-b145-c37c0039075b" + }, + "source": [ + "### Load a Pre-Trained Checkpoint" + ] + }, + { + "cell_type": "markdown", + "id": "437a97fa-4864-476b-8abc-f28b8166cfa5", + "metadata": { + "id": "437a97fa-4864-476b-8abc-f28b8166cfa5" + }, + "source": [ + "Now let's load the pre-trained Whisper `small` checkpoint. Again, this \n", + "is trivial through use of 🤗 Transformers!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f", + "metadata": { + "id": "5a10cc4b-07ec-4ebd-ac1d-7c601023594f" + }, + "outputs": [], + "source": [ + "from transformers import WhisperForConditionalGeneration\n", + "\n", + "model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")" + ] + }, + { + "cell_type": "markdown", + "id": "a15ead5f-2277-4a39-937b-585c2497b2df", + "metadata": { + "id": "a15ead5f-2277-4a39-937b-585c2497b2df" + }, + "source": [ + "Override generation arguments - no tokens are forced as decoder outputs (see [`forced_decoder_ids`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.forced_decoder_ids)), no tokens are suppressed during generation (see [`suppress_tokens`](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate.suppress_tokens)). Set `use_cache` to False since we're using gradient checkpointing, and the two are incompatible:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62038ba3-88ed-4fce-84db-338f50dcd04f", + "metadata": { + "id": "62038ba3-88ed-4fce-84db-338f50dcd04f" + }, + "outputs": [], + "source": [ + "model.config.forced_decoder_ids = None\n", + "model.config.suppress_tokens = []\n", + "model.config.use_cache = False" + ] + }, + { + "cell_type": "markdown", + "id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06", + "metadata": { + "id": "2178dea4-80ca-47b6-b6ea-ba1915c90c06" + }, + "source": [ + "### Define the Training Configuration" + ] + }, + { + "cell_type": "markdown", + "id": "c21af1e9-0188-4134-ac82-defc7bdcc436", + "metadata": { + "id": "c21af1e9-0188-4134-ac82-defc7bdcc436" + }, + "source": [ + "In the final step, we define all the parameters related to training. Here, you can set the `max_steps` to train for longer. For more detail on the training arguments, refer to the Seq2SeqTrainingArguments [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a", + "metadata": { + "id": "0ae3e9af-97b7-4aa0-ae85-20b23b5bcb3a" + }, + "outputs": [], + "source": [ + "from transformers import Seq2SeqTrainingArguments\n", + "\n", + "training_args = Seq2SeqTrainingArguments(\n", + " output_dir=\"./whisper-small-es\", # your repo name\n", + " per_device_train_batch_size=64,\n", + " gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size\n", + " learning_rate=1e-5,\n", + " warmup_steps=500,\n", + " max_steps=5000,\n", + " gradient_checkpointing=True,\n", + " fp16=True,\n", + " evaluation_strategy=\"steps\",\n", + " per_device_eval_batch_size=8,\n", + " predict_with_generate=True,\n", + " generation_max_length=225,\n", + " save_steps=1000,\n", + " eval_steps=1000,\n", + " logging_steps=25,\n", + " report_to=[\"tensorboard\"],\n", + " load_best_model_at_end=True,\n", + " metric_for_best_model=\"wer\",\n", + " greater_is_better=False,\n", + " push_to_hub=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "b3a944d8-3112-4552-82a0-be25988b3857", + "metadata": { + "id": "b3a944d8-3112-4552-82a0-be25988b3857" + }, + "source": [ + "**Note**: if one does not want to upload the model checkpoints to the Hub, \n", + "set `push_to_hub=False`." + ] + }, + { + "cell_type": "markdown", + "id": "393c883e-3e50-492c-bd58-f51dbf15ee56", + "metadata": { + "id": "393c883e-3e50-492c-bd58-f51dbf15ee56" + }, + "source": [ + "We then define a custom [Callback](https://huggingface.co/docs/transformers/main_classes/callback) that is called by the 🤗 Trainer on the end of each epoch. The Callback reinitialises and reshuffles the streaming dataset at the beginning of each new epoch - this gives different shuffling across our subsets for every epoch." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2", + "metadata": { + "id": "3ac16b62-b3c0-4c68-8f3d-9ecf471534b2" + }, + "outputs": [], + "source": [ + "from transformers import TrainerCallback\n", + "from transformers.trainer_pt_utils import IterableDatasetShard\n", + "from torch.utils.data import IterableDataset\n", + "\n", + "# trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch\n", + "class ShuffleCallback(TrainerCallback):\n", + " def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):\n", + " if isinstance(train_dataloader.dataset, IterableDatasetShard):\n", + " pass # set_epoch() is handled by the Trainer\n", + " elif isinstance(train_dataloader.dataset, IterableDataset):\n", + " train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)" + ] + }, + { + "cell_type": "markdown", + "id": "bac29114-d226-4f54-97cf-8718c9f94e1e", + "metadata": { + "id": "bac29114-d226-4f54-97cf-8718c9f94e1e" + }, + "source": [ + "We can forward the training arguments to the 🤗 Trainer along with our model,\n", + "dataset, data collator, `compute_metrics` function and custom callback:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d546d7fe-0543-479a-b708-2ebabec19493", + "metadata": { + "id": "d546d7fe-0543-479a-b708-2ebabec19493" + }, + "outputs": [], + "source": [ + "from transformers import Seq2SeqTrainer\n", + "\n", + "trainer = Seq2SeqTrainer(\n", + " args=training_args,\n", + " model=model,\n", + " train_dataset=vectorized_datasets[\"train\"],\n", + " eval_dataset=vectorized_datasets[\"test\"],\n", + " data_collator=data_collator,\n", + " compute_metrics=compute_metrics,\n", + " tokenizer=processor,\n", + " callbacks=[ShuffleCallback()],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "67ab88c3-7091-4e51-8ad5-f5cacbe18449", + "metadata": { + "id": "67ab88c3-7091-4e51-8ad5-f5cacbe18449" + }, + "source": [ + "We'll save the model and processor to the output directory before training:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672", + "metadata": { + "id": "a1ccb9ed-cbc8-4419-91c0-651e9424b672" + }, + "outputs": [], + "source": [ + "model.save_pretrained(training_args.output_dir)\n", + "processor.save_pretrained(training_args.output_dir)" + ] + }, + { + "cell_type": "markdown", + "id": "7f404cf9-4345-468c-8196-4bd101d9bd51", + "metadata": { + "id": "7f404cf9-4345-468c-8196-4bd101d9bd51" + }, + "source": [ + "### Training" + ] + }, + { + "cell_type": "markdown", + "id": "994fcdfa-6074-4c04-96c2-ed8781c9dbc4", + "metadata": { + "id": "994fcdfa-6074-4c04-96c2-ed8781c9dbc4" + }, + "source": [ + "Training will take approximately 5-10 hours depending on the GPU\n", + "allocated to this Google Colab. If using this Google Colab directly to \n", + "fine-tune a Whisper model, you should make sure that training isn't \n", + "interrupted due to inactivity. A simple workaround to prevent this is \n", + "to paste the following code into the console of this tab (_right mouse click_ \n", + "-> _inspect_ -> _Console tab_ -> _insert code_)." + ] + }, + { + "cell_type": "markdown", + "id": "ec886310-c18d-4a8d-9d6a-842a11b22d6a", + "metadata": { + "id": "ec886310-c18d-4a8d-9d6a-842a11b22d6a" + }, + "source": [ + "```javascript\n", + "function ConnectButton(){\n", + " console.log(\"Connect pushed\"); \n", + " document.querySelector(\"#top-toolbar > colab-connect-button\").shadowRoot.querySelector(\"#connect\").click() \n", + "}\n", + "setInterval(ConnectButton, 60000);\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112", + "metadata": { + "id": "5e8b8d56-5a70-4f68-bd2e-f0752d0bd112" + }, + "source": [ + "The peak GPU memory for the given training configuration is approximately 36GB. \n", + "Depending on your GPU, it is possible that you will encounter a CUDA `\"out-of-memory\"` error when you launch training. \n", + "In this case, you can reduce the `per_device_train_batch_size` incrementally by factors of 2 \n", + "and employ [`gradient_accumulation_steps`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments.gradient_accumulation_steps)\n", + "to compensate.\n", + "\n", + "To launch training, simply execute:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de", + "metadata": { + "id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de" + }, + "outputs": [], + "source": [ + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "id": "747c6a6e", + "metadata": { + "id": "747c6a6e", + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "(note that training may take some time to commence as we load the first training data samples with streaming mode)" + ] + }, + { + "cell_type": "markdown", + "id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3", + "metadata": { + "id": "810ced54-7187-4a06-b2fe-ba6dcca94dc3" + }, + "source": [ + "We can label our checkpoint with the `whisper-event` tag on push by setting the appropriate key-word arguments (kwargs):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6dd0e310-9b07-4133-ac14-2ed2d7524e22", + "metadata": { + "id": "6dd0e310-9b07-4133-ac14-2ed2d7524e22" + }, + "outputs": [], + "source": [ + "kwargs = {\n", + " \"dataset_tags\": \"mozilla-foundation/common_voice_11_0\",\n", + " \"dataset\": \"Common Voice 11.0\", # a 'pretty' name for the training dataset\n", + " \"language\": \"es\",\n", + " \"model_name\": \"Whisper Small Es - Sanchit Gandhi\", # a 'pretty' name for your model\n", + " \"finetuned_from\": \"openai/whisper-small\",\n", + " \"tasks\": \"automatic-speech-recognition\",\n", + " \"tags\": \"whisper-event\",\n", + "}" + ] + }, + { + "cell_type": "markdown", + "id": "090d676a-f944-4297-a938-a40eda0b2b68", + "metadata": { + "id": "090d676a-f944-4297-a938-a40eda0b2b68" + }, + "source": [ + "The training results can now be uploaded to the Hub. To do so, execute the `push_to_hub` command:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "95737cda-c5dd-4887-a4d0-dfcb0d61d977", + "metadata": { + "id": "95737cda-c5dd-4887-a4d0-dfcb0d61d977" + }, + "outputs": [], + "source": [ + "trainer.push_to_hub(**kwargs)" + ] + } + ], + "metadata": { + "colab": { + "include_colab_link": true, + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/whisper-fine-tuning-event/interleave_streaming_datasets.ipynb b/whisper-fine-tuning-event/interleave_streaming_datasets.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ff4f391f05bfd539ddcf2f26de29fa11198716b7 --- /dev/null +++ b/whisper-fine-tuning-event/interleave_streaming_datasets.ipynb @@ -0,0 +1,358 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "6a5c0357", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# Ensure datasets is installed from main. Uncomment the following line if you face issues running this script:\n", + "# !pip install git+https://github.com/huggingface/datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "794aaced", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "from datasets import Audio, interleave_datasets, IterableDataset, load_dataset\n", + "from typing import List, Optional" + ] + }, + { + "cell_type": "markdown", + "id": "f210ca9a-486b-46a2-a675-2526a9bd83f5", + "metadata": {}, + "source": [ + "### Define the dataset attributes" + ] + }, + { + "cell_type": "markdown", + "id": "fc07293f-3ba4-4e89-a4ca-8e39409a8373", + "metadata": {}, + "source": [ + "In this example, we'll show to combine the Common Voice 11, VoxPopuli, Mulitlingual LibriSpeech and FLEURS datasets for Spanish, giving a training corpus equal to the sum of the individual datasets. This is particularly beneficial in low-resource settings, where any one of the datasets alone might have insufficient data to train a model.\n", + "\n", + "We need to specify the dataset names on the Hub, the corresponding configs and finally the text column names for the transcriptions:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c53344f3-c315-430a-a2f3-57aea6bb0e17", + "metadata": {}, + "outputs": [], + "source": [ + "dataset_names = [\"mozilla-foundation/common_voice_11_0\", \"facebook/voxpopuli\", \"facebook/multilingual_librispeech\", \"google/fleurs\"]\n", + "dataset_config_names = [\"es\", \"es\", \"spanish\", \"es_419\"]\n", + "text_column_names = [\"sentence\", \"normalized_text\", \"text\", \"transcription\"]" + ] + }, + { + "cell_type": "markdown", + "id": "215541f6-ee1c-4104-b43c-fa3f7fce0494", + "metadata": {}, + "source": [ + "### Define the merging function" + ] + }, + { + "cell_type": "markdown", + "id": "b722a48b-c576-4a63-b2a2-3c264890a75f", + "metadata": {}, + "source": [ + "We define a function, `load_multiple_streaming_datasets`, that takes as argument a list of datasets, configs, splits (optional) and text column names (optional). It sets them to a specified sampling rate and interleaves them together, giving one merged dataset. This is all \n", + "done in _streaming mode_: as we iterate over the merged dataset we load samples one-by-one on the fly. No data is\n", + "saved to disk.\n", + "\n", + "We can also specify our strategy for interleaving datasets. The default strategy, `all_exhausted` is an oversampling \n", + "strategy. In this case, the dataset construction is stopped as soon as every samples in every dataset \n", + "has been added at least once. In practice, it means that if a dataset is exhausted, it will return to the \n", + "beginning of this dataset until the stop criterion has been reached. You can specify `stopping_strategy=first_exhausted` \n", + "for a subsampling strategy, i.e the dataset construction is stopped as soon one of the dataset runs out of samples. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "61eb4cb1-ee27-4270-a474-1bb33e1df65f", + "metadata": {}, + "outputs": [], + "source": [ + "def load_multiple_streaming_datasets(\n", + " dataset_names: List,\n", + " dataset_config_names: List,\n", + " splits: Optional[List] = None,\n", + " text_column_names: Optional[List] = None,\n", + " sampling_rate: Optional[int] = 16000,\n", + " stopping_strategy: Optional[str] = \"all_exhausted\",\n", + " **kwargs\n", + ") -> IterableDataset:\n", + "\n", + " if len(dataset_names) != len(dataset_config_names):\n", + " raise ValueError(\n", + " f\"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and\"\n", + " f\" {len(dataset_config_names)} configs.\"\n", + " )\n", + "\n", + " if splits is not None and len(splits) != len(dataset_names):\n", + " raise ValueError(\n", + " f\"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits.\"\n", + " )\n", + "\n", + " if text_column_names is not None and len(text_column_names) != len(dataset_names):\n", + " raise ValueError(\n", + " f\"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and\"\n", + " f\" {len(text_column_names)} text column names.\"\n", + " )\n", + "\n", + " splits = splits if splits is not None else [\"train\" for i in range(len(dataset_names))]\n", + " text_column_names = (\n", + " text_column_names if text_column_names is not None else [\"text\" for i in range(len(dataset_names))]\n", + " )\n", + "\n", + " all_datasets = []\n", + " # iterate over the datasets we want to interleave\n", + " for i, dataset_name in enumerate(dataset_names):\n", + " dataset = load_dataset(dataset_name, dataset_config_names[i], split=splits[i], streaming=True, **kwargs)\n", + " # resample to specified sampling rate\n", + " dataset = dataset.cast_column(\"audio\", Audio(sampling_rate))\n", + " #  normalise columns to [\"audio\", \"sentence\"]\n", + " if text_column_names[i] != \"sentence\":\n", + " dataset = dataset.rename_column(text_column_names[i], \"sentence\")\n", + " dataset = dataset.remove_columns(set(dataset.features.keys()) - set([\"audio\", \"sentence\"]))\n", + " all_datasets.append(dataset)\n", + "\n", + " interleaved_dataset = interleave_datasets(all_datasets, stopping_strategy=stopping_strategy)\n", + " return interleaved_dataset" + ] + }, + { + "cell_type": "markdown", + "id": "29bc228b-ce9b-4cee-9092-1223ddfa51ad", + "metadata": {}, + "source": [ + "Let's apply this function to load and merge our four datasets:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8ae90f83-4ecd-46a3-98be-bd75706e0d88", + "metadata": {}, + "outputs": [], + "source": [ + "ds = load_multiple_streaming_datasets(dataset_names, dataset_config_names=dataset_config_names, text_column_names=text_column_names, use_auth_token=True)" + ] + }, + { + "cell_type": "markdown", + "id": "6056a693-1fb0-45f4-ad43-be5f1812c1a5", + "metadata": {}, + "source": [ + "### Iterate over the dataset" + ] + }, + { + "cell_type": "markdown", + "id": "7ffe011f-f905-4027-ab67-5c9c3b2b5ac0", + "metadata": {}, + "source": [ + "We iterate over the dataset, loading and merging samples on the fly. Let's print the transcriptions for the first 10 samples of our merged dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "75b3355a-3c06-4d23-af43-2b93b1ad70b2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Reading metadata...: 230467it [00:41, 5545.80it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 ¿ Qué tal a tres de cinco ?\n", + "1 y desde luego esa razón no puede tener que ver con la explicación surrealista que hemos escuchado más de una vez de que se trata de una conspiración izquierdista.\n", + "2 para exclamar con voz de acción de gracias y para contar todas tus maravillas jehová la habitación de tu casa he amado y el lugar del tabernáculo de tu gloria no juntes con los pecadores mi alma ni con los hombres de sangres mi vida\n", + "3 el uso de internet y de la red informática mundial permite que los estudiantes tengan acceso a la información en todo momento\n", + "4 vamos , quiero decir , que no soy de citas especiales .\n", + "5 si bien esta lista no es perfecta sí que resulta necesario que las entidades financieras refuercen sus controles.\n", + "6 oye oh jehová mi voz con que á ti clamo y ten misericordia de mí respóndeme mi corazón ha dicho de ti buscad mi rostro tu rostro buscaré oh jehová\n", + "7 los deportes de nieve en descenso como el esquí y la tablanieve son disciplinas populares que consisten en deslizarse con esquís o una tabla fijada a los pies sobre un terreno nevado\n", + "8 fray Lope , en aquel momento , colmaba otro vaso igual :\n", + "9 señora presidenta la competitividad es importante pero no puede ser el único criterio.\n" + ] + } + ], + "source": [ + "for i, sample in enumerate(ds):\n", + " print(i, sample[\"sentence\"])\n", + " if i == 9:\n", + " break" + ] + }, + { + "cell_type": "markdown", + "id": "42d5ad08-b20e-4cba-a1a9-909fdbf030d4", + "metadata": {}, + "source": [ + "We can see that the transcriptions take several different formats. Those from Common Voice 11 are cased and punctuated. Those from VoxPopuli are punctuated only. Those from Multilingual LibriSpeech and FLEURS are neither cased not punctuated. We need to normalise the transcriptions to a uniform format before training our model. \n", + "\n", + "The following code cell is lifted from the Whisper training notebook: https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/fine-tune-whisper-streaming.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ed20e9cd-31c2-44cb-872b-333378a92fd1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/sanchitgandhi/venv/lib/python3.8/site-packages/jax/_src/lib/__init__.py:33: UserWarning: JAX on Mac ARM machines is experimental and minimally tested. Please see https://github.com/google/jax/issues/5501 in the event of problems.\n", + " warnings.warn(\"JAX on Mac ARM machines is experimental and minimally tested. \"\n" + ] + } + ], + "source": [ + "from transformers.models.whisper.english_normalizer import BasicTextNormalizer\n", + "\n", + "do_lower_case = True\n", + "do_remove_punctuation = True\n", + "\n", + "normalizer = BasicTextNormalizer()" + ] + }, + { + "cell_type": "markdown", + "id": "01d13029-c24f-4a51-aff2-9251a2ceb4ce", + "metadata": {}, + "source": [ + "Now we define a function to normalise our transcriptions:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "26e42417-4bd2-46f8-914e-3a6f9f3471ac", + "metadata": {}, + "outputs": [], + "source": [ + "def normalize_transcriptions(batch):\n", + " # optional pre-processing steps\n", + " transcription = batch[\"sentence\"]\n", + " if do_lower_case:\n", + " transcription = transcription.lower()\n", + " if do_remove_punctuation:\n", + " transcription = normalizer(transcription).strip()\n", + " batch[\"sentence\"] = transcription\n", + " return batch" + ] + }, + { + "cell_type": "markdown", + "id": "3b1c67fe-be4b-4ee5-9a1f-0d444f2b5c62", + "metadata": {}, + "source": [ + "Let's apply the data pre-processing steps to our dataset and view the first 10 samples again:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0babac71-9157-4d0f-a8a8-184547bdf501", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Reading metadata...: 230467it [00:32, 6984.59it/s] \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 qué tal a tres de cinco \n", + "1 y desde luego esa razón no puede tener que ver con la explicación surrealista que hemos escuchado más de una vez de que se trata de una conspiración izquierdista \n", + "2 para exclamar con voz de acción de gracias y para contar todas tus maravillas jehová la habitación de tu casa he amado y el lugar del tabernáculo de tu gloria no juntes con los pecadores mi alma ni con los hombres de sangres mi vida\n", + "3 el uso de internet y de la red informática mundial permite que los estudiantes tengan acceso a la información en todo momento\n", + "4 vamos quiero decir que no soy de citas especiales \n", + "5 si bien esta lista no es perfecta sí que resulta necesario que las entidades financieras refuercen sus controles \n", + "6 oye oh jehová mi voz con que á ti clamo y ten misericordia de mí respóndeme mi corazón ha dicho de ti buscad mi rostro tu rostro buscaré oh jehová\n", + "7 los deportes de nieve en descenso como el esquí y la tablanieve son disciplinas populares que consisten en deslizarse con esquís o una tabla fijada a los pies sobre un terreno nevado\n", + "8 fray lope en aquel momento colmaba otro vaso igual \n", + "9 señora presidenta la competitividad es importante pero no puede ser el único criterio \n" + ] + } + ], + "source": [ + "ds = ds.map(normalize_transcriptions)\n", + "\n", + "for i, sample in enumerate(ds):\n", + " print(i, sample[\"sentence\"])\n", + " if i == 9:\n", + " break" + ] + }, + { + "cell_type": "markdown", + "id": "d135627a-a7aa-458c-94b8-57ddeae74a72", + "metadata": {}, + "source": [ + "This time the transcriptions are in a consistent format. We can use this data to fine-tune our Whisper model. Note that since we've removed punctuation and casing, the Whisper model won't learn to predict these features." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/whisper-fine-tuning-event/merges.txt b/whisper-fine-tuning-event/merges.txt new file mode 100644 index 0000000000000000000000000000000000000000..6038932a2a1f09a66991b1c2adae0d14066fa29e --- /dev/null +++ b/whisper-fine-tuning-event/merges.txt @@ -0,0 +1,50001 @@ +#version: 0.2 +Ġ t +Ġ a +Ġt h +i n +e r +Ġ w +Ġ s +o u +Ġth e +r e +o n +a t +e n +Ġ c +i t +i s +Ġ b +n d +Ġ d +Ġ m +Ġ h +Ġ o +in g +e s +Ġ p +Ġt o +a n +Ġ f +o r +l l +Ġ I +Ġ l +Ġ y +a r +Ġ g +Ġy ou +e d +Ġa nd +Ġ in +Ġo f +a s +Ġ n +o m +i c +Ġth at +u s +e t +v e +a l +o w +l e +Ġ is +Ġ e +Ġ it +o t +' s +Ġb e +i on +Ġ T +Ġw h +Ġ A +en t +Ġ S +Ġ re +a y +Ġw e +Ġ on +er e +Ġh a +u t +a c +i d +i g +o s +k e +v er +i m +Ġ Ð +ĠT h +a m +a ll +Ġf or +e l +c h +r o +Ġth is +Ġs t +Ġ W +Ġ u +a d +ou t +i r +l d +c t +Ġ k +i f +Ġg o +. . +Ð ¾ +it h +l y +h t +q u +Ġ - +Ġd o +Ġ j +Ġha ve +Ġ B +Ġa n +Ġw ith +Ġa re +Ġ r +Ġd e +Ġs e +Ġs o +Ġ v +s t +i ll +u r +Ġl i +Ġ M +es t +o d +all y +' t +us t +Ġa s +Ġ C +c e +Ġm e +Ð ° +Ð µ +i l +Ġ H +Ġw as +t er +t h +Ġc an +an t +Ġc om +ou r +ig ht +Ġ Y +at ion +ĠA nd +o l +Ġs h +Ñ Ĥ +o p +s e +Ġn ot +ĠS o +Ġn e +u n +Ġa b +Ġli ke +Ġa t +Ġ D +i e +Ġh e +Ġc on +Ġc h +o re +Ġa l +Ġo r +Ġ qu +Ġ O +om e +r a +u l +Ġ N +p p +Ġyou r +ou ld +Ġ P +Ġf r +g e +er s +' re +Ð ¸ +Ġthe y +Ġwh at +us e +Ġa ll +ĠTh e +Ġ L +es s +e m +Ġk n +Ġj ust +ar t +Ġp ro +ver y +u m +Ġl o +Ġ ì +Ġm y +o k +Ġe x +a b +Ġth ere +Ġb ut +Ġkn ow +Ġs u +Ġ G +Ñ ģ +Ġ E +Ġm a +о Ð +Ġ en +Ġab out +ĠI t +is t +Ġw or +r i +in d +Ġon e +at e +a nd +in k +Ġl e +or t +' m +Ġ F +ic h +Ñ Ģ +id e +Ġg et +Ġ out +.. . +Ġw ill +ã ģ +i ve +Ð ½ +Ġfr om +a in +ĠW e +Ġu p +p e +re s +c a +Ġ R +Ġ if +Ġp l +Ġd on +ac k +Ġ 1 +Ġ " +Ġt r +Ġ us +ĠW h +it y +Ġ J +ĠY ou +Ġh ere +h er +Ġs ome +ou g +a k +ar d +Ġgo ing +Ġu n +m ent +Ġth ink +Ġp e +en d +Ġ ( +ca use +Ġt im +as t +à © +Ġ our +Ġw ant +am e +i es +Ġ ë +u d +in e +Ġre ally +Ġt e +Ġse e +c i +Ġb y +s o +u re +os e +Ġ [ +a re +Ġm ore +a h +on e +c k +op le +а Ð +Ġthe n +Ġth ing +Ġthe m +v en +ou nd +os t +on g +e ct +Ġr ight +a g +Ġin t +Ġpe ople +Ġwh en +ou s +p l +Ġtim e +Ġ im +Ġwh o +Ġ 2 +a p +Ġbe cause +h ing +Ġn o +ic e +Ġlo ok +Ġh as +Ġw ould +Ġh ow +ac t +Ġf e +n t +oug h +Ġp r +ĠB ut +Ġs ay +Ñ ĥ +Ġn ow +Ġm an +Ġ very +Ġwor k +i z +Ġ K +i v +it t +Ġa r +e p +Ġc l +Ġwh ich +Ġc o +an s +' ve +Ġs a +f f +' ll +Ġan y +Ġa ct +Ġy e +b er +ac h +a ge +p er +Ġal so +f er +Ġthe se +Ġa d +е Ð +th er +ac e +ic k +a ke +re at +i re +u e +Ġa g +Ġ U +u ch +ion s +r y +0 0 +n a +Ġd id +Ġqu e +Ġha d +Ġe very +ĠH e +Ġl a +Ġw ay +Ġs p +b le +ĠTh is +as s +Ġthe ir +it e +Ġne ed +Ġp art +Ġw ere +Ġb ack +i p +ow n +om et +b e +as e +Ġma ke +ir st +i a +en ce +an g +an k +Ġg ot +Ġp re +Ġcon t +Ġo ther +p t +ĠTh at +o g +Ġgo od +Ġint o +al k +Ġbe en +Ġa m +Ġo ver +u ally +Ġ â +ì Ŀ +Ġu nd +h e +w ay +Ġg r +Ñ Į +Ġd if +Ġp er +Ñ ı +ĠI n +Ġt w +on d +ar s +in t +or m +Ġl ot +Ġwh ere +Ġ à +Ġ V +Ġs omet +Ð » +en s +Ġg u +Ġa c +u g +Ñ ĭ +Ä ± +Ġf irst +re e +Ġh is +itt le +Ġim p +Ġm o +a v +Ġl ittle +ĠWh at +Ġm uch +Ġ z +Ġ ê +ab le +ĠÐ ¿ +Ġp o +Ġcom p +n e +Ġd is +Ġl et +an ce +Ġh er +Ġthing s +Ġst art +ul t +Ġa pp +Ġre s +Ġf o +Ġc ould +Ġin ter +Ġth ose +Ġd es +Ġwe ll +Ġtw o +Ġk ind +x t +res s +el y +à ¤ +Ġb r +Ġth r +ĠÐ ² +Ġ i +is h +Ġdif fer +Ġ ro +ĠS t +Ġsomet hing +Ġt ake +Ġb o +y s +Ġsh e +Ġt alk +l o +Ñ ĩ +Ġe ven +Ð º +ã Ģ +ĠÐ ½ +Ġb u +ĠI f +Ġd own +ĠC h +ad e +ation s +Ġ use +or d +Ġof f +Ġact ually +Ġs pe +d u +at ed +at er +os s +n ing +à ¼ +Ġdo es +Ġ Ñģ +Ġne w +Ġb et +ve l +c ess +p le +Ġha pp +t ing +on na +Ġ es +Ġd ay +Ġon ly +ig n +k ay +s el +ent s +ou nt +i ld +i le +Ġs c +Ġh im +Ġag ain +v ing +Ġg onna +Ġcom m +Ġh el +ot her +Ġ ke +ic al +Ġ 3 +Ġe l +Ġthr ough +Ġcom e +ar k +d ay +i er +à ³ +Ġth an +ĠThe y +Ġm ay +Ġs er +í ķ +Ġc all +Ġdiffer ent +Ġsh ould +ĠTh ere +ar y +ĠN ow +ã Ĥ +th ing +w e +or y +f ter +Ġp ut +or s +i al +ë ĭ +Ġund er +Ġin c +ĠY e +u b +f orm +Ġv ide +à ¸ +ver s +Ġfe el +à ¡ +od y +f t +f ore +Ġe m +g et +Ġsa id +it ion +Ġre c +i ous +at ch +Ġtr y +Ġhel p +Ġsh ow +Ð ´ +Ġb it +u ll +Ð ² +ÑĤ о +g r +Ġpl ay +if e +a il +ĠYe ah +Ġqu est +Ġman y +Ġp ers +Ġg reat +Ã Ń +Ġ est +n g +Ġâ Ļ +t y +l a +ĠO h +Ġ × +à ® +ĠB e +ad y +Ġm ost +ct ion +ĠN o +Ġdo ing +Ġbe ing +Ġto o +c es +Ġb l +. " +Ġre m +is s +on s +> > +r u +w n +on t +i b +e ll +Ġs m +ot h +u al +Ġ >> +Ġp h +l es +o c +f ul +Ġse c +is e +Ġad d +ig h +er t +Ġs ame +â Ģ +Ġme an +Ġf ind +e k +Ġen d +- - +Ð ¼ +Ġst ill +a z +Ġ ' +Ġm in +Ġye ars +ur n +Ġar ound +sel f +Ġw r +b s +oug ht +ĠâĻ ª +Ġf l +an ge +Ġa fter +Ġpo int +m er +v ed +Ġl ong +o y +ä ¸ +Ġc r +way s +Ġs y +Ġt ra +Ġ2 0 +a ve +Ġch e +Ġ ent +Ġbe fore +p h +Ġat t +i an +i ly +Ġpers on +Ġb ig +Ġs ch +Ġre al +Ġne xt +Ġlo ve +Ġvide o +ĠL et +Ġf in +Ġma k +i ble +Ġto day +er m +ĠA l +ow er +an n +i x +Ġp ar +Ġst ud +à ¶ +Ġimp ort +t e +Ġg ive +v es +Ġd ie +Ġde c +Ġte ll +ĠÐ º +Ñģ ÑĤ +Ġwh y +ic ally +ic t +re d +Ġb as +Ġsu re +Ġbe l +at ing +Ġt ak +Ġs et +Ġl ife +Ġdid n +Ø § +o b +u nd +at h +Ġo p +ĠÐ ¾ +a it +Ġwor ld +Ġsu pp +i o +Ġc our +ĠÐ ¸ +w ard +е н +Ġal ways +u p +Ġha nd +ĠH ow +ci al +Ġcon s +Ġ Ñ +Ġin d +Ġ 4 +ĠA s +Ġf un +j ect +Ġimport ant +Ġs ur +e w +at es +Ġ 5 +Ġd i +Ġm ade +Ġin s +Ġas k +Ġ et +Ġn um +Ġc ar +ĠO kay +Ġs im +i k +Ġl ast +ĠG o +Ġm us +Ġre l +ul ar +´ ì +ĠWe ll +pe ct +ĠTh ank +Ġth ree +à £ +ã ĥ +Ġin v +Ġg en +l ic +Ġhapp en +ë Ĭ +i en +e ver +оР² +Ġst r +ĠA ll +Ġin st +Ġâ Ģ +Ġde f +Ġs l +Ġm ight +un g +Ġye ar +Ġo wn +Ġke ep +b ody +d er +Ġ ÑĤ +ĠÐ ´ +Ġan other +Ġm od +Ġe v +Ġgu ys +Ġab le +ã o +qu e +id ent +ĠY es +Ġit s +Ġpl ace +Ġpro du +ar n +ĠÐ ¼ +Ġre p +Ġex per +Ġf am +it ies +if ic +Ġh igh +i ed +o ol +ie w +е ÑĤ +re n +Ġdon e +Ġ ... +ëĬ Ķ +st em +ĠS e +Ġbet ter +c ome +Ġd el +Ġt y +Ġu m +Ġh o +ĠA n +Ġm on +ing s +Ġs k +Ġo b +c om +ble m +op e +st and +' d +ment s +Ġe le +ĠI s +Ġd a +Ġre g +le ase +i ke +al s +iz e +ê ° +Ġc are +Ġne ver +ìĿ ´ +es e +Ġm et +ol og +ĠWh en +u ck +е ÑĢ +Ġ é +Ġd at +à § +Ġex am +il ity +Ġd et +c ri +Ġus ed +ĠD o +Ġtr ans +e g +t en +Ñ İ +c us +Ġsec ond +Ġb est +Ġh ard +Ġ ide +Ġpro blem +ê ³ +ĠU n +Ñ ħ +Ġ Î +Ġw atch +ĠS h +at ter +Ġpre t +Ġd er +Ġcour se +Å Ł +at ive +ic s +Ġquest ion +ut e +ì Ĺ +ĠF or +at her +Ġc ol +i end +Ġ í +Ġ Z +Ġdoes n +ar ch +Ġinter est +Ġp ol +Ġc or +i ence +Ġp res +Ġe ach +Ġsy stem +Ġf act +i el +ab ly +Ġ er +Ġr un +Ġì Ŀ +Ġto p +n er +Ġth ought +Ġe as +i ent +Ġc re +Ñ Ī +Ġcomm un +y e +re ady +ll ow +Ġevery thing +om m +Ġm ed +ļ Ķ +Ġc ount +it s +Ġcom pl +h ip +Ù Ħ +o ok +Ġto get +Ġtoget her +am p +Ġg ame +Ġal ready +аР» +Ġcall ed +al e +Å Ĥ +ĠM y +Ġunder stand +Ġd r +Ġm om +it ed +оР» +Ġus ing +z y +Ġnum ber +ãĢ ģ +c ed +Ġc le +н о +ëĭ ¤ +in ce +Ġlook ing +Ġpret ty +Ġpro b +ĠS he +Ġ ve +Ġget ting +Ġwe ek +Ġe ff +u ff +a ir +u es +er n +Ġ Q +ou p +ent ion +Ġs ide +оР¼ +Ġfor m +Ġb us +Ġas s +Ġ ed +as on +we en +âĢ ¦ +Ġt urn +Ġc ur +Ġco ll +Ġd ire +ĠG od +Ġ1 0 +Ġe qu +ĠÐ ± +Ġop en +Ġsu ch +ir d +аРº +Ġe ar +Ä Ļ +g an +Ġpart ic +Ġfr iend +Ġex p +Ġex t +Ġh ome +Ġw ater +ĠO n +ÑĤ ÑĮ +or k +Ġп ÑĢ +Ġmo ve +n ess +en se +h o +Ġch ar +c o +in s +Ġb oth +Ġ1 9 +Ġg ra +Ġbet ween +á » +Ġì ķ +as h +ĠR e +a i +al th +u res +em ber +Ġa v +Ġ ver +à ª +one y +Ġth ank +Ġmay be +u c +im e +ê³ ł +Ġa way +Ġn ame +ou se +Ġac c +Ġmus ic +Ġch ange +Ġp ass +g er +Ġbu ild +Ġv al +in ess +an y +Ġfe w +´ ë +t a +Ġl ist +à ¥ +Ġo ld +Ġì ŀ +Ġs ort +Ġme m +Ġc a +ce pt +Ġgen er +Ġye ah +Ġwh ile +Ġany thing +r ic +gr am +Ġe in +c y +ur ing +ĠD e +Ġp ower +Ġcom ing +Ġwor d +Ġ- - +Ġbel ie +Ġf ound +t o +Ð ¿ +Ġme ans +Ġin form +Ġ Ø +Ġ Ñĩ +Ġsm all +00 0 +Ġc ame +Ġ íķ +w h +Ġwork ing +Ġexam ple +Ġp os +Ġde p +ê ² +ä º +ot e +Ġde m +ì § +t s +Ġv ar +a ut +Ġt ri +ch n +Ġhe ad +Ġwho le +× Ļ +z e +Ġtry ing +Ġt em +Ġc ou +et s +Ġ 6 +Ġf il +vel op +Ġc ase +à ¯ +Ġprob ably +Ġo kay +Ġpl an +Ġs it +Ġsch ool +ĠTh en +¸ ë +m e +Ġpro cess +Ġf ar +Ġre ad +Ġp oss +Ġb re +Ġso l +ic ht +Ġsupp ort +ĠT o +ert ain +Ġstart ed +Ġc ap +Ġle ft +Ġdat a +Ġtim es +еР» +Ġwant ed +а н +Ġtalk ing +Ġis t +Ġha ving +um p +Ġcont in +Ġsu b +ĠÐ · +p r +ëĭ Ī +in a +Å ¼ +Ġc reat +od e +× ķ +æ ĺ +! ! +Ġt erm +is m +оР´ +ĠBe cause +Ġw ent +id er +Ġpro v +Ġch ild +Ġd en +Ġl ight +b r +³ о +o h +Ġbo ok +Ġ Ù +ut ion +ĠJ ust +en e +Ġf our +Ġv is +ê° Ģ +Ġh ope +Ġmak ing +ĠL e +ì ķ +Ġo pp +a u +Ġm oney +Ġpro gram +à ¨ +Ġst and +I N +Ġs ign +Ġle arn +à ł +ĠD on +Ġte am +Ġн а +l ud +Ġre st +ic es +æ ľ +Ġ ÑĢ +Ġa ut +Ġle ad +ation al +d e +g y +Ġn ice +Ġd as +Ġd ist +Ġh um +ĠO ne +æ Ī +Ġcom es +Ġj o +Ġc ent +Ġex pl +Ġm ark +re en +l ed +g in +ì ļĶ +Ġle vel +Ġcon f +us h +Ġde velop +Ġt est +en g +v ious +at ure +еР¼ +re t +Ġj e +Ġst uff +Ġcl ass +ow s +Ġê · +Ġs i +Ġl es +ro p +ç ļ +Ġp or +Ġw ar +ìĹ IJ +Ġevery one +Ġg e +Ġche ck +ot t +Ġs ing +Ġar t +Ġfo llow +Ġ20 1 +ĠF r +a is +ì ĸ +Î ± +å ° +Ġà ł +im es +Ġre t +Ġch ang +Ġp ub +Ġin f +Ġte chn +ad a +iv es +Ġbe h +æĺ ¯ +Ġlook s +ãĢ Ĥ +Ð · +ĠWh y +çļ Ħ +Ġen ough +Ġb ra +it ch +ä » +Ġad v +Ð ± +Ġwith out +w er +mer ic +d en +Ġcompl et +Ġide a +ter s +o ck +Ġdef in +Ġe ver +Ġg l +Ġon ce +Ġbr ing +Ġsay ing +Ġan s +Ġhe ar +n ect +Ġl ess +g o +re am +ad o +ì ŀ +Ġm ind +ent e +Ġf ull +Ġb ad +Ġw om +Ġsome one +Ġd u +Ġw on +Ġcont ro +ort un +Ġhe alth +Ġch o +ĠA r +Ġcon c +Ġinform ation +Ġst op +at t +at ely +ä ½ +Ġgr oup +Ġ Ñĥ +Ġqu ite +Ġres p +E R +ug ht +ê ¸ +m an +iz ed +ĠB r +Ġrem ember +Ġfam ily +Ġbus iness +a w +Ġspe c +Ġa u +ĠO r +Ä ħ +Ġse en +Ġl ar +Ġ 7 +g g +b ers +Ġd ra +Ġmon th +Ġsay s +Ġis s +Ġli ve +Ġl ine +Ġmom ent +Ġex c +el s +Ġs ound +Ġco ol +Ġlo c +Ġc ertain +Ġd ri +о ÑĤ +am es +Ġm ust +n y +и ÑĤ +Ġk id +Ġinc lud +ìĿ Ħ +at or +Ä Ł +h a +are d +Ġse em +Ð ¹ +ì Ħ +Ġel se +Ġì ł +ir l +Ġ 8 +Ġv o +Ġquest ions +in es +e e +æĪ ij +ü r +ĠA meric +Ġst ory +Ġser v +ver n +ag es +l and +ĠâĢ ĵ +er a +ĠC an +Ġp op +et her +Ġn a +Ġor der +Ġmak es +Ġs ince +c on +ct or +Ġth ough +Ġprodu ct +л и +Ġle g +Ġme et +al f +Ñģ Ñı +un ch +it er +o ve +×ķ × +i et +аР¼ +it al +Ġsu per +l ing +Ġp ay +Ġpar a +Ġj ob +ĠH ere +Ġs w +k s +pt ion +m a +Ġbelie ve +¬ ë +Ġw ait +оР¹ +Ġun t +Ġqu ick +h r +ĠÑ į +ĠP ro +Ġm en +à ¹ +Ġday s +Ġgo es +Ġspe ak +ĠA t +em ent +Ġm iss +Ġa w +Ġdes ign +Ġpro ject +о ÑĢ +i j +ant s +at s +ĠCh r +Ġ 9 +Ġc ut +Ġre qu +Ġн е +ĠN ot +as ter +Ġm ill +Ġpartic ular +Ġp ie +Ġstud ents +Ġf ive +ou n +ĠN e +Ġg i +Ġp as +Ġf ree +ĠS p +l ich +Ġpro f +Ġen g +Ġpr ot +ĠL ike +os ed +Ġcon nect +a pp +Ġë § +it ing +Ġb lo +Ġl os +ist s +Ġexper ience +re nt +Ġst ay +Ġfo od +t on +ru ct +Ġh ist +v iew +in ing +m ost +i vers +b o +ãģ Ħ +ĠT r +g en +Ġp lease +Ġcommun ity +Ġc e +A N +n o +Ġb ody +Ġh our +Ġ vers +á º +c er +Ġê ° +Ġre ason +ĠR ight +Ġl ater +Ï Ħ +Ġh ouse +Ġ X +оР½ +Ġst ate +f ic +å ¤ +Å Ľ +iel d +Ġp ri +Ġp ast +Ġw alk +olog y +er ing +an na +Ġt er +Ġho ld +Ġor gan +b en +Î ¿ +ó n +Ġeff ect +Ġyour self +Ġpl us +a j +and o +ur al +Ġro om +le ct +ê² Į +? " +s ide +Ġbe come +Ñ Ĩ +Ġ  +o od +Ġcon st +Ġn ight +ut es +Ð ¶ +Ġbre ak +Ġp ain +Ġst ep +ire d +Ġnot hing +Ġunt il +Ñ ĸ +аР² +Ù Ĭ +Ġd uring +ì§ Ģ +l ess +o ll +н Ñĭ +Î ¹ +f ect +i ver +ı Ħ +ith er +y ing +Ġbe gin +×Ļ × +iv id +Ġà § +Ġs al +Ġt a +Ġp ot +Ġ $ +Ġm ar +Ġcle ar +Ġf ace +Ġgr ow +Ġ * +Ġins ide +Ġfriend s +Ġle ave +en n +Ġeas y +Ġare a +al ity +ou d +Ġe at +Ù Ĩ +Ġp ur +or n +Ġsa w +Ġans wer +Ġfr ont +Ġbe aut +¼ ë +Ġm atter +Ġs on +ĠN ew +Ġres ult +id es +ch e +Ġf ut +p s +Ġfo cus +Ġinterest ing +å ¥ +Ġa p +" . +Ġcre ate +о Ñģ +Ġp ress +r oss +Ġp ick +l ine +Ġto ok +ĠM ay +r ow +Ġ ich +ĺ ë +Ġre f +Ġm or +r act +are nt +A R +Ġex act +Ġsp ace +w ork +н и +Ġb ir +Ġde v +Ð ³ +Ġto ld +Ġpub lic +ci ally +Ġv iew +ĠHe y +m ed +ll o +c c +Ġf ac +Ġcou ple +Ġhe art +l er +Ġre ady +Ġal most +ar ing +Ġh alf +ĠM e +av or +i que +Ġchar ac +Ġpr act +O N +an e +Ġ il +н а +Ġv i +l ish +he ad +Ġle ast +Ġbas ically +as ed +r ight +Ġy et +Ġtak ing +Ġcount ry +Ġw in +Ġis n +Ġposs ible +Ġc am +Ġinc re +Ġp at +Ġw anna +Ġcons ider +Ġab s +Ġwith in +Ġhum an +Ġthink ing +Ġo h +¡ ľ +Ġqu i +as es +Ġ 0 +it ely +ä¸ į +Ġk ill +Ġm il +Ġinv est +is ter +Ġsu c +ion al +el f +Ġwh ether +Ġcontro l +Ġagain st +ot s +ëĭĪ ëĭ¤ +i or +Ġpres ent +Ġ ا +Ġwatch ing +u be +er v +Ġn icht +Ġgo vern +ĠTh ese +Ġ : +u it +ug h +Ġwork s +o o +Ġw ir +Ġa ir +ĠT e +аР· +is ion +wh ere +Ġto t +j oy +ì ĭ +Ġv ol +ĠÐ µ +Ġcl ose +ĠA d +Ñ ī +in ed +Ġun a +Ġê· ¸ë +° ë +or ry +Ġb ro +Ġfil m +if t +2 0 +Ġty pe +Ġhappen ed +ĠA m +Ġg irl +ĠA re +ward s +Ġp our +Ġcol or +el t +а Ñģ +Ġs ense +le x +ĠW ith +us s +ri b +Ġre se +Ġn orm +Ġfut ure +Ġde al +end ing +e y +Ġ x +er o +ĠC l +u k +Ġwhat ever +sel ves +Ġyou ng +ì Ĭ +ĠM ar +ĠChr ist +Ġgu ess +Ġper form +Ġen er +r on +Ġh it +Ġw ond +Ġdire ct +ĠE very +Ġof ten +Ġf a +Ġal ong +Ġcl ick +ĠL ook +Ġsit u +Ġhapp y +e ad +Ġag o +Ġen c +Ġmy self +Ġco ver +оР± +Ġm id +Ġc ost +Ġt en +ĠS ch +Ġex pect +Ġwas n +Ġstr ong +if ul +Ġopp ortun +in al +y le +Ġsh are +Ġtr ue +Ġapp ro +Ġch all +Ġmin utes +Ġch ann +Ġë Ĥ +Î µ +l i +Ġm ess +or ies +pe cially +Ġwr ong +Ġy es +Ġì Ĺ +ir on +Ġall ow +Ġsu bs +Ġf ore +Ġf ight +Ġso cial +Ġc ra +an a +Ġa ff +Ġ ess +Ġway s +Ġsh ort +Ġf all +Ġla w +ĠWh o +Ġen joy +Ġc al +Ġac cess +f e +Ġn on +Ġac ross +er y +vious ly +ĠE x +id ed +Ġl ink +ĠP r +Ġterm s +ac es +Ġl and +az ing +Ġ1 5 +Ġm ult +Ġspe cial +å Ģ +iv ing +ìĿ Ģ +Ġty p +Ġst e +Ġ Ä +Ġfor ward +å ı +Ġf re +å¥ ½ +Ġrese arch +௠į +а ÑĤ +Ġma in +Ġrec ord +Ġh u +Ġdefin itely +Ġe ither +Ġlist en +Ġke y +Ġmark et +ĠÑĩ ÑĤо +iz ation +Ġvide os +Ġgu y +Ġf ig +Ġst ra +ĠP l +ull y +am os +Ġm ention +Ġs ong +Ġinter n +r al +ur s +Ġh on +Ġval ue +Ġb ar +c le +оР¶ +Ä ĩ +ľ ë +Ġz u +и м +ä½ ł +Ġsing le +Ġa uch +cus s +Ġget s +Ġsomet imes +å ¾ +am b +m m +c ing +Ġper fect +ĠB l +out h +ì ł +Ġs ci +p ar +Ġre d +Ġp ost +Ġm ot +Ġele ct +ĠE u +it ive +ĠS ome +Ġdes cri +Ġcur rent +é s +Ġt re +ĠE n +Ġm it +E N +Ī ë +i um +Ġhe ard +Ġsim ple +l ar +Ġevery body +il ar +Ġneed s +Ġdif fic +ĠGo od +um ent +c ent +Ġo per +а ÑĤÑĮ +et y +Ġbl ack +Ġgi ven +on es +Ġwe l +é Ģ +Ġìķ Ħ +Ġ3 0 +A T +Ġst at +ou ch +ĠM r +а ÑĢ +Ġsh o +Ġcon d +× Ķ +m y +Ġchild ren +Ġe u +еР´ +ìķ Ħ +ter n +Ġu h +Ġh ar +Ġpr om +Ġp ull +re w +Ġcomp any +Ġbeaut iful +ust om +íķ ĺ +к и +Ġst re +Ġam azing +ri es +Ġsuc cess +Ġm ach +n ot +Ġdis cuss +Ġn at +¦ ¬ +Ġun e +Ġdiffic ult +Ġr is +Î ½ +Ġc amp +Ġbu y +ä¸ Ģ +Ġma g +p o +ĠY our +Ġbeh ind +ic a +ı n +ĠO K +Ġl ang +Ġwom en +Ġen v +Ġre ce +Ġchann el +i ally +u le +Ġ1 2 +th ers +Ġb ott +Ġrep ort +ent ly +f ully +T he +Ġs ent +Ġev ent +Ġener gy +l t +Ġword s +ar r +d le +Ġa head +ard s +Ø ± +äº Ĩ +Ġto ol +con om +е Ñģ +Ġexact ly +Ġf avor +Ġl ow +Ġpro per +Ġìŀ Ī +Ġ ! +Ġrel ations +Ġm as +Ġkid s +Ġent ire +ud e +Ù ħ +ĠWh ere +Ġon es +Ġc ity +ol ut +Ġs ix +ab ility +ö r +il i +ĠE s +Ġhapp ens +ain s +Ġmod el +Ġp ict +Ġes pecially +Ġ1 00 +k t +Ġso on +b y +ro du +Ġan n +Ġsubs cri +ĠQ u +Ġav ail +im ent +Ġv oc +k a +Ġ2 00 +ap er +ĠI nd +Ġì § +h or +į ° +j or +и л +Ġs qu +A U +ar ning +ĠÐ ³ +I S +ĠÐ » +еР¹ +y es +å ħ +ĠÐ Ĵ +Ġor ig +оР³Ð¾ +Ġask ed +il t +оР³ +Ġcontin ue +Ġì ĺ +r am +Ġo thers +E S +oh n +Ġl ay +Ġbas ed +Ġp u +Ġapp e +Ġl im +Ġpro p +Ģ ë +m in +Ġh ot +ĠL a +Ġf ast +Ġprot ect +Ġam ount +Ġa qu +Ġf und +Ġc ustom +Ġc ult +Ġhand s +Ġha ven +Ġa ud +Ġout side +ĠA fter +ap s +Ġan im +pl oy +Ġh at +ĠF irst +Ġt reat +Ġe p +Ġm ater +Ġbuild ing +Ġë ° +å IJ +ìĦ ľ +z a +ught er +ĠP e +ne y +et er +at ic +Ġed uc +ê¸ ° +Ġmo v +ĵ ¤ +am a +r ation +Ġs n +Ù Ī +Ġs um +Ġph ot +ĠÐ Ŀ +Ġ . +æľ ī +Ġfin ish +itt ing +å ® +Ġlar ge +Ġì ĸ +Ġwh ite +ar a +Ġma is +ĠH i +Ġd am +Ġا ÙĦ +Ġbo x +ĠHe llo +Ġs le +Ġo pt +ri ed +¥ ¼ +Ġact iv +Ġn ão +ĠC om +Ġplay ing +T h +Ġavail able +Ġp ort +å Ī +ĠA h +Ġl as +Ġear ly +Ġwond er +± ° +Ġ1 8 +c ul +Ġfun ction +Ġmor ning +ll e +i ents +u x +Ġc ir +it ions +Ġde ep +Ġpol it +y or +m p +ak ing +Į ë +ĠM an +Ġmill ion +Ġ / +Ġind ivid +Ġp an +Ġgovern ment +Ġwr ite +ĠT od +am ent +Ġ Ï +Ġw ind +ĠE ng +ch en +W h +ì ľ +Ġ ident +ãģ § +v ent +ur ch +Ġh y +Ġy a +Ġtr ad +Ġrelations hip +à º +Ġd ou +O R +Ġs we +Ġne g +in ation +Ġte xt +i pp +Ġf ine +á s +ĠD r +ĠC ome +Ġmonth s +, " +ен и +Ġhour s +Ġp od +ir t +Ġinv ol +Ġcoll ect +Ġau f +Ġp a +Ġhist ory +m b +if y +Ġ ? +Ġbel ow +as ure +ab y +Ġlang u +Ġan t +Ġcom b +at o +Ġex ist +Ġë ĭ +Ġtak es +Ġcharac ter +a ff +Ġf ield +Ġe conom +ie f +Ġpie ce +å ľ +Ġre ach +Ġê ² +on y +Ġmater ial +Ġd ig +Ġph ys +Ġimp ro +Ġsim ilar +I C +Ġn et +y n +Ġpos ition +à Ł +Ġb ene +re ad +Ġle arning +um e +Ġcle an +ÑĤо ÑĢ +Ġco ok +Ġseem s +Ġo l +ĠU S +ĠJ es +Ġ à® +ent ial +ivers ity +ac y +Ġ Ñı +olut ely +re ct +ĠP lease +Ġrep res +Ġt ouch +m en +ĠÐ ° +i ón +ĠThank s +Ġan g +Ġma jor +Ġit self +ill s +" , +i ans +Ġsc reen +Ġh or +Ġknow n +Ġenv iron +Ġfin al +Ġfig ure +ĠT w +Ġe yes +Ġim ag +Ġsee ing +Ġha ir +re m +Ġapp lic +end s +p ut +Ġnew s +Ġcomplet ely +ugh s +Ġkn ew +if ied +ĠJ e +ĠD id +Ġsitu ation +Ġf lo +m s +Ġph one +Ġb all +d o +Ġp arent +Ġs orry +ur y +и н +ip s +аР´ +Ġinst ead +Ġhu ge +Ġt u +Ġ ãģ +ĠG r +Ġdet ail +ĠÐ Ł +Ġindivid ual +Ġf ire +Ġcl os +Ġw er +un e +Ġrun ning +Ġcon vers +Ġrec omm +Ġcom o +Ġsome body +ĠJ ohn +ĠìĿ ´ +ĠO ur +pl es +ĠP h +Ġan al +Ġ5 0 +Ġof fer +Ġ < +ition al +g est +Ġv ous +l et +ic y +Ġfeel ing +L E +r os +Ġth ird +оРº +Ġser ies +ĠAn y +is ed +o ld +Ġdra w +Ġserv ice +Ġcan not +b al +ãģ Ĩ +Ġli ving +ı m +Ġdiffer ence +Ġopportun ity +Ġne ar +or th +k en +Ġloc al +Ø ª +ĠC on +Ġob ject +Ġd ass +ãģ Ļ +IJ × +Ġquick ly +ra ph +Ġiss ues +éĢ Ļ +ĠAmeric an +Ġpre p +en ces +Ġprof ess +ll ing +o f +Ġfo ot +b re +Ġus ually +Ġgener al +d a +an ces +Ġd est +Ġo cc +Ġmem bers +Ġd ans +Ġequ al +z t +Ġbe com +Ġmo ving +Ġspec ific +ÃŃ a +Ġf ur +Ġne cess +Ġcomm on +Ġatt ack +ĠÑį ÑĤо +ĠTod ay +Ġun s +ĠG u +i od +Ġacc ount +Ġgra nd +Ġs elf +ĠE l +Ġt ast +Ġcont ent +Ġc u +Ħ ë +ĠMay be +ĠJes us +ore s +p ort +© ´ +Ġg ives +Ġnorm al +ÑĢ Ñĥ +Ġimp act +ä r +Ġd ies +Ġl ab +s h +i os +ĠP res +ĠU nd +ĠO f +Ġfin ally +Ġdo ll +Ġvoc ê +p ly +ĠA g +Ġtak en +Ġgr ound +f ort +Ġg ave +ĠIn st +Ġl ost +Ġwork ed +Ġl iter +Ġiss ue +Ġind ust +Ġret urn +Ġhappen ing +Ġwant s +и в +Ġproblem s +ĠC ar +Ŀ ¼ +ĠAl so +Ġs ize +Ġob viously +ĠS u +ĠS c +Ġrecomm end +our ces +ast ic +.. .. +Ġm i +l ier +ĠE ven +ci a +Ġh ur +v a +Ġm ass +Ġwould n +un t +ck s +Ġf elt +os p +l ight +ол ÑĮ +n ie +Ġbott om +Ġб Ñĭ +ore d +is on +Ġgr ad +Ġum a +Ġv a +Ġì Ĥ +ress ion +ul ation +I D +id ence +Ġb ur +Ġg one +l u +ìĸ ´ì +Ġre du +Ġj a +ìĿ ĺ +it a +Ġso ft +Ġç a +ic o +er al +à ± +a f +Ġpoint s +g u +Ġd é +ap t +a x +ĠAl right +Ġcam era +Ġa ch +Ġп о +Ġse ver +5 0 +Ġs ie +Ï ģ +Ġm al +Ġcomp ut +Ġmid dle +Ġcould n +m ing +Ġì ĭ +ĠH is +Ġg ames +Ġint rodu +Ġc ell +p or +Ġsle ep +Ġë ³ +id ing +Ġ ou +Ġde g +Ġdr ink +Ġenviron ment +ĠUn ited +Ġtalk ed +Ġcho ose +Ġj our +e ge +ĠM in +Ġint e +Ġr ather +Ġoff ic +к а +ac hing +Ġmention ed +Ġf ill +Ġtr ack +Ġn ie +Ġ ut +Ġв Ñĭ +ib ility +Ġv ac +Ġr ad +Ġp ack +Ġs end +ĠD as +ĠA b +Ġeng ine +ãģ Ĺ +Ġcomp et +à ´ +Ġв Ñģ +Ġdo or +Ġlong er +å° į +Ġlangu age +Ġext ra +pl ay +Ġwe bs +um b +ro om +ç ľ +Ġbegin ning +Ġre fer +A M +n en +ig her +f ace +er c +Ġfor get +Ġcom ment +еРº +л Ñı +r or +ż e +ĠG e +Ġd ark +Ġany one +ant e +g es +ìĬ µ +Ñ ij +b ed +j e +ruct ure +Ġpr im +id a +è ¦ +ãģ ¾ +Ġm ix +Ġstart ing +ĠìĿ ´ë +Ġprov ide +act ion +Ġm other +Ġper iod +Ġst ick +ĠYou T +Ġtechn ology +ê ¹ +Ġb ed +Ġg iving +Ġexpl ain +z en +im ate +Ġrepres ent +lo ad +ĠHow ever +Ġli ves +ut h +ir it +og n +Ġli k +Ġresp ons +Ġpri v +Ġto m +ç ão +i am +Ġexc ited +Ġc ard +gr ound +Ġ× Ķ +Ġs ens +Ġte ach +id o +h od +Ġep is +Ġwel come +Ġw all +ä ¹ +Ġch ance +h en +ĠÐ ¡ +ĠÄ ij +Ġsim ply +ĠÑĤ ак +r ing +j a +b ook +Ġsever al +st e +Ġcreat ed +Ġо ÑĤ +Ġp ush += = +Ġh igher +u f +our ce +o ke +Ġon line +Ġre le +Ġt on +ens ive +Ġfavor ite +Ñĥ д +Ġlook ed +Ġv on +âĢ Ķ +Ġf ür +Ġbut ton +Ġb ill +Ġchang es +! " +Ġsl ow +ab les +Ġde ath +and s +ate g +Ġthem selves +ãģ £ +Ġc op +ãģ ® +Ġperson al +ug hing +Ġ1 1 +g ar +ad es +Ġneed ed +Ġstud y +ag ed +ÑģÑĤ в +in o +Ġdis c +k i +Ġadd ress +× ¨ +itt en +es ome +ĠÐ ¶ +¤ ë +ur a +Ġm u +Ġcontin u +f or +Ġm atch +ãģ ¦ +Ġstra ight +IJ ë +n ers +Ġdo g +Ġde b +ĠC O +Ġo s +g ed +c ame +Ġcor rect +et te +ĠSe e +Ġinclud ing +ĠEu ro +est er +Ġj ump +ĠWh ich +Ġк ак +s on +y a +IN G +Ġe ine +os h +en cy +Ġmed ia +Ġsubscri be +é Ĥ +Ġpr in +Ġha b +ĠP er +ĠW as +Ġp age +it or +Ġto wards +Ġtri ed +en ge +art ment +Ġvar i +Ġp aper +Ġpict ure +Ġvers ion +Ġbr ought +w are +ĠSt ates +Ġs ich +led ge +Ġper cent +Ġgo d +e c +ĠC omm +Ġdec ided +Ġse lect +íķ ľ +) . +ur ity +Ġfur ther +Ġcom ments +le ment +Ġd ream +Ġcent er +m i +Ġc as +Ġwom an +Ġro ad +Ġf ail +Ġbe came +l us +il ities +ãģ ¯ +ĠC o +Ġman age +Ġrec ogn +Ġact ion +Ġbene f +Ġear lier +× ľ +Ġspe ed +Ġm ent +Ġso ci +Ġsho ot +u i +Ġà ¤ +Ġapp ly +v o +x im +Ġca use +Ġsur pr +Ġha ben +D I +Ġf ather +ĠNe xt +ĠYouT ube +Ġc ode +Ġro le +g ress +Ġg reen +et t +Ġbu ilt +Ġfl ow +Ġb ase +Ġtra ining +Ġr ound +ĠW ill +Ġp ath +ĠR o +Ġinterest ed +ìĸ ´ +Ġres pect +Ġchang ed +iss ion +Ġstud ent +og raph +Ġappro ach +Ġshow s +å° ± +Ġt ar +Ġcr it +Ġg lo +ìĬµ ëĭĪëĭ¤ +Ġde ad +ĠPres ident +Ġth ous +Ġb al +st er +e x +Ġabs olutely +Ġm ic +Ġpract ice +Ġqu ality +Ġl ower +og le +Ġse par +b all +med i +Ġre view +ĠA pp +Ġo k +âĢ ĭ +Ġexper ien +Ġconc ern +ent ially +m ore +ĠJ o +ap an +ĠI ch +ist ic +Ġf air +Ġwebs ite +i res +ĠB y +Ġtra vel +Ġris k +Ġm ir +Ġbo ard +Ġs en +Ġparent s +ĠW ow +Ġfe ed +Ġsa ve +Ġser ious +Ġin it +E L +und red +A S +Ġv an +or row +Ġwor th +Ġse arch +Ġ1 6 +Ġpart s +ÑģÑĤ ÑĮ +Ġcomp an +Ġmov ie +Ġmet hod +Ġ ill +Ġw ish +d y +Ġit em +Ġmin us +ang er +Ġvo ice +Ġsk in +Ġare as +Ġe ight +Ġo bs +Ġ , +аР¹ +Ġo il +Ġc y +Ġb aby +s y +Ġem ploy +ĠK e +Ġpl aces +Ġf ix +Ġest á +ãģ ¨ +iv ed +Ġlot s +Ġse ason +un k +al t +Ġt able +ĠÐ ¢ +à ¢ +Ġatt ention +ãģ ª +ĠH er +Ġa ge +Ġp ra +b ack +c il +Ġnet work +r it +Ġdo c +Ġare n +ig en +Ġë Ħ +Ø ¯ +end er +Ġtot al +Ġpr ice +Ġcra zy +ì ļ +i qu +th ough +Y ou +Ù ĩ +ãĤ ĵ +Ï ħ +Ġs at +Ġb i +ĠD ie +Ġsh a +Ġthank s +u h +Ġst age +аР¶ +ĠF l +Ġle av +Ġbo y +Ġa f +ö n +ĠG et +Ġac cept +Ġent er +Ġt ur +Ġsi ÄĻ +Ġhon est +ãĢ Į +Ġs am +Ġre pl +g ing +Ġdevelop ment +ĠA ct +or a +ãĢ į +ä ¾ +Ġknow s +Ġim age +ĠL ord +и ÑĤÑĮ +Ġweek s +Ġse x +Ķ ë +Ġh undred +Ġsound s +Ġlearn ed +Ġb ud +ĠÑģ ÑĤ +Ġinc red +â Ļ +Ġn os +Ġd rop +Ġb en +ĠÐ ĺ +Ġsa fe +at a +Ġf uck +so ci +Ġd an +Ġcr oss +1 0 +m o +ver t +Ġ1 7 +z ie +å ķ +Ġd om +ĠB o +Ġset ting +Ġinvol ved +ar ily +Ġs ind +Ġs us +Ġwor ry +et h +ê¹ Į +Ġs un +Ġh ier +Ġcertain ly +ou l +ort s +ĠE r +ĠU m +Ġca us +Ġnat ural +Ġà ¼ +Ġc ry +ĠSe c +Ġs om +æ ² +Ġeduc ation +а еÑĤ +Ġmult ip +Ġal one +Ġe ye +Ġr ate +ĠEuro pe +è ¿ +m on +Ġf it +iz ing +pp ed +Ġpress ure +th e +и Ñģ +it es +ĠA f +re ci +att le +Ġserv ices +ĠGo ogle +é ģ +Ġc ases +Ġdri ve +Ġchall eng +u z +ĠM o +ìľ ¼ë +v al +åĢ ĭ +Ġf ol +Ġì ¢ +ff ic +Ġr a +Ġs in +Ġbl ue +Ġaff ect +Ġm is +Ġsh ot +Ġо б +as ing +Ġsign ific +ĠC he +Ġê ³ +Ġpos itive +ì £ +Ġw ie +Ġ4 0 +ord ing +ĠFr om +ê µ +Ġbra nd +Ġtr ust +Ġp le +Ġcommun ic +Ġwe ight +Ġask ing +Ġta x +ĠJ apan +ãģ Ł +Ġíķ ĺ +op s +Ï Ĥ +Ġput ting +Ġro ll +ĠAmeric a +re g +ŀ × +at ures +ens ion +ĠS omet +Ġorig inal +p ing +Ġ ÅŁ +Ġproduct s +ãĥ ¼ +Ġcont act +ol ution +Ġgo al +Ġp ow +Ġperform ance +Ġblo od +at ors +ĠM ich +Ġtem per +ĠD an +Ġsu gg +ÑĤ и +Ġim m +Ġoff ice +Ġar ri +Ġcom fort +ĠÐ Ķ +Ġsugg est +Ġpl at +Ĥ ĺ +1 9 +Ġo m +Ġse ven +ĠC ent +ill e +Ġcon cept +Ġb ag +ü n +ive ly +Ġd iv +m os +æ ī +Ġfeel s +Ġ ir +ak es +le y +Ġpartic ip +ĠÐ ļ +f l +j ust +Ġs il +ĠP a +A L +Ġgot ta +Ġf an +Ġchall enge +Ġcompan ies +ĠPe ople +< / +оР· +Ġp en +is ing +Ġa us +em ic +am ente +Ġmeet ing +Ġvis it +Ġsupp osed +ĠOn ce +д а +or ld +3 0 +U S +Ġvi ol +Ġnot ice +ĠÐ IJ +h an +p ed +ì ĺ +h h +Ġtr ou +Ġmin ute +ĠP ar +r ay +Ġt it +Ġup d +Ġblo ck +Ġd ue +a ur +Ġfor ce +Ġcou n +ĠâĢ Ķ +Ġtyp es +ë § +Ġl ate +Ġimpro ve +Ġì Ī +Ġa ve +ul es +c l +am ed +Ġaw esome +ĠO k +Ġv ot +Ġmach ine +Ġfollow ing +Ġme asure +ac ión +u el +ch an +Ġab ility +Ġt out +Ġide as +Ġincre ase +Ġen s +ĠÑ ħ +Ġë ª +Ġj est +ĠÐ ľ +Ġtr uth +h y +Ġsp end +Ġsci ence +et e +Ġ1 4 +Ġepis ode +Ġal g +end ed +ãģ ĵ +ar i +ll a +Ġf ish +Ġthr ow +m it +å ¹ +Ġcir c +ĠC al +Ġt our +Ġdire ction +Ġno ch +еР² +é n +Ġcount ries +Ġindust ry +in y +ic le +Ġfe et +I t +Ġlead ers +et zt +Ġst aff +ç Ķ +Ġpur p +it o +? ! +ĠJ a +Ġst ore +et ic +ĠCh ina +Ġë IJ +ĠUn iversity +Ġ # +Ġdec ision +Ġach ie +Ġact ual +u ly +Ġse ction +Ġresult s +Ġst ar +Ġm ist +ib ly +Ġd ad +Ġnum bers +om b +è ª +ĠS pe +Ġm er +Ġ2 5 +Ġaut om +Ġco ld +Ø ¨ +Ħ ľ +ag er +ĠT V +ĠS ie +ĠH ave +Ġ że +ug g +ain ed +Ġup on +Ġlo g +Ġcomplet e +Ġbra in +ag ing +ĠM us +o ver +Ġeas ier +Ġinte gr +Ġm ás +Ġturn ed +Ġst ri +iv al +Ġhe av +ĠT H +Ġwr iting +ÑĢ а +åľ ¨ +å¤ § +Ġcl a +d ing +Ġtell ing +и д +ic ated +ä» ¥ +ac ht +ãģ Ĥ +h aps +ĠSt e +Ġres ources +Ġd ann +Ġpart y +Ġ ÏĦ +Ġsa f +is es +t re +o int +Ġknow ledge +Ġany more +Ġf ly +Ġma int +и к +å ij +Ġse ll +la ughs +ĠY ork +Ġb ien +Ġo d +Ġeas ily +Ġr ange +Ġo ption +Ø ¹ +Ġapp reci +oc r +Ġdet erm +Ñ Ħ +Ġmean ing +Ġs ite +Ġdis co +ver age +Ġl ose +Ġinst all +Ġem ot +ant ly +ä t +Ġt amb +ĠW ar +ĠH o +ĠG en +em y +еР· +ĠP ol +Ġmess age +Ġnot e +Į Ģ +Ġh et +Ġim medi +Ġav o +Ġbook s +Ġbecom es +res h +è s +as ons +Ġhim self +ut s +Ġj u +Ġaw are +Ġrequ ire +Ġsystem s +ĠH ar +Ġam ong +Ġh om +Ġb reat +Ġwe ird +Ġë ¶ +Î » +Ø © +if f +or ing +Ġplat form +ĠT ake +Ġhelp s +ut ions +Ġfor g +Ġl uck +ĠEng lish +Ġwe b +Ġneg ative +Ġt ut +Ġab ove +ng th +Ġê ±° +Ġst ories +Ġlo ad +Ġback ground +Ġsw itch +g a +Ġprin ci +Ġfin an +Ġvar ious +Ġl Ãł +Ġkind s +ain ing +Ġn ature +ĠÐ ŀ +c z +Ġpr ay +Ġg ar +ir m +Ġ & +Ġì ĥ +n s +ĠR ep +ĠF e +Ġre v +ra nd +Ġlike ly +Ġunderstand ing +ı r +ãģ ĭ +Ġf al +Ġ1 3 +ÑĨ и +Ġsu d +Ġbr other +Ġpl ant +Ġthrough out +w ise +p re +Ġcult ure +ĠÙ ħ +Ġwonder ful +Ġa h +pp er +Ġso ld +Ġstart s +Ġwr itten +Î ¯ +n i +Ġ×Ķ × +ĠD av +Ġu lt +Ġar m +Ġro ck +Ġwe ar +ë į° +an o +ra g +Ġsqu are +ан и +c ast +le br +Ġliter ally +Ġplay ed +Ġhe at +on se +r ict +Ġins p +id s +Ġpop ular +ë ıĦ +Ġc atch +Ġm ount +Ġj ud +Wh at +еР± +R A +a ud +к о +Ġsur face +Ġcon v +Ġpie ces +O h +æ Ģ +Ġst yle +pp ing +Ġread ing +Ġconvers ation +оР¿ +ä¾ Ĩ +ĠAg ain +Ġb ank +t ime +Ñĥ ÑĤ +er ve +ĠG reat +Ġcap t +аР± +ay s +ĠF in +ific ation +Ġä r +а Ñİ +Ġe gg +ĠW el +Ġtar get +ul a +ch es +an i +O O +ic ious +n ow +Ï ĥ +bo ard +Ġg ente +Ġd ro +ĠE t +Ġd in +Ġc os +Ġaut hor +Ø ³ +Ġo ch +Ġem ail +Ġsp irit +Ġs itting +m as +Ġstre ngth +Ġbig ger +ĠW ait +Ġm at +Ġpol ice +ress ed +Ġwait ing +is hing +Ġdoll ars +ho od +s s +Ġimag ine +in i +Ġm es +Ġdis e +id ge +ab or +Ġp et +Ġh op +ĠK ing +Ġcomput er +Ġgo ld +Ġn u +Ġf ing +) , +Ġsec urity +ru ction +Ġsol ution +e xt +Ġp atter +ick en +ure d +Ġstand ard +ìĭ ľ +Ġdou ble +Î · +Ġw ife +is a +Ġdirect ly +ac ed +Ġb unch +Ġ ¿ +ал ÑĮ +Ġreg ard +Ġswe et +Ġun ique +ĠâĻ « +Ġtra in +ĠG erm +Î ¬ +R E +Ġbeh av +Ġpre d +ì ĥ +s et +Ġdescri ption +é e +Ġc at +å ĵ +Ġcoll ege +ì Ľ +Ġapplic ation +ĠS en +as k +Ġc red +ub lic +Ġmultip le +Ġn i +Ġpres ident +Ġadd ed +Ġro b +Ġaqu i +Ġh osp +Ġtool s +Ġg un +Ġbas ic +Ġl ines +Ġst ructure +ĠR uss +Ġtot ally +Ġbig gest +Ġe en +Ġar g +Ġ× ľ +Ġp ark +ĠD es +Ġce lebr +Ġf ait +ен ÑĮ +Ġsu ff +Ġreg ular +¨ ë +Ġm ine +ĠK ore +Ġpre vious +Ġp i +Ġse g +Ġpol icy +Ġк о +ĠTr ump +Ġvac c +ó w +ĠS y +и Ñĩ +it ter +Ġpolit ical +r as +Ġal s +ел ÑĮ +Ġsha pe +an z +Ġon to +Ġar ch +Ġam b +ag ram +ĠS m +ct ions +Ġjo in +b or +å Ľ +Ġfr ame +ł ĩ +Ġcho ice +௠ģ +Ñĥ Ñİ +ĠC or +ĠS w +I T +Ġt end +ĠE ar +Ġto r +Ġev ents +Ġcla im +ĠD a +ĠM ark +Ġgroup s +Ġe ating +ĠW orld +Ġrec ently +Ġtast e +Ġsur v +à ¤ +Ġsk ills +Ġи з +itt ed +Ġsh op +ìĿ ´ì +Ġest ab +ĠëĤ ĺ +Ġsecond s +ĠTh ose +ĠE nt +Ġì Ħ +ers on +Ġto wn +Ġc and +Ġopt ions +Ġ ing +V ID +Ġenc our +Ġr é +âĻ ª +Ġent re +Ġmove ment +ĠB en +Ġbir th +Ġwh e +Ġh ang +ĠE m +ig e +ro ll +Ġun f +ì Ĥ +Ġr id +Ġsp read +Ġh ost +al d +ĠE d +Ġcons um +U N +Ġop in +it ar +ĠM ed +Ġsub ject +Ġp al +Ġcar ry +Ġag ree +ĠWh ile +Ġcare er +Ġsci ent +Ġsud den +Ġf ile +z i +Ġex cept +é º +Ġpot ential +ĠAn other +Ġcomp lex +ĠS im +end o +Ġr ais +Ġphys ical +Ġd ate +ak er +ĠC ol +Ġpower ful +Ġmem ber +ra p +Ġsp ot +Ġs ource +Ġf em +é m +Ġem p +j i +iet y +Ġinf lu +Ġd ry +Ġlo ck +Ġz ero +ĠU h +Ġr out +Ġpor que +Ġ2 4 +Ġt al +Ġfol ks +Ġla unch +Ġcomp on +ĠWel come +Ġk ann +ä n +ĠÑį ÑĤ +e es +ĠÙ Ī +Ġany way +Ġaud ience +äº º +Ġsl ight +on a +Ġu r +Ġrel ig +Ġext rem +ı z +ĠM a +Î ¼ +Ġà ¶ +Ġall ows +Ġf at +ĠF ace +Ġn ational +Ġinter view +ĠM c +é t +Ġc ute +el a +Ġsec ret +ĠW est +ĠD ep +Ġex erc +Ġhist or +Ġpri or +Ġ6 0 +av a +ac her +y ond +ĠH a +Ġest e +in ary +ĠN orth +on st +Ġsm art +am s +ал и +Ġd ar +er ed +Ġfun ny +ĠO b +ĠBl ack +Ġrel ated +ĠB u +Ġsome where +ĠR em +n es +ment e +ĠRe ally +Ġcreat ing +Ġfam il +Ġsoci ety +Ġg el +Ġtrans form +Ä ĥ +Ġinclud e +Ġh ol +l ike +k o +air s +Ġп од +Ġpers pect +Ġb es +Ġparticular ly +Ġshow ing +ĠP art +Ġqu al +lo ck +Ġreal ity +ho ld +ict ion +o on +Ġv ir +ãģ « +it ary +Ġdr ug +Ġfe ature +Ġre asons +Ġ× © +Ġwr ote +Ġf ant +Ġb and +Ù ĥ +en a +ke y +Ġear th +d om +Ġfe atures +Ġflo or +Ġspeak ing +Ġt ip +ĠA ust +Ġst ock +Ġch urch +Ġr ac +ìľ¼ë ¡ľ +ภĻ +ãĤ Į +k y +Ġresp onse +Û Į +ul ations +Ġsl ide +Ġgrad u +ci ous +Ġme ant +Ġ == +Ġ× IJ× +ã ħ +Ġkind a +Ġsc ene +Ġm uit +Ġê° Ģ +r ast +re st +Ġplay ers +w a +Ġbro ad +Ġtom orrow +oc ol +ĠÑģ в +ĠB ar +ı k +Ġse a +Ġrem ove +Ġrem ind +ом Ñĥ +ĠS ince +Ġave c +ce ll +и Ñħ +Ġdoc ument +Ġê·¸ë Ł +Ġne igh +be at +Ġp Ã¥ +Ġas pect +Ġd ed +lish ed +il s +Ġour selves +u ce +Ġhe y +ĠпÑĢ о +ent y +Ġas soci +ad os +um ber +Ġ ] +éĤ £ +no v +Ġì Ļ +Ñĥ Ñĩ +Ġcond ition +ëĬĶ ëį° +Ġval ues +Ġsc en +min ist +Ġc ast +Ġgrow ing +Ġus er +Ġresp ond +l im +é r +y m +çľ ĭ +os es +sy ch +ĠÑĢ аз +Ġappe ar +Ġpro gress +eng th +Ġj ak +ĠD is +Ġpat ients +ĠS er +Ġg as +è re +ìĸ´ì ļĶ +Ġre ci +ìĿ ¸ +Ġs ca +ep end +Ñģ к +аР¿ +Ġb atter +Ġve h +ð Ł +Ġac com +Ġbe at +Ġpain t +Ġcont rib +Ġs ad +Æ ° +al es +Ġt ree +b a +Ġb orn +ic ed +à® ķ +b and +Ġme chan +ĠD et +Ġcap ital +Ġdel iver +Ġfe ar +ŀ ĺ +ĠS outh +Ġb ought +Ġst ress +Ġv or +? ? +i h +ìķ ¼ +Ġer a +ìĿ´ ë +а Ñı +is ions +iv ity +Ġhelp ed +Ġass ist +Ġplay er +r an +Ġimmedi ately +Ġmo ved +c ie +ê ± +Ġann oun +å ¿ +ìŀ IJ +Ġprodu ction +Ġsum mer +Ġt un +Ġprogram s +G H +al ing +ir a +el ess +. ) +Ġa verage +è¦ ģ +Ġgl ass +om an +if ically +Ġëĭ ¤ +ĠC ong +ĠV er +Ġtr ick +Ġbe gan +Ġv ill +ê ±° +h ow +æ Ń +Ġt ill +Ġ9 0 +ber t +Ġê ¸ +Ġtemper ature +à ² +๠Ī +Ġgra ph +Ġê· ¸ +Ġr ot +Ġmo b +A Y +a el +Ġre pe +Ġdev ice +Ġ19 9 +Ġte le +Ġke pt +p a +æ ĸ +ver se +Ġst ream +е Ñĩ +ess ion +Ġstr ugg +z z +Ġdeg ree +Ġhelp ing +Ġsm ell +Ġper haps +p ro +Ġcont ext +Ġi k +Ġп еÑĢ +Ġcal cul +éº ¼ +b ing +Ġreal ize +l am +ĠCh ar +y t +ĠìĿ ´ì +Ġd anger +ĠI m +a a +Ġlo ved +Ġpurp ose +Ġfinish ed +Ġpe ace +Ġo t +Ġglo bal +Ï Ģ +Ġab er +ĸ Ī +Ġcharac ters +Ġn ur +Ġdam age +Ġem er +Ġpre c +ĠW ir +Ġinst it +ij × +Ġallow ed +b on +Ġto d +еР³Ð¾ +Ġj etzt +Ġmed ic +Ġsmall er +ce ed +Ġlevel s +Ġint ell +W e +Ġse m +Ġcurrent ly +Ġmod ern +Ġcont ract +Ġdetail s +ortun ately +O S +Ġst ates +Ġad just +ant age +e z +ĠV ery +Ġsc ale +Ġre lease +Ġf az +Ġ ic +it ude +A C +ĠP at +id en +Ń IJ +Ġpre fer +olog ical +ĠFace book +Ġê° Ļ +Ġ .. +ĠM ake +Ġко ÑĤоÑĢ +ĠDav id +ĠAf ric +Ġmod e +ĠC ity +Ġsh all +ĠÑ Ħ +im in +Ġз а +r om +u a +Ġbe yond +Ġdist rib +к Ñĥ +ĠDo es +Ġv ict +r ate +Ġv ai +Ġsuccess ful +Ġh ous +ah a +est s +ĠE st +Ġdisco ver +Ġthere fore +ch a +Ġc up +Ġpop ulation +ĠI l +s c +Ġsp ent +re l +Ġuse ful +Ġt ab +æ Ŀ +Ġ Å +Ġìł ľ +Ġcon se +Ġqu ant +ay a +Ġb on +åı ¯ +ĠCh in +Ġê² ĥ +ound s +е ÑĪ +ell e +Ġ ice +2 1 +Ġk ick +ä¸ ĭ +Ġstep s +Ġton ight +нÑĭ й +ren ch +. ' +Ġgra b +Ġimp lement +ĠìĪ ĺ +Ġmiss ion +Ġclear ly +Ġappreci ate +è Ģ +Ġf resh +ar m +ĠTw o +Ġex ec +Ġproject s +Ġcommun ities +ri ble +Ġreg ion +Ġfre qu +ro y +Ġhow ever +Ġpart ners +an c +Ġmin im +Ġl at +Ġfamil ies +Ġev idence +Ġp un +ra ft +Ġl oss +Ġma p +Ġany body +Ġchang ing +Ġr ules +Ġorgan ization +Ġess entially +ĠR ed +Ġele ment +æ Ĺ +Ġv irt +r at +Ġpr int +and er +are n +em os +ο Ïħ +Ġcond itions +ab e +Ġd ance +и ÑĢ +Ġd os +о Ñĩ +ĠQ ue +Ġwalk ing +Ġt ro +Ġ id +Ġadd itional +Ġfull y +Ġf ans +Ġadd ition +Ġlik ed +Ġü ber +Ġb ow +d i +Ġm aster +o ff +) : +m ber +Ġë ¬ +å ¯ +åĪ ° +la use +Ġo der +Ġsaf ety +Ġre act +à® ¿ +b t +Ġdis app +Ġgirl s +S t +ĠA ng +Ġfa ith +Ġturn s +Ġt ight +Ġm outh +am i +z er +Ġwe ap +Ġб Ñĥд +Ġhosp ital +ra id +Ġmic ro +ĠSt ate +ĠM ost +ag n +Ġdec ide +Ġpat ient +Ġcor ner +Ġdi ed +N o +ĠSt ud +re nd +em pt +Ġli e +Ġl if +ĠBe fore +t ó +ĠSu per +Ġbe ll +6 0 +Ġpriv ate +ĠPa ul +Ġg ib +Ġag re +´ì Ħľ +Ġs ig +Ġinvest ig +Ñı ÑĤ +en ing +Ġdist ance +Ġwar m +Ġdig ital +å¾ Ī +in er +Ġp and +ĠCO VID +Ð ³Ð¾ +g n +Ġr ace +Ġpr oud +Ġte aching +Ġ ÑĤо +ìŀ ¥ +ĠAll ah +I n +Ġw ood +Ġcol ors +Ġw ird +u j +id ad +Ġcustom ers +Ġconnect ed +Ġlay er +Ġachie ve +Ġperspect ive +ĠC oll +Ù Ĥ +Ġcl oud +!! ! +Ġend ed +łĩ ê²Į +Ġmanage ment +Ġr ich +Ġsub st +Ġrem o +Ġser ve +Ġres ist +Ġthought s +Ġgrow th +ili ar +Ġright s +Ġchar ge +Ġcons ist +Ġwer den +Ġem b +and om +Ġhur t +Ġk an +i as +л о +Ġsh it +Ġbe g +Ġrece ived +it ation +Ġme at +Ġis so +ff ee +Ġfam ous +Ġcomfort able +I L +ĠB ye +èª ª +åĢ ij +oth es +Ġmed ical +Ġenjoy ed +Ġhealth y +Ġw y +c ies +Ġeff ort +Ġdo ctor +Ġmil itary +L AU +Ġg ro +Ġb attle +Ġf ed +Ġcap ac +Ġaf raid +iv il +ĠвÑģ е +Ġl ength +ys is +Ġbe i +¤ í +Ġorgan iz +or g +in c +Ġinter act +ĠChin ese +Ġacc ording +Ġincred ible +Ġkill ed +Ġda ughter +ĠÏ Ģ +Ñĭ в +Ġschool s +Ġ « +ll er +Ġshould n +n al +Ġcr is +Ġch icken +Ġf aster +Ġextrem ely +Ġopp os +Ġn ous +Ġ + +ri a +Ġfinan cial +Ġexc iting +Ġjour ney +×Ļ× Ŀ +ł ë +Ġdis play +Ġmem ory +Ġheav y +н е +Ġpass ed +ÑĢ и +il es +Ġp sych +Ġspec ifically +Ġeng age +Ġl ed +or ge +ĠD em +ord er +Ġ8 0 +Ġcre am +ester day +Ġed ge +Ġп ол +Ġbu ll +Ġind ic +Ġk tó +Ġhope fully +um ents +ag en +н ого +Ġh ate +ch t +8 0 +Ġeff ic +Ġì§ Ģ +Ġintern et +Ġbud get +Ġproper ty +id ay +Ġì ļ +Ġм ож +ol a +Ġshow ed +ĠM on +Ġthous and +A P +Ġpo or +us ed +ĠJ ack +Ġs Ã¥ +ĥ ½ +Ġes c +Ġsoft ware +Ġqu ar +ĠØ ¨ +Ġnecess arily +om en +i y +Ġevent ually +ish ed +Ġbr ight +E D +Ġs pl +Ġdem and +Ġth reat +Ġs ir +Ġrele ased +ck et +ĠâĢ « +Ġrequ ired +Ġv ote +ì ¹ +à® ¤ +Ġdevelop ed +ĠìĤ ¬ +at ory +Ġd ir +ca pe +Ġslight ly +à ¬ +๠ī +re et +Ġdise ase +Ġcour t +Ġitem s +ĠEar th +ÑģÑĤ и +ж е +ì ² +Ġchalleng es +ĠBr it +Ġdesign ed +1 2 +Ġhear ing +Ġlisten ing +z o +ĠÑģ л +ãģ§ ãģĻ +Ġper o +Ġwe aring +pl ic +Ġch em +Ġbal ance +Ġb a +Ġrece ive +im a +Ġsignific ant +Ġм Ñĭ +an ch +ĠC r +ĠC oun +ê¸ Ī +Ġjo bs +Ġoffic ial +Ġper m +om s +Ġopportun ities +Ġover all +Ġh us +od es +Ġn ation +ĠR eg +Ġor d +Ġrest aur +Ġì Ĩ +Ġm el +v in +Ġw enn +Ġk ön +æ ĥ +Ġopin ion +ãĤ Ĥ +è ¬ +ĠSomet imes +ç Ĥ +Ñī е +as c +O U +Ġ20 20 +Ġdel icious +ig er +Ġìķ Ī +o le +Ġhand le +Ġc it +Ġíķ ľ +Ġf ör +o oth +Ġnecess ary +Ġind epend +æ Ħ +ist en +h am +Ġé t +ãĥ ³ +Ġmult i +Ï Į +? ) +Ġcamp us +Ġtop ic +Ġr ain +Ġpan el +ĠS am +Ġlar ger +aud ience +Ġpa id +Ġeconom ic +ol t +Ġstre et +ĠC ont +Ġdri ving +Ġìł Ģ +Ġh ay +Ġprofess ional +ĠIn tern +å ¸ +Ġin put +Ġc ateg +Ġc ro +Ġ ll +E T +Ñĭ й +* * +ĠZ e +B LE +Ġì ¤ +re es +ĠÐ ¯ +ed e +ier t +Ġfo ld +Ġd ur +ĠN ational +Ġìĸ ´ë +an ced +Ġfa ire +ut ed +Ġk ing +Ġw ild +o i +up beat +Ġpre vent +i us +Ġà ¨ +Ġw ide +Ġr ing +Ġtit le +Ġstand ing +Ġal though +Ġh i +Ġsa uce +Ġs ides +Ġanim als +il ing +at ives +ìĹIJ ìĦľ +ĠO ver +Ġdes p +Ġconsider ed +ar ies +i ers +Ġein en +Ġs ister +Ġë ķ +ĠS ure +ãĤ ĭ +ri end +a ign +Ġsh own +Ġs ac +Ġs ont +Ġcent ury +Ġt ien +ĠÎ º +ĠS T +åķ Ĭ +Ġold er +ie m +Ġtr uly +ĠS i +Ġwind ow +iqu es +ar io +æ² Ĵ +Ġloc ation +Î º +Ġì ľ +v i +ag ue +ĠS orry +Ġdis p +Ġhe ll +Ġà ī +Ġtr ade +Ġcrit ical +Ġê ± +Ġn amed +Ġprep ared +ĠH ouse +al u +Ġt ough +Ġtri p +Ġs and +c el +ü z +ĠP ut +Ġap art +is f +v is +Ġli br +a ven +Ġv ie +Ġeffect ive +ภ² +Ġmag n +Ġmuit o +Ġê µ +h al +Ġlim it +Ġn ine +Ġwill ing +ı ÅŁ +s p +еР³ +h i +Ġal t +ĠJ an +Ġorig in +ĠU s +Ġele ments +Ġus es +Ġhelp ful +Ġfl at +Ġfam iliar +ĠP ark +Ġc ore +Ġclos er +Ġact ive +Ġad minist +C E +нÑĭ е +ç Ħ +Ġrel ative +Ġment al +Ġr andom +Ġpart ner +Ġut il +ph one +Ġr ule +w w +Ġìł ķ +Ġsch on +Ġco ffee +H A +Ġconnect ion +Ġun it +la ughing +l og +Ġapp l +л а +us ic +ĠB ra +Ġany where +AU DI +Ġsepar ate +bo x +Ġd ivid +Ġtest ing +Ġs ick +Ġwer en +ä» ĸ +Ġ׾ × +Ġadv antage +Ġtrans fer +' . +Ġë ¹ +Ġfind ing +н ой +Ġì¢ ĭ +Ġfor t +Ġeconom y +Ġl ack +Ġleav ing +Ġd im +å İ +ĠR es +Ø Ń +Ġdiscuss ion +еР¿ +Ġg es +du ct +Ġch ain +Ġus ers +e ch +ÅĤ a +Ġdis h +Ġcare ful +Ġte acher +Ġopt im +Ġfl u +at ically +Ġref lect +Ġtreat ment +e ed +i ÄĻ +à ¹ +à® ¾ +Ġequ ip +Ġplan ning +Ġsol ve +ãģ Ŀ +ĠT om +Ġavo id +Ġp ou +Ġgreat er +l in +O L +ĠL u +ĠM ore +Ġatt ract +ê n +un a +Ġphot o +er ation +Ġplan et +Ġcop y +Ġvis ual +ir ing +Ġintern ational +Ġla ughing +Ġth ick +Ġhold ing +Ġbring ing +Ġlet ter +Ġb urn +Ġeffect s +it é +our s +O T +ê me +ĠSch ool +×ķ× ª +rop ri +l ig +α ι +Ġad ult +Ġsu gar +Ġr ide +Ġhigh light +Ġno body +Ġ2 1 +Ġch at +ĠпÑĢ и +Ġin nov +ung en +Ġatt ach +ed om +å Ĭ +y l +Ġleg al +Ġr ice +Ġcoll abor +k ing +d own +æ Ļ +ãĤ Ĭ +Ġi h +ĠA c +ous ly +Ġr ap +Ġsol id +Ġgener ally +Ġpatter n +al i +à¸ Ń +Ġtrans l +in ter +a ult +Ġë ¨ +Ġexp ress +Ġexam ples +Ġch ose +Ġtell s +ÃŃ s +ain t +ĠT ell +ĠMich ael +æ ¨ +ĠN umber +Ġt ap +Ġexper iment +Ġbenef it +Ġì ° +Ġse qu +Ġexp ensive +Ġgener ation +ĠM any +Ġadd ing +Ġk il +Ġcamp aign +ĠA nt +ra w +omm en +Ġs oul +j o +ĠAct ually +am m +ê² ł +Ġma xim +Ġsal t +Ġc ru +Ġcall ing +ãģ Į +Ġbas is +b an +Ġkeep ing +ĠM or +ed s +ì Ĩ +Ġto do +ам и +н Ñı +Ġli ved +ĠD u +ãĤ ī +å® ¶ +for ce +å¹ ´ +fer ence +al a +Ġocc ur +s k +Ġrec ent +Ġc ars +Ġtrad itional +ent le +² Ī +Ġhel d +Ġn ach +ĠCent er +er en +Ġb in +Ù ģ +Ġcomm e +Ġre ve +Ġìĺ ¤ +Ġexpect ed +ab il +Ġfocus ed +o v +Ġi P +or ial +i ro +Ġet c +am ing +ĠS on +Ġy esterday +Ġstr ate +ĠÑ Ĩ +Ġë ı +p es +Ġactiv ity +Ġadv ice +Ġopen ing +f in +Ġre la +é ĸ +Ġinst ance +ĠEvery one +b l +p en +Ġvis ion +ĠA lex +if orn +Ġt ick +H e +Ġstrate gy +Ġk om +P E +ĠG l +Ġelect ric +1 5 +Ġda ily +Ġhus band +Ġst ation +Ġanal ysis +yn am +Ġatt empt +Ġbill ion +v ant +Ġfor th +Ġm ath +al y +Ġbehav ior +ĠM as +k an +ĠD ay +Ġbl ess +Ġg ut +ĠH igh +o x +Ġd ress +Ġj ed +è ¯ +å ĸ +Ġexperien ces +ist a +Ġfight ing +å · +ĠÑģ к +Ġmost ly +a use +Ġpict ures +ен ÑĤ +Ġm ad +Ġmod els +ÑĪ е +ĠC ount +Å Ħ +ÅĤ o +ep t +O M +ĠA N +Ġtrou ble +4 0 +Ġb ird +ul ate +Ġm ur +Ġprodu ce +Ġmar ried +b it +Ġthe ory +í ĺ +Ġlead er +ĠL ast +A A +è µ +Ġim ages +Ġexp and +ĠP or +Ġpur ch +ĠS an +ĠChrist mas +ĠAust ral +Ġw id +ĠM iss +Ġknow ing +Ġz e +s hip +k u +Ñħ од +ĠInst agram +ĠInd ia +Ġest a +ĠCal iforn +Ġ7 0 +Ġdra g +Ġbr ush +Ġn ames +A nd +Ġy o +ill a +Ġsch ed +Ġdest roy +ye ar +Ġv amos +Ġ ÙĦ +ç a +Ġforg ot +и е +Ġra ise +re me +íķ ´ +ĠG ive +Ġcont ain +ra b +Ġg ift +ĠÑģ п +Ġrequ est +Ġsh ut +Ġdeg rees +Ġbenef its +Ñĭ е +Ġstud ies +Ġend s +Ġevery where +Ġher o +op h +er ry +Ġmaterial s +en ed +N A +å į +Ġmu y +Ġwor se +ä» Ģ +ĠM ad +Ġdec isions +ion e +Ġfore ign +la ughter +i ber +ени Ñı +ãħ ĭ +Ġreal ized +Ġ ign +Ġwe ak +ĠÎ ¼ +Ġsca red +Ġass um +A K +ï ¿ +ï¿ ½ +Ġcover ed +ĠS at +Ġо н +Ġindividual s +Ġcomp ared +1 1 +ĠAd d +ic les +Ġc ert +r ar +Ġbr ief +Ġactiv ities +Ġf ab +b ar +Ġa st +ĠO ther +Ġclass es +Ġo g +Ġmiss ing +ãģ ł +é Ŀ +w ers +× © +Ġintrodu ce +Ġequ ation +ãģ¾ ãģĻ +Ġn om +Ġpain ting +us hing +ĠA P +Ġencour age +Ġsh ip +itt ee +iver se +ot a +n am +ãĥ » +Ġexerc ise +ĠÐ Ń +Ġn as +Ġthous ands +ĠCaliforn ia +Ġs es +Ġr ow +ŀ Ī +Ġpand emic +Ġsk ill +b el +Ġdire ctor +Ġmil k +Ġn ut +Ġmot ion +Ġcl osed +è ¨ +Ġcred it +ah r +Ġche ese +Ġal tern +im ately +Ġs ust +ĠT ra +Ġgl ad +Ġhigh ly +Ġw a +Ġredu ce +Ġb le +ad or +in ated +ion es +ci ent +Ġdep ending +Ġsh aring +Ġca ught +ra el +Ġme hr +Ġpass ion +ç Ľ +Ġr u +Ġfar m +T I +av es +ĠR ob +ĠB ro +Ġmot iv +ret ch +ru pt +ĠB ig +Ġall e +Ġet t +ub s +ĠJapan ese +ĠH all +и ли +AUDI BLE +ç ¬ +Ġcell s +ik a +el ine +il er +Ġì £ +Ġsk y +IN AUDIBLE +end e +ap ter +Ġp in +Ġg ather +h ol +le ction +Ġsy n +Ġpl ug +r ound +Ġun iversity +h ib +Ġfant astic +k n +Ġho le +ĠRem ember +in ct +ak s +C H +Ġbro ken +Ġstr ateg +Ġal ive +Ġt ank +Ġc art +r ated +r ie +ĠSt ep +ĠEvery thing +Ġb ound +Ġso bre +Ġcustom er +¡ Į +ur g +ĠB ill +L a +wh at +Ġre action +Ġs ession +Ġpl ans +ĠìĿ´ë łĩê²Į +Ġdown load +ì Ļ +u er +Ġc ab +Ġinst r +if ying +ĠN ice +Ġteam s +ı l +Ġgo als +is ch +Ġtrans port +Ġanim al +Ġcost s +Ġcall s +Ġse hr +ì Ī +ri an +Ġd ial +Ġwe ather +๠Ģ +Ġв оÑĤ +ĠPl ay +Ġsh ared +Ġsm ooth +ab a +Ġleav es +à® © +Ġconc ent +Ġsh ift +ĠëIJ ĺ +ĠGo vern +Ġdem onst +Ġbut ter +ĠìĹ ¬ +Ġsat isf +Īë ¬ +Ġrecogn ize +ĠF rench +Ġvol ume +ä nd +Ñĥ м +Ġì§ Ħ +ĠKe ep +ow a +ipp ed +ÑģÑĤ ÑĢ +Ġdet ect +ĠÏ ĥ +Ġl ift +Ġcl othes +ĠSt op +à µ +m et +Ġcl in +Ġar r +f riend +Ġst uck +Y e +h and +um a +Ġsc ri +Ġfuck ing +ct ors +× ª +Ġjo ining +Ġc ette +ĠØ £ +ĠWh ite +Ġi hr +Î Ń +ãģ Ń +Ġinclud ed +ess o +Ġac ad +b um +Ġs ab +Ġд лÑı +è¿ Ļ +uf act +ĠRep ublic +r im +Ġye llow +Ġlim ited +T ER +ĠT y +Ġnot es +v est +и з +al ed +Ġph ase +and a +ĠM om +R I +Ġim mer +m al +Ġin j +Ġy ang +ud ible +аР³ +Ġset t +Ġmag ic +Ġens ure +Ġsp ring +Ġsh ock +Ġwhe el +ог да +ãĤ Ī +Ġcan cer +Ġro ot +Ð IJ +gen cy +Ġë į +i i +Ġout put +Ġcomm it +Ġwork ers +ìķĦ ìļĶ +ĠÑģ ам +ve y +Ġpe u +Ġc ivil +is c +Ġbr ings +ÑĢ ав +an ia +Ä ģ +c raft +mb ol +Ġintell ig +b i +ac ing +y ou +Ġbecom ing +ĠD er +em a +å°± æĺ¯ +Ġing red +Ġcomm and +Ġupd ate +Ġpre m +Ġopen ed +Ħ ¤ +ени е +Ġg ard +Ġstat ement +Ġsc rew +Ġpr ote +Ġc ards +Ġt ask +Ġeven ing +Ġst itch +in en +ĠB er +m ark +ĠD ad +Ġе ÑģÑĤÑĮ +Ġ× ŀ× +ìĹ Ī +Ġb an +Ġcl im +Ġfre edom +Ġnorm ally +еÑģ ÑĮ +å ¦ +Ġprov ided +Ġìŀ IJ +ĠìķĦ ëĭĪ +ĠK im +ied er +ìĿ Į +Ġcit iz +Ġb ike +Ġb ak +Ġno ise +Ġcl imate +iz es +å¾ Į +Ġincre asing +ĠTH E +Ġli qu +Ġperson ally +e f +res p +Ġleg s +ind er +Ġp ed +Ġë§ İ +Ġdep end +Ġvar iety +ĠIs rael +Ġwas h +å Ĩ +Ġqu iet +ĠJ ames +ĠJ ew +Ġfore ver +ĠI nt +Ġcoun ter +ur ance +ĠAny way +ca re +ĠOn ly +ci ón +ad i +ĠE v +ëĭĪ ê¹Į +ĠÎ ± +Ġslow ly +Ġо д +Ġnot iced +ier en +Ġfe ll +ĠÐ ij +Ġm ême +Ġwhen ever +! ) +ĠH y +å ¼ +ord s +us ion +ĠSt ar +Ġí ĺ +ĠM ac +ä¸ Ĭ +i ven +Ġìĭ ľ +ĠìĹ Ĩ +ĠT ur +Ġg er +r is +Ġve z +Ġл Ñİ +Ġvers us +ا Ø +ocol ate +Ġplan e +Ġz o +Ġsu it +Th is +Ġn erv +ĠA cc +Ñĥ ж +ìĤ ¬ +n h +em e +Ġa uss +Ġme as +Ġtr ès +Ï ī +Ñģ ли +ĠAr t +ĠSec ond +олÑĮ ко +ch o +it ect +е ÑģÑĤ +Ġb oss +Ġinc ome +ł ¤ +Ġsh ad +Ġapp ropri +ĠM al +op t +Ġart ist +Ġplay s +oth ers +ĠIn ter +Ġvir us +Ġh ung +Ġconst ant +Ġscri pt +Ġsn ow +ul f +k et +Ġdev ices +Ġmet al +ight s +ìĦ ¸ +Ġsal es +Ġve get +Ġcollect ion +Ġv ia +k er +Ġgot ten +O W +i én +Ġacc ur +Ġw ave +ult y +ĠA ir +Ġlead ing +ic ing +Ġcent ral +ĠChrist ian +f r +ĠAl though +Ġsong s +Ġf if +нÑĭ Ñħ +Ġbel ong +oss ible +ì ° +Ġphot os +is l +Ġrela x +s a +US IC +ê · +Ġman ufact +ĠTw itter +Ġdanger ous +Ġhy d +le ar +i ant +ĠâĢ ¦ +Ġsudden ly +Ġla ugh +Ġang le +ĠG ot +Ġwor ried +о е +Ġp ap +ĠM art +en o +Ġbatter y +Ġп оÑģ +Ġlight s +Ġar ms +ĠA bs +m es +âĢ ĵ +use um +Ġte a +ĠM ic +Ġfor mer +ograph y +Ġapplic ations +ĠD ire +çĦ ¶ +Ġfeed back +itch en +yor um +u ed +ig t +Æ° á» +os ition +ĠD el +Ġíķ ĺë +ĠB ack +ad s +Ġpr ime +ì£ ¼ +ì£ ł +× ij +Ġm ut +] . +ĠÐ Ĺ +lo c +k in +Ġexper t +Ġal right +ung s +Ġsupp ly +Ġleaders hip +ĠF ra +Ġtyp ically +Ġs el +Ġtre es +Ġ2 2 +h ar +Ġwor st +Ġbus y +ant o +ĠU p +ĠB as +Ġpresent ation +Ġstr ange +Ġth in +ÑĤ е +Ġveh icle +Ġд о +cell ent +7 0 +Ġt ired +Ġcris is +Ġt iny +as y +Ġr an +é ĩ +Ġfor ces +Ġо Ñĩ +Ġident ify +Ġass ess +иÑĤ е +S E +Ġcreat ive +ç Ł +Ġdep artment +Ġinit ial +æĪij åĢij +ĠD am +ak t +v ere +Ġinf ect +Ġp ump +Ạ¡ +Ġv iel +Ġr are +Ġd ot +ash ion +em pl +Ġf lex +Ġk on +Ġtr uck +Ġle ct +Ġpl astic +la w +Ġlik es +Ġr ough +ĠM AT +í ŀĪ +Ġcomm er +Ġas se +Ġc ake +Ġact ions +Ġad m +Ġother wise +ĠHe alth +Ġcoll e +à¹Ģ ภ+Ġr ub +å¾ Ĺ +æ Ķ +Ġsc r +Ġz um +ĠH im +Ġch amp +Ġconcern ed +Ġ5 00 +Ġpl ate +ĠO ut +Ġdon c +Ġequip ment +Ġta ught +ll ed +Ġí Ļ +iv a +Ġmot or + » +Ġgu ide +å ī +Ġstop ped +Ġr at +Ġlab or +Ġa im +Ġprep are +ĠÑ Ī +Ġshoot ing +ann ed +cri pt +Ġen emy +Ġdep ends +Ġn av +Ġb er +Ġland s +Ġun ivers +i u +Ġfact or +ok ing +Ġcar bon +b ut +ĠL ove +el d +ĠÎ µ +Ġg a +Ġé s +Ġbre ad +Ġvol t +í Ĭ +Ġwas te +Ġkeep s +æī Ģ +Ġst or +Ġhon or +Ġun less +Ġcol um +Ġë ĮĢ +Ġpl ants +Ye ah +Ġinclud es +ä¸ Ń +Ġo x +Ġpe ut +ë§ Į +ìĥ ģ +ist ry +ภ± +ĠDep artment +ant a +Ġfing er +Ġst retch +Ġsy mbol +Ġneigh bor +æ ¬ +ê° Ħ +~ ~ +ĠÑĤ Ñĭ +ĠA ber +k es +Ġmass ive +ĠC H +ĠS al +× ł +ãĤ Ĵ +Ġd ynam +ach e +ĠP re +Ġmon itor +ent ed +E O +Ġrais ed +ist ics +Ú © +Ġv ou +it en +¡ ° +Ġbusiness es +Ġe arn +Ġmob ile +id ade +Ġha be +y r +l ict +Ġcon duct +Ġfed eral +Ġw o +b u +Ġn one +Ġteach ers +ĠاÙĦ Ø +éģ ĵ +id ents +ا ÙĦ +Ġtre nd +еР¶ +Ġal bum +Ġm ich +b ased +ภµ +Ġtrans ition +Ġн о +õ es +h ost +ed y +ĠPro f +p an +ij n +Ġcapac ity +und o +Ġ× ij× +Ġbreat h +Ġм ен +Ġm ü +í Ļ +ĠA ut +hing ton +Ġn or +Ġg ain +po int +Y es +ĠØ ª +ĠN a +Ã¥ r +Ġi ç +ĠM ary +Ġsp in +Ġant i +åIJ § +Ġsome how +Ġlaw s +Ġmom ents +Ġg re +Ġmo ves +ĠW ould +Ġpred ict +Ġv ra +Ġ201 9 +¶ Ħ +Ġfund ament +2 5 +Ġp ure +Ġw ow +Ġis land +Ġinvest ment +Ġb ath +ĠY a +Ġhard er +Ġt ips +å Ĺ +Ġelect ron +ĠB ob +Ġb ond +od ies +ĠA ug +Ġgib t +Ġch air +Ġtw ice +w ood +Ġcl ar +Ġmas k +Ġhonest ly +Ġ201 8 +t ies +' , +Ġp ens +Ġsurpr ised +Ġcommunic ation +ãģ£ ãģ¦ +Ġsp r +Ġwh ose +Ġst ars +× IJ× +ĠâĢ ĭ +Ġproper ly +Ġg rew +os ing +Ġdi vers +A D +Ġem pt +Ġexp ression +Ạ¿ +ĠP al +ãģ Ĭ +Ġjust ice +Ġp air +w o +Ġse at +or ter +Ġlink s +ĠM er +Ġre nd +но е +up id +ĠH el +ĠM arch +ĠL o +Ñģ ÑĮ +Ġhas n +Ġev alu +ãģ ı +å¤ © +il os +Ġfund ing +Ġv en +u an +ĠM aster +ĠO l +ĠF re +Ġy ap +ĠS ir +s ch +Ġmist ake +am an +Ġdin ner +ĠWas hington +Ġorganiz ations +Ġж е +av ing +Ġv ÃŃ +Ġbirth day +Ġbe ar +ĠÙ ģ +Ġaff ord +Ġre ven +Ġrelationship s +r ough +ĠT ime +Ġt ag +ĠS un +u ary +ĠP o +c ar +ab ilities +Ġpr ison +Ġl ic +ìł ķ +id den +Ġspec ies +é » +Ġf irm +Ġsc ore +Ġd it +Ġspe ct +Ġp el +Ġcompl icated +æ¨ £ +Ġr ank +Ġoppos ite +Ġpick ed +Ġк он +el er +Ġm ig +ĠS l +ĠN et +Ġne ck +ĠFr ance +Ġtechn ical +ภ¡ +Ġmil es +Ġprim ary +Ġse in +s es +Ġla ughs +b ra +ÅĽ ci +ri age +Ġn ic +et ers +Ġà ª +olog ies +ĠI S +r ad +ud o +ı nd +m ar +Ġex ch +Ġcompet ition +Ġauss i +ĠS erv +Ġre nt +Ġch ocolate +Ġw ieder +Ġnear ly +Ġspe ech +Ġun c +Ġpar am +ĠBrit ish +Ġrem ain +ภģ +ur t +ĠØ ¹ +Ġcr ack +ail s +Ġprom ise +Ġpay ing +i ÃŁ +Ġad apt +ал а +Ġmov ies +Ġw ire +Ł ¬ +æľ ĥ +Ġter rible +Ġs ó +Ġperfect ly +åij ¢ +ord in +Ġj á +Ġimp ossible +ĠTh ree +Ġn h +Ġtur ning +r um +ĠB el +ig g +Ġrespons ible +и й +Ġincred ibly +w i +ian o +Ġhum ans +Ġà ĩ +Ġsetting s +Ġj oy +o ot +Ġdeal ing +ill ed +Ġsur round +Ġfollow ed +Ġposs ibly +Ġinit i +st en +Ġpr os +Ġcand id +Ġass ign +Ġviol ence +W ell +Ġr ise +P S +Ġtamb ém +Ġë ĵ¤ +i ance +y an +Ġaud io +ĠB et +ĠAmeric ans +ĠAs s +is chen +ìŀ ħ +Ġult imately +Ġpol ic +Ġmajor ity +éĢĻ åĢĭ +ĠFin ally +er ap +Ġgu ard +ĠMAT T +Ġbr own +м и +Ġch a +ĠHo ly +Ġnerv ous +ipp ing +ÄĻ d +ĠS a +ĵ ľë +¶ Ģ +l ie +çľ Ł +Ġn uc +ĠA pr +é Ľ +ĠKore a +eg o +ĠCan ada +Ġkön nen +Ġcomp ar +Ġg anz +ĠM ais +Ġthem e +Ġk i +Ġdraw ing +az on +ĠO ff +t t +ĠW ind +Ġtod os +Ġob vious +на Ñı +I M +ĠÐ ł +we ll +Ġbl ow +Ġho ok +Ġcir cle +Ġë³ ´ +Ġarch itect +ĠK r +Ġc ó +Ġprotect ion +eg a +å ĩ +Ġwatch ed +Ġans wers +Ġdi et +iv o +Ġpow der +Ġyour s +Ġhigh est +çĤ º +F F +å º +Ġbo ys +ö yle +Ġl unch +è¬ Ŀ +ĠI I +Ġset s +Ġmo le +Û ģ +Ġwin ter +Ġluck y +Ġrespons ibility +Ġsign al +Ġwond ering +Ġa x +Ġcook ing +ов оÑĢ +le g +Ġп оÑĤ +Ġsurpr ise +Ġdem ocr +Ġlo op +Ġj ag +Ġcur ious +Ġmarket ing +Ð Ŀ +ar on +ĠApp le +Ġvirt ual +Ġ19 8 +no on +ĠM et +оÑģ ÑĤо +об Ñĭ +it u +ĠA w +Ġbu ying +Ġrestaur ant +ĠB ud +Ġdou bt +Ġgr ant +Ġver d +Ġc ash +Ġfac ulty +Th at +ĠE in +å¤ ļ +Ġw ed +it ness +ĠM ag +n el +Ġn arr +Ġacc ident +Ġmed ium +em ents +Ġcr ow +n ight +ìĿ ¼ +ä¹ Ł +Ġlibr ary +аÑİ ÑĤ +Ġtamb ién +Ġrefer ence +Ġfour th +h ouse +v ention +Ġfill ed +ĠC our +ib r +Ġn g +Ġdevelop ing +Ġprov ides +Ġpo ll +Ġtra ffic +arent ly +à® Ł +Ġform s +Ġcl ient +Ġg entle +Ġmus s +ĠCong ress +ĠInd ian +ce an +Ġp il +Ġc zy +st ood +ut y +Ġn ä +Ġsp ending +Ġconst ruction +ina udible +Ġë§ Ī +Īë¬ ´ +Ġìĥ Ŀ +om a +os en +ag o +Ġlar gest +ãħĭ ãħĭ +Ġun iverse +b es +os a +Ġе го +Ġd ude +ĠM AR +Ġind eed +ε ι +Ġman aged +ĠSh ould +S o +Ġappl ied +Ġfair ly +ĠD en +Ġanal y +Ġconst antly +Ñģ п +H ow +ĠS ay +en cies +ĠP C +Ġegg s +à® ° +Ġet h +ĠEnt ão +in ar +i ot +Ġc z +ĠEurope an +ãģ Ī +ĠA M +Ġc á +Ġrad io +§ Į +Ġh ide +ä» Ĭ +ĠSt art +Ġcl ub +ĠH ope +Ġeff orts +lus ion +Ġc ities +h one +Ġreach ed +Ġgu id +ro id +Ġhar m +Ġcut ting +Ġb ul +1 8 +i est +ĠMe x +Ġ iron +çŁ ¥ +Ġafter noon +Ġha ll +Ġpr zy +Ġg osh +Ġinflu ence +Ġв ид +Ġincre ased +ĠMin ister +Ġdis ci +ĠP eter +Ġver t +Ġmen u +Ġse lling +ur ally +Ġqu ote +Ġ ¡ +Ġcontin ues +mp re +ĠÅŁ ey +it ution +Ġна Ñģ +c les +ĠGerm an +c zy +ĠÐ £ +B e +Ġk itchen +ĠT ry +i pe +Ġic on +ar p +Ġprov iding +ĠTr ans +Ġtechn ique +Ġh är +Ġinf rast +Ġsus p +ü ck +ic ip +ĠÐ ķ +Ġc in +ìĸ ´ë +Ġpr z +Ġcompon ent +Ġby e +ĠB ible +iz er +C h +Ġsol utions +Ġaccom pl +Ġ201 6 +I E +ĠT a +Ġass ume +Ġliqu id +Ġë¨ ¹ +Ġquar ter +Ġfem ale +ĠTh ink +Ġstat us +it ute +Ġco ach +Ġre in +Ġcomb ination +è · +ĠT er +Ġobject s +Ġdist rict +Ġmake up +Ġmur der +w as +f en +Ġbow l +Ġpub lished +Ġsp orts +ãģ ¡ +Ġident ity +Ġseem ed +Ġact ing +л Ñİ +ri x +Ġup load +Ġh ast +Ġbo at +ĠM od +ri o +Ġ = +Ġcy cle +¯ ¸ +Ġl oud +ust ed +com ing +Ġ201 7 +Ġon t +Ġleg isl +Ġst ruct +ĠSomet hing +Ġconf lict +Ġu pper +Ġman ager +Ġm ort +Ġf ra +ĠÄ ° +ĠM ike +ĠW ork +Ġn ó +ph ere +ĠìĤ ¬ë +ĠL and +Ġfil ter +Ġprom ot +æ ° +æĻ Ĥ +ķ ¼ +Ġrecord ing +× Ŀ +Ġassoci ated +Ġf uel +und er +Ġele ction +Ġemploy ees +ĠCom p +ÑĢÑĥ г +ĠW o +ro l +Ġsa ved +ĠH on +ĠV i +åĪ Ĩ +ac a +p ret +Ġw et +Ġst upid +Ġl ad +Ġf est +Ġw ake +Ġи н +Ġgreat est +ĠJ im +Ġserious ly +Ġì ¹ +Ġfeel ings +Ġ3 00 +i ation +Ġbeaut y +Ġìŀ ĺ +Ġs an +ĵ ł +Ġ- ( +Ġcons cious +Ġд ел +b ye +ç Ļ +M an +Ġlet s +Ġsho es +y d +ä¹ Ī +Ġdisapp e +ĠCount y +ĠSc ott +Ġbut t +Ġaqu ÃŃ +Ġconf ig +resp ond +LAU GH +© ëĭĪëĭ¤ +Ġdivid ed +Ġac qu +Ġz one +Ġk omm +a ção +ì§ ľ +c ut +Ġ2 3 +Ġmaxim um +ro g +Ġrun s +Ġcompon ents +Ġarri ved +Ġconf ident +ÑĢ ов +Ġhe ight +Ġpro ced +E M +ĠÐŃ ÑĤо +ĠM en +Ġtalk s +Ġconf idence +ĠChr is +Ġlead s +Ġn ose +f all +b b +ĠNot hing +is er +Ġindepend ent +Ġmin or +Ġsy m +l en +ci ence +Ġf ashion +Ġsex ual +Ġb un +h ere +Ġso il +Ġdies e +Ġsh ap +Ġempt y +Ġjour nal +ag on +ĠThe ir +Ġweek end +ÃŃ t +Ġer ror +Ġn ar +à ¸ +è © +an cy +Ġìķ Ĭ +Ġfore st +Ġha cer +Ġmiss ed +ãģ ķ +åı¯ 以 +Ġev il +Ġstor age +Ġsing ing +in ha +Ġkn ock +Ġimp ress +ĠоÑĩ енÑĮ +ĠGo ld +ĠS ur +ĠP ort +åİ » +ĠL ond +Ġfaz er +ot y +ot o +Ġan x +ĠWill iam +Ġexist ing +pl ace +ĠC D +Î ³ +ĠColl ege +l or +ĠE ast +s en +f ach +o ft +Ġexperien ced +Ġlo ves +im m +Ġpo ly +Ġes se +ì ¤ +ĠG rand +è § +ch er +Ġvict im +ĠG es +л ÑĮ +v ision +Ġt all +Ġl ens +Ġз на +ĠB oth +Ġì ² +Ġsust ain +Ġarg ument +Ġfact ors +Ġautom atically +Ġfr uit +Ġli ber +Ġa le +ĠP ress +ĠB a +ĠÐ ³Ð¾ +Ġhundred s +th at +ĠR ich +Ġreci pe +ĠI T +è ĩ +Ạ¥ +Ġdescri be +Ġdri ver +ĠO ct +ĠM at +д е +Ġme al +Ġlat est +Ġth erap +Ġcomp are +ĠAm azon +Ġì¢ Ģ +ĠRuss ia +Ġstr ing +Ġk a +ĠComm un +Ġd ia +I s +Ġmill ions +Ġcor por +Ġcor respond +Ġfix ed +ĠJo e +Ù İ +Ġview s +Ġr iver +Ġstud io +ig ger +Ġfl avor +Ġpres ence +Ġun its +Ġsa ving +av our +Ġp esso +or ith +Ġh ers +ĠN at +as ion +ĠFr ank +о ÑĪ +ÅĤ y +í Ħ +Ġein em +Ġfun ctions +um an +Ġn orth +Ġìł Ħ +Ġhor se +v id +Ġple asure +а ÑĪ +é es +ind a +Ġt ail +Ġexpl ore +S T +Ġcommer cial +ĠD uring +ar l +] : +f it +Ġr ates +æ ³ +M USIC +Ġhous ing +Ġein er +Ġsitu ations +æ ĭ +Ġdec re +Ġappropri ate +ен но +% . +Ġb ac +Ġw at +ens ity +ä h +kn own +it z +Ġemot ional +erv ation +Ġbl ind +1 6 +í ĥ +大 家 +Ġjo ined +Ġloc ated +ĠÑģ м +ad as +ber g +Ġd ess +Ġde ar +ed en +c os +Ġad opt +1 00 +ow e +ĠChe ck +ism o +Ġsim pl +Ġang ry +Ġмен Ñı +ĠC am +Ġp ad +Ġatt end +Ġsam ple +æĹ ¥ +Ġì Ľ +ĠI N +ul ous +ĠS ar +ĠSh ow +Ġinfrast ructure +ĠAug ust +Ġless on +Ġn iet +æ İ +Ġfo i +Ġbro ke +t r +ç ķ +Ġ4 5 +Ġg ew +Ñĥ п +at i +Ġmaint ain +Ġart ists +ing er +æĿ ¥ +er ved +I A +Ġequ als +Ġoper ation +ill y +ĠëĤ ´ +Ġcrow d +Ġintern al +Ġtest s +ĠR ock +ĠC ons +ĠëĦ Ī무 +w ar +Ġs ou +Ġch art +ĠJ une +ĠApr il +g ent +Ġv ent +Ġqu and +ĠKore an +im o +ç ī +id ers +Ġmount ain +ÑģÑĤ ав +æľ Ī +ij k +Ġdiscover ed +ĠS und +ĠS il +Ġso lo + ´ +Ġsch ol +ĠE ach +ç µ +Ġb are +Ġí Į +ĠvÃŃ de +Ġingred ients +ĠIt s +Ŀ¼ ê³ł +Ġì Ĭ +Ï į +ĠLe e +Ġsc ary +Ġprinci p +Ġspirit ual +ì ħ +ĠH old +æ²Ĵ æľī +Ġdef ine +ĠL es +ĠN or +ĠE nd +Ġbl og +ĠG reen +аеÑĤ ÑģÑı +p art +el es +äº ĭ +ĠUnd er +Ġpart e +Ġ3 5 +Ġse ctor +ĠS ept +Ġaut h +à® ® +om in +Ġcl ients +Ġc i +ĠFr iday +er as +Ġtw e +ul ated +Ġcult ural +ĠÑģв о +Ġëį Ķ +Ġà º +Ġpar ce +à® ² +Ġtrad ition +Ġjud ge +ĠGen eral +Ġdeterm ine +ĠIs n +ĠP L +ne ath +Ġmatter s +íķ ´ì +! ] +а Ñħ +Ġpo ol +Ġvari able +Ġvacc ine +Ġcaus ed +Ġw est +ĠY ep +f ast +Ġph ilos +hor a +Ġcontinu ed +Ġunf ortunately +ãģ į +æ ķ +Ġfl ight +Ġw rap +Ġhu h +ĠAbs olutely +Ġp ink +Ġrem ains +Ġn é +Ġf le +ĠS ol +Ġlos ing +Ġalg orith +Ġrequ ires +Ġfound ation +ĠB ur +Ġprofess ion +ĠM id +Ġë ŃIJ +c an +ĠM il +Ġyoung er +Ġappe ars +ter m +íķĺ ê³ł +ac le +ĠLond on +Ġengine ering +ภ¢ +Ġadv ent +ìĦ¸ ìļĶ +Ġê¸ ° +ĠM aj +ÑĢ ем +ing u +ĠU K +u ro +s pe +Ġt ent +Ġreport ed +ĠA L +H ey +Ġë§ IJ +Ġd ent +ĠAustral ia +ĠJan uary +³ ´ +ag ues +ars h +r ig +Ġtien e +ภ£ +Î ® +Ġmach en +un te +Ñĥ Ñģ +Ġelect r +Ġtut orial +Ġpl aced +ĠìĿ´ ê±° +ĠCoun cil +í ĸĪ +°ë ¦¬ +ah ren +Ġê·¸ë ŀĺ +Ġpro ve +f ol +Ġqu er +Ġche ap +ĠF ather +ĠP ower +ĵ ľ +Ġpur s +Ġes p +ĠB re +ê¸ °ë +om as +æĥ ³ +ил ÑĮ +Ġge ht +os ter +ê³ ¼ +Ġfil es +ĠÐ § +be ll +Ġwh om +Ġë ĺ +Ġex cellent +Ġdat ab +Ġg ö +Ġì§Ħ ì§ľ +Ġbelie f +j et +Ġj ack +Ġsw im +ri al +um in +a uc +Ġso ll +Ġess ential +íķĺ ëĬĶ +Ġev ol +cha ft +ain e +th let +Ġinc or +Ġreport s +Ġdefin ition +ke l +Ġcirc um +Ġprodu ced +Ġ× Ľ +ant ic +n et +Ġa ward +Ġd urch +Ġtrans p +Ġm ale +¦ ¬ë +Ġmo on +ĠGe orge +Ġfly ing +i ó +Ġs ources +Ġpl enty +ĠDem ocr +R O +Ġ 00 +Ġsec ure +ĠB ir +ra in +Ġz ur +Ġeffic ient +Ġrepe at +Ġmethod s +Ġcal m +Ġdiscuss ed +ĠìŀĪ ëĬĶ +Ġser ver +an ie +ĠInst ead +Ġide al +Ġcon ven +Ġhop ing +ĠT or +Ġdep th +Ġhe aven +EN CE +Ġhab it +gr ad +Ġfl ag +Ġin e +Ġk h +ĠL I +Ġfac ing +ĠA U +ĠT im +Ġg em +ĠJ ul +Ġel a +iz za +Ġfe llow +Ġqu el +Ġsp oke +Ġcitiz ens +u ge +é ĥ½ +Ġp ages +Ġf asc +Ġrelig ious +at en +Ġch apter +ĠV al +Ġcons ult +ĠM ill +g l +op er +Ġinf in +Ġmar riage +Ġmedic ine +Ġд в +Ġdog s +Ġinstr ument +ĠEx act +á n +Ġ20 21 +Ġf er +Ġwe alth +Ġgr ade +Ñĭ Ñħ +Ġcr ime +Ġth read +Ġess a +Ġw ine +co hol +ph a +ภĩ +og ue +Ġins urance +arr ator +ĠSept ember +Ġv id +ĠSp irit +Ġg est +ĠRuss ian +Ġproper ties +Ġart icle +Ġunder neath +y er +Ġjo int +Ġrelative ly +Ġin ch +Ġdesp ite +ĠG ree +Ġclass ic +Ġsupport ing +Ġinst ruct +lus ive +Ġdi agn +æ Ĭ +Ġadminist ration +аб оÑĤ +ĠO pen +æīĢ 以 +Ġп ок +Ġdoll ar +Ġconse qu +o ber +ĠGerm any +Ġter r +ĠQ U +ĠÐ ĵ +ç ¾ +Ġstrong er +É Ļ +ĠÙ Ĭ +ĠiP hone +Ġfab ric +ü h +Ġen em +æ ¯ +Ġsub t +E E +ond e +Ġcre w +Ġremo ved +Ġl ady +Ġpot entially +ĠÐĿ о +y al +Ġsym pt +Ġar my +Ġintrodu ced +t es +Ġaspect s +1 4 +ĠL ou +Ġ ) +Ġde ploy +p et +Ġh an +ĠW atch +Ġweap ons +Ġph en +Ġreg ister +Ġein fach +Ġsp ort +Ġbr idge +Ġin ner +Ġminim um +Ġw itness +Ġes o +Ġvill age +Ġown er +¦¬ ê³ł +Ġsc ream +il ed +Ġp itch +b ru +Ġadv ance +ä¸į æĺ¯ +Ġsupp ose +ĠAt t +еÑĤ ÑģÑı +Ġdiffer ences +ak ed +Ġinter pret +à ¦ +iend o +Ġabs ol +ĠбÑĥд еÑĤ +Ġë ² +Ġtri al +Ġthink s +ly ing +cept ion +ĠAfric an +Ġchem ical +Ġta pe +Ġconvers ations +Ġdistrib ution +t i +ĠA I +Ġfl ash +Ġunder stood +ĠGovern ment +å° ı +! ? +ĠS k +ê± °ë +ri er +T S +ĠAcc ording +Ñİ ÑĤ +Ġsp ons +ÑĤ обÑĭ +Ġval u +ere m +icht ig +Ġresist ance +ĠG al +ger y +Ġbeg ins +Ġadv anced +Ġrele vant +Ġpolit ics +ĠF am +Ġç ok +ĠN ever +ill ing +Ġfoot ball +и и +ĠI D +ĠAfric a +Ġfing ers +Ġб олÑĮ +Ġà ¡ +Ġcl ip +ĠL at +ãĤ Ħ +Ġì§Ģ ê¸Ī +es se +Ġvo or +Ġas ide +æ ŀ +Ġto ward +Ġb at +Ġval id +ĠM ens +Ġcomplet ed +ı ÄŁ +Ġpod cast +ĠB on +Û Ĵ +ĠJ uly +il a +Ġpack age +Ġpull ed +ch ar +ĠM el +o is +Ġs outh +Ġë Ķ +Ġimport ance +Ġp ushing +Ġis ol +Ġstand s +c ill +ä ¼ +Ġ ðŁ +or i +ê° ģ +Ġhom es +Ġconcern s +Ġb iz +å ½ +b ie +Ġb is +Ġge ar +ĠM S +Ġh un +ĠM att +Ạ£ +se y +ĠSec ret +Ġod d +ĠM ax +oll y +f ord +ĠS H +Ġrepl ace +Ġnav ig +Ġin i +и Ñı +Ġgi ant +Ġma nd +ĠH app +TI ON +g un +iam o +ìŀħ ëĭĪëĭ¤ +Ġg ap +Ġê tre +Ġclass room +Ġhy p +ak i +è ® +is ters +ack s +ĠÑģ о +Ġb ug +Ġgra v +am in +Ġevery day +Ġì ¡° +Ġgard en +ce mber +Ġest o +åĹ İ +Ø ¬ +Ł ° +å ģ +Ġr om +Ġìłľ ê°Ģ +Ġfall ing +Ġfa ult +ell y +Ġch est +Ġл и +Ġpot ato +Ġbuild ings +Ġoper ating +Ġp are +w r +D on +ĠF our +Ġv ul +Ġl á +Ġfr ust +ĠD ann +ol es +ny a +Ġì ¶ +ĠÑĢ аÑģ +× Ľ +Ġa ÃŃ +w ord +Ġweap on +Ġob t +ĠF all +ĠSte ve +Ġmix ed +Ġp ode +ĠA S +ĠL eg +Ġdes c +Ġspl it +Ġemer gency +ĠS ing +Ġprof it +Ġtyp ical +ĠDon c +Ġannoun ce +ĠTe x +Ġsac r +tern al +Ġcomm ittee +ig o +Ġdi am +ph as +Ġdef e +ĠProf ess +Ġdec l +Ñĥ ÑĢ +2 2 +ol f +ĠM ond +u y +Ġa y +Ġl em +Ġlove ly +ĠC ould +Ġgu ar +H H +Ġcare fully +ĠL isten +Ġк ÑĢ +Ġyou th +ĠThere fore +Ġdream s +ĠJe ff +? ] +Ġë Ī +D A +Ġb odies +au x +Ġtechn iques +Ġmechan ism +× ĵ +Ġо ни +Ġdes ire +à ® +ĠV o +qu es +ĠÑĥ же +ĠWho a +ĠG ame +Ġh al +an ish +Ġpract ices +5 00 +Ġsort s +up s +ate ful +Ġhers elf +Ġgu itar +Ġprop os +Ġsit es +Ġbe ach +Ġ× ¢ +ç¬ ¬ +н Ñĥ +Ġdr am +ĠNo ve +V E +r ant +Ġpl ot +ĠìŬ 기 +ĠC a +Ġestab lished +Ġ201 5 +Ġinsp ired +Ġannoun ced +ä¸ ª +ĠÑĤ ÑĢ +Ġ2 6 +Ġv oy +Ġte ch +ìł ģ +Ġprocess es +ont o +ĠP an +Ġrap id +ist an +Ġ19 7 +Ġrelig ion +Ġ2 8 +Ġsm ile +Ġb ab +Ġ Ú© +ĠV ir +Ġsched ule +Ġexec ut +Ġpr on +Ñ į +ĠÐĿ Ñĥ +m usic +ìĽ IJ +Ġg an +ìĭ ł +Ġdef ault +Ġbe m +Ù ī +Ġfor ced +ĠOb viously +Ġst one +Ġt ie +Ġdrink ing +Ġser ved +C ause +Ġcon ference +ĠExact ly +ãĥ Ī +ł ľ +ìĻ Ģ +ĠR a +Ġf ake +Ġdif f +ãģ © +Ġchalleng ing +Ġì¤ ij +Ï ĩ +ä»Ģ 麼 +Ġintellig ence +re te +Ġstud ying +Ġapp oint +Ġt an +Ġи м +Ġcur ve +ĠTe am +ĠA z +Ġз д +ĠMus ic +f ield +ir ation +Ġfail ed +Ġno vel +Ġdifferent ly +Ġes cape +ĠY o +ĠOct ober +ı yor +Ġdescri bed +Ġcon vert +ac ement +Ġhot el +is ation +Ġsu is +ãģ ij +å ŃIJ +æĢ İ +Ġwalk ed +2 00 +Ġneighbor hood +is p +ĠL os +Ġh idden +Ġ2 7 +л е +Ġph r +ĠIs land +ĠSt reet +end a +hip s +os ure +Ġdefin ed +ภ§ +Ġv ida +Ġlab el +ĠEvery body +Ġjo ke +ia o +ا ÙĨ +Ġa thlet +... " +ĠF ire +D o +Ġdef ense +Ġent ertain +á t +Ġpolic ies +Ġal cohol +ĠEng ine +Ġg al +ĠJ ud +Ġvol unte +ick s +et a +ag t +Ġ× ķ +Ġm ö +1 3 +Ġenc oun +Ġe h +Ġor ange +Ġabs or +Ġsp aces +ĠNove mber +êµ ¬ +i at +Ġt am +ck now +Ġst orm +ĠDire ctor +Ġpre gn +ĠìĿ ¼ +Ġо п +Ġres ource +Ġb ard +ne w +ĠDe cember +u its +Ġwe il +Ġconst ruct +s i +n ic +Ġfl our +Ġrest rict +ü t +Ġentire ly +Ġbreak ing +ent lich +Ġtw enty +Ġcaus es +Ġele v +ĠS pr +ĠIntern et +Ġk iss +Ġoper ations +s zy +Ġë Ĭ +Ġscient ists +Ġgr own +Ġown ers +out s +Ġcour ses +Ġus ual +Ġin n +Ġtrans m +ñ o +Ġnu est +к ов +Ġcateg ory +ĠL ife +ĠPl us +Ġat mos +wh ile +Ġrecord s +Ġde ÄŁ +ëĭ¤ ê³ł +ĠìĤ¬ë ŀ +Ġrequire ments +in n +Ġimm ig +Ġdeep er +ç ´ +Ġapp s +Ġcolle agues +ż y +Ġoff ers +Ġt á +Ġcolum n +la ud +I R +ĠM s +Ġexch ange +l as +ĠL aw +ĠJ on +is se +ro gen +Ġmo i +× Ĺ +Ġs ending +Ġhe llo +е е +ÅĽ Äĩ +Ġsuc ceed +Ġsuff ering +Ġad vert +Ġì£ ¼ +çŁ¥ éģĵ +Ġrec o +ın ı +Ġк ом +all ey +Ġfail ure +ie j +Ġëķ Į +Ġdrug s +Ġcu ando +Ġìĸ´ë ĸ +ĠAb out +Ġqu ando +9 0 +ĠF ed +1 7 +S h +in ho +ĠSund ay +ĠPh il +Ġacad emic +ĠIn c +Ġmaint en +åĩ º +Ġre ward +er d +Ġcomm itted +ìĬ ¤ +г ÑĢ +Ġstand ards +Ġk al +Ġint ention +ĠZ h +Ġa cknow +ä ¿ +Ġ== = +og y +å § +Ġfilm s +is k +Ġte eth +Ġstrugg le +r d +u en +Ġdis s +ĠD ar +am y +Ġenem ies +Ġve loc +ĠC all +um bs +иÑĤ елÑĮ +Ġo cean +é d +ìļ ° +Ġtre m +ient o +еÑĪ ÑĮ +ffic ient +Ġbott le +Ġinstit ution +est y +ĠH an +h ab +ëĬ ĺ +Ġar rest +éĤ Ħ +Ġlet ters +oun ce +í Į +A n +Ġcreat es +Ġcl ock +Ġdeb t +Ġan cient +ific ations +g i +B ut +ĠT u +k l +Ġb order +Ġo ok +ĠB ay +est a +Ġë³ ´ì +Ġw ra +pre ne +Ġê² Į +ang le +Ġbelie ved +ien cy +ak a +Ġcrit ic +Ġb omb +Ġha m +ĠÐ Ľ +êµ Ń +ĠGu ys +ros oft +Ġcr im +et ch +AR R +Ġs ight +и на +Ġa in +á» ij +is che +Ġau x +Ġnum er +Ġsurv ive +A ll +B C +Ġs z +Ł ¬ë +Ġj am +ĠCour t +Ġall es +Ġtr igger +Ð ŀ +Ġform at +Ġdec ades +Ġc es +Ġsign s +Ġrob ot +ĠCh urch +Ġa z +Ġs oup +ĠTex as +ut en +ĠÑĩ ÑĤобÑĭ +Ġneigh b +ĸ ×Ķ +Ġcommunic ate +Å ¡ +Ġel imin +Ġfrequ ency +her n +id os +Ġem phas +Ġmess ages +Ġg ender +ĠW enn +Ġв о +Ġpr ices +ol o +Ġп он +w ing +ĠF il +а ем +ĠC ur +Ġfal se +Ġfield s +Ġs é +2 4 +Ġm ac +u ÅŁ +Ġlay ers +Ġadv oc +w an +Ġk ar +ĠÅ ŀ +Ġdec or +Ġwall s +o e +iss ions +Ġres ol +× ¢ +ĠCar ol +ĠV ide +le ep +ĠY OU +Ġfl ip +Ġsur gery +Ġch op +U R +. , +Ġag ency +Ġwant ing +Ġsol ar +Ġhor iz +ĠAd am +Ġstay ing +ol ic +Ġgr ateful +Ġrem ark +Ġtechn ologies +Ġprote in +å¿ ĥ +д ел +ĠM ont +Ġshould er +Ġz a +re y +ĠO oh +Ġst y +ic ar +оÑĤ ÑĢ +Ġrout e +ĠT urn +Ġb om +Ġdeb ate +Ġposs ibility +Ġíķ ´ì +ap a +Ġinv ent +ür lich +Ġprof ile +Ġsen ior +pp y +v as +Ġm undo +ate ver +Ġapp arently +en er +× IJ +ç Ń +Ġprec is +Ġal ign +Ġkn ife +ĠRo bert +å ĭ +Ġfo ol +Ġinv ite +us ing +Ġcircum st +Ġcapt ure +Ġd ough +ĠS and +Ġse u +ĠNew s +Ġb ite +Ġne ut +w ide +Ġlect ure +Ġëĺ IJ +Ġorigin ally +Ġcho ices +ĠG ar +Ġver se +Ġl it +Ġ19 6 +íķ ł +Ġmeas ures +ç ões +w ater +ri ve +Ġz ijn +í ģ +ĠB us +Ġhe b +е Ñħ +ĠK ar +ĠN ão +Ġkill ing +à® ª +Ġmir ror +m od +Ġm ol +Ġcre ation +Ġest im +Ġatmos phere +Ġg am +Ġt ables +is i +ĠL ittle +Ġt as +ĠE le +é l +Ġscen es +Ġt one +Ġaffect ed +ĠAU DI +ĠBr own +I f +ĠÙ ĩ +ĠDan iel +羣 çļĦ +qu er +ch i +íķ ĺë +Ġmist akes +Ġs la +ãĤ ¤ +Ġent r +Ġе Ñģли +Ġsh out +Ġport ion +Ñ Ĺ +Ġpre viously +á» Ļ +ĠпÑĢ ед +оÑģ ÑĮ +Ġhead s +ç İ +å Ń +åľ ĭ +Ġgr ass +ภ° +cri be +Ġqu é +ĠSp anish +Ġoffer ed +ĠбÑĭ ло +ĠCl oud +Ġve ctor +ĠH uh +Ġk ad +if ts +ĠÎ ½ +Ġhung ry +Ð ¡ +Ġpar all +AN D +ĠvÃŃde o +iz z +Ġocc up +Ġí Ķ +Ġsee k +h es +Ġdo ors +Ġhous es +Ġconsider ing +Ġgradu ate +Ġf ulf +è ¡Į +è £ +Ġext reme +Ġflow ers +it ate +ĠP ri +Ġfundament al +Ñĩ аÑģ +è¯ ´ +Ġtext ure +į ĺ +ĠAN D +à® ± +ĠT em +Ġn ada +ì§ Ħ +Ġcelebr ate +um s +Ġp ill +Ġи ли +go ing +Ġh ip +Ġsupport ed +Ġper man +Ġagre ement +Ġty m +Ġë ij +ĵ¤ ìĿ´ +Ġpurch ase +í Ķ +ĠPl an +eg en +Ġrec over +P U +ĠMic rosoft +du c +Ġhol es +Ġdro pped +Ġp ig +Ġend ing +Ġattack s +be c +Ġre n +Ġr app +Ġìļ °ë¦¬ +Ġter ror +Ġ× Ļ +Ġed it +Ġa o +. +Ġhero es +ĠB oston +Ġdepend ent +Ġmotiv ation +fl ix +Ġse am +ки е +Ġdra in +od ed +Ġgu ilty +ĠJ enn +ing en +Ġgrant ed +ĠK elly +ĠS av +ĠUn cle +ĠHon estly +EL I +Ġnavig ate +Ġbless ed +c ore +Ġear ning +Ġsign als +Ġdis k +ial s +Ġag es +æ ħ +Ġpartic le +ĠÑĩ еÑĢ +Ġcan n +Ġt ier +Ġstat ements +ê³ł ìļĶ +ĠëķĮ문 ìĹIJ +ĠCh o +Ġpol ar +an ç +ĠK enn +ĠN i +ĠF ight +or gan +é ķ +ĠCh a +ĠS ÃŃ +ãĥ ª +Ġs lic +Ġcert ific +Ġtempl ate +ĠFed eral +Ġconsider ation +Ġexpl o +ĠM ain +ĠN E +Ġalong side +Ġd ressed +ĠP oint +Ġenviron ments +Ġpró xim +Ġda ar +Ġprom pt +Ġpurs ue +Ġentertain ment +Ġth roat +Ġproblem a +Ġm art +ì ¼ +Ġprov ider +Ø Į +Ġ× Ĺ +int e +m aking +Ġstro ke +Ġtiss ue +U n +Ġpre cious +ĠAr ts +ink ing +ĠÐŀ н +Ġи Ñģ +n ah +ĠÐķ Ñģли +Ġcor ners +Ġtrick y +in ch +l ijk +Ġpress ing +le vel +AN G +Ġrad iation +ìĦ ł +Ġconf ront +Ġv et +Ġrepresent ative +Ġprop ag +Ġcra p +ĠDe c +Ġr amp +еп еÑĢÑĮ +u és +ess en +cri ption +Ġb ills +ĠMatth ew +Ġan ime +ấ t +Ġlow est +h as +sc reen +og rap +ал о +int on +ĠJ ah +èĢ ħ +it Ãł +Ġk ay +Ġrot ation +ĠW ere +abe i +Ġtri als +Ġle ver +ight y +Ġsp oon +Ġh unt +c ling +Ġdis m +ĠболÑĮ ÑĪ +Ġass ault +Ġíĺ ķ +Ġweek ly +Ġm ismo +Ġgen etic +ul pt +ĠStud ent +Ġreal istic +Ġauthent ic +æī ĵ +ast a +Ġarrest ed +Ġguid elines +Ġ×ľ× IJ +Ġд ав +ĠCom ing +f ür +Ġrequ ests +ĥ IJ +Ġanaly ze +Ġinter ess +Ġh alt +ĠO per +on om +Ġd uck +Ġwith d +s er +ĠÏ Į +ĠHist ory +Ġyout ube +ãĤ į +Ġsab er +w alk +f ont +Ġover view +3 9 +ü y +ett i +Ġfro zen +Ġf lesh +ÄŁ i +ĠP M +ĠìĻ Ģ +é ¢ +ÑĨи и +Ġê¸ °ë +íģ ¬ +Ġpr ose +oo oo +r ates +W S +Ġautom atic +Ġcollect ing +Å ij +Ġneighb ors +» . +ĠEx pl +Ġcir cul +co ver +we g +Ġstick s +Ġe ller +Ġw ww +Ġd orm +ĠEx per +Ġstat istics +Ġemail s +Ġgra ve +im iz +H S +Ġu it +, ' +Ġlas er +è ī +ĠÑĤ ем +Ñĭ ÑĪ +Ñī Ñij +Ġgen au +Ġtien en +Ġmed itation +ĠOr gan +Ġest imate +Ġë¬ ´ì +l ets +Ġn Ãły +Ġmind set +Ġres on +Ġm és +Ġnumer ous +Ġvie lleicht +ĠTh ird +u ous +ĠDe ad +ан д +H N +Ġrac ing +Ġag ents +ĠU t +Ġte ar +ĠH P +Ġchem istry +Ġsurv ival +æĸ ° +Ġconvin ced +Ġ ; +Ġreg ulations +ĠE S +åĴ Į +3 00 +Ġen se +Ġì µ +Ġd ict +G A +Ġah ÃŃ +åĭ ķ +Ġte j +Ġо ÑģÑĤ +ĠE lect +Ġintellect ual +Ġbi as +Ġbur den +çĤ ¹ +Ġìĸ´ëĸ » +Ġche er +Ġso ph +Ġportfol io +ub a +Ġest os +T V +F or +Ġas h +Ġkom mer +Ġcollect ive +Ġw rest +ĠJ etzt +ĠW at +re ich +Ġprim er +act ive +Ġm ie +ick ed +Ġhun ting +Ġtest im +Ġcompass ion +ĠØ ± +Ġbr ut +Ġsal ad +об Ñīе +Ġsol ving +Ġflo ating +ç · +Ġattract ive +ÙĪ ÙĦ +Ġper d +if fer +Ġsc ulpt +hh h +ĠWe ek +Ġent hus +Ġn ad +Ġmer ch +ĠíĻ ķ +Ġm ile +好 äºĨ +ĠÎ ¸ +ĠëĤ ĺë +éĩ į +3 8 +Ġch ains +ĠAl most +Ġtick ets +r in +ĠC C +Ġdistrib uted +abet es +Ġtemper atures +Ġg ained +Ġflex ibility +Ġscream ing +Ġab road +un o +Ġentreprene urs +ĠNet work +ĠCanad ian +Ġpre v +Ġs ö +ĠÑĤеб Ñı +ĠP oke +ĠP od +ĠTur key +çı¾ åľ¨ +Ġabst ract +Ġsn ake +ĠAm y +ĠëĬIJëĤ Į +Ġbra ve +ĠìŀĪ ìĸ´ìļĶ +ĠK al +Ġ200 7 +á rio +Ġmark ed +gin es +Ġall oc +ON G +Ġscient ist +Ġes ca +Ġrac ism +× ij× +ĠS ams +ĠP enn +Ġload s +Ġà® ¨ +ü ber +M e +ix ò +Ġper ò +an ne +Ġexp ressed +м еÑĢ +Ġmo et +Ġret urning +n ia +Ġexp on +P ro +Ġlo yal +M L +Ġl amp +Ġsh y +Ġcomp osition +ĠL y +Ġmagn etic +Ġprem ier +Ġmeasure d +Ġsumm ary +Ġattack ed +Ġfin ishing +Ð Ĺ +ç ¥ +Ġs its +Ġhyd rogen +Ġma i +ĠDeuts ch +as ı +Ġobt ain +v ie +Ġso it +Ġë° Ķ +Ġl ane +Ġconse gu +в о +Ġe ase +ak in +ĠF a +Ġunt uk +Ġbur st +Ġc um +al ım +ú blic +id i +ĠRoy al +ĠK on +Ġcommon ly +Ġremo ving +Ġj ur +il ib +Ġan ch +íĸ ī +Æ°á» £ +ĠÐľ Ñĭ +ĠAn th +ĠS Ã¥ +Ġinter rupt +Ġst ere +ĠO S +ony m +ter y +ĠMar ia +ê² ĥ +Ġexpl oring +Ġtransp arent +Ġf ate +ĠJ ung +Ġgr up +Ġdark er +ĠD oug +Ġman e +æĶ ¾ +ạ i +d ri +lo ok +ĠDes ign +Ġtut aj +Ġhorizont al +re on +ort e +ĠCor rect +ĠSte ven +Ġv ine +0 2 +i Äĩ +Ġsie mpre +ĠK ey +åĥ ı +ĠG ames +Ġna ar +Ġshock ed +el ve +ĠR ose +ìĭ ¬ +Ġstop ping +oh l +ĠM ix +Ġsuff ered +Ġsig ma +Ġweak ness +ĠO w +ี à¹Ī +I F +Ġà® ħ +ad ed +ĠNet flix +an es +Ġrem ained +ir y +Ġr ip +ell t +Ġsil ent +Ġpro ven +Ġtox ic +Ġal umin +Ġmulti pl +al and +Ġ3 4 +0 6 +ĠB ru +Ġìłķ ë§IJ +J ust +b oy +Ġsho e +Ġcreat ure +Ġhead ed +ĠоÑĤ к +æ ± +Ġess ence +Ġremark able +Ġnú mer +Ġd rew +Ġpu zzle +ĠLibr ary +ĠF u +ash es +k k +ĠI st +¦ ° +ĠB ry +Ġc eremony +Ġà® İ +Ġc ri +e qu +ãĤ ¢ +Ġpri ze +Ġdim ensions +og ram +Ġle ather +Ġpop ulations +u um +Ġve gan +Ñı д +Ġcó mo +å Ħ +Ġstri p +å £ +Ġvac ation +ħ ķ +Ġme als +ili pp +Ġ ents +ar am +ric ht +Ġgra in +ĠSp ain +Ġche ek +ĠA ff +I ON +ĠBr ing +Ġ3 8 +iel en +ul u +ĠболÑĮ ÑĪе +Ġannounce ment +ĠÑĤ ÑĥÑĤ +ĠPro phet +ard o +3 7 +Ġw oke +Ġtransl ation +ĠN OT +ĠC L +Ġd Ã¼ÅŁ +ÑĨ Ñĸ +ac er +ĠL oc +Ġper ception +N O +Ġdies en +L ook +he art +av ed +Ġbound ary +Ġfl ows +Ñij м +Ġarg uments +Ġelect ions +ı s +Ġhe ck +Ġsuit able +Ġf iber +ĠSt ra +x y +ĠH um +Ġmonth ly +u per +Ġgol f +Ġl ately +ĠG ard +ĠR en +ĠA st +ĠF ant +аÑģ Ñģ +Ġobs er +ë ¡ľ +Ġeas iest +į Ķë +Ġwebs ites +p ol +Ġco con +Ġà® ĩ +ĠV eg +Ġwalk s +Ġint ro +Ġdirect ed +ĠAn na +Ġëĵ¤ ìĸ´ +ĠEaster n +ĠS aint +ĠB ow +Ġro ast +ĠU RL +Ġjed en +ur as +aj a +Ġse mi +Ġrapid ly +Ġtarget s +ĠCont rol +Ġb ah +Ġref lection +Ġcreat ivity +hold ers +Ġìĺ ¬ë +Ġamong st +Ġfeed ing +ÑįÑĤ омÑĥ +Ġвид е +Ġë§Įë ĵ¤ +ĠSm art +Ġrel iable +Ġvez es +Ġ× ¨ +ch uckles +az ione +ĠWilliam s +Ġa ç +Ġsle e +е Ñī +Ġtim eline +Ġthor ough +á» į +ĠO t +ạ n +Ġimag ination +Ġmechan ics +r ist +Ġclaim ed +ÏĦ η +ê te +ĠHur ry +ĠiP ad +Ġconst ru +ĠC la +ĠAl s +ä¼ ļ +ut z +Ġcult ures +Ġìĸ´ëĸ» ê²Į +Ġbelong s +Ġy er +ĠDoes n +Ġge omet +Ġb id +Ġfo am +Ġh ob +ĠBrit ain +Ġsubst ance +Ġann iversary +ĠëĦ Ī +Ġnot ed +Ġgovern or +Ġstock s +3 1 +Ġdi ye +ìĬ ¤ë +Ġre b +z el +Ġmultip ly +Ġoper ator +Ħ¤ ìļĶ +Ġwat ers +Ġd är +Ġuns er +ĠEliz abeth +é« ĺ +Ġincreasing ly +ĠG ro +Ġen gines +ir s +Ø « +Ġtre asure +P C +in ction +ir i +Ġacc um +Ġvari ation +Ġp om +Ġtit les +ĠF est +ó s +Ġeld er +ny m +r un +Ñı в +Ġinnov ative +Ġnom bre +Ġco inc +Ġfr anch +Ġent onces +Ġnicht s +Ġexc lusive +ĠChe ers +ĠB i +u je +æŃ ¡ +Ġp ok +ĠP rem +Ġrock et +ELI PE +Ġhosp itals +ri um +Ġjust e +Ġham mer +Ġquant um +Ġrespons es +ll y +end i +Ġact ively +Ġfr idge +i ate +l ong +Ġqu em +Ġdeath s +Ġsuper ior +ck en +ìĿ´ì ĹIJ +kt op +Ġgather ed +£ ¨ +Ġd azu +Ġreci pes +Ġbu zz +c en +Ġany time +ons ense +Ġcirc les +Ġsol ved +Ġìĭ ł +Ġcoron avirus +ĠLu ke +Ġbu bb +Ġcont empor +r zy +ĠJ ane +Ġд ом +Ġscrew s +Ġhy brid +Ġcas ual +Ġsel bst +be ing +ĠÄ IJ +ĠCol umb +ĠÑħ оÑĩ +Ġbu cket +Ġevalu ate +Ġid ol +Ġrep utation +ĠìĨ Įë +ÙĪ ر +Ġhe cho +Ġpo em +Ġsubject s +pl ant +ĠBe h +ĠSpe aking +Ġbatter ies +Ġfollow ers +ö l +Ġg ently +Ġsi xt +Ġparam eter +Ġik ke +ĠT our +ĠD J +ot te +ĠJ ahren +Ġprepar ation +Ġд Ñĥм +Ġ8 00 +c op +ik ing +Ġë¬ ¸ +Ġн Ñĥ +Ġл еÑĤ +åIJ Į +ĠI de +Ġì¡° ê¸Ī +Ġla ughter +Ġmole cules +ĠR est +Ġobs erved +d zie +Ġadvert ising +ert o +Ġmo ins +ĠM IT +Ġexc it +Ġt um +Ġty l +Ġinvest ed +Ġph arm +Ġunex pected +Ġph i +oty pe +we ise +Ġge ç +jour d +Ġhors es +n Äħ += " +ĠS M +Ġf ib +Ġcl ips +çķ ¶ +å¦Ĥ æŀľ +Ġreg ime +Ġrot ate +r ou +n ik +Ġarm or +ðŁ ĺ +еÑĢ а +åº ¦ +ĠO ch +Ġr ichtig +üz el +ane ously +m ek +éĮ ¯ +ĠX iao +Ġexist ed +w orth +ãģ£ ãģ¨ +Ġna ught +Ġhe iÃŁt +ĠB al +Ġres id +iv ot +om atic +Ġh ired +Ġgrad ually +Ġon ions +Ġcomp at +Ġint im +Ġj ew +Ġcontrib ution +ĠI re +ac ji +Ġsl ice +Ġimm un +ĠR us +Ġgr ows +ĠSimilar ly +Ġhard est +Ġst ruck +Ġmeasure ment +... ] +th ey +Ġìł Ģë +Ġsne ak +Ġappl ies +Ġн ем +æ ĵ +×ij ר +ĠЧ ÑĤо +Ġout ro +Ġinnoc ent +Ġm og +ĠSams ung +Ġmer cy +Ġhand ling +Ġinter vention +id ays +g ot +Ġcur ric +Ġbound aries +Ġconf using +Ŀ¼ ëĬĶ +æ ĩ +Ġstitch es +ÃŃ vel +Ġtun nel +it ä +Ġg ost +im y +Ġcz as +Ġm é +Ġcat al +ĠSim on +ĠLI AM +m ic +ĠÐ ¤ +Ġey el +is as +ĠC PU +ĠD ou +Ġnä ch +Ġinfin ity +Ġr if +ĠPe ace +ĠC u +Ġminim al +Ġlisten ed +Ġpo le +hal b +Ġload ed +Ġste ady +ĠBes ides +ê m +Ġl ap +Ġco op +Ġfriends hip +w orld +Ġge h +Ġtyl ko +ĠLa ura +Ġsurround ed +ĠE vent +Ġch ap +ĠW onder +bre ak +Ġdro ve +Ġbroad er +Ġch i +F i +Ġge hen +Ġwest ern +Ġintellig ent +Ġpers ist +Ġfound ed +ãģĵ ãģ¨ +Ġhistor ic +Ġfr Ã¥ +cks Ã¥ +Ġhand y +Ġsy mp +Ġr ows +Ġnut ri +b ur +ĠLe on +Ġsist ema +Ġext ensive +ĠÑĥ в +í ı +Ġnight s +Ġcá c +Ġcount ing +ĠM ust +all ow +еÑģ Ñģ +M om +Ġнад о +Ġbar rel +ãĥ ŀ +AR D +Ġinstall ation +Ġin sect +Ġëħ ¸ë +uj Äħ +ĠÄij i +Ġpack ed +Ġf iction +N ow +ĠY ay +Ġper t +r ons +und e +ach es +Ġsty les +Ġapr ès +ok u +ĠV ice +ın ız +com m +Ġassign ed +Ġinteract ions +Ġac ab +F ELIPE +Ġresc ue +Ġindust ries +ĠAnd y +Ġpra ise +Ġfl ame +Ġsn ack +í Ĥ +ç ģ +Ġsw o +rend er +Ġbo ards +ĠÑĤ ом +en ne +Ġpast a +Ġdev il +ĠF el +Ġhat te +Ġcoll eg +e h +ì » +ãģĵ ãģ® +Ġproduct ive +for ward +и п +Ġsmart phone +Ġinv is +Ġb um +Ġwho a +ìŀ Ħ +Ġo cksÃ¥ +ĠL ang +ĠSy ria +Ġses i +ί α +Ġappro val +4 8 +Ġод ин +Ġë ĸ +ĠH arr +ĠAd minist +Ġ× ¤ +ĠDe an +f i +Ġcitiz en +Ġsh ark +0 5 +Ġbo il +Ġindic ate +å ¡ +A re +Ġlay out +Ġref r +ĠPac ific +AA AA +ĠAustral ian +g ression +V oice +ал ÑģÑı +Ġshel ter +T o +au pt +Ġevalu ation +ap or +Ġcur rency +Ġм ного +ig os +ãģ ° +Ġo ct +Ġro yal +è ³ +as il +ĠChild ren +Ġr ien +Ġë ĵľë +Ġbar rier +Ġej emplo +Ġe k +N D +es p +ен а +Ġp ic +Ġkill er +Ġintegr ate +Ġfew er +Ġdis abilities +Ġ .... +Ġtri angle +Ġfe es +Ġwid ely +em i +Ġoverwhel ming +Ġz omb +Ġb ere +Ġho od +ĠA ye +ĠHar vard +e v +ĠÏĦ οÏħ +Ġcup s +ĠA uch +z ona +Ġ199 0 +Ġwe iÃŁ +Ġcr unch +æ ¥ +Ġз ав +Ġmeas uring +Ġst ations +ĠStep hen +Ġshort ly +Ġsig ning +Ġcom edy +om o +Ġsuggest ions +Ġsign ature +ĠпÑĢ ив +Ġdis order +as ka +Ġworld s +Ġprecis ely +n orm +ra v +ĠC ivil +In ter +ĠC ertain +Ġinj ured +Ġsuggest s +ĠGold en +Ġcy ber +ĠØ ´ +Ġtempor ary +Ġco oper +Ġvot ed +Ġ ought +ấ y +x ual +Ġpan els +Ġ9 5 +Ġhands ome +ĠпÑĢ ов +Ġper mit +Ġke in +Ġbad ly +Ġnot ifications +iz a +ĠNot ice +Ġinc lusive +Ġanswer ing +Ġí Ĺ +u ld +íħ Į +Ġnow adays +Ġ3 7 +Ġb olt +Ġstat ic +ĠH op +Ġav ant +aj o +Ġ맼 ìŀĪ +Ġfif ty +ĠF inal +Ġsc ores +ĠT ap +Ġcy l +Ġconv ince +Ġany ways +od a +Ġìķ ¼ +Ġser ves +ĠÑĤак ой +ĠZo om +Ġsaving s +ul o +Ġs outhern +view er +Ġho je +Ġse ja +Ġrepresent ing +Īë įĺ +l ik +ĠSome body +Ġbe ast +Ġstick ing +Ġins ist +Ġtal ented +Ġexplain ing +Ġatt orney +éĥ ¨ +Ġst airs +ĠD og +í ĭ +Ġc ig +Ġshap ed +Ġs ons +Ïģ ι +ut t +Ġì Ķ +Ġpar ad +ìĿ¸ë į° +Ġh orn +ĠJ our +ann o +Ġworld wide +åĬ Ľ +Ġparticip ation +¦ Ħ +Ġm ów +Ġburn ed +Ġwrit ers +all ah +ĠF und +Ġcle ver +ĠLe ute +b in +Ġbe ating +f oot +ĠìĽ IJ +ĠStud io +Ġv ag +be y +r ze +Ġoppos ition +Ġж из +w ho +Ġê± ´ +Ġtr ace +Ġд енÑĮ +Ġep id +Ġges ch +ĠN ar +ĠB E +Ñĥ й +ĠS ign +ed ly +Ġcl ay +Ġinst antly +Ġgather ing +ĠGal axy +Ġb ored +ĠBudd h +c é +Ġm am +Ġsl ope +Ġëĭ¤ ìĿĮ +Ġsch ön +Ġp ir +ge f +am er +Ġh ö +Ġcolle ague +Ġpres ents +ad ium +Ġà® µ +Ġfal ar +be ep +Ġdri ed +ism s +Ġro pe +Ġworks hop +Ġest ud +Ġb ands +Ġthem es +åħ ¬ +ÙĬ ر +åIJ İ +Ġremind er +ÑĤ Ñĥ +ĠB h +Ġcocon ut +ĠÑģ ÑĤо +ĠCh annel +Ġimmig ration +ä s +.. ... +ä¸ » +çĻ ½ +st op +Ġк аÑĢ +Ġco ins +ĠÑĩ аÑģ +Ġdest ruction +l ined +Ġbar riers +ant ine +Ġprint ed +Ġcongrat ulations +ĠHe art +Ġin qu +th a +Ġhard ly +ĠA ven +Ġt inha +ĠS ony +ĠN F +Ġgradu ates +Ġsque eze +ere my +ÏĦ ι +Ġep ic +ĠJ u +Ġol m +ĠLa ughter +Ġbelief s +ĠC ru +ĠTr ue +ĠS oul +owe en +Ġrom antic +Ġз в +Ġan os +ĠY up +éĺ ¿ +d im +Ġin fer +Ġз ам +Ġso c +uk a +Ġprec ise +Ġdro pping +Ġcl ue +Ġer rors +char ge +ĠP u +omet er +Ġlamb da +ac ional +ĠD ong +Ġcham ber +Ġthank ful +ĠN u +ĠHaw ai +Ġinf o +Ġactiv ate +ĠQ ual +Ġqu ed +Ñĥ лÑĮ +Ġcl oth +åĸ ľ +Ġw ichtig +5 5 +Ġot ra +ograp her +Ġcur ios +Ġ19 80 +Ġemp res +d ess +e ur +Ġcl uster +ar ter +ob ile +ĠY an +ĠAd v +Ġdiscipl ine +Ġìłķ ëıĦ +ĠPl ace +ĠSe lect +T E +ĠбÑĭ ла +Ġwh is +Ġb ay +ĠD or +en cing +Ġrep et +Ġf icar +p ad +Ġf og +u yor +Ġsn ap +ib t +Ġso bie +Ġappoint ment +ĠR y +Ġce iling +our se +Ġwr ites +ĠAfghan istan +Ġm os +az e +Ġpen al +Ġcry stal +IC E +ê° IJ +é Ł +ĠTes la +Ġthe ories +Ġappe al +Ġnewsp aper +Ġcook ies +æ © +ĠاÙĦ ÙĦ +Ġma j +ĠGet ting +k ommen +ĠHe aven +ell s +Ġdiv ine +Ä « +Ġa kt +Ġhop es +ĠCh en +we gen +** * +ĠFra ge +Ġн и +ภ¹ +min ister +nes ota +wh ich +Ġexpl icit +Ġverd ad +Ġgradu ated +ĠPh ilipp +Q L +ĠM I +Ġdev ot +Ġc ure +Ġclos est +Ġà Ħ +Ġsex y +ãģ Ľ +ĠDe ath +ok o +ug u +ĠAn ne +itar ian +es a +ег од +ĠD ur +Ġ 000 +ze it +Ġtour nament +Ġmel hor +ภª +Ġin du +Ġf law +Ġw ars +ĠM ind +ĠI ron +ÑĤ ак +ĠV R +Ġs iz +ĠS outhern +Ġê·¸ëŁ ¬ë +Ġaw ak +Ġìķ ŀ +Ġc ube +believ able +if all +d is +Ġabandon ed +m ind +Ġpar l +Ġclass ical +è ĭ +á»Ļ t +ĠAut o +ĠB or +ç © +4 00 +ĠSoci ety +Ġsubt le +Ġmiss ions +Ġremember ed +ĠE ither +Ġda für +OR D +Ġint ensity +ES IN +ĠC up +Ġrare ly +Ġto ys +ĠChar lie +á» Ł +Ġgla ube +Ġround s +T IN +Ġcap ability +Ġderiv ative +Ġrefer ring +Ġd Ã¥ +ĠT ALI +Ġcott on +Ġcon fer +Ġcolum ns +Ġliber al +Ġnun ca +Ġμ ε +Ġind o +ib en +ĠBe ispiel +Ġê·¸ë łĩ +ĠÑĥ Ñĩ +Ġh oy +Ġfr y +ĠScott ish +è Ĭ +Ġc iv +Ġconserv ative +Ġair pl +Ġs ar +r us +Ġinvest ments +Ġinfin ite +Ġà® ķ +ĠTALI ESIN +ĠG ary +ue ll +Ġа к +ĠC ir +Ġrit ual +Ġ>> > +Ġtem pt +ĠTe ch +ĠPoke mon +Ġimprove ments +Ġsp are +Ġtransl ate +Ġson ra +ĠFil m +w ort +Ġм и +Ġperiod s +Ġje alous +ãģĦ ãģĦ +Ġt ir +M I +Ġconduct ed +ĠìķĪë ħķ +0 9 +ĠPol it +ĠWhere as +Ġmoist ure +Ġs ins +Ġk ap +ĠÑį к +Ġben im +Ġelimin ate +Ġathlet es +ĠMan ager +Ġfeature d +ap ore +äº Ľ +Ġë° ľ +Ġper f +ĠTh us +Ġdeb ut +об ÑĢ +Ġse ñ +Ġmyster ious +w ords +Ķ ê°Ģ +Ġcheck s +Ġvolunte er +Ġwas hing +ĠMar vel +ĠA B +iss ors +! ' +ĠF ull +ye on +Ġwe igh +ĠJO HN +Ġv os +Ġproced ures +Ġaddress ed +ĠBer lin +put er +ĠB an +Ġmedic ation +Ġdr one +ĠÑĥ б +ĠJe an +Ġcap s +Ġdisappoint ed +Ġw ore +Ġêµ Ń +Ġorgan ize +ĠHall oween +Ġfant asy +y ard +Ġnos otros +Ġjump ed +Ġphot ography +ĠN ame +re c +A B +Ġbless ing +ĠSh ut +Ġbit ter +p op +ãģĿ ãĤĮ +Ġde i +Ġfulf ill +çIJ Ĩ +Ġden gan +Ġbe lo +ĠMean while +Ġdep ois +Ġdi abetes +Ġbu nd +ĠZe aland +Ġdig est +Ġt ires +Ġdo d +ag ne +ế t +Ġpe el +Ġз аб +Ġn odes +Ġtrend s +ĠSw itch +ĠA ward +ĠOr ig +ĠH al +Ġest as +Ġ3 60 +Ġsim ult +Ġcom ic +Ġm Ãł +Ġbal anced +ĠPrin cess +Ġkilomet ers +á» © +Ġpart ir +ì¤ ij +so ft +ĠV iew +Ġbi ological +in st +4 4 +Ġman era +Ġcompreh ensive +ĠS ab +Ġcr imes +y ers +ĠComp any +ĠPh ot +Ġpou co +i ac +Ġbe im +in ate +Ġsub sequ +ĠMay or +Ġcent uries +è res +ìŀĸ ìķĦìļĶ +Ġê·¸ëŁ ¼ +ĠFra u +ĠO H +Ġëģ Ŀ +ĠN ah +ĠSer ies +Ġover night +íĴ Ī +ĠâĢ ¢ +Ġtra ve +atter ed +Ġwar ri +ĠGru nd +ĠInd ones +Ġsc ra +ob y +ĠBro ok +Ġcur s +Ġë ¸ +Ġexpl ains +ram atic +Ġparticip ating +Ġmin ut +Ġcontract s +Ġg egen +Ġdisappe ared +ĠS N +Ġrob ust +ap h +Ġsh rim +Ġdev ast +c ope +Ġme ets +Ġpeace ful +m ate +Ġwe ld +Ġ× ª +d on +Ñĥ ÑĤÑĮ +Ġregister ed +ĠN ik +j in +Ġc av +Ġe cht +io x +Ġflow ing +но ÑģÑĤи +Ġto e +Ġent ity +ов а +f its +ĠPat rick +ÑĤ ÑĢ +Ġle verage +Ġcor rel +i ah +Ġstr ings +ist inct +Ġg ue +arch y +Ġteng o +ım ız +Ġor bit +ä¸ º +Ġе ÑīÑij +ca ke +Ġ׾ ×Ķ +ĠMin nesota +Ġbra ke +ow ie +Ġcra w +ê¸°ë ¥¼ +Ġprogram me +ĠÑģл ÑĥÑĩ +åı ª +ien ces +ĠO ui +ĠP ers +im iento +ĠIn vest +Ġsl ower +æĻĤ åĢĻ +ĠB eth +Ġnur se +ĠSpr ing +S p +Ġun employ +д и +Ġgen ius +ĠA aron +Ġê·¸ëŁ ¬ +Ġe i +ãģĹ ãĤĩ +Ġtank s +Ġau jourd +Ġcomplex ity +ĠÑĢ еÑĪ +Ġold est +Ġlet z +åħ ¥ +Ġphenomen on +pr int +ĠBund es +it at +ê» ĺ +Ġ4 2 +ĠW i +Ġinc om +Ġg ek +Ġembr ace +Ġt ies +out e +Ġd ose +ĠF riends +Ñĭ ÑĤ +егод нÑı +Ġor g +Ħë ¡ľ +ó g +Ġex ceed +Ġgod s +Ġê±° ìĺĪìļĶ +Ġsoci et +ĠUn ivers +it ät +Ġword en +Ġsm oking +Ġint ens +ab ul +em ia +è ij +4 7 +f ly +Ġ200 6 +ĠSer iously +Ġprze z +æ ¼ +c re +Ġn an +Ġmod es +ов аÑĤÑĮ +ĠH ang +em en +Ġbenefic ial +Ġvot ers +ĠBro ad +Ġb ent +W ow +Ġm ul +åĵ ¥ +ĠU C +Ġdam aged +ĠUk raine +Ġw ipe +Ġst ones +Ġman agers +Ġr ab +ÑģÑĤÑĢ о +l at +Ġde ce +Ġgraph ic +Ġf oss +Ġdisag ree +ĠAm en +Ġsec rets +ho le +ink le +Ġfortun ate +Ġì ± +ìľ Ħ +èIJ ¬ +Ġhab its +Ġbur ied +Ġh in +Ġvirt ually +ol as +ĠR P +ĠT ab +l ow +Ġsacr ific +Ġestim ated +ol n +Ù ĭ +c ur +ĠFe el +Ġcast le +Ġus eless +Ġdis g +ĠJac ob +Ġga an +Ġup side +Ġpare ce +ãĥ³ ãĥ +Ġsh ipping +ĠC R +Ġdis rupt +ac ter +UN D +f u +å® Į +ĠP ick +ĠChar l +ĠB ull +Ġenter prise +Ġpunish ment +ack ing +Ġfr action +Ġtab let +Ġch ord +Ġsimilar ly +åħ¶ 實 +ĠTor onto +Ġcour ts +ÄŁ l +esz cze +Ġpron oun +ĠS ister +ĠM P +Ġgreat ly +ĠD ank +ic op +Ġgar bage +Ġresol ve +ĠS af +ĠG un +Ġcomp ound +Ġë° ° +ĠMus ik +âĻ « +Ġcha os +ĠWhen ever +Ġe uros +Ġor chest +Ġrefr iger +al an +ภ· +ĠAm azing +Ġp ud +ag an +Ġj eszcze +is y +Ġaccur acy +ĠA ma +is ode +ë ĮĢ +Ġinterpret ation +ĠL iber +æ · +c am +Ġevol ved +ĠK ay +ÑĨ Ñĭ +Ġcreat or +it as +Ġal arm +Ġcelebr ation +z ent +Ġfun cion +Ġo v +umb ling +Ġ % +ภĪ +Ġrestrict ions +Ġн ав +ĠK inder +Ġban ana +ÑĮ Ñı +Ġdiam eter +Ġnor thern +ur ers +ĠP as +æĪij çļĦ +Ġwork force +Ġj ung +Ġguar ante +Ġequ ilib +Ġsu ite +Ġeu ro +Ġdel iber +S te +Ġdownt own +Ġch in +Ġc odes +ed ia +Ġshe ep +res hold +wn ie +ó b +Ġunder lying +l ia +j er +ÏĢ ÏĮ +ç Ŀ +th rop +Ġz ap +Ġvac uum +ĠH ab +Ġwra pped +ì ¢ +Ġinvent ory +м а +Ġco ord +Ġpl ates +Ġsy mm +T e +ĠwÅĤa ÅĽnie +Ġreach es +Ġlon ely +S cript +le e +ess er +Ġê± ¸ +ĠGes ch +ĠMo ving +Ġré p +ĠV ill +åIJ Ī +ĠR achel +Ġtem os +ON E +Ġstra in +Ġang el +Ġf Ã¥ +T r +Ġach o +Ġhighlight s +ĠW er +ĠCar l +Ġbl ur +Ġreg ards + · +ил ÑģÑı +Ġrec re +ĠY ani +U CK +ł ¸ +Ġelectr ons +ĠSp iel +Ġv ed +Ú ¾ +Ġbe am +Ġid iot +ë ĵ¤ +на Ñĩ +id d +Ġsk i +it ative +Ġhyp othes +ãģ§ãģĻ ãģŃ +ent er +ĠìķĦëĭĪ ë +Ġih re +Ġpre view +ang el +Ġdem on +Ġd us +Ġd ic +ĠK om +LE Y +... ! +Ġsie ht +ĠSon ic +Ġten ho +an as +Ġdig it +ĠMa ar +Ġunder grad +oun cer +uff y +Ġconvers ion +Ġdis connect +Ġe cho +om er +Ġcurric ulum +Ġper ché +Ġw and +.. ? +Ġroll ed +Ġentreprene ur +Ġtheore t +ĠÑī о +Ġins ights +Ġzus ammen +o in +ret t +p rodu +Ġvisit ors +e ous +Ġgrand mother +Ġhum or +Ġн иÑħ +zen ia +ins on +Ġres et +Ġbase ball +Ġmatch ing +ëĭ¤ ê°Ģ +Ġpun to +ì ¡ +Ġre de +Ġaddress ing +Ġfore cast +ĠB ol +Ġcol ored +Ġdocument ation +Ġexpect ation +ĠNor thern +Ġcre o +Ġà® ļ +f on +Ġuns ere +U M +Ġcop ies +Ġexpand ed +Ġveter ans +ĠAl m +Ġво обÑīе +Ġpsych ological +Ġnos so +Ġpay ments +im eters +Ġ-- > +ĠJenn ifer +Ġvolunte ers +os se +or ious +ĠбÑĭ ли +è Ĥ +ĠEs s +w s +ĠB C +ĠI C +W oman +Ġv ont +Ġeth nic +EN N +им о +Ġlo b +Ġou i +c s +Ġre he +Ġìł ģ +Ġch ick +ús ica +Ġk ont +ĠDist rict +Ġp ile +Ġа в +ей ÑģÑĤв +Ġ £ +Ġiss ued +Ġком п +Ġpros per +Ġprof ound +ĠDe ar +Ġãģ ĵ +Ġfund ed +Ġb isa +ŀ ĺë +× Ł +ĠìĿ ĺ +Ġtw elve +ĠChamp ions +éĿŀ 常 +Ñģ л +Ġ200 5 +p m +Ġon de +Ġdiff é +ĠCh all +Ġdifficult ies +Ġgar age +Ġd á +ün k +Ġë¬ ¼ +Ġtr an +Ġsubm itted +z w +ÙĪ ا +Ġar k +ĠìĦ ± +Ġgrocer y +он а +i ere +Ġa est +Ġexhib ition +Ġr és +Ġconsist ency +Ġcook ie +н ей +Ġrepl acement +æ² ¹ +ĠS em +ĠìĤ¬ ìļ© +8 00 +Ġgen es +Ġtrans action +ĠE L +Ġdur ante +ib les +ĠE at +t ail +iss ance +Ġto ss +Ġsurv ived +Ġoff ices +Ġsupport ive +Wh ere +Ġtout es +Ġë§ ī +Ġj okes +ier on +ap ers +Ġm ature +ĠM arsh +Ġs ido +k ind +Ġreal mente +ĠChe f +Ġquel que +Ġjud ges +e ft +ER S +Ġj et +Ġpers ons +è » +iz ations +ri k +Ġsh ops +ĠW y +Ġele g +qu è +qu oi +Ġjug a +Ġíķľë ²Ī +ĠQuest ion +ĠGlo bal +Ġìķ½ ê°Ħ +ĠSt ation +æİ ¥ +ĠOh io +Ġstick y +Ġst ressed +Ġg ün +Ġí Ŀ +ÑģÑĤ Ñĥп +é ¡Į +ĠPh D +im mer +Ġment or +Ġinv ented +Ġre un +Ġine vit +Ġpol ÃŃt +Ġexec ute +ĠSt ory +Ġout standing +Ġgu er +ĠR ain +Ġch oses +ĠT it +ĠÑģ еÑĢ +ĠSing apore +ĠN one +Ġch ronic +°ë į° +Ġe go +æł · +ES T +ãģĤ ãĤĬ +ĠW ang +ĠN AT +Ġa ug +Ġdes ktop +Ġetern al +ĠìĤ¬ ìĭ¤ +ĠConst itution +ìĤ ¬ë +×Ļ× ľ +p res +ĠТ Ñĭ +Ġinter f +Ġlist s +Ġfight s +ft en +ĠI owa +Ġmotiv ated +ĠH osp +Ġelse where +Ġpath s +Ġinst ances +B l +r ange +á» ± +ĠS it +man a +Ġìĭľ ìŀij +Ġm ình +ans as +Ġs na +Ġphilos oph +Ġpas se +Æ°á» Ŀi +ak h +ent al +Ġih n +ru ctor +Ġв аÑĪ +Ġgener ous +Ġp ivot +п ол +Ġjam ais +Ġcom ent +ĠL ew +od zi +ĠX box +Ġв од +Ġcons ent +ī ìŀ¥ +Ġdis par +l ass +ĠGovern or +Be ifall +Ġê° ľ +Ġbelo ved +׳ ×ķ +se ll +Ġhon ored +le h +Ġw äre +un ting +Ġfra ud +ĠR AM +ê± ¸ +Ġkill s +Ġeconom ics +0 4 +п еÑĢ +Ġco isas +Ġи гÑĢ +ÃŃ m +Ġmö chte +Ġìµ ľ +Ġstim ul +Ġfast est +l v +Ġg én +ĠS ounds +Ġ19 70 +Ġhome work +spe aking +Ġencour aging +Ġqu ery +Ġre vers +pro fit +Ġd y +Ġìŀ ij +ëĬĶëį° ìļĶ +Ġso ap +ĠG all +ĠC N +ĠAn s +Ġf ic +ank s +Ġdess ert +ĠìłĢ íĿ¬ +ĠM aking +Ġcome ç +ê³ Ħ +Ġassoci ation +D ad +he e +Ġh ogy +Ġap ro +Ġinvis ible +Americ an +í İ +Ġvi be +Ġem issions +Ġadvoc ate +Ġkick ed +Ġ vel +Ġsum mar +Ġfre aking +ch ron +Ġpin ch +Ġwszyst k +isc al +Ġpro ved +Ġmind ful +Ġt ä +Ġno ises +Ġisol ated +Ġcross ed +Ġê° ķ +Ġvo ilÃł +Ġch ore +ĠR A +C om +Ġrelax ed +at ro +Ġpre vention +Voice over +O D +ĠCo vid +Ġsepar ation +Ġ- [ +иÑĩ его +çĻ ¼ +ĠS D +ble ep +Ġindepend ence +Ġpart ial +Ġalgorith ms +ĠAny one +Ġassoci ate +h um +ic ular +Ġb ạn +Ġbatt les +G ood +App lause +Ġbast ante +Ġadv ant +ĠS weet +Ġref used +ãĤ ¸ +ĠÑĤеб е +pl et +Ġencour aged +åĵ ¦ +Ġmir acle +ĠB un +ĠV ar +rim ination +e lect +ĠM ult +Ġdeliver ing +e ing +Ġc m +ne hmen +ĠL ine +Ġë§ Į +en ced +ĠS ound +ĠCont in +ij d +UN G +k le +Ġth reshold +Ġcomp act +ad t +Ġto es +ĠP ur +own ed +ment ed +Ġdes igning +Ġvacc inated +Ġexha ust +Ġbas ics +Ġcons ists +ĠGu y +ac zy +Ġm ÃŃ +w on +å® ³ +Ġ8 5 +æ Ĥ +Ġm um +Ġign or +Ġprint ing +ac ular +p ow +Ġexpand ing +Ġg ir +ĠC ab +íĺ ¸ +ÑĤÑĮ ÑģÑı +ĠìĹ¬ëŁ¬ë ¶Ħ +Ġang les +Ġterm inal +ĠW on +ĠInter esting +Ġcross ing +Ġbond s +Ġpu eden +Ġor b +lar ın +Ġcreep y +Ġnutr ition +Ġall ies +Ġwire less +Ġdes ired +Ġcomp ute +ĠAri zona +ĠBeaut iful +Ġprodu ces +Ġnuest ro +t ed +Ġel igible +ĠÑģ оз +ic ial +ĠH ero +Ġcons ume +Ġrob ots +Ġpurch ased +c ción +Ġ iz +ượ c +ίν αι +ĠØ£ ÙĨ +Ġshad ows +ĠMed ia +Ġprin cess +Ġk lar +Ġwood en +Ġus ar +Ġg üzel +Ġsl ot +r ade +Ġë Ĵ +Ġhar mon +Ġingred ient +ors hip +ek i +Ġgrand father +Ġexcit ement +Ġpolit icians +.. ! +Ġout s +Ġsepar ately +ĠÑı к +ĠW elt +ĠP ow +j an +Ġorient ation +åı ĭ +L C +age m +ÛĮ Úº +åIJ Ĺ +Ġbran ches +ad en +rent e +ĠI hr +as m +Ġest ão +ĠN ic +Ġsla ve +Ġcomp ress +c rowd +Ġclim bing +ĠMan agement +ĠB ah +Ġpan ic +Ġk or +Ġcool ing +Ġb ind +Ġз ад +Ġr ack +Ġent it +Ġs ends +Ġyour selves +d es +ĠMuslim s +Ġí ļ +ism a +cy cle +un kt +ĠC ore +Ġinj uries +Ġident ical +ка Ñı +ĠDeutsch land +Ġе е +is an +Ġtr uc +let on +Ġback up +Ġult ra +Ġab und +ille urs +Ġby ÅĤo +åħ ĥ +ort ed +Ġearth qu +Ġк л +Ġobs ervation +Ġmainten ant +el en +Ġsett led +Ġp ela +ĠE conom +Ġ Õ +Ġste ering +ĠAL L +ĠC her +Ġpat ience +ĠS now +Ġb or +Ġworth y +Ġcá i +Ġ× § +Ġκ α +d og +ĠK aren +ill es +Î ² +Ġagric ulture +×ķ× Ł +ĠSe an +Ġsens ors +íķ ´ë +ag h +Ġpublic ly +Ġpe ux +ĠAlex ander +Ġprior it +Ġla zy +ard on +atter ing +Ġcost ume +س ت +è¿ ĺ +Ġun w +Ð Ľ +Ġthick ness +qu ito +g unt +ist as +ne ys +ĠëIJĺ ê²Į +ĠBr asil +Ġto ken +Ġaff ili +l on +Ġf Ã¥r +ĠBe ach +Ġw itch +ĠSe ven +Ġp ant +λ λ +Ġcapt ain +å Ŀ +Ġve ut +Ġpou voir +ac z +ĠBar b +Ġut ility +Ġcontempor ary +Ġobt ained +Ġpainting s +e ar +Ġpe an +ĠO g +Ġc ust +л ем +Ĥ ĺë +ĠIs so +Ġac onte +ĠTe le +ĠAss istant +à ī +íĸĪ ìĬµëĭĪëĭ¤ +Ġcount s +Ġbu ck +ĠDe ep +Ġtack le +Ġh arsh +Ġdec ides +éĹ ľ +. âĢĭ +éĤ Ĭ +ĠAng el +Ġlay ing +Ġcal ories +Ġcontro lling +Ġadvant ages +ĠÑįÑĤ ой +Ġappro aching +Ġthreat s +ak an +em atic +m ann +ê³ µ +m umbles +ac ió +Ġmaint aining +Ġfound er +l ah +f ight +Ġadm itted +âĢ¦ . +ķ Į +ab ol +Ġus age +Ġn onsense +ĠPal est +Ġcont re +ĠDemocr atic +ĠE R +j ekt +Ġar bit +Ġг ол +ĠMich elle +ich er +es h +ĠP ho +к ом +4 9 +ĠEner gy +ο Ïį +Ġc ents +Ġref ers +Ġg ospel +ĠSh a +ĠSh are +×Ļ× ł +Ġclin ic +ĠëĦ £ +Ġequ ality +ug s +Ġsh ed +Ġplan es +Ġtout e +re ck +Ġstra nd +Ġbi ology +Ġle ague +ĠP ok +Ġnúmer o +ĠCo ast +Ġconsist ently +Ġnuc le +OO OO +Ġob jet +Ġch or +Ġg inger +Ġd abei +Ġcoop eration +à¯į . +nt en +ç ¤ +l Ãł +ìĸ ij +r ado +Ġpass ive +Ġglo ves +Ġunder ground +Ġlog ical +Ġk et +Ġfunction ality +¸ë ¦¬ +Ġport al +ell er +×Ļ× ¨ +ĠT ed +ĠG re +IJ ľ +Ġperson nel +Ġemer ging +ĠF ür +Ġmeant ime +usal em +ĠC lear +Ġtra pped +Ġìļ ° +Ġdis pl +Ġmet tre +Ġmun icip +Ġwithd raw +Ġsp at +un es +Ġaccess ibility +æĪij 们 +Ġap are +Ġpros pect +Ġн аз +Ġcop per +ĠP RO +Ïħ ÏĦ +Ġattack ing +ĠV in +ĠSt one +Ġinvestig ate +st yle +ĠÎ » +ë ¡Ŀ +ë§ Ī +Ġins pect +Ġli ver +ал иÑģÑĮ +Ġser a +hal ten +em an +Ġmin istry +' ' +Ġd ots +ãħĭãħĭ ãħĭãħĭ +Ñĥ ÑģÑĤ +ĠJ ak +AK E +Ġg aps +uck er +ĠинÑĤеÑĢ еÑģ +ĠEm ily +Ġinter val +Ġt ender +ĠTechn ology +g ame +Ġtri b +ÙĦ ا +ĠDevelop ment +Ùħ ا +Ġwr ist +Ġf ires +Ġtarget ed +ìł IJ +Ġso d +íļ Į +Ġoldu ÄŁ +Ġse asons +vent ions +Ġн его +Ġsomet ime +ли в +n é +Ġt ú +ĠDe us +Ġexec ution +á p +ĠCh ange +ĠInd eed +Ġreg ulation +ĠH ung +é is +Ġwish es +Ġj azz +Ġstruct ural +Ġblow ing +Ġby Äĩ +Ġtherm al +ph ant +ÑĢÑĥ з +ан ÑĤ +ĠP ull +Ġconf usion +нÑĭ ми +Ġscen arios +ìłģ ìľ¼ë¡ľ +Ġд еÑĤ +Ġtatto o +Ġaut re +Ġhe ating +Ġtreat ing +Ġпон им +Ġexc lus +ĠL OL +we ar +ag le +Ġzur ück +Ġr ational +s u +Ġdet er +ĠN ative +à®ķ ள +ach ed +Ġ ãĥ +ĠEnt onces +Ġhor a +ìĿ´ìĹIJ ìļĶ +Ġl ite +à « +Ġsix th +Ġбол ее +act or +Ġpsych ology +çĽ ¸ +Ġdem ands +Ġpe er +Ġnew ly +ĠWW E +Don ald +ĠBo x +Ġp ine +Ġload ing +ĠN ico +Ġs ÅĤ +omm e +AR T +Ġrecru it +Ġbug s +arent s +ĠпÑĢ об +ĠIn side +ipp er +d ramatic +Ġplan ets +ord e +Ġy oga +ch ild +ĠMar ie +Ġãģ Ĥ +ĠB L +Ġfil med +Ġref resh +Ġtomato es +Ġf et +Qu é +Ġ !! +ĠëĤ ´ë +r ine +Ġinteract ive +s al +ann ah +pe z +ç¶ ĵ +Ġunderstand s +ĠTok yo +Ġlibr aries +Ġread er +ij IJ +o z +ĠEnd e +ĠF lo +Ġm ild +Ġpo etry +Ġж ив +æĦ Ľ +Ġbeh ave +Ġdo en +ĠSus an +p age +ra ham +Ġcommunic ations +Ġtun ing +Ġp ac +Ġanx ious +I O +M ark +Ġhi ç +book s +Ġp iss +Ġen abled +achel or +ĠF OR +Ġé c +ĠT R +il st +h at +ĠìĿ Į +Ġty ch +Ġj ar +Ġbuild s +ĠAr gent +Ġinter medi +Ġl ou +Ġa ra +Ġassign ment +Ġcabin et +Ġretire ment +ãģ » +Ġdis abled +ric a +Ġa wards +Ġbo ots +Ġacknow led +Ġth y +Ġêµ ¬ +Ġsy nd +ни й +il ton +Ġprob l +ĠF al +Ġverd ade +Ġ7 00 +ĠLe arning +oc us +Ġpal ace +N ot +t ain +c m +Ġmagn et +inc oln +Ġfig uring +ĠL yn +ĠB oss +ĠV O +Ġdiagn osis +Ġequ ipped +w atch +in os +ad ers +Ġsh elf +Ġorgan is +Ġn od +Ġk ız +pp ers +Ġrest ore +Ġart ic +ĠVo ice +ı yorum +ê² © +Ġspread ing +Ġh ips +Ġw ard +ure au +Ġinter section +6 6 +Ġ3 9 +ç ³ +Ġwait ed +ì ´ +hh hh +Ġd ys +ĠE N +Ġb atch +Ġca f +Ġmark er +大家 好 +or able +ó ria +Ġste pped +Ġcelebr ating +ан а +Ġwor n +ĠF ol +Ġpl a +Ġattempt s +Ġtwe et +Ġr ust +g ence +í Ĩµ +Ġre vel +Ġre cept +en ess +Ġ( ( +ãĥ¼ ãĥ +! âĢĭ +ĠìĨ IJ +Ġinfluen ced +и ж +Ġкон еÑĩно +Ġcolleg es +ion i +Ġs ag +An n +ol ar +Ġexpress ions +Ġsu its +Ġowners hip +el and +pie ce +æĢİ ä¹Ī +Ġdesp ués +Ġt el +Ġins ult +Ġêµ īìŀ¥ +ĠSm all +ĠF R +ok a +ber ries +ĠAnt on +ел Ñı +Ñı Ñģ +Ġval ve +act s +Ġwood s +à® £ +Ġcult iv +Ġf á +ãģ¨ ãģĦãģĨ +Ġche ers +Ġassum ption +Ġfit ness +ÃŃ cul +Ġpod r +Ġwe it +ĠH ind +Ġd ign +Ġз н +Ġsqu ad +Ġdest ro +c ere +sh irt +imm t +eng ers +Ġs ä +k ÅĤad +Ġ ÈĻ +Ġocc as +Ġì¤ Ħ +Ġprocess or +ĠD M +ĠDad dy +Ġsoon er +Ġstraight forward +Ġdepart ments +ĠChr ome +Ġwork place +ĠPy thon +Ġm eng +ĠD AN +ĠI ce +ĠëĪ Ī +ĠG i +Ġh iring +Ġland ed +Ġdemocr atic +ied z +ãģĺ ãĤĥ +Ġse v +ic ia +Ġespe cial +ĠN ous +Ġh ät +Ġb ou +per t +ies z +åij Ģ +Ġv il +ÅĽ li +Ġî n +Ġloss es +éķ · +Ġto ast +Ġreal m +ĠAust in +ĠIn formation +Ġres ume +Ġch ase +Ġsal ary +Ġë¶ Ħ +ли Ñĩ +ĠÑģл ед +ĠFur ther +Ġcar ing +Ġv ig +Ġval or +è¿Ļ 个 +ĠÑĩ а +Ġanalyt ics +Ġglo be +ĠM AN +Ġn el +ìĿ´ì ķ¼ +Ł ¼ +Ġo y +íķĺ ìĦ¸ìļĶ +j en +Ġtrou bles +ah aha +Ġchurch es +u et +Ġmeasure ments +b il +ì ½ +if ully +ин Ñĥ +ĠWil son +¦ ´ +ĠíĮ Į +Ġì° ¨ +Ġp úblic +ĠJer usalem +Ġn ails +Ġsp ine +Ġhe mos +Ġz n +qu is +ĠLe ben +Ġrefer ences +IT H +i per +ĠÑģеб Ñı +ì ģ +ĠW a +st ate +§ Ŀ +åħ ± +ĠGen er +Ġact ress +ĠEn joy +๠ĥ +Ġ× Ĵ +Ġinfect ed +Ġsh aking +Ġn ick +ภ¸ +Ġf ot +Ġaccompl ished +u ke +Ġshe ets +Ġf ence +Ġnurs ing +Ġintrodu cing +Ġfe at +O ne +T O +Ġcl ubs +ĠBru ce +on ge +ch ange +ĠBat man +åı ° +ĠOffic er +Ġhyd ro +Ġsupp lement +Ġc ela +Ġlong est +Ġcompet ing +Ġcon he +g iving +Ġbra ins +Ġlo ans +Ġw age +ĠCl inton +Ġs Äĥ +ane ous +Ġl ord +ÑĢÑĥ ж +Ġqu iz +Ġst iff +ĠL GB +s z +M E +m are +th ere +Ġn är +ĠM and +l ast +Ġd ag +Ġhalf way +ĠB and +Ġëĭ¤ ìĭľ +ĠA ren +Ġi le +P N +ent o +Ġalg um +Ġsoc cer +Ġblock ed +ĠJon athan +Ġse w +ĠTest ament +Ġv ale +Ġbehav i +å§ ĭ +Ġcon na +IC H +Ġaud iences +m l +amm ad +ĠìĤ ´ì +I GH +Ġr aces +em ed +Ġm á»Ļt +à ¯ +Ġover s +Ġdecl ared +Ġs ana +ĠU na +ĠÑĢ е +uck s +Ġp airs +Ġan ge +N e +Ġup s +av y +ø r +ree k +Ġbehav iors +Ġreflect ed +Ġprior ities +Ġcon du +Ġret reat +Ġexp enses +Ġë´ IJ +Ġtri ple +Ġêµīìŀ¥ íŀĪ +ä lt +Ġind igenous +Ġmin ing +Ġaccept able +Ġru in +C A +u ine +Ġpip eline +ct ic +ê t +ĠвÑģ его +Ġb oun +ĠDig ital +ĠBo om +ÑĨ е +Ġл ÑĥÑĩ +Ġas c +ĮĢë ¡ľ +ĠGood bye +Ġrend er +ene z +ar re +ĠTH AT +b our +ic ión +ãĤ Ń +E very +Ġw ires +ĠPar liament +n ung +ate ur +ĠS ave +ĠPh ys +Ġam or +ĠE ve +Ġfr ight +Ġgam ma +Ġmic ros +m itt +ĠC ode +ĠBe y +pl ed +ĠиÑģп олÑĮз +ç Ĺ +ìĥ ī +å¥ ¹ +Ġmon et +ĠJah re +Ġlux ury +Ġde af +Ġbet ray +Ġê² ° +и ки +Ġdefe ated +Ġunder t +Ġwe g +Ġcool er +ãģķ ãĤĵ +iam i +éĤĦ æľī +ĠJess ica +ĠJ oy +Ġsoph istic +ени и +ðĿ ĺ +Ġch ili +ĠTy pe +Ġprote ins +Ġpresent ing +al ia +ìļ ¸ +ĠMaj or +Ġmolec ule +um er +Ġcoll apse +ĠAny ways +ĠMount ain +ant ed +ãĢ IJ +Ġвиде о +æ° ´ +A ud +Ġcon qu +Ġvo ll +Ġkn it +Ġmem br +ĠMark et +Ġd ari +Ġcalcul ated +г и +Ġshrim p +ĠM u +ĠпÑĢ оÑĤ +Ġìĺģ ìĥģ +Ġproduct ivity +Ġcogn itive +ĠHe b +ict ions +ê² ½ +Ġcr é +f ör +Ġpray ing +ash i +ĠT ik +ó r +w en +ÑĮ Ñİ +ix o +Ġ( " +ĠÑĤ ел +Ġìĸ´ëĸ ¤ +ĠпеÑĢ ед +ĠD rive +ãĢ ij +ĠE qu +Ġequilib rium +Ġdescri bes +не е +4 2 +ĠCur rent +y y +Ġabsor b +Ġsold ier +d ers +Ġtestim ony +Ġdec line +ľë ¡ľ +g age +Ġinsp ire +la pping +Ġspin ning +Ġsla very +Ġfac ial +Ġtrad itions +ári os +ĠHosp ital +Ġn est +ĠëĪ Ħ +Ġto i +Ġfe ars +ìħ ¨ +ĠM uh +Ġgradu ation +Ġimpact ed +Ġa unt +ĠLet s +Ġalumin um +Ġdomin ant +ĠDav is +ĠNav y +Ġcom pt +op les +Ġest ava +è ¥ +Ġsc al +Ġpres erve +ĠO pp +Ġpract ically +Ġmagn itude +Ġf itting +Ġcoordin ate +Ġfurn iture +ĠFam il +Ġexplos ion +Ġdocument ary +ĠS cript +Ġport ray +m at +Ġschedul ed +Ġdynam ics +ph y +ak y +ĠU I +C he +Ġcontinu ously +ĠPro v +å° ij +Ñĥ з +ra h +Ġger ne +pro of +Ġsecret ary +ĠPat reon +sc ream +ĠK ids +á»ĵ i +Ġk g +Ġuncertain ty +Ġк ажд +Ġmit ig +Ġread s +å· ² +ĠR u +Ġpri est +Ġн ед +Ġlimit ations +Ġflo at +6 00 +ĠT oy +ĠJim my +Ġoff ensive +en i +ĠX i +Ġeye br +ĠTur k +Ġaccident ally +Ġoh ne +ĠS aud +9 5 +ĠD utch +ан Ñģ +ĠSe attle +Ġëĵ ± +che ck +k ÄĻ +Ġcontrib utions +Ġbes ide +Ġqu indi +Ġfle w +æĹ ¶ +Ø° ا +ĠL O +Ġwa ist +ĠE V +Ġhol idays +j on +Ġmis under +Ñı н +Ġb out +Ġd imin +Ạ½ +ó l +ĠGr ace +Ġinput s +Ġden y +Ġform ing +ĠB ild +Ġad equ +Ġfol k +Ġreject ed +se mb +Ġfrust rated +op en +ĠBet ter +il on +Ġtow el +Ġdifferent ial +Ġsac red +Ġsa il +éĩ Į +ent imes +Ġgentle man +Ġicon ic +Ġcomp aring +Ġs agt +Ġtext s +Ġgrand ma +Ġroll s +Ġcont ents +ä¸į 好 +оÑģ Ñģ +Ġsusp ension +ro it +¦ ¼ +Ġasse z +Ġd ort +ĠM ath +ĠVict or +ĠJava Script +ä¸į å°į +Ġen han +Å Ļ +ĠB ush +Ġpromot ion +Ġk in +Ġmon sters +ĠColor ado +ĠÎ ² +íķ´ì ļĶ +æŃ £ +iffer ent +Ġn aked +Ġpro d +et ics +ĠW oman +Ġtreat ments +Ġest oy +v é +Ġlif ting +Ġy apt +ĠRo ber +Ġì¹ ľ +Ġsubst itute +ak u +r idge +Ġê± °ë +Ġrespond ed +Ġb é +ĠEngine er +Ġtransfer red +ë ² +Ġha ber +o op +ĠW E +Ġv est +Ġfor ty +ĠD S +Ġ200 4 +Ġco aching +n om +ĠB ab +Ġn ossa +ĠJ ake +Ġg y +Ġde leg +Ġìŀ ł +ĠкÑĢ аÑģ +Ġstand point +Ġdis ad +Ġart work +A d +ill o +ĠÄij ược +ĠPr om +ĠL ib +Ġcritic ism +Ġcontact s +ÑĢ ам +Ġachieve ment +ÐĶ а +Ġdiss ol +ĠVeg as +Ġstream s +ĠK ent +ĠعÙĦ Ùī +Ġrad ius +Ġsu cks +ĠA ch +Ġf i +ou st +ĠлÑİд и +Ġpal ette +ĠH az +ĠAnth ony +Ġtem a +ĠC os +Ġsa fer +α ÏĤ +Ġcont rad +Ġma ior +Ġinfl ation +ĠSil ver +Ġatt ending +íķľ íħĮ +art o +Ġapplaud ing +Ġcomput ing +ĠH at +æ » +k now +mak ers +Ġcon oc +Ġeduc ated +Ġmod ified +Ġinc lusion +ment al +ŀ IJ +is ia +ĠÏĢ οÏħ +Ġa un +ĠIre land +Ġk ö +Ġcompl iance +Ġinsp iring +иÑĤелÑĮ но +Ġdisp os +ì° ¨ +Ġw ip +r ical +raw d +Ġt res +Ġmob il +olut ions +B O +Ġb ounce +Ġassum ed +ĠMed ical +Ġf iscal +Ġng Æ°á»Ŀi +ition ally +Ġst olen +ĠB M +Ġmechanism s +ε ί +Ġqual ified +Ġìŀ IJë +ught ers +ĠH IV +ĠL ots +Ġser vers +Ġcar r +ĠT ogether +Ġattract ed +Ġk r +æĪij æĺ¯ +th ur +in in +ĠH alf +È Ľ +ĠP ap +Ġremind ed +AL L +Ġhel met +Ġbott les +Ġprofess ors +Ġse ine +ÅĤ Äħ +ãĥ ı +Ġê±° ìķ¼ +Ġ×¢ ׾ +f un +ĠB ird +Ġfight er +ĠëĶ °ë +ĠT ool +Ġt in +ino is +ë ¶Ħ +×Ļ× Ł +ĠC AR +åIJ į +irst y +Ġout door +ĠN S +ãħ İ +ff en +Ġl ud +H ello +Ġroll er +ie le +ĠPol and +Ġap a +ex p +Ġcertific ate +ĠT own +аÑİÑĤ ÑģÑı +ild e +Ġdeterm in +P R +Ġfree ze +Ġmain stream +Ġobject ives +b lo +Ġtak ie +åĵĪ åĵĪ +Ġë°Ķë ¡ľ +el et +ĠI V +ĠF ast +Ġd ere +em p +ĠD ra +ĠìŀĪ ìĹĪ +Ġdisc rimination +Ġε ίναι +ne cess +æ ® +ıģ ı +Ġpost ing +wi ÅĽcie +Ġl ub +Ġol ive +Ġr im +Ġmodel ing +Ġa ño +ĠPak istan +Ġover l +Ġinf lam +N E +ìĹIJ ê²Į +Ġatt ended +Ġdeal t +ĠAl t +ĠL incoln +Ġaw ake +Ġfil ters +ĠWith in +czy wiÅĽcie +Ġs û +ĠJohn ny +Ġintegr ity +Ġisol ation +ĠE asy +ĠпÑĢ ин +ĠAl ice +Ġsm iling +en ix +, ... +Î ¶ +Ġbeg un +Ġjew el +Ġconvention al +Ġstat ist +Ġhand ed +Ġir re +Ġpro hib +Ġsatell ite +é¦ Ļ +ĠInd ust +Ġtra ged +Ġtra va +Ġih m +Ġcru el +ĠAg ora +ĠD oc +Ġz ones +Ġm all +Ġtr ay +×ķ× ł +Ġir rit +Ġk ans +ĠBe at +ud ge +ie lle +Ġtrust ed +Ġb ikes +ĠÑĥ п +ĠM ember +w ick +Ġcreat ors +Ġher itage +ind istinct +Ġres ur +enn en +C ome +Ġf iring +ĠBu eno +ĠТ о +ik an +ett es +Ġk es +Ġtri ps +Ġdivor ce +ĠK l +Ġcons ol +ke ep +기 ê°Ģ +ĠRep ort +Ġhost ing +Ġdiam ond +Ġcompl ic +Ġhel icop +Ġdep uis +d s +ĠCh an +Ñı л +Ġsc issors +il ation +Ġprop ortion +ER E +ĠÙĪ اÙĦ +int a +Ġmuch as +u ation +it is +æĬ Ĭ +Ñı Ñī +Ġni in +Ġemphas ize +uel a +Ġprodu cers +Ġr ze +änd er +ET H +æ º +Ġconst itu +åĽ ½ +Ġperform ances +ist le +go v +ĠL iter +Ġincorpor ate +Ġeduc ate +ĠN in +ì ª½ +Ùĩ Ùħ +el eration +×ķ× ij +Ġya ÅŁ +or ous +ĠC as +Ġgr ants +ëĬ ¥ +am el +Ġê·¸ë łĩê²Į +ĠE ste +Ñħод иÑĤ +ĠпоÑģ ле +Ġg ent +Ġfocus es +al ities +ĠR h +ë ³´ +æ° ij +ĠD ance +r r +Ġam er +Ġutil ize +Ġl ÃŃ +ĠAm ong +Ġpregn ancy +Ġlo ops +ал оÑģÑĮ +ĠM oh +Ġcatch ing +Ġglo b +Ġa jud +Ġ[ ? +ĠAn al +lo oking +Ġsurf aces +Ġprogress ive +Ġvir al +0 8 +Î ¾ +K A +Ġ ży +Ġpick s +ann on +Ġbul k +ĠR oss +Ġdescri bing +ĠG el +Ġloc ally +Ġend less +Ġmass age +Ġclean ed +Ġtravel ed +ен Ñĭ +Ġsent iment +ig ma +ĠN as +Ġchemical s +Ġright eous +ĠMag ic +Ġrel ates +Ġtruck s +Ġ19 60 +åĪ ¥ +Ġapp et +Ġsn acks +ĠSum mer +Ġy üz +Ġpr is +ĠMex ican +Ġtransp aren +Ġminor ity +Ġver te +Ġl assen +4 6 +л ек +é p +ĠÑĦ илÑĮ +Ġi yi +Ġsp an +íķĺ ì§Ģ +Ġind icated +qu ar +Ġscholars hip +ĠLGB T +Ġhistor ically +ó ÅĤ +Ġmin ist +Ġpen et +ĠR ap +Ġcons ervation +çĽ ´ +ĠH oney +ĠBe i +id el +Ġrespons ibilities +Ġmess y +ĠEx cept +OR E +Ġiniti atives +Ġjun ior +Ġdesign ers +Ġexpl oration +Ġspons or +Ġmob ility +Ġint eg +land o +Ġb ark +Ġindic ates +à ¶ +Ġemploy er +å® ī +Ġcous in +Ġbo iling +Ġch rom +Ġç al +Ġper pet +Ġcont ained +Ġpark s +Ð « +ĠEngine ering +P lease +ĠStart ing +her o +Ġlaw yers +è¥ ¿ +Ġz d +Ġfranch ise +ra ge +Ġint uit +ĠG L +re ach +ĠE lle +Ġnh Æ° +ĠN ord +Ġbe an +0 7 +Ġple asant +å½ ĵ +v iron +Ġgrad ient +z us +ĠE M +Ġess ay +ìĹIJ ìļĶ +ế n +n u +á» « +ĠÃī s +Ġden omin +ĠGirl s +Ġperson nes +ĠاÙĦØ £ +b ild +ĠSt at +Ġcompl iment +ĠK ate +Ġoptim al +Ġh id +د ÙĬ +Ġquick er +w all +E n +IN E +?? ? +ì² ´ +ĠA ction +å Ł +Ġpenal ty +ĠK az +' ? +Ġc ried +Ġcan vas +ft e +Ġexc lud +¸ë ¡ľ +Ġemphas is +Ġen zy +ĠH ou +Ġoverse as +ÃŃ amos +å¸ « +ö glich +Ġhead phones +c n +ĠA ge +Ġa kan +Ġcharacter istic +íķĺë ©´ +get s +Ġë¶ Ī +Ġr ival +Ġb orders +em ente +em ás +Ġy ol +Ġcom pe +end ers +ınd an +Ġmö glich +Ġbubb les +nat ural +Ġar med +Ġel abor +ĠìĿ´ë ²Ī +Ġwash ed +οÏħ με +è« ĭ +Ġfl avors +Ġexist e +Ġpre st +ĠThe ma +оп ÑĢоÑģ +er on +U E +er i +Ġconc er +Ġa ixò +åħ © +Ġprotect ive +Ġзна Ñİ +ĠëĤ ł +ĠII I +Ġme er +ĠSh op +ll i +ĠOr der +ĠM Y +ĠG host +ãĤĤ ãģĨ +ad el +Ġst ole +Ġrele asing +ĠCom ment +Ġtra ins +ë ªħ +Ġw issen +ens ed +Ġdesc end +Ġf ier +Ġrad i +Ġpers u +ç ¢ +Ġм н +ĠD est +Ġwor ries +it et +b as +Ġst ab +n ame +or ic +ĠCl ose +Ġalum ni +ĠS elf +ff e +it ating +ather ine +ĠRight s +Ġell os +Ġwar rant +Ġn erve +Ġveget able +ĠTe il +Ġê°Ļ ìĿ´ +R Y +Ġsustain ability +Ġste ht +Ġbr id +ada ÅŁ +Ġt v +Ġdur ation +Ġpesso a +Ġmet rics +Ġad am +c as +аÑĢ и +Ġev ident +Ġdisplay ed +Ø§Ø ¦ +Ġre ck +ĠBudd ha +Ġde le +ĠDie go +os ph +Ġb la +ĠM ik +ul ator +Ġ200 1 +Ġpromot ing +y ch +ĠE X +Ġlast ly +Ġout line +Ġspir its +Ġve ux +Ġsubt ract +ĠÅŁ imdi +Ġp ins +Ġbur ger +Ġmol to +Ġhab ÃŃa +Ġë° ĺ +ig u +er st +Ġn en +Ġbac on +it ious +Ġcar ries +Ġprom ises +nd e +ĠLe ft +ĠL im +æ £ +Ġ4 4 +Ġcare ers +Ġì£ ¼ë +Ġspeed s +qu é +m ad +mark et +is me +Ġ200 3 +Ġre cess +ĠJ UD +Ġrac ist +ĠSch l +Ġpar ler +Ġot ros +ish es +Ġconvert ed +aa aa +ани и +ĠAr k +ĠCh ance +Ġelement ary +ε ν +ink s +Inter viewer +Ġfre ely +al ah +Ġëĭ¤ë ¥¸ +Ġrequest ed +Ġtor que +no ÅĽci +ou red +ĠSt aff +Ġst ain +ĠAl an +Ġv ere +ĠW inter +Ġdef ect +ied y +Ġbe ats +Ġh á +um n +o ons +it udes +Ġse it +o ly +Ġres erv +Ġext r +Ġphys ician +vis or +Ġhand ful +ĠN ations +Ġì¢ĭ ìĿĢ +uc cess +Ġup stairs +ĠSqu are +Ġhe in +ĠSe ason +ol is +Ġpr ince +Ġdef ensive +ç ½ +Ġм еÑģÑĤ +Ñĸ й +Ġا ÙĨ +um ble +ê¹Į ìļĶ +Ġass ass +Ġcirc ular +Ġqual ities +Ġh mm +Ġbl own +ĠL iz +ĠK ur +ĠS A +Ġfind ings +Ġcol ours +Ġde lle +ĠI R +ĠA th +ĠD ub +ĠO x +ĠØ ® +Ġpo ckets +Ġgr ill +Ġswitch ing +Ġprefer red +ĠW ales +Ġex emplo +Ġchop ped +Ġvacc ination +Ġne uro +Ġspec ify +iv os +Ġser á +Ġz ie +Ġà® ® +Ġresult ing +ĠU gh +Ġmess ed +C D +Ġpa ar +Ġcom er +Ġcou ch +ĠFest ival +Ġ4 9 +v ous +z ens +ç¨ ® +ĠKenn edy +ĠT s +Ġë³´ì Ĺ +Ġdemonst ration +Ġun to +Ġfrust rating +Ġlabor atory +Ġe gy +Ġbeaut ifully +Ġìŀ ¬ë +Ġal gu +Ġö yle +ä½ł çľĭ +ĠP H +Ġfort une +Ġclean er +ĠRob in +Ġsa us +ĠG eld +Ġk at +o bs +Ġol ur +Ġm att +Ġquest a +Ġsuggest ion +en cer +о ÑģÑĤ +Ġrad ar +Ġìŀ ¡ +ish a +à® ¨ +ãĤĵ ãģª +j es +Ġve el +ìĤ ° +Ġauth ors +ãĢ İ +pl an +Ġcollabor ative +Ġinst inct +Ġfar ming +au ge +E du +Ġmembers hip +Ġsimult aneously +Ġb ake +Ġk ä +Ġlect ures +Ñĩ еÑģ +Ġprend re +Ġcoll aps +ĠS aya +ĠF ut +Ġy og +ĠR ather +ر ÙĬ +Ġcamp s +ол од +Ġsim ulation +ĠM ak +La ughs +Ġgre y +Ġsent ences +y en +ĠUn less +J e +ĠSat an +ĠÑĤак же +ĠN A +Ġbr on +Ġ? ] +Ġsoul s +Ġlight ning +Ġimag ined +Ġczy li +ps ilon +et ta +Ġbelie ving +Ġstrong est +ĠC ON +Ġquel ques +Ġimmig rants +Ġwall et +éĢĻ æĺ¯ +ĠJer sey +Ġimplic ations +Ġfor b +ãĢ ı +Ġun believable +Ø§Ø ¡ +Ġoper ational +ü s +ĠG M +Ġê·¸ëŁ °ëį° +Ġgrac ias +Ġent end +ĠReg ard +ro b +ĠÑĤ еÑħ +è ı +ĠRev olution +Ġwa ar +ĠB iz +th eless +Ġspons ored +qu ier +ĠìĿ ¼ë +Ġte k +ĠëIJ ł +ig keit +ĠL uck +ĠCertain ly +Ġto ll +Ġн иÑĩего +ĠM oney +ĠÑģ ÑĤоÑĢ +ĠDou ble +ĠW olf +Ġch unk +ά ν +it és +on ing +M ar +Ġgrand es +Ġcollect ions +ĠEurop a +Ġа ÑĢ +ĠâĢĭâĢĭ âĢĭ +Ġê·¸ëŁ¬ë ©´ +Ġоб ÑĬ +Ġãģ ª +Ġìĭľ ê°Ħ +ĠC ustom +Ġì² ĺ +Ñĸ лÑĮ +Ġindivid ually +í Ĺ +Ġdo zen +Ġo we +ĠVict oria +åı¯ èĥ½ +Ġbe et +ur b +Ġanal og +i ção +Ĥ ľ +so ever +Ġmod o +Ġsubscri bed +ìŀ ¬ +Ġent ities +çī ĩ +Ġclos et +Ġrespond ing +Ġprin ter +ĠStep han +Ġby ÅĤ +ĠD om +ĠF ern +ĠP ier +ĠwiÄĻ c +Ġh ence +Ġmod ules +ãĥ ¬ +ĠëĶ ± +ĠDann y +ĠÑģеб е +Ġv ad +ĠìĹ Ħ +Ġs ous +Ġsp here +B Y +ĠP ed +ign ed +Ġwhe at +Ġund ers +Ġevol ve +Ġdec lar +Ġlight ly +Ġident ifying +æĦı æĢĿ +Ġlegend ary +Ġgen uine +Ġgr ind +ĠU ne +ge ben +Ġb icy +Ġjump s +Ġprov ince +zi ÄĻ +Ġ×IJ× ł×Ļ +Ġh oc +Ġб л +ĠGr ad +Ġreven ge +ĠاÙĦ ت +o oh +æĭ ľ +аÑĨи и +å¹ ³ +Ġelect ro +ĠëIJ IJ +ãģ§ ãģ¯ +Ġf als +ri el +ok er +ĠEx cellent +ĠMor gan +Ġbr ick +Ġsubstant ial +Ġpoll ution +ĠT ür +ĠEv et +Ġl ung +ãģ ĸ +×Ļ× © +omm es +Ġreal izing +Ġhum ble +ĠL ock +Ġb od +Ġìĸ ¸ +Ġpe ers +uz z +Ġembed ded +Ġclar o +Ġag greg +Ġemploy ers +ĠR aj +Ġãģ ¨ +ĠY i +Ġje u +at ers +Ġstri kes +n os +aut res +d r +op her +ĠApp arently +íĺ Ħ +Ġinf ant +ا ب +ÑĤ Ñĭ +í Ľ +Ú ¯ +Ġred es +acaÄŁ ım +ĠDA VID +ĠCh icken +Ġperspect ives +Ġview er +Ġsh ar +ĠпÑĢо из +lig t +er os +it able +ил оÑģÑĮ +Ġdif ÃŃ +´ë į° +Ġret ired +Ġthat s +zen ie +be iten +Ġmy cket +ĠR ab +Ġinflam m +ì° ® +Ġd um +Ġdad dy +æľ Ł +Ġimm ers +Ġplay list +௠Ĩ +Ġtra um +Ġref use +st ep +à® ļ +c up +Ġpop s +r imin +ay ım +Ġa ld +Ġun necess +Ġd ah +ĠIr ish +Ġcomp r +la ÅŁ +T P +Ġtransl ated +S c +ce ÄŁim +´ IJ +Ġd rei +ĠлÑİд ей +Ġqu iero +Ġhe le +z lich +Ġapp les +Ġdistrict s +Ġcred its +Ġas p +Ġëĭ ¨ +or al +å½ ± +Ġste pping +ĠV a +Ġg ains +6 5 +Ġnuest ra +ed ay +ass ador +ĠL ind +Ġcrop s +ci endo +ig ue +Ġb ana +A m +Ġp ent +Ġadd iction +Ġpack aging +ä d +ª ¨ +Ġper què +Ġcampaign s +Ġste ep +Ġne ue +Ġembarrass ed +Ġdist inction +it zer +åij Ĭ +Ġregist ration +Ġll am +ĠAlm ighty +li est +Ġu z +n ak +ç º +Ġter az +iam ente +Ġtrans actions +Ġc ôt +Ġswitch ed +Ġcom bo +Ġpray ers +Ġintern ship +Ġaddress es +Ġchar ity +ĠW OO +Ġb ait +è¿ ĩ +Ġ � +Ġf ica +ĠTy ler +ar u +Ġat oms +ĠLe vel +ĠпоÑĤ ом +Ġf ame +ul k +Ġteach es +Ġre build +ед ÑĮ +ĠIndones ia +ush i +ĠSh ort +Ġens uring +f s +e le +Ġmargin al +Ġconclud e +am t +Ġver ify +ĠMc Donald +Ġsk al +Ġrec onst +ĠM ann +Ġbas ement +Ġtransform ed +Ġoccasion ally +z one +ĠD ans +Ġкак ой +Ġdiagn osed +ĠÏĦ α +Ġcomm ands +Ġpresident ial +Ġab b +Ġbrack et +ĠL em +Ã¥ ng +Ġfavor ites +Ġrev ol +ĠíĬ ¹ +Ġhar ass +é ħ +Ġcle ans +st änd +Ġknock ed +Ġpe oples +Ġmusic ians +Ġmut ual +ĠC old +8 8 +ze j +at ie +ĠHon or +Ġobs essed +ĠM USIC +ĠBre ak +ú ng +Ġmod ify +Ġs öyle +Ġ×ŀ ×Ķ +ĠOn line +f o +ĠMill er +Ġlik ing +Ġin hab +Ġgrat itude +ĠJour nal +arn ess +J ohn +ĠG it +åī Ľ +Ġsin cere +ĠS ci +ĠE li +Ġsymbol s +Ġman ually +ε ÏĤ +Ġв Ñĸд +ĠF at +Ġlab els +Ġsophistic ated +ump s +Ġrele ases +Ġ4 7 +ĠO M +ê°Ģ ë +ĠB ien +ĠRe f +è¨ ĺ +ĠSt a +ĠE gg +Ġindic ator +ps on +Ġnas ıl +R ight +Ġcon vey +Ġkn ot +Ġconnect s +ul as +Ġpre ced +Ġine quality +am iento +Ġrep ly +O Y +Ġdism iss +ĠëIJ ľ +çĦ ¡ +ĠÑħоÑĢоÑĪ о +Ġm éd +Ġrandom ly +ĠO nt +u ard +Ġpull s +ĠÑĤ епеÑĢÑĮ +ĠNe ed +ĠSo ft +Ġstrength s +Ġgo ed +um en +æŃ » +Ġíİ ¸ +Ġд об +Ġclar ity +ĠA i +Ġball oon +ĠP and +ĠìķĦ ëĭ +Ġsh iny +Ġsmall est +on ia +h ill +ot ing +Ġe ing +Ġmere ly +Ġse us +Ġн еп +Ġí Ĩµ +Ġgu ides +Ġspecial ist +Ġste ak +ãĤĪ ãģĨ +Ġmig ration +que le +Ġru ined +Ġpu pp +å¥ ³ +Ġk end +ang an +Ġpal m +Ġunf air +Ġz m +ĠD V +ch ester +и Ñİ +Ġo oh +er g +AT H +° © +åĵ ª +r ison +Ġinvol ving +Ġpart ly +anç ais +Ġv ow +Ġprom inent +Ġcry st +ib a +Ġdes erves +Ġover t +Ġsens it +ĠWh e +Ġtight en +Ġintim id +Ġal iment +w ill +Ġstrength en +ĠT an +åı Ī +ãģĹ ãģ¾ãģĻ +on i +ĠM un +Ġpro ph +Ġrehe ars +ĠK le +Ġve ces +Ġwonder ed +ok i +Ġsens es +´ì ĭ +Æ°á» Ľ +ĠÈĻ i +Ġmuch os +Ġwatch es +ortun ate +ĠJ uan +ìŀĸ ìķĦ +ÑĢ е +e i +ion en +Ġexperiment al +Ġda ughters +ภĽ +Ġment ally +bec ca +aw are +ìĦ Ŀ +Ġwhat soever +Ġen ables +ĠL ow +o id +ภĬ +ó d +Ø º +Ġconstruct ed +ĠLad ies +Ġaccus ed +Ġа н +D an +Ġsp awn +Ġcontain ers +Ġart istic +ı p +Ġdisc l +Ġaut res +in as +ĠN ation +Ġn ag +be an +w he +ľë ıĦ +ĠSe oul +Ġíı ¬ +ĠN ich +Ġcomp lement +Ġinter ven +ĠMod el +ĠOr ange +nam on +Ġcalcul ation +se e +Ġusted es +Ġle b +Ġdo ct +Ñĸ н +Ġf oster +Ġel astic +ĠAh h +Ġa ce +ĠP ink +ĠJ eg +Ġde er +ãģĹ ãģĦ +s is +Ġjak o +ĠEm ma +ÑģÑĤв енно +Ġport rait +Ġmak er +Ġa ument +ÑĢ об +Ġairpl ane +Ġtransparen cy +Ġadjust ment +ĠCD C +ç on +Ġupload ed +Ġд ейÑģÑĤв +Ġго ÑĤов +Ġit er +Ġcur se +ô n +mer ce +ar an +Ġle ak +çµ IJ +Ġabs ence +Ñģ кий +Ġread ers +al er +Ġbene ath +ang o +h etic +Ġfin ns +Ġpo op +Ġdu plic +H i +ig s +olog ically +op p +Ġd izer +ĠAll en +Ġgl i +Ġacc eleration +Ġvit amin +ãĥ Ń +v ä +ĠAc cess +à® Ļ +r ás +Ġappreci ated +Ġn ah +Ġpos ter +Ġt ale +Ġhighlight ed +æĸ ĩ +ż eli +Ġblock chain +Ġmic row +Ġcin ema +ĠCh ang +ĠSe arch +ust ers +ĠZ ero +ĠDiv ision +ÑĢ аÑģ +Ġsca re +Ġj elly +ĠAdminist ration +S O +Ġl ined +Ġê° Ħ +Ġge ben +Ġso da +Ġwin ners +³ ¼ +Ù Ĵ +ĠAm b +åķı é¡Į +å Ķ +Ġpe g +å· ± +4 3 +Ġra us +Ġre wards +Ġinc lus +Ġhigh way +Ġha h +Ġmultipl ied +Ġs ẽ +Ġdisci ples +Ġn ing +Ġdress ing +Ġattrib utes +ĠM osc +ĠGree ce +Ġse k +ĠLe arn +Ġj us +rend re +Ġperson ne +pl ete +Ġpl acing +Ġl uego +ill ance +Ġоб Ñī +Ġprov ision +Ġl ion +t ra +bo ards +Ġbehavi our +he y +Ġsubscri ption +Ġprot agon +ãĥ £ +Ġvar a +ĠÅŁ u +Ġha ha +Ġteas poon +æ Ł +av oir +Ġcrypt o +ĠÑģÑĤ аÑĢ +ĠSt ore +ab s +ĠStud ents +Ġla und +int o +Ġapproach ed +° ľ +ÑĥÑİ Ñī +ĠL abor +ot es +iat ric +Ġgro ÃŁ +ut ive +Ġи д +ĠG ib +Ġpl acement +ĠdifÃŃ cil +Ġf rog +ĠвÑģе Ñħ +ĠJ r +az ed +Ñĥ Ñī +Ġê ¼ +fr ame +а еÑĪÑĮ +Ġlock down +åij ³ +Ġmed i +Ġ×Ķ× ŀ× +ени й +em ale +ì¢ ħ +ater al +Ġdist ant +Ġbe ars +Ġjournal ist +è§ £ +ĠMarsh all +ĠIh nen +uet ooth +b ag +ĠÄij ã +ĠHigh ness +Ġì° į +и ка +ĠW u +ĠFr an +Ġp eng +Ġf on +Ġhypothes is +ĠÑĢ Ñĥ +Ġl y +× ļ +ìĽ Ķ +ĠRad io +ภŀ +D av +Ġembarrass ing +ĠìŀĪ ìĸ´ +Ġcast ing +Ġc age +ĠP sych +ĠìĿ¼ ëĭ¨ +ĠÅ ¾ +im b +Ġdirect ors +S H +ĠÏĦη ν +á»ģ u +Ġkon uÅŁ +Ġoption al +quar ters +ik er +ĠS ant +Ġvers es +ë ¶Ģ +Ġo lar +ĠÏ ĩ +ãĥ ķ +Ġγ ια +ĠI mm +Ġcontrovers ial +Ġer sten +Ġreci p +ĠChristian ity +Ġê´ ľ +ord on +×ķ× © +Ġsl ash +ĠP f +Ñĥд ÑĮ +×ķ× Ŀ +ĠPer ry +Ġm amy +Ġbackground s +Ġà®İ ன +Ġpend ant +ĠColumb ia +Ġin verse +ĠÑĩеÑĢ ез +Ġs v +Ġdig ging +4 1 +ch em +Ġnavig ation +ĠSh in +ĠFr ont +P D +Ġbe aring +ĠW asser +Ġw ax +ĠCH RIS +ch ing +Ġpress ed +E l +ĠD al +ons in +Ġb inding +Ñģк ой +po ons +Ġmo ck +are st +к ÑĢа +M M +Ġcor rupt +st orm +Ġref res +ĠCo ach +ll ä +ĠTH IS +Ġpar ag +Ġìĵ ° +p ool +Ġbill ions +Ġê¹ Ģ +gr oup +Ġwel coming +cell ence +ĠDu ke +ê¸ ´ +Ġprim era +ìł ¸ +Ġp ond +Ġstat ue +Ġêµ ¬ë +Ġh atch +Ġinstrument al +Ġresident ial +ì» ¤ +Ġaccept ing +osh i +d ate +ĠìĶ ¨ +Ġplant ed +Ġj oking +Ġì Ħľ +Ġh ated +ĠÑĢаÑģ Ñģк +Ġsle pt +Ġpack ages +Ġisland s +es en +ÄŁ ı +Ġdi agon +ĠO sc +Ġmes h +Ġsc ales +ar ity +ĠDef ense +ãģ¡ ãĤĩ +ĠLew is +ĠÑģ егоднÑı +Ġfl ies +uin ely +ĠCons ider +Ġst ark +he w +ĠAs ÃŃ +³ ´ë +Ġprop ose +Ġíķĺë ©´ +od o +ĠNorm ally +Ġhe eft +ĠHarr is +g ro +ĠBlo od +b ase +Ġi OS +Ġtouch es +Ġinsp ir +Ġ× ĵ +Ġb inary +Ġì¶ Ķ +Ġser ial +Ġ ion +Ġunemploy ment +Ġodd s +ĠF ab +ĠF BI +BR UN +Ġweight s +ν ο +at ile +Ġnurs es +Ġinvolve ment +ĠíĶ ¼ +Ġgovern ance +Ġâ Ĥ¬ +ÑĢÑĥ п +ier ra +íĺ ķ +ĠJ erry +Ġbe ard +Ġsal vation +ĠAl ong +g entle +ĠK i +b ol +ĠPl at +Ġhas ht +è¿ ij +Ġw are +Ġpart ie +y cz +Ġint r +F ih +n ent +Ġche at +il en +Ġë ¯ +or ie +Ġfá cil +et ric +Ġaffect ing +unci ation +Ġaff airs +Ġbe e +Ġview ing +Ġor ang +ĠL an +ĠС ÑĤ +ä¸ ĸ +ĠM es +ĥ ģ +er ie +Ġes pa +Ġinter pre +Ġposs ess +Ġpure ly +rit o +f ound +as ma +ìłģ ìĿ¸ +Ġexam ine +ĠÑĥ м +Ġbes ch +ĠTom orrow +ĠB lock +Ġvari ant +Ġprefer ence +Ġcoach es +Ġmedic ations +Ġíĺ Ħ +Ġemp ire +ë Ħ¤ +ĠIll inois +Ġcris py +Ġth ì +Ġbe es +7 7 +Ġgl ow +è º +ĠStud ies +åIJ Ħ +ĠChall enge +Ġunlike ly +Ð § +ıy orsun +DI E +Ġminim ize +iz ard +Ġú n +Ġencont rar +ĠK ill +å » +Ġvan illa +ĠGr ant +ĠG T +se a +Ġs ought +в од +Ġnä m +ĠA unt +OW N +Ġpump kin +st ellen +Ġr ag +ег да +Ġstory t +Ġfor um +æ© Ł +Ġestab a +uch e +Ġcon gress +ĠRe y +Ġdram atically +ĠSp ort +ĠYe llow +Ġê³Ħ ìĨį +Ġdisg usting +ĠRe cent +Ġacqu ired +Ġc ables +çĶ ļ +d in +Ġv isto +Ġcommunic ating +ÑģÑĤав лÑı +еÑģ ÑĤо +ãĥ»ãĥ» ãĥ» +Ġré g +Ġso cks +Ġpro ces +be cause +Ġut ter +Ġcoloc ar +Ġnew est +Ġgr amm +è¡ ¨ +ä¸į çŁ¥éģĵ +Ġsh ifting +Ġcar rier +ĠÑģк оÑĢ +ĠSch w +Ġexec uted +Ġmaint ained +ĠÏ Ĩ +ĠM oses +Ġdis se +Ġhor r +ãĢ ľ +Ġr ally +Ġall em +ĠEvent ually +Ġdi yor +lv ania +Ġsch nell +Ġê³ ¼ +Ġë§ ¤ +Ġstrugg les +l ate +Ġclar ify +é ment +Ġmulti plic +иб о +Ġjour n +Ġfra gr +Ġsurprising ly +Ġdesper ate +5 2 +Ġs ul +ĠRe ad +ĠF ried +Ġm ond +w oo +Ġorgan izing +ãģĹãĤĩ ãģĨ +ĠSo on +Ġв опÑĢоÑģ +ĠN ur +ĠÐĹ Ð´ +Ġsp ider +е ÑģÑı +Ġtutorial s +Ġnutri ents +or er +Ġcoe fficient +Ġarrange ment +Ġpr icing +n an +y u +B L +Ġtri be +ĠHow ard +un ks +Ġnew er +Ġprov in +Ġpred iction +h os +Ġol sun +ĠAr ound +Ġv ier +ĠÑģÑĤоÑĢ он +Ġv alley +ĠE la +if i +Ġgal axy +Ġtran qu +Ġad vers +ĠTem ple +iff s +ig ence +èĩª å·± +Ġkön nte +ĠÄij ó +D id +Ġphotograph s +ĠA WS +ÑĨи Ñı +Ġgu ards +Ġappoint ed +ĠG il +Ġм ом +Ġc od +ĠUn like +Ġeven ly +isc onsin +Ġest ou +Ġm nie +ĠEx ec +ĠM V +ĠE ine +ä¿ ¡ +ĠRog er +ĠF ac +ĠL ist +Ġf uer +аеÑĤ е +om ed +Ġattract ion +èī ² +Ġter rain +ĠD rop +Ġcorpor ations +Ġsci ences +Ġthr one +ãģĦ ãģŁ +Ġa j +ĠR ot +çī ¹ +Ġsupp orters +ĠB ere +H ere +Ġdifer entes +Ġsignific ance +Ïĥ η +æĪij 覺å¾Ĺ +Ġcl amp +Ġë ĮĢë +Ġfab ulous +re z +æĮ ģ +Ġassum ptions +ut her +w id +p ot +è¿ İ +Ġy an +ul in +ÑĢ Ñĭв +ĠSl ow +ĠPenn sy +Ġíķ ´ìĦľ +Ġme io +Ġwealth y +ĠE ight +Ġpul se +Ġfr iction +id ity +ĠH oll +i yorum +Ġsound ed +ĠC arr +Ġfor k +â ĺ +ĠP A +Ġcons pir +Ġc oding +r t +ĠTy p +Ġìĸ ij +Ġп ог +Ġmis er +ĠÑģм оÑĤÑĢ +ĠSw eden +Ġolar ak +ĠZh ang +ĠCh i +ĠT itan +Ġscreen ing +ĠSp ider +ĠÅŀ imdi +Ġobst acles +lar a +Ġchalleng ed +p se +T ON +á» ¥ +ĠP i +Ġlag i +ie urs +Ġhur ting +Ġneg lect +Ġgener ating +Ġyoung est +Ġaud it +ĠÑĢ ез +Ïģ ά +Ġdon ate +ĠPD F +Ġvis its +Ġcru ise +P P +as er +Ġw sp +back s +iv als +ãģĨ ãĤĵ +Ġde ve +Ġprop ort +Ġc ath +ĠE ffect +Ġwind s +ĠìĻ Ķ +Ġchart s +Ġs ama +Ġautom ation +Ġпок а +Ġol an +Ġbo ats +Ġca fe +Ġden ied +ĠM ama +Ġblock ing +ĠTh or +Ġphenomen al +Ġstake holders +Ġun os +Ñĥ еÑĤ +ĠAb raham +ãģ§ ãĤĤ +Ġdetect ion +Ġjur is +Ġpower ed +z ial +Ġwel fare +Ġup grad +Ġmoż na +ĠC ase +c ular +Ķ ìĿ´ +ãĥ ģ +ĠGu ess +Ġcy cles +ä¾ ĭ +çµ ¦ +ro ck +um i +Ġel ite +Ġqu è +åł ± +ÑĤ ом +Ġsh ore +gun ta +Ġk u +Ġfaith ful +ĠJ eremy +a id +à · +ug al +å°į åķĬ +ĠV el +Ġvra i +st ell +¨ ¸ +Ġk ol +è ½ +Ġquant o +Ġз аÑĢ +Ġ200 2 +es y +Ġres erve +Ġмом енÑĤ +Ġdeploy ed +Ġdefin ing +Ġsa u +Ġga at +" ) +Ġtrans mit +Ġpubl ishing +Ġrank ing +Ġoff ense +Ġ4 6 +p in +ĠT aking +Ġentit led +Ġgen uinely +Ġvari ations +Ġfind e +Ġt au +Ġunf ortunate +ĠR ah +port s +Ġc Å +Ġmon key +Ġbr ac +we i +l ung +Ġart if +Ġsy rup +ĠÐĶ ав +Ġlift ed +Ġche z +ĠAd vent +ĠSt ock +Ġdo l +м ен +иÑĪ ÑĮ +Ġy n +g io +d et +Ġdes se +Ġg ri +ĠChair man +ç ħ +Ġcu enta +an im +Ġcra b +Ġesc al +Ġpremi ère +ĠGe f +Ġd ining +Ġsevent h +Ġch asing +ĠT ower +Ġbrut al +Ġfundament ally +ãģ¨ ãģĨ +л ениÑı +st age +Ġacqu is +Ġcyl inder +Ġcomm ander +m em +ĠU V +ha ppy +Ġe psilon +Ġinv itation +Ġfar mer +ch air +Ġdest iny +Ġso vere +ĠHeb rew +Ġserv ant +Ġbe w +Ġg ast +ut ies +Ġadministr ative +ĠComm and +é ta +Ġnit rogen +ê· ¼ +Ġab i +Ġvill ain +Ġblank et +ĠS end +Ġbeat en +² Ħ +Ġvol unt +Ġschol ar +ĠEm peror +Ġ4 3 +v able +ĠD us +ĠG U +Ġtarget ing +ww w +Ġamend ment +ìĨ Įë +Ġt ing +Ġn asty +Ġg auge +ĠÑĢ од +ĠH ans +Y our +α ν +Ġpro jet +ĠHawai i +Ġsusp icious +Ġsch w +Ġremo val +Ġint rig +ĠM U +Ġp onto +ठ¾ +Ġоб ÑĢаз +Ġguess ing +p ace +Ġm others +Ġmill imeter +л ение +没 æľī +Ġavail ability +ic z +æŃ ¤ +Ġfr act +Ġbas es +k m +ĠB TS +ĠF ield +Ġd zie +Ġseg undo +ĠëĤĺ ëĬĶ +Ġlegit imate +im as +Ġв н +Ġcor ruption +Ġsm ash +ĠVal ent +Ġalign ed +ĠPennsy lvania +Ġg ab +ĠE un +ent h +ĠMor ning +Ġcand le +Ġback pack +ĠIslam ic +a ções +Ġenc ry +Ġmushroom s +íĮ Į +d it +Ġtrans it +ĠW isconsin +Ġparticip ated +ĠIl s +Ġunf old +¶ Ģë +Ġprof its +Ġwar ming +ĠG ang +Ġnetwork ing +Ġme ga +Ġthorough ly +le ments +ĠH m +Ġdec iding +Ġemotion ally +Ġexha usted +ĠÐŁ оÑĤ +c ido +ĠHT ML +Ġcopy right +Ġmel ody +y im +Ġand ers +osh op +Ġë³ ¼ +Ġathlet e +ĠG E +Ġfrequ ent +Ġdes ires +Ġneed ing +ĠY un +Ġrif le +Ġlo ver +' T +Ġd ense +Ġt ão +Ġnot ified +Ġid i +ìĹ Ń +í Ĩ +Ġinteract ing +Ġrapp ort +еÑĢ и +s ki +Ġb esser +Ġmanufact urer +ĠK yle +Ġaccount able +ĠS ak +ĠP il +ĠD omin +Ġpres um +ĠÐĴÑģ е +Ġvine gar +Ġguarante ed +çľĭ åĪ° +Ġhand led +éŁ ³ +c at +Ġcivil ization +Ġaccom p +ĠV M +é mon +Ġde ze +Ġgrad es +Ġsoll te +Ġst aring +×IJ× ª +ar nt +Ġhoriz on +Ġtrav ail +h our +第 ä¸Ģ +ĠE D +ĠD ak +Ġn y +Ġcon ve +ĠCh am +Ġfir ms +ĠL iu +ĠÑģÑĤ ÑĢан +Ġli bert +Ġlens es +Ġint ake +ĠвÑĭ б +Ġmens en +h el +Ġpract ition +Ġ3 50 +ãĤ ³ +F O +Ġbed s +Ġancest ors +ĠìĹĦ ì²Ń +Ġdistur b +ĠLast ly +ĠSupp ort +ี à¹ī +ĠCor ona +Ġenthus i +Ġвоз м +ĠìĤ¬ëŀ Įë +Ġ5 2 +b ird +Ġredu ces +ĠìŀĪ ìĿĦ +ĠG ene +êµ IJ +ÄĻ p +ĠÃľ ber +Ġconcer ning +us er +Ġconcent rate +ĠWH AT +ish op +onym ous +no ld +Ġsuggest ing +© ° +ĠF ish +.... .... +Ġvess el +Ġtrabaj o +ãģ µ +ĠO cean +å§ IJ +y g +Ġtown s +d el +Ġterr ifying +Ġçal Ä±ÅŁ +Ġs ino +Ġe ats +Ġge z +Ġg eme +ĠìĻ Ħ +Ġcomp art +Ġimplement ing +ĠPot ter +ĠGerm ans +Ġg ÅĤ +Ġt ennis +Ġcar pet +au er +ĠSaud i +ye ong +Ġcur ry +ĠFore st +Ñĭ л +Ġfif teen +Ġbol ts +Ġ{ \ +¬ ´ +Ġsett lement +Ġl ange +Ġb am +G et +íķ Ļ +Ġsw ap +ĠK han +Ġcomm ence +Ġquar antine +Ġsc ored +ç ĸ +Ġ19 50 +Ġthick er +Ġsû r +åı £ +ĠLar ry +Ġall ez +ìĭľ ëĬĶ +Ġg ü +Ġspect acular +/ / +b oth +Ġst ats +å¦ ³ +ĠN ancy +Ġbun u +Ġcr ust +Ġactiv ated +Ġê·¸ë ŀ +out he +Ġport s +Ġne ural +Ġj aw +Ġobserv ations +Ġvo it +ab an +ả i +¦¬ë ¥¼ +om es +௠ĭ +qu i +Ġkind ness +Ð ij +Ġ4 1 +Ġmoder ate +Ġang els +ĠT amb +è t +Ġch lor +ĠBill y +ì² ĺë +ac on +Ġselect ing +ĠDel ta +Ġn ull +den ly +Ġci ud +Ġtend ency +Ġbreak down +Ġm int +ÑĦ оÑĢм +or ph +Ġda wn +s pr +ĠW ILL +äch lich +Ġpu ppy +7 00 +Ġà® ¤ +Ġfail s +ĠCon c +Ġrel atives +Ġinv iting +Ġaut onom +Ġcomp osed +Ġun ity +Ġdec is +Ġaccess ories +ĠC ass +Ġb ist +ĠT ip +ì§ ¸ +Ġp unt +Ġr áp +éĢ ² +AN K +ãģ ļ +ex ist +Ġcompat ible +Ġn er +Ġе мÑĥ +Ġa plic +Ġb apt +Ġfail ing +ĠTam am +Ġos cill +Ġletz ten +Ġrepeated ly +Ġjung le +ĠP ush +h ai +ĠÎ · +Ġdead ly +Ñı ж +wi Äħ +ĠComm on +ĠÎ ķ +Ġsk ate +T C +ĠMin i +Ġhob by +ầ n +Ġrout es +Ġam igos +Ġcon jun +Ġpartners hips +Ġno vo +Ġa ver +Ġpou vez +br idge +Ġpre oc +h im +Ġtur b +Ġso b +ĠSn ap +Ġì° ¸ +min ute +Ġtra ject +uj ÄĻ +Ġe ager +Ġregul atory +Ġbank ing +b ling +ÑĪ ÑĮ +a ż +Ġbiz arre +it ated +d ire +Ġthreat ened +Ġsh ining +Ġn esse +Ġcor ps +ĠÑģ Ñĥ +Ġt eles +Ġtem p +t em +Ġк ан +Ġfe ver +N ew +Ġheav ier +ĠS ah +b ud +Ġout ros +Ġì° ¾ +Ġëª ħ +arr ing +Ġê´ľ ì°® +ĠN ap +Ġse min +ĠTh an +if s +Ġdes en +ĠÑĤак ое +Ġlos es +ĠB alt +k on +Ġнап ÑĢ +Ġvo is +ĠMosc ow +Ġch airs +h is +Ġrefuge es +k g +Ġk ole +į ¨ +аÑģ ибо +¦ ½ +ĠUn iverse +ĠDire ct +Ġche ating +ĠC in +Ġpat ri +Ġadv ise +ĠN ether +Ġprime iro +Ġmention ing +n ut +5 6 +ar ı +Ġpet ite +b led +Ġpens ar +ic io +IN D +Ġveter an +Ġlad der +Ġconsequ ence +ож ал +ĠB urn +Ġr ug +ĠM ade +Ġg it +" ... +Ġcompet itors +Ġprz ed +Ġapp arent +ĠArgent ina +ĠWork ing +Ġcollabor ate +w oman +Ġret ain +Ġle urs +Ġdash board +×Ļ× ĵ +ĠEar ly +B M +Ġе Ñij +ол ог +Ġsatisf ying +Ġoft entimes +Ġma pping +ünk ü +ar th +f old +Ġlaunch ing +Ġa ura +Ġprec ision +work s +G od +Ġstra p +ĠIm per +Ġr ivers +Ġ | +Ġcu er +reg on +Ġarri val +ка Ñħ +ĠM iami +ан Ñĭ +Ġsurviv ors +ĠSen ior +Dav id +Ġest ado +Ġse ctors +Ġpop ping +Ġch im +ay ı +Ġkun nen +Ġgall ery +Ġsun light +ese hen +Ġye lling +ĠMe in +ĠPho enix +Ġman o +Ġhistor ia +Ġoccur ring +æ¬ ¸ +ì ¸ +ад и +å¾ ħ +Ġinstitution al +ĠT ut +ç ² +Ġsl aves +ãģ© ãģĨ +Ġforg iveness +Ġtw in +ĠHy un +н ÑĮ +ĠK omm +and ra +sh ot +ss ä +ĠÑĨ е +at ta +Ġexp ense +ĠG PU +ĠP ast +rib ly +ĠëŃIJ ìķ¼ +Ġгод а +Ġresp ir +æĿ ± +ĠQue ens +h ops +Ġs érie +Ġpre f +Ġcom ed +Ġpl ut +ĠOver all +Ġãģ Ŀ +Ġc ush +Ġring ing +Ġincor rect +ĠÑģÑĤ ÑĢ +Ġgeomet ry +Ġadvert is +ĠÐ ¨ +Ġreview ed +ãģĤ ãģĤ +Ġdo zens +Ġdeterm ination +ĠPh ill +Ġcontrib uted +ĠC it +Ġpass engers +Ġcôt é +Ġre ver +Ġtechn ological +Ġall en +Ġr aining +av i +Ġsal ty +Ġtyp ing +ĠÑĤ е +Ġt ilt +Ġì¹ ĺ +Ġо ÑĢ +ĠпÑĢ Ñıм +Ġr ou +Ġare na +ar at +åĪ « +HH HH +Ġmanufact urers +ĠEd ward +Ġt uck +Ġbl ows +ing o +ĠMar c +ìķĦ ìĦľ +M ich +ĠCle an +è ´ +est o +ĠP ack +Ġsha ft +BRUN O +Ġa ven +u ur +Ñģк олÑĮко +ê´ Ģ +Ġautom ated +Ġvent ure +Ġsurve illance +ĠG row +ĠE mer +Ġд оÑĢ +Ġinvest or +ĠY ok +Ġl atter +ĠN I +Ġfunction ing +ĠHam ilton +Ġ5 1 +Ġmurder ed +Ġanch or +Ġc uc +ĠSC P +ĠMad am +Ġconstra ints +Ġb arn +ank en +Ġë§İ ìĿĢ +ĠMot or +ĠDo ing +Ġam en +et ts +Ġinst ructor +eg t +ak o +Ġpost ure +iv ia +ĠPol ish +Ġдв а +Ġcolor ful +Ġel bow +Ġpar le +Ġpass er +Ġcond em +ort al +Ġfert il +ا د +ĠCol omb +Ġalign ment +Ġastron aut +ĠM ut +Ġsal mon +Ġstructure d +ŀ ר +Ġclick s +Ġm iej +æĶ ¿ +ãģĦ ãĤĦ +ĠR ound +Ġrain bow +ĠV A +ãģĶ ãģĸ +ì§ Ī +ot z +, +Ġch ords +ĠSand ers +Ġë¶ Ħë +B en +Ġdar über +ili ans +Ġorder ing +ĠMan h +Ġkil ogram +Ġkar ÅŁ +Ġgr asp +Ġghost s +al en +ĠJ edi +Ġб ли +Ġdownload ed +Ġconduct ing +ĠH ak +Ġresearch er +il an +go od +ĠH annah +ĠdÃ¼ÅŁ ün +ĠMess iah +u ity +ion a +Ġprob able +ĠY E +Ġindepend ently +Ġbuff er +b urn +our d +ĠMc K +Ġl ingu +uj emy +еÑĢ ÑĤ +Ġintuit ive +Ġcrack s +app ropri +nt y +Ġge en +Ġl end +Ġcert ification +ID S +un ter +pe es +Ġtr ump +Ġbank rupt +Ġfe as +è Ĺ +Ġdu ż +æ¸ ħ +Ġvirus es +Ġ5 8 +g od +Ġж ел +Ġst alk +I nd +ach i +ĠC F +ĠC ond +Ġsan ct +Ġcont en +Ġfre ed +ĠR T +Ġment ors +ì¡ ± +Ġport able +ĠPaul o +r ane +HA HA +ĠS ection +ç Ĩ +hy un +ĠÎŃ Ïĩ +ĠP ub +ĠInd epend +Ġcomp ounds +ĠÑģ Ñĭ +Ġmess aging +Ġded ication +Ġnot icing +Ġdevot ed +ÑİÑĤ ÑģÑı +Ġsn akes +Ġbattle field +p ers +Ġdel a +9 2 +Ġha i +ill ä +ér er +e very +Ġrespons ive +×Ļ ×ķ +op f +é ī +Ĭ ¸ +Be cause +Ġtour ism +Ġê·¸ ê²Į +×ķ× ¦ +Ġcan s +st üt +Ġdon ne +ĠD ios +ĠU ber +act ory +Ġorient ed +ĠH erm +Ġpat ron +ur f +be i +Ġprogram a +ĠOh h +gen er +Ġf ist +ĠW endy +Ġand a +Ġguess ed +Ġfre ak +ä¸Ń åľĭ +ĠK ings +ch ool +Ġoff line +ĠIndian a +ĠAll iance +Ġ5 3 +Ġpartic ul +ĠF ocus +Ġinhab it +Ġê°ĻìĿĢ ëį° +ĠMc G +ows ki +ĠìĿ´ ê±´ +Ġpa ÅĦst +он и +itt a +Ġconfirm ation +ĠBrook lyn +Ġnood le +f und +it ud +Ġgrand parents +Ġbar becue +ει ÏĤ +Ġ á +Ġball ot +ĠV eter +Ġpip es +ig ious +ĠG raph +est ed +Ġë¸ Įë +ĠK E +ãģ¡ãĤĩ ãģ£ãģ¨ +Ġe ins +Ġhat red +ãģij ãģ© +Ġd ang +ee ee +Ġarch ae +ĠJes se +Ġdetect ed +Ġsen i +burg h +Ġdispl acement +Ġdo p +Ġcondition ing +Ġне ÑģколÑĮко +Ġdistur bing +P H +Ġthin ner +Ġwound ed +ĠCu ando +Ġcush ion +Ġwh ites +Ġprefer ences +Ġì¤Ģë ¹Ħ +Ġka ż +ĠG ate +ĠP ath +d les +à¸Ħ ร +im ore +Ġë³´ìĹ ¬ +Ġdiscipl ines +á» ı +Ġmes ma +Ġìĥ Īë +Ġìĭ ¬ +Ġg ing +Ġumbre lla +IGH T +Ġp ension +Ġcomb ining +S S +Ġrect angle +á»ĩ t +Ġpro xim +ĠC ow +¸ Į +Ġintention al +æķ Ļ +Ġdec id +ĠÑģк аж +ĠU ma +ias m +b uz +Ġdebr is +Ġc ass +ĠP rop +is ka +ë ł¥ +ester ol +uss ian +ìĿ´ë ŀij +Ġun limited +Ġadm ire +Ġtight ly +Ġgen ome +ĠJun ior +ven ir +g us +Ġc Äĥ +ĠV lad +Ġí Ĥ +Ġrel ativ +in ci +Ġaun que +ĠBo ys +ÑĨи он +ĠSw iss +Ġphys icians +Ġíı ī +ĠP ET +Ġw ounds +ab out +Ãł i +on z +ur ities +ĠÑĥв ид +å· ¦ +Ġment ality +Ġvari ance +Ġseg unda +Ġvol cano +al ie +ॠĩ +Ġt iles +ĠT erry +ĠاÙĦÙĦ Ùĩ +Ġcan on +Ġsc attered +pt on +Ġdefin itions +Ġal gebra +ot en +ab lo +ij uana +Ġwra pping +Ġses ame +ĠнаÑĩ ина +ĠAl f +ĠÐł оÑģÑģ +or no +Ġan kle +Ġspecial ty +Ġattempt ing +ili ation +Ġ19 20 +Ġphen omena +ĠPro duct +ĠB uck +ĠA ww +se en +Ġvo id +ĠFrank lin +Ġadvoc acy +ĠS ep +Ġcool est +ĠÑģ ÑĢазÑĥ +ĠQu and +Ġ9 00 +ĠTr ad +d ies +Ġhas h +æĪij å°± +ä¹Ł æĺ¯ +Ġpot s +Ġsad ly +Ġvi able +ĠT iger +ĠON E +Ġneur ons +ow anie +Ä Ĺ +ĠSh ar +ĠLand es +Ġconfer ences +è© ² +Ġcred ential +Ġl ime +ine e +x it +p ay +Ġinc ons +Ġ>> : +èª į +Ġí ŀĺë +Ġless er +Ġsp ill +Ġprem ise +Ġ36 5 +ĠH ost +Ġtom ar +×IJ× ľ +ë ²Ī +ĠWhat s +Ġlight weight +ĠM ap +f ia +ells chaft +Ġvend ors +uest o +ĠM ister +ĠÐŁ ÑĢи +åı ³ +h ma +Ġintention ally +ĠT ang +éĹ ® +Ġident ification +Ġetc etera +ĠN ee +ĠÑĤ ÑĢи +ê· ¸ +Ġcrypt ocur +Ġin hale +Ġadd ict +åIJĦ ä½į +Ġma u +ĠÑĤак аÑı +Ġë² Ħ +Ġcomp rar +ied zieÄĩ +ĠоÑĤ но +Ġbegin ner +Ġм Ñĥж +Ġobs c +Ġlim iting +asc ular +Ġins pection +ac i +Ġre jo +M us +Ġz aten +Ġsz cz +ĠMad rid +Ġvar ieties +Ġest Ãł +ĠSh akes +Ġk its +Ġad minister +Ġla va +Ġg Ã¥ +è© ¦ +ת ×Ļ +ĠWay ne +Ġinst agram +Ġr ated +p aper +Ġb ild +Ġpret ending +Ġobser ving +ĠÑģам ом +Ġtr or +Ġorgan isms +Ġfal ta +Ġh ometown +ç ± +Ġí ĭ +Ġche g +Ġì ¡ +Ġcomm a +is é +Ġlike lihood +av ored +Ġgel di +ни ков +Ġmed io +Ġjak ie +ĠJ up +Ġgreen house +Ġsp it +ко е +Ġк аж +ĠG ram +ĠCon ference +Ġdef icit +s ın +in se +u ÄŁ +Ġr icht +Ġcoinc idence +åı į +Ġeu rop +Ġbutter fly +p read +Ġìĸ ¼ +èĢ ¶ +Ġwa vel +ĠIn fin +ĠPlan et +Ġself ie +ient ras +Ġar rog +os er +id al +ł×Š׳×ķ +üt ün +Ġfresh man +ĠMach ine +Ïĥ ÏĦ +ĠD ia +ìĿ´ ëĭ¤ +ãģĵ ãģĨ +ne a +Ġlist ing +Ġconfig ure +ut or +U p +ts chaft +ri ère +Ġup wards +ĠÑħоÑĩ Ñĥ +Ġswe ep +B r +Ġexpress ing +Ġun happy +Ġmand atory +g ender +ĠA ÃŃ +Ġindic ators +Ġoil s +n ote +Ġseg ur +ож еÑĤ +yn asty +Ġdist ances +Ġmer ge +BER T +Ġsur render +Ġbu at +ĠA wards +Ġseñ or +od ox +Ġfl avour +Ġab dom +Ġconfig ur +8 6 +ĠDI Y +Ġrig id +° ĺ +Ġcorpor ation +Ġg room +j aw +ĠNe ar +ил о +Ġoper a +ĠIn nov +и ÑĢа +ĵ ± +Ġspec ified +Ġcos m +ĠFre edom +Ġcl own +ĠN em +Ġв ол +Ñij н +Ġchar ger +à¹ģ ล +Ġinflu ential +äs ident +é ¤ +ĠìĦ łë +Ġvol umes +æ IJ +Ġout ras +ĠTw itch +Ġfound ing +Ġa while +Ġco il +ê° Ļ +Ġc ả +ĠTh row +ĠH ence +omm t +ĠBen jamin +глÑı д +T ime +ob ic +Ġm our +Ġd read +ĠL Ãł +ĠCh ile +Ġpre val +Ġv ain +Ġart ık +Ġpres erved +ĠоÑĤ д +Ġware house +Ġbest e +ĠSever al +ĠS ituation +Ġcard board +T od +er na +Ġgar ant +Ġgest ure +Ġh en +Ġspe lling +ose xual +Ġan ne +Ġm ice +ĠMe ine +c ard +Ġre bell +Ġcert o +Ġìľ łë +Ġvers chied +ĠB os +Ġinv ention +Ġtr ze +Ġman ière +ĠCh ad +Ġsp re +Ġorganis ations +Ġpoor ly +Ġan terior +Ġst air +к ÑĢ +Ġatom ic +Ġsymp ath +Ġcontin ually +Ġkle ine +è te +и Ñī +ο ÏĤ +pe ut +Ġrep osit +Ġent ra +E m +Ġfinan cing +Ġмн ог +Ġthe sis +ĠCom puter +e au +ĠT ree +Ġbr ide +ons ieur +sh ire +w ic +D E +ĠìĪ ĺë +Ġac om +ĠP O +ers ch +Ġпом оÑī +ĠAr men +Ġì£ ½ +Ġz or +Ġprint s +ĠD ass +æ¸ ¯ +Ġdur able +ĠTrans port +ìŀIJ ê°Ģ +Ġл ег +Ġdé t +ô le +am ous +Y N +Ġcl iff +Ġgramm ar +ĠÐŁÐ¾ ÑįÑĤомÑĥ +ĠlÃł m +es ch +Ġmiser able +Ġvol ts +ĠC ad +uk an +ÑĤ ив +r ust +Ġìĺ¬ë Ŀ¼ +Ġver k +Ġchick ens +ĠY oo +Ġout fits +c ode +Ġhier archy +net es +Ġcounter part +Ġt ôi +Ġt ed +ĠB art +Ġë Ŀ¼ +ĠGen au +Ġinc oming +ĠA BC +ri que +ĠоÑĤ п +qu al +Ġincent ive +Ġih ren +׳ ×Ļ +lo e +Ġ19 30 +Ġbar g +Ġd iction +Ġön ce +IN S +Ġre h +isia j +m outh +Ġsc oring +l ık +ĠìķĦ 주 +OR IA +ĠEst ados +Ġcompan ion +Ġasse mble +Ġpun ished +Ġit al +Ġprev ents +ist es +ĠKent ucky +Ġloc ate +Ġfast ing +ãģ¨ æĢĿ +ĥ Ģ +ĠSe b +ĠCr own +op ia +Ġwh ip +us z +к ами +Ġdatab ases +åŃ Ĺ +Ġprose c +Ġ199 7 +ĠìĤ´ì §Ŀ +ĠSol ar +ĠP ues +ĠZ en +oll o +ĠG uru +Ġsque ez +ĠÐĹ Ð° +ĠÄ į +cept ions +c ca +iz able +m and +Ġbreak through +Ġtables poon +ĠS EC +ik h +ĠS ão +Ġп ло +am en +Ġpr ac +Ġdar ling +Ġtall er +Ġrend ering +Ġìļ°ë¦¬ ê°Ģ +ĠÏĦη ÏĤ +Ġm ã +Ġes os +uer do +ĠÑģ ÑĩиÑĤ +all er +ìĹĪ ìĸ´ìļĶ +Ġmill ones +ler in +Ġpe gar +on ne +Ġenroll ment +Ġli egt +Ġbo a +w iÄĻ +bs p +Ġcy cling +ĠBern ie +Ġ198 9 +Ġд алÑĮ +ĠDak ota +ĠÑģв Ñıз +ĠC P +Ġst are +íĤ ¤ +Ġprosper ity +Ġarrange ments +Ġarri ving +m ä +Ġkay ak +ip t +Ġp ardon +Ġrel at +Ġver ste +ĠF ig +Ġfo il +ĠTalk ing +pe are +Ġno i +ĠпÑĢи ÑĪ +Ġhoc key +Ġad o +ĠO UT +6 7 +Ġhorm ones +ĠAven ue +ĠSuper man +Ġpres cription +uber netes +C L +ot ive +N IS +ien en +Ġsad ness +ĠV it +T y +Ġstar ter +Ġbed e +Ġfound ations +Ġso re +åº Ĺ +Ñīе ÑģÑĤв +ìļ °ë +ĠÑĩ Ñĥв +l ink +Ġmane u +work ing +Ãł n +ĠAtt ack +ĠC art +ve is +ĠRes p +ens ing +Ġì¢ĭ ìķĦìļĶ +Ġesc uch +ĠR NA +Ĥ ´ +Ġad op +Ġb ending +ع د +Ġman ages +us p +Ġt art +Ġrout er +B o +Ġestab lishing +Ġbal ancing +Ġathlet ic +ĠS lo +Ġf ills +Ġн аб +Ġд ал +Ġpos so +ĠV ielen +Ġcrit ics +Ġlaws uit +ĠIsa ac +ĠÑĦилÑĮ м +Ġtr as +Ġpra w +ĠCra zy +Ġne u +Ġk ull +Ġtum or +ĠAP P +g ate +ĠA RE +9 8 +ĠSte am +Ġfuck ed +l age +ĠâĻ ¬ +ĠM D +f y +Ġshell s +ĠSe ems +iz ers +Ġr anges +ĠAnton io +AT ION +ĠB aba +Ġìĥ ī +k un +Ġpray ed +ÑĢ Ñı +ĠпÑĢоÑĤ ив +Ġse as +b ury +Ġ×Ķ× © +Ġtra it +ĠDep ending +Ġd re +Ġkön nt +ÑĨ Ñĥ +Ġlip stick +ee z +ĠпÑĢ имеÑĢ +Ġassign ments +B ob +Ġmet als +Ġspe cially +å°į ä¸įå°į +Ġìĺ Īë +ĠÅ ¡ +Ġv ista +ĠÎ ¬ +Ġtw ins +Ġnot able +ĠS au +Ġdé velop +Ġç ek +Ġpoly nom +av am +Ġtamb é +он ом +Ġpl asma +Ġe fect +Ġlä ng +Ġcas i +Ñģ а +ım ı +ãģĻ ãĤĭ +ĵ¤ ìĿĢ +Ġlab our +oss en +ĠP un +r if +Ġd oses +Ġoper ates +ил ли +Ġja ar +st aw +ĠìĤ¬ëŀ ij +Ġat m +Ġprotect s +Ġimp ed +H O +Ġc ima +Ġto ch +ab is +Ġsend o +la us +Ġcur l +ĠN um +Ġspons ors +Ġdé but +ĠAlex a +ĠB ür +ĠA mer +Ġc ope +Ġиз в +j al +Ġ199 5 +ap at +res se +ĠPri ze +ĠCla ire +ĠBrand on +Ġwszyst ko +Ġval ued +à¸Ļ ะ +Ġse ct +Ġsecret ly +Ġdiam onds +ĠEv an +ĠRP G +ãģ« ãģª +Īë ıĦ +ĠUnivers al +Ġdoub ts +ĠP in +wiÄħ z +ļ © +Ġal bo +Ġbra ucht +AU L +ĠM obile +gr ades +Ġsch em +wh y +ĠN icht +p i +g le +Ġchor us +Ġg ly +Ġrein force +Ġm uff +ĠSh en +ĠH ola +Ñĥ г +vid emment +v ial +ac ious +laim ed +ĠR ico +Ġve gg +Ġillust ration +ĠBut ter +ow ad +Ġeu x +Ġenf ants +ĠLe ader +ĠVill age +et ically +ÙĨ ÙĬ +Ġst ew +Ġsurpr ises +Ġc ue +ĠGrand ma +ĠC elsius +ĠR icht +en c +Ġpet ition +Ġher b +Ġw icked +Ġsch le +oc aly +Ġtrans f +Ġtok ens +ĠGr ay +ĠB BC +I K +Ġ15 00 +z n +ĠNe v +Ġk oy +Ġz ar +Ġbull shit +ĠColomb ia +ul ative +Ġwides pread +y ect +k it +Ġempres a +Ġn our +Ġburn s +at in +a ired +Ġrevolution ary +Ġгод Ñĥ +ĠLog an +Ġ199 6 +ĠGra ham +re b +ĠN HS +æľ Ľ +Ġcost umes +Ġnaw et +Ġlo vers +ĠLuc y +ĠInd igenous +íķĺ 기 +Ġimmun ity +¥ ´ë +uit o +Ġexcess ive +Ġdon ations +Ġ×Ķ ר +Ġì² « +éī Ħ +Ġdry ing +mel on +Ġsurve ys +Ġ무ì Ĭ¨ +é¢ ¨ +aa a +Ġpro be +an cial +Ġlou der +Ġhot els +ü ÄŁ +ag ner +Ġorig ins +Ġë§Ī ì§Ģë§ī +Ġ* * +Ġstr angers +ĠHa us +com ed +Ġan throp +Ġus o +ĠìķĦ ì§ģ +ĠY uan +ĠíķĦ ìļĶ +pl er +ress ive +Ġsp raw +ĠSt ew +Ġ199 4 +Ġeld ers +Ġme inen +Ġj unt +Ġac oust +ĠW ohn +Ġban anas +Ġproject ion +ĠSt ick +leg t +spe ed +ĠcÅ ©ng +ĠW ort +ĠBalt imore +ĠÑĨ ел +Ġdun no +å¼ · +? , +ãĥī ãĥ³ +ĠLoc al +ost o +Ð Ń +од а +ĠPort uguese +Ġtheir s +Ġdé m +åı ¦ +Ġdra uf +ĠBuddh ist +ert a +G e +Ġcar rot +ĠWonder ful +Ġso ak +Ġchair man +gg i +IC A +f ried +Ġfl ick +ĠThrough out +Ġìļ °ë +Ġc ough +Ġfl uffy +sch ool +Ġr ipped +---- ---- +ĠZuk unft +Ġн еб +Ġst o +ĠB O +p ent +ĠLaw rence +Ïī ÏĤ +st icks +ĠE ins +ĠÑĢ Ñĭ +ĠStr ong +Ġcar amel +Ġsp ite +az ar +éĥ½ æĺ¯ +Ġcrit ically +Ġob ra +ow itz +ĠZ one +ĠÑĢ ек +Ġsu g +ard ed +Ġg ì +ff entlich +an che +Ø Ł +ast ically +ìĿ ¼ë +л ав +Ġsimpl est +ĠF riend +Ġque llo +Ġamb ition +Ġabb iamo +åº ķ +ĠÑĦ оÑĢм +ĠEs sa +Ġeduc ators +Ġstatist ical +éĢĻ éĤĬ +Ġchang er +Ġat au +éta is +ĠShakes peare +ë IJĺ +Ġtr iggers +Ġreal iz +Ġcel ui +whe el +Ġloyal ty +Ġscream s +ke hr +ĠM ega +e ast +Ġtop s +ĠTot ally +ount ain +l ord +Ġviol ation +ĠG A +Ġnic er +ĠF resh +ĠMel issa +fun ction +Ġra pe +Ġexcept ions +Ġsil icon +Ġliber ty +Ġhousehold s +ãģį ãģ¾ãģĻ +ĠC A +ĠÐŀ б +Ġli b +ŀ Į +c ific +Ġtrop ical +Ġinvestig ating +H D +Ġad apter +ĠP itt +an cia +ĠShe ll +friend ly +Ġconclus ions +Ġtur tle +Ġdec omp +Ġanim ations +ĠÑģ ек +ins i +Ġret ention +k ie +Ġinject ion +ĠMad ison +ì° ° +Ġv ient +Ġvar ied +Ġviol in +ĠB il +Ġluck ily +Ġh tt +l ä +Ġr anch +çľĭ çľĭ +Ġsó lo +ìķ ħ +ĠD erek +ĠScript ure +оÑĢ а +Ġclassroom s +av il +form ed +Ġbefore hand +ĠG em +pre ch +Ġl in +Ġgre ens +ÑĨ ев +ĠMer cedes +Ġdr ought +gas ps +Ġab ortion +Ġter ribly +Ġspos ób +Ġsec ured +Ġat rás +Ġwavel ength +Ġgra ins +ect ive +Ġspace craft +Ġtour s +Ġprof es +Ġsur geon +ĠP ie +Ġide ally +arn er +U P +op ard +s ce +Ġimm ense +ĠOr t +roll er +ĠD allas +ĠNich olas +Ġs ulf +ĠToy ota +Ġquant ities +ce ans +Ġcu i +an ça +ĠC AN +itzer land +åĦ ¿ +Ġz ou +ĠCy ber +le gen +ĠIn it +ed u +Ġa pert +Ġad jac +ou v +èĢĮ ä¸Ķ +r s +Ġcab bage +Ġwheel chair +iny l +ĠD ynam +ĠìķĦëĭĪë Ŀ¼ +Ġl ing +h l +Ġмог Ñĥ +Ġcris p +Ġm ij +Ġd ug +n in +Ġbl oss +Ġbelong ing +Ġloud ly +Ġminer als +Ġconclud ed +Ġsearch ed +9 6 +ĠMe et +ĠS EO +ĠС к +ĠH ob +ot ta +Ġpropag anda +Ġcin namon +Ġhun ter +Ġgeme ins +Ġsculpt ure +uls ion +Ġv äl +Ġmagaz ines +Ġcontrovers y +ä¸Ģ 樣 +Ġsequ ences +ãģĦ ãĤĭ +Ġíļ Į +Ġdel eted +ä½ ¿ +IJë ıĦ +Ġvary ing +ãĥ Ĩ +Ġmount ing +Ġaff air +Ġpath ways +æ ¦ +Ġdig o +äº ® +Ġд ок +A lex +Ġtob acco +ĠC V +Ġbother ed +Ġamb ient +ink y +ĠS L +Ġh ates +Ġje żeli +Ġcon greg +Ġel as +Ġde uts +ĠStud ios +ch ÄĻ +Ġdocument ed +ĠCru z +ĠL en +ĠDoug las +ĠPort ugal +ent i +Ġsp ouse +Ġanal ys +av ia +Ġed ited +Ġl ại +bu ilt +Ġv ille +ad ora +Ġbrac elet +Ġs ushi +Ġp m +Ġtra ils +Ġl ug +Ġö ver +Ġs orrow +Ġcol ony +ado x +Ġser ie +any ak +ĠØ · +ĠG ulf +æĺ¯ ä¸įæĺ¯ +ĠP V +ĠSam uel +ĠK it +ĠR al +ont in +ex pl +Ġent ries +Ġactiv ists +P s +Ġs ant +ĠÑĤо Ñĩ +ĠBr uno +ke ley +Ġtut to +é Ķ +Ġv intage +Ġterr ified +Ġпо Ñħ +us ive +ow ers +ай ÑĤ +ë ıĻ +Ġtwist ed +ĠTh ought +Ġt ah +Ġshr ink +Ġshe er +l it +Ġdal am +Ġd ib +Ġv ard +ow ane +Ġdo br +ĠR ena +ĠÑģво Ñİ +ĠpaÃŃs es +ĠE ra +ãģ® ãģ§ +ĠB UT +s ighs +Ġê·¸ ê±° +Ġgro ÃŁen +Ġë¹ ¨ë¦¬ +Ġn erves +Ġconst it +Ġpreoc up +ĠG ay +ĠX u +keep er +he ure +.. ) +ĠCal m +ĠUn idos +ĠìĿ´ ê²ĥ +ĠAqu i +Ġìłľ ìĿ¼ +d ır +ì¦ ĺ +y our +ĠÑįÑĤ им +20 20 +Ġr und +ĠH O +ĠC atherine +iel i +Ġf usion +Ġide ology +Ġfor am +sh aped +ĠíĽ Ħë +Ġw t +Ġret r +Ġpr éc +Ġê° ij +Ġopen ly +v ity +구 ìļĶ +Ġobst acle +Ġbo o +Ġse iner +ic orn +Ġeigen lijk +Ġhead er +are mos +Ġso fter +ĠÐŁ од +Ġpre jud +Ġdefin es +ier te +Ġbl ending +Ġbelie vers +ĠWo chen +Ġник ак +ĠÐļ огда +ĠTyp ically +Ġíģ ¬ +ç® ¡ +ci os +Ġmiss iles +Ġsp onge +ĠK itchen +Ġt ren +ning en +Ġsc rap +Ġser ait +´ì ł +ç ¹ +Ġë° ĺë +Ġrest ored +Ġprzy kÅĤad +ĠK ubernetes +Ġsa it +Ġu w +Ġen abling +Ġtra vers +amp s +åı Ĺ +ĠOM G +ens or +Ġz osta +Ġpronoun ced +A ng +norm al +Ġeconom ies +t in +ĠChamp ion +iz en +Ġar beiten +ĠG ospel +ĠZ u +ng a +Ġliter acy +ĠM ans +Ġcircul ation +Ġad ap +ĠTot al +Ġmere ka +Ġol acak +ÑģÑĤ аÑĤи +J ack +Ġm und +Ġth ief +b ies +Ġê² ģ +a que +ĠÚ© ÛĮ +ĠSc ar +å ² +Ġab ol +Ġdev ote +Ġ0 1 +Ġs itten +ĠVis ual +we ek +s ome +ing t +Ġjournal ism +ĠH ir +ĠB achelor +in ery +Ãľ ND +ãĥ Ł +ç» Ļ +Ġcolor ing +ĠCr ist +Ġcelebr ities +ĠÑĩ иÑģ +ĠC rit +Ġdifferent iate +ĠÐľ не +el im +Ġse afood +Ġalgum as +otherap y +æĪ ° +Ġgla ub +Ġarbitr ary +g ens +ĠбÑĥд ем +Ġt av +Ġcream y +ĠCount ry +a ñ +м еÑĤ +Ġh inter +Ġm ism +Ġillust rate +ÃľND NIS +Ġdecre asing +Ġwen iger +AK I +ix on +Ġн ей +Ġfat to +Ġn erd +ç ł +Ġb itte +P er +Ġt ane +Ġgö z +Ġfor te +ĠE y +Ġнав еÑĢ +è¢ « +ĠWord Press +ĠM is +Å ¯ +z äh +Ġinté ress +osa urs +ĠFall s +Ġn essa +9 7 +Ġmuseum s +Ġcorrespond s +Ġs ings +f our +Ġed er +ĠCommun ist +o a +ne k +ĠWH O +Ġcor po +Ġmess ing +ÏĦ αι +Ġbrush es +Ġb isc +ĠAr beits +ĠT ax +Ġse le +Ġflag s +ou pe +Ġanticip ated +ãĥ ij +ĠN ad +Ġpou red +Ġm l +Ġll ama +Ġvisual ize +Ġlisten ers +ÙĦ Ùĥ +al ten +Mich ael +Ġcos ì +Õ¡ Õ +op us +Ġíķ´ì £¼ +Ġh ike +ĠAtt orney +ĠHill ary +ud ed +Ġíķĺ ì§Ģë§Į +Ġdo ve +Ġstorm s +ак Ñģ +Ġdoct rine +Ġhe x +ik s +no ÅĽÄĩ +Ġscript s +Ġδ εν +ĠÑįÑĤи Ñħ +ĠÐ Ĩ +ab er +ĠV as +Ġcent imeters +×ŀ ×Ķ +ни б +Ġrid ers +ĠT rib +åĮ ħ +Ġtak że +Ġn oun +Ġic ons +Ġsole ly +mind ed +Ġdisp on +ĠSw itzerland +Ġcl usters +Ġqu eda +ail ing +Ġman ga +Ġ6 8 +Ħ Ī +Ġt et +g ins +ha us +ç© º +å· ¥ +ĠO P +ot ed +Ġnouve au +AL LY +ÙĪ د +ò n +Ġmort ality +ĠGit Hub +d rop +Ġdis gu +Ġrec om +Ġloc als +Ġhome made +amb a +Ġpron unciation +Ġal phabet +ан ÑĮ +ow any +ir as +id ency +OM E +ĠÑĢаÑģ Ñģ +ar ak +v iamente +Ġnon profit +ĠYouT uber +Ġp arenth +ĠB oo +v at +ĠSt ir +Ġpre cip +Ġan ts +Ġall y +ĠMa ori +ĠëĮĢ íķľ +åı¯ æĺ¯ +og ene +ĠLab our +aret te +Ġrecy cling +ens a +Ġpurs uit +Ġs ak +ĠÐĹд еÑģÑĮ +Ġtoler ance +Ġsa at +Ġclick ed +âĻ ¥ +Ġface book +ĠInt o +Ġincent ives +기 ëĬĶ +ĠD ennis +ĠW ik +ges ch +à¹ĢภĽ +ĠÏĢ α +ĠWh oo +Ġround ed +Ġdo pe +Ġcapt uring +ĠWar ri +Ġcivil ian +Ġchar ming +Ġes as +Ġsust ained +Ġle aning +Ġabund ance +ÃŃ lia +алÑĮ нÑĭй +Ġph ải +ac ja +Ġê°Ļ ìķĦ +act iv +า ย +Ġ9 7 +Ġм ой +c ro +ĠJack ie +itt ees +br acht +ul ent +Ġìł ľë +Ġplug in +v antage +part y +Ġsu as +Ġan te +Ñĥ л +ÐĿ ÐIJ +æĤ ¨ +ĠÏĥ Ïħ +Ġmet h +Ġenthus iasm +ÑıÑĤ ÑģÑı +íĻ Ķë +Ġsynth etic +Ġseason ing +ĠL ost +on omy +ĠSp ark +Ġb ure +Ġass ured +Ġimag in +Ġcar ro +S ha +Äħ t +нÑĥ ÑĤÑĮ +át ica +T Y +Ġk ern +ĠBrazil ian +à ° +Ġsusp ended +ĠCar ib +Ġbiz im +ĠOl iver +ãģ ¶ +T om +Ġпл ан +Ġn ope +omet hing +Ġbe iden +ÑĨ ен +Ġflu ct +Ġμ οÏħ +Ġf athers +ĠBl ake +Ġup ward +ĠD ash +ĠL il +ĠìĪ ĺëıĦ +Ġrevel ation +Ġelev ated +ĠJi ang +LE D +ĠThom pson +Ġмог ÑĥÑĤ +ÑģÑĤ ÑĢÑĥ +if iers +Ġcome back +Ġbuy ers +ê² ° +ĠS ales +иÑĩ е +c iones +Ġwh istle +Ġd ull +LE X +Ġíķĺ ê²łìĬµëĭĪëĭ¤ +Ġcrimin als +Ġdes cent +ipp le +mas ı +Ġfool ish +ĠдÑĥм аÑİ +t ar +Ġman go +Ġchore ography +M att +Ġterr itor +Ġac aba +ĠEin stein +ĠI BM +ĠMet al +ĠCry stal +Ġr ah +Ġf oul +ĠIsland s +Ġint act +ĠR ail +. : +Ġac á +ĠпÑĢ оп +еÑĢ е +ĠWr ite +he he +ĠF O +ĠÏĥ ÏĦη +Ġdo in +h eld +Ġappropri ately +Ġdeliber ately +Ġarch ive +Ġgive away +ãģĵ ãģĵ +Ġfin ale +л аÑģ +ен о +Æ¡ n +æ£ Ĵ +og o +çī © +ĠAud ience +ãħ ł +Ġsub ur +Ġhead ache +ан нÑı +ĠW itch +ĠSwed ish +ĠB I +Ġer ase +Ġk hi +Ġcomment ary +ĠS ultan +íĥ Ŀ +ĠLe ban +Ġë³´ì ĭ +ĠP am +pe kt +mon th +Ġground ed +ê ¾ +ĠÅŁek ilde +2 50 +ĠS CH +ios o +Ġin aug +he imer +Ġreflect ing +ĠR uth +ĠO il +Ġtrou ver +u ep +.. ] +Ġìŀ Īë +Ġol ha +Ġreason ably +Ġgl itch +U B +ĠGr an +Ġad alah +Ġl ent +ر ا +Ġtr action +Ġadjust ing +´ ¤ +ниб ÑĥдÑĮ +Ġд оп +Ġstretch ed +Ġor t +Ġcos ine +vi ol +Ġì ħ +c ir +Ġbast ard +ä¸ ĩ +ĠÑħ од +Ġqu ier +Ġpress ures +ĠAn h +å¹ ¾ +Ġell es +Ġд ÑĢÑĥз +ĠможеÑĤ е +Ġch á» +ĠM é +ö k +ầ u +ìł Ī +z in +Ġca ution +ib an +Ġjud ging +ÑĥÑİ ÑĤ +Ġb aj +ĠС ейÑĩаÑģ +ĠPo or +ĠNaz i +Ġup beat +y ang +Ġweek ends +ĠEss entially +Ġol uyor +Ġspat ial +ack er +Ġsell er +Ġ×IJ ×ķת +ij ׾ +Ġv ivid +ĠB ond +ê ¶Į +is kt +ãĤ µ +Ġgo at +dri ver +Ġm ug +ict ional +Ġall t +ĠIn iti +ĠR and +Ġfinish es +Ġê° Ī +Ġvit am +Ġteen agers +ĠMor ris +ì¤ Ħ +ĠO ri +i ya +Ġmy ös +St ep +ĠK re +è¾ ¦ +Ġdin osaur +Ġëª ĩ +aff e +ĠëIJ ©ëĭĪëĭ¤ +Ġz eg +åĪ ĩ +ĠManh attan +Ġsu jet +ue lle +st off +Ġd ür +Ġsub mar +es es +Ġa quele +Ġn ou +ĠFa ith +t z +ĠÑĤ омÑĥ +ace ut +li ers +Ġband width +Æ°á» Ŀ +Ġrespect ive +ĠA ve +Ġspread she +ĠS ent +ic amente +Ġinf ra +Ġlearn ers +Ġà® ī +ai ah +ren al +Ġmust ard +Ġhab t +ç ĥ +ĠQu é +Ġanaly zing +æ¯ ı +Ġso lic +Ġ×Ķ ×ķ×IJ +Ġcaus a +Ġwel comed +ĠS uccess +Ġfac ile +ĠÐŁÐ¾ÑĤ омÑĥ +sche in +Ġf etch +Ġstr at +ĠÑģÑĤо иÑĤ +ìĹIJìĦľ ëĬĶ +ĠÑģп оÑģоб +m am +Ġser ÃŃa +nam ents +wr iter +Ġconsult ing +íĺ Ģ +ĠBer keley +e u +as ive +U U +ĠAnal yt +Ġsubm ission +Ġmagnific ent +en za +Ġe con +Ġprof iles +Ġinc ar +A b +ĠN un +Ġh ic +scream ing +Ġresil ient +åĪ © +gr und +Ġconc ur +Ġbere its +L D +Ġnur t +ì ī +Ġfe ast +Ġenc uent +ĠMich el +Ġsup rem +" ] +Ġfeed s +ĠKoll egen +iss er +ĠF eng +ĠW en +m un +Ġten ÃŃa +ĠW rest +Ġìĺ¤ëĬĺ ìĿĢ +Ġst ead +Ġrest oration +Ġdon ated +Ġdel s +Ġc ensus +Ġdesper ately +worth y +H E +ĠSp a +ĠBry an +Ġh j +ĠR aw +ìķĦ ë +ĠCam era +Ġz ien +Ġst yl +ĠT W +ĠChe ese +bor ne +Ġob l +ĠAl ready +Ġunst able +Ġfl ames +p ost +H a +rom agn +ĠìĹ Ħë§Ī +d est +Ġkole j +Ġtempor arily +Ġdeterm ining +ĠGl ass +ÑĢ он +ol an +Ġdom inated +åĮ ĸ +__ __ +ĠÙĩ ذا +ĠD ana +Ġdin heiro +a qu +ë ¯¼ +ĠÃł s +ĠJo ey +ĠGr iff +Ġatt ain +Ġtrans itions +ĠLiter ally +ен д +ĠHa ven +Ġgrab bing +Ġcryst als +ĠFour th +Ġcand les +ĠÑģлÑĥÑĩ а +ric o +Ġ5 000 +et to +Ġund o +Ġk to +Ġdi vert +Ġch ir +Ġper sec +Ġh iking +Ġannounce ments +çĶ ± +з Ñĭ +Ġa uc +Ġsystem ic +ĠR M +Ïĥ α +ĠÐĶ ж +Ġy ar +ĠW ard +Ġpiss ed +Ġcar n +Ġautonom ous +ãħİ ãħİ +so ver +æ²Ĵ éĮ¯ +å¾Ī 好 +Ġref lex +Ġgard ens +Ġd ated +ì ± +ami ÄĻ +Ġcontinu ity +Ġcitizens hip +Ġsch wer +Ġz ak +t able +ĠÑģ Ñĩ +è§ ģ +ĠÏĥ ε +Ġgener ates +구ë Ĥĺ +ö h +ó m +al am +ĠJUD Y +ĠB ug +Ġãģ ¦ +Ġdr ones +Ġá gua +ac aks +æ ļ +ĠÐļ он +× ĸ×Ķ +Ġstri ve +ĠAl tern +Ġne arest +Ġpro yect +ter a +ĠASH LEY +Ġwor m +Ġre play +Ġt ara +ĠInd ians +ãĤ ° +ica id +ĠìĪ ľ +Ġappe aling +ĠW es +Ġment ions +Ġдел е +Ġk w +Ġfrag ile +is z +k ów +h ang +col or +Ġpresident e +8 7 +е ÑĦ +çĪ ¸ +Ġдоб ав +ĠN elson +á fic +ĠMIC HAEL +Ġmechan ic +Ġmet res +Ġo czywiÅĽcie +ĠC ind +Ġog sÃ¥ +Ġlands ca +AC E +Ġhead lines +Ġcat alyst +ĠC atch +ink les +Ġp ills +ord o +Ġimmig rant +Ġexam ination +Ġacc idents +zÄħ d +Ġqui ere +Ġne lla +Ġ6 7 +Ġpass a +Ġsuper fic +ist or +Ġno v +ëĭ µ +Ġmand ate +is ons +ĠVirt ual +Ġsel ber +Ġcounsel ing +ĠN BA +Ġse pt +Ġbelie ver +Ġmar vel +ĠInte gr +Ġм Ñĸ +Ġor ph +Ġback ward +ĠGen eration +ĠP ict +ĠÑĤо ÑĤ +Ġtap i +pro chen +Ġhall way +ht e +ĠÛģ ÛĴ +ĠZ um +èĢģ 師 +ach ment +iqu er +fol g +ĠEd die +ĠK il +Ġwell ness +st ock +è¼ ĥ +Ġka ç +Ġterror ism +Ġpo inter +O f +her ic +ĠUlt imately +Ġmes es +ĠTr ade +Ġp int +Ġtu ition +Ġdisag re +Ġê²Į ìŀĦ +Ġmanus cript +Ġro omm +Ġoutput s +е ÑĨи +Ġr ies +Ġsal ud +otz dem +Ġmass es +Ġby ÅĤa +Ġclear ing +Ġdisc ourse +ats on +Ġfold ed +ĠJ ar +ÙĦ Ùī +9 00 +ĠÑĥ Ñģп +Ġprophe cy +Ġinterf ere +иÑħ од +๠Į +Ġth ri +Ġ×ŀ× © +Ġlaz ım +Ġ199 2 +Ġfut uro +Ġlock ing +Ġembar go +ĠNe ither +iv amente +ĠmÃ¥ ste +Ġm ik +Ġcollect or +еко ÑĤоÑĢ +ĠG and +Ġsent ir +ĠM ight +å¡ Ķ +Ġgan zen +U C +Ġrel ating +S D +Ġmos quito +G R +Ġho llow +âĺ ħ +ĠWalk er +Ġaffili ate +Ġduplic ate +н ем +Ġgra pe +ĠOrgan ization +Ġsy nt +J oe +Ġg eg +Ġreve aling +ĠEth an +out er +Ġy ay +é« Ķ +л аÑĢ +Ġreported ly +Ġihr er +Ġrecogn ise +Ġbum per +ĠR andy +ĠVen us +t les +Ġappet ite +Ġgluc ose +Ġch odzi +ĠFurther more +t ir +Ġcont a +Ġint uition +Ġalt itude +Ġch unks +ĠJosh ua +ıģ ım +ry lic +le ans +ĠíĶ ¼ë +L L +Q ue +Ġg or +Ġзна ÑĩиÑĤ +Ġpo ems +Ġexc el +Ġexpl ored +Ġpop ul +Ġinclus o +st ä +ĠG avin +all ing +ĠÏĦο ν +é © +ar beit +ĠG as +Ġgl orious +rie ben +Ġsp am +Ġindo or +Ġthr ust +ĠA ld +ĠPri or +Ġon board +ãģł ãģķãģĦ +o ca +AS H +£ ł +ĠChrist ine +Ġdra wer +Ġno on +Ġìŀ ĺë +Ġperman ently +æ· ± +ĠнапÑĢ имеÑĢ +Ġpodcast s +era peut +pr it +Ġstain less +ĠÚ© ÛĴ +Ġfamil ia +ĠÑĢаз ÑĢ +un to +ĠÑģÑĤ ол +Ġh ä +ĠH ai +ĠP B +iz on +Ġkon nte +Ġbüy ük +Ġutil izar +Ú Ĩ +Ġaqu esta +Ġmix er +ud ent +лек Ñģ +ÅĤ u +ĠÑģиÑģÑĤ ем +Ġн оÑĢм +Ġfat al +Ġconsider ations +Ġvalid ation +Ġo li +Ġk ardeÅŁ +ĠGL ORIA +Ġp all +еÑģÑĤ е +Ġrect ang +Ġmed ieval +allah i +ast i +ĠSy rian +Ġshe ar +Ġdeb ug +ĠM ai +Ġknock ing +ĠLe x +ard an +ro v +Ġmem orial +æ° £ +ook y +Ġstuff ed +Ġpass é +Ġw ig +Ĥ ł +Ġpróxim a +Ġ199 1 +Ġм еждÑĥ +Ġnuest ros +ĠBe ast +Ġsm o +atch ed +olog ia +Ġм од +Ġge e +Ġconcept ual +Ġà ´ +Ġdecre ases +Ġquer ies +олÑĮ ÑĪ +ĠA part +Ġex empl +å± ± +Ġfl ed +ĠO FF +gg ak +Ġbe ad +h ir +l ies +ĠClear ly +ı lar +Ġch ess +Ġwhich ever +Ġ9 6 +Ạ± +Ġrespect s +Ġм оÑĢ +Ġorgan ism +Ġgrand pa +ĠV ie +è·Ł ä½ł +Ġflo oding +Ġupgrad ed +Ñij ÑĢ +Ġcheek s +Ġcon quer +Ġstub born +Ġpuzz les +Ġau ction +Ġre lying +ĠPRO F +ĠEs per +ĠÐľ У +Ġhy pe +Ġposs ibil +Ġimp rison +ĠEr n +ìĹĪ ìĬµëĭĪëĭ¤ +Ġenv ie +Ġresur rection +ä¸į è¡Į +Ġs per +ĠVenez uela +s om +Ġìŀł ê¹ +Ġnouve lle +Ġclos es +Ġ19 40 +Ġqu a +ĠJ ared +ĠP ir +Ġind e +Ġscr ub +uk u +Ġrequ iring +Ġв ами +Ġconsider able +åIJ Ľ +il ia +Ġin ne +Ġmein em +Ġhard ship +Ġtra ps +ro c +ĠìĦ ¤ë +Ġresearch ing +ĠMarg aret +Ġpen ny +Ġbı rak +Ñij л +Ġw ool +Ġr het +Ġflat ten +ç ĩ +à¹Ģภ£ +Ġp ied +ĠCh ap +Ġunder m +Ġf ret +Ġcrash ed +ĠFra uen +Ø° Ùĩ +iv an +Ġliter ary +late go +Ġsp äter +Ġsimilar ities +â Ĩ +ĠCor on +ĠC reek +Ġboss es +Ġaccompan ied +Ġdeb ates +Ġassemb led +Ġà ģ +ĠV ai +Ġtr act +Ġsimple ment +ĠAr in +Ġvulner ability +Ġhorm one +I EL +OO K +Ġrel ay +ĠAnd rea +r il +Ġnecess ity +aceut ical +Ñİ Ñī +ous ing +nah men +Ġfoot print +m ap +ĠT ier +ann ya +int end +åĸ ® +å ¢ +Ġdecor ate +Ġzomb ies +ĠHy d +ĠSu z +Ġcampus es +ĠE mb +Ġthr ottle +Ġad min +Ġop ortun +Ġmir rors +Ġident ities +ĠCl in +Ġë¹ Ħë +á¹ £ +ĠO tt +Ġbl ues +Ġimpress ions +- , +Ġv ague +a fe +Ġinfer ior +eral d +Ġmedic ines +Ġpre gunta +os ely +Ġt élé +ĠMon th +ĠLe aders +ĠEgypt ian +Ġr ation +k ers +he its +Ġre cht +P lay +Ġe g +Ġpoll s +ĠWOO DR +Ġsl ots +j am +B oth +ĠR at +ÑĢ аж +ĠBr ight +ä¸Ģ å®ļ +á»ij i +ur ious +Ġsing ers +Ġlo gin +Ġt êm +l ation +ĠM um +Æ°á»Ŀ ng +ĠEd itor +åIJ ij +Ġinnov ations +h ave +ĠS ek +Ġwe aker +ĠG ob +A fter +´ì §Ģ +Ġ문 ìłľ +ãĥ¼ ãĥ¼ +Ġdisad vantage +ç¢ º +Ġg aze +ĠM ack +Ïģ ί +ĠK iss +ĠH olo +ĠBir th +iz i +b ab +ä¿ Ŀ +ìĭľ ê³ł +д еÑĢж +Ġsqu at +кÑĥ Ñģ +un i +ĠComm e +ĠWOODR UFF +ĠChampions hip +Ġwel che +ĠY outh +z em +Ġod pow +Ġpersist ent +r ut +ìĶ © +íĸ ¥ +la ir +ik u +Ġvend or +Ġch úng +Ġfinan ci +Ġover ly +â u +Ġgl uten +Ġ18 00 +Ġdiv isions +Ġciud ad +Ġob ed +Ġwar um +Ġe her +Ġel im +ĠÐĴ о +Ġpeu vent +ĠW anna +Ġattend ance +Ġassess ments +ĠB og +Ġimag ery +Ġcollect ively +Ġinform al +ĠSch we +Ġde utlich +ĠCh el +ĠP E +ow ed +Ġb anner +Ġshel ves +ĠRet urn +æĭ ¿ +LAUGH S +Ġcongrat ulate +ĠNor way +Ġd well +ĠCarib bean +Ġnorm s +ĠAn imal +ĠValent ine +Ġext ending +ĠV ou +or r +ĠCh eng + ¡ +ĠдоÑĢ ог +Ġve g +Ġh Ã¥ +ĠX in +Ġì¹ ´ë +em et +Ġhyp oth +Ġinteress ante +ric es +I Z +ĠUS D +Ġrun ner +ĠB ag +Ġê ½ +Ġcomeç ar +Ġpig s +Ġweakness es +P h +ĠVi ol +ä¸į çĶ¨ +Ġdra gging +ĠAqu ÃŃ +ĠCS S +Ġmill imeters +Ġest ás +Ġac ute +Ġde jar +i ÄŁ +ob ra +L ove +Ġsil k +** ** +Ġjo ins +Ġpro l +Ġê°IJìĤ¬ íķ©ëĭĪëĭ¤ +æĶ ¯ +ØŃ Ø¯ +agh etti +än ner +Ġstr ang +Ġdoub led +Ġdescri ptions +Ġst ellen +Ġpart i +ç« ĭ +² Ħë +Ġö ÄŁ +ig hing +Ġang ular +Ġnat uur +ĠSh el +Æ° Æ¡ +Ġr ays +Ġse per +st art +v ised +Ġrush ed +Ġinternation ally +Ġnive l +Ġbox ing +fall en +á»ij c +Ġse inen +plic ity +Ġcarb oh +ĠTra vis +us o +ĠPh ase +Ġactiv ation +Ġop io +· ¨ +Ġdecre ased +C ar +Ġbund le +Ġexp end +orm al +Ġadjac ent +Ġme e +ĠоÑĢ г +Ġtrans cript +ĠLang uage +G S +è§ ī +Ġse ul +Ãł nh +Ġn ya +ning s +Ġìĭ ľë +ĠëĶ°ë Ŀ¼ +ĠA gr +ÃŃ d +çķ Ļ +Ġab y +ĠNe o +ıyor uz +ĠThink ing +a ime +Ġv ite +Ġtrav és +Ġ×ij× ¢ +Ġм ед +O ur +ho ot +Ġl iner +ĠP izza +Ġhy g +fl ies +ĠContin ue +Ġdent al +ĠT ib +Ġreg ulate +lie ÃŁ +AL K +ĠTa e +ê¸ ¸ +ĠBre xit +ĠG ut +Ġoccup ation +Ġz robi +â m +Ġwh isk +ä¸ĸ çķĮ +Ġkans ke +om on +ro be +Ġwar fare +Ġth á»ĥ +Ġjak i +Ġstro kes +Ġpe as +ĠDam it +H AN +Ġinter ference +Ġмин ÑĥÑĤ +N ER +out ing +Ġtext ures +Ł ī +ow i +Ġíķ Ļ +Ġd ens +Ġprotagon ist +än n +Ġgod dess +Ġwoll te +ij o +ĠWo che +ĠV PN +st ory +Ġkind erg +Ġfun nel +Ġdist ress +ноÑģÑĤÑĮ Ñİ +Ġno isy +ĠпÑĢод олж +Ġdar an +Ġenzy me +л ож +Ġm ute +Ġd war +Ġا س +Ġkom pl +Ġmer it +Ġf osse +ĠDr ink +Ġfor a +Ġw ohl +Ġbree ze +Ġsan it +Ġdr in +ĠìĿ´ê±° ëĬĶ +Ġ6 2 +Ġì° ¨ë +aby tes +Ġde eds +ĠÐ ¹ +i ème +igg ling +Ġ" ' +ĠÑĩа ÑģÑĤÑĮ +ĠAns wer +Ġev angel +Ġ10 80 +ĠVis it +ic ient +Ġreli ability +Ñİ ÑģÑĮ +ĠEar lier +Ġf id +çŃī ä¸Ģä¸ĭ +Ġslee ves +iy orsun +Ġb ib +ĠAcc ount +Ñı ли +cipl inary +z as +Ġб еÑĢ +Ġneck lace +Ġbl ender +ĠPhill ips +et i +ĠJup iter +Ġprov oc +ĠYe ars +ent re +ac io +Ġk ü +Ġanten na +Ġnovel s +Ġf art +ĠS ugar +ĠJud y +Ġcollaps ed +ç ° +rit is +Ġìĥģ íĻ© +ÐĹ Ð« +ĠVer f +rane an +ere um +ĠTar get +Ġ8 8 +ĠÐĺ з +ide o +Ġreg ression +ì¶ ľ +Ġmów i +Ġstud ios +i ens +ip h +Ġfr ying +Ġfasc inated +ĠW ah +b ucks +m aya +ĠSat urn +ĠM ommy +Ġrating s +Ġaut umn +Æ°Æ¡ ng +Ġlos er +Ġcent ro +érie ur +ĠF old +Ġsuper visor +ĠNo bel +Ġunder est +ob ia +Ġв ÑģÑı +Ġver w +Ġfu els +Ġartif acts +Ġë¶ Ļ +ĠAut om +çļĦ æĺ¯ +Û Ķ +×ķ× ¡ +Ġih nen +Ġ5 9 +ound ing +еÑĢ Ñĭ +in ars +ch ant +Ġadd icted +Ġexplos ive +Ġdisp ers +â ĸĪ +ax is +AR Y +Ġl um +ĠÑĥ Ñģл +ĠØ Į +Ġru pees +ĠPe arl +c amp +t v +oy a +Ġconclud es +Ġcoll ision +Ġbuy er +Ġplay ground +Ġspr ings +Ġfemin ine +ĠR as +Ġincar cer +íĹ ĺ +Ġdial ect +Ġclos ure +Ġchat ting +Ġb abe +Ġspot light +Ġnot ation +è· ¯ +St ar +i ão +Ġt ête +Ġt ide +Ġjun to +Ġsen ator +Ð ¥ +Ġexcus es +Ġbl ink +Ġadm ission +ĠL ily +Ñĭ ми +Ġam igo +Ġl ust +ëĭ ¬ +Ġam ino +äºĭ æĥħ +Ġconsult ant +ĠElect ric +Ġëħ¸ë ŀĺ +uj ah +Ġshoot er +icht en +ĠUkrain ian +Ġaim s +ĠEnter tain +Ġmir acles +èŃ ° +Ġze igen +Ġl am +Ġres s +ĠJ ill +yl an +Ġro ok +Ġh aya +Ġpass port +ad ata +Ġju icy +con f +л ей +ĠS z +Ġinter cept +ãģĤãĤĬãģĮãģ¨ãģĨ ãģĶãģĸ +ĠTe ams +Ġmak en +ir rel +ĠLI KE +áºŃ y +êµ ° +Ġshort age +Ġparad igm +Ġpap el +Ġast ero +ãģ¾ ãģŁ +Ġsoll en +ĠMic key +ĠOr leans +Ġchol esterol +Ġgo ose +ÑĨи Ñİ +ãģĤ ãĤĭ +ĠF L +Ġгол ов +Ġtrib ute +ĠG am +Ġé videmment +Ñı Ñħ +å® ŀ +çĶ ° +Ġin appropri +uh an +Ġorganiz ational +ail ed +Ġend ure +Ġ7 6 +Ġshot gun +Ġliv re +Ġsu ited +Ġwarm th +ĠS IM +Ġenv ision +Ġde grad +î ne +La ughing +ĠWho ever +ĠBuddh ism +Ġspr inkle +ceÄŁ iz +Ġru ins +Ġst arch +ĠHer z +Ġinjust ice +Ġhum idity +ожал Ñĥй +ĠOb ject +ĠI gn +ĠEx am +ig ers +Ġth ou +ĠSo y +iv as +Ġpol es +m ath +Ġв ним +ING ING +ed ral +Ġexpl or +Ġroast ed +Ġcraw l +Ġco ff +Ġan om +Ġw ij +Ġimpro ves +Ġtreat y +Ġdiscover ing +Ġstat ute +Ġmerc ado +ĠÑģ ил +Ġint el +ĠChance llor +ĠMed icaid +ug i +Ġver bal +Ġd ön +Ġscript ure +Ġit eration +ek s +ĠOx ford +Ġw äh +ĠV ad +ĠA K +ĠìķĦ ìĿ´ë +Ġi ets +Ġneed les +Ùĥ Ùħ +Ġpas ado +Ġalbum s +Ġye a +et zen +Ħë ıĦ +Ġdeterm ines +Ġthe e +ĠPlay ing +är t +Ġ× ¦ +c led +Ġdown ward +al one +Ġsol u +Ġpart ition +Ġw z +d d +Ġpesso al +å ª½ +Ġfact ories +Ġble ibt +ม า +als a +ĠNF L +Ġfu era +Ġres erved +ĠE arn +Ġhel t +Ġshort cut +Ġconvin cing +sp ace +Ġen force +Ġc ores +Ġe fter +Ġrecess ion +x ico +Ġprop osition +ar ians +rop ol +Ġëª °ë +ĠÎ ľ +ĠìļĶ ì¦ĺ +Ġactiv ist +Ġconv iction +Ġz ab +Ġcancel ed +ÑĤо Ñĩно +ĠÎ ® +éĢĻ樣 åŃIJ +n ite +Ġfund ra +buz zer +ел о +ic ations +Ġz ona +Ġte ens +Ġmethod ology +Ġì¤ij ìļĶ +th an +ĠU l +ĠG rey +Ġh og +IN K +ĠS ung +ĠC laud +ĠCN N +Ġdel ivers +al in +ĠAd obe +ot he +ĠDes wegen +ภ³ +Ġwer de +Ġgre ase +Ġup grades +ĠFin land +ac cept +Ġinter rog +be e +Ġãģ « +Ġpre de +ĠN ep +ĠCam bridge +Ġgraph s +Ġha unted +Ñģ ем +æ § +åħ ĭ +S ome +ĠM all +Ġrehears al +ĠUr ban +ĠL ag +Ġn im +ê° ķ +Ġposition ed +Ġavo ided +EM A +Ġlleg ar +Ġráp ido +Ġgou vern +Ġh ing +Ġdeal er +Ġreform s +Ġfat ty +к ол +ĠA ce +Ġne p +Ġì² Ń +Ġcomput ation +ĠSt ream +bour ne +t ur +P or +Ġsleep y +Ġbang et +ãģĤ ãģ® +Ġwe ighs +Ġble iben +ĠG ren +Ġun ions +Ġêµ IJ +Ġap render +uit ar +ĠJ est +um ing +ĠPlay er +ĠExt rem +Ġinteg er +аÑĩ е +Ġconcert s +×ķ× Ľ +Ġtro chÄĻ +ĠRe pe +éĩį è¦ģ +๠Ĥ +ż en +Ġsound ing +Ġan onymous +Ġex ca +ĠIran ian +Ġener getic +Ġw ives +ĠÑĨ веÑĤ +Ġa is +ãģĭ ãģª +Ġsud ah +Ġunder wear +Ġcrunch y +ĠP ain +Ġger çek +red ict +Ġm isma +Ñĸ ÑĤ +Ġsurv iving +ÎŃ ÏĤ +Ġparticip ant +ĠH essen +ári as +Ġsub way +ist ä +Ġcor al +Ġmar ijuana +ĠMem orial +ÑĪ ий +ri z +Ġsatell ites +Ġle ase +ĠCam eron +um ph +Ġclass mates +äh än +ÑģÑĤв е +Ġh ue +ĵ¤ ìĿĦ +Ġproport ional +Ġn oss +Ġl aps +r Ã¥ +Ġbit coin +ÐĹЫ ÐļÐIJ +Ġì¶ © +ĠÙĦ ÙĦ +ĠM ort +ĠEs p +arn os +ĠÑģказ ал +Ġä nd +åħ Ħ +×Ļ ×Ļ×Ŀ +ĠGe b +ge hen +I naudible +bor ough +ÑĦ ÑĦ +Ġfellow ship +ĠP aper +Ġcur ved +ĠGE OR +Ġcalcul ator +ĠCat al +ĠvÃł o +Ġby pass +л еÑĤ +à ³ +tr ans +ren cies +ì ¡Į +ig ent +Ġtast ed +Ġo ceans +u ft +erv ice +ĠÐľÐ£ ÐĹЫÐļÐIJ +ĠClass ic +Ġrespect ively +~ ) +î tre +ĠN ash +Ġz it +ĠìĽ ĥ +ĠëĨ Ĵ +qu ote +ĠUn s +Ġt ac +Ġpro ves +ĠPort land +b ly +Ġ ere +ì¶ Ķ +Ġépo ca +ĠÑĤÑĭ ÑģÑıÑĩ +7 6 +Ġhad e +ĠF ro +ĠpolÃŃt ica +t ag +Ġíķ Ń +Ġsch ö +are tt +Ġprov isions +Ġmot ors +Ġimag ing +Ġdo k +ul ously +Ġme ille +çİ° åľ¨ +ë IJ +ĠIS O +ĠST EM +ĠBow l +Ġto wers +ĠE e +ĠPerform ance +Ġlo in +cuss ion +Ġcoast al +ial e +com pass +Ġspell s +Ġdisappoint ing +Ġë²Ī 째 +E ER +Ġvers atile +as ury +Ġen fin +Ġdown side +Ġgu iding +ĠاÙĦ ÙĤ +Ġnin ety +char ged +ĠF ans +Ġphilosoph ical +Ġg arn +ĠmÃ¥ nga +Ġwilling ness +Ġport ions +ab en +Ġ ï + ¿ +ra ul +Ġspr int +if en +ıy la +Ġк Ñĥп +ãģı ãģłãģķãģĦ +Ġens uite +ĠCap itol +Ġ6 3 +ĠговоÑĢ иÑĤ +Ġappoint ments +æī ¾ +omi ast +Ġcare g +Ġpubl isher +Ġher aus +Ġε ί +ĠV S +ãģĿ ãģĹãģ¦ +ä¸Ń åħ± +Ġsacrific es +th ird +Ġhuman itarian +ĠëĤ ´ì +im on +Ġine qu +Ġz ob +Ġcomfort ably +ĠD inge +Ġcancell ed +ĠPS AKI +ĠRob inson +Ġfin s +) ? +ĠHist or +ĠÑĩеловек а +Ġt bsp +te xt +k im +Ġupd ating +Ġgel d +f eld +ı ¼ +Ġm ä +Ġcaf é +Ö Ģ +ĠS ri +ĠReg ion +ĠH ahaha +Ġfin ances +ĠاÙĦØ ´ +Ġb unk +ru k +ha ft +Ġlater al +Ġext ensions +ĠìķĦ ìĿ´ +Ġdefin ite +ĠZ hao +ĠLu is +st y +Ġcas os +ĠK lim +Ġ199 3 +Ġreal ization +Ġhistor ian +Ġcrack ed +ëĤ ´ +Ġsyst ème +ĠC IA +ĠÑĤ во +osp heric +Ġfle e +Ġr ất +ĠRegard less +Ġrel uct +Ġtim ely +ĠJul ian +G M +é Ĵ +ad ura +é£ Ł +Ġdress es +çģ £ +ĠëĶ Ķ +Ġnom inated +Ġadvoc ates +ym ph +Ġrecord ings +Ġdev iation +Ġpriorit ize +Ġspir al +ĠYOU R +Ġtransp ose +amp oo +ĠìĽIJë ŀĺ +ĠV ision +Ġpol ite +Ġha mb +ĠPat ient +æ¯Ķ è¼ĥ +íģ ¬ë +Ġs ia +Ġê³ ³ +Ġž e +è§ Ģ +Ġsuper market +ë ¹ +ĠS ierra +Ġgr illed +ĠUp on +Ġabs ent +Ġme c +ĠAp ollo +Ġp unk +ĠPa ÅĦst +ĠÑģв ой +Ġê±° 기 +G irl +Ġskin ny +ĠPrem ier +Ġterrit ories +Ġli ability +Ġj erk +r atic +Ġdan cers +ĠÑĥ ÑĢов +Ġê´ Ģë +on ly +ĠSt u +Ġske leton +ĠëŃ IJë +Ġзак он +ı kt +ĠMI KE +Ġl ö +m ie +Ġre iter +ãģĵãĤĮ ãģ¯ +ĠKoll eg +ĠAd ams +lich er +Ġçoc uk +Ñı г +Ġbl ush +Ġsun shine +Ġe z +ĠDev il +Ġê¸ ¸ +Ġãģ Ĭ +ad d +Ġlic ensed +Ġv inyl +ĠC zech +im ag +Ġcrack ing +Ġì º +Ġud ah +Ġs ommes +Ġìĸ¼ êµ +wa Äĩ +Ġf res +åij ½ +ĠWal mart +ĠТ епеÑĢÑĮ +at isf +C I +l ang +Ġdiff usion +çĶ · +Ġsom os +ĠM akes +æĪij æĥ³ +ĠRick y +Ġmuch a +íķ ¨ +Ġhorse power +as ia +Ġfib ers +Ġ erm +Ñģ кие +Ġjest e +Ġfire fight +Ġcu isine +Ġbesond ers +d ig +Ġì¢ ħ +ĠÑĥ ж +Ġtr acing +Ġcertain s +ĠApp ly +Ñĭв аÑĤÑĮ +ç Į +Ġbr u +ĠY ES +ĠB ai +ĠD it +ĠB is +Ġun le +ÑģÑĤа ÑĤоÑĩно +ĠAw ak +.. " +Ġ12 5 +Ġroot ed +Ġcaut ious +con st +Ġorchest ra +çľ ¼ +Ġвн ÑĥÑĤ +Ġquel qu +ĠоÑĤ веÑĤ +ĠMet hod +ì¹ ľ +Ġμ αÏĤ +l ü +ĠìķĦ ê¹Į +Ġn aming +C har +ĠS icher +Ġprivile ged +ĠF ly +Ġãģ ĭ +áºŃ t +Ġadv ances +ĠZel da +Ġand ra +Ġgr inding +ĠEd ition +p f +Ġwarri ors +Ġh edge +Ġuns eren +ĠÑģÑİ Ð´Ð° +el iness +Ġpersonal ities +Ġf ö +' M +ĠÑĤо Ñĩно +Ġsh ipped +Ġmete or +Ġsurround ings +ĠF ill +u esta +ĠPerson al +ĠAll e +OR T +ä¹ ħ +ĠS che +V I +Ġcompar able +dam n +Ġd itch +Y AN +ism us +Ġpick up +Ġd ak +ĠE P +b est +ĠS ue +äll t +Ġpop corn +Ġfold ing +h ome +ив аеÑĤ +å·² ç¶ĵ +Ġan not +ch uck +Ġfier ce +Ġdam aging +Ġfl op +Ġpas ar +Ġre ef +ĠÑģво ей +Ġz oo +o vers +j ets +Ġpr ès +ĠSil icon +te ok +ĠS eth +at amente +Ġtransm itted +Ġrepl icate +Ġsl im +ĠC ream +æĦŁ ãģĺ +Ġside walk +ìĪ ĺë +Ġжиз нÑĮ +ĠMon ica +ä¾Ĩ äºĨ +Ġcop ied +ĠTer ra +ist ent +ç³ » +Ġо но +Ġwh ale +ĠW ITH +л ÑĥÑĪ +å½± çīĩ +ĠE en +ĠÑģво и +Ġord in +Ġpl ural +Ġsp okes +Ġdisp ute +Ġsens ible +Ġpre aching +Ġktó rzy +pt ed +av ier +Ġpist ol +ĠTap i +Ġ ÅĤ +ff ff +Ġac rylic +Ġignor ance +ĠZ iel +r ans +Ġweld ing +m id +æĪij ä¸į +Ġзан им +Ġlan es +Ġmin es +Ġmom s +×ķ× Ĺ +ĠCham ber +t ier +Ġmod est +ĠìĹ¬ê¸° ìĦľ +Ġun as +Ġw rench +hand ed +Ġsatur ated +ĠF ang +ĠCommission er +ठ° +Ġ× ĸ +ĠLouis iana +ĠM ask +Ġcub es +ìĶ ¨ +Ġvidé os +ĠnÃ¥ gon +Ġr ider +Ġì¶ ľ +Ġs ón +ĠLat ino +b ank +íķ´ì £¼ +ĠB rend +Ġsexual ity +... , +Ġforget ting +Ġ ÛĮ +ĠAven gers +ĠBon jour +cess or +кÑĢа ÑĹ +c ence +Ġge ograph +cul o +о ÑģÑĤÑĮ +Ġswe ating +íĥ Ģ +Ġsymm etry +ts Ã¥ +Ġj an +ĠFer r +é¦ ĸ +Ġamb assador +ziÄĻ k +Ġmus un +ĠÑĥ ÑĤ +ĠL G +iss ent +comm un +Ġcour s +Ġdevelop s +Ġbron ze +Ġsubst ances +dri ven +주 ìĦ¸ìļĶ +Ġa os +åĦ Ħ +ĠPROF ESS +h alf +Ġsort ed +ĠB omb +л аг +ĠMalays ia +ĠChrist ina +Ġteam mate +èģ ŀ +F T +Ġk ı +heart ed ++ + +ogen ic +Ġbell s +ĠOu ais +Ġspecial ists +б Ñĭ +dep th +lass es +g ies +ĠCo ffee +Ġmark ing +Ġfo ll +ul i +Ġad hesive +ĠB ot +ĠP unkt +e ye +ĠB ub +el ong +åĪ ¶ +ĠпÑĢ ик +Ġdon or +8 4 +Ġen for +Ġcatch es +Ġbr icks +Ġkn itting +ĠKnow ing +ok s +H Y +r ide +ĠFant asy +im an +Ġp se +Ġìĺ ¨ +Ġв д +Ġrest ra +Ġevalu ated +ÑĢ ев +Ġfortun ately +Ġche gar +ر ب +Ġdom ains +ib i +ar ry +Ġshut ter +Ġfic ou +M ike +Ġinc lu +Ġdon ors +Ġa pl +ĠL ower +Ġimport ed +Ġacad emy +Ġfin als +Ġdisappe ars +ÙĬ ا +Ġadministr ator +j s +Ġcut ter +Ġr anging +ör per +Ġconstra int +ĠT able +ĠSh an +v ic +ĠF ix +ĠSw ift +oun ces +ĠWar um +Ġlett uce +app elle +Ġsh ave +Ġb ás +Ġ7 7 +ĠO oo +a o +ĠMc M +ĠD rew +Ġl ump +Ġl ashes +schein lich +R ep +in is +ĠC ette +Ġcompos ite +emet ery +Ġsort e +ĠFin ancial +он е +ron es +ĠV oy +Ġt éc +ł ¹ +ĠNin ja +ĠCor in +ен нÑı +ìĿ´ìĹ Ī +Ġn ich +Ġdetect ive +âĢ¦ " +Ïĥ ε +Ŀ¼ë ıĦ +Ġë³ Ģ +Ġë¸ Ķë +Ġpro pe +ĠW right +Ġ×Ķ× ª +ĠSh i +Ġãģ Ł +Ġinvestig ations +éĤĦ æĺ¯ +ĠPower Point +ĠCh u +Ġìĺ ¤í +ĠìĻĦ ìłĦ +ĠFra gen +un ning +Ġpour rait +Ġtext book +м Ñĭ +Ġf ahren +Ġ ÑĤоÑĢ +Ġl akes +ünd e +I nt +ĠMet ro +Ġmans ion +Ġа б +ĠZh ou +Ġcorrid or +Ġesc ol +Ġindic ating +ia ÅĤa +Ġm ommy +Ġarch ives +Ġfound ers +eng ine +ĠDie u +Ġsick ness +Ġë³´ ëĭĪê¹Į +Ġar b +Ġn ed +ĠCh op +Ġco vid +Ġsl am +Ġpublic ations +D C +Ġsp ends +æ ¾ +Ġrefuge e +Ġd ile +Ġ×IJ× ĸ +ific ar +ĠS ach +G u +Ġre load +?? ?? +Ġje ÅĽli +ĠÑģ оÑģÑĤо +Ġsim plicity +Ġbull ying +Ġм ол +Ġreal idad +Ġuncle ar +app a +le vant +ĠIS IS +ĠW atson +Ġde in +ĠMic ro +íķ ľë +ü g +Ġdev am +Ġtwe eted +å° İ +Ġunderstand able +at an +Ġvers a +Ġpre ca +Ġv á»ģ +ĠCop y +ĠOr acle +Ġmindful ness +Ġdisc ret +ern en +ĠP le +H ave +Ġisol ate +Ġde u +Ġsevent y +ĠH ills +Ġarc ade +ĠÑģп еÑĨи +Ġsigu iente +ĠB ÃľNDNIS +lig a +ĠвÑģÑĤÑĢ еÑĩ +ô m +Ġtwe ets +Ġsch auen +Ġcrit ique +ĠðŁİ µ +Ġst att +ĠÑģам ое +ân cia +Ġsuper natural +Ġplug ged +F l +yn ı +ĠTamb ién +Ġencourage ment +ĠSer ver +ëĤ ľ +up a +Ġast on +Ġhe ars +ÑĢа Ñħ +Ġsch e +Ġr ats +Ġrec uper +Ġun ten +ĠFight ing +Ġacadem ics +ç¤ º +ĠS ü +Ñģ киÑħ +Ġpa ired +Ģ ìĿĦ +Ġá rea +Ġsweet ness +åı Ĭ +Ġde fer +Ġmuit as +ĠAud io +Ġlock er +ÙĬ د +ĠÑģÑĤ ав +Ġbu ena +AN S +Ġdetect or +av o +be k +Ġα ν +íİ ¸ +Ġdra gged +Ġдолж ен +à ĸ +ر Ø© +ìĿ´ì §Ģ +Ġcell e +ck ing +ĠاÙĦØ ¬ +ĠCan vas +Ġespa ñ +Ġgl imp +Ġspread s +ong o +ĠM ason +ĠIn g +Ġê°Ģ ëĬ¥ +ÏĦ ικ +Ġsec ular +Ġb ater +Ġinqu iry +Ġenerg ies +Ġmanufact ured +Ġveget arian +Ġpine apple +ÑıÑĤ а +Ġpractition ers +2 000 +Ġíķ´ì ļĶ +ĠìĹ¬ëŁ¬ë ¶Ħëĵ¤ +Ġë¶ Īë +ĠJeff erson +ĠJo an +Ġtr am +å® ¹ +ch mal +ĠH ait +á¹ ĩ +Ġun real +Ġsymbol ic +Ġste alth +Ġspl ash +ĠEntertain ment +Ġmetall ic +?" . +è¶ Ĭ +ar ound +Ġdesp air +ĠNev ada +ĠFin ance +Ġk rie +ĠL ux +ĠSm ash +ke eping +Ġз аг +Ġnarc iss +Ġdz isiaj +Ġtoler ate +o ard +Ġlink ing +ĠEconom ic +Ġì ¼ +Ġmor ph +ĠN ak +ĠB aker +at on +r ings +ĠP eng +ĠAir port +ãģĭ ãģ£ãģŁ +íķĺ ëĭ¤ +§ ģ +pr ints +Ġhad i +Ġemp ir +ĠL ives +ann ers +Ġн им +ĠPROFESS OR +Ġpositive ly +ant om +Ġbad ge +ke lt +Ġinter fer +Ġfulf illing +Ġvisual ization +éĹľ ä¿Ĥ +ĠPr ice +� � +Ġscen ery +Ġpr one +Ġw izard +Ġb anyak +ver b +s ky +Ġwish ed +Ġrail way +Ġü zer +Ġalgu ien +ĠA W +Ġкол иÑĩе +Ġreact ing +ĠB uch +ภ¶ +Ġan th +Ġsi h +Ġh ust +ĠSc reen +il ant +ah o +Ġfragr ance +Ġelev ation +ĠMed iter +Ġë ¿ +Ġé qu +Ġwra ps +Ġin ert +Ġrecre ate +л аÑĤ +Ġbo leh +Ġharass ment +unk y +Ġglimp se +reg ierung +Ġfut ur +Ġreposit ory +Ġeng ra +Ġtraff icking +ass is +ĠTre k +Ġë² Į +Ġë§ Īë +ĠK ab +ani u +g ive +Ġdin osaurs +Ġfe ather +Ġatt itudes +Ġpl um +ĠR S +ĠAn fang +ill ery +ĠìĬ ¤ +M Y +Ġtrze ba +Ġsk ies +ĠA j +ur able +C U +ĠSh ane +Ġdepart ure +ĠT ON +iet en +r ats +æ° Ĺ +is u +Ġb ord +Ġinteresting ly +çĻ » +oug hing +Ġr ushing +Ġvol atility +Ġp yt +Ġform ats +Ġз аÑĤ +Ġê¼ Ń +Ġwhat not +Ġcomp ort +s w +ore an +ĠRel ax +Ġcl an +ĠA H +Ġpe w +Ġdiction ary +T ake +sh irts +ĠH ugh +ĠعÙĦ ÙĬ +ĠP ic +Ġenroll ed +Ġjed nak +Ġoffer ings +Ġcor az +L ife +Ġ !!! +Ġcl er +ĠVide os +ĠRod rig +ĠId ent +ĠP os +ĠSt age +ĠR ace +Ġen act +ãģĦ ãģ¾ãģĹãģŁ +ĠG y +ĠHis pan +Ġdef ence +ĠCamp bell +m atic +Ġrele v +Ġpe ach +Ħ¸ ìļĶ +Ġparad ise +Ġcere mon +Ġannoy ed +æĮ ĩ +la x +Ġexplo it +Ġcla use +ek er +ĠBlo om +n ant +ate urs +Ġhe ights +E ven +Ñģ он +Ġoutra ge +ĠVietnam ese +ãģ¯ ãģ¯ +T R +Ġe er +Ġcann on +ĠCom b +IJë §Į +è» Ĭ +Ġê²ĥ ëıĦ +Ġaccomplish ments +ĠAnalyt ics +Ġshap ing +re iben +Ġb achelor +Ġfing ert +ack ed +Ġpyram id +ĠStew art +á st +Ġsurviv or +Ġdu ct +Ġdeal ers +æ´ » +ع Ùħ +ли н +Ġed e +×ķ× ¢ +ĠÙĥ اÙĨ +ĠÏĦ ι +Ġcho oses +ĠO wn +го ÑĤов +h ire +алÑĮ нÑĭе +ĠÐĽ Ñİ +Ġо ÑģÑĤав +te ch +Ġdro it +Ġsubject ive +en es +Ġdiv is +ave z +Ġmaneu ver +à¹Ħ à¸Ķ +ade ce +ĠEn s +ac ial +ĠProt ection +ĸ ´ +Ġform ally +Ġwy d +ingu ém +Ġz iem +Ġrecru iting +×Ļ× ļ +n em +Ġforb idden +ĠB apt +×IJ× ł×Ļ +Ġsubs et +ĠMag az +n ement +Ġaqu ela +rag on +Ġcomm ittees +Ġéta ient +ud i +ĠDa wn +Ġb ore +Ġcompos er +ĠwiÄĻ cej +ang a +Ġdis like +ĠD ays +åŁ º +Ġpar al +Ġm ientras +Ġheaven s +ãģ Ĵ +he id +Ġtrad ers +on ce +Ġmasc ara +ĠÏĢ Ïģο +Ġwhis per +ĠMus k +éĽ Ĩ +ĠFamil ie +All ah +ĠOl ivia +ĠPr os +Ġol ika +il im +Ġrép ond +ĠP eters +Ġ å¾Ī +Ġbit es +Ġv ic +ĠN Y +em ption +Ġ4 50 +Ġvisual s +Ġlie u +ück en +ĠSte el +ĠG P +w ait +Ġnotice able +uch a +Ġreh abil +Ġreject ion +ĠÑģлед ÑĥÑİÑī +Ġsl ider +Ġregard ed +Ġgrav it +ĠRes erve +c ount +Ġbre eding +Ġlon ge +ale b +Ġkn ight +Ġв ой +Ġprés ent +Ĥĺ ìļĶ +ĠSpec ifically +Ġpos es +Ġve ure +ok ay +em as +Ġ ãģ§ãģĻ +Ġma jÄħ +Ġweb inars +Ġcann abis +Ġdam als +ĠNorth west +Ġp ada +Ġcrowd s +Ġfut ures +Ġä n +Ġciv ilians +ĠS achen +æ į +Ġtr aces +Ġ먹 ê³ł +Q U +é¡ĺ ãģĦ +ĠI F +an ın +ìĤ ´ +Ġb iblical +ĠV ed +Ġst oring +ÑĢав лÑı +æĩī 該 +Ġn ast +Ġd ö +ÑĢ оп +el ia +Ġside ways +ĠUnder stand +ĠQ ur +Ġper pend +ĠMill ionen +Ġwater melon +ĠDiv ine +ult ur +ab ord +Ġsuccess es +Ġhom bre +Ġcar p +Ġsus cept +ung kin +Ġk ij +ul us +Ø§Ø ¬ +Ġnot ch +Ġpolynom ial +å¹ ² +å © +Ġún ico +Ġteles cope +Ġpolit ique +k iem +ĠÎŃ Î½Î± +Ġaggreg ate +ĠGe off +Ġtr il +ĠG RA +Ġsubscri ber +im et +Ġдол лаÑĢ +op ing +Ġth erapeut +ĠCan cer +Ġpar ade +Ġir rig +âĻª âĻª +Ġclear er +Ġb og +ĠM aur +า à¸ĩ +ĠShang hai +acht e +ĠK ol +el ujah +Ġha v +ĠCr ime +se k +Ġë ¡ľ +ien na +ĠG or +è Ľ +ĠпоÑĤ ÑĢ +Ġкаж еÑĤÑģÑı +ĠL ift +ĠS ort +ĠP sal +Ġp ing +ĵ Ŀ +ph is +ĠF UCK +ĠS yn +Ġbam boo +¬ ìĺģ +c uts +Ġm mm +Ġfunktion iert +Ġ _ +ÃŃ cio +St op +Ġimag inary +Ġnot amment +ĠIniti ative +ãĥ ¥ +ĠK urt +Ġlo osen +Ġbus car +çģ « +Ġz elf +Ġpro ps +åĽ ī +Ġmoet en +Ġmill i +Ġhall s +ĠM atch +Ġbrack ets +ĠC ou +æ¦ Ĥ +ĠÐľ аÑĢ +IS A +Ġcig arette +Ġcompet itions +ĠM IN +Ġbeh ö +vo or +Ġ ust +ĠZ i +ĠO cc +ul ates +Ġball oons +Ġpr onto +ĠM iy +ĠF ile +Ġкл аÑģÑģ +нÑĥ л +Ġcere al +Ġincre ment +Ġref ined +åı¦ å¤ĸ +pr ising +ĠR F +Ġrespect ful +Ġlo ot +ask et +Ġdeix a +ing le +Ġfuncion a +ĠRe vel +Ġso ber +Ġperform s +ĠG entle +ãĤ ¨ +Ġrecip ient +ĠHa use +Ġë ĥ +F rom +Ġmin isters +Ġpar adox +å°±æĺ¯ èªª +Ġtast ing +Ġ×Ķ× Ĺ +Ġre use +ĠL ane +ĠÑģов еÑĢÑĪ +Ġremem bers +Ġfemin ist +Ġcommit ments +Ġproject ed +Ġg az +iyor uz +Ġoblig ations +R o +z ar +Ġch w +ĠJ AM +ĠbÄĻd Äħ +asp berry +Ġм еÑģÑĤо +ë² ķ +Ġreg ulated +Ġw icht +ĠTre vor +Ġsecond ly +ĠIh re +els h +Ġrep orters +ÑĤоÑĢ а +oy o +G I +Ġinter connect +é IJĺ +OS H +æŃ ² +Ġbr ass +Ġign oring +ä»Ĭ æĹ¥ +in fect +Ġpro jekt +ore t +ÏĦα ν +ĠÑĤ ип +Ġmut ta +Ġunbox ing +Ħ ° +å¡ Ĭ +Ġadv ised +ĠDen ver +Ġsevere ly +ĠM hm +Ġfl ipped +Ġp ien +Ġkomm un +ĠF RE +Ġà®ĩ à®° +aint ed +Ġkn ives +Ġhab l +Ġgew orden +arett es +C S +Ġмал енÑĮ +Ġgal ax +Ġnin ete +ê±°ë Ĥĺ +Ġs is +Ġadvis ory +Ġdr illing +ĠWould n +ün f +gest ellt +ĠHel en +Ġ×ŀ× IJ +ap olis +Ġrze czy +Ġter ra +Ġhe p +Ġalg ún +ik k +Ġastron om +ĠStar bucks +k Äħ +Ġpat rol +Ġì½ Ķ +Ġg on +Ġ ãĢIJ +Ġson st +Ġencoun ters +Ġret rou +Ġshark s +Ġd or +ĠR ever +Ġev apor +Ġreserv oir +Ġalleg ed +ul er +Ġver m +Ġcommer ce +Ġf itted +ge m +Ġtact ical +Ġl ith +éīĦ å¡Ķ +h ad +è® Ĭ +Ġcarboh yd +Ġlength s +ι ο +Ġdem ographic +R ob +ĠS kin +cc oli +Ġsimpl ified +Ġread ily +ĠC um +ades h +ĠD Ã¥ +us st +ig ne +et on +Ġmen or +q i +OO M +à¸Ń à¸Ļ +Ġpsych iat +Ġeight y +Ġм илли +ĠT ob +ed o +ç¶ ² +ĠÄij ến +Ġcirc uits +ĠLAU GH +ic ism +em or +Ġreg ener +eg ree +Ġbure auc +ĠAl ber +ä¹ĭ å¾Į +ĠW or +å¤ « +Ġres in +Ġby ÅĤy +ĠI G +à¯į , +Ġ7 8 +Ġwe eds +ĠMy th +9 3 +æ ¿ +ĠëĤĺ ìĻĶ +é v +á ½ +ö ren +ç ar +ĠP AUL +Ġdisad vant +Ġposition ing +Ġcock tail +Ġagre es +n n +ĠS ally +M s +Ġinher ent +Ġmonet ary +Ġnat ur +ĠN h +ĠImp ort +Ġle ben +Ġw i +uss y +Ġob es +Ġwand ering +Ġìĭ łë +Äħ da +etch up +Ġdispos al +ĠJ A +ĠC er +z illa +Ġvir gin +ĠSl ide +and el +Ġrighteous ness +ĠÎ £ +Ġide ia +ä½ł 好 +иÑĢов аÑĤÑĮ +ר ×IJ +Com ment +Ġpre lim +ĠV ale +Ġì§Ģë Ĥľ +ĠV anc +OM AN +Ġп Ñĸд +Ġy um +st re +ce m +Ġpo cz +Ġfrag ment +ĠÑģлÑĥÑĩа е +Ġunder go +ĠH ank +ce ks +ĠF PS +Ġoc ur +Ġdeter ior +æ³ ¨ +Ġempres as +Pa ul +Ġ) )) +ĠвÑĢем ени +Ġsc old +×Ļ× ¢ +Ġsuspect ed +Ġaccess ing +Ġsubst it +Ġhistor ians +ä» » +Ġдел о +Ġsoci ed +r one +Ġre den +Ġext ends +epher d +Ġbal con +ä¸į èµ· +ĠSol o +Ġpolit ician +олÑĮ но +Ġirgend w +Ġtraum atic +Ġrapp er +ĠRO BERT +Re ally +æģ ¯ +Ġline up +AS E +Ġcontract or +ĠCorpor ation +g or +ĠTod o +ÑģÑĤÑĢ ой +F BE +Ġnews letter +Ġko ÅĦ +alt ies +ĠпÑĢ иÑĩ +ĠHe avy +Ġsw ords +Ġmanip ulation +Ġfun k +Ġv Ã¥r +ĠTal iban +Ġë° ¥ +Ġac ne +ür ü +Ġdes wegen +ĠD ust +Ġsil ic +Ġhook s +Ġbl ij +Ġpet its +Ġfil me +ĠBere ich +ĠSa id +Ġimp osed +Ġdi ary +Ġго ÑĢ +ĠG ates +Ġal ta +å¸ Į +Ġch cia +ple asant +Ġë° Ŀ +Ġmoż emy +ĠAust ria +Ġbro ker +Ġsuck ed +èĢ ĥ +Ġcomp artment +Ġcl one +Ġ×Ķ× ¢ +ĠDan ke +Ġnoch mal +ез д +Ġad renal +Ġkle inen +ãģ¾ ãģĹãĤĩãģĨ +Ġsubsequ ently +Ġdecent ral +Ġgen etics +Ġê´ ij +Ġmon itors +ĠApp lic +ĠRep orter +w ert +Ġwie m +ĠMove ment +Ġinterview ing +Ġhair s +Ġpu ò +ĠChel sea +Ġco her +Ġc ot +Ġz as +Ġpatch es +Ġl ah +Ñĥн к +ĠRe agan +ĠMar co +c ity +Ġdef ender +Ġdecor ation +ij i +Ġl itter +Ð ¨ +Ġj ego +RE W +ĠP ik +ĠHe e +ĠI v +Ġи де +ĠThe ater +ĠÑĩаÑģ ÑĤо +Ġswe ater +Ġhighlight ing +Ġa insi +Ġdipl omatic +ĠNever theless +å ³ +AS ON +Ġpúblic o +Ġf erm +reat ed +c od +Ġë¬ ¼ë +Ġm ister +ĠVanc ouver +Ġrecogn izes +ec d +Ġcomplic ations +en cial +ãģĹ ãģı +Ġê°Ģ ì§Ģ +ĠUlt imate +Ġva ig +ĠM erry +×ķ× Ĵ +ĠMar cus +ç¸ ½ +ow ego +Ġm ente +S m +Ġa ja +ĠTa o +Ġjud icial +Ġentrepreneurs hip +Ġнем ного +Ġp is +Ġer g +Ġch rist +ĠC urt +ĠÑĢаÑģ п +λ ε +ens ch +ÃŃ re +Ġfo cal +ĠDiam ond +av ÃŃa +Ġh anno +ĠSqu ad +Ġassoci ations +ĠCreat ive +Ġmess enger +Ġbe gging +Ġdec imal +Ġd Ä±ÅŁ +Ġmet adata +sel s +ĠÄ° ÅŁ +ữ a +Ġdiffic ile +d ı +Ġs laughter +ĠVer g +Ġ×Ĵ ×Ŀ +ç° ¡ +æĮ ī +ĠTe a +ass es +O k +Ġsynth es +ot iation +Ġpain ter +Ġel bows +Ġarchitect ural +ĠÑĢ ад +Ġgl or +im age +amp a +cul iar +ł ¨ +Ġte ve +ĠSt elle +ĠB am +Ġì´ Ī +as is +ip edia +ĠG I +ĠAct ive +çĦ¶ åIJİ +az i +ãĤĮ ãģ¦ +ĠL ucky +íķ © +ĠпÑĢ иÑħод +Ġrun way +Ġauthent ication +Ġpos ible +Ġsupp lements +Ġsurg ical +G en +Ġfeas ible +D O +Ġout look +Ġinter vals +Ġan ecd +Ãł ng +Ġstra ps +ĠSh u +ud d +iss enschaft +Ġport e +Ġcomm itting +Ġall ey +Ġco venant +ĠPed ro +less ness +ĠSol id +ĠM olly +Ġн екоÑĤоÑĢ +Ġcooper ate +åĮ Ĺ +oll en +Ġtun a +Ġkinderg arten +ĠS iz +Ġduż o +ĠM BA +ĠGEOR GE +ĠF isher +å¿ ĺ +ĠCa esar +ĠкÑĢаÑģ ив +ĠDel hi +zy m +Ġexpl icar +ê°Ģ ì§Ģ +un s +gr ow +ĠпÑĢ иÑģ +Ġ8 6 +Ġst ating +Ġmass a +ch ter +Ġì»¬ë Ł¬ +Ġdep uty +S M +n oc +Ġge ography +ĠEnter prise +ĠC ant +ö z +Ġun pack +ĠíĻ Ķë +Ġsearch es +Ġpres idency +Ġtri vial +Ġp ige +ou bt +ãĤ ļ +ì¼ ĢìĿ´ +Ġbudget s +Ġu b +Ġp ne +ĠY ale +ĠÅŁ öyle +reg ular +Ġimper fect +AR A +Ġfam ÃŃlia +ur m +ĠAdvent ure +ãĥ Ĭ +c is +em ark +Ġne go +Ġinappropri ate +ĠпÑĢи з +ĠÑĢ ол +Ġdream ed +B ry +Ġshut tle +Ġpill ars +Ġb ik +in um +ĠÑĥ Ñģ +ĠNe br +Ġperpend icular +Ġbook ed +ber y +Ġv ikt +be ar +es us +Ġвозм ожно +¨ ¹ +Ġpresum ably +ĠMem phis +Ġambul ance +×ķ× ŀר +Ġthumbna il +Ġmod ification +éĩ ı +Ġinterpret ed +Ġprom o +Ġκ ά +Ġε ÏĢ +Ġacoust ic +ĠD B +åĵ İ +Ġnon etheless +ou le +Ġpe qu +Ġkn ob +ãĤ £ +ĠëıĮ ìķĦ +Ġpurch ases +ĠÃĩ ünkü +Ġdivid ing +per form +ract ion +health y +ĠTit le +Ġu k +Ġcer ca +Ġargu ably +Ġf ale +ë³ µ +Ġgam ers +Ġutil izing +Ġoff ended +Ġt ava +al ı +Ġmed ian +Ġinfect ious +ĠAn nie +Ġsmart phones +Ġpar ole +åĸ Ŀ +ĠEp ic +z za +Ġun ified +Ġê·¸ë ķĮ +Ġcur tain +ĠÄ ĥ +Ġsex ually +Ġuns erem +ĠCon vention +Ġalleg edly +Y a +ĠH oo +en ment +æĢ ª +íĽ Ħ +Ġgig antic +Ġnot ing +Ġre bo +ĠJ ama +ĠAl z +Ġborrow ed +ì¹ ¨ +Ġper ipher +оÑĤ а +ĠG B +ĠGe ar +Ġeconom ically +Ġtele fon +Ġqu eremos +ĠдалÑĮ ÑĪе +Ġr as +ĠTe ach +ic ios +at os +Ġpl edge +b au +ĠHim self +L ink +Ġesper o +Ġchrom os +ĠP ER +Ġer le +Ġpod ium +ç os +Ġnie u +Ġf en +ĠGO D +ĠCh ocolate +wer k +Ġt ừ +Ġsupp ress +λ η +Ġ24 0 +Ġsit ä +Ġhonest y +ĠB io +ĠB ard +ĠобÑī ем +Ġм Ñĥз +Ġmar ble +ĠÑĨ енÑĤ +Ġproc ure +Ġrot or +ber n +Ġtu h +Ġhead set +at em +Ġwarrant y +à® ´ +Ġfil ing +ι ά +Ġcomp rendre +Ġimp ulse +Ġsal v +wr itten +Ġinstit ute +K im +ĠLGBT Q +fic iente +H is +ĠαÏħÏĦ ÏĮ +Ġteen age +or us +ĠÑĢаз б +S ee +ĠCons erv +á»ģ n +ful ness +Ġstraw berries +ĠAb u +и он +Ġo lla +NO ISE +ĠEm ploy +Ġwip ed +ur ger +Ġmod ifications +Ġíķĺ ì§Ģ +Ġfoot steps +Ġhon ors +Ġad ul +Ġfl ipping +ĠH U +Z Y +Ġintegr ating +ب ر +ull a +Ġnatuur lijk +ĠíĹ Ī +ĠEth ereum +ÙĬ ÙĦ +w ed +Ġpe aks +ĠK es +Ġblo om +Ġcr ashing +Ġ9 11 +ĠоÑĤ лиÑĩ +Ġcontro llers +ĠD od +Ġвм еÑģÑĤе +Ġsort ir +å¥ ĩ +ĠStra ight +ĠGrac ias +Ġgro ove +Ġto gg +Ġìĭ¶ ìĿĢ +é ro +Ġout ward +ĠW A +ĠRock y +Ġsc am +Ġhay at +ig nty +â Ħ +pl ings +Ġantibiot ics +Ġ ä¸Ģ +Ġnever theless +j ang +com merce +Ġspo iler +Ġglo ve +Ġch atter +ĠB Y +~ ? +Ġíĺ ¸ +Ġdem ol +we chsel +im ir +Ġra id +еÑĢ Ñħ +ìŀIJ 기 +en f +Ġcomment ed +Ġoptim ized +Ġconv icted +Ġb ats +ĠS B +ĠA ur +ĠT ong +Ġimplic it +ĠJan et +Ġre ag +ãģ ² +ĠAdv anced +Ġimp ose +ש ×Ķ +Ġschem es +oug her +ab olic +Ġê±° ì£ł +Ġslow ing +Ġwt edy +Ġdest ructive +Ġоп ÑĢед +Ġland mark +Ġëı Ī +ĠWalk ing +Ạ¹ +Ġt ijd +ĠK N +ĠQu ant +ìĺ ¤ë +Ġк ÑĢÑĥ +Ġper der +Ġno ve +änd e +Ġãģ Ĺ +b ia +Ġcust ody +Ġb iod +æĿ± 西 +Ġdirect ing +... âĢĭ +Ġre loc +Ġdemand e +ãĤĵ ãģł +Ġo ÄŁlum +Ġод на +ĠMil k +åı · +ĠK ra +ĠH onda +Ġp ue +Ġele kt +Ġbegin ners +Ġspe ar +ÃŃ nh +ĠLu ft +Ġn ig +ĠSchool s +Ġfor ums +ĠQ in +pp o +Ġz ag +ĠÐ ® +Ġtooth p +ĠSt yle +ì´ Ī +Ġpun ct +Ġrep s +ĠA ly +Ġamend ments +Ġö z +Ġdig its +ur ai +Ġcha otic +ĠMas ters +e on +ĠC ash +ĠC uz +Ġbede utet +Ġscan ning +Ġж д +н еÑĤ +Ġcertain ty +j ek +Ġdi jo +ĠCl imate +Ġr inse +Ġk rij +vel and +Ġsound track +ĠSa fe +ĠNo va +9 4 +Ġa the +ĠVer b +ol er +ìĿ´ì £ł +Ġv in +Ġrespir atory +ĠStud y +ĠC AM +Ġav ocado +ĠZ hen +Ġlat ency +Ġfe athers +Ġcont ar +Ġв еÑī +Ġf ark +Ġbl ended +Ġexpl oded +ĠX X +ĠBen im +Ġalgu ém +isto ire +Ġconfident ial +Ġm ast +Ġì ¿ +ge h +Ġdis respect +ĠSystem s +Æ° a +E d +Ġw ys +Ġex otic +Ġgl owing +ù ng +oun ge +è Ħ +ани з +Ġpal av +ĠSw ord +Ġg im +ĠC row +Ġpot ent +b ish +Ġab used +ĠJ ed +Ġg ambling +ĠS pect +Ġinvestig ators +æĻ ļ +Ġr att +Ġdo b +ĠD ES +h og +ĠоÑĤк ÑĢÑĭ +íĮ ħ +ĠденÑĮ ги +Ġíĺ ¹ +Ġë¨ ¸ë¦¬ +Ġsat uration +Ġinher ited +ĠInnov ation +ìĹ Īëįĺ +Ġtang ible +Ġdep ri +h ed +Ġпом ог +Ġslic ed +ॠį +Ġth ế +Å ¥ +6 8 +Ġcor ona +Ġgift ed +Ġso ir +Ġhum ility +ĠìĿ´ 걸 +Ġflaw s +ĠпÑĢ акÑĤи +Ġk ald +wa ż +y w +ãĤĵ ãģ§ãģĻ +ir teen +Ġcroch ets +¦¬ ê°Ģ +ĠìłĦ ìĹIJ +Ġdes e +æ¥ Ń +Ġм аг +Ġdz iaÅĤ +Ġl ég +ch anging +Ġlle v +ÅĦ sk +çĶ » +Ġ198 4 +orn s +ĠW elsh +Ġpharm aceutical +Ġpump ing +ĠSh aw +p unk +Ġva ult +Ġkin etic +Ġhur ricane +ĠInc luding +ứ c +ĠGrand pa +ans hip +é¦Ļ 港 +ĠвÑĭ Ñħод +н ож +ľ ł +ut ta +Ġê²ģ ëĭĪëĭ¤ +Ġb az +Ġпо ÑĪ +Ġpe culiar +zy Äĩ +ĠEll ie +Ġlearn s +ĠKr ishna +Ġconse cut +Ġemp ath +ĠD in +Ġtrad ed +ĠBor is +ugg age +oll a +Ġназ в +Ġetern ity +Ġв п +è mes +Ġgra pp +b é +ĠпÑĢед ÑģÑĤав +ĠF C +į ëĭĪëĭ¤ +e ven +ĠNebr aska +ortun e +Ġk arena +ĠAg ent +Ġst ing +ĠP I +Ġmunicip al +power ed +Ġconse gue +ĠMan chester +Ġrain y +Ġbl i +Ġk ost +Ġhal ten +ĠAh hh +ins ula +er ting +ĠاÙĦ Ùģ +Ġrel acion +Ġk omen +Ġd ome +Ġpri ests +ĠInt rodu +rop he +sh ore +vel t +clip se +ĠÑĢ ÑĥÑģ +×Ļ× ¡ +Ġsab emos +ĠHoll and +og i +ank i +ĠM ats +Ġsm oked +ull ie +Ġeuro pe +ĠдейÑģÑĤв иÑĤелÑĮно +Ġbard ziej +Ġtransform ing +ĠE z +op ath +Ġìĸ¸ ëĭĪ +ĠÑģÑĤ ан +ằ ng +ั à¹ī +ĠO uch +Ġclear ance +ust ain +Ġsolid arity +Ġpro ving +ĠÐĺ н +ĠÑģ ÑĬ +Ġpro long +ад но +Ġs os +ĠDe al +Ġ17 0 +m ons +Ġз ем +Ġlo gged +Ġlif elong +Ġsens ory +Ġbe hold +ĠF AR +èt ement +ĠFed eration +Ġdod ge +ĠSh ir +Ġdrag ons +ĠAr ctic +Äħ ż +Å į + º +Ġden ke +Ġpodr ÃŃa +co le +ÑĥлÑĮÑĤ аÑĤ +Ġsystem atic +ам а +ch os +Ġclin ics +ĠB S +Ġtal es +us ions +Ġí Ī¬ +Ġpres ervation +Ġl ore +ĠProt est +á» Ľ +å¸ Ĥ +Ġacknowled ged +ĠIs aiah +ĠëķĮ ëĬĶ +Ġ× ĺ +Ġcompet itor +Ġadv ancing +z ip +Ġtent h +ĠLa ure +Ġh ints +Ġexerc ising +ŀ ľë +ĠIntell igence +u ated +OU T +op ed +Ġaut onomy +Ġbrand ing +ĠMediter ranean +Ñĸ к +Ġscrew driver +Ġsu pre +Ġst ap +Ġjurisd iction +ĠSetting s +Ġfore front +ĠF emale +com fort +Ġmultiplic ation +ĠMur ray +Ġbo b +ĠT as +Ġt ahu +Ġon un +et ter +Ġproph ets +l ag +Ġreven ues +Ġpr á +Ġupload ing +Ġmach inery +asc al +ĠEst á +ĠG oth +ĠB ald +ĠS aw +Ġstri pes +ìł ij +Ġpow in +æĹ¥ æľ¬ +Ġhost ile +Ġdar um +Ġprevent ed +ожалÑĥй ÑģÑĤа +Ġalgun as +Ġhop eless +Ġz naj +Ġread ings +Ġcra ving +t at +ĠP ig +Ġli ar +çĪ ± +Ġmulti player +Ġd ale +ĠCour se +íģ ¼ +ĠK ita +Ġcustom s +Ġrespond s +end ra +è¦ ĸ +Ġmet ro +Ñģ ол +Ġmitig ate +Ġopp ression +Ġ æĪijåĢij +qu inho +Ġam mo +Ġen fer +Ġp ony +Ġ ounces +° Ķ +ĠìĪĺ ê°Ģ +Ġdich o +ĠDe b +Ġwond ers +ĠRo ose +Ġpri zes +ĠA LEX +Ġthank fully +Ġtiss ues +ĠÑĢав но +ĠL una +intell igible +ĠìĻ ¸ +ê° ij +ĠHe at +ĠÑģ ид +ĠQu i +Ġ ions +Ġaccommod ation +ä¾ ¿ +ĠK art +ien st +Ġt arde +Ġso aked +ĠCase y +Ġì´ Ŀ +ĠÑĢ Ñĥб +Ġdifferent i +Ġleft over +Ġexch anges +sec ond +Ġfirst ly +Ġbuild er +ri en +Ġd w +Ġboun cing +? < +olog ÃŃa +we alth +Ġmed itate +ĵ¤ ìĿĺ +ĠC raft +è§ī å¾Ĺ +æĻ ® +ri v +ĠAgain st +Ġcer amic +esp ère +Ġcompet ent +ĠHop kins +Ġkil os +Ġgra vel +Ġpist on +Ġfriends hips +Ġesc re +Ġvo z +ĠGes ellschaft +Ġunter stüt +Ġmu j +Ġwarning s +p os +ĠProfess ional +w szy +od le +b ands +Ġteam work +stell ung +Ġd x +åį Ĭ +Ġatt orneys +Ġweit ere +ãħĭãħĭ ãħĭ +ĠOrig inal +×Ļ× Ĺ +Ġbroadcast ing +ĠпеÑĢв Ñĭй +uch i +Ġhe ure +Ġgra bs +ĠW OR +ĠPla id +M in +Ġp az +ĠP uis +um u +it ates +Ġco ats +Ġbu en +Ġhe ir +Ġpne um +ש ר +ens er +ĠJUD GE +Ġbl onde +á¹ Ľ +Ġg ak +Ġs ık +Ġquot ed +Ġequip o +Ġw ishing +ÃŃ cia +Ġver bs +çµ Ħ +ĠCanad ians +Ġgover ning +ĠEv ans +E uro +Ġgen res +Ġunters chied +ĠBeck y +³¼ ê²ĮìļĶ +Ġe inge +ĠRa ise +ol and +ĠStr ateg +Ġer es +ĠVeter ans +Ġbreak out +Ġsant é +Ġad el +Ġinvestig ated +Ġpe ur +Ġag ile +Ġrail road +ans ka +Ġе й +Ġexp os +ator ies +ĠCont ent +Ġtruth s +ĠTra il +Ġgu a +Ġp ores +Ġwrit ings +ĠU hr +ĠThat s +Ġic ing +O C +ĠProdu ction +Ġcar ne +IS S +Ġn inguém +n on +Ġv icious +×ķ× Ķ +Ġrecon nect +Ġcent res +ĠK em +Ġcre ase +ĠìĿ´ë ¯¸ +айÑĤ еÑģÑĮ +Ġб оÑĢ +ĠHay ır +ĠÑģ Ñĥд +Ġún ica +owa ÅĤ +Ġad her +h ua +Z Z +Ġprecis o +Ġcurrent s +Ġseason ed +ĠIo T +ĠB ishop +è¨ Ī +st ed +ĠBern ard +ì¤ ĺ +æ² » +ĠGl enn +Ġktóry m +ื à¹Ī +Ġast rolog +ĠK ot +å¤ ľ +Ġparf ois +Ġfor wards +ĠW iÄĻ +ĠÎ ĺ +Ġn ano +è» į +s ub +ĠBr ill +Ġgr it +Ġc ited +g ado +Ġmel ts +Ġfor cé +âĸĪ âĸĪ +Ġb ajo +Ġdiscret ion +° ° +at ivity +Ġsitu ated +ãĥ« ãĤ¯ +Ñīе е +åľ° æĸ¹ +ĠпÑĢин ÑĨип +am az +Ġaqu arium +Ġdissol ve +ĠGod s +S uper +Ġam id +z k +Ġ ãģĦ +éł IJ +amp f +Ġhel a +' ! +Ġdevelopment al +ĠD ise +ĠÑĢабоÑĤ аеÑĤ +Ġsnaps hot +好 好 +Õ ¸ +ĠY ue +ĠH ulk +ĠDo om +ĠFel ix +Ġré f +M ale +ç· Ĭ +ph ants +EN S +ĠMe chan +ĠG olf +åĨį è¦ĭ +Ġgener osity +ät ze +Ġunlock ed +Ġ ãĤĴ +íĥ ģ +ocaly pse +Al right +Ġê° ľë +Ġ×IJ× ij׾ +ĠKeep ing +Ġcollabor ating +ch ief +ĠFern ando +Ġchef s +ĠíĶ¼ë ¶Ģ +Ġsk ipped +Ġperson n +Ġax e +che z +Ġextract ion +ĠA V +ĠGib bs +Ġí ľ +Ġs ı +I AM +V iew +ĠGR ANT +Ġëª ¸ +Ġver ification +Ġdep icted +ĠMo z +ou x +Ġt ul +Ġsc anner +Ġcomed ian +ĠVol ks +ĠJE FF +è¨Ĥ éĸ± +§ Ħ +Ġdistract ion +r á +ĠIN TER +Ġsin cer +Ġ×ŀ× ª +Ġש ׳ +Ġconstruct ive +ar f +ĠëĪ Ħë +Ġe co +r amos +Ġrenew ed +in ement +ĠU b +ĠPe pper +ì§Ģ ê°Ģ +ĠDar win +Ġmerch and +Ġv árias +è ce +N G +ĠìľĦ íķ´ìĦľ +Ġак ÑĤив +ĠUn ters +ع ÙĦ +Ġint ric +omm a +ie ving +ĠCarol ine +åĵ ģ +ĠPR ES +Ġperform er +Ġaut our +ãģ¾ãģĽ ãĤĵ +Ġutter ly +Ġsynth esis +Ġles bian +Ġretrie ve +Ġmane ira +Ġimp air +Ġment oring +ĠSoul s +ĠGo Pro +ÑĢ аÑĤÑĮ +Ġc ose +ĠSS D +I RE +Ġup front +ĠA un +Ġgam er +Ġl itt +Ġag gression +ĠLike wise +ĠBet ty +ĠD art +ĠD LC +ish ment +ìŀ¥ ìĿĦ +Ġ 对 +ç» ı +c ream +ĠBaby lon +Ġn ug +br ar +Ġa ynı +am ily +b ike +ahah aha +lo yd +Ġmir a +Ġper me +ĠG aming +Ġfirm ware +M a +Ġassist ed +at ics +Ġìķŀ ìľ¼ë¡ľ +ĠM ental +niej s +ĠI z +ow Äħ +Ġt ougher +Ġde ed +èĭ ¦ +Ġsty lish +ĠTool s +ĠH amp +Ġsun screen +Ġartic ulate +i ye +и ÑĦ +ĠSp read +ĠHA VE +Ġsw irl +Ġspons oring +ä» ĭ +iov ascular +mes i +Ġrelax ation +ĠÑģво иÑħ +Ġmar gins +Ġsa ÄŁ +ĠPr ide +ĠÏĦοÏħ ÏĤ +и ÑĨи +en ci +Do es +Ġcor pse +Ġend urance +Ġí ŀĺ +ì¹ ´ +Ġhair cut +Ġinterrupt ed +Ġwind y +ĠC aleb +Ïģ Ïĩ +ĠPour quoi +Ġhol istic +uc lear +ĠWho le +å£ « +A ct +Ġgall on +c ade +ĠReg ional +ro ads +ĠSch ne +á ng +Ġиз мен +ãĤĪ ãģŃ +Ġmen us +Ġspl itting +Ġpr iced +ĠÎ ĵ +Ġus ername +ĠÐŀ Ñĩ +Ġcomp ressed +y in +Ġguard ian +Ġgo of +Ġcheck list +Ġinter change +Ġexped ition +Ġex tern +Ġinfra red +eng o +Ġden ying +Ġpack ets +on ent +B B +ĠInc re +Ġsin i +ÃŁ er +è g +ma al +gen eration +Ġminor ities +Ġlle var +Ġnom ination +Ġcons id +Ġ×ľ× ¢ +m uÅŁ +ĠEs c +Ġnumer ator +Ġka ik +Ġktóry ch +ies en +Ġv ê +ĠUS S +ĠPri vate +Ġод но +Ġal ém +ÃŃt ulo +Ġlim b +Ġforg iven +Ġdiscl osure +ÏĦ ί +Ġning ún +Ġtherapeut ic +Ġnegoti ating +ĠN ike +ense ful +Ġin cap +Ġflag ship +t own +â Ī +ĠÏĢ ολ +Ġwol ves +Ġviol ations +ĠAr nold +Ġinterven e +Ġhe ater +Ġrecurs os +Ġma id +ê² ¼ +Ġдав айÑĤе +ĠCe lebr +Ġca pe +ĠSt y +ain en +s ite +b ij +Ġп олÑĮз +Ġfr amed +Ġpublish ers +ĠÑĩ ÑĥÑĤÑĮ +Ġtempt ation +Ġcert eza +Ġex empt +ìĬ ¹ +se lling +ĠT ask +ho on +ĠC oc +ĠPark s +Ġrepet ition +ĠÑĤ Ñĥда +Ġens l +ĠdeÄŁ iÅŁ +ĠOr lando +ĠMain ten +æŃ ¢ +oc ument +ĠH C +Ġscoot er +Ġнап иÑģ +Ġtight er +Ġte ase +Ġremo ves +Ġkij ken +ĠÑģÑĥ ÑīеÑģÑĤв +Ġth é +ĠвÑĭ глÑıд +Ġrel ieve +Ġmit ä +Ġstation ary +ö ff +p able +Ġar ter +Ġdé f +r ative +Ġcon ect +Ġsad dle +ĠD iane +Ġcomm emor +fend im +S ÃŃ +Ġíģ ´ë +Ġman ge +at te +Ġarrog ant +Ġrobot ic +Ġgi Ãł +æĺ¯ çļĦ +Ġneighbour hood +iss on +Ġдв иж +ĠR I +ĠNorm an +b rand +am ation +Ġraz or +Ġmur ders +ĠÑĤ Ñĥ +Ġwszystk im +Ġut ilities +Ġmicros cop +ê ¿ +Ġda qui +oll ar +ĠÐĶав айÑĤе +Ġann ée +Ġkilomet res +Ġhom osexual +Ġarchitect s +ãģ¡ ãģ¯ +Ġni ye +L ER +Ġmicro phones +ĠSt unden +Ġconsecut ive +iend a +v änd +D ER +Ġlif ts +ĠMe at +Ġsave z +íĸ Īëįĺ +M en +Ġdism ant +ê±°ë ¥¼ +Ġins ulation +Ġsc all +Ġsp ooky +Ġpar c +Ġball et +ĠWhats App +Ġfr anc +Ġdeliber ate +Ġíħ Į +Ġm ars +ĠZ ur +P r +dis ciplinary +Ġobs ession +м е +Ġmarch ing +ĠEmer gency +ig uous +Ġs zy +ĠL ands +Ġboard ing +ĠпоÑĩ ÑĤи +Ġenv y +Ġcompassion ate +Ġmer ci +Ġdes irable +d ale +Ġcan ım +ĠAnt ar +tem ps +Ġconfig ured +ĠComp ared +ne h +ic ating +Ġnic kel +ÙĪ ÙĤ +Ùĥ ÙĪÙĨ +op es +Ġform ulas +ĠÐķ ÑģÑĤÑĮ +Ġpo bl +ĠP J +ĠL ud +ä»Ĭ åĽŀ +ĠBr id +ĠH og +ĠBr is +J en +Ġshad ing +ĠY as +Ġdistur bed +Ġrecomm ending +Ġc é +ĠH OW +ìĹĪ ìĸ´ +Ġrevers ed +ĠInteresting ly +iox id +åħ Ń +Ġìĺ¤ ì¼ĢìĿ´ +ế u +x x +Ġou ais +ĠYouT ubers +ĠR osa +ĠH aupt +j adi +Ġvlog s +Ġcult ura +ĠLeaders hip +ĠH ep +Ġill um +´ë ıĻ +Ġcustom ized +Ġmar ca +Ġqu atro +Ġн аг +ĠSpace X +ĠE igen +ast ing +ĠolduÄŁ u +Ġfor ts +ãģ ī +r iment +ien cia +Ġten ir +ro ffen +Ġ197 9 +Ġc ie +ĠëIJĺ ê³ł +Ġes cri +ÏĮ ÏĤ +íı ¬ +uz zy +C ong +ìĿ¸ ìĿ´ +G reat +s il +é ch +ãģ¨ ãģĭ +Ġmult ic +ĠDis k +² ķ +Ġfaz la +Ġle vant +Ġab ajo +ur ry +st ru +Ġ먹 ëĬĶ +Ġaccess ory +Ġдв иг +ĠR id +20 19 +Ġdown stream +æķ ¸ +Ġk az +ut an +Ġchar coal +Ġa fect +w u +Ġcontext s +Ġfe ared +ĠìĦ ¤ +Ġhist ories +Ġf as +ens ible +Ġcoco a +ill ar +ge ons +Ġspiritual ity +ĠP ew +Ġpharm acy +Ġpass ions +Ġb os +Ġall á +Ġthri ving +ĠRe act +Ġoccup y +Ġwithdraw al +Ġallow ance +ĠFra ktion +Ġbud dies +Ġid le +Ġdissol ved +Ġpreval ent +Ġmil itar +Ġsens ing +Ġpo jaw +Ġanc ora +Ġabund ant +Ġha irst +ãģĤ ãĤĮ +Ġtw ee +Ġnäch ste +ĠMöglich keit +Ġho o +uff icient +Ġfant ast +Ġed ible +Ġëĸ¨ ìĸ´ì +ìĽ ĥ +Ġve in +uc ci +Ġdevot ion +Ġconce aler +in come +Ġrecy cled +ĠìĬ¤í ĥĢ +Ġpont os +Ġdess us +Ġvé rit +Ġreflect ions +ĠA A +Ġtake away +b are +ĠCont act +e il +ĠHe ar +Ġmir ac +ĠGer ilim +ĠÑģам Ñĭй +Ġv ivo +Ġkilogram s +ĠCr im +û t +7 8 +Ġsincere ly +ra z +Ġë³ µ +Ġarri v +Ġconcept ion +ĠPers ian +Ġsj äl +Ġst arring +ĠìķĦë ¬´ +ĠFore ver +е ÑģÑĤÑĮ +Ġve il +Ġsubt it +od ka +ĠоÑĤно ÑĪ +Ġcook s +ен Ñı +K ay +Ġni ños +ĠPh one +Ġstitch ing +Ġfinger print +é¢ ĺ +λ ά +Ġded icate +ĠL ob +Ġblack s +ĠB le +b out +ĠÄij ang +Ġe ks +Ġsqu ash +ĠK ü +od i +Ġn Æ°á»Ľc +Ġvoy age +Ġplay ful +ĠØ¥ ÙĦÙī +an ic +Ġcondem n +ĠB öyle +ĠPol ize +ãĤ¿ ãĥ¼ +Ġay uda +Ġp am +à¹Ħ à¸Ľ +ĠK athy +ед ин +нов а +Ġbr ig +eg er +Ġe agle +Ġvis ions +ĠíķŃ ìĥģ +Ġsh itty +Ġh ott +ĠBr itt +ut ors +ENT E +æĽ ² +Ġph on +ĠB ing +Ġпод деÑĢж +spr ing +æĸ ¯ +et ten +Ġpil gr +Ġed iyor +енÑĤ Ñĭ +ag gio +Ġj ul +Ġcomp rend +te il +ĠØ ² +Ġperform ers +Ġinf amous +ĠM K +ç ª +æ³ ģ +ot le +e ff +ĠH ash +Ġcow ard +ĠB RA +ĠD D +Ġcom ida +Ġpl ata +Ġfl ap +ĠMe hr +rib ution +ĠY emen +Ġmyster ies +ĠÄ° yi +Ġst ell +Ġeyel iner +Ġdel es +Ġnail ed +Ġillness es +Ġst acks +Ġtrabaj ar +fl ower +ci u +Ġcr ude +Ġsubstant ially +Ġhome m +Ġnep hew +Ġstamp s +Ġcar bs +ÑĮ ÑĤе +mo oth +Ġtun nels +ac ie +æ³ ¢ +ĠSe ñ +ĠH era +ĠìķĦëĭĪ ìĹIJìļĶ +ĠWy oming +ĠHD MI +ĠL is +u ción +Ġste er +о Ñİ +иÑĤ а +N T +Ġìĸ¼êµ ´ +Ġpal ms +Ġne on +ов аниÑı +Ġfilter ing +Ġjou er +ĠH ö +Ġне Ñģ +ê²ł ìĸ´ìļĶ +Ġ8 1 +Ġstory line +Ġprz ep +Ġthank ing +ĠBo eing +Ġsoft ly +j em +алÑĮ нÑĭÑħ +Ġflash light +Ġп Ñĥ +ĠW OMAN +ắ c +ÃŃ ch +Ġlux urious +Ġw ün +Ġimpact ful +Ġcons on +re u +ir ring +if ter +Ġconstitu ents +èIJ ½ +Ġ9 4 +ĠT ou +g om +ĠìĥĿê°ģ ìĿĦ +Ġstere otypes +Ġmoż li +åĪĨ 享 +Ĥ ¨ +Ġpencil s +ĠÑģл ож +Ġih rem +ĠBes ch +ĠK oh +ĠEnt scheid +Ġle k +Ġför s +Ġtotal mente +Ġlive ly +Ġent ropy +Ġdisc ern +ĠÐĹ Ð½Ð° +Ġdo v +Ġmyth ology +è¨ĺ å¾Ĺ +apan ese +Ġapprox imate +аÑĤ ив +if iable +ĠSe o +åĢ Ĵ +´ìĭ¬ íŀĪ +Ġìĺ · +Ġtempor al +Ġi T +Ġest at +к им +Ġspr ink +Ġgr und +Ġinfant ry +Ġsch affen +ç´ Ħ +Ġan k +ri ages +ĠYe on +ĠMor oc +Ġinv asive +ģ Ķ +Ġparent ing +ĠR is +ib ile +Ġmod s +å½ ¢ +ĠпÑĢов еÑĢ +ĠTh ing +ĠWhere ver +Ġacknowled ging +Ġpa wn +um mer +or b +6 9 +Ġretr ouve +Ġrel ies +ĠHigh way +Ġa we +ãģ§ãģĻ ãģĭ +ita ire +Ġapplic ant +Ġais le +w orm +Ġpay load +Ġcar re +ĠB ach +æł ¼ +Ġì¹ľ 구ë +ни е +Ġit ÃŃs +onna ise +s ol +èı ¯ +alg ia +Ġrock ing +Ġbest en +rit es +^ ^ +ин ой +Ġba ixo +Ġ기 ìĸµ +оÑĤ ÑĢи +s im +Ġinc arn +ëĭ¤ ìĿĮ +Ġl ick +s ided +Ġ7 1 +f order +Ġreson ance +Ġte gen +Ġmet aph +ows er +Ġ×IJ× ł×Ĺ׳×ķ +? ãĢį +Ġsp ielen +Ġvoll ey +ĶìĿ´íģ¬ ìĹħ +lo oked +Ġsent enced +Ġmultip lying +Ġide als +Ġwahr scheinlich +Ġdepos its +bil ir +Ġeff et +ill on +Īë §Į +Ġtestim on +Ġz awsze +ĠпÑĢоÑĨ еÑģÑģ +ĠL av +ä¸į éĮ¯ +Ġtrava iller +Ġla isse +ĠMount ains +ĠÑĢ об +Ġexam ined +it us +W as +л Ñĭ +Ġattrib uted +ĠìĬ ¹ +ĠBar on +Ġg ep +Ġatt ent +ĠColl ection +Ġthe at +ĠC ai +Ġwell s +Ġhuman o +çĹ ħ +ĠH ast +ĠÑħоÑĤ Ñı +cz as +Ġperm its +Ġle gg +Ġe po +ĠF en +Ġth i +ĠF oi +Ġé lect +Ġ8 3 +Ġover th +Ġ è¬Ŀè¬Ŀ +Ġten ant +è² · +N ext +Ġpra ised +sec urity +ĠImp act +为 ä»Ģä¹Ī +Ġv ouch +Ġneg ó +Ġun ve +Ġcritic ize +ĠKen ya +Ġtact ic +Ġlo gr +Ġpo is +Ġpap a +spe aks +ðŁ ij +isp ers +Ġsur plus +Ġcold er +åį Ĺ +åIJ ¬ +pl ets +ĠV ienna +ĠLe ad +Ġaer ial +ĠT ah +енÑĤ ов +ĠGree ks +C am +Ġmá xim +Ġk uin +ch io +Ġdemonst rates +an os +ĠC ert +ĠÑį н +Ġblog s +ĠìĦľ ìļ¸ +Ġbe ams +ик ов +Ġprompt ed +Ġfright ening +ĠPors che +ãģĪ ãģ¦ +lar ını +Ġch illing +is phere +Ġfl ashing +ĠK ard +b read +Ġex h +Ġty cker +Ġec ological +ĠMa e +Ġ×ŀ×IJ ×ķ×ĵ +ĠëĤ ĺëıĦ +л он +ys s +Ġper gunt +Ġpri x +izz ard +Ġcan cers +Ġ9 1 +s usp +ĠIt em +ÅŁ a +Ġp est +Ġtak Äħ +Ġl ymph +ĠPat ri +f ill +Ġrec onna +Ġoptim ism +Ġmim ic +Ġì² ľ +ĠMad ame +oc y +l ining +åijĬ 訴 +erm e +Ġfold ers +Ġcz ÅĤ +uch ar +Ġcur so +Ġbre ach +ни ÑĤÑĮ +Ġp amiÄĻ +Ġel ig +Ġaut op +F low +Ġprogram med +ĠPro cess +Ġfig ur +ĠS F +ĠE les +Ġprogram mes +Ġdiz zy +ìĭľ ê°Ħ +Ġли бо +Ġsn iff +ĠSeb astian +ĠH ye +Ġ4 000 +Ġperm ite +æ¢ Ŀ +Ġза Ñī +Ġgu it +ĠD ais +Ġaccord ance +Ġmod ular +ogene ous +æĭ į +Ġpou quinho +Ġart illery +Ġlub ric +Ġvol can +ĠN H +ðŁ ¤ +Ġde an +R h +Ġminist re +åĿ IJ +ĠIn v +ĠBul gar +ĠD aten +è İ +I m +Ġorigin ated +ĠN ixon +inte gr +Ġlack s +ĠN acht +ìĸ´ë Ĥĺ +cam era +Ġrad ish +ki ye +Ġang es +Ġpré f +j uk +ĠBe e +ĠB U +ĠвоÑģ п +ĠB T +ê mes +ĠSt ück +ĠIn k +æĪĸ èĢħ +ĠSerge ant +ĠMult ip +Ġhiç bir +ĠС ам +ĠD é +ol ph +ìĸ ¸ +Ġimp at +ĠìķĬ ê³ł +ĠÑĤак ого +ĠнавеÑĢ ное +Ġunpredict able +Ġm end +ĠìĹĨ ìĸ´ìļĶ +Ġjakie ÅĽ +Ġann i +Ġdon né +ĠK irsty +Ġrectang ular +Ġempez ar +ĠEx change +ê° Ķ +Ġé conom +ãģĵ ãĤĵ +el in +re ibt +Ġ×Ķ× ¤ +Ġc emetery +Ġespañ ol +ol in +лÑİ Ð´ +Ġgr âce +all en +ĠPh ilos +ĠEr st +Ġìĥ Ī +ĠV id +G ive +O H +μ ο +ĠP are +Ġmetabol ism +Ġma ple +Ġax le +ĠD y +Ġkomm e +Ïİ Î½ +Ġgreat ness +Ġver ified +Ġsp é +ĠFahren heit +ĠB ren +ĠConf eder +Ġhist oire +Ġelimin ating +ĠAd ding +ĠAb i +æĿ İ +Ġhospital ity +t im +Ġbon ito +Ġpart es +ĠдÑĢÑĥг иÑħ +ĠSh ay +ĠS ed +Ġreg rets +Ñı ми +Ġten ants +éĢ Ł +ĠP TS +Ġdev i +ĠL ate +ue z +Ġsö yl +ãĤ » +Ġìŀ¬ë °Į +Ġtogg le +Ġmas king +алÑĮ ного +Ġpers ön +Ġamer ican +f ik +ĠR GB +ens on +ĠK A +ww ww +ĠÑĢ ег +met ics +Ġeduc ator +ãĤ· ãĥ«ãĤ¯ +p ark +елÑĮ зÑı +ar us +ÑĢ еÑĤ +Ġfe ito +Ġcho ir +Ġlar go +Ġe ens +Ġwat ts +ĠSing le +Ġsuscept ible +ic er +Ġв клÑİÑĩ +Ġp us +íĻ ĺ +E ng +Ġfant as +Ġspecific ation +Ġconfront ed +ĠColumb us +ив еÑĤ +ar ım +Ġcaffe ine +mun ition +Ġmig rants +l ide +it ations +ĠG eme +Ạ« +Ġpl anner +Ġstim ulate +Ġapro xim +ce u +ĠN om +Ġv og +ĠÑĢ аÑģÑĤ +Ġense ñ +Ġsell ers +Ġgut en +z d +C al +Ġdescri pt +Ġrecon ciliation +z inho +á¹ĩ a +ãģĺãĤĥ ãģĤ +acy j +ĠCO L +s aw +ĠíĻķ ìĿ¸ +Ġvar it +Ġpartner ing +Ġdet ention +Ġbomb ing +c lapping +ien cies +ond u +AM E +Ġê°Ļ ìĬµëĭĪëĭ¤ +c ÃŃa +ĠпоÑģ ÑĤо +ĠAS MR +Ġhome page +Ġsi è +an tha +ĠP oll +Ġ igen +cy ch +Ġê°ij ìŀIJ기 +Ġconsider ably +ä»ĸ çļĦ +ĠAr ist +Ġwith stand +Ġqual itative +ĠK raft +ĠÑį лекÑĤ +ĠBe ad +екÑĤ ив +Ġcr ushing +ì³ IJ +Ġnav y +ÙĪ Úº +s ho +Ġo ak +ipp ers +Ġso ils +Ġpig ment +Ġev itar +ãĥ ĩ +Ġf use +ĠD ale +: " +Ġcompl ètement +Ġke l +๠Ĩ +Ġqu atre +ĠU M +Ġë§ IJë +æł ¹ +ÃŃ r +Ġle isure +ĠH ousing +Ġfold s +est ion +AR S +Ġm ash +urp ose +Ġaccum ulated +ĠSt uff +èª ŀ +Ġtap es +ĠÑģ илÑĮно +ĠLO VE +Ġ198 2 +Ġsc ars +Ġcapital ist +ĠN ed +Ġsoft en +Ġnot ably +Ġforcé ment +ĠRa um +Ġнеоб Ñħод +Ġtrad emark +Ġfert ig +Ġ? ! +æĹ ł +Ġreinfor ced +Ġre charge +ĠPut ting +Ġvill ains +Ġhand ic +Ġadvertis ement +ت ÙĬ +ĠÑģ Ñĥм +ĠR iley +×ķ× ij× +äº ¬ +O s +Ø§Ø ² +B oy +Ġsqu ish +ock et +Ġtest ify +æ¼ Ķ +Ġ×ľ× ŀ× +Ġм аÑģÑģ +man uel +ĠArk ansas +if fe +Ġanalyst s +ĠDe af +Ġj ó +Ġgrocer ies +ĠWhe el +ĠÑĢ иÑģ +Ġc òn +ĠC ob +Ġpris ons +è ve +ĠCab inet +Ġpos ed +Ġguer re +ĠL loyd +Ġcl erk +Ġcr ises +ĠSh o +ĠO re +ĠFoot ball +ĠAd vis +ĠZh eng +è į +ĠAM Y +Ġun for +Ġmon aster +Ġcomp ile +Ġimm ortal +at able +Ġpar ano +Ġt iver +ĠStep h +ĠFu ÃŁ +Ġdisc ontin +Ġr ipe +Ġhack ing +Ġs iendo +Ġsegu ro +alt res +Ġand eres +Ġë ¦¬ë +Ġexp orts +æŃ ¥ +Ġtab ii +Ġ기 ëĭ¤ë +Ġbother ing +Ġpick le +ĠBRI AN +Ġalt ar +ĠпÑĢи б +Ġtransfer ring +ĠV ors +ĠÙĩ ÙĪ +ĠZ a +ĠFr ances +Ġbrow se +em it +Ġche wing +ĠFred dy +Ġedit ors +ä lle +Ġí ĮĢ +ĠS que +ĠC ultural +aw k +ĠS ache +ĠCar bon +ắ t +F L +ĠN GO +pe ÅĤ +ĠS ou +Ġh vor +un intelligible +Ġë² ķ +Ġ ° +i in +Ġ×¢ ×Ŀ +Ġder rière +Ġczy m +ĠAp ost +Ġregard er +Ġag rade +ĠC andy +Ġma re +Ġintrodu ces +bird s +Ġuniqu ely +Ġm uk +Ġcook er +Ġcrew s +Ġje ito +ER T +¶ Ħë +n isse +Ġe f +Ġcart e +ĠY ak +ĠP AT +и но +bok ki +Ġm ates +Ġdist int +Ġì½Ķë¡ľ ëĤĺ +Ġy ıl +Ġκ άν +Ġconfigur ations +eng a +re cht +H appy +ãĤĦ ãģ£ãģ¦ +in vest +Ġreconst ruct +ĠÑįÑĤ омÑĥ +Ġmos que +ra um +Ġvoy ez +ĠN BC +ĠìŀIJ ìĭł +Ġstur dy +Ġк ап +Ġans ch +al id +Ġmas ih +ĠR EP +Ġì½ Ķë +Ġded uct +Ġsal ir +w urf +il ot +ĠM utter +old s +ĠF EMA +ĠB ib +Ġneighb oring +Ġbl iss +Ġíĺ ¼ +ли ÑģÑĮ +ĠÑĤÑĢ еб +Ġ å°±æĺ¯ +Ġgren ade +Ġe gal +Ġfin ely +Ġpet als +Ġke er +Ġch yba +Ġsk ipping +Ġth irteen +Ġgrav y +ĠS AT +6 1 +Ġн ог +Ġmin s +IT E +Ġso zial +íķĺë ©´ìĦľ +rukt ur +Ġвозм ож +Ġоп ÑıÑĤÑĮ +Ġar th +ĠCub an +Ġtre asures +Ġfertil izer +Ġawak ening +Ġë°± ìĭł +Ġr all +Ġdep ict +ĠP ablo +Ġninete en +Ġw att +Ġentire ty +K S +ĠWood s +S ch +ĠÚ© ÙĪ +ĠD ry +ãģ ŀ +u ve +Ġreconst ruction +Ġanat omy +Īë ¥¼ +Ġb aba +Ġlisten er +Ġshar pen +ĠPer u +ĠвÑĭ з +Ġrecre ation +Ġiniti ate +Ġcal or +ĠN aj +ge e +ĠFe els +ĠSnap chat +ĠT et +ĠN est +ĠD af +ĠFin ish +ĠÑĤак им +ú c +iz ens +Ġsp ins +Ġemb ry +Ġpass ages +Ġc ient +Ġjust ification +ä»ĸ 說 +Ġolm az +Ġflood ed +Ġemo ji +Ġembr acing +Ġdisc ard +ĠBas ic +ag og +ĠìľĦ íķ´ +Ġas ylum +er in +Ġf im +Ġnin ja +Ġautom ate +Ġaller gic +ÿÿ ÿÿ +am am +Ġм аÑĢ +ĠO i +ä us +Ġin duct +ĠB EN +Ġz ÅĤ +Ġkaż dy +ĠAM P +n ÄĽ +S ure +Ġqu il +Ġespe c +ro k +BS CRI +Ġlie be +p us +ach sen +Ġcr icket +ëĬ IJ +ĠFr ame +ekk ür +ar b +Ġp ÅĻ +иÑģ Ñģ +Ġzeg gen +Ġdou bles +ĠD re +t est +ins p +bo ys +Ġm ão +ĠVer se +Ġmus cular +ĠMA LE +Ġd ulu +Ġoccas ional +L o +conom ic +Ġv ak +Ġrem edy +å¤ ł +ĠâĻªâĻª âĻª +ve m +Ġön em +ĠkarÅŁ ı +ĠSh arp +h ur +Ġë°© ë²ķ +Ġgrand son +Ġakt iv +ĠTh rones +ĠìķĪ ìĹIJ +Ġto ts +Ġsub d +ĠPa ula +Ġgra ves +ĠB rent +Ġник ÑĤо +Ġsö z +Ġcre c +ĠVlad imir +çĸ « +Ġп ой +Ġ" - +Ġp sy +at ri +id an +Ġa ún +Ġstandard ized +ì¹ ĺë +Ġк ÑĢов +ĠZh u +s omething +Ġ7 50 +Ġmuj eres +Ġa it +éĹ ´ +ag u +Ġcorrect ed +ik ka +el ed +ĠCare er +ow ym +Ġroomm ate +Ġdescend ants +ĠNapole on +ĠÐĶ о +íĸĪ ìĸ´ìļĶ +Ġbun un +ĠMich a +ç· ļ +Ġdesc ob +P I +Ġpalab ra +Ġtrack ed +Ġdepend ence +ĠBar ack +åģ ĩ +Ġfert ility +ĠSouth west +Ġincom plete +Ġcomun ic +Ġcomp ris +ĠRest aur +Ġac ron +κ α +Ġapprent ices +Ġmus st +ĠA br +Ġpent ru +ĠCons ort +ĠAve c +Ġdum plings +L R +Ġwszystk ie +Ġsw amp +н ев +ugg le +Ġwater color +Ġprot on +ĠEspa ña +ock ing +ов ал +Ġtak im +V ery +Ġdement ia +ĠÅŁey i +J ac +ĠMac Book +ĠL iv +ffic ients +ĠH unt +Ġover lay +æĦŁ 覺 +ĠSky pe +p unkt +Ġconf ined +ĠAd rian +ر Ùĥ +ĠJe ep +Ġenqu anto +Ġan est +оÑĤ веÑĤ +Ġм енÑĮ +Ġirrig ation +á»ij n +Ġeight een +ĠP on +Ġresc ued +Ġ198 3 +r ü +ja e +ĠJe ong +Ġamazing ly +ĠF DP +Ġback stage +c ue +ĠÏĥÏĦη ν +ĠاÙĦØ µ +Ġlivest ock +ĠW arner +Ġmaj ors +ãĥģ ãĥ£ +Ġcooper ative +ĠBr ady +ra ined +rie b +Ġ×ij× ŀ× +Ġдов олÑĮно +ĠF E +Ġle aked +ĠMerc ury +Ġpersu ade +Ġtransform er +ĠNor weg +ĠìĹ¬ë Ł¬ +Ġzrobi Äĩ +Ġcard iovascular +ĠCr ash +Ġg ossip +а ÑģÑĤÑĮ +Ġì ª½ +Ġsw ept +ĠH orn +ĠAt é +Ġbu kan +ĠK aw +K Y +ĠSt ories +G ary +Ġgard ening +ĠQuick ly +ĠFal con +Ġov at +c ı +ĠCom plet +ĠD ate +ĠпÑĢ им +Ġlä uft +ĠAud rey +ĠW ent +Ġpel ÃŃcul +Ġcar riage +Ġun acceptable +ny mi +ĠÑģл ÑĭÑĪ +Ġter re +uell ement +EE EE +Ġpharm ac +h ões +Ġz ich +Ġmig rate +ĠF ry +ñ ana +ĠM uito +EO VER +Ġfort ress +ĠCom pan +ĠJ SON +ord nung +Ġw arto +Ġun gef +ìħĶ ìĦľ +ĠÑĢ ок +Ġpad dle +J ared +Ġsubm itting +Ġl atch +Ġf ug +Ġк оÑģ +ĠE f +Ġlaunch es +Ġf t +ote chn +Ġtrave lled +ا Ùģ +éģ ķ +Ġpro ch +Ġded im +8 3 +Ġreb ound +ĠL U +p ath +ĠÑģп ÑĢав +Ġö l +ĠíĤ ¤ +Ġpriv at +Ġtr actor +ĠAtt ention +S er +Ġcos es +á ria +p al +ĠìĿ Ģ +Ġsuccess or +Ġconnect ors +ĠÑĥÑģÑĤ анов +Ġgen ocide +Ġsufficient ly +ĠA ixò +Ġstabil ize +Ġcon gest +Ġcar ving +Ġz ost +ĠбÑĭ ÑģÑĤÑĢо +Ġshort est +Ġli vel +Ġ8 9 +éģ Ĭ +Ġer k +Ġport raits +ॠĢ +è ĺ +bo at +ll ah +AN C +Ġempir ical +ĠE cho +ĠNeder land +è¿Ļ ä¹Ī +N et +Ġcuid ado +ĠR oma +Ġc alf +Ġgi ants +ĠExpl orer +ĠColl ect +al ition +ĠDest iny +Ġaus ge +ĠE du +ĠC lo +Ġear rings +ĠTr ack +ĠR OS +ĠBe lle +çĻ ¾ +Ġpu eda +Ġday time +Ġsupp lier +ĠS V +ĠEx hale +Ġgal era +c ourse +Ġcent imeter +ĠB ast +m ud +Ġsang at +ĠPhys ical +Ġpriv ately +Ġtr ata +lyn n +ill i +Ġë© ĶìĿ´íģ¬ìĹħ +Ġcryst all +Ġpod s +ả n +in ator +ĠRec ords +å® ĺ +ÄŁim iz +isse ment +h are +h adow +ĠD K +ĠìķĮ ê³ł +Ġw yn +Ġrequest ing +ĠD onna +ĠìĹ ´ìĭ¬íŀĪ +ine a +Ġex ert +ĠDun can +Ġв еÑĩ +ĠH ah +ठĤ +ĠL if +ĠF inding +ĠNo v +Ġзн ак +Ġо ÑĦ +ĠQu è +Ġquarter back +ĠÑĦ ак +Ġbipart isan +ÄŁ in +Ġné cess +Ġrefer endum +Ġcomp iler +Ġprob abil +ед и +Ġtrad er +æĺ ĵ +ĠR um +ge me +Ġd io +ĠbÄĻdzie my +ĠÏĢ ά +ê¾ ¸ +×ķ× ĺ +Ġठķ +Ġбл аг +Ġscal p +ĠPa use +Ġcapt ion +Ġend anger +Ġen lar +Ġrot ten +ãĥĥ ãĥĪ +Ġw ah +èĤ ī +Ġd zi +ĠInst all +A y +Ġcre ar +енÑĤ а +Ġwe ighing +Ġbutter flies +ĠG ast +äº ķ +h orn +war z +IC EOVER +Ġнай ÑĤи +Ġcoe fficients +ç°¡ åĸ® +ĠSp encer +ĠH igher +Ġcow ork +å¨ ĺ +ĠкоÑĤоÑĢ ое +Ġmon it +Ġdys function +ĠÑģÑĤ анов +Ġtour naments +Ġoy ster +B N +Ġtr ud +sl ow +ĠPen ny +ĠOd ys +æ r +Ġf ou +Ġenjoy ment +аÑĤ Ñĭ +Ġwygl Äħda +алÑĮ наÑı +ĠProt ect +Ġmo y +Ġcl aw +Ġsusp icion +Ġsacrific ed +Ġgost o +B ig +Ġaggress ively +Ġvor ne +ãĥ ł +Ġbl amed +ĠSe hr +פ ר +c ito +Ġse als +Ġmu jer +ĠWe ird +Ġfore ns +Ġcontrib utes +est ra +Ġp og +L OL +Ġhacer lo +о ÑĤÑĮ +f iction +7 9 +λ ο +大 æ¦Ĥ +å£ ° +ĠÑĤ об +ĠG S +ĠCl ara +ite z +Ġadvoc ating +ĠíĶ Ħë +s ung +Ġvert ices +Ġnavig ating +Ġeurop é +çļ Ĩ +Ġslow ed +Ġfore ground +ĠIndust rial +Ġad ore +ìĭ Ń +Ġcré er +æŀ Ĺ +chn itt +Ġun aware +Ġcur ly +ent ar +Ġl er +Ġprohib ited +ĠHero es +ĠRe ed +u ca +Ġsm ok +Ġkun na +zeit ig +im men +ĠL un +Ġаб ÑģолÑİÑĤ +Ġdeg li +Ġvill agers +Ġpres et +z ept +ud s +Ġem it +ä½ł è¦ģ +Ġë ī +ëĬĶ ì§Ģ +нак о +Ġos ób +Ġ196 9 +ĠÐIJ ÑĢ +Ġman chmal +ĠBro ck +Ġmant ra +ĠW IL +b ach +in ä +el as +kel n +Ġdisci ple +Ġqual c +Ġde hyd +ìĿ´ë Ŀ¼ëĬĶ +A f +ìĦ± ìĿ´ +R yan +Ġpupp et +ĠдÑĢÑĥг ие +Ġr ud +Ġp ending +P lus +ĠìķĬ ìĿĦ +Ġb á»ĭ +ĠSe ga +ç e +Ġprogram mer +b li +Ġun l +Ġensl aved +Ġsoci été +Äģ h +Ġinherit ance +ĠBang l +erm aid +Ġpractition er +ĠSt alin +ĠUs er +ci ble +Ġcard iac +ĠKore ans +Ġdump ed +Ġ×Ķ ×Ļ×Ķ +á is +Ġhydraul ic +oubt edly +ĠP it +Ġpic nic +Ġbehö ver +ĠÑģм ог +Ġbra king +é» ij +ut ar +ĠìĦ ¸ë +ub l +Ġü z +Ġmaj esty +Ġb ers +ut able +Ġhot ter +çħ § +ÛĮ ÙĨ +Ġbi ases +Ġsubject ed +Ġnaught y +Ġcir cus +ãģĹ ãģĭ +ĠIm medi +ĠSte fan +ĠTri ple +en k +Ġw it +Ġrecy cle +em ie +d ated +Ġun load +Ġpop ula +ch in +Ġyield s +Ġeng lish +ĠBon nie +Ġsp iders +à ģ +Ġer osion +éĥ¨ åĪĨ +ĠN ICK +иÑı Ñħ +Ġimp art +Ġк ни +Ġres olutions +Ġlith ium +Ġconver gence +ĠT ara +Ġдв е +th s +ĠCind y +æĪij è¦ģ +å¹ « +ĠD IE +Ġass urance +Ġоп иÑģ +Ġbu ckets +Ġc ues +ĠQu iet +Ġsimilar ity +Ġfound ational +ĠMin ist +æ» ¿ +Ġp ian +Ġcent r +Ġnum b +Ġmon ks +uj ourd +en zie +Ġskate board +Ġd latego +ĠÑģ оÑĤ +ĠA E +Ġmaster piece +ĠSol omon +ĠRed dit +Ġr iot +ab l +ĠJ azz +Ġelectromagn etic +Ġinsec ure +ĠComp et +ger ies +об од +ł ×ķ +ðŁ Ĵ +Ġsen ators +ĠBris bane +ĠAl b +utter ing +ĠAll ow +z ero +Ġp ai +ĠÐIJ лекÑģ +ĠDis play +ĠBl ade +ĠApp s +Ġp ä +Ġд еÑģÑı +Ġque lla +ĠGa o +ен нÑĭÑħ +Ġspoil ers +Ġgall ons +ĠÙĦ ÙĬ +ĠZ ion +æľī ä¸Ģ +on ie +rag t +ĠCh and +Ġë³ ij +Ġbl unt +Ġus u +ĠK ad +ra kt +Ġcin ematic +Ġam munition +re ne +Ġfour teen +ĠC arn +c rit +Ġten ure +v u +Ġprincipal mente +Ġalle en +éĢĻ ä¸Ģ +Ġkompl ett +Ġdü ny +J ames +Ġrecept or +Ġones elf +g uru +Ġmerch ant +l iness +Ġover looked +Ġharmon ic +éķ ¿ +ies o +×ķ× ŀ +col m +ĠпÑĢо екÑĤ +ĠAd a +ا س +T im +Ġrecur ring +Ġproceed s +ĠPart icularly +ĠDown load +et rical +Ġmat rices +Ġproyect o +anc ies +ĠUh m +Ġc aves +Ġìĸ´ë ł¤ +ĠLe af +Ġоб ÑĭÑĩ +ĠìĿ´ì ľł +Euro pe +Ġt Äħ +Ġpul s +Ġtak iego +ÐĿ е +G U +Ġfor s +Ïģ γ +Ġfot os +Ġ) ) +Ġë© ¤ë +Ġaqu ilo +ĠK urd +ï¸ ı +pt ic +ĠD ort +Ġmis ery +aus o +åĬ Ł +chuck ling +ĠR idge +ĠíĸĪ ìĬµëĭĪëĭ¤ +Ġ* ** +å® ¢ +ĠHmm m +Ġge ographic +Ġany s +Ġtal vez +Ġske let +Ġsign atures +Ġlit ers +IJë ©´ +ĠÑģво его +Ġski ing +ĠÐľ оÑģ +Ġadop ting +Ġha ft +Ġsymm etric +ĠL iqu +Ġthy roid +Ġmis in +lud e +Ġh ull +ĠX D +ĠG ust +ze ich +Ġvibr ations +Ġes emp +ĠвÑģ Ñİ +ĠQu em +Ġü brig +ĠS ke +ĠLyn ch +room s +art et +f est +Ġfr üher +Ġl ure +ä¸į好 æĦıæĢĿ +ĠìķĮ ìķĦ +ĠW IN +ĠR YAN +ĠкоÑĤоÑĢ ÑĥÑİ +ĠK ash +Ġ×Ķ× ŀ +Ġsaf eg +ĠHall elujah +Ġдв ÑĥÑħ +Ġstap le +Ġsed iment +ĠAct s +Ġbl aming +Ġmain land +Ġsport ing +Ġdecor ations +Ġexecut ing +Ġpar an +ĠDoll ar +Ġproject ions +Ġcommission ed +Ġb our +ö m +Ġste amed +ĠëŃ ĺ +Ġpet rol +Ġcel ular +å¸ ¶ +ĠHung ary +Ġrent ed +Ġв аÑĢи +bb ie +Ġsé cur +ü ll +Ġsw ings +bet ween +Ġи ÑĤ +est ro +Ġnie mand +ĠìĤ ¼ +ĠP ardon +ess es +ĠM ID +Ġcentral ized +ĠAl ien +cul os +Ġcr ise +裡 éĿ¢ +Ġcl asse +beit et +i ÄŁi +Ġwh ales +Ġper imeter +Ġty ing +Ġstr ony +Ġlike wise +ĠP unch +D a +ĠBapt ist +Ġsort ing +Ġ iv +Ġíķ © +Ġre hab +Ġet a +ri ver +Ġsa i +ãģĦãģŁ ãģł +od us +ãģĬé¡ĺãģĦ ãģĹãģ¾ãģĻ +Ġess ayer +Ġtur tles +ĠHaz rat +Ġfab rics +Ġcav ity +Ġpon ieważ +Ġschle cht +Ġs alsa +ÅŁ ekkür +Ġse ating +Ġeconom ists +Ġman g +Ġsegu inte +Ġr ang +Ġrat ios +Ġconst ell +Ġlong temps +u ating +Ġspo iled +Ġrecip ients +Ġsn iper +ä¹ĭ åīį +ìĬµ ëĭĪê¹Į +Ġw p +ĠLIN KE +Ġfl are +ĠAd ri +ñ as +Ġback l +mä ÃŁ +ĠB end +Ġworkload s +ĠÑģ Ñĥп +Ġ197 5 +им ÑģÑı +ан е +Ġм он +Ġaspir ations +ĠA er +ĠговоÑĢ иÑĤÑĮ +ĠQ ian +å¦ Ī +Ġcomprom ised +Ġyol k +ла ÑģÑĤ +Ġhe men +ro ve +d ens +Ġком менÑĤ +Ġ- -- +Ġflu ores +но Ñģ +ĠLiver pool +ĠÑģоб ой +ĠZ we +Ġl umin +ĠO G +á ¸ +hol m +pro fits +S N +Ġproport ions +Ġm ica +ĠB oh +ĠAt las +Ġuns ure +Ġtour ing +Ġn ied +Ġt ÄĻ +Ġimper ative +Ġdem ek +ĠSher iff +r ance +Ġhom eland +ĠH ail +ĠG anz +y mm +M on +åĨ · +v ida +Ġdesar roll +æĬ Ģ +Ġintrig uing +ĠH ugo +Ġ ãĤĤ +é ¬ +а ÑĨ +ĠWiÄĻ c +att ed +ĠìķĦëĭĪ ê³ł +ĠV ari +á d +Ġsur real +Ġdispar ities +Ġm ó +ull en +ĠìŀĪ ëĭ¤ê³ł +Ġп ожалÑĥйÑģÑĤа +Ġma ins +Ġe ject +Ġmeth ane +Ġmarginal ized +Ġchill i +r ès +Ġy em +ä½ł æĺ¯ +ĠCh un +Ġdeb ts +Ġdownload ing +ĠAth ens +is ierung +ry n +Ġte kn +ĠQu indi +éľ Ģ +Ġtara f +Ġh é +Ġconscious ly +Ġfix es +uck le +may ın +Ġfre i +Ġsp a +Ġì§Ħ íĸī +ĠاÙĦØ ° +ĠÑĥ к +let t +Ġolm uÅŁ +Ġche esy +า à¸ģ +na ire +Ġw iden +Ġli en +Ġesca ping +igg s +ĠBl ick +c Äħ +ĠìĦ ľë +Ġ×Ķ× ¡ +Ġв пеÑĢ +oph one +ie ll +ĠSU BSCRI +Ġl ions +Ġê·¸ ê²ĥ +Ġinsp ires +Ġguarante es +Ġcome ça +ĠGrow ing +Ġneg lig +ĠFrank f +Ġge geben +ĠÄij ầu +Ġend lich +Ġì į¨ +ĠT T +ĠL ith +ÏĢ α +aster n +ĠA zer +Ġlun ar +h ic +Ġна ÑĢод +Ġnen hum +è· ij +ĠSalv ador +ĠPro gress +Ġprivile ges +ĠëıĻ ìķĪ +Ġant agon +ĠImp f +Ġdesc ub +ĠLe i +ĠìĥĪë ¡ľ +Ñĩ е +Ġdó lares +ĠMeg han +ĠW ire +to o +ay ing +us c +Ġt ud +Ġappe als +ed uc +Ġp ane +Ġj i +Ġde cks +ĠAl ter +Ġ å°± +ìĦ ¤ +åĪĨ éIJĺ +Ġproduct ions +ĠWILL IAM +Ġimpl ied +Ġfulfill ment +ĠA ah +Ġsa ja +x us +ĠÎļ αι +Ãł s +uc ch +ок о +ĠDisc ord +ĠS Y +j sk +ĠWall ace +un ction +Dan iel +Ġk öt +ij ah +Ġmarch e +Ġdis gr +Ġm ungkin +Ġal ma +³ µ +Ġextensive ly +ĠFl oren +ĠAll ison +ãĤ ± +ÙĬ Ùħ +Ġju ven +ĠRena issance +Ġfundra ising +ĠCha os +Ġpar aly +Ġnarr ator +Ġecosystem s +A sh +Ġmitig ation +ĠA ujourd +ĠIde e +! , +Ġ ½ +Ġland lord +Ġdefect s +Ġac re +uls ive +Ġalg ae +pe k +Ġem ba +ĠR oc +éĽ ¢ +ks om +ä che +Ġle uk +Ġlever aging +Ġê·¸ëłĩ ì§Ģ +ĠPal m +Ġä ven +Ġl is +ĠIn sp +ĠR ita +ĠAb b +ith m +Ġsuper vision +Ġrevis it +Ġpi ÄĻ +Ġeu h +Ġf ades +Ġmot to +åį ¡ +ез ж +ĠSh im +Ġrelev ance +Ġo o +Ġo stat +n ica +Ġcho ix +ĠFac ulty +Ġì¤ij ìĹIJ +ĠAb ove +Ġнеб олÑĮÑĪ +Ġsequ encing +Ġnutri ent +Ġconqu ered +Ġdigest ive +Ġback drop +ĠL ori +ail able +G ame +Ġneglect ed +om orph +ill ah +Ġkn e +Ġsi itä +Ġworks pace +ĠVen ice +ĠK ne +Ñī о +ħ Ģ +ĠH ass +Ġv ita +Ŀ¼ë ©´ +Ġlay s +ên cias +é rica +ĠL l +æ± Ĥ +ĠCo ca +ĠWH Y +èĪ ŀ +Ġrout ing +Ġperm issions +Ġd ings +pre nd +pro gram +Ġcro cod +br al +AAAA AAAA +ag it +ĠN ä +Ġgek ommen +at ten +Ġrefer enced +Ġpair ing +ĠPart ner +ĠCoron avirus +Ñĸ Ñģ +è½ ī +Ġ×Ķ× ĵ +Ġespec ÃŃfic +ars i +qu elle +Ġspont aneous +çĨ ± +Ġê²ĥ ìĿĦ +ĠÐŁÐ¾Ñģ ле +ĠاÙĦ د +ĠSh out +Ġн ал +Ġdisgu ise +ĠJ ord +Ġwe e +Ġmiej sc +Ġser um +Ġplais ir +Ġcred ible +Ġb Ã¥ +ĠA J +ma res +Ġrod s +Ġer an +ãģ¾ ãģĤ +Ġp ää +ĠU A +ĠUn known +ĠÙĦ Ùħ +ĠRab bi +Ġla at +Ġhairst yle +ĠØ º +éģ ĭ +Ġc ach +ĠWr iting +оÑĩ ки +ab ad +Ġstraight en +-- " +w ife +Ġhott est +Ġpun ya +ĠF ashion +gr iff +ĠQ R +ot ch +ĠÐľ ожеÑĤ +Cl oud +ĠStri ke +ĠHe in +Ġ 羣çļĦ +Ġle i +ĠFl ow +weg s +Ġha br +åīĽ åīĽ +nah me +Ì ģ +Ġple asing +op ping +Ġ구ë ıħ +Ġdr an +Ġbang s +Ġ7 9 +Ġsk et +Ġcav al +ĠMac ron +Ġweight ed +Ġm uted +Ġnuest ras +EE P +Ġmath ematic +ĠM RI +ag us +Ġtherap ies +θ ε +Ġun pl +Ġcomm encer +f ull +Ġtow els +Ġpr ue +Ġlic enses +׼ ×ķ׾ +ĠÐŁ оÑĩемÑĥ +Ġpoint less +B ye +Ġelig ibility +Ġscra pe +Ġab usive +ĠM ant +Ġje unes +t al +ĠPrin cip +ĠOrth odox +Ġmel od +ĠмаÑĤ еÑĢи +Ġprosecut or +Ġopio id +ĠÑĥ веÑĢ +ĠBe en +Ġìłij ì¢ħ +Ġd ynasty +Ġajud a +Ġent reg +Ġweigh ed +Ġe ure +ĠB em +Ġab normal +8 2 +ĠJ R +ĠA kt +ĠB ri +ú t +Ġst agn +! * +Ġwe gen +Ġle aking +ĠW ords +ĠM au +Ġv ue +ĠL iam +ани ем +Ġclin icians +ĠP ump +Ġför st +? ... +Ġautom otive +ĠOw en +zus agen +ĠH undred +Ġdecentral ized +Ġbul bs +Ġ×ľ× Ľ +Ġprovin ces +ĠMil an +8 1 +k as +Ġëĵ £ +Ġfor ça +Ġright ly +å³ ¶ +r Äħ +Ġven ues +Ġw ai +Ġpred icting +ĠWi Fi +Ġê¶ģ ê¸Ī +ر ÙĪ +Ġ×Ķ× ĸ +cent ury +Ġgrad ual +ĠProblem e +ĠìĹ ħ +Ġcop ing +ĠBr us +Ġpean uts +irts chaft +Ġз ал +ĠT roy +Ġsper m +ĠM itar +ĠTür kiye +g rand +¦ Ń +Ġ×ŀ× ¡ +Ġp ans +ĠKnow ledge +ber ly +ĠÐķ го +Ġdan ced +ĠFr ost +ĠB urg +Ġbit ing +ìłķ ìĿĦ +me al +Ġhero ic +Ġmother board +ĠL icht +ãģ£ ãģ +ll an +ай н +ĠÑĢ Ñıд +Ġ à¹Ģภ+on en +ir ie +Ar t +r ang +ν η +Ġnew born +Ġam is +Ġا ÙĪر +Ġsoph om +ĠCare ful +Ġprospect s +ens en +Ġthr ill +ĠVi á»ĩt +A dam +r ition +ent ric +ud en +Ġcertific ates +Ġas hes +èª ¿ +play ing +Ġs adece +Ġo st +Ġairpl anes +ÑĢ ок +on er +Ġmagnes ium +Ġgod damn +Ġ197 2 +ĠSch ule +Ġtem at +Ġpart out +௠Ĥ +Ġin ve +ĠScient ists +ĠHud son +win ning +ceks in +Ġcongress ional +or u +Ġro pes +в ед +Ġmad re +Ġf erry +ĠCoh en +ĠP red +Ġvag y +Ġб еÑģп +Ġmult im +Ġdrain age +Ġsim ulator +g iggles +ĠSt adium +об Ñī +Ġnot ices +Ġcraw ling +Ġgr oupe +åı ¸ +Ġkto ÅĽ +ĠY oga +Ġmed ida +ĠÑħ ваÑĤ +ĠL ite +Ġr av +or ama +Ġdisc ord +ĠDI RE +Ġte h +ĠN urs +ç² ī +Ġpitch ed +Ġbark ing +ĠC oke +wi ad +Ġpop ulated +éĻ ¤ +pe lled +Ġб ог +Ġpe wno +ĠC ube +Ġrecru ited +éĢĻ 種 +ĠC ara +ıģ ını +im ated +ĠÑĪ кол +ic ional +ĠпÑĢо ÑĦ +Ġcontam ination +Ġúlt imos +Ġfear ful +Ġele phants +us i +ĠiT unes +ĠSw ami +ê ¼ +ĠìĦ¤ë ªħ +ĠRich ards +Ġmagn ets +ĠRicht ung +ĠLeg ion +èı ľ +Ġk itty +Ġkiss ed +Ġwater ing +Ġcon o +ĠPalest ine +id ir +Ġma ze +Ġflu ids +ĠProdu cer +ĠKr sna +好 åķ¦ +la f +Ġ×IJ ×ķ +Ġm iesz +ĠX ing +oint ed +se in +ĠF uk +ĠDep ression +ĠD uty +ĠPan ther +Ġsu nd +Ġref ere +Ġexc lusion +Ġnav al +ĠWin ston +Ġsl ogan +Ġhypoth etical +Ġelev ate +ë ł¹ +Ġcabe ça +ĠGes und +m eter +ĠìķĦëĭĪë ©´ +Ġcloud y +âĢ¦ ? +ĠSch ritt +ĠJ S +ì į +ĠSpr ings +ĠB atter +· ° +Ġtail or +ĠPTS D +ĠG ent +Ġba ÄŁ +Ġspat ula +Ġcr ay +ĠLeg isl +Ġs ú +Ġle ve +า ม +Ġer ad +Ġdon g +Ġd erm +ĠBank s +ich o +åħĪ çĶŁ +ĠFr anz +ra vel +éģ Ķ +ол о +Ġfl ute +ĠE k +Ġjoy ful +Ġch ased +ĠLar ge +O ver +Ġentrepreneur ial +Ġcons iders +Ñĥ ем +op a +Ġdorm ir +ĠElement ary +Ġprzy pad +ÑĥÑģ ка +ĠоÑĩ еÑĢ +ug ene +Ġten ido +Ġlug ares +ë ¥ +ĠÑĩ аÑģÑĤ +Ġsa o +Ġbra id +ĠV ere +ĠRe ich +ĠP oss +Ġin an +w and +re f +Ġmont rer +Ġ198 1 +çķ ª +as ında +Ġch rome +ĠTr inity +Ġexplo itation +ĠS ense +ĠC MS +ĠNo ble +ĠìĦł íĥĿ +Ġswe lling +elect ronic +] ? +Ġbr ushing +Ġliquid ity +ĠH ook +ĠCon nor +ĠAl um +Ġgu cken +su ite +Ġwie le +Ġbarrel s +ĠReg el +ĠM ent +ĠT rip +ĠBr ush +ĠE rik +ur ate +ÉĻ r +ĠC yr +ou ble +ĠBe cca +Ġpass words +Å ± +bor g +Ġv endo +ĠCla us +ĠF az +ind est +Ġdece ased +Ġcompar isons +ĠL CD +ĠP ork +Ġevent ual +Ġpat reon +Ġin ability +Ġext inction +Ġì¢ĭìķĦ íķĺëĬĶ +ĠÑģ оÑģ +aj u +Ġ×ij× IJ× +Ġso fort +Ġdest ined +ĠR in +Ġmouth s +ĠNat ürlich +Ġpres erving +Ġlim p +é» ¨ +oc used +ин г +Ġexp osing +ĠÎ ¾ +ë į +la ugh +Ġhis s +ãģł ãģĭãĤī +Ġind ie +Ġdet al +ÑĢав ÑģÑĤв +Ġtr ên +æķ ° +Ġog ni +Ġsimple mente +Ġ197 8 +Ġgo o +Ġ196 7 +Ġgen ug +h ö +Ġhist ó +å® Ł +Ġlob ster +c endo +Ġte il +Ġalle vi +00 00 +OL D +Ġpes os +Ġbon uses +Ġam i +Ġrev ival +ĠHor se +Ġs ack +T alk +Ġmul her +ĠпоÑģÑĤо Ñıн +ĠH ood +H uh +Ġë¶ ģ +Ġhy ung +ĠMe eting +Ġimport a +Ġì°¾ ìķĦ +ĠV ern +Ġstri pped +Ġref uses +Ġqual ifications +op l +Ģë ıĦ +ix ÃŃ +Ġdi ab +it ime +fl ows +Ġin ac +ĠG ong +Ġmeaning less +Ġcourage ous +Ġmicro bi +az y +h ist +Ġvolunte ering +V IE +Ġviol ated +Ġsymp athy +ĠEd it +好 åĥı +elect ric +produ ct +Ġpand emia +Ġgeomet ric +ĠCon vers +g re +Ġgl ut +ist ed +ĠاÙĦ Ùĥ +ĠCh ain +ĠPres ent +ĠY in +ĠÑģ ог +ĠV log +Ġìĸ´ë ¨¸ +Ġdon n +Ġh itch +uck ing +ãģĬ ãģĦ +w ald +ris k +Ġhar i +ĠK ens +ĠId ol +Ġвним ание +Ġtod d +Ġsm ashed +Ġinv ari +Ġкон ÑĤÑĢ +Ġaut istic +ìŀ¥ ëĭĺ +R es +д Ñĭ +ch au +Ġsel v +Ġhät ten +ठ¿ +Ġexpect s +Ïģ η +Ġaç ık +ĠHT TP +le ÅŁ +Ġswe eping +ĠBet a +Ġcounterpart s +ab ile +ĠSim s +C s +Ġrep ar +s qu +Ġprovin cial +Ġshare holders +Ġrun ter +Ġged acht +ĠTe en +Ġgrand s +çĶ ¢ +ag les +Ġrock y +ven s +Ġr ivals +un al +Ġreact s +ë © +Ġmerc ury +ĠLu igi +Ġо г +ĠJ UST +Ġl od +Ġcort ex +w ig +Ġl akh +ì¤ij ìĹIJ +ĠV ic +ĠM und +Ġma pped +ĠD ell +ĠD ruck +Ġlif es +алÑĮ ное +ivid ual +ad ım +Ġat rav +ĠFl ug +ĠKle in +ê±° ìķ¼ +ห à¸Ļ +Ġapp li +ா ? +ü yorum +ĠинÑĤеÑĢеÑģ но +Ġdis infect +> - +Ġchamp agne +Ġk la +op ers +Tr ans +ĠDes ert +Ġcultiv ate +ĠFuck ing +idel ity +ĠÑĤ ан +Ġinc ub +Ġtem u +Ġlearn er +found er +ĠSy l +ãĤ Ģ +Ġf ato +z ier +ĠìĹĨ ìĿ´ +ĠìĪ ¨ +Ġpsych o +ĠÑĤел еÑĦ +Ġregard e +Ġrepresent ations +Ġlit igation +Ġsp ann +ult s +b ior +è¦ĭ ãģ¦ +ä¸į å¤ļ +ĠSur vey +ĠLED s +Ġtr ä +Ġl ên +Ġant ioxid +еÑĢ ом +Ġindu ction +Ġfool ed +ät zlich +ĠговоÑĢ ÑıÑĤ +ĠF act +umb ai +Ġw iggle +NO UN +Ġdévelop p +ĠCl aro +Ġì ¸ +ë ¬ +ãģªãĤĵ ãģł +Ġaccum ulate +Ġmaint ains +ë Ħ +ĠFight er +íĨ ł +Ġmat in +Ġcoup on +Ġst unt +Ġdeb uted +å¾ħ ãģ£ãģ¦ +Ġpra g +ив аем +7 3 +Ġexp res +Ġìĺ¤ë ¹ł +ĠпеÑĢ Ñģон +Ġcalcul us +Ġab rupt +ĠInspect or +our t +æĸ Ļ +ź niej +int ense +B a +Ġl ounge +Ġast hma +ĠHi ç +ª » +Ġeditor ial +Ġse ize +Ġk ır +Ġm ouve +Ġtier ra +Ġtestoster one +Ġr h +ĠKing ston +EL LE +ĠRepresent ative +Ġ197 4 +Ġi ba +T s +Ġsort a +Ġ( ?) +Ġت ÙĪ +ĠëĤ´ë ł¤ +Ġbek ommt +Ġspirit ually +Ġdist orted +M ad +Ġre im +á nh +ĠOtt oman +ĠRel ig +ĠEl s +Ġret ained +ĠLa ughs +æĢ » +ĠS AS +ĠколиÑĩе ÑģÑĤво +×ķת ר +Ġinnov ate +Ġk ork +ĠÑĢаÑģÑģк азÑĭв +ond ere +iv i +ay e +ount y +ĠполÑĥÑĩ аеÑĤÑģÑı +Ġbun s +åħ « +Ġyüz den +Ġsur geries +Ø£ ÙĨ +Ġbankrupt cy +w elt +Ġsi amo +Ġdark est +ĠH ann +gg a +Ġform as +ĠD j +n amed +Ġshield s +ue ller +ĠF ew +Ġl ace +Ġfur ious +ĠY U +Ġsociet al +Ġjudge ment +ĠD os +Ġj ab +law s +Ġrein vent +ĠK atherine +ĠCh oi +ad ows +Ġr ans +od en +ĠMid west +n ın +Ġdep ort +ĠD ip +ç´ ħ +Ġaten ción +ĠCourt ney +ivid ad +ĠÚ© Ûģ +Ġeffic acy +ĠBrook s +Ġrefer ral +Ġкон ÑĨ +Ġmal icious +Ġk ir +ĠGod dess +Ġfun ky +Ġinter im +ĠK örper +Ġìĸ¼ë § +k ur +Ġк ли +Ġtruc s +ges etz +Ġz ug +ĠGl ück +ĠMin ute +Ġprest igious +Ġnie z +Ġconcent rations +ла ÑģÑĤи +ĠS is +ĠVit amin +ko v +ĠP BS +Ġне е +Ġretail ers +Ġcon ventions +ĠSam antha +Ġproud ly +J ordan +ĠJ ASON +at k +Ġtr iste +Ġst är +Ġreiter ate +Ġpos terior +Ġ197 3 +ĠP ine +ĠJul iet +Ġped ir +k il +Ġover lapping +Ġexclud e +Ġecon óm +Ġaccept s +ĠS ter +æ± º +Ġìļ ´ëıĻ +est ab +Ġt ug +ar g +Ġliv ro +Ø§Ø µ +Ġse ams +Ġbur aya +Ġe llo +ĠT M +ĠP aw +ĠInd ex +Ex c +Ġinspir ational +Ġd unk +è° ģ +ak ter +Ġcondition er +ĠSal ut +ÅĤ ec +Ġìī ½ +ĠÑĥз на +ĠRome o +f ruit +ĠY O +Ġchá» ī +б Ñĥ +b ons +Ġreprodu ctive +Ġor ada +Ġíļ ¨ +Ġtent ar +Ġma ñana +ãĤ ¬ +Ġsol vent +Jess ica +ĠLeg al +Ġtu a +Ġs ic +ĠE Q +au kee +ìĭľ ëĭ¤ +ĠÅŀ u +Ġad here +ĠT ul +Ġà® Ĩ +Ġtext books +ĠFif th +Ġexper i +Ġch ic +Ġhe ap +in ely +at ra +T wo +Ġhele maal +Ġf ren +æİ ¨ +Ġbis her +Ø§Ø ´ +ĠìĦł ìĥĿ +ĠT ages +Ġs á»± +Ġbull ied +Ø ¤ +Ġbenef ited +ĠPre viously +ĠÑį ÑĦÑĦ +Ù į +Ġsen ate +ĠM orm +ij ke +ĠF lu +Ġincorpor ating +j ack +Ġп иÑĤ +Ġimp ly +Ġha cks +ĠR ICH +Ġк ваÑĢ +ĠпÑĢек ÑĢаÑģ +Ġdepend ency +Ġìļ © +Ġì± ħ +Ġwäh rend +Ġsu lla +ĠPitts burgh +Ġesemp io +¼ë ¡ľ +pr ot +ĠR osen +ĠIndepend ence +Ġpars ley +ie gen +Ġha w +Ġaqu ell +ĠC AP +ĠÑĢабоÑĤ аÑĤÑĮ +ĠCl iff +ion ar +Ġsec uring +æĪijåĢij çļĦ +ν ε +Ġutil is +Ġcou le +ĠP ing +Ġtre k +Ġf ak +Ġenorm e +Ġìĭ « +è® © +Ġdoub ling +ĠнÑĢав иÑĤÑģÑı +Ġh ed +ho ven +ĠStand ing +Ġm ÃŃn +ĠJ imin +Ġmon arch +Ġco ke +Ġm r +Ġcl ic +à į +Ġimpe achment +Ġdur ability +Ġvar ios +Ġcommercial s +Ġgreet ings +ĠR i +ĠApp reci +ìŀĪ ëĬĶ +Ġrés ult +ér t +Ġsal ute +Ġpoder ia +Ġsun rise +ve ck +Ġreluct ant +Ġcommission er +å¿ µ +â te +ĠKen ny +ĠSir i +ãĥĥ ãĥĹ +ĠëĬ ĺ +ĠE E +Ġun ch +к он +ĠاÙĦØ ¥ +Ġbel ts +Ġhas s +Ġмо Ñı +Ġdispl aced +Ġab ra +ÎŃ Î» +Ġscratch es +Ġcom et +Ġauthor ization +ĠL LC +Ġprodu k +Ġrehabil itation +å ŀ +Ñĸ Ñĩ +ud ing +ol it +Ġ10 5 +Ġexp ands +Ġalt ri +ĠKom ment +Ġan f +P l +ĠM ana +f ed +Ġb ri +Ġor a +G s +ĠG ur +uck land +Ġjun ction +Ġiron ic +ĠFe ed +Ġpra kt +ĠHam mer +Įë ıĦ +ĠTr acy +çµ ± +ĠAs ide +н его +ĠиÑģполÑĮз оваÑĤÑĮ +Ġz aj +Ġequ itable +Ġcur b +Ġãģĵ ãĤĮ +Ġderiv atives +Ġpupp ies +ĠKenn eth +ĠCom pl +ig ram +ĠGar cia +) " +ĠHar bor +est ial +Ġ ä¾Ĩ +Ġ ers +æ ¹ +Ġunw anted +Ġbel ang +аР³Ð¾ +em b +d os +ĠìĻ ľë +ĠBud get +Ġbatt ling +ØŃ Øª +k ok +наÑĩ ала +Ġpl ag +Ġcant idad +Ġgrup os +Ġplug ins +ler ini +Ġиме еÑĤ +Ġso zusagen +ol ics +Ġpue blo +Ġrem inis +r än +ĠMor rison +Ġl inha +Ġbreath s +ĠT aste +Ġenf rent +ĠDo cker +Ġд ен +Ġethnic ity +Ġw ob +Ġsuff ers +Ġtransition ing +ĠR ange +ÄĻd zy +Ġк аÑĤ +Ġsy ner +Ġdon ut +Ġprob abilities +ĠO mar +Wh ich +u ish +is in +Ġdem os +ĠìłĢ 기 +Ġëĺij ê°Ļ +Ġед ин +Ġc erve +Ġj oka +I AN +Ġkilomet er +Ġhorizont ally +ĠBh ag +Ġ- > +ĠMon itor +Ġknowledge able +Ġf av +Ġpin ned +Ġe Bay +ick er +Ġìŀłê¹ IJë§Į +ĠXia omi +Ġcap it +Ġn p +Ġ196 5 +ho e +Ġn ok +ĠS age +Ġн елÑĮзÑı +ĠT ow +g am +Ġdic en +ĠSUBSCRI BE +Ġrebo ot +Ġp aj +Ġë³´ìĹ ¬ë +Ġth icken +ĠRe ality +id än +N a +Ġê²ĥ ìĿĢ +!! ) +Ġrout ines +Ġод ного +Ġex ting +Ġì¦ Ŀ +Ġsulf ur +Ġcar ve +Ġastero id +ĠWarri or +Ġphotograph ers +Ġpe ll +Ġcros sover +æĪij çŁ¥éģĵ +Ġhace mos +ĠNe j +Ġsett ling +Ġir m +ĠBook s +ient ôt +Ġesp acio +ĠSchol ars +Ġdo omed +ĠIR S +w ohl +Ġseg ue +ĠëĪĦ ê°Ģ +Ġpr atic +B T +ĠConsider ing +ĠBuff alo +Ġtrain ings +Ġge bru +ĠG leich +Ġpir ates +Ġen velop +Ġre open +im at +Ġte e +Ġsu ed +fe h +Ġ×Ķ× § +Ġdi ets +Ġjunt os +ast o +Ġmisunder stood +Ġru im +Ġclass ify +ĠпÑĢод Ñĥк +Ġin se +Ġillust rated +Ġcorros ion +Ġacc red +ĠAunt ie +ĠпÑĢив еÑĤ +ĠLI VE +Ġre k +Ġrece ipt +åĪ° åºķ +ĠBar bie +ĠSn ake +t urn +Je ff +ãģĬ ãģĬ +ķ Ħ +VO ICEOVER +co ll +Ġrun ners +ìł ľë +os os +mo on +Ġkey note +ĠInst it +S PEAK +Ġplug s +Ġcur v +ĠY uri +ĠTh eres +ĠP s +Ġμ ÏĢο +Ġconver ter +Ġref ine +Ġbad ass +Ġο ι +Ġreg en +az zi +ÙĬ Ùģ +Ġse ized +Ġiç er +ile e +Ġup stream +Ġbud s +Ġp im +Ġíķĺë £¨ +Ġall uded +Ġthem ed +Ġconsist ing +Ġb ons +un uz +ĠпÑĢов од +ĠLove ly +ॠĭ +Ġpar ach +ĠSta ats +éļ Ĭ +Ġselect ive +Ġf ase +ĠGeor get +Ġcoc aine +Ġreprodu ction +ĠL ara +ĠL D +Ġg h +J on +Ġl Ã¥ +Ġëij IJë +Ġtyp ed +ĠB ana +ë ĵľë +Ġsav ory +ĠZ omb +stand en +Ġpedest rian +Ġdifférent s +Ġìĭ ¸ +èī ¯ +Ġcompl ained +ç¦ ı +ĠÐļ ÑĤо +Ġ×ľ× ¤ +ali ÅĽmy +Ġmort ar +Ġverd ict +Ġsu ficiente +ĠMill ion +mitt el +in als +ĠاÙĦØ ® +аÑİ ÑģÑĮ +Ġmi ÄĻdzy +ĠO le +Ġin vert +czy Äĩ +озм ожно +star ter +Ġaud itor +ĠSc out +ch ien +ĠSver ige +uff led +Ġze hn +ĠA uckland +Ġarg ent +Ġ197 6 +ĠHo e +Ġboth ers +Ġsocial ist +Ġpl iers +Ġemer gen +ĠX P +еÑĢ ов +M ore +ĠLe vi +ĠAnd ers +ibil idad +ĠP arents +Ġindu ced +ìĸ´ì ¤ +Ġbal ances +ĠвÑĭ ÑĪ +Ġsubmar ine +St art +Ġdri es +Ġvol ver +Ġtick ing +c ott +Ġf aj +pr és +ĠS abb +Ġза Ñĩ +Ġпок Ñĥп +Ġbapt ized +ĠBrill iant +ĠÐij ог +Ġm ots +b its +Ġlatt ice +æĪij è·Łä½ł +Ġcor iander +Ġresid ency +yn c +Ġpier wszy +ĠKn ock +ĠZ ap +ĠÐķ в +ê² ¬ +å°ı å¿ĥ +Ġune ven +ĠJ as +od or +ç¿ Ĵ +7 4 +ĠS ite +Ġacontece u +ym pt +Ġtril ogy +Ġlan tern +ĠZ ucker +v ari +we lling +ĠPot ato +gom ery +Ġreact ed +ĠChr on +Ġj ede +be eld +Ġtw ent +Ġl act +æ¨ Ĥ +Ġré se +Ġrel ent +Ġfurn ace +Ġwid get +Ġearthqu akes +ĠAd just +il it +ĠØ£ ÙĪ +Ġhear ings +Ġdefend ant +irs iniz +Ġbas k +c ja +ľ ¨ +Ġrif les +Ġinst al +ĠFor give +p ical +ĠÐŀÑĩ енÑĮ +Ġpet ites +Ġh p +Ġren owned +ĠIn n +Ġ주 ìĦ¸ìļĶ +Ġemphas ized +éĹ® é¢ĺ +ĠìŀĪ ì£ł +Ġê²ĥ ìľ¼ë¡ľ +ãĤ Ĩ +Å ĵ +g ili +D ave +Ġexha usting +ÅĤ ug +Ġsch ema +μ ά +cy cl +Ġaut ant +Ġpar cel +Ġmater ia +ĠB erry +ĠÑģ ами +Ġextract ed +ĠSay ing +ism atic +Ġпоп ÑĢоб +Ġneur on +g raph +ľë ©´ +Ġencl osure +ĠJoh ann +Ġafter math +ÑĤ об +Ġu ży +Ġs amp +3 60 +ĠMe i +Ġt aco +Ġrecept ors +Ġpunch es +ĠHo je +ĠÙĩ ÙĨا +=" # +ĠAng ular +Ġmus ique +Ġro l +Ġà ± +ster reich +Ġcl am +ĠTre asury +chem ical +Ġap ar +Ġapp end +Ġforb id +ĠHamb urg +ак ов +Ġê¸ Ī +ild a +Ġprepar ations +Ġmog Äħ +Ġcam ino +E ric +ĠBl ind +èĪ ĩ +å¹´ çļĦ +ĠDis covery +ì¸ ł +çĪ ¶ +Ġinterpre ter +Ġb red +ĠPsal m +Ġdef ended +ìī ¬ +ĠEr fahr +ĠPe ach +Ġmo ons +ĠO st +Ġspé cial +Ġarri ver +ĠW is +u ci +Ġrobot ics +I VE +Ġsie ge +ar la +Ġsepar ates +ĠT C +íı ° +quis ite +Ġparenth eses +ик е +ç« Ļ +Ġtr ous +å» º +ĠÑģ илÑĮ +Ġbe ers +Ġпл аÑĤ +ãģĻãģĶ ãģĦ +Ġso la +Ġd ès +ming ham +ik te +Ġo ops +Ġtw itch +å° ĩ +Ï Ī +ĠShould n +uv re +Ġle er +cript ions +Ġeyes hadow +ĠGu o +ĠPow ell +Ġsup uesto +Ġan a +r als +ĠMont real +Ġsurf ing +ĠÐŁÐµÑĢ в +×ŀ ×ķ +Ġmillise conds +Ġsubur bs +Ġplanet a +ÑĥÑĪ ка +hr lich +ĠH Y +Ġس ÛĴ +ĠM M +ĠE ff +åı¯ æĦĽ +ĠH S +ans on +Ġì§ģ ìłij +Ġsu o +Ġdeploy ing +Ġk unt +ter ing +Ġere ct +ìŀ¥ ìĿ´ +ĠìĿĮ ìĭĿ +Ġspec imen +! ... +æĪij 說 +Ġlig ne +Ġk onst +ade qu +Ġìĥģ íĥľ +Ġaccess ed +ĠP ole +k ill +Ġë² Ħë +Ġauthentic ity +Ġapp elle +ull e +Ġrev ision +Ġgo ats +г ли +Ġp au +ĠR anger +ĠIm ag +aut hor +Ġe ve +ĠMess enger +Ġn ay +Ġwh oles +ät te +Ġon wards +ĠDep ois +Ġíijľ íĺĦ +ĠSAR S +Ġwszystk ich +Ġdest ru +umb ing +Ġcompat ibility +Ġmis information +od ore +ĠF avor +ek o +ı Į +w aukee +ĠTe aching +ĠK O +Ġbet ting +Ġquest s +Ġviv re +ĠмÑĥз Ñĭ +Ġs aga +Ġswe ll +Ġge he +æĢİ麼 樣 +ĠоÑĢг аниз +Ġg ide +ĠG ross +Ġdale j +Ġcl aws +á»Ļ c +Ġprejud ice +Ġins ign +i hood +Ġpl ed +Ġdó nde +ĠPolit ical +Ġprem ises +und ert +ع ت +on nen +Ġespa ço +Ġf é +ĠHarr ison +ĠC ensus +Ġcard io +Ġdi y +Ġmil ieu +Ġjourn ée +ĠRe lease +N IE +ĠM uk +id ée +á»į i +Ġiç inde +ŀ Ļ +Ġreson ate +Ġm oles +ĠF lying +ĠGl oria +ĠPast or +ĠAre na +好 ä¸į好 +N ON +ол ов +Ġall ÃŃ +om at +ìĸ´ë ıĦ +Ġcaracter ÃŃst +Ġdecl ining +Ñĸ Ñı +an co +ĠIn form +Ġbarg ain +Ġbus hes +ĠNat urally +Ġre chts +ĠT ensor +ĠPat ricia +Ġprincip io +ĠM umbai +Ġwom b +Ġnost ra +Ġdile mma +Ġirgendw ann +Ġ196 4 +Ġenerg ÃŃa +Ġна ÑĢ +Ġseg regation +ĠA thlet +Ġ» , +Ġy eni +ĠSe it +Ġven om +Ġdak ika +Ġëı Įë +ĠÃī l +Ġf us +ĠM og +¦½ ëĭĪëĭ¤ +Ġrem ar +ĠTed dy +Ġbreast s +ic ans +æĶ¶ çľĭ +k ap +Ġh Æ¡n +ĠJ P +ãĥ³ ãĤ¿ +Ġresur rect +ĠìĿ ¸ë +her ical +Ġfot ograf +ĠJos é +Ġlivel ihood +Ġbib li +ter i +Ġvor stellen +ĠA AA +Ġassess ing +Y A +Ġspl end +Ġexca v +Ġbapt ism +y ll +w ow +M ac +Ġpl astics +teok bokki +Ġintéress ant +Ġcommand ed +Ġfamous ly +ĠÐĺ ли +ĠMan uel +Ġsouth west +Ġde formation +ÃŃcul o +ĠнаÑħод иÑĤÑģÑı +ĠP atter +d egree +ĠczÄĻ sto +" - +Ġìħ ĭ +Ġman ger +ĠTrust ee +Ģë ¦¬ +Ġpunt os +iv able +Ġvol atile +ĠëĬ IJ +Ġinst ability +Ġc iel +ci Äħ +Ġpur ity +но ÑģÑĤ +S il +ed ar +åĻ ¨ +NOUN CER +Ġspe lled +G ER +Ġsanct uary +Ġacceler ating +Ġsc out +ĠпÑĢ ев +f ahren +ãģĵ ãģ¡ãĤī +ĠëĤĺìĺ ¨ +Ġpocz Äħt +ĠMe u +ka ar +³´ ê³ł +ak ra +D own +ĠÃĦ r +ĠEl ite +Ġall ons +Ġmay onnaise +ĠS ustain +prising ly +Ġsuper vis +Ġê·¸ëłĩ ì£ł +Ġunemploy ed +Ġfresh ly +Ġ×ŀ× ¢ +ĠD h +Ġtack ling +Ġo gr +Ġì´ Īë +ãĤĪ ãĤį +Ġlo ft +ar ah +ĠA irl +ĠD ir +ĠÐľ ожно +Ġbook ing +ĠC RA +Ġhtt ps +Ġcho ke +Ġg own +Ġno ite +Ġz ac +ist ol +Ġsec re +Ġresemb les +Ġcu ad +ìĤ¬ ê°Ģ +sh ow +Ġbl anc +Ġag u +ĠPr int +ast ed +ĠWe ather +i pl +Ġobsc ure +Ġcont e +ough s +) ; +ĠD ame +ä¸Ģ 缴 +Ġclar ification +Ġintim acy +Ġup hold +ĠMir ror +Ġw agon +x ide +Ġcl og +app er +ĠImmedi ately +ú de +Ġtouch down +Ġro oft +аÑĪ а +Ġç ıkt +Ġla isser +ĠUn real +ens itive +Ġ12 3 +Ġpl aster +Ġduck s +Ġet me +Ġb ishop +bre vi +Ġb ic +ä¸ĭ åİ» +Ġrun time +Ġamb itions +м аÑĤ +ĠWe in +ĠMar i +ĠíĬ ¸ë +Ġresol ver +Ġng Ãły +ĠR ise +ãĤĪãģĨ ãģ« +ĠCr us +Ġmerchand ise +Ġel i +Ġstate wide +Ġow l +éģ ł +æĶ ¹ +Ġtwist ing +Ġcontam inated +ĠCom merce +hy thm +Ġà Ī +Ġìĭ ¤ë +Ġmus ste +u ir +Ġsum s +ĠSome where +ãĥ İ +Ġk ami +Ġa ired +ĠAND REW +Ġê º +Ġv iendo +Ġantib ody +Ġabsol ument +Ġprotest ers +ĠQué bec +st adt +Sha un +Ġcham bers +ĠWe ar +ĠEffect s +Ġhaz ards +Ġne i +Ġcoraz ón +Ġá ¼ +ĠS G +Ķ © +ĠìĹŃ ìĭľ +Ġcom fy +ĠC ody +Ġpens ando +Ġg anska +ĠAc ross +öll ig +aby te +Ġwed ge +Ġkal ian +Ġsig ue +end es +ĠGro ÃŁ +Ġutil iser +Ġfl own +ани Ñİ +Ġle var +rest rial +Ġillust rations +Ġas lında +BLE EP +Ġдо ÑģÑĤ +Ġtur ret +Ġsuit case +ziÄĻ ki +Ġsket ches +Ġac red +ĠRe i +Ġt sun +ĠS ag +Ġthird s +ĠKIR BY +ra i +Ġhuman os +Ġrecomm ends +Ġextraordin arily +Ġcommence ment +K N +ope z +Ġ×ij× © +Ġlet hal +ĠEst amos +Ġinspect or +ĠSe ok +e un +Ġoff shore +Ġget tin +ye ars +ĠSil ence +ĠNat ur +up un +Ġtr zy +Ġno get +Ġhamb urger +ĠPra ise +é nd +Ġ197 1 +yl ie +k rit +ĠìĥĿê°ģ ìĿ´ +çļ ® +Ġmoment os +Ġest é +Ġdisse min +Ġgig s +Ġdes af +Ġav is +ĠZ oo +ĠìķĬ ìĿĢ +h äng +åı ¥ +h ake +ĠB ism +Ġre think +ĠMal colm +Ġident ifies +l ower +ix el +Ġtv Ã¥ +k ed +ier z +Ġö ffentlich +Ġproc laim +so on +l ol +Ġlo i +Ġb itten +ro llo +Ġser mon +Ġes qu +Ġjack ets +Ġgr áfic +Ġпок азÑĭв +Ġcabe za +ch odzi +Ġpel vis +Ġnost algia +Ġbre w +Ġshort cuts +ĠAd emás +Ġsuperfic ial +åħ© åĢĭ +Ġbo ca +ĠæĪij æĺ¯ +iment os +åĽł 为 +Ġspr outs +é£ Ľ +ĠJon as +ĠFloren ce +st atic +da ughter +* ) +ÅĤ by +f ashion +ĠG inger +Ġë§ ¤ë +Ġhust le +ut os +ĠÑĤ Ñıж +ĠL ös +ש ×Ļ×Ŀ +any ch +tu ber +Ġtid y +Ġfront al +Ġwhis key +Ġhum id +ĠÎ Ł +Ġr idge +Ġmar in +Ġb ientôt +ĠCarr ie +ch w +Ġtah un +ĠEr geb +F R +Ġìłķ ë¶Ģ +ĠSold ier +Ġenlight enment +Ġexam ining +ĠNot re +Ġer am +ĠSun ny +Ġlay ered +ĠD azu +r ades +好 åIJĥ +ĠнаÑĪ ей +Ġtim ber +Ġman ners +ĠBir mingham +Ġmini ature +omet ers +Ġfill er +ĠR ip +ĠK omb +own er +ì ¿ +id ian +Ġdem ás +ĠÙĪ ت +Ġpreca utions +Ġgovern o +z elf +ĠCom plete +å¸ ĥ +ĠPh antom +ãģ¾ ãģļ +Ġн ез +ĠкаÑĢ ÑĤ +ĠAnt wort +ĠPf izer +ĠFran co +Ġw ÅĤ +Ġfr ig +es per +Ġk ale +Ġfilm maker +Ġk urt +Ġinv alid +å± Ģ +are lla +Äĥ ng +ram ento +Ġnutr itional +Ġdict ators +Ġaf in +Ġf uzzy +ĠG ina +ó t +ĠExtrem adura +Ġdemonst rations +ĠMont gomery +íķ´ì Ħ¤ +ĠGand hi +ãĥ Ŀ +ç½ ® +Ġreun ion +Ġjaki ÅĽ +ĠZ ug +OU GH +l ifting +Ġ ಠ+á¹Ľ á¹£ +e b +ĠW OW +ĠSh iva +omet ry +Ġwild ly +Ġt ended +Ġmeg ap +ì² ĺ +Ġna use +Ġg erek +ãĥ ĭ +ĠMar cel +Ġn este +Ø® ر +Ġfe h +åĨ ħ +susp enseful +ĠWrest le +ĠPalestin ians +ĠG ORD +iy et +ĠÑĢ ади +Ġvers uchen +Ġtrans istor +ĠÐŁÑĢ оÑģÑĤо +Ġпон ÑĢав +Ġrhy me +ĠVerm ont +pl atz +è® ° +ĠÄ°ÅŁ te +ĠH ag +ĠÐĺ м +ĠÑĢаÑģÑģк аз +Ġmet ros +ĠInfin ity +w olf +ib al +ft ig +Ġ ÚĨ +Ġíĺ¹ ìĭľ +Ġo ggi +Ġdisp osit +ĠпÑĢ ил +ĠвÑĭ пол +Ġth ôi +ĠK ENN +Ġhand ing +act us +Ġtac os +Ġformer ly +ĠCorinth ians +ãģ« ãģ¯ +ÑĨÑĸ ÑĹ +Ġpad re +Ġcongreg ation +æ ij +fer t +Ġsub ir +ais er +qu a +ara oh +ĠCur ry +ĠìķĬ ëĬĶ +ел Ñİ +Ġf uss +Ġbo oty +Ġl ows +Ġh ommes +ĠM H +ĠDisney land +w ent +Ġresid ue +Ġbe eping +è¼ ķ +ät ta +Ġm ould +ĠPro jekt +st alk +Ġartif act +ĠAnt rag +ĠAM D +ĠCry pt +Ġë© Ķ +ĠFel ipe +ĠCO B +el u +Ġself ies +ĠS anti +ch utz +ĠУ кÑĢаÑĹ +ges amt +Ġflo ck +j az +pl ain +Ġwr inkles +Ġre ais +Ġpal jon +Ġempower ment +Ġattend ees +pp a +Ġn eden +он Ñĭ +Ġtime frame +ĠCher ry +Ġid ée +Ġg ag +Ġdon key +Ġô ng +ĠH are +éļ Ľ +ĠK ara +Ġacom pan +pl aces +im ientos +ĠH amm +б и +ub en +ili yor +Ġth irst +Ġk ry +ĠGeorget own +׳ ×Ķ +Ġor ch +Ġheart beat +Ġtransform ations +est ones +ĠK H +Ġcart oons +Ġan ci +Ġworth less +Ġtail ored +p u +Americ ans +Ġp iles +ĠMon key +Ġbas in +ĠTem per +ĠP aint +Ġpunch ing +Ġba ik +ĠOak land +v re +ÅŁ allah +yd d +Ġcas ually +od u +Ġc oded +ĠNorweg ian +ĠV ince +Ġprem ature +ĠProm ise +ек ÑģÑĤ +Ġdevast ated +ĠPrem ium +ĠPar am +ĠÃĸ yle +um uz +P O +r ators +Ġlamp s +Ġterritor ial +Ġback bone +list ed +D Y +ĠاÙĦ ر +Ġpurs ued +ĠComm ons +Ġê³ ¡ +lo cks +ed or +Ġconce ived +g ere +Ġdisappe aring +ĠS ull +ĠìĹ °ë +Ġho ffe +Ġdet ox +íĶ Į +Ġret ir +ĠëģĿ ëĤ +Ġper gunta +ĠB OY +ç² ¾ +Ġp enn +æĿ¥ äºĨ +h és +h on +Ġcatastroph ic +Ġa ust +Ġtor so +Ġìĸ´ ëĬIJ +ĠìĤ¬ëŀĮë ĵ¤ìĿ´ +Ġmarvel ous +ĠHar ley +ach ine +Ġti ế +itt o +ĠI ÃŃm +yl on +Ġshut down +.' ' +Ġap ologies +ĠCommun ication +ĠговоÑĢ Ñİ +ãģĤ ãĥ¼ +âĦ ¢ +ÃŃ veis +ac un +Ġret aining +Ġcontrad iction +ĠAD AM +C OM +Bry an +ĠM onsieur +Ġadap ting +Ш ÐIJ +ĠSc r +änd ert +Ġpl aus +ä»Ĭ天 çļĦ +Ġon set +Ġassist ants +Ġval ves +Ġsc atter +ĠR ust +aw ia +Ġread iness +Ġp ais +Ġb ible +Ġamb iente +Ġа меÑĢик +Ġunc ond +Ġk alk +åĬ ¨ +Ġmo c +un n +Ġact u +Ġhum ming +iss imo +ĠPat rol +g ow +ãĥ ¤ +ĠTHE Y +ĠBod en +ĠB ie +Ġre el +ĠÑĥÑģл ов +Ġende avor +ĠPer iod +ustom ed +m als +al on +B ox +ĠÏĥ αÏĤ +Ġom dat +Ġal tre +ĠHe h +k ad +Ġprotect or +Ġdomin ance +odynam ic +Ġcommunic ated +k ö +Ġprede cessor +ĠL uk +ĠFl ower +Ġãģ © +po que +ÑĤи ÑĢов +Ġret rospect +Ġdecis ive +Ġexem pel +{ \ +ĠR ück +r ite +ĠZe us +Ġcal orie +Ġattract ions +ĠH inter +Ġuh m +ĠíĮ IJ +Ġrul ers +Ġdiscour aged +Ġaconte cer +Ġacc ents +ĠOpt im +ĠAl g +k ids +20 21 +ĠLind say +Ġfilm makers +pr owad +Ġter ug +ëĭ ´ +ĠSom mer +20 18 +Ġborrow ing +ĠTrans fer +н оп +ari as +Ġhead phone +ì¼ ľ +Ġtransl ating +Ġauf ge +ப à®Ł +we is +av ant +pa id +b aby +Ġtough est +Ġrepe ats +ĠTer esa +L ord +Ġacab ar +ĠR ide +d ir +Ġl eng +Ġd wa +Ġhead aches +Ġn ữa +ĠнаÑģ ÑĤоÑıÑī +Ġbo ils +Ġlong ing +ri as +ó rio +ĠParad ise +ĠSeñ or +erd em +Ġrein st +Ġsal aries +Ġinsec urity +ÅĤo ÅĽci +ĠабÑģолÑİÑĤ но +ink en +ĠEd dy +ud os +Ġd ummy +Ðļ ак +s ix +Ġin box +Ạ© +Pe ople +á»ĵ ng +Ġorganiz ers +f ind +Ġü l +ĠCO M +ż a +we ile +Comment ary +íĬ¸ë ¥¼ +ĠMitt el +k us +èĽ ĭ +ठ¨ +ir al +Ġgar ment +ικ ά +Ġst ool +pay ers +Ġsh immer +ĠO llie +ĠJe żeli +è¿ĺ æľī +Ġ197 7 +Ġje ux +Ġext inct +ĠTransport ation +ĠM aker +Ġj ohn +Ġrich est +Ġtraum at +Ġli egen +´ë ¥¼ +è¿Ļ éĩĮ +Ġun rest +ĠSt raw +æĭľ æĭľ +Ġcom a +ĠKr isten +ĠÐļон еÑĩно +ĠBry ce +ĠÑıк Ñĸ +Ġpearl s +Ġпоним аÑİ +Ġadd itions +Ġas ympt +ĠменÑĮ ÑĪе +Ġsc ans +Ch ild +ĠH ide +к ÑĥÑİ +et as +Ġd ank +Ġple as +Ġess ays +Ġj ets +åħ Ĵ +Ġв ед +Ġposit ives +ho f +- ) +zz o +Ġstar ters +Ġsm iled +Ġ194 4 +qu iera +Ġro k +Ġpu esto +N ico +Ġsim ulations +Ġ ච+Ġintrig ued +ĠOver watch +åĸ Ĥ +s igh +b ai +Ġë§IJ ê³ł +id é +Ġcra bs +áºŃ p +ĠIraq i +ìĿ´ë ¥¼ +ÑĤ Ñı +ĠSoph ia +ĠDN S +Ġönem li +ĠLu o +Ŀ ¤ +ĠCoun sel +l igen +анÑĮ ÑĪе +Ġtrump et +Ġd apat +ĠJ M +ĠEVER Y +Ġå°į ä¸įå°į +å¤ ¢ +ĠL ayer +Ġc ô +н ал +ĠJ oo +ĠH ack +Ġs unt +ĠLeon ard +ĠFire base +äng er +Ġexpl oding +v oy +Ġì¦ IJ +ĠÑģ еÑĢÑĮ +Ġsever ity +Ġbest imm +çµIJ æŀľ +Ġt iring +Ġprocure ment +Ġdiplom acy +Ġdecor ative +ĠÙĬ ا +Ġpenet ration +Õ « +Ġout right +EN E +ĠUn i +od les +Ġz eros +Ġdelight ful +j m +Ġdo po +没 äºĭ +Ġposit ivity +ĠVIS TA +ĠRes ource +íĥ Ģë +ÑĪ ие +C arl +Ġpip ing +Ġchop ping +ĠGan ze +ü ss +ĠA o +Ġsh attered +ĠDet ective +Ġund oubtedly +Ġhall uc +Ġen ch +Ñĭ Ñĩно +ÑĥлÑı ÑĢ +is esti +Ġped als +Ġdur um +¤í Ķ +la imer +Ġprop re +C u +Ġtransl ator +Ġca ÅĤ +Ġê·¸ 걸 +Ġca ÅĤy +U A +Ġrev ised +Ġпод об +ĠArt icle +ĠHait i +Ġà ĵ +ĠC trl +Ġroz m +la it +Ġletz te +is pering +dis play +Ġalumin ium +Ġpalab ras +Ġconoc er +Ġz itten +Ġdir ig +åıª æľī +Ġbrain storm +Ġw ifi +ĠPart icip +Ġview point +ĠQu an +Ġhier arch +W elcome +å¯ ¾ +Ġoff en +ĠRe covery +gan o +W ould +Ġrep ro +Ġper ceptions +Ġdem asi +ĠBangl adesh +ĠIncred ible +Ġlet zt +Ġbehav ing +Ġaston ishing +Ġâ Ĩ +ĠëĤ¨ ìŀIJ +èµ° äºĨ +ãĥ Ķ +ĠGORD ON +C AR +? !" +ĠP rest +Ġë§ŀ ìķĦìļĶ +Ġt and +Ġl ash +ç Ĭ +ific ant +Ġint oler +Ġг еÑĢо +Ġte u +as o +ĠÑģов еÑĤ +Ġtravel ers +ĠSy nd +ĠвеÑĢ Ñģ +F onda +ad ı +Ġtrans cription +Ġtit anium +Ġtw ists +Ġgear box +ens ation +f at +C oll +ĠCommon wealth +z on +ĠPolize i +ĠAPP LAUSE +f ry +ĠJud a +este em +Ġso ck +ĠJug end +Ġк ÑģÑĤаÑĤи +ĠD ro +Ġproch aine +ãĥ¼ ãĥ« +Ġli ksom +ĠEner gie +ĠMar ina +Ġ2 30 +Ġê°Ģ ìĦľ +ump ing +Ġl one +ç´ ļ +Ġfont s +Ġbusiness man +Ġp ly +Ġdo e +gr id +ĠMil waukee +ĠE den +! ". +ĠÛĮ Ûģ +og ens +Ġteas er +Ġqui én +Ġincent iv +go vern +Ġchild care +Ġsneak ers +Ġimprison ed + ® +иÑĤ еÑģÑĮ +an bul +Ġreg ain +Ġtranqu il +Red ner +éĽ ¨ +IF A +Ġide ological +Ġmayor ÃŃa +Ġb ureau +et erm +ĠD ID +ìĬ · +Ġw aving +Ġbe b +Ġá r +Ġк в +Ġenv oy +an ut +ик Ñĥ +ĠEnviron ment +ĠAss ass +ãĤĵ ãģ§ +ĠB read +ĠТ ÑĥÑĤ +Ġstair case +ĠDise ase +Ġauc un +Ġëĭ Ī +Ġconfront ation +Ġ194 1 +Ġiron y +Ġwor sh +ãĤĮ ãĤĭ +Ġf ick +ĠNa omi +Ġback side +ie ux +K ap +Ġved ere +Ġlength y +Ġbreak er +ĠRoll e +Ġpred ator +Ġnoss os +Ġadvert ise +è³ ĩ +ÑĢод е +Redner wechsel +re ten +Ġcollect ors +ıģ ımız +Ġtr ig +Ġax es +in ters +Ġpen alties +ĠOs man +ĠJen na +Ġfl akes +Ġtrain ers +Ġstun ned +ĠSc roll +ĠP ip +Ġна ÑģÑĤ +Ġnh Ãł +ĠSm ack +ẫ n +rat os +ĠÑĢабоÑĤ Ñĭ +Ġu cz +ĠLem on +ĠS ind +Ġpsych ic +ĠAb g +Ġmamm als +Ġimmers ive +Ġb ots +Ġverschied ene +Ġg eral +Ġfoll ower +Ġ ä»ĸ +Ġsegur idad +Ġimmers ed +fe ito +c ross +Ġö ld +íĥ Ħ +Ġãģĵ ãģ® +Ġ×Ķ ×Ļ×IJ +ĠJ ian +Ġbili yor +are a +Ġk af +Ġgod t +缸 ä¿¡ +Ġë°© ìĨ¡ +Ġdet riment +æ¥ ļ +Ñĸ л +ĠÄij âu +Ġchlor ide +ø re +le i +Ġmont e +Ġdifférent es +à¯ģ . +Ġcareg ivers +Ġin adequ +Ġfare well +ĠÑĤип а +ont ec +ĠE ph +HH H +ĠTod os +ĠС ШÐIJ +Ġtro v +Ġl ige +Ġc ông +ĠC iv +Ġcap az +ĠV allahi +Ġquest e +Ġrepl ica +س ب +z na +ĠÑģл Ñĥж +ĠP T +w ave +ien i +Ġrel ied +de velop +Ġdem e +ĠA man +Ġ[ ...] +Ġcompl iments +u ais +ĠíĮ ¨ +Ġsmell ing +Ġdad urch +ÙĪ ت +Ġor anges +Ġл ай +Ġstabil ization +åĢ į +ãĤĮ ãģŁ +æ¥ ½ +Ġappl iances +Ġh m +ĥ IJë©´ +odynam ics +Ġc iÄĻ +ĠC ott +M ON +ĠM ang +æĶ¯ æĮģ +Ġall erdings +ικ ή +sh ots +Ġt s +ĠG ör +ĠCH AR +Ġ: ( +Ġwr ath +Ġf ique +Ġfüh ren +Ġtest ament +Ġ^ ^ +á¹Ľá¹£ á¹ĩa +AL D +Ġtext o +ĠDog s +Ġs ib +Ġpath etic +ock s +Ġrad ically +ĠM ORE +ĠJAM ES +Ġing l +ĠTechn ical +Ġpor ch +ĠU T +ĠобÑıз аÑĤелÑĮно +Ġrenew al +Ġaesthet ics +ik um +Ġbe verage +der n +Ġpredict ive +Ġch uy +ĠRegard ing +ĠFor ward +ĠÙĪ ÙĦ +Ġcontext ual +Ġdwar f +Ġpre he +Ġgovern ed +ħ Ħ +Ġtrabal har +Ġnegó cio +ĠболÑĮÑĪ ой +еÑĩ аÑĤ +Ġд ÑĥÑħ +Ġflood s +Ġbow ling +ĠO B +ĠH är +Ġgrad ing +주 ëĬĶ +Ġg ars +d ling +Ġr ak +ë Ī +c reat +ĠÑī е +Ġneighb ours +f ood +Qu ery +Ġhero in +ice ps +ĠK inda +N ET +Ġmar i +Ġim itate +Ġach ter +Ġsettle ments +ra re +cc iones +Ġë ĵľ +Ġf ik +it ung +Ġм акÑģим +Ġel f +Ġd alla +ĠPol sce +ĠP ul +Ч ÑĤо +ĠMor gen +ØŃ Ùħ +Ġsuprem acy +Ġk ys +ĠHur ricane +ĠG TA +ĠFe h +Ġfinal mente +m und +ĠK rie +é poque +ĠT ucker +IT T +Ġl ur +Ġdi pping +ä v +Ġeer ste +ĠFl int +bild ung +ู à¹ī +Ġto im +Ġpr acy +Ġtransform s +Ġspeed ing +Ġpresent er +Ġfellow s +f illed +ie za +Ġadv ising +ĠInter view +и гÑĢ +we hr +ĠD ante +pt ure +Īë¬ ¸ +¯ ¸ë +IJ IJ +ĠCoun ter +Ġcr ist +Ġì§ ľ +Ġje une +ĠÑģÑĤ ÑĢаÑĪ +Ġmie Äĩ +Ġtut or +Ġmas ala +Ġpowder ed +Ġn au +ĠFreder ick +Ġbill ing +ĠE isen +Ġд обÑĢ +Ġm est +æ ½ +Ġsn ipp +Ġmon o +ĠA lo +ĠMer cy +éri ence +Ġcasual ties +ĠAN NOUNCER +ä» İ +Ġto car +Ġbacter ial +H o +Ġstre ak +ĠJ ENN +Ġpl ast +Ñģ лед +Ġre app +Ġpay check +Ġmin ers +hab t +ĠJ ap +н ÑĥÑĤ +Ġred emption +Ġqu ir +hn lich +Ġaccum ulation +Ġsh ove +Ġadrenal ine +M ake +ĠH ern +oss ing +ĠV il +ub by +her tz +bre aks +Ġsp ur +ĠD aha +US TIN +Ġcontinu er +ĠSa ul +ãģ® ãģ¯ +Ġíı Ń +ĠëIJĺë ©´ +Ġë§IJìĶ Ģ +Ġо ж +Ġsuspect s +Ġla quelle +ĠMuch as +Ġv öllig +ul en +Ġimp res +Ġlo bb +ene e +Ġн аж +T a +Ġréal ité +ĠRe x +Ġharvest ing +Ġest r +æ ¶ +osp ace +OS S +Ġdisturb ance +ass ic +ĠIs ab +Ġdéc ouv +ĠHamp shire +Ġor nament +Ġlu ôn +ĠU W +Ġj Äħ +éĤ£ ä¹Ī +Ġrespect o +Ġcomun idad +Ġcom igo +ag na +Ġintrins ic +ĠAlum ni +Ġses leri +Ġestim ation +âĢĶ âĢĶ +Ġprodu it +ãĢĤ ãĢį +Ġв ÑĢ +Ġwh irl +Ġac ces +ç u +Ġvari ability +Ġv odka +its u +Ġinternship s +Ġalloc ate +R R +íĽ Ī +Ġinstruction al +t ant +Ġà®ħ த +Ġinv ites +Ġha k +Ġsca res +Ġe clipse +п ов +к олÑĮ +ativ as +Ġstab bed +ĠD OM +ä¸į åĪ° +ro ots +ĠPict ure +íĺ ¼ +ĠC HA +ie c +ı ı +han ol +Ġmisunder stand +R ay +Ġroad map +ocument ed +iz ione +ĠOl ive +r ift +Ġ×Ķ× ł +æ¯ į +l est +; ; +ĠE A +éľĢ è¦ģ +од Ñĥ +Ġhob bies +Ġbur ial +ãģ« ãģ¡ãģ¯ +Ð ¤ +le ge +ĠH J +Ġobject ion +Ġãģ Ń +ct ory +Ġincre mental +Ġgym n +Ġepid emi +Ñģ Ñĭл +à ij +Ġadvance ment +Ġpar ch +New s +Ġa yr +л ам +Ġ×ľ× © +Ġdipl oma +ãģ¡ãĤĥ ãĤĵ +Ġrob bed +On ly +Ġinc ur +Ġch anting +Ġíķ´ë ıĦ +Ġrich es +ĠCar men +Ġnost ro +λ ÎŃ +ĠPow der +à¹Ģภ« +ĠìŀĪ ìľ¼ë©´ +Ġgerçek ten +ĠPik achu +ем он +OL L +Ġplanet ary +Ġsl ows +Ġclock wise +al ion +Ġì Į +Ġver n +Ġh omme +Ġend point +Ġinnoc ence +Ġelement os +Ġsophom ore +Ġnot ions +ĠCould n +p ur +Ġz at +Ġobs ess +Ġmotiv o +ĠK ub +ĠDr ug +A nt +ĠPlay ers +ĠHum ans +Ġme lee +ĠWild life +ĠV P +Ġvolcan ic +Ġcom in +ĠGu ang +ĠÏĦι ÏĤ +ĠоÑģоб енно +ĠS ize +L isten +ĠA aa +app ro +Ġbar bar +ĠPark inson +нÑı ÑĤÑĮ +å į° +Ġunderest imate +Ġsubst itution +Ġcosm etic +ä¸ĭ 次 +Ġwill en +Ġbe ide +ann i +Ġcondition ed +ĠDe bbie +Ġis to +ĠEd wards +ìĽĮ ìļĶ +ĠÑĤ ов +Ġab brevi +ĠM ün +ĠPr inc +ĠLi ang +Ġst ink +Ġradio active +ãģĨ ãĤı +Ġac ontec +Ġun con +ĠTur bo +ãģ IJ +Ġkiss es +æĺ¯ ä»Ģ麼 +еÑĤ ÑĢов +Ġfront ier +ĠSp y +ĠBel arus +ĠC BS +á» Ĺ +am oto +íķľë į° +ĠÑģÑĤ ÑĢо +ĠEn fin +Ġbread th +éĺ ² +ĠCa fe +ĠDaf ür +ĠB our +ar as +Ġbl ueprint +an ı +Ġconst ants +Ġattack er +ĠForm ula +za Äĩ +Ġs owie +Ġeyebr ow +ob ook +Ġset zen +第 ä¸ī +ons ider +aw ning +Ġsöyle ye +Ġinv aded +Ġpronoun s +Ġdob ry +S i +ĠÐ¥ оÑĤ +Ġvolley ball +Ġl ament +is ches +ar me +ap i +ĠW iki +ли ÑĪ +Ġkas ih +Ġp ess +ĠÑĦ оÑĤ +ĠS ul +å¾ · +Ġpse udo +Ġmem o +ĠìĹ° ìĬµ +ĠдоллаÑĢ ов +ĠпеÑĢ ем +ĠRe ach +mir al +alt ed +Ġstat ut +read ing +Ġsöy led +ĠLind sey +ĠAh mad +ë ¶Ģë +ĠС егоднÑı +Ġprzy got +Ġhy ster +U RE +ĠNe igh +Rep orter +ĠB unu +ĠTreat y +ĠR ank +ĠF ame +in ished +Ġge ared +Ġcomp ose +od ia +ĠL on +Ġjeste ÅĽmy +ĠDIRE CTOR +Ġel kaar +ĠV iel +×IJ× © +ynth ia +ä¸ ¦ +Ġm ère +ĠTom ato +Ġex atamente +ni ÄĻ +ĠFre i +ĠD if +Ġopen ings +Ġgraph ical +ĠÑĥд об +ĠвÑģ п +ĠWeek ly +ев а +Ġhang s +Ġuns afe +Ġem blem +ĠKolleg innen +al ay +Ġk si +Ġh ides +Ġol may +Ġent ste +Ġarth ritis +ÃŁ erdem +Ġbin nen +Ġlist ens +ĠH ess +åĨį ä¾Ĩ +ĠLou ise +ld en +ен Ñģ +ĠVers ion +ĠAgric ulture +ìĬ¤ë ¥¼ +м ан +ë Ħ¤ìļĶ +Ġw ines +ĠIN F +r ul +ĠJ K +ıyor lar +sh ield +reat h +Ġter us +ĠL um +Ġanticip ation +Ġacc ustomed +ĠM ina +Ġw ield +io è +mer a +Ġcount down +Ġcl ing +Ġcomm end +Ġfakt iskt +Ġdef enses +Ġcock pit +Ġком анд +Ġdish was +ĠThan os +Ġkid neys +Ġse he +Ġmicro bes +Ġc uff +ĠвÑĭÑģ ок +ĠSp icy +çŃī çŃī +வ à®° +cul us +or c +ç¾ ħ +ix es +ĠC redit +Ġr aj +Ġbring t +ĠN iss +Ġgr im +ĠS OL +Ġten im +ĠSud an +ĠSp art +Ġpromot es +ĠN ossa +ĠÑģоÑģÑĤо Ñıни +Ġì° © +Ġunc ont +ĠLiber al +ĠТ олÑĮко +ĠV iele +Ġktóre j +Ġ* *** +M ax +ĠЧ ÑĤобÑĭ +3 50 +Ġíĺ¼ ìŀIJ +Ġë¶Ħë ĵ¤ìĿ´ +Ġwar p +Ġteng a +Ġsympath etic +Ġbiz i +ĠZ ack +ied o +Ġëī ´ì +p iel +ĠÑĤ ол +Ġsc aled +ĠPET ER +ĠCO MM +ĠC ame +Ġcatast rophe +Ġsweat y +ig ration +Ġstuff ing +ĠÏĢολ Ïį +ĠDri ver +zy st +T ech +Ġassess ed +ĠSur face +ır ım +s ur +ler weile +Ġд ог +Ġshut ting +Ġfr actions +ĠÑģ ол +every one +Ġer n +ĠÐĿ ов +Ġdefend ers +Ġvers ucht +ãĥ³ãĥ Ģ +Ġpol ity +ĠÐŁ он +ver ständ +Ġbrows ers +Ġtransform ative +Ġdict ate +ĠLE GO +Ġning una +ê´ ij +Ġp izz +ĠHar old +ĠL opez +Ú¾ ÛĮ +an ız +atch et +ÙĬ ت +Ġl ernen +Ġê·Ģ ìŬ +Ġhous ed +Ġclean se +ĠW AT +lar ation +Ġby tes +Ġtuck ed +Ġfault s +д о +F X +Ġìĸ¼ë§ ĪëĤĺ +Ġde form +Ġcontract ing +ĠTIM E +ir se +Ġne ben +Ġc erc +ĠArm strong +Ġtest er +Ġparf ait +Ġjealous y +Ġtox ins +Ġdis bel +ÑĥÑĢ Ñĭ +imp ression +Ġprost ate +Ġfire wall +Ġclass ics +еÑĩ ÑĮ +Ġsocial ism +Ġgrac ious +ĠÑģ нова +Ġд нÑı +Ġburn er +ĠMin or +Ġìļ°ë ¦¬ë +Ġjed es +Ġcontinu um +Ġh ots +Ġoccur rence +Ġadminister ed +Ġзам еÑĤ +Ġhes itation +Ġdr ills +er ca +ĠвÑĤоÑĢ ой +Ġstead ily +Ġinsan lar +Ġi han +í ij +Ġhel per +ĠSen in +åģ ľ +ов ание +ĠER IC +b la +ĠAcad emic +Ġhuman ities +bl ack +ump y +ort ex +Ġìł Īë +ĠØ¥ ÙĨ +Ġdiscl ose +ĠEl ijah +Ġλ ÎŃ +ĠQu er +ب ÙĦ +ãĤ ¡ +T ell +ar le +Ñĸ ÑĢ +Ġaug mented +Ġë¹Ħ ìĬ· +Ġand roid +ठ¤ +ar ma +Ġs zer +ge ord +Ġge ek +Ġye ux +Ġp ong +ĠãģĿ ãģĨ +Ġtort ured +ĠB ath +z ig +ason able +Ġn ets +Ġbar u +ĠFl at +ĠV ater +ĠTer ror +ĠA vo +Ġceremon ies +ro e +Ùģ س +O ps +Ġhy vin +Ġap resent +ol or +ĠигÑĢ Ñĭ +ort on +Ġê·¸ëŀ ¬ +Ġlook in +ĠT Y +ĠM int +Ad d +Ġm ite +ĠSm oke +Ġnot a +Ġm oss +ĠAb end +Ġì» ¨ +Ġexagger ated +f ires +Ġred ist +ff iti +Ġopen ness +ê°IJ ìĿ´ +ende u +ен ной +W atch +Ġav atar +ĠP ey +ur un +Ġsen za +Ġì§Ģ ìĹŃ +ĠNat omiast +Ġemer gence +ray s +Ġcraft ed +g ary +ãģł ãģij +ü ng +- " +Ġhack ed +Ġstr ay +en cie +em o +Ġcom en +ĠK ız +ĠJ asmine +ĠH indi +man as +Ġinfin itely +em on +ìĿ¸ëį° ìļĶ +j ak +Ġro aring +éri que +s weise +ĠRo lex +åł± å°İ +ĠStu art +bn b +Ġdiagn ose +Ġcoher ent +ĠM J +æºĸ åĤĻ +Ġp ike +l av +Ġorchest ral +а ÑģÑĤи +Ġterm inar +Ġgather ings +Ġcompl iant +Ġupgrad ing +Ġregul ator +Ġlan ç +éĢ £ +Ġmerch ants +ta wa +Ġmonit ored +Ġrend re +ä¸ ¤ +Ġunter wegs +ang uard +g ard +ĠBel ow +du ino +ĠЦ е +Ġimped ance +ìľ ¡ +ä» ½ +Ġakt uell +ĠV atic +åŃ © +Ġste wards +Ġbright est +Ġk enn +Ġk au +ĠMat rix +ĠB ark +ĠðŁ ij +Ġt aper +Ġcas ino +ר ×Ķ +ys ical +Ġbuild ers +ĠczÅĤ owie +ĠNep al +Ġ! " +Ġterm e +Ġin nych +Ġmath s +Ġdraft ed +ĠB alk +Ġhesit ant +Ġvolt ar +Ġrev ive +ĠÑĦилÑĮ ма +Ġassass in +ĠS olutions +Ġdu el +Ġbear ings +à¸Ħ ะ +Ġrook ie +ik at +Ġbisc uits +Ġc ords +Ñĥв аÑĤи +AR IN +Ġprogress ing +ĠG ir +Ġpenet rate +ĠSt orage +e ight +ĠÑĤ ÑĢÑĥ +Ġdon ÃŃt +Ġsiz in +Ġout dated +ĠнаÑĪ и +Ġaff ir +Ġspo ons +Ġon i +Ġfl ank +ĠG ol +h ã +Ġp éri +Ġhonor able +ĠBreat he +sc enes +Ġob viamente +ик Ñģ +Ġש ×ŀ× +Ġsmooth ie +ŀ Īë +Ġd ime +ĠíĸĪ ìĸ´ìļĶ +Ġapp el +ĠCath olics +Ġsing les +Ġlat en +Ġç ünkü +ĠV ader +æı Ľ +Ġvard ı +ĠIst anbul +gr é +ĠEl sa +ë l +Ġinve ce +Ġcr ane +Ġo be +ĠSh ark +Ġsm ack +Ġrest oring +. \ +Ġë¹ łë +Ġf aded +um bers +S inging +Ġdep ressing +th est +ĠW ahr +Ġmult itude +ÑĢавÑģÑĤв ÑĥйÑĤе +rij k +ek a +Ġcomplet es +ĠWell s +Ġro y +ĠPr ay +ĠKal au +iz in +iaÅĤ em +Ġlo com +ĠNash ville +ĠPent agon +ë ¯¸ +ĠNE W +Äħ Äĩ +ÃŃ ss +Ġmarry ing +Ġfe ud +íĻ ķ +æĢ ¥ +) ! +ĠOper ations +Ñĥ ÑĶ +Ġmo je +Ġinstruct ed +ĠëĪĦ 구 +Ġ×Ķ× Ĵ +ĠпомоÑī ÑĮÑİ +Ġsab ia +ìķĺ ìĸ´ìļĶ +pl ane +p ri +Ġпол ноÑģÑĤÑĮÑİ +ĠK itty +Ġpróp rio +ed ere +Ġinteres ante +Ġд е +Ġcond ensed +Ġav ent +T OR +Ġgre asy +AR K +ort a +A J +Ġdis reg +Ġcorrect ions +Ġst ero +Ġinfluen za +Ġdess es +Ġball ots +Ġme get +Ġma fia +Ġb öl +n ost +ĠÑģÑĤ аÑĤÑĮ +Ġrespond er +Ġhint en +g rav +à¸Ń ะ +yn chron +Ġvi ens +Ġsam o +Ġd t +pan nt +ĠÅĽwi at +Ġзап иÑģ +Ġmer ged +Ġke p +Ġmis leading +Ġdig amos +Ġam mon +è¾ Ľ +ch et +Ġê°Ģ ìł¸ +Ġun i +ĠëIJĺ ëĬĶëį° +Ġнап ÑĢав +ĠкоÑĤоÑĢ ого +Ġanim ate +×ķ× IJ× +еÑĢ в +Ġmin ced +Ġka um +ãģĤ ãģģ +ÏĢ ε +л ег +exist ing +Ġplata form +ĠK RIS +ìĽ ł +ĠFamil ien +ĠLib ya +Ġbiod iversity +Ġidi ots +ird i +Ġszy b +ĠRoll ing +ü cht +ĠÑĥд ив +Ñģ Ñĥд +Ġreal izar +Ġcan ned +ĠÑĢ ан +Ġmet abolic +ĠBe ef +Ġkil ka +лÑİ Ñģ +Ġreg istry +моÑĤÑĢ иÑĤе +Ġviel ä +Ġod c +Ġcondem ned +æ© ĭ +f al +ĠD il +wo ÅĽci +A w +Ġstatist ically +Ġso gen +ĠB ETH +Ġsh aving +å¹ ¸ +oc al +ĠFun ny +Ġpeace fully +Ġaddict ive +ĠIns ert +la uf +Ġexperien cia +é¦ĸ åħĪ +иÑĤ елÑı +ÃŃ gen +ág ina +Ġabdom en +íķľ ëĭ¤ +ic us +im ana +ì į¨ +arch ing +Ġkonk ret +ìķ ĺë +ек а +ou fl +ive l +Ġn ude +èt res +Ġm onsieur +Ġcl ash +Ġtherap ists +Ġcub ed +Ġretrou ver +Ġwave form +Ġpot em +ĠForm er +is ión +åº ľ +Ġ×IJ× Ŀ +und os +ĠMein ung +ص ÙĦ +ĠJ ude +Ġn Ã¥r +ĠLeon ardo +ĠCr isto +ĠG OT +ÑģÑĤÑĢÑĥ к +L AN +Ġg Ã¥ng +Ġdé b +ĠFrankf urt +Ġcra ppy +Ġli l +ann ée +ĠмеÑģÑĤ е +RE T +ĠN er +ĠCO STA +Ġjed em +Ġcurt ains +Ġiter ations +Ġun av +Ġpla que +or um +ĠÎ ¶ +Ġnúmer os +Ġdes ap +² ½ +Ġcomp iled +Ġref le +Ġrank ings +Ġrep aired +ĠÐĿап ÑĢ +Ġdownload s +Ġarm our +Ġ×Ļ ×ķתר +Ġlonge vity +ĠTON ER +ĠкомменÑĤ аÑĢ +Ġcz ego +Ġnot ify +Ġairport s +Ġend uring +let te +Ġapp arat +Ġhab il +á»ĩ c +n ad +IC O +ĠBra h +Ġseg ún +Ġgovern ors +k aha +ĠSchl uss +Ġodpow ied +ir ting +Ġrem pl +ĠAb original +ident ally +Ġenhan cing +lic ting +ĠHawai ian +Ġstri ving +ĠN iet +Ġzn aczy +Ġobed ience +ĠnÃ¥ got +Ġexp ired +Ġ19 18 +pres ented +Ġpr owad +ĠTer r +ĠPrinc eton +Ġmor gen +Ġattract ing +ĠS igma +ign er +ĠRe chts +ĠP eki +Ġmet hy +Ġha mm +Ġdire ito +Ġdeleg ation +ив аÑİÑĤ +Ġg in +You ng +Ġdepend encies +ĠBrad ley +bud s +Ġf is +Ġpyt anie +Ġinterconnect ed +Ġemba ixo +ĠS as +Ġr uh +ĠS icht +S ur +Ġsuper b +ĠSabb ath +ĠD anger +k ol +Ġh ou +s upp +ĠN acional +Ġsuccess ion +Ġv á +ĠMaÃŁ nahmen +ĠJess ie +ĠId aho +fore st +ħ ĺ +Ġ×ŀ× ĵ +ĠØ£ ÙĬ +Ġsweet heart +Ġneat ly +ĠEv angel +ê³ ¡ +ĠSu ite +úblic a +ĠÑĥ ли +ĠAnn ouncer +l igh +Ġsens ations +Ġshel ters +Ġh art +Ġsqueez ing +ĠR ivers +ĠCook ing +ì± ħ +person al +Ġman os +ÑijÑĤ ÑģÑı +w ij +Ġgo gg +ĠMill i +ĠF P +ün st +ĠL S +Ġspray ing +Ġf aux +Ġaut ograph +olog ic +Ġtor ment +Ġencry pted +á» ħ +Ġest re +ç¹ ¼ +à ± +Ġst umbled +Ġa ider +Ġsab en +x ter +ĠC ities +ĠTür k +ëĭ ¥ +ch ine +Ġto pping +Ġpoison ed +ĠRoman ia +×ĵ ×Ļ +Ģë ¡ľ +ĠпоÑĢ Ñıд +Ġchir ping +ĠìĻ Ħë +×ij× ¢ +Ġcu anto +Ġdon ating +ĠReg ent +ĠBer uf +Ġdistract ing +Ġstam ina +ĠDar ren +Ġì¶ ķ +l ists +d al +ch uss +Ġeconom ist +ãģĪ ãĥ¼ +org t +Ġist iyorum +è¿ Ľ +ĠSur prise +ĠHa o +Ġìµľ ê³ł +ĠG W +ĠIn ner +Ġqu ieren +Ġmind ed +Ġsupercom puter +Ġdiagram s +íĬ ľë +ê²ł ìĸ´ +ĠобÑĬ ÑıÑģ +Ġestab an +Ġdestro ys +ĠBre aking +Ġkar Ä±ÅŁ +Ġrebuild ing +ľë ĮĢ +ли во +ĠSau ce +ĠF usion +×ķ× ŀ× +ĠQu inn +Ġga uche +ĠÙĪ Ø£ +Ġ È +ç ĵľ +Ġtechn o +Ġdisp atch +ĠaÅŁ k +Ġein zel +ĠG mail +ç ŀ +Ġê°ľ ìĿ¸ +ĠÑģем ÑĮ +Ġjour neys +Ġi ht +Ġfib re +Ġdram as +ouch ed +Ġren ame +Ġоп еÑĢ +Ġpo o +ĠD ru +ĠиÑĤ ог +Ġz ast +Ġco z +Ġz ucch +Ġobt aining +Ġcomm ute +Ġsub mer +ĠV ish +ĠR abb +og g +Ġh ut +íĸĪ ìĸ´ +æ¯Ķ å¦Ĥ +ere mi +Ġμ α +Ġdisk ut +Ġб Ñĥк +Ġimp aired +d epend +ĠÙĪ ا +ĠÑĢ Ñĥк +Ġб аÑĢ +Ġoxid ation +Ġsitu ação +ÉĻ n +u ção +Ġsag te +ĠS ER +ĠC ake +Ġtur meric +ĠK ak +b ung +ĠK á¹Ľá¹£á¹ĩa +Ġpoison ing +Ġsl ipping +ĠS ays +å°± åı¯ä»¥ +ò ng +çŁ ³ + « +ĠClaud ia +ĠChar acter +ни ÑĨ +co at +Ġprogress ed +ĠFer gus +Ġìĺ¤ ëĬ +Ġo at +ord able +ĠLe y +ĠHera us +Ġresult ados +ĠKay la +Ġr iff +Ġcheg ou +Ġx i +Ġsp acious +Ġrecogn ised +Ġe ch +ĠT ie +Ġlaunch er +J im +Ġsupp ression +ĠImp ossible +Ġguit ars +ĠFour ier +иÑĩеÑģ кий +ĠTh erap +ĠK af +cent ered +ĠÑģо оÑĤвеÑĤ +Ġk lim +Ġcarbohyd rates +ign ant +ĠAst ron +Ġem ple +Ġdr astic +ĠмиÑĢ е +в ин +u w +Ġpret tier +Ġdon uts +ĠAth ena +Ġdiss ert +Ġpl ante +Ġur anium +ìĿ Įë +ar é +Ġrze cz +Ġdisplay ing +æĪ ² +Ġsar c +r ão +Ġtamp oco +Ġphilosoph ers +ĠRe cht +æĵ ļ +Ġcoment arios +y se +Ġìľ ¤ +Ġm ise +ĠG in +Ġн ом +ĠFR OM +l iner +at if +Ġspo ÅĤec +x a +ĠÑĤ ÑĢÑĥд +Ġw ag +기 ìĹIJ +ĠM G +Ġoff spring +ĠUnder standing +åıª æĺ¯ +OR A +Ġwh irring +Ġsur rend +Ġpok er +Ġmon uments +ĠâĻ © +Ġorgan ised +ĠSo zial +ĠF actory +Ñħ а +Ġrese mble +з д +Ġexplos ions +Ġpay roll +Ġom n +ĠJ orge +ι Ïĥ +Ġfract ure +Ġpersec ution +Ġdem ais +E CH +, ) +Ġcri ar +ĠJ OSH +Ġdem ographics +Ġ16 00 +Ġcur rencies +ĠT ips +Ġ éĢĻåĢĭ +ĠRe fer +ĠDan cing +Ġincons istent +Ġde h +Ġimm ens +Ġme ist +Ġimpat ient +Ġbehav es +æĿ ¾ +ĠëĤ´ì ļ© +Ġback story +Ġagree ing +ĠÅ ģ +ih in +Ġtemper atura +ĠBack ground +Ġnut zen +Ġëħ ¹ +ĠM änner +Ġcollabor ations +ĠK os +éģİ åİ» +Ġnight mares +ë ĵ± +ĠQueens land +Ġassoci ates +ĠK ok +Ġfact orial +ĠHy ung +Ġê·¸ ëĭ¤ìĿĮ +Ġfil ho +Ġel ét +Ġíĸī ë³µ +° ± +Ġgef unden +Ġsemic ondu +Ġcounsel ors +ĠU pper +ĠA ub +ick ers +V er +Ġnorth west +ĠMainten ant +ĠL akes +аÑı в +int é +ì° ½ +Ġг аз +Ġgi orn +Ġdigit ally +ĠCirc uit +ì¼ Ģ +ãĤĬ ãģ¾ãģĹãģŁ +Ġcheer ful +ĠPet erson +ĠDan ish +ativ os +Ġli ken +Ġhar bor +али ÑģÑĤ +x e +Ġcur ls +ĠR hod +E nd +ĠE T +Ġacqu aint +ĠKel vin +Ġtr if +ĠA way +ìŀIJ ëĬĶ +v s +Ġp ágina +Ġin let +ĠSant os +Ġìļ° ìĻĢ +Ġyap ıyorsun +th eme +Ġsou ff +Ġinject ed +Ġpó źniej +iver so +amp ed +Ġda her +Ġd agger +ĠлÑİб им +Ġt ummy +Ġenlight ened +c ents +ĠD ah +Ġcu est +ä¾Ĩ 說 +IL Y +Ġ×ij ר +Ġbang ing +ĠEm il +ĠC ler +ĠB order +иж Ñĥ +Ġpresent ers +ĠST UD +co ins +ĠíĻ į +Ġper ks +Ġpar ap +Ġcertain es +ĠL ore +ö st +ĠMAR TIN +Ġb ios +Ġwhere by +ver ts +ĠMir anda +Ġst ip +æ¾ ¤ +and ez +׼ ׾ +uj in +Ġê ¾ +Ġaller gies +pl ate +Ġyap ıl +Ġundert ake +ĠëĤĺ ê°Ģ +P art +Ġkız ım +h guru +ãģĤ ãģ¨ +ĠJohn s +Ġeyel ashes +Ġdra ined +Ġst Ã¥r +ãģĤãĤĬ ãģ¾ãģĻ +ĠJ ade +Ġcal end +fil m +Ġmes a +Ġlud zie +Ġattract s +Ġju ices +Ġк ил +Ġnieu we +Ġmen cion +Ġign ition +Ġbl adder +anda ag +ĠExt ension +íĤ ¨ +fe ed +ĠÙĪ Ùĩ +Ġsp un +Ġt ät +оÑĢ оÑĤ +ty ard +ron ics +ĠH uge +Ñĥж д +st ring +Ġun just +Ġpra wn +Ġfrost ing +Ġdisappear ance +ios a +Ġcard i +ĠPri est +Ġcient ÃŃfic +åĵª 裡 +ĠÐĴ аÑģ +Ġë¶Ģ íĥģ +Ġth ieves +Ġphys ique +ĠE ugene +Ġбли з +Ġmon opoly +Ġbi ography +Ġho ÅŁ +Ġt ö +m ac +Ġshock s +ìĦ ¸ë +h it +Ġsn ug +Ġinc l +Ġded ic +Ġult ras +Ġизв еÑģÑĤ +Ġutil ization +ĠÑģовеÑĢÑĪ енно +Ġserv i +st ag +1 80 +Ġse wer +ĠCh oice +Ġdis charged +ĠJ D +ол еÑĤ +ĠкваÑĢ ÑĤи +Ġteles cop +ĠJe ÅĽli +ĠN ana +c ale +ĠÑĤ он +mm m +äºĨ åIJ§ +Ġge habt +ëĤ ł +æĬ ķ +à¸Ļ à¸Ļ +Ġet her +Ġz en +Ġresearch ed +ĠCzy li +å®Į åħ¨ +work ers +Ġê²½ ì°° +Ġsher iff +all o +Ġtip os +Ġprosec ution +Ġfrog s +Ġf alt +j d +ĠíĮ Ķ +Ġfilter ed +ĠO ft +Ġì į +Ġdis fr +ĠMust ang +Ġwo ah +ĠRE ALLY +Ġмог ли +Ġentr ada +Ġиг ÑĢа +Ġmix es +ĠавÑĤом об +Ð Ļ +Ġsh in +Ġparan ormal +Ġsome place +Ġdish on +eta an +Ġfu erte +Ù ¹ +Ġdo om +ìĪ ľ +Ġexist ential +Ġbu ld +ĠSD K +ĠпÑĢав да +Ġturn over +ĠìĹ¬ê¸° ìĹIJ +Ġठ¹ +Ġmodel ed +Ġbug ün +Ġexperiment ation +Ġmorning s +Ġmed o +Ste vie +Ġplay able +Ġairl ines +g ments +Ġê¸°ë ¶Ħ +ĠT omb +ĠMV P +AUDI ENCE +Ġcheck out +Ġpas st +Ġbe ispiel +ĠLink s +he avy +Ġquestion able +Ġìĵ °ë +Ġs ill +Ġmanip ulated +ĠL oren +Ġìľ ¼ +Ġver ge +á k +I ES +Ġsab ot +ĠCustom er +ale ży +Ġnom inee +ĠG ad +Ġnouve lles +ĠS PE +ist ling +Ġo val +обÑĢ аж +if ty +éĩ İ +Ġbez el +y et +Ġfre ight +ĠHan ım +r ÃŃa +Ġz oning +Ġind em +ĠB ü +Ġfemin ism +Ġvo ix +Ġof icial +Ġdi yorum +» IJ +Ġar ose +Ġpar ar +ìĿ¸ ì§Ģ +ĠMart ine +ĠL ect +Ġrest er +Ġdrown ing +u ya +c ida +ĠAri el +Ġ0 2 +Ġ×Ķ ×Ķ +ç´ ł +ĠW ert +Т Ñĭ +Ġwid ow +Ġparch ment +Ġcott age +ĠX L +ĠSl ack +ĠN ES +Ġro be +Ġg imm +Ġcam inho +ĠHar per +Ġcit rus +Ġfirefight ers +Ġdop amine +el ets +Ġdemocr at +ìł ľë¡ľ +Ġplay back +o j +ĠпÑĢ ок +ĠSull ivan +se mble +ĠW orth +ĠMust afa +า ร +Ġmet s +éĸ Ģ +л оÑģÑĮ +Ġinert ia +Ġuniform s +è¶ ³ +é rio +×ķר ×Ķ +é nt +Ġà® Ĵ +ĠÑģам ÑĭÑħ +Ġvou lais +ĠZ immer +ê² łë +Ġн оÑģ +en cias +Ġrel ación +Ġê± ¸ë +Ġfact ion +Ġg osp +пол ож +n ap +h ak +Ġproceed ings +ĠìĨ Ķ +ìķĦ ëĭĪ +ĠìŀIJ 기 +Ġwer d +Ġso f +Ġsch lim +Ġfl avored +Ġquad ratic +ĠBo ot +Ġpublic ity +ĠCar o +Ġ ?" +ни ÑĨа +man ia +ĠS UR +ĠB UR +l ance +ét ica +Ġzob aczy +Ġtri o +s ama +Ġta ÅŁ +Ġas ymm +ress er +Ġت ع +Ġп еÑģ +Ġbeginning s +lad ım +ĠбÑĭ ÑģÑĤÑĢ +Ġmo o +ĠGene va +Ġ åľ¨ +er us +bor ah +Ġref using +b ull +ĠWait ing +ĠInd ividual +Ġan onym +im ens +Ġmed idas +Ġfragr ant +Ġdirect ement +ĠìķĦ ë§Ī +ur ia +Ġsp herical +Ġab ge +ĠVictor ian +Ġspect acle +ĠRodrig uez +Ġoc up +ĠN är +mark s +ng ulo +ĠLu ci +Ġshout ed +Ġregul ators +ÄŁ ini +Ġdis ent +ĠÑĢÑĭ н +ëĤ ¨ +ĠìĤ ´ë +Ġprobl èmes +ĠF inger +asse mble +Ġpe ar +Ġdro ite +ĠEvery where +t am +оÑĤ ив +в ой +ordin ate +ĠL ak +Ġm Ỽi +ĠTele vision +Ġexpon entially +av as +Ġble v +ĠM T +ä¿ º +Con nell +ĠêµŃ 민 +ĠÑģво им +Ġach a +ĠD ynasty +J in +Ġto re +Ġfl or +Ġмног ие +æ²Ĵ äºĭ +ow an +b ah +Ġì£ Ħ +ĠC ela +Ġìµľ ê·¼ +Ġpermett re +Ġab ras +Ġverste hen +Ġesc ort +ĠThe m +är ke +por ter +Ġkah kaha +Ġhe ct +Ġda u +w ah +ol ve +ĠAg es +s chaft +ĠSt ell +ne lle +ĠEn suite +ĠÐĴÑģ ем +Ġcr éd +ĠP P +l ords +gr unting +Ġcontract ion +G ot +Ġacqu iring +Ġso pr +Ġpoison ous +R NA +Ġan ar +ĠH of +' ) +Ġremark ably +Ġintern acional +ü cke +in qu +Ġdu y +Ġbeast s +ĠL AN +Ġpreced ent +ĠRP M +åij ¨ +Ġsel on +Ġmort e +Ġcomeç ou +Ñı ла +Ġinterpre ting +ĠBur ke +ÑĤ ÑĢа +ĠìĿ´ë Ł¬ +Ġpess im +ĠN ok +íĮ Ŀ +F emale +Ġìĭ ¤í +Ļ Ģ +Ġstim ulation +Ġsl ick +Ġê°Ģ ëĬĶ +Ġк аз +ĠH BO +Ġpap ier +Ġkön nten +Ñĥб ли +ĠConst ant +SPEAK ING +Ġktó rÄħ +Ġcos metics +ĠT rend +Ġrob bery +Ġt itt +Ġgj ort +Ġdiet ary +ł Į +ĠKir by +ĠпÑĢимеÑĢ но +Ġqual ification +Ġìķ ī +Ġcabin ets +Ġhtt p +ĠEric a +ç¾ © +Ġdisadvant ages +Ġch attering +y z +fe it +Ġgu ild +ĠE TF +ĠDrag ons +ĠH ERE +vent h +ÙĦ اÙħ +Ġmarch é +D am +Ġphot on +Ġest able +M ag +Ġol har +Ġcou pling +ĠHil fe +ĠW izard +Ġм ало +hel p +ĠlÃŃ nea +Ġì « +Ġstand alone +Ġmor ale +Ġzwe ite +ãĤĪãĤį ãģĹãģı +ähr t +Ġd otted +Ġdri pping +ĠFl ag +éĿ Ĵ +ro cket +rate gy +ir im +Ġíķĺë ©´ìĦľ +Ġsogen an +ĠUn o +ĠSch utz +Ġest ilo +ĠS ubs +ĠDais y +ÐĿ еÑĤ +' ... +Ġplat inum +Ġb irl +ĠSo vi +Ġviol ate +Ñĥ еÑĤÑģÑı +r ill +Ġtra z +Ġsn ip +Ġcum pl +à¸Ń à¸ģ +Ġc uk +éħ Ĵ +ĠParl ament +Ġhyper t +Ġpul p +Ġtong ues +at to +Ġbus ca +ih n +ER O +ĠÙĬ ع +Ġvari as +ĠMar ian +Ġbound ed +Ġpitch ing +Ġdefic iency +ĠBless ed +ĠEx erc +uch s +ĠnhÆ° ng +æľ¬ å½ĵ +Ġrap ed +h ales +Ġmal a +p ic +Ġ40 1 +ÅĽ niej +ar ina +ëĵ¤ ìĿĦ +ott i +Ġдол го +Ġtrack er +ĠShel by +Ġvan ished +Ġbak ery +Kap ı +J esus +ĠK R +J O +ħ ¸ +Ġdisc s +ìĦ ¯ +ì§Ģ ë +×Ļ× ¦ +em ary +K endra +Ġy ük +ück t +Ġv az +Ġk up +akt u +ĠÑģп аÑģибо +Ġa ik +Ġnurs ery +Ġendanger ed +êm ement +emat ics +Ġrespond ers +ĠRepresent atives +Ġsculpt ures +ig keiten +Ġde pl +Ġinterpret ations +Ġdead lines +Ġ194 2 +Ã Ĺ +Ġsug ars +em u +l ively +Ġrecre ational +Ġdist ort +Ġunders core +Ġun quote +Ġsaf est +Ġsw ollen +Ġanalys es +Ġcommen cé +å¦ ¹ +and in +ĠÐ¥ оÑĢоÑĪо +Ġdi arr +ãģ¾ ãģģ +zi est +Ġtooth brush +éł» éģĵ +u ations +Ġc ade +Ġbackl ash +h ind +Ġris que +z ess +ĠìĿ´ìķ¼ 기 +Ġesper ar +Ġtransl ations +ion ed +gro ans +Ġп ÑĥÑĤ +Ġgen etically +éĢ ł +Ġhapp iest +Ġwer k +ato on +Ġmus i +Ġfun ção +Ġìŀħ ëĭĪëĭ¤ +ĠÑĢ ай +Ġbe vor +BL ANK +Ġrepent ance +P ut +Ġpotrze b +Ġsal a +Ġcamp a +W ER +Ġdec ÃŃa +Ġsécur ité +ĠAppreci ate +Ñĩ и +ĠR andom +ë³ Ħ +k ah +Ġmö j +Ġsä ger +Ġ×Ļ ׼×ķ׾ +Ġ19 0 +xt ures +E u +Ġg ä +Ġ×ij× ª +ĠC roat +ap o +P LE +Ġpersist ence +åĬ © +Ġbl ends +Ġtre ffen +ĠSanti ago +yd ia +al do +ĠTensor Flow +ĠD ual +ãĥ ľ +Ġch iff +ìĹ ´ +Ġcontract ed +Ġseg reg +ĠFair y +Ġwis ely +Ġvulner abilities +Ġhand held +Ġgad gets +Ġbo ÅŁ +ĠPop ular +Ġcurv ature +ë ¬¸ +ĠMAR Y +ìĿ´ì Ĭ +Ġform ulation +Ġcel ery +Ġblur ry +ĠT S +ale z +Ġw s +Ġprogram m +ĠSt ack +ĠJ IM +ов али +ı ll +Ġp ère +ĠKan ye +ĠDel aware +Ġãģ ł +Ġda unting +Ġб еÑģ +ĠSt upid +b ig +ffic ial +Ġprecip itation +Ġpl ung +ụ c +bur se +Ġdar le +Ġcri pp +Ġpione er +Ġdis put +Ġse an +ãģĵ ãĤĵãģª +Ġresist or +Ġalle in +ipp les +are l +Ġend ors +z ust +ĠÑĢеб ÑıÑĤа +ed ed +Ġì¹´ë ©Ķë +Ġlle va +Ġken nt +Ġб ал +ĠDoc ument +ĠKn ights +Ġbuck le +Ġìī ¬ +Ġal k +ĠEvery day +atter s +Ġtoil ets +Ġj ugar +ĠìŀĪ ì§Ģ +Ġgen auso +ĠLandes regierung +ãģ£ãģ ± +ij e +Ġtrail ers +ĠT igers +Ġg itti +Ġforg iving +Ġconcur rent +ĠV u +ĠíĬ¹ íŀĪ +ĠBR OWN +ound ed +" ; +Ġtre mb +Ġt iet +ĠÑĢеж им +Ġnuts hell +ел иÑĩ +Ġlos ers +ric ting +Ġrede em +def ined +N ice +Ġbroad band +K O +Ġte asing +Ġpart isan +ı ma +Ġìŀ¬ë ¯¸ +ĠJour ney +Ġslop es +un ing +gr unts +Ġt äll +Ġuncover ed +Ġmy ÅĽlÄĻ +ĠEst her +äº İ +ĠHealth y +Ġë° ij +r ée +Ġpolar ization +Ġfl av +Ġcambi ar +Ġy r +ĠR anch +Ġspl its +Ġtrou vé +åľĭ 家 +Ġrecord er +Ġdé part +ÙĪ ب +ĠK ry +Ġinteress ant +Ġeder im +ÅĽ wiad +il ateral +w right +Ġpour ra +ê ter +Ġcam el +á ŀ +Ġrapid ement +Ġme j +Ġstiff ness +AD AS +Ġdiff ers +Ġal ot +ĠS ig +ÑıÑĤ елÑĮ +Ġabstract ion +åľ ĺ +Ġke iner +gr upp +ĠSher lock +íĺ Ķ +Ġc ite +Ġover flow +Ġt ại +ú car +b ula +Ġconjun to +ĠC I +Ġmoder ator +Ġindirect ly +Ġalle ine +â Ĥ +ÑĪ иб +Ġб аб +Ġdan ach +Ġ19 39 +Ġpr omet +Ġdest inations +ĠIll ust +ικ ÏĮ +Ġsab es +Ġhe h +ĠGesetz ent +ĠM iz +ен ко +ĠM ys +Ð ¬ +ĠJuda ism +Ġmust ache +Ġst immt +ĠG aza +Ġvol te +Ġnu o +Ġm ón +ĠCom put +ู à¹Ī +ĠR adi +Ġexception ally +Ġassum es +éĸĭ å¿ĥ +ãģĪ ãģ° +in form +Ġshr ine +æĵ Ĭ +Ġimplic ation +ĠF itz +æ²Ĵ éĹľä¿Ĥ +! . +Ġl t +Ġall oy +Ġeth ic +Ġmonaster y +ìĭľ ì£ł +ica ção +Ġcoordin ating +ĠM oto +Ġover look +Ġcho is +Ġantibiot ic +ĠMin ne +ĠB J +ĠA pa +or ian +Ġsp illed +J am +Ġhus bands +Ġcre ations +Ġa ñ +üs sel +ĠìĿ´ì ļ© +Ġanaly se +r ose +Ġpunch ed +Ġpres que +Ġastron omy +Ġschwier ig +ĠEb ola +Ġc is +Ġac et +ĠF X +end re +ĠìĿĮ ìķħ +Ġweb page +Ġfre aked +Ġlat te +Ġì¿ ł +Ġë¨ ¸ë +N ever +G ra +íĻĶë ¥¼ +ey ed +Ġë°ľë Ŀ¼ +Ġesper a +Ġapare ce +ra ção +Ġdisrupt ive +ĠJo int +ur ous +re as +Ġquer ÃŃa +Ġdistrib utions +Ġexpon ent +ì¹ ĺ를 +Ġd l +z hou +ĠHe aring +å·® ä¸įå¤ļ +ĠC raw +Ġflo ats +oun ced +L ab +W orld +Ġbur dens +Ġauthor itarian +ĠB olt +Ġод нÑĥ +Ġpige on +Ġdistract ions +ĠHeraus forder +Ġz est +es c +Ġsh akes +at as +ĠÙħ Ø´ +hol es +Ġthink ers +al ta +Ġar che +ĠS uk +an ha +Ġtempt ing +Ġyou tuber +Ġv ì +Ġdz iaÅĤa +ĠVatic an +P ark +Ġsup ers +ĠNik ki +ëĬ IJë +or ang +ram ient +é ¬¼ +Ġê°ĸ ê³ł +Ġdessert s +Ġav ere +ĠGreg ory +Ġëĵ¤ìĸ´ì ĺ +Ġcost ing +ĠClin ic +Ġreb els +ĠM ob +Ġbun lar +ĠYour s +ert ime +Ġret ali +m ara +at us +all es +Ġд ÑĢ +Ġд иÑģ +Ġdiscount s +ĠGU Y +Ġкак ое +ĠExper iment +re ment +ĠXi ang +Ġb ate +W E +Ġspecial ize +Ġde ity +ĠL oki +m ag +ĠN it +W est +Ġmater nal +Ġqu is +åŁº æľ¬ +bro ken +Ġlas ers +Ġha kk +ĠAng els +Ġmaster y +ant is +T iffany +ee e +ç ij +ore m +Ġin acc +Ġjurisd ictions +ĠKard ash +æľ º +I l +ĠS inn +åĭķ çĶ» +Ġathlet ics +c ÄĻ +Ġlo osely +Ġdiet a +A g +Ġ? ? +ĠëĮĢ íijľ +Ġsuper v +Ġnut rit +Ġdr ifting +ĠìĦłìĥĿ ëĭĺ +Ġпон Ñıл +ĠVict ory +ÙĦ Ø© +×ķ׳ ×Ķ +Ġп иÑĪ +Ġsh aved +Ġmes ure +ond en +Ùĥ ر +Ġex ile +ĠDes de +ĠP interest +Ġattach ments +Ġh ombres +Ġfin es +ĠìĦ¸ ìĥģ +Ġsleep s +ĠT aco +ĠI RA +ri os +Ġo ll +et es +Ġun ut +fashion ed +Ġtre ball +ĠNear ly +ĠÑĢе алÑĮно +Ġch il +éĢ ± +ÄŁ a +ĠM EL +ros cop +ĠC G +Ġv enge +Ġdishwas her +al gic +Ġmod ifier +Ġemb assy +t imer +em ics +Ġintric ate +Ġev et +ĠëĮĢë °ķ +Ġis ot +Ġна ÑĥÑĩ +ĠQu iz +res o +δ Ïİ +Ġye lled +Ġfed er +ELL ER +Ġexceed ed +on as +ic ano +Ġжив оÑĤ +ĠMa o +ĠKaz uto +Ġ ãħĭãħĭãħĭãħĭ +Ġfront line +ĠHung arian +Ġüber all +aw at +Ġgri ps +i ções +arn ya +ĠÍ ¡ +Ġse id +Ġan ak +Ġacab ou +íķ ij +Ġnot orious +ĠGod zilla +Ġover coming +ĠP end +Ġol abilir +ül me +Ġer halten +ãĤī ãģĦ +ê· ¹ +ĠM eter +Ġsta an +O l +Ġch ats +ĠBu enos +ÃŃ ve +alu able +Ġstrateg ically +Ġcompr ised +ĠпеÑĢÑģон аж +Ġw ann +ĠC en +н иÑĤе +Ł ģ +ĠÑĤоб ой +i ad +ĠkardeÅŁ im +ĠCongress man +ream ing +h omme +Ġcommun aut +Ġalcohol ic +Ġpick led +Ġac ord +p osition +eg ól +Ġtrou bling +ĠMarch eg +Ġzum indest +Ġseam lessly +Ġol un +ĠTV s +ĠпÑĢакÑĤи ÑĩеÑģки +Ġback end +ãģĵãĤĵ ãģ«ãģ¡ãģ¯ +id able +Ġgad get +Ġfa ço +ĠMarcheg iani +Ġë° ¤ +Ġaccident al +ĠL P +Ġeld est +ĠAd miral +Ġn Äĥm +le ver +Ġpast el +Ġfond o +Con nie +Ġter cer +Ġp act +ĠMont e +Ġme ats +ĠS MS +ĠAustral ians +ç ¼ +Rh ett +Ġexact ement +Ġë¹ ¼ +ĠM OD +ç ¡ +ĠR apt +ĠNo ch +Ġab ort +ĠNav al +ĠFu ji +IN TER +Ġнов Ñĭй +Ġmiej sce +ĠIC U +ĠGrad uate +ĠGl en +ard i +ĠÈ ĺ +Ġsold er +Ġprofess ions +Ġorth og +om n +int rodu +ĠDen ise +ìŀIJë ¥¼ +Ġcorrespond ence +AM A +Ġinf lict +Ġf and +ĠG ü +ĠÑĩ еÑĤ +Ġtr aced +Ġpat ents +Ġamb ush +Ġlot ta +ff er +ĠW agner +Ġimp erson +Ġextr êmement +ÙĤ ت +cond uct +A tt +ĠM ueller +ĠAl icia +Ġcy c +Ġha cker +Ġt ys +Ġha il +Ġз аÑıв +Ġpas so +Ġì¶ Ķê°Ģ +ĠÎ Ī +Ġpack aged +ĠC ynthia +he et +ä¸Ń åĽ½ +ĠNiss an +ĠQuest o +é ¨ +d id +Ġμ ια +ĠEll is +ĠAnal ysis +ce mos +Ġas eg +ĠMy ster +ĠCa o +Ġtu v +ĠIndust ry +주 ê³ł +ot al +Ġpeque ño +br as +Ġcompreh end +ĠSim pson +ÑģÑĤв ие +ocr acy +иÑĩеÑģ ки +ĠM ush +ĠLaur ie +Ġtriang ular +ĠPres ents +ĠK unden +ç´ ¹ +æŃ ¦ +ĠIs s +ĠDe ck +á»ĥ n +ĠDark ness +Ġinflamm atory +eremi ah +Ġwar med +vey ard +ĠMem ory +et ty +Ġtax payers +ภĵ +Ø ¡ +Ġpract ise +ëĭ ¬ë +Ġdr illed +m Ã¼ÅŁ +log o +ĠF ach +¤ë ¡ľ +Ġübrig ens +Ġkon nten +Ġnormal mente +Ġarg ues +iling ual +°ë ¥¼ +eg al +Ġtrava ill +ov y +а ÑĤо +Ġr uth +ĠL ights +Ġconsist ed +×ijר ×Ļ×Ŀ +Ġstere otype +Ġpay er +ĠRe e +ĠAir bnb +Ġdr owned +ĠZ oe +Ġcan opy +Ġbar r +Ġн оÑĩ +Ġpag an +Ġj ars +Ġr ê +er ver +æĪ ¿ +ie ben +Ġes pect +ĠF i +Ġunw illing +Ġtechn ician +ặ t +m ember +ĠCan al +س Ùħ +Ġlie ber +Ġin ference +Ġhon oring +åij µ +ĠCamp aign +Ġline age +ĠSt ress +Ġvict ories +Ġde ja +× £ +ê tes +bl ick +Ġмен ее +oth s +ĠCou ple +J ason +ĠNic olas +ек Ñģ +l ib +Ġher ramient +Ġ×IJ ×ķ×ŀר +Ġвид им +mill imeter +Ġsil houette +Ġdrive way +Ġcher ish +ãħł ãħł +Ġrans om +Ġinter disciplinary +ĠPort al +Ġtra g +th ood +Ġted ious +Ġgloss y +Ġpré par +ĠC ay +ĠT ook +ĠBott om +Ġz ig +å « +åį ± +re presented +à¹Ģล ย +Ġdesar rollo +ìĦ ľë +Ġvis cos +Ġmill igram +ĠG und +Ġfer ment +d rum +Ġdraw ers +La ugh +Ġpel os +Ġpave ment +Ġmem oir +av ait +Ġ20 50 +¤ë ¥¼ +Ġraz ón +Ġflour ish +Ġst ern +ä¸ Ī +ĠCh ung +Ġser pent +ĠGentle men +羣çļĦ å¾Ī +k ook +Ġl ut +import e +p arent +Ġw sz +Ġsc ree +ĠMitar beiter +å· ´ +m ut +Ġìĸĺ 기를 +Ġsem ble +ĠO W +Ġinvestig ator +ĠCher yl +ĠG erald +Ġpr ere +Ġcomp ares +ny t +Ġdiferen ça +? - +Ġqu á +ר ×Ļ +S en +Ġhe ps +Ġgrat uit +Ġcons ort +ĠST OP +ĠProtest ant +Ġelectro de +â Ĺ +Ġsecure ly +иÑĩеÑģ кой +Ġt ää +Ġreg isters +ĠHeaven ly +og ly +iss ä +ĠPhys ics +ĠMer kel +Ġré v +éĻ ¢ +Ġer ased +ĠSac ramento +Ġcoff in +Ġex acer +Ġl anz +Ġpo ets +ul if +Ġì¹ ĺë +ĠN erd +ĠN CT +ĠH our +neh mer +ŀ ĺëıĦ +ĠPrin ci +S w +m ies +ar med +ĠBeat les +Ġpropag ation +Ġexch anged +Ġcum ulative +Ġì§ij ìĹIJ +Ġdefe ating +æĬ ± +b els +Ġw es +ĠOdys sey +ä½ł æĥ³ +av ior +ĠìľĦ ìĹIJ +Ġbr it +Ġhij o +D AY +ĠاÙĦت ÙĬ +ĠС еÑĢг +Ñĥ ка +eds iÄĻ +Ġimp os +Ġell as +Ġfire arms +ĠN R +Ġ×ij× IJ +ĠÐŁ ока +aw i +ĠìĦ± ê³µ +Ġpup ils +ĠT ack +Ġfr ase +ĠSh ip +Ġst ad +ä¸ ľ +ĠGreat er +un un +imm ung +gr own +ĠN XT +ĠAmeric as +f ox +Ġmant en +éłIJ åĤĻ +ĠÑģ ок +Ġr ikt +lect ric +de ep +Ġзна еÑĪÑĮ +Ġben ut +ĠInf rast +ĠEm ir +ĠоÑĤп ÑĢав +ĠKim chi +ĠFinn ish +´ìł ģ +ina ire +Ġo ike +æ¸ħ æ¥ļ +Ġhost age +ĠBut ton +ÙĤ ÙĬ +ek ing +ĠKaz akh +Ġcomfort ing +Ġso g +Ġgreet ed +g uitar +p ayer +Ġrel ational +Ġconstru ir +çī¹ åĪ¥ +op ian +ĠVol ume +iet h +ÑģÑĤв ом +ur rection +li ÅĽmy +Ġhem isphere +ĠBe an +IG N +Ġköt ü +ĠFall out +Ġbr ace +ç¹¼ çºĮ +ÏĢ ά +ĠH AS +Ġg é +Ġcharacter ize +ặ c +ĠMil ky +Ġtum ors +Ġn uit +ĠG az +ĠìŀĪ ëĭ¤ëĬĶ +Ġг аÑĢ +ess ment +ĠA be +Ġë½ ij +ĠEins atz +J IN +j ä +C ry +ĠProm ised +ĠÑģеÑĢ д +ok us +Ġscal able +ĠпоÑģмоÑĤÑĢ еÑĤÑĮ +ück lich +Ġreal ism +Ġmay o +Ġjuven ile +Ġhead lights +Ġgör Ã¼ÅŁ +ĠRe form +Ġhal ves +cz ne +Ġbreak up +że j +Ġr ätt +D ay +ĠìĿ¼ë ³¸ +Ġmu erte +Ġtun es +ĠSm ile +rec ord +Ġrecher che +atisf ied +Ġpo zi +Ġcelebr ations +ise xual +ĠRO B +third s +ĠF ortune +ĠÑĤ ой +Ġbrand ed +lo o +Ġd ud +Ġrandom ized +Ġcomb in +ä¸Ģ äºĽ +ier an +c zenia +į ãĥ« +Ġcur ator +Ġar tery +ĠÑĥ ÑĪ +ĠÑĩ иÑĤ +Ġsubsid ies +Ġbloss om +ĠTw ilight +Ġhy vä +ĠPom pe +ĠC isco +ĠÐŁÑĢ о +Ġbir i +Ġg ern +Ġre built +Ġw cze +Ġbenefic i +Ġdrum mer +Ġsol ids +Ġdi yorsun +ãģĤãĤĬãģĮãģ¨ãģĨãģĶãģĸ ãģĦãģ¾ãģĹãģŁ +l ated +Ġmud dy +Ġh olog +Ġcl aps +ĠR ings +ĠO key +ĠBra ve +Ġvalu ation +Ġmig rant +Ġinter mitt +Ġeig ene +ili ary +ãĥ¼ ãĥĪ +mark t +k r +ĠR ib +á»Ļ i +Ġaccus ations +Ġa rab +w ash +ĠBard zo +Ġu gh +est ers +oph ren +Ġaliment os +ĠU z +Ö Ĥ +Ġ6 50 +ĠпÑĢи еÑħ +F I +Ġsamp ai +Ġparl é +hes ion +Ġs ır +Ġapparat us +Ġcor related +ĠPrincip al +Ġcor r +ĠOffic ial +иÑĩеÑģ кие +Ġtermin als +Sh ould +Ġvac un +Ġst ellt +Ġmo oi +etz ung +Ġк ÑĢа +Ġda i +Ġп ож +Te am +ĠP PE +ĠÐŀ Ñģ +ĠLe ah +ĠI vy +y st +Ġuh hh +Ġnight time +Ġtrend y +Ġsec urities +Ġcontin ents +Ġfirst hand +ĠVer on +ĠëĤ ® +Ġbrows ing +ĠC ada +t ro +Ġtr amp +re ib +Ġerst mal +irl er +Ġps ic +Ġget ir +ĠN P +Ġdzie ci +об ÑĢаз +Ġmagic ian +Ġscrut iny +Ġsl ab +ĠO T +ist y +ir ies +ore st +Ġtask ed +Ġmor ally +ìķ¼ ì§Ģ +ust ered +Ġfool s +Ġir respons +Ġein f +Ġvi á»ĩc +Ġsc or +Ġpill ows +ĠG egen +Ġtut te +Ġquarter ly +Ġdid nt +ĠG ym +ĠE ther +ĠØ « +лиÑĪ ком +Ġsign aling +ĠN ode +ĠDonc s +Ġy ah +ĠKan al +Ġf ading +et in +Ġinfluen cers +Ġmed als +Ġengine ered +Ġfer mented +ê²ł ì§Ģë§Į +ĠBeet hoven +×ŀ× © +inent al +ĠìķĮë ł¤ +üt fen +al nya +Ġo vere +Ġden kt +ак ÑĤеÑĢ +Ġâ ĺ +Ġneces it +Ġgener ators +gr ass +Ġпод Ñĥм +lie ÃŁen +B ar +ľë ıĻ +ĠдеÑĤ ей +Ġsuck ing +Ġsten cil +Ġprim o +ĠBreat h +st rom +Ġimmens ely +Ġapp reh +ìłķ ìĿ´ +P op +Ġj ong +ĠGi ul +ĠAD HD +Ġhö ren +Ġe lo +iv ent +Ġr us +Ġoutrage ous +Ġmaster ed +Ġì» ¤ +ÙĪ Ùģ +ip es +ĠRud y +Jac ob +Ġbull ish +Ġt apped +Ġfa ud +iz ophren +ĠÑģо Ñħ +ĠDar ling +Ġ196 3 +ĠPre vention +² Ķ +Ġabdom inal +st ones +Ġav aient +á»ķ i +m ake +Ġs are +ĠInst ant +к ам +Ġkeep er +Ġblank ets +ãģ§ ãģĹãĤĩãģĨ +Ġswe ats +ĠMinne apolis +åħ¨ éĥ¨ +Ġgen ommen +Ġfast en +ĠBrus sels +åij ¼ +Ġcaf eter +Ġabsor bing +Ġha go +ĠEl mo +Ġgust o +ĠY ap +M úsica +Ġt ert +Ġband a +Ġm ily +Ġthere after +ĠStock holm +ĠC arson +Ġcalib ration +ava ÅŁ +ans a +ik ke +Ġfore see +Ġqual che +Ġdest e +æ ¤ +ün üz +Ġfor ge +D is +est en +Ġδ ια +Ġenca ps +ĠGes pr +Ġcher cher +ick ets +ÑĤоÑĢ Ñĭ +C r +ĠТак же +Ġrabb its +ĠD ot +he iten +Ġcaus al +ĠF oster +ajÄħ c +Ġbere it +Ġayud ar +é« Ļ +ãģ ³ +s ong +com b +Ġfr inge +Ġcyber security +Ġëľ ¨ +Ġk ier +Ġbesch äft +Ġкон ÑĨе +Ġfacil it +ĠNam en +Ġbil ateral +t x +ĠW issenschaft +Ġnu ances +Ġr ipping +Ġf y +ĠSicher heit +ĠGh ana +ol on +Ġto pped +ĠMoroc co +Ġrad ial +ĠL EE +ĠAndre as +ed d +ĠìĹ ´ë +ĠAirl ines +ãģĵ ãĤį +Ġval ores +ê· ľ +H y +Ġзад аÑĩ +ĠKend all +ĠÑħ аÑĢ +ĠV amp +Ġpy thon +Ġmanage able +ĠG ente +o ise +ici ary +Ġimp oss +ĠBun ny +iest a +And rew +Ġser t +ĠC ec +zz arella +Ġautom obile +ĠT iere +all ows +åĨ Ĩ +Ġë° Ģ +ĠSc orp +ĠJ elly +ag ara +ĠSt retch +Ġrede f +Ġexacer b +ĠS HA +é f +ors a +Ġflaw ed +ĠNo el +?! ? +Ġpro cent +Ġmen stru +ĠпÑĢо Ñĩ +Ġinf ants +ðŁİ µ +pa use +ĠR acing +Ġ194 8 +Ġsuper intendent +id ores +id y +bra him +Ġunl ucky +Ġper k +an ci +Ġë§Įë Ĥĺ +ĠÐľÐ¾Ñģ кв +Ġfin ans +Ġdiferen cia +łĪ ìĿ´ +éħ į +OR Y +ĠT ac +ÛĮ ا +Ġdes em +Ġваж но +ĠJ U +ĠìŀĪ ìŀĸìķĦìļĶ +ĠÎ Ŀ +Ġinform ations +ĠH EL +h st +Ġпог овоÑĢ +Ġvo iture +Ġre us +änd ig +ĠпоÑħ ож +j ing +Ġd ru +alt ra +Ġprodu its +Ġk ite +Ġeye ball +ĠB elt +ĠRestaur ant +Ġg amb +Ġpor ridge +it ters +Ġconver ts +Ġyard ım +Ġmáxim o +w irtschaft +Ġíķĺë Ĥĺë +Ġì¤ Ģ +Ġice berg +Ġvor bei +Ġ25 6 +ocr atic +Ġreck less +on ner +Ġm ús +Ġlog ically +ĠPr ison +ĠNet z +Ġvac ant +Ġn immt +ĠH ARR +Ġз ов +ĠDe e +ring e +ni est +ĠR ules +ìĬ¤ë Ł½ +cuss ions +Ġfl oral +Ġconstra ined +Ġdifferent iation +ĠQue bec +ĠÛģ ÛĮÚº +Ġpúblic a +it el +Ġaccommod ations +ĠGr ü +í ľ +Ġpick les +иÑĩеÑģ киÑħ +Ġcomm issions +ĠBa ek +Ġçoc uÄŁ +ĠMed ium +Ġperiod ically +Ġwonder fully +Ġstaff ing +ìĽ IJë +ri re +f le +ĠMc L +ĠÑĤ еп +ĠпеÑĢ ек +н олог +Ġíģ¬ ê²Į +çĻ¼ çı¾ +Ġprosper ous +ĠSpirit ual +ĠCh ick +DI A +ĠÐŁÑĢ ивеÑĤ +Ġper ÃŃ +ÑĮ ÑİÑĤ +Ġconsult ants +ĠEar l +ä»Ĭ å¹´ +Ġru ining +оÑĢ е +Ġpens er +Ġtak iej +Ġstrength ened +ĠLiqu id +он еÑĨ +ав аÑĤÑĮ +Ġcam er +Ġdisagre ement +Ġbat hing +ĠY osh +a al +pre chen +RIS ADAS +Ġsuper star +æģ Ń +лÑı ÑĤÑĮ +Ġn ib +ĠTh erm +ĠDAN IEL +Ġp aw +Ġliqu ids +Ġcapac it +ark en +Ġvag ina +Ġm ashed +Ġemer ges +ys cy +Ġun related +ĠGu ild +Ġin verted +it ives +T ra +Ġbe gr +Ġal te +ì§ ķ +ãĤģ ãģ¦ +ĠÑĢазÑĢ абоÑĤ +f inder +Ġдал ее +Ġблаг одаÑĢ +walk er +Ġcr ater +ass adors +ren ces +ins ki +ĠK IM +ĠEll iot +20 17 +ĠS r +ink a +ano v +Ġìŀĺë ª» +Ġpropriet ary +display style +ĠÑģ им +Ġиз б +ĠPan el +Ġinstinct s +ĠCommun ications +éº » +mid t +Ġë§Įëĵ¤ ìĸ´ +ĠÑģл ова +ĠGil bert +缮 åīį +Т ак +voor beeld +е ÑİÑģÑĮ +ary n +que z +Ġd art +Ñĸ ÑĪ +ĠH ut +S al +Ġs outheast +Ġpestic ides +Ġhelicop ters +Ġend ured +i ada +Ġbre wing +ìĹ ¬ë +ĠÑģв обод +ĠS aints +ĠFr ançais +ĠEconom ics +Ġdis loc +oph obia +C amer +Ġnegoti ated +ĠÑģÑĤ али +ìĬ¤í ģ +og ie +Ġtsun ami +Ġpeel ed +Ġmotiv ations +è¨ Ń +ost at +fl an +ĠD AC +Ġk av +' RE +ĠPe arson +b be +c zenie +Ġaten ção +íĨµ ëł¹ +ãģ£ ãģ¡ +ĠÑĥд аÑĢ +Ġintrodu ctory +ĠI ci +ë ĮĢë +ak at +Ġt rench +Ġproceed ed +ĠCo in +Ġdere cho +ĠRed e +æ¯ Ľ +ан нÑĭй +Ġincarcer ated +ĠRich mond +R ock +ĠP av +ĠKar ma +ug es +Ġconte ú +ë ¹Ħ +Ġê·¸ë §Į +ĠG one +Ġwsp óÅĤ +ĠRah men +un ken +Ġì¤ijìļĶ íķľ +Ġi b +Ġatt aching +H ay +Ġsu ka +ìį ¹ +Ġpivot al +ĠRes pect +ÃŃ da +I B +ĠVer antwort +w iet +Ġforens ic +ÑĢи ÑģÑĤ +ĠпÑĢинÑĨип е +Ġmark ings +Ġk ettle +ĠOper a +ĠDo ctors +Ġshred ded +Ġrec uer +Ġvig il +ĠF ail +Ġentre v +Ġд ÑĥÑĪ +Ġout breaks +èµ° åIJ§ +ĠÏĢ ο +Ġro gue +ang led +Ġyear ly +ĠCre ed +Ġw am +Ġlot us +ê³ ¼ë +ãĢģ ãĢģ +ĠSp it +ĠIt u +Ġstra ins +Ġstamp ed +Ġpl aint +Ġpot ion +Ġconsolid ation +è© ķ +оÑĩ кÑĥ +Ġvlog ging +Ġsl ate +ĠAu ft +ĠInc or +ừ ng +§ IJ +en h +Ġhe iÃŁ +Ġdom est +ĠSt rom +åį ³ +ak is +Ġfra gen +Ġfin er +ĠS ug +Ġup hill +Ġé én +âĢ¦ ) +ĠÑģ оп +ĠCore y +Ġsie bie +Ġm use +Ġclo ves +Ġp ous +ĠFin anz +ĠR oute +am at +Ġmut ually +ĠвнÑĥÑĤ ÑĢи +ĠSel ena +ë Ķ +ĠGa ussian +ë ¶ĢíĦ° +Ġ×ij× Ľ +Ġej erc +å¾ ® +ke a +ĠG erry +ĠS ic +大 çļĦ +Ġ196 6 +ies e +Ġfoss ils +Ġest ad +ĠK ane +ci Äĩ +Ġìľł íĬľë +Ġп ам +ĠCru ise +int érieur +Ġbe kannt +ĠP ode +Ġdem ander +R em +Ġinv ade +Ġdecor ating +rop ic +Ġcow boy +ĠPh oto +opol it +Ġì»¬ë Ł¬ë +Ġre ap +Ġhand writing +à¹Ħ ร +Ġë ļ +Ġب عد +ĠM t +Ù Ģ +Ġspaces hip +Ġnational ism +Ġcouncil s +ĠGriff in +ĠAh med +Ġcl ich +ĠO L +w l +ĠPil ot +å® ® +Ġacron ym +Ġg els +Ġelectro ly +è ĵ +Ġм ной +Ġepis od +ĠDies es +ĠAT P +Ġed iyorum +Ġexpress es +Ġexhib its +C omm +Ġк ÑĢÑĥп +Ġmat ar +Ġ20 25 +ĠArt em +vas ive +r Ãł +Ġbe ÅŁ +é» ĥ +Ġliz ard +Ġfill e +Ġì§ Ī문 +Ġмо Ñī +Ġt ür +Ġcul prit +Ġwo ven +ĠAN Y +n im +Ġt ay +Ġprom in +Ġacom pa +Ġid é +Ġbo iler +ĠThe men +Ġaven ue +ĠM ud +Ġнов Ñĭе +Ġwitness ing +Ġl ance +ĠCH AN +ĠBe ver +ت Ùħ +Ġchem otherapy +K ing +ĠbÄĻd ÄĻ +Ġat ual +Ġt ive +Ġtalk in +Ġqued ar +ie ÃŁ +ed el +Ġìĸ´ì łľ +Ġjog ar +Ġö r +Ġundert aking +ĠStre ngth +Ġmil hões +ĠW ine +ĠM olt +è® ² +ãģij ãĤĮ +Ġunderm ine +ĠArch ives +v ana +mer cial +M C +Ġcast e +п ÑĢ +Ġlegisl ators +ul ators +ên io +Ġëį °ë +ĠÑħоÑĤ иÑĤе +Ġн ек +Ġs urn +Ġcons ci +ĠP OW +Ġcul inary +ĠK AT +ĠFol ks +Ñĭв аем +Ġв ок +ãģij ãĤĭ +s ervice +pt s +Ġпоб ед +æĺ¯ åķĬ +Ġt ents +Ġn ord +ST E +Ġrepublic an +Ġwy k +Ġmin ions +èĻ ķ +Ġmem ang +j est +Ġcompar ative +Ġty le +car bon +bed ingt +ks en +Ġneg ativity +Ġsjäl v +Ġd ú +æīĢ æľī +Ġrec alled +c ra +ĠT ada +ĠÑĢÑĥ ки +ĠопÑĢед ел +Ġproc rast +Ġjog os +ĠO o +ĠHe arts +Ġé ch +Ġksi Äħż +Ġco arse +ĠT ube +ĠG reens +Ġé n +Ġdumb bell +ĠÑĤ и +Ġquer er +ا ØŃ +Ïĥ ει +ĠпÑĢав илÑĮно +Ġп ап +Ġcomp ra +Ġt ér +ĠAnt es +Ġoptim um +Ġbisc uit +κ ι +acz ego +Ġìĭľê°Ħ ìĿ´ +ĠMar ines +ver o +Ġvacc inations +Ġpet ty +rit ers +Ġа л +count ry +Ġcoun ters +Ġattend ant +ĠH ui +ãģ¨ãģĦãģĨãģĵãģ¨ ãģ§ +ck a +ÑģÑĤвен нÑĭй +gu y +Ġtrick ed +ĠR ED +Ġthr illing +ÏĢο ι +Ġpig gy +Ġan unci +OR TER +ĠVal ue +Ġr ond +ĠA DA +Ġpos er +h ores +ĠR oland +ĵ ¯ +Ġno ir +Ġש ×IJ× +ë° ľ +iem and +ĠпоÑĤ еÑĢ +ê³ ³ +Ġê± ± +Ġformat ting +ĠL ed +è§Ģ çľ¾ +Ġkill ers +ĠÄij ấy +Ġha ar +ag ain +! > [ +min ster +Ġв ли +Ġident ifier +ĠLamb da +Ġtr os +Ġflaw less +Ġdetriment al +Ġbun ları +W ar +Ġreg ião +羣çļĦ æĺ¯ +ĠB ike +cess ors +Ġc ùng +ĠR N +Ġê½ ĥ +Ġküç ük +ĠBegin ning +íĺ ¸ë +Ġge we +Ġden ote +ĠAlber to +Ġprob iot +Ġo de +Ġmol ar +Ġburst ing +ass umed +Ġfoot prints +ved a +Ġstero ids +Ġfl aming +ĠE ller +Ġerk ennen +ät zen +Ġlife cycle +ĠD OU +ĠK arena +ĠGuer ra +è¿ĺ æĺ¯ +Ġsin ister +Ġpod éis +Ġpar ab +Ġok o +Ġmat éri +Ġcar ic +son aro +Ġpratic amente +ÑĥÑģ а +Ġcomun que +Ġvig ilant +Ġreg imes +ĠShoot ing +Ġra ids +ĠN ora +ĠW ieder +m ens +ĠÑģ од +Ġê²½ìļ° ìĹIJëĬĶ +Ġв Ñħод +Ġaut obi +ĠS chn +ĠRob bie +ĠF itness +Ġкон ÑĦ +Ġpeng uin +моÑĤÑĢ Ñı +Ġми ним +play s +Ġdeleg ates +M er +Ġsist em +ĠMicha els +m ale +ا ع +Ġcá ch +ĠH ä +Ġ×Ļ ×ķ×ĵ×¢ +Ġsuper power +Ġstr on +Ġro ver +Ġdé pend +éĻ ³ +Ġret iring +Ġvamp ires +Ġmer de +ĠCh anging +Ġt ame +Ġspokes person +Ġc ay +Ġfl irting +ĠGr ö +Ġw är +Ġwy b +Ġcoe ur +ạ nh +ĠìĻĢ ìĦľ +Ġconna is +ĠHundred s +ĠBe a +Ġα ÏĢ +pr uch +Ġsocied ade +ĠWh ilst +ĠK ait +esp ace +Ġch ia +ĠEr m +Ġë°Ķ ê¿ +Ġf ences +ĠM ortal +ê² ģ +Ġг ÑĢаÑĦ +ĠHom eland +ĠJ UN +is st +Ġpar lar +Ġsport y +é o +Ġdeep en +ĠBeh avior +éĢ ı +åĵĪåĵĪ åĵĪ +Ġer rand +Ġrot ary +ĠWell ington +W ind +Ġmes ela +ả ng +iend e +Ġex cell +ĠGen ius +ĠEdu ardo +æľī 人 +ĠÅŁ unu +ĠÄ° stanbul +Ġprod uto +Ġ ãħİãħİ +O FF +Ġwoll t +çĪ Ĩ +Ġëī´ì Ĭ¤ +Ġl ass +Ġher tz +Ġar omatic +Ġзв он +Ġaut oc +ĠL ust +Ġ11 2 +ĠÎ Ĺ +Ġreview ers +Ġrecept ive +å°į äºĨ +â nd +og lo +ĠìķĦëĭ Ļ +Ġn go +Ñĸ ÑĤи +Ã¥ t +con o +Ġtek rar +Ġ주 ê³ł +Ġgel miÅŁ +Ġbed time +ĠAr gh +AD A +ĠгоÑĢод а +ĠÄ ĩ +Ġall iances +g iggling +Ġyer de +Ġsp ies +Ġg utes +ç i +Ġallt id +ĠL ah +ŀ IJë +Ġdo kÅĤad +ÙĪ ÙĬ +Ġtoxic ity +Ġcancell ation +Ġ195 8 +d ro +Ġìŀij ìĿĢ +ĠMotor ola +Ġmult in +Ġenthusi asts +ĠM ighty +ĠCoc onut +: ãĢĮ +ĠPict ures +Ġsang re +Ġbl inking +ol esome +ĠìĬ¤íĥĢ ìĿ¼ +F P +Ġboom ing +ĠдеÑģÑı ÑĤ +Ġr atchet +Ġtim elines +len ess +Ġc ages +ĠGood night +omet imes +Ġc unning +ĠR isk +ul ed +d ade +Ġpr ata +Ġgust arÃŃa +am us +ĠJin ping +Ġest rut +Ġdescob rir +ĠM Äģ +ĠAll an +Ġ åĪĨ +Ġ×ľ× § +Ġpres erv +ĠStraw berry +Ä ı +L u +Ġk ro +ĠRep orts +ìħĶ ìķ¼ +Ġval t +Ġpouv ait +Ġapp ar +ĠB one +Ġprefer ably +ĠRep ública +å°± åĪ° +Ġher zlich +Ġchim ney +Ġç ev +Ġvis as +Ġver r +Ġcultiv ation +ĠArmen ia +Ġвд ÑĢÑĥг +Ġcock ro +retch ed +art z +ĠлÑİд Ñıм +ĠpolÃŃt icas +ĠP anz +ĠA KA +ĠëĪ Į룬 +Ġer ro +Ġcam per +Ġ10 2 +ठ¸ +d one +Ġho ard +ĠÐŁÐ¾ÑĤ ом +je ong +Ġdest a +p ak +Ġin im +Ġgrow ers +ĠMess age +Ġele ctor +eng age +ĠFor bes +ĠCincinn ati +Ġdiffé rence +d f +Ġsp ar +Ġawait s +ĠUSS R +ĠR ising +ĠHo ÅŁ +Ġfoot ing +Ġcond iciones +ÑĤоÑĢ ов +Ġclin ician +ĠDisk uss +å£ ĵ +ר ×Ĵ +× ¥ +ite it +g ren +Ġchar isma +Ġle uke +Ġirrit ating +Ġcir ca +ĠRhod es +Ġp ior +Ġhandic ap +roy able +Ġv ull +O G +Ġin ÃŃcio +ier i +Ġspl ashing +Ġdem ise +Ġassist ir +Ñĩ ÑĤо +Ġcover t +ĠG ud +ภī +kl är +ĠìŀIJ 꾸 +Ġver ändert +ĠR EM +ĠCon ven +at ge +Ġpierws ze +Ġcler gy +ling ton +l iv +V PN +ĠÑģ ожал +ĠH ate +ãģ¨ ãģĵãĤį +ÏĨ ο +ĠResp ons +оз д +Ġet mek +Ġchem in +Ùħ Ø© +Ġê°Ģ 족 +T re +Ġum as +ĠBur ton +Ġpatri arch +ĠSmithson ian +¥ ĺ +M oon +A ir +Ġmed ios +Ġer aser +Ġwoll ten +Ġpare il +ĠBill ie +æĬ ½ +еÑĢÑĤ в +Ġparl ament +Ġag ony +ĠQU E +sequ ently +An other +ĠWh ew +ĠAnn ual +Ġse ben +ìĥģ ìĿĦ +val ues +ŀľë §Į +Ġsin on +ere al +ĠEn light +ĠChem istry +ĠCatal unya +Ġdoct r +ant on +Ġst uk +ĠPl ate +ĠKardash ian +Ġfil os +ĠW et +Ġпоп ÑĭÑĤ +Ġunknown s +ĠSch on +ĠBald win +Ġtelescop es +ĠG ucci +ox ide +ĠConserv ative +ìĦ± ìĿĦ +Ġhina us +P ower +Ġê±´ ê°ķ +Ġprev ail +orm an +m achine +Ġ194 6 +Ġun bel +Ġsch aut +Ġp iel +e enth +Ġobject ively +Ġch akra +aud io +Ġch icos +ĠV ault +å° Ī +Ġmedic inal +ĠT ail +Wh ile +Ġas phalt +Ġfro ze +ĠE K +unch ing +n osis +20 15 +ĠG ri +Ġodd ly +ĠM är +ĠA eg +c olo +P ar +Ġëĵ¤ ìĸ´ë +Ġv inden +ĠO VER +Ġ iced +Ġsc orp +Ġha c +qual ified +ĠÑĥвид еÑĤÑĮ +erm o +H EN +Ġso i +Ġmulti ples +Ġlay outs +Ġblind ness +ĠB owser +Ġпод ÑĤ +ĠÃ İ +vention al +Ġm ata +mad ı +Ġge ez +Ġcad ence +Ġważ ne +ĠChrist ie +ven ge +C all +Ġturn around +Ġblo b +ĠЯ к +ĠVoice over +Ġper il +ĠJa ime +ĠH OY +l ane +Ġse bel +ĠDu o +ĠHistor ical +Ġd ni +Ġg ema +y k +Ġsab em +ắ ng +Ġv ars +ĠRon nie +ĠRon aldo +ĠPer què +ns inn +h air +Ġrelent less +Ġl yn +Ġtravel er +æĢİ麼 äºĨ +n ine +Ġant im +Ġì¼ Ģ +Ġsnow ball +ĠÑħаÑĢ акÑĤеÑĢ +Ġintern s +Ġconstitu ency +ĠÐĿ ам +׾ ׾ +V EL +Ġvikt igt +Ġap oyo +ÙĦ ب +Ġj ard +Ġheight ened +ÑĢо ÑģÑĤ +ĠSM ITH +Ġдел а +Ġrepair ing +Ġr igt +ĠShe ikh +ĠBrit ney +Ġevery time +Ġadvent urous +oc key +er nt +Ġat aque +ĠAltern atively +e ffect +Ġpalav ras +ĠElli ott +Ġréuss i +Ġhypert ension +ĠMan ual +Ġproph etic +Ġhand c +ÑĮ е +Ġref rain +ĠSqu id +ìŀ ¡ +Ġком ан +äll en +Ġlleg ó +Ġbas h +ion y +ĠÑģк лад +Ġк аб +Ġcare less +ĠP ool +Ġtr ás +Ġfil s +ĠSch r +Ġsp rawd +ĠMon aten +Ġunfor gettable +ĠCott on +Ġinconven ient +ĠR X +or is +Ġhum bled +ת ×Ĺ +ĠØ¢ Ù¾ +Ġincre ÃŃ +ĠKomment are +èĪ Ĵ +r ación +Ġv antage +ĠSe al +ĠìĿ´ 거를 +Ġjou e +ãģĿãģĨ ãģ§ãģĻãģŃ +Ġìĺ¤ë ŀĺ +ĠиÑģп ÑĭÑĤ +ob en +Ġgr ate +Ġcontro le +ĠPer cy +ÅĤ ada +Ġsimult aneous +Ġprot oty +ĠgroÃŁ er +Ġbew usst +iniz i +Ġpass ieren +ĠHapp iness +åī ĩ +sh i +ge ht +Ġstation ed +ĠErgeb nis +Ġdirect amente +Ġsurv ives +Ġperson es +BER G +Ġvom iting +Ġconhe cer +Ġad jour +ĠCiv ic +pe i +bur st +Ġëĭ¤ ëĭĪ +é ı +Ġsl ed +Ġplataform a +ĠS ect +ĠDe fin +çĻ» éĮ² +én om +chn et +Ġprofit ability +Ġerre icht +á»ı i +c ation +Ġì§Ģ ê¸ +Ġperd re +Ġfel ony +Ġ195 7 +æĪij å¾Ī +Ġunsuccess ful +Ġnag yon +Ġelastic ity +Ġfac ade +Ġearth ly +ĠамеÑĢик ан +Ġcon n +c la +D u +Ġpolit iques +Ġhal o +iant es +Ġмо ей +ãĥ³ ãĥī +ton es +el ier +è® ļ +ht aking +Ġwicht ige +Ġan no +ĠL ok +ill ions +Ġv iver +Ġsol chen +Ġsu f +ĠSal z +ĠN vidia +z uge +ĠSp ike +V ideo +Ġtw or +ĠA la +èij ī +Ġh anya +ĠAd m +ìĿ µ +ĠPatient en +ĠOn ion +ĠKo be +ĠSc ene +ĠR ash +æ¨ Ļ +ÑĢа ÑģÑĤ +ist ani +Gen eral +le ye +imb ap +Ġconce aled +ĠFr idays +ĠW ool +Ġнов ÑĭÑħ +Ø´ ر +Ġê²° ê³¼ +Ġjed och +´ìĭ ľ +ĵ¤ ëıĦ +Ġìŀ¥ ëĤľ +uk t +L ou +Ġ먹 ìĸ´ +ĠEx pect +Ġдом ой +Ġirrespons ible +Ġac erca +ĠZ ust +ר ×ĺ +U I +Ġyout ubers +ĠPos itive +Ġsoci oe +Ġsn atch +èĥ Į +Ġrefresh ed +Ġnom inations +ĠP att +Ġobsol ete +Ġdem iÅŁ +åı ¤ +orm uÅŁ +ĠìĨĶì§ģ íŀĪ +Ġf la +Ġcra ziest +ĠZ ie +ĠT ú +z ep +ic em +Ġë©ĭ ìŀĪ +Ġcyn ical +ãģĿ ãĤĵãģª +Ġt resp +Ġcra z +Õ¥ Õ +Ġne lle +Ġm ph +ĠN ered +ĠK ob +ĠE ck +¨¸ ëĭĪ +J an +ĠТ огда +Ġde ci +ĠV og +Ġbubb ling +éĢ Ģ +ú a +Ġproduct os +iber al +Ġrepl icated +ĠImp rove +ill ary +C ha +Ġré du +ĥIJ íķĺë©´ +Ġcon not +ĠK rit +ĠдÑĥÑħ ов +Ġtread mill +ĠP W +Ġзов ÑĥÑĤ +Ġcl ams +Ġdra fting +Ġ195 6 +un ta +Ġexpend itures +ĠHoo ver +W OO +ÑĪе е +Ġded uction +mon ary +Ġreci b +Ġpo vo +Ġëį Ķë +ĠP AL +ĠBl ow +Ġwy p +Ġdest ac +de al +Gra eme +Ġnécess aire +Ġdamn ed +Ġ19 38 +Ġìĭ¤ ìłľë¡ľ +Ġtro op +Ġinsight ful +ĠT J +ĠоÑģ в +Ġf idelity +ĠSk ip +ĠMay o +ë§ Ŀ +app e +Ġbl as +ĠW Y +ĠG N +ct ar +S u +Ġcu ent +he ws +Ġcorps es +A bs +Ġwaste water +Ġc iek +ĠOn u +Ġexplos ives +Ġar ma +ĠSTEP HAN +polit ik +ĠOs aka +ta ÅĤ +Ġyap ıyor +Ġiz quier +Ġbele za +ĠWy att +åIJ ¸ +Ġsu k +Ġspec jal +Ġdan ke +wh istle +ĠfÃŃs ica +ĠHar riet +ĠìķĦ íĮĮ +Ġwill kommen +ip ing +ĠÑģмоÑĤÑĢ иÑĤе +Ġмож еÑĪÑĮ +Ġinacc urate +Ġarrog ance +ĠRem o +γ ά +ass ed +Ġdeliver ies +Ġst inky +ĠпеÑĢ еж +j ay +Ġtrans itional +Ġr ere +ĠNGO s +ĠAT M +Ø® ت +i ology +Ġв лад +Ġsch me +ĠSh ine +ìķ ¡ +p ants +Ġser ge +Ġsen hor +Ġab duct +ĠBry ant +V ES +Ġawak ened +ĠL az +rop olis +ĠLa o +è¾Ľ èĭ¦ +Ġvill a +Ġsumm ers +Ġent hal +Ġ194 9 +V ia +Ġìĸ´ì ¨ +Ġtend on +Ġviol et +Ġintellect ually +Ġboun ced +ara us +Ġ19 19 +Ġvra ag +Ġsp el +ĠSch war +Sc ott +ĠInd o +Ġë§ Ŀ +Ġcanon ical +ĠI KE +Ġthat ÃŃs +Ġme llan +æ¯ Ĵ +ig mat +C ould +... ?) +Ġfo arte +ĠKum ar +rend o +Ġél é +à ´ +val uation +c ases +Ġintuit ively +h ong +ett ed +Ġsou ven +Ġmor b +Ġc ors +ĠN V +ĠHas an +æĥħ åĨµ +ie ved +Ġì§Ģê¸Ī ìĿĢ +Ġdum pling +Ġcontr ôle +Ġambigu ity +æ©Ł æľĥ +Ġco g +ĠScript ures +Ġc ai +Ġbe ver +大家 éĥ½ +Ġhu is +Ġa ime +Ġerkl ären +ĠL M +ĠF ey +éļ ¾ +à®± த +Ġsuper vised +Ġje we +s pl +ĠÑĨенÑĤ ÑĢ +Ġcoll isions +ÙĦ Ùģ +ĠHog warts +ĠDur ham +×ķ× £ +Ġphosph ate +Ġoverse e +Ġinspect ions +Ġbr inc +ĠZ ak +Ġpay off +Ġch aud +ĠHung er +ã os +v ir +Ġf iance +Ġb oug +l ived +c ry +åĽŀ ä¾Ĩ +Ġjoint ly +Ġgirl friends +ĠNe xus +¦¬ ê²łìĬµëĭĪëĭ¤ +ĠK wang +åĵĪ åĽī +å§ ij +ÅĤ ÄĻ +ĠN eden +ie ce +Ġins erting +æŁ ĵ +ĠM ummy +ĠGlo be +Ġle e +Ġg erman +Ġcre ams +ach o +Ġch Æ°a +ĠGal ile +Ġfür s +Ġest iver +c idos +Christ ian +Ġlors qu +Ġcut est +v ale +ĠкÑĢ еп +Ġw ary +Ġslic ing +Ġesper ando +ĠV ander +ĠDe ixa +Ġ195 4 +Ġmów iÄħ +Ñĸ ÑĶ +Ġtool ing +Ġrest or +Ġpos ición +Ġintent ar +ĠAp ache +OU L +ĠÙĪ ب +Ġmat ière +ãĥ¼ ãĤĵ +Ġl inen +Ġestrat ég +ĠMut ta +é¡ ¯ +è¡Į äºĨ +Ġpart ing +Ġminim izing +Ġapp rendre +æľ Ŀ +Ġан глий +ĠDo o +ĠFire fox +c ómo +Ġge opolit +Ġmak an +Ġmog elijk +ĠÏĢε Ïģι +Ġcá» © +Ġinstall er +Ġdib uj +ĠHe ath +lo op +ĠBro ken +HY UN +sh elf +Ġf izer +Ġenh ances +ä¾ĭ ãģĪãģ° +Ġдо ÑģÑĤи +ĠP UB +ĠKolleg in +Ġatt ained +Ä ¾ +Ġmist ress +ĠOft entimes +×ŀ ×Ļ×Ŀ +Ġbe we +ĠS ora +ra uen +ba um +Ġroll ers +Ġm ering +ĠP AC +Ġн Ñĸ +ĠRép ublique +ĠÑĤ ÑĢав +ĠV anguard +uc iones +Ġ무ë ĮĢ +Ġg our +¯ ¤ +ĠÏ ī +Ġsa una +Ġpe ine +ĠVal erie +ĠS ikh +fend imiz +ber o +ĠÑĩ и +Ġdo ÅĽwiad +ĠE uros +Ġcomment aires +Ġtwe aks +ĠF aster +ĠÑĢаÑģ к +Ġprogress ively +ĠE uch +bor o +ĠIng red +C ap +Ġun check +Ġìĺ¤ë ¥¸ +Ġw re +ĠF T +ör ung +Ġmemor ized +ĠD inner +ĠP hew +ou bl +Ġput a +Ġadm its +ез де +op od +Ġpand a +Ġhing es +ci pe +Ġtrans act +Ġpod ia +Ġp ics +Ġcriter ion +ĠOrchest ra +ĠBl og +Ġsolem n +ĠPix ar +Th ree +Ġв низ +ĠVol unte +ĠSav age +ĠPV C +ĠC af +Ġwy kon +Ġgrad ers +Ġcr ouch +Ġcl iche +Ġsoy beans +ĠM UR +ĠGonz alez +ĠM imi +ĠBol sonaro +Ġdi aphrag +Ġbil ang +ëIJĺ ëĬĶ +éĤ£ æĪijåĢij +Ġregul ating +M c +J udge +Ġн ож +Ġjak Äħ +ites se +ĠW ij +Ġl ata +gro aning +POS ING +Ġ×IJ×ķת ×ķ +Ġha ga +Ġground ing +Ġviol ently +Ġt ills +Ġeng ag +ĠHo llow +Ġпоп ÑĥлÑıÑĢ +Ġw prowad +Ġrepl aces +Ġfluores cent +urg ical +igg ly +ĠTrad itional +t te +ĠÙĦ Ùĩ +Ġphosph orus +Ġapr on +ĠWat ers +ĠK ultur +ав ай +Ġol ives +Ġ×Ķ×IJ× ľ +Ġteil weise +Ġsen cill +Ġprend s +Ġnarr ower +Ġj ätte +ĠInformation en +ìĥģ ìĿ´ +Ġstar ve +Ġfr ick +ĠBe weg +ठ² +Ġdolph in +ĠLAUGH TER +ĠINTER VIE +åĶ ī +Ġyan lÄ±ÅŁ +Ġtor pedo +Ġshort ages +ìĿ´ë ĵľ +ıld ı +Ġp aws +Ġo zone +Ġcultiv ated +ĠF ot +Ġnot or +н оз +Ġко ÑĪ +Ġtouch screen +ĠAll y +æľĢ è¿ij +Ġ맼ìŀĪ ìĸ´ìļĶ +ĠС еÑĢ +Ġв полне +Ġpap rika +ĠDust in +Ġefect o +Ġop ini +Ġmu ut +Ġhá»į c +Ġinter ject +ÄĻ t +Ġbut ts +ure z +ĠP ike +ĠH ok +ĠGu inea +ĠCath edral +Ġ14 00 +C ra ++ , +ë§ Ľ +³´ë ıĦë¡Ŀ +aby rin +Ġvide og +Ġо ÑĢÑĥж +Ġu ž +Ġbus cando +ĠAss istance +éĻ ½ +Ġmel hores +ì¡ ´ +Ġëģ ¼ +ĠR J +Ġت Ùħ +Ġo min +Ġmotor cycles +ĠS app +Ġsupply ing +ĠAl gun +Ġaer ospace +×¢ ׾ +oc cup +le ist +Ġê±° ëĬĶ +Ġcomplet a +b res +! ( +ĠÐŁÑĢ ед +Ġdisadvant aged +ĠAtt end +ĠJud ah +á»ĭ ch +yl ene +act ly +Ġset ups +Ġammon ia +ĠSchwe iz +ĠSh ame +Ġband e +ĠF uel +Ġtroubles ome +Ġnum ero +ĠM OM +ĠпÑĢед лаг +ment ioned +ĠболÑĮÑĪ ое +ĠVikt or +ĠSty les +Ġcruc ified +ructure d +en viron +Ġmor als +Ġmed itating +Ġax ial +is ance +ĠAb st +G reen +Ġê± ´ì +Ġquad rant +Ġper gi +Ġcamer aman +ĠSe qu +Ġpa used +ĠLa ughing +ê· Ģ +? .. +ĠÅ» e +Ġpermit ir +Ġdetect ors +ĠH UD +av al +ĠìĹ¬ê¸° ê¹Įì§Ģ +Ġh ubs +Ġbest immt +ĠбÑĥдеÑĤ е +INTER POSING +Ġten gan +Ġcra ve +ĠBundes regierung +ĠBlo ody +Ġus ability +ĠE as +ĠÄijá»Ļ ng +Ġ195 5 +Ġkrie gen +Ġhabit ual +Ġessential s +rim inal +Ġroomm ates +éĤ£ å°± +ĠпеÑĢе Ñħод +Ġng hi +Ġmen ing +ĠSym phony +ĠH ug +ag gi +Ġw ied +Ġmit ad +ãģ£ãģ¦ ãģĦãģĨ +te enth +ida Äĩ +S ave +Ġrob iÄĩ +Ġboun ces +° ĸìĹIJ +st ars +Ġprag matic +Ġcogn ition +Ġwra pper +Ġw arten +ad h +Ġpens a +ĠHert z +Ġn ÄĽ +ĠRe id +ĠPC s +ĠMo le +Ġ.. ... +Ġpre cio +ĠChampions hips +ê°Ģë Ŀ½ +Ġv ér +Ġcorrid ors +ĠElect ronic +S l +Ġа ле +Ġoverth row +Ġk abul +ĠR ES +ĠCyber punk +ог од +ĠÐĿ ав +Ġw an +Ġmanifest ations +Ġcual es +ĠW ise +ĠLös ung +Ġex fol +Ġearn s +ÑĥÑģÑĤ иÑĤÑĮ +Ġsa pp +ĠBra un +ĠBRAND ON +ì¹ Ļ +Ġs ano +ĠF EL +Ñĭв айÑĤеÑģÑĮ +ожд ениÑı +Ġse wn +F un +Ġrecipro cal +Ġexpans ive +ĠTra ffic +Ġktóre go +ĠÙĪ س +æĺ ¥ +Ġë¹ ¨ +pro ve +ig are +Ġlo h +Ø§Ø ¶ +H ope +Ġdevote es +ĠG om +Ġste als +ĠU ms +ĠTw ice +ãĤ ² +iy im +Ġrhythm ic +ĠV orte +Ġpref ix +om ination +Ġdat o +Ġcust ard +ĠVO ICE +å· ŀ +Ġmen y +ist ors +Ġíĺ ij +ĠìĤ´ì ķĦ +Ġíĥ Ħ +Ġk ort +Ġab a +ĠV era +ep y +Ġì¹´ë©Ķë Ŀ¼ +Ġsubmer ged +ĠC lock +Ġthumbna ils +Ġbo ast +ĠF are +!! ] +ĠÅĽ m +Ġkaik ki +ĠTechn ologies +ìĻ ¸ +ãĥ Ĵ +иÑĤ ай +å°ı æĻĤ +Ġа ÑĤ +Ġkn obs +Ġre icht +ượ ng +gl io +Ġ맼 ìĿ´ +ê°IJ ìĿĦ +Ġjot ka +ĠHand y +ĠHab en +n ous +Ġin land +Ġam azon +ho oting +S L +Ġle isten +~ " +Ġprov oke +ĠTw ist +Ġ×ij× Ĺ +Ġdepart ed +ê° ľë¥¼ +Ġk onse +ĠCar wyn +íķĺ ìĭł +ident al +ES CO +Ġt teokbokki +Ġdiz endo +ç· ´ +ınd aki +imas u +af ar +Ġland fill +Ġcorrect ing +Ġcle ars +ĠNum mer +H AM +Ġcart ridges +ĠDies el +p aced +Ġobl iv +Ġmoy ens +ĠSin ne +ĠPre is +il iz +ĠÑģм ож +Ġbroad en +ä»ĸ æĺ¯ +x es +Ġcarbohyd rate +íĺ ¹ +se ok +Ġecho es +Ġc ess +ë° Ķ +Ġб изнеÑģ +Ġllam ado +Ġess ent +ĠìĿ¼ë °ĺ +ĠA ires +ph en +Ġze bra +Ġsymbol ism +On ce +Ġr acks +ĠKaf ka +ĠÑģеÑĢÑĮ ез +Ġsin n +p icious +ka a +Ġmotherf ucker +Ġapprentices hip +Ġr pm +Ġtax ation +Ġfur ry +ĠSac red +ĠÑĢаз м +por a +eng es +ĠíĹ Īë +ĠÑģ ин +Ġsanit izer +Ġcr inge +ĠS ca +оÑĩ но +Ġof ere +Ġmel odies +ĠVel vet +ĠIhr er +ĠHy brid +ĠG iov +Ġirgend was +Ġdep ende +ĠUs ers +Ġh ump +dri ving +Ġs f +Ġruth less +à¹ĢภĦ +Ġlem ons +Ġfö ret +ĠO j +Ġм ама +Ġinter personal +Ġge v +Ġab norm +иÑģ л +Ġин д +Ġkont roll +Ġreg res +Ġled ge +Ġerzäh lt +ĠT act +Ġarri vé +Ġsubstant ive +Ġspoon ful +zw ischen +oooo o +Ġconten ido +Ġbes l +á»ĥ m +k ten +Jam ie +Ġsand y +ä¸į åIJĮ +â ĭ +Ġp ase +Ġdet te +ĠBelg ian +ê° ľë +ula res +r ud +ig or +ĠíĮ ¬ë +Ġremed ies +Ġblast ing +ĠS ich +Ġож ид +Ġmon str +Ġmanif old +Ġglaub en +ĠE ST +Ġstream line +Ġlobb ying +ĠGoth ic +to ire +.. ' +Ġdém ocr +Ġнаб лÑİд +Ġwsp ól +ĠczÄĻ ÅĽÄĩ +ä¸ĭ éĿ¢ +is és +g angen +Ġbez pie +rem lin +ê° Ŀ +St ill +Ġres ides +Ġgele cek +Ġtélé phone +Ġpe wn +Ġle opard +Ġcompliment ary +Ġc rib +ĠAnim als +Ġge il +ess el +Ġgard er +Ġcatch y +æ¨ ¹ +ĠE ts +ĠCom mercial +ĠD ENNIS +ĠCoordin ator +ĠAb igail +ffff ff +ấ p +Ġpeque ña +Ġinject ions +ce kt +Ġphilanthrop y +Ġp uck +Ġcelebr ates +ĠD unk +ĠD latego +ãģ¾ ãģł +δ ή +grad uate +ĠM obil +t ill +ac am +Ġyol ks +Ġtang led +Ġman iac +Ġoblig ed +ĠLa ink +Ġver der +ĠDam on +Ġmut ant +Ġhop ping +Ġre ins +Ġinver ter +Ġcont empt +׳ ס +le arning +M iss +ĠÐĵ оÑģ +ĠMe yer +ê»ĺ ìĦľ +é£ İ +×ķ׳ ×Ļ×Ŀ +ask ing +Ġtrim ming +Ġtre asury +Ġs ente +A ust +ĠUnterstüt zung +ĠCom edy +ĠAn akin +é ¹ +ÑĢÑĥ ÑĤ +ĠH ari +ograph ers +Ġoat meal +ĠB ots +ä¸į äºĨ +Ġп алÑĮ +Ġacknowledge ment +x ic +Ġê´Ģ ìĭ¬ +gas ping +Ġãģ ķ +Ġterr ace +Ġor naments +ĠM ER +comm ittee +ĠìĹĨ ìĬµëĭĪëĭ¤ +Ġr ij +é ³ +צ ×Ŀ +le me +Ġlibert ies +Ġfell as +ĠCop per +ben ch +ĠIde a +á»į n +ÑĪ а +Ġvers ión +ÏĦο Ïį +ĠÐľ и +ĠпÑĢил ож +Ġbox er +ĠT anner +ĠM oy +ì¹ĺ ëĬĶ +T hr +Ġtin ham +Ġpol ishing +Ġconsequ ently +Ġamen ities +ĠK I +ĠGRE EN +ĠFrank ie +н иÑĤ +itt el +Ñģ кое +urs ed +Ġup bringing +Ġth ứ +ĠìĭĿ ìľ¼ë¡ľ +Ġwh im +Ġchin ese +conf idence +ĠJ eder +ãģª ãģ®ãģ§ +aj cie +ĠT ous +ĠPow ers +ừ a +other mal +ĠвÑĭ ÑĪе +r ale +Ø§Ø ® +Ġì§Ģ ìĽIJ +Ġép isode +Ġsul ph +Ġenc ara +k raft +alar ı +ĠCom es +Ġdiv ul +ĠRud olph +ĠM use +Ġut ens +ĠìŀIJ 주 +Ġp ana +ĠVeget a +ĠPH P +ĠN SA +ent in +ĠCarne gie +ا ÙĬ +iÄĻ cy +H arry +Ġf ır +С п +Ġglad ly +Ġaver aging +íķĺ ê²łìĬµëĭĪëĭ¤ +лÑı ÑİÑĤÑģÑı +ĠÐľ енÑı +Ġquot ation +ri res +itch ens +ay ed +Ġun att +ĠP erez +ĠоÑĤ меÑĤ +Ġtact ile +ĠEu h +is ini +b uh +Ġhat ır +ĠìŀĪ ìľ¼ +Ġpolicy makers +³´ì Ħ¸ìļĶ +ac ı +Ġκ ι +Ġregister ing +re to +ĠSpr inkle +ĠGram my +ax ter +Ġб и +Ġsit ter +Ġpred ic +Ġthin ly +Ġstr um +Ġag grav +Ġa ha +ر ج +m ellow +Ġconst ante +ĠL aut +ist on +Ġtransition ed +ĠCamb odia +ãģĦ ãģįãģ¾ãģĻ +è·Ł 大家 +art ed +Ġmis f +ĠPunk te +Įë ĵł +Ġtremb ling +Ġges pannt +ĠعÙĦÙĬ Ùĩ +Ġникак иÑħ +Ġë¶Ģë ĵľë +ĠÑĢазв иÑĤ +Ġit chy +Ġc iento +Ġpl ains +Ġk ittens +Ġback log +ĠPres iding +pt a +Ġha voc +ĠDarr in +ĠÐĽÑİ Ð± +Ġsegreg ated +Ġg hetto +Ġerle bt +Ġdrug iej +ĠSi xt +åı ĥ +ร ะ +uen cia +Ġíķĺ 기 +ĠëĨ į +Ġrob i +Ġpione ers +Ġmilli ards +ĠWitch er +Ġ무ìĹ ĩ +or ro +m ass +Ġdiver gence +ĠRiver a +ĠNo odles +Ġend roit +ĠK osten +ĠдÑĢÑĥг а +ĠmÃŃn imo +ĠKazakh stan +ت Ùĩ +Ġвоз дÑĥ +Ġgesch rieben +ĠN il +Ñģ ки +ĠFr üh +Ġbever ages +æº IJ +ĠG on +æĺ ¨ +Ar in +ĠInt ro +ocaly ptic +Ġexhaust ion +ĠStat us +ĠBatter y +és z +£ ¼ë +air y +Ġë³´ìŬë ĵľë +Ġdispar ity +Ù Į +ĠTuc son +Ġbright ly +pro blem +Ġbiom ass +éĻ į +§ ī +Ġhur dle +Ġwavelength s +Ġ< < +Ġteam ed +FF FF +ĠS lim +om ial +Ġunve iled +ĠVere in +ÙĤ Ø· +est ry +Ġcl ás +Ġch eddar +Ġaccus ing +ĠScient ific +ĠбÑĥд е +ĠCyr us +ε ÏĦε +Ĩĵ ê³ł +Ġë³ Ħ +Ġcur d +Ġrefer rals +sh ift +åį ķ +nik ów +Ġm ier +Ġconf ronting +ê²ĥ ëıĦ +aw l +Ġtry in +Ġê·¸ëŀĺ ìļĶ +Ġch iar +Ġìĺ¤ëĬ ĺëıĦ +æĶ¿ æ²» +es que +Ġmism os +ĠSh ak +Ġsoci aux +Ġpi ÅŁ +ĠkiÅŁ i +Ġcy an +h ay +be w +b od +ĠÎ ¹ +ĠMain ly +Ñİ ÑĤÑĮ +hab itude +ĠÑģп окой +è·Ł æĪij +Ġpre con +ĠM andy +ðŁ¤ £ +ill os +Ġgr upp +Ġcr umble +Ġconstru ctor +erv ices +Ġlight house +ĠCon cept +ан ÑĤи +alt ro +h ope +ĠAll eg +ìĸ´ë ¥¼ +pie ces +oun ter +Ġíķĺ ëĭĪê¹Į +ĠìĿ¸ íĦ°ë +Ġvérit able +Ġthread ed +bl ind +Ĥĺë Ŀ¼ +Ġtr ays +ĠEd ison +ĠÃĸ z +ĠSte vie +Ġl ender +Ġbrig ade +Ġdeuts che +m uffled +b art +Ġinsan ity +Ġsav vy +Ġsens ational +Ġdere chos +ĠM X +ĠпÑĢ еп +Ġthreat ens +Ġrealt Ãł +Ġindic ative +Ġch ops +Ġbenef iting +ĠVern on +ĠSt rand +n un +qu ently +10 1 +Ġe el +ìĪ Ļ +r ints +ĠÙħ س +Ġب د +Ġпо ÑģÑĤÑĢо +Ġyap mÄ±ÅŁ +Ġol ması +Ġi edereen +ol é +ke f +Ġë°ľ ìĥĿ +Ġr ained +Ġalm ighty +ĠвÑĭ д +ĠC PR +F re +Ġinhab ited +Ġarb ets +Ġa kin +а ÑģÑĤв +v ania +Ġhäuf ig +ĠMat te +s orry +Jen ny +ĠгÑĢ ад +Ġwh it +Ġbro kers +å¯ Ł +Ġh ine +ast en +Ġг ÑĢÑĥ +M B +ĠP RI +S ab +Ġwrest ler +Ġfacil itating +Ġeh kä +ĠC red +Ġ12 7 +Ġnot hin +Ġmand ated +å¯ Į +ÑĥÑĤ ÑģÑĤв +F rank +Ġwor s +Ġdzie ÅĦ +ĠUnder ground +Ġznaj du +ĠB ä +ĠPrin zip +аÑĤ елей +Ġveter inar +Ġsplend id +Ġroz p +Ġpsych opath +ig on +Ġh ops +Ġc ần +ĠX ian +Ġtro isième +Ġproduct o +ĠdeÄŁ er +ĠContin uing +ив ал +c ık +Ġmoistur izer +Wh ite +Ġsi is +ĠEver est +ien ced +Ġcả m +ĠJ apon +´ìł Ħ +Ġten ÃŃan +Ġenc anta +M m +Ġdrop down +ĠI ya +³´ë ©´ +Ġword ing +ĠSque eze +ĠMap le +Ġclar ified +ĠMun icip +ĠRou ge +ĠNick i +ĠGo o +v olt +t ek +fect ure +f red +ar rive +ãĥ¼ ãģĦ +te z +E p +Ġob ras +ĠV ID +ĠR iv +ĠMod i +i be +Ġacontec endo +Ġim itation +Ġcamoufl age +Ġspan ning +ĠSEC RET +ĠOre o +ìĨĮë ¦¬ +Ġh unch +Ġca ÅĤe +Ġspont aneously +ĠPer d +Ġet ap +ĠHo le +ĠDis ability +Ġafter life +æģ © +Ġtest ified +Ġpres up +Ġpet roleum +Ġcontr ario +ĠAss essment +ÄŁ lu +Ġp ests +Ġdil ig +ĠвÑģÑĤÑĢ еÑĤ +Ġcons équ +Ġcann ons +Ġcan oe +ĠM ile +Ġcit oy +Ġbe gged +ĠMin nie +ÅĤy ch +Ġprinci pe +ÏĢÏĮ ν +m niej +Ġw ert +Ġëĭ¤ë ĵ¤ +an se +Ġunc les +Ġprovoc ative +Ġinter sections +Ġdemocr ats +ĠJul ius +ин ки +yg usal +Ġ׾ ×ķ +Ġgj orde +Ġg asket +ĠB ock +ĠÄ° n +b reat +ĠEqu ity +ard ı +Ġкан але +Ġд ней +Ġt Ỽi +Ġfi xture +Ġab uses +Ġv aya +Ġou vert +Ġmultic ultural +Ġcontext o +ĠSes ame +Ġdé pl +Ġcons omm +ĠPart e +Ġp em +ĠCon an +Ġб ÑĸлÑĮ +Ġpersu aded +Ġdra ins +M oo +F ORE +Ġб аÑĤ +Ġf od +ĠProduct s +ì§Ħ ì§ľ +Ġ" [ +ĠW ick +ĠNar uto +н али +ry w +Ġl odge +Ġin h +Ġvont ade +Ġdi j +ĠJes ús +Look ing +Ġfore arm +ĠIntegr ation +ĠHARR IS +Ġtool bar +le ader +Ġsel dom +Ġб ÑĢоÑģ +ĠK ook +он д +Ġmon opol +Ġmill et +Ġl ira +ĠAs ians +Ġ18 90 +ci ÄŁim +Ġed en +ĠIKE A +ĠNeigh bor +ĠKazu ya +ü d +Ġpsych edel +Ġenvision ed +åĿ Ĺ +Ġï· » +Ġw under +ĠBulgar ia +B rid +Ġmar row +Ġdep iction +ĠT in +ĠPhar ise +Ġeinz ige +Ġblind ly +ãģĽ ãģ¦ +Ġdef ens +D ire +Ġvibr ating +Ġtroll s +Ġdisrespect ful +Ġw od +Ġstimul i +Ġcreep ing +Ġcla irement +Ġsc ariest +Ġdécouv rir +Ġ10 4 +ĠвеÑĢ Ñħ +ĠÅĤ at +Ġróż ne +Ġbar ley +ĠRe pl +ĠT we +k ke +ĠãģĿ ãĤĮ +ĠRed mi +ĠMet roid +Ġή ÏĦαν +Che ck +ĠS EN +Ġ ido +ÑĤоÑĢ ии +ó p +UN KNOWN +Ġänd ern +ĠJu ice +ĠGes icht +å°± æľĥ +ĠнаÑģÑĤ олÑĮко +íĥ ķ +Â Ń +ex hales +Ġì´ ī +Ġj sem +ÏĢ ÏīÏĤ +Ġit t +ëªħ ìĿ´ +Ġrem ix +Ġbloss oms +ĠR enee +is ations +ìĬ¤í Ħ° +Ġë³´ ìĿ´ëĬĶ +uest as +op edia +ĠA im +ìĿ´ì¦ Ī +sc ene +Ġleak age +uck t +S ad +A sk +Ġsusp ense +Ġimp ost +ĠStrateg ic +ĠIt ÃŃs +âĢ Į +Ġkey boards +Ġam using +og r +id erman +ŀ ĸ +Ġв ижÑĥ +Ġd ips +Ġapolog ized +ĠST AR +Ġesc uela +ĠC hing +н ениÑı +Ġë¶Ģë¶Ħ ìĿ´ +ĠFle et +Ġs amb +Ġentsprech end +Ġelectrod es +ĠFrei heit +æĪij ä¸įçŁ¥éģĵ +ĠSh rim +iÃŁ e +Ġselect ions +Ġfor di +Ġd oss +Ñı Ñĩ +Ġdiscrimin ate +ĠAu ÃŁerdem +Ġdesenvol v +ĠIntern al +ĠBened ict +å¯ Ĩ +ĠSh iv +M issy +Ġоб наÑĢÑĥж +Ġна ÑģÑĤÑĢо +Ġcontrol ar +ĠL ia +Ġopio ids +ant u +Ġcup board +æģ IJ +г е +acht s +Ġcur ated +Ġx em +Ġwe ary +Ġbre thren +Ġbudget ing +Ġpour tant +éļ » +ais ia +ĠоÑĤв еÑĩ +ĠG IS +μ αι +Ġש×Ķ ×ķ×IJ +Ġsa ud +Ġl Ỽ +Ðķ Т +ub ine +ĠнÑĥж ен +Ġkidna pping +Ġbr at +ĠTer re +ĠMon et +Ġë§Ī ìĬ¤íģ +Ġflash y +ĠIS BN +Ġfreel ance +i age +Ġjun ge +ì¶ © +cer al +ĠÑĤоÑĩ ки +Ġform ulate +ĠF ER +ĠDart mouth +ìľ¼ë ©´ìĦľ +å¢ ĥ +ow iÄħ +ĠëĶĶ ìŀIJ +Ġreg iment +Ġmetabol ismo +ĠP arr +Ġ충 ë¶Ħ +Ġsan ity +ĠL al +ĠG ö +ĠG la +Ġprot o +Ġmicroscop ic +Ġk ang +ĠSc alia +Ġp ug +ĠSc ore +ĠSav annah +Ġgard e +ĠN OR +å°į åIJ§ +Ġsche int +Ġp óÅĤ +Ġcor ri +Ġbr ute +Ġ ÅĤad +ä»ĸ 们 +Ġsucceed ing +Ġbicy cles +N on +Ġseek ers +Ġuncond itional +Ġrhy mes +ĠGar age +Ġinv oice +Ġcan vi +ne ck +Ġcustom izable +irit ual +Que en +íķĺ ìĭľëĬĶ +Ġpower less +Ġcs ak +ä¸į ä¼ļ +is oft +Ġìłķ íĻķ +Ġnh ân +ĠM AND +ĠH af +Ġrevol ves +ä¹Ł åı¯ä»¥ +ov an +ar oo +ĠGr ind +éĽ ª +Ġindispens able +Ġconsult ed +ĠClin ical +A cc +Ġol hos +Ġmon ter +ĠH ana +et ah +Ġva an +Ġt igers +Ġcau cus +ðŁĺ Ĥ +³´ì ŀIJ +pow ers +ium s +ĠíĨ łë +Ġtrad icional +Ġreson ated +Ġìĭł 기 +th em +Ro bert +Ġelement o +Ġant id +Ġоб Ñģ +Ġnat ives +Ġlo ca +ow ment +ĠT ight +Ġ æĢĿ +Ġmel an +ĠN ue +am is +Ġsor gen +as ına +H ome +ĠPUB G +Ġaw fully +ĠSh ore +ĠPer ché +ĠL au +ĠCind erella +ĠCh est +Ġsem antic +Ġdesert ed +ĠMom o +ĠHern andez +gen es +ĠAd ult +иÑĩеÑģ кого +osh ima +ĠcaracterÃŃst icas +ĠK L +´ìŀ ¥ +oc ar +Ġfeh lt +Ġd ruk +ĠPop py +EN GLISH +ĠVerg leich +B rien +Ġrec omp +ĠÑģ д +Ġmer ger +Ġmarket ers +Ġhoney moon +Ġpen so +Ġbell i +еÑĤ Ñĥ +Ġbank er +Cam era +ĠSt all +ĠSt amp +ĠB ite +еж де +Ġs ür +Ġgü ç +ĠPas sover +ĠBug ün +ĠÑģожал ениÑİ +Ġн из +Ġman ure +Ġglac ier +è« ĩ +RA Y +ter ror +Ġsal ads +Ġhur ricanes +ĠDesign er +ator io +Ġfact ual +ĠTam my +Ġзв ÑĥÑĩ +Ġintrodu ctions +Ġhouse keeping +Ġh anger +ëĭ ĺë +ak te +ĠCol a +' ] +ĠG ender +оÑĢ он +ip se +ic ias +Ġsuccess ive +Ġpolit ic +Ġhö her +ĠQ iao +ĠG imme +Ġл ож +Ġse b +ĠWe iter +ĠSak ura +ĠB oulder +ĠAm érica +peÅĤ nie +Ġtecn ologÃŃa +ish ops +f ur +Ġmoon light +Ġdispers ed +Ġre z +ен ное +алÑĮ нÑĥÑİ +ĠTw elve +ĠH OR +ìĭ¤í ŀĪ +il age +Ġshad ed +Ġres umes +ĠPe anut +ĠM ILL +ap ons +ĠU FC +ĠSo le +Ġjoy stick +ĠOliv ier +war ming +Ġsyll abus +Ġоб Ñīе +Ġhi á»ĩn +Ġfest a +Ġcr adle +ĠZ ac +Ġremem brance +Ġê°Ļ ìķĦìĦľ +ĠpiÄĻ k +Ġco exist +ĠV II +Ġá reas +Ġu waż +Ġobser vers +Ġmännisk or +co on +ĠD AM +Ġnas zym +Ġall igator +ĠFree ze +ĠEst ate +ĠÑĤÑĢ ади +Ġunder cover +Ġn ies +ĠFeh ler +pl in +ĠK abul +il ate +Ġê³ł ìĸij +Ġm op +ìĦ ¼ +Ġand erer +ĠK ELL +ок и +Ġж еÑģÑĤ +Ġgra zing +Ġda ÃŃ +Ġcapital ize +Ġa pex +Ġnurt uring +Ġcort ar +Ġcontr ac +ımız ı +Ġtand em +éĥ½ æľī +ge ment +ĠÑģиÑģÑĤем а +Ġman que +ia jÄħ +W OR +Ġا ب +Ġcart s +AN O +Ġë°Ľ ê³ł +ĠC ena +ĠBi ology +id ar +Ġa ż +er ne +an u +Ġthank ed +Ġsubmar ines +Ġman ic +Ġм оз +ä¼ Ĭ +inst ant +ess ential +Ġsam urai +Ġpast i +Ġal an +Ġbro ch +Ġb aker +ĠGu ill +¨ ¼ +Ġwithd rawn +ëĭ Ŀ +Per fect +qu ency +Ġstream lined +Ġ13 00 +´ë ıĦ +Ġëĸ łë +Ġãģ¯ ãģĦ +Ġh vad +ä¸Ģå®ļ è¦ģ +Ġverb ally +ĠK ons +Ġì¡° ìĭ¬ +Ġdie z +æİ° æİ° +Ġchuck ling +ĠM ih +Ġrall ies +Ġman ter +Ġearn est +s uper +Ġge ce +ĠR end +ĠGer ade +jen igen +ĠV all +Ġìŀ ĪëĤĺ +ĠÑģказ ала +Ġtrabal h +ĠнаÑĪ ем +Ġм еÑħ +ik it +Ġnoun s +Ġneurolog ical +Ġmotiv ational +ĠMcM ahon +ĠFin ished +Ġë³´ ìĿ´ +ĠField s +Ġadoles cents +ĠT isch +ĠNe ben +ĠFl owers +ĠEner g +Ġdire t +ĠTh i +ĠP icas +æĥ ľ +æĢİä¹Ī æł· +Ġav ete +ĠF ors +ĠChap el +N ão +E t +ĠÑģод еÑĢж +ren o +Ġs ven +Ġdost ÄĻp +ne e +ĠSnap dragon +ĠID s +ìķĺ ëĬĶëį° +ר ×ļ +Ġsun flower +Ġperpet ual +ç³ ĸ +Ġkn ights +Ġg ird +ĠTo ld +Ġvolcano es +Ġadvers ary +ĠEconom y +Ġextra pol +Ġbl uetooth +Ġzoom ing +Ġsk ys +Ġgen ial +ÃŃcul os +amb re +Ġм еÑĢ +Ġteen y +Ġstress ing +ìķ Į +ON Y +Ġtransluc ent +Ġround ing +Ġgr ues +×Ļ׳ ×Ķ +ap rès +Ġprue ba +Ġpoly gon +Ġblue berry +ĠProgram m +Ġtren ches +Ġse bagai +Ġpal ate +Ġla ude +Ġbehav ed +Ġlongitud inal +ĠMod ule +Ġadm ir +λ ι +G reg +Ġwy st +Ġpropag ate +Ġmold s +ĠT ub +ĠL oud +ust o +Ġun stoppable +Ġreinfor cing +éĿŀ常 çļĦ +ĠпÑĢоблем а +Ġpot encial +Ġhe mp +ìŀ Ķ +ठ¯ +Ġopt ic +Ġerfolg reich +Ñģ Ñĭ +олÑĮ ÑĪе +ur st +ĠPo is +Ġrespond ents +Ġneh me +ĠEx ternal +ol ate +H yun +Ġquart z +Ġmathematic ian +Ġbás icamente +Ġa il +ìł ľë¥¼ +att utto +Ġno oit +Ġaff lict +ĠOl ga +èŃ · +Ġна ÑĤ +Ġd ites +Ġreal idade +Ġk än +Ġuniqu eness +Ġpad res +Ġsubs idi +Ġpige ons +β α +st ad +Ġder en +ĠС лед +d oo +ĠопиÑģ ании +Ġam ber +Ġgoose bumps +ĠfrÃ¥ gor +ĠV ital +ĠIsrael ites +w asser +Is n +Ġcomm its +ĠSTE VEN +ĠBev ölker +uit ive +Ġleg en +Ġbr uk +иÑĢов ан +yn en +hel m +Ġgener ational +ĠL ändern +οι ÏĢÏĮν +uz u +Ġcall er +он ÑĮ +üm ü +Ġbes ar +Ġpl ats +Ġmig rated +Ġj ap +ĠW AR +Ġdis sect +ĠZus ch +ĠZe iten +ĠL ions +ĠD F +â Ķ +ки в +Ġpedest rians +ĠMar ilyn +d ock +Ġy ht +Ġre incarn +ĠSon o +ĠGrow th +ÑĥÑģ ов +Ġdun geons +Ġbag us +k ich +ĠÑĥ кÑĢаÑĹ +éĨ « +ĠK eller +chem istry +J apanese +Ġwill st +Ġdecomp osition +ĠÑģÑĤ ен +Ġrev ived +íķĻ êµIJ +ĠÅ ĵ +ä½ IJ +ìĭ ¸ +ipp y +Ġhour ly +j än +ĠWork shop +Ŀ¼ ìĦľ +Ġcu arto +Ġpat rim +ĠB urch +ĠìŀĪ 기 +Ġhe pat +Ġh Ãłng +ĠëĮĢ íķ´ +ĠваÑĪ и +Ġre work +Ġpar se +Ġçıkt ı +ĠS ax +ĠMong o +ĠAa ah +ram ble +D J +Ġstabil ized +ĠSpe ech +Book s +Ġhur dles +ĠW O +ĠLamb org +Ġ19 33 +Ġvor bere +Ġclin ically +Ġbreat htaking +ĠGate way +пеÑĢв ÑĭÑħ +ut ers +Ġë¹ µ +Ġyet er +Ġpull ey +Ġmuff in +ĠPre fer +ĠP ence +Ġinform ação +ìĬ¤í Ĭ¸ë +ãĤ¸ ãĥ£ +ĠTur tle +ĠReg ina +ĠLo ad +do es +pan ze +¸ Ķ +Ġmin a +ĠLatin os +amm ers +ĠT ort +ĠBey once +имо ÑģÑĤи +ĠвопÑĢоÑģ Ñĭ +Ġbul un +èĢĮ å·² +ine k +bere ich +Ġpast ure +ĠO A +ĠM elt +ĠEt t +ĠD Y +Ġob wohl +Ġle agues +ÑĤ еÑģÑĮ +Ġк ÑĥÑģ +Ġv ors +Ġto pp +ograph ical +as st +Ġl indo +Ġë°Ŀ íĺĶ +Ġré fl +Ġclim bs +Ġv arsa +Ġmethy l +ĠKar ere +Æ°á» Ł +R ad +Ġprepared ness +он Ñĩ +ĠO D +ĠC GI +Ġठ® +Ġspeech less +Ġlas ci +Ġbol ag +ĠÑħоÑĩ еÑĤÑģÑı +Ġgr ieving +ĠJohann es +ĠCar roll +ad aki +Ī ¬ë +ĠsÅĤ u +Ġinner halb +Ġgymn astics +п ÑĢи +if iques +Ġkar ate +Ġdom u +ãģĿãĤĮ ãģ§ +OTH ER +Ġdemand é +Ġbook let +ĠKy oto +Ġw oh +ĠMar ÃŃa +viol ent +J E +Ġl óg +Ġbrut ally +c ot +ĠÙħ ÛĮ +ĠWars z +å® Ī +w ol +Ġmik ä +ĠPron ounce +ĠBrend an +Ġr oup +Ġital iano +å¦Ĥ æѤ +Ġкомп ÑĮÑİÑĤ +Ġur ging +ed es +Ġcarbon o +ĠRichards on +ĠÐĿ аÑĩ +ĠTra iner +ĠCrime a +Ġdi apers +Ġco vet +ĠMah ar +ĠH utch +ĠAus w +ber ty +Ġind ifferent +кÑĢ еÑĤ +uld ade +Ġhar ms +¢ ÙĨ +les ia +Ġg io +ĠMist ress +ĠK nox +ĠFRE E +Ġë £¨ë +ĠнаÑĪ а +Ġinvinci ble +Ġma iden +ĠJ eez +Ġbre ve +po le +Ġcritic isms +ĠRus ia +ठ® +ph in +ĠComp are +ĠB ON +Ġsne aking +ĠR ails +ĠG eral +Ġ195 3 +H ola +Ġоп ÑĭÑĤ +Ġrain forest +Ġbel um +ĠOb i +ĠIS S +ãĤĮ ãģªãģĦ +ĠС в +Ġbl ond +Ġwz gl +Ġpowiedz iaÅĤ +Ġch oking +ĠSong s +ĠBir az +Ġyell s +Ġstyl ist +ÏĮ ÏĦε +Ġsch reiben +ĠJ aw +ĠEle ven +ĠR if +/ . +Ġìĺ¤ë ŀľë§Į +Ġtreat ies +uff ed +ĠâĪ Ĵ +Ġroof s +à¹Ģภª +Ġë » +Ġspark le +ĠK iev +ĠAr gu +ere cht +ĠÐĿад о +ĠF IL +Ġmol ta +ĠDe vi +Ġcam pe +Ġbene vol +ĠT ough +Ġmo im +Ġevac uate +Ġer rado +å© Ĩ +ÑĢÑĥ го +Ġíİ ĺ +ĠÎĵ ια +Ġweak en +Ġillum inated +Ġsig lo +ĠV acc +и ей +al is +ĠÑĥ ÑģÑĤÑĢой +Ġdon a +ÅĤ os +ü man +Ġprodu cción +Ġcl ot +ĠM ango +Ġune asy +Ġsh uts +ĠExam ples +ve ll +e be +Ġprompt ly +ĠT eles +ĠпÑĢоÑĪ л +Ġpu erta +Ġüber zeug +Ġco ch +so cial +ĠB enson +ĠM eth +ĠEx ped +Ġsupplement al +Ġconce ive +Ġ×ĺ ×ķ×ij +Ġcapt ivity +ıĻ ìķĪ +ĠÑħ Ñĥд +form ing +Ġupload s +Ġturbul ence +j oint +Ġsatisf actory +ĠAn ime +Ġwash es +Ġliber als +ĠSun shine +ĠRE AL +ub lik +b inary +T ony +Ġpolar ized +Ġenrich ed +t aking +ĠëģĿ ëĤĺ +Ġple asures +Ġex termin +in ese +at l +v är +аÑĢ Ñĭ +Ġmy ÅĽ +n arrator +Ġод ном +Ġnaj wiÄĻ +Ġmobil ize +Ġmill or +Ġat a +æ· · +ĠpolÃŃt ico +Ġple ad +Ġpain ters +ĠS ow +о ÑĦ +ĠìĺĽ ëĤł +ĠÑĩ ÑĤоб +Ġs abor +ĠUnd ert +ĠJER RY +Å¡ ÃŃ +Ġë° ĸìĹIJ +Ġpréc éd +Ġannot ation +ĠI naudible +Ġtext ured +Ġfisher man +v ordan +icher ung +Ġìłģ ìĿ´ +Ġge zeigt +Ġmand ates +Ġbe ak +ĠTW O +ĠAk bar +il ian +Ġtiế p +Ġsuperior ity +ink u +Ġl ys +ĠF CC +ĠC PA +ust ering +nic os +an ja +Ġch ills +ĠC age +Ġse aling +Ġsa ç +Ġded ans +ĠAl ger +Ġspe zie +Ġcol oss +ıy ı +clock wise +Ġexact amente +Ġ iemand +am ı +Ġmand ar +ra j +f aced +ag ua +Ġê¹ Ķë +Ġins besondere +Ġdri zzle +Ġdimin ish +ĠY oda +A I +Ġbil miyorum +ĠM MA +ateg ory +ĠпеÑĢ еп +Ġparticip ar +Ġnormal ized +Ġcomplex ities +æ´ ² +æİ § +аÑĢ ов +m ist +ich a +Gr oup +Ġresil iency +Ġnog le +ĠCN C +pr ü +Ġphysic ists +н ок +L I +Ġstuff s +Ġsist emas +Ġinterfer ing +ĠMar vin +ér cito +ĠìĹĨ ê³ł +Ġson ic +Ġequ iv +Ġab ord +ĠRam en +Ġ0 9 +med im +at iques +Ġдел аÑİÑĤ +Ġunanim ously +Ġsk irts +ĠíĬ¹ ë³Ħ +ĠP rix +k ami +Ġfr uition +Ġbirthday s +ик ом +Ġinaug ural +Ġcorrel ate +ĠT ory +ĠëĤĺ ìģ +Ġde w +ĠPre cis +ih i +Ġë¬¸ìłľ ê°Ģ +Ġc iting +ĠL ana +ĠK ag +Ġplay through +ĠProt ocol +fr ist +hov ah +Ġmerc iful +Ġb ilingual +ĠG uitar +r h +Ġglam orous +ĠVik ings +ĠOoo oh +íķĺ ëĬĶëį° +ĠUg anda +Ġcollaps es +ent ry +Ġantioxid ants +ëĤ ĺë +ÑĪ аÑı +Ġtri via +Ġgä ller +Ġfun gi +Ġmil ks +Ġd icht +μ η +po ke +ĠвÑĭп ÑĥÑģк +Ġfeed er +ĠAl cohol +h ower +Ġdes erving +ĠRe bel +ios is +Ġ10 3 +Ġhand out +Ġen m +Ġland lords +Ġge ology +r ils +Ġco bra +ĠV old +ĠP anch +ĠGRE G +Ġpr oss +Ġbrac elets +ĠV ega +Ġroz um +æ¬ ¾ +аз д +ĠLy nd +ĠHon ors +Ġsurrend ered +Ġlibr arians +12 5 +ĠÑģ иг +Ġuniform ly +ĠE agles +ìķ Ļ +иÑĤ ан +and id +ĠìłĪë ĮĢ +ĠØ ¶ +Ġarrest s +ĠCS V +ĠAzerbai jan +ort ic +ĠD X +ĠAdvent ures +Ġab us +ĠF au +Ġschlim m +Ġratt ling +Ġconsum es +ĠTol kien +Ġresurrect ed +ĠX Y +íĬ¸ ê°Ģ +ĠвÑĭ ÑģÑĤÑĥп +ĠAng ie +żen ia +M ic +ĠShe ila +acht et +Ġover st +Ġl â +Ġine ffective +æĿ ¡ +æĢİä¹Ī äºĨ +å¿ Ļ +Ġwicht iger +Ġv ino +Ġp um +Ġang led +ĠP ione +ĠM ỹ +ãģĿãĤĮ ãģ¯ +wo ÅĽÄĩ +d raw +ั à¹Ī +mark ets +Ġcaf es +ĠC em +â Ŀ¤ +ĠS uit +M K +Ġemphas izes +Ġtort illa +Ġmejor ar +ĠSur viv +cast ing +Ġeduc ación +ĠG um +u ely +ĠìĹ¬ê¸° ëĬĶ +Ġstretch y +en ça +Ġwith hold +Ġex iting +Ġenthal py +ĠTrans it +ıl mÄ±ÅŁ +al ies +Ġsal var +Ġlean ed +ĠgroÃŁ es +Ġf itt +ак и +S arah +Ġhost el +Ġfinger na +Ġnadzie jÄĻ +w ives +R ec +Ġsp ool +аÑĤ ов +ĠEn emy +Ġf ury +Ġdet ta +ĠF ay +éļ ¨ +Ñı ÑİÑĤ +Ġaproxim adamente +Ġsil os +Ġmag ist +Ġc ree +ĠKr ank +ĠD OWN +Ġstart led +Ġre born +ĠUm welt +ĠSuz anne +ни ÑĨÑĭ +out ez +ĠJ AC +y ards +rad as +ra u +ip ts +h ail +Ġparagraph s +Ġme glio +Ġisol ating +Ġace ite +ĠH arsh +Ġcy st +ĠBlock chain +ĠÑħоÑĢоÑĪ ий +Ġvirt uous +Ġinvestig ación +Ġdev oir +Ġmast urb +ĠS ale +ÙĬر Ø© +ĠÎ § +ĠStra ÃŁen +Ġdi kk +Ġa fore +ĠJung kook +Ġcho ciaż +ĠDebat te +Ġweird ly +Ġvia je +reg ist +H elp +Ġkind eren +Ġform ulated +Ġenf im +ĠTow ards +ко ÑĹ +iver ing +ĠдеÑĤ и +char ger +Ġpur l +Ġacadem ically +ĠNur se +Ġdel eting +ay o +Ġref usal +Ġdepict s +ĠDr acula +Ġtoast ed +ĠZomb ie +ĠSuper ior +ĠB old +Ġquizz es +Ġg le +4 50 +Ġcome ço +yn n +Ġver st +ĠO laf +Ġpom oc +ĠS ask +ë ĺ +ĠT CP +ĠProper ty +íķĺ ì£ł +à¸ľ ม +bo om +ar os +ĠÑĢоÑģÑģ ий +ĠбÑĭв аеÑĤ +åĩº åİ» +ĠìĿ´ìķ¼ 기를 +Ġcomb ien +v acc +Ġeben falls +par a +Ġз м +Ġdesper ation +ord re +Ġש׾ ×Ļ +Ġgener ously +ĠÐŀ к +Ġorb iting +> ", + "archeological": "archaeological", + "ardour": "ardor", + "armour": "armor", + "armoured": "armored", + "armourer": "armorer", + "armourers": "armorers", + "armouries": "armories", + "armoury": "armory", + "artefact": "artifact", + "artefacts": "artifacts", + "authorise": "authorize", + "authorised": "authorized", + "authorises": "authorizes", + "authorising": "authorizing", + "axe": "ax", + "backpedalled": "backpedaled", + "backpedalling": "backpedaling", + "bannister": "banister", + "bannisters": "banisters", + "baptise": "baptize", + "baptised": "baptized", + "baptises": "baptizes", + "baptising": "baptizing", + "bastardise": "bastardize", + "bastardised": "bastardized", + "bastardises": "bastardizes", + "bastardising": "bastardizing", + "battleax": "battleaxe", + "baulk": "balk", + "baulked": "balked", + "baulking": "balking", + "baulks": "balks", + "bedevilled": "bedeviled", + "bedevilling": "bedeviling", + "behaviour": "behavior", + "behavioural": "behavioral", + "behaviourism": "behaviorism", + "behaviourist": "behaviorist", + "behaviourists": "behaviorists", + "behaviours": "behaviors", + "behove": "behoove", + "behoved": "behooved", + "behoves": "behooves", + "bejewelled": "bejeweled", + "belabour": "belabor", + "belaboured": "belabored", + "belabouring": "belaboring", + "belabours": "belabors", + "bevelled": "beveled", + "bevvies": "bevies", + "bevvy": "bevy", + "biassed": "biased", + "biassing": "biasing", + "bingeing": "binging", + "bougainvillaea": "bougainvillea", + "bougainvillaeas": "bougainvilleas", + "bowdlerise": "bowdlerize", + "bowdlerised": "bowdlerized", + "bowdlerises": "bowdlerizes", + "bowdlerising": "bowdlerizing", + "breathalyse": "breathalyze", + "breathalysed": "breathalyzed", + "breathalyser": "breathalyzer", + "breathalysers": "breathalyzers", + "breathalyses": "breathalyzes", + "breathalysing": "breathalyzing", + "brutalise": "brutalize", + "brutalised": "brutalized", + "brutalises": "brutalizes", + "brutalising": "brutalizing", + "busses": "buses", + "bussing": "busing", + "caesarean": "cesarean", + "caesareans": "cesareans", + "calibre": "caliber", + "calibres": "calibers", + "calliper": "caliper", + "callipers": "calipers", + "callisthenics": "calisthenics", + "canalise": "canalize", + "canalised": "canalized", + "canalises": "canalizes", + "canalising": "canalizing", + "cancelation": "cancellation", + "cancelations": "cancellations", + "cancelled": "canceled", + "cancelling": "canceling", + "candour": "candor", + "cannibalise": "cannibalize", + "cannibalised": "cannibalized", + "cannibalises": "cannibalizes", + "cannibalising": "cannibalizing", + "canonise": "canonize", + "canonised": "canonized", + "canonises": "canonizes", + "canonising": "canonizing", + "capitalise": "capitalize", + "capitalised": "capitalized", + "capitalises": "capitalizes", + "capitalising": "capitalizing", + "caramelise": "caramelize", + "caramelised": "caramelized", + "caramelises": "caramelizes", + "caramelising": "caramelizing", + "carbonise": "carbonize", + "carbonised": "carbonized", + "carbonises": "carbonizes", + "carbonising": "carbonizing", + "carolled": "caroled", + "carolling": "caroling", + "catalogue": "catalog", + "catalogued": "cataloged", + "catalogues": "catalogs", + "cataloguing": "cataloging", + "catalyse": "catalyze", + "catalysed": "catalyzed", + "catalyses": "catalyzes", + "catalysing": "catalyzing", + "categorise": "categorize", + "categorised": "categorized", + "categorises": "categorizes", + "categorising": "categorizing", + "cauterise": "cauterize", + "cauterised": "cauterized", + "cauterises": "cauterizes", + "cauterising": "cauterizing", + "cavilled": "caviled", + "cavilling": "caviling", + "centigramme": "centigram", + "centigrammes": "centigrams", + "centilitre": "centiliter", + "centilitres": "centiliters", + "centimetre": "centimeter", + "centimetres": "centimeters", + "centralise": "centralize", + "centralised": "centralized", + "centralises": "centralizes", + "centralising": "centralizing", + "centre": "center", + "centred": "centered", + "centrefold": "centerfold", + "centrefolds": "centerfolds", + "centrepiece": "centerpiece", + "centrepieces": "centerpieces", + "centres": "centers", + "channelled": "channeled", + "channelling": "channeling", + "characterise": "characterize", + "characterised": "characterized", + "characterises": "characterizes", + "characterising": "characterizing", + "cheque": "check", + "chequebook": "checkbook", + "chequebooks": "checkbooks", + "chequered": "checkered", + "cheques": "checks", + "chilli": "chili", + "chimaera": "chimera", + "chimaeras": "chimeras", + "chiselled": "chiseled", + "chiselling": "chiseling", + "circularise": "circularize", + "circularised": "circularized", + "circularises": "circularizes", + "circularising": "circularizing", + "civilise": "civilize", + "civilised": "civilized", + "civilises": "civilizes", + "civilising": "civilizing", + "clamour": "clamor", + "clamoured": "clamored", + "clamouring": "clamoring", + "clamours": "clamors", + "clangour": "clangor", + "clarinettist": "clarinetist", + "clarinettists": "clarinetists", + "collectivise": "collectivize", + "collectivised": "collectivized", + "collectivises": "collectivizes", + "collectivising": "collectivizing", + "colonisation": "colonization", + "colonise": "colonize", + "colonised": "colonized", + "coloniser": "colonizer", + "colonisers": "colonizers", + "colonises": "colonizes", + "colonising": "colonizing", + "colour": "color", + "colourant": "colorant", + "colourants": "colorants", + "coloured": "colored", + "coloureds": "coloreds", + "colourful": "colorful", + "colourfully": "colorfully", + "colouring": "coloring", + "colourize": "colorize", + "colourized": "colorized", + "colourizes": "colorizes", + "colourizing": "colorizing", + "colourless": "colorless", + "colours": "colors", + "commercialise": "commercialize", + "commercialised": "commercialized", + "commercialises": "commercializes", + "commercialising": "commercializing", + "compartmentalise": "compartmentalize", + "compartmentalised": "compartmentalized", + "compartmentalises": "compartmentalizes", + "compartmentalising": "compartmentalizing", + "computerise": "computerize", + "computerised": "computerized", + "computerises": "computerizes", + "computerising": "computerizing", + "conceptualise": "conceptualize", + "conceptualised": "conceptualized", + "conceptualises": "conceptualizes", + "conceptualising": "conceptualizing", + "connexion": "connection", + "connexions": "connections", + "contextualise": "contextualize", + "contextualised": "contextualized", + "contextualises": "contextualizes", + "contextualising": "contextualizing", + "cosier": "cozier", + "cosies": "cozies", + "cosiest": "coziest", + "cosily": "cozily", + "cosiness": "coziness", + "cosy": "cozy", + "councillor": "councilor", + "councillors": "councilors", + "counselled": "counseled", + "counselling": "counseling", + "counsellor": "counselor", + "counsellors": "counselors", + "crenelated": "crenellated", + "criminalise": "criminalize", + "criminalised": "criminalized", + "criminalises": "criminalizes", + "criminalising": "criminalizing", + "criticise": "criticize", + "criticised": "criticized", + "criticises": "criticizes", + "criticising": "criticizing", + "crueller": "crueler", + "cruellest": "cruelest", + "crystallisation": "crystallization", + "crystallise": "crystallize", + "crystallised": "crystallized", + "crystallises": "crystallizes", + "crystallising": "crystallizing", + "cudgelled": "cudgeled", + "cudgelling": "cudgeling", + "customise": "customize", + "customised": "customized", + "customises": "customizes", + "customising": "customizing", + "cypher": "cipher", + "cyphers": "ciphers", + "decentralisation": "decentralization", + "decentralise": "decentralize", + "decentralised": "decentralized", + "decentralises": "decentralizes", + "decentralising": "decentralizing", + "decriminalisation": "decriminalization", + "decriminalise": "decriminalize", + "decriminalised": "decriminalized", + "decriminalises": "decriminalizes", + "decriminalising": "decriminalizing", + "defence": "defense", + "defenceless": "defenseless", + "defences": "defenses", + "dehumanisation": "dehumanization", + "dehumanise": "dehumanize", + "dehumanised": "dehumanized", + "dehumanises": "dehumanizes", + "dehumanising": "dehumanizing", + "demeanour": "demeanor", + "demilitarisation": "demilitarization", + "demilitarise": "demilitarize", + "demilitarised": "demilitarized", + "demilitarises": "demilitarizes", + "demilitarising": "demilitarizing", + "demobilisation": "demobilization", + "demobilise": "demobilize", + "demobilised": "demobilized", + "demobilises": "demobilizes", + "demobilising": "demobilizing", + "democratisation": "democratization", + "democratise": "democratize", + "democratised": "democratized", + "democratises": "democratizes", + "democratising": "democratizing", + "demonise": "demonize", + "demonised": "demonized", + "demonises": "demonizes", + "demonising": "demonizing", + "demoralisation": "demoralization", + "demoralise": "demoralize", + "demoralised": "demoralized", + "demoralises": "demoralizes", + "demoralising": "demoralizing", + "denationalisation": "denationalization", + "denationalise": "denationalize", + "denationalised": "denationalized", + "denationalises": "denationalizes", + "denationalising": "denationalizing", + "deodorise": "deodorize", + "deodorised": "deodorized", + "deodorises": "deodorizes", + "deodorising": "deodorizing", + "depersonalise": "depersonalize", + "depersonalised": "depersonalized", + "depersonalises": "depersonalizes", + "depersonalising": "depersonalizing", + "deputise": "deputize", + "deputised": "deputized", + "deputises": "deputizes", + "deputising": "deputizing", + "desensitisation": "desensitization", + "desensitise": "desensitize", + "desensitised": "desensitized", + "desensitises": "desensitizes", + "desensitising": "desensitizing", + "destabilisation": "destabilization", + "destabilise": "destabilize", + "destabilised": "destabilized", + "destabilises": "destabilizes", + "destabilising": "destabilizing", + "dialled": "dialed", + "dialling": "dialing", + "dialogue": "dialog", + "dialogues": "dialogs", + "diarrhoea": "diarrhea", + "digitise": "digitize", + "digitised": "digitized", + "digitises": "digitizes", + "digitising": "digitizing", + "disc": "disk", + "discolour": "discolor", + "discoloured": "discolored", + "discolouring": "discoloring", + "discolours": "discolors", + "discs": "disks", + "disembowelled": "disemboweled", + "disembowelling": "disemboweling", + "disfavour": "disfavor", + "dishevelled": "disheveled", + "dishonour": "dishonor", + "dishonourable": "dishonorable", + "dishonourably": "dishonorably", + "dishonoured": "dishonored", + "dishonouring": "dishonoring", + "dishonours": "dishonors", + "disorganisation": "disorganization", + "disorganised": "disorganized", + "distil": "distill", + "distils": "distills", + "dramatisation": "dramatization", + "dramatisations": "dramatizations", + "dramatise": "dramatize", + "dramatised": "dramatized", + "dramatises": "dramatizes", + "dramatising": "dramatizing", + "draught": "draft", + "draughtboard": "draftboard", + "draughtboards": "draftboards", + "draughtier": "draftier", + "draughtiest": "draftiest", + "draughts": "drafts", + "draughtsman": "draftsman", + "draughtsmanship": "draftsmanship", + "draughtsmen": "draftsmen", + "draughtswoman": "draftswoman", + "draughtswomen": "draftswomen", + "draughty": "drafty", + "drivelled": "driveled", + "drivelling": "driveling", + "duelled": "dueled", + "duelling": "dueling", + "economise": "economize", + "economised": "economized", + "economises": "economizes", + "economising": "economizing", + "editorialise": "editorialize", + "editorialised": "editorialized", + "editorialises": "editorializes", + "editorialising": "editorializing", + "edoema": "edema", + "empathise": "empathize", + "empathised": "empathized", + "empathises": "empathizes", + "empathising": "empathizing", + "emphasise": "emphasize", + "emphasised": "emphasized", + "emphasises": "emphasizes", + "emphasising": "emphasizing", + "enamelled": "enameled", + "enamelling": "enameling", + "enamoured": "enamored", + "encyclopaedia": "encyclopedia", + "encyclopaedias": "encyclopedias", + "encyclopaedic": "encyclopedic", + "endeavour": "endeavor", + "endeavoured": "endeavored", + "endeavouring": "endeavoring", + "endeavours": "endeavors", + "energise": "energize", + "energised": "energized", + "energises": "energizes", + "energising": "energizing", + "enrol": "enroll", + "enrols": "enrolls", + "enthral": "enthrall", + "enthrals": "enthralls", + "epaulette": "epaulet", + "epaulettes": "epaulets", + "epicentre": "epicenter", + "epicentres": "epicenters", + "epilogue": "epilog", + "epilogues": "epilogs", + "epitomise": "epitomize", + "epitomised": "epitomized", + "epitomises": "epitomizes", + "epitomising": "epitomizing", + "equalisation": "equalization", + "equalise": "equalize", + "equalised": "equalized", + "equaliser": "equalizer", + "equalisers": "equalizers", + "equalises": "equalizes", + "equalising": "equalizing", + "eulogise": "eulogize", + "eulogised": "eulogized", + "eulogises": "eulogizes", + "eulogising": "eulogizing", + "evangelise": "evangelize", + "evangelised": "evangelized", + "evangelises": "evangelizes", + "evangelising": "evangelizing", + "exorcise": "exorcize", + "exorcised": "exorcized", + "exorcises": "exorcizes", + "exorcising": "exorcizing", + "extemporisation": "extemporization", + "extemporise": "extemporize", + "extemporised": "extemporized", + "extemporises": "extemporizes", + "extemporising": "extemporizing", + "externalisation": "externalization", + "externalisations": "externalizations", + "externalise": "externalize", + "externalised": "externalized", + "externalises": "externalizes", + "externalising": "externalizing", + "factorise": "factorize", + "factorised": "factorized", + "factorises": "factorizes", + "factorising": "factorizing", + "faecal": "fecal", + "faeces": "feces", + "familiarisation": "familiarization", + "familiarise": "familiarize", + "familiarised": "familiarized", + "familiarises": "familiarizes", + "familiarising": "familiarizing", + "fantasise": "fantasize", + "fantasised": "fantasized", + "fantasises": "fantasizes", + "fantasising": "fantasizing", + "favour": "favor", + "favourable": "favorable", + "favourably": "favorably", + "favoured": "favored", + "favouring": "favoring", + "favourite": "favorite", + "favourites": "favorites", + "favouritism": "favoritism", + "favours": "favors", + "feminise": "feminize", + "feminised": "feminized", + "feminises": "feminizes", + "feminising": "feminizing", + "fertilisation": "fertilization", + "fertilise": "fertilize", + "fertilised": "fertilized", + "fertiliser": "fertilizer", + "fertilisers": "fertilizers", + "fertilises": "fertilizes", + "fertilising": "fertilizing", + "fervour": "fervor", + "fibre": "fiber", + "fibreglass": "fiberglass", + "fibres": "fibers", + "fictionalisation": "fictionalization", + "fictionalisations": "fictionalizations", + "fictionalise": "fictionalize", + "fictionalised": "fictionalized", + "fictionalises": "fictionalizes", + "fictionalising": "fictionalizing", + "fillet": "filet", + "filleted": "fileted", + "filleting": "fileting", + "fillets": "filets", + "finalisation": "finalization", + "finalise": "finalize", + "finalised": "finalized", + "finalises": "finalizes", + "finalising": "finalizing", + "flautist": "flutist", + "flautists": "flutists", + "flavour": "flavor", + "flavoured": "flavored", + "flavouring": "flavoring", + "flavourings": "flavorings", + "flavourless": "flavorless", + "flavours": "flavors", + "flavoursome": "flavorsome", + "flyer / flier": "flier / flyer", + "foetal": "fetal", + "foetid": "fetid", + "foetus": "fetus", + "foetuses": "fetuses", + "formalisation": "formalization", + "formalise": "formalize", + "formalised": "formalized", + "formalises": "formalizes", + "formalising": "formalizing", + "fossilisation": "fossilization", + "fossilise": "fossilize", + "fossilised": "fossilized", + "fossilises": "fossilizes", + "fossilising": "fossilizing", + "fraternisation": "fraternization", + "fraternise": "fraternize", + "fraternised": "fraternized", + "fraternises": "fraternizes", + "fraternising": "fraternizing", + "fulfil": "fulfill", + "fulfilment": "fulfillment", + "fulfils": "fulfills", + "funnelled": "funneled", + "funnelling": "funneling", + "gage": "gauge", + "gaged": "gauged", + "gages": "gauges", + "gaging": "gauging", + "galvanise": "galvanize", + "galvanised": "galvanized", + "galvanises": "galvanizes", + "galvanising": "galvanizing", + "gambolled": "gamboled", + "gambolling": "gamboling", + "gaol": "jail", + "gaolbird": "jailbird", + "gaolbirds": "jailbirds", + "gaolbreak": "jailbreak", + "gaolbreaks": "jailbreaks", + "gaoled": "jailed", + "gaoler": "jailer", + "gaolers": "jailers", + "gaoling": "jailing", + "gaols": "jails", + "gasses": "gases", + "generalisation": "generalization", + "generalisations": "generalizations", + "generalise": "generalize", + "generalised": "generalized", + "generalises": "generalizes", + "generalising": "generalizing", + "ghettoise": "ghettoize", + "ghettoised": "ghettoized", + "ghettoises": "ghettoizes", + "ghettoising": "ghettoizing", + "gipsies": "gypsies", + "glamor": "glamour", + "glamorise": "glamorize", + "glamorised": "glamorized", + "glamorises": "glamorizes", + "glamorising": "glamorizing", + "globalisation": "globalization", + "globalise": "globalize", + "globalised": "globalized", + "globalises": "globalizes", + "globalising": "globalizing", + "glueing": "gluing", + "goitre": "goiter", + "goitres": "goiters", + "gonorrhoea": "gonorrhea", + "gramme": "gram", + "grammes": "grams", + "gravelled": "graveled", + "grey": "gray", + "greyed": "grayed", + "greying": "graying", + "greyish": "grayish", + "greyness": "grayness", + "greys": "grays", + "grovelled": "groveled", + "grovelling": "groveling", + "groyne": "groin", + "groynes": "groins", + "gruelling": "grueling", + "gruellingly": "gruelingly", + "gryphon": "griffin", + "gryphons": "griffins", + "gynaecological": "gynecological", + "gynaecologist": "gynecologist", + "gynaecologists": "gynecologists", + "gynaecology": "gynecology", + "haematological": "hematological", + "haematologist": "hematologist", + "haematologists": "hematologists", + "haematology": "hematology", + "haemoglobin": "hemoglobin", + "haemophilia": "hemophilia", + "haemophiliac": "hemophiliac", + "haemophiliacs": "hemophiliacs", + "haemorrhage": "hemorrhage", + "haemorrhaged": "hemorrhaged", + "haemorrhages": "hemorrhages", + "haemorrhaging": "hemorrhaging", + "haemorrhoids": "hemorrhoids", + "harbour": "harbor", + "harboured": "harbored", + "harbouring": "harboring", + "harbours": "harbors", + "harmonisation": "harmonization", + "harmonise": "harmonize", + "harmonised": "harmonized", + "harmonises": "harmonizes", + "harmonising": "harmonizing", + "homoeopath": "homeopath", + "homoeopathic": "homeopathic", + "homoeopaths": "homeopaths", + "homoeopathy": "homeopathy", + "homogenise": "homogenize", + "homogenised": "homogenized", + "homogenises": "homogenizes", + "homogenising": "homogenizing", + "honour": "honor", + "honourable": "honorable", + "honourably": "honorably", + "honoured": "honored", + "honouring": "honoring", + "honours": "honors", + "hospitalisation": "hospitalization", + "hospitalise": "hospitalize", + "hospitalised": "hospitalized", + "hospitalises": "hospitalizes", + "hospitalising": "hospitalizing", + "humanise": "humanize", + "humanised": "humanized", + "humanises": "humanizes", + "humanising": "humanizing", + "humour": "humor", + "humoured": "humored", + "humouring": "humoring", + "humourless": "humorless", + "humours": "humors", + "hybridise": "hybridize", + "hybridised": "hybridized", + "hybridises": "hybridizes", + "hybridising": "hybridizing", + "hypnotise": "hypnotize", + "hypnotised": "hypnotized", + "hypnotises": "hypnotizes", + "hypnotising": "hypnotizing", + "hypothesise": "hypothesize", + "hypothesised": "hypothesized", + "hypothesises": "hypothesizes", + "hypothesising": "hypothesizing", + "idealisation": "idealization", + "idealise": "idealize", + "idealised": "idealized", + "idealises": "idealizes", + "idealising": "idealizing", + "idolise": "idolize", + "idolised": "idolized", + "idolises": "idolizes", + "idolising": "idolizing", + "immobilisation": "immobilization", + "immobilise": "immobilize", + "immobilised": "immobilized", + "immobiliser": "immobilizer", + "immobilisers": "immobilizers", + "immobilises": "immobilizes", + "immobilising": "immobilizing", + "immortalise": "immortalize", + "immortalised": "immortalized", + "immortalises": "immortalizes", + "immortalising": "immortalizing", + "immunisation": "immunization", + "immunise": "immunize", + "immunised": "immunized", + "immunises": "immunizes", + "immunising": "immunizing", + "impanelled": "impaneled", + "impanelling": "impaneling", + "imperilled": "imperiled", + "imperilling": "imperiling", + "individualise": "individualize", + "individualised": "individualized", + "individualises": "individualizes", + "individualising": "individualizing", + "industrialise": "industrialize", + "industrialised": "industrialized", + "industrialises": "industrializes", + "industrialising": "industrializing", + "inflexion": "inflection", + "inflexions": "inflections", + "initialise": "initialize", + "initialised": "initialized", + "initialises": "initializes", + "initialising": "initializing", + "initialled": "initialed", + "initialling": "initialing", + "instal": "install", + "instalment": "installment", + "instalments": "installments", + "instals": "installs", + "instil": "instill", + "instils": "instills", + "institutionalisation": "institutionalization", + "institutionalise": "institutionalize", + "institutionalised": "institutionalized", + "institutionalises": "institutionalizes", + "institutionalising": "institutionalizing", + "intellectualise": "intellectualize", + "intellectualised": "intellectualized", + "intellectualises": "intellectualizes", + "intellectualising": "intellectualizing", + "internalisation": "internalization", + "internalise": "internalize", + "internalised": "internalized", + "internalises": "internalizes", + "internalising": "internalizing", + "internationalisation": "internationalization", + "internationalise": "internationalize", + "internationalised": "internationalized", + "internationalises": "internationalizes", + "internationalising": "internationalizing", + "ionisation": "ionization", + "ionise": "ionize", + "ionised": "ionized", + "ioniser": "ionizer", + "ionisers": "ionizers", + "ionises": "ionizes", + "ionising": "ionizing", + "italicise": "italicize", + "italicised": "italicized", + "italicises": "italicizes", + "italicising": "italicizing", + "itemise": "itemize", + "itemised": "itemized", + "itemises": "itemizes", + "itemising": "itemizing", + "jeopardise": "jeopardize", + "jeopardised": "jeopardized", + "jeopardises": "jeopardizes", + "jeopardising": "jeopardizing", + "jewelled": "jeweled", + "jeweller": "jeweler", + "jewellers": "jewelers", + "jewellery": "jewelry", + "judgement": "judgment", + "kilogramme": "kilogram", + "kilogrammes": "kilograms", + "kilometre": "kilometer", + "kilometres": "kilometers", + "labelled": "labeled", + "labelling": "labeling", + "labour": "labor", + "laboured": "labored", + "labourer": "laborer", + "labourers": "laborers", + "labouring": "laboring", + "labours": "labors", + "lacklustre": "lackluster", + "legalisation": "legalization", + "legalise": "legalize", + "legalised": "legalized", + "legalises": "legalizes", + "legalising": "legalizing", + "legitimise": "legitimize", + "legitimised": "legitimized", + "legitimises": "legitimizes", + "legitimising": "legitimizing", + "leukaemia": "leukemia", + "levelled": "leveled", + "leveller": "leveler", + "levellers": "levelers", + "levelling": "leveling", + "libelled": "libeled", + "libelling": "libeling", + "libellous": "libelous", + "liberalisation": "liberalization", + "liberalise": "liberalize", + "liberalised": "liberalized", + "liberalises": "liberalizes", + "liberalising": "liberalizing", + "licence": "license", + "licenced": "licensed", + "licences": "licenses", + "licencing": "licensing", + "likeable": "likable", + "lionisation": "lionization", + "lionise": "lionize", + "lionised": "lionized", + "lionises": "lionizes", + "lionising": "lionizing", + "liquidise": "liquidize", + "liquidised": "liquidized", + "liquidiser": "liquidizer", + "liquidisers": "liquidizers", + "liquidises": "liquidizes", + "liquidising": "liquidizing", + "litre": "liter", + "litres": "liters", + "localise": "localize", + "localised": "localized", + "localises": "localizes", + "localising": "localizing", + "louvre": "louver", + "louvred": "louvered", + "louvres": "louvers", + "lustre": "luster", + "magnetise": "magnetize", + "magnetised": "magnetized", + "magnetises": "magnetizes", + "magnetising": "magnetizing", + "manoeuvrability": "maneuverability", + "manoeuvrable": "maneuverable", + "manoeuvre": "maneuver", + "manoeuvred": "maneuvered", + "manoeuvres": "maneuvers", + "manoeuvring": "maneuvering", + "manoeuvrings": "maneuverings", + "marginalisation": "marginalization", + "marginalise": "marginalize", + "marginalised": "marginalized", + "marginalises": "marginalizes", + "marginalising": "marginalizing", + "marshalled": "marshaled", + "marshalling": "marshaling", + "marvelled": "marveled", + "marvelling": "marveling", + "marvellous": "marvelous", + "marvellously": "marvelously", + "materialisation": "materialization", + "materialise": "materialize", + "materialised": "materialized", + "materialises": "materializes", + "materialising": "materializing", + "maximisation": "maximization", + "maximise": "maximize", + "maximised": "maximized", + "maximises": "maximizes", + "maximising": "maximizing", + "meagre": "meager", + "mechanisation": "mechanization", + "mechanise": "mechanize", + "mechanised": "mechanized", + "mechanises": "mechanizes", + "mechanising": "mechanizing", + "mediaeval": "medieval", + "memorialise": "memorialize", + "memorialised": "memorialized", + "memorialises": "memorializes", + "memorialising": "memorializing", + "memorise": "memorize", + "memorised": "memorized", + "memorises": "memorizes", + "memorising": "memorizing", + "mesmerise": "mesmerize", + "mesmerised": "mesmerized", + "mesmerises": "mesmerizes", + "mesmerising": "mesmerizing", + "metabolise": "metabolize", + "metabolised": "metabolized", + "metabolises": "metabolizes", + "metabolising": "metabolizing", + "metre": "meter", + "metres": "meters", + "mhm": "hmm", + "micrometre": "micrometer", + "micrometres": "micrometers", + "militarise": "militarize", + "militarised": "militarized", + "militarises": "militarizes", + "militarising": "militarizing", + "milligramme": "milligram", + "milligrammes": "milligrams", + "millilitre": "milliliter", + "millilitres": "milliliters", + "millimetre": "millimeter", + "millimetres": "millimeters", + "miniaturisation": "miniaturization", + "miniaturise": "miniaturize", + "miniaturised": "miniaturized", + "miniaturises": "miniaturizes", + "miniaturising": "miniaturizing", + "minibusses": "minibuses", + "minimise": "minimize", + "minimised": "minimized", + "minimises": "minimizes", + "minimising": "minimizing", + "misbehaviour": "misbehavior", + "misdemeanour": "misdemeanor", + "misdemeanours": "misdemeanors", + "misspelt": "misspelled", + "mitre": "miter", + "mitres": "miters", + "mm": "hmm", + "mmm": "hmm", + "mobilisation": "mobilization", + "mobilise": "mobilize", + "mobilised": "mobilized", + "mobilises": "mobilizes", + "mobilising": "mobilizing", + "modelled": "modeled", + "modeller": "modeler", + "modellers": "modelers", + "modelling": "modeling", + "modernise": "modernize", + "modernised": "modernized", + "modernises": "modernizes", + "modernising": "modernizing", + "moisturise": "moisturize", + "moisturised": "moisturized", + "moisturiser": "moisturizer", + "moisturisers": "moisturizers", + "moisturises": "moisturizes", + "moisturising": "moisturizing", + "monologue": "monolog", + "monologues": "monologs", + "monopolisation": "monopolization", + "monopolise": "monopolize", + "monopolised": "monopolized", + "monopolises": "monopolizes", + "monopolising": "monopolizing", + "moralise": "moralize", + "moralised": "moralized", + "moralises": "moralizes", + "moralising": "moralizing", + "motorised": "motorized", + "mould": "mold", + "moulded": "molded", + "moulder": "molder", + "mouldered": "moldered", + "mouldering": "moldering", + "moulders": "molders", + "mouldier": "moldier", + "mouldiest": "moldiest", + "moulding": "molding", + "mouldings": "moldings", + "moulds": "molds", + "mouldy": "moldy", + "moult": "molt", + "moulted": "molted", + "moulting": "molting", + "moults": "molts", + "moustache": "mustache", + "moustached": "mustached", + "moustaches": "mustaches", + "moustachioed": "mustachioed", + "multicoloured": "multicolored", + "nationalisation": "nationalization", + "nationalisations": "nationalizations", + "nationalise": "nationalize", + "nationalised": "nationalized", + "nationalises": "nationalizes", + "nationalising": "nationalizing", + "naturalisation": "naturalization", + "naturalise": "naturalize", + "naturalised": "naturalized", + "naturalises": "naturalizes", + "naturalising": "naturalizing", + "neighbour": "neighbor", + "neighbourhood": "neighborhood", + "neighbourhoods": "neighborhoods", + "neighbouring": "neighboring", + "neighbourliness": "neighborliness", + "neighbourly": "neighborly", + "neighbours": "neighbors", + "neutralisation": "neutralization", + "neutralise": "neutralize", + "neutralised": "neutralized", + "neutralises": "neutralizes", + "neutralising": "neutralizing", + "normalisation": "normalization", + "normalise": "normalize", + "normalised": "normalized", + "normalises": "normalizes", + "normalising": "normalizing", + "odour": "odor", + "odourless": "odorless", + "odours": "odors", + "oesophagus": "esophagus", + "oesophaguses": "esophaguses", + "oestrogen": "estrogen", + "offence": "offense", + "offences": "offenses", + "omelette": "omelet", + "omelettes": "omelets", + "optimise": "optimize", + "optimised": "optimized", + "optimises": "optimizes", + "optimising": "optimizing", + "organisation": "organization", + "organisational": "organizational", + "organisations": "organizations", + "organise": "organize", + "organised": "organized", + "organiser": "organizer", + "organisers": "organizers", + "organises": "organizes", + "organising": "organizing", + "orthopaedic": "orthopedic", + "orthopaedics": "orthopedics", + "ostracise": "ostracize", + "ostracised": "ostracized", + "ostracises": "ostracizes", + "ostracising": "ostracizing", + "outmanoeuvre": "outmaneuver", + "outmanoeuvred": "outmaneuvered", + "outmanoeuvres": "outmaneuvers", + "outmanoeuvring": "outmaneuvering", + "overemphasise": "overemphasize", + "overemphasised": "overemphasized", + "overemphasises": "overemphasizes", + "overemphasising": "overemphasizing", + "oxidisation": "oxidization", + "oxidise": "oxidize", + "oxidised": "oxidized", + "oxidises": "oxidizes", + "oxidising": "oxidizing", + "paederast": "pederast", + "paederasts": "pederasts", + "paediatric": "pediatric", + "paediatrician": "pediatrician", + "paediatricians": "pediatricians", + "paediatrics": "pediatrics", + "paedophile": "pedophile", + "paedophiles": "pedophiles", + "paedophilia": "pedophilia", + "palaeolithic": "paleolithic", + "palaeontologist": "paleontologist", + "palaeontologists": "paleontologists", + "palaeontology": "paleontology", + "panelled": "paneled", + "panelling": "paneling", + "panellist": "panelist", + "panellists": "panelists", + "paralyse": "paralyze", + "paralysed": "paralyzed", + "paralyses": "paralyzes", + "paralysing": "paralyzing", + "parcelled": "parceled", + "parcelling": "parceling", + "parlour": "parlor", + "parlours": "parlors", + "particularise": "particularize", + "particularised": "particularized", + "particularises": "particularizes", + "particularising": "particularizing", + "passivisation": "passivization", + "passivise": "passivize", + "passivised": "passivized", + "passivises": "passivizes", + "passivising": "passivizing", + "pasteurisation": "pasteurization", + "pasteurise": "pasteurize", + "pasteurised": "pasteurized", + "pasteurises": "pasteurizes", + "pasteurising": "pasteurizing", + "patronise": "patronize", + "patronised": "patronized", + "patronises": "patronizes", + "patronising": "patronizing", + "patronisingly": "patronizingly", + "pedalled": "pedaled", + "pedalling": "pedaling", + "pedestrianisation": "pedestrianization", + "pedestrianise": "pedestrianize", + "pedestrianised": "pedestrianized", + "pedestrianises": "pedestrianizes", + "pedestrianising": "pedestrianizing", + "penalise": "penalize", + "penalised": "penalized", + "penalises": "penalizes", + "penalising": "penalizing", + "pencilled": "penciled", + "pencilling": "penciling", + "personalise": "personalize", + "personalised": "personalized", + "personalises": "personalizes", + "personalising": "personalizing", + "pharmacopoeia": "pharmacopeia", + "pharmacopoeias": "pharmacopeias", + "philosophise": "philosophize", + "philosophised": "philosophized", + "philosophises": "philosophizes", + "philosophising": "philosophizing", + "philtre": "filter", + "philtres": "filters", + "phoney": "phony", + "plagiarise": "plagiarize", + "plagiarised": "plagiarized", + "plagiarises": "plagiarizes", + "plagiarising": "plagiarizing", + "plough": "plow", + "ploughed": "plowed", + "ploughing": "plowing", + "ploughman": "plowman", + "ploughmen": "plowmen", + "ploughs": "plows", + "ploughshare": "plowshare", + "ploughshares": "plowshares", + "polarisation": "polarization", + "polarise": "polarize", + "polarised": "polarized", + "polarises": "polarizes", + "polarising": "polarizing", + "politicisation": "politicization", + "politicise": "politicize", + "politicised": "politicized", + "politicises": "politicizes", + "politicising": "politicizing", + "popularisation": "popularization", + "popularise": "popularize", + "popularised": "popularized", + "popularises": "popularizes", + "popularising": "popularizing", + "pouffe": "pouf", + "pouffes": "poufs", + "practise": "practice", + "practised": "practiced", + "practises": "practices", + "practising": "practicing", + "praesidium": "presidium", + "praesidiums": "presidiums", + "pressurisation": "pressurization", + "pressurise": "pressurize", + "pressurised": "pressurized", + "pressurises": "pressurizes", + "pressurising": "pressurizing", + "pretence": "pretense", + "pretences": "pretenses", + "primaeval": "primeval", + "prioritisation": "prioritization", + "prioritise": "prioritize", + "prioritised": "prioritized", + "prioritises": "prioritizes", + "prioritising": "prioritizing", + "privatisation": "privatization", + "privatisations": "privatizations", + "privatise": "privatize", + "privatised": "privatized", + "privatises": "privatizes", + "privatising": "privatizing", + "professionalisation": "professionalization", + "professionalise": "professionalize", + "professionalised": "professionalized", + "professionalises": "professionalizes", + "professionalising": "professionalizing", + "programme": "program", + "programmes": "programs", + "prologue": "prolog", + "prologues": "prologs", + "propagandise": "propagandize", + "propagandised": "propagandized", + "propagandises": "propagandizes", + "propagandising": "propagandizing", + "proselytise": "proselytize", + "proselytised": "proselytized", + "proselytiser": "proselytizer", + "proselytisers": "proselytizers", + "proselytises": "proselytizes", + "proselytising": "proselytizing", + "psychoanalyse": "psychoanalyze", + "psychoanalysed": "psychoanalyzed", + "psychoanalyses": "psychoanalyzes", + "psychoanalysing": "psychoanalyzing", + "publicise": "publicize", + "publicised": "publicized", + "publicises": "publicizes", + "publicising": "publicizing", + "pulverisation": "pulverization", + "pulverise": "pulverize", + "pulverised": "pulverized", + "pulverises": "pulverizes", + "pulverising": "pulverizing", + "pummelled": "pummel", + "pummelling": "pummeled", + "pyjama": "pajama", + "pyjamas": "pajamas", + "pzazz": "pizzazz", + "quarrelled": "quarreled", + "quarrelling": "quarreling", + "radicalise": "radicalize", + "radicalised": "radicalized", + "radicalises": "radicalizes", + "radicalising": "radicalizing", + "rancour": "rancor", + "randomise": "randomize", + "randomised": "randomized", + "randomises": "randomizes", + "randomising": "randomizing", + "rationalisation": "rationalization", + "rationalisations": "rationalizations", + "rationalise": "rationalize", + "rationalised": "rationalized", + "rationalises": "rationalizes", + "rationalising": "rationalizing", + "ravelled": "raveled", + "ravelling": "raveling", + "realisable": "realizable", + "realisation": "realization", + "realisations": "realizations", + "realise": "realize", + "realised": "realized", + "realises": "realizes", + "realising": "realizing", + "recognisable": "recognizable", + "recognisably": "recognizably", + "recognisance": "recognizance", + "recognise": "recognize", + "recognised": "recognized", + "recognises": "recognizes", + "recognising": "recognizing", + "reconnoitre": "reconnoiter", + "reconnoitred": "reconnoitered", + "reconnoitres": "reconnoiters", + "reconnoitring": "reconnoitering", + "refuelled": "refueled", + "refuelling": "refueling", + "regularisation": "regularization", + "regularise": "regularize", + "regularised": "regularized", + "regularises": "regularizes", + "regularising": "regularizing", + "remodelled": "remodeled", + "remodelling": "remodeling", + "remould": "remold", + "remoulded": "remolded", + "remoulding": "remolding", + "remoulds": "remolds", + "reorganisation": "reorganization", + "reorganisations": "reorganizations", + "reorganise": "reorganize", + "reorganised": "reorganized", + "reorganises": "reorganizes", + "reorganising": "reorganizing", + "revelled": "reveled", + "reveller": "reveler", + "revellers": "revelers", + "revelling": "reveling", + "revitalise": "revitalize", + "revitalised": "revitalized", + "revitalises": "revitalizes", + "revitalising": "revitalizing", + "revolutionise": "revolutionize", + "revolutionised": "revolutionized", + "revolutionises": "revolutionizes", + "revolutionising": "revolutionizing", + "rhapsodise": "rhapsodize", + "rhapsodised": "rhapsodized", + "rhapsodises": "rhapsodizes", + "rhapsodising": "rhapsodizing", + "rigour": "rigor", + "rigours": "rigors", + "ritualised": "ritualized", + "rivalled": "rivaled", + "rivalling": "rivaling", + "romanticise": "romanticize", + "romanticised": "romanticized", + "romanticises": "romanticizes", + "romanticising": "romanticizing", + "rumour": "rumor", + "rumoured": "rumored", + "rumours": "rumors", + "sabre": "saber", + "sabres": "sabers", + "saltpetre": "saltpeter", + "sanitise": "sanitize", + "sanitised": "sanitized", + "sanitises": "sanitizes", + "sanitising": "sanitizing", + "satirise": "satirize", + "satirised": "satirized", + "satirises": "satirizes", + "satirising": "satirizing", + "saviour": "savior", + "saviours": "saviors", + "savour": "savor", + "savoured": "savored", + "savouries": "savories", + "savouring": "savoring", + "savours": "savors", + "savoury": "savory", + "scandalise": "scandalize", + "scandalised": "scandalized", + "scandalises": "scandalizes", + "scandalising": "scandalizing", + "sceptic": "skeptic", + "sceptical": "skeptical", + "sceptically": "skeptically", + "scepticism": "skepticism", + "sceptics": "skeptics", + "sceptre": "scepter", + "sceptres": "scepters", + "scrutinise": "scrutinize", + "scrutinised": "scrutinized", + "scrutinises": "scrutinizes", + "scrutinising": "scrutinizing", + "secularisation": "secularization", + "secularise": "secularize", + "secularised": "secularized", + "secularises": "secularizes", + "secularising": "secularizing", + "sensationalise": "sensationalize", + "sensationalised": "sensationalized", + "sensationalises": "sensationalizes", + "sensationalising": "sensationalizing", + "sensitise": "sensitize", + "sensitised": "sensitized", + "sensitises": "sensitizes", + "sensitising": "sensitizing", + "sentimentalise": "sentimentalize", + "sentimentalised": "sentimentalized", + "sentimentalises": "sentimentalizes", + "sentimentalising": "sentimentalizing", + "sepulchre": "sepulcher", + "sepulchres": "sepulchers", + "serialisation": "serialization", + "serialisations": "serializations", + "serialise": "serialize", + "serialised": "serialized", + "serialises": "serializes", + "serialising": "serializing", + "sermonise": "sermonize", + "sermonised": "sermonized", + "sermonises": "sermonizes", + "sermonising": "sermonizing", + "sheikh": "sheik", + "shovelled": "shoveled", + "shovelling": "shoveling", + "shrivelled": "shriveled", + "shrivelling": "shriveling", + "signalise": "signalize", + "signalised": "signalized", + "signalises": "signalizes", + "signalising": "signalizing", + "signalled": "signaled", + "signalling": "signaling", + "smoulder": "smolder", + "smouldered": "smoldered", + "smouldering": "smoldering", + "smoulders": "smolders", + "snivelled": "sniveled", + "snivelling": "sniveling", + "snorkelled": "snorkeled", + "snorkelling": "snorkeling", + "snowplough": "snowplow", + "snowploughs": "snowplow", + "socialisation": "socialization", + "socialise": "socialize", + "socialised": "socialized", + "socialises": "socializes", + "socialising": "socializing", + "sodomise": "sodomize", + "sodomised": "sodomized", + "sodomises": "sodomizes", + "sodomising": "sodomizing", + "solemnise": "solemnize", + "solemnised": "solemnized", + "solemnises": "solemnizes", + "solemnising": "solemnizing", + "sombre": "somber", + "specialisation": "specialization", + "specialisations": "specializations", + "specialise": "specialize", + "specialised": "specialized", + "specialises": "specializes", + "specialising": "specializing", + "spectre": "specter", + "spectres": "specters", + "spiralled": "spiraled", + "spiralling": "spiraling", + "splendour": "splendor", + "splendours": "splendors", + "squirrelled": "squirreled", + "squirrelling": "squirreling", + "stabilisation": "stabilization", + "stabilise": "stabilize", + "stabilised": "stabilized", + "stabiliser": "stabilizer", + "stabilisers": "stabilizers", + "stabilises": "stabilizes", + "stabilising": "stabilizing", + "standardisation": "standardization", + "standardise": "standardize", + "standardised": "standardized", + "standardises": "standardizes", + "standardising": "standardizing", + "stencilled": "stenciled", + "stencilling": "stenciling", + "sterilisation": "sterilization", + "sterilisations": "sterilizations", + "sterilise": "sterilize", + "sterilised": "sterilized", + "steriliser": "sterilizer", + "sterilisers": "sterilizers", + "sterilises": "sterilizes", + "sterilising": "sterilizing", + "stigmatisation": "stigmatization", + "stigmatise": "stigmatize", + "stigmatised": "stigmatized", + "stigmatises": "stigmatizes", + "stigmatising": "stigmatizing", + "storey": "story", + "storeys": "stories", + "subsidisation": "subsidization", + "subsidise": "subsidize", + "subsidised": "subsidized", + "subsidiser": "subsidizer", + "subsidisers": "subsidizers", + "subsidises": "subsidizes", + "subsidising": "subsidizing", + "succour": "succor", + "succoured": "succored", + "succouring": "succoring", + "succours": "succors", + "sulphate": "sulfate", + "sulphates": "sulfates", + "sulphide": "sulfide", + "sulphides": "sulfides", + "sulphur": "sulfur", + "sulphurous": "sulfurous", + "summarise": "summarize", + "summarised": "summarized", + "summarises": "summarizes", + "summarising": "summarizing", + "swivelled": "swiveled", + "swivelling": "swiveling", + "symbolise": "symbolize", + "symbolised": "symbolized", + "symbolises": "symbolizes", + "symbolising": "symbolizing", + "sympathise": "sympathize", + "sympathised": "sympathized", + "sympathiser": "sympathizer", + "sympathisers": "sympathizers", + "sympathises": "sympathizes", + "sympathising": "sympathizing", + "synchronisation": "synchronization", + "synchronise": "synchronize", + "synchronised": "synchronized", + "synchronises": "synchronizes", + "synchronising": "synchronizing", + "synthesise": "synthesize", + "synthesised": "synthesized", + "synthesiser": "synthesizer", + "synthesisers": "synthesizers", + "synthesises": "synthesizes", + "synthesising": "synthesizing", + "syphon": "siphon", + "syphoned": "siphoned", + "syphoning": "siphoning", + "syphons": "siphons", + "systematisation": "systematization", + "systematise": "systematize", + "systematised": "systematized", + "systematises": "systematizes", + "systematising": "systematizing", + "tantalise": "tantalize", + "tantalised": "tantalized", + "tantalises": "tantalizes", + "tantalising": "tantalizing", + "tantalisingly": "tantalizingly", + "tasselled": "tasseled", + "technicolour": "technicolor", + "temporise": "temporize", + "temporised": "temporized", + "temporises": "temporizes", + "temporising": "temporizing", + "tenderise": "tenderize", + "tenderised": "tenderized", + "tenderises": "tenderizes", + "tenderising": "tenderizing", + "terrorise": "terrorize", + "terrorised": "terrorized", + "terrorises": "terrorizes", + "terrorising": "terrorizing", + "theatre": "theater", + "theatregoer": "theatergoer", + "theatregoers": "theatergoers", + "theatres": "theaters", + "theorise": "theorize", + "theorised": "theorized", + "theorises": "theorizes", + "theorising": "theorizing", + "tonne": "ton", + "tonnes": "tons", + "towelled": "toweled", + "towelling": "toweling", + "toxaemia": "toxemia", + "tranquillise": "tranquilize", + "tranquillised": "tranquilized", + "tranquilliser": "tranquilizer", + "tranquillisers": "tranquilizers", + "tranquillises": "tranquilizes", + "tranquillising": "tranquilizing", + "tranquillity": "tranquility", + "tranquillize": "tranquilize", + "tranquillized": "tranquilized", + "tranquillizer": "tranquilizer", + "tranquillizers": "tranquilizers", + "tranquillizes": "tranquilizes", + "tranquillizing": "tranquilizing", + "tranquilly": "tranquility", + "transistorised": "transistorized", + "traumatise": "traumatize", + "traumatised": "traumatized", + "traumatises": "traumatizes", + "traumatising": "traumatizing", + "travelled": "traveled", + "traveller": "traveler", + "travellers": "travelers", + "travelling": "traveling", + "travelog": "travelogue", + "travelogs": "travelogues", + "trialled": "trialed", + "trialling": "trialing", + "tricolour": "tricolor", + "tricolours": "tricolors", + "trivialise": "trivialize", + "trivialised": "trivialized", + "trivialises": "trivializes", + "trivialising": "trivializing", + "tumour": "tumor", + "tumours": "tumors", + "tunnelled": "tunneled", + "tunnelling": "tunneling", + "tyrannise": "tyrannize", + "tyrannised": "tyrannized", + "tyrannises": "tyrannizes", + "tyrannising": "tyrannizing", + "tyre": "tire", + "tyres": "tires", + "unauthorised": "unauthorized", + "uncivilised": "uncivilized", + "underutilised": "underutilized", + "unequalled": "unequaled", + "unfavourable": "unfavorable", + "unfavourably": "unfavorably", + "unionisation": "unionization", + "unionise": "unionize", + "unionised": "unionized", + "unionises": "unionizes", + "unionising": "unionizing", + "unorganised": "unorganized", + "unravelled": "unraveled", + "unravelling": "unraveling", + "unrecognisable": "unrecognizable", + "unrecognised": "unrecognized", + "unrivalled": "unrivaled", + "unsavoury": "unsavory", + "untrammelled": "untrammeled", + "urbanisation": "urbanization", + "urbanise": "urbanize", + "urbanised": "urbanized", + "urbanises": "urbanizes", + "urbanising": "urbanizing", + "utilisable": "utilizable", + "utilisation": "utilization", + "utilise": "utilize", + "utilised": "utilized", + "utilises": "utilizes", + "utilising": "utilizing", + "valour": "valor", + "vandalise": "vandalize", + "vandalised": "vandalized", + "vandalises": "vandalizes", + "vandalising": "vandalizing", + "vaporisation": "vaporization", + "vaporise": "vaporize", + "vaporised": "vaporized", + "vaporises": "vaporizes", + "vaporising": "vaporizing", + "vapour": "vapor", + "vapours": "vapors", + "verbalise": "verbalize", + "verbalised": "verbalized", + "verbalises": "verbalizes", + "verbalising": "verbalizing", + "victimisation": "victimization", + "victimise": "victimize", + "victimised": "victimized", + "victimises": "victimizes", + "victimising": "victimizing", + "videodisc": "videodisk", + "videodiscs": "videodisks", + "vigour": "vigor", + "visualisation": "visualization", + "visualisations": "visualizations", + "visualise": "visualize", + "visualised": "visualized", + "visualises": "visualizes", + "visualising": "visualizing", + "vocalisation": "vocalization", + "vocalisations": "vocalizations", + "vocalise": "vocalize", + "vocalised": "vocalized", + "vocalises": "vocalizes", + "vocalising": "vocalizing", + "vulcanised": "vulcanized", + "vulgarisation": "vulgarization", + "vulgarise": "vulgarize", + "vulgarised": "vulgarized", + "vulgarises": "vulgarizes", + "vulgarising": "vulgarizing", + "waggon": "wagon", + "waggons": "wagons", + "watercolour": "watercolor", + "watercolours": "watercolors", + "weaselled": "weaseled", + "weaselling": "weaseling", + "westernisation": "westernization", + "westernise": "westernize", + "westernised": "westernized", + "westernises": "westernizes", + "westernising": "westernizing", + "womanise": "womanize", + "womanised": "womanized", + "womaniser": "womanizer", + "womanisers": "womanizers", + "womanises": "womanizes", + "womanising": "womanizing", + "woollen": "woolen", + "woollens": "woolens", + "woollies": "woolies", + "woolly": "wooly", + "worshipped": "worshiped", + "worshipper": "worshiper", + "worshipping": "worshiping", + "yodelled": "yodeled", + "yodelling": "yodeling", + "yoghourt": "yogurt", + "yoghourts": "yogurts", + "yoghurt": "yogurt", + "yoghurts": "yogurts" +} diff --git a/whisper-fine-tuning-event/preprocessor_config.json b/whisper-fine-tuning-event/preprocessor_config.json new file mode 100644 index 0000000000000000000000000000000000000000..91876762a536a746d268353c5cba57286e76b058 --- /dev/null +++ b/whisper-fine-tuning-event/preprocessor_config.json @@ -0,0 +1,14 @@ +{ + "chunk_length": 30, + "feature_extractor_type": "WhisperFeatureExtractor", + "feature_size": 80, + "hop_length": 160, + "n_fft": 400, + "n_samples": 480000, + "nb_max_frames": 3000, + "padding_side": "right", + "padding_value": 0.0, + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "sampling_rate": 16000 +} diff --git a/whisper-fine-tuning-event/requirements.txt b/whisper-fine-tuning-event/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..03679c94799369ac623d3329a8351dac10b8bdb3 --- /dev/null +++ b/whisper-fine-tuning-event/requirements.txt @@ -0,0 +1,9 @@ +torch>=1.7 +torchaudio +git+https://github.com/huggingface/transformers +git+https://github.com/huggingface/datasets +librosa +jiwer +evaluate>=0.3.0 +more-itertools +tensorboard diff --git a/whisper-fine-tuning-event/run_eval_whisper_streaming.py b/whisper-fine-tuning-event/run_eval_whisper_streaming.py new file mode 100644 index 0000000000000000000000000000000000000000..48806d39c4525f73113a317ed9af7802f10a66a8 --- /dev/null +++ b/whisper-fine-tuning-event/run_eval_whisper_streaming.py @@ -0,0 +1,162 @@ +import argparse + +from transformers import pipeline +from transformers.models.whisper.english_normalizer import BasicTextNormalizer +from datasets import load_dataset, Audio +import evaluate + +wer_metric = evaluate.load("wer") + + +def is_target_text_in_range(ref): + if ref.strip() == "ignore time segment in scoring": + return False + else: + return ref.strip() != "" + + +def get_text(sample): + if "text" in sample: + return sample["text"] + elif "sentence" in sample: + return sample["sentence"] + elif "normalized_text" in sample: + return sample["normalized_text"] + elif "transcript" in sample: + return sample["transcript"] + elif "transcription" in sample: + return sample["transcription"] + else: + raise ValueError( + f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of " + ".join{sample.keys()}. Ensure a text column name is present in the dataset." + ) + + +whisper_norm = BasicTextNormalizer() + + +def normalise(batch): + batch["norm_text"] = whisper_norm(get_text(batch)) + return batch + + +def data(dataset): + for i, item in enumerate(dataset): + yield {**item["audio"], "reference": item["norm_text"]} + + +def main(args): + batch_size = args.batch_size + whisper_asr = pipeline( + "automatic-speech-recognition", model=args.model_id, device=args.device + ) + + whisper_asr.model.config.forced_decoder_ids = ( + whisper_asr.tokenizer.get_decoder_prompt_ids( + language=args.language, task="transcribe" + ) + ) + + dataset = load_dataset( + args.dataset, + args.config, + split=args.split, + streaming=args.streaming, + use_auth_token=True, + ) + + # Only uncomment for debugging + dataset = dataset.take(args.max_eval_samples) + + dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) + dataset = dataset.map(normalise) + dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"]) + + predictions = [] + references = [] + + # run streamed inference + for out in whisper_asr(data(dataset), batch_size=batch_size): + predictions.append(whisper_norm(out["text"])) + references.append(out["reference"][0]) + + wer = wer_metric.compute(references=references, predictions=predictions) + wer = round(100 * wer, 2) + + print("WER:", wer) + evaluate.push_to_hub( + model_id=args.model_id, + metric_value=wer, + metric_type="wer", + metric_name="WER", + dataset_name=args.dataset, + dataset_type=args.dataset, + dataset_split=args.split, + dataset_config=args.config, + task_type="automatic-speech-recognition", + task_name="Automatic Speech Recognition" + ) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--model_id", + type=str, + required=True, + help="Model identifier. Should be loadable with 🤗 Transformers", + ) + parser.add_argument( + "--dataset", + type=str, + default="mozilla-foundation/common_voice_11_0", + help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", + ) + parser.add_argument( + "--config", + type=str, + required=True, + help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice", + ) + parser.add_argument( + "--split", + type=str, + default="test", + help="Split of the dataset. *E.g.* `'test'`", + ) + + parser.add_argument( + "--device", + type=int, + default=-1, + help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", + ) + parser.add_argument( + "--batch_size", + type=int, + default=16, + help="Number of samples to go through each streamed batch.", + ) + parser.add_argument( + "--max_eval_samples", + type=int, + default=None, + help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.", + ) + parser.add_argument( + "--streaming", + type=bool, + default=True, + help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.", + ) + parser.add_argument( + "--language", + type=str, + required=True, + help="Two letter language code for the transcription language, e.g. use 'en' for English.", + ) + args = parser.parse_args() + + main(args) diff --git a/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py b/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py new file mode 100644 index 0000000000000000000000000000000000000000..abd0a80fdd6587494ed7d1e084cfa8e685b5ab2e --- /dev/null +++ b/whisper-fine-tuning-event/run_speech_recognition_seq2seq_streaming.py @@ -0,0 +1,629 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fine-tuning the library models for sequence to sequence speech recognition +with 🤗 Datasets' streaming mode. +""" +# You can also adapt this script for your own sequence to sequence speech +# recognition task. Pointers for this are left as comments. + +import logging +import os +import sys +from dataclasses import dataclass, field +from typing import Any, Dict, List, Optional, Union + +import datasets +import torch +from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset +from torch.utils.data import IterableDataset + +import evaluate +import transformers +from transformers import ( + AutoConfig, + AutoFeatureExtractor, + AutoModelForSpeechSeq2Seq, + AutoProcessor, + AutoTokenizer, + HfArgumentParser, + Seq2SeqTrainer, + Seq2SeqTrainingArguments, + TrainerCallback, + set_seed, +) +from transformers.models.whisper.english_normalizer import BasicTextNormalizer +from transformers.trainer_pt_utils import IterableDatasetShard +from transformers.trainer_utils import get_last_checkpoint, is_main_process +from transformers.utils import check_min_version, send_example_telemetry +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.25.0.dev0") + +require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") + +logger = logging.getLogger(__name__) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} + ) + config_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} + ) + tokenizer_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} + ) + feature_extractor_name: Optional[str] = field( + default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": ( + "Will use the token generated when running `huggingface-cli login` (necessary to use this script " + "with private models)." + ) + }, + ) + freeze_feature_encoder: bool = field( + default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} + ) + freeze_encoder: bool = field( + default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."} + ) + forced_decoder_ids: List[List[int]] = field( + default=None, + metadata={ + "help": ( + "A list of pairs of integers which indicates a mapping from generation indices to token indices " + "that will be forced before sampling. For example, [[0, 123]] means the first generated token " + "will always be a token of index 123." + ) + }, + ) + suppress_tokens: List[int] = field( + default=None, metadata={"help": "A list of tokens that will be suppressed at generation."} + ) + model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."}) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: str = field( + default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} + ) + dataset_config_name: Optional[str] = field( + default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} + ) + text_column: Optional[str] = field( + default=None, + metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, + ) + max_train_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of training examples to this " + "value if set." + ) + }, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={ + "help": ( + "For debugging purposes or quicker training, truncate the number of evaluation examples to this " + "value if set." + ) + }, + ) + audio_column_name: str = field( + default="audio", + metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, + ) + text_column_name: str = field( + default="text", + metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, + ) + max_duration_in_seconds: float = field( + default=20.0, + metadata={ + "help": ( + "Truncate audio files that are longer than `max_duration_in_seconds` seconds to" + " 'max_duration_in_seconds`" + ) + }, + ) + min_duration_in_seconds: float = field( + default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} + ) + train_split_name: str = field( + default="train", + metadata={ + "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" + }, + ) + eval_split_name: str = field( + default="test", + metadata={ + "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" + }, + ) + do_lower_case: bool = field( + default=False, + metadata={"help": "Whether the target text should be lower cased."}, + ) + do_remove_punctuation: bool = field( + default=False, + metadata={"help": "Whether the target text should be striped of punctuation."}, + ) + do_normalize_eval: bool = field( + default=True, + metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."}, + ) + language: str = field( + default=None, + metadata={ + "help": ( + "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning " + "only. For English speech recognition, it should be set to `None`." + ) + }, + ) + task: str = field( + default="transcribe", + metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."}, + ) + shuffle_buffer_size: Optional[int] = field( + default=500, + metadata={ + "help": ( + "The number of streamed examples to download before shuffling them. The large the buffer, " + "the closer it is to real offline shuffling." + ) + }, + ) + streaming: bool = field( + default=True, + metadata={"help": "Whether to use streaming mode to load and pre-process the data."}, + ) + + +@dataclass +class DataCollatorSpeechSeq2SeqWithPadding: + """ + Data collator that will dynamically pad the inputs received. + Args: + processor ([`WhisperProcessor`]) + The processor used for processing the data. + decoder_start_token_id (`int`) + The begin-of-sentence of the decoder. + """ + + processor: Any + decoder_start_token_id: int + + def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: + # split inputs and labels since they have to be of different lengths and need + # different padding methods + model_input_name = self.processor.model_input_names[0] + input_features = [{model_input_name: feature[model_input_name]} for feature in features] + label_features = [{"input_ids": feature["labels"]} for feature in features] + + batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") + + labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") + + # replace padding with -100 to ignore loss correctly + labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) + + # if bos token is appended in previous tokenization step, + # cut bos token here as it's append later anyways + if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): + labels = labels[:, 1:] + + batch["labels"] = labels + + return batch + + +def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs): + """ + Utility function to load a dataset in streaming mode. For datasets with multiple splits, + each split is loaded individually and then splits combined by taking alternating examples from + each (interleaving). + """ + if "+" in split: + # load multiple splits separated by the `+` symbol with streaming mode + dataset_splits = [ + load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs) + for split_name in split.split("+") + ] + # interleave multiple splits to form one dataset + interleaved_dataset = interleave_datasets(dataset_splits) + return interleaved_dataset + else: + # load a single split *with* streaming mode + dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs) + return dataset + + +def main(): + # 1. Parse input arguments + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) + + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The + # information sent is the one passed as arguments along with your Python/PyTorch versions. + send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args) + + # 2. Setup logging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + log_level = training_args.get_process_log_level() + logger.setLevel(log_level) + datasets.utils.logging.set_verbosity(log_level) + transformers.utils.logging.set_verbosity(log_level) + transformers.utils.logging.enable_default_handler() + transformers.utils.logging.enable_explicit_format() + + logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) + + # Log on each process the small summary: + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" + ) + logger.info(f"Training/evaluation parameters {training_args}") + + # Set the verbosity to info of the Transformers logger (on main process only): + if is_main_process(training_args.local_rank): + transformers.utils.logging.set_verbosity_info() + logger.info("Training/evaluation parameters %s", training_args) + + # 3. Detecting last checkpoint and eventually continue from last checkpoint + last_checkpoint = None + if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: + last_checkpoint = get_last_checkpoint(training_args.output_dir) + if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not empty. " + "Use --overwrite_output_dir to overcome." + ) + elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: + logger.info( + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." + ) + + # Set seed before initializing model. + set_seed(training_args.seed) + + # 4. Load dataset + raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() + + if training_args.do_train: + raw_datasets["train"] = load_maybe_streaming_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=data_args.train_split_name, + use_auth_token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + + if training_args.do_eval: + raw_datasets["eval"] = load_maybe_streaming_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=data_args.eval_split_name, + use_auth_token=True if model_args.use_auth_token else None, + streaming=data_args.streaming, + ) + + raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) + + if data_args.audio_column_name not in raw_datasets_features: + raise ValueError( + f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " + "Make sure to set `--audio_column_name` to the correct audio column - one of " + f"{', '.join(raw_datasets_features)}." + ) + + if data_args.text_column_name not in raw_datasets_features: + raise ValueError( + f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " + "Make sure to set `--text_column_name` to the correct text column - one of " + f"{', '.join(raw_datasets_features)}." + ) + + # 5. Load pretrained model, tokenizer, and feature extractor + # + # Distributed training: + # The .from_pretrained methods guarantee that only one local process can concurrently + config = AutoConfig.from_pretrained( + model_args.config_name if model_args.config_name else model_args.model_name_or_path, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens}) + + if training_args.gradient_checkpointing: + config.update({"use_cache": False}) + + feature_extractor = AutoFeatureExtractor.from_pretrained( + model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + tokenizer = AutoTokenizer.from_pretrained( + model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, + cache_dir=model_args.cache_dir, + use_fast=model_args.use_fast_tokenizer, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + model = AutoModelForSpeechSeq2Seq.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + if model.config.decoder_start_token_id is None: + raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") + + if model_args.freeze_feature_encoder: + model.freeze_feature_encoder() + + if model_args.freeze_encoder: + model.freeze_encoder() + + if data_args.language is not None: + # We only need to set the task id when the language is specified (i.e. in a multilingual setting) + tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task) + + # 6. Resample speech dataset if necessary + dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate + if dataset_sampling_rate != feature_extractor.sampling_rate: + raw_datasets = raw_datasets.cast_column( + data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) + ) + + # 7. Preprocessing the datasets. + # We need to read the audio files as arrays and tokenize the targets. + max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate + min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate + audio_column_name = data_args.audio_column_name + text_column_name = data_args.text_column_name + model_input_name = feature_extractor.model_input_names[0] + do_lower_case = data_args.do_lower_case + do_remove_punctuation = data_args.do_remove_punctuation + normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI + + if data_args.max_train_samples is not None: + raw_datasets["train"] = ( + raw_datasets["train"].take(data_args.max_train_samples) + if data_args.streaming + else raw_datasets["train"].select(range(data_args.max_train_samples)) + ) + + if data_args.max_eval_samples is not None: + raw_datasets["eval"] = ( + raw_datasets["eval"].take(data_args.max_eval_samples) + if data_args.streaming + else raw_datasets["eval"].select(range(data_args.max_eval_samples)) + ) + + def prepare_dataset(batch): + # process audio + sample = batch[audio_column_name] + inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) + # process audio length + batch[model_input_name] = inputs.get(model_input_name)[0] + batch["input_length"] = len(sample["array"]) + + # process targets + input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name] + if do_remove_punctuation: + input_str = normalizer(input_str).strip() + batch["labels"] = tokenizer(input_str).input_ids + return batch + + with training_args.main_process_first(desc="dataset map pre-processing"): + vectorized_datasets = raw_datasets.map( + prepare_dataset, + remove_columns=raw_datasets_features, + ).with_format("torch") + + if training_args.do_train and data_args.streaming: + # manually shuffle if streaming (done by the trainer for non-streaming) + vectorized_datasets["train"] = vectorized_datasets["train"].shuffle( + buffer_size=data_args.shuffle_buffer_size, + seed=training_args.seed, + ) + + # filter training data that is shorter than min_input_length or longer than + # max_input_length + def is_audio_in_length_range(length): + return min_input_length < length < max_input_length + + if training_args.do_train: + vectorized_datasets["train"] = vectorized_datasets["train"].filter( + is_audio_in_length_range, + input_columns=["input_length"], + ) + + # 8. Load Metric + metric = evaluate.load("wer") + do_normalize_eval = data_args.do_normalize_eval + + def compute_metrics(pred): + pred_ids = pred.predictions + + pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id + + pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) + # we do not want to group tokens when computing the metrics + label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True) + + if do_normalize_eval: + pred_str = [normalizer(pred) for pred in pred_str] + label_str = [normalizer(label) for label in label_str] + # filtering step to only evaluate the samples that correspond to non-zero references: + pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0] + label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0] + + wer = 100 * metric.compute(predictions=pred_str, references=label_str) + + return {"wer": wer} + + # 9. Create a single speech processor + if is_main_process(training_args.local_rank): + # save feature extractor, tokenizer and config + feature_extractor.save_pretrained(training_args.output_dir) + tokenizer.save_pretrained(training_args.output_dir) + config.save_pretrained(training_args.output_dir) + + processor = AutoProcessor.from_pretrained(training_args.output_dir) + + # 10. Define data collator + data_collator = DataCollatorSpeechSeq2SeqWithPadding( + processor=processor, + decoder_start_token_id=model.config.decoder_start_token_id, + ) + + # 11. Configure Trainer + # Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch + # Only required for streaming: Trainer automatically shuffles non-streaming datasets + class ShuffleCallback(TrainerCallback): + def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs): + if isinstance(train_dataloader.dataset, IterableDatasetShard): + pass # set_epoch() is handled by the Trainer + elif isinstance(train_dataloader.dataset, IterableDataset): + train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1) + + # Initialize Trainer + trainer = Seq2SeqTrainer( + model=model, + args=training_args, + train_dataset=vectorized_datasets["train"] if training_args.do_train else None, + eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, + tokenizer=feature_extractor, + data_collator=data_collator, + compute_metrics=compute_metrics if training_args.predict_with_generate else None, + callbacks=[ShuffleCallback()] if data_args.streaming else None, + ) + + # 12. Training + if training_args.do_train: + checkpoint = None + if training_args.resume_from_checkpoint is not None: + checkpoint = training_args.resume_from_checkpoint + elif last_checkpoint is not None: + checkpoint = last_checkpoint + train_result = trainer.train(resume_from_checkpoint=checkpoint) + trainer.save_model() # Saves the feature extractor too for easy upload + + metrics = train_result.metrics + if data_args.max_train_samples: + metrics["train_samples"] = data_args.max_train_samples + trainer.log_metrics("train", metrics) + trainer.save_metrics("train", metrics) + trainer.save_state() + + # 13. Evaluation + results = {} + if training_args.do_eval: + logger.info("*** Evaluate ***") + metrics = trainer.evaluate( + metric_key_prefix="eval", + max_length=training_args.generation_max_length, + num_beams=training_args.generation_num_beams, + ) + if data_args.max_eval_samples: + metrics["eval_samples"] = data_args.max_eval_samples + + trainer.log_metrics("eval", metrics) + trainer.save_metrics("eval", metrics) + + # 14. Write Training Stats + kwargs = { + "finetuned_from": model_args.model_name_or_path, + "tasks": "automatic-speech-recognition", + "tags": "whisper-event", + } + if data_args.dataset_name is not None: + kwargs["dataset_tags"] = data_args.dataset_name + if data_args.dataset_config_name is not None: + kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" + else: + kwargs["dataset"] = data_args.dataset_name + if "common_voice" in data_args.dataset_name: + kwargs["language"] = data_args.dataset_config_name.split('-')[0] + if model_args.model_index_name is not None: + kwargs["model_name"] = model_args.model_index_name + + if training_args.push_to_hub: + trainer.push_to_hub(**kwargs) + else: + trainer.create_model_card(**kwargs) + + return results + + +if __name__ == "__main__": + main() diff --git a/whisper-fine-tuning-event/special_tokens_map.json b/whisper-fine-tuning-event/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..bf69932dca4b3719b59fdd8f6cc1978109509f6c --- /dev/null +++ b/whisper-fine-tuning-event/special_tokens_map.json @@ -0,0 +1,139 @@ +{ + "additional_special_tokens": [ + "<|endoftext|>", + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nocaptions|>", + "<|notimestamps|>" + ], + "bos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/whisper-fine-tuning-event/tokenizer_config.json b/whisper-fine-tuning-event/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d13b786c04765fb1a06492b53587752cd67665ea --- /dev/null +++ b/whisper-fine-tuning-event/tokenizer_config.json @@ -0,0 +1,12989 @@ +{ + "add_bos_token": false, + "add_prefix_space": false, + "added_tokens_decoder": { + "50257": { + "content": "<|endoftext|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50258": { + "content": "<|startoftranscript|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50259": { + "content": "<|en|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50260": { + "content": "<|zh|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50261": { + "content": "<|de|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50262": { + "content": "<|es|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50263": { + "content": "<|ru|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50264": { + "content": "<|ko|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50265": { + "content": "<|fr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50266": { + "content": "<|ja|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50267": { + "content": "<|pt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50268": { + "content": "<|tr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50269": { + "content": "<|pl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50270": { + "content": "<|ca|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50271": { + "content": "<|nl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50272": { + "content": "<|ar|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50273": { + "content": "<|sv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50274": { + "content": "<|it|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50275": { + "content": "<|id|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50276": { + "content": "<|hi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50277": { + "content": "<|fi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50278": { + "content": "<|vi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50279": { + "content": "<|he|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50280": { + "content": "<|uk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50281": { + "content": "<|el|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50282": { + "content": "<|ms|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50283": { + "content": "<|cs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50284": { + "content": "<|ro|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50285": { + "content": "<|da|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50286": { + "content": "<|hu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50287": { + "content": "<|ta|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50288": { + "content": "<|no|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50289": { + "content": "<|th|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50290": { + "content": "<|ur|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50291": { + "content": "<|hr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50292": { + "content": "<|bg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50293": { + "content": "<|lt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50294": { + "content": "<|la|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50295": { + "content": "<|mi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50296": { + "content": "<|ml|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50297": { + "content": "<|cy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50298": { + "content": "<|sk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50299": { + "content": "<|te|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50300": { + "content": "<|fa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50301": { + "content": "<|lv|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50302": { + "content": "<|bn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50303": { + "content": "<|sr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50304": { + "content": "<|az|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50305": { + "content": "<|sl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50306": { + "content": "<|kn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50307": { + "content": "<|et|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50308": { + "content": "<|mk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50309": { + "content": "<|br|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50310": { + "content": "<|eu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50311": { + "content": "<|is|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50312": { + "content": "<|hy|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50313": { + "content": "<|ne|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50314": { + "content": "<|mn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50315": { + "content": "<|bs|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50316": { + "content": "<|kk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50317": { + "content": "<|sq|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50318": { + "content": "<|sw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50319": { + "content": "<|gl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50320": { + "content": "<|mr|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50321": { + "content": "<|pa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50322": { + "content": "<|si|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50323": { + "content": "<|km|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50324": { + "content": "<|sn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50325": { + "content": "<|yo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50326": { + "content": "<|so|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50327": { + "content": "<|af|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50328": { + "content": "<|oc|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50329": { + "content": "<|ka|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50330": { + "content": "<|be|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50331": { + "content": "<|tg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50332": { + "content": "<|sd|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50333": { + "content": "<|gu|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50334": { + "content": "<|am|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50335": { + "content": "<|yi|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50336": { + "content": "<|lo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50337": { + "content": "<|uz|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50338": { + "content": "<|fo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50339": { + "content": "<|ht|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50340": { + "content": "<|ps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50341": { + "content": "<|tk|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50342": { + "content": "<|nn|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50343": { + "content": "<|mt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50344": { + "content": "<|sa|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50345": { + "content": "<|lb|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50346": { + "content": "<|my|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50347": { + "content": "<|bo|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50348": { + "content": "<|tl|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50349": { + "content": "<|mg|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50350": { + "content": "<|as|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50351": { + "content": "<|tt|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50352": { + "content": "<|haw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50353": { + "content": "<|ln|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50354": { + "content": "<|ha|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50355": { + "content": "<|ba|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50356": { + "content": "<|jw|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50357": { + "content": "<|su|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50358": { + "content": "<|translate|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50359": { + "content": "<|transcribe|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50360": { + "content": "<|startoflm|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50361": { + "content": "<|startofprev|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50362": { + "content": "<|nocaptions|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50363": { + "content": "<|notimestamps|>", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "50364": { + "content": "<|0.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50365": { + "content": "<|0.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50366": { + "content": "<|0.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50367": { + "content": "<|0.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50368": { + "content": "<|0.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50369": { + "content": "<|0.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50370": { + "content": "<|0.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50371": { + "content": "<|0.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50372": { + "content": "<|0.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50373": { + "content": "<|0.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50374": { + "content": "<|0.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50375": { + "content": "<|0.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50376": { + "content": "<|0.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50377": { + "content": "<|0.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50378": { + "content": "<|0.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50379": { + "content": "<|0.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50380": { + "content": "<|0.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50381": { + "content": "<|0.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50382": { + "content": "<|0.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50383": { + "content": "<|0.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50384": { + "content": "<|0.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50385": { + "content": "<|0.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50386": { + "content": "<|0.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50387": { + "content": "<|0.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50388": { + "content": "<|0.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50389": { + "content": "<|0.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50390": { + "content": "<|0.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50391": { + "content": "<|0.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50392": { + "content": "<|0.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50393": { + "content": "<|0.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50394": { + "content": "<|0.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50395": { + "content": "<|0.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50396": { + "content": "<|0.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50397": { + "content": "<|0.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50398": { + "content": "<|0.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50399": { + "content": "<|0.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50400": { + "content": "<|0.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50401": { + "content": "<|0.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50402": { + "content": "<|0.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50403": { + "content": "<|0.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50404": { + "content": "<|0.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50405": { + "content": "<|0.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50406": { + "content": "<|0.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50407": { + "content": "<|0.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50408": { + "content": "<|0.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50409": { + "content": "<|0.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50410": { + "content": "<|0.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50411": { + "content": "<|0.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50412": { + "content": "<|0.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50413": { + "content": "<|0.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50414": { + "content": "<|1.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50415": { + "content": "<|1.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50416": { + "content": "<|1.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50417": { + "content": "<|1.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50418": { + "content": "<|1.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50419": { + "content": "<|1.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50420": { + "content": "<|1.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50421": { + "content": "<|1.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50422": { + "content": "<|1.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50423": { + "content": "<|1.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50424": { + "content": "<|1.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50425": { + "content": "<|1.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50426": { + "content": "<|1.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50427": { + "content": "<|1.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50428": { + "content": "<|1.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50429": { + "content": "<|1.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50430": { + "content": "<|1.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50431": { + "content": "<|1.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50432": { + "content": "<|1.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50433": { + "content": "<|1.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50434": { + "content": "<|1.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50435": { + "content": "<|1.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50436": { + "content": "<|1.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50437": { + "content": "<|1.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50438": { + "content": "<|1.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50439": { + "content": "<|1.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50440": { + "content": "<|1.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50441": { + "content": "<|1.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50442": { + "content": "<|1.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50443": { + "content": "<|1.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50444": { + "content": "<|1.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50445": { + "content": "<|1.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50446": { + "content": "<|1.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50447": { + "content": "<|1.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50448": { + "content": "<|1.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50449": { + "content": "<|1.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50450": { + "content": "<|1.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50451": { + "content": "<|1.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50452": { + "content": "<|1.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50453": { + "content": "<|1.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50454": { + "content": "<|1.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50455": { + "content": "<|1.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50456": { + "content": "<|1.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50457": { + "content": "<|1.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50458": { + "content": "<|1.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50459": { + "content": "<|1.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50460": { + "content": "<|1.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50461": { + "content": "<|1.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50462": { + "content": "<|1.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50463": { + "content": "<|1.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50464": { + "content": "<|2.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50465": { + "content": "<|2.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50466": { + "content": "<|2.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50467": { + "content": "<|2.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50468": { + "content": "<|2.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50469": { + "content": "<|2.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50470": { + "content": "<|2.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50471": { + "content": "<|2.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50472": { + "content": "<|2.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50473": { + "content": "<|2.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50474": { + "content": "<|2.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50475": { + "content": "<|2.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50476": { + "content": "<|2.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50477": { + "content": "<|2.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50478": { + "content": "<|2.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50479": { + "content": "<|2.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50480": { + "content": "<|2.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50481": { + "content": "<|2.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50482": { + "content": "<|2.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50483": { + "content": "<|2.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50484": { + "content": "<|2.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50485": { + "content": "<|2.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50486": { + "content": "<|2.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50487": { + "content": "<|2.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50488": { + "content": "<|2.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50489": { + "content": "<|2.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50490": { + "content": "<|2.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50491": { + "content": "<|2.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50492": { + "content": "<|2.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50493": { + "content": "<|2.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50494": { + "content": "<|2.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50495": { + "content": "<|2.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50496": { + "content": "<|2.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50497": { + "content": "<|2.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50498": { + "content": "<|2.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50499": { + "content": "<|2.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50500": { + "content": "<|2.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50501": { + "content": "<|2.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50502": { + "content": "<|2.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50503": { + "content": "<|2.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50504": { + "content": "<|2.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50505": { + "content": "<|2.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50506": { + "content": "<|2.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50507": { + "content": "<|2.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50508": { + "content": "<|2.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50509": { + "content": "<|2.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50510": { + "content": "<|2.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50511": { + "content": "<|2.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50512": { + "content": "<|2.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50513": { + "content": "<|2.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50514": { + "content": "<|3.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50515": { + "content": "<|3.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50516": { + "content": "<|3.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50517": { + "content": "<|3.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50518": { + "content": "<|3.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50519": { + "content": "<|3.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50520": { + "content": "<|3.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50521": { + "content": "<|3.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50522": { + "content": "<|3.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50523": { + "content": "<|3.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50524": { + "content": "<|3.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50525": { + "content": "<|3.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50526": { + "content": "<|3.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50527": { + "content": "<|3.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50528": { + "content": "<|3.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50529": { + "content": "<|3.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50530": { + "content": "<|3.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50531": { + "content": "<|3.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50532": { + "content": "<|3.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50533": { + "content": "<|3.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50534": { + "content": "<|3.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50535": { + "content": "<|3.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50536": { + "content": "<|3.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50537": { + "content": "<|3.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50538": { + "content": "<|3.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50539": { + "content": "<|3.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50540": { + "content": "<|3.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50541": { + "content": "<|3.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50542": { + "content": "<|3.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50543": { + "content": "<|3.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50544": { + "content": "<|3.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50545": { + "content": "<|3.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50546": { + "content": "<|3.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50547": { + "content": "<|3.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50548": { + "content": "<|3.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50549": { + "content": "<|3.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50550": { + "content": "<|3.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50551": { + "content": "<|3.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50552": { + "content": "<|3.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50553": { + "content": "<|3.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50554": { + "content": "<|3.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50555": { + "content": "<|3.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50556": { + "content": "<|3.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50557": { + "content": "<|3.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50558": { + "content": "<|3.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50559": { + "content": "<|3.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50560": { + "content": "<|3.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50561": { + "content": "<|3.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50562": { + "content": "<|3.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50563": { + "content": "<|3.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50564": { + "content": "<|4.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50565": { + "content": "<|4.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50566": { + "content": "<|4.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50567": { + "content": "<|4.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50568": { + "content": "<|4.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50569": { + "content": "<|4.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50570": { + "content": "<|4.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50571": { + "content": "<|4.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50572": { + "content": "<|4.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50573": { + "content": "<|4.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50574": { + "content": "<|4.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50575": { + "content": "<|4.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50576": { + "content": "<|4.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50577": { + "content": "<|4.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50578": { + "content": "<|4.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50579": { + "content": "<|4.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50580": { + "content": "<|4.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50581": { + "content": "<|4.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50582": { + "content": "<|4.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50583": { + "content": "<|4.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50584": { + "content": "<|4.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50585": { + "content": "<|4.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50586": { + "content": "<|4.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50587": { + "content": "<|4.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50588": { + "content": "<|4.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50589": { + "content": "<|4.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50590": { + "content": "<|4.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50591": { + "content": "<|4.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50592": { + "content": "<|4.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50593": { + "content": "<|4.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50594": { + "content": "<|4.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50595": { + "content": "<|4.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50596": { + "content": "<|4.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50597": { + "content": "<|4.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50598": { + "content": "<|4.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50599": { + "content": "<|4.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50600": { + "content": "<|4.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50601": { + "content": "<|4.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50602": { + "content": "<|4.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50603": { + "content": "<|4.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50604": { + "content": "<|4.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50605": { + "content": "<|4.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50606": { + "content": "<|4.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50607": { + "content": "<|4.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50608": { + "content": "<|4.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50609": { + "content": "<|4.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50610": { + "content": "<|4.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50611": { + "content": "<|4.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50612": { + "content": "<|4.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50613": { + "content": "<|4.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50614": { + "content": "<|5.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50615": { + "content": "<|5.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50616": { + "content": "<|5.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50617": { + "content": "<|5.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50618": { + "content": "<|5.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50619": { + "content": "<|5.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50620": { + "content": "<|5.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50621": { + "content": "<|5.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50622": { + "content": "<|5.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50623": { + "content": "<|5.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50624": { + "content": "<|5.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50625": { + "content": "<|5.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50626": { + "content": "<|5.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50627": { + "content": "<|5.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50628": { + "content": "<|5.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50629": { + "content": "<|5.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50630": { + "content": "<|5.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50631": { + "content": "<|5.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50632": { + "content": "<|5.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50633": { + "content": "<|5.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50634": { + "content": "<|5.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50635": { + "content": "<|5.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50636": { + "content": "<|5.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50637": { + "content": "<|5.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50638": { + "content": "<|5.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50639": { + "content": "<|5.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50640": { + "content": "<|5.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50641": { + "content": "<|5.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50642": { + "content": "<|5.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50643": { + "content": "<|5.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50644": { + "content": "<|5.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50645": { + "content": "<|5.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50646": { + "content": "<|5.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50647": { + "content": "<|5.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50648": { + "content": "<|5.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50649": { + "content": "<|5.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50650": { + "content": "<|5.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50651": { + "content": "<|5.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50652": { + "content": "<|5.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50653": { + "content": "<|5.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50654": { + "content": "<|5.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50655": { + "content": "<|5.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50656": { + "content": "<|5.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50657": { + "content": "<|5.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50658": { + "content": "<|5.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50659": { + "content": "<|5.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50660": { + "content": "<|5.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50661": { + "content": "<|5.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50662": { + "content": "<|5.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50663": { + "content": "<|5.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50664": { + "content": "<|6.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50665": { + "content": "<|6.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50666": { + "content": "<|6.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50667": { + "content": "<|6.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50668": { + "content": "<|6.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50669": { + "content": "<|6.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50670": { + "content": "<|6.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50671": { + "content": "<|6.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50672": { + "content": "<|6.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50673": { + "content": "<|6.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50674": { + "content": "<|6.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50675": { + "content": "<|6.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50676": { + "content": "<|6.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50677": { + "content": "<|6.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50678": { + "content": "<|6.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50679": { + "content": "<|6.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50680": { + "content": "<|6.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50681": { + "content": "<|6.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50682": { + "content": "<|6.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50683": { + "content": "<|6.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50684": { + "content": "<|6.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50685": { + "content": "<|6.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50686": { + "content": "<|6.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50687": { + "content": "<|6.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50688": { + "content": "<|6.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50689": { + "content": "<|6.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50690": { + "content": "<|6.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50691": { + "content": "<|6.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50692": { + "content": "<|6.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50693": { + "content": "<|6.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50694": { + "content": "<|6.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50695": { + "content": "<|6.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50696": { + "content": "<|6.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50697": { + "content": "<|6.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50698": { + "content": "<|6.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50699": { + "content": "<|6.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50700": { + "content": "<|6.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50701": { + "content": "<|6.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50702": { + "content": "<|6.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50703": { + "content": "<|6.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50704": { + "content": "<|6.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50705": { + "content": "<|6.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50706": { + "content": "<|6.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50707": { + "content": "<|6.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50708": { + "content": "<|6.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50709": { + "content": "<|6.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50710": { + "content": "<|6.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50711": { + "content": "<|6.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50712": { + "content": "<|6.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50713": { + "content": "<|6.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50714": { + "content": "<|7.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50715": { + "content": "<|7.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50716": { + "content": "<|7.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50717": { + "content": "<|7.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50718": { + "content": "<|7.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50719": { + "content": "<|7.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50720": { + "content": "<|7.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50721": { + "content": "<|7.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50722": { + "content": "<|7.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50723": { + "content": "<|7.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50724": { + "content": "<|7.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50725": { + "content": "<|7.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50726": { + "content": "<|7.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50727": { + "content": "<|7.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50728": { + "content": "<|7.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50729": { + "content": "<|7.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50730": { + "content": "<|7.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50731": { + "content": "<|7.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50732": { + "content": "<|7.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50733": { + "content": "<|7.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50734": { + "content": "<|7.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50735": { + "content": "<|7.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50736": { + "content": "<|7.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50737": { + "content": "<|7.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50738": { + "content": "<|7.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50739": { + "content": "<|7.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50740": { + "content": "<|7.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50741": { + "content": "<|7.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50742": { + "content": "<|7.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50743": { + "content": "<|7.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50744": { + "content": "<|7.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50745": { + "content": "<|7.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50746": { + "content": "<|7.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50747": { + "content": "<|7.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50748": { + "content": "<|7.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50749": { + "content": "<|7.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50750": { + "content": "<|7.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50751": { + "content": "<|7.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50752": { + "content": "<|7.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50753": { + "content": "<|7.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50754": { + "content": "<|7.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50755": { + "content": "<|7.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50756": { + "content": "<|7.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50757": { + "content": "<|7.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50758": { + "content": "<|7.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50759": { + "content": "<|7.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50760": { + "content": "<|7.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50761": { + "content": "<|7.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50762": { + "content": "<|7.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50763": { + "content": "<|7.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50764": { + "content": "<|8.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50765": { + "content": "<|8.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50766": { + "content": "<|8.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50767": { + "content": "<|8.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50768": { + "content": "<|8.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50769": { + "content": "<|8.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50770": { + "content": "<|8.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50771": { + "content": "<|8.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50772": { + "content": "<|8.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50773": { + "content": "<|8.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50774": { + "content": "<|8.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50775": { + "content": "<|8.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50776": { + "content": "<|8.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50777": { + "content": "<|8.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50778": { + "content": "<|8.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50779": { + "content": "<|8.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50780": { + "content": "<|8.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50781": { + "content": "<|8.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50782": { + "content": "<|8.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50783": { + "content": "<|8.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50784": { + "content": "<|8.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50785": { + "content": "<|8.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50786": { + "content": "<|8.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50787": { + "content": "<|8.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50788": { + "content": "<|8.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50789": { + "content": "<|8.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50790": { + "content": "<|8.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50791": { + "content": "<|8.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50792": { + "content": "<|8.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50793": { + "content": "<|8.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50794": { + "content": "<|8.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50795": { + "content": "<|8.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50796": { + "content": "<|8.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50797": { + "content": "<|8.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50798": { + "content": "<|8.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50799": { + "content": "<|8.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50800": { + "content": "<|8.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50801": { + "content": "<|8.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50802": { + "content": "<|8.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50803": { + "content": "<|8.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50804": { + "content": "<|8.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50805": { + "content": "<|8.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50806": { + "content": "<|8.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50807": { + "content": "<|8.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50808": { + "content": "<|8.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50809": { + "content": "<|8.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50810": { + "content": "<|8.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50811": { + "content": "<|8.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50812": { + "content": "<|8.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50813": { + "content": "<|8.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50814": { + "content": "<|9.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50815": { + "content": "<|9.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50816": { + "content": "<|9.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50817": { + "content": "<|9.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50818": { + "content": "<|9.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50819": { + "content": "<|9.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50820": { + "content": "<|9.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50821": { + "content": "<|9.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50822": { + "content": "<|9.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50823": { + "content": "<|9.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50824": { + "content": "<|9.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50825": { + "content": "<|9.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50826": { + "content": "<|9.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50827": { + "content": "<|9.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50828": { + "content": "<|9.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50829": { + "content": "<|9.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50830": { + "content": "<|9.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50831": { + "content": "<|9.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50832": { + "content": "<|9.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50833": { + "content": "<|9.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50834": { + "content": "<|9.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50835": { + "content": "<|9.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50836": { + "content": "<|9.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50837": { + "content": "<|9.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50838": { + "content": "<|9.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50839": { + "content": "<|9.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50840": { + "content": "<|9.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50841": { + "content": "<|9.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50842": { + "content": "<|9.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50843": { + "content": "<|9.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50844": { + "content": "<|9.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50845": { + "content": "<|9.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50846": { + "content": "<|9.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50847": { + "content": "<|9.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50848": { + "content": "<|9.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50849": { + "content": "<|9.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50850": { + "content": "<|9.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50851": { + "content": "<|9.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50852": { + "content": "<|9.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50853": { + "content": "<|9.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50854": { + "content": "<|9.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50855": { + "content": "<|9.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50856": { + "content": "<|9.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50857": { + "content": "<|9.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50858": { + "content": "<|9.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50859": { + "content": "<|9.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50860": { + "content": "<|9.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50861": { + "content": "<|9.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50862": { + "content": "<|9.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50863": { + "content": "<|9.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50864": { + "content": "<|10.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50865": { + "content": "<|10.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50866": { + "content": "<|10.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50867": { + "content": "<|10.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50868": { + "content": "<|10.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50869": { + "content": "<|10.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50870": { + "content": "<|10.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50871": { + "content": "<|10.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50872": { + "content": "<|10.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50873": { + "content": "<|10.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50874": { + "content": "<|10.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50875": { + "content": "<|10.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50876": { + "content": "<|10.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50877": { + "content": "<|10.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50878": { + "content": "<|10.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50879": { + "content": "<|10.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50880": { + "content": "<|10.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50881": { + "content": "<|10.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50882": { + "content": "<|10.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50883": { + "content": "<|10.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50884": { + "content": "<|10.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50885": { + "content": "<|10.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50886": { + "content": "<|10.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50887": { + "content": "<|10.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50888": { + "content": "<|10.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50889": { + "content": "<|10.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50890": { + "content": "<|10.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50891": { + "content": "<|10.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50892": { + "content": "<|10.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50893": { + "content": "<|10.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50894": { + "content": "<|10.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50895": { + "content": "<|10.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50896": { + "content": "<|10.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50897": { + "content": "<|10.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50898": { + "content": "<|10.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50899": { + "content": "<|10.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50900": { + "content": "<|10.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50901": { + "content": "<|10.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50902": { + "content": "<|10.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50903": { + "content": "<|10.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50904": { + "content": "<|10.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50905": { + "content": "<|10.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50906": { + "content": "<|10.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50907": { + "content": "<|10.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50908": { + "content": "<|10.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50909": { + "content": "<|10.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50910": { + "content": "<|10.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50911": { + "content": "<|10.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50912": { + "content": "<|10.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50913": { + "content": "<|10.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50914": { + "content": "<|11.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50915": { + "content": "<|11.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50916": { + "content": "<|11.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50917": { + "content": "<|11.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50918": { + "content": "<|11.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50919": { + "content": "<|11.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50920": { + "content": "<|11.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50921": { + "content": "<|11.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50922": { + "content": "<|11.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50923": { + "content": "<|11.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50924": { + "content": "<|11.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50925": { + "content": "<|11.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50926": { + "content": "<|11.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50927": { + "content": "<|11.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50928": { + "content": "<|11.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50929": { + "content": "<|11.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50930": { + "content": "<|11.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50931": { + "content": "<|11.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50932": { + "content": "<|11.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50933": { + "content": "<|11.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50934": { + "content": "<|11.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50935": { + "content": "<|11.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50936": { + "content": "<|11.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50937": { + "content": "<|11.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50938": { + "content": "<|11.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50939": { + "content": "<|11.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50940": { + "content": "<|11.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50941": { + "content": "<|11.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50942": { + "content": "<|11.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50943": { + "content": "<|11.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50944": { + "content": "<|11.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50945": { + "content": "<|11.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50946": { + "content": "<|11.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50947": { + "content": "<|11.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50948": { + "content": "<|11.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50949": { + "content": "<|11.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50950": { + "content": "<|11.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50951": { + "content": "<|11.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50952": { + "content": "<|11.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50953": { + "content": "<|11.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50954": { + "content": "<|11.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50955": { + "content": "<|11.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50956": { + "content": "<|11.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50957": { + "content": "<|11.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50958": { + "content": "<|11.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50959": { + "content": "<|11.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50960": { + "content": "<|11.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50961": { + "content": "<|11.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50962": { + "content": "<|11.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50963": { + "content": "<|11.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50964": { + "content": "<|12.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50965": { + "content": "<|12.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50966": { + "content": "<|12.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50967": { + "content": "<|12.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50968": { + "content": "<|12.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50969": { + "content": "<|12.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50970": { + "content": "<|12.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50971": { + "content": "<|12.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50972": { + "content": "<|12.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50973": { + "content": "<|12.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50974": { + "content": "<|12.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50975": { + "content": "<|12.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50976": { + "content": "<|12.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50977": { + "content": "<|12.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50978": { + "content": "<|12.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50979": { + "content": "<|12.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50980": { + "content": "<|12.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50981": { + "content": "<|12.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50982": { + "content": "<|12.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50983": { + "content": "<|12.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50984": { + "content": "<|12.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50985": { + "content": "<|12.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50986": { + "content": "<|12.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50987": { + "content": "<|12.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50988": { + "content": "<|12.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50989": { + "content": "<|12.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50990": { + "content": "<|12.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50991": { + "content": "<|12.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50992": { + "content": "<|12.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50993": { + "content": "<|12.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50994": { + "content": "<|12.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50995": { + "content": "<|12.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50996": { + "content": "<|12.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50997": { + "content": "<|12.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50998": { + "content": "<|12.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "50999": { + "content": "<|12.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51000": { + "content": "<|12.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51001": { + "content": "<|12.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51002": { + "content": "<|12.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51003": { + "content": "<|12.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51004": { + "content": "<|12.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51005": { + "content": "<|12.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51006": { + "content": "<|12.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51007": { + "content": "<|12.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51008": { + "content": "<|12.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51009": { + "content": "<|12.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51010": { + "content": "<|12.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51011": { + "content": "<|12.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51012": { + "content": "<|12.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51013": { + "content": "<|12.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51014": { + "content": "<|13.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51015": { + "content": "<|13.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51016": { + "content": "<|13.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51017": { + "content": "<|13.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51018": { + "content": "<|13.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51019": { + "content": "<|13.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51020": { + "content": "<|13.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51021": { + "content": "<|13.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51022": { + "content": "<|13.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51023": { + "content": "<|13.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51024": { + "content": "<|13.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51025": { + "content": "<|13.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51026": { + "content": "<|13.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51027": { + "content": "<|13.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51028": { + "content": "<|13.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51029": { + "content": "<|13.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51030": { + "content": "<|13.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51031": { + "content": "<|13.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51032": { + "content": "<|13.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51033": { + "content": "<|13.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51034": { + "content": "<|13.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51035": { + "content": "<|13.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51036": { + "content": "<|13.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51037": { + "content": "<|13.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51038": { + "content": "<|13.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51039": { + "content": "<|13.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51040": { + "content": "<|13.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51041": { + "content": "<|13.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51042": { + "content": "<|13.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51043": { + "content": "<|13.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51044": { + "content": "<|13.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51045": { + "content": "<|13.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51046": { + "content": "<|13.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51047": { + "content": "<|13.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51048": { + "content": "<|13.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51049": { + "content": "<|13.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51050": { + "content": "<|13.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51051": { + "content": "<|13.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51052": { + "content": "<|13.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51053": { + "content": "<|13.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51054": { + "content": "<|13.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51055": { + "content": "<|13.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51056": { + "content": "<|13.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51057": { + "content": "<|13.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51058": { + "content": "<|13.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51059": { + "content": "<|13.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51060": { + "content": "<|13.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51061": { + "content": "<|13.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51062": { + "content": "<|13.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51063": { + "content": "<|13.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51064": { + "content": "<|14.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51065": { + "content": "<|14.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51066": { + "content": "<|14.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51067": { + "content": "<|14.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51068": { + "content": "<|14.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51069": { + "content": "<|14.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51070": { + "content": "<|14.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51071": { + "content": "<|14.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51072": { + "content": "<|14.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51073": { + "content": "<|14.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51074": { + "content": "<|14.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51075": { + "content": "<|14.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51076": { + "content": "<|14.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51077": { + "content": "<|14.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51078": { + "content": "<|14.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51079": { + "content": "<|14.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51080": { + "content": "<|14.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51081": { + "content": "<|14.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51082": { + "content": "<|14.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51083": { + "content": "<|14.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51084": { + "content": "<|14.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51085": { + "content": "<|14.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51086": { + "content": "<|14.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51087": { + "content": "<|14.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51088": { + "content": "<|14.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51089": { + "content": "<|14.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51090": { + "content": "<|14.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51091": { + "content": "<|14.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51092": { + "content": "<|14.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51093": { + "content": "<|14.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51094": { + "content": "<|14.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51095": { + "content": "<|14.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51096": { + "content": "<|14.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51097": { + "content": "<|14.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51098": { + "content": "<|14.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51099": { + "content": "<|14.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51100": { + "content": "<|14.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51101": { + "content": "<|14.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51102": { + "content": "<|14.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51103": { + "content": "<|14.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51104": { + "content": "<|14.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51105": { + "content": "<|14.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51106": { + "content": "<|14.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51107": { + "content": "<|14.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51108": { + "content": "<|14.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51109": { + "content": "<|14.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51110": { + "content": "<|14.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51111": { + "content": "<|14.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51112": { + "content": "<|14.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51113": { + "content": "<|14.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51114": { + "content": "<|15.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51115": { + "content": "<|15.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51116": { + "content": "<|15.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51117": { + "content": "<|15.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51118": { + "content": "<|15.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51119": { + "content": "<|15.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51120": { + "content": "<|15.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51121": { + "content": "<|15.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51122": { + "content": "<|15.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51123": { + "content": "<|15.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51124": { + "content": "<|15.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51125": { + "content": "<|15.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51126": { + "content": "<|15.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51127": { + "content": "<|15.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51128": { + "content": "<|15.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51129": { + "content": "<|15.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51130": { + "content": "<|15.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51131": { + "content": "<|15.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51132": { + "content": "<|15.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51133": { + "content": "<|15.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51134": { + "content": "<|15.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51135": { + "content": "<|15.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51136": { + "content": "<|15.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51137": { + "content": "<|15.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51138": { + "content": "<|15.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51139": { + "content": "<|15.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51140": { + "content": "<|15.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51141": { + "content": "<|15.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51142": { + "content": "<|15.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51143": { + "content": "<|15.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51144": { + "content": "<|15.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51145": { + "content": "<|15.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51146": { + "content": "<|15.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51147": { + "content": "<|15.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51148": { + "content": "<|15.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51149": { + "content": "<|15.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51150": { + "content": "<|15.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51151": { + "content": "<|15.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51152": { + "content": "<|15.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51153": { + "content": "<|15.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51154": { + "content": "<|15.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51155": { + "content": "<|15.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51156": { + "content": "<|15.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51157": { + "content": "<|15.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51158": { + "content": "<|15.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51159": { + "content": "<|15.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51160": { + "content": "<|15.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51161": { + "content": "<|15.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51162": { + "content": "<|15.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51163": { + "content": "<|15.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51164": { + "content": "<|16.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51165": { + "content": "<|16.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51166": { + "content": "<|16.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51167": { + "content": "<|16.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51168": { + "content": "<|16.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51169": { + "content": "<|16.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51170": { + "content": "<|16.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51171": { + "content": "<|16.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51172": { + "content": "<|16.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51173": { + "content": "<|16.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51174": { + "content": "<|16.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51175": { + "content": "<|16.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51176": { + "content": "<|16.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51177": { + "content": "<|16.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51178": { + "content": "<|16.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51179": { + "content": "<|16.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51180": { + "content": "<|16.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51181": { + "content": "<|16.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51182": { + "content": "<|16.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51183": { + "content": "<|16.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51184": { + "content": "<|16.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51185": { + "content": "<|16.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51186": { + "content": "<|16.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51187": { + "content": "<|16.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51188": { + "content": "<|16.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51189": { + "content": "<|16.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51190": { + "content": "<|16.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51191": { + "content": "<|16.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51192": { + "content": "<|16.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51193": { + "content": "<|16.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51194": { + "content": "<|16.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51195": { + "content": "<|16.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51196": { + "content": "<|16.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51197": { + "content": "<|16.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51198": { + "content": "<|16.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51199": { + "content": "<|16.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51200": { + "content": "<|16.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51201": { + "content": "<|16.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51202": { + "content": "<|16.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51203": { + "content": "<|16.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51204": { + "content": "<|16.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51205": { + "content": "<|16.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51206": { + "content": "<|16.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51207": { + "content": "<|16.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51208": { + "content": "<|16.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51209": { + "content": "<|16.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51210": { + "content": "<|16.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51211": { + "content": "<|16.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51212": { + "content": "<|16.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51213": { + "content": "<|16.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51214": { + "content": "<|17.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51215": { + "content": "<|17.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51216": { + "content": "<|17.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51217": { + "content": "<|17.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51218": { + "content": "<|17.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51219": { + "content": "<|17.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51220": { + "content": "<|17.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51221": { + "content": "<|17.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51222": { + "content": "<|17.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51223": { + "content": "<|17.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51224": { + "content": "<|17.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51225": { + "content": "<|17.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51226": { + "content": "<|17.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51227": { + "content": "<|17.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51228": { + "content": "<|17.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51229": { + "content": "<|17.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51230": { + "content": "<|17.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51231": { + "content": "<|17.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51232": { + "content": "<|17.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51233": { + "content": "<|17.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51234": { + "content": "<|17.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51235": { + "content": "<|17.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51236": { + "content": "<|17.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51237": { + "content": "<|17.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51238": { + "content": "<|17.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51239": { + "content": "<|17.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51240": { + "content": "<|17.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51241": { + "content": "<|17.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51242": { + "content": "<|17.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51243": { + "content": "<|17.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51244": { + "content": "<|17.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51245": { + "content": "<|17.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51246": { + "content": "<|17.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51247": { + "content": "<|17.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51248": { + "content": "<|17.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51249": { + "content": "<|17.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51250": { + "content": "<|17.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51251": { + "content": "<|17.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51252": { + "content": "<|17.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51253": { + "content": "<|17.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51254": { + "content": "<|17.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51255": { + "content": "<|17.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51256": { + "content": "<|17.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51257": { + "content": "<|17.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51258": { + "content": "<|17.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51259": { + "content": "<|17.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51260": { + "content": "<|17.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51261": { + "content": "<|17.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51262": { + "content": "<|17.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51263": { + "content": "<|17.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51264": { + "content": "<|18.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51265": { + "content": "<|18.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51266": { + "content": "<|18.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51267": { + "content": "<|18.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51268": { + "content": "<|18.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51269": { + "content": "<|18.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51270": { + "content": "<|18.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51271": { + "content": "<|18.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51272": { + "content": "<|18.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51273": { + "content": "<|18.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51274": { + "content": "<|18.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51275": { + "content": "<|18.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51276": { + "content": "<|18.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51277": { + "content": "<|18.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51278": { + "content": "<|18.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51279": { + "content": "<|18.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51280": { + "content": "<|18.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51281": { + "content": "<|18.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51282": { + "content": "<|18.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51283": { + "content": "<|18.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51284": { + "content": "<|18.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51285": { + "content": "<|18.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51286": { + "content": "<|18.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51287": { + "content": "<|18.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51288": { + "content": "<|18.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51289": { + "content": "<|18.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51290": { + "content": "<|18.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51291": { + "content": "<|18.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51292": { + "content": "<|18.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51293": { + "content": "<|18.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51294": { + "content": "<|18.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51295": { + "content": "<|18.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51296": { + "content": "<|18.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51297": { + "content": "<|18.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51298": { + "content": "<|18.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51299": { + "content": "<|18.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51300": { + "content": "<|18.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51301": { + "content": "<|18.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51302": { + "content": "<|18.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51303": { + "content": "<|18.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51304": { + "content": "<|18.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51305": { + "content": "<|18.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51306": { + "content": "<|18.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51307": { + "content": "<|18.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51308": { + "content": "<|18.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51309": { + "content": "<|18.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51310": { + "content": "<|18.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51311": { + "content": "<|18.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51312": { + "content": "<|18.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51313": { + "content": "<|18.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51314": { + "content": "<|19.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51315": { + "content": "<|19.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51316": { + "content": "<|19.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51317": { + "content": "<|19.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51318": { + "content": "<|19.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51319": { + "content": "<|19.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51320": { + "content": "<|19.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51321": { + "content": "<|19.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51322": { + "content": "<|19.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51323": { + "content": "<|19.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51324": { + "content": "<|19.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51325": { + "content": "<|19.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51326": { + "content": "<|19.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51327": { + "content": "<|19.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51328": { + "content": "<|19.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51329": { + "content": "<|19.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51330": { + "content": "<|19.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51331": { + "content": "<|19.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51332": { + "content": "<|19.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51333": { + "content": "<|19.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51334": { + "content": "<|19.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51335": { + "content": "<|19.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51336": { + "content": "<|19.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51337": { + "content": "<|19.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51338": { + "content": "<|19.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51339": { + "content": "<|19.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51340": { + "content": "<|19.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51341": { + "content": "<|19.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51342": { + "content": "<|19.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51343": { + "content": "<|19.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51344": { + "content": "<|19.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51345": { + "content": "<|19.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51346": { + "content": "<|19.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51347": { + "content": "<|19.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51348": { + "content": "<|19.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51349": { + "content": "<|19.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51350": { + "content": "<|19.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51351": { + "content": "<|19.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51352": { + "content": "<|19.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51353": { + "content": "<|19.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51354": { + "content": "<|19.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51355": { + "content": "<|19.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51356": { + "content": "<|19.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51357": { + "content": "<|19.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51358": { + "content": "<|19.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51359": { + "content": "<|19.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51360": { + "content": "<|19.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51361": { + "content": "<|19.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51362": { + "content": "<|19.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51363": { + "content": "<|19.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51364": { + "content": "<|20.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51365": { + "content": "<|20.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51366": { + "content": "<|20.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51367": { + "content": "<|20.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51368": { + "content": "<|20.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51369": { + "content": "<|20.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51370": { + "content": "<|20.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51371": { + "content": "<|20.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51372": { + "content": "<|20.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51373": { + "content": "<|20.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51374": { + "content": "<|20.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51375": { + "content": "<|20.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51376": { + "content": "<|20.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51377": { + "content": "<|20.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51378": { + "content": "<|20.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51379": { + "content": "<|20.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51380": { + "content": "<|20.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51381": { + "content": "<|20.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51382": { + "content": "<|20.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51383": { + "content": "<|20.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51384": { + "content": "<|20.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51385": { + "content": "<|20.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51386": { + "content": "<|20.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51387": { + "content": "<|20.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51388": { + "content": "<|20.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51389": { + "content": "<|20.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51390": { + "content": "<|20.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51391": { + "content": "<|20.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51392": { + "content": "<|20.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51393": { + "content": "<|20.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51394": { + "content": "<|20.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51395": { + "content": "<|20.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51396": { + "content": "<|20.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51397": { + "content": "<|20.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51398": { + "content": "<|20.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51399": { + "content": "<|20.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51400": { + "content": "<|20.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51401": { + "content": "<|20.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51402": { + "content": "<|20.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51403": { + "content": "<|20.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51404": { + "content": "<|20.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51405": { + "content": "<|20.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51406": { + "content": "<|20.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51407": { + "content": "<|20.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51408": { + "content": "<|20.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51409": { + "content": "<|20.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51410": { + "content": "<|20.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51411": { + "content": "<|20.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51412": { + "content": "<|20.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51413": { + "content": "<|20.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51414": { + "content": "<|21.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51415": { + "content": "<|21.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51416": { + "content": "<|21.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51417": { + "content": "<|21.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51418": { + "content": "<|21.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51419": { + "content": "<|21.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51420": { + "content": "<|21.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51421": { + "content": "<|21.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51422": { + "content": "<|21.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51423": { + "content": "<|21.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51424": { + "content": "<|21.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51425": { + "content": "<|21.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51426": { + "content": "<|21.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51427": { + "content": "<|21.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51428": { + "content": "<|21.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51429": { + "content": "<|21.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51430": { + "content": "<|21.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51431": { + "content": "<|21.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51432": { + "content": "<|21.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51433": { + "content": "<|21.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51434": { + "content": "<|21.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51435": { + "content": "<|21.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51436": { + "content": "<|21.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51437": { + "content": "<|21.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51438": { + "content": "<|21.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51439": { + "content": "<|21.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51440": { + "content": "<|21.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51441": { + "content": "<|21.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51442": { + "content": "<|21.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51443": { + "content": "<|21.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51444": { + "content": "<|21.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51445": { + "content": "<|21.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51446": { + "content": "<|21.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51447": { + "content": "<|21.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51448": { + "content": "<|21.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51449": { + "content": "<|21.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51450": { + "content": "<|21.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51451": { + "content": "<|21.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51452": { + "content": "<|21.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51453": { + "content": "<|21.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51454": { + "content": "<|21.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51455": { + "content": "<|21.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51456": { + "content": "<|21.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51457": { + "content": "<|21.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51458": { + "content": "<|21.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51459": { + "content": "<|21.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51460": { + "content": "<|21.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51461": { + "content": "<|21.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51462": { + "content": "<|21.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51463": { + "content": "<|21.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51464": { + "content": "<|22.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51465": { + "content": "<|22.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51466": { + "content": "<|22.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51467": { + "content": "<|22.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51468": { + "content": "<|22.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51469": { + "content": "<|22.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51470": { + "content": "<|22.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51471": { + "content": "<|22.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51472": { + "content": "<|22.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51473": { + "content": "<|22.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51474": { + "content": "<|22.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51475": { + "content": "<|22.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51476": { + "content": "<|22.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51477": { + "content": "<|22.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51478": { + "content": "<|22.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51479": { + "content": "<|22.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51480": { + "content": "<|22.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51481": { + "content": "<|22.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51482": { + "content": "<|22.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51483": { + "content": "<|22.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51484": { + "content": "<|22.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51485": { + "content": "<|22.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51486": { + "content": "<|22.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51487": { + "content": "<|22.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51488": { + "content": "<|22.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51489": { + "content": "<|22.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51490": { + "content": "<|22.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51491": { + "content": "<|22.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51492": { + "content": "<|22.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51493": { + "content": "<|22.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51494": { + "content": "<|22.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51495": { + "content": "<|22.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51496": { + "content": "<|22.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51497": { + "content": "<|22.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51498": { + "content": "<|22.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51499": { + "content": "<|22.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51500": { + "content": "<|22.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51501": { + "content": "<|22.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51502": { + "content": "<|22.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51503": { + "content": "<|22.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51504": { + "content": "<|22.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51505": { + "content": "<|22.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51506": { + "content": "<|22.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51507": { + "content": "<|22.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51508": { + "content": "<|22.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51509": { + "content": "<|22.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51510": { + "content": "<|22.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51511": { + "content": "<|22.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51512": { + "content": "<|22.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51513": { + "content": "<|22.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51514": { + "content": "<|23.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51515": { + "content": "<|23.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51516": { + "content": "<|23.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51517": { + "content": "<|23.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51518": { + "content": "<|23.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51519": { + "content": "<|23.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51520": { + "content": "<|23.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51521": { + "content": "<|23.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51522": { + "content": "<|23.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51523": { + "content": "<|23.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51524": { + "content": "<|23.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51525": { + "content": "<|23.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51526": { + "content": "<|23.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51527": { + "content": "<|23.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51528": { + "content": "<|23.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51529": { + "content": "<|23.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51530": { + "content": "<|23.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51531": { + "content": "<|23.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51532": { + "content": "<|23.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51533": { + "content": "<|23.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51534": { + "content": "<|23.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51535": { + "content": "<|23.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51536": { + "content": "<|23.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51537": { + "content": "<|23.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51538": { + "content": "<|23.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51539": { + "content": "<|23.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51540": { + "content": "<|23.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51541": { + "content": "<|23.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51542": { + "content": "<|23.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51543": { + "content": "<|23.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51544": { + "content": "<|23.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51545": { + "content": "<|23.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51546": { + "content": "<|23.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51547": { + "content": "<|23.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51548": { + "content": "<|23.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51549": { + "content": "<|23.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51550": { + "content": "<|23.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51551": { + "content": "<|23.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51552": { + "content": "<|23.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51553": { + "content": "<|23.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51554": { + "content": "<|23.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51555": { + "content": "<|23.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51556": { + "content": "<|23.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51557": { + "content": "<|23.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51558": { + "content": "<|23.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51559": { + "content": "<|23.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51560": { + "content": "<|23.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51561": { + "content": "<|23.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51562": { + "content": "<|23.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51563": { + "content": "<|23.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51564": { + "content": "<|24.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51565": { + "content": "<|24.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51566": { + "content": "<|24.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51567": { + "content": "<|24.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51568": { + "content": "<|24.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51569": { + "content": "<|24.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51570": { + "content": "<|24.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51571": { + "content": "<|24.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51572": { + "content": "<|24.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51573": { + "content": "<|24.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51574": { + "content": "<|24.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51575": { + "content": "<|24.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51576": { + "content": "<|24.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51577": { + "content": "<|24.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51578": { + "content": "<|24.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51579": { + "content": "<|24.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51580": { + "content": "<|24.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51581": { + "content": "<|24.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51582": { + "content": "<|24.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51583": { + "content": "<|24.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51584": { + "content": "<|24.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51585": { + "content": "<|24.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51586": { + "content": "<|24.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51587": { + "content": "<|24.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51588": { + "content": "<|24.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51589": { + "content": "<|24.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51590": { + "content": "<|24.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51591": { + "content": "<|24.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51592": { + "content": "<|24.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51593": { + "content": "<|24.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51594": { + "content": "<|24.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51595": { + "content": "<|24.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51596": { + "content": "<|24.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51597": { + "content": "<|24.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51598": { + "content": "<|24.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51599": { + "content": "<|24.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51600": { + "content": "<|24.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51601": { + "content": "<|24.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51602": { + "content": "<|24.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51603": { + "content": "<|24.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51604": { + "content": "<|24.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51605": { + "content": "<|24.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51606": { + "content": "<|24.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51607": { + "content": "<|24.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51608": { + "content": "<|24.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51609": { + "content": "<|24.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51610": { + "content": "<|24.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51611": { + "content": "<|24.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51612": { + "content": "<|24.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51613": { + "content": "<|24.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51614": { + "content": "<|25.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51615": { + "content": "<|25.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51616": { + "content": "<|25.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51617": { + "content": "<|25.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51618": { + "content": "<|25.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51619": { + "content": "<|25.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51620": { + "content": "<|25.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51621": { + "content": "<|25.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51622": { + "content": "<|25.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51623": { + "content": "<|25.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51624": { + "content": "<|25.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51625": { + "content": "<|25.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51626": { + "content": "<|25.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51627": { + "content": "<|25.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51628": { + "content": "<|25.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51629": { + "content": "<|25.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51630": { + "content": "<|25.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51631": { + "content": "<|25.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51632": { + "content": "<|25.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51633": { + "content": "<|25.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51634": { + "content": "<|25.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51635": { + "content": "<|25.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51636": { + "content": "<|25.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51637": { + "content": "<|25.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51638": { + "content": "<|25.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51639": { + "content": "<|25.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51640": { + "content": "<|25.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51641": { + "content": "<|25.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51642": { + "content": "<|25.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51643": { + "content": "<|25.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51644": { + "content": "<|25.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51645": { + "content": "<|25.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51646": { + "content": "<|25.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51647": { + "content": "<|25.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51648": { + "content": "<|25.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51649": { + "content": "<|25.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51650": { + "content": "<|25.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51651": { + "content": "<|25.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51652": { + "content": "<|25.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51653": { + "content": "<|25.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51654": { + "content": "<|25.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51655": { + "content": "<|25.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51656": { + "content": "<|25.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51657": { + "content": "<|25.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51658": { + "content": "<|25.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51659": { + "content": "<|25.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51660": { + "content": "<|25.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51661": { + "content": "<|25.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51662": { + "content": "<|25.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51663": { + "content": "<|25.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51664": { + "content": "<|26.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51665": { + "content": "<|26.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51666": { + "content": "<|26.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51667": { + "content": "<|26.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51668": { + "content": "<|26.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51669": { + "content": "<|26.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51670": { + "content": "<|26.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51671": { + "content": "<|26.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51672": { + "content": "<|26.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51673": { + "content": "<|26.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51674": { + "content": "<|26.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51675": { + "content": "<|26.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51676": { + "content": "<|26.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51677": { + "content": "<|26.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51678": { + "content": "<|26.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51679": { + "content": "<|26.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51680": { + "content": "<|26.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51681": { + "content": "<|26.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51682": { + "content": "<|26.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51683": { + "content": "<|26.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51684": { + "content": "<|26.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51685": { + "content": "<|26.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51686": { + "content": "<|26.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51687": { + "content": "<|26.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51688": { + "content": "<|26.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51689": { + "content": "<|26.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51690": { + "content": "<|26.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51691": { + "content": "<|26.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51692": { + "content": "<|26.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51693": { + "content": "<|26.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51694": { + "content": "<|26.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51695": { + "content": "<|26.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51696": { + "content": "<|26.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51697": { + "content": "<|26.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51698": { + "content": "<|26.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51699": { + "content": "<|26.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51700": { + "content": "<|26.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51701": { + "content": "<|26.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51702": { + "content": "<|26.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51703": { + "content": "<|26.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51704": { + "content": "<|26.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51705": { + "content": "<|26.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51706": { + "content": "<|26.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51707": { + "content": "<|26.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51708": { + "content": "<|26.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51709": { + "content": "<|26.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51710": { + "content": "<|26.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51711": { + "content": "<|26.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51712": { + "content": "<|26.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51713": { + "content": "<|26.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51714": { + "content": "<|27.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51715": { + "content": "<|27.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51716": { + "content": "<|27.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51717": { + "content": "<|27.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51718": { + "content": "<|27.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51719": { + "content": "<|27.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51720": { + "content": "<|27.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51721": { + "content": "<|27.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51722": { + "content": "<|27.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51723": { + "content": "<|27.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51724": { + "content": "<|27.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51725": { + "content": "<|27.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51726": { + "content": "<|27.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51727": { + "content": "<|27.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51728": { + "content": "<|27.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51729": { + "content": "<|27.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51730": { + "content": "<|27.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51731": { + "content": "<|27.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51732": { + "content": "<|27.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51733": { + "content": "<|27.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51734": { + "content": "<|27.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51735": { + "content": "<|27.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51736": { + "content": "<|27.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51737": { + "content": "<|27.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51738": { + "content": "<|27.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51739": { + "content": "<|27.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51740": { + "content": "<|27.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51741": { + "content": "<|27.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51742": { + "content": "<|27.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51743": { + "content": "<|27.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51744": { + "content": "<|27.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51745": { + "content": "<|27.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51746": { + "content": "<|27.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51747": { + "content": "<|27.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51748": { + "content": "<|27.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51749": { + "content": "<|27.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51750": { + "content": "<|27.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51751": { + "content": "<|27.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51752": { + "content": "<|27.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51753": { + "content": "<|27.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51754": { + "content": "<|27.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51755": { + "content": "<|27.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51756": { + "content": "<|27.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51757": { + "content": "<|27.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51758": { + "content": "<|27.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51759": { + "content": "<|27.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51760": { + "content": "<|27.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51761": { + "content": "<|27.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51762": { + "content": "<|27.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51763": { + "content": "<|27.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51764": { + "content": "<|28.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51765": { + "content": "<|28.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51766": { + "content": "<|28.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51767": { + "content": "<|28.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51768": { + "content": "<|28.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51769": { + "content": "<|28.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51770": { + "content": "<|28.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51771": { + "content": "<|28.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51772": { + "content": "<|28.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51773": { + "content": "<|28.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51774": { + "content": "<|28.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51775": { + "content": "<|28.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51776": { + "content": "<|28.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51777": { + "content": "<|28.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51778": { + "content": "<|28.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51779": { + "content": "<|28.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51780": { + "content": "<|28.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51781": { + "content": "<|28.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51782": { + "content": "<|28.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51783": { + "content": "<|28.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51784": { + "content": "<|28.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51785": { + "content": "<|28.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51786": { + "content": "<|28.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51787": { + "content": "<|28.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51788": { + "content": "<|28.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51789": { + "content": "<|28.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51790": { + "content": "<|28.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51791": { + "content": "<|28.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51792": { + "content": "<|28.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51793": { + "content": "<|28.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51794": { + "content": "<|28.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51795": { + "content": "<|28.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51796": { + "content": "<|28.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51797": { + "content": "<|28.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51798": { + "content": "<|28.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51799": { + "content": "<|28.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51800": { + "content": "<|28.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51801": { + "content": "<|28.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51802": { + "content": "<|28.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51803": { + "content": "<|28.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51804": { + "content": "<|28.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51805": { + "content": "<|28.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51806": { + "content": "<|28.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51807": { + "content": "<|28.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51808": { + "content": "<|28.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51809": { + "content": "<|28.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51810": { + "content": "<|28.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51811": { + "content": "<|28.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51812": { + "content": "<|28.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51813": { + "content": "<|28.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51814": { + "content": "<|29.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51815": { + "content": "<|29.02|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51816": { + "content": "<|29.04|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51817": { + "content": "<|29.06|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51818": { + "content": "<|29.08|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51819": { + "content": "<|29.10|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51820": { + "content": "<|29.12|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51821": { + "content": "<|29.14|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51822": { + "content": "<|29.16|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51823": { + "content": "<|29.18|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51824": { + "content": "<|29.20|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51825": { + "content": "<|29.22|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51826": { + "content": "<|29.24|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51827": { + "content": "<|29.26|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51828": { + "content": "<|29.28|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51829": { + "content": "<|29.30|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51830": { + "content": "<|29.32|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51831": { + "content": "<|29.34|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51832": { + "content": "<|29.36|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51833": { + "content": "<|29.38|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51834": { + "content": "<|29.40|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51835": { + "content": "<|29.42|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51836": { + "content": "<|29.44|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51837": { + "content": "<|29.46|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51838": { + "content": "<|29.48|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51839": { + "content": "<|29.50|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51840": { + "content": "<|29.52|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51841": { + "content": "<|29.54|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51842": { + "content": "<|29.56|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51843": { + "content": "<|29.58|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51844": { + "content": "<|29.60|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51845": { + "content": "<|29.62|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51846": { + "content": "<|29.64|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51847": { + "content": "<|29.66|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51848": { + "content": "<|29.68|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51849": { + "content": "<|29.70|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51850": { + "content": "<|29.72|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51851": { + "content": "<|29.74|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51852": { + "content": "<|29.76|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51853": { + "content": "<|29.78|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51854": { + "content": "<|29.80|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51855": { + "content": "<|29.82|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51856": { + "content": "<|29.84|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51857": { + "content": "<|29.86|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51858": { + "content": "<|29.88|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51859": { + "content": "<|29.90|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51860": { + "content": "<|29.92|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51861": { + "content": "<|29.94|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51862": { + "content": "<|29.96|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51863": { + "content": "<|29.98|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + }, + "51864": { + "content": "<|30.00|>", + "lstrip": false, + "normalized": true, + "rstrip": false, + "single_word": false, + "special": false + } + }, + "additional_special_tokens": [ + "<|endoftext|>", + "<|startoftranscript|>", + "<|en|>", + "<|zh|>", + "<|de|>", + "<|es|>", + "<|ru|>", + "<|ko|>", + "<|fr|>", + "<|ja|>", + "<|pt|>", + "<|tr|>", + "<|pl|>", + "<|ca|>", + "<|nl|>", + "<|ar|>", + "<|sv|>", + "<|it|>", + "<|id|>", + "<|hi|>", + "<|fi|>", + "<|vi|>", + "<|he|>", + "<|uk|>", + "<|el|>", + "<|ms|>", + "<|cs|>", + "<|ro|>", + "<|da|>", + "<|hu|>", + "<|ta|>", + "<|no|>", + "<|th|>", + "<|ur|>", + "<|hr|>", + "<|bg|>", + "<|lt|>", + "<|la|>", + "<|mi|>", + "<|ml|>", + "<|cy|>", + "<|sk|>", + "<|te|>", + "<|fa|>", + "<|lv|>", + "<|bn|>", + "<|sr|>", + "<|az|>", + "<|sl|>", + "<|kn|>", + "<|et|>", + "<|mk|>", + "<|br|>", + "<|eu|>", + "<|is|>", + "<|hy|>", + "<|ne|>", + "<|mn|>", + "<|bs|>", + "<|kk|>", + "<|sq|>", + "<|sw|>", + "<|gl|>", + "<|mr|>", + "<|pa|>", + "<|si|>", + "<|km|>", + "<|sn|>", + "<|yo|>", + "<|so|>", + "<|af|>", + "<|oc|>", + "<|ka|>", + "<|be|>", + "<|tg|>", + "<|sd|>", + "<|gu|>", + "<|am|>", + "<|yi|>", + "<|lo|>", + "<|uz|>", + "<|fo|>", + "<|ht|>", + "<|ps|>", + "<|tk|>", + "<|nn|>", + "<|mt|>", + "<|sa|>", + "<|lb|>", + "<|my|>", + "<|bo|>", + "<|tl|>", + "<|mg|>", + "<|as|>", + "<|tt|>", + "<|haw|>", + "<|ln|>", + "<|ha|>", + "<|ba|>", + "<|jw|>", + "<|su|>", + "<|translate|>", + "<|transcribe|>", + "<|startoflm|>", + "<|startofprev|>", + "<|nocaptions|>", + "<|notimestamps|>" + ], + "bos_token": "<|endoftext|>", + "clean_up_tokenization_spaces": true, + "eos_token": "<|endoftext|>", + "errors": "replace", + "model_max_length": 1024, + "pad_token": "<|endoftext|>", + "processor_class": "WhisperProcessor", + "return_attention_mask": false, + "tokenizer_class": "WhisperTokenizer", + "unk_token": "<|endoftext|>" +} diff --git a/whisper-fine-tuning-event/training_args.bin b/whisper-fine-tuning-event/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f1e1c1503977a74c2be326ce97dee50daa53384 --- /dev/null +++ b/whisper-fine-tuning-event/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f73c95d6632bb7d80507c5d129a813cefcc6575c685b8993420525612405d91 +size 5048 diff --git a/whisper-fine-tuning-event/vocab.json b/whisper-fine-tuning-event/vocab.json new file mode 100644 index 0000000000000000000000000000000000000000..90e797dd4fd05d9dea443d702ca06be2463c5f2f --- /dev/null +++ b/whisper-fine-tuning-event/vocab.json @@ -0,0 +1,50260 @@ +{ + "": 50256, + "!": 0, + "!!": 1432, + "!!!": 4589, + "!!!!": 8153, + "!!!!!": 28493, + "!!!!!!": 50199, + "!!!!!!!!": 28618, + "!!\"": 44556, + "!!)": 33826, + "!!]": 46990, + "!\"": 2963, + "!\",": 44815, + "!\".": 35323, + "!'": 13840, + "!(": 46824, + "!)": 5700, + "!*": 32854, + "!,": 32652, + "!.": 37817, + "!..": 44311, + "!...": 34205, + "!": 21732, + "\"?": 8930, + "\"]": 23711, + "#": 2, + "$": 3, + "%": 4, + "%,": 8923, + "%.": 6856, + "&": 5, + "'": 6, + "'!": 30159, + "''": 15025, + "')": 37380, + "',": 6098, + "'.": 5004, + "'...": 37474, + "'?": 16265, + "'D": 41063, + "'M": 25310, + "'RE": 39040, + "'S": 11460, + "'T": 18010, + "']": 48038, + "'d": 1116, + "'ll": 603, + "'m": 478, + "'re": 434, + "'s": 311, + "'t": 380, + "'ve": 600, + "(": 7, + "()": 45191, + "(?)": 20396, + ")": 8, + ")!": 36380, + ")\"": 33739, + ")(": 29422, + "))": 9383, + "),": 3824, + ").": 3050, + ")...": 40144, + "):": 4507, + ");": 34446, + ")?": 25107, + ")]": 8245, + "*": 9, + "*)": 34634, + "**": 4852, + "***": 13684, + "****": 24396, + "+": 10, + "++": 25472, + "+,": 46797, + "+.": 45585, + ",": 11, + ",\"": 2494, + ",'": 12529, + ",)": 36881, + ",,": 20387, + ",-": 44013, + ",.": 40698, + ",...": 16007, + ",": 50257, + "=": 28, + "=\"": 13114, + "=\"#": 34106, + "=#": 49872, + "==": 2945, + ">": 29, + ">-": 33335, + "><": 29986, + ">>": 893, + "?": 30, + "?!": 3529, + "?!\"": 35271, + "?!?": 38825, + "?!?!": 44587, + "?\"": 1811, + "?\",": 29359, + "?\".": 25760, + "?'": 8569, + "?)": 4827, + "?,": 22753, + "?-": 38337, + "?.": 27552, + "?..": 46863, + "?...": 32865, + "?": 14350, + "Ġ-...": 41975, + "Ġ->": 33798, + "Ġ-[": 14635, + "Ġ-âĻª": 45499, + "Ġ.": 2411, + "Ġ..": 4386, + "Ġ...": 1097, + "Ġ...\"": 39463, + "Ġ....": 13368, + "Ġ.....": 46915, + "Ġ/": 2460, + "Ġ//": 29178, + "Ġ0": 1958, + "Ġ00": 7143, + "Ġ000": 13711, + "Ġ01": 23185, + "Ġ02": 37202, + "Ġ03": 43677, + "Ġ04": 50022, + "Ġ09": 48729, + "Ġ1": 502, + "Ġ10": 1266, + "Ġ100": 2319, + "Ġ1000": 9714, + "Ġ101": 21055, + "Ġ102": 45937, + "Ġ103": 48784, + "Ġ104": 47757, + "Ġ105": 33705, + "Ġ108": 41342, + "Ġ1080": 24547, + "Ġ11": 2975, + "Ġ110": 20154, + "Ġ112": 45835, + "Ġ115": 39436, + "Ġ12": 2272, + "Ġ120": 10411, + "Ġ1200": 29139, + "Ġ123": 34466, + "Ġ125": 25276, + "Ġ127": 47561, + "Ġ128": 29810, + "Ġ13": 3705, + "Ġ130": 19966, + "Ġ1300": 48156, + "Ġ135": 42652, + "Ġ14": 3499, + "Ġ140": 21548, + "Ġ1400": 46795, + "Ġ144": 45218, + "Ġ15": 2119, + "Ġ150": 8451, + "Ġ1500": 22671, + "Ġ16": 3165, + "Ġ160": 21243, + "Ġ1600": 36885, + "Ġ17": 3282, + "Ġ170": 27228, + "Ġ1700": 43373, + "Ġ175": 41165, + "Ġ18": 2443, + "Ġ180": 11971, + "Ġ1800": 24327, + "Ġ1890": 47725, + "Ġ19": 1294, + "Ġ190": 37609, + "Ġ1900": 28898, + "Ġ1914": 45131, + "Ġ1917": 42757, + "Ġ1918": 36588, + "Ġ1919": 46484, + "Ġ1920": 22003, + "Ġ1930": 22350, + "Ġ1933": 48390, + "Ġ1938": 46398, + "Ġ1939": 37785, + "Ġ194": 9754, + "Ġ1940": 24158, + "Ġ1941": 35364, + "Ġ1942": 37549, + "Ġ1943": 40402, + "Ġ1944": 35133, + "Ġ1945": 28253, + "Ġ1946": 46062, + "Ġ1947": 40417, + "Ġ1948": 38833, + "Ġ1949": 46476, + "Ġ195": 10858, + "Ġ1950": 18141, + "Ġ1953": 48528, + "Ġ1954": 46590, + "Ġ1955": 46881, + "Ġ1956": 46379, + "Ġ1957": 46256, + "Ġ1958": 45868, + "Ġ1959": 45608, + "Ġ196": 7998, + "Ġ1960": 16157, + "Ġ1961": 41720, + "Ġ1962": 39498, + "Ġ1963": 38698, + "Ġ1964": 34314, + "Ġ1965": 33809, + "Ġ1966": 39157, + "Ġ1967": 33193, + "Ġ1968": 29930, + "Ġ1969": 32090, + "Ġ197": 7560, + "Ġ1970": 14577, + "Ġ1971": 34578, + "Ġ1972": 32952, + "Ġ1973": 33530, + "Ġ1974": 33422, + "Ġ1975": 32454, + "Ġ1976": 33978, + "Ġ1977": 35092, + "Ġ1978": 33191, + "Ġ1979": 30595, + "Ġ198": 6375, + "Ġ1980": 13626, + "Ġ1981": 33117, + "Ġ1982": 31352, + "Ġ1983": 31758, + "Ġ1984": 27127, + "Ġ1985": 28962, + "Ġ1986": 27895, + "Ġ1987": 29008, + "Ġ1988": 27816, + "Ġ1989": 22427, + "Ġ199": 4303, + "Ġ1990": 13384, + "Ġ1991": 24097, + "Ġ1992": 23952, + "Ġ1993": 25137, + "Ġ1994": 22736, + "Ġ1995": 22601, + "Ġ1996": 22690, + "Ġ1997": 22383, + "Ġ1998": 21404, + "Ġ1999": 19952, + "Ġ2": 568, + "Ġ20": 945, + "Ġ200": 2331, + "Ġ2000": 8132, + "Ġ2001": 16382, + "Ġ2002": 17822, + "Ġ2003": 16416, + "Ġ2004": 15817, + "Ġ2005": 14394, + "Ġ2006": 14062, + "Ġ2007": 12656, + "Ġ2008": 10389, + "Ġ2009": 11453, + "Ġ201": 1525, + "Ġ2010": 9657, + "Ġ2011": 10154, + "Ġ2012": 9125, + "Ġ2013": 9012, + "Ġ2014": 8227, + "Ġ2015": 7546, + "Ġ2016": 6549, + "Ġ2017": 6591, + "Ġ2018": 6096, + "Ġ2019": 6071, + "Ġ2020": 4808, + "Ġ2021": 7201, + "Ġ2022": 20229, + "Ġ2023": 44377, + "Ġ2024": 45237, + "Ġ2025": 39209, + "Ġ2030": 28638, + "Ġ2050": 38308, + "Ġ21": 5080, + "Ġ210": 42692, + "Ġ22": 5853, + "Ġ220": 29387, + "Ġ23": 6673, + "Ġ230": 35311, + "Ġ24": 4022, + "Ġ240": 26837, + "Ġ25": 3552, + "Ġ250": 11650, + "Ġ2500": 41171, + "Ġ256": 38882, + "Ġ26": 7551, + "Ġ260": 44624, + "Ġ27": 7634, + "Ġ270": 40774, + "Ġ28": 7562, + "Ġ280": 41229, + "Ġ29": 9413, + "Ġ3": 805, + "Ġ30": 2217, + "Ġ300": 6641, + "Ġ3000": 20984, + "Ġ31": 10353, + "Ġ32": 8858, + "Ġ320": 42429, + "Ġ33": 11816, + "Ġ330": 45374, + "Ġ34": 12790, + "Ġ35": 6976, + "Ġ350": 18065, + "Ġ36": 8652, + "Ġ360": 13898, + "Ġ365": 22046, + "Ġ37": 13435, + "Ġ38": 12843, + "Ġ39": 15238, + "Ġ4": 1017, + "Ġ40": 3356, + "Ġ400": 8423, + "Ġ4000": 31104, + "Ġ401": 37510, + "Ġ41": 18173, + "Ġ42": 14034, + "Ġ43": 17914, + "Ġ44": 16408, + "Ġ45": 6905, + "Ġ450": 26034, + "Ġ46": 17835, + "Ġ47": 16953, + "Ġ48": 11174, + "Ġ49": 16513, + "Ġ5": 1025, + "Ġ50": 2625, + "Ġ500": 5923, + "Ġ5000": 23777, + "Ġ51": 18485, + "Ġ52": 18079, + "Ġ53": 21860, + "Ġ54": 20793, + "Ġ55": 12330, + "Ġ550": 42514, + "Ġ56": 19687, + "Ġ57": 21423, + "Ġ58": 21786, + "Ġ59": 24624, + "Ġ6": 1386, + "Ġ60": 4060, + "Ġ600": 11849, + "Ġ6000": 41789, + "Ġ61": 28294, + "Ġ62": 24536, + "Ġ63": 25082, + "Ġ64": 12145, + "Ġ65": 11624, + "Ġ650": 38566, + "Ġ66": 21126, + "Ġ67": 23879, + "Ġ68": 23317, + "Ġ69": 28267, + "Ġ7": 1614, + "Ġ70": 5285, + "Ġ700": 15204, + "Ġ71": 30942, + "Ġ72": 18731, + "Ġ720": 40881, + "Ġ73": 28387, + "Ġ74": 28868, + "Ġ75": 9562, + "Ġ750": 31682, + "Ġ76": 24733, + "Ġ77": 25546, + "Ġ78": 26369, + "Ġ79": 32803, + "Ġ8": 1649, + "Ġ80": 4688, + "Ġ800": 13083, + "Ġ81": 30827, + "Ġ82": 29097, + "Ġ83": 30997, + "Ġ84": 29018, + "Ġ85": 14695, + "Ġ86": 26687, + "Ġ87": 27990, + "Ġ88": 24587, + "Ġ89": 31877, + "Ġ9": 1722, + "Ġ90": 4289, + "Ġ900": 22016, + "Ġ91": 31064, + "Ġ911": 26901, + "Ġ92": 28225, + "Ġ93": 28876, + "Ġ94": 30849, + "Ġ95": 13420, + "Ġ96": 24124, + "Ġ97": 23399, + "Ġ98": 20860, + "Ġ99": 11803, + "Ġ:": 1982, + "Ġ:(": 35495, + "Ġ:)": 11201, + "Ġ;": 12562, + "Ġ;)": 41540, + "Ġ<": 2627, + "Ġ": 12331, + "Ġ>>": 902, + "Ġ>>:": 22040, + "Ġ>>>": 13793, + "Ġ>>[": 45687, + "Ġ?": 2506, + "Ġ?!": 31363, + "Ġ?\"": 37266, + "Ġ??": 37969, + "Ġ???": 29678, + "Ġ?]": 16587, + "Ġ@": 10428, + "ĠA": 316, + "ĠAA": 30680, + "ĠAAA": 34347, + "ĠAB": 13838, + "ĠABC": 22342, + "ĠABOUT": 50249, + "ĠABS": 41707, + "ĠAC": 8157, + "ĠACC": 42251, + "ĠACE": 44606, + "ĠACL": 43873, + "ĠACT": 40341, + "ĠAD": 9135, + "ĠADA": 39354, + "ĠADAM": 34938, + "ĠADHD": 38680, + "ĠAE": 32207, + "ĠAF": 20389, + "ĠAG": 28406, + "ĠAGA": 49133, + "ĠAH": 25888, + "ĠAI": 7318, + "ĠAIDS": 27929, + "ĠAJ": 32759, + "ĠAK": 24789, + "ĠAKA": 45933, + "ĠAL": 7056, + "ĠALEX": 27351, + "ĠALISSA": 39430, + "ĠALL": 14824, + "ĠAM": 6475, + "ĠAMD": 34808, + "ĠAMP": 31616, + "ĠAMY": 31410, + "ĠAN": 5252, + "ĠAND": 8093, + "ĠANDREW": 34504, + "ĠANNOUNCER": 35629, + "ĠANY": 39222, + "ĠAO": 40684, + "ĠAP": 5372, + "ĠAPI": 9362, + "ĠAPIs": 21445, + "ĠAPP": 22513, + "ĠAPPLAUSE": 35298, + "ĠAR": 8943, + "ĠARE": 22515, + "ĠARM": 45209, + "ĠAS": 7469, + "ĠASH": 20146, + "ĠASHLEY": 23834, + "ĠASMR": 31300, + "ĠAT": 8872, + "ĠATM": 46455, + "ĠATP": 39202, + "ĠAU": 7171, + "ĠAUDI": 8029, + "ĠAUDIENCE": 8155, + "ĠAV": 30198, + "ĠAW": 25815, + "ĠAWS": 17650, + "ĠAZ": 49698, + "ĠAa": 21460, + "ĠAaa": 35820, + "ĠAaah": 48381, + "ĠAah": 32616, + "ĠAaron": 14018, + "ĠAb": 2847, + "ĠAbb": 32673, + "ĠAbby": 27726, + "ĠAbd": 27548, + "ĠAbdul": 42591, + "ĠAbdullah": 45625, + "ĠAbe": 38472, + "ĠAbend": 36194, + "ĠAber": 5992, + "ĠAbg": 35407, + "ĠAbgeord": 40730, + "ĠAbi": 31205, + "ĠAbigail": 47174, + "ĠAboriginal": 36577, + "ĠAbout": 7769, + "ĠAbove": 32691, + "ĠAbr": 31717, + "ĠAbraham": 17782, + "ĠAbs": 5813, + "ĠAbsol": 43965, + "ĠAbsolutely": 7021, + "ĠAbst": 46853, + "ĠAbu": 26874, + "ĠAc": 5097, + "ĠAcad": 9740, + "ĠAcademic": 36139, + "ĠAcademy": 11735, + "ĠAcc": 5725, + "ĠAccept": 39957, + "ĠAccess": 17166, + "ĠAccording": 7328, + "ĠAccount": 24558, + "ĠAce": 24900, + "ĠAch": 15847, + "ĠAcho": 40731, + "ĠAcross": 34527, + "ĠAct": 3251, + "ĠActing": 42413, + "ĠAction": 16261, + "ĠActiv": 28550, + "ĠActive": 26635, + "ĠActor": 45457, + "ĠActs": 32363, + "ĠActually": 5135, + "ĠAd": 1999, + "ĠAda": 32276, + "ĠAdam": 7938, + "ĠAdams": 25214, + "ĠAdapt": 49643, + "ĠAdd": 5349, + "ĠAdding": 31204, + "ĠAdditional": 44272, + "ĠAdditionally": 19927, + "ĠAde": 43177, + "ĠAdemás": 34621, + "ĠAdjust": 34049, + "ĠAdm": 46292, + "ĠAdminist": 13322, + "ĠAdministration": 17187, + "ĠAdmiral": 38097, + "ĠAdobe": 24862, + "ĠAdri": 32447, + "ĠAdrian": 31746, + "ĠAds": 44325, + "ĠAdult": 47987, + "ĠAdv": 13634, + "ĠAdvance": 44425, + "ĠAdvanced": 26951, + "ĠAdvent": 17856, + "ĠAdventure": 26718, + "ĠAdventures": 48818, + "ĠAdvis": 31407, + "ĠAdvisor": 49719, + "ĠAdvisory": 39816, + "ĠAeg": 46085, + "ĠAer": 32459, + "ĠAf": 3325, + "ĠAfD": 28413, + "ĠAff": 12840, + "ĠAffairs": 21721, + "ĠAffordable": 41337, + "ĠAfghan": 11393, + "ĠAfghanistan": 13658, + "ĠAfric": 4390, + "ĠAfrica": 7349, + "ĠAfrican": 7312, + "ĠAfricans": 42228, + "ĠAfter": 2381, + "ĠAfterwards": 41357, + "ĠAg": 2725, + "ĠAgain": 3764, + "ĠAgainst": 29995, + "ĠAge": 16280, + "ĠAgency": 21649, + "ĠAgent": 27174, + "ĠAges": 37362, + "ĠAgg": 41512, + "ĠAgora": 16023, + "ĠAgr": 24454, + "ĠAgre": 29324, + "ĠAgreement": 40572, + "ĠAgric": 27587, + "ĠAgriculture": 35966, + "ĠAh": 2438, + "ĠAha": 27448, + "ĠAhh": 17116, + "ĠAhhh": 27185, + "ĠAhmad": 35911, + "ĠAhmed": 39189, + "ĠAhora": 18840, + "ĠAhÃŃ": 49924, + "ĠAi": 16993, + "ĠAid": 39916, + "ĠAim": 47796, + "ĠAin": 29672, + "ĠAir": 5774, + "ĠAirPods": 43247, + "ĠAirbnb": 38232, + "ĠAires": 47058, + "ĠAirl": 34421, + "ĠAirlines": 38788, + "ĠAirport": 25784, + "ĠAixò": 31869, + "ĠAj": 25862, + "ĠAk": 9629, + "ĠAkbar": 48665, + "ĠAkt": 32850, + "ĠAku": 41120, + "ĠAl": 967, + "ĠAla": 46289, + "ĠAlab": 20302, + "ĠAlabama": 20898, + "ĠAladdin": 45071, + "ĠAlan": 16442, + "ĠAlaska": 19553, + "ĠAlb": 32223, + "ĠAlban": 41547, + "ĠAlber": 26361, + "ĠAlbert": 20812, + "ĠAlberta": 43279, + "ĠAlberto": 45709, + "ĠAlcohol": 48779, + "ĠAld": 24031, + "ĠAle": 9366, + "ĠAlej": 44568, + "ĠAlert": 44939, + "ĠAlex": 5202, + "ĠAlexa": 22595, + "ĠAlexand": 28800, + "ĠAlexander": 14845, + "ĠAlexandra": 45546, + "ĠAlexandria": 41943, + "ĠAlexis": 39826, + "ĠAlf": 21996, + "ĠAlfred": 28327, + "ĠAlg": 35014, + "ĠAlger": 48681, + "ĠAlgun": 46816, + "ĠAli": 12020, + "ĠAlice": 16004, + "ĠAlicia": 38153, + "ĠAlien": 32396, + "ĠAlison": 41001, + "ĠAll": 1057, + "ĠAllah": 4574, + "ĠAllahu": 44351, + "ĠAllan": 45902, + "ĠAlle": 25318, + "ĠAlleg": 47486, + "ĠAllen": 17160, + "ĠAlles": 27633, + "ĠAllez": 29616, + "ĠAlliance": 21859, + "ĠAllied": 45620, + "ĠAllies": 44949, + "ĠAllison": 32638, + "ĠAllow": 32225, + "ĠAlly": 46776, + "ĠAllÄģh": 41778, + "ĠAlm": 14344, + "ĠAlma": 42439, + "ĠAlmighty": 16849, + "ĠAlmost": 12627, + "ĠAlo": 35625, + "ĠAlone": 42056, + "ĠAlong": 17457, + "ĠAlors": 9946, + "ĠAlpha": 20588, + "ĠAlready": 23741, + "ĠAlright": 2798, + "ĠAlrighty": 43301, + "ĠAls": 12948, + "ĠAlso": 2743, + "ĠAlt": 15992, + "ĠAlter": 32608, + "ĠAltern": 23830, + "ĠAlternatively": 46167, + "ĠAlthough": 5780, + "ĠAlto": 50066, + "ĠAlum": 33134, + "ĠAlumni": 35699, + "ĠAlways": 11270, + "ĠAly": 27008, + "ĠAlz": 26804, + "ĠAlzheimer": 27932, + "ĠAlém": 44457, + "ĠAm": 2012, + "ĠAma": 14171, + "ĠAman": 35466, + "ĠAmanda": 20431, + "ĠAmazing": 14165, + "ĠAmazon": 6795, + "ĠAmb": 17196, + "ĠAmbassador": 28506, + "ĠAmber": 29407, + "ĠAmelia": 42814, + "ĠAmen": 14092, + "ĠAmend": 20404, + "ĠAmendment": 21443, + "ĠAmer": 22597, + "ĠAmeric": 1656, + "ĠAmerica": 3374, + "ĠAmerican": 2665, + "ĠAmericans": 6280, + "ĠAmericas": 38415, + "ĠAmerika": 42345, + "ĠAmong": 16119, + "ĠAmsterdam": 28291, + "ĠAmy": 12651, + "ĠAmérica": 48053, + "ĠAn": 1107, + "ĠAna": 21202, + "ĠAnakin": 47218, + "ĠAnal": 16128, + "ĠAnalysis": 38172, + "ĠAnalyt": 23688, + "ĠAnalytics": 25944, + "ĠAnat": 42628, + "ĠAnch": 39547, + "ĠAncient": 28352, + "ĠAnd": 400, + "ĠAnda": 40480, + "ĠAnders": 33988, + "ĠAnderson": 18768, + "ĠAndre": 20667, + "ĠAndrea": 24215, + "ĠAndreas": 38785, + "ĠAndrew": 10110, + "ĠAndroid": 8853, + "ĠAndy": 13285, + "ĠAnfang": 25856, + "ĠAng": 4521, + "ĠAngeb": 44301, + "ĠAngel": 14902, + "ĠAngela": 20848, + "ĠAngeles": 12292, + "ĠAngels": 37950, + "ĠAngie": 48829, + "ĠAnglo": 49570, + "ĠAngry": 49860, + "ĠAngst": 28622, + "ĠAngular": 34107, + "ĠAnh": 23574, + "ĠAnim": 21691, + "ĠAnimal": 24358, + "ĠAnimals": 47164, + "ĠAnimation": 44635, + "ĠAnime": 48615, + "ĠAnita": 44528, + "ĠAnk": 42483, + "ĠAnn": 8860, + "ĠAnna": 12899, + "ĠAnne": 13706, + "ĠAnnie": 26781, + "ĠAnnouncer": 36640, + "ĠAnnual": 46030, + "ĠAnother": 3996, + "ĠAns": 14590, + "ĠAnsch": 45062, + "ĠAnswer": 24545, + "ĠAnt": 5130, + "ĠAntar": 30536, + "ĠAntarctica": 39866, + "ĠAntes": 39325, + "ĠAnth": 12727, + "ĠAnthony": 15853, + "ĠAnti": 27757, + "ĠAnton": 15291, + "ĠAntonio": 22527, + "ĠAntrag": 34807, + "ĠAntwort": 34693, + "ĠAny": 2639, + "ĠAnybody": 19082, + "ĠAnyone": 14643, + "ĠAnything": 11998, + "ĠAnytime": 39401, + "ĠAnyway": 5684, + "ĠAnyways": 15585, + "ĠAo": 35208, + "ĠAp": 8723, + "ĠApa": 37831, + "ĠApache": 46597, + "ĠApart": 24111, + "ĠAph": 41775, + "ĠApollo": 25187, + "ĠApost": 31467, + "ĠApp": 3132, + "ĠApparently": 16755, + "ĠAppe": 41322, + "ĠApplause": 19281, + "ĠApple": 6373, + "ĠApplic": 26519, + "ĠApplication": 39512, + "ĠApply": 25264, + "ĠAppreci": 33669, + "ĠAppreciate": 37601, + "ĠAppro": 29551, + "ĠApps": 32231, + "ĠApr": 6305, + "ĠApril": 6929, + "ĠAprès": 29265, + "ĠAqu": 8728, + "ĠAqua": 45591, + "ĠAqui": 23089, + "ĠAquÃŃ": 24386, + "ĠAr": 1587, + "ĠAra": 18601, + "ĠArab": 8625, + "ĠArabia": 21610, + "ĠArabic": 19938, + "ĠArabs": 39770, + "ĠArbeit": 18604, + "ĠArbeits": 23262, + "ĠArc": 21727, + "ĠArch": 10984, + "ĠArchitect": 29306, + "ĠArchitecture": 43049, + "ĠArchives": 39258, + "ĠArctic": 27241, + "ĠArduino": 39539, + "ĠAre": 2014, + "ĠArea": 19405, + "ĠAren": 15464, + "ĠArena": 34290, + "ĠArg": 40081, + "ĠArgent": 15183, + "ĠArgentina": 18336, + "ĠArgh": 45851, + "ĠArgu": 48560, + "ĠAri": 9433, + "ĠAriana": 43296, + "ĠAriel": 37201, + "ĠArin": 24209, + "ĠArist": 31310, + "ĠAristotle": 42368, + "ĠArizona": 14723, + "ĠArk": 16427, + "ĠArkansas": 31386, + "ĠArm": 11893, + "ĠArmed": 42024, + "ĠArmen": 22302, + "ĠArmenia": 45925, + "ĠArmenian": 41581, + "ĠArmor": 44679, + "ĠArms": 42561, + "ĠArmstrong": 36100, + "ĠArmy": 9583, + "ĠArnold": 30406, + "ĠAround": 17633, + "ĠArri": 45188, + "ĠArrow": 40269, + "ĠArsen": 41218, + "ĠArsenal": 49156, + "ĠArt": 5735, + "ĠArtem": 39210, + "ĠArthur": 19624, + "ĠArticle": 35230, + "ĠArtist": 39504, + "ĠArts": 12407, + "ĠAry": 39960, + "ĠAs": 1018, + "ĠAsh": 10279, + "ĠAshe": 45006, + "ĠAshley": 19571, + "ĠAsia": 10038, + "ĠAsian": 10645, + "ĠAsians": 47724, + "ĠAside": 33726, + "ĠAsk": 12320, + "ĠAss": 6281, + "ĠAssad": 40122, + "ĠAssass": 35355, + "ĠAssassin": 43176, + "ĠAssembly": 20399, + "ĠAssessment": 47643, + "ĠAssim": 40376, + "ĠAssist": 49633, + "ĠAssistance": 46805, + "ĠAssistant": 14890, + "ĠAssoci": 8619, + "ĠAssociate": 28520, + "ĠAssociation": 10734, + "ĠAst": 12884, + "ĠAstra": 45242, + "ĠAstron": 36819, + "ĠAsÃŃ": 17419, + "ĠAt": 1711, + "ĠAtari": 41381, + "ĠAth": 16487, + "ĠAthena": 36827, + "ĠAthens": 32530, + "ĠAthlet": 34318, + "ĠAtl": 11000, + "ĠAtlanta": 20225, + "ĠAtlantic": 20233, + "ĠAtlas": 32485, + "ĠAtt": 7298, + "ĠAttack": 22477, + "ĠAttend": 46827, + "ĠAttention": 31858, + "ĠAttorney": 23283, + "ĠAté": 31793, + "ĠAu": 12160, + "ĠAub": 36927, + "ĠAuch": 13382, + "ĠAuckland": 33976, + "ĠAud": 8821, + "ĠAudi": 28943, + "ĠAudience": 23517, + "ĠAudio": 25706, + "ĠAudrey": 31808, + "ĠAuf": 9462, + "ĠAufg": 29648, + "ĠAufgabe": 40070, + "ĠAuft": 39119, + "ĠAug": 6088, + "ĠAugen": 29692, + "ĠAugust": 6897, + "ĠAujourd": 32650, + "ĠAun": 30265, + "ĠAunque": 45068, + "ĠAunt": 17535, + "ĠAuntie": 33878, + "ĠAur": 26945, + "ĠAurora": 40663, + "ĠAus": 9039, + "ĠAuss": 21286, + "ĠAust": 4126, + "ĠAustin": 15356, + "ĠAustral": 5273, + "ĠAustralia": 7060, + "ĠAustralian": 13337, + "ĠAustralians": 38108, + "ĠAustria": 26501, + "ĠAustrian": 41507, + "ĠAusw": 48500, + "ĠAut": 6049, + "ĠAuth": 40231, + "ĠAuthor": 20216, + "ĠAuthority": 29824, + "ĠAuto": 13738, + "ĠAutob": 49909, + "ĠAutom": 24619, + "ĠAutumn": 45597, + "ĠAuÃŁerdem": 47834, + "ĠAv": 11667, + "ĠAvant": 44822, + "ĠAvatar": 44748, + "ĠAve": 23650, + "ĠAvec": 31720, + "ĠAven": 13573, + "ĠAvengers": 25430, + "ĠAvenue": 22454, + "ĠAvi": 40712, + "ĠAvo": 36175, + "ĠAvoid": 41061, + "ĠAw": 6381, + "ĠAwak": 25274, + "ĠAward": 13894, + "ĠAwards": 22187, + "ĠAware": 43949, + "ĠAway": 36957, + "ĠAwesome": 10391, + "ĠAww": 22007, + "ĠAx": 20118, + "ĠAy": 9081, + "ĠAye": 13377, + "ĠAz": 7607, + "ĠAzer": 32580, + "ĠAzerbai": 41937, + "ĠAzerbaijan": 48815, + "ĠAzure": 11969, + "ĠAÃŃ": 22175, + "ĠB": 363, + "ĠBA": 21050, + "ĠBACK": 42467, + "ĠBAR": 27952, + "ĠBB": 19168, + "ĠBBC": 22669, + "ĠBBQ": 40969, + "ĠBC": 14359, + "ĠBCE": 49369, + "ĠBE": 13513, + "ĠBEC": 45090, + "ĠBEN": 31613, + "ĠBER": 42488, + "ĠBET": 41804, + "ĠBETH": 36480, + "ĠBH": 40342, + "ĠBI": 23524, + "ĠBIG": 39761, + "ĠBILL": 28062, + "ĠBJ": 37830, + "ĠBL": 15132, + "ĠBLACK": 43408, + "ĠBM": 15901, + "ĠBMW": 21355, + "ĠBO": 22785, + "ĠBOB": 43765, + "ĠBON": 48524, + "ĠBOY": 34909, + "ĠBP": 40533, + "ĠBR": 10262, + "ĠBRA": 30777, + "ĠBRAND": 41466, + "ĠBRANDON": 46940, + "ĠBRE": 41450, + "ĠBRI": 27466, + "ĠBRIAN": 31434, + "ĠBROWN": 37705, + "ĠBS": 27253, + "ĠBT": 31144, + "ĠBTS": 17951, + "ĠBU": 31142, + "ĠBUR": 37270, + "ĠBUT": 23073, + "ĠBY": 26930, + "ĠBa": 6777, + "ĠBab": 15820, + "ĠBaba": 22529, + "ĠBabe": 44127, + "ĠBaby": 9425, + "ĠBabylon": 30278, + "ĠBach": 30920, + "ĠBachelor": 23193, + "ĠBack": 5833, + "ĠBackground": 36904, + "ĠBacon": 42460, + "ĠBad": 11523, + "ĠBaek": 38913, + "ĠBag": 24377, + "ĠBagh": 45487, + "ĠBah": 14782, + "ĠBahn": 44337, + "ĠBai": 25269, + "ĠBailey": 28192, + "ĠBak": 12063, + "ĠBake": 42597, + "ĠBaker": 25780, + "ĠBal": 13140, + "ĠBalance": 41899, + "ĠBald": 27306, + "ĠBaldwin": 46050, + "ĠBali": 40664, + "ĠBalk": 36289, + "ĠBall": 10744, + "ĠBalt": 18294, + "ĠBaltimore": 22749, + "ĠBam": 26630, + "ĠBan": 13850, + "ĠBana": 33942, + "ĠBanana": 39588, + "ĠBand": 15462, + "ĠBang": 11538, + "ĠBangkok": 43055, + "ĠBangl": 32123, + "ĠBangladesh": 35260, + "ĠBank": 8915, + "ĠBanks": 33081, + "ĠBao": 42099, + "ĠBapt": 25991, + "ĠBaptist": 32410, + "ĠBar": 4156, + "ĠBarack": 31705, + "ĠBarb": 14876, + "ĠBarbara": 19214, + "ĠBarbie": 33884, + "ĠBarcel": 20496, + "ĠBarcelona": 21247, + "ĠBard": 26841, + "ĠBardzo": 38559, + "ĠBare": 43957, + "ĠBark": 36275, + "ĠBarn": 21605, + "ĠBarnes": 43903, + "ĠBaron": 30978, + "ĠBarr": 28694, + "ĠBarry": 21639, + "ĠBart": 22338, + "ĠBas": 5859, + "ĠBase": 21054, + "ĠBased": 18785, + "ĠBash": 43068, + "ĠBasic": 31598, + "ĠBasically": 8537, + "ĠBasil": 43175, + "ĠBasket": 45360, + "ĠBass": 29626, + "ĠBast": 31915, + "ĠBat": 10066, + "ĠBath": 36167, + "ĠBatman": 15432, + "ĠBatt": 29439, + "ĠBatter": 33066, + "ĠBattery": 47410, + "ĠBattle": 11846, + "ĠBattlefield": 41091, + "ĠBau": 28772, + "ĠBaum": 40165, + "ĠBay": 7840, + "ĠBayern": 29163, + "ĠBaz": 42220, + "ĠBaÅŁ": 28942, + "ĠBe": 879, + "ĠBea": 45786, + "ĠBeach": 14866, + "ĠBead": 31315, + "ĠBeam": 40916, + "ĠBean": 38454, + "ĠBear": 19836, + "ĠBears": 50180, + "ĠBeast": 24100, + "ĠBeat": 16031, + "ĠBeatles": 38376, + "ĠBeau": 43702, + "ĠBeaut": 10584, + "ĠBeautiful": 14724, + "ĠBeauty": 21450, + "ĠBecause": 1436, + "ĠBecca": 33148, + "ĠBeck": 19184, + "ĠBecky": 30059, + "ĠBecome": 44308, + "ĠBed": 19893, + "ĠBee": 31141, + "ĠBeef": 36465, + "ĠBeen": 32839, + "ĠBeer": 41453, + "ĠBeet": 28798, + "ĠBeethoven": 38651, + "ĠBefore": 4546, + "ĠBegin": 20660, + "ĠBeginning": 45705, + "ĠBeh": 13068, + "ĠBehavior": 45807, + "ĠBehind": 20475, + "ĠBei": 16188, + "ĠBeij": 18995, + "ĠBeijing": 20240, + "ĠBeim": 45113, + "ĠBeing": 8891, + "ĠBeispiel": 13772, + "ĠBeit": 43637, + "ĠBel": 6248, + "ĠBelarus": 35855, + "ĠBelg": 19234, + "ĠBelgian": 47127, + "ĠBelgium": 28094, + "ĠBelieve": 21486, + "ĠBell": 11485, + "ĠBella": 29133, + "ĠBelle": 31905, + "ĠBelo": 49244, + "ĠBelow": 36261, + "ĠBelt": 38869, + "ĠBem": 32846, + "ĠBen": 3964, + "ĠBend": 32451, + "ĠBene": 27702, + "ĠBened": 39753, + "ĠBenedict": 47837, + "ĠBeng": 29425, + "ĠBengal": 50221, + "ĠBeni": 44460, + "ĠBenim": 27051, + "ĠBenjamin": 22231, + "ĠBenn": 29686, + "ĠBennett": 40620, + "ĠBenny": 44531, + "ĠBenson": 48601, + "ĠBent": 28894, + "ĠBentley": 43147, + "ĠBer": 5637, + "ĠBere": 17684, + "ĠBereich": 26489, + "ĠBerg": 27511, + "ĠBerkeley": 23684, + "ĠBerlin": 13848, + "ĠBern": 10781, + "ĠBernard": 30116, + "ĠBernie": 22426, + "ĠBerry": 34084, + "ĠBert": 29594, + "ĠBeruf": 36688, + "ĠBes": 8190, + "ĠBesch": 30860, + "ĠBesides": 13212, + "ĠBest": 9752, + "ĠBet": 6279, + "ĠBeta": 33286, + "ĠBeth": 14011, + "ĠBets": 49352, + "ĠBett": 45083, + "ĠBetter": 15753, + "ĠBetty": 30270, + "ĠBetween": 18967, + "ĠBev": 41159, + "ĠBever": 39236, + "ĠBeverly": 43598, + "ĠBevölker": 48313, + "ĠBew": 40512, + "ĠBeweg": 46757, + "ĠBey": 15550, + "ĠBeyonce": 48416, + "ĠBeyond": 19707, + "ĠBh": 13550, + "ĠBhag": 33797, + "ĠBhar": 49104, + "ĠBi": 13007, + "ĠBian": 39509, + "ĠBib": 31520, + "ĠBible": 6544, + "ĠBiden": 9877, + "ĠBie": 34972, + "ĠBieber": 42377, + "ĠBien": 16956, + "ĠBier": 50222, + "ĠBig": 5429, + "ĠBigQuery": 43422, + "ĠBij": 41809, + "ĠBike": 45699, + "ĠBil": 22879, + "ĠBild": 15746, + "ĠBilder": 44719, + "ĠBill": 5477, + "ĠBillboard": 40351, + "ĠBillie": 46021, + "ĠBilly": 18179, + "ĠBin": 18983, + "ĠBing": 30755, + "ĠBio": 26840, + "ĠBiology": 48132, + "ĠBir": 7145, + "ĠBiraz": 48542, + "ĠBird": 15931, + "ĠBirds": 41456, + "ĠBirmingham": 34673, + "ĠBirth": 24299, + "ĠBirthday": 29236, + "ĠBis": 25271, + "ĠBishop": 30113, + "ĠBism": 34594, + "ĠBit": 9101, + "ĠBitch": 40678, + "ĠBitcoin": 11414, + "ĠBite": 48012, + "ĠBitte": 42890, + "ĠBiz": 16619, + "ĠBizim": 45180, + "ĠBj": 49660, + "ĠBl": 2177, + "ĠBla": 18925, + "ĠBlack": 4076, + "ĠBlade": 32230, + "ĠBlair": 42157, + "ĠBlake": 23451, + "ĠBlaze": 49894, + "ĠBle": 30721, + "ĠBlend": 44836, + "ĠBless": 21562, + "ĠBlessed": 37501, + "ĠBlick": 32556, + "ĠBlind": 34126, + "ĠBliss": 50034, + "ĠBlizzard": 40976, + "ĠBlo": 9865, + "ĠBlock": 17500, + "ĠBlockchain": 48916, + "ĠBlog": 46693, + "ĠBlood": 17428, + "ĠBloody": 46877, + "ĠBloom": 25927, + "ĠBloomberg": 40363, + "ĠBlow": 46391, + "ĠBlue": 8510, + "ĠBlues": 44979, + "ĠBluetooth": 20286, + "ĠBo": 3286, + "ĠBoard": 10008, + "ĠBob": 6085, + "ĠBobby": 19573, + "ĠBock": 47672, + "ĠBod": 19482, + "ĠBoden": 34971, + "ĠBody": 21329, + "ĠBoeing": 30831, + "ĠBog": 24339, + "ĠBoh": 32484, + "ĠBol": 14331, + "ĠBold": 48954, + "ĠBolsonaro": 46710, + "ĠBolt": 37884, + "ĠBom": 19812, + "ĠBomb": 25463, + "ĠBon": 7368, + "ĠBond": 23604, + "ĠBone": 45915, + "ĠBong": 39813, + "ĠBonjour": 25431, + "ĠBonnie": 32170, + "ĠBonus": 44917, + "ĠBoo": 23351, + "ĠBook": 9476, + "ĠBooks": 33843, + "ĠBoom": 15523, + "ĠBoost": 43902, + "ĠBoot": 37263, + "ĠBor": 13739, + "ĠBora": 49967, + "ĠBorder": 36985, + "ĠBoris": 27158, + "ĠBorn": 29808, + "ĠBos": 22264, + "ĠBose": 45206, + "ĠBoss": 15215, + "ĠBoston": 12333, + "ĠBot": 25486, + "ĠBoth": 6767, + "ĠBots": 47224, + "ĠBott": 28479, + "ĠBottom": 38289, + "ĠBou": 43833, + "ĠBoulder": 48052, + "ĠBoule": 50121, + "ĠBour": 35866, + "ĠBow": 12903, + "ĠBowl": 25044, + "ĠBowser": 46102, + "ĠBox": 15112, + "ĠBoy": 9486, + "ĠBoys": 21963, + "ĠBr": 1603, + "ĠBra": 4991, + "ĠBrad": 11895, + "ĠBradley": 36607, + "ĠBrady": 31773, + "ĠBrah": 36569, + "ĠBrain": 29783, + "ĠBran": 45265, + "ĠBranch": 40482, + "ĠBrand": 11119, + "ĠBrandon": 22606, + "ĠBrasil": 14861, + "ĠBraun": 46939, + "ĠBrave": 38545, + "ĠBravo": 28861, + "ĠBrazil": 9435, + "ĠBrazilian": 23435, + "ĠBre": 7090, + "ĠBread": 35357, + "ĠBreak": 16925, + "ĠBreakfast": 45371, + "ĠBreaking": 36715, + "ĠBreat": 20093, + "ĠBreath": 38672, + "ĠBreathe": 36323, + "ĠBree": 49188, + "ĠBref": 49957, + "ĠBren": 31200, + "ĠBrend": 25425, + "ĠBrenda": 39610, + "ĠBrendan": 48484, + "ĠBrent": 31665, + "ĠBret": 42000, + "ĠBrett": 29447, + "ĠBrew": 42906, + "ĠBrexit": 24480, + "ĠBri": 32851, + "ĠBrian": 10765, + "ĠBrid": 30552, + "ĠBridge": 18917, + "ĠBrief": 39805, + "ĠBrig": 29675, + "ĠBright": 24271, + "ĠBrill": 30132, + "ĠBrilliant": 34007, + "ĠBring": 12842, + "ĠBringing": 45241, + "ĠBris": 30554, + "ĠBrisbane": 32222, + "ĠBristol": 41208, + "ĠBrit": 4760, + "ĠBritain": 12960, + "ĠBritish": 6221, + "ĠBritney": 46161, + "ĠBritt": 30750, + "ĠBrittany": 41067, + "ĠBro": 5425, + "ĠBroad": 14074, + "ĠBroadway": 19414, + "ĠBrock": 32093, + "ĠBroken": 46624, + "ĠBron": 19544, + "ĠBronx": 41862, + "ĠBronze": 44916, + "ĠBrook": 13945, + "ĠBrooke": 43092, + "ĠBrooklyn": 21872, + "ĠBrooks": 33493, + "ĠBros": 27651, + "ĠBrother": 8904, + "ĠBrothers": 19886, + "ĠBrown": 8030, + "ĠBru": 12792, + "ĠBruce": 15429, + "ĠBruno": 23046, + "ĠBrus": 32894, + "ĠBrush": 33142, + "ĠBrussels": 38717, + "ĠBry": 12812, + "ĠBryan": 23730, + "ĠBryant": 46466, + "ĠBryce": 35109, + "ĠBu": 4078, + "ĠBub": 25489, + "ĠBubble": 43072, + "ĠBuch": 25818, + "ĠBuck": 22006, + "ĠBud": 6384, + "ĠBudd": 8845, + "ĠBuddh": 13522, + "ĠBuddha": 16375, + "ĠBuddhism": 24744, + "ĠBuddhist": 22764, + "ĠBuddy": 27829, + "ĠBudget": 33751, + "ĠBueno": 16046, + "ĠBuenos": 38058, + "ĠBuff": 20254, + "ĠBuffalo": 33855, + "ĠBug": 23821, + "ĠBugün": 48017, + "ĠBuild": 11875, + "ĠBuilding": 18974, + "ĠBuilt": 49822, + "ĠBul": 19825, + "ĠBulgar": 31125, + "ĠBulgaria": 47737, + "ĠBull": 14131, + "ĠBullet": 44975, + "ĠBun": 14661, + "ĠBund": 10203, + "ĠBundes": 14031, + "ĠBundesregierung": 46876, + "ĠBundest": 43825, + "ĠBunny": 38803, + "ĠBunu": 35919, + "ĠBunun": 45160, + "ĠBur": 7031, + "ĠBurada": 43776, + "ĠBurch": 48370, + "ĠBureau": 19738, + "ĠBurg": 32911, + "ĠBurger": 28936, + "ĠBurke": 37396, + "ĠBurn": 18328, + "ĠBurning": 43905, + "ĠBurns": 41195, + "ĠBurton": 46011, + "ĠBus": 8006, + "ĠBusan": 43538, + "ĠBush": 15782, + "ĠBusiness": 10715, + "ĠBut": 583, + "ĠButler": 27571, + "ĠButt": 40801, + "ĠButter": 22646, + "ĠButton": 38435, + "ĠBuy": 19146, + "ĠBuzz": 29209, + "ĠBy": 3146, + "ĠBye": 4621, + "ĠByz": 41014, + "ĠBä": 47571, + "ĠBöyle": 30734, + "ĠBü": 37186, + "ĠBür": 22596, + "ĠBürger": 28514, + "ĠBÃľNDNIS": 25667, + "ĠC": 383, + "ĠCA": 22852, + "ĠCAD": 41143, + "ĠCAL": 50188, + "ĠCAM": 27040, + "ĠCAN": 22931, + "ĠCAP": 33636, + "ĠCAR": 15939, + "ĠCAS": 43268, + "ĠCAT": 41192, + "ĠCB": 18745, + "ĠCBD": 41584, + "ĠCBS": 35856, + "ĠCC": 12630, + "ĠCCP": 27876, + "ĠCCTV": 44838, + "ĠCD": 6743, + "ĠCDC": 17133, + "ĠCDU": 19181, + "ĠCDs": 45257, + "ĠCE": 28109, + "ĠCEO": 9282, + "ĠCEOs": 40736, + "ĠCF": 21792, + "ĠCG": 38007, + "ĠCGI": 48448, + "ĠCH": 5995, + "ĠCHA": 35732, + "ĠCHAN": 39235, + "ĠCHAR": 35494, + "ĠCHEERING": 45465, + "ĠCHRIS": 17353, + "ĠCI": 37777, + "ĠCIA": 25143, + "ĠCJ": 42285, + "ĠCL": 12855, + "ĠCM": 20424, + "ĠCMS": 33124, + "ĠCN": 14589, + "ĠCNC": 48714, + "ĠCNN": 24859, + "ĠCO": 3002, + "ĠCOB": 34812, + "ĠCOL": 31286, + "ĠCOM": 35074, + "ĠCOME": 49563, + "ĠCOMM": 36041, + "ĠCON": 16596, + "ĠCOP": 48988, + "ĠCOR": 43137, + "ĠCOSTA": 36537, + "ĠCOVID": 4566, + "ĠCP": 22431, + "ĠCPA": 48672, + "ĠCPR": 47536, + "ĠCPU": 13199, + "ĠCR": 14123, + "ĠCRA": 34425, + "ĠCRIS": 49256, + "ĠCS": 9460, + "ĠCSS": 24387, + "ĠCSV": 48814, + "ĠCT": 19529, + "ĠCU": 29777, + "ĠCV": 22995, + "ĠCa": 7544, + "ĠCab": 14704, + "ĠCabinet": 31398, + "ĠCad": 22323, + "ĠCada": 38603, + "ĠCaesar": 26678, + "ĠCaf": 46701, + "ĠCafe": 35864, + "ĠCage": 48677, + "ĠCai": 30983, + "ĠCait": 28250, + "ĠCaitlin": 50131, + "ĠCake": 36773, + "ĠCal": 3511, + "ĠCaleb": 30331, + "ĠCalendar": 43583, + "ĠCaliforn": 5284, + "ĠCalifornia": 5384, + "ĠCall": 7807, + "ĠCalled": 45001, + "ĠCalling": 44150, + "ĠCalm": 23086, + "ĠCalvin": 28025, + "ĠCam": 6886, + "ĠCamb": 29287, + "ĠCambodia": 47347, + "ĠCambridge": 24876, + "ĠCame": 36042, + "ĠCamera": 23734, + "ĠCameron": 24962, + "ĠCamp": 9189, + "ĠCampaign": 38256, + "ĠCampbell": 25914, + "ĠCampus": 28095, + "ĠCan": 1664, + "ĠCanad": 10380, + "ĠCanada": 6309, + "ĠCanadian": 12641, + "ĠCanadians": 30053, + "ĠCanal": 38250, + "ĠCancer": 26127, + "ĠCand": 20466, + "ĠCandy": 31470, + "ĠCann": 29866, + "ĠCannon": 43102, + "ĠCanon": 27666, + "ĠCant": 26697, + "ĠCanton": 44170, + "ĠCanvas": 25725, + "ĠCanyon": 29170, + "ĠCao": 38176, + "ĠCap": 8363, + "ĠCape": 27517, + "ĠCapital": 21502, + "ĠCapitol": 25081, + "ĠCapt": 9480, + "ĠCaptain": 10873, + "ĠCar": 2741, + "ĠCara": 33006, + "ĠCarbon": 31453, + "ĠCard": 11877, + "ĠCare": 9532, + "ĠCareer": 31690, + "ĠCareful": 32932, + "ĠCarib": 23438, + "ĠCaribbean": 24356, + "ĠCarl": 14256, + "ĠCarla": 41325, + "ĠCarlo": 45112, + "ĠCarlos": 19646, + "ĠCarm": 44530, + "ĠCarmen": 35778, + "ĠCarn": 32254, + "ĠCarne": 42799, + "ĠCarnegie": 47301, + "ĠCarney": 29351, + "ĠCaro": 37265, + "ĠCarol": 7925, + "ĠCarolina": 11480, + "ĠCaroline": 30245, + "ĠCarolyn": 42731, + "ĠCarr": 17715, + "ĠCarrie": 34654, + "ĠCarroll": 48456, + "ĠCarry": 44168, + "ĠCars": 43595, + "ĠCarson": 38731, + "ĠCart": 22478, + "ĠCarter": 21622, + "ĠCarwyn": 47021, + "ĠCas": 16100, + "ĠCasa": 44843, + "ĠCase": 17791, + "ĠCasey": 27369, + "ĠCash": 27016, + "ĠCass": 18208, + "ĠCast": 11019, + "ĠCastle": 21076, + "ĠCastro": 43221, + "ĠCat": 9565, + "ĠCatal": 24994, + "ĠCatalunya": 46039, + "ĠCatch": 23869, + "ĠCath": 8764, + "ĠCathedral": 46794, + "ĠCatherine": 23098, + "ĠCatholic": 11981, + "ĠCatholics": 36333, + "ĠCathy": 39799, + "ĠCats": 40902, + "ĠCau": 49788, + "ĠCauc": 44044, + "ĠCaucas": 44941, + "ĠCause": 10865, + "ĠCav": 28066, + "ĠCave": 41100, + "ĠCay": 38287, + "ĠCe": 8257, + "ĠCec": 38807, + "ĠCel": 19967, + "ĠCela": 37348, + "ĠCelebr": 30413, + "ĠCeline": 42704, + "ĠCell": 28859, + "ĠCelsius": 22658, + "ĠCelt": 44591, + "ĠCem": 48852, + "ĠCen": 38065, + "ĠCena": 48131, + "ĠCensus": 34273, + "ĠCent": 3408, + "ĠCenter": 5169, + "ĠCenters": 41911, + "ĠCentral": 9701, + "ĠCentre": 20764, + "ĠCentury": 28555, + "ĠCer": 26402, + "ĠCert": 31036, + "ĠCertain": 13407, + "ĠCertainly": 16628, + "ĠCes": 28414, + "ĠCette": 25556, + "ĠCh": 761, + "ĠCha": 12374, + "ĠChad": 22268, + "ĠChain": 33252, + "ĠChair": 8678, + "ĠChairman": 17866, + "ĠChall": 14398, + "ĠChallenge": 17517, + "ĠCham": 18054, + "ĠChamber": 25401, + "ĠChamp": 9863, + "ĠChampion": 23160, + "ĠChampions": 14391, + "ĠChampionship": 24310, + "ĠChampionships": 46917, + "ĠChan": 16064, + "ĠChance": 16428, + "ĠChancellor": 24778, + "ĠChand": 32244, + "ĠChanel": 42698, + "ĠChang": 17179, + "ĠChange": 15060, + "ĠChanging": 45773, + "ĠChannel": 13553, + "ĠChaos": 32644, + "ĠChap": 24187, + "ĠChapel": 48203, + "ĠChapter": 18874, + "ĠChar": 4327, + "ĠCharacter": 36786, + "ĠCharge": 40546, + "ĠCharl": 14130, + "ĠCharles": 10523, + "ĠCharlie": 13754, + "ĠCharlotte": 19059, + "ĠChart": 49762, + "ĠChase": 21384, + "ĠChat": 27503, + "ĠChe": 3351, + "ĠCheck": 6881, + "ĠCheer": 39899, + "ĠCheers": 13006, + "ĠCheese": 23738, + "ĠChef": 14447, + "ĠChel": 24345, + "ĠChelsea": 26527, + "ĠChem": 21357, + "ĠChemical": 42754, + "ĠChemistry": 46038, + "ĠChen": 13682, + "ĠCheng": 24363, + "ĠCher": 14825, + "ĠChern": 49504, + "ĠCherry": 34831, + "ĠCheryl": 38331, + "ĠChest": 47981, + "ĠChev": 44236, + "ĠChevy": 49426, + "ĠChi": 17730, + "ĠChic": 9010, + "ĠChicago": 9525, + "ĠChick": 38930, + "ĠChicken": 16765, + "ĠChief": 10068, + "ĠChild": 9004, + "ĠChildren": 13354, + "ĠChile": 22238, + "ĠChili": 45624, + "ĠChill": 41368, + "ĠChin": 4430, + "ĠChina": 3533, + "ĠChinese": 4649, + "ĠChing": 47818, + "ĠChip": 29751, + "ĠChloe": 29694, + "ĠCho": 12366, + "ĠChocolate": 26832, + "ĠChoi": 33479, + "ĠChoice": 37080, + "ĠChong": 43040, + "ĠChoose": 21661, + "ĠChop": 25615, + "ĠChr": 1721, + "ĠChris": 6688, + "ĠChrist": 2040, + "ĠChristian": 5778, + "ĠChristianity": 17326, + "ĠChristians": 12254, + "ĠChristie": 46111, + "ĠChristina": 25466, + "ĠChristine": 24038, + "ĠChristmas": 5272, + "ĠChristopher": 20649, + "ĠChrome": 15327, + "ĠChron": 34038, + "ĠChry": 43183, + "ĠChu": 25585, + "ĠChuck": 21607, + "ĠChun": 32527, + "ĠChung": 38314, + "ĠChurch": 7882, + "ĠChurchill": 39837, + "ĠCi": 20188, + "ĠCiao": 28473, + "ĠCin": 18310, + "ĠCinc": 44142, + "ĠCincinn": 45323, + "ĠCincinnati": 45951, + "ĠCind": 23863, + "ĠCinderella": 47980, + "ĠCindy": 32185, + "ĠCinema": 42502, + "ĠCinnamon": 40446, + "ĠCir": 13791, + "ĠCirc": 28938, + "ĠCircle": 29381, + "ĠCircuit": 36939, + "ĠCisco": 38528, + "ĠCit": 18435, + "ĠCities": 36672, + "ĠCitizen": 44371, + "ĠCitizens": 44120, + "ĠCity": 4392, + "ĠCiv": 35452, + "ĠCivic": 46237, + "ĠCivil": 13405, + "ĠCl": 2033, + "ĠCla": 12947, + "ĠClaire": 22605, + "ĠClan": 45117, + "ĠClap": 45297, + "ĠClar": 28410, + "ĠClara": 32048, + "ĠClark": 18572, + "ĠClaro": 33380, + "ĠClass": 9471, + "ĠClassic": 25008, + "ĠClaud": 24858, + "ĠClaudia": 36785, + "ĠClaus": 33153, + "ĠClay": 21392, + "ĠCle": 8834, + "ĠClean": 18463, + "ĠClear": 14993, + "ĠClearly": 24120, + "ĠClement": 49517, + "ĠCler": 36984, + "ĠClerk": 45175, + "ĠCleveland": 27846, + "ĠClick": 8230, + "ĠCliff": 33638, + "ĠClimate": 27025, + "ĠClin": 24240, + "ĠClinic": 37918, + "ĠClinical": 47942, + "ĠClint": 45311, + "ĠClinton": 15445, + "ĠClo": 31901, + "ĠClock": 46986, + "ĠClone": 45536, + "ĠClose": 16346, + "ĠCloud": 8061, + "ĠClub": 11288, + "ĠCly": 44752, + "ĠCo": 3066, + "ĠCoach": 17369, + "ĠCoalition": 40586, + "ĠCoast": 14960, + "ĠCob": 31395, + "ĠCoc": 30430, + "ĠCoca": 32719, + "ĠCock": 39410, + "ĠCoco": 29787, + "ĠCoconut": 45875, + "ĠCode": 15549, + "ĠCody": 34524, + "ĠCoffee": 25481, + "ĠCoh": 29000, + "ĠCohen": 32968, + "ĠCoin": 39054, + "ĠCoke": 32996, + "ĠCol": 4004, + "ĠCola": 48037, + "ĠCold": 16918, + "ĠCole": 20394, + "ĠColeman": 49930, + "ĠColin": 29253, + "ĠColl": 4586, + "ĠCollabor": 44483, + "ĠCollect": 31896, + "ĠCollection": 30981, + "ĠCollege": 6745, + "ĠCollins": 27973, + "ĠColomb": 18514, + "ĠColombia": 22677, + "ĠColon": 21408, + "ĠColonel": 28478, + "ĠColor": 10458, + "ĠColorado": 15786, + "ĠColumb": 13056, + "ĠColumbia": 17339, + "ĠColumbus": 31258, + "ĠCom": 2432, + "ĠComb": 25939, + "ĠCombat": 41019, + "ĠCome": 2492, + "ĠComedy": 47217, + "ĠComes": 47290, + "ĠComic": 40945, + "ĠComics": 43533, + "ĠComing": 12473, + "ĠComm": 3046, + "ĠCommand": 17901, + "ĠCommander": 20857, + "ĠComme": 24308, + "ĠComment": 16328, + "ĠCommerce": 34493, + "ĠCommercial": 47171, + "ĠCommission": 10766, + "ĠCommissioner": 25410, + "ĠCommittee": 11556, + "ĠCommon": 18235, + "ĠCommons": 34894, + "ĠCommonwealth": 35295, + "ĠComms": 42664, + "ĠCommun": 6800, + "ĠCommunication": 34930, + "ĠCommunications": 38998, + "ĠCommunist": 23253, + "ĠCommunity": 10421, + "ĠComo": 11913, + "ĠComp": 6620, + "ĠCompan": 31827, + "ĠCompanies": 44031, + "ĠCompany": 13918, + "ĠCompare": 48523, + "ĠCompared": 30539, + "ĠCompass": 50179, + "ĠCompet": 32216, + "ĠCompetition": 43634, + "ĠCompl": 33736, + "ĠComplet": 31804, + "ĠComplete": 34687, + "ĠCompletely": 39978, + "ĠComplex": 41184, + "ĠComput": 37804, + "ĠComputer": 22289, + "ĠCon": 2656, + "ĠConan": 47691, + "ĠConc": 18200, + "ĠConcept": 47482, + "ĠCond": 21793, + "ĠConf": 11701, + "ĠConfeder": 31201, + "ĠConfederate": 45000, + "ĠConference": 22131, + "ĠConfig": 44151, + "ĠCong": 4280, + "ĠCongo": 42839, + "ĠCongrats": 40219, + "ĠCongratulations": 9694, + "ĠCongress": 6426, + "ĠCongressman": 38071, + "ĠConnect": 11653, + "ĠConnecticut": 29433, + "ĠConnie": 49558, + "ĠConnor": 33133, + "ĠCons": 6923, + "ĠConse": 39706, + "ĠConserv": 26870, + "ĠConservation": 40131, + "ĠConservative": 46054, + "ĠConsider": 17416, + "ĠConsidering": 33854, + "ĠConsole": 44152, + "ĠConsort": 31719, + "ĠConst": 8574, + "ĠConstant": 37413, + "ĠConstitution": 14505, + "ĠConstruction": 40017, + "ĠConsult": 40057, + "ĠConsumer": 39494, + "ĠCont": 4839, + "ĠContact": 30683, + "ĠContain": 43732, + "ĠContent": 30078, + "ĠContin": 14674, + "ĠContinue": 24472, + "ĠContinuing": 47585, + "ĠContract": 44659, + "ĠControl": 12912, + "ĠController": 44969, + "ĠConven": 45992, + "ĠConvention": 26793, + "ĠConvers": 33247, + "ĠCook": 12259, + "ĠCookie": 42011, + "ĠCooking": 36647, + "ĠCool": 8561, + "ĠCooper": 20355, + "ĠCoordin": 39620, + "ĠCoordinator": 47173, + "ĠCop": 11579, + "ĠCopenh": 50135, + "ĠCopper": 47243, + "ĠCopy": 25653, + "ĠCor": 3925, + "ĠCord": 40267, + "ĠCore": 14798, + "ĠCorey": 39136, + "ĠCorin": 25567, + "ĠCorinth": 29455, + "ĠCorinthians": 34778, + "ĠCorn": 21590, + "ĠCornell": 43257, + "ĠCorner": 42391, + "ĠCoron": 24199, + "ĠCorona": 18075, + "ĠCoronavirus": 32737, + "ĠCorpor": 19665, + "ĠCorporation": 26464, + "ĠCorps": 20169, + "ĠCorrect": 12753, + "ĠCort": 28522, + "ĠCory": 41695, + "ĠCos": 15855, + "ĠCost": 20863, + "ĠCosta": 28440, + "ĠCostco": 43453, + "ĠCott": 35485, + "ĠCotton": 46195, + "ĠCou": 26180, + "ĠCould": 7497, + "ĠCouldn": 35800, + "ĠCoun": 4780, + "ĠCouncil": 7076, + "ĠCouncill": 10778, + "ĠCouncillor": 11731, + "ĠCouncillors": 44912, + "ĠCounsel": 35157, + "ĠCount": 5247, + "ĠCounter": 35607, + "ĠCountry": 23216, + "ĠCounty": 6658, + "ĠCouple": 38266, + "ĠCour": 6413, + "ĠCourse": 27327, + "ĠCourt": 7873, + "ĠCourtney": 33489, + "ĠCover": 19106, + "ĠCovid": 14633, + "ĠCow": 21933, + "ĠCox": 41576, + "ĠCr": 4779, + "ĠCra": 11138, + "ĠCraft": 29991, + "ĠCraig": 19732, + "ĠCrash": 31787, + "ĠCraw": 37877, + "ĠCrazy": 22509, + "ĠCre": 9549, + "ĠCream": 25358, + "ĠCreat": 11972, + "ĠCreate": 20248, + "ĠCreating": 40002, + "ĠCreation": 42874, + "ĠCreative": 26598, + "ĠCreator": 28208, + "ĠCred": 47560, + "ĠCredit": 36006, + "ĠCreed": 39103, + "ĠCreek": 24200, + "ĠCreo": 40640, + "ĠCrew": 29857, + "ĠCrim": 30691, + "ĠCrime": 26140, + "ĠCrimea": 48495, + "ĠCriminal": 43698, + "ĠCrisis": 42846, + "ĠCrisp": 49077, + "ĠCrist": 23199, + "ĠCristo": 36524, + "ĠCrit": 23202, + "ĠCritical": 39482, + "ĠCro": 18965, + "ĠCroat": 37614, + "ĠCroatia": 50186, + "ĠCross": 11623, + "ĠCrossing": 41675, + "ĠCrow": 27072, + "ĠCrowd": 40110, + "ĠCrown": 22375, + "ĠCru": 13586, + "ĠCruise": 39165, + "ĠCrunch": 44233, + "ĠCrus": 34484, + "ĠCrush": 44211, + "ĠCruz": 23008, + "ĠCry": 12267, + "ĠCrypt": 34809, + "ĠCrystal": 23489, + "ĠCtrl": 35233, + "ĠCu": 13205, + "ĠCuando": 21907, + "ĠCub": 21300, + "ĠCuba": 20604, + "ĠCuban": 31547, + "ĠCube": 33003, + "ĠCul": 49037, + "ĠCult": 41550, + "ĠCultural": 31450, + "ĠCulture": 27539, + "ĠCum": 26337, + "ĠCup": 13751, + "ĠCur": 7907, + "ĠCuriosity": 48998, + "ĠCurrent": 15629, + "ĠCurrently": 19964, + "ĠCurry": 34789, + "ĠCurt": 26587, + "ĠCurtis": 42140, + "ĠCustom": 16649, + "ĠCustomer": 37168, + "ĠCut": 9431, + "ĠCute": 29121, + "ĠCuz": 27017, + "ĠCy": 10295, + "ĠCyber": 22935, + "ĠCyberpunk": 46927, + "ĠCycl": 49173, + "ĠCynthia": 38163, + "ĠCyr": 33146, + "ĠCyrus": 47439, + "ĠCzech": 25227, + "ĠCzy": 19832, + "ĠCzyli": 37099, + "ĠCó": 41306, + "ĠD": 413, + "ĠDA": 9578, + "ĠDAC": 39038, + "ĠDAM": 48093, + "ĠDAN": 15331, + "ĠDANIEL": 38958, + "ĠDAR": 49274, + "ĠDAVID": 16764, + "ĠDAY": 27665, + "ĠDB": 26754, + "ĠDC": 9114, + "ĠDD": 30778, + "ĠDDR": 49272, + "ĠDE": 10113, + "ĠDENNIS": 47172, + "ĠDES": 27083, + "ĠDF": 48336, + "ĠDH": 28606, + "ĠDI": 11953, + "ĠDID": 35345, + "ĠDIE": 32188, + "ĠDIRE": 32990, + "ĠDIRECTOR": 35929, + "ĠDIS": 49028, + "ĠDIY": 22194, + "ĠDJ": 13078, + "ĠDK": 31934, + "ĠDLC": 30272, + "ĠDM": 15322, + "ĠDN": 21500, + "ĠDNA": 8272, + "ĠDNS": 35153, + "ĠDO": 10699, + "ĠDOM": 35727, + "ĠDON": 20403, + "ĠDOT": 50142, + "ĠDOU": 45723, + "ĠDOWN": 48897, + "ĠDP": 42796, + "ĠDR": 12118, + "ĠDS": 15816, + "ĠDU": 28423, + "ĠDV": 17021, + "ĠDVD": 21187, + "ĠDW": 45318, + "ĠDX": 48817, + "ĠDY": 48427, + "ĠDa": 3933, + "ĠDaar": 29883, + "ĠDabei": 39606, + "ĠDad": 5639, + "ĠDaddy": 15323, + "ĠDae": 42361, + "ĠDaf": 31582, + "ĠDafür": 35865, + "ĠDag": 41866, + "ĠDah": 36977, + "ĠDaha": 35658, + "ĠDai": 39521, + "ĠDaily": 19685, + "ĠDais": 31109, + "ĠDaisy": 37472, + "ĠDak": 18051, + "ĠDakota": 22429, + "ĠDal": 17357, + "ĠDale": 31329, + "ĠDallas": 22923, + "ĠDam": 5885, + "ĠDamas": 49327, + "ĠDame": 34447, + "ĠDamen": 21131, + "ĠDamit": 24495, + "ĠDamn": 11907, + "ĠDamon": 47197, + "ĠDan": 3394, + "ĠDana": 23759, + "ĠDance": 16114, + "ĠDancing": 36890, + "ĠDang": 29580, + "ĠDanger": 36619, + "ĠDani": 42136, + "ĠDaniel": 8033, + "ĠDanielle": 21182, + "ĠDanish": 36944, + "ĠDank": 14148, + "ĠDanke": 26508, + "ĠDann": 7455, + "ĠDanny": 16682, + "ĠDans": 16897, + "ĠDante": 35602, + "ĠDar": 7803, + "ĠDare": 42320, + "ĠDark": 9563, + "ĠDarkness": 38198, + "ĠDarling": 38697, + "ĠDarr": 44007, + "ĠDarren": 36691, + "ĠDarrin": 47368, + "ĠDart": 30271, + "ĠDarth": 40696, + "ĠDartmouth": 47883, + "ĠDarwin": 30233, + "ĠDas": 2846, + "ĠDash": 23453, + "ĠDass": 22306, + "ĠDat": 9315, + "ĠData": 11888, + "ĠDatab": 40461, + "ĠDate": 31805, + "ĠDaten": 31126, + "ĠDav": 3724, + "ĠDave": 11017, + "ĠDavid": 4389, + "ĠDavidson": 44401, + "ĠDavis": 15658, + "ĠDaw": 28407, + "ĠDawn": 26001, + "ĠDay": 5226, + "ĠDays": 26007, + "ĠDayton": 44718, + "ĠDazu": 34667, + "ĠDe": 1346, + "ĠDead": 12550, + "ĠDeadpool": 45493, + "ĠDeaf": 31389, + "ĠDeal": 27227, + "ĠDean": 13324, + "ĠDear": 14383, + "ĠDeath": 13703, + "ĠDeb": 27347, + "ĠDebat": 42167, + "ĠDebatte": 48930, + "ĠDebbie": 35834, + "ĠDeborah": 39695, + "ĠDec": 12427, + "ĠDecember": 7687, + "ĠDeck": 38196, + "ĠDeclaration": 40844, + "ĠDed": 41300, + "ĠDee": 38894, + "ĠDeep": 14895, + "ĠDef": 9548, + "ĠDefence": 43291, + "ĠDefense": 17410, + "ĠDefin": 46245, + "ĠDefinitely": 12151, + "ĠDeixa": 46589, + "ĠDel": 5831, + "ĠDelaware": 37655, + "ĠDelete": 49452, + "ĠDelhi": 26680, + "ĠDelicious": 28518, + "ĠDell": 33319, + "ĠDelta": 18183, + "ĠDem": 4686, + "ĠDemocr": 7141, + "ĠDemocracy": 43062, + "ĠDemocrat": 27827, + "ĠDemocratic": 14928, + "ĠDemocrats": 12217, + "ĠDemokrat": 27802, + "ĠDemokraten": 41139, + "ĠDemon": 29683, + "ĠDen": 6458, + "ĠDenis": 45351, + "ĠDenise": 38133, + "ĠDenmark": 28065, + "ĠDenn": 19027, + "ĠDennis": 23376, + "ĠDent": 41622, + "ĠDenver": 26270, + "ĠDep": 4056, + "ĠDepartment": 5982, + "ĠDepending": 22539, + "ĠDepois": 34231, + "ĠDepot": 45445, + "ĠDepression": 33044, + "ĠDeputy": 21560, + "ĠDer": 5618, + "ĠDerek": 22887, + "ĠDes": 3885, + "ĠDesde": 37985, + "ĠDesert": 33340, + "ĠDeshalb": 27969, + "ĠDesign": 12748, + "ĠDesigner": 48027, + "ĠDesktop": 49044, + "ĠDesp": 9891, + "ĠDespite": 11334, + "ĠDespués": 40995, + "ĠDest": 16339, + "ĠDestiny": 31898, + "ĠDestroy": 41719, + "ĠDeswegen": 24864, + "ĠDet": 4237, + "ĠDetails": 42811, + "ĠDetective": 35210, + "ĠDetroit": 20887, + "ĠDeus": 15057, + "ĠDeuts": 10514, + "ĠDeutsch": 12699, + "ĠDeutsche": 45567, + "ĠDeutschen": 45070, + "ĠDeutschland": 14802, + "ĠDev": 9096, + "ĠDevOps": 43051, + "ĠDevelop": 11442, + "ĠDeveloper": 44915, + "ĠDevelopment": 15041, + "ĠDevi": 48565, + "ĠDevice": 50140, + "ĠDevil": 25221, + "ĠDew": 43079, + "ĠDh": 34414, + "ĠDharma": 40552, + "ĠDi": 8789, + "ĠDia": 22157, + "ĠDial": 29658, + "ĠDiam": 21706, + "ĠDiamond": 26593, + "ĠDiana": 21470, + "ĠDiane": 30460, + "ĠDick": 18754, + "ĠDid": 2589, + "ĠDidn": 11151, + "ĠDie": 3229, + "ĠDiego": 16377, + "ĠDienst": 43932, + "ĠDies": 10796, + "ĠDiese": 18993, + "ĠDiesel": 47037, + "ĠDieser": 39609, + "ĠDieses": 39201, + "ĠDiet": 29606, + "ĠDieu": 25610, + "ĠDif": 35940, + "ĠDifferent": 20825, + "ĠDig": 10976, + "ĠDigital": 15522, + "ĠDil": 36475, + "ĠDim": 20975, + "ĠDin": 27156, + "ĠDing": 20558, + "ĠDinge": 25102, + "ĠDingen": 49351, + "ĠDinner": 46678, + "ĠDion": 45212, + "ĠDios": 21838, + "ĠDip": 33486, + "ĠDir": 34422, + "ĠDire": 5822, + "ĠDirect": 18308, + "ĠDirector": 7680, + "ĠDirectory": 49598, + "ĠDis": 4208, + "ĠDisability": 47636, + "ĠDisc": 19839, + "ĠDiscord": 32623, + "ĠDiscover": 40386, + "ĠDiscovery": 34129, + "ĠDise": 30161, + "ĠDisease": 35360, + "ĠDisk": 30609, + "ĠDiskuss": 45963, + "ĠDisney": 8653, + "ĠDisneyland": 34797, + "ĠDisplay": 32229, + "ĠDist": 9840, + "ĠDistrict": 14374, + "ĠDit": 25270, + "ĠDiv": 9886, + "ĠDiversity": 44187, + "ĠDivine": 26098, + "ĠDivision": 17183, + "ĠDj": 33464, + "ĠDlatego": 47184, + "ĠDo": 1144, + "ĠDob": 29679, + "ĠDoc": 16024, + "ĠDoch": 21533, + "ĠDocker": 33772, + "ĠDoctor": 10143, + "ĠDoctors": 39090, + "ĠDocument": 37684, + "ĠDod": 26904, + "ĠDodge": 41883, + "ĠDoes": 4402, + "ĠDoesn": 12955, + "ĠDog": 13472, + "ĠDogs": 35504, + "ĠDoing": 18496, + "ĠDok": 29768, + "ĠDol": 18786, + "ĠDoll": 20059, + "ĠDollar": 32370, + "ĠDom": 16674, + "ĠDomin": 18027, + "ĠDominican": 45486, + "ĠDon": 1468, + "ĠDonald": 8632, + "ĠDonc": 7477, + "ĠDoncs": 38641, + "ĠDone": 18658, + "ĠDong": 13609, + "ĠDonkey": 44217, + "ĠDonna": 31938, + "ĠDont": 49271, + "ĠDoo": 46612, + "ĠDoom": 30168, + "ĠDoor": 29636, + "ĠDop": 42657, + "ĠDor": 13643, + "ĠDorothy": 41105, + "ĠDort": 32308, + "ĠDos": 33474, + "ĠDot": 38753, + "ĠDou": 13200, + "ĠDouble": 16633, + "ĠDoug": 12742, + "ĠDouglas": 23010, + "ĠDow": 20947, + "ĠDown": 9506, + "ĠDownload": 32282, + "ĠDownt": 44386, + "ĠDowntown": 49255, + "ĠDoy": 40059, + "ĠDr": 2491, + "ĠDra": 15971, + "ĠDracula": 48950, + "ĠDrag": 8832, + "ĠDragon": 11517, + "ĠDragons": 37437, + "ĠDrake": 27465, + "ĠDrama": 45406, + "ĠDraw": 20386, + "ĠDre": 31635, + "ĠDream": 12105, + "ĠDreams": 41887, + "ĠDrew": 25550, + "ĠDri": 19150, + "ĠDrink": 24529, + "ĠDrive": 15622, + "ĠDriver": 36048, + "ĠDriving": 44028, + "ĠDro": 35305, + "ĠDrop": 17675, + "ĠDru": 36744, + "ĠDruck": 33320, + "ĠDrug": 35806, + "ĠDrum": 40320, + "ĠDry": 31562, + "ĠDu": 5153, + "ĠDual": 37625, + "ĠDub": 16488, + "ĠDubai": 29100, + "ĠDublin": 42323, + "ĠDuch": 44267, + "ĠDuck": 29266, + "ĠDud": 42622, + "ĠDude": 12042, + "ĠDue": 18980, + "ĠDuke": 17380, + "ĠDul": 50115, + "ĠDum": 29572, + "ĠDun": 11959, + "ĠDuncan": 31942, + "ĠDunk": 47183, + "ĠDuo": 46123, + "ĠDur": 13710, + "ĠDurch": 28557, + "ĠDurham": 46540, + "ĠDuring": 6842, + "ĠDus": 17916, + "ĠDust": 26483, + "ĠDustin": 46782, + "ĠDutch": 15719, + "ĠDuty": 33045, + "ĠDuygusal": 50090, + "ĠDw": 41448, + "ĠDy": 31193, + "ĠDylan": 28160, + "ĠDynam": 22947, + "ĠDynamic": 45440, + "ĠDynasty": 37339, + "ĠDz": 39448, + "ĠDziÄĻkujÄĻ": 43721, + "ĠDá": 49794, + "ĠDär": 40291, + "ĠDÃ¥": 26339, + "ĠDé": 31153, + "ĠDü": 41835, + "ĠE": 462, + "ĠEA": 35747, + "ĠEB": 50148, + "ĠEC": 19081, + "ĠED": 18050, + "ĠEE": 33685, + "ĠEH": 39416, + "ĠEK": 46078, + "ĠEL": 14426, + "ĠEM": 16237, + "ĠEN": 15244, + "ĠEP": 25330, + "ĠEPA": 27447, + "ĠEQ": 33580, + "ĠER": 14929, + "ĠERIC": 36137, + "ĠES": 12564, + "ĠEST": 47140, + "ĠET": 36953, + "ĠETF": 37436, + "ĠEU": 10887, + "ĠEV": 15733, + "ĠEVER": 27843, + "ĠEVERY": 35163, + "ĠEX": 16385, + "ĠEach": 6947, + "ĠEagle": 27926, + "ĠEagles": 48807, + "ĠEar": 3929, + "ĠEarl": 38936, + "ĠEarlier": 24552, + "ĠEarly": 18344, + "ĠEarn": 24820, + "ĠEarnest": 28214, + "ĠEarth": 4755, + "ĠEas": 46879, + "ĠEast": 6747, + "ĠEaster": 9403, + "ĠEastern": 12901, + "ĠEasy": 16002, + "ĠEat": 14429, + "ĠEating": 29234, + "ĠEb": 20418, + "ĠEbola": 37846, + "ĠEc": 28993, + "ĠEcho": 31887, + "ĠEck": 46354, + "ĠEco": 40263, + "ĠEconom": 14821, + "ĠEconomic": 25776, + "ĠEconomics": 39024, + "ĠEconomy": 48223, + "ĠEcu": 40675, + "ĠEcuador": 41558, + "ĠEd": 3977, + "ĠEddie": 23911, + "ĠEddy": 35062, + "ĠEden": 35322, + "ĠEdgar": 42981, + "ĠEdge": 19328, + "ĠEdin": 39697, + "ĠEdinburgh": 41215, + "ĠEdison": 47497, + "ĠEdit": 33241, + "ĠEdition": 25301, + "ĠEditor": 24281, + "ĠEdu": 31900, + "ĠEduardo": 45819, + "ĠEduc": 9517, + "ĠEducation": 10680, + "ĠEdward": 18456, + "ĠEdwards": 35836, + "ĠEe": 25046, + "ĠEen": 25374, + "ĠEf": 31840, + "ĠEfendi": 43472, + "ĠEfendimiz": 50120, + "ĠEff": 34192, + "ĠEffect": 17764, + "ĠEffects": 34515, + "ĠEg": 43515, + "ĠEgg": 16960, + "ĠEggs": 42486, + "ĠEgypt": 9582, + "ĠEgyptian": 24257, + "ĠEgyptians": 44119, + "ĠEh": 9663, + "ĠEi": 29786, + "ĠEig": 40561, + "ĠEigen": 30586, + "ĠEight": 17708, + "ĠEin": 6391, + "ĠEine": 17664, + "ĠEink": 49128, + "ĠEins": 22790, + "ĠEinsatz": 38474, + "ĠEinstein": 23486, + "ĠEis": 43174, + "ĠEisen": 35619, + "ĠEither": 13746, + "ĠEk": 33089, + "ĠEl": 2699, + "ĠEla": 17637, + "ĠElaine": 42322, + "ĠEld": 19705, + "ĠElder": 28390, + "ĠEle": 8024, + "ĠElect": 12575, + "ĠElection": 45074, + "ĠElectric": 24677, + "ĠElectronic": 46921, + "ĠElekt": 40321, + "ĠElement": 20900, + "ĠElementary": 33099, + "ĠElena": 39603, + "ĠEles": 31096, + "ĠEleven": 48548, + "ĠEli": 16943, + "ĠElijah": 36147, + "ĠEliot": 44023, + "ĠElise": 40545, + "ĠElite": 34404, + "ĠEliz": 11991, + "ĠElizabeth": 12978, + "ĠEll": 8353, + "ĠElla": 29261, + "ĠElle": 16227, + "ĠEllen": 20306, + "ĠEller": 45719, + "ĠElli": 40612, + "ĠEllie": 27151, + "ĠElliot": 38986, + "ĠElliott": 46170, + "ĠEllis": 38171, + "ĠElmo": 38722, + "ĠElo": 41784, + "ĠElon": 28498, + "ĠEls": 33437, + "ĠElsa": 36342, + "ĠElse": 45472, + "ĠEltern": 29101, + "ĠElvis": 39944, + "ĠEm": 3968, + "ĠEmail": 49482, + "ĠEmb": 24234, + "ĠEmbassy": 49637, + "ĠEmer": 18477, + "ĠEmergency": 30524, + "ĠEmil": 36983, + "ĠEmily": 15034, + "ĠEmin": 40695, + "ĠEmir": 38426, + "ĠEmm": 28237, + "ĠEmma": 17124, + "ĠEmmanuel": 44421, + "ĠEmmy": 45580, + "ĠEmp": 8599, + "ĠEmperor": 17913, + "ĠEmpire": 12197, + "ĠEmploy": 26878, + "ĠEmpress": 28559, + "ĠEn": 2193, + "ĠEnc": 29584, + "ĠEnd": 6967, + "ĠEnde": 15152, + "ĠEnemy": 48886, + "ĠEner": 11132, + "ĠEnerg": 48195, + "ĠEnergie": 35309, + "ĠEnergy": 14939, + "ĠEnfin": 35861, + "ĠEng": 2469, + "ĠEngagement": 43931, + "ĠEngine": 7659, + "ĠEngineer": 15808, + "ĠEngineering": 16215, + "ĠEngineers": 43950, + "ĠEngland": 8196, + "ĠEnglish": 3669, + "ĠEnjoy": 15411, + "ĠEnlight": 46037, + "ĠEnough": 19401, + "ĠEns": 25979, + "ĠEnsuite": 37366, + "ĠEnt": 3951, + "ĠEnter": 10399, + "ĠEnterprise": 26696, + "ĠEntertain": 24684, + "ĠEntertainment": 25758, + "ĠEntonces": 15097, + "ĠEntre": 27979, + "ĠEntreprene": 49049, + "ĠEntscheid": 30862, + "ĠEntscheidung": 44667, + "ĠEntwick": 29397, + "ĠEntwicklung": 39654, + "ĠEntão": 6469, + "ĠEnviron": 19286, + "ĠEnvironment": 35354, + "ĠEnvironmental": 27813, + "ĠEp": 9970, + "ĠEph": 35445, + "ĠEpic": 26785, + "ĠEpisode": 19882, + "ĠEqu": 15624, + "ĠEquity": 47675, + "ĠEr": 3300, + "ĠEra": 23071, + "ĠErde": 43720, + "ĠEren": 49479, + "ĠErfahr": 34137, + "ĠErfahrung": 49318, + "ĠErfolg": 45232, + "ĠErgeb": 34657, + "ĠErgebnis": 46229, + "ĠEric": 9336, + "ĠErica": 37429, + "ĠErik": 33143, + "ĠErin": 27983, + "ĠErm": 45794, + "ĠErn": 24147, + "ĠErst": 31183, + "ĠEs": 2313, + "ĠEsc": 30379, + "ĠEscape": 42960, + "ĠEso": 27795, + "ĠEsp": 24978, + "ĠEspa": 27907, + "ĠEspaña": 31729, + "ĠEspecially": 8545, + "ĠEsper": 24142, + "ĠEspero": 41831, + "ĠEss": 14357, + "ĠEssa": 22818, + "ĠEsse": 18814, + "ĠEssen": 42098, + "ĠEssential": 49736, + "ĠEssentially": 23596, + "ĠEst": 4410, + "ĠEsta": 20547, + "ĠEstado": 29740, + "ĠEstados": 22362, + "ĠEstamos": 34563, + "ĠEstate": 48097, + "ĠEste": 16105, + "ĠEsther": 37731, + "ĠEsto": 20880, + "ĠEstoy": 49651, + "ĠEstá": 27304, + "ĠEt": 3790, + "ĠEternal": 44432, + "ĠEth": 10540, + "ĠEthan": 23984, + "ĠEther": 38636, + "ĠEthereum": 26894, + "ĠEthi": 29380, + "ĠEthiopia": 39445, + "ĠEts": 47170, + "ĠEtt": 48426, + "ĠEu": 2186, + "ĠEuch": 46668, + "ĠEugene": 37059, + "ĠEuh": 47320, + "ĠEun": 17965, + "ĠEuro": 3010, + "ĠEurop": 12201, + "ĠEuropa": 16642, + "ĠEurope": 3315, + "ĠEuropean": 6473, + "ĠEuropeans": 29746, + "ĠEuros": 46662, + "ĠEv": 5689, + "ĠEva": 29377, + "ĠEvan": 22613, + "ĠEvangel": 36635, + "ĠEvans": 30055, + "ĠEve": 15544, + "ĠEven": 2754, + "ĠEvent": 13222, + "ĠEvents": 45314, + "ĠEventually": 17586, + "ĠEver": 12123, + "ĠEverest": 47591, + "ĠEvery": 2048, + "ĠEverybody": 7646, + "ĠEveryday": 37689, + "ĠEveryone": 5198, + "ĠEverything": 5471, + "ĠEverywhere": 37322, + "ĠEvet": 16729, + "ĠEvil": 20528, + "ĠEvolution": 40800, + "ĠEw": 28101, + "ĠEx": 2111, + "ĠExact": 7199, + "ĠExactly": 7587, + "ĠExam": 24755, + "ĠExamples": 48591, + "ĠExc": 9368, + "ĠExcel": 19060, + "ĠExcellence": 44684, + "ĠExcellent": 16723, + "ĠExcept": 16192, + "ĠExchange": 31169, + "ĠExcuse": 11359, + "ĠExec": 17662, + "ĠExecutive": 20658, + "ĠExerc": 37502, + "ĠExercise": 44307, + "ĠExhale": 31911, + "ĠExodus": 44472, + "ĠExp": 21391, + "ĠExpect": 46318, + "ĠExped": 48603, + "ĠExper": 12522, + "ĠExperience": 28503, + "ĠExperiment": 37933, + "ĠExpert": 41255, + "ĠExpl": 12514, + "ĠExplain": 39574, + "ĠExplorer": 31895, + "ĠExport": 50130, + "ĠExpress": 20212, + "ĠExt": 9881, + "ĠExtension": 37034, + "ĠExternal": 48277, + "ĠExtra": 29429, + "ĠExtrem": 24921, + "ĠExtremadura": 34713, + "ĠExtreme": 39525, + "ĠEy": 23236, + "ĠEye": 21603, + "ĠEyes": 28925, + "ĠEz": 27211, + "ĠEÄŁer": 41930, + "ĠF": 479, + "ĠFA": 19894, + "ĠFAR": 27235, + "ĠFBI": 17441, + "ĠFC": 27168, + "ĠFCC": 48671, + "ĠFDA": 18933, + "ĠFDP": 31763, + "ĠFE": 31778, + "ĠFEL": 46943, + "ĠFEMA": 31519, + "ĠFER": 47882, + "ĠFIFA": 39497, + "ĠFIL": 48563, + "ĠFIN": 43022, + "ĠFIR": 41538, + "ĠFL": 24720, + "ĠFM": 29614, + "ĠFO": 23501, + "ĠFOR": 15174, + "ĠFP": 36655, + "ĠFPS": 26429, + "ĠFR": 15288, + "ĠFRE": 26276, + "ĠFREE": 48511, + "ĠFROM": 36848, + "ĠFS": 41138, + "ĠFT": 46675, + "ĠFUCK": 26154, + "ĠFX": 37849, + "ĠFY": 42730, + "ĠFa": 12710, + "ĠFab": 17440, + "ĠFac": 17667, + "ĠFace": 4047, + "ĠFacebook": 4384, + "ĠFach": 38213, + "ĠFact": 33375, + "ĠFactory": 36868, + "ĠFaculty": 32689, + "ĠFahr": 19843, + "ĠFahren": 29109, + "ĠFahrenheit": 31199, + "ĠFail": 39094, + "ĠFair": 12157, + "ĠFairy": 37631, + "ĠFaith": 23642, + "ĠFake": 40469, + "ĠFal": 15202, + "ĠFalcon": 31801, + "ĠFall": 7465, + "ĠFallout": 38457, + "ĠFalls": 23245, + "ĠFalse": 50040, + "ĠFam": 7342, + "ĠFame": 35922, + "ĠFamil": 15672, + "ĠFamilie": 26021, + "ĠFamilien": 36451, + "ĠFamilies": 45081, + "ĠFamily": 11661, + "ĠFan": 18564, + "ĠFang": 25409, + "ĠFans": 25065, + "ĠFant": 12885, + "ĠFantastic": 21320, + "ĠFantasy": 25503, + "ĠFar": 9067, + "ĠFare": 46989, + "ĠFarm": 19991, + "ĠFasc": 49098, + "ĠFashion": 32782, + "ĠFast": 15968, + "ĠFaster": 46665, + "ĠFat": 16948, + "ĠFate": 40900, + "ĠFather": 7085, + "ĠFau": 48820, + "ĠFavor": 34240, + "ĠFavorite": 43697, + "ĠFay": 48889, + "ĠFaz": 33154, + "ĠFe": 3697, + "ĠFear": 28054, + "ĠFebru": 8534, + "ĠFebruary": 8711, + "ĠFed": 7772, + "ĠFeder": 45545, + "ĠFederal": 12380, + "ĠFederation": 27237, + "ĠFeed": 33720, + "ĠFeel": 14113, + "ĠFeeling": 29945, + "ĠFeels": 31578, + "ĠFeh": 35576, + "ĠFehler": 48101, + "ĠFei": 39587, + "ĠFel": 13298, + "ĠFeld": 42677, + "ĠFelipe": 34811, + "ĠFelix": 30169, + "ĠFell": 29709, + "ĠFellow": 44794, + "ĠFellows": 40011, + "ĠFemale": 27288, + "ĠFen": 30993, + "ĠFeng": 23715, + "ĠFer": 10728, + "ĠFergus": 36790, + "ĠFerguson": 40823, + "ĠFerm": 43261, + "ĠFern": 16675, + "ĠFernando": 30190, + "ĠFerr": 25443, + "ĠFerrari": 29828, + "ĠFest": 12993, + "ĠFestival": 16512, + "ĠFeuer": 39972, + "ĠFew": 33468, + "ĠFey": 46530, + "ĠFi": 38245, + "ĠField": 17952, + "ĠFields": 48190, + "ĠFif": 21501, + "ĠFifth": 33588, + "ĠFig": 22443, + "ĠFight": 12371, + "ĠFighter": 33387, + "ĠFighting": 25694, + "ĠFigure": 43225, + "ĠFil": 7905, + "ĠFile": 26196, + "ĠFilip": 28241, + "ĠFilipino": 41266, + "ĠFill": 25315, + "ĠFilm": 13801, + "ĠFilter": 39592, + "ĠFin": 3773, + "ĠFinal": 13443, + "ĠFinally": 6288, + "ĠFinance": 25765, + "ĠFinancial": 25560, + "ĠFinanz": 39141, + "ĠFind": 11809, + "ĠFinding": 31947, + "ĠFine": 12024, + "ĠFinger": 37318, + "ĠFinish": 31583, + "ĠFinished": 48188, + "ĠFinland": 24869, + "ĠFinn": 21066, + "ĠFinnish": 38429, + "ĠFiona": 42556, + "ĠFir": 28164, + "ĠFire": 7652, + "ĠFirebase": 35173, + "ĠFirefox": 46613, + "ĠFirma": 50206, + "ĠFirst": 2386, + "ĠFirstly": 20042, + "ĠFish": 18096, + "ĠFisher": 26676, + "ĠFit": 29263, + "ĠFitness": 45750, + "ĠFitz": 37815, + "ĠFive": 9436, + "ĠFix": 25538, + "ĠFl": 3235, + "ĠFlag": 37461, + "ĠFlame": 42792, + "ĠFlash": 20232, + "ĠFlat": 36172, + "ĠFle": 18612, + "ĠFleet": 47821, + "ĠFleisch": 44911, + "ĠFlex": 29208, + "ĠFlight": 28954, + "ĠFlint": 35587, + "ĠFlip": 28210, + "ĠFlo": 15153, + "ĠFlor": 8328, + "ĠFloren": 32637, + "ĠFlorence": 34631, + "ĠFlorida": 9117, + "ĠFlow": 32792, + "ĠFlower": 34993, + "ĠFlowers": 48194, + "ĠFloyd": 28494, + "ĠFlu": 33612, + "ĠFlug": 33326, + "ĠFly": 25294, + "ĠFlying": 34287, + "ĠFlynn": 40391, + "ĠFo": 8564, + "ĠFocus": 21862, + "ĠFoi": 30995, + "ĠFol": 15255, + "ĠFold": 24609, + "ĠFolge": 43597, + "ĠFolks": 39275, + "ĠFollow": 9876, + "ĠFollowing": 19192, + "ĠFont": 43901, + "ĠFood": 11675, + "ĠFoods": 40724, + "ĠFool": 41583, + "ĠFoot": 20989, + "ĠFootball": 31406, + "ĠFor": 1171, + "ĠForbes": 45950, + "ĠForce": 10580, + "ĠForces": 27445, + "ĠFord": 11961, + "ĠFore": 9018, + "ĠForeign": 20430, + "ĠForest": 18124, + "ĠForever": 30703, + "ĠForget": 18675, + "ĠForgive": 34060, + "ĠForm": 10126, + "ĠFormer": 36514, + "ĠFormula": 35872, + "ĠFors": 48202, + "ĠForsch": 42938, + "ĠFort": 11002, + "ĠFortnite": 28712, + "ĠFortunately": 20652, + "ĠFortune": 38508, + "ĠForum": 29704, + "ĠForward": 35524, + "ĠFoster": 38756, + "ĠFot": 46771, + "ĠFound": 8207, + "ĠFoundation": 10335, + "ĠFour": 7451, + "ĠFourier": 36810, + "ĠFourth": 23773, + "ĠFox": 11388, + "ĠFr": 1526, + "ĠFra": 5849, + "ĠFrage": 13685, + "ĠFragen": 25588, + "ĠFraktion": 30648, + "ĠFrame": 31628, + "ĠFran": 17288, + "ĠFranc": 8686, + "ĠFrance": 6190, + "ĠFrances": 31441, + "ĠFrancis": 19648, + "ĠFrancisco": 12279, + "ĠFranco": 34695, + "ĠFrank": 6823, + "ĠFranken": 39678, + "ĠFrankf": 32571, + "ĠFrankfurt": 36530, + "ĠFrankie": 47263, + "ĠFranklin": 22010, + "ĠFrankly": 41344, + "ĠFranz": 33084, + "ĠFrançais": 39023, + "ĠFraser": 49119, + "ĠFrau": 13930, + "ĠFrauen": 24191, + "ĠFre": 6142, + "ĠFred": 10112, + "ĠFreddie": 41264, + "ĠFreddy": 31445, + "ĠFreder": 27535, + "ĠFrederick": 35617, + "ĠFree": 11551, + "ĠFreedom": 22208, + "ĠFreeman": 42163, + "ĠFreeze": 48096, + "ĠFrei": 35939, + "ĠFreiheit": 47825, + "ĠFrench": 5522, + "ĠFres": 42618, + "ĠFresh": 22843, + "ĠFreud": 41590, + "ĠFreund": 29685, + "ĠFreunde": 40016, + "ĠFriday": 6984, + "ĠFridays": 46306, + "ĠFried": 17605, + "ĠFriend": 22812, + "ĠFriends": 14042, + "ĠFro": 25028, + "ĠFrog": 40103, + "ĠFrom": 3358, + "ĠFront": 17348, + "ĠFrost": 32910, + "ĠFrozen": 39422, + "ĠFruit": 39989, + "ĠFry": 31822, + "ĠFrüh": 47400, + "ĠFu": 12807, + "ĠFuck": 10965, + "ĠFucking": 33342, + "ĠFuel": 46837, + "ĠFuj": 43915, + "ĠFuji": 38119, + "ĠFuk": 33043, + "ĠFull": 13841, + "ĠFun": 11166, + "ĠFund": 13493, + "ĠFunk": 45285, + "ĠFunny": 36484, + "ĠFur": 11705, + "ĠFurther": 15364, + "ĠFurthermore": 23999, + "ĠFury": 40327, + "ĠFusion": 36721, + "ĠFut": 16569, + "ĠFuture": 20805, + "ĠFuÃŁ": 31419, + "ĠFuÃŁball": 49487, + "ĠFör": 20665, + "ĠFür": 14990, + "ĠG": 460, + "ĠGA": 22841, + "ĠGB": 26809, + "ĠGC": 29435, + "ĠGDP": 19599, + "ĠGE": 18003, + "ĠGEOR": 24992, + "ĠGEORGE": 26675, + "ĠGET": 28091, + "ĠGG": 42240, + "ĠGH": 40690, + "ĠGI": 26634, + "ĠGIR": 44027, + "ĠGIS": 47860, + "ĠGL": 16225, + "ĠGLORIA": 24074, + "ĠGM": 16609, + "ĠGN": 46411, + "ĠGO": 10365, + "ĠGOD": 26831, + "ĠGOOD": 28771, + "ĠGORD": 34746, + "ĠGORDON": 35269, + "ĠGOT": 36525, + "ĠGP": 26039, + "ĠGPA": 41321, + "ĠGPS": 19462, + "ĠGPU": 18407, + "ĠGR": 10903, + "ĠGRA": 26121, + "ĠGRANT": 30204, + "ĠGRE": 20830, + "ĠGREEN": 47262, + "ĠGREG": 48793, + "ĠGRÃľ": 21100, + "ĠGRÃľNEN": 21584, + "ĠGS": 32047, + "ĠGSA": 41754, + "ĠGT": 17530, + "ĠGTA": 35575, + "ĠGU": 17917, + "ĠGUY": 37931, + "ĠGW": 36704, + "ĠGa": 10384, + "ĠGab": 11995, + "ĠGabe": 39524, + "ĠGabrie": 50053, + "ĠGabriel": 20985, + "ĠGad": 37171, + "ĠGaga": 41465, + "ĠGal": 7336, + "ĠGalaxy": 13520, + "ĠGalile": 46576, + "ĠGall": 14588, + "ĠGallery": 29733, + "ĠGam": 24723, + "ĠGamb": 44643, + "ĠGame": 7522, + "ĠGames": 12761, + "ĠGaming": 30288, + "ĠGan": 19461, + "ĠGand": 23962, + "ĠGandhi": 34717, + "ĠGang": 17984, + "ĠGanz": 32496, + "ĠGanze": 35206, + "ĠGao": 32235, + "ĠGar": 7995, + "ĠGarage": 47918, + "ĠGarcia": 33738, + "ĠGard": 12882, + "ĠGarden": 19429, + "ĠGardens": 45268, + "ĠGarlic": 41124, + "ĠGarr": 42326, + "ĠGarrett": 40266, + "ĠGary": 13788, + "ĠGas": 24025, + "ĠGast": 31988, + "ĠGate": 21913, + "ĠGates": 26494, + "ĠGateway": 48394, + "ĠGather": 39841, + "ĠGaussian": 39148, + "ĠGavin": 24020, + "ĠGay": 23081, + "ĠGaz": 38468, + "ĠGaza": 37800, + "ĠGe": 2876, + "ĠGear": 26810, + "ĠGeb": 24984, + "ĠGed": 28166, + "ĠGedanken": 44612, + "ĠGee": 39840, + "ĠGeez": 43836, + "ĠGef": 17873, + "ĠGefühl": 29715, + "ĠGeg": 27826, + "ĠGegen": 38631, + "ĠGel": 16142, + "ĠGeld": 16535, + "ĠGem": 22894, + "ĠGeme": 31266, + "ĠGen": 3632, + "ĠGenau": 22340, + "ĠGender": 48039, + "ĠGene": 18083, + "ĠGener": 15409, + "ĠGeneral": 6996, + "ĠGenerally": 21082, + "ĠGeneration": 23898, + "ĠGenesis": 20587, + "ĠGeneva": 37285, + "ĠGenius": 45818, + "ĠGent": 33070, + "ĠGente": 38799, + "ĠGentle": 26214, + "ĠGentlemen": 38316, + "ĠGeoff": 26119, + "ĠGeor": 27909, + "ĠGeorg": 10114, + "ĠGeorge": 7136, + "ĠGeorget": 33932, + "ĠGeorgetown": 34848, + "ĠGeorgia": 11859, + "ĠGer": 9409, + "ĠGerade": 48175, + "ĠGeral": 48527, + "ĠGerald": 38332, + "ĠGerilim": 30687, + "ĠGerm": 3848, + "ĠGerman": 6521, + "ĠGermans": 18116, + "ĠGermany": 7244, + "ĠGerry": 39154, + "ĠGes": 6761, + "ĠGesch": 14241, + "ĠGeschichte": 28896, + "ĠGeschäft": 40440, + "ĠGesellschaft": 30006, + "ĠGesetz": 20685, + "ĠGesetzent": 37792, + "ĠGesetzentwurf": 42040, + "ĠGesicht": 47777, + "ĠGespr": 38746, + "ĠGest": 39909, + "ĠGesund": 33057, + "ĠGesundheits": 44709, + "ĠGet": 3240, + "ĠGetting": 13674, + "ĠGew": 19063, + "ĠGh": 20321, + "ĠGhana": 38779, + "ĠGhost": 16323, + "ĠGi": 15334, + "ĠGian": 41958, + "ĠGiant": 29391, + "ĠGib": 17256, + "ĠGibbs": 30199, + "ĠGibson": 42250, + "ĠGift": 44890, + "ĠGig": 40489, + "ĠGil": 17654, + "ĠGilbert": 39003, + "ĠGill": 27709, + "ĠGimme": 48047, + "ĠGin": 36846, + "ĠGina": 34711, + "ĠGinger": 34637, + "ĠGins": 41728, + "ĠGinsburg": 49347, + "ĠGiov": 47089, + "ĠGir": 36306, + "ĠGirl": 8502, + "ĠGirls": 16245, + "ĠGit": 16939, + "ĠGitHub": 23331, + "ĠGiul": 38679, + "ĠGive": 5303, + "ĠGiven": 18600, + "ĠGiving": 28983, + "ĠGl": 5209, + "ĠGla": 47895, + "ĠGlad": 28301, + "ĠGlas": 29078, + "ĠGlasgow": 40457, + "ĠGlass": 23752, + "ĠGleich": 33858, + "ĠGlen": 38125, + "ĠGlenn": 30119, + "ĠGlo": 10786, + "ĠGlobal": 14465, + "ĠGlobe": 46570, + "ĠGloria": 34288, + "ĠGlory": 28524, + "ĠGlue": 49832, + "ĠGlück": 33508, + "ĠGmail": 36732, + "ĠGo": 1037, + "ĠGoPro": 30259, + "ĠGob": 24287, + "ĠGobierno": 41963, + "ĠGod": 1265, + "ĠGoddess": 33498, + "ĠGods": 30151, + "ĠGodzilla": 38046, + "ĠGoes": 44471, + "ĠGog": 39690, + "ĠGoing": 10963, + "ĠGoku": 29138, + "ĠGol": 36319, + "ĠGold": 6731, + "ĠGolden": 13410, + "ĠGoldman": 45378, + "ĠGolf": 30176, + "ĠGom": 46961, + "ĠGomez": 43537, + "ĠGon": 47403, + "ĠGone": 39068, + "ĠGong": 33231, + "ĠGonna": 20341, + "ĠGonz": 28458, + "ĠGonzalez": 46708, + "ĠGoo": 47609, + "ĠGood": 2205, + "ĠGoodbye": 15528, + "ĠGoodness": 39863, + "ĠGoodnight": 45889, + "ĠGoog": 45005, + "ĠGoogle": 3329, + "ĠGor": 26144, + "ĠGordon": 19369, + "ĠGore": 45450, + "ĠGos": 41272, + "ĠGosh": 19185, + "ĠGospel": 23163, + "ĠGot": 5803, + "ĠGotcha": 42109, + "ĠGoth": 27305, + "ĠGothic": 47143, + "ĠGott": 19133, + "ĠGotta": 21527, + "ĠGottes": 49569, + "ĠGovern": 5515, + "ĠGovernment": 7321, + "ĠGovernor": 14550, + "ĠGr": 2606, + "ĠGra": 8985, + "ĠGrab": 20357, + "ĠGrac": 20586, + "ĠGrace": 15742, + "ĠGracias": 26909, + "ĠGrad": 16710, + "ĠGrade": 44452, + "ĠGraduate": 38124, + "ĠGraham": 22691, + "ĠGram": 22130, + "ĠGrammy": 47332, + "ĠGran": 23554, + "ĠGrand": 6757, + "ĠGrande": 28384, + "ĠGrandma": 22657, + "ĠGrandpa": 27139, + "ĠGranny": 40746, + "ĠGrant": 17529, + "ĠGraph": 21884, + "ĠGrass": 39891, + "ĠGravity": 49478, + "ĠGray": 22668, + "ĠGre": 14986, + "ĠGreat": 3769, + "ĠGreater": 38410, + "ĠGree": 7229, + "ĠGreece": 17214, + "ĠGreek": 10281, + "ĠGreeks": 31029, + "ĠGreen": 6969, + "ĠGreens": 39314, + "ĠGreet": 18678, + "ĠGreetings": 20032, + "ĠGreg": 11490, + "ĠGregory": 37915, + "ĠGren": 24913, + "ĠGrey": 24854, + "ĠGri": 46082, + "ĠGrid": 42905, + "ĠGriff": 23765, + "ĠGriffin": 39188, + "ĠGrill": 43592, + "ĠGrind": 47938, + "ĠGro": 12981, + "ĠGross": 34256, + "ĠGround": 28371, + "ĠGroup": 10500, + "ĠGrove": 43111, + "ĠGrow": 18476, + "ĠGrowing": 32569, + "ĠGrowth": 48345, + "ĠGroÃŁ": 34534, + "ĠGru": 10459, + "ĠGrund": 13941, + "ĠGrö": 45778, + "ĠGrü": 38908, + "ĠGu": 2694, + "ĠGuan": 41431, + "ĠGuang": 35815, + "ĠGuard": 11549, + "ĠGuardian": 27684, + "ĠGuardians": 45236, + "ĠGuatem": 39462, + "ĠGuatemala": 43120, + "ĠGucci": 46052, + "ĠGud": 45986, + "ĠGue": 44847, + "ĠGuer": 28305, + "ĠGuerra": 45725, + "ĠGuess": 17795, + "ĠGuid": 49036, + "ĠGuide": 18727, + "ĠGuild": 38968, + "ĠGuill": 48149, + "ĠGuin": 44117, + "ĠGuinea": 46793, + "ĠGuitar": 48758, + "ĠGul": 43314, + "ĠGulf": 23033, + "ĠGum": 48862, + "ĠGun": 14153, + "ĠGund": 38299, + "ĠGuo": 34175, + "ĠGur": 33716, + "ĠGuru": 22389, + "ĠGus": 40619, + "ĠGust": 32337, + "ĠGut": 24481, + "ĠGuten": 42833, + "ĠGuy": 14690, + "ĠGuys": 7855, + "ĠGwen": 42499, + "ĠGy": 25911, + "ĠGym": 38635, + "ĠGö": 47894, + "ĠGör": 35493, + "ĠGü": 38139, + "ĠGün": 50225, + "ĠH": 389, + "ĠHA": 11979, + "ĠHAM": 45561, + "ĠHAR": 19819, + "ĠHARF": 27602, + "ĠHARR": 38892, + "ĠHARRIS": 47714, + "ĠHAS": 38461, + "ĠHAVE": 30309, + "ĠHBO": 37409, + "ĠHC": 30440, + "ĠHD": 12149, + "ĠHDMI": 30811, + "ĠHDR": 29650, + "ĠHE": 11827, + "ĠHEL": 38856, + "ĠHER": 29060, + "ĠHERE": 37438, + "ĠHEY": 43821, + "ĠHI": 44376, + "ĠHIM": 43854, + "ĠHIS": 45470, + "ĠHIV": 15907, + "ĠHJ": 35755, + "ĠHK": 39378, + "ĠHO": 23097, + "ĠHOL": 44069, + "ĠHOR": 48064, + "ĠHOW": 30561, + "ĠHOY": 46120, + "ĠHP": 12557, + "ĠHQ": 43209, + "ĠHR": 19460, + "ĠHS": 34194, + "ĠHT": 11751, + "ĠHTML": 17995, + "ĠHTTP": 33283, + "ĠHU": 26887, + "ĠHUD": 46867, + "ĠHY": 34189, + "ĠHa": 4064, + "ĠHab": 14225, + "ĠHaben": 47007, + "ĠHack": 35170, + "ĠHad": 12298, + "ĠHadi": 18908, + "ĠHae": 44245, + "ĠHaf": 47933, + "ĠHag": 34758, + "ĠHah": 31944, + "ĠHaha": 19131, + "ĠHahah": 42656, + "ĠHahaha": 25122, + "ĠHahn": 45303, + "ĠHai": 24055, + "ĠHail": 32495, + "ĠHair": 27957, + "ĠHait": 25752, + "ĠHaiti": 35231, + "ĠHaj": 43347, + "ĠHak": 21750, + "ĠHal": 13896, + "ĠHalf": 15917, + "ĠHall": 5434, + "ĠHallelujah": 32359, + "ĠHallo": 21242, + "ĠHalloween": 13860, + "ĠHalo": 29795, + "ĠHam": 8234, + "ĠHamb": 27551, + "ĠHamburg": 34118, + "ĠHamilton": 18484, + "ĠHamm": 34842, + "ĠHammer": 33722, + "ĠHamp": 30303, + "ĠHampshire": 35688, + "ĠHan": 7820, + "ĠHana": 47946, + "ĠHand": 8854, + "ĠHands": 21369, + "ĠHandy": 47006, + "ĠHang": 14070, + "ĠHani": 39731, + "ĠHank": 26427, + "ĠHann": 33461, + "ĠHannah": 21754, + "ĠHans": 17926, + "ĠHanım": 37182, + "ĠHao": 36702, + "ĠHapp": 7412, + "ĠHappiness": 46224, + "ĠHappy": 8277, + "ĠHar": 3653, + "ĠHarbor": 33740, + "ĠHard": 11817, + "ĠHardy": 43930, + "ĠHare": 34836, + "ĠHari": 47221, + "ĠHarlem": 44196, + "ĠHarley": 34921, + "ĠHarm": 43523, + "ĠHarmon": 40599, + "ĠHarold": 36076, + "ĠHarper": 37216, + "ĠHarr": 13321, + "ĠHarriet": 46437, + "ĠHarris": 17426, + "ĠHarrison": 34272, + "ĠHarry": 9378, + "ĠHarsh": 48914, + "ĠHart": 21414, + "ĠHarvard": 13378, + "ĠHarvey": 28796, + "ĠHas": 8646, + "ĠHasan": 46513, + "ĠHash": 30775, + "ĠHass": 32711, + "ĠHast": 30987, + "ĠHasta": 45027, + "ĠHat": 15867, + "ĠHate": 46000, + "ĠHaupt": 30573, + "ĠHaus": 22725, + "ĠHause": 26217, + "ĠHaush": 39581, + "ĠHaut": 49668, + "ĠHave": 3560, + "ĠHaven": 23770, + "ĠHaving": 10222, + "ĠHaw": 9325, + "ĠHawai": 13613, + "ĠHawaii": 17930, + "ĠHawaiian": 36581, + "ĠHawk": 42219, + "ĠHay": 8721, + "ĠHayır": 30102, + "ĠHaz": 15852, + "ĠHazrat": 32423, + "ĠHe": 634, + "ĠHead": 11398, + "ĠHealing": 48997, + "ĠHealth": 5912, + "ĠHealthcare": 45548, + "ĠHealthy": 37733, + "ĠHear": 30685, + "ĠHearing": 37875, + "ĠHeart": 13569, + "ĠHearts": 39309, + "ĠHeat": 27359, + "ĠHeath": 46622, + "ĠHeather": 21728, + "ĠHeaven": 13676, + "ĠHeavenly": 38352, + "ĠHeavy": 26473, + "ĠHeb": 15606, + "ĠHebrew": 17895, + "ĠHebrews": 44604, + "ĠHeck": 41948, + "ĠHee": 26545, + "ĠHeh": 34984, + "ĠHehe": 45185, + "ĠHeidi": 40947, + "ĠHeights": 44039, + "ĠHeil": 45650, + "ĠHein": 32789, + "ĠHej": 44567, + "ĠHel": 6128, + "ĠHelen": 26294, + "ĠHelena": 49294, + "ĠHell": 12090, + "ĠHello": 2425, + "ĠHelp": 10773, + "ĠHels": 45429, + "ĠHem": 18568, + "ĠHen": 8651, + "ĠHence": 22229, + "ĠHend": 28594, + "ĠHenderson": 45013, + "ĠHenri": 45365, + "ĠHenry": 11085, + "ĠHep": 30578, + "ĠHer": 3204, + "ĠHera": 30808, + "ĠHeraus": 36795, + "ĠHerausforder": 37888, + "ĠHerbert": 41942, + "ĠHere": 1692, + "ĠHeritage": 27406, + "ĠHerm": 21842, + "ĠHerman": 44676, + "ĠHern": 35651, + "ĠHernandez": 47985, + "ĠHero": 14731, + "ĠHeroes": 32070, + "ĠHerr": 10367, + "ĠHerren": 20810, + "ĠHerrn": 41791, + "ĠHers": 41222, + "ĠHert": 41898, + "ĠHertz": 46910, + "ĠHerz": 24749, + "ĠHess": 35960, + "ĠHessen": 24951, + "ĠHet": 12045, + "ĠHeute": 27978, + "ĠHey": 1911, + "ĠHi": 2421, + "ĠHidden": 41156, + "ĠHide": 35118, + "ĠHier": 10886, + "ĠHigh": 5229, + "ĠHigher": 31997, + "ĠHighness": 17284, + "ĠHighway": 30911, + "ĠHij": 27832, + "ĠHil": 19914, + "ĠHilfe": 37448, + "ĠHill": 9109, + "ĠHillary": 23284, + "ĠHills": 25663, + "ĠHim": 5920, + "ĠHimself": 26821, + "ĠHin": 29571, + "ĠHind": 15307, + "ĠHindi": 36225, + "ĠHindu": 21231, + "ĠHindus": 49726, + "ĠHinter": 35006, + "ĠHip": 29596, + "ĠHir": 23192, + "ĠHis": 2812, + "ĠHispan": 25912, + "ĠHispanic": 29559, + "ĠHist": 9038, + "ĠHistor": 25108, + "ĠHistorical": 46124, + "ĠHistory": 12486, + "ĠHit": 9217, + "ĠHitler": 19038, + "ĠHiç": 33410, + "ĠHm": 17989, + "ĠHmm": 8239, + "ĠHmmm": 32317, + "ĠHo": 3631, + "ĠHob": 22966, + "ĠHobby": 49705, + "ĠHoch": 29193, + "ĠHod": 45151, + "ĠHoe": 33979, + "ĠHof": 37379, + "ĠHoff": 29135, + "ĠHog": 30553, + "ĠHogwarts": 46539, + "ĠHoje": 34104, + "ĠHok": 46792, + "ĠHol": 11086, + "ĠHola": 22637, + "ĠHold": 6962, + "ĠHolding": 40818, + "ĠHole": 47635, + "ĠHoliday": 40898, + "ĠHoll": 17712, + "ĠHolland": 27201, + "ĠHollow": 46731, + "ĠHolly": 10055, + "ĠHollywood": 11628, + "ĠHolmes": 27474, + "ĠHolo": 24298, + "ĠHolocaust": 28399, + "ĠHoly": 6295, + "ĠHolz": 45455, + "ĠHom": 20903, + "ĠHome": 8719, + "ĠHomeland": 45800, + "ĠHomer": 42273, + "ĠHon": 6625, + "ĠHond": 45260, + "ĠHonda": 26989, + "ĠHonestly": 12348, + "ĠHoney": 16187, + "ĠHong": 8868, + "ĠHonor": 16922, + "ĠHonors": 48801, + "ĠHoo": 26796, + "ĠHood": 33213, + "ĠHook": 33132, + "ĠHoover": 46382, + "ĠHop": 13438, + "ĠHope": 6483, + "ĠHopefully": 10429, + "ĠHopkins": 29999, + "ĠHor": 10691, + "ĠHoriz": 42141, + "ĠHorizon": 40102, + "ĠHorn": 31792, + "ĠHorror": 42993, + "ĠHorse": 33208, + "ĠHos": 44004, + "ĠHosp": 14516, + "ĠHospital": 15645, + "ĠHost": 22047, + "ĠHot": 9423, + "ĠHotel": 20354, + "ĠHou": 16273, + "ĠHour": 38369, + "ĠHouse": 4928, + "ĠHousing": 31340, + "ĠHouston": 18717, + "ĠHow": 1012, + "ĠHoward": 17626, + "ĠHowever": 2908, + "ĠHoy": 28664, + "ĠHoÅŁ": 45958, + "ĠHu": 11874, + "ĠHua": 19094, + "ĠHuang": 28073, + "ĠHuawei": 28542, + "ĠHub": 18986, + "ĠHubble": 42317, + "ĠHud": 27767, + "ĠHudson": 32959, + "ĠHue": 40015, + "ĠHug": 46892, + "ĠHuge": 37043, + "ĠHugh": 25893, + "ĠHughes": 41102, + "ĠHugo": 32504, + "ĠHuh": 8063, + "ĠHui": 39340, + "ĠHulk": 30167, + "ĠHum": 12877, + "ĠHuman": 10294, + "ĠHumans": 35809, + "ĠHun": 11648, + "ĠHund": 43361, + "ĠHundred": 32869, + "ĠHundreds": 45785, + "ĠHung": 15063, + "ĠHungarian": 38034, + "ĠHungary": 32380, + "ĠHunger": 46549, + "ĠHunt": 31740, + "ĠHunter": 18704, + "ĠHunting": 44793, + "ĠHur": 8598, + "ĠHurricane": 35574, + "ĠHurry": 12944, + "ĠHus": 21282, + "ĠHut": 39012, + "ĠHutch": 48499, + "ĠHy": 5701, + "ĠHybrid": 47088, + "ĠHyd": 24231, + "ĠHye": 31103, + "ĠHyp": 45649, + "ĠHyper": 29592, + "ĠHyun": 18398, + "ĠHyundai": 44133, + "ĠHyung": 36917, + "ĠHz": 39747, + "ĠHä": 45763, + "ĠHär": 35539, + "ĠHé": 42318, + "ĠHö": 30824, + "ĠI": 286, + "ĠIB": 40385, + "ĠIBM": 23487, + "ĠIC": 14360, + "ĠICE": 43337, + "ĠICU": 38123, + "ĠID": 7348, + "ĠIDE": 40930, + "ĠIDs": 48212, + "ĠIF": 26080, + "ĠIG": 26367, + "ĠII": 6351, + "ĠIII": 16317, + "ĠIKE": 46492, + "ĠIKEA": 47728, + "ĠIL": 40413, + "ĠIM": 21463, + "ĠIN": 6892, + "ĠINF": 35971, + "ĠINT": 43140, + "ĠINTER": 30219, + "ĠINTERVIE": 46761, + "ĠINTERVIEWER": 49667, + "ĠIO": 39839, + "ĠIP": 8671, + "ĠIPO": 50220, + "ĠIPS": 50021, + "ĠIQ": 28921, + "ĠIR": 16486, + "ĠIRA": 37993, + "ĠIRS": 33848, + "ĠIS": 6205, + "ĠISBN": 47874, + "ĠISIL": 45518, + "ĠISIS": 25639, + "ĠISO": 25042, + "ĠISS": 48534, + "ĠIT": 6783, + "ĠIU": 44218, + "ĠIV": 15967, + "ĠIX": 49497, + "ĠIan": 19595, + "ĠIb": 40790, + "ĠIce": 15332, + "ĠIceland": 28004, + "ĠIch": 3141, + "ĠIci": 39049, + "ĠId": 11506, + "ĠIdaho": 36628, + "ĠIde": 13090, + "ĠIdea": 47245, + "ĠIdeally": 40817, + "ĠIdee": 32651, + "ĠIdent": 25905, + "ĠIdi": 40187, + "ĠIdol": 33266, + "ĠIf": 759, + "ĠIg": 19271, + "ĠIgn": 24754, + "ĠIgor": 40356, + "ĠIh": 10485, + "ĠIhnen": 17280, + "ĠIhr": 14773, + "ĠIhre": 26247, + "ĠIhrer": 47087, + "ĠIk": 8316, + "ĠIl": 4416, + "ĠIll": 10597, + "ĠIllinois": 17508, + "ĠIllust": 37788, + "ĠIls": 17979, + "ĠIm": 4331, + "ĠImag": 34223, + "ĠImage": 29903, + "ĠImagine": 11739, + "ĠImam": 39875, + "ĠImm": 17322, + "ĠImma": 50089, + "ĠImmedi": 32157, + "ĠImmediately": 34457, + "ĠImmer": 42676, + "ĠImp": 8270, + "ĠImpact": 31005, + "ĠImper": 18360, + "ĠImperial": 21395, + "ĠImpf": 32591, + "ĠImport": 26391, + "ĠImportant": 42908, + "ĠImpossible": 36808, + "ĠImprove": 46366, + "ĠIn": 682, + "ĠInaudible": 48655, + "ĠInc": 7779, + "ĠIncluding": 27137, + "ĠIncor": 39120, + "ĠIncre": 30367, + "ĠIncred": 27792, + "ĠIncredible": 35261, + "ĠInd": 2333, + "ĠIndeed": 15061, + "ĠIndepend": 21809, + "ĠIndependence": 33631, + "ĠIndependent": 40310, + "ĠIndex": 33552, + "ĠIndia": 5282, + "ĠIndian": 6427, + "ĠIndiana": 21858, + "ĠIndians": 23838, + "ĠIndigenous": 22699, + "ĠIndividual": 37292, + "ĠIndo": 46489, + "ĠIndones": 13942, + "ĠIndonesia": 16879, + "ĠIndonesian": 39772, + "ĠIndust": 16018, + "ĠIndustrial": 32059, + "ĠIndustries": 45375, + "ĠIndustry": 38178, + "ĠInf": 11537, + "ĠInfin": 22145, + "ĠInfinite": 43368, + "ĠInfinity": 34762, + "ĠInform": 34301, + "ĠInformation": 15357, + "ĠInformationen": 46753, + "ĠInfrast": 38425, + "ĠIng": 25731, + "ĠIngred": 46670, + "ĠInhale": 27586, + "ĠIni": 28929, + "ĠInit": 22937, + "ĠIniti": 23613, + "ĠInitially": 29446, + "ĠInitiative": 26166, + "ĠInk": 31147, + "ĠInn": 34066, + "ĠInnen": 43617, + "ĠInner": 36705, + "ĠInnov": 22203, + "ĠInnovation": 27092, + "ĠIns": 9442, + "ĠInsert": 36487, + "ĠInside": 15123, + "ĠInsp": 32671, + "ĠInspect": 29552, + "ĠInspector": 33402, + "ĠInst": 2730, + "ĠInstagram": 5281, + "ĠInstall": 31982, + "ĠInstant": 38707, + "ĠInstead": 7156, + "ĠInstit": 33897, + "ĠInstitute": 9446, + "ĠInstr": 39785, + "ĠInsurance": 39971, + "ĠInt": 5681, + "ĠInte": 21525, + "ĠIntegr": 23894, + "ĠIntegration": 47713, + "ĠIntel": 19762, + "ĠIntell": 18762, + "ĠIntelligence": 27274, + "ĠInter": 5751, + "ĠInteresting": 14711, + "ĠInterestingly": 30564, + "ĠInterior": 44346, + "ĠIntern": 4844, + "ĠInternal": 47836, + "ĠInternational": 9157, + "ĠInternet": 7703, + "ĠInterview": 35599, + "ĠInterviewer": 43184, + "ĠInto": 23373, + "ĠIntro": 47406, + "ĠIntrodu": 27193, + "ĠInv": 31124, + "ĠInvest": 14008, + "ĠInvestig": 42030, + "ĠInvestment": 43427, + "ĠIo": 19239, + "ĠIoT": 30112, + "ĠIowa": 14514, + "ĠIr": 9151, + "ĠIra": 10954, + "ĠIran": 8283, + "ĠIranian": 24934, + "ĠIraq": 11818, + "ĠIraqi": 35149, + "ĠIre": 13151, + "ĠIreland": 15880, + "ĠIrene": 40834, + "ĠIris": 40789, + "ĠIrish": 16801, + "ĠIron": 13720, + "ĠIs": 1119, + "ĠIsa": 19718, + "ĠIsaac": 22505, + "ĠIsab": 35686, + "ĠIsaiah": 27263, + "ĠIsh": 42854, + "ĠIslam": 8571, + "ĠIslamic": 17970, + "ĠIsland": 7637, + "ĠIslands": 23492, + "ĠIsn": 6998, + "ĠIsrael": 5674, + "ĠIsraeli": 19974, + "ĠIsraelis": 45086, + "ĠIsraelites": 48308, + "ĠIss": 38195, + "ĠIsso": 14887, + "ĠIst": 12810, + "ĠIstanbul": 36340, + "ĠIt": 467, + "ĠItal": 8158, + "ĠItalia": 41355, + "ĠItalian": 10003, + "ĠItalians": 43620, + "ĠItaly": 10705, + "ĠItem": 31066, + "ĠIts": 6953, + "ĠItu": 39109, + "ĠItÃŃs": 47806, + "ĠIv": 26546, + "ĠIvan": 28893, + "ĠIvy": 38592, + "ĠIya": 47600, + "ĠIz": 30296, + "ĠIÃŃm": 34925, + "ĠJ": 508, + "ĠJA": 26401, + "ĠJAC": 48904, + "ĠJACK": 40281, + "ĠJAKE": 45452, + "ĠJAM": 26238, + "ĠJAMES": 35510, + "ĠJASON": 33524, + "ĠJAY": 29116, + "ĠJB": 43019, + "ĠJC": 49802, + "ĠJD": 37082, + "ĠJE": 21072, + "ĠJEFF": 30214, + "ĠJEN": 50245, + "ĠJENN": 35635, + "ĠJER": 29257, + "ĠJERRY": 48650, + "ĠJES": 49350, + "ĠJESS": 49439, + "ĠJF": 40951, + "ĠJH": 27473, + "ĠJI": 50172, + "ĠJIM": 37650, + "ĠJJ": 21386, + "ĠJJonak": 42805, + "ĠJK": 35973, + "ĠJM": 35162, + "ĠJO": 9787, + "ĠJOE": 44114, + "ĠJOHN": 13844, + "ĠJON": 27838, + "ĠJOSH": 36883, + "ĠJP": 34336, + "ĠJR": 32849, + "ĠJS": 33063, + "ĠJSON": 31828, + "ĠJU": 38852, + "ĠJUD": 16418, + "ĠJUDGE": 30042, + "ĠJUDY": 23820, + "ĠJUL": 40820, + "ĠJUN": 45801, + "ĠJUST": 33310, + "ĠJUSTIN": 41987, + "ĠJW": 49885, + "ĠJY": 43587, + "ĠJa": 3530, + "ĠJab": 40319, + "ĠJac": 9538, + "ĠJack": 4718, + "ĠJackie": 23402, + "ĠJackson": 10647, + "ĠJacob": 14117, + "ĠJacobs": 44068, + "ĠJacqu": 49770, + "ĠJacques": 42691, + "ĠJade": 37021, + "ĠJadi": 21662, + "ĠJae": 20916, + "ĠJag": 9014, + "ĠJah": 12443, + "ĠJahr": 11674, + "ĠJahre": 15557, + "ĠJahren": 13080, + "ĠJahres": 44360, + "ĠJaime": 46119, + "ĠJak": 15029, + "ĠJake": 15822, + "ĠJam": 10372, + "ĠJama": 26803, + "ĠJamaica": 42927, + "ĠJames": 5678, + "ĠJamie": 19309, + "ĠJan": 4956, + "ĠJana": 49164, + "ĠJane": 13048, + "ĠJaneiro": 44711, + "ĠJanet": 26948, + "ĠJang": 29912, + "ĠJanuary": 7061, + "ĠJap": 35642, + "ĠJapan": 3367, + "ĠJapanese": 5433, + "ĠJapon": 47594, + "ĠJar": 23941, + "ĠJared": 24160, + "ĠJas": 34023, + "ĠJasmine": 36224, + "ĠJason": 11181, + "ĠJava": 10745, + "ĠJavaScript": 15778, + "ĠJaw": 48547, + "ĠJay": 11146, + "ĠJaz": 45640, + "ĠJazz": 32213, + "ĠJe": 2588, + "ĠJean": 13854, + "ĠJed": 27076, + "ĠJeder": 47274, + "ĠJedi": 21746, + "ĠJeep": 31748, + "ĠJeez": 48516, + "ĠJeff": 7506, + "ĠJefferson": 25747, + "ĠJeffrey": 28721, + "ĠJeg": 17119, + "ĠJeju": 42966, + "ĠJelly": 38815, + "ĠJen": 9228, + "ĠJenkins": 41273, + "ĠJenn": 12342, + "ĠJenna": 35391, + "ĠJennifer": 14351, + "ĠJenny": 20580, + "ĠJeong": 31761, + "ĠJer": 8139, + "ĠJeremiah": 40460, + "ĠJeremy": 17809, + "ĠJerome": 44965, + "ĠJerry": 17454, + "ĠJersey": 16601, + "ĠJerusalem": 15393, + "ĠJes": 2547, + "ĠJess": 10484, + "ĠJesse": 21895, + "ĠJessica": 15570, + "ĠJessie": 36627, + "ĠJest": 24918, + "ĠJesus": 2705, + "ĠJesús": 47710, + "ĠJet": 28730, + "ĠJetzt": 12592, + "ĠJew": 5679, + "ĠJewish": 9246, + "ĠJews": 11041, + "ĠJeżeli": 35090, + "ĠJeÅĽli": 37086, + "ĠJi": 9702, + "ĠJia": 29242, + "ĠJian": 35423, + "ĠJiang": 23458, + "ĠJie": 41731, + "ĠJill": 24690, + "ĠJim": 6637, + "ĠJimin": 33657, + "ĠJimmy": 15709, + "ĠJin": 10617, + "ĠJing": 19534, + "ĠJinping": 45898, + "ĠJo": 3139, + "ĠJoan": 25748, + "ĠJoanna": 49314, + "ĠJob": 18602, + "ĠJobs": 29169, + "ĠJoe": 6807, + "ĠJoel": 21522, + "ĠJoey": 23764, + "ĠJoh": 19180, + "ĠJohann": 34094, + "ĠJohannes": 48455, + "ĠJohn": 2619, + "ĠJohnny": 15999, + "ĠJohns": 37016, + "ĠJohnson": 9779, + "ĠJoin": 19642, + "ĠJoining": 40229, + "ĠJoint": 37866, + "ĠJoker": 27453, + "ĠJon": 7745, + "ĠJonah": 42353, + "ĠJonas": 34630, + "ĠJonathan": 15471, + "ĠJones": 10512, + "ĠJong": 19589, + "ĠJoo": 35169, + "ĠJord": 32752, + "ĠJordan": 10979, + "ĠJorge": 36875, + "ĠJos": 18541, + "ĠJose": 8635, + "ĠJoseph": 11170, + "ĠJosh": 9785, + "ĠJoshua": 24005, + "ĠJosé": 34342, + "ĠJour": 13483, + "ĠJournal": 16936, + "ĠJourney": 37724, + "ĠJoy": 15571, + "ĠJoyce": 40044, + "ĠJoão": 21302, + "ĠJr": 17261, + "ĠJu": 13582, + "ĠJuan": 17064, + "ĠJub": 43560, + "ĠJud": 7661, + "ĠJuda": 35300, + "ĠJudah": 46828, + "ĠJudaism": 37797, + "ĠJudas": 49632, + "ĠJude": 36521, + "ĠJudge": 19476, + "ĠJudith": 45395, + "ĠJudy": 24577, + "ĠJug": 27892, + "ĠJugend": 35303, + "ĠJuice": 47776, + "ĠJul": 7174, + "ĠJulia": 18551, + "ĠJulian": 25151, + "ĠJulie": 18794, + "ĠJuliet": 33532, + "ĠJulius": 47666, + "ĠJuly": 7370, + "ĠJump": 18697, + "ĠJun": 8492, + "ĠJune": 6928, + "ĠJung": 12739, + "ĠJungkook": 48928, + "ĠJungle": 44021, + "ĠJunior": 21954, + "ĠJup": 22125, + "ĠJupiter": 24567, + "ĠJur": 27544, + "ĠJurassic": 44730, + "ĠJust": 1449, + "ĠJustice": 10422, + "ĠJustin": 11320, + "ĠJá": 21237, + "ĠK": 591, + "ĠKA": 31233, + "ĠKAR": 42976, + "ĠKAT": 39274, + "ĠKE": 21887, + "ĠKELL": 48109, + "ĠKENN": 34773, + "ĠKENNETH": 42303, + "ĠKEVIN": 50006, + "ĠKH": 34854, + "ĠKI": 47261, + "ĠKIM": 38985, + "ĠKIR": 29927, + "ĠKIRBY": 34553, + "ĠKL": 47991, + "ĠKN": 26967, + "ĠKNOW": 39429, + "ĠKO": 34245, + "ĠKP": 41371, + "ĠKR": 37522, + "ĠKRIS": 36449, + "ĠKY": 41150, + "ĠKa": 10988, + "ĠKab": 25848, + "ĠKabul": 48103, + "ĠKad": 32248, + "ĠKaf": 36813, + "ĠKafka": 47064, + "ĠKag": 48751, + "ĠKah": 39444, + "ĠKai": 20753, + "ĠKaiser": 42066, + "ĠKait": 45791, + "ĠKak": 36775, + "ĠKal": 12655, + "ĠKalau": 36366, + "ĠKam": 11934, + "ĠKamera": 42728, + "ĠKampf": 45126, + "ĠKan": 11120, + "ĠKanal": 38643, + "ĠKane": 39161, + "ĠKang": 20360, + "ĠKann": 29074, + "ĠKansas": 19422, + "ĠKant": 40927, + "ĠKanye": 37654, + "ĠKap": 21216, + "ĠKar": 8009, + "ĠKara": 34838, + "ĠKard": 31050, + "ĠKardash": 37959, + "ĠKardashian": 46044, + "ĠKaren": 14834, + "ĠKarena": 45724, + "ĠKarere": 48442, + "ĠKarl": 20405, + "ĠKarma": 39063, + "ĠKart": 27365, + "ĠKas": 28059, + "ĠKash": 32356, + "ĠKat": 8365, + "ĠKate": 16251, + "ĠKath": 20067, + "ĠKatherine": 33478, + "ĠKathleen": 41648, + "ĠKathryn": 49655, + "ĠKathy": 30740, + "ĠKatie": 19602, + "ĠKatrina": 42550, + "ĠKaty": 42959, + "ĠKauf": 44590, + "ĠKaw": 31795, + "ĠKay": 14179, + "ĠKayla": 36797, + "ĠKaz": 16264, + "ĠKazakh": 38438, + "ĠKazakhstan": 47394, + "ĠKazu": 41038, + "ĠKazuto": 38031, + "ĠKazuya": 47730, + "ĠKe": 3189, + "ĠKeep": 5527, + "ĠKeeping": 30187, + "ĠKeith": 20613, + "ĠKel": 19158, + "ĠKell": 28554, + "ĠKeller": 48352, + "ĠKelly": 12345, + "ĠKelsey": 44714, + "ĠKelvin": 36955, + "ĠKem": 30097, + "ĠKen": 8273, + "ĠKend": 20891, + "ĠKendall": 38794, + "ĠKenn": 12369, + "ĠKennedy": 16517, + "ĠKenneth": 33735, + "ĠKenny": 33681, + "ĠKens": 33265, + "ĠKensuke": 44708, + "ĠKent": 15843, + "ĠKentucky": 22369, + "ĠKenya": 31011, + "ĠKer": 20706, + "ĠKern": 40224, + "ĠKerry": 28528, + "ĠKes": 26898, + "ĠKevin": 9954, + "ĠKey": 12759, + "ĠKeys": 43733, + "ĠKh": 11681, + "ĠKhal": 27724, + "ĠKhan": 18136, + "ĠKhông": 49125, + "ĠKi": 17459, + "ĠKia": 45505, + "ĠKick": 20886, + "ĠKickstarter": 41288, + "ĠKid": 18978, + "ĠKids": 15694, + "ĠKiev": 48559, + "ĠKil": 23912, + "ĠKill": 17526, + "ĠKiller": 39846, + "ĠKim": 5652, + "ĠKimberly": 39804, + "ĠKimchi": 38428, + "ĠKin": 27950, + "ĠKind": 9242, + "ĠKinda": 35553, + "ĠKinder": 14193, + "ĠKindern": 43987, + "ĠKing": 3819, + "ĠKingdom": 11277, + "ĠKings": 21855, + "ĠKingston": 33419, + "ĠKir": 11305, + "ĠKirby": 37423, + "ĠKirk": 27834, + "ĠKirsty": 31166, + "ĠKiss": 24297, + "ĠKit": 23037, + "ĠKita": 27329, + "ĠKitchen": 23135, + "ĠKitty": 36393, + "ĠKivol": 27506, + "ĠKivolowitz": 27507, + "ĠKl": 16053, + "ĠKlar": 44893, + "ĠKle": 17053, + "ĠKlein": 33327, + "ĠKlim": 25136, + "ĠKn": 10519, + "ĠKne": 32708, + "ĠKnight": 18708, + "ĠKnights": 37685, + "ĠKnock": 34017, + "ĠKnow": 10265, + "ĠKnowing": 25499, + "ĠKnowledge": 32906, + "ĠKnox": 48510, + "ĠKo": 10509, + "ĠKob": 46353, + "ĠKobe": 46296, + "ĠKoch": 40401, + "ĠKoh": 30861, + "ĠKok": 36915, + "ĠKol": 26137, + "ĠKoll": 11621, + "ĠKolleg": 25213, + "ĠKollege": 28505, + "ĠKollegen": 23713, + "ĠKollegin": 46632, + "ĠKolleginnen": 35950, + "ĠKom": 14286, + "ĠKomb": 34678, + "ĠKombat": 49131, + "ĠKomm": 18400, + "ĠKomment": 33708, + "ĠKommentare": 46203, + "ĠKommun": 28832, + "ĠKommunen": 42566, + "ĠKon": 12718, + "ĠKong": 9832, + "ĠKons": 48163, + "ĠKonst": 44200, + "ĠKont": 20629, + "ĠKontakt": 43396, + "ĠKook": 47719, + "ĠKop": 49656, + "ĠKopf": 28231, + "ĠKor": 21690, + "ĠKore": 3893, + "ĠKorea": 6307, + "ĠKorean": 6933, + "ĠKoreans": 32130, + "ĠKos": 36909, + "ĠKosten": 47391, + "ĠKot": 30123, + "ĠKr": 6332, + "ĠKra": 26988, + "ĠKraft": 31313, + "ĠKrank": 48896, + "ĠKranken": 39950, + "ĠKre": 23625, + "ĠKrie": 35579, + "ĠKris": 28486, + "ĠKrishna": 27153, + "ĠKrist": 19562, + "ĠKristen": 35107, + "ĠKristin": 42189, + "ĠKrit": 46372, + "ĠKrsna": 33035, + "ĠKry": 37747, + "ĠKu": 20311, + "ĠKub": 35805, + "ĠKubernetes": 23145, + "ĠKultur": 46744, + "ĠKum": 28039, + "ĠKumar": 46500, + "ĠKun": 19089, + "ĠKund": 49759, + "ĠKunden": 38192, + "ĠKung": 44317, + "ĠKunst": 40099, + "ĠKur": 16481, + "ĠKurd": 32305, + "ĠKurt": 26168, + "ĠKurz": 45307, + "ĠKush": 49709, + "ĠKw": 43432, + "ĠKwang": 46561, + "ĠKy": 12237, + "ĠKyle": 18023, + "ĠKylie": 39424, + "ĠKyoto": 48470, + "ĠKyung": 40285, + "ĠKä": 40502, + "ĠKö": 43197, + "ĠKön": 29077, + "ĠKörper": 33501, + "ĠKü": 30726, + "ĠKız": 36223, + "ĠKá¹Ľá¹£á¹ĩa": 36777, + "ĠL": 441, + "ĠLA": 9855, + "ĠLAKE": 42193, + "ĠLAN": 37387, + "ĠLAU": 8150, + "ĠLAUGH": 26355, + "ĠLAUGHTER": 46760, + "ĠLAURA": 10105, + "ĠLC": 42198, + "ĠLCD": 33158, + "ĠLD": 33936, + "ĠLE": 11378, + "ĠLED": 11261, + "ĠLEDs": 33366, + "ĠLEE": 38784, + "ĠLEGO": 36072, + "ĠLEO": 49692, + "ĠLET": 40866, + "ĠLG": 25449, + "ĠLGB": 15452, + "ĠLGBT": 16179, + "ĠLGBTQ": 26862, + "ĠLI": 7169, + "ĠLIAM": 13194, + "ĠLIKE": 24705, + "ĠLIN": 19763, + "ĠLINKE": 32445, + "ĠLISA": 42448, + "ĠLIVE": 33880, + "ĠLLC": 33698, + "ĠLM": 46529, + "ĠLO": 15731, + "ĠLOL": 15086, + "ĠLOOK": 45648, + "ĠLORD": 29818, + "ĠLOT": 42930, + "ĠLOU": 49486, + "ĠLOVE": 31351, + "ĠLP": 38095, + "ĠLS": 36657, + "ĠLT": 42671, + "ĠLU": 31851, + "ĠLY": 42154, + "ĠLa": 2369, + "ĠLab": 10137, + "ĠLabor": 17250, + "ĠLaboratory": 40824, + "ĠLabour": 23361, + "ĠLabs": 40047, + "ĠLac": 40113, + "ĠLad": 12106, + "ĠLaden": 45555, + "ĠLadies": 17084, + "ĠLady": 11256, + "ĠLag": 24886, + "ĠLage": 41555, + "ĠLah": 45862, + "ĠLaink": 47195, + "ĠLak": 37327, + "ĠLake": 10582, + "ĠLakes": 36932, + "ĠLal": 47893, + "ĠLam": 18825, + "ĠLamb": 19302, + "ĠLambda": 45691, + "ĠLamborg": 48389, + "ĠLan": 17482, + "ĠLana": 48750, + "ĠLanc": 39803, + "ĠLance": 40493, + "ĠLand": 6607, + "ĠLandes": 22031, + "ĠLandesregierung": 37695, + "ĠLanding": 49458, + "ĠLands": 30527, + "ĠLane": 26226, + "ĠLang": 13313, + "ĠLanguage": 24445, + "ĠLanka": 42765, + "ĠLao": 46471, + "ĠLap": 42498, + "ĠLar": 11569, + "ĠLara": 33935, + "ĠLarge": 33092, + "ĠLarry": 18145, + "ĠLars": 41563, + "ĠLas": 10663, + "ĠLaser": 43810, + "ĠLast": 5264, + "ĠLastly": 18072, + "ĠLat": 7354, + "ĠLate": 31220, + "ĠLater": 11965, + "ĠLatin": 10803, + "ĠLatino": 25422, + "ĠLatinos": 48413, + "ĠLau": 47979, + "ĠLaughing": 46861, + "ĠLaughs": 33439, + "ĠLaughter": 13584, + "ĠLaunch": 28119, + "ĠLaur": 29906, + "ĠLaura": 13220, + "ĠLaure": 27270, + "ĠLauren": 18915, + "ĠLaurent": 49357, + "ĠLaurie": 38189, + "ĠLaut": 47344, + "ĠLav": 30966, + "ĠLaw": 7744, + "ĠLawrence": 22787, + "ĠLay": 20084, + "ĠLayer": 35166, + "ĠLaz": 46469, + "ĠLazar": 49273, + "ĠLe": 1456, + "ĠLead": 31025, + "ĠLeader": 22650, + "ĠLeaders": 24256, + "ĠLeadership": 30577, + "ĠLeaf": 32290, + "ĠLeague": 11199, + "ĠLeah": 38591, + "ĠLean": 49303, + "ĠLearn": 17216, + "ĠLearning": 15205, + "ĠLeave": 9825, + "ĠLeaving": 41253, + "ĠLeb": 19437, + "ĠLeban": 23530, + "ĠLebanon": 29532, + "ĠLeben": 15399, + "ĠLebens": 21530, + "ĠLect": 37196, + "ĠLed": 39367, + "ĠLee": 6957, + "ĠLeft": 16405, + "ĠLeg": 7470, + "ĠLegacy": 42838, + "ĠLegal": 33577, + "ĠLegend": 21480, + "ĠLegends": 28103, + "ĠLegion": 33024, + "ĠLegisl": 33074, + "ĠLego": 28761, + "ĠLeh": 42631, + "ĠLehr": 29943, + "ĠLehrer": 49718, + "ĠLei": 32593, + "ĠLeist": 39577, + "ĠLem": 16905, + "ĠLemon": 35404, + "ĠLen": 23009, + "ĠLena": 41549, + "ĠLeno": 45661, + "ĠLeo": 19344, + "ĠLeon": 13244, + "ĠLeonard": 35172, + "ĠLeonardo": 36523, + "ĠLes": 6965, + "ĠLeslie": 28140, + "ĠLess": 18649, + "ĠLet": 961, + "ĠLets": 15655, + "ĠLetter": 43426, + "ĠLeute": 13495, + "ĠLeuten": 42301, + "ĠLev": 28471, + "ĠLevel": 16872, + "ĠLevi": 33987, + "ĠLew": 14542, + "ĠLewis": 17412, + "ĠLex": 24086, + "ĠLey": 36794, + "ĠLi": 8349, + "ĠLia": 47844, + "ĠLiam": 32860, + "ĠLiang": 35842, + "ĠLib": 15834, + "ĠLiber": 14175, + "ĠLiberal": 36020, + "ĠLiberty": 27527, + "ĠLibr": 12006, + "ĠLibrary": 12806, + "ĠLibya": 36452, + "ĠLic": 40627, + "ĠLicht": 32917, + "ĠLie": 11197, + "ĠLiebe": 28790, + "ĠLieutenant": 28412, + "ĠLif": 31946, + "ĠLife": 7720, + "ĠLift": 26148, + "ĠLight": 8279, + "ĠLightning": 28848, + "ĠLights": 38226, + "ĠLike": 1743, + "ĠLikewise": 30269, + "ĠLil": 23454, + "ĠLilly": 41386, + "ĠLily": 24669, + "ĠLim": 16406, + "ĠLima": 50217, + "ĠLimited": 43231, + "ĠLin": 9355, + "ĠLincoln": 15993, + "ĠLind": 16828, + "ĠLinda": 20324, + "ĠLindsay": 35017, + "ĠLindsey": 35910, + "ĠLine": 14670, + "ĠLing": 20977, + "ĠLink": 8466, + "ĠLinked": 19322, + "ĠLinkedIn": 20657, + "ĠLinks": 37156, + "ĠLinux": 18734, + "ĠLion": 21704, + "ĠLions": 48335, + "ĠLip": 27475, + "ĠLiqu": 32331, + "ĠLiquid": 38943, + "ĠLis": 30812, + "ĠLisa": 12252, + "ĠList": 17668, + "ĠListen": 7501, + "ĠListening": 49321, + "ĠLit": 41841, + "ĠLite": 32986, + "ĠLiter": 16090, + "ĠLiterally": 23768, + "ĠLith": 32577, + "ĠLittle": 8022, + "ĠLiu": 18056, + "ĠLiv": 31738, + "ĠLive": 10385, + "ĠLiver": 28010, + "ĠLiverpool": 32473, + "ĠLives": 25791, + "ĠLiving": 18824, + "ĠLiz": 16480, + "ĠLl": 32717, + "ĠLloyd": 31401, + "ĠLo": 6130, + "ĠLoad": 48408, + "ĠLob": 30719, + "ĠLoc": 12859, + "ĠLocal": 22755, + "ĠLoch": 49912, + "ĠLock": 16736, + "ĠLog": 10824, + "ĠLogan": 22689, + "ĠLogic": 49898, + "ĠLok": 46278, + "ĠLoki": 37940, + "ĠLol": 41026, + "ĠLon": 35927, + "ĠLond": 6735, + "ĠLondon": 7042, + "ĠLong": 8282, + "ĠLook": 2053, + "ĠLooking": 11053, + "ĠLooks": 10027, + "ĠLoop": 45660, + "ĠLopez": 36077, + "ĠLor": 29358, + "ĠLord": 3257, + "ĠLords": 41870, + "ĠLore": 36994, + "ĠLoren": 37162, + "ĠLori": 32698, + "ĠLos": 7632, + "ĠLost": 23422, + "ĠLot": 20131, + "ĠLots": 15908, + "ĠLotus": 44769, + "ĠLou": 7272, + "ĠLoud": 48259, + "ĠLouis": 9763, + "ĠLouise": 35962, + "ĠLouisiana": 25413, + "ĠLove": 5956, + "ĠLovely": 33925, + "ĠLow": 17078, + "ĠLower": 25523, + "ĠLoy": 50048, + "ĠLt": 44451, + "ĠLu": 5047, + "ĠLub": 43781, + "ĠLuc": 9593, + "ĠLuca": 42076, + "ĠLucas": 19178, + "ĠLuci": 37309, + "ĠLuck": 16627, + "ĠLuckily": 19726, + "ĠLucky": 26639, + "ĠLucy": 22698, + "ĠLud": 30550, + "ĠLuego": 45665, + "ĠLuft": 26995, + "ĠLuigi": 33308, + "ĠLuis": 25133, + "ĠLuiza": 45208, + "ĠLuk": 34992, + "ĠLuke": 13044, + "ĠLulu": 45223, + "ĠLum": 35978, + "ĠLun": 32077, + "ĠLuna": 27355, + "ĠLunch": 44958, + "ĠLuo": 35155, + "ĠLup": 44319, + "ĠLust": 45834, + "ĠLuther": 20693, + "ĠLux": 25767, + "ĠLy": 12687, + "ĠLydia": 44038, + "ĠLyn": 15214, + "ĠLynch": 32345, + "ĠLynd": 48800, + "ĠLynn": 27469, + "ĠLänder": 43441, + "ĠLändern": 48321, + "ĠLö": 50123, + "ĠLös": 34642, + "ĠLösung": 46934, + "ĠLÃł": 22237, + "ĠM": 376, + "ĠMA": 12191, + "ĠMAC": 27716, + "ĠMAL": 40643, + "ĠMALE": 31642, + "ĠMAN": 15372, + "ĠMAND": 47932, + "ĠMAR": 6450, + "ĠMARC": 49433, + "ĠMARISHA": 12265, + "ĠMARK": 20606, + "ĠMARTIN": 36996, + "ĠMARY": 37640, + "ĠMAS": 42129, + "ĠMAT": 5904, + "ĠMATT": 6291, + "ĠMAX": 39549, + "ĠMAY": 28996, + "ĠMAYOR": 43967, + "ĠMB": 28866, + "ĠMBA": 26674, + "ĠMC": 8797, + "ĠMCU": 39415, + "ĠMD": 22521, + "ĠME": 12003, + "ĠMEL": 38005, + "ĠMEM": 40524, + "ĠMER": 47234, + "ĠMG": 36856, + "ĠMH": 34796, + "ĠMI": 13696, + "ĠMIC": 20565, + "ĠMICH": 41276, + "ĠMICHAEL": 23859, + "ĠMID": 32394, + "ĠMIDI": 41474, + "ĠMIKE": 25208, + "ĠMIL": 43346, + "ĠMILL": 48070, + "ĠMIN": 26186, + "ĠMIT": 13100, + "ĠMJ": 36240, + "ĠMK": 30770, + "ĠML": 21601, + "ĠMM": 34191, + "ĠMMA": 48700, + "ĠMO": 19290, + "ĠMOD": 38113, + "ĠMOM": 46840, + "ĠMON": 27398, + "ĠMOO": 49197, + "ĠMOR": 29533, + "ĠMORE": 35509, + "ĠMOS": 44219, + "ĠMP": 14146, + "ĠMR": 9808, + "ĠMRI": 32812, + "ĠMS": 7395, + "ĠMT": 37333, + "ĠMTV": 43924, + "ĠMU": 17935, + "ĠMUELLER": 42573, + "ĠMUR": 46707, + "ĠMUS": 49764, + "ĠMUSIC": 16924, + "ĠMV": 17663, + "ĠMVP": 37151, + "ĠMX": 47509, + "ĠMY": 16322, + "ĠMa": 4042, + "ĠMaar": 14294, + "ĠMac": 5707, + "ĠMacBook": 31737, + "ĠMaced": 45603, + "ĠMach": 12089, + "ĠMachine": 22155, + "ĠMacht": 40873, + "ĠMack": 24295, + "ĠMacron": 32806, + "ĠMad": 5326, + "ĠMadam": 18490, + "ĠMadame": 31077, + "ĠMade": 18330, + "ĠMadison": 22874, + "ĠMadonna": 49540, + "ĠMadrid": 22091, + "ĠMae": 31055, + "ĠMaf": 41517, + "ĠMag": 6395, + "ĠMagaz": 25994, + "ĠMagazine": 27618, + "ĠMage": 49293, + "ĠMaggie": 29107, + "ĠMagic": 16154, + "ĠMagn": 19664, + "ĠMah": 10104, + "ĠMahar": 48498, + "ĠMai": 24084, + "ĠMail": 29164, + "ĠMain": 12383, + "ĠMaine": 28180, + "ĠMainly": 47468, + "ĠMainten": 30437, + "ĠMaintenant": 36931, + "ĠMais": 6313, + "ĠMaj": 7048, + "ĠMajesty": 10665, + "ĠMajor": 15581, + "ĠMak": 16576, + "ĠMake": 4387, + "ĠMaker": 35096, + "ĠMakes": 25245, + "ĠMaking": 14595, + "ĠMal": 5746, + "ĠMalays": 21543, + "ĠMalaysia": 25465, + "ĠMalcolm": 34596, + "ĠMale": 21080, + "ĠMall": 24883, + "ĠMam": 19899, + "ĠMama": 17775, + "ĠMan": 2458, + "ĠMana": 33711, + "ĠManagement": 14781, + "ĠManager": 13821, + "ĠManchester": 27180, + "ĠMand": 15458, + "ĠMandal": 49869, + "ĠMandarin": 42292, + "ĠMandy": 47474, + "ĠMang": 35487, + "ĠMango": 48588, + "ĠManh": 21740, + "ĠManhattan": 23633, + "ĠMann": 16892, + "ĠMans": 23167, + "ĠMansion": 45572, + "ĠMant": 32829, + "ĠManual": 46173, + "ĠManuel": 34362, + "ĠManufact": 44957, + "ĠMany": 5126, + "ĠMao": 38030, + "ĠMaori": 23357, + "ĠMap": 22053, + "ĠMaple": 47604, + "ĠMaps": 28978, + "ĠMar": 2039, + "ĠMarc": 18460, + "ĠMarcel": 34738, + "ĠMarch": 6129, + "ĠMarcheg": 38081, + "ĠMarchegiani": 38092, + "ĠMarco": 26535, + "ĠMarcus": 26574, + "ĠMarg": 20000, + "ĠMargaret": 24177, + "ĠMari": 34478, + "ĠMaria": 12734, + "ĠMarian": 37497, + "ĠMarie": 15130, + "ĠMarilyn": 48340, + "ĠMarin": 43016, + "ĠMarina": 35310, + "ĠMarine": 20415, + "ĠMarines": 39331, + "ĠMario": 9343, + "ĠMarion": 49270, + "ĠMark": 3934, + "ĠMarket": 15596, + "ĠMarketing": 27402, + "ĠMarkt": 39774, + "ĠMarkus": 45041, + "ĠMarly": 50129, + "ĠMarriage": 49593, + "ĠMars": 9692, + "ĠMarsh": 14443, + "ĠMarshall": 17279, + "ĠMart": 5807, + "ĠMartha": 27787, + "ĠMartin": 9184, + "ĠMartine": 37195, + "ĠMartinez": 41886, + "ĠMarty": 29192, + "ĠMarvel": 13837, + "ĠMarvin": 48722, + "ĠMarx": 21703, + "ĠMary": 6059, + "ĠMaryland": 19939, + "ĠMarÃŃa": 48472, + "ĠMas": 5224, + "ĠMash": 42039, + "ĠMask": 25414, + "ĠMason": 25730, + "ĠMass": 10482, + "ĠMassachusetts": 19979, + "ĠMaster": 6140, + "ĠMasters": 27014, + "ĠMat": 6789, + "ĠMatch": 26178, + "ĠMate": 27594, + "ĠMater": 19188, + "ĠMaterial": 29160, + "ĠMath": 15776, + "ĠMatrix": 36274, + "ĠMats": 27204, + "ĠMatt": 7397, + "ĠMatte": 47544, + "ĠMatter": 20285, + "ĠMatth": 11327, + "ĠMatthew": 12434, + "ĠMau": 32858, + "ĠMaur": 26133, + "ĠMaurice": 49041, + "ĠMax": 7402, + "ĠMaxim": 29076, + "ĠMaxwell": 39594, + "ĠMay": 1891, + "ĠMaya": 21695, + "ĠMaybe": 2704, + "ĠMayo": 46406, + "ĠMayor": 13925, + "ĠMaz": 28568, + "ĠMaÃŁ": 28645, + "ĠMaÃŁnahmen": 36626, + "ĠMc": 4050, + "ĠMcC": 12061, + "ĠMcCain": 49725, + "ĠMcCarthy": 44085, + "ĠMcConnell": 41331, + "ĠMcD": 49269, + "ĠMcDonald": 16889, + "ĠMcG": 21865, + "ĠMcK": 21765, + "ĠMcL": 38922, + "ĠMcM": 25549, + "ĠMcMahon": 48187, + "ĠMcN": 48996, + "ĠMe": 1923, + "ĠMean": 12302, + "ĠMeaning": 19948, + "ĠMeans": 40290, + "ĠMeanwhile": 13879, + "ĠMeasure": 41436, + "ĠMeat": 30502, + "ĠMechan": 30175, + "ĠMed": 3982, + "ĠMedal": 42437, + "ĠMedia": 14741, + "ĠMedic": 11555, + "ĠMedicaid": 24779, + "ĠMedical": 15896, + "ĠMedicare": 19583, + "ĠMedicine": 20338, + "ĠMedien": 44030, + "ĠMediter": 25828, + "ĠMediterranean": 27280, + "ĠMedium": 38915, + "ĠMeer": 49758, + "ĠMeet": 22963, + "ĠMeeting": 33217, + "ĠMeg": 9986, + "ĠMega": 22834, + "ĠMegan": 21332, + "ĠMeghan": 32597, + "ĠMeh": 29337, + "ĠMehr": 30782, + "ĠMei": 34100, + "ĠMein": 18382, + "ĠMeine": 22258, + "ĠMeinung": 36519, + "ĠMel": 7375, + "ĠMelanie": 42798, + "ĠMelbourne": 27496, + "ĠMelissa": 22844, + "ĠMelt": 48425, + "ĠMem": 8731, + "ĠMember": 16037, + "ĠMembers": 21495, + "ĠMemorial": 24957, + "ĠMemory": 38203, + "ĠMemphis": 26743, + "ĠMen": 6685, + "ĠMend": 40887, + "ĠMeng": 29090, + "ĠMenge": 40723, + "ĠMens": 7364, + "ĠMensch": 27773, + "ĠMenschen": 8397, + "ĠMent": 33140, + "ĠMental": 30294, + "ĠMenu": 43343, + "ĠMeow": 42996, + "ĠMer": 6124, + "ĠMerc": 18897, + "ĠMercedes": 22899, + "ĠMerci": 19856, + "ĠMercury": 31780, + "ĠMercy": 35626, + "ĠMeredith": 29737, + "ĠMerkel": 38356, + "ĠMerry": 26572, + "ĠMes": 17485, + "ĠMess": 9847, + "ĠMessage": 45947, + "ĠMessenger": 34226, + "ĠMessi": 42969, + "ĠMessiah": 21756, + "ĠMet": 6377, + "ĠMetal": 23488, + "ĠMetall": 49447, + "ĠMete": 43328, + "ĠMeter": 38054, + "ĠMeth": 48602, + "ĠMethod": 25285, + "ĠMetro": 25598, + "ĠMetroid": 47767, + "ĠMetropolitan": 45489, + "ĠMeu": 34398, + "ĠMex": 6496, + "ĠMexican": 16164, + "ĠMexico": 8612, + "ĠMeyer": 47207, + "ĠMhm": 26272, + "ĠMi": 10204, + "ĠMia": 28545, + "ĠMiami": 18367, + "ĠMic": 5818, + "ĠMich": 3392, + "ĠMicha": 31698, + "ĠMichael": 5116, + "ĠMichaels": 45759, + "ĠMichel": 23709, + "ĠMichelle": 14933, + "ĠMichigan": 11925, + "ĠMick": 42538, + "ĠMickey": 24714, + "ĠMicro": 25642, + "ĠMicrosoft": 8116, + "ĠMid": 7033, + "ĠMiddle": 10775, + "ĠMidwest": 33483, + "ĠMig": 18951, + "ĠMight": 23964, + "ĠMighty": 45874, + "ĠMiguel": 29150, + "ĠMih": 48168, + "ĠMik": 16380, + "ĠMike": 6602, + "ĠMikey": 42344, + "ĠMil": 7036, + "ĠMilan": 32874, + "ĠMile": 47651, + "ĠMiles": 27384, + "ĠMilitary": 28460, + "ĠMilk": 26986, + "ĠMilky": 38465, + "ĠMill": 7190, + "ĠMillenn": 42007, + "ĠMiller": 16932, + "ĠMilli": 36654, + "ĠMilliarden": 44784, + "ĠMillion": 33959, + "ĠMillionen": 26096, + "ĠMills": 44277, + "ĠMilton": 40778, + "ĠMilwaukee": 35321, + "ĠMimi": 46709, + "ĠMin": 2829, + "ĠMina": 35981, + "ĠMind": 13719, + "ĠMine": 11620, + "ĠMinecraft": 21029, + "ĠMing": 19352, + "ĠMinh": 45093, + "ĠMini": 18239, + "ĠMinist": 32196, + "ĠMinister": 6506, + "ĠMinistry": 19720, + "ĠMinne": 37829, + "ĠMinneapolis": 38713, + "ĠMinnesota": 13996, + "ĠMinnie": 47654, + "ĠMinor": 36117, + "ĠMins": 49239, + "ĠMint": 36188, + "ĠMinute": 33509, + "ĠMinuten": 27593, + "ĠMir": 9421, + "ĠMira": 28394, + "ĠMiranda": 37000, + "ĠMire": 50008, + "ĠMirror": 34452, + "ĠMis": 23240, + "ĠMiss": 5275, + "ĠMission": 20170, + "ĠMississippi": 20347, + "ĠMissouri": 21334, + "ĠMist": 20166, + "ĠMister": 22058, + "ĠMistress": 48509, + "ĠMit": 10821, + "ĠMitar": 32900, + "ĠMitarbeiter": 38324, + "ĠMitch": 18546, + "ĠMitchell": 27582, + "ĠMitgl": 44167, + "ĠMits": 40897, + "ĠMitt": 18784, + "ĠMitte": 41526, + "ĠMittel": 35079, + "ĠMix": 12769, + "ĠMiy": 26195, + "ĠMiz": 37793, + "ĠMm": 8266, + "ĠMmm": 12146, + "ĠMmmm": 42992, + "ĠMo": 3335, + "ĠMob": 37920, + "ĠMobil": 47188, + "ĠMobile": 22625, + "ĠMod": 6583, + "ĠMode": 20500, + "ĠModel": 17105, + "ĠModer": 42067, + "ĠModern": 19814, + "ĠModi": 47621, + "ĠModule": 48251, + "ĠMog": 34327, + "ĠMoh": 16123, + "ĠMohammad": 43939, + "ĠMohammed": 41910, + "ĠMoi": 20256, + "ĠMol": 28278, + "ĠMole": 46914, + "ĠMolly": 26665, + "ĠMolt": 39254, + "ĠMom": 5576, + "ĠMoment": 19093, + "ĠMommy": 24602, + "ĠMomo": 47984, + "ĠMon": 4713, + "ĠMona": 43731, + "ĠMonate": 44067, + "ĠMonaten": 46193, + "ĠMond": 7492, + "ĠMonday": 8138, + "ĠMonet": 47871, + "ĠMoney": 16631, + "ĠMong": 19423, + "ĠMongo": 48380, + "ĠMongol": 43573, + "ĠMonica": 25363, + "ĠMonitor": 33799, + "ĠMonkey": 34862, + "ĠMonroe": 43900, + "ĠMonsieur": 34941, + "ĠMonst": 39768, + "ĠMonster": 21059, + "ĠMont": 7947, + "ĠMontana": 27916, + "ĠMonte": 38105, + "ĠMontgomery": 34715, + "ĠMonth": 24255, + "ĠMontreal": 34180, + "ĠMoo": 43224, + "ĠMoon": 10714, + "ĠMoore": 21644, + "ĠMor": 5146, + "ĠMore": 5048, + "ĠMoreover": 19838, + "ĠMorgan": 16724, + "ĠMorgen": 35570, + "ĠMorm": 33610, + "ĠMormon": 39515, + "ĠMorning": 17967, + "ĠMoroc": 30893, + "ĠMorocco": 38782, + "ĠMorris": 23619, + "ĠMorrison": 33767, + "ĠMort": 24977, + "ĠMortal": 45797, + "ĠMos": 19430, + "ĠMosc": 17213, + "ĠMoscow": 18298, + "ĠMoses": 17580, + "ĠMoss": 39591, + "ĠMost": 4534, + "ĠMostly": 29035, + "ĠMot": 8956, + "ĠMother": 8931, + "ĠMotion": 27771, + "ĠMoto": 37825, + "ĠMotor": 18495, + "ĠMotorola": 45871, + "ĠMotors": 40118, + "ĠMount": 8426, + "ĠMountain": 15586, + "ĠMountains": 30970, + "ĠMouse": 29383, + "ĠMov": 43756, + "ĠMove": 10475, + "ĠMovement": 26523, + "ĠMovie": 28766, + "ĠMoving": 14242, + "ĠMoy": 47254, + "ĠMoz": 30208, + "ĠMozart": 42653, + "ĠMoż": 44736, + "ĠMoże": 43774, + "ĠMr": 2221, + "ĠMrs": 9814, + "ĠMs": 7741, + "ĠMt": 39183, + "ĠMu": 15601, + "ĠMuch": 12313, + "ĠMuchas": 35669, + "ĠMud": 39231, + "ĠMueller": 38152, + "ĠMuh": 15651, + "ĠMuhammad": 19360, + "ĠMuito": 31824, + "ĠMuk": 34280, + "ĠMul": 29960, + "ĠMull": 41621, + "ĠMult": 14665, + "ĠMulti": 29238, + "ĠMultip": 31150, + "ĠMultiple": 40056, + "ĠMum": 24279, + "ĠMumbai": 34309, + "ĠMummy": 46569, + "ĠMun": 17050, + "ĠMund": 33317, + "ĠMunich": 40601, + "ĠMunicip": 47606, + "ĠMur": 9373, + "ĠMurder": 44370, + "ĠMurphy": 28549, + "ĠMurray": 27291, + "ĠMus": 3569, + "ĠMuse": 47293, + "ĠMuseum": 10967, + "ĠMush": 38188, + "ĠMusic": 7609, + "ĠMusical": 42527, + "ĠMusik": 14156, + "ĠMusk": 26019, + "ĠMuslim": 8178, + "ĠMuslims": 14793, + "ĠMuss": 43879, + "ĠMust": 13252, + "ĠMustafa": 37229, + "ĠMustang": 37115, + "ĠMut": 18517, + "ĠMutta": 46604, + "ĠMutter": 31517, + "ĠMuy": 39586, + "ĠMy": 1222, + "ĠMyan": 42297, + "ĠMyanmar": 42725, + "ĠMyers": 45088, + "ĠMys": 37795, + "ĠMyst": 28510, + "ĠMyster": 38175, + "ĠMystery": 41660, + "ĠMyth": 26371, + "ĠMythical": 44566, + "ĠMäd": 49182, + "ĠMänner": 36907, + "ĠMär": 46084, + "ĠMé": 23580, + "ĠMéxico": 28128, + "ĠMême": 42027, + "ĠMöglich": 21467, + "ĠMöglichkeit": 30662, + "ĠMöglichkeiten": 42627, + "ĠMü": 21295, + "ĠMün": 35840, + "ĠMÄģ": 45901, + "ĠMỹ": 48845, + "ĠN": 426, + "ĠNA": 16585, + "ĠNARRATOR": 10160, + "ĠNAS": 10182, + "ĠNASA": 12077, + "ĠNAT": 14500, + "ĠNATO": 19419, + "ĠNAU": 44789, + "ĠNBA": 23890, + "ĠNBC": 31504, + "ĠNC": 20786, + "ĠNCAA": 49650, + "ĠNCT": 38368, + "ĠND": 40709, + "ĠNE": 12384, + "ĠNES": 37212, + "ĠNEW": 36373, + "ĠNF": 13576, + "ĠNFL": 24817, + "ĠNFT": 50075, + "ĠNGO": 31456, + "ĠNGOs": 46454, + "ĠNH": 31118, + "ĠNHS": 22693, + "ĠNI": 18482, + "ĠNICK": 32175, + "ĠNIH": 28716, + "ĠNO": 9146, + "ĠNOR": 47904, + "ĠNOT": 12854, + "ĠNOW": 27734, + "ĠNP": 38611, + "ĠNPC": 28787, + "ĠNR": 38399, + "ĠNS": 15943, + "ĠNSA": 47299, + "ĠNT": 43452, + "ĠNV": 46512, + "ĠNXT": 38414, + "ĠNY": 26032, + "ĠNYU": 42682, + "ĠNZ": 41089, + "ĠNa": 6056, + "ĠNab": 45366, + "ĠNach": 11815, + "ĠNacht": 31133, + "ĠNacional": 36623, + "ĠNad": 23269, + "ĠNada": 40992, + "ĠNag": 18913, + "ĠNah": 13933, + "ĠNai": 50205, + "ĠNaj": 31576, + "ĠNak": 25779, + "ĠNam": 10684, + "ĠName": 13866, + "ĠNamen": 38771, + "ĠNan": 18852, + "ĠNana": 37087, + "ĠNancy": 18154, + "ĠNano": 43511, + "ĠNaomi": 35369, + "ĠNap": 18287, + "ĠNapole": 28298, + "ĠNapoleon": 31694, + "ĠNar": 13512, + "ĠNarr": 45658, + "ĠNarrator": 19242, + "ĠNaru": 42518, + "ĠNaruhodou": 44658, + "ĠNaruto": 47703, + "ĠNas": 16151, + "ĠNash": 25012, + "ĠNashville": 36370, + "ĠNast": 42185, + "ĠNasıl": 28710, + "ĠNat": 6821, + "ĠNatalie": 29574, + "ĠNatasha": 40624, + "ĠNate": 28064, + "ĠNathan": 20634, + "ĠNation": 17095, + "ĠNational": 4862, + "ĠNations": 16459, + "ĠNative": 15093, + "ĠNatomiast": 36210, + "ĠNatur": 34571, + "ĠNatural": 20137, + "ĠNaturally": 34304, + "ĠNature": 20159, + "ĠNatürlich": 33172, + "ĠNav": 9219, + "ĠNaval": 38118, + "ĠNavy": 15659, + "ĠNaw": 40315, + "ĠNay": 42019, + "ĠNaz": 11870, + "ĠNazi": 23592, + "ĠNazis": 29812, + "ĠNe": 1734, + "ĠNear": 22200, + "ĠNearly": 38000, + "ĠNeben": 48193, + "ĠNebr": 26733, + "ĠNebraska": 27171, + "ĠNed": 31355, + "ĠNeden": 46565, + "ĠNeder": 29005, + "ĠNederland": 31888, + "ĠNee": 22067, + "ĠNeed": 16984, + "ĠNeg": 19103, + "ĠNegative": 43230, + "ĠNegro": 45256, + "ĠNeigh": 35917, + "ĠNeighbor": 47729, + "ĠNeil": 18615, + "ĠNein": 18878, + "ĠNeither": 23956, + "ĠNej": 33840, + "ĠNelson": 23857, + "ĠNem": 22210, + "ĠNeo": 24458, + "ĠNep": 24875, + "ĠNepal": 36283, + "ĠNept": 45560, + "ĠNeptune": 49527, + "ĠNer": 36536, + "ĠNerd": 38367, + "ĠNered": 46352, + "ĠNest": 31581, + "ĠNet": 6188, + "ĠNetflix": 12778, + "ĠNether": 18313, + "ĠNetherlands": 20873, + "ĠNetwork": 12640, + "ĠNetz": 38889, + "ĠNev": 22673, + "ĠNevada": 25764, + "ĠNever": 7344, + "ĠNevertheless": 26554, + "ĠNew": 1873, + "ĠNewman": 49377, + "ĠNews": 7987, + "ĠNewton": 19541, + "ĠNext": 3087, + "ĠNexus": 46559, + "ĠNg": 21198, + "ĠNh": 26390, + "ĠNi": 12370, + "ĠNiagara": 45123, + "ĠNic": 14776, + "ĠNice": 5490, + "ĠNich": 17102, + "ĠNicholas": 22924, + "ĠNicht": 22629, + "ĠNick": 9449, + "ĠNickel": 45416, + "ĠNicki": 47608, + "ĠNico": 15115, + "ĠNicolas": 38268, + "ĠNicole": 18532, + "ĠNie": 12016, + "ĠNiet": 36583, + "ĠNig": 39554, + "ĠNiger": 21489, + "ĠNigeria": 28828, + "ĠNight": 10190, + "ĠNik": 13969, + "ĠNike": 30397, + "ĠNikki": 37907, + "ĠNil": 47398, + "ĠNim": 45251, + "ĠNin": 16093, + "ĠNina": 29204, + "ĠNine": 18939, + "ĠNing": 39417, + "ĠNinja": 25566, + "ĠNintendo": 11578, + "ĠNir": 44813, + "ĠNiss": 36009, + "ĠNissan": 38166, + "ĠNit": 37942, + "ĠNixon": 31130, + "ĠNiye": 40938, + "ĠNo": 883, + "ĠNoah": 20895, + "ĠNobel": 24611, + "ĠNoble": 33125, + "ĠNobody": 9297, + "ĠNoch": 38116, + "ĠNode": 38640, + "ĠNoel": 38824, + "ĠNoise": 44821, + "ĠNok": 37400, + "ĠNokia": 43980, + "ĠNolan": 43707, + "ĠNom": 31272, + "ĠNon": 8774, + "ĠNone": 14492, + "ĠNonetheless": 45437, + "ĠNoodles": 47389, + "ĠNope": 12172, + "ĠNor": 6966, + "ĠNora": 45741, + "ĠNord": 16229, + "ĠNorm": 8702, + "ĠNormal": 21277, + "ĠNormally": 17424, + "ĠNorman": 30475, + "ĠNorth": 4067, + "ĠNortheast": 42150, + "ĠNorthern": 14335, + "ĠNorthwest": 26068, + "ĠNorway": 24354, + "ĠNorweg": 31783, + "ĠNorwegian": 34875, + "ĠNos": 18749, + "ĠNossa": 36016, + "ĠNot": 1726, + "ĠNote": 11633, + "ĠNotes": 41360, + "ĠNothing": 6693, + "ĠNotice": 13428, + "ĠNotre": 34663, + "ĠNou": 28843, + "ĠNous": 15343, + "ĠNov": 31948, + "ĠNova": 27031, + "ĠNove": 7539, + "ĠNovember": 7674, + "ĠNow": 823, + "ĠNowadays": 28908, + "ĠNu": 13612, + "ĠNuclear": 42528, + "ĠNue": 47970, + "ĠNum": 22592, + "ĠNumber": 5118, + "ĠNummer": 47034, + "ĠNun": 23696, + "ĠNur": 17612, + "ĠNurs": 32992, + "ĠNurse": 48945, + "ĠNursing": 42655, + "ĠNut": 19861, + "ĠNvidia": 46284, + "ĠNy": 29214, + "ĠNão": 8010, + "ĠNä": 32731, + "ĠNär": 37306, + "ĠNós": 27626, + "ĠO": 422, + "ĠOA": 48424, + "ĠOB": 35538, + "ĠOC": 42278, + "ĠOD": 48447, + "ĠOF": 11944, + "ĠOFF": 24115, + "ĠOFFIC": 40579, + "ĠOFFICER": 44724, + "ĠOG": 32477, + "ĠOH": 13931, + "ĠOK": 2264, + "ĠOL": 39191, + "ĠOLED": 43944, + "ĠOM": 16954, + "ĠOMG": 23152, + "ĠON": 9299, + "ĠONE": 22026, + "ĠOP": 23324, + "ĠOR": 19654, + "ĠOS": 12731, + "ĠOT": 38617, + "ĠOUR": 45611, + "ĠOUT": 22451, + "ĠOVER": 46090, + "ĠOW": 38329, + "ĠOak": 19692, + "ĠOakland": 34868, + "ĠOb": 4075, + "ĠObama": 9560, + "ĠOber": 27664, + "ĠObi": 48533, + "ĠObject": 24753, + "ĠObrig": 45619, + "ĠObs": 20707, + "ĠObserv": 42547, + "ĠObviously": 7580, + "ĠOcc": 26191, + "ĠOcean": 18101, + "ĠOch": 13128, + "ĠOct": 6788, + "ĠOctober": 7617, + "ĠOculus": 49094, + "ĠOczywiÅĽcie": 42980, + "ĠOd": 12210, + "ĠOdd": 43630, + "ĠOder": 20988, + "ĠOdys": 32010, + "ĠOdyssey": 38385, + "ĠOf": 2720, + "ĠOff": 6318, + "ĠOffic": 11511, + "ĠOffice": 8935, + "ĠOfficer": 15434, + "ĠOfficial": 38577, + "ĠOft": 37112, + "ĠOften": 20043, + "ĠOftentimes": 46636, + "ĠOg": 14883, + "ĠOh": 876, + "ĠOhh": 21847, + "ĠOhhh": 29108, + "ĠOhio": 14469, + "ĠOi": 31610, + "ĠOil": 23545, + "ĠOj": 47100, + "ĠOk": 3477, + "ĠOkay": 1033, + "ĠOke": 29094, + "ĠOkey": 38544, + "ĠOklah": 20872, + "ĠOklahoma": 21183, + "ĠOl": 6141, + "ĠOlaf": 48961, + "ĠOld": 8633, + "ĠOle": 33965, + "ĠOlga": 48288, + "ĠOlha": 19450, + "ĠOliv": 42477, + "ĠOlive": 35741, + "ĠOliver": 23440, + "ĠOlivia": 26023, + "ĠOlivier": 48075, + "ĠOllie": 35089, + "ĠOlymp": 10395, + "ĠOlympic": 19169, + "ĠOlympics": 19854, + "ĠOlá": 41811, + "ĠOm": 9757, + "ĠOmaha": 49575, + "ĠOmar": 33784, + "ĠOmega": 27645, + "ĠOn": 1282, + "ĠOna": 49793, + "ĠOnce": 3443, + "ĠOnd": 40091, + "ĠOne": 1485, + "ĠOnePlus": 41352, + "ĠOnion": 46295, + "ĠOnline": 16930, + "ĠOnly": 5686, + "ĠOnt": 16980, + "ĠOntario": 19673, + "ĠOnu": 46420, + "ĠOnun": 40379, + "ĠOo": 39308, + "ĠOoh": 7951, + "ĠOok": 50081, + "ĠOoo": 25547, + "ĠOooh": 27413, + "ĠOoooh": 48762, + "ĠOops": 21726, + "ĠOp": 12011, + "ĠOpen": 7238, + "ĠOpening": 41137, + "ĠOper": 12480, + "ĠOpera": 39089, + "ĠOperation": 27946, + "ĠOperations": 36381, + "ĠOpp": 15666, + "ĠOpportun": 39441, + "ĠOprah": 43804, + "ĠOpt": 21455, + "ĠOptim": 35013, + "ĠOption": 29284, + "ĠOptions": 42934, + "ĠOr": 1610, + "ĠOra": 43672, + "ĠOracle": 25654, + "ĠOrange": 17106, + "ĠOrb": 44329, + "ĠOrchest": 42414, + "ĠOrchestra": 46692, + "ĠOrd": 29388, + "ĠOrder": 16321, + "ĠOre": 31405, + "ĠOregon": 18664, + "ĠOreo": 47628, + "ĠOrgan": 12538, + "ĠOrganisation": 49425, + "ĠOrganization": 23979, + "ĠOri": 23621, + "ĠOrient": 49544, + "ĠOrig": 13895, + "ĠOrigin": 45313, + "ĠOriginal": 30022, + "ĠOriginally": 28696, + "ĠOrion": 41028, + "ĠOrlando": 30436, + "ĠOrleans": 24715, + "ĠOrt": 22921, + "ĠOrth": 27554, + "ĠOrthodox": 32833, + "ĠOs": 8875, + "ĠOsaka": 46425, + "ĠOsc": 17406, + "ĠOscar": 20718, + "ĠOsman": 35390, + "ĠOst": 34140, + "ĠOt": 12936, + "ĠOther": 5358, + "ĠOthers": 20277, + "ĠOtherwise": 10328, + "ĠOtt": 24243, + "ĠOttawa": 40767, + "ĠOtto": 41716, + "ĠOttoman": 33435, + "ĠOu": 11710, + "ĠOuais": 25475, + "ĠOuch": 27217, + "ĠOui": 14005, + "ĠOur": 2621, + "ĠOut": 5925, + "ĠOutside": 28218, + "ĠOv": 50005, + "ĠOver": 4886, + "ĠOverall": 18420, + "ĠOverwatch": 35141, + "ĠOw": 12773, + "ĠOwen": 32867, + "ĠOwn": 25964, + "ĠOwner": 43290, + "ĠOx": 16489, + "ĠOxford": 24786, + "ĠOy": 40023, + "ĠOz": 29843, + "ĠOÄŁlum": 41783, + "ĠP": 430, + "ĠPA": 17718, + "ĠPAC": 46644, + "ĠPAL": 46390, + "ĠPAR": 21720, + "ĠPAT": 31485, + "ĠPAUL": 26379, + "ĠPB": 24056, + "ĠPBS": 33517, + "ĠPC": 6465, + "ĠPCB": 42065, + "ĠPCR": 44022, + "ĠPCs": 46913, + "ĠPD": 10464, + "ĠPDF": 17752, + "ĠPE": 24346, + "ĠPER": 26825, + "ĠPET": 21968, + "ĠPETER": 36040, + "ĠPF": 43402, + "ĠPG": 40975, + "ĠPH": 16530, + "ĠPHIL": 49933, + "ĠPHP": 47298, + "ĠPI": 27176, + "ĠPJ": 30549, + "ĠPK": 49475, + "ĠPL": 6999, + "ĠPLAY": 8726, + "ĠPLAYING": 9871, + "ĠPM": 12499, + "ĠPO": 22299, + "ĠPOL": 45682, + "ĠPOW": 39272, + "ĠPP": 37369, + "ĠPPE": 38589, + "ĠPR": 11568, + "ĠPRE": 44164, + "ĠPRES": 30247, + "ĠPRESID": 42508, + "ĠPRI": 47555, + "ĠPRO": 15008, + "ĠPROF": 24141, + "ĠPROFESS": 25460, + "ĠPROFESSOR": 25794, + "ĠPS": 8168, + "ĠPSAKI": 25104, + "ĠPT": 35460, + "ĠPTS": 31218, + "ĠPTSD": 33069, + "ĠPU": 44098, + "ĠPUB": 46631, + "ĠPUBG": 47975, + "ĠPV": 23035, + "ĠPVC": 46700, + "ĠPW": 46375, + "ĠPa": 3426, + "ĠPablo": 31554, + "ĠPac": 10702, + "ĠPacific": 13335, + "ĠPack": 18466, + "ĠPad": 18691, + "ĠPage": 21217, + "ĠPaige": 45177, + "ĠPain": 24943, + "ĠPaint": 34865, + "ĠPak": 11543, + "ĠPakistan": 15985, + "ĠPakistani": 50253, + "ĠPal": 6116, + "ĠPalace": 19121, + "ĠPale": 50007, + "ĠPalest": 14926, + "ĠPalestin": 19750, + "ĠPalestine": 33030, + "ĠPalestinian": 28202, + "ĠPalestinians": 34745, + "ĠPalm": 32668, + "ĠPalmer": 43889, + "ĠPam": 23532, + "ĠPan": 7557, + "ĠPanama": 41202, + "ĠPanch": 48792, + "ĠPand": 16995, + "ĠPanda": 44207, + "ĠPandemie": 44694, + "ĠPanel": 38996, + "ĠPang": 49499, + "ĠPanther": 33046, + "ĠPanz": 45932, + "ĠPap": 15919, + "ĠPapa": 21102, + "ĠPaper": 24990, + "ĠPar": 3457, + "ĠPara": 11107, + "ĠParad": 28527, + "ĠParadise": 35053, + "ĠParam": 34882, + "ĠParce": 20429, + "ĠPardon": 32392, + "ĠPare": 31189, + "ĠParece": 45419, + "ĠParent": 44717, + "ĠParents": 33990, + "ĠParis": 8380, + "ĠPark": 4964, + "ĠParker": 20155, + "ĠParkinson": 35823, + "ĠParks": 30431, + "ĠParl": 29666, + "ĠParlament": 37487, + "ĠParliament": 15538, + "ĠParr": 47890, + "ĠPars": 49691, + "ĠPart": 4100, + "ĠParte": 47689, + "ĠParticip": 35247, + "ĠParticularly": 32281, + "ĠPartner": 32736, + "ĠPartners": 28058, + "ĠPartnership": 49589, + "ĠParty": 8552, + "ĠPas": 14199, + "ĠPascal": 41723, + "ĠPass": 10319, + "ĠPassion": 45554, + "ĠPassover": 48016, + "ĠPast": 18408, + "ĠPaste": 43827, + "ĠPastor": 34289, + "ĠPat": 4379, + "ĠPatch": 44359, + "ĠPath": 21914, + "ĠPatient": 25173, + "ĠPatienten": 46294, + "ĠPatreon": 15692, + "ĠPatri": 31071, + "ĠPatricia": 34307, + "ĠPatrick": 13980, + "ĠPatrol": 34967, + "ĠPatt": 46332, + "ĠPatter": 34367, + "ĠPatty": 44116, + "ĠPaty": 43760, + "ĠPaul": 4552, + "ĠPaula": 31663, + "ĠPaulo": 21801, + "ĠPause": 31973, + "ĠPav": 39062, + "ĠPaw": 33551, + "ĠPay": 11431, + "ĠPayPal": 39906, + "ĠPaÅĦst": 25189, + "ĠPaÅĦstwo": 42239, + "ĠPe": 2396, + "ĠPeace": 13204, + "ĠPeach": 34138, + "ĠPeak": 43604, + "ĠPeanut": 48069, + "ĠPear": 45461, + "ĠPearl": 24639, + "ĠPearson": 39041, + "ĠPed": 16689, + "ĠPedro": 26662, + "ĠPeg": 28007, + "ĠPeki": 36598, + "ĠPel": 21083, + "ĠPelosi": 44145, + "ĠPen": 10571, + "ĠPence": 48402, + "ĠPend": 38048, + "ĠPeng": 25783, + "ĠPenguin": 49562, + "ĠPeninsula": 40922, + "ĠPenn": 12667, + "ĠPennsy": 17704, + "ĠPennsylvania": 17963, + "ĠPenny": 32009, + "ĠPens": 45035, + "ĠPent": 20165, + "ĠPentagon": 36371, + "ĠPeople": 3432, + "ĠPep": 28637, + "ĠPepper": 30231, + "ĠPepsi": 42311, + "ĠPer": 3026, + "ĠPerché": 47978, + "ĠPercy": 46216, + "ĠPerd": 47633, + "ĠPere": 49349, + "ĠPerez": 47317, + "ĠPerfect": 10246, + "ĠPerform": 19351, + "ĠPerformance": 25047, + "ĠPerhaps": 10517, + "ĠPeriod": 34976, + "ĠPerm": 41006, + "ĠPero": 9377, + "ĠPerquè": 46133, + "ĠPerry": 17334, + "ĠPers": 14006, + "ĠPersian": 30699, + "ĠPerson": 8443, + "ĠPersonal": 25317, + "ĠPersonality": 44523, + "ĠPersonally": 21079, + "ĠPersonen": 40942, + "ĠPeru": 31571, + "ĠPerò": 20533, + "ĠPet": 10472, + "ĠPete": 19013, + "ĠPeter": 6508, + "ĠPeters": 26028, + "ĠPetersburg": 42367, + "ĠPeterson": 36943, + "ĠPew": 30638, + "ĠPey": 36206, + "ĠPf": 17331, + "ĠPfizer": 34694, + "ĠPh": 2623, + "ĠPhD": 14476, + "ĠPhantom": 34689, + "ĠPhar": 45050, + "ĠPharaoh": 43444, + "ĠPharise": 47742, + "ĠPharm": 44032, + "ĠPhase": 24432, + "ĠPhew": 46679, + "ĠPhi": 41435, + "ĠPhil": 7777, + "ĠPhiladelphia": 21205, + "ĠPhilip": 21144, + "ĠPhilipp": 13694, + "ĠPhilippines": 20153, + "ĠPhill": 18433, + "ĠPhillip": 44051, + "ĠPhillips": 24565, + "ĠPhilos": 31182, + "ĠPhilosophy": 43655, + "ĠPho": 14936, + "ĠPhoenix": 18383, + "ĠPhone": 30713, + "ĠPhot": 13919, + "ĠPhoto": 39175, + "ĠPhotoshop": 20821, + "ĠPhys": 15542, + "ĠPhysical": 31918, + "ĠPhysics": 38355, + "ĠPi": 17741, + "ĠPic": 25895, + "ĠPicas": 48198, + "ĠPicasso": 49708, + "ĠPick": 14129, + "ĠPict": 23899, + "ĠPicture": 35730, + "ĠPictures": 45877, + "ĠPie": 22914, + "ĠPiece": 42868, + "ĠPier": 16676, + "ĠPierce": 45432, + "ĠPierre": 28461, + "ĠPiet": 41970, + "ĠPig": 27322, + "ĠPik": 26544, + "ĠPikachu": 35785, + "ĠPike": 46791, + "ĠPil": 18026, + "ĠPill": 44656, + "ĠPilot": 39193, + "ĠPin": 22619, + "ĠPine": 33531, + "ĠPing": 33645, + "ĠPink": 17118, + "ĠPinterest": 37986, + "ĠPione": 48844, + "ĠPip": 35396, + "ĠPir": 24161, + "ĠPis": 43263, + "ĠPit": 32136, + "ĠPitt": 22861, + "ĠPitts": 29478, + "ĠPittsburgh": 33626, + "ĠPix": 18652, + "ĠPixar": 46695, + "ĠPixel": 28323, + "ĠPizza": 24469, + "ĠPl": 2149, + "ĠPla": 19942, + "ĠPlace": 13637, + "ĠPlaid": 30030, + "ĠPlan": 8112, + "ĠPlanet": 22146, + "ĠPlanning": 29308, + "ĠPlant": 28995, + "ĠPlat": 17461, + "ĠPlate": 46043, + "ĠPlatform": 28707, + "ĠPlato": 43027, + "ĠPlatz": 27595, + "ĠPlay": 5506, + "ĠPlayStation": 20599, + "ĠPlayer": 24920, + "ĠPlayers": 35808, + "ĠPlaying": 24801, + "ĠPlaystation": 42787, + "ĠPlaza": 41890, + "ĠPle": 25658, + "ĠPlease": 2555, + "ĠPlug": 40740, + "ĠPlus": 7721, + "ĠPluto": 41205, + "ĠPo": 6165, + "ĠPocket": 44594, + "ĠPod": 12646, + "ĠPodcast": 29972, + "ĠPode": 39168, + "ĠPoint": 12387, + "ĠPoints": 44763, + "ĠPois": 48274, + "ĠPok": 14958, + "ĠPoke": 12645, + "ĠPokemon": 13796, + "ĠPokémon": 20104, + "ĠPol": 3635, + "ĠPoland": 15950, + "ĠPole": 34212, + "ĠPolice": 11882, + "ĠPolicy": 21708, + "ĠPolish": 18504, + "ĠPolit": 13812, + "ĠPolitical": 34265, + "ĠPolitics": 45348, + "ĠPolitik": 29847, + "ĠPolize": 30735, + "ĠPolizei": 35297, + "ĠPoll": 31304, + "ĠPolsce": 35567, + "ĠPolski": 44589, + "ĠPoly": 18553, + "ĠPom": 21227, + "ĠPompe": 38527, + "ĠPon": 31756, + "ĠPont": 41127, + "ĠPool": 46188, + "ĠPoor": 23591, + "ĠPop": 10215, + "ĠPope": 19291, + "ĠPoppy": 47996, + "ĠPopular": 37637, + "ĠPor": 5269, + "ĠPork": 33159, + "ĠPorque": 11287, + "ĠPors": 29416, + "ĠPorsche": 31044, + "ĠPort": 6733, + "ĠPortal": 38281, + "ĠPorter": 42609, + "ĠPortland": 25020, + "ĠPortugal": 23011, + "ĠPortuguese": 22759, + "ĠPos": 25906, + "ĠPose": 40174, + "ĠPosition": 29780, + "ĠPositive": 46326, + "ĠPoss": 33112, + "ĠPost": 10223, + "ĠPot": 9145, + "ĠPotato": 34035, + "ĠPotter": 18115, + "ĠPour": 8732, + "ĠPourquoi": 30333, + "ĠPow": 14762, + "ĠPowder": 35781, + "ĠPowell": 34176, + "ĠPower": 7086, + "ĠPowerPoint": 25584, + "ĠPowers": 47278, + "ĠPr": 2114, + "ĠPra": 12133, + "ĠPrab": 48995, + "ĠPract": 19170, + "ĠPractice": 27904, + "ĠPrag": 40067, + "ĠPrague": 45370, + "ĠPraise": 34576, + "ĠPray": 36365, + "ĠPrayer": 45226, + "ĠPre": 6001, + "ĠPrecis": 48746, + "ĠPred": 32969, + "ĠPrefer": 48401, + "ĠPreis": 47042, + "ĠPrem": 13011, + "ĠPremier": 25194, + "ĠPremiere": 39724, + "ĠPremium": 34881, + "ĠPrep": 21684, + "ĠPrepare": 29689, + "ĠPres": 2718, + "ĠPresent": 33253, + "ĠPresents": 38191, + "ĠPresident": 3117, + "ĠPresidential": 41823, + "ĠPresiding": 47365, + "ĠPress": 6776, + "ĠPrest": 35272, + "ĠPret": 9739, + "ĠPretty": 10693, + "ĠPrevention": 38699, + "ĠPreviously": 33606, + "ĠPri": 8087, + "ĠPrice": 25803, + "ĠPride": 30319, + "ĠPriest": 37052, + "ĠPrim": 19671, + "ĠPrimary": 42576, + "ĠPrime": 9655, + "ĠPrin": 9367, + "ĠPrinc": 35841, + "ĠPrince": 9821, + "ĠPrincess": 13903, + "ĠPrinceton": 36592, + "ĠPrinci": 38372, + "ĠPrincip": 32832, + "ĠPrincipal": 38575, + "ĠPrint": 34439, + "ĠPrinzip": 47572, + "ĠPrior": 24032, + "ĠPrison": 38888, + "ĠPriv": 39691, + "ĠPrivate": 30386, + "ĠPrix": 48736, + "ĠPrize": 22604, + "ĠPro": 1705, + "ĠProb": 8736, + "ĠProbably": 9210, + "ĠProblem": 11676, + "ĠProbleme": 32891, + "ĠProcess": 31093, + "ĠProdu": 11793, + "ĠProducer": 33034, + "ĠProduct": 22005, + "ĠProduction": 30088, + "ĠProducts": 47699, + "ĠProdukt": 44599, + "ĠProf": 6039, + "ĠProfess": 7487, + "ĠProfessional": 30011, + "ĠProfessor": 8419, + "ĠProgram": 8338, + "ĠProgramm": 48244, + "ĠPrograms": 44762, + "ĠProgress": 32587, + "ĠProject": 9849, + "ĠProjekt": 34804, + "ĠProm": 15833, + "ĠPromise": 34878, + "ĠPromised": 38478, + "ĠPron": 27723, + "ĠPronounce": 48483, + "ĠPronunciation": 45496, + "ĠProp": 21944, + "ĠProper": 27627, + "ĠProperty": 48966, + "ĠProphet": 12849, + "ĠPros": 26024, + "ĠProse": 50058, + "ĠProt": 10019, + "ĠProte": 43371, + "ĠProtect": 32017, + "ĠProtection": 25981, + "ĠProtest": 27259, + "ĠProtestant": 38345, + "ĠProtocol": 48753, + "ĠProv": 15685, + "ĠProvince": 40649, + "ĠProvost": 45426, + "ĠProzent": 29726, + "ĠPrzy": 39590, + "ĠPräsident": 27513, + "ĠPs": 33903, + "ĠPsaki": 50037, + "ĠPsal": 26150, + "ĠPsalm": 34134, + "ĠPsych": 17303, + "ĠPsychology": 42827, + "ĠPu": 13605, + "ĠPub": 21808, + "ĠPublic": 9489, + "ĠPuerto": 21472, + "ĠPues": 22386, + "ĠPuis": 30033, + "ĠPul": 35568, + "ĠPull": 15074, + "ĠPump": 32863, + "ĠPun": 22574, + "ĠPunch": 32408, + "ĠPunj": 44989, + "ĠPunk": 27852, + "ĠPunkt": 25487, + "ĠPunkte": 47352, + "ĠPur": 14682, + "ĠPurd": 41632, + "ĠPurdue": 42506, + "ĠPure": 29474, + "ĠPurple": 28483, + "ĠPush": 18229, + "ĠPut": 4935, + "ĠPutin": 19818, + "ĠPutting": 31367, + "ĠPv": 41896, + "ĠPy": 9953, + "ĠPython": 15329, + "ĠPÃ¥": 45133, + "ĠQ": 1249, + "ĠQR": 32784, + "ĠQU": 7246, + "ĠQUE": 46026, + "ĠQUES": 8521, + "ĠQUESTION": 8557, + "ĠQatar": 41691, + "ĠQi": 21430, + "ĠQian": 32461, + "ĠQiao": 48046, + "ĠQin": 26999, + "ĠQing": 20089, + "ĠQiu": 49024, + "ĠQu": 2326, + "ĠQuad": 29619, + "ĠQual": 13616, + "ĠQuality": 28892, + "ĠQuan": 35249, + "ĠQuand": 22015, + "ĠQuando": 18725, + "ĠQuant": 26968, + "ĠQuantum": 44964, + "ĠQuarter": 43794, + "ĠQue": 4493, + "ĠQuebec": 38903, + "ĠQueen": 10077, + "ĠQueens": 18414, + "ĠQueensborough": 40722, + "ĠQueensland": 36913, + "ĠQuel": 43521, + "ĠQuem": 32342, + "ĠQuer": 36149, + "ĠQuest": 8800, + "ĠQuestion": 14464, + "ĠQuestions": 27738, + "ĠQuesto": 38167, + "ĠQui": 27361, + "ĠQuick": 12101, + "ĠQuickly": 31800, + "ĠQuiet": 32193, + "ĠQuin": 44761, + "ĠQuindi": 32534, + "ĠQuinn": 36723, + "ĠQuit": 50139, + "ĠQuite": 20464, + "ĠQuiz": 38020, + "ĠQur": 26094, + "ĠQuran": 19375, + "ĠQuè": 31951, + "ĠQué": 23662, + "ĠQuébec": 34510, + "ĠQuá»ijc": 41494, + "ĠR": 497, + "ĠRA": 14626, + "ĠRAM": 14561, + "ĠRAMSAY": 42487, + "ĠRAW": 40539, + "ĠRB": 40302, + "ĠRC": 28987, + "ĠRD": 49488, + "ĠRE": 10869, + "ĠREAL": 48619, + "ĠREALLY": 37117, + "ĠRED": 39346, + "ĠREM": 45991, + "ĠREP": 31511, + "ĠRES": 46926, + "ĠRF": 26204, + "ĠRGB": 31231, + "ĠRH": 50209, + "ĠRI": 30474, + "ĠRICH": 33618, + "ĠRICHARD": 45302, + "ĠRIGHT": 41631, + "ĠRJ": 46810, + "ĠRM": 23790, + "ĠRN": 45702, + "ĠRNA": 22484, + "ĠRO": 9025, + "ĠROB": 38506, + "ĠROBERT": 26458, + "ĠROI": 49808, + "ĠROM": 41678, + "ĠROS": 31904, + "ĠRP": 14105, + "ĠRPG": 22614, + "ĠRPM": 37389, + "ĠRS": 25855, + "ĠRT": 21797, + "ĠRTX": 44573, + "ĠRUS": 43719, + "ĠRV": 28314, + "ĠRW": 42513, + "ĠRX": 46197, + "ĠRYAN": 32354, + "ĠRa": 7591, + "ĠRab": 16781, + "ĠRabb": 36753, + "ĠRabbi": 32768, + "ĠRabbit": 42092, + "ĠRac": 42033, + "ĠRace": 25908, + "ĠRach": 40793, + "ĠRachel": 14246, + "ĠRacing": 38832, + "ĠRad": 9654, + "ĠRadi": 37806, + "ĠRadio": 17296, + "ĠRaf": 29611, + "ĠRafael": 43173, + "ĠRag": 44289, + "ĠRah": 17844, + "ĠRahmen": 39070, + "ĠRail": 23494, + "ĠRails": 48526, + "ĠRain": 14487, + "ĠRainbow": 29477, + "ĠRais": 43374, + "ĠRaise": 30062, + "ĠRaj": 16745, + "ĠRak": 43000, + "ĠRal": 23038, + "ĠRalph": 28131, + "ĠRam": 9078, + "ĠRama": 39828, + "ĠRamadan": 39848, + "ĠRamen": 48728, + "ĠRams": 28990, + "ĠRamsay": 40721, + "ĠRan": 27948, + "ĠRanch": 37740, + "ĠRand": 23614, + "ĠRandom": 37603, + "ĠRandy": 23993, + "ĠRange": 33778, + "ĠRanger": 34222, + "ĠRangers": 40703, + "ĠRank": 35921, + "ĠRap": 16184, + "ĠRapha": 49690, + "ĠRapid": 44580, + "ĠRapt": 38115, + "ĠRare": 43920, + "ĠRas": 24649, + "ĠRash": 46298, + "ĠRaspberry": 41154, + "ĠRat": 24269, + "ĠRate": 49583, + "ĠRather": 16571, + "ĠRaum": 31359, + "ĠRaven": 28956, + "ĠRavi": 44486, + "ĠRaw": 23732, + "ĠRay": 10883, + "ĠRaymond": 42813, + "ĠRaz": 29051, + "ĠRe": 1300, + "ĠReach": 35904, + "ĠReact": 30644, + "ĠRead": 17604, + "ĠReading": 29766, + "ĠReady": 9944, + "ĠReagan": 26534, + "ĠReal": 8467, + "ĠReality": 33822, + "ĠReally": 4083, + "ĠRealm": 44723, + "ĠReaper": 49956, + "ĠReason": 39693, + "ĠRebecca": 19381, + "ĠRebel": 48782, + "ĠRec": 9647, + "ĠRece": 41962, + "ĠRecent": 17553, + "ĠRecently": 20072, + "ĠRecht": 36840, + "ĠRechts": 36597, + "ĠRecogn": 44682, + "ĠRecomm": 49545, + "ĠRecord": 27401, + "ĠRecords": 31928, + "ĠRecovery": 35254, + "ĠRed": 4477, + "ĠReddit": 32210, + "ĠRede": 39056, + "ĠRedmi": 47766, + "ĠRee": 38231, + "ĠReed": 32071, + "ĠReese": 49474, + "ĠRef": 16957, + "ĠRefer": 36889, + "ĠReform": 38489, + "ĠReg": 4791, + "ĠRegard": 16613, + "ĠRegarding": 35523, + "ĠRegardless": 25148, + "ĠRegel": 33139, + "ĠRegent": 36687, + "ĠRegierung": 42979, + "ĠRegina": 48407, + "ĠRegion": 25121, + "ĠRegional": 30341, + "ĠRegister": 43167, + "ĠRegular": 45659, + "ĠRei": 34549, + "ĠReich": 33111, + "ĠReid": 46912, + "ĠRein": 42116, + "ĠRel": 8738, + "ĠRelations": 28663, + "ĠRelax": 25886, + "ĠRelease": 34278, + "ĠRelig": 33436, + "ĠReligion": 40127, + "ĠRem": 4080, + "ĠRemember": 5459, + "ĠRemo": 46445, + "ĠRemote": 44858, + "ĠRemove": 18831, + "ĠRen": 12883, + "ĠRena": 23068, + "ĠRenaissance": 32642, + "ĠRend": 48174, + "ĠRenee": 47790, + "ĠReno": 44404, + "ĠRent": 42743, + "ĠRep": 3696, + "ĠRepe": 24927, + "ĠRepeat": 28523, + "ĠRepl": 47762, + "ĠReport": 16057, + "ĠReporter": 26520, + "ĠReporting": 44229, + "ĠReports": 45910, + "ĠRepresent": 19945, + "ĠRepresentative": 33421, + "ĠRepresentatives": 37543, + "ĠRepublic": 5564, + "ĠRepublican": 10937, + "ĠRepublicans": 12017, + "ĠRepública": 45917, + "ĠRequ": 42029, + "ĠRes": 5015, + "ĠRescue": 39379, + "ĠResearch": 10303, + "ĠResearchers": 43555, + "ĠReserve": 26049, + "ĠResident": 29563, + "ĠResistance": 45647, + "ĠResource": 35200, + "ĠResources": 29706, + "ĠResp": 22480, + "ĠRespect": 39079, + "ĠRespons": 46003, + "ĠResponse": 43937, + "ĠRest": 13094, + "ĠRestaur": 31712, + "ĠRestaurant": 38870, + "ĠRet": 11495, + "ĠReturn": 24350, + "ĠRev": 12127, + "ĠRevel": 26211, + "ĠRevelation": 28979, + "ĠRever": 26314, + "ĠReverend": 44896, + "ĠReview": 19954, + "ĠRevolution": 16617, + "ĠRex": 35678, + "ĠRey": 17547, + "ĠReynolds": 29516, + "ĠRh": 16111, + "ĠRhod": 36951, + "ĠRhode": 40202, + "ĠRhodes": 45973, + "ĠRi": 33668, + "ĠRib": 38554, + "ĠRic": 21215, + "ĠRica": 42080, + "ĠRicardo": 42634, + "ĠRice": 19386, + "ĠRich": 6781, + "ĠRichard": 9809, + "ĠRichards": 33021, + "ĠRichardson": 48492, + "ĠRichmond": 39060, + "ĠRicht": 22659, + "ĠRichtung": 33023, + "ĠRick": 11224, + "ĠRicky": 25247, + "ĠRico": 22643, + "ĠRid": 30619, + "ĠRide": 35042, + "ĠRider": 40150, + "ĠRidge": 32313, + "ĠRif": 48549, + "ĠRig": 42720, + "ĠRight": 1779, + "ĠRights": 16352, + "ĠRiley": 31373, + "ĠRim": 44034, + "ĠRin": 33170, + "ĠRing": 19844, + "ĠRings": 38543, + "ĠRio": 18719, + "ĠRiot": 49536, + "ĠRip": 34677, + "ĠRis": 30897, + "ĠRise": 34482, + "ĠRising": 45957, + "ĠRisk": 45892, + "ĠRita": 32672, + "ĠRiv": 47620, + "ĠRiver": 8640, + "ĠRivera": 47388, + "ĠRivers": 36646, + "ĠRo": 3101, + "ĠRoad": 11507, + "ĠRob": 5424, + "ĠRobbie": 45749, + "ĠRober": 15800, + "ĠRobert": 7977, + "ĠRoberto": 40354, + "ĠRoberts": 20919, + "ĠRobin": 16533, + "ĠRobinson": 25105, + "ĠRobot": 29601, + "ĠRoc": 32661, + "ĠRochester": 39895, + "ĠRock": 6922, + "ĠRockef": 50178, + "ĠRocket": 29651, + "ĠRocky": 26916, + "ĠRod": 11097, + "ĠRodrig": 25904, + "ĠRodriguez": 37304, + "ĠRog": 11860, + "ĠRoger": 17666, + "ĠRogers": 29877, + "ĠRogue": 43770, + "ĠRoh": 27490, + "ĠRoland": 39357, + "ĠRolex": 36234, + "ĠRoll": 9926, + "ĠRolle": 35376, + "ĠRolling": 36457, + "ĠRom": 10141, + "ĠRoma": 31892, + "ĠRoman": 8566, + "ĠRomania": 36678, + "ĠRomanian": 49963, + "ĠRomans": 20252, + "ĠRome": 12043, + "ĠRomeo": 33563, + "ĠRon": 9949, + "ĠRonald": 27397, + "ĠRonaldo": 46132, + "ĠRong": 43383, + "ĠRonnie": 46131, + "ĠRoom": 19190, + "ĠRoose": 27349, + "ĠRoosevelt": 28515, + "ĠRos": 11144, + "ĠRosa": 30572, + "ĠRose": 12765, + "ĠRosen": 33630, + "ĠRosie": 40521, + "ĠRoss": 16140, + "ĠRot": 17681, + "ĠRoth": 28089, + "ĠRou": 28392, + "ĠRouge": 47607, + "ĠRough": 42791, + "ĠRound": 18525, + "ĠRoute": 39142, + "ĠRover": 43278, + "ĠRow": 20309, + "ĠRox": 44427, + "ĠRoy": 8751, + "ĠRoyal": 12717, + "ĠRoz": 43313, + "ĠRs": 21643, + "ĠRu": 15702, + "ĠRub": 10518, + "ĠRuby": 19907, + "ĠRud": 18636, + "ĠRudolph": 47292, + "ĠRudy": 38690, + "ĠRug": 50057, + "ĠRule": 27533, + "ĠRules": 38897, + "ĠRum": 31963, + "ĠRun": 8950, + "ĠRunner": 50105, + "ĠRunning": 28136, + "ĠRus": 13155, + "ĠRush": 28389, + "ĠRusia": 48520, + "ĠRuss": 3878, + "ĠRussell": 20937, + "ĠRussia": 6797, + "ĠRussian": 7220, + "ĠRussians": 20605, + "ĠRust": 34952, + "ĠRut": 42723, + "ĠRuth": 23544, + "ĠRy": 13654, + "ĠRyan": 9116, + "ĠRyu": 41599, + "ĠRép": 41587, + "ĠRépublique": 46646, + "ĠRück": 35001, + "ĠS": 318, + "ĠSA": 16482, + "ĠSAL": 40713, + "ĠSAM": 9617, + "ĠSAN": 49557, + "ĠSAND": 44097, + "ĠSAP": 27743, + "ĠSAR": 18748, + "ĠSARAH": 41666, + "ĠSARS": 34233, + "ĠSAS": 33441, + "ĠSAT": 31536, + "ĠSAY": 42948, + "ĠSB": 26944, + "ĠSBS": 41788, + "ĠSC": 9028, + "ĠSCH": 23539, + "ĠSCOTT": 41181, + "ĠSCP": 18489, + "ĠSD": 14638, + "ĠSDK": 37135, + "ĠSE": 10269, + "ĠSEC": 22399, + "ĠSECRET": 47627, + "ĠSEE": 44712, + "ĠSEN": 47770, + "ĠSEO": 22964, + "ĠSER": 36772, + "ĠSEÃij": 40677, + "ĠSF": 31095, + "ĠSG": 34520, + "ĠSH": 7405, + "ĠSHA": 38820, + "ĠSHE": 44179, + "ĠSI": 29083, + "ĠSIM": 24738, + "ĠSJ": 44883, + "ĠSK": 21483, + "ĠSL": 22999, + "ĠSM": 13115, + "ĠSMITH": 46156, + "ĠSMS": 38107, + "ĠSN": 13955, + "ĠSO": 10621, + "ĠSOL": 36011, + "ĠSOUND": 45383, + "ĠSP": 8420, + "ĠSPD": 19572, + "ĠSPE": 37173, + "ĠSPEAK": 11824, + "ĠSPEAKER": 12081, + "ĠSQL": 19200, + "ĠSR": 20840, + "ĠSS": 12238, + "ĠSSD": 30262, + "ĠST": 4904, + "ĠSTACK": 49114, + "ĠSTAR": 47816, + "ĠSTART": 49326, + "ĠSTE": 20039, + "ĠSTEM": 25043, + "ĠSTEP": 28143, + "ĠSTEPHAN": 46423, + "ĠSTEVE": 40878, + "ĠSTEVEN": 48312, + "ĠSTOP": 38344, + "ĠSTR": 43013, + "ĠSTUD": 36988, + "ĠSTUDENT": 41833, + "ĠSU": 9872, + "ĠSUBSCRI": 32563, + "ĠSUBSCRIBE": 33817, + "ĠSUN": 42596, + "ĠSUPER": 49342, + "ĠSUR": 37269, + "ĠSUS": 40117, + "ĠSUV": 28452, + "ĠSV": 31910, + "ĠSW": 20346, + "ĠSY": 32624, + "ĠSa": 6299, + "ĠSaaS": 49733, + "ĠSab": 13915, + "ĠSabb": 34003, + "ĠSabbath": 36618, + "ĠSabrina": 45439, + "ĠSac": 19356, + "ĠSach": 25626, + "ĠSache": 31452, + "ĠSachen": 26074, + "ĠSacramento": 38360, + "ĠSacred": 47074, + "ĠSad": 12269, + "ĠSadhguru": 40000, + "ĠSadly": 29628, + "ĠSaf": 14152, + "ĠSafari": 43820, + "ĠSafe": 27030, + "ĠSafety": 21340, + "ĠSag": 34551, + "ĠSage": 33812, + "ĠSah": 18280, + "ĠSahib": 43545, + "ĠSai": 27987, + "ĠSaid": 26490, + "ĠSail": 42014, + "ĠSaint": 12902, + "ĠSaints": 39022, + "ĠSak": 18025, + "ĠSakura": 48051, + "ĠSal": 5996, + "ĠSale": 48922, + "ĠSalem": 49619, + "ĠSales": 23467, + "ĠSalesforce": 40398, + "ĠSally": 26385, + "ĠSalt": 19503, + "ĠSalut": 33559, + "ĠSalv": 28596, + "ĠSalvador": 32586, + "ĠSalz": 46283, + "ĠSam": 4832, + "ĠSamantha": 33521, + "ĠSame": 10635, + "ĠSami": 44029, + "ĠSammy": 44316, + "ĠSams": 12666, + "ĠSamsung": 13173, + "ĠSamuel": 23036, + "ĠSan": 5271, + "ĠSana": 29200, + "ĠSand": 7985, + "ĠSanders": 21734, + "ĠSandra": 28184, + "ĠSandy": 27390, + "ĠSang": 19037, + "ĠSans": 21504, + "ĠSanskrit": 44392, + "ĠSant": 17315, + "ĠSanta": 9933, + "ĠSanti": 34815, + "ĠSantiago": 37621, + "ĠSanto": 49639, + "ĠSantos": 36962, + "ĠSap": 49287, + "ĠSapp": 46814, + "ĠSar": 6894, + "ĠSara": 18694, + "ĠSarah": 9519, + "ĠSas": 36613, + "ĠSasha": 29276, + "ĠSask": 48963, + "ĠSat": 5344, + "ĠSatan": 16583, + "ĠSaturday": 8803, + "ĠSaturn": 24601, + "ĠSau": 22557, + "ĠSauce": 36720, + "ĠSaud": 15717, + "ĠSaudi": 18121, + "ĠSaul": 35661, + "ĠSav": 12346, + "ĠSavage": 46699, + "ĠSavannah": 47902, + "ĠSave": 15541, + "ĠSavior": 29310, + "ĠSaw": 27307, + "ĠSax": 48379, + "ĠSay": 6463, + "ĠSaya": 16568, + "ĠSaying": 34087, + "ĠSays": 36780, + "ĠSc": 2747, + "ĠSca": 47082, + "ĠScale": 42999, + "ĠScalia": 47899, + "ĠScan": 41177, + "ĠScandin": 42403, + "ĠScar": 23181, + "ĠScary": 45504, + "ĠScene": 46297, + "ĠSch": 2065, + "ĠSche": 25321, + "ĠSched": 44926, + "ĠSchl": 16420, + "ĠSchluss": 36573, + "ĠSchmidt": 42621, + "ĠSchn": 45748, + "ĠSchne": 30343, + "ĠSchol": 27866, + "ĠScholars": 33846, + "ĠSchon": 46049, + "ĠSchool": 5070, + "ĠSchools": 26997, + "ĠSchr": 46191, + "ĠSchritt": 33062, + "ĠSchul": 21223, + "ĠSchuld": 50153, + "ĠSchule": 32953, + "ĠSchulen": 41909, + "ĠSchutz": 37469, + "ĠSchw": 17576, + "ĠSchwar": 46487, + "ĠSchwe": 24343, + "ĠSchweiz": 46834, + "ĠSchön": 41060, + "ĠSchüler": 39776, + "ĠSci": 16942, + "ĠScience": 8976, + "ĠSciences": 21108, + "ĠScient": 18944, + "ĠScientific": 47437, + "ĠScientists": 32958, + "ĠSco": 27682, + "ĠScore": 47901, + "ĠScorp": 38814, + "ĠScot": 9534, + "ĠScotland": 11180, + "ĠScott": 6659, + "ĠScottish": 13777, + "ĠScout": 33971, + "ĠScr": 34944, + "ĠScreen": 25823, + "ĠScrew": 42630, + "ĠScript": 15675, + "ĠScripture": 22888, + "ĠScriptures": 46522, + "ĠScroll": 35395, + "ĠSe": 1100, + "ĠSea": 11352, + "ĠSeal": 46207, + "ĠSean": 14839, + "ĠSearch": 17180, + "ĠSeason": 16465, + "ĠSeattle": 15721, + "ĠSeb": 22374, + "ĠSebastian": 31102, + "ĠSec": 3306, + "ĠSecond": 5736, + "ĠSecondly": 19483, + "ĠSecret": 7400, + "ĠSecretary": 9126, + "ĠSect": 46244, + "ĠSection": 21804, + "ĠSecurity": 11164, + "ĠSed": 31213, + "ĠSee": 3008, + "ĠSeeing": 19703, + "ĠSeems": 22524, + "ĠSeg": 21595, + "ĠSega": 32114, + "ĠSehr": 32028, + "ĠSei": 49229, + "ĠSeit": 34321, + "ĠSeite": 19748, + "ĠSeiten": 45200, + "ĠSek": 24285, + "ĠSel": 10736, + "ĠSelbst": 29712, + "ĠSelect": 13638, + "ĠSelena": 39146, + "ĠSelf": 16348, + "ĠSell": 44296, + "ĠSem": 14421, + "ĠSempre": 49724, + "ĠSen": 3862, + "ĠSenate": 9867, + "ĠSenator": 10893, + "ĠSend": 17908, + "ĠSenhor": 43792, + "ĠSeni": 42752, + "ĠSenin": 36134, + "ĠSenior": 18370, + "ĠSens": 40926, + "ĠSense": 33123, + "ĠSent": 23652, + "ĠSentinel": 49498, + "ĠSeo": 30877, + "ĠSeok": 34565, + "ĠSeong": 40333, + "ĠSeoul": 17100, + "ĠSep": 22012, + "ĠSepar": 43480, + "ĠSept": 6978, + "ĠSeptember": 7216, + "ĠSequ": 46859, + "ĠSer": 4210, + "ĠSerbia": 39461, + "ĠSerge": 18885, + "ĠSergeant": 31149, + "ĠSergey": 49238, + "ĠSergio": 45078, + "ĠSerie": 49135, + "ĠSeries": 13934, + "ĠSeriously": 14063, + "ĠServ": 6213, + "ĠServe": 45663, + "ĠServer": 25684, + "ĠService": 9561, + "ĠServices": 12124, + "ĠSerá": 42968, + "ĠSes": 29827, + "ĠSesame": 47686, + "ĠSet": 8928, + "ĠSeth": 25353, + "ĠSetting": 21063, + "ĠSettings": 27286, + "ĠSeung": 20384, + "ĠSev": 28960, + "ĠSeven": 14868, + "ĠSever": 19635, + "ĠSeveral": 22246, + "ĠSew": 42697, + "ĠSex": 29037, + "ĠSexual": 45449, + "ĠSeñ": 30807, + "ĠSeñor": 35054, + "ĠSh": 1160, + "ĠSha": 14944, + "ĠShadow": 19036, + "ĠShah": 21159, + "ĠShak": 47459, + "ĠShake": 27809, + "ĠShakes": 22094, + "ĠShakespeare": 22825, + "ĠShakt": 40867, + "ĠShall": 12128, + "ĠSham": 42912, + "ĠShame": 46835, + "ĠShan": 25536, + "ĠShane": 25865, + "ĠShang": 19316, + "ĠShanghai": 26135, + "ĠShank": 45264, + "ĠShannon": 28974, + "ĠShap": 44160, + "ĠShape": 49148, + "ĠShar": 22030, + "ĠShare": 14945, + "ĠSharing": 49060, + "ĠShark": 36347, + "ĠSharon": 28573, + "ĠSharp": 31654, + "ĠShaun": 49363, + "ĠShaw": 27132, + "ĠShawn": 28634, + "ĠShay": 31212, + "ĠShe": 1240, + "ĠSheikh": 46160, + "ĠSheila": 48832, + "ĠShel": 24415, + "ĠShelby": 37517, + "ĠShell": 22863, + "ĠShelley": 42337, + "ĠShen": 22636, + "ĠSheng": 40544, + "ĠShepherd": 43395, + "ĠSher": 11789, + "ĠSheriff": 32492, + "ĠSherlock": 37769, + "ĠSherman": 45130, + "ĠShh": 41429, + "ĠShi": 25580, + "ĠShield": 28539, + "ĠShift": 28304, + "ĠShim": 32683, + "ĠShin": 17347, + "ĠShine": 46460, + "ĠShiny": 49683, + "ĠShip": 38407, + "ĠShir": 27239, + "ĠShirley": 43275, + "ĠShit": 19593, + "ĠShiv": 47839, + "ĠShiva": 34729, + "ĠSho": 31404, + "ĠShock": 39474, + "ĠShoot": 19760, + "ĠShooting": 45739, + "ĠShop": 16319, + "ĠShopify": 43991, + "ĠShore": 47977, + "ĠShort": 16881, + "ĠShortly": 40109, + "ĠShot": 28845, + "ĠShould": 6454, + "ĠShouldn": 34170, + "ĠShout": 32749, + "ĠShow": 6895, + "ĠShrim": 47827, + "ĠShu": 26655, + "ĠShut": 13870, + "ĠShy": 45250, + "ĠSi": 4909, + "ĠSiber": 42608, + "ĠSic": 39155, + "ĠSich": 47135, + "ĠSicher": 25292, + "ĠSicherheit": 38778, + "ĠSicht": 36615, + "ĠSick": 43471, + "ĠSid": 19797, + "ĠSide": 19026, + "ĠSie": 3559, + "ĠSierra": 25182, + "ĠSig": 37763, + "ĠSigma": 36595, + "ĠSign": 13515, + "ĠSignal": 43414, + "ĠSikh": 46657, + "ĠSil": 6943, + "ĠSilence": 34570, + "ĠSilent": 40862, + "ĠSilicon": 25351, + "ĠSilk": 43853, + "ĠSilva": 50171, + "ĠSilver": 15861, + "ĠSim": 3998, + "ĠSimilar": 10905, + "ĠSimilarly": 13157, + "ĠSimmons": 42516, + "ĠSimon": 13193, + "ĠSimone": 41652, + "ĠSimple": 21532, + "ĠSimply": 19596, + "ĠSimpson": 38184, + "ĠSims": 33289, + "ĠSin": 11187, + "ĠSince": 4162, + "ĠSind": 35405, + "ĠSing": 7474, + "ĠSingapore": 14491, + "ĠSinger": 44184, + "ĠSingh": 27529, + "ĠSinging": 39483, + "ĠSingle": 31248, + "ĠSinn": 37962, + "ĠSinne": 47041, + "ĠSir": 6144, + "ĠSiri": 33682, + "ĠSis": 33514, + "ĠSister": 14145, + "ĠSisters": 43166, + "ĠSit": 14523, + "ĠSite": 34027, + "ĠSith": 43860, + "ĠSitting": 43129, + "ĠSituation": 22247, + "ĠSix": 11678, + "ĠSixt": 47374, + "ĠSiz": 26672, + "ĠSize": 35818, + "ĠSk": 7324, + "ĠSke": 32344, + "ĠSket": 45012, + "ĠSketch": 49245, + "ĠSkill": 40737, + "ĠSkills": 27856, + "ĠSkillshare": 42991, + "ĠSkin": 26333, + "ĠSkip": 46405, + "ĠSky": 9879, + "ĠSkype": 31743, + "ĠSkywalker": 49220, + "ĠSl": 6187, + "ĠSlack": 37211, + "ĠSleep": 19383, + "ĠSleeping": 49618, + "ĠSlide": 26405, + "ĠSlim": 47428, + "ĠSlo": 22497, + "ĠSloven": 50122, + "ĠSlow": 17703, + "ĠSlowly": 29674, + "ĠSm": 3915, + "ĠSmack": 35399, + "ĠSmall": 15287, + "ĠSmart": 12923, + "ĠSmash": 25768, + "ĠSmells": 44355, + "ĠSmile": 38499, + "ĠSmith": 8538, + "ĠSmithson": 44350, + "ĠSmithsonian": 46013, + "ĠSmoke": 36191, + "ĠSmooth": 42404, + "ĠSn": 9264, + "ĠSna": 41539, + "ĠSnake": 33885, + "ĠSnap": 18254, + "ĠSnapchat": 31579, + "ĠSnapdragon": 48211, + "ĠSne": 41336, + "ĠSno": 42902, + "ĠSnow": 14827, + "ĠSny": 49464, + "ĠSo": 407, + "ĠSoc": 43627, + "ĠSoci": 12276, + "ĠSocial": 9909, + "ĠSociety": 13742, + "ĠSod": 42059, + "ĠSofia": 42611, + "ĠSoft": 16985, + "ĠSoftware": 27428, + "ĠSol": 7026, + "ĠSolar": 22385, + "ĠSold": 20064, + "ĠSoldier": 34660, + "ĠSole": 48073, + "ĠSolid": 26664, + "ĠSolo": 26452, + "ĠSolomon": 32209, + "ĠSolutions": 36295, + "ĠSom": 12297, + "ĠSome": 2188, + "ĠSomebody": 13463, + "ĠSomehow": 28357, + "ĠSomeone": 8734, + "ĠSomet": 3379, + "ĠSomething": 6595, + "ĠSometimes": 4803, + "ĠSomewhere": 34500, + "ĠSommer": 35022, + "ĠSon": 5185, + "ĠSong": 11862, + "ĠSongs": 48541, + "ĠSonic": 14290, + "ĠSono": 48344, + "ĠSonra": 41379, + "ĠSony": 13575, + "ĠSoo": 28784, + "ĠSoon": 17610, + "ĠSoph": 18921, + "ĠSophia": 35152, + "ĠSophie": 29645, + "ĠSor": 21421, + "ĠSora": 46639, + "ĠSorry": 4919, + "ĠSort": 26149, + "ĠSou": 31458, + "ĠSoul": 13588, + "ĠSouls": 30258, + "ĠSound": 14673, + "ĠSounds": 14576, + "ĠSoup": 40648, + "ĠSource": 29629, + "ĠSouth": 4242, + "ĠSoutheast": 27906, + "ĠSouthern": 13724, + "ĠSouthwest": 31708, + "ĠSovi": 37477, + "ĠSoviet": 11348, + "ĠSoviets": 41354, + "ĠSow": 48644, + "ĠSoy": 24758, + "ĠSozial": 36867, + "ĠSp": 1738, + "ĠSpa": 23729, + "ĠSpace": 8705, + "ĠSpaceX": 30585, + "ĠSpain": 12838, + "ĠSpanish": 8058, + "ĠSpark": 23424, + "ĠSpart": 36014, + "ĠSpaÃŁ": 27460, + "ĠSpe": 3550, + "ĠSpeak": 27868, + "ĠSpeaker": 8454, + "ĠSpeaking": 13069, + "ĠSpec": 20484, + "ĠSpecial": 11863, + "ĠSpecifically": 26058, + "ĠSpect": 27078, + "ĠSpeech": 48385, + "ĠSpeed": 18774, + "ĠSpencer": 31996, + "ĠSpicy": 35999, + "ĠSpider": 17733, + "ĠSpiel": 14266, + "ĠSpieler": 44053, + "ĠSpike": 46286, + "ĠSpin": 29185, + "ĠSpirit": 7218, + "ĠSpiritual": 38929, + "ĠSpit": 39108, + "ĠSpl": 19788, + "ĠSplit": 45111, + "ĠSpo": 45011, + "ĠSponge": 43742, + "ĠSport": 17549, + "ĠSports": 20191, + "ĠSpot": 19102, + "ĠSpotify": 29036, + "ĠSpr": 7702, + "ĠSpread": 30308, + "ĠSpring": 14013, + "ĠSprings": 33065, + "ĠSprinkle": 47331, + "ĠSpy": 35854, + "ĠSqu": 8683, + "ĠSquad": 26596, + "ĠSquare": 16463, + "ĠSque": 31449, + "ĠSqueeze": 47603, + "ĠSquid": 46178, + "ĠSr": 38988, + "ĠSri": 25120, + "ĠSt": 745, + "ĠSta": 16959, + "ĠStaat": 45559, + "ĠStaats": 33928, + "ĠStack": 37649, + "ĠStacy": 43644, + "ĠStadium": 32976, + "ĠStadt": 20550, + "ĠStaff": 16440, + "ĠStage": 25907, + "ĠStalin": 32126, + "ĠStall": 48010, + "ĠStamp": 48011, + "ĠStan": 10061, + "ĠStand": 9133, + "ĠStandard": 21298, + "ĠStandards": 44546, + "ĠStanding": 33655, + "ĠStanford": 20374, + "ĠStanley": 28329, + "ĠStar": 5705, + "ĠStarbucks": 26303, + "ĠStark": 28967, + "ĠStars": 20957, + "ĠStart": 6481, + "ĠStarted": 39715, + "ĠStarting": 16217, + "ĠStat": 16249, + "ĠState": 4533, + "ĠStates": 3040, + "ĠStation": 14467, + "ĠStatistics": 49226, + "ĠStatus": 47409, + "ĠStay": 8691, + "ĠSte": 3592, + "ĠSteam": 22517, + "ĠSteel": 26038, + "ĠStef": 43421, + "ĠStefan": 32158, + "ĠStein": 29453, + "ĠStell": 37364, + "ĠStella": 45073, + "ĠStelle": 26629, + "ĠStellen": 41893, + "ĠStep": 5470, + "ĠSteph": 31418, + "ĠStephan": 16672, + "ĠStephanie": 18634, + "ĠStephen": 13391, + "ĠSter": 33539, + "ĠStern": 39538, + "ĠSteuer": 44250, + "ĠSteve": 7466, + "ĠSteven": 12754, + "ĠStevens": 41727, + "ĠStevie": 47499, + "ĠStew": 22735, + "ĠStewart": 25951, + "ĠStick": 22744, + "ĠStill": 8291, + "ĠStir": 23353, + "ĠStitch": 44871, + "ĠStock": 17857, + "ĠStockholm": 38730, + "ĠStone": 15012, + "ĠStones": 49982, + "ĠStop": 5535, + "ĠStorage": 36308, + "ĠStore": 17242, + "ĠStories": 31797, + "ĠStorm": 20494, + "ĠStory": 14484, + "ĠStr": 8251, + "ĠStra": 12875, + "ĠStraight": 26908, + "ĠStrand": 47517, + "ĠStrange": 29068, + "ĠStrateg": 30064, + "ĠStrategic": 47805, + "ĠStrategy": 40915, + "ĠStraw": 35104, + "ĠStrawberry": 45906, + "ĠStraÃŁe": 43817, + "ĠStraÃŁen": 48925, + "ĠStre": 19597, + "ĠStream": 24904, + "ĠStreet": 7638, + "ĠStrength": 39251, + "ĠStress": 38258, + "ĠStretch": 38817, + "ĠStri": 20390, + "ĠStrike": 32788, + "ĠStro": 42196, + "ĠStrom": 39126, + "ĠStrong": 22792, + "ĠStu": 25203, + "ĠStuart": 36236, + "ĠStud": 4541, + "ĠStudent": 12464, + "ĠStudents": 17244, + "ĠStudien": 49496, + "ĠStudies": 17515, + "ĠStudio": 13500, + "ĠStudios": 23005, + "ĠStudy": 27039, + "ĠStuff": 31347, + "ĠStunde": 42781, + "ĠStunden": 30496, + "ĠStupid": 37659, + "ĠSty": 30415, + "ĠStyle": 27004, + "ĠStyles": 46845, + "ĠStück": 31146, + "ĠSu": 2746, + "ĠSub": 8511, + "ĠSubaru": 43044, + "ĠSubs": 37471, + "ĠSubscribe": 10611, + "ĠSubst": 42090, + "ĠSuccess": 23669, + "ĠSuch": 9653, + "ĠSud": 12323, + "ĠSudan": 36013, + "ĠSuddenly": 21194, + "ĠSue": 25332, + "ĠSuff": 40178, + "ĠSug": 39131, + "ĠSugar": 24576, + "ĠSuit": 48854, + "ĠSuite": 36637, + "ĠSuk": 37898, + "ĠSul": 35897, + "ĠSull": 34901, + "ĠSullivan": 37226, + "ĠSultan": 23528, + "ĠSum": 8626, + "ĠSummer": 16161, + "ĠSummit": 28726, + "ĠSun": 6163, + "ĠSund": 6942, + "ĠSunday": 7776, + "ĠSundays": 44857, + "ĠSung": 24857, + "ĠSunny": 34665, + "ĠSunshine": 48618, + "ĠSup": 9141, + "ĠSuper": 4548, + "ĠSuperintendent": 49623, + "ĠSuperior": 48953, + "ĠSuperman": 22455, + "ĠSupp": 9391, + "ĠSupport": 18073, + "ĠSuppose": 21360, + "ĠSupreme": 11032, + "ĠSur": 6732, + "ĠSure": 4894, + "ĠSurely": 29803, + "ĠSurf": 43124, + "ĠSurface": 36052, + "ĠSurprise": 36701, + "ĠSurprisingly": 49908, + "ĠSurv": 40716, + "ĠSurvey": 33365, + "ĠSurviv": 48859, + "ĠSus": 9545, + "ĠSusan": 15160, + "ĠSustain": 34407, + "ĠSut": 40492, + "ĠSuz": 24232, + "ĠSuzanne": 48901, + "ĠSuzuki": 49457, + "ĠSven": 49787, + "ĠSver": 29490, + "ĠSverige": 33973, + "ĠSw": 3926, + "ĠSwami": 33018, + "ĠSwan": 40884, + "ĠSwe": 29918, + "ĠSwed": 21617, + "ĠSweden": 17727, + "ĠSwedish": 23523, + "ĠSweet": 14653, + "ĠSwift": 25539, + "ĠSwiss": 21965, + "ĠSwitch": 13893, + "ĠSwitzerland": 23312, + "ĠSword": 27070, + "ĠSy": 3902, + "ĠSyd": 19918, + "ĠSydney": 21065, + "ĠSyl": 33349, + "ĠSym": 28877, + "ĠSymphony": 46891, + "ĠSyn": 26155, + "ĠSynd": 35284, + "ĠSyndrome": 44545, + "ĠSyria": 13314, + "ĠSyrian": 24081, + "ĠSystem": 8910, + "ĠSystems": 27059, + "ĠSz": 24699, + "ĠSão": 22401, + "ĠSÃ¥": 12728, + "ĠSé": 49556, + "ĠSó": 19961, + "ĠSü": 25697, + "ĠSÃŃ": 12375, + "ĠT": 314, + "ĠTA": 20094, + "ĠTALI": 13763, + "ĠTALIESIN": 13787, + "ĠTB": 29711, + "ĠTC": 34150, + "ĠTCP": 48965, + "ĠTD": 42606, + "ĠTE": 19744, + "ĠTED": 43036, + "ĠTER": 41305, + "ĠTF": 40964, + "ĠTH": 3578, + "ĠTHAT": 15532, + "ĠTHE": 5663, + "ĠTHERE": 40562, + "ĠTHEY": 34970, + "ĠTHIS": 17371, + "ĠTHOM": 40933, + "ĠTI": 28819, + "ĠTIM": 20187, + "ĠTIME": 36096, + "ĠTJ": 46402, + "ĠTL": 40277, + "ĠTM": 33550, + "ĠTO": 8232, + "ĠTOM": 29473, + "ĠTON": 25867, + "ĠTONER": 36557, + "ĠTOP": 40925, + "ĠTP": 44462, + "ĠTR": 15176, + "ĠTRA": 10841, + "ĠTRAVIS": 12317, + "ĠTS": 37645, + "ĠTT": 32576, + "ĠTU": 42408, + "ĠTV": 3558, + "ĠTVs": 38085, + "ĠTW": 23737, + "ĠTWO": 48664, + "ĠTY": 36187, + "ĠTa": 6551, + "ĠTab": 14106, + "ĠTabii": 41770, + "ĠTable": 25535, + "ĠTac": 38848, + "ĠTack": 38405, + "ĠTaco": 37992, + "ĠTact": 47111, + "ĠTada": 39303, + "ĠTae": 24478, + "ĠTag": 11204, + "ĠTage": 29724, + "ĠTagen": 41721, + "ĠTages": 33601, + "ĠTah": 31027, + "ĠTai": 9623, + "ĠTail": 46074, + "ĠTails": 49888, + "ĠTaiwan": 12296, + "ĠTaiwanese": 45187, + "ĠTaj": 44837, + "ĠTak": 9118, + "ĠTake": 3664, + "ĠTakes": 44347, + "ĠTaking": 17837, + "ĠTal": 10516, + "ĠTale": 49846, + "ĠTalent": 44081, + "ĠTales": 50099, + "ĠTaliban": 26478, + "ĠTalk": 8780, + "ĠTalking": 22445, + "ĠTall": 42633, + "ĠTam": 8540, + "ĠTamam": 18224, + "ĠTamara": 40424, + "ĠTamb": 18176, + "ĠTambién": 25682, + "ĠTamil": 39938, + "ĠTammy": 48030, + "ĠTampa": 40583, + "ĠTan": 17046, + "ĠTang": 22063, + "ĠTank": 28746, + "ĠTanner": 47253, + "ĠTanz": 42420, + "ĠTao": 26580, + "ĠTap": 13445, + "ĠTapi": 25386, + "ĠTar": 10537, + "ĠTara": 32182, + "ĠTarget": 24586, + "ĠTas": 27293, + "ĠTask": 30428, + "ĠTaste": 33770, + "ĠTat": 19645, + "ĠTax": 23263, + "ĠTay": 10132, + "ĠTaylor": 12060, + "ĠTe": 1989, + "ĠTea": 26614, + "ĠTeach": 26816, + "ĠTeacher": 19745, + "ĠTeachers": 40596, + "ĠTeaching": 34244, + "ĠTeam": 7606, + "ĠTeams": 24702, + "ĠTech": 13795, + "ĠTechn": 8337, + "ĠTechnical": 35512, + "ĠTechnically": 42494, + "ĠTechnologies": 46993, + "ĠTechnology": 15037, + "ĠTed": 14985, + "ĠTeddy": 34330, + "ĠTeen": 33297, + "ĠTeil": 16357, + "ĠTek": 27821, + "ĠTel": 27729, + "ĠTele": 14889, + "ĠTeles": 48595, + "ĠTelevision": 37329, + "ĠTell": 5115, + "ĠTem": 8095, + "ĠTemper": 34864, + "ĠTempl": 39563, + "ĠTemple": 17642, + "ĠTen": 9380, + "ĠTenemos": 44903, + "ĠTenn": 19418, + "ĠTennessee": 21127, + "ĠTensor": 34306, + "ĠTensorFlow": 37624, + "ĠTer": 6564, + "ĠTeraz": 41810, + "ĠTeresa": 35039, + "ĠTerm": 19835, + "ĠTerr": 36591, + "ĠTerra": 25366, + "ĠTerre": 47870, + "ĠTerror": 36174, + "ĠTerry": 21983, + "ĠTes": 12262, + "ĠTesla": 13666, + "ĠTest": 9279, + "ĠTestament": 15473, + "ĠTesting": 45517, + "ĠTet": 31580, + "ĠTex": 7479, + "ĠTexas": 7885, + "ĠText": 18643, + "ĠTh": 334, + "ĠThai": 19254, + "ĠThailand": 19434, + "ĠThan": 18289, + "ĠThank": 1044, + "ĠThankfully": 28344, + "ĠThanks": 2561, + "ĠThanksgiving": 21230, + "ĠThanos": 35993, + "ĠThat": 663, + "ĠThats": 30085, + "ĠThe": 440, + "ĠTheater": 26548, + "ĠTheatre": 27782, + "ĠTheir": 6710, + "ĠThem": 37354, + "ĠThema": 16306, + "ĠTheme": 42428, + "ĠThemen": 39229, + "ĠThen": 1396, + "ĠTheo": 42519, + "ĠTheory": 29009, + "ĠTherap": 36812, + "ĠThere": 821, + "ĠTherefore": 7504, + "ĠTheres": 33902, + "ĠTheresa": 42595, + "ĠTherm": 38957, + "ĠThese": 1981, + "ĠThey": 814, + "ĠThi": 48197, + "ĠThing": 30902, + "ĠThings": 9514, + "ĠThink": 6557, + "ĠThinking": 24460, + "ĠThird": 12548, + "ĠThirty": 41490, + "ĠThis": 639, + "ĠThom": 19409, + "ĠThomas": 8500, + "ĠThompson": 23460, + "ĠThor": 17777, + "ĠThose": 3950, + "ĠThough": 10404, + "ĠThought": 23058, + "ĠThous": 29852, + "ĠThousands": 40535, + "ĠThr": 41645, + "ĠThree": 6244, + "ĠThrones": 31659, + "ĠThrough": 8927, + "ĠThroughout": 22775, + "ĠThrow": 22228, + "ĠThunder": 21023, + "ĠThursday": 10383, + "ĠThus": 13827, + "ĠThy": 40010, + "ĠTi": 20456, + "ĠTian": 19736, + "ĠTib": 24474, + "ĠTibet": 28884, + "ĠTibetan": 44963, + "ĠTie": 36804, + "ĠTier": 24224, + "ĠTiere": 38810, + "ĠTiffany": 28104, + "ĠTig": 44550, + "ĠTiger": 22025, + "ĠTigers": 37699, + "ĠTight": 47967, + "ĠTik": 15613, + "ĠTikTok": 20211, + "ĠTil": 45141, + "ĠTill": 20227, + "ĠTim": 7172, + "ĠTime": 6161, + "ĠTimes": 11366, + "ĠTimothy": 29418, + "ĠTin": 47741, + "ĠTina": 28504, + "ĠTinder": 49341, + "ĠTing": 43196, + "ĠTiny": 39992, + "ĠTip": 18210, + "ĠTipp": 42102, + "ĠTips": 36887, + "ĠTir": 45523, + "ĠTisch": 48192, + "ĠTit": 14489, + "ĠTitan": 17731, + "ĠTitanic": 42183, + "ĠTitans": 45574, + "ĠTitle": 26768, + "ĠTo": 1407, + "ĠTob": 26350, + "ĠToby": 40223, + "ĠTod": 2465, + "ĠToday": 2692, + "ĠTodd": 21488, + "ĠTodo": 26466, + "ĠTodos": 35447, + "ĠTogether": 15911, + "ĠTok": 11036, + "ĠTokyo": 15147, + "ĠTol": 21402, + "ĠTold": 48220, + "ĠTolkien": 48824, + "ĠTom": 5041, + "ĠTomato": 35936, + "ĠTomb": 37150, + "ĠTommy": 19448, + "ĠTomorrow": 17499, + "ĠTon": 11385, + "ĠTong": 26946, + "ĠToni": 41374, + "ĠTonight": 18702, + "ĠTony": 10902, + "ĠToo": 11395, + "ĠTook": 38288, + "ĠTool": 15934, + "ĠTools": 30302, + "ĠTop": 8840, + "ĠTor": 7160, + "ĠTorah": 29676, + "ĠToronto": 14140, + "ĠTorres": 41506, + "ĠTort": 48415, + "ĠTory": 48743, + "ĠTot": 11236, + "ĠTotal": 23170, + "ĠTotally": 22837, + "ĠTou": 30850, + "ĠTouch": 20029, + "ĠTough": 48568, + "ĠTour": 13077, + "ĠTous": 47277, + "ĠTout": 20453, + "ĠTow": 33814, + "ĠTowards": 48938, + "ĠTower": 17877, + "ĠTown": 15954, + "ĠToy": 15708, + "ĠToyota": 22926, + "ĠTr": 1765, + "ĠTra": 5403, + "ĠTrack": 31903, + "ĠTracy": 33724, + "ĠTrad": 22017, + "ĠTrade": 23923, + "ĠTrading": 49929, + "ĠTraditional": 46738, + "ĠTraffic": 46950, + "ĠTrail": 30080, + "ĠTrain": 28029, + "ĠTrainer": 48494, + "ĠTraining": 20620, + "ĠTran": 42971, + "ĠTrans": 6531, + "ĠTransfer": 35025, + "ĠTransform": 27938, + "ĠTransit": 48870, + "ĠTransport": 22309, + "ĠTransportation": 35095, + "ĠTravel": 20610, + "ĠTravis": 24430, + "ĠTre": 8648, + "ĠTreasure": 49884, + "ĠTreasury": 34113, + "ĠTreat": 20298, + "ĠTreaty": 35920, + "ĠTree": 22291, + "ĠTrek": 25845, + "ĠTrend": 37417, + "ĠTrent": 40119, + "ĠTrevor": 26245, + "ĠTri": 10931, + "ĠTrib": 23304, + "ĠTribe": 44984, + "ĠTrick": 43367, + "ĠTrinity": 33121, + "ĠTrip": 33141, + "ĠTriple": 32159, + "ĠTro": 19406, + "ĠTrop": 43917, + "ĠTroy": 32898, + "ĠTru": 21388, + "ĠTruck": 44600, + "ĠTrue": 13587, + "ĠTruly": 43548, + "ĠTruman": 49723, + "ĠTrump": 3899, + "ĠTrung": 40555, + "ĠTrust": 11580, + "ĠTrustee": 34373, + "ĠTrustees": 45099, + "ĠTruth": 20522, + "ĠTry": 6526, + "ĠTrying": 20180, + "ĠTs": 16518, + "ĠTsch": 44461, + "ĠTu": 7836, + "ĠTub": 48258, + "ĠTube": 39313, + "ĠTuc": 42272, + "ĠTucker": 35581, + "ĠTucson": 47417, + "ĠTudo": 29871, + "ĠTuesday": 10017, + "ĠTul": 33585, + "ĠTumb": 50088, + "ĠTun": 21363, + "ĠTur": 5712, + "ĠTurbo": 35848, + "ĠTurk": 15714, + "ĠTurkey": 12647, + "ĠTurkish": 18565, + "ĠTurks": 42275, + "ĠTurn": 7956, + "ĠTurner": 28950, + "ĠTurning": 39660, + "ĠTurns": 29524, + "ĠTurtle": 48406, + "ĠTus": 42026, + "ĠTut": 18392, + "ĠTutaj": 41819, + "ĠTw": 2574, + "ĠTwe": 47763, + "ĠTwelve": 48063, + "ĠTwenty": 28789, + "ĠTwice": 46964, + "ĠTwilight": 38525, + "ĠTwin": 27444, + "ĠTwist": 47016, + "ĠTwitch": 22222, + "ĠTwitter": 5794, + "ĠTwo": 4453, + "ĠTy": 5569, + "ĠTyl": 49286, + "ĠTyler": 16869, + "ĠTyp": 17722, + "ĠType": 15576, + "ĠTypically": 23129, + "ĠTyr": 43126, + "ĠTyson": 43382, + "ĠTá": 20907, + "ĠTä": 41204, + "ĠTôi": 43345, + "ĠTú": 46341, + "ĠTür": 16728, + "ĠTürk": 36673, + "ĠTürkiye": 32901, + "ĠU": 624, + "ĠUA": 32765, + "ĠUC": 14079, + "ĠUCLA": 42862, + "ĠUE": 42260, + "ĠUFC": 48072, + "ĠUFO": 28318, + "ĠUH": 50030, + "ĠUI": 15682, + "ĠUK": 7051, + "ĠUM": 31335, + "ĠUN": 8229, + "ĠUNC": 44886, + "ĠUP": 20074, + "ĠURL": 12905, + "ĠURLs": 43267, + "ĠUS": 2546, + "ĠUSA": 10827, + "ĠUSB": 10109, + "ĠUSC": 44066, + "ĠUSD": 24375, + "ĠUSDA": 41244, + "ĠUSS": 30385, + "ĠUSSR": 45956, + "ĠUT": 35514, + "ĠUV": 17887, + "ĠUW": 35691, + "ĠUX": 40176, + "ĠUb": 30230, + "ĠUber": 21839, + "ĠUg": 28690, + "ĠUganda": 48764, + "ĠUgh": 16506, + "ĠUh": 4019, + "ĠUhh": 29365, + "ĠUhm": 32287, + "ĠUhr": 30084, + "ĠUk": 9816, + "ĠUkrain": 21481, + "ĠUkraine": 14081, + "ĠUkrainian": 24682, + "ĠUl": 24853, + "ĠUlt": 9523, + "ĠUltimate": 26570, + "ĠUltimately": 23921, + "ĠUltra": 20925, + "ĠUm": 3301, + "ĠUma": 21939, + "ĠUmm": 18918, + "ĠUms": 46963, + "ĠUmwelt": 48900, + "ĠUn": 1156, + "ĠUna": 15491, + "ĠUnbelievable": 39523, + "ĠUncle": 12347, + "ĠUnd": 2719, + "ĠUnder": 6974, + "ĠUnderground": 47569, + "ĠUnderstand": 26093, + "ĠUnderstanding": 36858, + "ĠUnderstood": 42832, + "ĠUndert": 48649, + "ĠUne": 16701, + "ĠUnf": 8170, + "ĠUnfortunately": 8590, + "ĠUng": 43559, + "ĠUni": 35191, + "ĠUnidos": 23087, + "ĠUnion": 8133, + "ĠUnit": 27894, + "ĠUnited": 2824, + "ĠUnity": 27913, + "ĠUnivers": 14052, + "ĠUniversal": 22617, + "ĠUniverse": 18307, + "ĠUniversity": 3535, + "ĠUnknown": 32766, + "ĠUnless": 16581, + "ĠUnlike": 17657, + "ĠUno": 37468, + "ĠUnreal": 34464, + "ĠUns": 25017, + "ĠUnt": 8256, + "ĠUnter": 12065, + "ĠUnternehmen": 27577, + "ĠUnters": 30240, + "ĠUnterschied": 41414, + "ĠUnterstüt": 42128, + "ĠUnterstützung": 47216, + "ĠUntil": 9088, + "ĠUp": 5858, + "ĠUpdate": 28923, + "ĠUpon": 25184, + "ĠUpper": 36926, + "ĠUr": 9533, + "ĠUran": 44407, + "ĠUrban": 24885, + "ĠUrs": 41303, + "ĠUs": 4958, + "ĠUse": 8278, + "ĠUsed": 43237, + "ĠUser": 32127, + "ĠUsers": 47092, + "ĠUsing": 11142, + "ĠUsually": 11419, + "ĠUt": 12555, + "ĠUtah": 20226, + "ĠUz": 38564, + "ĠV": 691, + "ĠVA": 18527, + "ĠVAN": 49090, + "ĠVC": 41922, + "ĠVER": 27686, + "ĠVERY": 45655, + "ĠVI": 27619, + "ĠVIC": 41519, + "ĠVID": 47619, + "ĠVII": 48087, + "ĠVIP": 29732, + "ĠVIS": 29421, + "ĠVISTA": 35199, + "ĠVM": 18038, + "ĠVMware": 40146, + "ĠVND": 39777, + "ĠVO": 15216, + "ĠVOICE": 46973, + "ĠVOICES": 44623, + "ĠVP": 35812, + "ĠVPN": 24512, + "ĠVR": 13722, + "ĠVS": 25091, + "ĠVa": 16822, + "ĠVac": 44442, + "ĠVacc": 48579, + "ĠVad": 24788, + "ĠVader": 36337, + "ĠVai": 24206, + "ĠVal": 7188, + "ĠVale": 26415, + "ĠValent": 17961, + "ĠValentine": 24359, + "ĠValerie": 46656, + "ĠVall": 48177, + "ĠVallahi": 35454, + "ĠValley": 10666, + "ĠValue": 39352, + "ĠValve": 41369, + "ĠVamos": 10894, + "ĠVamp": 38796, + "ĠVan": 8979, + "ĠVanc": 26417, + "ĠVancouver": 26563, + "ĠVander": 46588, + "ĠVanessa": 27928, + "ĠVanguard": 46648, + "ĠVar": 14662, + "ĠVari": 32511, + "ĠVas": 23299, + "ĠVater": 36173, + "ĠVatic": 36268, + "ĠVatican": 37904, + "ĠVault": 46071, + "ĠVay": 39556, + "ĠVe": 9706, + "ĠVed": 26084, + "ĠVeg": 12895, + "ĠVega": 48796, + "ĠVegan": 49688, + "ĠVegas": 15841, + "ĠVeget": 28092, + "ĠVegeta": 47297, + "ĠVeh": 41230, + "ĠVel": 17814, + "ĠVelvet": 47086, + "ĠVen": 11182, + "ĠVenez": 19656, + "ĠVenezuela": 24153, + "ĠVenice": 32707, + "ĠVent": 28290, + "ĠVenus": 23994, + "ĠVer": 4281, + "ĠVera": 46982, + "ĠVerantwort": 39082, + "ĠVerantwortung": 43423, + "ĠVerb": 27034, + "ĠVerd": 41257, + "ĠVere": 33110, + "ĠVerein": 47431, + "ĠVerf": 24583, + "ĠVerfüg": 41611, + "ĠVerfügung": 43026, + "ĠVerg": 26610, + "ĠVergleich": 47998, + "ĠVerizon": 44456, + "ĠVerkehr": 40706, + "ĠVerm": 20185, + "ĠVermont": 34754, + "ĠVern": 33220, + "ĠVernon": 47516, + "ĠVeron": 38600, + "ĠVeronica": 43498, + "ĠVers": 12226, + "ĠVerse": 31640, + "ĠVersion": 35965, + "ĠVert": 21044, + "ĠVery": 4372, + "ĠVet": 50111, + "ĠVeter": 21881, + "ĠVeterans": 30066, + "ĠVi": 6626, + "ĠVia": 49232, + "ĠVic": 33316, + "ĠVice": 13276, + "ĠVict": 8676, + "ĠVictor": 15777, + "ĠVictoria": 16656, + "ĠVictorian": 37302, + "ĠVictory": 37976, + "ĠVid": 31185, + "ĠVide": 7926, + "ĠVideo": 9777, + "ĠVideos": 25903, + "ĠVie": 24130, + "ĠViel": 35931, + "ĠViele": 36022, + "ĠVielen": 22502, + "ĠVielleicht": 29838, + "ĠVienna": 31024, + "ĠVietnam": 11013, + "ĠVietnamese": 25934, + "ĠView": 13909, + "ĠVij": 41201, + "ĠVik": 29465, + "ĠViking": 40375, + "ĠVikings": 48761, + "ĠVikt": 42500, + "ĠViktor": 46844, + "ĠVil": 35653, + "ĠVill": 14244, + "ĠVilla": 40280, + "ĠVillage": 22651, + "ĠVin": 15011, + "ĠVince": 34876, + "ĠVincent": 28003, + "ĠVine": 40569, + "ĠViol": 24383, + "ĠViolence": 49279, + "ĠVir": 7566, + "ĠVirgin": 9281, + "ĠVirginia": 10956, + "ĠVirt": 19447, + "ĠVirtual": 23887, + "ĠVirus": 39790, + "ĠVis": 10410, + "ĠVisa": 44907, + "ĠVish": 36752, + "ĠVision": 25170, + "ĠVisit": 24548, + "ĠVisual": 23187, + "ĠVit": 22463, + "ĠVital": 48307, + "ĠVitamin": 33515, + "ĠViv": 28188, + "ĠVive": 44288, + "ĠViá»ĩt": 32936, + "ĠVlad": 21958, + "ĠVladimir": 31669, + "ĠVlog": 33256, + "ĠVo": 7518, + "ĠVoc": 8993, + "ĠVocê": 9781, + "ĠVocês": 40262, + "ĠVog": 46359, + "ĠVoice": 15229, + "ĠVoiceover": 46117, + "ĠVoilÃł": 18677, + "ĠVol": 8911, + "ĠVold": 48791, + "ĠVolks": 30213, + "ĠVolkswagen": 39856, + "ĠVoll": 39602, + "ĠVolt": 40332, + "ĠVolume": 38448, + "ĠVolunte": 46698, + "ĠVolvo": 43381, + "ĠVon": 20700, + "ĠVoor": 43114, + "ĠVor": 12231, + "ĠVors": 31438, + "ĠVorte": 46968, + "ĠVote": 44354, + "ĠVou": 24361, + "ĠVous": 10802, + "ĠVoy": 25563, + "ĠVu": 37703, + "ĠVul": 41434, + "ĠVä": 45199, + "ĠVÃł": 44851, + "ĠW": 343, + "ĠWA": 26915, + "ĠWAR": 48331, + "ĠWAS": 28984, + "ĠWAT": 36086, + "ĠWAY": 42274, + "ĠWE": 15813, + "ĠWH": 8183, + "ĠWHAT": 18090, + "ĠWHO": 23256, + "ĠWHY": 32720, + "ĠWIL": 32095, + "ĠWILL": 18194, + "ĠWILLIAM": 32613, + "ĠWIN": 32353, + "ĠWITH": 25371, + "ĠWO": 48388, + "ĠWOMAN": 30837, + "ĠWOO": 16864, + "ĠWOODR": 24265, + "ĠWOODRUFF": 24309, + "ĠWOR": 30029, + "ĠWOW": 34728, + "ĠWR": 44175, + "ĠWW": 12040, + "ĠWWE": 15110, + "ĠWY": 46410, + "ĠWa": 15405, + "ĠWaar": 43123, + "ĠWade": 28001, + "ĠWag": 49921, + "ĠWagner": 38146, + "ĠWah": 24598, + "ĠWahl": 27437, + "ĠWahr": 36357, + "ĠWait": 3802, + "ĠWaiting": 37291, + "ĠWak": 45077, + "ĠWake": 21062, + "ĠWal": 9707, + "ĠWald": 29223, + "ĠWales": 16495, + "ĠWalk": 10818, + "ĠWalker": 23974, + "ĠWalking": 26964, + "ĠWall": 9551, + "ĠWallace": 32626, + "ĠWalmart": 25237, + "ĠWalt": 28260, + "ĠWalter": 21572, + "ĠWam": 41226, + "ĠWan": 28932, + "ĠWand": 40772, + "ĠWang": 14499, + "ĠWanna": 24336, + "ĠWant": 11773, + "ĠWar": 3630, + "ĠWard": 23794, + "ĠWare": 49978, + "ĠWarm": 40353, + "ĠWarner": 31769, + "ĠWarning": 45140, + "ĠWarren": 20538, + "ĠWarri": 23385, + "ĠWarrior": 33834, + "ĠWarriors": 40161, + "ĠWars": 9818, + "ĠWarsaw": 41662, + "ĠWarsz": 48479, + "ĠWarum": 25541, + "ĠWas": 3027, + "ĠWash": 28891, + "ĠWashington": 6149, + "ĠWasn": 28782, + "ĠWass": 42998, + "ĠWasser": 17351, + "ĠWat": 12593, + "ĠWatch": 7277, + "ĠWatching": 28482, + "ĠWater": 8772, + "ĠWaters": 46743, + "ĠWatson": 25640, + "ĠWatts": 42933, + "ĠWave": 28530, + "ĠWay": 9558, + "ĠWayne": 22101, + "ĠWe": 492, + "ĠWear": 34514, + "ĠWeather": 34441, + "ĠWeb": 9573, + "ĠWebb": 49649, + "ĠWeber": 42690, + "ĠWebs": 45347, + "ĠWed": 9589, + "ĠWednesday": 10579, + "ĠWeek": 12615, + "ĠWeekly": 35945, + "ĠWeg": 18919, + "ĠWei": 21174, + "ĠWeight": 44464, + "ĠWeihn": 42181, + "ĠWeil": 18665, + "ĠWein": 34477, + "ĠWeird": 32033, + "ĠWeise": 41947, + "ĠWeiter": 48050, + "ĠWel": 3778, + "ĠWelcome": 4027, + "ĠWell": 1042, + "ĠWellington": 45812, + "ĠWellness": 50166, + "ĠWells": 36363, + "ĠWelsh": 27129, + "ĠWelt": 14761, + "ĠWen": 23716, + "ĠWendy": 21850, + "ĠWenn": 7899, + "ĠWent": 31809, + "ĠWer": 14255, + "ĠWere": 12448, + "ĠWerk": 42911, + "ĠWert": 37205, + "ĠWes": 23843, + "ĠWesley": 43908, + "ĠWest": 4055, + "ĠWestern": 8724, + "ĠWestminster": 49714, + "ĠWet": 46046, + "ĠWh": 506, + "ĠWha": 45040, + "ĠWhat": 708, + "ĠWhatever": 8541, + "ĠWhats": 22051, + "ĠWhatsApp": 30513, + "ĠWhe": 17040, + "ĠWheel": 31392, + "ĠWheels": 49372, + "ĠWhen": 1133, + "ĠWhenever": 14159, + "ĠWhere": 2305, + "ĠWhereas": 13813, + "ĠWherever": 30903, + "ĠWhether": 8503, + "ĠWhew": 46029, + "ĠWhich": 3013, + "ĠWhile": 3987, + "ĠWhilst": 45790, + "ĠWhis": 41132, + "ĠWhit": 21693, + "ĠWhite": 5552, + "ĠWhitney": 39466, + "ĠWho": 2102, + "ĠWhoa": 7521, + "ĠWhoever": 24743, + "ĠWhole": 30336, + "ĠWhoo": 23381, + "ĠWhoops": 45263, + "ĠWhose": 28463, + "ĠWhy": 1545, + "ĠWi": 14035, + "ĠWiFi": 32885, + "ĠWick": 47702, + "ĠWid": 28331, + "ĠWide": 42543, + "ĠWie": 9233, + "ĠWieder": 45742, + "ĠWii": 27865, + "ĠWij": 46721, + "ĠWik": 23377, + "ĠWiki": 35892, + "ĠWikipedia": 28999, + "ĠWil": 9483, + "ĠWild": 10904, + "ĠWildlife": 35811, + "ĠWill": 3099, + "ĠWilliam": 6740, + "ĠWilliams": 12929, + "ĠWillie": 39912, + "ĠWilly": 42238, + "ĠWilson": 15388, + "ĠWin": 10427, + "ĠWind": 6320, + "ĠWindow": 44933, + "ĠWindows": 8591, + "ĠWinds": 43082, + "ĠWine": 39253, + "ĠWing": 28785, + "ĠWinston": 33051, + "ĠWinter": 16444, + "ĠWir": 4347, + "ĠWire": 32598, + "ĠWireless": 49962, + "ĠWirtschaft": 29412, + "ĠWis": 34143, + "ĠWisconsin": 17977, + "ĠWise": 46933, + "ĠWish": 27697, + "ĠWissenschaft": 38774, + "ĠWit": 42299, + "ĠWitch": 23522, + "ĠWitcher": 47383, + "ĠWith": 2022, + "ĠWithin": 15996, + "ĠWithout": 9129, + "ĠWitness": 41366, + "ĠWiz": 43490, + "ĠWizard": 37449, + "ĠWiÄĻ": 30127, + "ĠWiÄĻc": 32508, + "ĠWo": 6622, + "ĠWoah": 19668, + "ĠWoche": 24511, + "ĠWochen": 23126, + "ĠWohn": 22741, + "ĠWohnung": 50087, + "ĠWol": 19925, + "ĠWolf": 16634, + "ĠWolver": 49059, + "ĠWoman": 15794, + "ĠWomen": 11065, + "ĠWon": 14710, + "ĠWonder": 13224, + "ĠWonderful": 22768, + "ĠWong": 41638, + "ĠWoo": 10468, + "ĠWood": 11558, + "ĠWoods": 31559, + "ĠWoody": 40618, + "ĠWool": 46307, + "ĠWor": 26363, + "ĠWord": 8725, + "ĠWordPress": 23239, + "ĠWords": 32857, + "ĠWork": 6603, + "ĠWorkers": 42375, + "ĠWorking": 18337, + "ĠWorks": 27914, + "ĠWorkshop": 48366, + "ĠWorld": 3937, + "ĠWorlds": 43003, + "ĠWort": 22748, + "ĠWorth": 37228, + "ĠWould": 6068, + "ĠWouldn": 26291, + "ĠWow": 3153, + "ĠWr": 10159, + "ĠWrap": 41291, + "ĠWrest": 23719, + "ĠWrestle": 34744, + "ĠWrestleMania": 49014, + "ĠWrestling": 43508, + "ĠWright": 25578, + "ĠWrite": 23499, + "ĠWriting": 32774, + "ĠWrong": 28150, + "ĠWu": 17287, + "ĠWuhan": 42101, + "ĠWy": 14458, + "ĠWyatt": 46430, + "ĠWyoming": 30810, + "ĠWäh": 40084, + "ĠWür": 43846, + "ĠX": 1783, + "ĠXD": 32336, + "ĠXL": 37210, + "ĠXML": 43484, + "ĠXP": 33984, + "ĠXV": 44707, + "ĠXX": 27050, + "ĠXY": 48826, + "ĠXavier": 44653, + "ĠXbox": 14544, + "ĠXi": 15712, + "ĠXia": 11956, + "ĠXian": 47581, + "ĠXiang": 37935, + "ĠXiao": 13134, + "ĠXiaomi": 33806, + "ĠXin": 24368, + "ĠXing": 33040, + "ĠXu": 23082, + "ĠXuan": 45292, + "ĠXue": 43999, + "ĠY": 398, + "ĠYA": 40771, + "ĠYE": 21760, + "ĠYEAH": 43549, + "ĠYES": 25268, + "ĠYH": 49389, + "ĠYJ": 49535, + "ĠYO": 33565, + "ĠYOU": 7928, + "ĠYOUR": 25166, + "ĠYT": 49002, + "ĠYU": 33471, + "ĠYa": 6080, + "ĠYah": 19740, + "ĠYahoo": 41757, + "ĠYak": 31484, + "ĠYale": 26711, + "ĠYam": 18992, + "ĠYan": 13633, + "ĠYang": 11978, + "ĠYani": 14262, + "ĠYao": 40575, + "ĠYap": 38724, + "ĠYar": 41554, + "ĠYas": 30557, + "ĠYay": 13268, + "ĠYaz": 44962, + "ĠYe": 835, + "ĠYea": 21145, + "ĠYeah": 865, + "ĠYear": 10289, + "ĠYears": 24569, + "ĠYellow": 17550, + "ĠYemen": 30784, + "ĠYeon": 30892, + "ĠYep": 7010, + "ĠYes": 1079, + "ĠYeshua": 43885, + "ĠYesterday": 19765, + "ĠYet": 10890, + "ĠYi": 16747, + "ĠYin": 33254, + "ĠYing": 28125, + "ĠYo": 7616, + "ĠYoda": 48697, + "ĠYog": 49328, + "ĠYoga": 32983, + "ĠYok": 18480, + "ĠYong": 20085, + "ĠYoo": 22330, + "ĠYoon": 27893, + "ĠYork": 3609, + "ĠYosh": 38949, + "ĠYoshi": 45676, + "ĠYou": 509, + "ĠYouT": 2898, + "ĠYouTube": 3088, + "ĠYouTuber": 23349, + "ĠYouTubers": 30571, + "ĠYoung": 8160, + "ĠYour": 2260, + "ĠYours": 37922, + "ĠYout": 10717, + "ĠYouth": 24312, + "ĠYoutube": 12132, + "ĠYoutuber": 49219, + "ĠYu": 10767, + "ĠYuan": 22730, + "ĠYue": 30166, + "ĠYug": 41949, + "ĠYuk": 27975, + "ĠYum": 29890, + "ĠYummy": 40590, + "ĠYun": 18007, + "ĠYup": 13593, + "ĠYuri": 33901, + "ĠZ": 1176, + "ĠZa": 31440, + "ĠZac": 48082, + "ĠZach": 21028, + "ĠZack": 36034, + "ĠZahl": 42592, + "ĠZahlen": 44096, + "ĠZak": 46546, + "ĠZam": 45492, + "ĠZap": 34018, + "ĠZar": 41580, + "ĠZe": 4853, + "ĠZealand": 13883, + "ĠZeit": 9394, + "ĠZeiten": 48334, + "ĠZel": 20952, + "ĠZelda": 25298, + "ĠZen": 22387, + "ĠZent": 44091, + "ĠZero": 17182, + "ĠZeus": 35003, + "ĠZh": 7790, + "ĠZhan": 49550, + "ĠZhang": 17729, + "ĠZhao": 25132, + "ĠZhen": 27042, + "ĠZheng": 31408, + "ĠZhi": 43835, + "ĠZhong": 41664, + "ĠZhou": 25601, + "ĠZhu": 31680, + "ĠZi": 26190, + "ĠZie": 46340, + "ĠZiel": 25391, + "ĠZig": 50004, + "ĠZimmer": 37243, + "ĠZion": 32240, + "ĠZo": 10337, + "ĠZoe": 38234, + "ĠZomb": 33945, + "ĠZombie": 48952, + "ĠZone": 22800, + "ĠZoo": 34589, + "ĠZoom": 13453, + "ĠZu": 23164, + "ĠZucker": 34032, + "ĠZug": 34722, + "ĠZuk": 20991, + "ĠZukunft": 22782, + "ĠZum": 23906, + "ĠZur": 30518, + "ĠZus": 18742, + "ĠZusammen": 29442, + "ĠZusch": 48333, + "ĠZust": 46322, + "ĠZw": 29385, + "ĠZwe": 32475, + "Ġ[": 542, + "Ġ[\"": 29799, + "Ġ[#": 40726, + "Ġ[(": 9128, + "Ġ[...]": 35467, + "Ġ[?": 16127, + "Ġ[âĻª": 44529, + "Ġ\\": 12033, + "Ġ]": 4183, + "Ġ^": 18956, + "Ġ^^": 35500, + "Ġ_": 26161, + "Ġ__": 49264, + "Ġ`": 28279, + "Ġa": 257, + "Ġaa": 40079, + "Ġaan": 9904, + "Ġab": 410, + "Ġaba": 46981, + "Ġabajo": 30613, + "Ġabandon": 9072, + "Ġabandoned": 13732, + "Ġabb": 16903, + "Ġabbiamo": 22815, + "Ġabbrevi": 35839, + "Ġabdom": 22191, + "Ġabdomen": 36494, + "Ġabdominal": 38701, + "Ġabduct": 46465, + "Ġaber": 4340, + "Ġabge": 37301, + "Ġabges": 49848, + "Ġabi": 17905, + "Ġabide": 39663, + "Ġabilities": 11582, + "Ġability": 3485, + "Ġabla": 43899, + "Ġable": 1075, + "Ġabnorm": 47104, + "Ġabnormal": 32847, + "Ġaboard": 27488, + "Ġabol": 23183, + "Ġabolition": 39999, + "Ġabonn": 40676, + "Ġabord": 48727, + "Ġabort": 38117, + "Ġabortion": 22902, + "Ġabout": 466, + "Ġabove": 3673, + "Ġabra": 33693, + "Ġabras": 37351, + "Ġabre": 41594, + "Ġabrir": 27446, + "Ġabroad": 12637, + "Ġabrupt": 33401, + "Ġabruptly": 49642, + "Ġabs": 1950, + "Ġabsence": 17145, + "Ġabsent": 25185, + "Ġabsol": 7305, + "Ġabsolument": 34508, + "Ġabsolut": 18757, + "Ġabsolutamente": 49285, + "Ġabsolute": 8236, + "Ġabsolutely": 3122, + "Ġabsor": 7672, + "Ġabsorb": 15631, + "Ġabsorbed": 20799, + "Ġabsorbing": 38720, + "Ġabsorbs": 40745, + "Ġabsorption": 27557, + "Ġabst": 10823, + "Ġabstract": 12649, + "Ġabstraction": 37765, + "Ġabsurd": 19774, + "Ġabund": 14809, + "Ġabundance": 23391, + "Ġabundant": 30657, + "Ġabus": 48819, + "Ġabuse": 9852, + "Ġabused": 27075, + "Ġabuses": 47681, + "Ġabusive": 32828, + "Ġaby": 24457, + "Ġac": 696, + "Ġacab": 13281, + "Ġacaba": 23485, + "Ġacabar": 35041, + "Ġacabou": 38043, + "Ġacad": 5558, + "Ġacadem": 19267, + "Ġacademia": 28937, + "Ġacademic": 7778, + "Ġacademically": 48944, + "Ġacademics": 25695, + "Ġacademy": 25525, + "Ġacc": 1317, + "Ġacceler": 10172, + "Ġaccelerate": 21341, + "Ġaccelerated": 29763, + "Ġaccelerating": 34391, + "Ġacceleration": 17162, + "Ġaccelerator": 39889, + "Ġaccent": 11982, + "Ġaccents": 35012, + "Ġaccept": 3241, + "Ġacceptable": 15513, + "Ġacceptance": 20351, + "Ġaccepted": 9035, + "Ġaccepting": 17391, + "Ġaccepts": 33538, + "Ġacces": 35707, + "Ġacceso": 49284, + "Ġaccess": 2105, + "Ġaccessed": 34211, + "Ġaccessibility": 15002, + "Ġaccessible": 9515, + "Ġaccessing": 26440, + "Ġaccessories": 18207, + "Ġaccessory": 30617, + "Ġaccident": 6398, + "Ġaccidental": 38094, + "Ġaccidentally": 15715, + "Ġaccidents": 23875, + "Ġaccom": 4223, + "Ġaccommod": 11713, + "Ġaccommodate": 21410, + "Ġaccommodation": 27363, + "Ġaccommodations": 38907, + "Ġaccomp": 18037, + "Ġaccompan": 19307, + "Ġaccompanied": 24202, + "Ġaccompany": 21627, + "Ġaccompanying": 43648, + "Ġaccompl": 6548, + "Ġaccomplish": 9021, + "Ġaccomplished": 15419, + "Ġaccomplishment": 29144, + "Ġaccomplishments": 25943, + "Ġaccord": 18640, + "Ġaccordance": 31110, + "Ġaccording": 4650, + "Ġaccordingly": 19717, + "Ġaccount": 2696, + "Ġaccountability": 19380, + "Ġaccountable": 18024, + "Ġaccountant": 43898, + "Ġaccounted": 43138, + "Ġaccounting": 19163, + "Ġaccounts": 9402, + "Ġaccred": 33877, + "Ġaccum": 12989, + "Ġaccumulate": 33384, + "Ġaccumulated": 31346, + "Ġaccumulation": 35647, + "Ġaccur": 5771, + "Ġaccuracy": 14170, + "Ġaccurate": 8559, + "Ġaccurately": 20095, + "Ġaccus": 11168, + "Ġaccusations": 38556, + "Ġaccuse": 43610, + "Ġaccused": 17085, + "Ġaccusing": 47436, + "Ġaccustomed": 35980, + "Ġace": 17117, + "Ġaceite": 48913, + "Ġacept": 43568, + "Ġacerca": 46321, + "Ġacesso": 49543, + "Ġacet": 37848, + "Ġach": 2800, + "Ġacha": 37338, + "Ġache": 29677, + "Ġachei": 44961, + "Ġachie": 3538, + "Ġachieve": 4584, + "Ġachieved": 11042, + "Ġachievement": 15838, + "Ġachievements": 21420, + "Ġachieving": 19626, + "Ġacho": 14253, + "Ġacht": 43048, + "Ġachter": 35557, + "Ġacid": 8258, + "Ġacidic": 39514, + "Ġacids": 21667, + "Ġacknow": 7791, + "Ġacknowled": 15195, + "Ġacknowledge": 10692, + "Ġacknowledged": 27262, + "Ġacknowledgement": 47227, + "Ġacknowledging": 30904, + "Ġacne": 26480, + "Ġacom": 22298, + "Ġacompa": 39226, + "Ġacompan": 34839, + "Ġacompañ": 43142, + "Ġaconte": 14888, + "Ġacontec": 35846, + "Ġacontece": 19786, + "Ġacontecendo": 47623, + "Ġacontecer": 35011, + "Ġaconteceu": 34028, + "Ġacord": 38077, + "Ġacordo": 49392, + "Ġacost": 44126, + "Ġacoust": 22740, + "Ġacoustic": 26753, + "Ġacqu": 6667, + "Ġacquaint": 36954, + "Ġacquainted": 50224, + "Ġacquire": 20001, + "Ġacquired": 17554, + "Ġacquiring": 37374, + "Ġacquis": 17883, + "Ġacquisition": 21668, + "Ġacre": 32656, + "Ġacred": 34548, + "Ġacres": 19852, + "Ġacron": 31713, + "Ġacronym": 39195, + "Ġacross": 2108, + "Ġacrylic": 25389, + "Ġact": 605, + "Ġacted": 20359, + "Ġacting": 6577, + "Ġaction": 3069, + "Ġactionable": 45098, + "Ġactions": 5909, + "Ġactiv": 2430, + "Ġactivate": 13615, + "Ġactivated": 18157, + "Ġactivates": 43869, + "Ġactivating": 42481, + "Ġactivation": 24433, + "Ġactive": 4967, + "Ġactively": 13022, + "Ġactivism": 29040, + "Ġactivist": 24836, + "Ġactivists": 23042, + "Ġactivities": 5354, + "Ġactivity": 5191, + "Ġactor": 8747, + "Ġactors": 10037, + "Ġactress": 15410, + "Ġacts": 10672, + "Ġactu": 34964, + "Ġactual": 3539, + "Ġactually": 767, + "Ġacuerdo": 28113, + "Ġacum": 41343, + "Ġacute": 24390, + "Ġacá": 23496, + "Ġad": 614, + "Ġada": 11063, + "Ġadalah": 23555, + "Ġadam": 16368, + "Ġadap": 23169, + "Ġadapt": 6231, + "Ġadaptation": 21549, + "Ġadaptations": 44465, + "Ġadapted": 20871, + "Ġadapter": 22860, + "Ġadapting": 34942, + "Ġadaptive": 27912, + "Ġadd": 909, + "Ġadded": 3869, + "Ġaddict": 22072, + "Ġaddicted": 24629, + "Ġaddiction": 16835, + "Ġaddictive": 36486, + "Ġadding": 5127, + "Ġaddition": 4500, + "Ġadditional": 4497, + "Ġadditionally": 43181, + "Ġadditions": 35113, + "Ġadditive": 45558, + "Ġaddress": 2985, + "Ġaddressed": 13847, + "Ġaddresses": 16862, + "Ġaddressing": 14329, + "Ġadds": 10860, + "Ġadel": 30069, + "Ġadelante": 40214, + "Ġademás": 21251, + "Ġadequ": 15747, + "Ġadequate": 20927, + "Ġadequately": 41822, + "Ġadesso": 39552, + "Ġadher": 30106, + "Ġadhere": 33584, + "Ġadhesive": 25485, + "Ġadjac": 22940, + "Ġadjacent": 24441, + "Ġadject": 29378, + "Ġadjective": 44129, + "Ġadjour": 46236, + "Ġadjust": 4369, + "Ġadjustable": 27804, + "Ġadjusted": 19871, + "Ġadjusting": 23559, + "Ġadjustment": 17132, + "Ġadjustments": 18624, + "Ġadm": 5910, + "Ġadmin": 24236, + "Ġadminist": 4968, + "Ġadminister": 22096, + "Ġadministered": 36123, + "Ġadministr": 9737, + "Ġadministration": 7236, + "Ġadministrative": 17900, + "Ġadministrator": 25529, + "Ġadministrators": 27754, + "Ġadmir": 48252, + "Ġadmiration": 44597, + "Ġadmire": 21951, + "Ġadmired": 39987, + "Ġadmission": 24668, + "Ġadmissions": 29856, + "Ġadmit": 9796, + "Ġadmits": 46682, + "Ġadmitted": 14920, + "Ġadmitting": 44056, + "Ġado": 22450, + "Ġadoles": 21383, + "Ġadolescent": 40193, + "Ġadolescents": 48191, + "Ġadop": 22486, + "Ġadopt": 6878, + "Ġadopted": 12175, + "Ġadopting": 32328, + "Ġadoption": 19215, + "Ġadorable": 18698, + "Ġadore": 32060, + "Ġadrenal": 26511, + "Ġadrenaline": 35649, + "Ġads": 10342, + "Ġadul": 26885, + "Ġadult": 5075, + "Ġadulthood": 42328, + "Ġadults": 8865, + "Ġadv": 1551, + "Ġadvance": 7295, + "Ġadvanced": 7339, + "Ġadvancement": 35764, + "Ġadvances": 25297, + "Ġadvancing": 27267, + "Ġadvant": 14652, + "Ġadvantage": 5002, + "Ġadvantages": 14906, + "Ġadvent": 7045, + "Ġadventure": 9868, + "Ġadventures": 20905, + "Ġadventurous": 46163, + "Ġadvers": 17641, + "Ġadversary": 48222, + "Ġadverse": 27590, + "Ġadversity": 40018, + "Ġadvert": 7756, + "Ġadvertis": 18427, + "Ġadvertise": 35379, + "Ġadvertised": 42310, + "Ġadvertisement": 31370, + "Ġadvertisements": 42897, + "Ġadvertisers": 42679, + "Ġadvertising": 13097, + "Ġadvice": 5192, + "Ġadvis": 10280, + "Ġadvise": 18312, + "Ġadvised": 26269, + "Ġadviser": 43547, + "Ġadvising": 35598, + "Ġadvisor": 19161, + "Ġadvisors": 29136, + "Ġadvisory": 26289, + "Ġadvoc": 7915, + "Ġadvocacy": 22011, + "Ġadvocate": 14608, + "Ġadvocates": 25160, + "Ġadvocating": 32050, + "Ġaer": 11207, + "Ġaerial": 31026, + "Ġaerospace": 46817, + "Ġaest": 14413, + "Ġaesthet": 27837, + "Ġaesthetic": 20092, + "Ġaesthetics": 35517, + "Ġaf": 3238, + "Ġafar": 41795, + "Ġafect": 30626, + "Ġaff": 2096, + "Ġaffair": 22987, + "Ġaffairs": 17478, + "Ġaffect": 3345, + "Ġaffected": 8028, + "Ġaffecting": 17476, + "Ġaffection": 20080, + "Ġaffects": 11807, + "Ġaffili": 14863, + "Ġaffiliate": 23975, + "Ġaffiliated": 42174, + "Ġaffinity": 39703, + "Ġaffir": 36315, + "Ġaffirm": 21260, + "Ġaffirmative": 45270, + "Ġafflict": 48287, + "Ġafford": 6157, + "Ġaffordable": 12028, + "Ġafin": 34709, + "Ġafore": 48927, + "Ġafraid": 4638, + "Ġafter": 934, + "Ġafterlife": 47637, + "Ġaftermath": 34095, + "Ġafternoon": 6499, + "Ġafterward": 40411, + "Ġafterwards": 10543, + "Ġag": 623, + "Ġagain": 797, + "Ġagainst": 1970, + "Ġage": 3205, + "Ġaged": 21213, + "Ġagencies": 9504, + "Ġagency": 7934, + "Ġagenda": 9829, + "Ġagent": 9461, + "Ġagents": 12554, + "Ġages": 12357, + "Ġaggi": 42254, + "Ġaggrav": 47339, + "Ġaggreg": 16743, + "Ġaggregate": 26118, + "Ġaggress": 8939, + "Ġaggression": 30268, + "Ġaggressive": 10762, + "Ġaggressively": 32024, + "Ġagile": 30072, + "Ġagility": 39794, + "Ġaging": 19090, + "Ġago": 2057, + "Ġagony": 46025, + "Ġagora": 9851, + "Ġagrad": 49463, + "Ġagrade": 31469, + "Ġagre": 4554, + "Ġagree": 3986, + "Ġagreed": 9166, + "Ġagreeing": 36900, + "Ġagreement": 8106, + "Ġagreements": 21422, + "Ġagrees": 26383, + "Ġagric": 9682, + "Ġagricultural": 19587, + "Ġagriculture": 14837, + "Ġagu": 34438, + "Ġagua": 19330, + "Ġah": 3716, + "Ġaha": 47340, + "Ġahead": 2286, + "Ġahh": 28612, + "Ġahor": 44249, + "Ġahora": 9923, + "ĠahÃŃ": 12571, + "Ġai": 9783, + "Ġaid": 9418, + "Ġaide": 40890, + "Ġaider": 36669, + "Ġaids": 28447, + "Ġaik": 37537, + "Ġaika": 39704, + "Ġail": 48283, + "Ġaim": 5939, + "Ġaime": 46527, + "Ġaimed": 20540, + "Ġaiming": 20253, + "Ġaims": 24683, + "Ġain": 7862, + "Ġainda": 11804, + "Ġainsi": 26552, + "Ġair": 1988, + "Ġairborne": 49278, + "Ġaircraft": 9465, + "Ġaire": 42885, + "Ġaired": 34503, + "Ġairflow": 45291, + "Ġairl": 18856, + "Ġairline": 29528, + "Ġairlines": 37147, + "Ġairpl": 13781, + "Ġairplane": 17130, + "Ġairplanes": 32947, + "Ġairport": 10155, + "Ġairports": 36561, + "Ġais": 24938, + "Ġaisle": 30916, + "Ġait": 31684, + "Ġaixò": 16312, + "ĠaixÃŃ": 40217, + "Ġaj": 17680, + "Ġaja": 26579, + "Ġajud": 16126, + "Ġajuda": 32842, + "Ġajudar": 28883, + "Ġajust": 41023, + "Ġak": 9308, + "Ġaka": 28042, + "Ġakan": 16281, + "Ġakhir": 49843, + "Ġakin": 47540, + "Ġakkor": 44439, + "Ġakl": 43380, + "Ġako": 43567, + "Ġakt": 13680, + "Ġaktiv": 31658, + "Ġaktuell": 36267, + "Ġaku": 21093, + "Ġal": 419, + "Ġalan": 48146, + "Ġalar": 27597, + "Ġalarm": 14183, + "Ġalarming": 44043, + "Ġalarms": 45039, + "Ġalbeit": 43654, + "Ġalbo": 22622, + "Ġalbum": 6030, + "Ġalbums": 24795, + "Ġalc": 20005, + "Ġalcanz": 50200, + "Ġalcohol": 7658, + "Ġalcoholic": 38075, + "Ġald": 16798, + "Ġale": 6775, + "Ġaleg": 44491, + "Ġalert": 9615, + "Ġalerts": 28061, + "Ġalg": 3501, + "Ġalgae": 32658, + "Ġalgebra": 21989, + "Ġalgo": 8655, + "Ġalgorith": 7028, + "Ġalgorithm": 9284, + "Ġalgorithms": 14642, + "Ġalgu": 16527, + "Ġalguien": 25814, + "Ġalgum": 15468, + "Ġalguma": 20259, + "Ġalgumas": 23207, + "Ġalgun": 9813, + "Ġalguna": 20651, + "Ġalgunas": 27316, + "Ġalgunos": 21078, + "Ġalguns": 20210, + "Ġalguém": 27052, + "Ġalgún": 26300, + "Ġali": 10198, + "Ġalien": 12319, + "Ġaliens": 21594, + "Ġalign": 7975, + "Ġaligned": 17962, + "Ġalignment": 18515, + "Ġalike": 20025, + "Ġaliment": 17043, + "Ġalimentos": 38563, + "Ġalive": 5465, + "Ġalk": 37688, + "Ġalkal": 44220, + "Ġall": 439, + "Ġalla": 11591, + "Ġalle": 5430, + "Ġalleen": 32259, + "Ġalleg": 10364, + "Ġallegations": 29259, + "Ġalleged": 26317, + "Ġallegedly": 26794, + "Ġallegiance": 44706, + "Ġallein": 37673, + "Ġalleine": 37780, + "Ġallem": 17585, + "Ġallemaal": 29352, + "Ġallen": 18440, + "Ġaller": 8722, + "Ġallerdings": 35489, + "Ġallergic": 31606, + "Ġallergies": 37007, + "Ġallergy": 41505, + "Ġalles": 7874, + "Ġallevi": 33201, + "Ġalleviate": 42701, + "Ġalley": 26660, + "Ġallez": 18146, + "Ġalliance": 20995, + "Ġalliances": 45855, + "Ġallied": 41969, + "Ġallies": 14719, + "Ġalligator": 48095, + "Ġalloc": 12660, + "Ġallocate": 35713, + "Ġallocated": 29772, + "Ġallocation": 27599, + "Ġallons": 34405, + "Ġallora": 44141, + "Ġallow": 2089, + "Ġallowance": 30647, + "Ġallowed": 4350, + "Ġallowing": 8293, + "Ġallows": 4045, + "Ġalloy": 37819, + "Ġallt": 23612, + "Ġalltid": 45861, + "ĠalltsÃ¥": 43505, + "Ġalluded": 33919, + "Ġally": 23356, + "Ġallá": 30642, + "ĠallÃŃ": 34294, + "Ġalm": 18667, + "Ġalma": 32634, + "Ġalmighty": 47534, + "Ġalmond": 29506, + "Ġalmonds": 40973, + "Ġalmost": 1920, + "Ġalone": 3312, + "Ġalong": 2051, + "Ġalongside": 12385, + "Ġalors": 11246, + "Ġalot": 37762, + "Ġaloud": 43888, + "Ġalpha": 8961, + "Ġalphabet": 23339, + "Ġalready": 1217, + "Ġalred": 41290, + "Ġalrededor": 43663, + "Ġalright": 5845, + "Ġals": 3907, + "Ġalso": 611, + "Ġalt": 4955, + "Ġalta": 26495, + "Ġaltar": 31435, + "Ġalte": 38973, + "Ġalten": 41217, + "Ġalter": 11337, + "Ġaltered": 28783, + "Ġaltern": 5400, + "Ġalternate": 18873, + "Ġalternating": 40062, + "Ġalternative": 8535, + "Ġalternatives": 20478, + "Ġalthough": 4878, + "Ġaltijd": 29191, + "Ġaltitude": 24003, + "Ġalto": 21275, + "Ġaltogether": 19051, + "Ġaltre": 34983, + "Ġaltri": 33707, + "Ġaltro": 40924, + "Ġaltura": 39398, + "Ġalum": 12064, + "Ġalumin": 12787, + "Ġaluminium": 35239, + "Ġaluminum": 15656, + "Ġalumni": 16347, + "Ġalways": 1009, + "Ġalém": 30388, + "Ġam": 669, + "Ġama": 10889, + "Ġaman": 42943, + "Ġamar": 42171, + "Ġamateur": 29339, + "Ġamazed": 20507, + "Ġamazing": 2243, + "Ġamazingly": 31762, + "Ġamazon": 47010, + "Ġamb": 3913, + "Ġambassador": 25445, + "Ġambassadors": 44235, + "Ġamber": 48304, + "Ġambient": 22997, + "Ġambiente": 34957, + "Ġambigu": 40390, + "Ġambiguity": 46519, + "Ġambiguous": 39465, + "Ġambition": 22814, + "Ġambitions": 34475, + "Ġambitious": 20239, + "Ġambos": 41425, + "Ġambul": 21574, + "Ġambulance": 26744, + "Ġambush": 38143, + "Ġamen": 18497, + "Ġamend": 11704, + "Ġamended": 43641, + "Ġamendment": 17920, + "Ġamendments": 27009, + "Ġamenities": 47260, + "Ġamer": 16116, + "Ġamerican": 31229, + "Ġami": 33206, + "Ġamid": 30153, + "Ġamiga": 45322, + "Ġamigo": 24671, + "Ġamigos": 18243, + "Ġamino": 24674, + "Ġamis": 32929, + "Ġammo": 27340, + "Ġammon": 36431, + "Ġammonia": 46833, + "Ġammunition": 32251, + "Ġamo": 43155, + "Ġamong": 3654, + "Ġamongst": 12918, + "Ġamor": 15543, + "Ġamount": 2372, + "Ġamounts": 11663, + "Ġamp": 18648, + "Ġamph": 40077, + "Ġampl": 9731, + "Ġample": 42857, + "Ġamplified": 49237, + "Ġamplifier": 27439, + "Ġamplify": 41174, + "Ġamplitude": 27433, + "Ġamps": 43970, + "Ġamusement": 39970, + "Ġamusing": 47809, + "Ġaméric": 39902, + "Ġan": 364, + "Ġana": 34178, + "Ġanak": 38042, + "Ġanal": 2624, + "Ġanalog": 16660, + "Ġanalogy": 21663, + "Ġanaly": 6459, + "Ġanalys": 23014, + "Ġanalyse": 37840, + "Ġanalyses": 37560, + "Ġanalysis": 5215, + "Ġanalyst": 19085, + "Ġanalysts": 31388, + "Ġanalyt": 10783, + "Ġanalytic": 40358, + "Ġanalytical": 29579, + "Ġanalytics": 15370, + "Ġanalyze": 12477, + "Ġanalyzed": 28181, + "Ġanalyzing": 23663, + "Ġanar": 37378, + "Ġanarch": 41957, + "Ġanat": 21618, + "Ġanatomy": 31566, + "Ġanc": 9789, + "Ġancest": 11749, + "Ġancestor": 40032, + "Ġancestors": 18069, + "Ġancestral": 40049, + "Ġancestry": 44729, + "Ġanch": 12723, + "Ġanche": 11585, + "Ġanchor": 18487, + "Ġanci": 34856, + "Ġancient": 7832, + "Ġancora": 30656, + "Ġand": 293, + "Ġanda": 21851, + "Ġandar": 50009, + "Ġandare": 42742, + "Ġander": 49466, + "Ġandere": 10490, + "Ġanderen": 11122, + "Ġanderer": 48108, + "Ġanderes": 31426, + "Ġanders": 17999, + "Ġandra": 25299, + "Ġandroid": 36157, + "Ġanecd": 26652, + "Ġanecdote": 49845, + "Ġanest": 31750, + "Ġanf": 33709, + "Ġang": 2562, + "Ġange": 15495, + "Ġangef": 43907, + "Ġangel": 14250, + "Ġangels": 18175, + "Ġanger": 10240, + "Ġanges": 31138, + "Ġangle": 5802, + "Ġangled": 48843, + "Ġangles": 14708, + "Ġangry": 6884, + "Ġangular": 24413, + "Ġanh": 18931, + "Ġani": 40477, + "Ġanim": 2383, + "Ġanimal": 5496, + "Ġanimales": 45102, + "Ġanimals": 4882, + "Ġanimate": 36439, + "Ġanimated": 18947, + "Ġanimation": 9603, + "Ġanimations": 22868, + "Ġanime": 12435, + "Ġank": 30890, + "Ġankle": 21999, + "Ġankles": 40962, + "Ġanlam": 28940, + "Ġanlat": 27691, + "Ġann": 2324, + "Ġannat": 42786, + "Ġanne": 22256, + "Ġannex": 41012, + "Ġanni": 31164, + "Ġannih": 40430, + "Ġanniversary": 12962, + "Ġanno": 46277, + "Ġannot": 25339, + "Ġannotation": 48654, + "Ġannoun": 4262, + "Ġannounce": 7478, + "Ġannounced": 7548, + "Ġannouncement": 12847, + "Ġannouncements": 23785, + "Ġannouncer": 49574, + "Ġannouncing": 28706, + "Ġannoy": 8759, + "Ġannoyed": 25921, + "Ġannoying": 11304, + "Ġannual": 9784, + "Ġannually": 29974, + "Ġannée": 30488, + "Ġannées": 21203, + "Ġano": 19816, + "Ġanom": 24769, + "Ġanomaly": 42737, + "Ġanonym": 37293, + "Ġanonymous": 24932, + "Ġanos": 13592, + "Ġanother": 1071, + "Ġans": 1567, + "Ġansch": 31508, + "Ġanswer": 1867, + "Ġanswered": 10103, + "Ġanswering": 13430, + "Ġanswers": 6338, + "Ġant": 2511, + "Ġantagon": 32590, + "Ġante": 23411, + "Ġanten": 18858, + "Ġantenna": 24573, + "Ġanterior": 22272, + "Ġantes": 11014, + "Ġanth": 25820, + "Ġanthem": 42383, + "Ġanthrop": 22727, + "Ġanthropology": 44518, + "Ġanti": 6061, + "Ġantib": 11533, + "Ġantibiot": 19388, + "Ġantibiotic": 37828, + "Ġantibiotics": 26922, + "Ġantibodies": 28356, + "Ġantibody": 34507, + "Ġantic": 49172, + "Ġanticip": 10416, + "Ġanticipate": 21685, + "Ġanticipated": 23267, + "Ġanticipating": 40568, + "Ġanticipation": 35979, + "Ġantid": 47962, + "Ġantig": 44417, + "Ġantim": 46141, + "Ġantioxid": 33369, + "Ġantioxidants": 48767, + "Ġantiqu": 41036, + "Ġantique": 41220, + "Ġantis": 44474, + "Ġants": 23355, + "Ġanunci": 39350, + "Ġanvänd": 41559, + "Ġanx": 6739, + "Ġanxiety": 9119, + "Ġanxious": 15166, + "Ġany": 604, + "Ġanybody": 4472, + "Ġanyhow": 44995, + "Ġanymore": 3602, + "Ġanyone": 2878, + "Ġanys": 32319, + "Ġanything": 1340, + "Ġanytime": 13038, + "Ġanyway": 4033, + "Ġanyways": 13448, + "Ġanywhere": 4992, + "Ġanál": 44113, + "Ġao": 8130, + "Ġaos": 25458, + "Ġap": 1882, + "Ġapa": 15951, + "Ġapar": 34115, + "Ġapare": 15004, + "Ġaparece": 37863, + "Ġaparecer": 43336, + "Ġapart": 4936, + "Ġapartment": 9587, + "Ġapartments": 29056, + "Ġape": 44315, + "Ġapenas": 18561, + "Ġaper": 43139, + "Ġapert": 22939, + "Ġaperture": 29848, + "Ġapex": 48115, + "Ġapl": 25522, + "Ġaplic": 18221, + "Ġapo": 50165, + "Ġapocalypse": 42600, + "Ġapolog": 9472, + "Ġapologies": 34929, + "Ġapologise": 50128, + "Ġapologize": 12328, + "Ġapologized": 47815, + "Ġapology": 28006, + "Ġapost": 19484, + "Ġapostle": 50244, + "Ġapostles": 39397, + "Ġapoy": 41535, + "Ġapoyo": 46151, + "Ġapp": 724, + "Ġappar": 45914, + "Ġapparat": 36564, + "Ġapparatus": 38573, + "Ġapparent": 18335, + "Ġapparently": 7970, + "Ġappe": 2363, + "Ġappeal": 13668, + "Ġappealing": 23842, + "Ġappeals": 32603, + "Ġappear": 4204, + "Ġappearance": 8967, + "Ġappearances": 29174, + "Ġappeared": 8516, + "Ġappearing": 19870, + "Ġappears": 7038, + "Ġappel": 36332, + "Ġappelle": 34216, + "Ġappend": 34116, + "Ġappet": 16159, + "Ġappetite": 23996, + "Ġappl": 4988, + "Ġapplaud": 9644, + "Ġapplauding": 15865, + "Ġapplauds": 20783, + "Ġapplause": 9969, + "Ġapple": 10606, + "Ġapples": 16814, + "Ġappli": 33330, + "Ġappliance": 45646, + "Ġappliances": 35480, + "Ġapplic": 2580, + "Ġapplicable": 21142, + "Ġapplicant": 30915, + "Ġapplicants": 28767, + "Ġapplication": 3861, + "Ġapplications": 5821, + "Ġapplied": 6456, + "Ġapplies": 13165, + "Ġapply": 3079, + "Ġapplying": 9275, + "Ġappoint": 7602, + "Ġappointed": 17653, + "Ġappointment": 13653, + "Ġappointments": 25084, + "Ġappreci": 3616, + "Ġappreciate": 4449, + "Ġappreciated": 17169, + "Ġappreciation": 18909, + "Ġappreciative": 43239, + "Ġappreh": 38675, + "Ġapprendre": 46609, + "Ġapprent": 21435, + "Ġapprentice": 40207, + "Ġapprentices": 31715, + "Ġapprenticeship": 47070, + "Ġappro": 2075, + "Ġapproach": 3109, + "Ġapproached": 17247, + "Ġapproaches": 11587, + "Ġapproaching": 14908, + "Ġappropri": 5745, + "Ġappropriate": 6854, + "Ġappropriately": 23505, + "Ġapproval": 13317, + "Ġapprove": 18827, + "Ġapproved": 10826, + "Ġapprox": 28080, + "Ġapproxim": 8542, + "Ġapproximate": 30874, + "Ġapproximately": 10447, + "Ġapproximation": 28023, + "Ġapps": 7733, + "Ġapr": 10992, + "Ġaprend": 21003, + "Ġaprender": 24916, + "Ġapresent": 36181, + "Ġapro": 14602, + "Ġapron": 46742, + "Ġaprove": 29015, + "Ġaproxim": 31270, + "Ġaproximadamente": 48892, + "Ġaprès": 13274, + "Ġapt": 29427, + "Ġaqu": 2373, + "Ġaquarium": 30149, + "Ġaquatic": 44020, + "Ġaquela": 25996, + "Ġaquele": 23640, + "Ġaqueles": 49831, + "Ġaquell": 33635, + "Ġaquellos": 49835, + "Ġaquest": 19269, + "Ġaquesta": 24062, + "Ġaqui": 3871, + "Ġaquilo": 32304, + "ĠaquÃŃ": 6661, + "Ġar": 594, + "Ġara": 15186, + "Ġarab": 38557, + "Ġarada": 40479, + "Ġarb": 25613, + "Ġarbe": 40476, + "Ġarbeiten": 23162, + "Ġarbeitet": 49907, + "Ġarbets": 47539, + "Ġarbit": 14931, + "Ġarbitr": 19071, + "Ġarbitrary": 23211, + "Ġarc": 10346, + "Ġarcade": 25664, + "Ġarch": 3912, + "Ġarchae": 21894, + "Ġarchaeological": 42139, + "Ġarche": 37897, + "Ġarchety": 41852, + "Ġarchitect": 6331, + "Ġarchitects": 30491, + "Ġarchitectural": 26621, + "Ġarchitecture": 9482, + "Ġarchive": 23507, + "Ġarchives": 25607, + "Ġard": 44856, + "Ġare": 366, + "Ġarea": 1859, + "Ġareas": 3179, + "Ġaren": 3212, + "Ġarena": 18451, + "Ġarg": 3882, + "Ġargent": 33977, + "Ġargu": 10171, + "Ġarguably": 26771, + "Ġargue": 9695, + "Ġargued": 20219, + "Ġargues": 38218, + "Ġarguing": 19697, + "Ġargument": 6770, + "Ġarguments": 12869, + "Ġarise": 20288, + "Ġarises": 27388, + "Ġarising": 44900, + "Ġarist": 40105, + "Ġarithmetic": 42973, + "Ġark": 14408, + "ĠarkadaÅŁ": 19153, + "ĠarkadaÅŁlar": 27550, + "Ġarm": 3726, + "Ġarma": 46422, + "Ġarmas": 44611, + "Ġarmed": 16297, + "Ġarmies": 28217, + "Ġarmor": 13124, + "Ġarmored": 41879, + "Ġarmour": 36554, + "Ġarmp": 44541, + "Ġarms": 5812, + "Ġarmy": 7267, + "Ġaroma": 28687, + "Ġaromatic": 45831, + "Ġarose": 37192, + "Ġaround": 926, + "Ġarqu": 40258, + "Ġarr": 5539, + "Ġarran": 50235, + "Ġarrange": 9424, + "Ġarranged": 18721, + "Ġarrangement": 17620, + "Ġarrangements": 22435, + "Ġarray": 10225, + "Ġarrays": 41011, + "Ġarrest": 7823, + "Ġarrested": 12469, + "Ġarrests": 48813, + "Ġarri": 3399, + "Ġarrib": 21620, + "Ġarriba": 28469, + "Ġarriv": 30697, + "Ġarrival": 18365, + "Ġarrive": 8881, + "Ġarrived": 6678, + "Ġarriver": 34142, + "Ġarrives": 20116, + "Ġarriving": 22436, + "Ġarrivé": 47112, + "Ġarrog": 22149, + "Ġarrogance": 46444, + "Ġarrogant": 30467, + "Ġarrow": 11610, + "Ġarrows": 19669, + "Ġarsen": 28636, + "Ġarsenal": 42227, + "Ġart": 1523, + "Ġarte": 29159, + "Ġarter": 30455, + "Ġarteries": 44801, + "Ġartery": 38520, + "Ġarth": 31546, + "Ġarthritis": 35956, + "Ġartic": 15228, + "Ġarticle": 7222, + "Ġarticles": 11290, + "Ġarticulate": 30305, + "Ġarticulated": 43322, + "Ġartif": 17851, + "Ġartifact": 34806, + "Ġartifacts": 24617, + "Ġartific": 39905, + "Ġartificial": 11677, + "Ġartillery": 31115, + "Ġartist": 5748, + "Ġartistic": 17090, + "Ġartists": 6910, + "Ġarts": 8609, + "Ġartwork": 15829, + "Ġartık": 22241, + "Ġas": 382, + "Ġasc": 15526, + "Ġascend": 41604, + "Ġaseg": 38174, + "Ġash": 12588, + "Ġashamed": 19489, + "Ġashes": 32942, + "Ġasi": 28644, + "Ġaside": 7359, + "Ġask": 1029, + "Ġasked": 2351, + "Ġasking": 3365, + "Ġasks": 8962, + "Ġasleep": 11039, + "Ġaslında": 34541, + "Ġasp": 16817, + "Ġaspect": 4171, + "Ġaspects": 7270, + "Ġasphalt": 46076, + "Ġaspir": 20003, + "Ġaspiration": 44565, + "Ġaspirations": 32458, + "Ġaspire": 41224, + "Ġaspiring": 45405, + "Ġass": 1256, + "Ġassass": 16475, + "Ġassassin": 36294, + "Ġassassination": 40195, + "Ġassault": 12458, + "Ġassaulted": 44910, + "Ġasse": 5907, + "Ġassemb": 8438, + "Ġassemble": 22364, + "Ġassembled": 24204, + "Ġassembling": 43867, + "Ġassembly": 12103, + "Ġassert": 19810, + "Ġassess": 5877, + "Ġassessed": 36051, + "Ġassessing": 34348, + "Ġassessment": 9687, + "Ġassessments": 24338, + "Ġasset": 11999, + "Ġassets": 9769, + "Ġassez": 15774, + "Ġasshole": 28599, + "Ġassign": 6269, + "Ġassigned": 13279, + "Ġassigning": 49602, + "Ġassignment": 15187, + "Ġassignments": 22546, + "Ġassim": 8249, + "Ġassist": 4255, + "Ġassistance": 9683, + "Ġassistant": 10994, + "Ġassistants": 34949, + "Ġassisted": 30291, + "Ġassisting": 40368, + "Ġassistir": 45983, + "Ġassists": 49416, + "Ġassoci": 4180, + "Ġassociate": 14644, + "Ġassociated": 6615, + "Ġassociates": 36914, + "Ġassociation": 14598, + "Ġassociations": 26597, + "Ġassum": 5339, + "Ġassume": 6552, + "Ġassumed": 15895, + "Ġassumes": 37808, + "Ġassuming": 11926, + "Ġassumption": 15302, + "Ġassumptions": 17695, + "Ġassunto": 50219, + "Ġassurance": 32189, + "Ġassure": 20968, + "Ġassured": 23426, + "Ġast": 5357, + "Ġasta": 43405, + "Ġastero": 24711, + "Ġasteroid": 33833, + "Ġasteroids": 50230, + "Ġasthma": 33409, + "Ġaston": 25687, + "Ġastonishing": 35264, + "Ġastrolog": 30122, + "Ġastrology": 44385, + "Ġastron": 11117, + "Ġastronaut": 18516, + "Ġastronauts": 28273, + "Ġastronom": 26302, + "Ġastronomers": 43151, + "Ġastronomical": 49035, + "Ġastronomy": 37844, + "Ġasylum": 31601, + "Ġasymm": 37277, + "Ġasympt": 35114, + "Ġasynchron": 42642, + "Ġasynchronous": 49174, + "ĠasÃŃ": 8582, + "Ġat": 412, + "Ġata": 48639, + "Ġatac": 41015, + "Ġataque": 46166, + "Ġatau": 22823, + "Ġate": 8468, + "Ġaten": 21723, + "Ġatención": 33488, + "Ġatenção": 39044, + "Ġathe": 27033, + "Ġatheist": 43977, + "Ġathlet": 7650, + "Ġathlete": 18002, + "Ġathletes": 13820, + "Ġathletic": 22496, + "Ġathletics": 37964, + "Ġatm": 22582, + "Ġatmos": 7722, + "Ġatmosphere": 8018, + "Ġatmospheric": 28854, + "Ġatom": 12018, + "Ġatomic": 22275, + "Ġatoms": 16871, + "Ġatra": 44192, + "Ġatrav": 33325, + "Ġatravés": 39941, + "Ġatroc": 43530, + "Ġatrás": 22906, + "Ġatt": 951, + "Ġattach": 5085, + "Ġattached": 8570, + "Ġattaches": 49404, + "Ġattaching": 39074, + "Ġattachment": 19431, + "Ġattachments": 37987, + "Ġattack": 2690, + "Ġattacked": 12692, + "Ġattacker": 35871, + "Ġattackers": 45129, + "Ġattacking": 15010, + "Ġattacks": 8122, + "Ġattain": 23766, + "Ġattained": 46633, + "Ġatte": 42783, + "Ġattempt": 5217, + "Ġattempted": 18997, + "Ġattempting": 22001, + "Ġattempts": 15257, + "Ġattend": 6888, + "Ġattendance": 24337, + "Ġattendant": 39339, + "Ġattended": 15990, + "Ġattendees": 34826, + "Ġattending": 15862, + "Ġattends": 49837, + "Ġattent": 30980, + "Ġattention": 3202, + "Ġattentive": 43661, + "Ġattic": 40766, + "Ġattitude": 10157, + "Ġattitudes": 25853, + "Ġattorney": 13469, + "Ġattorneys": 30019, + "Ġattract": 5049, + "Ġattracted": 15912, + "Ġattracting": 36594, + "Ġattraction": 17672, + "Ġattractions": 35005, + "Ġattractive": 12609, + "Ġattracts": 37026, + "Ġattrib": 9080, + "Ġattribute": 19667, + "Ġattributed": 30976, + "Ġattributes": 17212, + "Ġatual": 39241, + "Ġaté": 8784, + "Ġau": 1609, + "Ġauc": 23788, + "Ġauch": 2168, + "Ġauction": 24139, + "Ġaucun": 35361, + "Ġaucune": 40076, + "Ġaud": 2379, + "Ġaudi": 27435, + "Ġaudible": 41317, + "Ġaudience": 4034, + "Ġaudiences": 15479, + "Ġaudio": 6278, + "Ġaudiobook": 40031, + "Ġaudit": 17748, + "Ġaudition": 20015, + "Ġauditor": 33970, + "Ġauf": 2501, + "Ġaufge": 35031, + "Ġaug": 14501, + "Ġaugment": 29919, + "Ġaugmented": 36155, + "Ġaujourd": 14023, + "Ġaula": 41642, + "Ġaument": 17128, + "Ġaumentar": 43504, + "Ġaumento": 43600, + "Ġaun": 15879, + "Ġaunque": 21962, + "Ġaunt": 15654, + "Ġaur": 19145, + "Ġaura": 18355, + "Ġaurait": 29531, + "Ġaus": 3437, + "Ġausge": 31899, + "Ġauss": 5730, + "Ġaussi": 6212, + "Ġaust": 34916, + "Ġauster": 49867, + "Ġaut": 1476, + "Ġautant": 34081, + "Ġauth": 6979, + "Ġauthent": 9214, + "Ġauthentic": 12466, + "Ġauthentication": 26643, + "Ġauthenticity": 34215, + "Ġauthor": 3793, + "Ġauthoritarian": 37883, + "Ġauthorities": 12076, + "Ġauthority": 8281, + "Ġauthorization": 33697, + "Ġauthorized": 28312, + "Ġauthors": 16552, + "Ġautism": 21471, + "Ġautistic": 33272, + "Ġauto": 8399, + "Ġautobi": 45747, + "Ġautoc": 45833, + "Ġautograph": 36660, + "Ġautom": 3553, + "Ġautomat": 28034, + "Ġautomate": 31605, + "Ġautomated": 18473, + "Ġautomatic": 12509, + "Ġautomatically": 6772, + "Ġautomation": 17769, + "Ġautomobile": 38809, + "Ġautomotive": 32866, + "Ġautonom": 18203, + "Ġautonomous": 23797, + "Ġautonomy": 27278, + "Ġautop": 31090, + "Ġautor": 19510, + "Ġautour": 30249, + "Ġautre": 15081, + "Ġautres": 17093, + "Ġautumn": 24604, + "Ġaux": 7865, + "Ġauxiliary": 43741, + "ĠauÃŁer": 39428, + "Ġav": 1305, + "Ġavaient": 38703, + "Ġavail": 2327, + "Ġavailability": 17945, + "Ġavailable": 2435, + "Ġavait": 11853, + "Ġavant": 13439, + "Ġavanz": 42444, + "Ġavatar": 36205, + "Ġave": 3472, + "Ġavec": 4163, + "Ġaven": 18469, + "Ġavent": 36399, + "Ġavenue": 39230, + "Ġavenues": 43039, + "Ġaver": 18247, + "Ġaverage": 4274, + "Ġaverages": 42257, + "Ġaveraging": 47308, + "Ġavere": 37914, + "Ġavete": 48201, + "Ġavez": 11766, + "Ġaviation": 28831, + "Ġavis": 34588, + "Ġavo": 3641, + "Ġavocado": 27041, + "Ġavoid": 5042, + "Ġavoided": 24890, + "Ġavoiding": 20220, + "Ġavoir": 10853, + "Ġavons": 18990, + "Ġaw": 1714, + "Ġawait": 19670, + "Ġawaiting": 43759, + "Ġawaits": 45955, + "Ġawak": 13726, + "Ġawake": 15994, + "Ġawaken": 43566, + "Ġawakened": 46468, + "Ġawakening": 31550, + "Ġaward": 7130, + "Ġawarded": 19100, + "Ġawards": 15193, + "Ġaware": 3650, + "Ġawareness": 8888, + "Ġaway": 1314, + "Ġawe": 30912, + "Ġawesome": 3476, + "Ġawful": 11232, + "Ġawfully": 47976, + "Ġawhile": 22224, + "Ġawkward": 11411, + "Ġax": 6360, + "Ġaxe": 30195, + "Ġaxes": 35387, + "Ġaxial": 46851, + "Ġaxis": 10298, + "Ġaxle": 31192, + "Ġay": 7494, + "Ġaye": 19259, + "Ġaynı": 30281, + "Ġayr": 35767, + "Ġayud": 20333, + "Ġayuda": 30737, + "Ġayudar": 38759, + "Ġaz": 7883, + "Ġazt": 39566, + "Ġazul": 39580, + "Ġaç": 12930, + "Ġaçık": 33282, + "Ġaçıl": 43236, + "Ġañ": 37837, + "Ġañad": 44980, + "Ġaño": 15984, + "Ġaños": 11424, + "Ġaún": 31676, + "ĠaÃŃ": 7461, + "ĠaÄŁ": 21294, + "Ġaż": 48134, + "ĠaÅŁ": 21002, + "ĠaÅŁk": 36730, + "Ġb": 272, + "Ġba": 4773, + "Ġbab": 7564, + "Ġbaba": 31568, + "Ġbabe": 24655, + "Ġbabies": 10917, + "Ġbaby": 3186, + "Ġbabys": 39764, + "Ġbac": 6857, + "Ġbachelor": 25947, + "Ġback": 646, + "Ġbackbone": 34889, + "Ġbackdrop": 32697, + "Ġbacked": 20391, + "Ġbackend": 38087, + "Ġbackground": 3678, + "Ġbackgrounds": 17336, + "Ġbacking": 19373, + "Ġbackl": 32449, + "Ġbacklash": 37572, + "Ġbacklog": 47364, + "Ġbackpack": 17969, + "Ġbacks": 19513, + "Ġbackside": 35370, + "Ġbackstage": 31764, + "Ġbackstory": 36899, + "Ġbackup": 14807, + "Ġbackups": 50160, + "Ġbackward": 23897, + "Ġbackwards": 12204, + "Ġbackyard": 20036, + "Ġbacon": 16400, + "Ġbacter": 9755, + "Ġbacteria": 11763, + "Ġbacterial": 35632, + "Ġbad": 1578, + "Ġbadass": 33907, + "Ġbadge": 25797, + "Ġbadges": 43894, + "Ġbadly": 13425, + "Ġbag": 3411, + "Ġbaggage": 41567, + "Ġbags": 10405, + "Ġbagus": 48348, + "Ġbah": 12913, + "Ġbaht": 49254, + "Ġbaik": 34867, + "Ġbail": 19313, + "Ġbait": 16865, + "Ġbaix": 40447, + "Ġbaixo": 30934, + "Ġbaj": 23589, + "Ġbaja": 49427, + "Ġbajo": 30139, + "Ġbak": 5657, + "Ġbakalım": 28812, + "Ġbakayım": 42918, + "Ġbake": 16562, + "Ġbaked": 19453, + "Ġbaker": 48148, + "Ġbakery": 37519, + "Ġbaking": 12102, + "Ġbakın": 43307, + "Ġbal": 3119, + "Ġbalance": 4772, + "Ġbalanced": 13902, + "Ġbalances": 33993, + "Ġbalancing": 22495, + "Ġbalcon": 26450, + "Ġbalcony": 29468, + "Ġbald": 21096, + "Ġball": 2594, + "Ġballet": 30512, + "Ġballistic": 44478, + "Ġballoon": 16994, + "Ġballoons": 26193, + "Ġballot": 21880, + "Ġballots": 36410, + "Ġballs": 9803, + "Ġbalm": 42532, + "Ġbam": 18132, + "Ġbamboo": 26156, + "Ġban": 5643, + "Ġbana": 16832, + "Ġbanana": 14194, + "Ġbananas": 22742, + "Ġbanc": 39612, + "Ġbanco": 45498, + "Ġband": 4116, + "Ġbanda": 38727, + "Ġbande": 46836, + "Ġbandits": 49043, + "Ġbands": 13543, + "Ġbandwidth": 23647, + "Ġbang": 8550, + "Ġbanget": 24909, + "Ġbanging": 36982, + "Ġbangs": 32802, + "Ġbank": 3765, + "Ġbanker": 48008, + "Ġbanking": 18261, + "Ġbankrupt": 21780, + "Ġbankruptcy": 33457, + "Ġbanks": 10237, + "Ġbanned": 19564, + "Ġbanner": 24348, + "Ġbanquet": 49796, + "Ġbanyak": 25808, + "Ġbao": 45296, + "Ġbapt": 18222, + "Ġbaptism": 34352, + "Ġbaptized": 34006, + "Ġbar": 2159, + "Ġbara": 19519, + "Ġbarbar": 35822, + "Ġbarbecue": 21877, + "Ġbarber": 49906, + "Ġbard": 7685, + "Ġbardziej": 27209, + "Ġbardzo": 9034, + "Ġbare": 6949, + "Ġbarely": 10268, + "Ġbarg": 22351, + "Ġbargain": 34302, + "Ġbargaining": 42108, + "Ġbark": 16202, + "Ġbarking": 32995, + "Ġbarley": 47761, + "Ġbarn": 18492, + "Ġbarr": 38236, + "Ġbarre": 43834, + "Ġbarrel": 13257, + "Ġbarrels": 33138, + "Ġbarrier": 13357, + "Ġbarriers": 13565, + "Ġbars": 10228, + "Ġbart": 44768, + "Ġbaru": 36171, + "Ġbas": 987, + "Ġbase": 3096, + "Ġbaseball": 14323, + "Ġbased": 2361, + "Ġbaseline": 20518, + "Ġbasement": 16893, + "Ġbases": 17949, + "Ġbash": 46183, + "Ġbasic": 3875, + "Ġbasically": 1936, + "Ġbasics": 14688, + "Ġbasil": 29862, + "Ġbasin": 34863, + "Ġbasis": 5143, + "Ġbask": 34055, + "Ġbasket": 8390, + "Ġbasketball": 11767, + "Ġbaskets": 42853, + "Ġbass": 10136, + "Ġbast": 8414, + "Ġbasta": 45282, + "Ġbastante": 14651, + "Ġbastard": 23569, + "Ġbastards": 49346, + "Ġbat": 7362, + "Ġbatch": 15245, + "Ġbate": 37936, + "Ġbater": 25735, + "Ġbath": 6079, + "Ġbathing": 38948, + "Ġbathroom": 8687, + "Ġbathrooms": 39537, + "Ġbatht": 40708, + "Ġbathtub": 42901, + "Ġbats": 26943, + "Ġbatt": 9591, + "Ġbatter": 4220, + "Ġbatteries": 13070, + "Ġbattery": 5809, + "Ġbattle": 4635, + "Ġbattlefield": 21818, + "Ġbattles": 14648, + "Ġbattling": 33752, + "Ġbauen": 43787, + "Ġbaw": 40463, + "Ġbay": 13642, + "Ġbaz": 27147, + "ĠbaÄŁ": 33071, + "ĠbaÅŁ": 8694, + "ĠbaÅŁka": 27883, + "Ġbe": 312, + "Ġbeach": 7534, + "Ġbeaches": 27560, + "Ġbeacon": 41669, + "Ġbead": 24117, + "Ġbeads": 20369, + "Ġbeak": 48663, + "Ġbeam": 14269, + "Ġbeams": 31040, + "Ġbean": 16230, + "Ġbeans": 12010, + "Ġbear": 6155, + "Ġbeard": 17455, + "Ġbearing": 17350, + "Ġbearings": 36297, + "Ġbears": 17276, + "Ġbeast": 13464, + "Ġbeasts": 37386, + "Ġbeat": 4224, + "Ġbeaten": 17909, + "Ġbeating": 13497, + "Ġbeats": 16447, + "Ġbeau": 29891, + "Ġbeaucoup": 8796, + "Ġbeaut": 1869, + "Ġbeautiful": 2238, + "Ġbeautifully": 16525, + "Ġbeauty": 6643, + "Ġbeb": 35348, + "Ġbeber": 40069, + "Ġbecame": 3062, + "Ġbecause": 570, + "Ġbecom": 2683, + "Ġbecome": 1813, + "Ġbecomes": 3643, + "Ġbecoming": 5617, + "Ġbed": 2901, + "Ġbede": 22466, + "Ġbedeutet": 27018, + "Ġbedroom": 11211, + "Ġbedrooms": 39955, + "Ġbeds": 18068, + "Ġbedtime": 45850, + "Ġbee": 17479, + "Ġbeef": 9256, + "Ġbeen": 668, + "Ġbeep": 28678, + "Ġbeeping": 34800, + "Ġbeeps": 27722, + "Ġbeer": 8795, + "Ġbeers": 34159, + "Ġbees": 17511, + "Ġbeet": 16658, + "Ġbeetje": 27459, + "Ġbeetle": 49735, + "Ġbef": 21312, + "Ġbefore": 949, + "Ġbeforehand": 22893, + "Ġbeg": 4612, + "Ġbegan": 4283, + "Ġbege": 41832, + "Ġbegg": 44914, + "Ġbegged": 47653, + "Ġbegging": 26600, + "Ġbegin": 1841, + "Ġbeginnen": 40326, + "Ġbeginner": 22080, + "Ġbeginners": 26992, + "Ġbeginning": 2863, + "Ġbeginnings": 37281, + "Ġbegins": 7338, + "Ġbegitu": 49707, + "Ġbegr": 38972, + "Ġbegun": 16009, + "Ġbeh": 1540, + "Ġbehalf": 9490, + "Ġbehand": 43122, + "Ġbehav": 3851, + "Ġbehave": 15158, + "Ġbehaved": 48249, + "Ġbehaves": 36896, + "Ġbehavi": 15475, + "Ġbehaving": 35263, + "Ġbehavior": 5223, + "Ġbehavioral": 19124, + "Ġbehaviors": 15501, + "Ġbehaviour": 17229, + "Ġbehind": 2261, + "Ġbehold": 27234, + "Ġbehö": 26187, + "Ġbehöver": 32138, + "Ġbei": 4643, + "Ġbeide": 35831, + "Ġbeiden": 23446, + "Ġbeige": 40274, + "Ġbeim": 13922, + "Ġbeing": 885, + "Ġbeings": 8958, + "Ġbeispiel": 37155, + "Ġbeispielsweise": 40152, + "Ġbek": 9393, + "Ġbekannt": 39167, + "Ġbekommen": 19256, + "Ġbekommt": 33429, + "Ġbel": 989, + "Ġbelang": 33746, + "Ġbelangrijk": 42330, + "Ġbele": 29620, + "Ġbeleza": 46429, + "Ġbelie": 1351, + "Ġbelief": 7107, + "Ġbeliefs": 13585, + "Ġbelieve": 1697, + "Ġbelieved": 7847, + "Ġbeliever": 23892, + "Ġbelievers": 23125, + "Ġbelieves": 12307, + "Ġbelieving": 16594, + "Ġbelki": 44596, + "Ġbell": 4549, + "Ġbelle": 28770, + "Ġbelli": 48006, + "Ġbells": 25474, + "Ġbelly": 11696, + "Ġbelo": 13878, + "Ġbelong": 5784, + "Ġbelonged": 28611, + "Ġbelonging": 22957, + "Ġbelongings": 43554, + "Ġbelongs": 12953, + "Ġbeloved": 14553, + "Ġbelow": 2507, + "Ġbelt": 10750, + "Ġbelts": 33689, + "Ġbelum": 48532, + "Ġbem": 7577, + "Ġben": 3271, + "Ġbench": 10638, + "Ġbenchmark": 18927, + "Ġbenchmarks": 43751, + "Ġbend": 11229, + "Ġbending": 22487, + "Ġbends": 42990, + "Ġbene": 2537, + "Ġbeneath": 17149, + "Ġbenef": 3070, + "Ġbenefic": 10304, + "Ġbenefici": 38534, + "Ġbeneficial": 14072, + "Ġbeneficiaries": 49937, + "Ġbenefit": 5121, + "Ġbenefited": 33605, + "Ġbenefiting": 47515, + "Ġbenefits": 5311, + "Ġbenevol": 48567, + "Ġbeni": 19723, + "Ġbenim": 13818, + "Ġbent": 14075, + "Ġbenut": 38424, + "Ġbenz": 44335, + "Ġber": 5948, + "Ġberaber": 39855, + "Ġbere": 13375, + "Ġbereit": 38758, + "Ġbereits": 23703, + "Ġberm": 50001, + "Ġberries": 29898, + "Ġberry": 44955, + "Ġbers": 32147, + "Ġbert": 50098, + "Ġbes": 4097, + "Ġbesar": 48327, + "Ġbesch": 17498, + "Ġbeschäft": 38768, + "Ġbeside": 15726, + "Ġbesides": 11868, + "Ġbesl": 47118, + "Ġbesoin": 19207, + "Ġbesond": 20114, + "Ġbesonders": 25258, + "Ġbess": 42410, + "Ġbesser": 18021, + "Ġbest": 1151, + "Ġbeste": 22245, + "Ġbesteht": 43680, + "Ġbesten": 30930, + "Ġbestimm": 35180, + "Ġbestimmt": 46871, + "Ġbet": 778, + "Ġbeta": 9861, + "Ġbeter": 45425, + "Ġbetray": 15560, + "Ġbetrayal": 42700, + "Ġbetrayed": 29515, + "Ġbets": 39922, + "Ġbetter": 1101, + "Ġbetting": 34246, + "Ġbetween": 1296, + "Ġbever": 46524, + "Ġbeverage": 35519, + "Ġbeverages": 47401, + "Ġbevor": 37591, + "Ġbew": 17897, + "Ġbewe": 46638, + "Ġbewusst": 46221, + "Ġbey": 39977, + "Ġbeyond": 4399, + "Ġbez": 10782, + "Ġbezel": 37179, + "Ġbezpie": 47153, + "ĠbeÄŁ": 44863, + "ĠbeÅŁ": 39213, + "Ġbh": 41221, + "Ġbi": 3228, + "Ġbias": 12577, + "Ġbiased": 28035, + "Ġbiases": 32152, + "Ġbib": 24557, + "Ġbible": 34956, + "Ġbibli": 34344, + "Ġbiblical": 26083, + "Ġbic": 34472, + "Ġbicy": 16703, + "Ġbicycle": 20888, + "Ġbicycles": 47913, + "Ġbid": 12957, + "Ġbidding": 39702, + "Ġbien": 3610, + "Ġbientôt": 34653, + "Ġbig": 955, + "Ġbigger": 3801, + "Ġbiggest": 3880, + "Ġbij": 10317, + "Ġbijvoorbeeld": 43061, + "Ġbik": 26730, + "Ġbike": 5656, + "Ġbikes": 16035, + "Ġbiking": 40276, + "Ġbil": 8588, + "Ġbilang": 46712, + "Ġbilateral": 38772, + "Ġbild": 22105, + "Ġbile": 18729, + "Ġbili": 20709, + "Ġbilingual": 48757, + "Ġbiliyor": 35424, + "Ġbill": 2961, + "Ġbilling": 35618, + "Ġbillion": 5218, + "Ġbillionaire": 42358, + "Ġbillions": 17375, + "Ġbills": 12433, + "Ġbilmiyorum": 48699, + "Ġbin": 5171, + "Ġbinary": 17434, + "Ġbind": 14786, + "Ġbinder": 45630, + "Ġbinding": 17359, + "Ġbinds": 41515, + "Ġbinge": 41487, + "Ġbinnen": 35958, + "Ġbins": 41275, + "Ġbio": 12198, + "Ġbiod": 26977, + "Ġbiodiversity": 36453, + "Ġbiography": 37062, + "Ġbiological": 13910, + "Ġbiology": 14956, + "Ġbiom": 27450, + "Ġbiomass": 47420, + "Ġbiomedical": 49775, + "Ġbios": 36997, + "Ġbip": 19016, + "Ġbipart": 28741, + "Ġbipartisan": 31954, + "Ġbipolar": 42469, + "Ġbir": 1904, + "Ġbiraz": 19696, + "Ġbird": 5255, + "Ġbirds": 9009, + "Ġbiri": 38530, + "Ġbirl": 37476, + "Ġbirlikte": 44642, + "Ġbirth": 3965, + "Ġbirthday": 6154, + "Ġbirthdays": 48739, + "Ġbis": 7393, + "Ġbisa": 14386, + "Ġbisc": 23261, + "Ġbiscuit": 39327, + "Ġbiscuits": 36301, + "Ġbisexual": 42570, + "Ġbisher": 33598, + "Ġbishop": 34470, + "Ġbisog": 40505, + "Ġbiss": 10627, + "Ġbisschen": 10763, + "Ġbist": 18209, + "Ġbit": 857, + "Ġbitch": 11960, + "Ġbitches": 42094, + "Ġbitcoin": 24973, + "Ġbite": 7988, + "Ġbites": 26030, + "Ġbiting": 32912, + "Ġbits": 9239, + "Ġbitte": 23231, + "Ġbitten": 34608, + "Ġbitter": 13871, + "Ġbitterness": 44224, + "Ġbiz": 7390, + "Ġbizarre": 18265, + "Ġbize": 28825, + "Ġbizi": 36033, + "Ġbizim": 23439, + "Ġbiết": 28432, + "Ġbl": 888, + "Ġbla": 16379, + "Ġblack": 2211, + "Ġblacks": 30720, + "Ġbladder": 37032, + "Ġblade": 10959, + "Ġblades": 20066, + "Ġblah": 12288, + "Ġblame": 10127, + "Ġblamed": 32027, + "Ġblaming": 32364, + "Ġblanc": 34437, + "Ġbland": 29849, + "Ġblank": 8247, + "Ġblanket": 17907, + "Ġblankets": 38710, + "Ġblas": 46409, + "Ġblast": 12035, + "Ġblasting": 47134, + "Ġblat": 42780, + "Ġble": 5408, + "Ġbleach": 39631, + "Ġbleed": 28385, + "Ġbleeding": 19312, + "Ġbleiben": 24912, + "Ġbleibt": 24814, + "Ġblend": 10628, + "Ġblended": 27048, + "Ġblender": 24564, + "Ġblending": 23124, + "Ġblends": 37619, + "Ġbless": 5227, + "Ġblessed": 12351, + "Ġblessing": 13869, + "Ġblessings": 19296, + "Ġblev": 37332, + "Ġblew": 19075, + "Ġbli": 27182, + "Ġblij": 26486, + "Ġblind": 6865, + "Ġblindfold": 44846, + "Ġblindly": 47744, + "Ġblindness": 46101, + "Ġblink": 24667, + "Ġblinking": 45879, + "Ġblir": 19504, + "Ġbliss": 31522, + "Ġbliver": 45329, + "Ġblo": 1749, + "Ġblob": 46115, + "Ġblock": 3461, + "Ġblockchain": 17176, + "Ġblocked": 15470, + "Ġblocking": 17776, + "Ġblocks": 8474, + "Ġblog": 6968, + "Ġblogs": 31038, + "Ġblond": 48537, + "Ġblonde": 30043, + "Ġblood": 3390, + "Ġbloody": 18938, + "Ġbloom": 26899, + "Ġblooming": 45294, + "Ġbloque": 41592, + "Ġbloss": 22956, + "Ġblossom": 38524, + "Ġblossoms": 47789, + "Ġblow": 6327, + "Ġblowing": 15068, + "Ġblown": 16479, + "Ġblows": 18458, + "Ġblue": 3344, + "Ġblueberries": 43722, + "Ġblueberry": 48243, + "Ġblueprint": 35868, + "Ġblues": 24244, + "Ġbluetooth": 48225, + "Ġbluff": 44191, + "Ġblunt": 32246, + "Ġblur": 14257, + "Ġblurred": 43525, + "Ġblurry": 37644, + "Ġblush": 25218, + "Ġbo": 748, + "Ġboa": 22422, + "Ġboard": 3150, + "Ġboarding": 30528, + "Ġboards": 13293, + "Ġboast": 46988, + "Ġboat": 6582, + "Ġboats": 17772, + "Ġbob": 27292, + "Ġboca": 34624, + "Ġbod": 16737, + "Ġbodies": 7510, + "Ġbodily": 39576, + "Ġbody": 1772, + "Ġbog": 26132, + "Ġboil": 13329, + "Ġboiled": 21058, + "Ġboiler": 39228, + "Ġboiling": 16208, + "Ġboils": 35049, + "Ġbois": 44808, + "Ġbok": 41882, + "Ġbol": 8986, + "Ġbola": 41110, + "Ġbolag": 48452, + "Ġbold": 11928, + "Ġboleh": 25835, + "Ġbolt": 13436, + "Ġbolts": 18127, + "Ġbom": 7957, + "Ġbomb": 7851, + "Ġbombard": 42894, + "Ġbomber": 44889, + "Ġbombers": 50055, + "Ġbombing": 31292, + "Ġbombs": 19043, + "Ġbon": 4428, + "Ġbona": 49012, + "Ġbond": 6086, + "Ġbonded": 41194, + "Ġbonding": 28824, + "Ġbonds": 14713, + "Ġbone": 9026, + "Ġbones": 10491, + "Ġbonito": 31209, + "Ġbonne": 20577, + "Ġbons": 33922, + "Ġbonus": 10882, + "Ġbonuses": 33205, + "Ġboo": 23113, + "Ġboobs": 40439, + "Ġbook": 1446, + "Ġbooked": 26735, + "Ġbooking": 34424, + "Ġbooklet": 48469, + "Ġbooks": 3642, + "Ġbookstore": 43478, + "Ġboom": 9351, + "Ġbooming": 45883, + "Ġboost": 9194, + "Ġbooster": 29275, + "Ġboosting": 43117, + "Ġboot": 11450, + "Ġbooth": 20912, + "Ġboots": 15194, + "Ġbooty": 34793, + "Ġbor": 14828, + "Ġbord": 25872, + "Ġborder": 7838, + "Ġborders": 16287, + "Ġbore": 26002, + "Ġbored": 13521, + "Ġboring": 9989, + "Ġborn": 4232, + "Ġborrow": 11172, + "Ġborrowed": 26805, + "Ġborrowing": 35024, + "Ġbos": 30641, + "Ġboss": 5741, + "Ġbosses": 24201, + "Ġbot": 10592, + "Ġboth": 1293, + "Ġbother": 8677, + "Ġbothered": 22996, + "Ġbothering": 31432, + "Ġbothers": 33980, + "Ġbots": 35410, + "Ġbott": 2274, + "Ġbottle": 7817, + "Ġbottlene": 44641, + "Ġbottles": 15923, + "Ġbottom": 2767, + "Ġbottoms": 43413, + "Ġbou": 15345, + "Ġboug": 46553, + "Ġbought": 4243, + "Ġboun": 15521, + "Ġbounce": 15894, + "Ġbounced": 46482, + "Ġbounces": 46901, + "Ġbouncing": 27380, + "Ġbouncy": 49704, + "Ġbound": 5472, + "Ġboundaries": 13180, + "Ġboundary": 12866, + "Ġbounded": 37498, + "Ġbounds": 29905, + "Ġbounty": 40773, + "Ġbour": 32373, + "Ġbout": 15738, + "Ġbow": 4503, + "Ġbowel": 40094, + "Ġbowl": 6571, + "Ġbowling": 35537, + "Ġbowls": 28513, + "Ġbows": 43158, + "Ġbox": 2424, + "Ġboxer": 47252, + "Ġboxes": 9002, + "Ġboxing": 24424, + "Ġboy": 3237, + "Ġboyfriend": 11457, + "Ġboys": 6347, + "Ġboî": 50127, + "ĠboÅŁ": 37636, + "Ġbr": 738, + "Ġbra": 1548, + "Ġbrac": 17848, + "Ġbrace": 38458, + "Ġbracelet": 23021, + "Ġbracelets": 48795, + "Ġbraces": 41537, + "Ġbrack": 12305, + "Ġbracket": 16904, + "Ġbrackets": 26179, + "Ġbrag": 41995, + "Ġbraid": 33109, + "Ġbrain": 3567, + "Ġbrains": 15442, + "Ġbrainstorm": 35245, + "Ġbrake": 13997, + "Ġbrakes": 19950, + "Ġbraking": 32140, + "Ġbran": 12029, + "Ġbranch": 9819, + "Ġbranches": 14770, + "Ġbrand": 3360, + "Ġbranded": 38510, + "Ġbranding": 27279, + "Ġbrands": 11324, + "Ġbras": 19993, + "Ġbrasile": 28435, + "Ġbrass": 26257, + "Ġbrat": 47869, + "Ġbrauch": 45522, + "Ġbrauchen": 19543, + "Ġbraucht": 22623, + "Ġbrave": 12653, + "Ġbravery": 43271, + "Ġbre": 1403, + "Ġbreach": 31086, + "Ġbread": 5961, + "Ġbreadth": 35862, + "Ġbreak": 1821, + "Ġbreakdown": 18188, + "Ġbreaker": 35375, + "Ġbreakfast": 8201, + "Ġbreaking": 7697, + "Ġbreakout": 30067, + "Ġbreaks": 9857, + "Ġbreakthrough": 22397, + "Ġbreakup": 38492, + "Ġbreast": 9934, + "Ġbreasts": 34331, + "Ġbreat": 3656, + "Ġbreath": 6045, + "Ġbreathe": 10192, + "Ġbreathing": 9570, + "Ġbreaths": 33769, + "Ġbreathtaking": 48393, + "Ġbred": 34133, + "Ġbree": 20082, + "Ġbreed": 18971, + "Ġbreeding": 26051, + "Ġbreeds": 41609, + "Ġbreeze": 24532, + "Ġbrethren": 47854, + "Ġbreve": 48517, + "Ġbrew": 34619, + "Ġbrewer": 39440, + "Ġbrewing": 39019, + "Ġbri": 33713, + "Ġbrick": 16725, + "Ġbricks": 25497, + "Ġbrid": 16362, + "Ġbride": 22292, + "Ġbridge": 7283, + "Ġbridges": 21114, + "Ġbrief": 5353, + "Ġbriefing": 28878, + "Ġbriefly": 10515, + "Ġbrig": 30743, + "Ġbrigade": 47501, + "Ġbright": 4730, + "Ġbrighten": 49007, + "Ġbrighter": 19764, + "Ġbrightest": 36271, + "Ġbrightly": 47418, + "Ġbrightness": 21367, + "Ġbrill": 8695, + "Ġbrilliant": 10248, + "Ġbrinc": 46545, + "Ġbring": 1565, + "Ġbringen": 27519, + "Ġbringing": 5062, + "Ġbrings": 5607, + "Ġbringt": 36008, + "Ġbrit": 38389, + "Ġbrittle": 49325, + "Ġbro": 2006, + "Ġbroad": 4152, + "Ġbroadband": 37718, + "Ġbroadcast": 9975, + "Ġbroadcasting": 30024, + "Ġbroaden": 47045, + "Ġbroader": 13227, + "Ġbroadly": 19511, + "Ġbroccoli": 29044, + "Ġbroch": 48147, + "Ġbroke": 6902, + "Ġbroken": 5463, + "Ġbroker": 26502, + "Ġbrokers": 47549, + "Ġbrom": 50134, + "Ġbron": 16586, + "Ġbronze": 25454, + "Ġbroom": 41544, + "Ġbroth": 18872, + "Ġbrother": 3708, + "Ġbrothers": 8452, + "Ġbrought": 3038, + "Ġbrow": 19299, + "Ġbrown": 6292, + "Ġbrows": 8333, + "Ġbrowse": 31442, + "Ġbrowser": 11185, + "Ġbrowsers": 36069, + "Ġbrowsing": 38602, + "Ġbru": 25267, + "Ġbruk": 48316, + "Ġbrunch": 49761, + "Ġbrush": 5287, + "Ġbrushed": 40694, + "Ġbrushes": 23260, + "Ġbrushing": 33130, + "Ġbrut": 12603, + "Ġbrutal": 17878, + "Ġbrutality": 41745, + "Ġbrutally": 48476, + "Ġbrute": 47909, + "Ġbu": 758, + "Ġbuat": 22186, + "Ġbubb": 13045, + "Ġbubble": 12212, + "Ġbubbles": 16295, + "Ġbubbling": 46360, + "Ġbuck": 14894, + "Ġbucket": 13058, + "Ġbuckets": 32191, + "Ġbuckle": 37686, + "Ġbucks": 11829, + "Ġbud": 3265, + "Ġbuddies": 30649, + "Ġbuddy": 10340, + "Ġbudget": 4706, + "Ġbudgeting": 47855, + "Ġbudgets": 26708, + "Ġbuds": 33916, + "Ġbuen": 30037, + "Ġbuena": 25710, + "Ġbuenas": 43852, + "Ġbueno": 11974, + "Ġbuenos": 49617, + "Ġbuff": 9204, + "Ġbuffalo": 39681, + "Ġbuffer": 21762, + "Ġbuffet": 42904, + "Ġbuffs": 50164, + "Ġbug": 7426, + "Ġbugs": 15120, + "Ġbugün": 37141, + "Ġbuild": 1322, + "Ġbuilder": 27377, + "Ġbuilders": 36281, + "Ġbuilding": 2390, + "Ġbuildings": 7446, + "Ġbuilds": 15182, + "Ġbuilt": 3094, + "Ġbukan": 31794, + "Ġbul": 6493, + "Ġbulb": 21122, + "Ġbulbs": 32871, + "Ġbuld": 37134, + "Ġbulk": 16139, + "Ġbulky": 42986, + "Ġbull": 4693, + "Ġbullet": 11632, + "Ġbullets": 20132, + "Ġbullied": 33603, + "Ġbullish": 38692, + "Ġbullshit": 22676, + "Ġbully": 29123, + "Ġbullying": 25633, + "Ġbulun": 48419, + "Ġbum": 13309, + "Ġbump": 9961, + "Ġbumped": 42696, + "Ġbumper": 23992, + "Ġbumps": 27719, + "Ġbumpy": 49400, + "Ġbun": 6702, + "Ġbuna": 44257, + "Ġbunch": 3840, + "Ġbund": 13882, + "Ġbundle": 24438, + "Ġbung": 50045, + "Ġbunk": 25125, + "Ġbunker": 39579, + "Ġbunlar": 37921, + "Ġbunları": 45695, + "Ġbunny": 28588, + "Ġbuns": 33452, + "Ġbunu": 18155, + "Ġbunun": 31697, + "Ġbuoy": 42841, + "Ġbur": 2779, + "Ġburada": 19167, + "Ġburadan": 49443, + "Ġburaya": 33548, + "Ġburden": 12578, + "Ġburdens": 37882, + "Ġbure": 23425, + "Ġbureau": 35343, + "Ġbureauc": 26360, + "Ġbureaucracy": 44671, + "Ġburg": 41000, + "Ġburger": 16393, + "Ġburgers": 28403, + "Ġburial": 35751, + "Ġburied": 14101, + "Ġburn": 5064, + "Ġburned": 13490, + "Ġburner": 36116, + "Ġburning": 9488, + "Ġburnout": 44841, + "Ġburns": 22684, + "Ġburnt": 18901, + "Ġburst": 12712, + "Ġbursting": 45713, + "Ġbursts": 41663, + "Ġbury": 28919, + "Ġbus": 1255, + "Ġbusca": 37492, + "Ġbuscando": 46804, + "Ġbuscar": 26170, + "Ġbuses": 20519, + "Ġbush": 19910, + "Ġbushes": 34303, + "Ġbusiness": 1606, + "Ġbusinesses": 6011, + "Ġbusinessman": 35317, + "Ġbust": 19432, + "Ġbusted": 41074, + "Ġbusy": 5856, + "Ġbut": 457, + "Ġbutcher": 41579, + "Ġbutt": 6660, + "Ġbutter": 5517, + "Ġbutterflies": 31987, + "Ġbutterfly": 22140, + "Ġbutton": 2960, + "Ġbuttons": 9905, + "Ġbutts": 46789, + "Ġbuy": 2256, + "Ġbuyer": 24645, + "Ġbuyers": 23465, + "Ġbuying": 6382, + "Ġbuys": 28153, + "Ġbuzz": 13036, + "Ġbuzzing": 29659, + "Ġby": 538, + "Ġbye": 6543, + "Ġbypass": 24996, + "Ġbyte": 40846, + "Ġbytes": 36088, + "ĠbyÄĩ": 15069, + "ĠbyÅĤ": 16673, + "ĠbyÅĤa": 23936, + "ĠbyÅĤo": 14811, + "ĠbyÅĤy": 26366, + "Ġbzw": 39998, + "Ġbás": 25545, + "Ġbásicamente": 48282, + "Ġbättre": 44842, + "ĠbÃ¥": 32758, + "ĠbÃ¥de": 39845, + "Ġbé": 15807, + "Ġbén": 41249, + "Ġbên": 43730, + "Ġbö": 41715, + "Ġböl": 36413, + "Ġbör": 21175, + "Ġbörjar": 49534, + "Ġböyle": 11018, + "Ġbütün": 27977, + "Ġbüy": 19445, + "Ġbüyük": 24059, + "Ġbı": 19902, + "Ġbırak": 24179, + "ĠbÄĻd": 8218, + "ĠbÄĻdzie": 10562, + "ĠbÄĻdziemy": 31966, + "ĠbÄĻdÄħ": 26239, + "ĠbÄĻdÄĻ": 39240, + "Ġbạn": 14647, + "Ġbá»ĭ": 32113, + "Ġc": 269, + "Ġca": 1335, + "Ġcab": 5487, + "Ġcabbage": 22944, + "Ġcabe": 18893, + "Ġcabeza": 34615, + "Ġcabeça": 33056, + "Ġcabin": 9401, + "Ġcabinet": 15188, + "Ġcabinets": 37427, + "Ġcable": 8220, + "Ġcables": 17555, + "Ġcabo": 41335, + "Ġcach": 32773, + "Ġcache": 19459, + "Ġcactus": 44287, + "Ġcad": 12209, + "Ġcada": 8411, + "Ġcade": 37571, + "Ġcadence": 46109, + "Ġcadre": 39546, + "Ġcaf": 15246, + "Ġcafe": 17773, + "Ġcafes": 48851, + "Ġcafeter": 38719, + "Ġcafeteria": 42230, + "Ġcaffe": 29118, + "Ġcaffeine": 31261, + "Ġcafé": 25118, + "Ġcage": 17302, + "Ġcages": 45888, + "Ġcai": 46523, + "Ġcake": 5908, + "Ġcakes": 19932, + "Ġcal": 2104, + "Ġcalam": 43936, + "Ġcalcium": 20918, + "Ġcalcul": 4322, + "Ġcalculate": 8873, + "Ġcalculated": 15598, + "Ġcalculating": 28258, + "Ġcalculation": 17108, + "Ġcalculations": 20448, + "Ġcalculator": 24993, + "Ġcalculus": 33400, + "Ġcalend": 37022, + "Ġcalendar": 12183, + "Ġcalf": 31893, + "Ġcalib": 21583, + "Ġcaliber": 41946, + "Ġcalibration": 38732, + "Ġcalidad": 42955, + "Ġcall": 818, + "Ġcalle": 45092, + "Ġcalled": 1219, + "Ġcaller": 48324, + "Ġcalling": 5141, + "Ġcalls": 5498, + "Ġcalm": 7151, + "Ġcalming": 39723, + "Ġcalmly": 39740, + "Ġcalor": 31575, + "Ġcalorie": 35004, + "Ġcalories": 14904, + "Ġcalves": 43755, + "Ġcam": 1945, + "Ġcama": 50197, + "Ġcamar": 43764, + "Ġcamb": 18751, + "Ġcambi": 19569, + "Ġcambiar": 37738, + "Ġcambio": 28731, + "Ġcame": 1361, + "Ġcamel": 37755, + "Ġcamer": 38946, + "Ġcamera": 2799, + "Ġcameraman": 46858, + "Ġcameras": 8622, + "Ġcaminho": 37215, + "Ġcamino": 34124, + "Ġcamoufl": 39491, + "Ġcamouflage": 47625, + "Ġcamp": 2255, + "Ġcampa": 37597, + "Ġcampaign": 5129, + "Ġcampaigns": 16840, + "Ġcampe": 48566, + "Ġcamper": 45936, + "Ġcamping": 19470, + "Ġcampo": 29691, + "Ġcamps": 16573, + "Ġcampus": 4828, + "Ġcampuses": 24233, + "Ġcan": 393, + "Ġcanal": 9911, + "Ġcancel": 10373, + "Ġcanceled": 24839, + "Ġcancell": 19114, + "Ġcancellation": 45867, + "Ġcancelled": 25103, + "Ġcancer": 5592, + "Ġcancers": 31063, + "Ġcanción": 41897, + "Ġcand": 3955, + "Ġcandid": 6268, + "Ġcandidate": 11532, + "Ġcandidates": 11255, + "Ġcandies": 43877, + "Ġcandle": 17968, + "Ġcandles": 23774, + "Ġcandy": 11237, + "Ġcane": 27518, + "Ġcann": 12361, + "Ġcannabis": 26066, + "Ġcanned": 36462, + "Ġcannon": 25938, + "Ġcannons": 47649, + "Ġcannot": 2644, + "Ġcanoe": 47650, + "Ġcanon": 21985, + "Ġcanonical": 46491, + "Ġcanopy": 38235, + "Ġcans": 21835, + "Ġcant": 11223, + "Ġcantidad": 33757, + "Ġcanvas": 16267, + "Ġcanvi": 47920, + "Ġcanyon": 45424, + "Ġcanım": 30535, + "Ġcap": 1410, + "Ġcapabilities": 10862, + "Ġcapability": 13759, + "Ġcapable": 8189, + "Ġcapac": 4637, + "Ġcapacidad": 43507, + "Ġcapacit": 38961, + "Ġcapacitance": 50241, + "Ġcapacities": 39396, + "Ġcapacitor": 29372, + "Ġcapacity": 6042, + "Ġcapaz": 35453, + "Ġcape": 30414, + "Ġcapit": 33807, + "Ġcapita": 39727, + "Ġcapital": 4238, + "Ġcapitalism": 19704, + "Ġcapitalist": 31354, + "Ġcapitalize": 48114, + "Ġcaps": 13855, + "Ġcapsule": 29247, + "Ġcapt": 3770, + "Ġcaptain": 14871, + "Ġcaption": 31974, + "Ġcaptions": 44832, + "Ġcaptiv": 40769, + "Ġcaptive": 41762, + "Ġcaptivity": 48607, + "Ġcapture": 7983, + "Ġcaptured": 11828, + "Ġcaptures": 27986, + "Ġcapturing": 23384, + "Ġcar": 1032, + "Ġcara": 10962, + "Ġcaracter": 28760, + "ĠcaracterÃŃst": 34297, + "ĠcaracterÃŃsticas": 47990, + "Ġcaramel": 22793, + "Ġcarb": 12143, + "Ġcarboh": 24429, + "Ġcarbohyd": 26328, + "Ġcarbohydrate": 47048, + "Ġcarbohydrates": 36817, + "Ġcarbon": 5954, + "Ġcarbono": 48491, + "Ġcarbs": 30801, + "Ġcard": 2920, + "Ġcardboard": 22248, + "Ġcardi": 37051, + "Ġcardiac": 32129, + "Ġcardio": 34274, + "Ġcardiovascular": 31786, + "Ġcards": 5632, + "Ġcare": 1127, + "Ġcared": 19779, + "Ġcareer": 3988, + "Ġcareers": 16409, + "Ġcareful": 5026, + "Ġcarefully": 7500, + "Ġcareg": 25087, + "Ġcaregiver": 44305, + "Ġcaregivers": 35440, + "Ġcareless": 46187, + "Ġcares": 12310, + "Ġcarga": 41964, + "Ġcargo": 19449, + "Ġcaric": 45732, + "Ġcaring": 15365, + "Ġcarn": 23796, + "Ġcarne": 30089, + "Ġcarp": 26103, + "Ġcarpet": 18119, + "Ġcarr": 15910, + "Ġcarre": 30919, + "Ġcarriage": 31811, + "Ġcarried": 9094, + "Ġcarrier": 17574, + "Ġcarriers": 28541, + "Ġcarries": 16402, + "Ġcarro": 23428, + "Ġcarrot": 22767, + "Ġcarrots": 21005, + "Ġcarry": 3985, + "Ġcarrying": 9792, + "Ġcars": 5163, + "Ġcart": 5467, + "Ġcarta": 41815, + "Ġcarte": 31483, + "Ġcartoon": 18569, + "Ġcartoons": 34855, + "Ġcartridge": 27753, + "Ġcartridges": 47036, + "Ġcarts": 48128, + "Ġcarve": 33832, + "Ġcarved": 28613, + "Ġcarving": 31872, + "Ġcas": 3058, + "Ġcasa": 9022, + "Ġcascade": 50080, + "Ġcase": 1389, + "Ġcases": 3331, + "Ġcash": 6388, + "Ġcasi": 22567, + "Ġcasing": 45109, + "Ġcasino": 36278, + "Ġcaso": 9666, + "Ġcasos": 25135, + "Ġcass": 21943, + "Ġcassette": 40514, + "Ġcast": 4193, + "Ġcaste": 39262, + "Ġcasting": 17301, + "Ġcastle": 14114, + "Ġcasts": 41921, + "Ġcasual": 13052, + "Ġcasually": 34872, + "Ġcasualties": 35628, + "Ġcat": 3857, + "Ġcatal": 13192, + "Ġcatalog": 19746, + "Ġcatalyst": 23868, + "Ġcatast": 19754, + "Ġcatastroph": 28363, + "Ġcatastrophe": 36043, + "Ġcatastrophic": 34915, + "Ġcatch": 3745, + "Ġcatches": 25496, + "Ġcatching": 16124, + "Ġcatchy": 47168, + "Ġcateg": 4847, + "Ġcategor": 19250, + "Ġcategories": 10479, + "Ġcategory": 7719, + "Ġcater": 21557, + "Ġcaterp": 44982, + "Ġcath": 17763, + "Ġcathedral": 45346, + "Ġcats": 11111, + "Ġcattle": 19992, + "Ġcau": 42951, + "Ġcaucus": 47950, + "Ġcaught": 5415, + "Ġcauliflower": 43125, + "Ġcaus": 3302, + "Ġcausa": 23667, + "Ġcausal": 38755, + "Ġcause": 3082, + "Ġcaused": 7008, + "Ġcauses": 7700, + "Ġcausing": 9853, + "Ġcaut": 21130, + "Ġcaution": 23585, + "Ġcautious": 25278, + "Ġcav": 13971, + "Ġcaval": 32805, + "Ġcavalry": 41010, + "Ġcave": 11730, + "Ġcaveat": 43012, + "Ġcaves": 32288, + "Ġcavity": 32425, + "Ġcay": 45776, + "ĠcaÅĤ": 35224, + "ĠcaÅĤe": 47631, + "ĠcaÅĤy": 35226, + "Ġce": 1769, + "Ġcease": 27887, + "Ġceased": 49917, + "Ġceiling": 13655, + "Ġcel": 9277, + "Ġcela": 15437, + "Ġcele": 43165, + "Ġcelebr": 3886, + "Ġcelebrate": 8098, + "Ġcelebrated": 19366, + "Ġcelebrates": 47182, + "Ġcelebrating": 15252, + "Ġcelebration": 14184, + "Ġcelebrations": 38504, + "Ġcelebrities": 23200, + "Ġcelebrity": 18597, + "Ġcelery": 37643, + "Ġcelestial": 41003, + "Ġcell": 2815, + "Ġcelle": 25722, + "Ġcellphone": 42524, + "Ġcells": 5438, + "Ġcellular": 29267, + "Ġcelui": 22829, + "Ġcelular": 32378, + "Ġcement": 19729, + "Ġcemetery": 31176, + "Ġcen": 27900, + "Ġcena": 41777, + "Ġcens": 19019, + "Ġcensorship": 40985, + "Ġcensus": 23725, + "Ġcent": 1489, + "Ġcenter": 3056, + "Ġcentered": 18988, + "Ġcenters": 10898, + "Ġcentigrade": 44731, + "Ġcentimet": 44755, + "Ġcentimeter": 31914, + "Ġcentimeters": 23300, + "Ġcentr": 32199, + "Ġcentral": 5777, + "Ġcentralized": 32395, + "Ġcentre": 10093, + "Ġcentres": 30096, + "Ġcentrif": 44828, + "Ġcentro": 24607, + "Ġcents": 14941, + "Ġcenturies": 13926, + "Ġcentury": 4901, + "Ġcep": 45026, + "Ġcer": 10146, + "Ġceram": 49678, + "Ġceramic": 29996, + "Ġcerc": 36099, + "Ġcerca": 26770, + "Ġcere": 11643, + "Ġcereal": 26199, + "Ġcerebral": 43561, + "Ġceremon": 25920, + "Ġceremonies": 36176, + "Ġceremony": 12813, + "Ġcert": 5351, + "Ġcerta": 44438, + "Ġcertain": 1629, + "Ġcertaines": 36993, + "Ġcertainly": 3297, + "Ġcertains": 25263, + "Ġcertainty": 27022, + "Ġcerteza": 30424, + "Ġcertific": 12378, + "Ġcertificate": 15953, + "Ġcertificates": 32941, + "Ġcertification": 21775, + "Ġcertified": 18580, + "Ġcerto": 22261, + "Ġcerv": 39543, + "Ġcerve": 33792, + "Ġcervical": 49883, + "Ġces": 7879, + "Ġcess": 47052, + "Ġcet": 8603, + "Ġcetera": 11458, + "Ġcette": 5550, + "Ġceux": 21314, + "Ġcev": 43266, + "Ġch": 417, + "Ġcha": 6294, + "Ġchacun": 42241, + "Ġchain": 5021, + "Ġchains": 12626, + "Ġchair": 6090, + "Ġchairman": 22770, + "Ġchairs": 18299, + "Ġchakra": 46068, + "Ġchalk": 28660, + "Ġchall": 2076, + "Ġchalleng": 3333, + "Ġchallenge": 3430, + "Ġchallenged": 17737, + "Ġchallenges": 4759, + "Ġchallenging": 7595, + "Ġcham": 8268, + "Ġchama": 40954, + "Ġchamado": 43475, + "Ġchamber": 13610, + "Ġchambers": 34513, + "Ġchamp": 5921, + "Ġchampagne": 33336, + "Ġchampion": 10971, + "Ġchampions": 11230, + "Ġchampionship": 19070, + "Ġchampionships": 41433, + "Ġchance": 2931, + "Ġchancellor": 49225, + "Ġchances": 10486, + "Ġchang": 1534, + "Ġchange": 1319, + "Ġchanged": 3105, + "Ġchanger": 22822, + "Ġchanges": 2962, + "Ġchanging": 4473, + "Ġchann": 2078, + "Ġchannel": 2269, + "Ġchannels": 9235, + "Ġchant": 28280, + "Ġchanting": 35775, + "Ġchaos": 14158, + "Ġchaotic": 27013, + "Ġchap": 13223, + "Ġchapel": 42617, + "Ġchapter": 7187, + "Ġchapters": 20013, + "Ġchaque": 18920, + "Ġchar": 1290, + "Ġcharac": 1926, + "Ġcharacter": 2517, + "Ġcharacteristic": 16282, + "Ġcharacteristics": 10891, + "Ġcharacterization": 49246, + "Ġcharacterize": 38463, + "Ġcharacterized": 29361, + "Ġcharacters": 4342, + "Ġcharcoal": 30625, + "Ġcharge": 4602, + "Ġcharged": 11109, + "Ġcharger": 22213, + "Ġcharges": 12235, + "Ġcharging": 11379, + "Ġcharisma": 45969, + "Ġcharismatic": 41109, + "Ġcharitable": 44609, + "Ġcharities": 42006, + "Ġcharity": 16863, + "Ġcharm": 18904, + "Ġcharming": 23387, + "Ġcharms": 41383, + "Ġchart": 6927, + "Ġcharter": 27472, + "Ġcharts": 17767, + "Ġchase": 15359, + "Ġchased": 33091, + "Ġchasing": 17876, + "Ġchassis": 28262, + "Ġchat": 5081, + "Ġchats": 38057, + "Ġchatter": 26929, + "Ġchattering": 37432, + "Ġchatting": 24654, + "Ġchaud": 46548, + "Ġchauff": 49211, + "Ġchaîne": 28036, + "Ġchce": 28928, + "Ġchcia": 26497, + "Ġche": 947, + "Ġcheap": 7084, + "Ġcheaper": 12284, + "Ġcheapest": 29167, + "Ġcheat": 17470, + "Ġcheated": 28079, + "Ġcheating": 18309, + "Ġcheck": 1520, + "Ġchecked": 10033, + "Ġchecking": 8568, + "Ġchecklist": 30357, + "Ġcheckout": 37153, + "Ġcheckpoint": 42269, + "Ġchecks": 13834, + "Ġcheddar": 47435, + "Ġcheek": 12839, + "Ġcheeks": 24135, + "Ġcheer": 12581, + "Ġcheerful": 36942, + "Ġcheering": 11060, + "Ġcheers": 15301, + "Ġcheese": 5399, + "Ġcheesecake": 41348, + "Ġcheesy": 32549, + "Ġchef": 10530, + "Ġchefs": 30191, + "Ġcheg": 22115, + "Ġchega": 40157, + "Ġchegar": 25512, + "Ġchegou": 36799, + "Ġchem": 4771, + "Ġchemical": 7313, + "Ġchemicals": 16152, + "Ġchemin": 46006, + "Ġchemistry": 12558, + "Ġchemotherapy": 39238, + "Ġcher": 12085, + "Ġcherche": 41644, + "Ġchercher": 38747, + "Ġcherish": 38277, + "Ġcherry": 20164, + "Ġchess": 24122, + "Ġchest": 7443, + "Ġchests": 49142, + "Ġchew": 21200, + "Ġchewing": 31444, + "Ġchewy": 28139, + "Ġchez": 17855, + "Ġchi": 13228, + "Ġchia": 45793, + "Ġchiar": 47454, + "Ġchic": 33590, + "Ġchick": 14371, + "Ġchicken": 4662, + "Ġchickens": 22329, + "Ġchicks": 42214, + "Ġchicos": 46070, + "Ġchief": 9588, + "Ġchiff": 37627, + "Ġchil": 38002, + "Ġchild": 1440, + "Ġchildcare": 35330, + "Ġchildhood": 9278, + "Ġchildish": 42203, + "Ġchildren": 2227, + "Ġchili": 15575, + "Ġchill": 11355, + "Ġchilled": 45552, + "Ġchilli": 32523, + "Ġchilling": 31047, + "Ġchills": 48676, + "Ġchilly": 39815, + "Ġchim": 18375, + "Ġchime": 40921, + "Ġchimney": 45920, + "Ġchin": 14210, + "Ġchina": 43668, + "Ġchinese": 47272, + "Ġchip": 11409, + "Ġchips": 11583, + "Ġchir": 23782, + "Ġchirping": 36682, + "Ġchlor": 18178, + "Ġchloride": 35434, + "Ġchlorine": 39888, + "Ġcho": 1586, + "Ġchociaż": 48929, + "Ġchocol": 29792, + "Ġchocolate": 6215, + "Ġchocolates": 42018, + "Ġchodzi": 23998, + "Ġchoice": 3922, + "Ġchoices": 7994, + "Ġchoir": 31244, + "Ġchois": 37827, + "Ġchoix": 32688, + "Ġchoke": 34427, + "Ġchoking": 48540, + "Ġchol": 20961, + "Ġcholesterol": 24716, + "Ġchoose": 2826, + "Ġchooses": 25963, + "Ġchoosing": 10875, + "Ġchop": 7931, + "Ġchopped": 16497, + "Ġchopping": 35205, + "Ġchops": 47514, + "Ġchopsticks": 39443, + "Ġchor": 14965, + "Ġchord": 14137, + "Ġchords": 21733, + "Ġchore": 14625, + "Ġchoreography": 23482, + "Ġchores": 39551, + "Ġchorus": 22632, + "Ġchose": 5111, + "Ġchosen": 8614, + "Ġchoses": 14488, + "Ġchrist": 26586, + "Ġchrom": 16209, + "Ġchrome": 33120, + "Ġchromos": 26824, + "Ġchromosome": 42896, + "Ġchromosomes": 45228, + "Ġchron": 19393, + "Ġchronic": 14493, + "Ġchu": 40215, + "Ġchuck": 20870, + "Ġchuckles": 29151, + "Ġchuckling": 48167, + "Ġchunk": 16635, + "Ġchunks": 24004, + "Ġchunky": 45392, + "Ġchurch": 4128, + "Ġchurches": 15381, + "Ġchut": 45373, + "Ġchuy": 35522, + "Ġchw": 26237, + "Ġchwil": 41941, + "Ġchyba": 31532, + "Ġchúng": 24322, + "ĠchÃŃnh": 42178, + "ĠchÆ°a": 46575, + "Ġchá»": 23579, + "Ġchá»ī": 33566, + "Ġchá»ĭ": 45167, + "Ġci": 6983, + "Ġciao": 42860, + "Ġcic": 27464, + "Ġcidade": 27882, + "Ġcider": 40515, + "Ġcie": 30596, + "Ġciek": 46419, + "Ġciel": 34380, + "Ġcielo": 49549, + "Ġcient": 31590, + "Ġciento": 47361, + "ĠcientÃŃfic": 37053, + "Ġcier": 39769, + "Ġciert": 49252, + "Ġcierto": 28558, + "Ġcig": 13474, + "Ġcigar": 41952, + "Ġcigarette": 26184, + "Ġcigarettes": 29244, + "Ġcilantro": 43626, + "Ġcima": 22586, + "Ġcin": 6539, + "Ġcinco": 21350, + "Ġcine": 45144, + "Ġcinema": 17178, + "Ġcinemat": 43520, + "Ġcinematic": 32250, + "Ġcinnamon": 22969, + "Ġcinq": 43335, + "Ġcioè": 41827, + "Ġcir": 2450, + "Ġcirc": 3510, + "Ġcirca": 45972, + "Ġcircle": 6329, + "Ġcircles": 13040, + "Ġcircuit": 9048, + "Ġcircuits": 26354, + "Ġcircul": 12515, + "Ġcircular": 16476, + "Ġcirculating": 39749, + "Ġcirculation": 23168, + "Ġcircum": 7125, + "Ġcircumst": 7982, + "Ġcircumstance": 27640, + "Ġcircumstances": 9121, + "Ġcircus": 32155, + "Ġcis": 37847, + "Ġcit": 4814, + "Ġcitation": 45590, + "Ġcite": 37771, + "Ġcited": 30134, + "Ġcities": 6486, + "Ġciting": 48749, + "Ġcitiz": 5655, + "Ġcitizen": 13326, + "Ġcitizens": 7180, + "Ġcitizenship": 23808, + "Ġcitoy": 47652, + "Ġcitrus": 37217, + "Ġcity": 2307, + "Ġciud": 18186, + "Ġciudad": 24329, + "Ġciv": 13779, + "Ġcivic": 29089, + "Ġcivil": 5605, + "Ġcivilian": 23386, + "Ġcivilians": 26073, + "Ġcivilization": 18036, + "Ġcivilizations": 40749, + "ĠciÄħ": 42398, + "ĠciÄĻ": 35484, + "Ġcl": 596, + "Ġcla": 3583, + "Ġclaim": 3932, + "Ġclaimed": 12941, + "Ġclaiming": 19232, + "Ġclaims": 9441, + "Ġclair": 41375, + "Ġclairement": 47754, + "Ġclam": 34112, + "Ġclamp": 17690, + "Ġclamps": 44423, + "Ġclams": 46377, + "Ġclan": 25887, + "Ġclap": 20760, + "Ġclapping": 19978, + "Ġclaps": 38542, + "Ġclar": 6093, + "Ġclarification": 34449, + "Ġclarified": 47605, + "Ġclarify": 17594, + "Ġclarity": 16992, + "Ġclaro": 16742, + "Ġclase": 44578, + "Ġclash": 36508, + "Ġclass": 1508, + "Ġclasse": 32400, + "Ġclasses": 5359, + "Ġclassic": 7230, + "Ġclassical": 13735, + "Ġclassics": 36110, + "Ġclassification": 21538, + "Ġclassified": 20627, + "Ġclassify": 33872, + "Ġclassmates": 24964, + "Ġclassroom": 7419, + "Ġclassrooms": 22890, + "Ġclassy": 43989, + "Ġclause": 25925, + "Ġclauses": 49072, + "Ġclaw": 32019, + "Ġclaws": 34258, + "Ġclay": 13517, + "Ġcle": 1233, + "Ġclean": 2541, + "Ġcleaned": 16146, + "Ġcleaner": 16532, + "Ġcleaning": 8924, + "Ġcleans": 16912, + "Ġcleanse": 36085, + "Ġcleansing": 29345, + "Ġcleanup": 40991, + "Ġclear": 1850, + "Ġclearance": 27218, + "Ġcleared": 19725, + "Ġclearer": 26131, + "Ġclearing": 23937, + "Ġclearly": 4448, + "Ġclears": 47033, + "Ġcler": 25902, + "Ġclergy": 45995, + "Ġclerk": 31402, + "Ġclever": 13494, + "Ġclic": 33661, + "Ġclich": 39190, + "Ġcliche": 46705, + "Ġclick": 2052, + "Ġclicked": 23370, + "Ġclicking": 9697, + "Ġclicks": 18521, + "Ġclient": 6423, + "Ġclients": 6982, + "Ġcliff": 22316, + "Ġcliffs": 50039, + "Ġclim": 5644, + "Ġclimate": 5659, + "Ġclimax": 41329, + "Ġclimb": 10724, + "Ġclimbed": 28691, + "Ġclimbing": 14780, + "Ġclimbs": 48439, + "Ġclin": 5538, + "Ġcling": 35986, + "Ġclinic": 14947, + "Ġclinical": 9115, + "Ġclinically": 48392, + "Ġclinician": 45962, + "Ġclinicians": 32862, + "Ġclinics": 27252, + "Ġclip": 7353, + "Ġclipping": 49320, + "Ġclips": 13117, + "Ġclique": 44467, + "Ġclo": 20123, + "Ġcloak": 45004, + "Ġclock": 7830, + "Ġclocks": 41528, + "Ġclockwise": 35790, + "Ġclog": 34455, + "Ġclone": 26506, + "Ġclones": 43803, + "Ġclos": 2611, + "Ġclose": 1998, + "Ġclosed": 5395, + "Ġclosely": 8185, + "Ġcloser": 4966, + "Ġcloses": 24157, + "Ġclosest": 13699, + "Ġcloset": 16669, + "Ġclosing": 10377, + "Ġclosure": 24653, + "Ġclot": 48587, + "Ġcloth": 13619, + "Ġclothes": 5534, + "Ġclothing": 11502, + "Ġcloud": 4588, + "Ġclouds": 12193, + "Ġcloudy": 33060, + "Ġcloves": 39139, + "Ġclown": 22209, + "Ġclub": 6482, + "Ġclubs": 15428, + "Ġclue": 13602, + "Ġclues": 20936, + "Ġclumsy": 44640, + "Ġcluster": 13630, + "Ġclusters": 23313, + "Ġclutch": 20597, + "Ġclutter": 40614, + "Ġclás": 47434, + "Ġcm": 14668, + "Ġco": 598, + "Ġcoach": 6560, + "Ġcoaches": 17503, + "Ġcoaching": 15818, + "Ġcoal": 10209, + "Ġcoalition": 21371, + "Ġcoarse": 39312, + "Ġcoast": 8684, + "Ġcoastal": 25050, + "Ġcoaster": 28442, + "Ġcoat": 10690, + "Ġcoated": 28489, + "Ġcoating": 20163, + "Ġcoats": 30036, + "Ġcob": 39527, + "Ġcobra": 48790, + "Ġcoc": 21047, + "Ġcocaine": 33933, + "Ġcoch": 48599, + "Ġcock": 11241, + "Ġcockpit": 35990, + "Ġcockro": 45927, + "Ġcocktail": 26382, + "Ġcocktails": 49006, + "Ġcoco": 21611, + "Ġcocoa": 30634, + "Ġcocon": 12893, + "Ġcoconut": 13551, + "Ġcod": 17656, + "Ġcode": 3089, + "Ġcoded": 34874, + "Ġcodes": 14211, + "Ġcoding": 17720, + "Ġcoe": 12155, + "Ġcoefficient": 17619, + "Ġcoefficients": 31994, + "Ġcoerc": 49741, + "Ġcoeur": 45781, + "Ġcoexist": 48086, + "Ġcoff": 24768, + "Ġcoffee": 4982, + "Ġcoffin": 38361, + "Ġcog": 46521, + "Ġcogn": 11786, + "Ġcognition": 46905, + "Ġcognitive": 15605, + "Ġcoh": 21683, + "Ġcoher": 26528, + "Ġcoherent": 36239, + "Ġcohesive": 43025, + "Ġcohort": 28902, + "Ġcoil": 22225, + "Ġcoils": 43639, + "Ġcoin": 11464, + "Ġcoinc": 13001, + "Ġcoincidence": 22137, + "Ġcoined": 45222, + "Ġcoins": 13561, + "Ġcoisa": 9614, + "Ġcoisas": 14567, + "Ġcoke": 33659, + "Ġcol": 1173, + "Ġcola": 40495, + "Ġcolabor": 49629, + "Ġcold": 3554, + "Ġcolder": 31020, + "Ġcole": 45139, + "Ġcoll": 1263, + "Ġcollab": 44228, + "Ġcollabor": 5091, + "Ġcollaborate": 18338, + "Ġcollaborated": 42463, + "Ġcollaborating": 30188, + "Ġcollaboration": 9363, + "Ġcollaborations": 36908, + "Ġcollaborative": 16555, + "Ġcollaborators": 39789, + "Ġcollagen": 40444, + "Ġcollaps": 16567, + "Ġcollapse": 15584, + "Ġcollapsed": 24578, + "Ġcollapses": 48765, + "Ġcollapsing": 45339, + "Ġcollar": 20672, + "Ġcollateral": 41875, + "Ġcolle": 5913, + "Ġcolleague": 13532, + "Ġcolleagues": 7734, + "Ġcollect": 2500, + "Ġcollected": 11087, + "Ġcollecting": 12510, + "Ġcollection": 5765, + "Ġcollections": 16641, + "Ġcollective": 12590, + "Ġcollectively": 24341, + "Ġcollector": 23960, + "Ġcollectors": 35384, + "Ġcollects": 39897, + "Ġcolleg": 13300, + "Ġcollege": 3859, + "Ġcolleges": 15272, + "Ġcollide": 49093, + "Ġcollision": 24644, + "Ġcollisions": 46537, + "Ġcoloc": 12327, + "Ġcoloca": 41231, + "Ġcolocar": 17568, + "Ġcolon": 8255, + "Ġcolonial": 19066, + "Ġcolonialism": 50033, + "Ġcolonies": 27981, + "Ġcolony": 23028, + "Ġcolor": 2017, + "Ġcolored": 14332, + "Ġcolorful": 18506, + "Ġcoloring": 23198, + "Ġcolors": 4577, + "Ġcoloss": 48683, + "Ġcolour": 8267, + "Ġcoloured": 42042, + "Ġcolours": 16484, + "Ġcolum": 5970, + "Ġcolumn": 7738, + "Ġcolumns": 13766, + "Ġcom": 395, + "Ġcoma": 35106, + "Ġcomb": 2512, + "Ġcombat": 8361, + "Ġcombien": 48975, + "Ġcombin": 38514, + "Ġcombination": 6562, + "Ġcombinations": 21267, + "Ġcombine": 10432, + "Ġcombined": 9354, + "Ġcombines": 29520, + "Ġcombining": 21928, + "Ġcombo": 16859, + "Ġcombos": 44079, + "Ġcombust": 21161, + "Ġcombustion": 28121, + "Ġcome": 808, + "Ġcomeback": 23464, + "Ġcomed": 18418, + "Ġcomedian": 30212, + "Ġcomedy": 13394, + "Ġcomen": 36222, + "Ġcoment": 14541, + "Ġcomentarios": 36842, + "Ġcomentários": 43739, + "Ġcomenz": 29564, + "Ġcomer": 16510, + "Ġcomercial": 43163, + "Ġcomes": 1487, + "Ġcomet": 33696, + "Ġcomeç": 14596, + "Ġcomeça": 32568, + "Ġcomeçar": 24379, + "Ġcomeço": 48958, + "Ġcomeçou": 37393, + "Ġcomfort": 3400, + "Ġcomfortable": 4619, + "Ġcomfortably": 25101, + "Ġcomforting": 38439, + "Ġcomfy": 34523, + "Ġcomic": 13900, + "Ġcomics": 18756, + "Ġcomida": 30779, + "Ġcomigo": 35696, + "Ġcomin": 35814, + "Ġcoming": 1348, + "Ġcomm": 800, + "Ġcomma": 22117, + "Ġcommand": 5622, + "Ġcommanded": 34359, + "Ġcommander": 17885, + "Ġcommanders": 42932, + "Ġcommandments": 40289, + "Ġcommands": 16901, + "Ġcomme": 5173, + "Ġcommemor": 30461, + "Ġcommen": 29199, + "Ġcommence": 18137, + "Ġcommencement": 34558, + "Ġcommencer": 32817, + "Ġcommencé": 37561, + "Ġcommend": 35987, + "Ġcomment": 2871, + "Ġcommentaires": 46663, + "Ġcommentary": 23527, + "Ġcommented": 26940, + "Ġcommenting": 29590, + "Ġcomments": 3053, + "Ġcommer": 5906, + "Ġcommerce": 26320, + "Ġcommercial": 6841, + "Ġcommercially": 41751, + "Ġcommercials": 33666, + "Ġcommission": 9221, + "Ġcommissioned": 32372, + "Ġcommissioner": 33678, + "Ġcommissions": 38912, + "Ġcommit": 5599, + "Ġcommitment": 8371, + "Ġcommitments": 26230, + "Ġcommits": 48311, + "Ġcommitted": 7784, + "Ġcommittee": 7482, + "Ġcommittees": 25998, + "Ġcommitting": 26659, + "Ġcommod": 19931, + "Ġcommodities": 40777, + "Ġcommodity": 29125, + "Ġcommon": 2689, + "Ġcommonly": 12719, + "Ġcommun": 1199, + "Ġcommunal": 43893, + "Ġcommunaut": 38074, + "Ġcommunauté": 49056, + "Ġcommunic": 3363, + "Ġcommunicate": 7890, + "Ġcommunicated": 34989, + "Ġcommunicating": 17559, + "Ġcommunication": 6101, + "Ġcommunications": 15163, + "Ġcommunion": 42808, + "Ġcommunism": 42160, + "Ġcommunist": 29347, + "Ġcommunities": 4456, + "Ġcommunity": 1768, + "Ġcommute": 36750, + "Ġcomo": 2617, + "Ġcomp": 715, + "Ġcompact": 14679, + "Ġcompan": 3168, + "Ġcompanies": 3431, + "Ġcompanion": 22363, + "Ġcompanions": 28009, + "Ġcompany": 2237, + "Ġcompar": 6311, + "Ġcomparable": 25323, + "Ġcomparative": 39292, + "Ġcompare": 6794, + "Ġcompared": 5347, + "Ġcompares": 38334, + "Ġcomparing": 15763, + "Ġcomparison": 9660, + "Ġcomparisons": 33157, + "Ġcompart": 18113, + "Ġcompartil": 40204, + "Ġcompartir": 40667, + "Ġcompartment": 26505, + "Ġcompass": 10707, + "Ġcompassion": 12601, + "Ġcompassionate": 30531, + "Ġcompat": 13147, + "Ġcompatibility": 34237, + "Ġcompatible": 18218, + "Ġcompañ": 29953, + "Ġcompe": 16291, + "Ġcompelled": 40021, + "Ġcompelling": 20050, + "Ġcompens": 11598, + "Ġcompensate": 29458, + "Ġcompensation": 19644, + "Ġcompet": 2850, + "Ġcompete": 11831, + "Ġcompeted": 43619, + "Ġcompetence": 39965, + "Ġcompetency": 50097, + "Ġcompetent": 29998, + "Ġcompeting": 15439, + "Ġcompetit": 41131, + "Ġcompetition": 6211, + "Ġcompetitions": 26185, + "Ġcompetitive": 10043, + "Ġcompetitor": 27266, + "Ġcompetitors": 18333, + "Ġcompilation": 40261, + "Ġcompile": 31413, + "Ġcompiled": 36548, + "Ġcompiler": 31958, + "Ġcompl": 1209, + "Ġcomplac": 49546, + "Ġcomplain": 11024, + "Ġcomplained": 33951, + "Ġcomplaining": 20740, + "Ġcomplaint": 20100, + "Ġcomplaints": 19585, + "Ġcomple": 44424, + "Ġcomplement": 17103, + "Ġcomplementary": 40705, + "Ġcomplet": 1557, + "Ġcompleta": 46822, + "Ġcompletamente": 28381, + "Ġcomplete": 3566, + "Ġcompleted": 7365, + "Ġcompletely": 2584, + "Ġcompletes": 36362, + "Ġcompleting": 19472, + "Ġcompletion": 19372, + "Ġcompleto": 40135, + "Ġcomplex": 3997, + "Ġcomplexes": 43676, + "Ġcomplexities": 48705, + "Ġcomplexity": 14024, + "Ġcompliance": 15882, + "Ġcompliant": 36248, + "Ġcomplic": 16060, + "Ġcomplicado": 49850, + "Ġcomplicated": 6179, + "Ġcomplications": 26566, + "Ġcompliment": 16250, + "Ġcomplimentary": 47162, + "Ġcompliments": 35468, + "Ġcompliqué": 44290, + "Ġcomply": 27956, + "Ġcomplètement": 31331, + "Ġcompon": 4026, + "Ġcomponent": 6542, + "Ġcomponents": 6677, + "Ġcomport": 25883, + "Ġcompos": 10199, + "Ġcompose": 35925, + "Ġcomposed": 18204, + "Ġcomposer": 26003, + "Ġcomposers": 43872, + "Ġcomposite": 25557, + "Ġcomposition": 12686, + "Ġcompositions": 43401, + "Ġcompost": 20203, + "Ġcompound": 14154, + "Ġcompounds": 21810, + "Ġcompr": 16802, + "Ġcompra": 39323, + "Ġcomprar": 22077, + "Ġcompreh": 10753, + "Ġcomprehend": 38183, + "Ġcomprehension": 44991, + "Ġcomprehensive": 13914, + "Ġcomprend": 30765, + "Ġcomprendre": 26856, + "Ġcompress": 14778, + "Ġcompressed": 30353, + "Ġcompression": 19355, + "Ġcompressor": 28765, + "Ġcompris": 31711, + "Ġcomprised": 38062, + "Ġcomprom": 11482, + "Ġcompromise": 18577, + "Ġcompromised": 32463, + "Ġcompt": 15660, + "Ġcompte": 19424, + "Ġcompuls": 42773, + "Ġcomput": 2807, + "Ġcomputation": 24903, + "Ġcomputational": 28270, + "Ġcompute": 14722, + "Ġcomputed": 40610, + "Ġcomputer": 3820, + "Ġcomputers": 10807, + "Ġcomputing": 15866, + "Ġcomrades": 42249, + "Ġcomum": 44324, + "Ġcomun": 11040, + "Ġcomunic": 31710, + "Ġcomunidad": 35695, + "Ġcomunque": 45736, + "Ġcomún": 45448, + "Ġcon": 416, + "Ġconc": 1588, + "Ġconce": 10413, + "Ġconceal": 40170, + "Ġconcealed": 46305, + "Ġconcealer": 30672, + "Ġconceive": 48605, + "Ġconceived": 34898, + "Ġconcent": 5512, + "Ġconcentrate": 18089, + "Ġconcentrated": 21321, + "Ġconcentrating": 40571, + "Ġconcentration": 9856, + "Ġconcentrations": 33512, + "Ġconcept": 3410, + "Ġconception": 30698, + "Ġconcepts": 10392, + "Ġconceptual": 24106, + "Ġconcer": 16311, + "Ġconcern": 3136, + "Ġconcerned": 5922, + "Ġconcerning": 18087, + "Ġconcerns": 7389, + "Ġconcert": 8543, + "Ġconcerts": 24924, + "Ġconcise": 44882, + "Ġconclud": 9312, + "Ġconclude": 16886, + "Ġconcluded": 22960, + "Ġconcludes": 24643, + "Ġconclus": 18646, + "Ġconclusion": 10063, + "Ġconclusions": 22865, + "Ġconcret": 39481, + "Ġconcrete": 9859, + "Ġconcur": 23702, + "Ġconcurrent": 37702, + "Ġcond": 2224, + "Ġcondem": 18510, + "Ġcondemn": 30733, + "Ġcondemned": 36472, + "Ġcondensed": 36398, + "Ġcondiciones": 45960, + "Ġcondition": 4188, + "Ġconditional": 27708, + "Ġconditioned": 35833, + "Ġconditioner": 33558, + "Ġconditioning": 21901, + "Ġconditions": 4487, + "Ġcondu": 15504, + "Ġconduc": 45095, + "Ġconduct": 6018, + "Ġconducted": 13809, + "Ġconducting": 21749, + "Ġconduction": 43842, + "Ġconductivity": 42982, + "Ġconductor": 29957, + "Ġcone": 19749, + "Ġconect": 30458, + "Ġcones": 40548, + "Ġconex": 49509, + "Ġconf": 1497, + "Ġconfer": 13765, + "Ġconference": 7586, + "Ġconferences": 22032, + "Ġconfess": 19367, + "Ġconfessed": 41428, + "Ġconfession": 29154, + "Ġconfian": 49081, + "Ġconfiance": 43213, + "Ġconfidence": 6687, + "Ġconfident": 6679, + "Ġconfidential": 27054, + "Ġconfidently": 41956, + "Ġconfig": 6662, + "Ġconfigur": 22192, + "Ġconfiguration": 11694, + "Ġconfigurations": 31493, + "Ġconfigure": 22162, + "Ġconfigured": 30538, + "Ġconfined": 31745, + "Ġconfinement": 41064, + "Ġconfir": 9186, + "Ġconfirm": 9064, + "Ġconfirmation": 21871, + "Ġconfirmed": 11341, + "Ġconfirming": 42861, + "Ġconfirms": 39982, + "Ġconfisc": 49868, + "Ġconflict": 6596, + "Ġconflicting": 43784, + "Ġconflicts": 19807, + "Ġconform": 18975, + "Ġconfort": 43392, + "Ġconfront": 12422, + "Ġconfrontation": 35363, + "Ġconfronted": 31257, + "Ġconfronting": 47449, + "Ġconfuse": 28584, + "Ġconfused": 9019, + "Ġconfusing": 13181, + "Ġconfusion": 15075, + "Ġcongest": 31871, + "Ġcongestion": 40816, + "Ġcongr": 8882, + "Ġcongrat": 9774, + "Ġcongratulate": 24353, + "Ġcongratulations": 13568, + "Ġcongreg": 23002, + "Ġcongregation": 34782, + "Ġcongress": 17546, + "Ġcongressional": 32962, + "Ġconhe": 15440, + "Ġconhecer": 46235, + "Ġconj": 20295, + "Ġconjug": 29456, + "Ġconjugate": 45064, + "Ġconjun": 18244, + "Ġconjunction": 27482, + "Ġconjunto": 37776, + "Ġconn": 46264, + "Ġconna": 15477, + "Ġconnais": 45784, + "Ġconnect": 1745, + "Ġconnected": 4582, + "Ġconnecting": 11015, + "Ġconnection": 4984, + "Ġconnections": 9271, + "Ġconnectivity": 21095, + "Ġconnector": 19127, + "Ġconnectors": 31865, + "Ġconnects": 16967, + "Ġconnot": 46371, + "Ġcono": 33029, + "Ġconoc": 15871, + "Ġconocer": 35241, + "Ġconos": 49892, + "Ġconqu": 15592, + "Ġconquer": 24136, + "Ġconquered": 32695, + "Ġconquest": 43241, + "Ġcons": 1014, + "Ġconsci": 39271, + "Ġconscience": 20537, + "Ġconscient": 44507, + "Ġconscious": 6648, + "Ġconsciously": 32538, + "Ġconsciousness": 10081, + "Ġconse": 4425, + "Ġconsec": 40526, + "Ġconsecut": 27154, + "Ġconsecutive": 30497, + "Ġconsegu": 12706, + "Ġconsegue": 27179, + "Ġconseguir": 21229, + "Ġconsensus": 19115, + "Ġconsent": 14546, + "Ġconsequ": 7242, + "Ġconsequence": 18326, + "Ġconsequences": 10098, + "Ġconsequently": 47259, + "Ġconserv": 9704, + "Ġconservation": 16185, + "Ġconservative": 13780, + "Ġconservatives": 39607, + "Ġconserve": 45240, + "Ġconsid": 30376, + "Ġconsider": 1949, + "Ġconsiderable": 24167, + "Ġconsiderably": 31308, + "Ġconsideration": 12381, + "Ġconsiderations": 24070, + "Ġconsidered": 4888, + "Ġconsidering": 8079, + "Ġconsiders": 33095, + "Ġconsig": 40233, + "Ġconsigo": 43688, + "Ġconsist": 4603, + "Ġconsiste": 49066, + "Ġconsisted": 38227, + "Ġconsistency": 14416, + "Ġconsistent": 8398, + "Ġconsistently": 14961, + "Ġconsisting": 33921, + "Ġconsists": 14689, + "Ġconsol": 16054, + "Ġconsole": 11076, + "Ġconsoles": 28948, + "Ġconsolid": 19045, + "Ġconsolidate": 49521, + "Ġconsolidated": 49008, + "Ġconsolidation": 39114, + "Ġconsomm": 47688, + "Ġconson": 30843, + "Ġconsonant": 43647, + "Ġconsort": 38343, + "Ġconspir": 17719, + "Ġconspiracy": 20439, + "Ġconst": 1817, + "Ġconstant": 5754, + "Ġconstante": 47343, + "Ġconstantly": 6460, + "Ġconstants": 35870, + "Ġconstell": 32436, + "Ġconstellation": 42336, + "Ġconstit": 23079, + "Ġconstitu": 16085, + "Ġconstituency": 46146, + "Ġconstituents": 30847, + "Ġconstitute": 41658, + "Ġconstitutes": 44204, + "Ġconstitution": 11937, + "Ġconstitutional": 20176, + "Ġconstra": 11525, + "Ġconstrained": 38901, + "Ġconstraint": 25534, + "Ġconstraints": 18491, + "Ġconstru": 12946, + "Ġconstruct": 7690, + "Ġconstructed": 17083, + "Ġconstructing": 39969, + "Ġconstruction": 6435, + "Ġconstructive": 30223, + "Ġconstructor": 47479, + "Ġconstruir": 38445, + "Ġconsult": 7189, + "Ġconsultant": 24676, + "Ġconsultants": 38935, + "Ġconsultation": 20932, + "Ġconsulted": 47941, + "Ġconsulting": 23682, + "Ġconsum": 3978, + "Ġconsume": 14732, + "Ġconsumed": 21226, + "Ġconsumer": 9711, + "Ġconsumers": 11883, + "Ġconsumes": 48823, + "Ġconsuming": 19867, + "Ġconsumo": 42505, + "Ġconsumption": 12126, + "Ġconséqu": 47648, + "Ġcont": 660, + "Ġconta": 24001, + "Ġcontact": 3385, + "Ġcontacted": 21546, + "Ġcontacting": 41482, + "Ġcontacts": 15836, + "Ġcontag": 28525, + "Ġcontagious": 40666, + "Ġcontain": 5304, + "Ġcontained": 16212, + "Ġcontainer": 10129, + "Ġcontainers": 17089, + "Ġcontaining": 19273, + "Ġcontainment": 44058, + "Ġcontains": 8306, + "Ġcontam": 20463, + "Ġcontamin": 27562, + "Ġcontaminated": 34492, + "Ġcontamination": 33012, + "Ġcontar": 27045, + "Ġconte": 34444, + "Ġcontempl": 19935, + "Ġcontempor": 13046, + "Ġcontemporary": 14878, + "Ġcontempt": 47202, + "Ġconten": 21795, + "Ġcontenido": 47117, + "Ġcontent": 2701, + "Ġcontents": 15768, + "Ġcontest": 10287, + "Ġcontestants": 39676, + "Ġcontext": 4319, + "Ġcontexto": 47685, + "Ġcontexts": 30628, + "Ġcontextual": 35526, + "Ġconteú": 39065, + "Ġconteúdo": 44144, + "Ġcontin": 1421, + "Ġcontinent": 18932, + "Ġcontinental": 42479, + "Ġcontinents": 38598, + "Ġconting": 27820, + "Ġcontinu": 2993, + "Ġcontinua": 40861, + "Ġcontinually": 22277, + "Ġcontinuar": 29980, + "Ġcontinuation": 29357, + "Ġcontinue": 2354, + "Ġcontinued": 7014, + "Ġcontinuer": 35660, + "Ġcontinues": 6515, + "Ġcontinuing": 9289, + "Ġcontinuity": 23807, + "Ġcontinuous": 10957, + "Ġcontinuously": 15684, + "Ġcontinuum": 36120, + "Ġcontour": 21234, + "Ġcontr": 10273, + "Ġcontra": 10742, + "Ġcontrac": 48118, + "Ġcontract": 4364, + "Ġcontracted": 37629, + "Ġcontracting": 36095, + "Ġcontraction": 37372, + "Ġcontractor": 26463, + "Ġcontractors": 28377, + "Ġcontracts": 13952, + "Ġcontrad": 15858, + "Ġcontradict": 28900, + "Ġcontradiction": 34937, + "Ġcontradictory": 49555, + "Ġcontrario": 47642, + "Ġcontrary": 19506, + "Ġcontrast": 8712, + "Ġcontrat": 40944, + "Ġcontre": 14927, + "Ġcontrib": 4226, + "Ġcontribute": 10586, + "Ġcontributed": 18434, + "Ġcontributes": 32035, + "Ġcontributing": 19270, + "Ġcontribution": 13150, + "Ġcontributions": 15725, + "Ġcontributor": 42859, + "Ġcontributors": 45627, + "Ġcontro": 1583, + "Ġcontrol": 1969, + "Ġcontrolar": 47843, + "Ġcontrole": 46215, + "Ġcontroll": 45159, + "Ġcontrolled": 10164, + "Ġcontroller": 10561, + "Ġcontrollers": 26903, + "Ġcontrolling": 14905, + "Ġcontrols": 9003, + "Ġcontrovers": 11542, + "Ġcontroversial": 17323, + "Ġcontroversy": 22976, + "Ġcontrôle": 46518, + "Ġconv": 3754, + "Ġconve": 18053, + "Ġconvection": 49080, + "Ġconven": 7158, + "Ġconvenience": 19283, + "Ġconvenient": 10851, + "Ġconveniently": 44375, + "Ġconvention": 10286, + "Ġconventional": 16011, + "Ġconventions": 33520, + "Ġconver": 9652, + "Ġconverge": 41881, + "Ġconvergence": 32181, + "Ġconvers": 2615, + "Ġconversation": 3761, + "Ġconversations": 7315, + "Ġconversion": 14298, + "Ġconversions": 42256, + "Ġconvert": 7620, + "Ġconverted": 16424, + "Ġconverter": 33905, + "Ġconverting": 29942, + "Ġconverts": 38874, + "Ġconvex": 42432, + "Ġconvey": 16965, + "Ġconveyed": 49340, + "Ġconvicted": 26942, + "Ġconviction": 24837, + "Ġconvictions": 44757, + "Ġconvin": 9854, + "Ġconvince": 13447, + "Ġconvinced": 12561, + "Ġconvincing": 24823, + "Ġconvolution": 45216, + "Ġcook": 2543, + "Ġcooked": 9267, + "Ġcooker": 31476, + "Ġcookie": 14417, + "Ġcookies": 13670, + "Ġcooking": 6361, + "Ġcooks": 30709, + "Ġcool": 1627, + "Ġcooldown": 40782, + "Ġcooled": 27491, + "Ġcooler": 15566, + "Ġcoolest": 22013, + "Ġcooling": 14785, + "Ġcools": 42883, + "Ġcoop": 13215, + "Ġcooper": 13414, + "Ġcooperate": 26667, + "Ġcooperation": 14968, + "Ġcooperative": 31772, + "Ġcoord": 14230, + "Ġcoordin": 8285, + "Ġcoordinate": 15670, + "Ġcoordinated": 29591, + "Ġcoordinates": 21056, + "Ġcoordinating": 37824, + "Ġcoordination": 21252, + "Ġcoordinator": 27394, + "Ġcop": 2971, + "Ġcope": 22598, + "Ġcopied": 25365, + "Ġcopies": 14341, + "Ġcoping": 32893, + "Ġcopper": 15007, + "Ġcops": 19012, + "Ġcopy": 5055, + "Ġcopying": 27976, + "Ġcopyright": 17996, + "Ġcor": 1181, + "Ġcoral": 24955, + "Ġcoraz": 25899, + "Ġcorazón": 34518, + "Ġcoração": 41408, + "Ġcord": 12250, + "Ġcords": 36302, + "Ġcore": 4965, + "Ġcores": 24826, + "Ġcoriander": 34013, + "Ġcorn": 9046, + "Ġcorner": 4538, + "Ġcorners": 12413, + "Ġcoron": 10451, + "Ġcorona": 27103, + "Ġcoronavirus": 13043, + "Ġcorpo": 23257, + "Ġcorpor": 6804, + "Ġcorporate": 10896, + "Ġcorporation": 22197, + "Ġcorporations": 17676, + "Ġcorps": 18271, + "Ġcorpse": 30324, + "Ġcorpses": 46416, + "Ġcorr": 38576, + "Ġcorre": 29731, + "Ġcorrect": 3006, + "Ġcorrected": 31687, + "Ġcorrecting": 47032, + "Ġcorrection": 19984, + "Ġcorrections": 36406, + "Ġcorrectly": 8944, + "Ġcorrel": 13983, + "Ġcorrelate": 48742, + "Ġcorrelated": 38574, + "Ġcorrelation": 20009, + "Ġcorrer": 49568, + "Ġcorrespond": 6805, + "Ġcorrespondence": 38135, + "Ġcorrespondent": 44406, + "Ġcorresponding": 11760, + "Ġcorresponds": 23249, + "Ġcorri": 47908, + "Ġcorrid": 20322, + "Ġcorridor": 25602, + "Ġcorridors": 46920, + "Ġcorro": 45125, + "Ġcorros": 28957, + "Ġcorrosion": 33876, + "Ġcorrupt": 17366, + "Ġcorrupted": 39480, + "Ġcorruption": 17959, + "Ġcors": 46511, + "Ġcort": 11278, + "Ġcortar": 48117, + "Ġcortex": 33312, + "Ġcortisol": 45618, + "Ġcos": 3792, + "Ġcosa": 10163, + "Ġcosas": 12218, + "Ġcose": 30261, + "Ġcoses": 31860, + "Ġcosine": 23565, + "Ġcosm": 22207, + "Ġcosmetic": 35828, + "Ġcosmetics": 37416, + "Ġcosmic": 27614, + "Ġcosmos": 41794, + "Ġcosplay": 39403, + "Ġcost": 2063, + "Ġcosting": 37917, + "Ġcostly": 28328, + "Ġcosts": 5497, + "Ġcostume": 14850, + "Ġcostumes": 22695, + "Ġcosì": 23278, + "Ġcot": 26529, + "Ġcott": 11550, + "Ġcottage": 37209, + "Ġcotton": 13764, + "Ġcou": 1384, + "Ġcouch": 16511, + "Ġcough": 22777, + "Ġcoughing": 39375, + "Ġcould": 727, + "Ġcouldn": 2809, + "Ġcoule": 33644, + "Ġcouleur": 49462, + "Ġcoun": 3465, + "Ġcouncil": 9209, + "Ġcouncils": 39187, + "Ġcounsel": 10351, + "Ġcounseling": 23889, + "Ġcounselor": 27851, + "Ġcounselors": 36925, + "Ġcount": 1207, + "Ġcountdown": 35985, + "Ġcounted": 20150, + "Ġcounter": 5682, + "Ġcounterpart": 22335, + "Ġcounterparts": 33287, + "Ġcounters": 39338, + "Ġcounties": 20583, + "Ġcounting": 13251, + "Ġcountless": 19223, + "Ġcountries": 3517, + "Ġcountry": 1941, + "Ġcountryside": 28252, + "Ġcounts": 14893, + "Ġcounty": 9928, + "Ġcoup": 8682, + "Ġcoupe": 45136, + "Ġcouple": 1916, + "Ġcoupled": 29482, + "Ġcouples": 20368, + "Ġcoupling": 37447, + "Ġcoupon": 33390, + "Ġcour": 1005, + "Ġcourage": 9892, + "Ġcourageous": 33233, + "Ġcours": 25452, + "Ġcourse": 1164, + "Ġcourses": 7712, + "Ġcourt": 4753, + "Ġcourtesy": 41704, + "Ġcourtroom": 44050, + "Ġcourts": 14141, + "Ġcourtyard": 41364, + "Ġcous": 12304, + "Ġcousin": 16207, + "Ġcousins": 29246, + "Ġcovari": 49851, + "Ġcovenant": 26661, + "Ġcover": 2060, + "Ġcoverage": 9645, + "Ġcovered": 5343, + "Ġcovering": 10322, + "Ġcovers": 10538, + "Ġcovert": 45985, + "Ġcovet": 48497, + "Ġcovid": 25616, + "Ġcow": 8408, + "Ġcoward": 30776, + "Ġcowboy": 39174, + "Ġcowork": 31998, + "Ġcoworkers": 43465, + "Ġcows": 19148, + "Ġcoy": 41485, + "Ġcoz": 36747, + "Ġcozy": 29414, + "Ġcoû": 49743, + "ĠcoÅĽ": 19241, + "Ġcr": 941, + "Ġcra": 2094, + "Ġcrab": 17870, + "Ġcrabs": 35147, + "Ġcrack": 6226, + "Ġcracked": 25140, + "Ġcrackers": 41407, + "Ġcracking": 25229, + "Ġcracks": 21770, + "Ġcradle": 48081, + "Ġcraft": 8448, + "Ġcrafted": 36213, + "Ġcrafting": 29048, + "Ġcrafts": 27831, + "Ġcran": 39685, + "Ġcrane": 36345, + "Ġcrank": 21263, + "Ġcrap": 12426, + "Ġcrappy": 36531, + "Ġcrash": 8252, + "Ġcrashed": 24190, + "Ġcrashes": 28642, + "Ġcrashing": 26900, + "Ġcrate": 42426, + "Ġcrater": 38981, + "Ġcrave": 46875, + "Ġcraving": 27320, + "Ġcraw": 13999, + "Ġcrawl": 24767, + "Ġcrawling": 32979, + "Ġcray": 33073, + "Ġcraz": 46348, + "Ġcraziest": 46339, + "Ġcrazy": 3219, + "Ġcre": 1197, + "Ġcream": 4689, + "Ġcreams": 46573, + "Ġcreamy": 23215, + "Ġcrear": 31984, + "Ġcrease": 30098, + "Ġcreat": 1428, + "Ġcreate": 1884, + "Ġcreated": 2942, + "Ġcreates": 7829, + "Ġcreating": 4084, + "Ġcreation": 8016, + "Ġcreations": 37836, + "Ġcreative": 5880, + "Ġcreatively": 43750, + "Ġcreativity": 12915, + "Ġcreator": 14181, + "Ġcreators": 16039, + "Ġcreature": 12797, + "Ġcreatures": 12281, + "Ġcrec": 31668, + "Ġcred": 3864, + "Ġcredential": 22034, + "Ġcredentials": 27404, + "Ġcredibility": 28852, + "Ġcredible": 32757, + "Ġcredit": 5397, + "Ġcredited": 41155, + "Ġcredits": 16816, + "Ġcree": 48895, + "Ġcreek": 41868, + "Ġcreep": 9626, + "Ġcreeping": 47753, + "Ġcreepy": 14717, + "Ġcreo": 14336, + "Ġcres": 20964, + "Ġcrest": 43799, + "Ġcrew": 7260, + "Ġcrews": 31477, + "Ġcri": 12815, + "Ġcrian": 27659, + "Ġcriança": 43300, + "Ġcrianças": 45280, + "Ġcriar": 36882, + "Ġcrib": 47163, + "Ġcricket": 31626, + "Ġcried": 16266, + "Ġcries": 29206, + "Ġcrim": 7857, + "Ġcrime": 7206, + "Ġcrimes": 13916, + "Ġcrimin": 19044, + "Ġcriminal": 8628, + "Ġcriminals": 23474, + "Ġcringe": 47081, + "Ġcripp": 37667, + "Ġcris": 4661, + "Ġcrise": 32398, + "Ġcrises": 31403, + "Ġcrisis": 5869, + "Ġcrisp": 22952, + "Ġcrispy": 17509, + "Ġcrist": 35608, + "Ġcrit": 3113, + "Ġcriter": 9912, + "Ġcriteria": 11101, + "Ġcriterion": 46691, + "Ġcritic": 7850, + "Ġcritical": 4924, + "Ġcritically": 22797, + "Ġcriticism": 15835, + "Ġcriticisms": 48519, + "Ġcriticize": 31010, + "Ġcriticized": 28011, + "Ġcriticizing": 45474, + "Ġcritics": 22503, + "Ġcritique": 25673, + "Ġcro": 4848, + "Ġcroch": 8191, + "Ġcrochet": 9387, + "Ġcrochets": 27115, + "Ġcrocod": 32727, + "Ġcrocodile": 43652, + "Ġcrois": 21724, + "Ġcrooked": 41710, + "Ġcrop": 9086, + "Ġcrops": 16829, + "Ġcros": 28108, + "Ġcross": 3278, + "Ġcrossed": 14622, + "Ġcrosses": 28467, + "Ġcrossing": 14712, + "Ġcrossover": 33837, + "Ġcrouch": 46704, + "Ġcrow": 6401, + "Ġcrowd": 6919, + "Ġcrowded": 21634, + "Ġcrowds": 26070, + "Ġcrown": 11841, + "Ġcru": 5140, + "Ġcruc": 28154, + "Ġcrucial": 11462, + "Ġcrucified": 46846, + "Ġcrude": 30796, + "Ġcruel": 16022, + "Ġcruelty": 40145, + "Ġcruise": 17754, + "Ġcruising": 42180, + "Ġcrumble": 47478, + "Ġcrumbs": 42675, + "Ġcrunch": 13386, + "Ġcrunchy": 24942, + "Ġcrus": 42603, + "Ġcrush": 10321, + "Ġcrushed": 19889, + "Ġcrushing": 31317, + "Ġcrust": 18156, + "Ġcry": 3305, + "Ġcrying": 8554, + "Ġcrypt": 9844, + "Ġcrypto": 17240, + "Ġcryptocur": 22070, + "Ġcryptocurrencies": 44369, + "Ġcryptocurrency": 28809, + "Ġcryst": 17035, + "Ġcrystal": 13662, + "Ġcrystall": 31924, + "Ġcrystals": 23772, + "Ġcré": 15609, + "Ġcréd": 37368, + "Ġcréer": 32062, + "ĠcrÃŃt": 39927, + "Ġcs": 28277, + "Ġcsak": 47927, + "Ġcu": 2702, + "Ġcuad": 34434, + "Ġcual": 10911, + "Ġcuales": 46932, + "Ġcualquier": 21004, + "Ġcuando": 7767, + "Ġcuanto": 36685, + "Ġcuarto": 48368, + "Ġcuatro": 28795, + "Ġcub": 10057, + "Ġcube": 13728, + "Ġcubed": 36510, + "Ġcubes": 25415, + "Ġcubic": 28733, + "Ġcuc": 18488, + "Ġcucumber": 28725, + "Ġcucumbers": 43354, + "Ġcud": 40287, + "Ġcue": 22656, + "Ġcuent": 46414, + "Ġcuenta": 17868, + "Ġcuer": 18363, + "Ġcuerpo": 20264, + "Ġcues": 32192, + "Ġcuest": 36978, + "Ġcuestión": 50216, + "Ġcuff": 35997, + "Ġcui": 22929, + "Ġcuid": 20770, + "Ġcuidado": 31891, + "Ġcuisine": 25257, + "Ġcuk": 37485, + "Ġcul": 11021, + "Ġculinary": 39273, + "Ġculmin": 28583, + "Ġculpa": 44870, + "Ġculprit": 39220, + "Ġcult": 2376, + "Ġcultiv": 15298, + "Ġcultivate": 33341, + "Ġcultivated": 46770, + "Ġcultivation": 45924, + "Ġcultura": 30576, + "Ġcultural": 6988, + "Ġculturally": 28879, + "Ġculture": 3713, + "Ġcultures": 12951, + "Ġcum": 12713, + "Ġcuma": 44630, + "Ġcumin": 40950, + "Ġcumpl": 37483, + "Ġcumulative": 38379, + "Ġcunning": 45891, + "Ġcup": 4414, + "Ġcupboard": 47847, + "Ġcupcake": 42153, + "Ġcupcakes": 44515, + "Ġcups": 13381, + "Ġcur": 1262, + "Ġcurated": 47851, + "Ġcurator": 38519, + "Ġcurb": 33731, + "Ġcurd": 47443, + "Ġcure": 13698, + "Ġcured": 29617, + "Ġcurios": 13625, + "Ġcuriosity": 18769, + "Ġcurious": 6369, + "Ġcurl": 22591, + "Ġcurling": 45085, + "Ġcurls": 36950, + "Ġcurly": 32066, + "Ġcurrencies": 36886, + "Ġcurrency": 13346, + "Ġcurrent": 2190, + "Ġcurrently": 4362, + "Ġcurrents": 30110, + "Ġcurric": 13179, + "Ġcurriculum": 14302, + "Ġcurry": 18123, + "Ġcurs": 13946, + "Ġcurse": 17139, + "Ġcursed": 29498, + "Ġcurso": 31085, + "Ġcursor": 28169, + "Ġcurt": 28087, + "Ġcurtain": 26789, + "Ġcurtains": 36539, + "Ġcurv": 33900, + "Ġcurvature": 37638, + "Ġcurve": 7605, + "Ġcurved": 24991, + "Ġcurves": 19490, + "Ġcush": 18422, + "Ġcushion": 21908, + "Ġcust": 14884, + "Ġcustard": 46972, + "Ġcustody": 26976, + "Ġcustom": 2375, + "Ġcustomer": 5474, + "Ġcustomers": 4581, + "Ġcustomizable": 47922, + "Ġcustomization": 39387, + "Ġcustomize": 19734, + "Ġcustomized": 30581, + "Ġcustoms": 27330, + "Ġcut": 1723, + "Ġcute": 4052, + "Ġcutest": 46582, + "Ġcuts": 9992, + "Ġcutter": 25531, + "Ġcutting": 6492, + "Ġcuz": 11910, + "Ġcuál": 44318, + "Ġcuánt": 44256, + "Ġcuá»Ļc": 50138, + "Ġcy": 3185, + "Ġcyan": 47463, + "Ġcyber": 13411, + "Ġcybersecurity": 38765, + "Ġcyc": 38154, + "Ġcycl": 19474, + "Ġcycle": 6586, + "Ġcycles": 17796, + "Ġcycling": 22425, + "Ġcyl": 13446, + "Ġcylind": 28044, + "Ġcylinder": 17884, + "Ġcylinders": 42166, + "Ġcyn": 28365, + "Ġcynical": 46345, + "Ġcyst": 48915, + "Ġcyt": 40248, + "Ġcz": 6472, + "Ġczas": 13190, + "Ġczasie": 42667, + "Ġczasu": 40860, + "Ġczego": 36559, + "Ġczy": 6430, + "Ġczyli": 16591, + "Ġczym": 31466, + "ĠczÄĻ": 18544, + "ĠczÄĻsto": 34369, + "ĠczÄĻÅĽci": 41314, + "ĠczÄĻÅĽÄĩ": 47149, + "ĠczÅĤ": 31083, + "ĠczÅĤowie": 36282, + "Ġcá": 6476, + "Ġcác": 13250, + "Ġcách": 45762, + "Ġcái": 14830, + "Ġcámara": 44273, + "Ġcâ": 19288, + "Ġcâmera": 43640, + "Ġcé": 30560, + "Ġcél": 29064, + "Ġcélulas": 49092, + "Ġcéu": 50052, + "Ġcòn": 31394, + "Ġcó": 6333, + "Ġcód": 40210, + "Ġcódigo": 44195, + "Ġcómo": 12826, + "Ġcô": 35167, + "Ġcông": 35451, + "Ġcôt": 16857, + "Ġcôté": 18437, + "Ġcùng": 45701, + "ĠcÄĥ": 21957, + "ĠcÅ": 17846, + "ĠcÅ©ng": 22747, + "ĠcÅĵ": 41388, + "ĠcÅĵur": 43207, + "Ġcả": 22227, + "Ġcảm": 47593, + "Ġcần": 47580, + "Ġcá»": 9613, + "Ġcủa": 11990, + "Ġcứ": 46619, + "Ġd": 274, + "ĠdB": 43116, + "Ġda": 1120, + "Ġdaar": 12390, + "Ġdab": 28964, + "Ġdabei": 14967, + "Ġdachte": 39775, + "Ġdad": 3546, + "Ġdaddy": 16785, + "Ġdado": 29568, + "Ġdados": 39915, + "Ġdads": 41798, + "Ġdadurch": 35472, + "Ġdafür": 13747, + "Ġdag": 15460, + "Ġdage": 41557, + "Ġdagegen": 45387, + "Ġdagen": 49638, + "Ġdagger": 36972, + "Ġdah": 16800, + "Ġdaha": 10545, + "Ġdaher": 36971, + "Ġdai": 38586, + "Ġdaily": 5212, + "Ġdairy": 21276, + "Ġdak": 25329, + "Ġdakika": 34323, + "Ġdal": 11702, + "Ġdalam": 23063, + "Ġdale": 27326, + "Ġdalej": 34257, + "Ġdall": 43351, + "Ġdalla": 35566, + "Ġdam": 2422, + "Ġdamage": 4344, + "Ġdamaged": 14080, + "Ġdamages": 28536, + "Ġdamaging": 25342, + "Ġdamals": 26067, + "Ġdamit": 9479, + "Ġdamn": 8151, + "Ġdamned": 46397, + "Ġdamp": 19498, + "Ġdamping": 49588, + "Ġdan": 3277, + "Ġdanach": 37784, + "Ġdance": 4489, + "Ġdanced": 32909, + "Ġdancer": 21621, + "Ġdancers": 25199, + "Ġdances": 28322, + "Ġdancing": 8898, + "Ġdando": 29854, + "Ġdane": 49206, + "Ġdang": 21892, + "Ġdanger": 4330, + "Ġdangerous": 5795, + "Ġdangers": 27701, + "Ġdank": 35121, + "Ġdanke": 46434, + "Ġdann": 3594, + "Ġdans": 2680, + "Ġdapat": 35161, + "Ġdaqui": 30485, + "Ġdar": 4072, + "Ġdaran": 24520, + "Ġdarauf": 18654, + "Ġdare": 8955, + "Ġdared": 44564, + "Ġdares": 50213, + "Ġdarf": 19374, + "Ġdari": 15597, + "Ġdaring": 43128, + "Ġdark": 2877, + "Ġdarker": 12741, + "Ġdarkest": 33460, + "Ġdarkness": 11262, + "Ġdarle": 37666, + "Ġdarling": 22405, + "Ġdarn": 29063, + "Ġdart": 39010, + "Ġdarum": 27313, + "Ġdarüber": 21737, + "Ġdas": 1482, + "Ġdash": 8240, + "Ġdashboard": 18342, + "Ġdass": 2658, + "Ġdat": 1137, + "Ġdata": 1412, + "Ġdatab": 7104, + "Ġdatabase": 8149, + "Ġdatabases": 22380, + "Ġdatas": 20377, + "Ġdataset": 28872, + "Ġdatasets": 42856, + "Ġdate": 4002, + "Ġdated": 23804, + "Ġdates": 11691, + "Ġdating": 10689, + "Ġdato": 46971, + "Ġdatos": 27721, + "Ġdau": 37359, + "Ġdaughter": 4653, + "Ġdaughters": 17070, + "Ġdaunting": 37657, + "Ġdav": 11753, + "Ġdavon": 18574, + "Ġdaw": 43438, + "Ġdawn": 18192, + "Ġday": 786, + "Ġdaylight": 29964, + "Ġdays": 1708, + "Ġdaytime": 31908, + "Ġdazu": 13034, + "Ġdazz": 44078, + "ĠdaÃŃ": 48113, + "Ġde": 368, + "Ġdeactiv": 45428, + "Ġdead": 3116, + "Ġdeadline": 20615, + "Ġdeadlines": 37548, + "Ġdeadly": 18232, + "Ġdeaf": 15559, + "Ġdeal": 2028, + "Ġdealer": 24896, + "Ġdealers": 25955, + "Ġdealing": 6260, + "Ġdeals": 11215, + "Ġdealt": 15991, + "Ġdean": 31120, + "Ġdear": 6875, + "Ġdeath": 2966, + "Ġdeaths": 13027, + "Ġdeb": 3001, + "Ġdebate": 7958, + "Ġdebated": 42212, + "Ġdebates": 24203, + "Ġdebating": 40647, + "Ġdebe": 27422, + "Ġdeben": 49187, + "Ġdeber": 29671, + "Ġdebido": 50003, + "Ġdebit": 39709, + "Ġdebr": 19958, + "Ġdebris": 21942, + "Ġdebt": 7831, + "Ġdebts": 32528, + "Ġdebug": 24083, + "Ġdebugging": 45592, + "Ġdebut": 13828, + "Ġdebuted": 33392, + "Ġdec": 979, + "Ġdecade": 10378, + "Ġdecades": 7878, + "Ġdecay": 21039, + "Ġdece": 14088, + "Ġdeceased": 33156, + "Ġdeceive": 43440, + "Ġdeceived": 41304, + "Ġdecent": 8681, + "Ġdecentral": 26515, + "Ġdecentralized": 32870, + "Ġdeception": 40451, + "Ġdeci": 46358, + "Ġdecid": 21937, + "Ġdecide": 4536, + "Ġdecided": 3047, + "Ġdecides": 14898, + "Ġdeciding": 17990, + "Ġdecimal": 26601, + "Ġdecipher": 49859, + "Ġdecir": 10235, + "Ġdecis": 18206, + "Ġdecision": 3537, + "Ġdecisions": 5327, + "Ġdecisive": 34998, + "Ġdeck": 9341, + "Ġdecks": 32607, + "Ġdecl": 7488, + "Ġdeclar": 16694, + "Ġdeclaration": 27606, + "Ġdeclare": 19710, + "Ġdeclared": 15489, + "Ġdeclaring": 40374, + "Ġdecline": 15635, + "Ġdeclined": 29213, + "Ġdeclining": 34298, + "Ġdecomp": 22867, + "Ġdecomposition": 48356, + "Ġdeconst": 49473, + "Ġdecor": 7919, + "Ġdecorate": 24229, + "Ġdecorated": 28422, + "Ġdecorating": 39172, + "Ġdecoration": 26538, + "Ġdecorations": 32367, + "Ġdecorative": 35185, + "Ġdecre": 6853, + "Ġdecrease": 11514, + "Ġdecreased": 24436, + "Ġdecreases": 24108, + "Ġdecreasing": 23223, + "Ġdecree": 41071, + "ĠdecÃŃa": 37599, + "Ġded": 4172, + "Ġdedans": 48680, + "Ġdedi": 19731, + "Ġdedic": 37071, + "Ġdedicate": 30718, + "Ġdedicated": 8374, + "Ġdedication": 21813, + "Ġdedim": 31848, + "Ġdeduct": 31513, + "Ġdeduction": 46385, + "Ġdeed": 30299, + "Ġdeeds": 24539, + "Ġdeemed": 27637, + "Ġdeep": 2452, + "Ġdeepen": 45806, + "Ġdeeper": 7731, + "Ġdeepest": 28288, + "Ġdeeply": 8760, + "Ġdeer": 17120, + "Ġdef": 1060, + "Ġdefault": 7576, + "Ġdefe": 7486, + "Ġdefeat": 11785, + "Ġdefeated": 15563, + "Ġdefeating": 38381, + "Ġdefect": 16445, + "Ġdefects": 32655, + "Ġdefence": 25913, + "Ġdefend": 8602, + "Ġdefendant": 34053, + "Ġdefended": 34135, + "Ġdefender": 26537, + "Ġdefenders": 36063, + "Ġdefending": 21377, + "Ġdefens": 47746, + "Ġdefense": 7654, + "Ġdefenses": 35989, + "Ġdefensive": 16468, + "Ġdefer": 25704, + "Ġdefic": 19248, + "Ġdeficiency": 37500, + "Ġdeficit": 22132, + "Ġdeficits": 49616, + "Ġdefin": 1561, + "Ġdefine": 6964, + "Ġdefined": 7642, + "Ġdefines": 23122, + "Ġdefining": 17827, + "Ġdefinit": 28781, + "Ġdefinite": 25131, + "Ġdefinitely": 2138, + "Ġdefinition": 7123, + "Ġdefinitions": 21988, + "Ġdefinitive": 28152, + "Ġdeflect": 41373, + "Ġdeform": 36094, + "Ġdeformation": 34364, + "Ġdeg": 2821, + "Ġdegener": 40520, + "Ġdegli": 32079, + "Ġdegrad": 24740, + "Ġdegradation": 40519, + "Ġdegree": 4314, + "Ġdegrees": 5310, + "Ġdeh": 36892, + "Ġdehyd": 32102, + "Ġdei": 13874, + "Ġdein": 25641, + "Ġdeine": 28395, + "Ġdeinen": 49362, + "Ġdeity": 37939, + "Ġdeix": 9963, + "Ġdeixa": 26208, + "Ġdeixar": 19701, + "Ġdej": 21259, + "Ġdeja": 38260, + "Ġdejar": 24391, + "Ġdel": 1103, + "Ġdela": 21820, + "Ġdelay": 8577, + "Ġdelayed": 20268, + "Ġdelays": 28610, + "Ġdele": 16376, + "Ġdeleg": 15824, + "Ġdelegate": 40999, + "Ġdelegates": 45756, + "Ġdelegation": 36602, + "Ġdeles": 30789, + "Ġdelete": 12097, + "Ġdeleted": 22981, + "Ġdeleting": 48946, + "Ġdeliber": 14207, + "Ġdeliberate": 30515, + "Ġdeliberately": 23506, + "Ġdelic": 29831, + "Ġdelicate": 21417, + "Ġdelicious": 4809, + "Ġdelight": 11627, + "Ġdelighted": 18783, + "Ġdelightful": 35194, + "Ġdeliver": 4239, + "Ġdelivered": 10144, + "Ġdeliveries": 46448, + "Ġdelivering": 14666, + "Ġdelivers": 24860, + "Ġdelivery": 8982, + "Ġdell": 19781, + "Ġdella": 11618, + "Ġdelle": 16485, + "Ġdels": 23724, + "Ġdelta": 8289, + "Ġdelve": 43098, + "Ġdem": 1371, + "Ġdemain": 44389, + "Ġdemais": 36879, + "Ġdemand": 4733, + "Ġdemande": 26982, + "Ġdemanded": 28276, + "Ġdemander": 39169, + "Ġdemanding": 19960, + "Ġdemands": 15107, + "Ġdemandé": 48468, + "Ġdemasi": 35259, + "Ġdemasiado": 39820, + "Ġdeme": 35465, + "Ġdemek": 32491, + "Ġdement": 29950, + "Ġdementia": 31734, + "Ġdemi": 42188, + "Ġdemise": 45982, + "ĠdemiÅŁ": 46334, + "Ġdemo": 10723, + "Ġdemocr": 6366, + "Ġdemocracy": 10528, + "Ġdemocrat": 37221, + "Ġdemocratic": 15337, + "Ġdemocrats": 47665, + "Ġdemographic": 26331, + "Ġdemographics": 36884, + "Ġdemokrat": 49432, + "Ġdemol": 26933, + "Ġdemon": 14283, + "Ġdemonic": 41297, + "Ġdemons": 19733, + "Ġdemonst": 5516, + "Ġdemonstrate": 11698, + "Ġdemonstrated": 18772, + "Ġdemonstrates": 31034, + "Ġdemonstrating": 29889, + "Ġdemonstration": 16520, + "Ġdemonstrations": 34714, + "Ġdemos": 33788, + "Ġdemost": 41556, + "Ġdemás": 34682, + "Ġden": 1441, + "Ġdenen": 19998, + "Ġdengan": 13877, + "Ġdenial": 28754, + "Ġdenied": 17774, + "Ġdenim": 43535, + "Ġdenk": 21285, + "Ġdenke": 27245, + "Ġdenken": 28780, + "Ġdenkt": 38658, + "Ġdenn": 10471, + "Ġdenomin": 16244, + "Ġdenominator": 20687, + "Ġdenote": 45708, + "Ġdens": 24505, + "Ġdense": 18011, + "Ġdensity": 10305, + "Ġdent": 7059, + "Ġdental": 24473, + "Ġdentist": 28666, + "Ġdentro": 10856, + "Ġdeny": 15744, + "Ġdenying": 30363, + "Ġdep": 1367, + "Ġdepart": 9110, + "Ġdeparted": 47018, + "Ġdepartment": 5882, + "Ġdepartments": 15326, + "Ġdeparture": 25866, + "Ġdepend": 5672, + "Ġdepende": 47091, + "Ġdependence": 31704, + "Ġdependencies": 36606, + "Ġdependency": 33621, + "Ġdependent": 12334, + "Ġdepending": 5413, + "Ġdepends": 5946, + "Ġdepict": 31553, + "Ġdepicted": 30207, + "Ġdepiction": 47740, + "Ġdepicts": 48949, + "Ġdepl": 37546, + "Ġdeploy": 7274, + "Ġdeployed": 17826, + "Ġdeploying": 34198, + "Ġdeployment": 19317, + "Ġdepois": 13880, + "Ġdeport": 33485, + "Ġdepos": 19930, + "Ġdeposit": 19107, + "Ġdeposited": 42002, + "Ġdeposits": 30958, + "Ġdepreci": 40609, + "Ġdepress": 44248, + "Ġdepressed": 18713, + "Ġdepressing": 36355, + "Ġdepression": 10799, + "Ġdepri": 27095, + "Ġdeprived": 42086, + "Ġdepth": 7161, + "Ġdepths": 28439, + "Ġdepuis": 16062, + "Ġdeputy": 26692, + "Ġder": 1163, + "Ġdere": 15969, + "Ġderecho": 39055, + "Ġderechos": 47508, + "Ġderen": 48300, + "Ġderiv": 10151, + "Ġderivative": 13760, + "Ġderivatives": 33733, + "Ġderive": 28446, + "Ġderived": 18949, + "Ġderm": 33080, + "Ġdermat": 43706, + "Ġderni": 20562, + "Ġdernier": 29332, + "Ġdernière": 29028, + "Ġderrière": 31465, + "Ġders": 39636, + "Ġdes": 730, + "Ġdesaf": 34587, + "Ġdesap": 36546, + "Ġdesapare": 42316, + "Ġdesar": 21464, + "Ġdesarroll": 32501, + "Ġdesarrollo": 38295, + "Ġdesc": 7471, + "Ġdescend": 16333, + "Ġdescendants": 31693, + "Ġdescended": 41311, + "Ġdescending": 40182, + "Ġdescent": 23475, + "Ġdescob": 31700, + "Ġdescobrir": 45900, + "Ġdescon": 49801, + "Ġdescri": 2189, + "Ġdescribe": 6786, + "Ġdescribed": 7619, + "Ġdescribes": 15626, + "Ġdescribing": 16141, + "Ġdescript": 31280, + "Ġdescription": 3855, + "Ġdescriptions": 24406, + "Ġdescriptive": 42585, + "Ġdescrição": 42051, + "Ġdescub": 32592, + "Ġdesde": 10188, + "Ġdese": 27118, + "Ġdesem": 38850, + "Ġdesen": 18291, + "Ġdesenvol": 28683, + "Ġdesenvolv": 47835, + "Ġdesert": 11029, + "Ġdeserted": 47983, + "Ġdeserve": 9948, + "Ġdeserved": 27964, + "Ġdeserves": 17037, + "Ġdeserving": 48781, + "Ġdeshalb": 28457, + "Ġdesign": 1715, + "Ġdesignated": 21688, + "Ġdesignation": 40838, + "Ġdesigned": 4761, + "Ġdesigner": 11795, + "Ġdesigners": 16196, + "Ġdesigning": 14685, + "Ġdesigns": 11347, + "Ġdesirable": 30533, + "Ġdesire": 7516, + "Ġdesired": 14721, + "Ġdesires": 18005, + "Ġdesk": 10026, + "Ġdesktop": 14502, + "Ġdesp": 4887, + "Ġdespair": 25763, + "Ġdesper": 10679, + "Ġdesperate": 17601, + "Ġdesperately": 23726, + "Ġdesperation": 48980, + "Ġdespite": 7228, + "Ġdesprés": 42237, + "Ġdespués": 15283, + "Ġdess": 6874, + "Ġdessa": 18554, + "Ġdessas": 40083, + "Ġdesse": 17864, + "Ġdessert": 14593, + "Ġdesserts": 37913, + "Ġdesses": 36409, + "Ġdessus": 30677, + "Ġdest": 2677, + "Ġdesta": 45943, + "Ġdestac": 46393, + "Ġdeste": 38738, + "Ġdestin": 40254, + "Ġdestination": 12236, + "Ġdestinations": 37787, + "Ġdestined": 33169, + "Ġdestiny": 17893, + "Ġdestro": 15311, + "Ġdestroy": 5293, + "Ġdestroyed": 8937, + "Ġdestroying": 19926, + "Ġdestroys": 36714, + "Ġdestru": 34235, + "Ġdestruction": 13563, + "Ġdestructive": 26960, + "Ġdeswegen": 26482, + "Ġdet": 1141, + "Ġdetach": 43245, + "Ġdetached": 42050, + "Ġdetail": 2607, + "Ġdetailed": 9942, + "Ġdetailing": 42459, + "Ġdetails": 4365, + "Ġdetained": 41452, + "Ġdetal": 33185, + "Ġdetect": 5531, + "Ġdetected": 21896, + "Ġdetecting": 40237, + "Ġdetection": 17784, + "Ġdetective": 25571, + "Ġdetector": 25712, + "Ġdetectors": 46866, + "Ġdetention": 31291, + "Ġdeter": 15092, + "Ġdeterior": 26431, + "Ġdeterm": 3618, + "Ġdetermin": 15957, + "Ġdeterminant": 41296, + "Ġdetermination": 18432, + "Ġdetermine": 6997, + "Ġdetermined": 9540, + "Ġdetermines": 24799, + "Ġdetermining": 23751, + "Ġdeton": 39920, + "Ġdetox": 34904, + "Ġdetriment": 35430, + "Ġdetrimental": 45694, + "Ġdetta": 48888, + "Ġdette": 47126, + "Ġdetto": 41031, + "Ġdeu": 25661, + "Ġdeutlich": 24344, + "Ġdeuts": 23004, + "Ġdeutsche": 47502, + "Ġdeutschen": 39707, + "Ġdeux": 8208, + "Ġdeuxième": 29112, + "Ġdev": 1905, + "Ġdevam": 25645, + "Ġdevant": 28982, + "Ġdevast": 13959, + "Ġdevastated": 34880, + "Ġdevastating": 21280, + "Ġdeve": 17761, + "Ġdevelop": 1499, + "Ġdeveloped": 4743, + "Ġdeveloper": 10754, + "Ġdevelopers": 8849, + "Ġdeveloping": 6416, + "Ġdevelopment": 3250, + "Ġdevelopmental": 30160, + "Ġdevelopments": 20862, + "Ġdevelops": 25453, + "Ġdeven": 43115, + "Ġdevenir": 41271, + "Ġdever": 40739, + "Ġdevi": 31219, + "Ġdeviation": 25163, + "Ġdevice": 4302, + "Ġdevices": 5759, + "Ġdevient": 42100, + "Ġdevil": 13297, + "Ġdevo": 49717, + "Ġdevoir": 48920, + "Ġdevot": 13697, + "Ġdevote": 23184, + "Ġdevoted": 21815, + "Ġdevotees": 46960, + "Ġdevotion": 30671, + "Ġdevrait": 43356, + "Ġdew": 48745, + "Ġdez": 45057, + "Ġdeze": 18040, + "ĠdeÄŁ": 7725, + "ĠdeÄŁer": 47584, + "ĠdeÄŁil": 9920, + "ĠdeÄŁild": 49587, + "ĠdeÄŁiÅŁ": 30435, + "Ġdi": 1026, + "Ġdia": 6801, + "Ġdiab": 33227, + "Ġdiabetes": 13881, + "Ġdiabetic": 50238, + "Ġdiagn": 7234, + "Ġdiagnose": 36238, + "Ġdiagnosed": 16899, + "Ġdiagnosis": 15217, + "Ġdiagnost": 43215, + "Ġdiagnostic": 27897, + "Ġdiagon": 17405, + "Ġdiagonal": 21539, + "Ġdiagram": 10686, + "Ġdiagrams": 36709, + "Ġdial": 5502, + "Ġdialect": 24652, + "Ġdialog": 19308, + "Ġdialogue": 10221, + "Ġdialogues": 45551, + "Ġdiam": 7484, + "Ġdiameter": 14196, + "Ġdiamond": 16059, + "Ġdiamonds": 22612, + "Ġdiaper": 45121, + "Ġdiapers": 48496, + "Ġdiaphrag": 46711, + "Ġdiarr": 37565, + "Ġdiarrhea": 41282, + "Ġdiary": 26492, + "Ġdias": 21084, + "Ġdib": 23064, + "Ġdibuj": 46621, + "Ġdic": 14285, + "Ġdice": 10313, + "Ġdicen": 33816, + "Ġdich": 10390, + "Ġdicho": 27346, + "Ġdicht": 48774, + "Ġdiciendo": 42797, + "Ġdick": 18659, + "Ġdict": 12569, + "Ġdictate": 36071, + "Ġdictator": 42852, + "Ġdictators": 34708, + "Ġdictatorship": 44349, + "Ġdiction": 22352, + "Ġdictionary": 25890, + "Ġdid": 630, + "Ġdidn": 994, + "Ġdidnt": 38634, + "Ġdie": 978, + "Ġdied": 4539, + "Ġdies": 2714, + "Ġdiese": 6705, + "Ġdiesel": 21258, + "Ġdiesem": 10975, + "Ġdiesen": 12862, + "Ġdieser": 9053, + "Ġdieses": 12113, + "Ġdiet": 6339, + "Ġdieta": 37967, + "Ġdietary": 37421, + "Ġdiets": 33867, + "Ġdiez": 48165, + "Ġdif": 679, + "Ġdifer": 10918, + "Ġdiferen": 18959, + "Ġdiferencia": 38844, + "Ġdiferente": 20973, + "Ġdiferentes": 17686, + "Ġdiferença": 38336, + "Ġdiff": 7593, + "Ġdiffer": 743, + "Ġdifference": 2649, + "Ġdifferences": 7300, + "Ġdifferent": 819, + "Ġdifferenti": 27372, + "Ġdifferential": 15756, + "Ġdifferentiate": 23203, + "Ġdifferentiation": 38902, + "Ġdifferently": 7614, + "Ġdiffers": 37761, + "Ġdiffic": 2204, + "Ġdifficile": 26607, + "Ġdifficult": 2252, + "Ġdifficulties": 14399, + "Ġdifficulty": 10360, + "Ġdiffuse": 42165, + "Ġdiffusion": 25242, + "Ġdiffé": 14397, + "Ġdifférence": 45952, + "Ġdifférent": 19384, + "Ġdifférentes": 35438, + "Ġdifférents": 33948, + "Ġdific": 29615, + "ĠdifÃŃ": 16774, + "ĠdifÃŃcil": 17258, + "Ġdig": 2528, + "Ġdigamos": 36430, + "Ġdigest": 13884, + "Ġdigestion": 40560, + "Ġdigestive": 32696, + "Ġdigging": 17343, + "Ġdigit": 14293, + "Ġdigital": 4562, + "Ġdigitally": 36938, + "Ġdigits": 27011, + "Ġdign": 15308, + "Ġdignity": 19672, + "Ġdigo": 22990, + "Ġdij": 47709, + "Ġdije": 39414, + "Ġdijo": 27024, + "Ġdikk": 48926, + "Ġdil": 11504, + "Ġdile": 25623, + "Ġdilemma": 34312, + "Ġdilig": 47646, + "Ġdiligence": 40046, + "Ġdiligent": 50251, + "Ġdiligently": 49013, + "Ġdim": 5013, + "Ġdime": 36330, + "Ġdimension": 10139, + "Ġdimensional": 18795, + "Ġdimensions": 12819, + "Ġdimin": 15739, + "Ġdiminish": 48696, + "Ġdiminished": 40206, + "Ġdin": 3791, + "Ġdinero": 27923, + "Ġding": 21211, + "Ġdingen": 40870, + "Ġdings": 32724, + "Ġdinheiro": 23760, + "Ġdining": 17874, + "Ġdinner": 6148, + "Ġdinosaur": 23627, + "Ġdinosaurs": 25851, + "Ġdio": 31965, + "Ġdiode": 40787, + "Ġdiox": 18982, + "Ġdioxide": 19590, + "Ġdip": 10460, + "Ġdipl": 11432, + "Ġdiplom": 20053, + "Ġdiploma": 35770, + "Ġdiplomacy": 35184, + "Ġdiplomatic": 26553, + "Ġdipped": 45162, + "Ġdipping": 35584, + "Ġdips": 47814, + "Ġdir": 4746, + "Ġdire": 1264, + "Ġdirect": 2047, + "Ġdirectamente": 46230, + "Ġdirected": 12898, + "Ġdirectement": 37297, + "Ġdirecting": 26979, + "Ġdirection": 3513, + "Ġdirectional": 42242, + "Ġdirections": 11095, + "Ġdirective": 45444, + "Ġdirectly": 3838, + "Ġdirector": 5391, + "Ġdirectors": 17307, + "Ġdirectory": 21120, + "Ġdireito": 36601, + "Ġdirekt": 20315, + "Ġdiret": 48196, + "Ġdirig": 35243, + "Ġdirt": 11483, + "Ġdirty": 9360, + "Ġdis": 717, + "Ġdisabilities": 13367, + "Ġdisability": 11090, + "Ġdisable": 28362, + "Ġdisabled": 15191, + "Ġdisad": 15828, + "Ġdisadvant": 26380, + "Ġdisadvantage": 24292, + "Ġdisadvantaged": 46826, + "Ġdisadvantages": 37431, + "Ġdisag": 10414, + "Ġdisagre": 23926, + "Ġdisagree": 14091, + "Ġdisagreement": 38947, + "Ġdisapp": 4518, + "Ġdisappe": 6657, + "Ġdisappear": 11596, + "Ġdisappearance": 37049, + "Ġdisappeared": 13954, + "Ġdisappearing": 34900, + "Ġdisappears": 25527, + "Ġdisappoint": 8505, + "Ġdisappointed": 13856, + "Ġdisappointing": 25054, + "Ġdisappointment": 28175, + "Ġdisast": 42103, + "Ġdisaster": 11293, + "Ġdisasters": 27966, + "Ġdisastrous": 44502, + "Ġdisbel": 36105, + "Ġdisc": 2983, + "Ġdiscard": 31597, + "Ġdiscarded": 45469, + "Ġdiscern": 30868, + "Ġdischarge": 21718, + "Ġdischarged": 37081, + "Ġdisci": 6507, + "Ġdiscipl": 8644, + "Ġdisciple": 32100, + "Ġdisciples": 17209, + "Ġdiscipline": 13635, + "Ġdisciplined": 40061, + "Ġdisciplines": 21919, + "Ġdiscl": 17092, + "Ġdisclaimer": 40896, + "Ġdisclose": 36146, + "Ġdisclosure": 30392, + "Ġdisco": 3622, + "Ġdiscomfort": 28552, + "Ġdisconnect": 14299, + "Ġdisconnected": 29426, + "Ġdiscontin": 31420, + "Ġdiscord": 32989, + "Ġdiscount": 11635, + "Ġdiscounts": 37930, + "Ġdiscour": 21497, + "Ġdiscouraged": 35010, + "Ġdiscours": 43609, + "Ġdiscourse": 23938, + "Ġdiscover": 4411, + "Ġdiscovered": 6941, + "Ġdiscoveries": 28400, + "Ġdiscovering": 24773, + "Ġdiscovers": 44522, + "Ġdiscovery": 12114, + "Ġdiscret": 25656, + "Ġdiscrete": 27706, + "Ġdiscretion": 30140, + "Ġdiscrimin": 20828, + "Ġdiscriminate": 47833, + "Ġdiscrimination": 15973, + "Ġdiscs": 37525, + "Ġdiscuss": 2248, + "Ġdiscussed": 7152, + "Ġdiscussing": 10850, + "Ġdiscussion": 5017, + "Ġdiscussions": 11088, + "Ġdiscut": 42085, + "Ġdise": 3814, + "Ġdisease": 4752, + "Ġdiseases": 11044, + "Ġdisent": 37313, + "Ġdisfr": 37114, + "Ġdisg": 14116, + "Ġdisgr": 32632, + "Ġdisgrace": 41702, + "Ġdisgu": 23333, + "Ġdisguise": 32751, + "Ġdisgusting": 17552, + "Ġdish": 5025, + "Ġdishes": 10814, + "Ġdishon": 37127, + "Ġdishwas": 35992, + "Ġdishwasher": 38009, + "Ġdisinfect": 33334, + "Ġdisintegr": 45354, + "Ġdisk": 12355, + "Ġdisks": 41617, + "Ġdiskut": 36760, + "Ġdisl": 43186, + "Ġdislike": 26006, + "Ġdisloc": 39025, + "Ġdism": 12456, + "Ġdismant": 30506, + "Ġdismiss": 16974, + "Ġdismissed": 29970, + "Ġdisobed": 49171, + "Ġdisorder": 13399, + "Ġdisorders": 20261, + "Ġdisp": 4920, + "Ġdispar": 14548, + "Ġdisparities": 32514, + "Ġdisparity": 47415, + "Ġdispatch": 36729, + "Ġdispers": 24631, + "Ġdispersed": 48059, + "Ġdispl": 14996, + "Ġdisplaced": 33692, + "Ġdisplacement": 21899, + "Ġdisplay": 4674, + "Ġdisplayed": 16372, + "Ġdisplaying": 36834, + "Ġdisplays": 20119, + "Ġdispon": 23311, + "Ġdispos": 15885, + "Ġdisposable": 41578, + "Ġdisposal": 26400, + "Ġdispose": 42537, + "Ġdisposit": 34769, + "Ġdisposition": 40293, + "Ġdisproportion": 28734, + "Ġdisproportionately": 43397, + "Ġdisput": 37669, + "Ġdispute": 25379, + "Ġdisputes": 39666, + "Ġdisreg": 36405, + "Ġdisregard": 44493, + "Ġdisrespect": 27058, + "Ġdisrespectful": 47750, + "Ġdisrupt": 14124, + "Ġdisrupted": 42271, + "Ġdisruption": 28751, + "Ġdisruptive": 37865, + "Ġdiss": 7802, + "Ġdisse": 17581, + "Ġdissect": 48332, + "Ġdissemin": 34585, + "Ġdissert": 36828, + "Ġdissertation": 39555, + "Ġdissip": 29544, + "Ġdisso": 20088, + "Ġdissoci": 44446, + "Ġdissol": 15840, + "Ġdissolve": 30150, + "Ġdissolved": 30651, + "Ġdist": 1483, + "Ġdistance": 4560, + "Ġdistances": 22182, + "Ġdistancing": 18567, + "Ġdistant": 17275, + "Ġdistill": 42923, + "Ġdistinct": 10644, + "Ġdistinction": 16844, + "Ġdistinctive": 27766, + "Ġdistingu": 11365, + "Ġdistinguish": 20206, + "Ġdistinguished": 21702, + "Ġdistint": 31489, + "Ġdistintos": 49337, + "Ġdistort": 37555, + "Ġdistorted": 33431, + "Ġdistortion": 28426, + "Ġdistract": 9945, + "Ġdistracted": 21658, + "Ġdistracting": 36689, + "Ġdistraction": 30217, + "Ġdistractions": 37887, + "Ġdistress": 24516, + "Ġdistrib": 4400, + "Ġdistribute": 20594, + "Ġdistributed": 12631, + "Ġdistributing": 41406, + "Ġdistribution": 7316, + "Ġdistributions": 37870, + "Ġdistributor": 49192, + "Ġdistrict": 6566, + "Ġdistricts": 16815, + "Ġdistur": 10242, + "Ġdisturb": 18071, + "Ġdisturbance": 35684, + "Ġdisturbed": 30558, + "Ġdisturbing": 21903, + "Ġdit": 6176, + "Ġditch": 25325, + "Ġdites": 48291, + "Ġdiu": 40297, + "Ġdiv": 3414, + "Ġdive": 9192, + "Ġdiver": 18558, + "Ġdivergence": 47387, + "Ġdivers": 6111, + "Ġdiverse": 9521, + "Ġdiversion": 49422, + "Ġdiversity": 8811, + "Ġdivert": 23781, + "Ġdivid": 4996, + "Ġdivide": 9845, + "Ġdivided": 6666, + "Ġdividend": 29796, + "Ġdividends": 39675, + "Ġdivides": 41347, + "Ġdividing": 26764, + "Ġdivine": 13678, + "Ġdiving": 20241, + "Ġdivis": 25974, + "Ġdivision": 10044, + "Ġdivisions": 24328, + "Ġdivor": 11861, + "Ġdivorce": 16052, + "Ġdivorced": 27670, + "Ġdivul": 47291, + "Ġdiy": 34275, + "Ġdiye": 12968, + "Ġdiyor": 17587, + "Ġdiyorsun": 38537, + "Ġdiyorum": 37190, + "Ġdiz": 12098, + "Ġdizendo": 47026, + "Ġdizer": 17159, + "Ġdizzy": 31098, + "ĠdiÄŁer": 44525, + "Ġdl": 37873, + "Ġdla": 12285, + "Ġdlatego": 32205, + "Ġdni": 46125, + "Ġdo": 360, + "Ġdoable": 41183, + "Ġdob": 27082, + "Ġdobr": 23067, + "Ġdobre": 41959, + "Ġdobry": 35884, + "Ġdobrze": 28335, + "Ġdoc": 3211, + "Ġdoch": 9243, + "Ġdock": 20929, + "Ġdocs": 45623, + "Ġdoct": 17112, + "Ġdoctor": 4631, + "Ġdoctoral": 41419, + "Ġdoctors": 8778, + "Ġdoctr": 46040, + "Ġdoctrine": 23290, + "Ġdocument": 4166, + "Ġdocumentaries": 41630, + "Ġdocumentary": 15674, + "Ġdocumentation": 14333, + "Ġdocumented": 23007, + "Ġdocumenting": 42360, + "Ġdocuments": 8512, + "Ġdod": 13886, + "Ġdodge": 27238, + "Ġdoe": 35319, + "Ġdoen": 15159, + "Ġdoes": 775, + "Ġdoesn": 1177, + "Ġdoet": 44138, + "Ġdog": 3000, + "Ġdogs": 7197, + "Ġdoin": 23503, + "Ġdoing": 884, + "Ġdois": 11854, + "Ġdoit": 19193, + "Ġdoivent": 44341, + "Ġdok": 25037, + "Ġdokument": 40858, + "ĠdokÅĤad": 45864, + "Ġdol": 17858, + "Ġdoll": 2722, + "Ġdollar": 7241, + "Ġdollars": 3808, + "Ġdolls": 29134, + "Ġdolor": 42416, + "Ġdolph": 29188, + "Ġdolphin": 46759, + "Ġdolphins": 44835, + "Ġdom": 3285, + "Ġdomain": 9274, + "Ġdomains": 25514, + "Ġdome": 27191, + "Ġdomest": 39125, + "Ġdomestic": 10939, + "Ġdomin": 8859, + "Ġdominance": 34987, + "Ġdominant": 15657, + "Ġdominate": 28246, + "Ġdominated": 23755, + "Ġdominating": 43306, + "Ġdomination": 41502, + "Ġdomu": 48465, + "Ġdon": 500, + "Ġdona": 48583, + "Ġdonate": 17751, + "Ġdonated": 23723, + "Ġdonating": 36686, + "Ġdonation": 19724, + "Ġdonations": 22705, + "Ġdonc": 5926, + "Ġdonde": 10488, + "Ġdone": 1096, + "Ġdong": 33079, + "Ġdonkey": 34834, + "Ġdonn": 33258, + "Ġdonne": 21837, + "Ġdonner": 20882, + "Ġdonné": 31165, + "Ġdonnées": 40101, + "Ġdonor": 25493, + "Ġdonors": 25521, + "Ġdont": 9400, + "Ġdonut": 33782, + "Ġdonuts": 36826, + "ĠdonÃŃt": 36311, + "Ġdoo": 27572, + "Ġdoom": 37131, + "Ġdoomed": 33847, + "Ġdoor": 2853, + "Ġdoors": 8077, + "Ġdoorway": 41992, + "Ġdop": 21900, + "Ġdopamine": 37219, + "Ġdope": 23383, + "Ġdopo": 35196, + "Ġdopp": 44862, + "Ġdor": 26313, + "Ġdorm": 12521, + "Ġdormir": 33098, + "Ġdort": 15775, + "Ġdos": 4491, + "Ġdose": 14041, + "Ġdoses": 22576, + "Ġdoss": 47831, + "Ġdost": 20568, + "ĠdostÄĻp": 48209, + "Ġdot": 5893, + "Ġdots": 15026, + "Ġdotted": 37459, + "Ġdou": 2482, + "Ġdoub": 10831, + "Ġdouble": 3834, + "Ġdoubled": 24405, + "Ġdoubles": 31634, + "Ġdoubling": 33651, + "Ġdoubt": 6385, + "Ġdoubts": 22618, + "Ġdough": 7984, + "Ġdoute": 41984, + "Ġdov": 30870, + "Ġdove": 23287, + "Ġdow": 9459, + "Ġdown": 760, + "Ġdownhill": 29929, + "Ġdownload": 5484, + "Ġdownloaded": 21748, + "Ġdownloading": 32529, + "Ġdownloads": 36553, + "Ġdowns": 21554, + "Ġdownside": 25060, + "Ġdownstairs": 20148, + "Ġdownstream": 30621, + "Ġdownt": 11655, + "Ġdowntime": 49648, + "Ġdowntown": 14209, + "Ġdownward": 24805, + "Ġdownwards": 39880, + "Ġdozen": 16654, + "Ġdozens": 18431, + "ĠdoÄŁ": 18557, + "ĠdoÄŁru": 28297, + "ĠdoÅĽwiad": 46661, + "ĠdoÅĽÄĩ": 49333, + "Ġdr": 1224, + "Ġdra": 1617, + "Ġdraft": 11206, + "Ġdrafted": 36288, + "Ġdrafting": 46378, + "Ġdrag": 5286, + "Ġdragged": 25717, + "Ġdragging": 24385, + "Ġdragon": 12165, + "Ġdragons": 27240, + "Ġdrain": 12339, + "Ġdrainage": 32973, + "Ġdrained": 37018, + "Ġdraining": 42916, + "Ġdrains": 47694, + "Ġdram": 7538, + "Ġdrama": 9412, + "Ġdramas": 36739, + "Ġdramat": 42749, + "Ġdramatic": 12023, + "Ġdramatically": 17548, + "Ġdran": 32801, + "Ġdrank": 21011, + "Ġdrastic": 36821, + "Ġdrastically": 29673, + "Ġdrauf": 22763, + "ĠdrauÃŁen": 44602, + "Ġdraw": 2642, + "Ġdrawer": 24039, + "Ġdrawers": 38302, + "Ġdrawing": 6316, + "Ġdrawings": 18618, + "Ġdrawn": 10117, + "Ġdraws": 20045, + "Ġdre": 22540, + "Ġdread": 22236, + "Ġdream": 3055, + "Ġdreamed": 26726, + "Ġdreaming": 21475, + "Ġdreams": 7505, + "Ġdrei": 16809, + "Ġdress": 5231, + "Ġdressed": 12386, + "Ġdresses": 25156, + "Ġdressing": 17211, + "Ġdrew": 12804, + "Ġdri": 1630, + "Ġdrie": 50049, + "Ġdried": 13538, + "Ġdries": 33997, + "Ġdrift": 19699, + "Ġdrifting": 37973, + "Ġdrill": 11392, + "Ġdrilled": 38210, + "Ġdrilling": 26290, + "Ġdrills": 36126, + "Ġdrin": 24534, + "Ġdrink": 2822, + "Ġdrinking": 7583, + "Ġdrinks": 12142, + "Ġdrip": 29376, + "Ġdripping": 37460, + "Ġdrive": 3332, + "Ġdriven": 9555, + "Ġdriver": 6787, + "Ġdrivers": 11590, + "Ġdrives": 11754, + "Ġdriveway": 38276, + "Ġdriving": 4840, + "Ġdrizzle": 48695, + "Ġdro": 3789, + "Ġdroit": 25971, + "Ġdroite": 37321, + "Ġdrone": 13852, + "Ġdrones": 23823, + "Ġdrop": 3270, + "Ġdropdown": 47599, + "Ġdroplets": 41573, + "Ġdropped": 8119, + "Ġdropping": 13601, + "Ġdrops": 11438, + "Ġdrought": 22900, + "Ġdrove": 13226, + "Ġdrown": 20337, + "Ġdrowned": 38233, + "Ġdrowning": 37198, + "Ġdru": 38864, + "Ġdrug": 4110, + "Ġdrugiej": 47373, + "Ġdrugs": 7766, + "Ġdruk": 47995, + "Ġdrum": 10206, + "Ġdrummer": 38535, + "Ġdrums": 20420, + "Ġdrunk": 11192, + "Ġdry": 4016, + "Ġdryer": 29880, + "Ġdrying": 22709, + "Ġdt": 36423, + "Ġdu": 1581, + "Ġdua": 40173, + "Ġdual": 11848, + "Ġduas": 19463, + "Ġdub": 18540, + "Ġdubbed": 43686, + "Ġduck": 12482, + "Ġducks": 34468, + "Ġduct": 25954, + "Ġdud": 38512, + "Ġduda": 43881, + "Ġdude": 6449, + "Ġdudes": 27717, + "Ġdue": 3462, + "Ġduel": 36296, + "Ġdues": 41753, + "Ġdug": 22954, + "Ġduh": 43763, + "Ġdul": 44012, + "Ġdull": 23471, + "Ġdulu": 31643, + "Ġdum": 16784, + "Ġdumb": 10316, + "Ġdumbbell": 39316, + "Ġdummy": 35064, + "Ġdump": 11430, + "Ġdumped": 32131, + "Ġdumping": 42224, + "Ġdumpling": 46517, + "Ġdumplings": 31721, + "Ġdun": 10234, + "Ġdungeon": 27919, + "Ġdungeons": 48347, + "Ġdunk": 33555, + "Ġdunno": 22751, + "Ġduo": 28127, + "Ġduplic": 17154, + "Ġduplicate": 23976, + "Ġdur": 4861, + "Ġdura": 43416, + "Ġdurability": 33664, + "Ġdurable": 22308, + "Ġdurant": 43941, + "Ġdurante": 14427, + "Ġduration": 16365, + "Ġdurch": 7131, + "Ġdurchaus": 42840, + "Ġduring": 1830, + "Ġdurum": 35218, + "Ġdus": 14284, + "Ġdust": 8634, + "Ġdusty": 41973, + "Ġduties": 20910, + "Ġduty": 9776, + "Ġduy": 37385, + "Ġduż": 21783, + "Ġdużo": 26673, + "Ġdw": 27379, + "Ġdwa": 35045, + "Ġdwar": 24524, + "Ġdwarf": 35527, + "Ġdwell": 24355, + "Ġdwelling": 41750, + "Ġdx": 30017, + "Ġdy": 14584, + "Ġdye": 20179, + "Ġdyed": 43199, + "Ġdying": 8639, + "Ġdynam": 5999, + "Ġdynamic": 8546, + "Ġdynamically": 43492, + "Ġdynamics": 15679, + "Ġdynasty": 32841, + "Ġdys": 15243, + "Ġdysfunction": 32002, + "Ġdz": 9758, + "Ġdzi": 31981, + "ĠdziaÅĤ": 27121, + "ĠdziaÅĤa": 37903, + "Ġdzie": 17953, + "Ġdzieci": 38612, + "ĠdzieÅĦ": 47568, + "Ġdzisiaj": 25772, + "ĠdziÄĻki": 45003, + "Ġdá": 14401, + "Ġdär": 12976, + "ĠdÃ¥": 13762, + "Ġdès": 34163, + "Ġdé": 2795, + "Ġdéb": 36529, + "Ġdébut": 22594, + "Ġdéc": 9198, + "Ġdécidé": 43206, + "Ġdécouv": 35687, + "Ġdécouvrir": 47756, + "Ġdéf": 30456, + "Ġdéfin": 40763, + "ĠdéjÃł": 12027, + "Ġdém": 22761, + "Ġdémocr": 47146, + "Ġdép": 27998, + "Ġdépart": 37745, + "Ġdépend": 45768, + "Ġdépl": 47687, + "Ġdés": 18963, + "Ġdét": 22312, + "Ġdévelop": 22558, + "Ġdévelopp": 33379, + "Ġdéveloppement": 45128, + "Ġdó": 18816, + "Ġdólares": 32596, + "Ġdónde": 34264, + "Ġdö": 26089, + "Ġdön": 24782, + "Ġdú": 39299, + "Ġdû": 42300, + "Ġdü": 19378, + "Ġdüny": 32262, + "Ġdür": 23637, + "Ġdürfen": 29493, + "ĠdÃ¼ÅŁ": 12856, + "ĠdÃ¼ÅŁÃ¼n": 21755, + "ĠdÃŃa": 12271, + "ĠdÃŃas": 19527, + "ĠdÄ±ÅŁ": 26602, + "ĠdÅĤ": 44042, + "Ġe": 308, + "ĠeBay": 33803, + "Ġeach": 1184, + "Ġeager": 18259, + "Ġeagle": 30745, + "Ġear": 1273, + "Ġearbuds": 40441, + "Ġearlier": 3071, + "Ġearliest": 20573, + "Ġearly": 2440, + "Ġearn": 6012, + "Ġearned": 12283, + "Ġearnest": 48171, + "Ġearning": 12353, + "Ġearnings": 20548, + "Ġearns": 46936, + "Ġearrings": 31902, + "Ġears": 8798, + "Ġearth": 4120, + "Ġearthly": 46262, + "Ġearthqu": 14814, + "Ġearthquake": 18778, + "Ġearthquakes": 34048, + "Ġeas": 1195, + "Ġease": 12708, + "Ġeasier": 3571, + "Ġeasiest": 12889, + "Ġeasily": 3612, + "Ġeast": 10648, + "Ġeastern": 19346, + "Ġeasy": 1858, + "Ġeat": 1862, + "Ġeaten": 12158, + "Ġeater": 40362, + "Ġeating": 3936, + "Ġeats": 18109, + "Ġeben": 11375, + "Ġebenfalls": 48977, + "Ġec": 11437, + "Ġecc": 29613, + "Ġeccentric": 42629, + "Ġech": 36803, + "Ġecho": 14300, + "Ġechoes": 47051, + "Ġecht": 13972, + "Ġeclipse": 35722, + "Ġeco": 30226, + "Ġecological": 31054, + "Ġecology": 39683, + "Ġecon": 23692, + "Ġeconom": 2520, + "Ġeconomic": 4836, + "Ġeconomical": 42473, + "Ġeconomically": 26811, + "Ġeconomics": 14564, + "Ġeconomies": 23158, + "Ġeconomist": 36696, + "Ġeconomists": 32431, + "Ġeconomy": 5010, + "Ġeconóm": 33537, + "Ġecos": 11007, + "Ġecosystem": 11311, + "Ġecosystems": 32647, + "Ġed": 1257, + "Ġede": 25959, + "Ġeden": 47727, + "Ġeder": 23252, + "Ġederim": 37749, + "Ġedge": 4691, + "Ġedges": 8819, + "Ġedible": 30666, + "Ġedit": 8129, + "Ġedited": 23016, + "Ġediting": 10000, + "Ġedition": 11377, + "Ġeditions": 44840, + "Ġeditor": 9839, + "Ġeditorial": 33412, + "Ġeditors": 31446, + "Ġedits": 41752, + "Ġediyor": 30761, + "Ġediyorum": 39203, + "Ġeduc": 2400, + "Ġeducación": 48861, + "Ġeducate": 16092, + "Ġeducated": 15872, + "Ġeducating": 28835, + "Ġeducation": 3309, + "Ġeducational": 10189, + "Ġeducator": 31237, + "Ġeducators": 22819, + "Ġeel": 47521, + "Ġeen": 3881, + "Ġeens": 31246, + "Ġeer": 25937, + "Ġeerste": 35586, + "Ġef": 31482, + "Ġefect": 22565, + "Ġefecto": 46783, + "Ġefendim": 43556, + "Ġeff": 1244, + "Ġeffect": 1802, + "Ġeffective": 4942, + "Ġeffectively": 8659, + "Ġeffectivement": 40126, + "Ġeffectiveness": 21208, + "Ġeffects": 5065, + "Ġeffet": 30960, + "Ġeffic": 4703, + "Ġefficacy": 33492, + "Ġefficiency": 10493, + "Ġefficient": 7148, + "Ġefficiently": 19621, + "Ġeffort": 4630, + "Ġefforts": 6484, + "Ġefic": 49510, + "Ġefter": 24827, + "Ġeg": 24263, + "Ġegal": 31528, + "Ġegent": 41170, + "Ġegg": 3777, + "Ġeggplant": 43018, + "Ġeggs": 6466, + "Ġego": 14495, + "Ġegy": 16524, + "Ġeh": 7670, + "Ġeher": 24332, + "Ġehkä": 47559, + "Ġehrlich": 40872, + "Ġei": 14020, + "Ġeig": 9728, + "Ġeigen": 10446, + "Ġeigene": 38549, + "Ġeigenen": 28702, + "Ġeigenlijk": 23116, + "Ġeigentlich": 10926, + "Ġeight": 3180, + "Ġeighteen": 31755, + "Ġeighth": 19495, + "Ġeighty": 26348, + "Ġein": 1343, + "Ġeine": 3018, + "Ġeinem": 6827, + "Ġeinen": 4891, + "Ġeiner": 6850, + "Ġeines": 18599, + "Ġeinf": 38627, + "Ġeinfach": 7281, + "Ġeing": 17002, + "Ġeinge": 30061, + "Ġeinges": 49821, + "Ġeinige": 28338, + "Ġeinmal": 11078, + "Ġeins": 21889, + "Ġeinz": 21586, + "Ġeinzel": 36731, + "Ġeinzige": 47743, + "Ġeither": 2139, + "Ġej": 10012, + "Ġeje": 39564, + "Ġeject": 32520, + "Ġejemplo": 13358, + "Ġejerc": 39151, + "Ġek": 13359, + "Ġeks": 30724, + "Ġel": 806, + "Ġela": 7175, + "Ġelabor": 16298, + "Ġelaborate": 20945, + "Ġelas": 23003, + "Ġelastic": 17115, + "Ġelasticity": 46260, + "Ġelbow": 18507, + "Ġelbows": 26620, + "Ġeld": 8912, + "Ġelder": 12995, + "Ġelderly": 19682, + "Ġelders": 22737, + "Ġeldest": 38096, + "Ġele": 1118, + "Ġelect": 2185, + "Ġelected": 11776, + "Ġelection": 6618, + "Ġelections": 12870, + "Ġelector": 45948, + "Ġelectoral": 28633, + "Ġelectr": 7072, + "Ġelectric": 5210, + "Ġelectrical": 12147, + "Ġelectricity": 10356, + "Ġelectro": 16717, + "Ġelectrod": 44216, + "Ġelectrode": 38346, + "Ġelectrodes": 47824, + "Ġelectroly": 39197, + "Ġelectromagn": 27528, + "Ġelectromagnetic": 32214, + "Ġelectron": 6084, + "Ġelectronic": 10092, + "Ġelectronically": 49677, + "Ġelectronics": 20611, + "Ġelectrons": 14265, + "Ġeleg": 14459, + "Ġelegant": 21117, + "Ġelekt": 26991, + "Ġelement": 4478, + "Ġelemental": 39427, + "Ġelementary": 16429, + "Ġelemento": 47961, + "Ġelementos": 35797, + "Ġelements": 4959, + "Ġelephant": 19791, + "Ġelephants": 33015, + "Ġeles": 10244, + "Ġelev": 7701, + "Ġelevate": 33054, + "Ġelevated": 23457, + "Ġelevation": 25827, + "Ġelevator": 18782, + "Ġeleven": 21090, + "Ġelf": 35565, + "Ġeli": 34486, + "Ġelig": 31089, + "Ġeligibility": 32826, + "Ġeligible": 14728, + "Ġelim": 24333, + "Ġelimin": 7892, + "Ġeliminate": 13819, + "Ġeliminated": 20308, + "Ġeliminates": 49893, + "Ġeliminating": 31203, + "Ġelimination": 29224, + "Ġelite": 17801, + "Ġelites": 44678, + "Ġelk": 44818, + "Ġelkaar": 35930, + "Ġell": 8284, + "Ġella": 18823, + "Ġellas": 38397, + "Ġelle": 8404, + "Ġeller": 12519, + "Ġelles": 23576, + "Ġello": 33549, + "Ġellos": 16353, + "Ġelo": 38682, + "Ġelong": 40786, + "Ġels": 10302, + "Ġelse": 1646, + "Ġelsewhere": 14517, + "Ġelves": 43087, + "Ġelét": 36920, + "Ġem": 846, + "Ġemail": 3796, + "Ġemailed": 45460, + "Ġemails": 12524, + "Ġeman": 28211, + "Ġemb": 4605, + "Ġemba": 32660, + "Ġembaixo": 36612, + "Ġembar": 18801, + "Ġembargo": 23955, + "Ġembark": 29832, + "Ġembarrass": 9187, + "Ġembarrassed": 16843, + "Ġembarrassing": 17299, + "Ġembarrassment": 43536, + "Ġembassy": 38012, + "Ġembed": 12240, + "Ġembedded": 16741, + "Ġemblem": 35949, + "Ġembod": 28935, + "Ġembodied": 42046, + "Ġembody": 42575, + "Ġembora": 44681, + "Ġembr": 9392, + "Ġembrace": 14038, + "Ġembraced": 28673, + "Ġembracing": 31596, + "Ġembro": 27925, + "Ġembroider": 29833, + "Ġembroidery": 43762, + "Ġembry": 31588, + "Ġemer": 4345, + "Ġemerge": 21511, + "Ġemerged": 20178, + "Ġemergen": 33983, + "Ġemergence": 36211, + "Ġemergencies": 43483, + "Ġemergency": 7473, + "Ġemerges": 38965, + "Ġemerging": 14989, + "Ġemission": 29513, + "Ġemissions": 14607, + "Ġemit": 32084, + "Ġemitted": 44897, + "Ġemo": 19611, + "Ġemoc": 28283, + "Ġemoji": 31595, + "Ġemot": 3626, + "Ġemotion": 8913, + "Ġemotional": 6863, + "Ġemotionally": 17991, + "Ġemotions": 8462, + "Ġemp": 4012, + "Ġempath": 27155, + "Ġempathy": 18701, + "Ġemperor": 20255, + "Ġempez": 18730, + "Ġempezar": 31168, + "Ġemphas": 7896, + "Ġemphasis": 16271, + "Ġemphasize": 16078, + "Ġemphasized": 34068, + "Ġemphasizes": 48856, + "Ġemphasizing": 45550, + "Ġempieza": 44577, + "Ġempir": 25790, + "Ġempire": 17506, + "Ġempirical": 31886, + "Ġemple": 36820, + "Ġemploy": 3188, + "Ġemployed": 20115, + "Ġemployee": 10738, + "Ġemployees": 6619, + "Ġemployer": 16205, + "Ġemployers": 16744, + "Ġemployment": 11949, + "Ġempower": 11071, + "Ġempowered": 27898, + "Ġempowering": 28261, + "Ġempowerment": 34825, + "Ġempre": 43223, + "Ġempres": 13627, + "Ġempresa": 22682, + "Ġempresas": 26433, + "Ġempt": 6113, + "Ġemptiness": 41993, + "Ġempty": 6707, + "Ġemulate": 45497, + "Ġen": 465, + "Ġenable": 9528, + "Ġenabled": 15172, + "Ġenables": 17077, + "Ġenabling": 23148, + "Ġenact": 25909, + "Ġenacted": 41313, + "Ġenam": 44549, + "Ġenc": 2058, + "Ġenca": 28934, + "Ġencant": 42380, + "Ġencanta": 47597, + "Ġencaps": 38745, + "Ġencara": 47287, + "Ġench": 35213, + "Ġencima": 40265, + "Ġencl": 20987, + "Ġenclosed": 42089, + "Ġenclosure": 34093, + "Ġencoding": 43430, + "Ġencompass": 28268, + "Ġencompasses": 49866, + "Ġencont": 10176, + "Ġencontra": 43621, + "Ġencontramos": 45049, + "Ġencontrar": 17525, + "Ġencore": 10122, + "Ġencoun": 7669, + "Ġencounter": 8593, + "Ġencountered": 20381, + "Ġencounters": 26310, + "Ġencour": 3959, + "Ġencourage": 5373, + "Ġencouraged": 14658, + "Ġencouragement": 25683, + "Ġencourages": 28071, + "Ġencouraging": 14580, + "Ġencry": 17972, + "Ġencrypted": 36663, + "Ġencryption": 29575, + "Ġencuent": 23708, + "Ġencuentra": 43274, + "Ġend": 917, + "Ġendanger": 31975, + "Ġendangered": 37539, + "Ġende": 19099, + "Ġendeavor": 34975, + "Ġendeavors": 49608, + "Ġended": 4590, + "Ġending": 8121, + "Ġendings": 42474, + "Ġendless": 16144, + "Ġendlessly": 44920, + "Ġendlich": 32574, + "Ġendors": 37676, + "Ġendorse": 29228, + "Ġendorsed": 50094, + "Ġendpoint": 35795, + "Ġendroit": 47390, + "Ġends": 5314, + "Ġendurance": 30325, + "Ġendure": 24732, + "Ġendured": 39017, + "Ġenduring": 36562, + "Ġenem": 7255, + "Ġenemies": 7805, + "Ġenemy": 5945, + "Ġener": 2043, + "Ġenerg": 10575, + "Ġenergetic": 24935, + "Ġenergia": 29469, + "Ġenergies": 25737, + "Ġenergized": 49231, + "Ġenergy": 2281, + "ĠenergÃŃa": 34315, + "Ġenf": 10667, + "Ġenfant": 44888, + "Ġenfants": 22649, + "Ġenfer": 27341, + "Ġenfermed": 42695, + "Ġenfim": 48937, + "Ġenfin": 25059, + "Ġenfor": 25495, + "Ġenforce": 24825, + "Ġenforced": 40953, + "Ġenforcement": 11475, + "Ġenfrent": 33771, + "Ġeng": 1741, + "Ġengag": 46730, + "Ġengage": 4683, + "Ġengaged": 8237, + "Ġengagement": 8742, + "Ġengagements": 44978, + "Ġengages": 45576, + "Ġengaging": 11268, + "Ġengine": 2848, + "Ġengineer": 11403, + "Ġengineered": 38648, + "Ġengineering": 7043, + "Ġengineers": 11955, + "Ġengines": 12982, + "Ġenglish": 32169, + "Ġengra": 25842, + "Ġenh": 10944, + "Ġenhan": 15780, + "Ġenhance": 11985, + "Ġenhanced": 21191, + "Ġenhancement": 40776, + "Ġenhances": 46628, + "Ġenhancing": 36579, + "Ġenjo": 27803, + "Ġenjoy": 2103, + "Ġenjoyable": 20305, + "Ġenjoyed": 4626, + "Ġenjoying": 9929, + "Ġenjoyment": 32013, + "Ġenjoys": 29750, + "Ġenlar": 31976, + "Ġenlight": 18690, + "Ġenlightened": 36975, + "Ġenlightenment": 34661, + "Ġenm": 48786, + "Ġenorm": 8473, + "Ġenorme": 33648, + "Ġenormous": 11322, + "Ġenormously": 39669, + "Ġenough": 1547, + "Ġenqu": 21304, + "Ġenquanto": 31749, + "Ġenrich": 18849, + "Ġenriched": 48624, + "Ġenrichment": 49900, + "Ġenroll": 12266, + "Ġenrolled": 25896, + "Ġenrollment": 22420, + "Ġens": 3489, + "Ġense": 12567, + "Ġensemble": 19492, + "Ġenseñ": 31275, + "Ġensl": 30434, + "Ġenslaved": 32119, + "Ġensuite": 25080, + "Ġensure": 5586, + "Ġensures": 28111, + "Ġensuring": 16882, + "Ġent": 948, + "Ġentails": 50133, + "Ġentend": 16612, + "Ġentender": 20054, + "Ġentendeu": 49622, + "Ġentendu": 41489, + "Ġenter": 3242, + "Ġentered": 9065, + "Ġentering": 11104, + "Ġenterprise": 14132, + "Ġenterprises": 29034, + "Ġenters": 18780, + "Ġentertain": 7655, + "Ġentertained": 44783, + "Ġentertaining": 20402, + "Ġentertainment": 12393, + "Ġentfer": 41940, + "Ġenthal": 46475, + "Ġenthalpy": 48869, + "Ġenthus": 12616, + "Ġenthusi": 18076, + "Ġenthusiasm": 23417, + "Ġenthusiastic": 28574, + "Ġenthusiasts": 45873, + "Ġentire": 2302, + "Ġentirely": 7696, + "Ġentirety": 31557, + "Ġentit": 14789, + "Ġentities": 16667, + "Ġentitled": 17838, + "Ġentity": 13977, + "Ġentonces": 13003, + "Ġentr": 8041, + "Ġentra": 22284, + "Ġentrada": 37119, + "Ġentrance": 12014, + "Ġentrar": 20913, + "Ġentre": 3962, + "Ġentreg": 32843, + "Ġentren": 45069, + "Ġentreprene": 8354, + "Ġentrepreneur": 14307, + "Ġentrepreneurial": 33094, + "Ġentrepreneurs": 12639, + "Ġentrepreneurship": 26582, + "Ġentreprises": 41657, + "Ġentrev": 39095, + "Ġentries": 23041, + "Ġentropy": 30867, + "Ġentry": 8729, + "Ġents": 12834, + "Ġentsche": 28398, + "Ġentscheiden": 44560, + "Ġentschieden": 49807, + "Ġentsprech": 29967, + "Ġentsprechend": 47823, + "Ġentste": 35955, + "Ġentwic": 28449, + "Ġentwickelt": 43208, + "Ġentão": 9071, + "Ġenv": 2267, + "Ġenvelop": 33860, + "Ġenvelope": 19989, + "Ġenvie": 24149, + "Ġenviron": 2571, + "Ġenvironment": 2823, + "Ġenvironmental": 8303, + "Ġenvironmentally": 42236, + "Ġenvironments": 12388, + "Ġenvision": 24739, + "Ġenvisioned": 47733, + "Ġenvol": 49995, + "Ġenvoy": 35351, + "Ġenvy": 30530, + "Ġenzy": 16272, + "Ġenzyme": 24521, + "Ġenzymes": 29299, + "Ġep": 2388, + "Ġepic": 13581, + "Ġepid": 13510, + "Ġepidemi": 35761, + "Ġepidemic": 20982, + "Ġepile": 41855, + "Ġepilepsy": 49680, + "Ġepis": 2927, + "Ġepisod": 39200, + "Ġepisode": 3500, + "Ġepisodes": 9313, + "Ġepisód": 42736, + "Ġepisódio": 50056, + "Ġepo": 30992, + "Ġepoxy": 45397, + "Ġepsilon": 17889, + "Ġequ": 1267, + "Ġequal": 2681, + "Ġequality": 14949, + "Ġequally": 12309, + "Ġequals": 6915, + "Ġequation": 5367, + "Ġequations": 11787, + "Ġequator": 45544, + "Ġequilib": 14204, + "Ġequilibrium": 15625, + "Ġequip": 5037, + "Ġequipment": 5927, + "Ġequipo": 30048, + "Ġequipped": 15218, + "Ġequitable": 33730, + "Ġequity": 10769, + "Ġequiv": 48726, + "Ġequival": 9052, + "Ġequivalent": 10344, + "Ġer": 1189, + "Ġera": 4249, + "Ġerad": 33078, + "Ġeram": 34664, + "Ġeran": 32762, + "Ġerase": 23525, + "Ġerased": 38359, + "Ġeraser": 46018, + "Ġere": 25022, + "Ġerect": 34201, + "Ġeres": 30065, + "Ġerf": 20228, + "Ġerfahren": 49472, + "Ġerfolg": 39447, + "Ġerfolgreich": 48270, + "Ġerg": 26585, + "Ġergon": 42735, + "Ġerhalten": 38051, + "Ġerhö": 49058, + "Ġerk": 31879, + "Ġerkennen": 45720, + "Ġerkl": 27570, + "Ġerklären": 46528, + "Ġerle": 26826, + "Ġerlebt": 47372, + "Ġerm": 25253, + "Ġern": 36061, + "Ġernst": 43412, + "Ġerosion": 32173, + "Ġerr": 45267, + "Ġerrado": 48571, + "Ġerrand": 45810, + "Ġerre": 28641, + "Ġerreichen": 39464, + "Ġerreicht": 46250, + "Ġerro": 45935, + "Ġerror": 6713, + "Ġerrors": 13603, + "Ġers": 33743, + "Ġersch": 41673, + "Ġerst": 11301, + "Ġerste": 20951, + "Ġersten": 17324, + "Ġerstmal": 38607, + "Ġeru": 20999, + "Ġeruption": 42584, + "Ġerw": 21715, + "Ġerzäh": 28337, + "Ġerzählt": 47110, + "Ġes": 785, + "Ġesa": 11342, + "Ġesas": 23388, + "Ġesc": 4721, + "Ġesca": 12663, + "Ġescal": 17871, + "Ġescape": 7615, + "Ġescaped": 20397, + "Ġescapes": 43769, + "Ġescaping": 32554, + "Ġescol": 25603, + "Ġescola": 42501, + "Ġescort": 37353, + "Ġescr": 49865, + "Ġescre": 30004, + "Ġescrever": 44909, + "Ġescri": 30598, + "Ġescrito": 49451, + "Ġescuch": 22483, + "Ġescuela": 47817, + "Ġese": 10167, + "Ġesemp": 32340, + "Ġesempio": 33627, + "Ġesf": 41614, + "Ġesfuer": 49213, + "Ġesimerk": 50029, + "Ġeso": 7287, + "Ġesos": 22411, + "Ġesp": 7089, + "Ġespa": 17488, + "Ġespacio": 33845, + "Ġespaço": 34270, + "Ġespañ": 25726, + "Ġespañol": 31177, + "Ġespe": 10049, + "Ġespec": 31620, + "Ġespecial": 15342, + "Ġespecially": 2318, + "Ġespecialmente": 41546, + "Ġespecie": 49368, + "Ġespect": 38244, + "ĠespecÃŃfic": 32741, + "Ġesper": 10045, + "Ġespera": 37862, + "Ġesperando": 46587, + "Ġesperar": 37577, + "Ġespero": 26823, + "Ġespresso": 44140, + "ĠespÃŃ": 48987, + "Ġesqu": 34611, + "Ġesque": 28147, + "Ġesquer": 40428, + "Ġess": 2097, + "Ġessa": 7208, + "Ġessas": 19277, + "Ġessay": 16238, + "Ġessayer": 32421, + "Ġessays": 35123, + "Ġesse": 6755, + "Ġessen": 41749, + "Ġessence": 12801, + "Ġessent": 47056, + "Ġessential": 7115, + "Ġessentially": 4476, + "Ġessentials": 46884, + "Ġessere": 19799, + "Ġesses": 18966, + "Ġest": 871, + "Ġesta": 5283, + "Ġestab": 3947, + "Ġestaba": 17544, + "Ġestaban": 36713, + "Ġestable": 37444, + "Ġestablish": 8327, + "Ġestablished": 7545, + "Ġestablishing": 22494, + "Ġestablishment": 20971, + "Ġestad": 39160, + "Ġestado": 18372, + "Ġestamos": 10382, + "Ġestan": 42058, + "Ġestar": 8755, + "Ġestas": 13897, + "Ġestat": 30883, + "Ġestate": 9749, + "Ġestava": 15662, + "Ġestavam": 43711, + "Ġeste": 4065, + "Ġestem": 50185, + "Ġestilo": 37470, + "Ġestim": 8017, + "Ġestimate": 12539, + "Ġestimated": 14109, + "Ġestimates": 20561, + "Ġestimation": 35701, + "Ġestiver": 46578, + "Ġesto": 7433, + "Ġestos": 12585, + "Ġestou": 17660, + "Ġestoy": 15796, + "Ġestr": 35680, + "Ġestran": 49461, + "Ġestrat": 42746, + "Ġestratég": 46603, + "Ġestre": 36665, + "Ġestrogen": 44754, + "Ġestruct": 43935, + "Ġestrut": 45899, + "Ġestud": 13542, + "Ġestudio": 44286, + "Ġestuv": 49777, + "Ġestá": 3192, + "Ġestán": 10368, + "Ġestás": 24389, + "Ġestão": 14775, + "Ġesté": 34584, + "ĠestÃł": 22093, + "Ġet": 1030, + "Ġeta": 32415, + "Ġetap": 47634, + "Ġetc": 5183, + "Ġetcetera": 22066, + "Ġetern": 10533, + "Ġeternal": 14503, + "Ġeternity": 27162, + "Ġeth": 6468, + "Ġethanol": 43150, + "Ġether": 37096, + "Ġethic": 37820, + "Ġethical": 18890, + "Ġethics": 19769, + "Ġethn": 42589, + "Ġethnic": 14363, + "Ġethnicity": 33774, + "Ġetiqu": 42177, + "Ġetme": 34469, + "Ġetmek": 46005, + "Ġett": 5431, + "Ġetti": 41523, + "Ġettä": 9894, + "Ġetwa": 28369, + "Ġetwas": 9569, + "Ġeu": 2228, + "Ġeuch": 10403, + "Ġeuh": 32678, + "Ġeure": 32845, + "Ġeuro": 14206, + "Ġeurop": 22139, + "Ġeurope": 27207, + "Ġeuropé": 32055, + "Ġeuros": 14160, + "Ġeux": 22648, + "Ġev": 1073, + "Ġevac": 20245, + "Ġevacuate": 48570, + "Ġevacuation": 42740, + "Ġevalu": 6133, + "Ġevaluate": 13059, + "Ġevaluated": 25509, + "Ġevaluating": 27479, + "Ġevaluation": 13344, + "Ġevaluations": 43085, + "Ġevangel": 24546, + "Ġevangelical": 45471, + "Ġevapor": 26315, + "Ġeve": 34225, + "Ġeven": 754, + "Ġevening": 5634, + "Ġevenings": 42835, + "Ġevenly": 17658, + "Ġevent": 2280, + "Ġevento": 40655, + "Ġevents": 3931, + "Ġeventual": 33160, + "Ġeventually": 4728, + "Ġever": 1562, + "Ġeverlasting": 43710, + "Ġevery": 633, + "Ġeverybody": 2201, + "Ġeveryday": 7429, + "Ġeveryone": 1518, + "Ġeverything": 1203, + "Ġeverytime": 46162, + "Ġeverywhere": 5315, + "Ġevet": 38016, + "Ġeviden": 43699, + "Ġevidence": 4467, + "Ġevident": 16371, + "Ġevil": 6724, + "Ġevitar": 31326, + "Ġevol": 7117, + "Ġevolution": 9303, + "Ġevolutionary": 27567, + "Ġevolve": 16693, + "Ġevolved": 14178, + "Ġevolves": 43737, + "Ġevolving": 21085, + "Ġew": 43364, + "Ġex": 454, + "Ġexacer": 38362, + "Ġexacerb": 38819, + "Ġexact": 1900, + "Ġexactamente": 48686, + "Ġexactement": 38111, + "Ġexactly": 2293, + "Ġexagger": 19123, + "Ġexaggerated": 36196, + "Ġexam": 1139, + "Ġexamination": 23874, + "Ġexamine": 17496, + "Ġexamined": 30972, + "Ġexamining": 34662, + "Ġexample": 1365, + "Ġexamples": 5110, + "Ġexams": 20514, + "Ġexatamente": 35937, + "Ġexc": 1624, + "Ġexca": 24933, + "Ġexcav": 34351, + "Ġexceed": 14048, + "Ġexceeded": 38026, + "Ġexceeds": 43305, + "Ġexcel": 24015, + "Ġexcell": 45817, + "Ġexcellence": 21268, + "Ġexcellent": 7103, + "Ġexcept": 3993, + "Ġexception": 11183, + "Ġexceptional": 19279, + "Ġexceptionally": 37807, + "Ġexceptions": 22847, + "Ġexcer": 42760, + "Ġexcess": 9310, + "Ġexcessive": 22704, + "Ġexch": 6210, + "Ġexchange": 7742, + "Ġexchanged": 38378, + "Ġexchanges": 27374, + "Ġexcit": 13101, + "Ġexcited": 2919, + "Ġexcitement": 14755, + "Ġexciting": 4670, + "Ġexclud": 16269, + "Ġexclude": 33536, + "Ġexcluded": 29486, + "Ġexcluding": 49999, + "Ġexclus": 15085, + "Ġexclusion": 33049, + "Ġexclusive": 13005, + "Ġexclusively": 20638, + "Ġexcus": 20974, + "Ġexcuse": 8960, + "Ġexcuses": 24666, + "Ġexec": 4454, + "Ġexecut": 7568, + "Ġexecute": 14483, + "Ġexecuted": 17577, + "Ġexecuting": 32368, + "Ġexecution": 15058, + "Ġexecutive": 10140, + "Ġexecutives": 28485, + "Ġexem": 9659, + "Ġexempel": 34999, + "Ġexempl": 24112, + "Ġexemple": 12223, + "Ġexemplo": 16496, + "Ġexempt": 30425, + "Ġexemption": 43154, + "Ġexerc": 4057, + "Ġexercise": 5380, + "Ġexercises": 11900, + "Ġexercising": 27272, + "Ġexert": 31941, + "Ġexfol": 46935, + "Ġexh": 31052, + "Ġexha": 9059, + "Ġexhale": 19652, + "Ġexhaust": 14687, + "Ġexhausted": 17992, + "Ġexhausting": 34076, + "Ġexhaustion": 47408, + "Ġexhib": 8144, + "Ġexhibit": 20487, + "Ġexhibited": 49446, + "Ġexhibition": 14414, + "Ġexhibitions": 41522, + "Ġexhibits": 39205, + "Ġexile": 37984, + "Ġexist": 2514, + "Ġexiste": 16304, + "Ġexisted": 13135, + "Ġexistem": 44345, + "Ġexistence": 9123, + "Ġexistential": 37133, + "Ġexisting": 6741, + "Ġexists": 8198, + "Ġexit": 11043, + "Ġexiting": 48868, + "Ġexits": 44183, + "Ġexotic": 27063, + "Ġexp": 1278, + "Ġexpand": 5268, + "Ġexpanded": 14342, + "Ġexpanding": 14702, + "Ġexpands": 33706, + "Ġexpans": 9672, + "Ġexpansion": 11260, + "Ġexpansive": 46949, + "Ġexpect": 2066, + "Ġexpectancy": 42574, + "Ġexpectation": 14334, + "Ġexpectations": 9843, + "Ġexpected": 5176, + "Ġexpecting": 9650, + "Ġexpects": 33280, + "Ġexped": 19348, + "Ġexpedition": 30359, + "Ġexpelled": 44368, + "Ġexpend": 24439, + "Ġexpenditure": 40377, + "Ġexpenditures": 46381, + "Ġexpense": 18406, + "Ġexpenses": 15506, + "Ġexpensive": 5124, + "Ġexper": 1086, + "Ġexperi": 33589, + "Ġexperien": 3135, + "Ġexperience": 1752, + "Ġexperienced": 6751, + "Ġexperiences": 5235, + "Ġexperiencia": 36489, + "Ġexperiencing": 11139, + "Ġexperient": 49611, + "Ġexperiment": 5120, + "Ġexperimental": 17069, + "Ġexperimentation": 37142, + "Ġexperimenting": 29070, + "Ġexperiments": 12050, + "Ġexperiência": 41238, + "Ġexpert": 5844, + "Ġexpertise": 11769, + "Ġexperts": 8572, + "Ġexpiration": 39657, + "Ġexpire": 45447, + "Ġexpired": 36587, + "Ġexpl": 1490, + "Ġexplain": 2903, + "Ġexplained": 8825, + "Ġexplaining": 13468, + "Ġexplains": 13948, + "Ġexplan": 9045, + "Ġexplanation": 10835, + "Ġexplanations": 28708, + "Ġexplic": 28021, + "Ġexplicar": 26682, + "Ġexplicit": 13691, + "Ġexplicitly": 20803, + "Ġexplo": 12382, + "Ġexplode": 21411, + "Ġexploded": 27049, + "Ġexplodes": 42610, + "Ġexploding": 35175, + "Ġexploit": 25924, + "Ġexploitation": 33122, + "Ġexploited": 40918, + "Ġexplor": 24765, + "Ġexploration": 16197, + "Ġexplore": 6839, + "Ġexplored": 24016, + "Ġexplorer": 39680, + "Ġexplores": 45473, + "Ġexploring": 12736, + "Ġexplos": 9215, + "Ġexplosion": 15673, + "Ġexplosions": 36872, + "Ġexplosive": 24630, + "Ġexplosives": 46421, + "Ġexpon": 12680, + "Ġexponent": 37871, + "Ġexponential": 21510, + "Ġexponentially": 37330, + "Ġexport": 10725, + "Ġexported": 42055, + "Ġexporting": 44686, + "Ġexports": 31428, + "Ġexpos": 30076, + "Ġexpose": 19219, + "Ġexposed": 9495, + "Ġexposing": 33178, + "Ġexposure": 10420, + "Ġexpres": 33397, + "Ġexpress": 5109, + "Ġexpressed": 12675, + "Ġexpresses": 39204, + "Ġexpressing": 22171, + "Ġexpression": 6114, + "Ġexpressions": 15277, + "Ġexpressive": 40189, + "Ġext": 1279, + "Ġextend": 10101, + "Ġextended": 10913, + "Ġextending": 24360, + "Ġextends": 26448, + "Ġextension": 10320, + "Ġextensions": 25129, + "Ġextensive": 13246, + "Ġextensively": 32636, + "Ġextent": 8396, + "Ġexterior": 20677, + "Ġextermin": 48628, + "Ġextern": 30360, + "Ġexternal": 8320, + "Ġexternally": 40899, + "Ġextinct": 35094, + "Ġextinction": 33163, + "Ġexting": 33829, + "Ġextr": 16455, + "Ġextra": 2857, + "Ġextract": 8947, + "Ġextracted": 34086, + "Ġextracting": 49844, + "Ġextraction": 30197, + "Ġextraord": 10149, + "Ġextraordin": 27396, + "Ġextraordinarily": 34557, + "Ġextraordinary": 10581, + "Ġextrapol": 48224, + "Ġextras": 40961, + "Ġextrater": 43324, + "Ġextrem": 4040, + "Ġextreme": 8084, + "Ġextremely": 4664, + "Ġextremes": 41119, + "Ġextrêmement": 38148, + "Ġey": 9817, + "Ġeye": 3313, + "Ġeyeball": 38868, + "Ġeyeballs": 43758, + "Ġeyebr": 15713, + "Ġeyebrow": 35875, + "Ġeyebrows": 19916, + "Ġeyel": 13197, + "Ġeyelashes": 37017, + "Ġeyelid": 39386, + "Ġeyelids": 42419, + "Ġeyeliner": 30788, + "Ġeyes": 2575, + "Ġeyeshadow": 34174, + "Ġeyesight": 49887, + "Ġez": 25220, + "ĠeÄŁ": 49681, + "ĠeÅŁ": 40600, + "Ġf": 283, + "Ġfa": 2050, + "Ġfab": 5355, + "Ġfabric": 7253, + "Ġfabrication": 44820, + "Ġfabrics": 32424, + "Ġfabulous": 17692, + "Ġfac": 1915, + "Ġfacade": 46261, + "Ġface": 1851, + "Ġfacebook": 23372, + "Ġfaced": 11446, + "Ġfaces": 8475, + "Ġfacets": 49752, + "Ġfacial": 15642, + "Ġfacil": 10217, + "Ġfacile": 23670, + "Ġfacilit": 38770, + "Ġfacilitate": 20207, + "Ġfacilitating": 47558, + "Ġfacilities": 9406, + "Ġfacility": 8973, + "Ġfacing": 7170, + "Ġfact": 1186, + "Ġfaction": 37249, + "Ġfactions": 41252, + "Ġfacto": 42225, + "Ġfactor": 5952, + "Ġfactorial": 36916, + "Ġfactories": 24813, + "Ġfactors": 6771, + "Ġfactory": 9265, + "Ġfacts": 9130, + "Ġfactual": 48029, + "Ġfacult": 44137, + "Ġfaculty": 6389, + "Ġfade": 21626, + "Ġfaded": 36352, + "Ġfades": 32679, + "Ġfading": 38644, + "Ġfahren": 25593, + "Ġfail": 3061, + "Ġfailed": 7612, + "Ġfailing": 18223, + "Ġfails": 18199, + "Ġfailure": 7763, + "Ġfailures": 20774, + "Ġfaint": 21104, + "Ġfair": 3143, + "Ġfaire": 4865, + "Ġfairly": 6457, + "Ġfairness": 29765, + "Ġfairy": 19104, + "Ġfais": 12153, + "Ġfaisait": 42795, + "Ġfait": 3887, + "Ġfaites": 29902, + "Ġfaith": 4522, + "Ġfaithful": 17808, + "Ġfaj": 34001, + "Ġfak": 33647, + "Ġfake": 7592, + "Ġfakt": 21310, + "Ġfaktiskt": 35988, + "Ġfal": 3704, + "Ġfala": 21580, + "Ġfalan": 21474, + "Ġfalando": 21236, + "Ġfalar": 13536, + "Ġfale": 26772, + "Ġfalei": 29800, + "Ġfall": 2100, + "Ġfallait": 49170, + "Ġfallen": 11547, + "Ġfalling": 7440, + "Ġfalls": 8804, + "Ġfalou": 28443, + "Ġfals": 16720, + "Ġfalsch": 43340, + "Ġfalse": 7908, + "Ġfalt": 37108, + "Ġfalta": 22111, + "Ġfam": 1087, + "Ġfame": 16874, + "Ġfamil": 4085, + "Ġfamili": 42155, + "Ġfamilia": 24050, + "Ġfamiliar": 4963, + "Ġfamiliarity": 49828, + "Ġfamilies": 4466, + "Ġfamille": 28123, + "Ġfamily": 1605, + "Ġfamine": 42790, + "Ġfamoso": 49526, + "Ġfamous": 4618, + "Ġfamously": 34360, + "ĠfamÃŃlia": 26716, + "Ġfan": 3429, + "Ġfancy": 10247, + "Ġfand": 38138, + "Ġfandom": 41591, + "Ġfans": 4499, + "Ġfant": 4115, + "Ġfantas": 31255, + "Ġfantast": 30665, + "Ġfantastic": 5456, + "Ġfantasy": 13861, + "Ġfar": 1400, + "Ġfare": 11994, + "Ġfarewell": 35442, + "Ġfark": 27047, + "Ġfarklı": 43953, + "Ġfarm": 5421, + "Ġfarmer": 17891, + "Ġfarmers": 11339, + "Ġfarming": 16557, + "Ġfarms": 20366, + "Ġfart": 24575, + "Ġfarther": 20344, + "Ġfas": 30632, + "Ġfasc": 7184, + "Ġfascinated": 24597, + "Ġfascinating": 10343, + "Ġfase": 33931, + "Ġfashion": 6700, + "Ġfashionable": 40735, + "Ġfashioned": 40646, + "Ġfast": 2370, + "Ġfasten": 38716, + "Ġfaster": 4663, + "Ġfastest": 14573, + "Ġfasting": 22371, + "Ġfat": 4046, + "Ġfatal": 24069, + "Ġfate": 12738, + "Ġfather": 3086, + "Ġfathers": 23450, + "Ġfatigue": 20574, + "Ġfato": 33351, + "Ġfats": 29885, + "Ġfatto": 23228, + "Ġfatty": 24898, + "Ġfauc": 49567, + "Ġfaud": 38694, + "Ġfault": 7441, + "Ġfaults": 36090, + "Ġfaut": 8487, + "Ġfaux": 36659, + "Ġfav": 33801, + "Ġfavor": 2294, + "Ġfavorable": 29557, + "Ġfavored": 44420, + "Ġfavorite": 2954, + "Ġfavorites": 16907, + "Ġfavors": 40554, + "Ġfavour": 8182, + "Ġfavourite": 10696, + "Ġfaz": 4375, + "Ġfazem": 41748, + "Ġfazendo": 20741, + "Ġfazer": 6736, + "Ġfazla": 30611, + "Ġfaço": 38091, + "Ġfaçon": 20725, + "Ġfe": 579, + "Ġfear": 4240, + "Ġfeared": 30629, + "Ġfearful": 33014, + "Ġfearless": 44139, + "Ġfears": 15649, + "Ġfeas": 21781, + "Ġfeasible": 26648, + "Ġfeast": 23707, + "Ġfeat": 15425, + "Ġfeather": 25852, + "Ġfeathers": 27044, + "Ġfeature": 4111, + "Ġfeatured": 13822, + "Ġfeatures": 4122, + "Ġfeaturing": 19742, + "Ġfed": 4636, + "Ġfeder": 38024, + "Ġfederal": 6019, + "Ġfee": 12054, + "Ġfeed": 3154, + "Ġfeedback": 5824, + "Ġfeeder": 48778, + "Ġfeeding": 12919, + "Ġfeeds": 23712, + "Ġfeel": 841, + "Ġfeeling": 2633, + "Ġfeelings": 6640, + "Ġfeels": 3417, + "Ġfees": 13370, + "Ġfeet": 3521, + "Ġfeh": 34741, + "Ġfehlt": 47994, + "Ġfeito": 31243, + "Ġfel": 11094, + "Ġfelic": 49986, + "Ġfeliz": 28544, + "Ġfell": 5696, + "Ġfella": 49820, + "Ġfellas": 47242, + "Ġfellow": 7177, + "Ġfellows": 35595, + "Ġfellowship": 24989, + "Ġfelony": 46255, + "Ġfelt": 2762, + "Ġfem": 4010, + "Ġfemale": 6556, + "Ġfemales": 21529, + "Ġfemin": 11155, + "Ġfeminine": 24648, + "Ġfeminism": 37187, + "Ġfeminist": 26229, + "Ġfemme": 27427, + "Ġfemmes": 27997, + "Ġfen": 26830, + "Ġfence": 15422, + "Ġfences": 45796, + "Ġfender": 49746, + "Ġfent": 39395, + "Ġfer": 7202, + "Ġfera": 50169, + "Ġferm": 26558, + "Ġferment": 38300, + "Ġfermentation": 43161, + "Ġfermented": 38649, + "Ġferry": 32967, + "Ġfert": 10700, + "Ġfertig": 31362, + "Ġfertil": 18512, + "Ġfertile": 43509, + "Ġfertility": 31707, + "Ġfertilizer": 31549, + "Ġfest": 6633, + "Ġfesta": 48080, + "Ġfestival": 12091, + "Ġfestivals": 28040, + "Ġfestive": 42729, + "Ġfet": 15136, + "Ġfetch": 23673, + "Ġfeu": 29539, + "Ġfeud": 36377, + "Ġfever": 18277, + "Ġfew": 1326, + "Ġfewer": 13366, + "Ġfez": 21714, + "Ġfi": 15848, + "Ġfian": 49513, + "Ġfiance": 46552, + "Ġfib": 13116, + "Ġfiber": 12874, + "Ġfibers": 25252, + "Ġfibre": 36738, + "Ġfic": 14591, + "Ġfica": 16868, + "Ġficar": 13646, + "Ġfick": 35368, + "Ġficou": 25518, + "Ġfiction": 13266, + "Ġfictional": 28911, + "Ġfid": 24553, + "Ġfidelity": 46404, + "Ġfield": 2519, + "Ġfields": 7909, + "Ġfier": 16334, + "Ġfierce": 25341, + "Ġfiery": 43897, + "Ġfif": 5782, + "Ġfifteen": 18126, + "Ġfifth": 9266, + "Ġfifty": 13442, + "Ġfig": 2147, + "Ġfight": 2092, + "Ġfighter": 15932, + "Ġfighters": 19714, + "Ġfighting": 5237, + "Ġfights": 14512, + "Ġfigur": 31094, + "Ġfigura": 44691, + "Ġfigure": 2573, + "Ġfigured": 8932, + "Ġfigures": 9624, + "Ġfiguring": 15213, + "Ġfij": 42001, + "Ġfik": 35562, + "Ġfil": 1387, + "Ġfilament": 44280, + "Ġfile": 3991, + "Ġfiled": 18789, + "Ġfiles": 7098, + "Ġfilho": 36919, + "Ġfiling": 26854, + "Ġfill": 2836, + "Ġfille": 39216, + "Ġfilled": 6412, + "Ġfiller": 34676, + "Ġfilling": 10623, + "Ġfills": 22498, + "Ġfilm": 2007, + "Ġfilme": 26488, + "Ġfilmed": 15133, + "Ġfilming": 8869, + "Ġfilmmaker": 34700, + "Ġfilmmakers": 35018, + "Ġfilmmaking": 43133, + "Ġfilms": 7796, + "Ġfilos": 46045, + "Ġfils": 46190, + "Ġfilt": 29148, + "Ġfilter": 6608, + "Ġfiltered": 37111, + "Ġfiltering": 30822, + "Ġfilters": 15995, + "Ġfilthy": 40384, + "Ġfiltration": 43623, + "Ġfim": 31603, + "Ġfin": 962, + "Ġfinal": 2572, + "Ġfinale": 23510, + "Ġfinalement": 28623, + "Ġfinally": 2721, + "Ġfinalmente": 35577, + "Ġfinals": 25526, + "Ġfinan": 3682, + "Ġfinance": 10719, + "Ġfinances": 25123, + "Ġfinanci": 24323, + "Ġfinancial": 4669, + "Ġfinancially": 20469, + "Ġfinancing": 22286, + "Ġfinans": 38843, + "Ġfind": 915, + "Ġfinde": 17841, + "Ġfinden": 20734, + "Ġfindet": 27752, + "Ġfinding": 5006, + "Ġfindings": 16483, + "Ġfinds": 10704, + "Ġfine": 2489, + "Ġfinely": 31529, + "Ġfiner": 39130, + "Ġfines": 37989, + "Ġfinest": 28141, + "Ġfing": 3823, + "Ġfinger": 5984, + "Ġfingerna": 48880, + "Ġfingerprint": 30715, + "Ġfingerprints": 42170, + "Ġfingers": 7350, + "Ġfingert": 25948, + "Ġfingertips": 27715, + "Ġfini": 40634, + "Ġfinish": 2413, + "Ġfinished": 4335, + "Ġfinishes": 23615, + "Ġfinishing": 12693, + "Ġfinite": 19362, + "Ġfinns": 17152, + "Ġfino": 42560, + "Ġfins": 25106, + "Ġfique": 35497, + "Ġfiquei": 49647, + "Ġfir": 12159, + "Ġfire": 2610, + "Ġfirearm": 43253, + "Ġfirearms": 38398, + "Ġfired": 11777, + "Ġfirefight": 25256, + "Ġfirefighters": 37218, + "Ġfireplace": 39511, + "Ġfires": 15044, + "Ġfirewall": 36109, + "Ġfireworks": 28453, + "Ġfiring": 16045, + "Ġfirm": 6174, + "Ġfirmly": 20031, + "Ġfirms": 18055, + "Ġfirmware": 30289, + "Ġfirst": 700, + "Ġfirsthand": 38599, + "Ġfirstly": 27376, + "Ġfis": 36609, + "Ġfiscal": 15897, + "Ġfish": 3506, + "Ġfisher": 20698, + "Ġfisherman": 48657, + "Ġfishermen": 42670, + "Ġfishes": 41734, + "Ġfishing": 10180, + "Ġfishy": 41991, + "Ġfist": 21849, + "Ġfists": 49384, + "Ġfit": 3318, + "Ġfitness": 15303, + "Ġfits": 9001, + "Ġfitt": 48876, + "Ġfitted": 26321, + "Ġfitting": 15669, + "Ġfive": 1732, + "Ġfix": 3191, + "Ġfixed": 6806, + "Ġfixes": 32539, + "Ġfixing": 19442, + "Ġfixture": 47680, + "Ġfiz": 21000, + "Ġfizer": 46627, + "Ġfl": 932, + "Ġfla": 46338, + "Ġflag": 7166, + "Ġflags": 23265, + "Ġflagship": 30400, + "Ġflakes": 35392, + "Ġflame": 13287, + "Ġflames": 23743, + "Ġflaming": 45718, + "Ġflank": 36318, + "Ġflap": 30781, + "Ġflaps": 50065, + "Ġflare": 32446, + "Ġflash": 7319, + "Ġflashes": 39665, + "Ġflashing": 31049, + "Ġflashlight": 30835, + "Ġflashy": 47873, + "Ġflat": 4962, + "Ġflats": 43075, + "Ġflatten": 24183, + "Ġflatter": 41247, + "Ġflattering": 49722, + "Ġflav": 37737, + "Ġflavor": 6813, + "Ġflavored": 37261, + "Ġflavors": 16303, + "Ġflavour": 22190, + "Ġflavours": 49450, + "Ġflaw": 13717, + "Ġflawed": 38823, + "Ġflawless": 45693, + "Ġflaws": 27108, + "Ġfle": 7025, + "Ġfled": 24114, + "Ġflee": 25146, + "Ġfleeing": 41885, + "Ġfleet": 19396, + "Ġflesh": 12497, + "Ġflew": 15728, + "Ġflex": 5896, + "Ġflexibility": 12635, + "Ġflexible": 11358, + "Ġflick": 22774, + "Ġflies": 17414, + "Ġflight": 7018, + "Ġflights": 21089, + "Ġflip": 7929, + "Ġflipped": 26273, + "Ġflipping": 26886, + "Ġflips": 40249, + "Ġflirt": 40532, + "Ġflirting": 45777, + "Ġflo": 2591, + "Ġfloat": 15706, + "Ġfloating": 12607, + "Ġfloats": 37878, + "Ġflock": 34819, + "Ġflood": 10481, + "Ġflooded": 31594, + "Ġflooding": 24132, + "Ġfloods": 35536, + "Ġfloor": 4123, + "Ġfloors": 21008, + "Ġflop": 25343, + "Ġflor": 37342, + "Ġfloral": 38900, + "Ġfloss": 49697, + "Ġflour": 7693, + "Ġflourish": 38311, + "Ġflow": 3095, + "Ġflower": 8617, + "Ġflowers": 8085, + "Ġflowing": 13974, + "Ġflown": 34536, + "Ġflows": 12867, + "Ġflu": 5029, + "Ġfluct": 23448, + "Ġfluctuations": 45276, + "Ġfluent": 40799, + "Ġfluff": 41533, + "Ġfluffy": 22778, + "Ġfluid": 9113, + "Ġfluids": 33033, + "Ġfluor": 40540, + "Ġfluores": 32471, + "Ġfluorescent": 46735, + "Ġflush": 19568, + "Ġflute": 33088, + "Ġflux": 19298, + "Ġfly": 3603, + "Ġflying": 7137, + "Ġfo": 726, + "Ġfoam": 12958, + "Ġfoarte": 46499, + "Ġfocal": 26592, + "Ġfocus": 1879, + "Ġfocused": 5178, + "Ġfocuses": 16109, + "Ġfocusing": 8416, + "Ġfod": 47698, + "Ġfog": 13648, + "Ġfoi": 6901, + "Ġfoil": 22444, + "Ġfois": 9576, + "Ġfol": 3339, + "Ġfold": 4860, + "Ġfolded": 23940, + "Ġfolder": 10820, + "Ġfolders": 31082, + "Ġfolding": 25335, + "Ġfolds": 31341, + "Ġfoliage": 49767, + "Ġfolk": 15748, + "Ġfolklore": 49195, + "Ġfolks": 4024, + "Ġfoll": 25483, + "Ġfollow": 1524, + "Ġfollowed": 6263, + "Ġfollower": 35413, + "Ġfollowers": 13071, + "Ġfollowing": 3480, + "Ġfollows": 10002, + "Ġfon": 17290, + "Ġfonction": 20172, + "Ġfonctionne": 49216, + "Ġfond": 9557, + "Ġfondo": 38101, + "Ġfont": 10703, + "Ġfonts": 35316, + "Ġfood": 1755, + "Ġfoods": 8656, + "Ġfool": 7979, + "Ġfooled": 33372, + "Ġfoolish": 23478, + "Ġfools": 38625, + "Ġfoot": 2671, + "Ġfootage": 9556, + "Ġfootball": 7346, + "Ġfooting": 45959, + "Ġfootprint": 24222, + "Ġfootprints": 45715, + "Ġfootsteps": 26883, + "Ġfor": 337, + "Ġfora": 24530, + "Ġforam": 23102, + "Ġforb": 16603, + "Ġforbid": 34117, + "Ġforbidden": 25990, + "Ġforce": 3464, + "Ġforced": 7579, + "Ġforces": 5874, + "Ġforcing": 19030, + "Ġforcé": 30137, + "Ġforcément": 31358, + "Ġfordi": 47830, + "Ġfore": 2091, + "Ġforearm": 47712, + "Ġforecast": 14330, + "Ġforecasting": 44331, + "Ġforecasts": 49421, + "Ġforefront": 27287, + "Ġforeground": 32058, + "Ġforehead": 20472, + "Ġforeign": 5329, + "Ġforeigner": 42764, + "Ġforeigners": 28201, + "Ġforemost": 18864, + "Ġforens": 32034, + "Ġforensic": 39084, + "Ġforesee": 38736, + "Ġforest": 6719, + "Ġforests": 21700, + "Ġforever": 5680, + "Ġforg": 3667, + "Ġforge": 38741, + "Ġforged": 40226, + "Ġforget": 2870, + "Ġforgetting": 25428, + "Ġforgive": 10718, + "Ġforgiven": 30391, + "Ġforgiveness": 18396, + "Ġforgiving": 37701, + "Ġforgot": 5298, + "Ġforgotten": 11832, + "Ġfork": 17716, + "Ġform": 1254, + "Ġforma": 8366, + "Ġformal": 9860, + "Ġformally": 25983, + "Ġformas": 33463, + "Ġformat": 7877, + "Ġformation": 11723, + "Ġformations": 39652, + "Ġformats": 25879, + "Ġformatting": 39366, + "Ġforme": 28670, + "Ġformed": 8693, + "Ġformer": 5819, + "Ġformerly": 34777, + "Ġformidable": 41246, + "Ġforming": 15745, + "Ġforms": 6422, + "Ġformul": 49990, + "Ġformula": 8513, + "Ġformulas": 30546, + "Ġformulate": 47881, + "Ġformulated": 48936, + "Ġformulation": 37642, + "Ġfors": 32299, + "Ġforsk": 45321, + "Ġfort": 5009, + "Ġforte": 23235, + "Ġforth": 5220, + "Ġfortress": 31826, + "Ġforts": 30589, + "Ġfortun": 10506, + "Ġfortunate": 14096, + "Ġfortunately": 25511, + "Ġfortune": 16531, + "Ġforty": 15815, + "Ġforum": 17542, + "Ġforums": 26998, + "Ġforward": 2128, + "Ġforwards": 30126, + "Ġforça": 32878, + "Ġfoss": 14090, + "Ġfosse": 24528, + "Ġfossil": 18737, + "Ġfossils": 39159, + "Ġfoster": 17114, + "Ġfot": 15418, + "Ġfoto": 19176, + "Ġfotograf": 34341, + "Ġfotos": 32301, + "Ġfou": 32012, + "Ġfought": 11391, + "Ġfoul": 23491, + "Ġfound": 1352, + "Ġfoundation": 7030, + "Ġfoundational": 32195, + "Ġfoundations": 22467, + "Ġfounded": 13234, + "Ġfounder": 14917, + "Ġfounders": 25608, + "Ġfounding": 22223, + "Ġfountain": 29451, + "Ġfour": 1451, + "Ġfourteen": 32253, + "Ġfourth": 6409, + "Ġfout": 41907, + "Ġfox": 21026, + "Ġfps": 44981, + "Ġfr": 431, + "Ġfra": 6600, + "Ġfract": 17948, + "Ġfraction": 14135, + "Ġfractions": 36058, + "Ġfracture": 36877, + "Ġfrag": 9241, + "Ġfragen": 39129, + "Ġfragile": 23847, + "Ġfragment": 26424, + "Ġfragments": 29197, + "Ġfragr": 17599, + "Ġfragrance": 25826, + "Ġfragrant": 37296, + "Ġfram": 21405, + "Ġframe": 3920, + "Ġframed": 30420, + "Ġframes": 12083, + "Ġframework": 8388, + "Ġframeworks": 29834, + "Ġframing": 28971, + "Ġfranc": 30514, + "Ġfranch": 13002, + "Ġfranchise": 16222, + "Ġfrank": 10455, + "Ġfrankly": 11939, + "Ġfrança": 43660, + "Ġfrançais": 21425, + "Ġfrançaise": 43832, + "Ġfrase": 38406, + "Ġfrater": 41168, + "Ġfraud": 14560, + "Ġfre": 2130, + "Ġfreak": 21853, + "Ġfreaked": 37853, + "Ġfreakin": 39571, + "Ġfreaking": 14612, + "Ġfree": 1737, + "Ġfreed": 21796, + "Ġfreedom": 5645, + "Ġfreedoms": 40671, + "Ġfreel": 27931, + "Ġfreelance": 47875, + "Ġfreely": 16433, + "Ġfreestyle": 40910, + "Ġfreeze": 15959, + "Ġfreezer": 20189, + "Ġfreezing": 20200, + "Ġfrei": 32542, + "Ġfreight": 37181, + "Ġfren": 33596, + "Ġfrench": 27598, + "Ġfrente": 19873, + "Ġfrequ": 4459, + "Ġfrequencies": 20250, + "Ġfrequency": 7893, + "Ġfrequent": 18004, + "Ġfrequently": 10374, + "Ġfres": 25235, + "Ġfresh": 4451, + "Ġfreshly": 34412, + "Ġfreshman": 22154, + "Ġfreshmen": 43694, + "Ġfreshwater": 50234, + "Ġfret": 24189, + "Ġfreue": 43195, + "Ġfreuen": 41913, + "Ġfrick": 46756, + "Ġfriction": 17710, + "Ġfridge": 13023, + "Ġfried": 10425, + "Ġfriend": 1277, + "Ġfriendly": 9208, + "Ġfriends": 1855, + "Ġfriendship": 13216, + "Ġfriendships": 30003, + "Ġfries": 20733, + "Ġfrig": 34697, + "Ġfright": 15545, + "Ġfrightened": 28839, + "Ġfrightening": 31043, + "Ġfringe": 38764, + "Ġfro": 9795, + "Ġfrog": 17259, + "Ġfrogs": 37107, + "Ġfrom": 490, + "Ġfront": 1868, + "Ġfrontal": 34647, + "Ġfrontier": 35853, + "Ġfrontline": 38033, + "Ġfronts": 40426, + "Ġfrost": 19623, + "Ġfrosting": 37048, + "Ġfroze": 46077, + "Ġfrozen": 12496, + "Ġfruit": 6773, + "Ġfruitful": 49795, + "Ġfruition": 48738, + "Ġfruits": 12148, + "Ġfrust": 7454, + "Ġfrustrated": 15751, + "Ġfrustrating": 16522, + "Ġfrustration": 20491, + "Ġfry": 13776, + "Ġfrying": 24596, + "ĠfrÃ¥": 13237, + "ĠfrÃ¥gor": 48306, + "ĠfrÃ¥n": 18669, + "Ġfrüh": 45029, + "Ġfrüher": 32349, + "Ġft": 31842, + "Ġfu": 8536, + "Ġfuck": 3275, + "Ġfucked": 22518, + "Ġfuckin": 20022, + "Ġfucking": 5546, + "Ġfue": 9248, + "Ġfuego": 43934, + "Ġfuel": 6616, + "Ġfueled": 45446, + "Ġfuels": 24616, + "Ġfuer": 17669, + "Ġfuera": 24818, + "Ġfueron": 28739, + "Ġfuerte": 37129, + "Ġfuerza": 39730, + "Ġfug": 31838, + "Ġfui": 27863, + "Ġfulf": 8081, + "Ġfulfil": 41054, + "Ġfulfill": 13875, + "Ġfulfilled": 21380, + "Ġfulfilling": 25800, + "Ġfulfillment": 32615, + "Ġfull": 1577, + "Ġfullest": 45154, + "Ġfullness": 45262, + "Ġfully": 4498, + "Ġfum": 43845, + "Ġfun": 1019, + "Ġfuncion": 14186, + "Ġfunciona": 26210, + "Ġfunción": 43735, + "Ġfunction": 2445, + "Ġfunctional": 11745, + "Ġfunctionality": 14980, + "Ġfunctioning": 18483, + "Ġfunctions": 6828, + "Ġfund": 2374, + "Ġfundament": 6073, + "Ġfundamental": 8088, + "Ġfundamentally": 17879, + "Ġfundamentals": 29505, + "Ġfunded": 14385, + "Ġfunding": 6137, + "Ġfundo": 40201, + "Ġfundra": 24844, + "Ġfundraising": 32643, + "Ġfunds": 8271, + "Ġfuneral": 20231, + "Ġfungi": 48772, + "Ġfungus": 39788, + "Ġfunk": 26476, + "Ġfunktion": 20454, + "Ġfunktioniert": 26160, + "Ġfunky": 33499, + "Ġfunnel": 24515, + "Ġfunniest": 42681, + "Ġfunny": 4074, + "Ġfunz": 49345, + "Ġfunção": 37588, + "Ġfur": 2687, + "Ġfurious": 33470, + "Ġfurn": 11433, + "Ġfurnace": 34046, + "Ġfurniture": 15671, + "Ġfurry": 47073, + "Ġfurther": 3052, + "Ġfury": 48887, + "Ġfus": 34326, + "Ġfuse": 31328, + "Ġfusion": 23100, + "Ġfuss": 34792, + "Ġfut": 1877, + "Ġfutur": 25840, + "Ġfuture": 2027, + "Ġfutures": 26071, + "Ġfuturistic": 44932, + "Ġfuturo": 23953, + "Ġfuzzy": 34710, + "Ġfy": 38777, + "Ġfá": 15299, + "Ġfácil": 17474, + "Ġfällt": 42870, + "ĠfÃ¥": 14251, + "ĠfÃ¥r": 14865, + "ĠfÃ¥tt": 43651, + "Ġfé": 34271, + "Ġfö": 25309, + "Ġför": 4816, + "Ġföret": 47099, + "Ġförs": 30864, + "Ġförst": 32864, + "Ġförsta": 44203, + "Ġförsö": 45020, + "Ġfø": 50177, + "Ġfør": 40314, + "Ġfüh": 18813, + "Ġführen": 35498, + "Ġführt": 39671, + "Ġfünf": 28723, + "Ġfür": 2959, + "Ġfürs": 46577, + "ĠfÃŃs": 27538, + "ĠfÃŃsica": 46436, + "Ġfır": 47305, + "Ġg": 290, + "Ġga": 5959, + "Ġgaan": 14118, + "Ġgaat": 17829, + "Ġgab": 17964, + "Ġgad": 21318, + "Ġgadget": 38090, + "Ġgadgets": 37635, + "Ġgag": 34833, + "Ġgagn": 49177, + "Ġgagner": 45343, + "Ġgain": 6052, + "Ġgained": 12634, + "Ġgaining": 19752, + "Ġgains": 16823, + "Ġgak": 30045, + "Ġgal": 7660, + "Ġgalax": 26285, + "Ġgalaxies": 28755, + "Ġgalaxy": 17639, + "Ġgalera": 31912, + "Ġgall": 8527, + "Ġgalleries": 40141, + "Ġgallery": 18378, + "Ġgallon": 30339, + "Ġgallons": 32238, + "Ġgam": 8019, + "Ġgamb": 38871, + "Ġgamble": 44128, + "Ġgambling": 27077, + "Ġgame": 1216, + "Ġgameplay": 11421, + "Ġgamer": 30266, + "Ġgamers": 26774, + "Ġgames": 2813, + "Ġgaming": 9703, + "Ġgamma": 15546, + "Ġgan": 7574, + "Ġgang": 10145, + "Ġgangs": 42834, + "Ġgangster": 50104, + "Ġganhar": 40200, + "Ġganska": 34526, + "Ġganz": 6312, + "Ġganze": 18898, + "Ġganzen": 23966, + "Ġgap": 7417, + "Ġgaps": 15031, + "Ġgar": 3691, + "Ġgarage": 14400, + "Ġgarant": 22251, + "Ġgarbage": 14150, + "Ġgard": 5628, + "Ġgarde": 47903, + "Ġgarden": 7431, + "Ġgardening": 31799, + "Ġgardens": 23803, + "Ġgarder": 47167, + "Ġgarlic": 9168, + "Ġgarment": 35084, + "Ġgarments": 44881, + "Ġgarn": 25067, + "Ġgarnish": 42430, + "Ġgars": 35542, + "Ġgas": 4211, + "Ġgases": 21452, + "Ġgasket": 47671, + "Ġgasoline": 28914, + "Ġgasps": 43035, + "Ġgast": 17898, + "Ġgat": 44092, + "Ġgate": 8539, + "Ġgates": 19792, + "Ġgateway": 28532, + "Ġgather": 5448, + "Ġgathered": 13032, + "Ġgathering": 13519, + "Ġgatherings": 36247, + "Ġgauche": 36724, + "Ġgauge": 17924, + "Ġgave": 2729, + "Ġgay": 9049, + "Ġgaz": 26232, + "Ġgaze": 24294, + "Ġgdy": 28405, + "Ġgdzie": 18922, + "ĠgdzieÅĽ": 41359, + "Ġge": 1519, + "Ġgear": 7394, + "Ġgearbox": 35291, + "Ġgeared": 35924, + "Ġgears": 20915, + "Ġgeb": 21125, + "Ġgebaut": 49203, + "Ġgebe": 29073, + "Ġgeben": 17191, + "Ġgebracht": 40744, + "Ġgebru": 33857, + "Ġgece": 48173, + "Ġged": 19238, + "Ġgedaan": 44419, + "Ġgedacht": 33296, + "Ġgee": 24105, + "Ġgeehr": 40886, + "Ġgeek": 36162, + "Ġgeen": 21773, + "Ġgeez": 46108, + "Ġgef": 11271, + "Ġgefallen": 39935, + "Ġgefragt": 42638, + "Ġgefunden": 36923, + "Ġgefähr": 41484, + "Ġgeg": 23982, + "Ġgegangen": 44415, + "Ġgegeben": 32572, + "Ġgegen": 13953, + "Ġgegenüber": 41830, + "Ġgeh": 13218, + "Ġgehabt": 37092, + "Ġgehe": 34252, + "Ġgehen": 13230, + "Ġgeht": 7095, + "Ġgehört": 21544, + "Ġgeil": 47165, + "Ġgek": 14037, + "Ġgekommen": 32732, + "Ġgel": 4087, + "Ġgelatin": 45174, + "Ġgeld": 25114, + "Ġgeldi": 22121, + "Ġgele": 20234, + "Ġgelecek": 47158, + "Ġgelen": 43353, + "Ġgelernt": 49224, + "Ġgelir": 44011, + "Ġgeliyor": 29776, + "ĠgelmiÅŁ": 45849, + "Ġgels": 39196, + "Ġgem": 7173, + "Ġgema": 46126, + "Ġgemaakt": 49666, + "Ġgemacht": 12293, + "Ġgeme": 18111, + "Ġgemeins": 22971, + "Ġgemeinsam": 29701, + "Ġgems": 29296, + "Ġgen": 1049, + "Ġgenau": 12535, + "Ġgenauso": 37694, + "Ġgender": 7898, + "Ġgene": 12186, + "Ġgener": 1337, + "Ġgeneral": 2674, + "Ġgeneralized": 44498, + "Ġgenerally": 5101, + "Ġgenerals": 41346, + "Ġgenerate": 8460, + "Ġgenerated": 10833, + "Ġgenerates": 23815, + "Ġgenerating": 17746, + "Ġgeneration": 5125, + "Ġgenerational": 48320, + "Ġgenerations": 10593, + "Ġgenerator": 19265, + "Ġgenerators": 38662, + "Ġgenere": 41553, + "Ġgeneric": 19577, + "Ġgenerosity": 30178, + "Ġgenerous": 14537, + "Ġgenerously": 48983, + "Ġgenes": 14424, + "Ġgenetic": 12462, + "Ġgenetically": 37582, + "Ġgenetics": 26516, + "Ġgenial": 48228, + "Ġgenius": 14017, + "Ġgenocide": 31867, + "Ġgenom": 41441, + "Ġgenome": 21953, + "Ġgenommen": 38715, + "Ġgenre": 11022, + "Ġgenres": 30057, + "Ġgens": 10668, + "Ġgent": 16108, + "Ġgente": 3788, + "Ġgentle": 6424, + "Ġgentleman": 15761, + "Ġgentlemen": 11669, + "Ġgently": 13073, + "Ġgenug": 33194, + "Ġgenuine": 16699, + "Ġgenuinely": 17839, + "Ġgeo": 43198, + "Ġgeograph": 25435, + "Ġgeographic": 32318, + "Ġgeographical": 39872, + "Ġgeography": 26695, + "Ġgeology": 48788, + "Ġgeomet": 12956, + "Ġgeometric": 33246, + "Ġgeometry": 18426, + "Ġgeopolit": 46615, + "Ġgep": 30979, + "Ġger": 5713, + "Ġgera": 41289, + "Ġgerade": 12117, + "Ġgeral": 35412, + "Ġgere": 18635, + "Ġgerek": 34736, + "Ġgereki": 45038, + "Ġgeri": 41018, + "Ġgerm": 19858, + "Ġgerman": 46572, + "Ġgerms": 44010, + "Ġgern": 38531, + "Ġgerne": 15689, + "Ġgerçek": 24944, + "Ġgerçekten": 35784, + "Ġges": 5019, + "Ġgesagt": 12260, + "Ġgesam": 39746, + "Ġgesch": 13511, + "Ġgeschafft": 45215, + "Ġgeschrieben": 47397, + "Ġgesehen": 21535, + "Ġgespannt": 47355, + "Ġgesprochen": 42714, + "Ġgest": 7219, + "Ġgestellt": 42259, + "Ġgesture": 22252, + "Ġgestures": 28475, + "Ġgesund": 49176, + "Ġget": 483, + "Ġgetan": 45599, + "Ġgetir": 38610, + "Ġgets": 2170, + "Ġgettin": 34568, + "Ġgetting": 1242, + "Ġgev": 47103, + "Ġgeven": 49437, + "Ġgew": 6906, + "Ġgewe": 45707, + "Ġgewesen": 27653, + "Ġgewoon": 19751, + "Ġgeworden": 26281, + "Ġgez": 18110, + "Ġgezeigt": 48661, + "Ġgeç": 13110, + "Ġgh": 33937, + "Ġghee": 45172, + "Ġghetto": 47371, + "Ġghost": 8359, + "Ġghosts": 21744, + "Ġgi": 1735, + "Ġgia": 39689, + "Ġgiant": 7410, + "Ġgiants": 31894, + "Ġgib": 4553, + "Ġgibi": 11033, + "Ġgibt": 6089, + "Ġgid": 19805, + "Ġgide": 34255, + "Ġgider": 42291, + "Ġgift": 5306, + "Ġgifted": 27104, + "Ġgifts": 11449, + "Ġgig": 8741, + "Ġgigabytes": 42741, + "Ġgigantic": 26800, + "Ġgiggles": 50032, + "Ġgigs": 34586, + "Ġgilt": 29487, + "Ġgim": 27071, + "Ġgimbal": 43667, + "Ġgimm": 37214, + "Ġgin": 36604, + "Ġging": 21924, + "Ġginger": 14966, + "Ġgio": 48508, + "Ġgiorn": 36937, + "Ġgiorno": 42202, + "Ġgir": 14703, + "Ġgiraffe": 49897, + "Ġgird": 48219, + "Ġgirl": 2013, + "Ġgirlfriend": 10369, + "Ġgirlfriends": 46558, + "Ġgirls": 4519, + "Ġgit": 18331, + "Ġgitti": 37700, + "Ġgitu": 20156, + "Ġgive": 976, + "Ġgiveaway": 23508, + "Ġgiven": 2212, + "Ġgives": 2709, + "Ġgiving": 2902, + "ĠgiÃł": 30469, + "Ġgiá»Ŀ": 28689, + "Ġgj": 20249, + "Ġgjorde": 47670, + "Ġgjort": 37420, + "Ġgl": 1563, + "Ġgla": 8771, + "Ġglac": 29700, + "Ġglacier": 48021, + "Ġglad": 5404, + "Ġgladly": 47307, + "Ġglam": 28133, + "Ġglamorous": 48760, + "Ġglance": 21094, + "Ġgland": 43284, + "Ġglands": 49533, + "Ġglare": 49159, + "Ġglass": 4276, + "Ġglasses": 10812, + "Ġglaub": 23210, + "Ġglaube": 13756, + "Ġglauben": 47139, + "Ġglaze": 39390, + "Ġgle": 48956, + "Ġgleich": 11699, + "Ġgleichen": 49069, + "Ġgleichzeitig": 44242, + "Ġgli": 17161, + "Ġglide": 41848, + "Ġglimp": 25727, + "Ġglimpse": 25838, + "Ġglitch": 23552, + "Ġglitter": 18620, + "Ġglo": 3114, + "Ġglob": 16125, + "Ġglobal": 4338, + "Ġglobalization": 40518, + "Ġglobally": 18958, + "Ġglobe": 15371, + "Ġglor": 26623, + "Ġglorious": 24026, + "Ġglory": 11924, + "Ġgloss": 19574, + "Ġglossy": 38285, + "Ġglove": 26928, + "Ġgloves": 14976, + "Ġglow": 17513, + "Ġglowing": 27064, + "Ġgluc": 19636, + "Ġglucose": 23997, + "Ġglue": 8998, + "Ġglued": 28008, + "Ġglut": 33249, + "Ġgluten": 24326, + "Ġgly": 22633, + "Ġgn": 49819, + "Ġgo": 352, + "Ġgoal": 3387, + "Ġgoals": 5493, + "Ġgoat": 23608, + "Ġgoats": 34219, + "Ġgob": 20489, + "Ġgobierno": 29254, + "Ġgod": 3044, + "Ġgoddamn": 32951, + "Ġgoddess": 24508, + "Ġgods": 14049, + "Ġgodt": 35427, + "Ġgoed": 16987, + "Ġgoes": 1709, + "Ġgogg": 36653, + "Ġgoggles": 39808, + "Ġgoin": 21582, + "Ġgoing": 516, + "Ġgol": 9988, + "Ġgold": 3821, + "Ġgolden": 9729, + "Ġgolf": 12880, + "Ġgolpe": 42032, + "Ġgon": 26307, + "Ġgone": 2780, + "Ġgonna": 799, + "Ġgoo": 33192, + "Ġgood": 665, + "Ġgoodbye": 12084, + "Ġgoodies": 44072, + "Ġgoodness": 8387, + "Ġgoods": 10179, + "Ġgoof": 30356, + "Ġgoofy": 42995, + "Ġgoog": 50061, + "Ġgoogle": 20742, + "Ġgoose": 24717, + "Ġgoosebumps": 48305, + "Ġgor": 24012, + "Ġgord": 42443, + "Ġgorgeous": 12291, + "Ġgorilla": 45066, + "Ġgosh": 6502, + "Ġgosp": 37250, + "Ġgospel": 14943, + "Ġgossip": 31788, + "Ġgost": 13188, + "Ġgosta": 39874, + "Ġgosto": 32022, + "Ġgot": 658, + "Ġgotta": 3428, + "Ġgotten": 5768, + "Ġgou": 21301, + "Ġgour": 46651, + "Ġgouvern": 24894, + "Ġgouvernement": 27504, + "Ġgover": 27526, + "Ġgovern": 1980, + "Ġgovernance": 17449, + "Ġgoverned": 35529, + "Ġgoverning": 30054, + "Ġgovernment": 2463, + "Ġgovernmental": 43391, + "Ġgovernments": 11280, + "Ġgoverno": 34685, + "Ġgovernor": 12965, + "Ġgovernors": 36571, + "Ġgown": 34428, + "Ġgr": 677, + "Ġgra": 1295, + "Ġgrab": 4444, + "Ġgrabbed": 18607, + "Ġgrabbing": 23771, + "Ġgrabs": 30028, + "Ġgrac": 11625, + "Ġgrace": 10042, + "Ġgracias": 16611, + "Ġgracious": 36113, + "Ġgrad": 2771, + "Ġgrade": 7204, + "Ġgraders": 46703, + "Ġgrades": 18041, + "Ġgradient": 16235, + "Ġgrading": 35540, + "Ġgradu": 4138, + "Ġgradual": 32890, + "Ġgradually": 13145, + "Ġgraduate": 8080, + "Ġgraduated": 13693, + "Ġgraduates": 13577, + "Ġgraduating": 18843, + "Ġgraduation": 15652, + "Ġgraffiti": 40531, + "Ġgraft": 44767, + "Ġgrain": 12837, + "Ġgrains": 22908, + "Ġgram": 21353, + "Ġgramm": 17570, + "Ġgrammar": 22317, + "Ġgrams": 11899, + "Ġgran": 9370, + "Ġgrand": 2697, + "Ġgrandchildren": 28112, + "Ġgranddaughter": 44411, + "Ġgrande": 8883, + "Ġgrandes": 16640, + "Ġgrandfather": 14754, + "Ġgrandi": 45155, + "Ġgrandma": 15766, + "Ġgrandmother": 14317, + "Ġgrandpa": 24129, + "Ġgrandparents": 21876, + "Ġgrands": 33298, + "Ġgrandson": 31657, + "Ġgranny": 44797, + "Ġgrant": 6386, + "Ġgranted": 12344, + "Ġgranting": 50204, + "Ġgrants": 16101, + "Ġgranular": 39962, + "Ġgrape": 23978, + "Ġgrapes": 28032, + "Ġgraph": 4295, + "Ġgraphic": 14089, + "Ġgraphical": 35942, + "Ġgraphics": 11837, + "Ġgraphs": 24877, + "Ġgrapp": 27165, + "Ġgrappling": 50086, + "Ġgras": 29444, + "Ġgrasp": 21743, + "Ġgrass": 8054, + "Ġgrasses": 49701, + "Ġgrassroots": 39522, + "Ġgrat": 10158, + "Ġgrate": 46214, + "Ġgrated": 43319, + "Ġgrateful": 7941, + "Ġgratitude": 16935, + "Ġgratuit": 38342, + "Ġgrav": 7427, + "Ġgrave": 12525, + "Ġgravel": 30001, + "Ġgraves": 31664, + "Ġgraveyard": 42607, + "Ġgravit": 26048, + "Ġgravitational": 28538, + "Ġgravity": 12110, + "Ġgravy": 31535, + "Ġgray": 10855, + "Ġgrazing": 48112, + "Ġgre": 6066, + "Ġgrease": 24867, + "Ġgreasy": 36401, + "Ġgreat": 869, + "Ġgreater": 5044, + "Ġgreatest": 6636, + "Ġgreatly": 14147, + "Ġgreatness": 31196, + "Ġgreed": 29230, + "Ġgreedy": 28228, + "Ġgreen": 3092, + "Ġgreenhouse": 22126, + "Ġgreens": 22897, + "Ġgreet": 12044, + "Ġgreeted": 38441, + "Ġgreeting": 28174, + "Ġgreetings": 33667, + "Ġgren": 20313, + "Ġgrenade": 31527, + "Ġgrenades": 43529, + "Ġgrew": 6109, + "Ġgrey": 16578, + "Ġgri": 17865, + "Ġgrid": 10748, + "Ġgrief": 18998, + "Ġgriev": 49260, + "Ġgrieving": 48454, + "Ġgrill": 16492, + "Ġgrille": 49011, + "Ġgrilled": 25183, + "Ġgrilling": 49961, + "Ġgrim": 36010, + "Ġgrin": 49179, + "Ġgrind": 16700, + "Ġgrinder": 41424, + "Ġgrinding": 25300, + "Ġgrip": 12007, + "Ġgrips": 38037, + "Ġgrit": 30133, + "Ġgro": 4634, + "Ġgroans": 44657, + "Ġgrocer": 11884, + "Ġgroceries": 31391, + "Ġgrocery": 14410, + "Ġgroo": 42156, + "Ġgroom": 22198, + "Ġgrooming": 49700, + "Ġgroot": 41906, + "Ġgroove": 26910, + "Ġgrooves": 49359, + "Ġgros": 18638, + "Ġgross": 11367, + "Ġgrosse": 40009, + "Ġgrote": 39928, + "Ġground": 2727, + "Ġgroundbreaking": 42491, + "Ġgrounded": 23535, + "Ġgrounding": 46727, + "Ġgrounds": 19196, + "Ġgroundwater": 40511, + "Ġgroup": 1594, + "Ġgroupe": 32980, + "Ġgrouped": 41877, + "Ġgrouping": 40149, + "Ġgroups": 3935, + "Ġgrow": 1852, + "Ġgrowers": 45946, + "Ġgrowing": 4194, + "Ġgrown": 7709, + "Ġgrows": 13156, + "Ġgrowth": 4599, + "ĠgroÃŁ": 17253, + "ĠgroÃŁe": 19691, + "ĠgroÃŁen": 23076, + "ĠgroÃŁer": 46220, + "ĠgroÃŁes": 48875, + "Ġgrues": 48238, + "Ġgrund": 30886, + "Ġgrup": 12740, + "Ġgrupo": 20190, + "Ġgrupos": 33758, + "Ġgrupp": 47477, + "Ġgry": 41974, + "Ġgráfic": 34613, + "Ġgrâce": 31180, + "ĠgrÃ¶ÃŁ": 20691, + "Ġgu": 695, + "Ġgua": 30081, + "Ġguar": 7498, + "Ġguarante": 14203, + "Ġguarantee": 10815, + "Ġguaranteed": 18031, + "Ġguarantees": 32567, + "Ġguard": 6290, + "Ġguarded": 44157, + "Ġguardian": 30355, + "Ġguardians": 40525, + "Ġguarding": 44077, + "Ġguards": 17652, + "Ġgucken": 33135, + "Ġgue": 13987, + "Ġguer": 14486, + "Ġguerra": 27542, + "Ġguerre": 31400, + "Ġguess": 2041, + "Ġguessed": 21852, + "Ġguesses": 42703, + "Ġguessing": 17939, + "Ġguest": 8341, + "Ġguests": 9804, + "Ġguid": 6489, + "Ġguidance": 10056, + "Ġguide": 5934, + "Ġguided": 19663, + "Ġguideline": 41653, + "Ġguidelines": 12470, + "Ġguides": 17007, + "Ġguiding": 25061, + "Ġguild": 37435, + "Ġguilt": 20421, + "Ġguilty": 12341, + "Ġguit": 31108, + "Ġguitar": 7531, + "Ġguitars": 36809, + "Ġgum": 19973, + "Ġgummy": 45617, + "Ġgun": 3874, + "Ġguns": 10153, + "Ġgur": 40642, + "Ġguru": 29949, + "Ġgust": 9679, + "Ġgusta": 20576, + "Ġgustado": 45221, + "ĠgustarÃŃa": 45896, + "Ġgusto": 38723, + "Ġgut": 5228, + "Ġgute": 21476, + "Ġguten": 31277, + "Ġgutes": 45859, + "Ġguts": 28560, + "Ġguy": 2146, + "Ġguys": 1074, + "Ġgw": 29255, + "Ġgy": 15823, + "Ġgym": 9222, + "Ġgymn": 35760, + "Ġgymnastics": 48461, + "Ġgä": 37612, + "Ġgäller": 48771, + "ĠgÃ¥": 22098, + "ĠgÃ¥ng": 36528, + "ĠgÃ¥r": 19831, + "Ġgé": 38462, + "Ġgén": 14575, + "Ġgénér": 45622, + "Ġgénéral": 27796, + "Ġgì": 22804, + "Ġgö": 7105, + "Ġgör": 8362, + "Ġgöra": 20541, + "Ġgörd": 27407, + "Ġgöre": 21032, + "Ġgörün": 49676, + "ĠgörÃ¼ÅŁ": 38488, + "Ġgöst": 42594, + "Ġgöster": 40968, + "Ġgöt": 39630, + "Ġgöz": 23234, + "Ġgü": 18148, + "Ġgün": 14472, + "Ġgüzel": 14746, + "Ġgüç": 48015, + "ĠgÅĤ": 18117, + "ĠgÅĤos": 43767, + "Ġh": 276, + "Ġha": 324, + "Ġhaar": 39371, + "Ġhab": 3025, + "Ġhabe": 6015, + "Ġhaben": 3084, + "Ġhaber": 15811, + "Ġhabil": 36565, + "Ġhabit": 7164, + "Ġhabitat": 20110, + "Ġhabitats": 42159, + "Ġhabits": 14100, + "Ġhabitual": 46883, + "Ġhabl": 26280, + "Ġhabla": 42135, + "Ġhablando": 29369, + "Ġhablar": 21014, + "Ġhabr": 32794, + "Ġhabt": 23660, + "ĠhabÃŃa": 16395, + "ĠhabÃŃan": 44466, + "Ġhac": 46093, + "Ġhace": 10032, + "Ġhacemos": 33839, + "Ġhacen": 27434, + "Ġhacer": 6720, + "Ġhacerlo": 32039, + "Ġhacia": 21365, + "Ġhaciendo": 20509, + "Ġhack": 10339, + "Ġhacked": 36218, + "Ġhacker": 38155, + "Ġhackers": 39766, + "Ġhacking": 31422, + "Ġhacks": 33617, + "Ġhad": 632, + "Ġhade": 25027, + "Ġhadi": 25789, + "Ġhadn": 8782, + "Ġhaft": 32329, + "Ġhag": 42386, + "Ġhaga": 46726, + "Ġhago": 38721, + "Ġhah": 17206, + "Ġhaha": 17236, + "Ġhahaha": 28142, + "Ġhai": 21822, + "Ġhail": 38157, + "Ġhair": 2578, + "Ġhaircut": 30328, + "Ġhaird": 41954, + "Ġhairs": 26525, + "Ġhairst": 30658, + "Ġhairstyle": 32770, + "Ġhairy": 42346, + "Ġhak": 35720, + "Ġhakk": 37949, + "Ġhal": 7523, + "Ġhalf": 1922, + "Ġhalfway": 15461, + "Ġhall": 6500, + "Ġhalls": 26177, + "Ġhalluc": 35212, + "Ġhallway": 23903, + "Ġhalo": 46268, + "Ġhalt": 12479, + "Ġhalten": 27184, + "Ġhalves": 38490, + "Ġham": 7852, + "Ġhamb": 25172, + "Ġhamburger": 34575, + "Ġhamm": 36600, + "Ġhammer": 13017, + "Ġhan": 7276, + "Ġhand": 1011, + "Ġhandc": 46175, + "Ġhanded": 16013, + "Ġhandful": 16458, + "Ġhandheld": 37634, + "Ġhandic": 31369, + "Ġhandicap": 45975, + "Ġhanding": 34774, + "Ġhandlar": 42572, + "Ġhandle": 4813, + "Ġhandled": 18033, + "Ġhandler": 41967, + "Ġhandles": 18722, + "Ġhandling": 13175, + "Ġhandmade": 39446, + "Ġhandout": 48785, + "Ġhands": 2377, + "Ġhandsome": 13421, + "Ġhandwriting": 39179, + "Ġhandy": 13239, + "Ġhang": 3967, + "Ġhanger": 48034, + "Ġhanging": 8345, + "Ġhangs": 35947, + "Ġhani": 45108, + "Ġhanno": 26595, + "Ġhanya": 46291, + "Ġhapp": 782, + "Ġhappen": 1051, + "Ġhappened": 2011, + "Ġhappening": 2737, + "Ġhappens": 2314, + "Ġhappier": 20423, + "Ġhappiest": 37584, + "Ġhappily": 19909, + "Ġhappiness": 8324, + "Ġhappy": 2055, + "Ġhar": 2233, + "Ġharass": 16910, + "Ġharassment": 25836, + "Ġharbor": 36947, + "Ġhard": 1152, + "Ġhardcore": 28196, + "Ġharden": 50203, + "Ġhardened": 42605, + "Ġharder": 6081, + "Ġhardest": 13158, + "Ġhardly": 13572, + "Ġhardness": 44019, + "Ġhardship": 24172, + "Ġhardships": 41351, + "Ġhardware": 8837, + "Ġhare": 39921, + "Ġhari": 33264, + "Ġharm": 6491, + "Ġharmed": 41478, + "Ġharmful": 19727, + "Ġharmless": 40160, + "Ġharmon": 14750, + "Ġharmonic": 32270, + "Ġharmony": 19410, + "Ġharms": 48505, + "Ġharness": 19700, + "Ġharp": 50093, + "Ġharsh": 14897, + "Ġhart": 36644, + "Ġharus": 28219, + "Ġharvest": 11917, + "Ġharvested": 40994, + "Ġharvesting": 35679, + "Ġhas": 575, + "Ġhash": 22019, + "Ġhasht": 17462, + "Ġhashtag": 20379, + "Ġhashtags": 50016, + "Ġhasn": 6132, + "Ġhass": 33690, + "Ġhassle": 39526, + "Ġhast": 6581, + "Ġhasta": 10764, + "Ġhat": 2385, + "Ġhatch": 17387, + "Ġhate": 4700, + "Ġhated": 17398, + "Ġhaters": 43675, + "Ġhates": 23000, + "Ġhating": 45082, + "Ġhatred": 21890, + "Ġhats": 20549, + "Ġhatte": 13299, + "Ġhatten": 20441, + "Ġhatır": 47323, + "Ġhaul": 21167, + "Ġhaunted": 24878, + "Ġhaunting": 44512, + "Ġhaut": 29032, + "Ġhav": 26139, + "Ġhave": 362, + "Ġhaven": 2378, + "Ġhaver": 41912, + "Ġhavia": 28855, + "Ġhaving": 1419, + "Ġhavoc": 47367, + "Ġhaw": 33634, + "Ġhay": 4842, + "Ġhaya": 24693, + "Ġhayat": 26918, + "Ġhayır": 40148, + "Ġhaz": 11008, + "Ġhazard": 20790, + "Ġhazardous": 40020, + "Ġhazards": 34516, + "Ġhazır": 29573, + "Ġhe": 415, + "Ġhead": 1378, + "Ġheadache": 23520, + "Ġheadaches": 35046, + "Ġheaded": 12798, + "Ġheader": 23117, + "Ġheaders": 45101, + "Ġheading": 9864, + "Ġheadlights": 38487, + "Ġheadline": 28380, + "Ġheadlines": 23867, + "Ġheadphone": 35028, + "Ġheadphones": 16278, + "Ġheadquarters": 21052, + "Ġheads": 8050, + "Ġheadset": 26850, + "Ġheal": 10526, + "Ġhealed": 20482, + "Ġhealing": 9745, + "Ġheals": 45653, + "Ġhealth": 1585, + "Ġhealthcare": 8884, + "Ġhealthier": 19580, + "Ġhealthy": 4627, + "Ġheap": 33591, + "Ġhear": 1568, + "Ġheard": 2198, + "Ġhearing": 4763, + "Ġhearings": 34052, + "Ġhears": 25688, + "Ġheart": 1917, + "Ġheartbeat": 34851, + "Ġheartbreaking": 41030, + "Ġheartfelt": 49332, + "Ġhearts": 8852, + "Ġheat": 3738, + "Ġheated": 18806, + "Ġheater": 30408, + "Ġheating": 15082, + "Ġheats": 41035, + "Ġheav": 3577, + "Ġheaven": 7162, + "Ġheavenly": 29406, + "Ġheavens": 26011, + "Ġheavier": 18279, + "Ġheavily": 10950, + "Ġheavy": 4676, + "Ġheb": 8007, + "Ġhebben": 12116, + "Ġhebt": 28339, + "Ġhecho": 13064, + "Ġheck": 12872, + "Ġhect": 37358, + "Ġhed": 33653, + "Ġhedge": 25304, + "Ġheed": 49781, + "Ġheeft": 17425, + "Ġheel": 9430, + "Ġheels": 19502, + "Ġheft": 43674, + "Ġheh": 37791, + "Ġhehe": 42683, + "Ġheight": 6681, + "Ġheightened": 46154, + "Ġheights": 25930, + "Ġhein": 16464, + "Ġheir": 30038, + "ĠheiÃŁ": 39124, + "ĠheiÃŁt": 13139, + "Ġhel": 801, + "Ġhela": 30158, + "Ġheld": 5167, + "Ġhele": 16812, + "Ġhelemaal": 33595, + "Ġhelfen": 29966, + "Ġhelicop": 16061, + "Ġhelicopter": 19803, + "Ġhelicopters": 39016, + "Ġhelium": 40175, + "Ġhell": 4921, + "Ġhello": 7751, + "Ġhelm": 29554, + "Ġhelmet": 15922, + "Ġhelmets": 42022, + "Ġhelp": 854, + "Ġhelped": 4254, + "Ġhelper": 36133, + "Ġhelpful": 4961, + "Ġhelping": 4315, + "Ġhelpless": 27596, + "Ġhelps": 3665, + "Ġhelt": 24821, + "Ġhem": 8636, + "Ġhemen": 32466, + "Ġhemisphere": 38453, + "Ġhemos": 15396, + "Ġhemp": 48266, + "Ġhen": 22253, + "Ġhence": 16678, + "Ġhep": 26299, + "Ġhepat": 48372, + "Ġheps": 38341, + "Ġher": 720, + "Ġheraus": 25089, + "Ġherb": 22662, + "Ġherbal": 44255, + "Ġherbs": 21426, + "Ġherd": 29484, + "Ġhere": 510, + "Ġheritage": 16040, + "Ġherkes": 42122, + "Ġherman": 39458, + "Ġhero": 5316, + "Ġheroes": 12332, + "Ġheroic": 32915, + "Ġheroin": 35551, + "Ġherramient": 38271, + "Ġhers": 6820, + "Ġherself": 7530, + "Ġhertz": 45830, + "Ġherum": 49675, + "Ġherzlich": 45919, + "Ġhes": 10453, + "Ġhesit": 28336, + "Ġhesitant": 36290, + "Ġhesitate": 20842, + "Ġhesitation": 36125, + "Ġhet": 3639, + "Ġheter": 20789, + "Ġheure": 30027, + "Ġheures": 28509, + "Ġheut": 42793, + "Ġheute": 9801, + "Ġhex": 23291, + "Ġhey": 4177, + "Ġhi": 4879, + "Ġhic": 23697, + "Ġhice": 50026, + "Ġhid": 16253, + "Ġhidden": 7633, + "Ġhide": 6479, + "Ġhides": 35953, + "Ġhiding": 10596, + "Ġhier": 3296, + "Ġhierarch": 35250, + "Ġhierarchy": 22333, + "Ġhigh": 1090, + "Ġhigher": 2946, + "Ġhighest": 6343, + "Ġhighlight": 5078, + "Ġhighlighted": 17173, + "Ġhighlighter": 40455, + "Ġhighlighting": 26551, + "Ġhighlights": 14254, + "Ġhighly": 5405, + "Ġhighness": 49235, + "Ġhighs": 29687, + "Ġhighway": 17205, + "Ġhighways": 43747, + "Ġhij": 10625, + "Ġhijo": 38390, + "Ġhijos": 42590, + "Ġhike": 23282, + "Ġhiking": 23784, + "Ġhil": 28315, + "Ġhilar": 18661, + "Ġhilarious": 19796, + "Ġhilft": 42493, + "Ġhill": 10997, + "Ġhills": 21379, + "Ġhim": 796, + "Ġhimself": 3647, + "Ġhin": 14102, + "Ġhina": 41844, + "Ġhinaus": 46056, + "Ġhind": 20138, + "Ġhindsight": 44357, + "Ġhine": 47551, + "Ġhing": 24895, + "Ġhinge": 28822, + "Ġhinges": 46686, + "Ġhint": 12075, + "Ġhinten": 36417, + "Ġhinter": 23219, + "Ġhints": 27271, + "Ġhip": 8103, + "Ġhipp": 27745, + "Ġhips": 15233, + "Ġhire": 11158, + "Ġhired": 13144, + "Ġhiring": 15335, + "Ġhis": 702, + "Ġhiss": 33182, + "Ġhist": 1758, + "Ġhistogram": 49816, + "Ġhistoire": 31202, + "Ġhistor": 4058, + "Ġhistoria": 18385, + "Ġhistorian": 25139, + "Ġhistorians": 26442, + "Ġhistoric": 13236, + "Ġhistorical": 8584, + "Ġhistorically": 16180, + "Ġhistories": 30631, + "Ġhistory": 2503, + "Ġhistó": 33196, + "Ġhistória": 20670, + "Ġhit": 2045, + "Ġhitch": 33259, + "Ġhits": 8664, + "Ġhitting": 8850, + "Ġhive": 42523, + "Ġhizo": 28803, + "Ġhiç": 15169, + "Ġhiçbir": 31151, + "Ġhiá»ĩn": 48079, + "Ġhj": 23731, + "Ġhjäl": 42822, + "Ġhm": 35481, + "Ġhmm": 16478, + "Ġho": 1106, + "Ġhoard": 45940, + "Ġhob": 12959, + "Ġhobbies": 35750, + "Ġhobby": 18240, + "Ġhoc": 16708, + "Ġhoch": 19783, + "Ġhockey": 22449, + "Ġhoe": 19709, + "Ġhoffe": 34903, + "Ġhog": 24855, + "Ġhogy": 14601, + "Ġhoje": 13458, + "Ġhol": 4091, + "Ġhold": 1797, + "Ġholder": 20349, + "Ġholders": 29274, + "Ġholding": 5061, + "Ġholds": 9190, + "Ġhole": 5458, + "Ġholes": 8118, + "Ġholiday": 9960, + "Ġholidays": 15734, + "Ġholiness": 44867, + "Ġholistic": 30334, + "Ġhollow": 23972, + "Ġholog": 38541, + "Ġholy": 10622, + "Ġhom": 3655, + "Ġhomage": 44073, + "Ġhombre": 26102, + "Ġhombres": 37988, + "Ġhome": 1280, + "Ġhomeland": 32494, + "Ġhomeless": 12294, + "Ġhomelessness": 28791, + "Ġhomem": 30798, + "Ġhomemade": 23336, + "Ġhomeowners": 39868, + "Ġhomepage": 31301, + "Ġhomes": 7388, + "Ġhometown": 22112, + "Ġhomework": 14578, + "Ġhomicide": 49411, + "Ġhomme": 35794, + "Ġhommes": 34795, + "Ġhomogeneous": 42632, + "Ġhomosexual": 30490, + "Ġhon": 2157, + "Ġhone": 43212, + "Ġhonest": 3245, + "Ġhonestly": 6095, + "Ġhonesty": 26839, + "Ġhoney": 8330, + "Ġhoneymoon": 48004, + "Ġhonor": 5968, + "Ġhonorable": 36322, + "Ġhonorary": 49365, + "Ġhonored": 14556, + "Ġhonoring": 38254, + "Ġhonors": 26884, + "Ġhonour": 20631, + "Ġhoo": 30663, + "Ġhood": 13376, + "Ġhoodie": 41191, + "Ġhoof": 44974, + "Ġhook": 6328, + "Ġhooked": 20410, + "Ġhooks": 26485, + "Ġhoop": 29749, + "Ġhoor": 43330, + "Ġhop": 3818, + "Ġhope": 1454, + "Ġhoped": 19737, + "Ġhopeful": 20531, + "Ġhopefully": 4696, + "Ġhopeless": 27317, + "Ġhopes": 13681, + "Ġhoping": 7159, + "Ġhopping": 47199, + "Ġhops": 47579, + "Ġhor": 2569, + "Ġhora": 15098, + "Ġhoras": 19548, + "Ġhoriz": 7937, + "Ġhorizon": 18046, + "Ġhorizont": 10908, + "Ġhorizontal": 12750, + "Ġhorizontally": 33796, + "Ġhorm": 11876, + "Ġhormone": 24211, + "Ġhormones": 22453, + "Ġhorn": 13482, + "Ġhorns": 28818, + "Ġhorr": 17582, + "Ġhorrend": 49520, + "Ġhorrible": 9263, + "Ġhorribly": 45028, + "Ġhorrific": 29248, + "Ġhorrifying": 40227, + "Ġhorror": 11501, + "Ġhors": 11912, + "Ġhorse": 6832, + "Ġhorsepower": 25250, + "Ġhorses": 13112, + "Ġhose": 20061, + "Ġhosp": 3872, + "Ġhospital": 4530, + "Ġhospitality": 31207, + "Ġhospitalized": 42340, + "Ġhospitals": 13014, + "Ġhost": 3975, + "Ġhostage": 38434, + "Ġhosted": 19204, + "Ġhostel": 48879, + "Ġhostile": 27312, + "Ġhosting": 16058, + "Ġhosts": 21573, + "Ġhot": 2368, + "Ġhotel": 7622, + "Ġhotels": 22718, + "Ġhots": 36121, + "Ġhott": 30749, + "Ġhotter": 32149, + "Ġhottest": 32780, + "Ġhou": 36621, + "Ġhour": 1773, + "Ġhourly": 48364, + "Ġhours": 2496, + "Ġhous": 4407, + "Ġhouse": 1782, + "Ġhoused": 36084, + "Ġhousehold": 9888, + "Ġhouseholds": 22850, + "Ġhousekeeping": 48033, + "Ġhouses": 8078, + "Ġhousing": 6849, + "Ġhover": 20076, + "Ġhovering": 44923, + "Ġhow": 577, + "Ġhowever": 4461, + "Ġhoy": 13775, + "ĠhoÅŁ": 37063, + "Ġhp": 34064, + "Ġhtt": 22881, + "Ġhttp": 37428, + "Ġhttps": 34426, + "Ġhu": 2137, + "Ġhub": 11838, + "Ġhubs": 46870, + "Ġhue": 24967, + "Ġhug": 8777, + "Ġhuge": 2603, + "Ġhugely": 27417, + "Ġhugging": 41706, + "Ġhugs": 42149, + "Ġhuh": 7020, + "Ġhuis": 46526, + "Ġhull": 32335, + "Ġhum": 1484, + "Ġhuman": 1952, + "Ġhumanitarian": 25096, + "Ġhumanities": 36140, + "Ġhumanity": 10243, + "Ġhumano": 30985, + "Ġhumanos": 34555, + "Ġhumans": 6255, + "Ġhumble": 16735, + "Ġhumbled": 46199, + "Ġhumid": 34649, + "Ġhumidity": 24751, + "Ġhumili": 29981, + "Ġhumility": 27106, + "Ġhumming": 34965, + "Ġhumor": 14318, + "Ġhumour": 45138, + "Ġhump": 47093, + "Ġhun": 7396, + "Ġhunch": 47630, + "Ġhundred": 3262, + "Ġhundreds": 6779, + "Ġhung": 5753, + "Ġhunger": 19229, + "Ġhungry": 8067, + "Ġhunt": 12454, + "Ġhunted": 44943, + "Ġhunter": 22970, + "Ġhunters": 29509, + "Ġhunting": 12599, + "Ġhur": 2756, + "Ġhurdle": 47423, + "Ġhurdles": 48387, + "Ġhurricane": 27136, + "Ġhurricanes": 48026, + "Ġhurry": 11025, + "Ġhurt": 4607, + "Ġhurting": 17744, + "Ġhurts": 11051, + "Ġhus": 4788, + "Ġhusband": 5213, + "Ġhusbands": 37835, + "Ġhust": 25822, + "Ġhustle": 34639, + "Ġhut": 36755, + "Ġhvad": 48160, + "Ġhvis": 45427, + "Ġhvor": 31459, + "Ġhy": 2477, + "Ġhybrid": 13051, + "Ġhyd": 5796, + "Ġhydrated": 44960, + "Ġhydration": 43631, + "Ġhydraul": 27510, + "Ġhydraulic": 32134, + "Ġhydro": 15435, + "Ġhydrogen": 12697, + "Ġhyg": 24470, + "Ġhygiene": 29541, + "Ġhyp": 7420, + "Ġhype": 24144, + "Ġhyped": 43172, + "Ġhyper": 9848, + "Ġhypert": 37488, + "Ġhypertension": 46172, + "Ġhypnot": 42944, + "Ġhypoc": 50207, + "Ġhypocr": 39419, + "Ġhypoth": 24371, + "Ġhypothes": 14276, + "Ġhypotheses": 49969, + "Ġhypothesis": 17291, + "Ġhypothetical": 33053, + "Ġhyster": 35915, + "Ġhyung": 33216, + "Ġhyvin": 36180, + "Ġhyvä": 38526, + "Ġhá": 16448, + "Ġhä": 24054, + "Ġhält": 40751, + "Ġhär": 6533, + "Ġhät": 15344, + "Ġhätte": 20041, + "Ġhätten": 33278, + "Ġhäuf": 39735, + "Ġhäufig": 47543, + "ĠhÃ¥": 24367, + "Ġhè": 49243, + "Ġhé": 32537, + "Ġhö": 13531, + "Ġhöher": 48045, + "Ġhör": 42651, + "Ġhören": 38681, + "Ġhört": 42243, + "ĠhÃłng": 48373, + "ĠhÆ¡n": 34335, + "Ġhết": 44414, + "Ġhá»į": 27700, + "Ġhá»įc": 46786, + "Ġi": 741, + "ĠiOS": 17430, + "ĠiP": 5180, + "ĠiPad": 12945, + "ĠiPh": 42048, + "ĠiPhone": 7252, + "ĠiPhones": 43793, + "ĠiT": 30882, + "ĠiTunes": 33017, + "Ġia": 20721, + "Ġib": 39073, + "Ġiba": 33423, + "Ġic": 4376, + "Ġice": 4435, + "Ġiceberg": 38880, + "Ġiced": 46091, + "Ġich": 1893, + "Ġici": 11575, + "Ġicing": 30086, + "Ġicon": 6528, + "Ġiconic": 15762, + "Ġicons": 23308, + "Ġicy": 42015, + "Ġid": 4496, + "Ġidag": 43334, + "Ġide": 1153, + "Ġidea": 1558, + "Ġideal": 7157, + "Ġideally": 22915, + "Ġideals": 30956, + "Ġideas": 3487, + "Ġidee": 49742, + "Ġideia": 26409, + "Ġident": 2473, + "Ġidentical": 14800, + "Ġidentific": 49456, + "Ġidentification": 22065, + "Ġidentified": 9234, + "Ġidentifier": 45690, + "Ġidentifies": 34597, + "Ġidentify": 5876, + "Ġidentifying": 16696, + "Ġidentities": 24239, + "Ġidentity": 6575, + "Ġideological": 35341, + "Ġideology": 23101, + "Ġidi": 18014, + "Ġidiot": 14270, + "Ġidiots": 36454, + "Ġidle": 30650, + "Ġido": 47771, + "Ġidol": 13060, + "Ġidols": 29959, + "Ġidé": 39227, + "Ġidée": 34832, + "Ġie": 43203, + "Ġiedereen": 47529, + "Ġiemand": 48687, + "Ġiets": 24791, + "Ġif": 498, + "Ġig": 8508, + "Ġigen": 31305, + "Ġign": 5335, + "Ġignite": 49609, + "Ġignition": 37031, + "Ġignor": 14698, + "Ġignorance": 25390, + "Ġignorant": 29374, + "Ġignore": 11200, + "Ġignored": 19735, + "Ġignoring": 26258, + "Ġigual": 10953, + "Ġih": 5096, + "Ġihan": 36131, + "Ġihm": 16021, + "Ġihn": 14534, + "Ġihnen": 24623, + "Ġihr": 5553, + "Ġihre": 14280, + "Ġihrem": 30859, + "Ġihren": 22347, + "Ġihrer": 23990, + "Ġiht": 36737, + "Ġik": 4320, + "Ġiki": 20739, + "Ġikke": 13076, + "Ġil": 1930, + "Ġile": 15465, + "Ġilgili": 43542, + "Ġilk": 28912, + "Ġill": 3171, + "Ġilleg": 9976, + "Ġillegal": 11905, + "Ġillegally": 39585, + "Ġillness": 10152, + "Ġillnesses": 30791, + "Ġillum": 30579, + "Ġillumin": 28593, + "Ġilluminated": 48577, + "Ġillusion": 18854, + "Ġillusions": 49836, + "Ġillust": 8490, + "Ġillustrate": 23221, + "Ġillustrated": 33875, + "Ġillustrates": 41718, + "Ġillustration": 22645, + "Ġillustrations": 34540, + "Ġils": 9047, + "Ġim": 566, + "Ġimag": 2576, + "Ġimage": 3256, + "Ġimagem": 43824, + "Ġimagen": 40652, + "Ġimagery": 24340, + "Ġimages": 5267, + "Ġimagin": 23427, + "Ġimaginar": 49048, + "Ġimaginary": 26164, + "Ġimagination": 12938, + "Ġimagine": 3811, + "Ġimagined": 16590, + "Ġimaging": 25036, + "Ġimagining": 27798, + "Ġimbalance": 43007, + "Ġimitate": 35556, + "Ġimitation": 47624, + "Ġimm": 3397, + "Ġimmature": 49539, + "Ġimmedi": 3640, + "Ġimmediate": 11629, + "Ġimmediately": 4258, + "Ġimmens": 36893, + "Ġimmense": 22920, + "Ġimmensely": 38674, + "Ġimmer": 5578, + "Ġimmers": 16787, + "Ġimmersed": 35416, + "Ġimmersion": 40348, + "Ġimmersive": 35409, + "Ġimmig": 7730, + "Ġimmigrant": 23873, + "Ġimmigrants": 16598, + "Ġimmigration": 13554, + "Ġimmin": 40728, + "Ġimminent": 44339, + "Ġimmort": 44817, + "Ġimmortal": 31414, + "Ġimmun": 13154, + "Ġimmune": 11992, + "Ġimmunity": 22701, + "Ġimp": 704, + "Ġimpact": 2712, + "Ġimpacted": 15653, + "Ġimpactful": 30842, + "Ġimpacting": 29963, + "Ġimpacto": 49687, + "Ġimpacts": 11606, + "Ġimpair": 30256, + "Ġimpaired": 36762, + "Ġimpairment": 42025, + "Ġimpart": 32177, + "Ġimpat": 31156, + "Ġimpatient": 36895, + "Ġimpe": 19643, + "Ġimpeachment": 33663, + "Ġimped": 22584, + "Ġimpedance": 36264, + "Ġimper": 10100, + "Ġimperative": 32490, + "Ġimperfect": 26714, + "Ġimperial": 21143, + "Ġimperson": 38147, + "Ġimpl": 8484, + "Ġimplant": 28309, + "Ġimplants": 43032, + "Ġimplement": 4445, + "Ġimplementation": 11420, + "Ġimplemented": 12270, + "Ġimplementing": 18114, + "Ġimplic": 10629, + "Ġimplication": 37814, + "Ġimplications": 16602, + "Ġimplicit": 26947, + "Ġimplied": 32614, + "Ġimplies": 18779, + "Ġimply": 33616, + "Ġimport": 974, + "Ġimporta": 33218, + "Ġimportance": 7379, + "Ġimportant": 1021, + "Ġimportante": 9416, + "Ġimportantes": 27963, + "Ġimportantly": 8906, + "Ġimported": 25524, + "Ġimporting": 43866, + "Ġimports": 41596, + "Ġimpos": 38396, + "Ġimpose": 26952, + "Ġimposed": 26491, + "Ġimposing": 40288, + "Ġimposs": 38802, + "Ġimpossible": 6243, + "Ġimpost": 47804, + "Ġimpres": 35672, + "Ġimpress": 6729, + "Ġimpressed": 11679, + "Ġimpression": 9995, + "Ġimpressions": 24245, + "Ġimpressive": 8992, + "Ġimprint": 44615, + "Ġimprison": 24146, + "Ġimprisoned": 35332, + "Ġimpro": 2530, + "Ġimproper": 40651, + "Ġimprov": 29424, + "Ġimprove": 3470, + "Ġimproved": 9689, + "Ġimprovement": 10444, + "Ġimprovements": 13797, + "Ġimproves": 24771, + "Ġimproving": 11470, + "Ġimprovis": 39784, + "Ġimpul": 41767, + "Ġimpulse": 26857, + "Ġin": 294, + "Ġinability": 33162, + "Ġinac": 33230, + "Ġinacc": 37957, + "Ġinaccurate": 46443, + "Ġinad": 42148, + "Ġinadequ": 35441, + "Ġinadequate": 42107, + "Ġinadvert": 49152, + "Ġinan": 33113, + "Ġinappropri": 24728, + "Ġinappropriate": 26723, + "Ġinaug": 23541, + "Ġinaugural": 48741, + "Ġinbox": 35067, + "Ġinc": 834, + "Ġincap": 30399, + "Ġincapable": 44174, + "Ġincar": 23694, + "Ġincarcer": 24650, + "Ġincarcerated": 39059, + "Ġincarceration": 41603, + "Ġincarn": 30938, + "Ġincarnation": 49988, + "Ġincense": 50202, + "Ġincent": 11903, + "Ġincentiv": 35328, + "Ġincentive": 22346, + "Ġincentives": 23374, + "Ġinception": 49834, + "Ġinch": 7227, + "Ġinches": 8478, + "Ġincidence": 41726, + "Ġincident": 9348, + "Ġincidents": 21139, + "Ġincl": 37070, + "Ġinclined": 28173, + "Ġinclu": 25520, + "Ġinclud": 1637, + "Ġinclude": 4090, + "Ġincluded": 5556, + "Ġincludes": 5974, + "Ġincluding": 3009, + "Ġinclus": 17204, + "Ġinclusion": 15874, + "Ġinclusive": 13429, + "Ġincluso": 24018, + "Ġincom": 14036, + "Ġincome": 5742, + "Ġincomes": 42458, + "Ġincoming": 22341, + "Ġincomp": 40393, + "Ġincompet": 41602, + "Ġincomplete": 31709, + "Ġincon": 20972, + "Ġincons": 22039, + "Ġinconsistent": 36891, + "Ġinconven": 28752, + "Ġinconvenient": 46196, + "Ġincor": 7121, + "Ġincorpor": 8788, + "Ġincorporate": 16091, + "Ġincorporated": 21654, + "Ġincorporates": 50193, + "Ġincorporating": 33613, + "Ġincorrect": 18424, + "Ġincorrectly": 42892, + "Ġincr": 42211, + "Ġincre": 1946, + "Ġincrease": 3488, + "Ġincreased": 6505, + "Ġincreases": 8637, + "Ġincreasing": 5662, + "Ġincreasingly": 12980, + "Ġincred": 3267, + "Ġincredible": 4651, + "Ġincredibly": 6252, + "Ġincrement": 26200, + "Ġincremental": 35759, + "ĠincreÃŃ": 46202, + "Ġincub": 33345, + "Ġincumb": 39854, + "Ġincumbent": 45539, + "Ġincur": 35774, + "Ġind": 1016, + "Ġinde": 24162, + "Ġindeed": 6451, + "Ġindem": 37185, + "Ġindent": 44494, + "Ġindepend": 4819, + "Ġindependence": 14640, + "Ġindependent": 6695, + "Ġindependently": 21761, + "Ġindex": 8186, + "Ġindic": 4694, + "Ġindicate": 13330, + "Ġindicated": 16176, + "Ġindicates": 16203, + "Ġindicating": 25604, + "Ġindication": 18877, + "Ġindications": 44450, + "Ġindicative": 47513, + "Ġindicator": 16961, + "Ġindicators": 22176, + "Ġindices": 43840, + "Ġindict": 49981, + "Ġindie": 33184, + "Ġindifferent": 48502, + "Ġindigenous": 15511, + "Ġindirect": 19523, + "Ġindirectly": 37779, + "Ġindisp": 40637, + "Ġindispens": 42937, + "Ġindispensable": 47940, + "Ġindivid": 2461, + "Ġindividual": 2609, + "Ġindividually": 16652, + "Ġindividuals": 5346, + "Ġindo": 13770, + "Ġindoor": 24029, + "Ġindoors": 29655, + "Ġindu": 13716, + "Ġinduce": 41263, + "Ġinduced": 33991, + "Ġinduct": 31612, + "Ġinduction": 33371, + "Ġindul": 28626, + "Ġindust": 2735, + "Ġindustri": 49005, + "Ġindustrial": 9987, + "Ġindustries": 13284, + "Ġindustry": 3518, + "Ġine": 7167, + "Ġineffective": 48836, + "Ġinefficient": 43495, + "Ġinequ": 25099, + "Ġinequalities": 41874, + "Ġinequality": 16970, + "Ġinert": 25832, + "Ġinertia": 37234, + "Ġinevit": 14481, + "Ġinevitable": 21451, + "Ġinevitably": 28171, + "Ġinex": 29961, + "Ġinexpensive": 28382, + "Ġinf": 1536, + "Ġinfamous": 30769, + "Ġinfant": 16757, + "Ġinfantry": 30887, + "Ġinfants": 38829, + "Ġinfect": 5888, + "Ġinfected": 15414, + "Ġinfection": 11764, + "Ġinfections": 19478, + "Ġinfectious": 26780, + "Ġinfer": 13596, + "Ġinference": 38253, + "Ġinferior": 24249, + "Ġinfilt": 29085, + "Ġinfin": 7193, + "Ġinfinite": 13785, + "Ġinfinitely": 36227, + "Ġinfinity": 13202, + "Ġinfl": 9922, + "Ġinflam": 15987, + "Ġinflamm": 16782, + "Ġinflammation": 21613, + "Ġinflammatory": 38199, + "Ġinflation": 15860, + "Ġinflict": 38137, + "Ġinflu": 4015, + "Ġinfluen": 9024, + "Ġinfluence": 6503, + "Ġinfluenced": 15269, + "Ġinfluencer": 39503, + "Ġinfluencers": 38646, + "Ġinfluences": 21222, + "Ġinfluencing": 40396, + "Ġinfluential": 22215, + "Ġinfluenza": 36408, + "Ġinfo": 13614, + "Ġinform": 1356, + "Ġinformación": 21660, + "Ġinformal": 24342, + "Ġinformation": 1589, + "Ġinformational": 49391, + "Ġinformations": 38855, + "Ġinformative": 27759, + "Ġinformação": 48403, + "Ġinformações": 42542, + "Ġinformed": 11740, + "Ġinforming": 43969, + "Ġinforms": 45320, + "Ġinfra": 23654, + "Ġinfrared": 30361, + "Ġinfrast": 6534, + "Ġinfrastructure": 6896, + "Ġinfring": 45205, + "Ġinfused": 50083, + "Ġing": 3957, + "Ġingen": 21600, + "Ġingl": 35511, + "Ġinglés": 49766, + "Ġingred": 5621, + "Ġingredient": 14751, + "Ġingredients": 6952, + "Ġinh": 47707, + "Ġinhab": 16934, + "Ġinhabit": 21863, + "Ġinhabitants": 27740, + "Ġinhabited": 47538, + "Ġinhal": 43157, + "Ġinhale": 22071, + "Ġinher": 9484, + "Ġinherent": 26387, + "Ġinherently": 27993, + "Ġinherit": 21389, + "Ġinheritance": 32122, + "Ġinherited": 27091, + "Ġinhib": 20406, + "Ġinhibit": 49858, + "Ġini": 7408, + "Ġinic": 40380, + "Ġinici": 43043, + "Ġinicial": 44076, + "Ġinim": 45945, + "Ġinit": 3157, + "Ġiniti": 6265, + "Ġinitial": 5883, + "Ġinitially": 9105, + "Ġinitiate": 31574, + "Ġinitiated": 28578, + "Ġinitiation": 43569, + "Ġinitiative": 11552, + "Ġinitiatives": 16194, + "Ġinj": 5580, + "Ġinject": 10711, + "Ġinjected": 36967, + "Ġinjection": 22873, + "Ġinjections": 47178, + "Ġinjured": 13408, + "Ġinjuries": 14799, + "Ġinjury": 10454, + "Ġinjust": 19336, + "Ġinjustice": 24750, + "Ġink": 11276, + "Ġinland": 47009, + "Ġinlet": 36961, + "Ġinm": 41052, + "Ġinmates": 39479, + "Ġinn": 7714, + "Ġinnate": 41766, + "Ġinne": 24170, + "Ġinner": 7284, + "Ġinnerhalb": 48460, + "Ġinning": 49989, + "Ġinnoc": 10843, + "Ġinnocence": 35796, + "Ġinnocent": 13171, + "Ġinnov": 5083, + "Ġinnovate": 33444, + "Ġinnovation": 8504, + "Ġinnovations": 24283, + "Ġinnovative": 12999, + "Ġinnych": 36286, + "Ġinom": 44839, + "Ġinput": 4846, + "Ġinputs": 15743, + "Ġinqu": 13570, + "Ġinquiry": 25736, + "Ġins": 1028, + "Ġinsan": 11513, + "Ġinsane": 10838, + "Ġinsanely": 40965, + "Ġinsanity": 47505, + "Ġinsanlar": 36130, + "Ġinsbesondere": 48694, + "Ġinscre": 27824, + "Ġinscription": 49882, + "Ġinse": 33874, + "Ġinsec": 18851, + "Ġinsect": 13261, + "Ġinsects": 20201, + "Ġinsecure": 32215, + "Ġinsecurity": 35058, + "Ġinsert": 8969, + "Ġinserted": 27992, + "Ġinserting": 46567, + "Ġinserts": 49163, + "Ġinsgesamt": 41438, + "Ġinside": 1854, + "Ġinsider": 40990, + "Ġinsight": 11269, + "Ġinsightful": 46401, + "Ġinsights": 14310, + "Ġinsign": 34261, + "Ġinsignificant": 43685, + "Ġinsist": 13466, + "Ġinsisted": 28456, + "Ġinsists": 50137, + "Ġinsp": 3741, + "Ġinspect": 15018, + "Ġinspection": 22085, + "Ġinspections": 46544, + "Ġinspector": 34564, + "Ġinspir": 17432, + "Ġinspiration": 10249, + "Ġinspirational": 33554, + "Ġinspire": 15638, + "Ġinspired": 7547, + "Ġinspires": 32566, + "Ġinspiring": 15883, + "Ġinst": 1058, + "Ġinstability": 34379, + "Ġinstagram": 22102, + "Ġinstal": 34059, + "Ġinstall": 3625, + "Ġinstallation": 13260, + "Ġinstallations": 41932, + "Ġinstalled": 8899, + "Ġinstaller": 46620, + "Ġinstalling": 20762, + "Ġinstallment": 39413, + "Ġinstance": 5197, + "Ġinstances": 14519, + "Ġinstant": 9836, + "Ġinstantaneous": 45596, + "Ġinstantly": 13518, + "Ġinstead": 2602, + "Ġinstinct": 16556, + "Ġinstincts": 38997, + "Ġinstit": 4348, + "Ġinstitute": 26860, + "Ġinstitution": 7818, + "Ġinstitutional": 18391, + "Ġinstitutions": 8142, + "Ġinstr": 5488, + "Ġinstruct": 7232, + "Ġinstructed": 36384, + "Ġinstruction": 10951, + "Ġinstructional": 35716, + "Ġinstructions": 9415, + "Ġinstructor": 18499, + "Ġinstructors": 28367, + "Ġinstrument": 7198, + "Ġinstrumental": 17388, + "Ġinstruments": 12190, + "Ġinsufficient": 41709, + "Ġinsulation": 30508, + "Ġinsulin": 21587, + "Ġinsult": 15285, + "Ġinsulted": 49063, + "Ġinsulting": 44463, + "Ġinsurance": 7214, + "Ġint": 560, + "Ġintact": 23493, + "Ġintake": 18060, + "Ġinte": 2830, + "Ġinteg": 16200, + "Ġinteger": 24922, + "Ġintegers": 41674, + "Ġintegr": 3572, + "Ġintegral": 11573, + "Ġintegrate": 13365, + "Ġintegrated": 10919, + "Ġintegrating": 26889, + "Ġintegration": 10980, + "Ġintegrity": 16000, + "Ġinteiro": 45633, + "Ġintel": 24777, + "Ġintelig": 44300, + "Ġintell": 4359, + "Ġintellect": 10058, + "Ġintellectual": 12576, + "Ġintellectually": 46481, + "Ġintellig": 5613, + "Ġintelligence": 7599, + "Ġintelligent": 13232, + "Ġinten": 43094, + "Ġintend": 19759, + "Ġintended": 10226, + "Ġintens": 14056, + "Ġintense": 9447, + "Ġintensely": 43235, + "Ġintensity": 13749, + "Ġintensive": 18957, + "Ġintent": 8446, + "Ġintentar": 46596, + "Ġintention": 7789, + "Ġintentional": 21935, + "Ġintentionally": 22062, + "Ġintentions": 19354, + "Ġinter": 728, + "Ġinteract": 4648, + "Ġinteracted": 49621, + "Ġinteracting": 18017, + "Ġinteraction": 9285, + "Ġinteractions": 13280, + "Ġinteractive": 15141, + "Ġinteracts": 43582, + "Ġintercept": 24700, + "Ġinterchange": 30358, + "Ġinterconnect": 26253, + "Ġinterconnected": 36611, + "Ġinterdisciplinary": 38280, + "Ġinteres": 20157, + "Ġinteresante": 36396, + "Ġinteress": 12478, + "Ġinteressant": 37748, + "Ġinteressante": 24372, + "Ġinterest": 1179, + "Ġinterested": 3102, + "Ġinteresting": 1880, + "Ġinterestingly": 25873, + "Ġinterests": 8847, + "Ġinterf": 14510, + "Ġinterface": 9226, + "Ġinterfaces": 28416, + "Ġinterfer": 25799, + "Ġinterfere": 23946, + "Ġinterference": 24497, + "Ġinterfering": 48721, + "Ġinterim": 33500, + "Ġinterior": 10636, + "Ġinterject": 46787, + "Ġintermedi": 15184, + "Ġintermediate": 19376, + "Ġintermitt": 38548, + "Ġintermittent": 44084, + "Ġintern": 2154, + "Ġinternacional": 37382, + "Ġinternal": 6920, + "Ġinternally": 19501, + "Ġinternation": 19257, + "Ġinternational": 5058, + "Ġinternationally": 24422, + "Ġinternet": 4705, + "Ġinterns": 46145, + "Ġinternship": 16861, + "Ġinternships": 35712, + "Ġinterpersonal": 47102, + "Ġinterpol": 44902, + "Ġinterpre": 17489, + "Ġinterpret": 7302, + "Ġinterpretation": 14174, + "Ġinterpretations": 37547, + "Ġinterpreted": 26749, + "Ġinterpreter": 34132, + "Ġinterpreting": 37395, + "Ġinterrog": 24871, + "Ġinterrupt": 12729, + "Ġinterrupted": 30329, + "Ġinterrupting": 49455, + "Ġintersect": 27815, + "Ġintersection": 15236, + "Ġintersections": 47664, + "Ġintertw": 44400, + "Ġinterval": 15035, + "Ġintervals": 26651, + "Ġinterven": 17104, + "Ġintervene": 30407, + "Ġintervention": 13176, + "Ġinterventions": 20924, + "Ġinterview": 4049, + "Ġinterviewed": 19770, + "Ġinterviewing": 26524, + "Ġinterviews": 12318, + "Ġintest": 21098, + "Ġintestine": 42446, + "Ġintestines": 44429, + "Ġintim": 13148, + "Ġintimacy": 34450, + "Ġintimate": 20215, + "Ġintimid": 17042, + "Ġintimidated": 40234, + "Ġintimidating": 29714, + "Ġinto": 666, + "Ġintoler": 35278, + "Ġintox": 40809, + "Ġintr": 17467, + "Ġintra": 43358, + "Ġintric": 30242, + "Ġintricate": 38015, + "Ġintrig": 17934, + "Ġintrigued": 35140, + "Ġintriguing": 32503, + "Ġintrins": 28621, + "Ġintrinsic": 35698, + "Ġintro": 12897, + "Ġintrodu": 2814, + "Ġintroduce": 5366, + "Ġintroduced": 7268, + "Ġintroduces": 31472, + "Ġintroducing": 15424, + "Ġintroduction": 9339, + "Ġintroductions": 48032, + "Ġintroductory": 39048, + "Ġintuit": 16224, + "Ġintuition": 24002, + "Ġintuitive": 21769, + "Ġintuitively": 46506, + "Ġinté": 18555, + "Ġintéress": 23243, + "Ġintéressant": 34358, + "Ġinv": 1048, + "Ġinvade": 39171, + "Ġinvaded": 35882, + "Ġinvalid": 34702, + "Ġinvaluable": 40367, + "Ġinvari": 33270, + "Ġinvasion": 21575, + "Ġinvasive": 30894, + "Ġinve": 32957, + "Ġinvece": 36344, + "Ġinvent": 7962, + "Ġinvented": 14479, + "Ġinvention": 22265, + "Ġinventions": 43748, + "Ġinventor": 41593, + "Ġinventory": 14228, + "Ġinver": 28653, + "Ġinvers": 21378, + "Ġinverse": 17340, + "Ġinversion": 43576, + "Ġinvert": 33966, + "Ġinverted": 38969, + "Ġinverter": 47201, + "Ġinvest": 1963, + "Ġinvested": 13104, + "Ġinvestig": 4557, + "Ġinvestigación": 48919, + "Ġinvestigate": 15013, + "Ġinvestigated": 30070, + "Ġinvestigating": 22858, + "Ġinvestigation": 9627, + "Ġinvestigations": 25582, + "Ġinvestigative": 45495, + "Ġinvestigator": 38330, + "Ġinvestigators": 27079, + "Ġinvesting": 10978, + "Ġinvestir": 49646, + "Ġinvestment": 6078, + "Ġinvestments": 13784, + "Ġinvestor": 18479, + "Ġinvestors": 11519, + "Ġinvinci": 42807, + "Ġinvincible": 48514, + "Ġinvis": 13308, + "Ġinvisible": 14603, + "Ġinvit": 43714, + "Ġinvitation": 17890, + "Ġinvite": 7980, + "Ġinvited": 9185, + "Ġinvites": 35719, + "Ġinviting": 18202, + "Ġinvoice": 47919, + "Ġinvoke": 41117, + "Ġinvol": 2499, + "Ġinvolve": 9494, + "Ġinvolved": 3288, + "Ġinvolvement": 17447, + "Ġinvolves": 11626, + "Ġinvolving": 17030, + "Ġinward": 29876, + "ĠinÃŃcio": 45979, + "Ġio": 19785, + "Ġiod": 44422, + "Ġion": 17437, + "Ġions": 27362, + "Ġip": 28501, + "Ġir": 3418, + "Ġirgend": 11093, + "Ġirgendw": 26455, + "Ġirgendwann": 34313, + "Ġirgendwas": 47090, + "Ġirgendwie": 20759, + "Ġirgendwo": 40865, + "Ġirm": 33842, + "Ġiron": 6497, + "Ġironic": 33719, + "Ġironically": 41082, + "Ġirony": 35365, + "Ġirr": 29413, + "Ġirrational": 39914, + "Ġirre": 16014, + "Ġirregular": 29349, + "Ġirrelevant": 28682, + "Ġirrespons": 38626, + "Ġirresponsible": 46320, + "Ġirrig": 26129, + "Ġirrigation": 31753, + "Ġirrit": 16029, + "Ġirritated": 43650, + "Ġirritating": 45971, + "Ġirritation": 50031, + "Ġis": 307, + "Ġise": 40912, + "Ġisland": 6077, + "Ġislands": 17402, + "Ġisn": 1943, + "Ġisol": 7381, + "Ġisolate": 25660, + "Ġisolated": 14621, + "Ġisolating": 48912, + "Ġisolation": 16001, + "Ġisot": 38018, + "Ġiss": 1620, + "Ġisso": 4616, + "Ġissue": 2734, + "Ġissued": 14379, + "Ġissues": 2663, + "Ġissuing": 43214, + "Ġist": 1418, + "Ġiste": 49920, + "Ġistedi": 40058, + "Ġistem": 42785, + "Ġister": 40366, + "Ġistiyorum": 36699, + "Ġisto": 35835, + "Ġit": 309, + "Ġital": 22366, + "Ġitaliano": 48486, + "Ġitchy": 47360, + "Ġitem": 3174, + "Ġitems": 4754, + "Ġiter": 17138, + "Ġiterate": 44497, + "Ġiteration": 24784, + "Ġiterations": 36540, + "Ġits": 1080, + "Ġitself": 2564, + "Ġitt": 47786, + "Ġitu": 9032, + "ĠitÃŃs": 30924, + "Ġiv": 32412, + "Ġivory": 49218, + "Ġiy": 29861, + "Ġiyi": 16173, + "Ġiz": 14736, + "Ġizquier": 46428, + "Ġiç": 6058, + "Ġiçer": 33913, + "Ġiçin": 8457, + "Ġiçinde": 34283, + "ĠiÅŁ": 8690, + "ĠiÅŁi": 45377, + "ĠiÅŁte": 19804, + "Ġj": 361, + "Ġja": 2784, + "Ġjaar": 22579, + "Ġjab": 33475, + "Ġjack": 7109, + "Ġjacket": 11781, + "Ġjackets": 34612, + "Ġjadi": 19399, + "Ġjag": 6368, + "Ġjail": 10511, + "Ġjak": 4207, + "Ġjakby": 28976, + "Ġjaki": 24492, + "Ġjakie": 22124, + "ĠjakieÅĽ": 31163, + "Ġjakim": 49410, + "ĠjakiÅĽ": 34721, + "Ġjako": 17123, + "ĠjakÄħ": 46719, + "Ġjal": 43089, + "Ġjam": 7872, + "Ġjamais": 14540, + "Ġjan": 25442, + "Ġjangan": 45107, + "Ġjap": 48330, + "Ġjapanese": 49508, + "Ġjar": 15181, + "Ġjard": 46153, + "Ġjars": 38239, + "Ġjaw": 18162, + "Ġjaws": 44942, + "Ġjazz": 15066, + "Ġje": 1506, + "Ġjealous": 13805, + "Ġjealousy": 36103, + "Ġjeans": 18880, + "Ġjed": 5232, + "Ġjede": 34039, + "Ġjedem": 36538, + "Ġjeden": 12906, + "Ġjeder": 19610, + "Ġjedes": 36119, + "Ġjednak": 25897, + "Ġjedoch": 46311, + "Ġjeg": 10610, + "Ġjego": 26542, + "Ġjeito": 31478, + "Ġjej": 28924, + "Ġjelly": 17186, + "Ġjemand": 21717, + "Ġjeopard": 44295, + "Ġjer": 20160, + "Ġjerk": 25197, + "Ġjersey": 40700, + "Ġjest": 3492, + "Ġjeste": 25255, + "Ġjestem": 29627, + "ĠjesteÅĽmy": 35928, + "Ġjeszcze": 14168, + "Ġjet": 14452, + "Ġjets": 35124, + "Ġjetzt": 4354, + "Ġjeu": 16748, + "Ġjeune": 35610, + "Ġjeunes": 32830, + "Ġjeux": 35093, + "Ġjew": 13149, + "Ġjewe": 46534, + "Ġjewel": 16010, + "Ġjewelry": 19982, + "Ġjewels": 43256, + "Ġjeżeli": 23001, + "ĠjeÅĽli": 25630, + "Ġji": 32606, + "Ġjig": 43716, + "Ġjij": 28002, + "Ġjin": 43528, + "Ġjingle": 49495, + "Ġjo": 1488, + "Ġjob": 1691, + "Ġjobbar": 42965, + "Ġjobs": 4782, + "Ġjog": 9464, + "Ġjogar": 39248, + "Ġjogo": 20068, + "Ġjogos": 39307, + "Ġjohn": 35097, + "Ġjoin": 3917, + "Ġjoined": 6869, + "Ġjoining": 5549, + "Ġjoins": 24397, + "Ġjoint": 7225, + "Ġjointly": 46557, + "Ġjoints": 19949, + "Ġjoka": 33793, + "Ġjoke": 7647, + "Ġjokes": 14439, + "Ġjoking": 17396, + "Ġjon": 49151, + "Ġjong": 38678, + "Ġjorn": 40345, + "Ġjos": 29217, + "Ġjot": 27873, + "Ġjotka": 47005, + "Ġjou": 11110, + "Ġjoue": 46209, + "Ġjouer": 30823, + "Ġjour": 2827, + "Ġjourn": 17598, + "Ġjournal": 6708, + "Ġjournalism": 23191, + "Ġjournalist": 17277, + "Ġjournalists": 19535, + "Ġjournals": 29621, + "Ġjourney": 4671, + "Ġjourneys": 36736, + "Ġjournée": 34277, + "Ġjours": 20724, + "Ġjoy": 6258, + "Ġjoyful": 33090, + "Ġjoystick": 48074, + "Ġjs": 42713, + "Ġjsem": 47784, + "Ġju": 3649, + "Ġjud": 3747, + "Ġjudge": 6995, + "Ġjudged": 27485, + "Ġjudgement": 33473, + "Ġjudges": 14449, + "Ġjudging": 23587, + "Ġjudgment": 12216, + "Ġjudgments": 40337, + "Ġjudicial": 26581, + "Ġjudiciary": 49987, + "Ġjue": 27833, + "Ġjuego": 21344, + "Ġjuegos": 43411, + "Ġjug": 9568, + "Ġjuga": 14462, + "Ġjugar": 37692, + "Ġjuice": 8544, + "Ġjuices": 37027, + "Ġjuicy": 24696, + "Ġjul": 30764, + "Ġjullie": 29633, + "Ġjum": 29067, + "Ġjump": 3012, + "Ġjumped": 13864, + "Ġjumper": 44061, + "Ġjumping": 11233, + "Ġjumps": 16704, + "Ġjun": 8156, + "Ġjunction": 33718, + "Ġjung": 14202, + "Ġjunge": 47877, + "Ġjungle": 18228, + "Ġjunior": 16195, + "Ġjunk": 19109, + "Ġjunt": 22739, + "Ġjunto": 24663, + "Ġjuntos": 33868, + "Ġjur": 12721, + "Ġjuris": 17785, + "Ġjurisd": 19078, + "Ġjurisdiction": 27285, + "Ġjurisdictions": 37958, + "Ġjury": 19516, + "Ġjus": 17217, + "Ġjusqu": 20340, + "Ġjust": 445, + "Ġjustamente": 41056, + "Ġjuste": 13016, + "Ġjustement": 27807, + "Ġjustice": 6118, + "Ġjustification": 31591, + "Ġjustified": 27808, + "Ġjustify": 20833, + "Ġjusto": 40534, + "Ġjut": 42079, + "Ġjuven": 32641, + "Ġjuvenile": 38486, + "Ġjuż": 10678, + "Ġjá": 6242, + "Ġjätte": 46752, + "Ġjó": 31390, + "Ġjóvenes": 45110, + "ĠjÄħ": 35692, + "ĠjÄĻ": 42309, + "ĠjÄĻzy": 49055, + "Ġk": 350, + "Ġka": 6799, + "Ġkab": 27835, + "Ġkabul": 46925, + "Ġkad": 8064, + "Ġkadar": 10456, + "Ġkadın": 39421, + "Ġkaf": 35426, + "Ġkah": 21651, + "Ġkahkaha": 37357, + "Ġkaik": 30381, + "Ġkaikki": 46992, + "Ġkal": 7788, + "Ġkalau": 20218, + "Ġkald": 27110, + "Ġkale": 34699, + "Ġkali": 41690, + "Ġkalian": 34531, + "Ġkalk": 34960, + "Ġkalo": 40257, + "Ġkam": 9727, + "Ġkamera": 43246, + "Ġkami": 34502, + "Ġkamp": 45369, + "Ġkamu": 20705, + "Ġkan": 4608, + "Ġkana": 42372, + "Ġkang": 47898, + "Ġkann": 4028, + "Ġkannst": 20853, + "Ġkans": 16030, + "Ġkanske": 24487, + "Ġkanssa": 49054, + "Ġkant": 44055, + "Ġkap": 13816, + "Ġkar": 7917, + "Ġkara": 29555, + "Ġkaraoke": 41629, + "Ġkarate": 48464, + "ĠkardeÅŁ": 24073, + "ĠkardeÅŁim": 38070, + "Ġkarena": 27173, + "Ġkarma": 28396, + "Ġkart": 29120, + "ĠkarÄ±ÅŁ": 36716, + "ĠkarÅŁ": 21742, + "ĠkarÅŁÄ±": 31653, + "Ġkas": 19173, + "Ġkasih": 35894, + "Ġkat": 16536, + "Ġkau": 36273, + "Ġkaufen": 42083, + "Ġkaum": 36443, + "Ġkav": 39039, + "Ġkay": 12446, + "Ġkayak": 22438, + "Ġkaz": 30623, + "Ġkaç": 23916, + "Ġkaż": 21912, + "Ġkażdy": 31615, + "Ġke": 803, + "Ġked": 42472, + "Ġkeen": 20297, + "Ġkeep": 1066, + "Ġkeeper": 38709, + "Ġkeeping": 5145, + "Ġkeeps": 5965, + "Ġkeer": 31531, + "Ġkeh": 39616, + "Ġkein": 13424, + "Ġkeine": 9252, + "Ġkeinen": 20624, + "Ġkeiner": 37767, + "Ġkel": 31332, + "Ġkell": 41892, + "Ġkelu": 40559, + "Ġkeluar": 43365, + "Ġken": 18787, + "Ġkend": 17016, + "Ġkendi": 29723, + "Ġkenn": 36272, + "Ġkennen": 28445, + "Ġkennt": 37682, + "Ġkep": 36428, + "Ġkepada": 45598, + "Ġkept": 4305, + "Ġker": 19377, + "Ġkern": 23434, + "Ġkernel": 28256, + "Ġkes": 16050, + "Ġket": 14979, + "Ġketchup": 29301, + "Ġketo": 44299, + "Ġkettle": 39088, + "Ġkey": 2141, + "Ġkeyboard": 10186, + "Ġkeyboards": 47808, + "Ġkeynote": 33896, + "Ġkeys": 9317, + "Ġkeyword": 20428, + "Ġkeywords": 21009, + "Ġkg": 15696, + "Ġkh": 7168, + "Ġkhi": 23526, + "Ġkho": 49627, + "Ġkhác": 43713, + "Ġkhông": 11415, + "Ġki": 6315, + "Ġkick": 4437, + "Ġkicked": 14609, + "Ġkicking": 19137, + "Ġkicks": 21293, + "Ġkid": 1636, + "Ġkidding": 9287, + "Ġkidna": 20673, + "Ġkidnapped": 29300, + "Ġkidnapping": 47868, + "Ġkidney": 19000, + "Ġkidneys": 35994, + "Ġkids": 2301, + "Ġkiedy": 18777, + "Ġkier": 38767, + "Ġkij": 26106, + "Ġkijken": 30446, + "Ġkil": 5128, + "Ġkilka": 36466, + "Ġkill": 1961, + "Ġkilled": 4652, + "Ġkiller": 13364, + "Ġkillers": 39369, + "Ġkilling": 8011, + "Ġkills": 14563, + "Ġkilo": 21112, + "Ġkilogram": 21741, + "Ġkilograms": 30690, + "Ġkilomet": 9677, + "Ġkilometer": 33795, + "Ġkilometers": 13904, + "Ġkilometres": 30489, + "Ġkilos": 30000, + "Ġkilow": 41295, + "Ġkim": 10776, + "Ġkimchi": 21656, + "Ġkimse": 42005, + "Ġkin": 15784, + "Ġkind": 733, + "Ġkinda": 4144, + "Ġkinderen": 48935, + "Ġkinderg": 24514, + "Ġkindergarten": 26671, + "Ġkindly": 29736, + "Ġkindness": 18171, + "Ġkinds": 3685, + "Ġkinetic": 27135, + "Ġking": 4867, + "Ġkingdom": 10231, + "Ġkingdoms": 44171, + "Ġkings": 21581, + "Ġkir": 33497, + "Ġkiss": 7704, + "Ġkissed": 33027, + "Ġkisses": 35850, + "Ġkissing": 29495, + "Ġkit": 8260, + "Ġkita": 8965, + "Ġkitchen": 6525, + "Ġkite": 38867, + "Ġkits": 22095, + "Ġkitten": 39696, + "Ġkittens": 47363, + "Ġkitty": 33026, + "ĠkiÅŁ": 28212, + "ĠkiÅŁi": 47462, + "Ġkl": 9671, + "Ġkla": 33337, + "Ġklar": 14743, + "Ġklass": 42917, + "Ġkle": 9318, + "Ġklein": 29231, + "Ġkleine": 22278, + "Ġkleinen": 26512, + "Ġkleiner": 39496, + "Ġklim": 36816, + "Ġkm": 10698, + "Ġkn": 444, + "Ġknapp": 40979, + "Ġkne": 32704, + "Ġknead": 28602, + "Ġknee": 9434, + "Ġknees": 10546, + "Ġknew": 2586, + "Ġknife": 7976, + "Ġknight": 26054, + "Ġknights": 48218, + "Ġknit": 15594, + "Ġknitting": 25498, + "Ġknives": 26279, + "Ġknob": 26759, + "Ġknobs": 46999, + "Ġknock": 6728, + "Ġknocked": 16914, + "Ġknocking": 24085, + "Ġknocks": 40815, + "Ġknot": 16966, + "Ġknots": 27426, + "Ġknow": 458, + "Ġknowing": 5276, + "Ġknowledge": 3601, + "Ġknowledgeable": 33800, + "Ġknown": 2570, + "Ġknows": 3255, + "Ġko": 8384, + "Ġkob": 43057, + "Ġkok": 28376, + "Ġkol": 17818, + "Ġkolay": 44999, + "Ġkole": 18303, + "Ġkolej": 23749, + "Ġkoll": 44693, + "Ġkom": 5207, + "Ġkomb": 42925, + "Ġkomen": 27190, + "Ġkomm": 6669, + "Ġkomma": 41808, + "Ġkomme": 31194, + "Ġkommen": 11729, + "Ġkommer": 12589, + "Ġkommt": 10047, + "Ġkommun": 26275, + "Ġkompl": 24526, + "Ġkomplett": 32261, + "Ġkomt": 27760, + "Ġkomun": 45359, + "Ġkon": 5897, + "Ġkonk": 21428, + "Ġkonkret": 36500, + "Ġkonnte": 24058, + "Ġkonnten": 38216, + "Ġkons": 27896, + "Ġkonse": 47020, + "Ġkonst": 34208, + "Ġkont": 14373, + "Ġkontroll": 47107, + "ĠkonuÅŁ": 17311, + "Ġkop": 28920, + "Ġkor": 14784, + "Ġkork": 33445, + "Ġkort": 46980, + "Ġkos": 19532, + "Ġkoska": 49139, + "Ġkost": 27183, + "Ġkosten": 44115, + "Ġkot": 43029, + "Ġkoy": 22674, + "ĠkoÅĦ": 26470, + "ĠkoÅŁ": 49251, + "Ġkr": 15913, + "Ġkra": 28248, + "Ġkrie": 25766, + "Ġkriegen": 46882, + "Ġkrij": 27027, + "Ġkrijgen": 43460, + "Ġkrit": 42825, + "Ġkro": 45909, + "Ġkry": 34847, + "Ġkró": 42366, + "Ġksi": 35952, + "ĠksiÄħż": 39311, + "Ġkto": 23780, + "ĠktoÅĽ": 32982, + "Ġktó": 4695, + "Ġktóra": 19456, + "Ġktóre": 8864, + "Ġktórego": 46951, + "Ġktórej": 36023, + "Ġktóry": 9913, + "Ġktórych": 30382, + "Ġktórym": 30120, + "Ġktórzy": 25382, + "ĠktórÄħ": 37415, + "Ġku": 17807, + "Ġkuin": 31032, + "Ġkul": 27576, + "Ġkull": 22511, + "Ġkullan": 27443, + "Ġkun": 8215, + "Ġkung": 49304, + "Ġkunna": 32074, + "Ġkunne": 45335, + "Ġkunnen": 18377, + "Ġkunt": 34199, + "Ġkup": 37534, + "Ġkur": 10072, + "Ġkurt": 34701, + "Ġkurz": 20465, + "Ġkuv": 49275, + "Ġkw": 23846, + "Ġkwest": 42035, + "Ġky": 28740, + "Ġkys": 35573, + "Ġkä": 16563, + "Ġkän": 48293, + "Ġkäyt": 49313, + "Ġkäytt": 49811, + "Ġkö": 15881, + "Ġkön": 4798, + "Ġkönnen": 6310, + "Ġkönnt": 22541, + "Ġkönnte": 17646, + "Ġkönnten": 37411, + "Ġkör": 42889, + "Ġköt": 32629, + "Ġkötü": 38456, + "Ġkü": 24572, + "Ġküç": 39959, + "Ġküçük": 45704, + "Ġkı": 25470, + "Ġkır": 33414, + "Ġkız": 15225, + "Ġkızım": 37013, + "Ġl": 287, + "Ġla": 635, + "Ġlaat": 32769, + "Ġlab": 2715, + "Ġlabel": 7645, + "Ġlabeled": 21335, + "Ġlabeling": 40244, + "Ġlabels": 16949, + "Ġlabor": 5938, + "Ġlaboratories": 41013, + "Ġlaboratory": 16523, + "Ġlabour": 22572, + "Ġlabs": 20339, + "Ġlac": 28027, + "Ġlace": 33469, + "Ġlack": 5011, + "Ġlacked": 41481, + "Ġlacking": 20889, + "Ġlacks": 31132, + "Ġlact": 34042, + "Ġlad": 6632, + "Ġladder": 18325, + "Ġladies": 9974, + "Ġlado": 11631, + "Ġlados": 40301, + "Ġlady": 7262, + "Ġlag": 8953, + "Ġlagi": 17742, + "Ġlah": 26532, + "Ġlaid": 9897, + "Ġlain": 29272, + "Ġlaisse": 30969, + "Ġlaisser": 34463, + "Ġlake": 11001, + "Ġlakes": 25595, + "Ġlakh": 33314, + "Ġlam": 24688, + "Ġlama": 45423, + "Ġlamb": 10097, + "Ġlambda": 13607, + "Ġlame": 27635, + "Ġlament": 35888, + "Ġlamp": 12684, + "Ġlamps": 34887, + "Ġlan": 9326, + "Ġlance": 39234, + "Ġland": 2117, + "Ġlanded": 15336, + "Ġlandfill": 47031, + "Ġlanding": 11202, + "Ġlandlord": 32654, + "Ġlandlords": 48787, + "Ġlandmark": 26962, + "Ġlands": 5949, + "Ġlandsca": 23865, + "Ġlandscape": 9661, + "Ġlandscapes": 29822, + "Ġlane": 12705, + "Ġlanes": 25397, + "Ġlang": 2265, + "Ġlange": 18131, + "Ġlangsam": 39597, + "Ġlangu": 2510, + "Ġlanguage": 2856, + "Ġlanguages": 8650, + "Ġlangue": 40318, + "Ġlantern": 34031, + "Ġlanz": 38363, + "Ġlanç": 36251, + "Ġlap": 13214, + "Ġlaps": 24971, + "Ġlapse": 49757, + "Ġlapt": 9183, + "Ġlaptop": 10732, + "Ġlaptops": 27642, + "Ġlaquelle": 35668, + "Ġlar": 1613, + "Ġlarg": 11034, + "Ġlarge": 2416, + "Ġlargely": 11611, + "Ġlarger": 4833, + "Ġlargest": 6443, + "Ġlargo": 31245, + "Ġlarva": 42290, + "Ġlas": 2439, + "Ġlasci": 48451, + "Ġlaser": 12530, + "Ġlasers": 37948, + "Ġlash": 35275, + "Ġlashes": 25552, + "Ġlass": 45829, + "Ġlassen": 16168, + "Ġlast": 1036, + "Ġlasted": 21116, + "Ġlasting": 20714, + "Ġlastly": 16386, + "Ġlasts": 20669, + "Ġlat": 4465, + "Ġlata": 46722, + "Ġlatch": 31837, + "Ġlate": 3469, + "Ġlately": 12881, + "Ġlaten": 36335, + "Ġlatency": 27043, + "Ġlatent": 48994, + "Ġlater": 1780, + "Ġlateral": 25128, + "Ġlatest": 6792, + "Ġlatitude": 45436, + "Ġlatt": 29025, + "Ġlatte": 37854, + "Ġlatter": 18481, + "Ġlattice": 34011, + "Ġlaude": 48248, + "Ġlaufen": 41647, + "Ġlaugh": 5801, + "Ġlaughed": 20881, + "Ġlaughing": 5059, + "Ġlaughs": 6197, + "Ġlaughter": 13092, + "Ġlaunch": 4025, + "Ġlaunched": 8730, + "Ġlauncher": 36805, + "Ġlaunches": 31841, + "Ġlaunching": 18354, + "Ġlaund": 17245, + "Ġlaundry": 19811, + "Ġlaure": 49469, + "Ġlaut": 44330, + "Ġlav": 20923, + "Ġlava": 22097, + "Ġlavender": 43757, + "Ġlavor": 29241, + "Ġlavoro": 42060, + "Ġlaw": 2101, + "Ġlawmakers": 40988, + "Ġlawn": 19915, + "Ġlaws": 6064, + "Ġlawsuit": 22504, + "Ġlawsuits": 39493, + "Ġlawyer": 11613, + "Ġlawyers": 16219, + "Ġlay": 2360, + "Ġlayer": 4583, + "Ġlayered": 34666, + "Ġlayering": 40754, + "Ġlayers": 7914, + "Ġlaying": 14903, + "Ġlayout": 13333, + "Ġlayouts": 46100, + "Ġlays": 32714, + "Ġlaz": 19320, + "Ġlazy": 14847, + "Ġlazım": 23951, + "Ġle": 476, + "Ġlead": 1477, + "Ġleader": 5263, + "Ġleaders": 3523, + "Ġleadership": 5848, + "Ġleading": 5775, + "Ġleads": 6689, + "Ġleaf": 10871, + "Ġleague": 14957, + "Ġleagues": 48429, + "Ġleak": 17143, + "Ġleakage": 47799, + "Ġleaked": 31779, + "Ġleaking": 32856, + "Ġleaks": 28885, + "Ġlean": 11659, + "Ġleaned": 48874, + "Ġleaning": 23390, + "Ġleap": 19438, + "Ġlearn": 1466, + "Ġlearned": 3264, + "Ġlearner": 33347, + "Ġlearners": 23655, + "Ġlearning": 2539, + "Ġlearns": 27152, + "Ġlearnt": 18991, + "Ġlease": 24961, + "Ġleash": 41616, + "Ġleast": 1935, + "Ġleather": 12821, + "Ġleav": 3236, + "Ġleave": 1856, + "Ġleaves": 5510, + "Ġleaving": 5012, + "Ġleb": 17111, + "Ġleben": 26392, + "Ġlebih": 20451, + "Ġleche": 50047, + "Ġlect": 5899, + "Ġlecture": 7991, + "Ġlecturer": 49881, + "Ġlectures": 16564, + "Ġled": 4684, + "Ġledge": 47109, + "Ġlee": 46571, + "Ġleer": 34172, + "Ġleft": 1411, + "Ġleftover": 27373, + "Ġleftovers": 43011, + "Ġleg": 1676, + "Ġlegacy": 11711, + "Ġlegal": 5089, + "Ġlegally": 21106, + "Ġlegen": 48315, + "Ġlegend": 9451, + "Ġlegendary": 16698, + "Ġlegends": 27695, + "Ġlegg": 30991, + "Ġleggings": 42733, + "Ġlegisl": 6593, + "Ġlegislation": 11329, + "Ġlegislative": 21331, + "Ġlegislators": 39264, + "Ġlegislature": 21631, + "Ġlegit": 10275, + "Ġlegitim": 29754, + "Ġlegitimacy": 41339, + "Ġlegitimate": 17956, + "Ġlegitimately": 44431, + "Ġlegs": 5668, + "Ġlei": 32791, + "Ġleicht": 28333, + "Ġleider": 29115, + "Ġleisten": 47013, + "Ġleisure": 31339, + "Ġlek": 30863, + "Ġlekker": 44125, + "Ġlem": 7495, + "Ġlemon": 11356, + "Ġlemonade": 44374, + "Ġlemons": 47098, + "Ġlen": 40116, + "Ġlend": 21774, + "Ġlender": 47500, + "Ġlending": 29823, + "Ġleng": 35044, + "Ġlength": 4641, + "Ġlengths": 26329, + "Ġlengthy": 35374, + "Ġlens": 6765, + "Ġlenses": 18059, + "Ġlent": 23556, + "Ġleopard": 47161, + "Ġlequel": 39439, + "Ġler": 32068, + "Ġlernen": 36082, + "Ġles": 1512, + "Ġlesbian": 30253, + "Ġless": 1570, + "Ġlesser": 22043, + "Ġlesson": 6898, + "Ġlessons": 8820, + "Ġlet": 718, + "Ġlethal": 34562, + "Ġlets": 6653, + "Ġlett": 20689, + "Ġletter": 5063, + "Ġletters": 7825, + "Ġletting": 8295, + "Ġlettuce": 25542, + "Ġletz": 14027, + "Ġletzt": 35262, + "Ġletzte": 35236, + "Ġletzten": 18226, + "Ġleuk": 32665, + "Ġleuke": 45970, + "Ġleur": 9580, + "Ġleurs": 18341, + "Ġlev": 20445, + "Ġleva": 43410, + "Ġlevant": 30612, + "Ġlevar": 34538, + "Ġleve": 33076, + "Ġlevel": 1496, + "Ġleveling": 40617, + "Ġlevels": 4358, + "Ġleven": 45542, + "Ġlever": 12451, + "Ġleverage": 13982, + "Ġleveraging": 32666, + "Ġlevers": 45571, + "Ġley": 27786, + "Ġli": 375, + "Ġliability": 25196, + "Ġliaison": 49431, + "Ġliar": 27323, + "Ġlib": 22854, + "Ġliber": 6774, + "Ġliberal": 13767, + "Ġliberals": 48617, + "Ġliberated": 43304, + "Ġliberation": 27736, + "Ġlibert": 18058, + "Ġliberties": 47241, + "Ġliberty": 22849, + "Ġliberté": 49158, + "Ġlibr": 4939, + "Ġlibrarian": 42558, + "Ġlibrarians": 48803, + "Ġlibraries": 15148, + "Ġlibrary": 6405, + "Ġlibre": 29976, + "Ġlibro": 29354, + "Ġlic": 6169, + "Ġlicence": 49047, + "Ġlicense": 10476, + "Ġlicensed": 25225, + "Ġlicenses": 32821, + "Ġlicensing": 29759, + "Ġlick": 30940, + "Ġlid": 10252, + "Ġlider": 45341, + "Ġlidt": 40574, + "Ġlie": 4544, + "Ġliebe": 31623, + "Ġlieber": 38252, + "Ġlied": 20101, + "Ġliegen": 35100, + "Ġliegt": 22421, + "Ġlien": 32553, + "Ġlies": 9134, + "Ġlieu": 26036, + "Ġlieutenant": 45521, + "Ġlif": 4545, + "Ġlife": 993, + "Ġlifecycle": 45722, + "Ġlifelong": 27232, + "Ġlifes": 33321, + "Ġlifespan": 40361, + "Ġlifestyle": 11716, + "Ġlifetime": 11364, + "Ġlift": 5533, + "Ġlifted": 17854, + "Ġlifting": 15798, + "Ġlifts": 30501, + "Ġlig": 11742, + "Ġlige": 35450, + "Ġligger": 43187, + "Ġlight": 1442, + "Ġlighter": 11546, + "Ġlighthouse": 47481, + "Ġlighting": 9577, + "Ġlightly": 16695, + "Ġlightning": 16589, + "Ġlights": 5811, + "Ġlightweight": 22052, + "Ġligne": 34207, + "Ġlihat": 45153, + "Ġlij": 42158, + "Ġlik": 2913, + "Ġlike": 411, + "Ġliked": 4501, + "Ġlikelihood": 22119, + "Ġlikely": 3700, + "Ġliken": 36946, + "Ġlikes": 5902, + "Ġlikewise": 32407, + "Ġliking": 16933, + "Ġliksom": 35308, + "Ġlil": 36532, + "Ġlim": 2364, + "Ġlimb": 30390, + "Ġlimbs": 29315, + "Ġlime": 22035, + "Ġlimit": 4948, + "Ġlimitation": 27432, + "Ġlimitations": 15705, + "Ġlimite": 39946, + "Ġlimited": 5567, + "Ġlimiting": 22083, + "Ġlimits": 10406, + "Ġlimp": 33174, + "Ġlin": 22896, + "Ġlindo": 48436, + "Ġline": 1622, + "Ġlineage": 38257, + "Ġlinear": 8213, + "Ġlinearly": 43586, + "Ġlined": 17189, + "Ġlinen": 46602, + "Ġliner": 24468, + "Ġlines": 3876, + "Ġlineup": 26461, + "Ġling": 22949, + "Ġlinger": 45657, + "Ġlingering": 49542, + "Ġlingu": 21766, + "Ġlinguistic": 43002, + "Ġlinha": 33768, + "Ġlining": 19628, + "Ġlink": 2113, + "Ġlinkage": 49118, + "Ġlinked": 9408, + "Ġlinking": 25775, + "Ġlinks": 6123, + "Ġlion": 17226, + "Ġlions": 32564, + "Ġlip": 8280, + "Ġlips": 10118, + "Ġlipstick": 22543, + "Ġliqu": 5664, + "Ġliquid": 6553, + "Ġliquidity": 33131, + "Ġliquids": 38960, + "Ġliquor": 29162, + "Ġlira": 47723, + "Ġlire": 43254, + "Ġlis": 32670, + "Ġlist": 1329, + "Ġlista": 27764, + "Ġlisted": 10052, + "Ġlisten": 2140, + "Ġlistened": 13207, + "Ġlistener": 31569, + "Ġlisteners": 23274, + "Ġlistening": 4764, + "Ġlistens": 35959, + "Ġlisting": 22161, + "Ġlistings": 45615, + "Ġlists": 14511, + "Ġlit": 7997, + "Ġlite": 15100, + "Ġliter": 2733, + "Ġliteracy": 23166, + "Ġliteral": 20411, + "Ġliterally": 3736, + "Ġliterary": 24194, + "Ġliterature": 10394, + "Ġliters": 32323, + "Ġlith": 26324, + "Ġlithium": 32180, + "Ġlitigation": 33359, + "Ġlitres": 49259, + "Ġlitt": 30267, + "Ġlitter": 26540, + "Ġlittle": 707, + "Ġliv": 11477, + "Ġlive": 1621, + "Ġlived": 5152, + "Ġlivel": 31876, + "Ġlivelihood": 34343, + "Ġlively": 30866, + "Ġliver": 15019, + "Ġlives": 2909, + "Ġlivest": 19531, + "Ġlivestock": 31768, + "Ġlivestream": 29782, + "Ġliving": 2647, + "Ġlivre": 24735, + "Ġlivres": 50020, + "Ġlivro": 33545, + "Ġliz": 28632, + "Ġlizard": 39215, + "Ġll": 4849, + "Ġllam": 16848, + "Ġllama": 23272, + "Ġllamado": 47055, + "Ġlle": 12038, + "Ġlleg": 11234, + "Ġllega": 40423, + "Ġllegar": 24892, + "Ġllegó": 46182, + "Ġllev": 27124, + "Ġlleva": 37681, + "Ġllevar": 30374, + "Ġln": 44166, + "Ġlo": 450, + "Ġload": 3677, + "Ġloaded": 13210, + "Ġloading": 15114, + "Ġloads": 12668, + "Ġloaf": 40743, + "Ġloan": 10529, + "Ġloans": 15443, + "Ġlob": 14366, + "Ġlobb": 35673, + "Ġlobby": 21067, + "Ġlobbying": 47142, + "Ġlobster": 33198, + "Ġloc": 1628, + "Ġloca": 47965, + "Ġlocal": 2654, + "Ġlocalized": 44574, + "Ġlocally": 16143, + "Ġlocals": 23335, + "Ġlocate": 22370, + "Ġlocated": 6870, + "Ġlocation": 4914, + "Ġlocations": 9253, + "Ġlock": 4017, + "Ġlockdown": 17267, + "Ġlocked": 9376, + "Ġlocker": 25707, + "Ġlocking": 23954, + "Ġlocks": 20703, + "Ġlocom": 36369, + "Ġlod": 33311, + "Ġlodge": 47706, + "Ġloft": 34419, + "Ġlog": 3565, + "Ġlogar": 41473, + "Ġlogged": 27231, + "Ġlogging": 27991, + "Ġlogic": 9952, + "Ġlogical": 14978, + "Ġlogically": 38887, + "Ġlogin": 24276, + "Ġlogistics": 27420, + "Ġlogo": 9699, + "Ġlogos": 40654, + "Ġlogr": 31013, + "Ġlogs": 20820, + "Ġloh": 46957, + "Ġloi": 34607, + "Ġloin": 25048, + "Ġlok": 43578, + "Ġlol": 10065, + "Ġlon": 9155, + "Ġlone": 35314, + "Ġloneliness": 28144, + "Ġlonely": 14236, + "Ġlong": 938, + "Ġlonge": 26052, + "Ġlonger": 2854, + "Ġlongest": 15438, + "Ġlongevity": 36556, + "Ġlonging": 35050, + "Ġlongitud": 39596, + "Ġlongitudinal": 48250, + "Ġlongo": 40558, + "Ġlongtemps": 32437, + "Ġlongtime": 44363, + "Ġlongue": 44445, + "Ġlook": 574, + "Ġlooked": 2956, + "Ġlookin": 36186, + "Ġlooking": 1237, + "Ġlookout": 41025, + "Ġlooks": 1542, + "Ġloop": 6367, + "Ġloops": 16121, + "Ġloos": 40454, + "Ġloose": 9612, + "Ġloosely": 37966, + "Ġloosen": 26169, + "Ġloot": 26206, + "Ġlord": 15448, + "Ġlore": 27258, + "Ġloro": 28810, + "Ġlors": 20653, + "Ġlorsqu": 46581, + "Ġlorsque": 40629, + "Ġlos": 1750, + "Ġlose": 3624, + "Ġloser": 24606, + "Ġlosers": 37713, + "Ġloses": 18293, + "Ġlosing": 7027, + "Ġloss": 4470, + "Ġlosses": 15352, + "Ġlost": 2731, + "Ġlot": 688, + "Ġlotion": 41044, + "Ġlots": 3195, + "Ġlotta": 38144, + "Ġlottery": 27391, + "Ġlotus": 39105, + "Ġlou": 15185, + "Ġloud": 6588, + "Ġlouder": 22717, + "Ġloudly": 22958, + "Ġlounge": 33408, + "Ġlove": 959, + "Ġloved": 4333, + "Ġlovely": 7496, + "Ġlover": 18009, + "Ġlovers": 22697, + "Ġloves": 6752, + "Ġloving": 9344, + "Ġlow": 2295, + "Ġlower": 3126, + "Ġlowered": 28466, + "Ġlowering": 28124, + "Ġlowers": 44936, + "Ġlowest": 12437, + "Ġlows": 34794, + "Ġloyal": 12682, + "Ġloyalty": 22831, + "Ġlt": 37818, + "Ġlu": 10438, + "Ġlub": 15980, + "Ġlubric": 31116, + "Ġluc": 21296, + "Ġluck": 3668, + "Ġluckily": 22880, + "Ġlucky": 6356, + "Ġlud": 15946, + "Ġludzi": 29586, + "Ġludzie": 37025, + "Ġluego": 17222, + "Ġlug": 23025, + "Ġlugar": 11467, + "Ġlugares": 33105, + "Ġluggage": 27744, + "Ġlui": 8783, + "Ġlum": 24635, + "Ġlumber": 41686, + "Ġlumin": 32476, + "Ġlumière": 43193, + "Ġlump": 25551, + "Ġlumps": 44948, + "Ġlun": 19039, + "Ġlunar": 32581, + "Ġlunch": 6349, + "Ġlung": 16730, + "Ġlungs": 19467, + "Ġlur": 35583, + "Ġlure": 32350, + "Ġlush": 49729, + "Ġlust": 24672, + "Ġlut": 38319, + "Ġlux": 11363, + "Ġluxurious": 30840, + "Ġluxury": 15558, + "Ġluz": 20671, + "Ġluôn": 35690, + "Ġly": 17293, + "Ġlying": 8493, + "Ġlymph": 31070, + "Ġlyn": 46137, + "Ġlyric": 42409, + "Ġlyrics": 12189, + "Ġlys": 48670, + "Ġlá": 7453, + "Ġlâ": 48835, + "Ġlä": 8235, + "Ġläh": 49383, + "Ġläng": 22566, + "Ġlänger": 40935, + "Ġlässt": 29335, + "Ġläuft": 31807, + "ĠlÃ¥": 33939, + "ĠlÃ¥ng": 39756, + "Ġlæ": 44584, + "Ġlég": 27122, + "Ġlên": 33368, + "Ġlóg": 48475, + "Ġlö": 25209, + "ĠlÃł": 3684, + "ĠlÃłm": 22319, + "ĠlÃŃ": 16118, + "ĠlÃŃder": 44190, + "ĠlÃŃnea": 37452, + "Ġlại": 23017, + "ĠlỼ": 47864, + "Ġm": 275, + "ĠmRNA": 50103, + "Ġma": 463, + "Ġmaar": 10314, + "Ġmac": 7912, + "Ġmacam": 44921, + "Ġmacaron": 49686, + "Ġmach": 2246, + "Ġmache": 28289, + "Ġmachen": 7069, + "Ġmachine": 3479, + "Ġmachinery": 27302, + "Ġmachines": 8379, + "Ġmachst": 43350, + "Ġmacht": 10857, + "Ġmacro": 18887, + "Ġmad": 5244, + "Ġmadam": 28882, + "Ġmade": 1027, + "Ġmadness": 28736, + "Ġmadre": 32966, + "Ġmae": 43783, + "Ġmafia": 36412, + "Ġmag": 2258, + "Ġmagari": 49932, + "Ġmagaz": 9044, + "Ġmagazine": 11332, + "Ġmagazines": 22975, + "Ġmagg": 44639, + "Ġmagic": 5585, + "Ġmagical": 12066, + "Ġmagically": 39763, + "Ġmagician": 38614, + "Ġmagist": 48894, + "Ġmagn": 4944, + "Ġmagnes": 28860, + "Ġmagnesium": 32950, + "Ġmagnet": 15211, + "Ġmagnetic": 12688, + "Ġmagnets": 33022, + "Ġmagnific": 21623, + "Ġmagnificent": 23690, + "Ġmagnitude": 15668, + "Ġmah": 29926, + "Ġmahd": 44194, + "Ġmahdoll": 45158, + "Ġmai": 12698, + "Ġmaid": 30410, + "Ġmaiden": 48515, + "Ġmail": 10071, + "Ġmailbox": 43602, + "Ġmailing": 41612, + "Ġmain": 2135, + "Ġmainland": 32365, + "Ġmainly": 8704, + "Ġmains": 32519, + "Ġmainstream": 15960, + "Ġmaint": 3604, + "Ġmaintain": 6909, + "Ġmaintained": 17578, + "Ġmaintaining": 14916, + "Ġmaintains": 33385, + "Ġmainten": 7780, + "Ġmaintenance": 11258, + "Ġmaintenant": 14817, + "Ġmaior": 15859, + "Ġmaioria": 44384, + "Ġmais": 2420, + "Ġmaison": 28511, + "Ġmaj": 13673, + "Ġmajestic": 49561, + "Ġmajesty": 32146, + "Ġmajor": 2563, + "Ġmajority": 6286, + "Ġmajors": 31770, + "ĠmajÄħ": 26064, + "Ġmak": 963, + "Ġmakan": 46616, + "Ġmake": 652, + "Ġmaken": 24703, + "Ġmaker": 17127, + "Ġmakers": 19323, + "Ġmakes": 1669, + "Ġmakeup": 6567, + "Ġmaking": 1455, + "Ġmal": 2806, + "Ġmala": 37508, + "Ġmalad": 39500, + "Ġmalaria": 45182, + "Ġmale": 7133, + "Ġmales": 20776, + "Ġmalf": 41318, + "Ġmalfunction": 50229, + "Ġmalicious": 33496, + "Ġmall": 16026, + "Ġmalt": 45654, + "Ġmalware": 40747, + "Ġmam": 13524, + "Ġmama": 18775, + "Ġmamm": 19033, + "Ġmammal": 49312, + "Ġmammals": 35408, + "Ġmamy": 17335, + "Ġman": 587, + "Ġmana": 21225, + "Ġmanage": 3067, + "Ġmanageable": 38798, + "Ġmanaged": 6453, + "Ġmanagement": 4592, + "Ġmanager": 6598, + "Ġmanagers": 14084, + "Ġmanages": 22489, + "Ġmanaging": 11642, + "Ġmanchmal": 32092, + "Ġmand": 7411, + "Ġmandar": 48689, + "Ġmandate": 23885, + "Ġmandated": 47563, + "Ġmandates": 48662, + "Ġmandatory": 22173, + "Ġmane": 12743, + "Ġmaneira": 30255, + "Ġmanera": 13913, + "Ġmaneu": 22474, + "Ġmaneuver": 25976, + "Ġmang": 32432, + "Ġmanga": 23316, + "Ġmange": 30465, + "Ġmanger": 34372, + "Ġmango": 23481, + "Ġmaniac": 47193, + "Ġmanic": 48139, + "Ġmanif": 8173, + "Ġmanifest": 10067, + "Ġmanifestation": 29550, + "Ġmanifestations": 46931, + "Ġmanifested": 42775, + "Ġmanifests": 50252, + "Ġmanifold": 47138, + "Ġmanip": 9258, + "Ġmanipulate": 20459, + "Ġmanipulated": 37161, + "Ġmanipulating": 40805, + "Ġmanipulation": 26475, + "Ġmanière": 22267, + "Ġmankind": 21220, + "Ġmanne": 49815, + "Ġmanner": 9060, + "Ġmanners": 34672, + "Ġmano": 18384, + "Ġmanos": 36650, + "Ġmanque": 48124, + "Ġmans": 18868, + "Ġmansion": 25599, + "Ġmant": 10845, + "Ġmanten": 38417, + "Ġmantener": 42759, + "Ġmanter": 48170, + "Ġmantle": 45031, + "Ġmantra": 32094, + "Ġmanual": 9688, + "Ġmanually": 16945, + "Ġmanufact": 5793, + "Ġmanufacture": 27400, + "Ġmanufactured": 25738, + "Ġmanufacturer": 18022, + "Ġmanufacturers": 18455, + "Ġmanufacturing": 11096, + "Ġmanure": 48020, + "Ġmanus": 21550, + "Ġmanuscript": 23928, + "Ġmanuscripts": 42849, + "Ġmany": 867, + "Ġmap": 4471, + "Ġmapa": 44025, + "Ġmaple": 31191, + "Ġmapped": 33318, + "Ġmapping": 18350, + "Ġmaps": 11317, + "Ġmar": 1849, + "Ġmarathon": 27601, + "Ġmaravil": 41009, + "Ġmarble": 26844, + "Ġmarc": 42365, + "Ġmarca": 30582, + "Ġmarch": 8368, + "Ġmarche": 32631, + "Ġmarched": 43565, + "Ġmarching": 30523, + "Ġmarché": 37441, + "Ġmare": 31471, + "Ġmargin": 10270, + "Ġmarginal": 16885, + "Ġmarginalized": 32522, + "Ġmargins": 30317, + "Ġmari": 35555, + "Ġmarijuana": 24956, + "Ġmarin": 34652, + "Ġmarinade": 49386, + "Ġmarine": 20246, + "Ġmaritime": 43892, + "Ġmark": 1491, + "Ġmarked": 12658, + "Ġmarker": 15247, + "Ġmarkers": 19175, + "Ġmarket": 2142, + "Ġmarketed": 49089, + "Ġmarketers": 48003, + "Ġmarketing": 6370, + "Ġmarketplace": 19455, + "Ġmarkets": 8383, + "Ġmarking": 25482, + "Ġmarkings": 39087, + "Ġmarks": 10640, + "Ġmarque": 41024, + "Ġmarriage": 7194, + "Ġmarriages": 39760, + "Ġmarried": 5259, + "Ġmarrow": 47739, + "Ġmarry": 9747, + "Ġmarrying": 36376, + "Ġmars": 30517, + "Ġmarsh": 21653, + "Ġmarshm": 29817, + "Ġmarshmallow": 43896, + "Ġmart": 12396, + "Ġmartial": 20755, + "Ġmartyr": 41005, + "Ġmarvel": 23893, + "Ġmarvelous": 34920, + "Ġmas": 2300, + "Ġmasa": 29216, + "Ġmasala": 35614, + "Ġmasc": 18792, + "Ġmascara": 26016, + "Ġmascot": 42339, + "Ġmascul": 19255, + "Ġmasculine": 28992, + "Ġmasculinity": 45195, + "Ġmash": 31344, + "Ġmashed": 38964, + "Ġmasih": 31510, + "Ġmask": 6094, + "Ġmasked": 45249, + "Ġmasking": 31226, + "Ġmasks": 11830, + "Ġmass": 2758, + "Ġmassa": 26689, + "Ġmassacre": 41076, + "Ġmassage": 16145, + "Ġmasse": 42313, + "Ġmasses": 23935, + "Ġmassive": 5994, + "Ġmassively": 29379, + "Ġmast": 27055, + "Ġmaster": 4505, + "Ġmastered": 38686, + "Ġmastering": 49382, + "Ġmasterpiece": 32208, + "Ġmasters": 19294, + "Ġmastery": 37951, + "Ġmasturb": 48921, + "Ġmasuk": 42364, + "Ġmat": 3803, + "Ġmata": 46106, + "Ġmatar": 39208, + "Ġmatch": 2995, + "Ġmatched": 21447, + "Ġmatches": 10676, + "Ġmatching": 14324, + "Ġmate": 11709, + "Ġmateix": 42770, + "Ġmater": 2389, + "Ġmateria": 34083, + "Ġmaterial": 2527, + "Ġmaterials": 5319, + "Ġmaternal": 37944, + "Ġmates": 31488, + "Ġmath": 5221, + "Ġmathemat": 11619, + "Ġmathematic": 32811, + "Ġmathematical": 18894, + "Ġmathematically": 44003, + "Ġmathematician": 48281, + "Ġmathematics": 18666, + "Ġmaths": 36287, + "Ġmatin": 33389, + "Ġmating": 49955, + "Ġmatière": 46600, + "Ġmatrices": 32284, + "Ġmatrix": 8141, + "Ġmats": 43366, + "Ġmatt": 16539, + "Ġmatte": 21592, + "Ġmatter": 1871, + "Ġmattered": 44282, + "Ġmatters": 7001, + "Ġmattress": 20625, + "Ġmature": 14442, + "Ġmaturity": 28874, + "Ġmatéri": 45731, + "Ġmau": 22074, + "Ġmauv": 49631, + "Ġmauvais": 50018, + "Ġmax": 11469, + "Ġmaxim": 5138, + "Ġmaximal": 49336, + "Ġmaximize": 19874, + "Ġmaximum": 6674, + "Ġmay": 815, + "Ġmaybe": 1310, + "Ġmayo": 38485, + "Ġmayonnaise": 34406, + "Ġmayor": 10120, + "ĠmayorÃŃa": 35342, + "Ġmaze": 33032, + "Ġmañana": 33573, + "Ġme": 385, + "Ġmeal": 6791, + "Ġmeals": 12832, + "Ġmean": 914, + "Ġmeaning": 3620, + "Ġmeaningful": 10995, + "Ġmeaningless": 33232, + "Ġmeanings": 28138, + "Ġmeans": 1355, + "Ġmeant": 4140, + "Ġmeantime": 14991, + "Ġmeanwhile": 29252, + "Ġmeas": 5731, + "Ġmeasurable": 43615, + "Ġmeasure": 3481, + "Ġmeasured": 12690, + "Ġmeasurement": 13160, + "Ġmeasurements": 15383, + "Ġmeasures": 8000, + "Ġmeasuring": 13389, + "Ġmeat": 4615, + "Ġmeatballs": 44741, + "Ġmeats": 38106, + "Ġmec": 25186, + "Ġmechan": 4236, + "Ġmechanic": 23860, + "Ġmechanical": 12070, + "Ġmechanics": 12939, + "Ġmechanism": 7513, + "Ġmechanisms": 15902, + "Ġmed": 1205, + "Ġmedal": 21364, + "Ġmedals": 38647, + "Ġmedi": 17269, + "Ġmedia": 3021, + "Ġmedian": 26779, + "Ġmedic": 4355, + "Ġmedical": 4625, + "Ġmedically": 49230, + "Ġmedication": 13851, + "Ġmedications": 17504, + "Ġmedicinal": 46073, + "Ġmedicine": 7195, + "Ġmedicines": 24251, + "Ġmedida": 32984, + "Ġmedidas": 37295, + "Ġmedieval": 24078, + "Ġmedio": 22123, + "Ġmediocre": 45415, + "Ġmedios": 46017, + "Ġmeditate": 29989, + "Ġmeditating": 46850, + "Ġmeditation": 12537, + "Ġmedium": 6399, + "Ġmedo": 37144, + "Ġmee": 24442, + "Ġmeer": 16318, + "Ġmeet": 1677, + "Ġmeeting": 3440, + "Ġmeetings": 8410, + "Ġmeets": 13961, + "Ġmeg": 10816, + "Ġmega": 17986, + "Ġmegap": 34733, + "Ġmeget": 36411, + "Ġmeglio": 48911, + "Ġmehr": 5417, + "Ġmehrere": 44677, + "Ġmeidän": 44751, + "Ġmeille": 25039, + "Ġmeilleur": 41457, + "Ġmeillä": 45211, + "Ġmein": 10777, + "Ġmeine": 10946, + "Ġmeinem": 24171, + "Ġmeinen": 22738, + "Ġmeiner": 20529, + "Ġmeio": 17706, + "Ġmeist": 36894, + "Ġmeisten": 29708, + "Ġmej": 37758, + "Ġmejor": 11479, + "Ġmejorar": 48858, + "Ġmejores": 42284, + "Ġmel": 4795, + "Ġmelan": 47969, + "Ġmelee": 35810, + "Ġmelhor": 13714, + "Ġmelhores": 46807, + "Ġmellan": 46494, + "Ġmelod": 32834, + "Ġmelodies": 47085, + "Ġmelody": 17997, + "Ġmelon": 41722, + "Ġmelt": 10083, + "Ġmelted": 19057, + "Ġmelting": 20493, + "Ġmelts": 30136, + "Ġmem": 1334, + "Ġmemang": 39290, + "Ġmemb": 27942, + "Ġmember": 4006, + "Ġmembers": 2679, + "Ġmembership": 16560, + "Ġmembr": 15595, + "Ġmembrane": 19651, + "Ġmeme": 21701, + "Ġmemes": 29730, + "Ġmemo": 35900, + "Ġmemoir": 38306, + "Ġmemor": 10560, + "Ġmemorable": 20723, + "Ġmemorial": 24089, + "Ġmemories": 8495, + "Ġmemorize": 27478, + "Ġmemorized": 46677, + "Ġmemory": 4675, + "Ġmen": 1706, + "Ġmencion": 37030, + "Ġmend": 31161, + "Ġmeng": 15330, + "Ġmening": 46890, + "Ġmenjadi": 39964, + "Ġmeno": 40236, + "Ġmenor": 26343, + "Ġmenos": 8902, + "Ġmens": 10923, + "Ġmensen": 18062, + "Ġmenstru": 38827, + "Ġment": 3074, + "Ġmental": 4973, + "Ġmentality": 21976, + "Ġmentally": 17072, + "Ġmente": 26577, + "Ġmention": 2152, + "Ġmentioned": 2835, + "Ġmentioning": 18315, + "Ġmentions": 23844, + "Ġmentor": 14478, + "Ġmentoring": 30257, + "Ġmentors": 21798, + "Ġmentorship": 40422, + "Ġmentre": 49601, + "Ġmenu": 6510, + "Ġmenus": 30347, + "Ġmeny": 46975, + "Ġmeow": 45132, + "Ġmer": 3551, + "Ġmerak": 39668, + "Ġmerc": 10811, + "Ġmercado": 24775, + "Ġmerch": 12618, + "Ġmerchand": 30234, + "Ġmerchandise": 34485, + "Ġmerchant": 32267, + "Ġmerchants": 36253, + "Ġmerci": 30532, + "Ġmerciful": 48756, + "Ġmercury": 33307, + "Ġmercy": 13174, + "Ġmerde": 45772, + "Ġmere": 8401, + "Ġmereka": 23171, + "Ġmerely": 17003, + "Ġmerge": 22183, + "Ġmerged": 36427, + "Ġmerger": 48002, + "Ġmerging": 44559, + "Ġmering": 46643, + "Ġmeringue": 50044, + "Ġmerit": 24527, + "Ġmerits": 40923, + "Ġmerk": 43541, + "Ġmermaid": 43146, + "Ġmerry": 41545, + "Ġmes": 3813, + "Ġmesa": 37024, + "Ġmesela": 45814, + "Ġmeses": 23922, + "Ġmesh": 17407, + "Ġmesma": 21921, + "Ġmesmo": 9082, + "Ġmess": 2082, + "Ġmessage": 3636, + "Ġmessages": 7897, + "Ġmessaging": 21812, + "Ġmessed": 16507, + "Ġmessenger": 26599, + "Ġmessing": 23258, + "Ġmessy": 16191, + "Ġmest": 35621, + "Ġmesure": 37981, + "Ġmesures": 42265, + "Ġmet": 1131, + "Ġmeta": 19616, + "Ġmetabol": 19110, + "Ġmetabolic": 36464, + "Ġmetabolism": 31190, + "Ġmetabolismo": 47889, + "Ġmetadata": 26603, + "Ġmetal": 5760, + "Ġmetall": 20866, + "Ġmetallic": 25759, + "Ġmetals": 22548, + "Ġmetaph": 30946, + "Ġmetaphor": 19157, + "Ġmete": 21245, + "Ġmeteor": 25313, + "Ġmeter": 9255, + "Ġmeters": 8146, + "Ġmeth": 23416, + "Ġmethane": 32521, + "Ġmethod": 3170, + "Ġmethodology": 24850, + "Ġmethods": 7150, + "Ġmethy": 36599, + "Ġmethyl": 48441, + "Ġmetic": 41566, + "Ġmetre": 42431, + "Ġmetres": 23861, + "Ġmetric": 20678, + "Ġmetrics": 16367, + "Ġmetro": 27334, + "Ġmetropolitan": 44645, + "Ġmetros": 34761, + "Ġmets": 37231, + "Ġmett": 27812, + "Ġmettre": 14997, + "Ġmeu": 9230, + "Ġmeus": 28033, + "Ġmeva": 40530, + "Ġmex": 28759, + "Ġmez": 28966, + "Ġmg": 49566, + "Ġmi": 2752, + "Ġmia": 21290, + "ĠmiaÅĤ": 27989, + "Ġmic": 3123, + "Ġmica": 32483, + "Ġmice": 22257, + "Ġmich": 6031, + "Ġmicro": 4532, + "Ġmicrob": 49713, + "Ġmicrobes": 35996, + "Ġmicrobi": 33234, + "Ġmicrof": 42763, + "Ġmicron": 45094, + "Ġmicroorgan": 49129, + "Ġmicrophone": 10952, + "Ġmicrophones": 30495, + "Ġmicros": 15547, + "Ġmicroscop": 30483, + "Ġmicroscope": 29753, + "Ġmicroscopic": 47897, + "Ġmicrow": 17177, + "Ġmicrowave": 19025, + "Ġmics": 45481, + "Ġmid": 2062, + "Ġmiddle": 2808, + "Ġmidnight": 19006, + "Ġmidst": 18629, + "Ġmie": 12597, + "Ġmiedo": 40383, + "Ġmiej": 18522, + "Ġmiejsc": 32754, + "Ġmiejsce": 38122, + "Ġmiel": 41392, + "Ġmieli": 41214, + "Ġmientras": 26010, + "Ġmier": 47448, + "Ġmies": 41543, + "Ġmiesz": 33039, + "Ġmieux": 20401, + "ĠmieÄĩ": 35612, + "Ġmig": 6186, + "Ġmight": 1062, + "Ġmighty": 21556, + "Ġmigrant": 38547, + "Ġmigrants": 31263, + "Ġmigrate": 31821, + "Ġmigrated": 48329, + "Ġmigration": 17011, + "Ġmij": 22953, + "Ġmijn": 19884, + "Ġmik": 23959, + "Ġmike": 43357, + "Ġmikä": 48482, + "Ġmil": 1962, + "Ġmild": 15154, + "Ġmile": 12620, + "Ġmileage": 43121, + "Ġmiles": 6193, + "Ġmilestone": 28048, + "Ġmilestones": 42038, + "Ġmilhões": 39252, + "Ġmilieu": 34276, + "Ġmilit": 19142, + "Ġmilitar": 30653, + "Ġmilitary": 4632, + "Ġmilj": 41128, + "Ġmilk": 5392, + "Ġmilks": 48773, + "Ġmill": 1728, + "Ġmillenn": 21362, + "Ġmillennials": 45543, + "Ġmillet": 47722, + "Ġmilli": 26176, + "Ġmilliards": 47382, + "Ġmilligram": 38298, + "Ġmilligrams": 45147, + "Ġmillimeter": 17942, + "Ġmillimeters": 24388, + "Ġmillion": 2459, + "Ġmillionaire": 41114, + "Ġmillions": 6803, + "Ġmillise": 27940, + "Ġmilliseconds": 34184, + "Ġmillones": 22416, + "Ġmillor": 48638, + "Ġmily": 38728, + "Ġmim": 12247, + "Ġmimic": 31075, + "Ġmin": 923, + "Ġmina": 48412, + "Ġminced": 36442, + "Ġmind": 1575, + "Ġminded": 36707, + "Ġminder": 44146, + "Ġmindful": 14618, + "Ġmindfulness": 25655, + "Ġminds": 9634, + "Ġmindset": 12543, + "Ġmine": 3892, + "Ġminer": 18746, + "Ġmineral": 21630, + "Ġminerals": 22959, + "Ġminers": 35640, + "Ġmines": 25398, + "Ġminha": 11720, + "Ġmini": 8382, + "Ġminiature": 34674, + "Ġminim": 4464, + "Ġminimal": 13206, + "Ġminimalist": 50192, + "Ġminimize": 17522, + "Ġminimizing": 46608, + "Ġminimum": 7285, + "Ġmining": 15512, + "Ġminion": 49361, + "Ġminions": 39288, + "Ġminist": 16182, + "Ġminister": 10563, + "Ġministers": 26220, + "Ġministre": 31122, + "Ġministry": 15024, + "Ġminor": 6696, + "Ġminorities": 30373, + "Ġminority": 16166, + "Ġmins": 31539, + "Ġmint": 18189, + "Ġminus": 3175, + "Ġminut": 13951, + "Ġminute": 3456, + "Ġminutes": 2077, + "Ġminutos": 19421, + "Ġmio": 29908, + "Ġmir": 3149, + "Ġmira": 30286, + "Ġmirac": 30686, + "Ġmiracle": 14660, + "Ġmiracles": 24685, + "Ġmiraculous": 41101, + "Ġmirror": 8013, + "Ġmirrors": 24238, + "Ġmis": 3346, + "Ġmiscon": 27631, + "Ġmisconception": 41350, + "Ġmisconceptions": 50012, + "Ġmise": 36845, + "Ġmiser": 17725, + "Ġmiserable": 22321, + "Ġmisery": 32309, + "Ġmisf": 47351, + "Ġmisin": 32333, + "Ġmisinformation": 34238, + "Ġmisleading": 36429, + "Ġmism": 23220, + "Ġmisma": 24946, + "Ġmismo": 12461, + "Ġmismos": 47458, + "Ġmiss": 1713, + "Ġmisschien": 42047, + "Ġmissed": 6721, + "Ġmisses": 29394, + "Ġmissile": 19321, + "Ġmissiles": 23133, + "Ġmissing": 5361, + "Ġmission": 4447, + "Ġmissionary": 45418, + "Ġmissions": 13744, + "Ġmist": 3544, + "Ġmistake": 6146, + "Ġmistaken": 21333, + "Ġmistakes": 8038, + "Ġmister": 26562, + "Ġmistress": 46635, + "Ġmisunder": 15736, + "Ġmisunderstand": 35736, + "Ġmisunderstanding": 29227, + "Ġmisunderstood": 33870, + "Ġmit": 2194, + "Ġmitad": 46895, + "Ġmite": 36190, + "Ġmiteinander": 43127, + "Ġmiten": 43265, + "Ġmitig": 15699, + "Ġmitigate": 27336, + "Ġmitigation": 32649, + "Ġmitochond": 41008, + "Ġmitt": 19130, + "Ġmittlerweile": 41999, + "Ġmitä": 30451, + "Ġmix": 2890, + "Ġmixed": 7467, + "Ġmixer": 24063, + "Ġmixes": 37121, + "Ġmixing": 11983, + "Ġmixture": 9925, + "ĠmiÄĻdzy": 33964, + "Ġml": 23271, + "Ġmm": 11169, + "Ġmmm": 26159, + "Ġmnie": 17661, + "Ġmniej": 39513, + "Ġmo": 705, + "Ġmob": 4298, + "Ġmobil": 15891, + "Ġmobile": 6013, + "Ġmobility": 16199, + "Ġmobilize": 48637, + "Ġmoc": 34962, + "Ġmock": 17362, + "Ġmocking": 49792, + "Ġmod": 1072, + "Ġmodal": 39745, + "Ġmode": 4391, + "Ġmodel": 2316, + "Ġmodeled": 37140, + "Ġmodeling": 15983, + "Ġmodelling": 42253, + "Ġmodelo": 27825, + "Ġmodels": 5245, + "Ġmoder": 10494, + "Ġmoderate": 18174, + "Ġmoderation": 49471, + "Ġmoderator": 37778, + "Ġmodern": 4363, + "Ġmodes": 14068, + "Ġmodest": 25403, + "Ġmodification": 26747, + "Ġmodifications": 26881, + "Ġmodified": 15873, + "Ġmodifier": 38011, + "Ġmodify": 16927, + "Ġmodifying": 42626, + "Ġmodo": 16664, + "Ġmods": 30899, + "Ġmodular": 31111, + "Ġmodulation": 42288, + "Ġmodule": 10088, + "Ġmodules": 16679, + "Ġmodulus": 42287, + "Ġmodèle": 45631, + "Ġmoet": 12677, + "Ġmoeten": 26175, + "Ġmog": 13172, + "Ġmogelijk": 46617, + "ĠmogÄħ": 34123, + "ĠmogÄĻ": 41737, + "Ġmoi": 7748, + "Ġmoim": 48569, + "Ġmoins": 13099, + "Ġmois": 19230, + "Ġmoist": 8641, + "Ġmoistur": 21531, + "Ġmoisture": 13814, + "Ġmoisturizer": 47588, + "Ġmoisturizing": 44134, + "Ġmoje": 36383, + "Ġmol": 8015, + "Ġmolar": 45712, + "Ġmold": 11102, + "Ġmolds": 48257, + "Ġmole": 6353, + "Ġmolec": 10646, + "Ġmolecular": 19046, + "Ġmolecule": 15582, + "Ġmolecules": 13093, + "Ġmoles": 34286, + "Ġmolt": 10739, + "Ġmolta": 48564, + "Ġmolten": 44845, + "Ġmolto": 16394, + "Ġmolé": 49300, + "Ġmom": 1225, + "Ġmomencie": 40883, + "Ġmoment": 1623, + "Ġmomento": 9333, + "Ġmomentos": 34583, + "Ġmoments": 6065, + "Ġmomentum": 11244, + "Ġmommy": 25606, + "Ġmoms": 25399, + "Ġmon": 1108, + "Ġmonarch": 33658, + "Ġmonaster": 31412, + "Ġmonastery": 37821, + "Ġmond": 17606, + "Ġmonde": 10431, + "Ġmondo": 40499, + "Ġmonet": 15556, + "Ġmonetary": 26388, + "Ġmoney": 1460, + "Ġmonit": 32001, + "Ġmonitor": 6002, + "Ġmonitored": 36255, + "Ġmonitoring": 11028, + "Ġmonitors": 26518, + "Ġmonk": 27698, + "Ġmonkey": 17847, + "Ġmonkeys": 29534, + "Ġmonks": 32201, + "Ġmono": 35624, + "Ġmonopol": 47721, + "Ġmonopoly": 37061, + "Ġmonsieur": 36507, + "Ġmonster": 10090, + "Ġmonsters": 15785, + "Ġmonstr": 47137, + "Ġmont": 8143, + "Ġmontage": 40184, + "Ġmonte": 35437, + "Ġmonter": 47945, + "Ġmonth": 1618, + "Ġmonthly": 12878, + "Ġmonths": 2493, + "Ġmontre": 44132, + "Ġmontrer": 33116, + "Ġmontón": 45259, + "Ġmonument": 20289, + "Ġmonumental": 43105, + "Ġmonuments": 36864, + "Ġmoo": 37284, + "Ġmood": 9268, + "Ġmooi": 38583, + "Ġmoon": 7135, + "Ġmoonlight": 48058, + "Ġmoons": 34139, + "Ġmop": 48106, + "Ġmor": 1896, + "Ġmoral": 9723, + "Ġmorale": 37455, + "Ġmorality": 29106, + "Ġmorally": 38622, + "Ġmorals": 46849, + "Ġmorb": 46510, + "Ġmore": 544, + "Ġmorgen": 36593, + "Ġmorning": 2446, + "Ġmornings": 37143, + "Ġmorph": 25778, + "Ġmort": 6599, + "Ġmortal": 27624, + "Ġmortality": 23330, + "Ġmortar": 33956, + "Ġmorte": 37392, + "Ġmortgage": 20236, + "Ġmos": 13659, + "Ġmosque": 31501, + "Ġmosquito": 23970, + "Ġmosquitoes": 39394, + "Ġmoss": 36193, + "Ġmost": 881, + "Ġmostly": 5240, + "Ġmostra": 43101, + "Ġmostrar": 21487, + "Ġmot": 2184, + "Ġmote": 49071, + "Ġmother": 2895, + "Ġmotherboard": 32916, + "Ġmotherf": 29537, + "Ġmotherfucker": 47069, + "Ġmothers": 17941, + "Ġmotif": 39478, + "Ġmotion": 5394, + "Ġmotions": 27500, + "Ġmotiv": 5426, + "Ġmotivate": 28497, + "Ġmotivated": 14515, + "Ġmotivates": 42569, + "Ġmotivating": 41066, + "Ġmotivation": 12335, + "Ġmotivational": 48186, + "Ġmotivations": 39034, + "Ġmotive": 28827, + "Ġmotives": 39812, + "Ġmotivo": 35804, + "Ġmoto": 42192, + "Ġmotor": 5932, + "Ġmotorcycle": 20554, + "Ġmotorcycles": 46813, + "Ġmotors": 25035, + "Ġmots": 34009, + "Ġmotto": 32680, + "Ġmould": 34803, + "Ġmound": 49034, + "Ġmount": 3746, + "Ġmountain": 6937, + "Ġmountains": 10233, + "Ġmounted": 19138, + "Ġmounting": 22986, + "Ġmounts": 40982, + "Ġmour": 22235, + "Ġmourning": 42947, + "Ġmouse": 9719, + "Ġmouth": 4525, + "Ġmouths": 33171, + "Ġmouve": 33415, + "Ġmouvement": 41219, + "Ġmov": 2402, + "Ġmove": 1286, + "Ġmoved": 4259, + "Ġmovement": 3963, + "Ġmovements": 9981, + "Ġmover": 39945, + "Ġmoves": 6067, + "Ġmovie": 3169, + "Ġmovies": 6233, + "Ġmovimento": 40798, + "Ġmovimiento": 43180, + "Ġmoving": 2684, + "Ġmoy": 32018, + "Ġmoyen": 42009, + "Ġmoyens": 47040, + "Ġmozzarella": 44135, + "Ġmoż": 10697, + "Ġmoże": 12034, + "Ġmożemy": 26500, + "Ġmożli": 30854, + "Ġmożna": 17790, + "Ġmph": 46351, + "Ġmr": 33660, + "Ġmu": 2992, + "Ġmuch": 709, + "Ġmucha": 25248, + "Ġmuchas": 16072, + "Ġmucho": 9824, + "Ġmuchos": 17061, + "ĠmuchÃŃs": 29353, + "ĠmuchÃŃsimo": 44722, + "Ġmud": 8933, + "Ġmudar": 42281, + "Ġmuddy": 38540, + "Ġmue": 49532, + "Ġmuerte": 38497, + "Ġmuff": 22635, + "Ġmuffin": 48400, + "Ġmug": 23610, + "Ġmuit": 4146, + "Ġmuita": 21025, + "Ġmuitas": 25705, + "Ġmuito": 4945, + "Ġmuitos": 28918, + "Ġmuj": 30008, + "Ġmujer": 32032, + "Ġmujeres": 31683, + "Ġmuk": 31475, + "Ġmul": 14077, + "Ġmulher": 33211, + "Ġmulheres": 43244, + "Ġmult": 2120, + "Ġmulti": 4825, + "Ġmultic": 30608, + "Ġmulticultural": 47684, + "Ġmultif": 39824, + "Ġmultim": 32972, + "Ġmultimedia": 49202, + "Ġmultin": 45872, + "Ġmultip": 3311, + "Ġmultipl": 12788, + "Ġmultiplayer": 27325, + "Ġmultiple": 3866, + "Ġmultiples": 46099, + "Ġmultiplic": 17596, + "Ġmultiplication": 27290, + "Ġmultiplied": 17207, + "Ġmultiplier": 44106, + "Ġmultiply": 12972, + "Ġmultiplying": 30955, + "Ġmultit": 42338, + "Ġmultitude": 36358, + "Ġmum": 14697, + "Ġmummy": 45295, + "Ġmun": 11864, + "Ġmund": 23175, + "Ġmundane": 43497, + "Ġmundial": 41740, + "Ġmundo": 7968, + "Ġmungkin": 32633, + "Ġmunicip": 14998, + "Ġmunicipal": 27177, + "Ġmunicipalities": 39748, + "Ġmunicipality": 44186, + "Ġmur": 5257, + "Ġmural": 40595, + "Ġmurder": 6568, + "Ġmurdered": 18486, + "Ġmurderer": 28703, + "Ġmurders": 30479, + "Ġmurm": 39729, + "Ġmus": 1038, + "Ġmuscle": 8679, + "Ġmuscles": 9530, + "Ġmuscular": 31641, + "Ġmuse": 39138, + "Ġmuseum": 8441, + "Ġmuseums": 23248, + "Ġmush": 11559, + "Ġmushroom": 12094, + "Ġmushrooms": 17973, + "Ġmusi": 37587, + "Ġmusic": 1318, + "Ġmusical": 9165, + "Ġmusician": 19570, + "Ġmusicians": 16916, + "Ġmusimy": 43449, + "Ġmusique": 34108, + "Ġmuss": 6425, + "Ġmusst": 31716, + "Ġmusste": 34497, + "Ġmust": 1633, + "Ġmustache": 37798, + "Ġmustard": 23659, + "Ġmustn": 42818, + "Ġmusun": 25447, + "Ġmut": 5839, + "Ġmutant": 47198, + "Ġmutation": 27960, + "Ġmutations": 29243, + "Ġmute": 24523, + "Ġmuted": 32808, + "Ġmutta": 26265, + "Ġmutual": 16917, + "Ġmutually": 39144, + "Ġmuut": 46785, + "Ġmuy": 5323, + "Ġmuá»ijn": 42453, + "Ġmy": 452, + "Ġmycket": 16780, + "Ġmyself": 2059, + "Ġmyst": 9111, + "Ġmyster": 11010, + "Ġmysteries": 30785, + "Ġmysterious": 13831, + "Ġmystery": 11422, + "Ġmystical": 40565, + "Ġmyth": 9474, + "Ġmythical": 40843, + "Ġmythology": 30871, + "Ġmyths": 28205, + "Ġmyös": 23623, + "ĠmyÅĽ": 48633, + "ĠmyÅĽlÄĻ": 37730, + "Ġmá": 12228, + "Ġmáqu": 39701, + "Ġmáquina": 49360, + "Ġmár": 40331, + "Ġmás": 3573, + "Ġmáxim": 31031, + "Ġmáximo": 38876, + "Ġmã": 22410, + "Ġmãe": 29392, + "Ġmão": 31639, + "Ġmä": 25117, + "Ġmänn": 39550, + "Ġmännisk": 45220, + "Ġmänniskor": 48091, + "ĠmÃ¥": 10254, + "ĠmÃ¥nga": 25068, + "ĠmÃ¥ste": 23958, + "Ġmère": 35935, + "Ġmé": 13191, + "Ġméd": 16978, + "Ġmédi": 42436, + "Ġmédia": 49503, + "Ġmédico": 44853, + "Ġmég": 43510, + "Ġmél": 41953, + "Ġmés": 12545, + "Ġmét": 20275, + "Ġméth": 45404, + "Ġmême": 5698, + "Ġmêmes": 42588, + "Ġmês": 41400, + "Ġmình": 14526, + "Ġmó": 32515, + "Ġmón": 37803, + "Ġmów": 13489, + "Ġmówi": 24592, + "ĠmówiÄħ": 46591, + "Ġmö": 7667, + "Ġmöchte": 14570, + "Ġmöchten": 49699, + "Ġmöglich": 16294, + "Ġmöglichst": 44850, + "Ġmöj": 37606, + "Ġmús": 38886, + "Ġmúsica": 20091, + "Ġmü": 6047, + "Ġmüs": 28802, + "Ġmüssen": 9013, + "Ġmüsst": 49481, + "Ġmüsste": 42962, + "ĠmÃł": 13901, + "ĠmÃły": 45464, + "ĠmÃŃ": 14692, + "ĠmÃŃn": 33656, + "ĠmÃŃnimo": 47393, + "Ġmı": 9251, + "ĠmÅĤ": 40770, + "Ġmá»Ļt": 15486, + "ĠmỼi": 37328, + "Ġn": 297, + "Ġna": 1667, + "Ġnaar": 12762, + "Ġnac": 42071, + "Ġnach": 5168, + "Ġnacional": 29836, + "Ġnad": 12617, + "Ġnada": 8096, + "Ġnadie": 28060, + "Ġnadzie": 43693, + "ĠnadziejÄĻ": 48881, + "Ġnag": 17096, + "Ġnagyon": 46259, + "Ġnah": 17170, + "Ġnail": 10173, + "Ġnailed": 30790, + "Ġnails": 15394, + "Ġnaive": 29052, + "Ġnaj": 11212, + "Ġnajbardziej": 41857, + "Ġnajle": 41903, + "ĠnajwiÄĻ": 48636, + "Ġnak": 20332, + "Ġnaked": 15791, + "Ġnam": 8835, + "Ġname": 1315, + "Ġnamed": 4926, + "Ġnamely": 20926, + "Ġnames": 5288, + "Ġnaming": 25290, + "Ġnan": 14067, + "Ġnano": 30129, + "Ġnap": 9296, + "ĠnaprawdÄĻ": 20970, + "Ġnar": 6714, + "Ġnarc": 21328, + "Ġnarciss": 25771, + "Ġnarcissist": 49130, + "Ġnarr": 6397, + "Ġnarration": 43299, + "Ġnarrative": 9977, + "Ġnarratives": 28016, + "Ġnarrator": 32646, + "Ġnarrow": 9432, + "Ġnarrower": 46751, + "Ġnas": 5382, + "Ġnasal": 41575, + "Ġnast": 26088, + "Ġnasty": 17923, + "ĠnastÄĻp": 39662, + "Ġnasze": 43394, + "Ġnaszego": 44517, + "Ġnaszej": 42946, + "Ġnaszych": 45002, + "Ġnaszym": 48094, + "Ġnasıl": 16963, + "Ġnat": 2249, + "Ġnation": 4790, + "Ġnational": 4048, + "Ġnationale": 49974, + "Ġnationalism": 39186, + "Ġnationalist": 49654, + "Ġnationally": 27652, + "Ġnations": 11035, + "Ġnationwide": 29102, + "Ġnative": 8470, + "Ġnatives": 47964, + "Ġnatomiast": 43169, + "Ġnatur": 26389, + "Ġnatural": 3303, + "Ġnaturale": 40877, + "Ġnaturally": 8195, + "Ġnature": 3687, + "Ġnatuur": 24414, + "Ġnatuurlijk": 26892, + "Ġnatürlich": 8762, + "Ġnau": 35616, + "Ġnauc": 49103, + "Ġnaught": 13138, + "Ġnaughty": 32154, + "Ġnause": 34735, + "Ġnav": 5947, + "Ġnaval": 33050, + "Ġnave": 39376, + "Ġnavig": 7407, + "Ġnavigate": 12350, + "Ġnavigating": 32054, + "Ġnavigation": 17346, + "Ġnavy": 31319, + "Ġnaw": 18969, + "Ġnawet": 22696, + "Ġnay": 34227, + "Ġnaz": 20151, + "Ġne": 408, + "Ġnear": 2651, + "Ġnearby": 11184, + "Ġnearest": 23831, + "Ġnearly": 6217, + "Ġneat": 10654, + "Ġneatly": 36634, + "Ġneben": 36098, + "Ġneces": 11909, + "Ġnecesario": 44095, + "Ġnecesit": 38661, + "Ġnecesita": 45485, + "Ġnecess": 2688, + "Ġnecessarily": 4725, + "Ġnecessary": 4818, + "Ġnecessity": 24217, + "Ġneck": 6189, + "Ġnecklace": 24563, + "Ġnectar": 49943, + "Ġned": 25614, + "Ġneden": 34828, + "Ġnee": 41694, + "Ġneed": 643, + "Ġneeded": 2978, + "Ġneeding": 18006, + "Ġneedle": 11037, + "Ġneedles": 24792, + "Ġneeds": 2203, + "Ġneg": 2485, + "Ġnegative": 3671, + "Ġnegatively": 29519, + "Ġnegatives": 40019, + "Ġnegativity": 39297, + "Ġneglect": 17745, + "Ġneglected": 32701, + "Ġneglig": 32570, + "Ġnego": 26722, + "Ġnegoti": 9542, + "Ġnegotiate": 21713, + "Ġnegotiated": 39028, + "Ġnegotiating": 30396, + "Ġnegotiation": 27573, + "Ġnegotiations": 20476, + "Ġnegro": 40008, + "Ġnegó": 31008, + "Ġnegócio": 35532, + "Ġneh": 40857, + "Ġnehme": 48276, + "Ġnehmen": 19905, + "Ġnei": 34517, + "Ġneigh": 4168, + "Ġneighb": 7888, + "Ġneighbor": 5987, + "Ġneighborhood": 7630, + "Ġneighborhoods": 20052, + "Ġneighboring": 31521, + "Ġneighbors": 12512, + "Ġneighbour": 19755, + "Ġneighbourhood": 30471, + "Ġneighbours": 35548, + "Ġnein": 40041, + "Ġneither": 9662, + "Ġnel": 15373, + "Ġnell": 44666, + "Ġnella": 23878, + "Ġnelle": 46350, + "Ġnem": 9939, + "Ġnen": 16399, + "Ġnenhum": 32584, + "Ġnenhuma": 43273, + "Ġneo": 41977, + "Ġneol": 49512, + "Ġneon": 30820, + "Ġnep": 24901, + "Ġnephew": 30799, + "Ġner": 18219, + "Ġnerd": 23229, + "Ġnered": 28085, + "Ġnerede": 44906, + "Ġnerv": 5724, + "Ġnerve": 16355, + "Ġnerves": 23078, + "Ġnervous": 6296, + "Ġness": 39787, + "Ġnessa": 23246, + "Ġnesse": 18270, + "Ġnest": 15646, + "Ġneste": 34739, + "Ġnet": 2533, + "Ġnets": 36170, + "Ġnett": 42084, + "Ġnetwork": 3209, + "Ġnetworking": 17985, + "Ġnetworks": 9590, + "Ġneu": 22510, + "Ġneue": 16842, + "Ġneuen": 21387, + "Ġneues": 43979, + "Ġneur": 12087, + "Ġneural": 18161, + "Ġneuro": 16499, + "Ġneurolog": 28351, + "Ġneurological": 48185, + "Ġneuron": 34090, + "Ġneurons": 22027, + "Ġneuros": 28813, + "Ġneuroscience": 42762, + "Ġneurot": 43286, + "Ġneut": 7989, + "Ġneutr": 39913, + "Ġneutral": 10598, + "Ġneutron": 44362, + "Ġnever": 1128, + "Ġnevertheless": 26924, + "Ġnew": 777, + "Ġnewborn": 32928, + "Ġnewcom": 40014, + "Ġnewer": 17628, + "Ġnewest": 17569, + "Ġnewly": 15109, + "Ġnews": 2583, + "Ġnewsletter": 26469, + "Ġnewsp": 10202, + "Ġnewspaper": 13669, + "Ġnewspapers": 20781, + "Ġnext": 958, + "Ġng": 6415, + "Ġnggak": 28631, + "Ġngh": 29338, + "Ġnghi": 46889, + "ĠnghÄ©": 41077, + "Ġngo": 45843, + "ĠngÃły": 34481, + "ĠngÆ°á»Ŀi": 15898, + "Ġnh": 6245, + "Ġnhi": 20575, + "Ġnhiá»ģu": 28272, + "Ġnhân": 47931, + "ĠnhÃł": 35398, + "ĠnhÆ°": 16228, + "ĠnhÆ°ng": 37504, + "Ġnhất": 41081, + "Ġnhững": 20136, + "Ġni": 3867, + "Ġnib": 38956, + "Ġnic": 6201, + "Ġnice": 1481, + "Ġnicely": 9594, + "Ġnicer": 22842, + "Ġnicest": 45516, + "Ġnich": 25570, + "Ġniche": 19956, + "Ġnicht": 1979, + "Ġnichts": 13004, + "Ġnick": 15416, + "Ġnickel": 30542, + "Ġnickname": 21641, + "Ġnie": 2838, + "Ġniece": 39991, + "Ġnied": 32488, + "Ġniego": 49615, + "Ġniemand": 32390, + "Ġnies": 48100, + "Ġniet": 6899, + "Ġnieu": 26829, + "Ġnieuwe": 37029, + "Ġniew": 43622, + "Ġniez": 33511, + "Ġnig": 26996, + "Ġnigga": 41626, + "Ġnight": 1818, + "Ġnightmare": 18724, + "Ġnightmares": 36911, + "Ġnights": 13249, + "Ġnighttime": 38595, + "Ġnih": 27438, + "Ġniin": 16077, + "Ġnik": 44336, + "Ġnim": 24887, + "Ġnimmt": 38891, + "Ġnin": 9616, + "Ġnine": 4949, + "Ġninete": 26286, + "Ġnineteen": 31555, + "Ġninety": 25063, + "Ġning": 17210, + "Ġninguna": 36073, + "Ġninguém": 30091, + "Ġningún": 30394, + "Ġninja": 31604, + "Ġninth": 28207, + "Ġnit": 10900, + "Ġnitrogen": 17903, + "Ġnive": 11461, + "Ġniveau": 19144, + "Ġnivel": 24423, + "Ġniye": 30493, + "Ġniño": 42307, + "Ġniños": 30712, + "Ġniż": 28502, + "Ġno": 572, + "Ġnoble": 20171, + "Ġnobody": 5079, + "Ġnoch": 3514, + "Ġnoche": 29735, + "Ġnochmal": 26509, + "Ġnod": 15224, + "Ġnode": 9984, + "Ġnodes": 13891, + "Ġnodig": 43409, + "Ġnog": 9638, + "Ġnoget": 34574, + "Ġnogle": 48713, + "Ġnoi": 22447, + "Ġnoir": 39359, + "Ġnoise": 5658, + "Ġnoises": 14620, + "Ġnoisy": 24518, + "Ġnoite": 34429, + "Ġnok": 33811, + "Ġnom": 5369, + "Ġnombre": 13000, + "Ġnombreux": 43260, + "Ġnome": 19003, + "Ġnominal": 41641, + "Ġnominated": 25159, + "Ġnomination": 30375, + "Ġnominations": 46331, + "Ġnominee": 37170, + "Ġnominees": 49774, + "Ġnomés": 40052, + "Ġnon": 2107, + "Ġnone": 6022, + "Ġnonetheless": 26756, + "Ġnonprofit": 23348, + "Ġnonprofits": 42851, + "Ġnonsense": 14925, + "Ġnood": 8422, + "Ġnoodle": 21873, + "Ġnoodles": 10480, + "Ġnooit": 48286, + "Ġnoon": 24040, + "Ġnope": 23444, + "Ġnor": 6051, + "Ġnord": 39284, + "Ġnorm": 2026, + "Ġnormal": 2710, + "Ġnormale": 43646, + "Ġnormalized": 48704, + "Ġnormally": 5646, + "Ġnormalmente": 38217, + "Ġnorms": 24357, + "Ġnorte": 41966, + "Ġnorth": 6830, + "Ġnortheast": 40984, + "Ġnorthern": 14197, + "Ġnorthwest": 36930, + "Ġnos": 3269, + "Ġnosaltres": 49100, + "Ġnose": 6690, + "Ġnosotros": 13863, + "Ġnoss": 24970, + "Ġnossa": 15821, + "Ġnossas": 44041, + "Ġnosso": 14347, + "Ġnossos": 35378, + "Ġnost": 10397, + "Ġnostalgia": 34618, + "Ġnostalgic": 40240, + "Ġnostra": 34311, + "Ġnostro": 35779, + "Ġnot": 406, + "Ġnota": 36192, + "Ġnotable": 22556, + "Ġnotably": 31357, + "Ġnotamment": 26165, + "Ġnotation": 24657, + "Ġnotch": 26109, + "Ġnote": 3637, + "Ġnotebook": 21060, + "Ġnotebooks": 43782, + "Ġnoted": 12964, + "Ġnotes": 5570, + "Ġnothin": 47562, + "Ġnothing": 1825, + "Ġnotice": 3449, + "Ġnoticeable": 26041, + "Ġnoticed": 5694, + "Ġnotices": 32978, + "Ġnoticing": 21814, + "Ġnotification": 11554, + "Ġnotifications": 13426, + "Ġnotified": 18013, + "Ġnotify": 36560, + "Ġnoting": 26801, + "Ġnotion": 10710, + "Ġnotions": 35799, + "Ġnotor": 46772, + "Ġnotorious": 38045, + "Ġnotre": 10349, + "Ġnotwend": 41308, + "Ġnou": 23641, + "Ġnoun": 23307, + "Ġnouns": 48184, + "Ġnour": 22683, + "Ġnous": 4666, + "Ġnouve": 11456, + "Ġnouveau": 23326, + "Ġnouveaux": 44952, + "Ġnouvelle": 24156, + "Ġnouvelles": 37172, + "Ġnov": 23883, + "Ġnova": 28265, + "Ġnovamente": 49960, + "Ġnove": 26972, + "Ġnovel": 7613, + "Ġnovels": 24574, + "Ġnovelty": 44805, + "Ġnovo": 18246, + "Ġnow": 586, + "Ġnowadays": 13434, + "Ġnowhere": 11159, + "Ġnozzle": 28998, + "Ġnp": 33808, + "Ġnu": 3822, + "Ġnuance": 42625, + "Ġnuanced": 45115, + "Ġnuances": 38775, + "Ġnuc": 6304, + "Ġnucle": 14962, + "Ġnuclear": 8179, + "Ġnuclei": 49919, + "Ġnucleus": 28055, + "Ġnud": 40045, + "Ġnude": 36505, + "Ġnue": 10412, + "Ġnuest": 7717, + "Ġnuestra": 16825, + "Ġnuestras": 32809, + "Ġnuestro": 14726, + "Ġnuestros": 24099, + "Ġnueva": 28963, + "Ġnuevas": 42817, + "Ġnuevo": 18591, + "Ġnuevos": 42010, + "Ġnug": 30279, + "Ġnuggets": 42663, + "Ġnuit": 38467, + "Ġnull": 18184, + "Ġnum": 1031, + "Ġnuma": 29080, + "Ġnumb": 32200, + "Ġnumber": 1230, + "Ġnumbered": 40936, + "Ġnumbers": 3547, + "Ġnumer": 7866, + "Ġnumerator": 30380, + "Ġnumerical": 29054, + "Ġnumero": 46839, + "Ġnumerous": 12546, + "Ġnuméro": 49525, + "Ġnun": 8905, + "Ġnunca": 13768, + "Ġnuo": 37802, + "Ġnuovo": 49348, + "Ġnur": 4343, + "Ġnurs": 9070, + "Ġnurse": 14012, + "Ġnursery": 37538, + "Ġnurses": 17446, + "Ġnursing": 15423, + "Ġnurt": 23705, + "Ġnurture": 41451, + "Ġnurturing": 48116, + "Ġnut": 5393, + "Ġnutr": 12289, + "Ġnutri": 13242, + "Ġnutrient": 32694, + "Ġnutrients": 17617, + "Ġnutrit": 37972, + "Ġnutrition": 14718, + "Ġnutritional": 34707, + "Ġnutritious": 40850, + "Ġnuts": 10483, + "Ġnutshell": 37711, + "Ġnutzen": 36905, + "Ġny": 18052, + "Ġnya": 24450, + "Ġnylon": 43503, + "Ġnyt": 21508, + "Ġnão": 2431, + "Ġnä": 6433, + "Ġnäch": 13201, + "Ġnächste": 30661, + "Ġnächsten": 19101, + "Ġnäm": 17534, + "Ġnämlich": 21219, + "Ġnär": 15457, + "ĠnÃ¥": 11594, + "ĠnÃ¥gon": 25418, + "ĠnÃ¥gonting": 43998, + "ĠnÃ¥got": 36586, + "ĠnÃ¥gra": 40842, + "ĠnÃ¥r": 36522, + "Ġné": 7024, + "Ġnécess": 31956, + "Ġnécessaire": 46396, + "Ġnên": 40606, + "Ġnó": 6604, + "Ġnói": 27508, + "Ġnós": 9738, + "Ġnú": 11908, + "Ġnúmer": 12803, + "Ġnúmero": 14959, + "Ġnúmeros": 36545, + "ĠnÃło": 29069, + "ĠnÃły": 12542, + "ĠnÃŃvel": 41747, + "ĠnÄĥm": 38098, + "ĠnÄĽ": 46911, + "ĠnÆ°á»Ľc": 30728, + "Ġnữa": 35047, + "Ġo": 277, + "Ġoak": 31322, + "Ġoat": 36792, + "Ġoath": 29450, + "Ġoatmeal": 47223, + "Ġoats": 43095, + "Ġob": 1111, + "Ġobe": 36346, + "Ġobec": 49141, + "Ġobed": 24330, + "Ġobedience": 36585, + "Ġobedient": 42541, + "Ġoben": 21279, + "Ġobes": 26395, + "Ġobese": 50060, + "Ġobesity": 29744, + "Ġobey": 19297, + "Ġobject": 2657, + "Ġobjection": 35756, + "Ġobjections": 44649, + "Ġobjective": 10024, + "Ġobjectively": 46067, + "Ġobjectives": 15961, + "Ġobjects": 6565, + "Ġobjet": 14964, + "Ġobjetivo": 29809, + "Ġobjeto": 40438, + "Ġobjetos": 49605, + "Ġobl": 23740, + "Ġoblig": 9270, + "Ġobligation": 20326, + "Ġobligations": 26234, + "Ġobliged": 47194, + "Ġobliv": 47039, + "Ġobra": 22798, + "Ġobras": 47618, + "Ġobrig": 29126, + "Ġobrigado": 41774, + "Ġobs": 3181, + "Ġobsc": 22082, + "Ġobscure": 34443, + "Ġobser": 12887, + "Ġobserv": 9951, + "Ġobservation": 14816, + "Ġobservations": 18163, + "Ġobserve": 11441, + "Ġobserved": 13095, + "Ġobserver": 27878, + "Ġobservers": 48090, + "Ġobserving": 22107, + "Ġobsess": 35803, + "Ġobsessed": 16923, + "Ġobsession": 30521, + "Ġobsol": 43053, + "Ġobsolete": 46333, + "Ġobst": 9579, + "Ġobstacle": 23112, + "Ġobstacles": 17735, + "Ġobstruct": 45579, + "Ġobstruction": 49711, + "Ġobt": 7464, + "Ġobtain": 12701, + "Ġobtained": 14879, + "Ġobtaining": 36749, + "Ġobten": 28326, + "Ġobviamente": 36325, + "Ġobvious": 6322, + "Ġobviously": 2745, + "Ġobwohl": 48428, + "Ġoc": 10409, + "Ġocas": 44534, + "Ġocc": 2678, + "Ġoccas": 15319, + "Ġoccasion": 9674, + "Ġoccasional": 31644, + "Ġoccasionally": 16895, + "Ġoccasions": 20641, + "Ġoccup": 8073, + "Ġoccupation": 24482, + "Ġoccupational": 43544, + "Ġoccupied": 19629, + "Ġoccupy": 30645, + "Ġoccur": 5160, + "Ġoccurred": 11068, + "Ġoccurrence": 36122, + "Ġoccurring": 18386, + "Ġoccurs": 11843, + "Ġocean": 7810, + "Ġoceans": 25004, + "Ġoch": 3795, + "ĠocksÃ¥": 13312, + "Ġoct": 13350, + "Ġoctave": 44441, + "Ġoctopus": 27962, + "Ġocup": 37305, + "Ġocur": 26430, + "ĠoczywiÅĽcie": 23862, + "Ġod": 3611, + "Ġodc": 36471, + "Ġodd": 7401, + "Ġoddly": 46083, + "Ġodds": 17439, + "Ġode": 45711, + "Ġoder": 4513, + "Ġodor": 41176, + "Ġodpow": 24314, + "Ġodpowied": 36574, + "Ġof": 295, + "Ġofere": 47084, + "Ġoff": 766, + "Ġoffen": 35253, + "Ġoffend": 41836, + "Ġoffended": 26776, + "Ġoffenders": 49079, + "Ġoffense": 17834, + "Ġoffenses": 49765, + "Ġoffensive": 15710, + "Ġoffer": 2626, + "Ġoffered": 8059, + "Ġoffering": 8745, + "Ġofferings": 25898, + "Ġoffers": 7736, + "Ġoffic": 2832, + "Ġoffice": 3398, + "Ġofficer": 8456, + "Ġofficers": 9199, + "Ġoffices": 14434, + "Ġofficial": 4783, + "Ġofficially": 12053, + "Ġofficials": 9798, + "Ġoffline": 21857, + "Ġoffs": 39457, + "Ġoffset": 18687, + "Ġoffshore": 34567, + "Ġoffspring": 36857, + "Ġoficial": 37189, + "Ġoft": 11649, + "Ġoften": 2049, + "Ġoftentimes": 18349, + "Ġog": 5360, + "Ġoggi": 34768, + "Ġogl": 49424, + "Ġogni": 33189, + "Ġogr": 34416, + "ĠogsÃ¥": 23864, + "Ġogóle": 29229, + "Ġoh": 1954, + "Ġohh": 50101, + "Ġohne": 15716, + "Ġoike": 38432, + "Ġoil": 3184, + "Ġoils": 22177, + "Ġoily": 27693, + "Ġojos": 39519, + "Ġok": 3133, + "Ġokay": 1392, + "Ġoke": 40043, + "Ġoko": 45730, + "Ġol": 2545, + "Ġolabilir": 38049, + "Ġolacak": 23172, + "Ġolan": 17771, + "Ġolar": 17318, + "Ġolarak": 17728, + "Ġold": 1331, + "Ġolder": 4906, + "Ġoldest": 14026, + "Ġolds": 41972, + "Ġoldu": 9761, + "ĠolduÄŁ": 15049, + "ĠolduÄŁu": 30588, + "ĠolduÄŁunu": 28619, + "Ġole": 18726, + "Ġoleh": 50051, + "Ġolha": 23550, + "Ġolhar": 37446, + "Ġolho": 50147, + "Ġolhos": 47944, + "Ġoli": 24072, + "Ġolika": 26025, + "Ġolive": 15981, + "Ġolives": 46746, + "Ġoll": 37995, + "Ġolla": 26876, + "Ġollut": 41851, + "Ġolm": 13583, + "Ġolmak": 45535, + "Ġolmas": 40307, + "Ġolması": 47528, + "Ġolmay": 35954, + "Ġolmaz": 31593, + "ĠolmuÅŁ": 32548, + "Ġolsa": 44655, + "Ġolsun": 17632, + "Ġolun": 38084, + "Ġolur": 16538, + "Ġolurs": 41607, + "Ġoluyor": 23597, + "ĠoluÅŁ": 49849, + "Ġolv": 43851, + "Ġolvid": 43194, + "Ġom": 3406, + "Ġomdat": 34982, + "Ġomega": 10498, + "Ġomin": 46812, + "Ġomn": 36874, + "Ġon": 322, + "Ġona": 20325, + "Ġonboard": 24033, + "Ġonc": 40592, + "Ġonce": 1564, + "Ġonda": 45671, + "Ġondan": 49228, + "Ġonde": 14396, + "Ġonder": 20756, + "Ġone": 472, + "Ġones": 2306, + "Ġoneself": 32265, + "Ġongoing": 10452, + "Ġoni": 36317, + "Ġonion": 10916, + "Ġonions": 13146, + "Ġonlar": 43179, + "Ġonline": 2950, + "Ġonly": 787, + "Ġons": 18818, + "Ġonset": 34948, + "Ġont": 6592, + "Ġonto": 3911, + "Ġonu": 20801, + "Ġonun": 27295, + "Ġonwards": 34230, + "Ġonze": 29460, + "Ġoo": 32685, + "Ġooh": 17024, + "Ġook": 7839, + "Ġoops": 34166, + "Ġop": 999, + "Ġopacity": 41693, + "Ġopaque": 42687, + "Ġopen": 1269, + "Ġopened": 5625, + "Ġopener": 43850, + "Ġopening": 5193, + "Ġopenings": 35941, + "Ġopenly": 23109, + "Ġopenness": 36200, + "Ġopens": 9870, + "Ġoper": 2208, + "Ġopera": 22202, + "Ġoperate": 9651, + "Ġoperated": 20826, + "Ġoperates": 22577, + "Ġoperating": 7447, + "Ġoperation": 6916, + "Ġoperational": 16607, + "Ġoperations": 7705, + "Ġoperator": 12973, + "Ġoperators": 19077, + "Ġopin": 3980, + "Ġopini": 46784, + "Ġopinion": 4800, + "Ġopinions": 11819, + "Ġopio": 24434, + "Ġopioid": 32837, + "Ġopioids": 47845, + "Ġopis": 45477, + "Ġoportun": 24237, + "Ġoportunidad": 42794, + "Ġopp": 1458, + "Ġoppon": 8292, + "Ġopponent": 10620, + "Ġopponents": 19001, + "Ġopportun": 2070, + "Ġopportunities": 4786, + "Ġopportunity": 2650, + "Ġoppos": 4665, + "Ġoppose": 28355, + "Ġopposed": 8851, + "Ġopposing": 27890, + "Ġopposite": 6182, + "Ġopposition": 13504, + "Ġoppress": 50240, + "Ġoppressed": 39640, + "Ġoppression": 27337, + "Ġops": 44663, + "Ġopt": 2427, + "Ġopted": 40768, + "Ġoptic": 48269, + "Ġoptical": 20674, + "Ġoptics": 42599, + "Ġoptim": 5028, + "Ġoptimal": 16252, + "Ġoptimism": 31074, + "Ġoptimistic": 19397, + "Ġoptimization": 19618, + "Ġoptimize": 19719, + "Ġoptimized": 26941, + "Ġoptimizing": 40425, + "Ġoptimum": 39326, + "Ġoption": 3614, + "Ġoptional": 17312, + "Ġoptions": 3956, + "Ġor": 420, + "Ġora": 33714, + "Ġorada": 33570, + "Ġoral": 19338, + "Ġorang": 17481, + "Ġorange": 7671, + "Ġoranges": 35474, + "Ġoraz": 28905, + "Ġorb": 14715, + "Ġorbit": 13991, + "Ġorbital": 27677, + "Ġorbitals": 50015, + "Ġorbiting": 48985, + "Ġorbits": 43522, + "Ġorch": 34850, + "Ġorchest": 14161, + "Ġorchestra": 25280, + "Ġorchestral": 36244, + "Ġord": 4792, + "Ġorden": 28615, + "Ġorder": 1668, + "Ġordered": 8866, + "Ġordering": 21739, + "Ġorders": 9470, + "Ġordin": 25376, + "Ġordinance": 40260, + "Ġordinary": 10547, + "Ġore": 20865, + "Ġorg": 14045, + "Ġorgan": 1798, + "Ġorganic": 10220, + "Ġorganis": 15223, + "Ġorganisation": 18641, + "Ġorganisations": 22270, + "Ġorganise": 50110, + "Ġorganised": 36866, + "Ġorganism": 24128, + "Ġorganisms": 22110, + "Ġorganiz": 4645, + "Ġorganization": 4475, + "Ġorganizational": 24730, + "Ġorganizations": 6150, + "Ġorganize": 13859, + "Ġorganized": 9983, + "Ġorganizer": 41363, + "Ġorganizers": 35071, + "Ġorganizing": 17608, + "Ġorgans": 20659, + "Ġorgas": 44834, + "Ġorient": 8579, + "Ġorientation": 14764, + "Ġoriented": 21841, + "Ġorig": 2349, + "Ġorigin": 4957, + "Ġoriginal": 3380, + "Ġoriginally": 7993, + "Ġoriginated": 31129, + "Ġorigins": 22721, + "Ġornament": 35689, + "Ġornaments": 47233, + "Ġoro": 45150, + "Ġorph": 23896, + "Ġorphan": 28711, + "Ġort": 23564, + "Ġorth": 19052, + "Ġorthog": 38130, + "Ġorthogonal": 41488, + "Ġos": 3003, + "Ġoscill": 18225, + "Ġoscillator": 43859, + "Ġoso": 19116, + "Ġosob": 41518, + "Ġosoby": 39737, + "Ġoss": 19508, + "Ġost": 32946, + "Ġostat": 32686, + "Ġoste": 42804, + "Ġostr": 44024, + "Ġosób": 32089, + "Ġot": 4337, + "Ġother": 661, + "Ġothers": 2357, + "Ġotherwise": 5911, + "Ġotra": 13623, + "Ġotras": 20244, + "Ġotro": 11921, + "Ġotros": 16422, + "Ġott": 42772, + "Ġotur": 41598, + "Ġou": 2820, + "Ġouais": 30570, + "Ġought": 13416, + "Ġoui": 14367, + "Ġounce": 29860, + "Ġounces": 27343, + "Ġour": 527, + "Ġours": 11896, + "Ġourselves": 4175, + "Ġout": 484, + "Ġoutbreak": 20963, + "Ġoutbreaks": 39097, + "Ġoutcome": 9700, + "Ġoutcomes": 10070, + "Ġoutdated": 36313, + "Ġoutdoor": 15942, + "Ġoutdoors": 20980, + "Ġouter": 10847, + "Ġoutfit": 11263, + "Ġoutfits": 22331, + "Ġoutgoing": 41565, + "Ġoutlet": 20656, + "Ġoutlets": 27416, + "Ġoutline": 16387, + "Ġoutlined": 27412, + "Ġoutlines": 40125, + "Ġoutlook": 26650, + "Ġoutput": 5598, + "Ġoutputs": 23930, + "Ġoutra": 12301, + "Ġoutrage": 25933, + "Ġoutrageous": 38685, + "Ġoutras": 22221, + "Ġoutreach": 19638, + "Ġoutright": 35189, + "Ġoutro": 13170, + "Ġoutros": 18282, + "Ġouts": 14758, + "Ġoutset": 44618, + "Ġoutside": 2380, + "Ġoutsider": 40484, + "Ġoutsiders": 49825, + "Ġoutstanding": 14485, + "Ġoutta": 21327, + "Ġoutward": 26914, + "Ġouv": 21157, + "Ġouvert": 47683, + "Ġov": 14187, + "Ġoval": 37175, + "Ġovat": 31802, + "Ġoven": 9090, + "Ġover": 670, + "Ġoverall": 4787, + "Ġoverarching": 45501, + "Ġoverboard": 49480, + "Ġoverc": 40027, + "Ġovercome": 10473, + "Ġovercoming": 38047, + "Ġoverd": 19853, + "Ġoverdose": 42206, + "Ġovere": 38657, + "Ġoverflow": 37772, + "Ġoverhe": 29807, + "Ġoverhead": 19922, + "Ġoverl": 15986, + "Ġoverlap": 19959, + "Ġoverlapping": 33535, + "Ġoverlay": 31741, + "Ġoverload": 28777, + "Ġoverlook": 37826, + "Ġoverlooked": 32269, + "Ġoverly": 24324, + "Ġovernight": 13935, + "Ġoverride": 42321, + "Ġovers": 15488, + "Ġoverse": 11916, + "Ġoverseas": 16274, + "Ġoversee": 46543, + "Ġoversight": 29146, + "Ġoversized": 49408, + "Ġoverst": 48834, + "Ġovert": 17038, + "Ġoverth": 30998, + "Ġoverthrow": 46924, + "Ġovertime": 29863, + "Ġoverturn": 42865, + "Ġoverview": 12492, + "Ġoverweight": 40523, + "Ġoverwhel": 9103, + "Ġoverwhelmed": 19042, + "Ġoverwhelming": 13373, + "Ġoverwhelmingly": 42926, + "Ġow": 11492, + "Ġowe": 16655, + "Ġowed": 41262, + "Ġowes": 50028, + "Ġowl": 34488, + "Ġown": 1065, + "Ġowned": 11684, + "Ġowner": 7289, + "Ġowners": 7710, + "Ġownership": 15279, + "Ġowning": 29820, + "Ġowns": 19143, + "Ġox": 5976, + "Ġoxid": 19924, + "Ġoxidation": 36767, + "Ġoxide": 28421, + "Ġoxygen": 9169, + "Ġoy": 15376, + "Ġoyn": 42753, + "Ġoyster": 32005, + "Ġoysters": 42296, + "Ġoyun": 41773, + "Ġozone": 46769, + "Ġoù": 9068, + "ĠoÄŁlum": 26984, + "Ġp": 280, + "ĠpH": 21677, + "Ġpa": 2502, + "Ġpaar": 16509, + "Ġpac": 15165, + "Ġpace": 11638, + "Ġpacing": 43285, + "Ġpack": 2844, + "Ġpackage": 7372, + "Ġpackaged": 38162, + "Ġpackages": 17401, + "Ġpackaging": 16836, + "Ġpacked": 13265, + "Ġpacket": 20300, + "Ġpackets": 30364, + "Ġpacking": 20815, + "Ġpacks": 19403, + "Ġpact": 38104, + "Ġpad": 6887, + "Ġpada": 26069, + "Ġpadding": 39562, + "Ġpaddle": 31834, + "Ġpadre": 34781, + "Ġpadres": 48295, + "Ġpads": 19179, + "Ġpag": 11812, + "Ġpagan": 38238, + "Ġpagar": 28024, + "Ġpage": 3028, + "Ġpages": 7183, + "Ġpai": 32227, + "Ġpaid": 4835, + "Ġpain": 1822, + "Ġpainful": 11697, + "Ġpains": 29774, + "Ġpaint": 4225, + "Ġpainted": 11797, + "Ġpainter": 26619, + "Ġpainters": 48643, + "Ġpainting": 5370, + "Ġpaintings": 14880, + "Ġpaints": 28076, + "Ġpair": 6119, + "Ġpaired": 25699, + "Ġpairing": 32735, + "Ġpairs": 15494, + "Ġpais": 34955, + "Ġpaj": 33819, + "Ġpajamas": 43625, + "Ġpak": 20843, + "Ġpakai": 49062, + "Ġpal": 3984, + "Ġpalab": 21119, + "Ġpalabra": 31702, + "Ġpalabras": 35240, + "Ġpalace": 15207, + "Ġpalate": 48247, + "Ġpalav": 27069, + "Ġpalavra": 40960, + "Ġpalavras": 46169, + "Ġpale": 19546, + "Ġpalette": 15851, + "Ġpaling": 49626, + "Ġpaljon": 34824, + "Ġpall": 24075, + "Ġpalm": 17018, + "Ġpalms": 30819, + "Ġpals": 43806, + "Ġpam": 30738, + "ĠpamiÄĻ": 31088, + "Ġpan": 2462, + "Ġpana": 47296, + "Ġpancake": 28916, + "Ġpancakes": 27859, + "Ġpand": 4565, + "Ġpanda": 46685, + "Ġpandemia": 33245, + "Ġpandemic": 5388, + "Ġpane": 32605, + "Ġpanel": 4831, + "Ġpanelists": 20162, + "Ġpanels": 13419, + "Ġpani": 43916, + "Ġpanic": 14783, + "Ġpans": 32905, + "Ġpant": 14869, + "Ġpantalla": 44449, + "Ġpantry": 40689, + "Ġpants": 10082, + "Ġpap": 5806, + "Ġpapa": 31015, + "Ġpapel": 24710, + "Ġpaper": 3035, + "Ġpapers": 10577, + "Ġpaperwork": 27953, + "Ġpapier": 37410, + "Ġpaprika": 46781, + "Ġpar": 971, + "Ġpara": 1690, + "Ġparab": 45729, + "Ġparach": 33927, + "Ġparachute": 44665, + "Ġparad": 13480, + "Ġparade": 26128, + "Ġparadigm": 24709, + "Ġparadise": 25919, + "Ġparadox": 26221, + "Ġparag": 17372, + "Ġparagraph": 18865, + "Ġparagraphs": 48910, + "Ġparal": 26009, + "Ġparall": 8069, + "Ġparallel": 8952, + "Ġparallels": 44223, + "Ġparaly": 32645, + "Ġparalysis": 49507, + "Ġparalyzed": 41919, + "Ġparam": 6220, + "Ġparameter": 13075, + "Ġparameters": 9834, + "Ġparan": 32369, + "Ġparano": 31416, + "Ġparanoid": 43948, + "Ġparanormal": 37125, + "Ġparap": 36992, + "Ġparar": 37193, + "Ġparas": 21012, + "Ġparasite": 49756, + "Ġparasites": 45289, + "Ġparc": 30511, + "Ġparce": 6992, + "Ġparcel": 34082, + "Ġparch": 35765, + "Ġparchment": 37208, + "Ġpardon": 22440, + "Ġpare": 7448, + "Ġparece": 14120, + "Ġparecer": 44885, + "Ġpareil": 46020, + "Ġparent": 2596, + "Ġparental": 41113, + "Ġparenth": 23350, + "Ġparentheses": 34153, + "Ġparenting": 30896, + "Ġparents": 3152, + "Ġparf": 19743, + "Ġparfait": 36102, + "Ġparfois": 30125, + "Ġparish": 45325, + "Ġparity": 44747, + "Ġpark": 3884, + "Ġparked": 28491, + "Ġparking": 9893, + "Ġparks": 16213, + "Ġparl": 13734, + "Ġparlament": 46024, + "Ġparlar": 45803, + "Ġparle": 18508, + "Ġparler": 16421, + "Ġparliament": 19520, + "Ġparliamentary": 43067, + "Ġparlé": 38570, + "Ġparody": 43386, + "Ġparole": 26783, + "Ġparrot": 42462, + "Ġpars": 21156, + "Ġparse": 48377, + "Ġparsley": 33632, + "Ġpart": 644, + "Ġpartager": 44006, + "Ġparte": 6975, + "Ġpartes": 31210, + "Ġparti": 24408, + "Ġpartial": 14641, + "Ġpartially": 18886, + "Ġpartic": 1276, + "Ġparticip": 3421, + "Ġparticipant": 24950, + "Ġparticipants": 10503, + "Ġparticipar": 48703, + "Ġparticipate": 8197, + "Ġparticipated": 17978, + "Ġparticipating": 13950, + "Ġparticipation": 13487, + "Ġparticle": 12359, + "Ġparticles": 10007, + "Ġparticul": 21861, + "Ġparticular": 1729, + "Ġparticularly": 4098, + "Ġparticulier": 40400, + "Ġpartido": 41310, + "Ġpartie": 17465, + "Ġparties": 8265, + "Ġparting": 46607, + "Ġpartir": 13906, + "Ġpartis": 44634, + "Ġpartisan": 37721, + "Ġpartition": 24808, + "Ġpartly": 17031, + "Ġpartner": 4975, + "Ġpartnered": 29865, + "Ġpartnering": 31290, + "Ġpartners": 4462, + "Ġpartnership": 9982, + "Ġpartnerships": 18245, + "Ġpartout": 32955, + "Ġparts": 3166, + "Ġparty": 3595, + "Ġpas": 1736, + "Ġpasa": 20260, + "Ġpasado": 24794, + "Ġpasando": 45412, + "Ġpasar": 25344, + "Ġpase": 47125, + "Ġpaso": 29212, + "Ġpass": 1320, + "Ġpassa": 23880, + "Ġpassado": 42490, + "Ġpassage": 11497, + "Ġpassages": 31589, + "Ġpassar": 20630, + "Ġpassat": 50050, + "Ġpasse": 14530, + "Ġpassed": 4678, + "Ġpassenger": 18707, + "Ġpassengers": 18436, + "Ġpasser": 18509, + "Ġpasses": 11335, + "Ġpassieren": 46223, + "Ġpassiert": 21671, + "Ġpassing": 8437, + "Ġpassion": 5418, + "Ġpassionate": 11410, + "Ġpassions": 30640, + "Ġpassive": 14975, + "Ġpasso": 38159, + "Ġpassou": 44740, + "Ġpassport": 24694, + "Ġpasst": 37154, + "Ġpassword": 11524, + "Ġpasswords": 33149, + "Ġpassé": 24093, + "Ġpast": 1791, + "Ġpasta": 13296, + "Ġpaste": 9163, + "Ġpastel": 38100, + "Ġpasti": 48145, + "Ġpastor": 21193, + "Ġpastors": 42452, + "Ġpastry": 29198, + "Ġpasture": 48423, + "Ġpasó": 41382, + "Ġpat": 1947, + "Ġpatch": 9972, + "Ġpatches": 26531, + "Ġpatent": 20495, + "Ġpatents": 38142, + "Ġpater": 42302, + "Ġpath": 3100, + "Ġpathetic": 35506, + "Ġpathogens": 44760, + "Ġpaths": 14518, + "Ġpathway": 18590, + "Ġpathways": 22988, + "Ġpatience": 14826, + "Ġpatient": 4537, + "Ġpatiently": 49001, + "Ġpatients": 4209, + "Ġpatio": 42924, + "Ġpatreon": 33161, + "Ġpatri": 18311, + "Ġpatriarch": 46012, + "Ġpatrim": 48369, + "Ġpatriot": 44210, + "Ġpatrol": 26305, + "Ġpatron": 21843, + "Ġpatrons": 27559, + "Ġpatt": 49916, + "Ġpatter": 3829, + "Ġpattern": 5102, + "Ġpatterns": 8294, + "Ġpau": 34221, + "Ġpause": 10465, + "Ġpaused": 46860, + "Ġpave": 28870, + "Ġpaved": 42989, + "Ġpavement": 38305, + "Ġpaw": 38959, + "Ġpawn": 30905, + "Ġpaws": 46768, + "Ġpay": 1689, + "Ġpaycheck": 35639, + "Ġpayer": 38230, + "Ġpaying": 6229, + "Ġpayload": 30918, + "Ġpayment": 10224, + "Ġpayments": 14348, + "Ġpayoff": 46547, + "Ġpayroll": 36873, + "Ġpays": 10604, + "Ġpaz": 30032, + "ĠpaÃŃs": 10572, + "ĠpaÃŃses": 23070, + "ĠpaÅĦst": 21868, + "ĠpaÅĦstwa": 43289, + "ĠpaÅĦstwo": 42233, + "Ġpc": 43451, + "Ġpe": 520, + "Ġpea": 49178, + "Ġpeac": 43370, + "Ġpeace": 4336, + "Ġpeaceful": 13962, + "Ġpeacefully": 36485, + "Ġpeach": 25917, + "Ġpeak": 10651, + "Ġpeaks": 26897, + "Ġpean": 14882, + "Ġpeanut": 19209, + "Ġpeanuts": 32895, + "Ġpear": 37320, + "Ġpearl": 20287, + "Ġpearls": 35111, + "Ġpeas": 24494, + "Ġpec": 42451, + "Ġpeculiar": 27149, + "Ġped": 5670, + "Ġpedal": 19122, + "Ġpedals": 35217, + "Ġpedest": 20497, + "Ġpedestrian": 33947, + "Ġpedestrians": 48339, + "Ġpediatric": 27477, + "Ġpedir": 33533, + "Ġpee": 21343, + "Ġpeek": 19604, + "Ġpeel": 13889, + "Ġpeeled": 39033, + "Ġpeeling": 39926, + "Ġpeer": 15108, + "Ġpeers": 16739, + "Ġpeg": 17199, + "Ġpega": 43005, + "Ġpegar": 22418, + "Ġpeine": 46655, + "Ġpel": 6178, + "Ġpela": 14820, + "Ġpele": 41615, + "Ġpelig": 43839, + "Ġpell": 33836, + "Ġpelo": 12167, + "Ġpelos": 38304, + "Ġpelvic": 40959, + "Ġpelvis": 34617, + "ĠpelÃŃcul": 31810, + "ĠpelÃŃcula": 40154, + "Ġpem": 47690, + "Ġpen": 3435, + "Ġpena": 29222, + "Ġpenal": 13661, + "Ġpenalties": 35389, + "Ġpenalty": 16263, + "Ġpencil": 10985, + "Ġpencils": 30857, + "Ġpend": 12179, + "Ġpendant": 17338, + "Ġpending": 32110, + "Ġpendulum": 44103, + "Ġpenet": 16183, + "Ġpenetrate": 36307, + "Ġpenetration": 35187, + "Ġpeng": 17289, + "Ġpenguin": 45752, + "Ġpeninsula": 45065, + "Ġpenis": 28282, + "Ġpenn": 34911, + "Ġpenny": 24178, + "Ġpens": 6099, + "Ġpensa": 46909, + "Ġpensando": 34525, + "Ġpensar": 18321, + "Ġpense": 11209, + "Ġpenser": 38940, + "Ġpension": 21927, + "Ġpenso": 48005, + "Ġpent": 16834, + "Ġpentru": 31718, + "Ġpeople": 561, + "Ġpeoples": 16915, + "Ġpepp": 39759, + "Ġpepper": 8532, + "Ġpeppers": 21345, + "Ġpept": 41781, + "Ġpequ": 26758, + "Ġpeque": 19132, + "Ġpequeña": 47177, + "Ġpequeño": 38181, + "Ġper": 680, + "Ġperce": 9016, + "Ġperceber": 49376, + "Ġperceive": 20281, + "Ġperceived": 19049, + "Ġpercent": 3043, + "Ġpercentage": 9668, + "Ġpercentages": 42270, + "Ġpercept": 43276, + "Ġperception": 12860, + "Ġperceptions": 35258, + "Ġperch": 29240, + "Ġperché": 14303, + "Ġpercussion": 44430, + "Ġperd": 12611, + "Ġperde": 44182, + "Ġperder": 26971, + "Ġperdre": 46254, + "Ġperdu": 44759, + "Ġperf": 13826, + "Ġperfect": 2176, + "Ġperfection": 19708, + "Ġperfectly": 6239, + "Ġperfekt": 49134, + "Ġperform": 2042, + "Ġperformance": 3389, + "Ġperformances": 16087, + "Ġperformed": 10332, + "Ġperformer": 30248, + "Ġperformers": 30768, + "Ġperforming": 10205, + "Ġperforms": 26213, + "Ġperfume": 28464, + "Ġpergi": 46857, + "Ġpergunt": 31060, + "Ġpergunta": 34908, + "Ġperhaps": 4317, + "Ġperil": 46118, + "Ġperimeter": 32404, + "Ġperiod": 2896, + "Ġperiodic": 27790, + "Ġperiodically": 38916, + "Ġperiods": 13804, + "Ġperipher": 26807, + "Ġperipheral": 40235, + "Ġperish": 41586, + "Ġperk": 38839, + "Ġperks": 36991, + "Ġperlu": 39779, + "Ġperm": 4784, + "Ġperman": 8105, + "Ġpermanent": 10996, + "Ġpermanently": 24042, + "Ġperme": 30287, + "Ġpermet": 20696, + "Ġpermett": 21540, + "Ġpermettre": 37350, + "Ġpermis": 44744, + "Ġpermission": 11226, + "Ġpermissions": 32723, + "Ġpermit": 13423, + "Ġpermite": 31105, + "Ġpermitir": 46865, + "Ġpermits": 30990, + "Ġpermitted": 28658, + "Ġpernah": 41136, + "Ġpero": 4768, + "Ġperpend": 26095, + "Ġperpendicular": 26734, + "Ġperpet": 16211, + "Ġperpetual": 48216, + "Ġperquè": 16839, + "Ġpers": 868, + "Ġperse": 20607, + "Ġpersec": 23783, + "Ġpersecuted": 49903, + "Ġpersecution": 36878, + "Ġpersever": 29917, + "Ġperseverance": 39674, + "Ġpersist": 13233, + "Ġpersistence": 37617, + "Ġpersistent": 24315, + "Ġperson": 954, + "Ġpersona": 12184, + "Ġpersonagem": 49502, + "Ġpersonaje": 41746, + "Ġpersonajes": 43960, + "Ġpersonal": 2973, + "Ġpersonalities": 25308, + "Ġpersonality": 9033, + "Ġpersonalized": 28415, + "Ġpersonally": 5665, + "Ġpersonas": 12019, + "Ġpersone": 29944, + "Ġpersones": 46232, + "Ġpersonn": 30194, + "Ġpersonnage": 43952, + "Ġpersonne": 17219, + "Ġpersonnel": 14988, + "Ġpersonnes": 16246, + "Ġpersons": 14453, + "Ġperspect": 4096, + "Ġperspective": 4585, + "Ġperspectives": 16766, + "Ġpersu": 16336, + "Ġpersuade": 31781, + "Ġpersuaded": 47693, + "Ġpersön": 31228, + "Ġpersönlich": 42699, + "Ġpert": 13269, + "Ġpertaining": 49582, + "Ġpertama": 49109, + "Ġperto": 42855, + "Ġperturb": 40468, + "Ġperò": 12673, + "ĠperÃŃ": 38933, + "ĠperÃŃodo": 44699, + "Ġpes": 9262, + "Ġpesar": 41951, + "Ġpeso": 28149, + "Ġpesos": 33204, + "Ġpess": 35895, + "Ġpessim": 37399, + "Ġpesso": 6818, + "Ġpessoa": 16366, + "Ġpessoal": 24811, + "Ġpessoas": 10021, + "Ġpest": 31068, + "Ġpestic": 28904, + "Ġpesticides": 39015, + "Ġpests": 47645, + "Ġpet": 3817, + "Ġpetals": 31530, + "Ġpetit": 9686, + "Ġpetite": 18319, + "Ġpetites": 34063, + "Ġpetition": 22661, + "Ġpetits": 26487, + "Ġpetrol": 32377, + "Ġpetroleum": 47641, + "Ġpets": 19897, + "Ġpetty": 39334, + "Ġpeu": 5604, + "Ġpeuple": 49186, + "Ġpeur": 30071, + "Ġpeut": 5977, + "Ġpeuvent": 24335, + "Ġpeux": 14844, + "Ġpew": 25889, + "Ġpewn": 47160, + "Ġpewno": 33002, + "ĠpeÅĤ": 43205, + "Ġph": 903, + "Ġpharm": 13105, + "Ġpharmac": 31818, + "Ġpharmaceutical": 27130, + "Ġpharmacy": 30639, + "Ġphase": 5574, + "Ġphases": 18764, + "Ġphen": 7279, + "Ġphenomen": 9388, + "Ġphenomena": 22004, + "Ġphenomenal": 17778, + "Ġphenomenon": 14029, + "Ġphi": 13107, + "Ġphilan": 28797, + "Ġphilanthrop": 28941, + "Ġphilanthropy": 47180, + "Ġphilos": 7012, + "Ġphilosop": 9237, + "Ġphilosoph": 14529, + "Ġphilosopher": 29805, + "Ġphilosophers": 36839, + "Ġphilosophical": 25066, + "Ġphilosophy": 10675, + "Ġphon": 30754, + "Ġphone": 2593, + "Ġphones": 10216, + "Ġphosph": 19775, + "Ġphosphate": 46542, + "Ġphosphorus": 46741, + "Ġphot": 2409, + "Ġphoto": 5052, + "Ġphotograph": 8348, + "Ġphotographed": 45067, + "Ġphotographer": 19494, + "Ġphotographers": 33835, + "Ġphotographs": 17649, + "Ġphotography": 13865, + "Ġphoton": 37443, + "Ġphotons": 40209, + "Ġphotos": 5787, + "Ġphr": 7636, + "Ġphrase": 9535, + "Ġphrases": 20312, + "Ġphys": 2529, + "Ġphysi": 21265, + "Ġphysic": 27903, + "Ġphysical": 4001, + "Ġphysically": 9762, + "Ġphysician": 16456, + "Ġphysicians": 21966, + "Ġphysicist": 42466, + "Ġphysicists": 48716, + "Ġphysics": 10649, + "Ġphysiological": 41234, + "Ġphysiology": 43585, + "Ġphysique": 37058, + "Ġphải": 23394, + "Ġpi": 3895, + "Ġpiace": 50062, + "Ġpian": 32198, + "Ġpiano": 9211, + "Ġpic": 13363, + "Ġpick": 1888, + "Ġpicked": 6183, + "Ġpicking": 8867, + "Ġpickle": 31433, + "Ġpickled": 38076, + "Ġpickles": 38910, + "Ġpicks": 16137, + "Ġpickup": 25328, + "Ġpicky": 41099, + "Ġpicnic": 32137, + "Ġpics": 46690, + "Ġpict": 2317, + "Ġpicture": 3036, + "Ġpictured": 49896, + "Ġpictures": 5242, + "Ġpid": 44540, + "Ġpie": 1730, + "Ġpiece": 2522, + "Ġpieces": 3755, + "Ġpied": 24186, + "Ġpiel": 46065, + "Ġpien": 26274, + "Ġpier": 9766, + "Ġpiercing": 42972, + "Ġpierws": 27623, + "Ġpierwsze": 45994, + "Ġpierwszy": 34016, + "Ġpies": 29640, + "Ġpig": 8120, + "Ġpige": 26704, + "Ġpigeon": 37886, + "Ġpigeons": 48297, + "Ġpiggy": 39349, + "Ġpigment": 31325, + "Ġpigs": 24380, + "Ġpik": 49928, + "Ġpike": 36242, + "Ġpil": 6429, + "Ġpile": 14375, + "Ġpiles": 34861, + "Ġpilgr": 30760, + "Ġpilgrimage": 49954, + "Ġpill": 8100, + "Ġpillar": 27592, + "Ġpillars": 26729, + "Ġpillow": 18581, + "Ġpillows": 38630, + "Ġpills": 23871, + "Ġpilot": 9691, + "Ġpilots": 21506, + "Ġpim": 33917, + "Ġpin": 5447, + "Ġpinch": 14614, + "Ġpine": 15113, + "Ġpineapple": 25740, + "Ġping": 26151, + "Ġpink": 7022, + "Ġpinky": 42616, + "Ġpinned": 33802, + "Ġpinpoint": 40837, + "Ġpins": 16392, + "Ġpint": 23924, + "Ġpione": 19761, + "Ġpioneer": 37668, + "Ġpioneers": 47381, + "Ġpior": 45974, + "Ġpip": 8489, + "Ġpipe": 11240, + "Ġpipeline": 15517, + "Ġpipelines": 40168, + "Ġpipes": 21882, + "Ġpiping": 35204, + "Ġpir": 13528, + "Ġpirate": 27424, + "Ġpirates": 33859, + "Ġpis": 26584, + "Ġpiss": 15171, + "Ġpissed": 23795, + "Ġpist": 12273, + "Ġpista": 49516, + "Ġpistol": 25385, + "Ġpiston": 30002, + "Ġpit": 10147, + "Ġpitch": 7293, + "Ġpitched": 32994, + "Ġpitcher": 42147, + "Ġpitches": 43110, + "Ġpitching": 37499, + "Ġpits": 40312, + "Ġpity": 21103, + "Ġpivot": 14538, + "Ġpivotal": 39078, + "Ġpix": 11273, + "Ġpixel": 19261, + "Ġpixels": 18668, + "Ġpizz": 36075, + "Ġpizza": 8298, + "Ġpizzas": 44037, + "Ġpiù": 10589, + "ĠpiÄĻ": 32677, + "ĠpiÄĻk": 48085, + "ĠpiÅŁ": 47461, + "Ġpl": 499, + "Ġpla": 15256, + "Ġplac": 20831, + "Ġplace": 1081, + "Ġplacebo": 42779, + "Ġplaced": 7074, + "Ġplacement": 17257, + "Ġplaces": 3190, + "Ġplacing": 17221, + "Ġplag": 33756, + "Ġplague": 28185, + "Ġplain": 11121, + "Ġplains": 47362, + "Ġplaint": 39112, + "Ġplais": 29286, + "Ġplaisir": 32756, + "Ġplan": 1393, + "Ġplane": 5720, + "Ġplanes": 14952, + "Ġplanet": 5054, + "Ġplaneta": 34186, + "Ġplanetary": 35788, + "Ġplanets": 15126, + "Ġplank": 27861, + "Ġplanned": 8589, + "Ġplanner": 31268, + "Ġplanners": 49674, + "Ġplanning": 5038, + "Ġplano": 40259, + "Ġplans": 5482, + "Ġplant": 3709, + "Ġplantation": 45328, + "Ġplante": 36829, + "Ġplanted": 17395, + "Ġplanting": 20585, + "Ġplants": 5972, + "Ġplaque": 36542, + "Ġplasma": 22564, + "Ġplast": 35636, + "Ġplaster": 34467, + "Ġplastic": 5900, + "Ġplastics": 34356, + "Ġplat": 3403, + "Ġplata": 30780, + "Ġplataform": 36448, + "Ġplataforma": 46243, + "Ġplate": 5924, + "Ġplateau": 39885, + "Ġplates": 14231, + "Ġplatform": 3663, + "Ġplatforms": 9473, + "Ġplatinum": 37475, + "Ġplats": 48328, + "Ġplaus": 34946, + "Ġplausible": 39925, + "Ġplay": 862, + "Ġplayable": 37146, + "Ġplayback": 37223, + "Ġplayed": 3737, + "Ġplayer": 4256, + "Ġplayers": 4150, + "Ġplayful": 30730, + "Ġplayground": 24646, + "Ġplaying": 2433, + "Ġplaylist": 16788, + "Ġplayoffs": 41142, + "Ġplays": 5749, + "Ġplaythrough": 48752, + "Ġple": 3362, + "Ġplea": 42152, + "Ġplead": 48642, + "Ġpleas": 35122, + "Ġpleasant": 16232, + "Ġplease": 1767, + "Ġpleased": 10587, + "Ġpleasing": 32798, + "Ġpleasure": 6834, + "Ġpleasures": 48627, + "Ġpled": 34263, + "Ġpledge": 26819, + "Ġplein": 21088, + "Ġplenty": 7140, + "Ġpliers": 33982, + "Ġplot": 7542, + "Ġplots": 28609, + "Ġplotted": 43288, + "Ġplotting": 41178, + "Ġplu": 44373, + "Ġpluck": 41514, + "Ġplug": 5452, + "Ġplugged": 25679, + "Ġplugging": 42975, + "Ġplugin": 23407, + "Ġplugins": 33759, + "Ġplugs": 33899, + "Ġplum": 25854, + "Ġplumbing": 39993, + "Ġplung": 37663, + "Ġplup": 45312, + "Ġplupart": 45403, + "Ġplural": 25377, + "Ġplus": 1804, + "Ġplusieurs": 20208, + "Ġplut": 18419, + "Ġplutôt": 20856, + "Ġply": 35318, + "Ġplywood": 43633, + "Ġplötzlich": 49033, + "Ġpm": 23023, + "Ġpne": 26710, + "Ġpneum": 30039, + "Ġpneumonia": 43097, + "Ġpo": 714, + "Ġpobl": 30548, + "Ġpoblación": 42769, + "Ġpobre": 40819, + "Ġpocket": 8963, + "Ġpockets": 16491, + "Ġpoco": 10639, + "Ġpocz": 26423, + "ĠpoczÄħt": 34397, + "ĠpoczÄħtku": 43959, + "Ġpod": 2497, + "Ġpodcast": 7367, + "Ġpodcasts": 24045, + "Ġpode": 7468, + "Ġpodem": 20934, + "Ġpodemos": 12234, + "Ġpoder": 8152, + "Ġpoderia": 33674, + "Ġpodia": 46689, + "Ġpodium": 26827, + "Ġpodob": 43024, + "Ġpodr": 15305, + "ĠpodrÃŃa": 27246, + "Ġpods": 31925, + "Ġpodstaw": 43443, + "Ġpodéis": 45728, + "ĠpodÃŃa": 45588, + "Ġpoem": 13065, + "Ġpoems": 24014, + "Ġpoet": 20874, + "Ġpoetic": 41080, + "Ġpoetry": 15155, + "Ġpoets": 38364, + "Ġpog": 32037, + "Ġpoi": 19260, + "Ġpoint": 935, + "Ġpointed": 10932, + "Ġpointer": 23918, + "Ġpointers": 44548, + "Ġpointing": 12166, + "Ġpointless": 32824, + "Ġpoints": 2793, + "Ġpois": 31014, + "Ġpoison": 10836, + "Ġpoisoned": 36677, + "Ġpoisoning": 36778, + "Ġpoisonous": 37376, + "Ġpojaw": 30655, + "Ġpok": 13010, + "Ġpoke": 19712, + "Ġpokemon": 41161, + "Ġpoker": 36863, + "Ġpoking": 42684, + "Ġpol": 1180, + "Ġpolar": 12367, + "Ġpolarization": 37736, + "Ġpolarized": 48623, + "Ġpole": 13208, + "Ġpoles": 24760, + "Ġpolic": 6285, + "Ġpolice": 3804, + "Ġpoliceman": 42658, + "Ġpolicies": 7657, + "Ġpolicing": 28799, + "Ġpolicy": 3897, + "Ġpolicymakers": 47325, + "Ġpolish": 20452, + "Ġpolished": 29079, + "Ġpolishing": 47258, + "Ġpolit": 2453, + "Ġpolite": 25171, + "Ġpolitic": 48044, + "Ġpolitical": 3905, + "Ġpolitically": 21154, + "Ġpolitician": 26453, + "Ġpoliticians": 14756, + "Ġpolitics": 7341, + "Ġpolitique": 26115, + "Ġpolitiques": 46267, + "Ġpolity": 36066, + "Ġpoll": 6418, + "Ġpollen": 42482, + "Ġpolling": 29518, + "Ġpolls": 24264, + "Ġpollut": 43415, + "Ġpollution": 16727, + "Ġpolsk": 28757, + "Ġpoly": 6754, + "Ġpolygon": 48242, + "Ġpolymer": 20073, + "Ġpolynom": 22560, + "Ġpolynomial": 26110, + "ĠpolÃŃt": 14482, + "ĠpolÃŃtica": 25029, + "ĠpolÃŃticas": 45931, + "ĠpolÃŃtico": 48641, + "Ġpom": 12991, + "Ġpomoc": 48962, + "Ġpomp": 44275, + "Ġpon": 9224, + "Ġpond": 17384, + "Ġpone": 40192, + "Ġponer": 19149, + "Ġpong": 36164, + "Ġponieważ": 32426, + "Ġpont": 18770, + "Ġponto": 17936, + "Ġpontos": 30676, + "Ġpony": 27342, + "Ġponytail": 49138, + "Ġpoo": 36743, + "Ġpool": 7005, + "Ġpools": 28688, + "Ġpoop": 17153, + "Ġpoor": 4716, + "Ġpoorer": 49740, + "Ġpoorest": 44925, + "Ġpoorly": 22271, + "Ġpop": 1665, + "Ġpopcorn": 25334, + "Ġpope": 42248, + "Ġpopped": 21545, + "Ġpopping": 18374, + "Ġpops": 16795, + "Ġpopul": 24017, + "Ġpopula": 32166, + "Ġpopular": 3743, + "Ġpopularity": 19301, + "Ġpopulated": 32998, + "Ġpopulation": 4415, + "Ġpopulations": 12822, + "Ġpoquito": 28229, + "Ġpor": 1515, + "Ġporch": 35513, + "Ġpore": 41459, + "Ġpores": 30082, + "Ġpork": 10208, + "Ġporn": 19444, + "Ġpornography": 49936, + "Ġporque": 4021, + "Ġporridge": 38872, + "Ġport": 2436, + "Ġporta": 28598, + "Ġportable": 21800, + "Ġportal": 14982, + "Ġporte": 26658, + "Ġporter": 41628, + "Ġportfol": 11688, + "Ġportfolio": 12583, + "Ġportion": 8044, + "Ġportions": 25070, + "Ġportrait": 17126, + "Ġportraits": 31880, + "Ġportray": 15676, + "Ġportrayed": 29845, + "Ġports": 18160, + "Ġpos": 1366, + "Ġpose": 10774, + "Ġposed": 31399, + "Ġposer": 39355, + "Ġposes": 26059, + "Ġposible": 26644, + "Ġposición": 46595, + "Ġposing": 40378, + "Ġposit": 11218, + "Ġposition": 2535, + "Ġpositioned": 24889, + "Ġpositioning": 26381, + "Ġpositions": 8432, + "Ġpositiv": 40806, + "Ġpositive": 3353, + "Ġpositively": 25795, + "Ġpositives": 35127, + "Ġpositivity": 35198, + "Ġpositivo": 44710, + "Ġposição": 49842, + "Ġposs": 1402, + "Ġpossa": 41564, + "Ġpossess": 17490, + "Ġpossessed": 29608, + "Ġpossession": 20935, + "Ġpossessions": 40623, + "Ġpossiamo": 44758, + "Ġpossibil": 24145, + "Ġpossibile": 50184, + "Ġpossibilities": 12178, + "Ġpossibility": 7959, + "Ġpossible": 1944, + "Ġpossibly": 6264, + "Ġposso": 22501, + "Ġpossono": 43857, + "ĠpossÃŃvel": 29322, + "Ġpost": 2183, + "Ġpostal": 49645, + "Ġposted": 9437, + "Ġposter": 17171, + "Ġposterior": 33529, + "Ġposters": 28172, + "Ġposting": 15978, + "Ġpostp": 28973, + "Ġpostponed": 49023, + "Ġposts": 12300, + "Ġposture": 18502, + "Ġpot": 1847, + "Ġpotassium": 29547, + "Ġpotato": 7445, + "Ġpotatoes": 11811, + "Ġpotem": 36513, + "Ġpotencial": 48265, + "Ġpotent": 27073, + "Ġpotential": 3995, + "Ġpotentially": 7263, + "Ġpotion": 39113, + "Ġpotrze": 28577, + "Ġpotrzeb": 37595, + "Ġpots": 22022, + "Ġpottery": 45272, + "Ġpou": 5043, + "Ġpouch": 27781, + "Ġpouco": 13920, + "Ġpound": 12013, + "Ġpounding": 40034, + "Ġpounds": 8319, + "Ġpouquinho": 31114, + "Ġpour": 2016, + "Ġpoured": 23270, + "Ġpouring": 20450, + "Ġpourquoi": 19934, + "Ġpourra": 37753, + "Ġpourrait": 25590, + "Ġpourtant": 47856, + "Ġpous": 39140, + "Ġpouv": 29663, + "Ġpouvait": 45913, + "Ġpouvez": 18248, + "Ġpouvoir": 14874, + "Ġpoverty": 10958, + "Ġpovo": 46388, + "Ġpow": 3388, + "Ġpowder": 6341, + "Ġpowdered": 35615, + "Ġpower": 1347, + "Ġpowered": 17786, + "Ġpowerful": 4005, + "Ġpowerless": 47926, + "Ġpowers": 8674, + "Ġpowiedz": 27617, + "ĠpowiedziaÅĤ": 48539, + "ĠpowiedzieÄĩ": 27886, + "Ġpowin": 27310, + "Ġpoz": 21281, + "Ġpozi": 38503, + "Ġpozw": 40557, + "Ġpozy": 49358, + "Ġpr": 582, + "Ġpra": 3206, + "Ġprac": 22404, + "Ġpract": 1927, + "Ġpractical": 8496, + "Ġpractically": 15667, + "Ġpractice": 3124, + "Ġpracticed": 19268, + "Ġpractices": 7525, + "Ġpracticing": 11350, + "Ġpractise": 38208, + "Ġpractition": 18064, + "Ġpractitioner": 32125, + "Ġpractitioners": 25742, + "Ġpracy": 35591, + "Ġprag": 33394, + "Ġpragmatic": 46904, + "Ġpraise": 13286, + "Ġpraised": 31003, + "Ġpraising": 42941, + "Ġprakt": 33721, + "Ġprank": 19794, + "Ġprat": 28844, + "Ġprata": 45895, + "Ġpratic": 33852, + "Ġpraticamente": 45734, + "Ġpratique": 43740, + "Ġpraw": 22508, + "Ġprawd": 41175, + "Ġprawda": 43607, + "Ġprawn": 37047, + "Ġpray": 3690, + "Ġprayed": 22532, + "Ġprayer": 8767, + "Ġprayers": 16860, + "Ġpraying": 15611, + "Ġpre": 659, + "Ġpreach": 21552, + "Ġpreached": 40001, + "Ġpreacher": 42078, + "Ġpreaching": 25381, + "Ġprec": 4346, + "Ġpreca": 25651, + "Ġprecautions": 34684, + "Ġpreced": 16969, + "Ġprecedent": 37388, + "Ġprecio": 46916, + "Ġprecious": 12406, + "Ġprecip": 23354, + "Ġprecipitation": 37662, + "Ġprecis": 7974, + "Ġprecisa": 18861, + "Ġprecisamente": 44901, + "Ġprecise": 13600, + "Ġprecisely": 13402, + "Ġprecision": 18356, + "Ġpreciso": 30109, + "Ġprecon": 47473, + "Ġprecurs": 41736, + "Ġpred": 3852, + "Ġpredator": 35377, + "Ġpredators": 29194, + "Ġprede": 24874, + "Ġpredecessor": 34991, + "Ġpredic": 47336, + "Ġpredict": 6069, + "Ġpredictable": 27737, + "Ġpredicted": 19147, + "Ġpredicting": 32884, + "Ġprediction": 17630, + "Ġpredictions": 21264, + "Ġpredictive": 35521, + "Ġpredomin": 21456, + "Ġpredominantly": 29893, + "Ġpref": 18417, + "Ġprefer": 4382, + "Ġpreferably": 45916, + "Ġpreference": 17502, + "Ġpreferences": 21910, + "Ġpreferred": 16494, + "Ġprefers": 44334, + "Ġprefix": 46969, + "Ġpregn": 7681, + "Ġpregnancy": 16120, + "Ġpregnant": 10435, + "Ġpregunt": 19860, + "Ġpregunta": 24252, + "Ġpreguntas": 39722, + "Ġprehe": 35528, + "Ġprejud": 23121, + "Ġprejudice": 34260, + "Ġprelim": 26414, + "Ġpreliminary": 28817, + "Ġprem": 5624, + "Ġpremature": 34877, + "Ġpremi": 11222, + "Ġpremier": 12689, + "Ġpremiere": 28372, + "Ġpremiers": 45166, + "Ġpremise": 22045, + "Ġpremises": 34266, + "Ġpremium": 12049, + "Ġpremière": 17872, + "Ġpren": 43149, + "Ġprend": 9866, + "Ġprendre": 16566, + "Ġprends": 46750, + "Ġpreoc": 18250, + "Ġpreoccup": 44388, + "Ġpreocup": 23080, + "Ġprep": 2666, + "Ġprepar": 8231, + "Ġpreparation": 13081, + "Ġpreparations": 34122, + "Ġprepare": 5940, + "Ġprepared": 4927, + "Ġpreparedness": 48445, + "Ġprepares": 39418, + "Ġpreparing": 10075, + "Ġprere": 38333, + "Ġpres": 1183, + "Ġpreschool": 39809, + "Ġprescribe": 49292, + "Ġprescribed": 29099, + "Ġprescription": 22456, + "Ġpresence": 6814, + "Ġpresent": 1974, + "Ġpresentation": 5860, + "Ġpresentations": 18964, + "Ġpresente": 28709, + "Ġpresented": 8212, + "Ġpresenter": 35594, + "Ġpresenters": 36987, + "Ġpresenting": 15578, + "Ġpresents": 13533, + "Ġpreserv": 45905, + "Ġpreservation": 27257, + "Ġpreserve": 15665, + "Ġpreserved": 22242, + "Ġpreserving": 33173, + "Ġpreset": 32081, + "Ġpresets": 41865, + "Ġpresidency": 26702, + "Ġpresident": 3868, + "Ġpresidente": 23852, + "Ġpresidential": 16902, + "Ġpresidents": 27611, + "Ġpresque": 37843, + "Ġpress": 1886, + "Ġpressed": 17355, + "Ġpresses": 40892, + "Ġpressing": 12417, + "Ġpressure": 3321, + "Ġpressured": 45306, + "Ġpressures": 23573, + "Ġprest": 16305, + "Ġprestige": 42531, + "Ġprestigious": 33510, + "Ġpresum": 18028, + "Ġpresumably": 26742, + "Ġpresume": 43283, + "Ġpresup": 47640, + "Ġpret": 1162, + "Ġpretend": 11865, + "Ġpretended": 45056, + "Ġpretending": 22106, + "Ġprett": 45421, + "Ġprettier": 36825, + "Ġpretty": 1238, + "Ġprev": 12642, + "Ġprevail": 46059, + "Ġpreval": 22239, + "Ġprevalence": 42583, + "Ġprevalent": 30652, + "Ġprevent": 4871, + "Ġprevented": 27314, + "Ġpreventing": 19965, + "Ġprevention": 14630, + "Ġprevents": 22367, + "Ġpreview": 14281, + "Ġprevious": 3894, + "Ġpreviously": 8046, + "Ġprey": 21107, + "Ġpreço": 42295, + "Ġpri": 1790, + "Ġprice": 3218, + "Ġpriced": 30349, + "Ġprices": 7901, + "Ġpricing": 17621, + "Ġprick": 43986, + "Ġpride": 10936, + "Ġpriest": 15703, + "Ġpriests": 27192, + "Ġprim": 2886, + "Ġprima": 19507, + "Ġprimarily": 10029, + "Ġprimary": 6194, + "Ġprime": 5835, + "Ġprimeira": 21158, + "Ġprimeiro": 18314, + "Ġprimer": 12595, + "Ġprimera": 17382, + "Ġprimero": 21289, + "Ġprimitive": 28540, + "Ġprimo": 38671, + "Ġprin": 3024, + "Ġprince": 16467, + "Ġprinces": 41536, + "Ġprincess": 14742, + "Ġprinci": 3681, + "Ġprincip": 6959, + "Ġprincipal": 9716, + "Ġprincipalmente": 32258, + "Ġprincipals": 45333, + "Ġprincipe": 47656, + "Ġprincipio": 34308, + "Ġprinciple": 8665, + "Ġprinciples": 9156, + "Ġprint": 4482, + "Ġprinted": 13567, + "Ġprinter": 16671, + "Ġprinters": 40007, + "Ġprinting": 14699, + "Ġprints": 22305, + "Ġprior": 4059, + "Ġpriorit": 14846, + "Ġpriorities": 15503, + "Ġprioritize": 25164, + "Ġpriority": 9365, + "Ġpris": 16163, + "Ġprise": 49468, + "Ġprison": 6168, + "Ġprisoner": 28114, + "Ġprisoners": 20417, + "Ġprisons": 31396, + "Ġpriv": 2915, + "Ġprivacy": 11427, + "Ġprivat": 31856, + "Ġprivate": 4551, + "Ġprivately": 31919, + "Ġprivile": 8670, + "Ġprivilege": 12122, + "Ġprivileged": 25293, + "Ġprivileges": 32588, + "Ġprix": 31061, + "Ġprize": 12818, + "Ġprizes": 27350, + "Ġpro": 447, + "Ġproactive": 28028, + "Ġprob": 1239, + "Ġprobabil": 31959, + "Ġprobabilities": 33783, + "Ġprobability": 8482, + "Ġprobable": 21759, + "Ġprobably": 1391, + "Ġprobation": 41821, + "Ġprobe": 22715, + "Ġprobiot": 45710, + "Ġprobl": 15201, + "Ġproblem": 1154, + "Ġproblema": 12395, + "Ġproblemas": 20720, + "Ġproblematic": 19011, + "Ġproblems": 2740, + "Ġproblème": 21111, + "Ġproblèmes": 37317, + "Ġproc": 9510, + "Ġproced": 6682, + "Ġprocedural": 43951, + "Ġprocedure": 10747, + "Ġprocedures": 13846, + "Ġproceed": 8991, + "Ġproceeded": 39053, + "Ġproceeding": 41163, + "Ġproceedings": 37254, + "Ġproceeds": 32280, + "Ġprocent": 38826, + "Ġproces": 17565, + "Ġproceso": 29314, + "Ġprocess": 1399, + "Ġprocessed": 18846, + "Ġprocesses": 7555, + "Ġprocessing": 9007, + "Ġprocesso": 27939, + "Ġprocessor": 15321, + "Ġprocessors": 27751, + "Ġproch": 31847, + "Ġprochain": 39389, + "Ġprochaine": 35306, + "Ġproclaim": 34604, + "Ġproclaimed": 49091, + "Ġprocrast": 39306, + "Ġprocure": 26846, + "Ġprocurement": 35183, + "Ġprod": 15792, + "Ġprodu": 1082, + "Ġproducción": 48586, + "Ġproduce": 5258, + "Ġproduced": 7126, + "Ġproducer": 12314, + "Ġproducers": 16080, + "Ġproduces": 14725, + "Ġproducing": 10501, + "Ġproduct": 1674, + "Ġproduction": 4265, + "Ġproductions": 32612, + "Ġproductive": 13304, + "Ġproductivity": 15604, + "Ġproducto": 47583, + "Ġproductos": 46363, + "Ġproducts": 3383, + "Ġproduit": 35703, + "Ġproduits": 38866, + "Ġproduk": 33699, + "Ġprodukt": 42816, + "Ġproduto": 45823, + "Ġproduz": 28093, + "Ġprodução": 49147, + "Ġprof": 1740, + "Ġprofes": 22912, + "Ġprofesional": 42882, + "Ġprofess": 2668, + "Ġprofession": 7032, + "Ġprofessional": 4843, + "Ġprofessionally": 27941, + "Ġprofessionals": 11954, + "Ġprofessions": 38129, + "Ġprofessor": 8304, + "Ġprofessors": 15924, + "Ġprofile": 7964, + "Ġprofiles": 23693, + "Ġprofit": 7475, + "Ġprofitability": 46249, + "Ġprofitable": 21608, + "Ġprofits": 17982, + "Ġprofound": 14382, + "Ġprofoundly": 39954, + "Ġprofund": 40958, + "Ġprogram": 1461, + "Ġprograma": 21846, + "Ġprogramm": 37648, + "Ġprogramme": 14001, + "Ġprogrammed": 31092, + "Ġprogrammer": 32116, + "Ġprogrammers": 41504, + "Ġprogrammes": 31097, + "Ġprogramming": 9410, + "Ġprograms": 4268, + "Ġprogress": 4205, + "Ġprogressed": 36789, + "Ġprogresses": 41929, + "Ġprogressing": 36305, + "Ġprogression": 18733, + "Ġprogressive": 16131, + "Ġprogressively": 46667, + "Ġprohib": 16015, + "Ġprohibited": 32069, + "Ġproject": 1716, + "Ġprojected": 26231, + "Ġprojecting": 43001, + "Ġprojection": 22743, + "Ġprojections": 32371, + "Ġprojector": 39792, + "Ġprojects": 4455, + "Ġprojekt": 26261, + "Ġprojet": 17929, + "Ġprojeto": 40679, + "Ġprojets": 49830, + "Ġprol": 24398, + "Ġprolong": 27224, + "Ġprolonged": 41237, + "Ġprom": 2234, + "Ġpromet": 37786, + "Ġpromin": 39225, + "Ġprominent": 17034, + "Ġpromise": 6228, + "Ġpromised": 10768, + "Ġpromises": 16403, + "Ġpromising": 20257, + "Ġpromo": 26750, + "Ġpromot": 6609, + "Ġpromote": 9773, + "Ġpromoted": 21162, + "Ġpromotes": 36015, + "Ġpromoting": 16383, + "Ġpromotion": 15783, + "Ġpromotional": 41790, + "Ġpromotions": 42127, + "Ġprompt": 12391, + "Ġprompted": 31042, + "Ġpromptly": 48594, + "Ġprompts": 41095, + "Ġpron": 7569, + "Ġprone": 25806, + "Ġpronoun": 14144, + "Ġpronounce": 19567, + "Ġpronounced": 23155, + "Ġpronouns": 35883, + "Ġpronto": 26194, + "Ġpronunciation": 23338, + "Ġproof": 8177, + "Ġprop": 2365, + "Ġpropag": 12425, + "Ġpropaganda": 22968, + "Ġpropagate": 48256, + "Ġpropagation": 38377, + "Ġprope": 25577, + "Ġproper": 2296, + "Ġproperly": 6108, + "Ġproperties": 7221, + "Ġproperty": 4707, + "Ġproph": 17051, + "Ġprophe": 19944, + "Ġprophecy": 23945, + "Ġprophet": 18566, + "Ġprophetic": 46174, + "Ġprophets": 27297, + "Ġpropia": 40464, + "Ġpropio": 40098, + "Ġpropor": 41516, + "Ġproport": 17762, + "Ġproportion": 16068, + "Ġproportional": 24969, + "Ġproportions": 32482, + "Ġpropos": 7532, + "Ġproposal": 11494, + "Ġproposals": 20198, + "Ġpropose": 17421, + "Ġproposed": 10348, + "Ġproposing": 29939, + "Ġproposition": 24830, + "Ġpropre": 35221, + "Ġpropri": 40465, + "Ġpropriet": 27881, + "Ġproprietary": 38992, + "Ġproprio": 28203, + "Ġprops": 26173, + "Ġpropulsion": 49375, + "Ġpros": 6267, + "Ġprose": 12505, + "Ġprosec": 22382, + "Ġprosecut": 21015, + "Ġprosecution": 37106, + "Ġprosecutor": 32836, + "Ġprosecutors": 40030, + "Ġprospect": 15005, + "Ġprospective": 39377, + "Ġprospects": 32933, + "Ġprosper": 14381, + "Ġprosperity": 22434, + "Ġprosperous": 38928, + "Ġpross": 48794, + "Ġprost": 10293, + "Ġprostate": 36108, + "Ġprosth": 39976, + "Ġprostu": 19518, + "ĠproszÄĻ": 39677, + "Ġprot": 1742, + "Ġprotagon": 17232, + "Ġprotagonist": 24506, + "Ġprote": 5631, + "Ġprotect": 2371, + "Ġprotected": 10594, + "Ġprotecting": 12316, + "Ġprotection": 6334, + "Ġprotections": 29031, + "Ġprotective": 16314, + "Ġprotector": 34986, + "Ġprotects": 22583, + "Ġproteg": 49157, + "Ġprotein": 7944, + "Ġproteins": 15577, + "Ġprotest": 11281, + "Ġprotesters": 34509, + "Ġprotesting": 40171, + "Ġprotests": 20174, + "Ġproto": 47896, + "Ġprotocol": 10336, + "Ġprotocols": 20618, + "Ġproton": 31728, + "Ġprotons": 40270, + "Ġprototy": 46219, + "Ġprototype": 19475, + "Ġprototypes": 42197, + "Ġprotr": 45468, + "Ġproud": 4570, + "Ġproudly": 33522, + "Ġprov": 1439, + "Ġprova": 28959, + "Ġprove": 7081, + "Ġproved": 14617, + "Ġproven": 12785, + "Ġproverb": 49923, + "Ġproves": 25019, + "Ġprovide": 2893, + "Ġprovided": 5649, + "Ġprovider": 12398, + "Ġproviders": 11330, + "Ġprovides": 6417, + "Ġproviding": 6530, + "Ġprovin": 17629, + "Ġprovince": 16705, + "Ġprovinces": 32873, + "Ġprovincial": 33293, + "Ġproving": 27221, + "Ġprovision": 17225, + "Ġprovisions": 25034, + "Ġprovoc": 24568, + "Ġprovocative": 47663, + "Ġprovoke": 47015, + "Ġprow": 45553, + "Ġprowad": 36590, + "Ġproxim": 21932, + "Ġproximity": 27632, + "Ġproxy": 29690, + "Ġproyect": 23832, + "Ġproyecto": 32285, + "Ġprue": 32820, + "Ġprueba": 48241, + "Ġpry": 41902, + "Ġprz": 6541, + "Ġprze": 8325, + "Ġprzeci": 39622, + "Ġprzed": 18334, + "Ġprzede": 44786, + "ĠprzedsiÄĻbior": 43477, + "Ġprzedstaw": 45616, + "Ġprzek": 29785, + "Ġprzep": 30829, + "Ġprzest": 44264, + "Ġprzew": 39758, + "Ġprzez": 14064, + "Ġprzy": 6501, + "Ġprzygot": 35914, + "ĠprzykÅĤad": 23144, + "Ġprzyp": 41780, + "Ġprzypad": 33100, + "Ġprzypadku": 41955, + "Ġprzysz": 44018, + "Ġprá": 27300, + "Ġprès": 25350, + "Ġpré": 11127, + "Ġpréc": 23107, + "Ġprécis": 49436, + "Ġprécéd": 48653, + "Ġpréf": 31139, + "Ġprépar": 38286, + "Ġprés": 11761, + "Ġprésent": 26056, + "Ġprésident": 29654, + "Ġprêt": 44393, + "Ġpró": 8565, + "Ġpróp": 21431, + "Ġprópria": 39608, + "Ġpróprio": 36394, + "Ġpróxim": 12389, + "Ġpróxima": 24096, + "Ġpróximo": 21177, + "Ġps": 18815, + "Ġpse": 25505, + "Ġpseudo": 35899, + "Ġpsi": 20304, + "Ġpsic": 38609, + "Ġpsy": 31673, + "Ġpsych": 4681, + "Ġpsyche": 50223, + "Ġpsychedel": 47732, + "Ġpsychiat": 26347, + "Ġpsychiatric": 40123, + "Ġpsychiatrist": 41287, + "Ġpsychic": 35406, + "Ġpsycho": 33355, + "Ġpsychological": 14346, + "Ġpsychologically": 41387, + "Ġpsychologist": 29514, + "Ġpsychologists": 41562, + "Ġpsychology": 15105, + "Ġpsychopath": 47577, + "Ġpu": 2362, + "Ġpub": 1535, + "Ġpubl": 11227, + "Ġpubli": 49804, + "Ġpublic": 1908, + "Ġpublication": 19953, + "Ġpublications": 25618, + "Ġpublicity": 37264, + "Ġpublicly": 14843, + "Ġpublish": 11374, + "Ġpublished": 6572, + "Ġpublisher": 25088, + "Ġpublishers": 30421, + "Ġpublishing": 17832, + "Ġpuck": 47181, + "Ġpud": 14166, + "Ġpudding": 29149, + "Ġpue": 26990, + "Ġpueblo": 33764, + "Ġpued": 10947, + "Ġpueda": 31907, + "Ġpuedan": 41241, + "Ġpuede": 8919, + "Ġpueden": 14714, + "Ġpuedes": 19010, + "Ġpuedo": 21612, + "Ġpuerta": 48597, + "Ġpues": 11059, + "Ġpuesto": 35136, + "Ġpuff": 19613, + "Ġpug": 47900, + "Ġpuis": 9093, + "Ġpuisqu": 43459, + "Ġpuisque": 28090, + "Ġpuisse": 42363, + "Ġpul": 8331, + "Ġpull": 2235, + "Ġpulled": 7373, + "Ġpulley": 48399, + "Ġpulling": 8407, + "Ġpulls": 16982, + "Ġpulp": 37489, + "Ġpuls": 32295, + "Ġpulse": 17709, + "Ġpulses": 45279, + "Ġpum": 48842, + "Ġpump": 5889, + "Ġpumped": 27774, + "Ġpumping": 27131, + "Ġpumpkin": 17537, + "Ġpumpkins": 49053, + "Ġpumps": 27648, + "Ġpun": 4468, + "Ġpunch": 8135, + "Ġpunched": 37842, + "Ġpunches": 34103, + "Ġpunching": 34866, + "Ġpunct": 27006, + "Ġpunish": 9842, + "Ġpunished": 22365, + "Ġpunishing": 49824, + "Ġpunishment": 14133, + "Ġpunk": 25188, + "Ġpunkt": 39561, + "Ġpunt": 18212, + "Ġpunto": 14326, + "Ġpuntos": 34375, + "Ġpunya": 32781, + "Ġpup": 19784, + "Ġpupil": 44533, + "Ġpupils": 38404, + "Ġpupp": 17014, + "Ġpuppet": 32107, + "Ġpuppies": 33734, + "Ġpuppy": 18196, + "Ġpur": 1864, + "Ġpurch": 5270, + "Ġpurchase": 8110, + "Ġpurchased": 14734, + "Ġpurchases": 26762, + "Ġpurchasing": 20906, + "Ġpure": 6075, + "Ġpuree": 49407, + "Ġpurely": 17491, + "Ġpurity": 34382, + "Ġpurl": 48943, + "Ġpurp": 3527, + "Ġpurple": 9656, + "Ġpurpose": 4334, + "Ġpurposely": 41840, + "Ġpurposes": 9932, + "Ġpurs": 7088, + "Ġpurse": 28345, + "Ġpursue": 12392, + "Ġpursued": 34893, + "Ġpursuing": 20222, + "Ġpursuit": 23365, + "Ġpus": 31252, + "Ġpush": 2944, + "Ġpushed": 9152, + "Ġpushes": 21020, + "Ġpushing": 7380, + "Ġpussy": 40169, + "Ġput": 829, + "Ġputa": 46681, + "Ġputs": 8137, + "Ġputting": 3372, + "Ġpuzz": 18741, + "Ġpuzzle": 12805, + "Ġpuzzles": 24138, + "Ġpuò": 26526, + "Ġpy": 10664, + "Ġpyram": 20543, + "Ġpyramid": 25950, + "Ġpyt": 25878, + "Ġpytanie": 36610, + "Ġpython": 38797, + "Ġpá": 40639, + "Ġpágina": 36960, + "Ġpä": 32232, + "Ġpää": 32764, + "ĠpÃ¥": 4170, + "Ġpère": 37653, + "Ġpé": 29507, + "Ġpén": 49880, + "Ġpéri": 36321, + "Ġpériode": 44703, + "Ġpó": 28157, + "Ġpóźniej": 36968, + "ĠpóÅĤ": 47907, + "Ġpúblic": 15392, + "Ġpública": 38905, + "Ġpúblico": 26557, + "ĠpÅĤ": 28695, + "ĠpÅĻ": 31631, + "Ġq": 9505, + "Ġqu": 421, + "Ġqua": 24159, + "Ġquad": 10787, + "Ġquadrant": 46856, + "Ġquadratic": 37262, + "Ġquais": 44075, + "Ġqual": 4101, + "Ġqualc": 32101, + "Ġqualche": 38737, + "Ġqualcosa": 42400, + "Ġqualidade": 41501, + "Ġqualification": 37425, + "Ġqualifications": 33223, + "Ġqualified": 15904, + "Ġqualify": 20276, + "Ġqualifying": 41793, + "Ġqualitative": 31312, + "Ġqualities": 16477, + "Ġquality": 3125, + "Ġqualité": 42106, + "Ġqualquer": 20437, + "Ġquan": 19068, + "Ġquand": 6932, + "Ġquando": 7770, + "Ġquant": 4426, + "Ġquantidade": 39639, + "Ġquantify": 40421, + "Ġquantitative": 27778, + "Ġquantities": 22927, + "Ġquantity": 11275, + "Ġquanto": 17820, + "Ġquantum": 13018, + "Ġquar": 4723, + "Ġquarant": 41240, + "Ġquarantine": 18138, + "Ġquart": 20837, + "Ġquarter": 6555, + "Ġquarterback": 31952, + "Ġquarterly": 38633, + "Ġquarters": 20612, + "Ġquarto": 50109, + "Ġquartz": 48280, + "Ġquas": 49625, + "Ġquase": 28875, + "Ġquasi": 20954, + "Ġquatre": 31334, + "Ġquatro": 30583, + "Ġque": 631, + "Ġqued": 13617, + "Ġqueda": 23314, + "Ġquedar": 39244, + "Ġqueen": 12206, + "Ġqueens": 42017, + "Ġqueer": 20323, + "Ġquel": 7178, + "Ġquella": 32234, + "Ġquelle": 29237, + "Ġquello": 22813, + "Ġquelqu": 25283, + "Ġquelque": 14448, + "Ġquelques": 16597, + "Ġquem": 13026, + "Ġquer": 7083, + "Ġqueremos": 26813, + "Ġquerer": 39318, + "Ġqueria": 27955, + "Ġqueries": 24109, + "Ġquero": 18738, + "Ġquery": 14581, + "ĠquerÃŃa": 37869, + "Ġquest": 866, + "Ġquesta": 16540, + "Ġqueste": 35455, + "Ġquesti": 29729, + "Ġquestion": 1168, + "Ġquestionable": 37158, + "Ġquestioned": 28146, + "Ġquestioning": 21257, + "Ġquestionnaire": 44702, + "Ġquestions": 1651, + "Ġquesto": 10263, + "Ġquests": 34247, + "Ġquestão": 28477, + "Ġqueue": 18639, + "Ġqui": 1956, + "Ġquick": 1702, + "Ġquicker": 16255, + "Ġquickest": 49403, + "Ġquickly": 2661, + "Ġquien": 20108, + "Ġquienes": 43091, + "Ġquier": 23572, + "Ġquiere": 23877, + "Ġquieren": 36706, + "Ġquieres": 29839, + "Ġquiero": 16811, + "Ġquiet": 5677, + "Ġquieter": 43339, + "Ġquietly": 19141, + "Ġquil": 31619, + "Ġquilt": 27566, + "Ġquin": 42215, + "Ġquindi": 15727, + "Ġquint": 40006, + "Ġquir": 35645, + "Ġquirky": 49515, + "Ġquis": 37945, + "Ġquiser": 28753, + "Ġquit": 10366, + "Ġquite": 1596, + "Ġquitting": 42789, + "Ġquiz": 15450, + "Ġquizz": 43425, + "Ġquizzes": 48955, + "Ġquién": 35327, + "Ġquo": 28425, + "Ġquoi": 11714, + "Ġquot": 9641, + "Ġquota": 45171, + "Ġquotation": 47312, + "Ġquote": 6513, + "Ġquoted": 30047, + "Ġquotes": 19963, + "Ġquotid": 44017, + "Ġquoting": 41552, + "Ġquy": 44088, + "Ġquá": 38338, + "Ġquè": 17802, + "Ġqué": 8057, + "Ġquê": 28605, + "Ġr": 367, + "Ġra": 3342, + "Ġrab": 14085, + "Ġrabb": 28179, + "Ġrabbit": 19509, + "Ġrabbits": 38752, + "Ġrac": 4129, + "Ġrace": 4569, + "Ġraces": 15484, + "Ġracial": 12131, + "Ġracing": 12553, + "Ġracism": 12664, + "Ġracist": 16419, + "Ġrack": 14788, + "Ġracket": 41130, + "Ġracks": 47063, + "Ġrad": 2843, + "Ġradar": 16544, + "Ġradi": 16335, + "Ġradial": 38783, + "Ġradiant": 49430, + "Ġradiation": 12420, + "Ġradiator": 41345, + "Ġradical": 12001, + "Ġradically": 35508, + "Ġradio": 6477, + "Ġradioactive": 35844, + "Ġradish": 31136, + "Ġradius": 15845, + "Ġraft": 43863, + "Ġrag": 17539, + "Ġrage": 20133, + "Ġraging": 44173, + "Ġrah": 23490, + "Ġrahat": 43066, + "Ġraid": 26936, + "Ġraids": 45740, + "Ġrail": 8765, + "Ġrailroad": 30073, + "Ġrails": 27649, + "Ġrailway": 25812, + "Ġrain": 4830, + "Ġrainbow": 18526, + "Ġrained": 47533, + "Ġrainfall": 29382, + "Ġrainforest": 48531, + "Ġraining": 18441, + "Ġrains": 27805, + "Ġrainy": 27181, + "Ġrais": 4000, + "Ġraise": 5300, + "Ġraised": 6005, + "Ġraises": 19658, + "Ġraising": 11225, + "Ġraison": 28402, + "Ġraj": 36007, + "Ġrak": 35544, + "Ġrall": 31552, + "Ġrallies": 48169, + "Ġrally": 17584, + "Ġram": 10211, + "Ġramen": 20948, + "Ġramp": 12428, + "Ġran": 5872, + "Ġranch": 22883, + "Ġrandom": 4974, + "Ġrandomized": 38513, + "Ġrandomly": 16979, + "Ġrang": 32434, + "Ġrange": 3613, + "Ġranged": 45570, + "Ġranges": 22526, + "Ġranging": 25532, + "Ġrank": 6181, + "Ġranked": 20197, + "Ġranking": 17833, + "Ġrankings": 36550, + "Ġranks": 21406, + "Ġrans": 33481, + "Ġransom": 38279, + "Ġrant": 45332, + "Ġrap": 5099, + "Ġrape": 22846, + "Ġraped": 37506, + "Ġrapid": 7558, + "Ġrapidement": 37757, + "Ġrapidly": 12910, + "Ġrapp": 8125, + "Ġrappelle": 43736, + "Ġrapper": 26457, + "Ġrappers": 45025, + "Ġrapping": 44333, + "Ġrapport": 18018, + "Ġrapt": 40142, + "Ġrare": 5892, + "Ġrarely": 13752, + "Ġras": 26815, + "Ġrasa": 41493, + "Ġrash": 40357, + "Ġrasp": 49399, + "Ġraspberry": 41468, + "Ġrat": 5937, + "Ġratchet": 45885, + "Ġrate": 3314, + "Ġrated": 22103, + "Ġrates": 6846, + "Ġrather": 2831, + "Ġrating": 10990, + "Ġratings": 24603, + "Ġratio": 8509, + "Ġration": 24258, + "Ġrational": 15090, + "Ġrationale": 41989, + "Ġratios": 32435, + "Ġrats": 25691, + "Ġratt": 27081, + "Ġrattling": 48822, + "Ġraus": 17202, + "Ġrav": 32987, + "Ġraw": 8936, + "Ġray": 18592, + "Ġrays": 24417, + "Ġraz": 9639, + "Ġrazem": 40225, + "Ġrazor": 30478, + "Ġrazón": 38310, + "Ġre": 319, + "Ġreach": 2524, + "Ġreached": 6488, + "Ġreaches": 14235, + "Ġreaching": 9906, + "Ġreact": 4515, + "Ġreacted": 34037, + "Ġreacting": 25817, + "Ġreaction": 5480, + "Ġreactions": 12215, + "Ġreactive": 28897, + "Ġreactor": 20628, + "Ġreactors": 41649, + "Ġreacts": 33305, + "Ġread": 1401, + "Ġreadable": 49857, + "Ġreader": 15149, + "Ġreaders": 17147, + "Ġreadily": 26336, + "Ġreadiness": 34954, + "Ġreading": 3760, + "Ġreadings": 27319, + "Ġreads": 15700, + "Ġready": 1919, + "Ġreag": 26949, + "Ġreais": 34823, + "Ġreal": 957, + "Ġrealidad": 25635, + "Ġrealidade": 48292, + "Ġrealise": 18809, + "Ġrealised": 21337, + "Ġrealism": 38484, + "Ġrealistic": 12465, + "Ġrealistically": 40734, + "Ġrealities": 27785, + "Ġreality": 4103, + "Ġrealiz": 22828, + "Ġrealizar": 36461, + "Ġrealization": 25138, + "Ġrealize": 4325, + "Ġrealized": 5334, + "Ġrealizes": 29316, + "Ġrealizing": 16734, + "Ġreally": 534, + "Ġrealm": 15355, + "Ġrealmente": 14446, + "Ġrealms": 42824, + "Ġrealt": 41133, + "ĠrealtÃł": 47512, + "Ġreap": 39178, + "Ġreapp": 35638, + "Ġrear": 8250, + "Ġrearr": 29875, + "Ġrearrange": 39568, + "Ġreason": 1778, + "Ġreasonable": 10585, + "Ġreasonably": 23551, + "Ġreasoning": 21577, + "Ġreasons": 4112, + "Ġreass": 19486, + "Ġreb": 12970, + "Ġrebel": 28293, + "Ġrebell": 22260, + "Ġrebellion": 29793, + "Ġrebels": 37919, + "Ġrebirth": 49445, + "Ġrebo": 26802, + "Ġreboot": 33818, + "Ġreborn": 48899, + "Ġrebound": 31850, + "Ġrebuild": 16877, + "Ġrebuilding": 36717, + "Ġrebuilt": 38532, + "Ġrec": 850, + "Ġreca": 43086, + "Ġrecall": 9901, + "Ġrecalled": 39301, + "Ġrecap": 20928, + "Ġrece": 2268, + "Ġreceber": 42748, + "Ġreceipt": 33882, + "Ġreceive": 4774, + "Ġreceived": 4613, + "Ġreceiver": 20086, + "Ġreceivers": 49196, + "Ġreceives": 20717, + "Ġreceiving": 10040, + "Ġrecent": 5162, + "Ġrecently": 3938, + "Ġrecept": 15263, + "Ġreception": 21682, + "Ġreceptive": 45838, + "Ġreceptor": 32264, + "Ġreceptors": 34102, + "Ġrecess": 16417, + "Ġrecession": 24828, + "Ġrecharge": 31366, + "Ġrecher": 27788, + "Ġrecherche": 38501, + "Ġrecht": 24261, + "Ġrechts": 34305, + "Ġreci": 4214, + "Ġrecib": 46387, + "Ġrecibir": 49703, + "Ġrecip": 17325, + "Ġrecipe": 6782, + "Ġrecipes": 13035, + "Ġrecipient": 26216, + "Ġrecipients": 32440, + "Ġrecipro": 28961, + "Ġreciprocal": 46948, + "Ġrecite": 39434, + "Ġreck": 16374, + "Ġreckless": 38884, + "Ġreckon": 29548, + "Ġreclaim": 40074, + "Ġreco": 7759, + "Ġrecogn": 3068, + "Ġrecognise": 23991, + "Ġrecognised": 36802, + "Ġrecognition": 11150, + "Ġrecognizable": 40757, + "Ġrecognize": 5521, + "Ġrecognized": 9823, + "Ġrecognizes": 26564, + "Ġrecognizing": 18538, + "Ġrecoil": 42053, + "Ġrecoll": 39495, + "Ġrecom": 23334, + "Ġrecomend": 40292, + "Ġrecomm": 2616, + "Ġrecommend": 2748, + "Ġrecommendation": 11879, + "Ġrecommendations": 10434, + "Ġrecommended": 9628, + "Ġrecommending": 30559, + "Ġrecommends": 34556, + "Ġrecomp": 48000, + "Ġrecon": 9993, + "Ġreconcile": 41059, + "Ġreconciliation": 31281, + "Ġreconna": 31073, + "Ġreconnect": 30095, + "Ġreconoc": 43838, + "Ġreconsider": 40497, + "Ġreconst": 16891, + "Ġreconstruct": 31499, + "Ġreconstruction": 31565, + "Ġrecord": 2136, + "Ġrecorded": 8287, + "Ġrecorder": 37744, + "Ġrecording": 6613, + "Ġrecordings": 25162, + "Ġrecords": 7724, + "Ġrecount": 43997, + "Ġrecover": 8114, + "Ġrecovered": 19542, + "Ġrecovering": 29180, + "Ġrecovery": 8597, + "Ġrecre": 14261, + "Ġrecreate": 25833, + "Ġrecreation": 31573, + "Ġrecreational": 37554, + "Ġrecru": 9372, + "Ġrecruit": 15119, + "Ġrecruited": 33004, + "Ġrecruiting": 25987, + "Ġrecruitment": 28240, + "Ġrect": 11048, + "Ġrectang": 24077, + "Ġrectangle": 21930, + "Ġrectangular": 31167, + "Ġrecuer": 39092, + "Ġrecuper": 25692, + "Ġrecur": 18680, + "Ġrecurring": 32279, + "Ġrecurs": 20560, + "Ġrecursos": 30409, + "Ġrecy": 12036, + "Ġrecycle": 32162, + "Ġrecycled": 30674, + "Ġrecycling": 23363, + "Ġred": 2182, + "Ġrede": 14328, + "Ġredeem": 37715, + "Ġredef": 38818, + "Ġredemption": 35644, + "Ġreden": 26447, + "Ġredes": 16762, + "Ġredesign": 39853, + "Ġredirect": 29066, + "Ġredist": 36198, + "Ġredo": 29956, + "Ġredu": 2783, + "Ġreduce": 5407, + "Ġreduced": 9212, + "Ġreduces": 18081, + "Ġreducing": 12245, + "Ġreduction": 11004, + "Ġreductions": 40296, + "Ġredund": 27830, + "Ġredundant": 40997, + "Ġreduz": 40674, + "Ġree": 43060, + "Ġreef": 25345, + "Ġreefs": 50054, + "Ġreel": 34973, + "Ġref": 1895, + "Ġrefer": 2864, + "Ġrefere": 33048, + "Ġreferee": 43096, + "Ġreference": 6408, + "Ġreferenced": 32734, + "Ġreferences": 15400, + "Ġreferencing": 40582, + "Ġreferendum": 31957, + "Ġreferral": 33494, + "Ġreferrals": 47444, + "Ġreferred": 10839, + "Ġreferring": 13761, + "Ġrefers": 14942, + "Ġrefill": 42533, + "Ġrefin": 44395, + "Ġrefine": 33906, + "Ġrefined": 26201, + "Ġrefle": 36549, + "Ġreflect": 5031, + "Ġreflected": 15502, + "Ġreflecting": 23543, + "Ġreflection": 12914, + "Ġreflections": 30679, + "Ġreflective": 28931, + "Ġreflects": 18926, + "Ġreflex": 23802, + "Ġreform": 8290, + "Ġreforms": 24897, + "Ġrefr": 13334, + "Ġrefract": 45353, + "Ġrefrain": 46177, + "Ġrefres": 17368, + "Ġrefresh": 15134, + "Ġrefreshed": 46330, + "Ġrefreshing": 19772, + "Ġrefriger": 14162, + "Ġrefrigerator": 19655, + "Ġrefuge": 10991, + "Ġrefugee": 25622, + "Ġrefugees": 18301, + "Ġrefund": 29384, + "Ġrefusal": 48948, + "Ġrefuse": 16791, + "Ġrefused": 14654, + "Ġrefuses": 33222, + "Ġrefusing": 37289, + "Ġreg": 1121, + "Ġregain": 35336, + "Ġregard": 3843, + "Ġregarde": 33357, + "Ġregarded": 26047, + "Ġregarder": 31468, + "Ġregardez": 49841, + "Ġregarding": 8595, + "Ġregardless": 10060, + "Ġregards": 14258, + "Ġregel": 40504, + "Ġregen": 33909, + "Ġregener": 26358, + "Ġregeneration": 43813, + "Ġregime": 13120, + "Ġregiment": 47888, + "Ġregimes": 45738, + "Ġregion": 4458, + "Ġregional": 10964, + "Ġregions": 10682, + "Ġregist": 11376, + "Ġregister": 7280, + "Ġregistered": 13968, + "Ġregistering": 47329, + "Ġregisters": 38351, + "Ġregistration": 16847, + "Ġregistry": 36468, + "Ġregião": 45697, + "Ġregión": 45163, + "Ġregres": 47108, + "Ġregression": 24590, + "Ġregret": 10879, + "Ġregrets": 31214, + "Ġregul": 9837, + "Ġregular": 3890, + "Ġregularly": 11672, + "Ġregulate": 24475, + "Ġregulated": 26243, + "Ġregulating": 46715, + "Ġregulation": 15062, + "Ġregulations": 12563, + "Ġregulator": 36250, + "Ġregulators": 37311, + "Ġregulatory": 18260, + "Ġreh": 22355, + "Ġrehab": 32414, + "Ġrehabil": 26043, + "Ġrehabilitation": 33700, + "Ġrehe": 14369, + "Ġrehears": 17052, + "Ġrehearsal": 24884, + "Ġreicht": 47000, + "Ġreign": 20350, + "Ġreim": 33433, + "Ġreimburse": 41685, + "Ġrein": 6561, + "Ġreincarn": 48343, + "Ġreindeer": 49992, + "Ġreinfor": 20520, + "Ġreinforce": 22634, + "Ġreinforced": 31365, + "Ġreinforcement": 29280, + "Ġreinforcing": 48262, + "Ġreins": 47200, + "Ġreinst": 35056, + "Ġreinvent": 33477, + "Ġreiter": 25211, + "Ġreiterate": 33528, + "Ġreject": 8248, + "Ġrejected": 15749, + "Ġrejecting": 45401, + "Ġrejection": 26044, + "Ġrejo": 22087, + "Ġrejoice": 42397, + "Ġrek": 33881, + "Ġrel": 1039, + "Ġrela": 5195, + "Ġrelacion": 27189, + "Ġrelación": 37247, + "Ġrelat": 22441, + "Ġrelatable": 42355, + "Ġrelate": 10961, + "Ġrelated": 4077, + "Ġrelates": 16155, + "Ġrelating": 23968, + "Ġrelation": 9721, + "Ġrelational": 38444, + "Ġrelations": 2299, + "Ġrelationship": 2480, + "Ġrelationships": 6159, + "Ġrelativ": 21960, + "Ġrelative": 4972, + "Ġrelatively": 7226, + "Ġrelatives": 18201, + "Ġrelativity": 45675, + "Ġrelax": 5789, + "Ġrelaxation": 30315, + "Ġrelaxed": 14628, + "Ġrelaxing": 20103, + "Ġrelay": 24214, + "Ġrelação": 28177, + "Ġrele": 2951, + "Ġrelease": 4374, + "Ġreleased": 4736, + "Ġreleases": 16952, + "Ġreleasing": 16327, + "Ġrelent": 34045, + "Ġrelentless": 46136, + "Ġrelev": 25916, + "Ġrelevance": 32684, + "Ġrelevant": 7340, + "Ġreli": 19653, + "Ġreliability": 24550, + "Ġreliable": 12924, + "Ġreliably": 49927, + "Ġrelie": 21680, + "Ġrelied": 35463, + "Ġrelief": 10915, + "Ġrelies": 30910, + "Ġrelieve": 30450, + "Ġrelieved": 27972, + "Ġrelig": 4039, + "Ġreligion": 7561, + "Ġreligions": 21212, + "Ġreligious": 7185, + "Ġreload": 25628, + "Ġreloc": 26981, + "Ġreluct": 25149, + "Ġreluctant": 33677, + "Ġrely": 10687, + "Ġrelying": 24140, + "Ġrem": 890, + "Ġrema": 28986, + "Ġremain": 6222, + "Ġremainder": 29837, + "Ġremained": 12780, + "Ġremaining": 8877, + "Ġremains": 7023, + "Ġremake": 28582, + "Ġremar": 34329, + "Ġremark": 7942, + "Ġremarkable": 12802, + "Ġremarkably": 37381, + "Ġremarks": 19151, + "Ġremed": 28718, + "Ġremedies": 47133, + "Ġremedy": 31648, + "Ġremem": 20648, + "Ġremember": 1604, + "Ġremembered": 13745, + "Ġremembering": 20719, + "Ġremembers": 26228, + "Ġremembrance": 48083, + "Ġremind": 4160, + "Ġreminded": 15920, + "Ġreminder": 13548, + "Ġreminders": 43458, + "Ġreminding": 27639, + "Ġreminds": 12025, + "Ġreminis": 33765, + "Ġreminiscent": 44304, + "Ġremix": 47788, + "Ġremnants": 44652, + "Ġremo": 4595, + "Ġremot": 19896, + "Ġremote": 8607, + "Ġremotely": 20824, + "Ġremovable": 44060, + "Ġremoval": 17933, + "Ġremove": 4159, + "Ġremoved": 7261, + "Ġremoves": 30445, + "Ġremoving": 12720, + "Ġrempl": 36576, + "Ġren": 8124, + "Ġrename": 36741, + "Ġrenamed": 40949, + "Ġrencont": 28038, + "Ġrend": 6125, + "Ġrender": 15529, + "Ġrendered": 28748, + "Ġrendering": 22407, + "Ġrendez": 40026, + "Ġrendre": 36256, + "Ġrenew": 10162, + "Ġrenewable": 20938, + "Ġrenewal": 35516, + "Ġrenewed": 30228, + "Ġrenov": 18845, + "Ġrenovation": 39973, + "Ġrenowned": 34065, + "Ġrent": 6214, + "Ġrental": 21468, + "Ġrented": 32381, + "Ġrenting": 40598, + "Ġreop": 28994, + "Ġreopen": 33861, + "Ġreopening": 39542, + "Ġreorgan": 41203, + "Ġrep": 1085, + "Ġrepair": 10535, + "Ġrepaired": 36551, + "Ġrepairing": 46158, + "Ġrepairs": 28823, + "Ġrepar": 33291, + "Ġrepay": 27522, + "Ġrepe": 4301, + "Ġrepeat": 7149, + "Ġrepeated": 10477, + "Ġrepeatedly": 18227, + "Ġrepeating": 18617, + "Ġrepeats": 35038, + "Ġrepent": 19994, + "Ġrepentance": 37593, + "Ġrepente": 42884, + "Ġreper": 28946, + "Ġrepertoire": 49604, + "Ġrepet": 13645, + "Ġrepetition": 30432, + "Ġrepetitive": 29404, + "Ġrepl": 3248, + "Ġreplace": 7406, + "Ġreplaced": 10772, + "Ġreplacement": 14419, + "Ġreplaces": 46734, + "Ġreplacing": 19139, + "Ġreplay": 23836, + "Ġreplen": 43532, + "Ġreplica": 35456, + "Ġreplicate": 25356, + "Ġreplicated": 46365, + "Ġreplication": 39911, + "Ġreplied": 20345, + "Ġreplies": 42289, + "Ġreply": 16972, + "Ġrepo": 49040, + "Ġreport": 2275, + "Ġreported": 7055, + "Ġreportedly": 23989, + "Ġreporter": 19152, + "Ġreporters": 26249, + "Ġreporting": 10031, + "Ġreports": 7122, + "Ġreposit": 22283, + "Ġrepository": 25841, + "Ġrepres": 2556, + "Ġrepresent": 2906, + "Ġrepresenta": 49823, + "Ġrepresentation": 10290, + "Ġrepresentations": 33358, + "Ġrepresentative": 12424, + "Ġrepresentatives": 18628, + "Ġrepresented": 10379, + "Ġrepresenting": 13460, + "Ġrepresents": 8855, + "Ġrepro": 35257, + "Ġreprodu": 11408, + "Ġreproduce": 29501, + "Ġreproduction": 33934, + "Ġreproductive": 33569, + "Ġreprés": 27961, + "Ġreprésent": 40509, + "Ġreps": 27007, + "Ġrept": 29143, + "Ġrepublic": 18535, + "Ġrepublican": 39286, + "Ġreputation": 13061, + "Ġrequ": 1724, + "Ġrequest": 5308, + "Ġrequested": 16436, + "Ġrequesting": 31937, + "Ġrequests": 12475, + "Ġrequire": 3651, + "Ġrequired": 4739, + "Ġrequirement": 11695, + "Ġrequirements": 7728, + "Ġrequires": 7029, + "Ġrequiring": 24165, + "Ġrequis": 49878, + "Ġrer": 43819, + "Ġrere": 46453, + "Ġres": 725, + "Ġresc": 9610, + "Ġrescue": 13283, + "Ġrescued": 31757, + "Ġrese": 2025, + "Ġresearch": 2132, + "Ġresearched": 37098, + "Ġresearcher": 21751, + "Ġresearchers": 10309, + "Ġresearching": 24176, + "Ġresemb": 20695, + "Ġresemble": 36870, + "Ġresembles": 34433, + "Ġresent": 28773, + "Ġresentment": 43131, + "Ġreserv": 16454, + "Ġreservation": 28922, + "Ġreservations": 40222, + "Ġreserve": 17824, + "Ġreserved": 24819, + "Ġreserves": 27483, + "Ġreservoir": 26316, + "Ġreset": 14322, + "Ġresid": 13141, + "Ġreside": 40134, + "Ġresidence": 19607, + "Ġresidency": 34014, + "Ġresident": 10832, + "Ġresidential": 17389, + "Ġresidents": 9630, + "Ġresides": 47157, + "Ġresidual": 27980, + "Ġresidue": 34799, + "Ġresign": 27471, + "Ġresignation": 49494, + "Ġresigned": 41180, + "Ġresil": 12227, + "Ġresilience": 19980, + "Ġresiliency": 48712, + "Ġresilient": 23699, + "Ġresin": 26365, + "Ġresist": 4597, + "Ġresistance": 7335, + "Ġresistant": 20383, + "Ġresisting": 43940, + "Ġresistor": 37672, + "Ġresize": 50069, + "Ġresol": 7923, + "Ġresolution": 8669, + "Ġresolutions": 32179, + "Ġresolve": 14151, + "Ġresolved": 20772, + "Ġresolver": 34480, + "Ġresolving": 49940, + "Ġreson": 12544, + "Ġresonance": 30944, + "Ġresonate": 34285, + "Ġresonated": 47957, + "Ġresonates": 41051, + "Ġresort": 19606, + "Ġresource": 7684, + "Ġresources": 3593, + "Ġresp": 1597, + "Ġrespe": 40792, + "Ġrespect": 3104, + "Ġrespectable": 44279, + "Ġrespected": 20020, + "Ġrespectful": 26205, + "Ġrespectfully": 45201, + "Ġrespecting": 41968, + "Ġrespective": 23649, + "Ġrespectively": 25009, + "Ġrespecto": 35694, + "Ġrespects": 24126, + "Ġrespir": 18412, + "Ġrespiratory": 27038, + "Ġrespond": 4196, + "Ġresponded": 15806, + "Ġrespondents": 48275, + "Ġresponder": 36416, + "Ġresponders": 37542, + "Ġresponding": 16670, + "Ġresponds": 27331, + "Ġrespons": 2914, + "Ġresponsabil": 29829, + "Ġresponse": 4134, + "Ġresponses": 13019, + "Ġresponsibilities": 16190, + "Ġresponsibility": 6357, + "Ġresponsible": 6250, + "Ġresponsive": 21826, + "Ġresposta": 42126, + "Ġrespuesta": 40585, + "Ġress": 24689, + "Ġrest": 1472, + "Ġrestart": 21022, + "Ġrestaur": 4793, + "Ġrestaurant": 6383, + "Ġrestaurants": 11486, + "Ġreste": 20694, + "Ġrested": 43090, + "Ġrester": 37197, + "Ġresting": 21221, + "Ġrestless": 45451, + "Ġresto": 28247, + "Ġrestor": 46594, + "Ġrestoration": 23722, + "Ġrestore": 15227, + "Ġrestored": 23143, + "Ġrestoring": 36349, + "Ġrestra": 25508, + "Ġrestraint": 49281, + "Ġrestrict": 7694, + "Ġrestricted": 20608, + "Ġrestriction": 29529, + "Ġrestrictions": 14191, + "Ġrestrictive": 43220, + "Ġrestroom": 41286, + "Ġrests": 39755, + "Ġresult": 1874, + "Ġresultado": 28047, + "Ġresultados": 36796, + "Ġresulted": 18753, + "Ġresulting": 16505, + "Ġresults": 3542, + "Ġresume": 15358, + "Ġresumes": 48068, + "Ġresur": 16042, + "Ġresurrect": 34338, + "Ġresurrected": 48825, + "Ġresurrection": 24150, + "Ġret": 1533, + "Ġretail": 10800, + "Ġretailer": 45467, + "Ġretailers": 33519, + "Ġretain": 18340, + "Ġretained": 33438, + "Ġretaining": 34936, + "Ġretali": 37924, + "Ġretard": 42073, + "Ġretention": 22871, + "Ġrethink": 34595, + "Ġretir": 34906, + "Ġretire": 10731, + "Ġretired": 16776, + "Ġretirement": 15189, + "Ġretiring": 45770, + "Ġretour": 28873, + "Ġretr": 23106, + "Ġretra": 49356, + "Ġretract": 41107, + "Ġretreat": 15505, + "Ġretrie": 19817, + "Ġretrieve": 30254, + "Ġretro": 18820, + "Ġretrospect": 34997, + "Ġretrou": 26311, + "Ġretrouve": 30909, + "Ġretrouver": 36511, + "Ġreturn": 2736, + "Ġreturned": 8752, + "Ġreturning": 12678, + "Ġreturns": 11247, + "Ġreun": 14480, + "Ġreunion": 34720, + "Ġreunited": 50036, + "Ġreus": 38860, + "Ġreusable": 41807, + "Ġreuse": 26225, + "Ġrev": 3698, + "Ġreve": 5174, + "Ġreveal": 10658, + "Ġrevealed": 9599, + "Ġrevealing": 23983, + "Ġreveals": 20893, + "Ġrevel": 15262, + "Ġrevelation": 23456, + "Ġreven": 6158, + "Ġrevenge": 16711, + "Ġrevenir": 44899, + "Ġrevenue": 9324, + "Ġrevenues": 27299, + "Ġrever": 18438, + "Ġreverb": 41829, + "Ġrevers": 14582, + "Ġreversal": 42778, + "Ġreverse": 9943, + "Ġreversed": 30563, + "Ġreversible": 44788, + "Ġreview": 3131, + "Ġreviewed": 18429, + "Ġreviewers": 45837, + "Ġreviewing": 19576, + "Ġreviews": 10229, + "Ġrevis": 20767, + "Ġrevise": 44252, + "Ġrevised": 35228, + "Ġrevision": 34218, + "Ġrevisit": 32676, + "Ġrevital": 42457, + "Ġrevival": 33207, + "Ġrevive": 36292, + "Ġrevived": 48358, + "Ġrevol": 16908, + "Ġrevolt": 42568, + "Ġrevolution": 8894, + "Ġrevolutionary": 22687, + "Ġrevolves": 47934, + "Ġrevving": 49739, + "Ġreward": 7782, + "Ġrewarded": 29105, + "Ġrewarding": 20063, + "Ġrewards": 17203, + "Ġrewind": 41458, + "Ġrework": 48376, + "Ġrewrite": 28132, + "Ġrez": 48060, + "Ġrh": 33418, + "Ġrhe": 50100, + "Ġrhet": 24182, + "Ġrhetoric": 29604, + "Ġrhin": 49030, + "Ġrho": 20293, + "Ġrhy": 8740, + "Ġrhyme": 34753, + "Ġrhymes": 47917, + "Ġrhythm": 11801, + "Ġrhythmic": 46967, + "Ġrhythms": 44892, + "Ġri": 19739, + "Ġrib": 9162, + "Ġribbon": 20921, + "Ġribs": 21400, + "Ġric": 21040, + "Ġrice": 5090, + "Ġrich": 4593, + "Ġricher": 29021, + "Ġriches": 35777, + "Ġrichest": 35098, + "Ġrichness": 44506, + "Ġricht": 22136, + "Ġrichtig": 13129, + "Ġrichtige": 41569, + "Ġrico": 41529, + "Ġrid": 3973, + "Ġride": 5077, + "Ġrider": 25419, + "Ġriders": 23303, + "Ġrides": 20773, + "Ġridge": 34651, + "Ġridic": 9276, + "Ġridiculous": 11083, + "Ġridiculously": 41358, + "Ġriding": 9546, + "Ġrien": 13355, + "Ġries": 23932, + "Ġrif": 13203, + "Ġriff": 36798, + "Ġrifle": 18008, + "Ġrifles": 34058, + "Ġrig": 8329, + "Ġright": 558, + "Ġrighteous": 16153, + "Ġrighteousness": 26407, + "Ġrightly": 32879, + "Ġrights": 4601, + "Ġrigid": 22195, + "Ġrigor": 42191, + "Ġrigorous": 29882, + "Ġrigt": 46159, + "Ġrij": 47237, + "Ġrikt": 38420, + "Ġrim": 15982, + "Ġring": 4875, + "Ġringing": 18423, + "Ġrings": 11136, + "Ġrinse": 27026, + "Ġriot": 32211, + "Ġriots": 43802, + "Ġrip": 12782, + "Ġripe": 31421, + "Ġripped": 22780, + "Ġripping": 38776, + "Ġripple": 40688, + "Ġris": 2253, + "Ġrise": 6272, + "Ġrisen": 28614, + "Ġrises": 21373, + "Ġrising": 11636, + "Ġrisk": 3148, + "Ġrisking": 45235, + "Ġrisks": 10888, + "Ġrisky": 21137, + "Ġrisque": 37574, + "Ġrit": 11289, + "Ġritual": 13792, + "Ġrituals": 29082, + "Ġriv": 28745, + "Ġrival": 16286, + "Ġrivalry": 42352, + "Ġrivals": 33303, + "Ġriver": 6810, + "Ġrivers": 18361, + "Ġro": 744, + "Ġroad": 3060, + "Ġroadmap": 35738, + "Ġroads": 11344, + "Ġroam": 40474, + "Ġroaming": 42680, + "Ġroar": 40347, + "Ġroaring": 36231, + "Ġroast": 12904, + "Ġroasted": 24766, + "Ġroasting": 45227, + "Ġrob": 3870, + "Ġrobbed": 35772, + "Ġrobbery": 37418, + "Ġrobe": 37213, + "Ġrobi": 47380, + "ĠrobiÄĩ": 46900, + "Ġrobot": 7881, + "Ġrobotic": 30468, + "Ġrobotics": 34145, + "Ġrobots": 14733, + "Ġrobust": 13956, + "Ġrock": 3727, + "Ġrocket": 13012, + "Ġrockets": 28361, + "Ġrocking": 30929, + "Ġrocks": 10989, + "Ġrocky": 33301, + "Ġrod": 8685, + "Ġrode": 21602, + "Ġrods": 32761, + "Ġrodz": 28607, + "Ġrogue": 39100, + "Ġrok": 35135, + "Ġroku": 19451, + "Ġrol": 34109, + "Ġrole": 3090, + "Ġroles": 9604, + "Ġroll": 3373, + "Ġrolled": 14306, + "Ġroller": 15948, + "Ġrollers": 46642, + "Ġrolling": 9439, + "Ġrolls": 15767, + "Ġrom": 7438, + "Ġroman": 41362, + "Ġromance": 19064, + "Ġromantic": 13590, + "Ġrond": 39353, + "Ġroof": 8418, + "Ġroofs": 48555, + "Ġrooft": 34460, + "Ġrooftop": 41027, + "Ġrook": 24692, + "Ġrookie": 36299, + "Ġroom": 1808, + "Ġroomm": 23929, + "Ġroommate": 31692, + "Ġroommates": 46886, + "Ġrooms": 9396, + "Ġroot": 5593, + "Ġrooted": 25277, + "Ġrooting": 41572, + "Ġroots": 10669, + "Ġrope": 13540, + "Ġropes": 32964, + "Ġros": 18953, + "Ġrose": 10895, + "Ġroses": 28620, + "Ġroster": 29892, + "Ġrot": 4297, + "Ġrotary": 45811, + "Ġrotate": 13121, + "Ġrotated": 42146, + "Ġrotates": 42133, + "Ġrotating": 19627, + "Ġrotation": 12447, + "Ġrotational": 45420, + "Ġrotations": 44796, + "Ġrotor": 26847, + "Ġrotten": 31977, + "Ġrou": 18450, + "Ġrouge": 40605, + "Ġrough": 5903, + "Ġroughly": 9810, + "Ġround": 3098, + "Ġrounded": 23382, + "Ġrounding": 48237, + "Ġrounds": 13757, + "Ġroup": 48485, + "Ġrout": 4020, + "Ġroute": 7955, + "Ġrouter": 22492, + "Ġroutes": 18242, + "Ġroutine": 9927, + "Ġroutinely": 40443, + "Ġroutines": 33827, + "Ġrouting": 32722, + "Ġrover": 45767, + "Ġrow": 5386, + "Ġrows": 13241, + "Ġroy": 36364, + "Ġroyal": 13351, + "Ġroyalty": 40929, + "Ġroz": 9544, + "Ġrozm": 35234, + "Ġrozp": 47576, + "Ġrozum": 48797, + "Ġrpm": 47071, + "Ġru": 5420, + "Ġrua": 49467, + "Ġrub": 5915, + "Ġrubber": 11593, + "Ġrubbing": 29770, + "Ġrubbish": 29978, + "Ġrud": 32109, + "Ġrude": 18895, + "Ġrue": 43919, + "Ġrug": 18329, + "Ġrugby": 43895, + "Ġrugged": 42662, + "Ġruh": 36614, + "Ġruim": 33871, + "Ġruin": 15514, + "Ġruined": 17013, + "Ġruining": 38938, + "Ġruins": 24747, + "Ġrul": 8551, + "Ġrule": 4978, + "Ġruled": 20077, + "Ġruler": 19661, + "Ġrulers": 35009, + "Ġrules": 4474, + "Ġruling": 21437, + "Ġrum": 8347, + "Ġrumah": 44988, + "Ġrumor": 29639, + "Ġrumors": 21201, + "Ġrun": 1190, + "Ġrund": 23096, + "Ġrunner": 24376, + "Ġrunners": 33892, + "Ġrunning": 2614, + "Ġruns": 6676, + "Ġrunt": 49435, + "Ġrunter": 33295, + "Ġruntime": 34474, + "Ġrunway": 26642, + "Ġrupees": 24638, + "Ġrural": 11165, + "Ġrus": 38684, + "Ġrush": 9300, + "Ġrushed": 24421, + "Ġrushing": 25876, + "Ġrust": 15259, + "Ġrusty": 45394, + "Ġrut": 41324, + "Ġruth": 38225, + "Ġruthless": 47096, + "Ġry": 20791, + "Ġrze": 16081, + "Ġrzecz": 36833, + "Ġrzeczy": 26297, + "ĠrzeczywiÅĽcie": 44922, + "Ġráp": 18213, + "Ġrápido": 24893, + "Ġrä": 39442, + "Ġrätt": 38494, + "Ġrèg": 43659, + "Ġré": 3960, + "Ġréal": 18911, + "Ġréalité": 35677, + "Ġrécup": 43113, + "Ġrédu": 46369, + "Ġréf": 30170, + "Ġréfl": 48438, + "Ġrég": 17563, + "Ġrégion": 42669, + "Ġrép": 14243, + "Ġrépond": 26027, + "Ġrépondre": 40139, + "Ġréponse": 40967, + "Ġrés": 14415, + "Ġrése": 34044, + "Ġrésult": 33671, + "Ġréuss": 28099, + "Ġréussi": 46171, + "Ġrév": 38357, + "Ġrê": 38240, + "Ġró": 11416, + "Ġrównież": 20532, + "Ġróż": 19637, + "Ġróżne": 47760, + "Ġróżnych": 42602, + "Ġrôle": 41681, + "ĠrÄĻ": 41197, + "Ġrất": 25147, + "Ġrằng": 45019, + "Ġrá»ĵi": 19908, + "Ġs": 262, + "Ġsa": 601, + "Ġsaat": 23369, + "Ġsab": 5560, + "Ġsabe": 12275, + "Ġsabem": 46128, + "Ġsabemos": 27200, + "Ġsaben": 36670, + "Ġsaber": 12489, + "Ġsabes": 37790, + "Ġsabia": 36388, + "Ġsabor": 48648, + "Ġsabot": 37167, + "Ġsac": 4899, + "Ġsacar": 43823, + "Ġsach": 42510, + "Ġsack": 33209, + "Ġsacr": 7480, + "Ġsacred": 15757, + "Ġsacrific": 14108, + "Ġsacrifice": 11521, + "Ġsacrificed": 32021, + "Ġsacrifices": 25094, + "Ġsacrificing": 42294, + "Ġsad": 4227, + "Ġsaddle": 30459, + "Ġsadece": 32945, + "Ġsadly": 22023, + "Ġsadness": 22462, + "Ġsaf": 3597, + "Ġsafe": 3273, + "Ġsafeg": 32358, + "Ġsafeguard": 40153, + "Ġsafely": 11750, + "Ġsafer": 15856, + "Ġsafest": 37558, + "Ġsafety": 4514, + "Ġsag": 15274, + "Ġsaga": 34250, + "Ġsage": 19721, + "Ġsagen": 8360, + "Ġsagt": 15764, + "Ġsagte": 36771, + "Ġsah": 19292, + "Ġsai": 32417, + "Ġsaid": 848, + "Ġsail": 15758, + "Ġsailed": 49339, + "Ġsailing": 27452, + "Ġsailors": 42036, + "Ġsaint": 28374, + "Ġsaints": 29546, + "Ġsair": 29157, + "Ġsais": 11757, + "Ġsait": 23146, + "Ġsaja": 32617, + "Ġsak": 23366, + "Ġsake": 9717, + "Ġsaker": 40416, + "Ġsal": 1845, + "Ġsala": 37596, + "Ġsalad": 12604, + "Ġsalads": 48025, + "Ġsalah": 41688, + "Ġsalaries": 35057, + "Ġsalary": 15360, + "Ġsale": 8680, + "Ġsales": 5763, + "Ġsalir": 31514, + "Ġsaliva": 43540, + "Ġsalmon": 18518, + "Ġsalon": 27768, + "Ġsalsa": 32428, + "Ġsalt": 5139, + "Ġsalted": 39783, + "Ġsalts": 50191, + "Ġsalty": 18443, + "Ġsalud": 23933, + "Ġsalut": 45184, + "Ġsalute": 33673, + "Ġsalv": 26858, + "Ġsalvar": 48873, + "Ġsalvation": 17456, + "Ġsam": 3247, + "Ġsama": 17768, + "Ġsamb": 47822, + "Ġsame": 912, + "Ġsamen": 39405, + "Ġsamh": 49864, + "Ġsamma": 43407, + "Ġsamo": 36422, + "Ġsamp": 34098, + "Ġsampai": 38569, + "Ġsample": 6889, + "Ġsamples": 10938, + "Ġsampling": 21179, + "Ġsamurai": 48144, + "Ġsan": 6645, + "Ġsana": 15490, + "Ġsanct": 21794, + "Ġsanction": 39830, + "Ġsanctions": 21342, + "Ġsanctuary": 34390, + "Ġsand": 4932, + "Ġsandbox": 42115, + "Ġsanding": 44338, + "Ġsandwich": 11141, + "Ġsandwiches": 29022, + "Ġsandy": 47122, + "Ġsane": 45610, + "Ġsang": 9980, + "Ġsangat": 31917, + "Ġsangre": 45878, + "Ġsanit": 24533, + "Ġsanitation": 50146, + "Ġsanitizer": 47080, + "Ġsanity": 47892, + "Ġsank": 43746, + "Ġsano": 46942, + "Ġsans": 12177, + "Ġsant": 23044, + "Ġsanté": 30068, + "Ġsao": 33108, + "Ġsap": 18985, + "Ġsapp": 46938, + "Ġsar": 13782, + "Ġsarc": 36836, + "Ġsare": 38706, + "ĠsarÃł": 41338, + "Ġsash": 43780, + "Ġsat": 3227, + "Ġsatell": 11997, + "Ġsatellite": 16016, + "Ġsatellites": 24960, + "Ġsatisf": 5519, + "Ġsatisfaction": 18715, + "Ġsatisfactory": 48614, + "Ġsatisfied": 11239, + "Ġsatisfies": 44271, + "Ġsatisfy": 19319, + "Ġsatisfying": 18348, + "Ġsatu": 27679, + "Ġsatur": 21160, + "Ġsaturated": 25408, + "Ġsaturation": 27090, + "Ġsau": 17828, + "Ġsauc": 49181, + "Ġsauce": 4880, + "Ġsauces": 41447, + "Ġsaud": 47863, + "Ġsauna": 46654, + "Ġsaus": 16534, + "Ġsausage": 20526, + "Ġsausages": 41157, + "Ġsaute": 41223, + "Ġsav": 11163, + "Ġsava": 44908, + "Ġsavage": 42512, + "Ġsave": 3155, + "Ġsaved": 6624, + "Ġsaves": 19155, + "Ġsavez": 30503, + "Ġsaving": 6816, + "Ġsavings": 13454, + "Ġsavior": 41327, + "Ġsavoir": 19345, + "Ġsavory": 33944, + "Ġsavvy": 47506, + "Ġsaw": 1866, + "Ġsax": 42119, + "Ġsay": 584, + "Ġsaya": 9160, + "Ġsayin": 44364, + "Ġsaying": 1566, + "Ġsays": 1619, + "Ġsaç": 48679, + "Ġsaúde": 39937, + "ĠsaÄŁ": 30318, + "Ġsc": 795, + "Ġsca": 4216, + "Ġscaff": 40889, + "Ġscaffold": 44094, + "Ġscal": 15664, + "Ġscalable": 38481, + "Ġscalar": 39684, + "Ġscale": 4373, + "Ġscaled": 36039, + "Ġscales": 17408, + "Ġscaling": 21589, + "Ġscall": 30509, + "Ġscalp": 31972, + "Ġscam": 26917, + "Ġscan": 11049, + "Ġscand": 40273, + "Ġscandal": 27922, + "Ġscanned": 45089, + "Ġscanner": 30211, + "Ġscanning": 27019, + "Ġscans": 35116, + "Ġscar": 10569, + "Ġscarce": 41340, + "Ġscarcity": 44181, + "Ġscare": 17185, + "Ġscared": 5338, + "Ġscares": 35721, + "Ġscarf": 29086, + "Ġscariest": 47755, + "Ġscars": 31353, + "Ġscary": 6958, + "Ġscatter": 34951, + "Ġscattered": 21986, + "Ġscattering": 42314, + "Ġscen": 4191, + "Ġscenario": 9005, + "Ġscenarios": 15077, + "Ġscene": 4145, + "Ġscenery": 25805, + "Ġscenes": 8026, + "Ġscent": 19040, + "Ġsch": 956, + "Ġschaffen": 30888, + "Ġschauen": 25672, + "Ġschaut": 46064, + "Ġsche": 25690, + "Ġsched": 5292, + "Ġschedul": 12000, + "Ġschedule": 7567, + "Ġscheduled": 15678, + "Ġschedules": 28078, + "Ġscheduling": 29055, + "Ġscheint": 47906, + "Ġschem": 22627, + "Ġschema": 34078, + "Ġschematic": 44739, + "Ġscheme": 12232, + "Ġschemes": 26954, + "Ġschizophren": 41532, + "Ġschizophrenia": 49022, + "Ġschle": 22664, + "Ġschlecht": 32427, + "Ġschlim": 37260, + "Ġschlimm": 48821, + "Ġschme": 46459, + "Ġschne": 28643, + "Ġschnell": 17589, + "Ġschneller": 43865, + "Ġschol": 6946, + "Ġscholar": 17912, + "Ġscholarly": 39589, + "Ġscholars": 8553, + "Ġscholarship": 16178, + "Ġscholarships": 28474, + "Ġschon": 4981, + "Ġschool": 1395, + "Ġschooling": 41677, + "Ġschools": 4656, + "Ġschreiben": 48546, + "Ġschw": 17932, + "Ġschwer": 23809, + "Ġschwier": 27546, + "Ġschwierig": 37845, + "Ġschö": 25032, + "Ġschön": 13527, + "Ġschöne": 41152, + "Ġsci": 2180, + "Ġscience": 3497, + "Ġsciences": 17677, + "Ġscient": 3989, + "Ġscientific": 8134, + "Ġscientifically": 39719, + "Ġscientist": 12662, + "Ġscientists": 7708, + "Ġscissors": 16066, + "Ġscold": 26437, + "Ġscolded": 49283, + "Ġscoop": 19555, + "Ġscoot": 21375, + "Ġscooter": 30441, + "Ġscope": 11923, + "Ġscor": 38629, + "Ġscore": 6175, + "Ġscored": 18139, + "Ġscores": 13444, + "Ġscoring": 22358, + "Ġscorp": 46092, + "Ġscout": 34392, + "Ġscr": 5918, + "Ġscra": 13943, + "Ġscrambled": 49127, + "Ġscrap": 23138, + "Ġscrape": 32827, + "Ġscraping": 43738, + "Ġscraps": 45204, + "Ġscratch": 8459, + "Ġscratched": 40513, + "Ġscratches": 33695, + "Ġscratching": 29699, + "Ġscream": 7291, + "Ġscreamed": 41069, + "Ġscreaming": 12636, + "Ġscreams": 22832, + "Ġscree": 38323, + "Ġscreen": 2568, + "Ġscreening": 17732, + "Ġscreens": 11171, + "Ġscreenshot": 27712, + "Ġscreenshots": 40661, + "Ġscrew": 5630, + "Ġscrewdriver": 27282, + "Ġscrewed": 20331, + "Ġscrews": 13050, + "Ġscri": 5545, + "Ġscrib": 39435, + "Ġscript": 5755, + "Ġscripts": 23294, + "Ġscripture": 24783, + "Ġscriptures": 29969, + "Ġscroll": 11369, + "Ġscrolling": 29053, + "Ġscrub": 24163, + "Ġscrut": 28949, + "Ġscrutiny": 38615, + "Ġsculpt": 12613, + "Ġsculpture": 22972, + "Ġsculptures": 37544, + "Ġscène": 42424, + "Ġse": 369, + "Ġsea": 4158, + "Ġseafood": 23206, + "Ġseal": 12185, + "Ġsealed": 21514, + "Ġsealing": 48678, + "Ġseals": 32031, + "Ġseam": 12337, + "Ġseamless": 28677, + "Ġseamlessly": 38083, + "Ġseams": 33547, + "Ġsean": 37670, + "Ġsearch": 3164, + "Ġsearched": 22961, + "Ġsearches": 26701, + "Ġsearching": 10808, + "Ġseas": 22535, + "Ġseason": 3196, + "Ġseasonal": 27421, + "Ġseasoned": 30111, + "Ġseasoning": 23421, + "Ġseasons": 15050, + "Ġseat": 6121, + "Ġseated": 20959, + "Ġseating": 32430, + "Ġseats": 11069, + "Ġseaweed": 29449, + "Ġseb": 48049, + "Ġsebagai": 48246, + "Ġsebel": 46122, + "Ġseben": 46031, + "Ġsec": 907, + "Ġsechs": 41945, + "Ġsecond": 1150, + "Ġsecondary": 11396, + "Ġsecondly": 26246, + "Ġsecondo": 41601, + "Ġseconds": 3949, + "Ġsecre": 34432, + "Ġsecret": 4054, + "Ġsecretary": 15691, + "Ġsecretly": 22611, + "Ġsecrets": 14093, + "Ġsect": 22610, + "Ġsection": 3541, + "Ġsections": 10863, + "Ġsector": 6977, + "Ġsectors": 18373, + "Ġsecular": 25734, + "Ġsecure": 7144, + "Ġsecured": 22905, + "Ġsecurely": 38348, + "Ġsecuring": 33640, + "Ġsecurities": 38597, + "Ġsecurity": 3825, + "Ġsed": 9643, + "Ġsedan": 29344, + "Ġsediment": 32362, + "Ġsee": 536, + "Ġseed": 8871, + "Ġseeds": 9203, + "Ġseeing": 2577, + "Ġseek": 8075, + "Ġseekers": 47915, + "Ġseeking": 11670, + "Ġseeks": 28840, + "Ġseem": 1643, + "Ġseemed": 6576, + "Ġseemingly": 18709, + "Ġseems": 2544, + "Ġseen": 1612, + "Ġsees": 8194, + "Ġseg": 3896, + "Ġsegment": 9469, + "Ġsegments": 19904, + "Ġsegreg": 37630, + "Ġsegregated": 47370, + "Ġsegregation": 34317, + "Ġsegu": 8878, + "Ġsegue": 33850, + "Ġseguinte": 32433, + "Ġseguir": 18584, + "Ġsegunda": 21978, + "Ġsegundo": 17954, + "Ġsegundos": 40108, + "Ġsegur": 22179, + "Ġsegurança": 49538, + "Ġseguridad": 35415, + "Ġseguro": 31424, + "Ġsegún": 36570, + "Ġsehe": 35995, + "Ġsehen": 11333, + "Ġsehr": 5499, + "Ġsei": 10842, + "Ġseid": 38041, + "Ġsein": 6195, + "Ġseine": 15925, + "Ġseinem": 29187, + "Ġseinen": 24427, + "Ġseiner": 23114, + "Ġseis": 28233, + "Ġseism": 40159, + "Ġseit": 16452, + "Ġseiz": 27610, + "Ġseize": 33413, + "Ġseized": 33912, + "Ġseizure": 42522, + "Ġseizures": 44215, + "Ġseja": 13459, + "Ġsek": 17215, + "Ġsekali": 45016, + "Ġsekarang": 29047, + "Ġsel": 5851, + "Ġselber": 23888, + "Ġselbst": 13053, + "Ġseldom": 47717, + "Ġsele": 23264, + "Ġselect": 3048, + "Ġselected": 8209, + "Ġselecting": 18182, + "Ġselection": 9450, + "Ġselections": 47829, + "Ġselective": 33930, + "Ġself": 2698, + "Ġselfie": 22147, + "Ġselfies": 34814, + "Ġselfish": 19074, + "Ġsell": 3607, + "Ġseller": 23600, + "Ġsellers": 31276, + "Ġselling": 6511, + "Ġsells": 20897, + "Ġselon": 37391, + "Ġselv": 33277, + "Ġselves": 41900, + "Ġsem": 4361, + "Ġsemaine": 28681, + "Ġsemaines": 40715, + "Ġsemana": 20205, + "Ġsemanas": 42507, + "Ġsemantic": 47982, + "Ġsemb": 20775, + "Ġsembla": 49277, + "Ġsemble": 38328, + "Ġsemester": 11894, + "Ġsemi": 12909, + "Ġsemic": 27515, + "Ġsemicondu": 36924, + "Ġsemiconductor": 45310, + "Ġsemin": 18288, + "Ġseminar": 29235, + "Ġseminars": 43112, + "Ġsempre": 9553, + "Ġsemua": 28195, + "Ġsen": 3151, + "Ġsenate": 33609, + "Ġsenator": 24664, + "Ġsenators": 32221, + "Ġsencill": 46749, + "Ġsend": 2845, + "Ġsending": 7750, + "Ġsendiri": 39536, + "Ġsendo": 22589, + "Ġsends": 14790, + "Ġsenhor": 46464, + "Ġseni": 21897, + "Ġsenin": 19402, + "Ġsenior": 7965, + "Ġseniors": 21069, + "Ġsens": 2923, + "Ġsensation": 20069, + "Ġsensational": 47507, + "Ġsensations": 36642, + "Ġsense": 2020, + "Ġsenses": 17057, + "Ġsensible": 25380, + "Ġsensing": 30654, + "Ġsensit": 17039, + "Ġsensitive": 9477, + "Ġsensitivity": 19392, + "Ġsensor": 10200, + "Ġsensors": 14840, + "Ġsensory": 27233, + "Ġsent": 2279, + "Ġsente": 47214, + "Ġsentence": 8174, + "Ġsentenced": 30954, + "Ġsentences": 16579, + "Ġsentido": 19850, + "Ġsentiment": 16149, + "Ġsentimental": 42823, + "Ġsentiments": 41146, + "Ġsentir": 23963, + "Ġsenza": 36208, + "Ġsepar": 3128, + "Ġseparate": 4994, + "Ġseparated": 12005, + "Ġseparately": 14759, + "Ġseparates": 34149, + "Ġseparating": 29279, + "Ġseparation": 14634, + "Ġseper": 24418, + "Ġseperti": 28693, + "Ġsept": 23891, + "Ġsequ": 5123, + "Ġsequel": 20622, + "Ġsequence": 8310, + "Ġsequences": 22978, + "Ġsequencing": 32693, + "Ġsequential": 42881, + "Ġser": 816, + "Ġsera": 15021, + "Ġserait": 23139, + "Ġseres": 44721, + "Ġserge": 46463, + "Ġseria": 20809, + "Ġserial": 17436, + "Ġserie": 23030, + "Ġseries": 2638, + "Ġserio": 49531, + "Ġserious": 3156, + "Ġseriously": 6638, + "Ġseriousness": 44880, + "Ġsermon": 34610, + "Ġseront": 39400, + "Ġserpent": 38315, + "Ġsert": 38806, + "Ġserum": 32755, + "Ġserv": 1658, + "Ġservant": 17896, + "Ġservants": 21705, + "Ġserve": 4596, + "Ġserved": 7584, + "Ġserver": 7154, + "Ġservers": 15909, + "Ġserves": 13451, + "Ġservi": 37076, + "Ġservice": 2643, + "Ġservices": 3328, + "Ġservicio": 43078, + "Ġservicios": 42722, + "Ġserving": 8148, + "Ġservir": 29463, + "Ġserá": 16502, + "ĠserÃŃa": 23679, + "Ġses": 5385, + "Ġsesame": 21994, + "Ġsesi": 13315, + "Ġsesleri": 35700, + "Ġsession": 5481, + "Ġsessions": 11081, + "Ġset": 992, + "Ġsets": 6352, + "Ġsett": 5584, + "Ġsetting": 3287, + "Ġsettings": 6257, + "Ġsettle": 11852, + "Ġsettled": 14819, + "Ġsettlement": 18130, + "Ġsettlements": 35558, + "Ġsettlers": 43798, + "Ġsettling": 33841, + "Ġsetup": 8657, + "Ġsetups": 46832, + "Ġsetzen": 35877, + "Ġsetzt": 49099, + "Ġseu": 7986, + "Ġseul": 24448, + "Ġseule": 18800, + "Ġseulement": 27772, + "Ġseus": 17004, + "Ġsev": 15340, + "Ġseva": 42465, + "Ġseven": 3407, + "Ġsevent": 12100, + "Ġseventeen": 39532, + "Ġseventh": 17875, + "Ġseventy": 25662, + "Ġsever": 2802, + "Ġseveral": 2940, + "Ġsevere": 8922, + "Ġseverely": 26271, + "Ġseverity": 35179, + "Ġsevi": 43812, + "Ġsew": 15472, + "Ġsewer": 37079, + "Ġsewing": 19311, + "Ġsewn": 46946, + "Ġsex": 3260, + "Ġsext": 42826, + "Ġsexual": 6701, + "Ġsexuality": 25426, + "Ġsexually": 26791, + "Ġsexy": 13701, + "Ġseç": 43065, + "Ġseñ": 13830, + "Ġseñor": 22188, + "Ġseñora": 41094, + "Ġsf": 47095, + "Ġsh": 402, + "Ġsha": 3230, + "Ġshack": 40369, + "Ġshad": 5744, + "Ġshade": 11466, + "Ġshaded": 48067, + "Ġshades": 20639, + "Ġshading": 30556, + "Ġshadow": 8576, + "Ġshadows": 14740, + "Ġshady": 41853, + "Ġshaft": 18467, + "Ġshake": 10283, + "Ġshaken": 40971, + "Ġshakes": 37891, + "Ġshaking": 15415, + "Ġshaky": 44785, + "Ġshall": 4393, + "Ġshallow": 20488, + "Ġsham": 29758, + "Ġshame": 10069, + "Ġshameful": 49600, + "Ġshameless": 40164, + "Ġshampoo": 27484, + "Ġshap": 6706, + "Ġshape": 3909, + "Ġshaped": 13475, + "Ġshapes": 10854, + "Ġshaping": 25945, + "Ġshar": 16768, + "Ġshare": 2073, + "Ġshared": 5507, + "Ġshareholders": 33294, + "Ġshares": 12182, + "Ġsharing": 5414, + "Ġshark": 13327, + "Ġsharks": 26312, + "Ġsharp": 8199, + "Ġsharpen": 31570, + "Ġsharper": 44670, + "Ġsharply": 42893, + "Ġshattered": 35209, + "Ġshave": 25544, + "Ġshaved": 37980, + "Ġshaving": 36481, + "Ġshe": 750, + "Ġshear": 24082, + "Ġshed": 14951, + "Ġshedding": 49934, + "Ġsheep": 14213, + "Ġsheer": 23061, + "Ġsheet": 8193, + "Ġsheets": 15421, + "Ġshel": 9180, + "Ġshelf": 15222, + "Ġshell": 8720, + "Ġshells": 22523, + "Ġshelter": 13341, + "Ġshelters": 36643, + "Ġshelves": 24349, + "Ġshepherd": 40317, + "Ġsher": 29855, + "Ġsheriff": 37103, + "Ġshield": 10257, + "Ġshields": 33466, + "Ġshift": 5513, + "Ġshifted": 18892, + "Ġshifting": 17573, + "Ġshifts": 19201, + "Ġshimmer": 35088, + "Ġshin": 37124, + "Ġshine": 12207, + "Ġshines": 28056, + "Ġshining": 18269, + "Ġshiny": 16997, + "Ġship": 5374, + "Ġshipment": 49991, + "Ġshipped": 25312, + "Ġshipping": 14122, + "Ġships": 11434, + "Ġshirt": 8336, + "Ġshirts": 20832, + "Ġshit": 4611, + "Ġshitty": 30748, + "Ġsho": 2223, + "Ġshock": 5588, + "Ġshocked": 12763, + "Ġshocking": 18776, + "Ġshocks": 37066, + "Ġshoe": 12796, + "Ġshoes": 6654, + "Ġshook": 28438, + "Ġshoot": 3076, + "Ġshooter": 24680, + "Ġshooters": 45526, + "Ġshooting": 5942, + "Ġshootings": 44314, + "Ġshoots": 20704, + "Ġshop": 3945, + "Ġshopping": 8688, + "Ġshops": 14457, + "Ġshore": 17805, + "Ġshores": 44247, + "Ġshort": 2099, + "Ġshortage": 24708, + "Ġshortages": 46765, + "Ġshortcut": 24822, + "Ġshortcuts": 34620, + "Ġshorten": 39632, + "Ġshortened": 45183, + "Ġshorter": 11639, + "Ġshortest": 31875, + "Ġshortly": 13392, + "Ġshorts": 19848, + "Ġshot": 3347, + "Ġshotgun": 24734, + "Ġshots": 8305, + "Ġshould": 820, + "Ġshoulder": 7948, + "Ġshoulders": 10245, + "Ġshouldn": 4659, + "Ġshout": 8043, + "Ġshouted": 37310, + "Ġshouting": 20382, + "Ġshove": 35648, + "Ġshovel": 29789, + "Ġshow": 855, + "Ġshowc": 29794, + "Ġshowcase": 20388, + "Ġshowed": 4712, + "Ġshower": 10128, + "Ġshowers": 29499, + "Ġshowing": 4099, + "Ġshown": 4898, + "Ġshows": 3110, + "Ġshr": 9884, + "Ġshred": 21567, + "Ġshredded": 39091, + "Ġshrim": 13958, + "Ġshrimp": 15600, + "Ġshrine": 37812, + "Ġshrink": 23060, + "Ġshrinking": 41684, + "Ġshroud": 50077, + "Ġshuffle": 39426, + "Ġshut": 5309, + "Ġshutdown": 34927, + "Ġshuts": 48590, + "Ġshutter": 25517, + "Ġshutting": 36057, + "Ġshuttle": 26728, + "Ġshy": 12685, + "Ġsi": 1511, + "Ġsia": 25176, + "Ġsiamo": 33459, + "Ġsib": 35505, + "Ġsibling": 39409, + "Ġsiblings": 20571, + "Ġsic": 33579, + "Ġsich": 3041, + "Ġsicher": 18623, + "Ġsick": 4998, + "Ġsickness": 25611, + "Ġsid": 20822, + "Ġside": 1252, + "Ġsided": 41651, + "Ġsides": 4881, + "Ġsidewalk": 25360, + "Ġsideways": 26092, + "Ġsido": 14444, + "Ġsie": 2804, + "Ġsiebie": 39137, + "Ġsiege": 34147, + "Ġsieht": 14289, + "Ġsiellä": 42771, + "Ġsiempre": 12758, + "Ġsiendo": 31423, + "Ġsiento": 40340, + "Ġsiete": 40719, + "Ġsig": 4556, + "Ġsigh": 29472, + "Ġsighs": 44705, + "Ġsight": 7860, + "Ġsights": 29363, + "Ġsiglo": 48578, + "Ġsigma": 12771, + "Ġsign": 1465, + "Ġsignal": 6358, + "Ġsignaling": 38639, + "Ġsignals": 12354, + "Ġsignature": 13397, + "Ġsignatures": 32322, + "Ġsigned": 8175, + "Ġsignific": 3350, + "Ġsignifica": 19957, + "Ġsignificance": 17687, + "Ġsignificant": 4776, + "Ġsignificantly": 10591, + "Ġsigning": 13393, + "Ġsigns": 7880, + "Ġsigu": 21152, + "Ġsigue": 34532, + "Ġsigui": 39578, + "Ġsiguiente": 25666, + "Ġsih": 25821, + "Ġsiihen": 40581, + "Ġsiinä": 41464, + "Ġsiis": 47590, + "Ġsiitä": 32705, + "Ġsil": 3425, + "Ġsilence": 12239, + "Ġsilent": 12784, + "Ġsilently": 40087, + "Ġsilhouette": 38275, + "Ġsilic": 26484, + "Ġsilicon": 22848, + "Ġsilicone": 28778, + "Ġsilk": 24395, + "Ġsill": 37160, + "Ġsilly": 11774, + "Ġsilos": 48893, + "Ġsilver": 8753, + "Ġsim": 1034, + "Ġsimilar": 2531, + "Ġsimilarities": 24197, + "Ġsimilarity": 32194, + "Ġsimilarly": 14138, + "Ġsimmer": 29835, + "Ġsimpl": 6883, + "Ġsimple": 2199, + "Ġsimplement": 24208, + "Ġsimplemente": 33190, + "Ġsimpler": 18587, + "Ġsimples": 21730, + "Ġsimplesmente": 44482, + "Ġsimplest": 22811, + "Ġsimplicity": 25632, + "Ġsimplified": 26335, + "Ġsimplify": 20460, + "Ġsimplistic": 44199, + "Ġsimply": 2935, + "Ġsimulate": 27817, + "Ġsimulated": 41713, + "Ġsimulation": 16575, + "Ġsimulations": 35138, + "Ġsimulator": 32974, + "Ġsimult": 13899, + "Ġsimultaneous": 46218, + "Ġsimultaneously": 16561, + "Ġsin": 3343, + "Ġsina": 43400, + "Ġsince": 1670, + "Ġsincer": 30220, + "Ġsincere": 16941, + "Ġsincerely": 30694, + "Ġsincerity": 44040, + "Ġsind": 3290, + "Ġsine": 18609, + "Ġsinful": 41861, + "Ġsing": 1522, + "Ġsinger": 11564, + "Ġsingers": 24275, + "Ġsinging": 6726, + "Ġsingle": 2167, + "Ġsingles": 36334, + "Ġsings": 23250, + "Ġsingular": 20010, + "Ġsini": 30368, + "Ġsinister": 45727, + "Ġsink": 9500, + "Ġsinking": 28148, + "Ġsinks": 43162, + "Ġsinn": 47066, + "Ġsinner": 41293, + "Ġsinners": 41004, + "Ġsino": 18108, + "Ġsinon": 46035, + "Ġsins": 13815, + "Ġsint": 41259, + "Ġsinus": 41503, + "Ġsip": 29668, + "Ġsir": 4735, + "Ġsis": 26288, + "Ġsist": 10555, + "Ġsistem": 45758, + "Ġsistema": 13245, + "Ġsistemas": 48720, + "Ġsister": 4892, + "Ġsisters": 11589, + "Ġsit": 1394, + "Ġsitcom": 49530, + "Ġsite": 3621, + "Ġsites": 7533, + "Ġsitio": 40621, + "Ġsits": 12696, + "Ġsitt": 43709, + "Ġsitten": 23186, + "Ġsitter": 47335, + "Ġsitting": 3798, + "Ġsitu": 2054, + "Ġsituación": 29343, + "Ġsituated": 30143, + "Ġsituation": 2590, + "Ġsituations": 6851, + "Ġsituação": 36768, + "Ġsitzen": 44998, + "Ġsitzt": 49734, + "Ġsitä": 26838, + "Ġsix": 2309, + "Ġsixt": 13074, + "Ġsixteen": 27847, + "Ġsixth": 15102, + "Ġsixty": 21390, + "Ġsiz": 13723, + "Ġsize": 2744, + "Ġsized": 20004, + "Ġsizes": 11602, + "Ġsizi": 45327, + "Ġsizin": 36312, + "Ġsizing": 45435, + "Ġsizz": 43828, + "Ġsiè": 31302, + "Ġsiècle": 40830, + "ĠsiÄĻ": 3244, + "Ġsj": 20601, + "Ġsjäl": 30700, + "Ġsjälv": 39298, + "Ġsk": 1110, + "Ġska": 9958, + "Ġskal": 16890, + "Ġskate": 18237, + "Ġskateboard": 32204, + "Ġskating": 29103, + "Ġske": 8756, + "Ġskelet": 32321, + "Ġskeleton": 25204, + "Ġskeletons": 45538, + "Ġskept": 19128, + "Ġskeptical": 28601, + "Ġsket": 32804, + "Ġsketch": 12325, + "Ġsketches": 34547, + "Ġski": 14274, + "Ġskies": 25861, + "Ġskiing": 32326, + "Ġskill": 5389, + "Ġskilled": 19690, + "Ġskills": 3942, + "Ġskin": 3178, + "Ġskincare": 29461, + "Ġskinny": 25193, + "Ġskins": 27888, + "Ġskip": 10023, + "Ġskipped": 30193, + "Ġskipping": 31533, + "Ġskirt": 20134, + "Ġskirts": 48734, + "Ġskull": 11743, + "Ġskulle": 20750, + "Ġsky": 5443, + "Ġskys": 48227, + "Ġsl": 1061, + "Ġsla": 8039, + "Ġslab": 38616, + "Ġslack": 29767, + "Ġslam": 25617, + "Ġslammed": 50196, + "Ġslang": 42517, + "Ġslap": 21075, + "Ġslapped": 43309, + "Ġslash": 17330, + "Ġslate": 39118, + "Ġslaughter": 26609, + "Ġslave": 14777, + "Ġslavery": 15641, + "Ġslaves": 18394, + "Ġsle": 2426, + "Ġsled": 46242, + "Ġslee": 12931, + "Ġsleek": 43464, + "Ġsleep": 2817, + "Ġsleeping": 8296, + "Ġsleeps": 37991, + "Ġsleepy": 24908, + "Ġsleeve": 21138, + "Ġsleeves": 24555, + "Ġslept": 17400, + "Ġslic": 12377, + "Ġslice": 13153, + "Ġsliced": 27098, + "Ġslices": 19793, + "Ġslicing": 46586, + "Ġslick": 37406, + "Ġslide": 4137, + "Ġslider": 26046, + "Ġslides": 9788, + "Ġsliding": 21169, + "Ġslight": 4036, + "Ġslightest": 41040, + "Ġslightly": 4748, + "Ġslim": 25357, + "Ġslime": 20650, + "Ġslip": 11140, + "Ġslipp": 20129, + "Ġslipped": 28989, + "Ġslippers": 45670, + "Ġslippery": 28100, + "Ġslipping": 36779, + "Ġslips": 44690, + "Ġslit": 43182, + "Ġslog": 49760, + "Ġslogan": 33052, + "Ġslop": 21254, + "Ġslope": 13525, + "Ġslopes": 37725, + "Ġsloppy": 43684, + "Ġslot": 14747, + "Ġslots": 24266, + "Ġslow": 2964, + "Ġslowed": 32057, + "Ġslower": 14009, + "Ġslowing": 26958, + "Ġslowly": 5692, + "Ġslows": 35789, + "Ġslut": 41496, + "Ġsm": 899, + "Ġsmack": 36348, + "Ġsmall": 1359, + "Ġsmaller": 4356, + "Ġsmallest": 16998, + "Ġsmart": 4069, + "Ġsmarter": 20294, + "Ġsmartest": 41491, + "Ġsmartphone": 13307, + "Ġsmartphones": 26782, + "Ġsmash": 17960, + "Ġsmashed": 33269, + "Ġsmashing": 43316, + "Ġsme": 41818, + "Ġsmell": 4316, + "Ġsmelled": 40453, + "Ġsmelling": 35471, + "Ġsmells": 10036, + "Ġsmile": 7563, + "Ġsmiled": 35132, + "Ġsmiles": 28083, + "Ġsmiling": 16005, + "Ġsmo": 24101, + "Ġsmok": 32073, + "Ġsmoke": 8439, + "Ġsmoked": 27205, + "Ġsmokes": 49592, + "Ġsmoking": 14055, + "Ġsmooth": 5508, + "Ġsmoother": 28640, + "Ġsmoothie": 36328, + "Ġsmoothly": 19565, + "Ġsn": 2406, + "Ġsna": 14528, + "Ġsnack": 13288, + "Ġsnacks": 16160, + "Ġsnail": 42555, + "Ġsnake": 12650, + "Ġsnakes": 21817, + "Ġsnap": 13650, + "Ġsnapped": 41396, + "Ġsnapping": 42727, + "Ġsnaps": 19206, + "Ġsnapshot": 30163, + "Ġsnare": 45018, + "Ġsnatch": 46328, + "Ġsne": 9244, + "Ġsneak": 13164, + "Ġsneakers": 35331, + "Ġsneaking": 48525, + "Ġsneaky": 39518, + "Ġsneez": 49299, + "Ġsneeze": 50076, + "Ġsnel": 42582, + "Ġsniff": 31101, + "Ġsnip": 37482, + "Ġsniper": 32441, + "Ġsnipp": 35623, + "Ġsno": 43287, + "Ġsnow": 5756, + "Ġsnowball": 46143, + "Ġsnowfl": 44124, + "Ġsnug": 37069, + "Ġso": 370, + "Ġsoak": 22769, + "Ġsoaked": 27368, + "Ġsoaking": 40580, + "Ġsoap": 14587, + "Ġsob": 18253, + "Ġsober": 26212, + "Ġsobie": 13652, + "Ġsobre": 5473, + "Ġsoc": 13598, + "Ġsoccer": 15469, + "Ġsoci": 3075, + "Ġsociais": 45179, + "Ġsocial": 2093, + "Ġsociale": 41889, + "Ġsociales": 29623, + "Ġsocialism": 36112, + "Ġsocialist": 33981, + "Ġsocially": 21397, + "Ġsociaux": 47460, + "Ġsocied": 26445, + "Ġsociedad": 42306, + "Ġsociedade": 45789, + "Ġsociet": 14051, + "Ġsocietal": 33472, + "Ġsocieties": 19329, + "Ġsociety": 4086, + "Ġsocio": 44303, + "Ġsocioe": 46327, + "Ġsociology": 41744, + "Ġsociété": 32120, + "Ġsock": 35302, + "Ġsocket": 19741, + "Ġsocks": 17564, + "Ġsod": 15047, + "Ġsoda": 17192, + "Ġsodium": 20265, + "Ġsof": 37259, + "Ġsofa": 28668, + "Ġsofort": 33168, + "Ġsoft": 2787, + "Ġsoften": 31356, + "Ġsofter": 23119, + "Ġsoftly": 30832, + "Ġsoftware": 4722, + "Ġsog": 38440, + "Ġsogar": 19485, + "Ġsogen": 36479, + "Ġsogenan": 37467, + "Ġsoi": 46098, + "Ġsoient": 42711, + "Ġsoil": 6704, + "Ġsoils": 31324, + "Ġsoir": 27105, + "Ġsoit": 12703, + "Ġsok": 41513, + "Ġsol": 1404, + "Ġsola": 34162, + "Ġsolamente": 27814, + "Ġsolar": 7936, + "Ġsolche": 29813, + "Ġsolchen": 46281, + "Ġsold": 3718, + "Ġsolder": 38128, + "Ġsoldier": 15632, + "Ġsoldiers": 8892, + "Ġsole": 12321, + "Ġsolely": 23309, + "Ġsolem": 43519, + "Ġsolemn": 46694, + "Ġsolic": 23665, + "Ġsolid": 5100, + "Ġsolidarity": 27220, + "Ġsolids": 38536, + "Ġsolitary": 44155, + "Ġsoll": 7114, + "Ġsollen": 24713, + "Ġsollte": 18042, + "Ġsollten": 29096, + "Ġsolo": 6944, + "Ġsolu": 24807, + "Ġsolution": 3827, + "Ġsolutions": 6547, + "Ġsolve": 5039, + "Ġsolved": 13041, + "Ġsolvent": 33575, + "Ġsolves": 39890, + "Ġsolving": 12606, + "Ġsom": 3307, + "Ġsome": 512, + "Ġsomebody": 2618, + "Ġsomeday": 19412, + "Ġsomehow": 6063, + "Ġsomeone": 1580, + "Ġsomeplace": 37126, + "Ġsomet": 692, + "Ġsomethin": 39374, + "Ġsomething": 746, + "Ġsometime": 15053, + "Ġsometimes": 2171, + "Ġsomewhat": 8344, + "Ġsomewhere": 4079, + "Ġsomm": 41854, + "Ġsommes": 25232, + "Ġsomos": 25244, + "Ġson": 1872, + "Ġsondern": 11465, + "Ġsong": 2153, + "Ġsongs": 5781, + "Ġsonic": 48725, + "Ġsono": 9259, + "Ġsonra": 13800, + "Ġsons": 13476, + "Ġsonst": 26309, + "Ġsont": 4900, + "Ġsoon": 2321, + "Ġsooner": 15324, + "Ġsoort": 43168, + "Ġsoothing": 40704, + "Ġsoph": 12582, + "Ġsophistic": 15572, + "Ġsophisticated": 16950, + "Ġsophom": 32931, + "Ġsophomore": 35798, + "Ġsopr": 37375, + "Ġsoprattutto": 50002, + "Ġsor": 9359, + "Ġsorcer": 41349, + "Ġsore": 22468, + "Ġsorgen": 47972, + "Ġsorrow": 23027, + "Ġsorry": 2597, + "Ġsort": 1333, + "Ġsorta": 33425, + "Ġsorte": 25559, + "Ġsorted": 25462, + "Ġsortie": 45662, + "Ġsorting": 32411, + "Ġsortir": 26906, + "Ġsorts": 7527, + "Ġsos": 27226, + "Ġsost": 41585, + "Ġsotto": 43754, + "Ġsou": 6926, + "Ġsouff": 36966, + "Ġsought": 17532, + "Ġsouha": 45214, + "Ġsoul": 5133, + "Ġsouls": 16588, + "Ġsound": 1626, + "Ġsounded": 17714, + "Ġsounding": 24931, + "Ġsounds": 3263, + "Ġsoundtrack": 27029, + "Ġsoup": 7884, + "Ġsour": 11006, + "Ġsource": 4009, + "Ġsources": 7139, + "Ġsous": 16686, + "Ġsout": 29350, + "Ġsouth": 7377, + "Ġsoutheast": 39014, + "Ġsouthern": 13456, + "Ġsouthwest": 34363, + "Ġsouven": 46509, + "Ġsouvenir": 44361, + "Ġsouvent": 20847, + "Ġsovere": 17894, + "Ġsovereign": 28756, + "Ġsovereignty": 27862, + "Ġsow": 19766, + "Ġsowie": 35874, + "Ġsoy": 8812, + "Ġsoybean": 44227, + "Ġsoybeans": 46706, + "Ġsozial": 31541, + "Ġsozusagen": 33762, + "Ġsp": 637, + "Ġspa": 32543, + "Ġspac": 39404, + "Ġspace": 1901, + "Ġspacecraft": 22910, + "Ġspaced": 43766, + "Ġspaces": 7673, + "Ġspaceship": 39185, + "Ġspacing": 27739, + "Ġspacious": 36801, + "Ġspaghetti": 28556, + "Ġspam": 24028, + "Ġspan": 16174, + "Ġspann": 33360, + "Ġspannend": 49027, + "Ġspanning": 47626, + "Ġspans": 44086, + "Ġspar": 45954, + "Ġspare": 13798, + "Ġspared": 49577, + "Ġspark": 9908, + "Ġsparked": 39653, + "Ġsparkle": 48558, + "Ġsparkling": 39967, + "Ġsparks": 44102, + "Ġspat": 15000, + "Ġspatial": 23598, + "Ġspatula": 33072, + "Ġspawn": 17088, + "Ġspe": 768, + "Ġspeak": 1710, + "Ġspeaker": 8145, + "Ġspeakers": 9518, + "Ġspeaking": 4124, + "Ġspeaks": 10789, + "Ġspear": 26993, + "Ġspec": 1608, + "Ġspecial": 2121, + "Ġspecialist": 17008, + "Ġspecialists": 25476, + "Ġspecialize": 37938, + "Ġspecialized": 19813, + "Ġspecially": 22549, + "Ġspecialty": 22000, + "Ġspecies": 6172, + "Ġspecific": 2685, + "Ġspecifically": 4682, + "Ġspecification": 31256, + "Ġspecifications": 29448, + "Ġspecifics": 28454, + "Ġspecified": 22206, + "Ġspecify": 16500, + "Ġspecimen": 34204, + "Ġspecimens": 41007, + "Ġspecjal": 46433, + "Ġspecs": 27911, + "Ġspect": 6177, + "Ġspectacle": 37303, + "Ġspectacular": 18149, + "Ġspectral": 42761, + "Ġspectrum": 11143, + "Ġspeculate": 40775, + "Ġspeculation": 27696, + "Ġspeculative": 49415, + "Ġspeech": 6218, + "Ġspeeches": 29982, + "Ġspeechless": 48450, + "Ġspeed": 3073, + "Ġspeeding": 35593, + "Ġspeeds": 16411, + "Ġspel": 46486, + "Ġspell": 9827, + "Ġspelled": 34388, + "Ġspelling": 22254, + "Ġspells": 25053, + "Ġspend": 3496, + "Ġspending": 6434, + "Ġspends": 25620, + "Ġspent": 4418, + "Ġsper": 24152, + "Ġsperm": 32899, + "Ġspezie": 48682, + "Ġsphere": 16687, + "Ġspheres": 41225, + "Ġspherical": 37300, + "Ġspic": 41418, + "Ġspice": 19436, + "Ġspices": 19608, + "Ġspicy": 9127, + "Ġspider": 17614, + "Ġspiders": 32171, + "Ġspielen": 30950, + "Ġspielt": 39778, + "Ġspies": 45858, + "Ġspike": 21053, + "Ġspikes": 28997, + "Ġspill": 22044, + "Ġspilled": 37833, + "Ġspin": 6060, + "Ġspinach": 27784, + "Ġspinal": 28022, + "Ġspind": 44169, + "Ġspine": 15395, + "Ġspinner": 44849, + "Ġspinning": 15640, + "Ġspins": 31587, + "Ġspir": 10733, + "Ġspiral": 25165, + "Ġspirit": 3797, + "Ġspirits": 16388, + "Ġspiritual": 6960, + "Ġspirituality": 30637, + "Ġspiritually": 33430, + "Ġspit": 22127, + "Ġspite": 22794, + "Ġspl": 4732, + "Ġsplash": 25757, + "Ġsplashing": 45981, + "Ġsplend": 34350, + "Ġsplendid": 47575, + "Ġsplit": 7472, + "Ġsplits": 37741, + "Ġsplitting": 30348, + "Ġspo": 8243, + "Ġspoil": 18630, + "Ġspoiled": 32439, + "Ġspoiler": 26927, + "Ġspoilers": 32237, + "Ġspoke": 7179, + "Ġspoken": 10759, + "Ġspokes": 25378, + "Ġspokesperson": 45775, + "Ġspong": 50013, + "Ġsponge": 23134, + "Ġspons": 7330, + "Ġsponsor": 16198, + "Ġsponsored": 16621, + "Ġsponsoring": 30311, + "Ġsponsors": 22593, + "Ġsponsorship": 42922, + "Ġspont": 20795, + "Ġspontaneous": 32744, + "Ġspontaneously": 47632, + "Ġspooky": 30510, + "Ġspool": 48884, + "Ġspoon": 12453, + "Ġspoonful": 47114, + "Ġspoons": 36316, + "Ġspor": 43729, + "Ġsport": 7282, + "Ġsporting": 32366, + "Ġsports": 6573, + "Ġsporty": 45804, + "Ġspos": 20443, + "Ġsposób": 22904, + "Ġspot": 4008, + "Ġspotlight": 24656, + "Ġspots": 10681, + "Ġspotted": 21010, + "Ġspouse": 23013, + "Ġspouses": 49784, + "ĠspoÅĤec": 36851, + "Ġspr": 6103, + "Ġspraw": 22734, + "Ġsprawd": 46192, + "Ġspray": 8519, + "Ġsprayed": 40330, + "Ġspraying": 36658, + "Ġspre": 22269, + "Ġspread": 3974, + "Ġspreading": 15232, + "Ġspreads": 25728, + "Ġspreadshe": 23651, + "Ġspreadsheet": 27733, + "Ġsprechen": 27853, + "Ġspricht": 42088, + "Ġspring": 5587, + "Ġsprings": 24647, + "Ġsprink": 30885, + "Ġsprinkle": 24745, + "Ġsprint": 25075, + "Ġsprite": 43848, + "Ġsprout": 43728, + "Ġsprouts": 34628, + "Ġspun": 37038, + "Ġspur": 35657, + "Ġspy": 20752, + "Ġspäter": 24196, + "Ġspé": 31198, + "Ġspécial": 34141, + "Ġsqu": 2339, + "Ġsquad": 15310, + "Ġsquare": 3732, + "Ġsquared": 8889, + "Ġsquares": 19368, + "Ġsquash": 30725, + "Ġsquat": 24305, + "Ġsquats": 45055, + "Ġsque": 8447, + "Ġsqueez": 22390, + "Ġsqueeze": 13578, + "Ġsqueezed": 39470, + "Ġsqueezing": 36645, + "Ġsquid": 28015, + "Ġsquirrel": 28565, + "Ġsquish": 31379, + "Ġsquishy": 45402, + "Ġst": 342, + "Ġsta": 11135, + "Ġstaan": 38055, + "Ġstaat": 28836, + "Ġstab": 16343, + "Ġstabbed": 35726, + "Ġstabil": 11652, + "Ġstability": 11826, + "Ġstabilization": 35476, + "Ġstabilize": 31870, + "Ġstabilized": 48384, + "Ġstable": 8351, + "Ġstack": 8630, + "Ġstacked": 28867, + "Ġstacking": 41376, + "Ġstacks": 30792, + "Ġstad": 38408, + "Ġstadium": 18585, + "Ġstaff": 3525, + "Ġstaffing": 38918, + "Ġstage": 3233, + "Ġstaged": 45178, + "Ġstages": 10232, + "Ġstagger": 29656, + "Ġstaggering": 42974, + "Ġstaging": 41085, + "Ġstagn": 32853, + "Ġstain": 16441, + "Ġstained": 39924, + "Ġstainless": 24048, + "Ġstains": 40733, + "Ġstair": 22273, + "Ġstaircase": 35359, + "Ġstairs": 13471, + "Ġstake": 10407, + "Ġstakeholder": 43406, + "Ġstakeholders": 17779, + "Ġstakes": 28429, + "Ġstal": 49875, + "Ġstalk": 21789, + "Ġstall": 19633, + "Ġstalls": 50248, + "Ġstam": 29682, + "Ġstamina": 36690, + "Ġstamp": 9921, + "Ġstamped": 39111, + "Ġstamping": 41792, + "Ġstamps": 30800, + "Ġstan": 27984, + "Ġstance": 21033, + "Ġstand": 1463, + "Ġstandalone": 37454, + "Ġstandard": 3832, + "Ġstandardized": 31677, + "Ġstandards": 7787, + "Ġstandby": 50170, + "Ġstanding": 4877, + "Ġstandpoint": 15827, + "Ġstands": 7382, + "Ġstanie": 40013, + "Ġstap": 27284, + "Ġstaple": 32361, + "Ġstar": 3543, + "Ġstarch": 24748, + "Ġstare": 22432, + "Ġstared": 44738, + "Ġstaring": 18043, + "Ġstark": 17417, + "Ġstarred": 39438, + "Ġstarring": 30701, + "Ġstars": 6105, + "Ġstart": 722, + "Ġstarted": 1409, + "Ġstarter": 22465, + "Ġstarters": 35131, + "Ġstarting": 2891, + "Ġstartled": 48898, + "Ġstarts": 3719, + "Ġstartup": 18578, + "Ġstartups": 28041, + "Ġstarve": 46755, + "Ġstarving": 28420, + "Ġstat": 2219, + "Ġstata": 49554, + "Ġstate": 1785, + "Ġstated": 11323, + "Ġstatement": 5629, + "Ġstatements": 12363, + "Ġstates": 4368, + "Ġstatewide": 34487, + "Ġstatic": 13437, + "Ġstating": 26688, + "Ġstation": 5214, + "Ġstationary": 30452, + "Ġstationed": 46228, + "Ġstations": 13390, + "Ġstatist": 16012, + "Ġstatistic": 29588, + "Ġstatistical": 22820, + "Ġstatistically": 36478, + "Ġstatistics": 12523, + "Ġstato": 29657, + "Ġstats": 18152, + "Ġstatt": 25675, + "Ġstatue": 17385, + "Ġstatues": 29480, + "Ġstatus": 6558, + "Ġstatut": 35907, + "Ġstatute": 24774, + "Ġstatutory": 42037, + "Ġstay": 1754, + "Ġstayed": 9181, + "Ġstaying": 7939, + "Ġstays": 10834, + "Ġste": 2126, + "Ġstead": 23721, + "Ġsteadily": 36129, + "Ġsteady": 13211, + "Ġsteak": 17009, + "Ġsteal": 11009, + "Ġstealing": 19757, + "Ġsteals": 46962, + "Ġstealth": 25756, + "Ġsteam": 11952, + "Ġsteamed": 32375, + "Ġsteeds": 43603, + "Ġsteel": 8269, + "Ġsteep": 16841, + "Ġsteer": 30814, + "Ġsteering": 14823, + "Ġstehen": 19777, + "Ġsteht": 16361, + "Ġstell": 30787, + "Ġstellar": 42333, + "Ġstellen": 24407, + "Ġstellt": 38582, + "Ġstem": 12312, + "Ġstems": 27600, + "Ġsten": 28031, + "Ġstencil": 38670, + "Ġstep": 1823, + "Ġstepped": 15251, + "Ġstepping": 16821, + "Ġsteps": 4439, + "Ġster": 18924, + "Ġstere": 12730, + "Ġstereo": 29029, + "Ġstereoty": 41182, + "Ġstereotype": 38229, + "Ġstereotypes": 30853, + "Ġsteril": 41477, + "Ġstern": 38312, + "Ġstero": 36407, + "Ġsteroids": 45717, + "Ġstesso": 44413, + "Ġstew": 22654, + "Ġstewards": 36270, + "Ġstewardship": 50092, + "Ġstick": 2897, + "Ġsticker": 20400, + "Ġstickers": 21019, + "Ġsticking": 13465, + "Ġsticks": 12518, + "Ġsticky": 14470, + "Ġstiff": 15451, + "Ġstiffness": 37759, + "Ġstigma": 27880, + "Ġstill": 920, + "Ġstim": 8983, + "Ġstimmt": 37799, + "Ġstimul": 14572, + "Ġstimulate": 31269, + "Ġstimulating": 43671, + "Ġstimulation": 37405, + "Ġstimuli": 47752, + "Ġstimulus": 21366, + "Ġsting": 27175, + "Ġstink": 35843, + "Ġstinks": 50114, + "Ġstinky": 46449, + "Ġstip": 37001, + "Ġstir": 8946, + "Ġstirred": 49409, + "Ġstirring": 28650, + "Ġstitch": 5635, + "Ġstitched": 48992, + "Ġstitches": 13184, + "Ġstitching": 30714, + "Ġsto": 22784, + "Ġstock": 4127, + "Ġstocks": 12966, + "Ġstoked": 49145, + "Ġstol": 43553, + "Ġstole": 16326, + "Ġstolen": 15900, + "Ġstom": 9036, + "Ġstomach": 9665, + "Ġstone": 7581, + "Ġstones": 14083, + "Ġstood": 9371, + "Ġstool": 35086, + "Ġstop": 1590, + "Ġstopped": 5936, + "Ġstopping": 12767, + "Ġstops": 10094, + "Ġstor": 5967, + "Ġstora": 43323, + "Ġstorage": 6725, + "Ġstore": 3531, + "Ġstored": 12187, + "Ġstores": 9512, + "Ġstories": 3676, + "Ġstoring": 26085, + "Ġstorm": 7679, + "Ġstorms": 23288, + "Ġstory": 1657, + "Ġstoryline": 30828, + "Ġstoryt": 17541, + "Ġstorytelling": 21479, + "Ġstos": 43581, + "Ġstove": 19263, + "Ġstr": 1056, + "Ġstra": 2148, + "Ġstraight": 2997, + "Ġstraighten": 32777, + "Ġstraightforward": 15325, + "Ġstrain": 14249, + "Ġstrains": 39110, + "Ġstrand": 14955, + "Ġstranded": 44394, + "Ġstrands": 29664, + "Ġstrang": 24404, + "Ġstrange": 5861, + "Ġstrangely": 39851, + "Ġstranger": 18834, + "Ġstrangers": 22724, + "Ġstrap": 18359, + "Ġstraps": 26654, + "Ġstrat": 23674, + "Ġstrate": 5187, + "Ġstrateg": 5464, + "Ġstrategic": 10924, + "Ġstrategically": 38061, + "Ġstrategies": 9029, + "Ġstrategy": 5206, + "Ġstratég": 45023, + "Ġstraw": 10099, + "Ġstrawberries": 26873, + "Ġstrawberry": 20440, + "Ġstray": 36219, + "Ġstre": 2242, + "Ġstreak": 35634, + "Ġstream": 4309, + "Ġstreaming": 11791, + "Ġstreamline": 47141, + "Ġstreamlined": 48155, + "Ġstreams": 15842, + "Ġstreet": 4838, + "Ġstreets": 8481, + "Ġstrength": 3800, + "Ġstrengthen": 17045, + "Ġstrengthened": 38942, + "Ġstrengthening": 28224, + "Ġstrengths": 16986, + "Ġstress": 4244, + "Ġstressed": 14471, + "Ġstresses": 27732, + "Ġstressful": 19108, + "Ġstressing": 48233, + "Ġstret": 27678, + "Ġstretch": 5985, + "Ġstretched": 23563, + "Ġstretches": 29058, + "Ġstretching": 19632, + "Ġstretchy": 48865, + "Ġstri": 3575, + "Ġstrict": 10910, + "Ġstrictly": 20792, + "Ġstrike": 9302, + "Ġstrikes": 16750, + "Ġstriking": 18559, + "Ġstring": 6798, + "Ġstrings": 13985, + "Ġstrip": 12828, + "Ġstripe": 42957, + "Ġstripes": 27308, + "Ġstripped": 33221, + "Ġstrips": 19842, + "Ġstrive": 23829, + "Ġstriving": 36582, + "Ġstro": 8959, + "Ġstroke": 12403, + "Ġstrokes": 24493, + "Ġstroll": 42812, + "Ġstron": 45766, + "Ġstrong": 2068, + "Ġstronger": 7249, + "Ġstrongest": 16595, + "Ġstrongly": 10613, + "Ġstrony": 32406, + "Ġstruck": 13159, + "Ġstruct": 6594, + "Ġstructural": 15067, + "Ġstructure": 3877, + "Ġstructured": 18519, + "Ġstructures": 9227, + "Ġstrugg": 4312, + "Ġstruggle": 7799, + "Ġstruggled": 19023, + "Ġstruggles": 17592, + "Ġstruggling": 9314, + "Ġstrum": 47338, + "Ġstub": 20266, + "Ġstubborn": 24137, + "Ġstuck": 5541, + "Ġstud": 972, + "Ġstudent": 3107, + "Ġstudents": 1731, + "Ġstudied": 9454, + "Ġstudies": 5313, + "Ġstudio": 6811, + "Ġstudios": 24593, + "Ġstudy": 2979, + "Ġstudying": 7601, + "Ġstuff": 1507, + "Ġstuffed": 24092, + "Ġstuffing": 36046, + "Ġstuffs": 48719, + "Ġstuk": 46042, + "Ġstumble": 41302, + "Ġstumbled": 36668, + "Ġstump": 43164, + "Ġstun": 11885, + "Ġstunned": 35394, + "Ġstunning": 18550, + "Ġstunt": 33391, + "Ġstupid": 6631, + "Ġstur": 29249, + "Ġsturdy": 31506, + "Ġsty": 7952, + "Ġstyl": 23736, + "Ġstyle": 3758, + "Ġstyles": 13273, + "Ġstyling": 27944, + "Ġstylish": 30301, + "Ġstylist": 48544, + "Ġstär": 33527, + "ĠstÃ¥r": 37019, + "Ġstör": 42554, + "Ġsu": 459, + "Ġsua": 8233, + "Ġsuas": 23410, + "Ġsub": 1422, + "Ġsubconscious": 27389, + "Ġsubd": 31662, + "Ġsubdiv": 45331, + "Ġsubir": 34785, + "Ġsubject": 3983, + "Ġsubjected": 32153, + "Ġsubjective": 25972, + "Ġsubjects": 13066, + "Ġsubm": 8286, + "Ġsubmar": 23638, + "Ġsubmarine": 33995, + "Ġsubmarines": 48138, + "Ġsubmer": 36751, + "Ġsubmerged": 46985, + "Ġsubmission": 23689, + "Ġsubmissions": 40429, + "Ġsubmit": 10315, + "Ġsubmitted": 14405, + "Ġsubmitting": 31836, + "Ġsubs": 2090, + "Ġsubscri": 2325, + "Ġsubscribe": 3022, + "Ġsubscribed": 16665, + "Ġsubscriber": 26122, + "Ġsubscribers": 11092, + "Ġsubscribing": 19981, + "Ġsubscription": 17231, + "Ġsubscriptions": 44951, + "Ġsubsequ": 13924, + "Ġsubsequent": 19962, + "Ġsubsequently": 26514, + "Ġsubset": 25993, + "Ġsubsid": 20051, + "Ġsubsidi": 48296, + "Ġsubsidies": 38523, + "Ġsubsidy": 49636, + "Ġsubst": 4594, + "Ġsubstance": 12961, + "Ġsubstances": 25455, + "Ġsubstant": 11889, + "Ġsubstantial": 16726, + "Ġsubstantially": 30797, + "Ġsubstantive": 47113, + "Ġsubstit": 26441, + "Ġsubstitute": 15802, + "Ġsubstitution": 35827, + "Ġsubstrate": 27585, + "Ġsubt": 7257, + "Ġsubtit": 30706, + "Ġsubtitles": 42045, + "Ġsubtle": 13743, + "Ġsubtract": 16390, + "Ġsubur": 23519, + "Ġsuburban": 40138, + "Ġsuburbs": 34185, + "Ġsubway": 24953, + "Ġsuc": 1965, + "Ġsucc": 21578, + "Ġsucceed": 7754, + "Ġsucceeded": 20263, + "Ġsucceeding": 47912, + "Ġsucceeds": 49263, + "Ġsuccess": 2245, + "Ġsuccesses": 26101, + "Ġsuccessful": 4406, + "Ġsuccessfully": 10727, + "Ġsuccession": 36624, + "Ġsuccessive": 48043, + "Ġsuccessor": 31864, + "Ġsuced": 41928, + "Ġsuch": 1270, + "Ġsuchen": 44470, + "Ġsuck": 9967, + "Ġsucked": 26503, + "Ġsucker": 43259, + "Ġsucking": 38669, + "Ġsucks": 15846, + "Ġsuction": 40431, + "Ġsud": 3707, + "Ġsudah": 24940, + "Ġsudden": 3990, + "Ġsuddenly": 5800, + "Ġsue": 20416, + "Ġsued": 33864, + "Ġsuf": 46282, + "Ġsuff": 3889, + "Ġsuffer": 9753, + "Ġsuffered": 12770, + "Ġsuffering": 7755, + "Ġsuffers": 33776, + "Ġsufficient": 11563, + "Ġsufficiently": 31868, + "Ġsuficiente": 33958, + "Ġsug": 22802, + "Ġsugar": 5076, + "Ġsugars": 37551, + "Ġsugg": 3395, + "Ġsuggest": 3402, + "Ġsuggested": 10945, + "Ġsuggesting": 18094, + "Ġsuggestion": 16541, + "Ġsuggestions": 13396, + "Ġsuggests": 13409, + "Ġsuic": 28419, + "Ġsuicidal": 43243, + "Ġsuicide": 12308, + "Ġsuis": 7624, + "Ġsuit": 5722, + "Ġsuitable": 12873, + "Ġsuitcase": 34545, + "Ġsuite": 14205, + "Ġsuited": 24736, + "Ġsuits": 15278, + "Ġsuiv": 20751, + "Ġsuivre": 43404, + "Ġsujet": 23634, + "Ġsuk": 46432, + "Ġsuka": 39076, + "Ġsul": 17603, + "Ġsulf": 22925, + "Ġsulfur": 33831, + "Ġsulla": 33625, + "Ġsulph": 47286, + "Ġsum": 2408, + "Ġsumm": 8367, + "Ġsummar": 14611, + "Ġsummarize": 20858, + "Ġsummary": 12691, + "Ġsummation": 28811, + "Ġsummer": 4266, + "Ġsummers": 46474, + "Ġsummertime": 43785, + "Ġsummit": 21564, + "Ġsummon": 18714, + "Ġsummoned": 40791, + "Ġsums": 34499, + "Ġsun": 3295, + "Ġsund": 33047, + "Ġsunflower": 48215, + "Ġsung": 18829, + "Ġsunglasses": 28675, + "Ġsunk": 40564, + "Ġsunlight": 18379, + "Ġsunny": 20412, + "Ġsunrise": 33675, + "Ġsunscreen": 30304, + "Ġsunset": 20142, + "Ġsunshine": 25219, + "Ġsunt": 35171, + "Ġsuo": 34197, + "Ġsup": 9331, + "Ġsuper": 1687, + "Ġsuperb": 36617, + "Ġsupercom": 27839, + "Ġsupercomputer": 36708, + "Ġsuperfic": 23881, + "Ġsuperficial": 34622, + "Ġsuperhero": 19428, + "Ġsuperheroes": 45417, + "Ġsuperintendent": 38834, + "Ġsuperior": 13028, + "Ġsuperiority": 48668, + "Ġsupermarket": 25180, + "Ġsupernatural": 25678, + "Ġsuperpower": 45765, + "Ġsupers": 37906, + "Ġsuperst": 29423, + "Ġsuperstar": 38953, + "Ġsuperv": 37971, + "Ġsupervis": 34409, + "Ġsupervised": 46533, + "Ġsupervision": 32675, + "Ġsupervisor": 24610, + "Ġsupervisors": 42218, + "Ġsupp": 1003, + "Ġsupper": 44185, + "Ġsuppl": 9386, + "Ġsupplement": 15436, + "Ġsupplemental": 48604, + "Ġsupplements": 26645, + "Ġsupplied": 27625, + "Ġsupplier": 31909, + "Ġsuppliers": 29467, + "Ġsupplies": 11768, + "Ġsupply": 5847, + "Ġsupplying": 46815, + "Ġsupport": 1406, + "Ġsupported": 8104, + "Ġsupporter": 28600, + "Ġsupporters": 17683, + "Ġsupporting": 7231, + "Ġsupportive": 14435, + "Ġsupports": 9346, + "Ġsuppose": 7297, + "Ġsupposed": 3442, + "Ġsupposedly": 20581, + "Ġsuppress": 26835, + "Ġsuppressed": 42645, + "Ġsuppression": 36807, + "Ġsupre": 27283, + "Ġsuprem": 23710, + "Ġsupremacy": 35572, + "Ġsupreme": 27756, + "Ġsupuesto": 34177, + "Ġsur": 1022, + "Ġsure": 988, + "Ġsurely": 11468, + "Ġsurf": 9684, + "Ġsurface": 3753, + "Ġsurfaces": 16130, + "Ġsurfing": 34181, + "Ġsurg": 19560, + "Ġsurge": 18989, + "Ġsurgeon": 22913, + "Ġsurgeons": 42354, + "Ġsurgeries": 33455, + "Ġsurgery": 7930, + "Ġsurgical": 26646, + "Ġsurn": 39270, + "Ġsurname": 50152, + "Ġsurpass": 27650, + "Ġsurplus": 31019, + "Ġsurpr": 3083, + "Ġsurprise": 6365, + "Ġsurprised": 6100, + "Ġsurprises": 22655, + "Ġsurprising": 8830, + "Ġsurprisingly": 17600, + "Ġsurreal": 32513, + "Ġsurrend": 36862, + "Ġsurrender": 22185, + "Ġsurrendered": 48802, + "Ġsurround": 6262, + "Ġsurrounded": 13221, + "Ġsurrounding": 11498, + "Ġsurroundings": 25314, + "Ġsurrounds": 44576, + "Ġsurt": 18622, + "Ġsurtout": 19903, + "Ġsurv": 3940, + "Ġsurve": 11463, + "Ġsurveillance": 18475, + "Ġsurvey": 8984, + "Ġsurveys": 22711, + "Ġsurviv": 12324, + "Ġsurvival": 12559, + "Ġsurvive": 7867, + "Ġsurvived": 14433, + "Ġsurvives": 46231, + "Ġsurviving": 24948, + "Ġsurvivor": 25953, + "Ġsurvivors": 18369, + "Ġsus": 3291, + "Ġsuscept": 26104, + "Ġsusceptible": 31249, + "Ġsuscri": 40405, + "Ġsushi": 23022, + "Ġsusp": 6535, + "Ġsuspect": 9091, + "Ġsuspected": 26439, + "Ġsuspects": 35667, + "Ġsuspend": 42546, + "Ġsuspended": 23437, + "Ġsuspense": 47803, + "Ġsuspension": 15771, + "Ġsuspicion": 32020, + "Ġsuspicious": 17931, + "Ġsust": 5402, + "Ġsustain": 6769, + "Ġsustainability": 16360, + "Ġsustainable": 11235, + "Ġsustained": 23389, + "Ġsustaining": 49097, + "Ġsut": 43489, + "Ġsv": 17342, + "Ġsven": 48208, + "Ġsw": 1693, + "Ġswab": 49840, + "Ġswag": 42064, + "Ġswallow": 20099, + "Ġswallowed": 41769, + "Ġswamp": 31724, + "Ġswap": 18135, + "Ġswapped": 50011, + "Ġswarm": 49839, + "Ġswatch": 42362, + "Ġsway": 27555, + "Ġswe": 2484, + "Ġswear": 11902, + "Ġsweat": 11872, + "Ġsweater": 26550, + "Ġsweating": 25438, + "Ġsweats": 38712, + "Ġsweaty": 36044, + "Ġsweep": 22169, + "Ġsweeping": 33285, + "Ġsweet": 3844, + "Ġsweeter": 44323, + "Ġsweetheart": 36633, + "Ġsweetie": 40508, + "Ġsweetness": 25702, + "Ġsweets": 28680, + "Ġswell": 34251, + "Ġswelling": 33127, + "Ġswept": 31791, + "Ġswift": 29184, + "Ġswiftly": 49891, + "Ġswim": 7110, + "Ġswimming": 11989, + "Ġswims": 42357, + "Ġswing": 11173, + "Ġswinging": 29500, + "Ġswings": 32386, + "Ġswipe": 28170, + "Ġswirl": 30310, + "Ġswitch": 3679, + "Ġswitched": 16858, + "Ġswitches": 19458, + "Ġswitching": 16493, + "Ġswo": 13291, + "Ġswoje": 29489, + "ĠswojÄħ": 49194, + "Ġswollen": 37559, + "Ġsword": 10576, + "Ġswords": 26474, + "Ġsworn": 40068, + "Ġsy": 943, + "Ġsyll": 20223, + "Ġsyllable": 40151, + "Ġsyllables": 45364, + "Ġsyllabus": 48077, + "Ġsym": 6697, + "Ġsymb": 43700, + "Ġsymbol": 5986, + "Ġsymbolic": 25755, + "Ġsymbolism": 47061, + "Ġsymbols": 16944, + "Ġsymm": 14232, + "Ġsymmetric": 32330, + "Ġsymmetrical": 40360, + "Ġsymmetry": 25440, + "Ġsymp": 13240, + "Ġsympath": 22276, + "Ġsympathetic": 36032, + "Ġsympathy": 33240, + "Ġsympt": 7266, + "Ġsymptom": 29370, + "Ġsymptoms": 8332, + "Ġsyn": 5451, + "Ġsynagogue": 49169, + "Ġsync": 20271, + "Ġsynchron": 19331, + "Ġsynchronous": 44743, + "Ġsynd": 15198, + "Ġsyndrome": 19371, + "Ġsyner": 33781, + "Ġsynergy": 50163, + "Ġsynt": 23980, + "Ġsyntax": 28431, + "Ġsynth": 10657, + "Ġsynthes": 26617, + "Ġsynthesis": 30252, + "Ġsynthetic": 23420, + "Ġsyrup": 17852, + "Ġsyst": 20274, + "Ġsystem": 1185, + "Ġsystematic": 27249, + "Ġsystematically": 39531, + "Ġsystemic": 23789, + "Ġsystems": 3652, + "Ġsystème": 25142, + "Ġsytu": 28275, + "Ġsz": 7870, + "Ġszcz": 22090, + "Ġszczegól": 49624, + "Ġszer": 36160, + "Ġszy": 30526, + "Ġszyb": 36456, + "Ġsão": 8364, + "Ġsä": 15316, + "Ġsäga": 28013, + "Ġsäger": 37607, + "Ġsätt": 29503, + "ĠsÃ¥": 4719, + "ĠsÃ¥dan": 40989, + "Ġsé": 7910, + "Ġsécur": 32384, + "Ġsécurité": 37600, + "Ġsérie": 18416, + "Ġsì": 49267, + "Ġsó": 6238, + "Ġsólo": 22885, + "Ġsón": 25421, + "Ġsö": 12643, + "Ġsöy": 27543, + "Ġsöyl": 31222, + "Ġsöyle": 16928, + "Ġsöyled": 35909, + "Ġsöyleye": 35881, + "Ġsöz": 31667, + "Ġsú": 33075, + "Ġsúper": 43282, + "Ġsû": 15998, + "Ġsûr": 18143, + "Ġsü": 21218, + "Ġsür": 48014, + "ĠsÃŃ": 8600, + "Ġsı": 30201, + "Ġsık": 30046, + "Ġsır": 38572, + "ĠsÄĥ": 15446, + "ĠsÄħ": 9015, + "ĠsÅĤ": 15116, + "ĠsÅĤu": 48459, + "Ġsẽ": 17208, + "Ġsá»±": 33602, + "Ġsá»ij": 44983, + "Ġt": 256, + "Ġta": 1846, + "Ġtab": 4421, + "Ġtabii": 31430, + "Ġtable": 3199, + "Ġtables": 8020, + "Ġtablespoon": 22398, + "Ġtablespoons": 21615, + "Ġtablet": 14136, + "Ġtablets": 27622, + "Ġtabs": 20743, + "Ġtac": 25018, + "Ġtack": 9426, + "Ġtackle": 14896, + "Ġtackling": 34415, + "Ġtaco": 34101, + "Ġtacos": 34776, + "Ġtact": 9959, + "Ġtactic": 31012, + "Ġtactical": 26323, + "Ġtactics": 19454, + "Ġtactile": 47319, + "Ġtad": 29622, + "Ġtadi": 42953, + "Ġtag": 6162, + "Ġtagged": 40239, + "Ġtags": 18632, + "Ġtah": 23059, + "Ġtahu": 27294, + "Ġtahun": 34656, + "Ġtai": 20499, + "Ġtail": 6838, + "Ġtailor": 33068, + "Ġtailored": 34858, + "Ġtails": 28537, + "Ġtak": 991, + "Ġtaka": 28017, + "Ġtake": 747, + "Ġtakeaway": 30681, + "Ġtakeaways": 45584, + "Ġtaken": 2726, + "Ġtakes": 2516, + "Ġtaki": 20065, + "Ġtakich": 29607, + "Ġtakie": 15963, + "Ġtakiego": 32296, + "Ġtakiej": 38941, + "Ġtakim": 31732, + "Ġtaking": 1940, + "ĠtakÄħ": 31069, + "Ġtakże": 23306, + "Ġtal": 4023, + "Ġtale": 17172, + "Ġtalent": 8301, + "Ġtalented": 13467, + "Ġtalents": 19933, + "Ġtales": 27254, + "Ġtalk": 751, + "Ġtalked": 2825, + "Ġtalkin": 39243, + "Ġtalking": 1417, + "Ġtalks": 6686, + "Ġtall": 6764, + "Ġtaller": 22406, + "Ġtallest": 42075, + "Ġtalvez": 32320, + "Ġtam": 7677, + "Ġtama": 45342, + "Ġtamam": 18536, + "Ġtaman": 41500, + "Ġtamanho": 45645, + "Ġtamb": 3629, + "Ġtambién": 6407, + "Ġtambé": 22562, + "Ġtambém": 6274, + "Ġtame": 45774, + "Ġtamp": 21424, + "Ġtampoco": 36838, + "Ġtan": 7603, + "Ġtand": 35274, + "Ġtandem": 48120, + "Ġtane": 23233, + "Ġtang": 10266, + "Ġtangent": 27747, + "Ġtangible": 27094, + "Ġtangled": 47192, + "Ġtank": 5466, + "Ġtanks": 14022, + "Ġtant": 12095, + "Ġtanta": 40864, + "Ġtanto": 10331, + "Ġtao": 44292, + "Ġtap": 5119, + "Ġtapa": 42097, + "Ġtape": 7314, + "Ġtaped": 45673, + "Ġtaper": 36277, + "Ġtapes": 31349, + "Ġtapi": 23901, + "Ġtapped": 38693, + "Ġtapping": 21444, + "Ġtaps": 42536, + "Ġtar": 3112, + "Ġtara": 23837, + "Ġtaraf": 32536, + "Ġtard": 21057, + "Ġtarde": 27367, + "Ġtare": 49423, + "Ġtarget": 3779, + "Ġtargeted": 15045, + "Ġtargeting": 17918, + "Ġtargets": 12911, + "Ġtariffs": 39661, + "Ġtark": 44777, + "Ġtart": 22491, + "Ġtas": 8023, + "Ġtask": 5633, + "Ġtasked": 38621, + "Ġtasks": 9608, + "Ġtast": 2700, + "Ġtaste": 3939, + "Ġtasted": 25003, + "Ġtastes": 8666, + "Ġtasting": 26223, + "Ġtasty": 11535, + "Ġtat": 9600, + "Ġtatsächlich": 20796, + "Ġtatto": 12096, + "Ġtattoo": 15080, + "Ġtattoos": 28662, + "Ġtau": 17842, + "Ġtaught": 5928, + "Ġtav": 23214, + "Ġtava": 26777, + "Ġtavalla": 50132, + "Ġtax": 3366, + "Ġtaxation": 47072, + "Ġtaxes": 10041, + "Ġtaxi": 18984, + "Ġtaxpayer": 43204, + "Ġtaxpayers": 38205, + "Ġtay": 39224, + "ĠtaÅŁ": 37276, + "Ġtbsp": 25110, + "Ġte": 535, + "Ġtea": 5817, + "Ġteach": 2924, + "Ġteacher": 5027, + "Ġteachers": 6023, + "Ġteaches": 16876, + "Ġteaching": 4571, + "Ġteachings": 21037, + "Ġteam": 1469, + "Ġteamed": 47426, + "Ġteammate": 25467, + "Ġteammates": 20461, + "Ġteams": 5491, + "Ġteamwork": 30015, + "Ġtear": 12556, + "Ġtearing": 29401, + "Ġtears": 10462, + "Ġteas": 11488, + "Ġtease": 30444, + "Ġteaser": 35326, + "Ġteasing": 37720, + "Ġteaspoon": 17237, + "Ġteaspoons": 43996, + "Ġtech": 7553, + "Ġtechn": 1537, + "Ġtechnical": 6191, + "Ġtechnically": 12120, + "Ġtechnician": 38247, + "Ġtechnicians": 40885, + "Ġtechnique": 6532, + "Ġtechniques": 7512, + "Ġtechno": 36728, + "Ġtechnological": 18439, + "Ġtechnologies": 7943, + "Ġtechnology": 2899, + "Ġtecn": 20105, + "Ġtecnologia": 44905, + "ĠtecnologÃŃa": 48055, + "Ġted": 22337, + "Ġteddy": 45116, + "Ġtedious": 38284, + "Ġtee": 33863, + "Ġteen": 8921, + "Ġteenage": 26866, + "Ġteenager": 21440, + "Ġteenagers": 23618, + "Ġteens": 24849, + "Ġteeny": 48232, + "Ġteeth": 7798, + "Ġtegen": 30945, + "Ġtego": 8627, + "Ġteh": 32991, + "Ġtehd": 44812, + "Ġteil": 33200, + "Ġteilweise": 46748, + "Ġtej": 12573, + "Ġtek": 16624, + "Ġtekn": 32533, + "Ġtekrar": 45847, + "Ġtel": 15284, + "Ġtela": 29203, + "Ġtele": 4304, + "Ġtelef": 40616, + "Ġtelefon": 26812, + "Ġtelephone": 19800, + "Ġteleport": 28050, + "Ġteles": 18273, + "Ġtelescop": 37085, + "Ġtelescope": 26114, + "Ġtelescopes": 46051, + "Ġtelev": 49492, + "Ġtelevis": 40638, + "Ġtelevision": 8815, + "Ġtell": 980, + "Ġtellement": 28906, + "Ġtelling": 3585, + "Ġtells": 5112, + "Ġtem": 1383, + "Ġtema": 15854, + "Ġtemas": 40284, + "Ġtemat": 32954, + "Ġtemos": 14247, + "Ġtemp": 18274, + "Ġtemper": 3393, + "Ġtemperatura": 36903, + "Ġtemperature": 4292, + "Ġtemperatures": 12633, + "Ġtempl": 9100, + "Ġtemplate": 12379, + "Ġtemplates": 21165, + "Ġtemple": 10184, + "Ġtemples": 27431, + "Ġtempo": 8972, + "Ġtempor": 8219, + "Ġtemporada": 41983, + "Ġtemporal": 30881, + "Ġtemporarily": 23750, + "Ġtemporary": 13413, + "Ġtemps": 8827, + "Ġtempt": 13794, + "Ġtemptation": 30423, + "Ġtempted": 29941, + "Ġtempting": 37900, + "Ġtemu": 33346, + "Ġten": 2064, + "Ġtenant": 31000, + "Ġtenants": 31216, + "Ġtend": 3928, + "Ġtended": 34732, + "Ġtendencies": 45488, + "Ġtendency": 18187, + "Ġtender": 15036, + "Ġtendon": 46479, + "Ġtends": 12258, + "Ġtenemos": 9914, + "Ġtener": 11640, + "Ġteng": 10370, + "Ġtenga": 36031, + "Ġtengan": 46874, + "Ġtengo": 13989, + "Ġtenha": 28834, + "Ġtenho": 14291, + "Ġtenido": 33104, + "Ġtenim": 36012, + "Ġtenir": 30593, + "Ġtennis": 18118, + "Ġtens": 10688, + "Ġtense": 18760, + "Ġtension": 8980, + "Ġtensions": 28303, + "Ġtensor": 40863, + "Ġtent": 7054, + "Ġtentang": 43575, + "Ġtentar": 33572, + "Ġtenth": 27269, + "Ġtents": 39283, + "Ġtenure": 32256, + "ĠtenÃŃa": 23718, + "ĠtenÃŃan": 47596, + "Ġteor": 40238, + "Ġter": 1796, + "Ġteraz": 16854, + "Ġterce": 41385, + "Ġtercer": 38103, + "Ġteria": 45530, + "Ġterm": 1433, + "Ġterme": 36285, + "Ġtermin": 10761, + "Ġterminal": 14709, + "Ġterminals": 38579, + "Ġterminar": 36246, + "Ġterminology": 27575, + "Ġterms": 2115, + "Ġterr": 7245, + "Ġterra": 26298, + "Ġterrace": 47232, + "Ġterrain": 17674, + "Ġterre": 31815, + "Ġterrible": 6237, + "Ġterribly": 22903, + "Ġterrific": 20899, + "Ġterrified": 23051, + "Ġterrifying": 18106, + "Ġterrit": 8673, + "Ġterritor": 23484, + "Ġterritorial": 34888, + "Ġterritories": 25195, + "Ġterritory": 11360, + "Ġterror": 8127, + "Ġterrorism": 23917, + "Ġterrorist": 20342, + "Ġterrorists": 28330, + "Ġtert": 38726, + "Ġterug": 35020, + "Ġterus": 35977, + "Ġtes": 20018, + "Ġtest": 1500, + "Ġtestament": 35499, + "Ġteste": 49586, + "Ġtested": 8246, + "Ġtester": 36101, + "Ġtestified": 47639, + "Ġtestify": 31381, + "Ġtestim": 12600, + "Ġtestimon": 30963, + "Ġtestimony": 15634, + "Ġtesting": 4997, + "Ġtestoster": 29841, + "Ġtestosterone": 33417, + "Ġtests": 6921, + "Ġtet": 23319, + "Ġteu": 35280, + "Ġteve": 26628, + "Ġtext": 2487, + "Ġtextbook": 25591, + "Ġtextbooks": 33587, + "Ġtexted": 42553, + "Ġtextile": 42069, + "Ġtexting": 29897, + "Ġtexto": 35503, + "Ġtexts": 15765, + "Ġtexture": 8091, + "Ġtextured": 48656, + "Ġtextures": 24501, + "Ġteż": 9516, + "ĠteÅŁekkür": 44002, + "Ġth": 258, + "Ġtha": 43614, + "Ġthan": 813, + "Ġthank": 1309, + "Ġthanked": 48137, + "Ġthankful": 13611, + "Ġthankfully": 27352, + "Ġthanking": 30830, + "Ġthanks": 3231, + "Ġthat": 300, + "Ġthats": 16777, + "ĠthatÃŃs": 46493, + "Ġthe": 264, + "ĠtheCUBE": 40906, + "Ġtheat": 30982, + "Ġtheater": 10612, + "Ġtheaters": 28887, + "Ġtheatre": 18711, + "Ġtheatrical": 42806, + "Ġthee": 24800, + "Ġtheft": 28508, + "Ġtheir": 641, + "Ġtheirs": 22760, + "Ġthem": 552, + "Ġtheme": 6314, + "Ġthemed": 33920, + "Ġthemes": 13544, + "Ġthemselves": 2969, + "Ġthen": 550, + "Ġtheo": 40594, + "Ġtheological": 40725, + "Ġtheology": 27927, + "Ġtheor": 27423, + "Ġtheore": 10299, + "Ġtheorem": 20904, + "Ġtheoret": 14308, + "Ġtheoretical": 20864, + "Ġtheoretically": 29400, + "Ġtheories": 13667, + "Ġtheory": 5261, + "Ġtherap": 6793, + "Ġtherapeut": 26126, + "Ġtherapeutic": 30395, + "Ġtherapies": 32814, + "Ġtherapist": 19830, + "Ġtherapists": 36509, + "Ġtherapy": 9492, + "Ġthere": 456, + "Ġthereafter": 38729, + "Ġthereby": 28281, + "Ġtherefore": 4412, + "Ġtheres": 42551, + "Ġtherm": 8810, + "Ġthermal": 15070, + "Ġthermometer": 42539, + "Ġthese": 613, + "Ġthesis": 22288, + "Ġtheta": 9725, + "Ġthey": 436, + "Ġthi": 30994, + "Ġthick": 5060, + "Ġthicken": 33821, + "Ġthicker": 18142, + "Ġthickness": 14855, + "Ġthief": 23176, + "Ġthieves": 37057, + "Ġthigh": 27871, + "Ġthighs": 29207, + "Ġthin": 5862, + "Ġthing": 551, + "Ġthings": 721, + "Ġthink": 519, + "Ġthinkers": 37895, + "Ġthinking": 1953, + "Ġthinks": 7309, + "Ġthinly": 47337, + "Ġthinner": 21905, + "Ġthird": 2636, + "Ġthirds": 34552, + "Ġthirst": 34846, + "Ġthirsty": 28115, + "Ġthirteen": 31534, + "Ġthirty": 11790, + "Ġthis": 341, + "Ġtho": 27899, + "Ġthor": 11588, + "Ġthorough": 12934, + "Ġthoroughly": 17987, + "Ġthose": 729, + "Ġthou": 24757, + "Ġthough": 1673, + "Ġthought": 1194, + "Ġthoughtful": 21566, + "Ġthoughts": 4598, + "Ġthous": 3118, + "Ġthousand": 4714, + "Ġthousands": 5383, + "Ġthr": 739, + "Ġthread": 7207, + "Ġthreaded": 47493, + "Ġthreads": 19314, + "Ġthreat": 4734, + "Ġthreaten": 29864, + "Ġthreatened": 18268, + "Ġthreatening": 20768, + "Ġthreatens": 47511, + "Ġthreats": 14909, + "Ġthree": 1045, + "Ġthreshold": 14678, + "Ġthrew": 11918, + "Ġthri": 23949, + "Ġthrill": 32935, + "Ġthrilled": 18744, + "Ġthriller": 43009, + "Ġthrilling": 39347, + "Ġthrive": 21233, + "Ġthriving": 30643, + "Ġthroat": 12394, + "Ġthrone": 17678, + "Ġthrottle": 24235, + "Ġthrough": 807, + "Ġthroughout": 3710, + "Ġthroughput": 44629, + "Ġthrow": 3507, + "Ġthrowing": 10238, + "Ġthrown": 11732, + "Ġthrows": 19251, + "Ġthrust": 24030, + "Ġthu": 40295, + "Ġthumb": 9298, + "Ġthumbna": 21313, + "Ġthumbnail": 26746, + "Ġthumbnails": 46987, + "Ġthumbs": 8838, + "Ġthunder": 19898, + "Ġthunderstorm": 39618, + "Ġthus": 8807, + "Ġthy": 15196, + "Ġthyroid": 32332, + "Ġthé": 30448, + "Ġthì": 17510, + "Ġthôi": 34772, + "ĠthÃłnh": 39953, + "Ġthấy": 27793, + "Ġthế": 27100, + "Ġthứ": 47269, + "Ġthá»±c": 50183, + "Ġthá»ĥ": 24491, + "Ġthá»Ŀi": 49506, + "Ġti": 8757, + "Ġtick": 5204, + "Ġticket": 10550, + "Ġtickets": 12628, + "Ġticking": 33999, + "Ġticks": 42475, + "Ġtid": 9422, + "Ġtidak": 18943, + "Ġtide": 24662, + "Ġtiden": 44302, + "Ġtidy": 34646, + "Ġtie": 7582, + "Ġtied": 9601, + "Ġtief": 45100, + "Ġtiempo": 11772, + "Ġtien": 4902, + "Ġtiene": 7066, + "Ġtienen": 12536, + "Ġtienes": 20716, + "Ġtier": 12362, + "Ġtierra": 33416, + "Ġtiers": 40563, + "Ġties": 14039, + "Ġtiet": 37709, + "Ġtiger": 21432, + "Ġtigers": 47949, + "Ġtight": 4524, + "Ġtighten": 17041, + "Ġtightened": 49673, + "Ġtightening": 42217, + "Ġtighter": 30443, + "Ġtightly": 21952, + "Ġtijd": 26966, + "Ġtik": 44994, + "Ġtil": 8440, + "Ġtilde": 45046, + "Ġtile": 20590, + "Ġtiles": 21982, + "Ġtill": 4288, + "Ġtills": 46729, + "Ġtilt": 18446, + "Ġtilted": 43229, + "Ġtim": 524, + "Ġtimber": 34671, + "Ġtime": 565, + "Ġtimed": 44696, + "Ġtimeframe": 34830, + "Ġtimeless": 41200, + "Ġtimeline": 12933, + "Ġtimelines": 45886, + "Ġtimely": 25150, + "Ġtimer": 19247, + "Ġtimes": 1413, + "Ġtimest": 49108, + "Ġtiming": 10822, + "Ġtin": 15935, + "Ġtinc": 43240, + "Ġting": 17922, + "Ġtinha": 13574, + "Ġtinham": 47257, + "Ġtint": 28738, + "Ġtiny": 5870, + "Ġtio": 44735, + "Ġtip": 4125, + "Ġtipo": 9746, + "Ġtipos": 37105, + "Ġtipping": 41625, + "Ġtips": 6082, + "Ġtir": 13807, + "Ġtirar": 29239, + "Ġtire": 11756, + "Ġtired": 5868, + "Ġtires": 13885, + "Ġtiring": 35182, + "Ġtiro": 44188, + "Ġtiss": 10080, + "Ġtissue": 12404, + "Ġtissues": 27353, + "Ġtit": 3459, + "Ġtitanium": 35289, + "Ġtitle": 4876, + "Ġtitled": 19841, + "Ġtitles": 12992, + "Ġtitre": 44161, + "Ġtitt": 37419, + "Ġtive": 39242, + "Ġtiver": 31417, + "Ġtiế": 34923, + "Ġtiếp": 48667, + "Ġto": 281, + "Ġtoast": 15354, + "Ġtoasted": 48951, + "Ġtob": 20676, + "Ġtobacco": 22994, + "Ġtoc": 42565, + "Ġtoca": 43514, + "Ġtocar": 35631, + "Ġtoch": 22587, + "Ġtod": 4352, + "Ġtoda": 11687, + "Ġtodas": 10906, + "ĠtodavÃŃa": 28388, + "Ġtoday": 965, + "Ġtodd": 33268, + "Ġtoddler": 44348, + "Ġtodo": 5149, + "Ġtodos": 6321, + "Ġtoe": 13976, + "Ġtoen": 29911, + "Ġtoes": 14681, + "Ġtofu": 21419, + "Ġtoget": 1213, + "Ġtogether": 1214, + "Ġtogg": 26911, + "Ġtoggle": 31225, + "Ġtoi": 15648, + "Ġtoil": 9499, + "Ġtoilet": 11137, + "Ġtoilets": 37691, + "Ġtoim": 35590, + "Ġtok": 19164, + "Ġtoken": 14862, + "Ġtokens": 22667, + "Ġtold": 1907, + "Ġtoler": 11125, + "Ġtolerance": 23368, + "Ġtolerant": 45525, + "Ġtolerate": 25773, + "Ġtoll": 16629, + "Ġtom": 2916, + "Ġtoma": 39728, + "Ġtomar": 22048, + "Ġtomato": 9288, + "Ġtomatoes": 15135, + "Ġtomb": 18712, + "Ġtomorrow": 4153, + "Ġton": 2952, + "Ġtone": 8027, + "Ġtoner": 40403, + "Ġtones": 19995, + "Ġtong": 9124, + "Ġtongue": 10601, + "Ġtongues": 37490, + "Ġtonight": 4440, + "Ġtonnes": 41402, + "Ġtons": 9131, + "Ġtoo": 886, + "Ġtook": 1890, + "Ġtool": 2290, + "Ġtoolbar": 47715, + "Ġtoolbox": 44593, + "Ġtooling": 46593, + "Ġtoolkit": 40167, + "Ġtools": 3873, + "Ġtooth": 11680, + "Ġtoothbrush": 37568, + "Ġtoothp": 27003, + "Ġtoothpaste": 39956, + "Ġtop": 1192, + "Ġtopic": 4829, + "Ġtopics": 8378, + "Ġtopl": 41017, + "Ġtopp": 48433, + "Ġtopped": 38781, + "Ġtopping": 36676, + "Ġtoppings": 43052, + "Ġtops": 22836, + "Ġtor": 3930, + "Ġtorch": 27822, + "Ġtore": 37341, + "Ġtorment": 36662, + "Ġtorn": 10885, + "Ġtornado": 27935, + "Ġtornar": 41283, + "Ġtorpedo": 46764, + "Ġtorque": 16437, + "Ġtorso": 34917, + "Ġtort": 10806, + "Ġtortilla": 48857, + "Ġtorto": 50159, + "Ġtorture": 20711, + "Ġtortured": 36166, + "Ġtoss": 14432, + "Ġtossed": 42768, + "Ġtot": 1993, + "Ġtota": 40066, + "Ġtotal": 3217, + "Ġtotalement": 45203, + "Ġtotally": 3879, + "Ġtotalmente": 30865, + "Ġtote": 49019, + "Ġtots": 31661, + "Ġtou": 10095, + "Ġtouch": 2557, + "Ġtouchdown": 34459, + "Ġtouched": 9828, + "Ġtouches": 17431, + "Ġtouching": 11175, + "Ġtouchscreen": 46775, + "Ġtough": 4930, + "Ġtougher": 30298, + "Ġtoughest": 35037, + "Ġtoujours": 11936, + "Ġtour": 3512, + "Ġtouring": 32487, + "Ġtourism": 21832, + "Ġtourist": 19806, + "Ġtourists": 20273, + "Ġtournament": 13713, + "Ġtournaments": 32004, + "Ġtours": 22911, + "Ġtous": 8317, + "Ġtout": 3486, + "Ġtoute": 14953, + "Ġtoutes": 14437, + "Ġtow": 10966, + "Ġtoward": 7361, + "Ġtowards": 3030, + "Ġtowel": 15755, + "Ġtowels": 32819, + "Ġtower": 10567, + "Ġtowers": 25045, + "Ġtown": 3954, + "Ġtowns": 18104, + "Ġtox": 10357, + "Ġtoxic": 12786, + "Ġtoxicity": 45866, + "Ġtoxins": 36104, + "Ġtoy": 12058, + "Ġtoys": 13753, + "Ġtr": 504, + "Ġtra": 944, + "Ġtrabaj": 9618, + "Ġtrabajando": 40473, + "Ġtrabajar": 30793, + "Ġtrabajo": 18099, + "Ġtrabal": 12067, + "Ġtrabalh": 48180, + "Ġtrabalhar": 35531, + "Ġtrabalho": 20834, + "Ġtrace": 13508, + "Ġtraced": 38141, + "Ġtraces": 26076, + "Ġtracing": 25262, + "Ġtrack": 2837, + "Ġtracked": 31703, + "Ġtracker": 37516, + "Ġtracking": 11603, + "Ġtracks": 10218, + "Ġtract": 24207, + "Ġtraction": 23558, + "Ġtractor": 31857, + "Ġtrad": 2479, + "Ġtrade": 4923, + "Ġtraded": 27157, + "Ġtrademark": 31361, + "Ġtrader": 31961, + "Ġtraders": 26014, + "Ġtrades": 21287, + "Ġtradicional": 47956, + "Ġtrading": 9529, + "Ġtradition": 6994, + "Ġtraditional": 5164, + "Ġtraditionally": 19067, + "Ġtraditions": 15643, + "Ġtraff": 21073, + "Ġtraffic": 6419, + "Ġtrafficking": 25843, + "Ġtrag": 38282, + "Ġtraged": 16019, + "Ġtragedy": 18563, + "Ġtragen": 44737, + "Ġtragic": 20385, + "Ġtrail": 9924, + "Ġtrailer": 11724, + "Ġtrailers": 37698, + "Ġtrails": 23024, + "Ġtrain": 3847, + "Ġtrained": 8895, + "Ġtrainee": 40350, + "Ġtrainees": 41316, + "Ġtrainer": 21110, + "Ġtrainers": 35393, + "Ġtraining": 3097, + "Ġtrainings": 33856, + "Ġtrains": 16329, + "Ġtrait": 22538, + "Ġtraitor": 39819, + "Ġtraits": 19526, + "Ġtraject": 18257, + "Ġtrajectory": 21512, + "Ġtram": 25749, + "Ġtramp": 38605, + "Ġtran": 14404, + "Ġtranqu": 17640, + "Ġtranquil": 35337, + "Ġtrans": 1145, + "Ġtransact": 46688, + "Ġtransaction": 14425, + "Ġtransactions": 16856, + "Ġtransc": 43800, + "Ġtranscend": 28535, + "Ġtranscript": 24444, + "Ġtranscription": 35288, + "Ġtransf": 22666, + "Ġtransfer": 5003, + "Ġtransferred": 15809, + "Ġtransferring": 31437, + "Ġtransfers": 29137, + "Ġtransform": 4088, + "Ġtransformation": 9887, + "Ġtransformations": 34852, + "Ġtransformative": 36070, + "Ġtransformed": 16894, + "Ġtransformer": 31782, + "Ġtransforming": 27210, + "Ġtransforms": 35592, + "Ġtransgender": 27470, + "Ġtransient": 41998, + "Ġtransistor": 34750, + "Ġtransit": 17976, + "Ġtransition": 6034, + "Ġtransitional": 46452, + "Ġtransitioned": 47346, + "Ġtransitioning": 33777, + "Ġtransitions": 23767, + "Ġtransl": 5105, + "Ġtranslate": 13799, + "Ġtranslated": 16805, + "Ġtranslates": 28468, + "Ġtranslating": 35030, + "Ġtranslation": 12853, + "Ġtranslations": 37578, + "Ġtranslator": 35223, + "Ġtransluc": 45266, + "Ġtranslucent": 48236, + "Ġtransm": 7715, + "Ġtransmission": 11574, + "Ġtransmit": 17831, + "Ġtransmitted": 25355, + "Ġtransmitter": 40121, + "Ġtransp": 7132, + "Ġtransparen": 16165, + "Ġtransparency": 17131, + "Ġtransparent": 12737, + "Ġtransplant": 20662, + "Ġtransport": 5495, + "Ġtransportation": 11328, + "Ġtransported": 29373, + "Ġtransporting": 49302, + "Ġtranspose": 25167, + "Ġtrap": 11487, + "Ġtrapped": 14994, + "Ġtraps": 24173, + "Ġtras": 22507, + "Ġtrash": 11321, + "Ġtrat": 21507, + "Ġtrata": 31920, + "Ġtratar": 42549, + "Ġtraum": 16790, + "Ġtrauma": 11407, + "Ġtraumat": 35099, + "Ġtraumatic": 26456, + "Ġtrav": 11783, + "Ġtrava": 16020, + "Ġtravail": 18047, + "Ġtravaill": 38222, + "Ġtravaille": 41072, + "Ġtravailler": 30968, + "Ġtrave": 13938, + "Ġtravel": 3147, + "Ġtraveled": 16147, + "Ġtraveler": 46138, + "Ġtravelers": 35283, + "Ġtraveling": 9712, + "Ġtravelled": 31844, + "Ġtravelling": 20515, + "Ġtravels": 19863, + "Ġtravers": 23149, + "Ġtraverse": 45674, + "Ġtravés": 24463, + "Ġtray": 16027, + "Ġtrays": 47496, + "Ġtraz": 37481, + "Ġtrazer": 44776, + "Ġtre": 2192, + "Ġtread": 28286, + "Ġtreadmill": 46374, + "Ġtreasure": 12985, + "Ġtreasures": 31548, + "Ġtreasury": 47213, + "Ġtreat": 2387, + "Ġtreated": 8668, + "Ġtreaties": 48552, + "Ġtreating": 15083, + "Ġtreatment": 5032, + "Ġtreatments": 15795, + "Ġtreats": 19566, + "Ġtreaty": 24772, + "Ġtreball": 37999, + "Ġtreble": 43715, + "Ġtree": 4230, + "Ġtrees": 5852, + "Ġtreffen": 37620, + "Ġtrek": 33646, + "Ġtrem": 7813, + "Ġtremb": 37708, + "Ġtrembling": 47354, + "Ġtremend": 8706, + "Ġtremendous": 10048, + "Ġtremendously": 27985, + "Ġtren": 23136, + "Ġtrench": 39052, + "Ġtrenches": 48245, + "Ġtrend": 6028, + "Ġtrending": 28692, + "Ġtrends": 13892, + "Ġtrendy": 38596, + "Ġtres": 15890, + "Ġtresp": 46347, + "Ġtri": 1376, + "Ġtrial": 7308, + "Ġtrials": 12450, + "Ġtriang": 19335, + "Ġtriangle": 13369, + "Ġtriangles": 29896, + "Ġtriangular": 38190, + "Ġtrib": 15039, + "Ġtribal": 20958, + "Ġtribe": 17625, + "Ġtribes": 19035, + "Ġtribute": 24722, + "Ġtrick": 4282, + "Ġtricked": 39345, + "Ġtricks": 11733, + "Ġtricky": 12414, + "Ġtried": 3031, + "Ġtries": 9898, + "Ġtrif": 36956, + "Ġtrig": 35386, + "Ġtrigger": 7875, + "Ġtriggered": 21710, + "Ġtriggering": 40406, + "Ġtriggers": 22827, + "Ġtril": 26120, + "Ġtrillion": 18723, + "Ġtrilogy": 34030, + "Ġtrim": 10445, + "Ġtrimmed": 44563, + "Ġtrimming": 47212, + "Ġtrio": 37274, + "Ġtrip": 4931, + "Ġtriple": 15508, + "Ġtripod": 28020, + "Ġtrips": 16051, + "Ġtriste": 33526, + "Ġtriumph": 29156, + "Ġtrivia": 48770, + "Ġtrivial": 26703, + "Ġtro": 4495, + "ĠtrochÄĻ": 24926, + "Ġtrois": 19758, + "Ġtroisième": 47582, + "Ġtroll": 20680, + "Ġtrolls": 47749, + "Ġtrong": 18826, + "Ġtroop": 46400, + "Ġtroops": 11522, + "Ġtrop": 9006, + "Ġtroph": 45583, + "Ġtrophy": 28639, + "Ġtropical": 22857, + "Ġtror": 22109, + "Ġtros": 45692, + "Ġtrotzdem": 28325, + "Ġtrou": 3455, + "Ġtrouble": 5253, + "Ġtroubled": 29402, + "Ġtroubles": 15379, + "Ġtroublesome": 46838, + "Ġtroubling": 38080, + "Ġtrous": 34156, + "Ġtrousers": 41463, + "Ġtrout": 43978, + "Ġtrouve": 19359, + "Ġtrouver": 23546, + "Ġtrouvé": 37742, + "Ġtrov": 35449, + "Ġtruc": 14805, + "Ġtruck": 5898, + "Ġtrucks": 16156, + "Ġtrucs": 33505, + "Ġtrud": 32007, + "Ġtrue": 2074, + "Ġtruly": 4908, + "Ġtrump": 21779, + "Ġtrumpet": 35160, + "Ġtrunk": 19849, + "Ġtrust": 3361, + "Ġtrusted": 16034, + "Ġtrustees": 43234, + "Ġtrusting": 28235, + "Ġtrusts": 45358, + "Ġtrustworthy": 39714, + "Ġtruth": 3494, + "Ġtruthful": 44669, + "Ġtruths": 30079, + "Ġtry": 853, + "Ġtryin": 47452, + "Ġtrying": 1382, + "Ġtryna": 49597, + "Ġtrze": 22266, + "Ġtrzeba": 25860, + "Ġtrzy": 34573, + "Ġtrás": 46189, + "Ġträ": 33367, + "Ġtrès": 5732, + "Ġtrên": 33187, + "Ġtrês": 20779, + "ĠtrÆ°á»Ľc": 44860, + "Ġts": 35492, + "Ġtsp": 21438, + "Ġtsun": 34550, + "Ġtsunami": 39032, + "Ġtteokbokki": 47025, + "Ġtu": 2604, + "Ġtua": 33578, + "Ġtub": 10809, + "Ġtube": 9917, + "Ġtuber": 39847, + "Ġtubes": 21458, + "Ġtubing": 43349, + "Ġtuck": 18457, + "Ġtucked": 36089, + "Ġtud": 32602, + "Ġtudo": 9379, + "Ġtug": 33543, + "Ġtuh": 26849, + "Ġtuition": 23925, + "Ġtul": 30210, + "Ġtule": 27954, + "Ġtulee": 40038, + "Ġtum": 13102, + "Ġtumb": 42994, + "Ġtummy": 36974, + "Ġtumor": 22512, + "Ġtumors": 38466, + "Ġtun": 4267, + "Ġtuna": 26670, + "Ġtune": 10864, + "Ġtuned": 10870, + "Ġtunes": 38498, + "Ġtung": 41880, + "Ġtuning": 15164, + "Ġtunnel": 13186, + "Ġtunnels": 30804, + "Ġtuo": 45352, + "Ġtur": 3243, + "Ġturb": 18252, + "Ġturbine": 27536, + "Ġturbines": 44947, + "Ġturbo": 20902, + "Ġturbul": 27462, + "Ġturbulence": 48612, + "Ġturbulent": 41697, + "Ġturf": 42756, + "Ġturkey": 21551, + "Ġturmeric": 36774, + "Ġturmoil": 44554, + "Ġturn": 1261, + "Ġturnaround": 46114, + "Ġturned": 3574, + "Ġturning": 6246, + "Ġturnout": 42497, + "Ġturnover": 37137, + "Ġturns": 4523, + "Ġturret": 34544, + "Ġturtle": 22866, + "Ġturtles": 32422, + "Ġtus": 20647, + "Ġtussen": 50119, + "Ġtut": 3672, + "Ġtutaj": 12749, + "Ġtutor": 35613, + "Ġtutorial": 7073, + "Ġtutorials": 17616, + "Ġtutoring": 44410, + "Ġtutte": 38632, + "Ġtutti": 19822, + "Ġtutto": 23048, + "Ġtuv": 38177, + "Ġtuvo": 43718, + "Ġtv": 16364, + "ĠtvÃ¥": 34600, + "Ġtw": 683, + "Ġtwe": 6986, + "Ġtweak": 29879, + "Ġtweaks": 46664, + "Ġtwee": 30660, + "Ġtweet": 15258, + "Ġtweeted": 25646, + "Ġtweeting": 40090, + "Ġtweets": 25671, + "Ġtwelve": 14390, + "Ġtwent": 34041, + "Ġtwenties": 49398, + "Ġtwenty": 7699, + "Ġtwice": 6091, + "Ġtwin": 18397, + "Ġtwins": 22555, + "Ġtwist": 8203, + "Ġtwisted": 23057, + "Ġtwisting": 34491, + "Ġtwists": 35290, + "Ġtwitch": 34167, + "Ġtwitter": 21439, + "Ġtwo": 732, + "Ġtwor": 46288, + "Ġty": 1104, + "Ġtych": 15180, + "Ġtycker": 31053, + "Ġtying": 32405, + "Ġtyl": 13103, + "Ġtyle": 39293, + "Ġtylko": 13219, + "Ġtym": 8107, + "Ġtyp": 2125, + "Ġtype": 2010, + "Ġtyped": 33941, + "Ġtypes": 3467, + "Ġtypical": 7476, + "Ġtypically": 5850, + "Ġtyping": 18444, + "Ġtyr": 41108, + "Ġtyre": 44087, + "Ġtyres": 42564, + "Ġtys": 38156, + "Ġtyö": 43448, + "Ġtá": 7737, + "Ġtão": 18012, + "Ġtä": 14619, + "Ġtähän": 49580, + "Ġtäll": 37728, + "Ġtämä": 29962, + "Ġtän": 19790, + "Ġtänker": 43431, + "Ġtässä": 29934, + "Ġtät": 37039, + "Ġtätä": 50187, + "Ġtää": 38350, + "Ġté": 19809, + "Ġtéc": 25564, + "Ġtécnica": 45411, + "Ġtélé": 24254, + "Ġtéléphone": 47159, + "Ġtér": 39324, + "Ġtérmin": 45198, + "Ġtêm": 24277, + "Ġtête": 24661, + "Ġtô": 20683, + "Ġtôi": 22336, + "Ġtö": 37064, + "Ġtú": 15056, + "Ġtür": 39219, + "ĠtÃŃtulo": 43399, + "ĠtÄħ": 32294, + "ĠtÄĻ": 32489, + "Ġtại": 37773, + "Ġtừ": 26834, + "ĠtỼi": 47679, + "Ġu": 344, + "Ġub": 26709, + "Ġubiqu": 43868, + "Ġucz": 35403, + "Ġud": 11727, + "Ġuda": 44544, + "Ġudah": 25231, + "Ġug": 10743, + "Ġugh": 38560, + "Ġugly": 12246, + "Ġuh": 2232, + "Ġuhh": 29256, + "Ġuhhh": 38594, + "Ġuhm": 35007, + "Ġuit": 12528, + "Ġuk": 26769, + "Ġul": 20352, + "Ġult": 3725, + "Ġultimate": 9705, + "Ġultimately": 6284, + "Ġultra": 14808, + "Ġultras": 37072, + "Ġultrasound": 40895, + "Ġum": 1105, + "Ġuma": 2772, + "Ġumas": 46010, + "Ġumbre": 20158, + "Ġumbrella": 21925, + "Ġumm": 28397, + "Ġun": 517, + "Ġuna": 2002, + "Ġunable": 11299, + "Ġunacceptable": 31812, + "Ġunanim": 29710, + "Ġunanimously": 48733, + "Ġunas": 25405, + "Ġunatt": 47316, + "Ġunav": 36541, + "Ġunaware": 32065, + "Ġunbedingt": 41211, + "Ġunbel": 46063, + "Ġunbelievable": 16605, + "Ġunbelievably": 43593, + "Ġunbox": 20242, + "Ġunboxing": 26266, + "Ġunc": 6219, + "Ġuncertain": 11308, + "Ġuncertainty": 15697, + "Ġunch": 33686, + "Ġunchanged": 44553, + "Ġuncheck": 46672, + "Ġuncle": 9153, + "Ġunclear": 25636, + "Ġuncles": 47662, + "Ġuncom": 8585, + "Ġuncomfortable": 10532, + "Ġuncommon": 29289, + "Ġuncon": 35847, + "Ġuncond": 34959, + "Ġunconditional": 47916, + "Ġunconscious": 18900, + "Ġuncont": 36019, + "Ġuncover": 21694, + "Ġuncovered": 37729, + "Ġund": 674, + "Ġunde": 40981, + "Ġunder": 833, + "Ġundercover": 48099, + "Ġunderest": 24612, + "Ġunderestimate": 35826, + "Ġundergo": 26426, + "Ġundergoing": 40033, + "Ġundergrad": 14295, + "Ġundergraduate": 19113, + "Ġunderground": 14977, + "Ġunderlying": 14217, + "Ġunderm": 24188, + "Ġundermine": 39257, + "Ġunderneath": 7223, + "Ġunders": 16692, + "Ġunderscore": 37556, + "Ġunderside": 49511, + "Ġunderstand": 1223, + "Ġunderstandable": 25648, + "Ġunderstanding": 3701, + "Ġunderstands": 15146, + "Ġunderstood": 7320, + "Ġundert": 15564, + "Ġundertake": 37010, + "Ġundertaken": 40313, + "Ġundertaking": 39250, + "Ġunderwater": 20967, + "Ġunderway": 27534, + "Ġunderwear": 24941, + "Ġunderworld": 49607, + "Ġundes": 45667, + "Ġundo": 23779, + "Ġundocumented": 40472, + "Ġundoubtedly": 35211, + "Ġune": 2251, + "Ġuneasy": 48589, + "Ġunemploy": 14015, + "Ġunemployed": 34411, + "Ġunemployment": 17438, + "Ġuneven": 34022, + "Ġunex": 11572, + "Ġunexpected": 13106, + "Ġunexpectedly": 40452, + "Ġunf": 3971, + "Ġunfair": 17019, + "Ġunfamiliar": 29415, + "Ġunfinished": 41037, + "Ġunfold": 17980, + "Ġunfolding": 44586, + "Ġunfor": 31411, + "Ġunforgettable": 46194, + "Ġunfortunate": 17843, + "Ġunfortunately": 7015, + "Ġung": 29038, + "Ġungef": 31831, + "Ġungefähr": 41285, + "Ġunglaub": 49087, + "Ġunhappy": 22172, + "Ġunhealthy": 29147, + "Ġuni": 36435, + "Ġunicorn": 28122, + "Ġunified": 26787, + "Ġuniform": 9452, + "Ġuniformly": 48806, + "Ġuniforms": 37235, + "Ġunin": 43456, + "Ġunint": 29466, + "Ġunintended": 49902, + "Ġunintention": 45514, + "Ġuninter": 49234, + "Ġunion": 11671, + "Ġunions": 24914, + "Ġuniqu": 20763, + "Ġunique": 3845, + "Ġuniquely": 31474, + "Ġuniqueness": 48294, + "Ġunit": 4985, + "Ġunite": 29320, + "Ġunited": 18883, + "Ġunits": 6815, + "Ġunity": 18205, + "Ġunivers": 5950, + "Ġuniversal": 11455, + "Ġuniversally": 43995, + "Ġuniverse": 6445, + "Ġuniverses": 50168, + "Ġuniversities": 11779, + "Ġuniversity": 5454, + "Ġuniverso": 42332, + "Ġunjust": 37046, + "Ġunknown": 9841, + "Ġunknowns": 46048, + "Ġunl": 32118, + "Ġunle": 25272, + "Ġunleash": 49814, + "Ġunless": 5969, + "Ġunlike": 8343, + "Ġunlikely": 17518, + "Ġunlimited": 21950, + "Ġunload": 32165, + "Ġunlock": 11634, + "Ġunlocked": 30180, + "Ġunlocking": 49620, + "Ġunlucky": 38838, + "Ġunm": 19334, + "Ġunmute": 41445, + "Ġunnatural": 43470, + "Ġunnecess": 16799, + "Ġunnecessary": 19350, + "Ġunnie": 49665, + "Ġuno": 8526, + "Ġunos": 17780, + "Ġunp": 20994, + "Ġunpack": 26699, + "Ġunpl": 32816, + "Ġunpleasant": 29128, + "Ġunplug": 39456, + "Ġunpre": 19237, + "Ġunprecedented": 21555, + "Ġunpredict": 28341, + "Ġunpredictable": 31160, + "Ġunquote": 37557, + "Ġunravel": 40507, + "Ġunre": 20584, + "Ġunreal": 25754, + "Ġunrealistic": 42867, + "Ġunreasonable": 41730, + "Ġunrelated": 38967, + "Ġunrest": 35103, + "Ġuns": 2693, + "Ġunsafe": 35948, + "Ġunscrew": 42579, + "Ġunseen": 40608, + "Ġunser": 12977, + "Ġunsere": 14339, + "Ġunserem": 26792, + "Ġunseren": 25305, + "Ġunserer": 20965, + "Ġunsett": 43964, + "Ġunst": 18799, + "Ġunstable": 23742, + "Ġunstoppable": 48261, + "Ġunsuccess": 40501, + "Ġunsuccessful": 46258, + "Ġunsure": 32486, + "Ġunt": 1701, + "Ġunten": 25693, + "Ġunter": 8662, + "Ġunters": 20983, + "Ġunterschied": 30058, + "Ġunterstüt": 30007, + "Ġunterstützen": 43081, + "Ġunterwegs": 36258, + "Ġuntil": 1826, + "Ġunto": 16521, + "Ġuntuk": 12711, + "Ġunus": 10054, + "Ġunused": 44383, + "Ġunusual": 10901, + "Ġunut": 37997, + "Ġunve": 31009, + "Ġunveiled": 47430, + "Ġunw": 14853, + "Ġunwanted": 33745, + "Ġunwilling": 38246, + "Ġup": 493, + "Ġupbeat": 23593, + "Ġupbringing": 47268, + "Ġupcoming": 11500, + "Ġupd": 3460, + "Ġupdate": 5623, + "Ġupdated": 10588, + "Ġupdates": 9205, + "Ġupdating": 25113, + "Ġupfront": 30264, + "Ġupgrad": 17789, + "Ġupgrade": 11484, + "Ġupgraded": 24133, + "Ġupgrades": 24868, + "Ġupgrading": 36249, + "Ġuphill": 39132, + "Ġuphold": 34451, + "Ġuplift": 45407, + "Ġupload": 6580, + "Ġuploaded": 17135, + "Ġuploading": 27301, + "Ġuploads": 48611, + "Ġupon": 3564, + "Ġupp": 11775, + "Ġupper": 6597, + "Ġupright": 27405, + "Ġuprising": 49144, + "Ġups": 15497, + "Ġupset": 8340, + "Ġupsetting": 44109, + "Ġupside": 14119, + "Ġupstairs": 16462, + "Ġupstream": 33915, + "Ġupward": 23452, + "Ġupwards": 22167, + "Ġur": 4038, + "Ġuranium": 36830, + "Ġurban": 9681, + "Ġurg": 40199, + "Ġurge": 19029, + "Ġurged": 44206, + "Ġurgency": 29734, + "Ġurgent": 19022, + "Ġurgently": 49390, + "Ġurging": 48489, + "Ġurine": 27638, + "Ġus": 505, + "Ġusa": 29909, + "Ġusability": 46878, + "Ġusable": 29975, + "Ġusage": 14924, + "Ġusando": 29798, + "Ġusar": 14745, + "Ġuse": 764, + "Ġused": 1143, + "Ġuseful": 4420, + "Ġuseless": 14115, + "Ġuser": 4195, + "Ġusername": 30351, + "Ġusers": 5022, + "Ġuses": 4960, + "Ġusing": 1228, + "Ġuso": 22728, + "Ġust": 26189, + "Ġusted": 10467, + "Ġustedes": 17110, + "Ġusu": 32247, + "Ġusual": 7713, + "Ġusually": 2673, + "Ġut": 2839, + "Ġutan": 29011, + "Ġutens": 47294, + "Ġutil": 4976, + "Ġutilis": 33643, + "Ġutilise": 39475, + "Ġutiliser": 34535, + "Ġutilities": 30482, + "Ġutility": 14877, + "Ġutiliz": 19906, + "Ġutilizar": 24060, + "Ġutilization": 37074, + "Ġutilize": 16117, + "Ġutilized": 28158, + "Ġutilizing": 26775, + "Ġutilizz": 40355, + "Ġutmost": 42777, + "Ġutter": 17567, + "Ġutterly": 30251, + "Ġutveck": 39807, + "Ġuw": 23147, + "ĠuwagÄĻ": 43696, + "Ġuważ": 48089, + "Ġuy": 28266, + "Ġuz": 16851, + "ĠuÄŁ": 43222, + "Ġuży": 34097, + "Ġuž": 46803, + "Ġv": 371, + "Ġva": 2773, + "Ġvaak": 49644, + "Ġvaan": 47948, + "Ġvac": 2842, + "Ġvacant": 38890, + "Ġvacation": 12830, + "Ġvacc": 3900, + "Ġvaccin": 44931, + "Ġvaccinated": 14686, + "Ġvaccination": 16498, + "Ġvaccinations": 39333, + "Ġvaccine": 7007, + "Ġvaccines": 12164, + "Ġvacun": 38581, + "Ġvacuum": 14224, + "Ġvad": 16684, + "Ġvag": 13501, + "Ġvagina": 38963, + "Ġvague": 24247, + "Ġvagy": 32970, + "Ġvai": 4405, + "Ġvaig": 26571, + "Ġvain": 22240, + "Ġvais": 9369, + "Ġvak": 31647, + "Ġval": 1323, + "Ġvale": 15474, + "Ġvaleur": 45255, + "Ġvalid": 7363, + "Ġvalidate": 29562, + "Ġvalidated": 40693, + "Ġvalidation": 24071, + "Ġvalidity": 40943, + "Ġvallahi": 45338, + "Ġvalle": 40699, + "Ġvalley": 17636, + "Ġvalleys": 45614, + "Ġvalor": 15367, + "Ġvalores": 38790, + "Ġvalt": 45912, + "Ġvalu": 7332, + "Ġvaluable": 8263, + "Ġvaluation": 38546, + "Ġvalue": 2158, + "Ġvalued": 22608, + "Ġvalues": 4190, + "Ġvalve": 15294, + "Ġvalves": 34950, + "Ġvam": 41864, + "Ġvamos": 5295, + "Ġvamp": 20017, + "Ġvampire": 28592, + "Ġvampires": 45771, + "Ġvan": 3161, + "Ġvandaag": 41901, + "Ġvanilla": 17528, + "Ġvanish": 43584, + "Ġvanished": 37518, + "Ġvanity": 44622, + "Ġvantage": 46206, + "Ġvap": 29393, + "Ġvapor": 20358, + "Ġvar": 1374, + "Ġvara": 17234, + "Ġvard": 23065, + "Ġvardı": 36339, + "Ġvardır": 41312, + "Ġvari": 3034, + "Ġvariability": 35709, + "Ġvariable": 7006, + "Ġvariables": 9102, + "Ġvariance": 21977, + "Ġvariant": 17501, + "Ġvariants": 21669, + "Ġvarias": 37496, + "Ġvariation": 12990, + "Ġvariations": 17840, + "Ġvaried": 22877, + "Ġvaries": 21716, + "Ġvarieties": 22092, + "Ġvariety": 5673, + "Ġvarios": 33665, + "Ġvarious": 3683, + "Ġvarit": 31289, + "Ġvars": 46130, + "Ġvarsa": 48440, + "Ġvary": 10559, + "Ġvarying": 22984, + "Ġvas": 11481, + "Ġvase": 44065, + "Ġvast": 8369, + "Ġvastly": 41426, + "Ġvault": 27134, + "Ġvaya": 47682, + "Ġvaz": 37533, + "Ġve": 1241, + "Ġvec": 42021, + "Ġveces": 17054, + "Ġvector": 8062, + "Ġvectors": 18875, + "Ġved": 14267, + "Ġvedere": 35373, + "Ġveel": 16550, + "Ġveg": 24366, + "Ġvegan": 12824, + "Ġveget": 5764, + "Ġvegetable": 16356, + "Ġvegetables": 9320, + "Ġvegetarian": 25739, + "Ġvegetation": 28769, + "Ġvegg": 22644, + "Ġveggies": 27889, + "Ġveh": 4221, + "Ġvehicle": 5864, + "Ġvehicles": 8948, + "Ġveil": 30705, + "Ġvein": 30669, + "Ġveins": 29390, + "Ġveio": 41164, + "Ġvel": 14610, + "Ġveloc": 7806, + "Ġvelocidad": 50143, + "Ġvelocidade": 45181, + "Ġvelocity": 9269, + "Ġvelvet": 41905, + "Ġvem": 19053, + "Ġvemos": 20909, + "Ġven": 6138, + "Ġvend": 10169, + "Ġvender": 44281, + "Ġvendo": 33152, + "Ġvendor": 24321, + "Ġvendors": 22056, + "Ġvenge": 38008, + "Ġvengeance": 43818, + "Ġvenir": 20817, + "Ġvenom": 34322, + "Ġvent": 6931, + "Ġventil": 27498, + "Ġventilation": 29553, + "Ġvents": 40048, + "Ġventure": 18474, + "Ġvenue": 21645, + "Ġvenues": 32882, + "Ġveo": 41319, + "Ġver": 1306, + "Ġveramente": 50079, + "Ġverb": 9595, + "Ġverbal": 24781, + "Ġverbally": 48162, + "Ġverbess": 49112, + "Ġverbs": 30051, + "Ġverd": 6387, + "Ġverdad": 13692, + "Ġverdade": 15203, + "Ġverde": 29653, + "Ġverder": 47196, + "Ġverdi": 40243, + "Ġverdict": 33957, + "Ġvere": 16443, + "Ġverein": 49162, + "Ġverf": 40660, + "Ġverg": 20209, + "Ġverge": 37164, + "Ġvergessen": 42418, + "Ġverification": 30206, + "Ġverified": 31197, + "Ġverify": 16888, + "Ġverk": 22328, + "Ġverkl": 43403, + "Ġverl": 19441, + "Ġverlier": 49331, + "Ġverloren": 44884, + "Ġverm": 26319, + "Ġverme": 40064, + "Ġvern": 35793, + "Ġverr": 45923, + "Ġvers": 1774, + "Ġversa": 25650, + "Ġversatile": 25057, + "Ġversch": 20563, + "Ġverschied": 22263, + "Ġverschiedene": 35411, + "Ġverschiedenen": 41043, + "Ġverse": 7996, + "Ġverses": 17316, + "Ġversion": 3037, + "Ġversions": 9606, + "Ġversión": 47248, + "Ġverso": 49786, + "Ġverst": 48960, + "Ġverste": 22442, + "Ġverstehen": 37352, + "Ġversuchen": 34749, + "Ġversucht": 36064, + "Ġversus": 5717, + "Ġversão": 41471, + "Ġvert": 6509, + "Ġverte": 16167, + "Ġvertex": 28162, + "Ġvertical": 9429, + "Ġvertically": 28450, + "Ġvertices": 32053, + "Ġverw": 24615, + "Ġvery": 588, + "Ġverz": 43945, + "Ġverändert": 45990, + "Ġves": 28274, + "Ġvess": 11800, + "Ġvessel": 18098, + "Ġvessels": 20117, + "Ġvest": 15814, + "Ġvested": 49317, + "Ġvet": 12423, + "Ġveter": 8901, + "Ġveteran": 18324, + "Ġveterans": 14343, + "Ġveterinar": 47574, + "Ġveto": 42910, + "Ġveulent": 41826, + "Ġveure": 26060, + "Ġveut": 14873, + "Ġveux": 16389, + "Ġveya": 49223, + "Ġvez": 5715, + "Ġvezes": 12925, + "Ġvi": 1932, + "Ġvia": 5766, + "Ġviable": 22024, + "Ġviaje": 48932, + "Ġvib": 11666, + "Ġvibe": 14606, + "Ġvibes": 27636, + "Ġvibr": 11599, + "Ġvibrant": 21571, + "Ġvibrating": 47748, + "Ġvibration": 20006, + "Ġvibrations": 32339, + "Ġvic": 26031, + "Ġvice": 11964, + "Ġvicinity": 42387, + "Ġvicious": 30093, + "Ġvict": 4403, + "Ġvictim": 6760, + "Ġvictims": 11448, + "Ġvictories": 38259, + "Ġvictorious": 42557, + "Ġvictory": 9812, + "Ġvid": 7217, + "Ġvida": 7644, + "Ġvidare": 49324, + "Ġvide": 838, + "Ġvideo": 960, + "Ġvideog": 46801, + "Ġvideos": 2145, + "Ġvidé": 9543, + "Ġvidéo": 11660, + "Ġvidéos": 25417, + "Ġvie": 4941, + "Ġviel": 5891, + "Ġviele": 9693, + "Ġvielen": 19885, + "Ġvielleicht": 12547, + "Ġvielä": 36470, + "Ġviendo": 34506, + "Ġviene": 19561, + "Ġvienen": 49298, + "Ġviennent": 44458, + "Ġviens": 36421, + "Ġvient": 22876, + "Ġvier": 17634, + "Ġview": 1910, + "Ġviewed": 19174, + "Ġviewer": 16767, + "Ġviewers": 8499, + "Ġviewing": 17480, + "Ġviewpoint": 35248, + "Ġviews": 6809, + "Ġvig": 15366, + "Ġvigil": 39093, + "Ġvigilant": 45737, + "Ġvigor": 42396, + "Ġvikt": 26737, + "Ġviktig": 49706, + "Ġviktigt": 46150, + "Ġvil": 15349, + "Ġvill": 4284, + "Ġvilla": 46473, + "Ġvillage": 7288, + "Ġvillagers": 32080, + "Ġvillages": 20444, + "Ġvillain": 17906, + "Ġvillains": 31368, + "Ġville": 23019, + "Ġvimos": 49266, + "Ġvin": 27037, + "Ġvind": 20168, + "Ġvinden": 46089, + "Ġvine": 12755, + "Ġvinegar": 18030, + "Ġvino": 48841, + "Ġvintage": 23050, + "Ġvinyl": 25226, + "Ġviol": 3448, + "Ġviolate": 37478, + "Ġviolated": 33239, + "Ġviolating": 42201, + "Ġviolation": 22840, + "Ġviolations": 30405, + "Ġviolence": 6270, + "Ġviolent": 11867, + "Ġviolently": 46728, + "Ġviolet": 46480, + "Ġviolin": 22878, + "Ġvir": 4107, + "Ġviral": 16132, + "Ġvirgin": 26404, + "Ġvirt": 4480, + "Ġvirtual": 6374, + "Ġvirtually": 14103, + "Ġvirtue": 20816, + "Ġvirtues": 41106, + "Ġvirtuous": 48918, + "Ġvirus": 5752, + "Ġviruses": 21785, + "Ġvis": 1452, + "Ġvisa": 18589, + "Ġvisas": 45922, + "Ġviscos": 38297, + "Ġviscosity": 39744, + "Ġvisibility": 19883, + "Ġvisible": 8974, + "Ġvision": 5201, + "Ġvisionary": 49442, + "Ġvisions": 30746, + "Ġvisit": 3441, + "Ġvisited": 11220, + "Ġvisiting": 11700, + "Ġvisitor": 28222, + "Ġvisitors": 14315, + "Ġvisits": 17753, + "Ġvist": 40247, + "Ġvista": 22553, + "Ġvisto": 17558, + "Ġvisual": 5056, + "Ġvisualization": 25801, + "Ġvisualize": 23273, + "Ġvisually": 19622, + "Ġvisuals": 26035, + "Ġvisão": 49949, + "Ġvit": 9467, + "Ġvita": 32712, + "Ġvital": 11707, + "Ġvitam": 23617, + "Ġvitamin": 17163, + "Ġvitamins": 27920, + "Ġvite": 24462, + "Ġvitesse": 49573, + "Ġviu": 28383, + "Ġviv": 11005, + "Ġvive": 28927, + "Ġviver": 46280, + "Ġvivid": 23603, + "Ġvivir": 39656, + "Ġvivo": 30689, + "Ġvivre": 34248, + "Ġviá»ĩc": 38628, + "Ġvlog": 8917, + "Ġvlogging": 39117, + "Ġvlogs": 30575, + "Ġvo": 1650, + "Ġvoc": 2329, + "Ġvocabulary": 19864, + "Ġvocal": 11657, + "Ġvocals": 28441, + "Ġvocê": 2723, + "Ġvocês": 10522, + "Ġvodka": 35710, + "Ġvog": 31273, + "Ġvoi": 20931, + "Ġvoice": 3177, + "Ġvoiced": 42246, + "Ġvoices": 9802, + "Ġvoid": 22009, + "Ġvoila": 45565, + "ĠvoilÃł": 14624, + "Ġvoir": 10695, + "Ġvois": 18297, + "Ġvoit": 18164, + "Ġvoiture": 38859, + "Ġvoix": 37188, + "Ġvol": 1996, + "Ġvolatile": 34377, + "Ġvolatility": 25877, + "Ġvolcan": 31117, + "Ġvolcanic": 35813, + "Ġvolcano": 21979, + "Ġvolcanoes": 48221, + "Ġvole": 49877, + "Ġvoll": 15593, + "Ġvolley": 30951, + "Ġvolleyball": 35887, + "Ġvolont": 40005, + "Ġvolt": 5962, + "Ġvolta": 18765, + "Ġvoltage": 8352, + "Ġvoltages": 49614, + "Ġvoltar": 36291, + "Ġvolte": 37801, + "Ġvolts": 22322, + "Ġvolume": 5523, + "Ġvolumes": 22219, + "Ġvolunt": 17911, + "Ġvoluntarily": 41782, + "Ġvoluntary": 28563, + "Ġvolunte": 7662, + "Ġvolunteer": 13835, + "Ġvolunteered": 41213, + "Ġvolunteering": 33237, + "Ġvolunteers": 14352, + "Ġvolver": 33998, + "Ġvom": 10135, + "Ġvomit": 42374, + "Ġvomiting": 46234, + "Ġvon": 2957, + "Ġvont": 14362, + "Ġvontade": 47708, + "Ġvoor": 7358, + "Ġvor": 4245, + "Ġvorbei": 38881, + "Ġvorbere": 48391, + "Ġvorher": 29195, + "Ġvorne": 32025, + "Ġvors": 48432, + "Ġvorstellen": 34346, + "Ġvortex": 49113, + "Ġvos": 13845, + "Ġvost": 28944, + "Ġvot": 3478, + "Ġvote": 4740, + "Ġvoted": 13415, + "Ġvoter": 21722, + "Ġvoters": 14073, + "Ġvotes": 12068, + "Ġvoting": 10419, + "Ġvotre": 10087, + "Ġvou": 6008, + "Ġvouch": 31007, + "Ġvoud": 39520, + "Ġvoulais": 37242, + "Ġvoulez": 29072, + "Ġvous": 2630, + "Ġvow": 17033, + "Ġvowel": 29410, + "Ġvowels": 44972, + "Ġvoy": 7552, + "Ġvoyage": 30729, + "Ġvoyez": 31503, + "Ġvoz": 30005, + "Ġvra": 6070, + "Ġvraag": 46485, + "Ġvrai": 17815, + "Ġvraiment": 8322, + "Ġvrij": 45547, + "Ġvs": 12041, + "Ġvu": 9732, + "Ġvue": 32859, + "Ġvuel": 20126, + "Ġvuelta": 41542, + "Ġvul": 7452, + "Ġvull": 45977, + "Ġvulner": 8184, + "Ġvulnerabilities": 37633, + "Ġvulnerability": 24210, + "Ġvulnerable": 10955, + "Ġvur": 40797, + "Ġvy": 44766, + "Ġvá": 36625, + "Ġvárias": 30235, + "Ġvários": 29830, + "Ġvão": 18766, + "Ġvä": 12099, + "Ġvähän": 42702, + "Ġväl": 22974, + "Ġväldigt": 19888, + "Ġvär": 28187, + "ĠvÃ¥": 27748, + "ĠvÃ¥r": 26477, + "ĠvÃ¥ra": 41042, + "Ġvæ": 18836, + "Ġvære": 27458, + "Ġvé": 19050, + "Ġvéhic": 49438, + "Ġvér": 46919, + "Ġvérit": 30678, + "Ġvéritable": 47492, + "Ġvê": 30384, + "Ġvì": 37902, + "Ġvöllig": 35670, + "ĠvÃł": 10274, + "ĠvÃło": 24995, + "ĠvÃŃ": 6153, + "ĠvÃŃde": 6951, + "ĠvÃŃdeo": 8071, + "ĠvÃŃdeos": 20617, + "Ġvẫn": 49004, + "ĠváºŃy": 29738, + "Ġvá»ģ": 25652, + "Ġvá»ĭ": 45186, + "ĠvỼi": 18916, + "Ġw": 261, + "Ġwa": 5406, + "Ġwaar": 16618, + "Ġwack": 42138, + "Ġwaffle": 44328, + "Ġwag": 36854, + "Ġwage": 15444, + "Ġwages": 20097, + "Ġwagon": 34453, + "Ġwah": 31979, + "Ġwahr": 21628, + "Ġwahrscheinlich": 30957, + "Ġwai": 32883, + "Ġwaist": 15732, + "Ġwait": 1699, + "Ġwaited": 15240, + "Ġwaiter": 45389, + "Ġwaiting": 3806, + "Ġwaits": 40597, + "Ġwaiver": 42143, + "Ġwake": 6634, + "Ġwakes": 29610, + "Ġwaking": 20447, + "Ġwaktu": 44782, + "Ġwal": 21346, + "Ġwalk": 1792, + "Ġwalked": 7628, + "Ġwalking": 4494, + "Ġwalks": 12896, + "Ġwall": 2929, + "Ġwallet": 16599, + "Ġwallpaper": 43293, + "Ġwalls": 7920, + "Ġwalnut": 50136, + "Ġwam": 39104, + "Ġwan": 46930, + "Ġwand": 14304, + "Ġwander": 27541, + "Ġwandering": 26396, + "Ġwann": 38064, + "Ġwanna": 1948, + "Ġwant": 528, + "Ġwanted": 1415, + "Ġwanting": 7935, + "Ġwants": 2738, + "Ġwar": 1516, + "Ġward": 15234, + "Ġwardrobe": 29065, + "Ġware": 17464, + "Ġwarehouse": 22244, + "Ġwaren": 11931, + "Ġwarfare": 24490, + "Ġwarm": 4561, + "Ġwarmed": 38201, + "Ġwarmer": 21599, + "Ġwarming": 17983, + "Ġwarmth": 24737, + "Ġwarn": 12286, + "Ġwarned": 21284, + "Ġwarning": 9164, + "Ġwarnings": 30009, + "Ġwarp": 36030, + "Ġwarrant": 16354, + "Ġwarranty": 26852, + "Ġwarri": 13940, + "Ġwarrior": 20173, + "Ġwarriors": 25303, + "Ġwars": 13718, + "Ġwart": 45124, + "Ġwarten": 46907, + "Ġwarto": 31830, + "Ġwarum": 24331, + "Ġwary": 46585, + "Ġwas": 390, + "Ġwash": 5675, + "Ġwashed": 16300, + "Ġwasher": 29304, + "Ġwashes": 48616, + "Ġwashing": 13836, + "Ġwasn": 2067, + "Ġwast": 49075, + "Ġwaste": 5964, + "Ġwasted": 19496, + "Ġwastewater": 46418, + "Ġwasting": 20457, + "Ġwat": 6858, + "Ġwatch": 1159, + "Ġwatched": 6337, + "Ġwatches": 17062, + "Ġwatching": 1976, + "Ġwater": 1281, + "Ġwatercolor": 31727, + "Ġwaterfall": 27848, + "Ġwatering": 33028, + "Ġwatermelon": 26097, + "Ġwaterproof": 27974, + "Ġwaters": 12975, + "Ġwatershed": 49728, + "Ġwatery": 43015, + "Ġwatt": 31556, + "Ġwatts": 31247, + "Ġwave": 5772, + "Ġwaveform": 36512, + "Ġwavel": 22144, + "Ġwavelength": 22907, + "Ġwavelengths": 47424, + "Ġwaves": 9417, + "Ġwaving": 35347, + "Ġwax": 17352, + "Ġway": 636, + "Ġways": 2098, + "Ġważ": 27777, + "Ġważne": 46110, + "Ġwcze": 38533, + "ĠwczeÅĽniej": 40785, + "Ġwe": 321, + "Ġweak": 5336, + "Ġweaken": 48576, + "Ġweakened": 42613, + "Ġweaker": 24286, + "Ġweakest": 44001, + "Ġweakness": 12772, + "Ġweaknesses": 24381, + "Ġwealth": 7203, + "Ġwealthy": 17707, + "Ġweap": 4528, + "Ġweapon": 7463, + "Ġweapons": 7278, + "Ġwear": 3728, + "Ġwearing": 4769, + "Ġwears": 20877, + "Ġweary": 47853, + "Ġweather": 5503, + "Ġweave": 29145, + "Ġweaving": 40028, + "Ġweb": 3670, + "Ġwebcam": 39490, + "Ġwebinar": 10942, + "Ġwebinars": 26065, + "Ġwebpage": 37852, + "Ġwebs": 2859, + "Ġwebsite": 3144, + "Ġwebsites": 12891, + "Ġwed": 6393, + "Ġwedding": 8523, + "Ġweddings": 39617, + "Ġwedge": 34530, + "Ġwee": 32753, + "Ġweed": 20852, + "Ġweeds": 26370, + "Ġweek": 1243, + "Ġweekend": 6711, + "Ġweekends": 23595, + "Ġweekly": 12460, + "Ġweeks": 3259, + "Ġweer": 19662, + "Ġweet": 28991, + "Ġweg": 15565, + "Ġwegen": 32855, + "Ġweigh": 13843, + "Ġweighed": 32844, + "Ġweighing": 31986, + "Ġweighs": 24911, + "Ġweight": 3364, + "Ġweighted": 32807, + "Ġweights": 17443, + "Ġweil": 7689, + "Ġweird": 3657, + "Ġweirdest": 44807, + "Ġweirdly": 48931, + "Ġweit": 15306, + "Ġweiter": 8988, + "Ġweitere": 30020, + "Ġweiteren": 44036, + "Ġweiterhin": 42480, + "ĠweiÃŁ": 13385, + "Ġwel": 2214, + "Ġwelche": 24311, + "Ġwelcome": 2928, + "Ġwelcomed": 23668, + "Ġwelcoming": 17378, + "Ġweld": 13964, + "Ġwelded": 49227, + "Ġwelding": 25393, + "Ġwelfare": 17788, + "Ġwell": 731, + "Ġwellbeing": 29508, + "Ġwellness": 23913, + "Ġwells": 30984, + "Ġwelt": 43119, + "Ġwen": 11472, + "Ġwenig": 20911, + "Ġweniger": 23224, + "Ġwenn": 4797, + "Ġwent": 1437, + "Ġwer": 2612, + "Ġwerd": 37258, + "Ġwerde": 24866, + "Ġwerden": 4604, + "Ġwere": 645, + "Ġweren": 4999, + "Ġwerk": 37585, + "Ġwert": 47659, + "Ġwes": 38384, + "Ġwest": 7009, + "Ġwestern": 13231, + "Ġwet": 6630, + "Ġweten": 40759, + "Ġwh": 315, + "Ġwhack": 42877, + "Ġwhale": 25370, + "Ġwhales": 32403, + "Ġwhat": 437, + "Ġwhatever": 2035, + "Ġwhatnot": 25882, + "Ġwhats": 29625, + "Ġwhatsoever": 17076, + "Ġwhe": 3966, + "Ġwheat": 16691, + "Ġwheel": 5589, + "Ġwheelchair": 22945, + "Ġwheels": 10046, + "Ġwhen": 562, + "Ġwhenever": 5699, + "Ġwhere": 689, + "Ġwhereas": 9735, + "Ġwhereby": 36998, + "Ġwherein": 43531, + "Ġwherever": 8660, + "Ġwhether": 1968, + "Ġwhich": 597, + "Ġwhichever": 24123, + "Ġwhile": 1339, + "Ġwhilst": 18534, + "Ġwhim": 47271, + "Ġwhip": 22377, + "Ġwhipped": 27918, + "Ġwhipping": 45476, + "Ġwhirl": 35706, + "Ġwhirring": 36861, + "Ġwhis": 13641, + "Ġwhisk": 24485, + "Ġwhiskey": 34648, + "Ġwhisper": 26018, + "Ġwhispering": 42445, + "Ġwhistle": 23470, + "Ġwhistles": 49282, + "Ġwhit": 47548, + "Ġwhite": 2418, + "Ġwhites": 21909, + "Ġwho": 567, + "Ġwhoa": 13310, + "Ġwhoever": 11387, + "Ġwhole": 1379, + "Ġwholes": 34228, + "Ġwholesale": 43982, + "Ġwholly": 45157, + "Ġwhom": 7101, + "Ġwhooshing": 44825, + "Ġwhopping": 50043, + "Ġwhose": 6104, + "Ġwhy": 983, + "Ġwi": 26393, + "Ġwicht": 26244, + "Ġwichtig": 13621, + "Ġwichtige": 46276, + "Ġwichtiger": 48840, + "Ġwicked": 22663, + "Ġwid": 5274, + "Ġwide": 4874, + "Ġwidely": 13371, + "Ġwiden": 32552, + "Ġwider": 11842, + "Ġwides": 21516, + "Ġwidespread": 22679, + "Ġwidget": 34047, + "Ġwidgets": 43355, + "Ġwidow": 37207, + "Ġwidth": 11402, + "Ġwidz": 27486, + "Ġwie": 3355, + "Ġwied": 46894, + "Ġwieder": 6216, + "Ġwiel": 20570, + "Ġwield": 35982, + "Ġwiele": 33137, + "Ġwielu": 40437, + "Ġwiem": 26522, + "Ġwife": 3836, + "Ġwifi": 35246, + "Ġwig": 24094, + "Ġwiggle": 33377, + "Ġwij": 24770, + "Ġwil": 20501, + "Ġwild": 4868, + "Ġwilderness": 27613, + "Ġwildlife": 19199, + "Ġwildly": 34731, + "Ġwill": 486, + "Ġwillen": 35830, + "Ġwilling": 4950, + "Ġwillingly": 44675, + "Ġwillingness": 25069, + "Ġwillkommen": 46439, + "Ġwillst": 48355, + "Ġwilt": 45357, + "Ġwin": 1942, + "Ġwind": 2468, + "Ġwinding": 29775, + "Ġwindow": 4910, + "Ġwindows": 9309, + "Ġwinds": 17765, + "Ġwindshield": 39996, + "Ġwindy": 30330, + "Ġwine": 7209, + "Ġwines": 35970, + "Ġwing": 11162, + "Ġwings": 11405, + "Ġwink": 44212, + "Ġwinner": 8507, + "Ġwinners": 17193, + "Ġwinning": 8224, + "Ġwins": 10641, + "Ġwinter": 6355, + "Ġwip": 15887, + "Ġwipe": 14082, + "Ġwiped": 26879, + "Ġwipes": 41228, + "Ġwiping": 40611, + "Ġwir": 1987, + "Ġwird": 4578, + "Ġwire": 6234, + "Ġwired": 27415, + "Ġwireless": 14720, + "Ġwires": 15537, + "Ġwiring": 27520, + "Ġwirklich": 9696, + "Ġwis": 9074, + "Ġwisdom": 10712, + "Ġwise": 10829, + "Ġwisely": 37632, + "Ġwish": 3172, + "Ġwished": 25811, + "Ġwishes": 15065, + "Ġwishing": 30049, + "Ġwissen": 16331, + "Ġwit": 32161, + "Ġwitch": 14867, + "Ġwitches": 43467, + "Ġwith": 365, + "Ġwithd": 12483, + "Ġwithdraw": 14999, + "Ġwithdrawal": 30646, + "Ġwithdrawn": 48151, + "Ġwithhold": 48867, + "Ġwithin": 1951, + "Ġwithout": 1553, + "Ġwithstand": 31311, + "Ġwitness": 7286, + "Ġwitnessed": 21519, + "Ġwitnesses": 20217, + "Ġwitnessing": 39233, + "Ġwives": 24936, + "Ġwiz": 40808, + "Ġwizard": 25807, + "ĠwiÄĻ": 10469, + "ĠwiÄĻc": 16677, + "ĠwiÄĻcej": 26004, + "ĠwiÄĻks": 29968, + "Ġwn": 45368, + "Ġwo": 6020, + "Ġwoah": 37116, + "Ġwob": 33775, + "Ġwod": 47751, + "Ġwoh": 48471, + "Ġwohl": 24531, + "Ġwoj": 40758, + "Ġwok": 40022, + "Ġwoke": 12852, + "Ġwol": 20960, + "Ġwolf": 19216, + "Ġwoll": 8181, + "Ġwollen": 11253, + "Ġwollt": 45826, + "Ġwollte": 24509, + "Ġwollten": 46019, + "Ġwolves": 30404, + "Ġwom": 1579, + "Ġwoman": 3059, + "Ġwomb": 34310, + "Ġwomen": 2266, + "Ġwon": 1582, + "Ġwond": 2046, + "Ġwonder": 2441, + "Ġwondered": 17055, + "Ġwonderful": 3715, + "Ġwonderfully": 38917, + "Ġwondering": 6359, + "Ġwonders": 27348, + "Ġwont": 27524, + "Ġwoo": 21657, + "Ġwood": 4576, + "Ġwooden": 14744, + "Ġwoods": 15296, + "Ġwool": 24181, + "Ġwor": 469, + "Ġword": 1349, + "Ġworden": 14054, + "Ġwording": 47602, + "Ġwords": 2283, + "Ġwordt": 20365, + "Ġwore": 13857, + "Ġwork": 589, + "Ġworked": 2732, + "Ġworker": 11346, + "Ġworkers": 5600, + "Ġworkflow": 20993, + "Ġworkflows": 43461, + "Ġworkforce": 14201, + "Ġworking": 1364, + "Ġworkload": 20139, + "Ġworkloads": 32452, + "Ġworkout": 12169, + "Ġworkouts": 28300, + "Ġworkplace": 15328, + "Ġworks": 1985, + "Ġworksheet": 49890, + "Ġworkshop": 13541, + "Ġworkshops": 19162, + "Ġworkspace": 32706, + "Ġworld": 1002, + "Ġworldly": 40397, + "Ġworlds": 13401, + "Ġworldview": 41141, + "Ġworldwide": 13485, + "Ġworm": 23835, + "Ġworms": 28271, + "Ġworn": 15254, + "Ġworried": 5804, + "Ġworries": 16340, + "Ġworry": 3292, + "Ġworrying": 18788, + "Ġwors": 47567, + "Ġworse": 5324, + "Ġworsh": 35366, + "Ġworship": 9965, + "Ġworst": 5855, + "Ġworth": 3163, + "Ġworthless": 34857, + "Ġworthwhile": 28159, + "Ġworthy": 14829, + "Ġwould": 576, + "Ġwouldn": 2759, + "Ġwound": 10999, + "Ġwounded": 21906, + "Ġwounds": 21969, + "Ġwoven": 39221, + "Ġwow": 6076, + "Ġwp": 32444, + "Ġwprowad": 46733, + "Ġwr": 928, + "Ġwra": 7843, + "Ġwrap": 7019, + "Ġwrapped": 14226, + "Ġwrapper": 46906, + "Ġwrapping": 21993, + "Ġwraps": 25831, + "Ġwrath": 35496, + "Ġwre": 46674, + "Ġwreck": 21478, + "Ġwrench": 25406, + "Ġwrest": 12591, + "Ġwrestle": 43251, + "Ġwrestler": 47557, + "Ġwrestling": 19274, + "Ġwrinkles": 34822, + "Ġwrist": 15043, + "Ġwrists": 41876, + "Ġwrit": 10912, + "Ġwrite": 2464, + "Ġwriter": 9936, + "Ġwriters": 13491, + "Ġwrites": 13657, + "Ġwriting": 3579, + "Ġwritings": 30083, + "Ġwritten": 3720, + "Ġwrong": 2085, + "Ġwrote": 4114, + "Ġws": 37647, + "Ġwsp": 17757, + "Ġwspól": 47148, + "ĠwspóÅĤ": 39069, + "Ġwsz": 38322, + "Ġwszyscy": 44232, + "Ġwszyst": 10998, + "Ġwszystk": 14615, + "Ġwszystkich": 34234, + "Ġwszystkie": 31723, + "Ġwszystkim": 30481, + "Ġwszystko": 22607, + "Ġwt": 23105, + "Ġwtedy": 26959, + "Ġwunder": 47736, + "Ġwur": 8818, + "Ġwurde": 11191, + "Ġwurden": 21105, + "Ġwus": 42571, + "Ġwww": 12520, + "Ġwy": 4628, + "Ġwyb": 45780, + "Ġwyd": 25984, + "Ġwydaje": 49165, + "Ġwygl": 27947, + "ĠwyglÄħda": 32015, + "Ġwyk": 39287, + "Ġwykon": 46702, + "Ġwykor": 43606, + "Ġwym": 29764, + "Ġwyn": 31936, + "Ġwyp": 46392, + "Ġwys": 27062, + "Ġwyst": 48255, + "Ġwz": 24809, + "Ġwzgl": 48538, + "Ġwäh": 24787, + "Ġwährend": 33624, + "Ġwär": 45779, + "Ġwäre": 14558, + "Ġwären": 43933, + "Ġwün": 30841, + "Ġwür": 9195, + "Ġwürde": 11942, + "Ġwürden": 27621, + "ĠwÅĤ": 34696, + "ĠwÅĤa": 12326, + "ĠwÅĤas": 43572, + "ĠwÅĤaÅĽci": 40112, + "ĠwÅĤaÅĽciwie": 50108, + "ĠwÅĤaÅĽnie": 14234, + "Ġx": 2031, + "Ġxem": 47852, + "Ġxen": 49773, + "Ġxi": 36800, + "Ġxu": 41104, + "Ġy": 288, + "Ġya": 2478, + "Ġyacht": 39629, + "Ġyah": 38642, + "Ġyak": 18603, + "Ġyan": 17700, + "Ġyang": 5581, + "Ġyani": 11654, + "ĠyanlÄ±ÅŁ": 46763, + "Ġyap": 6143, + "ĠyapmÄ±ÅŁ": 47527, + "Ġyapt": 15799, + "Ġyapıl": 37009, + "Ġyapıyor": 46427, + "Ġyapıyorsun": 36964, + "Ġyar": 23793, + "Ġyard": 11682, + "Ġyards": 18685, + "Ġyardım": 38875, + "Ġyarn": 11400, + "Ġyat": 42734, + "Ġyay": 23986, + "Ġyaz": 20819, + "ĠyaÄŁ": 49210, + "ĠyaÅŁ": 16098, + "Ġye": 606, + "Ġyea": 24796, + "Ġyeah": 1338, + "Ġyear": 1064, + "Ġyearly": 39102, + "Ġyears": 924, + "Ġyeast": 21629, + "Ġyell": 20525, + "Ġyelled": 38023, + "Ġyelling": 18381, + "Ġyellow": 5566, + "Ġyells": 48543, + "Ġyem": 32525, + "Ġyemek": 41145, + "Ġyen": 21570, + "Ġyeni": 34320, + "Ġyep": 18633, + "Ġyer": 12954, + "Ġyerde": 45857, + "Ġyere": 42044, + "Ġyes": 2086, + "Ġyesterday": 5186, + "Ġyet": 1939, + "Ġyeter": 48398, + "Ġyeux": 36163, + "Ġyht": 48342, + "Ġyhte": 44876, + "Ġyield": 11257, + "Ġyields": 32168, + "Ġyine": 29088, + "Ġyn": 17861, + "Ġyo": 5290, + "Ġyog": 16570, + "Ġyoga": 15128, + "Ġyogurt": 20997, + "Ġyok": 9229, + "Ġyol": 16290, + "Ġyolk": 32464, + "Ġyolks": 47191, + "Ġyou": 291, + "Ġyoung": 2037, + "Ġyounger": 7037, + "Ġyoungest": 17747, + "Ġyoungsters": 49068, + "Ġyour": 428, + "Ġyours": 6342, + "Ġyourself": 1803, + "Ġyourselves": 14791, + "Ġyout": 11325, + "Ġyouth": 7503, + "Ġyoutube": 12487, + "Ġyoutuber": 37901, + "Ġyoutubers": 46325, + "Ġyr": 37739, + "Ġyuan": 28370, + "Ġyum": 26420, + "Ġyummy": 18576, + "Ġyup": 40073, + "Ġyêu": 49107, + "Ġyön": 42315, + "Ġyük": 37531, + "Ġyüz": 16162, + "Ġyüzden": 33454, + "Ġyıl": 31491, + "Ġz": 710, + "Ġza": 7949, + "Ġzab": 24838, + "Ġzac": 34430, + "Ġzach": 29303, + "Ġzaczy": 43811, + "Ġzad": 42788, + "Ġzag": 27001, + "Ġzaj": 33729, + "Ġzak": 23810, + "Ġzal": 29599, + "Ġzam": 19876, + "Ġzaman": 12180, + "Ġzap": 14223, + "Ġzar": 22675, + "Ġzas": 26530, + "Ġzasad": 44585, + "Ġzast": 36746, + "Ġzat": 35802, + "Ġzaten": 22089, + "Ġzaw": 28165, + "Ġzawsze": 30964, + "Ġzd": 16221, + "Ġzde": 49749, + "ĠzdjÄĻ": 49026, + "Ġzdrow": 49745, + "Ġze": 5277, + "Ġzebra": 47060, + "Ġzeg": 23631, + "Ġzeggen": 31633, + "Ġzehn": 33975, + "Ġzeigen": 24687, + "Ġzeigt": 29250, + "Ġzeit": 49367, + "Ġzeker": 43844, + "Ġzelf": 26172, + "Ġzen": 37097, + "Ġzer": 44746, + "Ġzero": 4018, + "Ġzeros": 35193, + "Ġzest": 37889, + "Ġzg": 40948, + "Ġzich": 31820, + "Ġzie": 16503, + "Ġziehen": 40645, + "Ġziem": 25986, + "Ġziemlich": 28901, + "Ġzien": 23735, + "Ġziet": 39827, + "Ġzig": 38290, + "Ġzij": 49311, + "Ġzijn": 8004, + "Ġzinc": 29062, + "Ġzip": 20730, + "Ġzipper": 29887, + "Ġzit": 25013, + "Ġzitten": 35242, + "Ġzm": 17020, + "Ġzmian": 43591, + "Ġzn": 15397, + "Ġznaczy": 36584, + "Ġznaj": 27318, + "Ġznajdu": 47570, + "Ġzo": 5721, + "Ġzoals": 40040, + "Ġzob": 25100, + "Ġzobaczy": 37273, + "Ġzod": 39979, + "Ġzomb": 13374, + "Ġzombie": 20310, + "Ġzombies": 24230, + "Ġzona": 24848, + "Ġzone": 6668, + "Ġzones": 16025, + "Ġzoning": 37184, + "Ġzoo": 25347, + "Ġzoom": 8863, + "Ġzooming": 48226, + "Ġzor": 22304, + "Ġzost": 31873, + "Ġzosta": 23154, + "Ġzou": 22934, + "Ġzrob": 44399, + "Ġzrobi": 24483, + "ĠzrobiÄĩ": 31785, + "Ġzu": 2164, + "Ġzucch": 36748, + "Ġzucchini": 44781, + "Ġzug": 33507, + "Ġzuk": 50151, + "Ġzul": 43238, + "Ġzum": 5919, + "Ġzumindest": 38082, + "ĠzupeÅĤnie": 49922, + "Ġzur": 7147, + "Ġzurück": 15089, + "Ġzus": 11548, + "Ġzusammen": 14311, + "Ġzust": 45034, + "Ġzw": 11873, + "Ġzwar": 19054, + "Ġzwe": 8733, + "Ġzwei": 12002, + "Ġzweite": 37456, + "Ġzweiten": 39943, + "Ġzwischen": 19875, + "ĠzwiÄħz": 27741, + "Ġzwr": 49111, + "Ġzwy": 43436, + "ĠzÅĤ": 31614, + "Ġ{": 10929, + "Ġ{\\": 18128, + "Ġ|": 18362, + "Ġ}": 49870, + "Ġ~": 11938, + "ĠÂ": 1815, + "Ġ¡": 6514, + "Ġ£": 14378, + "Ġ§": 49803, + "Ġ«": 4657, + "Ġ°": 31462, + "Ġ»": 8793, + "Ġ»,": 34319, + "Ġ».": 28082, + "Ġ»:": 40795, + "Ġ½": 32653, + "Ġ¿": 3841, + "ĠÃ": 690, + "Ġá": 7352, + "Ġágua": 23824, + "Ġár": 35349, + "Ġárea": 25701, + "Ġáreas": 48088, + "Ġâ": 20621, + "Ġä": 3078, + "Ġähnlich": 49696, + "Ġän": 26072, + "Ġänd": 24981, + "Ġändern": 47775, + "Ġär": 3775, + "Ġäven": 32669, + "ĠÃ¥": 8841, + "ĠÃ¥r": 19525, + "ĠÃ¥t": 39502, + "Ġç": 1844, + "Ġça": 2788, + "Ġçal": 16210, + "ĠçalÄ±ÅŁ": 18107, + "Ġçek": 22559, + "Ġçev": 45921, + "Ġçoc": 19156, + "Ġçocuk": 25216, + "ĠçocuÄŁ": 38914, + "Ġçok": 7343, + "Ġçünkü": 36336, + "Ġçık": 12208, + "Ġçıkar": 41097, + "Ġçıkt": 34462, + "Ġçıktı": 48378, + "Ġè": 4873, + "Ġé": 1136, + "Ġéc": 15175, + "Ġéch": 39310, + "Ġéconom": 31171, + "Ġéconomique": 49915, + "Ġécrit": 41700, + "Ġégal": 19540, + "Ġégalement": 20503, + "Ġél": 11810, + "Ġélect": 30996, + "Ġélé": 46502, + "Ġéléments": 49977, + "Ġén": 39315, + "Ġéner": 45045, + "Ġénorm": 27982, + "Ġénormément": 41595, + "Ġép": 21018, + "Ġépisode": 47285, + "Ġépo": 21354, + "Ġépoca": 25024, + "Ġéqu": 25830, + "Ġés": 5960, + "Ġét": 4823, + "Ġéta": 21325, + "Ġétaient": 25999, + "Ġétait": 11806, + "Ġétant": 41144, + "Ġété": 8862, + "Ġév": 20090, + "Ġévidemment": 24724, + "Ġéén": 39133, + "Ġê": 6203, + "Ġêtes": 18935, + "Ġêtre": 7418, + "Ġî": 11300, + "Ġîn": 15351, + "Ġînt": 43990, + "Ġñ": 34110, + "Ġó": 11857, + "Ġór": 44083, + "Ġót": 44490, + "Ġô": 24107, + "Ġông": 34835, + "Ġö": 4044, + "Ġöffentlich": 34603, + "Ġöl": 31854, + "Ġöld": 35419, + "Ġön": 12253, + "Ġönce": 22353, + "Ġönem": 31652, + "Ġönemli": 35154, + "Ġör": 39249, + "Ġöver": 23026, + "Ġöyle": 16528, + "Ġöz": 27010, + "ĠÃ¶ÄŁ": 24411, + "ĠÃ¶ÄŁren": 40283, + "Ġø": 43008, + "Ġú": 6991, + "Ġúlt": 11499, + "Ġúltima": 28118, + "Ġúltimo": 21013, + "Ġúltimos": 33013, + "Ġún": 17524, + "Ġúnica": 30104, + "Ġúnico": 26113, + "Ġútil": 49191, + "Ġü": 3304, + "Ġüber": 4502, + "Ġüberall": 38035, + "Ġüberhaupt": 20023, + "Ġübers": 45022, + "Ġüberzeug": 48598, + "Ġübrig": 32343, + "Ġübrigens": 38215, + "Ġül": 35073, + "Ġüst": 28816, + "Ġüz": 32145, + "Ġüzer": 25813, + "Ġüzerine": 43816, + "Ġüç": 29630, + "Ġý": 49291, + "Ġþ": 43219, + "ĠÃĢ": 19018, + "ĠÃģ": 24205, + "ĠÃĦ": 13700, + "ĠÃĦr": 34403, + "ĠÃħ": 43360, + "ĠÃĩ": 6256, + "ĠÃĩa": 11527, + "ĠÃĩok": 19243, + "ĠÃĩünkü": 26763, + "ĠÃĪ": 34495, + "ĠÃī": 4922, + "ĠÃīl": 34325, + "ĠÃīs": 16243, + "ĠÃīt": 40567, + "ĠÃītats": 44444, + "ĠÃİ": 46104, + "ĠÃĵ": 35232, + "ĠÃĶ": 40732, + "ĠÃĸ": 9158, + "ĠÃĸsterreich": 41423, + "ĠÃĸyle": 34883, + "ĠÃĸz": 47498, + "ĠÃľ": 10713, + "ĠÃľber": 18086, + "ĠÃł": 1531, + "ĠÃłs": 23763, + "ĠÃŃ": 18645, + "ĠÄ": 2127, + "ĠÄ°": 6601, + "ĠÄ°n": 47673, + "ĠÄ°ns": 45379, + "ĠÄ°s": 45053, + "ĠÄ°stanbul": 45822, + "ĠÄ°yi": 30786, + "ĠÄ°ÅŁ": 26605, + "ĠÄ°ÅŁte": 34757, + "ĠÄĥ": 26790, + "ĠÄĥn": 28657, + "ĠÄĩ": 45854, + "ĠÄį": 22392, + "ĠÄIJ": 13055, + "ĠÄIJây": 45672, + "ĠÄij": 2934, + "ĠÄijang": 30723, + "ĠÄiji": 13264, + "ĠÄijiá»ģu": 42082, + "ĠÄijâu": 35433, + "ĠÄijây": 20199, + "ĠÄijã": 17283, + "ĠÄijó": 17647, + "ĠÄijược": 15832, + "ĠÄijấy": 39370, + "ĠÄijầu": 32573, + "ĠÄijến": 26353, + "ĠÄijá»ĥ": 20081, + "ĠÄijá»ĭ": 42063, + "ĠÄijá»Ļ": 29075, + "ĠÄijá»Ļng": 46880, + "ĠÅ": 4423, + "ĠÅ¡": 22552, + "Ġź": 50212, + "ĠÅ»": 29804, + "ĠÅ»e": 46864, + "Ġż": 19625, + "Ġżad": 39628, + "Ġże": 3561, + "Ġżeby": 11316, + "Ġży": 16136, + "Ġżycia": 44343, + "Ġżycie": 43202, + "Ġž": 17305, + "Ġže": 25178, + "ĠÅģ": 36901, + "ĠÅĤ": 25387, + "ĠÅĤad": 47910, + "ĠÅĤat": 47759, + "ĠÅĵ": 48360, + "ĠÅļ": 27933, + "ĠÅĽ": 8299, + "ĠÅĽm": 46991, + "ĠÅĽrod": 28580, + "ĠÅĽwi": 21485, + "ĠÅĽwiat": 36425, + "ĠÅĽwie": 40078, + "ĠÅŀ": 7918, + "ĠÅŀey": 43171, + "ĠÅŀimdi": 17734, + "ĠÅŀu": 33583, + "ĠÅŁ": 3382, + "ĠÅŁeh": 49755, + "ĠÅŁek": 18850, + "ĠÅŁekilde": 23537, + "ĠÅŁey": 6517, + "ĠÅŁeyi": 31735, + "ĠÅŁeyler": 28863, + "ĠÅŁimdi": 16391, + "ĠÅŁu": 17235, + "ĠÅŁunu": 45821, + "ĠÅŁur": 49420, + "ĠÅŁÃ¶yle": 26712, + "ĠÅł": 49039, + "ĠÆ¡i": 43144, + "ĠÈ": 36726, + "ĠÈĺ": 38127, + "ĠÈĺi": 41820, + "ĠÈĻ": 15318, + "ĠÈĻi": 17060, + "ĠÍ": 28451, + "ĠÍ¡": 38040, + "Ġ͡°": 40130, + "ĠÎ": 1158, + "ĠΣ": 26408, + "ĠΤ": 20838, + "ĠΤο": 44524, + "ĠΧ": 48924, + "Ġά": 22554, + "Ġάλλ": 41370, + "Ġή": 24841, + "ĠήÏĦαν": 47768, + "Ġα": 5691, + "Ġακ": 40822, + "Ġαλλά": 44716, + "Ġαν": 25715, + "Ġανα": 49931, + "ĠαÏĢ": 45787, + "ĠαÏĢο": 44313, + "ĠαÏĢÏĮ": 19821, + "ĠαÏħÏĦ": 18679, + "ĠαÏħÏĦÏĮ": 26865, + "Ġβ": 15787, + "Ġγ": 10643, + "Ġγια": 17321, + "Ġδ": 8715, + "Ġδεν": 23295, + "Ġδια": 38744, + "Ġε": 5958, + "Ġεί": 25090, + "Ġείναι": 15974, + "ĠεδÏİ": 44440, + "Ġεκ": 44009, + "Ġεν": 42958, + "ĠεÏĢ": 26752, + "ĠεÏĢι": 49185, + "Ġζ": 36544, + "Ġη": 18231, + "Ġθ": 12622, + "Ġθα": 18828, + "Ġι": 47467, + "Ġκ": 4903, + "Ġκά": 26751, + "Ġκάν": 31492, + "Ġκα": 14832, + "Ġκαι": 8839, + "Ġκι": 47328, + "Ġλ": 15015, + "ĠλÎŃ": 36148, + "Ġμ": 5337, + "Ġμα": 36759, + "ĠμαÏĤ": 25287, + "Ġμε": 13769, + "Ġμια": 38170, + "ĠμοÏħ": 23449, + "ĠμÎŃ": 27730, + "ĠμÏĢο": 33904, + "Ġν": 8066, + "Ġνα": 9083, + "Ġξ": 33179, + "Ġο": 11383, + "Ġοι": 33908, + "ĠοÏĢο": 44035, + "ĠÎĪ": 38161, + "ĠÎĮ": 43692, + "ĠÎij": 18793, + "ĠÎĵ": 30350, + "ĠÎĵια": 48575, + "ĠÎĶ": 27556, + "ĠÎķ": 18236, + "ĠÎĹ": 45836, + "ĠÎĺ": 30128, + "ĠÎļ": 19233, + "ĠÎļαι": 32619, + "ĠÎľ": 24834, + "ĠÎĿ": 38854, + "ĠÎŁ": 34650, + "ĠÎł": 20894, + "ĠÎŃ": 10541, + "ĠÎŃνα": 26117, + "ĠÎŃÏĩ": 21807, + "ĠÎŃÏĩει": 42940, + "ĠÏ": 2467, + "ĠÏĢ": 4654, + "ĠÏĢά": 31967, + "ĠÏĢα": 23380, + "ĠÏĢε": 28465, + "ĠÏĢεÏģι": 46618, + "ĠÏĢο": 39099, + "ĠÏĢολ": 30403, + "ĠÏĢολÏį": 36047, + "ĠÏĢοÏħ": 15878, + "ĠÏĢÏģο": 26017, + "ĠÏģ": 40750, + "ĠÏĥ": 5532, + "ĠÏĥαÏĤ": 34981, + "ĠÏĥε": 23814, + "ĠÏĥοÏħ": 43455, + "ĠÏĥÏĦα": 45391, + "ĠÏĥÏĦη": 23502, + "ĠÏĥÏĦην": 31766, + "ĠÏĥÏĦο": 20702, + "ĠÏĥÏħ": 23415, + "ĠÏĥÏħν": 49025, + "ĠÏĦ": 3596, + "ĠÏĦα": 16900, + "ĠÏĦη": 10013, + "ĠÏĦην": 17309, + "ĠÏĦηÏĤ": 22409, + "ĠÏĦι": 25962, + "ĠÏĦιÏĤ": 35816, + "ĠÏĦο": 8335, + "ĠÏĦον": 24022, + "ĠÏĦοÏħ": 13380, + "ĠÏĦοÏħÏĤ": 30320, + "ĠÏĦÏīν": 39575, + "ĠÏħ": 28049, + "ĠÏĨ": 17579, + "ĠÏĩ": 17319, + "ĠÏī": 46653, + "ĠÏĮ": 12485, + "ĠÏĮÏĦι": 27841, + "ĠÐ": 333, + "ĠС": 2933, + "ĠСШÐIJ": 35448, + "ĠСам": 31152, + "ĠСв": 48536, + "ĠСегоднÑı": 35913, + "ĠСейÑĩаÑģ": 23590, + "ĠСеÑĢ": 46779, + "ĠСеÑĢг": 38393, + "ĠСк": 22965, + "ĠСлед": 48301, + "ĠСо": 40156, + "ĠСов": 45680, + "ĠСп": 19349, + "ĠСпаÑģибо": 29219, + "ĠСÑĤ": 17483, + "ĠТ": 3200, + "ĠТак": 8770, + "ĠТакже": 38751, + "ĠТам": 27451, + "ĠТем": 44064, + "ĠТепеÑĢÑĮ": 25238, + "ĠТо": 16047, + "ĠТогда": 46357, + "ĠТолÑĮко": 36021, + "ĠТÑĥÑĤ": 35358, + "ĠТÑĭ": 14509, + "ĠУ": 6523, + "ĠУкÑĢаÑĹ": 34817, + "ĠФ": 13196, + "ĠÐ¥": 9456, + "ĠХоÑĢоÑĪо": 37564, + "ĠХоÑĤ": 35886, + "ĠХоÑĤÑı": 43963, + "ĠЦ": 18545, + "ĠЦе": 36263, + "ĠЧ": 7099, + "ĠЧеÑĢ": 39659, + "ĠЧÑĤо": 13169, + "ĠЧÑĤобÑĭ": 36026, + "ĠШ": 18428, + "ĠЩ": 42373, + "ĠЮ": 27002, + "ĠЯ": 4857, + "ĠЯк": 46116, + "Ġа": 2559, + "Ġаб": 25600, + "ĠабÑģолÑİÑĤ": 32078, + "ĠабÑģолÑİÑĤно": 35060, + "Ġав": 14376, + "ĠавÑĤом": 27669, + "ĠавÑĤомоб": 37122, + "Ġад": 27705, + "Ġак": 13790, + "ĠаккÑĥ": 49381, + "ĠакÑĤив": 30239, + "Ġал": 39336, + "Ġале": 46923, + "ĠамеÑĢик": 34958, + "ĠамеÑĢикан": 46263, + "Ġан": 17086, + "Ġанглий": 46611, + "Ġап": 29356, + "ĠаÑĢ": 16643, + "ĠаÑĤ": 46998, + "Ġб": 1268, + "Ġбаб": 37783, + "Ġбаг": 45165, + "Ġбаз": 39798, + "Ġбал": 37683, + "Ġбан": 29049, + "ĠбаÑĢ": 36766, + "ĠбаÑĤ": 47697, + "Ġбег": 49942, + "Ġбез": 10969, + "ĠбезопаÑģ": 45015, + "Ġбел": 29430, + "ĠбеÑĢ": 24562, + "ĠбеÑģ": 37658, + "ĠбеÑģп": 32971, + "Ġби": 47334, + "ĠбизнеÑģ": 47054, + "Ġбл": 16709, + "Ġблаг": 31971, + "ĠблагодаÑĢ": 38979, + "Ġбли": 21747, + "Ġблиз": 37060, + "Ġблок": 42222, + "Ġбо": 20462, + "Ġбог": 33001, + "Ġбой": 41029, + "Ġбок": 45156, + "Ġбол": 11993, + "Ġболее": 15103, + "ĠболÑĮ": 7351, + "ĠболÑĮÑĪ": 12457, + "ĠболÑĮÑĪе": 12846, + "ĠболÑĮÑĪое": 46843, + "ĠболÑĮÑĪой": 35533, + "ĠбоÑĢ": 30101, + "ĠбÑĢ": 19603, + "ĠбÑĢаÑĤ": 43333, + "ĠбÑĢоÑģ": 47718, + "ĠбÑĥ": 21646, + "ĠбÑĥд": 4529, + "ĠбÑĥде": 47438, + "ĠбÑĥдем": 23213, + "ĠбÑĥдеÑĤ": 7306, + "ĠбÑĥдеÑĤе": 46872, + "ĠбÑĥдÑĤо": 45239, + "ĠбÑĥдÑĥ": 21407, + "ĠбÑĥдÑĥÑĤ": 20393, + "ĠбÑĥдÑĥÑī": 44327, + "ĠбÑĥк": 36761, + "ĠбÑĥкв": 42587, + "ĠбÑĥло": 41981, + "ĠбÑĥм": 49721, + "ĠбÑĭ": 2768, + "ĠбÑĭв": 28951, + "ĠбÑĭваеÑĤ": 48972, + "ĠбÑĭл": 10059, + "ĠбÑĭла": 13640, + "ĠбÑĭли": 14355, + "ĠбÑĭло": 8060, + "ĠбÑĭÑģÑĤÑĢ": 37283, + "ĠбÑĭÑģÑĤÑĢо": 31874, + "ĠбÑĭÑĤÑĮ": 11510, + "ĠбÑĸлÑĮ": 47692, + "Ġв": 740, + "Ġваж": 19491, + "Ġважно": 38851, + "Ġвал": 42187, + "Ġвам": 10448, + "Ġвами": 24166, + "ĠваÑĢи": 32382, + "ĠваÑĢианÑĤ": 42442, + "ĠваÑģ": 10655, + "ĠваÑĪ": 14536, + "ĠваÑĪи": 48375, + "Ġвд": 25507, + "ĠвдÑĢÑĥг": 45926, + "Ġвед": 35126, + "ĠведÑĮ": 28026, + "Ġвел": 29328, + "ĠвеÑĢ": 10544, + "ĠвеÑĢÑģ": 35285, + "ĠвеÑĢÑħ": 47758, + "ĠвеÑģ": 28244, + "ĠвеÑģÑĮ": 29225, + "ĠвеÑĤ": 45010, + "ĠвеÑĩ": 31943, + "ĠвеÑī": 27046, + "ĠвеÑīи": 43050, + "Ġвже": 40738, + "Ġвз": 11892, + "ĠвзÑıÑĤÑĮ": 44101, + "Ġви": 28570, + "Ġвид": 6504, + "Ġвиде": 12921, + "Ġвидел": 40718, + "Ġвидели": 49998, + "Ġвидео": 15589, + "Ġвидим": 38273, + "ĠвидиÑĤе": 41904, + "Ġвидно": 41239, + "ĠвижÑĥ": 47813, + "Ġвик": 49233, + "Ġвин": 49847, + "ĠвклÑİÑĩ": 31251, + "ĠвкÑĥÑģ": 28295, + "Ġвлад": 46458, + "Ġвли": 45689, + "Ġвм": 20307, + "ĠвмеÑģÑĤе": 26905, + "Ġвн": 17958, + "ĠвнеÑĪ": 50025, + "Ġвниз": 46697, + "Ġвним": 24762, + "Ġвнимание": 33267, + "ĠвнÑĥÑĤ": 25282, + "ĠвнÑĥÑĤÑĢи": 39145, + "Ġво": 7900, + "Ġвод": 14545, + "ĠводÑĭ": 44391, + "Ġвоз": 8918, + "Ġвозв": 39797, + "ĠвозвÑĢаÑī": 45503, + "ĠвоздÑĥ": 47396, + "Ġвозм": 18077, + "Ġвозмож": 31544, + "Ġвозможно": 26740, + "ĠвозможноÑģÑĤÑĮ": 41233, + "ĠвозÑĮ": 45097, + "Ġвой": 26055, + "Ġвок": 39277, + "ĠвокÑĢÑĥг": 45247, + "Ġвол": 22211, + "Ġвони": 40727, + "ĠвообÑīе": 14345, + "ĠвопÑĢоÑģ": 17611, + "ĠвопÑĢоÑģÑĭ": 48418, + "ĠвоÑģ": 18867, + "ĠвоÑģп": 31143, + "ĠвоÑĤ": 5505, + "Ġвп": 27163, + "ĠвпеÑĢ": 32560, + "Ġвполне": 46780, + "ĠвÑĢ": 35705, + "ĠвÑĢем": 8951, + "ĠвÑĢемени": 26436, + "ĠвÑĢемÑı": 12039, + "ĠвÑĢоде": 41079, + "ĠвÑģ": 2852, + "ĠвÑģе": 4640, + "ĠвÑģегда": 19087, + "ĠвÑģего": 15520, + "ĠвÑģей": 43419, + "ĠвÑģем": 21042, + "ĠвÑģеÑħ": 17260, + "ĠвÑģп": 35944, + "ĠвÑģÑĤÑĢ": 20569, + "ĠвÑģÑĤÑĢеÑĤ": 47647, + "ĠвÑģÑĤÑĢеÑĩ": 25669, + "ĠвÑģÑİ": 32341, + "ĠвÑģÑı": 24614, + "ĠвÑģÑij": 9649, + "ĠвÑĤоÑĢ": 19823, + "ĠвÑĤоÑĢой": 36128, + "ĠвÑħод": 45746, + "ĠвÑĩ": 49102, + "ĠвÑĭ": 2840, + "ĠвÑĭб": 18061, + "ĠвÑĭглÑıд": 30449, + "ĠвÑĭглÑıдиÑĤ": 40670, + "ĠвÑĭд": 47535, + "ĠвÑĭз": 31572, + "ĠвÑĭй": 42132, + "ĠвÑĭп": 21188, + "ĠвÑĭпол": 34771, + "ĠвÑĭпÑĥÑģк": 48777, + "ĠвÑĭÑģ": 19361, + "ĠвÑĭÑģок": 35998, + "ĠвÑĭÑģÑĤÑĥп": 48828, + "ĠвÑĭÑħод": 27142, + "ĠвÑĭÑĪ": 33994, + "ĠвÑĭÑĪе": 47281, + "ĠвÑĸд": 16947, + "ĠвÑĸн": 40756, + "Ġг": 2342, + "Ġгаз": 36936, + "ĠгаÑĢ": 38470, + "Ġгде": 11418, + "ĠгеÑĢо": 35279, + "Ġгл": 10735, + "Ġглав": 18539, + "Ġглавное": 39940, + "Ġглаз": 27634, + "Ġглаза": 49664, + "ĠглÑĥб": 41863, + "Ġго": 6778, + "ĠговоÑĢ": 8180, + "ĠговоÑĢил": 39801, + "ĠговоÑĢиÑĤ": 25083, + "ĠговоÑĢиÑĤÑĮ": 32460, + "ĠговоÑĢÑİ": 34931, + "ĠговоÑĢÑı": 42210, + "ĠговоÑĢÑıÑĤ": 33374, + "Ġгод": 9182, + "Ġгода": 18411, + "ĠгодÑĥ": 22688, + "Ġгол": 14932, + "Ġголов": 24721, + "ĠголоÑģ": 42390, + "ĠгоÑĢ": 26493, + "ĠгоÑĢаз": 45386, + "ĠгоÑĢаздо": 45607, + "ĠгоÑĢод": 18750, + "ĠгоÑĢода": 45853, + "ĠгоÑģÑĥдаÑĢ": 42950, + "ĠгоÑĤов": 17137, + "ĠгÑĢ": 11726, + "ĠгÑĢад": 47547, + "ĠгÑĢаÑĦ": 45799, + "ĠгÑĢом": 41765, + "ĠгÑĢÑĥ": 47553, + "ĠгÑĢÑĥп": 27530, + "ĠгÑĢÑĥпп": 29311, + "Ġд": 1070, + "Ġда": 8995, + "Ġдав": 12472, + "Ġдавай": 28869, + "ĠдавайÑĤе": 30412, + "Ġдавно": 40086, + "Ġдаже": 11210, + "Ġдал": 22500, + "Ġдалее": 38978, + "ĠдалÑĮ": 22428, + "ĠдалÑĮÑĪе": 26814, + "Ġдан": 19582, + "Ġдв": 7196, + "Ġдва": 18505, + "Ġдве": 32183, + "Ġдвиг": 30618, + "Ġдвиж": 30473, + "ĠдвÑĥÑħ": 32360, + "Ġде": 36397, + "Ġдев": 20572, + "ĠдейÑģÑĤв": 17136, + "ĠдейÑģÑĤвиÑĤелÑĮно": 27208, + "Ġдел": 6649, + "Ġдела": 46157, + "ĠделаеÑĤ": 43109, + "ĠделаÑĤÑĮ": 19284, + "ĠделаÑİÑĤ": 48732, + "Ġделе": 23845, + "Ġдело": 26444, + "Ġден": 33773, + "Ġденег": 40957, + "ĠденÑĮ": 13509, + "ĠденÑĮги": 27087, + "ĠдеÑĢ": 27620, + "ĠдеÑĢев": 29662, + "ĠдеÑĢж": 27565, + "ĠдеÑģÑı": 32233, + "ĠдеÑģÑıÑĤ": 45884, + "ĠдеÑĤ": 15079, + "ĠдеÑĤей": 38668, + "ĠдеÑĤи": 48941, + "Ġди": 28255, + "Ġдив": 49829, + "ĠдиÑģ": 37929, + "ĠдлÑı": 5561, + "Ġдней": 47678, + "ĠднÑı": 36115, + "Ġдо": 5865, + "Ġдоб": 16991, + "Ġдобав": 23856, + "ĠдобÑĢ": 35620, + "Ġдов": 20124, + "ĠдоволÑĮно": 31777, + "Ġдог": 36056, + "Ġдок": 22992, + "ĠдокÑĥм": 43031, + "Ġдол": 8300, + "Ġдолго": 37515, + "Ġдолж": 12220, + "Ġдолжен": 25718, + "Ġдолжна": 40129, + "Ġдолжно": 40475, + "ĠдолжнÑĭ": 27581, + "ĠдоллаÑĢ": 26124, + "ĠдоллаÑĢов": 35902, + "Ġдом": 13049, + "Ġдома": 29012, + "Ġдомой": 46319, + "Ġдоп": 23562, + "Ġдополн": 45120, + "ĠдоÑĢ": 18478, + "ĠдоÑĢог": 24365, + "ĠдоÑģ": 41126, + "ĠдоÑģÑĤ": 34543, + "ĠдоÑģÑĤаÑĤоÑĩно": 28562, + "ĠдоÑģÑĤи": 46630, + "ĠдоÑģÑĤÑĥп": 41057, + "ĠдÑĢ": 37928, + "ĠдÑĢÑĥг": 8435, + "ĠдÑĢÑĥга": 47392, + "ĠдÑĢÑĥгие": 32108, + "ĠдÑĢÑĥгиÑħ": 31211, + "ĠдÑĢÑĥгой": 27823, + "ĠдÑĢÑĥз": 23577, + "ĠдÑĢÑĥзÑĮÑı": 28366, + "ĠдÑĥже": 39919, + "ĠдÑĥм": 13082, + "ĠдÑĥмаÑİ": 23479, + "ĠдÑĥÑħ": 35535, + "ĠдÑĥÑħов": 46373, + "ĠдÑĥÑĪ": 39096, + "Ġе": 1997, + "Ġев": 42402, + "Ġего": 6448, + "Ġед": 20686, + "Ġедин": 33791, + "Ġее": 14803, + "Ġей": 30075, + "ĠемÑĥ": 18220, + "ĠеÑģли": 8042, + "ĠеÑģÑĤе": 43775, + "ĠеÑģÑĤÑĮ": 5640, + "ĠеÑīе": 9910, + "ĠеÑīÑij": 13993, + "ĠеÑij": 18346, + "Ġж": 2989, + "Ġжд": 27020, + "Ġже": 6151, + "Ġжел": 21788, + "Ġжен": 21349, + "ĠженÑī": 28393, + "ĠжеÑģÑĤ": 48111, + "Ġжив": 15156, + "ĠживоÑĤ": 38029, + "Ġжиз": 13505, + "Ġжизни": 21415, + "ĠжизнÑĮ": 25362, + "ĠжиÑĤÑĮ": 40124, + "Ġз": 1423, + "Ġза": 4396, + "Ġзаб": 13890, + "Ġзав": 13388, + "ĠзавиÑģ": 39673, + "Ġзаг": 25770, + "Ġзад": 14787, + "ĠзадаÑĩ": 38793, + "Ġзай": 40133, + "Ġзак": 10264, + "ĠзаклÑİÑĩ": 49613, + "Ġзакон": 25206, + "ĠзаконÑĩ": 39641, + "ĠзакÑĢÑĭ": 43993, + "Ġзал": 32897, + "Ġзам": 13597, + "ĠзамеÑĤ": 36124, + "ĠзамеÑĩ": 41618, + "Ġзан": 18596, + "Ġзаним": 25396, + "Ġзап": 10333, + "ĠзапиÑģ": 36426, + "ĠзаÑĢ": 17821, + "ĠзаÑģ": 27819, + "ĠзаÑĤ": 25880, + "ĠзаÑĤем": 45288, + "ĠзаÑħ": 28701, + "ĠзаÑĩ": 34004, + "ĠзаÑĩем": 41521, + "ĠзаÑī": 31107, + "ĠзаÑıв": 38158, + "Ġзв": 13591, + "Ġзвон": 45832, + "ĠзвÑĥÑĩ": 48031, + "Ġзд": 7608, + "ĠздеÑģÑĮ": 9087, + "ĠздоÑĢов": 29638, + "Ġзем": 27230, + "Ġзм": 48979, + "Ġзн": 15309, + "Ġзна": 6766, + "Ġзнаем": 45491, + "ĠзнаеÑĤ": 39986, + "ĠзнаеÑĤе": 29868, + "ĠзнаеÑĪÑĮ": 38423, + "Ġзнак": 31949, + "Ġзнаком": 40909, + "ĠзнаÑĤÑĮ": 49997, + "ĠзнаÑĩ": 27605, + "ĠзнаÑĩиÑĤ": 24013, + "ĠзнаÑİ": 16315, + "Ġзов": 38893, + "ĠзовÑĥÑĤ": 46376, + "ĠзÑĢ": 27589, + "Ġи": 1006, + "Ġиг": 20713, + "ĠигÑĢ": 14568, + "ĠигÑĢа": 37120, + "ĠигÑĢÑĭ": 36183, + "Ġид": 17255, + "Ġиде": 26547, + "ĠидеÑĤ": 40029, + "Ġиз": 3943, + "Ġизб": 38995, + "Ġизв": 22599, + "ĠизвеÑģÑĤ": 37073, + "Ġизмен": 30345, + "ĠизÑĥÑĩ": 43264, + "Ġили": 8101, + "Ġим": 7604, + "Ġиме": 19539, + "ĠимееÑĤ": 33761, + "Ġименно": 20290, + "Ġин": 6635, + "Ġинд": 47106, + "Ġиногда": 43749, + "ĠинÑģÑĤÑĢÑĥменÑĤ": 44572, + "ĠинÑĤ": 44673, + "ĠинÑĤеÑĢ": 12073, + "ĠинÑĤеÑĢеÑģ": 15033, + "ĠинÑĤеÑĢеÑģно": 33333, + "ĠинÑĦоÑĢм": 29117, + "ĠиÑģ": 12410, + "ĠиÑģк": 20284, + "ĠиÑģп": 11265, + "ĠиÑģполÑĮз": 15552, + "ĠиÑģполÑĮзоваÑĤÑĮ": 33728, + "ĠиÑģпÑĭÑĤ": 46212, + "ĠиÑģÑģлед": 40299, + "ĠиÑģÑĤоÑĢ": 18950, + "ĠиÑģÑĤоÑĢии": 40203, + "ĠиÑģÑĤоÑĢиÑı": 41531, + "ĠиÑĤ": 32388, + "ĠиÑĤог": 36745, + "ĠиÑĤоге": 44063, + "ĠиÑħ": 9642, + "Ġй": 24540, + "Ġйого": 44123, + "Ġк": 981, + "Ġкаб": 46186, + "Ġкад": 42650, + "Ġкаж": 22129, + "Ġкажд": 15698, + "ĠкаждÑĭй": 27628, + "ĠкажеÑĤÑģÑı": 26147, + "Ġказ": 37408, + "Ġкак": 3014, + "ĠкакаÑı": 29334, + "Ġкакие": 19971, + "Ġкаким": 49190, + "ĠкакиÑħ": 44178, + "Ġкакое": 37932, + "Ġкакой": 16898, + "ĠкакÑĥÑİ": 45244, + "Ġкам": 21477, + "Ġкан": 18276, + "Ġканал": 28597, + "Ġканале": 47677, + "Ġкап": 31507, + "ĠкаÑĢ": 13560, + "ĠкаÑĢÑĤ": 34692, + "ĠкаÑģ": 43218, + "ĠкаÑĤ": 33780, + "ĠкаÑĩе": 28595, + "Ġкв": 35350, + "ĠкваÑĢ": 33619, + "ĠкваÑĢÑĤи": 37084, + "Ġкил": 37028, + "Ġкино": 49874, + "Ġкл": 14815, + "ĠклаÑģÑģ": 26197, + "Ġкли": 33504, + "ĠклÑİÑĩ": 43398, + "Ġкни": 32178, + "Ġкноп": 40450, + "Ġко": 3898, + "Ġкогда": 8874, + "Ġкого": 28985, + "Ġкож": 40107, + "Ġкол": 10706, + "Ġколи": 49672, + "ĠколиÑĩе": 25816, + "ĠколиÑĩеÑģÑĤво": 33442, + "Ġком": 7761, + "Ġкоман": 46180, + "Ġкоманд": 35991, + "ĠкомменÑĤ": 32469, + "ĠкомменÑĤаÑĢ": 36558, + "Ġкомна": 43418, + "Ġкомп": 14380, + "Ġкомпании": 44231, + "ĠкомпÑĮÑİÑĤ": 48488, + "ĠкомÑĥ": 40158, + "Ġкон": 6184, + "ĠконеÑĩно": 15271, + "ĠконÑĤ": 43064, + "ĠконÑĤÑĢ": 33271, + "ĠконÑĦ": 45751, + "ĠконÑĨ": 33495, + "ĠконÑĨе": 38769, + "Ġкоп": 42399, + "ĠкоÑĢ": 11384, + "ĠкоÑĢаб": 42830, + "ĠкоÑĢп": 45284, + "ĠкоÑģ": 31839, + "ĠкоÑĤ": 39535, + "ĠкоÑĤоÑĢ": 4388, + "ĠкоÑĤоÑĢаÑı": 19032, + "ĠкоÑĤоÑĢого": 36438, + "ĠкоÑĤоÑĢое": 32000, + "ĠкоÑĤоÑĢой": 29452, + "ĠкоÑĤоÑĢом": 39818, + "ĠкоÑĤоÑĢÑĥÑİ": 32355, + "ĠкоÑĤоÑĢÑĭе": 10381, + "ĠкоÑĤоÑĢÑĭй": 11897, + "ĠкоÑĤоÑĢÑĭÑħ": 28700, + "ĠкоÑĪ": 46774, + "ĠкÑĢ": 7502, + "ĠкÑĢа": 38585, + "ĠкÑĢай": 39584, + "ĠкÑĢаÑģ": 15826, + "ĠкÑĢаÑģив": 26679, + "ĠкÑĢеп": 46584, + "ĠкÑĢов": 31679, + "ĠкÑĢÑĥ": 26970, + "ĠкÑĢÑĥг": 43543, + "ĠкÑĢÑĥп": 39207, + "ĠкÑĢÑĥÑĤ": 43217, + "ĠкÑģÑĤаÑĤи": 35304, + "ĠкÑĤо": 12278, + "ĠкÑĥда": 27509, + "ĠкÑĥп": 25078, + "ĠкÑĥÑĢ": 28975, + "ĠкÑĥÑģ": 48431, + "Ġл": 2344, + "Ġладно": 44107, + "Ġлай": 35475, + "Ġлег": 22311, + "Ġлегко": 39995, + "Ġлеж": 41803, + "ĠлеÑģ": 42548, + "ĠлеÑĤ": 13088, + "Ġли": 7444, + "Ġлибо": 31100, + "ĠлиÑĩ": 29936, + "ĠлиÑĪ": 42637, + "ĠлиÑĪÑĮ": 29179, + "Ġлож": 48048, + "ĠлÑĥÑĩ": 15525, + "ĠлÑĥÑĩÑĪе": 21569, + "ĠлÑİ": 5716, + "ĠлÑİб": 9875, + "ĠлÑİбим": 36973, + "ĠлÑİблÑİ": 44683, + "ĠлÑİбов": 45356, + "ĠлÑİбой": 42803, + "ĠлÑİд": 8836, + "ĠлÑİдей": 16810, + "ĠлÑİди": 15850, + "ĠлÑİдÑıм": 45930, + "Ġм": 1084, + "Ġмаг": 27120, + "Ġмагаз": 39771, + "Ġмай": 41860, + "ĠмакÑģим": 35564, + "Ġмал": 19499, + "ĠмаленÑĮ": 26284, + "Ġмало": 37450, + "Ġмам": 40631, + "Ġмама": 47101, + "ĠмаÑĢ": 31609, + "ĠмаÑģ": 21466, + "ĠмаÑģÑģ": 31384, + "ĠмаÑĤ": 20908, + "ĠмаÑĤеÑĢи": 32835, + "ĠмаÑĪ": 19820, + "Ġмед": 24465, + "ĠмеждÑĥ": 24098, + "Ġмел": 44651, + "Ġмен": 6046, + "Ġменее": 38264, + "ĠменÑĮ": 31752, + "ĠменÑĮÑĪе": 35115, + "ĠменÑı": 6885, + "ĠмеÑĢ": 48231, + "ĠмеÑģÑĤ": 16470, + "ĠмеÑģÑĤа": 43956, + "ĠмеÑģÑĤе": 36534, + "ĠмеÑģÑĤо": 26241, + "ĠмеÑģÑı": 29329, + "ĠмеÑĤ": 18791, + "ĠмеÑħ": 48182, + "ĠмеÑĩ": 42721, + "ĠмеÑĪ": 44874, + "Ġми": 13803, + "Ġмик": 43712, + "Ġмилли": 26349, + "Ġмин": 19073, + "Ġминим": 45754, + "ĠминÑĥÑĤ": 24498, + "ĠмиÑĢ": 20536, + "ĠмиÑĢа": 41454, + "ĠмиÑĢе": 36822, + "Ġмн": 16338, + "Ġмне": 8531, + "Ġмног": 22287, + "Ġмногие": 37343, + "Ġмного": 13347, + "Ġмной": 39199, + "Ġмо": 9971, + "Ġмог": 9962, + "Ġмогли": 37118, + "ĠмогÑĥ": 22951, + "ĠмогÑĥÑĤ": 23461, + "Ġмод": 24104, + "Ġмоей": 46270, + "Ġмож": 4710, + "Ġможем": 28815, + "ĠможеÑĤ": 8689, + "ĠможеÑĤе": 23578, + "ĠможеÑĪÑĮ": 46442, + "Ġможно": 8885, + "Ġмоз": 48140, + "Ġмои": 39822, + "Ġмой": 23400, + "Ġмол": 25634, + "Ġмолод": 28801, + "Ġмом": 17655, + "ĠмоменÑĤ": 17825, + "Ġмон": 32457, + "ĠмоÑĢ": 24127, + "ĠмоÑī": 39218, + "ĠмоÑı": 33691, + "ĠмÑĥж": 22081, + "ĠмÑĥжÑĩ": 40051, + "ĠмÑĥз": 26843, + "ĠмÑĥзÑĭ": 34249, + "ĠмÑĭ": 4777, + "ĠмÑĭÑĪ": 45009, + "ĠмÑıÑģ": 40966, + "ĠмÑĸ": 23895, + "Ġн": 757, + "Ġна": 1470, + "Ġнаб": 22499, + "ĠнаблÑİд": 47147, + "Ġнав": 14192, + "ĠнавеÑĢ": 23237, + "ĠнавеÑĢное": 31159, + "Ġнаг": 30584, + "Ġнад": 8469, + "Ġнадо": 13256, + "Ġнаж": 35675, + "Ġназ": 15006, + "Ġназад": 28724, + "Ġназв": 27161, + "ĠназÑĭв": 20922, + "ĠназÑĭваеÑĤÑģÑı": 40659, + "Ġнай": 19235, + "Ġнайд": 41805, + "ĠнайÑĤи": 31993, + "Ġнак": 20955, + "ĠнаконеÑĨ": 49154, + "Ġнал": 32750, + "Ġнам": 11401, + "Ġнами": 44552, + "Ġнап": 9011, + "ĠнапиÑģ": 30442, + "ĠнапÑĢ": 18296, + "ĠнапÑĢав": 36437, + "ĠнапÑĢимеÑĢ": 24044, + "ĠнаÑĢ": 34316, + "ĠнаÑĢод": 32583, + "ĠнаÑģ": 6519, + "ĠнаÑģколÑĮко": 49635, + "ĠнаÑģÑĤ": 35397, + "ĠнаÑģÑĤолÑĮко": 47779, + "ĠнаÑģÑĤоÑıÑī": 35048, + "ĠнаÑģÑĤÑĢо": 47842, + "ĠнаÑĤ": 48290, + "ĠнаÑĥÑĩ": 38019, + "ĠнаÑħод": 19363, + "ĠнаÑħодиÑĤÑģÑı": 34366, + "ĠнаÑĩ": 8970, + "ĠнаÑĩал": 44800, + "ĠнаÑĩала": 40551, + "ĠнаÑĩина": 21995, + "ĠнаÑĪ": 8253, + "ĠнаÑĪа": 48513, + "ĠнаÑĪего": 45309, + "ĠнаÑĪей": 34670, + "ĠнаÑĪем": 48181, + "ĠнаÑĪи": 36314, + "ĠнаÑĪиÑħ": 41525, + "Ġне": 1725, + "Ġнеб": 22783, + "ĠнеболÑĮÑĪ": 32692, + "Ġнев": 21224, + "Ġнего": 15052, + "Ġнед": 15704, + "Ġнее": 33518, + "Ġнез": 34691, + "Ġней": 23227, + "Ġнек": 39269, + "ĠнекоÑĤоÑĢ": 26666, + "ĠнекоÑĤоÑĢÑĭе": 43876, + "ĠнелÑĮзÑı": 33813, + "Ġнем": 13166, + "Ġнемного": 26583, + "Ġнемнож": 39844, + "Ġнемножко": 44382, + "Ġнеоб": 27864, + "ĠнеобÑħод": 31360, + "ĠнеобÑħодимо": 41432, + "Ġнеп": 17005, + "ĠнеÑģ": 30825, + "ĠнеÑģколÑĮко": 21902, + "ĠнеÑĤ": 9916, + "ĠнеÑij": 44527, + "Ġни": 13686, + "Ġниз": 48019, + "Ġник": 11295, + "Ġникак": 23127, + "ĠникакиÑħ": 47357, + "Ġникогда": 29375, + "ĠникÑĤо": 31666, + "Ġним": 25793, + "Ġними": 42371, + "ĠниÑħ": 14319, + "ĠниÑĩего": 16630, + "Ġно": 6035, + "Ġнов": 10022, + "ĠновÑĭе": 39232, + "ĠновÑĭй": 38121, + "ĠновÑĭÑħ": 46308, + "Ġног": 31538, + "Ġнож": 46718, + "Ġном": 36847, + "ĠноÑĢм": 24068, + "ĠноÑĢмалÑĮно": 39601, + "ĠноÑģ": 37245, + "ĠноÑĩ": 38237, + "ĠнÑĢав": 27564, + "ĠнÑĢавиÑĤÑģÑı": 33652, + "ĠнÑĥ": 13087, + "ĠнÑĥж": 9353, + "ĠнÑĥжен": 47867, + "ĠнÑĥжно": 12264, + "ĠнÑĸ": 46645, + "Ġо": 1000, + "Ġоб": 3348, + "ĠобнаÑĢÑĥж": 47841, + "ĠобÑĢаз": 17938, + "ĠобÑĢазом": 29916, + "ĠобÑĢаÑĤ": 29851, + "ĠобÑģ": 47963, + "ĠобÑī": 17224, + "ĠобÑīе": 48078, + "ĠобÑīем": 26842, + "ĠобÑĬ": 16646, + "ĠобÑĬÑıÑģ": 36712, + "ĠобÑĭÑĩ": 32291, + "ĠобÑĭÑĩно": 41878, + "ĠобÑıз": 27945, + "ĠобÑıзаÑĤелÑĮно": 35515, + "Ġог": 33309, + "ĠогÑĢ": 21517, + "ĠогÑĢом": 28107, + "Ġод": 5693, + "Ġодин": 13319, + "Ġодна": 26985, + "Ġодним": 50096, + "Ġодно": 30387, + "Ġодного": 33828, + "Ġодной": 29281, + "Ġодном": 48635, + "ĠоднÑĥ": 37885, + "Ġож": 35666, + "Ġожид": 47136, + "Ġоз": 29176, + "ĠознаÑĩ": 49994, + "Ġок": 11423, + "Ġоказ": 28833, + "Ġоколо": 40573, + "Ġон": 5345, + "Ġона": 8826, + "Ġони": 7515, + "Ġоно": 25369, + "Ġоп": 7683, + "ĠопаÑģ": 39393, + "ĠопеÑĢ": 36742, + "ĠопиÑģ": 32190, + "ĠопиÑģании": 48303, + "ĠопÑĢед": 26961, + "ĠопÑĢедел": 39305, + "ĠопÑĭÑĤ": 48530, + "ĠопÑıÑĤÑĮ": 31545, + "ĠоÑĢ": 18448, + "ĠоÑĢг": 24443, + "ĠоÑĢганиз": 34254, + "ĠоÑĢÑĥж": 46802, + "ĠоÑģ": 8940, + "ĠоÑģв": 46403, + "ĠоÑģнов": 19217, + "ĠоÑģоб": 21244, + "ĠоÑģобенно": 35817, + "ĠоÑģÑĤ": 12574, + "ĠоÑģÑĤав": 25969, + "ĠоÑģÑĤан": 41633, + "ĠоÑģÑĤанов": 44367, + "ĠоÑģÑĤÑĢ": 42710, + "ĠоÑĤ": 2943, + "ĠоÑĤв": 29642, + "ĠоÑĤвеÑĤ": 25284, + "ĠоÑĤвеÑĩ": 47859, + "ĠоÑĤд": 22243, + "ĠоÑĤдел": 50176, + "ĠоÑĤделÑĮ": 41199, + "ĠоÑĤк": 12799, + "ĠоÑĤкÑĢÑĭ": 27085, + "ĠоÑĤкÑĢÑĭв": 44543, + "ĠоÑĤлиÑĩ": 26902, + "ĠоÑĤмеÑĤ": 47318, + "ĠоÑĤно": 22079, + "ĠоÑĤноÑģ": 44539, + "ĠоÑĤноÑĪ": 30708, + "ĠоÑĤп": 22344, + "ĠоÑĤпÑĢав": 38427, + "ĠоÑĤÑģ": 29870, + "ĠоÑĦ": 31950, + "ĠоÑħ": 28871, + "ĠоÑĩ": 5875, + "ĠоÑĩенÑĮ": 6730, + "ĠоÑĩеÑĢ": 33102, + "ĠоÑĪиб": 40253, + "ĠоÑī": 40065, + "ĠоÑīÑĥÑī": 44966, + "Ġп": 713, + "Ġпад": 44149, + "Ġпал": 40415, + "ĠпалÑĮ": 47226, + "Ġпам": 39164, + "Ġпап": 39322, + "ĠпаÑĢ": 11813, + "ĠпаÑĢÑĥ": 44163, + "ĠпеÑĢ": 4321, + "ĠпеÑĢв": 11922, + "ĠпеÑĢвÑĭй": 30025, + "ĠпеÑĢе": 29641, + "ĠпеÑĢев": 28106, + "ĠпеÑĢед": 15621, + "ĠпеÑĢеж": 46450, + "ĠпеÑĢек": 38924, + "ĠпеÑĢем": 35903, + "ĠпеÑĢеп": 48702, + "ĠпеÑĢеÑħод": 46888, + "ĠпеÑĢи": 45602, + "ĠпеÑĢÑģон": 33399, + "ĠпеÑĢÑģонаж": 38063, + "ĠпеÑģ": 37280, + "ĠпеÑĩ": 44875, + "ĠпиÑģ": 39739, + "ĠпиÑĤ": 33615, + "ĠпиÑĪ": 37979, + "Ġпл": 9283, + "Ġплан": 23443, + "ĠплаÑĤ": 34160, + "Ġпло": 22402, + "ĠплоÑħ": 29938, + "ĠплоÑħо": 45210, + "ĠплоÑī": 44633, + "ĠплÑİÑģ": 43342, + "Ġпо": 2801, + "Ġпоб": 20024, + "Ġпобед": 39281, + "Ġпов": 10499, + "ĠповеÑĢÑħ": 44397, + "ĠповÑĤоÑĢ": 42221, + "Ġпог": 17724, + "ĠпоговоÑĢ": 38858, + "Ġпод": 4095, + "ĠподаÑĢ": 43564, + "ĠподгоÑĤов": 49914, + "ĠподдеÑĢж": 30756, + "Ġподоб": 35229, + "ĠподпиÑģ": 27386, + "ĠподÑĤ": 46103, + "ĠподÑĥм": 38664, + "ĠподÑħод": 44617, + "ĠпоеÑħ": 49519, + "Ġпож": 38587, + "ĠпожалÑĥйÑģÑĤа": 32518, + "Ġпоз": 12188, + "Ġпозвол": 28805, + "Ġпой": 31671, + "Ġпойд": 41207, + "Ġпок": 7240, + "Ġпока": 17770, + "Ġпоказ": 21147, + "ĠпоказÑĭв": 34614, + "ĠпокÑĥп": 34005, + "Ġпол": 4692, + "Ġполез": 40191, + "ĠполиÑĤ": 45330, + "ĠполноÑģÑĤÑĮÑİ": 36392, + "Ġполов": 39884, + "Ġполож": 29408, + "ĠполÑĥÑĩ": 9478, + "ĠполÑĥÑĩаеÑĤÑģÑı": 33451, + "ĠполÑĥÑĩилоÑģÑĮ": 44405, + "ĠполÑĥÑĩиÑĤÑģÑı": 49579, + "ĠполÑĥÑĩиÑĤÑĮ": 41725, + "ĠполÑĮз": 30419, + "ĠполÑĮзов": 44803, + "Ġпом": 8613, + "Ġпомог": 27097, + "ĠпомоÑī": 22301, + "ĠпомоÑīÑĮÑİ": 36387, + "Ġпон": 7903, + "Ġпонад": 49581, + "Ġпоним": 15084, + "ĠпонимаÑİ": 35112, + "ĠпонÑĢав": 34752, + "ĠпонÑıл": 37975, + "ĠпонÑıÑĤно": 39718, + "ĠпонÑıÑĤÑĮ": 44403, + "Ġпоп": 10694, + "Ġпопад": 43613, + "ĠпопÑĢоб": 34089, + "ĠпопÑĥлÑıÑĢ": 46732, + "ĠпопÑĭÑĤ": 46047, + "ĠпоÑĢ": 11948, + "ĠпоÑĢÑıд": 36681, + "ĠпоÑģ": 5810, + "ĠпоÑģле": 16107, + "ĠпоÑģлед": 19253, + "ĠпоÑģмоÑĤÑĢ": 19240, + "ĠпоÑģмоÑĤÑĢеÑĤÑĮ": 38482, + "ĠпоÑģмоÑĤÑĢим": 42293, + "ĠпоÑģÑĤ": 27877, + "ĠпоÑģÑĤав": 28072, + "ĠпоÑģÑĤо": 31299, + "ĠпоÑģÑĤоÑıн": 33212, + "ĠпоÑģÑĤоÑıнно": 41548, + "ĠпоÑģÑĤÑĢо": 47526, + "ĠпоÑģÑĤÑĥп": 43829, + "ĠпоÑĤ": 6364, + "ĠпоÑĤеÑĢ": 39363, + "ĠпоÑĤом": 16873, + "ĠпоÑĤомÑĥ": 11919, + "ĠпоÑĤÑĢ": 26146, + "ĠпоÑĤÑĢеб": 40529, + "ĠпоÑħ": 23052, + "ĠпоÑħож": 38862, + "ĠпоÑĩ": 12079, + "ĠпоÑĩемÑĥ": 21513, + "ĠпоÑĩÑĤи": 30529, + "ĠпоÑĪ": 27148, + "ĠпоÑįÑĤомÑĥ": 19698, + "ĠпоÑıв": 20011, + "ĠпÑĢ": 1285, + "ĠпÑĢав": 10615, + "ĠпÑĢавда": 37136, + "ĠпÑĢавилÑĮно": 39321, + "ĠпÑĢакÑĤи": 27109, + "ĠпÑĢакÑĤиÑĩеÑģки": 38086, + "ĠпÑĢе": 43228, + "ĠпÑĢев": 34393, + "ĠпÑĢед": 8048, + "ĠпÑĢедлаг": 46841, + "ĠпÑĢедлож": 40373, + "ĠпÑĢедÑģÑĤав": 27167, + "ĠпÑĢедÑģÑĤавлÑı": 39412, + "ĠпÑĢез": 39838, + "ĠпÑĢезид": 49529, + "ĠпÑĢек": 28939, + "ĠпÑĢекÑĢаÑģ": 33620, + "ĠпÑĢеп": 47510, + "ĠпÑĢеÑģÑĤ": 44481, + "ĠпÑĢеÑģÑĤÑĥп": 48991, + "ĠпÑĢи": 5082, + "ĠпÑĢиб": 31436, + "ĠпÑĢив": 13398, + "ĠпÑĢивеÑĤ": 33879, + "ĠпÑĢиг": 42619, + "ĠпÑĢигоÑĤов": 49630, + "ĠпÑĢид": 21255, + "ĠпÑĢидÑĥм": 45234, + "ĠпÑĢиеÑħ": 38567, + "ĠпÑĢиз": 26724, + "ĠпÑĢик": 25492, + "ĠпÑĢил": 34770, + "ĠпÑĢилож": 47251, + "ĠпÑĢим": 31806, + "ĠпÑĢимеÑĢ": 22545, + "ĠпÑĢимеÑĢно": 37424, + "ĠпÑĢин": 16003, + "ĠпÑĢиним": 44396, + "ĠпÑĢинÑĨип": 30147, + "ĠпÑĢинÑĨипе": 39086, + "ĠпÑĢиÑĢ": 41640, + "ĠпÑĢиÑģ": 26686, + "ĠпÑĢиÑħод": 26641, + "ĠпÑĢиÑĩ": 26472, + "ĠпÑĢиÑĪ": 22448, + "ĠпÑĢо": 4178, + "ĠпÑĢоб": 15122, + "ĠпÑĢоблем": 20920, + "ĠпÑĢоблема": 48264, + "ĠпÑĢоблемÑĭ": 44340, + "ĠпÑĢов": 13422, + "ĠпÑĢовеÑĢ": 30901, + "ĠпÑĢовод": 33924, + "ĠпÑĢог": 20192, + "ĠпÑĢогÑĢам": 29043, + "ĠпÑĢод": 11354, + "ĠпÑĢодолж": 24519, + "ĠпÑĢодÑĥк": 33873, + "ĠпÑĢоекÑĤ": 32275, + "ĠпÑĢоиз": 16769, + "ĠпÑĢоизвод": 28685, + "ĠпÑĢоизоÑĪ": 41476, + "ĠпÑĢоиÑģ": 21482, + "ĠпÑĢоиÑģÑħодиÑĤ": 28548, + "ĠпÑĢок": 37225, + "ĠпÑĢом": 42988, + "ĠпÑĢоп": 23497, + "ĠпÑĢоÑģ": 21109, + "ĠпÑĢоÑģÑĤ": 27959, + "ĠпÑĢоÑģÑĤо": 8221, + "ĠпÑĢоÑĤ": 15602, + "ĠпÑĢоÑĤив": 22534, + "ĠпÑĢоÑĦ": 33011, + "ĠпÑĢоÑĦеÑģÑģ": 43624, + "ĠпÑĢоÑħод": 39782, + "ĠпÑĢоÑĨ": 20640, + "ĠпÑĢоÑĨеÑģÑģ": 30965, + "ĠпÑĢоÑĩ": 38828, + "ĠпÑĢоÑĪ": 20567, + "ĠпÑĢоÑĪл": 48596, + "ĠпÑĢÑĭ": 50236, + "ĠпÑĢÑıм": 18449, + "ĠпÑĢÑıмо": 28547, + "ĠпÑģ": 40163, + "ĠпÑģиÑħ": 44159, + "ĠпÑĥ": 30836, + "ĠпÑĥÑĤ": 37581, + "ĠпÑĭÑĤ": 28806, + "ĠпÑıÑĤ": 41367, + "ĠпÑıÑĤÑĮ": 43618, + "ĠпÑĸд": 26419, + "ĠÐĨ": 23297, + "ĠÐIJ": 3450, + "ĠÐIJв": 50175, + "ĠÐIJл": 43104, + "ĠÐIJле": 45043, + "ĠÐIJлекÑģ": 32228, + "ĠÐIJлекÑģанд": 44938, + "ĠÐIJн": 20802, + "ĠÐIJнд": 39583, + "ĠÐIJÑĢ": 32091, + "ĠÐij": 5697, + "ĠÐijог": 34008, + "ĠÐijÑĥд": 40208, + "ĠÐijÑĭ": 44804, + "ĠÐĴ": 2348, + "ĠÐĴам": 43670, + "ĠÐĴаÑģ": 37055, + "ĠÐĴедÑĮ": 42612, + "ĠÐĴид": 42888, + "ĠÐĴлад": 41022, + "ĠÐĴо": 24334, + "ĠÐĴоÑĤ": 9756, + "ĠÐĴÑģ": 10779, + "ĠÐĴÑģе": 18029, + "ĠÐĴÑģем": 37367, + "ĠÐĴÑģÑij": 29661, + "ĠÐĴÑĤоÑĢ": 49732, + "ĠÐĴÑĭ": 11886, + "ĠÐĵ": 7247, + "ĠÐĵде": 41996, + "ĠÐĵоÑģ": 47206, + "ĠÐĶ": 3401, + "ĠÐĶа": 9149, + "ĠÐĶав": 17853, + "ĠÐĶавай": 29196, + "ĠÐĶавайÑĤе": 30487, + "ĠÐĶаже": 42900, + "ĠÐĶж": 23792, + "ĠÐĶлÑı": 21324, + "ĠÐĶо": 31695, + "ĠÐķ": 6538, + "ĠÐķв": 34019, + "ĠÐķго": 32908, + "ĠÐķÑģли": 12412, + "ĠÐķÑģÑĤÑĮ": 30547, + "ĠÐķÑīе": 44122, + "ĠÐĸ": 18977, + "ĠÐĹ": 5841, + "ĠÐĹа": 22391, + "ĠÐĹап": 49612, + "ĠÐĹд": 17613, + "ĠÐĹдеÑģÑĮ": 23367, + "ĠÐĹем": 42604, + "ĠÐĹна": 30869, + "ĠÐĹнаÑĩиÑĤ": 44827, + "ĠÐĺ": 3272, + "ĠÐĺз": 24588, + "ĠÐĺли": 34361, + "ĠÐĺм": 34759, + "ĠÐĺн": 27222, + "ĠÐĺÑĤак": 28793, + "ĠÐļ": 3422, + "ĠÐļак": 11011, + "ĠÐļаÑĢ": 43923, + "ĠÐļогда": 23128, + "ĠÐļол": 45363, + "ĠÐļон": 23827, + "ĠÐļонеÑĩно": 35108, + "ĠÐļоÑĢ": 29635, + "ĠÐļÑĢаÑģ": 49491, + "ĠÐļÑģÑĤаÑĤи": 39883, + "ĠÐļÑĤо": 33953, + "ĠÐĽ": 7853, + "ĠÐĽÑİ": 25968, + "ĠÐĽÑİб": 47369, + "ĠÐľ": 3493, + "ĠÐľÐ£": 24143, + "ĠÐľÐ£ÐĹЫÐļÐIJ": 25007, + "ĠÐľÐ°ÑĢ": 26182, + "ĠÐľÐµÐ½Ñı": 47311, + "ĠÐľÐ¸": 47250, + "ĠÐľÐ¸Ñħ": 50150, + "ĠÐľÐ½Ðµ": 23204, + "ĠÐľÐ¾Ð¶ÐµÑĤ": 32786, + "ĠÐľÐ¾Ð¶Ð½Ð¾": 34423, + "ĠÐľÐ¾Ñģ": 32327, + "ĠÐľÐ¾Ñģкв": 38842, + "ĠÐľÑĭ": 12726, + "ĠÐĿ": 2410, + "ĠÐĿа": 11245, + "ĠÐĿав": 46929, + "ĠÐĿад": 29637, + "ĠÐĿадо": 48562, + "ĠÐĿам": 46147, + "ĠÐĿап": 28167, + "ĠÐĿапÑĢ": 36552, + "ĠÐĿапÑĢимеÑĢ": 39645, + "ĠÐĿаÑĩ": 48493, + "ĠÐĿе": 11512, + "ĠÐĿеÑĤ": 21249, + "ĠÐĿик": 28448, + "ĠÐĿо": 7264, + "ĠÐĿов": 36062, + "ĠÐĿÐIJ": 44416, + "ĠÐĿÑĥ": 7571, + "ĠÐŀ": 3688, + "ĠÐŀб": 22853, + "ĠÐŀд": 20125, + "ĠÐŀднако": 39757, + "ĠÐŀй": 42724, + "ĠÐŀк": 48984, + "ĠÐŀн": 12409, + "ĠÐŀна": 20280, + "ĠÐŀни": 18973, + "ĠÐŀп": 45246, + "ĠÐŀÑģ": 38590, + "ĠÐŀÑĤ": 18611, + "ĠÐŀÑĩ": 30352, + "ĠÐŀÑĩенÑĮ": 34062, + "ĠÐŁ": 2608, + "ĠÐŁÐµÑĢ": 20426, + "ĠÐŁÐµÑĢв": 34182, + "ĠÐŁÐ¾": 12121, + "ĠÐŁÐ¾Ð´": 23120, + "ĠÐŁÐ¾ÐºÐ°": 38401, + "ĠÐŁÐ¾Ð»": 28183, + "ĠÐŁÐ¾Ð¼": 43030, + "ĠÐŁÐ¾Ð½": 36067, + "ĠÐŁÐ¾Ñģ": 18689, + "ĠÐŁÐ¾Ñģле": 32747, + "ĠÐŁÐ¾ÑĤ": 17993, + "ĠÐŁÐ¾ÑĤом": 45941, + "ĠÐŁÐ¾ÑĤомÑĥ": 23671, + "ĠÐŁÐ¾ÑĩемÑĥ": 32823, + "ĠÐŁÐ¾ÑįÑĤомÑĥ": 22318, + "ĠÐŁÑĢ": 8567, + "ĠÐŁÑĢав": 39793, + "ĠÐŁÑĢед": 46825, + "ĠÐŁÑĢи": 22059, + "ĠÐŁÑĢивеÑĤ": 38932, + "ĠÐŁÑĢо": 38529, + "ĠÐŁÑĢоÑģÑĤо": 34751, + "ĠÐł": 6325, + "ĠÐłÐ°Ð·": 28972, + "ĠÐłÐ¾ÑģÑģ": 21997, + "ĠÐłÐ¾ÑģÑģии": 29007, + "ĠÐŃ": 5381, + "ĠÐŃÑĤо": 6684, + "ĠÐŃÑĤоÑĤ": 42054, + "ĠÑ": 1015, + "ĠÑĢ": 1475, + "ĠÑĢаб": 41499, + "ĠÑĢабоÑĤ": 9197, + "ĠÑĢабоÑĤаеÑĤ": 30162, + "ĠÑĢабоÑĤаÑĤÑĮ": 33637, + "ĠÑĢабоÑĤÑĥ": 39382, + "ĠÑĢабоÑĤÑĭ": 35402, + "ĠÑĢав": 19353, + "ĠÑĢавно": 27354, + "ĠÑĢад": 26622, + "ĠÑĢади": 34748, + "ĠÑĢаз": 4203, + "ĠÑĢаза": 49578, + "ĠÑĢазб": 26868, + "ĠÑĢазв": 20019, + "ĠÑĢазвиÑĤ": 47359, + "ĠÑĢазг": 39901, + "ĠÑĢаздел": 45414, + "ĠÑĢазлиÑĩ": 40140, + "ĠÑĢазм": 47075, + "ĠÑĢазмеÑĢ": 41813, + "ĠÑĢазнÑĭе": 43059, + "ĠÑĢазнÑĭÑħ": 40644, + "ĠÑĢазÑĢ": 24051, + "ĠÑĢазÑĢабоÑĤ": 38976, + "ĠÑĢай": 37590, + "ĠÑĢан": 36463, + "ĠÑĢанÑĮÑĪе": 40442, + "ĠÑĢаÑģ": 7459, + "ĠÑĢаÑģк": 46666, + "ĠÑĢаÑģп": 26588, + "ĠÑĢаÑģÑģ": 23345, + "ĠÑĢаÑģÑģк": 17399, + "ĠÑĢаÑģÑģказ": 34760, + "ĠÑĢаÑģÑģказÑĭв": 33446, + "ĠÑĢаÑģÑĤ": 31274, + "ĠÑĢе": 15492, + "ĠÑĢеалÑĮно": 38001, + "ĠÑĢеб": 18902, + "ĠÑĢебен": 41417, + "ĠÑĢебÑıÑĤа": 37678, + "ĠÑĢег": 31235, + "ĠÑĢед": 42845, + "ĠÑĢеж": 28418, + "ĠÑĢежим": 37710, + "ĠÑĢез": 17749, + "ĠÑĢезÑĥлÑĮÑĤаÑĤ": 28476, + "ĠÑĢек": 22801, + "ĠÑĢеÑģ": 39836, + "ĠÑĢеÑĪ": 14025, + "ĠÑĢеÑĪил": 44240, + "ĠÑĢиÑģ": 31393, + "ĠÑĢо": 49493, + "ĠÑĢоб": 30971, + "ĠÑĢод": 17925, + "ĠÑĢоз": 20681, + "ĠÑĢок": 31833, + "ĠÑĢол": 26725, + "ĠÑĢолÑĮ": 49189, + "ĠÑĢоÑģ": 44935, + "ĠÑĢоÑģÑģ": 43809, + "ĠÑĢоÑģÑģий": 48971, + "ĠÑĢÑĥ": 17292, + "ĠÑĢÑĥб": 27371, + "ĠÑĢÑĥблей": 40851, + "ĠÑĢÑĥк": 36765, + "ĠÑĢÑĥки": 39304, + "ĠÑĢÑĥÑģ": 27198, + "ĠÑĢÑĭ": 22791, + "ĠÑĢÑĭн": 37314, + "ĠÑĢÑıд": 32921, + "ĠÑĢÑıдом": 43190, + "ĠÑģ": 776, + "ĠÑģам": 5602, + "ĠÑģама": 40517, + "ĠÑģами": 34085, + "ĠÑģамо": 43745, + "ĠÑģамого": 42264, + "ĠÑģамое": 25676, + "ĠÑģамой": 49560, + "ĠÑģамом": 22108, + "ĠÑģамÑĭе": 44253, + "ĠÑģамÑĭй": 30688, + "ĠÑģамÑĭÑħ": 37241, + "ĠÑģб": 29014, + "ĠÑģв": 4155, + "ĠÑģвеÑĤ": 28492, + "ĠÑģвид": 43666, + "ĠÑģво": 6989, + "ĠÑģвобод": 39021, + "ĠÑģвое": 42666, + "ĠÑģвоего": 32325, + "ĠÑģвоей": 25346, + "ĠÑģвои": 25375, + "ĠÑģвоим": 37337, + "ĠÑģвоиÑħ": 30316, + "ĠÑģвой": 25190, + "ĠÑģвоÑİ": 23069, + "ĠÑģвÑıз": 22430, + "ĠÑģд": 48001, + "ĠÑģдел": 10326, + "ĠÑģделал": 40653, + "ĠÑģделали": 44780, + "ĠÑģделаÑĤÑĮ": 18695, + "ĠÑģе": 27383, + "ĠÑģеб": 9968, + "ĠÑģебе": 16683, + "ĠÑģебÑı": 15403, + "ĠÑģегоднÑı": 17413, + "ĠÑģейÑĩаÑģ": 10241, + "ĠÑģек": 22869, + "ĠÑģем": 20933, + "ĠÑģемÑĮ": 36735, + "ĠÑģеÑĢ": 14490, + "ĠÑģеÑĢд": 38479, + "ĠÑģеÑĢÑĮ": 35178, + "ĠÑģеÑĢÑĮез": 47065, + "ĠÑģиг": 48805, + "ĠÑģид": 27360, + "ĠÑģил": 24776, + "ĠÑģилÑĮ": 34158, + "ĠÑģилÑĮно": 31350, + "ĠÑģим": 38994, + "ĠÑģин": 47079, + "ĠÑģиÑģÑĤ": 21351, + "ĠÑģиÑģÑĤем": 24067, + "ĠÑģиÑģÑĤема": 48123, + "ĠÑģиÑĤÑĥ": 27840, + "ĠÑģк": 5239, + "ĠÑģкаж": 21938, + "ĠÑģказ": 10867, + "ĠÑģказал": 24980, + "ĠÑģказала": 48179, + "ĠÑģказаÑĤÑĮ": 20636, + "ĠÑģклад": 46185, + "ĠÑģколÑĮко": 28838, + "ĠÑģкоÑĢ": 17575, + "ĠÑģкоÑĢее": 41420, + "ĠÑģкоÑĢо": 44971, + "ĠÑģл": 4766, + "ĠÑģлед": 15363, + "ĠÑģледÑĥÑİÑī": 26045, + "ĠÑģлиÑĪком": 40576, + "ĠÑģлов": 20319, + "ĠÑģлова": 39002, + "ĠÑģлово": 43272, + "ĠÑģлож": 30858, + "ĠÑģложно": 41016, + "ĠÑģлÑĥж": 35459, + "ĠÑģлÑĥÑĩ": 14002, + "ĠÑģлÑĥÑĩа": 23775, + "ĠÑģлÑĥÑĩае": 26425, + "ĠÑģлÑĥÑĩай": 40181, + "ĠÑģлÑĥÑĪ": 41839, + "ĠÑģлÑĭÑĪ": 31814, + "ĠÑģм": 6871, + "ĠÑģмеÑĢ": 39997, + "ĠÑģмог": 32139, + "ĠÑģмож": 47044, + "ĠÑģмоÑĤÑĢ": 17726, + "ĠÑģмоÑĤÑĢеÑĤÑĮ": 43922, + "ĠÑģмоÑĤÑĢиÑĤе": 46441, + "ĠÑģмÑĭÑģ": 44045, + "ĠÑģн": 42864, + "ĠÑģнаÑĩала": 44437, + "ĠÑģним": 28098, + "ĠÑģнова": 36114, + "ĠÑģо": 7425, + "ĠÑģоб": 10450, + "ĠÑģобиÑĢ": 41534, + "ĠÑģобой": 32474, + "ĠÑģобÑģÑĤвен": 44177, + "ĠÑģобÑģÑĤвенно": 49863, + "ĠÑģобÑĭÑĤи": 42654, + "ĠÑģов": 11030, + "ĠÑģовеÑĢÑĪ": 26227, + "ĠÑģовеÑĢÑĪенно": 37075, + "ĠÑģовеÑĤ": 35282, + "ĠÑģовÑĢем": 42880, + "ĠÑģовÑģем": 27711, + "ĠÑģог": 33255, + "ĠÑģоглаÑģ": 40587, + "ĠÑģод": 45744, + "ĠÑģодеÑĢж": 48206, + "ĠÑģожал": 45999, + "ĠÑģожалениÑİ": 48018, + "ĠÑģоз": 14729, + "ĠÑģозд": 20247, + "ĠÑģозн": 41334, + "ĠÑģок": 38419, + "ĠÑģол": 36059, + "ĠÑģолн": 49685, + "ĠÑģообÑī": 40626, + "ĠÑģооÑĤвеÑĤ": 36815, + "ĠÑģоп": 39135, + "ĠÑģоÑĢ": 43992, + "ĠÑģоÑģ": 33165, + "ĠÑģоÑģÑĤав": 41772, + "ĠÑģоÑģÑĤо": 25631, + "ĠÑģоÑģÑĤоÑıни": 36017, + "ĠÑģоÑĤ": 32206, + "ĠÑģоÑĤÑĢÑĥд": 50233, + "ĠÑģоÑħ": 38696, + "ĠÑģоÑħÑĢан": 41571, + "ĠÑģп": 5307, + "ĠÑģпаÑģ": 41895, + "ĠÑģпаÑģибо": 37536, + "ĠÑģпеÑĨи": 25665, + "ĠÑģпиÑģ": 49918, + "ĠÑģпокой": 47471, + "ĠÑģпоÑĢÑĤ": 49941, + "ĠÑģпоÑģоб": 23677, + "ĠÑģпÑĢав": 31853, + "ĠÑģпÑĢоÑģ": 44312, + "ĠÑģÑĢав": 42987, + "ĠÑģÑĢазÑĥ": 22014, + "ĠÑģÑĢед": 20446, + "ĠÑģÑģÑĭл": 41480, + "ĠÑģÑĤ": 3266, + "ĠÑģÑĤав": 25709, + "ĠÑģÑĤал": 28980, + "ĠÑģÑĤала": 44503, + "ĠÑģÑĤали": 39029, + "ĠÑģÑĤало": 39633, + "ĠÑģÑĤан": 27214, + "ĠÑģÑĤанов": 32003, + "ĠÑģÑĤановиÑĤÑģÑı": 44799, + "ĠÑģÑĤаÑĢ": 17241, + "ĠÑģÑĤаÑĤÑĮ": 36415, + "ĠÑģÑĤен": 48357, + "ĠÑģÑĤо": 13552, + "ĠÑģÑĤоиÑĤ": 23675, + "ĠÑģÑĤол": 24053, + "ĠÑģÑĤолÑĮко": 50156, + "ĠÑģÑĤоÑĢ": 16632, + "ĠÑģÑĤоÑĢон": 17635, + "ĠÑģÑĤоÑĢонÑĥ": 44205, + "ĠÑģÑĤоÑĢонÑĭ": 28360, + "ĠÑģÑĤÑĢ": 18425, + "ĠÑģÑĤÑĢан": 18057, + "ĠÑģÑĤÑĢаÑħ": 50190, + "ĠÑģÑĤÑĢаÑĪ": 35611, + "ĠÑģÑĤÑĢо": 35860, + "ĠÑģÑĤÑĥд": 44322, + "ĠÑģÑĥ": 18272, + "ĠÑģÑĥд": 30103, + "ĠÑģÑĥм": 31372, + "ĠÑģÑĥп": 32453, + "ĠÑģÑĥÑīеÑģÑĤв": 30447, + "ĠÑģÑħ": 42755, + "ĠÑģÑĨен": 40436, + "ĠÑģÑĩ": 23812, + "ĠÑģÑĩиÑĤ": 22413, + "ĠÑģÑĬ": 27223, + "ĠÑģÑĭ": 21811, + "ĠÑģÑİ": 19172, + "ĠÑģÑİда": 25306, + "ĠÑģÑİж": 49785, + "ĠÑĤ": 1069, + "ĠÑĤа": 18752, + "ĠÑĤай": 50074, + "ĠÑĤак": 2936, + "ĠÑĤакаÑı": 22075, + "ĠÑĤакже": 16584, + "ĠÑĤакие": 20113, + "ĠÑĤаким": 31584, + "ĠÑĤакиÑħ": 28572, + "ĠÑĤакого": 31158, + "ĠÑĤакое": 18292, + "ĠÑĤакой": 13452, + "ĠÑĤакÑĥÑİ": 42456, + "ĠÑĤам": 8223, + "ĠÑĤан": 33344, + "ĠÑĤво": 25144, + "ĠÑĤвоÑĢ": 42767, + "ĠÑĤе": 18445, + "ĠÑĤеб": 8458, + "ĠÑĤебе": 14656, + "ĠÑĤебÑı": 12644, + "ĠÑĤел": 15619, + "ĠÑĤелеÑĦ": 33356, + "ĠÑĤелеÑĦон": 44485, + "ĠÑĤем": 12532, + "ĠÑĤемпеÑĢ": 45609, + "ĠÑĤеп": 38923, + "ĠÑĤепеÑĢÑĮ": 16983, + "ĠÑĤеÑĢ": 21168, + "ĠÑĤеÑĢÑĢи": 49634, + "ĠÑĤеÑģÑĤ": 41699, + "ĠÑĤеÑħ": 16615, + "ĠÑĤеÑħнолог": 42709, + "ĠÑĤи": 39317, + "ĠÑĤип": 26264, + "ĠÑĤипа": 35443, + "ĠÑĤо": 4572, + "ĠÑĤоб": 32046, + "ĠÑĤобой": 38068, + "ĠÑĤов": 35838, + "ĠÑĤогда": 21696, + "ĠÑĤого": 11283, + "ĠÑĤоже": 12251, + "ĠÑĤой": 38509, + "ĠÑĤол": 36038, + "ĠÑĤолÑĮко": 9008, + "ĠÑĤом": 13294, + "ĠÑĤомÑĥ": 23644, + "ĠÑĤон": 37089, + "ĠÑĤоп": 41637, + "ĠÑĤоÑĢ": 25594, + "ĠÑĤоÑĤ": 23900, + "ĠÑĤоÑĩ": 23045, + "ĠÑĤоÑĩки": 47880, + "ĠÑĤоÑĩно": 25311, + "ĠÑĤÑĢ": 7550, + "ĠÑĤÑĢав": 46647, + "ĠÑĤÑĢади": 48098, + "ĠÑĤÑĢан": 45454, + "ĠÑĤÑĢеб": 31525, + "ĠÑĤÑĢеÑĤÑĮ": 45305, + "ĠÑĤÑĢи": 22068, + "ĠÑĤÑĢÑĥ": 36310, + "ĠÑĤÑĢÑĥд": 36853, + "ĠÑĤÑĥ": 30480, + "ĠÑĤÑĥда": 30433, + "ĠÑĤÑĥÑĢ": 49248, + "ĠÑĤÑĥÑĤ": 12848, + "ĠÑĤÑĭ": 5991, + "ĠÑĤÑĭÑģÑıÑĩ": 25025, + "ĠÑĤÑıж": 34641, + "ĠÑĥ": 1595, + "ĠÑĥб": 13853, + "ĠÑĥбий": 40636, + "ĠÑĥв": 13247, + "ĠÑĥвелиÑĩ": 41511, + "ĠÑĥвеÑĢ": 32838, + "ĠÑĥвид": 21974, + "ĠÑĥвидеÑĤÑĮ": 46095, + "ĠÑĥг": 20392, + "ĠÑĥд": 11927, + "ĠÑĥдаÑĢ": 39047, + "ĠÑĥдив": 36459, + "ĠÑĥдоб": 35943, + "ĠÑĥж": 25261, + "ĠÑĥжаÑģ": 44973, + "ĠÑĥже": 7520, + "ĠÑĥз": 20940, + "ĠÑĥзна": 33562, + "ĠÑĥк": 32546, + "ĠÑĥкÑĢаÑĹ": 48350, + "ĠÑĥкÑĢаÑĹн": 49454, + "ĠÑĥли": 36639, + "ĠÑĥм": 17497, + "ĠÑĥп": 16036, + "ĠÑĥпÑĢав": 44080, + "ĠÑĥÑĢов": 25200, + "ĠÑĥÑģ": 26732, + "ĠÑĥÑģл": 24636, + "ĠÑĥÑģлов": 34974, + "ĠÑĥÑģп": 23944, + "ĠÑĥÑģÑĤ": 21204, + "ĠÑĥÑģÑĤанов": 31866, + "ĠÑĥÑģÑĤÑĢой": 48582, + "ĠÑĥÑĤ": 25448, + "ĠÑĥÑĩ": 13774, + "ĠÑĥÑĩаÑģÑĤ": 40970, + "ĠÑĥÑĪ": 38521, + "ĠÑĦ": 4394, + "ĠÑĦак": 31953, + "ĠÑĦиз": 44662, + "ĠÑĦилÑĮ": 16172, + "ĠÑĦилÑĮм": 22506, + "ĠÑĦилÑĮма": 36293, + "ĠÑĦин": 42020, + "ĠÑĦоÑĢм": 22817, + "ĠÑĦоÑĤ": 35896, + "ĠÑĦоÑĤогÑĢаÑĦ": 40855, + "ĠÑĦÑĥнк": 39484, + "ĠÑħ": 3490, + "ĠÑħаÑĢ": 38795, + "ĠÑħаÑĢакÑĤеÑĢ": 46144, + "ĠÑħваÑĤ": 32985, + "ĠÑħл": 45566, + "ĠÑħод": 23571, + "ĠÑħозÑı": 49791, + "ĠÑħолод": 39726, + "ĠÑħоÑĢоÑĪ": 11436, + "ĠÑħоÑĢоÑĪий": 48917, + "ĠÑħоÑĢоÑĪо": 16977, + "ĠÑħоÑĤ": 11515, + "ĠÑħоÑĤел": 27688, + "ĠÑħоÑĤиÑĤе": 39268, + "ĠÑħоÑĤÑĮ": 39605, + "ĠÑħоÑĤÑı": 30988, + "ĠÑħоÑĩ": 13057, + "ĠÑħоÑĩеÑĤ": 42175, + "ĠÑħоÑĩеÑĤÑģÑı": 48453, + "ĠÑħоÑĩеÑĪÑĮ": 45656, + "ĠÑħоÑĩÑĥ": 22168, + "ĠÑħÑĥд": 48609, + "ĠÑĨ": 5188, + "ĠÑĨвеÑĤ": 24937, + "ĠÑĨе": 18404, + "ĠÑĨел": 22750, + "ĠÑĨен": 39821, + "ĠÑĨенÑĤ": 26845, + "ĠÑĨенÑĤÑĢ": 46536, + "ĠÑĩ": 1358, + "ĠÑĩа": 15369, + "ĠÑĩаÑģ": 13562, + "ĠÑĩаÑģов": 44477, + "ĠÑĩаÑģÑĤ": 33107, + "ĠÑĩаÑģÑĤи": 29168, + "ĠÑĩаÑģÑĤо": 26549, + "ĠÑĩаÑģÑĤÑĮ": 24544, + "ĠÑĩего": 19275, + "ĠÑĩелов": 10347, + "ĠÑĩеловек": 11326, + "ĠÑĩеловека": 25109, + "ĠÑĩеловеÑĩ": 41365, + "ĠÑĩем": 12056, + "ĠÑĩеÑĢ": 12360, + "ĠÑĩеÑĢез": 17341, + "ĠÑĩеÑĤ": 38140, + "ĠÑĩеÑĤÑĭ": 39644, + "ĠÑĩи": 46660, + "ĠÑĩиÑģ": 23201, + "ĠÑĩиÑģÑĤ": 44459, + "ĠÑĩиÑĤ": 38522, + "ĠÑĩÑĤо": 2143, + "ĠÑĩÑĤоб": 48647, + "ĠÑĩÑĤобÑĭ": 7887, + "ĠÑĩÑĥв": 22472, + "ĠÑĩÑĥвÑģÑĤв": 29269, + "ĠÑĩÑĥд": 43332, + "ĠÑĩÑĥÑĤÑĮ": 30422, + "ĠÑĪ": 5941, + "ĠÑĪиÑĢ": 44583, + "ĠÑĪкол": 33009, + "ĠÑĪÑĤ": 28826, + "ĠÑī": 9427, + "ĠÑīе": 35547, + "ĠÑīо": 14309, + "ĠÑīоб": 42899, + "ĠÑį": 1704, + "ĠÑįк": 13817, + "ĠÑįконом": 41800, + "ĠÑįкÑĢан": 41643, + "ĠÑįкÑģп": 29030, + "ĠÑįкÑģпеÑĢ": 40404, + "ĠÑįлекÑĤ": 31314, + "ĠÑįлем": 44509, + "ĠÑįн": 31037, + "ĠÑįнеÑĢг": 40804, + "ĠÑįп": 43985, + "ĠÑįÑĤ": 4030, + "ĠÑįÑĤа": 21396, + "ĠÑįÑĤи": 11012, + "ĠÑįÑĤим": 23094, + "ĠÑįÑĤиÑħ": 23296, + "ĠÑįÑĤо": 2691, + "ĠÑįÑĤого": 10751, + "ĠÑįÑĤой": 14907, + "ĠÑįÑĤом": 10755, + "ĠÑįÑĤомÑĥ": 31500, + "ĠÑįÑĤоÑĤ": 11508, + "ĠÑįÑĤÑĥ": 18763, + "ĠÑįÑĦÑĦ": 33607, + "ĠÑİ": 29488, + "ĠÑı": 2552, + "ĠÑıв": 19028, + "ĠÑıвлÑıеÑĤÑģÑı": 29755, + "ĠÑıзÑĭ": 29364, + "ĠÑıк": 14760, + "ĠÑıкÑĸ": 35110, + "ĠÑıÑĢ": 44016, + "ĠÑĶ": 28669, + "ĠÑĸ": 8934, + "ĠÑĸз": 49973, + "ĠÑĸн": 29858, + "ĠÑĹ": 27902, + "ĠÑĹÑħ": 49084, + "ĠÕ": 14822, + "Ġ×": 877, + "Ġס": 19713, + "Ġ×¢": 7535, + "Ġ×¢×ľ": 15929, + "Ġ×¢×Ŀ": 31464, + "Ġפ": 13323, + "Ġפ×Ķ": 40833, + "Ġצ": 24803, + "Ġצר": 43563, + "Ġק": 14831, + "Ġר": 12926, + "Ġרק": 44918, + "Ġר×ķצ": 41927, + "Ġש": 4113, + "Ġש×IJ×": 39360, + "Ġש×Ķ": 19208, + "Ġש×Ķ×ķ×IJ": 47862, + "Ġש׾": 8817, + "Ġש׾×Ļ": 48982, + "Ġש×ŀ×": 36327, + "Ġש׳": 30222, + "Ġת": 13965, + "Ġ×IJ": 8428, + "Ġ×IJ×": 4142, + "Ġ×IJפ": 40784, + "Ġ×IJת": 9625, + "Ġ×IJת×Ķ": 41254, + "Ġ×IJ×ij׾": 30186, + "Ġ×IJ×ķ": 33038, + "Ġ×IJ×ķת": 23601, + "Ġ×IJ×ķת×ķ": 46725, + "Ġ×IJ×ķ×ŀר": 38272, + "Ġ×IJ×ĸ": 25624, + "Ġ×IJ×Ĺ": 20505, + "Ġ×IJ×Ĺ×ĵ": 42205, + "Ġ×IJ׾": 28379, + "Ġ×IJ×Ŀ": 36517, + "Ġ×IJ׳": 49553, + "Ġ×IJ׳×Ĺ׳×ķ": 30948, + "Ġ×IJ׳×Ļ": 16707, + "Ġ×ij": 11473, + "Ġ×ij×": 6044, + "Ġ×ijס": 40188, + "Ġ×ij×¢": 24464, + "Ġ×ijר": 36981, + "Ġ×ijש": 34561, + "Ġ×ijת": 37613, + "Ġ×ij×IJ": 38400, + "Ġ×ij×IJ×": 33167, + "Ġ×ij×ĵ": 49959, + "Ġ×ij×Ķ": 40435, + "Ġ×ij×Ĺ": 47017, + "Ġ×ij׼": 39150, + "Ġ×ij×ŀ×": 31776, + "Ġ×Ĵ": 15413, + "Ġ×Ĵ×Ŀ": 26611, + "Ġ×ĵ": 17433, + "Ġ×Ķ": 2922, + "Ġ×Ķ×": 3723, + "Ġ×Ķס": 32559, + "Ġ×Ķ×¢": 26507, + "Ġ×Ķפ": 31175, + "Ġ×Ķצ": 43691, + "Ġ×Ķק": 33866, + "Ġ×Ķר": 22706, + "Ġ×Ķש": 22537, + "Ġ×Ķת": 25579, + "Ġ×Ķ×IJ": 42876, + "Ġ×Ķ×IJ×": 20079, + "Ġ×Ķ×IJ׾": 46747, + "Ġ×Ķ×ij": 49052, + "Ġ×Ķ×ij×": 43974, + "Ġ×Ķ×Ĵ": 36386, + "Ġ×Ķ×ĵ": 32740, + "Ġ×Ķ×Ķ": 37203, + "Ġ×Ķ×ķ×IJ": 23666, + "Ġ×Ķ×ĸ": 32888, + "Ġ×Ķ×ĸ×Ķ": 28776, + "Ġ×Ķ×Ĺ": 26224, + "Ġ×Ķ×Ļ": 29526, + "Ġ×Ķ×Ļ×IJ": 35422, + "Ġ×Ķ×Ļ×Ķ": 32132, + "Ġ×Ķ׼": 29561, + "Ġ×Ķ×Ŀ": 44775, + "Ġ×Ķ×ŀ": 32357, + "Ġ×Ķ×ŀ×": 17270, + "Ġ×Ķ׳": 35743, + "Ġ×ķ": 7666, + "Ġ×ķ×IJ×": 40298, + "Ġ×ķ×Ķ": 28628, + "Ġ×ĸ": 25412, + "Ġ×ĸ×Ķ": 12173, + "Ġ×Ĺ": 12400, + "Ġ×ĺ": 27265, + "Ġ×ĺ×ķ×ij": 48606, + "Ġ×Ļ": 8128, + "Ġ×Ļש": 20592, + "Ġ×Ļ×Ķ": 49854, + "Ġ×Ļ×ķתר": 36555, + "Ġ×Ļ×ķ×ĵ×¢": 45764, + "Ġ×Ļ׼×ķ׾": 37608, + "Ġ׼": 7127, + "Ġ׼×Ļ": 44826, + "Ġ׼׾": 21547, + "Ġ׼ף": 44644, + "Ġ׾": 3883, + "Ġ׾×": 5001, + "Ġ×ľ×¢": 30377, + "Ġ׾פ": 33954, + "Ġ׾ק": 45904, + "Ġ׾ש": 35769, + "Ġ׾×IJ": 12471, + "Ġ׾×IJ×": 45087, + "Ġ׾×Ķ": 13995, + "Ġ׾×Ķ×Ļ×ķת": 49695, + "Ġ׾×ķ": 47669, + "Ġ׾×Ĺ": 42485, + "Ġ׾×Ļ": 29948, + "Ġ׾׼": 32872, + "Ġ׾×ŀ×": 31383, + "Ġ׾׳×ķ": 44946, + "Ġ×ŀ": 9148, + "Ġ×ŀ×": 5641, + "Ġ×ŀס": 32904, + "Ġ×ŀ×¢": 34413, + "Ġ×ŀצ": 44015, + "Ġ×ŀק": 39598, + "Ġ×ŀש": 23950, + "Ġ×ŀת": 30221, + "Ġ×ŀ×IJ": 26295, + "Ġ×ŀ×IJ×": 45686, + "Ġ×ŀ×IJ×ķ×ĵ": 31056, + "Ġ×ŀ×ĵ": 36631, + "Ġ×ŀ×Ķ": 16929, + "Ġ×ŀ×Ĺ": 42644, + "Ġ×ŀ׼": 44698, + "Ġ×ŀ×ŀ×": 41764, + "Ġ׳": 11302, + "ĠØ": 1357, + "ĠØ¢": 19753, + "Ġآپ": 46201, + "ĠØ£": 5551, + "ĠØ£ÙĨ": 14739, + "ĠØ£ÙĨا": 41850, + "ĠØ£ÙĪ": 34051, + "ĠØ£ÙĬ": 36632, + "ĠØ¥": 11933, + "ĠØ¥ÙĦÙī": 30731, + "ĠØ¥ÙĨ": 36145, + "Ġا": 1975, + "Ġاب": 48127, + "Ġاس": 24525, + "Ġاست": 44713, + "ĠاÙĦ": 2423, + "ĠاÙĦØ": 6024, + "ĠاÙĦØ£": 16247, + "ĠاÙĦØ¥": 33688, + "ĠاÙĦا": 42963, + "ĠاÙĦب": 29739, + "ĠاÙĦت": 16712, + "ĠاÙĦتÙĬ": 38392, + "ĠاÙĦج": 25724, + "ĠاÙĦØ®": 33962, + "ĠاÙĦد": 32748, + "ĠاÙĦØ°": 32545, + "ĠاÙĦØ°ÙĬ": 43527, + "ĠاÙĦر": 34892, + "ĠاÙĦس": 21136, + "ĠاÙĦØ´": 25124, + "ĠاÙĦص": 31767, + "ĠاÙĦØ·": 41950, + "ĠاÙĦع": 18863, + "ĠاÙĦØŃ": 21542, + "ĠاÙĦÙģ": 27188, + "ĠاÙĦÙĤ": 25062, + "ĠاÙĦÙĥ": 33251, + "ĠاÙĦÙĦ": 13672, + "ĠاÙĦÙĦÙĩ": 21984, + "ĠاÙĦÙħ": 9673, + "ĠاÙĦÙĨ": 28239, + "ĠاÙĦÙĬ": 45595, + "ĠاÙĨ": 16472, + "ĠاÙĪر": 32930, + "Ġب": 4724, + "ĠباÙĦ": 20666, + "Ġبت": 39894, + "Ġبد": 47525, + "Ġبع": 45030, + "Ġبعد": 39182, + "ĠبÙĨ": 44945, + "ĠبÙĩ": 39627, + "ĠبÙĬÙĨ": 49374, + "Ġت": 6055, + "Ġتع": 37279, + "ĠتÙħ": 46811, + "ĠتÙĪ": 33427, + "Ġتھ": 41924, + "ĠØ«": 38637, + "Ġج": 10874, + "ĠØ®": 16490, + "Ġد": 11778, + "ĠØ°": 29910, + "Ġر": 12602, + "Ġز": 30767, + "Ġس": 8608, + "ĠسÛĴ": 34190, + "ĠØ´": 13412, + "ĠØ´ÙĬ": 44049, + "Ġص": 20328, + "Ġض": 48812, + "ĠØ·": 23032, + "Ġع": 6225, + "ĠعÙĦ": 11203, + "ĠعÙĦÙī": 15844, + "ĠعÙĦÙĬ": 25894, + "ĠعÙĦÙĬÙĩ": 47356, + "ĠعÙĨ": 18871, + "ĠعÙĨد": 43242, + "Ġغ": 32771, + "ĠØĮ": 24637, + "ĠØŁ": 45520, + "ĠØŃ": 11331, + "ĠÙ": 1447, + "ĠÙ¾": 21453, + "ĠÙģ": 6156, + "ĠÙģÙĬ": 8978, + "ĠÙĤ": 12174, + "ĠÙĤاÙĦ": 50239, + "ĠÙĥ": 9122, + "ĠÙĥاÙĨ": 25961, + "ĠÙĥÙĦ": 28242, + "ĠÙĦ": 5296, + "ĠÙĦا": 20193, + "ĠÙĦÙĥÙĨ": 44381, + "ĠÙĦÙĦ": 24976, + "ĠÙĦÙħ": 32767, + "ĠÙĦÙĩ": 46740, + "ĠÙĦÙĪ": 45164, + "ĠÙĦÙĬ": 32239, + "ĠÙħ": 3714, + "ĠÙħا": 19446, + "ĠÙħت": 44650, + "ĠÙħØ«": 50113, + "ĠÙħس": 47524, + "ĠÙħØ´": 37893, + "ĠÙħع": 20449, + "ĠÙħÙĨ": 9154, + "ĠÙħÛĮ": 48478, + "ĠÙħÛĮÚº": 27875, + "ĠÙĨ": 8717, + "ĠÙĨÛģ": 43596, + "ĠÙĨÛģÛĮÚº": 50194, + "ĠÙĨÛĴ": 43947, + "ĠÙĩ": 8032, + "ĠÙĩذا": 23758, + "ĠÙĩØ°Ùĩ": 29538, + "ĠÙĩÙĨا": 34105, + "ĠÙĩÙĪ": 31439, + "ĠÙĩÙĬ": 39896, + "ĠÙĪ": 4032, + "ĠÙĪØ£": 36725, + "ĠÙĪا": 36764, + "ĠÙĪاÙĦ": 16070, + "ĠÙĪب": 46599, + "ĠÙĪت": 34683, + "ĠÙĪج": 49610, + "ĠÙĪس": 46952, + "ĠÙĪÙĦ": 35525, + "ĠÙĪÙĦا": 49429, + "ĠÙĪÙĩ": 37037, + "ĠÙĪÛģ": 44291, + "ĠÙĬ": 7251, + "ĠÙĬا": 35186, + "ĠÙĬع": 37495, + "ĠÚ©": 7565, + "Ġکا": 39893, + "Ġکر": 29688, + "ĠÚ©ÙĪ": 31561, + "ĠÚ©Ûģ": 33491, + "ĠÚ©ÛĮ": 23180, + "ĠÚ©ÛĴ": 24049, + "ĠÚ¯": 28697, + "ĠÚĨ": 34766, + "ĠÛģ": 12138, + "ĠÛģÙĪ": 45509, + "ĠÛģÛĮÚº": 38904, + "ĠÛģÛĴ": 23905, + "ĠÛĮ": 25429, + "ĠÛĮÛģ": 35324, + "Ġà¤": 8485, + "Ġम": 48449, + "Ġस": 49316, + "Ġह": 37139, + "Ġà¤ķ": 31970, + "Ġà®": 2548, + "Ġத": 18198, + "Ġந": 12669, + "Ġப": 12008, + "Ġà®®": 16504, + "Ġவ": 13535, + "Ġà®ħ": 12776, + "Ġà®ħத": 35718, + "Ġà®Ĩ": 33586, + "Ġà®ĩ": 12894, + "Ġà®ĩà®°": 26277, + "Ġà®ĩல": 49465, + "Ġà®ī": 23656, + "Ġà®İ": 12814, + "Ġà®İன": 17337, + "Ġà®Ĵ": 37240, + "Ġà®ķ": 13786, + "Ġà®ļ": 14337, + "Ġà²": 34725, + "Ġà¶": 35139, + "Ġà¸ģ": 44579, + "Ġà¹Ģà¸": 32922, + "Ġá": 21879, + "Ġấy": 43966, + "Ġá»": 40132, + "Ġợ": 19272, + "Ġá¼": 34519, + "Ġâ": 672, + "ĠâĢ": 1059, + "ĠâĢ¢": 13937, + "ĠâĢ¦": 5799, + "ĠâĢ«": 4738, + "ĠâĢĭ": 6107, + "ĠâĢĭâĢĭ": 8701, + "ĠâĢĭâĢĭâĢĭ": 16644, + "ĠâĢij": 41395, + "ĠâĢijâĢij": 45217, + "ĠâĢĵ": 1662, + "ĠâĢĶ": 3466, + "ĠâĤ¬": 17450, + "ĠâĨ": 35265, + "ĠâĨĴ": 41600, + "ĠâĪ": 28462, + "ĠâĪĴ": 48554, + "Ġâĸ": 29405, + "Ġâĺ": 38660, + "ĠâĻ": 873, + "ĠâĻ¥": 43385, + "ĠâĻ©": 36865, + "ĠâĻª": 931, + "ĠâĻªâĻª": 9061, + "ĠâĻªâĻªâĻª": 31650, + "ĠâĻ«": 3846, + "ĠâĻ¬": 22520, + "ĠãĢĮ": 21675, + "ĠãĢIJ": 26308, + "Ġãģ": 2605, + "Ġãģ¡": 44692, + "Ġãģ¦": 23822, + "Ġãģ§": 21376, + "Ġãģ§ãģĻ": 26063, + "Ġãģ¨": 16746, + "Ġãģ©": 34994, + "Ġãģª": 16647, + "Ġãģ«": 24873, + "Ġãģ®": 21171, + "Ġãģ¯": 20785, + "Ġãģ¯ãģĦ": 48159, + "Ġãģ¾": 20979, + "Ġãģ¾ãģĻ": 45194, + "ĠãģĤ": 15131, + "ĠãģĤãĤĬ": 49444, + "ĠãģĦ": 30155, + "ĠãģĨ": 42504, + "ĠãģĬ": 25223, + "Ġãģĭ": 25295, + "ĠãģĮ": 29697, + "Ġãģĵ": 14384, + "Ġãģĵãģ®": 35421, + "ĠãģĵãĤĮ": 33732, + "Ġãģķ": 47231, + "ĠãģĹ": 26974, + "ĠãģĻ": 41068, + "ĠãģĿ": 18421, + "ĠãģĿãģĨ": 36165, + "ĠãģĿãĤĮ": 47765, + "ĠãģŁ": 25581, + "Ġãģł": 37656, + "ĠãģŃ": 35757, + "ĠãĤĤ": 32505, + "ĠãĤĦ": 43938, + "ĠãĤĪ": 49879, + "ĠãĤĴ": 30181, + "ĠãĤĵ": 42961, + "Ġãĥ": 15096, + "Ġãħ": 40978, + "Ġãħĭãħĭãħĭ": 49249, + "Ġãħĭãħĭãħĭãħĭ": 38032, + "Ġãħİãħİ": 45824, + "Ġä¸Ģ": 26923, + "Ġä¸į": 19021, + "Ġä¸įæĺ¯": 43906, + "Ġä¸įè¦ģ": 50181, + "Ġä»ĸ": 35414, + "Ġä½ł": 10930, + "Ġä¾Ĩ": 33742, + "Ġ大": 28589, + "Ġ好": 12202, + "Ġ对": 30275, + "Ġå°±": 32609, + "Ġå°±æĺ¯": 31526, + "Ġå°į": 8748, + "Ġå°įä¸įå°į": 35164, + "Ġå°įåķĬ": 49155, + "Ġå°ı": 43454, + "Ġå¾Ī": 26029, + "Ġå¿«": 42598, + "ĠåĪĨ": 45903, + "Ġåı¯ä»¥": 43269, + "Ġåľ¨": 37286, + "Ġæ²Ĵæľī": 40183, + "ĠæĢĿ": 47968, + "ĠæĪij": 8624, + "ĠæĪijåĢij": 27338, + "ĠæĪijæĺ¯": 34625, + "ĠæīĢ以": 45168, + "Ġæĺ¯": 11947, + "Ġæľī": 21461, + "ĠçĦ¶å¾Į": 49078, + "ĠçļĦ": 27949, + "Ġ羣çļĦ": 32790, + "Ġè¬Ŀè¬Ŀ": 30999, + "ĠéĢĻ": 45286, + "ĠéĢĻåĢĭ": 36888, + "ĠéĤ£": 18625, + "Ġê": 711, + "Ġê°": 1777, + "Ġê°Ģ": 4147, + "Ġê°Ģ격": 41162, + "Ġê°Ģê¹Į": 44913, + "Ġê°Ģë": 10583, + "Ġê°ĢëĬ¥": 25732, + "Ġê°ĢëĬĶ": 37407, + "Ġê°Ģ족": 46008, + "Ġê°Ģì§Ģ": 26569, + "Ġê°Ģì§Ģê³ł": 21361, + "Ġê°ĢìĦľ": 35312, + "Ġê°Ģìļ´ëį°": 44627, + "Ġê°Ģìŀ¥": 20283, + "Ġê°ĢìŀIJ": 40115, + "Ġê°Ģìł¸": 36434, + "Ġê°ģ": 28378, + "Ġê°Ħ": 17190, + "Ġê°Ħëĭ¨": 50102, + "Ġê°Ī": 23616, + "Ġê°IJ": 10892, + "Ġê°IJë": 41398, + "Ġê°IJìĤ¬": 19538, + "Ġê°IJìĤ¬íķ©ëĭĪëĭ¤": 24399, + "Ġê°ij": 23108, + "Ġê°ijìŀIJ기": 31307, + "Ġê°Ķ": 28676, + "Ġê°ķ": 14623, + "Ġê°ĸ": 27668, + "Ġê°ĸê³ł": 37912, + "Ġê°Ļ": 4385, + "Ġê°ĻìĬµëĭĪëĭ¤": 31297, + "Ġê°ĻìķĦ": 23396, + "Ġê°ĻìķĦìĦľ": 48084, + "Ġê°ĻìķĦìļĶ": 12196, + "Ġê°ĻìĿ´": 16358, + "Ġê°ĻìĿĢ": 10005, + "Ġê°ĻìĿĢëį°": 21864, + "Ġê°ľ": 14552, + "Ġê°ľë": 30185, + "Ġê°ľìĿ¸": 36734, + "Ġê±": 4925, + "Ġê±°": 3675, + "Ġ거기": 25191, + "Ġê±°ë": 15805, + "Ġê±°ëĬĶ": 46821, + "Ġê±°ì£ł": 26957, + "Ġê±°ì§Ģ": 42435, + "Ġê±°ìķ¼": 15928, + "Ġê±°ìĺĪìļĶ": 14050, + "Ġê±°ìĿĺ": 27872, + "Ġê±±": 39365, + "Ġê±±ìłķ": 45315, + "Ġê±´": 13507, + "Ġê±´ê°ķ": 46058, + "Ġê±´ë": 39626, + "Ġê±´ëį°": 29201, + "Ġê±´ì": 46855, + "Ġ걸": 14240, + "Ġ걸ë": 37248, + "Ġê±¸ë¡ľ": 41636, + "Ġê²": 2525, + "Ġê²°": 15561, + "Ġê²°ê³¼": 46310, + "Ġê²°êµŃ": 42335, + "Ġê²½": 9537, + "Ġ경찰": 37102, + "Ġê²½ìļ°": 20591, + "Ġê²½ìļ°ìĹIJëĬĶ": 45745, + "Ġê²Ģ": 20282, + "Ġê²Ģì°°": 45433, + "Ġê²ģ": 23178, + "Ġê²ģëĭĪëĭ¤": 27146, + "Ġê²ĥ": 4431, + "Ġê²ĥëıĦ": 25942, + "Ġê²ĥì²ĺëŁ¼": 44052, + "Ġê²ĥìľ¼ë¡ľ": 34071, + "Ġê²ĥìĿ´": 29665, + "Ġê²ĥìĿĢ": 33825, + "Ġê²ĥìĿĦ": 32746, + "Ġê²Į": 7845, + "Ġê²ĮìŀĦ": 23927, + "Ġê³": 3352, + "Ġ곡": 34895, + "Ġ골ë": 42142, + "Ġê³³": 25177, + "Ġê³µ": 9273, + "Ġê³¼": 17590, + "Ġê³Ħ": 10603, + "Ġê³ĦìĨį": 17551, + "Ġê³ł": 9161, + "Ġê³łë": 18556, + "Ġê³łë¯¼": 41936, + "Ġê³łìĸij": 48105, + "Ġê´": 8214, + "Ġê´Ģ": 21061, + "Ġê´Ģë": 25201, + "Ġê´Ģ볨": 42660, + "Ġê´Ģìĭ¬": 47229, + "Ġê´ij": 26517, + "Ġê´ľ": 17327, + "Ġê´ľì°®": 18286, + "Ġê´ľì°®ìķĦ": 45058, + "Ġêµ": 4946, + "Ġ구": 15197, + "Ġ구ë": 17386, + "Ġ구ëıħ": 32800, + "Ġêµ°": 45644, + "Ġêµīìŀ¥": 15286, + "Ġêµīìŀ¥íŀĪ": 15509, + "ĠêµIJ": 24915, + "ĠêµŃ": 13858, + "ĠêµŃ민": 37336, + "Ġê¶ģ": 29342, + "Ġê¶ģê¸Ī": 32886, + "Ġê·": 1510, + "Ġê·¸": 4296, + "Ġ그거": 23075, + "Ġ그건": 41058, + "Ġ그걸": 35225, + "Ġê·¸ê²ĥ": 32565, + "Ġê·¸ê²Į": 21833, + "Ġê·¸ë": 2003, + "Ġê·¸ë¦¬ê³ł": 8785, + "Ġ그림": 43170, + "Ġê·¸ë§Į": 39067, + "Ġê·¸ëĥ¥": 11208, + "Ġê·¸ëĭ¤ìĿĮ": 36918, + "Ġê·¸ëĭ¤ìĿĮìĹIJ": 45137, + "Ġê·¸ëĮĢë¡ľ": 41711, + "Ġê·¸ëķĮ": 26788, + "Ġê·¸ëŀ": 18158, + "Ġê·¸ëŀ¬": 36185, + "Ġê·¸ëŀĺ": 7080, + "Ġê·¸ëŀĺëıĦ": 27449, + "Ġê·¸ëŀĺìĦľ": 8844, + "Ġê·¸ëŀĺìļĶ": 47453, + "Ġê·¸ëŁ": 4167, + "Ġê·¸ëŁ¬": 14019, + "Ġê·¸ëŁ¬ë": 13725, + "Ġê·¸ëŁ¬ë©´": 16645, + "Ġê·¸ëŁ¬ëĭĪê¹Į": 20855, + "Ġê·¸ëŁ°": 9306, + "Ġê·¸ëŁ°ëį°": 16610, + "Ġê·¸ëŁ´": 45372, + "Ġê·¸ëŁ¼": 13929, + "Ġê·¸ëłĩ": 13773, + "Ġê·¸ëłĩê²Į": 16104, + "Ġê·¸ëłĩì£ł": 34410, + "Ġê·¸ëłĩì§Ģ": 32667, + "Ġê·¼": 42476, + "Ġê·¼ë": 9564, + "Ġê·¼ëį°": 9907, + "Ġê·Ģ": 19112, + "Ġê·ĢìŬ": 36083, + "Ġê¸": 4291, + "Ġ기": 7047, + "Ġ기ë": 12503, + "Ġ기본": 40456, + "Ġ기ë¶Ħ": 37149, + "Ġ기ëĭ¤ë": 31431, + "Ġ기ëĮĢ": 41055, + "Ġ기ìĸµ": 30935, + "Ġ기ìŀIJ": 41483, + "Ġ길": 25222, + "Ġê¸Ī": 34120, + "Ġê¸ī": 44728, + "Ġê¹": 8394, + "Ġê¹Ģ": 17376, + "Ġê¹Ģë": 43629, + "Ġê¹Į": 49124, + "Ġê¹Ķë": 48693, + "Ġêº": 34505, + "Ġê¼": 17264, + "Ġê¼Ń": 25881, + "Ġê½": 24378, + "Ġê½ĥ": 45703, + "Ġê¾": 37006, + "Ġê¿": 28529, + "Ġê¿Ī": 43487, + "Ġë": 531, + "Ġë¡ľ": 26142, + "Ġ루ë": 48512, + "Ġ리": 28227, + "Ġ리ë": 31427, + "Ġ립": 44930, + "Ġë§": 1747, + "Ġ맡": 49132, + "Ġ매": 17591, + "Ġ매ë": 34638, + "Ġë§Ī": 6437, + "Ġë§Īë": 25847, + "Ġë§Ī무ë": 43797, + "Ġë§Īì§Ģë§ī": 22722, + "Ġë§ĪìĬ¤íģ": 47872, + "Ġë§ĪìĿĮ": 20477, + "Ġë§ĪìĿĮìĹIJ": 43093, + "Ġë§ī": 14438, + "Ġë§Į": 14671, + "Ġë§Įë": 8165, + "Ġë§ĮëĤĺ": 38841, + "Ġë§Įëĵ¤": 12922, + "Ġë§Įëĵ¤ìĸ´": 39001, + "Ġë§Įëĵł": 40628, + "Ġë§Įìķ½": 42195, + "Ġë§Įíģ¼": 50215, + "Ġë§İ": 5671, + "Ġë§İìĿ´": 8358, + "Ġë§İìĿĢ": 18494, + "Ġë§IJ": 7058, + "Ġë§IJê³ł": 35145, + "Ġë§IJë": 31336, + "Ġë§IJìĶ": 20797, + "Ġë§IJìĶĢ": 35665, + "Ġë§IJìĶĢë": 41112, + "Ġë§IJìĶĢëĵľë": 45345, + "Ġë§IJìĿ´": 44276, + "Ġë§IJìĿĦ": 39692, + "Ġ맼": 9508, + "Ġ맼ìĿ´": 47003, + "Ġ맼ìŀĪ": 13441, + "Ġ맼ìŀĪëĬĶ": 49051, + "Ġ맼ìŀĪìĸ´ìļĶ": 46778, + "Ġë§Ŀ": 46490, + "Ġë§ŀ": 9172, + "Ġë§ŀëĬĶ": 49953, + "Ġë§ŀìķĦ": 29417, + "Ġë§ŀìķĦìļĶ": 35273, + "Ġë¨": 5108, + "Ġ머ë": 37856, + "Ġ머리": 27089, + "Ġ먹": 6554, + "Ġë¨¹ê³ł": 26077, + "Ġ먹ëĬĶ": 30616, + "Ġ먹ìĸ´": 46317, + "Ġ먹ìĸ´ë": 28428, + "Ġ먹ìĿĦ": 28130, + "Ġ먼": 19326, + "Ġ먼ìłĢ": 20749, + "Ġë©": 8514, + "Ġ멤ë": 32303, + "Ġë©ĭ": 29260, + "Ġë©ĭìŀĪ": 46344, + "Ġë©Ķ": 34810, + "Ġë©Ķë": 42873, + "Ġë©ĶìĿ´íģ¬ìĹħ": 31923, + "Ġëª": 3491, + "Ġ모": 11722, + "Ġ모ë": 8941, + "Ġ모르": 20502, + "Ġ모ëijIJ": 27615, + "Ġ모ëĵł": 27714, + "Ġ모ìĬµ": 27780, + "Ġ모ìĸij": 45254, + "Ġ목": 20433, + "Ġ몰ë": 24833, + "Ġ몰ëĿ¼": 41733, + "Ġ몸": 30205, + "Ġ못": 10239, + "Ġëªħ": 18284, + "Ġëªĩ": 23628, + "Ġë¬": 4509, + "Ġ무": 27387, + "Ġ무ë": 19327, + "Ġ무ëĮĢ": 46650, + "Ġ무ì": 12540, + "Ġ무ìĦľ": 45072, + "Ġ무ìĬ¨": 22712, + "Ġ무ìĹ": 45613, + "Ġ무ìĹĩ": 47384, + "Ġ문": 13086, + "Ġë¬¸ìłľ": 24290, + "Ġë¬¸ìłľê°Ģ": 48748, + "Ġ묻": 39399, + "Ġ물": 14403, + "Ġ물ë": 26561, + "Ġë¬¼ë¡ł": 41251, + "Ġ물ìĸ´ë": 44558, + "Ġë®": 45388, + "Ġë¯": 17472, + "Ġ미": 10795, + "Ġ미êµŃ": 28667, + "Ġ미ë": 29004, + "Ġ미ìķĪ": 40241, + "Ġ민": 21509, + "Ġ민주": 49000, + "Ġ믿": 40365, + "Ġë°": 2391, + "Ġë°¤": 38093, + "Ġë°¥": 26479, + "Ġë°©": 10006, + "Ġë°©ë²ķ": 31656, + "Ġë°©ìĨ¡": 35429, + "Ġë°°": 14155, + "Ġë°±": 20710, + "Ġë°±ìĭł": 31551, + "Ġë°Ģ": 38813, + "Ġë°ij": 37734, + "Ġë°Ķ": 12704, + "Ġë°Ķê¿": 45795, + "Ġë°Ķë": 9040, + "Ġë°Ķë¡ľ": 15965, + "Ġë°ĶëĢ": 43841, + "Ġë°ķ": 21140, + "Ġë°ĸìĹIJ": 48652, + "Ġë°ĺ": 16396, + "Ġë°ĺë": 23142, + "Ġë°Ľ": 12152, + "Ġë°Ľê³ł": 48130, + "Ġë°ĽìķĦ": 41561, + "Ġë°ľ": 13825, + "Ġë°ľë": 20414, + "Ġë°ľëĿ¼": 37861, + "Ġë°ľìĥĿ": 47532, + "Ġë°Ŀ": 26499, + "Ġë°ĿíĺĶ": 48437, + "Ġë²": 7307, + "Ġë²Ħ": 22076, + "Ġë²Ħë": 34214, + "Ġë²Ī": 10212, + "Ġë²Ī째": 25055, + "Ġë²Į": 25846, + "Ġë²Įìį¨": 49175, + "Ġë²ķ": 31461, + "Ġë²ł": 28672, + "Ġë³": 2818, + "Ġë³´": 6330, + "Ġë³´ê³ł": 18942, + "Ġë³´ë": 10035, + "Ġë³´ë©´": 19443, + "Ġë³´ëĤ": 39833, + "Ġë³´ëĬĶ": 40891, + "Ġë³´ëĭĪê¹Į": 25612, + "Ġë³´ì": 7842, + "Ġë³´ìĦ¸ìļĶ": 49790, + "Ġë³´ìĭ": 23531, + "Ġë³´ìĭľ": 44771, + "Ġë³´ìĭľë©´": 42872, + "Ġë³´ìĹ": 16519, + "Ġë³´ìŬ": 21918, + "Ġë³´ìŬë": 33820, + "Ġë³´ìŬëĵľë": 47414, + "Ġë³´ìĿ´": 48189, + "Ġë³´ìĿ´ëĬĶ": 47793, + "Ġë³´íĨµ": 41701, + "Ġë³µ": 30696, + "Ġ본": 19387, + "Ġë³¼": 18001, + "Ġë³Ģ": 25575, + "Ġë³Ħ": 47442, + "Ġë³Ħë¡ľ": 45513, + "Ġë³ij": 32245, + "Ġë´": 8649, + "Ġë´¤": 20727, + "Ġë´IJ": 15507, + "Ġë´IJìļĶ": 45639, + "Ġë¶": 3658, + "Ġë¶Ģ": 11351, + "Ġë¶Ģë": 10201, + "Ġë¶Ģë¶Ħ": 18805, + "Ġë¶Ģë¶ĦìĿ´": 47820, + "Ġë¶Ģëĵľë": 47358, + "Ġë¶Ģíĥģ": 37056, + "Ġë¶ģ": 33215, + "Ġë¶ģíķľ": 45319, + "Ġë¶Ħ": 15361, + "Ġë¶Ħë": 21735, + "Ġë¶Ħëĵ¤": 20147, + "Ġë¶Ħëĵ¤ìĿ´": 36029, + "Ġë¶Ħëĵ¤ìĿĢ": 40821, + "Ġë¶ĦìľĦ": 49712, + "Ġë¶Ī": 16285, + "Ġë¶Īë": 25746, + "Ġë¶Ļ": 24618, + "Ġë¸": 13947, + "Ġë¸Įë": 21886, + "Ġë¸Ķë": 25576, + "Ġë¹": 5005, + "Ġ빨": 46954, + "Ġ빨리": 23077, + "Ġë¹µ": 48397, + "Ġë¹¼": 38112, + "Ġë¹Ħ": 10079, + "Ġë¹Ħë": 24241, + "Ġë¹ĦìĬ·": 36156, + "Ġë¹ł": 28117, + "Ġë¹łë": 36351, + "Ġë»": 48557, + "Ġë½": 28744, + "Ġë½ij": 38473, + "Ġë¿": 25829, + "Ġë¿Įë": 41582, + "Ġëģ": 9770, + "Ġëģ¼": 46809, + "ĠëģĿ": 13932, + "ĠëģĿëĤ": 34907, + "ĠëģĿëĤĺ": 48626, + "ĠëĤ": 2079, + "ĠëĤ¨": 11689, + "ĠëĤ¨ìŀIJ": 35266, + "ĠëĤ®": 38601, + "ĠëĤ´": 6918, + "ĠëĤ´ê°Ģ": 10474, + "ĠëĤ´ë": 15139, + "ĠëĤ´ëł¤": 33428, + "ĠëĤ´ì": 25097, + "ĠëĤ´ìļ©": 36898, + "ĠëĤ´ìĿ¼": 42831, + "ĠëĤĺ": 3948, + "ĠëĤĺê°Ģ": 37011, + "ĠëĤĺë": 12623, + "ĠëĤĺëĪ": 44263, + "ĠëĤĺëĬĶ": 17955, + "ĠëĤĺëıĦ": 31057, + "ĠëĤĺì¤ijìĹIJ": 44865, + "ĠëĤĺìģ": 48744, + "ĠëĤĺìĦľ": 43156, + "ĠëĤĺìĺ": 19370, + "ĠëĤĺìĺ¤": 19857, + "ĠëĤĺìĺ¤ë": 49397, + "ĠëĤĺìĺ¤ëĬĶ": 40137, + "ĠëĤĺìĺ¨": 34396, + "ĠëĤĺìĺ¬": 49599, + "ĠëĤĺìĻĢ": 27704, + "ĠëĤĺìĻĶ": 26374, + "ĠëĤĺíĥĢë": 49406, + "ĠëĤľ": 19252, + "ĠëĤł": 16316, + "Ġëĥ": 26218, + "ĠëĥĦ": 43250, + "ĠëĥĦìĥĪ": 49985, + "ĠëĦ": 3214, + "ĠëĦ£": 14948, + "ĠëĦ£ê³ł": 49201, + "ĠëĦ¤": 8808, + "ĠëĦ¤ê°Ģ": 41714, + "ĠëĦĪ": 12963, + "ĠëĦĪ무": 6924, + "ĠëĦĺ": 20237, + "Ġëħ": 8727, + "Ġëħ¸": 29158, + "Ġëħ¸ë": 13262, + "Ġëħ¸ëŀĺ": 24678, + "Ġëħ¸ëŀĺë": 42461, + "Ġëħ¸ëł¥": 49388, + "Ġëħ¹": 36906, + "ĠëĨ": 10091, + "ĠëĨĢë": 29873, + "ĠëĨį": 47379, + "ĠëĨĴ": 25015, + "ĠëĨĵ": 28747, + "ĠëĪ": 7508, + "ĠëĪĦ": 15647, + "ĠëĪĦê°Ģ": 33851, + "ĠëĪĦ구": 36385, + "ĠëĪĦë": 30225, + "ĠëĪĪ": 15333, + "ĠëĪĮ룬": 45934, + "Ġëī": 32086, + "Ġëī´ì": 36036, + "Ġëī´ìĬ¤": 45828, + "ĠëĬ": 7707, + "ĠëĬIJ": 34378, + "ĠëĬIJê»": 41667, + "ĠëĬIJë": 10749, + "ĠëĬIJëĤ": 11796, + "ĠëĬIJëĤĮ": 12652, + "ĠëĬIJëĤĮìĿ´": 29459, + "ĠëĬĺ": 33684, + "Ġëĭ": 2515, + "Ġëĭ¤": 4279, + "Ġëĭ¤ë": 9586, + "Ġëĭ¤ë¥¸": 16435, + "Ġëĭ¤ëĭĪ": 46240, + "Ġëĭ¤ëĵ¤": 47660, + "Ġëĭ¤ìĭľ": 15463, + "Ġëĭ¤ìĸij": 40553, + "Ġëĭ¤ìĸijíķľ": 49679, + "Ġëĭ¤ìĿĮ": 13526, + "Ġëĭ¤ìĿĮìĹIJ": 28232, + "Ġëĭ¨": 16818, + "Ġëĭ¬": 21166, + "Ġëĭ¬ë": 20738, + "Ġëĭ¬ëĿ¼": 42407, + "Ġëĭ´": 39700, + "Ġëĭµ": 41918, + "Ġëĭ¹": 12047, + "Ġëĭ¹ìĭľ": 49559, + "Ġëĭ¹ìĭł": 45594, + "Ġëĭ¹ìĹ°": 43424, + "ĠëĭĪ": 35362, + "Ġëĭĺ": 45054, + "ĠëĮ": 28088, + "ĠëĮĢ": 5971, + "ĠëĮĢë": 17691, + "ĠëĮĢë°ķ": 38017, + "ĠëĮĢíĨµëł¹": 39567, + "ĠëĮĢíijľ": 37970, + "ĠëĮĢíķ´": 48374, + "ĠëĮĢíķ´ìĦľ": 27382, + "ĠëĮĢíķľ": 23358, + "ĠëĮĵ": 39765, + "Ġëį": 5596, + "Ġëį°": 20883, + "Ġëį°ë": 39267, + "ĠëįĶ": 6990, + "ĠëįĶë": 46389, + "Ġëı": 5189, + "Ġëı¼": 11080, + "Ġëı¼ìļĶ": 21565, + "ĠëıĦ": 10701, + "Ġëıħ": 39411, + "ĠëıĪ": 26963, + "ĠëıĮ": 20555, + "ĠëıĮë": 34324, + "ĠëıĮìķĦ": 26761, + "ĠëıĻ": 11685, + "ĠëıĻìķĪ": 32589, + "ĠëIJ": 3534, + "ĠëIJ©ëĭĪëĭ¤": 23630, + "ĠëIJIJ": 16718, + "ĠëIJĺ": 5514, + "ĠëIJĺê²Į": 14860, + "ĠëIJĺê³ł": 30597, + "ĠëIJĺë": 20603, + "ĠëIJĺë©´": 35664, + "ĠëIJĺëĬĶ": 18650, + "ĠëIJĺëĬĶëį°": 36436, + "ĠëIJĺì§Ģ": 43463, + "ĠëIJĺìĸ´": 41210, + "ĠëIJľ": 16975, + "ĠëIJł": 16625, + "Ġëij": 8108, + "ĠëijIJ": 11915, + "ĠëijIJë": 33940, + "Ġëijĺ": 21433, + "ĠëĴ": 14749, + "ĠëĴ¤": 19798, + "ĠëĴ¤ìĹIJ": 40856, + "Ġëĵ": 10758, + "Ġëĵ£": 32877, + "Ġëĵ¤": 6275, + "Ġëĵ¤ê³ł": 43488, + "Ġëĵ¤ë": 42186, + "Ġëĵ¤ìĸ´": 12900, + "Ġëĵ¤ìĸ´ê°Ģ": 20794, + "Ġëĵ¤ìĸ´ë": 46088, + "Ġëĵ¤ìĸ´ì": 20744, + "Ġëĵ¤ìĸ´ìĺ": 37916, + "Ġëĵ¯": 43058, + "Ġëĵ±": 15722, + "Ġëĵľ": 35561, + "Ġëĵľë": 13356, + "ĠëĶ": 7378, + "ĠëĶ°": 49150, + "ĠëĶ°ë": 15933, + "ĠëĶ°ëĿ¼": 24453, + "ĠëĶ±": 16681, + "ĠëĶĶ": 25158, + "ĠëĶĶìŀIJ": 47887, + "Ġëķ": 4893, + "ĠëķĮ": 7765, + "ĠëķĮë": 9057, + "ĠëķĮ문": 11406, + "ĠëķĮ문ìĹIJ": 12365, + "ĠëķĮëĬĶ": 27264, + "ĠëķĮëıĦ": 49738, + "Ġëĸ": 13320, + "Ġëĸ¡": 45197, + "Ġëĸ¨": 27436, + "Ġëĸ¨ìĸ´ì": 30667, + "Ġëĸł": 43687, + "Ġëĸłë": 48158, + "Ġëĺ": 7102, + "ĠëĺIJ": 7992, + "Ġëĺij": 29142, + "Ġëĺijê°Ļ": 33790, + "Ġëļ": 39181, + "ĠëĽ": 40589, + "Ġ뼰": 44380, + "Ġëľ": 20490, + "Ġ뾨": 38766, + "Ġëľ»": 44774, + "ĠëĿ¼": 22339, + "ĠëĿ¼ê³ł": 43281, + "ĠëĿ¼ë": 44831, + "ĠëĿ¼ëĬĶ": 49121, + "ĠëłĪ": 28156, + "ĠëłĪë": 43927, + "ĠëŃ": 10096, + "ĠëŃIJ": 7034, + "ĠëŃIJê°Ģ": 39713, + "ĠëŃIJë": 25205, + "ĠëŃIJìķ¼": 18410, + "ĠëŃĶ": 43972, + "ĠëŃĶê°Ģ": 20729, + "ĠëŃĺ": 32376, + "Ġì": 451, + "Ġì¡": 22116, + "Ġì¡°": 7430, + "Ġì¡°ê¸Ī": 13091, + "Ġì¡°ë": 42707, + "Ġì¡°ìĭ¬": 48164, + "Ġì¢": 3340, + "Ġì¢Ģ": 6796, + "Ġì¢ħ": 25260, + "Ġì¢ĭ": 5008, + "Ġì¢ĭëĭ¤": 44891, + "Ġì¢ĭìķĦ": 10805, + "Ġì¢ĭìķĦìļĶ": 22482, + "Ġì¢ĭìķĦíķĺ": 40344, + "Ġì¢ĭìķĦíķĺëĬĶ": 33164, + "Ġì¢ĭìĿĢ": 16460, + "Ġì¢ĭìĿĦ": 39968, + "Ġì£": 5442, + "Ġ주": 7757, + "Ġì£¼ê³ł": 45848, + "Ġ주ë": 16410, + "Ġ주ëĬĶ": 45589, + "Ġ주ìĦ¸ìļĶ": 34067, + "Ġ죽": 22303, + "Ġì£Ħ": 37347, + "Ġì£ĦìĨ¡": 41939, + "Ġì¤": 4855, + "Ġì¤Ģ": 38879, + "Ġì¤Ģë": 18647, + "Ġì¤Ģë¹Ħ": 21911, + "Ġì¤Ħ": 15320, + "Ġì¤ij": 7596, + "Ġì¤ijêµŃ": 39712, + "Ġì¤ijìĹIJ": 32690, + "Ġì¤ijìļĶ": 24851, + "Ġì¤ijìļĶíķľ": 39072, + "Ġì¤ĺ": 41926, + "Ġì¦": 19220, + "Ġì¦IJ": 35177, + "Ġì¦Ŀ": 33830, + "Ġì§": 2334, + "Ġ짧": 43437, + "Ġì§Ģ": 4704, + "Ġì§Ģê¸": 46253, + "Ġì§Ģê¸Ī": 7356, + "Ġì§Ģê¸Īê¹Įì§Ģ": 41309, + "Ġì§Ģê¸ĪìĿĢ": 46516, + "Ġì§Ģë": 12205, + "Ġì§ĢëĤĺ": 41672, + "Ġì§ĢëĤľ": 26416, + "Ġì§ĢìĹŃ": 36209, + "Ġì§ĢìĽIJ": 47284, + "Ġì§ģ": 19224, + "Ġì§ģìłij": 34196, + "Ġì§Ħ": 5526, + "Ġì§Ħì§ľ": 7106, + "Ġì§Ħíĸī": 32544, + "Ġì§Ī문": 39217, + "Ġì§ij": 12111, + "Ġì§ijìĹIJ": 38380, + "Ġì§ľ": 35609, + "Ġ쪽": 31790, + "Ġì«": 37453, + "Ġì°": 5122, + "Ġì°¨": 15391, + "Ġì°¨ë": 24537, + "Ġì°©": 36018, + "Ġì°¸": 18255, + "Ġì°½": 39501, + "Ġì°¾": 18283, + "Ġì°¾ìķĦ": 33219, + "Ġì°į": 17285, + "Ġì±": 14097, + "Ġì±Ħ": 27411, + "Ġì±ħ": 33623, + "Ġì±Ļ": 49414, + "Ġì²": 6768, + "Ġ첫": 22707, + "Ġì²´": 39667, + "Ġì²ĺ": 16650, + "Ġì²ĺë": 40272, + "Ġì²ĺìĿĮ": 18736, + "Ġì²ľ": 31076, + "Ġì²Ń": 24902, + "Ġì³": 43517, + "Ġì´": 10359, + "Ġì´¬ìĺģ": 27874, + "Ġì´Ī": 26631, + "Ġì´Īë": 34417, + "Ġì´ī": 47783, + "Ġì´Ŀ": 27370, + "Ġìµ": 12568, + "Ġìµľ": 14571, + "Ġìµľê³ł": 36703, + "Ġìµľê·¼": 37349, + "ĠìµľëĮĢ": 44112, + "Ġì¶": 7458, + "Ġ춤": 40037, + "Ġ충": 24975, + "Ġ충ë¶Ħ": 47891, + "Ġì¶Ķ": 17435, + "Ġì¶Ķê°Ģ": 38160, + "Ġì¶Ķì²ľ": 40264, + "Ġì¶ķ": 36692, + "Ġì¶ľ": 25420, + "Ġì·¨": 28880, + "Ġì¸": 33381, + "Ġ측": 41696, + "Ġì¹": 6639, + "Ġì¹´": 41703, + "Ġì¹´ë": 24369, + "Ġì¹´ë©Ķë": 37680, + "Ġì¹´ë©ĶëĿ¼": 46984, + "Ġì¹ĺ": 18447, + "Ġì¹ĺë": 38366, + "Ġì¹ľ": 15801, + "Ġì¹ľêµ¬": 28307, + "Ġì¹ľêµ¬ë": 30922, + "Ġìº": 25230, + "ĠìºIJë": 45024, + "Ġì»": 9305, + "Ġ커": 38687, + "Ġ커ë": 39573, + "Ġ커íĶ": 45326, + "Ġ컨": 36195, + "Ġ컬ë": 19266, + "Ġì»¬ëŁ¬": 26691, + "Ġì»¬ëŁ¬ë": 39177, + "Ġì¼": 25777, + "Ġì¼Ģ": 46142, + "Ġì½": 10630, + "Ġì½Ķ": 26306, + "Ġì½Ķë": 31512, + "Ġì½Ķë¡ľ": 29716, + "Ġì½Ķë¡ľëĤĺ": 31490, + "Ġì½ĺ": 43875, + "Ġì¿": 27056, + "Ġì¿ł": 37855, + "ĠìĤ": 2774, + "ĠìĤ¬": 4744, + "ĠìĤ¬ê±´": 49653, + "ĠìĤ¬ê³ł": 40836, + "ĠìĤ¬ë": 6606, + "ĠìĤ¬ëŀ": 7727, + "ĠìĤ¬ëŀĮ": 12211, + "ĠìĤ¬ëŀĮë": 18078, + "ĠìĤ¬ëŀĮëĵ¤": 39570, + "ĠìĤ¬ëŀĮëĵ¤ìĿ´": 34919, + "ĠìĤ¬ëŀĮìĿ´": 27660, + "ĠìĤ¬ëŀij": 22581, + "ĠìĤ¬ì§Ħ": 29899, + "ĠìĤ¬ìĭ¤": 14504, + "ĠìĤ¬ìļ©": 14422, + "ĠìĤ°": 29589, + "ĠìĤ´": 21155, + "ĠìĤ´ë": 37316, + "ĠìĤ´ì": 15482, + "ĠìĤ´ì§Ŀ": 22384, + "ĠìĤ´ìķĦ": 46978, + "ĠìĤ¼": 32391, + "Ġìĥ": 3694, + "Ġìĥģ": 8563, + "Ġìĥģíĥľ": 34210, + "ĠìĥģíĻ©": 24581, + "ĠìĥĪ": 31184, + "ĠìĥĪë": 21922, + "ĠìĥĪë¡ľ": 32594, + "ĠìĥĪë¡ľìļ´": 41088, + "Ġìĥī": 22530, + "Ġìĥīê¹": 44105, + "ĠìĥĿ": 6439, + "ĠìĥĿê°ģ": 8594, + "ĠìĥĿê°ģìĿ´": 34581, + "ĠìĥĿê°ģìĿĦ": 30852, + "ĠìĥĿê²¼": 49810, + "ĠìĦ": 3952, + "ĠìĦ¤": 30630, + "ĠìĦ¤ë": 24175, + "ĠìĦ¤ëªħ": 33020, + "ĠìĦ±": 14409, + "ĠìĦ±ê³µ": 38403, + "ĠìĦ¸": 11605, + "ĠìĦ¸ê³Ħ": 40179, + "ĠìĦ¸ë": 32143, + "ĠìĦ¸ìĥģ": 37990, + "ĠìĦľ": 17397, + "ĠìĦľë": 32558, + "ĠìĦľë¡ľ": 44595, + "ĠìĦľìļ¸": 31039, + "ĠìĦŀ": 45048, + "ĠìĦł": 11835, + "ĠìĦłë": 22218, + "ĠìĦłë¬¼": 44956, + "ĠìĦłë°°": 49122, + "ĠìĦłìĥĿ": 33600, + "ĠìĦłìĥĿëĭĺ": 37974, + "ĠìĦłíĥĿ": 33126, + "Ġìħ": 23567, + "Ġìħĭ": 34371, + "ĠìĨ": 4794, + "ĠìĨĮ": 10614, + "ĠìĨĮê°ľ": 42784, + "ĠìĨĮë": 13062, + "ĠìĨĮ리": 21652, + "ĠìĨį": 18663, + "ĠìĨIJ": 15268, + "ĠìĨĶ": 37255, + "ĠìĨĶì§ģ": 40279, + "ĠìĨĶì§ģíŀĪ": 46337, + "ĠìĪ": 3471, + "ĠìĪ¨": 33354, + "ĠìĪĺ": 4446, + "ĠìĪĺê°Ģ": 27345, + "ĠìĪĺë": 22297, + "ĠìĪĺëıĦ": 23455, + "ĠìĪľ": 23841, + "ĠìĪľê°Ħ": 44588, + "ĠìĪł": 41986, + "Ġìī": 18804, + "Ġìī¬": 37687, + "Ġìī½": 33561, + "ĠìĬ": 6955, + "ĠìĬ¤": 25858, + "ĠìĬ¤ë": 40420, + "ĠìĬ¤í": 11196, + "ĠìĬ¤íĥĢ": 30675, + "ĠìĬ¤íĥĢìĿ¼": 45881, + "ĠìĬ¤íĬ¸ë": 49490, + "ĠìĬ¹": 30977, + "Ġìĭ": 2811, + "Ġìĭ¤": 19300, + "Ġìĭ¤ë": 34496, + "Ġìĭ¤ìłľë¡ľ": 46399, + "Ġìĭ¤í": 37403, + "Ġìĭ«": 33649, + "Ġìĭ¬": 21923, + "Ġìĭ¶": 10785, + "Ġìĭ¶ìĿĢ": 26912, + "Ġìĭ¸": 33949, + "Ġìĭľ": 5710, + "Ġìĭľê°Ħ": 16648, + "Ġìĭľê°ĦìĿ´": 39330, + "Ġìĭľë": 24452, + "Ġìĭľì²Ń": 41123, + "Ġìĭľìŀij": 14525, + "ĠìĭĿ": 19675, + "ĠìĭĿìľ¼ë¡ľ": 47270, + "Ġìĭł": 13042, + "Ġìĭłê¸°": 47958, + "Ġìĭłë": 26397, + "ĠìĮ": 35792, + "Ġìį": 37113, + "Ġìį¨": 32575, + "Ġìı": 40304, + "Ġìĵ": 11647, + "Ġìĵ°": 17373, + "Ġìĵ°ê³ł": 43303, + "Ġìĵ°ë": 37159, + "Ġìĵ°ëĬĶ": 44878, + "Ġìĵ¸": 42776, + "ĠìĶ": 13479, + "ĠìĶ¨": 17394, + "ĠìĶ¨ê°Ģ": 49262, + "Ġìķ": 1298, + "Ġìķ¼": 13450, + "Ġìķ½": 11503, + "Ġìķ½ê°Ħ": 14466, + "ĠìķĦ": 2216, + "ĠìķĦê¹Į": 25289, + "ĠìķĦë": 9200, + "ĠìķĦë§Ī": 37298, + "ĠìķĦ무": 30702, + "ĠìķĦ무ë": 29907, + "ĠìķĦë²Ħ": 49972, + "ĠìķĦë¹ł": 41281, + "ĠìķĦëĭ": 16996, + "ĠìķĦëĭĪ": 5651, + "ĠìķĦëĭĪê³ł": 32510, + "ĠìķĦëĭĪë": 14279, + "ĠìķĦëĭĪë©´": 33059, + "ĠìķĦëĭĪëĿ¼": 22948, + "ĠìķĦëĭĪìķ¼": 20425, + "ĠìķĦëĭĪìĹIJìļĶ": 30809, + "ĠìķĦëĭĮ": 28069, + "ĠìķĦëĭĻ": 45842, + "ĠìķĦ주": 22360, + "ĠìķĦì§ģ": 22729, + "ĠìķĦ침": 41812, + "ĠìķĦìĿ´": 25130, + "ĠìķĦìĿ´ë": 24790, + "ĠìķĦíĮĮ": 46438, + "Ġìķħ": 43843, + "ĠìķĪ": 4811, + "ĠìķĪë": 9658, + "ĠìķĪëħķ": 13810, + "ĠìķĪëħķíķĺìĦ¸ìļĶ": 19289, + "ĠìķĪëı¼": 42685, + "ĠìķĪìĹIJ": 31660, + "Ġìķī": 37426, + "ĠìķĬ": 6718, + "ĠìķĬê³ł": 31157, + "ĠìķĬëĬĶ": 34790, + "ĠìķĬìķĦ": 39860, + "ĠìķĬìķĦìļĶ": 39952, + "ĠìķĬìķĺ": 29558, + "ĠìķĬìĿĢ": 34590, + "ĠìķĬìĿĦ": 32112, + "ĠìķĮ": 9457, + "ĠìķĮê³ł": 31935, + "ĠìķĮë": 21246, + "ĠìķĮ볤": 38654, + "ĠìķĮìķĦ": 32352, + "ĠìķĮìķĺìĸ´": 49453, + "Ġìķŀ": 13727, + "ĠìķŀìĹIJ": 42004, + "Ġìķŀìľ¼ë¡ľ": 30293, + "Ġìķł": 21459, + "Ġìķłë": 42422, + "Ġìĸ": 2417, + "Ġìĸ´": 9076, + "Ġìĸ´ë": 4863, + "Ġìĸ´ë¨¸": 33257, + "Ġìĸ´ëĬIJ": 34918, + "Ġìĸ´ëĶ": 41802, + "Ġìĸ´ëĶĶ": 20879, + "Ġìĸ´ëķĮ": 43884, + "Ġìĸ´ëĸ": 7768, + "Ġìĸ´ëĸ¡": 39593, + "Ġìĸ´ëĸ¤": 15620, + "Ġìĸ´ëĸ»": 12580, + "Ġìĸ´ëĸ»ê²Į": 12952, + "Ġìĸ´ëł¤": 32289, + "Ġìĸ´ëłµ": 43961, + "Ġìĸ´ì": 11474, + "Ġìĸ´ì¨": 46478, + "Ġìĸ´ì¨Įëĵł": 49856, + "Ġìĸ´ì©": 43513, + "Ġìĸ´ìļ": 27755, + "Ġìĸ´ìłľ": 39247, + "Ġìĸ¸": 16738, + "Ġìĸ¸ë": 44014, + "Ġìĸ¸ëĭĪ": 27213, + "Ġìĸ¸ìłľ": 43790, + "Ġìĸ¼": 22142, + "Ġìĸ¼êµ": 25233, + "Ġìĸ¼êµ´": 30818, + "Ġìĸ¼ë": 21699, + "Ġìĸ¼ë§": 33502, + "Ġìĸ¼ë§Ī": 44859, + "Ġìĸ¼ë§ĪëĤĺ": 36093, + "Ġìĸij": 17723, + "Ġìĸĺ": 11098, + "Ġìĸĺ기": 19641, + "Ġìĸĺ기를": 38327, + "Ġìĸĺë": 49441, + "ĠìĸĺëĬĶ": 43084, + "ĠìĹ": 2087, + "ĠìŬ": 5518, + "ĠìĹ¬ê¸°": 7543, + "ĠìĹ¬ê¸°ê¹Įì§Ģ": 46869, + "ĠìĹ¬ê¸°ëĬĶ": 48864, + "ĠìĹ¬ê¸°ìĦľ": 25404, + "ĠìĹ¬ê¸°ìĹIJ": 37138, + "ĠìŬë": 8228, + "ĠìŬ룬": 31784, + "ĠìŬ룬ë": 10791, + "ĠìŬ룬ë¶Ħ": 14707, + "ĠìŬ룬ë¶Ħëĵ¤": 25745, + "ĠìŬìŀIJ": 41768, + "ĠìĹ°": 11839, + "ĠìĹ°ë": 34902, + "ĠìĹ°ìĬµ": 35901, + "ĠìĹ´": 41280, + "ĠìĹ´ë": 38787, + "ĠìĹ´ì": 40039, + "ĠìĹ´ìĭ¬íŀĪ": 31939, + "ĠìĹĦ": 16685, + "ĠìĹĦë§Ī": 23747, + "ĠìĹĦì²Ń": 18070, + "ĠìĹħ": 32892, + "ĠìĹĨ": 5711, + "ĠìĹĨê³ł": 48724, + "ĠìĹĨëĬĶ": 20986, + "ĠìĹĨëĭ¤": 50174, + "ĠìĹĨìĬµëĭĪëĭ¤": 47236, + "ĠìĹĨìĸ´": 28715, + "ĠìĹĨìĸ´ìļĶ": 31162, + "ĠìĹĨìĿ´": 33353, + "ĠìĹIJ": 20122, + "ĠìĹIJë": 44428, + "ĠìĹŃ": 19427, + "ĠìĹŃìĭľ": 34522, + "Ġìĺ": 2355, + "Ġìĺ¤": 5175, + "Ġìĺ¤ë": 10258, + "Ġìĺ¤ë¥¸": 46673, + "Ġìĺ¤ë¹ł": 33398, + "Ġìĺ¤ëĬ": 36791, + "Ġìĺ¤ëĬĺ": 8880, + "Ġìĺ¤ëĬĺëıĦ": 47455, + "Ġìĺ¤ëĬĺìĿĢ": 23720, + "Ġìĺ¤ëŀĺ": 46211, + "Ġìĺ¤ëŀľë§Į": 48551, + "Ġìĺ¤ì¼ĢìĿ´": 30567, + "Ġìĺ¤í": 25586, + "Ġìĺ¨": 25506, + "Ġìĺ¬": 28603, + "Ġìĺ¬ë": 12917, + "Ġìĺ¬ëĿ¼": 22327, + "Ġìĺ·": 30880, + "Ġìĺģ": 9293, + "Ġìĺģìĥģ": 15603, + "ĠìĺģìĥģìĿĦ": 42942, + "ĠìĺģíĻĶ": 44869, + "ĠìĺĨ": 29095, + "ĠìĺĪ": 10134, + "ĠìĺĪë": 22551, + "ĠìĺĪë»IJ": 45527, + "ĠìĺĪìģ": 20684, + "ĠìĺĪìģĺ": 28424, + "ĠìĺĽ": 44298, + "ĠìĺĽëĤł": 48646, + "ĠìĻ": 4186, + "ĠìĻ¸": 27357, + "ĠìĻĢ": 12500, + "ĠìĻĢìĦľ": 45783, + "ĠìĻĦ": 18112, + "ĠìĻĦë": 36683, + "ĠìĻĦìĦ±": 41867, + "ĠìĻĦìłĦ": 25587, + "ĠìĻĶ": 17766, + "ĠìĻľ": 9883, + "ĠìĻľë": 33750, + "ĠìĻľëĥIJíķĺë©´": 49338, + "Ġìļ": 4709, + "Ġìļ©": 33622, + "Ġìļ°": 14995, + "Ġìļ°ë": 22776, + "Ġìļ°ë¦¬": 8126, + "Ġìļ°ë¦¬ê°Ģ": 22408, + "Ġìļ°ë¦¬ë": 36118, + "Ġìļ°ë¦¬ëĬĶ": 42425, + "Ġìļ°ìĻĢ": 36963, + "Ġìļ´ëıĻ": 33541, + "Ġìļ¸": 40814, + "ĠìļĶ": 10161, + "ĠìļĶë": 39688, + "ĠìļĶì¦ĺ": 24835, + "ĠìĽ": 6891, + "ĠìĽĢ": 40481, + "ĠìĽĢì§ģ": 42114, + "ĠìĽĥ": 25014, + "ĠìĽIJ": 13499, + "ĠìĽIJë": 20884, + "ĠìĽIJëŀĺ": 25169, + "Ġìľ": 4916, + "Ġìľ¤": 36844, + "Ġìľ¼": 37163, + "ĠìľĦ": 9491, + "ĠìľĦìĹIJ": 38388, + "ĠìľĦíķ´": 31600, + "ĠìľĦíķ´ìĦľ": 30238, + "ĠìľĦíķľ": 41475, + "Ġìľł": 11878, + "Ġìľłë": 22262, + "ĠìľłíĬľë": 39163, + "ĠìĿ": 1191, + "ĠìĿ´": 2620, + "ĠìĿ´ê±°": 7075, + "ĠìĿ´ê±°ë¥¼": 46208, + "ĠìĿ´ê±°ëĬĶ": 24535, + "ĠìĿ´ê±´": 21867, + "ĠìĿ´ê±¸": 27107, + "ĠìĿ´ê²ĥ": 23088, + "ĠìĿ´ê²ĥëıĦ": 42118, + "ĠìĿ´ê²Į": 10496, + "ĠìĿ´ë": 2892, + "ĠìĿ´ë¦Ħ": 28581, + "ĠìĿ´ë¯¸": 30099, + "ĠìĿ´ë²Ī": 16299, + "ĠìĿ´ë²ĪìĹIJ": 40692, + "ĠìĿ´ëŁ¬": 37398, + "ĠìĿ´ëŁ°": 8381, + "ĠìĿ´ëłĩê²Į": 5483, + "ĠìĿ´ì": 4329, + "ĠìĿ´ìª½": 40325, + "ĠìĿ´ìĥģ": 20362, + "ĠìĿ´ìķ¼": 20510, + "ĠìĿ´ìķ¼ê¸°": 37576, + "ĠìĿ´ìķ¼ê¸°ë¥¼": 48974, + "ĠìĿ´ìĸ": 40186, + "ĠìĿ´ìļ©": 37839, + "ĠìĿ´ìľł": 32292, + "ĠìĿ´ìł": 41049, + "ĠìĿ´ìłľ": 8424, + "ĠìĿ´íķ´": 49373, + "ĠìĿ´íĽĦ": 43577, + "ĠìĿµ": 45664, + "ĠìĿ¸": 9385, + "ĠìĿ¸ë": 34339, + "ĠìĿ¸íĦ°ë": 47491, + "ĠìĿ¼": 7682, + "ĠìĿ¼ë": 16623, + "ĠìĿ¼ë°ĺ": 47057, + "ĠìĿ¼ë³¸": 38496, + "ĠìĿ¼ëĭ¨": 17304, + "ĠìĿ¼ìĿ´": 42848, + "ĠìĿ½": 43302, + "ĠìĿĢ": 31863, + "ĠìĿĮ": 15179, + "ĠìĿĮìĭĿ": 34203, + "ĠìĿĮìķħ": 37851, + "ĠìĿij": 21712, + "ĠìĿĺ": 14389, + "ĠìĿĺë": 29321, + "Ġìŀ": 1332, + "Ġìŀ¡": 16545, + "Ġìŀ¡ìķĦ": 40845, + "Ġìŀ¥": 12280, + "Ġìŀ¥ëĤľ": 46314, + "Ġìŀ¬": 20804, + "Ġìŀ¬ë": 16526, + "Ġìŀ¬ë¯¸": 37723, + "Ġìŀ¬ë°Į": 31224, + "ĠìŀĦ": 43216, + "Ġìŀħ": 10051, + "ĠìŀħëĭĪëĭ¤": 37589, + "ĠìŀĪ": 2297, + "ĠìŀĪê±°ëĵłìļĶ": 44262, + "ĠìŀĪê²Į": 41680, + "ĠìŀĪê³ł": 18683, + "ĠìŀĪê³łìļĶ": 44426, + "ĠìŀĪ기": 48371, + "ĠìŀĪë": 23549, + "ĠìŀĪëĤĺ": 48178, + "ĠìŀĪëĬĶ": 7153, + "ĠìŀĪëĬĶëį°": 19197, + "ĠìŀĪëĬĶëį°ìļĶ": 43550, + "ĠìŀĪëĭ¤": 27468, + "ĠìŀĪëĭ¤ê³ł": 32517, + "ĠìŀĪëĭ¤ëĬĶ": 38469, + "ĠìŀĪì£ł": 34070, + "ĠìŀĪì§Ģ": 37693, + "ĠìŀĪì§Ģë§Į": 49355, + "ĠìŀĪìĬµëĭĪëĭ¤": 10552, + "ĠìŀĪìĸ´": 17300, + "ĠìŀĪìĸ´ìĦľ": 27937, + "ĠìŀĪìĸ´ìļĶ": 12654, + "ĠìŀĪìĹĪ": 15972, + "ĠìŀĪìľ¼": 47324, + "ĠìŀĪìľ¼ë©´": 35783, + "ĠìŀĪìľ¼ëĭĪê¹Į": 44489, + "ĠìŀĪìĿĦ": 18082, + "ĠìŀĪìŀĸìķĦìļĶ": 38853, + "ĠìŀIJ": 5650, + "ĠìŀIJ기": 37257, + "ĠìŀIJ꾸": 45989, + "ĠìŀIJë": 15905, + "ĠìŀIJ주": 47295, + "ĠìŀIJìĭł": 31505, + "ĠìŀIJìĹ°": 39635, + "Ġìŀij": 14585, + "ĠìŀijìĹħ": 40316, + "ĠìŀijìĿĢ": 45870, + "Ġìŀĺ": 6644, + "Ġìŀĺë": 24041, + "Ġìŀĺ못": 38991, + "Ġìŀł": 15825, + "Ġìŀłê¹": 24155, + "Ġìŀłê¹IJ": 43479, + "Ġìŀłê¹IJë§Į": 33805, + "Ġìł": 1647, + "ĠìłĢ": 4841, + "ĠìłĢ기": 33789, + "ĠìłĢë": 13163, + "ĠìłĢëĬĶ": 10551, + "ĠìłĢëıĦ": 27591, + "ĠìłĢíĿ¬": 14594, + "ĠìłĢíĿ¬ê°Ģ": 27463, + "Ġìłģ": 14370, + "ĠìłģìĿ´": 48660, + "ĠìłĦ": 6831, + "ĠìłĦë": 19617, + "ĠìłĦìĹIJ": 27117, + "ĠìłĪë": 36144, + "ĠìłĪëĮĢ": 48811, + "ĠìłIJ": 20060, + "Ġìłij": 21616, + "Ġìłijì¢ħ": 32840, + "Ġìłķ": 4980, + "Ġìłķë§IJ": 12793, + "Ġìłķë¶Ģ": 34659, + "ĠìłķëıĦ": 13636, + "ĠìłķëıĦë¡ľ": 42173, + "ĠìłķíĻķ": 47930, + "Ġìłľ": 4424, + "Ġìłľê°Ģ": 7439, + "Ġìłľë": 23406, + "ĠìłľëĮĢë¡ľ": 43795, + "ĠìłľìĿ¼": 23090, + "ĠìłľíĴĪ": 21496, + "Ġí": 1175, + "Ġíģ": 9414, + "Ġíģ¬": 23130, + "Ġíģ¬ê²Į": 38926, + "Ġíģ¬ë": 27680, + "Ġíģ°": 21307, + "Ġíģ´ë": 30464, + "ĠíĤ": 21959, + "ĠíĤ¤": 31855, + "Ġíĥ": 8675, + "ĠíĥĢ": 19840, + "ĠíĥĦ": 46979, + "Ġíĥľ": 28808, + "ĠíĦ°": 39565, + "Ġíħ": 18575, + "ĠíħĮ": 30516, + "ĠíĨ": 20901, + "ĠíĨµ": 17006, + "ĠíĨł": 40309, + "ĠíĨłë": 47955, + "ĠíĪ¬": 27256, + "ĠíĬ": 11412, + "ĠíĬ¸ë": 34479, + "ĠíĬ¹": 16909, + "ĠíĬ¹ë³Ħ": 48735, + "ĠíĬ¹íŀĪ": 37704, + "ĠíĬĢ": 49470, + "Ġíĭ": 22114, + "Ġíĭ°": 42417, + "ĠíĮ": 6950, + "ĠíĮ¨": 35470, + "ĠíĮ¬": 45480, + "ĠíĮ¬ë": 47132, + "ĠíĮĢ": 31448, + "ĠíĮĮ": 15390, + "ĠíĮĮë": 44475, + "ĠíĮIJ": 35008, + "ĠíĮĶ": 37110, + "ĠíĮĶë": 49236, + "Ġíį¼": 40849, + "Ġíİ": 10981, + "Ġíݸ": 16990, + "Ġíİĺ": 48574, + "Ġíı": 9250, + "Ġíı¬": 17101, + "Ġíı¬ìĿ¸": 45253, + "Ġíıī": 21967, + "ĠíıŃ": 35663, + "Ġíij": 41065, + "Ġíijľ": 20966, + "ĠíijľíĺĦ": 34232, + "ĠíĴ": 21442, + "ĠíĴĢ": 40036, + "ĠíĶ": 8074, + "ĠíĶ¼": 17448, + "ĠíĶ¼ë": 24009, + "ĠíĶ¼ë¶Ģ": 30192, + "ĠíĶĦë": 32051, + "ĠíĶĦë¡ľ": 27758, + "ĠíĶĮë": 28764, + "Ġíķ": 1362, + "Ġíķ¨": 19340, + "Ġíķ¨ê»ĺ": 21469, + "Ġíķ©": 32413, + "Ġíķ©ëĭĪëĭ¤": 18802, + "Ġíķ´": 11683, + "Ġíķ´ë": 11134, + "Ġíķ´ëıĦ": 35776, + "Ġíķ´ì": 7960, + "Ġíķ´ì£¼": 23281, + "Ġíķ´ì¤": 29409, + "Ġíķ´ìĦľ": 17705, + "Ġíķ´ìķ¼": 20556, + "Ġíķ´ìļĶ": 25744, + "ĠíķĦ": 19620, + "ĠíķĦìļĶ": 22731, + "Ġíķij": 45549, + "Ġíķĺ": 3369, + "Ġíķĺê²Į": 44605, + "Ġíķĺê²łìĬµëĭĪëĭ¤": 23473, + "Ġíķĺê³ł": 10301, + "Ġíķĺ기": 47378, + "Ġíķĺë": 5832, + "Ġíķĺ루": 33918, + "Ġíķĺë©´": 17422, + "Ġíķĺë©´ìĦľ": 37466, + "ĠíķĺëĤĺ": 12261, + "ĠíķĺëĤĺë": 38878, + "ĠíķĺëĬĶ": 10914, + "ĠíķĺëĬĶëį°": 29600, + "ĠíķĺëĭĪê¹Į": 47490, + "Ġíķĺì§Ģ": 26882, + "Ġíķĺì§Ģë§Į": 23286, + "ĠíķĻ": 24504, + "Ġíķľ": 4815, + "ĠíķľêµŃ": 21045, + "Ġíķľë": 10737, + "Ġíķľë²Ī": 14463, + "Ġíķľëĭ¤": 44005, + "Ġíķľëį°": 49780, + "Ġíķł": 8981, + "Ġíķłê²ĮìļĶ": 43258, + "Ġíķłë": 44148, + "ĠíķŃ": 25031, + "ĠíķŃìĥģ": 30747, + "Ġíĸ": 11988, + "Ġíĸ¥": 29165, + "ĠíĸĪ": 8154, + "ĠíĸĪëĬĶëį°": 27418, + "ĠíĸĪëįĺ": 45564, + "ĠíĸĪìĬµëĭĪëĭ¤": 32314, + "ĠíĸĪìĸ´": 49528, + "ĠíĸĪìĸ´ìļĶ": 36331, + "Ġíĸī": 21484, + "Ġíĸīë³µ": 36921, + "ĠíĹ": 13431, + "ĠíŤ": 45037, + "ĠíĹĪ": 26893, + "ĠíĹĪë": 47078, + "ĠíĹĪíĮĿ": 41756, + "Ġíĺ": 5706, + "Ġíĺ¸": 26932, + "Ġíĺ¹": 27088, + "Ġíĺ¹ìĭľ": 34767, + "Ġíĺ¼": 31523, + "Ġíĺ¼ìŀIJ": 36028, + "ĠíĺĦ": 17505, + "ĠíĺĦìŀ¬": 39870, + "Ġíĺij": 46977, + "Ġíĺķ": 12459, + "ĠíĻ": 5930, + "ĠíĻį": 36990, + "ĠíĻĶ": 20661, + "ĠíĻĶë": 26700, + "ĠíĻĶìŀ¥": 40711, + "ĠíĻķ": 12619, + "ĠíĻķì§Ħ": 45061, + "ĠíĻķìĭ¤íŀĪ": 50149, + "ĠíĻķìĿ¸": 31288, + "ĠíĻĺ": 29288, + "ĠíĻľ": 42194, + "ĠíĻľëıĻ": 45638, + "Ġíļ": 14794, + "Ġíļ¨": 33571, + "ĠíļĮ": 22980, + "ĠíĽ": 11091, + "ĠíĽ¨": 41842, + "ĠíĽ¨ìĶ¬": 42489, + "ĠíĽĦ": 21638, + "ĠíĽĦë": 23104, + "ĠíĽĦë³´": 40089, + "Ġíľ": 30200, + "ĠíĿ": 14473, + "Ġíŀĺ": 30326, + "Ġíŀĺë": 22042, + "Ġíŀĺëĵ¤": 28576, + "Ġï": 25072, + "Ġï·": 28081, + "Ġï·º": 41122, + "Ġï·»": 47735, + "Ġ�": 16867, + "ĠðĿ": 42244, + "ĠðĿĺ": 42341, + "ĠðŁ": 7385, + "ĠðŁİ": 19034, + "ĠðŁİµ": 25674, + "ĠðŁİ¶": 43669, + "ĠðŁIJ": 27480, + "ĠðŁij": 36276, + "ĠðŁĺ": 20732, + "ġ": 221, + "Ģ": 222, + "Ģë": 2366, + "Ģë¡ľ": 36680, + "Ģ리": 34374, + "ĢëıĦ": 33225, + "ĢìĿ´": 12192, + "ĢìĿĦ": 25700, + "ģ": 223, + "ģ¼": 29278, + "ģĶ": 30895, + "Ĥ": 224, + "Ĥ¨": 30856, + "Ĥ¬": 9915, + "Ĥ´": 22485, + "Ĥĺ": 3404, + "Ĥĺë": 14886, + "ĤĺëĿ¼": 47495, + "ĤĺìļĶ": 26057, + "Ĥľ": 16662, + "Ĥł": 24095, + "ĥ": 225, + "ĥ¥": 10408, + "ĥ½": 4720, + "ĥĢ": 22373, + "ĥģ": 17486, + "ĥIJ": 12476, + "ĥIJë©´": 35482, + "ĥIJíķĺë©´": 46370, + "Ħ": 226, + "Ħ¤": 5626, + "Ħ¤ìļĶ": 12974, + "Ħ°": 26267, + "Ħ±": 42235, + "Ħ¸": 20600, + "Ħ¸ìļĶ": 25918, + "Ħë": 2703, + "Ħë¡ľ": 14046, + "Ħ를": 21273, + "Ħë§Ī": 21274, + "ĦëıĦ": 24798, + "Ħëĵ¤": 10801, + "ĦĪ": 23318, + "ĦIJ": 45382, + "Ħľ": 3556, + "ħ": 227, + "ħ¸": 37524, + "ħëĭĪëĭ¤": 28332, + "ħĢ": 32710, + "ħĦ": 35530, + "ħķ": 12831, + "ħĺ": 36630, + "Ĩ": 228, + "Ĩµ": 9999, + "Ĩĵ": 28500, + "Ĩĵê³ł": 47441, + "ĩ": 229, + "Ī": 230, + "Ī¬": 20435, + "Ī¬ë": 48458, + "Īë": 2196, + "Ī를": 31567, + "Īë§Į": 30962, + "Īë¬": 5520, + "Ī무": 6438, + "Ī무ë": 27532, + "Ī문": 35604, + "ĪëĤĺ": 19505, + "ĪëĦ¤": 39510, + "Īëįĺ": 13461, + "ĪëıĦ": 22616, + "ī": 231, + "īìŀ¥": 14547, + "Ĭ": 232, + "Ĭ¤": 19426, + "Ĭ¨": 21588, + "Ĭ¸": 21830, + "Ĭ¸ë": 28699, + "ĭ": 233, + "Į": 234, + "Įë": 2457, + "Į를": 29039, + "Įëį°": 50158, + "ĮëıĦ": 33723, + "Įëĵł": 47353, + "Į룬": 39530, + "ĮĢ": 3638, + "ĮĢë": 8405, + "ĮĢë¡ľ": 15527, + "ĮĢ를": 49946, + "į": 235, + "į¨": 18304, + "į°": 2336, + "į¼": 21709, + "įãĥ«": 38518, + "įëĭĪëĭ¤": 27169, + "įĶ": 19666, + "įĶë": 12890, + "įĶëĭĪ": 39638, + "įĶëĿ¼": 39898, + "įĶëĿ¼ê³ł": 19129, + "įĶëĿ¼ê³łìļĶ": 21261, + "įĺ": 8092, + "İ": 236, + "ı": 237, + "ı¼": 25116, + "ıĦ": 1838, + "ıĦë¡Ŀ": 19305, + "ıħ": 19079, + "ıĮ": 34242, + "ıĻ": 8309, + "ıĻìķĪ": 48608, + "IJ": 238, + "IJ×": 2660, + "IJë": 2998, + "IJë§Į": 25940, + "IJë©´": 32324, + "IJëį°": 43429, + "IJëıĦ": 22983, + "IJIJ": 35606, + "IJĺ": 10487, + "IJĺëĬĶ": 43653, + "IJľ": 14987, + "ij": 239, + "ij¥": 42815, + "ij×": 4349, + "ij׾": 23602, + "ijIJ": 15150, + "ijIJë": 45193, + "ijľ": 12139, + "Ĵ": 240, + "ĵ": 241, + "ĵ¤": 2403, + "ĵ¤ëıĦ": 46313, + "ĵ¤ìĿ´": 8109, + "ĵ¤ìĿĢ": 22571, + "ĵ¤ìĿĦ": 24968, + "ĵ¤ìĿĺ": 29990, + "ĵ¯": 39358, + "ĵ±": 22205, + "ĵľ": 7087, + "ĵľë": 6300, + "ĵľë¥¼": 43871, + "ĵľë¦´": 29512, + "ĵľë¦´ê²ĮìļĶ": 41413, + "ĵľëĬĶ": 29609, + "ĵĿ": 26152, + "ĵł": 6646, + "Ķ": 242, + "Ķ©": 34521, + "Ķê°Ģ": 13833, + "Ķë": 3261, + "Ķë¡ľ": 18839, + "ĶëıĦ": 40720, + "ĶìĿ´": 17793, + "ĶìĿ´íģ¬": 29819, + "ĶìĿ´íģ¬ìĹħ": 30952, + "ĶĶ": 9520, + "ĶĶìĸ´": 40803, + "ĶĶìĺ¤": 49117, + "ķ": 243, + "ķ¼": 6612, + "ķĦ": 33889, + "ķĮ": 14922, + "ĸ": 244, + "ĸ´": 25982, + "ĸ×Ķ": 7889, + "ĸìĹIJ": 28216, + "ĸĪ": 4341, + "Ĺ": 245, + "ĹIJ": 8926, + "ĺ": 246, + "ĺë": 1894, + "ĺ를": 18855, + "ĺëıĦ": 8226, + "Ļ": 247, + "ĻĢ": 37404, + "ļ": 248, + "ļ©": 22621, + "ļĶ": 1206, + "Ľ": 249, + "Ľi": 8971, + "ľ": 250, + "ľ¨": 34057, + "ľë": 2163, + "ľë¡ľ": 15636, + "ľë¥¼": 20087, + "ľë©´": 34092, + "ľëĮĢ": 36718, + "ľëıĦ": 17099, + "ľëıĻ": 38667, + "ľł": 27144, + "Ŀ": 251, + "Ŀi": 10677, + "Ŀ¤": 35156, + "Ŀ¼": 2742, + "Ŀ¼ê³ł": 6954, + "Ŀ¼ë": 9316, + "Ŀ¼ë©´": 32713, + "Ŀ¼ëĬĶ": 13182, + "Ŀ¼ëıĦ": 25574, + "Ŀ¼ìĦľ": 48367, + "Ŀ½": 20523, + "ŀ": 252, + "ŀ¨": 43369, + "ŀ×": 3376, + "ŀר": 18520, + "ŀת": 40339, + "ŀĢ": 18781, + "ŀĪ": 5387, + "ŀĪë": 36329, + "ŀĪ볤": 50073, + "ŀĮ": 22855, + "ŀIJ": 15876, + "ŀIJë": 45863, + "ŀij": 9143, + "ŀĸ": 47812, + "ŀĺ": 4241, + "ŀĺë": 14387, + "ŀĺëıĦ": 38371, + "ŀĻ": 34284, + "ŀľë": 27273, + "ŀľë§Į": 46034, + "Ł": 253, + "Ł¬": 6235, + "Ł¬ë": 7871, + "Ł¬ìļ´": 40537, + "Ł°": 7436, + "Ł¼": 15375, + "Ł½": 21498, + "Łģ": 38067, + "Łī": 24502, + "ł": 254, + "ł¤": 5743, + "ł¤ê³ł": 18914, + "ł¤ë": 19479, + "ł¤ìĦľ": 40673, + "ł¤ìļĶ": 45410, + "ł¥": 11770, + "ł¨": 26627, + "łµ": 39469, + "ł¸": 14264, + "ł¹": 25565, + "ł×ķ": 32219, + "ł×Ĺ": 21418, + "ł×Ĺ׳×ķ": 22152, + "ł×Ļ": 10361, + "łë": 4673, + "łë¥¼": 39988, + "łĩ": 3921, + "łĩê²Į": 4591, + "łĪ": 10417, + "łĪë": 29494, + "łĪìĿ´": 38845, + "łĮ": 37422, + "łľ": 7589, + "Ń": 255, + "Ńī": 43962, + "ŃIJ": 4381 +} diff --git a/whisper_info.txt b/whisper_info.txt new file mode 100644 index 0000000000000000000000000000000000000000..740dbe320aaf3acdfde98eb5418f4d89fa2e44b1 --- /dev/null +++ b/whisper_info.txt @@ -0,0 +1,27 @@ +# Preparing a Python venv to enable opening Jupyter notebooks: + +cd ~/git_repos/whisper_related/community-events/ +python3 -m venv ~/python_virtual_envs/whisper_fine_tuning +source ~/python_virtual_envs/whisper_fine_tuning/bin/activate.csh +alias python_whisper_fine_tuning "source ~/python_virtual_envs/whisper_fine_tuning/bin/activate.csh" +python_whisper_fine_tuning + +pip install --upgrade pip +pip install jupyter +pip install -r whisper-fine-tuning-event/requirements.txt +pip install transformers +pip install accelerate -U + + +#pip install numpy +#pip install matplotlib +#pip install graphviz +pip install -U "huggingface_hub[cli]" +git config --global credential.helper store + +rehash +huggingface-cli login + + +jupyter notebook +==> runs the Jupyter Notebook server (with port 8888) and opens the app in the browser.